
N D-500
Loader/Monitor

ND-60.136.03

NORSK DATA A.S

ND-500
Loader/Monitor

ND-60.136.03

This manual is in loose leaf form for ease of updating. Old pages may be
removed and new pages easily inserted if the manual is revised.

The loose leaf form also allows you to place the manual in a ring binder (A) for
greater protection and convenience of use. Ring binders with 4 rings corre-
sponding to the holes in the manual may be ordered in two widths, 30 mm and
40 mm. Use the order form below.

The manual may also be placed in a plastic cover (B). This cover is more suitable
for manuals of less than 100 pages than for large manuals. Plastic covers may
also be ordered below.

lsass
\

A Ring Binder B Plastic Cover

Please send your order to the local ND office or (in Norway) to:

Documentation Department
Norsk Data A.S
P.O. Box 4, Lindeberg gérd
Oslo 10

ORDER FORM

I would like to order

....... Ring Binders, 30 mm, at nkr 20,- per binder

....... Ring Binders, 40 mm, at nkr 25,- per binder

....... Plastic Covers at nkr 10,- per cover

Name ..
Company ..
Address ..

NOTICE

The information in this document is subject to change without notice. Nersk
Data A.S assumes no responsibility for any errors that may appear in this docu-
ment. Norsk Data A.S assumes no responsibility for the use or reliability of its
software on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. It may not
be photocopied, reproduced or translated without the prior consent of Norsk
Data A. S.

Copyright © 1982 by Norsk Data A.S.

PRINTING RECORD
rinting Notes

1
07/81 Version 02
01/82 Version 03

ND-500 Loader/Monitor
Pub|.No. ND-60.136.03
January 1982

NORSK DATA A.S
PO. Box 4, Lindeberg gérd
Oslo 10, Norway

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one or
more single pages to be merged into the manual by the user, each revised page
being listed on the new printing record sent out with the revision. The old
printing record should be replaced by the new one.

New versions and revisions are announced in the ND Bulletin and can be ordered
as described below.

The reader's comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms, together wlth all types of inquiry and requests for documentation
should be sent to the local ND office or (in Nowvay) to:

Documentation Department
Norsk Data A.S
PO. Box 4, Lindeberg gard
Oslo 10

MICE

'IHE PRODUCE

This manual describes

Linkage-Loader ND—10319 version C
ND—500 aitor ND—10320 version B

'Ihe ND—SOO Monitor is an extension of the Sintran III operating system
which provides for program execution on the ND—SOO computer. The
Linkage—Loader runs as an ND—SOO program, while the ND—SOO robnitor is
an integral part of the Sintran III VSE/SOO operating system.

The ND—500 memory management system is described in the ND—500 CPU
Reference Manual. However, Sintran III does not utilize the hardware
fully, as a process may consist of one domain only.

'IHEREADER

This manual is written for programmers and operators who want to load
and run programs on the ND—SOO. It also describes the aitor ommands
available to the system supervisor for maintaining proper control over
ND—SOO resources.

PREREQUISITE WE

The reader is assumed to have some previous knowledge of the ND—SOO,
the ND—lOO and the Sintran III operating system. Depending on the
intended use of the ND—SOO computer, this may vary from knowing how to
compile a simple program with only a rudimentary knowledge of the
memory management system (for a programmer with timesharing/background
requirements only) to familiarity with the hardware configuration,
ND—100 segment file and KP loader structure (for the system
supervisor) .

Necessary information is found in the following manuals:

ND—SOO CPU Reference Manual (ND—05.009)
SINTRAN III Reference Manual (ND—60.128)
SINTRAN III System Supervisor (ND—60.103)
SINTRAN III RRT Loader (ND-60.051)

ND—60. 136 .03

vi

'IHEMANUAL

This manual will give the reader infornation about how to link
relocatable nodules to make an executable ND-SOO program (donain) , and
how to execute program on the ND—SOO under the Sintran III operating
system.

The manual should be used for reference; it is not intended to be a
textbook in loader and mnitor use. Each command description is
independent of others, and can be read without knowing other oonmands
described. However, the first chapters contains some introductory
infornation about the ND—SOO system.

A thorough understanding of the ND—SOO memory management system and
trap handling is required to fully utilize the ND—SOO. A detailed
description may be found in the ND—SOO CPU Reference Manual m—05.009
chapters 4 and 6.

Vii

TABLE OF CONTENTS

Section Page

1. INTRODUCTION 3

1.1. Use of the Linkage—Loader and Monitor 3
1.1.1. Conpilation 3
1.1.2. Loading 4
1.1.3. Execution 5
1.1.4. Multi-segment domains 6

1.2. Oonmand and parameter format 8

1.3. Command syntax 8

1.4. Naming rules 10

1.5. The description file 10

1.6. The function of the Linkage—Loader 11

1.7. The function of the IVbnitor 12

2. MEMORY MANPGD’IENT SYSI‘H/l 15

2.1. logical memory structure 15

2.2. Capabilities 17

3. TRAPS 19

3.1. Trap handler calling 19

3.2. Use of trap handlers 20

4. STANDARD EXCEPTION HANDLER LIBRARY 21

4.1. ND—SOO traps table 23

4.2. The EXCEPI1 routine 24

ND—60.l36 .03

viii

Section Page

4.3. The EXCDEF routine 29

4.4. The EXCI'ERM routine 31

4.5. The PRITRPC routine 32

4.6. The PRD’IE‘SS routine 33

4.7. The GEIMESS/PGEWIESS routine 34

4.8. The RDEE'VAL routine 35

4.9. The RCURVAL routine 36

5. C(MMUNICATION BEIWEEN ND-500 AND ND—lOO 39

5.1. aitor calls 39

5.2. Communicating through the process flags 39

5.3. Communicating through RICO/MON 40

5.4. Oomunicating through an RI‘ segment 40

5.5. Comunicating through files 41

6. IDADER W5 42

6.1. Domains 42

alJJSMHmWUN 42
6.1.2. END-DOMAIN 43

6.1.3. CLEAR-DCMAIN 43

6.1.4. DELETE-DOMAIN 43
6.1.5. LISP-MAIN 44

6.1.6. WRITE-DOVIAIN-SI'ATUS 44

6.1.7. RENAME—DOMAIN 44

6.1.8. COPY-DOMAIN 45

6.1.9. RELEASEFDOMAIN 46

6.2. Segments 47

6.2.1. OPEN-SEGMENT 47

6.2.2. CLOSEFSEGMENT 49

6.2.3. LINK-SEGMENT 49

6.2.4. LIBRARY-SEQ’IE‘NT-LINK 50

6.2.5. APPEND-SEQ/IENT 50

6.2.6. SEP-SEGMEIT—NUMBER 51

ND—60.l36.03

ix

Section Page

6.2.7. CLEAR—SEGMENT 51
6.2.8. DELETE-SBQKEWP 52
6.2.9. RENAMEFSEGMENT 52
6.2.10. LISP-SWT 52
6.2.11. WRITE—SEGMENTLSTAEUS 53

6.3. Oonmands to load NRF code 54
6.3.1. DOAD—SEGMENT 54
6.3.2. REUJN}4EKEQQVP 55
6.3.3. LIBRAFU-SEGMENT—LDAD 55
6.3.4. WI'ITED-SEQVIENT-LDAD ' 56
a35.smflmmyammmvuwo 56
6.3.6. TOTAL-SEGMENT-LOAD 57

6.4. C(NMON segments 58
6.4.1. OOWMON—SEGMENTLOPEN 58
6.4.2. OOMMON—SEGMENTLCLOSE 59
6.4.3. COMMON-SBRMEHFAPPEND 59
6.4.4. COMMON—SKEENTLNUMBER 59

6.5. Auto—link segments 60
6.5.1. SET-AUTO—LINK—SEEMENT 60
6.5.2. DELETE—AU'IO-LINK-SEGMENT 61
6.5.3. LIST-AUTO—LINK-SEGMENTS 61

6.6. Auto-load files 62
6.6.1. SEP—AU'IO—IDAD—FILE 62
6.6.2. DEEPE—AU‘IO—IDAD—FILE 63
6.6.3. LIST-AU'IO—LDAD-FILE 63

6.7. Label and reference handling 64
6.7.1. PRQERPM-REFERENCE 64
6.7.2. DATA-REFEREJCE 65
6.7.3. DEFINE—ENTRY 65
6.7.4. DEFINE-CW 66
6.7.5. LIST-ENTRIES—DEFINED 66
6.7.6. LISP-EN'I‘RIES-UNDEFINED 67
6.7.7. LIST—MAP 67
6.7.8. SYSTEM-ENTRIES—(N 67
6.7.9. GlOBALrENTRIES 68
6.7.10. KILL-ENTRIES 68

6.8. Areas shared with ND—lOO processes 69
6.8.1. MAECHHRTCOMWUN 69
6.8.2. MA'ICH—CM’ION—RP-SM'IENT 70
6.8.3. LINK—RT—PROGRNM 70

6.9. Miscellaneous conmands 71
6.9.1. LOW—ADDRESS 71
6.9.2. HIGH-ADDRESS 71
6.9.3. ENTRY—ROUTINES 72
6.9.4. SET—IO—BUFFERS 72
6.9.5. LIST—OCTAL 73

ND—60.l36.03

Section Page

6. 9. 6 . LIST-SYMHDLIC 73

6.9.7. LIST-MODE 74
6.9.8. DISASSEKBLE—MODE 74
6.9.9. CHECK-SYNTAXdMODE 74

6.9.10. RESET 74
6.9.11. RENAME-DEFAULT—DIRECTORY-AND—USER 75

6. 9 . 12. SUPPRESS-DEBUG-INFOIMATION 75

6.10. NRF editor 76
6.10.1. NEW-NRF—MODUIES 76
6.10.2. FEHCH—NRFLMODULES 76
6.10.3. APPEND-NRF-MODULE 77
6.10.4. DELEETFNRF—MODULES 77
6.10.5. LIST—NRF—ENTRIES 78
6.10.6. LIST—NRF—CODE 78
6 . 10 .7 . WRITE-NRF-EDF—AE'I'ER—MODULE 79
6 . 10 . 8 . INSERT-NRF-MESSAGE 79
6 . 10 .9 . PREPARE-NRF-LIBRARY-FILE 80

7 . CCMVIANDS AVAILABLE IN THE NLL AND THE MONITOR 81

7.1. Utility commands 81
7.1.1. HELP 81
7.1.2. OUTPUTLFILE 81
7.1.3. @ (Sintran—III command) 82
7.1.4. 0C 82
7.1.5. ABORT-BNKH141FEFROR 82

7.1.6. EXIT 83

7.2. Trap handling 84
7.2.1. WALFTRAP-ENABLE 85
7.2.2. LOCALrTRAP—DISABLE 85
7 . 2. 3. SYSI‘EVl-TRAP-ENABLE 86
7.2.4. SYSTEM-TRAP—DISABLE 86

7.3. VALUE-ENTRIES 86

8 . WITOR C(NMANDS 87

8.1. Commands for running an ND-SOO program 87
8.1.1. PLACE-DOMAIN 87
8.1.2. RUN 88
8.1.3. RECOVER—DOMAIN 88
8.1.4. G0 89
8.1.5. CONTINUE 89

8.2. Standard domains 90

ND—60.l36.03

xi

Section Page

8.2.1. DEE‘INE—SI‘ANDARD-IIIVIAIN 90
8.2.2. DELETE-SPANDARD—DQ’IAIN 91
8. 2. 3. LIST-STANDARD—DOMAINS 91

8.3. Comands for opening and connecting files 92
8.3.1. OPEN-FILE 92
8. 3. 2. CLOSE-FILE 93
8. 3. 3. LIST—OPEN-FILES 93
8. 3. 4. Error returns 94

8.4. Direct file transfer 95
8.4.1. Direct file transfer with RFILE and WFILE (disk) 95
8. 4.2. Direct file transfer with MAGTP (magnetic tape) 96

8.5. Macro commands 97
8.5.1. DEFINE-MACRO 97
8. 5. 2. Macro subcomnands 98

2.1. IF—ERROR4MACRO—SDDP 98
2. 2. IF-ERROR—FULL—SIOP 98
2. 3. NOLIST 98
2. 4. LIST 98

8.5.3. EXECUTE—MACRO 99
8.5.4. RESUME-MACRO 100
8.5.5. ERASE—MACRO 100
8.5.6. DUMP-MACRO 100
8.5.7 LIST—MACRO 101

8.6. Debugging commands 102
8. 6.1. DEBUG—PLACE 102
8.6.2. BREAK 102
8.6.3. TEMPORARY-BREAK 103
8.6.4. STEP 103
8. 6.5. LOOK-AT commands 104

5.1. LOOK-AT-PMRAM 106
5.2. LOOK—AT—DATA 107
5.3. LOOK—AT—STACK 107
5.3.1. Subcorrmands PREVIOUS and NEXT 108
5.4. LOOK-AT-RELATIVE 108
5.5. LOOK-AT—REEISI‘ER 108

8. 6.6. SET-MEMORY-CONTENTS 109
8.6.7. MAIN-FORMAT 109
8.6.8. EXTRArEORMAT 110
8.6.9. TRACE 110
8.6.10. GUARD 111
8.6.11. BRANCH-TRACE 112
8.6.12. CALL—TRACE 112
8.6.13. EXHIBIT-ADDRESS 113
8.6.14. DEHJG-STATUS 114
8.6.15. ENABLED-TRAPS 114
8.6.16. STATUS 114
8.6.17. RESET commands 114

17.1. RESET-DEBUG 114
17.2. RESET—BREAKS 115

ND—60.136.03

xii

Section Page

17.3. RESET—LAST—BREAK 115

17.4. RESET—TRACE 115
17.5. RESEHLGUARD 115
17.6. RESET-CAUrTRPCE 116

17.7. RESET-BRANCH—TRACE 116

8.7. Commands for performance measurement 117

8.7.1. Histogram commands 117

1.1. SEP—HIS'IOGRAM 117
1.2. START-HISIOGRM 118

1.3. STOP-HISI'OGRAM 118

1.4. PRINTHHISTOGRNM 118
1.5. RELEASE—HISIOGRAM 118

8.7.2. Monitor call logging 119
2.1. STARTaflIIEEIrLOG 119
2.2. PRINTkMONCALL—LOG 119
2.3. STOPHMONCALL—DOG 119

8.7.3. Process logging 120

3.1. START-PRGTESS-LDG—ALL 120

3.2. START-PME‘SS—LOG—ONE 120

3.3. PRINTLPROCESS-LOG 120
3.4. PRmESS—LDG—ALL 121

3.5. PRCEESS-LOG—WE 121
3.6. RELEASE—DOG—BUFFER 122

8.7.4. SWAPPING—LDG 122
8.7.5. LIST-EDGIIUTION—QUEUE 122

8.8. Process communication flags 123

8.8.1. GET—FLAG 123
8.8.2. SET—FLAG 123

8.9. Memory allocation 124

8.9.1. Demand paging 124
8.9.2. "Fixing" in memory 125

8.9.3. Limiting the number of pages in memory 125
8.9.4. "Fixing" programs in memory 126
8.9.5. Fixing segments scattered in memory 126

8.9.-6. Fixing segments in contiguous memory 127

8.9.7. Fixing segments in an absolute location 128
8.9.8. Fixing segments shared by several processes 128

8.9.9. Unfixing a segment 129

8.9.10. The swapping strategy 130

8.9.11. SET—SEQ’IENT—LIMITS 132

8.9.12. FIX-SWSCATI‘ERED 132

8.9.13. FIX-SEGMT-CCNI'IGUCIIS 133

8.9.14. FIX-SEEMENT—ABSOUJTE 133

8.9.15. UNFIX-SEGMENT 134

8.10. Miscellaneous commands 135

8.10.1. AU'KMATIC—ERROR—MESSAGE 135

8.10.2. RESEF-AU'IU’IATIC-ERPDR—MESSAGE 135

8.10.3. The "Escape" key 135

8.10.4. TIME-USED 135

ND-60 . 136 .03

xiii

Section Page

8.10.5. WHO—IS—ON 136
8.10. 6. VERSION 136
8.10.7. SEHLPRIORITY 136

8.11. Oomnands for the System Supervisor 138
8.11.1. SET-ND—SOO—UNAVAILABLE 138
8.11.2. SEELND-SOO—AVAILABLE 138
8 11.3. SHOP—ND—SOO 139
8 11.4. Memory configuration 139

4.1. DEE‘INE-NEdOFU-CQQFIGURATION 139
4.2. MEMORSf-CQQFIGURATION 140

8.11.5. Memory administration 140
5.1. GIVE—ND—SOO-PAGES 140
5.2. TAKEFND—SOO-PAGES 141

8.11.6. Microprogram maintainance 142
6.1. MICRO—SIOP 142
6. 2. MICRO-START 142
6. 3. LOAD-CONHKXrSEORE 142
6. 4. CIwE¥uU§<XIWIHOL—STORE 143
6. 5. mK-AT'CWI'ROL—SIORE 143
6.5.1. Subconmands EDIT and ORIN 144
6. 5. 2. Subcomnands (ISTAL and SYMKDLIC 144
6.5.3. Subconmands GRCXJP and WORD 144

8.11.7. LOOK—AT conman'ds 144
7.1.1mK-AT-RESIDENT-MEMOIU 144
7. 2. [mK-AT-PHYSICAL-SEFMENT 145
7.3. LOOK-AT-HARIWVARE 145

8.11.8. rocess management 146
8.1. AITRCH—PROCESS 146
8. 2. IKXXJTD-PROCESS 146
8.3. ABORT-PROCESS 146
8.4. PROCESS-STATUS 147

8.11.9. Inspecting system tables 147
9.1. LIST-TABLE 147
9.2. LIST-ACTIVE—SEGMENTS 148
9.3. LISP-SEGMENT-TABLE-ENTRY 148
9.4. LISP-PKIESS-TABLE—E‘ITRY 148

8.11.10. Swap files 149
10.1. DEFINE-SWAP—FILE 149
10.2. DELETE-SNAP—FILE 149
10.3. LISP-SNAP—FIIE—INFO 150
10.4. LOAD—SWAPPER 150
10.5. START-MAPPER 150

8.11.11. SET—SYSTEM—PARAMEI‘ERS 151
8.11.12. LISP—SYSTEM—PARAMEI‘ERS 151
8.11.13. MASTERrCLEAR 151

9. SINTRAN—III MCNI'IOR CALLS 153

10. THE NSOOM MONITOR CALL 161

ND-60.136.03

xiV_

Section Page

11. DESCRIPTION FILE LAYOUT 165

12. THE ND RELOCATABLE FORMAT 169

12.1. DESCRIPTION 169

12.2. NRF control numbers 170

12.3. Summary of NRF control numbers 175

13. LINKAGE—IOADER ERROR MESSAGES 176

14. ND—SOO NDNI’IOR ERROR MESSAGES 182

15. EXAMPLES OF LINKAGE-IOADER AND WI'IOR USAGE 198

15.1. Executing an ND—500 domain 198

15.2. Using libraries 199

15.3. Using files 201

15.4. Macros 202

15.5. Debugging 203

15.6. System Supervisor: Installing NLL 205

INDEX 207

ND-60 . 136 .03

IN'I‘EDDUCI‘ION

ND-6O . 136 . 03

1. mm

1.1. Use of the linkage—loader and Dbnitor

An ND—500 program goes through two main steps before it is ready for
execution:

— flilation, transforming a human readable program into machine
code

— oading, combining the user program and subroutines with library
routines, and assigning the program a specific position in memory

1.1.1. @ilation

The compilation is performed by a compiler specific to the language of
the source program: a Fortran compiler, a Pascal compiler, a Plane
compiler or a Oobol compiler. The compiler may run in the ND-lOO, even
if the compiled program will be running in the ND—SOO. More commonly,
even the compiler runs in the ND—SOO.

A compiler running in the ND—SOO is operated in exactly the same way
as an ND-lOO compiler. However, in order to start it, the name of the
ND—500 monitor must preceed the compiler name:

@ND—SOO FORTRAN

"ND—500" is (an abbreviation of) the name of the monitor. The monitor
is a rather complex system controlling the ND—500 computer, but for
the beginner, "ND-500" may be viewed simply as a message to the
operating system requesting program execution in the m—soo rather
than the ND—lOO.

"FORTRAN" is the name of the Eortran compiler. Generally, compilers
have the name of the language they compile, followed by the machine
the code is made for. The full name of the Fortran compiler is
FORTRAN—500, but in most installations, an abbreviation is
unambiguous .

ND—60 . 136 .03

INTRODUCTION

A program is compiled with the CCMPILE command:

@ND-SOO FORTRAN
ND-SOO ANSI 77 FORTRAN COWPILER - mVfldBER 24, 1981

FIN: (DIPILE TESTPRm,"TESTPRG§:LISI‘", "TESTPRCXS"

- CPU TIME USED: 3.2 SECONDS. 750 LINES CCMPILED.
- I‘D MESSAGES
— CODE SIZE=3644 DATA SIZE=403 COM SIZE=0 STACK SIZE=654
FIN: EXIT

The default file type of the code file generated by all m—SOO
compilers is :NRF, while the default file type of ND—lOO compilers is
:BRF. Thus, if the same file is compiled for for both computers, the
code files may be given the sane name without causing a name conflict.

1.1.2. Ioadm'

After compilation, there is no difference between programs and
subroutines in different languages, and they are all loaded using the
same loader. The loader is called by the command

@ND-SOO LINKAGE-IOADER

"ND LINKAGE-IDADER" is often simply called "NLL".

NLL will create a program ready for execution. In the ND—SOO, a
program is termed a domain. A domain usually has a name, used when
starting execution. It may also be "unnamed" - actually, it then has
the standard name SCRA'ICH—DOWAIN. Any permanent domain should be given
a name; each time a file is loaded to an unnamed domain, it will
overwrite the previous contents of mRA'ICH—DCMAIN. It may, however, be
convenient to omit the naming of the domain during the debug phase of
a program.

A domain is named before anything is loaded to it, by the NLL command

NLL: SET—MAIN "MAIN—NAME"

The double quotes indicate that this is a new domain, used exactly
like double quotes to create a new file (however, the domain is not a
file). If no double quotes are used, an existing domain will be
overwritten. (This is strictly true only for simple use of NIL.)

The code file generated by the compiler is loaded by the command

NLL: LDAD—SEIJ’IENT TESTPRG;

Several files may be named in the IDAD—SEIMENT contend; for example,
the main program and subroutines may be compiled separately, to
different code files. Also, several [DAD-SW commands may be used
in succession.

ND-60.l36.03

INTRODUCTION

After all files required have been loaded, NLL is left through the
cormland

NLL: EXIT

A number of operations are performed in the EXIT command: references
to the required libraries are set up, the default handling of errors
is defined, the appropriate files are updated and the file access on
new files set.

As mentioned, the domain is not a file, nor is any program file
explicitly specified. This does not imply that there are no files used
- the loaded code is stored in files manipulated by NLL. These have
types :PSEG, :DSEB and :LINK, and (by default) names chosen by NLL. In
addition, there is a file called DESCRIPTION-FILEmESC. For all
practical purposes, these files are invisible to the programmer - he
will always identify his program by its domain name.

1.1.3. Execution

A user domain is started by typing the name of the ND—500 monitor
followed by the domain name:

@ND-SOO DQVIAIN-NAME

This is exacly like the way a compiler running in the ND—SOO is
started; "ND—500" is a message informing Sintran that the program is
to be executed in the ND—SOO computer rather than the ND—lOO.

Communication with the user through the terminal is exactly as for an
ND—lOO program, as are file access and access to various devices.
Pushing the escape or break key will interrupt the program and return
control to Sintran.

The user may also type "ND—500" without following it by a domain name.
This will start the monitor, and give control to the command processor
of the monitor:

@ND—SOO
ND—SOO WITOR 81.11.14/81.ll.04
N500:

Execution of a domain may now be started simply by typing its name:

N500: MAIN-NAME

After execution, control returns to the command processor of the
monitor, rather than to Sintran, and another domain may be executed.
As an alternative to first starting the compiler by @ID—SOO FORTRAN,
then NLL by @ND—SOO LINKAGE—IDADER and finally the program by @ND—SOO
MAIN-NAME, they may be run by the command sequence

ND—60.l36.03

INTRODUCTION

@ND—SOO
N500: FORTRAN
FTN: <compiler commands>

: EXIT
N500: LINKPGE—LOADER

: <loader commands>
: EXIT

N500: WAIN-NAME
<program input/output to terminal>

N500: EXIT
@

Even if execution is interrupted by the escape or break key, return
will be to the monitor. All files are then kept open, and execution
may be resumed by the CCNI'INUE command.

The command processor of the monitor will interpret and execute a
large set of commands, described in chapter 8 of this manual. The
majority of these are highly specialized commands and commands for the
system supervisor. Regardless of the complexity of the program system,
it is executed simply by stating its name.

1.1.4. Mild—segment dmains

A set of subroutines used in several domains will, if loaded by the
[DAD—SEGMENT command together with the main program, occupy space in
each and every domain it is used. In order to save file space (and
also memory space if the two domains are executed concurrently), these
routines may be grouped together and put on a sgment, a "slice" of
the addressing area that may be treated independently of the other
slices (segments).

If only one segment is used, that segment is usually "unnamed" - it is
given a standard name by NLL, which may be ignored by the user. A
segment used by several domains should be given a more descriptive
name. This is done by explicitly m a segment (after the domain
has been named):

NLL
NLL

SET-DCMAIN "mm—130mm"
OPEN-SEGMENT "SIBRCIJTINES", P

A new segment is created by enclosing the name in double quotes, as
shown above. If the quotes are not included, new information will
overwrite what is already loaded to the segment.

"P" is an attribute code that allows this segment to be used by other
domains as well. Now, the subroutines that are common to several
segments is loaded by a [DAD—SEGMENT coumland:

NLL: LOAD-SEGMENT SJBR-FILE

When all common subroutines have been loaded (possibly from several
files), the subroutine segment is finished by the command

ND—60.l36.03

INTRODUCTION

NLL: CIDSE—SEEMEQT

after which the main program (and possibly non—common subroutines) is
loaded as usual. But before the EXIT command, the user should link the
subroutine-segment to the main program by the command

NLL: LINK-SEGMENT SUBRGJTINFS

There may be more than one subroutine segment, each of them opened
with the OPEN—SEGMENT command and terminated with a CIDSE—SEK‘MENT, and
they should all be listed as parameters to the LINK-SEGMENT command.

The complete set of commands for loading a two—segment program is
therefore, complete with the response from NLL:

NLL: SET-MAIN "'IWO—SEQ'IENTS"
NLL: OPEN—SWT "SUBRGJTINES" P
NLL: [DAD-SEGMENT SJBR-FILE
Program: 446603 P Data:...........l7344B D
NLL: CIDSE-SEI'MENT
Segment no.........30 is linked
NLL: IDAD—SFEMENT MAINPRQS
NLL: LINK-SEGMENT SUBRCXJTINES
Segment no. 1 is linked
NLL: EXIT
Segment no.30 is linked

(Segment no 30 contains the Fortran library, and will in most
installations be linked automatically, as the example above).

When loading the second and following domain using the routines in the
SUBRGJTINES segment, the files are already loaded. The OPEN-SW,
LDAD—SEQ’IENT SUBR—FILE and CLOSE—SEEMENT commands are omitted. Only
the main program segment is loaded, followed by the LINK-m
command.

A slight problem occurs with the segment numbers: each segment has a
fixed number between 0 and 31, which must be unique within the domain.
By default, new segments are given the first number available,
starting at 1; thus the SUBRGJTINES segment above is number 1. When a
segment is created in a new domain that will also be linked to the
SUBRGJTINES segment, another segment number should be selected for the
main program and other segments. This is done by the commands

NLL: SET-MAIN "SECOND—WAIN"
NLL: SET-SEGMENT-NUMEER 2
NLL: IDAD—SEEMENT SECCND-MAIN
Program:..........766BP Data:.............244BD
NLL: LINK—SEMENT SUBRQJTINES
Segment no......... 1 is linked
NLL: EXIT

ND—60.l36.03

INTROWCI'ION

If the SUBRGJTINES segment will be linked to a high number of main
programs, it may be more convenient to set the segment number of the
SUBRCIJTINES segment, leaving segment number 1 (the default value) for
the various main segments.

If two or more subroutine segments are used by one domain, they must
all have different segment numbers.

1.2. Command andparaneter format

Normally, the user communicates with NLL and the Manitor through a
terminal. The terminal is called the communication device. In a batch
or mode job the communication device is the commend input file for
input and the output file for output.

Information returned from command execution is usually written to the
communication device. Such output may be directed to another file or
device by the (INPUT—FILE command. The current file used for output is
called the output device, whether this is the same as the
communication device or another file.

Commands to NLL and the aitor may be given in upper or lower case
letters. Commands and parameters are terminated by comma, space or
carriage return. If required parameters are not supplied, they are
prompted for with the names of the parameters. Parameters may be left
out by typing two successive commas in the command line, or pressing
CR (Carriage Return) in response to the prompt. If a parameter is not
supplied, the default value is used if it exists.

Numeric parameters are specified in octal, unless the number is
followed by a D, indicating decimal format, or H, indicating
hexadecimal format. If a hexadecimal number does not start with a
digit, it must be preceeded by a (redundant) leading zero to avoid
confusion with alphanumeric symbols.

1.3. Oommnd syntax

When describing the commands available in the aitor and NLL the
following rules are applied:

— 'Ihe cormland name is used as a section header.

- All parameters are enclosed in < > brackets.

- If a parameter that is asked for has a default value, its name is
also enclosed in () brackets.

— The names of optional parameters that are not asked for are
enclosed in [] brackets.

- If more than one value may be specified the right enclosing
bracket is followed by an ellipsis, as in <>... .

ND-60 . 136 .03

INTRODUCTION

All command, domain and segment names may be abbreviated as long as
they are unambiguous. Nbst of the command names follow two rules:

— The first word in the command describes the action.

— The second word in the command describes the subject the action
is going to be taken upon.

If, for instance, the command HELP is used in the following way:

HELP -SEEMENT

all commands concerning segment manipulation are printed on the output
device.

New domains and segments are created by surrounding the name with
double quotes (" ") . Double quotes are only valid in commands with a
name as a parameter. These commands are: SET-DOWAIN, OPEN-SEGMENT and
CWW—Sfim/IENT-OPEN. If the double quotes are not used, the named
object (domain or segment) is assumed to exist.

NLL will prompt for required but missing parameters. Multiple
parameters will be asked for the first time, and the full range of
Sintran III editing characters is available. If the first character of
a cemmand line is '@', the command is taken to be a Sintran III
command. The character '&' means that the input line continues on the
next line.

In interactive rmode, all list output can be temporarily stopped by
typing any character on the input device. The output is resumed when
another character is typed. In order to terminate the listing, an '@'
may be typed.

'Ihe ND-SOO Monitor is started by typing ND—SOO—MONI’IOR in response to
the Sintran III prompt. A domain name may follow on the same line,
implying a RECOVER-MN command with this name as parameter. If no
domain name was specified on the call line, the ND—SOO aitor will
prompt for commands with "N500: ". The rules for parameter
specification are the same as in NLL. Wherever a parameter from a list
of valid values is expected, "HELP" may be written. This will cause
the possible choices for the parameter values to be printed on the
communications device. (Obviously, this does not apply where an
arbitrary string, such as a domain name, may be specified.)

ND—60.136.03

10
INTRODUCTION

1.4. ' rules

Segments and domains are referred to by name in NLL and the aitor.
The name of a segment is equal to the name of the segment files. The
program, data and symbol files of a segment have the same name, but
are distinguished by their types: :PSES, :DSEG and :LINK respectively.
As segment names coincide with file names, the segment name syntax
follows the Sintran III file name syntax, and the segment name must be
unique in the current user's file catalog. The file type may not be
modified.

Domain names may - like segment names — contain alphanumerics and
hyphens, and may coincide with segment names. Maximum length is 16
characters, and lower case characters are converted to upper case.

1.5. The description file

The names of segments and domains are found in a file called
DESCRIPTION—FILEmESC. Each named object (segment or domain) has an
entry in this file, containing all information needed by NIL and the
Monitor. For example, the domain entry - one for each domain —
contains the name of the domain, a table of the segment files of which
the domain consists, information about the relationships to other
domains, the size and the start address of the domain, and information
relevant to the internal operation of the aitor.

Every user of NLL has his own description file, which is created and
initialized the first time the user starts NLL.

Although all domains of a user are described in one file, the same
user can access NLL from several terminals simultaneously; NLL will
see to it that access conflicts are resolved. If attempts are made to
modify the same domain from two terminals simultaneously, one of the
users will get an error message.

A word of warning:

The contents of the description file at any time reflects the state of
the segment and domain definitions of the current user. The user
should take great care to never make any modifications to the segment
files or the description file, except through NLL. Otherwise
inconsistencies may arise, and it may be necessary to rebuild the
description file, thereby losing all information about previously
loaded segments.

ND—60.l36.03

11
INTRODUCTION

1.6. 'Ihe function of the linkage-loader

The output from language processors (compilers, assemblers) is in the
form of relocatable nodules. The term 'relocatable' means that the
modules are not assigned a fixed position, but may be placed anywhere
in memory. Modules are not dependent on being placed in any Specific
sequence.

NLL is a subsystem able to convert relocatable object files in ND
Relocatable Format (NRF) created by language subsystems, to
independent executable programs, or processes.

A process is a set of instructions to be executed in a sequential
manner, and its associated data. The simplest process possible
consists of one segment in one domain; a more complex process may
consist of up to 32 segments. A segment is built by NLL, on three
separate files: one file contains the instructions: the program
segment; another contains the data: the data segment; the third
contains the names and values of all labels and optional debugging
information, and is called the :LINK file.

A domain is an addressing space, divided into segments. Domains and
segments are described in detail in the ND—SOO CPU Reference manual
ND—05.009.

Information about intermodule references, symbols and labels is coded
in the file that is output from compilers. The format of this code is
such that procedure calls or references to global data are made
through symbols, that is, alphanumeric (symbolic) names assigned to an
instruction or data item. These symbols are made by the language
processor (often based on user assigned names in the source program),
and are referred to as 'labels'.

At execution time, references are made to addresses rather than to
labels. The conversion from relocatable symbols to machine addresses
is done by NLL. NLL will maintain a table, called the loader table,
where symbols are entered as they are encountered.

A symbol may refer to a machine address or it may be a data value. If
the first occurence of a symbol is its definition, then the loader
will enter the symbol name into the loader table together with the
address where it is defined or together with its data value. In either
case, the value associated with the symbol is simply called the
symbol's value. Whenever a reference to the label is later
encountered, the symbolic reference is replaced with the value found
in the loader table.

If a reference is made to a label before it has been defined, space is
left open in the loaded code for later insertion of its value. The
symbol is entered in the loader table, but rather than containing a
value of the label, the table contains a reference to where the symbol
is used. As soon as a definition of the label is read, the loader will
fill in the now defined value wherever a reference has been made.

ND-60.l36.03

12
INTRODUCTION

If two definitions of one label are encountered, the loader cannot
distinguish between them, and an error message is issued. In such
cases, the first definition of the label always applies.

Before the program is ready for execution, the loader must ensure that
all symbolic references are replaced with numeric values/addresses. To
achieve this, it may be necessary to load libraries, either by the
user or automatically. The loader is able to distinguish between a
required and a not required nodule in a library.

A note on the terminology:

In this manual, the term ‘reference' is used to describe a symbol that
has been entered into the loader table, but has not yet been defined.
An 'undefined entry' is equivalent to a reference. The term 'label' is
used for a symbol which has been assigned a value in the loader table;
it may have been referenced or not. A 'defined entry' is equivalent to
a label. 'Symbol' is the general term for all symbolic (alphanumeric)
names, but is mostly used for names not yet in the loader table.

The term 'loading' is sometimes used in the sense 'bring into memory
for execution' . Another interpretation is 'to fetch relocatable
program units and link together to an executable program' .

In this manual, as in all ND software, the latter usage is adopted.
The bringing of a program into memory for execution will in most cases
be completely invisible to the user of the program; he may consider
the program file to be directly executable.

In the cases where the program is read into physical memory, different
terms are employed to describe this depending on the specific
situation, such as 'starting execution' or "‘fixing" a segment' .

1.7. 'lhe fumticm of the lbnitor

The ND—SOO computer has no capabilities to communicate directly with
the "outer worl ". Nor does it have an elaborate operating system
administering users' processes and system resources.

Such tasks are executed by the ND—lOO CPU. The functions performed are
manifold; some of the more important ones are:

The user will always communicate with the ND—lOO machine. When he
enters the aitor, he enters a program that has the capability of
transforming the user requests into orders to the ND—SOO. For example,
when execution of a program is started through the RECOVER—MN
command, the lVbnitor will open the files required, reserve a scratch
area for data that is modified during execution, create a table entry
in a system table identifying the user of the system resources and so
on. Wnen all administrative work is complete, a message is sent to the
ND—500 requesting execution of the program.

ND-60.l36.03

13
INTRODUCTION

During execution, the program may request input or output of data, may
request system information (such as the time of day etc.) or other
services that the operating system provides. Such requests are not
handled in the ND—SOO, but are transferred to the aitor. The aitor
will initiate an I/O operation, obtain the requested information or
perform the operation required, before the result of the request is
returned to the program in ND—SOO.

If an error occurs in the ND—SOO and is not taken care of by the user
program, the error is reported to the aitor, and it may take
recovery actions, or possibly abort the job with an error message sent
to the user. If one program monopolizes the CPU for a certain period
of time, the aitor will intervene, and temporarily suspend the
program, letting other programs execute in the meantime.

In the debugging phase of a program, the aitor may act as a
supervisor of the user program, providing the user with commands to
inspect and modify the program during execution. As the code required
to fetch information about the user program is a part of the aitor,
the program being debugged may be compiled and loaded exactly like a
production program. This guarantees that the results produced are
unaffected by debugging instructions.

'Ihe D'bnitor also performs a number of system oriented tasks, such as
book-keeping of resource usage, preventing unauthorized users from
executing privileged functions etc. Because all communication with the
ND—500 is channeled through the aitor, the interface between the
user and his program may look exactly as if there were only one CPU
(except for the starting of the Monitor). Letting the ND—lOO perform
all administrative tasks also frees the ND—500 for user programs. The
two processors may work in parallell, with the ND—SOO executing a user
program while the ND—lOO prepares the next job.

ND-60.136.03

l4

ND—60.l36.03

DTHKXIKHION

15
MEMORY MANAGEMENT SYSTEM

2. BMWSYSI'B!

The maximum program size that ND—SOO is able to handle is too large to
handle as one unit, both for man and machine. A logical subdivision is
done by splitting a domain into sfiments, where each segment is of a
more managable size, and the interface between the segments is clearly
defined. This subdivision is handled by the machine by its memory
management system. The architecture of this system will to some degree
affect large programs and programs with special communication
requirements.

Understanding the information in this chapter is not required for
running most ordinary programs. Nevertheless, it provides the
background information necessary in order to understand the use of all
commands described in the manual.

2.1. Logical mmry structure

An ND—500 addressing space is called a III/IAIN. A domain contains an
executable program that can be started through the ND—500 aitor. For
practical purposes a domain may be considered equivalent to a program.

The address range of a domain may vary from 2k bytes up to 4
gigabytes, equivalent to a 32 bit address space. Instructions and data
are, however, kept fully separated, and, in fact, a domain contains
one area for instructions and another for data. These cover the same
address range, but as instructions may never be read as data, or data
executed as instructions, no conflicts arise.

A domain is divided into SEIMENTS. A domain comprises from one to 32
segments: the uppermost five addressing bits select the segment. The
instruction and the data part of the segment (in the program and data
areas of the domain) are termed the instruction and the data segment,
respectively.

A segment is a set of files, cataloged under the Sintran III file
system. The instruction segment and the data segment have the same
name, but types :PSEG and :DSEG, respectively. In addition, there is a
:LINK file. The :LINK file is not opened when the program is executed
but is used during the loading process and by the symbolic debugger.
These three files together are called the segment, unless a
qualification of program, data or :LINK file is made.

The files may be indexed or contiguous, but will by default be
indexed.

A domain consists of a table of segments, and is not a separate entity
in the file system. The segment tables for all domains belonging to
one user are kept in a file called DESCRIPTION-FILE:DESC.

Domains and segments are referred to by symbolic names. Internally, a
numerical index is employed, but the user will not have to be
concerned about this index; NLL will obtain the domain or segment
number from the description file. The domain name follows the syntax
of and may coincide with file names. Domain names are stored solely in

ND—60.l36.03

l6
MEMORY MANAGEMENT SYSTEM

the description file. Segment names are the names of the :PSEG, :DSEG

and :LINK files making up the segment. These names are also stored in
the description file, where the position in the segment table for the
domain determines the segment number.

When required, the domain and segment numbers can be obtained by

executing the NLL commands LIST—DCMAIN or LIST—SW.

The reasons for splitting a domain in several segments are many:

— The more time critical parts of a program may be kept permanently
in memory (fixed segments), while other parts may be regular demand
segments

— A segment may be part of several domains. Thus, file space is
required for one copy only, rather than including the data or
routines (for example the Fortran library) in every domain.

— At run time, the Monitor will recognize a program segment used by
several users concurrently, and keep only one copy in memory,
thereby reducing swapping.

- Different segments may be given different protection against other
users.

— 'IWo programs running concurrently may communicate through a shared
data segment (Normally, hwever, each program would have his own

copy of the data segment).

— Program modularization is simplified.

— Modifications of routines or data in one segment will not require a
reloading of the whole domain (unless it has been marked as
sensitive to modifications).

- No swap file space is required for the program segment; it is read
directly from the :PSEG file and never written back. Thus, swap
file space is saved and no unnecessary rewrites are performed.

