: Loader/Monitor

ND-60.136.03

NORSK DATA AS

ND-500
Loader/Monitor

ND-60.136.03

This manual is in loose leaf form for ease of updating. Old pages may be
removed and new pages easily inserted if the manual is revised.

The loose leaf form also allows you to place the manual in a ring binder (A) for
greater protection and convenience of use. Ring binders with 4 rings corre-
sponding to the holes in the manual may be ordered in two widths, 30 mm and
40 mm. Use the order form below.

The manual may also be placed in a plastic cover (B). This cover is more suitable
for manuals of less than 100 pages than for large manuais. Plastic covers may
also be ordered below.

N ——— Hh /H

B

HE
L)

L

A Ring Binder B Plastic Cover

Please send your order to the local ND office or {in Norway) to:
Documentation Department
Norsk Data A.S

P.O. Box 4, Lindeberg géard
Oslo 10

ORDER FORM

| would like to order

....... Ring Binders, 30 mm, at nkr 20,- per binder

....... Ring Binders, 40 mm, at nkr 25,- per binder

....... Plastic Covers at nkr 10,- per cover

[F: T o - S PSP O PO UPPRPPPPPIRN

Company
Address

NOTICE

The information in this document is subject to change without notice. Norsk
Data A.S assumes no responsibility for any errors that may appear in this docu-
ment. Norsk Data A.S assumes no responsibility for the use or reliability of its
software on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. it may not

be photocopied, reproduced or translated without the prior consent of Norsk
Data A.S.

Copyright @ 1982 by Norsk Data A.S.

PRINTING RECORD

Printing Notes

01/81 Version 01
07/81 Version 02
01/82 Version 03

ND-500 Loader/Monitor
Publ.No. ND-60.136.03
January 1982

NORSK DATA A.S

P.0. Box 4, Lindeberg gard
Oslo 10, Norway

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one or
more single pages to be merged into the manual by the user, each revised page
being listed on the new printing record sent out with the revision. The old
printing record should be replaced by the new one.

New versions and revisions are announced in the ND Bulletin and can be ordered
as described below.

The reader's comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms, together with all types of inquiry and requests for documentation
should be sent to the local ND office or (in Norway) to:

Documentation Department
Norsk Data A.S

P.0. Box 4, Lindeberg gard
Oslo 10

PREFACE

THE PRODUCT
This manual describes

Linkage-Loader ND-10319 version C
ND-500 Monitor ND-10320 version B

The ND-500 Monitor is an extension of the Sintran III operating system
which provides for program execution on the ND-500 computer. The
Linkage-Loader runs as an ND-500 program, while the ND-500 Monitor is
an integral part of the Sintran III VSE/500 operating system.

The ND-500 memory management system is described in the ND-500 CPU
Reference Manual. However, Sintran III does not utilize the hardware
fully, as a process may consist of one domain only.

THE READER

This manual is written for programmers and operators who want to load
and run programs on the ND-500. It also describes the Monitor commands
available to the system supervisor for maintaining proper control over
ND-500 resources.

PREREQUISITE KNOWLEDGE

The reader is assumed to have some previous knowledge of the ND-500,
the ND-100 and the Sintran III operating system. Depending on the
intended use of the ND-500 computer, this may vary from knowing how to
compile a simple program with only a rudimentary knowledge of the
memory management system (for a programmer with timesharing/background
requirements only) to familiarity with the hardware configuration,
ND-100 segment file and RT loader structure (for the system
supervisor) .

Necessary information is found in the following manuals:
ND-500 CPU Reference Manual (ND-05.009)
SINTRAN III Reference Manual (ND-60.128)

SINTRAN III System Supervisor (ND-60.103)
SINTRAN III RRT Loader (ND-60.051)

ND-60.136.03

vi

THE MANUAL

This manual will give the reader information about how to link
relocatable modules to make an executable ND-500 program (domain), and
how to execute programs on the ND-500 under the Sintran III operating
system.

The manual should be used for reference; it is not intended to be a
textbook in loader and monitor use. Each command description is
independent of others, and can be read without knowing other commands
described. However, the first chapters contains some introductory
information about the ND-500 system.

A thorough understanding of the ND-500 memory management system and
trap handling is required to fully utilize the ND-500. A detailed
description may be found in the ND-500 CPU Reference Manual ND-05.009
chapters 4 and 6.

vii

TABLE OF CONTENTS

Section Page
1. INTRODUCTION 3
1.1. Use of the Linkage-Loader and Monitor 3
1.1.1. Compilation 3

1.1.2. Loading 4

1.1.3. Execution 5

1.1.4. Multi-segment domains 6

1.2. Command and parameter format 8
1.3. Command syntax 8
1.4. Naming rules 10
1.5. The description file 10
1.6. The function of the Linkage-Loader 11
1.7. The function of the Monitor 12

2. MEMORY MANAGFMENT SYSTEM 15
2.1. Logical memory structure 15
2.2. Capabilities 17

3. TRAPS 19
3.1. Trap handler calling 19
3.2. Use of trap handlers 20

4. STANDARD EXCEPTION HANDLER LIBRARY 21
4.1. ND-500 traps table 23
4.2. The EXCEPT routine 24

ND-60.136.03

viii

Section Page
4.3, The EXCDEF routine 29
4.4, The EXCTERM routine 31
4.5. The PRITRAC routine 32
4.6. The PRIMESS routine 33
4.7. The GEIMESS/PGEIMESS routine 34
4.8. The RDEFVAL routine 35
4.9, The RCURVAL routine 36

5. COMMUNICATION BETWEEN ND-500 AND ND-100 39
5.1. Monitor calls 39
5.2. Communicating through the process flags 39
5.3. Communicating through RTCOMMON 40
5.4. Communicating through an RT segment 40
5.5. Communicating through files 41

6. LOADER COMMANDS 42
6.1. Domains 42

6.1.1. SET-DOMAIN 42
6.1.2. END-DOMAIN 43
6.1.3. CLEAR-DCMAIN 43
6.1.4. DELETE-DOMAIN 43
6.1.5. LIST-DOMAIN 44
6.1.6. WRITE-DOMAIN-STATUS 44
6.1.7. RENAME-DOMAIN 44
6.1.8. COPY-DOMAIN 45
6.1.9. RELEASE-DOMAIN 46
6.2. Segments 47
6.2.1. OPEN-SHGMENT 47
6.2.2. CLOSE-SEGMENT 49
6.2.3. LINK-SHGMENT 49
6.2.4. LIBRARY-SEGMENT-LINK 50
6.2.5. APPEND—-SEGMENT 50
6.2.6., SET-SEGMENT-NUMBER 51

ND-60.136.03

ix

Section Page
6.2.7. CLEAR-SEGMENT 51
6.2.8. DELETE-SEGMENT 52
6.2.9. RENAME-SEGMENT 52
6.2.10. LIST-SEGMENT 52
6.2.11. WRITE-SEGMENT-STATUS 53

6.3. Commands to load NRF code 54
6.3.1. LOAD-SEGMENT 54
6.3.2. RELOAD-SEGMENT 55
6.3.3. LIBRARY-SEGMENT-LOAD 55
6.3.4. OMITTED-SEGMENT-LOAD 56
6.3.5. SELECTED-SEGMENT-LOAD 56
6.3.6. TOTAL-SEGMENT-LOAD 57

6.4. COMMON segments 58
6.4.1. COMMON-SEGMENT-OPEN 58
6.4.2. COMMON-SEGMENT-CLOSE 59
6.4.3. COMMON-SEGMENT-APPEND 59
6.4.4. COMMON-SEGMENT-NUMBER 59

6.5. Auto-1link segments 60
6.5.1. SET-AUTO-LINK—-SEGMENT 60
6.5.2. DELETE-AUTO-LINK-SEGMENT 61
6.5.3. LIST-AUTO-LINK-SEGMENTS 61

6.6. Auto-load files 62
6.6.1. SET-AUTO-LOAD-FILE 62
6.6.2. DELETE-AUTO-LOAD-FILE 63
6.6.3. LIST-AUTO-LOAD-FILE 63

6.7. Label and reference handling 64
6.7.1. PROGRAM-REFERENCE 64
6.7.2. DATA-REFERENCE 65
6.7.3. DEFINE-ENTRY 65
6.7.4. DEFINE-COMMON 66
6.7.5. LIST-ENTRIES-DEFINED 66
6.7.6. LIST-ENTRIES-UNDEFINED 67
6.7.7. LIST-MAP 67
6.7.8. SYSTEM-ENTRIES-ON 67
6.7.9. GLOBAL-ENTRIES 68
6.7.10. KILL-ENTRIES 68

6.8. Areas shared with ND-100 processes 69
6.8.1. MATCH-RTCOMMON 69
6.8.2. MATCH-COMMON-RT-SEGMENT 70
6.8.3. LINK-RT-PROGRAM 70

6.9. Miscellaneous commands 71
6.9.1. LOW-ADDRESS 71
6.9.2. HIGH-ADDRESS 71
6.9.3. ENTRY-ROUTINES 72
6.9.4. SET-IO-BUFFERS 72
6.9.5. LIST-OCTAL 73

ND-60.136.03

Section Page
6.9.6. LIST-SYMBOLIC 73
6.9.7. LIST-MODE 74
6.9.8. DISASSEMBLE-MODE 74
6.9.9. CHHECK-SYNTAX-MODE 74
6.9.10. RESET 74
6.9.11., RENAME-DEFAULT-DIRECTORY-AND-USER 75
6.9.12, SUPPRESS-DEBUG-INFORMATION 75

6.10. NRF editor 76
6.10.1. NEN-NRF-MODULES 76
6.10.2. FETCH~NRF-MODULES 76
6.10.3. APPEND-NRF-MODULE 77
6.10.4. DELETE-NRF-MODULES 77
6.10.5. LIST-NRF-ENTRIES 78
6.10.6. LIST-NRF—CODE 78
6.10.7. WRITE-NRF-EOF—-AFTER-MODULE 79
6.10.8. INSERT-NRF-MESSAGE 79
6.10.,9. PREPARE-NRF-LIBRARY-FILE 80

7. COMMANDS AVAILABLE IN THE NLL AND THE MONITOR 81

7.1. Utility commands 81
7.1.1. HELP 81
7.1.2. OUTPUT-FILE 81
7.1.3. @ (Sintran-III command) 82
7.1.4. CC 82
7.1.5. ABORT-BATCH-ON-ERROR 82
7.1.6. EXIT 83

7.2. Trap handling 84
7.2.1. LOCAL~TRAP-ENABLE 85
7.2.2. LOCAL~-TRAP-DISABLE 85
7.2.3. SYSTEM-TRAP-ENABLE 86
7.2.4. SYSTEM-TRAP-DISABLE 86

7.3. VALUE-ENTRIES 86

8. MONITOR COMMANDS 87

8.1. Commands for running an ND-500 program 87
8.1.1. PLACE~-DOMAIN 87
8.1.2. RUN 88
8.1.3. RECOVER-DOMAIN 88
8.1.4. GO 89
8.1.5. CONTINUE 89

8.2. Standard domains 90

ND-60.136.03

xi

Section Page
8.2.1. DEFINE-STANDARD-DOMAIN 90
8.2.2. DELETE-STANDARD-DOMAIN 91
8.2.3. LIST-STANDARD-DCOMAINS 91

8.3. Commands for opening and connecting files 92
8.3.1. OPEN-FILE 92
8.3.2. CLOSE-FILE 93
8.3.3. LIST-OPEN-FILES 93
8.3.4. Error returns 94

8.4. Direct file transfer 95
8.4.1. Direct file transfer with RFILE and WFILE (disk) 95
8.4.2. Direct file transfer with MAGTP (magnetic tape) 96

8.5. Macro commands 97
8.5.1. DEFINE-MACRO 97
8.5.2. Macro subcommands 98

2.1. IF-ERROR-MACRO-STOP 98
2.2. IF-ERROR-FULL~STOP 98
2.3. NOLIST 98
2.4. LIST 98
8.5.3. EXHCUTE-MACRO 99
8.5.4. RESUME-MACRO 100
8.5.5. ERASE-MACRO 100
8.5.6. DUMP-MACRO 100
8.5.7. LIST-MACRO 101

8.6. Debugging commands 102
8.6.1. DEBUG-PLACE 102
8.6.2. BREAK 102
8.6.3. TEMPORARY-BREAK 103
8.6.4. STEP 103
8.6.5. LOOK-AT commands 104

5.1. LOOK-AT-PROGRAM 106
5.2. LOOK-AT-DATA 107
5.3. LOOK-AT-STACK 107
5.3.1. Subcommands PREVIOUS and NEXT 108
5.4, LLOOK~AT-RELATIVE 108
5.5. LOOK-AT-REGISTER 108
8.6.6. SET-MFMORY-CONTENTS 109
8.6.7. MATN-FORMAT 109
8.6.8. EXTRA-FORMAT 110
8.6.9. TRACE 110
8.6.10. GUARD 111
8.6.11. BRANCH-TRACE 112
8.6.12. CALL-TRXCE 112
8.6.13. EXHIBIT-ADDRESS 113
8.6.14. DEBUG~STATUS 114
8.6.15. ENABLED-TRAPS 114
8.6.16. STATUS 114
8.6.17. RESET commands 114
17.1. RESET-DEBUG 114
17.2. RESET-BREAKS 115

ND-60.136.03

xii

ND-60.136.03

Section Page
17.3. RESET-LAST-BREAK 115

17.4. RESET-TRACE 115

17.5. RESET-GUARD 115

17.6. RESET-CALL-TRACE 116

17.7. RESET-BRANCH-TRACE 116

8.7. Commands for performance measurement 117
8.7.1. Histogram commands 117

1.1. SET-HISTOGRAM 117

1.2. START-HISTOGRAM 118

1.3. STOP-HISTOGRAM 118

1.4. PRINT-HISTOGRAM 118

1.5. RELEASE-HISTOGRAM 118

8.7.2. Monitor call logging 119

2.1. START-MONCALL-LOG 119

2.2. PRINT-MONCALL-LOG 119

2.3. STOP-MONCALI~LOG 119

8.7.3. Process logging 120

3.1. START-PROCESS-LOG-ALL 120

3.2. START-PROCESS-LOG-ONE 120

3.3. PRINT-PROCESS-LOG 120

3.4, PROCESS-LOG-ALL 121

3.5. PROCESS-LOG-ONE 121

3.6. RELEASE-LOG-BUFFER 122

8.7.4. SWAPPING-LOG 122
8.7.5. LIST-EXBCUTION-QUEUE 122

8.8. Process communication flags 123
8.8.1. GET-FLAG 123
8.8.2. SET-FLAG 123

8.9. Memory allocation 124
8.9.1. Demand paging 124
8.9.2. "Fixing" in memory 125
8.9.3. Limiting the number of pages in memory 125
8.9.4. "Fixing" programs in memory 126
8.9.5. Fixing segments scattered in memory 126
8.9.6. Fixing segments in contiguous memory 127
8.9.7. Fixing segments in an absolute location 128
8.9.8. Fixing segments shared by several processes 128
8.9.9. Unfixing a segment 129
8.9.10. The swapping strategy 130
8.9.11, SET-SEGMENT-LIMITS 132
8.9.12. FIX-SEGMENT-SCATTERED 132
8.9.13. FIX-SEGMENT-CONTIGUOUS 133
8.9.14. FIX-SEGMENT-ABSOLUTE 133
8.9.15. UNFIX-SHEGMENT 134
8.10. Miscellaneous commands 135
8.10.1. AUTOMATIC-ERROR-MESSAGE 135
8.10.2. RESET-AUTOMATIC-ERROR-MESSAGE 135
8.10.3. The "Escape" key 135
8.10.4. TIME-USED 135

xiii

Section Page
8.10.5. WHO-IS-ON 136
8.10.6. VERSION 136
8.10.7. SET-PRIORITY 136

8.11. Commands for the System Supervisor 138
8.11.1. SET-ND-500-UNAVAILABLE 138
8.11.2. SET-ND-500-AVAILABLE 138
8.11.3. STOP-ND-500 139
8.11.4. Memory configuration 139

4.1. DEFINE-MEMORY-CONFIGURATION 139

4.2. MEMORY-CONFIGURATION 140
8.11.5. Memory administration 140
5.1. GIVE-ND-500-PAGES 140

5.2. TAKE-ND-500-PAGES 141
8.11.6. Microprogram maintainance 142
6.1. MICRO-STOP 142

6.2. MICRO-START 142
6.3. LOAD-CONTROL~STORE 142

6.4. COMPARE-CONTROL~STORE 143

6.5. LOOK-AT-CONTROL~STORE 143
6.5.1. Subcommands EDIT and ORIN 144
6.5.2. Subcommands OCTAL and SYMBOLIC 144
6.5.3. Subcommands GROUP and WORD 144
8.11.7. LOOK-AT commands 144
7.1. LOOK-AT-RESIDENT-MEMORY 144
7.2. LOOK-AT-PHYSICAL~SEGMENT 145
7.3. LOOK-AT-HARDWARE 145
8.11.8. Process management 146
8.1. ATTACH-PROCESS 146

8.2. LOGOUT-PROCESS 146

8.3. ABORT-PROCESS 146

8.4. PROCESS-STATUS 147
8.11.9. Inspecting system tables 147
9.1. LIST-TABLE 147

9.2. LIST-ACTIVE-SEGMENTS 148

9.3. LIST-SEGMENT-TABLE-ENTRY 148

9.4. LIST-PROCESS-TABLE-ENTRY 148
8.11.10. Swap files 149
10.1. DEFINE-SWAP-FILE 149
10.2. DELETE-SWAP-FILE 149
10.3. LIST-SWAP-FILE-INFO 150
10.4. LOAD-SWAPPER 150
10.5. START-SWAPPER 150
8.11.11. SET-SYSTEM-PARAMETERS 151
8.11.12. LIST-SYSTEM-PARAMETERS 151
8.11.13. MASTER-CLEAR 151
9, SINTRAN-III MONITOR CALLS 153
10, THE N500M MONITOR CALL 161

ND-60.136.03

Xiv

Section Page
11. DESCRIPTION FILE LAYOUT 165
12. THE ND RELOCATABLE FORMAT 169
12.1. DESCRIPTION 169
12.2. NRF control numbers 170
12.3. Summary of NRF control numbers 175
13. LINKAGE-IOADER ERROR MESSAGES 176
14. ND-500 MONITOR ERROR MESSAGES 182
15. EXAMPLES OF LINKAGE-LOADER AND MONITOR USAGE 198
15.1. Executing an ND-500 domain 198
15.2. Using libraries 199
15.3. Using files 201
15.4. Macros 202
15.5. Debugging 203
15.6. System Supervisor: Installing NLL 205
INDEX 207

ND-60.136.03

INTRODUCTION

ND-60.136.03

1. INTRODUCTION

1.1. Use of the Linkage-Loader and Monitor

An ND-500 program goes through two main steps before it is ready for
execution:

- compilation, transforming a human readable program into machine
code

- loading, combining the user program and subroutines with library
routines, and assigning the program a specific position in memory

1.1.1. Compilation

The compilation is performed by a compiler specific to the language of
the source program: a Fortran compiler, a Pascal compiler, a Planc
compiler or a Cobol compiler. The compiler may run in the ND-100, even
if the compiled program will be running in the ND-500. More commonly,
even the campiler runs in the ND-500.

A compiler running in the ND-500 is operated in exactly the same way
as an ND-100 compiler. However, in order to start it, the name of the
ND-500 monitor must preceed the compiler name:

@ND-500 FORTRAN

"ND-500" is (an abbreviation of) the name of the monitor. The monitor
is a rather complex system controlling the ND-500 computer, but for
the beginner, "ND-500" may be viewed simply as a message to the
operating system requesting program execution in the ND-500 rather
than the ND-100.

"FORTRAN" is the name of the Fortran compiler. Generally, compilers
have the name of the lanquage they compile, followed by the machine
the code is made for. The full name of the Fortran compiler is
FORTRAN-500, but in most installations, an abbreviation is

unambiguous.

ND-60.136.03

INTRODUCTION

A program is compiled with the COMPILE command:

@ND—-500 FORTRAN
ND-500 ANSI 77 FORTRAN COMPILER - NOVEMBER 24, 1981

FIN: OOMPILE TESTPROG,"TESTPROG:LIST", "TESTPROG"

- CPU TIME USED: 3.2 SBCONDS. 750 LINES COQMPILED.

- NO MESSAGES

- CODE SIZE=3644 DATA SIZE=403 COMMON SIZE=0 STACK SIZE=654
FIN: EXIT

The default file type of the code file generated by all ND-500
compilers is :NRF, while the default file type of ND-100 compilers is
:BRF. Thus, if the same file is compiled for for both computers, the
code files may be given the same name without causing a name conflict.

1.1.2. ILoading

After compilation, there is no difference between programs and
subroutines in different languages, and they are all loaded using the
same loader. The loader is called by the command

@ND-500 LINKAGE-LOADER
"ND LINKAGE-IOADER" is often simply called "NLL".

NIL will create a program ready for execution. In the ND-500, a
program is termed a domain. A domain usually has a name, used when
starting execution. It may also be "unnamed” - actually, it then has
the standard name SCRATCH-DOMAIN. Any permanent domain should be given
a name; each time a file is loaded to an unmnamed domain, it will
overwrite the previous contents of SCRATCH-DOMAIN. It may, however, be
convenient to omit the naming of the domain during the debug phase of
a program.

A domain is named before anything is loaded to it, by the NLL command
NLL: SET-DOMAIN "DOMAIN-NAME"
The double quotes indicate that this is a new domain, used exactly
like double quotes to create a new file (however, the domain is not a
file). If no double quotes are used, an existing domain will be
overwritten. (This is strictly true only for simple use of NLL.)
The code file generated by the compiler is loaded by the command
NILL: LOAD-SEGMENT TESTPROG
Several files may be named in the LOAD-SEGMENT command; for example,
the main program and subroutines may be compiled separately, to

different code files. Also, several LOAD-SEGMENT commands may be used
in succession.

ND-60.136.03

INTRODUCTION

After all files required have been loaded, NLL is 1left through the
command

NLL: EXIT

A number of operations are performed in the EXIT command: references
to the required libraries are set up, the default handling of errors
is defined, the appropriate files are updated and the file access on
new files set.

As mentioned, the domain is not a file, nor is any program file
explicitly specified. This does not imply that there are no files used
-~ the loaded code is stored in files manipulated by NLL. These have
types :PSHEG, :DSEG and :LINK, and (by default) names chosen by NLL. In
addition, there is a file called DESCRIPTION-FILE:DESC. For all
practical purposes, these files are invisible to the programmer - he
will always identify his program by its domain name.

1.1.3. Execution

A user domain is started by typing the name of the ND-500 monitor
followed by the domain name:

@D-500 DOMAIN-NAME

This is exacly like the way a compiler rumning in the ND-500 is
started; "ND-500" is a message informing Sintran that the program is
to be executed in the ND-500 computer rather than the ND-100.

Communication with the user through the terminal is exactly as for an
ND-100 program, as are file access and access to various devices.
Pushing the escape or break key will interrupt the program and return
control to Sintran.

The user may also type "ND-500" without following it by a domain name.
This will start the monitor, and give control to the command processor
of the monitor:

@ND-500
ND-500 MONITOR 81.11.14/81.11.04
N500:

Execution of a domain may now be started simply by typing its name:
N500: DOMAIN-NAME

After execution, control returns to the command processor of the

monitor, rather than to Sintran, and another domain may be executed.

As an alternative to first starting the compiler by @D-500 FORTRAN,

then NLL by @D-500 LINKAGE-LOADER and finally the program by @ND-500
DOMAIN-NAME, they may be run by the command sequence

ND-60.136.03

INTRODUCTION

@D-500

N500: FORTRAN

FIN: <compiler commands>
: EXIT

N500: LINKAGE-LOADER

<loader commands>
EXIT
N500: DOMAIN-NAME
<program input/output to terminal>
N500: EXIT
e

Even if execution is interrupted by the escape or break key, return
will be to the monitor. All files are then kept open, and execution
may be resumed by the CONTINUE command.

The command processor of the monitor will interpret and execute a
large set of commands, described in chapter 8 of this manual. The
majority of these are highly specialized commands and commands for the
system supervisor. Regardless of the complexity of the program system,
it is executed simply by stating its name.

1.1.4. Multi-segment domains

A set of subroutines used in several domains will, if loaded by the
LOAD-SEGMENT command together with the main program, occupy space in
each and every domain it is used. In order to save file space (and
also memory space if the two domains are executed concurrently), these
routines may be grouped together and put on a segment, a "slice" of
the addressing area that may be treated independently of the other
slices (segments).

If only one segment is used, that segment is usually "unnamed" - it is
given a standard name by NLL, which may be ignored by the user. A
segment used by several domains should be given a more descriptive
name. This is done by explicitly opening a segment (after the domain
has been named):

NLL
NLL

SET-DOMAIN "TWO-SEG-DOMAIN"
OPEN-SEGMENT " SUBROUTINES", P

A new segment is created by enclosing the name in double quotes, as
shown above. If the quotes are not included, new information will
overwrite what is already loaded to the segment.

"P" is an attribute code that allows this segment to be used by other
domains as well. Now, the subroutines that are common to several
segments is loaded by a LOAD-SEGMENT command:

NLL: LOAD-SEGMENT SUBR-FILE

When all common subroutines have been loaded (possibly from several
files), the subroutine segment is finished by the command

ND-60.136.03

INTRODUCTION

NLL: CLOSE~-SEGMENT

after which the main program (and possibly non-common subroutines) is
loaded as usual. But before the EXIT command, the user should link the
subroutine-segment to the main program by the command

NLL: LINK-SEGMENT SUBROUTINES

There may be more than one subroutine segment, each of them opened
with the OPEN-SEGMENT command and terminated with a CLOSE-SEGMENT, and
they should all be listed as parameters to the LINK-SEGMENT command.

The complete set of commands for loading a two-segment program is
therefore, complete with the response from NLL:

NLL: SET-DOMAIN "TWO-SEGMENTS"
NLL: OPEN-SEGMENT "SUBROUTINES" P
NLL: LOAD-SEGMENT SUBR-FILE

Program:..c..... 44660B P Datat.eesessaes.17344B D
NLL: CILOSE-SEGMENT
Segment nO.........30 is linked

NLL: LOAD-SEGMENT MAINPROG
NLL: LINK-SEGMENT SUBROUTINES

Segment NO¢eeeeevsss 1 is linked
NLL: EXIT
Segment NOvecaeess ..30 is linked

(Segment no 30 contains the Fortran library, and will in most
installations be linked automatically, as the example above).

When loading the second and following domain using the routines in the
SUBROUTINES segment, the files are already loaded. The OPEN-SEHGMENT,
LOAD-SEGMENT SUBR-FILE and CLOSE-SEGMENT commands are omitted. Only
the main program segment is loaded, followed by the LINK-SEGMENT
command.

A slight problem occurs with the segment numbers: each segment has a
fixed number between 0 and 31, which must be unique within the domain.
By default, new segments are given the £first number available,
starting at 1; thus the SUBROUTINES segment above is number 1. When a
segment is created in a new domain that will also be linked to the
SUBROUTINES segment, another segment number should be selected for the
main program and other segments. This is done by the commands

NLL: SET-DOMAIN "SHECOND-DOMAIN"
NLL: SET-SEGMENT-NUMBER 2
NLL: LOAD-SEGMENT SHCOND-MAIN

Program:.....ee.../66B P Datas.ceeeeeeeessa244B D
NLL: LINK-SEGMENT SUBROUTINES

Segment NO.eveeesss 1 is linked

NLL: EXIT

ND-60.136.03

INTRODUCTION

If the SUBROUTINES segment will be linked to a high number of main
programs, it may be more convenient to set the segment number of the
SUBROUTINES segment, leaving segment number 1 (the default value) for
the various main segments.

If two or more subroutine segments are used by one domain, they must
all have different segment numbers.

1.2. Command and parameter format

Normally, the user communicates with NLL and the Monitor through a
terminal. The terminal is called the communication device. In a batch
or mode job the communication device is the command input file for
input and the output file for output.

Information returned from command execution is usually written to the
communication device. Such output may be directed to another file or
device by the OUTPUT-FILE command. The current file used for output is
called the output device, whether this is the same as the
communication device or another file.

Commands to NLL and the Monitor may be given in upper or lower case
letters. Commands and parameters are terminated by comma, space or
carriage return. If required parameters are not supplied, they are
prompted for with the names of the parameters. Parameters may be left
out by typing two successive commas in the command line, or pressing
CR (Carriage Return) in response to the prompt. If a parameter is not
supplied, the default value is used if it exists.

Numeric parameters are specified in octal, unless the number is
followed by a D, indicating decimal format, or H, indicating
hexadecimal format. If a hexadecimal number does not start with a
digit, it must be preceeded by a (redundant) leading zero to avoid
confusion with alphanumeric symbols.

1.3. Command syntax

When describing the commands available in the Monitor and NLL the
following rules are applied:

- The command name is used as a section header.

- All parameters are enclosed in < > brackets.

- If a parameter that is asked for has a default value, its name is
also enclosed in () brackets.

- The names of optional parameters that are not asked for are
enclosed in [] brackets.

- If more than one value may be specified the right enclosing
bracket is followed by an ellipsis, as in <>... .

ND-60.136.03

INTRODUCTION

All command, domain and segment names may be abbreviated as long as
they are unambiguous. Most of the command names follow two rules:

- The first word in the command describes the action.

- The second word in the command describes the subject the action
is going to be taken upon.

If, for instance, the command HELP is used in the following way:
HELP -SEGMENT

all commands concerning segment manipulation are printed on the output
device.

New domains and segments are created by surrounding the name with
double quotes (" "). Double quotes are only valid in commands with a
name as a parameter. These commands are: SET-DOMAIN, OPEN-SEGMENT and
COMMON-SEGMENT-OPEN. If the double quotes are not used, the named
object (domain or segment) is assumed to exist.

NLL will prompt for required but missing parameters. Multiple
parameters will be asked for the first time, and the full range of
Sintran III editing characters is available. If the first character of
a comand line is '@', the command is taken to be a Sintran III
command. The character '&' means that the input line continues on the
next line.

In interactive mode, all list output can be temporarily stopped by
typing any character on the input device. The output is resumed when
another character is typed. In order to terminate the listing, an '@

may be typed.

The ND-500 Monitor is started by typing ND-500-MONITOR in response to
the Sintran III prompt. A domain name may follow on the same line,
implying a RECOVER-DOMAIN command with this name as parameter. If no
domain name was specified on the call line, the ND-500 Monitor will
prompt for commands with "N500: ". The rules for parameter
specification are the same as in NIL. Wherever a parameter from a list
of valid values is expected, "HELP" may be written. This will cause
the possible choices for the parameter values to be printed on the
communications device. (Obviously, this does mot apply where an
arbitrary string, such as a domain name, may be specified.)

ND-60.136.03

10
INTRODUCTION

1.4. Naming rules

Segments and domains are referred to by name in NLL and the Monitor.
The name of a segment is equal to the name of the segment files. The
program, data and symbol files of a segment have the same name, but
are distinguished by their types: :PSEG, :DSHG and :LINK respectively.
As segment names coincide with file names, the segment name syntax
follows the Sintran III file name syntax, and the segment name must be
unique in the current user's file catalog. The file type may not be
modified.

Domain names may - like segment names - contain alphanumerics and
hyphens, and may coincide with segment names. Maximum length is 16
characters, and lower case characters are converted to upper case.

1.5. The description file

The names of segments and domains are found in a file called
DESCRIPTION-FILE:DESC. Each named object (segment or domain) has an
entry in this file, containing all information needed by NLL and the
Monitor. For example, the domain entry - one for each domain -
contains the name of the domain, a table of the segment files of which
the domain consists, information about the relationships to other
domains, the size and the start address of the domain, and information
relevant to the internal operation of the Monitor.

Every user of NLL has his own description file, which is created and
initialized the first time the user starts NILL.

Although all domains of a user are described in one file, the same
user can access NLL from several terminals simultaneously; NLL will
see to it that access conflicts are resolved. If attempts are made to
modify the same domain from two terminals simultaneously, one of the
users will get an error message.

A word of warning:

The contents of the description file at any time reflects the state of
the segment and domain definitions of the current user. The user
should take great care to never make any modifications to the segment
files or the description file, except through NLL. Otherwise
inconsistencies may arise, and it may be necessary to rebuild the
description file, thereby losing all information about previously
loaded segments.

ND-60.136.03

11
INTRODUCTION

1.6. The function of the Linkage-Loader

The output from language processors (compilers, assemblers) is in the
form of relocatable modules. The term 'relocatable' means that the
modules are not assigned a fixed position, but may be placed anywhere
in memory. Modules are not dependent on being placed in any specific
sequence.

NLL is a subsystem able to convert relocatable object files in ND
Relocatable Format (NRF') created by language subsystems, to
independent executable programs, or processes.,

A process is a set of instructions to be executed in a sequential
manner, and its associated data. The simplest process possible
consists of one segment in one domain; a more complex process may
consist of up to 32 segments. A segment is built by NLL, on three
separate files: one file contains the instructions: the program
segment; another contains the data: the data segment; the third
contains the names and values of all labels and optional debugging
information, and is called the :LINK file.

A domain is an addressing space, divided into segments. Domains and
segments are described in detail in the ND-500 CPU Reference manual
ND-05.009.

Information about intermodule references, symbols and labels is coded
in the file that is output from compilers. The format of this code is
such that procedure calls or references to global data are made
through symbols, that is, alphanumeric (symbolic) names assigned to an
instruction or data item. These symbols are made by the language
processor (often based on user assigned names in the source program),
and are referred to as 'labels'.

At execution time, references are made to addresses rather than to
labels. The conversion from relocatable symbols to machine addresses
is done by NLL. NLL will maintain a table, called the loader table,
where symbols are entered as they are encountered.

A symbol may refer to a machine address or it may be a data value. If
the first occurence of a symbol is its definition, then the loader
will enter the symbol name into the loader table together with the
address where it is defined or together with its data value. In either
case, the value associated with the symbol is simply called the
symbol's value. Whenever a reference to the 1label is later
encountered, the symbolic reference is replaced with the value found
in the loader table.

If a reference is made to a label before it has been defined, space is
left open in the loaded code for later insertion of its value. The
symbol is entered in the loader table, but rather than containing a
value of the label, the table contains a reference to where the symbol
is used. As soon as a definition of the label is read, the loader will
fill in the now defined value wherever a reference has been made.

ND-60.136.03

12
INTRODUCTION

If two definitions of one label are encountered, the loader cannot
distinguish between them, and an error message is issued. In such
cases, the first definition of the label always applies.

Before the program is ready for execution, the loader must ensure that
all symbolic references are replaced with numeric values/addresses. To
achieve this, it may be necessary to load libraries, either by the
user or automatically. The loader is able to distinguish between a
required and a not required module in a library.

A note on the terminology:

In this manual, the term 'reference' is used to describe a symbol that
has been entered into the loader table, but has not yet been defined.
An 'undefined entry' is equivalent to a reference. The term 'label’ is
used for a symbol which has been assigned a value in the loader table;
it may have been referenced or not. A 'defined entry' is equivalent to
a label. 'Symbol' is the general term for all symbolic (alphanumeric)
names, but is mostly used for names not yet in the loader table.

The term 'loading' is sometimes used in the sense 'bring into memory
for execution'. Another interpretation is 'to fetch relocatable
program units and link together to an executable program'.

In this manual, as in all ND software, the latter usage is adopted.
The bringing of a program into memory for execution will in most cases
be completely invisible to the user of the program; he may consider
the program file to be directly executable.

In the cases where the program is read into physical memory, different

terms are employed to describe this depending on the specific
situation, such as 'starting execution' or '"fixing" a segment’.

1.7. The function of the Monitor

The ND-500 computer has no capabilities to communicate directly with
the "outer world". Nor does it have an elaborate operating system
administering users' processes and system resources.

Such tasks are executed by the ND-100 CPU. The functions performed are
manifold; some of the more important ones are:

The user will always communicate with the WND-100 machine. When he
enters the Monitor, he enters a program that has the capability of
transforming the user requests into orders to the ND-500. For example,
when execution of a program is started through the RECOVER-DOMAIN
command, the Monitor will open the files required, reserve a scratch
area for data that is modified during execution, create a table entry
in a system table identifying the user of the system resources and sO
on. When all administrative work is complete, a message is sent to the
ND-500 requesting execution of the program.

ND-60.136.03

13
INTRODUCTION

During execution, the program may request input or output of data, may
request system information (such as the time of day etc.) or other
services that the operating system provides. Such requests are not
handled in the ND-500, but are transferred to the Monitor. The Monitor
will initiate an I/O operation, obtain the requested information or
perform the operation required, before the result of the request is
returned to the program in ND-500.

If an error occurs in the ND-500 and is not taken care of by the user
program, the error is reported to the Monitor, and it may take
recovery actions, or possibly abort the job with an error message sent
to the user. If one program monopolizes the CPU for a certain period
of time, the Monitor will intervene, and temporarily suspend the
program, letting other programs execute in the meantime.

In the debugging phase of a program, the Monitor may act as a
supervisor of the user program, providing the user with commands to
inspect and modify the program during execution. As the code required
to fetch information about the user program is a part of the Monitor,
the program being debugged may be compiled and loaded exactly like a
production program. This guarantees that the results produced are
unaffected by debugging instructions.

The Monitor also performs a number of system oriented tasks, such as
book-keeping of resource usage, preventing unauthorized users from
executing privileged functions etc. Because all communication with the
ND-500 is channeled through the Monitor, the interface between the
user and his program may look exactly as if there were only one CPU
(except for the starting of the Monitor). Letting the ND-100 perform
all administrative tasks also frees the ND-500 for user programs. The
two processors may work in parallell, with the ND-500 executing a user
program while the ND-100 prepares the next job.

ND-60.136.03

14

ND-60.136.03

INTRODUCTION

15
MEMORY MANAGEMENT SYSTEM

2. MEMORY MANAGEMENT SYSTEM

The maximum program size that ND-500 is able to handle is too large to
handle as one unit, both for man and machine. A logical subdivision is
done by splitting a domain into segments, where each segment is of a
more managable size, and the interface between the segments is clearly
defined. This subdivision is handled by the machine by its memory
management system. The architecture of this system will to some degree
affect large programs and programs with special communication
requirements.,

Understanding the information in this chapter is not required for
running most ordinary programs. Nevertheless, it provides the
background information necessary in order to understand the use of all
commands described in the manual.

2.1. Logical memory structure

An ND-500 addressing space is called a DOMAIN. A domain contains an
executable program that can be started through the ND-500 Monitor. For
practical purposes a domain may be considered equivalent to a program.

The address range of a domain may vary from 2k bytes up to 4
gigabytes, equivalent to a 32 bit address space. Instructions and data
are, however, kept fully separated, and, in fact, a domain contains
one area for instructions and another for data. These cover the same
address range, but as instructions may never be read as data, or data
executed as instructions, no conflicts arise.

A domain is divided into SEGMENTS. A domain comprises from one to 32
segments: the uppermost five addressing bits select the segment. The
instruction and the data part of the segment (in the program and data
areas of the domain) are termed the instruction and the data segment,
respectively.

A segment is a set of files, cataloged under the Sintran III file
system. The instruction segment and the data segment have the same
name, but types :PSHG and :DSBG, respectively. In addition, there is a
:LINK file. The :LINK file is not opened when the program is executed
but is used during the loading process and by the symbolic debugger.
These three files together are called the segment, unless a
qualification of program, data or :LINK file is made.

The files may be indexed or contiguous, but will by default be
indexed.

A domain consists of a table of segments, and is not a separate entity
in the file system. The segment tables for all domains belonging to
one user are kept in a file called DESCRIPTION-FILE:DESC.

Domains and segments are referred to by symbolic names. Internally, a
numerical index is employed, but the user will not have to be
concerned about this index; NLL will obtain the domain or segment
number from the description file. The domain name follows the syntax
of and may coincide with file names. Domain names are stored solely in

ND-60.136.03

16
MEMORY MANAGEMENT SYSTEM

the description file. Segment names are the names of the :PSHG, :DSEG
and :LINK files making up the segment. These names are also stored in
the description file, where the position in the segment table for the
domain determines the segment number.

When required, the domain and segment numbers can be obtained by
executing the NLL commands LIST-DOMAIN or LIST-SHEGMENT.

The reasons for splitting a domain in several segments are many:

- The more time critical parts of a program may be kept permanently
in memory (fixed segments), while other parts may be regular demand
segments

- A segment may be part of several domains. Thus, file space is
required for one copy only, rather than including the data or
routines (for example the Fortran library) in every domain.

- At run time, the Monitor will recognize a program segment used by
several users concurrently, and keep only one copy in memory,
thereby reducing swapping.

- Different segments may be given different protection against other
users.

- Two programs running concurrently may communicate through a shared
data segment (Normally, however, each program would have his own
copy of the data segment).

- Program modularization is simplified.

— Modifications of routines or data in one segment will not require a
reloading of the whole domain (unless it has been marked as
sensitive to modifications).

- No swap file space is required for the program segment; it is read
directly from the :PSBG file and never written back. Thus, swap
file space is saved and no unnecessary rewrites are performed.

A segment will always be declared in one domain. If other domains need
routines or data in this segment, references are defined by linking
this segment to the other domain through the NLL command LINK-SEGMENT.
The linked segment may also belong to another user, for example user
SYSTEM may have a segment with library subroutines that other users
may link to.

Linking is possible only if the segment has no external references to
other segments in the domain where it was created, unless all these
segments are also linked.

ND-500 hardware allows a segment to be used as an "indirect" segment.
Call to an indirect segment implies a change of control to another
domain, and is used for building a program system consisting of
several domians. This mechanism is not used under the Sintran TIII
operating system.

ND-60.136.03

17
MEMORY MANAGEMENT SYSTEM

The indirect segment concept is, however, used for operating system
requests: "monitor calls" are calls to routines on a system segment
used as an indirect segment. Thus, monitor calls look exactly like
reqular routine calls, and parameters are transferred through the same
mechanisms. By convention (although not by necessity), segment number
31 (octal 37) is used for interfacing to the operating system.

2.2. Capabilities

During execution, ND-500 will keep a 16 bit descriptor, called a
capability, for each logical segment in use. This capability contains
information about access rights, location in physical segments and
sharing with other processes.

