
THE DATABASE SYSTEM
SIBAS l|
ND User Manual
ND—60.127.5EN

_/

on»... «“000», “can” .66 0.26;
%++++++§+¢+++$++#+++++fi+fi&+§++fi%¢¢%%¢§+$+++$é+++§+é%%i

‘;‘V

Wm

THE DATABASE SYSTEM
ll

ND U$er Manual
ND~60.127.5 EN

NOTICE

The information in this document is subject to change without notice. Norsk Data
AS assumes no responsibility for any errors that may appear in this document,
Norsk Data AS assumes no responsibility for the use or reliability of its software
on equipment that is not furnished or supported by Norsk Data AS

The information described in this document is protected by copyrights It may not
be photocopied, reproduced or translated without the prior consent of Norsk
Data AtS.

Copyright © 1984 by Norsk Data A.S

PRINTING RECORD
Printing Notes

02/80 Version 01 — Replaces the previous manuals numbered ND-60.057
07/80 Revision A

The following pages have been revised:
xiii to xv, 3—5, 4—11 to 4—16, 5—6 to 5-35, 6—5, 6—6, 6—9, 6—21, 6—22,
7—3 to 7—4a, A—l to A—2, D—l, F—l to F—2.

09/81 Version 02
10/82 Revision A

The following pages have been revised or added:
xi to xvi, 1—2, 1—4, 3—5 to 3—6, 3—15 to 3—16,4—1 to 4—6, 4—15 to 4—16,
4—31 to 4—48, 5—2, 5—5 to 5—6, 5—19 to 5—20a, 5—29 to 5—32, 5—35 to 5—36,
6—17 to 6—20, 6—22, 7—3 to 7—5, lndex.

02/83 Version 03
08/84 Version 04-
01/86 Version 05

THE DATABASE SYSTE M — SlBAS H
N D User Manual
Publ.No. ND~60.127.5 EN

vz
v

N M
N

Norsg’Data

Norsk Data A.S
Graphic Center
P.O.Box 25, Bogerud
0621 Oslo 6, Norway

iv

Manuals can be updated in two ways, new versions and revisions, New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one
or more single pages to be merged into the manual by the user, each revised
page being listed on the new printing record sent out with the revision The
old printing record should be replaced by the new one.

New versions and revisions are announced in the Customer Support information
(CSI) and can be ordered as described below.

The reader’s comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms and comments should be sent to:

Documentation Department
Norsk Data A.S
PO. Box 25, Bogerud
0621 Oslo 6, Norway

Requests for documentation should be sent to the local ND office or (in Norway)
to:

Graphic Center
Norsk Data A.S
P.O. Box 25, Bogerud
0621 Oslo 6, Norway

The SIBAS database system, originally developed by the Central Institute for
Industrial Research (CIIR) in Oslo, Norway, is the first fully developed database
system following the CODASYL DBTG recommendations for implementation on a
ménicomputer.

The system described in this manual has also been implemented on other
computer systems, such as UNlVAC 1100, IBM 360/370, CDC CYBER and DEC 10.
It has been expanded and optimized in a joint development project with the
company offering SlBAS on large computer systems: A/S Shipping Research
Services, Oslo, together with the Central institute for industrial Research, Oslo,
and Norsk Data AS.

The implementation of SIBAS on the ND computers utilizes the advanced
facilities of the SINTRAN ||l Virtual Storage Operating System, and offers
multiple user programs simultaneous access to the same database in a
controlled and secure manner, thus minimizing the amount of additional routines
in the user’s programs.

Norsk Data wishes to thank the users’ group reference committee for their
contributions and kind assistance in the writing of this manual. Their comments
have proved to be very helpful and we look forward to receiving all users’
cooperation in the future.

Norsk Data AS.
Software Department

ND~60.l27.5 EN

-vi-

NIB-60.1275 EN

PREFACE

THE PRODUCT

This manual describes the SIBAS ll Database Management System, version F.
Product number: SlBAS ll SUT 10166 E.

SiBAS ll is delivered as one standard package. There are additional modules.

The standard system contains the following modules:

Modules:

SIBAS System Generation
SlBZ—INSTALL2COM

SIBAS Real-Time Segments
SlBZ—PROG:BPUN
SlB2—DATAzBPUN

SIBAS Data Manipulation Libraries
SlBLIB-ZN-MX
SlBLlB~1N—MX
SIBLlB-lR—MX
SlBZ-DML—B-MX
SlBZ—DML-R-MX

SIBAS Background Programs
SlBZ-DRL:PROG
SlBZ~DBM2PROG
SlBZ-SERV:PROG
SlBlNTERzPROG

Sll32:LOOKLOG:PROG

Additional Modules are:

SIBAS Backend Programs

NDs60.127.5 EN

THE READER

SlBAS ll User’s manual is written for a wide variety of users, but the different
chapters are oriented towards different classes of readers:

Programmers, who write application programs which make use of SIBAS.

Database administrators who are concerned with secure and efficient

operations of the overall system.

Any one else who is generally interested in database management systems.

The database administrator should read the whole manual.

The application programmer will be more concerned with Chapters 4 and 7;
Data Manipulation and Error Reporting.

The ”generally interested” reader may limit him/herself to the first two
chapters.

PREREQUISITE KNOWLEDGE

The first two chapters do not need any prerequisite knowledge, but it is assumed
that application programmers are familiar with the SINTRAN lll operating system
and at least one programming language. More specifically, they should be
familiar with the concept of calling subroutines since SlBAS is accessed via
subroutine calls.

The database administrator must be familiar with the real—time features of

SlNTRAN lll since SlBAS makes extensive use of them. ‘

ND—60.127,5 EN

TH E MAN UAL

Chapters 1 and 2 are an introduction to SlBAS and should give the necessary
background to go on to the following chapters.

Chapter 3 gives a detailed description of how one can define or redefine a
database — it is of special interest for a database administrator, but may also be
of interest to a programmer.

Chapter 4 gives a detailed description of how to call SlBAS data manipulation
functions. This chapter is oriented towards application programmers.

Chapter 5 describes how to administrate and operate a SIBAS database. This
chapter is written for database administrators.

Chapter 6 is a description of some utility programs provided with SlBAS. This
chapter is also written for database administrators.

Chapter 7 is a list of errors and how to handle them.

The appendices give reference information in a compressed form.

RilELATED MANUALS:

The foliowing manuals describe Systems of greatest interest to the SIBAS
application programmer:

SiNTRAN lll User's Guide ND-60.050
ND Relocating Loader ND-60.066

ND~60.127.5 EN

WHAT IS NEW IN SlBAS-F

~— The maximum number of realms that can be defined is now 255.

_ The maximum number of pages per realm is increased to 2000 000.

—— When a realm is full it can be extended automatically (see page 2—19).

—— The maximum number OS-files per database is increased to 24‘

a The maximum number of member realm types in .a multi‘member set is 4 (page 2—24).

H A realm may span over several OS—files (see pages 3--14, 3-15, 3~16,3~33,3—34,3—35).

m The display and storage codes have been extended (see pages 345, 3—47, 3—49 to 3-50).

m The following new calls have been added:
SWHAT to obtain realm name and physical record number of the

current or any remembered record (see page 3-49).
SFRNO to find a record using its physical record number (see page

3-49).
SFRGT it is a combined SFRNO, SGET call (see page 3—49)

-— It is now possible to take a "synchronized checkpoint"(see page 5—30).

ND-60.127t5 EN

Sect/0n:

1.1
1.2

1.2.1
1.2.2

1.3

2.1
2.2

2.2.1
2.2.2
2.2.3
2.2.4
2.2.5

2.2.5.1

2.3.1
23.2

2.3.2.1
2.3.2.2
2.3.2.3
2.3.2.4

2.4

2.4.1

2.4.1.1
2.412

24.2

2.4.2.1
2.4.2.2

M

TABLE OF CONTENTS
+ -l- +

Page:

INTRODUCTION 1 ~~~~~~ 3

The SIBAS Database System 1—~ 3
ND SIBAS Implementation .. 1— 4

SIBAS on the ND-SOO System I ~~~~~ 5
SIBAS in a Network: SIBAS Backend 1...- 6

SIBAS Modules .. 1 ----- 7

SIBAS PRINCIPLES 2—- 3

The Database Concept ... 2m 3
Data Structure .. 2~--11

Items .. 2w14
Group Items .. 2...,14
Record Types .. 2~~15
Search Keys and Indexes 2--~17
Realm .. 2-m19

Automatic Expansion of a Realm 2—19

Database .. 2~»20

Data Relations .. 2 ------ 22

Search Regions ... 2 ~22
Sets ... 2~24

Set Items .. 2—-—»26
Set Occurrences .. 2—»26
Chain Representation of Set Types 2--—27
Storage Class ... 2~32

Data Manipulation .. 2_35

Access Principles .. 2-«35

General ... 2—35
Currency Indicators 2....-37

Connecting and Disconnecting, Inserting and
Removing .. 22.40

Connecting and Disconnecting 2—40
Inserting into and Removing from an Index 2—44

ND»60.127.5 EN

Section:

2.4.3

2.4.3.1
2.4.3.2

2.4.3.3
2.4.3.4

2.4.4

2.4.4.1
2.4.4.2
2.4.4.3

2.5

2.5.1

3.1
3.2
3.3

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7
3.3.8
3.3.9
3.3.10
3.3.11
3.3.12
3.3.13
3.3.14
3.3.15
3.3.16
3.3.17
3.3.18
3.3.19
3.3.20
3.3.21
3.3.22
3.3.23

xii

Concurrent Processing ..

Database Reservation
Realm Usage Modes and Realm Protection

Modes ..

Record Level Look Out

Notification of Change

Privacy System ..

Privacy on Database Level

Privacy on Record Occurrence Level

Summary of the Setting of Current
Password ..

Data Dictionary ...

Definition of the Data Dictionary

DEFiNiTlON/REDEFiNiTiON LANGUAGE (DRL)

introduction ..

How the Definition/Redefinition Module Works

DRL. input File ...

Global Rules ..
Common Part of the Statements

Start initiation ...

Start Redefinition ..

End/Exit ...

New 08 File ..

New System Realm ...
New Seria|~Reaim ...

New CalcwReaim ..
New item ...

New Group ..

New Set ...

New index ...

New Text ...

Deiete Set ...

Delete Text ..

Delete index ..

Delete item ..

Delete Group ...
Change System—Realm ..
Change SeriaieReaim ..
Change Caic Realm ...
Change Set ..

NDe60.127.5 EN

Sect/on :

3.3.24
3.3.25
3.3.26
33.27

3.41
3.4.2

3.4.3
3.4.4
3.4.5

3.5
3 6
3.7

4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.2.9
4.2.10
4.2.11
4.2.12
4.2.13
4.2.14
4.2.15
4.2.16
4.2.17
4.2.18
4.2.19
4.2.20
4.2.21
4.2.22
4.2.23
4.2.24
4.2.25
4.2.26
4.2.27

xiii

Change item
Change Group
Change Text
Rename

The Data Description Catalogue (DDC) in SlBZ DRL

Display Code ...
List of Legal Symbols and Rules
for the DISPLAY
Storage Code _ . . .
List of Storage Code
Storage and Display in SlBAS: Date and Time ...

Din‘tensioning of Database Parameters
How to Run DRL on the Computer
Examples

DATA MANIPULATlON LANGUAGE (DML)

General ...
Parameter Descriptions ..

Open Database ..
Close Database ...
Ready Realm ...
Finish Realm ..
Direct Find ...
Relative Find ..
Find Set Owner ...

Disconnect ...
Insert ...
Remove ..
Remember ...
Forget ..
Lock ...
Unlock ..
Change—Password ...
Accept ...
Erase Element ..
Accumulate ...
Fetch-Get ...
Get Schemas Information
Transaction Units ..
Calls Using Physical Record Number

ND-60.127.5 EN

Page:

40
41
42

, 43

C
Q

Q
Q

L
Q

OJ
co

co
a

)“
;

m
o

n
o

;
N

—
JO

V

w
Cri

(71
0'?

\I
A

00

4_4

4—7

4~10
4—13
4—14
4——17

Sect/on:

4.3

43.1

4.3.1.1

4.3.1.2

4.3.2

4.3.2.1
4.3.2.2

4.3.3

4.4

4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.4.7

4.4.7.1
44.7.2

51

5.1.1
5.1.2

5.2
5.3

5.3.1
5.3.2
5.3.3

xw

Host Language Considerations

FORTRAN ..

General Rules for FORTRAN on
The SlBAS—SOO ...
Standard 'Cookbook’ for Programming
FORTRAN Applications

General Rules for COBOL on The SlBAS—SOO .

Standard 'Cookbook’ for Programming
COBOL Applications ..

How to Load Application Programs

Description ...
Different Types of Simulators

Loading 1BANK Programs with SlBAS

Loading 2BANK Programs with SlBAS
Loading Reentrant Programs with SIBAS
Loading Rea|~Time Programs with SlBAS
Applications on ND~500 Systems

Applications Running on the 500 CPU

Applications Running on the ND—lOO CPU

DATABASE ADMlNlSTRATlON

Real—Time Organization of SlBAS

How is SlBAS Organized?
Organization of SlBAS on an ND‘500 System

SIBAS States ..
Logging and Recovery Facilities

General ..
Checkpoint ...
Routine Logging ..

ND~60.127.5 EN

4—62

5—“ 3

5-- 4

540
SW12

Sect/on:

54,1

4>
~4

> 0.)

4.7

55.1
552
5.5.3
55.4

5.6
57

XV

Page:

Critical Sequence/Transaction Units 5~15
Before lmage Logging .. 5—47
Backup ... SW17
System Failure/Restart Yaw-18

Restart from a Backup Copy and a Routine
Log ... 5~l8
Restart from a Database with Before lmage
and Routine Log ... 5~19
Reprocessing after System Failure 5—-19

Detailed Description of the Calls 5~—20

Start/Stop SlBAS/Get-State 5~22
Run/Pause/Recover/Finish/Set Passive/
ReproAStatus .. 5~«23
lnitiate~Log .. 5~25
Begin/End Sequence ... 5~26
Set Routine Logging On/Oft 5~27
Log Message 5 *28
Write~Logv-Bufter—Ontoutine-Log 5—28
Checkpoint’ ... 5 ~29
Synchronized Checkpoint 5—»30
RolLBack ... SW31
Set-Conditions“For-Reprocessing 5—31
Reprocess—Routineiog ... 5—33
Set SIBAS System Number 5—~34
Reserve/Release SlBAS .. 5—35
ExecuteMAcro .. 5~35
DBAvCalls .. 5—37
FORCE~CLOSE Database 5~38

Special SIBASVSOO Features 5~39

Calls with Different Functions 5~39
Calls not Available ... 5—39
Exceeding the Size of a Direct Routine Log 5~4O
SIBASBOO Macros ... 5—40

How to install SIBAS .. SW40
Routine for Reading SSl/SEC Code and Log
information ... 5~4l

ND-60r1275 EN

xvi

Section: Page:

6 UTlLlTlES 6H 3

6.1 Database Maintenance Module 6m 3

61 1 Introduction ,,,,,,,,,, 6 3

612 Start .. 6--— 5
61.3 Exit, Stop the DBM Module 6 ----- 5
6.1.4 Ready Realms ... 6M 6

6.1.5 Finish Realms .. 6 ~~~~~ 6

6.1.6 Print .. 6m 7

6.1.7 Patch .. 6 ~~~~~~ 8

6.1.8 Reset Error-Flags .. 6w 9

6.2 Privacy ... 6 «10

6.2.1 General ... 6~1O

6.2.2 Define Password ... 6m— 13

6.2.3 Remove Password .. (Sm-14

6.2.4 Display Password/Privacy 6014

6.2.5 Index Compression .. 6-15

6.3 Consistency Checking .. 6~16

6.3.1 General .. 6~16

6.3.2 Calc Key Verification .. 6~18

6.3.3 index Key Verification .. (Sm-19

6.3.4 Set Verification .. 6—~-—2O

6.3.5 PageLink Verification ... 6 ----- 22
6.3 6 Free»Si,)ace~8tatistics ... (So-~23
6.3.7 Example .. 6~24

6.3.8 Unload/Load ... 6—«25

6.3.9 Clear SystemRealm ... 6m27

6.4 SlBAS Service Program .. 6~28'

6.11.1 SIBAS'Service Extensions SIBASVSOO 6-30

6.5 SlBINTER .. 6—«31

6.5.1 introduction .. 6~31
6.5.2 The HELP Function ... 6»-~-31

6.5.3 Syntax of the SlBlNTER Commands 6——32

6.5.4 Listing of the SlBlNTER Commands 6~33
6.5.5 A SlBlNTER Session ... 6-34

ND-60.127.5 EN

xvii

Section:

7 ERROR AND EXCEPTION CONDITIONS

7.1 FataI Errors ...
7A2 Interface and Simuiator Errors
7.3 DML Diagnostics, Database Exception Conditions

(DBECS) ...
7.4 Run-Time Message m from SIBAS

Appendix:

A SUMMARY OF THE DML STATEMENTS

8 SUMMARY OF THE SIB-DRL STATEMENTS

C SUMMARY OF THE SIB»DBM STATEMENTS

D SUMMARY OF THE SIB-SERVICE STATEMENTS

E SUMMARY OF THE DATABASE EXCEPTION
CONDITIONS , ...

F SUMMARY OF THE DML ROUTINE NUMBERS

G CONSTANTS AND LIMITATIONS

I-I STORAGE CODES ..

INDEX

ND-60.I27.5 EN

Page:

xviii

ND-60.127‘5 EN

—xix-

SEBAS M
The Database Management System

ND—60‘1275 EN

-xx-

DIALOGUE DIALOGUE is a new generation of database
management system. It has the complete set of
tools and utilities for:

a high performance, easy expansion, and
redefinition of a database.

0 creating tailored user interface;
0 creating and maintaining applications easily and

efficiently;
a generating advanced reports;
0 common data dictionary information for easy

coordination and maintenance of the database
and applications.

The modules of DIALOGUE are described below:

USER ENVIRONMENT The UE is an integrated part of the SINTRAN
operating system. It can be used to create a
tailor—made, individual interface for the ND system.

4TH GENERATION UNIQUE is a tool for application development. It
LANGUAGE can be used to develop screen pictures and specify

transactions directly on the screen. Productivity
gains by using UNIQUE are: about 90% of
development time and maintenance resources.

REPORT GENERATOR RG allows the definition of advanced reports in an
easy manner by drawing the desired layout on the
screen.

QUERY LANGUAGE ACCESS is the tool which can be used to look at
database information in terms of tables. It is
suitable for on~Iine use.

APPLICATION ABM can be used to make demanding transaction
BUILDING AND systems. It is used interactively with simple
MAINTENANCE directives. It saves about 50% of development time

and 90% of maintenance resources.

IDATABASE SIBAS IS A FULL CODASYL DATABASE
MANAGEMENT MANAGEMENT SYSTEM. ITS FEATURES INCLUDE

HIGH PERFORMANCE, EASY EXPANSION AND
REDEFINITION OF DATABASE. IT IS WELL SUITED
FOR DISTRIBUTED PROCESSING ENVIRONMENTS,
AND PROVIDES FLEXIBILITY AND HIGH SECURITY.

ND*60,127.5 EN

1-1

CHAPTER 1 . INTRODUCTION

ABSTRACT

SIBAS is a CODASYL database management system. Its features include: (i)
easy definition and redefinition of database structures and active dictionary
facilities; (ii) multiprogrammed, terminal oriented computing environment; (iii)
robust measures for data integrity and safety; and (iv) distributed data
processing capabilities.

TABLE OF CONTENTS

1.1 THE SIBAS DATABASE SYSTEM.

1.2 ND SIBAS IMPLEMENTATION.
1.2.1. SIBAS on the ND-500 System.
1.2.2 SIBAS in a network: SIBAS backend.

1.3 SIBAS MODULES

ND—60.127.5 EN

1-2

ND“60‘127.5 EN

1.1

1-3

ENTRODUCTION

TlHE SEBAS DATABASE SYSTEM

SIBAS is a Database Management System, originally designed by the Central
Institute for Industrial Research in Oslo, and presently implemented on IBM,
UNlVAC, CDC, DEC 10, SEL and ND computers. The data management
capabilities correspond to the recommendations contained in the CODASYL
report.

The implementation of SIBAS for ND computers contains some extensions as
compared to the CODASYL report. Another important characteristic of this
implementation is the strict orientation towards a multiprogrammed, terminal
oriented computing environment. This means that many users may access one
database simultaneously, and also that it is possible to have several databases in
a system at the same time. Great efforts have been made to provide safe and
effective tools for control of data integrety and security.

The ND SlBAS system includes a data definition and redefinition facility, a
run time database manipulating package and a comprehensive set of interactive
utiiity programs.

in general terms, a Database Management System (DBMS) is a software
concept or environment which allows a database to be structured and accessed
in a standardized way. it includes a set of program functions which the
application programmer uses when operating in the DBMS environment. in this
way, his own work will be reduced, since he does not need to solve the
corresponding design problems and program the general service routines
himself. The ND SIBAS system has been extensively used in a number of
installations since 1975 and is today a well-proven and reliable system.

Using a DBMS is a way of adding intelligence to the computer system Data
items may be connected to each other depending on defined relational patterns
These connections could well be done in the logic of a program using ordinary
data files, but such a solution would be expensive both in development and
maintenance costs. The DBMS allows application programs to be reduced in size
and complexity. However, the relations between data will be described as
pointers and tables within the database. This means that the overhead in
program complexity is changed into an overhead in storage space.

By ”overhead in space” we here mean the difference between the total size of
the database and the size of the "pure data". The overhead depends on the
access facilities desired and deserves careful consideration by the database
designer.

ND—60.127.5 EN

1.2

1-4

Nil) SIBAS IMPLEMENTATION

in the ND SIBAS implementation, the real-time processing facilities of SlNTRAN

have been used to a great extent. The run—time Database Control System (DECS)
is loaded and operated as a real—time program. Since SIBAS code is reentrant,

several databases may be handled concurrently with only a limited increase in

memory requirements.

The application programs may be run in timesharing, batch or real—time mode,
and several users may call one database simultaneously. Only one call is
processed by one SIBAS program at a time, however, and SINTRAN facilities are

used to queue the calls.

Application programs communicate with the SlBAS system by means of a set of
subroutine calls. The subroutines execute at the priority level of the calling
program, and cause a call to be made to the separate SlBAS process by means
of the internal device mechanism. The calling program is then halted until the
answer arrives from the higher priority SIBAS system.

The Norsk Data versions of COBOL, FORTRAN, BASIC, PLANC and MAC all

contain 3 CALL facility enabling application programs to communicate with the
SIBAS subroutine package. ‘

ND—60.127.5 EN

1.2.1 $IBAS on The ND-500 System

SlBAS is implemented on the NDaSOO computers and uses their huge address
space and fast CPU. Running a database by means of a SlBAS-5OO process will
keep the whole database in virtual memory by using the «file-as-segment»
concept. No explicit disk transfers are executed and consequently a reduced l/O
overhead is achieved. If enough (physical) memory is available, the whole
database may actually reside in physical memory at run—time.

All the SlBAS—ll DML-calls (with a few minor exceptions, see section 6.1) are
implemented on the ND—SOO. Their functions are exactly the same as in a
SlBAS~lOO system and the database format is also identical. This means that the
same applications (and databases) may use both SlBAS-iOO and SlBAS—SOO, and
that applications (and databases) are easily moved between an ND—100 and an
ND-SOO system.

The SlBAS—service program can be used to supervise and control both
SlBAS-iOO and SlBAS-SOO processes even when they are running simultaneously
on an ND-500 system. We recommend starting and controlling SIBAS-SOO
processes by using this standard service program. Control can also be obtained
by including SlBAS-calls in applications. For on—line interaction with a SlBAS-SOO
process, without having to write application programs, the standard SlBlNTER
may be used directly.

ND-60.127.5 EN

1.2.2

1-6

SIBAS in a Network: SIBAS Backend

The SIBAS DBMS may now be accessed from a remote ND-SOO, ND—lOO or

ND—iO computer through a transparent, safe and efficient communication
package.

The new product may be used to increase the capacity of database oriented

applications because it makes it possible and easy to implement a number of
configurations.

As an example, one can imagine a system based on one machine with sizable
SlBAS activity. To increase the capacity of the system, one machine may be
added, and the total load split in such a way that one machine runs only
applications (Application machine), and the other runs both databas-e(s) and
some applications (Database machine). Such a change may be made with small
modification in the application programs. The system may be upgraded later on

with more machines to further increase the capacity.

Another example is the case where a database is held at a central site, but may

be accessed from (an) other computer(s) through telephone links.

The software features automatic checks and retransmission on both sides.
intermittent power failures are also taken care of.

The Application machine The Database machine
A P M D B M

Application COSMOS Application
T—m—v XCOMA

SlBLlB-x SlBLlB-x

l
SIB 2A

Figure 7. I: in this case, one database is accessed by several applications divided
between two computers.

ND—60.127.5 EN

1.3 $|BAS MODULES

The SlBAS Database Control System (DBCS) is the module called from the
application program for storing, reading, modifying and deleting the information
in the database. lt is run as a real-time task.

The SlBAS data definition and redefinition module (DRL) is used for defining a
database, i.e., defining the structure, the access keys, the size of the database
and for changing such parameters.

SlBINTER is a module that enables users to access a SIBAS data base
interactively without having to write application programs. lt is particularly well
suited for educational purposes.

The SIBAS service program is a background utility to start/stop and manage the
D808 module.

The SIBAS Database Maintenance (DBM) is a background utility used mainly to
check a large amount of data. lt has some repair facilities and does not make
use of the DBCSt

ND-60.127i5 EN

1-8

SIBAS H MODULES

Q (Q Q);>
SIBAS USER

SIBINTER SERVICE APPLICATION
PROGRAM PROGRAM

K /
<

:

DATABASE DATABASE DATA DEFINI-
MAINTENANCE CONTROL TION AND
MODULE SYSTEM REDEFINITION
(DBM) MODULE

(DRL)

DATABASE
DESCRIPTION

DATA FILE DATA FILE

DATABASE

Figure 7.2: S/BAS Modules

ND—60.127.5 EN

2-1

CHAPTER 2.. SIEiAS PRINCIPLES

ABSTRACT

The SIBAS database is defined in terms of the CODASYL terminology: Data
Item, Group Item, Record, index, Realm and Set. These are defined by the Data
Definition/Redefinition Program (DRL).

A SIBAS database is accessed in two ways: (i) by direct access a Specific record
is accessed by providing the value of an index key; (ii) by relative access: finding
a record relative to a record found previously (navigation). In SIBAS one can also
access a chunk of records by one single command.

Connecting and disconnecting records to a set are done automatically by the
STORE, MODIFY and ERASE statements.

SIBAS database protection and integrity are maintained by: (i) transaction units;
(ii) realm protection; and (iii) record locking. Privacy of the database is supported
at the database and at the record occurrence level.

Descriptions of all data on the SIBAS database are maintained in the SIBAS
DATA DICTIONARY. This information is available on—Iine.

TABLE OF CONTENTS:

2.1 THE DATABASE CONCEPT.
2.2 DATA STRUCTURE.

2.2.1 Items.
2.2.2 Group Items.
2.2.3 Record Types.
2.2.4 Search Keys and Indexes.
2.2.5 Realm.
2.2.6 Database

2.3 DATA RELATIONS.
2.3.1 Search Regions.
2.3.2 Sets.

2.4 DATA MANIPULATION.
2.4.1 Access Principals.
2.4.2 Connecting & Disconnecting, inserting & Removing.
2.4.3 Concurrent Processing.
2.4.4 Privacy System.

2.5 DATA DICTIONARY

ND—60.127.5 EN

ND—60V127.5 EN

2.1

SEBIAS PRINCIPLES

THE DATABASE CONCEPT

What is a database? Well, this is a rather complicated question to answer. Since
a good understanding of some basic principles is essential for reading the rest of
this manual, this chapter will discuss an example of information storage and
retrieval. The description in this chapter should answer the question to such a
degree that the reader will be able to understand the detailed description of the
SIBAS database system in the following chapters

Let us assume that we run a railway company. it has been growing for some
years, and we are having trouble in planning and maintaining time tables,
scheduling the utilization of engines and cars, planning the work of our
personnel, etc. What do we do? We design a database and make the computer
help us keep track of our business.

First, we think of a file describing all our engines. The following information
ITEMS need to be stored for each one of our 159 engines:

— serial number
w supplier name
—— type

— latest service inspection
- capacity
— allocated to train number

Then we decide to have a similar file for all our cars. It must contain the
following information for each car:

- serial number
~« supplier name
— type
— number of passengers/tons load
—-— allocated to train number

We also want a personnel file containing the following information for each
person:

—— name
family name

— home address
— position (engine driver, conductor, etc.)
— allocated to train number

For convenience, we have grouped the two basic items Family Name and
Surname in a group called Name. We call this construct a GROUP lTEM and use
it in all cases when we want the entire name of the person.

ND-(30.127.5 EN

2—4

Now we have three files, and we find that in the engine file there will be 159
RECORDS because we have 159 engines, each record giving us a limited
description of one engine. Similarly, there will be one record for each car or
person in the other files. We have also specified the records with respect to the
information contained in them, and we notice that all records in one file quite
naturally will have the same length.

Having our three basic files, we now want to make up a time table. In our data-
base we illustrate this with a fourth file, the time table file, containing the
following information:

—~ train number
—— line number
__ time of departure
— average speed
—— time of arrival

But now we want to describe trains containing a variable number of cars.

What we do to assemble a train is to select the desired number of cars and put
them together into a SET. ln this set, we also include the engine, engine driver
and conductor. Finally, we assign the train (set) to a specific entry in the time
table, which is identified by means of a train number.

in the database, we create the set simply by storing the train number in the
engine record, the car records, the engine driver record and the conductor
record. The time table record is said to be the SET OWNER and all the others
are called SET MEMBERS.

In our example, it should be apparent that a file is a collection of similar but
unrelated records. With the concept of sets, we have included relations between
records in the discussion. We consider a set to be a collection of records having
some common characteristic, in this case the train number. While the records
are restricted to fixed length, depending on the data elements contained in them,
a set may contain a variable number of member records.

Time Table Record Engine Record Engine Driver Record Car Record Car Record

Trainnumber -—-> Train number ———> Train number —-> Trainnumber a» Trainnumber

Figure 2. 7: The Set

ND«60.127.5 EN

2-5

Records in one tile have the same length and organization, but contain various
data. Engine number 11 is not the same as engine number 137, but they are
described in the same way in the file. The way the description appears is called
the RECORD TYPE and each individual description is called RECORD
OCCURRENCE. These expressions are frequently used in this manual.

Similarly, we use the expression SET TYPE and SET OCCURRENCE. The set type

in this example gives a description of a variable train length. The set occurrence

describes a specific train connected to a specific line and departure time. Obvi-
ously, we have one set occurrence for each record occurrence in the time table

file, i.e., for each set owner record.

TIME TABLE FILE

Line 1
09.03

Line 2
10.16

Line 3
11.54

Line 1
12.06

LineS
13.15

Search region

Line 4 Departure times 1200-1700

16.30

Line 2
16.55

Line 1
17.09

Figure 2.2: The Search Region

ND—60.127.5 EN

2-6

Now that we have our railroad database, we want to print out time tables for
each line. This means that we want to scan the time table file and select all
records for line 1, line 2, etc. This can also be thought of as a division of the time
table into classes, one for each line.

For other purposes, we may also need other classes within the time table
register, for example all departures between 12:00 and 17:00 hours, or even all
records in the time table file. in SIBAS, such classes of records within a file are
called SEARCH REGIONS,

Our railway network branches out from a central station in a treelike structure
without connections between the different branches.

811 Central Station

813

e EH
Figure 2.3: The Railroad Network

ND»60,127‘5 EN

We want to add a description of this network to our database. The following
items shall be included:

—— station name
-— name of inner station
—— distance to inner station

By inner station, we mean the one Which is the next station when travelling
towards the central station The station file will have the following layout:

Station
Record

Station File

Central Station

Al
Central Station
6 km.

All
Al
10km

A12
A1
13km

A121
Al2
5km

A122
A12
9 km

Figure 2.4: The Station File

ND-60.127t5 EN

> Branch

/

>‘ Branch

Branch

2-8

In this file, all stations directly connected to each other are gathered in groups or
classes in a similar way as were the records in the train set earlier. But in the
train set, one record type was the set owner and other record types were set
members. Here in the station register, the set owner record type and the set
member record type are the same. However, the set owner item (station name)
is different from the set member item (inner station name). This grouping of
equal records is called an lNVOLUTED SET.

Now our database is almost ready. We oniy need one extra device to make it
useful. Consider the personnel file containing information on all the persons
working in our company.

Quite often, we want to select the record for one specific person because we, for
example, want to increase his salary. We know his name and want the rest of the
information. We would like to supply the name to an access mechanism in the
database system and to get the corresponding record back.

The device that facilitates this is the definition of a RECORD KEY. in this case,
we use the name of the person, which happens to be a group item. Any item or
group item can be defined to be a key to the file.

Foreman’s
Office Serial Storage Area

Section A Section 8 Section C

Figure 2.5: Storehouse Layout

In the storehouse the railway company has at the central station, some kinds of
goods are stored in a shared area such that arriving articles are just put into the
first available place in the area. Other articles, like dynamite, animals, etc., are
always put in the same places or sections in the store house. Each of these two
methods of allocating space in the storehouse has certain advantages and
disadvantages.

The utilization of space is probably better in the first case, but it may be
necessary to search for the different articles there. In order to reduce the search
time, the foreman saves all the delivery notes in alphabetical order and makes a
little note on them as to the location of the goods.

In the other area, on the other hand, the staff always knows exactly where to
find a Specific article. But the utilization of space is a bit uneconomical. For con~
venience, the foreman saves the deliverly notes in a bunch for each section.

ND-»60.127.5 EN

2»9

We use quite similar methods for storing records in the database. The first case
in the storehouse corresponds to the SERlAL LOCATION MODE in the database.
Arriving records are stored in the first available space, and the values 0‘? the
record key and location are stored in an INDEX TABLE, in sorted order‘ When the
record is to be found again, the index table is searched until the key value is
found and the location code is used to find the record.

lNDEX TABLE REGISTER

KEY VALUE LOCATION

RECORD C

A K

8 °\\

c “-\ /

RECORD A

RECORD B

Figure 2.6: Indexed Register

ND‘60.127.5 EN

Bucket.
Number:

23—10

The other case in the storehouse corresponds to the CALCULATED LOCATION
MODE in the database. Here we divide the available storage space into a number
of boxes or BUCKETS. When a record is to be stored in this part of the
database, we take the key value of the record and calculate a bucket number
from it. We have chosen the calculation method such that an approximately
equal number of records will be stored in each bucket. When a record is to be
retrieved from the database, we calculate its bucket number from the key value,
go into the bucket and search it through until we find the record.

Record Record Record Record Record Link

> Main area

> Overflow
area

Figure 2. 7: Buckets

Unfortunately, we cannot rely on the assumption that records will be equally
distributed over the buckets. We must prepare ourselves fcr the case when a
bucket overflows. We do it by reserving a number of ckets to serve as
OVERFLOW BUCKETS. When we want to add a new record in a bucket that is
already filled up, we make a little note in it and place the record in the overflow
bucket.

Now that this little discussion reaches its end, you may feel you still don’t know
what a database really is. But is is really quite simple. A database is nothing but
well defined data and relations between data, just like our little railway company
example. A real database tends to be somewhat larger, but is nevertheless built
up with the same building blocks.

ND-60.l27c5 EN

2.2

2-11

DATA STRUCTURE

Data that are stored in the database have a certain structur

database definition. This structure defines the name, length,

e, defined in the
and role of each

single data element. Data definition will be described in this; section.

Data elements may also be related to each other due to common characteristics,

etc. Such aspects of the database will be discussed in the next Section.

The structuring principles used in SIBAS are outlined in the following figures.