A segment will always be declared in one domain. If other domains need
routines or data in this segment, references are defined by linking
this segment to the other domain through the NLL command LINK-WT.
The linked segment may also belong to another user, for example user
SYSTEM may have a segment with library subroutines that other users
may link to.

Linking is possible only if the segment has no external references to
other segments in the domain where it was created, unless all these
segments are also linked.

ND—500 hardware allows a segment to be used as an "indirect" segment.
Call to an indirect segment implies a change of control to another
domain, and is used for building a program system cmsisting of
several domians. This mechanism is not used under the Sintran III
operating system.

ND—60 . 136 .03

l7
MEMORY MANPGEMENT SYSTEM

The indirect segment concept is, however, used for operating system
requests: "monitor calls" are calls to routines on a system segment
used as an indirect segment. Thus, monitor calls look exactly like
regular routine calls, and parameters are transferred through the same

mechanisms. By convention (although not by necessity), segment number
31 (octal 37) is used for interfacing to the operating system.

2 . 2 . ilities

During execution, ND—SOO will keep a 16 bit descriptor, called a
capability, for each logical segment in use. This capability contains
information about access rights, location in physical segments and
sharing with other processes.

Each data segment may be individually protected against write access
and access to subroutines parameters. If the segment is used
concurrently by several processes, the capability will inform the CPU
that data accesses should go directly to memory rather than through
the cache. This is done to prevent that one process' updating of a
variable is immediately observed by the other processes; the cache is
not neccessarily cleared when another process gains access to the CPU,
and the one process may also be running in ND—lOO.

A program segment is identified as a direct or indirect segment. A
direct segment is part of the current domain, while an indirect
segment is part of another domain (in Sintran III: in the ND—lOO) .
This mechanism is used by the operating system to implement a set of
monitor calls: Logically, the routines are addressed within the
address space of the current domain, but when such a routine is
called, the microprogram will recognize the segment as indirect, and
transfer control to the appropriate domain. ND—lOO is in this respect
considered another domain. The capability contains an explicit
indication that the other domain is in another machine.

Program segment capability:

a) Direct segment

I l biLL 1 3 bits L r 12 bits L
direct unused physical segment number
(=0)

b) Indirect segment

ibitL [1bitL11bitLi8bitsI [5bitsL
indirect other unused domain segment
(=1) machine

Data segment capability:

f1 bit I 1 1 bit 1 f1 biLL L 1 bit I L 12 bits)
write parameter shared unused physical segment
permitted access segment number

ND—60.l36.03

18
MEMORY MANPGEMENT SYSTEM

Both data and program segment capabilities also indicate which
physical sgment that is addressed. A physical segment is a part of
(physical and virtual) memory; a logical address is translated to a
physical address in the physical segment.

Two logically separate segments may map onto the same physical
segment. This will appear as the capabilities of the two segments
pointing to the same physical segment. The physical segment number is
determined when the segment is brought into memory for execution.
Sharing a segment in this manner may reduce swapping, and it may be
used for communicating data between processes.

When routines on a program segment is started, the IVbnitor will
normally check whether the physical segment has already been fetched
by some other process. If it has, no new copy is required, and the
second segment maps onto the physical segment already in memory. (This
relies upon program segments being read-only - if any modification
(patching) is done to the program segment, the user will receive his
own private copy.)

Data segments will not unless explicitly specified be mapped onto the
same physical segments, as one process' modification of a location
will have an immediate effect for other processes' use of the value.
Sharing a physical segment is, however, the most direct way of
transferring data between processes. When accessing data in a shared
segment, the cache is bypassed in order to ensure data consistency. If
multiple CPUs have access to the memory, the multiport will ensure
that a write or read operation of one location will not be interrupted
by another process. (Higher level protection and synchronizing
mechanisms may be implemented in software based on this hardware
mechanism.)

If a logical data segment is mapped directly onto the file where it is
stored (rather than to a copy on a swap file), modifications to the
data will be permanent. By using a file as a segment any file may be
manipulated; the cataloged file will be directly addressed as a part
of the logical address space. Compared to ordinary file access, the
overhead is reduced drastically, and addressing can be done easily and
directly within the logical address space. Obviously, only one process
at a time may modify a permanent file, or the two processes must have
agreed upon a synchronization protocol.

ND-60.l36.03

19

3. TRAPS

Trap conditions are special situations detected by hardware, possibly
requiring special handling. Exanples of such situations are division
by zero, protect violation or illegal index.

Some trap conditions may be conpletely ignored. Others require some
form of handling, while still others are so serious that they are
reported directly to the operating system. These three groups are
labeled ignorable, non—ignorable and fatal, respectively.

Trap conditions may be handled by a routine in the current domain, or
propagated to the ND—lOO. The presence of a local trap handler routine
is signalled by setting the bit in the OPE register (04m Trap Enable)
corresponding to the trap condition. This register has one bit for
each possible trap condition.

If the OI'E bit is cleared, the trap is propagated to the ND—lOO if the
MTE bit (Mother Trap Enable) is set, signifying that the ND—lOO has a
trap handler. Otherwise the trap is ignored.

ND—lOO may limit the ND—SOO domains‘ freedom to modify bits in the OI'E
register (and thereby the handling of the trap condition), by clearing
the corresponding bit in the TM register (Trap Enable Nbdification
Mask). Fatal traps may never be locally enabled in ND—SOO.

3.1. Trap handler calling

When a trap condition occurs, the calling of a handler is determined
by the setting of the ME and OI‘E registers. If the affected bit is
reset in both registers, no trap handler is called and the trap
condition ignored.

If the OI'E bit is set, a routine in ND—SOO is called. This routine may
be written by the user, or may be loaded or linked from a library of
standard trap handlers.

If the ME bit is set and not the O'I'E bit, ND—lOO will take care of
the trap condition.

When a trap condition is taken care of in ND-SOO, the address of the
trap handler is found in a table pointed to by the THA (Trap Handler
Address) register. The n'th entry in this table contains the address
of the handler for the n'th trap condition. One handler may take care
of several traps, or each trap condition may be handled by a separate
routine.

The routine may perform any operation, including calling subroutines,
but if a trap condition occurs during the execution of this routine,
the trap is unconditionally reported to ND-lOO. The reason for this is
that the local data area for a trap handler is fixed in the space
above the table containing the trap handler start addresses; trap
handlers are thus not reentrant.

ND—60.l36.03

20 TRAPS

At the call of the trap handler the local data area will be

initialized with information about the trap and the state of the

process when the trap occurred. The layout of this information is

described in the ND—SOO CPU Reference Manual ND-05.009.

3.2. Use of trap handlers

Writing a handler for a trap condition will require a familiarity with

the instruction set and call mechanisms of the ND—SOO. Reading the

values in the local data area of the trap handler (containing the

register block and data about the trap) is most easily done in

assembler, but may in principle be done in any language.

Most often the user will want to handle the error on a more abstract

level. A standard trap handler library will take care of the low level

trap handling, and call an exception handler routine. These will

present hardware and software detected errors to the user in a uniform

way. The standard routines may perform all the error handling or take

care of a subset of errors, they provide mechanisms for entering the

address of user written routines into the table of handlers and for

setting and resetting bits in the (HE register.

Trap handler routines and enabling/disabling of traps may be defined

at load time or before execution is started. These settings act as

default values that may be modified by me program at execution time.

The standard library will also provide routines for errors detected by

software. Such errors are usually very dependent on the application

(for example errors in the correspondence between the IO—list and the

FORMAT statement in Fortran) , and rely upon instructions generated by

the compiler. The standard way of reporting errors that occured in a

routine is to set the K bit in the status register and leave an error

code in the 11 register.

The combination of hardware trap handling and handling of software

detected errors allows a uniform interface to the environment,

regardless of the mechanism used for detecting the error.

The term used to cover both hardware and software detected errors is

exception, consequently the standard library is termed a standard

exception handler library.

ND—60.l36.03

2].
STANDARD EXCEPTION HANDLER LIBRARY

4. SEENDARD EXCEPTION HENDLER.LIERARY

The term exception covers in addition to all defined hardware traps,
special situations and errors detected by software. An exception
handler is a routine to be activated when an exception occurs, and to
take appropriate recovery actions.

A set of standard routines for use with Fortran or Planc has been
developed. These are available in a standard library, and will be
linked automatically if the user so desires.

For each error condition, the user may determine:

1) The number of times each error message is to be printed.
2) The number of times an error may occur before

the program is abnormally terminated.
3) Whether a user-supplied exception handler is to be

activated upon detection of an error.
4) Whether traceback of routine stack frames is to be printed

when the error occurs or when the program terminates,
(In case of traps, this includes a register dump) .

5) Printout of error statistics when the program terminates.

The library consists of the following routines:

EXCEPT disable/enable handling of specified exception,
EXCDEF reset handling of exception to default,
EXCTERM - define action to be taken upon program termination,
PRITRAC - print traceback of routine instances (subroutines),
PRIMESS - print error message,
GETMESS - return error text (Fortran),
PGEDWESS — return error text (Planc),
RDEFVAL — read default exception handling parameters values,
RCURVAL - read current exception handling parameters values.

In the following descriptions, the header of these routines is
described, giving the number and types of the arguments. These
routines are supplied with the standard ND Fortran library. Except
where designated as returned values, all parameters are read—only
input values.

Where routines are used as paraneters, the name of the routine is
supplied in the actual parameter list. The ccnpiler will generate the
appropriate reference to the entry point of the routine.

Traps and exceptions will be handled in the ND—500, providing they are
locally enabled. There are default settings for all traps. If no local
handling has been specified, or the trap has been disabled, then some
traps may be handled as a system trap in the ND—lOO. The Monitor will
then handle the trap in a standard manner, depending on the type of
trap. System traps may also be disabled, but the user‘s right to
modify trap handling may be restricted.

ND—60.l36.03

22
STANDARD EXCEPTION HANDLER LIBRARY

Handling of traps may be determined at load time or before execution
through the comnands LOCALr'IRAP-ENAEE, LOCAIr'I'RAP-DISABLE, SYSTEM—
TRAP—ENAELE and SYSI‘m-TRAP—DISABLE. These conmands are available both
in NIL and the Monitor, and to set default values to be used if no
action is taken by the program.

ND-60 . 136 . 03

STANDARD EXCEPTION HANDLER LIBRARY

4.1. 10—500 traps table

23

The following is a list of defined hardware traps, their corresponding
bit number in the status, OTE, NflEland TEWM registers, and the nane of
the trap.
Reference Manual ND—05.009.

Bit no.

9
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

32
33
34
35
36

The

118
13B
14B
15B
16B
17B

20B
218
22B
23B
24B
253
26B
27B

30B
31B
328
33B
34B
35B
3GB
37B

40B
41B
42B
43B
44B

"D" colunn

For a more detailed explanation,

Name

OVERFUJN
INVALID OPERATION
DIVISION BY ZERO
FIOATING UNDERFDOW
FILflMPING CAEEGHIIV
BCD OVERFUJN

ILLEGAL OPERAND VALUE
SINGLE INSTRUCETON TRAP
BRANCH TRAP
CALL TRAP
BREAKPOINT INSTRUCTION TRAP
ADDRESS TRAP FTHCH
ADDRESS TRAP READ
ADDRESS TRAP WRITE

ADDRESS ZERO ACCESS
DESCRIPEIR RANGE
ILLEGAL INDEX
STACK OVEREUJfl
STACK UNDERFUJN
PROGRNWHED TRAP
DISABLE PROCESS SWITCH TIMEOU
DISABLE PROCESS SWITCH ERROR

INDEX SCALING ERROR
ILLEGAL INSTRUCTION CODE
ILLEGAL OPERAND SPECIFIER
INSTRUCTION SEQUENCE ERROR
IWKIEECT VIOLATION

is enabled
settings are used.

msg
err
unl

see the ND—SOO CPU

D msg err

10 unl
unl
unl
unl
unl

0
0

0
0

9
0

0
0

‘1' :3 I"

*
*

F‘
P‘

k‘
F‘

C
D

C
JP

‘F
*C

>C
>

3!-
1-

3|-
S

E
X

-*
II

-fl
-

F
‘F

‘F
‘P

‘F
‘

refers to the default enabling of traps used by the
standard exception handler library discussed in the next chapter.
indicates that the trap

"*u

if the default trap library

default maximum number of error messages
default number of exceptions prior to abnormal termination
unlimited number

ND-60.136.03

24
STANDARD HCEPTION HANDLER LIBRARY

4.2. M mum routine

The EXCEPT routine is used to nodify the current exception handling
conditions.

PLANC spgification:

TYPE R'IYP = RGJTINE REFERENCE VOID ,VOID (INTEGER)
KUTINE REFERENCE VOID, VOID (INTEGER, INTEGER, RTYP POINTER, &

INTEGER, INTEGER, BITS POINTER): &
EXCEPT (EXCDD ,EXCFUN ,EXCRQJT ,NCMS; ,NOEXC ,EXCARR)

<standard library routine>

ENDKIJTINE

FORTRAN specification:

SUBRGJTINE EXCEPT (EXCDD ,EXCFUN ,EXCKIJT ,NCMS; ,I‘DEXC,EXCARR ,
+ EXCbDL,EXCbDH)

INTEGER E'XCM) ,EXCEUN ,EXCRQJT ,m,NOEXC ,EXCbDH ,EXCDDL
LOGICAL EXCARR (EXCMJL:E'XCM)H)

<standard library routine>

END

Parameter values :

Excm Ebcception number or exception nunber group:
0 default group of traps to be set

(see section 4.1)
4 LOGICAL array (EXCARR, EXCDDL and EXCbDH must be

present, Fortran)
5 BITS POINTER (EXCARR must be present, Planc)
1132443 specific trap number
4003 all FIN errors
4013:4573 specific FIN error
other illegal

EXCFUN Function:
—1 disable exception(s) indicated by EXCN) and

ignore all other exceptions. Further, the
parameters EXRQIT, MSG and mEXC will be
ignored.

0 enable exception(s) indicated by EXCbD as TRUE,
set new handler/values, and disable all other
exceptions which are indicated as FALSE.
For EXCbD values 113:443 or 4013:4573, only the
single values llB:44B or 4013:4573, only the
single exception thus specified, is enabled.

1 enable exception(s) indicated by EXCbD, do not
modify handler/values, and ignore all other
exceptions.

other illegal

ND-60 .136 .03

25
STANDARD EXCEPTION HANDLER LIBRARY

EXCROLJT User defined exception handler routine
><0 routine address (supplied by routine name

in the source program)
0 no routine supplied

DDMSG Number of messages allowed before program is aborted
-1 any number of messages allowed
>= 0 number of messages allowed (<2**3l-l)
other illegal

mEXC Number of traps before program is aborted:
-l any number of traps allowed
>= 0 number of traps allowed (<2**3l-l)
other illegal

EXCARR LOGICAL array (Fortran) or BITS POINTER (Plano)
containing TRUE or FALSE for exceptions to be handled

EXCbDL (Fortran) Low limit of EXCARR

EXCbDH (Fortran) High limit of EXCARR

The handling of one or several exception conditions may be modified,
selected through the EXCDD parameter. If this parameter is 4 (Fortran)
or 5 (Plane) , the EXCARR parameter selects a set of exceptions to be
handled. If the EXCFUN parameter is zero and EXCARR is present, the
elements set to TRUE in this array will cause the corresponding
exception to be enabled, while FALSE will cause it to be disabled.

The EXCRIJT parameter specifies the name of a user supplied routine to
be executed when the exception occurs. The routine should conform to
the following formal specification:

In Fortran:

SUBRCIJTINE name (ierno)
INTEGER ierno

<user written exception handler>

END

In Planc:

RCIJTINE REFERENCE VOID, VOID (INTEGER): name (ierno)

<user written exception handler>

The parameter <ierno> will transfer the error number to the exception
handler. If the EXCRCIIT parameter is zero, the standard exception
handler routine from the library is used.

ND-60.l36.03

26
STANDARD EXCEPTION HANDLER LIBRAW

After an error has occurred, the sequence of operations is as follows;
the steps marked with an asterisk apply to traps only:

Note: the details are slightly different in Plane

1) * If the exception is a trap, the trap routine is activated.

2) A system provided exception handler is called.

3) This handler updates the occurence counter for this type of
exception and activates the user exception handler if one has been
specified.

4) If the traceback condition (see note 1) is true, the system
outputs:
* — register dunp

— traceback printout

5) If the message occurrence limit (NOVHD has not been exceeded, or
if the traceback condition (see note 1) is true, an error message
is printed.

6) If the error count is less than or equal to the allowed nunber of
occurences for this exception type, control is returned to normal
FORTRAN error handling,

otherwise, the program is abnormally terminated with error
statistics, if specified.

Note that in Fortran the SPACK UNDERFLON trap condition is handled by
special software mechanisms and trust, in order to ensure correct
termination of the I/O activities, always be enabled.

note 1: the traceback condition is evaluated by the following
expression:

thiserror >< 'SI‘ACK UbDERFLON' and
((TRACEBACK=2 and

(thiserror.NCMSG = unl or
thiserror.numerrors in 0:thiserror.1\mSG))

or
(TRPCEBACK >= 1 and

(thiserror.NOEXC >< unl and
NOT thiserror.numerrors in O:thiserror.NOFxc))

where

thiserror.numerrors is the current value of the number of
exceptions of this type which have occurred.

ND-60.l36.03

27
STANDARD EXCEPTION HANDLER LIBRARY

EXAMPLES, Fortran

1. Enable DIVISION BY ZERO trap using default exception values:

C DIVISION BY ZERO is trap nunber 12
CALL EXCEPI‘(12,1)

2. Enable OVERFLOW and allow maximum 2 error messages and 10 overflow
errors before abnormal termination. Activate the user defined routine
MYRGJT each time the overflow trap occurs.

CALL ED(CEPI'(9,0,MYRQJT,2,10)

3. Disable error handling for exponential functions, Fortran error
numbers 4313, 4323, 433B, 437B:

HISICAL ERRARRAY(43]_B:437B)
DATA ERRARRAY/.FALSE. , .FALSE. , .FALSE. , .TRUE. ,

+ .TKJE. , .TRUE. , .FALSE./

CALL EXCEPT (4 ,-1,0 ,0 ,0 ,ERRARRAY,43]_B,437B)

ND—60.l36.03

28
STANDARD EXCEPTION HANDLER LIBRARY

4. Manipulation of some exception settings.

Assume the following is the current table settings for exceptions:

exc. no.
(octal)

431
432
433
434
435
436
437

setting

c>
c>

c>
c>

>
>

>

Excmrr msg

10
10
10
10
10
10
10

err

unl
unl
unl

20
unl
unl

50

If the following call were executed,

setting

enabled
enabled
enabled
disabled
enabled
disabled
enabled

CALL EXCEPT(4,0,MYRDUT,5,-l,ERRARRAY,43lB,437B)
C ERRARRAE as declared in previous example

then the table settings would be changed as follows,

exc. no.
(octal)

431
432
433
434
435
436
437

EDKHKITP msg
setting

A 10
A 10
A 10

NBEKITT 5
MNROUT 5
MYRDUT 5

0 10

err

unl
unl
unl
unl
unl
unl

50

setting

disabled
disabled
disabled
enabled
enabled
enabled
disabled

ND-60.136.03

29

STANDARD EXCEPTION HANDLER LIBRARY

4.3. 'Ihe EXCIEF routine

EXCDEE‘ is used to set the default exception handling values for a

given set of exceptions. This is functionally equivalent to calling

EXCEPT with the default parameter values for each of the traps

specified, but is more convenient and relieves the programmer from

knowing the defaults.

PLANC spec if ication:

RUJTINE REFERENCE VOID, VOID(INTEGER, BITS POINTER): &

EXCDEF (EXCI‘D, EXCARR)

<standard library routine>

ENDKIJTINE

FORTRAN specification:

SUBRCIJTINE EXCDEE‘ (EXCbD, EXCARR, EXCbDL, EXCDDH)

INTEGER EXCN), EXCBDL, EXCI‘DH
LOGICAL EXCARR (EXCDDL:EXCI\DH)

<standard library routine>

END

Parameter values:

EXCND Exception number or exception number group:
0 default setting (see section 4.1)
4 LOGICAL array (EXCARR and EXCDDH present, Fortran)

5 BITS POINTER (EXCARR present, Planc)
llB: 44B specific trap number
400B all FIN errors
4013:4578 specific FIN error
other illegal

EXCARR LOGICAL array (Fortran) or BITS POINTER (Planc)

containing TRUE for exceptions to be handled,
FALSE for those that should remain as they are

EXCbDL (Fortran) Low limit of EXCARR

EXCbDH (Fortran) High limit of EXCARR

ND-60.l36.03

30
STANDARD EXCEPTION HANDLER LIBRAW

The EXCARR parameter selects a set of exception conditions, like in

the EXCEPT routine. Alternatively, one specific exception nay be

selected through the EXCNO parameter.

EXAMPLES, Fortran:

1. Reset handling of all traps and Eortran errors to default:

C All traps
CALL EXCDEF(0)

C All Fbrtran errors
CALL EXCDEF (400B)

C set default program termination conditions
CALL E‘XCI‘ER’HOJJO)

This setting is identical to the setting at the beginning of execution

of a FOrtran program.

2. Reset special error handling for exponentiental functions, error

numbers 431B, 432B, 4333 and 4373, but keep possible special handling

of other exceptions:

LOGICAL ERRARRAY(431B:437B)
DATA ERRARRAY/.TRUE.,.TRUE.,.TRUE.,.FALSE.,

+ .FALSE.,.FALSE.,.TRUE./

CALL EXCDEF(4,ERRARRAY,431B,437B)

ND—60.l36.03

31
STANDARD EXCEPTION HANDLER LIBRARY

4.4. The mom routine

ED(CI'ERNI may be called to determine the printing of traceback and error
statistics information. If it has been called nore than once, the last
call applies at program termination.

PLANC spgif ication:

NJTINE REFERENCE \DID,VOID(INTEGER,INTEEER,INTEEER) : &
EXCTERM(TRACEBACK,PRSTAT,NOLEV)

<standard library routine>

ENDRCUTINE

FORTRAN specification:

SUBROJTINE ED(C'I'ERM(TRPCEBACK,PRSI'AT ,NOLEV)
INTEGER TRPCEBACK,PRSI‘AT,I\DLEV

<standard library routine>

END

Parameter value:

TRACEBACK traceback print, for all errors:
0 : no traceback (default)
1 : traceback upon abnormal termination
2 : traceback upon error
other : illegal

PRSI‘AT error statistics print at program termination, for
all errors:
0 : no statistics output
1 : print statistics (default)
other : illegal

NOLEV maximum number of levels to process when a traceback
is provided.
> 0 : maximum number of stack levels to print,

default 20
other : not valid

ND-60 . 136 .03

32 '
STANDARD EXCEPTION HANDLER LIBRARY

4.5. The IRI'IRPC routine

PRITRPC is a utility routine to print a traceback of routine instances
(stack frames). The routine is called from a user handler, or

automatically upon abnorml termination of the job if traceback has
been selected (in the EXCEPT call referring to the exception condition
raised) .

PLANC specification:

KIJTINE REFERENCE VOID, VOID (BOOLEAN READ): PRITRPC (TRAP)

<standard library routine>

ENDKJJTINE

FORTRAN spec if ication:

SUBMITINE PRITRAC (TRAP)
LIXHCAL TRAP

<standard library routine>

END

Parameter value:

TRAP TRUE if called while a trap is being handled.
FALSE should be set for any other condition.

Note that the default maximum number of stack levels to be printed is
20.

ND-60 .136 .03

STANDARD EXCEPTION HANDLER LIBRARY

4.6. The RIDES routine

33

The PRIMES routine will print the error message, corresponding to the
parameter value, on the standard output device (unit 1) .

PLANC spec if icat ion:

RQJTINE REFERENCE VOID, VOID (INTEGER): PRIMESS (EXCI‘D)

<standard library routine>

ENDRGJTINE

FORTRAN specification:

SUBRQJTINE PRIME'SS (EXCI‘D)
INTEER EXCbD

<standard library routine>

END

Parameter values:

EXCbD except ion number

The parameter (EXCI‘D) must be in the
4013:4578 (FORTRAN errors).

ND-60.l36.03

range llB:44B (traps) or

34
STANDARD EXCEPTION HANDLER LIBRARY

4.7. 1116 (mums/mm routine

PGEMESS/GEMESS will return the error text corresponding to the

specified exception nuxrber.

PIANC sggification:

RQJTINE VOID,BYTES POINTER (INTEGER): PGEMESS (Excm)

<standard library routine>

ENDRGJTINE

FORTRAN specification:

E‘UIIITION GEIMESS (EXCbD)
C this function must be declared to be of type character in the

C calling program
INTEGER E‘XCID
CHARPCTER *(*) GEmlE‘SS

<standard library routine>

END

Parameter values:

EXCbD the number of an exception condition

EXCTEXT (Fortran; out—value in Plancz)
Return parameter containing the error text

EXCbD must be the nunber of a defined exception condition, in the

range llB:44B (traps) or 4013:457B (Fortran error).

ND-60 .136 .03

35
STANDARD EXCEPTION HANDLER LIBRARY

4.8. The mm routine

PLANC sgification:

RCIJTINE REFERENCE VOIDNOID (INTEGER, INTEGER WRITE,

INTEGER WRITE, INTEGER WRITE, INTEGER WRITE, IN'I'I'IEER WRITE):

RDEFVAL (EXCI‘D, NQ/ISG, NOEXC, TRACEB, PRSI‘AT, NOLEV)

<standard library routine>

ENDRIIJTINE

FORTRAN specification:

SUBRQJTINE RDEFVAL(EXCI\D, NCMSG, NOEXC, TRACEB, PRSI‘A'I‘, mIEV)
INTEGER EXCI‘D, NadSG, NOEXC, TRACEB, PRSI‘AT, NOLEV

<standard library routine>

END

Parameter values:

EXCBD exception number

MSG default number of messages allowed
(returned value)

NOEXC default number of exceptions allowed
(returned value)

TRPCEB default (=0) traceback setting (all EXCs)
(returned value)

PRSI‘AT default (=1) error statistics setting (all EXCms)
(returned value)

NOLEV default (=20) maximum number of levels to be printed
during a traceback
(returned value)

IDFFVAL may be called to read the default values of the exception
parameters corresponding to a given exception number (EXCDD) .

ND-60 .136 .03

36
SPANDARD EXCEPTION HMDLER LIBRAIU

4.9. 'me ICURVAL routine

RCUML may be called to read the current values of the exception

parameters corresponding to a given exception number (EXCID) .
PLANC sggification:

TYPR RIYP = RGJTINE REFERENCE VOID,VOID (INTEGER)

RCIJTINE REFERENCE VOID,VOID (INTEGER, RTYP POINTER, &

INTEGER WRITE, INTEGER WRITE, INTEGER WRITE, &
INTEGER WRITE, INTEER WRITE, INTEGER WRITE): &

KZURVAL (EXCI‘D ,EXCI-KIJT ,NCMSG ,NOEXC ,TRPCEB ,PRSI‘AT ,NOLEV ,EXCIIGJNT)

<standard library routine>

ENDRCIJTINE

FORTRAN specification:

SUBMIJ'I'INE RCUML (EXCbD ,EXCRQJT ,NQdS; ,NOE‘XC ,TRACEB ,PRSI‘AT ,NOLEV ,

+ EXCIIGINT)
INTEGER EXCDD ,EXCRQJT ,NGVISS ,NOEXC ,TRACEB ,PRSTAT ,NOLEV,ED((X1CUNT

<standard library routine>

MD

Parameter values:

Exam except ion nunber

E'XCRGJT address of current user exception handler or zero
(supplied as a routine name in (the source program)

NCMSG current number of messages allowed before abnormal
termination (returned value)

NOEXC current number of exceptions allowed before abnormal
termination (returned value)

TRACEB traceback setting (for all Exams), see section 4.4
(returned value)

PRSI‘AT status report print upon end of program (for all FXQDS)
(returned value)

NOLEV current setting of maximum nunber of levels to be printed
during traceback (returned value)

EXCCQINT current exception count
(returned value)

ND—60.l36.03

STANDARD EXCEPTION HANDLER LIBRARY

FORTRAN EXCEPTIONS:

dec

257
258
259
260
261
262
263
264
166
267
268
270
27 1
272
274
275
276
277
281
282
283
284
285
286
287
288
289
293
294
295
302
303

msg
err
unl

OCt

401
402
403
404
405
406
407
410
412
413
414
416
417
420
422
423
424
425
431
432
433
434
435
436
437
440
441
445
446
447
456
457

FATAL EOMATI'II‘G SYSTEM ERROR
mo [UN PARENHIESES LEVEL IN EOMAT
ILLEGAL CHARACTER IN EOEMAT
ILLEGAL TEEMINATION OF EOIMAT
(IJTPUT RECORD SIZE EXCEEDED
E‘OIMAT REQUIRES GREATER INPUT RECORD
INTEGER OVERFIW (N INPUT
INPUT RECORD SIZE EXCEEDED
BAD CHARPCTER ON INPUT
REAL OVERFION ()1 INPUT
REAL UNDERFICW ()1 INPUT
REAL OVERFILM (1‘1 (IJTPUT
FORMAT SPECIFICATION IDES EDT APPLY
OVERFIm IN EXPONENT ON INPUT
rI00 MANY FILES OPENED
EXCEPTION NUMBER (IJT OF RANGE=
MIXING OF BINAPX/ASIII ILLEGAL
NO NDRE‘. HIFFERS AVAILABLE
ZERO BASE AND NEGATIVE EXPONENT
BASE LESS THAN ZERO IN EXPONENTIATION
OVERFIW IN mmbIENTIATION
NEG. ARG. IN SQUARE RG3?
TEX) LAME ARG. IN SINE
moo LANE ARG. IN COSINE
TOO LARGE ARG. IN EXP-FUECTION
ZERO OR NEG. ARG. IN ImARI'H-IM
130m AKSS. ZERO IN AECTAN
moo LARGE Am. IN PNPERB. TAN
Ta) LARGE ARG. IN HYPERB. SINE
'IIX) LARGE Am. IN HYPERB. (DSINE
ILLEGAL Am. IN ARC-SINE/COSINE
ILLEGAL Am. IN 'mN

default maximum number of error messages
default number of exceptions prior to abnormal termination
unlimited number

(D '1 I1

10
10
10
10
10
10
10
10
10
10
10
10
10
10 EE

EE
EE

EE
EE

EE
EE

OO
E.

EO
EE

EE
EE

EE
OO

QO

37

ND-lOO only

Nunbers not listed are currently not used. All Fbrtran errors are
default enabled.

All languges:

The hardnare traps are listed in section 4.1.

ND—60 . 136 .03

38
STANDARD EXCEPTION HANDLER LIBRARY

ND—60.l36.03

39
COMMUNICATION BETWEEN ND-SOO AND ND-lOO

5. COMMICATION M 113—500 AND m-IOO

There are several ways of transmitting information between the ND—500
and the ND—lOO; the selection of a method depends on the transmission
speed required, the requirements and privileges of the sending and the
receiving process, and above all, the amount of data to be
transmitted.

5.1. aitor calls

This is the simplest and, for the programmer, most direct way of
communicating through the operating system mechanisms, or with the
operating system itself. A monitor call will look exactly like a
regular subroutine call to a routine in an indirect segment. The
Services provided are the same as in a ND—lOO system. aitor calls
are used in connection with semaphores, internal devices, reserving
and using external devices, file I/O and for starting and stopping RT
programs in the ND—lOO.

When a monitor call is executed, the ND—500 process is suspended and a
twin process in the ND—lOO is started to execute the call on behalf of
the ND-SOO process. Some monitor calls may allow the ND-500 process to
continue while the call is executed if’ the function code is selected
accord ing1y .

The starting and stopping of a ND-lOO process is rather time
consuming, and monitor calls should be used for small amounts of data
only, or for setting up other communication channels. The overhead is
essentially constant regardless of the number of bytes transferred, as
long as this number is moderate.

All Sintran III VSE/ 500 systems are delivered with the (IJTST monitor
call (Mai 162). This is used by the standard libaries, rather than
CIJTBT. The programmer using monitor calls explicitly is advised to
utilize (IJTSI‘ if possible. (IJTSI‘ will cause activation of the twin
process for each string to be transferred, while CUTBI' will activate
it for each byte transferred.

5.2. Communicating through the process flags

Each process running in ND—SOO has two 32 bit words assigned for
communication purposes. These are termed the input flag and the output
flag. IVbnitor calls and commands are available to read and write these
flags. The flags are not used by the monitor, and may contain any bit
pattern the user desires.

The input flag of a process is used for signalling to a running ND—500
process. This flag may be written by an ND—lOO process or through
commands, and read by the process itself. The output flag is used for
returning data or status, and is written by the process. This flag may
be read by ND—lOO or through commands, but may not be written.

ND—60.l36.03

40
CQ/MUNICATION BEIWEEN ND-500 AND ND-lOO

There is no queueing - if another value is written in the flag word
before it is read, the first value is overwritten.

5.3. Communicating through mm

This is the fastest method of communication, as reading and writing is
directly to the location accessed by the ND-lOO, and this part of
memory is always resident. The only limiting factor is the size of the
R'ICCMVION area.

The RICCNMDN area is accessed from the ND-500 as a part of the regular
memory space. The mapping onto the RICOVMJN is done at load time
through the MMCH—RICQMON command, used before any loading to the
segment is done.

No modification of the size of RICCMMON should be done after the
segments referring to it have been loaded. If such modifications are
done, the segments must be reloaded. Segments using RICO/MON can not,
in general, be moved to another machine after loading.

If the R'ICGVIMON area is used from ND—SOO, it must be contiguous. In
other words, if the system supervisor through the SIN'IRAN—SERVICE—
PROGRAM command DEFINE-MCMDN—SIZE expands mom beyond what was
specified at system generation, this area must be adjecent to the
initially allocated area.

5.4. Oommnicating through an Rl‘ segment

An ND—lOO RT—program may share data with an ND—SOO process through a
segment in one of the ND—lOO SEGFILS. The segment must be fixed in a
continous area in memory before the ND-SOO process referring to it is
started.

This is the most efficient way of transferring larger amounts of data
between the two processors. Access to the area should be protected by
semaphores; this is done through monitor calls.

The symbols defined by the ND—lOO RT-IDADER are available to the
ND—500 process after the MA'ICH—COMGQ—RT-SWT command has been
given. This command should be given after these symbols have been
defined in the ND—lOO, but before any loading to the ND-500 segment is
done.

If two (or more) ND—lOO segments are matched with one ND—500 segment,
they must be fixed in memory at physical addresses with a fixed
distance equal to the distance between them in ND—SOO address space.

ND-60.l36.03

41
CCMMUNICATION BETWEEN ND—SOO AND ND—lOO

5.5. Oommnicating through files

All files are conmon to the two processors, and the sane regulations
apply to processes running in the two CPUs as to processes running in
the same CPU. Files provide for transfer of arbitrarily large anounts
of data, but are significantly slower than the other methods.

In order to speed the file access, the file may be opened with direct
transfer (open nodus 8 or 9). This puts sone restrictions on the
application program, but allows the transfer to go directly to nen‘ory,
circumventing a major part of the file system. However, the user must
do most of the bookkeeping himself, and the file system provides no
structuring of the disk pages. The transfer speed will, however, when
the block size is large, approach the hardware speed of the disk.

Programs using direct transfer may also allow a higher nunber of
simultaneously opened files. Direct transfer is also available for
magnetic tape.

When direct transfer is used, the aitor will automatically fix the
memory buffer in a contiguous part of nemry before the first
transfer, and it will remain fixed until the program terminates.

ND—60 .136 .03

4 2
LOADER COVIMANDS

6. IDADEICDMPNDS

Although the set of commands available in NLL is large, most users
need only a couple of them. The most important are

SEE-MAIN - name an executable domain
LDAD—SEXMENT — load a file containing relocatable code
EXIT — return to Sintran III

The EXIT command is described in the next chapter.

Various error messages may be returned from NLL during or after
command interpretation and execution. These error messages are listed
in chapter 13, with short explanations and references to where they
may occur.

6.1. Domains

6.1.1. SEE-MAIN

SET—DCMAIN (<domain name>)

<domain name> — the name of the domain to be set as the current
domain, 1 to 16 alphanumeric characters or hyphen.
Default name is SCRATCH-MAIN.

The domain with name <domain name> is set to be the current domain.
The subsequent segment handling, loading and linking will be dme in
the current domain. <domain name> cannot include the directory and
user name; loading may be done only in the domains of the current
user.

If a domain is already set when the SET—DOVIAIN command is executed, it
is closed by an implicit END—MAIN.

The default domain name is SCRA'ICH—DCMAIN. If a LOAD—SEGMENT command
is given when there is no current domain, an implicit SET-MAIN
SCRATCH—DOAAIN is performed, and the segment SCRATCH-SW. This
will delete all information previously loaded, using default names.
Thus, a domain to be permanently retained will usually be given
another name, to prevent it from being destroyed when default domain
name is used.

A user may have a maximum of 256 domains. New domains are specified by
enclosing the domain name in double quotes.

ND-60 .136 .03

43
Domains

6.1.2. DID-MIN

END-IIMAIN

Finishes operation upon the current domain. END-MAIN automatically
executes the command CLOSE-8mm. END—DCMAIN will automatically be
executed by the commands SET-MAIN, and EXIT.

6.1.3. CLEAR-MAIN

CLEAR-DCMAIN <domain name>

<domain name> — the name of the domain to be cleared, l to 16
alphanumeric characters or hyphen.

All segments which the domain <domain name> consist of are deleted
from the domain. The segment (:Psm, :DSEG, :LINK) files are retained.

This command may not be executed when a domain is set. <domain name>
cannot be SCRATCH-MN, and must belong to the current user.
(Individual segments in SCRATCH—MAIN may be cleared by the CLEAR-

SEI‘MENT command.) It is assumed to exist in the description file of
the current user. The domain continues to exist, but no longer
comprises any segments.

6.1.4. DEW

DELETE—MAIN <domain name>

<domain name> — the name of the domain to be deleted, 1 to 16
alphanumeric characters or hyphen.

All segments in the domain are deleted, the domain itself is then also
deleted. The segment (:PSES, :DSEE, :LINK) files are retained. This
command may not be executed when a domain is set. <domain name> cannot
be SCRA'ICH—DQdAIN, and it must belong to the current user.

ND—60.l36.03

44
Domains

6.1.5. LIS‘lL-IIMAIN

LISP-DCMAIN (<domain name>)

<domain name> — the name or abbreviation of names of domains to be
listed. Default is all domains created by the
current user.

Writes all domains with names matching <domain name> and their start
addresses (if any) on the output device. Default is all domains
created by the current user.

This command can only be used to list domains belonging to the current
user. To list domains belonging to other users, use the command LIST—
SEGMENT, prefixing the <segment name> parameter with the user name in
parentheses.

6.1.6. wmm—unAm-srms

WRITE—WAIN—SI‘A'IUS [(<domain name>)] . . .

<domain name> - the name of the domain about which information is
requested. Default is the current domain.

Prints all the available information about the domain or domains
specified. These are assumed to exist in the description file of the
current user. If no parameters are given, the current domain—status is
printed. Note that during a linking/loading session the domain—entry
or the segment—entry is not fully updated until the commands END—
DCMAIN and CLOSE—SEGMENT, respectively, are executed.

6.1.7. mum—mu

RENAME—WAN <new domain name>, <o‘ld domain name>

<new domain name> — the new name of the domain, 1 to 16 alphanumeric
characters or hyphen.

<old domain name> - the name of an existing domain

Renames the domain <domain name>. The domain is assumed to exist in
the description file of the current user.

ND—60.l36.03

45
Domains

6.1.8. COPY-MAIN

COPY—MAIN <destination domain>, <source domain>

<destination domain> — the name of a domain to receive a copy of the
<source domain>. May not be prefixed with
directory or user name.

<source domain> — the name of the domain to be copied. May be
prefixed by directory and/or user name.

Copies the entire <source domain> to <destination domain>. <source
domain> may be prefixed with a user name or directorymser name in
parentheses. If the destination dcmain already exists, the segments on
this domain must have the same names as the segments on the source
domain or default names, and they will be overwritten with the
segments from <source domain>.

If the segments do not exist, they will be created. They will be given
the names they have in <source domain>, unless these names were
default names; the segments then will be given new default names
according to the <destination domain> number. If the destination
domain does not exist, <destination domain> must be enclosed in double
quotes.

To move a domain from one installation to another, the domain to be
moved must be described in a description file being moved with it.
The user to which the copying is done must enter NLL to create a
description file (if it is not already created) and then copy the
domain(s) by prefixing the source domain with the relevant directory
and/or user name.

As the description file contains the name of the user, if the
Sintran III commands @RENAME—DIREC'IORY and @RENAME—USER is used, the
NIL-command RENME—DEFAULT—DIREC'IORY—AND—USER must be used to update
the description file.

Domains making references to RICOVIMON or Sintran III/ND—lOO segments
should not be copied to other machines.

ND-60.l36.03

46
Domains

6.1.9. REESE-MAIN

RELEASE-DOMAIN <doma in name>

<domain name> — the name of the domain to be released

This comnand is used if an error in the system has occurred (e.g. a
system crash) leaving a domain in an open state with no user attached
to it. The domain will therefore be unavailable for further use. This
may also occur if a loading process was not terminated before a
Sintran III comnand was executed that did not return control to NLL.

RELEASE—MAIN will force the domain to be closed even if the user
issuing the conmand is not the one who are using it or have been using
it.

RELEASE—DOMAIN should be used with great care, and if used
inappropriately it may cause inconsistencies in the description file.
In any case, the contents of the released domain must be considered
unpredictable, and it should be reloaded before being used again.

