
SINTRAN III
x V . Real Time Guide

ND-60.133.02
Revision A

SINTRAN Ill
Hieal Time Guide

ND-Eio.133.02
Revision A

NOTICE

The information in this document is subject to change without notice Norsk Data
A.S assumes no responsibility for any errors that may appear in this document.
Norsk Data A.S assumes no responsibility for the use or reliability of its software
on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. it may not
be photocopied, reproduced or translated without the prior consent of Norsk
Data A.S.

Copyright © 1984 by Norsk Data A.S

PRINTING RECORD
tinting Notes

01/82 0 inai Prin‘ti
12/82 Version 02 Sintran H Version
02/83 Revision A:

The followi pages have been revised or added:
v,vi,vii ix, x 43 54 54A 60 62 63 64 82

SINTRAN HI Real Time Guide
Pub|.No. ND-60.133.02 Rev. A
February 1984

Norsk Data A.S
Graphic Center
PO. Box 25, Bogerud
0621 Oslo 6, Norway

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one or
more single pages to be merged into the manual by the user, each revised page
being listed on the new printing record sent out with the revision. The old
printing record should be replaced by the new one.

New versions and revisions are announced in the ND Bulletin and can be ordered
as described below.

The reader’s comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and generai comments are welcome.

These forms, together with all types of inquiry and requests for documentation
should be sent to the local ND office or (in Norway) to:

Monk Data A.S
Graphic Center
P.O. Box 25, Bogerud
0621 Oslo 6, Norway

Real Time Guide
Preface

Preface

THE PRODUCT

This manual documents the real time facilities in the following
products:

SINTRAN III VSE — version H ND—TOIYH
SINTRAN III VSX — version H ND—10175
SINTRAN III VSE—SOO — version H ND~1OOH9
SINTRAN III VSX-SOO — version H ND—1OOSO

The manual is revised for version I of the above products. The product
SINTRAN III RT is documented in the manual SINTRAN III RT User's Guide
(ND—60.082) (not yet available).

THE READER

This manual is intended for application programmers who need a
thorough description of the real time programming facilities in
SINTRAN III. These include the software interface to and control of
external devices, time dependent programs, synchronous interactive
programs and programs which are executed at regular intervals.

Systems programmers who are going to study the SINTRAN III source code
should be familiar with the contents of this manual.

PREREQUISITE KNOWLEDGE

The reader should be familiar with the contents of the manual:

SINTRAN III TIMESHARING/BATCH GUIDE (ND-60.132)

A reading knowledge of Fortran, and experience in the language to be
used for real time programming, eg., Fortran, Plane, Pascal, NFL, or
MAC, is assumed. Those monitor calls available in Fortran are
illustrated in Fortran, but MAC examples are also included. MAC is the
ND—lOO assembly language. It is described in the manual MAC User’s
Guide (ND—60.096).

Familiarity with real time programming and concurrent processes is
helpful, but not essential.

ND-60.133.02 Revision A

Real Time Guide
Preface

v

THE MANUAL

This manual describes commands and monitor calls used for real time
programming under SINTRAN III. The additional facilities available in
ND—SOO computer systems are not covered by this manual.

The functions are ordered according to functional category rather than
alphabetically as in the SINTRAN III REFERENCE MANUAL (ND—60.128). The
most important commands in the SINTRAN III REAL TIME LOADER are
described. Complete documentation of this subsystem is found in the
manual SINTRAN III REAL TIME LOADER (NDu60.051).

Monitor calls and library routines also available in background
programs are not necessarily illustrated by examples. The user should
consult the SINTRAN III REFERENCE MANUAL (ND~60.128) for details of
these calls.

RELATED MANUALS

The following manuals are related to the contents of this manual:

SINTRAN III TIMESHARING/BATCH GUIDE (NDm60.132)
SINTRAN III COMMUNICATION GUIDE (ND-60.13”)
SINTRAN III REFERENCE MANUAL (ND—60.128),
SINTRAN III SYSTEM SUPERVISOR (ND—60.103),
SINTRAN III REAL TIME LOADER (ND-60.051)
NRL - ND RELOCATING LOADER (NDe60.066)
FORTRAN — ND FORTRAN Reference Manual (ND—60.1fl5)
MAC User's Guide (ND-60.096)
SINTRAN III RT User's Guide (ND—60.082)

NOTATIONS USED IN THE MANUAL

In the examples, user input is underlined. Where SINTRAN III @CC
commands are used in examples to comment other commands, these are not
underlined, even though they are not returned as a response from the
computer. Examples are given in UPPERCASE letters, however, lowercase
letters are accepted in SINTRAN III commands and in the source program
if the PLANO, PASCAL or FORTRAN-100 compilers are used“ This does not
apply to the old FTN compiler.

Octal numbers are given in the form 3778. SINTRAN III commands
expecting decimal input also accept octal numbers if followed by a B.
The term K, as in 128 Kwords, indicates 102% (z 2 ** 10).

In command parameter descriptions, the parameters are enclosed in
angular brackets, eg., <parameter>. Parameters which have default
values are enclosed in parentheses, eg., (<parameter>). The default
value is used if a null parameter is supplied (two successive commas
or a prompt answered with carriage return).

ND«60.133.02 Revision A

Real Time Guide
Preface u

vn

Parameters are separated by spaces in command descriptions. When used,
parameters should be separated by comma or space.

Alternatives in parameter descriptions are separated by slashes, /.
Uppercase letters indicate that one or other value must be specified.
For example, <WP/NP> indicates that "WP" or "NP" must be given.

The term "word" refers to 16 bit words, unless 32 bit words are
specified. The term "byte" refers to 8 bit bytes. The upper (left)
byte in a word is the most significant half of the word, the lower
(right) byte is the least significant half.

The bits in a byte or word are numbered from the the right starting at
O (the least significant bit). Bit 7 (byte) or 178 (word) is the
leftmost (most significant).

The notation n:m is used to denote the numeric range from n to m
inclusive.

CHANGES FROM PREVIOUS VERSION

The main changes from the previous version affect the use of the
system included segments and the layout of the RT description. A new
feature allows symbolic names to be defined for segments.

ND—60.133.02 Revision A

viii

3.

ix

M A I N C O N T E N T S

INTRODUCTION

The use of real time facilities. Fortran examples of real
time programs.

SYSTEM OUTLINE

A brief introduction to terms used in real time programming
and the underlaying hardware. A presentation of languages
suitable for real time programming.

THE MEMORY MANAGEMENT SYSTEM

Description of virtual and physical addresses. Page tables.
Page and ring protections. Privileged instructions. The
alternative page table mechanism. Paging control registers.
Swapping.

THE INTERRUPT SYSTEM

Interrupt and program levels. Level assignments. Detection
and handling of interrupts. Programmed interrupts.

THE SEGMENT FILE

The segment concept. Segment file organization. System
included segments. Background segments. Bit maps and
segment file reorganization. Creating new segment files.

SYSTEM TABLES AND QUEUES

RT descriptions and datafields. The names of RT programs.
Execution, monitor and time queues. Waiting and reservation
queues. The segment table. The segment queue. Page queues.
The memory map table.

PROGRAM COMPILATION AND LOADING

The source program. Access to monitor calls. Parameter
transfer and call sequence of monitor calls. Compilation.
The SINTRAN III REAL TIME LOADER. Creating a segment.
Setting segment properties. Loading BRF code.

PROGRAM PRIORITY AND MEMORY ALLOCATION

Demand and nondemand segments. Fixing segments in memory.
Priorities. The background timeslicing mechanism.

ACTIVATING AND DEACTIVATING REAL TIME PROGRAMS

Starting and scheduling programs. Periodic execution.
Activation by external interrupt. Program termination.
Suspending execution. Time and clock functions.

ND-60.133.02 Revision A

21

37

D3

55

81

105

115

10.

11.

12.

13.

1M.

15.

16.

17.

18.

19.

20.

x

RESERVING AND RELEASING DEVICES

Acquiring control of external and internal devices.
Reserving on behalf of other programs. Forcing the release
of a device. The ring protection in the datafield.

SEMAPHORES

Synchronizing programs. Controlling access to shared memory
locations. Protecting data structures.

INTERPROGRAM DATA EXCHANGE

RTCOMMON. Internal devices. Byte and block structured
devices. Ring buffers. Shared segments.

FILE ACCESS FROM REAL TIME PROGRAMS

Opening and closing files. Nowait mode. Double buffering.

MULTIPLE SEGMENT PROGRAMS

Two—segment systems. Replacing one segment. Segments on
different page tables. Overlapping segments.

REENTRANT SYSTEMS

Using the REENT monitor call. Multisegment background
systems. Reentrant Fortran. Recursion.

ERROR HANDLING IN REAL TIME PROGRAMS

Monitor calls related to error handling. Fatal errors.
Errors resulting from commands.

DIRECT TASKS

SINTRAN III independent routines. Use of the free interrupt
levels

PERFORMANCE MEASURMENT AND STATISTICS

Logging resource usage. Histogram commands.

DEADLOCKS

Deadlock conditions. How to avoid deadlocks. Fatal and
nonfatal deadlocks. Using LOOK—AT RESIDENT, SINTRAN-
SERVICE-PROGRAM and OPCOM to detect and resolve deadlocks.

ND—NET AND XMSG COMMUNICATION

Brief introduction to ND-NET with simple programming
examples. Real time/background communication.

ND—60.133.02 Revision A

139

153

159

181

201

211

229

235

239

253

267

Section Page

3.2 The page tables 20

3.3 The use of the four page tables 21

3.4 The page table entry 23
3.4.1 Page protect bits 23
3.4.2 The Written In Page (WIP) bit 24
3.4.3 The Page Used (PGU) bit 24
3.4.4 Ring bits 24
3.4.5 The Physical Page Number (PPN) 24

3.5 DMA devices and the memory management system 25

3.6 Protection mechanisms 25
3.6.1 The page protection system 26
3.6.2 The ring protection system 27

3.7 The "Alte rnative Page Table" mechanism 29
3.7.1 The Paging Control Registers 29
3 7.2 Bit O of the status register 30
3 7.3 Monitor calls with the alternative page table

mechanism on 31

3.8 Page faults 31

3.9 Swapping 32
3.9.1 Selection of a "victim" for swapping 32

3.10 Process switching 33

3.11 The Paging Off (POF) area 33

4 THE INTERRUPT SYSTEM . 35

4.1 Interrupt level assignments in Sintran III 37

4.2 The interrupt handlers 38

4.3 Interrupt detection and programmed interrupts 39

4.4 Turning off the interrupt system 40

5 THE SEGMENT FILE . 41

5.1 The organization of the segment file 41
5.1.1 The system included segments 43
5.1.2 The background segments 43

ND—60.133.02

6

Section

xfi

5.2 The contents of a segment

5.3 The use of a segment

5.” Creating a segment

5.5 The segment file bit map

5.6 Reorganizing the segment file-

5.7 Creating a new segment file

5.8 S ve
5
5
5
5.
5

8
8
8
8
8

8!"

o

a
1
2
3
u
5

1 segment files
Selecting the file to be used for new segments

Location

SYSTEM TABLES AND QUEUES

6.1 Program management

6.2 Queue elements
6.2.1 The RT description

6.3 Datafields
6.3.1 Modifying locations in the datafield

6.4 The queues

6.5 The operations performed on the queues

The RT name
Translating a name into an RT description address
Translating an RT description address into a name
Reading the RT description
The segments of an RT program
The various fields of the RT description
Modifying the RT description

execution queue
monitor queue
waiting queues
reservation queues
time queue

Requesting a device
Reserving a device
Releasing a device
Terminating a program
Scheduling a program for execution
Activating a program in the time queue

ND—60.133.02

Page

MN

an

53

53

53
53
56
56
57
59
61
61
63

63
6M

65
65
66
66
67
68

69
69
7O
70
7O
7O
71
71

xfi

Section Page

6.6 Segment management 72

6.7 Queue elements 72
6.7.1 Segment table entry 72
6.7.2 Memory Map Table entry 74

6.8 The queues 7“
6.8.1 The segment queue 74
6.8.2 The page queue 75

6.9 The operations performed on the queues 75
6.9.1 Placing a segment in memory 75
6.9.2 Removing a segment from the page tables 75
6.9.3 Page fault handling 76

7 PROGRAM COMPILATION AND LOADING 77

7.1 The source program 77
7.1.1 Operating system service requests 77
7.1.2 Notation of special properties 78
7.1.3 Compile time initialization of variables 78
7.1.“ Variable number of parameters 78

7.2 Compilation 79

7.3 The RT-LOADER , 80

7.4 The loading session 80
7.4.1 Allocating a segment 81
7.4.2 Loading code to the segment 82

2.1 The link segment 8“
2.2 Setting the load address 85
2.3 Loading Fortran COMMON blocks 86

7.4.3 Allocating a segment without loading to it 88
7.”.H Ending the load session 89
7.“.5 Errors terminating the loading 90

7.5 Deleting a segment 91

7.6 Linking table and symbol maintainance 92

7.7 Taking backup of segments 9“
7.7.1 Creating a backup 9U
7.7.2 Recovering the backup 9M
7.7.3 Explicit allocation of RT descriptions 95
7.7.“ Comparing backup and original 96

7.8 Information about loaded programs and segments 97
7.8.1 Segments 98
7.8.2 RTFIL 98
7.8.3 RT programs 98
7.8.u Segment files 98

8 PROGRAM PRIORITY AND MEMORY ALLOCATION 99

ND—60.133.02

xw

Section Page

8.1 Limitations on the programmer 99

8.2 Memory allocation 100
8.2.1 Demand allocation 100
8.2.2 Nondemand allocation 100
8.2.3 Fixing , 101
8.2.” Fixing a segment in memory 101
8.2.5 Fixing a segment in contiguous memory 102
8.2.6 Removing a fixed program from memory 103
8.2.7 The maximum area fixed 104

8.3 CPU priority 105
8.3.1 Waiting queue priority 106
8.3.2 The range of priorities 106
8.3.3 Changing the priority 106
8.3.9 PRIOR 106
8.3.5 The background timeslicing mechanism 107

9 ACTIVATING AND DEACTIVATING RT PROGRAMS 109

9.1 Starting a program immediately 109

9.2 Scheduling a program for execution 110
9.2.1 Starting execution after a specified delay 110
9.2.2 Starting execution at specified wall clock time 112
9.2.3 Starting execution at a specified internal time 113

9.3 Starting due to an external interrupt 115
9.3.1 Setting up the connection to the device 115
9.3.2 Breaking the connection with the device 116

9.4 Periodic execution of a program 117

9.5 Terminating a program 119

9.6 Forced program termination 120

9.7 Prohibiting program execution 122

9.8 Suspending program execution 12M

9.9 Resetting the repeat bit 125

9.10 Reading the clock and clock adjustments 126
9.10.1 Reading internal time 126
9.10.2 Reading the clock time 127
9.10.3 Adjusting the clock 128

3.1 Relative adjustment 128
3.2 Absolute adjustment 130

10 RESERVING AND RELEASING DEVICES 133

ND—60.133.02

XV

Section Page

13.12 The device buffer 183
13.12.1 The amount of data in the input buffer 183
13.12.2 The amount of data in the output buffer 184
13.12.3 Clearing the input buffer 184
13.12.4 Clearing the output buffer 184

13.13 Optimizing file access 185
13.13.1 The Fortran access mode 185
13.13.2 Contiguous files 186
13.13.3 Cirect transfer 187
13.13.4 Absolute transfer 188
13.13.5 Reading and writing disk pages 188
13.13.6 Priority while performing file operations 190

13.14 Special monitor calls for input and output 191
13.14.1 Read the last character input from a device 191
13.14.2 Echo and break modes of a terminal 192
13.14.3 Disabling and enabling the user break function 192
13.14.4 Executing an IOX instruction 194
13.14.5 Set control information for a device 195

14 MULTIPLE SEGMENT PROGRAMS 197

14.1 Calling a subroutine on a different segment 198
14.1.1 The register contents 200
14.1.2 The address of the called routine 200
14.1.3 The page table 200
14.1.4 The size of the segment 201
14.1.5 MCALL nesting 201

14.2 Returning from a routine on a different segment 201

14.3 Explicitly writing a segment to disk 202

14.4 Loading a multisegment program 203
14.4.1 The load commands 203
14.4.2 Linking between segments 203
14.4.3 Segment common 204
14.4.4 Mutual references between programs on different

segments 204

15 REENTRANT SYSTEMS . 207

15.1 The shadow page mechanism 207

15.2 The REENT call 210

15.3 Optimizing the use of the reentrant mechanism 211

ND—60.133.02

xw

Section

11

12

10.1 External and internal devices

10.2 The logical device number and the datafields

10.3 Reserving a device

10.” Releasing a device

10.5 Reserving a device on behalf of another program

10.6 Forcing a program to release a device

10.7 Reserving a directory

10.8 Reserving devices through Sintran commands
10.8.1 Reserving a file for the users terminal
10.8.2 Reserving a device unit for the user's terminal

10.9 Determining who has reserved a device
10.9.1 A file reserved through @RESERVE—FILE
10.9.2 A device identified by a logical device number
10.9.3 A device identified by a datafield address

10.10 Reservation in SINTRAN III vs. the "Dijkstra semaphore"

10.11 Obtaining information about devices

SEMAPHORES I

11.1 Semaphores and protocols

11.2 Access to semaphores in Sintran

11.3 Example: access conflicts causing inconsistent data
structure

11.” A solution using semaphores

INTERPROGRAM DATA EXCHANGE

12.1 RTCOMMON
12.1.1 Access to RTCOMMON
12.1.2 Inspecting RTCOMMON variables through QLOOK—AT
12.1.3 The size of RTCOMMON
12.1.” Concurrent access to RTCOMMON
12.1.5 Example: using an RTCOMMON variable as a semaphore

12.2 Byte oriented internal devices
12.2.1 The number of internal devices
12.2.2 The ring buffer
12.2.3 Reserving an internal device
12.2.“ Reading and writing

ND—60.133.02

Page

133

13%

135

138

138

139

141

141
1N2
132

143
143
1M4
149

1M5

1U7

1M9

1&9

150

150

151

155

156
156
157
157
158
159

160
160
160
161
161

v

Section

13

12.2.5 Reading the amount of data in the buffer
12.2.6 Clearing the device buffer
12.2.7 Changing the buffer size

12.3 Word oriented internal devices

12.” Block oriented internal devices
12.4.1 Device numbers of block oriented devices
12.u.2 Reserving a block oriented internal device
12.u.3 Reading and writing
12.u.u Clearing the buffer

12.5 Sharing a segment
12.5.1 Access conflicts

12.6 Communication with background processes
12.6.1 Internal devices
12.6.2 Using permanent files
12.6.3 Internal devices as "peripheral files"

12.7 Survey of communication methods

FILE ACCESS FROM RT PROGRAMS

13.1 User and file name

13.2 The files accessible to a program

13.3 The file number

13.u File numbers of peripheral files

13.5 The Fortran file number
13.5.1 Nonreentrant Fortran
13.5.2 Reentrant Fortran

13.6 Opening the file

13.7 Closing the file

13.8 Closing of files on program termination

13.9 Reading and writing

13.10 Block I/O
13.10.1 Checking the status of the transfer through WAITF
13.10.2 Double buffering

13.11 Character I/O
13.11.1 NOWAIT mode
13.11.2 Setting and resetting NOWAIT
13.11.3 Using the NOWAIT mode

ND—60.133.02

Page

162
163
164

16%

165
165
165
165
166

167
168

169
169
169
170

171

175

175

175

175

176

176
176
176

177

178

178

179

179
179
180

181
182
182
183

XWH

Section Page

15.” Other use of the reentrant segment 212

15.5 The access bits of the segment 212

15.6 Different page tables 213

15.7 Mixing MCALL/MEXIT and reentrant segments 213

15.8 The shadow segment after execution 21M

15.9 Automatic saving of the shadow segment pages 215

15.10 Disabling the reentrant segment 215

15.11 Multisegment reentrant systems used from background 216

15.12 Reentrant Fortran programs 218
15.12.1 The use of a stack 218
15.12.2 Advantages of stack allocation 219
15.12.3 Disadvantages and pitfalls of stack allocation 220
15.12.” Compiling reentrant Fortran 220
15.12.5 Reentrant Fortran and reentrant segments 221

15.13 Other languages and reentrancy 221

15.14 Recursion 222

16 ERROR HANDLING IN RT PROGRAMS 225

16.1 The error device 225

16.2 Errors detected and handled by the RT Monitor 226
16.2.1 Fatal errors 227
16.2.2 Nonfatal errors 227

16.3 Errors detected and handled by the user RT program 227
16.3.1 Error status conventions 228
16.3.2 Writing a file system error message 228
16.3.3 Writing a user defined error to the error device 228

16.4 Errors resulting from SINTRAN or RT loader commands 229

16.5 Monitoring error termination 230

17 DIRECT TASKS o o o o o o c o o I I c o o a c a o o o o a o c 233

17.1 Activating a direct task 233

ND-60.133.02

xix

Section Page

17.2 Implementing a direct task 233
17.2.1 Loading 233
17.2.2 The ENTSG call 234

17.3 Communicating with the direct task 23M

17.“ Device driver routines 235

17.5 Calling RT programs from direct tasks 235

17.6 Activation of direct tasks from interrupts 236

18 PERFORMANCE MEASURMENT AND STATISTICS 237

18.1 Clarification 237
18.1.1 System characteristics 237
18.1.2 Definition of response time 237

18.2 Measurement 238
18.2.1 RT-PROGRAMuLOG 238

1.1 Preparation 238
1.2 Parameters for RT-PROGRAM-LOG 240
1.3 Output from RT—PROGRAM—LOG 2N1

18.2.2 PROGRAMmLOG 242
18.2.3 Histogram 2M2
18.2.u SYSTEM-HISTOGRAM 243
18.2.5 TIME—USED 24”
18.2.6 PROFILE_MAP 245

18.3 Diagnosis 246

18.“ Solution 2M6
18.4.1 Priority of batch processors 246
18.4.2 Priority of time-sharing terminals 2N8
18.”.3 Using reentrant systems 248

19 DEADLOCKS . 251

19.1 Fatal deadlocks 251

19.2 Non-fatal deadlocks 251

19.3 "Virtual" deadlocks 252

19.” Resolving a deadlock 252

19.5 Freezing active programs 253

ND-60.133.02

XX

Section Page

19.6 Tools to search the queues 254
19.6.1 SINTRAN commands for user RT 25H
19.6.2 The SINTRAN-SERVICE-PROGRAM commands 256
19.6.3 The LOOK—AT RESIDENT command 257
19.6.9 Microprogram communication (MOPC) 258

19.7 Preventing deadlocks 259
19.7.1 Multiple reservation 259
19.7.2 Using a semaphore 259
19.7.3 Complete initial reservation 260
19.7.9 Hierarchical reservation 260
19.7.5 The banker's algorithm 262

20 ND-NET AND XMSG COMMUNICATION 265

20.1 ND-NET communication 265
20.1.1 Reserving a channel 266
20.1.2 Monitor calls permitted to operate on a channel 266
20.1.3 Clearing the buffer 266
20.1.4 Waiting for input request 267
20.1.5 File access 267
20.1.6 Allowed file operations 268

20.2 XMSG communication 269
20.2.1 Example: an RT service for background programs 270

APPENDIX A: Examples 277

1 A simple periodical RT program 277

2 Two RT programs calling a reentrant subroutine 280

3 Two RT programs calling a nonreentrant subroutine protected by
a semaphore 283

4 RT programs using two segments 286

5 A recursive function 292

xxi

Section Page

6 An RT program using three segments 296

7 Internal device 30H

APPENDIX B: RT programs in languages other than FTN 309

1 PASCAL 309

1.1 RT monitor calls 309

1.2 File access 309

1.3 Loading 310

1.4 Example of loading 311

2 FORTRAN—100 312

2.1 Unit numbers for input/output 312

2.2 Input/output buffers 312

2.3 Stack allocation in reentrant-mode 313

2.4 Conflicts with other libraries 313

2.5 The Fortran library 31“

2.6 Loading 314

3 BASIC 315

3.1 Program compilation 315

3.2 Priority notation 315

3.3 RT monitor calls and Fortran routines 315

3.4 File access 316

3.5 PRINT and INPUT without connect identifier specified 316

ND-60.133.02

xxfi

Section

3.6 Peripheral devices

3.7 Loading

a PLANC

APPENDIX C: Interface to assembler routines

1 Pascal

1.1 Register contents

1.2 Stack frame

1.3 Parameters

1.“ Routine exit

2 FORTRAN—100

2.1 Register contents

2.2 Parameters

2.3 Stack element

2.“ Function value

2.5 Routine exit

3 FTN

3.1 CHARACTER descriptor

3.2 Routine entry

3.3 Function value

3.“ Routine exit

ND—60.133.02

Page

316

316

318

319

319

319

319

319

320

322

322

322

323

323

323

32a

32“

32H

32”

325

xxHi

Section Page

A Plane 326

“.1 Assembler routines for Plane programs 326

”.2 Plano routines for Fortran or Pascal 326

APPENDIX D: Loading a SINTRAN RT system 327

Index 329

ND—60.133.02

Real Time Guide 1

1 IITRODUCTION

Execution of Efflls_§192 programs is directly affected by external
conditions. It may be synchronized with physical events and is in
direct communication with the "outside world". The following are
typical applications of real time programs:

* The temperature in a chemical process is continously monitored and
if it falls below a specified limit, a heating element is activated
to raise the temperature to an acceptable value.

' When a sensor reports that a car is approaching the road crossing,
preparations should be made to switch to green light in the
direction of travel of the car.

‘ If the core of a nuclear reactor is overheated, precautions must be
taken immediately to prevent melt-down.

* Air humidity, temperature and wind speed at an observation post are
read every ten minutes and stored for later analysis.

* When a telephone call is made through one exchange, a program in
another exchange is activated to route the call to the receiver.

' The calculation of pi to a million digits should not slow down work
for ordinary users, but when no others are making use of the CPU
the calculation is allowed to progress.

' To save energy, the thermostat regulating office temperature is
adjusted down at six every night and reset to normal at six every
morning.

These are examples of problems that can be solved with programs which
may:

receive input from and control external devices
have higher urgency than usual
are started by external signals (interrupts)
are periodically executed
affect execution of other programs
have a lower priority than other programs
run at a specific time of day

Such programs are called real time (RT) or foreground programs, as
opposed to timesharing background programs. They have requirements
beyond those of ordinary background programs, and can perform
operations not permitted for background programs. However, foreground
programming requires much more from the programmer, as abuse of RT
privileges may have disastrous effects on the computer system as a
whole.

ND—60.133.02

2 Real Time Guide
INTRODUCTION

As an example of a real time application, a set of small Fortran
programs is included below.

It illustrates simple use of foreground facilities, and there are
numerous other ways to solve the same problem. The mechanisms used are
explained in later chapters.

The set of programs does the following:

- The program REQUEST is started at time 0800 (start at specific
time).

- It seizes terminal number 52 (reserve an external device).

- The message 'IMPORTANT MESSAGE — PLEASE ENTER ID' is printed on
that terminal (controlling an external device).

- REQUEST sets up RESPONSE to be activated as soon as an interrupt is
received from terminal 52 (affecting execution of other programs;
reacting to interrupts).

- REQUEST also sets up PROMPT for execution every 10 seconds
(repetitive execution).

— Every time PROMPT is executed, the message 'Hurry up!‘ is printed
on terminal 52.

- REQUEST becomes dormant for 60 seconds. After that time it stops
PROMPT and checks if a response has been received. This has been
flagged by RESPONSE, setting the logical variable RCEEVD in
RTCOMMON to .TRUE. (stopping another program; communication between
programs). ,

- If no message has been received, WARN is started and the priority
of this program set at 1&0 » higher priority than any ordinary
terminal (high priority program).

— WARN prints the message 'No response from terminal 52' on the
system console.

- After this, terminal 52 is returned to whichever program controlled
it before REQUEST was started (releasing an external device).

ND—60.133.02

Real Time Guide
INTRODUCTION

C CC

PROGRAM REQUEST,HO
INTEGER WHDEV
EXTERNAL WHDEV
EXTERNAL RESPONS, PROMPT, WARN

COMMON /RCV/RCEEVD
LOGICAL RCEEVD

INTEGER WHOHAS

WHORAS: wEDEv(52,1)
CALL PRLS(5291)
CALL EESRV(52,1,0)
WRITE(52,100)

100 FORMAT(1X,'IMPORTANT MESSAGE — PLEASE ENTER ID',//)
CALL RT(RESPONS)
CALL INTV(PR()MPT, 1o, 2)
CALL RT(PROMPT)
CALL HOLD(60”2)
CALL ABORT(PROMPT)
IF (.NCT.ECEEVD) THEN

CALL PRICRCWAEN,1uo)
CALL RT(HARN)

ENDIF
CALL PRLS(5291)
CALL PRSRV(52,1,WHOHAS)
END

C CC

PROGRAM RESPONS, 40

INTEGER WHDEV
EXTERNAL HHDEV, PROMPT
CHARACTER‘1 CH

COMMON /RCV/RCEEVD
LOGICAL RCEEVD

INTEGER WHOHAS

CALL PRLS(52”0)
CALL RESRV(52,0,0)
READ (52,110) CH

110 FORMATUA)
RCEEVD: .TRUE.
CALL ABORT(PROMPT)
CALL RT(REQUEST)
END

ND—60.133.02

Real Time Guide
INTRODUCTION

C CC

120

PROGRAM PROMPT, 50

INTEGER WHDEV, WHOHAS
EXTERNAL WHDEV

COMMON /RCV/RCEEVD
LOGICAL RCEEVD

WHOHAS= WHDEVC52,1)
CALL PRLS(52,1)
CALL RESRV(52,1,0)
WRITE(52,120)
FORMAT(' HURRY UPH',/)
CALL RELES(52,1)
CALL PRSRV(52,1,WH0HAS)
END

C CC

130

PROGRAM WARN, 50

CALL PRLS(1,1)
CALL RESRV(1,1,0)
WRITE(1,130)
FORMAT(1X,'N0 response from terminal 52',//)
END

C CC

ND-60.133.02

Real Time Guide
INTRODUCTION

U7

Compilation and loading procedure:

QFDRTRAN
ND~100 ANSI 77 FORTRAN COMPILER - NOVEMBER 24, 1981

FTN:COMPILE EXAMPLE»EXAHPLE:LIST,EXAMPLE

— CPU TIME USED: 3.1 SECONDS. 82 LINES COMPILED.
- N0 MESSAGES
— CODE SIZE=520 DATA SIZE=0 COMMON SIZE:1 STACK SIZE=32
FTN:EXIT

QRT—LOADER

REAL—TIME LOADER, SINTRAN III — VERSION G

*NEH—SEGMENT 2"o
ism-nmommu new:
“LOAD EXAMPLE, 22
*Lou) mammals—LE
*mlD-LOAD
*EXIT
8

Schedule REQUEST for execution at 8 a.mo:

QABSET REQUEST, 2 mg

At terminal 52 at 0800:

IMPORTANT MESSAGE _ PLEASE ENTER ID

HURRY UP!

HURRY UP!

RONNIE

The HURRY UP!s are printed at 10 second intervals. If no input were
entered, after 1 minute would appear on the system console:

No response from terminal 52

ND—60.133.02

Real Time Guide

NIB—60.133. O2

Real Time Guide 7
SYSTEM OUTLINE

2 SYSTEM OUTLINE

This chapter briefly describes the most important points in Sintran RT
programming. It provides an introduction for programmers who do not
need to go into the details of e.g. interrupt handling and memory
management. The reader can go from here to chapter 7, which explains
how to load a program for real time execution and then go back to the
detailed chapters later.

2.1 The user RI

The user RT can use the facilities for real time programming. Ordinary
users cannot start real time programs. The user RT is the owner of
files created and used by RT programs, unless another user name is
specified when opening the file.

2.2 The user SYSTEM

The user SYSTEM is the most highly privileged user in the Sintran III
system. SYSTEM can use all RT facilities and in addition can set
system parameters using the @SINTRAN-SERVICE-PROGRAM and act as
supervisor. Facilities only available to user SYSTEM are only
described in this manual if they relate to real time programming; they
are indicated as unavailable to user RT.

2.3 RT monitor calls

RT programs request services from the operating system through monitor
calls, which are machine instructions temporarily transferring control
to the operating system.

Most monitor calls are available as subroutine calls from Fortran and
Plane. In MAC, the MON instruction is used. Various monitor calls are
described in this manual.

The functions and services provided by monitor calls are usually
available as commands that can be executed by a terminal operator. The
term "call" is sometimes used to indicate either the monitor call or
the command (e.g. "the ABORT call ...").

2.“ SINTRAN III commands

Logged in as user RT (or SYSTEM), an operator can control resources
and RT programs in a manner quite similar to use of monitor calls in a
program. In addition” there are a few operations which can only be
performed by commands. Like monitor calls, commands cover a wide range
of RT applications and are described at various points in this manual.

ND-60.133.02

8 Real Time Guide
SYSTEM OUTLINE

3;? RT programs

An RT program is a set of instructions to be executed sequentially,
requiring no parallel execution. Several RT programs may be active at
once, (virtually) executing concurrently.

2.6 The RT description

Each RT program that has been loaded into a SINTRAN III system with
the RT loader is described in an RT description. This contains all
information required by the operating system to provide CPU time,
memory space and access to peripheral devices for the RT program. The
number of RT descriptions available in the system is limited and is
determined at system generation time. The layout of the RT description
is described in chapter 6.

2.7 Peripheral equipment interface

Peripheral devices are accessed from user RT programs through monitor
calls. The device is identified by its logical device number and the
operating system will perform the device dependent translation.
Peripheral devices are described in chapter 10.

3.8 Datafields
The datafield contains that information about a physical device which
is needed by the operating system. When a device is reserved for an RT
program, the datafield is linked to the reservation queue of the
program through link locations. To each datafield is also linked the
RT descriptions of programs that have requested the device, but not
yet acquired it.

Datafields are also used in the same way for internal devices. They
are described in chapter 6.

3.9 Segment files

Although programs must be located in primary memory at execution time,
they are stored on disk when not active, or when the number and size
of active programs means they cannot all be in memory. RT programs and
their data are stored on files named SEGFILO:DATA, SEGFIL1zDATA etc.
(Not reserved file namesl). A system may have from one to four segment
files, each containg a number of RT programs and data segments.

3:10 Segments

A segment file is divided into segments, which are images of
contiguous parts of memory. They may contain one or more RT programs
or may contain data. When a segment is needed by an RT program, or an
RT program on the segment is started, the segment (or the required
part) is copied to physical memory.

ND-60.133.02

Real Time Guide 9
SYSTEM OUTLINE

A segment has an integral number of 102” word (2048 byte) pages, but
in most cases it is treated as an indivisible unit by the operating
system. It is located in a contiguous area in a segment file on disk,
it is copied from disk directly into physical memory. Memory
allocation during execution and protection applies to the segment as a
whole. A segment may be between 1k (102”) and 6Mk (65536) words, in
units of 102“ words.

2.11 The segment file bit map

Deletion segments no longer in use may leave open space in the segment
file which can be used when creating new segments. A bit map is kept
to indicate which file pages are used by segments and which ones are
free for use. When a new segment is created, there must be a
contiguous area of free pages at least as large as the segment.

2.12 The real time loader

The segment files, segments, RT programs and data areas in these files
are maintained through the RT loader. All program code and data to be
entered on a segment must be loaded through the RT loader. The memory
allocation parameters, privileges and protection of a segment are set
through RT loader commands.

The RT loader is an integral part of the SINTRAN III system. It is
described in detail in chapter 7.

2.13 RTFIL:DATA

The file RTFILATA contains all the information about symbols defined
on segments in the system and global names such as RT program names
etc. This information is used to arbitrarily link symbolic references
with definitions during RT loading.

2.14 The linking table

During loading the RT loader maintains a temporary table of all
symbols defined and all symbolic references encountered in the loaded
modules. The symbols in this table are written to the RTFIL at the end
of the load.

2.15 Memory management

Physical memory is not generally large enough to hold all active
programs and their data. A mechanism is required to continiously check
whether parts of a program are active or not active — whether their
presence in physical memory are needed or not.

In many cases two programs require access to a common area without
sharing the entire address space. A mechanism is required for
splitting the address area into parts that can be handled separately.

ND—60.133.02

10 Real Time Guide
SYSTEM OUTLINE

A program may need special protection or privileges affecting the
legality of each machine instruction. At execution time, a protection
mechanism is effective, monitoring each executing instruction to trap
security violations.

These problems are solved by the operating system through the memory
management hardware described in detail in chapter 3.

2.16 Pages

Memory is divided into units of a page, blocks of 1024 (1k) 16 bit
words. Physical memory and segment area are allocated in units of one
page. A page is always contiguous in physical memory and on the disk.

3:17 Page tables

Although logically contiguous, the addressing area of a segment
consists of pages scattered in physical memory. This permits selected
pages to be retained in physical memory while others are written back
to disk. This flexibility means the physical page address must be
looked up in a page table for each instruction executed. This is
performed by special purpose hardware in memory management system,
which minimizes the time taken.

2.18 Memory map table

The contents of the page tables are specific for each segment. When a
program in another segment starts execution, the relevant page tables
must be loaded from the memory map table. The RT programmer does not
see this table, it is maintained exclusively by the operating system.

3;19 Segment table

The segment table keeps information about memory allocation of a
segment so the operating system can find pertinent data when placing
the segment in physical memory. The programmmer does not see this
table.

2.20 Ring protection

Each segment belongs to one of four rings, or classes, termed ring 0
to ring 3. The ring determines the set of instructions that may be
executed by programs on the segment and the locations that may be
accessed outside the segment. Ring 3 is the most highly privileged
ring and is not available to user RT programs. Ring 2 is used by the
operating system and RT programs using privileged instructions. Ring 1
is used by RT programs accessing RTCOMMON. Ring 0 is used by ordinary
background programs and RT programs which do not use RTCOMMON.

Although each memory page has its own ring setting in the page tables,
the RT loader considers the ring is a property of the segment and all
programs on the segment reside in the same ring. Ring protection is
described in chapter 3.

ND—60.133.02

Real Time Guide 5 11
SYSTEM OUTLINE

2.21 Page protection

The page tables contain three bits for each page: RPM, WPM and FPM,
indicating Read, Write and (instruction) Fetch Permission. By default,
all three bits are set, allowing all types of access. If the RPM bit
is reset, data cannot be read from the page, if the WPM bit is reset
locations in the page cannot be modified and if the FPM bit is reset
words in the page cannot be executed as instructions.

The RT loader gives the page protection bits the same setting for each
page in a segment, but different segments may have different
protection settings. The page protection bits apply to all accesses,
including those executed by instructions in the same segment and are
independent of the ring protection. For a page to be accessible to a
program, both ring and page protection bits must allow sufficient
access.

Page protection is described in chapter 3.

2.22 The RT monitor

Resources in Sintran III are maintained by a set of operating system
routines called the RT monitor. Requests for access to resources are
routed to the RT monitor through a monitor call instruction. The RT
monitor also provides system information and services through the same
mechanism.

The RT monitor runs independently of user RT programs, executing at a
higher interrupt level. This is described in chapter 3.

2.23 Queues

If several programs require access to a resource (e.g. external
device, memory buffer, nonwreentrant routine) that can be used by one
at a time, the second and following programs must wait in a queue
until the resource is released by the reserving program. There are
different queues for each resource. A program in a queue is idle and
does not require any CPU time. It cannot enter a second queue. (The
time queue is treated as a special case and is not affected by this
limitation.)

A queue is implemented as a singly linked list, linked through "link
locations" in the RT description, datafield, etc.

All queues are maintained by the RT monitor. They are described in
chapter 6.

2.24 Execution queue

The execution queue holds programs waiting only for CPU time or
execution of an I/O transfer. Programs are entered and removed from
the queue by the operating system. An executing program may be forced
to give up the CPU, if a program of higher priority enters the queue.
The program executing, is also in the execution queue.

ND-60.133.02

12 Real Time Guide
SYSTEM OUTLINE

2.25 waiting queues

Each resource may have a queue containing all programs which have
requested the resource but not been given access to.

Unlike the execution queue, a high priority program cannot force a
lower priority program to give up the resource. But the queue is
ordered with respect to priority and the highest priority program in
the queue will be granted the resource when it becomes available.

2.26 Reservation queues

With each active RT program there is a queue linking all resources
reserved by this program. This queue will link datafields of the
devices (internal or external) together.

2.27 Monitor queue

If the RT monitor handles two or more devices concurrently, the
datafields of these devices are entered in the monitor queue.

2.28 Time queue

The time queue contains programs scheduled for future execution by an
operator or a program and programs which execute periodically.

A program may be in the time queue and another queue at the same time.
Presence in the time queue does not affect the execution of the
program until the waiting period has expired, at which time the
program is scheduled for execution.

2.29 Background RT programs

A terminal used for ordinary timesharing operations is controlled by a
system included RT program with the name BAKnn, where 'nn' is a two
digit number. The numbers are not necessarily in sequence. Background
RT programs are given special treatment in allocation of CPU time, but
are in most respects analogous to a user written RT program. See the
time-slice mechanism explained later.

Batch processors are similar system included programs, with name
BCHnn. 'nn' is 01 for the first batch processor, 02 for the second and
so on.

2‘. 3o Timeslicing
If not interrupted, an RT program that has started execution will
execute until it completes, is interrupted by a higher priority
program or gives up the CPU voluntarily. The latter may be due to a
request for a resource that is not immediately available.

ND—60.133-02

Real Time Guide 13
SYSTEM OUTLINE

If a program with a higher priority enters the execution queue, the
lower priority program is forced to give up the CPU. Several programs
will interleave their execution in the CPU if they have different
priorities.

The priority of background programs is modified dynamically,
effectively interleaving execution of several programs. RT programs,
however, will have a static priority unless explicitly modified.

2.31 Demand/Nondemand segments

The swapping system does not necessarily bring the entire segment from
disk into memory as soon as the segment is accessed - only those pages
actually used are fetched. This is called demand paging.

Elapsed time for a program using a demand segment varies, depending on
whether the required pages are in memory or not. To obtain a more
predictable response time, segments used by RT programs are by default
nondemand segments. As soon as a nondemand segment is taken in use,
all pages of the segment are brought into memory. RT programs may also
use demand segments, but demand paging must be requested explicitly.

2.32 Fixing a segment in memory

An ordinary segment is not copied from the disk to physical memory
until one of the RT programs using it is prepared for execution, and
(in case of a demand segment) only those pages of the segment actually
in use will be in memory. When a page is needed which is not in
memory, it is fetched from disk.

The time required to access the disk may be too long for time critical
tasks and response times cannot accurately be predicted. To achieve a
short and well defined response time the segment may be declared as
fixed, which means that all its pages are held in memory until
explicitly removed (unfixed). The segFixing a segment is rather costly
in terms of system load and should be used with care. Fixed memory
allocation is described in chapter 8.

2.33 Segment sharing

Two or more RT programs may share a segment in order to exchange data
because they execute the same routines. A program may have its private
routines and data in one segment and share routines and data with
other programs in another segment. Segment sharing is described in
chapter 1n.

A mechanism is also available to allow programs to share a segment
provided they do not make modifications to it. As soon as a program
makes a modification, it receives its own private copy of the affected
page. Other programs continue to read from the original, unmodified
page. Such segnents are termed reentrant segments. The mechanism is
described in chapter 15.

ND—60.133.02

1“ Real Time Guide
SYSTEM OUTLINE

2.3” Program communication

Different RT programs may want to exchange messages, to synchronize in
time or to agree on the use of a common resource. The operating system
provides several mechanisms for exchanging timing signals, small and
large amounts of data.

3.3u.1 Semaphores

Semaphores are simple timing signals, used to synchronize programs or
to flag e.g. a non-reentrant routine or a common data area as reserved
or free. Semaphores are described in chapter 11.

2.3u.2 Internal devices

Data exchange channels may be accessed in a manner similar to files,
using the same monitor calls. The data transfer is of course much
faster. Normally, one RT program will write to the internal device,
while another RT program reads from the same device. If nothing is
written to the device, the reading program enters a waiting state
until there is something to read. If the internal device's buffer is
full, the writing program may enter a waiting state until a program
reads from the buffer. Chapter 12 describes internal devices.

2.3u.3 memos
Cooperating RT programs on different segments may need extremely fast
communication, e.g. for resource protection. An area of physical
memory may be set aside when Sintran is loaded for data that are
permanently kept in memory and never swapped out. This area is called
RTCOMMON and is accessible to all RT programs. Communication is
immediate; when one program stores a new value to a location in
RTCOMMON, the next load from the same location will fetch the new
value, regardless of which program performs the load.

In most systems, the size of RTCOMMON is small and RTCOMMON variables
serve as flags to protect larger areas in ordinary segments or
peripheral devices. RTCOMMON is described in chapter 12.

3.3u.u Files

All files opened by an RT program may be accessed by other RT
programs. The default user name when opening a file is RT. Unlike
background programs, RT programs may start a file transfer in parallel
with program execution. Chapter 13 describes the use of files from RT
programs.

ND—60.133.02

Real Time Guide 15
SYSTEM OUTLINE

2.3%.5 Communication with background programs

Internal devices may be reserved and accessed for read and write by
background programs while the other end of the channel is used by an
RT program. If machine independence is required, the internal device
may be named in the file system and used as an ordinary, sequential
file. Also, any file may be accessed both by RT and background
programs.

2.33.6 X—message XMSG

X—message is an optional part of SINTRAN III for general communication
between background and RT programs, drivers or direct tasks, or any
combination of these. XMSG is described in the SINTRAN III
Communication Guide (previously called Special I/O guide) and is not
described in detail in this manual. A short introduction is given in
chapter 20.

2.35 Reentrant programm

For two programs to share routines without influencing each other,
these routines must be reentrant. A reentrant routine may be
reactivated (possibly by another RT program) before it has terminated.
The basic requirement for achieving reentrancy is separation of code
and data, usually by a stack mechanism. High level languages used for
RT programming generate reentrant code (for Fortran this is optional).
Reentrancy is described in chapter 15.

2.36 Recursive routines

A recursive routine calls itself, either directly or indirectly.
Recursion is commonly used to solve certain mathematical problems and
to handle advanced data structures (such as traversing a tree). The
routines must be reentrant. Recursion is described in chapter 15,
Reentrant systems.

2.37 Interrupts

The "outside world" signals to a program that its attention is
required by sending an interrupt signal. A connection between the
interrupting device and the program may be set up through a monitor
call. Chapter u describes the interrupt system.

For I/O operations on standard devices, the RT program need not handle
the interrupt itself. It requests input or output by executing a
monitor call and the device driver, which is an integral part of the
operating system, takes care of the interrupt handling and transfers
data to or from the user program's memory or registers.

ND—60.133.02

16 Real Time Guide
SYSTEM OUTLINE

2.38 Clock interrupts

Timing signals are treated in the same manner as an interrupt from an
external device, but are handled by a system program that checks
whether any other program is waiting for the recently arrived clock
signal. This is used by periodic programs or those scheduled for
execution at a specific time"

£339 Direct tasks

In certain applications it is desirable to run programs independently
of the SINTRAN III operating system. Such programs are termed 'direct
tasks'. These may run at a higher hardware priority level than other
programs (including or excluding the operating system routines). No
operating system support is provided and the ordinary protection
mechanisms are not in effect“

Direct tasks are described in chapter 17.

Real Time Guide 17
SYSTEM OUTLINE

2.40 Languages for real time programming

In principle any language can be used for RT programming, but not all
are equally suited. All facilities are available in MAC and the
programmer communicates with the operating system directly through
monitor calls. Assembler language is rarely used other than for
programming drivers and other extremely time critical tasks, due to
the poor data abstraction and structuring facilities.

NORD—PL is a low level language that serves as convenient shorthand
notation for MAC code. A limited number of data and flow structuring
tools are available. NORD—PL is translated to MAC source code before
it is assembled by the ordinary MAC assembler. A knowledge of NORD—PL
is required to understand the operation of SINTRAN III routines and
drivers, but most programmers need not concerned themselves with it.

Fortran is the 'classical' higher level language for RT programming on
ND computers. The ANSI 77 standard Fortran (FORTRAN~100) is extended
with the capability to generate reentrant code and may also be used
for recursive routines. Most monitor calls are available as Fortran
subroutines or functions.

Plane is the newest system programming language for ND computers. It
provides high level data structuring facilities, flow control
constructs, modularization tools and exception handling. For time
critical tasks, MAC code may be coded inline in selected parts of the
program. The Plane language is the same for the ND—IOO and ND-SOO
computers.

Pascal is a well known and widely used language that may be used for
RT programming. Data structuring and flow control mechanisms are
excellent. Time critical tasks and special monitor calls may be coded
in MAC and linked as external routines. The most commonly used monitor
calls are available as external routines in the standard Pascal
library. RT monitor calls are linked from the Fortran library.

ND Basic is a simple beginner's language. A few extensions to standard
Basic features allow Basic to be used for RT programming. The majority
of special RT functions are fetched from the Fortran library and
linked in as external routines.

Cobol is not well suited for RT programming. Its I/O system may not be
used in real time, all I/O and special RT routines must be fetched
from the Fortran library and activated through the CALL statement.

A special purpose language for process control, NODAL, has been
developed for ND computers at CERN. It is particularly suited in
applications where operators interact with the computer, inspecting
and modifying process parameters.

ND~60.133.02

18

ND-60.133.02

Real Time Guide

Real Time Guide 19
THE MEMORY MANAGEMENT SYSTEM

3 THE MEMORY MANAGEMENT SYSTEM

The memory management system consists of hardware dedicated to
translation of program (virtual) addresses to addresses in primary
memory (physical addressesi. Ittalso checks that the executing program
has the required access rights to the addressed memory location.

(A virtual address is sometimes called a logical address. In this
manual virtual is used throughout.)

The memory management system extends the capabilities of the ND-1OO
computer to include

1) an entire 64K virtual address space available to all users and each
program independent of the physical memory size

2) two addressing areas — each of up to GHK words - per program,
extending the virtual addressing area to 128K words

3) keeping only the active parts of a segment in primary memory by
detecting access to swapped out pages

u) protection of parts of the addressable area from modification, from
reading or from being executed as instructions

5) making possible an extension of the physical addressing range
beyond GRK, thus allowing many users to have their programs in
memory concurrently if the physical memory is large

6) permission for highly privileged programs to access pages belonging
to those of lower privilege while access in the other direction is
prohibited

3.1 The 6’!!! virtual mlory space

If physical memory addresses were equal to the address used in the
program, two programs using the same addresses would read and write
each other's data. The only way to prevent this would be to copy the
entire memory space to a scratch area before the second user entered
his program. In such a system, the time spent copying programs from
disk to memory and back would probably take several times longer than
actual program execution.

Instead a translation from program (virtual) address to memory
(physical) addresses is performed by means of a translation table.
When the memory management system is active all memory references are
made through this table and there need not be any correspondence
between the virtual and the physical address. This table is called a
page table, for reasons explained below.

When one program has to give up its right to the CPU to make room for
another, the program and data are retained in memory, but the entries
in the page table are replaced. The new contents cause a virtual
address in the second program to be translated to a physical address
that does not conflict with the first program.

ND-60.133.02

20 Real Time Guide
THE MEMORY MANAGEMENT SYSTEM

3.2 The page tables

If each memory location had its entry in the page table, the table
would be at least as large as the program and nothing would be gained.
Instead, virtual and physical memory are divided into pages - sections
of the memory space of size 1K, 102” 16 bit words. Each page has one
entry in the table, giving 64 table entries per virtual memory area.
This splitting into pages is consistent throughout primary memory and
the disk system and page boundaries coincide.

Pages that are logically adjacent in the virtual address space are not
necessarily adjacent in physical address space, but may be scattered
throughout memory in any order. However, each page is contiguous in
memory. All virtual addresses belonging to the same page are found in
the same physical page. The translation translates a virtual page
number to a physical page number. The lower 10 bits of the address is
the displacement from the page boundary (Displacement In Page) and is
used directly with no translation.

Physically, the page tables are built from high—speed registers,
causing an insignificant delay in the access to primary memory.

VIRTUAL ADDRESS SPACE

400008 ~ 457778

Virtual Page Number

208 Page proudw—
_..__> 218 Page protect! 40

28 Fag; groggy 113

SWAPP'NG
AREA

i
f

PT2

1108

PHYSICAL. MEMORY

Fig. 1. Address translation

ND~600133002

Real Time Guide 21
THE MEMORY MANAGEMENT SYSTEM

3.3 The use of the four page tables

The memory management system contains four page tables, PTO, PT1, PT2
and PT3, each capable of transforming any virtual page number in the
range 0 to 63 to a physical page number anywhere in memory. Thus, four
different addressing areas can be accessed without clearing the page
tables.

PTO is used by the operating system and should not be used by RT
programs. The lower part of this table contains the "resident" part of
SINTRAN III. Pages in this area are always in memory and are never
written back to disk. They contain time critical operating system
routines. Even the contents of the page table will never be replaced,
thus these locations are not available to any other segment.

The upper part of the page table addresses the remaining operating
system routines. The non—resident part of SINTRAN III is split into
several segments. Each of these segments may be addressed through the
upper half of PTO. When routines on a segment other than the current
one are required, the contents of the upper half of PTO must be
replaced with the entries of the new segment.

Most RT programs use PT1. The major part of this table is available to
any RT program, but includes the RTCOMMON area in the uppermost
locations. RTCOMMON is a resident part of physical memory reserved for
communication between RT programs. The initial size of this area is a
parameter in system generation, but may be increased by the system
supervisor. All programs using PT1 access the same physical locations
when addressing within the RTCOMMON area.

PT2 is used by ordinary timesharing (background) programs. The entire
6RK addressing area is available.

PT3 is free for use by any program. Background programs using the
"2—bank" facility use PT3 for the alternative area. It may also be
used by RT programs or direct tasks.

ND~60.133.02

22

Page table 0 Page table 1 Page table 2

Real Time Guide
THE MEMORY MANAGEMENT SYSTEM

Page table 3

Resident Real time Background Background
Sintran programs programs programs

Direct (2-bank)
tasks

Sintran
segments or

Direct
tasks

RTCOMMON

Fig. 2. Use of the page tables

Which page table to use depends on the segment. If several programs
are located on the same segment, they will all use the same page
table. One RT program may also use two segments concurrently, as
described in the next section and these two segments may use different
page tables.

Which page table to use is determined when the segment is loaded. The
default table for RT programs is PTl, but the user may want to
override this default for a number of reasons:

a In special cases, the RT loader may be used to load systems that is
run as background processes. In that case, the segment should use
PTZ.

« If the "alternative page table" mechanism is used, the two segments
to be used must use different page tables.

u If an RT program requires a full 6HK address space or uses
addresses that would (unintentionally) overlap RTCOMMON, PT1 may
not be used and the segment must be placed on another page table.

a When a segment is used in conjunction with other segments, overlap
is illegal. If the two segments are located on different page
tables, no conflicts arise.

ND-60.133.02

Real Time Guide 23
THE MEMORY MANAGEMENT SYSTEM

3.H The page table entry

Each of the four page tables contains 6M entries, one for each virtual
page in the address space. The virtual page number - the upper 6 bits
of the address used in the program - selects one of the 6” entries.
The entry describes the properties of one page and the translation
from a Virtual page number to a physical page number.

Each entry in the page table has the following format:
pnorecr ENTRY MAPENTRY

Bit 9-13 - 0 in normal mode

r——"‘L———W
15 9 a 0 1s 14 13 98 oI...

-

I PROTECT lNFO. I NOT ASSIGNED I N.A. PHYSICAL PAGE NUMBER (0-13) I

k_____v______/ \ l\/

PROTECTION
CHECK MEMORY ADDfiE$ BIT 10-23 ON THE

NORD-IOO BUS

Fig. 3. ND-lOO page table entry

The upper seven bits are used to trap unauthorized access to the page
and special conditions requiring the attention of the operating
system. A violation of access rights is immediately detected by
hardware and causes an interrupt transferring control to the operating
system. If an interrupt occurs, the instruction causing it will not be
executed.

3.4.1 Page protect bits

Bits 15, 14 and 13 determine permitted access to the page. The WPM
bit, if set, allows store operations to the page; if reset, write is
not permitted. The RPM bit, if set, allows read (load) operations;
fetch is not affected by this bit. The FPM bit, if set, allows words
in the page to be executed as instructions; if reset, only data
accesses are allowed.

Any combination of WPM, RPM and FPM is legal. If all three bits are
reset no access is legal.

The page protect bits are discussed below in the section on protection
mechanisms.

ND—60.133.02

2M Real Time Guide
THE MEMORY MANAGEMENT SYSTEM

3.4.2 The Written In Page (HIP) bit

Bit 12, the WI? bit, is reset by the operating system when the page is
read from the disk and is automatically set by hardware when the first
write (store) operation is performed. It is used by the segment
management system (see below) to determine whether a page has been
modified and must be written back to disk, or can be overwritten by
another page when required without any write back.

3.u.3 The Page Used (PGU) bit

Any access to the page (read, write, fetch) causes hardware to set bit
11, the POD bit. Like the WI? bit, this bit is used by the segment
management system to select a candidate as "victim".

giggu Ring bits
Bits 10 and 9 determine which ring the page belongs to and are part of
the protection system. Instructions in a given ring may access pages
in an equal or lower ring, but not in higher rings. The rings are
termed ring 0, ring 1, ring 2 and ring 3. Ring 3 is the highest (most
privileged). The ring also determines the instruction set available to
programs in the ring.

The ring protection system is discussed in the section below on
protection mechanisms.

3,u.5 The Physical Page Number (PPR)

The physical page number is used in the actual translation process and
gives the address in primary memory of the virtual page number
selecting the entry. In the ND-1OO the Physical Page number is a 1”-
bit value, allowing up to 16 38“ physical pages, 32 megabytes.

The ND-100 may be operated in a NORD-1O compatible mode, using only a
9 bit physical page number. Bits 9 to 14 of the page number are then
zero. One megabyte (512K words) of physical memory may be addressed.
This mode is called the normal addressing mode and is default when the
CPU is restarted.-The 32Mb mode is called extended addressing mode.
The extended addressing mode is entered by executing a SEX machine
instruction (Set EXtended address mode), normal addressing is entered
by a REX machine instruction (Reset EXtended address mode). (These
instructions should not be used by any user RT program and are not
permitted in ring 0 or 1.)

The NORD—10 computer uses a 9 bit physical page number, located in the
lower nine bits in a 16 bit page table entry. The SEX and REX
instructions are not available.

ND-60.133.02

Real Time Guide 25
THE MEMORY MANAGEMENT SYSTEM

I I I I I U I

RING PHYSICAL PAGE NO
3

W
2

-
-
_

-

3
'0

3
)

3
'1

3
”]

"U
H

E
I

.
-
-
‘

C
Q

'U
Fig. R. NORD—10 page table entry

3.5 DNA devices and the memory management system

Disks, communication devices etc. usually operate through Direct
Memory Access - DMA. The device controllers access physical memory
directly and no translation is performed by the memory management
system. Read or write permission is not checked and ring protection
does not applyu The WI? and PGU bits are not affected by operations
performed by DMA devices.

RT programs usually request 1/0 from such devices through the
operating system, which initiates a data transfer to or from a page
that is invisible to the RT program. When the transfer is complete,
the data is copied to the program area using the memory management
system under full control of the protection mechanisms. (This is in
system documentation termed the "window mechanism".)

Programs dealing directly with DMA devices require special
considerations:

The segment involved in the data transfer must be fixed in memory. If
not, there is no guarantee that the affected page is in memory when
the DMA device performs a data transfer.

In general, the physical memory address of the segment must be known
and the segment must be located in a contiguous part of memory. This
means that the FIXC call must be used to fix the segment (see section

8.2.5).

If the DMA device writes to the segment, the WI? bit must be
explicitly set, to force the affected pages to be written back to disk
when the segment is unfixed. This is done by specifying WP as the last
parameter of the “NEW-SEGMENT command (see section 7.4.1).

3.6 Protection mechanisms

If all programs were error free and programmers never misused system
resources, protection mechanisms would probably be unnecessary.
However, errors in RT programs are inevitable during program
development and may be catastrophic to the system as a whole.

ND-60.133.02

To C‘
-

Real Time Guide
THE MEMORY MANAGEMENT SYSTEM

Two protection systems are provided by the memory management system,
the page protect system and the ring protect system. They are
independent and either one may make a memory location unaccessible.

The page protect system limits the kind of access allowed to the page
u reading data, writing data or executing as instructions. The ring
protect system places each page in one of four rings, where access is
permitted to pages in lower rings, but not to higher rings. Also, a
set of instructions not normally available may be executed in ring 2
and 3.

3.601 The page protection system

Page protection consists of the WPM, RPM and FPM bits in the page
table entry. Although a page has its own entry in the page table, all
pages in a segment have the same page protection.

The page protect bits are set as a parameter to the *NEW—SEGMENT
command in the RT loader. R, w and F indicates Read, Write and Fetch
permit respectively and any combination is legal. E.g. to allocate
segment number 210 with fetch permit only (using defaults for the
remaining parameters), the command would be

*NEW—SEGMENT 210”z
PROTECTION BITS: F,,

If the default value of the "protection bits" parameter is used, all
types of access are permitted (WRF). The protection applies to the
entire segment.

Nonwdefault values of the protection bits are primarily used in
systems with two or more segments. The segment containing the
instructions should then be given Fetch permission only (as in the
example above). A segment containing data that should not be modified
(e.g. constant tables) should be given Read permission only. No purely
data segment should have the Fetch permit bit set.

Observe that resetting the Read permit bit prohibits P—relative load
instructions. It has been common practice in MAC assembler programming
to address literals (constants) relative to the current program
counter, by use of the MAC command)FILL. Although logically
constants, hardware treats these locations like variables, prohibiting
load operations.

Indirect access where the address is found in a Fetch access only page
is allowed provided the data location to which it points is in a page
permitting data access. In other words, the)FILL command may be used
provided literals allocated by)FILL are used for indirect access
only, as in LDA I (LIT .

Most high level language compilers place literals in the data bank and
therefore create no problems even if the program segment is given
fetch permit only.

ND—60.133.02

Real Time Guide 2?
THE MEMORY MANAGEMENT SYSTEM

3.6.2 The ring protection system

A page belongs in one of four rings. The ring determines which other
pages may be accessed; only pages belonging to the same or a lower
ring may be accessed. The normal usage of the rings is

Ring 0 - background programs, RT programs,

Ring 1 — RT programs using RTCOMMON, but no privileged
instructions, database systems

Ring 2 - The operating system, including the File
and I/O system, ND—Net etc.
RT programs executing privileged instructions

Ring 3 — Not used (intended for operating system kernel)

All pages in a segment belong to the same ring, determined by the
second parameter of the l“HEW-SEGMENT command in the RT loader. To
start loading segment 211 and declare this segment to run in ring 2,
the command would be (using defaults for the remaining parameters):

*NEW—SEGMENT 211
RING: 2
SEGMENT TYPE: ,22!

The default ring is O. Ring 0 segments using page table 1 may not use
the addresses covered by the RTCOMMON area, otherwise the program is
aborted with the error message RING VIOLATION.

Segments in ring 1 using page table 1 will access RTCOMMON in the
uppermost addresses (see chapter 12). Ring 1 must be specified
explicitly if the RTCOMMON area is used. The instruction set is
equivalent to that permitted for background programs. Locations in
ring 0 and 1 may be accessed.

ND—60.133.02

28 Real Time Guide
THE MEMORY MANAGEMENT SYSTEM

Segments in ring 2 may access any location in ring 0, 1 or 2
(including RTCOMMON in ring 1)o The instruction set is expanded with a
set of privileged instructions:

IOF — Turn interrupt system off
ION - Turn interrupt system on
POF - Turn paging off
PON — Turn paging on

* PIOF — Turn interrupt and paging off
* PION - Turn interrupt and paging on
* LWCS — Load writable control store

WAIT — Give up priority, reset current PID bit
IDENT — Identify interrupt
IOX — Input/output

* IOXT — Input/output
TRA — Transfer internal register to A
TRR — Transfer A to internal register
MCL - Masked clear of register
MST — Masked set of register
LRB - Load register block
SRB — Store register block
IRW - Inter—register write
IRR — Inter—register read
REX - Reset extended address mode
SEX — Set extended address mode
EXAM — Memory examine
DEPO - Memory deposit
OPCOM - Start MOPC
LDATX - Load A from physical memory
LDXTX — Load X from physical memory
LDDTX — Load AD from physical memory
LDBTX - Load B from physical memory
STATX — Store A in physical memory
STZTX — Store zero in physical memory
STDTX - Store AD in physical memory*

#
*
*
*
*
*
*
*
*
*
*

If any of these instructions are executed by ring 0 or ring 1
programs, an internal interrupt occurs and the operating system
terminates the program. The instructions marked with an asterisk ("*")
apply to the ND-lOO only and are not available in the NORD-lO. A
program may test bit 14B in the status register to determine whether
it is executing' on an ND-1OO or a NORD~10. The bit is reset on a
NORD—1O CPU, set on an ND—100 CPU.