DATABASE
’/’/ REALM B

REALM A
/ RECORD A - n /

/ /

/ RECORD A-Z /
RECORD A-1

GROUP lTEM
lTEM ITEM lTElVl ITEM //

. ///

Figure 2.8: SIBAS Database Structure

ND-60.127.5 EN

2-12

An Example might look like this:

TAx PAYER RECORD

IDENTITY GROUP ITEM

NUMBER ITEM

LAST NAME ITEM

FIRST NAME ITEM

ADDRESS GROUP ITEM

STREET ITEM

CITY ITEM

CODE ITEM

REGISTRATION GROUP ITEM
DATE

Figure 2.9: 8/8/18 Database Structure

From the figures, it will be seen that SIBAS, which follows the CODASYL
terminology here, uses five different structure levels: ITEM, GROUP ITEM,
RECORD TYPE, REALM, DATABASE.

As an example, consider data concerning an employee in a company:

EMPLOYEE
NAME
NUMBER
BIRTH DATE
SALARY
JOB TITLE

The name EMPLOYEE is used to identify a record type in the data base. The
database will normally contain several such record types. Furthermore, there will
be several occurrences Of each record type. If there are 1000 employees in the
company, then there will be 1000 record occurrences Of the record type
EMPLOYEE in the database. A "record occurrence" can usually be referred to
simply as a "record" with the full term ”record occurrence” being used
occasionally for the purpose of extra clarification. Experience with this class Of
DBMS has indicated that it Is very important for the user to distinguish clearly
between ”record type” and "record occurrence".

ND-BO.127.5 EN

2-13

Each record type contains a number of items. in the above example there are
five items as listed. An occurrence of this record type would consist of one value
for each of the five items. For instance, a record occurrence might be as follows:

SMITH
74890
420531
43000
PR OG RAM M ER

The above concepts are fairly commonplace to any user versed in the practices
of commercial data processing. lt must be mentioned that in SlBAS all records
of a given type are of the same length.

We will now give a fuller explanation of the terms we have used in the preceding
examples.

0 REVIEW.

DATA ITEM: The smallest unit of named data is the Data
item.
Synonyms: Data Element, Item.

GROUP ITEM: A named group of Data items is called a Group
Item. The‘Data Items in the group need not be
contiguous.

RECORD: A collection of Data items or Group items is
called a Record.

RECORD TYPE: The particular description or type of a
collection of Data items and/or Group items is
called the Record Type.

REALM: The storage space assigned to one Record
Type is called a Realm. ln SlBAS a Realm and
a Record Type are synonymous.

SET: A Set is a named relationship between two or
more: Record Types.

DATABASE: A collection of non—redundant and interrelated
data items, record types and sets is called a
Database.

ND‘60.127.5 EN

2.2.1

2.2.2

2—14

Items

The item in SIBAS has the same role as the elementary item in COBOL or a
variable in FORTRAN. An item declared in the schema DRL (definition/
redefinition language) must be designated as either INTEGER, FLOATING or
CHARACTER.

The following table indicates the correspondence between SIBAS item types and
COBOL and FORTRAN item types.

SIBAS COBOL FORTRAN

INTEGER COMPUTATIONAL INTEGER‘2
FLOATING COMPUTATIONAL—2 REAL
CHARACTER ALPHANUMERIC CHARACTER

Group Items

It may be useful to assign a name to a collection of items in a record type. In
this case, the collection is referred to as a group item. The items need not be
contiguous items in the record. The sequence of the items in the group may also
be different from the sequence in the record type. Only one level of naming is
allowed. In other words, it is not possible to define a group item which includes
another group item, and the constituents in a group item must all be elementary
items. However, an item may participate in more than one group item. This could
be used to implement multilevel groups by including all items from one or more
group items in a new group item.

As a special case, a group could consist of only one item. This enables the user
to define multiple names on items.

The group item provides a shorthand representation for identifying a collection of
elementary items.

ND—60.I27.5 EN

2113

2—15

ReconiTypes

Several items together are collectively referred to as a record type. Each SIBAS
item is associated with a single record type in the database,

Each record type must be assigned a name which is different from other names
in the schema. Furthermore, a location mode must be assigned to each record
type. The location mode is essentially a mechanism which controls where the
record is to be stored in the database.

SIBAS supports two location modes which are referred to as CALCULATlON
MODE and SERlAL MODE. In the first case, the user must designate either an
item or a group item to serve as the primary record key to be used when
calculating the location.

Records with serial location mode will be stored in the first available location in
the realm.

CALC LOCATION MODE

For CALC records, a standard system supplied hashing or randomizing algorithm
is used to distribute the record occurrences equally over a space on direct
access storage (see Figure 2.10). The space assigned to a record type is called a
realm. The data administrator must divide the realm into two areas called the
main area and the overflow area. Each of these two areas is further subdivided
into a number of buckets, This number must be a prime number.

RECORDl

RECORD2

J
HASHING REKEY ‘“‘*‘"‘“‘*~‘*’ ALGORITHM -—~‘///*——4*-~ CORD3

l

l
l
l
l

RECORDn

Figure 2. 70: Ca/c Keys

ND-60‘1275 EN

12-16

Each occurrence of a CALC record type is then stored in a bucket in the main
area or possibly in the overflow area. The bucket number in the main area is
computed from the value of the key and the number of buckets as follows:

Key Yflyflhm_ = I + Remainder

where I is the integral part of the quotient. The remainder is directly used as the
bucket number, and the record occurrence is stored in that bucket if there is
space available. It not, then a bucket in the overflow area is used (refer to Figure
211)

Such overflow buckets are accessible from the main area bucket through a
pointer. Records are stored in the first available location of the bucket. When the
CALC key is used as a basis for finding the record, the same hashing algorithm is
used and a sequential search is made through the main area bucket and if
necessary also the relevant overflow bucket(s).

The data administrator must decide, when defining the CALC key item, whether
or not duplicate values of the key are allowed. if not, an attempt to store a
record which has a primary key value equivalent to that in a record of the same
type already in the realm will be unsuccessful.

ANDERSON ‘ RECORD 2
BENGTSON ’GUSTAVSON
JOHANSEN

: *~ RECORD 2
OMAN /'

i
O
l
I
l
I

. I
l
l

I
t
I

l

|
I

i
I

MERCEDES ‘VOLVO RECORD 3VOLVO .,VOLVO /SAAB
SAAB

Figure 2. 7 7: CALC Records

SERIAL LOCATION MODE:

Records for which no CALC key is designated will have location mode of SERlAL.
Records of this type will be stored in the first available free location in the realm.
if a record is deleted, then the next time a new record of the same type is stored
in the realm, it automatically takes the space vacated by the deleted record.

ND»80i127.5 EN

2-17

2.2.4 Search Keys and Indexes

It is possible to assign one or more search keys (index keys) to a record type
independent of whether its location mode is CALC or SERIAL. As in the case of
CALC, a decision must be taken on whether more than one record with the same
key value is allowed or not. Normally, at time of initial load, the user would be
advised to ensure that records are in ascending value of a primary key value,
especially if he wishes to make frequent sequential scans through these records
using the primary index as the basis for his accesses.

In fact, in some cases where the record type has a location mode of SERlAL and
there are search keys defined, it may be rather arbitrary which of the keys is
regarded as the primary key and which are the secondary keys. In practice, if one
index is more likely to be used than the others for serial processing of the
records, then that index should be regarded as the primary key, and the records
should preferably be loaded initially into the database in ascending order of the
values of this key

Indexes are maintained in ascending order of the key values, and the records in
the realm may be processed in this sequence if required.

Level 1

RK RP

ADAM 15
ALEX 9RK= Record key Al LEN

TP= Table pointer - 20
RP: Record painter Level 2

at w /
ADAM l l

ANNE 1,2 \ RK RPEVA '3 ANNE 2

CARL 13
Level 3 DON 8
RK TP RK T'l’

JERRY 2.!ADAM l
JERRY / LEE 22 RK RPSAM 3 LOUIS 2.3 EVA ’9

FRED 25
160R 3

[RK Tl’
SAM 3 l —«>
TOM 3.2 ---—>
WlLLY 3.3 “"’""

Figure 2. 72: Index Keys

Since both CALC keys and search keys may be group items, it is possible for an
elementary item to be used as part of several keys.

ND~60.127.5 EN

23-18

An index must be designated as either automatically maintained or manually
maintained,

lf the index is automatically maintained, then at the time a new record is stored
in the realm, the index is automatically updated by the DBCS (database control
system). if the index is manually maintained, then the programmer must include
an extra statement in his program if and when he wishes to cause the index to
be updated.

SlBAS COLLATlNG SEQUENCE:

There is no restriction on the composition of group items or single items which
may serve as index keys. The values of index items are treated as bit strings and
the index table is sorted in ascending order of the item values.

NULL VALUES OF KEYS:

Null values are represented by zeros or blanks depending on the item type, and
any item not being a key is allowed to take that value.

Key items, however, must not take a completely null value. This applies to the
CALC keys, index keys, search keys, owner set items and member set items. Any
of these may be a group item, in which case it may be partially null but not
entirely null.

Any attempt to store a record which has a completely null value for a key or set
item will be unsuccessful. Any attempt to modify an item in a record already in
the database which would result in such a condition will also be unsuccessful.

lNDEX TABLES ~— Representation of lndexes

When a record type has primary or secondary index keys, then for each key an
index is built up during initial load and maintained, where necessary, during
subsequent processing. Each index consists of a number of levels, and each level
contains a number of index tables.

The index tables must be assigned to a system realm.

ND~60.127.5 EN

2.2.5

2.2.5.1

Realm

A realm is a storage space assigned to one record type. Often it corresponds to

a SlNTRAN file, but it is also possible to store more than one realm in a file. One
realm may also span over several SlNTRAN files. The realms are of two types,
user realms containing data records and system realms containing index tables,
etc.

In SIBAS, all occurrences of one record type must be assigned to one user
realm, The user realm name will also be the name of the record type, As
mentioned, system realms are used for storing levels of an index table when
either a primary index or secondary indexes are defined.

The data administrator must estimate the number of record occurrences to be
stored in each realm, Since records of the same type are of equal length, this
facilitates an estimate of the maximum size of the realm.

in the case of indexed records, the data administrator must also estimate the
space required for the index tables.

In the case of CALC records, it is necessary to regard the realm as being divided
into a primary area and an overflow area. Each of these areas is further divided
into equal size buckets. A bucket occupies one page.

AUTOMATIC EXPANSION OF A REALM

ln SlBAS-F when a realm is full it can be expanded automatically and space can
be allocated to it on a new (predefined) OS—fi|e(s). However, to do this the
database must be defined with empty OS~file(s). lf the files are contiguous, the
size must be the same as that in ”ESlZE", defined at the time of loading SlBAS.
Default size is 10,000 pages, The automatic expansion feature must be enabled
when SlBAS is loaded/installed.

A message (warning) is given on the error device when a realm is expanded onto
a new OS-file.

When a realm is expanded onto a new OS-file, the OS—file is attached to the
realm, and this OSJile cannot be used by any other realm.

ND—60.127.5 EN

2-20

2.2.6 Database

For completeness, the database is identified as the collection of all records,
indexes, set types and realms which are defined in one single use of the schema
DRL.

SOURCE USERS USERS
SCHEMA APPLICATION APPLlCATlON

PROGRAM PROGRAM

i
DATA DATABASE
DEFlNlTlON/ CONTROL
REDEFlNITION SYSTEM
PROGRAM

A

DATABASE

Figure 2. 73: The Main Components of the Database

Each database has a corresponding source schema. in addition, there exists an
object schema which is the set of internal tables generated when a source
schema is translated using the schema translator (see Figure 2.13/2.14A).

$BAS
SYSTEM
REALM CONTROLINFORMATWON

USER
SYSTEM
REALM

I > lNDEXTABLES

USER
DATABASE SYSTEM

REALM

RECORD
TYPEl
REALM

RECORD TYPE 1
r‘ RECORD TYPE m

RECORD
TYPEm
REALM

Figure 2. 74A: The Database Concept

ND-60.12'].5 EN

2-21

A program is normally written to process the data in a single database. However,

several users may access one database concurrently.

It must be emphasized that in SIBAS it is necessary for the program to declare
its intention to process a database by executing an explicit OPEN statement on
the database. In fact, this has the effect of opening a SIBAS system realm which
contains among other things the object schema. Each realm in the database
which the programmer wishes to process must also be opened, and this is done
using a READY statement. A system realm containing an index table to a realm
will be automatically opened when the realm is readied.

In a given installation on a given hardware configuration, there may be several
databases, each known to the operating system through the name of its system

realm.

0 REVIEW 0

REALMS: A user realm is a CALC or a SERIAL realm.

0 The user realm name will be the name of the

record type.
a Size of the realm needs to be estimated.

0

RECORD TYPE: 9 Each record type must have a unique name
a A location mode must be assigned to each

record type.

LOCATION MODE: 0 In CALCULATION LOCATION mode, records
are distributed over a space using a hashing
algorithm.

a In SERIAL LOCATION mode records are stored

in the first available space.

INDEX KEYS: o It is possible to assign index keys to record

types independent of its location mode.

0 Key items may be single DATA ITEMS or

GROUP ITEMS.
0 At least one key in a record MUST have a

value.
a Each record type may have any number of

index keys.
0 Index keys may be maintained MANUALLY or

AUTOMATICALLY.

ND—60.l27.5 EN

2.3

2.3.1

2--22

DATA RELATIONS

Search Regions

Records stored in the same realm, i.-e., records with a common type, can be
grouped together In search regions. This means that all records in the realm
having a specific common property constitute a defined class of records within
that realm.

The following record classes may be handled as search regions:

— records having the same key value (duplicates allowed)
— records having key values within a specified range

- all records on the realm

(See figure 2.148.)

SEARCH REGION
DUPLICATE KEY

(VOLVO)

Figure 2. 748: The Search Reg/on Concept

ANDERSON
VOLVO
151: STREET
CARPENTER

BENGTSON
VOLVO
2nd STREET
BRICK LAYER

SEARCH REGION
KEYS BETWEEN

STREET 2-5

GUSTAVSON
ME RCE DES
3rd STRE ET
FOR EM AN

JOHANSON
VOLVO
Sth STREET
CARPENTER

KARLSON
SAAB
10th STREET
ELECTRICIAN

ND~60.127.5 EN

SEARCH REGION
ALL RECORDS OF

CERTAIN TYPE

2-23

A search region is established as soon as a record belonging to the
corresponding class is located in the database (see the description of the FlND
statement). The program may then access the other records in the search region
sequentially.

The search region identification is stored in a system variable called Current
Search Region Indicator, which can be referenced, saved and restored by the
program.

A search region is a ”navigation" concept, used at run—time, and it is not
necessary to declare it at the definition time. Another concept, that of a SET,
must be declared at definition time.

NDa60.127.5 EN

2.3.2 Sets

2-24

A set is normally a relationship between two or more record types. In each set,
one record type must be designated as the owner and each of the others is then
a member. A single member set type is a set where the member records all are
of the same record type, while a multi—member set type is a set where the
member records are of more than one record type (see the following figures).
There is also a third set type called an involuted set type which does not fall into
either of these two classes and will be discussed separately.

CALC INDEX

2%
UNIQUE

Figure 2. 75: Single Member Set

SA LESMAN RECORDS CUSTOMER RECORDS

\

/\

SALESMAN SET OCCURRENCE A CUSTOMER
A 1

CUSTOMER
2

\

CUSTOMER

3

SALESMAN CUSTOMER
B 4

SET OCCURRENCE 8

CUSTOMER
\ 5

\

Often illustrated as:
SALESMAN,

CUSTOM E R

ND—60.l27.5 EN

2—25

SALESMAN RECORDS CUSTOMER RECORDS PROSPECT RECORDS

SALESMAN CUSTOMER PROSPECT \
A 1 1

CUSTOMER PROSPECT
2 2

CUSTOMER PROSPECT
3 3

\

\
\

PROSPECT
3SET OCCURRENCE A \\

Often illustrated as:

SALESMAN

/

\

CUSTOMER PROSPECT

Figure 2. 76: Mum—Member Set

NOTE;
The maximum number of member realm types in a multi~member set is 4.

ND—60.127A5 EN

2.3.2.1

2.3.2.2

2~26

SET ITEMS

When defining a single or multi-member set type in SlBAS, it is first necessary
that a CALC or index key is defined for the owner record type. Furthermore, the
key must be defined such that duplicate values of the key are not allowed.

To be able to define a single member set type, there must be an item
(elementary or group) in both the owner record type and the member record type
which ”corresponds” in length and type, but not necessarily in name. In the case
of group items, there should normally be correspondence in the constituent
elementary item types, although it would be possible for an elementary character
item in the owner to correspond to two or more elementary character items in
the member. The item in the owner record type is referred to as the owner set
item. The item in the member record is referred to as the member set item.

The owner set item must be defined as a CALC or index key for which duplicates
are not allowed. The member set item may or may not be defined as CALC or
index key. Duplicates will generally be allowed for member set items.

In the case of multi-member set types, there must be a member set item in each
member record type which bears the relationship as described above to the
owner set item. In addition, the member set item in each member must have the
same name as in all the other members in the set type.

in all cases, the choice of an item to be an owner set item or a member set item
imposes no restrictions on its use as primary key or search key.

SET OCCURRENCES

Each set type in the database will have a number of set occurrences (more
simply referred to as sets). Each set contains one occurrence of the owner
record type and zero or more occurrences of each member record type. Sets
with no members are called empty sets.

For a given set type, there are in the database as many sets as there are
occurrences of the owner record type.

it is the set item which determines how member occurrences belong to a set. if
the value of the member set item for a set type has the same value as an owner
set item, then the member record is ”connected" to the owner’s set. At what
time this connection will be established depends on the ”storage class" of the
set type (see Section 2.3.2.4).

ND—60.i27.5 EN

2.3.2.3

2-227

CHlAlN REPRESENTATION OF SET TYPES

The physical representation of a set occurrence in the database is achieved by a
chaining technique. This means that the owner record in the set contains a
pointer to the first member record in the set, which in turn contains a pointer to
the next record, and so on. The last record in the set points back to the owner.
The order of the member records in the set is generally determined by ”time of
arrival”. A chain representation of this kind is essentially uni-directional.
Problems can arise in long chains when a record is deleted, as it is necessary for
the DBCS (database control system) to circumnavigate the whole chain in order
to modify the pointer in the record prior to the one deleted.

To avoid problems of time consuming deletes in long chains, it is possible and
often advisable for the data administrator to designate a set type with double
links, which means that each record in each occurrence of the set type contains
both a "next" pointer as above, and a "prior" pointer in the opposite direction.

Defining a set type with double links does not add any extra processing
capability, but it does have the effect that certain statements which depend on
the set type relationship may be executed more rapidly.

SlNGLE LINK CHAlNiNG

DOUBLE LlNK CHAINlNG

Figure .2. I7: Chaining of Records

ND-60.127.5 EN

2-28

Illustration of SET TYPE and SET OCCURRENCE:

To clarify the concepts of set types and chains, Figure 2.18 illustrates a single
member set type. Figure 2.19 illustrates two occurrences of this set type. Figure
2.20 illustrates how the same sets would appear if the set type in Figure 2.19 had
been declared with double links. ln these figures, the convention of using a
rectangle to represent a record type and a circle to represent a record
occurrence is followed.

in the example illustrated, the set item could be BRANCH lD which would then
be found in both record types BRANCH and CUSTOMER. All occurrences of
CUSTOMER having the same value of BRANCH it) would then be chained to the
BRANCH record having the value for the item BRANCH lD.

BRANCH

HAS

CUSTOMER

Figure 2. 78: Logical Relationship

BRANCH BRANCH
l 5

.3 a
Figure 2. 7.9: Occurrences of HAS with Link to Next Only

BRANCH
1

BRANCH
5

C2

Figure 2.20: Occurrences of HAS with Link to Next and Prior

ND760.l27,5 EN

Involuted Set Types:

In SIBAS it is possible to have a special set type in which the owner record type
and the member record type are the same. This special set type is referred to as

2-29

an involved set type because the set relationship is involuted (or turns on itself).

An involuted set type may only be defined if the set item which designates
ownership and the set item which designates membership are different in name
and correspond in type and length. Both items are of course in the same record
type, see figure 2.22.

This involuted set type (which is not supported in the CODASYL Database facility
proposal) is useful for example in a Bill of Materials application. Graphically, an
involuted set type is depicted as follows:

PART

CONTAINS

Figure 2.27: Basic Invo/uted Set Type

In the example, the record type PART might contain two items, PART NO. and
CONTAINED IN which should be defined with the same length and type. PART
NO. will be the owner set item and CONTAINED—IN will be the member set item.

If a given assembly, X, contains three identical subassemblies Y, Z and Q then
that part of the overall structure may be depicted as in Figure 2.23.

SETS:

0 REVIEW 0

Each set type MUST have one OWNER record
type, and one or more MEMBER record types.
The maximum number of member record types
is 4 (multimember set).
The owner item of a set IVIUST be defined
either as a CALC key or as an index key.
The owner item and the member item MUST
have the same length and MUST be of same
type.

A set type is defined with single or double
links (for retrieval efficiency).
A set type is maintained MANUALLY or
AUTOMATICALLY.

ND~60.127.5 EN

2-30

PERSON RECORDS

———————>~
NILSSON
PRESIDENT

JOHANSSON
——b’ MANAGER

N ILSSON

flIANSSON
——--———> MANAGER

NILSSON

NAME IS
UNIQUE KEY

____, gs?
ASSIST. MANAG
MANSSON
‘\

SVENSSON
“TM-9 OFFlCE SECRETARY

PERSON

PETTERSSON
____». SECRETARY

PERSON

MEMBER SET iTEM
NOT THE SAME AS
OWNER SET ITEM

Figure 2.22: lnvo/uted Set

ND‘60.127.5 EN

2-31

OWNER PART No]: x
CONTAINED IN =.7

MEMBERS Y O

PARTNO.=Y PAFIT NOI=Z PARTNO.=O
CONTAINED IN = X CONTAINED IN = X CONTAINED IN = X

Figure 2.23: Invo/uted Set Type

In Figure 2.23, each of the four circIes represents an occurrence of the record
type PART. The owner set item (PART NO.) identifies each record occurrence
uniquely. The member set item (CONTAINED ID) identifies the owner record of
each set occurrence.

ND-60‘127i5 EN

2.3.2.4

2-32

STORAGE CLASS

it was mentioned in Section 2.3.2.2 that the time an occurrence of a member
record is connected to its associated owner occurrence depends on the storage
class.

Storage class is a property of each set type. The storage class must be declared
as either automatic or manual. it the storage class is automatic, then a member
occurrence is automatically connected into the appropriate set occurrence at the
time the record is stored in the database, using a DML STORE statement.

if the storage class is manual, then the connection is not made when the STORE
is executed, but the programmer may cause the connection to be made by using
a CONNECT statement. irrespective of storage class, a record may not be
connected into any occurrence of a set type into which it is already connected;
furthermore, it may be connected into no more than one occurrence of any given
set type.

in SlBAS, storage class is a property of a set type. This applies to a single
member set type, a multi-member set type and an involuted set type. A record
type may of course be defined as member of several automatic set types and, at
the same time, of several manual set types.

Storage class is regarded as being of sufficient importance in the structure of a
database to merit a special graphic formalism to be used when depicting the
structure of the database graphically. A continuous line is used to illustrate an
automatic set type relationship and a dotted line to represent a manual set type
relationship. The various possibilities are indicated in Figure 2.24.

It must be noted that, in SlBAS, the storage class also has an effect on whether
or not it is permissible to disconnect a record from a set. If the storage class is
automatic, then this is not permitted, although the record would be moved from
one set to another if the value of the member set item changes. If the storage
class is manual, a record may be disconnected frOm a set using a DlSCONNECT
statement.

Finally, it should be noted that it is possible to order the members of a set type
which is manually maintained. This is done by using the CONNECT BEFORE or
CONNECT AFTER statement which will link the record into the set occurrence
before or after an already existing record in the set occurrence.

ND~60.127.5 EN

2-33

Automatic Single Membe

EFG

I”

Automatic Multi-Member

M

QMM
lnvoluted Automatic

m\
0

/
/

/1(on

R

Two single member set types,
one automatic, one manual.
Set types have same member.

Figure 2.24: Examples of Possible Set Types

ND-60.127t5 EN

Manual Single Member

Manual Multi-Member

lnvoluted Manual

Two single member set types,
one automatic, one manual:
member in one is owner in other

2-34

Note on Set Occurrences:

As in the CODASYL proposal there is one important property to note about the
way in which a member record can be connected to a set. if the record type is a
member of a given set type, then an occurrence of the record type may be
connected into no more than one occurrence of that set type, That is, a member
may only have one owner in one set occurrence. The record type could, however,
be defined as a member of other set types (Figure 2.24).

Removal Class:

in SIBAS the removal class will depend on the option given in the ERASE
statement. This is discussed in more detail under the definition of this statement.

ND—60.127.5 EN

2.4

2.4.1

2.4.1.1

2-35

DATA MAN I PU LATION

The CODASYL Database Facility approach to processing a data base calls for the
programmer to be able to enter the database from outside and to navigate his
way around inside. The SIBAS approach to search keys makes it possible to
access all records from outside in several ways and also to conduct searches in
certain regions within the database, relative to a previously found record. The
fact that several users access the database concurrently necessitates some
control mechanism. This is discussed in more detail in this section.

Access Principles

GENERAL

With a SIBAS database, it is possible for a program to make two kinds of
accesses to the database. The first class is called an ”out of the blue" access.
The programmer provides the value of a key, and a single record is found in the
database whose key value corresponds to the key value specified.

The other class of access is called a relative access, and the record found always
has some relationship to one found previously — normally the record most
recently found.

It must be emphasized that, since the database is in direct access storage, both
classes of access are essentially ”direct" in the normally accepted meaning of
the term. The first access to a database which is made in any program must
necessarily be an "out of the blue” one. However, a program will normally
contain a mixture of statements from both classes.

The statement which is used to locate (that is, confirm the presence of) a record
in the database is the FIND statement. Numerous options of FIND are available
and may be listed as follows:

I. FIND based on CALC key or INDEX key (this could define a search region).

2. FIND first or last member record in a set occurrence.

3. FIND next or prior member record in a set relative to a record recently
found.

4. FIND first record in a realm (which defines a search region).

5. FIND next record in a search region.

6. FIND owner occurrence relative to a member occurrence recently found.

ND'60.i27.5 EN

2-36

The execution of a FIND statement may be successful or unsuccessful. If
successful, a record is located, and an indicator is set to point to that record,
called the CURRENT OF RUN—UNIT indicator. This means that further DML or
host language type actions can be performed on that record. However, no host
language statement such as the COBOL MOVE or a FORTRAN ASSIGN may be
meaningsfully executed on the data in the record until a successful GET
statement has been executed.

A FIND may be unsuccessful. In the case of an out of the blue access, for
example, this may mean that there is no record of the type sought in the data
base whose key values correspond to those specified in the FIND statement. The
relative classes of FIND may be unsuccessful for a variety of reasons which are
defined in detail in another chapter.

If the FIND, or any other statement, is unsuccessful, then a Database Exception
Condition (DBEC -- see Section 7.3) is set. It is the responsibility of the
programmer to be fully aware of the database exception conditions which may
occur in the course of execution of his program and to build in appropriate tests
and courses of action in each case.

LOCATE THE RECORDS DATABASE GET DATA

RECORDI

/"~‘\\
/

1/ \\‘
, RECORD 2 ‘2 RECT ;: I | :; SELECTED DATAIND WITH KEY I | ELEMENT

I I
l I
II I

RELATIVE FIND l RECORD3 I
I I
| I
I I I

I I| I l
I I I
| I E
l I i

I iI I Z
I I
I RECOR04 I
l I
‘ |\ /

2\\ v/ /

SET on SEARCH
REGION RECORDm

Figure 2.25: Access Ways

ND-60.127.5 EN

2.4.1.2

2-37

CURRENCY INDICATORS

Different programs accessing a SIBAS database may execute concurrently. It is
also possible that the same program may be executing two or more times
concurrently with different parameter values. For convenience, each executing
instance of a program is referred to as a run—unit.

As already indicated, a run~unit in the course of its execution may need to find a
record relative to some recently found record that is found in the same run-unit.
The way in which both the run~unit and the D808 keep track of where in the
database processing has reached is by means of two currency indicators. In
SIBAS, the two indicators are referred to as:

CURRENT OF RUN—UNIT INDICATOR (CRUI)
CURRENT SEARCH REGION INDICATOR (CSRI)

CSRI
A

cocooo
C RUI

Figure 2.26: Illustration of CSR/ and CPU]

Current of Hun~unit Indicator (CRUI)

The CRUI is always updated after the successful execution of each FIND or
STORE statement. The content of this currency indicator is always a unique
identification of a record in the database. See figure 2.26.

This record identification is a quantity which distinguishes one record occurrence
in the database from all others. It is not based on the data values in the record
but rather on the physical address of the record in the data base. The physical
address of a record may of course change during the life of a run—unit, but the
CRUI will then be updated accordingly.

The CURRENT OF RUN-UNIT INDICATOR is maintained by the execution of the
FIND and STORE statements. Several other DML statements actually operate on
the record designated by the CRUI, but only successful execution of FIND or
STORE will update CRUI.

Temporary—Database~l<ey

It is possible for a program to "remember” a CRUI in a temporary-databasekey.
The CRUI could then be referred to directly from the same run—unit by use of the
temporary—database-key, even if another record is current. if the user remembers
more than one CRUI, the system will build up a remembered list where the
temporary-database—keys are used to identify the entries in the list. Each time a
REMEMBER statement is executed a new entry is added to the list and the
entries are removed from the list by executing the FORGET statement.

ND-60,l27.5 EN

2-38

Any statement which operates on a record identified by the CRUI can equally
well operate on a record which is identified by a temporary database key. For
example, it is possible to MODIFY a record identified by a
temporary—database-key without making it CURRENT OF RUN-UNIT first.

If a record which is identified by a temporary-database—key is moved physically
in the realm, the address in the temporary—database—key, and all other entries in
the currency and temporary«database—key lists for all concurrent run-units
referring to this unique record will be updated accordingly.

Note that a temporary—database-key may only be used during the "life of a
run-unit".

Current Search Region Indicator {CS/W)

An ”out of the blue” access to the database may have the effect of setting the
CSRI to a new search region. A search region can be defined as a collection of
records which have something in common. See figure 2.26. It can be any of the
following:

All records with same value of CALC KEY (duplicates allowed).
All records with same value of an INDEX KEY (duplicates allowed).
All records in a realm (i.e., of same type).
All records whose index key values are between defined limits.9

9
’5

”?
"

The setting of the CSRI depends partly on the form of the FIND statement and
partly on the key specified in the FIND. The setting of the CSRI to the four types
of search regions given above is done in the following way:

FIND using a CALC key for which duplicate values are allowed.
FIND using an INDEX key for which duplicate values are allowed.
FIND first in realm using the name of the realm.
FIND between limits giving the upper and lower limit of an index key item.P

W
N

T
‘

These four forms of the FIND statement are the on/y possible ways of changing
the value of the CSRI.

As with the CRUI, it is possible to "remember" the contents of the CSRI in a
temporary search region indicator. The system builds up a remembered list for
temporary search region indicators in the same way as for temporary database
keys.

Also, either the CSRI or a remembered temporary search region indicator may be
used in accesses to the database which are in the class: "relative to some
previously found record".

ND-60.l27,5 EN

2-39

The Use of CRUI and CSH/

At the beginning of the execution of any run—unit, both the CRUI and the CSRI
are regarded as undefined. Hence, the first FIND statement to be executed must
be one which does not use these indicators, but which does in fact set them.

When a FIND NEXT in search region relative to some previously found record is
executed and if CSRI is used to identify the search region, the search region will
be the one defined in the latest executed FIND of one of the different forms, i.e.,
the current search region.

Furthermore, it should be noted that if the current record has been ERASED,
CRUI will be undefined. If the current record has been MODIFIED, CRUI will still
be defined, but the record it is identifying may have been moved out of the
current search region. This situation will be illustrated by an example.

In the example above, a FIND using a key (INDEX or CALC} for which duplicates
are allowed has been executed. The current search region will be defined as all
records with the same value (B) of the key, and the current record will be the
first of these records. If a FIND NEXT in search region using CSRI and CRUI is
executed, the next record with value B on the key will be found and made the
current record, and CSRI will remain unchanged. If the key is then MODIFIED in
this record, the record will be moved out of the current search region, but it will
remain the current record.

A FIND NEXT using CSRI and CRUI in this situation will have no meaning. It the
user wants to FIND the third record with value 8 on the key, he should execute
REMEMBER for the first record using a temporary-database~key, and then
perform 3 FIND relative to this record. It should be noted that this situation only
occurs if the key used to define the search region has been MODIFIED.

ND»60.127.5 EN

2.4.2

2.4.2.1

2—40

Connecting and Disconnecting, Inserting and
Removing

CONNECTING AND DISCONNECTING

Connecting and disconnecting records to sets is normally done automatically by
SIBAS through execution of STORE, MODlFY or ERASE statements.

Manually, however, it is possible under certain circumstances to connect a
record into a set and disconnect it from a set. In SIBAS, it is possible to use
similiar facilities to update an index. Each is described separately.

Connecting To and Disconnect/n9 from a Manual/y Maintained Set

If a record type participates in a set type as a member, then its occurrences may
(at any time during the life of the database) be either connected or not
connected into a set of that set type. When the connection actually takes place
depends on the storage class of the set type.

if storage class is automatic, it means that the record will be connected at the
time the STORE is executed. This means that there must be an occurrence of the
owner record type in the database whose owner set item values correspond to
the member set item values in the record being stored. If this is not the case,
then the record cannot be stored, and hence not connected. However, if the
attempt to store the record does not include an attempt to store the member set
item (it may be a group item), then the store may be successful, if all other
restrictions are satisfied, but the connection into the set item is not made. The
member set item value will then be undefined. A subsequent modification of
such a record which provides a value or values for the complete member set
item would cause the connection to be made. Considerable care is called for in a
multi-user environment when allowing this situation to occur.

if the storage class of the set type is manual, then no connection is made when
the record is stored. However, the CONNECT statement may be used to connect
a record into the set of the set type in which it is a member. Again there must be
an owner in the database with an equal valued set item for the connection to be
successful. Exactly where in the set the record is connected depends on the
option used. It is possible to connect it: at the end of the set (is, last in order of
the link to next) or else adjacent to some previously found record in the set. In
this case, it can be connected before or after the previously found record. lf the
storage class is manual, then it is also possible to DlSCONNECT a record from a
set into which it previously had been connected.

ND—60.127.5 EN

2-41

The various alternative actions which can take place when a STORE, CONNECT
or DlSCONNECT is executed are summarized in the following table. The storage
class is taken into account, as is also, for each storage class, the value of the

member set item (MSI) with respect to owner set item values (OSl) already in
the database.

It must be noted that the STORE statement operates on a record occurrence
built up in a record area in core by the programmer. The programmer must
designate which of the items in the record type he intends to provide values for.
The CONNECT and DlSCONNECT act on a record which is already stored in the

database, and it is the value of the member set item there which may influence
the success or ‘faiiure of the statement.

A DlSCONNECT or a CONNECT or both may take place implicity during the
course of execution of a MODIFY it the member set item values are changed.
What exactly happens depends both on the storage class of the set type and on
whether or not the member record was already connected into some set. The

complete picture is summarized in the following table, which examines 12
situations depending on storage class of the set type, whether the member
record was previously connected or not and the reiationship of the new member
set item values to owner set item values already in the data base. In the cases

where the member was in fact connected, it is only the set item values of other

owners which are of interest.