Each data segment may be individually protected against write access
and access to subroutines parameters. If the segment is used
concurrently by several processes, the capability will inform the CPU
that data accesses should go directly to memory rather than through
the cache. This is done to prevent that one process' updating of a
variable is immediately observed by the other processes; the cache is
not neccessarily cleared when another process gains access to the CPU,
and the one process may also be running in ND-100.

A program segment is identified as a direct or indirect segment. A
direct segment is part of the current domain, while an indirect
segment is part of another domain (in Sintran III: in the ND-100).
This mechanism is used by the operating system to implement a set of
monitor calls: Logically, the routines are addressed within the
address space of the current domain, but when such a routine is
called, the microprogram will recognize the segment as indirect, and
transfer control to the appropriate domain. ND-100 is in this respect
considered another domain. The capability contains an explicit
indication that the other domain is in another machine.

Program segment capability:

a) Direct segment

T1bit [[3bits | [12 bits]
direct unused physical segment number
(=0)

b) Indirect segment

Thit | [1bit | [1bit | [8bits [[5 bits |
indirect other unused domain segment
(=1) machine

Data segment capability:

Tibit [[ibit] [1bit [[1bit | [12 bits 1
write parameter shared unused physical segment
permitted access segment number

ND-60.136.03

18
MEMORY MANAGEMENT SYSTEM

Both data and program segment capabilities also indicate which
physical segment that is addressed. A physical segment is a part of
(physical and virtual) memory; a logical address is translated to a
physical address in the physical segment.

Two logically separate segments may map onto the same physical
segment. This will appear as the capabilities of the two segments
pointing to the same physical segment. The physical segment number is
determined when the segment is brought into memory for execution.
Sharing a segment in this manner may reduce swapping, and it may be
used for communicating data between processes.

when routines on a program segment is started, the Monitor will
normally check whether the physical segment has already been fetched
by some other process. If it has, no new copy is required, and the
second segment maps onto the physical segment already in memory. (This
relies upon program segments being read-only - 1if any modification
(patching) is done to the program segment, the user will receive his
own private copy.)

Data segments will not unless explicitly specified be mapped onto the
same physical segments, as one process' modification of a location
will have an immediate effect for other processes' use of the value.
Sharing a physical segment is, however, the most direct way of
transferring data between processes. When accessing data in a shared
segment, the cache is bypassed in order to ensure data consistency. If
multiple CPUs have access to the memory, the multiport will ensure
that a write or read operation of one location will not be interrupted
by another process. (Higher level protection and synchronizing
mechanisms may be implemented in software based on this hardware
mechanism.)

If a logical data segment is mapped directly onto the file where it is
stored (rather than to a copy on a swap file), modifications to the
data will be permanent. By using a file as a segment any file may be
manipulated; the cataloged file will be directly addressed as a part
of the logical address space. Compared to ordinary file access, the
overhead is reduced drastically, and addressing can be done easily and
directly within the logical address space. Obviously, only one process
at a time may modify a permanent file, or the two processes must have
agreed upon a synchronization protocol.

ND-60.136.03

19

3. TRAPS

Trap conditions are special situations detected by hardware, possibly
requiring special handling. Examples of such situations are division
by zero, protect violation or illegal index.

Some trap conditions may be completely ignored. Others require some
form of handling, while still others are so serious that they are
reported directly to the operating system. These three groups are
labeled ignorable, non-ignorable and fatal, respectively.

Trap conditions may be handled by a routine in the current domain, or
propagated to the ND-100. The presence of a local trap handler routine
is signalled by setting the bit in the OTE register (Own Trap Enable)
corresponding to the trap condition. This register has one bit for
each possible trap condition.

If the OTE bit is cleared, the trap is propagated to the ND-100 if the
MTE bit (Mother Trap Enable) is set, signifying that the ND-100 has a
trap handler. Otherwise the trap is ignored.

ND-100 may limit the ND-500 domains' freedom to modify bits in the OTE
register (and thereby the handling of the trap condition), by clearing
the corresponding bit in the TEMM register (Trap Enable Modification
Mask) . Fatal traps may never be locally enabled in ND-500.

3.1. Trap handler calling

When a trap condition occurs, the calling of a handler is determined
by the setting of the MIE and OTE registers. If the affected bit is
reset in both registers, no trap handler is called and the trap
condition ignored.

If the OTE bit is set, a routine in ND-500 is called. This routine may
be written by the user, or may be loaded or linked from a library of
standard trap handlers.

If the MTE bit is set and not the OTE bit, ND-100 will take care of
the trap condition.

When a trap condition is taken care of in ND-500, the address of the
trap handler is found in a table pointed to by the THA (Trap Handler
Address) register. The n'th entry in this table contains the address
of the handler for the n'th trap condition. One handler may take care
of several traps, or each trap condition may be handled by a separate
routine.

The routine may perform any operation, including calling subroutines,
but if a trap condition occurs during the execution of this routine,
the trap is unconditionally reported to ND-100. The reason for this is
that the local data area for a trap handler is fixed in the space
above the table containing the trap handler start addresses; trap
handlers are thus not reentrant.

ND-60.136.03

20
TRAPS

At the call of the trap handler the local data area will be
initialized with information about the trap and the state of the
process when the trap occurred. The layout of this information is
described in the ND-500 CPU Reference Manual ND-05.009.

3.2. Use of trap handlers

Writing a handler for a trap condition will require a familiarity with
the instruction set and call mechanisms of the ND-500. Reading the
values in the local data area of the trap handler (containing the
register block and data about the trap) is most easily done in
assembler, but may in principle be done in any language.

Most often the user will want to handle the error on a more abstract
level. A standard trap handler library will take care of the low level
trap handling, and call an exception handler routine. These will
present hardware and software detected errors to the user in a uniform
way. The standard routines may perform all the error handling or take
care of a subset of errors, they provide mechanisms for entering the
address of user written routines into the table of handlers and for
setting and resetting bits in the OTE register.

Trap handler routines and enabling/disabling of traps may be defined
at load time or before execution is started. These settings act as
default values that may be modified by the program at execution time.

The standard library will also provide routines for errors detected by
software. Such errors are usually very dependent on the application
(for example errors in the correspondence between the I0-1list and the
FORMAT statement in Fortran), and rely upon instructions generated by
the compiler. The standard way of reporting errors that occured in a
routine 1is to set the K bit in the status register and leave an error
code in the Il register.

The combination of hardware trap handling and handling of software
detected errors allows a uniform interface to the environment,
regardless of the mechanism used for detecting the error.

The term used to cover both hardware and software detected errors is
exception, consequently the standard library is termed a standard
exception handler library.

ND-60.136.03

21
STANDARD EXCEPTION HANDLER LIBRARY

4, STANDARD EXCEPTION HANDLER LIBRARY

The term exception covers in addition to all defined hardware traps,
special situations and errors detected by software. An exception
handler is a routine to be activated when an exception occurs, and to
take appropriate recovery actions.

A set of standard routines for use with Fortran or Planc has been
developed. These are available in a standard library, and will be
linked automatically if the user so desires.

For each error condition, the user may determine:

1) The number of times each error message is to be printed.
2) The number of times an error may occur before
the program is abnormally terminated.
3) Whether a user-supplied exception handler is to be
activated upon detection of an error.
4) Whether traceback of routine stack frames is to be printed
when the error occurs or when the program terminates,
(In case of traps, this includes a register dump).
5) Printout of error statistics when the program terminates.

The library consists of the following routines:

EXCEPT disable/enable handling of specified exception,
EXCDEF reset handling of exception to default,

EXCTERM - define action to be taken upon program termination,
PRITRAC - print traceback of routine instances (subroutines),
PRIMESS - print error message,

GEIMESS - return error text (Fortran),

PGEIMESS - return error text (Planc),

RDEFVAL - read default exception handling parameters values,
RCURVAL, - read current exception handling parameters values.

In the following descriptions, the header of these routines is
described, giving the number and types of the arguments. These
routines are supplied with the standard ND Fortran library. Except
where designated as returned values, all parameters are read-only
input values.

Where routines are used as parameters, the name of the routine is
supplied in the actual parameter list. The compiler will generate the
appropriate reference to the entry point of the routine.

Traps and exceptions will be handled in the ND-500, providing they are
locally enabled. There are default settings for all traps. If no local
handling has been specified, or the trap has been disabled, then some
traps may be handled as a system trap in the ND-100. The Monitor will
then handle the trap in a standard manner, depending on the type of
trap. System traps may also be disabled, but the user's right to
modify trap handling may be restricted.

ND-60.136.03

22
STANDARD EXCEPTION HANDLER LIBRARY

Handling of traps may be determined at load time or before execution
through the commands LOCAL~TRAP-ENABLE, LOCAI~TRAP-DISABLE, SYSTEM-
TRAP-FNABLE and SYSTEM-TRAP-DISABLE. These commands are available both
in NLL and the Monitor, and to set default values to be used if no
action is taken by the program.

ND-60.136.03

STANDARD EXCEPTION HANDLER LIBRARY

4.1.

ND-500 traps table

23

The following is a list of defined hardware traps, their corresponding
bit number in the status, OTE, MIE and TEMM registers, and the name of
the trap.
Reference Manual ND-05.009.

Bit no.

9
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

32
33
34
35
36

The

11B
13B
14B
158
16B
178

20B
21B
22B
23B
24B
25B
268
27B

30B
31B
328
33B
348
35B
36B
378

40B
41B
428
438
44B

IID"

colum

For a more detailed explanation,

Name

OVERFLOW

INVALID OPERATION
DIVISION BY ZERO
FLOATING UNDERFLOW
FLOATING OVERFLOW
BCD OVERFLOW

TLLEGAL OPERAND VALUE
SINGLE INSTRUCTION TRAP
BRANCH TRAP

CALL TRAP

BREAKPOINT INSTRUCTION TRAP
ADDRESS TRAP FETCH

ADDRESS TRAP READ

ADDRESS TRAP WRITE

ADDRESS ZERO ACCESS
DESCRIPTOR RANGE

ILLHEGAL INDEX

STACK OVERFLOW

STACK UNDERFLOW

PROGRAMMED TRAP

DISABLE PROCESS SWITCH TIMEOU
DISABLE PROCESS SWITCH ERROR

INDEX SCALING ERROR
ILLEGAL INSTRUCTION CODE
ILLBEGAL OPERAND SPECIFIER
INSTRUCTION SEQUENCE ERROR
PROTECT VIOLATION

is enabled

settings are used.

msg
err

unl

see the ND-500 CPU

D msg err

10 unl
unl
unl
unl

unl

COO0OO0OO0OOOO0O
=

* *
=
HHOOHHOO

*

*

*

* % * * *
N el i

refers to the default enabling of traps used by the
standard exception handler library discussed in the next chapter.
indicates that the trap

N

if the default trap library

default maximum number of error messages
default number of exceptions prior to abnormal termination
unlimited number

ND-60.136.03

24
STANDARD EXCEPTION HANDLER LIBRARY

4.2. The EXCEPT routine

The EXCEPT routine is used to modify the current exception handling
conditions.

PLANC specification:

TYPE RTYP = ROUTINE REFERENCE VOID,VOID (INTHGER)

ROUTINE REFERENCE WID, VOID (INTEGER, INTEGER, RTYP POINTER, &
INTEGER, INTHGER, BITS POINTER) : &

EXCEPT (EXCNO ,EXCFUN ,EXCROUT ,NOMSG ,NOEXC , EXCARR)

<standard library routine>

ENDROUTINE

FORTRAN specification:

SUBROUTINE EXCEPT (EXCNO ,EXCFUN ,EXCROUT ,NOMSG ,NOEXC ,EXCARR,
+ EXCNOL ,EXCNOH)
INTHGER EXCNO,EXCFUN,EXCROUT ,NOMSG ,NOEXC , EXCNOH ,EXCNOL
LOGICAL EXCARR (EXCNOL: EXCNOH)
<standard library routine>

END

Parameter values:

EXCNO Exception number or exception number group:

0 default group of traps to be set
(see section 4.1)

4 LOGICAL array (EXCARR, EXCNOL and EXCNOH must be
present, Fortran)

5 BITS POINTER (EXCARR must be present, Planc)

11B:44B specific trap number

400B all FIN errors

401B:457B specific FIN error

other illegal

EXCFUN Function:

-1 disable exception(s) indicated by EXCNO and
ignore all other exceptions. Further, the
parameters EXROUT, NOMSG and NOEXC will be
ignored.

0 enable exception(s) indicated by EXCNO as TRUE,
set new handler/values, and disable all other
exceptions which are indicated as FALSE.

For EXCNO values 11B:44B or 401B:457B, only the
single values 11B:44B or 401B:457B, only the
single exception thus specified, is enabled.

1 enable exception(s) indicated by EXCNO, do not
modify handler/values, and ignore all other
exceptions.

other illegal

ND-60.136.03

25
STANDARD EXCEPTION HANDLER LIBRARY

EXCRUT User defined exception handler routine

><0 routine address (supplied by routine name
in the source program)
0 no routine supplied

NOMSG Number of messages allowed before program is aborted

-1 any number of messages allowed
>= 0 number of messages allowed (<2%*31-1)
other illegal

NOEXC Number of traps before program is aborted:
-1 any number of traps allowed
>= 0 number of traps allowed (<2**3]1-1)
other illegal

EXCARR LOGICAL array (Fortran) or BITS POINTER (Planc)
containing TRUE or FALSE for exceptions to be handled

EXCNOL (Fortran) Low limit of EXCARR
EXCNOH (Fortran) High limit of EXCARR

The handling of one or several exception conditions may be modified,
selected through the EXCNO parameter. If this parameter is 4 (Fortran)
or 5 (Planc), the EXCARR parameter selects a set of exceptions to be
handled. If the EXCFUN parameter is zero and EXCARR is present, the
elements set to TRUE in this array will cause the corresponding
exception to be enabled, while FALSE will cause it to be disabled.

The EXCROUT parameter specifies the name of a user supplied routine to
be executed when the exception occurs. The routine should conform to
the following formal specification:

In Fortran:

SUBROUTINE name (ierno)
INTEGER ierno

<user written exception handler>

END

In Planc:

ROUTINE REFERENCE VOID, VOID (INTEGER): name (ierno)

<user written exception handler>
ENDROUTINE
The parameter <ierno> will transfer the error number to the exception

handler. If the EXCROUT parameter is zero, the standard exception
handler routine from the library is used.

ND-60.136.03

26
STANDARD EXCEPTION HANDLER LIBRARY

After an error has occurred, the sequence of operations is as follows;
the steps marked with an asterisk apply to traps only:

Note: the details are slightly different in Planc
1) * If the exception is a trap, the trap routine is activated.
2) A system provided exception handler is called.

3) This handler updates the occurence counter for this type of

exception and activates the user exception handler if one has been
specified.

4) If the traceback condition (see note 1) is true, the system
outputs:
* - register dump
- traceback printout

5) If the message occurrence limit (NOMSG) has not been exceeded, or
if the traceback condition (see note 1) is true, an error message
is printed.

6) If the error count is less than or equal to the allowed number of
occurences for this exception type, control is returned to normal
FORTRAN error handling,

otherwise, the program is abnormally terminated with error
statistics, if specified.

Note that in Fortran the STACK UNDERFLOW trap condition is handled by
special software mechanisms and must, in order to ensure correct
termination of the I/O activities, always be enabled.

note 1: the traceback condition is evaluated by the following
expression:

thiserror >< 'STACK UNDERFLOW' and
((TRACEBACK=2 and
(thiserror .NOMSG = unl or
thiserror.numerrors in O:thiserror NOMSG))
or
({ TRACEBACK >= 1 and
(thiserror .NOEXC >< unl and
NOT thiserror.numerrors in O:thiserror .NOEXC))

where

thiserror.numerrors is the current value of the number of
exceptions of this type which have occurred.

ND-60.136.03

27
STANDARD EXCEPTION HANDLER LIBRARY

EXAMPLES, Fortran

1. Enable DIVISION BY ZERO trap using default exception values:
C DIVISION BY ZERO is trap number 12
CALL EXCEPT (12,1)

2. Enable OVERFLOW and allow maximum 2 error messages and 10 overflow
errors before abnormal termination. Activate the user defined routine
MYROUT each time the overflow trap occurs.

CALL EXCEPT (9,0 ,MYROUT,2,10)
3. Disable error handling for exponential functions, Fortran error
numbers 431B, 4328, 433B, 437B:

LOGICAL ERRARRAY (431B:437B)

DATA ERRARRAY/.FALSE. , .FALSE. , .FALSE. , .TRUE. ,

+ .TRUE. , .TRUE. , .FALSE./

CALL EXCEPT (4,-1,0,0,0,ERRARRAY,431B,437B)

ND-60.136.03

28

STANDARD EXCEPTION HANDLER LIBRARY

4. Manipulation of some exception settings.

Assume the following is the current table settings for exceptions:

exc. no.
(octal)
431

432

433

434

435

436

437

setting

oY oR=X=2J T

EXCROUT msg

10
10
10
10
10
10
10

err

unl
unl
unl

20
unl
unl

50

If the following call were executed,

setting

enabled
enabled
enabled
disabled
enabled
disabled
enabled

CALL EXCEPT (4,0 ,MYROUT,5,-1,ERRARRAY,431B,437B)
C ERRARRAY as declared in previous example

then the table settings would be changed as follows,

exc. no.
(octal)
431

432

433

434

435

436

437

EXCROUT msqg
setting

A 10

A 10

a 10

MYROUT 5

MYROUT 5

MYROUT 5

0 10

err

unl
unl
unl
unl
unl
unl

50

setting

disabled
disabled
disabled
enabled
enabled
enabled
disabled

ND-60.136.03

29
STANDARD EXCEPTION HANDLER LIBRARY

4.3. 'The EXCDEF routine

EXCDEF is used to set the default exception handling values for a
given set of exceptions. This is functionally equivalent to calling
EXCEPT with the default parameter values for each of the traps
specified, but is more convenient and relieves the programmer from
knowing the defaults.

PLANC specification:

ROUTINE REFERENCE VOID, VOID (INTEGER, BITS POINTER) : &
EXCDEF (EXCNO, EXCARR)

<standard library routine>
NDROUTINE

FORTRAN specification:

SUBROUTINE EXCDEF (EXCNO, EXCARR, EXCNOL, EXCNOH)
INTEGER EXCNO, EXCNOL, EXCNOH

LOGICAL EXCARR (EXCNOL: EXCNOH)

<standard library routine>

END

Parameter values:

EXCNO Exception number or exception number group:

0 default setting (see section 4.1)

4 LOGICAL array (EXCARR and EXCNOH present, Fortran)
5 BITS POINTER (EXCARR present, Planc)

11B:44B specific trap number

400B all FIN errors

401B:457B specific FIN error

other illegal

EXCARR LOGICAL array (Fortran) or BITS POINTER (Planc)
containing TRUE for exceptions to be handled,
FALSE for those that should remain as they are
EXCNOL (Fortran) Low limit of EXCARR

EXCNOH (Fortran) High limit of EXCARR

ND-60.136.03

30
STANDARD EXCEPTION HANDLER LIBRARY

The EXCARR parameter selects a set of exception conditions, like in
the EXCEPT routine. Alternatively, one specific exception may be
selected through the EXCNO parameter.

EXAMPLES, Fortran:

1. Reset handling of all traps and Fortran errors to default:

C All traps
CALL EXCDEF (0)

C All Fortran errors
CALL EXCDEF (400B)

C set default program termination conditions
CALL EXCTERM(0,1,20)

This setting is identical to the setting at the beginning of execution
of a Fortran program.

2. Reset special error handling for exponentiental functions, error
numbers 431B, 4328, 433B and 437B, but keep possible special handling
of other exceptions:

LOGICAL ERRARRAY (431B:437B)
DATA ERRARRAY/.TRUE.,.TRUE.,.TRUE.,.FALSE.,
+ .FALSE., .FALSE., .TRUE./

CALI, EXCDEF (4 ,ERRARRAY,431B,437B)

ND-60.136.03

31
STANDARD EXCEPTION HANDLER LIBRARY

4.4, 'The EXCTERM routine

EXCTERM may be called to determine the printing of traceback and error
statistics information. If it has been called more than once, the last
call applies at program termination.

PLANC specification:

ROUTINE REFERENCE VOID,VOID (INTEGER,INTHGER,INTHGER) : &
EXCTERM (TRACEBACK , PRSTAT ,NOLEV)

<standard library routine>

ENDROUTINE

FORTRAN specification:

SUBROUTINE EXCTERM (TRACEBACK ,PRSTAT ,NOLEV)
INTEGER TRACEBACK ,PRSTAT ,NOLEV

<standard library routine>
END
Parameter value:

TRACEBACK traceback print, for all errors:

0 ¢+ no traceback (default)
1 : traceback upon abnormal termination
2 : traceback upon error

other : illegal

PRSTAT error statistics print at program termination, for
all errors:
0 : no statistics output
1 : print statistics (default)
other : illegal
NOLEV maximum number of levels to process when a traceback
is provided.
>0 : maximum number of stack levels to print,
default 20
other : not valid

ND-60.136.03

32 '
STANDARD EXCEPTION HANDLER LIBRARY

4.5. 'The PRITRAC routine

PRITRAC is a utility routine to print a traceback of routine instances
(stack frames). The routine is called from a user handler, or
automatically upon abnormal termination of the job if traceback has
been selected (in the EXCEPT call referring to the exception condition
raised) .

PLANC specification:

ROUTINE REFERENCE VOID, VOID (BOOLEAN READ): PRITRAC (TRAP)
<standard library routine>
ENDROUTINE

FORTRAN specification:

SUBROUTINE PRITRAC (TRAP)
LOGICAL TRAP

<standard library routine>
END
Parameter value:

TRAP TRUE if called while a trap is being handled.
FALSE should be set for any other condition.

Note that the default maximum number of stack levels to be printed is
20.

ND-60.136.03

33
STANDARD EXCEPTION HANDLER LIBRARY

4.6. The PRIMESS routine

The PRIMESS routine will print the error message, corresponding to the
parameter value, on the standard output device (unit 1).

PLANC specification:

ROUTINE REFERENCE VOID, VOID (INTHGER): PRIMESS (EXCNO)
<standard library routine>
ENDROUTINE

FORTRAN specification:

SUBROUTINE PRIMESS (EXCNO)
INTEGER EXCNO

<standard library routine>

END

Parameter values:
EXCNO exception number

The parameter (EXCNO) must be in the range 11B:44B (traps) or
401B:457B (FORTRAN errors) .

ND-60.136.03

34
STANDARD EXCEPTION HANDLER LIBRARY

4.7. The GEIMESS/FGEIMESS routine

PGEIMESS/GEIMESS will return the error text corresponding to the
specified exception number.

PLANC specification:

ROUTINE VOID,BYTES POINTER (INTHGER) : PGEIMESS (EXCNO)
<standard library routine>

ENDROUTINE

FORTRAN specification:

FUNCTION GEIMESS (EXCNO)
C this function must be declared to be of type character in the
C calling program

INTHGER EXCNO

CHARACTER * (*) GEIMESS

<standard library routine>

END

Parameter values:
EXCNO the number of an exception condition

EXCTEXT (Fortran; out-value in Planc:)
Return parameter containing the error text

EXCNO must be the number of a defined exception condition, in the
range 11B:44B (traps) or 401B:457B (Fortran error) .

ND-60.136.03

35
STANDARD EXCEPTION HANDLER LIBRARY

4.8. The RDEFVAL routine

PLANC specification:

ROUTINE REFERENCE VOID,VOID (INTHGER, INTEGER WRITE,

INTEGER WRITE, INTEGER WRITE, INTEGER WRITE, INTHGER WRITE) :
RDEFVAL (EXCNO, NOMSG, NOEXC, TRACEB, PRSTAT, NOLEV)
<standard library routine>

ENDROUTINE

FORTRAN specification:

SUBROUTINE RDEFVAL (EXCNO, NOMSG, NOEXC, TRACEB, PRSTAT, NOLEV)
INTEGER EXCNO, NOMSG, NOEXC, TRACEB, PRSTAT, NOLEV

<standard library routine>

END

Parameter values:
EXCNO exception number

NOMSG default number of messages allowed
(returned value)

NOEXC default number of exceptions allowed
(returned value)

TRACER default (=0) traceback setting (all EXCNOs)
(returned value)

PRSTAT default (=1) error statistics setting (all EXCNOs)
(returned value)

NOLEV default (=20) maximum number of levels to be printed
during a traceback
(returned value)

ROEFVAL may be called to read the default values of the exception
parameters corresponding to a given exception number (EXCNO).

ND-60.136.03

36
STANDARD EXCEPTION HANDLER LIBRARY

4.9. The RCURVAL routine

RCURVAL may be called to read the current values of the exception
parameters corresponding to a given exception number (EXCNO).
PLANC specification:

TYPR RIYP = ROUTINE REFERENCE VOID,VOID (INTEGER)

ROUTINE REFERENCE VOID,VOID (INTHGER, RTYP POINTER, &
INTEGER WRITE, INTEGER WRITE, INTHEGER WRITE, &
INTHGER WRITE, INTEGER WRITE, INTEGER WRITE): &

RCURVAL (EXCNO,EXCROUT ,NOMSG,NOEXC,TRACEB ,PRSTAT ,NOLEV ,EXCCOUNT)
<standard library routine>

ENDROUTINE

FORTRAN specification:

SUBROUTINE RCURVAL (EXCNO ,EXCROUT ,NOMSG ,NOEXC, TRACEB ,PRSTAT ,NOLEV,
+ EXQCOUNT)

INTHGER EXCNO ,EXCROUT ,NOMSG,NOEXC, TRACEB ,PRSTAT ,NOLEV ,EXCCOUNT
<standard library routine>

END

Parameter values:
EXCNO exception number

EXCROUT address of current user exception handler or zero
(supplied as a routine name in the source program)

NOMSG current number of messages allowed before abnormal
termination (returned value)

NOEXC current number of exceptions allowed before abnormal
termination (returned value)

TRACEB traceback setting (for all EXCNOs), see section 4.4
(returned value)

PRSTAT status report print upon end of program (for all EXCNOS)
(returned value)

NOLEV current setting of maximum number of levels to be printed
during traceback (returned value)

EXCCOUNT current exception count
(returned value)

ND-60.136.03

STANDARD EXCEPTION HANDLER LIBRARY

FORTRAN EXCEPTIONS:

dec

257
258
259
260
261
262
263
264
166
267
268
270
271
272
274
275
276
277
281
282
283
284
285
286
287
288
289
293
294
295
302
303

msg
err

unl

oct

401
402
403
404
405
406
407
410
412
413
414
416
417
420
422
423
424
425
431
432
433
434
435
436
437
440
441
445
446
447
456
457

FATAL FORMATTING SYSTEM ERROR

TOO [OW PARENTHESES LEVEL IN FORMAT
ILLEGAL CHARACTER IN FORMAT
ILLEAGAL TERMINATION OF FORMAT
OUTPUT RECORD SIZE EXCEEDED

FORMAT REQUIRES GREATER INPUT RECORD
INTHGER OVERFLOW ON INPUT

INPUT RECORD SIZE EXCEEDED

BAD CHARACTER ON INPUT

REAI, OVERFLOW ON INPUT

REAL, UNDERFLOW ON INPUT

REAL, OVERFLOW ON OQUTRUT

FORMAT SPECIFICATION DOES NOT APPLY
OVERFLOW IN EXPONENT ON INPUT

TOO MANY FILES OPENED

EXCEPTION NUMBER OUT OF RANGE=
MIXING OF BINARY/ASCII ILLFGAL

NO MORE BUFFERS AVAILAELE

ZERO BASE AND NEGATIVE EXPONENT
BASE LESS THAN ZERO IN EXPONENTIATION
OVERFLOW IN EXPONENTIATION

NBEG. ARG. IN SQUARE ROOT

TOO LARGE ARG. IN SINE

TOO LARGE ARG. IN COSINE

TOO LARGE ARG. IN EXP-FUNCTION
ZERO OR NHG. ARG. IN LOGARITHM
BOTH ARGS. ZERO IN ARCTAN

TOO LARGE ARG. IN HYPERB. TAN

TOO LARGE ARG. IN HYPERB. SINE

TOO LARGE ARG. IN HYPERB. COSINE
ILLAGAL ARG. IN ARC-SINE/COSINE
ILLFGAL ARG. IN TAN

default maximum number of error messages
default number of exceptions prior to abnormal termination
unlimited number

[0}
~
=~

10
10
10
10
10
10
10
10
10
10
10
10
10
10

R BERERERERR ool EcERERERR oo

37

ND-100 only

Numbers not listed are currently not used. All Fortran errors are
default enabled.

All languages:

The hardware traps are listed in section 4.l.

ND-60.136.03

38

STANDARD EXCEPTION HANDLER LIBRARY

ND-60.136.03

39
COMMUNICATION BETWEEN ND-500 AND ND-100

5. COMMONICATION BETWEEN ND-500 AND ND-100

There are several ways of transmitting information between the ND-500
and the ND-100; the selection of a method depends on the transmission
speed required, the requirements and privileges of the sending and the
receiving process, and above all, the amunt of data to be
transmitted.

5.1. Monitor calls

This is the simplest and, for the programmer, most direct way of
comunicating through the operating system mechanisms, or with the
operating system itself. A monitor call will 1look exactly 1like a
reqular subroutine call to a routine in an indirect segment. The
services provided are the same as in a ND-100 system. Monitor calls
are used in connection with semaphores, internal devices, reserving
and using external devices, file I/O and for starting and stopping RT
programs in the ND-100.

When a monitor call is executed, the ND-500 process is suspended and a
twin process in the ND-100 is started to execute the call on behalf of
the ND-500 process. Some monitor calls may allow the ND-500 process to
continue while the call is executed if the function code is selected
accordingly.

The starting and stopping of a ND-100 process 1is rather time
consuming, and monitor calls should be used for small amounts of data
only, or for setting up other communication channels. The overhead is
essentially constant regardless of the number of bytes transferred, as
long as this number is moderate.

All Sintran III VSE/500 systems are delivered with the OUTST monitor
call (MON 162). This is used by the standard libaries, rather than
OUTBT. The programmer using monitor calls explicitly is advised to
utilize QUTST if possible. OUTST will cause activation of the twin
process for each string to be transferred, while OUTBT will activate
it for each byte transferred.

5.2. Commnicating through the process flags

Each process running in ND-500 has two 32 bit words assigned for
communication purposes. These are termed the input flag and the output
flag. Monitor calls and commands are available to read and write these
flags. The flags are not used by the monitor, and may contain any bit
pattern the user desires.

The input flag of a process is used for signalling to a running ND-500
process. This flag may be written by an ND-100 process or through
commands, and read by the process itself. The output flag is used for
returning data or status, and is written by the process. This flag may
be read by ND-100 or through commands, but may not be written.

ND-60.136.03

40
COMMUNICATION BETWEEN ND-500 AND ND-100

There is no queueing - if another value is written in the flag word
before it is read, the first value is overwritten.

5.3. Commnicating through RTCOMMON

This is the fastest method of communication, as reading and writing is
directly to the location accessed by the ND-100, and this part of
memory is always resident. The only limiting factor is the size of the
RTICOMMON area.

The RICOMMON area is accessed from the ND-500 as a part of the regular
memory space. The mapping onto the RICOMMON is done at load time
through the MATCH-RTCOMMON command, used before any loading to the
segment is done.

No modification of the size of RICGMMON should be done after the
segments referring to it have been loaded. If such modifications are
done, the segments must be reloaded. Segments using RTCOMMON can not,
in general, be moved to another machine after loading.

If the RICOMMON area is used from ND-500, it must be contiguous. In
other words, if the system supervisor through the SINTRAN-SERVICE-
PROGRAM command DEFINE-RICOMMON-SIZE expands RICOMMON beyond what was
specified at system generation, this area must be adjecent to the
initially allocated area.

5.4. Communicating through an RT segment

An ND-100 RT-program may share data with an ND-500 process through a
segment in one of the ND-100 SEGFILs. The segment must be fixed in a
continous area in memory before the ND-500 process referring to it is
started.

This 1is the most efficient way of transferring larger amounts of data
between the two processors. Access to the area should be protected by
semaphores; this is done through monitor calls.

The symbols defined by the ND-100 RT-LOADER are available to the
ND-500 process after the MATCH-COMMON-RT-SEGMENT command has been
given. This command should be given after these symbols have been
defined in the ND-100, but before any loading to the ND-500 segment is
done.

If two (or more) ND-100 segments are matched with one ND-500 segment,

they must be fixed in memory at physical addresses with a fixed
distance equal to the distance between them in ND-500 address space.

ND-60.136.03

41
COMMUNICATION BETWEEN ND-500 AND ND-100

5.5. Commanicating through files

All files are common to the two processors, and the same regulations
apply to processes running in the two CPUs as to processes running in
the same CPU. Files provide for transfer of arbitrarily large amounts
of data, but are significantly slower than the other methaods.

In order to speed the file access, the file may be opened with direct
transfer (open modus 8 or 9). This puts some restrictions on the
application program, but allows the transfer to go directly to memory,
circumventing a major part of the file system. However, the user must
do most of the bookkeeping himself, and the file system provides no
structuring of the disk pages. The transfer speed will, however, when
the block size is large, approach the hardware speed of the disk.

Programs using direct transfer may also allow a higher number of
simultaneously opened files. Direct transfer is also available for
magnetic tape.

When direct transfer is used, the Monitor will automatically fix the

memory buffer in a contiguous part of memory before the first
transfer, and it will remain fixed until the program terminates.

ND-60.136.03

42
LOADER CCOMMANDS

6. LOADER OOMMANDS

Although the set of commands available in NLL is large, most users
need only a couple of them. The most important are

SET-DCOMAIN - name an executable domain
LOAD-SEGMENT - load a file containing relocatable code
EXIT - return to Sintran III

The EXIT command is described in the next chapter.

Various error messages may be returned from NLL during or after
command interpretation and execution. These error messages are listed
in chapter 13, with short explanations and references to where they
may occur.

6.1. Domains

6.1.1. SET-DOMAIN

SET-DOMAIN (<domain name>)

<domain name> - the name of the domain to be set as the current
domain, 1 to 16 alphanumeric characters or hyphen.
Default name is SCRATCH-DOMAIN.

The domain with name <domain name> is set to be the current domain.
The subsequent segment handling, loading and linking will be done in
the current domain. <domain name> cannot include the directory and
user name; loading may be done only in the domains of the current
user.

If a domain is already set when the SET-DOMAIN command is executed, it
is closed by an implicit END-DOMAIN.

The default domain name is SCRATCH-DOMAIN. If a LOAD-SHGMENT command
is given when there is no current domain, an implicit SET-DOMAIN
SCRATCH-DOMAIN is performed, and the segment SCRATCH-SEGMENT. This
will delete all information previously loaded, using default names.
Thus, a domain to be permanently retained will usually be given
another name, to prevent it from being destroyed when default domain
name is used.

A user may have a maximum of 256 domains. New domains are specified by
enclosing the domain name in double quotes.

ND-60.136.03

43
Domains

6.1.2. END-DOMAIN

END-DOMAIN

Finishes operation upon the current domain. END-DOMAIN automatically
executes the command CLOSE~SEGMENT. END-DOMAIN will automatically be
executed by the commands SET-DOMAIN, and EXIT.

6.1.3. CLEAR-DOMAIN

CLEAR-DOMAIN <domain name>

<domain name> ~ the name of the domain to be cleared, 1 to 16
alphanumeric characters or hyphen.

All segments which the domain <domain name> consist of are deleted
from the domain. The segment (:PSBEG, :DSHG, :LINK) files are retained.

This command may not be executed when a domain is set. <domain name>
cannot be SCRATCH-DOMAIN, and must belong to the current user.
(Individual segments in SCRATCH-DOMAIN may be cleared by the CLEAR-
SHGMENT command.) It is assumed to exist in the description file of
the current user. The domain continues to exist, but no longer
comprises any segments.

6.1.4. DELETE-DOMAIN

DELETE-DOMAIN <domain name>

<domain name> - the name of the domain to be deleted, 1 to 16
alphanumeric characters or hyphen.

All segments in the domain are deleted, the domain itself is then also
deleted. The segment (:PSHG, :DSHG, :LINK) files are retained. This
command may not be executed when a domain is set. <domain name> cannot
be SCRATCH-DOMAIN, and it must belong to the current user.

ND-60.136.03

44

Domains
6.1.5. LIST-DOMAIN
LIST-DOMAIN (<domain name>)
<domain name> ~ the name or abbreviation of names of domains to be

listed. Default is all domains created by the
current user.

Writes all domains with names matching <domain name> and their start
addresses (if any) on the output device. Default is all domains
created by the current user.

This command can only be used to list domains belonging to the current
user. To list domains belonging to other users, use the command LIST-
SEGMENT, prefixing the <segment name> parameter with the user name in
parentheses,

6.1.6. WRITE-DOMAIN-STATUS

WRITE-DOMAIN-STATUS [(<domain name>)]...

<domain name> - the name of the domain about which information is
requested. Default is the current domain.

Prints all the available information about the domain or domains
specified. These are assumed to exist in the description file of the
current user. If no parameters are given, the current domain-status is
printed. Note that during a linking/loading session the domain-entry
or the segment-entry is not fully updated until the commands END-
DOMAIN and CLOSE-SEGMENT, respectively, are executed.

6.1.7. RENAME-DOMAIN

RENAME-DOMAIN <new domain name>, <old domain name>

<new domain name> - the new name of the domain, 1 to 16 alphanumeric
characters or hyphen.

<0ld domain name> - the name of an existing domain

Renames the domain <domain name>. The domain is assumed to exist in
the description file of the current user.

ND-60.136.03

45
NDomains

6.1.8. COPY-DOMAIN

COPY-DOMAIN <destination domain>, <source domain>

<destination domain> - the name of a domain to receive a copy of the
<source domain>. May not be prefixed with
directory or user name.

<source domain> - the name of the domain to be copied. May be
prefixed by directory and/or user name.

Copies the entire <source domain> to <destination domain>. <source
domain> may be prefixed with a user name or directory:user name in
parentheses. If the destination domain already exists, the segments on
this domain must have the same names as the segments on the source
domain or default names, and they will be overwritten with the
segments from <source domain>.

If the segments do not exist, they will be created. They will be given
the names they have in <source domain>, unless these names were
default names; the segments then will be given new default names
according to the <destination domain> number. If the destination
domain does not exist, <destination domain> must be enclosed in double
quotes.

To move a domain from one installation to another, the domain to be
moved must be described in a description file being moved with it.
The user to which the copying is done must enter NLL to create a
description file (if it is not already created) and then copy the
domain(s) by prefixing the source domain with the relevant directory
and/or user name,.

As the description file contains the name of the user, if the
Sintran IIT commands @RENAME-DIRECTORY and @RENAME-USER is used, the
NLL~command RENAME-DEFAULT-DIRECTORY-AND-USER must be used to update
the description file.

Domains making references to RICOMMON or Sintran III/ND-100 segments
should not be copied to other machines.

ND-60.136.03

46
Domains

6.1.9. RELEASE-DOMAIN

RELEASE-DOMAIN <domain name>

<domain name> - the name of the domain to be released

This command is used if an error in the system has occurred (e.g. a
system crash) leaving a domain in an open state with no user attached
to it. The domain will therefore be unavailable for further use. This
may also occur if a loading process was not terminated before a
Sintran IITI command was executed that did not return control to NLL.

RELEASE-DOMAIN will force the domain to be closed even if the user
issuing the command is not the one who are using it or have been using
it.

RELEASE-DOMAIN should be used with great care, and if used
inappropriately it may cause inconsistencies in the description file.
In any case, the contents of the released domain must be considered
unpredictable, and it should be reloaded before being used again.

ND-60.136.03

47
Segments

6.2. Segments

This section describes commands that manipulate segments as a whole,
either before or after the actual load operation. The commands that
cause code to be loaded are described in the next section (Commands to
load NRF code).

Commands in this section are mainly used in connection with multi-
segment domains. The OPEN-SEGMENT command may be used to select a non-
default name of the segment, but the rules for default names ensure
that segment names never collide. If there is only one segment per
domain, the user need not be concerned about segment names at all, and
thus, need not use any of the commands in this section. The opening
and closing of segments are done automatically.

6.2.1. OPEN-SHGMENT

OPEN-SEGMENT (<segment name>), (<segment attributes>)

<segment name> - the name of the segment to which subsequent
loading should be done, 1 to 16 alphanumeric
characters or hyphen. Default is SCRATCH-SEG-01
if current domain is SCRATCH-DOMAIN.

<segment attributes> - a string of the characters CDEMOPRSWH. See
below. Default is CW.

Prepares the segment <segment name> for loading, i.e. set <segment
name> as the current segment. If the segment does not exist when this
command is executed, the segment name must be enclosed in double
quotes. If the segment was already contained in the current domain,
all old information about the segment is erased. (To add more code to
an already loaded segment, use the command APPEND-SEGMENT.)

The scratch domain is used if there is no current domain.

The <attributes> specifies the use of the segment, and consists of a
string of option letters. The options are:

R Read Only data segment. May not be combined with W.

W Write allowed data segment. Default value. May not be combined
with R.

O Use original data segment file for swapping. Modifications to
data will be permanent. May not be combined with C.

C Copy data segment to swap file. Default value. May not be
combined with O.

ND-60.136.03

48
Segments

s}

Empty data segment. The data segment will be dynamically assigned
at execution time.

P Shared program segment. May be included in another domain by the
command LINK-SHGMENT. Only the program segment will be shared.

This command is only necessary if the segment will be linked to
another domain than the current one.

M Other Machine. The program segment capability will at execution
time indicate that the segment is located in another CPU. Monitor
calls which are executed in ND-100 can be defined as an indirect
segment in another machine.

D Shared Data. A linked segment will by default have only the
program segment shared. This attribute declares the data segment
as shared. If both program and data segments should be shared, PD
must be specified.

A Fe

1f an NRF file is loaded when there is a current domain (set by SET-

DOMAIN) but no current segment (set by OPEN-SEGMENT), an implied
command :

OPEN-SEGMENT SHGMENT-Dxxx-Syy R

is executed, where xxx is the number of the current domain and yy the
logical segment number used. If the segment does not exist, it is
created.

All information on the segment is deleted. The segment number may be
forced by the command SET-SEGMENT-NUMBER; otherwise the first free
segment number, starting at 1, is used. If the segment exists, the
segment number will be retained.