Ring 3 is intended for the operating system kernel. (Currently,
SINTRAN III does not use ring 3)e The full instruction set and all of
memory are available to segments in ring 3; these may not be loaded by
the RT loader. (On the NORD—lO front panel the ring 3 indicator will
flash when paging is turned off, and does not accurately reflect the
current ring.)

Users of a device may be limited to programs of a certain minimum
ring. This is indicated by the two lowest bits in the TYPRING subfield
in the datafield of the device (see section 6.3). These two bits
are checked against the ring of the requesting program when the device
is reserved. If the ring of the program is lower, the reservation is
denied.

ND~60.133.02

Real Time Guide 29
THE MEMORY MANAGEMENT SYSTEM

An RT program belongs to a ring that is independent of the segments it
uses, but it is not allowed to access a segment in a higher ring than
itself. The program is given the ring protection of the default load
segment when the program is loaded, and cannot later be modified
(except by patching the RT description table in resident Sintran).

The current ring is determined by the Paging Control Register (see
section 3.7.1) on the current level. The ring bits in this register
are equal to the ring of the executing program. When the program
starts execution the ring is fetched from the ACTPRI word in the RT
description.

3.7 The "Alternative Page Table" mechanism

Most programming languages, particularily block structured "Algoln
like" languages, maintain a strict separation of code and data. This
helps prevent the program from being accidentally modified if the
program is in error and it prevents data from being executed as
instructions. Also, the same set of instructions can be applied to
several sets of data.

To take full advantage of the separation of code and data, code may be
put on one segment and data on another. Thus, several variants of the
data segment may be used with the program segment.

If the two segments are placed on two different page tables, there is
no way the segment boundaries can be crossed accidentally. It is
physically impossible to execute data or to read/write instructions.
Hardware may be set in a mode to distinguish between data accesses and
fetching instructions, addressing through different page tables.

All P-relative addressing is assumed to be program addresses, 8 and X
relative addresses and indirect references are data. In most cases
program addresses are either jump labels or read—only constant values.
(Most compilers will address even constants in the same manner as
variables loaded in the data segment).

3.7.1 The Paging Control Registers

When addressing the program and data segments through different page
tables, the page table used by the program is termed the normal page
table, that used for data is called the alternative page table. Before
it can be used, the alternative table number must be loaded to the
Paging Control Register (PCR).

W.

PT APT RING

PCR FORMAT

Fig. 5. Paging Control Register

ND-60.133.02

30 Real Time Guide
THE MEMORY MANAGEMENT SYSTEM

There are 16 of these registers, one for each hardware interrupt level
(see chapter 4). RT programs run on level 1 and all programs use the
same PCR register. The operating system restores the PCR register from
the RT description when one program is interrupted and another one
started.

The user is not allowed to access this register himself, but must
execute the monitor call ALTON (MON 33), requesting the operating
system to perform the loading of the PCR. ALTON is available in
Fortran as a subroutine call. The argument to ALTON is the page table
number (0:3). In MAC, the A register contains the address of the
parameter list; the parameter list contains the address of the
parameters. ALTON has no error return - if an illegal parameter is
specified, the call is ignored.

In MAC, the code for setting PT3 as alternative is

ALTON=33

LDA (PAR % A contains address of parameter list
MON ALTON % MON 33

... % Next instruction to be executed

PAR, (3 % Set PT3 as alternative Page Table

In Fortran, a subroutine call for performing the same operation is

CALL ALTON(3)

To turn the alternative page table mechanism off, the monitor call
ALTOF (MON 34) or Fortran subroutine call ALTOF may be used. This sets
the alternative page table equal to the normal page table in the RT
description. MON ALTOF has no arguments and no error return.

MAC example:

ALTOF=34

MON ALTOF % MON 3”

3.7.2 Bit O of the status register

Even if an alternative page table has been defined through ALTON, the
hardware addressing mechanism does not use alternative addressing
unless bit zero of the status register has been set. The Fortran
routine also sets this bit, but MAC programmers should set this bit
explicitly. This can be used to save time (compared to ALTON/ALTOF
calls) if there is frequent switching between the ordinary and the
alternative page table, e.g. if a block of data should be moved from
PTl to PT3. The code to move 100 (decimal) words from a segment
addressed through PT1 to another segment addressed through PT3 would
look like this in MAC

ND~60.133.02

Real Time Guide 31
THE MEMORY MANAGEMENT SYSTEM

ALTON:33

LDA (PAR
MON ALTON
SAX ~144 % set counter to ~1OO decimal

LOOP, BSET ZRO % disable alternative PT
LDA I,X (SOURCE % load Areg from PT1
BSET ONE % enable PT3
STA I,X (DEST % store in alternative PT
JNC LOOP % increment, repeat if negative
GO SOMEWHERE

PAR, (3
)FILL

The program is loaded at PT1.

The alternative page table mechanism is also available from background
(timesharing) programs, but the only alternative page table allowed is
PT3. If any other page table is specified, the call is ignored. RT
programs using the alternative page table use two different segments
in the two tables, while a two-bank background segment is treated as
one segment covering both tables.

3.7.3 Monitor calls with the alternative page table mechanism on

In most cases, monitor calls work in exactly the same way when
executed with the alternative page table mechanism turned on.
Parameters for the monitor calls are, like other data, found in the
alternative area.

If the user program turns the status register bit 0 on and off, the
user should be aware that SINTRAN III, when fetching parameter values,
will use the alternative page table found in the RT description set on
the ALTON call, regardless of the status register bit 0 of the user
program. The only way to force monitor call parameters to be taken
from the normal page table is to turn off the APT mechanism through
the ALTOF call.

SINTRAN III version D (Sintran 80A) and earlier:

Installations running Sintran versions prior to version E should be
aware that parameter transfer is different for some monitor calls. A
number of calls will fetch their parameters from the normal rather
than the alternative page table, even after an ALTON has been executed
and the status register bit 0 set. The user should consult Norsk Data
for details. Also the new Fortran, Cobol, Plano and Pascal compilers
will be unable to generate code for two~bank execution when older
versions of Sintran are used.

ND—60.133.02

32 Real Time Guide
THE MEMORY MANAGEMENT SYSTEM

3.8 Page faults

If the WPM, RPM and FPM bits in the page table are reset, no access to
the corresponding- page is legal. Attempted access generates an
interrupt. This usually indicates that the page is not present in
memory and must be read from disk before the location can be accessed.
The term page fault is used for this condition.

This interrupt starts an operating system routine to look up the disk
address of the requested page in the system tables. The routine must
find an available page in physical memory and initiate a disk
transfer. After the page has been copied to memory, the page table
must be updated by setting the RPM, WPM and FPM bits appropriately and
inserting the physical page number to which the transfer was made.

Page faults are detected and handled automatically. However, the
program causing the page fault is suspended and another one started
while the disk transfer takes place. When transfer is complete, the
program may continue execution. The exact time for restarting it will
depend on the priorities this program and of the other programs in the
execution queue.

The operating system routine may find that the addressed location is
not within the current segment(s). In that case there is no page on
the disk corresponding to the addressed page and the program executing
the reference is aborted with the error message OUTSIDE SEGMENT BOUNDS
or PAGE FAULT FOR NON—DEMAND.

3.9 Swapping

If all physical memory pages are in use when space is needed for a
program and its data, this space must be released by removing one of
the virtual pages from memory. This process is called swapping.

If the page to be removed has been modified since it was read from
disk, it must be written back before the memory page is overwritten.
This is detected by testing the WIP (Written In Page) bit in the page
table. If the WIP bit is set, a store operation to one of the
locations in the page has been executed. If the bit is reset, no
modification has been made; an exact copy of the page is present on
disk and write back is not required.

3.9.1 Selection of a "victim" for swapping

The selection of a page to be removed may strongly affect both the
overhead and the amount of swapping necessary. The main strategy in
SINTRAN III is as follows:

All active segments are ordered in a queue (i.e. a linked list) called
the segment queue. The first segment in the queue is the one that has
been active most recently, the last segment is the one used least
recently. The queue is updated every time a page is brought into
memory for a segment.

ND-60.133.02

Real Time Guide 33
THE MEMORY MANAGEMENT SYSTEM

The least recently used segment is the one which has to give up one of
its pages. If any pages have their PGU bit reset, one of these is
selected. If all pages have been used, then if one or more of the
segment's pages has its WIP bit reset, one of these is picked at
random. Otherwise any page is selected at random and written back to
disk before the memory page is granted to the requesting segment.

This strategy may be modified by a number of factors: a system
variable called MAXP may limit the number of pages any segment may
have in memory concurrently. If the requesting segment already has
this number of pages in memory, one of its own pages will be taken.
(The variable MAX? can be inspected and modified by user SYSTEM
through the @SINTRAN-SERVICE—PROGRAM command *CHANGE-VARIABLE. The
@SINTRAN-SERVICE-PROGRAM is not available to user RT.)

If a request to fix a segment in memory has been executed, under no
circumstances are pages removed from that segment.

3.10 Process switching

When the attention of the CPU switches from one program to the next,
the page table entries must be modified to point to the pages of the
(new) segment. The PCR register is updated. This is done by the
operating system, invisible to the interrupted program.

The actual data pages are retained in memory; pages of one segment
will not interfere with pages of another segment.

If any of the pages in the segments of the new program are already in
memory, the physical page numbers are entered in the correct page
table(s). The PT entries of the remaining pages are zeroed, so that
later accesses to these pages causes a page fault interrupt.

3.11 The Paging Off (POP) area

When the paging system is turned off through the POF or the PIOF
machine instruction, there is no translation of the virtual (program)
address. These instructions are permitted for ring 2 or 3 programs
only. The virtual address is interpreted as a physical address,
referring to the lowest 64K words of physical memory.

The resident part of SINTRAN III is mapped through the lowest part of
PTO (page numbers 0 to 32) directly onto the corresponding physical
addresses. Thus, resident Sintran may be accessed through PTO with
paging on or directly with paging off. The virtual and physical
addresses above the Sintran resident area do not coincide. The
locations addressed with paging off are not available through the page
tables and are called the Paging Off (POF) area. (This is a software
convention; it is not dictated by hardware.)

The P0? area contains essential data and code used by the operating
system. Unintended modification of these variables will almost
certainly be fatal to the operating system. User RT programs should
never turn off the paging system. Modification of POF area requires a
detailed knowledge of the operating system.

ND-60.133.02

34 Real Time Guide
THE MEMORY MANAGEMENT SYSTEM

A program may test bit 168 in the status register to determine whether
the memory management system is turned on. If this bit is set, the
memory management system is on.

ND~60.133.02

Real Time Guide 35
THE INTERRUPT SYSTEM

u THE INTERRMPT SXSTEH

External devices signal that they want the attention of the CPU by
giving an interrupt — sending an electrical signal detected by the
CPU. When__the CPU recognizes the interrupt, it starts executing a
routine to serve the device.

An interrupt may also be generated within the CPU to suspend the
executing program and force another routine to be executed. E.g. if a
program addresses a location on a page that is not in primary memory
but swapped out on disk, hardware in the memory management system
generates an internal interrupt starting a routine to bring the
missing page into memory.

Different serve requests may have different degrees of urgency.
Interrupts are classified into 16 levels, with level 15 as the highest
(most urgent) and level 0 as the lowest (least urgent). If an
interrupt on a higher level occurs, all activity on lower levels are
suspended until this interrupt has been handled.

A full register set is associated with each interrupt level. This
includes a program counter; consequently, 16 different programs may be
ready for execution at any one time. The program counters may point to
any location in any program, but on the higher interrupt levels the
program is always a repetitive program set up to handle incoming
interrupts on that level. The interrupt levels are also called program
levels (PLO through PL15).

LEVE L
SE LECT

8 SCRATCH REGISTERS
REGISTE
SELECT

REGISTER FILE

Fig. 6. The register file

When an interrupt occurs on a given level, the CPU starts executing
instructions from the location indicated by the program pointer at
that level. As each level has its own PCR, the program on the higher
level will usually use a different page table than the interrupted
program (all standard interrupt handlers use PTO) and thus be
independent of it. This program continues to run until

ND—60.133.02

36 Real Time Guide
THE INTERRUPT SYSTEM

Either; the program voluntarily gives up its right to the CPU when it
has completed serving the interrupt. This happens when the
WAIT machine instruction is executed. The program counter is
positioned at the instruction following the WAIT and when the
next interrupt (at that level) occurs, execution is resumed at
this point.

Or; an interrupt at a higher level occurs. This immediately
suspends activity at any lower level and start execution at
the point indicated by the program counter at the higher
level. The higher level will keep the CPU until it executes a
WAIT or is interrupted by a level.

1H.

rta13- H
. H .12 - 3*. Character input from terminal

11 . rfifiifi

10 I I I i I I
1 ' ' r**‘w EChO ' i '

9 .

8.

7 .

6 .
I

5'

u .

3 ‘ fi¥§§¥J Monitor jfii‘ Wihiifl

2 .

1 4*****§§QJ RT ppog ‘*§***§*A Disk request Lfi****

Fig. 7. Level switching

When a WAIT is executed, the execution of the lower level program is
resumed wherever it was interrupted. With the exception of the time
delay and modification of common data, the execution of the higher
level routine is completely invisible at the lower level.

Several devices may be connected to each of the interrupt levels 10 to
13; when the program executes an IDENT instruction an identification
of the interrupting device is returned. If several interrupts are
generated simultaneously, they are queued and handled sequentially.
Level 15 may have only one interrupt source.

ND-60.133.02

Real Time Guide 37
THE INTERRUPT SYSTEM

An interrupt at any level may be generated by a program as well as by
a hardware device or dedicated hardware in the CPU. Both software
generated interrupts and interrupts generated by the CPU hardware are
called internal interrupts.

M.1 Interrupt level assignments in Sintran III

The interrupt levels are used by Sintran III in the following way:

Ail-MIIIIN'T_H n
‘5 Extremely fast u'ser interrupts
14 Internal interrupts
13 Real-time clock

12 Input devices

11 Mass storage devices

10 Output devices

9 ...__.

8 For programs wnicn
7 _Dinact tasks do not require oper-
6 ‘" ating system heip
5 __

4 1/0 Monitor calls
3 $NTRANHiMommr

2 Direct Task
1 ReaHime and Background

0 Idle Loop

Fig. 8. Sintran interrupt level assignments

LEVEL 15 is not used by SINTRAN III but may be used by special devices
requiring immediate access to the CPU. Only one device may
use this interrupt level.

LEVEL 14 handles internal interrupts detected by special-purpose
hardware in the CPU. This includes page faults, protect
violations, illegal or privileged instructions, etc.
Execution of the MON instruction also generates a level 1”
interrupt.

LEVEL 13 receives an interrupt every 20 ms from a hardware clock
called the Real Time clock. The routine at this level
maintains a count of the number of clock interrupts received
which can be divided down to larger units in order to keep
track of wall clock time. HDLC input and errors in the
multiport memory system are handled by the level 13 routine.

LEVEL 12 is activated by interrupts from character devices such as
teletypes and screen terminals, paper tape or card readers
and handles the data input from such devices. HDLC output and
the ND-SOO driver are handled by level 12.

ND~60.133.02

38 Real Time Guide
THE INTERRUPT SYSTEM

LEVEL 11 controls mass storage (DMA) devices, such as disks, floppy
disks and magnetic tape. Both input and output are performed
at this level.

LEVEL 10 is used for character output, like terminals, printers, paper
tape punches etc.

LEVEL 9 to LEVEL 6 are not used by SINTRAN III. RT programmers can
write their own direct tasks (see chapter 17) running on
these levels. Direct tasks are activated by a software
interrupt.

LEVEL 5 is used by XMSG, an optional part of SINTRAN III. If not
included level 5 is available for direct tasks. An
introduction to XMSG is given in chapter 20.

LEVEL 3 handles the monitor calls INBT/OUTBf, M8INB/M80UT,
BBINB/BBOUT and BHINW. If the level 1” routine has classified
a monitor call as one of these, it generates an interrupt to
level 4 before giving up priority and the level H routine
performs the actual serving.

LEVEL 3 executes the RT monitor, which includes routines for handling
system queues, priorities of RT and background programs and
monitor call administration. Segment administration is
executed on level 3, and so are monitor calls without
parameters.

LEVEL 2 is available for direct tasks.

LEVEL 1 executes all user RT programs and background programs and
some less time critical routines used by the RT monitor. Most
monitor calls are executed on level 1, after classification
on level 3. As only one program is active on each level at a
time, level 1 is switched from one program to another by
forcibly setting the program counter in the register file and
switching segments by setting the PCE and PT contents. This
is done by the monitor on level 3.

LEVEL 0 runs an idle loop. No other routine runs on level 0 as the
idle loop never gives up priority. (In fact, since there are
no lower levels to give attention =to, a WAIT instruction
executed on level 0 is effectively ignored.)

4.2 The interrupt handlers

It is extremely important that higher level routines do not delay
lower level routines unecessarily, as the delay could be too long for
devices handled at lower levels to be served properly. In many cases,
the higher level routines will only classify the interrupt and give an
interrupt to a lower level based on this classification.

E.g. if a character input from a terminal (level 12) occurs while the
CPU is busy serving a monitor call (handled on level i”), the level 1h
routine must complete and also give the level 12 routine time to
handle the incoming character before the next character from the
terminal arrives. If the level 12 rutine has not had time to read the
character buffer on the interface card before the next character

Real Time Guide 39
THE INTERRUPT SYSTEM

arrives, it loses the first character.

Therefore the routine on level 14 does not perform the actual serving.
E.g. it may classify the monitor call as an I/O request and set up the
routine running on level 4 to handle it before it executes a WAIT. The
higher level character input is completely processed before level u is
allowed to start execution.

This technique is used whenever some analysis of interrupt conditions
is required to determine the urgency of an interrupt.

Because execution of the interrupt handler starts immediately when an
interrupt arrives, it must be resident in memory at any time when
interrupts are enabled. Also, the page tables must be properly loaded
in advance (the level 3 routine handling the page tables is not
allowed CPU time while a higher level interrupt is handled). To save
the time spent loading the PTs handlers are usually placed in the
paging off (POF) area and the paging system turned off.

D.3 Interrupt detection and programmed interrupts

An external interrupt sets a bit corresponding to the level of the
handler for the device in the Priority Interrupt Detect (PID)
register. This register can also be modified by a program. Setting a
bit in this register causes an internal interrupt in a manner
equivalent to an external interrupt. Only levels 0 to 9 can only be
activated this way.

A bit set in the PID register alone does not cause the CPU to give
control to the routine at that level. The Priority Interrupt Enable
(PIE) register can mask out interrupts at any level and the program
level active is the highest one with both the PID bit set (marking a
pending interrupt) and the PIE bit set (marking that the interrupt is
allowed).

The PID and PIE registers are programmed through privileged
instructions allowed only in ring 2 and 3. The :53 instruction
transfers the A register (on the current level) to the specified
register. The E§I (masked set) instruction selectively sets the bits
in the specified register that are also set in the A register leaving
other bits unmodified. The NEE (masked clear) instruction selectivly
clears those bits set in the A register, leaving other bits
unmodified.

E.g. after the level 14 routine has classified a monitor call as an
I/O request to be handled at level A, the following instructions are
executed:

SAA 20 % Set bit 4
MST PID % Set PID bit 4, leave others unmodified
WAIT % Wait for next level 1” interrupt

Before WAIT is executed the routine has set the program counter on
level A to one specific routine. This is done through the IRw
instruction. If the routine on level a is called LMRZT, the MAC code
to start this routine is:

ND—60.133.02

M0 Real Time Guide
THE INTERRUPT SYSTEM

LDA (LNR21 % Load A with routine address
IRW #0 DP 1 Set P-reg lev 4 to this routine
SAA 20 % Cause an interrupt on level 4
MST PID % When level n starts executing,
WAIT % routine LHR21 is performed

If a programmed interrupt to a higher level is executed and the level
is enabled, the executing program is stopped immediately after the MST
PID instruction and not resumed until the higher level program
executes a WAIT machine instruction.

If a programmed interrupt to a lower level is exectued, there is no
activity on the lower level until the executing program performs a
WAIT machine instruction"

u.u Turning off the interrupt system

Critical code sequences may be sensitive to interrupts, for reasons of
timing and data consistency reasons. Timing considerations occur
mostly with high speed devices, data consistency in protection of
shared resources.

The operating system may use the IOF or the PIOF machine instruction
to turn the entire interrupt system off. Then interrupts are not
honored; they are queued and executed when the interrupt is turned on
by the ION or the PION instruction. A program may test bit 178 in the
status register to determine whether interrupt is turned on (bit set)
or off (bit reset).

User RT programs should not turn the interrupt system off.

ND—60.133.02

Real Time Guide 41
THE SEGMENT FILE

All programs and directly accessible data (segments, as opposed to
data in files read through the file system) are located in one or more
segment files. These are contiguous files belonging to the user
SYSTEM.

The segment files must be available when user RT starts using the RT
loader. The creation of segment files is usually a one time operation
which must be performed by the system supervisor. The only time when a
segment file is created (or if possible expanded) is if the segment
file overflows.

5.1 The organization of the segment file

The area occupied by the segment file is by the RT loader split in
logically separate parts called segments. Each segment is an image of
a part of virtual memory; the maximum segment size is (normally) 128K
words.

Associated with the segment is an address giving the (logical) lower
address and segment size. This information is kept in the segment
table (see chapter 6).

The segment file may have areas not currently occupied by any segment;
this space can be used when a new segment is created.

A segment is identified by a segment number between 0 and 3768. By
convention, segment numbers are specified in octal and commands with
segment number arguments expect octal input.

t o o I o

o o

a o o
-
.
.
-
“
u

o O o
-
—

—
a

o o
-
_

—
-
I

o o o
-
-
-
-
d

System included VBackground RT program segments
segments segments

... : unused space

Fig. 9. Segment file

The maximum number of segments is determined at system generation
time; it can be up to 3768. Default allocation of numbers to new
segments chooses the first unused number when the segment is created,
but a programmer can request any free segment number. A list of free
segment numbers can be obtained through the RT Loader command *LIST—
FREE-SEGMENTS.

ND-60.133.02

”2 Real Time Guide
THE SEGMENT FILE

Although not strictly a segment, in some commands the RTCOMMON area is
indentified by segment number zero. The user should pay close
attention to the meaning of segment number two (RTCOMMON or resident)
in each command. Segment number zero in the segment file contains a
copy of the "resident" part of the SINTRAN III operating system (pages
0:35 in PTO). This segment cannot be accessed by an RT program.

RTCOMMON is in some commands and subsystems (@LOOK—AT SEGMENT, DMAC)
referred to as segment number 1.

ND-60.133.02

Real Time Guide U3
THE SEGMENT FELE

5.1.1 The system included segments

The lowest numbered segments are called system included segments and
contain parts of the operating system. These are defined at system
generation time rather than built by the RT Loader.

Segment no 28: Memory image and POF
38: Command processor (OPSEG)
M8: RT Loader
58: System segment for error program
68: File system common segment
78: DMAC segment

108: Used by RT Loader (RTFIL table)
118: Error log segment
128: Initial reentrant file system segment no. 2
138: Initial RT Loader (save area for RT Loader)
138: Error program segment
158: Initial service—program and MAIL segment
168: Initial ND-NET segment
178: File user data segment for RT programs
208: ND~500 standard domain table segment
218: ND-SOO table segment (name segment)
228: Reentrant file user segment no. 1
238: SINTRAN~SERVICE~PROGRAM and MAIL
248: Reentrant file system segment no. 1
258: Reentrant file system segment no. 2
268: Reentrant file user segment no. 2
278: ND-NET segment
3GB: ND-SOO System Monitor segment no, 1
318: ND-SOO System Monitor segment no. 2
328: RT accounting segment
338: XMSG segment (POF)
3&8: XMSG segment (XROUT)
358: Reserved for XMSG
368: TADADM segment
378: RT Loader data segment

Segments not used by a particular configuration are empty. Unused
segments with numbers lower than the highest system included segment
are not available. The list applies only to the I version of SINTRAN
III.

5.1.2 The background segments

Two segments are used for each background/batch process in the system;
these usually follow the standard system segments in the number
sequence. RT programmers need not be concerned about these segments,
but must not clear or modify them.

Each background/batch process has a 128Kword segment used as a
swapping area. Whenever a page belonging to a background process has
to be copied back to disk because the space in physical memory is
needed, the corresponding page in the background segment is used.

ND—60.133.02 Revision A

MM Real Time Guide
THE SEGMENT FILE

In addition, there is a 5K segment called the system segment (not to
be confused with the system included segments) used for a number of
non-reentrant routines in the operating system and as a data area for
the background processor and the file system. This segment is located
at page table 0 from address 22000B to 337778, while the background
segment is located at page table 2 (and if a two~bank system also page
table 3).

A background "two bank system“, using the alternative page table
mechanism, may occupy up to 128K of virtual memory. A background
segment of 128K must be available. By default are all background
programs in SINTRAN III H version "two bank systems". The SINTRAN III
command:

@CHANGE—BACKGROUND—SEGMENT—SIZE <term.no> 128

will deallocate the 63K segment for the specified <term.no> and
allocate a segment of size 128K. This command is penmitted only for
user SYSTEM. The same command may be used to later reduce the size to
6UK if required.

5.2 The contents of a segment

In principle, a segment may contain any binary information that will
fit within its limits, without regard to storage format. Thus, it may
contain binary or symbolic data, instructions or a combination of
instructions and data.

A segment may contain the instructions for one or several RT programs.
Putting several RT programs onto one segment means these programs
share data locations; they may share routines or even the entire
program code. If several programs share data and are also active
concurrently, special consideration must be-given to reentrancy, as
modification of a location by one program has immediate effect for the
other programs using it. These problems are discussed in chapter 14.

_5.3 The use of a segment

When an RT program on a segment is activated, the required part of
that segment is automatically copied to memory. The extent of the
required part depends on the segment: a demand segment is copied one
page at a time as the pages are needed, a nondemand segment is copied
in its entirety into memory as soon as any of its pages are needed.

Demand/nondemand is defined in the *NEW—SEGMENT command by the
parameter <segment type). The value ND indicate:e NonDemand, DM
indicates DeMand. The dei value is ND. To declare segment 270 as a
demand segment, it must be allocated as follows (using default values
for the remaining parameters):

*NEW-SEGMENT 270,,
SEGMENT TYPE: DMzz,
*

ND-60.133-02

Real Time Guide US
THE SEGMENT FILE

Copying of a segment to memory is invisible to the RT program (with
the exception of the time consumed). Before the segment is removed
from memory, modified pages are written back. From a logical point of
View the segment may be treated as if modifications were made directly
to the segment file rather than to a copy in memory.

Monitor calls are available to force premature write-back of a segment
to the segment file, or to place a segment in memory without accessing
any location.

An entire segment can also be placed in memory through a command or a
monitor call and remain there until explicitly released. This is
called fixing a segment. Fixing is not a property of the segment; it
is never done automatically except by a command or monitor call.

Demand/nondemand and fixing of segments are discussed in detail in
chapter 8.

5.“ Creating a segment

A new segment is allocated by the RT Loader command *NEW—SEGMENT. The.
size of the segment is automatically determined at load time. Until
the end of the load to the new segment is indicated by the *END—LOAD
command, loading takes place to the scratch file ("file number 100").
As soon as “END-LOAD is typed, the RT loader searches the segment
file(s) for an free, contiguous area large enough to hold the loaded
code and data. This determines the size of the segment.

The segments are not necessarily ordered according to number on the
segment files. If a segment is deleted and a new, larger one allocated
with the same segment number, it will not usually fit into the same
position in the segment file. New segments are placed in the last file
specified in a *SET-SEGMENT—FILE command, see section 5.8.1

5.5 The segment file bit map

The user may inspect the bit maps for segment files by using the RT
loader command *DUMPmSEGFILE—BITMAP. Parameters are segment file
number (from O to 3) and output file. Defaults are all four segment
files and output to the terminal. A bit which is set in the bit map
indicates that the page is occupied, a reset bit that the page is
available. The number of free pages and the largest contiguous free
area are reported (see example in the next section). The latter may
limit the maximum size of new segments.

It is not necessary to use this command during loading, but the system
supervisor may want to inspect the bit map in order to evaluate the
amount of space wasted in the segment files. If there are many small,
non-contiguous free areas is high, reorganizing the segment file may
increase the maximum size of new segments.

ND-60.133.02

46 Real Time Guide
THE SEGMENT FILE

5.6 Reorganizing the segment file

If there are many small, nonucontiguous free areas in the segment
file, it can can be compacted by moving the free areas to the upper
end. This is done through the RT loader command *REORGANIZE—SEGMENT-
FILE, with the segment file number (0 to 3) as parameter. If a segment
file number is not specified, all segment files are reorganized, but
segments are not moved from one file to another.

System included segments listed in section 5.1.1 are not moved by this
command.

When this command is performed, no segment should be in use by RT
programs and no reentrant segments (defined by the Sintran @DUMP-
REENTRANT command) should be in use by a background process.

Example (the compacting is illustrated by inspecting the bit map of
the segment file):

@RT-LOADER

REAL-TIME LOADER, SINTRAN III — VERSION G

*DUMP-SEG—BITMAP 0,,

0 177777 177777 177777 177777 177777 177777 177777 177777
200 177777 177777 177777 177777 177777 177777 177777 177777
”00 177777 177777 177777 177777 177777 177777 177777 177777
600 177777 177777 177777 177777 177777 177777 177777 177740

1000 000000 000000 000000 000036 000000 000000 000000 000001
1200 160000 000000 000000 000000 017000 000000 000000 000000

1 160000 000000 000000 000000 017000 000000 000000
000000 000036 000000 000000

15000 177777 17777 0000 000000 000000
15600 177777 177777 177777 177777 00000
16000 177777 177777 177777 177777 177777 17777
16200 177777 177777 177777 177777 177777 177777 17
16000 177777 177777 177777 177777 177777 177777 177777 177777
16600 177777 177777 177770 000000 000000 007700 000000 000000
17000 000000 000000 001700 000000 000000 177600 000000 000000

FREE PAGES ON SEGMENT FILE: 4523
NUMBER OF CONTINUOUS FREE PAGES: 723

ND—60.133.02

Real Time Guide ”7
THE SEGMENT FILE

*REORGANIZEuSEGMmFILE O
*DUMP—SEGFfifilTMAF Ozz

0 177777 177777 177777 177777 177777 177777 177777 177777
200 177777 177777 177777 177777 177777 177777 177777 177777
MOO 177777 177777 177777 177777 177777 177777 177777 177777
600 177777 177777 177777 177777 177777 177777 177777 177777

1000 177777 177777 177777 160037 177777 177777 177777 177761
1200 177777 177777 177777 170000 017777 177777 177777 177400

177777 177777 177777 110000 017777 177777 177777
177000 000037 177777 177777

15200 177777 17 777 000000 017777 177777
15n00 177777 177777 177777 177
15600 177777 177777 177777 177777 17
16000 177777 177777 177777 177777 177777 177777 1
16200 177777 177777 177777 177777 177777 177777 177777 177777
16700 177777 177777 177777 170000 000000 000000 000000 000000
16600 000000 000000 000000 000000 000000 000000 000000 000000
17000 000000 000000 000000 000000 000000 000000 000000 000000

FREE PAGES ON SEGMENT FILE: ”523
NUMBER OF CONTINUOUS FREE PAGES: 1236
*EXIT

5.7 Creating a new segment file

If reorganizing the segment file is not sufficient to make room for
new segments, a new segment file must be created. In rare cases, the
disk pages immediately following the existing segment file(s) are
available and the file can be extended with the Sintran command
@EXPAND—FILE, but usually a new file must be created.

The total size of all segment files cannot exceed NOOOOB pages.

5.8 Several segment files

If SEGFIL03DATA overflows, another one can be created called
SEGFIL1:DATA. (The next one after that is called SEGFIL22DATA and the
last one allowed is SEGFIL3zDATA). These may be placed on any
directory that is not on a sub-unit.

Segment files must be located at disk pages with physical address
below 1777778. Contiguous free space can be found by the Sintran
command @DUMP-BlFILE (see the Sintran Reference Manual, ND—60.128).

When the file has been created it must be declared as a segment file
by the @SlNTRAN-SERVICE—PROGRAM command *DEFINE—SEGMENT-FILE. Users
SYSTEM and RT must have read and write access.

As the segment files belong to user SYSTEM, user RT cannot execute
these commands. Creating a segment file is a one time operation and as
soon as SYSTEM has created the file and defined it as a segment file,
it is available for use by user RT. User RT must have read and write
access (RN) to the file. If there are several main directories in the
system, user RT and SYSTEM should be in the same one and should not
have space in any other main directory.

ND-60.133.02

48 Real Time Guide
THE SEGMENT FILE

SYSTEM must create the segment files as contiguous files by the
Sintran command @ALLOCATE—FILE. In most systems, one segment file is
created at installation time, with sufficient space for ordinary use.

5.8.1 Selecting the file to be used for new segments

When one segment file is full, new segments must be allocated in
another file. The file to be used is specified through the command
*SET—SEGMENT—FILE:

*SET—SEGMENT-FILE
SEGMENT FILE NO.:1
a

The segment file is specified by the index given in the *DEFINE—
SEGMENT-FILE in the @SINTRAN—SERVICE-PROGRAM and is in the range 0 to
30

The specified file is used for all segments created until a new *SET—
SEGMENT-FILE command is given. It is not reset when the user leaves
the RT loader. When the command is given, the segment file must be
defined, but no warning is given if the file is later deleted as a
segment file. In that case, an attempt to create a new segment returns
an error message: SEGMENT FILE NO. n IS FILLED (n is either 0,1,2 or
3) when the *END-LOAD command is executed.

The segment file number is not determined until *END-LOAD is executed.
If the *SET—SEGMENT—FILE command is issued after a “NEW—SEGMENT
command, but before an “END-LOAD command, the segment is allocated in
the newly specified file“

5.8.2 dame

The standard names of the segment files are SEGFILO:DATA,
SEGFIL12DATA, SEGFIL2:DATA and SEGFIL32DATA. Other names are legal,
but use of standard names is recommended. The maximum number of
segment files is four. SEGFILO:DATA must be located in the main
directory (if there is more than one main directory, user SYSTEM
should not have space in more than one) but the other three may be in
any directory that is not located on a sub-unit.

5.8.3 Location

No page of a segment file may have a higher page number on the disk
than 177777B. For this reason, if a segment file is to be created on
the directory, this should be done as soon as possible after the
directory is created, before the disk has user files that may occupy
part of the required area.

On disk drives split into sub-units, a segment file may not be located
on a subunit # O. This applies e.g. to a 150 Mb disk treated as two 75
Mb directories or a 90 Mb (6 times 15 Mb).

ND-60.133.02

Real-Time Guide 49
THE SEGMENT FILE

The SINTRAN III command @CREATE-FILE does not ask for a disk address,
but places the file in any sufficiently large contiguous area. The
@ALLOCATE-FILE command should be used to specify the location.

5.8.” Size

The RT loader uses a bit map to indicate free and available pages. The
total size of this bit map is NOOOOB (1638“) bits, limiting the total
size of all segment files.

The size required for the segment file varies considerably from one
system to another. SEGFILO:DATA should be large enough to hold the
segments required by Sintran, from 300 to 1000 (octal) pages depending
on the configuration and the number of background segments. The number
of pages used by the system is printed on the console during a "cold
start" (MACM/HENT), assuming 128 page background segments.

Each terminal requires 128 pages ("two-bank systems") plus a 5 page
"system segment" (used by the command processor and a few non-
reentrant I/O routines). If "one-bank" systems are to be run on the
terminals, the terminal segment size migth be 6” pages plus the 5 page
system segment .

Reentrant subsystems (listed by the Sintran command @LIST-REENTRANT)
also require space on the segment files roughly equal to the size of
the :BPUN files.

All of these occupy space unavailable to RT programmers; the space
required for RT programs is additional to the above. If RT activity
varies much over time, some space is lost because the holes between
existing segments are not big enough to hold a large new segment.

An example:

A moderately sized system requires 320 (500 octal) pages for the
system segments (excluding background segments). There are 12
terminals, all running two bank systems, for a total of (128 + 5)
5 12 = 1596 pages. The sum of the sizes of compilers, editors,
utility systems like NOTIS and the Sort—Merge package is
approximately 500 pages. On average, ten RT processes with an
average of M0 pages each for code and data brings the minimum
size of the segment file to around 3000 pages. Depending on the
required safety margin, the size of the segment file(s) should be
between 3000 and 3500 pages.

These pages may be in one or more segment files. If SEGFILO:DATA is
smaller than this, a new segment file must he created.

ND—60.133.02

50 Real Time Guide
THE SEGMENT FILE

5.8.5 Summary

To create a new segment file:

1. Determine the amount of extra space needed
2. Log in as user SYSTEM
3. Find a big enough free are on page address

less than 1777778 by @DUMP~BIT—FILE
N. Create a file with @ALLOCATE-FILE
5. Define the file as a segment management file by the

*DEFINE-SEGMENT-FILE ,
6. Ensure that RT and SYSTEM have Rw access to the file
7. Set the segment file number to be used in the RT loader

Example:

Implementation of the Sibas database system requires 100 new pages
for Sibas itself. Sibas RT application programs are expected to fill
approximately 300 pages and other RT programs at least 300 pages
more than currently available. A 750 page segment file should be
made on directory PACK-TWO:

ENTER SYSTEM
PASSWORD:
0K
€DUMP~BIT~FILE PACK—THD
BLOCK NO: 0,,

000000 000001 000000 000000 000000 000000 000000 000000 000000
000010 000000 000000 000000 000000 000000 000000 000000 000000

@DU-BIT-FI P—THO 122

000000 000000 000000 000000 000000 000000 000000 000000 000000
000010 000000 000000 000000 000000 000000 000000 000000 000000

GDU-BlT—FI 9.1% 2, 2
000000 000000 000000 000000 000000 000000 000000 000000 000000
000010 000000 000000 000000 000000 000000 000000 000000 000000

ND-60.133.02

Real Time Guide
THE SEGMENT FILE

(There is an unused 750 page area from page 20B on:)

@ALLOCATEL-FILE
FILE NAME: (PACK«THO:)SEGFIL1:DATA
PAGE ADDRESS: g9
NUMBER OF PAGES: 753
@SINTRAN—SERVICE-PROGRAM
*Dmm—SEGmT—FILE
max? I
SAVE-AREA? ;
SEGMENT FILE 110.: _1_
SEGMENT FILE NAME: (PACK—wonsmrnhmn
“EXIT
GET—LOAD!!!

REAL-TIME LDADER, SINTRAN III — VERSION G

aSET-SEGMENT—FILR
SEBHENT FILE “0.: 1
aEXIT

ND—60.133.02

ND~600133.02

Real Time Guide

Real Time Guide 53
SYSTEM TABLES AND QUEUES

6 SYSTEM TABLES AND QUEUES

This chapter is not required reading by users who simply want to
load and execute a small program with no special requirements.
Readers unfamiliar with RT programming in general may want to skip
it during their first reading of this manual.

The RT monitor keeps descriptions of all RT programs and system
resources in various tables and queues. These are normally invisible
to programmers, and knowledge of their formats is not required to
write RT programs.

However, even a moderately advanced programmer must be familiar with
the concept of the RT description and to some degree the datafields.
Familiarity with the queues is required to determine why a system
does not perform as expected or goes into a deadlock. The section on
segment handling is background information about how SINTRAN III
uses the memory management system hardware to implement the
facilities available in monitor calls. Programmers have no direct
influence over segment administration.

RT programs and system resources are administered by the RT monitor.
The RT monitor runs on interrupt level 3 (see chapter 3) and is thus
independent of user RT programs.

6.1 Program management

Sintran handles RT descriptions, describing programs and datafields,
describing devices. TheSe are elements in a number of queues (linked
lists) handled by the RT monitor.

There is no descriptor of data visible to programmers. Although the
RT monitor handles data elements in the form of segments, the
descriptors of the segments are not used by RT programs except
indirectly through certain monitor calls and their properties are
hidden.

6.2 Queue elements

RT descriptions and datafields appear in five queues:

Queuei Queue elements: Queue head:

Monitor queue Datafields MQUEUE
Execution queue RT description BEXQU
Time queue RT description BTIMQU
Reservation queue Datafield RT description
Waiting queue RT description Datafield

ND—60.133.02

54 Real Time Guide
SYSTEM TABLES AND QUEUES

6.2.1 The RT description

Several RT programs can run concurrently. An RT program is active,
suspended or passive. It cannot be multiply active but may be executed
repeatedly. If an execution is requested when the program is already
active, it is set up for reexecution as soon as it ends. Several
requests to execute while it is active only causes one reexecution.
Repetitive execution at regular intervals can be specified.

Each RT program is described by an RT description which contains the
information required by the RT monitor to allocate CPU time and other
computer resources. The RT description represents the program in the
queues and tables, i.e., a program is in a queue if its RT description
is in the linked list forming the queue.

The RT description has a size of 31 (37B) words. The most accessed
data (15 words) are kept in resident memory, while the less accessed
are kept in the paging off area (POF). The layout is as follows:

OB: TLINK Time queue link location
1B: STATUS/PRIORITY Flags/Programmed priority
28: DTIM1 Absolute activation time if
BB: DTIMZ scheduled for later execution
NB: DTIN1 Interval between executions
5B: DTINZ if periodic program
68: STADR Start address of program
7B: SEGM1/SEGM2 One or two initial segments

1GB: WLINK Waiting queue link location
11B: ACTSEG1/ACTSEGZ One or two active segments
12B: ACTPRI Page table, protection ring, flags, interrupt

level (PCR register).
13B: BRESLINK Start of reservation queue
1MB: RSEGM Reentrant segment used
158: WINDOW Bit 0-7: Logical page address of the first

user — address used in file transfer.
Bit 8-15: Physical page address of device

buffer used in file transfer.
16B: RTDLGADDR Address of RT description part residing in POF
bl;

The part of the RT description in the POF area contains the values of
the register block, and a bitmap for the reentrant segment. The first
0 ~ 7B locations, containing registers, are called DPREG, DXREG,
DTREG, DAREG, DDREG, DLREG, DSREG and DBREG.

The locations 10 a 178 are called BITMAP, BITM1, BITMB, BITM3, BITMM,
BITMB, BITM6 and BITM7. The 8 words are the 128 bits of the bitmap.
Each bit indicates if a page of a reentrant segment should be fetched
from a private copy (ie., the page is modified) or fetched from the
reentrant segment (ie., page not modified).

The RT descriptions are stored in the RT description table. The size
of this table is determined at system generation time and limits the
number of RT programs in the system. An RT description is identified
by the address of the first word of its entry in the memory resident
part of the RT description table.

NDa60.133.02 Revision A

Real Time Guide 54A
SYSTEM TABLES AND QUEUES

The command processor and RT Loader use the table to translate a
symbolic name to an address. The RT description address is of
practical use when following a chain of descriptions, e.g., during
debugging or after a system crash.

ND—60.133.02 Revision A

Real Time Guide 55
SYSTEM TABLES AND QUEUES

Some monitor calls allow the calling program to use itself as an
argument by specifying RT description address zero. Default
parameter in commands is the background program controlling the
terminal from which the command was executed. In all commands
allocating a new descriptor, default action is to use the first free
entry in the table and in most other commands the name of the RT
program described is used.

A list of free HT description table entries is obtained through the
RT loader command *LIST—FREE-RTnDESCRIPTIONS. The description
address of an existing RT program is obtained through *WRITE—
PROGRAMS, which lists all program names, their description address
and initial segment numbers (word 7B in the RT description, right
byte first):

ear—Lonnsg
REAL—TIME LOADER, SINTRAN III - VERSION G
'LIST—FREE—RT—DESCRIPTIONS
OUT?UT FILE: TERMINAL

40607 40641 40673 40725 40757 41011 41043 41075
41127 41161 41213 41245 41277 41331 41363 41415
41447 41501 41533 41565 41617 41651 41703 41735
41767 42021 42053 42105 42137 42171 I

“WRITE-PROGRAMS
OUTPUT FILE: IggyinnL

DUMMY 35153 0 0
STSIN 35205 3 5RTERR 35237 1n 5
RTSLI 35271 0 0
RWRT1 35007 6 0
RWRTZ 350u1 6 0
FDRT1 35573 0 0
RWRT9 35525 6 0
FIXRT 35557 0 0
DUMMZ 35611 0 0
SPRT1 35643 25 0
BAK01 36013 3 60
BAKO9 36045 3 62
BAK1O 36077 3 64
BAK11 36131 3 66
BAK12 36163 3 70BAK13 36215 3 72
BAK14 36247 3 7n
BAK15 36301 3 76
BCH01 40065 3 202
TIMRT u0151 0 0

A list of the RT programs in the system may also be obtained through
the Sintran command éLIST-RT-PROGRAMS. This returns some additional
information: for each program the priority, the state of the
program, the current program counter, the time left and the interval
in case the program is periodic, and the actual segment numbers
(word 21B in the RT description, left byte first):

ND~60.133.02

56 Real Time Guide
SYSTEM TABLES AND QUEUES

@LIST—RT—PROGRAMS 1
OUTPUT FILE: TERMINAL!

NAME RT—DESC PRIOR STATUS P-REG T.LEFT INTERV ACTUAL SEGM

DUMMY 35153 0 READY 3136* 0 0
STSIN 35205 0 PASSIVE 147507 5 3
RTERR 35237 64 IO—WAIT 107425 5 14
RTSLI 35271 128 PASSIVE 12375 O O 0 O
ACCRT 35323 64 PASSIVE 0 0 0
RWRT1 35407 64 PASSIVE 6112 0 6
RWRTZ 35441 64 PASSIVE 6112 5 6
FDRT1 35473 64 PASSIVE 53007 0 0
RWRT9 35525 64 PASSIVE 0 0 0
FIXRT 35557 104 PASSIVE O 0 0
DUMMZ 35611 0 READY 0 0 0
SPRT1 35643 44 W—QUEUE 47173 0 36
BAKO1 36013 16 PASSIVE 113161 60 3
BAK09 36045 16 PASSIVE 102140 62 3
BAK10 36077 16 IO—WAIT 21401 ‘ 64 65
BAK11 36131 16 IO—WAIT 132747 66 3
BAK12 36163 16 PASSIVE 113161 70 3
BAK13 36215 48 READY 7727 72 3
BAK14 36247 16 IO-WAIT 132747 74 3
BAK15 36301 48 IO—WAIT 21401 76 77
BCH01 40065 16 IO-WAIT 101330 202 3
TIMRT 40151 64 PASSIVE 5320 0 1 ', 0 0

6.2.2 The RT name

The alphanumeric identification of an RT program may have up to 7
characters (A to Z uppercase and O to 9).

If a source program has a longer name, most high level languages use
the first seven characters name when identifying external symbols,
while MAC uses the last five characters. NORD-PL uses in the
translation to MAC the first five characters.

Unlike Sintran commands and file names, RT names cannot be
abbreviated.

6.2.3 Translating a name into an RT description address

An RT name may be translated into an RT description address by the
monitor call GRTDA (MON 151). The program name is specified as a
character string, terminated by an apostrophe and the RT description
address is returned in the A register. If the program name is not
known, —1 is returned.

ND—60.133.02

Real Time Guide 57
SYSTEM TABLES AND QUEUES

GRTDA=151

LDA (ADRNM % A reg = address of parameter list
MON GRTDA % MON 151
STA RTADR % Store the RT description address

ADRNAM, NAME
NAME, 'PROZ'

)FILL

In the corresponding Fortran function the user must remember to
supply the terminating apostrophe:

INTEGER RTADR,GRTDA

RTADR = GRTDA(SHPR02')

The RT description address returned by this call is used to identify
the program in all routine calls where the program is used as a
parameter. As a special case, a program can obtain its own RT
description address through GETRT (MON 30). Fortran syntax requires
that a dummy argument be supplied. The RT description address is
returned in the A register, or in Fortran as a function value:

MAC:
GETRT:30

MON GETRT
STA RTADR

Fortran:
RTADR = GETRT(O)

6.2.A Translating an RT description address into a name

The name of a RT program, with a given HT description, can be
obtained by a monitor call or a command:

Sintran command: @GET—RT-NAME <RT address)
Monitor call: MON 152 1 GRTNA

Command parameter:

(RT address> — the RT description address of an existing
program

The program name is written on the terminal. A program may call MON
GRTNA with the A register pointing to the parameter list, which
consists of the RT description address. The name is returned in the
T, A and D registers in a packed format, 6 bits per character. The
name is right justified and space filled. The compression to 6 bits
per character is performed by "folding" the ASCII character set,
ignoring bit 6. The ASCII codes from 100B to 1HOB are transformed to

ND-60.133.02

58 Real Time Guide
SYSTEM TABLES AND QUEUES

OB to HOB; the range AlB to 77B is unmodified. The uppermost 6 bits
in the T register are unused.

GRTNA:152

LDA (RTADR
MON GRTNA % MON 152, name packed in TAD
STF PCKD
COPY ST DA
SAX D
SHD SEE A ZIN
JPL UPCK % Store first
LDD PCKD - % Fetch TA to AD
AND (17
SHD 2
JPL UPCK
SHD 6
JPL UPCK
SHD 6
JPL UPCK
LDD PCKD+1
AND (3
SHD A
JPL UPCK
SHD 6
JPL UPCK
SHD 6
JPL UPCK
SAA A7
JPL UPCK

Store second

Store third'

Store fourth
Fetch AD registers3

9
.1

3
9

.3
t

Store fifth,

Store sixth‘

Store seventh

‘
a
fi
fl
é
fl
‘
c
fi

Terminate name with '

UPCK, JAZ NOCHAR
SAT 40
SKP IF SA LT DT
AAA 100
AAX 1
LDT UNPCK
SBYT % Store third

NOCHAR, EXIT I ' ;

RTADR, (PROGR
PCKD,O;O;O
)FILL

A program may fetch its own name by giving RT description address
zero. If no RT description with the specified address exists, or the
program is unnamed, the TAD registers are zero. The D register
should be checked, as a short name (one or two characters) may leave
both the T and A registers with a zero value.

GRTNA is not available in the Fortran library. An assembler routine
must be written to use the function from a Fortran program.

ND—60.133.02

Real Time Guide 59
SYSTEM TABLES AND QUEUES

6.2.5 Reading the RT description

The most important data in the RT description, including the entire
reservation queue of the program, can be displayed symbolically by
the SINTRAN III command

@LIST-RT-DESCHIPTION <RT name>

(RT name may also be an RT description address). This command is
available to all users. The segment numbers are listed with the
leftmost byte first.

QLIST—RT-DESCRIPTION BAK13
RING:2 PRIORITY: “8

LAST STARTED: 1 HINS 29 SECS
START ADDRESS: 76055, SEGMENTS: 77 3
P: 17507
X: “6773
T: 1100
A: “0010
D: 0
L: 17h02
S: ”1
B: 700"?
READY
ACTUAL SEGH.: 77 3 BACKGROUND
REENTRANT SEGMENT: 211
RESERVED DATAFIELDS:

23201
23126

The complete RT description may be listed by user SYSTEM by the
@SINTRAN-SERVICEnPROGRAM command *DUMP—RT-DESCRIPTION:

ND~60.133.02

60 Real Time Guide
SYSTEM TABLES AND QUEUES

@SINTR—SERVICE-PROGRAM
'DUHP—RT-DESCRIPTION mum
mm, IMAGE, SAVE—AREA on snows": 5
0mm: FILE: TERMINAL.

TLINK: 0
STATUS: 1100
DTIHl: O
DTIHZ: 0
DTIN1: 0
DTINZ: O
STADR: 23003
SEEM: 37003
WLIRK: O
ACTSEG: 0
ACTPRI: 100000
BRESLINK: NHZSO
RSEGH: 0
HINDU“: 126
RTDLGADD: 106050
DPREG: 17507
DXREG: H6773
DTREG: 1100
DAREG: H0010
DDREG: 0
DLREG: 17302
DSREG: “1
DBREG: 700M?
BITHAP: 0
BITH1: 0
BITHZ: 0
BITMB: 0
BITMR: 0
BITMS: 0
BITHS: O
BITH7: 0
*EXIT

The @SINTRAN—SERVICE-PROGRAM is not available to user RT.

An RT program may read the RT description of any program, including
its own, by the monitor call RTDSC (MON 27). The argument list is
pointed to by the A register and contains the RT description address
and the address of a 26 element integer array where the RT description
is returned.

MON RTDSC does have an error return; if no RT description is available
as specified in the first argument, —1 is returned in the A register
and return is to the first location following the monitor call. If no
error occurs, execution continues at the second location following the
call and the number of devices connected to the program through CONCT
(see section 9.3.1) is returned in the A register.

NDm60.133.02 Revision A

Real Time Guide 61
SYSTEM TABLES AND QUEUES, '

RTDSC=27

LDA (ARG
MON RTDSC
JMP ERROR % Error return - go to error handler
STA NODEV 1 Save number of devices connected

ARG, (PRO % Dump description of program PRO
RTDES % Address of 26 element array

RTDES, % Space for RT description

RTDES+32/ % Skip 328 (z 26 decimal) locations

6.2.6 The segments of an RT program

The RT description has room for two segment numbers in word 7; the
upper and lower bytes are denoted SEGM1 and; SEGMZ. These are the
segments used initially when the program is imitated. One or both of
these may be exchanged with another segment through the monitor
calls MCALL or MEXIT. The use of these calls is described in chapter
14.

The segments currently in use, whether iinitial or fetched by
MCALL/MEXIT, are kept in the ACTSEG1 and ACTSEGZ locations.

If only one segment is in use the other segment number is zero.
(This is not interpreted as segment number zero, resident memory, or
as RTCOMMON but is treated as a special case by the RT monitor.)

The segment numbers of a program are listed by the RT loader command
*WRITE—PROGRAMS. ‘

6.2.7 The various fields of the RT description

TLINK is the link location used for the time queue. Because this
queue uses its own link location, it is independent of the
other queues in which the RT description may be linked
through the WLINK location.

STATUS contains the ring and 5 flags:
bits 108,118: Initial ring. See also the ACTPRI word.
bit 138: SABS, scheduled at an absolute time
bit 1&8: SINT, periodic program
bit 158: SRWAIT, in RTWAIT
bit 168: SREP, reexecute after termination
bit 17B: SIOWT” waiting for I/O transfer

PRIORITY (bits 0:7) is the user assigned priority (programmed or
through command)

ND«60.133.02

62

DTIM1/2

DTINl/Z

STADR

SEGMl/Z

WLINK

ACTSEG

ACTPRI

BRESLINK

RSEGM

WINDOW

RTDLGADR

D?REG

Real Time Guide
SYSTEM TABLES AND QUEUES

internal time When program is scheduled for execution, in
basic time units since system start.

interval of periodic program in basic time units

initial start address (main entry point)

initial segments. A value of zero in either half indicates
that the program uses only one segment. SEGM1,2 is not
modified if one or both segments are replaced during
execution.

link location for waiting queues or execution queue. Because
there is only one link location for all queues, the program
may only be in one queue at a time. The time queue has its
own link location, so a program may be in the time queue and
another queue at the same time.

the segments in use at the moment. When the program is
started, ACTSEG is equal to SEGMl/Z, but the initial segments
may be replaced with others through monitor calls (see
chapter 1“). Like in the SEGMl/Z location, a value of zero in
either half indicates the program has only one segment.

actual ring, page table, level, PTs and flags

bits 0:1 Actual ring. Equal to the ring in the STATUS
word.

bit 2 Always 0.
bits 3:6 Interrupt level on which the program runs; 1 for

all user RT programs.
bit 7:108 Alternative page table, set by ALTON. Initially,

when: program is loaded, equal to the normal page
table.

bit 11B:13B Normal page table, i.e. the page table of the
segment of the currently executing instruction.

bit 1HB:15B Initial page table, i.e. the page table of the
code_segment.

bit 168 SRTOFF, inhibit starting of this program.
bit 178 SBACKGR, background program.

head of reservation queue containing datafields reserved by
this program

segment number of reentrant segment, if any, otherwise zero.

is used by the I/O system for transferring data from a device
buffer to the program’s data area. It does not concern the RT
programmer.

address of the RT description part residing in POF.

one location for each register in the register block. When
program execution is interrupted by a higher priority
program, while waiting for an I/O transfer, or if HOLD or
RTWT are being used, all its register contents are saved.

ND~60.133.02 Revision A

Real Time Guide 63
SYSTEM TABLES AND QUEUES

BITMAP and BITMl—B is a 128 bit wide bitmap, one bit for each
logical page, used in a reentrant segment. If the bit is
reset, the corresponding page used is in a reentrant segment
which may be used by a number of programs concurrently. If
the bit is set, the private copy of the page in one of the
program’s own segments is used.

6.2.8 Modifying the RT description

Some fields in the RT description are indirectly modified by the RT
program itself or another program9 through monitor calls affecting
e.g. priority or segments. A few fields contain static information
that is not normally modifyable.

User SYSTEM may modify any word in an RT description in octal format
through the SINTRAN III command @LOOK-AT RESIDENT. The user must
calculate the address from the RT description address and the
displacement. This is highly dangerous and strongly discouraged.
Modifications are effective until the next restart ("warm" start).

A few subfields can be modified through the RT Loader:

*CHANGE-RT—DESCRIPTION
RT—PROGRAH: MAIN?
PRIORITY: 3g
SEGMENT ONE: g§§
SEGMENT THU:
START ADDRESS:
RING:
INITIAL PAGE TABLE:
ALTERNATIVE PAGE TABLE:
5

This command can modify the locations PRIORITY, STADR, SEGMl, SEGMZ
and ACTPRI. Default is no modification. The segment numbers must be
existing segments, but there is no check to ensure that the start
address is within the segment(s) specified.

6.3 Datafielgg

Devices are described in datafields whose size and format depends on
the device. All datafields have 7 standard locations whose layout and
addressing that are independent of device type. The datafield is
identified by the address of the first standard location (displacement
O) and they have displacements 0 to 6 from this address. The
displacements of device dependent fields are negative or above 6.

ND-60.133.02 Revision A:

6H Real Time Guide
: SYSTEM TABLES AND QUEUES

The device independent fields are:

RESLINK : Link of reserved resources
RTRES : Reserving RT program
BWLINK Head of waiting queue
TYPRING Device type and ring
ISTATE State of the device
MLINK L Monitor queue iink
MFUNC Monitor level function address

All devices reserved by an RT program are linked through the RESLINK
location. This chain is headed by the BRESLINK in the RT description.

RTRES is the RT description address of the program currently reserving
the device. If RTRES is zero the device is free for use.

The BHLINK location is the head of the link of RT programs that have
requested, but not been granted, access to the device.

The TYPRING word contains in bits 0 and 1 the lowest ring of programs
to reserve the device. lf'a program is running in a lower ring than
indicated by the TYPRING, a request to reserve the device is not
honored. The uppermost 13 bits contain flags describing the device.

The contents of ISTATE are to some extent device dependent, but in
general 0 indicates idle, 1 indicates busy, —1 indicates "no wait"
mode.

MLINK is the link location for the monitor queue.

MFUNC is the address to a monitor routine to be started after the
datafield has been removed from the monitor queue.

There is no commands available to display the entire datafield of a
device, and a program cannot read the datafield directly. User SYSTEM
can use the @SINTRAN—SERVICE-PROGRAM command *CHANGE-DATAFIELD to
inspect the various subfields, identified by symbolic names. The
symbolic names of the device dependent subfields are given Sintran
System Documentation, Appendix A — Data Fields. (This appendix is
delivered separately as publication no. ND—60.112.)

User SYSTEM can also use the @LOOK-AT RESIDENT command to inspect any
data field. This is the only way to inspect datafields with no
corresponding unit number. Subfields must be addressed numerically.

The @SINTRAN-SERVICE~PROGRAM and @LOOK-AT RESIDENT are not available
to user RT. ‘

6.3.1 Modifying locations in the datafield

User RT has no means of directly modifying locations in any datafield.

User SYSTEM may use the @LOOK-AT RESIDENT command to modify any word
in a data field. The user is responsible for calculating the right
address and the method is highly unsafe and is strongly discouraged.
Modifications last until the system is restarted (warm start).

ND460.133.02 Revision A

Real Time Guide
SYSTEM TABLES AND QUEUES

the @SINTRAN—SER
(displacements)
used. This all

"warm start"

User SYSTEM may also use
symbolically named subfields
*CHANGE-DATAFIELD command is
memory image (recovered at a
(recovered at a "cold start").

6.4 The queues

6.”.1 The execution queue

The execution queue contains RT descriptions
execution when the CPU is available.
resources have been satisfied.

0
All ot

The execution queue is linked through the WLINK
description, which contains the address of th
next program in the queue. The head of the queu
location 138 in the resident part of Sintran
the last element in the queue points back to BE

65

VICE-PROGRAM to modify
in a datafield; the

ows modification to the
) and the save area

f programs ready for
her requests for system

location in the RT
e RT description of the
e, BEXQU, is found in
. The WLINK location of
XQU.

The queue is ordered with respect to priority.
program is first in the queue. A program is i
queue by the RT call and remains until it com
removed through the ABORT call or enters anot
resource. As soon as the resource is granted, t
execution queue.

When a program enters the queue it is plac
lower priority and behind programs with the sam

A program in the execution queue may be waiting
to complete. It will keep its position in the q
in the RT description will be set. When the
execution queue for a program to be started
SIOWT bit set will be skipped.

The RT description address of the program curre
in location 7 and 108 in resident Sintran. (The
during segment adminstration by the monitor.)
program is in IOWAIT, the currently executing p
in the execution queue.

ND—60.l33.02 Revision A

The highest priority
nitially entered in the
plates, is forcefully
her queue waiting for a
he program reenters the

ed before programs with
e or higher priority.

for an I/O operation
ueue, but the SIOWT bit
monitor searches the

, all programs with the

ntly executing is found
se two are equal except
If a higher priority
rogram is not the first

66

BEXQU

Real Time Guide
SYSTEM TABLES AND QUEUES

Prog C
Frog A RT descr
RT descr

Frog B
RT descr

r“J//

Fig. 10. Execution queue

6.A.2 The monitor quet1e

When an I/O operatic
the monitor queue v
requesting program SL
restarting the RT prog

The head of the monitc
resident Sintran. T?
recently inserted in t
MLINK location in the
least recently inserts

The
an
the
the

queue is handled i
element is fast,
end. The monitor c
overhead is tolera

6.H.3 The waiting queL

Each device may be re
several programs may
granted access to the
Each device has its on
in the datafield.

The queue consists of
the RT description,
requesting the device.
programs in the queue
same or higher priorit
points back to the dat

n is requested, the data field is entered into
mile the operation is performed and the
spended. MFUNC will point to a monitor routine
ram when the operation is complete.

r queue, MQUEUE, is found in location 11B in
is points to the datafield of the device most
he queue. The elements are linked through the
datafield. The MLINK location of the datafield
d contains the value -1.

n a first in, first out manner. Insertion of
removal requires that the queue is searched to
ueue rarely contains more than one element, so
Lble.

xes

served by one RT program at a time, but
have requested the device. Programs not yet

device are linked together in a waiting queue.
1n waiting queue, headed by the BWLINK location

programs linked through the WLINK location in
ordered by the priority of the programs
A program entering the queue is placed before

‘ with lower priority, but after those with the
y. The WLINK of the last program in the queue
afield of the device.

ND~60.133.02

Real Time Guide
SYSTEM TABLES AND QUEUES

67

'Batafield in a N
reservation queue

WLINK -
" Prog C

RT descr
Prog A
RT descr

v

Fig. 11“ Waiting queu (D

A high priority program does not force a
currently using the device to give up
applies only to the order of waiting. There
force a program to give up a device (see as

The RTRES location of the datafield points
the program currently using the device. 0 i
is available.

6.”.u The reservation queues

Each RT program may have reserved several d
in a reservation queue, one for each
devices are linked in a list headed by the
RT description and go through the
datafields. The last element in the
reserving RT program.

R
que

ND«60.133.02

lower priority program
the device. The priority
are monitor calls to

ction 10.6).

to the RT description of
ndicates that the device

evices. These are queued
RT program. The reserved

BRESLINK location in the
ESLINK location of the
as points back to the

Real Time Guide
SYSTEM TABLES AND QUEUES

Mm...

Fi

/ \

PROG 1 \
RT description

BRESLINK

Device 2
\\~ datafield

Device 1 RESLINK-~_____,.
datafield

RESLINK ~..

g. 12. Reservation queue

The reservation queu
DESCRIPTION command.
datafield address.

6.4.5 The time queue

A program can be sched
time in the future.
time queue.