ND—60.l36.03

47
Segments

6 . 2 . mm

r[his section describes commands that manipulate segments as a whole,
either before or after the actual load operation. The contends that
cause code to be loaded are described in the next section (Commands to
load NRF code).

Commands in this section are mainly used in connection with multi—
segment domains. The OPEN-SEGMENT command may be used to select a non-
default name of the segment, but the rules for default names ensure
that segment names never collide. If there is only one segment per
domain, the user need not be concerned about segment names at all, and
thus, need not use any of the commands in this section. The opening
and closing of segments are done automatically.

6.2.1. cam—m1-

OPEN-SWT (<segment name>) , (<segment attributes>)

<segment name> — the name of the segment to which subsequent
loading should be done, 1 to 16 alphanumeric
characters or hyphen. Default is SCRATCH—SEE—Ol
if current domain is SCRATCH-MAIN.

<segment attributes> — a string of the characters CDE/IOPRSN. See
below. Default is ON.

Prepares the segment <segment name> for loading, i.e. set <segment
name> as the current segment. If the segment does not exist when this
command is executed, the segment name must be enclosed in double
quotes. If the segment was already contained in the current domain,
all old information about the segment is erased. (To add more code to
an already loaded segment, use the command APPEND—SEX‘MEN'I‘.)

The scratch domain is used if there is no current domain.

The <attributes> specifies the use of the segment, and consists of a
string of option letters. The options are:

R Read Only data segment. May not be combined with W.

W Write allowed data segment. Default value. May not be combined
with R.

0 Use original data segment file for swapping. Modifications to
data will be permanent. May not be combined with C.

C Copy data segment to swap file. Default value. May not be
combined with O.

ND—60 . 136 .03

48
Segments

[‘1 Empty data segment. The data segment will be dynamically assigned
at execution time.

P Shared program segment. May be included in another domain by the
command LINK-SEGMENT. Only the program segment will be shared.

This command is only necessary if the segment will be linked to
another domain than the current one.

M Other Machine. The program segment capability will at execution
time indicate that the segment is located in another CPU. Monitor
calls which are executed in ND—lOO can be defined as an indirect
segment in another machine.

D Shared Data. A linked segment will by default have only the
program segment shared. This attribute declares the data segment
as shared. If both program and data segments should be shared, PD
must be specified.

F Fife
If an NRF file is loaded when there is a current domain (set by SET-
DCMAIN) but no current segment (set by OPEN-SEI‘MENT) , an implied
command:

OPEN-SPHIENT SEGMENT-m—Syy R

is executed, where xxx is the number of the current domain and yy the
logical segment number used. If the segment does not exist, it is
created.

All information on the segment is deleted. The segment number may be
forced by the command SEP—SWT-NUMBER; otherwise the first free
segment number, starting at l, is used. If the segment exists, the
segment number will be retained.

If an NRF file is loaded when there is neither a current segment nor
domain, two implied commands are executed:

SET—MAIN $RA'ICH—IINAIN, ,
OPEN-SWT SCRA'ICH—SEQ’EEN’I‘OI, CW

Code previously loaded to SCRAICH—SEEMENT-Ol will be deleted. Thus, to
prevent the contents of a segment from being destroyed next time
anything is loaded to the segment using the default name, the segment
should be explicitly named.

Note that the default name depends on the domain and segment numbers.
Therefore, as long as each program is loaded to a different domain,
default segment name may be used in each of the domains without
interfering with segments in other domains.

OPEN-SEGMENT automatically executes CLOSE-SEGMENT if a current segment
is open and oomou—srrmumross if one or more ccwm segments are
open.

ND-60.l36.03

49
Segments

6 .2. 2. cross—m

CIDSE—SECMENT [<Y/N>]

<Y/N> — Y will cause a load map to be written to the
output file after all linking and loading is
complete, N will suppress this. Default is N.

Terminates loading to the current segment. After this command has been
executed, there is no current segment.

If the segment was not opened by APPEND—SWT, a trap handler vector
is allocated. If there are undefined references, the auto—link
segments will automatically be linked. If there are still undefined
references, the defined auto-load files (see SEP—AU’IO—IOAD—FIIE) will
automatically be loaded. Auto—link segments and auto—load files
defined by the current user are first linked/loaded, and then those
defined by user SYSTEM.

If there still are undefined references, an error message will be
given. In a batch or a mode job all undefined references will be
written to the output device and the comend will be executed. In
interactive mode a warning will be given and the command not
executed. The second time the command is given it will always be
executed.

'The segments will be closed, all labels will be saved on the :LINK
file in numerically sorted order, all other necessary information will
be saved on the description file, and the correct file access will be
set on the files involved. The KILL—ENTRIES and GLOBAlrm'I‘RIES
commands may be used before the segment is closed to restrict the
selection of labels saved on the :LINK file.

CIDSE—SEEMENT is automatically executed by END—DOMAIN, SET—DCMAIN,
EXIT or OPEN-SEGMENT.

6.2.3. LINK-m

LINK—SEGMENT <segment name> .. .

<segment name> - the name of the segment to be linked to the
current segment.

Links all modules on the segment <segment name> to the current
segment. Routines and data areas defined on the segments listed will
satisfy references on the current segment.

The linking can be done before or after loading the current segment;
all symbols defined on the specified segments will be available until
loading to the current segment is terminated (by ClDSE—SELMENT) . The
<segment name>s specified must be already loaded segments.

ND-60 .136 .03

50
Segments

The segments which are linked will be a part of the current domain and
must have no external references to other segments if it is part of
another domain. This means that if the linked segment originally is a
part of another domain it cannot, itself, have linked and common
segments. It can, however, have indirect segments. Linked segments
may have linked segments in the current domain. Logically, a segment
linked to more than one domain may be treated as if there were several
identical copies of the segment, one in each domain.

Tnere are no restrictions on external references if the linked
segments are parts of the current domain. It is also possible to make
two—way references between segments within one domain.

If a segment in another domain is linked, the segment number will be
the same in the two domains. The segment number must therefore be
available when the linking is done, except if the segment has been
previously linked - a second LIm—SEEMEJT command may be used to
define new references since the first linking was done.

6.2.4. LIN-MILLER

LIBRARY-SWT-LINK <segment name>

<segment name> - the name of the segment to be linked to the
current segment.

A LINK—WT command will make all labels in the specified <segment
name> available in the current domain. This may cause name conflicts,
and can make the space requirements for the name table grow very
large.

LIBRAmf—SEBMEN'PLINK will define only those symbols actually
referenced. Otherwise it works exacly as LINK—SW1

6.2.5. mm

APPEND—SEGMENT (<segment name>) (<segment attributes>)

<segment name> —- the name of an existing segment, to which more
code will be added. Default is mRATCH-SEG-Ol.

<segment attributes>- a string of the characters CDEMOPRSW. Default is
the current attributes of the segment.

This command prepares <segment name> for further loading. All
previously defined and referenced symbols are available, and the new
code can be appended to the old code. <segment name> must exist when
this command is executed.

ND—60.l36.03

51
Segments

<segment attributes> have the same meaning as for OPEN-SW1 If a
non-default value is specified, the attributes are changed, otherwise
the existing attributes will not be modified.

Be aware that only the first 20 characters of a symbol will be saved
on the :LINK file, thus, if the symbol name is longer than 20
characters it will not match with the full, un—truncated symbol when
loading to the segment is resumed at a later time with this command.

The common and link segments defined when the segment was previously
closed are E automatically restored, and must be explicitly defined
by the user. In order to avoid clearing the common segment, COMM}-
SEEMEN'ILAPPDID should be used.

6.2.6. gar—mm

SET—SEEMEN’ILNUMEER (<segment number>)

<segment number> — a number in the range 0: 37B to be the logical
segment number of the next current segment.
Default is l.

Specifies explicitly the logical segment number for the program
segment within a domain. This comend can be used in connection with
the command OPEN-SEGMENT. If the command SEP—SWT—MMBER is not
issued, the first free segment number is used.

In most cases, the user need not be concerned about the segment number
used. However, if the next free segment number (i.e. the default
segment number) is already used by a segment that will later be linked
to the domain, the segment number must be set to another value.

6.2.7. GER-m

CLEAR—SEGMENT <segment name>

<segment name> — the name of an existing segment that is to be
cleared.

The segment <segment name> will be cleared and readied for loading new
code, i.e. all information about labels, start address, low address,
and size is deleted. Pages allocated to the segment files will also be
released, but the file will be retained.

ND—60.l36.03

52 Segments

6.2.8. DELETE—MT

DEER—SEGMENT <segment name>

<segment name> — the name of an existing segment that is to be
removed .

All infatuation and the files making up the segment <segment name> are

deleted. The space on the domain which the segment was a part of is

released.

This command is not legal if a domain is set, in which case an END—

DOVIAIN command must be executed before the segment is deleted.

6.2.9. mum—m

RENIWIE—SEEMENT <new segment name>, <old segment name>

<new segment name> - the new name to be given to the segment, 1 to 16

alphanumeric characters or hyphen.

<old segment name> - the name of an existing segment in the

description file of the current user.

Renames the segment <segment name>. If the segment to be renamed is

not in the default directory and/or belongs to another user than the

current user, the entire directory and user name must be specified

unabbreviated and in parentheses as a prefix to <new segment name>.

6.2.10. LISP-MP

LIST-SEGMENT (<domain name>) , (<segment name>)

<domain name> - the name or abbreviation of names of the domain to

be searched. Default is all domains of the current

user.

<segment name> - the name or abbreviation of names of segments to
be listed. Default is all segments in the selected
domains.

All segment names matching <segment name> in the domains with name

matching <domain name> are written on the output device, together with

some segment information. If a list of another user's segments is

wanted the s_egment name must be prefixed by the user name in

parentheses. The domain name may not be prefixed by a user name!

ND—60 . 136 .03

53
Segments

This command will list the domain names as well as the segment names.

6 . 2 . ll. WRI'IE—SEIIJENT—STMUS

WRITE-SEQIEIiT-SI‘A'IUS [(<segment name>)] . . .

<segment name> — the name or abbreviation of names about which
information is requested. Default is current
segment.

Prints all the available information about the segment or segments
specified, belonging to the current user or the user specified in
parentheses as a prefix to <segment name>. No parameter means that the
current segment status is printed. Note that the current segment entry
is not fully updated before the command CLOSE—SEGMENT is executed.

ND-60 .136 .03

Commands to load NRF code

6.3. OormndstoloadNRFcode

NRF files conatins code in the format described in chapter 12,
produced by language compilers and assemblers.

A file in NRF format may be structured three different ways:

a) Normal, as default output from ASSEMBLER-SOO, PLANC-SOO, FORTRAN—
500, PASCAL—500, COEDL—SOO etc. Nbdules are located in strict
sequential order, and defined labels are indicated by DEF or DDF
control numbers.

b) Slow library files, output from the compilers and assembler
mentioned above, when compiled/assembled in library mode (refer to
the manual for the language in use). Labels defined in the file
will appear with LIB control numbers. The term library file refers
to a file in this format.

c) Fast library files, as (slow) library files but preceeded by an
index table containing the name and byte address within the file of
each label defined in the file. This format is obtained by
transforming a file in format (b) with the PREPARE-NRF—LIBRARY—FIIE
command (section 6.10.9.).

The command normally used to load NRF code is the LOAD-SEGMENT. The
other commands in this chapter are required only if it is neccessary
to force the loading of a library module that would normally not be
loaded, or to prevent a module from being loaded.

6.3.1. LOAD-MT

LOAD-SEGMENT <file name>...

<file name> — the name of a file in NRF format. Default file
type is :NRF.

This command loads the NRF code into the current program segment, data
segment, and optional common segments. The current segment is the last
one specified in an OPm-SEEMENT or APPEND-SEQIIENT command. If no
current segment or current domain exists, a scratch domain and a
scratch segment will be opened and used by NLL. Default attributes
will be used.

If a current domain exists and no segment has been opened with OPEN-
SEXEMENT, a default segment will be used. See OPEN-SEGMENT.

If the current segment was opened with the command APPEND—SEI‘MENT
rather than LOAD—WT, and in addition a routine vector was
allocated on this segment by the ENTRY-RUJTINES command, the LOAD-
SESMENT command will work like RELOAD—SEQWT: the new code will be
appended to the existing code; previously defined entry points will
not cause a "double definition" error, but the routine vector will be
updated to point to the new version. Any new entry points will be

ND—60.136.03

55
Commands to load NRF code

entered into the routine vector after the already defined ones.

6.3.2. REIDAD—SEQIINT

RELOAD—SEQ’IENT <file name>

<file name> — the name of a file in NRF format. Default file
type is :NRF.

This command will load NRF code to a segment like LOAD-SEGMENT, but
modules already loaded to the segment will be replaced with the
modules with the same identification in <file name>. The code loaded
to the data segment is not replaced, but a warning message is given.
This command should be used after an APPEND—SEHVIEQT command in order
to avoid clearing the segment before loading.

This command is useful while debugging large segments and changes are
made in a single or a small number of modules. Loading the entire
segment is avoided; only the modules that have actually been modified
needs to be reloaded.

The new version of the modules are loaded at the current load address
of the segment. The space occupied by the old version of the module is
not released, and it is the responsibility of the user to load the
entire segment to clean this up after the debugging phase is complete.

6.3.3. [Em-WIDE

LIBRARY-SEGMENT-LOAD <file name> . . .

<file name> - the name of a file in NRF format. Default file
type is :NRF.

This command will load only modules containing referenced symols from
a file of structure (a), (b) or (c), as described above. For type (b)
and (c) the effect will be exactly as with the [DAD-SEGMENT commend.

All symbols defined in <file name> will be considered library symbols,
regardless of whether they are actually defined as such in the :NRF
file or not. Thus, NRF modules in the file will be loaded only if
there are references that can be defined by loading the module.
Modules containing no symbol definitions, definitions of already
defined symbols or definitions only of symbols not referenced, will
not be loaded. This command allows a file to be used as a library even
if it has not been compiled/assembled in library mode.

If an NRF module in <file name> contains several symbol definitions,
of which one or more are referenced, and others which are already
defined, the module is loaded. The first definition of the already
defined symbols will then apply, but a warning message will inform
that a redefinition was attempted.

ND—60.136.03

56
Commands to load NRF code

6 . 3 .4 . aim-mm

MITI'ED-SEI‘MENT-LOAD <file name> , <entry> . . .

<file name> — the name of a file in NRF format. Default file
type is :NRF.

<entry> — the name of a symbol defined in <file name>.

This command will load all modules of an NRF file of structure (b) and
(c) containing any referenced symbol(s) , except for those modules
containing definitions of the specified ones. These modules will not
be loaded during this load operation. (Subsequent load commands may
cause these modules to be loaded.) -

The <entry> does not have to be a library symbol (LIB contol number);
it will be omitted from loading regardless of symbol definition type.

This command is commonly used to prevent a standard version of a
routine from being loaded, in order to load a different non—standard
version from another file. If <entry> is not defined in <file name> or
if no symbols are specified, this command will act as LIBRARY-SEGMENT-
LOAD. '

6.3.5. saw—mm

SELECTED—SERENT-LOAD <file name> , <entr ies>. . .

<file name> — the name of a file in NRF format. Default file

type is :NRF.

<entries> — the name of a symbol defined in <file name>.

'Ihe complement of MITI'ED—SEGMENT-LOAD: this command will load only
those modules containing definitions of the specified <entry>s from
files of structure (b) and (c) . Other modules will not be loaded.
Symbols do not have to be library entries; no modules except those
referenced in <entry> will be loaded regardless of symbol definition
type.

<entry> does not have to be referenced prior to the use of this
command.

'Ihis command is used to load a selected routine without necessarily
loading all routines in the same file, even if these routines are
referenced. If the specified symbol is not found in <file name>, no
action is taken.

ND—60.136.03

57
Commands to load NRF code

6.3.6. WWIDAD

'IOTAlr-SEKMEN'IHIDAD <file name> . . .

<file name> — the name of a file in NRF format. Default file
type is :NRF.

This conmand will load all nodules of an NRF file of structure (a),
(b) or (c) except for those nodules already loaded. For structure (a)
it will act as LOAD—SEGMENT except for nodules already loaded, which
will be skipped with no warning message given.

ND-60.l36.03

58 '
Commands to load NRF code

6.4. comm segments

Fortran Ctr/MIN areas may either be placed in the same segment as other

data, or they may be put in their own segment(s) . Arguments for using

separate COED/ION segments are similar to other segmenting: a different

protection, memory allocation or sharing is desired for the comm

segments than for other data areas.

Own data segments for the CCMMON areas may be defined by the commands

below. These segments will not have corresponding program segments

(unless the segments have been previously opened with OPEN—MT, in

which case the existing program segment is ignored). Common segments

are special only in the sense that they facilitate selective loading

and linking of common blocks.

These commands apply mainly to Fortran programs. Common blocks defined

by a Fortran program may be referenced by some languages. A label is

defined on a common segment if the NRF language code of the loaded

module is FORTRAN and data mode is set (1140 control number, see

chapter 12), or if the label has been explicitly defined on a common

segment by the DEFINE—ENTRY or the DEFINE—COMON command.

6.4.1. (film-W

CWCN—SEI‘MEN’ILOPEN (<segment name>) , (<attributes>)

<segment name> — the name of a segment to be used for common areas
in subsequent loading. Default name is comm-
SEQ/TENT.

<attributes> — a string of the letters mPLMEWC. Default is WCL.

Prepare a common—data—segment as an additional current data-segment.

The <attributes> have the same meaning as for OPm-SEGMENT, section

6.2.1., where the option letters are explained.

The default segment when loading a common block is the last one

specified in a comm—sm'lhopm command. However, common areas can

be placed on any segment by defining the common label on those

segments prior to loading the file containing the common block. See

the DEE‘INE—CCMMON command (section 6.7.4.).

Each program/data segment pair may have up to four common segments.

Any data segment may be opened as common segment to any program

segment. comm—SWEDEN will clear the segment - if code is to be

added to an already loaded common segment or it will be linked to,

CW—SEQ’IENT-APPEND should be used.

ND—6O .136 .03

59
Commands to load NRF code

6.4.2. WW

CCMMON— SEGMEN'IL-CIDSE

Loading to all currently defined comnon segments is terminated. After
this command, there is no current common segment. loading of common
areas may continue, but they will be located in the current data
segment unless they were already defined on one of the common
segments.

This command is not required before opening a new program segment,
common segment or EXIT.

6.4.3. comm—mm

comm—SWT—APPEND (<segment name>)

<segment name> - name of an existing segment, to which more common
blocks will be added. Default is com—SW.

Common blocks defined in NRF files to be loaded will be located after
the data already loaded to <segment name>. <segment name> must exist
when the command is executed. The access of the segment is not
changed. Only the data segment is affected.

This command may also be used to link a previously loaded common
segment to another program segment, as an alternative to LINK—SEQ’IENT.
With respect to the data segment these two commands are identical, but
LINK—SEI‘MENT will also link to a program segment, if it exists. This
could cause unintened linking of accidentally synonymous entry points.
The WON—SWT—APPEND will if used on a normal segment consisting
of both a program and a data segment, link to the data segment only.

6.4.4. calm-mm

COMW—SEEMENT—NUMBER <segment number>

<segment number> — a number in the range 0:37B to be the logical
segment number of the current common segment.
Default is 338.

Same as SET—SEGMEN'ILNUNBER except that CWW—SEIMENT—MMEER applies
to the last common segment specified in a WsmT—OPEN or
CWON—SEGMENT—APPHQD command. The user will normally not be concerned
with the segment number used.

ND-60.l36.03

60
Auto—link segments

6.5. Auto—link segments

An auto—link segment is linked if there are still undefined references
after the specified files are loaded when the CLOSE—SEQEENT command is
executed. If undefined references still exist after the auto—link
segments defined by the current user have been linked, the auto-link
segments defined by SYSTEM are linked. Auto-link segments are linked
before the auto-load files are loaded.

Auto-link segments are language sensitive, and will be linked only if
one or more module of the language(s) associated with it are already
loaded.

6.5.1. SEE-WWW

SET—AU'Io—LINK—SEIMENT <segment name>, <language>

<segment name> - the name of a segment to be automatically linked
at CLOSE—SEQ’IENT if undefined references remain.

<language> - a combination of FORTRAN, ASSEMBLER, PLANC, 003%
or PASCAL.

Defines the segment with name <segment name> as an auto-link segment.
The auto-link segment specified will be valid until the command
DmErE—AUTO—LINK—SEQWT is used. The auto—link segment applies only
to the user who has defined it. Auto-link segments defined by user
SYSTEM apply to all users however, after the auto—link segments of
that user have been linked.

The <language> name may be abbreviated as long as it is unambiguous.

The buffer containing the auto—link segment names can hold a maximum
of six entries. This does not include auto—link segments defined by
user SYSTEM. If the segment name is abbreviated in this command, it is
not expanded before the name is saved. Thus, to avoid ambiguity with
segments defined at a later time, the name should not be abbreviated.

It is not checked whether the segment exists at the time when it is
defined as an auto—link segment by this command. If the segment is not
present when the automatic linking is performed, it is ignored; no
error message is issued.

ND-60.l36.03

61 ‘
Auto-link segments

6.5.2. Dams—mum—smm'r

DEEI'E-AU'IO—LINK-SEHWENT

All the uSer-defined auto—link segments are deleted permanently. The
auto—link segments defined by user SYSI‘EM will also be removed, but
only until NLL is reentered.

After a DmETE—AUTO—LINK—SEm/IENT new permanent auto-link segments may
be defined with the SET—AU'Io—LINK-SEZMENT command.

6.5.3. USE-WWW

LIST—AU'IO—LINK-SEGMENTS

Writes on the output device all the auto—link segments in the sequence
they will be linked. Both the user's own and SYSI'EM'S auto—link
segments will be listed.

ND-60 . 136 .03

62
Auto-load files

6 .6 . Auto—load files

An auto—load file is an NRF file which is automatically loaded when
the command CLOSE-SEGMENT is executed and any undefined references
exist. The auto-load files are loaded after the defined auto-link
segments are linked.

The auto-load files will be loaded in the sequence that they are
specified. If after loading all the user-defined auto—load files there
are still undefined references, the auto-load files of user SYSI‘EM
will be loaded.

’Ihe auto—load files are language dependent. Only those files specified
as auto-load files for the language used, will be loaded. If a system
consists of modules of different languages, auto—load files will be
loaded for all languages used, in the order they have been specified
with the SET-AU'IO—lDAD—FILE command.

6.6.1. SEP—HJ'IO—IDAD—FIIE

SEP—AU'IO—LDAD-FIIE <file name>, <language>

<file name> — the name of a file to be automatically loaded if
undefined references remain at CIDSE-SPI‘MENT.

<language> — combination of FORTRAN, ASSEMBLER, PLANC, COKE or
PASCAL

An auto—load file may be specified with more than on language
parameter, indicating that the file should be loaded if routines
written in either language have been loaded.

File names defined by the command SET—AU'Io—LOAD—FIIE, will be stored
permanently for the current user, and will only be removed by use of
the command DELEI'E—AU'IO—LOAD—FILE.

The buffer containing the auto—load file names can hold a maximum of
six entries. This does not include auto-load files defined by user
SYSTEM.

ND-60.l36.03

63
Auto—load files

6 .6 . 2. DEEPE—NIIO—IDAD—FIIE

DELEI'E-AU'IO—LOAD—FILE

All the auto—load files defined by the current user are deleted
permanently. The auto—load files defined by user SYSTEM will also be
removed, but only until NLL is reentered.

After a DmEI'E—AU'IO—LOAD—FIIE new permanent auto—load files may be
defined with the SEP—AU'IO—LOAD—FILE conmand.

6.6.3. HSFAUIO-mm-FIIE

LI SF-AU'IO-LDAD—FIIE

Lists all the auto—load files in the sequence that they will be
loaded. Both the user's own and SYSI‘EM'S auto—load files will be
listed.

ND—60.136.03

64
Label and reference handling

6.7. Label and reference handling

References may be of four kinds:

- a program reference in the program segment. This occurs for
example when a routine is called and the routine address is a part
of the instruction operand.

- a data reference in the program segment. Any instruction operating
on a variable data item will make this kind of reference.

— a program reference in the data segment. If a jump address or
subroutine address is found in the data segment (referenced
through a general operand specifier, in assembler terms) , this
occurs.

- a data reference in the data segment. A data value contains the
address of another data value, a displacement etc.

If the references can be defined at compile (or assembly) time, the
user will not be aware of them. However, if the referenced item is not
located within the NRF module of the reference, a symbolic name is
associated with it. A value to be given to the symbol may be defined
either by another NRF module, or by the user from the terminal.

The user may also make references of all the four kinds mentioned
above. This is mainly used for forcing specific library modules to be
loaded.

Wherever a numeric parameter is called for in the commands below, this
parameter may be a decimal or octal number, or it may be a previously
defined symbol (either defined by a command or by loading an NRF
module). The symbols #PCLC and #DCLC are available to indicate the
current program location counter (load address) and current data
location counter, respectively.

6.7.1. Harem—m

PRCXERAM-REE‘ERENCE <symbol>, (<address>) , (<space>)

<symbol> - the name of a defined or undefined symbol.

<address> — the address where the reference is made in the
program segment. Default is 0. Symbolic as well as
numerical addresses are legal.

<space> — P or D, indicating a symbol defined in the program
or the data segment, respectively. Default is P.

If <symbol> is not present in the loader table, it will be entered as
an undefined program label reference at <address>. If <symbol> is
present but as an undefined reference, <symbol> will be referenced
once more in the <address> specified. '

ND—60.l36.03

65
Label and reference handling

If <symbol> is an already defined label, its value will immediately be
put into the <address> specified. Otherwise, as soon as it is defined,
it will be put into all addresses from where it has been referenced.

Default <address> causes no modification of any memory location if the
symbol was undefined when the command was given, and is later defined.

6.7.2. UREA-m

DATA—REFERENCE <symbol>, (<address>) , (<space>)

<symbol> - the name of a defined or undefined symbol.

<address> — the address where the reference is made in the
data segment. Default is 0. Symbolic as well as
numerical addresses are legal.

<space> - P or D, indicating a symbol defined in the program
or the data segment, respectively. Default is D.

If <symbol> is not present in the loader table, it will be entered as
an undefined data label reference at <address>. If <symbol> is present
but as an undefined reference, <symbol> will be referenced once more
in the <address> specified.

If <symbol> is an already defined label, its value will immediately be
put into the <address> specified. Otherwise, as soon as it is defined,
it will be put into all addresses from where it has been referenced.

Default <address> causes no modification of any memory location if the
symbol was undefined when the command was given and is later defined.

6.7.3. DH'INE-EN'IRY

DEFINE-ENTRY <label>, (<value>) , (<space>)

<label> - the name of a not yet defined symbol.

<value> — the value assigned to the label. Default is 0.

<space> — P or D, representing a symbol defined in program
or data memory, respectively. Default is P.

<label> will be entered into the loader table as a defined symbol. The
value will be equal to <value>. If the default value is used, no
modification of the current load address is done.

If the entry is already defined, an error message is issued.

ND—60.l36.03

66
Label and reference handling

6.7.4. DEFINE-calm

DEFINE—COMON <symbol name>, (<size>) , (<value>)

<sytrbol natte> - the name of an undefined symbol in a cannon block.

<size> — the size of the canton area to be defined. Default
is undefined size.

<value> — the value of the canton symbol. Default is
undefined value, but on the current data segment
or last camon segment specified.

The canton label will be entered into the loader table as a symbol

defined in a camon data block. If <value> is zero the canton label
will be allocated from the current data load address. If <value> plus

<size> is larger than the current data load address on the segment
where symbol is being defined, the current data load address is
adjusted upwards to this value.

The canton block is placed on the current data segment, or if canton
segments are open, on the last canton segment specified in a COIMON—
SEQ’IENT-OPEN or CQMCN-SEEMENT-APPEND command.

Default <size> will cause the size to be determined the first time it
is defined during loading of code. If the default <size> is used,

<value> may not be specified.

Default <value> will cause the actual allocation of the camon block
to be done at the current load address when a definition of the symbol
is loaded from an NRF file. If <size> is specified, the camon block
will have this size regardless of the defined size of the first

occurence of the canton block. This can be used to override the
limitation that the first definition of a canton block must be the
largest one.

6.7.5. USP-WWII!!!)

LIST—ENTRIES-DEFINED (<sort criterium>)

<sort criterium> - NUMERICAL or ALPHABETICAL. Default is NUMERICAL.

All defined labels together with their values and space (P or D) and
the current load address will be written to the output device. The
<sort criterium> determines whether the list is sorted according to
symbol name or to their numerical value.

If the command SYS'I‘m-ENTRIES—m is given before the LISP-DITRIES-
DEFINED cannand, all entries are listed. Otherwise only user defined
entries are listed.

ND-60.l36.03

67
Label and reference handling

6 .7 .6 . msr-mmrrs—umm

LISP-ENTRIES—UNDEFINE) (<sort criterium>)

<sort criterium> — NUMERICAL or ALPHABETICAL. Default is NUMERICAL

All undefined entries (references) in the loader table, together with

their referenced address and space (P or D), will be written on the
output device. If a symbol is referenced several places, it is written
once for each reference, each with the address of the reference.

The <sort criterium> determines whether the list is sorted according
to symbol name or to the numerical address of the references.

6.7.7. LIST-MAP

LIST-MAP

Writes the load trap on the output device. This includes the addresses

of all undefined references followed by the addresses or values of
defined labels, both sorted in numerical order.

6.7.8. SYSl'D‘l-EN'JRIES-(N

SYSTEM-ENTRIE‘S-CN

The conmand LIST-ENTRIES—DEFINED will not print the system defined
labels. System defined labels will have their first character equal to
or [. If a list including system defined entries is desired, the
conmand SYSTm-mTRIES—m must be issued before the conmand LISP—
EN'IRIES-DEFINE). When system entries are printed, the language is
included. Program entries containing an entry point specifying a fixed
data area (INIT, EN'JM, ENTF, ENTFN and ENTI‘ instructions) rather than
stack allocation will be followed by a slash and the address of the
local data area.

LIST—mmIE‘S-UNDEFINED will print the referenced system entries
without using the command SYSI‘EM-ENTRIE‘S—CN.

The SYSI‘EM—ENTRIES-ON camand applies to the next LISP—ENTRIES-DEFINED
only, and the conmand must be given every time a list of system
defined labels is required.

ND-60.l36.03

68
Label and reference handling

6.7.9. GEM-m

GLOBAL-ENTRIES <label> . . .

<label> - name of symbol to be retained on :LINK file.

The entries in the loader table, except those referred to in this
command, are removed from the loader table before the table is written
on the :LINK file. This is useful if only a subset of the routines on
the segment should be made global. This command must be issued before
the segment is closed.

If the GlDBAlrEN'I‘RIES command has not been executed, all entries in
the loader table will be retained on the :LINK file. In either case,
all symbols will be truncated to 20 characters.

6.7.10. KIIIrEflRDE

KILL—ENTRIES <symbol>

<symbol> - the name of an entry to be removed from the loader
table.

If present, the symbol(s) specified will be removed from the loader
table. The entry may be defined or undefined. This command is used to
resolve name conflicts, avoid loader table overflow and to selectively
prohibit symbols from being saved on the :LINK file.

ND—60.l36.03

69
Areas shared with ND—lOO processes

6.8. Areas shared with 113-100 processes

The following commands are used to define sharing of segments with
ND—lOO processes. The' programmer must have experiencece with ND—lOO
real time programming in order to utilize these commands, as he is
responsible for the synchronizing with ND—lOO processes and the
protection of common areas.

Readers who do not need to communicate with ND—lOO processes may skip
this section.

6.8.1. MEIER-mm

MATCH-REM

All RT-CQIIMON labels defined by the RT-LOADER (see the RT loader
manual DID—60.051) will be defined as common labels in the loader
table. The addreSSes are transformed to NIB—500 addresses. The MCWON
area will start at the next free page boundary in the current common
segment if any is defined; otherwise it will be located in the data
segment.

The NIA'ICH—RICOVMON command should be used before the program modules
referring to the RIF—COMMON area are loaded.

The names of defined labels will be reformatted from the BRF format (6
bits per character) to NRF format (ASCII bytes), addresses will be
converted to byte addresses and an offset representing the relative
ND—500 address is added.

The MA'ICH—RICCMMON comand applies to ND—lOO/ND—SOO communication. A
domain using RICOMON should not be copied to other machines with the
COPY—DCMAIN command. The size of RICOMON must not be changed after
the domain is loaded; that will require reloading. The RICOIMJN area
must be contiguous.

ND-60.l36.03

70
Areas shared with ND—lOO processes

6.8.2. WED-m

MA'ICH—COMON-RD—SEBMENT <segment number>

<segment number> - the number of an ND—lOO segment.

All segment common labels defined by the Rr-LDADER on the segment
specified will be defined as common labels in the loader table. The
MATCH—COMON—RT—SEm/[ENT comand should be used before the program
modules referring to the segment common are loaded.

The MATCH—CWRT—SEGMENT command applies to ND—lOO/ND—SOO
communication. A domain making references to ND—lOO segments should
not be copied to another machine with the COPY-MAIN command. A
maximum of five ND—lOO segments, R'ICOWKDN inclusive, is available.

6.8.3. Im-RP-HKERPM

LINK-RT-PRQERAM

Defines the RT programs defined by the RT—IDADER. The command should
be used after the program modules referring to the RT program names
are loaded. Only RT program names which are referenced in the loader
table are defined by the command.

The LINK-R‘T-PROGRAM command applies to ND-lOO/ND—SOO communication. A
domain making references to RT programs should not be copied to
another machine with the COPY-DOWAIN command.

ND—60.l36.03

7 1
Miscellaneous commands

6.9.1. WES

ION—ADDRESS (<address>) , (<space>)

<address> - address in the range 0:777777777B. Default value
is ’4.

<space> — P, D or C or combinations of these, indicating
program, data or common address, respectively.
Default is PD.

The lower load address for subsequent loading to the current segment
is set. If C is specified, the load address is set on the last common—
segment specified in a WSEEMENT—OPEN or COVE/ICN—SEEMENT—APPEND
command.

If the load address is set to a higher value than the current load
address, a hole may remain in the file if the affected pages have
never been assigned to the segment file. If a {\D SUCH PAGE condition
occurs at execution time, the aitor will zero fill the page in
memory. If the page has been used at an earlier time, the old contents
will be used, and may for practical purposes be considered
unpredictable .

6.9.2. mGH-AwRESS

HIGH—ADDRESS (<address>) , (<space>)

<address> —- address in the range 0:777777777B. Default value
is 777777777B.

<space> ‘— P, D or C or combinations of these, indicating
program, data or common address, respectively.
Default is PD.

This command sets the highest address available on a segment. If any
loading above the specified upper high address is attempted, a warning
message is issued and the loading process interrupted.

ND-60.l36.03

72
Miscellaneous commands

6 .9 . 3 . HIM-m

ENTRY—RGHINES (<number of entr ies>)

<number of entries> - the maximum number of routines to be loaded on
the current segment. Default is 20013.

A library segment will at the start of the segment have a "routine

vector": when a routine is called from another segment, control goes

via this vector - the first routine on the segment represents the

first routine, the second element the second routine and so on. If the

routines are modified and change their relative position, no relinking

of other segments is necessary as long as the routine ' vector is

updated and the routine number stays the same.

This command will allocate space for a routine vector of the specified
size, and must be given before any loading to the segment. <number of

entries> should be at least the maximun number of routines that will

be loaded to the segment.

All manipulation of the routine vector is done by ML, and the user

need not be concerned about how the link from other segments is set
up,

The entries in the routine vector are initialized to zero, but will be

filled in by NLL as code is loaded to the program segment.

6 . 9 . 4 . SEP—IO—EIEFERS

SET- IO—BUFFERS (<number>)

<number> - the number of 2k byte buffers to be used by the
Fortran library for sequential I/O for file
buffering. Default is 16.

This command should be used only when a Fortran library segment is
created, or for any reason the Fortran library is loaded to the main

segment. From ordinary programs, the Fortran library will be linked to
the main segment, and the I/O buffers will already have been allocated
in the data segment of the library.

The cormIand specifies a number of input/output buffers for more

efficient handling of sequential files in Fortran. Two system labels
will be defined, at the lower and upper limits of the buffer area, and
the current load address will be increased by the size of the buffer

area. The total size of all buffers will be <number> * 2048 bytes. The
user should choose an appropriate number of buffers; the normal number
is one for each simultaneously opened sequential file. If a Fortran
library segment is being created, 16 buffers should be specified.

ND—6O . 136 .03

73
Miscellaneous commands

The labels defined by this command will be used by the Fortran I/O
system to determine the location and the size of the buffer. No other
use of the area is made.

6.9.5. USP-m

LISP-(IITAL <low address>, <high address>, <space>

<low address> - the address from which listing should start.
Default is 0.

<high address> — the address up to which listing should continue.
Default is <low address>+ZOOB.

<space> - P or D, indicating program or data memory,
respectively. Default is D.

The contents of the locations between <low address> and <high address>
will be written on the output device in octal format, together with
the byte address.

6.9.6. LISP—SYNDHC

LISP—SYMHDLIC (<low address>), (<high address>), (<space>)

<low address> - the address from which listing should start.
Default is 0.

<high address> the address up to which listing should continue.
Default is <low address>+ZOOB.

<space> — P or D, indicating program or data segment,
respectively. Default is P.

The contents of the locations between <low address> and <high address>
will be written on the output device in a disassenbled format,
together with the byte address.

ND—60.l36.03

74
Miscellaneous commands

6.9.7. LIST-m

LISP-MODE

Everything that is loaded is written on the output device in octal
format as it is being read from the NRF file. LIST-MODE will be
terminated by DISASSEVIBLE—MODE.

6.9.8. DISASSM-E-m

DISASSEMBLE-MODE

Everything that is loaded is written on the output device in
disassembled format as it is being loaded from the NRF file.
Disassemble—mode will be terminated by LIST-MODE.

6.9 .9 . max-52mm

CHECK-SYNTAX-MODE

If this command is executed, the following commands up to EXIT are
checked for syntactic correctness in the cmmend processor only. They
will not be executed.

This is helpful for checking a batch or mode job before it is started.

6.9.10. REEF

RESET

Removes all symbols from the loader table and resets load addresses to
the initial low addresses (which is 4 for both program, data and
common segments) .

Observe that NRF code is loaded directly to the segment files. Thus,
RE‘SEI‘ cannot be used to discard loaded code and revert the segment
files to the state they were before loading was started.

ND—60.136.03

75
Miscellaneous commands

6.9.11. RENEE—DEADLT—DIREIDRY—AND-Usm

RHJANfE—DEFAULT—DIREC'IOM—MD—USER <(new directorymew user)>

<(new directorymew user)> — the new unabbreviated directory and user
name, including parentheses and colon.

If the default directory and/or the user must be renamed with the
Sintran III commands @RENMIE—DIREJC’IOW and @RENAME—USER, this command
must be used in order to make the domain and segment descriptions in
the description file consistent with the new Sintran III names. An
exact match with the user and directory name is required, including
the parentheses and the colon.

6 . 9 . 12 . mom—WON

SUPPRESS-DEHJG-INFOH’IATION (<ON/OFF>)

<ON/OFF> - ON if debug info should be suppressed, OFF if it
should be retained. Default is ()1.

If the parameter is specified as CN, all debug information in
subsequently loaded files will be discarded, rather than saved on the
:LINK file. If the command is given with the parameter OFF, copying of
the debug info to the :LINK file will be resumed (the initial state of
NLL) .

The primary purpose of this command is to reduce the size of the :LINK
file. It may also be used if the Symbolic Debugger will be used, when
parts of the system are already completely debugged so that no further
debugging of these parts will be done. Suppressing the debug info will
then prevent breakpoints, line or routine tracing in the selected
parts.

ND—60.l36.03

76
NRF editor

6 . 10 . NRF editor

The NRF editor conmands manipulate nodules of an NRF file, that is,
the information delimited by BE and END control nunbers. Control
numbers and nnenonics are described in chapter 12. A module is
identified by any of the DEF, DDF or LIB synbols defined within it.
Modules are treated as indivisible units; specifying one (of several)
symbols in a nodule denotes the entire nodule.

These conmands are mainly used by system supervisors and system
programners who have to maintain libraries of NRF code. A familiarity
with the NRF format is desirable in order to use these conmands.

6.10.1. W

NEW—NRF—MODULES <new nodules file>, <NRF file>

<new nodules file>- the name of an NRF file containing the new nodules
to replace the old ones. Default file type is
:NRF.

<NRF file> - the NRF file to be updated. Default file type is
:NRF.

Tne NRF nodules in <NRF file> with the same identification as the NRF
nodules in the <new nodules file> will be replaced by the NRF nodules
in the <new nodules file>. The various NRF nodules in <NRF file> will
have their same relative position within the file after the NEW-NRF—
MODULES conmand as before. NRF nodules in the <new nodules file> not
found in <NRF file> will be skipped and a warning message given. NRF
nodules without synbolic names cannot be replaced.

6.10.2. W

FEICH—NRF—MGIJIES <source file>, <destination file>
(<first nodule>) , (<last nodule>)

<source file> - the name of an NRF file containing the nodules to
be appended.

<destination file>- the name of an NRF file to be appended to.

<first nodule> - the first nodule from the source file to be
appended to the destination file. Default is the
first nodule in the source file.

<last nodule> - the last nodule from the source file to be
appended to the destination file. Default is the
last nodule in the source file.

ND-60.l36.03

77
NRF editor

The NRF modules in the <source file> starting with the <first nodule>,
including every nodule up to the <last nodule> will be appended to
<destination file> after the last NRF module in the <destination
file>.