If an NRF file is loaded when there is neither a current segment nor
domain, two implied commands are executed:

SET-DOMAIN SCRATCH-DCMAIN, ,
OPEN-SHGMENT SCRATCH-SEGMENT-01, ON

Code previously loaded to SCRATCH-SEGMENT-0l1 will be deleted. Thus, to
prevent the contents of a segment from being destroyed next time
anything is loaded to the segment using the default name, the segment
should be explicitly named.

Note that the default name depends on the domain and segment numbers.
Therefore, as long as each program is loaded to a different domain,
default segment name may be used in each of the domains without
interfering with segments in other domains.

OPEN-SEGMENT automatically executes CLOSE-SHGMENT if a current segment

is open and COMMON-SEGMENT-CLOSE if one or more COMMON segments are
open.

ND-60.136.03

49
Segments

6.2.2. CLOSE-SHGMENT

CLOSE-SHGMENT [<Y/N>]

<Y/N> - Y will cause a load map to be written to the
output file after all 1linking and loading is
complete, N will suppress this. Default is N.

Terminates loading to the current segment. After this command has been
executed, there is no current segment.

1f the segment was not opened by APPEND-SEGMENT, a trap handler vector
is allocated. If there are undefined references, the auto-link
segments will automatically be linked. If there are still undefined
references, the defined auto-load files (see SET-AUTO-LOAD-FILE) will
automatically be loaded. Auto-link segments and auto-load files
defined by the current user are first linked/loaded, and then those
defined by user SYSTEM.

If there still are undefined references, an error message will be
given. In a batch or a mode job all undefined references will be
written to the output device and the command will be executed. In
interactive mode a warning will be given and the command not
executed. The second time the command is given it will always be
executed.

The segments will be closed, all labels will be saved on the :LINK
file in numerically sorted order, all other necessary information will
be saved on the description file, and the correct file access will be
set on the files involved. The KILL-ENTRIES and GLOBAL~ENTRIES
comands may be used before the segment is closed to restrict the
selection of labels saved on the :LINK file.

CIOSE-SEGMENT is automatically executed by END-DOMAIN, SET-DOMAIN,
EXIT or OPEN-SEGMENT.

6.2.3. LINK—SHGMENT

LINK~-SEGMENT <segment name> ...

<segment name> - the name of the segment to be linked to the
current segment.

Links all modules on the segment <segment name> to the current
segment. Routines and data areas defined on the segments listed will
satisfy references on the current segment.

The linking can be done before or after loading the current segment;
all symbols defined on the specified segments will be available until
loading to the current segment is terminated (by CLOSE-SEGMENT). The
<segment name>s specified must be already loaded segments.

ND-60.136.03

50
Segments

The segments which are linked will be a part of the current domain and
must have no external references to other segments if it is part of
another domain. This means that if the linked segment originally is a
part of another domain it cannot, itself, have linked and common
segments. It can, however, have indirect segments. Linked segments
may have linked segments in the current domain. Logically, a segment
linked to more than one domain may be treated as if there were several
identical copies of the segment, one in each domain.

There are no restrictions on external references if the linked
segments are parts of the current domain. It is also possible to make
two-way references between segments within one domain.

If a segment in another domain is linked, the segment number will be
the same in the two domains. The segment number must therefore be
available when the linking is done, except if the segment has been
previously linked - a second LINK-SEGMENT command may be used to
define new references since the first linking was done.

6.2.4. LIBRARY-SHGMENT-LINK

LIBRARY-SEGMENT-LINK <segment name> ...

<segment name> - the name of the segment to be 1linked to the
current segment.

A LINK-SEGMENT command will make all labels in the specified <segment
name> available in the current domain. This may cause name conflicts,
and can make the space requirements for the name table grow very
large.

LIBRARY-SEGMENT-LINK will define only those symbols actually
referenced. Otherwise it works exacly as LINK—SEGMENT.

6.2.5. APPEND-SEGMENT

APPEND—-SEGMENT (<segment name>) (<segment attributes>)

<segment name> - the name of an existing segment, to which more
code will be added. Default is SCRATCH-SEG-01.

<segment attributes>- a string of the characters CDEMOPRSW. Default is
the current attributes of the segment.

This command prepares <segment name> for further loading. All
previously defined and referenced symbols are available, and the new
code can be appended to the 0ld code. <segment name> must exist when
this command is executed.

ND-60.136.03

51
Segments

<segment attributes> have the same meaning as for OPEN-SEGMENT. If a
non-default value is specified, the attributes are changed, otherwise
the existing attributes will not be modified.

Be aware that only the first 20 characters of a symbol will be saved
on the :LINK file, thus, if the symbol name is 1longer than 20
characters it will not match with the full, un-truncated symbol when
loading to the segment is resumed at a later time with this command.

The common and link segments defined when the segment was previously
closed are not automatically restored, and must be explicitly defined
by the user. In order to avoid clearing the common segment, COMMON-
SEGMENT-APPEND should be used.

6.2.6. SEI-SEGMENT-NIMBER

SET-SEGMENT-NUMBER (<segment number>)

<segment number> - a number in the range 0:37B to be the logical
segment number of the next current segment.
Default is 1.

Specifies explicitly the logical segment number for the program
segment within a domain. This command can be used in connection with
the command OPEN-SHGMENT. If the command SET-SHGMENT-NUMBER is not
issued, the first free segment number is used.

In most cases, the user need not be concerned about the segment number
used. However, if the next free segment number (i.e. the default
segment number) is already used by a segment that will later be linked
to the domain, the segment number must be set to another value.

6.2.7. CLEAR-SEGMENT

CLEAR-SHEGMENT <segment name>

<segment name> - the name of an existing segment that is to be
cleared.

The segment <segment name> will be cleared and readied for loading new
code, 1i.e. all information about labels, start address, low address,
and size is deleted. Pages allocated to the segment files will also be
released, but the file will be retained.

ND-60.136.03

52

Segments
6.2.8. DELETE-SFGMENT
DELETE-SEGMENT <segment name>
<segment name> - the name of an existing segment that is to be

removed.

All information and the files making up the segment <segment name> are
deleted. The space on the domain which the segment was a part of is
released.

This command is not legal if a domain is set, in which case an END-
DOMAIN command must be executed before the segment is deleted.

6.2.9. RENAME-SHGMENT

RENAME-SEGMENT <new segment name>, <old segment name>

<new segment name> - the new name to be given to the segment, 1to 16
alphanumeric characters or hyphen.

<0ld segment name> - the name of an existing segment in the
description file of the current user.

Renames the segment <segment name>. If the segment to be renamed is
not in the default directory and/or belongs to another user than the
current user, the entire directory and user name must be specified
unabbreviated and in parentheses as a prefix to <new segment name>.

6.2.10. LIST-SHGMENT

LIST-SEGMENT (<domain name>), (<segment name>)

<domain name> - the name or abbreviation of names of the domain to
be searched. Default is all domains of the current
user.

<segment name> - the name or abbreviation of names of segments to
be listed. Default is all segments in the selected
domains.

All segment names matching <segment name> in the domains with name
matching <domain name> are written on the output device, together with
some segment information. If a list of another user's segments is
wanted the segment name must be prefixed by the user name in
parentheses. The domain name may not be prefixed by a user name!

ND-60.136.03

53
Segments

This command will list the domain names as well as the segment names.

6.2.11. WRITE-SEGMENT-STATUS

WRITE-SEGMENT-STATUS [(<segment name>)]...

<segment name> - the name or ‘abbreviation of names about which
information is requested. Default is current
segment.

Prints all the available information about the segment or segments
specified, belonging to the current user or the user specified in
parentheses as a prefix to <segment name>. No parameter means that the
current segment status is printed. Note that the current segment entry
is not fully updated before the command CLOSE-SHGMENT is executed.

ND-60.136.03

Commands to load NRF code

6.3. Commands to load NRF code

NRF files conatins code in the format described in chapter 12,
produced by language compilers and assemblers.

A file in NRF format may be structured three different ways:

a) Normal, as default output from ASSEMBLER-500, PLANC-500, FORTRAN-
500, PASCAI~500, COBOL-500 etc. Modules are located in strict
sequential order, and defined labels are indicated by DEF or DDF
control numbers.

b) Slow library files, output from the compilers and assembler
mentioned above, when compiled/assembled in library mode (refer to
the manual for the language in use). Labels defined in the file
will appear with LIB control numbers. The term library file refers
to a file in this format.

c) Fast library files, as (slow) library files but preceeded by an
index table containing the name and byte address within the file of
each label defined in the file. This format is obtained by
transforming a file in format (b) with the PREPARE-NRF-LIBRARY-FILE
comand (section 6.10.9.).

The command normally used to load NRF code is the LOAD-SEGMENT. The
other commands in this chapter are required only if it 1is neccessary
to force the loading of a library module that would normally not be
loaded, or to prevent a module from being loaded.

6.3.1. LOAD-SEGMENT

LOAD~-SEGMENT <file name>...

<file name> - the name of a file in NRF format. Default file
type is :NRF.

This command loads the NRF code into the current program segment, data
segment, and optional common segments. The current segment is the last
one specified in an OPEN-SEGMENT or APPEND-SEGMENT command. If no
current segment or current domain exists, a scratch domain and a
scratch segment will be opened and used by NLL. Default attributes
will be used.

1f a current domain exists and no segment has been opened with OPEN-
SHGMENT, a default segment will be used. See OPEN-SHGMENT.

If the current segment was opened with the command APPEND—SEGMENT
rather than TIOAD-SEGMENT, and in addition a routine vector was
allocated on this segment by the ENTRY-ROUTINES command, the LOAD-
SEGMENT command will work like RELOAD-SEGMENT: the new code will be
appended to the existing code; previously defined entry points will
not cause a "double definition" error, but the routine vector will be
updated to point to the new version. Any new entry points will be

ND-60.136.03

55
Commands to load NRF code

entered into the routine vector after the already defined ones.

6.3.2. RELOAD-SHGMENT

RELOAD-SFEGMENT <file name> ...

<file name> - the name of a file in NRF format. Default file
type is :NRF.

This command will load NRF code to a segment like LOAD-SEGMENT, but
modules already loaded to the segment will be replaced with the
modules with the same identification in <file name>. The code loaded
to the data segment is not replaced, but a warning message is given.
This command should be used after an APPEND-SEGMENT command in order
to avoid clearing the segment before loading.

This command is useful while debugging large segments and changes are
made in a single or a small number of modules. Loading the entire
segment is avoided; only the modules that have actually been modified
needs to be reloaded.

The new version of the modules are loaded at the current load address
of the segment. The space occupied by the old version of the module is
not released, and it is the responsibility of the user to load the
entire segment to clean this up after the debugging phase is complete.

6.3.3. LIBRARY-SHGMENT-LOAD

LIBRARY-SEGMENT-LOAD <file name>...

<file name> - the name of a file in NRF format. Default file
type is :NRF.

This command will load only modules containing referenced symols from
a file of structure (a), (b) or (c), as described above. For type (b)
and (c) the effect will be exactly as with the LOAD-SEGMENT command.

All symbols defined in <file name> will be considered library symbols,
regardless of whether they are actually defined as such in the :NRF
file or not. Thus, NRF modules in the file will be 1loaded only if
there are references that can be defined by loading the module.
Modules containing no symbol definitions, definitions of already
defined symbols or definitions only of symbols not referenced, will
not be loaded. This command allows a file to be used as a library even
if it has not been compiled/assembled in library mode.

If an NRF module in <file name> contains several symbol definitions,
of which one or more are referenced, and others which are already
defined, the nmodule is loaded. The first definition of the already
defined symbols will then apply, but a warning message will inform
that a redefinition was attempted.

ND-60.136.03

56
Commands to load NRF code

6.3.4. OMITTED-SEGMENT-LOAD

OMITTED-SEGMENT-IOAD <file name>, <entry>...

<file name> - the name of a file in NRF format. Default file
type is :NRF.

<entry> - the name of a symbol defined in <file name>.

This command will load all modules of an NRF file of structure (b) and
() containing any referenced symbol(s), except for those modules
containing definitions of the specified ones. These modules will not
be loaded during this load operation. (Subsequent load commands may
cause these modules to be loaded.) :

The <entry> does not have to be a library symbol (LIB contol number) ;
it will be omitted from loading regardless of symbol definition type.

This command is commonly used to prevent a standard version of a
routine from being loaded, in order to load a different non-standard
version from another file. If <entry> is not defined in <file name> or
if no symbols are specified, this command will act as LIBRARY-SEGMENT-
LOAD. :

6.3.5. SELECTED—-SHGMENT-LOAD

SELECTED-SEGMENT-IOAD <file name>, <entries>...

<file name> - the name of a file in NRF format. Default file
type is :NRF.

<entries> - the name of a symbol defined in <file name>.

The complement of OMITTED-SHGMENT-LOAD: this command will load only
those modules containing definitions of the specified <entry>s from
files of structure (b) and (c). Other modules will not be loaded.
Symbols do not have to be library entries; no modules except those
referenced in <entry> will be loaded regardless of symbol definition

type.

<entry> does not have to be referenced prior to the use of this
command.

This command is used to load a selected routine without necessarily
loading all routines in the same file, even if these routines are
referenced. If the specified symbol is not found in <file name>, no
action is taken.

ND-60.136.03

57
Commands to load NRF code

6.3.6. TOTAL-SEGMENT-LOAD

TOTAIL~SEGMENT-IOAD <file name>...

<file name> -~ the name of a file in NRF format. Default file
type is :NRF.

This command will load all modules of an NRF file of structure (a),
(by or (c) except for those modules already loaded. For structure (a)
it will act as LOAD-SHGMENT except for modules already loaded, which
will be skipped with no warning message given.

ND-60.136.03

58 :
Commands to load NRF code

6.4. OOMMON segments

Fortran COMMON areas may either be placed in the same segment as other
data, or they may be put in their own segment (s) . Arguments for using
separate COMMON segments are similar to other segmenting: a different
protection, memory allocation or sharing is desired for the COMMON
segments than for other data areas.

own data segments for the COMMON areas may be defined by the commands
below. These segments will not have corresponding program segments
(unless the segments have been previously opened with OPEN-SEGMENT, in
which case the existing program segment is ignored) . Common segments
are special only in the sense that they facilitate selective loading
and linking of common blocks.

These commands apply mainly to Fortran programs. Common blocks defined
by a Fortran program may be referenced by some languages. A label is
defined on a common segment if the NRF language code of the loaded
module is FORTRAN and data mode is set (IMO control number, see
chapter 12), or if the label has been explicitly defined on a common
segment by the DEFINE-ENTRY or the DEFINE-COMMON command.

6.4.1. COMMON-SHGMENT-OPEN

COMON-SEGMENT-OPEN ~ (<segment name>), (<attributes>)

<segment name> - the name of a segment to be used for common areas
in subsequent loading. Default name is COMMON-
SHGMENT.

<attributes> - a string of the letters ROPLMBWC. Default is WCL.

Prepare a common-data-segment as an additional current data-segment.

The <attributes> have the same meaning as for OPEN-SEGMENT, section
6.2.1., where the option letters are explained.

The default segment when loading a common block is the last ome
specified in a COMMON-SEGMENT-OPEN command. However, common areas can
be placed on any segment by defining the common label on those
segments prior to loading the file containing the common block. See
the DEFINE-COMMON command (section 6.7.4.).

Each program/data segment pair may have up to four common segments.
Any data segment may be opened as common segment to any program
segment. COMMON-SEGMENT-OPEN will clear the segment — if code is to be
added to an already loaded common segment or it will be linked to,
COMMON-SEGMENT-APPEND should be used.

ND-60.136.03

59
Commands to load NRF code

6.4.2. COOMMON-SEGMENT-CLOSE

COMMON-SEGMENT-CLOSE

Loading to all currently defined common segments is terminated. After
this command, there is no current common segment. Loading of common
areas may continue, but they will be located in the current data
segment unless they were already defined on one of the common
segments.

This command is not required before opening a new program segment,
common segment or EXIT.

6.4.3. OCOMMON-SEGMENT-APPEND

COMMON-SEGMENT-APPEND (<segment name>)

<segment name> - name of an existing segment, to which more common
blocks will be added. Default is COMMON-SEGMENT.

Common blocks defined in NRF files to be loaded will be located after
the data already loaded to <segment name>. <segment name> must exist
when the command is executed. The access of the segment is not
changed. Only the data segment is affected.

This command may also be used to link a previously loaded common
segment to another program segment, as an alternative to LINK-SEGMENT.
With respect to the data segment these two commands are identical, but
LINK-SEGMENT will also link to a program segment, if it exists. This
could cause unintened linking of accidentally synonymous entry points.
The COMMON-SEGMENT-APPEND will if used on a normal segment consisting
of both a program and a data segment, link to the data segment only.

6.4.4. COMMON-SEGMENT-NUMBER

COMMON-SEGMENT-NUMBER <segment number>

<segment number> - a number in the range 0:37B to be the logical
segment number of the current common segment.
Default is 33B.

Same as SET-SEGMENT-NUMBER except that COMMON-SEGMENT-NUMBER applies
to the last common segment specified in a OMMON-SEGMENT-OPEN or
COMMON-SEGMENT-APPEND command. The user will normally not be concerned
with the segment number used.

ND-60.136.03

60
Auto-link segments

6.5. Auto-link segments

An auto-link segment is linked if there are still undefined references
after the specified files are loaded when the CLOSE-SEGMENT command is
executed. If undefined references still exist after the auto-link
segments defined by the current user have been linked, the auto-link
segments defined by SYSTEM are linked. Auto-link segments are linked
before the auto-load files are loaded.

Auto-link segments are language sensitive, and will be linked only if

one or more module of the language(s) associated with it are already
loaded.

6.5.1. SET-AUTO-LINK-SEGMENT

SET-AUTO-LINK-SHGMENT <segment name>, <language> ...

<segment name> - the name of a segment to be automatically linked
at CLOSE-SEGMENT if undefined references remain.

<lanquage> - a combination of FORTRAN, ASSFMBLER, PLANC, OOBOL
or PASCAL.

Defines the segment with name <segment name> as an auto-link segment.
The auto-link segment specified will be wvalid until the command
DELETE-AUTO-LINK-SEGMENT is used. The auto-link segment applies only
to the user who has defined it. Auto-link segments defined by user
SYSTEM apply to all users however, after the auto-link segments of
that user have been linked.

The <language> name may be abbreviated as long as it is unambiguous.

The buffer containing the auto-link segment names can hold a max imum
of six entries. This does not include auto-link segments defined by
user SYSTEM. If the segment name is abbreviated in this command, it is
not expanded before the name is saved. Thus, to avoid ambiguity with
segments defined at a later time, the name should not be abbreviated.

It is not checked whether the segment exists at the time when it is
defined as an auto-link segment by this command. If the segment is not
present when the automatic linking is performed, it is ignored; no
error message is issued.

ND-60.136.03

61
Auto-link segments

6.5.2. DELETE-AUTO-LINK-SHGMENT

DELETE-AUTO-LINK—-SEGMENT

All the user—defined auto-link segments are deleted permanently. The
auto-link segments defined by user SYSTEM will also be removed, but
only until NLL is reentered.

After a DELETE-AUTO-LINK-SEGMENT new permanent auto-link segments may
be defined with the SET-AUTO-LINK-SHGMENT command.

6.5.3. LISP-AIFTO-LINK-SHGMENTS

LIST-AUTO-LINK-SEGMENTS

Writes on the output device all the auto-link segments in the sequence
they will be 1linked. Both the user's own and SYSTEM's auto-link
segments will be listed.

ND-60.136.03

62
Auto-load files

6.6. Auto-load files

An auto-load file is an NRF file which is automatically loaded when
the command CLOSE-SHGMENT is executed and any undefined references
exist. The auto-load files are loaded after the defined auto-link
segments are linked.

The auto-load files will be loaded in the sequence that they are
specified. If after loading all the user-defined auto-load files there
are still undefined references, the auto-load files of user SYSTEM
will be loaded.

The auto-load files are language dependent. Only those files specified
as auto-load files for the language used, will be loaded. If a system
consists of modules of different languages, auto-load files will be
loaded for all languages used, in the order they have been specified
with the SET-AUTO-LOAD-FILE command.

6.6.1. SEIAUTO-LOAD-FILE

SET-AUTO-LOAD-FILE <file name>, <language>

<file name> - the name of a file to be automatically loaded if
undefined references remain at CLOSE-SBGMENT.

<language> - combination of FORTRAN, ASSEMBLER, PLANC, COBOL or
PASCAL

An auto-load file may be specified with more than on language
parameter, indicating that the file should be loaded if routines
written in either language have been loaded.

File names defined hy the command SET-AUTO-LOAD-FILE, will be stored
permanently for the current user, and will only be removed by use of
the command DELETE-AUTO-LOAD-FILE.

The buffer containing the auto-load file names can hold a maximum of

six entries. This does not include auto-load files defined by user
SYSTEM,

ND-60.136.03

63
Auto-load files

6.6.2. DELETE-AUTO-IOAD-FILE

DELETE-AUTO-LOAD-FILE

All the auto-load files defined by the current user are deleted
permanently. The auto-load files defined by user SYSTEM will also be
removed, but only until NLL is reentered.

After a DELETE-AUTO-IOAD-FILE new permanent auto-load files may be
defined with the SET-AUTO-LOAD-FILE command.

6.6.3. LIST-AUTO-ILOAD-FILE

LIST-AUTO-LOAD-FILE

Lists all the auto-load files in the sequence that they will be
loaded. Both the wuser's own and SYSTEM's auto-load files will be
listed.

ND-60.136.03

64
Label and reference handling

6.7. Label and reference handling

References may be of four kinds:

- a program reference in the program segment. This occurs for
example when a routine is called and the routine address is a part
of the instruction operand.

- a data reference in the program segment. Any instruction operating
on a variable data item will make this kind of reference.

- a program reference in the data segment. If a jump address or
subroutine address is found in the data segment (referenced
through a general operand specifier, in assembler terms), this
occurs.

- a data reference in the data segment. A data value contains the
address of another data value, a displacement etc.

If the references can be defined at compile (or assembly) time, the
user will not be aware of them. However, if the referenced item is not
located within the NRF module of the reference, a symbolic name is
associated with it. A value to be given to the symbol may be defined
either by another NRF module, or by the user from the terminal.

The user may also make references of all the four kinds mentioned
above. This is mainly used for forcing specific library modules to be
loaded.

Wherever a numeric parameter is called for in the commands below, this
parameter may be a decimal or octal number, or it may be a previously
defined symbol (either defined by a command or by loading an NRF
module). The symbols #PCLC and #DCIC are available to indicate the
current program location counter (load address) and current data
location counter, respectively.

6.7.1. PROGRAM-REFERENCE

PROGRAM-REFERENCE <symbol>, (<address>), (<space>)
<symbol> - the name of a defined or undefined symbol.

<address> - the address where the reference is made in the
program segment. Default is 0. Symbolic as well as
numerical addresses are legal.

<space> - P or D, indicating a symbol defined in the program
or the data segment, respectively. Default is P.

If <symbol> is not present in the loader table, it will be entered as
an undefined program label reference at <address>. If <symbol> is
present but as an undefined reference, <symbol> will be referenced
once more in the <address> specified. '

ND-60.136.03

65
Label and reference handling

If <symbol> is an already defined label, its value will immediately be
put into the <address> specified. Otherwise, as soon as it is defined,
it will be put into all addresses from where it has been referenced.

Default <address> causes no modification of any memory location if the
symbol was undefined when the command was given, and is later defined.

6.7.2. DATA-REFERENCE

DATA-REFERENCE <symbol>, (<address>), (<space>)
<symbol> - the name of a defined or undefined symbol.

<address> - the address where the reference is made in the
data segment. Default is 0. Symbolic as well as
numerical addresses are legal.

<space> - P or D, indicating a symbol defined in the program
or the data segment, respectively. Default is D.

1f <symbol> is not present in the loader table, it will be entered as
an undefined data label reference at <address>. If <symbol> is present
but as an undefined reference, <symbol> will be referenced once more
in the <address> specified.

If <symbol> is an already defined label, its value will immediately be
put into the <address> specified. Otherwise, as soon as it is defined,
it will be put into all addresses from where it has been referenced.

Default <address> causes no modification of any memory location if the
symbol was undefined when the command was given and is later defined.

6.7.3. DFFINE-ENIRY

DEFINE-ENTRY <label>, (<value>), (<space>)

<label> - the name of a not yet defined symbol.
<value> - the value assigned to the label. Default is 0.
<space> - P or D, representing a symbol defined in program

or data memory, respectively. Default is P.

<label> will be entered into the loader table as a defined symbol. The
value will be equal to <value>. If the default value is used, no
modification of the current load address is done.

1f the entry is already defined, an error message is issued.

ND-60.136.03

66
Label and reference handling

6.7.4. DEFINE-COMMON

DEFINE-COMMON <symbol name>, (<size>), (<value>)
<symbol name> ~ the name of an undefined symbol in a common block.

<gize> - the size of the common area to be defined. Default
is undefined size.

<value> - the value of the common symbol. Default is
urdefined value, but on the current data segment
or last common segment specified.

The common label will be entered into the loader table as a symbol
defined in a common data block. If <value> is zero the common label
will be allocated from the current data load address. If <value> plus
<size> is larger than the current data load address on the segment
where symbol is being defined, the current data load address is
adjusted upwards to this value.

The common block is placed on the current data segment, or if common
segments are open, on the last common segment specified in a COMMON-
SEGMENT-OPEN or COMMON-SEGMENT-APPEND command.

Default <size> will cause the size to be determined the first time it
is defined during loading of code. If the default <size> is used,
<value> may not be specified.

Default <value> will cause the actual allocation of the common block
to be done at the current load address when a definition of the symbol
is loaded from an NRF file. If <size> is specified, the common block
will have this size regardless of the defined size of the first
occurence of the common block. This can be used to override the
limitation that the first definition of a common block must be the
largest one.

6.7.5. LIST-ENTRIES-DEFINED

LIST-ENTRIES-DEFINED (<sort criterium>)

<sort criterium> - NUMERICAL or ALPHABETICAL. Default is NUMERICAL.

All defined labels together with their values and space (P or D) and
the current load address will be written to the output device. The
<sort criterium> determines whether the list is sorted according to
symbol name or to their numerical value.

1f the command SYSTEM-ENTRIES-ON is given before the LIST-ENTRIES-

DEFINED command, all entries are listed. Otherwise only user defined
entries are listed.

ND-60.136.03

67
Label and reference handling

6.7.6. LIST-ENTRIES—UNDEFINED

LIST-ENTRIES-UNDEFINED (<sort criterium>)

<sort criterium> - NUMERICAL or ALPHABETICAL. Default is NUMERICAL
All urdefined entries (references) in the loader table, together with
their referenced address and space (P or D), will be written on the
output device. If a symbol is referenced several places, it is written

once for each reference, each with the address of the reference.

The <sort criterium> determines whether the list is sorted according
to symbol name or to the numerical address of the references.

6.7.7. LIST-MAP

LIST-MAP

Writes the load map on the output device. This includes the addresses
of all undefined references followed by the addresses or values of
defined labels, both sorted in numerical order.

6.7.8. SYSIEM-ENTRIES-ON

SYSTEM-ENTRIES-ON

The command LIST-ENTRIES-DEFINED will not print the system defined
labels. System defined labels will have their first character equal to
or [. If a list including system defined entries is desired, the
command SYSTRM-ENTRIES-ON must be issued before the command LIST-
ENTRIES-DEFINED. When system entries are printed, the language is
included. Program entries containing an entry point specifying a fixed
data area (INIT, ENTM, ENTF, ENTFN and ENTT instructions) rather than
stack allocation will be followed by a slash and the address of the
local data area.

LIST-ENTRIES-UNDEFINED will print the referenced system entries
without using the command SYSTEM-ENTRIES-ON.

The SYSTEM-ENTRIES-ON command applies to the next LIST-ENTRIES-DEFINED

only, and the command must be given every time a list of system
defined labels is required.

ND-60.136.03

68
Label and reference handling

6.7.9. GLOBAL-ENTRIES

GLORAL~-ENTRIES <label> ...

<label> - name of symbol to be retained on :LINK file.

The entries in the loader table, except those referred to in this
command, are removed from the loader table before the table is written
on the :LINK file. This is useful if only a subset of the routines on
the segment should be made global. This command must be issued before
the segment is closed.

1f the GIOBAL-ENTRIES command has not been executed, all entries in

the loader table will be retained on the :LINK file. In either case,
all symbols will be truncated to 20 characters.

6.7.10. KILL-ENTRIES

KILI~ENTRIES <symbol> ...

<symbol> - the name of an entry to be removed from the loader
table.

1f present, the symbol(s) specified will be removed from the loader
table. The entry may be defined or undefined. This command is used to
resolve name conflicts, avoid loader table overflow and to selectively
prohibit symbols from being saved on the :LINK file.

ND-60.136.03

69
Areas shared with ND-100 processes

6.8. Areas shared with ND-100 processes

The following commands are used to define sharing of segments with
ND-100 processes. The programmer must have experiencece with ND-100
real time programming in order to utilize these commands, as he is
responsible for the synchronizing with ND-100 processes and the
protection of common areas.

Readers who do not need to communicate with ND-100 processes may skip
this section.

6.8.1. MATCH-RTCOMMON

MATCH-RTCOMMON

All RT-COMMON labels defined by the RT-IOADER (see the RT loader
manual ND-60.051) will be defined as common labels in the loader
table. The addresses are transformed to ND-500 addresses. The RTCOMMON
area will start at the next free page boundary in the current common
segment if any is defined; otherwise it will be located in the data
segment.

The MATCH-RTCOMMON command should be used before the program modules
referring to the RI-COMMON area are loaded.

The names of defined labels will be reformatted from the BRF format (6
bits per character) to NRF format (ASCII bytes), addresses will be
converted to byte addresses and an offset representing the relative
ND-500 address is added.

The MATCH-RTCOMMON command applies to ND-100/ND-500 communication. A
domain using RICOMMON should not be copied to other machines with the
COPY-DOMAIN command. The size of RICOMMON must not be changed after
the domain is loaded; that will require reloading. The RICOMMON area
must be contiguous.

ND-60.136.03

70
Areas shared with ND-100 processes

6.8.2. MATCH-COMMON-RT-SEGMENT

MATCH-COMMON-RT-SEGMENT <segment number>

<segment number> - the number of an ND-100 segment.

All segment common labels defined by the RT-LOADER on the segment
specified will be defined as common labels in the loader table. The
MATCH-COMMON-RT-SHGMENT command should be used before the program
modules referring to the segment common are loaded.

The MATCH-COMMON-RT-SEGMENT command applies to ND-100/ND-500
comunication. A domain making references to ND-100 segments should
not be copied to another machine with the COPY-DOMAIN command. A
maximum of five ND-100 segments, RTCOMMON inclusive, is available.

6.8.3. LINK-RT-PROGRAM

LINK~-RT-PROGRAM

Defines the RT programs defined by the RI-LOADER. The command should
be used after the program modules referring to the RT program names
are loaded. Only RT program names which are referenced in the loader
table are defined by the command.

The LINK-RT-PROGRAM command applies to ND-100/ND-500 communication. A

domain making references to RT programs should not be copied to
another machine with the COPY-DOMAIN command.

ND-60.136.03

71
Miscellaneous commands

6.9. Miscellaneous commands

6.9.1. LOW-ADDRESS

LOW-ADDRESS (<address>), (<space>)

<address> - address in the range 0:777777777B. Default value
is 4.
<space> -P,Dor Cor conbinationé of these, indicating

program, data or common address, respectively.
Default is PD.

T™e lower load address for subsequent loading to the current segment
is set. If C is specified, the load address is set on the last common-
segment specified in a OCOMMON-SEGMENT-OPEN or COMMON-SHGMENT-APPEND
command.

1f the load address is set to a higher value than the current load
address, a hole may remain in the file if the affected pages have
never been assigned to the segment file. If a NO SUCH PAGE condition
occurs at execution time, the Monitor will zero fill the page in
memory. If the page has been used at an earlier time, the old contents
will ~ be used, and may for practical purposes be considered
unpredictable.

6.9.2. HIGH-ADDRESS

HIGH-ADDRESS (<address>), (<space>)

<address> - address in the range 0:777777777B. Default value
is 777777777B.

<space> .-P, D or C or combinations of these, indicating
program, data or common address, respectively.
Default is PD.

This command sets the highest address available on a segment. If any
loading above the specified upper high address is attempted, a warning
message is issued and the loading process interrupted.

ND-60.136.03

72
Miscellaneous commands

6.9.3. ENTRY-ROUTINES

ENTRY-ROUTINES (<number of entries>)

<number of entries> - the maximum number of routines to be loaded on
the current segment. Default is 200B.

A library segment will at the start of the segment have a "routine
vector": when a routine is called from another segment, control goes
via this vector - the first routine on the segment represents the
first routine, the second element the second routine and so on. If the
routines are modified and change their relative position, no relinking
of other segments is necessary as long as the routine * vector is
updated and the routine number stays the same.

This command will allocate space for a routine vector of the specified
size, and must be given before any loading to the segment. <number of
entries> should be at least the maximun number of routines that will
be loaded to the segment.

All manipulation of the routine vector is done by NLL, and the user
need not be concerned about how the link from other segments is set

up.

The entries in the routine vector are initialized to zero, but will be
filled in by NLL as code is loaded to the program segment.

6.9.4. SEI-IO-BUFFERS

SET-IO-BUFFERS (<number>)

<number> — the number of 2k byte buffers to be used by the
Fortran library for sequential I/0 for file
buffering. Default is 16.

This command should be used only when a Fortran library segment is
created, or for any reason the Fortran library is loaded to the main
segment. From ordinary programs, the Fortran library will be linked to
the main segment, and the I/0 buffers will already have been allocated
in the data segment of the library.

The command specifies a number of input/output buffers for more
efficient handling of sequential files in Fortran. Two sSystem labels
will be defined, at the lower and upper limits of the buffer area, and
the current load address will be increased by the size of the buffer
area. The total size of all buffers will be <number> * 2048 bytes. The
user should choose an appropriate number of buffers; the normal number
is one for each simultaneously opened sequential file. If a Fortran
library segment is being created, 16 buffers should be specified.

ND-60.136.03

73
Miscellaneous commands

The labels defined by this command will be used by the Fortran I/O
system to determine the location and the size of the buffer. No other
use of the area is made.

6.9.5. LIST-OCTAL

LIST-OCTAL <low address>, <high address>, <space>

<low address> - the address from which 1listing should start.
Default is 0.

<high address> - the address up to which listing should continue.
Default is <low address>+200B.

<gpace> - P or D, indicating program or data memory,
respectively. Default is D.

The contents of the locations between <low address> and <high address>
will be written on the output device in octal format, together with
the byte address.

6.9.6. LIST-SYMBOLIC

LIST-SYMBOLIC (<low address>), (<high address>), (<space>)

<low address> - the address from which 1listing should start.
Default is 0.

<high address>

the address up to which listing should continue.
Default is <low address>+200B.

<space> - P or D, indicating program or data segment,

respectively. Default is P.

The contents of the locations between <low address> and <high address>
will be written on the output device in a disassembled format,
together with the byte address.

ND-60.136.03

74
Miscellaneous commands

6.9.7. LIST-MODE

LIST-MODE

Everything that is loaded is written on the output device in octal
format as it is being read from the NRF file. LIST-MODE will be
terminated by DISASSEMBLE-MODE.

6.9.8. DISASSEMELE-MODE

DISASSEMBLE-MODE

Everything that is loaded is written on the output device in
disassembled format as it is being loaded from the NRF file.
Disassemble-mode will be terminated by LIST-MODE.

6.9.9. CHECK-SYNTAX-MODE

CHECK-SYNTAX-MODE

If this command is executed, the following commands up to EXIT are
checked for syntactic correctness in the command processor only. They
will not be executed.

This is helpful for checking a batch or mode job before it is started.

6.9.10. RESET

RESET

Removes all symbols from the loader table and resets load addresses to
the initial low addresses (which is 4 for both program, data and
common segments) .

Observe that NRF code is loaded directly to the segment files. Thus,

RESET cannot be used to discard loaded code and revert the segment
files to the state they were before loading was started.

ND-60.136.03

75
Miscellaneous commands

6.9.11. RENAME-DEFADLT-DIRECTORY—-AND-USER

RENAME-DEFAULT-DIRECTORY-AND-USER < (new directory:new user)>

<(new directory:new user)> - the new unabbreviated directory and user
name, including parentheses and colon.

If the default directory and/or the user must be renamed with the
Sintran III commands @RENAME-DIRECTORY and @RENAME-USER, this command
must Dbe used in order to make the domain and segment descriptions in
the description file consistent with the new Sintran III names. An
exact match with the user and directory name is required, including
the parentheses and the colon.

6.9.12. SUPPRESS-DEBUG-INFORMATION

SUPPRESS-DEBUG~INFORMATION (<ON/OFF>)

<ON/OFF> - ON if debug info should be suppressed, OFF if it
should be retained. Default is ON.

If the parameter is specified as ON, all debug information in
subsequently loaded files will be discarded, rather than saved on the
:LINK file. If the command is given with the parameter OFF, copying of
the debug info to the :LINK file will be resumed (the initial state of
NLL) .

The primary purpose of this command is to reduce the size of the :LINK
file. It may also be used if the Symbolic Debugger will be used, when
parts of the system are already completely debugged so that no further
debugging of these parts will be done. Suppressing the debug info will
then prevent breakpoints, 1line or routine tracing in the selected
parts.

ND-60.136.03

76
NRF editor

6.10. NRF editor

The NRF editor commands manipulate modules of an NRF file, that is,
the information delimited by BEG and END control numbers. Control
numbers and memonics are described in chapter 12. A module is
identified by any of the DEF, DDF or LIB symbols defined within it.
Modules are treated as indivisible units; specifying one (of several)
symbols in a module denotes the entire module.

These commands are mainly used by system supervisors and system

programmers who have to maintain libraries of NRF code. A familiarity
with the NRF format is desirable in order to use these commands.

6.10.1. NEN-NRF-MODULES

NEW-NRF-MODULES <new modules file>, <NRF file>

<new modules file>- the name of an NRF file containing the new modules
to replace the old ones. Default file type is
:NRF'.

<NRF file> - the NRF file to be updated. Default file type is
:NRF.

The NRF modules in <NRF file> with the same identification as the NRF
modules in the <new modules file> will be replaced by the NRF modules
in the <new modules file>. The various NRF modules in <NRF file> will
have their same relative position within the file after the NBEWN-NRF-
MODULES command as before. NRF modules in the <new modules file> not
found in <NRF file> will be skipped and a warning message given. NRF
modules without symbolic names cannot be replaced.

6.10.2. FEICH-NRF-MODULES

FETCH-NRF-MODULES <source file>, <destination file>
(<first module>), (<last module>)

<source file> - the name of an NRF file containing the modules to
be appended.

<destination file>- the name of an NRF file to be appended to.

<first module> - the first module from the source f£file to be
appended to the destination file. Default is the
first module in the source file.

<last module> — the 1last module from the source file to be

appended to the destination file. Default is the
last module in the source file.

ND-60.136.03

77
NRF editor

The NRF modules in the <source file> starting with the <first module>,
including every module up to the <last module> will be appended to
<destination file> after the last NRF module in the <destination
file>.

6.10.3. APPEND-NRF-MODULE

APPEND-NRF-MODULE <source file>, <destination file>
(<after module>)

<source file> —~ the name of an NRF file containing the modules to
be appernded.

<destination file>- the name of an NRF file to be appended to.

<after module> ~ the module in the destination file after which the
new modules will be appended. Default is after the
last module,

All NRF modules in the <source file> will be appended to <destination
file> after the specified NRF module in the <destination file>.

6.10.4. DELETE-NRF-MODULES

DELETE-NRF-MODULES <file name>, (<first module>), (<last module>)

<file name> - the name of an NRF file. Default file type is
:NRF.
<first module> - a symbol defined in the first module to be

deleted. Default is the first module in the file.

<last module> - a symbol defined in the last module to be deleted.
Default is the last module in the file.

The specified NRF modules will be deleted from <file name>. <first
module> is the first module which will be deleted, and then all NRF
modules following and including <last module> will be deleted.

ND-60.136.03

78

NRF editor
6.10.5. LIST-NRF-ENTRIES
LIST-NRF-ENTRIES <file name>
<file name> - the name of an NRF file., Default file type is

:NRF.

This command will list all DEF, DDF and LIB symbols in <file name> on
the output device, together with their byte address in the file.

6.10.6. LIST-NRF-CODE

LIST-NRF-CODE <file name>, (<first module>), (<last module>)

<file name> —- the name of an NRF file., Default file ¢type is
:NRF,
<first module> —the name of a symbol defined in the file,

identifying the first module to be listed. Default
is the first module in the file.

<last module> - the name of a symbol defined in the file,
identifying the last module to be listed. Default
is the last module in the file.

All NRF information in the specified modules in the <file name> will
be listed in the following format: location counter, NRF control
number, name of NRF control number. In addition symbolic names will be
written in ASCII format. Binary information will be written in both
disassembled ND-500 format (if program code) and octal format.

ND-60.136.03

79
NRF editor

6.10.7. WRITE-NRF-EOF-AFTER-MODULE

WRITE-NRF-EOF-AFTER-MODULE <file name>, (<module>)

<file name> - the name of an NRF file. Default file type is
:NRF.
<module> - the name of a symbol defined in the NRF file,

identifying the last module still valid. Default
is to insert the HOF control number in front of
the first module in the file.

Write the NRF control number 260 (EOF) after the specified NRF module
in <file name>. If the default value for the parameter <module> is
used, the HOF byte is written as the first byte on the <file name>.

6.10.8. INSERT-NRF-MESSAGE

INSERT-NRF-MESSAGE <file name>, (<module>), <message>

<file name> - the name of an NRF file. Default file type is
:NRF'.
<module> - the name of a symbol dJdefined in the file,

identifying a module in front of which the message
will be located. Default is the first module in
the file.

<message> - any character string excluding space up to the
first carriage return.

This command inserts the message in the NRF <file name> before
<module>. If the file is prepared with the PREPARE-NRF-LIBRARY-FILE
command, the default <module> is in the front of the address table in
<file name>.

The specified message will be written on the output device when the
file is loaded. If the file is a library file headed by an address
table, a message in front of the address table will be written; all
other messages (defined by this command) are located outside NRF
modules, and will not be written.

In the <message>, a dollar sign will be converted to Carriage Return
and Line Feed.