ND-60.127.5 EN

2-42

Storage
Class Situation STORE CONNECT DISCONNECT

N

MSl = OSI (some) Y (connect)

MSl a: OSI (some) N

Automatic MS! not completely Y (no connect) Not applicable Not allowed with
given in record area automatic

MSl null in member N null member set
record in database item value not

allowed
J

M8! = OSI (some) Y Y

MSl 4: 08! (some) N Not applicable

Manual MSI not completely
given in record area

MSl null in member
record in database

rAlways successful.
MSl not examined. Not applicable Not applicable

Not applicable

Explanation:

MSl means member set item value
08! means owner set item value
Y means execution should be successful if no other conditions prevent it
N means execution will not be successful

Tab/e 2. 7: Using the STORE, CONNECT, D/SCONNECT Commands

ND--60.127 5 EN

2-43

Modify member set item values

Storage Previous DlSCONNECT CONNECT Net result
Class State Situation from old to new of MODIFY

new lVlSl = NULL Possible but Not possible Fail
not done

Connected new MSl 4., OSl Possible but Not possible Fail
(other than previous owner) not done

new M8! == 08! Y Y Success
(other than previous owner)

Automatic
new MSl = NULL Not applicableNot possible Fail

Not
connected new lVlSl cs OSl (any in Not applicableN Fail

database)

new MSI 2 03! (any in database) Not applicableY Success

N

new MSI = NULL Y N

Connected new MSI a: OSl Y N >Success
(other than previous owner) including

DISCONNECT

new NUS 2 08! Y N
(other than previous owner)

J
Manual \

new MSI = NULL Not applicableN

Not
connected new MSI =l= OSl (any other) Not applicableN >Success

MSI not
examined

new MSI = OSl (some) Not applicableN ~
J

Explanation:

MSI means member set item values
OSl means owner set item values
Y means action performed unless MODIFY fails for other reason
N means action not performed

Table 2.2: Using the MOD/FY Command

ND~60.127r5 EN

2.4.2.2

2.4.3

2-44

lNSERTlNG INTO AND REMOVING FROM AN INDEX

If there are one or more index keys (search keys) defined for a record type, then
the data administrator must decide when defining the schema whether the,
indexes are automatically maintained or manually maintained. For completeness
and consistency it must be emphasized that when a record type has a location
mode of CALC, the calc access mechanism is of necessity "automatically
maintained", but the data administrator must not define this for CALC key items.

Returning to indexes, the concept of an automatically maintained index is almost
completely analogous to an automatic set type. The "insertion” is normally made
when the STORE is executed, but it depends on the value of the index key item
or search key item. it also depends on whether the key item is named in the list
of items to be stored. it, because of the omission of these items from the list,
the index is not automatically updated at time of STORE, it will be automatically
updated it the index key item in this record occurrence is given a value later
(using MODIFY).

A manually maintained index is also analogous to a manual set type. it is
possible to insert and subsequently to remove a record from an index by using
the lNSERT or REMOVE statements. The value of the key item is important in a
similar way to the importance of the member set item of the manual set type.

in the case of both automatically and manually maintained indexes, the data
administrator must decide whether or not to allow duplicate values of the key
item in the index. it duplicates are allowed, there is never any problem about
inserting a record with non~null key values into an index. it duplicates are not
allowed, then whether an INSERT or, in the case of automatically maintained
index, a STORE, is successful or not depends on the absence or presence of an
entry in the index with the same key value as the new record.

Concurrent Processing

ln SIBAS considerable attention has been given to concurrency problems. The
philosophy has been to avoid deadlocks and associated costly logic at the
expense of some few restrictions. There are four levels of protection between
concurrently executing run~unitsz

Database reservation
Reaim protection mode
Record lock
Notification of changeP

W
N

T
‘

ND—60.127.5 EN

2.4.3.1

2.4.3.2

2-45

DATABASE RESERVATION

A run-unit may reserve/release SlBAS, preventing any other run-unit from
accessing SlBAS during the duration of the sequence enclosed by reserve and
release. This is a very effective method of preventing interferences between
concurrent run—units, but it has its drawbacks. The sequences must be short and

cannot contain terminal input/output,

The ACCUMULATE calls are examples of this method‘ The possibility given to

the user of writing so—called "MACRO”s which are executed uninterrupted is
another example.

The transaction units are also an example of database reservation (see Chapter

5).

REALM USAGE MODES AND REALM PROTECTION MODES

At the time a run-unit executes a READY statement, the programmer is required

to declare the way in which he intends to use the realm and at the same time

how he wishes his run-unit to co-exist with other run~units using the realm.

These two factors are called the usage mode and the protection mode
respectively.

SIBAS supports three realm usage modes as follows:

RETRlEVAL (FlND, GET)
LOAD (STORE, CONNECT, FIND, GET)
UPDATE, (ALL)

and two realm protection modes:

NON-PROTECTED (other run~units may update the realm concurrently)

EXCLUSIVE UPDATE (no other run~units may perform update or connect in

realm, but may retrieve records in the realm)

When a run—unit readies a realm in usage mode RETRlEVAL, the realm will be
available to the run—unit for execution of FIND and GET statements only. Usage

mode LOAD allows the user to perform STORE and CONNECT in addition to
FlND and GET. Usage mode UPDATE includes use of all SlBAS statements on
records in the realm.

When protection mode EXCLUSlVE UPDATE is given for a realm, concurrent
run—units will be restricted to perform FlND and GET statements on the realm
(i.e., retrieval only).

When a realm is readied for "NON—PROTECTED" use, concurrent run—units may

update, load and retrieve in the realm.

ND—60.127.5 EN

2.4.3.3

2.4.3.4

RECORD LEVEL LOCK OUT

In the case when a realm is readied for ”NON—PROTECTED” use, it is possible
for the programmer to lock individual records. This is necessary if the

programmer wants to ensure that a record or a group of records are not updated
while he is using them. (Protection mode of EXCLUSIVE UPDATE avoids this
problem by locking out the whole realm for other run»units which intend to

update it.)

The record level lock out is imposed using a LOCK statement. The LOCK
statement can be used to lock a single specified record or a group of specified
records. in the latter case the LOCK statement will only be successfully executed

provided that all the desired records are simultaneously available. The criterion
for a record to be available is that it is not concurrently locked by any other
run—unit. This restriction is necessary to prevent deadlock situations.

When a run~unit has successfully executed a LOCK statement, all the locked

records must be released by performing an UNLOCK statement before another,
LOCK statement can be executed. This restriction is necessary if deadlock is to
be avoided.

NOTlFlCATION OF CHANGE

The record level lock out enables a programmer to ensure that a record or a
group of records are protected against concurrent run—units. But a programmer
might find it too restrictive to lock records, or records might be modified, erased,
etc. during the time it takes to locate all the records the programmer intends to
lock simultaneously in a LOCK statement. To solve this problem, the current
record of a run—unit and all the records a run-unit has remembered (i.e., all
records on the remembered list), are always in what is called extended monitor
mode. if a record has been modified, erased, connected or disconnected by
another run—unit while it is in extended monitor mode, a warning will be issued to
the runvunits which have the record on their remember list. The warning will
have the form of a DBEC (Database Exception Condition), which will have a
specific value depending on what other runeunits have done to the record, and
what the present run—unit is trying to do. The programmer will then have to take
action according to the DBEC. The DBEC could be:

Record has been connected or disconnected
Record has been modified
Record has been erased
Record is locked for exclusive update by concurrent run-unit
Record has been inserted in or removed from an index
Record’s physical location on the database has changed9

9
1

.9
5

3
.“

?

ND‘60.127.5 EN

2.4.4

2—47

Privacy System

SIBAS supports two levels of privacy.

1. Privacy on database level
2. Privacy on record occurrence level

The privacy checks performed on all levels use a password supplied by the
run—unit to check if the runaunit has authority to carry out theiintended operation.
All privacy checking in SlBAS is performed at run-time and it is therefore
possible to redefine the passwords as often as desired.

A run—unit supplies the run—unit’s password when the database is opened. This
password remains the runvunit's ”current password" until modified using the
CHANGE CURRENT PASSWORD statement. This special statement may be used
to change the run-unit's current password whenever necessary.

The table below shows how privacy restrictions on a database are defined, how
and when passwords may be defined and modified, and when the privacy checks
are performed by the SlBAS run—time control system (DBCS).:

Privacy How Privacy Restr. How Valid When Passwords
Level is Defined Passwords are: are Checked

Defined Changed

Database using DBM using DBM at database open
module module

Record using schema ree when a recordwhen a recc rdwhen run—unit
occurrence definition language occurrence is occurrence 5 wants to modify,

stored modified delete or get
items

The password is of the same length and type as used for definition of data
item names for the instailation.

ND~60.127.5 EN

2.4.4.1

2.4.4.2

2-48

PRlVACY ON DATABASE LEVlEL

As indicated above, database privacy restrictions and passwords are defined by
use of the Database Maintenance Module (collection of utility programs).

The password is given as a parameter in the OPEN DATABASE STATEMENT.

There is a limit to the number of times; a run—unit unsuccessfully may try to open
the database

PRIVACY ON RECORD OCCURRENCE LEVEL

lt is possit le with SlBAS to define privacy items on the record occurrence level.

This privacy item is stored together with the record. For this reason, the
definition of the privacy item which will contain the value of the record
occurrence password has to be part of the record type description. Privacy
restrictions on the record occurrence level must therefore be defined using the
Definition/Redefinition Language. Record occurrence passwords are considered
as a special data item type just as other items may be of type lNTEGER or
CHARACTER.

The privacy item is given a value in the same way as other items in the record,
when the "ecord is stored or modified (see Figure 2.27).

DATA
MANIPU LA ~
TlON LANGU-

AGE

lTEM 1 lTEM 2 lTEM 3 lTEM 4 PRIVACY lTEM
STORE OR = = = = = XXX
MODIFY E

Figure 227. Giving Value to Privacy Item

Like other; items, the privacy item need not be given a value when the record is
stored. The privacy item will then be set to a null value by the DBCS. A record
for which; privacy on record occurrence level is defined, but with null value on
the privacy item, may be manipulated as if no privacy item was defined for that
record type.

The privacy check is performed when a run-unit tries to retrieve information from
the record (the GET statement) and when a run—unit tries to modify or delete the
record orfiits set membership. Note that no restriction is put on the use of FlND
statements.

ND—(50r1276 EN

2-49

2.4.4.3 SUMMARY OF THE SETTING OF CURRENT PASSWORD

initially the current password is set for a run—unit when the database is opened
(see Figure 2.28). Unless a CHANGE PASSWORD is performed, the value Of
current password will remain unchanged; If the run-unit performs a record
manipulation statement on records where the value of the record lock is different
from the realm password, current password for the run-unit must be changed
before the manipulation statement: is successfully executed.

CHECK
OPEN DATABASE‘flw PASSWORD
GlVE PASSWORD PASSWORD NOT VALlD

DATABASEOPENED
l[CHANGECUR— l
'RENTPASSNQRd
'iFNECESSARY IL__—;‘~*jh-J

PERFORM ,
MANWULANON

> STATEMENTCN
RECORDS

CHANGE
CURRENT CHECK \\
PASSWORD ‘F"-—**-- PASSWORD :>

PASSWORD
NOT VA LlD

RECORDS MAN lPU LATED

CONTlNUE

Figure 2.28: Use of Current Password

ND-»60t127,5 EN

2.5

2—50

DATA DICTEONARY

The SlBAS DATA DICTIONARY can be used to document the SlBAS database.
The DATA DlCTlONARY will contain descriptions of all data in a database. The

data conta ned in the Data Dictionary can also be used by other programs such

as Query Languages, Report Generators, Screen Handling Programs and Program
Generators.

The content of the dictionary is described in the following table:

database SIBAS length type date heading purpose extent display storage dictionary
unit name (size) name

database x x x x x x

realm x x x X x x x

item x x x x x x x x x x

set x x X x x x

text x x x x X

The information in the Data Dictionary is normally set up when the database is
initiated. This information is then available while running a database, provided

the transa :tion calls are legal. The information in the Data Dictionary may be
changed when redefining the database or by using the service program
SlBlNTER.

ND~601275 EN

22.5.1

2—51

Definition of the Data Dictionary

Here we give an explanation of the Dictionary parameters:

SIBAS name:

Identify the database unit. For example database name, realm name, item name,
set name, user-defined text name.

TIMESTAMP
SIBAS will automatically record the time when any database unit is created or
changed in the Dictionary.

PURPOSE
This information will be used as documentation of the database unit. It can also
be used as HELP information while using the database on-line.

HIEADING
This is usually a short text indicating the context of the database unit. It can also
be used, for instance, as a leading text in screen displays or as report headers

DiSPLAY (for data items only)
This indicates how the stored data should be edited. It can also be used by a
screen handler or a report writer for formatting information. ,

STORAGE (for data items only)
This information allows programs to convert data correctly from a stored bit
pattern and a readable version, or vice versa.

DATA DESCRIPTION NAME (for data items only)
This is, for instance, a name given to a number of items which have the same

description.

EXTENSION
This is defined by the user, Extension numbers 50 to 99 are, however, reserved
for future extensions of SIBAS.

TEXT
This can be any text defined by the user. This will, then, be accessible at
database run—time.

ND~60,127,5 EN

2--52

ND«60V127‘5 EN

34

CHAPTER Ill. DEFINITION/REDEFINITION
LANGUAGE (DBL)

ABSTRACT

A SIBAS database is defined by the program called Definition/Redefinition
Language (DRL). The DRL has 4- types of statements: (i) for creation (the NEW
statement), (ii) for deletion (the DELETE statement), (iii) for changes (the
CHANGE statement), and (iv) for renaming (the RENAME statement).

Descriptions of the data items, which may have been repeated in different
realms, are stored non-redundantly in the Data Description Catalogue.

The DRL can also be used to produce useful estimates of the various database
parameters.

TABLE OF CONTENTS:

3.1 DRL INTRODUCTION.
3.2 HOW DRL WORKS.
3.3 DRL INPUT FILE.

3.3.1 Global Rules.
3.3.2 Common part of Statements.

to 3.3.26 The DRL Statements.
3.4 THE DATA DESCRIPTION CATALOGUE.
3.5 DIMENSIONING OF DATABASE PARAMETERS.
3.6 HOW TO RUN DRL.
3.7 EXAMPLES

ND—60.127.5 EN

3—2

ND-60V127‘5 EN

3.1

3—3

DEFINITION/REDEFINITION
LANGUAGE (DRL)

INTRODUCTION

A SiBAS database must be defined before any data may be loaded in it. A
definition is the process of producing an internal representation of the schema,
the object schema, from the source schema written in a COBOL like syntax. A
redefinition is the process of amending the object schema, and making the
changes on the database.

Experience with all DBMS to date has indicated the importance of being able to
redefine the database when new requirements are identified. It is a widely
recognized objective that this redefinition should be possible without causing
unnecessary modification to the programs, which have been written to process
the database as initially structured. The degree to which a DBMS can meet this
objective is essentially a measure of the degree of data independence offered by
the DBMS.

With SlBAS, the same language is used to define or redefine a database. The
statements (directives) provided may be classified in 4 categories:

1 creations the NEW statements
2. deletions the DELETE statements
3. changes the CHANGE statements
4 renaming the RENAME statements

Each of these statements will be described in detail later in th 5 chapter.

The DRL statements available are:

START lNITlATlON first statement of an initiation (definition) run.

START REDEFlNlTlON first statement of a redefinition rm.

END last statement of a run.

NEW OS-FILE adds a SINTRAN file to the database.

NEW SYSTEM REALM defines a new system realm.

NEW SERlAL REALM defines a new user realm with lozation mode serial.

NEW CALC-REALM defines a new user realm with lc cation mode CALC
and the corresponding CALC key

NEW ITEM defines a new item in an existing or new record
type.

ND-60.127.5 EN

NEW GROUP

NEW SET

NEW INDEX

NEW TEXT

DELETE SET

DELETE INDEX

D ELETE IT

DELETE G

DELETE TE

EM

ROUP

XT

CHANGE SYSTEM—REALM

CHANGE SERIAL—REALM

CHANGE CALC-REALM

CHANGE ITEM

CHANGE C

CHANGE f

CHANGE T

ROUP

RENAME REALM

RENAME ITEM

RENAME GROUP

RENAMET

RENAME S

EXT

ET

34

defines a new group item in an existing or new

record type.

defines a new set type in the database.

adds the index key property to an existing or new
item, and defines the storage of the index table.

defines a new text in the database.

removes a set type from the database,

removes the index property from an existing item
and deletes the corresponding index table.

deletes an item from an existing record type.

removes a group item definition from an existing
record type.

deletes a text from the database.

changes the definition of an existing system realm.

changes the definition of an existing user realm
with location mode serial, or changes the location
mode from CALC to serial.

Changes the definition of an existing user realm
with Iocation mode CALC, or changes the location
mode from serial to CALC and defines the
corresponding CALC key.

changes the definition of an item in an existing
record type.

changes the definition of a group item in an existing
record type.

changes the definition of an existing set type.

changes the content of a text defined in the
database.

renames a realm existing in the database.

renames an item in an existing record type.

renames a group in an existing record type.

renames a text existing in the database.

renames a set existing in the database.

ND—60.127.5 EN

3.2

3-5

HOW THE DEFINITION/REDEFINITION MODULE
WORKS

The DRL module requires exclusive use of the whole database and accesses the
realms directly without using a SIBAS process at all.

The functions of the statements are to create and update the object schema and
perform the corresponding actions on the database. A documentation of the
database may also be produced as shown in Figure 3.1.

—I
END

DEFINE START

SIB 2 ~DRL

/ \

Veins //

\\

INPUT FILE

OBJECT
SCHEMAS = DICTIONARY

FILE FILE
v/

Figure 3. I: The Data Definition and Hedeflnit/on Module

ND~60,127,5 EN

DRL
REPORTS

When the DRL module is used, it requires the exclusive use of the database files.

Definition:

A complete example of a DRL run is shown at the end of this chapter. it must be
noted that f there are CALC realms, the DRL module must preformat them (this
operation rray take time).

Redefin/‘t/‘on:

You should note that some apparently minor amendments might result in large
computer resource usage. A good practice is to take a full back-up copy of the
database before you run a redefinition. An example of a DRL run for redefinition
is shown at the end of this chapter.

NDV~60.127.5 EN

3.3

3.3.1

3—7

DRL INPUT FILE

Global Rules

Syntax

Statements must be between columns 1 to 72 otherwise the DEF/REDEF module
truncates.

The syntax of the definition and redefinition language is sentence oriented, just
like COBOL. It means that all statements consist of a series of one or more
words terminated by a period (t). The period indicates the end of a statement. A
statement may begin anywhere in a line and may continue on any number of
lines. However, a word cannot cross a line boundary Words in a sentence may
be key words or parameters. Key words may be abbreviated, parameters cannot
be abbreviated. The parameters may be names or numbers.

”at:A line starting with asterix will be treated as a comment line and ignored,

The syntax is described with the following conventions:

EY KEY is a key word which must be present.

ANY-STRlNG is merely a noise word which helps document the
input, but may be omitted.

<any-name—or-value> "any-name—or-value" is a parameter.

<realm—name> one of the two alternatives must be given: either
KEY the parameter "realm-name" or the key word

"KEY".

(NOT) the key word NOT in the parentheses is optional.

Statement Sequence

A DRL input sequence must start with the START statement and end with the
END statement or EXIT,

The sequence of the other statements is generally free, but when a statement
refers to an existing name, the name must have been previously defined. For
example, the statement

NEW SYSTEM-REALM <realm—name> OS—FlLE <file name>

defines a new "realm-name" but refers to the ”file—name".

ND--60.127.5 EN

'38‘-

Names

SIBAS recognizes a number of names such as database name, set name, item

name, etc. Each name in SlBAS must contain between 1 and 8 alphanumeric
characters. No embedded blanks are permitted, but terminal blanks are. The first
character of a SlBAS name must be alphabetic.

Abbreviation Lookup

All key words (not parameters) can be abbreviated. However, ambiguity is not
handled. The first match is always used.

Numbers

In some of the statements, the length of a record expressed as a number of
computer words must be given. On the ND-lO or ND~100, a computer word is

taken as 2 bytes (16 bits). On the NDISOO a computer word is 32 bits, but in
format descriptions in this manual «word» means 2 bytes (16 bits) also for the
NDWSOO, for instance to make the same schema run on all ND—machines. See
also 4.3.

Additions to a Schema

The most common kind of definition or redefinition which would be performed is

the addition of new structural components.

Changes to a Schema

Many changes can be performed on an existing schema. ln the CHANGE
statements, most of the possible changes are given as options and the default
value will always be that the definition is unchanged. The RENAME statement
makes it possible to rename the database-units.

Deletions from a Schema

In the case of deletions, any program which uses any of the properties deleted

must be carefully modified. Normally, however, deletions would only be made if
the programs which process the database using these properties are themselves
obsolete.

Database~unit

The term Database—unit is used to describe the database itself. It consists of data
items, records, sets, realms etc. Database—unit is, thus, the part of the database

that is defined by the START and NEW statements.

ND—60.127.5 EN

3.3.2 Common Part of the Statements

in most statements extra information can be given in terms of HEADING,
PURPOSE and EXTENSION. The syntax of this part of the statement is similar for
all statements. We will, therefore, not repeat this in each statement. The rules
applying to this common part of the statements are described below.

Example:

CHANGE/NEW
(HEADING "<heading>”)
(PURPOSE ”<purpose>")
(EXTENSION <code> "<extension>"

(<code> ”<extension>"...)).

Ru/es:

<heading> An alphanumerical string of maximum 30 characters. The
<heading> will be used as header for automatic generation of
screen layouts, reports etc.

<purpose> An alphanumerical string of maximum 1000 characters. The
<purpose> is used to document a particular database—unit. it can
also be used as on—line help. The first character of <purpose> is
used as a line separator. There should not be more than 60
characters between line separators.

Example:

PURPOSE "/ ”
H/ ,,
.,/ ,,

EXTENSION
<code> a number between 1 and 49, to identify the <extension> string

that follows <code>.

<extension> a string of maximum 1000 characters.

ND-60.127.5 EN

3.3.3

3-10

Start Initiation

Function:

A new database is defined using the DRL module. The statement START
INITIATION will define a new database with the name given in the START
statement.

Format:

(

(SIZE

§IART INITIATION DATA§A§§ < database—name)

SUPPRESS (REALM) (RECORD—TYPE) (ITEM) (SET) (INDEX-TABLE) (TEXTl)

< no-of—GAw—pages > l

(HEADING "(heading)”)
l PURPOSE "(purpose)")
I EXTENSION (code) "<9xtension)" ((code) "(extension>') ...)

Rules:

In the START INITIATION statement, the name of the database which is to
be defined is given. It is the name of a SINTRAN Operating System (08)
file of type DATA. This 08 file is used as the SIBAS system realm and
cannot be shared by any other realm. It should not be declared with a NEW
08 FILE statement. The SIBAS system realm is where the object schema is
stored. Additional user system realms may be defined with the NEW
SYSTEM REALM statement.

SUPPRESS. The SUPPRESS clause can be used to suppress the
documentation of realms, record types, items, sets, index tables or texts.
This will have no influence on the resulting database definition. |f_the
SUPPRESS clause is omitted, a full documentation of the database will be
printed.

SIZE. In the SIZE clause the expected size of the object schema is given in
number of 64 word blocks. If the size clause is omitted, SIZE is set to 4800,
i.e., 300 K SINTRAN pages. The 64—word pagesize is only used for the
object schema. The object schema is stored in the SIBAS System Realm.
To avoid problems, give a large number, for example 5000, and create the
SINTRAN file as an "INDEXED FILE”. This may be done by
@CREATE—FILE <db name>,,, before the DRL module is used. If not,
SlBZ—DRL will create an indexed file when initiating the database.

ND-60.'l27.5 EN

3.3.4 Start Redefinition

Function:

This statement will start the schema DRL tor the database identified in the
statement.

Format:

ST 31 REDEFINTIQN DATABASE (database—name) (DEA-PASSWORD <password>I

I SUPPEESS (REALM) (RECORD-TYPE) (ITEM) (SET) (INDEX-TABLE) (TEXTH

SCRATCH—FILE (file—name) (DIRECTORY <abbreviated—dir—name>)
I§1ZE (no. of 64—word pages>l

I HEADIHG "(heading)" I
I PURPOSE "(purpose)“ I
I EXT§N§EON <code> ”<extension>" ((code) "(extension)”) ...I

Rules:

1. In the START REDEFINITION statement the name of the database which is
to be redefined is given, and if privacy is defined for the database through
the DBIVI modules (see 6.I.7) the DBA PASSWORD is given

2. All realms in the database will automatically be readied with protection
mode EXCLUSIVE when the START statement is given.

3. SUPPRESS. The SUPPRESS clause can be used to suppress the
documentation of realms, record types, items, sets, index tables or texts
This will have no influence on the resulting database definition. li the
SUPPRESS clause is omitted, a full documentation of the new database
will be printed

4. SCRATCH FILE. If the execution of the DRL includes a CHANGE REALM or
NEW INDEX the "filename" must be the name of a file with maximum 8
characters, which is big enough to hold any of the realms in the database
which are to be changed. Default file type is :DATA. lf the scratch file is
not big enough, the execution of the redefinition may stop in the middle of
step 4, leaving a destroyed database.

5. DIRECTORY. The "abbreviateddtrectory-name" is an eight character
abbreviation of the directory where the scratch~file is piaced. If the
substatement is omitted, the default directory will be used,

6. SIZE. The size clause can be used to change the size of the object schema.
The size is given as number of 64-word pages.

ND-760.127i5 EN

3-12

3.3.5 End/Exit

Function:

The statements indicate the end of the database definition or redefinition.

Format:

fl) REDEF.

or

Egg):

Rules:

1. Any statement following END or EXlT will be ignored.

ND—60.127.5 EN

3-13

3.3.6 New OS File

Function:

The statement will define a new 08 file for the database.

Format:

N ~FI (file—name) (PAG§§IZL§ <no—of—words))

l Q13§CIQRI <abbreviated—dir~name>)

Rules:

1. FlLE NAME. The parameter "file name" must not be the same as the name
of any existing SINTRAN file for this database. The type of the tile is
automatically DATA. The "file name" is treated as any other SlBAS name.
if the file is not previously created in SlNTRAN, SlB2—DRL will create it as
an "indexed" file.

2. PAGESIZE. The "page size” is the number of words that will be read into
the SIBAS buffer area when a realm located on this 08 tile is accessed.
The default value is 512 words. Guidelines on how to estimate the "page
size” are given at the end of this chapter. This page size is the size of a
SIBAS page for all realms defined on the OS»FlLE.

3. DlRECTORY. The "abbreviated-directory—name" is a eight character
abbreviation of the directory where the file is placed. If the substatement is
omitted, the default directory will be used.

Hints:
in a test phase it is recommended that a SlNTRAN ”lNDEXED FILE” is used.
When the database is in operation, response time will be improved by changing
the file to CONTINUOUS. This is done by

@CREATE—FILE <new>zDATA <size>
@COPY--FILE <new>zDATA <filexname>
@RENAME—FILE <fi|e~name> <new>zdata

<size> can be found in the SlDRL documentation of OSeFlLES.

ND—60.127.5 EN

3.3.7

3—14

New System Realm

Function:

The statement will define a new user system realm for the database. A system
realm contains index tables for user realms.

Format:

(

NEN SYSTEM—REALM (realm—name)
OS—FILE <file—name) REALMSIZE <no—of—pages)
ADDITIONAL OS—FILE (file—name) SIZE <no—of~pages>)

HEADING " <heading>")
PURPOSE "(purpose)“)

(EXTENSION (code) "<extension>” (<code> "<extension>") ...)

Rules:

1. REALM NAME. The parameter ”realm—name” must not be the same as the
name of any existing realm.

2. FILE NAME. The parameter ”file—name" must be the name of an 08 file
previously defined using NEW OS—FILE.

3. REALM SIZE. The parameter "no.-of—pages" gives the size of the system
realm in terms of SlBAS pages. Guidelines on how to estimate the size of
system realms are given at the end of this chapter.

4. ADDlTlONAL OS—FILE. One realm may span over several OS~files. The
parameter "filevname” must be the name of an OS—file previously defined
using NEW OS-FlLE, The parameter "no-0f~pages” gives the size of the
realm extension defined in the additional OS—file. One may define 3
additional OS—files at a time.
NOTE: An additional OS—file may be used only by one user realm.

5. STATEMENT SEQUENCE. The 08 file referred to must be defined prior to
this statement using NEW OS~F|LE_

ND~60.127.5 EN

3.3.8

3»15

New Serial-Realm

Funcfion:

The function of this statement is to define a new serial realm for the database,
which implies adding a new record type to the database.

Format:

l
(

NEW SERIAL~REALM (realm—name)
REALMSIZE <no—of—pages>l
ADDITIONAL OS-FILE (file—name) §IZE <no—of-pages>)

RECORD LENGTH <no-of—words)

MAIN (system—realm) I
HEADING "(heading)" I
PUR 0 E "(purpose)" I
EXTENSION (code) "(extension)" l <code> "<extension>"l ...)

Rules:

1, REALM NAME. The parameter "realm~name" must not be the same as the
name of an existing realm.

2. FILE NAME. The parameter "file—name” must be the name of an OS file
previously defined using NEW 08 FILE.

3. REALM SIZE. The parameter ”no-otpages" gives the size of the realm in
number SIBAS pages.

4. ADDITIONAL OS»FILE. One realm may span over several OS~files. The
parameters "Filevname" must be the name of an OSAtile previously defined
using NEW OS—FILE. The parameter "hoof—pages” gives the size of the
realm extension defined in the additional OS‘file. One may define 3
additional OS—files at a time.
NOTE: An additional OS-file may be used only by one user realm.

5. RECORD LENGTH. The record "length” must be given for all user realms.
The record length must include all pointers in number of words in the
record. The length of a pointer is 2 words. Space must be allowed for one
or two pointers for each set type the record type is defined as having a link
to, depending on whether the set type is defined with link to prior or not.

6. SYSTEM REALMS. The system realm will be used for storing index tables.
The same system realm may be used for more than one user realm. If
MAIN option is not used, the first system realm defined by NEW SYSTEM
REALM will be used.

7. MINIMUM RECORD CONTENT. For all user realms, there must be at least
one elementary item defined by using NEW ITEM,

8. STATEMENT SEQUENCE. The OS tile and any system realms must be
defined prior to this statement using:

NEW OS~FILE
NEW SYSTEM—REALM.

ND-60.l27.5 EN

3—16

3.3.9 New CaIc-Realm

Function:

The function of this statement is to define a new CALC—realm for the database,
which implies that a new record type will be added to the database.

Format:

3E! CALC—REALM (realm—name)
IREALM§IZ§ <no~of—pages>)
(ADDITIONAL OS—FILE (file-name) §IZ§ <no~of~pages>l

MAIN-AREA <no«of—pages>

RECORD LENGTH <no—of~words>

QALC~KEY <key~name> DUPLIQATES ARE (NQT) ALLOWED

I MAIN (system—realm) I
I READING ”(heading)" I
l PURPOSE ”(purpose)" I
l aEXTENSION (code) "< xtension)" I (code) ”(extension)“) ...I

Rules

1. REALM NAME. The parameter "realm~name" must not be the same as the
name of any existing realm.

2. FILE NAME. The parameter "file~name” must be the name of an 08 file
previously defined using NEW OS—FILE.

3. REALM SIZE. The parameter ”no—of~pages" gives the total size of the
realm in number of SIBAS pages.

4. ADDITIONAL OS»FILE. One realm may span over several OS--files.'The
parameter "file~name" must be the name of an OS-file previously defined
using NEW OSFILE. The parameter "no—opages" gives the size of the
realm extension defined on the additional OS-file. One may define three
additional OS--files at a time.
NOTE: An additional OS-Iile may be used only be one user realm.

5. MAIN AREA/OVERFLOW AREA. The space in which the records are to be
stored must be divided into a main area and an overflow area. Each of
these areas must be further divided into a number of buckets. In SIBAS a
bucket is equal to a SIBAS page. All pages both in the main area and in
the overflow area are of equal size. The number of SIBAS pages in MAIN
AREA, "no-of—pages” should be a prime number. The number of pages in
OVERFLOW AREA will be the difference between the total number of
SIBAS pages given for REALM SIZE and the number of SIBAS pages given
for MAIN AREA.

ND<60.127.5 EN

11.

3—17

RECORD LENGTH. The ”recordlength" must be given for all user realms in
the number of words. The length of a pointer is 2 words. Space must be
allowed for one or two pointers for each set type the record type is defined
as member or owner of, depending on whether the set type is defined with
link to prior or not.

CALC KEYA The "key-name" must refer to an item or a group item which
must be defined for the record type using NEW ITEM or NEW GROUP in a
later statement. The item/group item will automatically be assigned the
CALC KEY property Duplicates will be allowed on the key, unless the NOT
option is given.

SYSTEM REALMS. The parameter "system—realm" must contain the name
of a system realm defined by using NEW SYSTEM-REALM prior to this
statement. The system realm will be used for storing index tables. The
same system realm may be used for more than one realm.

MlNlMUM RECORD CONTENT. For all CALC realms there must be defined
an item or group item serving as CALC key defined by using NEW lTEM.

All the main buckets are preformatted at initiation time. The user must
ensure there is enough disk space and be aware that the preformatting
takes some time.

STATEMENT SEQUENCE The 08 file and any system realms must be
defined prior to this statement using NEW OS-FILE and NEW SYSTEM-—
REALM. The CALC key item must be defined later using NEW lTEM or
NEW GROUP.

ND»60.127.5 EN

3-18

3.3.‘30 New Item

Funcfion:

The function of this statement is to define a new item for a record type
previously defined using NEW CALCv-REALM or NEW SERIAL—REALM. items
defined must be given type and length, and the position within the record type
may be specified.

Fonnat

3. Format 1 ct NEw ITEM

NE ITEM <realm~name> (item—name)

INTEGER
TYPE FLOATING (§_ RT <word~no>)

CHARACTER
PRIVACY~ITEM

BIT POSITION (first—bit)
LENGTH <no> (WORD) (KEEP-VALUE)

BYTE POSITION (first—byte)

l STORAGE "<storage>")
(DISPLAY "(display)")
(HEADING "(heading)“)
(PURPOSE "<purpose)")
(EXTENSION (code) ”(extension)" l (code) “(extension)“i ...i

2. Format 2 of NEw ITEM, in connection with DOC.

NEW ITEM <realm—name) (item—name) OD—NAME (dd—name)

HEADING "(heading)")
PURPOSE "(purpose)”)
EXTENSION <code> "(extension)" ((code) "<extension>") ...)

Rules:

1. REALM NAME. The ”realm—name” must refer to a realm defined using
NEW CALC~REALM or NEW SERIAL—REALM prior to this statement.

2. ITEM NAME. The "item—name” must be different from all other items or
group items in the same record type.

3. DD—NAME. The DD—name must be a name of a Data Description existing in
the Data Description Catalogue (BBC). The item properties will be the
same as the properties of the DID—name. See the section Data Description
Catalogue.

ND—60.127.5 EN

10.

11.

12.

13.

14.

3—19

DISPLAY. Follows closely the COBOL picture editing syntax. It is a code
which may be used by Query Language, Report Generator etc. A full
description of the syntax is given in the section Data Description
Catalogue.

STORAGE is used together with DISPLAY. The syntax is given in the
section Data Description Catalogue.

ITEM TYPE. A type must be specified for the item. If an item is defined as
PRIVACY—ITEM, the length and definition of the item must be the same as
for item names, realm names, etc. (i.e., four words). When a record of this
type is retrieved, the person retrieving the record must provide the value of
the privacy item in order for the retrieval to be successful.

START POSITION. The "word—number" must contain an integer greater
than or equal to 1 to indicate in which computer word in the record the
start of the item value is to be stored.

LENGTH. If the item occupies one word or more, the length must be given
in ”no.-of—words". If the item occupies less than one word, the length is
given in number of bits or number of bytes. The postion in the word must
be completed with an integer greater than or equal to zero, to indicate the
first bit or the first byte in the word which the item value occupies. If
length is given in bytes and the position is not given, the item will start in
the second byte (number 1) in the word. Bit counting starts with bit
number 0.

KEEP—VALUE. If it is necessary to divide an item into several items without
losing the item’s value, then use the option KEEP~VALUE. This option
makes sense only if there is data in the item. The item must first be
deleted (see section 3.3.18). Then, divide the old item into the required
number of items. Use the NEW-ITEM statement to define the new items.
Remember to use the START clause so that new items overlap the space
of the old item. When you use the KEEP-VALUE clause, the value of the old
item is not destroyed.