6.10.3. APPEND-NRF-MIIJIE

APPEND—bRF—MODUIE <source file>, <destination file>
(<after nodule>)

<source file> — the name of an NRF file containing the nodules to
be appended.

<destination file>— the name of an NRF file to be appended to.

<after nodule> — the nodule in the destination file after which the
new nodules will be appended. Default is after the
last nodule.

All NRF nodules in the <source file> will be appended to <destination
file> after the specified NRF module in the <destination file>.

6.10.4. WWW

DELEI‘E—NRF—MODULES <file name>, (<first nodule>) , (<last nodule>)

<file name> — the name of an NRF file. Default file type is
:NRF.

<first nodule> - a symbol defined in the first nodule to be
deleted. Default is the first nodule in the file.

<last nodule> — a symbol defined in the last nodule to be deleted.
Default is the last nodule in the file.

The specified NRF modules will be deleted from <file name>. <first
nodule> is the first nodule which will be deleted, and then all NRF
nodules following and including <last nodule> will be deleted.

ND—60.l36.03

78
NRF editor

6.10.5. LIN-m

LISP—NRF—ENTRIES <file name>

<file name> - the name of an NRF file. Default file type is
:NRF.

'I’nis conmand will list all DEF, DDF and LIB synbols in <file name> on
the output device, together with their byte address in the file.

6.10.6. 1.1m

LIST—NEW—CODE <file name>, (<first nodule>), (<last nodule>)

<file name> — the name of an NRF file. Default file type is
:NRF.

<first nodule> — the name of a symbol defined in the file,
identifying the first nodule to be listed. Default
is the first nodule in the file.

<last nodule> — the name of a symbol defined in the file,
identifying the last nodule to be listed. Default
is the last nodule in the file.

All NRF information in the specified nodules in the <file name> will
be listed in the following fornat: location counter, NRF control
nunber, name of NRF control nunber. In addition symbolic names will be
written in ASCII format. Binary information will be written in both
disassembled ND—500 format (if program code) and octal format.

ND—60.l36.03

79
NRF editor

6.1.0.7. WKITE'r-NRF— arm-m3

WRITE—NRF—EDF—AF'I‘ER—MODULE <file name>, (<module>)

<file name> — the name of an NRF file. Default file type is
:NRF.

<module> — the name of a symbol defined in the NRF file,
identifying the last nodule still valid. Default
is to insert the EDF control number in front of
the first module in the file.

Write the NRF control number 260 (EOF) after the specified NRF module
in <file name>. If the default value for the parameter <module> is
used, the EDF byte is written as the first byte on the <file name>.

6.10.8. INSERP-NRF-MESPGE

INSERT—NRF—MESSAGE <file name>, (<module>) , <message>

<file name> - the name of an NRF file. Default file type is
:NRF.

<module> — the name of a symbol defined in the file,
identifying a module in front of which the message
will be located. Default is the first module in
the file.

<message> — any character str ing excluding space up to the
first carriage return.

This command inserts the message in the NRF <file name> before
<module>. If the file is prepared with the PREPARE-NRF-LIBRARY-FILE
command, the default <module> is in the front of the address table in
<file name>.

The specified message will be written on the output device when the
file is loaded. If the file is a library file headed by an address
table, a message in front of the address table will be written; all
other messages (defined by this command) are located outside NRF
modules, and will not be written.

In the <message>, a dollar sign will be converted to Carriage Return
and Line Feed.

ND—60.l36.03

80
NRF editor

6.10.9. PREERE—M—Hm-FIIE

PREPARE-NRF-LIBRARY—FILE <file name>

<fi1e name> - the name of an NRF file. Default file type is
:NRF.

'Ihis conmand will set up an address table in front of <file name>
containing all LIB symbols together with their byte addresses in <file
name>. This will convert the file from structure "b", slow library
file, to "c", fast library file, as described in the chapter on
'Conmands to loadNRFcode'. <file name> must be the output of a
conpilation with library mode set. If a library is prepared by this
command, conditional loading is done much more efficiently.

The address table is invalidated by all comnands modifying the
contents of the NRF file, and the table trust be rebuilt if a
sequential search of the file is to be avoided.

ND—60.136.03

81
COVMANDS AVAILABLE IN THE NLL AND THE MONITOR

7. WANIAEIEIN'IEENILAND'IBEKNI'IOR

These commands may be issued either during the loading of the program,
or at run time, before the program is executed. Some of the commands,
those defining trap handling, will define defaults if used in NLL.
These defaults may be overridden in the Monitor. If the command is
given in the aitor, it applies to the current job only, and will not
permanently influence the properties of the segment or domain.

Some comends behave slightly differently in NLL and the IVbnitor. Such
differences are explained under each command.

7.1. Utility camands

7.1.1. HELP

HELP (<command name>)

<corm1and name> - any command abbreviation, ambiguous or non-
ambiguous. Default is all commands available.

All commands matching <command name> are written with their parameters
on the output device. Parameters enclosed in brackets [] are optional
parameters that will not be prompted for if not supplied.

7.1.2. (IH'HJT—FIIE

(IJTPUT—FILE (<file name>)

<file name> — the name of the file where output is desired.
Default is the communication device. .

This command is used to define an output device different from the
current one (initially the communication device) . Nbst output will go
to <file name>, but commands, parameter prompt and error messages will
continue to appear on the communication device. The <file name> is
used as an output device until EXIT or a new CIJTPU'ILFIIE command is
given.

ND-60.l36.03

82
Utility commands

7.1.3. @ (Sintran—III camand)

@command

If a line starts with the @ character, the remainder of the line is
asumed to be a Sintran III command and executed through the CCMND
monitor call.

Be aware that control will not return to NLL or the monitor after
execution of the command if another subsystem or user program was
called by the command. Also, if an error occurs during the execution
of the command, control will not return to the calling program.

In NLL, if a loading is in progress when the Sintran III command is
executed and control does not return, the description file may have
been left in an inconsistent state. It may be necessary to use the
REEASE—SHMENT command to gain access to the segment that was
current, and the contents will be unpredictable.

The aitor will check the command issued before it is submitted to
Sintran III, and will allow only a subset of Sintran III commands.

7.1.4. (I:

CC any text

Comment; whatever follows on the same line as the C12 command is
ignored and treated as a cement. This command is primarily useful for
making comments in a batch or mode job.

7.1.5. rim—mm

AmRT-BA'ICH-ON-ERWR <ON/OFF>

<ON/OFF> - CJN if batch jobs should terminate if an error
occurs, OFF if only the current command should be
terminated.

If an error occurs in a batch or mode job and this command has been
executed with the parameter OFF, only the current command is aborted
and the next command in the batch input file is executed. If the
command has not been executed or executed with the parameter (N, the
entire job is terminated. The error message will be written on the
batch output file, and in NLL the commands CIDSE—SELMENT and END—
DmAIN will be executed (if required).

This command may be specified several times, switching the batch
termination on and off before and after critical sequences.

ND—60.l36.03

83
Utility commands

7.1.6. EXIT

EXIT

Returns to the Sintran III command processor.

In NLL, if not explicitly done the CLOSE—SEGMENT and END—MIN
commands are executed if a segment is opened or a datain set.

In the lVbnitor this command releases the allocated ND—SOO resources.
If the buffer used by the histogram and logging commands was reserved,
it will be released.

If NLL was started after entering the aitor, return will be to the
Monitor. Otherwise, return will be to Sintran command mode.

In the aitor, this command is also used to return from the IDOK—AT
commands.

ND-60 .136 .03

84
Trap handling

7.2. Trap handlim

The ND—SOO trap mechanisms may be used to detect and handle
exceptional conditions occuring at execution time. The user may
optionally specify a routine to take care of the trap, or it may be
handled by a standard library routine.

801m of the traps are by default system enabled, others are locally
enabled and handled by the library routines. The default settings are
discussed in chapter 4., Standard Exception Handler Routines.

The names of the trap conditions and the label of the standard
handlers are:

trap name label

OVERFLLM _, #OVERFLW
INVALID-OPERATION #INVALDP
DIVIDE—BY-ZERO #INVALDI
FIDATING-UDDERFLON #FL'IUFLW
FIDATING—OVERFLUN #FL'IOFLW
BCD-OVERFION #cFlW
ILLEGAL-OPERAND-WUE #ILLOPER
SINGLE- INSI'HJCI‘ION—TRAP #SIbEINS
BRANCH—TRAP #BRANCTR
CALL-TRAP #CALLTRA
BREAK-POINT-INSTRUCI‘ION—TRAP #BRKINTR
ADDRESS-TRAP—FE'ICH #ADDRFIC
ADDRES—TRAP—READ #ADDREAD
ADDRESS—TRAP—WRITE #ADWRTE
ADDRESS— ZEN-ACCESS #ADDZERO
DESCRIPTOR—RANGE #DESCRIR
ILLEGAL—INDEX #ILLINDX
STPCK-OVERFLLW #STKOFLW
STACK—UNDERFLGN #STKUFLW
PIKERAMMED—TRAP #PRCI;TRA
DISABLE—PRCIIESS-SNI’ICH—TIMEUJT #DISPSWT
DISABLE—PMESS—SNI'ICH-ERROR #DISPSWE
INDEX—SCALIm-ERROR #INXSZAL
ILLEBAIrINSI'EEJCI'ION-CODE #ILINCOD
ILLEAIrOPERAND-SPECIFIER #IIOPSPE
INSTRUCI'ION—SEQUENCE—ERROR #INSEQUE
PROTECT-VIOLATION #PVIOLAT

ND-60 .136 .03

85
Trap handling

7.2.1. WRAP-MAKE

lDCAD—TRAP—ENABLE <label> <trap condition>

<label> - the name of a user written or library exception
handler routine. Default is the standard handler
in the library for the specified <trap condition>.

<trap condition> -— one of the trap names above or an unambiguous
abbreviation.

The bit in the OPE register corresponding to the specified <trap
condition> will be set, thereby causing the trap condition to be
reacted upon if it occurs. The <trap condition> parameter must be one
or more of the names in the table above. Abbreviations are legal as
long as they are non-ambiguous.

The <label> is inserted in the table of exception handler routines.
This table may contain different labels for each trap condition, or
one routine may be used by several traps. The default trap handler has
a label as specified in the table above. NLL will cause the standard
handlers used to be loaded from the standard library. The Manitor
allows the <label> to be specified either as an absolute address or as
a defined program label. This label must be present in the :LINK file
of the segment. If the <label> is omitted and an exception handler
routine is defined, it is not modified. If no handler was defined, the
standard library handler is used. This requires that the standard
routine was previously loaded.

The trap handler allocated by NIL is an array located at the most
recently modified segment (OPEN—SWT or APPEND-SEGMENT) in the
domain.

7.2.2. WRAP-DIME

LIXIAIr-TRAP—DISABLE <trap condition>

<trap condition> —- one of the trap names above or an unambiguous
abbreviation or ALL.

The bit in the OI'E register corresponding to the specified <trap
condition> is cleared, thereby disabling trap handling for that trap
condition. If ALL is specified, all traps will be locally disabled.
This is mainly used in order to override the default setting before a
new selection of traps is enabled.

The routine defined in the exception handler table is not cleared. If
the OPE bit is later set (by program or by using the IOCAIr'I'RAP—ENABLE
command in the monitor before execution is started), the routine
defined in the LOCAL—TRAP—ENABLE command acts as the default exception
handler.

ND—60.l36.03

86
Trap handling

7.2.3. SYSTfll-JEAP-BIABLE

SYSI‘FM-TRAP—ENABLE <trap condition>

<trap condition> — one of the trap names above or an unambiguous
abbreviation.

The <trap condition> specified will be handled by the Monitor residing
in the ND-lOO when the conditon occurs. It will be given a standard
treatment, which varies with the kind of trap.

If a local trap handler is defined and the local trap enabled, it will
be used rather than the system trap handler. System trap handling is
used only for those trap conditions that are locally disabled or have
no local trap handling defined.

7.2.4. SYSI‘MAP—DISAHZE

SYSTEM-TRAP—DISABLE <trap condition>

<trap condition> — one of the trap names above or an unanbiguous
abbreviation.

Tne <trap conditions> specified will not be reacted upon by the system
when the conditon occurs.

A number of trap conditions may not be system disabled. If a
modification of these traps are attempted, an error message is issued
and the comand ignored.

7.3. mum-mm;

VALUE-ENTRIES <label>...

<label> — the name of a defined synbol.

Prints the values of the labels specified on the output device. The
value is printed in octal format. The label will also be identified as
a program or as a data segment label.

ND-60.l36.03

87
MONITOR CQVIMANDS

8. DINI'IORCDMPNDS

Nbst commands in this chapter need not be known to the'ordinary ND—SOO
user. The one command used for executing an ND—SOO program, the
RECOVER-MN command, is implicit if match with no other commands is
found. Thus, in order to start execution of a domain, it is sufficient
to give the domain name as a command.

A domain name may also be specified on the same line as the command to
start the aitor. If a domain is executed this way, control will
return to Sintran III immediately after execution is complete.
Otherwise, the EXIT command must be used in the mnitor.

Various error messages may be returned from the ND—SOO aitor during
command and program execution. These error messages are listed in
chapter 14, with short explanations and references to where they may
occur.

8.1. Commands for ruming an I‘D—500 program

8.1.1. MICE-MIN

PLACE-DOMAIN <domain name>

<domain name> - the name of a domain in the description file of
the current user or the user specified in
parentheses as a prefix to <danain name>.

An executable ND—SOO domain is made ready for execution. The specified
<domain name> is searched for on the description file of the current
user. If no match is found, the description file of user SYSTEM is
scanned. A user name prefixing <domain name> is valid. The syntax is
equal to the file system syntax.

If the specified domain is found, some initialization is performed.
The start address is moved into the program counter register. The
child trap enable register of ND-lOO, the own trap enable register of
the domain and the trap handler address register are initialized. Each
logical segment is mapped on a physical segment.

The program segment will normally map directly onto the :PSEG file.
Several users may be using the same physical segment, although the
segments may be logically different. It is assumed that the program
segments are read only. This means that breakpoints cannot be used,
and patching is not possible. The DEBUG-PLACE command will permit
modifications.

The data segment is initially mapped on the :DSEB file. Upon page
fault the required page is read from the file. Wnen modifications are
made, the affected pages are not written back to the :DSEIS file but to
a scratch area on a swap file. This copy is used for later references.
Each concurrent user of the data segment has his own copy of modified

ND—60.l36.03

88
Oommands for running an ND—SOO program

pages on the swap file, and is thus independent of other users. The
physical segment corresponding to the data segment is therefore a
mixture of unmodified pages in the :DSEG file and modified pages in
the swap file.

8.1.2. KIN

KIN

The current domain is started in its start address.

The command must have been preceeded with a PLACE-MAIN or DEHJG—
PLACE command in order to bring the domain into memory. Return will be
to the aitor after execution has completed.

8.1.3. mum-mm

RECOVER-MAIN <domain name>

<domain name> - the name of a domain in the description file of
the current user, user SYSTEM or if user name
specified, of that user.

The PLACE-DOMAIN and RUN commands are performed as one by using the
command RECOVER-MAIN. The words RECOVER-MN can be left out. The
domain name itself becomes a pseudo command. The procedure for looking
up the command or domain is then as follows:

1) A search is made in the list of basic commands. If a match is
found, the corresponding command is executed.

2) If no command is found, the list of standard domains are searched
(see section 8.2.). If there is any such standard domain, it is
started.

3) If the search among the standard domains was unsuccessful, a
search is made in the domains of the current user. If a domain
with the specified name is found, it is started as with a
RECOVER—MAIN command.

4) If no domain with the specified name is found, the domains of
user SYSTEM are searched. If a domain with a matching name is
found, the domain is started.

5) If no domain is found, the specified string is assumed to be a
macro name, and a temporary macro is searched for. If any
matching macro is found, it is processed. (See section 8.5. for
a discussion of macros.)

6) If no match is found among the temporary macros, the name is
assumed to be the name of a permanent macro. If a file with the
specified string as name and type :MACR exists, it is taken as a
permanent macro and processed. The file system will ensure that

ND—60 .136 .03

89
Commands for running an ND—SOO program

if a file with the specified name is not found under the current
user, the directory of user SYSTEM is searched.

7) If none of the above lead to a successful match, the error
message m SUCH COWMAND OR DCMAIN is printed on the communication
device, and no further action will result from the entered input.

If a domain has been given the name of or a legal abbreviation of a
command or standard domain, the words RECOVER-MAIN may not be left
out.

8.1.4. GO

GO <address>

<address> - an address within the domain.

Starts the execution of an ND-SOO program at the specified address.

8.1.5. C(NI'IBUE

CONTINUE

The execution is restarted at the current program counter. There is
one exception: if a program has stopped normally (by MIN 0 or a stack
underflow trap) the execution is started at the original start
address.

If the execution has stopped because of a breakpoint, the original
instruction will be restored. If the breakpoint is a permanent
breakpoint, a single instruction is performed, and the original
instruction is replaced by a breakpoint instruction before the
execution is started.

If the execution has stopped because an escape character was typed,
the execution will be restarted where it stopped. Files will remain
opened after an escape, and the program will continue as if nothing
had happened.

ND—60 . 136 .03

90
Standard domains

8.2. Standard daunins

The search procedure employed when a command is issued will not find
domains belonging to user SYSI‘EM until the name has been ruled out as
a monitor command or as the name of a domain belonging to the current
user. In particular if the file system is heavily loaded, the opening
and reading of the description file may take some time, and increase
the system load even more.

To speed the search for commonly used systems, like compilers or the
NLL loader, these domains may be defined as standard domains. The
names of standard domains are entered in a table that is searched by
the monitor before the description file of a user is qaened. This will
reduce startup time.

Standard domain names are stored in a segment used by the monitor,
therefore the name table will not survive a cold start ()I-IENT/221).
After a warm start (masterclear/load) , the name table is intact.

Standard domains in many respects resemble "reentrant subsystems" in
the ND—lOO, and essentially, the rules are the same. Standard domains
may only be defined and deleted by user SYSTEM, but they may be listed
by any user.

8.2.1. warm-mm

DEFINE-SI‘ANDARD—DCMAIN <standard domain name> <domain name>

<standard domain name>- the name to be used when calling the domain.
May be the same as the domain name, but may
not include user name. It should not be a
legal abbreviation of a monitor command.

<domain name> - name of an already loaded domain, belonging to
any user

When any user issues <standard domain name>, or an unambiguous
abbreviation of it, as a command, <domain name> will be started. If
the user has a private domain that would otherwise have been started,
the name must include the user name in parentheses.

DEE‘INE—SI‘ANDARD-MIIAIN is permitted for user SYSI‘EM only.

ND—60.l36.03

91
Standard domains

8.2.2. Dam—mm

DELETE-SPANDARD—WVIAIN <narle>

<name> — name of an existing standard donain

The specified standard domain is deleted from the name table of
standard domains. The domain will not be deleted, but will no longer
be a standard domain.

DmETE-SI'ANDARD—DGVIAIN is permitted for user SYSTEM only, and may not
be issued while the standard domain is in use.

8.2.3. USPSPMDAm-MIAINS

LISP-SPANDARD-WAINS

The names of all standard domains and the segments couprising them are
listed ont the output device. ,

This comnand is permitted for all users.

ND-60 . 136 . 03

92
Commands for opening and connecting files

8.3. Oomands for (parting and camecting files

In most program, files are dynamically opened and closed during
program execution. In some cases it is desirable to open files

explicitly through commands. This occurs in particular where Fortran

programs are transported from other machines where all files must be
opened through operating system commands prior to program execution,
or where transportation to such machines is probable. These commands
may, however, be used to open files for programs in any language
allowing a file to be identified by its open file number.

The commands below are similar to the Sintran III commands with the
same names, but will affect files opened for use by the ND-500.

8.3.1. GEN—FILE

OPEN—FILE <file name>, <connect file number>, <access mode>

<file name> — the name of a file to be used by a program.
Default file type is :DATA.

<connect file number> — the file number used in the program.

<access mode> - see table below.

Opens a file and connects it to a file number used in the program. If
<connect file number> is 0 a file number is returned that must be used
from the program.

Default number base of <connect file number> is the main format —
initally octal. If a decimal number is specified, it must be followed
by a D. Unit numbers in Fortran programs are decimal.

The opened file will be associated with a Sintran file number, usually
ranging from 1003 and wards, in a manner equivalent to ND—lOO
operation. However, the monitor maintains a connect number table,
allowing programs to access the file either through the Sintran file
number or through the user selected connect number.

Access modes:

0 sequential write (QITBI‘,(IJTSI‘)
l sequential read (INBI‘)
2 random read/write (RFILE/WFILE)
3 random read (RFILE)
4 sequential read/write (INBT/(IJTB'I‘,O£JTSI‘)
5 sequential write append
6 random read/write with read/write access allowed from other

users (contiguous files only).
random read with read access allowed from other users
(contiguous files only).

W
R
WX
RX
KN
WA
WC

8

ND—60.l36.03

93
Commands for opening and connecting files

D 8 direct transfer
DC 9 direct transfer with the file closed, modus 9.
READ 10 The system will select the access mode R, Rx or D. The most

optimal access mode which can be used for the file/device is
selected. The following is a list of file/devices and the
corresponding access mode selected by the system:

terminal:
tape reader:
indexed file:
contiguous file:
magnetic tape: U

U
Q

W
W

WRITE 11 The system will select the access mode RW, WX or D, as for
READ access above.

8.3.2. (JOSE-FILE

CLOSE-FILE <connect number>

<connect number> - the connect number of a file open from a ND—500
program or through the OPEN-FILE command.

Closes a file and disconnects the file number.

<file number> > 0 close the file open with the given number
= —-1 close all files temporary open
= -2 close all open files
= —3 close all files open from the

ND—SOO program or by the OPEN-FILE
command in the Monitor.

8.3.3. IJSP—(HN—FILE

LISP-OPEN-FILES

Lists all files opened from a ND—500 program or by the OPEN-FILE
command in the aitor. The list will appear on the output device.

Files opened locally in the ND-lOO will not be listed.

ND—60.136.03

94

8.3.4.

Oomnands for opening and connecting files

Error returns

Monitor calls from the ND-SOO may return error codes outside the range
used by ND—lOO. These are

Code

1000B
100 1B
100 2B
1003B
1004B
100 5B
10068
10078
10 103
10 113
10 128
10 13B
10 148
10 15B
10 16B
10 17B

These
(MCN

Error message

ND-500 OPEN FILE TABLE IS FULL
FILE IS NEI'IHER CCNTIGUCIJS I‘DR MAG. TAPE
ND-500 OPEN FILE TABLE FOR DIRECT TRANSFER IS FULL
ERROR IN MWI'IOR CALL
ODD BYTE ADDRESS
ODD BYTECGJNT
mo BIG BYTECGJNT
BYTECCIINT I‘DT MODUIO SECTOR SIZE IN DIRECT TRANSFER
ADDRESS CIITSIDE FILE LIMITS IN DIRECT TRANSFER
BLCfiK ADDRESS DDT MODULO SECTOR SIZE IN DIRECT TRANSFER
HARD/WARE STATUS ERROR IN DIRECT TANSFER
ILLEGAL MCNI'IOR CALL MIMBER
DCACCESSI‘DTLEGALONMAG. TAPE
WRCX‘I-‘n NUMBER OF PARAMETERS IN MON. CALL
BYTE POINTER DDT MODUIO SEC'IOR SIZE IN DIRECT TRANSFER
DATA AREA CANI‘DT BE PLACED INSIDE A 64K SIN'I‘RAN III SEGMENT

error messages may also be written with the ERMSG monitor call
64). Explanations of these error messages are found in chapter

14, which contains all error messages that may be issued by the ND-SOO
Monitor.

File system error codes known in ND—lOO are explained in Sintran III
Reference Manual, ND-60 . 128 .

ND—60.l36.03

95
Commands for, opening and connecting files

8.4. Direct file transfer

8.4.1. Direct file transfer with RFILE and WFILE (disk)

Direct file transfer is a feature for optimized disk transfer to the
ND-500. It allows very high transmission speeds between disk and
memory, moving a maximum of one disk cylinder per request for disk
transfer. (me monitor call may cause several disk transfers if the
amount of data exceeds one cylinder.)

The file is opened by the OPEN—FILE command, modus D or III or from the
ND-SOO program by the monitor call OPEN, modus 8 or 9. In modus 8, the
file is kept open; in modus 9 the file is closed during the file
transfer.

'Ihe modus 9 feature allows the user to work on a larger number of
files than the maximum number of files that can be concurrently open
in the Sintran III file system.

The standard calls RFILE, WFILE and WAITF are used in the ND—SOO
program, but there are some limitations to the parameters. See the
Sintran III Reference Manual DID-60.128 for a description of these
monitor calls.

The actual file transfer is performed by the monitor call ABSTR. The
file system is bypassed and the mass storage device may be used in an
optimal way.

The monitor calls RVIAX and SVIAX may be used if the file is opened
(modus 8).

The limitations to the use of the standard Sintran III file system
are:

— The file must be contiguous.

— ally the monitor calls OPEN, CLOSE, RFILE, WFILE, WAI'IF, RMAX and
SWAX may be used.

— rIhe default logical block size is equal to the hardware sector
size.

— rIhe word count in RFILE or WFILE must be a multiple of the hardware
sector size of the mass storage device.

— The maximum byte pointer is not updated when It is used.

- rIhe data area to be transferred to or from must be contiguous in
physical memory. (This is, however, automatically done by the
Monitor at execution time if required.)

ND—60.l36.03

96
Commands for opening and connecting files

8.4.2. Direct file transfer with were (magnetic tape)

Direct file transfer is a feature for optimized magnetic tape transfer
to the ND—SOO. It allows data records of arbitrary size to be
transferred, bringing the transmission speed close to the maximum
speed of the hardware.

The file is opened by the OPEN-FILE camand, modus "D" or from the
ND—SOO program by the monitor call OPEN, modus 8. The modus "DC" (or
9) may not be used for MAGTP.

The monitor call MAGTP may be used in a standard way from the ND-500,
but the actual transfer is performed by the ABSTR monitor call in
ND—lOO and it goes directly from the interface into the ND—SOO memory
via the INA channel. The only limitation to the block size is the
maximum size of contiguous physical memory that may be allocated.

ND—60.l36.03

97
Macro commands

8.5. Macro camands

Macros provide a convenient mechanism for executing the same set of
cormands repeatedly. This is particularly useful for programs
requiring certain initialization commands to be given before execution
starts, for initialization after a system restart, or for executing a
set of debug commands. Each user may in fact build his own set of
commands from the elementary commands available in the Monitor.

It is not possible to supply input to a program in a macro body.

Macros may be saved in files, or they may be temporary, vanishing when
the aitor is left.

8.5.1. MINE-MICK)

DEFINE—MACRO <macro name>
<macro body>

END—MACRO

With this command it is possible to compose new commands from the
original commands or other macros.

Macros defined by this command are temporary. Permanent macros may be
prepared by a text editor on a file. The file must be of type :MACR.

Every line following the DEFINE—MACRO command is taken as the macro
body until the END—MACID is encountered. END-MACRO must be written on
a new line.

It is possible within the macro body to define parameters that are
replaced by the actual parameters when the macro is called. A
parameter is defined by

PM <parameter name>, <default value>, <prompting text>

If Spaces or commas should be part of the <parameter name>, <default
value> or <prompting text>, they may be enclosed in apostrophes.
Otherwise, apostrophes are permitted but not required.

The first actual parameter supplied in the macro call line replaces
<parameter name> used in the first PARAMETER definition; the second
actual parameter replaces <parameter name> used in the next PARADEI‘ER
definition and so on. Excessive parameters are ignored.

When the macro is called, the parameters which are not specified are
asked for by typing the prompting text on the communication device. If
the actual parameter is empty the default value is used when expanding
the macro.

ND—60.l36.03

98
Macro commands

8.5.2. Macro subcamlands

A monitor call, MACKJE (MJN 400), for signalling error return from a
program to the aitor is implemented. There is a flag which is raised
when the executing program is terminated by this monitor call or by a
trap. The error flag is set to zero when a program is terminated
normally.

TWO commands may be used within a macro to test the error flag:

8.5.2.1. IF—m-mcm-smp . ‘

IF-ERROR—MPCRO—SI'OP

Causes the currently executing macro to abort if the error flag is
set. If the error flag is reset, the processing of the macro
continues.

8.5.2.2. IF-ERKR—FULL—SIOP

IF-ERROR—FULL-SI'OP

Equal to IF-ERROR—MACRO—SI’OP except that all active macros are aborted
if the error flag is set.

By default, the expansion of the macro is printed on the output
device. This printing may be suppressed by

8.5.2.3. IDLISI'

bDLIST

The printing of macro expansions is suppreSsed.

8.5.2.4. LISI'

LISI‘

The printing of macro expansions to the output file is reinstated.
This is the default mode when a macro expansion is started. Macro
subcommands may not be abbreviated.

ND-60 .136 .03

99
Macro commands

8.5.3. W

EXECUTE-MACRO <macro name> , [<parameters>] . . .

<macro name) — the name of an existing (temporary or permanent)
macro.

<parameter> — actual parameter to replace a formal parameter in
the macro. If several parameters are supplied they
are separated by comma or space. The parameter may
contain any character except space or comma.

The macro with the specified name is processed. Formal parameters are
substituted with actual parameters. If the actual parameters are not
supplied, they are prompted for with <leading bext> specified in the
PARAMETER definition (see the DEFINE—MACRO command).

The words EXECUTE-MACRO can be left out. The procedure used for
looking up a command or macro is as follows:

1) A search is made in the list of basic commands. If a match is
found, the corresponding command is executed.

2) If no command is found, the list of standard domains are searched
(see section 8.2.). If there is any such standard domain, it is
started.

3) If the search among the standard domains was unsuccessful, a
search is made in the domains of the current user. If a domain
with the specified name is found, it is started as with a
RECOVER-MAIN comand.

4) If no domain with the specified name is found, the domains of
user SYSTEM are searched. If a domain with a matching name is
found, the domain is started.

5) If no domain is found, the specified string is assumed to be a
macro name, and a temporary macro is searched for. If any
matching macro is found, it is processed. (See section 8.5. for a
discussion of macros.)

6) If no match is found among the temporary macros, the name is
assumed to be the name of a permanent macro. If a file with the
specified string as name and default type :MACR exists, it is
taken as a permanent macro and processed. The file system will
ensure that if a file with the specified name is not found under
the current user, the directory of user SYSTEM is searched.

7) If none of the above lead to a successful match, the error
message m SUCH COdMAND OR DaVlAIN is printed on the communication
device, and no further action will result from the entered input.

Temporary macros may be defined within permanent macros. Such
temporary macros will be erased when the processing of the permanent
macro is finished.

ND—60 .136 .03

100
Macro commands

If a macro is given the name of, or a legal abbreviation of a command,
a standard domain or a domain or a domain belonging to the current
user or SYSTEM, EXECUTE-MACRO may not be left out.

Input to the program may not be Supplied in a macro body.

8.5.4. W

RESUME-MACK)

The last aborted macro is resumed at the line following the one where
the macro was interrupted.

8.5.5. EASE-HER)

ERASE—MACRO <macro name>.. .

<macro name> — the name of an existing temporary macro.

The named temporary macros are erased. Permanent macros are erased
through the Sintran III command @DELEI‘E—FILE <macro name>=MACR.

8.5.6. UMP-MICK)

DUMP—MACRO <macro name>

<macro name> — the name of an existing temporary macro.

Tne named temporary macro will be written to a file with the name of
the macro, i.e. the macro is made permanent and can at a later time be
executed by using the macro name as a command. If the file does not
exist, it will be created. The default type of the file is :MPCR.

ND—60.l36.03

lOl
Macro commands

8.5.7. LISP-MCI!)

LISP—MACRO (<macro name>) . . .

<macro name> - a macro name or abbreviation of names of the
macros to be listed. Default is all macros
defined.

'Ihe names and contents of the macros with names matching the specified
name are listed on the output device.

Only temporary macros are listed. Permanent macros may be listed by
the Sintran III command @LIST—FILES <macro name>:MACR, TERVIINAL.

ND—60.l36.03

102
Debugging commands

8.6. Debugging oamands

Before any debugging commands are used, a program must be moved into
the user's virtual memory. This is done by the PLACE-DMAIN or DEHJG-
PLACE command, or implicitly by a RECOVER—MAIN. If patches to the
program segment are to be done, DEHJG-PLACE must be used.

After program termination, either normal or error termination, the
program is still in the virtual memory space and may be inspected or
modified before restart. The program may be restarted by either one of
the commands RUN, CONTINUE, GO or STEP. After error termination, the P
register contains the address of the instruction following the last
instruction executed. Depending on the kind of error, continuing
execution from this address may be menaingless.

8.6.1. DEB-RACE

DEHJG-PLACE <domain name>

<domain name> —- the name of an existing domain.

The program segments as well a the data segments will be copied to the
swap file. This allows patches to be done to the program segment.
Patches are not permanent. In order to do permanent patches, LOOK-AT-
PROGRAM must be used.

Otherwise, this command works exactly like PLACE-MAIN.

8.6.2. m

BREAK <address> , [<count>]

<address> — the program address where a breakpoint is to be
set.

<count> - one plus the number of times the breakpoint should
be ignored before a break is performed. Default
value is 1.

This command sets a breakpoint at the specified address. If a positive
number is specified for the count argument, the breakpoint will be
passed <count>—l times before reaction.

When the breakpoint is reached, execution terminates and control is
passed to the command processor.

After a breakpoint has been reached, program or data locations or the
registers may be displayed or modified. The display format may be
changed at will. Control flow or data location tracing may be
initiated and terminated. The next instruction to be executed is by
default the instruction pointed to by the P register, but this may be
overridden by the GO command or the optional <execution start>

ND-60.l36.03

103
Debugging commands

parameter of the SI'EP command.

When execution is continued by the SI'EP or CONTINUE command, the
original instruction is restored and a single step is performed
followed by a reinsertion of the breakpoint. If a non—default
execution start address was selected, the original instruction in the
break address is not executed, and the breakpoint instruction is
retained.

It is possible to set new breakpoints as long as the aitor has
memory space to store information about them. New breakpoints are
given a number for identification purposes.

8.6.3. WM

TEJIPORARY-BREAK <address>, [<count>]

<address> — the program address where the breakpoint is to be
set.

<count> — one plus the number of times the breakpoint should
be ignored before a break is performed. Default is
1.

Similar to BREAK except that when the breakpoint is reached, the
original instruction is permanently restored, and will not cause a
break next time the instruction is executed.

8.6.4. SPEP

SPEP [<step start>] , [<execution start>] , [<count>]

<step start> — the program address where single step execution
should start. Default is the current value of the
program counter.

<execution start> — the program address where execution should start.
Default is the current value of the program
counter.

<co.mt> — one plus the number of times the address specified
as <step start> should be passed before single
step execution is started. Default is 1.

Single step. If no parameter is given, the instruction pointed to by
the program counter is disassembled and shown on the output device. By
typing carriage return, this instruction will be executed. The next
instruction will then be disassembled and shown on the output device
and will be executed when another carriage return is given.

ND—60 . 136 .03

104
Debugging commands

Typing anything else than a single carriage return causes return to
the command processor of the Monitor.

If the <step start> parameter is given, normal execution is started
from the current program counter, and single step is provided when the
<step start> address is reached. If, in addition, the <execution
start> parameter is given, the execution is started at the specified
address rather than from the current program counter. The <step start>
address will be passed <count>—l times before single step is provided;
the default value will start single step execution as soon as the
indicated <step start> address is reached.

This command may be used immediately after a domain has been placed in
memory by the PLACE—MAIN (or DEwG-PLACE) command. Nbre camonly it
is used when the program is in a temporary halt state after a
breakpoint has been detected. A break is then inserted immediately
before the program address where the tracing should start. From this
point on, single instruction execution is started. If desired the
contents of any register or data location may be inspected after each
instruction executed. Any intermediate commend (other than CR) will
require that SI'EP be respecified in order to continue single step
execution. Default parameters to the STEP command will cause the next
instruction in sequence to be executed.

8.6.5. [ax-AT camands

By this set of comands it is possible to display and modify register
and locations in program and data memory.

An address in the current segment is specified by its 27 bit segment
relative address. An address in an arbitrary segment may be specified
as

<segment no>'<segment relative address>

Generally, modification of program or data is not permanent. The
modifications are made on a ccpy of the original :PSES or :DSEG file.
However, LOOK—MBPKJGRAM will make permanent modifications to the
segment.

The IDOK—AT commands have a set of suboommands as follows:

cr carriage return causes display of the next item (register,
instruction, memory cell).

EXIT Return to the Monitor command processor.

Special notation used with the slash (/, indirect) command:

m = address or register name.
n = number of bytes.
cr = carriage return.

ND—60 . 136 .03

105
Debugg ing commands

m/cr Take the value of m as the address and display this location.
m may also be a register name.

/cr Take the contents of the current location as next address and
display this location. If the current location is a register,
displaying of the memory is started. Specifying the P or the L
register cause the program memory to be displayed, while the
rest of the registers cause the data memory to be displayed.

m,n/cr Take the value of m as next address and display n bytes. m may
also be a register name.

,n/cr Same as /cr except that n bytes are displayed.

Dumping of register, memory or segment to file:

m,n <output file> cr . Same as m,n/cr except that the output is
written to the specified file. The file is closed upon exit
from IOOK—AT.

,n <output file> cr . Same as ,n/cr except that the output is written
to the specified file. The file is closed upon exit from TOOK-
AT.

HELP Listing of all LOOK—AT subcommands

n cr Modifications of memory or registers are done by typing the
new value in the current main format (octal, hexadecimal or
decimal as set by the MAIN—FORMAT commend) followed by
carriage return. It is possible to use other formats than the
main one by typing B, H or D before the carriage return for
octal, hexadecimal or decimal respectively.

'Xxx'cr [Vbdifying the data memory or a data ,_segment by A3211
characters may be done by enclosing the ASCII string in
quotes.

CODE Modification of program memory is possible by the command CODE
followed by an ND—SOO assembler instruction. The instruction
will be assembled and stored starting at the current location.
Program memory may also be modified numerically by first
typing BY, and thereafter modifying bytes in the main format
(See the MAIN—FONT command) .

BYTE
HALFWORD
VDRD
FLOAT
WBLEFLOAT

ASCII Wnen displaying data memory it is possible to use byte,
halfword, word single or double precision float or A$II
characters as a display unit. Changing from one unit to
another is done by simply typing BYTE, HALEWORD, VDRD, FLOAT,

ND-60.136.03

106
Debugging contends

WBLEFIDAT or £11.

PEIRMI'ILDEPOSIT In order to avoid unintended modification of the
memory or a register, the command PERMI'ILDEPOSIT must be typed
before the depositing of a new value can take place.

mTRA—FORMAT <format> In a IDOK—AT command it is possible to
temporarily specify that memory locations shall be displayed
in the the indicated formats in addition to the main format by
the mTRA-EDRMAT command. This command is similar to the
global HTRA-EORMAT command, except that the extra formats are
only valid within LOOK—AT.

ABSOLUTE <address> When relative addresses are displayed (IDOK—AT—
STACK and LOOK-AT-RELATIVE) , new addresses (number followed by
a slash) are taken as relative addresses. However, displaying
from an absolute address can be done by the ABSOLUTE command.

NEW—SEm'IENT <segment no> The specified segment number will be set as
current segment. Addresses specified without a segment number
will be in the new current segment. The segment number is
valid only while in LOOK-AT mode, and must be respecified next
time LOOK—AT mode is entered.

In a LOOK—AT command it is possible to change to one of the other
LOOK—AT comends by typing one of the subcommands below. This is
equivalent to EXITing from Low-AT and reenter to inspect or modify
another area (program, data or registers), but EXTRA—FORMAT need not
be respecified, and it is faster. These subcomnands are:

DATA <address>
PmGRAM <address>
REGISTER <register name>
<register name>
STACK
RELATIVE <relative to>

8.6.5.1. mam—mm

IDOK—AT-PROGRAM <address>, [<domain>]

<address> — the segment address from where inspection should
start.

<domain> - the name of an existing domain. Default is
inspection of the domain currently in memory.

Displays and modifies program memory or program segments. The display
is started at the specified <address>.

ND—60.l36.03

107
Debugging commands

If <domain> is specified, the program segment file is displayed and
may be modified. Only one segment may be displayed and modified at a
time. ‘

If <domain> is not specified, the default is the domain currently in
memory. The memory image is inspected, rather than the original
segment from which it was loaded. If any modifications are made, the
domain must have been placed in memory by the DEBUG-PLACE command,
otherwise no modification is legal.

8.6.5.2. mat-m

LOOK—AT—DATA <address> , [<domain>]

<address> - the segment address from where inspection should
start.

<domain> - the name of an existing domain. Default is
inspection of the domain currently in memory.

This command is similar to LOOK-AT—PMRAM except that the data memory
or data segment is involved. Nbdification is always permitted.

8.6.5.3. m—m—sracx

LOOK-AT—STACK

The current local data field is displayed. This is the memory area
pointed to by the current B register, and contains the subroutine call
information, such as address local data field of calling routine
(PREVB), return address (RETA), number of arguments to the routine
(N), the current top of stack (SP) and an auxillary location for
language processes (AUX) not used by hardware. At the next addresses
are the addresses of the routine arguments, and the local variables of
the routine.

The standard locations are labeled with the symbolic names above. For
the argument addresses and the local variables two addresses are
given, the global address and the address relative to the start of the
local data field.