ND-60.136.03

80

NRF editor
6.10.9. PREPARE-NRF-LIBRARY-FIIE
PREPARE-NRF-LIBRARY-FILE <file name>
<file name> - the name of an NRF file. Default file type is

:NRF'.

This command will set up an address table in front of <file name>
containing all LIB symbols together with their byte addresses in <file
name>. This will convert the file from structure "b", slow library
file, to "c¢", fast 1library file, as described in the chapter on
'Commands to load NRF code'. <file name> must be the output of a
compilation with library mode set. If a library is prepared by this
command, conditional loading is done much more efficiently.

The address table is invalidated by all commands modifying the

contents of the NRF file, and the table must be rebuilt if a
sequential search of the file is to be avoided.

ND-60.136.03

81
COMMANDS AVAILABRLE IN THE NLL AND THE MONITOR

7. COMMANDS AVAIIABLE IN THE NLL AND THE MONTTOR

These commands may be issued either during the loading of the program,
or at run time, before the program is executed. Some of the commands,
those defining trap handling, will define defaults if used in NLL.
These defaults may be overridden in the Monitor. If the command is
given in the Monitor, it applies to the current job only, and will not
permanently influence the properties of the segment or domain.

Some commands behave slightly differently in NLL and the Monitor. Such
differences are explained under each command.

7.1. Utility commands

7.1.1. HELP

HELP (<command name>)

<command name> - any command abbreviation, ambiguous or non-
ambiguous. Default is all commands available.

All commands matching <command name> are written with their parameters
on the output device. Parameters enclosed in brackets [] are optional
parameters that will not be prompted for if not supplied.

7.1.2., OUTAUT-FILE

QUTPUT-FILE (<file name>)

<file name> - the name of the file where output is desired.
Default is the communication device. ¢

This command is used to define an output device different from the
current one (initially the communication device). Most output will go
to <file name>, but commands, parameter prompt and error messages will
continue to appear on the communication device. The <file name> is

used as an output device until EXIT or a new OUTPUT-FILE command is
given.

ND-60.136.03

82
Utility commands

7.1.3. @ (Sintran-III command)

@command

If a line starts with the @ character, the remainder of the line is
asumed to be a Sintran IIT command and executed through the COMND
monitor call.

Be aware that control will not return to NLL or the monitor after
execution of the command if another subsystem or user program was
called by the command. Also, if an error occurs during the execution
of the command, control will not return to the calling program.

In NIL, if a loading is in progress when the Sintran III command is
executed and control does not return, the description file may have
been left in an inconsistent state. It may be necessary to use the
RELEASE-SEGMENT command to gain access to the segment that was
current, and the contents will be unpredictable.

The Monitor will check the command issued before it is submitted to
Sintran III, and will allow only a subset of Sintran III commands.

7.1.4. CC

CC any text

Comment; whatever follows on the same line as the CC command is
ignored and treated as a comment. This command is primarily useful for
making comments in a batch or mode job.

7.1.5. ABORT-BATCH-ON-ERROR

ABORT-BATCH-ON-ERROR <ON/OFF>

<ON/OFF> - ON if batch jobs should terminate if an error
occurs, OFF if only the current command should be
terminated.

If an error occurs in a batch or mode job and this command has been
executed with the parameter OFF, only the current command is aborted
and the next command in the batch input file is executed. If the
comand has not been executed or executed with the parameter ON, the
entire job is terminated. The error message will be written on the
batch output file, and in NLL the commands CLOSE-SEGMENT and END-
DOMAIN will be executed (if required).

This command may be specified several times, switching the batch
termination on and off before and after critical sequences.

ND-60.136.03

83
Utility commands

7.1.6. EXIT

EXIT

Returns to the Sintran ITII command processor.

In NLL, if not explicitly done the CLOSE-SEGMENT and END-DOMAIN
commands are executed if a segment is opened or a domain set.

In the Monitor this command releases the allocated ND-500 resources.
1f the buffer used by the histogram and logging commands was reserved,
it will be released.

If WNLL was started after entering the Monitor, return will be to the
Monitor. Otherwise, return will be to Sintran command mode.

In the Monitor, this command is also used to return from the LOOK-AT
commands.

ND-60.136.03

84
Trap handling

7.2. Trap handling

The ND-500 trap mechanisms may be used to detect and handle
exceptional conditions occuring at execution time. The user may
optionally specify a routine to take care of the trap, or it may be
handled by a standard library routine.

Some of the traps are by default system enabled, others are locally
enabled and handled by the library routines. The default settings are
discussed in chapter 4., Standard Exception Handler Routines.

The names of the trap conditions and the 1label of the standard
handlers are:

trap name label

OVERFLOW - #OVERFLW
INVALID-OPERATION #INVALOP
DIVIDE-BY-ZFRO #INVAIDI
FLOATING-UNDERFLOW #FLTUFLW
FLOATING-OVERFLOW #FLTOFLW
BCD-OVERFLOW #BCDOFLW
ILLEGAL-OPERAND~-VALUE $#ILLOPER
SINGLE~INSTRUCTTION-TRAP #SINGINS
BRANCH-TRAP #BRANCTR
CALL~-TRAP #CALLTRA
BREAK-POINT-INSTRUCTION-TRAP #BRKPNTR
ADDRESS—-TRAP-FETCH #ADDRFTC
ADDRESS~-TRAP-READ #ADDREAD
ADDRESS-TRAP-WRITE #ADDWRTE
ADDRESS-ZERO-ACCESS #ADDZERO
DESCRIPTOR-RANGE #DESCRIR
ILLBGAL~INDEX #ILLINDX
STACK-OVERFLOW #STKOFLW
STACK-UNDERFLOW #STKUFLW
PROGRAMMED—TRAP #PROGTRA
DISABLE-PROCESS-SWITCH-TIMEOUT #DISPSWT
DISABLE~-PROCESS-SWITCH-ERROR #DISPSWE
INDEX-SCALING-ERROR #INXSCAL
ILLBEGAL~INSTRUCTION-CODE #ILINCOD
IILBAGAL~OPERAND-SPECIFIER #I1OPSPE
INSTRUCTION-SEQUENCE-ERROR #INSEQUE
PROTECT-VIOLATION #PVIOLAT

ND-60.136.03

85
Trap handling

7.2.1. TLOCAL-TRAP-ENABLE

LOCAL~TRAP-ENABLE <label> <trap condition> ...

<label> - the name of a user written or library exception
handler routine. Default is the standard handler
in the library for the specified <trap condition>.

<trap condition> - one of the trap names above or an unambiguous
abbreviation.

The bit in the OTE register corresponding to the specified <trap
condition> will be set, thereby causing the trap condition to be
reacted upon if it occurs. The <trap condition> parameter must be one
or more of the names in the table above. Abbreviations are legal as
long as they are non-ambiguous.

The <label> is inserted in the table of exception handler routines.
This table may contain different labels for each trap condition, or
one routine may be used by several traps. The default trap handler has
a label as specified in the table above. NLL will cause the standard
handlers used to be loaded from the standard library. The Monitor
allows the <label> to be specified either as an absolute address or as
a defined program label. This label must be present in the :LINK file
of the segment. If the <label> is omitted and an exception handler
routine is defined, it is not modified. If no handler was defined, the
standard library handler is used. This requires that the standard
routine was previously loaded.

The trap handler allocated by NLL is an array located at the most

recently modified segment (OPEN-SEGMENT or APPEND-SHGMENT) in the
domain.

7.2.2. LOCAL—TRAP-DISABLE

LOCAL~TRAP-DISABLE <trap condition> ...

<trap condition> - one of the trap names above or an unambiguous
abbreviation or ALL.

The bit in the OTE register corresponding to the specified <trap
condition> is cleared, thereby disabling trap handling for that trap
condition. If ALL 1is specified, all traps will be locally disabled.
This is mainly used in order to override the default setting before a
new selection of traps is enabled.

The routine defined in the exception handler table is not cleared. If
the OTE bit is later set (by program or by using the LOCAL-TRAP-ENABLE
command in the nmonitor before execution is started), the routine

defined in the IOCAL~TRAP-ENARLE command acts as the default exception
handler.

ND-60.136.03

86
Trap handling

7.2.3. SYSTEM-TRAP-ENABLE

SYSTEM-TRAP-ENABLE <trap condition> ...

<trap condition> - one of the trap names above or an unambiguous
abbreviation.

The <trap condition> specified will be handled by the Monitor residing
in the ND-100 when the conditon occurs. It will be given a standard
treatment, which varies with the kind of trap.

If a local trap handler is defined and the local trap enabled, it will
be used rather than the system trap handler. System trap handling is
used only for those trap conditions that are locally disabled or have
no local trap handling defined.

7.2.4. SYSTEM-TRAP-DISABLE

SYSTEM-TRAP-DISABLE <trap condition> ...

<trap condition> - one of the trap names above or an unambiguous
abbreviation.

The <trap conditions> specified will not be reacted upon by the system

when the conditon occurs.

A number of trap conditions may not be system disabled. If a

modification of these traps are attempted, an error message is issued
and the command ignored.

7.3. VALUE-ENTRIES

VALUE-ENTRIES <label>...

<label> - the name of a defined symbol.

Prints the values of the labels specified on the output device. The
value is printed in octal format. The label will also be identified as
a program or as a data segment label.

ND-60.136.03

87
MONITOR COMMANDS

8. MONITTOR COMMANDS

Most commands in this chapter need not be known to the ordinary ND-500
user. The one command used for executing an ND-500 program, the
RECOVER-DOMAIN command, is implicit if match with no other commands is
found. Thus, in order to start execution of a domain, it is sufficient
to give the domain name as a command.

A domain name may also be specified on the same line as the command to
start the Monitor. If a domain is executed this way, control will
return to Sintran IIT immediately after execution is complete.
Otherwise, the EXIT command must be used in the Monitor.

Various error messages may be returned from the ND-500 Monitor during
command and program execution. These error messages are listed 1in
chapter 14, with short explanations and references to where they may
oceur.

8.1. Commands for ruming an ND-500 program

8.1.1. PLACE-DOMAIN

PLACE-DOMAIN <domain name>

<domain name> - the name of a domain in the description file of
the current user or the user specified in
parentheses as a prefix to <damain name>.

An executable ND-500 domain is made ready for execution. The specified
<domain name> is searched for on the description file of the current
user. If no match is found, the description file of user SYSTEM is
scanned. A user name prefixing <domain name> is valid. The syntax is
equal to the file system syntax.

1f the specified domain is found, some initialization is performed.
The start address is moved into the program counter register. The
child trap enable register of ND-100, the own trap enable register of
the domain and the trap handler address register are initialized. Each
logical segment is mapped on a physical segment.

The program segment will normally map directly onto the :PSHG file.
Several users may be using the same physical segment, although the
segments may be logically different. It is assumed that the program
segments are read only. This means that breakpoints cannot be used,
and patching is not possible. The DEBUG-PLACE command will permit
modifications.

The data segment is initially mapped on the :DSEG file. Upon page
fault the required page is read from the file. When modifications are
made, the affected pages are not written back to the :DSEG file but to
a scratch area on a swap file. This copy is used for later references.
Each concurrent user of the data segment has his own copy of modified

ND-60.136.03

88
Commands for running an ND-500 program

pages on the swap file, and is thus independent of other users. The
physical segment corresponding to the data segment is therefore a
mixture of unmodified pages in the :DSHG file and modified pages in
the swap file.

8.1.2. RON

RUN

The current domain is started in its start address.
The command must have been preceeded with a PLACE-DOMAIN or DEBUG-

PLACE command in order to bring the domain into memory. Return will be
to the Monitor after execution has completed.

8.1.3. RECOVER-DOMAIN

RECOVER-DOMAIN <domain name>

<domain name> - the name of a domain in the description file of
the current user, user SYSTEM or 1if user name
specified, of that user.

The PLACE-DOMAIN and RUN commands are performed as one by using the
command RECOVER-DOMAIN. The words RECOVER-DOMAIN can be left out. The
domain name itself becomes a pseudo command. The procedure for looking
up the command or domain is then as follows:

1) A search is made in the list of basic commands, If a match is
found, the corresponding command is executed.

2) If no command is found, the list of standard domains are searched
(see section 8.2.). If there is any such standard domain, it is
started.

3) If the search among the standard domains was unsuccessful, a
search is made in the domains of the current user. If a domain
with the specified name is found, it is started as with a
RECOVER-DOMAIN command.

4) If no domain with the specified name is found, the domains of
user SYSTEM are searched. If a domain with a matching name is
found, the domain is started.

5) If no domain is found, the specified string is assumed to be a
macro name, and a temporary macro is searched for. If any
matching macro is found, it is processed. (See section 8.5. for
a discussion of macros.)

6) If no match is found among the temporary macros, the name is
assumed to be the name of a permanent macro. If a file with the
specified string as name and type :MACR exists, it is taken as a
permanent macro and processed. The file system will ensure that

ND-60.136.03

89
Commands for running an ND-500 program

if a file with the specified name is not found under the current
user, the directory of user SYSTEM is searched.

7) 1f none of the above lead to a successful match, the error
message NO SUCH COMMAND OR DOMAIN is printed on the cammunication
device, and no further action will result from the entered input.

If a domain has been given the name of or a legal abbreviation of a

command or standard domain, the words RECOVER-DOMAIN may not be left
out.

8.1.4. GO
GO <address>

<address> - an address within the domain.

Starts the execution of an ND-500 program at the specified address.

8.1.5. CONTINUE

CONTINUE

The execution is restarted at the current program counter. There is
one exception: if a program has stopped normally (by MON 0 or a stack
underflow trap) the execution is started at the original start
address.

If the execution has stopped because of a breakpoint, the original
instruction will be restored. If the breakpoint is a permanent
breakpoint, a single instruction is performed, and the original
instruction is replaced by a breakpoint instruction before the
execution is started.

If the execution has stopped because an escape character was typed,
the execution will be restarted where it stopped. Files will remain
opened after an escape, and the program will continue as if nothing
had happened.

ND-60.136.03

90
Standard domains

8.2. Standard domains

The search procedure employed when a command is issued will not find
domains belonging to user SYSTEM until the name has been ruled out as
a monitor command or as the name of a domain belonging to the current
user. In particular if the file system is heavily loaded, the opening
and reading of the description file may take some time, and increase
the system load even more.

To speed the search for commonly used systems, like compilers or the
NIL loader, these domains may be defined as standard domains. The
names of standard domains are entered in a table that is searched by
the monitor before the description file of a user is opened. This will
reduce startup time.

Standard domain names are stored in a segment used by the monitor,
therefore the name table will not survive a cold start ()HENT/22!).
After a warm start (masterclear/load), the name table is intact.

Standard domains in many respects resenble "reentrant subsystems" in
the ND-100, and essentially, the rules are the same. Standard domains
may only be defined and deleted by user SYSTEM, but they may be listed
by any user.

8.2.1. DEFINE-STANDARD-DOMATN

DEFINE-STANDARD-DOMAIN <standard domain name> <domain name>

<standard domain name>- the name to be used when calling the domain.
May be the same as the domain name, but may
not include user name. It should not be a
legal abbreviation of a monitor command.

<domain name> - name of an already loaded domain, belonging to

any user

When any user issues <standard domain name>, or an unambiguous
abbreviation of it, as a command, <domain name> will be started. If
the user has a private domain that would otherwise have been started,
the name must include the user name in parentheses.

DEFINE-STANDARD-DOMAIN is permitted for user SYSTEM only.

ND-60.136.03

91
Standard domains

8.2.2. DELETE-STANDARD-DOMAIN

DELETE~STANDARD-DOMAIN <name>

<name> - name of an existing standard domain

The specified standard domain is deleted from the name table of
standard domains. The domain will not be deleted, but will no longer
be a standard domain.

DELETE-STANDARD-DOMAIN is permitted for user SYSTEM only, and may not

be issued while the standard domain is in use.

8.2.3. LIST-STANDARD-DOMAINS

LIST-STANDARD-DOMAINS
The names of all standard domains and the segments comprising them are
listed ont the output device. ,

This command is permitted for all users.

ND-60.136.03

92
Commands for opening and connecting files

8.3. Commands for opening and comnecting files

In most programs, files are dynamically opened and closed during
program execution. In some cases it is desirable to open files
explicitly through commands. This occurs in particular where Fortran
programs are transported from other machines where all files must be
opened through operating system commands prior to program execution,
or where transportation to such machines is probable. These commands
may, however, be used to open files for programs in any language
allowing a file to be identified by its open file number.

The commands below are similar to the Sintran III commands with the
same names, but will affect files opened for use by the ND-500.

8.3.1. OPEN-FILE

OPEN-FILE <file name>, <connect file number>, <access mode>

<file name> - the name of a file to be used by a program.
Default file type is :DATA.

<connect file number> - the file number used in the program.

<access mode> - see table below.

Opens a file and connects it to a file number used in the program. If
<connect file number> is 0 a file number is returned that must be used
from the program.

Default number base of <connect file number> is the main format -
initally octal. If a decimal number is specified, it must be followed
by a D. Unit numbers in Fortran programs are decimal.

The opened file will be associated with a Sintran file number, usually
ranging from 100B and upwards, in a manner equivalent to ND-100
operation. However, the monitor maintains a connect number table,
allowing programs to access the file either through the Sintran file
number or through the user selected connect number.

Access modes:

0 sequential write (OUTBT,OUTST)

1 sequential read (INBT)

2 random read/write (RFILE/WFILE)

3 random read (RFILE)

4 sequential read/write (INBT/OUTBT,OUTST)

5 sequential write append

6 random read/write with read/write access allowed from other
users (contiguous files only).

random read with read access allowed from other users
(contiguous files only).

W

R

WX
RX
RW
WA
WC

8

ND-60.136.03

93
Commands for opening and connecting files

D 8 direct transfer

DC 9 direct transfer with the file closed, modus 9.

READ 10 The system will select the access mode R, RX or D. The most
optimal access mode which can be used for the file/device is
selected. The following is a list of file/devices and the
corresponding access mode selected by the system:

terminal:

tape reader:
indexed file:
contiguous file:
magnetic tape:

UUQSUW

WRITE 11 The system will select the access mode RV, WX or D, as for
READ access above.

8.3.2. CIOSE-FILE

CIOSE-FILE <connect number>

<connect number> - the comnect number of a file open from a ND-500
program or through the OPEN-FILE command.

Closes a file and disconnects the file number.
<file number> > 0 close the file open with the given number
= -1 close all files temporary open
= -2 close all open files
= -3 close all files open from the
ND-500 program or by the OPEN-FILE
command in the Monitor.

8.3.3. LIST-OPEN-FILES

LIST-OPEN-FILES
Lists all files opened from a ND-500 program or by the OPEN-FILE
command in the Monitor. The list will appear on the output device.

Files opened locally in the ND-100 will not be listed.

ND-60.136.03

94
Commands for opening and connecting files

8.3.4. Error returns

Monitor calls from the ND-500 may return error codes outside the range
used by ND-100. These are

Code Error message

1000B ND-500 OPEN FILE TABLE IS FULL

1001B FILE IS NEITHER CONTIGUOUS NOR MAG. TAPE

10028 ND-500 OPEN FILE TABLE FOR DIRECT TRANSFER IS FULL
10038 ERROR IN MONITOR CALL

10048 ODD BYTE ADDRESS

10058 ODD BYTECQUNT

10068 TOO BIG BYTHCOUNT

10078 BYTECOUNT NOT MODULO SECTOR SIZE IN DIRECT TRANSFER
1010B ADDRESS OUTSIDE FILE LIMITS IN DIRECT TRANSFER

1011B BLOCK ADDRESS NOT MODULO SHCTOR SIZE IN DIRECT TRANSFER
1012B HARDWARE STATUS ERROR IN DIRECT TANSFER

10138 ILLEGAL MONITOR CALL NUMBER

10148 DC ACCESS NOT LEGAL ON MAG. TAPE

1015B WRONG NUMBER OF PARAMETERS IN MON. CALL

1016B BYTE POINTER NOT MODULO SECTOR SIZE IN DIRECT TRANSFER
10178 DATA AREA CANNOT BE PLACED INSIDE A 64K SINTRAN ITI SHEGMENT

These error messages may also be written with the ERMSG monitor call
(MON 64). Explanations of these error messages are found in chapter
14, which contains all error messages that may be issued by the ND-500
Monitor.

File system error codes known in ND-100 are explained in Sintran III
Reference Manual, ND-60.128.

ND-60.136.03

95
Commands for. opening and connecting files

8.4. Direct file transfer

8.4.1. Direct file transfer with RFILE and WFILE (disk)

Direct file transfer is a feature for optimized disk transfer to the
ND-500. It allows very high transmission speeds between disk and
memory, moving a maximum of one disk cylinder per request for disk
transfer. (One monitor call may cause several disk transfers if the
amount of data exceeds one cylinder.)

The file is opened by the OPEN-FILE command, modus D or IC or from the
ND-500 program by the monitor call OPEN, modus 8 or 9. In modus 8, the
file is kept open; in modus 9 the file is closed during the file
transfer.

The modus 9 feature allows the user to work on a larger number of
files than the maximum number of files that can be concurrently open
in the Sintran III file system.

The standard calls RFILE, WFILE and WAITF are used in the ND-500
program, but there are some limitations to the parameters. See the
Sintran IIT Reference Manual ND-60.128 for a description of these
monitor calls.

The actual file transfer is performed by the monitor call ABSTR. The
file system is bypassed and the mass storage device may be used in an
optimal way.

The monitor calls RMAX and SMAX may be used if the file 1is opened
(modus 8).

The limitations to the use of the standard Sintran III file system
are:

- The file must be contiguous.

- Only the monitor calls OPEN, CLOSE, RFILE, WFILE, WAITF, RMAX and
SMAX may be used.

- The default logical block size is equal to the hardware sector
size.

- The word count in RFILE or WFILE must be a multiple of the hardware
sector size of the mass storage device.

- The maximum byte pointer is not updated when DC is used.
- The data area to be transferred to or from must be contiguous in

physical memory. (This is, however, automatically done by the
Monitor at execution time if required.)

ND-60.136.03

96
Commands for opening and connecting files

8.4.2. Direct file transfer with MAGTP (magnetic tape)

Direct file transfer is a feature for optimized magnetic tape transfer
to the ND-500. It allows data records of arbitrary size to be
transferred, bringing the transmission speed close to the maximum
speed of the hardware.

The file is opened by the OPEN-FILE command, modus "D" or from the
ND-500 program by the monitor call OPEN, modus 8. The modus "DC" (or
9) may not be used for MAGTP.

The monitor call MAGTP may be used in a standard way from the ND-500,
but the actual transfer is performed by the ABSTR monitor call in
ND-100 and it goes directly from the interface into the ND-500 memory
via the IMA channel. The only limitation to the block size is the
maximum size of contiguous physical memory that may be allocated.

ND-60.136.03

97
Macro commands

8.5. Macro commands

Macros provide a convenient mechanism for executing the same set of
commands repeatedly. This is particularly useful for programs
requiring certain initialization commands to be given before execution
starts, for initialization after a system restart, or for executing a
set of debug commands. Each user may in fact build his own set of
commands from the elementary commands available in the Monitor.

It is not possible to supply input to a program in a macro body.

Macros may be saved in files, or they may be temporary, vanishing when
the Monitor is left.

8.5.1. DEFINE-MACRO

DEFINE-MACRO <macro name>
<macro body>
END-MACRO

With this command it is possible to compose new commands from the
original commands or other macros.

Macros defined by this command are temporary. Permanent macros may be
prepared by a text editor on a file. The file must be of type :MACR.

Every line following the DEFINE-MACRO command is taken as the macro
body until the END-MACRO is encountered. END-MACRO must be written on
a new line.

It is possible within the macro body to define parameters that are
replaced by the actual parameters when the macro is called. A
parameter is defined by

PARMMETER <parameter name>, <default value>, <prompting text>

If spaces or commas should be part of the <parameter name>, <default
value> or <prompting text>, they may be enclosed in apostrophes.
Otherwise, apostrophes are permitted but not required.

The first actual parameter supplied in the macro call line replaces
<parameter name> used in the first PARAMETER definition; the second
actual parameter replaces <parameter name> used in the next PARAMETER
definition and so on. Excessive parameters are ignored.

When the macro is called, the parameters which are not specified are
asked for by typing the prompting text on the communication device. If
the actual parameter is empty the default value is used when expanding
the macro.

ND-60.136.03

98
Macro commands

8.5.2. Macro subcommands

A monitor call, MACROE (MON 400), for signalling error return from a
program to the Monitor is implemented. There is a flag which is raised
when the executing program is terminated by this monitor call or by a
trap. The error flag is set to zero when a program is terminated
normally.

Two commands may be used within a macro to test the error flag:

8.5.2.1. TFP-ERROR-MACRO-STOP) -

IF-ERROR-MACRO-STOP

Causes the currently executing macro to abort if the error flag is
set. If the error flag 1is reset, the processing of the macro
continues.

8.5.2.2. IF-ERROR-FULL—-STOP

IF-FRROR-FULL~STOP

Equal to IF-ERROR-MACRO-STOP except that all active macros are aborted
if the error flag is set.

By default, the expansion of the macro is printed on the output
device. This printing may be suppressed by

8.5.2.3. WNOLIST

NOLIST

The printing of macro expansions is suppressed.

8.5.2.4. LIST

LIST

The printing of macro expansions to the output file is reinstated.
This is the default mode when a macro expansion is started. Macro
subcommands may not be abbreviated.

ND-60.136.03

99
Macro commands

8.5.3. EXACUTE-MACRO

EXHECUTE-MACRO <macro name>, [<parameters>]...

<macro name> - the name of an existing (temporary or permanent)
macro,
<parameter> - actual parameter to replace a formal parameter in

the macro. 1If several parameters are supplied they
are separated by comma or space. The parameter may
contain any character except space or comma.

The macro with the specified name is processed. Formal parameters are
substituted with actual parameters. If the actual parameters are not
supplied, they are prompted for with <leading text> specified in the
PARMMETER definition (see the DEFINE-MACRO command) .

The words EXECUTE-MACRO can be 1left out. The procedure used for
looking up a command or macro is as follows:

1) A search is made in the list of basic commands. If a match is
found, the corresponding command is executed.

2) If no command is found, the list of standard domains are searched
(see section 8.2.). If there is any such standard domain, it is
started.

3) If the search among the standard domains was unsuccessful, a
search is made in the domains of the current user. If a domain
with the specified name is found, it 1is started as with a
RECOVER-DOMAIN command.

4) If no domain with the specified name is found, the domains of
user SYSTEM are searched. If a domain with a matching name is
found, the domain is started.

5) If no domain is found, the specified string is assumed to be a
macro name, and a temporary macro is searched for. If any
matching macro is found, it is processed. (See section 8.5. for a
discussion of macros.)

6) If no match is found among the temporary macros, the name is
assumed to be the name of a permanent macro. If a file with the
specified string as name and default type :MACR exists, it is
taken as a permanent macro and processed. The file system will
ensure that if a file with the specified name is not found under
the current user, the directory of user SYSTEM is searched.

7) If none of the above lead to a successful match, the error
message NO SUCH COMMAND OR DOMAIN is printed on the communication
device, and no further action will result from the entered input.

Temporary macros may be defined within permanent macros. Such

temporary macros will be erased when the processing of the permanent
macro is finished.

ND-60.136.03

100
Macro commands

If a macro is given the name of, or a legal abbreviation of a caommand,
a standard domain or a domain or a domain belonging to the current
user or SYSTEM, EXHCUTE-MACRO may not be left out.

Input to the program may not be supplied in a macro body.

8.5.4. RESIME-MACRO

RESUME-MACRO

The last aborted macro is resumed at the line following the one where
the macro was interrupted.

8.5.5. ERASE-MACRO

ERASE-MACRO <macro name>...

<macro name> - the name of an existing temporary macro.

The named temporary macros are erased. Permanent macros are erased
through the Sintran III command @DELETE-FILE <macro name>:MACR.

8.5.6. DIMP-MACRO

DUMP-MACRO <macro name>

<macro name> - the name of an existing temporary macro.
The named temporary macro will be written to a file with the name of
the macro, i.e. the macro is made permanent and can at a later time be

executed by using the macro name as a command. If the file does not
exist, it will be created. The default type of the file is :MACR.

ND-60.136.03

101
Macro commands

8.5.7. LIST-MACRO

LIST-MACRO (<macro name>)...

<Mmacro name> - a macro name or abbreviation of names of the
macros to be listed., Default is all macros
defined.

The names and contents of the macros with names matching the specified
name are listed on the output device.

Only temporary macros are listed. Permanent macros may be listed by
the Sintran IIT command @LIST-FILES <macro name>:MACR, TERMINAL.

ND-60.136.03

102
Debugging commands

8.6. Debugging commands

Before any debugging commands are used, a program must be moved into
the user's virtual memory. This is done by the PLACE~-DOMAIN or DEBUG-
PLACE command, or implicitly by a RECOVER-DOMAIN. If patches to the
program segment are to be done, DEBUG-PLACE must be used.

After program termination, either normal or error termination, the
program is still in the virtual memory space and may be inspected or
modified before restart. The program may be restarted by either one of
the commands RUN, CONTINUE, GO or STEP. After error termination, the P
register contains the address of the instruction following the last
instruction executed. Depending on the kind of error, continuing
execution from this address may be menaingless.

8.6.1. DEBUG-PLACE

DEBUG-~PLACE <domain name>

<domain name> —~ the name of an existing domain.

The program segments as well a the data segments will be copied to the
swap file. This allows patches to be done to the program segment.
Patches are not permanent. In order to do permanent patches, LOOK-AT-
PROGRAM must be used.

Otherwise, this command works exactly like PLACE-DOMAIN.

8.6.2. BREAK

BREAK <address>, [<count>]

<address> - the program address where a breakpoint is to be
set.
<count> - one plus the number of times the breakpoint should

be 1ignored before a break is performed. Default
value is 1.

This command sets a breakpoint at the specified address. If a positive
number is specified for the count argument, the breakpoint will be
passed <count>-1 times before reaction.

When the breakpoint is reached, execution terminates and control is
passed to the command processor.

After a breakpoint has been reached, program or data locations or the
registers may be displayed or modified. The display format may be
changed at will. Control flow or data location tracing may be
initiated and terminated. The next instruction to be executed is by
default the instruction pointed to by the P register, but this may be
overridden by the GO command or the optional <execution start>

ND-60.136.03

103
Debugging commands

parameter of the STEP command.

When execution is continued by the STEP or CONTINUE command, the
original instruction is restored and a single step is performed
followed by a reinsertion of the breakpoint. If a non-default
execution start address was selected, the original instruction in the
break address is not executed, and the breakpoint instruction is
retained.

It is possible to set new breakpoints as long as the Monitor has

memory space to store information about them. New breakpoints are
given a nunber for identification purposes.

8.6.3. TEMPORARY-BREAK

TEMPORARY-BREAK <address>, [<count>]

<address> - the program address where the breakpoint is to be
set.

<count> - one plus the number of times the breakpoint should
be ignored before a break is performed. Default is
1.

Similar to BREAK except that when the breakpoint is reached, the
original instruction is permanently restored, and will not cause a
break next time the instruction is executed.

8.6.4. STEP
STEP [<step start>], [<execution start>], [<count>]
<step start> - the program address where single step execution

should start. Default is the current value of the
program counter.

<execution start> - the program address where execution should start.
Default is the current value of the program
counter,

<count> - one plus the number of times the address specified
as <step start> should be passed before single
step execution is started. Default is 1.

Single step. If no parameter -is given, the instruction pointed to by
the program counter is disassembled and shown on the output device. By
typing carriage return, this instruction will be executed. The next
instruction will then be disassembled and shown on the output device
and will be executed when another carriage return is given.

ND-60.136.03

104
Debugging commands

Typing anything else than a single carriage return causes return to
the command processor of the Monitor.

If the <step start> parameter is given, normal execution is started
from the current program counter, and single step is provided when the
<step start> address is reached. 1If, in addition, the <execution
start> parameter is given, the execution is started at the specified
address rather than from the current program counter. The <step start>
address will be passed <count>-1 times before single step is provided;
the default value will start single step execution as soon as the
indicated <step start> address is reached.

This command may be used immediately after a domain has been placed in
memory by the PLACE-DOMAIN (or DEBUG-PLACE) command. More commonly it
is used when the program is in a temporary halt state after a
breakpoint has been detected. A break is then inserted immediately
before the program address where the tracing should start. From this
point on, single instruction execution is started. If desired the
contents of any register or data location may be inspected after each
instruction executed. Any intermediate command (other than CR) will
require that STEP be respecified in order to continue single step
execution. Default parameters to the STEP command will cause the next
instruction in sequence to be executed.

8.6.5. LOOK-AT commands

By this set of commands it is possible to display and modify register
and locations in program and data memory.

An address in the current segment is specified by its 27 bit segment
relative address. An address in an arbitrary segment may be specified
as

<segment no>'<segment relative address>
Generally, modification of program or data is not permanent. The
modifications are made on a copy of the original :PSEG or :DSHG file.
However, LOOK-AT-PROGRAM will make permanent modifications to the
segment.
The LOOK-AT commands have a set of subcommands as follows:

cr carriage return causes display of the next item (register,
instruction, memory cell).

EXIT Return to the Monitor command processor.

Special notation used with the slash (/, indirect) command:

m = address or register name.
n = number of bytes.
cr = carriage return.

ND-60.136.03

105
Debugging commands

m/cr Take the value of m as the address and display this location.
m may also be a register name.

/cr Take the contents of the current location as next address and
display this location. If the current location is a register,
displaying of the memory is started. Specifying the Por the L
register cause the program memory to be displayed, while the
rest of the registers cause the data memory to be displayed.

m,n/cr Take the value of m as next address and display n bytes. m may
also be a register name.

,n/cr Same as /cr except that n bytes are displayed.

Dumping of register, memory or segment to file:

m,n <output file> cr . Same as m,n/cr except that the output is
written to the specified file. The file is closed upon exit
from LOOK-AT.

,n <output file> cr . Same as ,n/cr except that the output is written
to the specified file. The file is closed upon exit from LOOK-
AT.

HELP Listing of all IOOK-AT subcommands

n cr Modifications of memory or registers are done by typing the
new value in the current main format (octal, hexadecimal or
decimal as set by the MAIN-FORMAT command) followed by
carriage return. It is possible to use other formats than the
main one by typing B, H or D before the carriage return for
octal, hexadecimal or decimal respectively.

"XXX'cr Modifying the data memory or a data . segment by ASCII
characters may be done by enclosing the ASCII string in
quotes.

CODE Modification of program memory is possible by the command CODE
followed by an ND-500 assembler instruction. The instruction
will be assembled and stored starting at the current location.
Program memory may also be modified numerically by first
typing BY, and thereafter modifying bytes in the main format
(See the MAIN~FORMAT command) .

BYTE
HALFWORD
WORD

FLOAT
DOUBLEFLOAT

ASCII When displaying data memory it is possible to use byte,
halfword, word single or double precision float or ASCII
characters as a display unit. Changing from one unit to
another is done by simply typing BYTE, HALFWORD, WORD, FLOAT,

ND-60.136.03

106
Debugging commands

DOUBLEFLOAT or ASCII.

PERMIT-DEPOSIT In order to avoid unintended modification of the
memory or a register, the command PERMIT-DEPOSIT must be typed
before the depositing of a new value can take place.

EXTRA-FORMAT <format> ... In a IOOK-AT command it is possible to
temporarily specify that memory locations shall be displayed
in the the indicated formats in addition to the main format by
the EXTRA-FORMAT command. This command is similar to the
global EXTRA-FORMAT command, except that the extra formats are
only valid within LOOK-AT.

ABSOLUTE <address> When relative addresses are displayed (LOOK—-AT-
STACK and IOOK-AT-RELATIVE), new addresses (number followed by
a slash) are taken as relative addresses. However, displaying
from an absolute address can be done by the ABSOILUTE command.

NEW-SEGMENT <segment no> The specified segment number will be set as
current segment. Addresses specified without a segment number
will be in the new current segment. The segment number is
valid only while in LOOK-AT mode, and must be respecified next
time LOOK-AT mode is entered.

In a IOOK-AT command it is possible to change to one of the other
LOOK-AT commands by typing one of the subcommands below. This 1is
equivalent to EXITing from LOOK-AT and reenter to inspect or modify
another area (program, data or registers), but EXTRA-FORMAT need not
be respecified, and it is faster. These subcommands are:

DATA <address>

PROGRAM <address>
REGISTER <register name>
<register name>

STACK

RELATIVE <relative to>

8.6.5.1. LOOR—AT-PROGRAM

IOOK-AT-PROGRAM <address>, [<domain>]

<address> - the segment address from where inspection should
start.
<domain> - the name of an existing domain. Default is

inspection of the domain currently in memory.

Displays and modifies program memory or program segments. The display
is started at the specified <address>.

ND-60.136.03

107
Debugging commands

If <domain> is specified, the program segment file is displayed and
may be modified. Only one segment may be displayed and modified at a
time. ‘

If <domain> is not specified, the default is the domain currently in
memory. The memory image is inspected, rather than the original
segment from which it was loaded. If any modifications are made, the
domain must have been placed in memory by the DEBUG-PLACE command,
otherwise no modification is legal.

8.6.5.2. LOOK-AT-DATA

LOOK-AT-DATA <address>, [<domain>]

<address> - the segment address from where inspection should
start.
<domain> - the name of an existing domain. Default is

inspection of the domain currently in memory.

This command is similar to LOOK-AT-PROGRAM except that the data memory
or data segment is involved. Modification is always permitted.

8.6.5.3. LOOK-AT-STACK

LOOK-AT-STACK

The current local data field is displayed. This is the memory area
pointed to by the current B register, and contains the subroutine call
information, such as address local data field of calling routine
(PREVB), return address (RETA), number of arguments to the routine
(N), the current top of stack (SP) and an auxillary location for
language processes (AUX) not used by hardware. At the next addresses
are the addresses of the routine arguments, and the local variables of
the routine.

The standard locations are labeled with the symbolic names above. For
the argument addresses and the local variables two addresses are
given, the global address and the address relative to the start of the
local data field.

ND-60.136.03

108
Debugging commands

8.6.5.3.1. Subcommands PREVIOUS and NEXT

PREVIOUS

Display the previous local data field, i.e. the local data field of
the procedure calling the current one. Several PREVIOUS commands may
be given, each descending one more level in the call sequence. It is
not possible to move beyond the data field of the main program (the
lowermost stack frame).

NEXT
Display the next local data field, i.e. the local data field of the
procedure called by the current one. Valid only after PREVIOUS. It is

not possible to move beyond the data field of the routine currently
being executed (the uppermost stack frame).

8.6.5.4. LOOK-AT-RELATIVE

LOOK-AT-RELATIVE (<relative to>)
<relative to> - B, R, I1, 12, 13, I4 or a numeric address. Default

is R.

Start listing of data memory relative to either the contents of the R,
B, I1, 12, I3 or I4 register or an address. Both global and relative
address are displayed.

8.6.5.5. IOOK-AT-REGISTER

LOOK-AT-REGISTER [<register name>]

<register name> - the name of one of the registers. Default is P.

The specified register 1is displayed in current main format. If
carriage return is typed, the next register in the sequence below is
displayed. Registers identified as MIC are used by the microprogram
and are not available to the user. Register sequence:

P, L, B, R, I1, 12, 13, 14,
aAl, A2, A3, A4, E1, E2, E3, E4,
STl, ST2, PS, TOS, LL, HL, THA, CED,
CAD, MIC, MIC, MIC, MIC, OTEl, OTE2, CTEl,
CTE2, MTEl, MTE2, TEMM1,TEMM2

ND-60.136.03

109
Debugging commands

8.6.6. SET-MEMORY-CONTENTS

SET-MEMORY-CONTENTS <from address>, <up to address>,
<value>, (<datatype>)

<from address> the lower limit for modification of memory.

<up to address> - the upper limit for modification of memory.
<value> - the value to be written in the specified area.
<datatype> - BYTE, HALFWORD, WORD, FLOAT or DOUBLEFLOAT

indicating the size and type of the specified
<value>. Default is WORD.

The data memory is filled with the specified value from the first
address specified up to the second specified address, inclusively.

8.6.7. MAIN-FORMAT

MATN-FORMAT <format>

<format> - OCTAL, HEXADECIMAL or DECIMAL or abbreviation of
one of these.

when displaying registers, memory contents, or segments with the LOOK-
AT commands, the specified <format> is used. When the Monitor is
started, octal is used as the main format.

The default MAIN-FORMAT may be modified by using the MAIN-FORMAT
command, then leaving the Monitor by the EXIT command. The memory
image can then be copied to a file by using the Sintran III command
@DUMP. The :PROG file created by the @DUMP command will be equivalent
to the existing monitor, but the default MAIN-FORMAT is as specified
before the @DUMP. Refer to the Sintran III Reference Manual ND-60.128
for a description of the @DUMP command.

ND-60.136.03

110
Debugging commands

8.6.8. EXTRA-FORMAT

EXTRA-FORMAT <format> ...

<format> - one of the formats listed below or an unambiguous
abbreviation of one of them.

With all commands displaying memory or segment contents it is
possible to have the locations displayed in various formats in
addition to the format specified in the MAIN-FORMAT command. Data and
instructions are then displayed in both the format(s) specified in
this command as well as the main format. The alternatives are:

BYTE The displayed location is divided into bytes and they are
displayed in the main format.

HALFWORD Similar to BYTE, except halfwords are displayed. This is
effective only when displaying words or doublewords as
main format.

WORD Similar to BYTE, except words are displayed. This is
effective only when displaying doublewords as main format.

FLOAT Single precision floating point format.

DOUBLEFLOAT Two consecutive words are displayed in double precision
floating point format.

ASCII ASCII format.
OCTAL Number base for BYTE, HALFWORD and WORD display.
HEXADACIMAL Number base for BYTE, HALFWORD and WORD display.

DRCIMAL Number base for BYTE, HALFWORD and WORD display.

8.6.9. TRACE

TRACE <address>, <datatype>

<address> - the address of the variable to be traced
(lowermost byte).

<datatype> - BYTE, HALFWORD, WORD, FLOAT or DOUBLEFLOAT or
abbreviation of one of these, indicating the size
of the data element to be traced.

whenever the location starting at the specified address is modified
during program execution, its new value is displayed on the output
device.

ND-60.136.03

111
Debugging commands

This command uses the low and high limit registers, LL and HL of the
ND-500 exclusively, i.e. the previous command using these registers
(GURRD or TRACE) will be discontinued.