SIZE OF INTEGERS. If the item is defined as integer, then its minimum
length is 1 bit, and its maximum length can be freely chosen by the user.

SIZE OF FLOATING. If the item is defined as floating, it will normally
occupy an integral number of words which may be treely chosen by the
usen

SIZE OF CHARACTER. If the item is defined as character, then it may
occupy less than one word. The item may occupy more than one word as
long as it is allocated in integral number of words.

CALC KEY ITEM. The NEW CALC~REALM statement is used to define the
item as CALC KEY.

OWNER SET ITEM. The NEW SET statement is used to define the item as
owner set item.

ND 601275 EN

3-20

15. MEMBER SET ITEMI The NEW SET statement is used to define the item as
member set items

16. INDEX KEY. The NEW INDEX statement is used to define the item as an
index key.

17. STATEMENT SEQUENCE
NEW OSwFILE.
NEW SYSTEM-REALM.
NEW SERIAL REALM/NEW CALC REALM.

33JI NeMIGroup

Function:

The function of this statement is to give a name to a group of eImentary items
within a record type. The items need not be contiguous in the record type. The
sequence of the items in the group may be different from the sequence in the
record type, and an item may also participate in more than one group item.
Properties as CALC key, INDEX key, member set item and owner set item may be

assigned to a group item in the same way as they are assigned to an eIementary
item. If the group item is going to be assigned the CALC key property, the best
performance will be achieved if the group consists of contiguous items.

Format:

ufifl gggug (realm-name) (group—name)

(item—name) (<item—name>I

I W "(heading)")
(Eflfifigii "<purpOSE>")
I W (code) “(extension)" I (code) "<extension>") ...)

ND—60.127.5 EN

3-21

Rules:

10.

11.

12.

REALM NAME, The "realm-name” must refer to realm defined using NEW
CALC-REALM or NEW SERIAL-REALM prior to this statement.

GROUP NAME. The "group—name" must be different from all item or group
item names in the record type.

ITEM NAMES. The "item-name-1", "itemmame-Z”, etc. must refer to
elementary items in the record type defined by using NEW ITEM prior to
this statement.

ORDER OF ITEMS. The order in which the elementary items are defined
may be quite independent of the order in which they are defined using
NEW ITEM. However, the order, once defined, is significant and must be
preserved when values of the group are given in DML statements.

ITEMS IN MORE THAN ONE GROUP ITEM. Any elementary item may be a
constituent item in one or more groups of the same record type.

NUMBER OF ITEMS. The maximum number of elementary items in a group
item is approximately 50.

CALC KEY ITEM. The NEW CALC~REALM statement is used to designate
the group item as CALC KEY.

OWNER SET ITEM. The NEW SET statement is used to define the group
item as owner set item.

MEMBER SET ITEM. The NEW SET statement is used to define the groups
item as member set item.

INDEX KEY. The NEW INDEX statement is used to define the group item as
an index key.

EXTRA NAMES OF ITEMS. If the group item consists of only one
elementary item, the effect of the group item will be to give an extra name
to the elementary item. This can be useful if an elementary item is used as
a member set item in two different set types.

STATEMENT SEQUENCE.
NEW OS-FILE
NEW SYSTEM—REALM
NEW SERIAL—REALM/NEW CALC-REALM
NEW ITEM.

ND—60.127.5 EN

3-22

3.3.12 New Set

Function:

The statement defines a new set type for the database. The owner and member
record types must be record types detined prior to this statement. The statement
will also assign the properties of member set item and owner set item to the
item/group item in the member and owner record type.

Format:

NEW §ET <set-name>

§INGLE
LINK IS QQUBLE

AUTQMA! IQ
$TQRAG§~QLASS IS MANUAL

Qflflfig <0wner—set~item> (realm-name)
MEMBEE <member—set~item> (realm-name) ((realm—name) ...)

(HEAQLNQ "<heading)“ l
(PURPQSE "<purpose)")
(XT 0N (code) "(extension)" ((code) "<extension>"l ...)

Rules:

1. SET NAME. The "set name" must be different from the name of any other
set type in the same database.

2. LINK. If the SINGLE option is given, the set will have a link to next member
only. if the DOUBLE option is given, each member will have links to next
and prior member.

3. STORAGE CLASS. If the AUTOMATlC option is given, the set type will
have a storage class of automatic. When a STORE or MODlFY is executed
on a member record, it will be automatically connected into a set
occurrence. if the MANUAL option is given, the set type has a storage
class of manual and records will not be connected into a set of this type
when a STORE is executed. in SIBAS the storage class is the same as the
removal class. Whether a member record is automatically erased when the
owner is erased, depends on the option given in the ERASE statement.

4. OWNER. The "owner-set—item" must be defined as an item or group item
for the owner record type. The name of the owner record type is given in
”realm-name". Furthermore, the "owner—set—item” must either be defined
as CALC key or as lNDEX key with NO DUPLICATES allowed. The key must
be defined prior to this statement. The item/group item given will be
assigned the property of owner set item, unless it already has this property.

ND—60_i27.5 EN

3—23

MEMBER. The "member—set~item” must be defined as an item or group
item for the member record type(s). The member record type(s) are given
in "realm-name-i", ”realm«name-2”, etc. (maximum 4 member record
types). The item/group item given will be assigned the property of member
set item, unless it is already used for another set type. In this case the item
must be given an extra name by defining it as a group item. Note that the
member set items must have the same name in all realms.

INVOLUTED SET TYPE. if the member record type and the owner record
type is the same for a set type, the set type is involuted. Then the
”member—set~item” and the ”owner—set—item” must both be defined as
items or group items for the record type, but they must have different
names.

CORRESPONDENCE BETWEEN MEMBER SET ITEM AND OWNER SET
ITEM. The "owner-set—item" and the ”member—set—item" must correspond
in length and item type. The two items may also have the same name
unless the set type is involuted. Correspondence in the case of group items
means that it must be possible for the concatenated values of the
constituent elementary items to be exactly equal.

STATEMENT SEQUENCE.
NEW OS—FlLE
NEW SYSTEM-REALM
NEW SERlAL-REALM/NEW CALC-REALM
NEW lTEM
NEW lNDEX.

ND-60.127.5 EN

3.3.13

Ill-24

New Index

Function:

The function of this statement is to define an item or group item as index key
and define the storage of the corresponding index table.

Format:

NEN INDEX (realm—name) <key~name>

UPDATE IS MANUAL QUPLICATES ARE (NOT l ALLOWED
AUTOMATIC

(SYSTEM—REALM) <system~realm~name>l
l MIN—VALUE (value) MAX~VALUE (value) l

Rules:

1. REALM NAME. The ”realm—name” must refer to a realm defined prior to
this statement.

2. KEY NAME. The ”key-name” must refer to an item or group item defined
for the record type named in "realm—name". The item/group item will be
assigned the index key property.

3. UPDATE. lf the MANUAL option is given, the index will be manually
maintained, and the index table will not be updated when a STORE or
MODlFY is executed. if the AUTOMATIC option is given, the index table
will be automatically maintained when a STORE or MODIFY is executed.

4. DUPLICATES. If the NOT option is given, an attempt to store a record of
this record type will fail if there is already an entry in the index table with
this key value. if the NOT option is omitted, it means that duplicate values
of this index key are permitted.

5. SYSTEM REALM. The ”system~realm" in which all tables are stored must
be the system realm for the record already defined by using NEW SYSTEM
REALM

6. MIN VALUE/MAX VALUE. if the actual minimum and maximum values of
the index key are known at the time when the database is defined, these
values should be given to achieve better performance when using the Index
key. Note that it is enough that the key usually is between the limits,
exceptions are allowed. The parameter "value” must be a positive integer.
If a key consists of more than one word, the value of the first word is
given. if the key is alphanumeric, ”value" should be the corresponding
integer value (if any) of the first word of the key.

NDx-60.127.5 EN

3—25

STATEMENT SEQUENCE.
NEW OS-FILE
NEW SYSTEM—REALM
NEW SERiAL-REALM/NEW CALC—REALM
NEW ITEM.

ND«60.127.5 EN

3—26

3.3.14 New Text

Function:

The function of this statement is to define a new text for the database and to
store the content of the text by initiation or redefinition. The text must consist of
oniy HEADING, PURPOSE and EXTENSION.

Format:

2 m T,XT < text—name >

(HEADINQ "(heading)”)
i PHRPOSE "(purpose)")
(EXTEN§10N (code) ”<extension)" ((code) "<extension>") ...)

Rules:

1. TEXT-NAME. The parameter ”text—name” must not be the same as the
name of any existing text,

2. HEADiNG, PURPOSE, EXTENSION. See section on Common Parts of the
Statements.

ND--60,127t5 EN

3’27

3.3.15 Delete Set

Function:

The function of this statement is to delete a set type from the database schema.
When a set type is deleted, the record types which serve as its owners and
members remain in the database. All these record types are adjusted so that
there is no space assigned for pointers, but the record length will remain
unchanged unless it is changed by use of CHANGE REALM. The member set
item of all member record types will cease to have this role The owner set item
of the owner record types will cease to have this role if it was owner set item
only for the deleted set type,

Format:

DELETE §ET (set—name)

Rules:

1. Name of SET TYPE. The "set—name" must be the name of a set type which
is defined in the old database schema.

2. OWNER SET lTEM. If the owner set item of the owner record type does
not serve as owner set item of any other set type, the item will
automatically be redefined such that it no longer is an owner set item.

3. MEMBER SET ITEM. The member set item of all member record types will
automatically be redefined such that they no longer are member set items.

NDBG.127.5 EN

3-28

3.3.16 Delete Text

Function:

The function of this statement is to delete a text from the database.

Format:

m [fiXT (text-name)

Rules:

1. TEXT-NAME. The parameter must be the name of an existing text.

ND~60.127.5 EN

3.3.17

3-29

Delete Index

Function:

The function of this statement is to remove the index property from an item or
group item, and to delete the corresponding index table.

Format:

DELETE INDEX (realm—name) <key-name>

Rules:

1. REALM NAME. The ”realm-name" must be the name of an existing realm.

KEY NAME. The "key-name” must identify an item or group item defined
as index key for this record type.

lNDEX KEY PROPERTY. The index key property will automatically be
removed from the item identified by "key-name”.

SET OWNER. If the item given in ”key-name" is defined as owner set item,
the set must be deleted prior to this statement.

STATEMENT SEQUENCE.
DELETE SET.

ND—60.127,5 EN

3.3.18

3--30

Delete Item

Function:

The function of this statement is to remove an item from an existing record type.
The record length will remain unchanged unless it is changed by use of CHANGE
REALM.

Format:

DELETE IIEM <realm~name> <item—name)

Rules:

I . NAME OF REALM. "Realm-name” must be the name of the realm where
records of this type are stored.

NAME OF ITEM "Item—name” must be the name of an item which is
defined for the record type, identified by "realm~name". The item may play
different roIes in the record type and the consequences of the DELETE
ITEM are given in the following rules.

INDEX KEY ITEM. If the item given is defined as an index key or is part of
an index key, the index table must be deleted prior to this statement using
DELETE INDEX.

MEMBER OF GROUP ITEM. If ”item‘name” identifies an item which is
defined as member of a group item, the item will automatically be deleted
from the group description, unless the group is defined as index key, CALC
key or set item (see rules 3, 5 and 6). It is not necessary to change the
group composition using a CHANGE GROUP statement, which is therefore
not provided.

CALC KEY. If the item given is defined as a CALC key or is a part of a
CALC key, a new CALC key must be defined for the record type (using
CHANGE CALC—REALM) or the location mode of the realm must be
changed from CALC to serial (using CHANGE SERIAL-REALM). The
CHANGE CALC-REALM or CHANGE SERIALAREALM must be given prior to
DELETE ITEM.

MEMBER SET ITEM/OWNER SET ITEM. If the item given in "item—name” is
defined as member set item or owner set item for a set type, or if it is part
of a set item, the set type must be deleted using DELETE SET or changed
using CHANGE SET prior to this statement.

ND—60,127,5 EN

3~31

STATEMENT SEQUENCE. The following statements may have to be given
prior to DELETE ITEM (see rules 3, 5 and 6).

CHANGE CALC—REALM
CHANGE SERIAL-REALM
DELETE SET
CHANGE SET
DELETE INDEX

ND~6()‘127.5 EN

3.3.19

3—32

Delete Group

Function:

The function of this statement is to remove a group item from an existing record
type. The result of this is that the group item can no longer be referred to from
the DML statements, but the items constituting the group item will remain in the
record type.

Format:

QELEIE GROUP <realm—name> (group—name)

Rules:

1. NAME OF REALM. "Realm—name" must be the name of the realm where
records of this type are stored.

2. NAME OF GROUP ITEM. "Group-name” must be the name of a group item
which is defined for the record type identified by "realmename". The group
item may play different roles in the record type and the consequences are
given in the following rules.

3. INDEX KEY lTEM. lf the group item given is defined as an index key, the
index table must be deleted prior to this statement using DELETE lNDEX.

4. CALC KEY. lf the group item given is defined as a CALC key, a new CALC
key must be defined for the record type (using CHANGE CALC‘REALM), or
the location mode of the realm must be changed from CALC to serial
(using CHANGE SERlAL—REALlVl). The CHANGE CALC-REALM or CHANGE
SERlAL—REALM must be given prior to DELETE GROUP.

5. MEMBER SET ITEM/OWNER SET ITEM. lf ”gro‘up-name” is defined as
member set item or owner set item for a set type, the set type must be
deleted using DELETE SET or changed using CHANGE SET prior to this
statement.

6. STATEMENT SEQUENCE. The following statements may have to be given
prior to DELETE GROUP (see rules 3, 4 and 5).

CHANGE CALC—REALM
CHANGE SERiAL—REALM
DELETE SET
CHANGE SET
DELETE INDEX

ND~60.127.5 EN

3~33

3.3.20 Change System—Realm

Function:

The function of this statement is to change the realm size of an existing system
realm.

Format:

CHANGg SYSTEM—REALM <realm—name)
(REALMSIZE <no—of—pages>l
I ADDITIONAL OS—FILE (file-name) §12E <no~at~pages>l
l REALM§IZE <no-of—pages> I

l HEADING "(heading)" I
(PURPOSE "(purpose)" I
I EXT§N§ION (code) "<extension>" i (code) "<axtension>"l ...I

Rules:

1. REALM NAME. The "realm-name" must identify an existing user system
realm (not SIBAS system realm).

2. REALM SIZE. The parameter "hoof—pages" gives the maximum size of the
system realm in terms of SIBAS pages, Guidelines on how to estimate the
size of system realms are given at the end of this chapter.

3. ADDITIONAL OSvFlLE. One realm may span over several OS—tiles. The
parameter ”filename" must be the name of an OS-file previously defined
using the function NEW OS—FILE. The parameter "no—of—pages" gives the
size in number of SIBAS pages of the realm extension defined in the
option ADDITIONAL OS-AFILE.
(a) An ADDITIONAL OS~FILE may be used only by one user realm.
(b) One may define up to 3 ADDITIONAL OSeFlLEs at a time.
(c) An ADDITIONAL OS—FILE may be changed or deleted.
(d) OnIy the last defined ADDITIONAL OS—FILE may be changed or

deleted.
(e) An ADDITIONAL OS—FILE is deleted by setting the "no-of—pages“ to

zero.
(f) An ADDITIONAL OSFILE is changed by Changing the size of the

”noptpages”.
(g) The ADDITIONAL OS—FILEs defined last must be deleted before

changing or deleting the previously defined ADDITIONAL OSe-FILES.

4. We advise you to redefine one realm at a time.

ND~60.I27.5 EN

3.3.21

3~34

Change Serial-Realm

Function:

The function of this statement is to change the definition of an existing serial

realm, or to change an existing CALC realm to serial realm. In the latter case the
CALC key will automatically cease to have this role.

Format:

(

CHANGE SERIAL—REALM <realm—name)

REALMSIZE <no—of—pages) I

RECORD LENGTH (no—of—words) I

HEADING "(heading)”)
PURPOSE ”(purpose)" I

l EXTENSION (code) “(extension)” (<code> “(extension>”l ...)

Rules:

1. REALM NAME. The parameter "realmname" must be the same as the

name of an existing serial realm or CALC realm

2. REALM SIZE. The ”no—ofpages" gives the total length of the realm in
number of SIBAS pages.

3. ADDITIONAL OS~FILE. One realm may span over several OS-files. The
parameter "file~name" must be the name of an OS-file previously defined

using the function NEW OSVFILE. The parameter "no~of~pages" gives the
size in number of SIBAS pages of the realm extension defined in the
option ADDITIONAL OS‘FILE.
(a) An ADDITIONAL OS-VFILE may be used only by one user realm.
(b) One may define up to 3 ADDITIONAL OS»FlLEs at a time.
(0) Only the last defined ADDlTIONAL OS‘FILE may be changed or

deleted.
(d) Only the last defined ADDITIONAL OS—FILE may be changed or

deleted.
(e) An ADDITIONAL OSr-FILE is deleted by setting the "no-ofvpages” to

zero.
(f) An ADDITIONAL OS-FILE is changed by changing the size of the

"no~of‘pages".
(g) The ADDITIONAL OS—FlLEs defined last must be deleted before

changing or deleting the previously defined ADDITIONAL OS~FILE$.

4. MAIN AREA/OVERFLOW AREA. If this option is given, all records in the
realm will be recalculated and stored according to the new definition.

"No—of—pages" should be a prime number.

ND-60.l27.5 EN

U'l

3~35

as member or owner of, depending on whether the set type is defined with
link to prior or not,

CHANGE OF LOCATION MODE. lf "realrnname" identifies a realm with
location mode CALC, the location mode will be Changed to serial and the
CALC key will automatically cease to have this role.

We advise you to redefine one realm at a time.

STATEMENT SEQUENCE. The tollowmg statements may have to be given
prior to this statement (rule 5) if there is change of location mode.

DELETE lNDEX
NEW lNDEX
NEW SYSTEM REALM

Nil-60.1275 EN

3.3.22

3—36

Change CALC Reatm

Function:

The function of this statement is to change the definition of an existing CALC
realm, or to change an existing serial realm to CALC realm. In the latter case, an
existing item in the record type must be defined as CALC key.

Format:

l

l

l

CHANGE CALC—REALM (realm—name)

REAtMSIZg (no—of—pagesb)

MAIN~AR§A <no—of—pages))

RECORD LENGTH <no—of—words> l

CALC-KEY (key—name) DUPLICATE; ARE I M T) ALLOWED)

HEADINg ”(heading)” l
P R E “(purpose)“ l

X7 1 N (code) "(extension)" I (code) "(extension>") ...l

Rules:

1. REALM NAME. The parameter "realm—name" must be the same as the
name of an existing serial realm or CALC realm.

2. REALM SIZE. The "no—of—pages" gives the total length of the realm in
number of SIBAS pages.

3. ADDITIONAL OS~FILE One realm may span over several OS-files. The
parameter "file—name” must be the name of an OS~file previously defined

using the function NEW OS-FILE. The parameter "no—of—pages" gives the
size in number of SIBAS pages of the realm extension defined in the
option ADDITIONAL OS-FILE.
(a) An ADDITIONAL OS-FILE may be used only be one user realm.
(b) One may define up to 3 ADDITIONAL OS-FlLEs at a time.
(0) Only the last defined ADDITIONAL OS—FILE may be changed or

deleted.
(d) Only the last defined ADDITIONAL OS~FILE may be changed or

deleted.
(e) An ADDITIONAL OS-FILE is deleted by setting the "novof-pages” to

zero.
(f) An ADDITIONAL OS~FILE is changed by changing the size of the

”nopf—pages”.
(g) The ADDITIONAL OS—FlLEs defined last must be deleted before

changing or deleting the previously defined ADDlTlONAL OS—FlLEs.

4. MAIN AREA/OVERFLOW AREA. if this option is given, all records in the
realm will be recalculated and stored according to the new definition.
”No~ofepages” should be a prime number.

NDH605I275 EN

3-37

RECORD LENGTH. If new items have been defined for the record type, or if
the record type is defined as owner or member of new set types, the
record length may have to be increased. The record length must include all
pointers in the record. The length of a pointer is 2 words. Space must be
allowed for one or two pointers for each set type the record is defined as
member or owner of, depending on whether the set type is defined with
link to prior or not

CALC KEY. If this option is given, the "key»name” must refer to an item or
a group item which is defined for the record type. The item/group item
must have non null values on the database. The item/group item will
automatically be assigned the CALC KEY property. No other item/group
item in the record type must have been defined as CALC KEY‘ If the
"realm-name" refers to a realm with location mode SERlAL, the location
mode will be changed to CALC. ln this case the CALC KEY option must be
given. It must be given whether DUPLlCATES are allowed for the key or
not. lf ”keynname" already has the role of CALC KEY, this option may be
used to change it from DUPLlCATES NOT ALLOWED to DUPLlCATES
ALLOWED or vice versa.

CHANGE OF LOCATlON lVlODE. If "realm name” identifies a realm with
location mode serial, the location mode will be changed to CALC. The
CALC KEY and the lVlAlN AREA options must then be given.

We advise you to redefine one realm at a timer

STATEMENT SEQUENCE, The following statements may have to be given
prior to this statement (rule 7).

DELETE INDEX
NEW lNDEX
NEW SYSTEMREALM

ND--60.l27.5 EN

3.3.23

338

Change Set

Function:

The function of this statement is to change the properties of an existing set type.
The link may be changed from single to double or vice versa. The storage class
may be changed from manual to automatic or vice versa. New member record
types may be added or existing member record types may be deleted

Format:

CHANGE SE (set—name)

SINGLE
DOUBLE l

AUTOMATIC
(STORAGE—CLASS IS

(HEADING "(heading)“
l PURPOSE "(purpose)"

l MEMBER <member—set—item>

MANUfl)

(realm—name) l (realm—name) ..))

l
l

EXTENSION (code) "(extension)" ((code) "<extension>"l

Rules:

1. SET NAME. The "set—name" must be the name of an existing set type.

2. LINK. This option may be used to remove prior link (SINGLE) or to include
prior link (DOUBLE). If a change is made to remove the prior link, then for
all member record occurrences the space occupied by the link is made

available. it must be noted that the record length as specified in NEW
REALM for this record type is the length including set pointers, and
consequently removing the prior link of a set type will leave empty space in
the owner and member record type.

if a change is made to include the prior link, then the record length may
have to be increased for the owner and member record type. The link to
prior is automatically estabiished for every set occurrence.

3. STORAGE CLASS. The storage class of the set type may be changed from
manual to automatic or vice versa. If the storage class of a set type is
changed from manual to automatic, then all occurrences of the member
record types are examined to see whether they can be connected to a set
of the set type. If so, the connection is made in the same way as if a
CONNECT were executed on the record and set type. Member records for
which no matching set exists in the database are listed in a report, and the
redefinition will not be successfully executed. if the storage class of a set
type is changed from automatic to manual, then no changes are made to
occurrences of the set type.

ND»60,127.5 EN

3—39

MEMBER. It is possible to define new member record types in a set type
and to remove old member record types. It the MEMBER clause is given,
all the member record types for the changed set type must be listed.
Whether the new members are connected into sets will depend on the
storage class of the set type. If it is automatic, then an attempt is made to
connect each new member. Cases are listed where no owner is found in
the database for the values of the member set item. If the storage class is
manual, no connections are made, and step 4 is not executed.

In the case that the set type is old and the member record type is new
(that is being defined in the same use of the restructuring facility), then
there are no occurrences of the record type in the database, and the
existing sets of the set type are not affected.

The MEMBER clause may also be used to change member set item. The
"member set item" must be defined as an item or a group item for all
member record types, and this item will automatically be given the
property of member set item. It must, of course, correspond to the owner
set item (see 3.3.12).

When member set item is changed for a set type, all existing members will
be disconnected from the set, and if the set type has automatic storage
class, all members will be connected according to the value of the new
member set item, and cases are listed where no owner is in the database
for the values of the member set item. In this case step 4 will not be
executed.

ND—E30.l27.5 EN

3.3.24 Cha

3-40

nge item

Function:

The function of this statement is to change the definition of an item. The length
of the item may be increased or decreased and datasdictionary information may
be changed or added. Key items or set member items cannot be changed.

Format:

QfiANfiE ITEM <realm~name> <item~name>

(

l
(
l H
l
l

EIT POSITION (first-bit)
L NG H mm (flgfl) l

fill}; POSITION (first-byte)

§iQRAGE "(storage)" l
DISPLAY "(display)")

lA NG ”(heading)"
EURPQSE "(purpose)“)
EXTENSIQN <code> "<extension>" ((code) ”<extension>”).. .i.

REALM-NAME. The parameter ”realm-name” must be the name of an
existing realm.

lTEM—NAME. The parameter "item—name” must be the name of an existing
item in the record—type. Item cannot be member/owner of a set or
CALC/index key.

LENGTH. if the item occupies one word or more, the length must be given
”no-of-words”. If the item occupies less than one word, the length is given
in number of bits or number of bytes. The position in the word must be
completed with an integer greater than or equal to zero, to indicate the
first bit or the first byte in the word which the item value occupies. If
length is given in bytes and the position is not given, the item will start in
the second byte (number i) in the word. Bit counting starts with bit
number 0.

DISPLAY. Closely follows the COBOL picture editing syntax. A full
description of the syntax is given in section 3.4 on Data Description
Catalogue.

STORAGE is used together with DISPLAY. The syntax is given in section
3.4 on Data Description Catalogue.

STATEMENT SEQUENCE.
CHANGE SERIAL-REALM/CHANGE CALC-REALM.

ND~v60.'l27.5 EN

3-41

3.3.25 Change Group

Function:

The function of this statement is to change or to add data-dictionary information
to a group-item.

Format:

CHANGE GROUP (realm-name) (group—name)

(READING "(heading >")
(PURPOSE "(purpose >")
(EXTENSION (code) "(extension)" (<code> "<extension>")

Rules:

1. REALM—NAME. The parameter "reaim-name" must be the name of an
existing realm.

2. GROUP-NAME. The parameter "group—name” must be the name of an
existing group-item in the record-type.

ND~60.127.5 EN

3.3.26

3—42

Change Text

Function:

The function of this statement is to change or to add information to a text.

Format:

QHANGE [EXT < name >

(HEAQING "<heading)")
(PURPO§E ”(purpose)")
(EXTENSLQN <code> "<extension)" (<code> ”(extension)"i...)

Rob:

1. TEXT—NAME. The parameter ”text—name" must be the name of an existing
text.

ND-60.127i5 EN

3—43

3.3.27 Rename

Function:

The function of this statement is to rename realm, set, item, group or text in the
database.

Format:

EEALM (old—name) <new—name)
§ET (old—name) <new~name>

BENAME ITEM (realm—name) (old—name> <new~name>
G 0UP (realm—name) (old—name) (new—name)
IEXT <01d~name> (new—name)

RMe&

i. REALM—NAME. If the lTEM/GROUP option is used, the parameter
"realm'name" must be given. "Realm-name” must be the name of an
existing realm.

2. OLDANAME. The parameter “old-name" must be that of an existing
database—unit (realm, set, item, group, text).

3. NEW-NAME. The parameter "new-name" is the new name of the
database-unit (realm, set, item, group, text).

ND—60.127.5 EN

3.4

3—44

THE DATA DESCRIPTEON CATALGGUE (DDC)
EN $582435“.

A Data Description Catalogue (DDC) is a symbolic file that contains data
descriptions and definitions. The purpose of DDC is to define uniquely the data
descriptions which are common to one or more databases. A data description is
only used in connection with definition of a new item (NEW lTEM~statement). A
data description must contain type—description and length of an item. In addition,
STORAGE and DISPLAY may be defined by the DEFINE—statement. Once the
DDC is defined it should NOT be changed. For further information, see format 2
for NEW ITEM.

Maximum number of data descriptions defined in the DDC is 1000. Syntax rules
for the DEFlNE-statement are the same as for other statements in SlB-DRL. The
name of the DDCafile must be given as input~parameter to SlB-DRL if the data
description option in NEW lTEM is to be used. if not, no names has to be given.
Note.“ The Data Description may only consist of DEF/NE~statements and an
END~statement The END-statement indicates the end of the data description
definitions.

Format for data description definition in DDC:

l
l

ggtmg

TYPfi

(data description-name)

1NT§§§3
Ftogttfig gt: POSITION (first—bit)
aRA: a Lengtn <no> (WORD)
Pg;VA;Y-1T§H gYTE POSITION (first—byte}

§193§§g ”(storage)")
QL§PLAY “(display)“ i

Rules:

1. ITEM-TYPE. A type must be specified for the item. If an item is defined as
PREVACYJTEM, the length and definition of the item must be the same as
for item names, realm names, etc. (ie. four words). When a record of this
type is retrieved, the person retrieving the record must provide the value of
the privacy item in order for the retrieval to be successful.

2. LENGTH. If the item occupies one word or more, the length must be given
"no—of~words", if the item occupies less than one word, the length is given
in number of bits or number of bytes. The position in the word must be
completed with an integer greater than or equal to zero to indicate the first
bit or the first byte in the word which the item value occupies. if length is
given in bytes and the position is not given, the item will start in the
second byte (number 1) in the word. Bit counting starts with bit number 0.

ND-60,l27.5 EN

3-45

SIZE OF INTEGERS. If the item is defined as integer, then its minimum
length is 1 bit, and its maximum length can be freely chosen by the user.

SIZE OF FLOATING. If the item is defined as floating, it will normally
occupy an integral number of words which may be freely chosen by the
user

SIZE OF CHARACTER. If the item is defined as character, then it may
occupy less than one word. The item may occupy more than one word as
long as it is allocated in integral number of words.

ND~60.127.5 EN

3.4.1 Displa

The displ
few extensions.
possibilit

Example:

y Code

The extensions

3—46

ay code closely follows the COBOL syntax for editing pictures, with a

have to do with the justification and the

of inserting text strings in an item when it is printed or displayed,

ltem content Display code Displayed as:

12 char "Bill Hansen " xxxxxxxxxxxx

12 char "Bill Hansen " xxxxxx

12 char "Bill Hansen " x112)

12 char "Bill Hansen " 'Mr.’ x (12)

5 char "10000" 22222.22

5 char "10000" 1- 22222122

5 char "10000"

5 char " 200"

5 char ” «200"

Integer --200

’kr.’ 222522.22

+7 22222.22

99999.99,

99999.99

"Bill Hansen "

"Bill H"

"Bill Hansen "

"MrBill Hansen '

"10000.00"

" 7171000000"

"l<r.10000100"

200.00"

"0020000"

"0020000"

" $200.00"

" Kr,200.00»"

Bill H"

"Bill H

1985-10-09

????-??—09

The year 1985

09/1001

1985--40:Su

W’in week no: 'NN Monday in week no: 40

,: ’NN Monday in week no: 40

Week number 07 in ’85

Week number 54 in 00

23:01 :34

23011.7?

At 10 o'clock

At 23 o’clock

At 11 PM

At 12:30 AM

At 12:30 PM

integer-200 '35'33$$$9.99«

lnteger 200 'l<r.'$$$$9.99v

12 char ”Bill Hansen " x (6)

12 Char "Bill Hansen " (‘ x (6)

m:
19851009 YYYY’--'MM’»'DD

00000009 YYYY'~’MM' ’DD

19851009 'The year ’YYYY

20011009 DD‘/’MM’¥YY

EEK MBE :
19854007 YYYY’~’NN':'WW

19854001

19854001 <WWVVWVVWWVV’ in week no

19850731 'Week number ’NN’ in "'W

20005400 ’Week number ’NN’ in ’W

ME?
230134 HH’:’MM/:’SS

230199 HH':'MM':’SS

100199 ’At 'HH’o”clock’

239999 'At 'HH’ 0"clock’
239999 'At ‘HH’ 'AM

003090 ’At ’HH’:'MM‘ ’AM

123099 ’At 'HH':'MM' ’AM
ND'60:‘127,5 EN

3.4.2 List of Legal Symbols and Rules for the D

Symbol Rules

X

Z

347

ISPLAY

indicates a position to be tiiled by a character from the data (which
must be alphanumeric text).

indicates a position to be filled by a digit from the da
a number). A leading zero in this position will be dis
All positions between the blank leading zeros will be
too.

as Z above, but a leading zero in this position will be c

ta (which must be
played as a blank.
filled with blanks

isplayed as a '0'.

Each 9 in the display code must be to the right of every Z in the display
code.

as Z above, but a leading zero in this position will be 0

Each * in the display code must be to the left of eve
code. Z and * cannot both be used in the same displa

i“isplayed as an

ry 9 in the display
y code.

as 2 above, but the text (in single quotes) given immediately before the
first 33 in the display code, will be moved towards the first non~zero
digit from the data. Blanks will be used in the positions to the left of this
text, starting from the old position of the text.

Each $ in the display code must be to the left of eve
code. $ cannot be used together with Z and ‘ in a c

The first minus in a display code for number indicate
filled with a blank if the data is greater than or am
minus if it is negative. This first minus must be t
positions for digits.

lt there is more than one minus, the additional minus
meaning as the Z above, except that the sign will be n
first non-zero digit coming from the data. (Blanks w

ry 9 in the display
isplay code.

s a position to be
al to zero, with a
efore or after a//

es have the same
"loved towards the
ill be used in the

positions to the left of the sign, starting with the first minus position.)

When more than one minus is given, it is illegal to use Z, " or $ in the
same string, and every minus must be before every 9 in the display
code.

' (apostrophe) indicates that the positions in the displa
occupied by the text inside the display code. This te
next character and ends with the next single occurre
quote character (’) in the display code.

Note that " (two single apostropes) are taken as the
within the text. Such a double occurrence is not take
of the text.

ND—60.127.5 EN

y string should be
xt starts with the
ance of the single

1single character
n to mark the end

DB

CR

c
\m

3.48

as minus above, except that when data is greater than or equal to zero,
the position will be filled by a + instead of the blank. The same rules
apply to it as to m . It is not allowed to use both a minus and a plus
in a display code.

indicates two positions to show the sign of the data (which must be in
the numeric category) if the data item is greater than or equal to zero,
the positions are blanked. if the data is negative, they are filled with
'DB'.

DB must be given after all the symbols denoting positions for the
digits. It cannot be used together with + or «— in a display code. Only
one occurrence of D8 is allowed in a display code,

as DB, except that if the data is negative, the two positions will be filled
with 'CR' instead of ’DB'. The same rules apply for CR as for D8. You
cannot use CR in a display code where DB is used.

indicates the position of the decimal point. Only one occurrence is
allowed. The data must be numeric. Positions for decimals must be
indicated when a decimal point is indicated.

same as’ '. See ’ above.

same as ’/’. See ' above.

same as '0’. See ' above.

, (comma) same as See ’ above.

this indicates a repetition after a B, O, /, comma, w, +, $, ‘, 9, Z, X. lt
must be followed by an integer (giving the number of repetitions of the
symbol) and a ’l’.

indicates left justification when the field is displayed.

indicates right justification when the field is displayed.

indicates a digit for the year in a DATA or WEEK item. When a Y is
used, there must be one group of 2 or 4 Y's,

indicates a digit for the month in a DATA or the minute in a TIME item,
When M is used, there must be a group of 2 lVl's.

indicates a digit for the day in a DATA item. When D is used there must
be a group of 2 D's.

indicates a digit of the week Number in WEEK item. When N is used,
there must be a group of 2 N’s.

indicates a letter position for the name of the weekday in a WEEK item.

ND—v60.l27.5 EN

AM

indicates a digit for the hour in 8 TIME item. Whe
must be a group of 2 He

indicates a digit for tht second in a TIME item. Whe
must be a group of 2 S's.

indicates AM or PM for 3 TIME item. The display
adjusted accordingiy in the range I to 12.

Nil-60,127.?) EN

H is used, there

8 is used, there

,d hour must be

3.4.3

3—50

Storag e Code

The storage code indicates how data is stored on disk. The storage code is

required for electronic data processing such as data computation and conversion

of one field to another.

In many cases a storage code can be generated automatically from a given

display code.

Different programming languages and software packages may not be able to

handle all types of storage codes. You must remember this when you choose a

storage code for a particular item.