ND—60.l36.03

108
Debugging commands

8.6.5.3.1. Suboommands PREVIOUS and NEXT

WINS

Display the previous local data field, i.e. the local data field of
the procedure calling the current one. Several PREVIOUS commands may
be given, each descending one more level in the call sequence. It is
not possible to move beyond the data field of the main program (the
lowermost stack frame).

NEXT

Display the next local data field, i.e. the local data field of the
procedure called by the current one. Valid only after PREVIOUS. It is
not possible to move beyond the data field of the routine currently
being executed (the uppermost stack frame).

8.6.5.4. tax—mm

LOOK-AT-RELATIVE (<relative to>)

<relative to> — B, R, I1, 12, I3, I4 or a numeric address. Default
is R.

Start listing of data memory relative to either the contents of the R,
B, 11, 12, I3 or I4 register or an address. Both global and relative
address are displayed.

8.6.5.5. m-HP-KEISI'ER

lDOK—AT—REEISI‘ER [<register name>]

<register name> - the name of one of the registers. Default is P.

The specified register is displayed in current main format. If
carriage return is typed, the next register in the sequence below is
displayed. Registers identified as MIC are used by the microprogram
and are not available to the user. Register sequence:

P, L, B, R, 11, 12, I3, I4,
A1, A2, A3, A4, El, E2, E3, E4,
STl, 8T2, PS, TOS, LL, HL, THA, CED,
CAD, but, MRI, NEC, MEL, OTE1,(HE2,CHE1,
CTEZ,bflEl,NEE2,flEMMlflIMM2

ND-60.l36.03

109
Debugging commands

8 .6 .6 . SEE-mm

SEI—MEMORY—CWI‘ENTS <from address>, <up to address>,
<value>, (<datatype>)

<from address> the lower limit for modification of memory.

<up to address> — the upper limit for modification of memory.

<value> - the value to be written in the specified area.

<datatype> - BYTE, HALFWORD, VDRD, FLOAT or MEEIDAT
indicating the size and type of the specified
<value>. Default is WORD.

The data memory is filled with the specified value from the first
address specified up to the second specified address, inclusively.

8.6.7. MAIN-MAT

MAIN—FOMAT <format>

<format> - OCTAL, HEXADECJMAL or DECIMAL or abbreviation of
one of these.

When displaying registers, memory contents, or segments with the LOOK—
AT commands, the specified <format> is used. When the lVbnitor is
started, octal is used as the main format.

The default MAIN—FORMAT may be modified by using the MAIN—FORMAT
cormxand, then leaving the aitor by the EXIT command. The memory
image can then be copied to a file by using the Sintran III command
@UJNEP. The :PRGE file created by the @HJMP command will be equivalent
to the existing monitor, but the default MAIN—FORMAT is as specified
before the @DUMP. Refer to the Sintran III Reference Manual ND—60.128
for a description of the @DUMP command.

ND—60.l36.03

llO
Debugging commands

8.6.8. mum-mm

EXTRA-FORWAT <format> . . .

<format> - one of the formats listed below or an unambiguous
abbreviation of one of them.

With all commands displaying memory or segment contents it is
possible to have the locations displayed in various formats in
addition to the format specified in the MAIN—FORMAT command. Data and
instructions are then displayed in both the format(s) specified in
this command as well as the main format. The alternatives are:

BYTE The displayed location is divided into bytes and they are
displayed in the main format.

HALFWORD Similar to BYTE, except halfwords are displayed. This is
effective only when displaying words or doublewords as
main format.

VDRD Similar to BYTE, except words are displayed. This is
effective only when displaying doublewords as main format.

FLOAT Single precision floating point format.

DGJBLEFLOAT Two consecutive words are displayed in double precision
floating point format.

ASCII ASCII format.

OCTAL Number base for BYTE, HALFWORD and mm display.

HEXADEEIMAL Number base for BYTE, HALFWORD and WORD display.

DECIMAL Number base for BYTE, HALFWORD and WORD display.

8.6.9. TRPCE

TRPCE <address>, <datatype>

<address> — the address of the variable to be traced
(lowermost byte) .

<datatype> - BYTE, HALEWORD, VDRD, FIDAT or IIIJBLEFLOAT or
abbreviation of one of these, indicating the size
of the data element to be traced.

Whenever the location starting at the specified address is modified
during program execution, its new value is displayed on the output
device.

ND—60.l36.03

111
Debugging commands

This command uses the low and high limit registers, LL and HL of the
ND-500 exclusively, i.e. the previous command using these registers
(GUARD or TRACE) will be discontinued.

8.6.10. GUARD

GUARD <address>, <datatype>, [<1imitl>, [<limit2>]]

<address> - the address of the variable to be guarded
(lowermost byte)

<datatype> - BYTE, HALFWORD, VDRD, FLOAT or IIUBLEFIDAT or
abbreviation of one of these, indicating the size
of the data element to be traced.

<1imitl> — the lower limit of the legal value range or upper
' limit of prohibited range.

<limit2> - the upper limit of the legal value range or lower
limit of prohibited range.

If no limits are given, any modification of the location specified in
this command causes a guard violation error and gives control back to
the command processor whenever the specified "guard area" is modified.
The "guard area" starts at <address>, and <datatype> determines the
size, from one to eight bytes.

If one or two limits (forming a legal range) are specified, the new
value of the guard area is checked against this range. If the value is
outside the range, it is a conditional guard violation and the control
is transferred to the command processor. If <limitl> <= <limit2>, then
the permitted range is <limit1> <= n <= <limit2>. If <1imitl> >
<1imit2> the new value n is legal if n < <limit2> or n > <limitl>.

If the variable has a value outside the permitted range at the time
the command is given, this is not trapped. The check is made on
assignments (store operations) to the variable only.

If only <limit1> is specified, then <limit2> is set equal to <1imitl>,
allowing the variable to take the specified value only.

This command will cause a considerable load on the ND—lOO if frequent
modifications of the guarded area are made.

This command uses the LL and HL registers exclusively to delimit the
start address and uppermost address of the guarded variable. The
previous command (GUARD or TRPCE) using these registers will be
discontinued.

ND—6O .136 .03

112
Debugg ing commands

8.6.11. ERNIE-m

BRANCH-TRACE [<start address>] , [<mode>] , [<file name>]

<start address> — the program address where tracing should start
from.

<mode> - [UMP or C(MPARE. Default is DUMP.

<file name> - the file to which the tracing should be dumped or
compared.

This command initiates tracing of the program counter upon branch trap
conditions.

When only one or no parameters are specified, the tracing is written
to the output device.

If <start address> is specified, the tracing is started when the
execution reaches the specified address. Otherwise the tracing is
started immediately.

In order to catch difficult bugs, it is possible to save the tracing
and compare it to another run, possibly with another data set or on
another machine. <mode>=DUMP will dump the tracing to the specified
file and <mode>=CCMPARE will compare the trace with the dumped trace
on the specified file. Any differences detected will be printed on the
output device.

The information is stored on <file name> in a binary format, and is
not readable like the symbolic output obtained if no <file name> is
specified. If a symbolic dump to a file is wanted, use the (INPUT-FILE
command before BRANCH—TRACE.

8.6.12. CALL-m

CALL-'IRPCE [<start address>], [<mode>], [<file name>]

<start address> the program address where tracing should start
from.

<mode> — DUMP or CCMPARE. Default is IIJMP.

<file name> — the file to which the tracing should be dumped or
compared .

This command initiates tracing of the program counter upon call trap
conditions.

When only one or no parameters are specified, the tracing is written
to the output device.

ND—60 .136 .03

113
Debugging commands

If <start address> is specified, the tracing is started when the
execution reaches the specified address. Otherwise the tracing is
started immediately.

In order to catch difficult bugs, it is possible to save the tracing
and compare it to another run, possibly with another data set or on
another machine. <mode>=DUNfl> will dump the tracing to the specified
file and <mode>=CQVIPARE will compare the trace with the dumped trace
on the specified file. Any differences detected will be printed on the
output device.

The information is stored on <file name> in a binary format, and is
not readable like the symbolic output obtained if no <file name> is
specified. If a symbolic dump to a file is wanted, use the (INPUT—FILE
comrand before CALL—TRACE.

All routine calls including run time library routines are traced.

8.6.13. warm-mm

EXHIBIT—ADDRESS <program address>, <data address>, (<data type>)

<program address> - the instruction that causes the specified variable
to be displayed when executed.

<data address> — the address of the variable to be displayed.

<data type) - BYTE, HALFWOH), VDRD, FLOAT or NJBLEFLDAT,
indicating the size of the variable to be
displayed. Default is mm.

with this command a breakpoint is set in the specified <program
address>. Wnen the execution reaches this breakpoint, the <data
address> and its contents are written to the output device. The data
type of the variable may be specified.

Several variables may be traced simultaneously with this comand, as
long as the aitor has room for information about the breakpoints.

ND-60.l36.03

114
Debugging commands

8.6.14. DEB-8111118

DEEJG-SI‘A'IUS

Lists information about previously used debug conmands. Enabled traps,
breakpoints, and the use of the LL and HL registers are listed.

8.6.15. 31mm

ENABLED-TRAPS

Lists the contents of the own trap enable register (OI'E) of the
current domain and the mother trap enable register. Enabled traps,
either in the current domain or in ND—lOO, are listed on the output
device.

8.6.16. Sl'M‘US

SI‘A'I‘US

Lists the contents of the status register. Some of the status bits
have no corresponding bit in the trap enable registers. These bits are
always listed with name and value. If other status bits are set, their
names and values are listed.

8.6.17. RBET camnds

In order to clear the effect of previously used debugging conmands,
the ND—SOO aitor has several reset corrmands. These are:

8.6.17.1. REEF-m

RESET-DEER

will clear the effect of all previously used debugging commands.

ND—60 .136 .03

115
Debugging commands

8.6.17.2. RESEP—EIFAKS

RESET-BREAKS <break number)

The breakpoints with the specified numbers are removed by using this
command. If the last active breakpoint is removed, the breakpoint bit
in the ND—500 CTE register is reset.

If no <break number> is specified, every active breakpoint is removed
permanently by typing RESET-BREAKS. If one or more <break number>s are
specified, only those breakpoints are removed.

'Breakpoint‘ includes, in addition to those set by the BREAK command,
breakpoints set by the MIBI'ILADDRESS command.

8.6.17.3. RESEP-IASP—KQEAK

RESET-LASF-BREAK

When a breakpoint is encountered during execution, this breakpoint may
be removed and the original instruction restored by executing this
instruction.

8.6.17.4. RESEP-‘IRPCE

RESET-TRACE

The tracing specified in the TRACE command is discontinued.

8.6.17.5. REESE-Gm

RESEP-GUARD

The guarding of the area specified in the GUARD command is
discontinued.

ND-60.l36.03

116
Debugging cannands

8.6.17.6. W

RESET-CAIL—‘I'RACE

Dumping or carpeting with previous dunp of routine calls is
discontinued.

8.6.17.7. mm

RESET-BRANCH-TRPCE

Dumping or oonparing with previous dump of branch conditions is
discontinued.

ND-GO . 136 .03

117
Commands for performance measurement

8.7. Commands for perfiormance measurement

Performance measurement commands serve two main purposes: the
HISI‘OGRAM—camands and WALL—{0G commands are used to evaluate one
program in order to detect bottlenecks in time critical sequences,
while the [CG-commands measure the load on the system in order for the
system supervisor to set the system parameters properly.

The histogram and log commands all use the same buffer, and there is
only one buffer in the system. Therefore, only one user may use these
commands at a time, and he must either release the buffer explicitly
or leave the monitor (implicitly releasing the buffer) before any
other user may use it.

If a user attempts to execute any of the log or histogram commands
while the buffer is in use, an error message is issued.

8.7.1. Histogram camands

8.7.1.1. SEE-HIM

SET—HISIOGRIWI <start address>, <max. address>, (mo. of intervals>)

<start address> — the lower address of the area to be measured.

<max. address> — the upper address of the area to be measured.

<no of intervals> — the number of equally sized intervals between
<start address> and <max address> in the range
1:64 decimal. Default is 64 decimal.

This command will reserve and clear the histogram buffer.

A subsequent START-HISTOGRAM will start sampling the accesses to the
instruction bank between the <start address> and the <max. address>.
This area is divided into <no. of intervals> equally sized intervals.
The maximum size of an interval is 32767 bytes.

ND—60.l36.03

118
Commands for performance measurement

8.7.1.2. SPARE-HIM

START-HI S'IUSRPM

The sampling of the program counter will be started. The sampling may
be started and stopped any number of times before the histogram is
printed. The buffer is not cleared before sampling is started; samples
will be added to what is already in the buffer.

Samples are taken every 20 ms.

8.7.1.3. SlOP-EIS’MRPM

SIOP-HISIOGRAM

This command stops the histogram sampling.

8.7.1.4. KIND-mm

PRINT-HISIOGRAM

This command prints the histogram on the output device. If sampling
has been started and stopped several times, the histogram will
represent the sum of all samples since SEP—HISIOGRAM. The histogram
buffer is not cleared by PRINT-HISIOGRAM.

8.7.1.5. REESE-313mm

RELEASE-HISTOGRAM

This command releases the histogram buffer. This means that other
users may use the HISIOGRAM, the PRCEESS-LOG, the WALL-10G and the
SWAPPING—LDG commands.

If the buffer is not released through this command, it will
automatically be released when the user leaves the Monitor.

ND—60.136.03

119
Commands for performance measurement

8.7.2. aitor call logging

8.7.2.1. WIN

START-WEE

This command will clear the log buffer, and reserve it for the user
iSSuing the command. All monitor calls executed from the ND—SOO will
be logged. A count of the number each monitor call has been executed
can later be printed.

Roughly speaking, the load on the ND—lOO CPU imposed by the ND-SOO is
proportional to the number of monitor calls executed from ND—500.
(Obviously, this general rule applies to CPU load only, not to file
system and channel load.) Isolating programs that perform a dispropor—
tionate number of monitor calls may help increasing ND—lOO throughput.

8.7.2.2. MILE

PRINT-MODEML-IDG

A count of monitor calls executed since SI‘AR’ILMOBCAlLr-LDG is printed
on the output device. Each monitor call number up to 777B is listed
with an individual count. Parts of this range is not valid as monitor
call numbers, and will always appear with a count of zero.

This command does not release the buffer, nor does it clear it.
Further monitor calls will add to the count already in the buffer.

8.7.2.3. EDP-mm

S'IOP-MOICALLrLOG

The log buffer is released, and no further logging of monitor calls
will be done.

Other users may use the HISIOGRAM, the PROCESS-10G, the WALL-LOG
and the SWAPPING—IOG cannands. If the buffer is not released through
this command, it will automatically be released when the user leaves
the Monitor.

ND—60 .136 .03

120
Commands for performance measurement

8.7.3. Races logging

8.7.3.1. SfARP-HKIIES—KE—AIL

SI‘ART-PMESS—Lm-ALL

This command will clear the process-log buffer and reserve it for the
user issuing the command.

Logging the CPU usage of the active processes is started. Samples are
taken every 20 ms, and the measurements are represented as percents of
the total CPU capacity. The result of the logging may be presented by
the PRMPRmrss—IDG command.

This command is allowed for user SYSI'm only.

8.7.3.2. SPARE-mm

START-PMESS—IDG—ONE <process number>

<process number> — the process identifier found by the WID—IS-m
command.

Logging of one specified process is started. The percentage of the
time spent by the process in the states 1) Idle, 2) Waiting for
swapper, 3) Using swapper, 4) In monitor call, 5) Active, and 6)
Waiting for CPU, are logged. The 'active' entry (5) is equal to the
entry that would appear in the START-PMESS—IOG—AIL command for the
specified process.

This command is allowed for user SYSTEM only.

8 . 7 . 3 . 3 . PRINT-mm

PRINT-PREIIESS—IDG <f irst process>

<first process> - the lowest numbered process to be printed. Default
is 0.

The accumulated measurements from the last START-PMESS—IDG—ALL or
SPART—PMESS-IDG—ONE are printed on the output device. The buffer is
not cleared, and the logging is continued, adding subsequent
measurements to the printed values. In order to clear the buffer, the
S'I‘AR'IL-PMZESS—Lm-AIL or SPAR’I‘PRLIIESS—LOG-(NE should be used to Start
the next logging period.

ND—60.l36.03

121
Commands for performance measurement

This command is allowed for user SYSTEM only.

8.7.3.4. EXCESS-WAR;

PROCESS-LDG-ALL <interval> <first process>

<interval> - the time in seconds between each report.

<first process> - the lowest numbered process to be logged. Default
is 0.

The logging of CPU usage in percent of total capacity is started and
written to the output device every <interval> second. The buffer is
cleared between each report; displayed results are not cumulative.

A sample is taken every 20 millisecond, and for the report to have a
reasonable accuracy, the interval should be at least 10 seconds. The
logging is stopped by pressing the escape key.

This camIand is allowed for user SYSTEM only.

8.7.3.5. MESS—W

PRCEESS—LOG—ONE <process no> <interval>

<process no> — the identifying number of the process, found by
the WHO—IS—ON or MESS-STATUS command.

<interval> — the time in seconds between each report.

The logging of the specified process is started, and the log printed
every <interval> seconds. The buffer is cleared between each report;
displayed results are not cumulative. The report contains the same
measurements as measured by the START-PRGZESS—lDG—CNE command.

A sample is taken every 20 milliseconds, and for the result to have a
reasonable accuracy, the interval should be at least 10 seconds.

The logging is stopped by pressing the escape key.

This command is allowed for user SYSTEM only.

ND—60.l36.03

122
Commands for performance measurement

8 .7 . 3 .6 . REESE-m

RELEASE-Im-HJFFER

The buffer used for the MAPPING—LOG and PRCEFSS-LoG—camnands is
released, allowing other users to use these comends, the HISIOGRAM—
and MQCALlr-IDG-comvands.

If the buffer is not released through this command, it will be
released when the user leaves the Ivbnitor.

8.7.4. SEPPIm—Im

SWAPPING—LOG <interval>

<interval> - the period in seconds between each report.

This command will clear the log buffer and reserve it for the user
issuing the command. The buffer is the same as the one used in the
PRGIESS—LDG, MAIL-LOG and HISIOGRAM comands, which means that only
one user at a time can use any of these commands.

logging of swapping is started, and will be written to the output
device every <interval> seconds. The logging is stopped by pressing
the escape key.

Each report will include values for the last interval, the average per
interval since logging was started and the total. For each of these, a
count of page faults, transfers, the total free space etc. will be
listed.

This command is allowed for user SYSTEM only.

8 . 7 . 5 . HST-MW

LISP-E'XECUTION—QUEUE < interval>

<interval> — time in seconds between each report

The currently executing program, its priority, the queue of jobs for
the ND—500 and their priorities are listed on the output device every
<interval> seconds.

ND—60.l36 .03

123
Process communication

8.8. Process oamunication flags

A simple mechanism for communication between an NIB-100 process and an
ND—500 process is implemented.

To each process two 32 bit words are assigned, the input and output
flags. The owner process may read its own input flag and write into
its output flag by the monitor calls Read input flag (NON 402) and
Write output flag (IVDN 403). When the IVbnitor is entered, both flags
are initially zero. The flag word is not used by the monitor, and may
contain any information as determined by the process(es) .

A ND—lOO program may use functions 100B and 1018 in the Sintran III
monitor call N500M (MN 60) to communicate with an ND—SOO process.

From a terminal the same functions are performed by the commands GEE-
FLAG and SET-FLAG described below.

Note that there is no queueing of flags; if the input flag of a
process is modified twice before the owner reads the flag, the first
value is lost.

8.8.1. GEE-Hm

GET-FLAG <process no.>

<process no.> - an unsigned value in the range 0:37777777777773.

The output flag (32 bit word) of the specified process is written on
the output device in the current main format. If the specified process
is connected to a terminal, this command must be given from another
terminal.

8.8.2. SEE-F126

SET—FLAG <value>

<value> — an unsigned value in the range 0:3777777777777B.

The specified <value> (32 bit word) is written into the input flag of
the specified process. If the specified process is connected to a
terminal, this command must be given from another terminal.

ND-60.l36.03

124
Memory allocation

8 .9 . knory allocation

System performance depends on how the active process uses its memory
and how the entire available memory is administered. Wnen performance
is critical it is possible to allocate memory explicitly to the
process by several commands described below.

The total execution time of a process may vary within wide limits,
depending on the amount of physical memory that the process is
allotted and the allocation strategy employed.

All commands for memory allocation are reserved for user SYSL‘EM if
executed in the Monitor. If fixing has been specified by a non—
privileged user in NLL, this specification is ignored at execution
time unless user SYSI‘EM executes the domain.

Explicit allocation is very rarely needed. Whenever hardware
considerations require it (direct transfer files, communication with
R'ICCMMQI or with an ND—lOO segment), this will automatically be taken
care of by the aitor at execution time.

In general, physical memory is significantly smaller than the sum of
the logical sizes Of all processes submitted for execution. Physical
memory may even be smaller than the size of each one of the processes.

To overcome space problems, a memory management system is used,
mapping the logical address spaces onto physical memory through a
translation mechanism. Each logical address space is divided into
pgg_e_s_, or blocks of 2k bytes (2048 bytes). Page boundaries will always
be at physical addresses which are multiples of 2048 (40003) .

8.9.1. Demand pgirg

It is not necessary for all the pages of a segment to be in memory
when the process starts executing. If access to a page not in memory
is attempted, this is detected by hardware as a page fault, and the
running process is suspended until the page has been copied from disk.

Due to the translation mechanism, the page brought into memory may be
placed wherever there is room for it. Thus, several users may have
fractions of their programs scattered in memory.

Whenever the memory is full, and there is no room for a page that is
needed, another page must: be removed to free the physical page. If the
page to be removed has not been modified (as is normally the case for
program segments) the page does not need to be written back. If it has
been modified, it must be written back to the disk before another one
takes its place in memory. This process is called swappim, and is in
the ND—500 performed by a system process called the swapper, running
in the ND-500 independently of any terminal.

ND-60 .136 .03

125
Memory allocation

The algorithm used to select a page for removal attempts to find the

page that has the least probability of being used again, and will

roughly speaking pick the page that has remained unused in memory for

the longest time.

This allocation strategy, called demand paging, is the default

strategy used, to achieve optimal utilization of physical memory.

8.9.2. "Fixing“ in memory

Certain I/O operations require that the data area to be transferred to
or from is located in a contiguous area in memory. The aitor will

recognize such requirements, and will allocate an area before the

first I/O transfer is started. The memory area will remain reserved
("fixed") until the program completes execution. The user need not be

concerned with this at all, as the operation is completely automatic

and transparent.

If several processes use exceedingly large areas for I/O operations

requiring the data area to be fixed in memory, this will affect system
performance to some degree, as it limits the number of pages available
for swapping.

8.9.3. Limiting the umber of pages in memory

In order to ease the load on the swapper, the user may specify the

minimum and maximum number of pages to be kept in memory during
execution of the segment. The segment will still be treated as a

demand segment, but memory requests from other processes will never

cause the number of pages to drop below the specified lower limit.
Thus, the number of page faults during execution is reduced.

Initially, at the start of program execution, no pages are in memory.

The minimum number of pages does not apply until that number of pages

have been brought into memory as a result of page faults. However,

none of these pages will be swapped out.

The maximum number of pages is used to indicate the approximate size

of the working set. As soon as the number of pages in memory exceeds

this limit, the least recently used pages are marked for swapping.

This can be used with advantage for processes passing through a data

set in a sequential manner, or processes having a large amount of

initializing code and a small working set as soon as the

initialization is done. Although the gain in speed is lower than it

would be with fixed allocation, the penalty in reduced performance of
the ND—SOO system as a whole is far less.

The minimum and maximum number of pages in memory are set by the SET—

SEGMENT—LIMITS command.

ND—60 . 136 .03

126
Memory allocation

8.9.4. "Fixing' programs in memory

The suspension of a process while a page transfer takes place makes
response time of a process more irregular than if the entire process
could be in memory at the same time. Another aspect of swapping is
that the busier the CPU gets, the more crowded memory will get (in
general), and the more time is spent at swapping.

Ordinary interactive processes, or processes operating on permanently
stored data can usually tolerate the delay imposed by demand paging.
However, programs interacting with I/O—devices will often depend on
short and well defined response times or rely upon data areas being in
memory at any time for performing I/O operations.

Processes with such requirements may be exempted from swapping, and be
allowed to keep all or some of their pages in memory continously. If
the segment remains in memory even before and after execution,
controlled by explicit commands, it is said to be fixed in memory.
Several degrees of fixing are possible.

Even though part of a segment is declared to be a fixed segment, this
does not have to apply to the entire segment. The commands available
have parameters for specifying the lower and upper bound of the
segment area affected. The remainder of the segment will be treated as
a demand segment.

Under normal circumstances, the Monitor will detect the conditions
requiring special memory allocation, and perform the allocation at
execution time. Thus, the user does not have to be concerned about the
commands to perform explicit allocation. For time critical tasks,
however, they may be required.

8.9.5. Fixing segments scattered in memory

This kind of allocation will scatter pages throughout memory, exactly
like demand paging, but these pages will not be candidates for
swapping, and will not be removed when the program completes its
execution.

Start—up times will be significantly shorter than for demand segments,
as the segment will already be in memory and no disk access is
required. If the process is restarted after completion before the
segment is unfixed, no extra disk accesses are introduced.

The effective memory size available for demand paging processes will
be reduced, causing an increased swapping for these segments, but the
Monitor is free to place the fixed area wherever seems most suitable
at the time the process is submitted for execution.

Fixing a segment scattered in memory is done by the FIX—SEI'MENT—
SCATI‘ERED command.

ND—60.l36.03

127

Memory allocation

8.9.6. Fixing segments in omtiguous memory

Some I/O operations, namely all EMA operations, require that the area

to be transferred to or from is a contiguous memory area, as the INA

device does not use the translation mechanisms to transform the

logical address to a physical one.

In order to permit 114A transfers crossing page boundaries, the

affected area may be allocated in a contiguous area in physical

memory. Usually this will apply to data areas only, but may be used

for any segment.

Program execution will not be any faster than with a fixed scattered

segment; the translation mechanism to convert from logical addresses

is not bypassed (and consists mostly of tailor made hardware, working

at the speed of the CPU, causing no delay in addressing in most

cases). The main advantage over fixed scattered is the ability to

perform direct transfer file access, see chapter 8.4.

Allocating a contiguous area require that the swapper clears a memory

area of the requested size without regard to whether the removed pages

are active or not. Consequently, the allocation of a contiguous

segment is rather costly. Obviously, a contiguous area of the

requested size must also be available. If a high number of users

request (any kind of) fixed allocation, this is not always the case,

and the request is refused. '

A system parameter determines the maximum number of pages that may be

fixed by each user, the maximum for all users and the maximum for the

entire system, including areas fixed implicitly by the aitor. If any

of these limits are exceeded, an error message will be returned.

The maximum number of contiguously fixed pages may also be limited by

a system parameter.

Observe that when performing 114A through the file system, e.g. to

direct transfer files, the fixing is performed automatically by the

Monitor, and does not require explicit specification by the user.

Fixing a segment in a contiguous area is done by the FIX—WT-

CCNI‘IGUGJS command.

ND-60.136.03

128
Memory allocation

8.9.7. Fixing segnents in an absolute location

This allocation strategy is even more demanding on system resources,
as it includes an explicit specification of the physical nenory area
to be used. No further gains in speed can be achieved with absolute
fixing in nemory, but such allocation my be required when
conmunicating with special I/O devices.

Conmunication with ND—lOO may go through shared nemory. In particular,
the RP-CQIMJN area will always be contiguous in a fixed location, and
ND-SOO processes accessing this area will require that the logical
ND-SOO addresses map onto the RT-COMON area. All communication with
fixed segnents in ND—lOO will, however, be taken care of by the
Monitor, and the user will not have to be concerned about it.

Fixing a segnent in an absolute location is done by the FIX-SEI'MENT—
ABSOUJTE conmand.

8.9.8. Fixing segments shared [at several processes

Obviously, if two processes want to conmunicate through a data
segnent, they nust access the sane physical location when they address
the sane logical location. If the first process to start execution
requests denend paging scattering pages throughout menory, it is
impossible for the second process to request contiguous allocation and
map to the sane addresses. (No kind of fixing is necessary in order to
share a segnent; it may be a demand segnent if fixing is not required
for other reasons.)

This also applies to fixed contiguous vs. fixed absolute, or any other
conbination. The process first bringing the segnent into nenory nust
allocate it with the highest grade allocation required by any of the
processes accessing the segnent. The highest grade allocation is fixed
absolute, then follows fixed contiguous, fixed scattered and denand
paging as the lowest grade.

If only a part of the segnent is fixed, the first process to fix the
segnent nust fix the maximum area requested by any process accessing
the segnent.

ND-60 . 136 .03

129
Memory allocation

8.9.9. Unfixing a segment

After the process using a fixed segment completes execution, the
segment is at automatically released. The cause for this is that
processes using fixed segments often are either periodical or they are
restarted as a result of an external event, and the time spent moving
the segment into memory would often be too long.

Therefore, a segment must be released explicitly through the UNFIX-
SEGMENT command. This function is also available as an ordinary
monitor call. If the segment is not unfixed, the aitor will perform
the unfixing when the last user having fixed the segment leaves the
Monitor.

The command will not necessarily have an immediate effect. If there
are still one or more processes using the segment, it will rot be
removed from memory until all of them have completed.

ND—60.l36.03

130
Memory allocation

8.9.10. The swaming strategy

A certain knowledge of the swapping strategy is required by the system
supervisor in order to properly set the parameters determining the
operation of the swapper. Programmers may also want to know how system
software affects the performance of their programs and utilization of
the available resources.

The swapper maintains two page lists for each physical segment: one
for the socalled active pages, another for the passive pages. Active
and passive refers to whether the page has been accessed since the
swapper evaluated the list.

Pages in these two lists are not ordered according to use or priority.
The swapper will move pages from the passive list to the- active list
as a result of an explicit request. Pages are moved from the active to
the passive list several pages at a time, with longer intervals. This
reduces the administration overhead compared to using sorted lists,
but reduces the resolution in the process of selecting a victim for
swapping. The moving of pages from the active to the passive list is
described as cleanim the segment.

If a page is contained in either the active or the passive list, it is
present in physical memory, otherwise it is swapped out to disk. A
page fault will occur if it is not in the active list. When this
occurs, the passive list is first searched to determine if the page is
in memory. If it is found in this list, the page is moved to the
active list. Otherwise, it must be fetched from disk before it is
entered in the active list. Generally, a disk access will cause the
requesting process to be suspended and another one activated, while
moving a page from the passive to the active list will allow the
requesting process to continue immediately afterwards. When a page
fault occurs, this is handled by the swapper process. An available
memory page is found and entered into the active pages list of the
segment. If no pages are available, one process is selected as
"victim", and all pages of all its segments are passivated. One of the
pages are allocated to the requesting process. All these pages will be
considered available next time a page fault occurs.

The victim for loosing its pages is selected according to a "round
robin" scheduling among processes of the lowest priority in the
system. All timesharing processes are treated as if they have a fixed
priority of 20B. When a process is selected, it will be suspended for
five seconds.

When a process looses all its pages, these will remain in memory, and
if the process using it is activated, these pages are moved to the
active list without the need for reading them from disk.

If the minimum and/or maximum number of pages in memory has been set
for a segment, the swapper will ensure that the number of pages in the
active list stays within the specified bounds. If the sum of active
and passive pages exceed the maximum, the pages in the passive list
are immediately swapped out if they have been modified and the memory
pages returned to a freepool.

ND—60.l36.03

131
Memory allocation

Before a page is taken from a still active segment, the swapper will
check the freepool. This pool will contain pages never used by any
segment and pages previously used by now terminated processes.

The swapper will not touch pages fixed in menory, until the last user
having fixed the segment unfixes it or logs out. At that time the
pages are returned to the freepool.

ND—60.136.03

132
Memory allocation

8.9.11. SEE-WINES

SET—SWELLIMITS <segment no.>, <type>, <min no.of pages>,
<max no.of pages>

<segment no.> - the number of an existing segment

<type> — P or D, indicating program or data segment,
respectively.

<min no.of pages> the minimum number of pages of the specified
segment to remain in memory throughout process
execution .

<max no.of pages> the maximum number of pages of the specified
segment to remain in memory throughout process
execution .

Specifies the minimum number of pages of a segment that must be in
memory before execution of instructions on the segment starts, and the
maximum number of pages allowed in memory at one time.

When execution of the segment is started, no page of the segment will
be a candidate for swapping until the minimum number of pages
specified is brought into memory. At no time during the execution will
the number of pages in memory be less than the specified minimum.

Normally, due to page faults, the number of pages in memory will
increase during the execution of the domain. If this number exceeds
the specified maximum, one or more of the pages not used for some time
will be marked for swapping.

Pages may be swapped even if the maximum limit has not been reached,
but at no time will the number of pages in memory be below the
specified minimum.

8.9.12. EDI-mm

FIX-SWSCA'ITERED (<segment name>) , (<type>) ,
(<lower addr>) , (<upper addr>)

<segment name> the name of an existing segment.

<type> P or D, signifying program or data segment.

<lower addr> the lower boundary of the area to be fixed.
Default is the lowest address on the segment.

<upper addr> — the upper boundary of the area to be fixed.
Default is the uppermost address of the segment.

ND-60 . 136 .03

133
Memory allocation

In NLL, the default segment is the current segment. Segment may be
specified either by name or by logical segment number.

<lower addr> will be rounded damn, <upper addr> will be rounded up to
the nearest page boundary. In NLL both may be defined symbols or
addresses. The mnitor accepts addresses only.

The segment or part of segment specified is declared to be retained in
memory after it has been loaded for execution, until it is explicitly
released through the mnitor command MIX-SW. The pages
belonging to the segment may be scattered throughout physical memory.

8.9.13. m—smmr—omrrcuns

FIX—SWWFIGIKIJS (<segment no.>) , (<type>) , (<lower addr>) ,
(<upper addr>) '

<segment no.> the number of an existing segment.

<type> P or D, signifying program or data segment.

<lower addr> the lower boundary of the area to be fixed.
Default is the lowest address on the segment.

<upper addr> - the upper boundary of the area to be fixed.
Default is the uppermost address of the segment.

<lower addr> will be rounded down, <upper addr> will be rounded up to
the nearest page boundary.

'Ihe segment or part of segment specified is declared to be allocated
in a contiguous area of memory, and to be retained in memory until it,
is explicitly released through the aitor command UNFIx—SEQIIENT.

8.9.14. FEW-m

FIX-SWABSOLUTE (<segment no.>), (<type>), (<phys. addr>),
(<lower addr>) , (<upper addr>)

<segment no.> the number of an existing segment.

<type> — P or D, signifying program or data segment.

<phys. addr> — the address in physical memory where the segment
should start.

<lower addr> the lower boundary of the area to be fixed.
Default is the lowest address on the segment.

ND—60.l36.03

134
Memory allocation

<upper addr> — the upper boundary of the area to be fixed.
Default is the uppermost address of the segment.

<lower addr> will be rounded down, <upper addr> will be rounded up to
the nearest page boundary.

The specified segment or part of segment is declared to be allocated
in a contiguous area in memory, starting at the physical address
specified. It will remain in memory until explicitly released through
the Monitor command UNFIX—SEQIIENT.

8.9.15. MIX—m

UNFIX-SEEMENT <segment> , <type>

<segment> - the name of a segment which has previously
entirely or in part been fixed in memory through
one of the above commands.

<type> —- P or D, indicating program or data segment,
respectively.

Tne area occupied by a segment, or part of segment, previously
specified as fixed in memory, is unfixed. The freed space may be used
by other segments. The command has no effect before every process that
has fixed the segment has released or unfixed it.

ND-60.l36.03

135
Miscellaneous commands

8.10. Miscellaneous camands

8.10.1. MIMIC-W

AU'MATIC-ERROR—MESSAGE

Error messages caused by monitor calls will automatically be written
to the communication device. MON 64 (EWISG) will then be unnecessary
after every monitor call in the ND—SOO.

8.10.2. REED-WIC—W

RESET-WATIC-ERROR—MESSAGE

Reverses the effect of the AU'IWIATIC-ERROR—ME‘SSAGE command.

8.10.3. The 'EScape" key

By pressing the Escape key during the execution of an ND—SOO program
the execution is stopped and the control is given to the ND—500
command processor.

No files are closed and no resources released. Execution may be
resumed by the CONTINUE command, possibly after executing other
monitor commands. If execution is not resumed, resources are released
when the user leaves the monitor.

8.10.4. TIME-USED

TIME-USED

This command prints the ND—SOO and ND—lOO CPU time and clock time
elapsed from the moment that the ND—500 aitor was entered.

ND-60.136.03

136
Miscellaneous comands

8.10.5. WED-IS-(N

WHO- IS-ON

A list of users currently logged on the ND—SOO is printed on the
output device.

8.10.6. VEISION

VERSION

The version numbers of the currently active subsystem (background part
of the monitor), system part (Sintran part of the monitor), swapper
and microprogram is written to the output device.

8.10.7. SEE-PRIORITY

SET—PRIORITY <ND—100 mon call priority>, <max % of ND-lOO time>,
<ND—500 priority>

<ND-100 mon call priority> — the priority of the ND—lOO process
executing monitor calls on behalf of the
ND—SOO process, in the range 0:70B.
Default is 7GB.

<max % of ND—lOO time> — the maximum percentage of ND-lOO CPU time
the ND—lOO process may use over a two
second period. Default is 50%.

<ND—500 priority> — the priority of the ND—500 process, in
the range 0:377B. Default is dynamic
modification by the time slicing
mechanism.

whenever an ND—500 process executes Sintran III monitor calls, a twin
process running in the ND—lOO is started. The required parameters for
the call are transferred to this process, and the call is executed in
the ND—lOO before the results (if any) are returned to the ND—500
process.

When a monitor call is executed, the priority of the ND—loo twin
process is determined by the parameter <ND-100 non call priority>.

The <max % ‘of ND—lOO CPU time> parameter specifies the maximum
percentage of ND—lOO CPU time the ND—SOO process may use over a two
second period through its twin process executing monitor calls. If the
percentage is exceeded, the <ND—l00 mon call priority> is reduced to
203.

ND—60 . 136 .03

137
Miscellaneous commands

Be aware that the measured CPU time spent in monitor call handling
includes activty on interrupt level 4 and 1. Other hardware levels
(for ND—SOO monitor calls: 14, 12, 3 and possibly 11 and 10) are not
measured. The measured CPU load will be a smaller or larger fraction
of the actual CPU load. The ND—lOO may be saturated even though the
sum of all "max percentages" is significantly below 100%.

If <ND—500 priority> is zero, the process will be time sliced with
other processes with priority varying between ZOB and 61B. If <ND—500
priority> is non-zero, the process will run on a fixed priority as
specified. The default handling of the ND—500 process is timeslicing
with no fixed priority. A priority specified in the source program is
ignored. »

This command is allowed for user SYSTEM only.

ND-60 .136 .03

138
Commands for the System Supervisor

8.11. Commands for the fistem Sipervisor

These comends are allowed for user SYSTEM only, and most of them
require that no other users are logged in on the ND—500. New users may
be prevented from logging in by the command SET—ND—SOO—UNAVAILABLE.

These commands will interpret and display addresses as octal values
regardless of the format set by the MAIN-FONT command. However,
decimal or hexadecimal addresses may still be entered by trailing the
parameter with D or H respectively.

The user RT has no special privileges in the ND—SOO, and is treated as
a regular public user. This applies both to commands and the ND—SOO
instruction set available. However, monitor calls executed in the
ND—lOO are treated in the same manner as for ND—lOO programs, giving
the user RT higher privileges than public users.

8.11.1. SEE-m—SOO-UNAVAIIAEE

SET-ND- 50O-UNAVAI [ABLE

No user may log on to the ND—SOO until the SET—ND—SOO—AVAILABLE
commend is given. SET—m—SOO—UNAVAILABLE must be used before any
modification of system parameters is done, to ensure that no user
interrupts critical operations. If any command that requires exclusive
access to ND—SOO is executed, this camend is implicitly attempted,
and an error message issued only if others are using ND—500. If ND—500
has been implicitly set unavailable, it will be impossible for others
to use it until SEP—bD—SOO—AWIME is executed or the user reserving
the ND-SOO leaves the monitor.

This command will not force a log-out of those already logged in, but
will prevent new users from logging on. Logged in users must log out
explicitly.

8.11.2. SET-m—SOO-AVAIIAHE

SET-ND- 50O-AVAILABLE

Other users may now log in. This command has the reverse effect of
SET-ND—SOO—UNAVAIIABLE, and should be issued as soon as exclusive use
of the ND—SOO is no longer required. An implicit SET—ND—SOO-AVAIIABLE
is executed when the user setting it unavailable leaves the monitor.

ND—60.l36.03

139
Commands for the System Supervisor

8.11.3. SlOP-m—SOO

SIOP-ND— 500

The ND-SOO CPU is stopped. When a user attempts to start an ND—SOO

process after this command has been executed, the microcode will

automatically be reloaded, the swapper process placed in memory and
started ("warm start" of ND—SOO) .

If the NIB-500 should be stopped and then started with no need for

restarting running jobs, the MICRO—STOP ccrmend should be used.

8 . ll. 4 . Mamry ccnfiguration

In an ND—SOO computer system the processors may be connected to either
local memory (memory that can be addressed from only one processor) or
to a multiport memory system (shared memory). By processor, in this
context, is meant the disk, the ND—lOO CPU, the ND—500 CPU program
channel or the ND—SOO data channel.

There are two restrictions which must be noticed when configuring an
ND—500 computer system. First, the physical addressing range for
program and data memory may not overlap if the memory addressed is not
the same physical memory.