8.6.10. GUARD

GUARD <address>, <datatype>, [<limitl>, [<limit2>]]

<address> - the address of the variable to be guarded
{(lowermost byte)

<datatype> - BYTE, HALFWORD, WORD, FLOAT or DOUBLEFLOAT or
abbreviation of one of these, indicating the size
of the data element to be traced.

<limit1l> - the lower limit of the legal value range or upper

' limit of prohibited range.
<limit2> - the upper limit of the legal value range or lower

limit of prohibited range.

If no limits are given, any modification of the location specified in
this command causes a guard violation error and gives control back to
the command processor whenever the specified "quard area" is modified.
The "guard area" starts at <address>, and <datatype> determines the
size, from one to eight bytes.

If one or two limits (forming a legal range) are specified, the new
value of the guard area is checked against this range. If the value is
outside the range, it is a conditional guard violation and the control
is transferred to the command processor. If <limitl> <= <limit2>, then
the permitted range is <limitl> <= n <= <limit2>, If <limitl> >
<limit2> the new value n is legal if n < <1limit2> or n > <limitl>.

If the variable has a value outside the permitted range at the time
the command is given, this 1is not trapped. The check is made on
assignments (store operations) to the variable only.

If only <limitl> is specified, then <limit2> is set equal to <limitl>,
allowing the variable to take the specified value only.

This command will cause a considerable load on the ND-100 if frequent
modifications of the guarded area are made.

This command uses the LL and HL registers exclusively to delimit the
start address and uppermost address of the guarded variable. The
previous command (GUARD or TRACE) using these registers will be
discontinued.

ND-60.136.03

112
Debugging commands

8.6.11. BRANCH-TRACE

BRANCH-TRACE [<start address>1, [<mode>], [<file name>]

<start address> - the program address where tracing should start
from.

<mode> - DUMP or COMPARE. Default is DUMP.

<file name> - the file to which the tracing should be dumped or
compared.

This command initiates tracing of the program counter upon branch trap
conditions.

When only one or no parameters are specified, the tracing is written
to the output device.

If <start address> is specified, the tracing 1is started when the
execution reaches the specified address. Otherwise the tracing is
started immediately.

In order to catch difficult bugs, it is possible to save the tracing
and compare it to another run, possibly with another data set or on
another machine. <mode>=DUMP will dump the tracing to the specified
file and <mode>=COMPARE will compare the trace with the dumped trace
on the specified file. Any differences detected will be printed on the
output device.

The information is stored on <file name> in a binary format, and is
not readable like the symbolic output obtained if no <file name> is
specified. If a symbolic dump to a file is wanted, use the QUTPUT-FILE
command before BRANCH-TRACE.

8.6.12. CALL-TRACE

CALI-TRACE ([<start address>], [<mode>], [<file name>]

<start address>

the program address where tracing should start

from.
<mode> - DUMP or COMPARE. Default is DUMP.
<file name> - the file to which the tracing should be dumped or

compared.

This command initiates tracing of the program counter upon call trap
conditions.

When only one or no parameters are specified, the tracing is written
to the output device.

ND-60.136.03

113
Debugging commands

If <start address> is specified, the tracing is started when the
execution reaches the specified address. Otherwise the tracing is
started immediately.

In order to catch difficult bugs, it is possible to save the tracing
and compare it to another run, possibly with another data set or on
another machine. <mode>=DUMP will dump the tracing to the specified
file and <mode>=COMPARE will compare the trace with the dumped trace
on the specified file. Any differences detected will be printed on the
output device.

The information is stored on <file name> in a binary format, and is
not readable 1like the symbolic output obtained if no <file name> is
specified. If a symbolic dump to a file is wanted, use the OUTPUT-FILE
command before CALI~TRACE.

All routine calls including run time library routines are traced.

8.6.13. EXHIBIT-ADDRESS

EXHIBIT-ADDRESS <program address>, <data address>, (<data type>)

<program address> - the instruction that causes the specified variable
to be displayed when executed.

<data address> - the address of the variable to be displayed.

<data type> - BYTE, HALFWORD, WORD, FLOAT or DOUBLEFLOAT,
indicating the size of the variable to be
displayed. Default is WORD.

With this command a breakpoint is set in the specified <program
address>. When the execution reaches this breakpoint, the <data
address> and its contents are written to the output device. The data
type of the variable may be specified.

Several variables may be traced simultaneously with this command, as
long as the Monitor has room for information about the breakpoints.

ND-60.136.03

114
Debugging commands

8.6.14. DEBUG-STATUS

DEBUG-STATUS

Lists information about previously used debug commands. Enabled traps,
breakpoints, and the use of the LL and HL registers are listed.

8.6.15. ENABLED-TRAPS

ENABLED-TRAPS

Lists the contents of the own trap enable register (OTE) of the
current domain and the mother trap enable register. Enabled traps,
either in the current domain or in ND-100, are listed on the output
device.

8.6.16. STATUS

STATUS

Lists the contents of the status register. Some of the status bits
have no corresponding bit in the trap enable registers. These bits are
always listed with name and value. If other status bits are set, their
names and values are listed.

8.6.17. RESET commands

In order to clear the effect of previously used debugging commands,
the ND-500 Monitor has several reset commands. These are:

8.6.17.1. RESET-DEBUG

RESET-DEBUG

will clear the effect of all previously used debugging commands.

ND-60.136.03

115
Debugging commands

8.6.17.2. RESET-BREAKS

RESET-BREAKS <break number> ...

The breakpoints with the specified numbers are removed by using this
command. If the last active breakpoint is removed, the breakpoint bit
in the ND-500 CTE register is reset.

If no <break number> is specified, every active breakpoint is removed
permanently by typing RESET-BREAKS. If one or more <break number>s are
specified, only those breakpoints are removed.

'Breakpoint' includes, in addition to those set by the BREAK command,
breakpoints set by the EXHIBIT-ADDRESS command.

8.6.17.3. RESEI-TLAST-BREAK

RESET-LAST-BREAK

When a breakpoint is encountered during execution, this breakpoint may
be removed and the original instruction restored by executing this
instruction.

8.6.17.4. RESET-TRXCE

RESET-TRACE

The tracing specified in the TRACE command is discontinued.

8.6.17.5. RESET-GUARD

RESET-GUARD

The guarding of the area specifiedy in the GUARD command is
discontinued.

ND-60.136.03

116
Debugging commands

8.6.17.6. RESET-CALL-TRACE

RESET-CALL-TRACE

Dumping or comparing with previous dump of routine calls is
discontinued.

8.6.17.7. RESET-BRANCH-TRACE

RESET-BRANCH-TRACE

Dumping or comparing with previous dump of branch conditions is
discontinued.

ND-60.136.03

117
Commands for performance measurement

8.7. Commands for performance measurement

Performance measurement commands serve two main purposes: the
HISTOGRAM—-commands and MONCALI~IOG commands are used to evaluate one
program in order to detect bottlenecks in time critical sequences,
while the 10G~commands measure the load on the system in order for the
system supervisor to set the system parameters properly.

The histogram and log commands all use the same buffer, and there is
only one buffer in the system. Therefore, only one user may use these
commands at a time, and he must either release the buffer explicitly
or leave the monitor (implicitly releasing the buffer) before any
other user may use it.

If a user attempts to execute any of the log or histogram commands
while the buffer is in use, an error message is issued.

8.7.1. Histogram commands

8.7.1.1. SET-HISTOGRAM

SET-HISTOGRAM <start address>, <max. address>, (<no. of intervals>)

<start address> - the lower address of the area to be measured.

<max. address> - the upper address of the area to be measured.

<no of intervals> - the number of equally sized intervals between
<start address> and <max address> in the range
1:64 decimal. Default is 64 decimal.

This command will reserve and clear the histogram buffer.

A subsequent START-HISTOGRAM will start sampling the accesses to the

instruction bank between the <start address> and the <max. address>.

This area is divided into <no. of intervals> equally sized intervals.
The maximum size of an interval is 32767 bytes.

ND-60.136.03

118
Commands for performance measurement

8.7.1.2. START-HISTOGRAM

START-HI STOGRAM

The sampling of the program counter will be started. The sampling may
be started and stopped any number of times before the histogram is
printed. The buffer is not cleared before sampling is started; samples
will be added to what is already in the buffer.

Sanmples are taken every 20 ms.

8.7.1.3. STOP-HISTOGRAM

STOP-HI STOGRAM

This command stops the histogram sampling.

8.7.1.4. PRINT-HISTOGRAM

PRINT-HISTOGRAM

This command prints the histogram on the output device. If sampling
has been started and stopped several times, the histogram will
represent the sum of all samples since SET-HISTOGRAM. The histogram
buffer is not cleared by PRINT-HISTOGRAM.

8.7.1.5. RELEASE-HISTOGRAM

RELEASE-HI STOGRAM

This command releases the histogram buffer. This means that other
users may use the HISTOGRAM, the PROCESS~-IOG, the MONCALL-IOG and the
SWAPPING-LOG commands.

If the buffer is not released through this command, it will
automatically be released when the user leaves the Monitor.

ND-60.136.03

119
Commands for performance measurement

8.7.2. Monitor call logging

8.7.2.1. START-MONCALL-LOG

START-MONCALL~LOG

This command will clear the log buffer, and reserve it for the user
issuing the command. All monitor calls executed from the ND-500 will
be logged. A count of the number each monitor call has been executed
can later be printed.

Roughly speaking, the load on the ND-100 CPU imposed by the ND-500 is
proportional to the number of monitor calls executed from ND-500.
(Obviously, this general rule applies to CPU load only, not to file
system and channel load.) Isolating programs that perform a dispropor-
tionate number of monitor calls may help increasing ND-100 throughput.

8.7.2.2. PRINT-MONCALL-LOG

PRINT-MONCALIL~IOG

A count of monitor calls executed since START-MONCALL-IOG 1is printed
on the output device. Each monitor call number up to 777B is listed
with an individual count. Parts of this range is not valid as monitor
call numbers, and will always appear with a count of zero.

This command does not release the buffer, nor does it clear it.
Further monitor calls will add to the count already in the buffer.

8.7.2.3. STOP-MONCALL-IOG

STOP-MONCALL~LOG

The log buffer is released, and no further logging of monitor calls
will be done.

Other users may use the HISTOGRAM, the PROCESS-LOG, the MONCALL~LOG
and the SWAPPING-LOG commands. If the buffer is not released through
this command, it will automatically be released when the user leaves
the Monitor.

ND-60.136.03

120
Commands for performance measurement

8.7.3. Process logging

8.7.3.1. START-PROCESS-LOG-ALL

START-PROCESS-LOG-ALL

This command will clear the process-log buffer and reserve it for the
user issuing the command.

Logging the CPU usage of the active processes is started. Samples are
taken every 20 ms, and the measurements are represented as percents of
the total CPU capacity. The result of the logging may be presented by
the PRINT-PROCESS-LOG command.

This command is allowed for user SYSTEM only.

8.7.3.2. START-PROCESS-LOG-ONE

START-PROCESS-LOG-ONE <process number>

<process number> - the process identifier found by the WHO-IS-ON
command.

Logging of one specified process is started. The percentage of the
time spent by the process in the states 1) Idle, 2) Waiting for
swapper, 3) Using swapper, 4) In monitor call, 5) Active, and 6)
Waiting for CPU, are logged. The 'active' entry (5) is equal to the
entry that would appear in the START-PROCESS-LOG-ALL command for the
specified process.

This command is allowed for user SYSTEM only.

8.7.3.3. PRINT-PROCESS-LOG

PRINT-PROCESS-10G <first process>

<first process> - the lowest numbered process to be printed. Default
is 0.

The accumilated measurements from the last START-PROCESS-IOG-ALL or
START-PROCESS-IOG-ONE are printed on the output device. The buffer is
not cleared, and the logging is continued, adding subsequent
measurements to the printed values. In order to clear the buffer, the
START-PROCESS-LOG-ALL or START-PROCESS-IOG-ONE should be used to start
the next logging period.

ND-60.136.03

121
Commands for performance measurement

This command is allowed for user SYSTEM only.

8.7.3.4. PROCESS-LOG-ALL

PROCESS-LOG-ALL <interval> <first process>

<interval> - the time in seconds between each report.
<first process> - the lowest numbered process to be logged. Default
is 0.

The logging of CPU usage in percent of total capacity is started and
written to the output device every <interval> second. The buffer is
cleared between each report; displayed results are not cumilative.

A sample is taken every 20 millisecond, and for the report to have a
reasonable accuracy, the interval should be at least 10 seconds. The
logging is stopped by pressing the escape key.

This command is allowed for user SYSTEM only.

8.7.3.5. PROCESS-LOG-ONE

PROCESS-LOG-ONE <process no> <interval>

<process no> ~ the identifying number of the process, found by
the WHO-IS-ON or PROCESS-STATUS command.

<interval> - the time in seconds between each report.

The logging of the specified process is started, and the log printed
every <interval> seconds. The buffer is cleared between each report;
displayed results are not cumilative. The report contains the same

measurements as measured by the START-PROCESS-LOG-ONE command.

A sample is taken every 20 milliseconds, and for the result to have a
reasonable accuracy, the interval should be at least 10 seconds.

The logging is stopped by pressing the escape key.

This command is allowed for user SYSTEM only.

ND-60.136.03

122
Commands for performance measurement

8.7.3.6. RELEASE-IOG-BOFFER

RELEASE-LOG-BUFFER

The buffer used for the SWAPPING-IOG and PROCESS-IOG-commands is
released, allowing other users to use these commands, the HISTOGRAM-
and MONCALI~IOG-commands.,

If the buffer is not released through this command, it will be
released when the user leaves the Monitor.

8.7.4. SWAPPING-LOG

SWAPPING-IOG <interval>

<interval> - the period in seconds between each report.

This command will clear the log buffer and reserve it for the user
issuing the command. The buffer is the same as the one used in the
PROCESS-I0G, MONCALL-IOG and HISTOGRAM commands, which means that only
one user at a time can use any of these commands.

Logging of swapping 1is started, and will be written to the output
device every <interval> seconds. The logging is stopped by pressing
the escape key.

Each report will include values for the last interval, the average per
interval since logging was started and the total. For each of these, a
count of page faults, transfers, the total free space etc. will be
listed.

This command is allowed for user SYSTEM only.

8.7.5. LIST-EXHCUTION-QUEUE

LIST-EXECUTION-QUEUE <interval>

<interval> - time in seconds between each report

The currently executing program, its priority, the queue of jobs for
the ND-500 and their priorities are listed on the output device every
<interval> seconds.

ND-60.136.03

123
Process communication

8.8. Process commnication flags

A simple mechanism for comminication between an ND-100 process and an
ND-500 process is implemented.

To each process two 32 bit words are assigned, the input and output
flags. The owner process may read its own input flag and write into
its output flag by the monitor calls Read input flag (MON 402) and
Write output flag (MON 403). When the Monitor is entered, both flags
are initially zero. The flag word is not used by the monitor, and may
contain any information as determined by the process(es).

A ND-100 program may use functions 100B and 101B in the Sintran III
monitor call N500M (MON 60) to communicate with an ND-500 process.

From a terminal the same functions are performed by the commands GET-
FLAG and SET-FLAG described below.

Note that there is no queueing of flags; if the input flag of a
process is modified twice before the owner reads the flag, the first
value is lost.

8.8.1. GET-FLAG

GET-FLAG <process no.>

<process no.> - an unsigned value in the range 0:3777777777777B.
The output flag (32 bit word) of the specified process is written on
the output device in the current main format. If the specified process

is comnected to a terminal, this command must be given from another
terminal.

8.8.2. SET-FLAG

SET-FLAG <value>
<value> - an unsigned value in the range 0:3777777777777B.
The specified <value> (32 bit word) is written into the input flag of

the specified process. If the specified process is comnected to a
terminal, this command must be given from another terminal.

ND-60.136.03

124
Memory allocation

8.9. Memory allocation

System per formance depends on how the active process uses its menory
and how the entire available memory is administered. When performance
is critical it is possible to allocate memory -explicitly to the
process by several commands described below.

The total execution time of a process may vary within wide limits,
depending on the amount of physical memory that the process is
allotted and the allocation strategy employed.

All commands for memory allocation are reserved for user SYSTEM if
executed in the Monitor., If fixing has been specified by a non-
privileged user in NLL, this specification is ignored at execution
time unless user SYSTEM executes the domain.

Explicit allocation is very rarely needed. Whenever hardware
considerations require it (direct transfer files, communication with
RICOMMON or with an ND-100 segment), this will automatically be taken
care of by the Monitor at execution time.

In general, physical memory is significantly smaller than the sum of
the logical sizes of all processes submitted for execution. Physical
memory may even be smaller than the size of each one of the processes.

To overcome space problems, a memory management system is used,
mapping the logical address spaces onto physical memory through a
translation mechanism. Each logical address space is divided into
pages, or blocks of 2k bytes (2048 bytes). Page boundaries will always
be at physical addresses which are multiples of 2048 (4000B).

8.9.1. Demand paging

It is not necessary for all the pages of a segment to be in memory
when the process starts executing. If access to a page not in memory
is attempted, this is detected by hardware as a page fault, and the
running process is suspended until the page has been copied from disk.

Due to the translation mechanism, the page brought into memory may be
placed wherever there is room for it. Thus, several users may have
fractions of their programs scattered in memory.

Whenever the memory is full, and there is no room for a page that is
needed, another page must be removed to free the physical page. If the
page to be removed has not been modified (as is normally the case for
program segments) the page does not need to be written back. If it has
been modified, it must be written back to the disk before another one
takes its place in memory. This process is called swapping, and is in
the ND-500 performed by a system process called the swapper, running
in the ND-500 independently of any terminal.

ND-60.136.03

125
Memory allocation

The algorithm used to select a page for removal attempts to find the
page that has the least probability of being used again, and will
roughly speaking pick the page that has remained unused in memory for
the longest time.

This allocation strategy, called demand paging, is the default
strategy used, to achieve optimal utilization of physical memory.

8.9.2. "Pixing"™ in memory

Certain I/O operations require that the data area to be transferred to
or from is located in a contiguous area in memory. The Monitor will
recognize such requirements, and will allocate an area before the
first I/0 transfer is started. The memory area will remain reserved
("fixed") until the program completes execution. The user need not be
concerned with this at all, as the operation is completely automatic
and transparent.

1f several processes use exceedingly large areas for I/0 operations
requiring the data area to be fixed in memory, this will affect system
performance to some degree, as it limits the number of pages available
for swapping.

8.9.3. Limiting the mmber of pages in memory

In order to ease the load on the swapper, the user may specify the
minimum and maximum number of pages to be kept in memory during
execution of the segment. The segment will still be treated as a
demand segment, but memory requests from other processes will never
cause the number of pages to drop below the specified lower limit.
Thus, the number of page faults during execution is reduced.

Initially, at the start of program execution, no pages are in memory.
The minimum number of pages does not apply until that nunber of pages
have been brought into memory as a result of page faults. However,
none of these pages will be swapped out.

The maximum number of pages is used to indicate the approximate size
of the working set. As soon as the number of pages in memory exceeds
this limit, the least recently used pages are marked for swapping.

This can be used with advantage for processes passing through a data
set in a sequential manner, Or processes having a large amount of
initializing code and a small working set as soon as the
initialization is done. Although the gain in speed is lower than it
would be with fixed allocation, the penalty in reduced performance of
the ND-500 system as a whole is far less.

The minimum and maximum number of pages in memory are set by the SET-
SEGMENT-LIMITS command.

ND-60.136.03

126
Memory allocation

8.9.4. "Pixing" programs in memory

The suspension of a process while a page transfer takes place makes
response time of a process more irregular than if the entire process
could be in memory at the same time. Another aspect of swapping is
that the busier the CPU gets, the more crowded memory will get (in
general), and the more time is spent at swapping.

Ordinary interactive processes, or processes operating on permanently
stored data can usually tolerate the delay imposed by demand paging.
However, programs interacting with I/O-devices will often depend on
short and well defined response times or rely upon data areas being in
memory at any time for performing I/O operations.

Processes with such requirements may be exempted from swapping, and be
allowed to keep all or some of their pages in memory continously. If
the segment remains in memory even before and after execution,
controlled by explicit commands, it is said to be fixed in memory.
Several degrees of fixing are possible.

Even though part of a segment is declared to be a fixed segment, this
does not have to apply to the entire segment. The commands available
have parameters for specifying the lower and upper bound of the
segment area affected. The remainder of the segment will be treated as
a demand segment.

Under normal circumstances, the Monitor will detect the conditions
requiring special memory allocation, and perform the allocation at
execution time. Thus, the user does not have to be concerned about the
commands to perform explicit allocation. For time critical tasks,
however, they may be required.

8.9.5. FPixing segments scattered in memory

This kind of allocation will scatter pages throughout memory, exactly
like demand paging, but these pages will not be candidates for
swapping, and will not be removed when the program completes its
execution,

Start-up times will be significantly shorter than for demand segments,
as the segment will already be in memory and no disk access is
required. If the process is restarted after completion before the
segment is unfixed, no extra disk accesses are introduced.

The effective memory size available for demand paging processes will
be reduced, causing an increased swapping for these segments, but the
Monitor is free to place the fixed area wherever seems most suitable
at the time the process is submitted for execution.

Fixing a segment scattered in memory is done by the FIX~SHGMENT-
SCATTERED command.

ND-60.136.03

127
Memory allocation

8.9.6. Fixing segments in contiguous memory

Some I/0 operations, namely all IMA operations, require that the area
to be transferred to or from is a contiguous memory area, as the IMA
device does not use the translation mechanisms to transform the
logical address to a physical one.

In order to permit IMA transfers crossing page boundaries, the
affected area may be allocated in a contiguous area in physical
memory. Usually this will apply to data areas only, but may be used
for any segment.

Program execution will not be any faster than with a fixed scattered
segment; the translation mechanism to convert from logical addresses
is not bypassed (and consists mostly of tailor made hardware, working
at the speed of the CPU, causing no delay in addressing in most
cases). The main advantage over fixed scattered is the ability to
perform direct transfer file access, see chapter 8.4.

Allocating a contiguous area require that the swapper clears a memory
area of the requested size without regard to whether the removed pages
are active or not. Consequently, the allocation of a contiguous
segment is rather costly. Obviously, a contiguous area of the
requested size must also be available. If a high number of users
request (any kind of) fixed allocation, this is not always the case,
and the request is refused. '

A system parameter Jetermines the maximum number of pages that may be
fixed by each user, the maximum for all users and the maximum for the
entire system, including areas fixed implicitly by the Monitor. If any
of these limits are exceeded, an error message will be returned.

The maximum number of contiguously fixed pages may also be limited by
a system parameter.

Observe that when performing IMA through the file system, e.g. to
direct transfer files, the fixing is performed automatically by the
Monitor, and does not require explicit specification by the user.

Fixing a segment in a contiguous area is done by the FIX-SEGMENT-
CONTIGUOUS command.

ND-60.136.03

128
Memory allocation

8.9.7. Fixing segments in an absolute location

This allocation strategy is even more demanding on system resources,
as it includes an explicit specification of the physical memory area
to be used. No further gains in speed can be achieved with absolute
fixing in memory, but such allocation may be required when
communicating with special I/0 devices.

Communication with ND-100 may go through shared memory. In particular,
the RT-COMMON area will always be contiguous in a fixed location, and
ND-500 processes accessing this area will require that the logical
ND-500 addresses map onto the RT-COMMON area. All communication with
fixed segments in ND-100 will, however, be taken care of by the
Monitor, and the user will not have to be concerned about it.

Fixing a segment in an absolute location is done by the FIX-SEGMENT-
ABSOLUTE command.

8.9.8. Pixing segments shared by several processes

Obviously, if two processes want to commnicate through a data
segment, they must access the same physical location when they address
the same logical location. If the first process to start execution
requests demand paging scattering pages throughout memory, it is
impossible for the second process to request contiguous allocation and
map to the same addresses. (No kind of fixing is necessary in order to
share a segment; it may be a demand segment if fixing is not required
for other reasons.)

This also applies to fixed contiguous vs. fixed absolute, or any other
combination. The process first bringing the segment into memory must
allocate it with the highest grade allocation required by any of the
processes accessing the segment. The highest grade allocation is fixed
absolute, then follows fixed contiguous, fixed scattered and demand
paging as the lowest grade.

1f only a part of the segment is fixed, the first process to fix the

segment must fix the maximum area requested by any process accessing
the segment.

ND-60.136.03

129
Memory allocation

8.9.9. Unfixing a segment

After the process using a fixed segment completes execution, the
segment is not automatically released. The cause for this is that
processes using fixed segments often are either periodical or they are
restarted as a result of an external event, and the time spent moving
the segment into memory would often be too long.

Therefore, a segment must be released explicitly through the UNFIX-
SEGMENT command. This function is also available as an ordinary
monitor call. If the segment is not unfixed, the Monitor will perform
the unfixing when the last user having fixed the segment leaves the
Monitor.

The command will not necessarily have an immediate effect. If there

are still one or more processes using the segment, it will not be
removed from memory until all of them have completed.

ND-60.136.03

130
Memory allocation

8.9.10. The swapping strategy

A certain knowledge of the swapping strategy is required by the system
supervisor in order to properly set the parameters determining the
operation of the swapper. Programmers may also want to know how system
software affects the performance of their programs and utilization of
the available resources.

The swapper maintains two page lists for each physical segment: one
for the socalled active pages, another for the passive pages. Active
and passive refers to whether the page has been accessed since the
swapper evaluated the list.

Pages in these two lists are not ordered according to use or priority.
The swapper will move pages from the passive list to the active list
as a result of an explicit request. Pages are moved from the active to
the passive list several pages at a time, with longer intervals. This
reduces the administration overhead compared to using sorted lists,
but reduces the resolution in the process of selecting a victim for
swapping. The moving of pages from the active to the passive list is
described as cleaning the segment.

If a page is contained in either the active or the passive list, it is
present in physical memory, otherwise it is swapped out to disk. A
page fault will occur if it is not in the active list. When this
occurs, the passive list is first searched to determine if the page is
in memory. If it is found in this list, the page is moved to the
active list. Otherwise, it must be fetched from disk before it is
entered in the active list. Generally, a disk access will cause the
requesting process to be suspended and another one activated, while
moving a page from the passive to the active list will allow the
requesting process to continue immediately afterwards. When a page
fault occurs, this is handled by the swapper process. An available
memory page is found and entered into the active pages list of the
segment. If no pages are available, one process is selected as
nyictim", and all pages of all its segments are passivated. One of the
pages are allocated to the requesting process. All these pages will be
considered available next time a page fault occurs.

The victim for loosing its pages is selected according to a "round
robin" scheduling among processes of the lowest priority in the
system. All timesharing processes are treated as if they have a fixed
priority of 20B. When a process is selected, it will be suspended for
five seconds.

When a process looses all its pages, these will remain in memory, and
if the process using it is activated, these pages are moved to the
active list without the need for reading them from disk.

If the minimum and/or maximum number of pages in memory has been set
for a segment, the swapper will ensure that the number of pages in the
active list stays within the specified bounds. If the sum of active
and passive pages exceed the maximum, the pages in the passive list
are immediately swapped out if they have been modified and the memory
pages returned to a freepool.

ND-60.136.03

131
Memory allocation

Before a page is taken from a still active segment, the swapper will
check the freepool. This pool will contain pages never used by any
segment and pages previously used by now terminated processes.

The swapper will not touch pages fixed in memory, until the last user

having fixed the segment unfixes it or logs out. At that time the
pages are returned to the freepool.

ND-60.136.03

132
Memory allocation

8.9.11. SET-SHGMENT-LIMITS

SET-SEGMENT-LIMITS <segment no.>, <type>, <min no.of pages>,
<max no.of pages>

<segment no.> - the number of an existing segment
<type> - P or D, indicating program or data segment,
respectively.

<min no.of pages> - the minimum number of pages of the specified
segment to remain in memory throughout process

execution.

<max no.of pages> - the maximum number of pages of the specified
segment to remain in memory throughout process

execution.

Specifies the minimum number of pages of a segment that must be in
memory before execution of instructions on the segment starts, and the
maximum number of pages allowed in memory at one time,

When execution of the segment is started, no page of the segment will
be a candidate for swapping until the minimum number of pages
specified is brought into memory. At no time during the execution will
the number of pages in memory be less than the specified minimum.

Normally, due to page faults, the number of pages in memory will
increase during the execution of the domain. If this number exceeds
the specified maximum, one or more of the pages not used for some time
will be marked for swapping.

Pages may be swapped even if the maximum limit has not been reached,

but at no time will the number of pages in memory be below the
specified minimum.

8.9.12, FIX-SHGMENT-SCATTERED

FIX-SEGMENT-SCATTERED (<segment name>), (<type>),
(<lower addr>), (<upper addr>)

<segment name> the name of an existing segment.

<type> P or D, signifying program or data segment.

<lower addr> the lower boundary of the area to be fixed.

Default is the lowest address on the segment.

<upper addr> - the upper boundary of the area to be fixed.
Default is the uppermost address of the segment.

ND-60.136.03

133
Memory allocation

In NLL, the default segment is the current segment. Segment may be
specified either by name or by logical segment number.

<lower addr> will be rounded down, <upper addr> will be rounded up to
the nearest page boundary. In NLL. both may be defined symbols or
addresses. The Monitor accepts addresses only.

The segment or part of segment specified is declared to be retained in
memory after it has been loaded for execution, until it is explicitly
released through the Monitor command UNFIX-SEGMENT. The pages
belonging to the segment may be scattered throughout physical memory.

8.9.13. FIX-SEGMENT-CONTIGUOUS

FIX-SEGMENT-CONTIGUOUS (<segment no.>), (<type>), (<lower addr>),
(<upper addr>) '

<segment no.> the number of an existing segment.

<type> P or D, signifying program or data segment.

<lower addr>

the lower boundary of the area to be fixed.
Default is the lowest address on the segment.

<upper addr> - the upper boundary of the area to be fixed.
Default is the uppermost address of the segment.

<lower addr> will be rounded down, <upper addr> will be rounded up to
the nearest page boundary.

The segment or part of segment specified is declared to be allocated

in a contiguous area of memory, and to be retained in memory until it
is explicitly released through the Monitor command UNFIX-SEGMENT.

8.9.14. FIX-SFGMENT-ABSOLUTE

FIX-SEGMENT-ABSOLUTE (<segment no.>), (<type>), (<phys. addr>),
(<lower addr>), (<upper addr>)

<segment no.> the number of an existing segment.

<type> - P or D, signifying program or data segment.
<phys. addr> - the address in physical memory where the segment
should start.

<lower addr>

the lower boundary of the area to be fixed.
Default is the lowest address on the segment.

ND-60.136.03

134
Memory allocation

<upper addr> - the upper boundary of the area to be fixed.
Default is the uppermost address of the segment.

<lower addr> will be rounded down, <upper addr> will be rounded up to
the nearest page boundary.

The specified segment or part of segment is declared to be allocated
in a contiguous area in memory, starting at the physical address
specified. It will remain in memory until explicitly released through
the Monitor command UNFIX-SEGMENT.

8.9.15. UNFIX-SHEGMENT

UNFIX-SHGMENT <segment>, <type>

<segment> - the name of a segment which has previously
entirely or in part been fixed in memory through
one of the above commands.

<type> - P or D, indicating program or data segment,
respectively.

The area occupied by a segment, or part of segment, previously
specified as fixed in memory, is unfixed. The freed space may be used
by other segments. The command has no effect before every process that
has fixed the segment has released or unfixed it.

ND-60.136.03

135
Miscellaneous commands

8.10. Miscellaneous commands

8.10.1. AUTOMATIC—ERROR-MESSAGE

AUTOMATIC-ERROR-MESSAGE

Error messages caused by monitor calls will automatically be written
to the communication device. MON 64 (ERMSG) will then be unnecessary
after every monitor call in the ND-500.

8.10.2. RESET-ADTOMATIC-ERROR-MESSAGE

RESET-AUTOMATIC-ERROR-MESSAGE

Reverses the effect of the AUTOMATIC-ERROR-MESSAGE command.

8.10.3. The "Escape" key

By pressing the Escape key during the execution of an ND-500 program
the execution is stopped and the control is given to the ND-500
command processor.

No files are closed and no resources released. Execution may be
resumed by the OONTINUE command, possibly after executing other
monitor commands. If execution is not resumed, resources are released
when the user leaves the monitor.

8.10.4. TIME-USED

TIME-USED

This command prints the ND-500 and ND-100 CPU time and clock time
elapsed from the moment that the ND-500 Monitor was entered.

ND-60.136.03

136
Miscellaneous commands

8.10.5. WHO-IS-ON

WHO-IS-ON

A list of users currently logged on the ND-500 is printed on the
output device.

8.10,6. VERSION

VERSION

The version numbers of the currently active subsystem (background part
of the monitor), system part (Sintran part of the monitor), swapper
and microprogram is written to the output device.

8.10.7. SEI-PRIORITY

SET-PRIORITY <ND-100 mon call priority>, <max % of ND-100 time>,
<ND-500 priority>

<ND-100 mon call priority> - the ©priority of the ND-100 process
executing monitor calls on behalf of the
ND-500 process, in the range 0:70B.
Default is 70B.

<max % of ND-100 time> - the maximum percentage of ND-100 CPU time
the ND-100 process may use over a two
second period. Default is 50%.

<ND-500 priority> - the priority of the ND-500 process, in
the range 0:377B. Default is dynamic
modification by the time slicing
mechanism.

whenever an ND-500 process executes Sintran III monitor calls, a twin
process running in the ND-100 is started. The required parameters for
the call are transferred to this process, and the call is executed in
the ND-100 before the results (if any) are returned to the ND-500
process.

When a monitor call is executed, the priority of the ND-100 twin
process is determined by the parameter <ND-100 mon call priority>.

The <max % of ND-100 CPU time> parameter specifies the maximum
percentage of ND-100 CPU time the ND-500 process may use over a two
second period through its twin process executing monitor calls. If the
percentage 1is exceeded, the <ND-100 mon call priority> is reduced to
20B.

ND-60.136.03

137
Miscellaneous commands

Be aware that the measured CPU time spent in monitor call handling
includes activty on interrupt level 4 and 1. Other hardware levels
(for ND-500 monitor calls: 14, 12, 3 and possibly 11 and 10) are not
measured. The measured CPU load will be a smaller or larger fraction
of the actual CPU load. The ND-100 may be saturated even though the
sum of all "max percentages" is significantly below 100%.

If <ND-500 priority> is zero, the process will be time sliced with
other processes with priority varying between 20B and 61B. If <ND-500
priority> is non-zero, the process will run on a fixed priority as
specified. The default handling of the ND-500 process is timeslicing
with no fixed priority. A priority specified in the source program is
ignored. »

This command is allowed for user SYSTEM only.

ND-60.136.03

138
Commands for the System Supervisor

8.11. Commands for the System Supervisor

These commands are allowed for user SYSTEM only, and most of them
require that no other users are logged in on the ND-500. New users may
be prevented from logging in by the command SET-ND-500-UNAVAILABLE.

These commands will interpret and display addresses as octal values
regardless of the format set by the MAIN-FORMAT command. However,
decimal or hexadecimal addresses may still be entered by trailing the
parameter with D or H respectively.

The user RT has no special privileges in the ND-500, and is treated as
a regular public user. This applies both to commands and the ND-500
instruction set available. However, monitor calls executed in the
ND-100 are treated in the same manner as for ND-100 programs, giving
the user RT higher privileges than public users.

8.11.1. SET-ND-500-UNAVAILABLE

SET-ND-500-UNAVAILABLE

No user may log on to the ND-500 until the SET-ND-500-AVAILARLE
command is given. SET-ND-500-UNAVAILABLE must be used before any
modification of system parameters is done, to ensure that no user
interrupts critical operations. If any command that requires exclusive
access to ND-500 is executed, this command is implicitly attempted,
and an error message issued only if others are using ND-500. If ND-500
has been implicitly set unavailable, it will be impossible for others
to use it until SET-ND-500-AVAIILABLE is executed or the user reserving
the ND-500 leaves the monitor.

This command will not force a log-out of those already logged in, but

will prevent new users from logging on. Logged in users must log out
explicitly.

8.11.2. SET-ND-500-AVAILABLE

SET-ND-500-AVAILARLE

Other users may now log in. This command has the reverse effect of
SET-ND-500~-UNAVAILABLE, and should be issued as soon as exclusive use
of the ND-500 is no longer required. An implicit SET-ND-500-AVAILABLE
is executed when the user setting it unavailable leaves the monitor.

ND-60.136.03

139
Commands for the System Supervisor

8.11.3. STOP-ND-500

STOP-ND-500

The ND-500 CPU is stopped. When a user attempts to start an ND-500
process after this command has been executed, the microcode will
automatically be reloaded, the swapper process placed in memory and
started ("warm start" of ND-500).

If the ND-500 should be stopped and then started with no need for
restarting running jobs, the MICRO-STOP command should be used.

8.11.4. Memory configuration

In an ND-500 computer system the processors may be connected to either
local memory (memory that can be addressed from only one processor) or
to a multiport memory system (shared memory). By processor, in this
context, is meant the disk, the ND-100 CPU, the ND-500 CPU program
channel or the ND-500 data channel.

There are two restrictions which must be noticed when configuring an
ND-500 computer system. First, the physical addressing range for
program and data memory may not overlap if the memory addressed is not
the same physical memory.

Secondly, if the disks have access to a memory cell, it is assumed
that the ND-100 CPU also has access to that memory cell, and vice
versa.

The ND-500 system has itself limited capability to investigate its own
memory configuration. Therefore the memory configuration must be
defined by the command DEFINE-MEMORY-CONFIGURATION.

Note: Iocal ND-500 memory is not legal in the ND-500 miltiuser
Monitor. :

8.11.4.1. DFFINE-MEMORY-CONFIGURATTON

DEFINE-MEMORY-CONFIGURATION <ND-100 page# for ND-500 phys.addr 0>

The operating system is given information about the physical memory
configuration.

The parameter is ND-100 page number for which the WND-500 physical
address is zero, i.e. the difference between the ND-500 and ND-100
physical addresses for the same physical cell in common memory.

The information about the size of the system, and the access to the
different memory parts of the system is given as subcommands to this
command. The information given by this command is saved and will
survive a normal restart ("warm start") of the system.

ND-60.136.03

140
Commands for the System Supervisor

The subcommands will request the information
—~ size in number of pages for the memory part
- Does ND-100 have access to the part?
- Does ND-500 have access to the part as program?
- Does ND-500 have access to the part as data?

- Is this the last memory part?

Default is access for both CPUs, both P and D for ND-500.

When Sintran IIT is restarted by the MACM)HENT / 22! commands ("cold
start"), the memory configuration information is lost. For convenience
a permanent macro with the memory configuration definition should be
made.

8.11.4.2. MEMORY-CONFIGURATTION

MEMORY -CONF'IGURATION

Information about the current memory configuration is printed on the
output device.

8.11.5. Memory administration

When the ND-500 is started the first time, every page of ND-100/ND-500
shared memory belongs to ND-100. Memory is administered through the
commands GIVE-ND-500-PAGES and TAKE-ND-500-PAGES.

8.11.5.1. GIVE-ND-500-PAGES

GIVE-ND-500-PAGES <no. of pages>

<no. of pages> - the number of pages to be used by ND-500.

The specified number of pages are taken from the ND-100 and released
to the ND-500. If ND-500 already has pages, the specified number of
pages is added to those ND-500 had previously.

All system tables are located in memory belonging to the ND-100. Thus,

the number of pages specified will all be available for user
processes.

ND-60.136.03

141
Commands for the System Supervisor

8.11.5.2. TAKE~-ND-500-PAGES

TAKE~-ND-500-PAGES <no. of pages>

<no. of pages> - the number of pages to be returned to ND-100.

The specified number of pages are taken from the ND-500 and given to
the ND-100. The number specified should be less than or equal to the
number given to ND-500 previously with the GIVE-ND-500-PAGES command,
otherwise the number of pages actually released is returned.

ND-60.136.03

142
Commands for the System Supervisor

8.11.6. Microprogram maintainance

Using these commands require a detailled knowledge of the ND-500
microprogram format and hardware. This chapter is not assumed to give
sufficient information; the reader must as a minimum be familiar with
Test Micro Program Descriptions for ND-500 (ND-30.103).

8.11.6.1. MICRO-STOP

MICRO-STOP

The execution of the ND-500 microprogram is stopped, and may be
resumed through the command MICRO-START. The ND-500 will stop
completely, but the contents of all registers are retained. It is not
necessary to restart programs running in the ND-500.

8.11.6.2. MICRO-START

MICRO-START <address>

<address> - the octal control store address where execution of
the microprogram should start.

The execution of the ND-500 microprogram is started at the specified
address.

8.11.6.3. LOAD-CONTROL~SIORE

LOAD-CONTROL~STORE (<file name>), (<start address>), (<no. of words>)

<file name> - the name of the file from which the microprogram
is read. Default is CONTROL~STORE:DATA.

<start address> - the octal address where the first microprogram
word should be loaded in control store. Default is
0. .

<no. of words> = the number of words to be compared with the file

contents after loading. Default is 20000B (entire
control store).

The ND-500 microprogram is loaded to the control store from the
specified file. The first microprogram word on the file is loaded into
the control store at the specified start address. Every microprogram
word (144 bits, 18 bytes) loaded into successive words.

ND-60.136.03

143
Commands for the System Supervisor

When the loading is finished, the first words of the file are compared
with the corresponding contents of the control store. The number of
words to be compared is specified through the <no. of words>
parameter. If unequality is found, the error message CONTROL STORE
UNSUCCESSFULLY IOADED is written to the output device.

8.11.6.4. COMPARE-CONTROL~STORE

COMPARE-CONTROL~STORE (<file name>), (<start address>),
(<no. of words>), (<max.no. of faults>)

<file name> - the name where the microprogram is stored. Default
is CONTROL~STORE:DATA.

<start address>

the octal address where the comparison should
start. Default is 0.

<no. of words> - the number of words to be compared. Default is
20000B (entire control store).

<max.no.of faults>- the maximum number of unequalities accepted
between the file contents and the loaded micro-
program before the comparison is aborted. Default
is 7 (the number of messages that will fit on a
VDU screen) .

The current ND-500 microprogram is compared to the microprogram
residing on the the specified file, <file name>. The comparison starts
at the specified microprogram address, <start address>. This word is
compared to the first word on the file, etc. Four words will be
modified after the microcode is loaded and will always be different.