This queue is handled
waiting for a resource
the clock to reach a
execution queue.

is
link

last
with

found in

The time queue
Sintran. It is
description; the
queue is ordered
program is
description.

e of a program can be listed by the @LIST—RT-
Reserved devices are identified by their

uled to start or continue execution at some
Until this time the RT description is in the

similarly to a waiting queue, but rather than
to be available, the programs are waiting for

certain time when the program enters the

headed by BTIMQU, location 12B in resident
ed through the TLINK location in the RT
element contains ~1 in the TLINK location. The
respect to time — the scheduling time for each

the DTIMl and DTIM2 locations in the RT

ND—60.133.02

Real Time Guide
SYSTEM TABLES AND QUEUES

:31
9000

69

15000

110 30

11000

Fig. 13. Time queue

Because the time queue has its own location
program can be in the time queue and also i
a waiting queue. (The execution and
through the WLINK location in the RT descri
the program
waiting time has expired. If the program is
is
it is entered in the execution queue immedi

Commands and monitor calls can specify time
time but this is converted to absolute time
time units, in the DTIM locations.

6.5 The operations perfcrmed on the queues

6.5.1 Initial program activation

in the time queue does not a

in the RT description, a
n the execution queue or

waiting queues are linked
ption.) The presence of
ffect execution until the
active at that time it

set up for another execution as soon as it completes, otherwise
ately.

relative to the current
, represented in internal

When a program is initially activated through the RT call,

the execution queue is scanned fro
program with a lower priority is found.
the RT description is entered in the ex
program.
if the new program enters
highest priority in the queue
of the program that was
description. The page tables,

the queue
and is gr

program is allowed to start execution
otherwise, the program remains inacti
until all programs ahead of it have lef

ND«60.133.02

executing
PCR register

block are loaded with new values for the new

m the beginning until a

ecution queue before this

at the front, it has the
anted the CPU. The status

is saved in the RT
and the register

program and the new

ve in
t the

the execution queue
queue.

70

6.5.2 Requesting a dev

When a device is reque

the RTRES location
the device is allo
the chain starting
descriptions in th
WLINK in the las
program,
WLINK of the reque
of the device.

6.5.3 Reserving a devi

When a device is grant

the BWLINK of the
waiting queue of t
BWLINK is set to p
the RTRES location
granted the device
the BRESLINK locat
RESLINK of the
BRESLINK
the execution qu
with a lower prior
the RT description
program.

6.5.“ Releasing a devi

When an RT program re
or the device is force

- the device is unli
BRESLINK or the R
released device to

- RESLINK and RTRE
queue is empty, ot
program in the wai

6.5.5 Terminating a pr

Real Time Guide
SYSTEM TABLES AND QUEUES

ice

sted through the RESRV monitor call,

in the datafield is inspected. If it is zero,
gated immediately. Otherwise
at BWLINK is followed through WLINK in the RT

3 waiting queue to the end,
t element is set to point to the requesting RT

sting program is set to point to the datafield

ce

ed to a program,

datafield is moved to the next element in the
ac device (if the waiting queue is empty,
oint to the datafield itself)
is set to point to the RT program being

9

ion of the RT description is
datafield and

copied to the
the datafield address moved to

sue is scanned from the start until a program
ity is found,
is entered in the execution queue before this

ce

leases a device through the RELES monitor call
fully taken by the PRLS call,

nked from the reservation queue by setting
ESLINK location of the datafield preceding the
the one following the released device,

S of the datafield is set to 0 if the waiting

A program may termina
monitor
either case,

call or be

- the program is sea
~ it is unlinked f

WLINK location of
the description f0

— all devices in the
location are relea

herwise the device is granted to the first
ting queue.

ogram

te voluntarily through the EXIT or QERMS
forcefully terminated by the ABORT call. In

rched for in the execution and waiting queues,
rom the queue where it is found by setting the
the RT description preceding it to point to
llowing the terminating program,
reservation queue linked to

sed.
the BRESLINK

ND~60.133.02

Real Time Guide
SYSTEM TABLES AND QUEUES

6.5.§_§cheduling a program for execution

A program is scheduled for execution at a s;
thrABSET or relative to the current time

program may suspend itself for a certain
continue execution when the period expires,
These are treated the same way,

if the activation time is
converted to absolute internal time,
the time queue
with the same or later activation time,
the

specifit

is searched for the f.

71

)ecified time through the
~ough the SET call. A
period and automatically
through the HOLD call.

ad relatively, this is

Lrst program in the queue

program to be activated is inserted before this program, by
setting the TLINK location of the program to be activated to
point to the found program and the TLINI
preceding the found one to the program
the absolute time
DTIMZ locations of the program

6.5.7 Activating a program in the time queu

of activation is a

(location of the program
:0 be activated
itered into the DTIM1 and

W

Every 20 ms an interrupt on level 13 sta
queue. If the internal time is equal to or
DTIM2 in the first program in the queu
moved to the execution queue,

BTIMQ is updated to point to the next p
one pointed to by TLINK of the first pr
if the unlinked program is already in t
queue, the repeat bit in the RT de
reexecuted as soon as it completes,
otherwise it is entered in the ex
manner as when a program is started imm
DTIME and DTIMZ of the new first eleme
are checked to see if this program shou
which case the same action is taken w
repeated until a program is found w
greater than the current time.

"ts which checks the time
larger than DTIM1 and

a, this program should be

rogram in the queue (the
ogram in the queue),
ne execution or a waiting
scription is set so it is

ecution queue in the same
ediately
nt of the execution queue
1d also be activated, in
ith this program. This is
ith an activation time

ND~60.133.02

Real Time Guide
SYSTEM TABLES AND QUEUES

6.6 Segment management

The queues used for allocating memory are completely invisible to
programmers. They can be influenced as an indirect effect of other
commands or with a few special commands (FIX, FIXC, UNFIX), but in
most cases queue manipulation is implicit in the ordinary execution
of the program. The segment manipulation routines detect situations
requiring queue modification.

The page tables described in chapter 3 must be considered a part of
the system tables used for segment management. This chapter
describes the software tables containing the information kept in the
hardware tables.

6.7 Queue elements

6.7.1 Segment table entry

Each segment in the system is described by a 5 word descriptor in
the segment table. The size of the table is equal to the number of
segments in the system; it is a system generation parameter with a
maximum of 376B including the system included segments.

The words of a descriptor are

SEGLINK link location to form the segment queue
BPAGLINK head of the segment's page queue
LOGADR logical start page of segment, segment size
MADR start page of segment within segment file
FLAG miscellaneous switches

LOGADR has 3 subfields:

bits 0:5 : first virtual page number
bits 6:7 : page table
bits 108:168 : size of segment in pages

MADR contains the page number within the segment file in the lower
1” bits and the segment file number in the upper 2 bits.

FLAG contains the following flags:

bit 0 : 50K — segment has sufficient number of pages
in memory to start execution

bit 1 : SDEMAND — demand segment if set
bit 2 : SFIX - fixed in physical memory
bit 3 : BINHB - inhibit use (RT loader scratch variable)
bit 4 : SSYSEGM - system segment
bit 5 : SSPROT — protect flag
bit 6 : SSREEP — reentrant subsystem segment
bits 7:1OB : Not used

ND-60.133.02

Real Time Guide 73
SYSTEM TABLES AND QUEUES

bits 11B:17B : Protect bits (RWF), ring bits

A segment table entry is selected by the segment number in the RT
description or by a call parameter.

The segment table entry can be printed in symbolic format by the
SINTRAN III command @LIST—SEGMENT. This command is available to all
users.

@LISTmSEGMENT 210

FIRST PAGE: 200 LENGTH: 33
SEG.FTLE: 0 MASS, ADR: 1u13
WPM RPM FPM REE—SUB DEMAND OK

FIRST PAGE gives the page table number (leftmost digit) and the
first logical page number (two rightmost digits) on that table.
LENGTH gives the segment size, and MASS. ADR the page number within
the segment file. (In this system, segment 210 is a reentrant
subsystem containing the BASIC compiler, all access is permitted and
like all reentrant subsystems it is a demand segment.)

A numerical dump can be written by user SYSTEM through the @SINTRAN—
SERVICE—PROGRAM command *DUMP»SEGMENT—TABLE-ENTRY.

@SINTR-SERVICEZEBOGRAM

*DUMP»SEGMENT-TABLE-ENTRY
SEGMENT No.:_glg
MEMORY, IMAGE, SAVE—AREA on SEGMENT? g
OUTPUT FILE: TERMIggg
SEGLINK: 0
BPAGELINK: 0
LOGADR: 15600
MADR: 1413
FLAG: 160103

The third way to list the information about the segment is the RT—
LOADER command ”WRITE—SEGMENT:

@RT-LQADER

REAL-TIME LOADER, SINTRAN III — VERSION G

*WRITEeSEGMENT 210 TERMINAL

210 0 65777 ,1fl13 0 0 2 RFW DEMAND REE-SUB
*

If default is used for the segment number, information about all
segments is listed and a heading identifying the columns is
supplied. S.NO. indicates segment number, L.ADR and U.ADR the lower
and upper logical address of the segment, respectively, M.ADR is the
page number within the segment file of the first page in the
segment, SF is the segment file number, RI the ring and PT the page
table to be used.

ND«60.133.02

74 Real Time Guide
SYSTEM TABLES AND QUEUES

*WRITE—SEGMENT,,,
S.NO. L.ADR U.ADR M.ADR SF RI PT

2 0 73777 0 0 2 1 BEN DEMAND
3 100000 173777 40 0 2 0 BEN DEMAND
4 100000 173777 76 O 2 0 BEN DEMAND
5 74000 77777 36 O 2 O RFW NON DEMAND
6 100000 173777 134 O 2 0 BEN DEMAND
7 100000 123777 172 O 2 0 BEN DEMAND

1O 0 77777 204 0 2 2 BEN DEMAND
11 0 7777 244 0 2 1 BEN DEMAND
12 0 0 EMPTY SEGMENT
13 100000 147777 255 0 2 0 BEN DEMAND
14 100000 111777 250 O 2 0 RFW DEMAND

200 0 177777 5613 0 O 2 BEN DEMAND
201 70000 77777 5713 0 2 0 BEN DEMAND
202 0 177777 5717 O 0 2 RFW DEMAND
203 0 21777 773 0 0 2 BEN DEMAND REE—SUB
204 0 77777 1004 O 0 2 RFW DEMAND REE—SUB
207 36000 177777 1307 O O 2 RFW DEMAND REE«SUB

RTCOMMON AREA: 172000 177777

6.7.2 Memory Map Table entry

Each page in physical memory has a three word entry in the Memory
Map Table describing the use of that page. The three words are

PAGLINK link location for page queue
ALOGNO logical number of page,
PAGPHYS physical number of page and flags

In Sintran VSE/VSE-SOO the Memory Map Table entry size is four
words; PAGPHYS is two words.

The size of the Memory Map Table is approximately equal to the size,
in pages, of physical memory in the configuration.

6.8 Ihe queues

6.8.1 The segment queue

All segments with pages in memory are linked together in the Segment
queue which is ordered with respect to access. The most recently
used segment is first in of the queue, the least recently used one
is last.

The queue is reorganized (if appropriate) every time execution
switches to a new segment because of a transfer of control by the
executing program or because another program is activated.

ND-60.133.02

Real Time Guide 75
SYSTEM TABLES AND QUEUES

6.8.2 The page queue

Each segment has a queue of pages starting at the BPAGLINK of the
segment description. This queue contains the pages of the segment
present in physical memory, linked through the PAGLINK location.

The ALOGNO gives the logical number of the page, PAGEPHYS the
physical number. When the page entries are entered into the PTs,
PAGPHYS is entered in the PT entry selected by ALOGNO.

Pages belonging to the segment that are not in the page queue are
swapped out on disk. If the segment has no pages in memory — because
no program in the segment is active or all pages have been removed
from memory - the segment entry is removed from the segment queue.

The most recently used page is first in the queue (closest to the
segment entry), the least recently used one is last. When a page is
removed to make room for another one, the least recently used page
is swapped out first. It is also removed from the page queue (and
the hardware page tables if present there).

6.9 The operations performed on the queues

6.9.1 Placing a segment in memory

A segment is placed in memory if a program in the segment is started
(RT call) or an explicit monitor call requests the segment (FIX,
FIXC cause immediate transfer from disk; MCALL, MEXIT, REENT modify
an RT description so that access to these segments will cause a page
fault and initiate a transfer).

~ the appropriate segment table entry is found using the segment
number in the RT description as an index to the table,

— if a nondemand segment (indicated in the segment table entry),
all pages of the segment are read from disk and entered in the
page queue,

— the entry found is inserted as the first element in the segment
queue,

~ for each element in the page queue, the physical page number and
flags are entered into the page table determined by the logical
page number and page table index. All other page table entries
are zeroed and cause a page fault interrupt if addressed.

6.9.2 Removing a segment from the page tables

Every time the contents of the page tables are updated for another
segment, the status of the segment(s) presently using them must be
saved. This involves

— going through the page queue(s) of the previous segment, saving
the page table entry (including PGU and WT? bits) in the memory
map entry.

ND—60.133.02

76 Real Time Guide
SYSTEM TABLES AND QUEUES

6.9.3 Page fault handling

A page fault occurs if the page table entry is zero, indicating that
the page is not in memory but must be fetched from disk. The page is
therefore not present in the segment's page queue. An interrupt to
level 1” starts a routine to fetch the page and update the page
queue,

— the validity of the addressed page number is checked (between
the first virtual page number and the sum of the first and the
size, found in the segment table entry). If invalid, the
requesting program is aborted,

— an available physical memory page is found,
- a disk transfer to this page is initiated from the disk address

calculated as the sum of the start address of the segment and
the logical page number,

— the next program in the execution queue is started while the
transfer takes place.

ND—60.133.02

Real Time Guide 77
PROGRAM COMPILATION AND LOADING

7 PROGRAM COMPILATION AND LOADING

7.1 The source program

A program using RT facilities looks like other programs written in
the same language. Almost any program can be executed as an RT
program if the appropriate commands for reserving devices and/or
files are given from a terminal before execution is started.

7.1.1 Operating system service requests

However the program usually knows when the program is written that
RT facilities are required. Sintran III provides such facilities
through a set of monitor calls, special machine instructions
identifying a request to the operating system. High level languages
commonly used for RT programming (Fortran, Pascal, Plano) have a set
of subroutines (procedures) or functions, which will perform the
monitor call at execution time. These must be accessed as external
routines. Declaration of external (imported) routines is language
dependent.

Assembler (MAC) or NORD-PL programmers request RT facilities by
using the MON instruction. As the argument transfer mechanism varies
with the monitor call, the MAC call sequence is described for all
monitor calls. Users of other languages must know the call sequence
if a routine call corresponding to a required function is not
available. In that case, an assembler routine can be written and
linked to the high level program. Details of how parameters are
transferred to external routines are given in the language manuals.

Note the following points about the call sequence:

~ For monitor calls available to background programs, argument
transfer is the same in background and RT

- Most monitor calls available to background programs return to
the second location after the MON instruction ("skip return") in
a nbrmaf‘ return, but to the first location in an error return.
File system error codes are returned in the A register.

— Most monitor calls available in RT programs only return to the
first location after the MON instruction. Errors cause an error
message on the error device (default: console) or leave —1 in
the A register. Serious errors terminate the program.

- Most monitor calls available to background programs expect
arguments in one or more of the T, A, D and X registers. If the
argument is compound (string, array), the address of the
argument is found in a register. A result, function or status
value is found in the A register.

- Most monitor calls available to RT programs only expect the A
register to point to an argument list containing the addresses
of the arguments.

ND«60.133.02

?8 Real Time Guide
PROGRAM COMPILATION AND LOADING

There are exceptions to these rules; these are mentioned when the
particular call is described.

7.1.2 Rotation of special properties

Extensions to the standard syntax of some high level languages,
particularly Fortan, allows the (initial) program priority to be
specified at compile time. This is done in the Fortran PROGRAM
statement:

PROGRAM RTTEST, U0

If there is no PROGRAM statement, the program name is MAIN (FTN) or
#MAIN (the FORTRAN~1OO ANSI~77 compiler) and the priority is one;
there can be only one "unnamed" program in the system (otherwise
there would be a name conflict). The priority of an unnamed program
must be set by a command or another program.

7.1.3 Compile time initialization of variables

Fortran allows the specification of initial variable values through
the DATA statement; most other languages have similar mechanisms.

These initial values are valid the first time the program is
executed. However, when the program terminates, the current values
are the initial ones in the next execution. There is no fresh backup
copy of the initial program version, analogous to the :PROG file of
a background program.

Therefore, if a variable should have an initial value every time the
program is executed, the variable must be explicitly assigned a
value (through an assignment statement) before the variable is
otherwise used by the program.

7.1.u Variable number of parameters

Some monitor calls, e.g. MAGTP, have a variable number of
parameters; a function code in the argument list will indicate which
parameters are significant.

The actual parameter values are fetched in the call, rather than
when the values are used; the address must be valid even if the
supplied value is a dummy one. In a background program, any 16 bit
address is valid; an RT program may use segments not covering the
entire address area. If dummy parameters are not supplied to the
Fortran interface routines, random addresses that may be illegal
will be supplied, causing an illegal page fault interrupt.
Therefore, dummy parameters should never be omitted from the
argument list.

ND-60.133.02

Real Time Guide 79
PROGRAM COMPILATION AND LOADING

7.2 Compilation

No special precautions are necessary when the program is compiled.
All language compilers for Norsk Data computers are common for ET
and background programs. In certain cases space requirements and
performance, in particular I/O performance, may be affected by
compiler options. Compiler options are explained in the respective
language manuals.

The only exception to the main rule is if a Fortran routine uses
recursive techniques or the routine should be reentrant at execution
time. Then the command

$REENTRANT~MODE

is given to the Fortan compiler prior to execution. Reentrant
Fortran programs do not conform to the ANSI Fortran standard, but is
an Norsk Data extension. Fortran programs that do not use recursion
or reentrancy may, but need not be, compiled in reentrant mode.

Programs should be compiled with the DEBUG option off. However, it
is possible to load files compiled with DEBUG to a :BPUN file with
the NHL background loader and read the :BPUN file to a segment. The
RT loader will accept files compiled with the SEPARATE-CODE-DATA
option on, but is incapable of loading code and data to separate
areas (segments).

ND»60.133.02

80 Real Time Guide
PROGRAM COMPILATION AND LOADING

7.3 The RT-LOADER

All manipulation of segments and RT programs is done through the RT
loader, rather than through the ordinary background loader (NRL).
However, the same relocatable format (BRF) is used by both loaders
and subroutines and programs not using RT facilities may also be
loaded by NRL in order to be executed as a background program.
Conversely, a program that may run as a background program may also
be loaded by the RT loader and run as a real time program (but in
most cases requires commands to be given to determine priority
etc.).

The RT loader is available only for users RT and SYSTEM; it may only
be used by one user at a timeo This is to to prevent several users
from updating the segment file(s) concurrently, causing
inconsistencies or loss of data. If a user tries to enter the RT
loader while it is in use, the error message RT LOADER ALREADY IN
USE is returned. If this error occurs in a batch or mode job, the
job is terminated. The °RT loader cannot be reentered through the
@CONTINUE command.

In order to prevent a job from terminating if the RT loader is busy,
the Sintran command @SCHEDULE may be used. The RT loader is
protected by a semaphore with number 5038. Including the command

@SCHEDULE 503

in the job file immediately after the @ENTER command causes the job
to be held until the semaphore is released (by the uSer of the RT
loader executing an *EXIT command). A decimal device number must be
followed by a "D". This command may also be used in a MODE job. (If
the @SCHEDULE command is executed in a MODE job or from the
terminal, the terminal hangs until the RT loader is available and
this state is not terminated by pressing the break or escape key!)

Example of a mode job:

@SCHEDULE 503
@RT-LOADER
NEW-SEGMENT 310 2 ND RW WP
ALLOCATE—AREA 310 20000 100000
END~LOAD
EXIT

7.4 The loading session

The main purpose of the RT loader is to allocate new segments and
load BRF code onto these segments; it is started by the Sintran
command

@RT—LOADER

ND~60.133.02

Real Time Guide 81
PROGRAM COMPILATION AND LOADING

7.R.1 Allocating a segment

Before loading starts, a new segment should be allocated using ”NEW—
SEGMENT. Default values are usually used for all parameters. If the
segment number is not significant and default values are used for
all parameters, the entire *NEW-SEGMENT command can be omitted. An
implicit *NEW—SEGMENT is then allocated as soon as a loading command
is executed and the segment number used is reported.

*NEw-SEGMENT (<segment no>) (<ring>) (<segment type>)
(<protection bits>) (<WP/NP>)

Command parameters:

(segment no> default is the first free segment number. If a
segment number is specified, it must be free.

<ring> — specifies the rights routines on the segment has
to access other segments and is discussed in
chapter 3. The value must be either 0 (default),
1 or 2.

<segment type) determines whether the segment is a demand (DM)
or a nondemand (ND) segment. Default is ND.

(protection bits) - limit legal operations on the segment in any
combinations of read, write or fetch
(instruction execution). Default is RWF, all
access permitted.

(WP/NP) — may be specified as WP, setting the WI? bit of
all pages immediately when the segment is placed
in memory. Default is NP - the bit is not set
until a store operation is performed.

If the default segnent number is used (first free segment), a message
is returned giving the actual segment number used. If a segment number
was specified, this segment must be free, otherwise an error message
is issued. The list of free segment numbers can be obtained through
the *LIST-FREE—SEGMENTS command:

@RT-LOADEB
REAL—TIME LOADER, SINTRAN III - VERSION G
*LIST-FREE-SEGMENTS
OUTPUT FILE: TERMINAL

216 217 226 227 230 231 232 233
23M 235 236 237 2uo 2u1 2&2 2M3
2uu 2&5 2M6 2n7 250 251 252 253
25a 255 256 257 260 261 262 263
26a 265 266 267 270 271 272 273
27a 275 276 277 302 303 30H 305
306 307 310 311 312 313 31a 315
316 317 320 321 322

*NEW-SEGMENT 322,,,,,

ND~60.133.02

82 Real Time Guide
PROGRAM COMPILATION AND LOADING

The <ring>, <protection bits> and <WP/NP> bits determine the setting
of the bits in the page tables when the segment is placed in memory
for execution. The ring and protect bits are discussed in chapter 3.

If a DNA device writes data in memory the WIP bit is unaffected, as
DMA devices do not use the memory management system. Similarly, if two
or more CPUs access the same segment in multiport memory, the master
CPU placing the segment in memory does not necessarily write to it
setting the WIP bit. To ensure that actual changes in the segment are
recorded on the segment file, regardless of which CPU/device performed
the writing, all WIP bits can be forcibly set, so all pages are
unconditionally written back before being removed from memory. This is
done by setting the last parameter of the NEW«SEGMENT command to WP.

E.g. to allocate a new segment with all defaults, issue the command

’HEH—SEGHENTZIIEZ,
NEW SEGMENT H0: 163
e

To allocate a data segment as segment number 16”, with read and write
permitted (but not fetch, as this is a data segment), issue the
command

*m—SWT 16”, , ,R", 57 9

'3

Two segments can be open concurrently for loading. If two *NEW«SEGMENT
commands have been executed, the first one determines the segment used
as default value when loading code and is termed the default load
segment. The second one is the default segment used for linking.

If only one segment has been opened, this segment is the default load
segment. Segments may have names of up to 7 alphanumeric characters
given through the command *DEFINE—SEGMENTu—NAME. The segment name can
be used as parameter instead of the segment number. This applies to
version I and later versions of the RT Loader only.

7.u.2 Loading code to the segment

BB? code is loaded into the new segment by one of the commands

*LOAD <input file> <load—segment> <linkmsegment>
*NREENTRANT—LOAD <input file> <link-segment>
*REENTRANT-LOAD <input file> <link~segment> <stack length>

These commands all perform the same basic operation. All take as the
first parameter the name of a BRF file; default type is :BRF.

*gggg loads the specified file to the segment. It is used if the user
wishes to specify all details about files to be loaded and does not
want any automatic library loading. iiLOAD is also used if code is
loaded to two segments in one load session. Programs in other
languages than Fortran should be loaded by this command in order to
prevent unintended loading of the FTN library.

ND»60.133.02 Revision A

Real Time Guide 83
PROGRAM COMPILATION AND LOADING

If no segment number(s) are specified, the default load and link
segments are assumed. Before the *LOAD command is issued a load
segment must have been allocated by the *NEW—SEGMENT command or used
in a *NREENTRANT—LOAD or *REENTRANT-LOAD. The segment to which the
code is loaded is the default load segement in subsequent load
commands.

*NEW—SEGMENT 3M5,,,z
”LOAD Mflgzggggiii*END-Loqg

'NREENTRANT—LOAD is used for loading Fortran routines which do not
require reentrancy. Also it may be used when loading programs in other
languages and RT monitor oall routines are fetched from the
nonreentrant Fortran library (This applies to Plano, Basic and
Pascal).

When this command is used, *NEW—SEGMENT (with default values for all
parameters) and loading of the nonreentrant Fortran library is
automatic w FTNLIBR:BRF is loaded at *END—LOAD if *NREENTRANT-LOAD was
the last load command executed. Thus, a minimum of commands are
required in order to load a Fortran program.

If a current load segment exists, no implicit *NEW—SEGMENT is executed
and the file is loaded to the current load segment. An explicit *NEW-
SEGMENT command is necessary if nonudefault segment parameters should
be used.

@RT—LOAQEE

REAL-TIME LOADER, SINTRAN III - VERSION G
*NREENTRANT—LOAD FORTRAN»PROG,,
NEW SEGMENT NO: 345
*END-LOAD
*EXIT "—
@

*REENTRANTmLOAD also loads the reentrant Fortran library
(FTNRTLIBR:BRF) after each file is loaded if undefined references
exist and allocates a stack area of the specified size. Default stack
size is 1K words. The names of the nonreentrant routines in FTNRTLIB
are deleted from the linking table; the routines are loaded again if
another program is loaded which requires them.

*REENTRANTmLOAD is used when loading Fortran programs compiled in
REENTRANT—MODE, allocating data areas on a stack at run time. This is
neccessary if the program uses recursive algorithms or if several
programs use the same routine concurrently. All routines should be
compiled in $REENTRANT-MODE; mixing of reentrant and nonreentrant
routines is illegal.

Each file loaded should contain one program only. If there are several
programs in the file, they use the same stack and if they are active
concurrently they destroy each other's data. If the programs are
loaded from separate files, using several *REENTRANT—LOAD commands in
succession, each program has a separate stack. The default size of the
stack is 20008 words.

ND~60.133.02

8H Real Time Guide
PROGRAM COMPILATION AND LOADING

@FTN
NORD 10/100 FORTRAN COMPILER FTN—ZOQOH
$REENTRANT—MODE ‘
$COMPILE PR06, "PRO6:LIST", "PRO6"
3 LINES COMPILED . OCTAL SIZE: 20
CPU—TIME USED IS 0.1 SEC.
$EXIT

@RT—LOADER

REAL-TIME LOADER, SINTRAN III — VERSION G

”NEW—SEGMENT 27o,,,,,,
*REENTRANT—LOAD PRO6
LINKING-SEGMENT NO.:
STACK LENGTH:
*END—LOAD
1!!

FTNLlBfizBRF and FTNRTLIBR:BRF are BRF library files, so only those
units referenced are loaded. Units not required by programs already
loaded are bypassed and not loaded.

7.4.2.1 The link segment

All three load commands have "link segment" as their last parameter.
If a symbol is undefined in the current load segment, but defined in
the link segment, this definition is used. The current load segment
and the link segment are then used by the RT programs; consequently
the two segments must not overlap in address space (see *SET—LOAD-
ADDRESS below) or they must use different page tables. If the two
segments are being built concurrently, they are located at the same
page table, but the default initial load address of the secondly
opened segment is be 100000B.

If a segment has previously been specified as a link segment in the
current load session, this is the default link segment. Otherwise, if
‘two *NEW—SEGMENT commands have been executed with no intervening *END-
faib, the first one of these is the default load segment and the
second the default link segment.

The link segment may also be a previously loaded segment, in which
case all symbols in the RTFIL are available. This segment may be
located at another page table than the load segment, but the user is
responsible for using the altenative page table mechanism properly at
execution time.

If linking is not wanted, (link segment) may be specified as 0. If no
default link segment exists (the program uses only one segment), the
parameter may be empty (default). Specifying O as the link segment is
necessary only if a link segment has been previously used in the same
loading session.

ND-60.133.02

Real Time Guide 85
PROGRAM COMPILATION AND LOADING

7.”.2.2 Setting the load address

To prevent the two segments from overlapping, the *SET—LOAD-ADDRESS
command can be used immediately after the *NEW—SEGMENT command, before
anything is loaded to it.

*SET-LOAD-ADDRESS (<segment no)) (load address)

Command parameters:

(segment no) - default is the first segment opened with a *NEW—
SEGMENT command

(load address) — the lowest address from which code is loaded

*SET—LOAD—ADDRESS causes any code subsequently loaded to the segment
specified to be located from (load address) and upwards. (segment no)
may be zero, indicating RTCOMMON.

This command allows the user to force two segments that are active
concurrently to occupy different parts of the virtual address space.
E.g. if approximately 330008 words of code are to be loaded to segment
214 and approximately 60000B to segment 215, the loading session
includes the following commands:

@RT—LOADER

*NEW—SEGMENT 21u,,,,,
*NEW—SEGMENT 215,,,,,
*SET—LOAD~ADDRESS 215, uoooo
*LOAD SUBROUTS 215,,
*LOAD MAINPROG 21a 215
“END-LOAD

000000

Segment 211B
Main
program Size: 168 pages

Data (Addresses 33000:33777 are
valid, although not used)

033000
Addresses 34000:37777 are
invalid (illegal page fault)

045000

Segment 200B
Sub—

Size: 10B pages routines

06J000
Fig. 14. Two segments used concurrently by a program

The subroutine code runs from address MOOOOB upwards, while the main

ND~60.133.02

86 Real Time Guide
PROGRAM COMPILATION AND LOADING

program is located from O to 330008.

To determine the lowest legal address for the second segment, it may
be necessary to trial load the first segment and see how much space is
used. The current load address when all code has been loaded rounded
up to the nearest page limit (multiple of 2000B) is the lowest address
for the second segment.

This trial load can use the background NRL loader if the RT Loader is
busy. To start loading from address 0, default load address in the RT
Loader, it is necessary to use an image file, NRL command *IMAGE—FILE.
The scratch file 100 may be used as image file. The lowest "FREE:.."
address gives the amount of code loaded.

If two *NEW—SEGMENT commands are used during a load session, an
implicit *SET—LOAD—ADDRESS is executed, setting the load address of
the second segment to 1000008 and an explicit command is required only
if another dividing line between the two segments is desired. If the
segments are loaded independently, in two sessions, the load address
must be set explicitly.

*SET—LOAD—ADDRESS can be used when some code has been loaded to a
segment. Code loaded after the command has been executed is located
from the specified address upwards. This may leave an uninitialized
area where nothing has been loaded; the initial contents of this area
are unpredictable. On the other hand, the specified address may mean
the new code overlaps that previously loaded. The current load
addresses can be obtained through the command

*WRITE—LOAD—ADDRESS
SEGMENT NO.: 270

L.ADR: 20000 U.ADR: 2H313 C.LADR: 2&31u

The upper, lower, and current load addresses are returned.

The segment number specified must be one of the segments currently
being loaded. The lower and upper addresses of a previously loaded
segment are obtained through *WRITE~SEGMENT.

7.4.2.3 Loading Fortran CGHHGN blocks

In a background program, common blocks are loaded to the upper part of
the address space. This can be done without concern for the background
segment size, as the :PROG file at execution time is copied to a
segment which always covers the entire addressing range.

If the RT loader followed the same strategy, the size of segments
using common blocks would be 6” pages, even for small programs. To
save space in the segment file, common blocks are placed from the
current load address when they are deiined.

This is sometimes undesirable: read—only program code and read/write
data are mixed, erroneous addressing can easily destroy program code
and data areas cannot be placed on a separate segment for sharing with
programs on other segments. '

ND—60.133.02

Real Time Guide
PROGRAM COMPILATION AND LOADING

87

The common areas can fibe placed from a given address by the command
*PRESET-COMMON-ADDRESS, given before any common blocks are loaded. All
common areas are located from the specified address upwards:

*NEW-SEGMENT 27o,,,,,,
*PRESET»COMMON-ADDRESS
SEGMENT N0.: 270
ADDRESS: 40000
i

code code code

COMMON A code code

code code code

COMMON B

code COMMON A ::::::::

COMMON C COMMON B COMMON C

COMMON C COMMON B

COMMON A

Omitting Using
*PHESET—COMMON ”PRESET—COMMON Background

Fig. 15. Location of common blocks

To minimize the space wasted, the common address should be
approximately the upper address of loaded code when all libraries have
been included. If the load address when *END_LOAD is executed is much
lower, there may be a lot of space between the upper code address and
the lowest common address. This space is reserved, as a segment must
be contiguous. ,

This occupies an unecessarily large area on the segment file. If not a
demand segment, it also uses more memory than necessary and has a
longer startup time, due to the required copying of pages from disk to
memory. If an addressing error occurs during execution, it is not
detected as an OUTSIDE SEGMENT BOUNDS and may go unnoticed.

COMMON blocks can also be placed on a different segment, so they are
accessible from several segments. This is described in detail in
chapter 14.

COMMON blocks may also be placed in the RTCOMMON area. This is
described in section 12.1

ND~60.133.02

88 Real Time Guide
PROGRAM COMPILATION AND LOADING

7.4.3 Allocating a segmmmm without loading to it

Situations arise when a segment should be defined without loading any
code or data to it. Particularly, this applies to pure data segments
where the data have no initial values, but will be written by some RT
program, DMA device or another CPU (e.g. an ND—SOO) accessing the same
multiport memory.

Also, uninitialized Fortran COMMON blocks reserve no space on the
segment and other language processors may use uninitialized stack
space.

A third example is when a system is using several ”reentrant segments"
(see chapter 15). The shadow segment is used only as a scratch area
for pages that are modified and must be copied to a private segment.
The initial data on this segment fhas no ‘meaning and is therefore
reserved without loading to it.

Before the *END-LOAD command, the required uninitialized area(s) must
be allocated through the command *ALLDCATEufiflEA. Unless this' command
is used, the upper address of the segment is the highest address to
which code has been loaded when *END-LOAD is executed. At execution
time, when the program attempts to access the unallocated area, an
OUTSIDE SEGMENT BOUNDS error occurs.

*ALLOCATE—AREA <segment no), <area size), (<lower address>)

<segment no.) - the segment on which the area should be allocated.

<area size> — the size of the uninitialized area in number of 16
bit words. This parameter must be specified.

(lower address) — the start address of the area. Default is the
current load address on the segment.

If there is a gap between loaded code and the specified <lower
address), this space is implicitly allocated, as non~contiguous
segments are illegal. If nothing is loaded below the specified address
(before or after the ALLOCATE—AREA command), the lower address on the
segment is the specified one.

After the command has been executed, the current load address on the
segment is the first location following the allocated area.

Example:

A program uses segment 310 as a data segment running on page table 3
for DMA transfers from disk. It should be a nondemand segment with
read and write but not fetch permitted, in ring 2 for protection
against less privileged programs and access to privileged devices.
Because of the DMA transfer, the WI? bit should be set explicitly as
soon as the segment is loaded.

The area used for DNA transfer is addressed from 1000008 to 120000B
and nothing else is loaded to the segnent.

ND—60.133.02

Real Time Guide 89
PROGRAM COMPILATION AND LOADING

*NEW—SEGMENT 319
RING: g
SEGMENT TYPE: 39
PROTECTION BITS: 3!
WP/NP: fig
*ALLOCATE—AREA
SEGMENT N0: 310
AREA SIZE: 26669
LOWER ADDRESS: 100000
*END—LOQQ
*WRITE—SEGMENT 310M

310 100000 117777 1062 0 2 1 RW NON DEMAND

7.u.u Ending the load session

Loading to the current segment(s) must be terminated by the command

*END-LOQQ

This command may not be left out; there is no implicit *END-LOAD at
exit from the loader.

During load commands, the code and data is loaded to the terminal's
scratch file ("file no. 100") and as new files are loaded, the code is
appended at the current load address. When *END—LOAD is executed, the
code is copied from the scratch file to the actual segment. Thus, the
segment size need not be known until “END—LOAD; at that time the size
is frozen and the segment cannot be extended.

,____.. RT descr
| table

Linking I
table 1

r... 3 Segment
I g table
I. 3

Q g

“ RTFIL
BRF file
.___, Scratch

| file
5- -m

fl Segment
L_____. file

*LOAD *END—LOAD

Fig. 16. Code flow during loading and *END—LOAD

The segment file is searched for a sufficiently large free area *END-
LOAD. The segment table, RTFIL, the RT description table and the

ND~60.133.02

90 Real Time Guide
PROGRAM COMPILATION AND LOADING

segment table are updated. This, together with the copying from the
scratch file to the segment takes some time — several minutes for
large segments on a heavily loaded system.

If the segment file is nearly full, the user should check there is
sufficiently space for the planned segment before starting to load. If
sufficient space is not available at *ENDuLOAD, the entire load must
be repeated after reorganizing the segment file or allocating another
one.

*EXIT—LOADER returns control to the Sintran operating system.

7.H.5 Errors terminating the loading

Errors occuring during a mode or batch job unconditionally terminate
loading. Such errors may be e.g. attempt to execute a “NEW—SEGMENT
command specifying an already used segment number or fail to provide
valid answers to questions.

In general, if an unexpected condition occurs the RT Loader demands
that the requested operation is confirmed with a "Y". If an answer is
not provided, the next command is taken as the answer, terminating the
job. The "Y" must be supplied on a separate line, rather than after
the parameters on the same line as the command.

To prevent the loader from terminating, the answer "Y" can be provided
in the batch or MODE file. This forces the command to be executed and
should 'be used with care! If the expected question is not asked, the
"Y" is ignored. (In fact, "Y“ may be treated as a "comment" command if
the question is not asked and remarks may follow the "Y".)

Example of MODE job file, where any existing programs on segment 270
are unconditionally deleted:

@RT-LOADER
CLEAR—SEGMENT 270
Y
NEW—SEGMENT 270,,,,,
NEREENTRANT-LOAD MYPROG,,
END-LOAD
EXIT

If a job is terminated in error, all operations on the segments being
loaded are cancelled. The segment number(s) reserved through the *NEW—
SEGMENT command are not allocated and symbols defined on the
segment(s) are deleted. ‘

Operations on other segments, like defining a symbol, clearing a
segment etc., executed before the error occured have already taken
effect and are not cancelled. The commands to be cancelled are those
executed in the *END—LOAD command, namely copying the contents of the
scratch file to the segment file, updating the RTFIL table, the
segment and RT description table.

ND~60.133.02

Real Time Guide 91
PROGRAM COMPILATION AND LOADING

Example of a job terminating because segment 310 is already in use:

@RT-LOADER

REAL-TIME LOADER, SINTRAN III - VERSION G

'DEFINEuSYMB XXX 100 311
*NEW-SEGMENT 310 2 ND RW WP

PARAMETER NO. 1 IS ILLEGAL
a

ILL. COMMAND
*** BATCH JOB ABORTED *“*

@cc END OF MODE JOB
eRT—Loangg
REAL—TIME LOADER, SINTRAN III - VERSION G

‘WHAT- S XXX

XXX 100 311 DEFINED SYMBOL
*EXIT

The symbol xxx is defined, but segment 310 is not modified.

7.5 Deleting a segment

When a segment is no longer used, it should be removed to make room
for new ones in the segment file(s). This is done by the command

*CLEAR-SEGMENT (segment no)

(segment no> _ the segment number of an existing segment

The segment must not be in use by a program when this command is
executed. If the segment is fixed, it must be unfixed before the
command is issued.

If there are RT programs residing on the specified segment, they are
listed. Before the segment is cleared, the question DELETING THIS RT
PROGRAM(S)? must be answered with YES:

QRT—LOAQEE

REAL-TIME LOADER, SINTRAN III - VERSION G

*CLEAR-SEGMENT €39

RT-PROGRAMS ON SEGMENT:

B
A

DELETING THIS RT—PROGRAMCS)? g
«I

NDm60.133.02

92 Real Time Guide
PROGRAM COMPILATION AND LOADING

If the segment is a pure data or subroutine segment, no warning is
given.

If the segment was protected by the "reentrant subsystem" flag, the
user must confirm the command by answering "YES" to the question
CLEARING "REENTRANT—SU SYSTEM" SEGMENT?.

A segment may be protected from accidental clearing by setting the
"protect flag" by the command

*SET—PROTECT-FLAG (segment no)

Before the segment can be cleared, the protect flag must be reset with
the command

*RESET—PROTECT—FLAG {segment no)

7.6 Linking table and symbol maintainance

During loading the RT Loader keeps a record of which symbols have been
defined and referencedo This is kept in the linking table. The *END—
LOAD command writes the symbols to the RTFIL if they have not been
removed prior to *END—LOAD. If the segment is later used as a link
segment, the symbols written to the RTFIL are available to the new
segment.

A defined symbol is also called a label. It has a defined value on a
specific segment. All defined labels and the segments on which they
are defined can be listed by using the command

*WRITE—SYMBOLS (<output file>)

<output file> - default value: TERMINAL

The symbols defined on RTFIL are available as external symbols when
the segment is used as a link segment. They can be listed by

*WRITE—RTFIL (<segment no>) (<output file>)

<segment no) — only symbols on the specified segment are listed.
Default value gives the symbols on all segments.

(output file> - default value: TERMINAL

Example:

ND~60.133.02

Real Time Guide 93
PROGRAM COMPILATION AND LOADING

@RT-LOADER

REAL—TIME LOADER, SINTRAN III - VERSION G

*WRITE-RTFIL
SEGMENT NO: 273
OUTPUT FILE: IERMINAL

A 40607 273 O
8RTEN 170 273
RESRV 165 273
HOLD 163 273
8LEAV M47 273
BENTR 237 273
B u0641 273 O
80FIL H45 273
BOVTB H66 273
8RUTB ”70 273
BOVNO 446 273
BALTF 473 273
SCLSB 471 273

i

A label may be defined

— in the linking table by loading the definition
of the label from a :BRF file, or

— in RTFIL by use of the command DEFINE-SYMBOL

The segment number on which a label is defined in the BRF file is
loaded. The ”DEFINE-SYMBOL command takes the segment number as the
third parameter:

*DEFINE-SYMBOL (symbol) (value/symbol) ((segment no>)

(symbol) up to 7 alphanumeric characters

(value/symbol) an octal value up to 177777 or an already defined
symbol

(segment no) an existing segment, or one of the segments being
built. Default is the current load segment.

All alphabetic characters in (symbol) are converted to uppercase. A
maximum of 7 characters can be specified. The definition is
immediately inserted into the RTFIL and stored permanently until the
segment is cleared or the symbol explicitly deleted.

ND»60.133.02

9” Real Time Guide
PROGRAM COMPILATION AND LOADING

7.7 Taking backup of segments

There are several reasons for making backup of a segment:

- as security copy in case the original is destroyed

— as a way to unload data written to a data segment, eg. data
written by a communications device

— to free segment numbers and SEGFIL space if the system using the
segment will not be used for a while

- to "reload" systems generated by the background loader (NRL)

- to move the contents of one segment to another segment

7.7.1 Creating a backup

The command *BINARY—DUMP generates a :BPUN file containing the binary
information on the segment. The bootstrap normally present in a :BPUN
file is not generated.

The file generated can be read by the MAC assemblers or by the *READ—
BINARY and *COMPARE commands.

The segment must not be in use by a program when the command is
executed; all modified pages must have been written back to the
segment file. Loading to the segment must be complete (*END—LOAD
executed). If it was fixed in memory it must be unfixed.

*BINARY—DUMP (output file> (segment no)
(<lower addr>) (<upper addr>)

<output file) — file name or number. Default type is :BPUN

<segment no> - an existing segnent. Segment number 0 indicates
RTCOMMON

<lower addr> - lower boundary of area to be dumped. Default and
lower permitted limit is the first address on the
segment

<upper addr> ~ upper boundary of area to be dumped. Default and
upper permitted limit is the last address on the
segment

7.7.2 Recovering the backup

The *READ-BINARY command is used to read into a segment the :BPUN file
generated by *BINARY-DUMP, the MAC command)BPUN or the NRL command
BPUN.

ND-60.133.02

Real Time Guide 95
PROGRAM COMPILATION AND LOADING

*READ-BINARY <input file> (<segment no>)

(output file) n file name or number. Default type is :BPUN

(segment no) u an existing segment or a segment currently being
loaded. Segment number 0 indicates RTCOMMON.
Default is the current load segment

The information in the file is loaded according to the load address
specified in the :BPUN file. If this area overlaps already loaded code
this is overwritten without any warning. Make sure this does not occur
accidentally!

If the file is read to an existing segment, the address area covered
by the segment must include the entire area read from the BPUN file,
otherwise an error message is issued and the reading not performed.
The RT Loader requires the user to confirm that he wants to load to an
existing segment:

*READ-BINARY SEG31O 310
CHANGING EXISTING SEGMENT? X§§
*READ-BINARY SEG311 311
CHANGING EXISTING SEGMENT? X§§

TRYING TO EXPAND EXISTING SEGMENT
Q

After the information has been read, the current load address is the
first address above the area loaded from the BPUN file.

In many cases, the contents of a segment may be reloaded to any other
segment, but the RT description of all programs using the segment must
be updated to reflect the new segment number. However, if the segment
is dynamically exchanged with other segments through the MCALL/MEXIT
or REENT calls, it may be necessary to reload the backup to the same
segment number as it was made from.'Usually, this is known to the
programmer, as he must make explicit references to segment number in
his source program.

7.7.3 Explicit allocation of RT descriptions

Normally an RT description is allocated when a MAIN control byte is
read in the BRF code when a program is initially loaded. If a segment
containing programs is recovered by the “READmBINARY command, the RT
loader cannot identify the programs, they must be explicitly defined
with the command

*DECLARE—PROGRAM (RT program> (<RT descr.address>)

(RT program) a name of program

(RT descr.address>m a valid and available RT description address.
Default is the first free description

ND~60.133.02

96 Real Time Guide
PROGRAM COMPILATION AND LOADING

An RT description is allocated and can be referred to by the name
given. The various subfields are zeroed and some of them must be set
by the *CHANGE—RT-DESCRIPTION before the program can be started:

Example:

SEG270:BPUN is a copy of segment 270, containing the programs A and B.
The start address, priority and segments used are given by the command
@LIST—RT-DESCRIPTION: both A and B use segment 270 only and have
priority 30B; the start address of A is O, of B is 670. (This
information must be known from a previous load of the segment.)

*NEW—SEGMENT 27o,,,9,
*READ-BINARY SEG27O 27o
*END-LOAD
*DECLARE—PROGRAM
RT-PROGTAM: A
RT—DESCRIPTION ADDRESS:
*DECLARE-PROGRAM B a
*CHANGE—RT-DESCRIPTION
RT NAME: A
PRIORITY: g9
SEGMENT ONE: 319
SEGMENT Two:
START ADDRESS: 9
*CHANGE~RT-DESCRIPTION B 30 270,,670
*END—LOAD
fl

7.7.fi Comparing backup and original

The backup created by the *BINARY-DUMP command may be compared to a
segment in the SEGFIL, to detect corruption of the segment or
modification of data values. This is done through the command

*COMPARE <segment no) (file)
(<lower addr>) ((upper addr>) (<output file>)

<segment no) - the possibly modified segment

<file> - a file created by i“BII\IARY--DUMP. Default type is
:BPUN

<lower addr> — lower address to be compared. Default is the lower
address on the segment

<upper addr> — upper address to be compared. Default is the upper
address on the segment.

(output file) — default: TERMINAL

The segment may be compared to any BPUN file, created by the RT
Loader, MAC or NRL. There is little point in comparing with a file
that was not initially equal to the segment, i.e. either a dump of the
segment or the code initially loaded into the segment through *READ—
BINARY. Each location that differs generates a one line report on the
specified output file:

ND—60.133.02

Real Time Guide 97
PROGRAM COMPILATION AND LOADING

@RT—LOAQEB
REAL-TIME LOADER, SINTRAN III — VERSION G

*3EH:§§§.§Z§iiii i*NREENTRANT-LOAD (REAL)A,,
*END-LOQQ
*BINARYuDUMP SEQ-273 273,,,

(A and B are the programs loaded to segment 273.)

After program executionzy

@RT—LOAQEE

REAL-TIME LOADER, SINTRAN III - VERSION G

*COMPARE
SEGMENT NO: g1;
BINARY FILE: §§64273
LOWER ADDRESS:
UPPER ADDRESS:
OUTPUT FILE: EERMINAL

ADR SEGMENT FILE

60 237 O
611 72 O
65 7S 0
66 2M 2 0
72 3” O
73 31 0
7H 31 O

1&6 237 0
152 160 O
153 163 0
15“ 11“ 0
160 122 0
161 121 O
162 121 O
“”5 100 0

7.8 Information about loaded programs and segments

Information about segments, RT programs and the segment file(s) can be
obtained through RT Loader or Sintran commands. Some of the
information can be accessed by user SYSTEM through the @SINTRAN-
SERVICE-PROGRAM. The output format and the selection of information is
somewhat different in the RT Loader and @SINTRAN—SERVICE-PROGRAM for
most commands.

NDm60.133.02

98 Real Time Guide
PROGRAM COMPILATION AND LOADING

7.8.1 Segments

The lower and upper addresses, mass storage address, segment file
number, ring and page protection, page table and segment type can be
listed through the RT Loader command “WRITE—SEGMENT, the Sintran
command @LIST—SEGMENT, or the QSINTRAN-SERVICE—PROGRAM command *DUMP—
SEGMENT—TABLE—ENTRY (user SYSTEM only). ‘All three commands are
described in section 6.7.1

7.8.2 RTFIL

RTFIL symbol names, values and segment number where de fined can be
listed by the RT Loader command *WRITE—RTFIL. The use of this command
is described in section 7. 6 «

7.8.3 RT programs

An RT description is written by the Sintran command @LIST—RT—
DESCRIPTION or the @SINTRAN—SERVICE command *DUMP-RT-DESCRIPTION.
Examples of both are given in section 6.2.5

The RT Loader command *WRITEwPROGRAMS or the Sintran command @LIST-RT—
PROGRAMS list all defined programs.

The addresses of unused RT descriptions are given by *LIST-FREE—RT—
DESCRIPTIONS. Examples of these commands are given in section 7.4.1

17.8.M Segment files

Segment file usage and distribution of available space can be
determined by inspecting the bit file using, the RT Loader command
*DUMP—SEGFILE—BITMAP. This command is described in section 5.6

ND-60.133.02

Real Time Guide E 99PROGRAM PRIiORITY AND MEMORY ALLOCATION

8 PROGRAM PRIORITY 3ND MEMORY ALLOCATION

The performance of a :program is largely dependent on the resources
time, space, external and internal devices allocated to the system.
Total resources can be distrzlbuted among the requesting programs by
commands or monitor calls.

E

CPU power and memory space allocation are invisible to the program,
except for the (wall Eclock) time used. The operating system can
manipulate priorities toia large extent. This is not usually the case
with devices, as most programs request the device explicitly and need
exclusive access until they voluntarily give it up.

The calls directing use of memory are

@FIX / MéN 115
éFIXC / Man 160
@UNFIX / MON 116

In addition, the third parameter of the *NEW-SEGMENT command in the RT
loader, segment type (demand/nondemand), and the system variable MAX?
influences memory allocation. (MAXP limits the number of pages a
segment may have in memory concurrently and is set by user SYSTEM by
the éSINTRAN-SERVICE-PROGRAM command *CHANGE-VARIABLE.)

Affecting CPU priority is

@PRIOR / MON 110

8.1 Limitations on the programmer

RT programmers have considerable influence on the policy enforced on
user RT programs, but cannot block system supervision. The available
commands and monitor calls mainly affect the queues administering the
programs running on level 1 and the use of page tables 1, 2 and 3.

The RT Monitor runs on level 3; it takes priority over any user RT
program. See chapter H for a description of the interrupt system and
the different program levels.

System parameters may be set to control the maximum memory space
allocated to one program. An attempt to violate such limits causes the
offending program to be terminated or recieve an error status.

The use of PTO is partially controlled by the RT loader. Program
cannot be loaded to addresses below page MOB on page table 0, as they
would conflict with resident Sintran.

ND~60.133.02

100
PROGRAM PRIO

8.2 Memory allocation

The memory allocation commands and monitor c
a time; the same strategy is followed for al
RT program may affect the memory resourc

Real Time Guide
RITY AND MEMORY ALLOCATION

alls affect one segment at
1 pages in the segment. An
es for any segment and the

last command/monitor call executed affecting allocated resources will
apply.

There are three main methods of memory alloc

~ DEMAND allocation. If a page fault oc
missing page is fetched from disk and lo

— NONDEMAND allocation. As soon as the seg
all pages are fetched and no page fault

- FIXING a segment. Demand/nondemand is
but fixing is the result of an explic
program to memory and have it remain unt
command monitor call.

Memory allocation is a property of the segme
programs

memory, all users of the segment have the
if they had fixed the segment themselves.

8.2.1 Demand allocation

using the segment. If a page is in
programs accessing that page. If one RT program fixes

ation:

curs during execution, the
aded into memory.

ment is loaded to memory,
occurs.

a property of the segment,
it request to load the
11 unfixed through another

nt which applies to all
memory, it is used by all

a segment in
same advantage of speed as

Demand paging must be explicitly requested when the segment is loaded,
as the third parameter to the *NEW«SEGMENT c

*NEW—SEGMENT 206, ,DM, , ,

Segment number 206 is a demand segment (DM 1

When a required page is missing in memory a
hardware. The operating system finds the dis
and starts a transfer. The RT program is sus
and another one activated. Thus, the
largely depends on the number of page faults

A demand segment cannot be
monitor call.

8.2.2 Nondemand allocation

Nondemand allocation is default for RT progr
requested in the *NEW—SEGMENT command of th
parameter equal to 'ND':

*NEW—SEGMENT 205,,ND,,,

ND-60.133.02

respon

fixed in m

ommand in the RT loader:

ndicates DeMand).

page fault is generated by
k page of the missing page
pended during the transfer
se time of the program
during execution.

emory through a command or

ams, but can be explicitly
e RT loader, the third

Real Time Guide 101
PROGRAM PRIORITY AND MEMORY ALLOCATION

Segment number 205 is a nondemand segment. Whenever one page of the
segment is used by an RT program, all its pages are copied to memory.

Startup time is significantly longer for the first program using the
segment after it is written back to disk, as more pages must be read
into memory. Once in memory, response times are fast and predictable,
as page faults do not occur. This applies to all programs on the
segment or using the segment, including those activated after the
segment is in memory.

When the programs using the segment terminate or the memory is needed
by other segments, some pages from the segment may be swapped out.

Nondemand segments should not be used unless required. They occupy
more system resources (memory) as the number of pages available for
swapping by other processes is reduced.

To fix a segment in memory, it must be a nondemand segment.

8.2.3 Fixing

Fixing a segment resembles nondemand allocation, but is the result of
an explicit request. A nondemand segment is swapped out when no longer
needed, but a fixed segment remains until unfixed. It is even more
demanding on system resources and limits the freedom of the RT
Monitor.

An RT program on a fixed segment has the shortest possible start up
time, as no copying from disk is required. No page faults occurs and
the program executes continously until another program with a higher
priority enters the execution queue, it requests an I/O operation or
terminates.

Before backup can be made (see chapter 7) or the segment deleted, it
must be unfixed.

8.2.“ Fixing a segment in memory

Sintran command: @FIX (segment no>
Monitor call: MON 115 % FIX

The FIX call causes a segment to be copied from disk to memory and
prevents it from being swapped out. The pages of the segment may be
scattered in physical memory.

The GFIX command takes an getal segment number as argument.

Example:

eFIX 309

Segment number 3008 is fixed in memory.

NDn60.133.02

102 Real Time Guide
PROGRAM PRIORITY AND MEMORY ALLOCATION

MON FIX expects the A register to point to an argument list containing
the argument addresses. The only argument is the segment number, which
must be a nondemand segment. If any error occurs (the segment does not
exist or is a demand segment), the calling program is aborted with an
error message printed on the error device.

Example:

FIX=115

LDA (PAR % A = address of pararameter list
MON FIX % No error return

PAR, (éOO $ Segment number 300 octal

In Fortran, MON 115 is available as a subroutine:

CALL FIX(3OOB)

Default number base in Fortran is decimal and octal segment numbers
should be followed by a B as shown above.

8.2.5 Fixing a segment in contiguous memory

The FIXC monitor call is an option which must be specified when
SINTRAN III is ordered.

Sintran command: @FIXC (segment no> (page address>
Monitor call: MON 160 % FIXC

Command parameters:

<segment no) - a nondemand segment. octal

{page address) — number of first physical memory page to which the
segment is loaded

The FIXC call fixes a segment similarly to FIX, but in addition the
segment is fixed in a contiguous area of physical memory, starting at
a specified physical address.

An error message is issued if the segment is nonexistent or a demand
segment or if any of the physical pages from the specified page up to
the highest one required by the segment are already in use. Error
return from the monitor call occurs only if bit 173 of the segment
number parameter is also set, and leaves an error code in the range -
1:-6 in the A register (see the SINTRAN III Reference Manual ND—
60.128).

Contiguous fixing is used in multiprocessing applications, where
several processors access the same (multiport) memory and for special
I/O requirements where the external device reads or writes directly to
a specified physical memory location. DMA access do not use the memory
management system and if more than one page (or an area partly
occupying more than one page) must be transferred, the area must be
located in physically consecutive pages.

ND—60.133.02

Real Time Guide 103
PROGRAM PRIORITY AND MEMORY ALLOCATION

Example:

@FIXC 3H0,150

Segment 3MOB is placed in memory starting at page address 1508
(physical address 3200003).

CALL FIXC(177B,27OB)

The segment number 177B is fixed in memory starting at physical
address 5600003.

8.2.6 Removing a fixed program from memory

Sintran command: @UNFIX (segment no>
Monitor call: MON 116 % UNFIX

Command parameter:

(segment no) - a nondemand segment, octal

A segment previously fixed through a FIX or FIXC command/monitor call
can now be swapped out. It is not necessarily written back
immediately, but is now treated as a regular nondemand segment.

A segment that has been fixed but not yet unfixed may not be cleared
by the RT loader *CLEAR—SEGMENT command or written to a file with the
*BINARY—DUMP command.

The format of the call is as for FIX:

Command:

aggrix 235

MAC:

UNFIX:116

LDA (PAR % A = address of parameter list
MON UNFIX % No error return

PAR, (éég % Segment number 235 octal

Fortran:

CALL UNFIX(2358)

If the specified segment does not exist or is not fixed, no action is
taken and no warning issued"

ND~60.133.02

104 Real Time Guide
PROGRAM PRIORITY AND MEMORY ALLOCATION

8.2.7 The maximum area fixed

The number of pages available for fixing segments can be limited by a
system parameter. This ensures the monitor has a at least a minimum
number of pages available for swapping. The number of pages available
for fixing may be modified by user SYSTEM through the @SINTRAN-
SERVICE-PROGRAM command *CHANGE—VARIABLE FIXMAX:

@SINTRAN-SERVICE—PROGRAM
*CHANGE—VARIABLE FIXMAX 300
MEMORY? X
IMAGE? N
SAVE—AREA? g

RESIDENT: 600

The maximum number of pages for fixing is reduced from 600 to 300
pages octal. The @SINTRAN-SERVICE—PROGRAM is not available to user RT.

ND~60.133.02

Real Time Guide 105
PROGRAM PRIORITY AND MEMORY ALLOCATION

8.3 CPU priority

The RT Monitor grants CPU power to that program with the highest
priority in the execution queue, i.e. the first program in the queue
which is not waiting for an I/O operation.

The queue is reorganized every 20 ms if necessary. This is done by the
RT Monitor running at interrupt level 3, as opposed to level 1 for
programs in the execution queue. The queue administration routine is
initiated by the level 13 routine receiving a clock interrupt every 20
ms (see chapter A).

Even a program with the highest possible priority (377B) cannot
prevent the Monitor from performing the administrative tasks, although
it may block any other level 1 program.

The initial value of a program can be set at compile time in a Fortran
or Basic program, by following the PROGRAM statement with a comma and
the priority.

In Fortran this looks as follows.

PROGRAM RTTEST, no

In MAC, the)9RT command is used. The MAIN control byte is generated
where the)9RT command is encountered, not at the label following the
)9BEG (if any). The second parameter to the)9RT command must be a
defined symbol giving the priority; it may not be a numeric constant.

)9BEG
PRIOR=50
)9RT RTTEST PRIOR

1 Program code

)9mm
)9EOF
)LINE

The programmed priority is associated with the main program. If a
routine should be executed with a higher priority than the rest of the
program, a PRIOR call to change the priority must be programmed. A
subroutine written in MAC should not contain an RT command - in that
case, the MAC routine is treated as a main program.

The programmed priority can be modified by commands or monitor calls.
The priority of programs written in languages which have no syntax for
specifying priority must be set by a command or call from another
program.

It is very often difficult to decide what priority a RT program should
have. There are no simple guidemlines in this matter, because the
configuration and type of main workload differ from one system to
another. Thus while testing RT programs one should not use higher
priorities than no (SOB) because then it is possible to stop the RT
program from an ordinary terminal (see the section: The background
timeslicing mechanism, below).

ND-60.133.02

106 Real Time Guide
PROGRAM PRIORITY AND MEMORY ALLOCATION

8.3.1 Waiting queue priority

The priority also determines the program’s position in the waiting
queue for a device requested but not immediately available. The
program is entered before all programs in the queue with lower
priority, but behind programs with the same or higher priority. If
priority is modified while a program is in a waiting queue, the queue
is reordered as soon as any modification occurs (e.g. an element added
or removed, or the device released to the first program in the queue).

8.3.2 The range of priorities

Program priority can have any integer value between 0 and 255 (3778).
A high value indicates a high priority. A program with priority 0 is
never executed, because the system program DUMMY with priority 0 is
always present in the execution queue. As programs are inserted in the
queue behind programs with the same priority, other priority 0
programs will be waiting forever.

Several programs may have the same priority, in which case the first
program in the queue executes until completion (or it is suspended for
e.g. an I/O request or a page fault).

8.3.3 Changing the priority

Priority of an RT program does not usually change during execution.
Any RT program may, however, modify its own or other program's
priority, whether the affected program is executing or not. This is
done through the Sintran command @PRIOR, or through MON 110.

.8.3.n PRIOR

Sintran command: @PRIOR (RT name> <priority>
Monitor call: MON 110 % PRIOR

Command parameters:

(RT name> — the name or RT description address of an active
program

<priority> - a priority in the range 0:255 (decimal)

Set the program priority of an RT program. <RT name> must be the name
of an existing program or the (octal) address of an RT description.
The command expects a decimal priority.

Example:

@PRIOR KLOKK,8O

ND—60.133.02

Real Time Guide 107
PROGRAM PRIORITY AND MEMORY ALLOCATION

- the priority of KLOKK is set to 80.

The A register points to the list of argument addresses. The first
argument is the address of the RT description, the second the
priority. The RT loader knows the names of all RT program addresses,
symbolic names can be used even in Fortran or MAC. The RT program name
should be imported through a ')9EXT' (MAC) or 'EXTERNAL' (Fortran)
declaration.

The A register (function value in Fortran) contains the old priority
of the program.

The @PRIOR command expects a decimal number, but default number base
in MAC is octal.

EXTERNAL KLOKK
INTEGER PRIORglP

IP:PRIOR(KLOKK,80)

The priority of the RT program KLOKK is set to 80. IP receives the old
priority. Equivalent MAC code:

)9EXT KLOKK
PRIORzllo

tDA (PAR
MON PRIOR
STA IP

PAR,(KLOKK
(120 1 1203 : 80 decimal

If the RT program is specified as 0 (zero), or defaulted in the
command, the program executing the call modifies its own priority. In
case of a command, this is the background program of the terminal and
has no effect because the priority of background terminals is
dynamically modified by the operating system.

8.3.5 The background timeslicing mechanism

RT and background programs compete for the attention of the CPU and
essentially the priority mechanisms are the same and the queue common.
RT programs may have a higher or lower priority than background
programs.

Background programs do not have a fixed priority during execution. An
RT monitor routine adjusts the priority according to the CPU resources
it uses.

Background programs do not run until completion before another program
is allowed to start. Every 200 ms a routine in the RT Monitor checks
whether the active program has consumed the CPU resources allocated to
it. If it has, it loses its right to the CPU.

ND~60.133.02

108 Real Time Guide
PROGRAM PRIORITY AND MEMORY ALLOCATION

A program suspended by this mechanism is reentered in the execution
queue, but with a lower priority. Initially the priority is 608, where
the program may use up to one second executing before it can be
preempted by another program. If it has not completed within this
time, it is reentered in the queue with priority SOB.

The program is entered behind all other priority SOB programs, thus if
several programs run on the same priority9 they are executed in round
robin fashion.

Running on priority 50B the program may be active for up to four
seconds before suspension by another priority BOB program, but may at
any time be interrupted by a higher priority program. This gives fast
response to interactive users running small jobs (e.g. executing a
Sintran command), while larger resource demanding programs have to
wait.

As long as the program communicates with the terminal and no other
device, it remains at priority SOB. If it uses its entire time slice
without terminal I/O, its priority is reduced to ”GB for the next time
slice.