Secondly, if the disks have access to a memory cell, it is assumed

that the ND—lOO CPU also has access to that memory cell, and vice

versa.

The ND—SOO system has itself limited capability to investigate its own
memory configuration. Therefore the memory configuration must be
defined by the command DEFINE—MEMORY-CCNFIGURATION.

Note: Local ND—SOO memory is not legal in the ND-500 multiuser
Monitor. -

8.11.4.1. DEW-”160mm

DEF'INE—IVEdORY—CONFIGURATION <ND-100 page# for ND-SOO phys.addr 0>

The operating system is given information about the physical memory
configuration.

The parameter is ND—lOO page number for which the ND-SOO physical
address is zero, i.e. the difference between the ND—SOO and ND-lOO
physical addresses for the same physical cell in common memory.

The information about the size of the system, and the access to the
different memory parts of the system is given as subcommends to this
command. The information given by this command is saved and will
survive a normal restart ("warm start") of the system.

ND-60.136.03

140
Commands for the System Supervisor

The subcomnands will request the information

- size in number of pages for the memory part

— Does ND-100 have access to the part?

— Does ND—SOO have access to the part as program?

- Does ND—500 have access to the part as data?

- Is this the last memory part?

Default is access for both CPUs, both P and D for ND-500.

When Sintran III is restarted by the MACM)HENT / 22! commands ("cold
start"), the memory configuration information is lost. For convenience
a permanent macro with the memory configuration definition should be
made.

8.11.4.2. mammalian-1m

MD’lORY-CQ‘IFIGURATION

Information about the current memory configuration is printed on the
output device.

8.11.5. bhmory administration

When the ND-SOO is started the first time, every page of ND—lOO/ND—SOO
shared memory belongs to ND-lOO. Memory is administered through the
commands GIVE—ND—SOO-PAGE‘S and TAKE-m—SOO-PAGES.

8.11.5.1. GIVE-m—SOO-PAGE

GIVE-ND—SOO—PAGES mo. of pages>

<no. of pages> - the number of pages to be used by ND—500.

The specified number of pages are taken from the ND—100 and released
to the ND-500. If ND—SOO already has pages, the specified number of
pages is added to those ND—SOO had previously.

All system tables are located in memory belonging to the ND—lOO. Thus,
the number of pages specified will all be available for user
processes.

ND-60 .136 .03

141
Conmands for the System Supervisor

8.11.5.2. TAKE-m—SOO-PAGE

TAKE—ND—SOO—PAGES mo. of pages>

<no. of pages> - the nunber of pages to be returned to ND-lOO.

The specified number of pages are taken from the ND—SOO and given to
the ND-lOO. The nunber specified should be less than or equal to the
nurrber given to ND—SOO previously with the GIVE—ND—SOO—PAGES conmand,
otherwise the number of pages actually released is returned.

ND-60.136 .03

142
Oomands for the System Supervisor

8 . ll . 6 . Micrqyrogram unintainance

Using these conmands require a detailled knowledge of the ND—500
microprogram format and hardware. This chapter is not assumed to give
sufficient information; the reader must as a minimum be familiar with
Test Micro Program Descriptions for ND—SOO (ND—30.103) .

8.11.6.1. MICE-910}?

MICRO-SIOP

The execution of the ND—SOO microprogram is stopped, and my be
resumed through the command MICRO—START. The ND—SOO will stop
conpletely, but the contents of all registers are retained. It is not
necessary to restart programs running in the ND-SOO.

8.11.6.2. MIcm-SI'ARI'

MICRO-START <address>

<address> - the octal control store address where execution of
the microprogram should start.

The execution of the ND—500 microprogram is started at the specified
address.

8.11.6.3. WM

IDAD—CWI‘ROD—SIORE (<file name>), (<start address>), (<no. of words>)

<fi1e name> — the name of the file from which the microprogram
is read. Default is CON'IROL-SIOREzDATA.

<start address> - the octal address where the first microprogram
word should be loaded in control store. Default is
0. I

<no. of words> - the nunber of words to be conpared with the file
contents after loading. Default is 20000B (entire
control store) .

Tne ND—500 microprogram is loaded to the control store from the
specified file. The first microprogram word on the file is loaded into
the control store at the specified start address. Every microprogram
word (144 bits, 18 bytes) loaded into successive words.

ND-60 . 136 .03

143
Commands for the System Supervisor

When the loading is finished, the first words of the file are compared
with the corresponding contents of the control store. The number of
words to be corrpared is specified through the <no. of words>
parameter. If unequality is found, the error message CONTROL SIORE
UNSUCCESSFUILY IDADED is written to the output device.

8.11.6.4. WSW

CCMPARE—CON‘I'ROL—SIORE (<file name>) , (<start address>) ,
(<no. of words>), (<max.no. of faults>)

<file name> — the name where the microprogram is stored. Default
is CONTROL-SIORE:DATA.

<start address> the octal address where the comparison should
start. Default is 0.

<no. of words> - the number of words to be compared. Default is
200003 (entire control store).

<max.no.of faults>- the maximum number of unequalities accepted
between the file contents and the loaded micro—
program before the comparison is aborted. Default
is 7 (the number of messages that will fit on a
VDU screen) .

The current ND—500 microprogram is compared to the microprogram
residing on the the specified file, <file name>. The comparison starts
at the specified microprogram address, <start address>. This word is
compared to the first word on the file, etc. Four words will be
modified after the microcode is loaded and will always be different.

Upon unequality the address and the two differing control store words
are written to the output device. The comparison lasts until <no. of
words> are compared or <max. no. of faults> are found.

8.11.6.5. room-Wm

IDOK-AT-CON’I'ROL—SIORE (<address>)

<address> — an octal address in control store, range 0:20000.
Default is 0.

Examine and modify the ND—500 microprogram.

The display is started at the specified <address>. One control store
word and the corresponding address are displayed on one line. On
carriage return, the next control store word is displayed. A control
store word consists of 144 bits which are grouped into nine 16 bit
words.

ND-60.136.03

144
Commands for the System Supervisor

The next control store word to be displayed may be specified by typing
its address followed by a slash and carriage return.

8.11.6.5.l. Subcomnands EDIT and ORIN

By default, the control store is disassembled and displayed
symbolically. Symbolic modifying of the control store is performed by
either the subcommand EDIT or ORIN. By EDIT the current control store
word is cleared and the disassembled string is then put into the
terminal input buffer. It is then possible to modify the disassembled
string by the Sintran III line editing features. At carriage return
the modified string is assembled and written into the control store.
By GRIN the next terminal input is assembled and a logical OR of the
entered instruction and the old contents is stored into the current
control store word.

8.11.6.5.2. Subcommands GITAL and SYMELIC

By the subcommand (IiTAL it is possible to have the control store
displayed in octal format. The display is returned to the symbolic
mode by typing the command SYMLIC.

8.11.6.5.3. Subcommands GRIIP and WORD

By typing GRCIIP only one 16 bit word is displayed. On carriage return
the next 16 bit word is displayed. Within GRCIJP modus it is possible
to modify the displayed 16 bit word by typing the new octal value
followed by a carriage return. By typing VDRD the display of nine 16
bit words continues.

8.11.7. Loon-Hr calmnds

8.11.7.1. mam—mm

IDOK—AT-RESIDENT-Mmlomf <address>

<address> — the octal physical address to be inspected.

Equal to IDOK-AT—DATA except that physical memory is examined and
modified.

The subcommands are described in chapter 8.6.5.

ND-60 . 136 .03

145
Commands for the System Supervisor

8.11.7.2. m—m—mymcmrsmmr

LOOK-AT—PHYSICAIr-SEm/[ENT <address>, <phys. segm'no.>

<address> - the octal segment relative address to be
inspected.

<phys. segm no> - the number of the physical segment to be inspected

Equal to IDOK—AT—PROGRPM or LOOK—AT—DATA, except that a physical
segment is inspected and modified directly.

The subcommands are described in chapter 8.6.5. Some of the
subcommands are not valid in IOOK—AT—Pl-IYSICAL—SE-EMENT.

8.11.7.3. Lem-mm]:

IUDK—AT—HARDWARE <hardware register name>

Display the contents of the specified internal ND—SOO CPU register or
ND—lOO/ND—SOO interface register.

The <hardware register name> may be one of

ME
Display the interface registers

Carriage Return
Display the hardware registers (approx 80 registers)

Display the registers starting with name A,XD

Register name
Display the specified register

WWREGISI'ER
Display the 40 ms registers.

ND-60.l36.03

146
Commands for the System Supervisor

8.11.8. Process management

8.11.8.1. ATM-MESS

ATTACH-MESS <process no>

<process no> — the number of the process with which communication
is desired. Default is the current process
connected to the terminal.

Subsequent commands LOOK-AT, RUN etc will be routed to the specified
process. The process should not be connected to any other terminal.

This command is currently used for debugging purposes, attaching to
the swapper process.

8.11.8.2. Imam-mass

Imam—PROCESS <process>

<process> - the number of a currently running process.

The ND—SOO process specified will be aborted and its reserved
resources released. Also, the user will be forced to leave the ND—SOO-
MONITOR.

This is the normal command to remove a user from the ND—SOO system. A
proper cleanup of the area used by the logged out process is done; it
is therefore safer than AmRT—PRCIIE‘SS. IDGGJT—PRGIESS resembles the
Sintran III command @STOP-TEMINAL for ND—lOO processes.

8.11.8.3. lam-ms

AmRT-PROCESS <process>

<process> — the number of a currently running process.

The process specified will be aborted and its reserved resources
released. The user will be forced to leave the monitor.

This comand should be used with care, as no cleanup of the system
tables and queues is performed. It should be employed only in case of
a system hangup, where there is no other way stop a process.

ND—60.136.03

147
Commands for the System Supervisor

8.11.8.4. PRIZES—SIRIUS

PRCEESS-SI‘ATUS

A summary of the status of all active processes is printed on the
output device. The information includes for each active process the
terminal number of the user having reserved the process, the user
name, the status of the process (idle or active), and the amount of
ND—SOO CPU time used and login time since the Monitor was entered.

8.11.9. Inqaecting system tables

8.11.9.1. LISP—ME

LISP-TABLE <tab1e name>

<table name> — the name of one of the system tables.

This command has a number of subcommands used for searching through
the system tables. Detailed system knowledge is required in order to
utilize the information obtained through this command. The suboommands
are:

PmC—TAB — List the table of active processes.

HW—SEGM—TAB - List the table of physical segments in use.

SW—SEGM—TAB - List the segment table used by software.

MEMORY—MAP - List the memory map.

LAST—NSOO-MSG — List the ringbuffer containing the last 64 messages
to ND—SOO

NSOO—MSG — List the messages to ND—SOO from a specified process.

FOLLOW—LINK — Follow the link to the next element in the table.

mum—TABLE — List the next element in the table.

<octa1 value>/ List the specified entry in the current table.

or - List the next element in the current table.

EXIT - Return to the commend processor.

ND-60.136.03

148
Commands for the System Supervisor

8.11.9.2. LISP-mm

LISP-PCTIVE—SEI‘MENTS <process no.>

<process no> - the number of an active process.

'Ihis command will list all the segments currently in use by a process,
the oorrespondance between logical and physical segments and the name
of the process.

The <process no.> parameter may also take the values (MN or —1,
indicating the user's own process, ALL or -2 indicating all active
processes.

8.11.9.3. USP-Wm

LISP-WTABLE-EN'IRY <segm. no>

<segm. no> - a physical segmenthumber.

:-

'I'ne information in the physical segment table will be printed oh the
output device. This information includes the segment name and type,
the owner process, the size of the segment, the segment attributes and
allocation in the swap file, and the current use of the segment by the
active processes.

<segm. no> equal to ALL or -1 indicates all segments.

8.11.9.4. LISP-Wm

LISP-PRGIE‘Ss-TAEE-EN'IRY <process no.>

<process no> — the number of an active process.

The process description of the specified process is printed on the
specified file. (MN or -1 indicates the user's own process, ALL or —2
indicates all active processes.

‘Ihe returned information includes the process segment, the program and
data capabilities.

ND—60 . 136 .03

149
Commands for the System Supervisor

8.11.10. Swap files

A segment may either be swapped out on its original file or a system
selected swap file. This is determined by the attribute specified for
the segment in the OPEN-SW command.

System selected swap files are contiguous files used as scratch area
for modified pages of a segment. As long as no modifications are done,
pages are read from the original segment file, but if a page is
modified this page is copied to the swap file and used for further
swapping. For each segment that may need a scratch area, a contiguous
area is allocated. The segment may not be expanded during execution.

To define a file as a swap file for the ND—SOO the file must be
created with the Sintran III command @CREATE-FILE. Then the aitor
command DEFINE—SWAP—FILE must be used to inform the aitor that this
file should be used for swapping.

8.11.10.l. DEFINE-WERE

DEFINE—SNAP—FILE <file name>

<file name> — the name of an existing contiguous file.

The file specified is defined as a swap file for ND—500 segments. The
file must be a contiguous file, and must be created before this
command is used. The file may belong to any user, but user SYSTEM must
have at least read and write access (RN) to it.

There may be several swap files in the system; the IVbnitor will assign
a swap area to a process on whichever file has sufficient free space
left. Definition of swap files will survive a warm start, but not a
cold start.

8.11.10.2. BMW-HIE

DmEl'E—SNAP—FILE <file name>

<file name> - the name of a file previously defined as an ND-500
swap file.

The specified file is de—allocated as an ND—500 map file. The file is
not deleted from the file directory, but will no longer be used by the
Monitor as swap area for ND—500 segments.

ND—60 . 136 .03

150
Commands for the System Supervisor

8.11.10.3. HSP-SEP—FIIE—INFO

LISP—SNAP—FILE—INFO <swap file no.>

<swap file no> — the number of the swap file, starting at 0, or
ALL.

Information about the swap file is printed on the output device. This
information includes both file system statistics and the current usage
of the file. If the parameter is given as ALL, information about all
swap files defined is printed.

8.11.10.4. man—3mm

LOAD—SNAPPER <file name>

<file name> — name of binary file where the swapper is located.
Default file name is (SYSTEM)SWAPPER.

The swapper process is loaded into ND—500 memory. Normally, this is
done automatically when the first ND—SOO process is initiated by the
monitor, but this command may be useful to load a new copy if there
are reasons to believe that the existing one is corrupted, or to load
a non—standard version of the swapper process.

The file type may not be specified but will always be :PSEG and :DSES.
The swapper will always run as process number zero.

8.11.10.5. SIAM-m

START-SNAPPER

The swapper process, loaded into memory by the LOAD—SNAPPER command,
is started.

ND—60 .136 .03

151
Commands for the System Supervisor

8.11.11. sm—sysrm—mnmms

SET—SYSTEM—PARN’IEI‘ERS <no of phys. segm>,
<max pages fixed>

<no of phys segm> — the maximum number of physical segments in the
ND—SOO. Maximum is 20008.

<max pages fixed> — the maximum number of pages fixed for the system
as a whole.

A modification of the number of physical segments will have no effect
until the system is restarted. The number of segments include all
physical segments including the process segments used internally by
the monitor. Reducing the number of physical segments will reduce the
space needed by system tables and release memory pages for swapping.

The maximum number of pages fixed for the system as a whole includes
pages implicitly fixed by the Manitor before doing direct transfer
I/O.

8.11. 12. LISP-SYSTlM-PARHIEI'ERS

LI ST— SYSI‘EM-PARAMEI‘ERS

The values of all parameters specified by the SET—SYSTEM-PARAMEI‘ERS
command are printed on the output device.

8.11.13. MASI'ER—CLEER

MASTER—CLEAR

Brings the ND—500 out of any hang-up state by sending a hardware
master clear signal to the ND—500 interface. This will cause the
ND—SOO to stop immediately and reset the interface. This is equivalent
to pressing the INCL button on the ND—500 front panel.

This command is used before a complete restart of the NIB—500, and the
contents of registers are unpredictable.

ND-60.l36.03

152
MONITOR.OOWMANDS

ND-60.l36.03

153
SINTRAN-III MONITOR CALLS

9. SIN’IRPN-III mm CELLS

Monitor calls are requests to the operating system for I/O services,
system information and a number of special functions. Normally, a
compiler will translate certain source statements, like the Fortran
OPEN, into a monitor call, and thus hide the monitor call from the
user. For the assembler programmer, and for the programmer requiring
functions not offered by the compiler, direct access to the monitor
calls may be neccessary.

Most of the monitor calls in Sintran III are available for ND—SOO
programs thrOugh the ND—SOO Monitor. The arguments of the monitor
calls are, with a few exceptions, the same as in Sintran III. For
detailed information of the Sintran III monitor calls, see the
Sintran III Reference Manual NIB—60.128.

In the ND—SOO a Sintran III monitor call is performed by a CALL or
CALIG instruction. CALL and CALLG are general subroutine call
instructions. A routine call where the five leftmost bits of the
subroutine address are set — the segment number is 37B - is a
Sintran III monitor call. That is, to the user program the Sintran III
monitor call functions appear to be regular routines on a link
segment. The 27 rightmost bits of the subroutine address are the
monitor call number.

Single parameters to a Sintran III monitor call must always be a 32
bit word residing in the data memory. When Sintran III requires byte
or halfword parameters, these are the rightmost byte or halfword of
the 32 bit parameter. Observe that the address of a 32 bit word is
addressed by its leftmost byte, thus, the address a one or two byte
variable (e.g. BYTE, INTEGERl and INTEGERZ in Planc) cannot be used
directly in the argument list, but must be incremented by 3 or 2,
respectively.

Arrays are addressed by the lowermost word in the array, and the array
elements are always of size 32 bits.

String parameters - such as filenames etc. — must be a descriptor
parameter (DESC) . A descriptor is a two word element, the first
containing the highest array index, starting at zero, the second the
address of the element with index 0.

During the execution of monitor calls, errors may occur. If an error
has occurred, the K flag is set; otherwise it is reset. If an error
code is returned to the program, it may be found in the II register.
If an error occurs in a monitor call not returning an error code, the
11 register will be set to —l. The K flag is also set.

Monitor calls returning a value will leave the value in the 11
register. Monitor calls not returning a value may destroy the II
register, even if no error occurs or no error is possible. All other
registers will at return contain the values they had before the
monitor call.

ND-60.136 .03

154
SINTRAN-III WI'IOR CALLS

When an error has occurred, an error message may then be written on
the communication device by using the error code as argument in the
monitor calls ERMH; (him 64) or QERMS (MN 65). Error messages from
monitor calls are always written to the communication device if the
command AU'KMATIC—ERROR—MESSAGE is given.

The following is a list of the available monitor calls with their
arguments. men the function of the monitor call is identical in both
the ND—500 and the ND—lOO, the description of the monitor call is
found in the Sintran III Reference Manual Nil-60.128. If the function
is not exactly the same, the differene is described here.

ND-60 . 136 .03

155
SINTRAN—III MONITOR CALLS

Mon. call
no. name Comments

303
31B

32B
35B

36B
37B

4GB

413
43B

44B
45B

50B

523

LEAVE

INBT
GJTBT
ECHJVI
BRKM
TIME
SEIUVI
CIHJF
COHJF
MG'ITY
MSI'I'Y
MBINB
M8(IJT
BBINB
BMJT

R’I‘DS:

GEI‘RT
EXIOX

MK;
IOUT

AIRDN

SPCID

ROBJE
CLOSE

RUSER
GTYPR

OPEN

TERMO

All files opened by the ND—SOO program or by the
OPEN—FILE command in the aitor will be closed.
<unit> <byte>
<unit> <byte>
<unit> <echo mode no> <bitnap>
<unit> <break node no> <bitnap> <max. no. of chars>
The result will be in the 11 register.
<string descriptor>
<unit>
<unit>
<unit> <termina1 type>
<unit> <terminal type>
<unit> <no. of bytes read> <buffer descriptor>
<unit> <buffer descriptor>
<unit> <no. of bytes read> <buffer descriptor>
<unit> <buffer descriptor>
<unit>
The result will be in the 11 register.
<RT description> <buffer>
Number of connected devices to the RI‘ description
will be returned in the 11 register.
The result will be in the Il register.
<in—value> <device no.>
The result will be in the Il register.
<descriptor of the string>
<forrnat> <value>
<format>= 2: Binary format.
<format>= 8: Octal format.
<format>= 10: Decimal format.
<format>= 16: Hexadecimal format.
<unit> <input/output> <flag>
<no. of channels> <channe1 buffer>
<data buffer> <error indicator>
<unit> <text string descriptor> <no. of copies> <flag>
If <unit>= -3 then all files opened by the ND-500
program will be closed. Other values of
<unit> will give standard action.
<unit> <buffer>
<unit>
If <unit>= —3 then all files opened by the ND—SOO
Monitor and the ND—SOO program will be closed.
Other values of <unit> will give standard action.
<descriptor of user name string> <buffer>
<unit> <typring> <status> <Sintran III open file nunber>
The TYPRING word in the datafield, a word containing
flag bits and the open file nunber corresponding to the
specified <unit> is returned
<unit> <access code> <file name string descriptor>
<file type string descriptor>
The parameter <unit> is the open—file nunber the program
assigns to the specified file. If <unit> = 0 then the
ND—SOO aitor will return an open-file nunber in the
parameter <unit>.
<unit> <mode>

ND—60.136.03

156
SIN'IRAN-III WI'IOR CALLS

53B RSEEM <segment no> <buffer>
54B MDLFI <file name string descriptor>
55B RSPQE <unit> <buffer addr. >
56B PASET <buffer>

Five 32 bit words may be set. These are independent
of the status words for the corresponding ND—lOO call

578 PAGEI‘ <buffer>
Five 32 bit words set by PASET may be read.

603 RWPM <function> <ND—500 program address> <data>
Read/write program menory. <function>=0 : read,
<function>=1 : write. <data> is always 4 bytes
Observe that Wm 60 (N500M) executed from ND—lOO
has functions different from the RWEM call

628 RMAX <unit> mo. of bytes in file>
638 B4INW <unit> <buffer>
64B ERMK; <error oode>
658 QERMS <error oode>
66B ISIZE <unit>

The result will be in the I1 register.
67B OSIZE <unit>

The result will be in the I1 register.
7GB COMND <descriptor of couuand string>

Only a subset of Sintran III coumands are legal
738 W <unit> <max. byte pointer>
74B SETBT <unit> <byte pointer>
758 REABT <unit> <byte pointer>
7GB SETBS <unit> <block size in bytes>
77B SETBL <unit> <block nunber>

1003 RT <RT description>
Available for users SYSTEM and RT only.

1013 SET <RI‘ description> mo. of time units> <time unit no.>
Available for users SYSTEM and RT only.

1028 ABSEI‘ <RT description> <second> <minute> <hour>
Available for users SYSTEM and RT only.

103B IN'I'V <RT description> <no. of time units> <time unit no.>
Available for users SYSTEM and RT only.

1043 IDID <no. of time units> <time unit no.>
105B ABORT <RT description>

Available fbr users SYSTEM and RT only.
106B CQIET <RI‘ description> <unit>

Available for users SYSTEM and RT only.
1073 DSCNT <RT description>

Available for users SYSTEM and RT only.
1108 PRIOR <RT description> <prior ity>

The old priority of <RT description> will be in the 11
register. Available for users SYSTEM and RT only.

1113 UPDAT <min> <hour> <day> <month> <year>
Available for users SYSTEM and RT only.

1128 CLADJ mo. of time units> <time unit no.>
Available for users SYSTEM and KP only.

1138 CILXZK <buffer>
114B TUSED The result will be in the 11 register.
llSB FIX <segment no.>

Available for users SYSTEM and RT only.
116B UNFIX <segment no.>

Available fior users SYSTEM and RT only.

ND-60 . 136 .03

157
SINTRAN-III MWI’IOR CALLS

117B

120B

121B

1223

1233

1243

125B

126B

127B

l3OB

131B

134B
135B
13GB

137B

140B

141B

142B
1435
1443

RFILE

WFILE

WAI'I‘F

RE‘SRV

RELE‘S

PRSRV

DSEI‘

DABST

DINTV

ABSTR

RTEXT

R'IDN

RIOFF

WHDEV

IOSEI‘

WON
RSIO
MPGTP

<unit> <flag> <buffer> <block no.>
<no. of bytes to read>
If <flag> + 0 then the ND—SOO program will be
restarted immediately after the parameters are
accepted (not waiting for the transfer to be
terminated). The status of the transfer may later
be checked by the monitor call WAITF.
<unit> <flag> <buffer> <block no.>
<no. of bytes to write>.
If <flag> 4: 0 then the ND—500 program will be
restarted immediately after the parameters are
accepted (not waiting for the transfer to be
terminated). The status of the transfer may be
checked later on by the monitor call WAITF.
<unit> <flag>
If the previous RFILE/WFILE/MPGTP on <unit> was
called with <flag> =% 0, then the status of this
transfer will be returned into the Il register.
<unit> <input/output> <flag>
Available for users SYSTEM and RI‘ only.
<unit> <input/output>
Available for users SYSTEM and RT only.
<unit> <input/output> <RI‘ description>
Available for users SYSTEM and RI‘ only.
<unit> <input/output>
Available for users SYSTEM and RT only.
<RT description> <basic time unit>
Available for users SYSTEM and RI‘ only.
<RT description> <basic time units>
Available for users SYSTEM and RT only.
<RT description> <basic time units>
Available for users SYSTEM and RT only.
<unit> <function> <buffer> <block no.>
<number of blocks>
The <buffer> parameter must be specified as
an ND—lOO physical address. Available for
users SYSTEM and RI‘ only.
Same effect as LEAVE
Available for users SYSTEM and RT only.
<RI’ description>
Available for users SYSTEM and RI‘ only.
<RI‘ description>
Available for users SYSTEM and RI‘ only.
<unit> <input/output>
The result wil be in the 11 register.
<unit> <input/output> <RI‘ description> <value>
The result will be in the 11 register.
<error oode> <sub. error number>
<mode> <input unit> <output unit> <user index>
<function> <buffer addr.> <unit>
<max. no. of bytes> <actual no. of bytes read>
If 10003 is added to <function>, the
ND—SOO program will be restarted immediately after
the parameters are accepted (no waiting for the
monitor call to be terminated). The status of the
execution may later be checked by the monitor call
WAITF.

ND-60.136.03

158

145B
147B

150B

151B

1523

1538

154B

1573

1603

1613

1623

1648

16 5B

166B

213B

214B

215B

216B

217B

220B

221B

CAMAC

GL

GRTDA

GR'INA

IOXN

ASSIG

FIXC

INSI'R

WSEG

DOLW

MUDDI

GUSJA

DROBJ

GUIOI

mPEN

CRALF

SINTRAN-III MCNI'IOR CALLS

<unit> <function> <buffer> <dma addr.> <no. of bytes>
<value> <status> <crate nunber> <station nunber>
<subaddress> <function>
Available for users SYSI'EM and RT only.
<value> <flag>
Available for users SYSI‘EM and RT only.
<descriptor of RI‘ program name>
Available for users SYSTEM and RI‘ only.
<RT descriptor> <buffer>
Available for users SYSTEM and RI' only.
<data> <o—code>
Available for users SYSI‘EM and RT only.
<log. unit nunber> <graded LAM nurrber> <crate nunber>
Available for users SYSI‘EM and RT only.
<segment> <page table> <interrupt level>
<start address>
Available for users SYSTEM and RP only.
<segment> <physical start page>
Available for users SYSI‘EM and RI‘ only.
<unit> <string descriptor> <max. no. of bytes>
<terminator>
The function value will be in the I1 register.
<unit> <string descriptor>
The function value will be in the I1 register.
<segment no>
Available for users SYSI‘EM and RI‘ only.
<no. of registers> <buffer with logical units>
<data buffer> <error indicatior>
Available for users SYSI‘EM and RI‘ only.
<no. of registers> <buffer with logical units>
<data buffer> <error indicator>
Available for users SYSI‘EM and RT only.
descriptor of user name string> <directory index>
<user index>
<descriptor of user name string> <directory index>
<user index>
<object entry buffer> <directory index>
<user index> <object index>
<object entry buffer> <directory index>
<user index> <object index>
<unit> <directory index>
<user index> <object index>
<unit> <access code> <descriptor of file name string>
<descriptor of file type string>
<descriptor of file name string>
<start address of file> <nunber of pages in file>

ND—60 .136 .03

159
SINTRAN-III MONITOR CALLS

400B

401B

4028

403B

404B

4058

4068

407B

410B

4llB

MACROE

DISASS

IOFIX

USTBRK

TPSTRA

FIX

UNFIX

Subsystem error return. Will set an error indicator
that may be tested by the IF—ERROR—MPCRO—SIOP and
IF—ERRORrFULL—SBDP commands.
<program address>, <descriptor of returned string>
<max no. of characters>
One ND—SOO instruction starting at the specified
<program address> is disassembled. The returned
string will be truncated to <max no. of characters>
if required. The actual number of characters in the
returned string is returned in the length part of
the <descriptor of returned string>.
<value>
Reads a 32 bit flag array set by the SET—FLAG Monitor
command or by a monitor call in a Sintran III program.
See section 8.8.1.
<value>
Writes a 32 bit flag array that may be read by
a Sintran III program or by the GET—FLAG aitor
command. See section 8.8.1.
<first addr> <size of area in bytes>
Specify to the Monitor the data area the program will
use for file system I/O.
<function> <address>
<function>=0 : enable, <function>=l : disable user
handling of the escape input. If enabled, control will
be transferred to <address> if the user presses the
escape or break key.
<function> <RECOMMON addr> <# bytes> <buffer>
<function>=0 : read, <function>=l= write RflJJMMJN
The specified RECOWMON address is an ND—lOO virtual
word address.
<p1>..<p7>
Return from N500M, function RUNN (128), to ND—lOO.
Stop reason is given the value 65, and the
seven parameters are transferred to ND—lOO.
Interpretation of the parameters is up to the
ND—lOO program issuing NSOOM.
<type> <first addr> <length> <phys ND—lOO addr>
<type>=0 : fix scattered
<type>=1 : fix contiguously, address returned
<type>=2 : fix contiguously at given address
<first addr> is the logical ND—500 address,
<length> in bytes, but the physical address is
specified/returned as an ND-lOO word address
<address>
Only the segment number of the address is
significant. All fixed areas in the given
segment are unfixed.

ND—60.l36.03

160
SINTRAN—III MCNI'IDR CALLS

4123 FSCNT' <file no>g<log. segment no> <type> <segment no>

413B

4 143

4 15B

4 16B

417B

FSIINT

KINAF

KINAFl

WSEGN

MXPI SG

Connect file as a segment._File must be opened
through IVDN 50 or the OPEN—FILE command.
<log. segment no>=0 will select the first free
segment and return in <segment no>.
<type>=0 : file contains initial data
<type>=l : uninitialized, empty file
<type>=2 : primarily sequential access
<type>=3 : combination of l and 2
Specifying <type>=2 will reduce swapping, as
long as access is sequential
<file no> <segment no>
The file is no longer accessed as a segment,
but is not closed. All pages are, however,
flushed to the file.
CLOSE will imply FSDCNT.
<function> <address> <data> <status>
Special CAMAC monitor call.
<function> <address> <data> <status>
Special CAMPC monitor call.
<log segment no> .
Write all modified pages back to segment file
<log segment no> <segm. type> <# pages>
Set max pages in memory for a segment.
<segm. type>=0 : data segment
<segm. type>=1 : program segment

ND-60.l36.03

161
THE NSOOM MONITOR CALL

10. THE N500! mm (AIL

This chapter is intended as background information only, and is
included for readers with a thorough knowledge of Sintran III. The
NSOOM monitor call is primarily used by the Monitor itself, and will
normally not be used by application programs. Programmers who want to
u3e the functions listed below, are advised to consult Norsk Data for
further details.

The ND-SOO Monitor is divided into three separate parts that run in
the ND—lOO. The first part runs on page table 2 as the subsystem
called ND—SOO-MONI'IDR, and the second runs on page table 0. The third
part is the ND—500 driver routine residing in the resident and the
"paging off" area.

The subsystem ND—SOO—MQII'IOR communicates with the page table 0 part
through a special monitor call, NDN 60 (NSOOM) . NSOOM has several
functions, and accepts parameters according to the specified function.
Observe that the monitor call number 60 is used from ND—500 for
functions different from N500M executed on the ND—lOO.

The parameters to NSOOM are specified in same way as a "Fortran
monitor call", (the A—register pointing to a list of parameter
addresses). The first parameter is the function code which must be a
16 bit word. The rest of the parameters are either arrays or 32 bit
words. Skip return indicates successful completion, direct return that
an error occured.

The following is a list of the functions available in NSOOM:

Function
no. name explanation parameters

0B RREG Read register <reg.no> <value>
lB WRWG Write register <reg.no> <value>
2B RPc; Read program memory <no.of bytes> <ND—500 addr>

<data area> <no.of bytes returned)
3B RDATA Read data memory <no.of bytes> <ND—500 addr>

<data area> <no.of bytes returned>
4B WPROG Write program memory <no.of bytes> <ND—500 addr>

<data area>
5B WDATA Write data memory <no.of bytes> <ND—500 addr>

<data area>
6B PLACE Place segment <file name> <segment base>

<size in bytes> <segment type>
7B SWIOD Load swapper <swapper segment name>

10B RREGB Read ND—SOO Registers <register block>
llB WREGB Write ND—500 Registers <register block>
lZB HJNN Start program <stop reason> <returned trap info>

<clear time used>
l3B CbEFI Connect file <file name> <access code>

<default type> <connect no.>
<returned connect no.>

14B CLSFI Close file <file no.>

ND—60.l36.03

162

158

16B
178
20B
21B
223
23B

24B

25B
26B
27B
303
31B
328

33B

34B
35B
37B
40B

41B

43B
44B
46B
47B
50B
51B
523
53B
54B
55B
56B
57B
60B

61B

628

63B
64B
65B
66B
67B
70B

723

RESRV

RELIS
LISDP
TIMUS

REACS

WRICS

MICSI‘

MSI'OP
MSI'CL

DEFM

RSI‘AT

SPRES
SPREL
DEFSA'I
DELSN

RIFm
G500P
T500P
STSNP
SPLAC
EPLAC

LIMEM

RESER

HIDEF

HISI‘A
HI STP
HISI‘R
HIREL
SPRTE
GPRTE
SSGTE
GSETE

Reserve ND—SOO-process

Release ND-SOO—process
List open files
Time used
Who is on
Set error flag
Read Control store

Write Control store

Start micro program
Data memory examine
Data memory deposit
Prog. memory examine
Prog. memory deposit
Absolute memory read

Absolute memory write

Stop micro program
Master clear
Load control store
Define memory config.

Read comm. status

Reserve for spec. use
Release after spec use
Define swap file
Delete swap file
Test function
Read interface reg
Give ND—SOO pages
Take ND—SOO pages
Start swapper
Start place
End place
Microprogram version
List memory config.

Reserve N500 and
N500 memory
Define histogram

Start histogram
Stop histogram
Read histogram
Release histogram
Search for proc.entry
Get process entry
Seach for phys.segm.
Get physical segment

ND-60 .

’IHE N500M MCNI'IOR CALL

<start addr. after escape>
<version string of PI‘0>

<value>
<CS addr.> <no of 16 bit words>
<data-area>
<CS addr.> <no of 16 bit words>
<data—area>
<micro program start address>
<addr.> <value> *
<addr.> <value>
<addr.> <value>
<addr.> <value>
<no.of bytes> <ND-500 addr.>
<data area> <no.of bytes returned>
<no.of bytes> <ND—500 addr.>
<data area>

<CS addr><no of words><fi1e name>
<start page> <no.of memory parts>
<part array>
<status (bits 16:31: ND—500,
bits 0:15: ND—100)>

<MAR (memory address register)>

<fi1e name>
<file name>
<11> <I2> <I3> <I4>
<register value/14>
<number of pages>
<number of pages>

<version number/14>
<array (regblk start/12,
ND-lOO procadr/I4, ND-500 null/I2,
memparts/12(0:17B) ,
accesstab/BY (0: 17B) >

<no. of pages> <first page no.>
<start address> <interval size>
<no. of intervals>

<array>

<process name> <record>
<process> <record>
<name of phys.segment> <array>
<phys.segment no.> <array>

136.03

THE N500M MQ‘II'IOR CALL

738 RPH$

74B SPRNVI
75B
76B TOSdP
77B RPRm
100B RFLAG
101B SFLAG
1028 GPSGE
103B RSYSP
104B WSYSP
105B SPRIO

10 6B
1108

111B
1128
113B
1143
1153

117B
120B
1213

122B
123B

124B
125B
126B
127B
130B
131B
132B
133B

Read physical segment

Set process name
User SYSI‘EM test (skip
Send neg. to swapper
Read last message
Read process flag
Set process flag
Release ND—SOO system
Read system param.
Write system param.
Set priority

Link to process
Write physical sequent

Start process log one
Stop logging
Read log info
Release log facility
Start log all active
processes
Abort process
Set output device
Read from swapper
process' data memory

Logout process

163

<phys.segment no.> <address>
<no. of bytes> <array>
<process name>
if SYSTEM)
<record>
<process no.> <record>
<process no.> <flag>
<process no.> <flag>

<parameter array>
<parameter array>
<ND-100 rronitor call priority>
<max percent of ND-lOO CPU time>
<process no.>
<segm no.> <ND—500 address>
<no. of bytes> <data area>
<process no.>

<data area>

<process no. >
<unit>

<no. of bytes> <ND-500 address>
<data area> <no. of bytes read>
<process no>

Release all memory reserved by this process
through function RESER
Start moncall log
Print mancall log

(61B) .

<array of 1K 16 bit words>
Stop/release noncall log
Define standard domain
Place standard domain
Delete standard domain
List standard domain
List execution queue

<array>
<name>
<name>

ND—60.136.03

164 ‘
THE NBOQWDKIHHOR CALL

ND-60.l36.03

165
DESCRIPTION FILE LAYQJT

ll. DRRIPI'ION FILE LAYUJT

This chapter will give an overview over the information stored in the
description file. It is meant to be a general presentation, and does
not pretend to give a complete description. The format of the
information in the description file may be slightly modified in later
versions of NLL and the aitor, but the main structure is fixed.

The description file contains all
necessary information about processes,
domains and segments created by the user
owning the description file. Each
process, domain and segment has its own

PROCESS entry in the file. This means that each
ENTRIES new segment opened, linked or indirectly

linked will be assigned an entry in the
description file. Wnen a segment is

DOMAIN deleted, the corresponding segment entry
ENTRIES is removed, ie. linked out of , the

segment link of a domain.

SEGMENT The description file is an indexed file.
ENTRIES It can therefore be expanded dynamically

when new segments are created and
segment entries reserved. The size of
the process and domain entry area in the

SYMBOL file is fixed, in order to speed the
ENTRIES search for a new domain number.

$33,... In addition to the three major
information blocks shown in the figure
to the left are miscellaneous
information, such as a list of the users
auto-load files and the name of the
Monitor. This information is stored in
gaps between the major blocks.

ND—60 . 136 .03

166

Process entry

[1

Domain entry

[SESLINK]

[DNAME]
[CHILDIXMAINS]

[WEBER]
[CHIIDINDEX]

[PMPRIOR
[FLAG
[STADR
[ENABLEINT
[THA
[SYSENABL
[PBI‘IMAP
[DBI'IMAP l—

lt
—

IH
h

—
‘I
—

Il
—

d
l—

J
I—

l

DESCRIPTION FILE LAYCDT

- size: 1 byte

Domain number of the first domain
in the process (1 byte)

— size: 56 bytes

Link location for the first segment
in the domain (4 bytes)
Domain name (16 bytes)
Numbers of the child domains of which
this domain is the mother (6 bytes)
Domain number of mother domain (1 byte)
First free loacation in the child
domain area (1 byte)
Priority (1 byte)
Flag bits (1 byte)
Start address (4 bytes)
Bit mask indicating enabled traps (4 bytes)
Trap handler address (4 bytes)
Bit mask indicating system enabled traps (4 bytes)
Bit map of used program segments (4 bytes)
Bit map of used data segments (4 bytes)

ND-60 . 136 .03

167
DESCRIPTION FILE LAYCIJT

Segment entry

[SEGLINK
[SNPME
[SESTYPE
[CCMSESID
[CCMSEGADDR

[OCMSEGSIZE

[N 10OSESI‘D
[PLCXS
[DLDG
[HDDINDE‘X

[PLB
[PSI ZE
[DLB
[DSI ZE
[DEEYGINFO
[DLINKDATE
[ABSFIXAD

[WEIX
[UPPLDGFIX
[MINPAGES
[MAXPAGE‘S
[INDPLm

[INDDIDG

[ADDSEELINK

[INDIIMAIN
[ADDTYPE
[ADDPSESI‘D
[ADDDSEEI‘D
[INDPSEBDD

[INDDSEGI‘D

[LINKDATE

|_
l|
_

d
|.
_

l|
_

_
lb

—
l

I—
lt—

lt—
JL

—
u—

lh
—

ll—
J—

J
I—

nd
I—

Jt
—

Jh
—

lh
—

J

— size: 192 bytes

Link to next segment in the domain (4 bytes)
Segment name (directory:user)filename (54 bytes)
Flags indicating type of segment (4 bytes)
Number of shared Sintran III segments (2 bytes)
Array containing logical address of all
shared Sintran III segments within the
data segment (10 bytes)
Array containing the size of all
shared Sintran III segments (5 bytes)
Array of actual Sintran III segments (5 bytes)
Logical number of this program segment (5 bits)
Logical number of this data segment (5 bits)
No of link, indirect and common segments
from other domains to this user (3 bits)
Logical low bound for program segment (4 bytes)
Size in bytes of program segment (4 bytes)
Logical low bound for data segment (4 bytes)
Size in bytes of data segment (4 bytes)
Size of debug info on the :LINK file (4 bytes)
Last date written when segment was linked (4 bytes)
Address if the segment should be fixed
in absolute address in memory (2 bytes)
Lower page no. in fixed area (2 bytes)
Upper page no. in fixed area (2 bytes)
Minimum number of pages in memory (2 bytes)
Maximum number of pages in memory (2 bytes)
Logical program segment number
in indirect domain (5 bits)
Logical data segment number
in indirect domain (5 bits)
Pointer to linked/common/indirect segment
from other domains of the same user (4 bytes)
Domain no of the indirect domain (1 byte)
Type of this segment (2 bits)
Logical program segment no within this domain (5 bits)
Logical data segment no within this domain (5 bits)
Logical program segment no within
indirect domain (5 bits)
Logical data segment no within
indirect domain (5 bits)
Last date written when linking took place (4 bytes)

The fields from ADDSEGLINK to LINKDATE occur 5 times.