Example:

Storage code
Possible

Dictionary syntax COBOL FORTRAN-77 Display code

ALPHANUMERlC (12) PIC x(12). character-1612 xxxxxxxxxxxx
equivalenced with
INTEGER (6)

INTEGER 2 PIC $9999 COMP. INTEGER-*2 —»z229

INTEGER 4 PIC 89(8) COMP. INTEGER-*4 —-zzzzzzzQ

UNPACKED DEC (5,2) PIC 899999V99 N.A. —-zzzzz.zz

PACKED DEC (5,2) PIC 82222.22 N.A. —-zzzzz.zz
COMP-3

PACKED DEC (12,2) PIC Sz(lZ).zz N.A. —-z(12).zz
COMP—3

REAL 8 NA. REAL-*8 or ~«z(12).zz
DOUBLE
PRECISION

NA. = No Arithmetic Possible
on this Storage code

Appendix H in the manual indicates which storage codes are directly supported
by COBOL, FORTRAN 77, ABM~FOCUS, RG, 0L and UNIQUE;

ND~60.I275 EN

3.4.4 List of Storage Code

3—51

The n and m in the tabie below may be any positive integers or zero. Note that
the division is an integer division. As: 5/2 =: 2. if the SIBAS item length contains

more bytes than required, data is left justified in the item. The
right is blank if type is character, and binary zero if type is intec

iller byte(s) to the
er or floating.

Standard Length
Storage code Abbreviated Display of item

in bytes

ALPHANUMERIC (n) A(n) x(n) n

All printable characters
sometime called TEXT

NUMERIC TEXT (n) N T(n) x(n) n

Alphanumeric field with only

one number in. WP and RG
can compute on such fields.

’) UNPACKED DECIMAL (n,m) U D(n,m) —z(n-l)9.9(m) n+m
UNPACKED DECIMAL (n,m)
SEPARATE U D(n.m)S —2(nxl)9.9(m) n+ m +1

PACKED DECllVlAL (n,rn) P D(n,m) -z(n»l)9.9(m) (n+m)/2 ll
sometime called 8CD

PACKED DECIMAL (n,m) P D (n,m)U 2(n~l)9,9(m) (n +m)/2 +1
UNSIGNED

REAL 4 R4 ~ 4

REAL 6 R6 v 6

REAL 8 R8 .2 8

lNTEGERZ 13 22229 2

lNTEGER4 [4 2222222229 4

DATE D ’YYYY'-~'MM'—’DD4

WEEK W 'YYYY’~’NN’:'WW 4

TIME T HH’:'MM':'SS 4

NONSTANDARD(n) N(n) x(2n) n
displayed
HEXADECIMAL

REPEAT k R k ()eek
The item is repeated k times

) is the usual COBOL UNPACKED DEClMAL as for ex, PlC 899

’Signed is leading' is not implemented as a storage code.
ND—60.127.5 EN

3.4.5 Store:

There ar

3-52

ge and Display in SIBAS: Date and Time

a three storage codes: DATE, WEEK and TlME, for storing date and time
in a SIBAS item:

DATE
Date is stored as a double integer in the SIBAS item. The format of the storage
code is:

YYYYMMDD YYYY for Year NOTE: YYYY, MM or DD can have
MM for Month 0 (zero) as values.
DD for Day

Example:
19850001 means the first in some month, 1985.

YYYY'JMM’A’DD 19851009 1985—10—09
YYYY'-’MM'~’DD 00000009 ????~??-09
’The year 'YYYY 19851009 The year 1985
DD’/’MM'-’YY 20011009 09/10-01

WEEK
The date is stored as a double integer in the SIBAS item. The format of the
storage code is:

YYYYNNWW YYYY for Year
NN for Number of Week
WW for Week Day (eg. 01 for Monday)

Example:
19854002 means Tuesday in week number 40, 1985.

Stored
Display ode: value: Displayed value:

YYYY'»'NN’:’WW 19854007 1985—40:Su
WWWWWWWW’ in week no; ’NN 19854001 Monday in week no.: 40
<WWWWVVVVW\N’ in week no.: 'NN 19854001 Monday in week no.: 40
’Week n
’Week n

TIME
Time is

mer 'NN' in "’YY 19850701 Week number 07 in ’85
.lmber 'NN’ in ’YY 320005400 Week number 54in 00

stored as a double integer. The format of the storage code is:

HHMMSS HH for Hour (in the range 0 to 23)
MM for Minute (in the range 0 to 59)
88 for Second (in the range 0 to 59)

ND~v60:127.5 EN

Examples:
040531 means 31 seconds and 5 minutes after 4 AM.
130359 means 59 seconds and 3 minutes after 1 PM.
000000 means at Midnight
If an number is outside its range, it is taken to mean unspecified.

Display code:

HH
HH
'At
'At'

'At
'At
'At

':'l\/ll\/l':’SS
':’l\/llVl':'SS
’HH' o"clocl<'
HH’ o"clocl<'

'HH’ ’AlVl
'HH'2’lVllVl' ’AlVl
'HH’:'lVll\/l' ’AM

3—53

Stored value: Displayed valued:

230134
230199
100199
239999
239999
003099
123099

23:01 :34
23:01 :7?
At 10 o clock
At 23 o clock
At 11 PM
At 12:30 AM
At 12:30 PM

NOTE; lf you include AM in the format, the time will be di<played with hours
between 1 and 12, together with AM of PM.

To make sure that an unspecified item gets a value that is interpreted correctly,
the SIBAS type should be lNTEGEFl when storage code is DATE or WEEK, and
type CHARACTER when storage code is TlMEi SIBAS will then put the value
00000000 into a DATA or WEEK item, the value 538976288 into a TlME item — if a
record is stored without a value for this item‘

ND—60.127.5 EN

3.5

3-54

DIMENSIONING OF DATABASE PARAMETERS

ln this section we explain how to compute values of the disk file parameters The
actual formulas for computing these parameters are inconvenient to use.
Therefore, we recommend that you use SlB2~DRL to compute these parameters,
especially:

— The record sizes
_ The datafile sizes, and
_ The index table sizes.

To get a good estimate of these parameters run the SlBZ—DRL utility two times.

For the f rst run:

1. Make all files lNDEXED.
2. G‘ e an overestimate of space to all record sizes.
3. Gi e an overestimate of the number of pages for the realms.

This first run will produce a DRL report with information on the disk file

parameters. Use this information to adjust the values of the parameters in the
DRL inp Jt file, for the second run.

SIBAS realms are stored on SlNTRAN files, which may be created as INDEXED
or CONTINUOUS files. Such files always occupy an integral number of
"SlNTRAN pages", i.e., 1024 words. A SlBAS pagesize is variable. However, all
SIBAS pages in one OS-file have the same size, defined by the NEW~OS~FlLE

statement. The default length is 512 words. The minimum page size is 64 words,
the practical maximum is 2 K words (SINTRANslll default value for the device
buffer size). if the file type is lNDEXED, disk space is allocated when the demand
arises. One is then recommended to be generous when estimating the size of the
REALM. SlB—DRL prints out useful information about the size of the realms and
gives estimates for the size of the index tables.

The maximum number of "SlBAS pages" on an OS—FlLE is about 2000 000.
However, for performance reasons try to limit the size of any OS—FILE to
approximately 128 Megabytes (i.e. 65000 SlNTRAN pages), in particular if
SlBAS—SOO is used.

The maximum number of ”SIBAS—pages" for any realm type is 2000 000. Any
realm type can span over one or more OS-FlLEs, provided all OS~FlLEs have the
same pagesize.

S/BAS System Rea/m

When a SlBAS database is defined and initialized, or redefined using the SlBAS
Definition/Redefinition Language, an object version of the data base definition
will be generated. The object version of the schema will be stored on the SlBAS
system realm. In the following we wiil give some rules for estimating the space
requirements for the SlBAS system realm.

ND—60fil275 EN

3-55

The page size of a SIBAS system realm is always 64 words
realm must be on a separate SINTRAN file. It will contain the
table, the l/O table, the set description table, the record desc

, and the system
realm description
ription tables, the

index description tables and other dictionary information — usually the record
description tables are the most voluminous. As a rule of thumb use an "indexed
file" 'for the object schemas and do not specify any size for the

User System Rea/ms

object schemes.

SlBAseDRL prints out useful estimates about the size of user system realms.
These estimates are based on the following:

A user system realm contains one SIBAS page reserved for
the realm description and a number oi SIBAS pages for the ii
on it. index tables are organized as a hierarchy of tables, ea
SiBAS page. '

One index table is divided into a table head and a number
lowest level, by far the most common, one index table entry c
and one pointer. Since the key values are stored randomly, th
of the index tables is on average 60%.

it Page :9.
6 Key siz‘e +2

Number of entries on a SIBAS page

Number of records

SlBAS containing
dex tables stored

ch occupying one

of entries. At the
onsists of one key
e packing density

Number of SlBAS pages for one index
Number of entries on a

it must be noted that index tables might be compressed by a L
the SlB-DBM module.

Record size

In the case of records without set, the record size is the sum of
the case of records in a set, SIBAS adds a single or a doubl
record and the record size must be computed accordingly.
occupies 2 words.

Serial Rea/ms

A serial realm contains one page reserved for SlBAS and a nur
use by the records. A page is always headed by a pointer (2 wc
an integer number of records. Estimating the size of a serial
easy matter.

N b t dum er 0 recor s on a page Record length

Maximum number of records

«it- 105
SIBAS page

tility statement of

the item sizes. in
e pointer to each
A SIBAS pointer

nber of pages for
rds) and contains
realm is then an

Number of pages for the realm =
Number of records on a page

ND—60.127.5 EN

CA L C Rec Ims

The main parameter when dimensioning a CALC realm is the number of buckets
in the main area. For SlBAS one bucket equals one page. Choosing an optimum
value for the number of pages in the main area is not a straightforward
procedure. This number will also give the number of SlBAS pages in the main
area and

Overflow

, together with the page size, it will limit the total number of records in
the main
randomiz

area. A prime number is used to give a better distribution with the
ng algorithm SlBAS uses.

pages are linked to the main page when overflow occurs. They
(overflow pages) are not preallocated to a specific main page. An overflow page
belongs t 0 only one main page.

Main and overflow pages have the same size and the same layout: they are
headed by a pointer and contain an integer number of records. Estimating the
size of a

Number

Number

Number

CALC realm may be done as follows:

Page size -2)f r d SlBAS =‘ *—ecor s on a page Record length
Total number of records

f SIBAS ' ' =
3 pages In main Number of records on a SlBAS page

3f SlBAS pages for the realm = Number of SIBAS pages in main +

1 * Estimated Overflowing Records
60% Number of records on a SiBAS page

ND—60.127.5 EN

3.6

3—57

HOW TO RUN DEL ON THE COMPUTER

Use an editor to write the source schema and the data descriotion catalogue file
(with the necessary statements from this chapter) and store these on files named
<database name> :SYMB, and <data description catalogue file> :SYMB
respectively. For example create the necessary SlNTRAN files, by commands
like:

@ CREATEFlLE < database name > :DATA
@CREATE—FlLE < name of OS—FlLEl > :DATA
@CREATE—FILE <name of OS—FlLE2> :DATA

Make sure you were logged in under the SINTRAN-user narre where you want
the database to reside.

Make sure user RT has write and append access to this user’s files:

@CREATE—FRlEND RT
@SET-FRIENDeACCESS RT, RWA

for example.

Then run the DRL by the command

@SIBZ-DRL.

(See the examples in the next section.) Answering questions by just CR, will be
taken to mean NO.

37 E)(l\nfl

An initiat

QCREATE-FI
QCREATE-FI

QSIBZ~DRL

S I B A S

EXPLANATIO
INTERACTIV

PLES

ion run:

LE

INPUT-FILE
LIST—FILE
DD-CATALOG

xt**ttx*t*
* D A T A

000754 ST

E, DEFINITION—REDEFINITION LANGUAGE

458

EMPDATAIDATA 0
LE SYSFILE:DATA 0

-1 I _

N (Y/N) 7 B
E (Y/N) ? fl

EMPQAIA;$YME

UE : QQ-NAME§;§IMB

x*x*****ttt***txxxxmt:*xtxt*t*xtx*xtx*tt§
I N I T I A T E D 15.30

kitt‘kt***xt*****kk*i*tx********t****&t***********t1(V.
B A S E

OF 0

EMPDATA

'5' file EMPDATA:SYMB ;
contains the schema ;

” definitions ‘

the database file
‘? EMPDATA and the file

SYSFILE DATA may be created -;
before the database is initiated{”
otherwise SIBZ—DRL will create H

these files as indexed files.hf
.,, V

file EMPDATA LIST

contains the documentation
of the database after

initiation

*;§**;‘1"
1983.04.14 * §

,txxk*w***k

3 file DD-NAMEs;SYMB I
.ificontains the data

ND»60.127.5 EN

descriptions

3—59

*

2* * Data Description Catalogue ~ DDC _

3* x . when the data
4* x ; item descriptions are
5* * Data Descriptions provided here you need not
6* * “Yrepeat the description51* DEFINE DATE TYPE CHARACTER LENGTH 3 realm
8* STORAGE "ALPHANUMERIC (6) i V
9* DISPLAY "XX‘.'XX' 'XX" .

10* DEFINE NAME TYPE CHARACTER LENGTH 13
11* STORAGE "ALPHANUMERIC (26)"
12* DISPLAY "'Name:'x(26)"
13* DEFINE SALARY TYPE FLOATING LENGTH 3
14* STORAGE "REALG"
15* DISPLAY "‘Salaryz'B‘S‘SSS‘ ‘$$9.99“
16* END.

1k t
2*
3* START INITIATION DATABASE EMPDATA
4* SUPPRESS REALM RECORD~TYPE ITEM SET
5* INDEX~TABLE TEXT
6* SIZE 1000
7* HEADING "/THIS DATABASE CONTAINS EMPLOYEES' W
8* ADDRESS /AND INFORMATION ABOUT L,NV””"
9* THEIR EMPLOYMENT “ ’ .10* give a

11* NEH OS—FILE SYSFILE PAGESIZE 256. large number
12* of pages to the

13* New SYSTEM—REALM INDRELM OS—FILE SYSFILE Size Clause
14* REALMSIZE 50.
15*
15* NEw SERIAL-REALM PERSON OS—FILE SYSFILE
17* REALMSIZE 60 V“
18* RECORD LENGTH 48 SYSFILE must
13* MAIN INDRELM not be the same
20* HEAOING "EMPLOYEES' ADDRESS". as the database
21* ' file
22* NEW CALC-REALM EMPLOYEE OS-FILE SYSFILE *5:
23* REALMSIZE 31
24* MAIN—AREA 23
25* RECORD LENGTH 27
25* CALC—KEY SOCSECNO DUPLICATES NOT
27* MAIN INDRELM ”"
28* HEADING "EMPLOYMENT INFORMATION" 1,. REALM
29* x .- name must be unique.
30* * Realm : P E R S 0 N :EOS—FILE must have been
31* * defined before..32* T

33* NEW ITEM PERSON BDATE
34* DD-NAME DATE
35* HEADING “date of birth“
36* NEw ITEM PERSON BNUMBER
37* TYPE CHARACTER LENGTH 3

NDMBO. 1275 EN

38*
39*
40*
41*
42*
43*
44*
45*
46*
47*
48*
49*
50*
51*
52*
53*
54*
55*
56*
57*
58*
59*
60*
61*
62*
63*
54*
65*
68*
67*
68*
69*
70*
71*
72*
73*
74*
75*
76*
77*
78*
79*
80*
81*
82*
83*
84*
85*
86*
87*
88*
89*
90*
91*
92*
93*
94*

NEW

NEW I

NEW I

ITEM

TEM

TEM

** group items

3-60

HEADING “birth—number”.
PERSON NAME
DD-NAME NAME
HEADING "employee's name.
PERSON ADDRESS
TYPE CHARACTER LENGTH 20
STORAGE "ALPHANUMERIC(AD)"
DISPLAY "X(40)"
HEADING "employee's address".
PERSON STATUS
TYPE CHARACTER LENGTH 5
DISPLAY ”‘5tatus:'X(10)"

1 DD—NAME gives *
”the Data Description 13

name. Since it is defined 3
in the Data Description
Catalogue, it need not

be described here
4 again.

the group
item is defined

-

f as a combination
‘ of two data

items.

define the
data items of the fi

REALM EMPLOYEE. f“

define the I;
index for PERSON
_ and EMPLOYEE.

define the

NEN GROUP PERSON SOCSECNO BDATE BNUMBER
HEADING "social security no.“

t

* Realm : E M P L 0 Y E E
*

NEW ITEM EMPLOYEE SOCSECNO
TYPE CHARACTER LENGTH 6
STORAGE "ALPHANUMERIC(12)"
DISPLAY "X(6)BX(5)"
HEADING "social security number“

NEW ITEM EMPLOYEE DEPT
TYPE INTEGER LENGTH 1
STORAGE "INTEGERZ"
DISPLAY “999“
HEADING "department".

NEW ITEM EMPLOYEE POSITION
TYPE CHARACTER LENGTH 10
HEADING "posistion“.

NEW ITEM EMPLOYEE SALARY
DD—NAME SALARY.

NEW ITEM EMPLOYEE HDATE
DD—NAHE DATE
HEADING "hire—date".

k

* Indexes
X

NEN INDEX PERSON NAME
UPDATE AUTOMATIC DUPLICATES ALLOWED.

NEW INDEX PERSON SOCSECNO
UPDATE AUTOMATIC DUPLICATES NOT ALLOWED.

NEW INDEX EMPLOYEE DEPT
UPDATE AUTOMATIC DUPLICATES ALLOWED.

*
* Sets
*

NEN SET EMPSET

SET.

LINK DOUBLE STORAGE-CLASS AUTOMATIC
OWNER SOCSECNO EMPLOYEE

ND«60.127.5 EN

3-61

95* MEMBER SOCSECNO PERSON
96* HEADING ”PERSON/ EMPLOYMENT"
97* PURPOSE "TO LINK INFORMATION IN REALM EMPLOYEE"
98* "TO INFORMATION IN REALM PERSJN".
99* k

100* * Text
101* *
102*
103* NEW TEXT TEXT1
104* HEADING ”OTHER DATABASE INFORMATION"
105* PURPOSE "THIS TEXT MAY CONTAIN INFORMATION ABOUT"
106* "CHANGES IN THE DATABASE. FOR EXAMPLE,"
107* "DATE AND DETAILS OF REDEFINITIONS."
108* END.

END OF STEP 1 NUMBER OF ERRORS = 0

END OF STEP 2 NUMBER OF ERRORS = 0

END OF STEP 3 NUMBER OF ERRORS = 0
DATABASE DEFINED

EMPDATA
HEADING

/THIS IS DATABASE CONTAINS EMPLOYEES'
ADDRESS /AND INFORMATION
ABOUT THEIR EMPLOYMENT * user“

defined text
can be stored in;
.the database. ?

** N0. WARNINGS : O
** N0. ERRORS : D

** SIZE OF DML RESIDENT TABLES : 555 WORDS

** SIZE OF DATA DICTIONARY INFORMATION : 64 WORDS

*** SIZE OF SIBAS SYSTEM—REALM IS : 619 WORDS

* THE USER IS RECOMMENDED TO GIVE A LARGE NO. OF PAGES
* IF CREATING <database>zDATA AS A CONTINUOUS FILE.
* I.E 300 SINTRAN PAGES.

--- DATABASE IS INITIATED ———

END OF STEP 4 NUMBER OF ERRORS = 0

**k’t1c*‘kt*tt’tt'kxtttttt‘k‘k‘ktktttktfl'tkt‘kttt‘k‘kt*fltkkx’rktfittkttt‘kttktt

* D A T A B A S E EMPDATA I N I T I A T E D 13.20 1984.0L.13 *
xtittkttttxtttxtxtrttatttttrt*kflxttktkttt*tk*tttt*tttt*t**tttt

ND~60.127,5 EN

3~62

A REDEFINITION RUN :

QCOPY—FILE
QCOPY-FILE

QSIBZMDRL

S I B A S

EXPLANATI
INTERACTI
INPUT-FIL
LIST~FILE
DD—CATALO

1*

2*

3*

4*

5A

5*

7*
5*
9*

10*
11*
12*
13*
14*

*k**

*k

*k**

*

STA

PUR
**
**
CHA

*

END OF
END OF STE
END OF STE
DATABASE D

STE

EMPDATA
HEAD

DATABA

END OF STE
k*****

* D A T A
k*********

END.

"EMPCOPY DATA” EMPDATA DATA
"SYSFILE—COoATA" SYSFILEzoATA take a backu

of the databa

~ I I ~ E , DEFINITION—REDEFINITION LANGUAGE

0N (Y/N) ? N
VE (Y/N) ? N
E EMF—CHANQE

EMPQATAzLISI
GUE

*******************t***k***k*k***k************ix*k***

Change of database EMPDATA **
***%Q*&w5

RT REDEFINITION DATABASE EMPDATA 3 redefine th-
SUPPRESS REALM RECORD—TYPE ITEM SET TEXT‘ database
SCRATCH~FILE SCRATCH Adina

POSE "EXAMPLE TO ILLUSTRATE REDEFINITION RUNi
Expand realm PERSON

NGE SERIAL—REALM PERSON
REALMSIZE 60.

P 1 NUMBER OF ERRORS = D
P 2 NUMBER OF ERRORS = O
P 3 NUMBER OF ERRORS = O
EFINED

ING
/THIS DATABASE CONTAINS EMPLOYEES' ADDRESS
/AND INFORMATION ABOUT THEIR EMPLOYMENT

OSE EXAMPLE TO ILLUSTRATE REDEFINITION RUN

ABASE REDEFINITION

* N0. WARNINGS 0
* N0. ERRORS 0
* SIZE OF DML RESIDENT TABLES 862 WORDS
SE IS REDEFINED —--

P 4 NUMBER OF ERRORS = 0
********kkk***kx*Wk**¥******kfifiikkkkikk***k*fl*********

B A S E EMPDATA R E D E F I N E D 13.20 1984.04.13*
*************xfikttflkfifl*kfikti*kfi*k********k********k***

ND»60.127V5 EN

CHAPTER EV: DATA MANIPULATIUN

LANGUAGE (DML?

ABSTRACT

SlBAS provides a number of statements for (i) opening, closing or reserving the
database, (ii) finding and modifying records, (iii) storing and manipulating index
keys, and for (iv) obtaining information about the database schemas.

The data manipulation statements are of two forms: (i) the short form, e.g., GET,
MODlFY, ERASE etc. and (ii) the CALL form which is to be used in application
programming.

SlBAS data manipulation services are generally accessed via calls. SlBAS uses
the FORTRAN call syntax. The application programs may, however, be written in

any language which has a CALL statement facility.

TABLE OF CONTENTS:

4.'l DATA MANIPULATION LANGUAGE (DML).
4.12 PARAMETER DESCRIPTlONS.

4.2.1 DML Statements
to 4.2.26 DML Statements

4.3 HOST LANGUAGE CONSIDERATlONS
4.4 HOW TO LOAD APPLICATION PROGRAMS

ND—60.127.5 EN

ND«60.127.5 EN

41

4-3

DATA MANEPULATIGN LANGUAGE
iDIVIL)

SIBAS provides a selection of DML statements. Each DML statement has 2
forms, a short form, e.g., GET, MODlFY, STORE, and an encoded CALL form.
The CALL form is to be used in application programming. The short forms are
used in SlBlNTER.

GENERAL

For a program to be able to access a SlBAS database, some or all of the record
types in the database must be defined in the host language program.

It is important to note that not all record types in the data base need to be
defined, but only those required. Furthermore, the same applies to items in a
record type. if a program does not need to process all the items in a given
record type, then those not required may be omitted from the record description
in the program. This provides a subschema facility and enables the programmer
to minimize the core space required at execution time.

The DML statements in SlBAS have the general form of a CALL statement.
When this form is used, SlBAS may be used from any host language which
provides 3 CALL statement facility. The description of records and items must
then follow the conventions of the host language.

The programmer may choose his own names to identify the parameters in the
various DML CALL statements. ln order to clarify the role of each parameter in
the following sections, each parameter is identified by a lower case narrative
name which does not necessarily conform to the name conventions of the host
languages.

In many of the DML statements, it is necessary to use parameters which identify
a FORTRAN one dimensional array or a COBOL storage area. The values to be
used by the Database Control System (DBCS) when processing the DML
statement must be stored in the array or table prior to the execution of the DML
CALL. it is important to note that each value which is to be passed to the DBCS
in this way must start on a word boundary.

The form of a DML CALL statement in FORTRAN is as follows:

CALL SDML (param-l, param—2, ..)

In COBOL the form is CALL 'SDML’ USlNG param—l, param—Z......

A full description of the DML statement is given later in this chapter, with the
FORTRAN form of the call indicated.

ND-60.127.5 EN

4.2

4-4

PARAMETER DESCRIPTIGNS

To avoid repetition in defining the statements, the syntax of the most common
parameters is defined here. Other parameters are described as "speciai
parameters” under the special statements where they are used. This section
should not be read alone, but along with the special statements.

When parameter names are passed through arrays or areas, it is important to
note that there must be exactly eight characters in each name, left justified and
with trailing blanks.

The general description of the parameters are given below. For examples: See
4.3.

The specific usage is defined in the various DML statements.

"mode"

"Mode" is a single integer which declares whether the run—unit wants to
change the database or not.

"data-base—name"

"Data-base—name" defines a field or an array in the user area containing
the eight character name of the database. This name must be identical to
that defined in the Database Schema.

"password", ”newepassword"

"Password" and "neW«passw0rd” define a field or an array in the user area
containing the eight character passwords to be checked by the database
control system.

"realm—name"

”Realm—name" defines a fieid or an array in the user area containing the
eight character name of the relevant realm. This name must be identical to
a realm name in the database schema.

"no.-of—reaims”

”No.~of-realms" defines a single integer variable in the user area
containing the number of realms to be readied in one READY REALM
statement.

”key-name"

"Key«name” defines a field or an array in the user area containing the eight
character name of an item or a group item defined in the database schema
as an index key or calc key for the relevant record type.

NDv60.l27.5 EN

"key—value"

”Key-value" defines a field or an array in the user area containing or
receiving the value of an index key or a calc key.

M u"low-limit, high—limit"

"Low-limit" and "high—limit" define fields or arrays in the user area
containing lower and upper limit values of a corresponding index key. The
length and type of ”low limit" and "high limit" must be the same as that
of the corresponding key.

”set—name”

”Set—name” defines a field or an array in the user area containing the eight
character name of a set type defined in the database schema.

"ternporary-data—base-key"

”Temporary—data-base-key" defines a single integer variable in the user
area. Using the value zero in this parameter means that the call (e.g., GET
or MODIFY) will work on the current record (defined by the CRUl, see
2.4.1.2). lf you want the call to work on a record not current anymore, you
must have issued a REMEMBER when the record still was current. A
number identifying the record would then have been stored in your
”temporary~data-base-key"wvariable. Using this number instead of zero in
the call, will make the call work on that record instead of the record now
being current. Note that the parameter is an output parameter only in case
of REMEMBER, otherwise it: is an input parameter.

”temporary—search-region—indicator”

"Temporary-search—region—indicator" defines a single integer variable in
the user area. The value zero in this parameter means that the current
search region is to be used ~— as defined by the CSRl (see 2.4.1.2). In case
you want to operate on a search region not current any longer, you must
have issued a REMEMBER for that search region when it still was current.
The identifying number then stored in your
"temporary-search—region-indicator"-variable, must be used instead of the
zero when you want this search region.

Note that the parameter is an output parameter only for REMEMBER,
otherwise it is an input parameter.

I: u"no.-of—items , no.-wanted”, "no—found”

”No.—of—items” defines a single integer variable in the user area containing
the number of item names that have been placed in "item«|ist".
”No—of—items" must have a value greater than or equal to one and less
than or equal to the total number of items and group items in the record
type, "No.~wanted” defines an integer value giving the number of records
or keys the run~unit wishes to read, "no-found” tells the run-unit how
many records or keys it received.

ND~60.l27.5 EN

4-‘6

"item«list”

”Item-list" defines a field or an array in the user area containing eight
character names of data items or group items defined in the database
schema for a record type.

"item-values”

”Item-values" defines a field or an array in the user area containing or
receiving the values of the items and group items named in the ”item-list"
in corresponding order. Space must be allocated for each item
corresponding to the data format definition in the database schema.

u u u ll"option—code , usage—mode , protection-mode”

"Option-code", "usage-mode” and "protection—mode” define single
integer variables whose values are used to specify certain options to be
selected in various DML statements.

I: n”key-length , value—length"

”Key-length" and "value-length" are single integer variables defining the
length of a field to be passed to SIBAS, expressed in number of words.

"status"

”Status" is an output parameter (single integer variable) which the DBCS
sets to different values. The status value +1 indicates that the statement
execution has been successful. The other values indicate an unsuccessful
execution, implying a Database Exeception Condition (DBEC) in most cases
(see Chapter 7).

Summary:

1: successful
0: normal exception condition such as end of search region
——i: abnormal exception condition, more information is to be

found by calling SDBEC
~2 to ~63: after SOPDB

Other negative values indicating error conditions may be returned to the
run~unit, a list of which is given in the ERROR REPORTING chapter of this I
manual, but in those cases no more information may be found by calling
SDBEC.

ND—60.127.5 EN

4.2.1

4-?

Open Database

Function:

The function of the OPEN-DATA-BASE statement is to indicate the run-unit's
intention of processing the data in the database.

Format:

CALL SUPDB (mode, database name, password, status)

Rules:

A SIBAS process for this database must be running. This might be done by the
SIBAS—service program before running your application program (see section
6.4), or by including calls from section 5.4 in your program. If the SIBAS process
is not number zero, a SETDV—call must be included before SOPDB, see section
5.4.12.

The "mode” must define a variable or an array in the user storage area
containing an integer; 0 if the run~unit will not change the database, 15473 if the
run-unit intends to change the database.

The first run-unit which executes the OPEN-DATA-BASE statement will ready the
SIBAS system realm. The user defined system realms will be readied when the
relevant user realms are readied.

The effect of opening a database is to permit execution of READY statements on
the realms on the database. If a database is not open, its realms cannot be
readied.

If privacy is defined for the database through the DBMxmodule (see section 6.2),
the ”password" will be checked by the SlBAS DBCS to decide whether or not
the user is allowed to open the data base.

The function of OPEN-DATABASE is essentially that of "logging in" to the
particular database. The first run—unit to execute an OPEN—DATA-BASE on a
closed database will cause it to be "physically” opened,

When the last run-unit "logs off" with the CLOSE—DATA-BASE statement the
database will be physically closed.

ND-60.l27.5 EN

In case of unsuccessful open database, exception conditions cannot be set and
SOPDB returns one of the following negative statuses:

1: illegal user identification (internal error)
2: inconsistent database name given

— 3: security breach occurred
4: cne realm damaged
5: unable to RTOPEN database (check if user RT has write access to the

database files)
—— 6: SIBAS work area space is insufficient.
— 7: Database is not in the version F format. You should convert the format

of the database with the conversion program supplied with SIBAS.
—72: Direct R-log is full, R-logging stopped. Illegal to open the database.

DBA should reset or remove the R-log. This status will be returned from
SOPDB if a direct R—log is filled.

~76: SlBAS is not active.

In case SIBAS is not running, your program will try continuously to
open the database, i.e., your program will ”hang”. It will continue only if
someone makes the SIBAS process run (through SlBAS-service or through the
call SRUN from another application program).

ND—60.l27,5 EN

4.2.2

4-19

Close Database

Function

The function of the CLOSE—DATABASE statement is to indicate that the run—unit
has finished accessing the database.

Format:

CALL SCLDB (data—base-name, status)

Rules:

in order for CLOSE to be successful the database identified by
"data~base-name" must have previously been opened by the run-unit

The effect of closing a database is to prevent further execution of any DML
statement other than OPEN—DATA-EASE from this run—unit, and to release
allocated resources.

If realms in the database are still in ready status at the time the CLOSE is
executed, then the realms are automatically finished for the run—unit.

A CLOSE, in a critical sequence, will automatically cause an ESEQU. (See section
5.3.4.)

ND—60.127l5 EN

4.2.3 Ready Realm

Function:

The function of the READY-REALM statement is to indicate to the DBCS that the
run—unit wishes to process records in one or more realms, to indicate the way in
which the data will be processed, and to check possible interference with
concurrently executing run~units.

Format:

CALL SRRLM (no.—of~realms, realm-names, usage~modes, protection—mode,
status)

Rules:

"Realm—names" contains a list of names of the realms to be readied.

”Usage»modes" defines an array or table containing an integer value for each
one of the realms to be readied. The following usage mode values apply:

Usage Mode: Value:

RETRlEVAL O
LOAD 1
UPDATE 2

”Protection—mode" defines an array or table containing an integer value for each
one of the realms to be readied. The following protection modes/values apply:

Protection Mode: Value:

NON-PROTECTION 0
EXCLUSIVE-UPDATE 1

Each realm in the list must be a part of the database which has been opened
prior to execution of the READY-REALM statement. Each realm must not already
be in ready status for the run-unit.

The effect of the READY-REALM statement is to make the records in the listed
realms available for processing by other DML statements within the limitation set
by the usage mode and protection mode.

ND—60.127.5 EN

4— '31

The different ”usage modes" given for each realm restrict execution of the DML
statements on the records in the realm according to the following table:

Usage Mode: Value: DML Statements Allowed:

RETRlEVAL O FlND, GET, REMEMBER and FORGET
LOAD l FlND, GET, STORE, CONNECT,

lNSERT, REMEMBER and FORGET
UPDATE 2 ALL DML statements allowed

The different "protection modes" given for each realm are checked for possible
conflict with other run units concurrently processing in the same realm according
to the following table:

Protection Mode: Value Other Run-Units:

NONsPROTECTED 0 May execute any DML statement except
ERASE.

EXCLUSlVE—UPDATE 1 May execute any DML statements

lt a READY—REALM statement refers to more than one realm and any of the
realms cannot be readied, the READY-REALM statement will not be sucessful,
and none of the realms will be readied. All the realms will then remain
unchanged but the status will indicate a DBEC condition about which information
may be obtained by using the ACCEPT statement.

A realm cannot be readied for EXCLUSIVE—UPDATE if concurrent run-units have
locked records in it.

All realms to be readied for EXCLUSIVE~UPDATE for a run unit should be readied
in the same READY-REALM statement, If more than one READY~REALM
statement is used to ready realms for EXCLUSlVE—UPDATE, all statements must
be sucessful. If not, none of the realms will be readied for exclusive update (i.e.
previously readied realms for exclusive update will be closed).

If the user wants to change the USAGE MODE or PROTECTlON MODE for a
realm, then the realm must first be finished and readied again with the new
USAGE MODE/PROTECTION MODE.

If "no-oferealms” is set to -1, this implies ready all realms in the database. The
”realm names" parameter will be ignored and only one value can be specified
for ”usage—mode" and one for "protection—mode”, i.e. all realms will be readied
in the same "usage-mode" and in the same "protection—mode".

ND-60.127,5 EN

4-12

Resolution of Ready Conflicts:

Earlier Subject Protection
entities by run—unit Mode NON~PROTECTED EXCLUSIVE UPDATE
other run—units Usage

Mode RetrievalLoad Update RetrievalLoad Update

Protection Usage
Mode Mode

Retrieval Y Y Y Y Y Y
Non—
Protected

Load Y Y Y N N N

Update Y Y Y N N N

Retrieval Y N N N N N
Exclusive
Update

Load Y N N N N N

Update Y N N N N N

This table indicates how conflicts are resolved when the run—unit tries to ready a
realm which has previously been successfully readied by some other concurrently
executing run—unit, but not yet finished. Y indicates that the run-unit is
successful, N indicates that the status indicator is set.

NED—60127.5 EN

4.2.4-

4—13

Finish Realm

Function:

The function of FlNlSH—REALM is to prevent further processing of the data in the
realm by the run—unit.

Format:

CALL SFRLM (no.-of--realms, realm—names, status)

Rules:

"Rea|m~names” contains a list of names of the realms to be finished.