If interaction with a device other than the terminal is initiated, the
priority drops to 20B.

If a program requests the use of a resource already reserved by
another program with priority 20B, the program reserving the resource
is temporarily raised to priority 37B and executes ahead of all other
priority 20B programs, freeing the resource more quickly.

ND-60.133.02

Real Time Guide 109
ACTIVATING AND DEACTIVATING RT PROGRAMS

9 ACTIVATIWG AND DEACTIVATING RT PROGRAMS

RT programs can be started and stopped by several commands and monitor
calls. Programs can also schedule themselves for reexecution and they
can stop themselves or be terminated by other programs or operators.

9.1 Starting a program immediately

Sintran command: @RT (RT name)
Monitor call: MON 100 % RT

Command parameter:

<RT name) - name or RT description address of existing program.

This enters the program in the execution queue immediately. The
program name must be an already loaded program or the octal address of
the RT description of a program.

The same function can be performed by another program through the
monitor call RT (MON 100). The single parameter is the address of the
RT description, the A register pointing to the argument list:

)9EXT PROGNAM
RT:1OO

LDA (PAR % A : address of parameter list
MON RT % MON $00, no error return.

PAR, (PROGNAM

Fortran:

EXTERNAL PROGNAM

CALL RT(PROGNAM)

The RT loader recognizes symbolic program names, declared as external
symbols. These programs must be loaded before the program using their
names. A program may refer to itself by giving the parameter value
zero.

If the program is already in the execution queue (which is always the
case if a program refers to itself), it is set up for another
execution immediately after it terminates, by setting the repeat bit
in the RT description.

ND~60.133.02

110 Real Time Guide
ACTIVATING AND DEACTIVATING RT PROGRAMS

9.2 Scheduling a program for execution

A program can be put into the time queue for execution later. The
start time can be specified relative to the current time or as an
absolute wall clock time:

Start execution after specified delay:

@SET
MON 101 % SET, delay specified as time unit, no of units
MON 126 % DSET, delay specified in basic time units

Start execution at specified absolute time:

@ABSET
MON 102 % ABSET, execution start specified by wall clock time
MON 127 % DABST, execution start specified in internal time

If the clock is adjusted, programs are treated differently depending
on which command was used to enter them in the time queue" If entered
through ABSET, execution is started according to the new time, if
entered by SET, DSET or DABST, the delay before start is independent
of the clock.

9.2.1 Starting execution after a specified delay

Sintran command: @SET (RT name> (no of units> (time unit>
Monitor calls: MON 101 % SET

MON 126 % DSET

Command parameters:

(RT name> - name or RT description address of existing program.

(no of units> - the number of time units delay

(time unit) — a time unit size in the range 1:U (see below)

The specified program is entered in the time queue with a waiting time
as specified. (time unit) is

~ basic time units (20 ms)
- seconds

minutes
— hoursk

W
N

—
i

I

(no of units) indicates how many basic time units, seconds9 minutes or
hours the program should wait. The maximum number of units is 32767
(16 bits signed value).

The start time is stored as a number of basic time units since system
restart. Adjustment of the clock by CLADJ has no effect on waiting
time. If the program is active when the start time arrives, the repeat
bit in the RT description is set? indicating that it should be
reexecuted as soon as it terminates.

ND—60.133»02

Real Time Guide 111
ACTIVATING AND DEACTIVATING RT PROGRAMS

A program can only be entered in the time queue once at a time. If it
was already in the queue when SET or DSET was executed, it is removed
and reentered according to the new specifications.

If the specified number of time units is zero or negative, the program
is entered in the execution queue at the first basic time unit
increment (or if active, the repeat bit set).

Example:

A program may request that it be aborted if not completed within five
minutes by scheduling a "murder program" for execution at that time

PROGRAM P1,AO
EXTERNAL MAINP
ABORT (MAINP)
END

PROGRAM MAINP, 32

C Observe that P1 must have higher priority than MAINP
C in order to abort it if MAIMP is active

PARAMETER (MIN = 3)
EXTERNAL P1

SET(P1, MIN, 5)

C Perform whatever action MAIN is intended to perform

END

In a MAC call, the A register points to the parameter list. The same
two programs in MAC would look as follows:

ND»60.133.02

112 Real Time Guide
ACTIVATING AND DEACTIVATING RT PROGRAMS

LEAVE:0
ABORT=105
SET=101
MIN:3

)9BEG
)9ENT P1
)9EXT MAINP
LDA (PAR
MON ABORT
MON LEAVE

PAR, (MAINP
)9END

)9BEG
)9ENT MAINP
)9EXT P1
LDA (SET?
MON SET

% Perform desired actions

MON LEAVE
SETP, (P1

(MIN
(5

The only difference between SET and DSET is the specification of the
time: DSET expects a number of basic time units in the argument list,
rather than a time unit size and a number of units. The number of time
units is specified as a double (32 bit) word:

DSET=126

LDA (SETP
MON DSET

SETP, (P1

(0 % Mo
(35230 % 3

st significant part 2 0
5230B : 15000 decimal : 5 min

9.2.2 Starting execution at specified wall clock time

If a program should be executed at a specified time Of day, it may be
inconvenient to calculate the delay from the current time and convert
it to a number of time units. Besides, it may be desirable to tie a
program to the clock time, making it sensitive to adjustments of the
clock.

Sintran command: @ABSET <RT name> (second) (minute) <hour>
Monitor call: MON 102 % ABSET

ND«60.133.02

Real Time Guide 113
ACTIVATING AND DEACTIVATING RT PROGRAMS

Command parameters:

<RT name> — name or RT description address of existing program.

<second> — decimal value 0:59, default 0

(minute) — decimal value 0:59, default 0

(hour) — decimal value 0:23, default 0

Time is specified according to a 2“ hour clock. If the specified time
has already passed when the call is executed, the program is scheduled
for the next day.

If the program is already in the time queue, it is removed and
reinserted at the specified time.

If the clock is adjusted by the CLADJ call and the program has not yet
started, it is scheduled for execution according to the new time. If
the clock was adjusted forwards, passing the execution start time, the
program is not started at all. When the RT Monitor inspects the time
queue it will consider the program already started, even though it has
never actually been activated.

Example:

To activate the REQUEST program in the example in chapter 1 at 8
o'clock, the following command can be given at any time after 0800 the
previous day:

@ABSET REQUEST, 87,

9.2.3 Starting execution at a specified internal time

To specify the time more accurately when starting a program after a
long delay, a double integer (32 bits) value containg the internal
time in number of basic time units can be used. It is sometimes
necessary to schedule a program at an absolute time more than 24 hours
in advance. This is done through the DABST monitor call; DABST is not
available as a command.

For the higher precision to have any practical value, the priority of
the program should be high enough to ensure that it is started when
the time arrives without unnecessary delay from other program.

The internal time is the number of basic time units since the system
was last restarted. It is not usually of interest; starting time
should be specified relative to the current time. The TIME call (MON
11 — see section 9.10) returns the current internal time and the
delay can be added to this value.

For starting WW3 in exactly 96 hours (17280000 units of 20 ms) another
program may execute the following:

ND”600133002

114 Real Time Guide
ACTIVATING AND DEACTIVATING RT PROGRAMS

EXTERNAL WW3

CALL DABST(WW3, TIME(DUMMY) + 17280000)

ND—60.133a02

Real Time Guide 115
ACTIVATING AND DEACTIVATING RT PROGRAMS

9.3 Starting due to an external interrupt

Most RT programs communicate with the "outside world" through standard
devices, accessed through 1/0 monitor calls. If the device inputs data
before the program is ready to read it, the data is buffered by a
Sintran "driver" and transferred to the program as soon as requested.

In most cases, the device may interrupt several times before any data
is read by the program and each interrupt causes a new data value to
be buffered. E.g. the normal size of a terminal input buffer allows an
operator to enter up 64 characters before the program reads the first
character, without loosing data. The size of the buffer is device
dependent and can be reconfigured according to need.

Non—standard devices can be handled by a user written driver routine
and a user written program can be activated as the result of the
interrupt. This is done by setting up a connection between a program
and an external interrupt source through the CONCT call.

9.3.1 Setting up the connection to the device

Sintran command: @CONCT (RT name) <log. unit>
Monitor call: MON 106 % CONCT

Command parameters:

(RT name) — name or RT description address of the program to be
started when an interrupt occurs

<log. unit> - decimal logical device number of the interrupting
device

MON CONCT expects the same two parameters, the A register pointing to
the parameter list:

CONCT:106

LDA (PAR
MON CONCT

PAR, (HANDL % Program to be started
(#53 % Interrupting device

The logical unit numbers of devices are given in appendix C of SINTRAN
III Reference Manual ND—60.128.

One program can be connected to several input sources and will be
started when an interrupt occurs from any source. Each device must be
connected to the program via a CONCT call.

The interrupt itself must be taken care of by a driver routine,
running on the interrupt level to which the device is connected.

ND~60.133.02

116 Real Time Guide
ACTIVATING AND DEACTIVATING RT PROGRAMS

The program is activated as if an RT call was executed. If the program
is in an RTWT state, execution is continued in the location following
the RTWT call (see section 9.8). If the program is terminated, it is
started in its initial start address, if active, the repeat bit in the
RT description is set.

The interrupt handling routine is usually written in MAC, and entered
on PTO immediately following resident Sintran.

9.3.2 Breaking the connection with the device

A program is disconnected from the interrupt sources defined through
one or more CONCT calls through the DSCNT call:

Sintran command: @DSCNT (RT name)
Monitor call: MON 107 % DSCNT

Command parameter:

<RT name> - name or RT description address of the program that
has been handling interrupts

Similarly, the only argument to the monitor call is the RT program
name:

DSCNT=107

LDA (PRNAM
MON DSCNT

PRNAM, (HANDL

The call applies to all devices connected. Future execution of the
program is prevented. If the program is in the time queue it is
removed. If the program is active, execution_is continued normally and
the DSCNT call does not imply the release of any resources.

A program may disconnect itself from its interrupt sources or a
terminal operator or any other program may perform the DSCNT call. A
program may refer to itself by using an RT description address of
zero.

ND—60.133.02

Real Time Guide 117
ACTIVATING AND DEACTIVATING RT PROGRAMS

9.” Periodic execution of a program

Programs monitoring physical processes are often executed repeatedly
at regular intervals. Each execution reads, and possibly analyzes,
input from external sensors or writes output to contollers.

Other periodic programs may be timeout routines executed only if an
expected event does not occur before the time interval has elapsed.

Periodic execution of a program is specified by

Sintran command: @INTV <RT name> <no of units> (time unit)
Monitor calls: MON 103 % INTV

MON 130 % DINTV

Command parameters :

<RT name> — name or RT description address of existing program.

<no of units) — the number of time units delay (0:32766)

(time unit) — a time unit size in the range 1:4

<no of units> and (time unit> is specified as for SET, (time unit>
equal to 1 indicates basic time units, 2 is seconds, 3 minutes and u
hours.

MON INTV expects the same parameters as the command, while MON DINTV
expects a double word (32 bits) defining the number of basic time
units between execution starts. DINTV is used where a high precision
in time is combined with a long interval — if the interval is less
than approximately 10 minutes (32766 basic time units), DINTV is
equivalent to INTVT.

The DlNTV or INTV call must be specified before the program is
started, but does not activate the program, it merely defines the
interval between each execution. The first activation must be by some
other means, such as an RT, SET or ABSET call.

As soon as the program is first activated, it is put both the
execution and time queues. When the interval time has expired, it is
put into the execution queue and reinserted in the time queue.

The interval time is the minimum time between two execution starts. If
one execution is delayed, the delay is carried over to the following
executions. Such delay may occur for example if the previous execution
was not complete before the interval time was up.

An example is found chapter one, setting up PROMPT to be executed
every 10 seconds and then activating PROMPT. This code is found in the
program REQUEST (Fortran):

EXTERNAL PROMPT
PARAMETER (SEC=2)

INTV(PROMPT,10,SEC)
RT(PROMPT)

ND»60.133.02

118 Real Time Guide
ACTIVATING AND DEACTIVATING RT PROGRAMS

Coded in MAC, PROMPT could be started for periodic execution by the
following code (all BRF directives required to make this a complete
program are included):

)QBEG
¥RIO=HO
)9EXT PROMPT
)QRT PSTART PRIO

INTV:103
RT=1OO
LEAVEzo

LDA (PAR
MON INTVT % Set period to 10 sec
LDA (PAR % Only 1 argument used
MON RT % Initiate execution
MON LEAVE % Terminate

PAR, (PROMPT
(12
(2

)9END
)9EOF
)LINE

ND~60.133.02

Real Time Guide 119
ACTIVATING AND DEACTIVATING RT PROGRAMS

9.5 Terminating a program

The executing program may voluntarily stop in several different ways:

MON 0 % LEAVE, normal termination
MON 13” % RTEXT, controlled error termination
MON 65 % QERMS, file system error termination

The effect of the LEAVE and RTEXT calls is the same in RT programs.
The program is removed from the execution queue, all devices reserved
by it are released and the repeat bit in the RT description is checked
to see whether the program should be restarted. (If it should, the
repeat bit is immediately reset and the program put into the execution
queue again; reserved devices are released.)

The choice between LEAVE and RTEXT can be made to obtain the desired
effect if the same program or subroutine is executed in background.
RTEXT in a background batch or mode job causes the entire job to
terminate, while LEAVE terminates only the executing program and
continues with the next command in the file.

Normal use of these calls is LEAVE for successful completion and RTEXT
for unsuccessful completion (controlled error termination). The
Fortran compiler generates MON LEAVE at the END statement of a
program; RTEXT must be explicitly programmed as a call to the routine
RTEXT:

IF (INDEX.GT.MAXLEGAL) CALL RTEXT

C Termination here if indexing error
C Rest of program or routine (not executed if RTEXT called):

ARR(INDEX) = SOMEVALUE

RTEXT and LEAVE both allow the program to be executed again if it is
periodic. ABORT, discussed in the next section, is used for serious or
forced error termination and prevents repeated execution.

MON QERMS is equivalent to

MON ERMSG
MON LEAVE

MON ERMSG is discussed in detail in chapter 16. Its purpose is to
print a file system error message on the error device. The error code
is usually returned from a monitor call in the A register and MON
ERMSG expects the error code in the A register. MON ERMSG or MON QERMS
can be used as error return immediately following a monitor call —
QERMS terminates the program immediately.

QERMS does not prevent repetitive execution of a periodic program (and
will not terminate the job in background).

ND»60.133.02

120 Real Time Guide
ACTIVATING AND DEACTIVATING RT PROGRAMS

9.6 Forced program termination

RT programs occationally go into deadlock « unresolvable access
conflicts causing one or several programs to "hang", monopolizing
devices or other system resources.

Such programs should be forcibly stopped by an operator or another
program. This is called to abort the programo

If a repetitive program is aborted, future reexecutions are inhibited.
It does not resume periodic execution until an RT, SET or ABSET call
is executed to start it. When restarted, the interval is not changed.

A program is aborted through:

Sintran command: @ABORT (RT name>
Monitor call: MON 105 % ABORT

Command parameter:

(RT name) - name or RT description address of existing program.
Default value is illegal.

MON ABORT expects the A register to contain the address of a location
where the address of the RT description of the program to be aborted
is found. A program may abort itself by specifying zero as the RT
description address.

The program specified is terminated and removed from any queue that it
may be in. All its reserved resources are released. The repeat bit in
the RT description is reset, so that the program must be explicitly
restarted.

ABORT should not be considered a normal error termination, as no error
report is provided by the system. (The normal error termination is to
issue an error message through ERMON before terminating by RTEXT. See
chapter 16 for a description of error handling). The major use for
ABORT rather than RTEXT is to prevent repeated executions.

The Fortran call is used as a standard subroutine:

EXTERNAL PARTNER

C Serious error condition has occurred « abort cooperating
C program PARTNER first:

CALL ABORT(PARTNER)

C Then terminate this program and prevent repeated execution:

CALL ABORT(O)

There are other ways to prevent a program from execution:

ND~60.133.02

Real Time Guide 121
ACTIVATING AND DEACTIVATING RT PROGRAMS

If the priority of a program is zero, it is never executed, but its
reserved resources are not released. The PRIOR command/monitor call is
described in section 8.3

The RTOFF call prevents the program from being restarted, but if
active, it may continue execution. RTOFF is often used with ABORT.

ND~60.133.02

122 Real Time Guide
ACTIVATING AND DEACTIVATING RT PROGRAMS

9.7 Prohibiting program execution

Even though a program has been stopped, it may be restarted by any of
the mechanisms described in the first section of this chapter. This
may be undesirable for several reasons:

_ the program may occupy resources that should be available for
another program

- starting the program may cause a known deadlock condition

— it may be known beforehand that the program cannot complete
successfully due to unavailable resources.

If the program is in the "RTOFF state", it is not started by a
command, monitor call, arrival of scheduled start time or external
interrupt. RTOFF state is indicated by setting the RTOFF bit in the RT
description (bit 168 in the ACTPRI word). The program is set in this
state through

Sintran command: @RTOFF <RT name>
Monitor call: MON 137 % RTOFF

Command parameter:

<RT name) — name or RT description address of existing program.
Default value: no action.

The standard parameter transfer mechanism applies to MON RTOFF. The A
register points to the argument list, which contains the program
address. 0 indicates the calling program and return is to the first
location following the call (no error return):

RTOFF:137

LDA (ARG % A = addr of parameter list
MON RTOFF % MON 137
MON LEAVE % Stop after having prevented

% reexecution

ARG, (O % Addr = 0, this program

If the program is not periodic, but has been scheduled for later
execution, the RTOFF bit in the RT description is checked at the time
when the program would normally have been started. If the program is
in the RTOFF state, it is not started and it is removed from the time
queue. An explicit call is required to start it later.

The program may be active when RTOFF is executed and it continues to
execute until completion. If another attempt is made to start the
program while it is active, the repeat bit is set even if the program
is in RTOFF state, but no reexecution of the program is performed
after it has completed.

ND~60.133.02

Real Time Guide 123
ACTIVATING AND DEACTIVATING RT PROGRAMS

Every time the interval of a periodic program expires, an attempt is
made to start the program. As long as the program is in the RTOFF
state, these attempts are unsuccessful. If a program has a short
interval and is inhibited for a long period, aborting the program
reduces system overhead.

RTOFF RTON

* ______ *__i__- u * * ______
l

RT RT RT RT RT
successful successful inhibited inhibited successful

Fig. 17. MON RT inhibited in the RTOFF state

If at a later time the program should be allowed to start, the program
is removed from the RTOFF state by the RTON call. This resets the
RTOFF bit, permitting the program to be started:

Sintran command: @RTON <RT name)
Monitor call: MON 136 % RTON

Command parameter:

<RT name) — name or RT description address of existing program.
Default value: no action.

The program can now be started by an RT call, or if the program is in
the time queue, it is allowed to start when the waiting time has
expired.

A periodic program resumes periodic execution, and no explicit
starting of the program is required. The intervals are in step with
the intervals at the time the RTOFF state was entered.

NDn60.133.02

12“ Real Time Guide
ACTIVATING AND DEACTIVATING RT PROGRAMS

9.8 Suspending program execution

A program may execute a request to halt execution, but not terminate
the program. Halt implies that

- no resources are released

— when restarted, execution continues at the instruction requesting
the halt rather than at the initial start address

— the program may request restart after a Specified delay

One command and three monitor calls are available for suspending
execution:

Sintran command: @HOLD (no. of units) (unit)
Monitor calls: MON 10H % HOLD

MON 267 % TMOUT
MON 135 % RTWT

Command parameters:

<no.of units) ~ the number of time units delay as a positive decimal
integer

<unit) — a time unit size, specified as a digit in the range
1:4

(non of units) and <unit) follow the same syntax as SET and INTV; a
(unit) of 1 indicates basic time units, 2 is seconds, 3 minutes and 4
is hours.

The HOLD and TMOUT calls specify a timeout, after which the program
automatically continues. The call .is permitted even for background
programs. The program is entered in the time queue, with a starting
time determined by the arguments to HOLD and the current time.
Otherwise, its effect is the same as that of RTWT and the RTWT bit of
the program is set.

TMOUT will on restart indicate the restart reason in the register:

A = O : time elapsed
A : 1 : an interrupt occured, causing program to restart
A : ~1 : the repeat bit (SREP) was set, causing immediate

restart, i.e. the call caused no delay.

An RTWT call will not enter the program in the time queue, thus, it
acts as a HOLD with an infinite timeout, A program executing an RTWT
call is usually restarted by another program or a command. Periodic
programs that should perform full initialization only the first time
executed may use MON RTWT rather than MON LEAVE at the end of each
execution. (The RTWT call should be followed by a jump to the restart
address, executed when the program is restarted.)

ND-60.133.02

Real Time Guide 125
ACTIVATING AND DEACTIVATING RT PROGRAMS

The RTWT bit is bit 158 in the STATUS word (word 1) of the RT
description. If an RT call is executed for the program, it is
restarted (even if the HOLD time has not expired).

A program in a HOLD/RTWT state is removed from the execution queue
until it is restarted (either by the timeout or by an RT call). If the
repeat bit in the RT description is set when the HOLD or RTWT is
executed, the bit is reset and execution immediately resumed.

OBSERVE:

A program in the RTWT state will NOT release any of its reserved
resources. This is of particular importance if the program is
inhibited by an RTOFF; the program may continue to execute and
may execute a HOLD or RTWT. It holds its reserved devices
occupied and has no way to free them until an RTON call has been
executed and then an RT call to restart the program (the RT call
is not required if the HOLD time has not expired).

A program may have requested an I/O transfer, specifying immediate
resumption of execution rather than waiting for the transfer to
complete. This is called "NOWAIT mode" and is discussed in chapter 13.
If the program executes a HOLD or RTWT while a transfer is going on,
completion of the transfer interrupts the RTWT state and restarts the
program. A @HOLD command executed in background can be interrupted by
pressing the 'escape' key, or by an RT command (given from another
terminal) restarting the background RT program (BAKnn for terminal,
BCHnn for a batch processor).

9.9 Resetting the repeat bit

Termination of an activity executing in parallel with a program
usually has the same effect as an RT call on the program, to bring it
out of a HOLD or RTWT state. Example of activities restarting a
program is the completion of an IO transfer in NOWAIT mode, arrival of
an XMSG message or a break condition on an ND—net channel.

If the program is not in an RTWT state when the restart is attempted,
the repeat bit (5RE57‘in the RT description is set. As soon as the
program terminates it is reexecuted. In order to clear the repeat bit
to prevent reexecution the program may execute a HOLD with a zero
waiting time:

CALL HOLD(0,0)

This call must be executed after the repeat bit has been set, after
termination of all activities that may unintentionally set the repeat
bit.

ND»60.133.02

126 Real Time Guide
ACTIVATING AND DEACTIVATING RT PROGRAMS

9.10 Reading the clock and clock adjustments,

The ND-1OO counts the clock time, equivalent to ordinary wall clock
time and date and internal time, which is a count of 20 ms intervals
since the system was *started (warm start). The offset between wall
clock time (transformed to basic time units) and internal time is
constant as long as the machine is running, but another offset is
determined after a restart.

Most ND—100s are delivered with a panel clock which runns
independently of CPU operation. When the CPU stops for any reason,
this clock continues to run, and as soon as the CPU is restarted, the
panel clock is read to determine the new offset between internal and
clock time. NORD-10s and machines delivered without a panel clock must
have the clock time updated by an operator after a stop. If there is
no panel clock automatig updating is not performed, but the monitor
calls to read the clock time read the value of a "software clock"
whose time is derived from the internal time,

The panel clock time, usually simply called clock time, can be
adjusted by commands or monitor callsi internal time cannot.

Points in time can be specified according to the panel clock or
according to internal time. Adjustments in clock time may have
different effects on programs, depending on whether time was specified
according to internal or clock time.

9.10.1 Reading internal time

The internal time may be read using the monitor call

MON 11 % TIME

The number of 20 ms intervals since the last system restart is
returned in the AD register as a 32 bit integer. In Fortran, a DOUBLE
INTEGER function TIME may be used:

DOUBLE INTEGER TIME, TI

TI = TIME(DUMMY)

The argument is not used, but required by Fortran syntax. TIME is
available from background as well as RT programs.

The internal time is used when starting another program by the DABST
monitor calla It is also the most precise measure of elapsed time.

When a program is scheduled for execution by the SET command, the
starting time is immediately transformed into internal time and the
program is transferred to the execution queue when the internal time
counter reaches the calculated value; clock adjustments does not
affect program execution.

ND«60.133.02

Real Time Guide 127
ACTIVATING AND DEACTIVATING RT PROGRAMS

The internal time cannot be modified by software. However, if the
system halts temporaryly due to a power failure, the time counter is
not incremented during the stop period. If the system is stopped
through the Sintran command

STOP-SYSTEM

(permitted for user SYSTEM only), a power failure is simulated and the
counting of clock pulses ceases until the system is restarted through
the microprogram command 202 (see the System Supervisor Manual). After
such a stop, the clock time is read into the CPU registers for
updating the offset between clock time and internal time.

A program whose scheduling is specified in internal time units is
delayed for as long as the stop lasted. This includes periodic
programs; the interval between two executions is correspondingly
extended.

However, after the clock has been read, the time queue is inspected
for programs that should have been started during the stop period.
These programs are immediately transferred to the execution queue,
exactly as after a CLADJ call (see below).

9.10.2 Reading the clock time

The clock may be read by the monitor call

MON 113 % CLOCK

The result is returned in a 7 element array whose address is found in
the location pointed to by the A register. The call sequence in MAC is

CLOCK=113

LDA (ARRAD
MON CLOCK

ARRAD, CLDAT

CLDAT, $ basic time units
% seconds
% minutes
% hour
% date
% month
% year0

0
0

0
0

0
0

The call is permitted from background programs. In Fortran, the
routine CLOCK can be used. CLOCK expects a seven element integer array
as an argument:

INTEGER CLDAT(7)

CALL CLOCK(CLDAT)

ND-60.133.02

128 Real Time Guide
ACTIVATING AND DEACTIVATING RT PROGRAMS

When used in a program, all values are returned as integers. To
display the current date and time there is a Sintran command:

@DATCL
1§.11.14 21 SEPTEMBER 1981

9.10.3 Adjusting the clack

The panel clock may need adjusting for several reasons:

the machine does not have an automatic update feature

the machine is initially installed

the clock is unstable due to varying temperature conditions

a power failure lasted too long for recovery to be possible
(approx 30 minutes)”

the clock should be adjusted one hour for "summer time" or "winter
time"

The clock may be set by a command or a programu Adjustments may be
absolute or relative to the current value of the clock.

9.10.3.1 Relative adjustment

Relative adjustment of the clock is performed by

Sintran command: @CLADJ (no. of units) (time unit>
Monitor call: MON 112 % CLADJ

Command parameters:

<no.of units) — the number of time units clock adjustment as a
positive or negative decimal integer

(time unit> — a time unit size, specified as a digit between 1 and
M

The clock is never actually set backwards by this command. If a
negative adjustment is specified, the clock stands still for the
specified period.

If a positive adjustment is specified, the adjustment is added to the
current time. The time queue is then inspected and any program
scheduled for execution at a wall clock time (through ABSET) between
the old value of the clock and the new value, is immediately
transferred to the execution queue.

Programs scheduled for execution by the ABSET call are affected by an
adjustment of the clock"

ND-60.133.02

Real Time Guide 129
ACTIVATING AND DEACTIVATING RT PROGRAMS

Adjustment of the clock does not modify internal time, but it does
modify the offset between internal and external time.

Programs scheduled for execution by the DABST or SET call' are not
affected by an adjustment of the clock.

Example:

@CLADJ
m3. OF UNITS: 3
TIME UNIT: g
@CLADJ
Nb. OF UNITS: §§
TIME UNIT: 2

This advances the clock by 4 minutes and 35 seconds. If executed from
a Fortran program, the two subroutine calls are

PARAMETER (SEC=2, MIN=3)

CALL CLADJ(H, MIN)
CALL CLADJ(3, SEC)

In MAC, the A register should point to the argument list:

SEC=2; MINU:3
CLADJ=112

LDA (MINAD
MON CLADJ
LDA (SECAD
MON CLADJ

MINAD, (MINU; (14
SECAD, (SEC; (35

ND~60.133-02

130 Real Time Guide
ACTIVATING AND DEACTIVATING RT PROGRAMS

9.10.3.2 Absolute adjustment

The clock may be set to any wall clock time (later than January 1st,
1981) by the UPDAT call. The operator or program must specify the
elements from minutes to year in the array read by CLOCK » the seconds
and 20 ms counters are both zeroed.

Sintran command: éUPDAT <minute> <hour> (day) (month) <year>
Monitor call: MON 111 % UPDAT

Command parameters:

<minute> — the new value of the minute counter, range 0:59

<hour> — the new value of the hour counter, range 0:23

<date> - the new value of the date, range 1:31

<month> — the new value of the month, range 1:12

<year> — the new value of the year, range 1950:2013

The new values are checked to confirm that they are reasonable; if
they are not, the call is not executed. Examples of unreasonable
arguments are negative values, second or minute values exceeding 59,
or date equal to 31 in a month with only 30 days. Both command and
monitor call require the year to be specified in full with four
digits.

The MAC call uses the ordinary call sequence, the A register points to
the parameter list. Observe that this is different from the CLOCK
monitor call, where the A register points to the address of the
parameter list!

UPDAT:111

LDA (NEWTIME
MON UPDAT % MON 111

NEWTIME, u
13 % Decimal: 11
26 % 22
11 % 9, September

3675 1 1981

(To avoid converting the times to octal values, the ")DEC" mode of the
MAC assembler can be used for the parameter part. In NORD-PL the
"@DEC" command is used and octal values can be used preceeded by "&".
Remember that the monitor call number is octal.)

In Fortran:

CALL UPDAT(u,11,22,9,1981)

ND—60.133.02

Real Time Guide 131
ACTIVATING AND DEACTIVATING RT PROGRAMS

Time and calendar are set to 11.0“ on September 22. 1981.

The time queue is not inspected when setting the clock absolutely.
Consequently, programs scheduled through the ABSET call are treated in
exactly the same way as programs scheduled by internal time (DABST,
SET) and the waiting time is not affected by modification of the
clock.

UPDAT does not cause the clock to stand still even if the new value is
earlier the old one. The clock, including the panel clock if
installed, is immediately updated with the new value.

ND-60.133.02

132 Real Time Guide

DID-60.83.02

Real Time Guide 133
RESERVING AND RELEASING DEVICES

10 RESERVIWG AND RELEASIHG DEVICES

A program does not generally receive resources automatically - an
explicit request must be executed and the program may have to wait in
a queue to gain control of the resource. 7

Even allocation of CPU capacity and memory space require explicit
requests. This is usually implied by the request to start the program,but may also be explicit (e.g. FIX, FIXC). ,

This chapter describes requests for allocation of resources that are
never implicitly granted to a program. These include all kinds of
peripherals, internal and external devices.

10.1 External and internal devices

"Device" indicates a piece of hardware that can be accessed by 1/0
instructions, e.g. a terminal, card reader, disk, communication
channel. Some devices are one way devices for input or output only.
E.g. line printer, plotter (output) and paper tape reader (input).

The input, output or both parts of a two way device can reserved. If
the input part is reserved, data can be read from the device; if the
output part is reserved, data can be written to the device. An example
of a two way device is an ordinay CRT terminal, with input from the
keyboard and output to the screen.

CRT terminal Device
no. 52

Output
.__._ part

-_ RT program

::—”" Input
.m... part

Fig. 18. Two way external device

External devices are used by a program to communicating with the
"outside world". If a: program wants to communicate with another
program, this can be done by writing to an external ,device (e.g. a
disk) and the other program can read from the same disk area. This
involves considerable overhead and time delay.

Instead, the message can be written to a buffer in memory and read by
,the other program from the same buffer. This memory buffer_is accessed
in the same way as the disk, but is at least, an ~order magnitude
faster, is called an internal device. ‘ J

ND—60.133.02

134 Real Time Guide
RESERVING AND RELEASING DEVICES

Memory buffer Device
no. 203

Output PROGRAM A
part (writing)

PROGRAM B
(reading)

Fig. 19. Internal device

Internal devices may be simple on/off flags (semaphores), serial
devices with limited capacity (byte/word oriented internal devices) or
large capacity devices with dynamic buffer allocation (block oriented
internal devices). The details of the different types of internal
devices are given in chapters 11 and 12.

10.2 The logical device number and the datafields

Each internal or external device in a Norsk Data computer system has a
logical device number (sometimes called a device number). This number
is fixed and a particular type of device usually has the same device
number in all Norsk Data systems. (The device also has a physical
device number of no concern to the RT programmer.)

Two way devices are identified by one logical device number and when
reserved the input or the output part must be specified. If both are
to be reserved, two requests must be executed.

One way devices are reserved by requesting the input part (the value
of the IOFLAG parameter is zero) even if the device is an output
device.

Each device is described by a datafigld contains information required
by the driver to control the device. The driver is a routine, usually
part of Sintran, controlling the device on the lowest level. Some of
the fields in the datafields are common to all devices and are
described in section 6.3 Others are documented in Sintran System
Documentation Appendix A — Data Fields and are only relevant for
experienced system programmers writing their own drivers.

Two way devices have two datafields, one for the input part, one for
the output part. This allows a program to reserve one part, as the
datafield is linked to the reservation queue of the RT description.

A device can only be reserved by programs executing in a ring equal to
or higher than the value in the two lowest (ring) bits in the TYPRING
word of its datafield. If a program in a lower ring attempts a
reservation, the request is immediately rejected. The program is not
put into the waiting queue, but continues execution. Any attempt to
use the device causes a runtime error that terminates the program.

ND-60.133.02

Real Time Guide 135
RESERVING AND RELEASING DEVICES

A program successfully reserving a device has the datafield linked
into its reservation queue. The list of reserved devices is printed by
the @LIST—RT—DESCRIPTION command. This list gives datafield addresses,
rather than device numbers. Unlike device numbers, datafield addresses
are configuration dependent.

10.3 Reserving a device

A program may request the right to use a device through the monitor
call RESRV, available as a Fortran function. RESRV may be called as a
subroutine, in which case the function value is discarded.

Parameters to the call are

- LDN, the logical device number of a device

— IOFLAG, indicating input or output for two way devices

— RETURN, a flag indicating return or not if unsuccessful

LDN must be found in the device number table in appendix C of SINTRAN
III Reference Manual ND—60.128. If the device is a terminal, the
device number can also be found from the @WHO—IS-ON or @TERMINAL—
STATISTICS command executed when a user is logged in on the terminal.
The device number returned by these commands is decimal, while default
number base in MAC is octal.

@WHo—Is—oq
49 SVEIN—ASKESTRAND
51 P-HAUGE—PH

:::> 52 REAL-TIME—GUIDE
55 JOHN—KINSEY
M7 KNUT—NORDBYE
6O SYSTEM
63 KENDALL

546 ALEX—WARMAN
670 SYSTEM

The terminal currently used by user REAL—TIME-GUIDE is device number
52 decimal, 6U octal. The terminal is reserved as long as anyone is
logged in. It is released after @LOGOUT, but is again reserved by the
background program (BAKnn) as soon as any input is received from the
terminal, even before a log in is complete.

IOFLAG should be 0 for input from the device, 1 for output to a
device. For one way devices (or devices not capable of data transfer,
e.g. semaphores) IOFLAG should be 0.

RETURN determines whether the program should be entered in the waiting
queue if the device is not immediately available. RETURN : O enters
the RT program in the queue and the program is passive until it is
granted the right to the device.

ND»60.133.02

136 Real Time Guide
RESERVING AND RELEASING DEVICES

If RETURN is 1 and the device is not available, the program is not put
into the waiting queue. It continues and the A register, or Fortran
fhnction value, contains the value «1. Further information (e.g. which
program has reserved the device) must be acquired through other
monitor calls. If the device is available, the A register or function
value is zero. A ring violation (TYPRING ring bits higher than current
ring) is treated as if the device is not available and returns —1. If
reservation is denied because of a ring violation, return is immediate
even if RETURN is 0.

If RETURN has a value other than 0 or 1, the value returned in the A
register or as a function value is always 0, regardless of whether the
device was available or not.

Example:

An RT program CONTROL may control terminal 52 as long as it is not
used for background processing, by waiting for it to become available
while a background program is active. As soon as the user logs out,
CONTROL is granted the terminal.

Input from the terminal is read by CONTROL until an ASCII ESC
character is read (value: 338), when CONTROL releases the terminal.
Another ESC starts the background processor.

In this example, the characters entered are simply echoed to the
terminal. In principle, any operation may be executed using the input
data. Unless echo has been turned off by setting the echo mode to a
negative value (MON 3, ECHOM), the terminal driver also prints input
characters to the terminal. Thus in the example each character appears
twice on the terminal.

After 10 seconds, CONTROL enters the waiting queue of the terminal,
where it remains until the user executes a @LOGOUT command. If no
other input starting the background program was received within the 10
second period, CONTROL immediately regains access to the terminal.

ND-60.133.02

Real Time Guide 137
RESERVING AND RELEASING DEVICES

0
0

C
C

The reservation is in MAC done t

PROGRAM CONTROL, 40
PARAMETER (INPART:O, OUTPART21, WAIT=O, ESC:33B)
INTEGER CHVAL

D0 WHILE (.TRUE.)

Repeat until fatal machine failure....

CALL RESRV(52,INPART,WAIT)
CALL RESRV(52,0UTPART,WAIT)
CHVAL : INCH(52)
DO WHILE (CHVAL«NE.ESC)

Perform any operation on input data,
generate any output to terminal
Here: simple echoing:

CALL OUTCH(52,CHVAL)
CHVAL : MOD(INCH(52),200B)

ENDDO
CALL RELES(52,INPART)
CALL RELES(52,0UTPART)

Wait until BAK13 has reserved the terminal, then
enter waiting queue

CALL HOLD(TO,2)
ENDDO
END

Y

RESRV:122
INPUTzo; OUTPUT=1
WAITzo

LDA (IPAR
MON RESRV
JAF ERR
LDA (OPAR
MON RESRV
JAF ERR

Reserve input part
Failure is indicated by —1 in Areg
Success: A reg cleared
Reserve output partEQ

‘G
Q

‘Q
Q

“

IPAR,(6u x 52 decimal
(INPUT
(WAIT

OPAR,(64
(OUTPUT
(WAIT

ND-60.133.02

138 Real Time Guide
RESERVING AND RELEASING DEVICES

10.4 Releasing a device

A device can be released through the RELES call. The parameters are
exactly as in RESRV, but only the LDN and IOFLAG values are used. To
release the input and output parts of terminal 52, execute:

RELES:123

LDA (PARI
MON RELES
LDA (PARO
MON RELES

PART, (64 % Terminal number 52 decimal
(0 % The input part

PARC, (6n
(1 % The output part

The Fortran routine has the same parameters:

CALL RELES(52,0)
CALL RELES(52,1)

10.5 Reserving a device on behalf of another program

In some cases the program using a device is not the one reserving it.
There are several reasons for this.

One is when a program is written to perform some kind of service on a
number of devices, but the selection of which device to work on is
done by another program. Another case is where a device is handled by
several programs and the device is passed from one program to the
next.

A device may be reserved for a program through a command:

Sintran command: @PRSRV <log. unit) (input/output) (RT name)
Monitor call: MON 12“ % PRSRV

Command parameters:

(log. unit) - decimal logical device number of the device to be
reserved

<input/output> - a 1 indicates the output part, a O the input part of
a two way device

<RT name) — the name or RT description address of the program
which should be granted access to the device

The argument list is in MAC pointed to by the A register and the
status of the reservation is returned in the A register; if the
reservation was successful, the A register is zero, otherwise it is
-1. The most common cause of failure is that the device was already
reserved or that the TYPRING bits in the data field do not permit
reservation. Unsuccessful completion of the @PRSRV Sintran command
does not give an error message.

ND—60.133.02

Real Time Guide ‘fl39
RESERVING'AND RELEASlNG DEVICES

The ring bits of the program receiving the device determine whether
reservation is permitted or not. The priority of the reserving program
determines the pesition in the waiting queue if the device is not
immediately available and the reserving program is put into the
waiting queue (there is no way to request return if the device is not
immediately available). ‘ ‘

Below ~is 2a» program. fragment where the program SENDER is given the
output part of an internal device, numbeeOZB. The- present _program
acquires the input part to receive messages from SENDER. It is assumed
.that SENDER is in an RTWT 'state and will fetch data forming the
-messages from an external source when it is restarted. .

PRSRV:12M; RT:100; RESRV2122

LDA (SND
MON PRSRV % Output part reserved for SENDER
JAF FAIL % Nonnzero if not available
LDA (MYSLF
MON RESRV % Input part for this program
JAF FAIL ‘ " i L
LDA (SNDPR ;* -
MON RT % Start SENDER

FAIL, % Error handling routine

SND, (202 % Internal device
(1 % Output part

sNDPR,° (SENDER » . ' ~‘fl ‘ ~, ~,w
MYSLF, (202‘r" % Same internal device

(0 % Input part
%:~(1«a~a» Return with A a am if failure‘V

A19. 6 Forcing a program to release a device

‘Deadlock situations are often caused by the failure of program to
release a device. They may be fatal to the entire system, but if not,
another program or an operator can resolve the deadlock by forcing the
program monopolizing a device to,release-it;'This may be fatal to the
program, if it {attempts to access the deVice'Zit. no .longer has
xreserved, so at should be used with care.“ ; ‘ ,,;_ "v s

LeSS dramatically, a high level administrative programwmay release a
device from one program to give it to another one through PRSRV. Even
in this case, ca.re should be exercised to ensure that operations on
the device are properly completed first.izv ‘ ,« - v » ,

The PRLS call is available as a Sintran command and monitor call:

Sintran command: @PRLS <log. unit) <input/output> .Itfifirai
Monitor call: MON 125 % PRLS

140 Real Time Guide
RESERVING AND RELEASING DEVICES

Command parameters:

(log. unit) - decimal logical device number of the device to be
released

(input/output) - 1 indicates the output part, 0 the input part of a
two way device

The list of parameters to MON PRLS is pointed at by the A register.
The SENDER program in the previous section may, when the communication
is complete, go into an RTWT state waiting for the next activation.
This does not release the reserved device. To force SENDER to give up
the internal device, the instructions executed by the receiving
program could be:

PRLS=125

LDA (SND
MON PRLS

SND, (202 1 Internal device
(1 1 Output part

Equivalent Fortran code:

CALL PRLS(2028, 1)

Note that the receiving program still reserves the input part of the
device. Release of input and output parts are independent.

The PRSRV and PRLS calls are often used together to take a device from
one program to give it to another one. In certain cases this fails:

As soon as the device is released, forceibly or voluntarily, it
is granted to the first program in the waiting queue. This might
happen before the program executing the PRLS has had time to
grant the device by PRSRV to the program it intended and the
reservation fails.

This probability of this can be reduced by giving the program
executing the PRLS/PRSRV a higher priority than any program in
the waiting queue. This adjustment can be temporary and reset as
soon as the reservation is successful. Even this does not
guarantee that no problems occur.

If the terminal used by a background program is released through PRLS,
the background program is terminated and the user logged out, unless
the command is executed from the released terminal.

OBSERVE:

Care should be taken when a device is forcibly taken from a program
with the intention of giving it back to the program later. If the
buffer (input or output) is not empty, the owner of the device may be
hanging in an IOHAIT. If the transfer finishes while the device is
”borrowed", the owner is not properly restarted.

ND-60.133.02

Real Time Guide 141
RESERVING AND RELEASING DEVICES

The probability of this happening is reduced if the PRLS is delayed
until the buffer is empty. This is checked through the OSIZE call
(section 13.12).

10.7 Reserving a directory

File system maintainance systems may need exclusive access to an
entire directory. This can be granted, provided that the directory is
entered and no files are opened on the directory (if a main directory,
no user may be entered).

The directory is reserved by the REDIR call, and released by the RLDIR
call. The T register must hold the directory index of the directory to
be reserved. The @LIST-DIRECTORIES-ENTERED command will list the
directories in order of increasing directory index (first
directory:0), but be aware that if no directory is entered on a
device, an LF only will be printed for that entry in the directory
table. A program may use FOBJN (MON 273) reading the directory (and
also user and object) indexes of any file on the directory.

REDIR22u6
RLDIRz2u7
PCTWO=1

SAT PCTWO % Reserve the PACK-TWO directory
MON REDIH

% Use directory

SAT PCTWO
MON RLDIR

These calls are available in Sintran version H and later. They are
also available as commands. See SINTRAN III Reference Manual ND-60.12.

10.8 Reserving devices through Sintran commands

A program usually reserves the devices it needs through monitor calls.
Sometimes a terminal operator wishes to request use of a device not
normally continuously reserved by the terminal background program.

An example of this is a magnetic tape station: after mounting a tape
the owner of the tape wants to keep others from using the station. To
prevent it the tape drive is be reserved for the terminal user.

ND~60.133.02

1M2 Real Time Guide
RESERVING AND RELEASING DEVICES

10.8.1 Reserving a file for the users terminal

To prevent other users accessing the floppy, a user can reserve the
peripheral file associated with the floppy device while he is copying
files to or from the floppy.

If a user wants to copy several files to the magnetic tape without
interruption, the peripheral file for the magnetic tape may be
reserved for the user's terminal.

Programs communicating through files are dependent on having full
control over the file. Opening the file reserves the device; if there
is a time lag between one program's closing and the next program's
opening of the file, another program might "steal" the file as soon as
it is closed.

A file is reserved by the command

@RESERVE-FILE <file name>

30mmand parameter:

(file name> — name of a peripheral file

if the file is not a peripheral file, no action is taken, however, the
command is legal for all files and no error message is issued.

The file may later be released through the command

@RELEASE—FILE (file name>

The parameter is the same as for @RESERVE—FILE

(It is possible to run a SINTRAN III installation with no peripheral
file name for the floppy device. However, in most systems the
peripheral files are created when the system is installed. The file
name of the floppy drive is used when a file is written to the floppy
disk without the use of a directory and when the @DEVICE-FUNCTION
commands are used, e.g. to format a floppy disk.)

10.8.2 Reserving a device unit for the user's terminal

@RESERVE-DEVICE—UNIT (device name> (<unit>) (<F/R>)

Command parameters:

(device name> — the name of the mass storage device controller to
which the device is connected. The standard names
are found in appendix C of SINTRAN III Reference
Manual ND-60.128.

<unit> - the unit number of the device, if more than one
device is connected to the controller.

<F/R) - only to be used with cartridge disks. F indicates
the fixed disk pack, R indicates the removable disk
pack.

ND—60.133.02

Real Time Guide 143
RESERVING AND RELEASING DEVICES

The device__name is used yrather than the peripheral file name.
@RESERVE-DEVICE-UNIT prevents directories from being entered on the
device and is used before starting a program using the floppy drive in
a nonstandard way. The program may write any data on the device
without using the file system for logically structuring the disk.

No user, including the user reserving the device unit, can enter a
directory on the drive. The command prohibits any file system
operations on the disk and its datafield is entered in the BRESLINK
queue of the background program.

Before a directory can be entered, the user who reserved the device
unit must log out (releasing any devices reserved by his background
program) or execute the command

@RELEASE—DEVICEuUNlT <device name> (<unit>) (<F/R>)

The parameters are the same as for GRESERVE—DEVICE—UNIT.

These two commands are permitted for all users, but the command
releasing the device unit must be executed at the terminal where the
reservation was made.

10.9 Determining who has reserved a device

In the analysis of a deadlock situation, it is vital to find out which
programs are occupying the various devices involved. The commands
required to find the relevant information depend on the kind of
reservation.

10.9.1 A file reserved through @RESERVE—FILE

The reserver of a file may be identified by the Sintran command

QWHERE-IS—FILE <file name)

This command can be used for any file and is available to any user. It
identifies the user by name and terminal number. If the file is opened
by by an RT program, the respose is

(file name) RESERVED BY USER RT ON TERMINAL 1

if the RT program is terminal independent. This does not imply that
there is anyone logged in as user RT on the console.

If the file is a peripheral file reserved by a RESRV or PRSRV call,
the response is

<file name> RESERVED BY RT PROGRAM (RT name)

ND~60.133.02

1uu Real Time Guide
RESERVING AND RELEASING DEVICES

10.9.2 A device identified by a logical device number

@LIST—DEVICE (log unit> <input/output)

This command expects a decimal logical device number and 0 indicating
input or 1 indicating output. The reserving program is identified by
name. If the device is a terminal, the reserving program is usually a
background program (BAKnn).

If programs are in the waiting queue of the device, they are
identified by name:

@LIST—DEVICE 52 O
RESERVED BY: BAK13
WAITING RT—PROGRAMS:
CONTROL

The response NOT RESERVED indicates that any program requesting the
device will immediately be granted access.

A program may use the monitor call WHDEV (MON 140) to determine who
has reserved a device. The RT description address of the reserving
program is returned in the A register or as a Fortran function value.

Example (tape punch is logical unit 2):

PARAMETER(PUNCH = 2)
INTEGER WHDEV

lPROG:WHDEV(PUNCH90)
IF (IPROG.EQ.O) THEN

C reserve and use paper tape punch
ENDIF '

IPROG receives the RT program description address if the device is
reserved (0 if free) and the program can take different actions
depending whether it is a background or RT program.

10.9.3 A device identified by a datafield address

In a deadlock a program may be "eternally" waiting for a device. The
RT description, written by @LISTmRT-DESCRIPTION, continuously reports:
WAITING FOR nnnnn, where nnnnn is a datafield address.

If the logical unit number corresponding to the datafield is unknown,
the RT description address of the reserving program can be found by
inspecting the RTRES location of the datafield. User SYSTEM can
inspect resident memory through @LOOKuAT RESIDENT; the first location
following the data field address is the RTRES field (see section 6.3)
containing the RT deSoription address of the reserving program.

After the RT description address is found, the name of the RT program
can be found by the command @GETmRT—NAME.

ND-60.133.02

Real Time Guide 1A5
RESERVING AND RELEASING DEVICES

Example:

@LIST-RT-DESCR CONTROL
RING:O PRIORITY: “0

LAST STARTED: 2 MINS A8 SECS
START ADDRESS: 0, SEGMENTS: 0 322
P: 226
X: 762
T: 3
A: 0
D: 225
L: 1”
S: 0
B: 344
WAITING FOR: 23126
ACTUAL SEGM.: 0 322
QgOOK-AT RES
READY:
23126/ 40417

”OA17 ;
-END

@GET-RT-NAME 40417
BAK13

The device 23126 (terminal 52 in this system) is reserved by the
background program BAK13.

A datafield address does not necessarily correspond to a logical unit
number, but may be an internal device or a semaphore used by the
operating system, not available to users. Even for those datafields
that do correspond to an external or device, there is no general
mechanism to translate a datafield address to a logical unit number.

If a programmer has the listing of Sintran PART-TWO (the configuration
dependent part), he can look up the datafield address here and in many
cases will be able to identify the device. Reading any part of the
Sintran listing requires some experience with NORD-PL and familiarity
with the configuration.

10.10 Reservation in SINTRAM III vs. the “Dijkstra semaphore"

Computer literature often discusses binary semaphores as defined by
A.W.Dijkstra and a multitude of algorithms for building higher level
synchronization tools based on this concept are available.

Essentially, reservation of devices other than semaphores follows the
same pattern as reservation of semaphores. Comments below regarding
semaphores apply to ,all internal and external resources that can be
reserved in a SINTRAN III system.

Advanced programmers should be aware that the reservation of devices
(including semaphores) does not exactly follow the rules defined for
the Dijkstra semaphore.

ND-60.133.02

146 Real Time Guide
RESERVING AND RELEASING DEVICES

The algorithm for the reservation of a Dijkstra semaphore is as
follows:

IF REQUESTED RESOURCE AVAILABLE
THEN

ALLOCATE RESOURCE TO REQUESTING PROGRAM
ELSE

ENTER REQUESTING PROGRAM INTO WAITING QUEUE
ENDIF

The SINTRAN semaphore is reserved through the following algorithm:

IF REQUESTED RESOURCE AVAILABLE
THEN

ALLOCATE RESOURCE TO REQUESTING PROGRAM
ELSIF OWNER >< REQUESTING PROGRAM
THEN

ENTER REQUESTING PROGRAM INTO WAITING QUEUE
ENDIF

The only difference between the two is when a program tries to reserve
a resource it has already reserved. The Dijkstra semaphore causes the
program to deadlock; it enters the waiting queue, waiting for the
device to be released, but as it is passive in the queue, it can never
complete its operations on the device to release it.

Reservation of a SINTRAN semaphore which the requesting program has
already reserved is effectively ignored; the program can therefore
continue execution without causing a deadlock.

This has two side effects:

Certain statements ("invariants") about the semaphore do not
necessarily hold true. For a Dijkstra semaphore, the number of
successfully completed WAIT operations (RESRV calls) executed on a
device cannot exceed the number of SIGNAL operations (RELES calls)
plus one. Repeated reservations of a Sintran semaphore violate this
invariant, while according to the rules of the Dijkstra semaphore a
deadlock should occur.

Even though several RESEV calls have been executed, only one RELES
call is required to release the device. If the program is not aware
that the device reserved is the same as one already reserved, it may
assume that the "second" device is still available after the first one
has been released.

To avoid some of these problems and prevent confusion,

- a device should not, if possible, be accessed as a peripheral file
and a device by the same program

- if a peripheral device is created for an internal device, separate
files should be made for the input and output parts (a file with R
access only for the input part and one with W or WA access for the
output part)

ND-60.133.02

Real Time Guide 147
RESERVING AND RELEASING DEVICES

— in critical program systems, the program should maintain a list of
the device numbers reserved and every time a peripheral file is
opened or a device number obtained from another program, it should
be checked against this list.

10.11 Obtaining information about devices

There is no general mechanism for reading the data field of a device.
However, the device type and a set of attributes regarding the
permitted operations on the device may be obtained by the GDEVT call.
Programs may be designed to handle arbitrary device types, determining
the appropriate device handling from the type and attributes.

BYOUT,

GDEVT=263

LDT INDEV % T : device number
SAA O % A = 0: input, A = 1: output
MON GDEVT
JMP ERR % Error return, A : error code
COPY SD DA % 32 attribute bits returned in AD
AND (10 % Check bit 3: block calls allowed
JAZ BYOUT % Not set, use byte IO

. . . % Block calls permitted

. . . 1 Byte IO handling

On return the T register will contain the device type:

—q
O

H
J.

E
L»

IV
-A

0
II

I!
H

II
H

H
H

unspecified
terminal
background access device (BAD)
communication channel (ND—net etc.)
internal block device
floppy disk
magnetic tape
mass storage file

The AD register pair will contain 32 attribute bits, of which 6 are
currently used:

bit
bit
bit
bit
bit
bit

0: INBT/OUTBT allowed
1: CONCT allowed
2: IOSET allowed
3: block IO calls allowed

clear device routine available
no reservation of device necessary

If a peripheral file is opened through MON OPEN, both its open file
number
FOPFN:

and its logical device number can be obtained through MON

NDm60.133.02

148 Real Time Guide
RESERVING AND RELEASING DEVICES

FOPFN=257

SAX PLOT
SAA EMPTY
MON FOPFN
JMP ERR % E
STT OPNO % T
STA OPCOD % A
COPY SD DA 1 D
STA DEVN

rror return: A = error code
open file number
open code
peripheral device no

PLOT, 'PLOTTER-1'
EHPET} "

The open code in the A register has the value 0 if the file is opened
for read, 1 if opened for write and the value 2 if opened for both
read and write. The file must be opened for RT programs.

These monitor calls are available in Sintran version H and later.

ND-60.133.02

Real Time Guide 149
SEMAPHORES

n smmmgs
The simplest form of communication is a binary signal, it is either on
or off. E.g. a numeric value of O or 1, a resource is available or
unavailable, a process has completed or it has not, etc.

Such signals are transmitted between programs by semaphores. By
convention, the terms used to describe the states of a semaphore are
reserved or £523, but the interpretation of these terms is up to the
accessing programs.

There are two major uses of semaphores:

As a timing signal. Program "A" reserves a semaphore while it is
performing its operations. Another program "B" which requires
that A completes before proceeding must wait for the semaphore to
become free.

As a reservation flag. Program "A" working on a resource, e.g. a
memory buffer, must, in order to guarantee consistency of a data
structure, prevent other programs from accessing that same memory
buffer. It does that by reserving a semaphore and expects all
programs competing for access to the buffer to wait for the
semaphore to become free.

Semaphores are used as timing signals to prevent deadlocks. SINTRAN
does not provide concurrent reservation of several resources (files,
devices etc.) and a sequence of reservations may be incomplete if one
of the resources was unavailable or the sequence was interrupted by
another program requiring one or more of the yet unreserved resources.
A group of devices can be protected by a semaphore, preventing a
program from reserving one device if they are not all available.

Resources identified through a logical device number (peripherals,
internal devices, files) are protected from concurrent access by the
operating system. Semaphore protection is required only where resource
sharing is beyond the control of the operating system, such as use of
data in a common segment or execution of a nonreentrant routine.

11.1 Semaphores and protocols

The use of semaphores is completely under control of user programs and
SINTRAN does not guarantee consistent use of the semaphores beyond
that of the reserving the semaphores themselves.

Any program may ignore the semaphores protecting a common resource. If
the resource is not a device already reserved by another program (and
thereby protected from concurrent accesses by the operating system),
there is nothing to stop the program from reserving, accessing or
modifying data in the protected group.

It is up to a programmer to ensure that all system components respect
the rules enforced by the semaphores. Techniques exist to build higher
level synchronization tools and some of these are illustrated in the
examples. The semaphore should be considered a basic building block
for protection mechanisms and synchronization tools tailored to the
particular application.

ND~60.133.02

150 Real Time Guide
SEMAPHORES

However there is no way to guarantee that programs external to the
system do not violate these protocols.

11.2 Access to semaphores in Sintran

A semaphore is identified by a logical unit number between 3008 and
3773. The number of semaphores available is a system generation
parameter and is generally between 5 and 20. Default number of
semaphores when ordering SINTRAN is 5.

These semaphores are all available to user programs. In addition, the
operating system uses a number of semaphores internally to protect
data structures used by the RT monitor; these cannot be used by user
RT programs.

A semaphore is reserved and released by the same monitor calls as
other devices:

HESRV - reserve a semaphore
RELES release (free) semaphore
PRSRV - reserve a semaphore on behalf of another program
PRLS ~ force a program to release a semaphore

Like any other device, a semaphore has a waiting queue and a program
which unsuccessfully attempts to reserve a semaphore is put in its
waiting queue.

11.3 Example: access conflicts causing inconsistent data structure

This example illustrates how access conflicts can cause an
inconsistent data structure if several programs access shared
variables:

Consider a list of elements, indentified by alphabetic characters:

<—— A <—— B <—— c <-—t ‘Dl <-— E <-« ROOT

Fig. 20. Linked list

The "<——" is a pointer — the address of another element in the list
and is termed the "next-pointer".

A service program MOVE moves a specified entry ELEM from its current
position in the list to another position. The new position is
identified by the list element AFT after which ELEM should be inserted
(ELEM is inserted to the £332 of AFT in the figure above).

Activation of MOVE requests "B" to be moved after "D". This is
performed by unlinking the element "B" (using an auxiliary pointer as
a temporary reference to "8") and setting the next-pointer of "B" to
the same element as "D"'s next—pointer

ND-60.133.02

Real Time Guide 151
SEMAPHORES

<_.. LIAI <--I EC! <--{ IDI <--I IEI <—-IR00TI
A

f""lI EB] <—-|AUX|
Lu—ml

Fig. 21. B has been unlinked

The intention is now to set "D"'s next—pointer to point to "B",
completing the insertion. However, this is interrupted by another
program.

The interrupting program is also one modifying the list and it moves
"D" to after "A". The picture is now:

< "LIDI <~—I “I (-"I I0! <“I IEI <-‘IROOTI
W

A
97"“[IBI <--IAUXI

.s_a L__J
gig. 22. D is moved

After this operation, MOVE takes over again and completes its
operations by setting "D"'s pointer to point to B. The temporary
auxillary pointer is no longer needed. The data structure is now

f“f'1F"-"IAII<--I IcI <__I IEI <-—IROOT|
I—J—J Ina—a Inna—.4

A
V l,1

~>l BI
I—nl—J

Fig. 23. An unintended loop

Any routine that performs an operation "on every element to the end of
the list" goes into an infinite loop. Wherever a test is performed to
see if there is a "next" element or not, the answer is "yes". The
unintended result was because of the interrupt midway through the
operations.

11.4 A solution using semaphores

If all devices accessing the data structure headed by ROOT must
reserve semaphore 301B before they modify it, each update of the data
structure can be completed before another update starts. This makes it
far easier for each program in the system to guarantee data
consistency.

ND-60.133.02

152

The program solution is written in Fortran.
concepts are not present in Fortran, a list must
twoudimensional array, where the next-pointer
the next element rather than its memory address.

Real Time Guide
SEMAPHORES

As record and pointer
be ‘simulated by a

is the array index of

The array LIST is declared as a 2 by 5 array, limiting the number of
elements in the list to 5; index 0 is the ROOT. The two locations of
element "n" are the nextupointer as (1,n) and the ASCII value of the
alphabetic identifier as (2,n). In a more realistic situation one
would add various data values as (3,n), (",n) etc-

PROGRAM MOVE, 50

PARAMETER (NXTPTR:1,VAL=2,ROOT=0)

INTEGER AUX, TEMP, LISTC2,0:5), ELEM, AFT
COMMON /SHARED/LIST
COMMON /ARGUMENT/ELEM,AFT

C Reserve data structure:

CALL RESRV(301B,0,0)

AUX = LIST(NXTPTR,ROOT)

C Unlink an element:

D0 WHILE (LIST(VAL,AUX)»NE.ARG)
TEMP = AUX
AUX : LIST(NXTPTR,AUX)

ENDDO

C "Splice" the chain where the element was removed

LIST(NXTPTR,PREV) = LIST(NXTPTR,AUX)

C Find where the element should go into list

TEMP = LIST(NXTPTR,ROOT)
D0 WHILE (LISTKVAL,TEMP).NE.AFT)

TEMP = LIST(NXTPTR,TEMP)
ENDDO

C Insert element into list:

LIST(NXTPTR,AUX) = LISY(NXTPTR,TEMP)
LIST(NXTPTR,TEMP) = LIST(NXTPTR,AUX)

C Free the data structure for use by others:

CALL RELES(301B,O)

END

ND“600 133 O 02

Real Time Guide
SEMAPHORES

A program requesting "B" to be moved after "D" would look like:

PRMRL‘H PEG, “0

C Lower priority than: [0'8 assures that: mm 13 couplete
c before PIG continues after call

EXTERNAL MOVE
INTEGER LIST(2 , 0 : 5) , Bum, AFT
COMO“ [SHARED/LIST
COMMON IARGUMENT/ELBJ , APT

0 o O

ELEM ICHAR('B')
AFT

- ICHAR('D')
CALL RT(MOVE)

END

ND-60.133.02

153

15“ Real Time Guide

ND—60.133.02

Real Time Guide 155
INTERPROGRAM DATA EXCHANGE

12 INTERPROGRAM DATA EXCHANGE

Cooperating programs need some way of exchanging data, such as results
from computations, error status values, input which is preprocessed by
another program or a record fetched from a database.

There are several mechanisms available for data transfer. The most
important criterion for selecting one is the transmission speed
required, In general the higher the transmission speed, the higher the
cost in terms of system resources.

The methods of communication available are:

RTCOMMON
Shared segment
Internal devices (byte/word oriented)
Internal devices (block oriented)
XMSG
Files

This chapter describes use of RTCOMMON, internal devices and shared
segments. XMSG, a more general communication system, is treated in
chapter 20 and use of files is the topic of chapter 13.

Semaphores (see the previous chapter) are used for communication of
timing signals and reservation flags, but are not themselves data
communication channels.

Internal devices (byte, word and block oriented) and shared segments
can be used within one CPU only; SINTRAN III has no mechanisms for
coordinating the Sintran resident areas and segment handling of two
separate systems. For communication with other systems, RTCOMMON can
be used if the CPUs involved has access to the same (multiport)
memory. XMSG can be used whether the two (or more) machines have
common memory or not.

Shared segment is treated as a special case in the ND—SOO monitor. A
ND-SOO computer may access a segment in the ND—lOO if the segment is
fixed in a contiguous area of memory (FIXC call - see section 8.2.5).

156 Real Time Guide
INTERPROGRAM DATA EXCHANGE

'12.1 ntcouuou
An area of physical memory, RTCOMMON, is fixed; the contents of these
locations are never removed to make room for other data. In many
respects this area behaves as a fixed segment that is never unfixed,
hence its contents are never swapped back. After a warmmstart, the
contents of RTCOMMON is unchanged. The user should note that RTCOMMON
is not to be looked upon as a segment.

Locations in RTCOMMON are addressed in the same way as other variables
in the program and operated on by load and store instructions. In a
high level language such as Fortran, this corresponds to assigning a
value to a variable or using the value of a variable within the
RTCOMMON area.