ND-60.136.03

168
DESCRIPTION FILE LAYOJT

Symbol entry - size: variable

[ELINK] Link to next symbol in link (4 bytes)
[SL] Length of symbol (1 byte)
[NLE] Numeric length (3 bits)
[OPER] Operation type (+, -, *, /) upon this symbol
[IDENT] Language code (1 byte)
[CW 1 Type of symbol (see below) (1 byte)
[VAL] Value of symbol (4 bytes)
[SIZE] Size of common block (4 bytes)
[SS] Symbol name (max 255 bytes)

CW bits:

Bit no Name Explanation

0 UDEF ‘ false = undefined element
1 DREF ' false = program memory reference

true = data memory reference
2 DSYM false = program label

true = data label
3 CLAB true = oomxon label
4 IMPF true = symbol is written (used in list handling)
5 GLOB true = the symbol will not be deleted

when the loader table is saved
6 SELECT true = module must be loaded
7 (MIT true = module must not be loaded

ND-60 .136 .03

169

THE ND RELIEATABLE FOMAT

12. mmmmm

12.1. mm

The ND Relocatable Format (NRF) is organized as a sequence of so—

called NRF—groups where each group is composed of a control byte (5 +

3 bits) alone or followed by a varying number of trailing information

bytes. The trailing information is either a numeric field, a symbolic

field or both in a sequence;

<NRF—group>: :=<control field> <numeric field> <symbolic field>

The control field (5 bits) contains an NRF control number in the range

0-37B. The control numbers denote a set of particular loader actions.

The numeric field (N) consists of anumeric length (NL— 3bits)

specification followed by zero to seven 8 bit bytes, as indicated by

NL.

<Numeric field>::=<numeric length><byte>... etc.

Note that the numeric field is always present although the length may

be zero (the control number + numeric length make up an 8 bit byte). A

zero numeric length may in some cases be interpreted as an "all zeros"

case of the numeric field.

The numeric field is signed, with negative values in 2's complement

form.

If a numeric field is present where it has no meaning, the number of

bytes specified in the NL field are read and ignored.

The symbolic field (S) consists of a symbol length (8 bits) followed

by 1-255 characters which constitute the symbol. Each character is

represented in 8 bit ASCII code with the parity bit cleared. All

characters are valid, including non-printing control characters. For

two symbols to be equal, both the length and all characters must be

equal.

<Symbol field>: :=<symbol length><chl> . . . etc.

The symbolic field is valid only in a subset of control codes.

5 bits 3 bits 0:7 bytes 1 byte 0:255 bytes

control numeric numeric symbol symbol l

field length value L length value

|---numericfield———| l—-symbolfield———l
I — control byte — -|

ND-60.l36.03

170
THE ND RELWATABLE FOIMAT

In NLL there are two major byte pointers: the program byte pointer
(PP) and the data byte pointer (DP). These byte pointers will normally
point at the next "free" byte address in the program- and data-areas,
and may be referenced during the loading session as #PCLC and #DCIC.

The size of an address is termed the address length, ADL, and is
determined by the third byte in the information trailing the BEE.
control byte.

Tne byte pointer (BP) may be "coupled" to PP, DP or a "free" pointer
(XP) by the control numbers PMO, mo, and mo. The "free" mode is
useful when there is a need for modification of previously loaded
informatio . For this mode neither PP nor DP are affected or changed.
The "free" mode is reset by either PMO or 1140. Initially - after a BEG
control number — the mode is H40.

12.2. NRF control mmbers

NUL 0 Ignored by NLL if numeric length is also 0. A non—zero
numeric length is illegal.

BEG l A program system is composed of one or more modules. The BEE
control number signifies the start of a module. Examples of
modules are:

a) the outermost NDHJLE/ENDVIODULE of Planc
b) PRmRAM/END, SUEROJTINE/END and FUbCTION/END of Fortran

The first byte of the trailing numeric field contains the
real—time priority, the second contains the language code:
ASSEM.Y=O, FORTRPN=1, PLANC=2, C0mL-13, PASZAL=4. The third
byte contains the address length (ADL) , default value is 4.
Before an NRF module is loaded, the load address is adjusted
upwards to a multiple of the address length. This applies to
both the program byte pointer and the data byte pointer.

When a BEE control number is loaded, subsequent loading will
be to the program segment until a mo control number is
loaded.

END 2 End of module. The trailing bytes' information contains the
checksum in 2's complement form. The checksum is calculated
by adding the binary byte values from BEE to END, trailing
fields included, into a word, ignoring overflow. This sum is
supplied in the END numeric field. The numeric length of the
END control number specifies the size of the checksum in
bytes (default 2 bytes — 16 bits). If numeric length is 0, no
checksum test is performed.

MSA 3 Main Start Address. The current byte address is defined to
be the main start address of the loaded modu1e(s) . If more
than one MSA is loaded in the domain, a warning message is
issued, and the first defined MSA applies.

ND—60.l36.03

171
THE ND RELOCATABLE FORMAT

LIB 4 The symbol in the synbol field is searched for in the loader
table. If the symbol is present and not defined (i.e. only
references exist) the rest of the nodule will be loaded. If
the synbol is defined or not present the rest of the nodule
is skipped.

When nore than one LIB appears in a sequence, the nodule will
be loaded when at least one of the symbols is undefined. For
LIB, NL has no meaning.

DEF 5 Program Label Definition. Depending on NL this control nunber

DDF 10

DRF ll

RMVlZ

a)

b)

is interpreted as follows:

NL=0. The synbol in the synbol field will be entered into
the loader-table with the current value of the program byte
pointer (PP).

NL+0. The synbol in the symbol field will be entered into
the loader table with the value found in the numeric field
with possible sign extensions if NL<ADL.

All previous references to the symbol will be defined.

Program Reference. The synbol in the symbol field will be
referenced in the address which corresponds to the current
byte pointer in either program or data memory. Wnen NL=0 the
synbol value will occupy the next ADL bytes (one word). When
NL=)=0 the symbol value will occupy the NL next bytes.

BP will be incremented by NL (ADL if NL=0) , to make room for
later insertion of the synbol value. NL+ADL or 0 nust be used
with care due to possible overflow bits which are lost (if
the synbol value is greater than can be held in NL bytes).

When the synbol is defined, the sum of the numeric value in
the REF group and the synbol value will be inserted in the NL
bytes where the REF control nunber occurred.

Similar to REF if the synbol is already defined when the LRF
control nunber is loaded. The value zero will be stored into
the reference/byte(s) when either

a) the synbol is undefined (references only), or
b) the symbol is not present.

Data Label Definition. Similar to DEF but applies to data—
menory and current data byte pointer (DP).

Data Label Reference. Similar to REF, but applies to data—
labels.

Renove Synbol. The synbol in the symbol field is removed from
the loader table. This directive is used to prevent the
loader from overflowing, and by language processors to avoid
name conflicts between local labels in different nodules,
used within the nodule only.

ND-60 .136 .03

172

AIS

PMO

DVIO

FMO

LDI

APA

ADA

IHB

13

14

15

16

17

20

21

22

23

24

25

26

THE ND RELfiXIATABLE FORMAT

Set Load Address. The current byte pointer will be set to the
contents of the numeric field. If the symbol length is non-
zero, the symbol value will be added. The load-mode (program
or data-mode) is unaltered

Adjust. The current byte—pointer will be adjusted with the
(signed) number contained in the numeric field. If the symbol
length is non-zero the symbol value will be added. The load
mode (program or data-mode) is unaltered.

Set program mode. The program byte pointer (PP) will be set
to the current value + the (signed) number in the numeric
field.

Set data mode. The data-byte—pointer (DP) will be set to the
current value + the (signed) number in the numeric field.

Set "free" mode. The current byte pointer + the (signed)
number in the numeric field will be moved to the "free" byte
pointer. Loading will be to the data or program segment
determined by the current mode when the FMO control number is
read. If the symbol field is filled (8+0) the symbol value
will be used instead of the current byte pointer. The
program- and data pointers (PP and DP) are left unmodified
and the loading may be resumed from PP or DP by using PMO or
1140.

Repeat. The subsequent NRF—group will be repeated the number
of times specified in the numeric field. If the next group is
a compound group, the entire compound group will be repeated
the specified number of times.

Load immediately. The NL trailing bytes will be stored into
the NL next bytes according to the current byte pointer. The
current byte pointer will be incremented by NL.

Add immediately. The value of the numeric field is added into
the NL next bytes according to the current byte pointer. The
current byte pointer will be incremented by NL.

Add program address. The program byte pointer (PP) value +
the number in the numeric field is stored into the next word
(ADL bytes). The current byte pointer will be incremented by

ADL.

Add data address. The data byte pointer (DP) value + the
number in the numeric field is stored into the next word (ADL
bytes). The current byte pointer will be incremented by ADL.

Execution inhibit. The NRF is incomplete due to errors during
the compilation phase.

End of file. End of NRF file.

ND—60.l36.03

173
THE ND WATABLE FORMAT

DE 27

30

31

Debug. Start/stop of debug information. NLL will copy the
information between two DES control numbers to the :LINK file
rather than to the :PSEG and :DSEE files. This information is
used by the Symbolic Debugger.

Library module bytepointer. The library module in the
symbolic field which begins in the byte address in the
numeric field will be loaded if the symbol is present in the
loader table, but undefined. This may increase the speed of
library loading considerably.

Message. The ASCII string in the symbolic field is printed on
the output device. The string is printed only if the MSG
control number is actually loaded. A MK; control number in a
library file not within an NRF module will not be printed
unless it is located ahead of the address table in the file.
If it is located within a module, it will be printed only if
that module is actually loaded. The numeric field is ignored
if present.

MIS 32 Miscellaneous. Sub control number in the numeric field.

CGRO 0 Start of compound group. Compound groups are used
mainly in connection with the REP control number. Any
sequence of control numbers may follow, up to the next
MIS OGRl control number. Compound groups may be
nested to any level.

(3R1 1 End of compound group. If compound groups are nested,
only the innermost nest is terminated; each level of
nesting requires a matching CERl.

ADD 2 The value of the next referenced symbol (REF, LFR or
DRF control byte is added to the location pointed to
by the current byte pointer. The size of the numerical
values to be added is determined by the numerical
length (NL) of the reference.

The current byte pointer should point to an already
loaded value; usually "free mode" (FMO control byte)
will be effective, in order to set the byte pointer
appropriately. The next referenced symbol must be
defined prior to the reference (but need not
immediately follow the ADD control byte), otherwise
the ADD control byte has no effect. There is no
distinction between REF, LRF and DRF references.

SUB 3 The value of the next referenced symbol will be
subtracted from the location at the current load
address. Otherwise, it acts as ADD.

MUL 4 The value in the current load address will be
multiplied by the next referenced symbol. Otherwise,
it acts as ADD.

ND—60.136.03

174
THE ND REMIflxflfiifilFORMAT

DIV 5 The value in the current load address will be divided
by the next referenced symbol. Otherwise, it acts as
ADD.

LDN 33 Load immediately the number of bytes found in the numeric
field.

> 33 Illegal control number.

ND—60 . 136 .03

175
THE ND WATABLE FORMAT

Ignored by NLL if NL=0, otherwise illegal
Start of module, priority, language,

Conditional load. Load if S undef but referenced
Program label definition (BP=: (S) or NV=: (8))
Prog ref. BP+NL==BP, if NL=O then ADL=:NL
Reference if S defined, otherwise 0 (BP+ADL=:BP)

Set load address (NV=: BP) , mode unaltered
Adjust byte—pointer (BP+NV=: BP) , mode unaltered

Free mode ((S)+NV=:BP or BP+NV=:BP)

Load immediately NV=: (BP:BP+NL) , BP+NL==BP

(BP:BP+NL)+ (NV)=: (BP:BP+NL)= , BP+NL=zBP
Add program address. PP ::(BP BP+NL),BP+ADL=: BP)
Add data address. DP+NV=: (BP: BP+NL) ,BP+ADL=:BP)

Library module bytepointer. Nbdule where S is
defined starts at byte NV in NRF file.
S is printed on terminal during loading
Miscellaneous (sub control no innumeric field):

GCRO=0 Start of compound group

SUB =3 Subtract referenced value
MUL =4 Multiply by referenced value
DIV =5 Divide by referenced value

12.3. Sumary of NR1? cmtrol mmbers

ADL = address length
BP = current byte pointer
NL = numeric length
NV = numeric value

Control Trailing Comment
no info

NUL=0
BEG=1 N

address alignment (ADL)
END=2 N Ehd of module,checksum
MSA=3 N Main start address is at BP+NV
LIB=4 N,S
DEF=5 N,S
DEF=6 N,S
LRF=7 N,S
DDF=10 N,S Data—label definition
DRF=ll N,S Data—label reference
RVIV=12 N,S Remove symbol S
SLA=13 N,S
AJS=14 N,S
PMO=15 N Program mode (PP+NV=:BP)
1140=16 N Data mode (DP+NV=:BP)
FMO=17 N,S
REP=20 N Repeat next group NV times
LDI=21 N
ADI=22 N Add immediately

APA=23 N
ADA=24 N
IHB=25 N Run inhibit (compiler errors)
EDF=26 N End of NRF file
Dm=27 N Start/stop debug information
LBB=30 N,S

MSG=3l N,S
MIS=32 N

GCRl=l End of compound group
ADD =2 Add referenced value

LDN=33 N Load NV bytes immediately following

ND—60 .136 .03

176
LINKAGE-LOADER ERK)R MESSAGES

l3. mass-mm mm

ALREADY DEFINED

A shared ND—lOO segment or RICQIIMCN was already defined.

AMBIGLUJS CGVIMAND

An abbreviated command has several possible matches.

ATI'EMPI‘ TO CREATE 'Im MANY KIRA'ICH-SEHVENTS IN KiRA’ICH-IXMAIN

No more than 31 scratch segments are allowed in SCRA'ICH—DCMAIN.

A'ITEMPT'IOCREATE'IWMANYSEGMENTSIN’IHISDCMAIN

A domain may contain no more than 31 segments.

CHECKSUM ERIK)R

Due to hardware or software errors the checksum supplied in the
numeric field of the END group does not match the checksum calculated
by NLL.

DATA AREA FULL

The load address specified in the HIGH—ADDRESS command has been
reached in the data segment.

MAIN ALREADY EXISTS

A domain name specified in double quotes in the SET-MN command
already exists in the description file of the current user. If any
loading to (new or existing) segments in the existing domain should be
done, repeat the command with the domain name unquoted. Otherwise
specify a different name for the domain.

ERROR IN INITIALIZING 'IHE DESCRIPTION FILE

This error may occur the first time NLL is used, and may indicate a
hardware or file system error (e.g. lack of sufficient space). If no
explanation for the error is found, please report to Norsk Data.

ND-60 .136 .03

177
LINKAGE-LOADER ERROR MESSAGES

ERROR IN OPENING RI‘FIL

The Sintran III file system error message will indicate the reason why
(SYSTEM) RI‘FILzDATA cannot be opened during a LINK-RILPWRAM or MA'ICH—

CQMON—t-SEIMENT commend. Agaropriate action must be taken according
to the file system error message.

FATAL ERI-DR

If this error occurs, please report to Norsk Data, preferably with a
copy of the description file at the time of the error and an as
complete as possible list of commands executed prior to the error. The
contents of the description file may be invalid, and no further
loading should be performed without rebuilding the description file.
Be aware that this will destroy all information about previously
loaded segments.

ILLEISAL ATI‘RIBUTE CODE

An attribute code unknown to NLL was encountered in an OPEN—SEGMENT or
CWQI—SWT—OPEN command.

ILLEGAL CHARACTER IN PARAMETER

The rules of the Sintran III file system apply to segment names, i.e.
a name may consist of alphanumerics and hyphens. In general, the same
rules apply to domain. Either a non-alphanumeric/hyphen character was
encountered in a name, or a double quote indicating a new name was not
matched by another. mere user names may be specified, mismatching
parentheses may also be a source of this error.

ILLEGAL CW’I‘ROL BYTE

An NRF control number larger than 323, or zero with a non-zero N
field, was encountered in an NRF file.

ILLEGAL TRAP MNEMQQIC

The trap name specified in either SYSTEM-TRAP—ENABLE, LOCAL-TRAP-
ENABLE, SYSI‘EM-TRAP—DISABLE or ImAL-TRAP-DISABLE was not one of the
names in the table on page 84.

INSUFFICIENTLY CCMPILED PRGERAM

An IHB control number (250B) was encountered in an NRF file,
indicating that errors occurred during program compilation.

ND-60.l36.03

l78
LINKAGE-IDADER ERROR MESSAGES

LOADER TABLE OVERFLCM

Too many labels have been defined. The segment must be reloaded, and
before the loader table overflows, the entries that are no longer
needed should be removed with the KIIL—EQ'IRIES command. Alternatively,
the loading may be terminated prematurely with CIDSE—SEI‘MEJT (ignoring
the error message — the command must be specified twice), and
restarted with APPEND—SEHWENT.

I‘D ME AU'IO-IDAD-FILE HJFFER-SPACE AVAILABLE

A maximum of six auto-load files may be specified by each user.

NO was WAINS AVAILABLE FOR 'IHIS USER

The description file can hold a maximum of 256 domains.

NO SJCH (AMBIGUCIJS) IIMAIN ON THE SPECIFIED USER

Either the domain name is not registered in the description file, or
more than one domain has a name that matches the specified one.

NO SUCH (AMBIGImS) SEQ/[SENT IN THIS IIMAIN

Either the segment is not registered in the current domain, or more
than one segment has a name that matches the specified one.

NOSJCHCCMIVIAND

The command is not known to NLL. Check the list of available camIands
with the HELP command.

NO SUCH MODULE

A module identifier specified was not found in the specified file in
one of the NRF editor commands DELEI'E—NRF— , LIST-NRF—CCDE,
FEICH—NRF—MODULES , WRITE—NRF-EDF-AFTER—l‘mIIE or INSERT-NRF-NESAGE.

NOT DELETE ACCESS

It is not legal to delete processes, domains or segments in other than
the current user's description file. No prefixes (directory or user
name) are allowed.

ND—60.l36.03

‘ 179
LINKPGE—LOADER ERROR MESSAGES

DDT IMPLEIVIINTED

A command available only in the multisegment version of the Linkage-
Loader was attempted executed in the single segment version.

NOT IN THE IOADER TABLE

The label specified in the VAHJE—EN'I'RY command has not been loaded or
defined since NLL was entered, or it has been killed with the KILL—
ENTRIPB command, or it has been deleted from the loader table
implicitly at an CLOSE—SEIMENT or END-IIMAIN.

NOT LINK ACCESS

The list of segments in the LINK—SEMENT command includes one or more
segments declared without link access. This means that the segment is
either
- opened without shared program segment (P attribute)
— opened without shared data segment (D attribute)
- part of another domain but have linked segments, or
- not opened with random read access from this user.

NOT GITAL NUMBER

NLL expected an octal number, and a number containing 8 or 9, or non—
numeric characters, was entered.

PRCI§RAM AREA FULL

The load address specified in the HIGH-ADDRESS command has been
reached in the program segment.

<file name> RESERVED BY ANO‘H-IER USER

One or more of the files involved in a SEIL-DOVIAIN command is currently
being loaded or opened from another terminal or a batch process. To
avoid inconsistencies NLL does not allow loading in a domain while it
is being used by others.

RCIJTINE VEC'IOR 'IOO SVIALL

Insufficient space for routine labels was reserved by the DITRY-
RCUTINES command. The segment must be cleared and reloaded after
executing EN'IRY-KIJTINEB with a higher <number of entries>.

ND-60.l36.03

18 0
LINKAGE-LOADER ERROR MESSAGE

SEQ/DENT ALREADY EXISTS

A segment name specified in double quotes in the OPEN-SEGMENT command
already exists in the description file of the current user (segment
names must be unique in the description file, even if they belong in
different domains). If extensions to the existing domain should be
made, use the APPEND—SEQIIENT command. If the old contents should be
replaced with new code, use the OPm-SEZMENT command with the segment
name unquoted. If the existing information should be kept unmodified,
re-issue the command with a different (quoted) segment name.

SEGMENT I‘DT AVAILABLE OR AMBIGUCIJS (OPEN-FILE FAILED)

The segment name specified in the OPEN-SEQIIENT, APPEND—SWT, LINK—
SEIMENT, CWCN—SEGMEN’POPEN or WSEQVI‘ENT-APPEND command either
does not exist or its name was abbreviated too much, or that for some
other reason NLL did not succeed in opening one or more of the files
affected by the last command.

*** SPECIAL USER BREAK ***
The 'escape' key was depressed on the terminal, interrupting any
ongoing activity in NLL.

THIS CCMMAND SHOULD BE mNE BEFORE LINKII‘E

After a segment has been linked to other segments, the APPEND—SEXMENT
may not be executed.

'IHIS COVIMAND SHOULD BE DONE BEFORE LOADII‘C

The EN'IRY-RQJTINE‘S command may not be performed after code has been
loaded, as this code may be overwritten if a routine vector is built.

UNDEFINED SYMEDL

A parameter to a command was specified by a symbolic value unknown to
NLL. Use LIST-MIE‘S—DH‘INED to check which symbols are defined.

WARNING:IASI'CQ’IMANDWASI‘DTE{ECUTED

This message occurs after another error message, referring to an
illegal operation.

WARNING: NDDULE INDEX-TABLE IS DDT CORRECT

The address table of an NRF library file has been invalidated by an
NRF editor command. The address table can be rebuilt by a PREPARE—NRF—
LIERARY-FILE command. If the address table is invalidated, the file
will be loaded, but a sequential scan of the entire file is required.

ND—60.l36.03

18 l
LINKPGE—LDADER ERKDR MESSAGES

SEXNENTHASALREADYIJWSEQ’IENTS

To correct this situation, the segment which is trying to be linked
must be loaded again without any linked segments. If the linking is
done from another user, the segment must be deleted (DELETE—SEGMENT)
before a new linking is tried.

LLBICAL SEHWENT NUMBER ALREADY USED

If it is absolutely necessary that this sequent has the specified
segment number (as in LINK—SW to a global library segment), the
segment which has this number should be deleted and loaded again with
another segment number (SH-WW) .

ND—60 .136 .03

182
ND-SOO MLNI‘IOR ERRJR MESSAGES

l4. 19-500mm mm

ADDRESS WTSIDE FILE LIMITS IN DIRECT TRANSFER

This error message is returned from file access monitor calls to files
opened in mode 8 or 9 (direct transfer), error code 1010B. The entire
area to be transferred must be within the file.

ADDRESS OUTSIDE PRCXERAM SEIMENT

ADDRESS GJTSIDE DATA SEGMENT

These errors are usually the result of an error in a user program,
causing an address to exceed the size of the program or data segment.
Usually, the address referenced can be found by using the lDOK-AT
commands after the program has error terminated, inspecting the
program instructions immediately preceeding the location pointed to by
the P register. Common causes of this error are indexing errors or
careless use of equivalenced variables.

ALWAYS SYSTEM ENABLED

An attempt was made to modify a fatal trap condition by the IDCAL—
TRAP—ENABLE command.

AMBIGLKIJS COM/[AND

An abbreviated command has several possible matches.

AMBIGLKIJS PARAMETER

A parameter has several possible matches. Reissue the camend with
HELP as "parameter" in order to have the list of legal parameters
printed on the output device.

BIT DDT MODIFIABLE

A trap condition specified in a IDCAIr'IRAP-ENABLE command may not be
local enabled or disabled. This applies to fatal and non-ignorable
trap conditions.

ND—60 .136 .03

183

ND-SOO NDNI'IOR ERRDR MESSAGES

BLKIK ADDRESS MDT MCDUID SECTOR SIZE 1N DIREIIT TRANSFER

This error message is returned from monitor calls to files opened in

mode 8, 10 or 11 (direct transfer), error code 1011B, The limitations

in accessing files opened in this mode are discussed in chapter 8.4.

30mm OF STACK

While in the LOOK—AT—SI‘ACK command, the stack area displayed was that

of the main program when the PREVIOUS subccmmand was executed.

BREAK AT

Debug message, indicating that a user defined breakpoint was

encountered. The Monitor halts and awaits further commands.

HJFFER FULL

One of the internal buffers used in expanding the macro overflowed.
Simplifying the macro or using less extensive parameter substitution
may help avoid the problem.

BYTECCIJNT DDT MODUID SECTOR SIZE IN DIRECT TRANSFER

This error is returned from monitor calls to files opened in mode 8 or

9 (direct transfer), error code 10073. The limitations in file
addressing with direct transfer files are discussed in chapter 8.4..

BYTE POINTER DDT MODULO SHE'IOR SIZE IN DIRECT TRANSFER

This error is returned from monitor calls to files opened in mode 8 or
9 (direct transfer), error code 1016B. If the byte pointer is
explicitly modified (through the SETBI‘ monitor call, N01 74) on files
opened with direct transfer, care should be taken that the
limitiations discussed in chapter 8.4. are respected.

C(NTROL SIORE DDT SUCIL‘ESSFULLY IDADED

After a IDAD—CONTROL—SIORE command the first 100 words of the micro—
program store were compared to the file from which it was loaded, and
an unequality found.

CURRENT MACRO AHDRTED

A program signalled an error exit through monitor call MACROE (MCN

400), or a trap condition not handled locally occurred. The current
macro is aborted, but the macro calling the current one is continued,

as if the IF-ERROR—MPCRO—SI‘OP command has been executed.

ND-60.l36.03

184
ND-SOO MI'IDR ERROR MESSAGES

III ACCESS EDT LEGAL ONMPG.TAPE

This error is returned from the OPEN monitor call (MIN 50) when
attempting to open a file with open mode 9 (direct transfer, file
closed), error code 10143. Magnetic tape files may be accessed in open
mode 8 (direct transfer), but the file must be open during the
transfer.

DEFINE-MEMOI'U-CQQFIG. C(NMAND IS REQUIRED

The aitor _ needs information about the physical memory before any
operation in the ND—SOO is attempted. This information is lost after a
)HENT system restart.

DEPOSIT I‘DT PERMITTED

The MIT-DEPOSIT command must be executed prior to a modification of
memory or a register.

DIFFERENT PRCXERPM TRPCE FOUND AT nnnnn

Will be issued during execution of a BRANCH-TRPCE or CAIIHI'RPCE
command with <mode> equal to QMPARE, when there are differences
between the previously dumped trace and the current run.

ERIKJR IN LINKII‘E '10 RICO/MON

This message is issued after a PLACE—MAIN or RElER-DGWAIN together
with a second error message specifying what kind of error was
discovered. Usually, the reason for the error is a modification of
R'ICCMVIQI from the time the domain was loaded to execution time.

ERROR INMPCK)

A syntax error was discovered in a submitted macro.

ERKDR IN MEMORY CCNFIGURATION

The aitor has detected discrepancies between the memory
configuration specified and the location of physical memory accessible
to ND—500. Reissue the DEFINE-MEMORY-CONFIGURATION command with the
correct parameter.

ERROR IN MG‘II’IOR CALL

This error message is returned after certain monitor calls, error code
10033, and indicates an unclassified error from the Sintran III
operating system. The cause may be either internal errors in the
monitor call routine or errors in the parameters that could not be

ND-60 .136 .03

185
ND—SOO MONITOR ERROR MESSAGES

class if ied otherwise .

FATAL ERWR FRO/l MICROMRPM

This indicates an internal error in the ND—SOO microprogram that
should be reported to Norsk Data.

FATAL PIT-0 ERROR. ERROR CODE: nnnn

This indicates an error in the operating system that should be
reported to Norsk Data with as many details as possible about the
system status at the time of the error.

FATAL ERKDR FRCM SNAPPER

This is an internal error in the swapper process, and the error should
be reported to Norsk Data.

FILE IS NEITHER CDNTIGUOJS I‘DR MPG. TAPE.

If a file is opened with direct transfer, open mode 8 or 9, the file
must be either contiguous or a magnetic tape file. This error is
returned as error code 10013 from the monitor call OPEN (MN 50). The
file can be read if another open mode is selected.

FIXED SECMENT HAS m PAGES IN MEMOIW

This is an internal error that should be reported to Norsk Data. The
segment number specified in the message refers to a ND—lOO segment
number.

ND—60.l36.03

186
ND-SOO NDNI'IOR ERROR MESSAGES

HARDWARE STATUS ERROR IN DIRECT rIRANSFER

This error message is returned from monitor calls using direct
transfer, error code 10128, indicating that the transfer did not
complete successfully.

HISIWRAM ALREADY IN USE

Only one user at a time may use the histogram facility for performance
measurement. Until the user currently using the histogram buffer
executes a RELEASE-HISI'OGRl-WI, no other user may execute a SET-
HISIOGRAM.

HISI‘OGRAM mT USED BY YO]

'Ihe PRINT-HISIOGRAM, START-HISIOGRAM and SIOP—HISIOGRM commends may
be used only by the user who has reserved the histogram buffer.

ILLEGAL ADDRESS

The address specified in a LDOK-AT—command was outside the program or
data segment.

The error may also be returned from the NSOOM monitor call (MN 60),
indicating errors in the parameters. If no explanation for the error
is found, please report to Norsk Data.

ILLEGAL CHARACTER

The rules of the Sintran III file system apply to segment names, Le.
a name may consist of alphanumerics and hyphens. In general, the same
rule applies to domain and process names. Either a non—
alphanumeric/hyphen character was encountered in a name, or a double
quote indicating a new name was not matched by another. Where user
names may be specified, mismatching parentheses may also be a source
of this error.

ILLEGAL FILE NJMBER IN LOAD

Error message after executing the NSOOM monitor call (MN 60). If the
application program uses NSOOM, the parameters should be checked.
Otherwise, this indicates an internal error that should be reported to
Norsk Data.

ILLEGAL FORMAT

8 or 9 was encountered in an octal number, or non-numeric characters
in an octal, decimal or hexadecimal number (for hexadecimal, A:F are
legal) .

ND-60.l36.03

187
ND—SOO MONITOR ERROR MESSAGES

ILLEGAL FUDCTION CODE IN MON 60

Check the list of valid function codes in chapter 10 against the
location pointed to by the ND-lOO A register. If this monitor call was
not used by the application program, the error message indicates an
error in the aitor that should be reported to Norsk Data.

ILLEGAL FUI‘CTION IN MON 61

The MON 61 call (FIXCS) is not normally used by application programs,
and the error message indicates an error in the [Vbnitor that should be
reported to Norsk Data. The available functions will at a future time
be documented in the Sintran III Reference Manual m—60.128 for
programmers who want to use this call.

ILLEGAL LEEICAL SEGMENT TYPE

Normally this indicates an internal error that should be reported to
Norsk Data. If the user calls NSOOM (MON 60), the parameters may be
erroneous.

ILLEGAL MICRO FUICTION

This is an internal error message from the operating system or the
ND—500 driver, that should be reported to Norsk Data.

ILLEGAL MCNTIOR CALL NUMBER

This error message is returned from monitor calls from the ND—SOO,
error code 10133, and compares to the similar error message in ND-lOO.

ILLEEAL REGISTER MIMEER

The number specified in the NSOOM monitor call (MN 60) indicating a
register, was outside the range allowed. This error should normally
not occur if the application program does not use NSOOM, and should be
reported to Norsk Data. If the application program uses NSOOM the
arguments should be checked.

ILLEGAL PARAMETER

Many commands, e.g. MAIN—FORMAT, take only a limited set of different
parameters. This error message indicates that a parameter not in the
valid set was specified. Reissuing the command and giving the
"parameter" HELP will cause the list of valid parameters to be listed
on the output device.

ND—60.l36.03

188
ND—500 MONITOR ERROR MESSAGES

ILLEGAL SI‘ATUS IN MESSAGE TO ND—500

This is an internal error message from the ND-SOO driver that should
be reported to Norsk Data.

ILLEGAL SIOP REASON

This indicates an internal error in the ND—SOO microprogram. Please
report to Norsk Data. ’

INDIRECT I‘DT POSSIBLE

The "/" (indirect) subcomnand in the LOOK-AT—conmands is valid only
when main format is word, as all addresseses are words and no
reasonable interpretation can be applied to byte or halfword
addresses.

INSUFFICIEN'ILY LOADED MAIN

A RECOVER—DOMAIN or PLACE—DOMAIN command was executed on a domain
which still has undefined references or is not linked to the
appropriate link segments.

LASTHQEAKDDTEUUND

The last execution halt was not due to a breakpoint set by the BREAK
conmand.

LL AND HL CHANGED

This message is a warning only, indicating that previous use of the LL
and HL registers for debugging purposes will no longer have any
effect. It is issued when another command using the LL and HL
registers is given (TRACE and GUARD commands) .

LOCXSING FACILITY ALREADY RESERVED

Another user has already reserved the 1099 buffer for either
histogram-cannands or log—commands. The user having the buffer
reserved must execute the RELEASE-IOG—EIFFER or REEASE-HISIOGRPM
corrmand or interrupt the SNAPPING—IDG by pressing the escape key
before another user can use the log comnands.

IDGGII‘K-Tv FPCILITY MDT RESERVED BY YCIJ

The PRINT-PIKEESS—IDG and RELEASE—IDG-HJFFER conmands are valid only
after the log buffer has been reserved for te current user through the
START-MESS—IDG—ALL or the SI'AR'ILmlfiss—IDG-ONE conmand.

ND—60 .136 .03

189
ND-SOO MONITOR ERROR MESSAGES

MPCR) STACK ERROR

Macro calls were too deeply nested or recursive. The problem will
usually be avoided by breaking down a complicated call sequence into a
simpler one, with fewer levels. If the error persists, contact Norsk
Data and keep a listing of all macros in use when the error occurred.

MACK) (S) AmRTED

A program signalled an error exit through monitor call MACROE (M
400), or a trap condition not handled locally occurred. The current
macro including the macro(s) calling the current one, is aborted, as
if the IF-ERROR—FULL—SIOP command has been executed.

MEMCRY DDT AWLABLE FOR ND-SOO SWT

If an explicit request for memory allocation was issued, the request
could not be satisfied. This occurs when segments are shared with ND—
100 or RICQ'IMON.

ND-500 114A ERROR

A hardware error has occured in the INA transfer to or from the
ND—SOO. Consult the system supervisor; or if the error persists, call
Norsk Data.

ND-SOO INTERFACE ERROR

A hardware error has occured in the ND—lOO/ND—SOO interface. Consult
the system supervisor; or if the error persists, call Norsk Data.

ND-500 OPEN FILE TABLE FOR DIRECT TRANSFER IS FULL

This error message is returned from the OPEN monitor call (NON 50) ,
error code 10028. The message indicates that the number of files
opened with open mode 8 or 9, direct transfer, exceeds the maximum
determined at system generation time. If there is room in the open
file table for files opened with other access modi, one or more of the
direct transfer files may be accessed in other modi, otherwise the
number of concurrently opened files must be reduced.

ND-500 OPEN FILE TABLE IS FULL

This error message is returned from the OPEN monitor call (MG! 50) ,
error code 1000B. The message indicates that the total number of files
open exceeds the allowed maximum. The limit is a system generation
parameter, and sets a limit on the number of files opened with m
access (open mode 9). For files opened with other access modes, the
Sintran III limitation of 16 files still applies.

ND-60.l36.03

190
ND-500 DDNI'IOR ERROR MESSAGES

ND-SOO PCMER FAIL

A power failure response was received from the ND—SOO interface,
indicating that power has not been turned on to ND—SOO, or some
serious hardware problem has occurred.

ND-SOO RESERVED FOR SPECIAL USE

The SET—bD—SOO—UNAWILAEE command has been issued. Other users will
have to wait until the SEP—bD—SOO—AVAIIAEE command is issued.

ND- 500 STOPPED

The microprogram in the ND-500 is not running, and must be restarted
by the system supervisor before any programs can be run.

ND-500 TIMEXIJT

The ND—SOO computer does not respond to requests from ND—lOO. Consult
the system supervisor; if the error persists, call Norsk Data.

NO FREE PHYSICAL SEGMENT

The pool of physical segments is empty, and the job has to be run when
the load on the system is lower. The number of physical segments is a
system generation parameter.

NO FREE NAP FILE ENTRY

The aitor has run out of table space for the swap file entries, and
the job must be rerun when the load on the system is lower. The table
space available is a system generation parameter.

NO MEMORY AVAILABLE FOR ND-500 BUFFERS

There is no memory available for ND—500 buffers in memory bank 0-3
(each process needs 1K 16 bit words). Consult the system supervisor.

mmwFFERAREA

The number of macros, breakpoints and other debug commands requiring
information to be kept in memory is exceedingly large. The most canton
cause for this error message is a "wild" recursive macro call
generating temporary macros or breakpoints. If this is not the case,
some macros must be deleted by ERASE—MACRO or breaks reset by RESET—
BREAKS.

ND—60 .136 .03

l9 1
ND—SOO WWI'IOR ERWR NESSAGE‘S

m ND-SOO PRGIESS AVAILABLE

When an ND-SOO job is submitted, a free process is allocated from a
pool of available processes. This error message indicates that the
pool is empty, and the job cannot start until a process is freed. The
number of processes is a system generation parameter, and may be less
than the number of terminals in the system, which means that not all
terminals can run ND-SOO jobs at the same time.

NO PAGE AVAILABLE FOR 'IHE CCNI'EXT BLOCK

It is impossible to allocate memory to the ND-SOO context blocks and
segment table. This is caused either by an error in the memory
configuration or because no free memory for ND—SOO. This error occurs
only when the ND—500 is initially started or after a reconfiguring of
memory.

NO RICCMMQ‘I DEFINED

References have been made to the RICCMMON area, which is non—existent
on the machine. NLL will not allow references to RICQIMON if it not
defined, but a modification of the size or removal of R'ICQMON between
the time of loading and execution time will cause errors to occur.
Domains with references to RICO/MW should under no circumstances be
moved to another machine.

NO SUCH CCMMAND

The command is not known to the ND—SOO Monitor. Check the list of

available commands with the HELP command.

NO SUCH C(NMAND 0R III/IAIN

The command specified is not knom to the ND—SOO aitor, and is not
found as a domain name in the description file of the current user.

NO SUCH IIMAIN

A domain name specified in a RECOVER-MN or [IJMP—DCMAIN command is
unknown in the description file of the current user.

NO SUCH MACRO

The macro name specified in the EXECUTE—MACK) camand is not found in
the list of temporary macros or as a permanent :MACR file.

ND-60.l36.03

192
ND—SOO MQ‘II'IOR ERROR MESSAGES

I‘DSUCH SEMENT

An unknown segment name was specified as a parameter. If there is any
doubt with regard to which segments are available, use the NLL command
LISP-SEIMENTS, or use the Sintran III command @LISP-FILES. (Be aware,
however, that a file is not necessarily a segment file even though its
type is :PSEE or :DSEG!)

NO SWAP FILE PART AVAILABLE

The Monitor has run out of table space for swap file parts. The job
will have to be rerun after the load on the swap file has decreased.

NOWELLDEFINEDPMRAMINMEMORY

A RUN, CCNI‘INUE or G0 command was specified before any PLACE, DEHJG-
PLACE or RECOVER-MAIN command was executed.

NOT EXISTING BREAKPOINT

'I'ne breakpoint number specified in RESET—BREAK is unknown to the
system.

I‘DTIMPLEMENTED

An attempt was made to use a feature that is not yet available in the
monitor but will be implemented at a later stage.

NOT IN SEGMENT MCDE

It is not possible to switch to another IDOK—AT—command from the LOOK—
AT-PHYSICAIr-SEH'IENT command.

NOT REQUIRED PIECES 'IO SEGME‘IT

One of the segments in the domain that was started or placed in memory
does not have the required file system access rights. The default
access will permit other users to execute the code on a program
segment, but not to modify it. If the data segment is swapped from the
original file, the file access of the data segment must also be set to
RW (read and write) for other users to execute the domain(s)
containing the segment. The access is modified through the Sintran III
@SET—FIIE—PCCESS command.

NUMERIC INPUT I‘D'I‘ AIIUNED IN DISASSEMBLE MODE

When in a IDOK—AT-command in disassemble mode, numeric deposit cannot
be done. Change to a numeric MAIN—FORMAT in order to patch
numerically.

ND—60.l36.03

193
ND-SOO MWI’IOR ERROR MESSAGES

ODD BYTE ADDRESS

This error is returned from file access monitor calls, error code
1004B.

ODD BYTECGJNT

This error is returned from file access monitor calls, error code
1005B.

O'IHER USERS ALREADY IOGGED ON N500

Some of the system supervisor commands require exclusive access to
ND—SOO. The SET-m-SOO—UNAWME command will not force a logout of
the users already logged on; these must be logged out explicitly
before the system supervisor commands are used.

PONER FAIL DETECTED IN IDADING CS

A power failure occured during the loading of the microprogram to the
control store. The loading of the control store must be restarted from
the beginning.