Realms readied for the run-unit with different usage modes may all be finished in
one statement.

if a realm cannot be finished, the status will indicate an error and the name of
the first offending realm may be found with the ACCEPT statement. lf the
FlNlSH-REALM statement involves more than one realm, those which can be
finished will be finished.

it a FINISH—REALM statement is executed on a realm previously readied for
EXCLUSIVE-UPDATE by the run-unit, the realm is then available for updating by
other run-units.

lf ”no-of—realms” is set to »-1, this implies that all realms the run unit has readied
will be finished. The "realm—names" parameter will be ignored.

When a FINISH—REALM is executed all remembered or locked records of this
realm are forgotten or unlocked for this run—unit.

The effect of executing the FINISH-REALM statement is that the finished realms
will not be available to the run-units until a new READY-REALM statement is
executed.

ND~60.127.5 EN

4.2.5

444

Direct Find

Function:

The function of DIRECT FIND is to locate a specific record. The record is
specified by means of a Calc key or an Index key.

A search region will be established, its type depending on the statement format
used.

Format:

Format 1:

FlND-USING—KEY
CALL SFTCH (realm-name, key—name, key—value, status, key—length)

Format 2:

FlND-FiHST—BETWEEN-LlMlTS-USING-KEY
CALL SFEBL (realm—name, key—name, low~limit, high-limit, status,
key—length)

FlND-LAST~BETWEEN-LlMlTS—U8lNG—KEY
CALL SFLBL (realm-name, key—name, low—limit, high-limit, status,
key-length)

Format 3:

FlND—FlRST-lN—REALM
CALL SRFIR (realm-name, status)

Rules:

The realm named in "realm-name" must have been previously readied by the:
run—unit.

The "key~name" defines the name of an item or a group item which is defined as
an index key or a calc key in the database schema.

The ”key—value", "low—limit" and "high—limit" must have the same type and
length as the corresponding item or group item. The ”key-length” is expressed in
number of words.

if format 2 is used, the ”key-name" must identify an item or a group item which
is defined as an index key in the database schema.

After successful execution of a FiND statement, the contents of the record may
be processed by means of the GET, MODIFY, and ERASE statements.

ND~60.127.5 EN

4-15

After successful execution of the FIND statement, the current of run-unit
indicator is set to a unique value identifying the record found. '

After successful execution of a FlND statement the setting of the current search
region indicator depends on the format used. In format 1, FlND—USING-KEY,
where duplicate values of the key are allowed, the indicator will be set to both
the key item name and the value of the key used. if duplicate keys are not
allowed the setting of CSRI remains unchanged.

In format 2, FIND—BETWEEN—LlMITS, the current search region indicator will be
set to the index item name and the value range between "low-limit" and
"high-limit”.

in format 3, FlND—FlRST—lN-REALM, the current search region indicator is set to
the realm name.

After successful execution of 3 FIND statement the record selected depends on
the format used.

in format 1, FlND-USlNG-KEY, if the key item is one for which duplicate values
are allowed, then the DBCS selects the "first" record where the meaning of
"first" is the record with the lowest physical address (i.e., storing nearest to the
beginning of the realm).

ln format 2, FlND—FlRST-BETWEEN-LIMITS, the record found is either one with
key value equal to or next higher to the value of "low-limit" but the value must
be lower than or equal to the ”high-limit" value. lf duplicate values are allowed
the record found is the one with the lowest physical address.

in format 2, FlND-LAST-BETWEEN—LIMITS, the record found is either one with
key value equal or next lower to the value of "high-limit” but the value must be
higher than or equal to the "low-limit" value. if duplicate value is allowed, the
record found is the one with the highest physical address.

To obtain the next or prior record within the range specified, the
FlND—NEXT—lN-SEARCH—REGION or FlND-PRlOR-lN—SEARCH—REGION
statements must be used.

in format 3, FlND~FIRST-lN-REALM, the DBCS attempts to find the physically
first record in the realm. If location mode is CALC, this will be the first record in
the first non-empty bucket. if location mode is SERlAL it will be the record in the
realm with the lowest physical address. To obtain the next record of the realm,
the FIND-NEXT~lN—SEARCH-REGION statement must be used.

ND~60.l27.5 EN

446

The table below gives a summary of the settings of CRUl and CSRI when a FIND
from outside the database is executed.

Format of FIND CURRENT of RUN-UNIT
INDICATOR

CURRENT SEARCH
REGION INDICATOR

FIND FormatI set to uniquely identify the not updated
successful (Duplicate not record with the given value

allowed) of the key used

Format I set to uniquely identify the set to key item name and
(Duplicates ”first" record with the given value of key used
allowed) value of the key used.

Format2 set to uniquely identify the set to INDEX key item
"first" or ”last” record name, and the value
within the given range range between low limit

and high limit

Format 3 set to uniquely identify the set to the realm name
”first” record in the given
realm

FIND not
successful All formats Not updated Not updated

ND~60i1275 EN

4.2.6

4-17

Relative Find

Function

The function of the RELATIVE FIND is to locate a record relative to some other
record, and to make it available in the SIBAS buffer area.

The record is specified by means of a set or search region and a search type
(NEXT, PRIOR, etc.)

Format:

Format 1:

FIND—FIRST—IN—SET
CALL SRFSM (temporary-data—basevkey, set—name, status)

Format 2:

FIND—LAST—IN’SET
CALL SRLSM (temporary~data~base~key, set-name, status)

Format 3:

FIND-PRIOR~|N—SET
CALL SRPSM (temporary-data-base-key, setaname, status)

Format 4:

FIND—NEXT-|N~SET
CALL SRNSM (ternporary—database—key, set-name, status)

Format 5:

FIND—NEXT-INSEARCH-REGION
CALL SRNIS (temporary—database-key, temporaryssearch-regionv
indicator, status)

FIND—PRIOR-IN~SEARCH-REGION
CALL SRPIS (temporary—data-base-key, temporary-search-regionaindicator,
status)

Rules:

The owner and all the member record types of any set type indicated by
"set—name" must be known to the program and also be in realms which have
been readied for use by the run unit

"Temporary—data—base-key” identifies the record from which the new record is
searched.

ND~60.I27r5 EN

448

In the case of FlND-FIRST or FlND—LAST, the record identified by the
"temporary—data-base—key" must be an owner of the set type named in
"set—name“. The record found will be one which is logically contiguous to the
owner in the set occurrence. If the set occurrence is empty, the FIND will be
unsuccessful and the "status” parameter is set to zero.

in the case of FlND-FlRST, the record found is that which would be found
earliest by following LlNK—TO-NEXT, i.e., the latest connected to the set
occurrence.

in the case of FlND-LAST, the record found is that which would be found earliest
by following the LlNKeTO—PRIOR, i.e., the earliest connected to the set
occurrence. If there is no LlNK~TO~PRlOR for the set type, then the same record
is found but the execution is normally more time consuming as one must follow
the LlNK-TO—NEXT round the set occurrence. In a multi-member set type, the
record found may be of any member record type.

ln the case of FIND-NEXT or FlND-PRIOR, the record identified by
"temporary—data-base—key" must be a member of the set type named in
"set-name”. The record found will be one which is logically contiguous to the
identified member.

lf this is the owner of the set occurrence, the FlND is unsuccessful and the
"status" parameter is set to zero.

In the case of FlNDwPRlOR, the record found is the member record which would
be found first from the identified member using a LlNK-TO—PRIOR. lf there is no
such link, the same record is found, but the execution is normally more time
consuming.

ln the case of FIND-NEXT, the record found is the member record which would
be found first from the identified member using LlNK-TO-NEXT.

In the case of FlND—NEXT/PRIOR-lN-SEARCH-REGlON, the record identified by
the "temporary«data—base—key" must be located in the search region identified
by "temporary—search-region—indicator".

The meaning of this is explained in the following:

- When the search region is identified by the name and the value of an index
or Calc key item for which duplicates are allowed, the identified record
must have the same value as the key item.

—~ When the search region is identified by a lower and an upper limit of an
index key item, the identified record must have a value for the index key
item which is within the given range.

— When the search region is identified by a realm name, the identified record
must be located in that realm. (Not applicable for FIND-PRIOR
lN—SEARCH-REGION.)

NDA60.l27.5 EN

4-19

FlND—PRIOR-lN—SEARCH—REGION is not applicable for a search region set to the
realm name (by FlND-FlRST—IN—REALM).

In the case of FIND~NEXT—IN-SEARCH—REGION, the record found will be the one
which is next in the search region to the record identified by
"temporary-data-base-key".

In the case of FIND—PRIOR-IN-SEARCH~REGION, the record found will be the
one which is prior in the search region to the record identified by
"temporary—data-base-key".

The execution of FlND-NEXT/PRIORelN-SEARCH—REGION, will be unsuccessful
and the "status" parameter set to zero if the record identified by
"temperary—data-base-key" is the Iast record of the identified search region.

In the case of any successful FIND, the CRUI is always updated. The CSRI will
not be updated by FIND of the type "RELATIVE—TO—RECENTLY-FOUND—
RECORD".

ND—60.127.5 EN

4.2.7

4-20

Find Set Owner

Function

The function of this FIND statement is to find the owner of a set occurrence
from one of its members.

Format:

CALL SRSOW (temporary—database—key, set name, status)

Rules:

The owner and all the member record types of the set type named by ”set
name” must be known to the program and must all be in realms which have
been readied for use by the run—unit.

The effect of executing FIND OWNER is to find the owner of the set occurrence
of "set name" from the member record identified by "temporary database key".

If the record identified by "temporary—database-key”is not connected into an
occurrence of the named set type, the FIND will be unsuccessful, and the
”status” parameter set to zero.

If the execution of FIND OWNER is successful the CRUI will be updated to
identity the owner record. The CSRI will remain unchanged.

ND~60.I27_5 EN

4.2.8

4-21

Get, Getn, Get Indexes

Function:

The function of the GET statement is to make the relevant items or group items
available in the run—unit's data area so that the items can be processed. GETN

reads a number of records in a search region. GET lNDEXES reads a number of
index keys.

ln the case of GETN or GET INDEXES, the records can be obtained in ascending
or descending order in the search region.

Format:

GET
CALL SGET (temporary-database-key, no. of items, item list, item values,
status)

GETN
CALL SGETN (temporary—database-key, temporary search region
indicator, no. wanted, no. of items, item list, item values, no. found,

status)

GET-lNDEXES
CALL SGIXN (temporary~database-key, temporary search region indicator,
no. wanted, item values, no. found, status)

Rules:

”ltem list” must be a list of names of items and group items in the user
program. The corresponding values of the items and group items will be

transferred to the area named ”item values". Each value in the "item values"

starts on a new word boundary. "item values” cannot be larger than 500 words.

The "item list” should contain the names of the relevant items and group items
in the record identified by "temporary-database—key”. Not ali items and group
items defined for the record type need to be given in ”item list” and the

sequence of the items need not be the same as defined for the record type. The
same item may be repeated in the "item list” but the total number of items

given must not exceed the total number of items and group items defined for the

record type.

The effect of executing a GET is to cause values of the items and group items
named in the "item list" to be stored in the data area of the user program. ln the
case of GETN, the values corresponding to ”no. found" records are transferred.
in the case of GET lNDEX, the values corresponding to "no. found" keys are
transferred.

ND—60.l27_5 EN

4-22

"No. wanted" can be positive or negative. lf positive, records are found in
ascending order, as when FlND—NEXT-lN—SEARCH—REGlON is used. If negative,
records are found in descending order, as when
FlND-PRlOR-IN—SEARCH—REGION is used. The maximum ”no. wanted" for
SGETN is 50.

The values of the items will be stored in the area named ”item values" in the
user program in an order corresponding to the order of the "item names”. The
CRUl and the CSRl will remain unchanged when a GET is executed.

For a GETN or GET-lNDEXES, the CRUl is updated and points to the next record
within the search region, as when using FIND—NEXT—lN—SEARCH—REGION /
FlND-PRlOR~lN-SEARCH—REGION. If end/begin of the search region is
encountered the CRUl points to the last/first record in the search region.
"Status" is set to zero.

If the run-unit attempts to get a record which has been changed by another
run—unit, and is in "extended mode” (see 2.4.3.4), the GET will be unsuccessful.

ND—60.127.5 EN

4.2.9

4-23

Modify

Function:

The function of MODIFY is to give new values to one or more of the items or
group items in a record already existing in the database.

Format:

CALL SMDFY (temporary—databaseakey, no. of items, item list, item
values, status, value length)

Rules:

”ltem list" must be a list of names of items and group items given in the user
program.

The corresponding values of the items and group items must be given in "item
values". Each value must start on a new word boundary. ”Value length" is the
number of words the item values occupy.

The "item list" should contain the names of the relevant items and group items
in the record identified by "temporary-database—key". Not all items and group
items defined for the record type need to be given in ”item list", and the
sequence of the items may be chosen freely.

It is the user’s responsibility that the sequence of the items in "item list”
corresponds to the sequence of the values in "item values”.

The realm in which the identified record is stored must have been readied for
update. if the value of the member set item is being modified, realms indirectly
referenced via set membership must have been readied for load or updated.

The effect of executing a lVlODlFY is to cause the values of the items named in
"item list" to be stored in the record in the database identified by
"temporary-database~key". ltems not named in "item list" are not affected by
the MODIFY.

If the record type of the identified record is a member in an automatically
maintained set type and if the value of the member set item is modified, then the
record will be disconnected from the set into which it was previously connected.
If an occurrence of the owner record type of the set type has an owner set item
value which is equal to the new value of the member set item in the modified
record, the modified record is connected to the set owned by that record. If no
such owner record is in the database and the storage class is manual for the set
type, then the modified record is not connected to any occurrence of the set
type. If the storage class for the set type is automatic and no owner record
exists, then the MODIFY is unsuccessful.

lf the identified record is an owner of a non-empty set occurrence and the owner
set item is named in the "item list” then the execution is unsuccessful.

ND—60.l27.5 EN

4-24

If any of the items modified are index or Calc keys for the record type, then the
new values must not be null and must not cause prohibited duplicates. The index
is updated only if the index is automatically maintained.

if any of the items modified is a Calc key for the record type, then the modified
record is deleted from its previous position in the realm and stored in a position
based on the new value of its calc key. The new value may not be null and may
not cause prohibited duplicates.

if any of the items modified is a member of a group item which is defined as an
index key, Calc key, owner set item or member set item, then the same rules
apply as if the item was itself defined as a key or a set item.

lf any elementary item is named more than one time in the ”item list" either
directly or indirectly in a group item, the last value given in the ”item list” will be
the one stored for the item.

if a privacy item is defined for the record type and the run-unit has been allowed
to update the record, the privacy item may also be updated.

The CRUl and the CSRI will remain unchanged when a MODlFY is executed.

if the record type of the identified record is a member of a set, and an error has
occurred when executing MODlFY, the identified record may be displaced in the
chain and placed such that it will be found by executing a FlND-FlRST-lN—SSET
statement.

ND--60.l27.5 EN

4.2.10

4-25

Store

Function:

The function of the STORE statement is to store a record or a part of a record in
its designated realm in the database, taking into account the location mode of
the record type. The record stored may be connected into occurrences of
automatic set types. Any indexes defined for the record type, which have been
defined to be automatically maintained, are updated during the course of
execution of the STORE.

Format:

CALL STORE (realm name, no. of items, item list, item values, status,
value length)

Rules:

"item list” must be a list of names of items and group items given in the user
programs The corresponding values of the items and group items must be given

in the "item values". Each value must start on a new word boundary. "Value

length” is expressed in number of words. The total length of all the parameters
cannot exceed 500 words.

The "item list" should contain the names of the relevant items and group items
in the records, Not all items and group items defined for the record type need to
be given in ”item list”, and the sequence of the items may be chosen freely.

It is the user's responsibility that the sequence of the items in "item list"
corresponds to the sequence of the values in "item values".

The realm in which records of this type are stored and also the realms containing
owners and members of any automatic set type in which this record type is a

member must have been readied for update or load by the run-unit.

The effect of executing a STORE is to cause the values of the items and group
items named in ”item list" to be stored in the realm named in "realm name”.

The location mode of "realm name” determines where and how the record is

stored in the realm. if the location mode is Calc, the Gale key item must be given
in the ”item list” and the value must be non-null. The given Calc value will be
transformed into a bucket number. The record will then be stored in the first

available space in the bucket or in an overflow bucket. if the location mode is

serial the record will be stored in the first available space in the realm.

Not all items defined for the record type need to be given values when a STORE
is executed. The items in the record type which are not named in the "item list"
will be given a null value in that record occurrence. The items can be given
values later by use of MODIFY.

ND-60.127.5 EN

4-26

It should be noted that a calc key item must always be given a non-null value. If
location mode is serial and automatically maintained index key(s) are defined for
the record type, and/or the record type is a member of an automatic set, the
index keys or member set items must be given a non-null value.

When a record is stored, it will be connected into occurrences of automatic set
types and inserted into indexes which are automatically maintained provided that
the item or group item defined as member set item or index key is named in
”item list”. If an index key/member set item is a group item, at least one of the
items composing the group item must be named in the "item list”.

if this condition is not satisfied the record may be connected into the set(s) or
inserted into the index(es) later by executing MODIFY on the relevant itemls).

The record is connected into the set occurrence(s) such that it is found by
executing FIND-FIRST from the owner record.

if the record type is a member of an automatic set type, and the member set
item is named in ”item list", the owner record must be present when the
member record is stored. if the owner record is not present, the execution of the
STORE will be unsuccessful.

If a key item (Calc or index key) were defined as not allowing duplicates and if
storing the record in the database would violate this, then the store will be
unsuccessful. When a privacy item is defined for a record type, it must be given
a non~null value when a record of this type is stored.

If the store is executed successfully, then the CRUl is set to identify the stored
record. CSRI is not affected.

ND‘60.127.5 EN

1&211

4—27

Erase

Function:

The function of the ERASE statement is to remove the record and all references
to it from the database.

Format:

CALL SRASE (temporary—database—key, option code, status)

Rules:

The "temporary—database-key” identifies the record that is to be erased.

The realm in which the record identified by "temporary—database—key" is stored
must have been readied with usage mode of UPDATE. In the multi-user version
of SlBAS, if "option code" greater than or equal to 1 is used, all indirectly and
directly referenced realms must also have been readied with a protection mode
of EXCLUSlVE UPDATE by the run—unit.

The "option code” can have the values 0, 1, 2 or 3 specifying the various ERASE
options:

0 The record identified by the "temporary-database-key” will be erased from
the database as long as it is not an owner record with connected set
members. if it is, the ERASE will not be successful.

1 The record identified by the "ternporary-database-key” will be erased from
the database if no records are connected to the identified record as
members of an automatic set type. if this is the case the ERASE will not be
successful. lf any records are connected to the identified record as
members of a manual set type, the records will be disconnected from the
identified record.

2 The record identified by the "temporary~database—key” will be erased from
the database. If any records are connected to the identified record as
members of a manual set type, the records will be disconnected from the
identified record. If any records are connected to the identified record as
members of an automatic set type, these records are also erased. If any of
these records are owners of non—empty sets, then the same rules are used
for these as for the record identified by the ”temporary-database—key".

3 The record identified by the "temporary-database-key” will be erased from
the database. If it is the owner of any non—empty sets (manual or
automatic), then all member records in these set occurrences are also
erased. if any of these records are themselves owners of other non-empty
sets, then their connected members are also erased. This process
continues down the hierarchical structure. The maximum number of levels
is 15.

ND—60.127.5 EN

4-28

If an erased record has one or more index keys, the indexes will be updated
whether they are defined as automatically maintained or not.

If an erased record is a member of one or more sets, the record will be removed
from the set occurrences, and the links to the adjacent members will be updated.

After execution of ERASE, the erased record and it’s associated records, if any,
are no longer available for processing. All CRUl‘s and "temporary—
database~keys" referring to the erased record(s) are marked as "erased'C

ND-60r127r5 EN

4212

4-29

Connect

Function:

The function of the CONNECT statement is to link a record already stored in the
database into a manually maintained set of which its record type is defined as a
member.

Format:

CONNECT:
CALL SCONN (temporary-database—key»l, set name, status)

CONNECT-BEFORE:
CALL SCONB (temporary—databasevkey—l, temporary-database-key~2, set
name, status)

CONNECT-AFTER:
CALL SCONA (temporaryadatabase—key—1, temporary-database-key—Z, set
name, status)

Rules:

The set type identified by "set name" must have been defined as manually
maintained in the database schema.

The owner record type and the member record type(s) of the set type ”set
name” must be in realms which have been readied for load or update by the
run—unit.

In the case of CONNECT, the record identified by "temporary~database-key—1"
will be connected into the set occurrence whose owner set item value is equal to
the member set item value of the identified record. The identified record will be
connected into the set occurrence such that it is found by executing FIND—FIRST
from the owner of the set occurrence. The record must not already be connected
to the set occurrence.

it the BEFORE or the AFTER option is used, "temporaryxdatabase-key—l” must
identify a record which is not connected into a set occurrence of the set type
identified by "set name" and ”temporaryadatabase~key-2” must identify a record
which was previously connected into a set occurrence of the set type identified
by "set name". Furthermore, the value of the member set item for the set type
must be the same for the two records.

If the BEFORE option is used, the record identified by "temporary— database-key
i" will be connected to the correct set occurrence of the set type identified by
”set name". it is connected so that the record identified by ”temporary~data
base-keya2” is found executing FlNDvNEXT relative to
"temporary-database-key-l".

ND—60.127_5 EN

4.2.13

1%-30

If the AFTER option is used, the record identified by ”temporary database key 1"
will be connected to the correct set occurrence of the set type identified by ”set
name". it is connected so that the record identified by "temporary data base key
2" is found by executing FlND—PRlOR relative to "temporary database key 1". It
should be noted that if the set type has link to next only, the CONNECT—AFTER
can be very time consuming.

The CRUI and CSRI will remain unchanged when a CONNECT is executed.

Disconnect

Function:

The function of the DlSCONNECT statement is to disconnect a record in the
database from a manually maintained set into which it has previously been
connected.

Format:

CALL SDCON (temporarysdatabase-key, set name, status)

Rules:

The set type identified by "set name” must have been specified as a manual set
type in the database schema. The realms containing the owner records and the
occurrences of other member record types must be in realms which have been
readied for update by the run-unit.

The effect of executing a DlSCONNECT is to disconnect the identified record
from the occurrence of the set in which it has previously been connected. The
identified record remains in the database and it remains connected into sets of
other set types into which it was connected before the DlSCONNECT was
executed. The two records which were logically contiguous to the identified
record in the set before the DlSCONNECT was executed are logically contiguous
to each other after execution. If the record was not in fact connected into any
occurrence of the set, the DlSCONNECT is unsuccessful and "status" is set to
zero.

The CRUI and CSRI will remain unchanged when a DlSCONNECT is executed.

ND~60.127,5 EN

4.2.14

4—31

Insert

Function:

The function of the INSERT statement is to insert an index key of a record
already stored in the database into a manually maintained index.

Format:

CALL SlNSR (temporary-database-key, key name, status)

Rules:

”Key name" must identify the name of an item or group item defined as a
manually maintained lNDEX key for the record type in the database schema.

The item or group item named “key name" in the identified record must have
been given a non-null value prior to the execution of lNSERT. lt must not
previously have been inserted into the index.

The effect of executing INSERT is to update the index with the value of the item
or group item named "key name", so that the record may be accessed by use of
the "key name".

If duplicates are not allowed for the index key item, an attempt to lNSERT a
duplicate value will cause a database exception condition to occur.

The CR1.“ and CSRl will remain unchanged when lNSERT is executed.

ND~60.127.5 EN

4.2.15

4-32

Remove

Function:

The function of the REMOVE statement is to remove an index key from a
manuaily maintained index.

Format:

CALL SREMO (temporary-database-key, key name, status)

Rules:

The record must be in a realm which has been readied for update by the
run~unit. ”Key name” must identify the name of an item or group item defined as
a manually maintained index key for the record type in the database schema.

The identified record must previously have been inserted into the index.

The effect of executing a REMOVE is to take out the entry from the index table,
so that the ”key name" cannot be used as an access key to the record identified
by "temporary-database~key".

The CRUI and CSRl remain unchanged when a REMOVE is executed.

NDVBO.127.5 EN

4.2.16

4-33

Remember

Function:

The function of the REMEMBER statement is to remember either the
identification of the record contained in the CRUl or the search region which is
contained in the CSRl. A remembered record or search region can be referenced
directly in all DML statements as an alternative to the CRUl or CSRl.

Format:

CALL SREMB (temporary id, option code, status)

Rules:

"Option code" must be given one of the values 0 or 1. If "option code” is set to
0, the REMEMBER~RECORD is executed and ”temporary id" will identify
"temporary-database—key". lf "option code" is set to 1, then REMEMBERe
SEARCH—REGION is executed and "temporary id” will identify a "temporary
search region indicator". All other settings of ”option code” are prohibited.

The effect of executing REMEMBERxRECORD is to make the record identified by
CRUl available to the run~unit after the CRUl has been updated. This record is
later referenced by use of the number received by the REMEMBER statement in
the variable "temporary id”.

The effect of executing REMEMBER-SEARCHREGION is to make the search
region identified by CSRl available to the run-unit after the CSRl has been
updated. This region is later referenced by use of the number received in the
variable "temporary id".

A REMEMBER is local to the runeunit. Two concurrently processing run-units may
remember the same record or the same search region without conflict.

A REMEMBER lasts only for the duration of a run—unit. After closing the data
base, anything which has been remembered for a run-unit is automatically
forgotten.

The number of times a REMEMBER may be executed in a run~unit without
executing a FORGET depends on the variant of SlBAS in use. It is, however,
recommended that each REMEMBER is matched with a FORGET as soon as what
has been remembered is of no use to the run—unit. This is because the FORGET
statement releases entries in the remembered list for further use by the
REMEMBER statement.

The CRUI and the (SSH! will remain unchanged when the REMEMBER is
executed.

The maximum number of remembered record by run-unit is 30, while the
maximum number of remembered search-regions for one run-unit is 5.

ND~60.127.5 EN

4.2.17

4-34

Forget

Function:

The function of the FORGET statement is to nullify the effect of executing a
REMEMBER.

Format:

CALL SFORG (temporary id, option code, status)

Rules:

"Option code” must be set to an integer between 0 and 3 and the meaning of
the "temporary id” will depend on the setting of ”option code".

The meaning of the possible values of ”option code” is explained below:

"option code" FORGET option executed meaning of ”temporary id"

0 FORGETsRECORD "temporary—database-key”

i FORGET~SEARCH~REG|ON ”temporary search region
indicator"

2 FORGET—ALL-RECORDS undefined

3 FORGET—ALL‘SEARCH—REGIONS undefined

FORGETRECORD causes the record identified by "temporary-database—key” to
be deleted from the list of the remembered records for the run-unit.

FORGET—ALL—RECORDS causes all records previously remembered by the
run—unit to be deleted from the remembered list.

FORGET-SEARCH—REGION causes the search region identified by ”temporary
search region indicator” to be deleted from the list of remembered search
regions for the run-unit.

FORGET-ALL~SEARCH~REGIONS causes all search regions previously
remembered by the run—unit to be deleted from the remembered list.

The number of times a REMEMBER may be executed in a run-unit without
executing a FORGET depends on the variant of SlBAS in use. It is, however,
recommended that each REMEMBER is matched by a FORGET as soon as what
has been remembered is of no use to the run—unit. This is because the FORGET
statement releases entries in the remembered list for further use by the
REMEMBER statement.

The CRUl and the CSRI will remain unchanged when a FORGET is executed.

If the records specified in FORGET were locked, they are automatically unlocked
by a successful execution of the FORGET statement.

ND-60.127.5 EN

4.2.18

4—35

Lock

Function:

The function of the LOCK statement is to indicate to the DBCS that the run-unit
wishes to obtain one or all of its remembered records (those in extended monitor
mode) for exclusive update.

Format:

CALL SLOCK (temporary-database—key, option code, status)

Rules:

The "option code" must have one of the two values 0 or i, where:

0: lock record identified by "temporary-database-key"
1: lock all the records in the run—units remembered list.

The value of "temporary~database-key" needs only to be defined for "option
code” value 0.

The effect of the LOCK statement is to cause one or all records in one run-unit’s
remembered list to be set in the status of EXCLUSIVE UPDATE for the run-unit
including the record identified by the CRUl.

The LOCK statement will only be successful as long as none of the required
records are already locked to another run—unit, and none of the records are in
realms readied for EXCLUSlVE UPDATE by another run-unit.

if the run-unit has previously executed a LOCK statement, an UNLOCK statement
must be executed prior to the execution of a new LOCK. This restriction avoids
the problem of deadlock between records in SIBAS.

After the successful execution of a LOCK statement the status will be set to
either 0 or 1. In the case of status 0, one or more of the locked records have
been affected by another run-unit. By ”affected" is meant that one of the
following statements has been executed on the record: ERASE, MODIFY,
CONNECT, DlSCONNECT, lNSEFlT or REMOVE. in the case of status 1, none of
the locked records have been affected after they were set in extended monitor
mode by the run»unit.

Locked records can be released for updating by other run—units after execution of
an UNLOCK, FORGET-ALL or a CLOSE-DATABASE statement. FORGET and
FORGET~ALL do not unlock the CRUI.

The CRUl and the CSRl will remain unchanged when a LOCK statement is
executed.

ND-60.l27.5 EN

4.2.19

4.2.20

4-136

Unlock

Function:

The function of the UNLOCK statement is to make any records that are locked to
the calling run—unit available for updating by concurrent run—units.

Format:

CALL SUNLK (status)

Rules:

The UNLOCK statement is always successfully executed.

Change—Password

Function:

The function of the CHANGE-PASSWORD statement is to change the value of
the current password for the calling run—unit, to conform with the password of a
record to be looked at.

Format:

CALL SCHPW (new password, status)

Rules:

The current password will be set to a value for each run-unit when OPEN-DATA—
BASE is executed. The effect of executing CHANGE—PASSWORD is to change
the value of the current password for the calling run-unit. The use of current
password is described in Chapter 2. See also Section 6.2.

ND—60.127.5 EN

4.2.21

4-37

Accept

Function:

The function of the ACCEPT statement is to move to user defined areas the
contents of various system registers set when a database exception condition
occurs.

Format:

CALL SDBEC (set name, realm name i, realm name 2, item name, DML
statement code, dbec)

Rules:

"Set name”, ”realm name 1”, "realm name 2" and "item name" must be
defined in the host language program to correspond to a SlBAS character item
which will hold eight characters.

"DML statement code" and "dbec" must both be defined in the host language
program to correspond to an integer item which could hold at least four digits.

The ACCEPT statement will always be successful. The most recently executed
DML statement will set the system registers to the values which are obtained by
the ACCEPT statement.

Before the OPEN-DATA—BASE statement is executed by the run-unit, the system
registers will have a null value.

The effect of executing the ACCEPT statement is to move the contents of various
system registers into the user defined parameters. The setting of the parameters
will be as follows:

-— "Set name" will be set to the name of the set type referenced in the most
recently executed DML statement. if no set is referred to, "set name” will
be set to null value.

w "Realm name 1" will be set to the name of the realm referenced in the
most recently executed DML statement. If no realm is referred to, ”realm
name 1" will be set to null value.

__ "Realm name 2" will be set to the name of the realm which caused the
DBEC if this is different from "realm name 1". if not, "realm name 2" will
be set to null value.

— "Item name” will be set to the name of the item or group item which
caused the most recently executed DML statement. if no item is referred
to, ”item name" will be set to null value.

ND»60.127.5 EN

4-138

—— "DML statement code" will be set to the code for the most recently

executed DML statement. The codes for all DML statements are listed in
Appendix F.

— "DBEC" will be set to the code of the DBEC. lf the DML statement was
successfully executed, "dbec" will be set to null value.

The table containing all possible values for DBEC and DML statement codes is
given in the chapter "Error Reporting".

ND-60.127.5 EN

4.2.22

4—39

Erase Element

Function:

The function of ERASE-ELEMENT is to give null values for one or more items or
group items in a record already existing in the database.

Format:

CALL SEREL (temporary-database—key, no. of items, item names, status)

Rules:

"Item list” must be a list of names of items and group items given in the user
program.

The ”item list" should contain the names of the relevant items and group items
in the record identified by "temporary-database—key". The sequence of the items
may be chosen freely.

The realm in which the identified record is stored must have been readied for
update. Realms indirectly referenced via set membership must have been readied
for load or update.

The effect of executing an ERASE-ELEMENT is to cause the values of the items
named in ”item list” to be modified to null values in the record identified by
"temporary-database-key". items not named in "item list" will only be affected
by the ERASE—ELEMENT if they are members of a group item and the group item
is named in the ”item list”. If a group item is named in the "item list”, all
member item values of that group item will be erased for this record occurrence.

lf the record type of the identified record is a member of a set and if the value of
the member set item is erased, then the record will be disconnected from the set
into which it was previously connected.

If the identified record is an owner of a non—empty set occurrence and the owner
set item is named in the "item list" or is a group item which has been modified
to null, then the execution is unsuccessful.

If any of the items modified to null are index keys for the record type, then the
corresponding entry is removed from the index.

If any of the items modified to null is a Calc key for the record type, then the
execution is unsuccessful.

If all key items and member set items which exist for the record are modified to
null, then the execution is unsuccessful.

lf any item is named more than once in the ”item list", this has no effect.

If a privacy item is defined for the record type and the run-unit has been allowed
to modify the record, the privacy item may also be set to a null value.

The CRUI and the CSRl will remain unchanged when an ERASE—ELEMENT is
executed.

ND--60.l27.5 EN

4.2.23 Accumulate

Function:

Accumulates integer or floating or double integer data elements for one or more
items in an already found record. it is 3 GET followed by a MODIFY in only one
statement. These statements reduce the possibility of interference between
concurrent run-units.

Format:

CALL ACCID/ACCFD/ACCDD (temporary-database—key, no. of items,
item list, increments, new values, status)

Rules:

The record identified by "temporary—database—key” must be in a realm which has
been readied for update by the run~unit. "Increments” are the values to be
added to the items named in the ”item list". The ”new values" are the values
returned by the call.

The item names in "item list" must be elementary items, ie. not groups

ACCFD is not available from SlBAS—SOO.

ND—60.127.5 EN

4.2.24

4-41

Fetch-Get

Function:

The function of FETCH-GET is to retrieve a specific record. The record is
specified by means of a Calc key or an index key.

A search region will be established if the key has duplicates allowed.

Format:

CALL SFTGT (realm-name, key—name, length of key, key value, number of
items, item list, item values, status)

Rules:

Same as if the following was executed:

call SFTCH
if sftch~status 2 i then call SGET endif

The realm named in "realm—name" must have been previously readied by the
run-unit.

The "key-name" defines the name of an item or a group item which is defined as
an index key or a Calc key in the database schema

After successful execution of the FlND statement, the current of run-unit
indicator is set to a unique value identifying the record found.

After successful execution of a FlND statement, the current search region
indicator will be set to both the key item name and the value of the key used. if
duplicate keys are not allowed the setting of CSRI remains unchanged.

If the key item is one for which duplicate values are allowed, then the DBCS
selects the "first" record where the meaning of ”first" is the record with the
lowest physical address (is, storing nearest to the beginning of the realm).

The values of the items will be stored in the area named ”item values" in the
user program in an order corresponding to the order of the "item names". The
CRUl and the CSRl will remain unchanged when a GET is executed.

”item list" must be a list of names of items and group items in the user
program. The corresponding values of the items and group items will be
transferred to the area named "item values”. Each value in the ”item values"
starts on a new word boundary. "items values” cannot be larger than 500 words.

ND—60.127.5 EN

4-42

The "item list" should contain the names of the relevant items and group items

in the record identified by "temporaryrdatabaserkey". Not all items and group

items defined for the record type need to be given in "item list" and the

sequence of the items need not to be the same as defined for the record type

The same item may be repeated in the "item list" but the total number of items

given must not exceed the total number of items and group items defined for the

record type.

The effect of executing a GET is to cause values of the items and group items

named in the "item list" to be stored in the data area of the user program,

If the rurrunit attempts to get a record which has been changed by another

run unit, and is in "extended mode” (see 2.43.4), the GET will be unsuccessful.

lf "statuss"is less than 1 on return, a call to SDBEC can be used to find out

whether it was "FETCH” or the "GET" that failed.