All RT programs running in ring 1 or above and using page table 1,
address the RTCOMMON area in the uppermost locations in the logical
address space. The same physical locations are addressed by all RT
programs using PT1 and modifications in RTCOMMON have an imEEEiate
effect for all programs using the modified locations.

Transmission is immediate; there is no delay, regardless of
priorities, system load or load on 1/0 channels.

Programs running in ring 0 cannot access the RTCOMMON area; a protect
violation interrupt will be generated. Nor do programs using page
tables 0, 2 or 3; they have their own private pages and can use the
entire logical address space including the uppermost locations without
concern for other programs. A program may have its code on a segment
on another page table than 1, and address RTCOMMON by the alternative
page table mechanism.

12.1.1 Access to RTCOHHON

Data to be placed in RTCOMMON is declared in a named Fortran common
block. Before the file containing the first occurence of this block is
loaded, the label must be defined as an RTCOMMON label through the RT
loader command *SET—RTCOMMON.

Example:

Fortran program:

PROGRAM START,50
INTEGER FLAG(10)
COMMON/FLAGS/FLAG

FLAG(1): 1
CALL RT(CONTINUE)
END

Load procedure:

ND-60.133.02

Real Time Guide 157
INTERPROGRAM DATA EXCHANGE

@RT—LOADER
*NEW—SEGMENT 312,,,,,
*SET-RTCOMMON FLAGS
*NREENTRANT-LOAD START,,
*END-LOAD

The integer array in FLAGS is available to all programs on page table
1 and any program can modify it. Programs loaded at any time after the
*SET—RTCOMMON command has been executed may refer to the label as an
external symbol. Remember that the common block name, rather than the
names of the symbols in this block, is the external definition!

The symbols defined in RTCOMMON may be listed by the command *WRITE—
COMMON—LABELS. Any global common labels can be listed by this command
— the segment number of RTCOMMON labels is zero. The three numerical
values returned are the address, the segment number (equal to zero for
RTCOMMON) and the size of the common block.

*WRITE—COMMON—LABELS
OUTPUT FILE: TERMINAL

AB 172000 0 12

i

The common block AB is located at address 172000 and is 128 (10
decimal) words.

12.1.2 Inspecting RTCOMHON variables through @LOOK—AT

Individual locations in RTCOMMON can be inspected and modified,
provided that their addresses are known. @LOOK-AT RTCOMMON accepts
numeric arguments only; the addresses must be found by 1WRITE—COMMON-
LABELS and possibly adding a displacment within the common block.

The syntax of @LOOK—AT RTCOMMON subcommands is the same as for other
@LOOK—AT commands: a slash (/) indicates that the preceeding value is
an address, (CR) that the next location should be displayed, a dot (.)
terminates the command.

@LOOK-AT RTCOMMON
READY:
172000/ 5217 (or)
0
—END
9

0

12.1.3 The size of RTCOHMDN

When ordering a Sintran system, the amount of RTCOMMON space must be
specified. The size of RTCOMMON is a system generation parameter and
is usually fairly small, e.g. eight pages (address range 1600003 to
1777778). If not requested, no RTCOMMON is reserved, in which case RT
programs cannot use this as a means of communication.

ND-60.133.02

158 Real Time Guide
- INTERPROGRAM DATA EXCHANGE

Although the RTCOMMON size is set at system generation time, another
area to be used as RTCOMMON can be defined by user SYSTEM through the
@SINTRAN—SERVICE—PROGRAM (not available to user RT):

@SINTRAN-SERVICE-PROGRAM
*DEFINE—RTCOMMON—SIZE
RTCOMMON SIZE: 5
FIRST PHYSICAL PAGE(OCT): 313
IMAGE? Y
SAVE-AREA? 3

"Resident" may not be modified; the system must be restarted ("warm
start") before the change has any effect. In this example, a pages (8
kbyte) occupying the uppermost pages of a 1/2 megabyte of memory was

' reserved for RTCOMMON. These 4 pages are in addition to what was
' specified at system generation.

Default physical address is the upper end of memory. In the example
above, default could have been used.

The specified size may not exceed the amount of RTCOMMON at system
generation time by more than 8 pages (16 kilobytes). If the *DEFINE—
RT—COMMON is used more than once, the last definition applies and all
previously defined areas are cancelled.

RTCDMMON is usually located in the upper part of physical memory. In
certain cases it is necessary to use another area, usually due to
special I/O devices using the RTCOMMON area. If an ND—SOO communicates
with an ND—1OO through RTCOMMON, the RTCOMMON area must be contiguous.
In other words, the area defined by *DEFINE~RT—COMMON must be adjecent
to the area defined at system generation time.

I The upper part of PT1 always points to RTCOMMON, thus a large RTCOMMON
limits the maximum area for free use by PT1 programs.

12.1.” Concurrent access to RTCOMMON

When running a one CPU system with local memory only, no concurrent
access to a single RTCOMMON location occurs, because only one process
is active at a time.

If several CPUs or DMA devices have access to a multiport memory there
may be two or more devices attempting to read or write the same
location at the same moment. Hardware circuits in the multiport
(called an "arbiter") ensures that the devices are granted access one
by one. Each write operation overwrites the previous value of the
location. The last writer determines the final value.

Thus, access to RTCOMMON should be controlled through a semaphore or
other synchronizing mechanisms, to prevent access conflicts or
inconsistent data.

ND~60.133.02

Real Time Guide 159
INTERPROGRAM DATA EXCHANGE

12.1.5 Ekanmle: using an RTCOHHDM variable as a semaphore

By using certain machine instructions, RTCOMMON locations can be used
to build synchronizing mechanisms.

The MIN machine instruction increments a memory location by 1 and if
the incremented result is O the next instruction is skipped. All
access to memory is done in one uninterruptible cycle. If several CPUs
perform a MIN on a location, every increment performed and the final
result is the starting value plus the number of increments performed.

A simple semaphore without an associated waiting queue is often
sufficient to mark a data area as available or in use. If the area is
in use, a new attempt to reserve the area is made after a one second
pause.

The RTCOMMON variable FREE has the value -1 if the area is available,
0 if the area is in use.

)9BEG
)9ENT FREE

FREE, 0

)9END

)9BEG
)9ENT RESERVE, RELEASE
)9EXT FREE

STZ FREE % Restore "reserved" flag
LDA (1SEC % Wait for release
MON HOLD

RESERVE,
MIN FREE % Increment FREE from —1 to O
JMP *-u % No — FREE was not -1
EXIT % Resource was reserved

RELEASE,
SAA -1
STA FREE
EXIT

)9END

The symbol FREE must be declared as an RTCOMMON symbol by the “SET—
RTCOMMON command. FREE is made a separate BRF module (delimited by
9BEG and 9END) in order to load FREE alone, without including the code
part, to RTCOMMON. ‘

Even executable code may be loaded to RTCOMMON. Compared to a fixed
segment startup time is shorter because no loading of page tables is
required. However, available space usually prohibits programs to,
reside entirely in RTCOMMON.

ND-60.133.02

160 Real Time Guide
' INTERPROGRAM DATA EXCHANGE

12.2 Byte oriented internal devices

, An internal device is a communication channel operated on as a file,
through INBT and OUTBT monitor calls., But while the information
written to a file usually is stored on a disk, the information written

[to an internal device is stored in a memory buffer, where another RT
program may read from the same internal device.

Because of the buffering, there may be a delay between the writing and
the reading operation. The device operates as a mailbox, where a
message is stored until needed and all messages are received in the

,same sequence as they are sent. In a byte oriented internal device,
each message is one byte. A standard modification (patch) may change
the size of each message to a 16 bit word (word oriented internal
device).

12.2.1 The number of internal devices

The number of byte oriented internal devices is a system generation
parameter, but unless otherwise specified, the system has two devices.
The maximum number possible is 40B (32).

If the configuration includes the Sibas data base system, each Sibas
process requires two internal devices for its own use. Other
subsystems may also need internal devices.

12.2.2 The ring buffer

The size of the buffer is limited, by default 64 words (128 bytes),
limiting the amount of data that can be written before any of it is
read. A read removes a byte, freeing the space for future write
operations. This kind of buffer is called a ring buffer and is
displayed as a circular chain and two pointers, the write pointer,
pointing to the next element to be written and the read pointer,
pointing to the next element to be read.

Write pointer

Read pointer .—_‘\\

Fig. 2H. Ring buffer and datafield

The area between the read pointer and the write pointer represents the

ND—60.133.02

Real Time Guide 161
INTERPROGRAM DATA EXCHANGE

amount of data currently in the buffer. If the read pointer catches up
with the write pointer, the buffer is empty; there is nothing more to
read. If the write pointer gets one round ahead of the read pointer
and catches up with it from behind, the buffer is full; there is no
more space for more writes until a read operation takes place. '

If a program attempts a read operation while the buffer is empty, the
program is (normally) set in an IOWAIT state, where it remains until
data is written to the device. Similarly, if a program attempts a
write while the buffer is full, the program is (normally) set in
IOWAIT.

12.2.3 Reserving an internal device

Internal devices are reserved in the same way as external devices (see
chapter 13). Each has a device number in the range 2008-237B (limited
by the configuration). The device has an input (read) and an output
(write) part, each reserved separately and usually by different
programs.

PROGRAM A, 40

CALL RESERV(2033,1,0)

PROGRAM B, 40

CALL RESERV(203B,0,0)

12.2.” Reading and writing

After the device has been reserved, input or output may be performed
through the INBT and OUTBT monitor calls (MON 1 and MON 2).

The multiple-byte monitor calls BNINW, BBINB, MBOUT and BBOUT can also
be used for reading from or writing to an internal device. These calls'
reduce overhead somewhat and may be used to ensure that the recipient'
has the entire message available (or that the entire message is read)
in one operation, uninterruptible by process switching. These monitor'
calls are not available from Fortran.

In high level languages like Fortran, the ordinary write statements
for sequential output are used. In Fortran, these are the HEAD and
WRITE statement:

ND—60.133.02

162 Real Time Guide
INTERPROGRAM DATA EXCHANGE

PROGRAM A, no
CALL RESERV(203B,1,0)
IX = 25
WRITE(203B,100) xx

100 FORMAT(I10)
END

PROGRAM B, no
CALL RESERV(203B,0,0)
READC203B,200) IX

200 FORMAT(I10)
END

All characters are transmitted through the internal device, including
position 1 in the line, without regard to printer control codes.

Fortran programs can also call the INCH and OUTCH subroutines to write
individual bytes, specified by their integer values. This is commonly
used if the transmitted data does not represent alphanumeric
information. For example may a separate command processing program
read a command, look it up in a command table and transfer the index
in table to another program, rather than the command string itself:

CALL RT(CMDPROC)

C Reserve input part to read command index
C returned from command processor

CALL RESRV(201B,O,1)
IXCMD:INCH(201B)
GOTO (1oo,2oo,3oo,uoo,500) IXCMD

12.2.5 Reading the amount of data in the buffer

A program may want to see how far a companion program has progressed
in reading the buffer used for exchanging data between the two. It may
want to check whether there is still room in the buffer for another
data byte to be written, or another byte available for read, before
the operation is started. This may prevent the program from entering a
waiting state. (This can also be done by requesting NOWAIT mode, but
for a number of reasons it may be more desirable to check the space
available in the buffer explicitly.)

The number of bytes currently in the ring buffer is read through ISIZE
(MON 66). As there is one common buffer for the input and output part,
the number of bytes that may be written before the buffer is full is
found by subtracting ISIZE from the size of the buffer (default 1003
words). The OSIZE call, used to read the number of unused bytes in the
output buffer of an external device, is meaningless with respect to
internal devices (the common buffer is a part of the input datafield).

ISIZE = 0 implies that a program attempting to read from the device
enters a waiting state (buffer empty). Otherwise, the number of bytes
still available for read is returned.

ND~60.133.02

Real Time Guide 163
INTERPROGRAM DATA EXCHANGE

ISIZE = buffer size implies that a program attempting to write enters
a waiting state (buffer full). The difference between ISIZE and the
buffer size gives the number of bytes that may be written without
entering a waiting state.

By requesting NOWAIT mode (described in connection with files, section
13.11.1), entering a waiting state is prevented even if the buffer

is empty on read or full on write.

The device need not be reserved prior to the call. The device number
is loaded to the T register or is the function argument in Fortran.
The number of bytes available is returned in the A register or as a
Fortran function value:

ISIZE=66
INBT=1

LDT (203 % Internal device 2038
MON ISIZE
JAZ DOMORE i Nothing to read yet...
MON INBT % T still contains device no

. % Handle input

The call is available as a Fortran integer function:

IF (ISIZE(203B).EQ.0) CALL DOMORE

The ISIZE call is available on external devices and files as well as
internal and is useful to check e.g. whether any input has been
entered from a terminal (see section 13.12). It is also available
from background programs. (Background users should be aware that the
current terminal can not be identified by unit number 1, but must be
found through RSIO, MON 143.)

12.2.6 Clearing the device buffer

The program reading from or writing to a device can reset the number
of bytes buffered to zero by the CIBUF (MON 13) call.

The CIBUF call is functionally equivalent to reading and immediately
discarding all input available in the buffer at the time of the call.
This is legal only if the input part of the device has been reserved.

In assembler, the T register must contain the device number and the A
register contains an error code, if any. In case of error, return is
to the first location following the MON instruction, while ordinary
return is to the second instruction following the call (”skip
return“).

ND-60.133.02

164 Real Time Guide
INTERPROGRAM DATA EXCHANGE

12.2.7 Changing the buffer size

The default buffer size of an internal device is 1008 words. If the
writer writes more than this amount of data before the reader removes
anything from the buffer, the writer is put in a wait state.

To prevent this the size may be increased by the system supervisor
through the @SINTRAN—SERVICE—PROGRAM command *CHANGE-BUFFER—SIZE.

For an internal device the input buffer is used. The input and the
output part have a common buffer, logically a part of the input
datafield and the output datafield is not used.

Before the changed buffer size becomes effective, the system must be
restarted ("warm start"). The modification may be made permanent,
surviving a cold start, by modifying the save area as well as the
image area.

Buffer sizes cannot be increased beyond the space available in the POF
area. If the POF area is already overcrowded, the system supervisor
may release some space by reducing the buffer size of the internal
devices. This should not be done if the system is close to saturation
with respect to CPU time, as it may lead to more frequent process
switching (due to full buffers). In a heavily loaded system, even a
small increase in overhead may be significant.

12.3 Herd oriented internal devices

Each INBT or OUTBT call on a byte oriented internal device transfers 8
bits of data. This may be modified to 16 bits or one ND-1OO word and
the device is then termed word oriented. Each device can be modified
individually.

Modification must be made by the system supervisor after Sintran has
been loaded. The patch is described in the MODIFICATIONS memo
delivered with the Sintran diskettes and can be made permanent by
patching the save area or temporary until the next cold. start by
patching the memory image.

Modifying the device to word operation reduces the number of I/O
monitor calls, thereby reducing system overhead somewhat compared to
one byte INBT/OUTBT calls. The same savings in overhead can usually be
obtained by using the multibyte monitor calls BRINW, B8INB, M8INB,
M80UT and B80UT. More important, a word structure may more closely
reflect the structure of the data transmitted.

If the ISIZE call is used on a word oriented device, the number of
words in the input buffer is returned. Thus it represents the number
of (16 bit) INBT calls that can be executed before the buffer is
empty.

In other respects a word oriented device is operated in the same way
as a byte oriented one.

ND-60.133.02

Real Time Guide 165
INTERPROGRAM DATA EXCHANGE

12.“ Block oriented internal devices

Block oriented devices are primarily used where large amounts of data
must be moved rapidly from one segment to another.

Like byte oriented internal devices, they use buffer area owned by the
operating system. The buffer is not a part of the data field, but
allocated dynamically in units of one page at a time. When moving
large amounts of data, the overhead is greatly reduced compared to
byte oriented devices. Each read or write operation may transfer up to
a full page (2048 bytes) of data.

If block oriented devices are going to be used, this must be specified
when ordering Sintran.

12.u.1 Device numbers of block oriented devices

Due to the buffer area required, a maximum of five block oriented
devices can be ordered with a Sintran system. The device numbers run
from 200B to EOQB, overlapping the range used for byte oriented
devices. In a system delivered with both byte and block oriented
devices, the block oriented ones are those with the lower numbers
(unless otherwise requested).

12.u.2 Reserving a block oriented internal device

Reservation of a block oriented device the same as for a byte oriented
one:

CALL RESRV (2008, INPUT, WAIT)

12.4.3 Reading and writing

The RFILE, WFILE and MAGTP calls may be used on block oriented
internal devices. However random access is not possible, the block
number parameter of the RFILE and WFILE calls is ignored (treated as
if —1 was specified, next block). MAGTP is more commonly used:

INTEGER WREAD
PARAMETER (RREC = 0)
CALL MAGTP(RREC, ARR, 2023, 4008, WREAD)

4008 words (256 decimal) is read from internal device 202B by the Read
Record function. The read data is stored in the array ARR and if less
than #003 words are available the number actually read is returned in
the WREAD variable.

A block of data may be written by a similar MAGTP call:

ND-60.133.02

166 Real Time Guide
INTERPROGRAM DATA EXCHANGE

PARAMETER (WREC = 1)
CALL MAGTP(WREC, ARR, 2023, #003, 0)

In the Write Record call, the last parameter is not used but a dummy
parameter must be supplied as in the example above. The Read and Write
Record functions are the only ones permitted on internal devices.

Error status is set as for ordinary file access, e.g. access beyond
the buffer size results in a "No such block" condition. The error code
is returned in the A register or in Fortran in the system variable
ERRCODE.

12.3.4 Clearing the buffer

The programmer may want to clear the buffer of a block oriented
internal device, in a manner similar to the CIBUF call for byte
devices. This can be done through the MAGTP function CLEARuDEVICE:

PARAMETER (CLEARDEV = 21B)

CALL MAGTP(CLEARDEV,0,2028,090)

The second, fourth and fifth parameter are dummy parameters.

ND~60.133.02

Real Time Guide 167
INTERPROGRAM DATA EXCHANGE

12.5 Sharing a segment

A segment may contain parts of or the complete code of several
programs. To load several programs to one segment, all one needs to do
is load several files in succession. If the programs are all in one
file as a result of one compilation, that file is loaded.

A compiler usually generates a MAIN control byte in the BRF code for
each PROGRAM statement or equivalent in other languages. (In Fortran
the PROGRAM statement is optional, but is implicit if a compilation
unit does not start with a SUBROUTINE or FUNCTION statement.) Each
MAIN control byte loaded by the RT loader reserves one RT description.

These programs may keep data in a COMMON block, referred to by two or
more of the programs. A modification of a common block location by one
program then immediately affects other programs as well.

PROGRAM A, 30
CHARACTER * 8O AMSG
COMMON /AB/AMSG
AMSG : 'This goes from A to B'
END

PROGRAM B, 30
CHARACTER * 80 EMSC
COMMON /AB/BMSG
CALL RESRV(52,1,0)
WRITE(52,100) BMSG

100 FORMAT(1X,A80)
END

After compilation both files containing the two programs are loaded by
the NREENTRANT-LOAD command:

@RT—LOADER

REAL—TIME LOADER, SINTRAN III - VERSION G

*NREENTRANT-LOAD A22
NEW SEGMENT NO: 173
*NREENTRANT-LOAD B2!
*END—LOAQ
*EXIT

The two programs are started from terminal 52 (A is started first so
that the string assignment is done in A before it is printed in B):

GET A
QRT B
@LOGOUT

12.13.15 7 OCTOBER 1981
—-EXIT-w

This goes from A to B

The program need not be placed on the same segment as the data area.
Each of the programs may use a separate segment for the program and
read the common data block from a second segment, or one program may

ND-60.133.02

168 Real Time Guide
INTERPROGRAM DATA EXCHANGE

be “on the same segment as the common block while another one is on a
separate segment. The use of several segments to separate the common
areas is discussed in detail in chapter 1h.

The data need not be declared in a common block, any address within
the segment can be referred to. However, common blocks provide a
convenient symbolic notation for referring to common data.

12.5.1 Access conflicts

As the two programs are active within the same machine, only one is
executing at a time. Concurrent access to the same memory location are
therefore impossible.

One program may be interrupted in the middle of the updating of a data
structure. An example of this is shown in the previous chapter
(section 11.3), where one solution is illustrated, using a semaphore
to protect the common data. Use of such synchronizing mechanisms is
the responsibility of the programmer.

ND—60.133.02

Real Time Guide 169
INTERPROGRAM DATA EXCHANGE

12.6 Communication with backgrownd processes

Communication between RT and background programs is mainly used for a
background system to request services from e.g. a database system
running as a real time process. The results of such requests may also
be returned to the background program.

Such communication may go through internal devices, files or the XMSG
communication system. XMSG is described briefly in chapter 20.

12.6.1 Internal devices

The RESRV call is available in background as well as RT programs and
may be used to reserve the input or output part of byte, word or block
oriented devices. The ordinary WRITE and READ Fortran statements may
be used on byte devices, MAGTP or RFILE/WFILE on block devices.

If access is attempted that causes an EOWAIT condition (read when
buffer empty or write when buffer full), the background program enters
a waiting state. This may be interrupted by pushing the 'escape' key
on the terminal (provided escape function has not been disabled). This
causes the program to be interrupted. The internal device will not be
released until the user logs out or releases it through a monitor
call.

If NOWAIT mode is specified for an internal input device in background
mode and there is no input available, an end—of—file condition is
returned. NOWAIT specified for an internal output device has no
effect, control is not returned to the program before the transfer is
completed.

12.6.2 Using permanent files

As described in detail in the next chapter, background and RT programs
use common files. A file written by an RT program may be read by a
background program and vice versa, as long as the writing program has
formatted the data in the file so that the reading program can
understand it.

Using files for communication has one significant drawback, namely
speed. File operations are generally slower than other communication
methods, due to the file system overhead. Also, as long as one progrmn
writes to the file, no other program can read it.

When the speed is of less importance, files are suitable for
transferring large amounts of data. The cost in terms of system
overhead per byte is small and synchronization between writer and
reader is unnecessary. Data in a file may be read several times by
different users, occupying no resources other than disk space.

ND-60.133.02

170 Real Time Guide
INTERPROGRAM DATA EXCHANGE

12.6.3 Internal devices as ”peripheral files"

Sometimes file access monitor calls are more convenient than internal
devices for communicating data. In languages that do not have a
library of RT monitor call routines, this is the only possible
solution if the programmer does not have experience in writing
assembler routines. ‘

(A library is usually available for those languages used in writing
the RT program, but the background program with which it communicates
may be written in any other language. In most cases it is also written
by less experienced programmers.)

User SYSTEM can define names for any device, including internal ones,
using the Sintran command @SET—PERIPHERAL-FILE. This command
associates a file name with a device number and the device may be
reserved by a background program by opening the file, in exactly the
same way as any other file is opened. The type of the file is blank
(none).

If the file is opened for sequential read, the input part of the
device is reserved. If it is opened for sequential write, the output
part is reserved. The file system returns a device (file) number from
the OPEN call. Access to the file may be through this file number or
through the static device number (in the range 200B—237B).

The internal device can also be accessed through its peripheral file
name from RT programs. This activates the file system, significantly
increasing overhead compared to reserving the device through RESRV.

The reason for using the file name may be that a language where the
RESRV monitor call is unavailable is used even for the RT part or that
the device should be available to a number of programs.

Any of a number of programs may read from a file, any program may
write to it. This is described in more detail in the next chapter. For
an internal device this means that the first program to perform an
input call reads and removes the first byte or bytes from the input
buffer, programs performing a read at a later time do not see those
bytes already read.

ND—60.133.02

Real Time Guide 171
INTERPROGRAM DATA EXCHANGE

12.7 Survey of communication methods

Below is a summary of essential properies of various communication
methods

SPEED time consumed is proportional to message length unless noted

CAPACITY how suitable the method is for transferring large amount of
data. Low: message length < 250 bytes, Moderate: mesage
length up to 2 K bytes, High: message length: several K bytes

MULTIMACHINE
indicates whether sender and reciever may be in different
CPUs

MULTIPLE READERS
concurrently, without releasing and recieving

MULTIPLE WRITERS
concurrently, without releasing and recieving

BACKGROUND ACCESS
whether it can be used for communication with background
programs

SYSTEM OVERHEAD
CPU work performed by the monitor

PROGRAM OVERHEAD
preparations required before a message is transmitted

IDENTIFICATION
how the programmer identifies the receiver

MAY REPLACE
fully or partly, not necessarily always

RTCOMMON:

Speed: Immediate
Capacity: System generation parameter, usually moderate
Multimachine: No
Multiple readers: Yes
Multiple writers: Yes
Background access: No
System overhead: No
Program overhead: No
Identification: Memory address/symbolic COMMON block name
May replace: Shared segment, internal devices, semaphores

XMSG (single CPU)
Remarks: Never swapped

ND-60.133.02

172

Shared segment:

Speed:
Capacity:
Multimachine:
Multiple readers:
Multiple writers:
Background access:
System overhead:
@rogram overhead:
Identification:
May replace:

Remarks:

Semaphore:

Speed:
Capacity:
Multimachine:
Multiple readers:
Multiple writers:

System overhead:
Program overhead:
Identification:
May replace:
Remarks:

Background access:

Real Time Guide
INTERPROGRAM DATA EXCHANGE

Immediate (unless segment is swapped out)
Moderate/large
No
Yes
Yes
No
No
No
Memory address/symbolic COMMON block name
RTCOMMON, internal devices, semaphores
XMSG (single CPU)
User program is responsible for all
protection of area

High
No
No
Not applicable
Not applicable
Yes
Moderate
Moderate
Device number
Logical RTCOMMON variables

Internal device, byte oriented:

Speed:
Capacity:
Multimachine:
Multiple readers:
Multiple writers:
Background access:
System overhead:
Program overhead:
Identification:
May replace:

Remarks:

High
Low
No
No
No
Yes
Moderate
Moderate
Device number
RTCOMMON, internal block devices
XMSG (single CPU)

ND~60.133-02

Real Time Guide 173
INTERPROGRAM DATA EXCHANGE

Internal device, block oriented:

Speed:
Capacity:
Multimachine:
Multiple readers:
Multiple writers:
Background access:
System overhead:
Program overhead:
Identification:
May replace:
Remarks:

ND-net:

Speed:
Capacity:
Multimachine:
Multiple readers:
Multiple writers:
Background access:
System overhead:
Program overhead:
Identification:
May replace:
Remarks:

Files:

Speed:
Capacity:
Multimachine:
Multiple readers:
Multiple writers:
Background access:
System overhead:
Program overhead:
Identification:
May replace:
Remarks:

XMSG:

Speed:
Capacity:
Multimachine:
Multiple readers:
Multiple writers:
Background access:
System overhead:
Program overhead:
Identification:
May replace:
Remarks:

High
Moderate/High
No
No
No
Yes
Low, in particular for large amounts of data
Low
Device number
Internal byte devices, XMSG (single CPU)
Option

Moderate/low
Moderate
Yes
No
No
Yes
High
Moderate
Configuration dependent channel number
Multimachine XMSG, transfer via files
Multimachine communication only.

Low
Very high
Possible
Yes
No (usually)
Yes
High
Moderate
Symbolic file name
ND—net, internal block devices
Permanent data which may be read several times

High
Moderate/high
Yes
Yes
Yes
Yes; also direct tasks and drivers
Moderate; less for large messages
Moderate (Setup: Moderate/high)
Symbolic port name
Internal devices, ND-net, shared segment, RTCOMMOM
Variable size messages, overhead does not increase
with size of message.
May be used as multi-CPU semaphore or

ND-60.133.02

174 Real Time Guide
INTERPROGRAM DATA EXCHANGE

(singlee or) multimcpu critical region.
Indirect access (capability transfer) possible.

ND-60.133.02

Real Time Guide 175
FILE ACCESS FROM RT PROGRAMS

13 FILE ACCESS FROM RT PROGRAMS

RT programs access files in much the same way as background programs"
But as there is generally no tenninal connected to the program or a
logged in user corresponding to the program, some details are handled
differently.

The SINTRAN command @RTENTER must have been executed since system
start before RT programs can use files. This is a one time operation
normally found in the RENT-MODE file executed at every cold start. It
is assumed below that @RTENTER has been executed, if not, user RT or
SYSTEM can give the command at any time before the first program using
files is started.

13.1 User and file name

The same files are accessed by RT and background programs,
consequently the naming rules are the same. Any user's files can be
read, provided the user name enclosed in parentheses preceeds the file
name. Default user name is RT and the access rights to the file (read,
write, directory) are determined by user RT's access. If the file is
not found and no user name is specified, the files of user SYSTEM are
searched.

13.2 The files accessible to a program

Each background user has his own list of open files and in general two
users may not modify one file concurrently (or even one user modify
while another one reads). However, Files opened by one RT program are
available to all other RT programs. A set of programs operating on
data in a file need not close the file before giving control to
another program in the set. On the other hand, the file is not
protected by access from other RT programs.

A semaphore, RTCOMMON or other common variable may be used to control
the use of a file within a group of programs. There is no guarantee
that other programs obey such regulations.

13.3 The file number

When a file is opened, a device number is returned corresponding to
the device number used for semaphores, internal and external devices.

There is a one to one correspondence between a semaphore/device and a
device number; the association between a file and a device number is
dynamically determined when the file is opened. The first file opened,
by any RT program, receives the device number 1008, the second one
101B and so on.

When a file is closed, the device number is released. The same number
can be reused when the next file is opened by an RT program. The
probability that a file closed and reopened later receives the same
device number is small.

ND-60.133.02

176 Real Time Guide
FILE ACCESS FROM RT PROGRAMS

The device numbers used for open files go from 100B and upwards.
Unless SINTRAN is ordered with a larger file table, no more than #5
files can be opened by RT programs at one time.‘Each spOoling program
running keeps one file open, reducing the number of files available to
user programs.

There is no equivalent to the terminal scratch file (sometimes
referred to as "file 100") used as a storage area for temporary data
by some background systems, but a file opened from an RT program may
be defined as a temporary file through the SINTRAN command @SET-
TEMPORARY—FILE.

13.” File numbers of peripheral files

If a file is a peripheral file, defined by the SINTRAN command @SET—
PERIPHERAL-FILE or the SPEFI call (MON 23”) the file number returned
is that of the device and is outside the range 1008:137B.

The device number can be used exactly like a file number. A device
should not be accessed through the file system (OPEN/CLOSE) and as a
device (RESRV/RELES) at the same time. If opened through the file
system it should be closed through the file system and should not be
released through a RELES call.

13.5 The Fortran file number

By convention, a file in a Fortran program is identified through a
static (constant) integer less than 100. In an ordinary background
program, the Fortran file number is translated via a table (local to
the program) to a device number used by SINTRAN.

File handling is different in nonreentrant and reentrant Fortran. This
also applies to the closing of files ~ see section 13.6

13.5.1 Nonreentrant Fortran

A connect table is used to hide the SINTRAN file number from the
programmer. A program written in standard Fortran, running correctly
as a background program, will run in real time if compiled in
nonreentrant mode.

Due to the translation mechanism, there is no way to share files
between programs. If the Fortran file number used in one program is
transmitted to another program, there is no way the latter file table
can be updated except by opening the file in the second program.

13.5.2 Reentrant Fortran

Transferring the identity of an open file to another program is often
desirable. This is possible in Fortran programs compiled in reentrant
mode (compiler command $REENTRANT-MODE).

ND-60.133.02

Real Time Guide 17?
FILE ACCESS FROM RT PROGRAMS

The file number should be an integer variable. After the OPEN
statement is executed, the variable contains the device number
assigned to the file and when the variable is used later in
input/output statements, the correct device number is used.

INTEGER FILENO
OPEN(FILENO, FILE='DATA', ACCESS='SEQUENTIAL')
WRITE(FILENO, 300) VAR1, VARZ, VAR3

An integer variable can be used as a file number in background
programs, thus RT and background programs are source code compatible.
In a background program, the file number variable should be in the
range 1 to 99 when the OPEN statement is executed and it is not
modified. When executed in a reentrant RT program, the initial value
is ignored and the value is modified. The following is therefore legal
in background as well as RT:

INTEGER IOFILE
IOFILE = 11
0PEN(IOFILE, FILE='NUMBERS', ACCESS=9RW')
WRITE<IOFILE, 200) I1, 12

The file number variable should not be modified by the program after
the OPEN statement has been executed!

Most other high level languages use a "file type" variable identifying
the file in OPEN and I/O statements and the user need not be concerned
about the device number at all.

13.6 Opening the file

A file is opened by the Fortran OPEN statement as shown above or by a
statement or call in any language that is compiled to the MON OPEN
call (MON 50). The relevant language manual should be consulted for
parameters and other details. There are no limitations to the access
method specified, sequential, random or direct transfer read or write
- except those enforced in all file access (e.g. direct transfer
allowed on contiguous files only).

A file can also be opened by a command:

@RTOPEN-FILE (file name) <access mode)

that is an equivalent to the @OPEN-FILE command, but the file is
accessible to all RT programs. The default user name is RT, even if
the command is executed by user SYSTEM. Default type is :SYMB. The
file opened through @RTOPEN-FILE is not closed when the terminal from
which the command was given is logged out.

The program(s) must be able to find the file number returned from the
call to access the file. E.g. one RT program can reserve the terminal
and prompt for the file number.

ND-60.133.02

178 Real Time Guide
FILE ACCESS FROM RT PROGRAMS

User RT or SYSTEM can list the files open by any RT program or through
the @RTOPEN—FILE command by -

@LIST—RTOPENED-FILES
OUTPUT FILE: TERMINAh

FILE NUMBER 000100
FILE NUMBER 000101
9

(PACK-ONE:RT)S310:BPUN;1
(PACK-TWO:DDS~SYS)NORDDIS:LOGG;1

oo

oa

When a file is opened by a command, the file number can be forced to a
specific value by using the @RTCONNECT—FILE rather than QRTOPENnFILE.
The file number specified must be unoccupied and in the range
100B:121B, specified as an octal number not followed by B.

The numbers already occupied are found by the @LIST-RTDPENED—FILES
command. If the file number is in use, an error message is returned:

@RTCONNECT-FILE
FILE NAME: OUT:SYMB
FILE NUMBER: 399
ACCESS MODE (R,W,RW,RX,WX,WA,RC,WC): 5g
FILE NUMBER ALREADY USED
Q

13.? Closing the file

A file is closed by CLOSE (MON 43). This call is available in all high
level languages as a complement to OPEN. On assembler level, the T
register should contain the file number.

A file opened by an RT program is not closed when that program
terminates. Any program can close a file opened by any other program.
A file can also be closed by a command:

QRTCLOSE—FILE
FILE NUMBER: 100
8

This command should not be executed until all programs have terminated
operation on the file. If a file number of —1 or —2 is specified (in
the command or monitor call), all files open for ET programs are
closed.

13.8 Closing of files on program termination

Program termination does not usually close any files. In monreentrant
Fortran, because the identity of the file cannot be transferred to
another program, the file is closed when the program terminates
normally. This ensures that the last block is properly written to
disk, the buffer area is cleaned up and the file is closed.

ND-60.133.02

Real Time Guide 179
FILE ACCESS FROM RT PROGRAMS

If the program is prematurely aborted or terminated outside the
control of the Fortran run time system (e.g. in an assembler routine),
files are not closed. The buffers are not properly written back to
disk (unless this is taken care of by the assembler routine). Thus,
data in buffered files may be inconsistent.

In reentrant Fortran ($REENTRANT—MODE compiler command), the file can
be accessed by other programs after the program opening it has
terminated. When operations on the file are complete, the file must be
explicitly closed by a call to the CLOSE routine; there is no
automatic closing of the file.

Other high level languages vary with respect to closing files. File
closing must be specified in a Basic program. Pascal automatically
closes buffered files opened by the program. In MAC, NFL and Plane all
files must be closed explicitly.

13.9 Reading and writing

Most monitor calls for file access are legal from RT programs. The
exceptions are the RDISK (MON 5) and WDISK (MON 6) calls for writing
to the terminal's scratch file and the MSG (MON 32) and IOUT (MON 35)
calls for writing a string or an integer, respectively, to the
terminal permitted.

Programmers using a high level language such as Fortran, Pascal, Plane
etc., do not see these calls as such. They may assume that the code
generated uses monitor calls permitted in foreground as well as
background, for random and sequential access.

13.10 Block I/O

The primary calls for disk file access are RFILE and WFILE (MON 117
and MON 120). These are used exactly as in background and are
available as Fortran routines:

CALL RFILECFILENO,WAITFLAG,ARRAY,BLOCKNO,WORDS)

The WAITFLAG may be different from O in an RT program, which initiates
the transfer and then returns control to the calling program. If the
wait flag is zero, the calling program is suspended by putting it in
an IOWAIT state until the transfer is complete.

Only one RT program at a time may execute file I/O at a time; several
requests occuring faster than the file system can complete them are
queued.

13.10.1 Checking the status of the transfer through HAITF

An RFILE/WFILE transfer request with a non-zero WAITFLAG causes the
disk access to run in parallell with the program.

ND-60.133.02

180 Real Time Guide
FILE ACCESS FROM RT PROGRAMS

At any later time the status of the operation can be checked: a WAITF
call can return a status (finished, not finished) and let the
executing program continue or it can hold the program until the
transfer is finished.

WAITF is available as a Fortran function:

PARAMETER (WAITCOMPL = 0, IMMRETURN = 1)
INTEGER STATUS, FILENO, WAITF
EXTERNAL WAITF

C Start an I/O transfer and go on computing

STATUS = WAITF(FILENO, WAITCOMPL)

C Perform calculations while waiting for ID to complete

The first parameter, FILENO, is returned from an OPEN call. The second
parameter is 0 if the calling program should be held until the most
recently RFILE or WFILE call operating on the file with the specified
number has completed. It is 1 if the program should continue even if
the transfer is still going on.

The STATUS function value is ~1 if the transfer is not yet complete.
If the function value is 0 it is complete, if positive, the value is a
SINTRAN file system error code. An error code refers to incomplete
execution of the WAITF call, not to the RFILE/WFILE call.

In assembler code, the A register points to the parameter list. The
status value is returned in the A register:

WAITF:121
IMMRET=1

LDA (PAR
MON WAITF
STA STATUS

PAR, FILNO
(IMMRET % Return immediately

FILNO, O % Filled in when file opened
STATUS, O % _1: incomplete, 0: complete, >0: error

If a WAITF call specifies that the program should be held until
transfer is complete, the return value is never «1.

13.10.2 Double buffering

The WAITF function used in conjunction with a nonzero wait flag in the
RFILE/WFILE call can be used to implement double buffering. While one
set of data is operated on, the next set is read in from disk or the
previous one written back to disk.

ND~60.133.02

Real Time Guide 181
FILE ACCESS FROM RT PROGRAMS

This utilizes the time spent waiting for the disk, in cases where it
is possible to start a transfer some time before the data is needed.
Equally important in a heavily loaded system, no other program is
automatically started, reducing the administrative work of the RT
Monitor. (In normal mode with the wait flag equal to zero, the calling
program is immediately put in an IOWAIT state and the execution queue
searched for another program to be started.)

WAIT FLAG = :

RFILE transfer complete
>________a i_____________i---)

u_____________________*
calculate disk transfer calculate

Hm FLAG =__1:
(disk transfer time > calculation time)

RFILE WAITF transfer complete
> _________n______________a *,__>
calculate calculate

*_____________________i
disk transfer

(disk transfer time < calculation time)

calculate calculate
a______________n
disk transfer

In the theoretical "best case", the CPU operations are completed at
the exact moment when the disk transfer is finished. This would give
close to double the speed (50% reduction in elapsed time). In
practice, the time saved is far less, typically 10-15%. This is due to
the starting of the transfer and CPU time spent handling interrupts
from other sources. If the priority of the program is low, some other
program may use the CPU during the disk transfer.

Even though the savings are less than the theoretical best, they are
often worthwile.

13.11 Character I/O

For sequential, unbuffered 1/0, the INBT (MON 1) and OUTBT (MON 2)
calls are used by the libraries. If large amounts of data are to be
transferred, the overhead can be reduced by use of the "block" calls
MBINE (MON 21), M80UT (MON 22), BBINB (MON 23) and BSOUT (MON 2“).

A string can also be input from a terminal by INSTR (MON 161), output
through OUTST (MON 162). These two monitor calls are options.

NDm60.133.02

182 Real Time Guide
FILE ACCESS FROM RT PROGRAMS

13.1101N0HAIT mode

The program can continue execution while transfer to or from a
character device such as a terminal is taking place by specifying
NOWAIT mode for that device. This allows arbitrary time delays between
the INBT/OUTBT call and the completion of the transfer; e.g. input can
be requested from a terminal, and while the operator scratches his
head the program can prepare the next output or access another device.

Use of NOWAIT closely resembles setting the WAITFLAG to non-zero in a
RFILE or WFILE call to read a disk file.

NOWAIT is individually specified for each device and can be set and
reset at the programmers discretion.

13.11.2 Setting and resetting KUWAIT

The NOWT call, MON 36, is used to set and reset the NOWAIT mode. The
argument list consists of the device number or file number from an
OPEN call, an I/O flag where 0 indicates input and 1 indicates output,
and an on/off switch, 0: NOWAIT on, ><O= NOWAIT off.

NOWT235
OPEN=5O
QERMS=65
INP=0
ON=O
SEQR:1

LDX (FILNAM
LDA (SYMB
SAT SEQR
MON OPEN
MON QERMS
STA FILNUM
LDA (NWPAR
MON NOWT

FILNAM, 'TAPE-READER'
SYMB, 'SYMB‘
FILNUM, o
NWPAR, FILNUM

(IN?
(ON

Subsequent read operations from TAPE—READER:SYMB never cause an IOWAIT
condition. However, the NOWAIT mode applies to the calling program
only and only until the file is closed or NOWT is called with the
third parameter different from zero.

ND-60.133-02

Real Time Guide 133
FILE KCCESS FROM RT PROGRAMS

13.11.3 Using the NOHAIT lode

Rather than putting the calling program into IOWAIT mode waiting for
the transfer to finish, an I/O call immediately returns the status
code END OF FILE (error code 3). The program can continue and operate
on other data. After finishing the operations that can be performed
independent of the I/O transfer, the program may execute an RTWT or
HOLD call.

When the transfer is finished, a "break condition" occurs and the
program is restarted similarly to an RT call. If the program is
active, the repeat bit in the RT description is set.

13.12 The device buffer

Character devices opened for sequential read or write are accessed
through a buffer much like that used for internal devices. For input
devices the input source can be treated like a "writing program", for
output the device is like a "reading program".

Two way devices have independent buffers for read and write. The size
of these buffers may be modified in the same way as buffers for
internal devices.

Special problems occur with input devices if the input is
unpredictable:

The device writing to the buffer, e.g. a terminal, cannot be stopped
in the same way as a program without affecting the input. When the
buffer is full and input continues arriving, the characters are lost.
Input is not honored until buffer space is made available by reading
from the device buffer.

The current amount of data can be read by the ISIZE and OSIZE monitor
calls. ISIZE returns the number of bytes in the buffer of the input
part of the device, while OSIZE returns the amount of data that can be
written to the output part without overflowing the buffer.

The calls described below are available in background as well as RT
programs.

13.12.1 The amount of data in the input buffer

The ISIZE call is available as an integer Fortran function:

UNREAD = ISIZE(52)

This call returns the number of bytes in the ring buffer of the
terminal with device number 52, i.e. the number of characters that can
be read without going into an IOWAIT state. The device need not be
reserved before the ISIZE call is executed.

The ISIZE (MON 66) call expects the device number in the T register
and returns the number of bytes in the A register:

ND~60.133.02

'184 ’Real Time Guide
FILE ACCESS FROM RT PROGRAMS

ISIZE:66

SAT 64 % 64B = 52 decimal'
MON ISIZE =
STA COUNT

COUNT, O

13.12.2 The amount of data in the output buffer

OSIZE. MON 67, returns the number of bytes that can be written to the
device without causing an IOWAIT. The number of bytes not yet output
on the device can be found by subtracting the value returned from
OSIZE from the size of the buffer.

OSIZE is applicable only to devices with an output datafield. Internal
devices use the data buffer in the input field, see section 12.2.5

13.12.3 Clearing the input buffer

If the program reading from a device wishes to reset the number of
bytes buffered to zero, it can do so by the CIBUF (MON 13) call.

The CIBUF call is functionally equivalent to reading and immediately
discarding all input that is available in the buffer at the time of
the call. This is legal only if the input part of the device has been
reserved.

In assembler, the T register must contain the device number. After
return the A register contains an error code if any. In case of error,
return is to the first location following the MON instruction, while
ordinary return is to the second instruction following the call ("skip
return").

13.12.4 Clearing the output buffer

The COBUF call cancels any output that has been written to a device
but not yet read by the recipient and is legal only if the output part
of the device has been reserved. In addition to clearing the buffer, a
"break condition" is generated on the input side of the device. This
causes the program reserving the input part to be activated if it was
in an RTWT or HOLD state.

COBUF (MON 1”) is available in Fortran; the Fortran and MAC call
sequences are exactly as for CIBUF above.

ND-60.133.02

Real Time Guide 185
FILE ACCESS FROM RT PROGRAMS

13.13 Optimizing file access

RT programs are often highly time critical and dependent on
predictable response times. Many applications spend the most of their
time waiting for some kind of I/O and performance can be greatly
improved by selecting an appropriate I/O strategy. This includes both
reduction in the response time of the program and in the total system
load.

Often this requires modifications to the program, even when a high
level language is used. However, in most cases the program still
conforms to the standard definition of the language or the compiler
indicates deviations and extensions to the standard.

13.13.1 The Fortran access mode

The Fortran OPEN statement contains a parameter ACCESS=<acc>, where
<acc> by Norsk Data conventions is either R, RW, W for sequential
access, RX, WX for random access. This gives unbuffered I/O: each READ
or WRITE statement causes a disk access.

In nonreentrant Fortran, files used for sequential access may be
buffered. When the first data element is read, an entire disk page
(2048 bytes) is read to a buffer. The buffer is allocated in the data
area of the user program.

The next time an input operation is requested, the data is found in
the buffer, preventing the disk access. Also, the program does not
enter IOWAIT state. No operating system request is required until the
buffer is exhausted, at which time another page is read. The number of
monitor calls (and in the case of I/O process switches in the system)
to perform sequential I/O is reduced by a factor of up to 2048
compared to unbuffered INBT calls.

A similar mechanism is used for output. A data value is not written to
disk immediately, but is put into a buffer. When the buffer is full,
the entire buffer is output with one call.

Buffered I/O is selected by specifying access codes

READ — buffered input
WRITE - buffered output
SEQUENTIAL - buffered input and/or output
DIRECT - buffered input and/or output

The ANSI-77 standard requires SEQUENTIAL to be used. However, the file
is then opened with both read and write permitted (unless the access
permission associated with the file restricts it to read only). For
security reasons, this may be undesirable. Using the READ and WRITE
codes also reflects the intended use of the file, but is an Norsk Data
extension.

ND-60.133.02

186 Real Time Guide
FILE ACCESS FROM RT PROGRAMS

The size of the area used for I/O buffers limits the number of files
that are concurrently used for buffered 1/0. The user specifies the
size of the buffer by the RT loader command *SET-IO—BUFFERS:

*SET—IO-BUFFERS
NO. OF 1K BUFFERS: g

The number of 1K buffers is the maximum number of files that are
buffered. If more files are open concurrently for sequential access
(in the example above 7 or more), the last opened files are not
buffered even if the access code was specified as READ, WRITE or
SEQUENTIAL. By default, no buffers 'are allocated. *SET-IO—BUFFERS
apply to FTN only. Other languages, including the ANSI~77 standard
FORTRAN—100, use file buffers defined in the run time libraries.

Random access files are never automatically buffered. In most cases,
the next data item to be read is not the next in the file or even
within the same disk page, thus nothing is gained. Random access is
compiled to a RFILE/WFILE call, reading an entire logical record in
one~ monitor call, thus the monitor call overhead is moderate compared
to sequential byte-by-byte access.

Sequential files may be accessed fairly efficiently even un-buffered
if the MAGTP monitor call is used. In spite of its name, this call may
be used on any sequential file, reading a record of a specified
length. The call is available in Fortran:

ISTAT = MAGTP(IFUNC, IARRAY, IUNIT, IPAR1, IPARZ)

IFUNC may take a value from 0 to 46B; some functions are relevant to
specific devices only. The most useful are 0: Read Record, and 1:
Write Record. IARRAY is the data block to be transferred, and IUNIT is
the SINTRAN open file number. IPARl/IPARZ are dependent on the
function code; for Read Record IPARl is the programmer specified
maximum number of words to be read, IPARZ the returned as the actual
number of words transferred. For Write Record IPAR1 specifies the
number of words to be written, IPARZ is dummy.

For information on other MAGTP function codes, see SINTRAN III
Reference Manual.

13.13.2 Contiguous files

Files created by enclosing the file name in double quotes ("FILENAME")
are indexed files. Initially, an indeg page is allocated that contains
no user data but the addresses of the data pages. These can be
scattered all over the disk and when a new page is needed, it can be
allocated anywhere on the disk as long as its address is entered into
the index page. File expansion causes no problems.

To save looking up the index table, a contiguous area of the disk may
be reserved for the file. This allows the file system to calculate the
address of the referenced record from the record number and the file
address, saving the reading of an index page. The increase in speed is
significant, in particular if the file system is heavily loaded, and
no modification needs to be made to the program using the file.

ND—60.133.02

Real Time Guide 187
FILE ACCESS FROM RT PROGRAMS

The disadvantage of contiguous files is that the maximum size of the
file must be known when the file is created. If it grows beyond this
size, a new and larger file must be created and contents of the old
file copied,

If the logical file addresses used are disjunct ("holes" in the file),
this space must still be allocated to the file. "Holes" are not
permitted in a contiguous file; it must cover the entire address range
from 0 up to the highest logical address used.

A contiguous file is created by the SINTRAN command @CREATE—FILE or
MON CRALF (MON 221), specifying the number of pages required.

13.13.3 Direct transfer

Disk—to—memory transfer usually goes to a buffer area maintained by
the operating system, not a part of the user address area. From this
buffer, a memory-to—memory copy to the user area is executed. The
rationale behind this is that if the disk transfer went directly to
the user area, a page fault might occur during the transfer and this
could only be handled with great difficulty, the WIP bit would have to
be set explicitly, and several transfers might be necessary if the
block did not coincide with page boundaries.

Secondly, some disk units are not capable of transferring an arbitrary
number of bytes, but is limited to an integral number of disk sectors.
The copying from the system to the user area allows an arbitrary
number of bytes to be copied, fitted to the user defined logical block
size.

Direct transfer from disk to user area is possible, but with some
limitations on the flexibily:

_ the area affected by the transfer must be FIXCed in a contiguous
area of memory to prevent page faults during the transfer

- the block size must be a multiple of the disk sector size

_ the file must be contiguous

_ the file must be read or written by the monitor calls RFILE/WFILE
only (WAITF is permitted)

Where these limitations are acceptable, direct transfer is the most
efficient file access. In particular where large blocks of data (up to
one disk cylinder) are transferred in each call, the speed of the
transfer may approach the hardware speed of the disk (i.e. two to ten
times faster than normal transfer).

If DIRECT (random access), SEQUENTIAL, SPECIAL, D, READ or WRITE
(sequential access) is specified in the OPEN statement, the Fortran
library attempts direct transfer if all the conditions listed above
are satisfied. Otherwise, an ordinary file open is performed.

ND—60.133.02

188 ' Real Time Guide
FILE ACCESS FROM RT PROGRAMS

13.13.H Absolute transfer

A program running on PTO, in ring 2 and fixed in contiguous memory
(FIXC monitor call) can perform low level disk transfer through the
ABSTR (MON 131) call. This is the basic monitor call used by the file
system itself. This call bypasses the file system and the area to be
transferred is specified by physical memory and disk addresses.

Compared to direct transfer, the gain in speed is insignificant.
However, ABSTR can be used to access disk pages that cannot be reached
through the file system, e.g. the index pages of files. This require a
detailled knowledge of the file system and SINTRAN and is
configuration dependent.

The ABSTR call must be used with great care; incorrect use may corrupt
the disk including the operating system and user files.

13.13.5 Reading and writing disk pages

SINTRAN H and later versions include monitor calls for reading and
writing arbitrary disk pages without the programmer being concerned
about physical differences between various disk units.

The directory must be reserved through the REDIR monitor call before
the reading or writing takes place.

The example below will read an entire floppy disk, 148 pages, into
segments 300, 301 and 302. Segment 300 and 301 each holds 64 pages,
302 the last 20. The alternative page table mechanism is used, and the
data segment exchanged between each transfer.

The disk pages are read in the physical order on the disk, and the RT
program is expected to interpret the file system tables in order to
access data pages in logical sequence. Performing these operations on
data segments rather than on the floppy disk is an order of magnitude
faster.

The A register should contain the address of a double word containing
the disk page address, X contains the memory buffer address, T the
directory index and D the number of pages to be transferred.

ND—60.133.02

Real Time Guide
FILE ACCESS FROM RT PROGRAMS

PARTZ,

PART3,

RDPAGz267
REDIR:2N6
RLDIRz2u7
ALTON=33
ALTOF:3H
FLOPP:5

SAT FLOPP
MON REDIR
JMP ERR
SAX O
SAA 1OO
COPY SA DD
LDT (PO
LDA (PT3
MON ALTON
COPY ST DA
SAT FLOPP
MON RDPAG
JMP ERR
MON ALTOF
LDT (PAR1
MON MCALL
SAX O
SAA 100
COPY SA DD
LDT (P100
LDA (PT3
MON ALTON
COPY SY DA
SAT FLOPP
MON RDPAG
JMP ERR
MON ALTOF
LDT (PARZ
MON MCALL
SAX O
SAA 24
COPY SA DD
LDT (P200
LDA (PT3
MON ALTON
COPY ST DA
SAT FLOPP
MON RDPAG
JMP ERR
MON RLDIR
JMP ERR

o o o

(3
PARTZ
(177701
PART3
(177702
0; 0
0; 100
0; 200

189

Directory index of floppy disk
(configuration dependent)

Floppy must be reserved
Error exit: A : error code
X = Memory address for transfer

D = Number of pages

Use T temporarily for page no addr
Activate two bank mechanism
A : address of double word 0
T = Directory index
Read pages 0—77B into seg 300
Error return: A = error code‘o

fih
fi‘

e
fi‘

a
l‘e

‘l‘
a
fl

‘ai
‘e
fih
fi‘

ofi
$1

79
.

1 Replace data segment with seg 301
1 X = memory address for transfer

z D = Number of pages

1 Reset to two bank mode
1 A = first disk page, 100B

1 Read pages 100B-177B into seg 301

1 Fetch data segment 302

1 2&3 = 20 decimal pages

1 Reset to two bank mode

1 T = Directory index
1 Read last 20 pages
1 Error return: A = error code
1 Release floppy for other use
1 Error return: A : error code

1 Replace right hand segment with 301

1 Replace right hand segment with 302
1 Double word disk page 0
1 Double word disk page 100
1 Double HOPd disk page 200

ND-60.133.02

190 Real Time Guide
FILE ACCESS FROM RT PROGRAMS

The WDPAG call, MON 270, will write rather than read the specified
pages. The parameters are as for RDPAG.

13.13.6 Priority while performing file operations

When one program performs file operations, other programs must be
prevented from accessing the same data, causing inconsistencies in the
data structure. On the lowest level this is controlled by semaphores
internal to the operating system.

A low priority process may obtain a semaphore locking e.g. an entire
directory. Normally, such a lock is kept for very short periods of
time; it is however possible that a higher priority process enters the
system and starts executing. The semaphore may then be reserved for a
long period, prohibiting any other access to the directory.

Programs performing file I/O should be given sufficiently high
priority while they execute file system calls to ensure that they are
not unneccessarily waiting for CPU resources to complete the call.
Even if the priority is raised before each l/O-call and reduced
immediately after, the saving of process switches easily outweighs the
extra overhead when block 1/0 is used.

If the program can read or write data in larger chunks, this will
reduce the number of access conflicts to the file system semaphores,
and will also utilize the internal file system buffering and most disk
units better.

ND—60.133.02

Real Time Guide 191
FILE ACCESS FROM RT PROGRAMS

13.14 Special monitor calls for input and output

The LASTC and EXIOX calls are used for special purpose 1/0; for all
ordinary applications, other calls are employed. This section can be
skipped by users who communicate with devices in the standard way.

Other special monitor calls are available for control of special I/O
equipment and communication purposes. These calls are described in the
Nord Process I/O Software Guide (ND—60.093) and the SINTRAN III
Communication Guide (ND-60.134).

13.14.1 Read the last character input from a device

Terminal input is normally read by reserving the appropriate logical
device and executing the INBT call (directly, or indirectly by use of
high level language READ routines). Sometimes it is inconvenient to
reserve the terminal.

LASTC gets the last (most recently) character typed on a terminal; the
terminal need not be reserved.

In MAC, the parameter list pointed to by the A register contains the
logical device number of the terminal. This is consistent with other
RT monitor calls, but different from MON INBT. Normal return is to the
second location following the MON instruction ("skip return"), error
return to the first, compatible with the MON INBT call. The character
read is returned in the A register.

LASTC is avaiable in the Fortran library as an integer function,
returning the ASCII value of the last character typed, with parity. To
read the last character typed at terminal 52 in a Fortran program,
execute the call

KAR = LASTC(52)

Or in MAC:

LASTC=26; QERM3=65

LDA (TERM
MON LASTC
MON QERMS % Print error message (see ch. 16)
STA KAR

TERM, (6” % 6MB : 52 decimal
KAR, O % location where the last typed

% character is stored.

LASTC does not replace INBT for these reasons:

- the character returned is always the last one. If a terminal
operator types a new character before the first one is read, the
first one is lost

ND-60.133.02

192 Real Time Guide
FILE ACCESS FROM RT PROGRAMS

- there is no way to detect that a new character has been entered;
the return is always immediate. If no new character has been
entered, the same character is returned a second time. The only
way to detect that a new character has been typed is to compare
with the previous character read.

— there is no way to distinguish one character entered twice in
sequence from a single character input

LASTC is valid for internal devices and returns the byte last written
to the device. The byte is not removed from the ring buffer.

13.1”.2 Echo and break modes of a tenninal

An RT program can set the echo and break modes of a terminal with
which it communicates through the ECHOM (MON 3) and ‘BRKM (MON 11)
calls, possibly differently for each terminal if more than one is
used. The device number is specified in the T register or as the first
parameter of the Fortran call.

To disable echo entirely and break on every character input from
terminal 52, the MAC call is

TER52:64
ECHOM:3
BRKM:R
NOECHO:-1
ALWAYS:O

SAT TERSZ
3AA NOECHO
MON ECHOM
SAA ALWAYS
MON BRKM

13.1”.3 Disabling and enabling the user break function

Special purpose RT programs may read the ESC (escape, ASCII code 333)
character as ordinary input. It may also be necessary to suppress the
special handling SINTRAN gives the ESC. Eug. even though a terminal
can be released from a background program through PRLS, as soon as the
ESC key is depressed, the background program attempts to reserve the
terminal.

The ESC character is handled as ordinary input if the DESCF (MON 71)
call has been executed:

DESCF=71
TER52=6H

SAT TERSZ
MON DESCF

ND—60.133.02

Real Time Guide 193
FILE ACCESS FROM RT PROGRAMS

Special handling of the ESC character-can be reinstated through EESCF
(MON 72). Both these calls are available in background programs as
well, but the device number in the T register is ignored and the call
applies to the current terminal.

If the RT program should trap the ESC character in order to: perform
cleanup before the program is terminated, and then let the user log in
as an ordinary background user, the RT program must after reading the
ESC and releasing the terminal execute an RT BAKnn call to start the
loginmsequence. (BAKnn is the name of the background program of the
terminal.) ‘

The user break (escape) character may be redefined by the MSDAE call
(MON 227), which also sets the disconnect character for remote
connection. The A register contains the user break character in the
least significant byte, the disconnect character in the most
significant byte. To change user break to ASCII NUL (control @) for
terminal 52, but keep the disconnect character DEL (1778, standard
value), execute:

MSDAE=227
TER52=64

SAT TER52
LDA (177N00 1 DEL (with parity) and NUL
MON MSDAE

The parity of both characters are significant; if specified with odd
parity, no break or disconnect is executed. User SYSTEM may also
define the user break character through the command

@DEFINE-ESCAPE—CHARACTER <term no.) (ASCII value)

The ASCII value is specified as an octal number. The current user
break and disconnect characters may be read by MGDAE, MON 230:

MGDAE=23O
TER52:6H

SAT TERGN
MON MGDAE
SHD SHR 10 % Shift out user break char
STA DISCH % Store disconnect char
SAA O
SED 10 % Shift in user break char
STA UBCHR % Store user break char

MSDAE and MGDAE are available in SINTRAN version H and later.

NDm60.133.02

191% Real Time Guide
FILE ACCESS FROM RT PROGRAMS

13.1u.u Executing an 10x instruction

The IOX instruction is the basic I/O instruction used by the operating
system to write data or control signals to the interface registers of
various external devices. Using this instruction properly requires
knowledge of the system beyond the scope of this manual.

The IOX machine instruction is privileged and can be executed in ring
2 and 3 only. If an RT program in ring 1 or 0 wishes to execute an
10X, it can do so through MON EXIOX (MON 31). The argument list
pointed to by the A register contains the value the A register should
have when the IOX is executed and the device register address
(corresponding to bits 0:12B of the IOX instruction). After the
monitor call, the contents of the A register are the same as if the
instruction was executed directly.

The device register address must be present in the operating system
IOX table. The system supervisor can prohibit access to devices by
removing them from this table through the @SINTRAN~SERVICE-PROGRAM
command *REMOVE—FROM-IOX—TABLE.

MON EXIOX is available in Fortran as an integer function call:

INTEGER EXIOX, AREGIN, AREGOUT, DEVREGADR

AREGOUT z EXIOX(AREGIN, DEVREGADR)

In MAC:

EXIOX=31

LDA (PLIST
MON EXIOX
STA AREGOUT

PLIST, AREGIN
(16431“ 1 Set the speed of terminal 1

AREGIN, (210 % Code 210 : 9600 baud
AREGOUT,O

An IOX instruction can also be executed by a command:

QEXECUTE—IOX (value) (device register address)

The parameters have the same meaning as for the monitor call and the
result of the operation is written on the terminal. All input and
output values are octal.

ND-60.133.02

Real Time Guide 195
FILE ACCESS FROM RT PROGRAMS

13.1H.5 Set control information for a device

The IOSET (MON 1H1) call is used to explicitly load the control
register of a peripheral device. This operation is normally performed
by the I/O monitor call routine, but in some cases the user program
may require certain functions not available through the ordinary
calls.

The user should consult the documentation for the device in question,
as the control codes are device dependent. A general discussion of
device control is found in ND-06.016 NORD-100 Input/Output System.

The parameter list contains the device number, an I/O flag, the RT
description address of the program reserving the device (0 = calling
program) and a control code. An open file number cannot be specified
as the device. if the device is not reserved by the specified program,
the function is not executed, but gives an error return.

The control code —1 is common to most devices, indicating "Reset
device". 3.3. if nonalphabetic information has been sent to the line
printer, logical device number 5, causing it to print a lot of
rubbish, it can be stopped by the call

PRINTER=5
OUTPUT21
RESEsl
WHDEV:1N0
IOSET=141
QERMS:65

LDA (PAR
MON WHDEV % Get the owner (reserver)
JAZ HUH % Nobody?????? Go to error routine
STA OWNER % Put the owning RTprogram

% into parameter list
LDA (PAR
MON IOSET z Clear device
MON QERMS % Error return

OWNER, o
PAR, (PRINTER

(OUTPUT
OWNER
(RESET

ND-60.133.02

196 Real Time Guide

ND—60.133.02

Real Time Guide 197
MULTIPLE SEGMENT PROGRAMS

14 MULTIPLE SEGMENT PROGRAMS

A program may be using one single segment, it may be using two or may
be using a practically unlimited number of segments over a period of
time, by replacing one of the currently active segments with another.

As applications grow, more and more of them will benefit significantly
from being put on several segments. The justification for using
several segments is very dependent on the application.

* The program has run out of space in the SHK addressing area. This
is the main reason why the SINTRAN III system requires a
condsiderable number of segments.

If the application is modularized, routines used at one point in
time are put in one segment. When these routines are no longer
needed, the space they occupied in the addressing area is loaded
with another segment with a different set of routines. This
closely resembles the "overlaying“ mechanism available in the
Fortran library, but is significantly faster.

* Two segments may be placed on different page tables, 64 pages
available for each, doubling the area available without any
segment switching (the memory management mechanisms used for this
are described in chapter 3).

* Two programs may want to share data. They may then be placed on
the same segment (see section 12.5), but an error (e.g. addressing
an array out of range) may destroy the "innocent" program. If the
two programs are placed on separate segments, and a third segment
used for data, one program cannot be destroyed by errors in the
other.