POWER OFF

No response from ND—SOO. If power to the ND—SOO is turned on, a
hardware error has occured and service should be called for.

PCWER UP AFTER PONER FAIL

This is an informative message to explain possible delays while the
control store is being loaded and the aitor initialized.

R'ICCMMON bDT CWTIGUCIJS

The RICO/MON area may not be fractioned when shared with an ND—500
segment. This is usually detected at load time, and if the error
occurs at run time it indicates modification of RICCMMON after the
affected segment has been loaded.

R'ICQ’JMON SIZE DOES DDT MA'ICH THE ACTUAL ECO/MW SIZE

This occurs after a PLACE—MAIN or RECOVER-MN (implicit or
explicit), indicating that modification of mm has been made
after the linking of the domain took place. The affected segments must
be reloaded and the domain relinked.

ND-60.l36.03

194
ND-SOO WI'IOR ERROR MESAGES

RICOVMCN SPECIFIED IN III/IAIN

This occurs after a PLACE—DOMAIN or RECOVER—MN (implicit or

explicit). In general, any modification of the size or redefintion of

R'ICCMMQI invalidates previously loaded domains using RICOIIMCN. If an

attempt is made in NLL to load segments referring to RICQ’M'JN is a

system where there is none, an error message is issued at load time.

R'ICCMMQ‘I'S PHYSICAL ADDRESS DOES DDT MA'ICH THE PHYSICAL ADDRESS OF THE

III/IAIN

This error message is issued at PLACE-MAIN or RECOVER-MAIN, and

indicates that RICOWMON has been modified since the domain using it

was loaded. The segments containing RICO/MC»! references must be
reloaded and the domain relinked before the domain can be executed.

SEGMENT FIXED EJT EDT CON'I'IGUCIJSLY

Segments shared between the ND—lOO and the ND—SOO must be fixed

contiguously in memory. The number indicated in the message refers to

the ND-lOO segment number.

SEQ’IENT FIXED IN WROM; PHYSICAL ADDRESS

If an ND—SOO segment is shared with more than one ND—lOO segment or

R'ICQIIMON, the physical address of the ND—lOO segments cannot be

modified after loading of the domain.

SHARED SWT CIJTSIDE ND-SOO MEMORY

The segment shared between ND—lOO and ND—500 is placed in private

ND—lOO memory located below ND—SOO address zero. The segment must be

released and fixed in an address accessible to ND-SOO.

SHARED SEGMENT mES DDT OVERLAP ND—SOO SEGVIENT

Modification of the ND—lOO segment or explicit setting of load

addresses may cause parts of the ND—lOO segment to be located beyond

the limits of the ND—500 segment. The ND—SOO segment must be reloaded.

SHARED SEQ’LENT FIXED, BUT MDT CONTIGUCIJSLY

A segment shared between DID-100 and ND—SOO has been fixed scattered in

memory. The segment must be unfixed and fixed in a contiguous area

before the ND—SOO process will run.

ND—60.136 .03

19 5

ND-500 MONITOR ERICR MESSAGES

SEGMENT DDT MODIFIABLE

An attempt was made to modify a segment declared as a read—only

segment. Default segment attributes will make the program segment
read-only, while pages in the data segment will if they are modified
be copied to a swap file. This may be modified by using non—default
segment attributes.

SNAP FILE ALREADY DEFINED

The <file name> in the DEFINE—SNAP—FILE command is already defined as
an ND—SOO swap file.

SNAP FILE IS IN USE

The DELETE—SNAP—FILE command may not be executed while an ND—SOO
process has its swap area allocated in the specified <file name>.

SNAP FILE IS MDT CONTIGUGJS MASS STORAGE FILE

The <file name> in the DEFINE—SNAP-FILE command is indexed, or it is
not a mass storage (disk) file.

SNAP FILE DDT FOUND

The <file name> specified in the DELETE-SNAP-FILE command is not an
ND—500 swap file, or the file name in the DEFINE—SNAP-FIIE is unknown
under.

SNAPPING SPACE DDT AVAILABLE

A large enough continuous are for the segments requiring swap file
space was not available. The job must be rerun after other jobs have
released enough space to fit in the rejected segment(s) .

'ICD BIG BYTECCIJNT

This error message is returned from file access monitor calls, error
code 1006B, indicating that the specified byte count is larger than
can be represented in 17 bits. This is a limitation in the ND—lOO file
access monitor calls, where the byte count is in number of 16 bit
words, represented in a single (16 bit) integer.

Tm BIG DATA SEGMENT

The sum of the start address and the length of the data segment gives
an address above 7777777778 (27 bits address space).

ND—60.l36.03

196
ND- 500 MONITOR ERIDR MESSAGES

'IOO BIG HISIOGRAM INTERVAL

The highest histogram interval allowed is 32767 bytes. Use a higher
<number of channels> (if less than maximum) or a smaller range from
<start address> to <max address>.

moo BIG PRGSRPM SEGMENT

The sum of the start address and the length of the program segment
gives an address above 777777777B (27 bits address space).

rJIOOBIGVAHIE

A numeric constant exceeding the legal range for the data type in
question (e.g. a byte value >255) was entered. If it is desirable to
enter the larger value, the main format should be changed to halfword
or word as appropriate.

'ImMANYSHAREDAREAS

The Nonitor has run out of table space to store information about
segments shared between ND—lOO and ND-SOO. The job will have to be
rerun at a time when the load on the system is lower. The size of the
tables is a system generation parameter.

'10P OF STACK

While in the LDOK-AT—SI‘ACK command, the stack area was that of the
currently executing procedure when the NEXT subcommand was executed.

THING '10 LINK 'IOA'A DEMAND SEGMENT

This occurs after PIME—DCMAIN or RECOVER-MN. A demand segment may
not be shared between ND-lOO and ND—SOO. Normally, this is discovered
at load time by NLL, but if the error occurs at run time it indicates
that modifications have later been done to the ND-lOO segment.

TWIN; 'IO LINK '10 A bDN-E'XISI‘IM; SINTRPN III SEGMENT

This occurs when ND—500 shares a segment with ND—lOO and the segment
has been cleared in the ND—lOO SEGFIL after the loading took place.
The segment must be rebuilt and the DID—500 domain reloaded/relinked.

UNKWNBREAKATnnnnn

A break instruction was encountered in the program segment. Breaks
used for debugging purposes must be under full control by the aitor;
i.e. they should be inserted by the BREAK or TEMPORARY-BREAK commands.

ND-60.l36.03

197
ND-500 MONITOR ERROR MESSAGES

[HflQIINN TRAP

This indicates an error in the ND—SOO microprogram. Please report to
Norsk Data.

VECEG NUMBER OF PARAMETERS IN MONITOR CALL

This error is returned from ND—SOO monitor calls, error code 1015, and
indicates that either excessive or insufficient parameters were
transmitted.

ND-60.l36.03

198
FKAMPLE’S OF LINKAGE-[OADER AND KNI'IOR USAGE

15. MOP IINKPGE—Iommmmmm

The examples sham in this chapter are relatively small and incomplete
as problem solutions. The intention is to give the beginner a certain
familiarity with ND—500 operation and give a general impression of the
user/Monitor interface.

In the examples, abbreviations of commands are used to some degree, to
show hm a more experienced user will write the commands. In some
cases, all parameters are supplied in the command line, in other cases
NLL or the aitor prompts for them after CR is pressed. Remember that
some parameters will not be prompted for if not supplied, rather, a
default value is used. User input is always underlined.

NLL is available both as an ND—500 program and as an ND—lOO program.
In most examples, the ND—500 version is used, but the user interface
is exactly the same for the ND-100 version.

15.1. Executing an m—soo min

Most compilers and the loader will execute on the ND—500 and must be
started through the Monitor. This can be done in two ways:

Either, the domain name may be given as a parameter to the aitor at
the time of the call. To start the compiler FORTRAN, executing in
ND-SOO:

@ND-SOO—MCNI'IOR FORTRAN
$ <Eortran compiler oommands>
3%
@

Or the monitor may be started first, after which the domain is started
by typing its name:

@ND-SOO-MWI'IOR
N500: FORTRAN
$ <Fortran compiler cormnands>
$22
N500: g.

@

The two methods are essentially equivalent, but if the domain name was
a parameter to the Monitor, control will return to Sintran III rather
than to the Monitor upon program exit. Calling the aitor first is
used mainly if other monitor commands should be given before or after
the domain is executed.

In most installations, the name of the aitor may be abbreviated and
still be unambiguous. The following is a complete example of compiling
a Pascal program, loading it and executing it, all programs executing
in the ND—SOO, and the name of the aitor is abbreviated to ND—500:

ND-60.l36.03

199
EXAMPLES OF LINKAGE—IDADER AND MONITOR USAGE

@ID- 500 PASCAL
PASIAL/ND— 500 VERSION A 81-05-08
$CCM PASPRGS , , "PASPRCIE"

m ERRORS
l NON-STANDARD WARNINGS
0.34 SECONDS COVIPIIATION TIME

ss
@ND—SOO LINK
ND—Linkage-Ioader 81.07.14
NLL:SEI‘-]IMAIN "PAKIAL-TESI'"
NLL:OP-SEm/l "SEX-MENT—WE" , ,
NLLzl'DAD PASPRm PASIAIr-LIB
Program:.............450P Data:............352D
Program:...........l6644 P Dataz.402420 D
NLL:§x_

(MD-500 PAKIAL—TEST

I execute, therefore I am.

I have been executed, therefore I am not.

@

15.2. Using libraries

A user may find it tiresome to specify loading of a library every time
he loads a program, if that library is not specified as an auto—load
library by user SYSI‘EM. A user may also have his own libraries;
containing for example mathematical or statistical routines.

In the following example, all auto—load files are deleted in order to
make sure no obsolete entries remain in the table of auto-load files.
PLANC—LIB is then defined as an auto—load file for Planc programs.
This would not be neccessary if user SYSTEM had defined it as an auto-
load file, unless the user wants to force loading of the libraries in
another sequence.

For both Planc and Fortran the user's own SI‘AT—LIB is defined as auto-
load file. On this file is built a routine table by the PREPARE—NRF—
LIBRARY—FILE command, in order to increase the speed of loading, and
the identifying text SI‘A'ILLIB-JULY-l981 is inserted at the top of the
file.

Finally, the defined auto—load files are listed, in order to confirm
that the file names are correct. The version of the loader executing
in the ND—SOO is used, therefore the Linkage-Loader is called up
through the lVbnitor:

ND—60.l36.03

200
E'XMPLES OF LINKAGE—IDADFR AND [VDNI’IOR USAGE

END-500 LINKAGE—LDADER
ND—Linkage—Loader 81.07.14
NIL:DELEI'E‘r-AU‘IO-IDAD—FILE
NLL SEP-AU'IO—IDAD (SYSTEM) PLANO-LIB FLA
NLL SET-AU'ID-IDAD STAT-LIB PLA
NLL SET-AU'Io-LDAD STAT-LIB FOR
NLL PREP-NRF-LIB SI‘AT-LIB
NLL: INSERT-NRF-MESSA STAT—LIB , ,STA'ILLIB—JULY-l981$
NLL:LISI‘-AUIO-I.OAD
(PACK-(NE—l:SYSI‘EM)PLANC—LIB - PLANC
(PACK-CNE—lzPRQTECTfiTAT-LIB - PLANC
(PACK-ONE-l:PROJECT)STAT—LIB - FORTRAN

NLL:Q(_

@

Now assume that the routines F22 and F23 in SEAT-LIB have been
recompiled to the file UPDATES. The new modules should replace the old
ones in the library, and the routines shwld be reloaded to the domain
DOVIANE (without reloading the entire segment). The segment in KEANE
has the name SEE—X. The new versions of F22 and F23 use another
routine in STAT—LIB that was not previously loaded, therefore SI‘AT—IJB
is automatically loaded at EXIT (which implies execution of an CLOSE-
SmT), and the identification of the library is printed:

@ND-500 LINKER
ND—Linkage—Loader 81.07 .14
NIL:NEW—NRF-MOIIILPS UPDATES STAT-LIB
NLL:CC REHJILD M‘DULE INDEX TABLE:
NLL:PREP-NRF-LIB STAT-LIB
NLL:CC 'IHE PREP-OPERATION DESTROYS ’IHE MESSAGE!
NLL: INSERT-NRF—M‘ESSA SEAT-LIB , ,STAT—LI B—JULY-1981$
NLL: SEP—DQ’IAIN KEANE
NLL APP-SEE SEE-X, ,
NIL.REI.DAD—SEE UEJATES
Program:...........46114P Data:..........73466D
NLL:§X_

ND—60.136.03

201
EXAMPLES OF LINKAGE-LOADER AND MONITOR USAGE

15 . 3 . Uslgg' files

DMANE accesses two files, one for random input as file nurrber 10,
another for sequential output as file nunber 12. The input file
REII:DATA is contigous, and the record size is 1024 bytes, thus the
file may be accessed in the direct transfer open node. The output file
REPORTzLIST is an ordinary sequential file and is opened with write
access:

@ND-SOO
ND-SOO NINTIOR 81.05.21/81.05.15
N500:OPEN-FILE REC 10 D
N500:OPEN—FILE REPORT:LISI‘ 12 W
N500:IIMANE
N500:EXIT
@

ND—60 .136 .03

202
EXAMPLES OF LINKPGE—IDADER AND NDNI'IOR USAGE

15.4. Macros

DCMANE is executed often, always using the same output file, but with
different input files. In order to reduce the number of commands
required to execute the program, a macro called XQT is defined and
saved as a permanent macro. When executed, it will request the input
file name, but supply all other parameters automatically:

@ND-SOO
ND—SOO KNI'IOR 81.05.21/81.05.15
N500:DEF-MAC XQT
PARAMETER INFILE ,NO-DEFAULT ,Input-f ile=
OPH‘I-FILE INFILE 10 D
OPEN-FILE REPORTzLIST 12 W
DCMANE
EXIT
END-MPCFD
N500:D[l\IP-MPC XQT
N500:_Ei(
@

@ND-SOO
ND-500 MCNI‘IOR 81.05.21/81.05.15
N500:;(g1:
Input-f i le=1fl
N500: OPEN—FILE W 10 D ~ - ,
N500: OPEN-FILE REPORT:LISI‘ 12 W
N500: KEANE
N500: EXIT

@

Observe that the user did not enter the commands to open the files and
start the domain, but these commands are always echoed to the output
device.

ND—60.136.03

203
EXAMPLES OF LINKAGE-IDADER AND MONITOR USAGE

15.5. Debgmgg'

The following Planc program fragment:

MODULE PICTEST
REAL PRECISION(15) ARRAY: ARR(1:10)
REAL PRECISION(15): 'IOTAL
INTEGER ARRM: SPACK(O:100)
INTEGER: I

PRm-‘IRAM: SUM
INISI‘ACK SPACK

DO WHILE I<10
TOTAL+ARR(I)=: 'IOTAL
I+l=: I

ENDDO

ENDRJJTINE
END/IODULE

will provoke a PROTECT VIOLATION error message from the aitor if
loaded to a segment using default values. After compilation and
loading to domain PICTEST:

@ND- 500 PLCTEST

PWT VIOLATION
AT PRCBRAM ADDRESS 40B

@

In order to catch the error, the program is placed in memory, using
the DEHJG-PLACE command in order to permit modifications. Then single
step execution is started, and one instruction at a time is executed
by pressing CR.

@ND-SOO-MI'IOR
ND—500 NDNI'IOR 81. 05 . 21/81. 05 . 15
N500:DEB-PLA
IXMAIN: WANE
N500: SI‘EP
P 100000000043: INIT 000000001343, +00000000024B, 0006243
P 100000000213: W C(MPZ 000000007603, 123
P 100000000303: IF >= GO 0423——> 010000000723
P 100000000323: Dl:= 000000001243
P 100000000403: Wl:= 000000007603
P 100000000463: D1 + 377777777743 (W1)

PWI'ECT VIOLATION
AT WRAP! ADDRESS 403

N500:

ND-60 .136 .03

204
EXAMPLES OF LINKAGEFLOADER AND MONITOR USAGE

Obviously, something went wrong when access to an array element was
attempted. The index value was loaded from address 760, and this value
is inspected:

N500: LOOK-AT-DATA
Address: 169
D 7603: 0B 3
N500:

A base address of 377777777743 and a displacement of 0 will generate
an access to a negative segment address. This is certainly not legal,
as we then "overflow" into another segment (in our case, a non-
existing one). The intention was to let the index variable run from 1
to 10, rather than from 0 to 9, and we therefore deposit the initial
value 1 (old initial value: 0) in location 760, and we modify the
upper limit of the test from 128 to 138: -

N500: LOOK-DHEA 760
3 00000076OB o PERMIT-DEF
D 000000760B 0 _I _“'
D 0000007643 0 EX,,
N500: IDOK—PRCI; 21

100000000213: W (IMPZ 000000007603, 128 @
10000000021B: W CCMPZ 00000000760B, 12B BYTE
10000000021B: 56B
100000000223: 304B
10000000023B: OB
10000000024B: 0B
10000000025B: lB
100000000263: 360B
10000000027B: 123 L31
10000000030B: 314B E

500:Z
'U

V
M

V
'U
fi
'U

’U
'U

'U

Now, the modified version of IIMANE in memory may be started by a by a
RUN command. '

N500: RUN
N500: g

@

NIB—60.136 .03

205
EXAMPLES OF LINKPGE—LOADER AND MONITOR USAGE

15.6. System Slgervisor: Installing NLL

The first time NLL is installed, user SYSTEM should define auto—link
segments to be used if a user attempts to close a segment while
undefined references exist. Usually, the run time libraries for
different languages are loaded to a segment named LIBRARY—MIN, but
if an installation makes heavy use of other special libraries, for
example a collection of mathematical or statistical functions, it may
be convenient to load even this library to the library segment.

Different run time libraries may be loaded to different segments, but
as long as no symbol conflicts occur, they may all be put on the same
segment. This will reduce the probability of segment number conflicts.

When a library segment is created, all traps Should be locally
disabled, in order to inhibit the automatic allocation of a trap
handler vector.

Because default segment numbers grow from low to high, autolink
segments should preferably be numbered from above. The system
supervisor may also choose to define the :NRF files as library files.
If, for example, a user defined auto-load file (loaded after the
linking has been performed) makes further references to a standard
library, the reference will be defined by the automatically loaded
files.

If an entered command is not in the commend list, is not the name of a
domain belonging to the user issuing the command, and is not the name
of a temporary or permanent macro, the domains of user sysrm will be
searched. ND—500 systems such as compilers running on the ND—SOO and
the ND—SOO version of NLL is usually a domain belonging to SYSTEM.
Such systems are delivered either as a domain that should be copied by
COPY-DCMAIN, or as an NRF file that should be loaded like another
program. The example below shows how PASCAL is loaded.

In order to speed the search for a compiler or other standard system,
all such domains owned by SYSTEM should also be defined as standard-
domains.

@ND-SOO LINKPGE—LDADER
NLL: SET-WLOAD (SYSTEM)FOR'I‘RAN-LIB FORTRAN
ND Linkage-Loader 80.05.18
NLL: SET—MAIN "LIBRARY-WAIN"
The "DESCRIPTION—FILE" will now be initialized
NLL: SEP—SWT—NUDEER 29
NLL: OPEN-SEGMENT "PLANC-LIB", P
NLL: LCXZAL-TRAP—DISABLE ALL
NLL: MTRY—RCIJTINFS 400
NLL: 'IOTAL-SEGWENT—IDAD PLANC-LIB
NLL: SET—SEQ’IENT-NUMBER 30
NLL: OPEN-SEGMENT "FORTRAN-LIB", P
NLL: LLXIALr-TRAP-DISABLE ALL
NLL: ENTRY-KIJTINFS 500
NLL: SET-IO—HJFFERS l6

ND-60 . 136 .03

206
HAMPLES OF LINKPGE-LOADER AND MI'IOR USAGE

. 'IO‘I‘AIrSEQ/IENT-IDAD FORTRAN-LIB
' SET-AU'Io—LOAD (SYSTEM) PLANC-LIB PLANC

SEP—AU'IO—IDAD (SYSI‘EMH‘IPG FORTRAN
PREPARE-NRF-LIERARY NAG
END-MAIN
SEP-AU'IO-LINK FOR'IRPN-LIB FORTRAN
SEP-AU'IO—IINK PLANC-LIB PLANC

. EXIT

E?EE
EEE

@

The System supervisor should also ensure that all terminals that will
be using ND—500 systems have a 128k background segment. This can be
changed by the Sintran III command

@CHPNGE—BACKGRJJND—SEQ’EENT—SIZE <term no.> 128

<term no.> can be found by the @WHO command. The segment size
information is lost after a "cold start" ()HENT / 22!) , but the
command to change it may be included in the HEN'ILMODE file.

If the installation runs the accounting system, the @START—PCCGJNTING
command may be used to log ND-lOO and ND—SOO CPU time, terminal time,
mass storage transfers and number of spooling pages printed. The last
parameter of the command, <ND—500> is used in ND-SOO systems only, and
is ansvered with Y if resources used by ND—500 should be logged, N
otherwise.

ND—60.l36 .03

I N D E X

INDEX_

abbreviation, general rules .
command name
domain name . . .
macroname.........

AmR'IkBA'ICH—ON—ERROR commend
description

aborting
batchjob
macro

AKJRT-PRCIIESS command
description

access
mode in OPEN—FILE command .
right, in segment capability

access conflicts, description file
active

processes
users

actual macro parameter
ADA, NRF control number
adding code to loaded segment .
address

alignment
length
overlap
physical memory
range
table inNRFfile

ADDRESS—TRAP—FEICH trap
ADDRESS-TRAP—READ trap.
ADDRESS—TRAPWRITE trap
ADDRESS—ZERO—ACCESS trap. . . .
ADI, NRF control number
AIS, NRFcontrolnumber
allocation of memory
alphanumeric label
ampersand (&)
APA, NRF control number
APPEND—NREdflIIHES command

desc r iption
APPEND—SEGMENT command

descr iption
reference

architecture, memory management
ASZIIH...”

characters in NRF symbols .
format, LOOK-AT commands . .

assembler language code
assembling in library mode . .
at, commercial (@)
ATTACH-MESS command

description
attribute of segment
auto-link segment
auto-load file

o o o -

AUMATIC—ERROR—NIESSAGE command

o o u u o o n c o

207

9.
.9.

88.
97.

82.

82.
98.

. 146.

92.
17.
10.

117 , 146—147 .
136 .
97 .
172.
50 , 55 .

. 170.
170 .
139 .
139 .

. 15.
80, 173.
84.
84.
84.

.84
172.
150 .
124 .
11.
9

. 152.
77.

50.
. 48, 54.
. 15.

105.
. 169.

104.
170.
56.
8, 82.

146 .
47 .
60 .
62.

208

description
BCD-OVERFLCMtrap........
BEG, NRF controlnumber
bodyofmacro.........
BRANCH-TRACE command

description . .
reference . . .

BRANCHFTRAP
BREAK command

description . . ,
reference..........

breakpoint
BREAK-POINTLINSTRUCTION—TRAP .
BRF format .
buffer, histogram and log commands
byte

format in patching
parameter monitor call .
pointer during loading

CALL instruction
called routine, local data field
CALEB instruction
calling routine, local data field
CALL-TRACE command

description
reference....

CALLFTRAP
cataloged file as segment
CCcommand

description
CERO, NRF controlnumber
(BR1,NRFcontrolnumber............ ..
characters legal in names
checksum............
CHECK-SYNTAX—MODE command

description............
CIEAR—DOWAINcommand

description..........
clearing

histogram buffer
process log buffer

CLEAR—SEGMENT command
description

CLOSE—FILE command
description

CLOSE-WT command
description
implicit.......

closing file after escape
COBOL

language code
cold start
command

abbreviation .
input file . .
list (HELP) .
output file .
syntax
terminator..........

comment

I N D E X

84.
76, 170.
97.

112.
116 I

84.

102.
103, 115.
89, 102.
84.
69.
117.

107, 110.
153.
170, 172.
112, 153.
108.
153.
108.

112.
116 .
84.
18 .

82.
173.
173.
10.
170.
74.

43.

117 .
119 .

51.

93.

47.

43, 83.
89.

170.
139 .

8.
8.
81.
8.
9, 74.
9.
82.

I N D E X

commercial at (@)
ccmmon

block
label

communication
between processes
device
with ND—lOO
with the ND-SOO process

COMND monitorcall (MON 70)
COMPARE-CONTROL—SDDRE command

description .
compilation errors
compiling a library
ccmpound NRF group
conditional loading
configuration, physical memory . . .
connecting file
CONTINUE command

description
reference

control
byte,NRF............
characters in NRF symbol

control store (mficroprogram memory)
control number, NRF
COPY-DOMAIN command

description
reference

CPU
time used in ND—lOO
utilization

creating segment . .
data

byte pointer
memory LOOK—AT
mode NRF control number
transfer between ND—100 and ND—SOO

DATArREFERENCE command
description

DEG, NRF control number
#DCLC, Data Current Location Counter.
DDF, NRF control number
debug information
in :LINK file .
in :NRF file .

debugging .
DEBUG—PLACE ccnmand

description .
reference . . .

DEBUG—STAEUS command
description

decimal format

DEF, NRF controlnumber
default

domain name
macro parameter
main format
segment attributes

209

. 9, 82.

58.
66.

16, 19
8, 81.
39, 69-70.
123.
82.

143.
173.
54, 79.
172, 175.
55, 171, 173.
139.
92.

89.
102.

169.
169.
142—144.
169.

45.
69, 70.

136.
120, 121.
47.

170, 172.
107.
172.
69.

65.
173.
64, 170.
76, 171.

8, 15.
173.
102-116.

102.
87.

114.
9, 110,
138.
76, 78, 171.

8, 42, 44.
97.
109.
47.

210

segment name
segment number

DEFINEFCCMMON command
description

defined symbols
DEFINEFENTRY commend

description
DEFINEFMACRD command

description
DEFINE—WORY—CQQFIGURATION command

description
DEFINEFSWAP—FILE command

description'. . .
DELEETFPIMK>ILMM)—FILE commend

description
DELETE—DOMAIN command

description
DEEPE-blRF-MGIJLE‘S command

description
DELEEBdflmNT commend

description
DELETE—SWAPbFILE command

description
deleting a macro
demand paging
description file
description of NRF format
DESCRIPTION—FILE:DESC
descriptor addressing in monitor calls . . .
DESCRIPTORrRANGE trap
destroying I1 register contents
difference in physical address ND—lOO/ND—SOO
direct transfer files
DISABLE-PRDCESS—SWITCH-ERROR trap .
DISABLEFPROCESS—SWITCH-TTNEDUT trap
disabling trap
disassemble instruction
DISASSEMBLE—MODE command

description
disconnecting file
disk access from ND—500
display

control store (micro program) . . .
hardware register

DIVIDE—BY—ZERO trap . '.
HMO, NRF control number
domain

status
name
number

double definition .
double quote (") . .
doublefloat format LOOK-AT
DRF, NRF controlnumber
:DSEG file
DUMP—MACRO command

description
EDIT subcommand ‘

description
empty macro parameter

I N D E X

8, 54.
51.

66.
66, 171.

65.

97.

139.

149.

63.

43.

77.

52.

149.
100.
124.
10, 75, 165.
169.
10.
153.
84.
153.
139.
95.
84.
84.
20, 84—86.
103.

74.
93.
139.

143.
145.
84.
170, 172.
6, 15.
44.
10.
16, 165.
56.
9.
105.
171.
9, 15.

100.

144.
98.

INDEX

ENABLED-TRAPS command
description

enabling trap.
END, NRF control number
END-DOMAIN command

description
implicit

END—MACRO command
description

End of NRF file
ENTRY—ROUTINES command

description
EOF, NRF control number
ERASE—MACRD command

description .
ERMSG monitorcall (MON 64)
error

abort of NLL or Monitor. . . .
codes from file system
during compilation
message from monitor calls . .
in monitorcall
termination of macro

escape key
examining

control store (mdcroprogram) . .
physical memory
physical segment
resident memory

EXCDEF exception library routine
EXCEPT exception library routine
exception
exception handler library
EXCTEHM exception library routine
EXECUTE—MACRO command

description . .
implicit

executing a domain
execution interrupt
EXHIBIT-ADDRESS command

description
reference

EXIT command
description

EXTRA—EDRMAT ccnmand
description .
within BOOK-AT

FTHCHAflMFiflIIHES command
description .

file
buffers for sequential Fortran
close

ccccc

fixed priority
flag

file access monitor call error returns

for communication with an ND—SOO process
float format in LOOK—AT ccnnands
FLOATING-OVEREUJN trap.
FLOATING-UNDERFDOW trap

211

114.
85.
76, 175.

42.
83.

97.
77.

72.
79, 173.

100.
135, 153.

82.
94, 153.
173.
135.
153.
98.
135.

142.
145.
145.
145.
29.
24.
20, 23.
21-36.
31.

99.
88.
88.
135.

113.
. 115.

83, 104.

110.
105.

76.

72.
93.

. 92.
94.
136.

123.
105.
84.
84.

FMO, NRF control number . . .
forcing logout of other users
formal macro parameter . . .
format in LOOK-AT commands. .
Fortran

filenumber
language code.
sequential I/O

free
bytepointer during loading
mode...........

GET—FLAG command
description

GIVE—ND—SOO—PAGES command
description

GLOBAL—ENTRIES command
description

GO command
description

GRCIJP subcommand
description . .

GUARD command
description . .
reference .

halfword
format in LOOK-AT commands
parameter to monitor calls

hardware registers LOOK-AT .
HELP

description
inlDOK—AT........

hexadecimal
command parameters
format in IDOK—AT.

HIGH-ADDRESS command
description

high limit register
histogram

commands.........
HLregister.........
I registers
IF—ERmR—FULL—SI‘OP subcommand

description
IF—ERROR—MPCRO—SI'OP subcomuand

description .
ignorable trap
IHB, NRF control number . . .
illegal control number . . .
ILLEGAL—INDEX trap . . .
Immmr-INSI'RUCTION-CODE trap
IIIEEAIrOPERAND-SPEEIFIER trap
ILLEGAIrOPERAND-VAHIE trap .
implicit

CDDSE-SEGMENT . .
END—DOMAIN

OPEN-SEx‘MENT
RECOVER—MN

INDEX-mm-ERROR trap. . .
inhibit execution

I N D E X

170, 172.

109 , 110 .

. 170.

. 172.

. 123.

. 140.

68 .

89 .

144 .

111.
. 115.

110.
153.
145.

81.
104.

8.
110.

71.
111.

117 .
111 .
153 .

. 98.

98.
19.
173,176.
173,176.
84.
84.
84.
84.

43, 47, 83.
42, 83.
88, 99.
54.
88, 99.
84.
151.

I N D E X

initialization of traphandler data field
initializing

data memory
input to program in macro body . .
INSERTLNRF-MESSAGE command

description .
instruction set
INSTRUCTION—SEQUENCEFERROR trap . . .
interface

register LOOK—AT
internodule reference .
INVALID—OPERAEION trap
I/0

buffer for sequential file access
file open and close commands .

K flag
KILL—ENTRIES command

description
label

definition .
language

code
sensitivity

layout of description file
LBB, NRF controlnumber .
LDI, NRF controlnunber .
length of NRF symbol . .
LIB, NRF controlnumber .
LIBRARY-SEQVIENT-IDAD command

description .
reference

line continuation .
:LINK file .
LINK-RT—PROGRNM command

description
LIST-ACTIVE—SEGMENTS command

0 o o c c I n o o 0

description
LISP-AUTOhLINK—SEEmflflWT command

description
LI ST-AU’IO—LOAD—FILE conmand

description
LIST-DOMAIN command

description
LIST-ENTRIES—DEFINED ccmnand

description
reference

LIST—ENTRIES-UNDEFINED command
description .

LIST—MACROS command
description

LIST-MAP command
description

LIST-MODE command
description

LIST—NRF—CODE command
description .

LIST-NRFLENTRIES command
description .

LIST—OCTAL command
description .

213

20.

109.
97.

79.

20.

84.

145.
11.
84.

72.
92-94.
153.

68.
8, 11.
11, 171.

170.
60,62
165.
173.
172.

. 169.
56, 76, 171.

55.
56.
9.

. 9, 15.

70.

148.

61.

63.

44.

66.
67.

67.

101.

67.

74.

78.

78.

73.

214

LIST—OPENED—FILES connand
description

LIST—PROCESS—TABLEFENTRY ccnnand
description

LIST—SEGMENT command
description

LIST—SYMBOLIC command
description

LIST-TABLE command
description

LL register

a a o c 0 a c o a

o o o o I o o a I o

o I a o I a c n c 0

load hunediately, NRF control nunber
LOAD—CONTROL—STORE command

description
loader table
loader table overflow . .
LOAD—SEEENT command

description
local

data field
memory
trap handling

LOCAL—TRAP—DISABLE command
description

lDCALJHUELENABLE command
description

logging
all processes
one process

LOOK—AT commands
description

o
0

I

t o a

subconmands
LOOK-ATPCONTROL—STORE command

description
LOOK—ATBDATA ccnnand

description
LOOK-HT—HARDWARE ccnnand

description
LOOK—ATHPHYSICALFSEEKENT command

description
LOOK—ATLPROGRAM command

description
reference

LOOK-AT—RBSISTER command
description

LOOK—AT—RELATIVE ccnnand
description

LOOK—AT—RESIDENTLMEMORY connand
description

BOOK-AT—STACK conmand
description

LOW—ADDRESS command
description

low limit register . . .
LRF, NRF control number .
‘:MACR file
macro

body
commands

main

I N D E X

93.

148.

52.

73.

147.
111, 115.
172.

142.
ll.
68.

54.

‘108.
139.
19, 85.

85.

85.

120.
121.

104.
108, 144.

143.

107.

145.

145.

106.
144.

108.

108

144.
107.

71.
111, 115.
171.

97.
97-101.

I N D E X

format..........
programdatafield............

MAIN—FDRMATcomnand
description

MASTER—CLEARcommand
description

MA'ICH—CQMON—RF-SEEMEJTcamnand
description

MA'ICH—RICQIIMQIcotmend
description

memory
administration..............
allocation.................
configuration

memory management system
microprogram . .

maintainance .
registers

MICRO—START command
description .

MICRO—STOP command
description

MIS, NRF control number .

o o o o

WIS (Memory Management System)
modularization . . .
module . . .
MCN 60 NSOOM . .
MN 64 ERMSG
Mm6SQERMS
monitor call

arguments
priority

MSA, NRF control number .
MSG, NRF control number .
multiple definition . . .

conflicts

ND—lOO
communication
monitor calls

ND Relocatable Format (NRF)
negative values in NRF code
nested compound group . .
NEN—bRF-MGDULE command

description .
NEXT command

description
non-printing characters .
non—reentrant traphandler
NRF

editor........
library file
symbol .

NRF file maintainance . .
NUL, NRF control number .
numeric field, NRF
numer ic length , NRF
numeric parameters .
octal . .

215

109 .
107 .

109 .

151.

70 .

69 .

140 .
124 .
139-140 .

. 35.
143 .
142 .
108 .

142.

142.
173.
13.
16.
8, 11, 170.
161.
135.
135.

153.
136.
170.

. 173.
56.
11.
68.
9.

39-51, 69-70.
136 .
169.
169 .
173.

76.

99.
169.
19 .
169-174.
76.
80.
64 ,
76.
170.
169 .
169 .
8.
8.

170.

216

listing
OMITTEDeSEGMENTLLOAD command

description
omitting

EXECUTE—MACRO
RECOVERrDOMAIN

OPEN-FILE ccnnand
description

OPEN—SEGMENT command
description
implicit .

optional parameter
ORIN subcommand

description
OUTBT monitorcall (MEN 2)
output device .
output flag .
OUTFUT—FILE command

description
OUTST monitorcall (MON 162)
OVERFDOW trap
overhead monitorcall
page fault
pages, giving to ND-SOO
parameter ..

addresses .
reference
terminator .

parity .
microprogram.

#PCLC (Program Current Location Counter)
percentage of CPU time used in ND—lOO
performance neasurnent
PERMITLDEPOSIT subccnnand

description
physical segment
PEACEFECMAIN ccnuand

description
PMO, NRF control number
PREPARE—NRF—LIBRARY-FIIE comnand

description
reference

PREVIOUS subccnmand
description

PRIMESS exception library routine
PRINTLHISDJSRNM ccnnand

description '
PRINTLPROCESS-LOG command

description
reference

priority, monitorcall
PRITRAC exception library routine
PROCESS-LOG—ALL command

description
PROCESS-LOG—ONE command

description
PROCESS—STAEUS command

description.
program

label

I N D E X

73, 78.

56.

99.
88.

'92.

47.
54.
9.

144.
39.
7, 81.
123.

81.
39.
84.
39.
124.
140.
97.
153.
98.
9.
169.
124.
64, 170.
136.
117.
105.
145.

87.
170, 172.

80.
54.

108.
33.

118.

120.
118.
136.
32.

121.

121.

147.
170.
64.

INDEX

mode
reference

program counter sampling . .
PRmRM'IED-TRAP.......
PROGRAM—REFERENCE connand

description
PROTECT-VIOLATION
QERMS monitorcall (MON 65). . .
read only segment
RECOVERrDOMAIN command

description
implicit

REF, NRF control number . . .
references, undefined
register LOOK-AT
RELEASE—DOMAIN command

description
RELEASE—HISFJSRAM connand

description
RELEASE—LOG—BUFFER command

description
REELflu3-SEGMENT'command

description
RENAMEFDEFAULT-DIRECTORY-AND-USER

description
RENAMEFDOMAIN command

description
RENAMEFSEGMENT command

description
REP, NRF controlnumber . . .
RESET command

description
RESEPAUWATIC-ERROR—MESSAGE

description
RESET—BRANCHrTRACE command

description
RESET-BREAKS command

description
RESET-CALL—TRACE conmand

description
RESET—DEBUG ccnnand

description
RESEHLGUARD command

description
RESET-LAST—BREAK connand

description
RESET-TRACE ccnnand

description
RESUME—MACRO command

description
RHV, NRF control number . . .
RT

program ND-lOO
segment ND-lOO . . .

R'ICCNMCNND—lOO.......
RUN ccnnand

description

o n I -

ccnnand

S field, NRF
sampling

CPU usage

217

172.
64, 171.
118.
84.

64.
84.
153.
47.

88.

88.
171.
67.
108.

46.

118.

122.

55.

75.

44.

52.
172, 173.

74.

135.

116.

115.

116.

114.

115.

115.

. 115.

100.
172.

39, 70.
69.
40, 69.

88.
169.

117-119.

218

search procedure, command processor
SELECTEDwSEEMENTLLOAD ccnnand

description
SET—AUTO—LINK—SEGMENT command

description
SET—AUMJJINEFITLE ccnnand

description
ET—DGMAIN ccnnand

description
implicit

SET—FLAG ccnnand
description

SET-HISEJGRAM command
description
reference

SET-IO—EUFFERS commmmi
description
reference

SET-MEMORY—CONTENTS ccnnand
description

SET-ND-SOO—AVAILABLE corrmand
description

SET—ND—SOO—UNAVAILABLE command
description

SET-PRIORITY ccnnand
description

SEELSEGMENTLNUMBER connand
description
reference

setting K flag
sign extension
single step execution .
SINGLE—INSTRUCTION—TRAP .
@ sintran connamd

description
SLA, NRF control number
slash (/) in LOOK—HT .
STACK-(fiflflflflllfl trap . .
S’I‘ACK-(JMDERFW trap .
standard trap handler .
STARTLHESHUGRAM ccnnand

description
STARTLPPDCESS—LOG-ALL ccnnand

description
STARILPROCESS-loG-ONE

description
STAEUS ccnnand

desctiption
status register
STEP command

description
SFDP—HISHJSRNM ccunand

description
program execution

string parameter to mnitor call
sub controlnumber NRF
supervisor commands
SWAPPING—LOG command

description
symbol

I N D E X

88, 99.

56.

60.

62.

42.
42.

123.

117.
118.

72.
49.

109.

138.

138.

136.

51.
47.
153.
171.
103.
84.

82.
172.
105.
84.
26,84.
19.

118.

120.

120.

114.
114.

103

118.
116.
153.
173.
138.

122.

I N D E X

definition .
global .
length, NRF file
value

syntax
check of commands
of nanes

system defined auto—load/auto_link files..... . .
SYSTEM-ENTRIES—ON ccnnand

description
system supervisor ccnnands
SYSTEM-TRAP—DISAELE ccnnand

description
SYSTEM—TRAPHENABLE connand

description
TAKE—ND—SOO—PAGES command

description
TEMPORARY-BREAK ccnnand ‘

description
test, checksum in NRF code
time slicing of ND—SOO processes
TrflflflrémnMENTLLOAD ccmnand

description
TRACE ccnnand

description
reference

traceback print after error
trap
twin process
two's ccnplement
unconditional load
undefined references
user interrupt'.
user written trap handler
VALUEFENTRIES command

description
VERSION command

description
Vfli)-IS—ON command

description
WORD subcommand ‘

description
WRITEFDOMAIN—STAEUS connand _

description
WRITE—NRF-EDF—AFTERFMODULE command

description‘. .
WRITEFffiIEMETD-STAEUS crnnand

description

219

65.
68.
169.
86.

74.
9.

60, 62.

67.
138.

86.

86.

141.

103.
170.
136.

57.

110.
115.
32.
19-20, 84—86
136.
169, 170.
57.
67.
135.
19, 23.

86.

136.

136.

144.

44.

79.

53.

- we make bits for the future

NORSK DATA AS BOX 4 LINDEBERG GARD OSLO 1O NORWAY PHONE: 30 90 30 TELEX:18661