Upon unequality the address and the two differing control store words

are written to the output device. The comparison lasts until <no. of
words> are compared or <max. no. of faults> are fourd.

8.11.6.5. LOOK-AT-CONTROL~STORE

LOOK-AT-CONTROL~STORE (<address>)

<address> - an octal address in control store, range 0:20000.
Default is 0.

Examine and modify the ND-500 microprogram.

The display is started at the specified <address>. One control store
word and the corresponding address are displayed on one line. On
carriage return, the next control store word is displayed. A control
store word consists of 144 bits which are grouped into nine 16 bit
words.

ND-60.136.03

144
Commands for the System Supervisor

The next control store word to be displayed may be specified by typing
its address followed by a slash and carriage return.

8.11.6.5.1. Subcommands EDIT and ORIN

By default, the control store is disassembled and displayed
symbolically. Symbolic modifying of the control store is performed by
either the subcommand EDIT or ORIN. By EDIT the current control store
word is cleared and the disassembled string is then put into the
terminal input buffer. It is then possible to modify the disassembled
string by the Sintran III line editing features. At carriage return
the modified string is assembled and written into the control store.
By ORIN the next terminal input is assembled and a logical OR of the
entered instruction and the old contents is stored into the current
control store word.

8.11.6.5.2. Subcommands OCTAL and SYMBOLIC

By the subcommand OCTAL it is possible to have the control store
displayed in octal format. The display is returned to the symbolic
mode by typing the command SYMBOLIC.

8.11.6.5.3. Subcommands GROUP and WORD

By typing GROUP only one 16 bit word is displayed. On carriage return
the next 16 bit word is displayed. Within GROUP modus it is possible
to modify the displayed 16 bit word by typing the new octal value
followed by a carriage return. By typing WORD the display of nine 16
bit words continues.

8.11.7. LOOKR-AT commanxds

8.11.7.1. TLOOK—AT-RESIDENT-MFMORY

LOOK-AT-RESIDENT-MEMORY <address>

<address> - the octal physical address to be inspected.

Equal to ILOOK-AT-DATA except that physical memory is examined and
modified.

The subcommands are described in chapter 8.6.5.

ND-60.136.03

145
Commands for the System Supervisor

8.11.7.2. LOOK-AT-PHYSICAL—SHGMENT

LOOK-AT-PHYSICAL~-SEGMENT <address>, <phys. segm no.>

<address> - the octal segment relative address to be

inspected.
<phys. segm no> - the number of the physical segment to be inspected

Equal to LOOK-AT-PROGRAM or LOOK-AT-DATA, except that a physical
segment is inspected and modified directly.

The subcommands are described in chapter 8.6.5. Some of the
subcommands are not valid in LOOK~AT-PHYSICAL~SHGMENT.

8.11.7.3. LOOK-AT-HARDWARE

LOOK-AT-HARDWARE <hardware register name>

Display the contents of the specified internal ND-500 CPU register or
ND-100/ND-500 interface register.

The <hardware register name> may be one of

INTERFACE
Display the interface registers

Carriage Return
Display the hardware registers (approx 80 registers)

Display the registers starting with name A,XD

Register name
Display the specified register

MEMORY-MANAGFMENT-REGISTER
Display the 40 MMS registers.

ND-60.136.03

146
Commands for the System Supervisor

8.11.8. Process management

8.11.8.1. ATTACH-PROCESS

ATTACH-PROCESS <process no>
<process no> - the nunber of the process with which communication

is desired. Default is the current process
connected to the terminal.

Subsequent commands LOOK-AT, RUN etc will be routed to the specified
process. The process should not be connected to any other terminal.

This command is currently used for debugging purposes, attaching to
the swapper process.

8.11.8.2. LOGOUT-PROCESS

LOGOUT-PROCESS <process>
<process> - the number of a currently running process.

The ND-500 process specified will be aborted and its reserved
resources released. Also, the user will be forced to leave the ND-500-
MONITOR.

This is the normal command to remove a user from the ND-500 system. A
proper cleanup of the area used by the logged out process is done; it
is therefore safer than ABORT-PROCESS. LOGOUT-PROCESS resembles the
Sintran IIT command @STOP-TERMINAL for ND-100 processes.

8.11.8.3. ABORT-PROCESS

ABORT-PROCESS <process>
<process> - the number of a currently running process.

The process specified will be aborted and its reserved resources
released. The user will be forced to leave the monitor.

This command should be used with care, as no cleanup of the system

tables and queues is performed. It should be employed only in case of
a system hangup, where there is no other way stop a process.

ND-60.136.03

147
Commands for the System Supervisor

8.11.8.4. PROCESS-STATUS

PROCESS-STATUS

A summary of the status of all active processes is printed on the
output device. The information includes for each active process the
terminal number of the user having reserved the process, the user
name, the status of the process (idle or active), and the amount of
ND-500 CPU time used and login time since the Monitor was entered.

8.11.9. Inspecting system tables

8.11.9.1. LIST-TABLE

LIST-TABLE <table name>

<table name> - the name of one of the system tables.

This command has a number of subcommands used for searching through
the system tables. Detailed system knowledge is required in order to
utilize the information obtained through this command. The subcommands
are:

PROC-TAB - List the table of active processes.

HW-SEGM-TAB - List the table of physical segments in use.

SW—-SHGM~-TAB - List the segment table used by software.

MEMORY-MAP ~ List the memory map.

LAST-N500-MSG - List the ringbuffer containing the last 64 messages
to ND-500

N500-MSG - List the messages to ND-500 from a specified process.

FOLLOW-LINK - Follow the link to the next element in the table.

FOLLOW-TABLE - List the next element in the table.

<octal value>/ - List the specified entry in the current table.
cr - List the next element in the current table.

EXIT - Return to the command processor.

ND-60.136.,03

148
Commands for the System Supervisor

8.11.9.2. LIST-ACTIVE-SHGMENTS

LIST-ACTIVE-SEGMENTS <process no.>

<process no> ~ the number of an active process.

This command will list all the segments currently in use by a process,
the correspondance between logical and physical segments and the name
of the process.

The <process no.> parameter may also take the values OWN or -1,

indicating the wuser's own process, ALL or -2 indicating all active
processes.

8.11.9.3. LIST-SHGMENT-TABLE-ENTRY

LIST-SEGMENT-TABLE-ENTRY <segm. no>

<segm. no> - a physical segment number.

3

The information in the physical segment table will be printed oh the
output device. This information includes the segment name and type,
the owner process, the size of the segment, the segment attributes and
allocation in the swap file, and the current use of the segment by the
active processes.

<segm. no> equal to ALL or -1 indicates all segments.

8.11.9.4. LIST-PROCESS—TABLE-ENTRY

LIST-PROCESS-TABLE-ENTRY <process no.>

<process no> ~ the number of an active process.

The process description of the specified process is printed on the
specified file., OWN or -1 indicates the user's own process, ALL or -2

indicates all active processes.

The returned information includes the process segment, the program and
data capabilities.

ND-60.136.03

149
Commands for the System Supervisor

8.11.10. Swap files

A segment may either be swapped out on its original file or a system
selected swap file. This is determined by the attribute specified for
the segment in the OPEN-SEGMENT command.

System selected swap files are contiguous files used as scratch area
for modified pages of a segment. As long as no modifications are done,
pages are read from the original segment file, but if a page is
modified this page is copied to the swap file and used for further
swapping. For each segment that may need a scratch area, a contiguous
area is allocated. The segment may not be expanded during execution.

To define a file as a swap file for the ND-500 the file must be
created with the Sintran IIT command @CREATE-FILE. Then the Monitor
‘command DEFINE-SWAP-FILE must be used to inform the Monitor that this
file should be used for swapping.

8.11.10.1. DEFINE-SWNAP-FILE

DEFINE-SWAP-FILE <file name>

<file name> - the name of an existing contiguous file.

The file specified is defined as a swap file for ND-500 segments. The
file must be a contiguous file, and must be created before this
command is used. The file may belong to any user, but user SYSTEM must
have at least read and write access (RW) to it.

There may be several swap files in the system; the Monitor will assign
a swap area to a process on whichever file has sufficient free space
left. Definition of swap files will survive a warm start, but not a
cold start.

8.11.10.2. DELETE-SWAP-FILE

DELETE-SWAP-FILE <file name>
<file name> - the name of a file previously defined as an ND-500

swap file.

The specified file is de-allocated as an ND-500 swap file. The file is
not deleted from the file directory, but will no longer be used by the
Monitor as swap area for ND-500 segments.

ND-60.136.03

150
Commands for the System Supervisor

8.11.10.3. LIST~SWAP-FILE-INFO

LIST-SWAP-FILE-INFO <swap file no.>

<swap file no> - the number of the swap file, starting at 0, or
AlL.

Information about the swap file is printed on the output device. This
information includes both file system statistics and the current usage
of the file. If the parameter is given as ALL, information about all
swap files defined is printed.

8.11.10.4. LOAD-SWAPPER

LOAD-SWAPPER <file name>

<file name> - name of binary file where the swapper is located.
Default file name is (SYSTEM)SWAPPER.

The swapper process is loaded into ND-500 memory. Normally, this is
done automatically when the first ND-500 process is initiated by the
monitor, but this command may be useful to load a new copy if there
are reasons to believe that the existing one is corrupted, or to load
a non-standard version of the swapper process.

The file type may not be specified but will always be :PSHEG and :DSHG.
The swapper will always run as process number zero.

8.11.10.5. START-SWAPPER

START-SWAPPER

The swapper process, loaded into memory by the LOAD-SWAPPER command,
is started.

ND-60.136.03

151
Commands for the System Supervisor

8.11.11. SET-SYSTEM-PARAMETERS

SET-SYSTEM-PARAMETERS <no of phys. segm>,
<max pages fixed>

<no of phys segm> - the maximum number of physical segments in the
ND-500. Maximum is 2000B.

<max pages fixed> - the maximum number of pages fixed for the system
as a whole.

A modification of the number of physical segments will have no effect
until the system is restarted. The number of segments include all
physical segments including the process segments used internally by
the monitor. Reducing the number of physical segments will reduce the
space needed by system tables and release memory pages for swapping.

The maximum number of pages fixed for the system as a whole includes
pages implicitly fixed by the Monitor before doing direct transfer
1/0.

8.11.12. LIST-SYSTEM-PARAMETERS

LIST-SYSTEM-PARAMETERS

The values of all parameters specified by the SET-SYSTEM-PARAMETERS
command are printed on the output device.

8.11.13. MASTER-CLFAR

MASTER-CLEAR

Brings the ND-500 out of any hang-up state by sending a hardware
master clear signal to the ND-500 interface. This will cause the
ND-500 to stop immediately and reset the interface. This is equivalent
to pressing the MCL button on the ND-500 front panel.

This command is used before a complete restart of the ND-500, and the
contents of registers are unpredictable.

ND-60.136.03

152
MONITOR COMMANDS

ND-60.136.03

153
SINTRAN~III MONITOR CALLS

9. SINTRAN-IIT MONITOR CALLS

Monitor calls are requests to the operating system for I/0 services,
system information and a number of special functions. Normally, a
compiler will translate certain source statements, like the Fortran
OPEN, into a monitor call, and thus hide the monitor call from the
user. For the assembler programmer, and for the programmer requiring
functions not offered by the compiler, direct access to the monitor
calls may be neccessary.

Most of the monitor calls in Sintran III are available for ND-500
programs through the ND-500 Monitor. The arguments of the monitor
calls are, with a few exceptions, the same as in Sintran III. For
detailed information of the Sintran III monitor calls, see the
Sintran III Reference Manual ND-60.128.

In the ND-500 a Sintran III monitor call is performed by a CALL or
CALIG instruction. CALL and CALIG are general subroutine call
instructions. A routine call where the five leftmost bits of the
subroutine address are set - the segment number is 37B - is a
Sintran III monitor call. That is, to the user program the Sintran III
monitor call functions appear to be regular routines on a link
segment. The 27 rightmost bits of the subroutine address are the
monitor call number,

Single parameters to a Sintran III monitor call must always be a 32
bit word residing in the data memory. When Sintran III requires byte
or halfword parameters, these are the rightmost byte or halfword of
the 32 bit parameter. Observe that the address of a 32 bit word is
addressed by its leftmost byte, thus, the address a one or two byte
variable (e.g. BYTE, INTHGER1 and INTHGER2 in Planc) cannot be used
directly in the argument 1list, but must be incremented by 3 or 2,
respectively.

Arrays are addressed by the lowermost word in the array, and the array
elements are always of size 32 bits.

String parameters - such as filenames etc. - must be a descriptor
parameter (DESC). A descriptor is a two word element, the first
containing the highest array index, starting at zero, the second the
address of the element with index 0.

During the execution of monitor calls, errors may occur. If an error
has occurred, the K flag is set; otherwise it is reset. If an error
code is returned to the program, it may be found in the Il register.
If an error occurs in a monitor call not returning an error code, the
I1 register will be set to -1. The K flag is also set.

Monitor calls returning a value will leave the value in the Il
register. Monitor calls not returning a value may destroy the Il
register, even if no error occurs or no error is possible. All other
registers will at return contain the values they had before the
monitor call.

ND-60.136.03

154
SINTRAN-IIT MONITOR CALLS

When an error has occurred, an error message may then be written on
the communication device by using the error code as argument in the
monitor calls ERMSG (MON 64) or QFRMS (MON 65). Error messages from
monitor calls are always written to the communication device if the
command AUTOMATIC-ERROR-MESSAGE is given.

The following is a list of the available monitor calls with their
arguments. When the function of the monitor call is identical in both
the ND-500 and the ND-100, the description of the monitor call is
found in the Sintran III Reference Manual ND-60.128. If the function
is not exactly the same, the differene is described here.

ND-60.136.03

155

SINTRAN-IITI MONITOR CALLS

Mon.call
no. name Comments

30B
31B

32B
35B

36B
37B

40B

41B
43B

448
45B

50B

528

LFAVE

INBT

OUTBT
BCHOM
BRKM

TIME

SETCM
CIBUF
COBUF
MGTTY
MSTTY
M8INB
M8OUT
BBINB
B8OUT

RIDSC
GETRT

EXTIOX

MSG
I00T

ATRDW

SECLO

ROBJE
CLOSE

RUSER
GTYPR

OPEN

TERMO

All files opened by the ND-500 program or by the
OPEN-FILE command in the Monitor will be closed.
<unit> <byte>

<unit> <byte>

<unit> <echo mode no> <bitmap>

<unit> <break mode no> <bitmap> <max. no. of chars>
The result will be in the Il register.

<string descriptor>

<unit>

<unit>

<unit> <terminal type>

<unit> <terminal type>

<unit> <no. of bytes read> <buffer descriptor>

<unit> <buffer descriptor>

<unit> <no. of bytes read> <buffer descriptor>

<unit> <buffer descriptor>

<unit>

The result will be in the Il register.

<RT description> <buffer>

Number of connected devices to the RT description
will be returned in the Il register.

The result will be in the Il register.

<in-value> <device no.>

The result will be in the Il register.

<descriptor of the string>

<format> <value>

<format>= 2: Binary format.

<format>= 8: Octal format.

<format>= 10: Decimal format.

<format>= 16: Hexadecimal format.

<unit> <input/output> <flag>

<no. of channels> <channel buffer>

<data buffer> <error indicator>

<unit> <text string descriptor> <no. of copies> <flag>
If <unit>= -3 then all files opened by the ND-500
program will be closed. Other values of

<unit> will give standard action.

<unit> <buffer>

<unit>

If <unit>= -3 then all files opened by the ND-500
Monitor and the ND-500 program will be closed.

Other values of <unit> will give standard action.
<descriptor of user name string> <buffer>

<unit> <typring> <status> <Sintran III open file number>
The TYPRING word in the datafield, a word containing
flag bits and the open file number corresponding to the
specified <unit> is returned

<unit> <access code> <file name string descriptor>
<file type string descriptor>

The parameter <unit> is the open-file number the program
assigns to the specified file. If <unit> = 0 then the
ND-500 Monitor will return an open-file number in the
parameter <unit>.

<unit> <mode>

ND-60.136.03

156
SINTRAN-IITI MONITOR CALLS

53B RSBGM <segment no> <buffer>
54B MDLFI <file name string descriptor>
55B RSPQE <unit> <buffer addr.>
56B PASET <buffer>
Five 32 bit words may be set. These are independent
of the status words for the corresponding ND-100 call
57B PAGET <buffer>
Five 32 bit words set by PASET may be read.
60B RWPM <function> <ND-500 program address> <data>
Read/write program memory. <function>=0 : read,
<function>=1 : write. <data> is always 4 bytes
Observe that MON 60 (N500M) executed from ND-100
has functions different from the RWNPM call
62B RMAX <unit> <no. of bytes in file>
63B B4INW <unit> <buffer>
64B ERMSG <error code>
65B QERMS <error code>
66B ISIZE <unit>
The result will be in the Il register.
67B OSIZE <unit>
The result will be in the Il register.
708 COMND <descriptor of command string>
Only a subset of Sintran III commands are legal
73B MAX <unit> <max. byte pointer>
74B SETBT <unit> <byte pointer>
75B REABT <unit> <byte pointer>
76B SETBS <unit> <block size in bytes>
77B SETBL <unit> <block number>
100B RT <RT description>
Available for users SYSTEM and RT only.
101B SET <RT description> <no. of time units> <time unit no.>
Available for users SYSTEM and RT only.
102B ABSET <RT description> <second> <minute> <hour>
Available for users SYSTEM and RT only.
103B INTV <RT description> <no. of time units> <time unit no.>
Available for users SYSTEM and RT only.
104B HOLD <no. of time units> <time unit no.>
105B ABORT <RT description>
Available for users SYSTEM and RT only.
106B CONCT <RT description> <unit>
Available for users SYSTEM and RT only.
107B DSCNT <RT description>
Available for users SYSTEM and RT only.
110B PRIOR <RT description> <priority>
The old priority of <RT description> will be in the Il
reglster Available for users SYSTEM and RT only.
111B UPDAT <min> <hour> <day> <month> <year>
Available for users SYSTEM and RT only.
112B CIADJ <no. of time units> <time unit no.>
Available for users SYSTEM and RT only.
113B CLOCK <buffer>
114B TUSED The result will be in the Il register.
115B FIX <segment no.>
Available for users SYSTEM and RT only.
116B UNFIX <segment no.>
Available for users SYSTEM and RT only.

ND-60.136.03

SINTRAN-III MONITOR CALLS

117B

120B

121B

1228
123B
1248
125B
126B
1278
130B

131B

1348
135B
136B
1378
140B
141B
1428

1438
144B

RFILE

WFILE

WAITF

RESRV

RELES

PRSRV

DSET

DABST

DINTV

ABSTR

RTEXT
RTON

RTOFF
WHDEV
IOSET
ERMON

RSIO
MAGTP

<unit> <flag> <buffer> <block no.>

<no. of bytes to read>

If <flag> 4 0 then the ND-500 program will be
restarted immediately after the parameters are
accepted (not waiting for the transfer to be

terminated) . The status of the transfer may later

be checked by the monitor call WAITF.

<unit> <flag> <buffer> <block no.>

<no. of bytes to write>.

If <flag> # 0 then the ND-500 program will be
restarted immediately after the parameters are
accepted (not waiting for the transfer to be
terminated). The status of the transfer may be
checked later on by the monitor call WAITF.
<unit> <flag>

If the previous RFILE/WFILE/MAGTP on <unit> was
called with <flag> # 0, then the status of this
transfer will be returned into the Il register.
<unit> <input/output> <flag>

Available for users SYSTEM and RT only.

<unit> <input/output>

Available for users SYSTEM and RT only.

<unit> <input/output> <RT description>
Available for users SYSTEM and RT only.

<unit> <input/output>

Available for users SYSTEM and RT only.

<RT description> <basic time unit>

Available for users SYSTEM and RT only.

<RT description> <basic time units>

Available for users SYSTEM and RT only.

<RT description> <basic time units>

Available for users SYSTEM and RT only.

<unit> <function> <buffer> <block no.>

<number of blocks>

The <buffer> parameter must be specified as

an ND-100 physical address. Available for
users SYSTEM and RT only.

Same effect as LEAVE

Available for users SYSTEM and RT only.

<RT description>

Available for users SYSTEM and RT only.

<RT description>

Available for users SYSTEM and RT only.

<unit> <input/output>

The result wil be in the Il register.

<unit> <input/output> <RT description> <value>
The result will be in the Il register.

<error code> <sub. error number>

<mode> <input unit> <output unit> <user index>
<function> <buffer addr.> <unit>

<max. no., of bytes> <actual no. of bytes read>
If 1000B is added to <function>, the

ND-500 program will be restarted immediately after

the parameters are accepted (no waiting for the

monitor call to be terminated). The status of the
execution may later be checked by the monitor call

WAITF.

ND-60.136.03

157

158

1458
1478
150B
151B
1528
1538
1548

1578

160B

161B

1628
1648

165B

166B

2138
214B
215B
216B
217B
220B

221B

CaMAC

GL

GRTDA

GRINA

IOXN

ASSIG

FIXC

INSTR

WSEG

DOLIW

MUIDI

GUSNA

DROBJ

GUIOI

DOPEN

CRALF

SINTRAN-IIT MONITOR CALLS

<unit> <function> <buffer> <dma addr.> <no. of bytes>
<value> <status> <crate number> <station number>
<subaddress> <function>

Available for users SYSTEM and RT only.

<value> <flag>

Available for users SYSTEM and RT only.
<descriptor of RT program name>

Available for users SYSTEM and RT only.

<RT descriptor> <buffer>

Available for users SYSTEM and RT only.

<data> <IOX-code>

Available for users SYSTEM and RT only.

<log. unit number> <graded LAM number> <crate humber>
Available for users SYSTEM and RT only.

<segment> <page table> <interrupt level>

<start address>

Available for users SYSTEM and RT only.

<segment> <physical start page>

Available for users SYSTEM and RT only.

<unit> <string descriptor> <max. no. of bytes>
<terminator>

The function value will be in the Il register.
<unit> <string descriptor>

The function value will be in the Il register.
<segment no>

Available for users SYSTEM and RT only.

<no. of registers> <buffer with logical units>
<data buffer> <error indicatior>

Available for users SYSTEM and RT only.

<no. of registers> <buffer with logical units>
<data buffer> <error indicator>

Available for users SYSTEM and RT only.
<descriptor of user name string> <directory index>
<user index>

<descriptor of user name string> <directory index>
<user index>

<object entry buffer> <directory index>

<user index> <object index>

<object entry buffer> <directory index>

<user index> <object index>

<unit> <directory index>

<user index> <object index>

<unit> <access code> <descriptor of file name string>
<descriptor of file type string>

<descriptor of file name string>

<start address of file> <number of pages in file>

ND-60.136.03

159

SINTRAN-ITI MONITOR CALLS

4008

401B

4028

403B

404B

405B

4068

407B

410B

411B

MACROE

DISASS

IOFIX

USTBRK

TPSTRA

FIX

UNFIX

Subsystem error return. Will set an error indicator
that may be tested by the IF-ERROR-MACRO-STOP and
IF-ERROR-FULL~STOP commands.

<program address>, <descriptor of returned string>
<max no. of characters>

One ND-500 instruction starting at the specified
<program address> is disassembled. The returned
string will be truncated to <max no. of characters>
if required. The actual number of characters in the
returned string is returned in the length part of
the <descriptor of returned string>.

<value>

Reads a 32 bit flag array set by the SET-FLAG Monitor
command or by a monitor call in a Sintran III program.
See section 8.8.1.

<value>

Writes a 32 bit flag array that may be read by

a Sintran III program or by the GET-FLAG Monitor
command. See section 8.8.1.

<first addr> <size of area in bytes>

Specify to the Monitor the data area the program will
use for file system I/O.

<function> <address>

<function>=0 : enable, <function>=1l : disable user
handling of the escape input. If enabled, control will
be transferred to <address> if the user presses the
escape or break key.

<function> <RTCOMMON addr> <# bytes> <buffer>
<function>=0 : read, <function>=1l: write RICOMMON
The specified RTCOMMON address is an ND-100 virtual
word address.

<pl>..<p7>

Return from N500M, function RONN (12B), to ND-100.
Stop reason is given the value 65, and the

seven parameters are transferred to ND-100.
Interpretation of the parameters is up to the
ND-100 program issuing NSOOM.

<type> <first addr> <length> <phys ND-100 addr>
<type>=0 : fix scattered

<type>=1 : fix contiguously, address returned
<type>=2 : fix contiguously at given address

<first addr> is the logical ND-500 address,
<length> in bytes, but the physical address is
specified/returned as an ND-100 word address
<address>

Only the segment number of the address is
significant. All fixed areas in the given

segment are unfixed.

ND-60.136.03

160
SINTRAN-IIT MONITOR CALLS

+ 4128 FSCNT <file no> <log. segment no> <type> <segment no>
Connect file as a segment. File must be opened
through MON 50 or the OPEN-FILE command.
<log. segment no>=0 will select the first free
segment and return in <segment no>.

<type>=0 : file contains initial data
<type>=1 : uninitialized, empty file
<type>=2 : primarily sequential access
<type>=3 : combination of 1 and 2

Specifying <type>=2 will reduce swapping, as
long as access is sequential
413B FSDCNT <file no> <segment no>
The file is no longer accessed as a segment,
but is not closed. All pages are, however,
flushed to the file.
CIOSE will imply FSDCNT.
414B BCNAF <function> <address> <data> <status>
Special CAMAC monitor call.
415B BCNAF1 <function> <address> <data> <status>
Special CAMAC monitor call.
416B WSEGN <log segment no> ‘
Write all modified pages back to segment file
417B MXPISG <log segment no> <segm. type> <# pages>
Set max pages in memory for a segment.
<segm. type>=0 : data segment
<segm. type>=1 : program sSegment

ND-60.136.03

161
THE N500M MONITOR CALL

10. 'THE N500M MONITOR CALL

This chapter is intended as background information only, and is
included for readers with a thorough knowledge of Sintran III. The
N500M monitor call is primarily used by the Monitor itself, and will
normally not be used by application programs. Programmers who want to
use the functions listed below, are advised to consult Norsk Data for
further details.

The ND-500 Monitor is divided into three separate parts that run in
the ND-100. The first part runs on page table 2 as the subsystem
called ND-500-MONITOR, and the second runs on page table 0. The third
part is the ND-500 driver routine residing in the resident and the
"paging off" area.

The subsystem ND-500-MONITOR communicates with the page table 0 part
through a special monitor call, MON 60 (N500M). N500M has several
functions, and accepts parameters according to the specified function.
Observe that the monitor call number 60 is used from ND-500 for
functions different from N500M executed on the ND-100.

The parameters to N500M are specified in same way as a "Fortran
monitor call", (the A-register pointing to a list of parameter
addresses) . The first parameter is the function code which must be a
16 bit word. The rest of the parameters are either arrays or 32 bit
words. Skip return indicates successful completion, direct return that
an error occured.

The following is a list of the functions available in N500M:

Function
no. name explanation parameters
0B RREG Read register <reg.no> <value>
1B WRWG Write register <reg.no> <value>
2B RPROG Read program memory <no.of bytes> <ND-500 addr>
<data area> <no.of bytes returned>
3B RDATA Read data memory <no.of bytes> <ND-500 addr>
<data area> <no.of bytes returned>
4B WPROG Write program memory <no.of bytes> <ND-500 addr>
<data area>
5B WDATA Write data memory <no.of bytes> <ND-500 addr>
<data area>
6B PLACE Place segment <file name> <segment base>
<size in bytes> <segment type>
7B SWLOD Load swapper <swapper segment name>

10B RREGB Read ND-500 Registers <register block>
11B WREGB Write ND-500 Registers <register block>

12B RUNN Start program <stop reason> <returned trap info>
<clear time used>
13B CNCFI Connect file <file name> <access code>

<default type> <connect no.>
<returned connect no.>
14B CLSFI Close file <file no.>

ND-60.136.03

162

15B

16B
178
20B
21B
228
23B

248

25B
26B
27B
30B
31B
3B

33B

348
358
378
40B

41B

43B
44B
46B
478
50B
51B
528
53B
54B
55B
56B
57B
60B

618
628

63B
64B
65B
66B
67B
70B

78

RESRV

RELIS
LISOP
TIMUS

REACS
WRICS

MICST

MSTOP
MSTCL

DEFM

RSTAT

SPRES
SPREL
DEFSW
DELSW

RIFRG
G500P
T500P
STSWP
SPLAC
EPLAC

LIMEM

RESER
HIDEF

HISTA
HISTP
HISTR
HIREL
SPRTE
GPRTE
SSGTE
GSGTE

Reserve ND-500-process

Release ND-500-process
List open files

Time used

Wwho is on

Set error flag

Read Control store

Write Control store

Start micro program
Data memory examine
Data memory deposit
Prog. memory examine
Prog. memory deposit
Absolute memory read

Absolute memory write

Stop micro program
Master clear

Load control store
Define memory config.

Read comm. status

Reserve for spec. use
Release after spec use
Define swap file
Delete swap file
Test function

Read interface reg
Give ND-500 pages
Take ND-500 pages
Start swapper

Start place

End place
Microprogram version
List memory config.

Reserve N500 and
N500 memory
Define histogram

Start histogram

Stop histogram

Read histogram
Release histogram
Search for proc.entry
Get process entry
Seach for phys.segm.
Get physical segment

ND-60.

THE N500M MONITOR CALL

<start addr. after escape>
<version string of PT0>

<value>

<CS addr.> <no of 16 bit words>
<data—-area>

<CS addr.> <no of 16 bit words>
<data-area>

<micro program start address>
<addr.> <value> ’
<addr.> <value>

<addr.> <value>

<addr.> <value>

<no.of bytes> <ND-500 addr.>
<data area> <no.of bytes returned>
<no.of bytes> <ND-500 addr.>
<data area>

<CS addr><no of words><file name>
<start page> <no.of memory parts>
<part array>

<status (bits 16:31: ND-500,
bits 0:15: ND-100)>

<MAR (memory address register)>

<file name>

<file name>

<Il> <I2> <I3> <I4>
<register value/I4>
<nunber of pages>
<number of pages>

<version number/I4>

<array (regblk start/I2,

ND-100 procadr/I4, ND-500 null/I2,
memparts/I2(0:17B),

accesstab/BY (0: 17B)>

<no. of pages> <first page no.>
<start address> <interval size>
<no. of intervals>

<array>
<process name> <record>
<process> <record>

<name of phys.segment> <array>
<phys.segment no.> <array>

136.03

THE N500M MONITOR CALL

73B RPHSG

748 SPRNM
75B

76B TOSWP
77B RPRCC
100B RFLAG
101B SFLAG
1028 GPSGE
103B RSYSP
104B WSYSP
105B SPRIO

106B
110B

1118
1128
113B
1148
1158

1178
120B
121B

1228
123B

1248
125B
126B
1278
130B
131B
1328
133B

Read physical segment

Set process name

User SYSTEM test (skip
Send msg. to swapper
Read last message
Read process flag

Set process flag
Release ND-500 system
Read system param,
Write system param.
Set priority

Link to process
Write physical segment

Start process log one
Stop logging

Read log info
Release log facility
Start log all active
processes

Abort process

Set output device
Read from swapper
process' data memory

Logout process

163

<phys.segment no.> <address>
<no. of bytes> <array>
<process name>

if SYSTEM)

<record>

<process no.> <record>
<process no.> <flag>
<process no.> <flag>

<parameter array>

<parameter array>

<ND-100 monitor call priority>
<max percent of ND-100 CPU time>
<process no.>

<segm no.> <ND-500 address>

<no. of bytes> <data area>
<process no.>

<data area>

<process no.>
<unit>

<no. of bytes> <ND-500 address>
<data area> <no. of bytes read>
<process no>

Release all memory reserved by this process

through function RESER
Start moncall log
Print moncall log

(61B) .

<array of 1K 16 bit words>

Stop/release moncall log

Define standard domain
Place standard domain
Delete standard domain
List standard domain
List execution queue

<array>
<name>
<name>

ND-60.136.03

164 ‘
THE N500M MONITOR CALL

ND-60.136.03

165
DESCRIPTION FILE LAYOUT

11. DESCRIPTION FILE LAYOUT

This chapter will give an overview over the information stored in the
description file. It is meant to be a general presentation, and does
not pretend to give a complete description. The format of the
information in the description file may be slightly modified in later
versions of NLL and the Monitor, but the main structure is fixed.

The description file contains all
necessary information about processes,
domains and segments created by the user
owning the description file. Each

process, domain and segment has its own
PROCESS entry in the file. This means that each
ENTRIES new segment opened, linked or indirectly

linked will be assigned an entry in the
description file. When a segment is

DOMAIN deleted, the corresponding segment entry

ENTRIES is removed, ie. 1linked out of the
segment link of a domain.

SEGMENT The description file is an indexed file.

ENTRIES It can therefore be expanded dynamically

when new segments are created and
segment entries reserved. The size of

the process and domain entry area in the
SYMBOL file is fixed, in order to speed the
ENTRIES search for a new domain number.
‘ﬂz’“-' In addition to the three major

information blocks shown in the figure
to the left are miscellaneous
information, such as a list of the users
auto-load files and the name of the
Monitor. This information is stored in
gaps between the major blocks.

ND-60.136.03

166
DESCRIPTION FILE LAYOQUT

Process entry - size: 1 byte

{] Domain number of the first domain
in the process (1 byte)

Domain entry - size: 56 bytes

[SEGLINK] Link location for the first segment
in the domain (4 bytes)

{DNAME] Domain name (16 bytes)

[CHILDDOMAINS] Numbers of the child domains of which
this domain is the mother (6 bytes)

[MOTHER] Domain number of mother domain (1 byte)

[CHILDINDEX] First free loacation in the child
domain area (1 byte)

[PROCPRIOR] Priority (1 byte)

[FLAG] Flag bits (1 byte)

[STADR] Start address (4 bytes)

[ENABLEINT] Bit mask indicating enabled traps (4 bytes)

[THA] Trap handler address (4 bytes)

[SYSENABL] Bit mask indicating system enabled traps (4 bytes)
[PBITMAP] Bit map of used program segments (4 bytes)
[DBI'TMAP] Bit map of used data segments (4 bytes)

ND-60.136.03

DESCRIPTION FILE LAYQUT

Segment entry

[SEGLINK
[SNAME
[SEGTYPE
[COMSEGNO
[COMSBEGADDR

[COMSEGSIZE

[N10OSEGNO
[PLOG
[DLOG
[HDDINDEX

[PLB
[PSIZE

[DLB

[DSIZE
[DEBUGINFO
[DLINKDATE
[ABSFIXAD

[LOWLOGFIX
[UPPLOGFIX
[MINPAGES
[MAXPAGES
[INDPLOG

[INDDLOG
[ADDSEGLINK
[INDDOMAIN
[ADDTYPE
[ADDPSEGNO
[ADDDSEGNO
[INDPSEGNO
[INDDSEGNO

[LINKDATE

e et d e bed

et v et bd d e

- size: 192 bytes

Link to next segment in the domain (4 bytes)
Segment name (directory:user)filename (54 bytes)
Flags indicating type of segment (4 bytes)
Number of shared Sintran III segments (2 bytes)
Array containing logical address of all

shared Sintran III segments within the

data segment (10 bytes)

Array containing the size of all

shared Sintran III segments (5 bytes)

Array of actual Sintran III segments (5 bytes)
Logical number of this program segment (5 bits)
Logical number of this data segment (5 bits)
No of 1link, indirect and common segments

from other domains to this user (3 bits)
Logical low bound for program segment (4 bytes)
Size in bytes of program segment (4 bytes)
Logical low bound for data segment (4 bytes)
Size in bytes of data segment (4 bytes)

Size of debug info on the :LINK file (4 bytes)

Last date written when segment was linked (4 bytes)

Address if the segment should be fixed

in absolute address in memory (2 bytes)
Lower page no. in fixed area (2 bytes)
Upper page no. in fixed area (2 bytes)
Minimum number of pages in memory (2 bytes)
Maximum number of pages in memory (2 bytes)
Logical program segment number

in indirect domain (5 bits)

Logical data segment number

in indirect domain (5 bits)

Pointer to linked/common/indirect segment
from other domains of the same user (4 bytes)
Domain no of the indirect domain (1 byte)
Type of this segment (2 bits)

167

Logical program segment no within this domain (5 bits)

Logical data segment no within this domain (5 bits)

Logical program segment no within
indirect domain (5 bits)

Logical data segment no within
indirect domain (5 bits)

Last date written when linking took place (4 bytes)

The fields from ADDSHGLINK to LINKDATE occur 5 times.

ND-60.136.03

168
DESCRIPTION FILE LAYOUT

Symbol entry - size: variable

[ELINK] Link to next symbol in link (4 bytes)
[SL] Length of symbol (1 byte)
[NLE] Numeric length (3 bits)
[OPER] Operation type (+, =, *, /) upon this symbol
[IDENT] Language code (1 byte)
(oW 1 Type of symbol (see below) (1 byte)
(VAL] Value of symbol (4 bytes)
[SIZE] Size of common block (4 bytes)
[SS] Symbol name (max 255 bytes)
N bits:
Bit no Name Explanation
0 UDEF ‘ false = undefined element
1 DREF ' false = program memory reference
true = data memory reference
2 DSYM false = program label
true = data label
3 CLAB true = common label
4 DMPF true = symbol is written (used in list handling)
5 GLOB true = the symbol will not be deleted
when the loader table is saved
6 SELECT true = module must be loaded
7 OMIT true = module must not be loaded

ND-60.136.03

169
THE ND RELOCATABLE FORMAT

12. THE ND REIOCATABLE FORMAT

12.1. DESCRIPTION

The ND Relocatable Format (NRF) is organized as a sequence of so-
called NRF-groups where each group is composed of a control byte (5 +
3 bits) alone or followed by a varying number of trailing information
bytes. The trailing information is either a numeric field, a symbolic
field or both in a sequence;

<NRF-group>: : =<control field> <numeric field> <symbolic field>

The control field (5 bits) contains an NRF control number in the range
0-37B. The control numbers denote a set of particular loader actions.

The numeric field (N) consists of a numeric length (NL - 3 bits)
specification followed by zero to seven 8 bit bytes, as indicated by
NL.

MNumeric field>::=<numeric length><byte>... etc.

Note that the numeric field is always present although the length may
be zero (the control number + numeric length make up an 8 bit byte). A
zero numeric length may in some cases be interpreted as an "all zeros"
case of the numeric field.

The numeric field is signed, with negative values in 2's complement
form.

If a numeric field is present where it has no meaning, the number of
bytes specified in the NL field are read and ignored.

The symbolic field (S) consists of a symbol length (8 bits) followed
by 1-255 characters which constitute the symbol. Each character is
represented in 8 bit ASCII code with the parity bit cleared. All
characters are valid, including non-printing control characters. For
two symbols to be equal, both the length and all characters must be
equal.

<Symbol field>::=<symbol length><chl>... etc.

The symbolic field is valid only in a subset of control codes.

5 bits 3 bits 0:7 bytes 1 byte 0:255 bytes
control | numeric mumeric | ... symbol symbol l
field length value length value
| - - - numeric field - - - | | - - symbol field - - - |

| - control byte - -|

ND-60.136.03

170
THE ND RELOCATABLE FORMAT

In NIL there are two major byte pointers: the program byte pointer
(PP) and the data byte pointer (DP). These byte pointers will normally
point at the next "free" byte address in the program- and data-areas,
and may be referenced during the loading session as #PCIC and #DCIC.

The size of an address is termed the address length, ADL, and is
determined by the third byte in the information trailing the BEG
control byte,

The byte pointer (BP) may be "coupled" to PP, DP or a "free" pointer
(XP) by the control numbers PMO, IMO, and FMO. The "free" mode is
useful when there is a need for modification of previously loaded
information. For this mode neither PP nor DP are affected or changed.
The "free" mode is reset by either PMO or IMO. Initially - after a BEG
control number - the mode is PMO.

12.2. NRF control numbers

NUL O Ignored by NLL if numeric length 1is also 0. A non-zero
numeric length is illegal.

BEG 1 A program system is composed of one or more modules. The BEG
control number signifies the start of a module. Examples of
modules are:

a) the outermost MODULE/ENDMODULE of Planc
b) PROGRAM/END, SUBROUTINE/END and FUNCTION/END of Fortran

The first byte of the trailing numeric field contains the
real-time priority, the second contains the language code:
ASSEMBLY=0, FORTRAN=1, PLANC=2, COBOL=3, PASCAL=4. The third
byte contains the address length (ADL), default value is 4.
Before an NRF module is loaded, the load address is adjusted
upwards to a multiple of the address length. This applies to
both the program byte pointer and the data byte pointer.

When a BEG control nunber is loaded, subsequent loading will
be to the program segment until a IMO control number is
loaded.

END 2 End of module. The trailing bytes' information contains the
checksum in 2's complement form. The checksum is calculated
by adding the binary byte values from BEG to END, trailing
fields included, into a word, ignoring overflow. This sum is
supplied in the END numeric field. The numeric length of the
END control number specifies the size of the checksum in
bytes (default 2 bytes - 16 bits). If numeric length is 0, no
checksum test is performed.

MSA 3 Main Start BAddress. The current byte address is defined to
be the main start address of the loaded module(s). If more
than one MSA 1is loaded in the domain, a warning message is
issued, and the first defined MSA applies.

ND-60.136.03

171

THE ND RELOCATABLE FORMAT

LIB 4 The symbol in the symbol field is searched for in the loader

table. If the symbol is present and not defined (i.e. only
references exist) the rest of the module will be loaded. If
the symbol is defined or not present the rest of the module

is skipped.

When more than one LIB appears in a sequence, the module will
be loaded when at least one of the symbols is undefined. For
LIB, NL has no meaning.

DEF 5 Program Label Definition. Depending on NL this control number

DDF 10

DRF 11

RMV 12

a)

b)

is interpreted as follows:

NL=0. The symbol in the symbol field will be entered into
the loader-table with the current value of the program byte
pointer (PP).

NIA0. The symbol in the symbol field will be entered into
the loader table with the value found in the numeric field
with possible sign extensions if NL<ADL.

All previous references to the symbol will be defined.

Program Reference. The symbol in the symbol field will be
referenced in the address which corresponds to the current
byte pointer in either program or data memory. When NL=0 the
symbol value will occupy the next ADL bytes (one word). When
NI40 the symbol value will occupy the NL next bytes.