* A program may be designed to work on several sets of data. The
data segment may then be replaced with second, third, a fourth
one... without any modification to the program segment.

* An application may be split into modules with different
requirements. E.g. some routines may be time critical and require
fixing in memory, while the major part of the routines are more or
less independent of response time and should not occupy memory by
being fixed. They may even be located on a demand segment.

* Different protection (ring or page) may be desired for different
parts of the program or for the data and the instructions.

* Some system information may only be obtained by reading from one
of the system included segments.

Segment switching is initiated through monitor calls. A call may
replace one of the two segment numbers in the ACTSEG location in the
RT description with another one, specified in the call.

ND»60.133.02

198 Real Time Guide
MULTIPLE SEGMENT PROGRAMS

There are several calls:

MCALL - fetch a segment and perform a subroutine jump
MEXIT - return from a subroutine called by MCALL
WSEG — write a segment back to the segment file
REENT — fetch a "reentrant" segment
SREEN — fetch a "reentrant" segment, save "shadow pages"

REENT and SREEN are described in the next chapter.

In many cases, segment switching is functionally equivalent to the use
of overlays in background programs or reading data blocks from a file.
The speed of segment switching is at least an order of magnitude
faster; even if the segment must be read from the segment file, the
file system is bypassed. The internal data structures contain all the
information to make the lookup of the disk page as fast as possible.

If a segment is still in memory after previous use there is no need to
read from the disk. A segment is not removed from memory until other
segments claim its space. If physical memory is large and the activity
on the system low (or mainly small segments used), one program may
effectively have segments totalling several times the virtual
addressing range concurrently in memory.

14.1 Calling a subroutine on a different segment

The MCALL (MON 132) call is used when a subroutine on a different
segment is called. It replaces one of the current segments with a new
one and performs the jump.

The call is only available in MAC and uses the T register (rather than
the A register) to hold the address of the parameter list for the
monitor call. The A register is free for use by the subroutine.
(Standard Fortran call sequence uses the A register to point to the
parameter list, in the same way as RT monitor calls.)

The monitor call parameters are the subroutine address and the new
segment numbers. Usually only one segment is replaced, in which case
377B may be specified for the segment to be kept. (It is permitted to
specify the segment number already present, if known.)

It is neccessary to know in which half of the word in the RT
description the segment number to be kept is located. The first
segment specified in a *NEW-SEGMENT command in the RT loader is in the
right byte of the word, the second segment, if any, opened in another
i“NEW-SEGMENT (the default link segment during loading) in the left
byte. If only one segment is opened, the left byte is zero.

Each time a segment is replaced, the segment (right or left byte) is
explicitly specified, and it is the responsibility of the programmer
to keep track of which segments are where in the word.

ND—60.133.02

Real Time Guide 199
MULTIPLE SEGMENT PROGRAMS

203 203

201 201

20” 20“

Before After After

203 201 203 201 ACTSEG in RT description
+ 377 20” + 20” 377 MCALL 2.nd argument,
= 203 204 : 20H 201 New segments in ACTSEG

One of the segment numbers may be zero. This is used for informing the
operating system that the segment in the corresponding half in the RT
description is no longer needed.

The two new segments may not overlap in the virtual address space;
1.6. they may not use the same locations in the page tables. If the
two segments use different page tables, no conflicts occurs.

MCALL causes the new segments to be fetched and the subroutine is
started. The L register holds the return address and the T register
the segment numbers of the calling program, the old value of the
ACTSEG location in the RT description. This information is used on
return from the routine. If the called routine- uses the T or L
registers, they must be stored by the subroutine if MEXIT is used for
the return.

T register ACTSEG

Before: Par. list 203 201

MCALL, segments = 377 20“ (second parameter)

After: 203 201 203 20“

Fig. 25. ACTSEG and T register before and after MCALL

A call in MAC looks like:

ND-60.133.02

200 Real Time Guide
MULTIPLE SEGMENT PROGRAMS

MCALL:132

LDT (PARAM
MON MCALL

PARAM, SUBR
(177603 5 Replace segment in lower half in

S ACTSEG with segment 203

1u.1.1 The register contents

All registers except T and L keep their values and may be used for
parameter transfer to or from the called routine. If the A register
points to the argument list (which is the case when Fortran is used),
only one of the segments should be replaced. The parameter list and
the parameters themselves must be in the non—replaced segment or they
are inaccessible to the called routine (the corresponding addresses in
the new segment would be interpreted as argument list and arguments).

1M.1.2 The address of the called routine

The subroutine does not have to be located in the segment fetched, it
can be in a non—replaced segment. If a subroutine has its working
variables in a segment of its own, the ordinary data segment may be
replaced with the private data segment while the routine is executing.
When exit from the routine is executed by MON MEXIT (see below), the
private data segment is removed and the old one brought back.

MCALL may be used for the sole purpose of exchanging the data segment,
by calling a "virtual routine" at the location following the MON
MCALL. This destroys the previous contents of the L register, but as
long as the old contents are properly saved and restored, this is the
fastest mechanism for virtually extending the data address space.

14.1.3 The page table

Subroutine jumps to another page table are not possible. Therefore,
the called routine must be in a segment using the same page table as
the current one.

If MCALL is used to replace a data segment with another one and the
routine called is within the current segment (e.g. a "virtual routine"
at the next program address), the segment may use another page table,
addressed through the alternative page table mechanism described in
section 3.7

ND-60.133.02

Real Time Guide 201
MULTIPLE SEGMENT PROGRAMS

14.1.” The size of the segment

The two segments active at one time may not overlap if they use the
same page table, but there are no limitations on the overlapping of
the new and old segments.

The location where the MCALL instruction is executed may be replaced
by another segment during the execution of the monitor call. There is
nothing to prevent the new segment covering the entire 64K addressing
area, replacing all the existing code;in that case all parameters must
be transferred in registers.

14.1.5 "CALL nesting

As long as the return address, found in the L register when the called
routine is entered and the old segment numbers, found in the T
register, are saved in a the same way as on an ordinary routine call,
MCALLs may be nested freely.

If the called routine is reentrant and the T register as well as the L
register saved on a stack, even recursive MCALLs are permitted.

ih.2 Returning from a routine on a different segment

Return from a routine called by MCALL is through the MEXIT call
restoring the old segments and returning to the location following the
MCALL.

Before calling MEXIT the T and L registers must have the same values
as they had after the corresponding MCALL. After the MEXIT monitor
call the T register contains the segment numbers of the present
segments when MEXIT was called.

Example:

9g segment 3008:
MCALL2132
MEXIT::133

LDT (PARLI % T points to data element
MON MCALL
. % Return here after MEXIT

PARLl, SUBR % Routine address on segment 2008
(100300 1 Get in segment no. 200B and 300B

mug“

SUBR9 STT SAVT % Entry point - save old segment
% numbers for the return

COPY SL DA % Save L register
STA SAVL
too

% Routine body

LDA SAVL %

ND-600133 n 02

202 Real Time Guide
MULTIPLE SEGMENT PROGRAMS

COPY SA DL $ Restore L and T register
LDT SAVT $
MON MERIT

SAVT, 0
SAVL, 0

MEXIT is available in the Fortran library as a subroutine. It allows
only the segment in the left byte to be replaced, the second one
opened during the loading process (the default link segment, see
section 7.”.1). The Fortran MEXIT call is used for e xchanging a
segment only, no subroutine jump is performed. E. g. to replace the
second segment with segment 2123, the call is

CALL MEXIT (2128)

The segment may contain both code and data.

1H.3 Explicitly writing a segment to disk

If a data structure is partly updated when a (controlled or
uncontrolled) system stop occurs, an inconsistent data structure may
result. To take a checkpoint of a segment, modified pages may be
written back to disk through the WSEG call.

In most cases, this call is only used as a safety feature. The RT
monitor never overwrites a page in memory which has been modified
without writing it back to disk first (except when connecting a
reentrant segment).

More explicit control over when the writeback occurs may be obtained
through the WSEG call. it is available as a Fortran subroutine:

CALL WSEG(302B)

or MON WSEG (MON 16”) may be used in MAC. MON WSEG follows the RT
parameter transfer standard:

WSEG:16H

LDA (SEGN
MON WSEG

SEGN, (302

Even though the segment is written back to disk, it remains in memory
until some other segment claims the space.

If external devices access the segment through DNA, the WIP bit in the
page table is not set, and the page is not written to disk. This bit
may be forced set for all pages in the segment as soon as it is placed
in memory, by specifying the last parameter of the RT Loader command
*NEw-SEGMENT, <WP/NP>, as "WP".

ND—60.133.02

Real Time Guide 203
MULTIPLE SEGMENT PROGRAMS

If "WP" was specified, the VIP bits in the page table entry remains
set. If a DNA device makes further transfers to the segment these
pages are written back before the pages are overwritten in physical
memory by another segment.

If "WP" was not specified, WSEG will reset all WIP bits in the
segment.

1M.4 Loading a multisegment program

The RT loader can load to two segments concurrently, usually two
segments which are active at the same time during execution. The first
segment opened in a ”NEW—SEGMENT command is termed the default load
segment, the second the default link segment. The main program and
possibly subroutines are located on the default load segment,
subroutines and data shared with other segments on the default link
segment.

Alternatively, the segments may be loaded one at a time. In that case,
the subroutine/data segment is loaded first, specifying no link
segment. There should be no undefined references on this segment.

1u.4.i The load commands

Either of *LOAD, *NREENTRANT—LOAD or *REENTRANT-LOAD commands may be
used to load the main program and private subroutines loacated in the
default load segment. The choice between them is determined as for a
single segment system.

For loading code to the link segment, the second segment specified,
the “LOAD command must be used, as this is the only load command that
allows specification of the segment number. Remember that “LOAD
changes the default load segment!

If the segments are loaded one at a time, either command may be used.

1M.h.2 Linking between segments

A label to serve as a definition for references must be declared
explicitly as a globally known label. Usually this is done by loading
the definition of the symbol frmn a BRF file, but it may also be
specified by the command *DEFINE_SYMBOL.

The two segments used at any time by a program may not overlap in
virtual memory. The start address of one segment should therefore be
above the highest address of all others that it is used together with.
When two segments are loaded concurrently, the initial load address of
the second one is 1000008, but if a different lower address is desired
or the segments are loaded one at a time, the user must specify the
load address through *SET—LOAD-ADDRESS.

ND~60.133.02

20% Real Time Guide
MULTIPLE SEGMENT PROGRAMS

1u.u.3 Segment common

RTCOMMON is may be used as a common area for all segments on PT1.
However, RTCOMMON is usually a scarce resource and any ring 1 program
on PT1 may modify it.

A more easily controlled communication between segments can be
obtained by using a separate segment rather than RTCOMMON. Segment
space is usually available in abundance compared to RTCOMMON and only
those programs linking to the segment have access to it.

The command

*SET—SEGMENT—COMMON <common label)

is analogous to *SET—RTCOMMON, but the common block is defined on the
current link segment rather than in RTCOMMON. When the common block is
loaded, a current link segment must exist — that is, two *NEW—SEGMENT
commands must have been executed. (The *SET—SEGMENT—COMMON command may
be executed before the second segment is allocated.)

The *PRESET-COMMON—ADDRESS may be used to force common blocks to be
allocated on another address than the current load address. This is
used if the segment contains both common blocks and ordinary code.

After definition, the common block is available to any segment that
uses the same segment as a link segment.

1u.u.u Mutual references between programs on different segments

A program P1 on segment 270 may attempt to start program P2 on segment
271 - thus a definition of P2 must be available before segment 270 is
completed.

If program P2 may start P1, P1 must be defined before segment 271 is
completed. Thus, segment 270 and 271 must be loaded together, one as
load segment, the other as link segment.

If either P1 or P2 requires that a third segment is loaded
concurrently (maybe due to references to a third program), the system
cannot be loaded directly in the RT loader, as it can handle a maximum
of two segments at a time.

In such cases the command

”DECLARE-PROGRAM (RT name) (<RT description address>)

can be used to define a program before it is loaded. As references to
a program are actually references to the RT description address, this
allows one segment to be completed, having all its references
satisfied. At a later time, the program may be loaded to another
segment and the uninitialized fields in the RT description properly
set.

The second parameter, RT description address, is rarely used. If
specified, it must be the address of a free RT description. Default
value is the first free description.

ND-60.133.02

Real Time Guide 205
MULTIPLE SEGMENT PROGRAMS

206 Real Time Guide

IUD-60.133. 02

Real Time Guide 207
REENTRANT SYSTEMS

15 KEENTRANT SYSTEMS~

Several users may be using the same program or set of subroutines,
concurrently. This is most notable with an editor or compiler; all
terminal operators editing text or program essentially use the same
code, all Fortran programs compiled at the same time use the same
compiler.

As long as no modifications (store instructions) are made to the code,
there is no reason why two users should not use the same set of
instructions, the same physical pages in memory, rather than
duplicating every instruction for every user.

If the same physical pages are used, more physical memory is available
for other segments, there is less swapping and as each user of a
common, reentrant segment make it the most recently used the
probability of the segment being in memory (or the needed page within
the segment) rises as the number of users increases. This reduces the
number of page faults and consequently the number of process switches
reducing CPU overhead as well.

15.1 The shadow page mechanism

Problems do not occur until one of the programs using the common
segment modifies it - assigns a new value to a variable within the
segment. Then the modification is effective for all users.

If the standard segment sharing is used, the common segment should
contain read only data or routines and all variables should be located
in the private segment. Many compilers, including the FTN compiler,
have no other way of distinguishing between different types of data
than using common blocks. This is sometimes cumbersome and does not
easily interface to other languages. Also, special considerations are
necessary be taken before compilation.

Alternatively, the segment containing the common routines and data may
be declared as a REENTRANT segment with special properties, through
the REENT call.

As long as no modifications are made, the entire segment is common to
all users. When a user modifies a location, a private copy of that
page is made. All later accesses go to the private copy.

Other non-modified pages are still common with other users. Private
copies are only made when necessary to make users independent of each
other.

ND~60.133.02

208 Real Time Guide
REENTRANT SYSTEMS

User B
User A User C

Reentrant -',*r
segment

Dotted lines: shadow segment

Fig. 26. Several users using the same reentrant segment

For administrative purposes the private copy must belong to a segment
different from the reentrant segment. There must be a segment which is
used for the private copies, covering the same addressing area as the
reentrant segment.

The number of this segment, rather than of the reentrant one, is found
in the ACTSEG location in the RT description. This segment is called a
shadow segment, the pages in it are termed shadow pages. Each program
using a reentrant segment normally has a different shadow segment. The
number of the common, reentrant segment is found in the RSEGM location
in the RT description.

The shadow pages are used if a store operation has been performed, the
reentrant segment pages if not. The RT description contains a 6” bit
wide bit map, one for each page in the logical address space. If the
shadow page should be used the bit is set, otherwise it is reset.

ND’600133002

Real Time Guide 209
REENTRANT SYSTEMS

User B
User A

Reentrant
segment ,

E: .5:

o o a o o o o o o a

shadow segments

Dotted lines: unmodified pages read from reentrant segment
Continuous lines: modified pages, private copy in shadow segment

Fig. 27. Modified pages are read from private copies

The reentrant segment may cover both segments, if two ordinary
segments are used; then they both serve as shadow segments. A shadow
segment may extend beyond the limit of the reentrant segment; in that
area it functions as an ordinary segment.

If the shadow segment does not cover the entire reentrant segment, no
modifications are legal in the area not covered. The reentrant segment
may be read, but a store operation is trapped giving an OUTSIDE
SEGMENT BOUNDS error, causing the program to terminate.

ND-60.133.02

210 Real Time Guide
REENTRANT SYSTEMS

Shadow
segment

Reentrant
segment .

.0000.

read-
only l

Fig. 28. Shadow segment is not needed for read—only pages

.15.2 The RESET call

A segment is declared as reentrant through the MON REENT call (MON
167). REENT is available as a Fortran subroutine. Its only argument is
the number of the reentrant segment and the standard RT monitor call
parameter mechanism is used.

Fortran:
CALL REENT<31MB>

MAC:
REENT=167

LDA (PARLIST
MON REENT

PARLIST,(31M

Both declare segment 31HB as a reentrant segment. If the segment
number is illegal (out of range, not used or reserved, e.g. for
loading), an error message is written on the error device and the
program is aborted.

The REENT call is permitted in background programs (Sintran version E
and later). SHEEN (MON 212) is functionally equal to REENT, but will
also write modified pages of the shadow segment to the segment file
before the new segment is brought in (see section 15.9).

ND-60.133.02

Real Time Guide 211
REENTRANT SYSTEMS

If another reentrant segment is already in use when the call is
executed, it is no longer used but replaced with the new segment. The
bit map is reset and all pages in the range covered by the new segment
taken from the new reentrant segment.

For pages covered by the old, but not the new reentrant segment, data
are taken from the shadow segment. Whether this is a private copy of
the page in the old reentrant segment or the original page in the
shadow segment (before the old reentrant system was declared), depends
on whether any modifications were made while the first reentrant
segment was active.

In cases where all pages in this area should be taken from the old
reentrant segment, a dummy store operation (in Fortran this may be
done by setting a variable to the value of itself) may be executed in
each of the pages in this area, immediately before the new MON REENT
is executed.

Shadow seg:
1st Peentr: ::::::::=:===::=:=:=:
Writes : +++++
2nd reentp: I§§**§§§*IQ§*

Writes : +++++
REENT O :
Result : —————*****=:__________________________

original shadow segment
first reentrant segment
second reentrant segment

I I

so
on

no

Fig. 29. Resulting effective pages after switching reentrant segments

The shadow segment must be a demand segment. This is not default when
the segment is allocated and must be specified in the *NEW-SEGMENT
command in the RT loader by giving the third parameter as DM.

Reentrant segments must be demand segments.

15.3 Optimizing the use of the reentrant mechanism

The reentrant segment mechanism may be used for all programs, whether
the code is reentrant or not; the reentrancy is provided by the
segment administration rather than by the program's allocation of
space. The savings in physical memory requirements and swapping
overhead are very dependent on the code generated.

Maximum gain is obtained if all working variables, written by the
program, are gathered together in a small number of pages and all
read-only data and code is loeated in other pages. If some pages are
consistenly read-only and are located at the end of the shadow
segment, the shadow segment need not cover these pages.

ND~60.133.02

212 Real Time Guide
REENTRANT SYSTEMS

The code normally generated by the Fortran compiler in non-reentrant
mode mixes code and data and the probability of having a page with
code only is extremely low. Therefore, practically all pages are
copied to the shadow segment after a short time.

If a Fortran program is compiled in reentrant mode ($REENTRANT-MODE
compiler command), local variables are allocated on a stack and the
code generated has no intermixed data. The variables that cause a page
to be copied are spread over far fewer pages.

Pascal always generates pure code and uses stack allocation of data
and is well suited to the reentrant mechanism.

Plano allocates local data on a stack, but data declared outside the
outermost routine level are intermixed with the code. To make Plane
suit the reentrant mechanism, all global data should be declared at
the top of the module or imported from a separate data module.

MAC (including NORD-PL, which is translated into MAC) written in a
traditional style is rarely suited for reentrant programs.
("Traditionally", local data is often located within the displacement
field of the instruction.) All variable data must be declared together
and addressed relative to the 8 and/or X registers. Literals allocated
by the)FILL command are by definition read only, and may be used
freely. Since the parameter list of RT monitor calls contain the
addresses of the variables, it is usually read-only and may be located
together with the program code, if desired.

15.h Other use of the reentrant segment

Neither the reentrant segment nor the shadow segment should be used by
any other program using these as ordinary segments.

If a "foreign" program (one not using the reentrant mechanism with
this segment) makes modifications to the reentrant segment while it is
being used by others, the effect on these other programs depend on
whether they have their own copies (no effect) or not (modification
applies). Debugging such systems is almost impossible.

A program using the shadow segment while the reentrant system is
active may find an entire page suddenly replaced with one from the
reentrant segment that was written to. This has a similar effect on
the debugging as the above case.

15.5 The access bits of the segment

When a reentrant segment is fetched, the ring and page protect bits of
this segment apply to the pages of the segment. A pure reentrant
segment may be given read only or fetch only permit to prevent
accidental write.

Pages in the shadow segment located outside the reentrant segment have
the access protection of the shadow segment itself. As soon as a page
is copied from the reentrant segment, it is considered a part of the
shadow segment and its access is determined thereby. The operation
causing the copying is restricted by the reentrant segment, while all
future operations are restricted by the shadow segment.

ND-60.133.02

Real Time Guide 213
REENTRANT SYSTEMS

Normally this causes no problems. However, if the shadow segment is
read-only, while the reentrant segment allows write operations (and
write operations are performed), the programmer should beware:

WARNING! A write allowed page in a reentrant segment is, if a write
operation is performed, copied to the shadow segment even if the
shadow segment is read—only. This page is later written back to the
segment file; the exact time is determined by the amount of
swapping on the system. In this way, a read-only segment is
modified!

15.6 Different page tables

The reentrant segment may use any page table, but if a page table
different from that used by the executing code is used, there is no
way to transfer control to the segment. It may be accessed as data
using the alternative page table mechanism, described in section 3.7

The shadow segment must use the same page table as the reentrant
segment. As when all segments use the same page table, no shadow
segment is needed for the reentrant segment (or parts of it) that is
not written to. If the reentrant data segment is read-only, e.g. error
message text strings, no shadow segment is needed.

The data on a reentrant segment on a different page table must be
accessed by using the ALTON call to set an alternative page table and
setting the status register bit number 0.

15.7 Mixing HCALL/HEXIT and reentrant segments

If MCALL is used in systems also using reentrant segments, no segment
switching is allowed that would affect the shadow segment mechanism. A
segment used wholly or partly as a shadow segment may not be replaced
through MCALL or MEXIT.

The segment fetched may not cover any part of the reentrant segment
that has no shadow segment (necessarily a read—only part of the
reentrant segment). It is legal to replace a segment not used as a
shadow segment and the new segment may cover any area not covered by
either the reentrant or the shadow segment.

ND-60.133.02

21h Real Time Guide
000000 .. REENTRANT SYSTEMS

177777 .

Reentrant Shadow MCALL

Fig. 30. The legal area for a MCALL segment

This also applies to the Fortran routine MEXIT. If the rules are
violated, the calling program is terminated and an error message is
printed on the error device (console).

A segment on another page table may be fetched by MCALL, without
causing any collision. This may be used for data segments only, as
there is no way to transfer control to another page table. The address
of the called subroutine must be within the area covered by the
reentrant or the shadow segment.

If a system no longer makes use of the reentrant segment but needs
another it may disable the reentrant segment by calling REENT with
segment number 0 as parameter. It may then replace the shadow segment
with another one through MCALL/MEXIT.

15.8 The shadow segment after execution

All pages copied from the reentrant segment are a permanent part of
the shadow segment and as the Written In Page (WIP) bit in the page
table is set, the page is written back to the segment file.

The segment contains a mixture of pages, the original ones from the
shadow segment before execution and pages copied from the reentrant
one. For the next execution, the contents of the segment are
unpredictable.

Pages outside the area covered by the reentrant segment still have
contents explicitly controlled by the program and if the segment is a
pure code segment which is never written into, the contents of the
shadow segment are unmodified.

ND-60.133.02

Real Time Guide 215
REENTRANT SYSTEMS

15.9 Automatic savim§_of the shadow segment paggg

If a reentrant segment is declared, the pages in the shadow segment
are not written back to the segment file, even if they have been
written to. If these pages are later recovered by disabling the
reentrant segment, the modifications may or may not still be valid,
depending on whether the relevant page was swapped out on disk or not
between the last modification and the connecting of the reentrant
segment.

As an option, Sintran can be delivered with a monitor call that
automatically writes all pages of the shadow segment back to the
segment file before the reentrant segment is fetched.

Logically, this operation is almost equivalent to executing a WSEG
call (see section 13.3) immediately before a REENT call. SHEEN results
in less administrative and disk overhead, as only the pages that have
actually been written to and only pages in the area covered by the
reentrant segment, are written back.

The call is available in MAC only and is used in the same way as the
REENT call. To save the pages of the shadow segment and enter segment
2033 as reentrant:

SREEN=212

LDA (PAR
MON SREEN

PAR, (203

SREEN is primarily useful when the reentrant segment (or a large
contiguous part of it) contains pure code. When the reentrant segment
is later disabled, the shadow segment is recovered with all
modifications made before the reentrant segment was declared.

If modifications are made to the reentrant segment, the affected pages
are copied to the shadow segment.

15.10 Disabling the reentrant segment

If MON REENT is called with a segment number of zero, no reentrant
segment is used and any previously declared reentrant segment
disabled.

The shadow segment is recovered. Whether the information in this
segment is consistent or not depends on whether the reentrant segment
was written to, as discussed in the two previous sections.

ND—60.133.02

216 Real Time Guide
>REENTRANT SYSTEMS

15.11 Multisegment reentrant systems*used from backgroundg~

The’ mechanism' described above is used even for background processes
when the program run is declared as a "reentrant subsystem" by user
SYSTEM, using the Sintran command @DUMPaREENTRANT. In that case the
background segment for the terminal is used as the shadow segment.

If more than one segment is needed, these may be written as separate
programs and call each other using the COMND call (MON 70). This has a
number of disadvantages; each set of subroutines, i.e. each segment,
must be executable as a stand alone program. Also, the COMND call is
slower than switching segments directly. This may be significant if
there is frequent switching. Finally, the restart address (used when
the @CONTINUE command is issued) is updated when COMND is used.

MON REENT may be used‘ as a substitute. It is usually used in
connection with two-bank systems, the reentrant segment covering the
normal page table (or part of it). The alternative page table contains
data for all the reentrant segments.

l..___._____ PT2 ; PT3 -l
Root Data for all

segment PT2 segments

Screen Database Text Runtime
handling handling formatter library

Fig. 31. Two-bank reentrant system for background

The "root segment" contains in the lowest part a routine to switch to
another segment and jump to a routine in the new segment. Upon return
from the routine, control goes via the root segment restoring the
segment of the caller.

ND-60.133.02

Real Time Guide 217
REENTRANT.SYSTEMS

Root
segment

‘\
f; \

m save return addr,
a switch segment
o jump to addr

calling segment

Parameters:
segment no
routine addr
other data

RETURN:
m switch segment back
» jump to return addr

77

Fig. 32. Calling another segment via a root segment

The lowest pages of the root segment is usually present continously.
Before any other reentrant segment is fetched, a dummy write should be
made to all pages in this part to ensure they are copied to the shadow
segment. Alternatively, these pages may be duplicated on all the
reentrant segments.

MCALL/MEXIT calls are not available in background programs. REENT is
not available in background programs in Sintran releases prior to
Version E.

Reentrant segments for background programs usually use page table 2.
Only if the alternative area (the data area) in two-bank systems is to
be replaced should page table 3 be used. In almost all cases, the
reentrant segment contains instructions rather than data.

ND—60.133.02

218 Real Time Guide
REENTRANT SYSTEMS

15.12 Reentrant Fortran programs

Standard Fortran is not reentrant; a program or subroutine may not be
reactivated before its previous execution has terminated. Attempts to
reactivate a routine may be made by another program sharing the
routine or by the same program calling a routine recursively.

This is because Fortran has static data allocation; all variables have
fixed locations. This includes compiler generated variables, such as
routine parameter locations and return addresses.

If a program P1 calls a routine SUBR, the return address in P1 is
stored in a system assigned location (called RETA). When the
routine completes, a jump to the address found in RETA_ is
performed.

Before the routine completes, another program P2 calls SUBR. Now,
the return address in P2 is stored in RETA. As soon as P2's call
of SUBR is executed, a return jump to the address in BETA is
performed (as expected).

Now, P1 continues execution and completes SUBR. A jump to the
address found in BETA is executed. This is no longer the address
in P1. Rather, control is transferred to the return address in
P2.

If the return address in P2 is valid in the segment (P1 and P2 could
be on different segments,‘covering different extents of the address
space), execution continues. This could be the worst thing to happen;
maybe the program "crash”, maybe it simply returns erroneous results
that are not identified as such. It would in fact be better if the
address was illegal in the segment of P1 and a fatal error occured!

The Fortran compilers (FTN, FORTRAN-100) may optionally generate
reentrant code to prevent this problem arising. This is done if the
command

$REENTRANT-MODE

is issued to the compiler before the program or routine is compiled.

15.12.1 The use of a stack

Unintentional modification of locations is not restricted to return
addresses. Every local variable suffers from the same problem; the
side effects are even more subtle and may easily go unnoticed.

For the calling programs to be independent of each other, they need
individual copies of all variables in a routine. To keep two programs
separate, the areas could still be in different but fixed locations.

If the routine calls itself recursively (see section 15.1”),
directly or indirectly (A calls B calls A), several areas are needed
even within one program. There is no way of knowing the maximum number
of concurrent activations, so fixed allocation cannot be used.

ND—60.133.02

Real Time Guide 219
REENTRANT SYSTEMS

Some kind of dynamic allocation must be adopted instead. Every time a
routine is called, a new area to be used for local variables is taken
from a scratch area. On exit from the routine, the area is released.
When stack allocation is used, space is always taken from one end of a
contiguous area, the stack, when a routine is called. Routines called
within the current one use the locations following etc.

ROUT2
data

ROUT1 BOUT? ROUT1
data data data

MAIN MAIN MAIN MAIN MAIN
data data data data data

Fig. 33. Stack allocation

Main program ROUTl calls ROUTZ ROUT1
calls ROUT1 ROUTZ completes completes

Each program has its own stack. All data in one stack belongs to one
program. The routine last called is always the first to complete. All
reserved space is contiguous in one end of the stack area, all free
space in the other end.

15.12.2 Advantages of stack allocation

From an RT point of view, the most obvious advantage is that each
program is independent of other programs using the same routines. This
is taken for granted by programmers used to background programming!

Many advanced algorithms make use of recursive techniques, section
15.1”. Thus using iterative methods often results in more efficient

programs. Using recursive alghorithms requires reentrancy, as provided
by the stack mechanism.

Under some circumstances, the data space requirements may be
significantly less when using stack allocation. Statically allocated
data are continuously reserved, even if the routines using them are
never active at the same time. When dynamic allocation is used, no
space for data is initially reserved except the stack. The required
size of the stack is no larger than needed by routines active at the
same time. Routines called in sequence use the same data area.

ND—60.133.02

220 Real Time Guide
REENTRANT SYSTEMS

15.12.3 Disadvantages and pitfalls of stack allocation

As the local data area used by a routine is reused by the next one
called, the values assigned to local variables during one execution of
a routine generally do not have these values initially when the
routine is activated a second time. Some Fortran programs are written
assuming that they do, and such programs need modification. Variables
allocated in common blocks are statically allocated and will keep
their values. (The SAVE statement is not implemented in Norsk Data
Fortran. SAVE is implicit for all variables in non—reentrant Fortran
and for variables in COMMON in reentrant Fortran.)

The user must estimate the amount of stack space needed. The FORTRAN—
100 (ANSI-77) compiler reports the amount of stack space needed for
one set of local data, but this must be multiplied by the maximum
recursion depth of that routine. 0n the other hand, because not all
routines are active concurrently, the space requirement is usually
less than the sum of the space used for each routine.

Reentrant routines mode may not be used with a program compiled in
nonreentrant mode. Using nonreentrant routines with a reentrant main
program is possible. These routines must not be reactivated before
termination by recursion or by another program.

Local variables may not be initialized. All local variables have
undefined (random) values when the routine is entered.

15.12.M Compiling reentrant Fortran

Reentrant code is generated by giving the command $REENTRANT-MODE
before the $COMPILE command to the Fortran compiler. All programs and
routines compiled after the $REENTRANT—MODE command until the compiler
is left through $EXIT, allocate data in a stack fashion when executed.

Example:

@FORTRAN-1OO
ND— 100 ANSI 77 FORTRAN COMPILER - 81.08.07
FTN: REENTRANT—MODE
FTN: COMPILE PRO“, "PROU:LIST", "PROM"
— CPU TIME USED: 1.1 SECONDS. 13 LINES COMPILED.
— NO MESSAGES
- CODE SIZE=13U DATA SIZE=O COMMON SIZE=MO STACK SIZE=16
FTN:EXIT

The source program may not include DATA statements initializing local
variables in subroutines and functions.

Recursive function and subroutine calls are now permitted. Be aware
that this is an extension to the ANSIm77 standard. Recursive calls
should be avoided if the program must be compatible with ANSI-77
standard Fortran. The (FORTRAN-100) compiler may optionally mark in
the compiler listing Norsk Data extensions if the command $STANDARD-
CHECK is given prior to compilation.

ND-60.133.02

Real Time Guide 223
REENTRANT SYSTEMS

15.12.5 Reentrant Fortran and reentrant segments

Any routine or set of routines can be used by several users at the
same time, provided the routines are placed on a segment used in
connection with the reentrant segment mechanism.

Non—reentrant Fortran may be loaded to such a segment and used by
several programs concurrently. But as code and data are intermixed,
little or no space is saved in memory during execution, because
practically all pages must be copied to the shadow segment. By
compiling the program in REENTRANT-MODE, all code is located in one
part, all code in another, making more efficient use of available
memory.

The reentrant segment mechanism does not provide different data areas
for recursive invocations of a routine. If recursive techniques are
used, a Fortran program must be compiled in REENTRANT-MODE. This may
but need not be used together with the reentrant mechanism.

15.13 Other languages and reentrancy

Most high level languages other than Fortran use a stack for local
variables. The code generated is always reentrant and allows recursive
techniques.

Like reentrant Fortran, they require explicit allocation of the stack.
In Plano the stack is declared in the source program as a global
(static) array, used by all routines including those shared with other
programs. These other programs have their own global stack arrays.

In Pascal, the user defines symbols indicating the lower and upper
limits of the stack at load time.

In MAC or NORD—PL explicit stack handling may be programmed or the‘
stack handling may be duplicated from that generated by the Fortran
compiler. This requires fluency in assembler programming and is rather
cumbersome. As most assembler routines are tailor written to provide
special functions for a Fortran (or Fortran compatible) program, a
trick may be used to utilize the Fortran stack mechanism:

Rather than allocating an area for local variables, the Fortran
program provides an array that can be used for working storage by
the assembler routine, as an argument. This array is allocated on
the Fortran stack and thus reentrant. The assembler routine loads
the base address of this array to the B register, and addresses
all local variables B relative.

This technique may be used with any programming language, provided
that an array address can be transferred as an argument. The actual
parameter transfer mechanism may vary from one language to another.
See appendix C.

ND-60.133.02

222 Real Time Guide
REENTRANT SYSTEMS

15.1u Recursion

The solutions of some problems, in particular mathematical ones, are
defined recursively - in terms of themselves. One characteristic
example of this is the factorial function: N! (N factorial) is defined
as N times the factorial of N—1 or, in mathematical notation, N! =
N*(N—1)!

Another example is Pascal's Triangle:

1 5 10 1O 5 1
1 6 15 20 15 6 1

1 7 21 35 . . .

Each number in the triangle is the sum of the two numbers above it.
The expression (X+¥)**N can be expanded to an N'th degree polynomial,
where the coefficient of X**M * Y**(N~M) is the M'th number in the
N'th row of the triangle — the top 1 considered the zero'th row.
(Pascal's triangle has other interesting mathematical properties as
well.)

Rather than calculating the entire triangle from the top down, any
entry in the triangle can be calculated from the two above. These are
calculated from the two above themselves, each calculated from the two
above them again and so on until the top '1' is reached.

An integer Fortran function to calculate the M'th number in the N'th
row would look like

INTEGER FUNCTION IPASCAL(M,N)
INTEGER M,N

IF (N.LE.1 .OR. M.LE.1 .OR. M.GE.N+1) THEN
IPASCAL:1

ELSE
IPASCAL: IPASCAL(M,N~1) + IPASCAL(M—1,N-1)

ENDIF
RETURN
END

E.g. IPASCAL(3,M) returns the value 6, IPASCAL(6,10) returns the value
252.

The above solution is very simple compared to a purely iterative
algorithm. IPASCAL calls itself to solve a subproblem (i.e. calculate
the value of each of the two numbers above the current one). This is
known as recursion.

ND-60.133.02

Real Time Guide 223
REENTRANT SYSTEMS

Recursive techniques are very helpful if the data to be manipulated
are hierarchically structured (tree structure), for network traversal,
searching and sorting and a number of other important applications.
Often the recursive solution is small, efficient and easier to
understand than a corresponding iterative solution.

Indirect recursion occurs when a routine A calls a routine B and
routine B calls A before it completes. Although split into two
routines, the same situation appears — a routine is reinvoked before
it has completed its previous execution.

If a recursive routine is to terminate, it must come to some point
during execution where it completes without invoking itself. In
IPASCAL this occurs if " N.LE.1 .OR. M.LE.1 .OR. M.GE.N+1 ": the value
1 is returned to the calling routine. Sooner or later this routine
must complete and exit to the routine on the previous calling level
and so on, until the main program receives its desired value. A proper
termination condition is essential for the successful application of a
recursive solution!

Recursion (direct or indirect) is not permitted in ANSI—77 Fortran,
due to certain syntactical inconsistencies that result when
subroutines are used as parameters. Recursion requires some kind of
stack allocation, which in some machine architectures are difficult to
implement without significantly increasing routine call overhead.

Norsk Data Fortran permits recursion in REENTRANT-MODE. This implies
that the source program is not in accordance with ANSI—77.

The reentant segment mechanism does not provide sufficient reentrancy
for recursive routines. For each recursive call — a call to a routine
that has not yet completed — there must be a unique location to store
the return address. A reentrant segment provides a unique location for
each user, but each time a routine calls itself, the return address is
overwritten by a new one unless a stack mechanism is provided. The
program and all its routines must be compiled in REENTRANT—MODE.

ND-60.133.02

224 Real Time Guide

ND—60.133.02

226 Real Time Guide
ERROR HANDLING IN RT PROGRAMS

- errors caused by hardware malfunctions

The error device is used for all system operator activities while the
system is running. However, the microprogram communication can be run
from terminal 1 only. If log in has been prohibited through the
command @SET—UNAVAILABLE, log in is permitted from terminal l only,
rather than from the error device.

Hardware errors may, as an alternative to being logged on the error
device, be written to a segment reserved for this use (segment number
118). User SYSTEM may use the SINTRAM command

@INITIALIZE—ERROR—LOG

to clear the buffer and cause future hardware error reperts to be
saved rather than printed. The command

@PRINT—ERROR-LOG

prints the error log on the specified file. (The buffer is not cleared
by this command.) User SYSTEM can also obtain the device number of the
error device through the command

@GET-ERROR-DEVICE

A program may use the call GERDV, MON 254. If the device is currently
reserved by an RT program, the RT description address is also
returned. If the error device is not reserved, D is zero. GERDV is
available in SINTRAN version H and later.

GERDV=253

MON GERDV
STA RDEV % A : device no
COPY SD DA % D = reserving program
STA RTADR

An RT program can write a user defined error message on any terminal
including the error device as long as the terminal has been reserved.
Some routine libraries write to device 1, the console, regardless of
the current error device. A message can be written to the error device
without reserving it through the ERMON call or for reporting file
system errors through ERMSG or QERMS calls.

16.2 Errors detected and handled by the RT Monitor

Appendix D in SINTRAN III Reference aual ND—60.128 lists all the
error messages issued by the RT monitor and gives brief hints about
the probable cause of the error.

ND~60.133.02

228 Real Time Guide
ERROR HANDLING IN RT PROGRAMS

16.3.1 Error status conventions

With the exception of XMSG, all the systems mentioned above return a
status value in the A register; XMSG uses the T register. In Fortran
or other high level language, the status value is returned as an
integer function value.

A status value of zero indicates successful operation. In assembler,
the A register is cleared.

The return address after a monitor call is usually, but not always,
the second location following the call ("skip return") if the
operation was successfully completed and if the call is legal from
background programs. If an error occurs, return is to the first
location after the call.

For operations only allowed in RT programs, return is to the first
location after the call regardless of whether an error occurred or
not.

16.3.2 Writing a file system error message

The file system status returned to the program as an error code in the
range 0:255 may be written to the error device using the ERMSG or
QERMS calls. These are used exactly as in background.

The file system monitor calls all have "skip return" if no error
occurs, return to the first location following the monitor call in
case of error. ERMSG writes the error message and the program
continues, QERMS writes the error message and terminates the program.
The error text is given in SINTRAN III Reference Manual.

QERMS is not considered a serious error condition; a program
terminating through QERMS executes as normal next time it is
activated. This includes periodic activation and reactivation because
the repeat bit (SREP) in the RT description has been set.

16.3.3 Writing a user defined error to the error device

A user defined runtime error code may be written on the error device
through the ERMON call. The user may specify an error number in the
range 50:69, plus a suberror number which may be any 16 bit signed
integer. The format of the printout is

11.05.30 ERROR 55 IN KLOKK AT 16542; USER ERROR
SUBERROR: 10

The time of day (11.05.30), RT name (KLOKK) and program address
(165N2) as well as the error number (55) and suberror number (10) are
reported. The suberror number is decimal.

MON ERMON expects the error number as two ASCII characters in the A
register. The suberror should be an ordinary integer (binary) number
in the T register.

ND-60.133.02

Real Time Guide 229
ERROR HANDLING IN RT PROGRAMS

ERMON:1M2

LDA (#55
SAT 12
MON ERMON

There is no error return from ERMON. The call is available in Fortrang

CALL ERMDN(ZHS5, 10)

Both these calls generate the error message reproduced above. In FTN
the "Hollerith" form must be used for the error number, either as a
Hollerith constant as in the example above or as an integer written
to, using an A2 format. A CHARACTER variable or string constant
(enclosed in single quotes) is not accepted.

Example using an integer variable:

PROGRAM MANE,NO
INTEGER IX(1)
N = 57
WRITE(IX,100) N
CALL ERMON(IX,10)

100 FORMAT(IZ)
END

16.4 Errors resulting from SIHTRAN or RT loader commands

The majority of RT functions available as monitor calls can also be
executed as commands. While a program may receive an unclassified
error code, a classified error code, provoke an error message on the
error device or be terminated because of the error, the error
reporting is in general poorer when commands are executed.

Some errors are common to RT and background programs, e.g. file system
errors when an attempt is made to open a file through @OPENmFILE
(background) or QRTOPEN—FILE (RT).

A small number of error conditions particular to RT programs are
reported. These include

— attempts to start a nonexistent RT program

— illegal/out of range parameters to @FIX, GPRIOR and commands
relating to clock functions.

Not reported are errors in or unsuccessful completion of

— reservation of devices (@RESRV, @PRSRV)

ND—50.133.02

230 Real Time Guide
ERROR HANDLING IN RT PROGRAMS

— releasing of devices (@RELES, @PRLS)

- deletion or unintended modification of the segment file(s)

- erroneous parameters in @UNFIX

or in the RT loader

- setting the P register outside any segment in the *CHANGE—RT~
DESCRIPTION command

— *EXIT—LOADER without *ENDuLOAD; this causes the RT loader to
ignore all loaded code

— overlap between already loaded code and a file read by *READ—
BINARY

Certain errors cannot be detected until the *END—LOAD command. In
particular, the size of the segment (and consequently, the required
contiguous area on the segment file) is not known until *END-LOAD.

The user is encouraged to verify that these operations are
successfully completed. This can be done by inspecting the RT
description, listing the waiting queue of a device (through @LIST—
DEVICE) or executing related commands in the RT loader.

16.5 Monitoring error termination

Executing the SINTRAN commands

@DEFINE—TERMINATION—HANDLING RT (RT name)
@ENABLE—TERMINATION—HANDLING RT

will cause the specified program to be activated every time a (user)
RT program error terminates: MON QERMS, MON ABORT or a fatal monitor
error. This program may use RERRP to identify the terminating program,
the cause of termination, and the program location when the error
oceured. These data may be used to prepare an error report, restart
the program or take other appropriate action to bring the situation
back to normal.

The RERRP call takes as its only parameter the address of a 6 element
array. This array will return the following information:

- the RT monitor error code as two ASCII digits
(without parity), see appendix D in SINTRAN III Reference Manual
ND-60.128

w P register in terminated program when error occured
a error parameter 1, A register
w error parameter 2, T register
m RT address of terminated program
w RT address of program executing ABORT (if any)

(zero if aborted by RT monitor due to fatal error)

ND—60.133.02

Real Time Guide 231
ERROR HANDLING IN RT PROGRAMS

Error parameter 1 and 2 are set by the error handling routine in
SINTRAN, and may give further hints to the operation in progress. The
contents are dependent on the kind of error.

For the last parameter to be valid, RT address of program executing
the ABORT call, termination handling must be enabled. The first five
parameters are set independent of termination handling, and may be
read by any RT or background program. They are valid until the next
error termination of an RT program.

On return from the monitor call, the A register is zero if the call
was executed. The error code 153B in the A register indicates that the
parameter address was illegal (outside segment etc.). There is no skip
return.

RERRP=207

LDA (PAR
MON RERRP
JAF ERR % Error in parameter address

. . . % Analyze error situation

PAR, ERHUM

ERNUMy O 1 Will contain error code in ASCII
PRES, 0 1 Hill contain user program P reg
PAR1, O 1 Will contain error parameter 1
PARZ, O 1 Will contain error parameter 2
RTADR, O 1 or terminated program
KILLER, 0 1 RT address of ABORTing program,

1 0 if aborted by RT monitor

The error supervising program should have sufficiently high priority
to guarantee that it will read and analyze one error before the next
one occurs. This usually implies that it should have a higher priority
than the programs it primarily handles.

Error termination handling may also be enabled or disabled through the
call EDTRM, MON 206.

ND«60.133.02

232 Real Time Guide

ND-60.133.02

Real Time Guide 233
DIRECT TASKS

17 93mm rims
A direct task is a routine executing on one of the free interrupt
levels 2, 5, 6, 7, 8 or 9 (level 5 only if XMSG is not included in the
configuration), independent of the operating system. It is like
running a job at a higher (software) priority, but the priority is
controlled by hardware rather than by software. A direct task is
started immediately when the interrupt level is activated, with no
need to search execution or waiting queues°

Startup time is lower than for a high priority RT program on a fixed
segment, because no page tables need to be loaded. This saves up five
milliseconds.

Almost none of the facilities available to ordinary RT programs are
available to direct tasks; these services are executed at a lower
level and to activate the lower level the direct task must complete
its operations - it cannot request a service and expect an automatic
return when the service routine completes. Monitor calls, segment
handling and demand paging are unavailable. If the task requires
control of I/O equipment, it must explicitly issue all the required
control instructions on the IOX level, writing the control and data
registers of the various devices.

17.1 Activating a direct task

A direct task must be activated by an RT program setting the bit in
the PID (Priority Interrupt Detect) register through the privileged
MST (Masked SeT) instruction permitted only for ring 2 or 3 programs.

The task is active until it executes a WAIT instruction. Higher level
activities may interrupt it, but lower level ones are not restarted
before the direct task terminates through WAIT. This includes the RT
monitor running at level 3. Even a direct task on level 2 halts the
majority of RT monitor activities; parts of the monitor are executed
at level 1 and they will not be executed.

Thus, if ordinary RT or timesharing activities are running
concurrently with the direct task, the task should not be active for
longer periods of time — in most implementations no more than a couple
of seconds.

17.2 Implementingga direct task

17.2.1 Loading

The direct task is written as an ordinary RT program (but without
monitor calls, possibly except XMSG) and loaded to a segment using the
RT loader. The segment is then fixed in memory by the monitor call FIX
or FIXC. This is because page faults must not occur_in a direct task;
these are handled at level 3, which cannot be activated while the task
is running.

ND-60.133.02

234 Real Time Guide
'DIRECT TASKS

The load address must be set according to the page table locations
used during execution (see below).

On page table 0 the available area starts on the first page following
the memory resident section (the value of the symbol 7EMDC, found in
PART—TWO (configuration dependent part) of the Sintran listing and
ends at location 65777 (octal). The availabilty of page table 1
depends on the requirements of other RT’programs in the system. Page
table 2 is unavailable if background processes are active, page table
3 is available only if no 2—bank background systems are used or if a
standard modification ("patch") has been done to make Zwbank systems
use PT1 rather than PT3.

17.2.2 The ENTSG call

The direct task is declared by the ENTSG call. This puts the start
address into the P register at the level on which the task runs. The
PCR is set to the correct page table.

The contents of the page table used for the direct task are loaded at
the time of the call. The PT locations are thereafter unavailable for
other use (until the task has completed). The page table used should
be one not used for other segments active at the same time. If
background 2-bank systems are used, these employ page table 3 for the
alternative (data) area.

Unintentional modifications to the page table made between the issuing
of the ENTSG call and the actual activation of the task are not
detected and may cause errors which are very hard to detect.

The page table of the segment need not be the same as the page table
specified in ENTSG; the latter is used when the task executes, but
other RT programs may access the segment before and after execution
through the page table of the segment.

The protect setting may be different for these two tables; the ENTSG
call sets the RPM, WPM and FPM bits, allowing the direct task all
access to the segment. Protect violations, although detected through a
level 1“ interrupt, are handled at level 3, which is inactive while
the task is running. Thus, enabling protection mechanisms would be
meaningless.

Direct tasks may also be located in the paging off (POF) area and run
with the memory management system turned off, making it independent of
the contents of the page tables. The segment should be fixed (FIXC) at
an address within the lower 63 K words of physical memory and page
table 0 specified.

17.3 Communicating with the direct task

The task may be active and no ordinary RT program running or started
until the task is terminated. Or the task is terminated and will not
run until explicitly restarted.

ND-60.133.02

Real Time Guide 235
DIRECT TASKS

This makes communication extremely simple. The RT program sets up a
data area before the task is started and can read the result
"immediately" after the activation. The entire task executes between
the setting of the bit in the PID register and execution of the next
instruction in the RT program.

As an alternative, the XMSG system may be used. Although the task may
run at a level higher than XMSG (level 5), this monitor call is
handled differently.

The task issues MON XMSG, which activates level 14. The call is
identified and level 5 (XMSG level) enabled. Level 5 is not active
until the task executes a WAIT instruction. XMSG always has a skip
return if called from a direct task and activates the level from which
it was called. (It is the explicit enabling of the calling level which
makes it possible to call XMSG from higher levels.) A WAIT usually
follows the XMSG call and return is to the first location after the
WAIT:

. % Load function codes and parameters
MON XMSG % Issue call — level 5 not yet active!
WAIT % Activate level 5
STA STATUS % Return from level 5 — skip return

1 from the monitor call

If WAIT is not the first instruction following the call, execution of
the direct task continues until the first WAIT. After execution of the
call, return is to the second location after the XMSG call regardless
of where the WAIT was executed.

17.“ Device driver routines

A driver routine on interrupt level 10, 11, 12 or 13 may be entered to
the operating system similarly to a direct task. However, datafields
and entries in the LDN table must be established at system generation
time and it may be necessary to enter the device into the ident table
through the @SINTRAN-SERVICE—PROGRAM.

17.5 Calling RT programs from direct tasks

A direct task may call a subroutine within SINTRAN III to start an RT
program. The number of RT programs which can be started simultaneously
is limited and specified at system generation time. The facility is
not included unless specifically ordered.

The RT program is started by use of the Sintran routine RTDIR. This
routine is known to the RT loader and may be declared as an external
symbol. A call to this routine in MAC is as follows

LDA (ELEM
JPL I (RTDIR % SINTRAN III SUBROUTINE

ELEM, RTTRG; 0;0;0;0; 1 RTPRG = RT description address

The A register points to an element of 5 locations. The first is a
pointer to the RT description of the RT program, the rest is a work
area for RTDIR.

ND-60.133.02

236 Real Time Guide
DIRECT TASKS

Since RTDIR is located on PTO and the parameter elements are on PTO,
this method can only be used if the direct task is also on PTO. By
using a system routine on level 14, it can be used from other page
tables, e.g. PT3:

% Code on page table 3
IOF
LDA RTDSC % Pointer to RT description
IRW 160 DT % Set register on level 1“
LDA (PPRTD % Address of routine on level 1“
IRW 160 DP %
LDA (40000 % Activate level 1M
MST PID %
ION %

17.6 Activation of direct tasks from interrupts

A general purpose driver for activating direct tasks has been
implemented. For each level there is a corresponding device number and
a datafield. Device numbers:

”HOB - level 6
4418 — level 7
4428 - level 8
HN3B - level 9

Levels 5 and 2 cannot be activated by this method. E.g. if level 7
should be activated by a CAMAC interrupt, the monitor call ASSIG may
set up the connection:

CALL ASSIG(441B,LAMX,ICRATE)

If a non-CAMAC interrupt should start a direct task then the datafield
pointer must be entered in the IDENT and EXTEND table by use of the
QSINTRAN-SERVICE—PROGRAM.

ND-60.133.02

Real Time Guide 237
PERFORMANCE MEASURMENT AND STATISTICS

18 PERFORMANCE HEASURMENT AND STATISTICS

This chapter is a guide to analysis of response time problems of
program systems running under SINTRAN III.

The analysis may been broken down into 4 stages:

Clarification
Measurement
Diagnosis
Solution*

*
¥

*

RT programs communicating with terminals are often used for
transaction type systems, i.e. systems consisting of several terminals
each running one or more application programs involving the use of one
or more SIBAS systems. However, any system communicating with a
terminal user may encounter similar problems, using databases or not.

18.1 Clarification

18.1.1 System characteristics

To find out why a given system does not perform as expected, a number
of questions must be answered to clarify the problem:

- How much memory is available for swapping?
— How much memory is used by each application?
— How many of the terminals are running each

application?
- What does a transaction comprise:

— Which SIBAS calls and how many?
- How many user instructions?

- How many SIBAS systems are running?
— What kind of SIBAS log is created, if any?
— How many pages for each SIBAS buffer?
- Are the transactions running under TPS?
— How many batch processors are running?
~ What kind of tasks are being run under the batch

processors and what are their priorities?
— Is the spooling system being used; if so, what is

the estimated print volume per time period?
— Are any special RT programs being run; if so, what

are their priorities?

18.1.2 Definition of response time

"Response time" is normally defined as

a) The time taken from the last user-typed input-character
until the first character is output on the screen

or

ND-60.133.02

238 Real Time Guide
PERFORMANCE MEASURMENT AND STATISTICS

b) The time taken from the last user—typed input-character
until all characters of the response have been output on
the screen.

The difference in time between b) and a) is often referred to as the
"output time", which depends also upon the line speed of the terminal.

Norsk Data uses definition a), mainly because it enables a distinction
between response time and output time. Also, it is more important to
the user at his terminal.

18.? Measurement

SINTRAN III has a number of measurment facilities Which are described
in detail in this section. "Standard" parameter values are suggested
and hints given for the effective use of these tools. Their names are:

RT-PROGRAM—LOG
PROGRAM—LOG
HISTOGRAM
SYSTEM—HISTOGRAM
TIME-USED

In addition, under the Fortran compiler (FTN) there is a logging
facility called

PROFILE—MAP

18.2.1 RT-PROGRAM-LOG

The RT—PROGRAM-LDG measures resource usage for a particular RT program
and/or the system as a whole. It is also possible to measure the
resource demands submitted from any background terminal, as each
background terminal is internally connected to an RT program.

18.2.1.1 Preparation

Before running the @RT-PROGRAM—LOG, the background terminal from which
the log is to be run (normally the system console, represented
internally by the RT program BAK01) should be removed from the time
slicer and its priority set higher than any other "ordinary" program.
A priority of 60 (decimal) is enough if no special RT programs on a
higher priority are present in the system. Priority is increased make
the measurements as accurate as possible.

To do this:

1. Find the SINTRAN logical number of the terminal.
(Hint: Use the TERMINAL-STATUS command. The terminal
you are using may be identified from the command.
If your SINTRAN version is E or later, the WHO—IS-ON
command can also be used).

2. Execute the LIST—DEVICE command to find out which

ND—60.133.02

Real Time Guide 239
PERFORMANCE MEASURMENT AND STATISTICS

background program has reserved that terminal.

3. Call up the SINTRAN-SERVICE-PROGRAM and remove the
background program from the time—slicer.

4. Use the PRIOR command to set the priority of the
background program.

Example:

QIERMINAL—STATUSZZ

LOG.NO USER MODE CPU-MIN OUT OF LAST COMMAND
1 SYSTEM COMMAND 0 0 TERMINAL-STATUS,,

“5 INNKJQP—ES USER 2 296 KOMP
560 PRICING—P30 COMMAND 2 387 WHO
561 SIBZ RTWT O 160 LO-FI

or

934319
:=:> 1 SYSTEM

”5 INNKJQP—ES
560 PRICING-PEG
561 SIB2

This shows that the terminal from which the TERMINAL-STATUS or WHO
command was executed has the logical number 1. Now find which RT
program has reserved it:

SEIST—DEYIQE
LOG. UNIT: 1
INPUT/OUTPUT(O 0R 1): o
RESERVED BY: BAKO1 ”

Then remove the terminal from the time-slicer (only user SYSTEM can
execute the next two commands):

ESINTRANmSERVICEuPROGRAM

*REMOVE—FROM—TIME~SLICE
LOG.UNIT N0.: 1
MEMORY? Egg
IMAGE? mg
SAVE—AREA? g9

Finally, set the priority :

ND-50.133.02

2H0 Real Time Guide
PERFORMANCE MEASURMENT AND STATISTICS

@PRIOR BAK01 ég

18.2.1.2 Parameters for RT—PROGRAH—LOG

This example measures SIBAS (RT name: SIBA). If you just cnt to
measier overall system usage, give Carriage Return instead of the name
of an RT program.

@RT-PROGRAM—n
RT NAME: SIBA
INTERVAL(SEC): 19
INTERRUPTS/SAMPLE: 1
LOG. UNIT NO.: 160 ”
INPUT/OUTPUT (d‘dfi 1): 9
LOG. UNIT NO.: lél
INPUT/OUTPUT (0 0R 1): 1
OUTPUT FILE: ‘

The INTERVAL is the time during which results of the sampling are
accumulated before writing a report line on the log device. Use a
short interval (5-10 seconds) if you are interested in rapid
fluctuations. If you are interested in overall load, use a longer time
(3o_120 seconds). Default value (Carriage Return) is 60 seconds.

INTERRUPTS/SAMPLE: The log device is the "clock" for the RT—PROGRAM-
LOG. Non—printing characters are output to the terminal (the reason
why the cursor disappears on some screen terminals) and every "N'th"
character a sample is taken of the current system state. "N" is the
number of interrupts per sample, default is 8.

Below is an example of this:

The number of character interrupts per second from a 9600 baud
terminal is given by 9600/11 : 873. The division by 11 is because
it takes 11 bits to represent one character in the asynchronous
protocol. Likewise, the number of interrupts per second from a
300 baud terminal (e.g. a Decwriter console) is given by 300/11 =
27.

Taking an INTERVAL of 10 seconds the number of samples taken
during each 10 second period should be large enough to produce
statistically significant results. Using 1 interrupt/sample for a
300 baud terminal produces samples at a rate of 27
samples/second. A 10 second period gives 270 samples, large
enough to give reliable results. Using 2 interrupts/sample, the
number of samples in the 10 second period would be half as many,
i.e. 135; this is almost too small to produce reliable results.
The calculation procedure is the same for all other line-speeds,
only the numbers are different.

The overhead from a 300 baud Decwriter or about 27
characters/second terminal at 1 interrupt per sample is
negligible (less than 1% of the CPU). A 9600 baud terminal
sampling at maximum rate (873 samples/second) uses about 34% of
the CPU.

ND—60.133.02

Real Time Guide 2N1
PERFORMANCE MEASURMENT AND STATISTICS ‘

An easy—to-remember way of selecting INTERRUPTS/SAMPLE is given in the
table below. Divide the baud rate of the terminal by 300 and use this
result as the number of interrupts per sample. This means that the
sampling rate is about 27 samples per second:

For a 300 baud terminal, use 1 interrupts/sample
For a 1200 baud terminal, use h interrupts/sample
For a #800 baud terminal, use 16 interrupts/sample
For a 9600 baud terminal, use 32 interrupts/sample

LOG. UNIT NO. may be used to identify one or two I/O devices whose
usage is to be logged. If a device is reserved, it is defined as being
in use. The devices often logged are the SIBAS internal devices. These
are reserved by a user program when a SIBAS call is made and released
when the call has been executed.

To measure SIBAS, the following logical device numbers (decimal)
should be used:

Input Output

SIBA 160 161
SIBB 162 163
SIBC 163 165

18.2.1.3 Output from RT—PROGRAH—LOG

CPU SWAP FILES DISC PASSIVE IO—HAIT UNIT 160 UNIT 161
25/38 02/05 00/05 10 00 75 00/32 00/31

The first figure of each pair for CPU, SWAP, FILES and the two logical
units shows the named RT program's percentage utilization of the
corresponding resource. The figures for PASSIVE and IO—WAIT also refer
to the named RT program. The second figure in each pair and the DISC
figure show the total percentage utilisation of that resource.

In the above output, the CPU was used 25% by the given RT program and
38% by everything in the system, including the logged RT program.

The figures for SWAP mean that out of 100 samples, the given program
was performing paging twice and some other program was paging 5 times.

FILES means "normal" use of files (user I/O). The DISC-figure is
approximately the sum of the total SWAP- and FILES—figures, as these
two are the only sources for the disk traffic.

All percentages are related to the INTERVAL-time given. If the
INTERVAL is set to 10 seconds and the DISC—figure becomes ”0%, then
the disk system has been occupied u seconds out of 10. This includes
time to set up transfers, seek—time and transfer-time.

The CPU, PASSIVE and IO—WAIT figures for a specific RT program add up
to a certain percentage figure. (In the above example they are 25 + 0
+ 75 = 100%). This percentage is equal or close to 100% if the load on
the system is small, but starts dropping below 100% when the load
increases. The missing percentages give an idea of the queue-lengths
in the system. When an RT program is waiting for the CPU (or is in the

ND—60.133.02

2u2 Real Time Guide
PERFORMANCE MEASURMENT AND STATISTICS

queue waiting to reserve some I/O-device), is not classified into any
of the groups defined by RT-PROGRAM-LOG. So when a sample is taken
when the RT program is in some device waiting queue, this will be a
"missing" sample.

18.2.2 PROGRAM-LOG

The PROGRAM—LOG measures the relative amount of CPU used by each RT
program in a given time interval. The log is started by giving the
command STARToPROGRAM—LOG which has one parameter, INTERRUPTS/SAMPLE.
This parameter is the same as that used in the RT~PROGRAM~LOG command
described in the previous section. To stop the log, STOP-PROGRAM—LOG
must be given with the name of the output file for the results.

Example:

@START—PROGRAM—LOG
INTERRUPTS/SAMPLE: _3_g
@STOP—PROGRAM—LOG
OUTPUT FILE: TERMINAQ

PERCENT SAMPLES
DUMMY 82 997
STSIN 00 0
HTERR 00 O
RTSLI 01 11

BAKO8 17 205

In the time during which the log was operational, the program BAK08
was using the CPU in 17% and DUMMY in 82% of the samples.

DUMMY is the RT program which is the "current program" when no other
program asks for execution (the system is idle). It has priority 0.

18.2.3 Histogram

The CPU HISTOGRAM measures the amount of CPU spent in different parts
of the logical address space of an RT program. The parameters for the
histogram are defined by the DEFINE-HISTOGRAM command. They are the
name of the RT program, the start address of the logical area to be
logged and the address interval. 64 equally sized intervals are
logged. This means that the parameters choosen must satisfy the
following equation:

START-ADDRESS + INTERVAL * 100B < 2000008

The log may be started by the START—HISTOGRAM command and stopped by
STOP—HISTOGRAM. The results are printed by PRINT—HISTOGRAM which has
one parameter, the name of the output file.

Example:

ND—60.133.02

Real Time Guide 243
PERFORMANCE MEASURMENT AND STATISTICS

@DEFINE-HISTOGEAM
RT NAME: GARP
START-ADDRESS: 9
INTERVAL: 2000s

@START—HISTOGRQQ

@CC Wait for a while...

@STOP—HISTOGRA!

@PRINT—HISTOGRQ!
OUTPUT-FILE: TERMINAL

PERCENT SAMPLES

OUTSIDE 0 0 OUT OF 12571
SYSTEM: 1 126

0— 1777 0 0
2000— 3777 7 880
“000- 5777 9 1131

176000-177777 0 0

"SYSTEM" here means CPU-time spent on hardware level 1, protection
ring 1, 2 or 3, i.e. monitor call code is executed.

18.2.“ SYSTEM-HISIOGRAH

The SYSTEMufiISTOGRAM command measures the relative amount of CPU time
used within sections of the physical memory on a specified interrupt
level. Interrupt level, start address and size of the increments of
the memory area to be logged can be defined by the command DEFINE»
SYSTEM-HISTOGRAM. 6% equally sized intervals are logged. The log can
be started by the START-HISTOGRAM command and stopped by STOPO
HISTOGRAM. The results are printed by PRINT-HISTOGRAM which has one
parameter, the name of the output file.