"DlVlL statement code" is set to 1 when "FETCH" fails, and to 20 when "GET"

fails.

ND—60.l27,5 EN

4.2.25

4—43

Get Schemes Information

Function:

The function of GET—SCHEMAS~1NFORMATlON is to get information about
realms, records, items and other data dictionary information from the database
schemas at run-time.

Format:

CALL SlNFO (code, namel, name2, length, array, status)

The code input parameter has the format NXYY with two cases:

Case 1 NX = 00, Case 2 NX =$= 00,

Case 1: Input: code = OOYY

Code = 0001 0002 0003 0004

namel ~— realm realm realm
name name name

nameZ — —
- item

name

0001. Get realm names in database.

0002. Get realm description and
free-space statistics

0005 0006 0007 0008

realm _. set ~—
name name

Output: array

1-4 first realm name
58 next realm name etc.

1 realm type
2 pagesize
3 record-length (type 2),

pagesize (type 1)
4 pages reserved
5 pages used
6 freed records (type 2,3)

(double integer)
freed pages (type 1)

Realm type: 1 = system realm, 2

0003. Get
realm

record description for

=Calc, 3 = Serial

4 words per item name

ND»60.1275 EN

4-44

4. Get item or group description word 1 item type subfield

Bit counting from right to left:

bit O~1

bit2=1
bit3=1
bit4=1
bit5==1

bit6=1
bit7=1
bit 8:1
bit 921
bit10=1
bit11=1
bit 12:1
bit 1321

bit 14:1

word 2

word 3

word 4

word 5

word 6

00 integer, 01 floating
10 character, 11 mixed
access via calc
access via index
member of set
unique access key
0 - duplicates allowed
1 - duplicates not allowed
automatic member of set
automatic acces key
access-lock
owner of set
group item
member of a group
pointer item
pointer is defined to be
double
pointer is owner of chain

word start of item in
record
length of item
bit 12:0 —» bit 011 =
length
bit 12:1 —» bit 05 a bit
start
bit 6~11 = bit end
offset to group description
(0 = if item not group)
bit 12 of word 3
(1 = if item length is part
of a word)
bit 1 of word 1 '
(1 = if character item)

it group item then

word 7—10 first item name
word 11—14 next item name

ND~60.127.5 EN

5. get access path to realm 1

4—7

10-13
14
15

16-19

n- n+3
+1

+2
+3- +6

6. get set names in database 1-4
5—8

7. get set description 1

4~7

8-11
1245

1619

2023

calc access, yes=1, no=0
number of index-accesses
number of set—accesses

CALC ACCESS
name: calc item name or index
key name or set name. The list
of names is ordered:
lst — calc key name (if any)
2nd _ index key names (if any)
3rd — set names (if any)
duplicates (0) or not (1) for calc
key or index key name. For set
name member (0) or owner (1).
automatic (1) or not (0)
next name.

lNDEX ACCESS
first item name
duplicates (0) or not (1)
automatic (1) or not (0)
next item name etc.

SET ACCESS
first set name
member (O)/owner (1) of the
set
automatic (1) or not (0)
next set name etc.

first set—name
next set-name etc.
0: single member.
1: multimember.
0: manual.
1: automatic.
0: single chain.
1: double chain.
name of item/group-item
defined as owner of the set.
name of owner-realm.
name of item/group~item
defined as member of the set.
name of member—realm, if
multimember set then...
name of member‘realm etc.

8. list text—names in the database 1-4 first text—name.

ND-60.127.5 EN

4-46

Case 2: input "code" has the form NXYY where NX is not 00.

N: X:
1 2 database 1 = heading
2 = realm 2 = purpose
3 = set 3 = extension
4- a group/ item 4 = timestamp
5 = text 5 = storage

6 = display
7 = ddname

YY:
If X = 3 then YY : EXTENSION-code.

lf YY = 0 then every EXTENSION-string for the database-unit are found.

Example: code = 2303 name1 = CUSTOMER

— get EX’TENSlON~string with code 3 for realm CUSTOMER.

The input parameters name1 and name 2 must be written as shown below:

N =

1 2 3 4 5
database realm set group/item text

X = name1
heading 1 ~— name1 name1 name2 name1

name1
purpose 2 ~— namel name1 name2 name1

YY YY YY YY
extension yy 3 YY name1 name1 name1/2 namel

name1
timestamp 4 x * name1 name1 name2 name1

name 1"
storage code 5 not used not used not used nameZ not used

namel‘
display code 6 not used not used not used name2 not used

namel‘
dd name 7 not used not used not used name2 not used

NOTE: If N = 4 and X I: 5, 6 or 7, then name2 must be the name of an item,
nota groupll

ND~60.12715 EN

4.2.26

4-47

Transaction Units

Function:

A TRANSACTION UNIT is a sequence of database processing which brings the
database from one userwconsistent state to another user consistent state. A
transaction unit generally corresponds to the completion of a unit of work
significant to the user.

SlBAS takes into account transaction units by explicit declaration from a user
program which determines the "scope" of a transaction unit at runtime. SIBAS
imposes severe restrictions on the "scope" of a transaction unit. However, the
restrictions imposed on the user program make it possible to implement the
TRANSACTION UNIT efficiently in SlBAS.

SUBEG declares to SIBAS the RUN-UNIT intention to process a unit of work
which must be either completely executed or not executed at all. SIBAS will
reserve the whole DATABASE for exclusive use for the duration of the
transaction unit.

SUEND declares t0 SIBAS the RUN UNIT comi'iletion Of a transaction lIIiIl, The
completion can be normal, or not. In the later case the database will be restored
to the state it was at SUBEG.

Format:

CALL SUBEG (runid, t~unlt type, status}
CALL SUEND (run-id, COlVllT or ROLLBACK, status)

Rules:

1. The BIIVI option must be in effect, otherwise an error status is given,

2. Normally, <.:runridi> should be left 0, but a monitoring program can also
execute SUBEG/SUEND for other runrunits.

3. A transaction unit cannot last more than a certain number of calls, This is
to prevent a looping or waiting TU. to hang up concurrent run-units. The
maximum number of calls a T.U. can last is a system generation parameter.
(Default is 1000 calls.)

4, <t-Aunit type > ~ I the database is reserved for exclusive read.
2 the database is reserved for exclusive update.

5. < COlVllT or ROLL.\ 1 COMMIT, all changes are applied to the database.
:- 71 ROLL, all changes are discarded, and the

database is left as it was when the transaction unit
started.

ND 60.I27.5 EN

4.2.27

4-48

Calls Using Physical Record Number

In the F version of SlBAS, some new calls have been included for accessing
records through their physical record number, A phycial record number refers to
the physical location of the record in a realm. As record space left after deleted
records will be reused in subsequent: STORE calls, care must be taken when
using record number to access a database. The location used to hold one record
may very well be used for another record (later in time) in a multi~»user
environment.

The SWHAT call must be used to obtain the realm name and physical record
number of the current or any remembered record. Record numbers are counted
from one in each realm, and the record number is returned in a double integer
(32 bits):

CALL SWHAT(temporarywdata~base—key,realm~name,record--number,status)

Temporaryndata—basekey is the oniy input parameter (or implies current
record). Realm-name and recordnumber are output parameters.

ln addition it is possible to find a record using its physical record number
through the SFRNO call. This ”findvusingwecord-number” is similar to SFTCH,
but record number is used rather than a key value. If the find is successful, the
record will be made current. No change will occur with the current search region
indicator, A subsequent call to SGET must be done to actually read the record. lf
no such record exists, return status will be 0 and DBEC=240. lf record number is
located after last page used in realm, then returned status will be 0 and
DBEC: 211 will be set.

CALL SFRNO(realm~name,record--number,status)

Input parameters are rea|m~name and record-number (double integer). Only positive
record—numbers will be accepted

Note that a record number refers to the physical record number. Records can be
deleted, hence and given number (eg. 1) does not guaranty the existence of the
record (record space may be free/not used).

As the SFRNO call often will be followed by a SGET call, a combined
SFRNO—l~SGET call has been implemented (similar to SFTGT). If some error
condition occurs, the DMLunumber returned from SDBEC will tell the user if it
was the SFRNO or the SGET call that failed. Currency etc. will be the same as
for SFRNO+SGET

CALL SFRGT(realm-~name,record--number,number of items,item list,item
values,status)

Rememberthat record~number is a double integer parameter (32 bits). For a complete
description of the other parameters, please refer to section 4.2.24 where the
SFTGT call is described.

NDr60.l27.5 EN

449

If a transaction unit is not terminated within the specified number of calls,
SlBAS will automatically execute a SUEND (ROLL) for the run unit.

If a run-unit has been ROLLed back by either SlBAS or a monitoring
program, it will get a negative status for the next call unless it is SCLDB.
All currency indicators are cleared as if FORGET-ALL-RECORDS and
FORGET-ALL—SEARCH-REGIONS were executed.

OPEN—DATA-BASE, CHECKPOINT, ROLL—BACK, READY/FlNlSH—REALM,
BSEQU/ESEQU, RESlB/RELSI, CLOSE-DATA-BASE are not allowed within
the scope of a transaction unit, and will give an error status.

lf application programs can be written so that SUBEG/SUEND brackets all
database updates, concurrency problems are almost eliminated, i.e.,
LOCK/UNLOCK, notification of changes, BSEQU, ESEQU are
unnecessary.

Nil-60.1275 EN

4.3

4—50

HOST LANGUAGE CONSIDERATIONS

SIBAS data manipulation services are generally accessed via calls. The reason is
that calling subroutines is a fairly standard and formalized way of interfacing
programs written in different programming languages. SlBAS adheres to the
FORTRAN call formalism.

S/BA 8-500

SlBAS-SOO data manipulation language (DML) is generally accessed via calls just
like SlBAS-iOO DML. Programmers should write SIBAS application programs in a
standardized way, independent of whether they are to be run on an ND—lOO
(using SiBAS—iOO) or an ND—500 system (using SlBAS—lOO and/or SlBAS—SOO). in
this chapter we present such a standardized way to construct SlBAS
applications. Some special rules concerning SlBAS-SOO are presented, but
programmers fol/owing the given standard ”cookbooks” will be able to run their
applications on both S/BAS—700 and S/BAS—500 Without any modification of their
source code. The rules given below may at first seem very complex, but
experience shows that it is very easy to convert existing SlBAS applications from
NORD-lO/ND-lOO.

ND-A60,127.5 EN

431

4311

4—51

FORTRAN

Calling SlBAS subroutines from a FORTRAN program is just the same as calling
any other FORTRAN subroutine, as shown in the example.

It is not possible to use character parameters directly. However, this restriction
can be bypassed by "EOUlVALENCing" character fields to integer arrays.

FORTRAN ON THE S/BAS—500

Calling SlBAS subroutines from a FORTRAN-500 program is exactly the same
process as calling any other FORTRAN subroutine, and hence the same as calling
SIBAS from a FORTRAN-100 program. There are, however, some restrictions as
to how SlBAS value buffers are to be declared in a FORTRAN—500 application,
i.e., a FORTRAN application running on the 500 CPU.

GENERAL RULES FOR FORTRAN ON THE SiBAS—SOO

The default integer size on the ND—SOO CPU is 32 bits, as opposed to the default
integer size of 16 bits on the NORD—lO/ND’iOO CPU. This is because on the
NORDalo/ND—TOO CPU one word is 16 bits, and on the NDABUU CPU one word is
32 bits. The SlBAS—SOO simulator (SlBAS~LlBRARY) assumes that applications
are compiled in the default integer mode and takes care of converting single
integer parameters to/from SlBAS-mode (Le, 16 bit integer format) before
receiving/sending parameters from/to SIBAS. ln addition, the database format is
a 16 bit integer format, i.e., all value buffers (containing database values) sent
to/from a SlBAS process must be packed in a 16bit word format. To avoid
problems concerning different integer modes it is best to simply declare all value
buffers (passed to/from SlBAS) as INTEGER? in all FORTRAN applications.
lNTEGER‘Z (which specifies a 16 bit integer format) is the default on the
NORDJO/NDJOO CPU.

(Note that BOO—applications must follow the given rule.) All other parameters are
declared (default) integer (i.e., lNTEGER, hence 32 bits in FORTRAN-500) and can
be handled in the same way as in a FORTRAN-100 SlBAS application

(VD—60.1275 EN

4—52

4.3.1.2 STANDARD 'COOKBOOK' FOR PROGRAMMlNG FORTRAN
APPLICATIONS

In this manual the value buffers are:

”key-value"
"item-values"
"low—limit"
"high-limit”
”increments”
"new values"

They are used in the following SlBAS DML-calls:

SFTCH(Pl, P2, "key-value', P4, P5)
SGET(P1, P2, P3, "item~values", P5)
SFTGT (P1, P2, P3, "key—value", P5, P6, "item—values”, P8)
STORE(P1, P2, P3, "item-values", P5, P6)
SMDFY(P1, P2, P3, "item-values’, P5, P6)
SFEBL(P1, P2, ”low-limit", ”high—limit”, P5, P6)
SFLBL(P1, P2, ”low-limit”, ”high—limit", P5, P6)
SGETN(P1, P2, P3, P4, P5, P6, "item—values", P8, P9)
SGIXN(P1, P2, P3, ”item—values”, P5, P6)
SlNFO (P1, P2, P3, P4, "array", P6)
AC:ClD/DD(P1, P2, P3, "increments”, ”new values", P6)

Declare all such value buffers to be lNTEGER‘Z, all other parameters are
declared INTEGER. In addition this is: also the only difference when applications
are to be converted from NORD— 70/ND-100.

Example:

ND-100 ND-SOO

INTEGER |TEMP,NOlTM,lSTAT lNTEGER- lTEMP,NO|TI\/l,lSTAT
INTEGER |VBUF(10) INTEGER'Z IVBUF(10)

CALL SGET(lTEMP,NOlTM,"REALMXX ",lVBUF,lSTAT)

As we see, only the declaration of IVBUF is different, —— the call sequence and all
other declarations are identical. Note that the ’ND-500 solution’ is the best way
of construction all SIBAS FORTRAN applications since this solution also can be
run on the NORD-lO/ND—lOO without any modifications.

ND—60.127.5 EN

4~53

SPEC/AL CONSIDER/4 T/ONS:

1. Since the default single integer mode is 32 bits in FORTRAN-500, integer
constants cannot be used as value buffers when such a buffer consists of
only one single SiBAS—word (i.e., length—of~value—buffer is 1).

Example:

CALL SFTCH(P1, P215399, P4, P5)

This construction cannot be used to fetch a specific record (where P2 is
the key item declared integer in the database definition with a length of 1
SlBAS—word). (A SlBAS»word = 16 bits.)

Instead the solution shown below should be used. (The use of an array is
not really necessary here.)

|NTEGER*2 lVBUF(n)
IVBUF(1) = 1999 ,
CALL SFTCH(P1, P2, lVBUF , P4, P5

2‘ Names of the database, realms, items, etc., can be handled as they are
handled in a FORTRAN-100 application.

For example:

(Note that both of the solutions shown can be used.)

a. including names directly as the actual parameters surrounded by
double quotes.

Ex.:
CALL SOPDB(15473,"TESTBAS ",”GXZZXG ',iST)

b. ’equivalenoing’ CHARACTER variables (containing names) with the
actual INTEGER parameters.
We recommend using lNTEGEReZ.

Ex:
CHARACTER DBNAMaiS, PASSW++8
INTEGER*2 lBASE(4),lPASS(4)
EQUlVALENCE (IBASEDBNAM), (lPASS,PASSW)
DBNAM = 'TESTBAS ’
PASSW = ’GXZZXG
CALL SOPDB(1E3473,lBASE,IPASS,lST)

Remarks:

i) A constant (15473) can be used as the first parameter because
it is not a value buffer.

3‘ The application programmer is advised to be very careful when local
INTEGER variables in the application program are ’equivalenced’ with value
buffers which are declared INTEGER'Z.

NDx60,127.5 EN

4—54

PRUGRAR LOADPER
C
C PURPOSE
C LOAD RERSON RECORDS IN A COURSE DATABASE
C
C
C DECLARE BUFFERS INTEGER°2 FOR THIS TO BE
C COMPATIBLE WITH SIBAS—SOO

INTEGER'Z IUBUF(AS)
INTEGER’Z ITVAL1(35),ITVAL2(9),HSALARY

CHARACTER ITLISTL8)@8
EOUIVALENCELIUBU?(12aXTVAL1)v(1U8Uf(36)oHSALAKY)v

° (IUBUE(3?)9ITVAL2)9(ITLXST01NAME)
DATA ITLIST<13I°ODAYE 9/
DATA ITLXST(2)/“ONO 9/
DATA ITLIST(3>/°PERSNAME°I
DATA ITLIST(®)/°PERSADDR°/
DATA ITLIST(5)/9SEA '/
DATA ITLIST!6)/°MSALARY 9/
DATA ITLIST(7)/°OEPARTM 0/
DAYA XTLISYKBJI°PRE$ERV V/

WRITE(191Q0)
100 FORMAT(1H3»5X¢°PQOGRAM FPERL‘6899

° 196%»9NEE PERSONoRfiCORDS TO DATABASE’oi)
C
C OPENflDATABASEfi
C

CALL SETDV(0)

CALL SOPDO(15&73¢“GENDB®GB"9IPASSeIST)
IF (ISTaLTofl) THEN

CALL ERRORCLI
GO TO 180

ENDIF
C
C READY REALM FOR LOAD 9 NOTE THE USE OF " TO DELIMIT MOLLERo CONSTANYE
C

CALL SRRLMCleWPEQSON “919091$T)
IF (XSToLTol) THEN

CALL ERROR(ZF
GO TO 183

ENDIF
C
C OPEN THE INPUTOFILE FOR READING:C .

OPEN (UNI78209FXLEfiQGPEPREC:OATA'9
9 STATUSE°OLD°9ACC£5535999RECLEQS)

IF (ERRCOOEaNEsG) ?H£N
CALL ERROR(33
GO TO 1?5

END}?
C
C LOOP HERE FOR EACH RECORD
C
125 READ (2091309END3160) ITVAL19HSALARY91TVAL2
130 FORMAT(3A292A29A1913A2915A29A191693A295A2)IF (ERRCOOEaNEaG) 7M£N

CALL ERRORlfi)
GO TO 125

ENDIF
uRITE<191®GbXTVALIeHSALARYoITVALZ

ND 601275 EN

4—55

140 FORMAT(1H 93AETIX92AZOA191XOI3A291X915AZOIX9A101X01691X0
* 3A201X06A3)

STORE THE PERSON-RECORD READ:

n
n

n

CALL STORE(“PERSON "OBvINAMEeIUBUFOISk5)
IF (ISTaNEel) CALL ERROR(S)GO TO 125

c
c END OF LOOP
c
160 HRITE(19170> _
170 FORMAT(LHO.6X.RLOADTNG PERSONPRECOHDS TERMINATED‘)CLOSE(UNIT=20) ’cc DATABASE IS CLOSED (FOR THIS USER)c
175 CALL SCLDB("GENDB-GB"AIST)

IF (IST.NE.1) CALL ERROR(6)180 STOP
END

suDROUTINE ERRORTN)
c
c PURPOSEc PRINT OUT ERROR MESSAGESc
c INPUT PARAMETER
c N ERROR NUMBER
c
c

INTEGER RNANETTA).RNAME2<A>.SNAME(A)AINANETA)CHARACTER ERRLIST<S)-3ODATA ERRLISTI1)/YERROR IN OPEN~DATABASE v/DATA ERRLIST(2)/°ERROR 1N READYvREALM'/DATA ERRLIST(3)/°ERROR IN OPEN INPUT-EILE'IDATA ERRLIST(«)/§ERROR uHEN READING A RECORD'/DATA ERRLLST(S)/!ERROR IN STORE .,
DATA ERRLIST(6)/?ERROR IN CLOSE~DB °/

c
C GET THE DATABASE EXCEPTION CONDITION CODEc

CALL SDBEC(SNAMEoRNAME1eRNAMEZeINAMteIDMlDBEC)

WRITE (1,900) ERRLIST(N)eIDBECRIDMLPSNAMEORNAMEEORNAMEZOINAME
900 FORMAT('0'¢A9/QZXP°DBEC 3.9149/9

‘ 2X9’DML-CALL 399149/0
‘ 2X6 l’SET-NI-‘ME 3 ° DQAZVI’Q
° ZXD‘REALMI 1 °D$A29/Q
* EXP‘REALMZ 3 904A29/9
‘ 2X¢°ITEM 3 °¢QA2')

RETURN
END

ND'60.127.5 EN

432

4—56

COBOL

Calling SlBAS subroutines from a COBOL program is just the same as calling a
FORTRAN subroutine. The programmer must be aware of two things:

1. Parameters must always start on a word boundary
2. The values passed to or from SlBAS are always an integral number of

SlBAsawords.

The concept of ”word" is somewhat strange to a COBOL programmer, but a
"word” is made of 2 bytes on ND-lOO, 4 bytes on ND—SOO. A SlBAS~word is 2
bytes, which requires some precaution on the ND—SOO.

The COBOL compilers automatically align 01 level on word boundaries.

As a good programming practice, define the length of the data items passed to
or from SIBAS as an even number of bytes. If the last byte of a DISPLAY field is
never used, fill it with a default byte, for example space. if the programmer does
not align items/records on 2 bytes boundries, a GET operation may damage the
succeeding item/record. This may again lead to unpredictable results.

Note that SYNC—2 will always align a field to a 2 bytes word boundary,

()1 RECORD.

05 REC—lTl PlC 99 PACKED-DECIMAL SYNC—2.
05 REC-IT2 PlC 599VSl99 PACKED—DECIMAL SYNCaZ.

Thus, COBOL is very well suited to writing programs accessing a SlBAS
database, mainly because it has a DATA DlVlSlON where the data areas are
clearly defined.

IMPORTANT:
A packed—decimal variable should always be defined using the SYNC—2 phrase.

ND—60.127v5 EN

4.3.2.1

4—57

GENERAL RULES FOR COIBOL ON THE SIBAS—500

The programmer must be aware of four different aspects:

1. Parameters must always start on a word boundary. The ND COBOL
compilers automatically align 01 level on word boundaries. All parameters
called ”single integer" in the SIBAS User’s manual should be given 01 level
and always be defined as. COMP (computational) without any PICTURE
clause. Names (database name, etc.) and value buffers (see the previous
section) are given 01 level. All names should be defined with the PICTURE
clause without computational.

The values passed to/from SIBAS (100 and 500) are always an integral
number of SIBAS-words. (One SIBAS-word is made up of 2 bytes). As a
good practice, define the length of the data items passed to/from SIBAS
as an even number of bytes. If the last byte of a DISPLAY field is never
used, fill it with a default byte, for example space.

Value buffers ("item-values" etc., see section 4.3.1.2 for a more detailed
description) are most easily handled when all items are given the type
CHARACTER in the SIB—DRL input file (i.e., all database items are declared
as CHARACTER in the database schema). If they are, all value buffers in
the COBOL-500 application can be declared with the PICTURE clause
according to the length of the item-value in the database schema. In such
cases the computational clause should never be used in conjunction with
the picture clause.

Note, however, that declaring all items of type CHARACTER may require a
great deal of unused/wasted disc—space.

If there are items in the database schema of type INTEGER, some special
rules have to be followed for COBOL—500 applications passing values
to/from these items: COBOL-500 will cause variables declared with the
COMPUTATIONAL option to occupy 32 bits (4 bytes) as long as the
PICTURE clause is not used, or if the PICTURE clause is used (in
combination with COMPUTATIONAL), with field length equal to five or
greater. If computational is used togehter with a picture clause specifying
four characters or less (ex: 01 DBVAL PIC 9(4) COMP), then COBOL—500
will assign 16 bits of storage to the variable.

COBOL storage allocation:

COMP only : 32 bits
COMP and PIC 9(i) where i>4 : 32 bits
COMP and PIC 9(j) where j<5 : 16 bits

Since integer items in the SIBAS database are 16 bits,
COBOL—SOO-applications which pass value buffers to/from such integer
items must define these as COMP + PIC 9(n), where n<5.

ND-60.127.5 EN

458

4.3.2.2 STANDARD ’COOKBOOK’ FOR PROGRAMMING COBOL
APPLlCATlONS

The rwvirzinimer of COBOL annlimtions should follow the ”cookbook" given
below concerning SIBAS calls

A All parameters denoted "single integer” in the SlBAS-ll User manual
should be given level 77 and defined as COMPUTATIONAL. The value
clause can be used to initialize them, Do not use the picture clause,

The most common "single integer” parameters (in the manual’s
terminologyl‘

"mode"
"no of realms"
"no of items"
”novwanted"
"no found"
“option code"
"key length"
”value length"
”temporary-data baselkev"
"temporary search region~indicator"
"SIBAS systernnumber"
"DML statement code"
"dbec"
"status”

Examples:

O'l SlBAS STATUS COMP VALUE 0.
O‘l FIVE REALMS COMP VALUE 5.
0'1 SIBASVDEVICE COMP VALUE 2,
01 OPENMODE COMP VALUE l5473.
Ol KEY-LENGTH COMP VALUE 4.

Note that length-of va/L/e parameters lie, "keyiength" and
”valuelength”) specifies the number of SlBAS-«words he, the number of
l6 bits words).

8. The two integer tables (arrays) ”usagerrmodes” and "protectionmodes"
used in the SRRLM call must be defined as COMPUTATIONAL with an
additional OCCURS clause if more than one realm is readied. Use level~v0l

Examples:

Ol USAGE LIST,
03 USAGEMODE COMP OCCURS 5.

Cl PROTLIST.
O3 PROTECTMODE COMP OCCURS 5.

ND--60.l27.5 EN

4— 59

C. All names are given level-01 and sized by means of the PICTURE clause.

Names are:

"data-base-name"

PICTURE X(8).

PICTURE A(8) VALUE 'TESTBAS ’.

"password"
”realm»name“
”set—name"
"item-list"
"key—name”

Examples:

01 SET-NAME

01 DB-NAME

01 REALM—NAMES.
03 REALM

D. Value buffers are given 01--Ieve| and are sized by means of the PICTURE
clause. If all items in the database schema are defined to be of type
CHARACTER (and this is recommended), all use of the computational

Items declared as INTEGER in the SIBAS
schema require value buffers (passing values to/from these items) to be
clause should be avoided.

PICTURE A(8) occuns 5.

defined with the combination of COMP and PICTURE 9(n) (where n <5).

Examples:

01 ART—VALUE.
03 ART—NUMBER
03 ART-DESCR
03 ART-ANTALL
03 ART~PRICE

01 KUNDE—VALUES.
O3 KUNDE—NR
03 KUNDE-NAVN

PIC X(
PIC AUG).
PIC 9(4).
PIC X(6).

PIC 9(4) COMP.
PIC A(24).

ND~60.127.5 EN

0/0
%
%
0/o

0/o

declared as
CHARACTER in
the SIBAS
schema

INTEGER in schema

NORSK DATA COBOL - VER H. COB—EX
@

(D
N

O
‘U

T
R

U
N

H

460

TIME 12.06

IDENTIFICATION DIVISION.
a

PROGRAM-ID.
CPERL‘GB.

AUTHORo
J F BOHMER DES 1979.

DATE 05.02.80

QQQO¢§O~D‘Dfi'b0¢9§§§Gfififi§¢i¢§9906§9§9090ii090%.§§6GO#§OQ§§O@QQG#‘D*°9§9

fi
fi
é

t
é

PROGRAM READS PERSONAL RECORDS FROM A DISC FILE AND PLACES
EACH RECORD INTO THE DATABASE. EACH RECORD IS ALSO LISTED
ON THE TERMINAL AFTER EDITING.
““ ERROR CONDITIONS ARE REPORTED ON TERMINAL G”
*' INPUT FILE HAS BUILT BY ANOTHER PROGRAM ”9

OQGOOOOO‘Iififibfi‘DG‘UOG‘Ififi-DQfi.~lr§§.§°®9§fi§§f§§¢§§§9Q§Q§GOQ§90§999999.59
6

ENVIRONMENT DIVISION.
41

CONFIGURATION SECTION.
SOURCE-COMPUTER N-lO-S.
OBJECT‘COMPUTER N-10'S.

INPUTTOUTPUT SECTION.
FILE'CONTROL»

SELECT TEXTOUT ASSIGN 'TERM'»
SELECT PERSONl ASSIGN 'GHERREC:DATA' STATUS ERRORwPRO.

I‘O'CONTROL.o ,

DATA DIVISION.
«O

FILE SECTION.
'9

FD TEXTOUT
LABEL RECORD OMITTED.

OI TEXTLINE
01 PERSREC.

02 OBDATE
02 FILLER
02 OBNO
02 FILLER
02 OPERSNAME
02 FILLER
02 OPERSADDR
02 FILLER
02 OSEX
02 FILLER
02 OHSALARY
02 FILLER
02 ODEPARTM
02 FILLER
02 OPRESERV

Ol ERRORwLINE.
02 E’TEXT
02 E°GROUP.

03 E~DML
03 FILLER
03 EuDBEC
03 FILLER

PIC X(100).

PIC 1(6).
PIC X.
PIC X(S).
PIC X.
PIC A(26).
PIC X.
PIC X(30).
PIC X.
pIC A(1)-
PIC X.
pIC 229.99.
PIC X.
PIC x<e).
PIC X.
PIC X(12).

PIC X(20).

PIC 9(4).
PIC X.
PIC 9(4).
PIC 1.

ND-—60.127‘5 EN

4~61

NORSK DATA COBOL - VER H. COB—Ex TIME 12.06 BATE 05.02.80

57 03 E-INAME PIC AIS).
58 03 FILLER PIC x.
59 03 E-SNAHE PIC AIB).
6O 03 FILLER PIC x.
61 03 E-RNAMEI PIC x18).
62 03 FILLER PIC x.
63 03 E-RNAHEZ PIC XIB).
64 0
6S FD PERSONI
66 BLOCK CONTAINS O RECORDS
67 LABEL RECORD OMITTED.
6B 01 IPERSREC.
69 02 IBDATE ‘ PIC AI6)-
70 02 IBNo PIC AIS).
71 oz IPERSNAHE PIC A(26).
72 oz IPERSADDR PIC X(30).
73 02 ISEX PIC A(l).
7A 02 IHSALARY PIC 9<ATV99.
75 02 IDEPARTH PIC x(6).
76 02 IPRESERV ‘ PIC X(12).
77 w
78 o
79 VORKING~STORACE SECTION. »
80 4H?“QOOQO‘DOGOOWOOOfifl-Oflfifié900990§99¢00§64§9i9fiwiwfiowfioéflwfiavwafia994?“!

81 A THE 77 LEVELS ARE CONSTANTS USED MAINLY FOR THE CALLS TO
82 R SIBAS
83 A
84 A
as A
B6 A
87 77 PROBNAME PIC xua) VALUE 'CPERL-GB'.
88 77 HEADING PIC xc30)
B9 VALUE TNEV PERSON—RECORDS TO DATABASE“.9o 77 DATA—BASE PIC xua) VALUE 'GENDB~GB'.
91 77 PASS-HORD PIC c) VALUE . 0a92 77 RUNoID VALUE 15473 COMP.
93 77 STAT VALUE 0 COHP.
9a 77 NO—OF-REALHS VALUE I COHP.9S 77 US VALUE 1 CUMP.
96 77 PROT VALUE 0 COMP.97 77 RECL VALUE #6 COMP.98 77 NO-OF-ITEMS VALUE 8 COMP.
99 77 ERROR-No CUMP.100 77 REALM PIC X(8) VALUE 'PERbON v.101 77 ERROR-PRO PIC XIZ) VALUE 000'.

102 88 ON-ERROR VALUE I300 934..
103 {no6-909Gfiflfiié§9¢a~60§999¢bwo§¢°f#9§§¢960#G0099§6Qfififibfiédfiawwfifiéaa-éfi-qr104 A THE ITEM-LIST CONTAINS THE °LITERAL NAPES° FOR THE ITEMS
105 A DEFINED IN THE DATABASE DEFINITION. ONLY THOSE ITtMS106 a REQUIRED NEED BE LISTED AND THE UROLR IS NOT IMPORTANT.107 QaqaflafiflIn:fiéfifiQGfiQéfifiOéflvfibfiflhQéflv“fiflbfl(INDCQGQfifififiévflfiowfififlfiwfifi-QQQW943"?108 .A THE LITERALS “MUST” BE 8 CHARACTERS LONG:
109 (52¢Gééofifinfifl943%GfiéQGfiéfifi-fl'fiéfififiéfifl‘taifififiQfifiOfii’QQfiQQ-OQQ-fiflfifififiwae”9399‘s“:

110 R
III 01 ITEM-LIST.
112 02 LBDA PIC A(8) VALUE 'BDAIE I 0

ND'601275 EN

NORSK DATA COBOL ' VER H.

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
lhl
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

02

402

COBPEX TIME 12.06 BATE 05.02.80

LBNO PIC A<a) VALUE -a~0 I.
LPNA PIC A(8) VALUE 'PERSNAPE'.
LPAD PIC A(8> VALU: 'PERSADCR'e
LSEX PIC A(8) VALUE vsex 0.
LSAL PIC A(8) VALUE 'HSALARY -.
LDEP PIC A(8) VALUE °DEPARTP 9.
LRES PIC A(8) VALUE 'PRESERV °.

999.90.90§O§99§.fi§¢§§9§GO9..GG§Q§Q§OQOGO*C60“}§§000§OQOOfQGQ¢§9fPQW

V
¢

t
l¢

¢

ITEM—VAL 15 A "RECORD"

AND

STRUCTURE DEKINING THE PLACE THAT
THE ”VALUES” FROM/TO THE DATABASE ARE TO BE FOUND/PLACED»
THE FIELDS ”MUST” DESCRIHE *EXACTLY° THE SIZE AS OEFINEU
BY THE DATABASE DEFINITIUNo
SEQUENCE SHOWN IN THE ITEMPLIST

*MUSTG APPEAR IN THE ExALT
(DEFINED ABOVE).

QQQG'fiOQQ-DI‘O‘DQGG99fl9§§6606Qfl“.{QabfiOfififfiflfifiiffifififibfi’filfiTfiGQG-Dfififié’91} G

O

01 ITEM—VAL.
02
02
02
02

02

BOATE
BNO
FILLER
PERSNAME
PERSADOR
SEX
FILtER
HSALARY
DEPARTM
PRESERV

01 ERRORcCODE.
02

O

i

6

DML
DBEC
INAME
SNAHE
RNAMEl
PNAMEZ

PIC X(6)e
PIC X(5).
PIC x
PIC Axes).
PIC x<30).
PIC A(1)e
PIC x
PIC 9(5)
PIC x(6).
PIC X(12).

VALUE
COMP.

COMP°
COMP.

PIC
PIC
PIC
PIC

X(8)a
X(8).
X(8)o
X(8)o

PROCEDURE DIVISION.
6

MAIN-PROGRAM SECTION.
9GQOOQ‘ND69*Ofiifififihfi§0§§969fi§§4§0§94§¢¢909996*9§Cfififlbdwfibé‘l'fiififibiiG’Q’

VALUE SPACE;

SPACE;

a P—START T0 NEXT—REC.
6 OPEN THE I/O FILES . SET—UP AND LIST THE REPORT HEADING.
* OPEN THE DATABASE AND READY THE REALM TO RECEIVE DATA.
o66¢§i§fii§b§§§9§fi§0§§®§§9é»969%“9fi9‘bfifiOfiQOOiQO§Q§§QGi<99fifii$§§99999§

P—START.
OPEN INPUT PERSONI» OUTPUT TEXTOUT.