BP will be incremented by NL (ADL if NL=0), to make room for
later insertion of the symbol value. NI4ADL or 0 must be used
with care due to possible overflow bits which are lost (if
the symbol value is greater than can be held in NL bytes).

When the symbol is defined, the sum of the numeric value in
the REF group and the symbol value will be inserted in the NL
bytes where the REF control number occurred.

Similar to REF if the symbol is already defined when the LRF
control number is loaded. The value zero will be stored into
the reference/byte(s) when either

a) the symbol is undefined (references only), or

b) the symbol is not present.

Data Label Definition. Similar to DEF but applies to data-
memory and current data byte pointer (DP).

Data Label Reference. Similar to REF, but applies to data-
labels.

Remove Symbol. The symbol in the symbol field is removed from
the loader table. This directive is used to prevent the
loader from overflowing, and by language processors to avoid
name conflicts between local labels in different modules,
used within the module only.

ND-60.136.03

172

AJS

Mo

™o

F™MO

LDT

APA

ADA

THB

13

14

15

16

17

20

21

22

23

24

25

26

THE ND RELOCATABLE FORMAT

Set Ioad Address. The current byte pointer will be set to the
contents of the numeric field. If the symbol length is non-
zero, the symbol value will be added. The load-mode (program
or data-mode) is unaltered

Adjust. The current byte-pointer will be adjusted with the
(signed) number contained in the numeric field. If the symbol
length is non-zero the symbol value will be added. The load
mode (program or data-mode) is unaltered.

Set program mode. The program byte pointer (PP) will be set
to the current value + the (signed) number in the numeric
field.

Set data mode. The data-byte-pointer (DP) will be set to the
current value + the (signed) number in the numeric field.

Set "free" mode. The current byte pointer + the (signed)
number in the numeric field will be moved to the "free" byte
pointer. Loading will be to the data or program segment
determined by the current mode when the FMO control number is
read. If the symbol field is filled (S#0) the symbol value
will be used instead of the current byte pointer. The
program— and data pointers (PP and DP) are left unmodified
and the loading may be resumed from PP or DP by using PMO or
DMO.

Repeat. The subsequent NRF-group will be repeated the number
of times specified in the numeric field. If the next group is
a compound group, the entire compound group will be repeated
the specified number of times.

Load immediately. The NL trailing bytes will be stored into
the NL next bytes according to the current byte pointer. The
current byte pointer will be incremented by NL.

Add immediately. The value of the numeric field is added into
the NL next bytes according to the current byte pointer. The
current byte pointer will be incremented by NL.

Add program address. The program byte pointer (PP) value +
the number in the numeric field is stored into the next word
(ADL bytes). The current byte pointer will be incremented by
ADL,

Add data address. The data byte pointer (DP) value + the
number in the numeric field is stored into the next word (ADL
bytes) . The current byte pointer will be incremented by ADL.

Execution inhibit. The NRF is incomplete due to errors during
the compilation phase.

End of file. End of NRF file.

ND-60.136.03

173

THE ND RELOCATABLE FORMAT

DBG

27

30

31

Debug. Start/stop of debug information. NLL will copy the
information between two DBG control numbers to the :LINK file
rather than to the :PSHG and :DSEG files. This information is
used by the Symbolic Debugger.

Library module bytepointer. The library module in the
symbolic field which begins in the byte address in the
numeric field will be loaded if the symbol is present in the
loader table, but undefined. This may increase the speed of
library loading considerably.

Message. The ASCII string in the symbolic field is printed on
the output device. The string is printed only if the MSG
control number is actually loaded. A MSG control number in a
library file not within an NRF module will not be printed
unless it is located ahead of the address table in the file.
If it is located within a module, it will be printed only if
that module is actually loaded. The numeric field is ignored
if present.

MIS 32 Miscellaneous. Sub control number in the numeric field.

COGRO 0 Start of comound group. Compound groups are used
mainly in connection with the REP control number. Any
sequence of control numbers may follow, up to the next
MIS CGRl1 control number. Compound groups may be
nested to any level.

OGR1 1 End of compound group. If compound groups are nested,
only the innermost nest is terminated; each level of
nesting requires a matching OGRI.

ADD 2 The value of the next referenced symbol (REF, LFR or
DRF control byte is added to the location pointed to
by the current byte pointer. The size of the numerical
values to be added is determined by the numerical
length (NL) of the reference.

The current byte pointer should point to an already
loaded value; usually "free mode" (FMO control byte)
will be effective, in order to set the byte pointer
appropriately. The next referenced symbol must be
defined prior to the reference (but need not
immediately follow the ADD control byte), otherwise
the ADD control byte has no effect. There is no
distinction between RFEF, LRF and DRF references.

SUB 3 The value of the next referenced symbol will be
subtracted from the location at the current load
address. Otherwise, it acts as ADD.

MUL 4 The wvalue in the current load address will be

multiplied by the next referenced symbol. Otherwise,
it acts as ADD.

ND-60.136.03

174
THE ND RELOCATABLE FORMAT

DIV 5 The value in the current load address will be divided
by the next referenced symbol. Otherwise, it acts as
ADD,

IDN 33 Load immediately the number of bytes found in the numeric
field.

> 33 Illegal control number.

ND-60.136.03

175

THE ND RELOCATABLE FORMAT

Ignored by NLL if NL=0, otherwise illegal
Start of module, priority, language,

Conditional load. Load if S undef but referenced
Program label definition (BP=:(S) or NV=:(S))
Prog ref. BP+NL=:BP, if NL=0 then ADL=:NL
Reference if S defined, otherwise 0 (BP+ADL=:BP)

Set load address (NV=:BP), mode unaltered
Adjust byte-pointer (BPNV=:BP), mode unaltered

Free mode ({(S)+NV=:BP or BP+NV=:BP)
Load immediately NV=: (BP:BP+NL), BP+NL=:BP

(BP: BPHNL) + (NV) =: (BP:BP-!-NL) , BP+NL~=:BP
Add program address. PP : (BP: BP+NL) ,BP+ADL~:BP)
Add data address. DPHNV=: (BP BP+NL) ,BP+ADL=-BP)

Library module bytepointer. Module where S is
defined starts at byte NV in NRF file.

S is printed on terminal during loading
Miscellaneous (sub control no in numeric field):

GCRO=0 Start of compound group
SUB =3 Subtract referenced value

MUL =4 Multiply by referenced value
DIV =5 Divide by referenced value

12.3. Summary of NRF control numbers
ADL = address length
BP = current byte pointer
NL = numeric length
NV = numeric value
Control Trailing Comment
no info
NUL=0
BEG=1 N
address alignment (ADL)
END=2 N End of module,checksum
MSA=3 N Main start address is at BPHNV
LIB=4 N,S
DEF=5 N,S
DEF=6 N,S
LRF=7 N,S
DDF=10 N,S Data-label definition
DRF=11 N,S Data-label reference
RMV=12 N,S Remove symbol S
SLA=13 N,S
AJS=14 N,S
PMO=15 N Program mode (PP+NV=:BP)
DMO=16 N Data mode (DP+NV=:BP)
FMO=17 N,S
REP=20 N Repeat next group NV times
LDI=21 N
ADI=22 N Add immediately
APA=23 N
ADA=24 N
IHB=25 N Run inhibit (compiler errors)
BOF=26 N End of NRF file
DBG=27 N Start/stop debug information
LBB=30 N,S
MSG=31 N,S
MIS=32 N
GCR1=1 End of compound group
ADD =2 Add referenced value
LDN=33 N

Inad NV bytes immediately following

ND-60.136.03

176
LINKAGE-IOADER ERROR MESSAGES

13. LINKAGE-IOADER ERROR MESSAGES

ALRFADY DEFINED

A shared ND-100 segment or RICOMMON was already defined.

AMBIGUOUS CQMMAND

An abbreviated command has several possible matches.

ATTEMPT TO CREATE TOO MANY SCRATCH-SEGMENTS IN SCRATCH-DOMAIN

No more than 31 scratch segments are allowed in SCRATCH-DOMAIN.

ATTEMPT TO CREATE TOO MANY SEGMENTS IN THIS DOMAIN

A domain may contain no more than 31 segments.

CHECKSUM ERROR

Due to hardware or software errors the checksum supplied in the
numeric field of the END group does not match the checksum calculated
by NLL.

DATA AREA FULL

The load address specified in the HIGH-ADDRESS command has been
reached in the data segment.

DCMAIN ALREADY EXISTS

A domain name specified in double quotes in the SET-DOMAIN command
already exists in the description file of the current user. If any
loading to (new or existing) segments in the existing domain should be
done, repeat the command with the domain name unquoted. Otherwise
specify a different name for the domain.

ERROR IN INITIALIZING THE DESCRIPTION FILE

This error may occur the first time NLL is used, and may indicate a
hardware or file system error (e.g. lack of sufficient space). If no
explanation for the error is found, please report to Norsk Data.

ND-60.136.03

177
LINKAGE-IOADER ERROR MESSAGES

ERROR IN OPENING RTFIL

The Sintran III file system error message will indicate the reason why
(SYSTEM) RTFIL:DATA cannot be opened during a LINK-RT-PROGRAM or MATCH-
COMMON-RT-SEGMENT command. Appropriate action must be taken according
to the file system error message.

FATAL ERROR

If this error occurs, please report to Norsk Data, preferably with a
copy of the description file at the time of the error and an as
complete as possible list of commands executed prior to the error. The
contents of the description file may be invalid, and no further
loading should be performed without rebuilding the description file.
Be aware that this will destroy all information about previously
loaded segments.

ILLEGAL ATTRIBUTE CODE

An attribute code unknown to NLL was encountered in an OPEN-SEGMENT or
COVMON-SEGMENT-OPEN command.

TLLEGAL CHARACTER IN PARAMETER

The rules of the Sintran III file system apply to segment names, i.e.
a name may consist of alphanumerics and hyphens. In general, the same
rules apply to domain. Either a non-alphanumeric/hyphen character was
encountered in a name, or a double quote indicating a new name was not
matched by another. Where user names may be specified, mismatching
parentheses may also be a source of this error.

ILLEGAL CONTROL BYTE

An NRF control number larger than 32B, or zero with a non-zero N
field, was encountered in an NRF file.

ILLHGAL TRAP MNEMONIC

The trap name specified in either SYSTEM-TRAP-ENABLE, LOCAL~TRAP-
ENABLE, SYSTEM-TRAP-DISABLE or LOCAIL~TRAP-DISABLE was not one of the
names in the table on page 84.

INSUFFICIENTLY COMPILED PROGRAM

An TIHB control number (250B) was encountered in an NRF file,
indicating that errors occurred during program compilation.

ND-60.136.03

178
LINKAGE-LOADER ERROR MESSAGES

LOADER TABLE OVERFLOW

Too many labels have been defined. The segment must be reloaded, and
before the loader table overflows, the entries that are no longer
needed should be removed with the KILL-ENTRIES command. Alternatively,
the loading may be terminated prematurely with CLOSE-SEGMENT (ignoring
the error message - the command must be specified twice), and
restarted with APPEND-SEGMENT.

NO MORE AUTO-IOAD-FILE BUFFER-SPACE AVAIIARLE

A maximum of six auto-load files may be specified by each user.

NO MORE DOMAINS AVAILABLE FOR THIS USER

The description file can hold a maximum of 256 domains.

NO SUCH (AMBIGUOUS) DOMAIN ON THE SPECIFIED USER

Either the domain name is not registered in the description file, or
more than one domain has a name that matches the specified one.

NO SUCH (AMBIGUQUS) SEGMENT IN THIS DOMAIN

Either the segment is not registered in the current domain, or more
than one segment has a name that matches the specified one.

NO SUCH OOMMAND

The command is not known to NLL. Check the list of available commands
with the HELP command.

NO SUCH MODULE

A module identifier specified was not found in the specified file in
one of the NRF editor commands DELETE-NRF- LIST-NRF-CODE,
FETCH-NRF-MODULES , WRITE-NRF-BEOF-AFTER-MODULE or INSERT-NRF-MESSAGE.

NOT DELETE ACCESS

It is not legal to delete processes, domains or segments in other than
the current user's description file. No prefixes (directory or user
name) are allowed.

ND-60.136.03

' 179
LINKAGE-LOADER ERROR MESSAGES

NOT IMPLEMENTED

A command available only in the multisegment version of the Linkage-
Loader was attempted executed in the single segment version.

NOT IN THE LOADER TABLE

The label specified in the VALUE-ENTRY command has not been loaded or
defined since NIL was entered, or it has been killed with the KILI~
ENTRIES command, or it has been deleted from the loader table
implicitly at an CLOSE-SEGMENT or END-DOMAIN.

NOT LINK ACCESS

The list of segments in the LINK-SHGMENT command includes one or more
segments declared without link access. This means that the segment is
either

- opened without shared program segment (P attribute)

-~ opened without shared data segment (D attribute)

- part of another domain but have linked segments, or

- not opened with random read access from this user.

NOT OCTAL NUMBER

NLL expected an octal number, and a number containing 8 or 9, or non-
numer ic characters, was entered.

PROGRAM ARFA FULL

The load address specified in the HIGH-ADDRESS command has been
reached in the program segment.

<file name> RESERVED BY ANOTHER USER

One or more of the files involved in a SET-DOMAIN command is currently
being loaded or opened from another terminal or a batch process. To
avoid inconsistencies NLL does not allow loading in a domain while it
is being used by others.

ROUTINE VECTOR TOO SMALL

Insufficient space for routine labels was reserved by the INTRY-
ROUTINES command. The segment must be cleared and reloaded after
executing ENTRY-ROUTINES with a higher <number of entries>.

ND-60.136.03

180
LINKAGE-IOADER ERROR MESSAGES

SHGMENT ALREADY EXISTS

A segment name specified in double quotes in the OPEN-SHGMENT command
already exists in the description file of the current user (segment
names must be unique in the description file, even if they belong in
different domains). If extensions to the existing domain should be
made, use the APPEND-SEGMENT command. If the old contents should be
replaced with new code, use the OPEN-SEGMENT command with the segment
name unquoted. If the existing information should be kept unmodified,
re-issue the command with a different (quoted) segment name.

SEGMENT NOT AVAILAEBLE OR AMBIGUOUS (OPEN-FILE FAILED)

The segment name specified in the OPEN-SEGMENT, APPEND-SEGMENT, LINK-
SEGMENT, COMMON-SEGMENT-OPEN or CCMMON-SEGMENT-APPEND command either
does not exist or its name was abbreviated too much, or that for some
other reason NLL did not succeed in opening one or more of the files
affected by the last command.

*** SPRCTAL USER BREAK ***

The 'escape' key was depressed on the terminal, interrupting any
ongoing activity in NLL.

THIS COMMAND SHOULD BE DONE BEFORE LINKING

After a segment has been linked to other segments, the APPEND-SEGMENT
may not be executed.

THIS COMMAND SHOULD BE DONE BEFORE LOADING

The ENTRY-ROUTINES command may not be performed after ‘code has been
loaded, as this code may be overwritten if a routine vector is built.

UNDEFINED SYMBOL

A parameter to a command was specified by a symbolic value unknown to
NLL. Use LIST-ENTRIES-DEFINED to check which symbols are defined.

WARNING: LAST COMMAND WAS NOT EXHCUTED

This message occurs after another error message, referring to an
illegal operation.

WARNING: MODULE INDEX-TABLE IS NOT CORRECT

The address table of an NRF library file has been invalidated by an
NRF editor command. The address table can be rebuilt by a PREPARE-NRF-
LIBRARY-FILE command. If the address table is invalidated, the file
will be loaded, but a sequential scan of the entire file is required.

ND-60.136.03

181
LINKAGE-IOADER ERROR MESSAGES

SEGMENT HAS ALREADY LINKED SEGMENTS

To correct this situation, the segment which is trying to be 1linked
must be loaded again without any linked segments. If the linking is

done from another user, the segment must be deleted (DELETE-SEGMENT)
before a new linking is tried.

LOGICAL SEGMENT NUMBER ALREADY USED

If it is absolutely necessary that this segment has the specified
segment number (as in LINK-SHGMENT to a global library segment), the
segment which has this number should be deleted and loaded again with
another segment number (SET-SBEGMENT-NUMEER) .

ND-60.136.03

182
ND-500 MONITOR ERROR MESSAGES

14. ND-500 MONITOR ERROR MESSAGFS

ADDRESS QUTSIDE FILE LIMITS IN DIRECT TRANSFER

This error message is returned from file access monitor calls to files
opened in mode 8 or 9 (direct transfer), error code 1010B. The entire
area to be transferred must be within the file.

ADDRESS OUTSIDE PROGRAM SEGMENT

ADDRESS QUTSIDE DATA SEGMENT

These errors are usually the result of an error in a user program,
causing an address to exceed the size of the program or data segment.
Usually, the address referenced can be found by using the LOOK-AT
commands after the program has error terminated, inspecting the
program instructions immediately preceeding the location pointed to by
the P register. Common causes of this error are indexing errors or
careless use of equivalenced variables.

ALWAYS SYSTEM ENABLED

An attempt was made to modify a fatal trap condition by the IOCAL~
TRAP-ENABLE command.

AMBIGDXOUS COMMAND

An abbreviated command has several possible matches.

AMBIGUQUS PARAMETER

A parameter has several possible matches. Reissue the command with
HELP as "parameter" in order to have the 1list of 1legal parameters
printed on the output device.

BIT NOT MODIFIABLE

A trap condition specified in a IOCAL-TRAP-ENABLE command may not be
local enabled or disabled. This applies to fatal and non-ignorable
trap conditions.

ND-60.136.03

183
ND-500 MONITOR ERROR MESSAGES

BLOCK ADDRESS NOT MODUIO SECTOR SIZE IN DIRHCT TRANSFER

This error message is returned from monitor calls to files opened in
mode 8, 10 or 11 (direct transfer), error code 1011B, The limitations
in accessing files opened in this mode are discussed in chapter 8.4.

BOTTOM OF STACK

Wwhile in the IOOK-AT-STACK command, the stack area displayed was that
of the main program when the PREVIOUS subcommand was executed.

BREAK AT

Debug message, indicating that a user defined breakpoint was
encountered. The Monitor halts and awaits further commands.

BUFFER FULL

One of the internal buffers used in expanding the macro over flowed.
Simplifying the macro or using less extensive parameter substitution
may help avoid the problem.

BYTHCOUNT NOT MODULO SECTOR SIZE IN DIRHCT TRANSFER

This error is returned from monitor calls to files opened in mode 8 or
9 (direct transfer), error code 1007B. The limitations in file
addressing with direct transfer files are discussed in chapter 8.4..

BYTE POINTER NOT MODULO SECTOR SIZE IN DIRECT TRANSFER

This error is returned from monitor calls to files opened in mode 8 or
9 (direct transfer), error code 1016B. If the byte pointer is
explicitly modified (through the SETBT monitor call, MON 74) on files
opened with direct transfer, care should be taken that the
limitiations discussed in chapter 8.4. are respected.

CONTROL STORE NOT SUCCESSFULLY LOADED

After a LOAD-CONTROL~STORE command the first 100 words of the micro-
program store were compared to the file from which it was loaded, and
an unequality found.

CURRENT MACRO ABORTED

A program signalled an error exit through monitor call MACROE (MON
400), or a trap condition not handled locally occurred. The current
macro is aborted, but the macro calling the current one is continued,
as if the IF-ERROR-MACRO-STOP command has been executed.

ND-60.136.03

184
ND-500 MONITOR ERROR MESSAGES

DC ACCESS NOT LEGAL ON MAG.TAPE

This error is returned from the OPEN monitor call (MON 50) when
attempting to open a file with open mode 9 (direct transfer, file
closed), error code 1014B. Magnetic tape files may be accessed in open
mode 8 (direct transfer), but the file must be open during the
transfer.

DEF INF-MEMORY-CONFIG. COMMAND IS REQUIRED

The Monitor needs information about the physical memory before any
operation in the ND-500 is attempted. This information is lost after a
YHENT system restart.

DEPOSIT NOT PERMITTED

The PERMIT-DEPOSIT command must be executed prior to a modification of
memory or a register.

DIFFERENT PROGRAM TRACE FOUND AT nnnnn

Will be issued during execution of a BRANCH-TRACE or CALI~-TRAXCE
command with <mode> equal to OMPARE, when there are differences
between the previously dumped trace and the current run.

ERROR IN LINKING TO RTCOMMON

This message is issued after a PLACE-DOMAIN or RECOVER-DOMAIN together
with a second error message specifying what kind of error was
discovered. Usually, the reason for the error is a modification of
RTCOMMON from the time the domain was loaded to execution time.

ERROR IN MACRO

A syntax error was discovered in a submitted macro.

ERROR IN MEMORY CONFIGURATION

The Monitor has detected discrepancies between the memory
configuration specified and the location of physical memory accessible
to ND~500. Reissue the DEFINE-MEMORY-CONFIGURATION command with the
correct parameter.

ERROR IN MONITOR CALL

This error message is returned after certain monitor calls, error code
1003B, and indicates an unclassified error from the Sintran III
operating system. The cause may be either internal errors in the
monitor call routine or errors in the parameters that could not be

ND-60.136.03

185
ND-500 MONITOR ERROR MESSAGES

classified otherwise.

FATAL ERROR FROM MICROPROGRAM

This indicates an internal error in the ND-500 microprogram that
should be reported to Norsk Data.

FATAL PIT-0 ERROR. ERROR OODE: nnnn

This indicates an error in the operating system that should be
reported to Norsk Data with as many details as possible about the
system status at the time of the error.

FATAL ERROR FRCM SWAPPER

This is an internal error in the swapper process, and the error should
be reported to Norsk Data.

FILE IS NEITHER CONTIGUOUS NOR MAG. TAPE.

If a file is opened with direct transfer, open mode 8 or 9, the file
must be either contiguous or a magnetic tape file. This error is
returned as error code 1001B from the nonitor call OPEN (MON 50). The
file can be read if another open mode is selected.

FIXED SEHGMENT HAS NO PAGES IN MEMORY

This is an internal error that should be reported to Norsk Data. The

segment number specified in the message refers to a ND-100 segment
number .

ND-60.136.03

186
ND-500 MONITOR ERROR MESSAGES

HARDWARE STATUS ERROR IN DIRECT TRANSFER

This error message 1is returned from monitor calls using direct
transfer, error code 1012B, indicating that the transfer did not
complete successfully.

HISTOGRAM ALREADY IN USE

Only one user at a time may use the histogram facility for performance
measurement. Until the user currently using the histogram buffer
executes a RELEASE-HISTOGRAM, no other user may execute a SET-
HISTOGRAM,

HISTOGRAM NOT USED BY YQU

The PRINT-HISTOGRAM, START-HISTOGRAM and STOP-~-HISTOGRAM commands may
be used only by the user who has reserved the histogram buffer.

ILLEGAL ADDRESS

The address specified in a LOOK~-AT-command was outside the program or
data segment.

The error may also be returned from the N500M monitor call (MON 60),

indicating errors in the parameters. If no explanation for the error
is found, please report to Norsk Data.

ILLEGAL CHARACTER

The rules of the Sintran III file system apply to segment names, i.e.
a name may consist of alphanumerics and hyphens. In general, the same
rule applies to domain and process names. Either a non-
alphanumeric/hyphen character was encountered in a name, or a double
quote indicating a new name was not matched by another. Where user
names may be specified, mismatching parentheses may also be a source
of this error.

ILLEGAL FILE NUMBER IN LOAD

Error message after executing the N500M monitor call (MON 60). If the
application program uses NS500M, the parameters should be checked.
Otherwise, this indicates an internal error that should be reported to
Norsk Data.

TLLEGAL FORMAT

8 or 9 was encountered in an octal number, or non-numeric characters
in an octal, decimal or hexadecimal number (for hexadecimal, A:F are
legal).

ND-60.136.03

187
ND-500 MONITOR ERROR MESSAGES

TLLEGAL, FUNCTION CODE IN MON 60

Check the list of valid function codes in chapter 10 against the
location pointed to by the ND-100 A register. If this monitor call was
not used by the application program, the error message indicates an
error in the Monitor that should be reported to Norsk Data.

ILLHGAL FUNCTION IN MON 61

The MON 61 call (FIXC5) is not normally used by application programs,
and the error message indicates an error in the Monitor that should be
reported to Norsk Data. The available functions will at a future time
be documented in the Sintran III Reference Manual ND-60.128 for
programmers who want to use this call.

ILLEGAL LOGICAL SHGMENT TYPE

Normally this indicates an internal error that should be reported to
Norsk Data. If the user calls N500M (MON 60), the parameters may be
erroneous.

ILLEGAL MICRO FUNCTION

This is an internal error message from the operating system or the
ND-500 driver, that should be reported to Norsk Data.

ILLEGAL MONTIOR CALIL NUMBER

This error message is returned from monitor calls from the ND-500,
error code 1013B, and compares to the similar error message in ND-100.

ILLEGAL REGISTER NUMEBER

The number specified in the N500M monitor call (MON 60) indicating a
register, was outside the range allowed. This error should normally
not occur if the application program does not use N500M, and should be
reported to Norsk Data. If the application program uses N500M the
arguments should be checked.

ILLFGAL PARAMETER

Many commands, e.g. MAIN-FORMAT, take only a limited set of different
parameters. This error message indicates that a parameter not in the
valid set was specified. Reissuing the command and giving the
"parameter" HELP will cause the list of valid parameters to be listed
on the output device.

ND-60.136.03

188
ND-500 MONITOR ERROR MESSAGES

TLLEGAL STATUS IN MESSAGE TO ND-500

This is an internal error message from the ND-500 driver that should
be reported to Norsk Data.

ILLEGAL STOP REASON

This indicates an internal error in the WND-500 microprogram. Please
report to Norsk Data. “

INDIRECT NOT POSSIBLE

The "/" (indirect) subcommand in the LOOK-AT-commands is valid only
when main format is word, as all addresseses are words and no
reasonable interpretation can be applied to byte or halfword
addresses.

INSUFFICIENTLY LOADED DCMAIN

A RECOVER-DOMAIN or PLACE-DCOMAIN command was executed on a domain
which still has undefined references or is not 1linked to the
appropriate link segments.

LAST BREAK NOT FOUND

The last execution halt was not due to a breakpoint set by the BREAK
command.

LI, AND HL, CHANGED

This message is a warning only, indicating that previous use of the LL
and HL registers for debugging purposes will no longer have any
effect. It is issued when another command using the II and HL
registers is given (TRACE and GUARD commands) .

LOGGING FACILITY ALREADY RESERVED

Another user has already reserved the logg buffer for either
histogram—commands or log-commands. The user having the buffer
reserved must execute the RELEASE-IOG-BUFFER oOr RELEASE-HISTOGRAM
command or interrupt the SWAPPING-IOG by pressing the escape key
before another user can use the log commands.

LOGGING FACILITY NOT RESERVED BY YQU

The PRINT-PROCESS-LOG and RELFASE-IOG-BUFFER commands are valid only
after the log buffer has been reserved for te current user through the
START-PROCESS-LOG-ALL or the START-PROCESS-LOG-ONE command.

ND-60.136.03

189
ND-500 MONITOR ERROR MESSAGES

MACRO STACK ERROR

Macro calls were too deeply nested or recursive. The problem will
usually be avoided by breaking down a complicated call sequence into a
simpler one, with fewer levels. If the error persists, contact Norsk
Data and keep a listing of all macros in use when the error occurred.

MACRO(S) ABORTED

A program signalled an error exit through monitor call MACROE (MON
400), or a trap condition not handled locally occurred. The current
macro including the macro(s) calling the current one, is aborted, as
if the IF-ERROR-FULL-STOP command has been executed.

MEMORY NOT AVAILABLE FOR ND-500 SEGMENT

If an explicit request for memory allocation was issued, the request
could not be satisfied. This occurs when segments are shared with ND-
100 or RTCCMMON.

ND-500 DMA ERROR

A hardware error has occured in the IMA transfer to or from the
ND-500. Consult the system supervisor; or if the error persists, call
Norsk Data.

ND—-500 INTERFACE ERROR

A hardware error has occured in the ND-100/ND-500 interface. Consult
the system supervisor; or if the error persists, call Norsk Data.

ND-500 OPEN FILE TABLE FOR DIRECT TRANSFER IS FULL

This error message is returned from the OPEN monitor call (MON 50),
error code 1002B. The message indicates that the number of files
opened with open mode 8 or 9, direct transfer, exceeds the maximum
determined at system generation time. If there is room in the open
file table for files opened with other access modi, one or more of the
direct transfer files may be accessed in other modi, otherwise the
number of concurrently opened files must be reduced.

ND-500 OPEN FILE TABLE IS FULL

This error message is returned from the OPEN monitor call (MON 50),
error code 1000B. The message indicates that the total number of files
open exceeds the allowed maximum. The limit is a system generation
parameter, and sets a limit on the number of files opened with DC
access (open mode 9). For files opened with other access modes, the
Sintran III limitation of 16 files still applies.

ND-60.136.03

190
ND-500 MONITOR ERROR MESSAGES

ND-500 POWER FAIL

A power failure response was received from the ND-500 interface,
indicating that power has not been turned on to ND-500, or some
serious hardware problem has occurred.

ND-500 RESERVED FOR SPECIAL USE

The SET-ND-500-UNAVAILARLE command has been issued. Other users will
have to wait until the SET-ND-500-AVAIIABLE command is issued.

ND-500 STOPPED

The microprogram in the ND-500 is not running, and must be restarted
by the system supervisor before any programs can be run.

ND-500 TIMEOUT

The ND-500 computer does not respond to requests from ND-100. Consult
the system supervisor; if the error persists, call Norsk Data.

NO FREE PHYSICAL SEGMENT

The pool of physical segments is empty, and the job has to be run when
the load on the system is lower. The number of physical segments is a
system generation parameter.

NO FREE SWAP FILE ENTRY

The Monitor has run out of table space for the swap file entries, and
the job must be rerun when the load on the system is lower. The table
space available is a system generation parameter.

NO MEMCRY AVAILABLE FOR ND-500 BUFFERS

There is no memory available for ND-500 buffers in memory bank 0-3
(each process needs 1K 16 bit words). Consult the system supervisor.

NO MORE BUFFER AREA

The number of macros, breakpoints and other debug commands requiring
information to be kept in memory is exceedingly large. The most common
cause for this error message is a "wild" recursive macro call
generating temporary macros or breakpoints. If this is not the case,
some macros must be deleted by ERASE-MACRO or breaks reset by RESET-
BREAKS.

ND-60.136.03

191
ND-500 MONITOR ERROR MESSAGES

NO ND-500 PROCESS AVAILABLE

When an ND-500 job is submitted, a free process is allocated from a
pool of available processes. This error message indicates that the
pool is empty, and the job cannot start until a process is freed. The
number of processes is a system generation parameter, and may be less
than the number of terminals in the system, which means that not all
terminals can run ND-500 jobs at the same time.

NO PAGE AVAITABLE FOR THE CONTEXT BLOCK

It is impossible to allocate memory to the ND-500 context blocks and
segment table. This 1is caused either by an error in the memory
configuration or because no free memory for ND-500. This error occurs
only when the ND-500 is initially started or after a reconfiguring of
memory.

NO RTCQMMON DEFINED

References have been made to the RICOMMON area, which is non-existent
on the machine. NLI, will not allow references to RICOMMON if it not
defined, but a modification of the size or removal of RICOMMON between
the time of loading and execution time will cause errors to occur.
Domains with references to RTCOMMON should under no circumstances be
moved to another machine.

NO SUCH CCMMAND

The command is not known to the ND-500 Monitor. Check the list of
available commands with the HELP command.

NO SUCH COMMAND OR DOMAIN

The command specified is not known to the ND-500 Monitor, and is not
found as a domain name in the description file of the current user.

NO SUCH DOMAIN

A domain name specified in a RECOVER-DOMAIN or DUMP-DOMAIN command is
unknown in the description file of the current user.

NO SUCH MACRO

The macro name specified in the EXHCUTE-MACRO command is not found in
the list of temporary macros or as a permanent :MACR file.

ND-60.136.03

192
ND-500 MONITOR ERROR MESSAGES

NO SUCH SHGMENT

An unknown segment name was specified as a parameter. If there is any
doubt with regard to which segments are available, use the NLL command
LIST-SEGMENTS, or use the Sintran III command QLIST-FILES. (Be aware,
however, that a file is not necessarily a segment file even though its
type is :PSEG or :DSHG!)

NO SWAP FILE PART AVATLABLE

The Monitor has run out of table space for swap file parts. The job
will have to be rerun after the load on the swap file has decreased.

NO WELL DEFINED PROGRAM IN MEMORY

A RUN, CONTINUE or GO command was specified before any PLACE, DEBUG-
PLACE or RECOVER-DOMAIN command was executed.

NOT EXISTING BREAKPOINT

The breakpoint number specified in RESET-BREAK is unknown to the
system.

NOT IMPLEMENTED

An attempt was made to use a feature that is not yet available in the
monitor but will be implemented at a later stage.

NOT IN SEGMENT MODE

It is not possible to switch to another LOOK-AT-command from the LOOK-
AT-PHYSICAL~SEGMENT command.

NOT REQUIRED ACCESS TO SHGMENT

One of the segments in the domain that was started or placed in memory
does not have the required file system access rights. The default
access will permit other users to execute the code on a program
segment, but not to modify it. If the data segment is ‘swapped from the
original file, the file access of the data segment must also be set to
RN (read and write) for other users to execute the domain(s)
containing the segment. The access is modified through the Sintran III
@SET-FILE-ACCESS command.

NUMERIC INPUT NOT ALLOWED IN DISASSEMBLE MODE

When in a LOOK-AT-command in disassemble mode, numeric deposit cannot
be done. Change to a numeric MAIN-FORMAT in order to patch
numerically.

ND-60.136.03

193
ND-500 MONITOR ERROR MESSAGES

ODD BYTE ADDRESS

This error is returned from file access monitor calls, error code
1004B.

ODD BYTECOUNT

This error is returned from file access monitor calls, error code
1005B.

OTHER USERS ALRFADY LOGGED ON N500

Some of the system supervisor commands require exclusive access to
ND-500. The SET-ND-500-UNAVAILABLE command will not force a logout of
the users already logged on; these must be logged out explicitly
before the system supervisor commands are used.

POWER FAIL DETECTED IN IOADING CS

A power failure occured during the loading of the microprogram to the
control store. The loading of the control store must be restarted from
the beginning.

POWER OFF

No response from ND-500. If power to the ND-500 is turned on, a
hardware error has occured and service should be called for.

POWER UP AFTER POWER FAIL

This is an informative message to explain possible delays while the
control store is being loaded and the Monitor initialized.

RTCOMMON NOT CONTIGUQUS

The RICOMMON area may not be fractioned when shared with an ND-500
segment. This is usually detected at load time, and if the error
occurs at run time it indicates modification of RICOMMON after the
affected segment has been loaded.

RTCOMMON SIZE DOES NOT MATCH THE ACTUAL RTCOMMON SIZE

This occurs after a PLACE-DOMAIN or RECOVER-DOMAIN (implicit or
explicit), indicating that modification of RICOMMON has been made
after the linking of the domain took place. The affected segments must
be reloaded and the domain relinked.

ND-60.136.03

194
ND-500 MONITOR ERROR MESSAGES

RTCOMMON SPECIFIED IN DOMAIN

This occurs after a PLACE-DOMAIN or RECOVER-DOMAIN (implicit or
explicit). In general, any modification of the size or redefintion of
RICOMMON invalidates previously loaded domains using RICOMMON. If an
attempt is made in NILL to load segments referring to RTCOMMON is a
system where there is none, an error message is issued at load time.

RTCOMMON's PHYSICAL ADDRESS DOES NOT MATCH THE PHYSICAL ADDRESS OF THE
DOMATIN

This error message is issued at PLACE-DOMAIN or RECOVER-DOMAIN, and
indicates that RICOMMON has been modified since the domain using it
was loaded. The segments containing RICOMMON references must be
reloaded and the domain relinked before the domain can be executed.

SEGMENT FIXED BUT NOT CONTIGUOUSLY

Segments shared between the ND-100 and the ND-500 must be fixed
contiguously in memory. The number indicated in the message refers to
the ND-100 segment number.

SEGMENT FIXED IN WRONG PHYSICAL ADDRESS

If an ND-500 segment is shared with more than one ND-100 segment or
RICOMMON, the physical address of the ND-100 segments cannot be
modified after loading of the domain.

SHARED SEGMENT OUTSIDE ND-500 MEMORY

The segment shared between ND-100 and ND-500 is placed in private
ND-100 memory located below ND-500 address zero. The segment must be
released and fixed in an address accessible to ND-500.

SHARED SEGMENT DOES NOT OVERLAP ND-500 SEGMENT

Modification of the ND-100 segment or explicit setting of load
addresses may cause parts of the ND-100 segment to be located beyond
the limits of the ND-500 segment. The ND-500 segment must be reloaded.

SHARED SEGMENT FIXED, BUT NOT CONTIGUOUSLY

A segment shared between ND-100 and ND-500 has been fixed scattered in
memory. The segment must be unfixed and fixed in a contiguous area
before the ND-500 process will run.

ND-60.136.03

195
ND-500 MONITOR ERROR MESSAGES

SEGMENT NOT MODIFIABLE

An attempt was made to modify a segment declared as a read-only
segment. Default segment attributes will make the program segment
read-only, while pages in the data segment will if they are modified
be copied to a swap file. This may be modified by using non—default
segment attributes.

SWAP FILE ALRFADY DEFINED

The <file name> in the DEFINE-SWAP-FILE command is already defined as
an ND-500 swap file.

SWAP FILE IS IN USE

The DELETE-SWAP-FILE command may not be executed while an ND-500
process has its swap area allocated in the specified <file name>.

SWAP FILE IS NOT CONTIGUOUS MASS STORAGE FILE

The <file name> in the DEFINE-SWAP-FILE command is indexed, or it is
not a mass storage (disk) file.

SWAP FILE NOT FOUND

The <file name> specified in the DELETE-SWAP-FILE command is not an
ND-500 swap file, or the file name in the DEFINE-SWAP-FILE is unknown
urder.

SWAPPING SPACE NOT AVAIIABLE

A large enough continuous are for the segments requiring swap file
space was not available. The job must be rerun after other jobs have
released enough space to fit in the rejected segment(s).

TOO BIG BYTHCOUNT

This error message is returned from file access monitor calls, error
code 1006B, indicating that the specified byte count is larger than
can be represented in 17 bits. This is a limitation in the ND-100 file
access monitor calls, where the byte count is in number of 16 bit
words, represented in a single (16 bit) integer.

TOO BIG DATA SEGMENT

The sum of the start address and the length of the data segment gives
an address above 777777777B (27 bits address space) .

ND-60.136.03

196
ND-500 MONITOR ERROR MESSAGES

TOO BIG HISTOGRAM INTERVAL

The highest histogram interval allowed is 32767 bytes. Use a higher
<number of channels> (if less than maximum) or a smaller range from
<start address> to <max address>.

TOO BIG PROGRAM SEGMENT

The sum of the start address and the length of the program segment
gives an address above 777777777B (27 bits address space).

TOO BIG VALUE

A numeric constant exceeding the 1legal range for the data type in
question (e.g. a byte value >255) was entered. If it is desirable to
enter the larger value, the main format should be changed to halfword
or word as appropriate.

TOO MANY SHARED AREAS

The Monitor has run out of table space to store information about
segments shared between ND-100 and ND-500. The job will have to be
rerun at a time when the load on the system is lower. The size of the
tables is a system generation parameter.

TOP OF STACK

while in the IOOK-AT-STACK command, the stack area was that of the
currently executing procedure when the NEXT subcommand was executed.

TRYING TO LINK TO A DEMAND SEGMENT

This occurs after PLACE-DOMAIN or RHCOVER-DOMAIN, A demand segment may
not be shared between ND-100 and ND-500. Normally, this is discovered
at load time by NLL, but if the error occurs at run time it indicates
that modifications have later been done to the ND-100 segment.

TRYING TO LINK TO A NON-EXISTING SINTRAN III SEGMENT

This occurs when ND-500 shares a segment with ND-100 and the segment
has been cleared in the ND-100 SEGFIL after the 1loading took place.
The segment must be rebuilt and the ND-500 domain reloaded/relinked.

UNKNOWN BREAK AT nnnnn

A break instruction was encountered in the program segment. Breaks
used for debugging purposes must be under full control by the Monitor;
i.e. they should be inserted by the BREAK or TEMPORARY-BREAK commands.

ND-60.136.03

197
ND-500 MONITOR ERROR MESSAGES

UNKNOWN TRAP

This indicates an error in the ND-500 microprogram. Please report to
Norsk Data.

WRONG NUMBER OF PARAMETERS IN MONITOR CALL

This error is returned from ND-500 monitor calls, error code 1015, and
indicates that either excessive or insufficient parameters were
transmitted.

ND-60.136.03

198
EXAMPLES OF LINKAGE-LOADER AND MONITOR USAGE

15. EXAMPLES OF LINKAGE-IOADER AND MONITOR USAGE

The examples shown in this chapter are relatively small and incomplete
as problem solutions. The intention is to give the beginner a certain
familiarity with ND-500 operation and give a general impression of the
user Monitor interface.

In the examples, abbreviations of commands are used to some degree, to
show how a more experienced user will write the commands. In some
cases, all parameters are supplied in the command line, in other cases
NLL or the Monitor prompts for them after CR is pressed. Remember that
some parameters will not be prompted for if not supplied, rather, a
default value is used. User input is always underlined.

NLL is available both as an ND-500 program and as an ND-100 program.

In most examples, the ND-500 version is used, but the user interface
is exactly the same for the ND-100 version.

15.1. Executing an ND-500 domain

Most compilers and the loader will execute on the ND-500 and must be
started through the Monitor. This can be done in two ways:

Either, the domain name may be given as a parameter to the Monitor at
the time of the call. To start the compiler FORTRAN, executing in
ND-500:

@ND~500-MONITOR FORTRAN

$ <Fortran compiler commands>
SEX

@

Or the monitor may be started first, after which the domain is started
by typing its name:

@ND-500-MONITOR

N500: FORTRAN

$ <Fortran compiler commands>
SEX

N500: EX

e

The two methods are essentially equivalent, but if the domain name was
a parameter to the Monitor, control will return to Sintran III rather
than to the Monitor upon program exit. Calling the Monitor first is
used mainly if other monitor commands should be given before or after
the domain is executed.