E.g. if the point of interest is CPU use on level 1 and in the address
area (physical) 2000B to 30008, the following command sequence should
be used:

ND-60.133.02

244 Real Time Guide
PERFORMANCE MEASURMENT AND STATISTICS

@DEFINE—SYSTEM—HISTOGRAM
LEVEL: 1
START-AEDRESS: 2000
INTERVAL: 1g

QSTART—HISTOGRAE

@STOP—HISTOGRAM

@PRINT—HISTOGRAM
OUTPUT FILE: TERMINAE

PERCENT SAMPLES
OUTSIDE: O3 127 out of 3868
2000—2007 00 0
2010—2017 00 0

2740-27u7 97 37M0

l§;2-5 TIME-USED
The TIME-USED command (or TUSED call u MON 11”, available in
background only) returns the sum of the CPU-time used in INBT/OUTBT
routines (hardware level a) and in the user program itself (hardware
level 1, protection ring 0) since the terminal logged on or batch job
started.

It is important to notice that this is never the total CPU—time used,
since time spent on levels 14, 13, 12, 11, 10, 3 and 1 (ring 1, 2 or
3) is not included. I.e. operating system overhead (apart from
monitor calls for certain character handling) is not included in TIME-
USED.

Here is a list of the activities on the 16 different hardware levels
(for more details, see chapter 4):

Level Activity

0 The system is in the idle-loop
1 RT programs and most monitor calls execute on this level
2 Not used
3 The kernel of SINTRAN III executes here
4 INBT/OUTBT monitor calls
5 XMSG/Not used
6 Not used
7 Not used
8 Not used
9 Not used

10 Driver routines for character device output

”A —
l Driver routines for mass storage devices

12 Driver routines for character device input
13 Updating of real time clock
1h Internal interrupts (page faults, power fail, ..)
15 Not used

ND-60.133.02

Real Time Guide 2N5
PERFORMANCE MEASURMENT AND STATISTICS

The fraction of CPU-time not included in TIMEmUSED varies from program
to program and is often 1 - 30% of total CPuutime used. If certain
monitor calls for character—handling are excluded, the more monitor
calls a program executes, the bigger the fraction of CPU—time not
included in TIME-USED.

1§;g.6 PROFILE—M43
The Fortran PROFILEuMAP is a table showing the number of times each,
statement in a Fortran program has been executed. The command PROFILEn
MAP must be given to the compiler, with the name of the file receiving
the output. A program using this facility must terminate at an END
statement, not a STOP. The overhead in memory size is about 4 words
per statement and execution time is considerably increased.

This command is particularly useful during program development and
debugging, when parts of the program may be executed in background.

Example:

QEZHNORD—10/1OO FORTRAN COMPILER 2090s
$PROFILEZM§E
OUTPUT—FILE: TERMINAL
$COMPILE PROGRAM,LIST,OBJECT
53 STATEMENTS COMPILED
CPU—TIME USED IS 1.8 sac.
$EXIT
QNRL
RELOCATING LOADER LDR 1935E
*LOAD OBJECT
FREE: 015233-177777*M

1 EXEC. 0 TIMES
2 EXEC. 0 TIMES

M8 EXEC 17 TIMES
49 EXEC 17 TIMES
50 EXEC 0 TIMES
51 EXEC 17 TIMES
52 EXEC 1 TIMES
53 EXEC 18 TIMES

The FORTRAloo (ANSI-77) compiler does not have this facility, but a
logging of lines or routine calls, without automatic counting of the
total per line, can be obtained by using the Symbolic Debugger.

ND-60.133.02

246 Real Time Guide
PERFORMANCE MEASURMENT AND STATISTICS

18.3 Diagnosis

The problem may be clear after one run of the RT—PROGRAM—LOG; e.g. the
CPU load is approaching 100% or paging is permanently higher than 10 —
20%, the direct reason for bad response times may be obvious.
Theoretical calculations should be made when possible, and compared
with the measurements. Large discrepancies between actual and
theoretical results should be questioned, since a fairly trivial
misunderstanding may be the cause of the problem. E.g. a bad choice of
break strategy may result in the CPU load being up to 60% higher than
necessary.

A swap—rate higher than 10—20% (which means that too little physical
memory is available) is often the most critical factor in an
overloaded system. The swapping mechanism consumes both CPU and I/O
resources and disk utilisation may exceed 30 - 35%, which is often
considered a critical limit.

Very high utilisation of the CPU (70 _ 100%) does not necessarily mean
the situation is disastrous. On the contrary, if the different tasks
in the system have priorities according to their importance (see next
section) this can sometimes be an ideal situation.

18.Q Solution

Scarcity of some resource(s) will indicate that the computer system
isprunning badly. There are usually only two ways to solve this kind
of problem :

1. Add more of the resource to the system
2. Use less of the resource

The first option means buying more hardware. The second one involves
finding out where the resource is being used up, i.e. in which
programs and where in those programs. When the program area has been
isolated, the choice is:

1. Optimising the program with respect to the resource
2. Lowering the relative priority of that program and

accepting that it will run more slowly
3. A combination of 1 and 2.

18.”.1 Priority of batch processors

If the batch processors are being used to run CPU bound jobs, lowering
their priorities is often a good solution to improve on—line response
times. This can be done by the procedure described below. (Assume that
the system has 2 batch processors.)

Abort the batch processors whose priority is to be lowered:

@ABORT-BATCH 1
@ABORT-BATCH 2

Be sure that the batch processors are idle when this is done.

ND—60.133.02

Real Time Guide 247
PERFORMANCE MEASURMENT AND STATISTICS

Remove the batch processors from the time-slice:

@SIN—SERV—PROG
*REMOVE-FROM-TIME—SLICE 670D Y N N
*REMOVE—FROM—TIME-SLICE 672D Y N N
“EXIT

The batch—processors usually have logical numbers 670,672,67h,.. This
can be checked by the WHO-IS-ON command, which gives the batch»
processors at the end of the list. If the SIM—SERV-PROG is to be used
from a modeufile, use the "@"-character in front of all commands
inside it.

Set the lower priority:

@PRIOR BCHO1 8
@PRIOR BCH02 9

Any priority between 1 and 15 can be chosen and ensures that all
interactive activity is on a higher priority than any batch activity.
The RT names of the batch processors (BCHOi, BCHOZ..) can be found by
using the command LIST—DEVICE. (@LIST-DEVICE 670,, and @LIST—DEVICE
672,,) An additional means of tuning could be to append small batch
jobs to the highest priority batch processor and big jobs to the
lowest priority batch processor. Running two batch processors tend to
cause time consuming access conflicts; if possible only one bath
processor should be active at a time.

Restart the batch processors:

@BATCH
@BATCH

This procedure must be executed each time the system has been stopped
and is best put onto a mode-file. The mode—file cannot be executed
from the load—mode file, because it would try to abort the batch»
processor under which it is running. Normally, it is started manually
when the batch processors are idle.

When running this mode—file, timing reasons require a @HOLD must be
inserted at three places in the file. Use the format @HOLD 5 2 (a 5
seconds pause) and place it:

1. As the first command in the file (SINTRAN
ignores this first HOLD under certain conditions)

2. In front of the @SIN-SERV~PROG command

3. In front of the @BATCH commands

The effect on system performance of lowering batch processor priority
depends largely on the kind of jobs executed in batch mode.

ND-60.133.02

2H8 Real Time Guide
PERFORMANCE MEASURMENT AND STATISTICS

WARNING:

The procedure above should be executed only if the batch
processors run CPU bound jobs, making little or no use of the file
system and devices that need reservation.

If the jobs make use of the file system, performance is often
degraded. The degradation occurs when low priority jobs reserve an
internal file system semphore, but then looses the CPU to a higher
priority job. This job may need the file system, so it enters the
waiting queue. In the meantime another high priority job may have
entered the execution queue.

Before the low priority batch job gets a chance to complete file
system operations and release the semaphore, a high number of
process switches may have taken place, particularly if there is a
lot of terminal activity on the system; each time a break
character is read from a terminal, it generally means that the
background program is entered in the execution queue.

The only safe way to determine whether performance is improved in a
particular implementation is to perform actual measurements under
normal system loadu

18.M.2 Priority of timemsharing terminals

Individual terminals can be permanently put on a lower or higher
priority. E.g. a system has 15 terminals connected. 3 of them are used
for program development and the rest for database transactions. The
database activity is considered more time critical than the program
development. The solution is to remove the 3 terminals from the time-
slice and lower their priority (give them priorities between 1 and
15). This can be done permanently by executing the necessary commands
(section 18.2.1.1) from the load-mode file.

18.”.3 Using reentrant systems

A high swap rate can be reduced by adding more memory; this is
expensive, and the NORD~10 can under no circumstances handle more than
512 Kbyte. If most users use the same program systems, the reentrant
subsystem mechanism may be used in background as well as RT.

The mechanism used in background is the same as described in chapter
15, but the segments are created from :BPUN files by the Sintran
command

@DUMP-REENTRANT <name> (start addr> (restart addr) <file name)

This command is reserved for user SYSTEM.

Most standard subsystems (compilers, editors etc.) are delivered in
:BPUN format ready for dumping, and the information sheet following
the floppy informs about the start and restart addresses. Any
installation may create :BPUN files of their own programs in the same
way as :PROG files are made in the NRL loader. Rather than using the
NRL command *DUMP, the command *BPUN is used.

ND—60.133.02

Real Time Guide 249
PERFORMANCE MEASURMENT AND STATISTICS

*BPUN accepts numeric start address or the name of a defined symbol;
the main entry point is equal to the program name. BOOTSTRAP ADDR is
relevant for stand alone execution only. The default file type of the
output file is :BPUN.

€DUMP~REENTRANT accepts numeric start and restart addresses only; the
restart address is used by the @CONTINUE command.

To make maximum use of the reentrant mechanism, the program should be
compiled in $REENTRANT~MODE. The reentrant FTNRTLIBR must be loaded
and the symbol STEND defined equal to the uppermost FREE: limit.

353E
* RELOCATING LOADER LDR—193SH

*LOAD MAINPROG, SUBROUTINES
FREE: OH666u—177777
*ENTRIEsEFINEQ

MANE=022217 SUB1=022300 3032:03A266
FREE: ou666A-177777
*LOAD FTNRTLIBB
FREE: 06213u_177777
*DEFINE STEND 177777
#EEUN
FILE NAME: :QENPROG"
START ADDR: MANE
BOOTSTRAP Anfifi?“
”£2222
@DUMP-REENTRANT
NAME: Emma
START ADDR: ggglz
RESTART ADDR:V22217
FILE NAME: 9332399

The reduction in swapping obtained by using reentrant subsystems
rather than :PROG files depend on the number of concurrent users of
the same system, the code/data ratio, whether REENTRANT-MODE was used
and how often the system is used» Even if the reduction in swapping is
moderate, startup is much faster and the administrative work much less
for a reentrant system:

A high FILES percentage in RT-PROG-LOG may be improved by optimizing
each program's use of files. This is discussed in section 13.13

ND—60.133.02

250 Real Time Guide

ND~60. 133.02

Real Time Guide 251
DEADLOCKS

19 gums
The term deadlocgidescribes a situation where a program is waiting for
some resource A and at the same time holding a resource B needed by
the program reserving A. The second program cannot continue and the
first program is never granted A.

A classical example is two programs P1 and P2 needing the card reader
and printer. P1 starts execution and reserves the printer. P2 starts
at the same time and reserves the card reader, then it tries to
reserve the printer. But P1 does not release the printer until it has
received the reader and completed. They are holding up each other
eternally!

This example plus a lively imagination indicate why the term deadly
embrace is sometimes used rather than "deadlock"...

A deadlock may involve several members: P1 waits for P2, which waits
for P3, which waits for P4, ...which waits for P1.

19.1 Fatal deadlocks

Under some circumstances, the deadlock causes the RT monitor to go in
an endless loop checking whether the device is available or not,
stopping all other activity on the machine if nothing interrupts it;
in general, no user RT program may interrupt the monitor.

The "brute force method" of resolving deadlocks is to push STOP, MCL
(Master Clear) and LOAD on the computer front panel. This is not
particularly desirable. There are more elegant methods so that
terminal users do not lose their work and batch processors do not
stop. These involve decoding octal dumps of RT descriptions etc. and
access to the computer, in some cases as user SYSTEM.

This chapter describes some of these methods.

19.2 Non-fatal deadlocks

While fatal deadlocks may be related to weaknesses in the operating
system, the most common deadlocks are caused by erroneous and
conflicting use of devices (internal, external, semaphores) in user
programs.

This may mean a number of user RT programs are waiting in various
waiting queues, but other programs continue their execution. Other
users do not notice the deadlock. SINTRAN III provides aids for
detecting and resolving the deadlock, but it may be necessary to use
commands reserved for user SYSTEM; user RT has no way of inspecting an
arbitrary datafield.

ND-60.133.02

252 Real Time Guide
DEADLOCKS

19.3 "Virtual" deadlocks

Sometimes it appears that a deadlock has occurred — programs never
complete a well defined sequence of actions - yet the programs are
constantly active. The tracing of such situations resembles deadlock
detection, but the solution may be different.

This example illustrates one case of such deadlocks. It is taken from
the SINTRAN operating system itself, but similar situations may occur
in user programs.

Two programs share a memory buffer, used for working data read
from a file. Program A reads its data from the file and starts
working. At regular intervals a supervising program S checks which
other programs request the buffer. If A has occupied it for a long
time and someone is waiting for it, it is forcibly taken from A
(among other things, to prevent deadlock!) and given to a program
B.

B starts working, reading its own data into the buffer. If it does
not complete within some time limit, B looses the buffer and it is
given to the next in queue.

This may be A, which has to start from the beginning because its
buffer was destroyed. It may not finish this time either before it
looses its right to the buffer to B. And if B cannot complete, A
and B throw the buffer back and forth between them forever...

The timeout function provided by S prevents a program from reserving
the buffer and forgetting to release it. The period of S is selected
so that all normal operations completes within time. But with a
combination of a long queue of buffer users, a slow disk, slow
memory, no cache and no "fastmcycle" CPU on top of an operation
already using most of the time slot, the probability of a virtual
deadlock is significant.

In this case, increasing the length of the time slot by a few percent
allows at least one of the two programs to complete within a time
slot. After that there are no competitors for the buffer and the other
program can complete undisturbed.

19.4 Resolving a deadlock

Deadlock is detected because a job does not progress. Depending on the
priorities of the programs involved, it may cause a small number of
programs to "hang", or the entire system may be locked. The first
case, where terminals are still active, allows SINTRAN commands to be
used; but if the entire system is dead the only solution may be using
the microprogram commands.

To make the system operative, the deadlock must either be resolved
through "diplomatic" channels or the locked programs stopped or
inhibited in some way. ‘

The general technique is to identify the devioe(s) needed for one
program to complete and force their release by the PRLS call or by
manually modifying the reservation link. Then the device can be
reserved by the waiting program, which can complete and release all
its resources. This should allow the other program(s) to continue.

ND-60.133.02

Real Time Guide 253
DEADLDCKS

19.5 Freezing active programs

In a busy deadlock, the programs execute but do not complete, it may
be necessary to inhibit execution without terminating the programs. In
case of a virtual deadlock, this may be sufficient to solve the
problem, but usually it is only a method to freeze the situation in
order to analyze the queues.

There are two essential methods for stopping a program:

— Setting the priority to 0

- Setting the program in an IOWAIT state

The priority can be set by user RT as long as the computer is
available from a terminal; the @PRIOR command is used.

Setting the program in IOWAIT can only be done by user SYSTEM or
through microprogram commands. If all terminals are inactive because
the deadlocked programs have a higher priority than the terminals, the
microprogram may be used to modify the priority.

To patch the RT description it is necessary to know its address. The
address of the currently active program is found in resident location
108.

Both the IOWAIT flag and the priority is found in the second word of
the RT description (RT description address + 1), bit 178 and bits 7:0
respectively. Bits 10B:168 should not be modified if the program is to
be restarted at a later time.

Given the RT description address of program A as 40321, the priority
is changed from its current value of 80 (120B) to zero by the commands

@LOOK_AT RESIDENT
READY:
140321; 0 (or)

1209 (or)
o .m. _

9

It is a good idea to keep an up to date list of the RT programs in the
system, obtained through @LIST—RT—PROGRAMS for use when the system
stops.

The microprogram commands are similar, but do not give the prompt. No
explicit termination of memory inspection mode (like the full stop in
@SINTRAN-SEVICE—PROGRAM) is used.

ND—60.133.02

254 Real Time Guide
DEADLOCKS

19.6 Tools to search the queues

All queues in the system may have to be searched to resolve a
deadlock. The queue descriptions in chapter 6 must be thoroughly
studied before any modifications are attempted.

The queues are linked through link locations:

Time queue: Resident 128 (head)
RT address + 0B

Execution queue: Resident 13B (head)
RT address + 20B

Waiting queue: Datafield + 38 (head)
RT address + 20B

Reservation queue: RT address + 238 (head)
Datafield + OB

If the SIOWT bit in the RT description is set, the program is not
executing even if the program is first in the execution queue. The
currently executing program is pointed to by resident location 10B
rather than 138.

19.6.1 SINTRAN commands for user RT

These commands are only useful when SINTRAN is running and terminals
can be used. This is often the case when ordinary programs are
deadlocked waiting for devices.

The commands are described in chapters 6 and 10:

@LIST—RT—DESCRIPTION (RT name)

@LIST-DEVICE (log unit) <input/output>

Unfortunately, there is no predefined mapping from the datafield
address to the logical unit. The listing of the configuration
dependent part of SINTRAN (PART—TWO) is a great help. The datafield
address can be looked up (the datafield address directly gives the
left hand column location counter) and the name and type of field are
written as comments.

E.g. if the program A does not progress, inspecting the RT description
shows that it is waiting for some device whose datafield address is
33107. In a small program, the number of devices reserved may be low,
giving one or two likely candidates. The program counter (P: 166) and
the list of reserved datafields may provide clues to how far execution
has progressed, localizing the device.

ND—60.133.02

Real Time Guide 255
DEADLOCKS

CLIST—RT-DESCRIPTION A
RING:0 PRIORITY: 32

LAST STARTED: 3 KIDS ”2 SECS
START ADDRESS: 0, SEGHENTS: 0 270
P: 166
X: 72
T: 3
A: D
D: 165
L: 2“
S: 0
B: 255
WAITING FOR: 33107
ACTUAL SEGH.: 0 270
RESERVED DATAFIELDS:

33103

SINTRAN PART—TWO (in this configuration) at location 3310? contains:

033107 SEMIZ, o;o;i-2;o

These are the initial values for the datafield of the second semaphore
(all semaphores present in the system are listed in the same section,
under the header SEMAPHORE DATA FIELDS). As semaphores are numbered
from 300, this one has logical device number 301:

CLIST-DEVICE 301B 0
RESERVED BY: B
WAITING RT-PROGRAHS:
A

An inspection of the RT description of program B reveals that it is
waiting for the device reserved by A, datafield address 33103:

QLIST-RT-DESCRIPTION B
RING:0 PRIORITY: 32

LAST STARTED: 8 ”IRS 59 SECS
START ADDRESS: 75, SEGMENTS: 0 270
P: 166
X: 150
T: 3
A: 0
D: 165
L: 11”
S: D
B: 333
WAITING FOR: 33103
ACTUAL SEGH.: 0 270
RESERVED DATAFIELDS=

33107

The loop is closed, with only these two programs involved. The
conclusion can be checked by looking up address 33103 in PART-TWO, or
by deducing from the source program that this is the first semaphore
in the system, device number 300 and verifying that B is in the

ND~60u133.02

256 Real Time Guide
DEADLOCKS

waiting queue:

GET-DEVICE 3003 o
RESERVED BY: A
WAITING RT—PROGRAMS:
B

When the deadlock is isolated, the loop must be broken by aborting
either A or B or releasing either semaphore from the reserving
program. In most cases the latter causes the program to error
terminate when it attempts to access the (no longer reserved) device —
in other cases the program simply "forgot" to release the device.

Even if the deadlock is resolved, this does not guarantee that the
programs will progress normallyi In the example above, the two
semaphores may be protecting non—reentrant data areas and aborting
either program (or lifting the protection) could leave the data
structure inconsistent. This cannot be decided without detailled
knowledge of the programs involved”

19.6.2 The SINTRAN«SERVICE-PROGRAH cmnmands

The SINTRAN-SERVICE—PROGRAM is not available for user RT.

It does not provide more information about an RT program than the
@LIST—RT—DESCRIPTION command, but gives it in a different format. This
format may be more suitable as a starting point for inspecting
resident memory; the addresses of the reservation queue and waiting
queue link location is given directly as addresses in resident
SINTRAN. This is helpful if e.g. a program must be unlinked from a
waiting queue:

ND—6oul33.02

Real Time Guide 257
DEADLOCKS

*DUMP-RT—DESCRIPTIQg
RT NAME: 8 MEMORYz!
OUTPUT FILE: TERMINAL

TLINK: 0
STATUS: 1100
DTIMl: 0
DTIMZ: 161722
DTINl: 0
DTINZ: 0
STADR: 2noo3
SEGM: 37003
WLINK: 0
ACTSEG: 0
ACTPRI: 100000
BRESLINK: ”4250
RSEGM: O
WINDOW: 126
RTDLGADD: 1U6u50
DPREG: 17166
DXREG: 3
DTREG: O
DAREG: 165
DDREG: 1
DLREG: 11H
DSREG: 2000
DBREG: 123u3
BITMAP: 0
BITM1: 0
BITMZ: 0
BITM3: 0
BITMH: 0
BITMS: 0
BITM6: 0
BITM7: 0

Datafields can be inspected and modified by symbolic names, including
inspection of device dependent subfield. The *CHANGE—DATAFIELD command
is used:

'CflAflGE—DATAFIELD 3003, I
MEMORI? I
IMAGE? g
SAVE—AREA? g

ggixuxzuo321 L

The RT description address of the first program in the queue waiting
for the semaphore (logical device 3008) is ”0321. To unlink the
program B (above) from the queue, BWLINK must be changed to 33107.

ND—60.133.02 Revision A

258 Real Time Guide
DEADLOCKS

If a slash (/) is typed immediately after the keyed in value, the
value is interpreted as the address of a location and the Contents' of
that location are immediately displayed. To advance ‘to the next
location a carraige return is typed. If a value is keyed in and
followed by a carriage return with no slash, the current location is
set to the specified value.

19.6.4 Microprogram communication (HOPC)

If a deadlock or an error has caused the machine to stop or hang,
unaccessible through terminals, the microprogram communication (MOPC)
can be used to inspect and modify main memory locations before the
machine is restarted.

MOPC can be operated from the console only. It is available even when
the CPU is running normally and can then be entered by user SYSTEM by
the command @OPCOM. In most cases, however, other methods are more
appropriate for resolving deadlocks.

In order to operate the MOPC in STOP mode (CPU not running) the front
panel key must be turned to the ON position. The MCL (Master Clear)
button should not be pressed; it will clear all registers and a
complete restart—YEOAD button) must be done.

The commands and their use closely resembles the @LOOK—AT command. A
specified address is interpreted as a physical memory address and may
be up to 2M bits (8 octal digits)» provided corresponding physical
memory exists. The lowermost 6MK of memory is the SINTRAN resident and
paging off area, where all RT queues and tables are found.

After the necessary patches have been made the CPU may be restarted by
typing an exclamation mark or, on NORD—lO, pressing the CONTINUE
button.

No protection mechanisms are applied when patching memory locations
though OPCOM.

ND-60nl33.02

Real Time Guide 259
DEADLQCKS

19.7 Preventing deadlocks

Though some deadlocks can be resolved, it is preferable that they
never occur. There are well known techniques for "diciplining" the use
of resources; some are enforced by the operating system, but most are
dependent on each user program adhering to certain rules.

Most techniques guarantee that deadlocks do not occur, but lead ‘to
poorer utilization of system resources; although a resource is
available, it may be illegal to allocate it to a requester. It remains
idle to guarantee its availability if an already active program needs
it to complete.

Whether deadlock prevention techniques are used depends on the minimum
permissible utilization of resources and the cost of a system stop
(which may be the result of a deadlock).

19.7.1 Multiple reservation

If a program reserves all the resources it needs as soon as it starts
execution, it is never caught midway through execution unable to
complete. If one of the requested resources is not available, the
program should not start, but try again later.

The same technique can be used for a group of resources used during
part of the execution time only, but if other resources are used as
well, deadlock is prevented only with respect to the resources in the
protected group.

SINTRAN III does not provide a true multireservation facility (of the
kind "Reserve all or none of A, B and C" ; it must be simulated by the
user program.

19.7.2 Using a semaphore

If the users of a set of resources are limited to a small and well
defined group of programs, a semaphore may be used to protect the
entire set; before a reservation of one of the elements in the set can
be reserved, the semaphore must be reserved. And before the semaphore
is released, all resources in the set must be released.

It is important that while the semaphore is reserved, no resources
outside the set must be reserved. This may cause the program to enter
a waiting queue and the owner of the device may be waiting for release
of the semaphore. Although it is possible to specify a non—zero RETURN
parameter to the RESRV call, preventing the program from entering a
waiting queue, this should be condsidered poor programming practice.

ND—60.133.02

260 Real Time Guide
DEADLOCKS

19.7.3 Complete initial reservation

The use of a semaphore requires all programs to use the same technique
and an erroneous reservation in one of them may cause a deadlock even
if all the others are correctly programmed.

A program may reserve all the resources it needs in one batch
independently of other programs, and give up the operation in case of
failure. The complete resource requirement must be when the program
starts; this is not always the case, e.g. user input may determine
which files are to be used. When the requirements are known, the
program may protect itself from entering a deadlock situation.

The resources must be reserved in sequence, one by one, but if the
reservation of one fails, all resources already reserved must be
released and another attempt made later. The RESRV call must specify a
nonczero RETURN flag, preventing the program from entering a waiting
queue.

The main disadvantage of complete initial reservation is that it ties
up resources for an uneoessarily long time if the resources are not
used until the end of the program.

PROGRAM RESALL, 6O

PARAMETER (INPUT=O, OUTPUT=1, IMMRETURN:1, SEC=2)

IF (RESRV(RESOU1,INPUT,IMMRETURN).NE.O) GOTO 9999
IF (RESRV(RESOU2,INPUT,IMMRETURN).NE.0) GOTO 9998
IF (RESRV(RESOU1,0UTPUT,IMMRETURN).NE.O) GOTO 9997
IF (RESRV(RESOU2,0UTPUT,IMMRETURN).NE.O) GOTO 9996

C These are all resources needed by the program - now go on to

C P R O G R A M A C T I 0 H S

9996 CALL RELES(RESOUZ,OUTPUT)
9997 CALL RELES(RESOU1,0UTPUT)
9998 CALL RELES<RESOU2,INPUT)
9999 CALL RELES(RESOU1,INPUT)

C Retry after 10 seconds:

SET(RESALL,SEC,10)

END

19.7.9 Hierarchical reservation

If all programs agree on a specific sequence of reserving/releasing,
better utilization of available resources is possible. All resources
have a priority so that those reserved for short periods of time (e.g.
a non-reentrant routine) is given high priority; those reserved for a
longer have lower priority.

ND-60.133.02

Real Time Guide 261
DEADLOCKS

There are two main rules:

1) A program may only reserve resources of a higher priority than the
highest one currently reserved

2) Before resources of a certain priority are released, all resources
of higher priorities must be released.

The first rule does not prevent a program from reserving several
resources of the same priority, but all must be reserved concurrently.
If they are not all available, the program may enter a waiting queue
for all devices required on that level, but not for a single one while
reserving the others.

LEVEL 9 SEMA301

LEVEL 5 CRDnRDR CRD—RDR CRD—RDR
PRINTER PRINTER PRINTER

LEVEL 0 DATAFIL DATAFIL DATAFIL DATAFIL DATAFIL

Reserve Reserve Reserve Release Release
DATAFIL CRDuRDR SEMA301 SEMA301 CRD—RDR
(level 0) PRINTER (level 9) PRINTER

(level 5)

Fig. 34. Resource priorities

No resources other than those assigned a priority level should be
reserved by a program while any such resource is reserved. This can
easily be prevented by treating all devices as having some priority.

A priority is not assigned by SINTRAN, with one exception; the
parameter list for @SCHEDULE lists devices in increasing number
sequence. The device number is used as the priority level and there is
only one resource per level.

In some RT systems the device number may be used, but generally an
independent priority must be assigned. Each level may consist of one
or more resources, but if a program needs several of the resources at
one level, these must be reserved together, protected by a multi-
reserve mechanism as described in the previous section.

Because all reservation on a given level must be made in one batch, a
semaphore need only be reserved while the actual reservation is made.
When a program has aquired a selection of resources on a given level,
it is not ~permitted to request more resources on the same level, so
continuous semaphore protection is unnecessary.

ND—60.133.02

262 Real Time Guide
DEADLOCKS

In fact one semaphore can be used for all levels. This means programs
have to wait for other programs to complete the reservation process,
but this is usually quite quick. The semaphore is reserved before
reservation is started and released as soon as the resource(s) is
acquired or found inacessible.

Hierarchical reservation depends on all programs adhering to the two
rules above and the device priority must be unambiguously defined.

19.7.5 The banker's algorithm

Although a resource is needed some time in the future by a program
PROGl, it may be allocated to another program PROGZ without risking a
deadlock if there is a guarantee that PROGZ will complete. Such a
guarantee may be given if PROGZ does not reserve any other resources
or only request resources covered by a similar guarantee.

To determine whether PROGZ will complete, all PROGZ's current and
future demands must be known. This does not require that the resources
are actually reserved! They are still available to other programs as
long as these programs are guaranteed to complete.

The method used to determine whether PROGZ should be granted the
requested resource is called "the banker's algorithm". When a resource
is requested, a simulation of the situation after a (possible)
allocation is made. If the simulation shows that the requesting
program can complete, the resource is granted, otherwise it is
temporarily denied, waiting for other programs to release the
resources they are holding. It is safe to assume that these other
programs eventually release their resources - otherwise the resources
would not have been granted.

A coded solution and details of the algorithm can be found in several
well known books on computer science. Below is a rough outline of the
procedure.

boolean function: allocation_legal

assume resource is granted to requester
repeat until no more programs may complete

for all active programs do
if the program may complete,

given the current (simulated) situation
then assume all its resources released
endif

endfor
endrepeat
if all programs are able to complete
then allocation_legal := true
else allocation legal := false
endif _

Whether a program is able to complete or not is determined by
comparing the available resources with the total resource requirement
of the program, stated when the program is submitted for execution.

ND—60.133.02

Real Time Guide ’ 263
DEADLOCKS

The banker's algorithm has two major disadvantages. The routine above
must be executed for each reservation by any program and has a
complexity of mn(n+1), given m resource types and n active programs.
I.e. if the number of active programs doubles, the worst case
execution time for the routine quadruple. (If a program can request
any one out of several equal resources, these are of the same type. An
example in SINTRAN III is the spooling files.) The algorithm
represents a very pessimistic view, assuming that any program may
request all the resources needs at the same time. This is often not
the case.

However, it does provide full deadlock prevention, and if the
application requires 24 hours a day operation it may be worth its
price.

ND—60.133.02

261% Real Time Guide

ND—60.133.02

Real Time Guide 265
ND-NET AND XMSG COMMUNICATION

20 DID-NET AND 114$ WHICATION

The methods discussed in chapter 12 for communication between programs
allows fast and well defined communication. They have several
drawbacks, however:

- they do not provide communication between RT programs in different
machines

- the maximum number of concurrent connections is limited, and fixed
at system generation

- communicating programs must have agreed upon a specific
communication channel to use

— communication with drivers and direct tasks is impossible

- the buffer capacity is small (byte oriented internal devices)

- the number of calls to transmit a longer message is (usually) high

— communication is strictly one-to-one

ND-Net and XMSG both provide multi-machine communication. For XMSG the
number of simultaneous communication channels is high and not fixed at
system generation time. A receiver can be identified by an
alphanumeric name, and the communication system will take care of the
actual routing of the message. From the communication point of View, a
background program, RT program, direct task or driver look alike
regardless of program type and in which machine they are located. XMSG
is a many-to—one and a one—to—many communication system - a port may
be used for communication with any number of other ports.

These communication systems are discussed in detail in the SINTRAN III
Communication Guide (ND-60.134). This chapter will give a short
presentation of how XMSG and ND—Net are used from RT programs.

20.1 ND—NET communication

ND—NET is an optional part of SINTRAN providing communication between
two or more independent, possibly geographically separated, ND
computers.

A communication line is divided into a number of logical channels, up
to 16 channels per line. The ND-NET system will route each channel
from the sender to the receiver, making each logical connection
independent of others using the same physical line.

Some of these channels are usually connected to background programs,
analogous to the local background programs. A user at a remote
terminal may log in as if he was working on a local machine. This is
described in the SINTRAN Communication guide.

Channels without background programs are used for file transfer or for
program—to-program communication. An RT program may reserve a channel
as it reserves an internal device, and the operation is similar.

266 Real Time Guide
ND-NET AND XMSG COMMUNICATION

20.1.1 Reserving a channel

The logical number of the channel to be reserved must be known by the
program, and the channel must be known to the program in the other
end. However, the channel numbers are not necessarily the same in both
ends of the connection. This is a system configuration parameter.

To reserve channel 6178 for input,

CALL RESRV(617B, O, O)

Supposedly, another program on the remote computer has reserved the
output side of the same channel, and will transmit data to this
program.

20.1.2 Monitor calls permitted to operate on a channel

The channel permits sequential access only, primarily through the
INBT/OUTBT calls. The READ and WRITE statements of Fortran, and their
equivalent in other languages, translate to INBT/OUTBT and are thus
permitted.

The multi—byte monitor calls: BBINB, MBINB, BRINW for input, B80UT,
M80UT for output, are also permitted, and will reduce overhead
somewhat.

MAGTP is allowed to operate on a channel, but the only function codes
permitted are Read Record and Write Record. RFILE/WFILE are also
permitted, but the block number parameter is ignored.

The receiving program, i.e. the output side of the channel, may define
a break strategy through BRKM, MON H. As long as no break condition
occurs, the receiving program will not be restarted. A break condition
will initiate the transfer of all characters since the last break and
restart the program. Selecting a break strategy that gives as few
breaks as possible significantly reduces communication overhead.

The IOSET call has a number of functions for clearing buffers,
initiating transfer even though no break condition has occured, or
setting break strategy. lOSET applied to ND—NET channels is documented
in SINTRAN III Communication guide.

20.1.3 Clearing the buffer

If a program using the channel terminates abnormally, the buffers are
not properly cleaned. After reserving a channel, the input buffer
should therefore be cleared through the CIBUF call:

CALL CIBUF(617B).

The output buffer may be cleared by the sending program through the
corresponding COBUF call.

ND—60.133.02

Real Time Guide 267
ND-NET AND XMSG COMMUNICATION

20.1.M Waiting for input request

By default, the communication on the channel is buffered on both
sides. This may sometimes cause problems if the program system
communicates with a terminal user: the output to the terminal may be
sent before the user is able to handle it, echoing may be out of step
with the input.

In order to synchronize the sender and the receiver, the sender may
use the WRQI call to wait for an input request from the remote
program. As soon as the buffers are empty and the receiver requests
more input, the sender is restarted.

The call is available in background programs as well, and uses the
background parameter mechanism: the T register contains the device
number, normal return is to the second location following the call
("skip return"). Error return to the first location after the call
will leave a file system error code in the A register. The call is not
avilable in the Fortran library.

WRQI=163
QERMS:65

LDT (617
MON WRQI
MON QERMS

When the user presses the ESC key, a break condition will occur at the
receiving side, restarting the communication program. The ESC
character may be replaced by another character by setting the user
break character through the MSDAE call, see section 13.1”.3. This is
particulary useful with terminals using BBC—sequences to signal
various function codes.

MSDAE may also be used to redefine the character that brings user
control back to the local computer, default value DEL. Redefining the
disconnect character allows DEL to be used by editors and command
processors to delete the last typed character.

20.1.5 File access

A file may be opened on a remote computer with an OPEN call. The
channel to be used must have been defined as a peripheral file by the
system supervisor through the @SET-PERIPHERAL—FILE command (not
permitted for user RT).

The name thus given a channel must prefix the file name, separated by
a dot. For example, if the channel is named CHA-617, and the file name
on the remote computer is (RONNIE)BUDGET:DATA, the file may be opened
through

OPENCll, FILE='CHA—617.(RONNIE)BUDGET:DATA', ACCESS='R')

Analogously to the @RTENTER command on the local system, user SYSTEM
must before remote file access is legal execute the command

ND—60.133.02

268 Real Time Guide
ND-NET AND XMSG COMMUNICATION

@REMOTE—PASSWORD (line no.) <password>

The password of user RT on the remote machine is specified as the
second parameter. This will allow RT programs using any of the
channels on the specified <line no.) to use files.

20.1.6 Allowed file operations

The opened file is accessed as if it were an internal device; only
sequential access is permitted and a number of monitor calls for disk
files do not apply to communication channels.

These include RFILE/WFILE specifying a block number, SETBS, SETBL and
SETBT etc. If the file is a remote terminal, the escape function may
not be disabled.

The echo and break mode of a remote background terminal may be set by
the program having reserved the input part. This is done exactly as
for local terminals.

ND‘600 133 o 02

Real Time Guide 269
ND-NET AND XMSG COMMUNICATION

20.2 XMSG communication

The XMSG function is invoked through the XMSG monitor call, MON 200.
This call is not available in the Fortran library, and an interface
routine must be written to pick up the arguments from the Fortran
argument list and load them into the proper registers.

An RT program is an example of an XMSG task. A task is an activity
capable of transmitting and receiving messages. Each task using XMSG
must have one or more ports, "mailboxes" named by alphanumeric
strings. The name is used to find the receiver of a message; when
communication is established a number returned by XMSG is used (thisnumber is sometimes termed a magic number).

An XMSG communication session comprise several steps, each identified
by the function code (XF...) to the XMSG monitor call:

— Obtaining a port through which messages may be sent and received
(XFOPN). Several ports may be used, but messages to or from any
other port can be sent or received through the same port. Sender
and receiver have different ports, and the receiving port is
identified when a message is sent.

~ If communication is initiated from the port, obtaining a message
buffer (XFGET). The buffer is used to contain the data being
transferred, and may be reused for the next (or answer) message
after data is read. In a simple dialoge, one buffer is needed and
is sent back and forth between the participating tasks.

- Writing into the message buffer (XFWRI). User data are copied into
the message, and may be done in several steps, with direct
addressing within the buffer.

— Sending the message buffer to the receiver (XFSND). The first
message in a dialoge contains the name of the receiver, and the
message is sent to a standard task XROUT that will find the
receiver in its tables. Later messages may be sent directly from
the sender to the receiver.

- Receiving a message on a given port (XFRCV). The receiver acquires
the first message sent to the port; if several have arrived they
are queued and received one by one.

~ Reading the data in the message (XFREA). Data are copied from the
message into the user area. Reading does not destroy the data, and
may be done with direct addressing within the buffer.

- Releasing a message buffer to the system (XFREL). If the buffer of
a received message is not used for a new message, it should be
released. The space will be released automatically when the port
is closed.

ND-60.133.02

270 Real Time Guide
wNET AND XMSG COMMUNICATION

20.2.1 Example: an RT service for background programs

A background program may interact with an RT program, for example
through an internal device, and need to control the starting and
stopping of the RT program. However, the RT and ABORT monitor calls
are not allowed from background.

In order to provide those calls to background programs, an RT program
is written to execute these calls. The background program will send a
message to the port RTSERVICE, owned by the program SERVER (the name
of the RT program is irrelevant to the background program). The
message consists of a function code and the symbolic name of the
program.

In order to find the RTSERVICE port, requests are sent through the
XROUT name server. XROUT will interpret the message according to the
function code in the first byte (starting at zero - byte 0 has the
value 0) of the message. Function XSLET will forward the entire
message to the named port.

The total length of the message is found in bytes 2 and 3.

XROUT recognizes the name RTSERVICE as a parameter. A byte of value —1
(377B) identifies parameter 1 as a string, and its length follows in
the next byte.

The remainder of the message is ignored by XROUT, but the entire
message is forwarded to RTSERVICE, which will find the function code
in the 6th word (bytes 10:11), the RT name blank filled in words 7:9
(bytes 12:18).

The RT program will be in an infinite loop executing requests, and
will not close the RTSERVICE port (the port will be automatically be
closed if the program is aborted).

The background program may use the services by the function calls:

PROGRAM BACKGR

C Initial actions before starting a program

CALL STARTPROG('PROG1')

c Perform other actions (e.g. interact with PROG1 through
c an internal device) before stopping it

CALL STOPPROG('PROG1')
END

The RT program SERVER will after initialization go into an infinite
loop:

PROGRAM SERVER, ”0

CALL INITPORT(0)
D0 WHILE(.TRUE.)

CALL READFUNCTION(FNC, RTNAME)
IF (FNC.EQ.RTCALL) CALL RT(RTNAME)

ND-60.133.02

Real Time Guide 271
ND-NET AND XMSG COMMUNICATION

IF (FNC.EQ.ABORTCALL) CALL ABORTCRTNAME)
ENDDO
END

ND-60.133.02

272 Real Time Guide
ND—NET AND XMSG COMMUNICATION

The complete background program:

$CONSTANT STR1 : 177n11B, XFGET
$COHSTANT XFSROU: 2014B, XFOPN

23, XFHRI =
123, XSLET =

SUBROUTINE SENDMESSAGE
COMMON lMSG/STATUS, IMESSAGE, PORTNO
INTEGER STATUS, IMESSAGE(15), PORTNO
EXTERNAL IADOR
CALL XMSG(XFGET, 3o, 0, 0)
CALL XMSG(XFWRI, IADDR(IMESSAGE), 3o, 0)
CALL XMSG(XFSROU, o, o, PORTNO)
END

SUBROUTINE MAKEMESSAGE(STR, FN)
CHARACTER*(”) STR
COMMON /MSG/STATUS, IMESSAGE, PORTNO
INTEGER STATUS, IMESSAGE(15), PORTNO, FN, UPLIM
CHARACTER’30 MESSAGE
EQUIVALENCE (IMESSAGE,MESSAGE)
IMESSAGE(1) = XSLET
IMESSAGE(2) = 19 + LEN(STR)
IMESSAGE(3) = STR1
MESSAGE(7:15) = 'RTSERVICE'
IMESSAGE(9) = FN
UPLIM=18+LEN(STR)
MESSAGE (19:0PLIM): STR(1:UPLIM)
MESSAGE (UPLIM+1:UPLIM+1)=""
END

SUBROUTINE STARTPROG(STR)
CHARACTER*(*) STR
CALL MAKEMESSAGE(STR, 1)
CALL SENDMESSAGE(O)
END

SUBROUTINE STOPPROG(STR)
CHARACTER*(“)STR
CALL MAKEMESSAGE(STR, 2)
CALL SENDMESSAGE(O)
END

PROGRAM BACKGR
EXTERNAL XMSC
COMMON /MSG/STATUS, IMESSAGE, PORTNO
INTEGER STATUS, IMESSAGE(15), PORTNO, XMSG
PORTNO=XMSG(XFOPN, O, O, 0)
CALL STARTPROG('MANE')
CALL STOPPROG ('MANE')
END

ND-6OG133.02

Real Time Guide
ND-NET AND XMSG COMMUNICATION

The RT program that performs the service:

$CONSTANT XFOPN = 123, XFREA : 68, XFGET = 23
$CONSTANT XFSROU: 201KB, XFRCV : 1000158, XSNAH : 1023

SUBROUTINE INITPORT
EXTERNAL XMSG, IADDR
COMMON /MSG/STATUS, IMESSAGE, PORTNO
INTEGER STATUS, IMESSAGE(15}, PORTNO, XMSG, IADDR
CHARACTER’30 MESSAGE
EQUIVALENCE (IMESSAGE,MESSAGE)

PORTNO=XMSG(XFOPN, o, o, 0)
CALL XMSG(XFGET,30,0,0)
IMESSACEC1) :XSNAM
IMESSAGE(2) =11
IMESSAGE(3) =STR1
MESSAGE(7:15) = 'RTSERVICE’
CALL XMSG(XFWRI, IADDR<IME SAGE), 3o, 0)
CALL XMSG(XFSROU, 0, 0, PORTNO)
END

SUBROUTINE READFUNCTION(FNC)
COMMON /MSG/STATUS, IMESSAGE, PORTNO
INTEGER STATUS, IMESSAGE(15), PORTNO, FNC
EXTERNAL IADDR

CALL XMSG(XFRCV, PORTNO, 0,0)
CALL XMSG(XFREA, IADDR(IMESSAGE), 30, o)
FNC: IMESSAGE(9)
END

PROGRAM SERVER,3O
EXTERNAL GRTDA
COMMON /MSG/STATUS, IMESSAGE, PORTNO
INTEGER STATUS, IMESSAGE(15}, PORTNO, GRTDA, RTADR, FNC

CALL INITPORT
DO WHILE (.TRUE.)

CALL READFUNCTIDN(FNC)
RTADR = GRTDA(IMESSAGE(10))
IF (RTADR.NE.-1) THEN

IF(FNC.EQ.1) CALL RT(RTADR)
IF(FNC.EQ.2) CALL ABORT(RTADR)

ENDIF
ENDDO
END

ND—60.133.02

273

274

275

276 Real Time Guide
ND-NET AND XMSG COMMUNICATION

The interface to the XMSG monitor call is written as a Plane routine,
using inline assembly code. The module also contains a routine to
return the address of an integer as an integer value.

MODULE XH
EXPORT XHSG

TYPE COM = RECORD
INTEGER ARRAY: IMESSAGE(1:15)
INTEGER: PORTNO

ENDRECORD
IMPORT (COMMON) com: MSG
INTEGER ARRAY: STACK(O:100)

5 Interface to MON XMSG:

ROUTINE STANDARD VOID , INTEGER(INTEGER :, INTEER , INTEGER , INTEGER) : 8:
XMSG(T, A, D, X)

INTEGER: AR

INISTACK STACK
$* LDX I x
$* LDA I D
$' COPY SA DD
$* LDA I A
$* LDT I T
3. MON 200
3' STA AR

AR RETURN
ENDRONTINE

5 Return the address of an integer:

ROUTINE STANDARD VOID,INTEGER POINTERKINTEGER): IADDR(VAR)

INISTACK STACK
ADDR(VAR) RETURN

ENDROUTINE

ENDMODULE
$80?

ND-60.133.02

Real Time Guide 277
Examples

APPENDIX As Examples

1 A simple periodical RT program

This example shows the compilation, loading and execution of a simple
RT program TIME, which is set up for periodical execution.

The program reserves the input part of the terminal from which the
background work is done, so it will have to wait until the timesharing
user RT has logged out. Then it reads one character from the terminal,
and aborts itself if this is an "A”.

If the character is not an "A", TIME will release the input part of
the terminal, read the clock, reserve the output part of the terminal,
write a "bell" character (which will cause an audible sound), a
counting variable and the time and date on the terminal. Then it will
release the output part of the terminal.

At the end of the program (line 21), TIME will enter a waiting state
for an unspecified amount of time. When activated again, it will
continue at the next statement (line 22) jumping to label 10, read the
clock again etc.

However, every fourth time TIME will terminate itself. The next
activation will cause execution to start from the beginning of the
program.

TIME does not use recursion or reentrant routines, thus, the program
is compiled without using the REENTRANT—MODE command to the FORTRAN
compiler. It is loaded by the *LOAD command in the RT loader. (If the
FTN compiler was used, the ”NREENTRANT-LOAD command would have been
preferred, and no explicit loading of the library would be necessary.)

ND-‘600 133 o 02

278 Real Time Guide
Examples

@FORTRAN-100
ND—AOO ANSI 77 FORTRAN COMPILER - NOVEMBER 2%, 1981

FTNeCOM EX—1z1,EXn1

ND—lOO ANSI 77 FORTRAN COMPILER 13:”3 27 NOV 1981
SOURCE FILE: EX—1 %

1* C The program TIME reads a character from the
2* C terminal. If the character is A, the program aborts
3* C itself. Otherwise, it writes a "bell", the time
M* C and the date on the terminal.
5* C
6* PROGRAM TIME,1OO
7* DIMENSION KLOKK(7)
8* IBELL=7i256
9* IDEV=52

10* CALL RESRV(IDEV,0,0)
11* IA=INCH(IDEV)
12* IF(IA.EQ.1018) CALL ABORT(O)
13* CALL RELES(IDEV,O)
14* 10 CALL CLOCK(KLOKK)
15* CALL RESRV(IDEV,1,0)
16* WRITE(IDEV,100) IBELL,I,KLOKK
17* CALL RELES(IDEV,1) -
18* 100 FORMAT(/,1H+,A1,IS,' TIME AND DATE IS :',7IS,/)
19‘ I:I+1
20* ' IF (I/H*D.EQ.I) CALL RTEXT
21* CALL RTWT ’
22* GOTO 10
23* END

w CPU TIME USED: 2.3 SECONDS. 23 LINES COMPILED.
a NO MESSAGES
u CODE SIZE=18R DATA SIZE=0 COMMON SIZE=0 STACK SIZE=18
FTNzEXIT
@RT«LOADER

REALnTIME LOADER, SINTRAN III - VERSION G

figggrsaaunnr 27229:,
”PRESET—COMM 272 noooo
”LOAD Ex.1,,
“LOAD FORTRAN-13.1.13,z
”ENDaLOAD
gEEEI@PRIOR TIME 31
@CC Periodic execution every 5 seconds:

QINTV TIME 5 2

Real Time Guide
Examples

ecc Start execution:

923.2199:
ELISW-RT-DESCRIPTION TIME
IN TIME QUBUE
INTV RING:O PRIORITY: 31
TIME LEFT: u SECS
INTERVAL: 5 SECS
START ADDRESS: 11, SEGMENTSfl 0 272
P: 11
X: 57
T: 0
A: 0
D: 1
L: 110
S: 0
B: “an
READY
ACTUAL SEBM.: 0 272
QEI§EBTIHE-QUEUE
RTSLI
TIHRT
TIME

CLIST—RT-DESCRIPTION TIME
IN TIME QUEUE
INTV RING:0 PRIORITY: 31
TIME LEFT: # SECS
INTERVAL: 5 SECS
START ADDRESS: 11, SEGHENTS: 0 272
P: 11
X: 67
T: 0
A: 0
D: 1
L: 110
S: 0
B: ”an
READY
ACTUAL SEGH.: 0 27281.46.
B

0 TIME AND DATE IS a. 40 4Q 38 1H

1 TIME AND DATE IS 23 44 38 1H

2 TIME AND DATE IS I. no 53 38 14

3 TIME AND DATE IS . 40 58 38 14

ND—600133.02

27

27

27

27

11

11

11

11

1981

1981

1981

1981

279

280 Real Time Guide
Examples

2 Two RT programs calling a reentrant subroutine

The following example shows the compilation, loading and execution of
two RT programs PROGl and PROGZ calling the same subroutine SUBA.

SUBA has one parameter, 1?. When Ilg SUBA will activate PROGZ., IP
will be written onto the terminal by SUBA before and after the test on
1?, thus demonstrating how the CPU control changes between the two \RT
programs.

PROGl calls SUBA will the parameter IP=1 which leads to an activation
of PROGZ. Because PROGZ has a higher priority than PROG1, this will
result in the following CPU control flow:

PROGRAMPROGL3G
L -~ PROTRAM P8061231

CALL SUBA (1) CALL SUBA (2)

SUBROUTINE SUBA SUBROUTINE SUBA

I:CALL RT (PROGZ) RET‘iRN
RETURN A END

L
Note that SUBA is really executed twice simultaneously. This is
confirmed by the order in which the output from SUBA arrives at the
terminal.

END

Note also that if the priority of PROGZ had been- equal to or lower
than the priority of PROG1, PROG1 would have finished completely
before PROGRZ would have been started (assuming that all required
resources were available when reservation was attempted).

The subroutine SUBA must be reentrant, because it is used by both
PROGT and PROGZ simultaneously. Accordingly, all programs calling it
must also be reentrant. In order to produce reentrant code, the
command REENTRANTmMODE must be given to the FORTRAN compiler prior to
compilation of PROGT, SUBl and PROGZ. (Note that a reentrant routine
may call a non-reentrant one, but a reentrant routine may only be
called by reentrant routines).

If the FTN compiler is used, the RT loader command *REENTRANT—LOAD
should be used to load the program" This will allocate a stack and
load the reentrant Fortran library automaticallyo

By default, the segment will be a nonwdemand segment so that the
entire segment will be transferred to main memory before execution of
PROGl starts, and there will be no additional swapping before PROGZ
starts.

ND—60a133.02

Real Time Guide
Exampies

QFTN
NORD 10/100 FORTRAN CDHPILER FTNmZUQOfl '
$RBE!?RANT—HDDE
$COHPILE EX-2~P1L1,P1

1at PROGRAM PROG1,3O
2* CALL SUBA(1)
3* END
4"

5* SUBROUTINE SUBA(IP)
6* EXTERNAL PROGZ
7’ NO=52
8* CALL RESRV(NO,1,0)
9* WRITE(NO,100)IP

10* CALL RELES(NO,1)
11* IF (IP.EQ.1) CALL RT(PROGZ)
12* CALL RESRV(NO,1,0)
13* WRITE(NO,100)IP
1A4 CALL RELES(NO,1)
15* 100 FORMAT(1X,12)
16* END

16 LINES COMPILED . CCTAL SIZE: 115
CPU—TIME USED IS o.n SEC.
$COMPILE EX-Z—P2,1,P2

1* PROGRAM PROG2,31
2* CALL SDBA(2)
3* END

3 LINES COMPILED . OCTAL SIZE: 1A
CPU-TIME USED IS 0.1 SEC.
$EXIT

ND—60.133.02

281

282 Real Time Guide
Examples

@RTmLOADER

REALuTIHE LOADER, SINTRAN III — VImSION-G

figggNTnANT—LOAD P1,,
NEH SEGMENT no: 2&2
STACK LENGTH:
”REENTRANT-LOAD pZLL
STACK LENGTH:
“EflnmLOAD
fififiiig—RTFIL
SEGMENT no: ggg
DUTPUT FILE:

PROG1 u0235 2M2 o
SUBA 13 242
8LEAV 10607 2M2
RESRV 115 242
8FIO 11113 2112
RELES 117 242
RT 113 2A2
PROGZ 40267 2&2 o
80FIL uuo 242
BOVTB 10631 2U2
BRUTB 10633 2H2
80VNO 1&1 232
BALTF 10634 2U2
8DAD 10171 242
BDSB 10173 232
8DMU 10334 2U2
BRLDN 10167 2M2
OUTBT 10640 242
INBT 10635 2U2
BEER 6541 2M2

“EXIT

@RT PRGG1
EEQE

20.57.16 29 DECEMBER 1981
TIME USED IS 8 SECONDS OUT OF 1“ MINUTES 26 SECONDS

é
N

N
—

é

ND—600133.02

Real Time Guide 283
Examples

3 Two RT programs calling a nonreentrant subroutine protected by a
semaphore

In this example, the program system in the previous example is
compiled without giving the command REENTRANT-MODE. To prevent
simultaneous execution of SUBA, it is protected by semaphore 3008.

Consider the illustration below, where the RT programs PROG1 and PROGB
both reserve semaphore 300B before they call SUBA. In this case, the
CPU control flow will be as follows:

PROGRAM PR061,30 ——-—-——> PROGRAM PROGZ, 31

CALL RESRV (3003, 0,0) CALL RESERV (3003, o, 0)CALL su BA (1)

sussourme su BA *CAL'ISUBA (2’

CALL £T (PROGZ) -—-—-———»—J SUBROUT'NE SUBA
V. :‘_

RETUIIN REEF”

CALL RELES (3003, 0)
CALL RELES (3003, 0) “‘"""""‘""" i

END ‘4 END

PROG1 is interrupted by PROGZ with a higher priority, but PROGZ will
have to wait for semaphore 3008 until PROG1 releases it. The order by
which SUBA is executed is illustrated by the output on the terminal.

Here we see even more clearly the general principle that the RT
program with the highest priority and something to do will always get
the CPU first.

PROGT, SUBA and PROG2 may now be compiled without using the command
REENTRANT—MODE, and loaded using the *NREENTRANT-LOAD (if the FTN
compiler is used) or *LOAD (if FORTRAN—100 is used). No allocation of
stack is necessary.

If the programs PROG1 and PROGZ in the previous example are still in
the system, they should be deleted and the segment cleared before the
new programs with the same names are loaded.

All programs and subprograms are loaded on the same segment which, by
default, wil be a non-demand segment. Thus, there is no swapping of
pages during execution.

ND~60.133.02

28H

@FTN
NORD 16/100 FORTRAN COMPILER FTN—ZCQMH

1,1,p1$CCLP;LE EX-3—P
1* PROGRAM PROG1,30
2* CALL RESRV(3OOB,0,0)
3* CALL SUBA(1)
4* CALL RELES(3OOB,O)
5* END
6*

7* SUBROUTINE SUBA(IP)
8* EXTERNAL PROG2
9* NO:52

10* CALL RESRV(NO,1,0)
11* WRITE(NO,100)IP
12* CALL RELEs(N0,1)
13* IF(IP.EQ.1) CALL BT<PRCC2)
11:11 CALL RESRV(NC,1,0)
15* WRITE(NO,100)IP
16* CALL RELES(NO,1)
17* 100 FORMAT (1x,12)
18* END

18 LINES COMPILED o CCTAL SIZE: 236
CPUmTIME USED IS 005 SEC.
$CO%PILE EX-3-P2,19P2

1* PROGRAM PROG2,31
2* CALL RESRV(3OOB,0,0)
3* CALL SUBA(2)
4* CALL RELES<3OOB,O)
5* END

5 LINES COMPILED . OCTAL SIZE: 72
CPUmTIME USED IS 001 SEC.
my.

ND—60u133.02

Real Time Guide
Examples

Real Time Guide
Examples

GET-LOADER

REAL‘TIME LOADER,

'NEW-SEGMENT 270,,,,
lNREENTRANT—LOAD P1,,
'NREENTRANT—LOAD P2 ,W*mm.m
'HRITE—RTFIL
SEGMENT N0: 270
OUTPUT FILE:""‘

PROG1 u0235 270
8RTEN 33A 270
RESRV 327 270
SUBA 71 270
RELES 331 270
BLEAV 12657 270
agnra 003 270
8FIO 61k 270
RT 325 270
PROG2 10267 270
8OFIL 611 270
BOVTB 12676 270
83013 12700 270
eovuo 612 270
8ALTF 12703 270
ecouv 12622 270
8RANT 11773 270
8DAD 11211 270
8033 11213 270
8DMU 11HSM 270
8RLDN 11207 270
OUTBT 1250a 270
8BINI 1235A 27o
BBINO 12527 270
INBT 12174 270
8ERR 7561 270
8CNCT 11627 270
8CRAN 12636 270
8CLSB 12701 270

5mm

CRT PKOG1
eLoc
27717.16
TIME USED IS

1
1
2
2

SINTRAN III — VEMSION G

29 DECEMBER 1981
9 SECONDS OUT OF 10 MINUTES 3 SECONDS

ND~600133 o 02

285

286 Real Time Guide
Examples

M RT programs using two segments

This example demonstrates how the program system in the previous
example could utilize two segments. The loading and execution is
shown.

PROGl, SUBA, and the necessary routines from FORTRAN—LIB are loaded to
segment 273. PROG2 is loaded to segment 274. The segments are built
one by one.

Now the problem arises that if segment 273 is built first, PROG2 which
is activated from SUBA will be undefined when closing the segment. On
the other hand, if segment 10? is established first, SUBA and the
library routines which are called from PROG2 will be undefined when
closing this segment.

One way of solving the problem is illustrated.

Segment 273 is loaded with PROGl and SUBA. The undefined symbol PROG2
is declared as the name of an RT program to be defined later, and then
the segment is closed.

Segment 273 is then loaded with PROG2, and segment 273 is declared as
the link segment. This makes all defined symbols on segment 273 known
before closing segment 274. The routines already loaded to segment 273
will thus not need to be loaded to segment 274, but appropriate links
to segment 273 will be established by the loader.

Whe executing PROGZ, the two segments constitute the logical address
space, and now a new problem occurs: segments 273 and 27” may not
overlap in logical address space, since both segments are used when
executing PROGZ. The RT loader checks this when a link segment has
been defined, and gives an error message if address overlap occurs.

The first logical page number of segment 27H must be higher than the
last logical page number of segment 273. By using the command *WRITE-
LOAD-ADDRESS 273 we will get information about the lower and upper
load addresses used by segment 273.

The lower address of segment 27“ must be higher than the upper load
address of segment 273, rounded up to the next page limit. In other
words, the lowest address on segment 27M is the first address that is
evenly divisible by 20008 above the uppermost load address on segment
273.

The *SET—LOAD—ADDRESS command should be before any code is loaded to
the segment (it may be used later, but will then apply only to the
code loaded after the command is issued), and it can only be used on a
segment being built. Therefore, segment 274 should be declared by a
“NEW-SEGMENT command and the load address set, rather than
automatically allocating a segment at the first *NREENTRANT—LOAD. (If
FORTRAN—100 rather than FTN is used, the most appropriate command is
*LOAD, which will not in any case allocate a new segment.)

After loading, PROGl is set up for periodical execution every 5
seconds and started. After that, the user logs out.

ND—60.133.02

Real Time Guide 287
Examples

The surprising output shows that PROG1 is executed to completion
twice, succeeded by two executions of PROGZ. Later executions cause a
change of CPU control corresponding to the discussion of the previous
example. The situation with two succeeding executions of PROG1
followed by two edections of PROGZ might occur again at any time.

How is this possible even when PROGZ has higher priority than PROGl?

The explanation is that segment 273 will be swapped to memory when the
command @RT PROGl is issued. Segmnent 27M will not be swapped in
before PROG2 is activated from PROGl in SUBA. PROGZ will, however, not
be started before all pages belonging to segment 274 have been loaded.
While waiting for the disk transfer the next RT program in the
executionqueue, PROGl, will continue execution.

Because of th time used for the logging out procedure and the short
interval of PROGl, this program will be set up for repetition and
executed twice before PROGZ gets the pages of segment 274 into memory.

The execution of RT programs may thus be greatly influenced by the
size of physical memory and the other activity in the computer.

As shown in the example the order of execution of the two programs
after having fixed segment 27H will be the same as in example 3.

ND~60.133.02

«fig—mum
121:m LOADER, 311mm III — “323101: G
”figflTSEGMENT 273,,,,
*NREENTRANT—LOAD P1
LINKING-SEGMENT NO.:
“DECLARE-PROGRAM PROGZ
RT—DESCRIPTION ADDRESS:
“HRITE—LOAD—ADDRESS
SEGMENT N0:

imam: o mum: 233 mum: 2311
”END-LOAD
”EITE—SEGMENT
3mm no: 313
OUTPUT FILE:

273 0 13777 1&65 0 0 1 RFW NON DEMAND
“NEW—SEGMENT
5W no: gig
RING:
SEGMENT TYPE:
PROTECTION BITS:
HP/N9:
mSETmLGAD-ADDRESS
SEGMENT N0:
ADDRESS: 1&000
i“NRBENT}?Amt-LOAD P2,273
*END

@112
@INTV PROG1 5 2
@RT PROG1
QM};

1M.59.17 30 DECEMBER 1981
TIME USED IS 21 SECONDS OUT OF 16 MINUTES

~~EKITu-

d
—

tN
—

J
-A

N
N

N
N

—
A

—
I—

A
-J

ND—60:133.02

Real Time Guide
Examples

11 SECONDS

Real Time Guide
Examples

15.00.0u 30 DECEMBER 1981
SINTRAN III - vs VERSION G

ENTER BI
PASSWORD:
OK
PROJECT PASSWORD:
PROJECT NAME: REAL—TIHE-GUIDE
OAEQRT PROG1
QADORT PROGZ
eEIx 271
OgififISEOHERT 27a
FIRST PAGE: 106 LENGTH: 1
SEG.FILE: o MASS. ADR: 1017
“PM RPM FPM FIX OK

@INTV PROG1 5 2
GET PROG1
e.@‘"“

15.08.10 30 DECEMBER 1981
TIME USED IS 4 SECONDS OUT OF 8 MINUTES 7 SECONDS

~-EXIT—-

N
N

-
d

—
lm

N
—

J
—

J

1
15.09.00 30 DECEMBER 1981
SINTRAN III _ vs VERSION G

ENTER 3!
PASSWORD:
0K
PROJECT PASSWORD:
PROJECT NAME: REAL-TIME—GUIDE
QABORT PROG1
GABORT PROGZ
QUNFIX 27“

8.1.99.
15.08.40 30 DECEMBER 1981
TIME USED IS 0 SECONDS OUT OF 40 SECONDS

-—EXIT——

ND~60.133.02

289

290 Real Time Guide
Examples

Now, an alternative way of loading the same programs to two segments
will be shown.

It is possible to build both segments concurrently, in which case the
loader will take care of load addresses so that no overlap occurs.
Default load address for the two segments are 0 and 100000B,
respectively.

Again, PROG1, SUBA and library routines are loaded to one segment and
PROGZ to another segment.

The segments 273 and 27H are explicitly allocated by the ”NEW-SEGMENT
commands, before PROG1 and SUBA are loaded to the first of these by
*NREENTRANT-LOAD.

In order to load PROGZ to segement 27H, *LOAD command must be used.
This implies that FTNLIBR will not be automatically loaded when the
*ENDuLOAD command is given; automatic loading occurs only if
*NREENTRANT-LOAD was the last load command given. Thus, loading of the
necessary library routines to segment 273 is done by an explicit *LOAD
command.

“ENDmLOAD will close both segments. The result of this loading
procedure is the same as that of the previous one, except for the
logical addresses on segment 274.

The *WRITE-SEGMENT commands show the extent of the area on the
segements to which code was loaded.

ND—60.133.02

Real Time Guide
Examples

@RT—LOADER

REALmTIME LOADER,

*§§338EGMENT 273,,,,
*§§!:SEGMENT 27u,,,,
*nmmam-mw P1, ,
£0950 FTNLIBR
LOAD~SEGMENT 00.: 273
LINKING-SEGMENT N07?”
igggp 92, 27211 273
“WRITE—LOAD-ADDRESS 273

L.ADR: 0 U.ADR:
*HRITE—LOAD—ADDRESS 274

11276

L.ADR: 100000 U.ADR:
*§§§:L0A0
*flgrmsmmms
SEGMENT N0: 273
OUTPUT FILE:“"‘

100070

273 0 11777
*HRITE—SEGMENTS 27a,,

3005 0 0

27h 100000
“EXIT
egggy PROG1 5 2
GET PROG1
QEQE15.38.00 30 DECEMBER 1981

TIME USED IS 23 SECONDS OUT OF
——EXIT——

1

101777 2750 O O

a
g

m
m

d
—

s
m

m
m

m
d

d
a

C.LADR:

C.LADR:

291

SINTRAN III « VERSION G

11277

100071

1 RWF NON DEMAND

1 RWF NON DEMAND

58 SECONDS

ND«60.133.02

292 Real Time Guide
Examples

5 A recursive fUnction

This example shows the classical example of calculating N factorial:

N!=N*(n—1)*oou*2*1

by means of a function calling itself

Recursive functions and subroutines are normally not allowed in
Fortran, because of certain pecularities in the standard Fortran
syntax. In FTN and FORTRAN-100, recursion is allowed provided the
program is compiled in reentrant modew Such programs are not strictly
in accordance with the Fortran standard.

The program uses double precision integer values to allow values of N
up to 12.

Since the compilation and loading waS‘ done from terminal 52 the
command @LIST-DEVICE 52 shows that the background program has reserved
the input and output parts while the RT program NFAC is in the waiting
queue for the input part of this terminal

ND—60.133.02

Real Time Guide
Examples

QFTN

293

NORD 10/100 FORTRAN COMPILER FTN—2090H
$REELTRANT-MODE
$PROGRAM MAP
$COMEILE EX-S~NFAC,1,NFAC

C Example of a recursive function, FACU, calling itself.
2* C The main program NFAC re.serves the input part of terminal
3* C number 52, reads the number N for which the factorial
A* C is to be calculated and releases the terminal. It
5* C then calls the recursive function, FACU, which performs
6* C each multiplication by calling itself with the parameter
7* C decreased by 1. After the multiplication it reserves
8* C the output part of the terminal, outputs the intermediate
9* C result, releases the terminal and returns to the caller

10*
11* PROGRAM NFAC,30
12* COMMON IDEV
13* DOUBLE INTEGER NF,FACU
1A* IDEV:52
15* CALL RESRV(IDEV,0,0)
15* INPUT(IDEV)N
17* CALL RELES(IDEV,O)
18* NF:FACU(N)
19* CALL RESRV(IDEV,1,0)
20* WRITE(IDEV,100) N,NF
21* 100 FORMAT(I3,'! :',I1A)
22* CALL RELES(IDEV,1)
23* END

————————————————— M E M 0 R Y A D D R E S S M A P ~---—----——-~~~~-
LINE: +0 +1 +2 +3 +4 +5 +6 +7 +8 +9

10* 0 3 5 13 24 31 36
20* AM 67 7A

----------------- L 0 C A L I D E N T I F I E R S -————--——-—-—~u—-

DB INT. VARIABLE NF - 162
INTEGER VARIABLE N - 163

TOTAL NO OF STACK LOCATIONS 43 (OCTAL)

———————————————— C 0 M M 0 N I D E N T I F I E R S --__-_---__--__--

INTEGER VARIABLE IDEV BLANK 0

--------------- E X T E R N A L R E F E R E N C E S —.----—---—nm--

DB INT. FACU
REAL RESRV
REAL SFIO
REAL RELES

23 LINES COMPILED . OCTAL SIZE:
CPU-TIME USED IS 0.8 SECo

103

ND»60.133.02

29M Real Time Guide
Examples

$COMPILE Ex-s—FACU,1,FACU
1* INTEGER FUNCTION FACU (K)
2* COMMON IDEV
3* DOUBLE INTEGER BACU,EK
11*

5* IF (K.GT.O) THEN
6* KK:K*FACU(K~1)
7* CALL RESEV<IDEV,1,0)
8* WRITE(IDEV,100) K,KK
9* 100 E0RMAT(I3,IVA)

10* CALL RELES(IDEV,1)
11* FACU=KK
12* ELSE
13* FACU=1
14* ENDIF
15* END

~—-«..————-—-——— M E M o R Y A D D R E s s H A P ——————————————
LINE: +0 +1 +2 +3 +3 +5 +6 +7 +8 +9

0* 102 1ou 110 127 135
10* 155 162 165 165 170 170

——————————————— L 0 c A L I D E N T I F I E R s ————-—-—---——_———

DB INT. VARIABLE FACU — 155
INTEGER VARIABLE K PARAMETER
DB INT. VARIABLE KK — 157

TOTAL No OF STACK LOCATIONS 50 (OCTAL)

--------------- c O M H 0 N I D E N T I F I E R s ..—--———-————-——-

INTEGER VARIABLE IDEV BLANK 0

——————————————— E x T E R N A L R E F E R E N C E 3 --‘-——---——-~———

REAL RESRV
REAL 8FIO
REAL RELES

15 LINES COMPILED . OCTAL SIZE:
CPUmTIME USED IS 0-7 SEC.
$EXIT

100

ND—60.133.02

Real Time Guide
Examples

eRT—DCADER
REALmTIHE LOADER, SIRTRAE III _ VERSION G
{REEETRANT-LDAD NFAC
LINKING-SEGMENT N0.:
STACK LENGTH:
NEH SEGMENT no: ggg
*REENTRANT—LOAD EACU,,,
*END{£3213
GBI_EEA§
eLIST—RT—DESCRIPTION NFAC

RING:O PRIORITY: 30
LAST STARTED: 2 SECS
START ADDRESS: 0, SEGMENTS: 0 aka
P: 103
x: 10727
T: 3
A: O
D: 102
L: 13
S: 200
B: 11107
HAITTNG FOR: 23126
ACTUAL SEGM.: o 2u2
QLIST.DEVICE
LOG. UNIT: gg
IE00T/00TPUT(0 0R 1): 1
RESERVED BY: EAK13 —
9&99

15.u2.18 30 DECEMBER 1981
TIME USED IS 58 SECONDS OUT OF 21 MINUTES

--EXIT——
9

1
2
6

24
120
720

5040
40320

362880
! 2 362880\

O
O

Q
N

O
N

m
t
—

A

NDm6OA133.02

1N SECONDS

295

296 Real Time Guide
Examples

6 An RT program using three segments

The main program in this example calls the two subroutines SUBR1 and
SUBRZ. The RT program system is not reentrant.

The main program is loaded to segment 314 with the routines from
FTNLIBR. SUBR1 and SUBRZ are loaded to segments 315 and 316
respectively so that the program system will utilize 3 segments.

During execution a problem will arise because it is not possible for a
program to use more than two segments concurrently. Segment 31“ will
be readied for execution when PR001 is started. Additionally, when
SUBR1 is called segment 315 will be used. This segment must be
exchanged with segment 316 by means of the monitor call MEXIT before
SUBR2 is called.

Similarly, during loading it is not allowed to establish more than two
segments simultaneously. Thus, segments 314 and 315 are loaded in
parallel, both segments using the other as a link segment. (PROGl will
call SUBR1 on segment 315 and SUBR2 will call the library routines on
segment 31%.)

No logical address overlapping will take place between these two
segments, because the default initial load address is 0 and 1000008
respectively when two segments are built in parallel.

The symbol SUBR2 is not loaded to any of these two segments, but is
referenced on segment 314, so it is necessary todefine an address
corresponding to the symbol. When this is done the symbol must be
deleted from the linking table before the segments are closed°
Otherwise the error "DOUBLE DEFINITION" will occur when loading SUBRZ
to segment 316 using 31H as a link segment. The linking to segment 314
saves space because the library routines are already present on
segment 31”. (The library routines could also have been duplicated on
segment 316. This would make segment 316 self contained and usable
with other segments than 31h as well.)

However, SUBR2 must be loaded to the address corresponding to the one
define, so the *SET-LOAD—ADDRESS command must specify exactly the same
address as given in the *DEFINE—SYMBOL command. This address must be
outside the logical address space occupied by segment 31” to avoid
overlapping. SUBR2 must be the first routine loaded after the *SET—
LOAD-ADDRESS command is issued.

ND-60»133.02

Real Time Guide
Examples

eFTN
Nfiifi 10/100 FORTRAN COMPILER FIN—20903
$COMPILE Ex-6-p1,1,P1

1* PROGRAM PROG1,31
2* COMMON ID,TERM
3* INTEGER TERM
u* 10:0
5* TERM=52
6* CALL RESRV(TERM,1,0)
7* WRITE(TERM,101)ID
8* 101 FORMAT(' THIS Is PROG1 1,15)
9* CALL SUBRT

10* WRITE(TERM,101)ID
11* CALL RESRV(TERM,0,0)
12* INPUT(TERM)NSEG
13* CALL RELES<TERM,0)
14* CALL MEXIT<NSEG)
15* CALL SUBRZ
16* WRITE(TERM,101)ID
17* CALL RELES<TERM,1)
18* END

18 LINES COMPILED . OCTAL SIZE: 202
CPU—TIME USED IS 0.5 SEC.
$COMPILE EX-6-31,1,S1

1* SUBROUTINE SUBR1
2* COMMON ID,TERM
3* INTEGER TERM
1* ID=ID+1
5* WRITE(TERM,101)ID
6* 101 FORMAT(' THIS IS SUBR1 ',IS)
7* END

7 LINES COMPILED . OCTAL SIZE: 57
CPU—TIME USED IS 0.2 SEC.
$COMPILE EX—6-32,1,SZ

1* SUBROUTINE SUBR2
2* COMMON ID,TERM
3* INTEGER TERM
H* ID=ID+1
5* WRITE(TERM,101)ID
6* 101 FORMAT(' THIS IS SUBR2 ',I5)
7* END

7 LINES COMPILED . OCTAL SIZE: 57
CPU-TIME USED IS 0.2 SEC.
$EXIT

ND—60.133.02

297

298

@RTmLOADER

REAL—THE LOADER, SINTRAN III —- VERSION G

*NEW-SEGMENT 31u,,,,
§§§fi—SEGMENT 315::22
*gggn P1,314z315
“LOAD FTNLIBR,314,315
*LOAD 312315231u
*Exmnxmmcgs, ,

SUBR2

*WRITEmLOAD—ADDRESS 31n,,

L.ADR: 0 U.ADR: 12566 C.LADR: 12567
“DEFINE-SYMBOL SUBR2,14000,314
*flnE—SYMBOLSZZ

BCLSB 12564 314
8CRAN 12521 314
8CNCT 11512 314
SERR 7444 314
INBT 12057 314
BBINO 12412 314
8BINI 12237 314
OUTBT 12367 314
8RLDN 11072 314
8DMU 11337 314
8DSB 11076 314
8DAD 11074 314
8RANT 11656 314
8CONV 12505 314
BALTF 12566 314
80VNO 475 314
BRUTB 12563 314
80VTB 12561 314
80FIL 474 314
8ENTR 266 314
SLEAV 12542 314
SUBR2 14000 314
MEXIT 201 314
RELES 214 314
SUBR1 100000 315
8FIO 477 314
RESRV 212 314
8RTEN 217 314

*DELETE-SYMBOL SUBRZ
*END-LOAD
*HRITEnSEGMENTS 314,,

314 0 13777 1571
*HRITE—SEGMENTS 315,,

315 100000 101777 1051

0 0 1 RFW NON DEMAND

0 0 1 RFW NON DEMAND

ND—60.133.02

Real Time Guide
Examples

Real Time Guide 299
Examples

*NEH«SEGHENT 316,,,,
“SETuLOAD—ADDRESS 316 1uooo
*NREENTRANT—LOAD (RTG)SZ,314
*ENnuLOAD
*HRITE—RTFIL 3114, ,

BLANK 12567 314
PROG1 40353 314 315
8RTEN 217 314
RESRV 212 314
8FIO 477 314
RELES 214 314
MEXIT 201 314
BLEAV 12542 314
BENTR 266 314
BOFIL 474 314
80VTB 12561 314
8RUTB 12563 314
8OVNO 475 314
8ALTF 12566 314
8CONV 12505 314
8RANT 11656 314
8DAD 11074 314
8DSB 11076 314
8DMU 11337 314
8RLDN 11072 314
OUTBT 12367 314
8BINI 12237 314
8BINO 12412 314
INBT 12057 314
8ERR 7444 314
8CNCT 11512 314
8CRAN 12521 314
BCLSB 12564 314

*WRITE—RTFIL 3152!

PROG1 40353 314 315
SUBR1 100000 315

*HRITE-RTFIL 316,,

SUBR2 1uooo 316

*EXIT

15.57.48 30 DECEMBER 1981
TIME USED IS 30 SECONDS OUT OF 4 MINUTES 16 SECONDS-—EXIT——

THIS IS PROG1 0
THIS IS SUBR1 1
THIS IS PROG1 1
fl
THIS IS SUBRZ 2
THIS IS PROG1 2

ND—60.133.02

300 Real Time Guide
Examples

Now, an alternative way of solving the problem of utilizing three
segments will be shown.

The call for SUBR2 in PROGl is replaced by a call for SUBRl. Then it
is not necessary to define and delete the symbol on segment 31%. On
the other hand, the programmer must load SUBR2 on segment 316 to
exactly the same address as the address of SUBR1 on segment 315.

The decimal segment number 206 given as input to PR061 corresponds to
the octal segment number 316B.

ND—60.133.02

Real Time Guide
Examples

@FTN
NORD 10/100 FORTRAN COMPILER FfiN—ZOQOH
$COMPILE EX-G—P1,1,P11*

2*
PROGRAM PR0G1,31
COMMON ID,TERM

3* INTEGER TERM
1* ID:O
5* TERM=52
6* CALL RESRV(TERM,1,0)
7* WRITE(TERM,101)ID
8* 101 F0RMAT(' THIS IS PR0G1 ',IS)
9* CALL SUBR1

10* WRITE(TERM,101)ID
11* CALL RESRV(TERM,D,O)
12* INPUT(TERM)NSEG
13* CALL RELES(TERM,O)
1u* CALL MEXIT(NSEG)
15* CALL SUBR1
16* WRITE(TERM,101)ID
17* CALL RELES(TERM,1)
18* END

18 LINES COMPILED . OCTAL SIZE: 202
CPU—TIME USED IS 0.5 SEC»
$EXIT

ND-60.133.02

301

302

QEETLOADER
REALaTIHE LOADER, SINTRAN III — VERSION G

i”CLEAR-6126MB??? 314

RT—PROGRAMS 0N SEGMENT:

PRDG1

DELETING THIS RT~PROGRAM(S)? ;
*CLEAR—SEGMENT 315
“CLEAR—SEGMENT 316
“NEW-SEGMENT 3ffijtg,
é’NEW"SH}HEN‘I. 315 ’ 9’

*Efihn RTG 91,31 ,315
aLOAD FTNLIBR,314,315
“HRITE~REFERENCE329

SUBR1

*SET-LOAD—ADDRESS 315 14000
aLOAD (RTG)S1,315,314
“ENE-LOAD
“NEW—SEGMENT 316,,9,
§§ET—Lonn-Annnxss 316 1uooo
*NREENTRANT-LOAD (RTG)SZ,314
“END—LOAD
*fifiiTE—RTFIL 314;;

BLANK
PROG1
8RTEN
RESRV
8FIO
RELES
MEXIT
8LEAV
8ENTR
80FIL
80VTB
80VNO
BALTF
8CONV
BRANT
8DSB
BDMU
8RLDN
OUTBT
8BINI
8BINO
INBT
SERR
8CNCT
SCRAN
8CLSB

12567
40353

217
212
477
214
201

12542
266
474

12561
475

12566
12505
11656
11076
11337
11072
12367
12237
12412
12057
7444

11512
12521
12564

314
314
314
314
314
314
314
314
314
314
314
314
314
314
314
314
314
314
314
314
314
314
314
314
314
314

315

ND—60a133.02

Real Time Guide
Examples

Real Time Guide
Examples

‘HRITE—RTFIL 315:,

PROG1 40353 314 315
SUBR1 14000 315

*HRITE—RTFIL 316,,

SUBRZ 14000 316

“WRITE-SEGMENT 3142,

314 0 13777 1571
*HRITE—SEGMENT 315,”

315 1&000 15777 1051
'HRITE—SEGMENT 316,,

316 1uooo 75777 7052
*EXIT
efiT"§Roc1
eLoc

303

0 0 1 RFW NON DEMAND

0 0 1 RFW NON DEMAND

0 0 1 RFW NON DEMAND

15.57.u8 30 DECEMBER 1981
TIME USED IS 30 SECONDS OUT OF 4 MINUTES 16 SECONDS

--EXIT——

THIS IS PROG1
THIS IS SUBR1
THIS IS PROG1 1
.292
THIS IS SUBRZ 2
THIS IS PROG1 2

«‘
53

NDm600133.02

304 Real Time Guide
Examples

Zulyternal device

In this chapter an application of a byte oriented internal device is
demonstrated. The RT program RECIEV reads characters from the internal
device and outputs them to the terminal. THe RT program SEND writes
the characters to the internal device, characters which have been
input from the terminal. The effect will be a "double echo" of
characters.

/RECEIV

SCREENmy/ INTERNAL
DEVICE

\\\ SEND

The above transport goes on until SEND reads the ASCII character 3008,
"Q" with even parity.

When starting the two programs (RECEIV is started from SEND) and
listing their RT description, we find that SEND is in a waiting queue
for the input part of the terminal. while RECEIV is in IOWAIT, waiting
for input from the internal device.

First shown is compiling in reentrant mode, loading both programs to
the same segment. Then is shown non-reentrant compilation and loading
to two separate segments. Even the reentrant programs could have been
loaded to separate segments, but using only one segment reduces
overhead and wasted space.

ND-60u133.02

Real Time Guide
Examples

QFTN
NORD 10/100 FORTRAN CDHPILER FTN4209OH
$REENTRANT—HODE
$COHPILE EX-7uSz1,S

1* PROGRAM SEND,10
2* EXTERNAL RECEIV
3* CALL RT(RECEIV)
A“ 10 CALL RESRV(52,0,0)
5* ICH=INCH(52)
6* IF (ICH.EQ.3OOB) CALL ABORT(0)
7* CALL RELES(52,0)
8* CALL RESRV(2OOB,1,0)
9* CALL CUTCH(2OCB,ICH)

10* CALL RELES(200B,1)
11* GOTO 10
12* END

12 LINES COHPXLED . OCTAL SIZE: 72
CPU—TIME USED IS 0.3 SEC.

1* PROGRAM RECEIV,20
2* 10 CALL RESRV<2OOB,0,0}
3* ICH=INCH(ZOOB)
A* CALL RELES(2OOB,G)
5* CALL RESRV(52,1,0)
6* CALL OUTCH(52,ICH)
7* CALL RELES<52,1)
8* GOTO 10
9* END

9 LINES COMPILED . OCTAL SIZE: 55
CPU—TIME USED IS 0.2 SEC.
$EXIT

ND—60.133.02

305

306 Real Time Guide
Examples

@ggzmnmgn
REAL-Em 1.0mm, snmw III - VERSION G
figggflTRANT—LOAD 3,,
NEW SEGMENT N0: 2””
QEEENTRANT-LOAD R ,fim‘fl"may. J”
mEXIT
@‘Ifif‘s‘m
@LIST—EXECUTION~QUEUE
RTEKR
BAKTO
BAX? 3
RECHEV
BCHO1
BAKBS
DUMMY
@LIST—RT—DESCRIPTION SEND

RING:0 PRIORITY: 10
LAST STARTED: 5 SECS
START ADDRESS 3 0 , SEGMENTS: O 2;“!
P: 12” L
X: 573
T: 3

A: 0
3: 123
L: 15
S: 0

B: 755
WAITING FOR: 23126
ACTUAL SEGM.: 0 2%”
@LIST-RT—DESCRIPTION RECEIV
K/OuWAIT RING:O PRIORITY: 20
LAST STARTED: 5 SECS
START ADDRESS: 2536, SEGMENTS: 0 2””
P: 7”
X: 3230
T: 200
A: 3230
D: 71
L: 2553
S: 0
B: 3u10
READY
ACTUAL SEGM.: 0 2&4
RESERVED DATAFIELDS:

3 3 7 2 7

ND-6OH133.02

Real Time Guide
Examples

eLoc
73716.49 30 DECEMBER 1981
TIME USED IS 12 SECONDS OUT OF 5 MINUTES

-~EXIT—-

£39999nn
16.17.1N 30 DECEMBER 3981
SINTRAN III a VS VERSION G

ENTER 3:
PASSWORD:
0K
PROJECT PASSWORD:

PROJECT NAME: REAL-TIME-GUIDE
CABORT RECEIV
GET—LOADER

REAL-TIME LOADER, SINTRAN III w VERSION G

*CLEAR—SEGMENT 2&4

RT—PROGRAMS ON SEGMENT:

RECEIV
SEND

DELETING THIS RT—PROGRAM(S)? I
*EXIT

em
NORD 10/100 FORTRAN COHPILER FTM—2090H
$COMPILE EX-7—SzzS
12 LINES COMPILED . OCTAL SIZE: 72
CPU—TIME USED IS 0.3 SEC.
$COMPILE EX—7»R,1,R
9 LINES COMPILED . OCTAL SIZE: 55
CPU—TIME USED IS 0.2 SEC.
$EXIT
QRT—LOADER

REAL-TIME LOADER, SINTRAN III - VERSION G

’NREENTRANT—LOAD 8,!
NEW SEGMENT NO: 2“"
*END. iw
NEGLECTING REFERENCES? N
*DECLARE—PROGRAM RECEIV
'ENn-w
*NREENTRANT—LOAD R,,
NEW SEGMENT N0: 245
am. .12932
‘EXIT
Q

ND~60.133.02

11 SECONDS

307

308 Real Time Guide
Examples

@RT SEED
@Loq
76222.n2 30 DECEMBER 1981
TIME USED IS 12 SECONDS OUT OF 5 MINUTES 2 SECONDS

~-—-EXIT-—

EASSDDFFGGHHQQWHBERRTTYYQ

16.23.10 30 DECEMBER 1981
SINTRAN III - vs VERSION C

ENTER 3:
PASSWORD:
0K
PROJECT PASSWORD:

PROJECT NAME: REAL—TIEE—GEIDE
ELIST—RT—DES RECEIV
T76LEAIT RING:0 PRIORITY: 20
LAST STARTED: 35 SECS
START ADDRESS: 2536, SEEEEETS= o auu
P: 7”
X: 3230
T: 200
A: 3230
D: 71
L: 2553
S: O
B: 3n10
READY
ACTUAL SEGH.: O zuu
RESERVED DATAFIELDS:

33727

@énT RECEIV

ND-60.133.02

Real Time Guide 309
RT programs in languages other than FTN

APPENDIX B: RT programs in languages other than FTN

1 PASCAL

1.1 RT monitor calls

The Pascal run time library does not contain interface routines for RT
monitor calls. However, ND Pascal may call Fortran routines, and
routines available in FTNLIB may be called. The routine body of such
routines will in the Pascal program consist of the sole word FORTRAN:

PROCEDURE RESRVCUNIT,INOUT,WAITFLAG: INTEGER); FORTRAN;

User written Fortran subroutines may be called in the same manner, but
only non—reentrant rotines may be called from Pascal. That implies
that the $REENTRANT—MODE must not have been given when the routine was
compiled, and routines in the reentrant FTNRTLIBR cannot be loaded.

Where symbolic RT program names are submitted as argument, they should
be of type PACKED ARRAY(.O..6.) 0F CHAR. If the length is less than 7
characters, an apostrophe should terminate the name (as a character in
the string).

Routines written in other languages (e.g. Plano) may be called,
provided that the call interface is Fortran compatible (for Plano this
implies that the routine modifier STANDARD must be present).

Code generated by the Pascal compiler is implicitly reentrant. R0
equivalent to the $REENTRANT-MODE command of the Fortran compiler is
necessary or available.

1.2 File access

Files may be used in the same manner as in background. If parameters
are missing in a CONNECT call, these are requested from the console
(terminal 1). In order to prevent an error, device number 1 must have
been explicitly reserved prior to this.

A device may be CONNECTed as a file, provided it has' previously been
reserved. Rather than specifying a file name, the device number is
given as an integer constant or variable. If accessed through Pascal
sequential I/O routines, the appropriate RESET or REWRITE calls must
be executed prior to the first I/O call.

When the program terminates normally, file buffers are emptied and the
corresponding files closed. Un—buffered files are not closed. This
includes files opened with RX or WX access code.

The number of sequential files that are buffered can be set by the RT
loader command

ND»60.133.02

310 Real Time Guide
RT programs in languages other than FTN

*DEFINE~SYMBOL NOBUF (no. of buffers) <segment number)

The default number of buffers is 4: the first four files concurrently
opened for sequential access are buffered, the fifth and following
files are not buffered. Each buffer is 256 words (1/4 page). The
command

“DEFINE—SYMBOL NOBUF O <segment number)

may be used when loading programs not using sequential file access in
order to save space.

.1ui.Loa__...d_i..nz._
Pascal requires special considerations when loading:

- The RT loader command

“REFER—SYMBOL SRTPM

must be given prior to loading the library, in order to force
routines suited for RT execution. This will cause RSIO (MON 143),
callable as the integer function RUNMODE, to return 3, indicating
RT execution.

Also, errors occuring during execution are reported to the error
device, because no terminal is implicitly reserved for the
program. The error is written by ERMON, and has the form:

11.19.22 ERROR 50 IN RTTEST AT “0322; USER ERROR
SUBERROR: 30

11.19.22 ERROR 51 IN RTTEST AT 40325; USER ERROR
SUBERROR: 11

The first message (error 50) indicates the Pascal error code as
the suberror number; the second message (error 51) indicates the
source line number. Pascal error codes are explained in "ND-100
Pascal Compiler User's Guide" (ND«60.12M). An error will cause the
program to terminate through RTEXT.

— As Pascal syntax does not allow for the specification of a program
priority, it must be set explicitly. This may be done by either
the Sintrant command @PRIOR or by the RT loader command *CHANGE-
RT—DESCRIPTION.

- Statically allocated data and constants are loaded as common
blocks. The starting address for these blocks should be defined
through the command *PRESET-COMMON-ADDRESS. The address to be
specified is dependent on the stack/heap space required: stack and
heap is (by default) allocated in the area between the uppermost
code address and the start of the common area. A trial load may be
required in order to determine a reasonable address.

- The stack/heap area may (as in background) be located at an
explicitly defined address, and have a user specified size. This
is done by the commands

ND-60.133.02

Real Time Guide 311
RT programs in languages other than FTN

*DEFINE—SYMBOL STACK <lower address) <segment number>
*DEFINE-SYMBOL HEAP (upper address) (segment number>

These symbols must be defined before the PASCAL-LIB library is
loaded. It is the responsibility of the user to ensure that the
stack/heap area does not overlap any code or static data area. If
the area is not between the code area (usually starting at address
zero) and the common address, the *ALLOCATE—AREA command should be
used to ensure that space is allocated on the segment. Otherwise,
an error will occur when access to the area is attempted.

The PRESET—COMMON—ADDRESS and user defined stack/heap may be used to
locate the data area on another segment than the code. The Pascal
library is not completely reentrant, however. The Pascal library may
be loaded to a separate segment used as a reentrant segment (MON
REENT) by several programs. These programs must, however, have been
loaded using the same address in the *PRESET—COMMON-ADDRESS command.

The command LOAD should be used to load code to the segment. The
FTNLIB should always be loaded before the PASCAL-LIB, thus, it should
be loaded explicitly. The REENTRANT—LOAD command should not be used.

The warning message: NO PRIORITY IN (prog name> may be ignored, but
the priority of the program should be set before an execution is
attempted. (Otherwise the program priority will be 1, which is usually
lower than desired).

The RT program name will be equal to the first 7 characters of the
name in the PROGRAM statement.

1.M Emample of loading

A complete job for loading the program RTX to segment 270 would be:

@RT—LOADER
CLEAR—SEGMENT 270
YES
NEW—SEGMENT 27o,,,,,,,
REFER—SYMBOL SRTPM
PRESET—COMMON-ADDRESS 270 20000
DEFINE-SYMBOL STACK 30000 270
DEFINE-SYMBOL HEAP 77777 270
ALLOCATE-AREA 270 50000 30000
LOAD PAS—OPEN,,,
LOAD FTNLIBR,,
LOAD PAS-LIB,,
END-LOAD
CHANGE-RT-DESCRIPTION RTX 61,,,,,,
END—LOAD
EXIT
@RT RTX

The code size of the program including libraries does not exceed
200008 words, the static data area does not exceed 1000OB words, and
SOOOOB words are allocated for stack and heap for a total of 32 pages.

ND-60.133.02

312 Real Time Guide
RT programs in languages other than FTN

g FQhTRAN—lflo
The RT loader has certain features oriented towards the FTN compiler,
particularly regarding reentrant Fortran programs. These are not
applicable to the new ANSI-77 standard compiler FORTRAN~100.

2.1 Unit numbers for input/output

FORTRAN-100 will translate the Fortran file number to a Sintran file
number even in reentrant programs. Thus, the file number may be a
constant in the range 1:127, as well as an integer variable.

For most calls, if a file with the specified number is not opened when
the I/O operation is performed, the number is assumed to be a Sintran
device number. The device must be reserved when the program is
executed; the reservation may be performed by commands or by another
program (PRSRV call).

The Sintran device/file number corresponding to a Fortran unit number
can be obtained through the integer function LDN:

0PEN(6,FILE='LINE-PRINTER',ACCESS='SEQUENTIAL')
LOGDEV = LDN(6)

2.2 Input/output buffers

When accessing disk files, the I/O system will use buffers rather than
byte—by-byte access if possible. These buffers are allocated in the
stack area of the program.

In non-reentrant mode, the buffers are allocated in the space
following the last code loaded. The number of 1K buffers allocated is
determined by the space between the uppermost load address and the
lowermost common address. Buffers are allocated when the first access
to the file is done, and deallocated when the file is closed. If more
files are in use concurrently than there are buffers, the files last
taken in use will be accessed byteuby-byte (unbuffered).

If no common data is loaded, no space above the uppermost load address
will be allocated to the segment. When a disk file is accessed, this
will cause a PAGE FAULT FOR NON-DEMAND error. In order to prevent
this, the area must be explicitly allocated and the start of the
(empty) common area defined. Assuming segment number 213 and maximum 3
files concurrently opened (60008 locations for buffers) and a total
code size of 31200B words, the commands required are:

*PRESET—COMMON—ADDRESS 213 40000
* <load code and library>
*ALLOCATE—AREA 213 60008,,

In reentrant mode, each program has its own buffers in the stack area,
and the total size of buffers required must be considered when
allocating the stack. The maximum number of buffers is determined by

ND-60.133.02

Real Time Guide 313
RT programs in languages other than FTN

an explicit call to the routine:

CALL CREBUF(n)

"n“ is the number of buffers allocated. Only the first call to this
routine has any effect. If "n" is negative or zero, no buffers are
allocated, and all files are accessed in a byte—by—byte fashion.

2.3 Stack allocation in reentrant—mode

No automatic allocation of the stack is possible with the FORTRAN-100
compiler. The stack usually follows the Fortran library, and is of
size SSTLEN. This symbol must be defined by the user before *END—LOAD.
As with file buffers, the segment area is not allocated unless COMMON
areas have been loaded at a higher address than the uppermost stack
address (load address after library is loaded, plus stack length). The
*ALLOCATE—AREA command may be required in order to ensure that no
illegal page faults occur.

The size of the stack depends on the program, but the compiler will
report for each compilation the stack size required. The demands of
all routines that will be active concurrently may be added together to
estimate the minimum total. If a routine is called recursively, the
stack requirement for that routine is the value reported by the
compiler times the maximum recursion level.

The stack may be allocated at a non~default address by defining the
symbol SSTBEG before the Fortran library is loaded. The definition of
SSTBEG and SSTLEN does not imply any allocation of segment space, and
the user is responsible for setting load addresses and allocating area
to ensure 1) that no code is loaded in the stack area, 2) that the
area is actually allocated.

2.h Conflicts with other libraries

If default stack allocation is used (stack immediately above the
Fortran library), no code may be loaded after the Fortran library has
been loaded. That would cause the code to be loaded within the stack
area. Thus, the library must be the last file loaded.

Some other libraries have similar requirements, for example the Plane
library if the Plane symbol FREE_P is used. Thus, collisions may
occur. These can be avoided by two different methods:

- the Fortran stack may be explicitly allocated before the library
is loaded

— after the Fortran library but before other libraries are loaded,
the current load address may be set by the *SET—LOAD-ADDRESS
command to an address above the Fortran stack.

ND-60.133.02

31“ Real Time Guide
RT programs in languages other than FTN

2.5 The Fortran library

The same library is used for reentrant and non-reentrant routines.
However, the 2—bank facility available in background is not available,
and the use of the alternative page table in the 2—bank library may
cause havoc if used with RT programs. Thus, only the 1—bank version of
the library should be used.

The old FTNLIBR is not compatible with the new compiler.

§;§_Loading

FORTRAN—100 code is loaded by the ”LOAD command. The *REENTRANT—LOAD
command may not be used, as it will automatically load some routines
from the old FTNRTLIBR, which are incompatible with FORTRAN-100.

As mentioned above, a program using 1/0 facilities will require
buffers and the common address must be preset. If no common is loaded
explicit allocation of segment area is required.

ND—60n133.02

Real Time Guide 315
RT programs in languages other than FTN

3 BAsig

3.1 Program compilation

All programs must be compiled to a :BRF file in order to be loaded by
the RT loader; incremental compilation is not possible for RT
programs.

An EOF statement should be the last one in the source program
(including files containing subroutines only).

3.2 Priority notation

A decimal priority may follow the PROGRAM statement; the value should
be followed by a per cent sign to force it to integer type:

PROGRAM PRRT, 30%

If no priority is given, the RT loader will assign the program a
priority of 1; in most cases the programmer will then set the priority
through the @PRIOR command.

3.3 RT monitor calls and Fortran routines

The Basic library (BASLIBR) does not contain interface routines to RT
monitor calls, but they may be loaded from the non-reentrant Fortran
library (FTNLIBR).

User written Fortran routines compiled with the FTN compiler may be
called from Basic, provided they are compiled in non-reentrant mode.
Reentrant Fortran routines may not be called, as the stack mechanisms
in Basic and Fortran are incompatible.

BASLIBR and FTNLIBR has several common entry points, while the
corresponding code is different. In general, where FTNLIBR must be
scanned due to an explicit call in the Basic program, BASLIBR should
be loaded prior to FTNLIBR.

There is no "reentrant" version of the Basic library. 0n special
request, a library split on two files may be obtained from Norsk Data:
one contains the non—reentrant routines that must be loaded with each
program, another contains the reeetrant routines that may be loaded to
a separate segment and linked to by all Basic RT programs. This will
save approximately 8 pages per Basic RT program.

ND-60.133.02

316 Real Time Guide
RT programs in languages other than FTN

§.h File access

If a file must be opened for both read and write, Basic requires
explicit calls for read and write access, through two separate OPEN
statements. Two different connect device identifiers are then used for
the same file. This will fail, as the file reservation in the second
OPEN will overwrite the first. Under such circumstances, the OPEN
statment must be accompanied by explicit RESRV calls, which require
that the logical unit number is known.

20 PROGRAM TEST,20,%
30 OPEN #1: FOR INPUT "T4010" 'Tuo1o = TEKTRONIX, LDN=7
no OPEN #2: FOR OUTPUT "T4010"
50 CALL RESRV(7%,0%,1%) 'EXPLICIT RESERVATION NEEDED
60 PRINT #2: " TEST2"!
7O INPUT #1: I
80 PRINT #2: !" I:",I
90 CLOSE #1:

100 CLOSE #2:
110 END
120 EOF

All files opened by a Basic program should be explicitly closed after
use. Files are not closed by the END statement, and if the files are
closed by an @RTCLOSE command, buffers for sequential output files are
not emptied properly.

3.5 PRINT and INPUT without connect identifier specified

If no connect identifier is included in the the PRINT and INPUT
statements, in background the 1/0 is performed to the user terminal
(logical device number 1). In RT programs, this will instead refer to
the system console.

It is therefore recommended to use only PRINT #n: and INPUT #n:, with
connect device identifiers specified. If 1/0 to the console is
required, device number 1 should be explicitly reserved.

3.6 Peripheral devices

Peripheral devices may be accessed directly by their logical device
numbers used as connect device identifiers. The deviced must then be
reserved and released explicitly.

3.7 Loading

The :BRF files may be loaded by either of the commands *LOAD and
*NREENTRANT-LOAD, but BASLIBR must be explicitly loaded before the
loading session is terminated.

Basic uses an area (stack) for dynamic run time allocation of data
space. This area is in background located between the code and the
common blocks. If the program uses common blocks the user need not be
concerned about the dynamically allocated space. Even if no common
blocks are used, the start address of the common area umst be
specified by the command *PRESET-CDMMON-ADDRESS, and the area from the

ND—60.133.02

Real Time Guide 317
RT programs in languages other than FTN

uppermost code address to the common address must be explicitly
allocated through *ALLOCATEwAREA.

The size of the stack is estimated approximately as for a Fortran
program. BASLIBR requires roughly 1000B locations, and the total size
of variables, matrices etc. must be added.

Basic programs using common blocks are handled like Fortran programs
using COMMON: in order to allocate the common blocks adjecently rather
than scattered among the code, the *PRESET—COMMON—ADDRESS is used
before loading. However, this command should, due to requirement of
the Basic stack, always be used even if the program uses no common
blocks.

DID-‘60.. 133.02

318 Real Time Guide
RT programs in languages other than FTN

3—3 PLANC
Plane will not create special probles when loaded with the RT loader.

Programs should be compiled with the DEBUG option off.

The SEPARATE-CODE—DATA option is legal but the RT loader is incapable
of loading code and data to separate segments. Full separation of code
and data is most easily obtained by declaring all data in a separately
compiled module that may be loaded to any segment independent of the
code. Under no circumstances should the 2—bank run time library be
used; the programmer is responsible for all manipulation of the
alternative page table.

Plano code is loaded by the *LOAD command. As the Plane stack usually
is a declared array, no problems occur with unallocated stack space.

If the FREE_P pointer is used, the required heap space must be
allocated during load time.

ND—60.133.02

Real Time Guide 319
Interface to assembler routines

APPENDIX C: Interface to assembler routines

This appendix gives sufficient information for a programmer
experienced in MAC assembler programming to write MAC routines for
interface to monitor calls not available in the FTN, FORTRAN-100 and
Pascal libraries. All other languages suitable for RT programming are
able to interface to subroutines using a FORTRAN-100 call sequence.

1 Pascal

The Pascal programmer has two options: he may either declare his
routines as EXTERNAL and use the Pascal call sequence, or he may
declare them as FORTRAN and use the call sequence described below for
FORTRAN.

This section will describe the Pascal call sequence.

1.1 Register contents

Upon entry to an EXTERNAL routine the registers contain

- static link
~ address of new stack frame relative to B

previous stack frame (dynamic link)
return address(

2
"
b

The T and D registers are not assigned specific functions.

1.2 Stack frame

Adding the B and A register gives the absolute address of the new
stack frame. The stack grows from low towards higher addresses. The
stack head consists of three locations plus the function value:

A + B : Static link
A + B + 1 : Dynamic link
A + B + 2 : Return address
A + B + 3 : function value (if any)

The function value may occupy 0 words (procedure), 1 word (integer,
char, subrange, pointer), 2 words (longint, real if 32 bit hardware)
or 3 words (real if 48 bit hardware).

1.3 Parameters

The procedure/function parameters follow the function value. In case
of a VAR parameter, the address is transferred, in case of a value
parameter the value itself is found on the stack. A value parameter
may occupy from 1 to 8 words on the stack. If the value is occupies
more than 8 words, the address of a copy of the value is found on the
stack.

NDw60n133.02

320 Real Time Guide
Interface to assembler routines

For example, if a Pascal fuction is declared as

FUNCTION FN(VAR I: INTEGER; F1: REAL; VAR F2: REAL): INTEGER;
EXTERN;

the stack has the following layout

2:: + CO I I V static link
dynamic link
return address
integer function value
address of I
F1 real value

9!

+
+

+
+

+
+

+
+

03
4

O
‘U

‘l
-L

‘W
N

-J

u
on

no
n

an
o.

to
0‘

'I

address of F2

The Pascal heap grows from high addresses towards low. The calling
program will guarantee that at least 200B locations of stack space are
available upon entry to an external routine, thus, addresses up to A +
B + 177B may be used freely by the MAC routine.

j.” Routine exit

On exit, a function value must be loaded to the A, AD or TAD registers
(the function value location on the stack need not be filled in by the
external routine, but is used internally within Pascal).

The B register must contain the same value as it had on entry. Return
is to the address found in the L register on entry (thus, the MAC
instruction EXIT may be used if the L register has not been modified.

The contents of the X register and of T, A and D if not used for
function value, is arbitrary.

As an example, a MAC routine to allow a Pascal program to set the
break mode of an arbitrary terminal (the Pascal library routine will
set break mode for the current background terminal only):

ND—60t133.02

Real Time Guide 321
Interface to assembler routines

PROCEDURE XBRKM(DEVNO: INTEGER; MODE: INTEGER);
EX TERN ;

)9BEG
)9ENT XBRKH

BRKll

XBRKH5 RADD SB DA
COPY SA DX % Start of local data area
LDT 3 ,X' % Device no to T register
LDA H ,X % Break mode to A register
MON BRKM % Always direct return
EXIT % Return to Pascal prog

)9m
)9EOF
)LINE

ND-60.133.02

322 Real Time Guide
Interface to assembler routines

FORTRAN—100

2.1 Register contents

Register contents on entry to a subroutine or function:

T — atual number of parameters
A — parameter list address
D — address of result string descriptor if

CHARACTER function, otherwise unused
- unused

current stack element
L - return address

C!
N

I

The actual number of arguments in the T register allows a MAC routine
to substitute default values or take other action depending on the
number of parameters supplied.

9.2 Parameters

Essentially, parameter transfer is as for RT monitor calls: the A
register points to a argument list which contains the addresses of the
actual argument values.

A multiple word value, e.g. a real value, is addressed by its lower
word in memory (the exponent part).

An RT description address is treated as a variable; in the argument
list is found the address of a location containing the RT description
address.

An array is transferred like a single variable; the argument list
contains the address of the first variable in the array. If the lower
index is not 1, the address of the element with the lowest index is
transferred.

A CHARACTER parameter is transferred by a two word descriptor whose
address is found in the parameter list. The first word of the
descriptor contains the address of the first character. The second
word consists of three subfields:

— bit 173 : 0 string starts in left byte
= 1 string starts in right byte

— bits 16B:13B: Used by GE option, should normally be 0
- bits 12B30 : Length of string in bytes

For CHARACTER arrays the parameter list contains the address of a
descriptor of the first string in the array, and the length indicated
is the length of a single element of the array.

ND—60u133.02

Real Time Guide 323
Interface to assembler routines

2.3 Stack element

The stack element starts at B-ZOOB, and has the following layout:

B-ZOOB: LINK Return address
B—177B: PREVB Previous B register, reloaded on exit
B—l76B: FREES First free stack address above this element
8—175B: EOS First address beyond stack
B-17MB: SYS Used by Fortran runtime system
B—173B: ERRCODE value

In REENTRANT—MODE the parameter list is allocated from B-172B and
upwards; the length of the list is found in the T register. Stack
elements are dynamically allocated on the stack.

The stack layout is the same in nonreentrant mode, but is allocated in
a fixed location; FREES will be unmodified. The parameter list is
allocated in the local data area of the calling routine.

2.” Function value

A LOGICAL, INTEGER, INTEGER*# or REAL function value is returned in
the registers (TAD, AD or A).

A REAL'S, COMPLEX or COMPLEX*16 value is returned in a location
pointed to by the A register.

A CHARACTER function value is stored in the string whose descriptor
address is found in the D register on entry. The function must not
store a longer string than the length part in the descriptor allows,
and must not modify the descriptor.

2.5 Routine exit

If the B register is modified by the routine, it must be restored
before return.

Return is always to LINK (which is also found in the L register). If
the parameter list contains alternate returns, the alternate return
value is stored in the ERRCODE position in the caller's stack element
(this value may be used in a computed goto after return to the
caller). The alternative return addresses are omitted from the
parameter list. Ordinary return is indicated by the value 0.

ND—60.133.02

324 Real Time Guide
Interface to assembler routines

are!
Most of the description of the call sequence for FORTRAN—100 applies
to the FTN compiler. CHARACTER descriptors and stack layout are
different.

3.1 CHARACTER descriptor

The descriptor is a two word entry; the first word is the address of
the string, the second consists of

bit 178 :i 0 string starts in left byte
1 string starts in right byte

Must be 1
Length of string in bytes

II
II

bits 16B
bits 15B:O

3.2 Routine entry

In REENTRANT-MODE, the stack demand (stack header, 15B locations, plus
what is needed for arguments and local variables) follows the entry
point. The entry point should therefore be a JMP*+2 instruction. The
parameter list is located at B-163, following the stack header.

The stack header has the following layout:

§;§ Function value

LOGICAL, INTEGER, INTEGER*U and REAL function values are returned in
the TAD, AD or A register.

A CHARACTER function value descriptor is found in the AD register.

ND—60.133.02

Real Time Guide 325
Interface to assembler routines

A COMPLEX function value is returned in the TAD (48 bits hardware) or
AD (32 bits hardware) register for the real part, B-1728, B—171B and
B—17OB (H8 bits hardware only) for the imaginary part.

3.” Routine exit

To free the stack space, return should be performed by a jump to the
library routine 8LEAV, declared as an external symbol ()QEXT 8LEAV).
The B register must have the value it had on entry.

ND-60.133.02

326 Real Time Guide
Interface to assembler routines

A Plane

u.1 Assembler routines for Plane programs

Mixing of MAC and Plano is in general discouraged. Where access to
monitor calls or instructions not accessible in Plano is needed,
inline assembly code is usually better suited and easier in use.

Composite arguments — arrays and records — are always transferred by
address, as for Fortran. However, non~WRITE simple parameters are
transferred by value; the actual parameter value rather than its
address is found in the parameter list. A WRITE simple parameter is
copied to the stack on entry, and copied back to the caller on exit.
The MAC routine will therefore be dependent on the IMPORT declaration
in the Plane program.

A routine declared as ROUTINE STANDARD will transfer all parameters by
reference; the MAC routine will be Fortran as well as Plane
compatible. Return is to the first location following the call.
Neither STANDARD nor REFERENCE allows in-values. Plano stack layout is
the same as for FORTRAN—100.

In—values are are transferred like a function value: a simple variable
is found in the TAD, AD or A registers; a compound value is
transferred by its address in the A register. (The argument list is
always found at 8—172B if no routine modifier is present; the A
register is therefore available.)

4.2 Plano routines for Fortran or Pascal

A ROUTINE STANDARD may be called from any language that may call
Fortran compatible routines.

A Plano routine called from a non-Plano program should always
initialize its own stack by INISTACK. Although the stack header layout
is the same as for FORTRAN—100, there are slight differences in the
stack handling. Plane routines may be used from REENTRANT—MODE as well
as non—reentrant Fortran.

A Plane ROUTINE STANDARD used by a Pascal program should be decalred
in the Pascal program like a Fortran subroutine or function:

PROCEDURE NAME; FORTRAN;

An example of a Plane routine used by a Fortran program is shown in
chapter 20.

ND~60u133.02

Real Time Guide 327
_Lcading-a SINTRAN RT system

APPENDIX D: Loading a SINTRAN RT system

In order to load user programs‘ in :BRF format into an Sintran RT
system, the code can be inserted into the :BPUN file containing} the
Sintran RT operating system on a Sintran III/VS/VSE system. ‘

RT Sintran is delivered on a floppy containing two identical files,
one of type :IMAG, one of type :BPUN. The :IMAG file will usuallY' be
kept unmodified as a backup, while user RT programs are loaded into
the :BPUN file. As the :BPUN file is the only :BPUN file on the
floppy, it will be loaded automatically when the floppy monitor is
started after a "1560&" microprogram command, or the LOAD button
pressed (assuming that the ALD switch register is set to 1560B).

The loading of code into the :BPUN file is done through the command

*IMAGE—LOAD <image file) (output file)
(<RT description si2e>B (<bootstrap addr.>)

Command parameters:

<image file) - file containg the original RT Sintran. Default
file type is :BPUN.

<output file) file that will contain the new copy of the
operating system with the user programs added

<RT descr. size) size of RT description; should be 32 for the RTP
version, 24 for the RT version. Default is 2“.

(bootstrap addr.) address of the BPUN bootstrap. Default is current
load address at END-LOAD.

The <image file> must contain an RT Sintran image. Observe that the
default type of this file is :BPUN, while the file ordinarily used as
backup copy is delivered with :IMAG as type.

It is possible to add more programs to an already modified Sintran
file, by giving this as <image file>. The <image file) and (output
file) may be the same file.

After this command is issued, subsequent commands will refer to the RT
Sintran image, rather than to the system used for loading. Code will
be loaded to the image rather than to a segment. Symbols definitions
and references apply to the image, not to the RTFIL, and RT
description addresses are found in the tables in the image.

A number of commands are not relevant to RT Sintran. E.g., there is no
segment file, programs are located contiguously in memory, and will
always be resident. All commands relating to segments and files are
illegal. These will cause the error message THIS COMMAND NOT ALLOWED
NOW. The list of illegal commands is found in appendix D of SINTRAN
III Reference Manual ND—60.128.

After all programs have been loaded, the current load address must be
patched into location 30, the address of the first free RT description
into location 32. This is done by the *CHANGE-LOCATION command:

328 Real Time Guide
Loading a SINTRAN RT system

mnxsw-rnaa-nr-nascn,,,

31275 31327 31361 311113 31111153 311177 31531 31563
31615 316n7 31701 31733 31765 32017 32051

figggnmadxxunuou
32/ 36371' 31275
“§6711 .;
”unrn34xmnbnnnn
mtififii““‘“‘77‘ 0.103: 101673 c.Lnnn: 10167!
“CHARGE-LOCATIOH
30/110133"‘10167n

100211 .a P

Symbolic names of RT programs are not stored, but may be defined after
the RT Sintran is started by the command QDEFINE-PRDGRAM,
corresponding to the “DEFINE-PROGRAM in the RT loader.

ND~60.133.02

Real Time Guide
Index

absolute transfer
access conflicts .
address translation
alternative page ta

I I I I I I I I I I

I I I I I I I I I I

I I I I I I I I I

ble I I I I I I I I

background communication
background priority
background program
background programs

I I I I I I I I o

I I I I I I I I I I

priority
background RT programs
background segments
background timeslic
backup recovering
bankers algorithm
Basic

I I I I I I I I I

e I I I I I I I I I

I I I I I I I I I I

I I I I I I I I I I

I I I I I I I I I I

batch processor priority
buffer size

changing . . .
call
clock adjusting .
clock adjustment .
clock interrupts .
clock reading . .
Cobol
common blocks . .
communication . .
communication with
CPU histogram . .
CPU priority . . .
current load addres
datafield
datafields
datafield address.
deadlock
deadlocks
demand allocation
demand paging . .
demand segment . .
demand segments .
device

internal . . .
releasing . . .
requesting . .
reserving . .

device buffer . .
clearing . . .

device connection

background programs

8 I I I I I I I I I

I I I I I I I I I I

device driver routine
device releasing .
device reservation
diagnosis
Dijkstra semaphore
directory

reserving . . .

I I I I I I I I I o

I I I I I I I I I I

I I I I I I I I I I

I I I I I I I I I I

I I I I I I I I I I

direct memory access

ND-60.133.02

329

188.
168.
20.
29, 200.
169.
107.
1.
13.
12.
”30

107.
9H.
262.
17.
2216.
164.
7.
128.
126.
16.
126.
17.
86.
265.
15.
2H2.
105.
86. -
63, 134.
8.
14%.
251.
189.
100.
13.
an.
13.
133.
1”.
70.
70.
70, 135.
183.
163.
115.
235.
138.
8.
286.
1MB.

1141.

25.

330

direct task
activating .
activation . .
communication .
implementing .
loading

direct tasks . . .
direct transfer .
disabling ESC .
DNA
double buffering
error device . .
error handling .
ESC

disabling . . .
execution queue .
execution queue .
external devices .
external interrupt
fatal deadlocks .
fatal errors .

O
I

files
file access . . .
file name . . .
file number . .
fixed segment .
fixed segments . .
fixing segment
forced termination

O
O

O I

forcing device release . .
foreground program
Fortran C I O I O

Fortran file number
FPM I I I I I O I

histogram .
internal devices .

block oriented
byte oriented
number of . . .
reserving . . .
word oriented .

internal interrupt
internal interrupts
internal time 0 I

hierarchial reservation .

I I I I I

I I I I I

I I I I I

I I I I I

I I I I I

I I I I I

I I I I I

O O I O O

O O O I O

I I I I I

I I I I I

O O O O I

.

.
I I I I I

I I I I I

starting
I I O I I

I I I I I

I I I I I

O

I I I I

I I I I

I I O

I I I I

O

O O C O

I O O O

I I I I

I I I I I

I I I I I

O O C C O

I I I I I

I I I I I

O C O O O

interprogram data exchange .
interrupt .
interrupt detection
interrupt handlers
interrupt levels .
interrupt signal .
interrupt system .
interrupt system of
LDN O I I O I I I

level switching .
linking segments .

I I I I I

O O O C

I I I I I

O O O I I

O O O O O

I I I I I

f G O O I

I I I I

I I I I I1 I

C O O O 0 I

O O O O I) I

I I I I 0 I

I I I I n I

I I I I 0 I

I I I I 0 I

I I I I n I

I I I I u I

I I I I u I

O I O C D O

I O O O D O

I I I I 1: I

I I I I 1) I

I I I I e I

I I I I «I I

I I I I e I

I I I I I I

I I I I I I

I I I I I I

I I I I I I

I I I I I I

I I I I I I

I I I I I I

I I I I I

I I I I I I

I I I I I

I I I I I I

I I I I I I

I I I I I I

I I I I I I

I I I I I I

I I I I I I

I I I I I I

I I I I I I

I I I I I I

I I I I I I

I I I I I I

I I I I I I

I I I I I I

I I I I I I

I I I I I I

I I I I I

I I I I I I

I o I I I I

I I I I I I

I I I I I I

I I I I I I

I I I I I I

I o I I I I

I I I I I I

I o I I I I

O 6 C O O O

I O I I O O

ND-60.133.02

E
9

e
9

9
9

0
O

I
6

i
I

0
I

I
I

I
I

I
I

I
I

I
I

I
I

I

I
I

O
I

O
I

O
O

O
O

O
O

O
I

O
I

O
O

O
O

Q
C

O
O

O
I

I
I

I

I
O

O
O

O
O

O
C

O
O

I
O

I
O

O
O

O
C

O
O

O

C
O

O
O

O
O

I
D

O
I

C
O

C
O

O
C

O
I

O
O

O
O

O
O

O
I

I
O

O
O

O
O

O
I

O
I

O
O

C
O

O
O

O
C

I
O

O
O

I
O

O
I

O
O

O

O
O

I
I

O
O

O
O

O
C

O
I

O
O

O
O

O
O

O
O

O
O

O
O

O
O

9

Real Time Guide
Index

233.
236.
23h.
233.
233.
16. 233.
187.
192.
25.
180.
225.
225.

192.
11.
65.
133.
115.
251.
227.
111.
175.
175.
175.
#5.
13.
13, 101.
120.
139.
1.
17.
176.
11.
260.
2112.
111,, 1311.
165.
160.
160.
161.
1611.
35.
370

126.
155.

15.
39.
38.
359
35.
35.
no.
1324.
36.
203.

37.

Real Time Guide
Index

linking table . . .
link segment
loading
loading errors . . .
load address setting
load commands . . .
load segment
logical address. . .
logical device number
lower address. . . .
measurement
measurements
memory
memory allocation .
memory management .
memory management system . .
memory map table . . a o n 0

memory map table entry . . .
memory page o o u o

microprogram communication .
monitor

RT
monitor call
monitor calls

RT
monitor queue . . .

o D O o

I a o 0

multiple segment programs .
multisegment program
ND—Net
NODAL
nondemand allocation
nondemand segment .
nondemand segments .
nonfatal deadlocks .
nonfatal errors . .
NORD—PL
page

access
page fault
page fault handling
page protection . .

FPM.......
RPM.......
WPM

loading

page protection system . . .
page queue
page table
page table entry . .

O O u o

o o o I

o O o I

paging control registers . .
paging off area . .
Pascal
PCR
performance
periodic execution .
peripheral devices .

ND-60.133.02

331

9, 92.
811.
9.
9o.
85.

203.
82.
19.

134.
86.
238.
237.
10.
100.
9.
19.
10.
711.
10.
258.
11.
77.

7.
12, 66.
197.
203.
265.
17.
100.
1m.
13.
251.
227.
17.
11.
11.
31.
76.
11, 23.
23.
23.
23.
26.
75.
1o, 20, 75, 200.
23.
29.
33.
17.
290

237.
117.
8-.

332 Real Time Guide
Index

8.

176.
peripheral equipment interface .
peripheral file number

C O O O I O C O O O

permanent files 169.
physical address 19.
physical memory 9.
PID register . 39.
PIE register . 39.
PIOFIoo.ooooeoooooeoeooOOOII33e

Plane0.0.0....00.00000000000179

POFoo.ooeoeeooo-o-oe-ooeocc33o

preventing deadlocks 259.
priority changing 106.
priority interrupt detect register 39.
priority interrupt enable register 39o
priority levels 106.
process switching 33.
program

background
compilation
foreground

1.
79.
1.

loading . 80.
realtime . 1.
reentrant . 15.
scheduling 71.
termination 70.

programmed interrupts 39.
program activation 69.
program communication 1“.
program levels 35.
program logging 2H2.
program management 53.
program name . 56.
program priority 105.
program scheduling 110.
prohibiting execution 122.
protection mecanism 25.
queue

execution . 11.
monitor . 12.
reservation 12.
'bime O O l 0 O O 0 O I C O O O I O I O O O I O O 12 D

waiting . 12.
queues I O O O O O 0 0 O I O O 0 O O O O O O O O O 0 1 1 i

queue elements 53.
real time commands 8.
real time loader 9.
real time program 1.
recursion . 222.
recursive programs 15.
recursive routines 15.
reentrant Fortran program 218.
reentrant programs 15.
reentrant segments 13.
reentrant systems 207.
register contents 200.

ND-60.133.02

Real Time Guide
Index

reservation queue
resource access .
response time . .
ring
ring buffer . . .
ring priveleged instructions
ring protection .

o

o

ring protection system
ring violation . .
RPM
RT

monitor calls .
RTCOMHON

access
inspection
size

RT—loader
RT commands . . .
RT description . .
RT description table
RT files
RT loader
RT monitor
RT monitor calls .
RT name

O

0

a

o

0

RT programming languages
RT programs . . .
RT program segments
RT user
segment

allocation . .
backup
deletion . . .
demand
fixed
nondemand . . .
reentrant . . .
removing . . .
size

segments
segment allocation
segment backup . .
segment common . .
segment contents .
segment file . . .

organization .
segment files . .

0

segment file bit map
segment file names
segment fixing . .
segment linking .
segment location .
segment management
segment number . .
segment protection

0

7ND;60.T33.02

333

12, 67.
11.
237.
10.
160.
28.
10.
27.
27.
11.
1.
7.
1a, 156, 204.
156.
157.
157.
80.
7.
8, 5M.
5”.
1H.
9.
11.
7.
56.
170

8.
61.
7.

81.
9a.
91.
13, 2111.
45.
13, an.
13.
75.
201.
8, 41.

7H5.
9”.
2011.
an.
41.
111.
8.
”5.
”8.
13, 101.
203.
”8.
72.
111.
9.

33H

segment queue . . .
segment sharing
segment size
segment table
segment table entry . .
segment use
semaphore
semaphores
shadow page mecanism . .
SINtRAN III commands . .
stack
stack allocation
starting RT programs . .
statistics
suspending execution . .
swapping
system histogram
system characteristics .
system included segments
system outline
system queues
system segment
system tables
SYSTEM user
timeslicing
time queue
twoubank system
upper address
user

RT
SYSTEM

user name
virtual address
virtual deadlock
virtual memory
waiting queue
waiting queue priority .
‘HPM O O O O O O O I O I

Xmessage
KMSG
XMSG communication . . .

I
O

O
I

I
O

O
O

O
O

O
O

O
O

O
O

C
O

O
C

O
O

O
O

C
O

O
O

I
O

O
O

O
O

O
O

O
O

O
0

O
O

I
O

O
O

O
O

O
O

O
O

O
O

O
O

o o o o u o

o o o o o u

e o o o u a

o o o o o o

o o o o 0 I

o o o o 0 o

o o o o o o

o o o o a Q

o o o o a o

o o o o u o

o o o o u o

e o o o «I o

o o o o m 0

o o o o a o

o o o o I! O

o a I o a o

o o o 0 II o

o o o o 1| o

o o o o 0 o

o o n o o o

o o o o o O

o o o o o o

o o I I i o

o o o o D o

o O O I I O

o t o I D o

I O O ’ O

o o o o O

o o o o t O

o o o o o o

o o o o o o

o o o o I o

o o o o I O

o o o o I o

o a o o e o

o O o o o o

o o o 0

a o o a 0

o o o o I O

O I O C I O

ND—60.133.02

9
9

Q
9

Q
Q

a
Q

9
9

e
9

0

O
O

O
O

O
C

O
I

0
O

O
O

O
C

O
I

O
0

D
O

O
O

O
O

O
O

O
O

O
O

I
I

O
.

I
O

O
O

C
O

O
O

O
O

U
C

O
I

O
I

C
C

O
I

C
I

I
O

O
O

O
O

O
O

O
O

O
O

I
I

O
D

O
O

O
O

D
C

C
O

I
O

.
O

O
O

C
O

O
O

O
O

O
C

O
D

O
B

O
O

O
O

C
O

O
I

O
O

O
O

C
O

C
O

O
O

O
H

0
0

O
9

C

O
O

O
O

C
Q

C
C

I
O

I
O

I
O

O
C

O
O

O
C

O
O

C
I

C

Real Time Guide
Index

71.
167.

32,
13,
kg.
10.
72.
nu.
115. 259.
1n, 119.
207.

7.

218.
219.
109.
237.
12a.
32.
2u3.
237.
’13.
7.
53.
nu.
53.
7.

12,
12,
an.

107.
68.

. 86.

O
C

I
l

0
C

C
O 7.

7.
175.
19.
252.
19.
12, 66.
106.
11.
15.
15.
265.

”HHHHHH SEND US YOUR COMMENTS!!! Hflflwfisfiu

Please let us know if you
' find errors
" cannot understand information
" cannot find information
" find needless information

Do you think we could innprove the manual by
rearranging the contents? You could also tell
us if you like the manual!

Are you frustrated because of unclear information in
this manual? Do you have trouble finding things?
Why don't you join the Reader’s Club and send us a
note? You will receive a membership card —— and
an answer to your comments.

(if?

H*H..H HELP YOURSELF EiY HELPING US!! “”HHHH

Manual name: SINTRAN III Real Time Guide Manual number; ND—60.133.02

What problems do you have? (use extra pages if needed)

Rev. A

Do you have suggestions; for improving this manual ?

Your name: Data:

Company: Position-

Address:

What are you using this manual for ?

NOTE!
This form is primarily for
documentation errors. Software and
system errors should be reported on
Customer System Reports.

Send to:
Norsk Data AS ______’
Documentation Department
PO. Box 25, Bogerud Norsk Data’s answer will be found
0621 Oslo 6, Norway on reverse side

Answer from Norsk Data

Answered by Date

..

Norsk Data A.S

Documentation Department:
PO. Box 25, Bogerud
0621 Oslo6, Norway