In most installations, the name of the Monitor may be abbreviated and
still be unambiguous. The following is a complete example of compiling
a Pascal program, loading it and executing it, all programs executing
in the ND-500, and the name of the Monitor is abbreviated to ND-500:

ND-60.136.03

199
EXAMPLES OF LINKAGE-LOADER AND MONITOR USAGE

@D-500 PASCAL
PASCAL/ND-500 VERSION A 81-05-08
S$CQM PASPROG, , "PASPROG"

NO ERRORS
1 NON-STANDARD WARNINGS
0.34 SECONDS CCMPILATION TIME

$EX

@ND-500 LINK
ND~-Linkage-Loader 81.07.14
NLL: SET-DOMAIN "PASCAL~TEST"
NLL:OP-SBGM "SEGMENT-ONE", ,
NLL:IOAD PASPROG PASCAI~LIB

Program:.....eeeee...450 P Datat.ceessesaasa3b2D
Program: .ceeeeees..16644 P Datat.eesess ..402420 D
NLL:EX

@D-500 PASCAL~TEST

I execute, therefore I am.
I have been executed, therefore I am not.

e

15.2. Using libraries

A user may find it tiresome to specify loading of a library every time
he loads a program, if that library is not specified as an auto-load
library by user SYSTEM. A user may also have his own libraries;
containing for example mathematical or statistical routines.

In the following example, all auto-load files are deleted in order to
make sure no obsolete entries remain in the table of auto-load files.
PLANC-LIB 1is then defined as an auto-load file for Planc programs.
This would not be neccessary if user SYSTEM had defined it as an auto-
load file, unless the user wants to force loading of the libraries in
another sequence.

For both Planc and Fortran the user's own STAT-LIB is defined as auto-
load file. On this file is built a routine table by the PREPARE-NRF-
LIBRARY-FILE command, in order to increase the speed of loading, and
the identifying text STAT-LIB-JULY-1981 is inserted at the top of the
file.

Finally, the defined auto-load files are listed, in order to confirm
that the file names are correct. The version of the loader executing
in the ND-500 is used, therefore the Linkage-Loader is called up
through the Monitor:

ND-60.136.03

200
EXAMPLES OF LINKAGE-LOADER AND MONITOR USAGE

@D~-500 LINKAGE-LOADER
ND-Linkage-Loader 81.07.14

NLL: DELETE-AUTO-LOAD-FILE

NLL: SET-AUTO-LOAD (SYSTEM)PLANC-LIB PLA
NLL: SET-AUTO-LOAD STAT-LIB PLA

NLL: SET-AUTO-LOAD STAT-LIB FOR

NLL: PREP-NRF-LIB STAT-LIB

NLL: INSERT-NRF-MESSA STAT-LIB,,STAT-LIB-JULY-1981$
NLL: LI ST-AUFTO-LOAD

(PACK-ONE-1: SYSTEM) PLANC-LIB -~ PLANC
(PACK-ONE-1: PROJECT)STAT-LIB - PLANC
(PACK—-ONE-1: PROJECT)STAT-LIB - FORTRAN
NLL: EX

@

Now assume that the routines F22 and F23 in STAT-LIB have been
recompiled to the file UPDATES. The new modules should replace the old
ones in the library, and the routines should be reloaded to the domain
DOMANE (without reloading the entire segment). The segment in DOMANE
has the name SEG-X. The new versions of F22 and F23 use another
routine in STAT-LIB that was not previously loaded, therefore STAT-LIB
is automatically loaded at EXIT (which implies execution of an CLOSE-
SHGMENT), and the identification of the library is printed:

@ND-500 LINKER

ND-Linkage-Loader 81.07.14

NLL: NEN-NRF-MODULES UPDATES STAT-LIB

NLL:CC REBUILD MODULE INDEX TABLE:

NLL: PREP-NRF-LIB STAT-LIB

NLL:CC THE PREP-OPERATION DESTROYS THE MESSAGE!
NLL: INSERT-NRF-MESSA STAT-LIB,,STAT-LIB-JULY-1981$
NLL: SET-DOMAIN DOMANE

NLL: APP-SEG SEG-X,,

NLL:RELOAD-SEG UPDATES

Program: ccseeeses..46114 P Datat.eeeeee...73466 D
NLL: EX

ND-60.136.03

201
EXAMPLES OF LINKAGE-LOADER AND MONITOR USAGE

15.3. Using files

DOMANE accesses two files, one for random input as file number 10,
another for sequential output as file number 12. The input file
REC:DATA is contigous, and the record size is 1024 bytes, thus the
file may be accessed in the direct transfer open mode. The output file
REFORT:LIST is an ordinary sequential file and is opened with Write
access:

@D-500

ND-500 MONITOR 81.05.21/81.05.15
N500:OPEN-FILE REC 10 D
N500:OPEN-FILE REPORT:LIST 12 W
N500:DOMANE

N500: EXIT

@

ND-60.136.03

202
EXAMPLES OF LINKAGE-LOADER AND MONITOR USAGE

15.4. Macros

DOMANE is executed often, always using the same output file, but with
different input files. In order to reduce the number of commands
required to execute the program, a macro called XQT is defined and
saved as a permanent macro. When executed, it will request the input
file name, but supply all other parameters automatically:

@D-500

ND-500 MONITOR 81.05.21/81.05.15
N500:DEF-MAC XQT

PARMMETER INFILE,NO-DEFAULT,Input-file=
OPEN-FILE INFILE 10 D

OPEN-FILE REPORT:LIST 12 W
DOMANE

EXIT

END-MACRO

N500:DUMP-MAC XQT

N500: EX

Q

@ND-500

ND-500 MONITOR 81.05.21/81.05.15

N500:XQT

Input-file=NEW

N500: OPEN-FILE NEW 10 D : - ,
N500: OPEN-FILE REPORT:LIST 12 W

N500: DOMANE

N500: EXIT

@

Observe that the user did not enter the commands to open the files and
start the domain, but these commands are always echoed to the output
device.

ND-60.136.03

203
EXAMPLES OF LINKAGE-LOADER AND MONITOR USAGE

15.5. Debugging

The following Planc program fragment:

MODULE PLCTEST

REAL PRECISION(15) ARRAY: ARR(1:10)
REAIL, PRECISION (15): TOTAL

INTHGER ARRAY: STACK (0:100)
INTEGER: I

PROGRAM: SUM
INISTACK STACK

DO WHILE I<10
TOTAL+ARR (I)=: TOTAL
I+l=: I

ENDDO

ENDROUTINE
ENDMODULE

will provoke a PROTECT VIOLATION error message from the Monitor if
loaded to a segment using default values. After compilation and
loading to domain PLCTEST:

@ND-500 PLCTEST

PROTECT VIOLATION
AT PROGRAM ADDRESS 40B

@

In order to catch the error, the program is placed in memory, using
the DEBUG-PLACE command in order to permit modifications. Then single
step execution is started, and one instruction at a time is executed
by pressing CR.

@ND—-500-MONITOR
ND-500 MONITOR 81.05.21/81.05.15
N500:DEB-PLA

DOMAIN: DCMANE
N500: STEP

P 10000000004B: INIT 00000000134B, +00000000024B, 000624B
P 10000000021B: W COMP2 00000000760B, 12B

P 10000000030B: IF >= GO 042B--> 010000000728

P 10000000032B: D1l:= 00000000124B

P 10000000040B: Wi:= 00000000760B

P 100000000468: D1 + 37777777774B (W1)

PROTECT VIOLATION

AT PROGRAM ADDRESS 40B

N500:

ND-60.136.03

204
EXAMPLES OF LINKAGE-IOADER AND MONITOR USAGE

Obviously, something went wrong when access to an array element was
attempted. The index value was loaded from address 760, and this value
is inspected:

N500: LOOK-AT-DATA

Address: 760
D 760B: 0B EX
N500:

A base address of 37777777774B and a displacement of 0 will generate
an access to a negative segment address. This is certainly not legal,
as we then "overflow" into another segment (in our case, a non-
existing one). The intention was to let the index variable run from 1
to 10, rather than from 0 to 9, and we therefore deposit the initial
value 1 (old initial wvalue: 0) in location 760, and we modify the
upper limit of the test from 12B to 13B: -

N500: LOOK—DATA 760

D 0000007608 0 PERMIT-DEP
D 0000007608 o1
D 0000007648 0 EX,,

N500: ILOOK—PROG 21

10000000021B: W CCMP2 00000000760B, 12B PER
10000000021B: W CoMP2 00000000760B, 12B BYTE
10000000021B: 56B

100000000228B: 304B

10000000023B: 0B

10000000024B: 0B

10000000025B: 18

10000000026B: 360B

10000000027B: 12B 13

10000000030B: 314B EX

500:

Zwwyoowoyydd

Now, the modified version of DOMANE in memory may be started by a by a
RUN command. '

N500: RUN
N500: EX

e

ND-60.136.03

205
EXAMPLES OF LINKAGE-LOADER AND MONITOR USAGE

15.6. System Supervisor: Installing NIL

The first time NLL is installed, user SYSTEM should define auto-link
segments to be used if a user attempts to close a segment while
undefined references exist. Usually, the run time libraries for
different languages are loaded to a segment named LIBRARY-DOMAIN, but
if an installation makes heavy use of other special libraries, for
example a collection of mathematical or statistical functions, it may
be convenient to load even this library to the library segment.

Different run time libraries may be loaded to different segments, but
as long as no symbol conflicts occur, they may all be put on the same
segment. This will reduce the probability of segment number conflicts.

When a library segment is created, all traps should be locally
disabled, in order to inhibit the automatic allocation of a trap
handler vector.

Because default segment numbers grow from low to high, autolink
segments should preferably be numbered from above. The system
supervisor may also choose to define the :NRF files as library files.
If, for example, a user defined auto-load file (loaded after the
linking has been performed) makes further references to a standard
library, the reference will be defined by the automatically loaded
files.

If an entered command is not in the command list, is not the name of a
domain belonging to the user issuing the command, and is not the name
of a temporary or permanent macro, the domains of user SYSTEM will be
searched, ND-500 systems such as compilers running on the ND-500 and
the ND-500 version of NLL is usually a domain belonging to SYSTEM.
Such systems are delivered either as a domain that should be copied by
COPY-DOMAIN, or as an NRF file that should be loaded like another
program. The example below shows how PASCAL is loaded.

In order to speed the search for a compiler or other standard system,
all such domains owned by SYSTEM should also be defined as standard-
domains.

@D-500 LINKAGE-LOADER

NLL: SET-AUTO-LOAD (SYSTEM)FORTRAN-LIB FORTRAN
ND Linkage-Loader 80.05.18

NLL: SET-DOMAIN "LIBRARY-DOMATN"

The "DESCRIPTION-FILE" will now be initialized
NLL: SET-SEGMENT-NUMBER 29

NLL: OPEN-SPEGMENT "PLANC-LIB", P

NLL: LOCAL~TRAP-DISABLE ALL

NLL: ENTRY~-ROUTINES 400

NLL: TOTAL~SEGMENT-LOAD PLANC-LIB

NLL: SET-SEGMENT-NUMBER 30

NLL: OPEN-SEGMENT "FORTRAN-LIB", P

NLL: IOCAL~-TRAP-DISABLE ALL

NLL: ENTRY-ROUTINES 500

NLL: SET-IO-BUFFERS 16

ND-60.136.03

206
EXAMPLES OF LINKAGE-LOADER AND MONITOR USAGE

¢ TOTAL-SEGMENT-LOAD FORTRAN-LIB

: SET-AUTO-IOAD (SYSTEM)PLANC-LIB PLANC
SET-AUTO-LOAD (SYSTEM)NAG FORTRAN
PREPARE-NRF-LIBRARY NAG

END-DOMAIN

SET-AUTO-LINK FORTRAN-LIB FORTRAN
SET-AUTO-LINK PLANC-LIB PLANC

: EXIT

°E

:

E

3

z

:

@

The System supervisor should also ensure that all terminals that will
be using ND-500 systems have a 128k background segment. This can be
changed by the Sintran III command

QCHANGE-BACKGROUND-SEGMENT-SIZE <term no.> 128

<term no.> can be found by the @WHO command. The segment size
information is 1lost after a "cold start" ()HENT / 22!), but the
command to change it may be included in the HENT-MODE file.

If the installation runs the accounting system, the @START-ACCOUNTING
command may be used to log ND-100 and ND-500 CPU time, terminal time,
mass storage transfers and number of spooling pages printed. The last
parameter of the command, <ND-500> is used in ND-500 systems only, and
is answered with Y if resources used by ND-500 should be logged, N
otherwise.

ND-60.136.03

207
INDEKX

INDEX

abbreviation, general rules 9.

comand name « o . -

domain name . . .« . ¢ ¢ e s e e e e e e 88,

MACIO NAME + « o « o o o o o s o o o o s o o = . . 97,
ABORT-RATCH-ON-ERROR command

description ¢ . o . . . e e e e . e . . . B2,
aborting

batch job . . « + ¢« ¢ « ¢ ¢ « o & e e e e e e 82.

MACYO o« o o o o o o s« o o o o o = . e e e o o« o 98.
ABORT-PROCESS command

description ¢ o 00 o o . e « « « « . 146.
access

mode in OPEN-FILE command . . « « « « « o s « o « 92,

right, in segment capability « « 17.

access conflicts, description file 10.
active

PrOCESSES & o o o o o o o o o o o o e e 117, 146-147.
USEYS & o o o s s o o o s s o = e e e e« e e . . 136.
actual macro parameter I

ADA, NRF control number . . . « « « « « + o o o o o & 172.
adding code to loaded segment 50, 55.
address

alignment . . . ¢ 4 0 ¢ e e s e e e e e e e e e . 170.
length « & ¢ ¢ ¢ ¢ 0 o o o o o o v 0 o o e .« . . o 170,
OVELlap v v ¢ ¢ o o o e e 4 s e e s e e e e e . 139,
physical memory . . .« . . o . . . S I

FANGE o« 4 o o o o o o o o o s o o o o o o o o s o 15.
table in NRF file . . « « v « « « = « « « +» « - - 80, 173.

ADDRESS-TRAP-FETCH trap . . « « o o o o ¢ o o o o o . B4,
ADDRESS—-TRAP-READ trap. « « « « « « « « o o « « « « « 84,
ADDRESS-TRAP-WRITE £rap . . « « « ¢ « o « « & .« .« . . 84,
ADDRESS-ZERO-ACCESS trap. . « « « « R -7
ADI, NRF control number & e e e e e e e & 172,
AJS, NRF controlnumber . . « + « « « « ¢ « o - . . . 150.
allocation of memory P .2
alphanumeric label < < ¢ . e e e o« o o 11,
ampersand (&) . . . <« + .« . & - B
APA, NRF control number . . « « « « « ¢ o o o o o & . 172,
APPEND~-NRF-MODULES command

description Y
APPEND-SEGMENT command

description e e e s s e e e e e 50.

reference .« . .« ¢ ¢« 4 e o e e e e e e s .« « . . 48, 54,

architecture, memory management system 15.
ASCIT v v v o o o o o o o o o o o o o o o o o o« o« 105,
characters in NRF symbols . . . « « « « « « « « . 169.

format, LOOK-AT commands . . + + « « « « & . . . - 104.
assembler lanquage code . . « . ¢ ¢ o o« o . . . « o . 170,
assembling in library mode 56.
at, commercial (@) .+ « 4 & « « + ¢ o o 4 8,82,
ATTACH-PROCESS command

description ¢ ¢ . e e .« « » « 146.
attribute of segment o 00 e . . . 47.
auto-link segment . . . ¢ . . . ¢ 0 e e e . e . .« . . 60.

auto-load file

e e e e e e e e e e s . . . 62,
AUTOMATIC-ERROR-MESSAGE command

208

description
BCD-OVERFLOW trap . . « « « « . .
BEG, NRF controlnumber
body of macro
BRANCH-TRACE command

description . .

reference . . .
BRANCH-TRAP
BREAK command

description . . ,

reference
breakpoint . . . o o

BREAK—POINTLINSTRUCTION—TRAP .
BRF format .

buffer, histogram and log commands

byte
format in patching
parameter monitor call .
pointer during loading
CALL instruction
called routine, local data field
CALIG instruction
calling routine, local data field
CALL~-TRACE command
description
reference
CALL~TRAP
cataloged file as segment
CC command
description
OGRO, NRF controlnumber .
OGR1, NRF controlnumber
characters legal in names
checksum . . « ¢ ¢ ¢ ¢ ¢ ¢ o o« &
CHECK-SYNTAX-MODE command
description
CLEAR-DOMAIN command
description
clearing
histogram buffer
process log buffer
CLEAR-SEHGMENT command
description
CLOSE-FILE command
description
CLOSE-SEGMENT command
description
implicit
closing file after escape . . .
COBOL
language code
cold start
command
abbreviation .
input file . .
list (HELP) .
output file .
Syntax . . . 0 e 0 e v e .. .
terminator
comment

e e o ° o s o e

o s * & o e e .

. . * o e o o .

e e o & e s s = e

. . e ® e e e o =
ooooo e o & o
ccccc e o o .

e e ® 8 o e ° o e

o o e e e o » o .

e o & & o s e e e

¢ e o ° e o o @

e o e o o » « e e

® ® ® e ® e o o o

e e o e o o e e .

e = o e o s s .

e & e e o o ¢ e o

s @& & e & e o ¢
ooooooooo

® e & & e s e s

e & e & o e o s o

* o o o « ® e o

o o * & e o o o

. o

e o = o e o . .

* o e o o o e s e
--------- .
e e s o o & & .
------- o« e
---------- o o
oooooooooo
e o e o 8 o s e o

® & ® e & & e e o

¢ e e o & o e e o

¢ & s ® o o o
..... . o . e o o
----- s e e o o @
------- * .
ooooo e s & o e
« e e e ° e o e o
ooooo . e o e o
® & 8 o o o s e =

a e e e+ e e e o @

e o e e o o ¢ e

«a o o e * e ¢ o

INDEX

84.
76, 170.
97.

112,
116 L]
84.

102.

103, 115.
89, 102.
84.

69.

117.

107, 110.
153.
170, 172.
112, 153.
108.
153,
108.

112,
116.
84.
18.

82.
173.
173.
10.

170.

74.
43.

117.
119.

51.
93.

47.
43, 83.
89.

170.
139.

8.
8.
81.
8.
9, 74.
9.
82.

INDEX

comercial at (@) . . . ¢« ¢ ¢ ¢« ¢ ¢ .
common
block &+ & ¢ ¢ ¢ 4 4 e e e e e e
label . & & ¢ ¢ 4 4o ¢ o v e e . .
communication
between processes .
device . . ¢ ¢ 4 4 e e e .
with ND-100
with the ND-500 process
COMND monitorcall (MON 70)
COMPARE~-CONTROL~STORE command
description .

compilation errors
compiling a library
compound NRE QroupP + + s o o « o &

conditional loading
configuration, physical memory . . .
connecting file .
CONTINUE command
description
reference
control
byte, NRF
characters in NRF symbol
control store (microprogram memory)
control number, NRF
COPY-DOMAIN command
description
reference .
CrU
time used in ND-100 .
utilization
creating segment . .
data
byte pointer ¢ . .
memory IOOK-AT . ¢ v & & o + & @ .
mode NRF control number
transfer between ND-100 and ND-500
DATA-REFERENCE command
description
DBG, NRF control number
#DCIC, Data Current Location Counter.

DDF, NRF control number . . . « . . .
debug information
in :LINK file . . . & ¢ ¢ ¢« « « « «
in :NRF file . &« ¢« v v ¢« ¢« 4 o ¢ o «
debugging« . .
DEBUG-PLACE command
description . . . ¢ ¢
reference e v s e
DEBUG-STATUS command
description o ..
decimal format
DEF, NRF controlnumber
default
domin name ¢ ¢ .
macro parameter

main formt 0. 0 ..
segment attributes

. 9, 82,

58.
66.

16, 19

8, 81.

39, 69-70.
123.

82.

143.

173.

54, 79.
172, 175.

55, 171, 173.

139.
92.

89.
102.

169.
169.
142-144.
169.

45,
69, 70.

136.
120, 121.
47.

170, 172.
107.
172.
69.

65.

173.

64, 170.
76, 171.

8, 15.
173.
102-116.

102.
87.

114,

9, 110,

138.

76, 718, 171.

8, 42, 44.
97.
109.
47.

209

210

segment name ¢« s ¢ o s . .« e e o e

segment NUMDEL . &+ & ¢ & &« o & « o « o o o
DEFINE-CCMMON command

description o . . « s e e e
defined symbols . . . & ¢ ¢ ¢« v o 4 e o 4 e
DEFINE-ENTRY command

description . . . ¢ ¢ ¢ ¢ 4 4 e e e e .o
DEFINE~MACRO command

description . . ¢« . ¢ 4 v 0 e a e e e . .
DEFINE-MEMORY~-CONFIGURATION command

description . « ¢ v v o ¢ ¢ s e s e o . .
DEFINE-SWAP-FILE command

description . . ¢« ¢ 4 ¢t e e e e 0 e e
DELETE-AUTO-LOAD-FILE command

description s ¢ ¢ ¢
DELETE-DOMAIN command

description ¢ ¢ ¢ c e 4 e e e .
DELETE-NRF-MODULES command

description . . . e e e e s e e s e e e
DELETE—-SEGMENT ccnnand

description . . . ¢ ¢ ¢ ¢ 4 4 0 e e e e
DELETE-SWAP-FILE command

description ¢ ¢ . .

deleting a MACIO . . & & ¢ = &+ o « « o o o
demand paging . « « + « . ¢ . . e e s s s s s
description file ¢ ¢« ¢ ¢ ¢ &« ¢ & .
description of NRF format
DESCRIPTION-FILE:DESC . . & &« 2 « o o« o o o »

descriptor addressing in monitor calls . . .
DESCRIPTOR-RANGE £rap . « « + o s o « o o o =«
destroying I1 register contents
difference in physical address ND—lOO/ND-SOO
direct transfer files . . « ¢ ¢« + ¢ ¢ ¢+ o &
DISABLE-PROCESS—-SWITCH-ERROR trap .
DISABLE~PROCESS-SWITCH-TIMEOUT trap . . . «
disabling trap . ¢« « ¢« ¢ ¢ « ¢ ¢ « o o o o
disassemble instruction ¢ ¢ . . .
DISASSEMBLE-MODE command

description . . . ¢ ¢ 4 ¢ 0 s e e e o oo .
discomnecting file ¢ o o ..
disk access fromND-500 . ¢« ¢« ¢« ¢« ¢« ¢ ¢ & & &
display

control store (micro program) . . .

hardware register
DIVIDE-BY-ZERO trap
MO, NRF control number « . « « « « « &
domin

status

name

number
double definition .
double quote (") . .
doublefloat format IOOK-AT . « ¢« ¢ « « « &
DRF, NRF controlnumber ¢ « « o &« &«
tDSEG file & & v ¢ ¢ v o o ¢ 0 o o 5 o o
DUMP-MACRO command

description ¢ . 0 « o e s
EDIT subcommand ‘

description . . . ¢ ¢ ¢ v 4 4t 0 e e e
empty macro parameter . . ¢ ¢ ¢« ¢ o o o o o

INDEX

8, 54.
51.

66.
66, 171.

65.
97.
139.
149.
63.
43,
717.
52.

149.

100.

124,

10, 75, 165.
169.

10.

153.

84.

153.

139.

95.

84.

84.

20, 84-86.
103.

74.
93.
139.

143.
145.

84.

170, 172.
6, 15.
44,

10.

16, 165.
56.

9.

105.
171.

9, 15.

100.

144.
98.

INDEKX

ENABLED-TRAPS command
description
enabling trap .
END, NRF control nunber .« v e
END-DOMAIN command
description ¢ . .
implicit . . .
END-MACRO command
description
End of NRF file . . . « « « &
ENTRY-ROUTINES command
description . . . e e e e
BEOF, NRF control number .
ERASE-MACRO command
description .

ERMSG monitorcall (MON 64)

error
abort of NLL or Monitor. . . .

codes from file system

during compilation . .
message from monitor calls . .
in monitorcall .
termination of macro
escape key
examining

control store (microprogram) . .

physical memory . . .
physical segment
resident memory
EXCDEF exception library routine
EXCEPT exception library routine
exception
exception handler library
EXCTERM exception library routine
EXBCUTE-MACRO command
description . .
implicit . . . « « « « . .
executing a domain
execution interrupt
EXHIBIT-ADDRESS command
description
reference
EXIT command
description
EXTRA-FORMAT command
description .
within IOOK-AT . . . « « o « &
FETCH-NRF-MODULES command
description .
file
buffers for sequential Fortran
close « <« ..

ooooo

fixed priority
flag

file access monitor call error returns . .

.....

for communication with an ND-500 process

float format in IOOK-AT commands
FLOATING~OVERFLOW trap.
FLOATING~-UNDERFLOW trap .

211

114.
85.
76, 175.

42.
83.

97.
77.

72.
79, 173.

100.
135, 153.

82.
94, 153.
173.
135.
153.
98.
135.

142.
145.
145.
145.
29.

24,

20, 23.
21-36.
31.

99.
88.
88.
135.

113.

. 115.

83, 104.

110.
105.

76.

72.
93.

. 92.

94,
136.

123.
105.
84.
84.

INDEX
FMO, NRF control number «¢ v v ¢« v o o o o o 170, 172.
forcing logout of other users+ 146,
formal macro parameter 4 4 e e 4 e e e e 0 . 99,

format in TOOK-AT commandS. . . « « « « « « « . « . . 109, 110.
Fortran
filenumber i e i e e e e e e e .. 92.
language code. . . . ¢ ¢ ¢ e e e . . . e« « o o 170,
sequential I/0 e e e e e e .. T2,
free
bytepointer during loading 170.
110 [I . B
GET-FLAG command
description . . . ¢ ¢ ¢ v ¢ 4 e e v e e v v . . . 123,
GIVE-ND-500-PAGES command

description ¢ . . e v e e« « « . 140,
GLOBAL~ENTRIES command

description ¢ 0 e v e e . . .« + « 68.
GO command

description . . & . 4 4 it 4 4 e e e e e 89,
GROUP subcommand

description . . v ¢ ¢ ¢ et e 4 e e e e e 144,
GUARD command

description 0 i e 0o e e 111,

reference e s e e e o & o 115,
halfword

format in IOOK-AT commands « « . « . o 110.

parameter to monitor calls 153,
hardware registers TOOK-AT . . & ¢ « « &« « o « « o & 145,
HELP

description ¢ ¢ 4 ¢ v ¢ e e e e . e o . . 81,

INTOOK=AT & 4 4 4 ¢ ¢ o o « o o o o o o o« o« « o« o 104,
hexadecimal

command parameters« . e . o . . .« « . 8.

format in IOOK=AT. . &« « « « « « « « « « « « « « . 110.
HIGH-ADDRESS command

description . . . & 4 i i 4 e e 4 e e e e e e . . T1.

high limit register ¢« ¢ ¢ ¢ ¢ ¢ ¢« ¢ ¢« o « o« & 111.
histogram

comMANAS & ¢ 4 4 4 6 s 4 e e e e e e e 117,
HLregister ¢ ¢ ¢ v v v v v v o 111,
I registers e o e o o s « o + o « « 153,
IF-ERROR-FULL~STOP subcommand

description 4 0 v v e e e e 98,

IF-ERROR-MACRO-STOP subcommand

description . . . ¢« & 4 v ¢ 0 it 4 e e e e . . . 98,
ignorable trap 4 v e e e e eTe 0 e e 19,
IHB, NRFcontrol number . . . « « « « « « « « « « « . 173, 176.
illegal control number« .« o« 173, 176.
TILEGAL~INDEX €rap . . « 2 o o « ¢« « 2« « =« « + « « . 84,
ILLEGAL~INSTRUCTION-CODE trap . « « « « « « « « « . . 84.
ILLPGAL~OPERAND-SPECIFIER trap . . « « « « « « « « . 84.
ILLEGAL~OPERAND-VALUE trap . . « « o« « « « « 84.
implicit

CIOSE~-SEGMENT . . « ¢ ¢ 2 « o o s o o o o « = . 43, 47, 83.

END-DOMAIN . . . & 4 ¢ ¢ 4 & o o o « o o o « « « . 42, 83,
EXECUTE-MACRD . & ¢ & 4 4 &« « o ¢« o « o« o« « « « o 88, 99,
OPEN-SEGMENT . ¢ ¢ v ¢ v o o ¢ o o o o o &« . o . 54,

RECOVER-DOMAIN . © e e s s s 4 s s s s s .+ o 88,99,
INDEX—SCALING-ERRORtrao...............84.
inhibit execution 151,

INDEX

initialization of traphandler data field
initializing
data memory
input to program in macro body
INSERT-NRF-MESSAGE command
description .
instructionset
INSTRUCTION-SEQUENCE-ERROR trap
inter face
register LOOK-AT
intermodule reference .
INVALID-OPERATION trap
1/0
buffer for sequential file access
file open and close commands .
K flag
KILL~-ENTRIES command
description .
label
definition .
lanquage
cde . e e e s s e e e e e e
sensitivity .« o . .« . .
layout of description f11e v e e e
LBB, NRF controlnumber . .
LDI, NRF controlnumber . .
length of NRF symbol . .
LIB, NRF controlnumber .
LIBRARY-SEGMENT-IOAD command
description .
reference
line continuation .
:LINK file .
LINK-RT-PROGRAM command
description
LIST-ACTIVE-SEGMENTS command
description . .
LIST-AUTO-LINK- SEEDG&WT command
description .
LIST-AUTO-LOAD-FILE command
description . .
LIST-DOMAIN command
description .
LIST-ENTRIES-DEFINED command
description . .
reference
LIST—ENTRIES—UNDEFINED ccnmand
description .
LIST-MACROS command
description . .
LIST-MAP command

description e e e e e 4 e e e e
LIST-MODE command

description . c e e e e ..
LIST-NRF-CODE command

description
LIST-NRF-ENTRIES command

description

LIST-OCTAL command
description .,

20.

109.
97.

79.
20.
84.

145,
11.
84.

72.
92-94.
153.

68.
8, 11.
11, 171.

170.
60,62
165.
173.
172.

. 169.

56, 76, 171.

55.
56.
9.

.9, 15.

70.
148.
61.
63.
44,

66.
67.

67.
101.
67.
74.
78.
78.

73.

214

LIST-OPENED-FILES command
description

LIST-PROCESS-TABLE~-ENTRY command
description

LIST-SEGMENT command

description

LIST-SYMBOLIC command
description
LIST-TABLE command
description
IL register

load immediately, NRF control number . . . « «. « . .

LOAD-CONTROL~STORE command
description
loader table
loader table overflow . .
LOAD-SFEGMENT command
description
local
data field
MEMOLY « & o o o « o o o o o o
trap handling . . . e e e e
LOCAL~TRAP-DISABLE command
description
LOCAL~-TRAP-ENABLE command
description
logging
all processes . . . ¢ ¢ . .
ONE PIOCESS « &« & & o o o o o
LOOK-AT commands
description

e e o
.
.
.

subcommands« . e

LOOK-AT-CONTROL~STORE command
description
TOOK-AT-DATA command
description
LOOK-AT-HARDWARE command
description
LOOK-AT-PHYSICAL~SHGMENT command
description
LOOK-AT-PROGRAM command
description
reference
LOOK-AT-REGISTER command
description
LOOK-AT-RELATIVE command
description
LOOK-AT-RESIDENT-MEMORY command
description
LOOK-AT-STACK command
description
LOW-ADDRESS command
description
low limit register . . .
LRF, NRF control number .
MACR file
macro
body 0 00 0oL
commands . . . 4 . 4 4 0. 0 . .
main

INDEX

93.
148,
52.
73.
147.
111, 115.
172.
142.
11.
68.

54.

108.

139.
19, 85.

85.
85.

120.
121.

104.
108, 144.

143.
107.
145,
145,

106.
144.

108.

108

144.

107.

71.

111, 115.
171.

97.
97-101.

INDEX

formt 000 e
program data field
MAIN-FORMAT command
description
MASTER-CLEAR command
description
MATCH-COMMON-RT-SHGMENT command
description
MATCH-RTCCMMON command
description
memory
administration
allocation« « . .
configuration
memory management system . . .
microprogram
maintainance
registers
MICRO-START command
description
MICRO-STOP command
description
MIS, NRF control number
MMS (Memory Management System)

modularization . . ¢« ¢« ¢ ¢ ¢ . .

module ¢ ¢ c e 6 o o .
MON 60 NSOOM
MON 64 ERMSG . .+ ¢ ¢« o o s +
MON 65 QERMS . . +« &+ & & o & &
monitor call

arguments o« . . o

priority « e e
MSA, NRF control number . o e »
MSG, NRF control number
multiple definition

215

109.
107.

109.
151.
70.
69.
140.

124.
139-140.

. 35.

143.
142.
108.

142,

142.
173.
13.
16.
8, 11, 170.
161.
135.
135.

153.
136.
170.

. 173.

NAME ¢ o ¢ o o ¢ o o« o o o s o o s s o o o o o o o o

conflicts« .

SYNtAX « v o o o o o o o o o
ND-100

comunication

monitor calls
ND Relocatable Format (NRF) . .
negative values in NRF code . .
nested compournd group
NEW-NRF-MODULES command

description
NEXT command

description

non-printing characters
non-reentrant traphandler . . .
NRF . ¢« ¢« o ¢ ¢ ¢ ¢ o ¢« o o« o @

editor v ¢ . .
library file
symbol 0

NRF file maintainance

NUL, NRF control number

numeric field, NRF
numeric length, NRF
numeric parameters
octal ¢ . i i e e e e e e e e

e o & e & e s @ ¢
e o e ® e & o o
e ® e e o & o o ¢« =
e e @ © o ¢ o 3 e o
® e o e & e e o o .

56.
11.
68.
9.

39-51, 69-70.
136.
169.
169.
173.

76.

99.

169.

19.
169-174.
76.

80.

64, 170.
76.

170.
169.
169.

8.

8.

216

listing

OMITTED-SEGMENT-LOAD command

description
omitting
EXECUTE-MACRO
RECOVER-DOMAIN
OPEN-FILE command
description
OPEN-SEGMENT command
description
implicit
optional parameter . . .
ORIN subcommand
description
OUTBT monitorcall (MON 2)
output device
output flag
OUTPUT-FILE command
description

OUTST monitorcall (MON 162)

OVERFLOW trap « « « « .
overhead monitorcall . .
pagefault .« e e e e
pages, giving to ND—SOO
parameter . . .
addresses .
reference .
terminator . .
parity . .
microprogram . .

#PCIC (Program Current Locatlon
percentage of CPU time used in ND-100 . .

performance measurment
PERMIT-DEPOSIT subcommand
description
physical segment .
PLACE-DOMAIN command
description
PMO, NRF control number .

PREPARF-NRF-LIBRARY-FILE command

description
reference
PREVIOUS subcommand
description
PRIMESS exception library
PRINT-HISTOGRAM command
description
PRINT-PROCESS~LOG command
description
reference
priority, monitorcall . .
PRITRAC exception library
PROCESS-10G~ALL command
description

PROCESS-LOG-ONE command
description

PROCESS—-STATUS command
description.

program
label

Oounter)
routine
routine

INDEX

73, 78.
56.

99.
88.

92,

47.
54.
9.

144.
39.

7, 81.
123,

8l.
39.
84.
39,
124.
140.
97.
153.
98.
9,
169.
124.
64, 170.
136.
117.

105.
145.

87.
170, 172.

80.
54.

108.
33.

118.
120.
118.
136.
32.

121,
121.
147,

170.
64.

INDEKX

mde
reference . . .

program counter sampling

PROGRAMMED-TRAP . ¢ ¢ o« ¢ o s 2 o o o o o o o o
PROGRAM-REFERENCE command
description . . ¢ ¢ ¢ ¢« ¢ o 4 e 0 e o e oo .

PROTECT-VIOLATION

RECOVER-DOMAIN command

description . .

QERMS monitorcall (MON 65). « ¢« ¢« « ¢« & ¢ « o &
read only segment ¢ ¢« ¢ o ¢ ¢ 0 o s oo e

implicit
REF, NRF control number
references, undefined .

register LOOK-AT .

RELEASE-DOMAIN command

description . . . ¢ ¢ ¢ ¢ ¢ e e 4 e e e . .
RELEASE-HISTOGRAM command

description . . ¢« 4 ¢ ¢ ¢ ¢ v e 0 e 0 e .
RELFASE-10G-BUFFER command

description e e e e e e e e e

RELOAD-SEGMENT command

description . & v ¢ ¢ ¢ ¢ e e e e s e e e
RENAME-DEFAULT-DIRECTORY-AND-USER command
description . . . ¢ ¢ ¢ ¢ o ¢ ¢ e e 0 e . e

RENAME-DOMAIN command

description . . ¢ ¢ ¢ ¢ ¢ o e 0 e e e e . .

RENAME-SEGMENT command

description ¢ ¢« s e e e

REP, NRF controlnumber

RESET command

description ¢« ¢ e o 4 e e e e e .
RESET-AUTOMATIC-ERROR-MESSAGE command

description . . ¢ ¢ 4 e ¢ e e e e o e e
RESET-BRANCH-TRACE command

description . . . ¢ ¢ ¢ ¢ o bt e e e e e o0

RESET-BREAKS command

description ¢ ¢ ¢ 0 e e e e e .. .

RESET-CALI~TRACE command

desCcription . ¢ ¢ ¢ ¢ ¢ ¢« o ¢ o s o s 4 e e

RESET-DEBUG command

description . . ¢ . ¢ ¢ v o e e 0 e s e e

RESET-GUARD command

description . . . ¢ ¢ ¢ e 0 e v e e e 0 e .

RESET-LAST-BREAK command

description . . . « ¢ ¢ ¢ ¢ ¢ e 0 4 e e o e

RESET-TRACE command

description

RESUME-MACRO command

description
RMV, NRF control number

RT

program ND-100 . . .

segment ND-100 .
RTCOMMON ND-100 . .
RUN command

description . .
S field, NRF . . .
sampling

CPU usage . . .

217

172.
64, 171.
118.
84.
64.
84.
153.
47.
88.
88.
171.
67.
108.
46.
118.
122.
55.
75.
44,

52.
172, 173.

74.

135.
116.
115.
116.
114.
115.

115.

. 115.

100.
172.

39, 70.
69.
40, 69.

88.
169.

117-119.

218

search procedure, command ProcessSOr « « « o« « o o o

SELECTED-SBEGMENT-LOAD command
description
SET-AUTO-LINK-SEGMENT command
description
SET-AUTO-LOAD-FILE command
description
ET-DOMAIN command
description
implicit
SET-FLAG command
description
SET-HISTOGRAM command
description
reference
SET-IO-BUFFERS command
description
reference ¢ . . .
SET-MEMORY-CONTENTS command
description
SET-ND-500-AVAILABRLE command
description
SET-ND-500-UNAVAIIABLE command
description
SET-PRIORITY command
description
SET-SEGMENT-NUMBER command
description
reference
setting Kflag
sign extension
single step execution . .
SINGLE—INSTRUCTION—TRAP .
@ sintran command
description
SLA, NRF control number
slash (/) in LOOK-AT .
STACK-OVERFLOW trap . .
STACK-UNDERFLOW trap .
standard trap handler .
START-HISTOGRAM command
description
START-PROCESS—~LOG-ALL, command
description
START-PROCESS-10G-ONE
description
STATUS command
desctiption
status register
STEP command
description
STOP-HISTOGRAM command
description
program execution

string parameter to monitor call

sub controlnumber NRF

supervisor commands

SWAPPING-10G command
description

symbol

INDEX

88, 99.
56.
60.
62.

42.
42.

123.

117.
118.

72.
49,

109.
138.
138.
136.

51.
47.
153.
171.
103.
84.

82.
172.
105.
84.

26, 84.
19.

118.
120.
120.

114.
114.

103

118.
116.
153.
173.
138.

122,

219
INDEX

definition ¢ . 4 i i i i e e e e e . . . 65,
global & 4 4 i it e e e et e e e e e e e . . . 68,

length, NRF file ¢« . ¢« v v ¢ v ¢ v o . . . 169,

vValue . v v v ¢ 4t e e e e e e e e . .+« « « o 86.
syntax

check of conmands 74,

of names e e e e .. . B
system defined auto-load/auto-link files. 60, 62.

SYSTEM-ENTRIES-ON command
description i 4 it 4 et e e e e .. . 6.

system supervisor commands ¢ 0 4 4 o0 . . 138.
SYSTEM-TRAP-DISABLE command

description . . . ¢ ¢ 4 4 it 4 4 e e e e e e . . 86.
SYSTEM-TRAP-ENABLE command

description ¢ ¢ 0 00 0 e e h e e e .. 86.
TAKE-ND-500-PAGES command

description e e e e e e e « . . 141,
TEMPORARY-BREAK command ’

description ¢ . ¢ 0 o 0 . e e e e e e 103.

test, checksum in NRFcode ¢« « « « « » « . 170.
time slicing of ND-500 processes « . . . 136.
TOTAL~SEGMENT-LOAD command

description e s e & e s s« D7,
TRACE command

description00 0000 . « « « 110.

reference 0. e+ e e o« o « » o 115,
traceback print after error o . . 32,
trap . . 0 0 e e s e e e e e e e e e et e e e e s 19-20, 84-86
twin process 0 0 0 e e« « « « o 136.
two's complement 0 4 e . . . e+ « <« « « « 169, 170.
unconditional load« . e « « « o 57,
undefined references v 67.
user interrupt 0 0 0 0 e 0 e e 135,

user written trap handler19, 23,
VALUE-ENTRIES command

description0 000 86,
VERSION command

description ¢ v v ¢ 4 4 e e« « « . 136.
WHO-IS-ON command

description . . . v v 4 4 4 e e e e e e e e . . 136.
WORD subcommand A

description & ¢ ¢ 4 4 et e e e e . .« . o 144,
WRITE-DOMAIN-STATUS command ‘

description . . ¢ v v ¢t ¢ 4 4 e v e 0 . . e« . . 44,

WRITE-NRF-BOF-AFTER-MODULE command

description v v ¢ i 4 4 4 e e e b e e o 19
WRITE-SEGMENT-STATUS command

description ¢ ¢ 0 e« o o s o o 53.

— we make bits for the future

NORSK DATA A.S BOX 4 LINDEBERG GARD OSLO 10 NORWAY PHONE: 30 90 30 TELEX: 18661