MOVE PROGNAME To TEXTLINEe
NRITE TEXTLINE AFTER PAGL.
MOVE HEADING TO TExTLINE.
WRITE TEXTLINE AFTER 1.
MOVE SPACE To TEXTLINE.
VPITE TEXTLINE AFTER 1.
CALL ’SETDV’ USING 0.
CALL 'SOPDB' USING RUN-ID DATA-BASE PASS-NORD STAT.IF STAT < 0 MOVE I To ERROR-NO '

ND-60.127,5 EN

4-63

NCRSK DATA COBOL'— VER H. COB-EX TIME 12.06 BATE 05.02.80

169 PERFORM ERROR—REP
170 GO To EDI.
I71 CALL 'SRRLM' USING NO-OF-REALMS REALM US PROT STAT.
172 IF STAT < 0 MOVE 2 To ERROR~NO
173 PERFORM ERROR-REP
174 GO TO EDI.
17S «nififittfiflqbflwfifid‘fififfifiefifi099Oflwéofififlowtfifiafififififififiaafiéofl'fifl'flfififiw99{5P9

17G a NExTeREC TO FIN.
177 A READ 1 RECORD FROM THE PERSONI FZLEo IF NOT END THEN MOVE
178 A ITEMS INTO THE DATABASE ITEM-VAL AREA AND THE REPORT LINE.
179 A OUTPUT THE REPORT LINE AND TO THE BATAEASE. "
180 9§§0§§§WQfiofi‘fiéfififiéfioifififififlflfifififiwaWQGOQQfifléfii‘OQO§¢9#§%Q§9¢QGQQ®??AW

181 NEXToREC.
182 READ PERSONI INTO IPERSREC AT END GU Tc FIN.
183 IF ON~ERROR MOVE 3 TO ERROR-No
184 PERFORM ERRORoREP
185 GO TO NEXT-REC.
186 MOVE SPACE TO PERSREC.
187 MOVE IBDATE TO BDATE OBDATE.
188 MOVE IBNO TO BNO OBNO.
189 MOVE IPERSNAME TO PERSNAME OPERSNAME.
19o MOVE IPERSADDR TO PERSAODR OPERSADDH.
I91 MOVE ISEx TO SEX OSEA.
192 INSPECT IHSALARY REPLACING LEADING >PACE BY "0".
193 MOVE IHSALARY TO HSALARY OHSALARY.
194 MOVE IDEPARTM TO DEPARTM OOEPARTM.
I95 MOVE IPRESERV TO PRESERV OPRESERV.
19G VRITE PERSREC AFTER I.
197 CALL 'STORE'
I98 USING REALM NO-OF-ITEMS ITEM—LIST ITEM—VAL STAT RECL.
199 IF STAT < 0 OR STAT = 0 MOVE A TO ERROR—NO
200 PERFORM tRRDRnREP.
201 GO TO NEXT-REC.
202 fi°§¢§§6*09¢(“##9##fifififltOfiQOd-O'Dfi'#9999690flflfifi990fiflfifio¢o¢9¢¢¢¢¢fi9¢¢ow¢fififi

203 A FIN TD ERROR—REP SECTION.204 A REPORT ENO FILE REACHEO. CLOSE I/O t1kESv CLOSE DATABASE.
205 'A REPORT IF ANY ERROR ON CLOSE DATABASE» STOP RON.
206 0699i).fiéfiafi-O'IfifififiiéobéfiofiQGéfififiO‘fiéwfia§¢§¢69¢§®§0¢§§9fi¢9§0¢¢9§49§wfi¢

207 FIN.
208 A READING TERMINATED.
209 MOVE 'LOADING TERMINATED' TO TExTLINE.
210 WRITE TExTLINE AFTER 2.
211 EUl.
212 CLOSE PERSONI TEXTOuT.
213 CALL 'SCLDB' USING DATAndASE STAT.
214 IF STAT < 0 MOVE S TO ERROR—NO
215 PERFORM ERROR-REP.
216 STOP RUN.
217 ERROR—REP SECTION.
218 aéGGé-DéfiGofiflfifiéflvfi§§90fi¢0§OOGQQO@QfiéQOfifiQfiVfifiQQQQQQ‘H-q'fl'fiGQfiQfi’fifi-QfiG4:-

219 A E-S TO EoE.
220 A IF ERRORS OCCUR DURING PROCESSING TfiIS SECTION IS CALLED
221 « NITH ERRORoNO SET To SELECT THE DESIRED ERROR MESSAGE TU
222 V BE REPORTED ON THE TERMINAL. RETURN TO CALLER AFTER OUTPUT.
223 <$¢§§§§¢§O¢6§¢>§QQ§Q§§0§4$Oofivofiqflfiflfl¢§§9§§o§9§fifiééfiefifia-Gfi-flWFGQQ-fl-fiwg«A:

224 .«

ND--60V127.5 EN

4—64

NORSK DATA COBOL « VER Ho COBwEx TIME 12.06 BATE 05.02.80

225 E"So

226 « FOR EXCEPTIONAL CONDITIONS.
227 CALL ’SDBEC' USING SNAME RNAMEI RNAMEZ INAME DML DBEC.
228 MOVE SPACE TO ERROR-LINE.
229 MOVE DML TO E¢DMLo
230 MOVE DBEC TO E¢DBEC.
231 MOVE INAME TO E~INAME.
232 MOVE ’***¢***¢' TO E-SNAME.
233 MOVE RNAMEI TO E-RNAMEI.
231° MOVE 990096§900 To E-RNAME2.

235
236 GO TO ERR; ERRZ ERRB ERR“ ERRS DEPENDIAG ERROR—NO.
237 ERRI.
238 MOVE 'ERROR IN OPEN 08° TO E-TEXT.
239 wRITE ERROR-LINE AFTER 1.
200 GO TO E~E.
201 ERRZ.
242 MOVE cERROR IN READY-REALM' TO E-TEXT;
243 WRITE ERROR-LINE AFTER 1.
244 GO TO EnE.
245 ERRB.
246 MOVE SPACE TO TEXTLINE.
247 STRING 'ERROR IN RECORD ° IBDATE IBNO IPERSNAME
248 DELIMITED SIZE INTO TEXTLINE.
249 WRITE TEXTLINE AFTER 1.
250 GO TO EwE.
251 ERRA.
252 MOVE °ERROR IN STORE' TO EvTEXT.
253 WRITE ERROR—LINE AFTER 1.
254 GO TO E—E.
255 ERRS.
256 MOVE 'ERROR IN CLOSE DB ' TO E°Tt.
257 wRITE ERROR-LINE AFTER 1.
258 EuE.
259 EXIT.

#6 NO DIAGNOSTIC MESSAGE(S) *9

NDm602127.5 EN

4.3.3

4—65

F’LANC

Calling SlBAS subroutines from a PLANC program is the same as calling
FORTRAN subroutines from PLANC. The programmer should declare his PLANC
routines to be of type "ROUTINE STANDARD(VOlD,VOlD)”. Names should be
built and sent in BYTE ARRAYS. (NOTE: Always specify arrays with lower index
= 0 when they are used as actual parameters in SlBAS). As in FORTRAN
applications, single integer parameters must be declared lNTEGER, and value
buffers must follow the same rules outlined in the description of FORTRAN
applications (i.e., declared lNTEGERZ). (For more detailed information — see
section 4.3.1. FORTRAN.)

ND—60.127.5 EN

4.4

4.4.1

4.4.2

4.4.3

466

HOW TO LOAD APPLHCATION PROGRAMS

Description

Armlication programs must be loaded with ope of the available SlBAS libraries;
(called siiriulatorsl The simulators’ functions are basically to collect parameters,

send tl‘ie’m to SIBAS and receive the output values.

Different Types of Simulators

There are 3 types of simulators:

1. SlBLlB--1BANl< These must be used with
2. SlBLlBQBANK applications compiled on

the ND—lOO CPU.

3. SlBASlBRARY This must be used if applications are running
on a ND~500 CPU.

Loading 1BANK Programs with SIBAS

This should iiot present special clifficulties.(8ee example 1.)

Example I; Logic/mg of Background Progra/Tis.‘

FORT
NO 100 ANSI 77 FORTRAN CONPILER ~ 203053A
FTN: COM INSERT, , SCRA

CPU TIME USED: 5 6 SECONDS. 92 LINES COMPILED.
NO MESSAGES
PROGRAM SIZE 812 COMMON SIZEwO

FTN. EX

NRL
RELOCATING LOAOER , AUGUST 18, 1982
‘PROG FILE INSERT! 1N
'LOAO SCRA
FREE: 001454 177777
‘LOAD SIBLIB 1BANl<
FREE: 011160 176753
'LOAD FORTRAN 1BANK
FREE: 041230 176753
’E~~U
FREE: 0412302176753
"EXIT

ND«60.127,5 EN

4—67

4.4.4 Loading zBANK Programs with SIBAS

The SlBLlB—ZBANK library must be loaded together with the application. (See
example 2.)

Example 2: Loading of 2~bank Programs:

@FORT
ND~100 ANSI 77 FORTRAN COMPILER — 203053A
FTN: SEPARATE—DATA 0N
FTN: COM INSERT, , SCRA
—- CPU TIME USED: 5. 6 SECONDS. 92 LINES COMPILED.
— NO MESSAGES
— PROGRAM SIZE=361 DATA SIZE=452 COMMON SIZE=O
FTN: EX

®NRL
RELOCATING LOADER — AUGUST 18, 1982
“FROG—FILE INSERT-2N
”LOAD SCRA
FREE: 000551477777 FREE DATA AREA: 000704-177777
“LOAD SIBLIBAZBANK ‘
FREE: 006150—177777 FREE DATA AREA: 004172477777
*LOAD FORTRAN—ZBANK
FREE: 032316—177777.. . , FREE DATA AREA: 010356477777
‘EEU
FREE: 032316477777 . _ .. FREE DATA AREA: 010356477777
‘EXIT

4.4.5 Loading Reentrant Programs with SIBAS

These programs can be loaded like ordinary TBANK or ZBANK programs. Use the
SINTRAN lll command @DUMP-PROGRAM-REENTRANT to define the program
as a reentrant subsystem.

NIB-60127.5 EN

4.433

4.4.6 Loading Real-Time Programs with SIBAS

Example 4: Loading of non-reentrant Real» Time Programs:

@FORT
ND—TOO ANSI 77 FORTRAN COMPILER — 203053A
FTN: COM (8-- --S)INSERT, , SCRA
‘ CPU TIME USED: 6. 2 SECONDS, 92 LINES COMPILED.
- NO MESSAGES
w PROGRAM SIZE=812 COMMON SIZE=O
FTN: EX
®RT<L
REAL~TIME LOAOER, SINTRAN III ~ H
’CL«SEG 276
RTwPROGRAMS ON SEGMENT:

NINSERT

OELETING THIS RT—PROGRAMS) .7 Y
WEN-SEGMENT 276, T ,,,,,,
“Y
‘Y
”SETWLOAO—ADDRESS 276 O
' LOAD SCRA,,
’LOAO SIBLIB—1N«MX,,,,
*LOAO FORTRAN~1BANK, , ,
’WRITEwLOAOMADDRESS, , ,,
”END~LOAO

ND—60‘1275 EN

4.4.7

4.4.7.1

4.4.7.2

4—69

Applications on AID—500 Systems

APPLICATIONS RUNNING ON THE 500 CPU

Applications running on the ND-SOO CPU should link to a common
SIBAS~LIBRARY segment (where all SIBAS entry points are defined). Note that
the same library is used independently of the SlBAS-process used (SlBAS--100 or
SlBAS—SOO). Execution of the SETDV—call will select the correct SIBAS. In
addition to the SlBAS—LIBRARY, the application has to be linked to the
SIBAS-500 message system (SlBAS—MESSAGE),

Examp/e:

Notes:
N11: SET-DOMAIN <domain-name>
N11: OPEN'SEGIVIENT <segment‘name>,,,
N11: LOADvSEGlVlENT <application>
N11: FORCE—SEG—LINK (SlE3~500)SlBAS—LIBRARY i
N11: LlNK-SEG (SIB-500)SIBAS-MESSAGE ii
N11: EXIT iii

Notes:

i) FORCESEG-LINK must be used since the SlBAS-LIBRARY segment
also is linked to the message system SIB—500 is the user name where
the library is assumed to reside

ii) Linking to the message system is necessary to get access to global
data. If linking to SlBAS—MESSAGE is forgotten/skipped, the
error—message ”PROTECT VIOLATION” will occur on your terminal
when the program is started.

iii) If the size of RT~common is changed after SlBAS—500 applications
are loaded, they all have to be reloaded, including the
SlBAS-LIBRARY segment.

APPLICATIONS RUNNING ON THE NED—100 CPU

All applications running on the ND—lOO CPU can use the standard SlBAS—lOO
LIBRARIES (see Section 4.4.2) regardless of which SIBAS process they are using
(SlBAS—lOO or SIBAS~500). The SIBAS system number (used in SETDV) will
select the correct SIBAS process without regard to whether SIBAS is running on
the ND—IOO or the ND—SOO CPU.

NDw60,127.5 EN

5-1

CHAPTER V. DATABASE ADMINI$TRATBQN

ABSTRACT

The administration of a SIBAS database includes such tasks as starting and
stopping SIBAS, determining the logging and recovery facilities required, and
carrying out rollback and recovery functions when needed.

In SIBAS the Routine‘Log (R—Log) and the Before Image Log (BIIVI—Log) provide
extensive facilities for recovery, reprocessing and backup of database in case of
system failure.

These functions can be performed as SIBAS—SERVICE commands or by calling
the proper routines from application programs.

TABLE OF CONTENTS:

5.1 REAL-TIME ORGANIZATION OF SIBAS.
5.1.1 How is SIBAS organized?

5.2 SIBAS STATES.
5.3 LOGGING AND RECOVERY FACILITIES.
5.4 DETAILED DESCRIPTIONS OF THE CALLS.
5.5 SPECIAL SIBAS—SOO FEATURES.

NDABOJ 27.5 EN

5—2

ND<60.127.5 EN

5

5—3

DATABASE ADM I N l STRATIO N

This chapter contains information about the administration of the SlBAS system
itself. in smail systems, this may be done by the S BAS users (i.e.,
programmers). in larger systems, there will probably be one person who has the
responsibility for administrating the SlBAS system (i.e., the database
administrator).

Database administration, as described in this chapter, incluces such tasks as
starting and stopping SIBAS, determining the logging and recovery facilities
required, and carrying out rollback and recovery functions wher needed.

Those functions can be carried out in two ways: either as SlBAS—SERVlCE
commands or by calling the proper routines from an applicatior program.

Other tasks of the database administrator include such things as defining privacy
requirements, taking consistency checks of the database, and printing and
patching the database. These tasks are carried out using special utility programs
and are described in Chapter 6.

The application oriented tasks of a database administrator, such as determining
the contents and structure of the database, were discussed earlier in this
manual.

This chapter starts out with some general information on the structure of SlBAS,
its operating requirements and its running states. The logging and recovery
facilities are then discussed, and finally the SIBAS calls used to carry out
administrative functions are described in detail.

NED-60.1276 EN

5.1

5.1.1

5.4

REAL-TIME ORGANIZATION OF SEBAS

How is SlBAS Organized?

SlBAS is a multi—user, single thread database management system in that one
SlBAS system is associated with one database and one SlBAS system executes
only one SlBAS statement at a time. However, there may be several SlBAS

systems (called processes) active, each accessing their respective databases.
(See figure 5.1.)

w..__.___.._._—..~—._._—_..._.___~—_——._.~___.—~_—.—_~

I
l

SIBLIB I lNTERFACE
(SIMULATOR) l

‘ 1
APPLICATION l SlBAS

l
l

! DATABASE
PUBLIC l

l RT
l

Figure 5 7: Simp/ified Overview of SlBAS —— Application Communication on
ND-700

SINTRAN provides the two—way communication between one SlBAS process and
the rest at the world The communication path is depicted on the following page.

N0760Jl275 EN

5—5

User
SINTRAN SIBAS

Appl- Simulator

call SDML
(P1, P2.. Pn)

builds a SIBAS
packet

enqueue SiBAS

move packet
from user
to RTCOMMON

decode packet
t________+§ can SDML

MON send- Lreceive execute call

dequeue SlBAS

move packet send packet,from RTCOMMON wait for next
to user packet

pass parm
values

m—“l
continue

NIB-60.1275 EN

55-6

Simu/a to F

The SIBAS simulators are a set of routines which must be loaded together with
the application programs in order to access SIBAS. The simulators’ functions are
basically to collect parameters, send them to SlBAS and receive the output
values.

As explained in the sections under 4.4 (How to load application programs) there
are several versions of the simulator, the use of which depend on 2 criteria:

1. The language and mode of execution in which the applications are written,
eg., @FTN or FORTRAN—77 compilers.

2. Whether the SlBAS process is located in the same machine or not.

In terface:

The interface is a part of the SlBAS process and is shown here for
completeness.

Backup/Recovery must make the interface more complicated than it appears in
the figure, because the interface may log the packets on a logfile.

S/BAS Requirements:

This section requires a working knowledge of SlNTRAN lll real-time features,
SlBAS requirements (real-time segments, memory) vary with the options in use
and the number of processes involved.

Each SIBAS process requires 1/2 K words of RT—COMMON area.

S/BAS Segments:

SIBAS programs are quite large. The code is reentrant and is loaded on a
segment placed on page index table 2 (PlT2). Each SlBAS process requires one
segment placed on PlTl for data. See figure 5.2A.

ND~60.127.5 EN

A0
Placed on
Page index

CODE Table 2 (PIT2)
SEGMENT

COMMON
TO ALL

PROCESSES

'177 777

A 0 ~— Placed on
Page index
Table 1 (PIT?)

DATA 5; s s S
SEGMENT l i I 1

B B B B

2 2 2 o o o o oo 2
A B C L

‘7163777 . .

164 000

RT COMMON

177 777

Figure 5.2A: Virtual Memory Layout of the SIBAS Processes an MD 700.

RT COMMON may be smaller — but then the number of SIBAS processes must
be reduced.

ND.60.127.5 EN

Organization of SlBAS on an bib—500 System

A SlBAS process running on the ND—500 CPU is called SlBAS—500, while
SlBAS—100 denotes a process running on the ND—lOO CPU.

It is up to the database administrator (DBA) to decide at the time of installation
how many of the SlBAS processes he wants to be SlBAS—500 processes. The
DBA may for instance decide to have two SlBAS—100 processes (SIBZA, SlBZB)
and four SlBAS~500 processes (SIBZC, SIBZD, SlBZE, SlBZF) installed on an
ND-500 system, and have them run simultaneously. (See figure 5.2B.)

Application programs may access both SlBAS—100 processes and SlBAS-500
processes, i.e., they do not have to run on the same CPU as the SlBAS process.

lt must, however, be emphasized that normally the best way to increase
performance is to run both the application and SlBAS on the ND-500 CPU. All
other solutions will introduce extra communication overhead.

Communication between applications and SlBAS

The SlBAS~LlBRARY (simulator) linked to an application program running on the
ND-SOO CPU builds a packet for each SlBAS call. These packets are passed
through a special purpose message system common to all SlBAS—500 processes.
Packets to SlBAS—500 coming from ND-SOO—applications are linked into a queue
associated with the destination SlBAS-500 system number. SlBAS-500 will
handle these packets in standard FlFO (first~in—first‘out) manner.

After having linked its packet into the correct SlBAS-500 queue, the
ND-500-application will enter a waiting state. It will later on be restarted by
SlBAS when its answer-packet has been made ready in the message system. A
SlBAS—500 process will stay active as long as there is at least one SlBAS call
waiting for execution on this SlBASwSOO process. When the queue is empty,
SlBAS enters a waiting state. SlBAS will be restarted as soon as there is a call in
its queue.

All data areas used in the message system reside on a shared ND—SOO data
segment partly fixed in memory.

if the SlBAS calls address a SlBAS—100 process, the packets will be sent via
RT—common to the SlBAS-100 process. It picks them up just as if the packets
came from an application running on the ND-lOO CPU (see section 5.1.1).

Applications running on the 100 CPU will (by their library, see section 4.4.1) send
packets through RT common as described in section 5.1.1. If the calls address a
SlBAS-500 process, the packets will be picked up by a special
ND—500~application program (associated with that SlBAS-500 process) called a
Server. It then sends the packets in the standard way to SlBAS-500 via the
message system. ‘

ND760.127.5 EN

5-9

ND-500

100 CPU 500 CPU

SIB—DRL Applications
using SlBAS—500

SiB-DBM and/or SIBASJOO

SIBINTER SIBZC-SOO

SIBAS~SERVICE SiB2D-500

SIBZE—SOO
Applications
using SiBAS—100 SIBZF—SOO
and/or SlBAS-500

SlBZA—iOO

SlBZB—100

DATA BASES

Figure 5.28: Example of an ND-5'00 system running six S/BAS processes

ND~60.127.5 EN

5.2 SIBAS STATES

A SIBAS process is always in one of the five different states shown in the
following diagram:

PASSIVE

SET.PAss[VE ”GIVE SIBAS SYSTEM NUMBER"/@RT SlBZx

II
I

READY lNlTlATE-LOG
K

STOP START

I

DBA DBA CALLS

RUN RECOVER

AUSE FINISH

RUNNING RECOVERY

DMl. CALLS REPROCESS/ROLL BACK

Figure 5.3: Actions for the various SIBAS states

A box represents a state
An arrow represents an action

If SIBAS Is in any other state than RUNNING and a DML call is requested, the
call will be placed in a waiting queue and executed when SIBAS enters
RUNNING state again,

NDv60.127.5 EN

5—11

PASSIVE State:

After loading of the SlBAS processes with the RT loader, all the SlBAS
processes are in PASSIVE state. The SlBAS process may also enter the PASSIVE
state by executing the SPASS call.

HEAD Y State:

A SlBAS process is put in READY state by issuing the command @RT SiBZx or
by giving the system number when using @SlBAS-SERVICE. One can then
initiate the various types of logs using the INLOG call.

DBA State:

This is a privileged state where different maintenance calls may be executed
while SlBAS process activity is suspended.

RUNNING State:

This is the most common and normal state of the SIBAS process where the
different data manipulation calls are executed.

RECOVERY State:

This is an exception state where reprocessing and rollback activities are carried
out.

ND-60.127.5 EN

542

5.3 LOGGING and RECOVERY FACILITIES;

5.3.1 General

SIBAS offers two kinds of logging facilities

1, Routine logging
2. Before image logging

illustrated as follows:

SYSTEM

l

l
L.J l L*J

USER I ‘WBAS
APPLICATlON l a

ROUTINE
l LOG

l
l ___._,
' 1>
I BEFORE

DATA IMAGE
| AREA

PUBUC : RT DATABASE

Figure 5 4: Routine Logging and Before Image Logging

When a run-unit calls SlBAS, a "call packet" is passed 1:0 SIBAS, and before the
routine in SIBAS is activated, the ”call packet” can be recorded on the ROUTINE
log. If S BAS processing results in database changes, SlBAS takes a copy of the
disk page on the BEFORE IMAGE AREA before the page is actually changed.

Routine logging is optional and works independently of the Before Image
logging.

Before mage logging is optional and works independently of the Routine
logging.

ND-60‘127.5 EN

5.3.2

5-13

Checkpoint

A checkpoint is a point of time where the database is consistent on the disk. All
buffers are written on the disk and also all internal tables. A special checkpoint
record is written to indicate that a checkpoint has been taken at this time.

Even though the database is internally consistent when a checkpoint is taken
(i.e., a complete VERlFY of the database would not detect errors), it does not
necessarily follow that the database is meaningful, ice, that the data itself is
correct.

A checkpoint is normally taken automatically when the database is physically
closed, or when the before image log approaches the end of the file. Additional
checkpoints must be initiated by the user either with the GCHPO/SCHPO/SYNCP
call or the CHECKPOINT commands.

Even if before image logging is not in use, a checkpoint record is always written
on the routine log when the database is physically Closed This gives a point of
time where the database is consistent and, in case of failure, the possibility to
reprocess up to that particular point

ND'60.127.5 EN

5.3.3

5-44

Routine Logging

The routine log (R~log) is essentially a sequential file where the SlBAS input
packets (calls) are recorded before they are processed. SIBAS output packets
are also recorded. Optionally, returned values from SGET might be omitted to
save disk space. Routine logging is specified in the starting procedure of SIBAS

and provides a simple and robust reprocessing mechanism.

When routine logging is on, SIBAS input packets from updating run-units are
written on the log file. In case of breakdown, this log file can be used in
conjunction with a backup copy of the database or a rolled back database, to
reprocess the input to SIBAS and bring the database to a state just before the

breakdown occurred.

The log file is buffered, i.e., the input packets are not immediately written on the

output medium. if the SIBAS process is aborted, the content of the log buffer is

lost, and reprocessing brings the database back to a state corresponding to the
last written log block.

Some calls force the current log block to be written: UTBLK, SOPDB, SCLDB,

SCHPO, GCHPO, BSEQU, and ESEQU. The same calls (except UTBLK) also force
the first block (a control block) of the routine log to be written out. it is possible
to set a flag which forces the log-block to be written for each call.

Ample facilities are provided to edit, print and select calls on the routine log,

providing a useful aid in recovery situations. (See 5.4.10 and 5.4.11.)

if the routine log is used in conjunction with the before image option, the file
may be used in a circular manner. In this way, one saves disk space but one also

loses the possibility of reconstructing the database from a full back~up copy of
the database.

The routine log is activated using @SIBAS—SERVlCE which initiates/resets or
removes the R~log using the lNlTlATE-LOG command. (The file must first be
created by the "database owner") The name of the routine log file is the same
as the database name. The file type is :LOGG. The directory name is given in the
lNITlATE—LOG command (INLOG call).

Routine log statistics are displayed by the DATABASEvSTATUS command under
@SIBAS—SERVlCE.

ND—60.127.5 EN

5.3.4-

5—15

Critical Sequence/Transaction Units

Consider a transaction which updates a price list by updating the unit price for
some PARTS records and then updating the SUM record.

If the transaction aborts after updating the PARTS records bL
chance to update the SUM record, the price list will no longer
5.5‘

t before it got a
be valid. See fig.

Before Update Transaction: After "Interrupted" Update:

50— 50-

Figure 5.5: Critical sequence

Reprocessing of the database calls will not help in this situation. The transaction
contains a "critical sequence” which must be completed once i
database could, however, be consistent if one stripped off
sequence from the routine log before it is reprocessed.

This is done by one of the following mechanisms:

ND—60.127,5 EN

t has started. The
the incompleted

Transaction Unit:

5-16

In the application program 2 SIBAS calls must be given:
Cali SUBEG before the sequence begins.

Call SUEND after the sequence ends.

if the application program is aborted, SlBAS will automatically undo the
sequence without disrupting the operation of the database.

Critical Sequence:
in the programs 2 SlBAS calls must be given:

Cal BSEQU before the sequence begins.

Call ESEOU after the sequence ends.

In case of breakdown, the following procedure must be followed:

Renove incompleted sequence from routine log file.
Reorocess the routine log.

The difference between Critical Sequence and Transaction Units is given below.

Transaction Units Critical Sequence

Logging required BlM Log R-log
Only one Transaction Critical Sequences run in
Unit at a time. parallel, but may interfere

with each other.

Programming Style Very simple.
A program may undo
its changes as required.

A thorough analysis of the
relationship between the
Critical Sequences is
required in order to avoid
concurrency interference

Time Restriction System gen. parameter:
Time out : 1000 calls
A Transaction Unit cannot
last more than 1000
SIBAS calls.

No restrictions imposed by
SlBAS.

What to do if an
updating sequence is
aborted

Nothing —— SlBAS will
automatically undo the
transaction.

SlBAS must be stopped.
Recovery will be necessary.

NDv60.127.5 EN

5.3.5

5.3.6

547

Before Image Logging

With this method, a copy of a page is recorded on the Before image area in the
SlBAS SYSTEM REALM just before the page is updated. When a checkpoint is
taken, all buffers are flushed out, the state of the SIBAS process is recorded and
the Before Image area is emptied.

Should the system crash at any time, the database can be rolled back to the
state it was in at the latest checkpoint by copying all "Before lmages” out to the
database and restoring the state of the SlBAS process

Checkpointing may be done directly by the user (GCHPO/SCHPO/SYNCP) or be
automatically triggered when approaching the end of the Before Image Area

The size of the SlBAS SYSTEM REALM will be checked and redefined each time
the Before image Log is initiated (with SlBAS-SERVlCE). it is, thus, not
necessary to initiate the database with a precise size as in the START
lNlTlATlON Statement of SlB~DRL

Backup

A full copy (called BACKUP) of the database must be taken at regular intervals lt
is often advantageous to combine it with the system backup. A number of older
backups and logs may also be retained, to give the possibility to reconstruct the
database even if the current database and the backup are dame ged.

Full copies of the routine logs and/or update files can also be taken for the same
purpose.

NET-60.1275 EN

5.3.7

5.3.7.1

5—il8

System Failure/Restart

Experience to date shows that at one time or another the system will go down. it
must be restarted without (too much) loss of information. This is not a trivial
matter. It involves:

— Backup frequency, secondary storage capacity, dead time allowable

- Degree of concurrency possible between the run units (this must be taken
into account at the application design stage). A high degree of concurrency
often implies complicated restart.

— Restart strategy

— Operating procedures

Each of these aspects have sizeable economic consequences.

RESTART FROM A BACKUP COPY AND A RlDUTlNE LOG

In case of a system failure, a number of actions must be taken to restart the
database:

1. Depending upon the failure; garbage collection, forced close of the data
base for all users. Use @SET—UNAVAlLABLE and @ MAIL to request users
to disconnect.

2. Copy the backup to the database.

3. Initiate SIBAS for a reprbbessing of the routine log (SREPR call). if criticai
sequences are in use (BSEQU/ESEQU calls), they must be skipped (see the
SICON call). (Most of this is implemented as a singie command in
SlBAS—SERVlCE.)

4, Normal operation again. Use @SET~AVA|LABLE and @MAlL to signal to
users that the database is operational again,

(Examples of this are given in the. SIBAS Operator Manual.)

ND—60.127.5 EN

5.3.7.2

5.3.7.3

RESTART FROM A DATABASE WITH BEFORE IMAGE AND
ROUTINE LOG

1. Depending upon the failure, garbage collection, @MAlL, etc.

2. Since the update file/before image is in use, the database and SIBAS must
be rolled back to the most recent checkpoint. Initiate SIBAS for a
reprocessing of the routine log from the iatest checkpoint. If critical
sequences are in use, they must be skipped. This is
single command in SlBAS—SERVICE.

3. Normal operation again.

(Examples of this are given in the SIBAS Operator Manu

REPROCESSING AFTER SYSTEM FAILURE

After a system failure, the routine log (R-log) is used to rep
SlBAS, either irom a backup copy or a rolled back database.

implemented as a

al.)

“ocess the calls to

It is often desirable to avoid reprocessing of some of the cal s, for example, all
uncompleted critical sequences. Another example is all changes made to the
database after a well defined point of time.

Facilities are supplied to list the routine log and/or set conditi
reprocessing.

When conditions are set, the calls which are not reprocessed
the routine log, i.e. the routine log is edited. Normally

ms for subsequent

will be marked on
the editing and

reprocessing are carried out in one pass. For more explicit control of the editing,
one can use more than one pass, for example, one pa
reprocessing the ending section of the R—Iog and one pass to
the R-log. Should the reprocessing fail, it is possible to rei
calls and reprocess once more.

as to list without
edit and reprocess
nsert the removed

The editing conditions are set up by the SET-CONDlTlON-FOR-REPROCESSlNG
command (SlCON call); only one condition may be specifie i for one run—unit.
The actual reprocessing/listing/editing is initiated by the REPROCESS command
(SREPR call).

(The SlB-LOOKLOG utility has been specially designed for inspecting the
Routine—Log. This utility is described in the SIBAS Operator Manual.)

ND-60t1275 EN

5.4

5-20

DETAILED DESCREPTION OF THE CALLS

The calls described in this section are concerned with the operation of the
SlBAS process rather than manipulating data to or from the database itself.
More specifically, many of the statements operate at the SIMULATOR/LIBRARY
or the lNTERFACE level without any action at a lower level (see Figure 5.2 and
5.3). These calls should be executed through SlBAS—SERVICE (see section 6.4).
When they should not be, the opposite is explicitly indicated below.

Some parameters have the same meaning in several calls. A detailed description
of them will be given here to avoid tedious repetition.

< status >

A single integer returned by the SIBAS process to indicate the result of an
operation.

1 means a successful execution

< 0 means an unsuccessful execution. A list of the possible values and
their meaning is given in the chapter ERROR REPORTING.

<run—id>

A single integer, used by the SlBAS process to identify a run—unit (a user)
in its user table. This parameter will often be zero indicating all run-units.
To get the run—ids, you may run REPROCEZSS—ROUTINE-LOG with
print-option 3 (print only).

Remark: When using @SlBA —SERV|CE, input of run—id is octal and must
be terminated by "B” for example, 234568.

< sequencemame >

A field of 8 bytes containing the name of a critical sequence. The name is
freely chosen by the programmer and consists of 1 - 8 characters.

<time>

A field of 7 single integers which has the following format:

Basic Unit Second Minute Hour Day Month Year

Word 1 Word 2 Word 3 Word 4 Word 5 Word 6

Figure 5.7: Layout of the <time> -fie/d

ND—60.127.5 EN

Word 7

5—21

< checkpoint—id >

A field of 7 integers used by SIBAS to identify a checkpoint. it has the
same format as <time>.

<owner>

A field of 8 bytes identifying the user that "owns" the database files and
the routine log file.

< log directory>

A field of 8 bytes specifying on which directory the routine log file is to be
found. lf this field contains spaces, the default directories will be used.

ND—60.l27.5 EN

5.4.1

5-22

Start/Stop SlBAS/Get-State

START

Function:

Make a SlBAS process ready to be run, i.e., change SIBAS from the READY
state to the DBA state. Note that the SlBAS process must be activated before
execution of this CALL. We recommend activating it by giving system no. in
SlBAS—SERVlCE (see section 6.4), but the command @RT SiBZx from user RT
also does it. (Here x must be one of the letters A—F.)

Format:

CALL START (owner, database-name, work—area~size, status)

Rules:

”Work-area-size” is a dummy (single integer) parameter in SIBAS ll E and later
versions.

STOP

Function:

Change SlBAS from the DBA state to the READY state.

Format:

CALL STOPS (status)

GET—STATE

Function:

Read the SIBAS STATE code (see Figure 5.3).

Format: I

CALL STGET (state, status)

Note thata successful execution of a STGETcall using a SlBAS—500 process will return
STATUS== 500 (SlBAS—lOO will return STATUSzi),

Return state has the following meaning:

"state" =2 0 if READY
1 if DBA
2 if RUNNING
3 if RECOVER

"status”: —76 indicates that SlBAS is in PASSIVE state.
ND-60.127.5 EN

5.4.2!

5—23

Run/Pause/Recover/Finish/Set

Passive/Repro-Status

RUN

Function:

Change the SlBAS process from the DBA state to the RUNNlNG state.

Format:

CALL SRUN (flag word, status)

"Flag word” contains flag bits with the following meaning:

Bit 0 = 1 returned values from SGET will not be logged
Bit 1 == 1 the OFLOG/ONLOG calls are allowed
Bit 2 = 1 SRRLM, SFRLM are allowed when log is turned off
Bit 3 = 1 SLOCK, SUNLK are allowed when 109 is turned off
Bit 4 = 1 SlNSR, SREMO are allowed when log is turned off
Bit 5 = 1 SCONN, SDCON, SCONA, SCONB are allowed when log is

turned off
Bit 6 = 1 STORE is allowed when log is turned off
Bit 7 = 1 SMOFY, SEREL are allowed when log is turned off
Bit 8 = 1 SRASE is allowed when log is turned off
Bit 9 = 1 GCHPO is allowed when log is turned off
Bit 10 = 1 SEXMC is allowd when log is turned off
Bit 11 = 1 SOPDB allowed for READ—ONLY even if R-LOG is full
Bit 12 = 1 SIBAS is set unavailable
Bit 13 = 1 no buffering of the routine log (immediate Vl rite)
Bit 14 = 1 all user logged regardless of the <mode>

parameter in SOPDB
Bit 15 = 1 database updating is not allowed.

Flag word : —1 if the old flag word is to be used.

PAUSE

Function:

Change the SIBAS process from the RUNNING state to the DBA state.

Format:

CALL SPAUS (status)

ND-60.127.5 EN

5-24

RECOVER

Function:

Change tre SIBAS process from the USA state to the RECOVERY state.

Format:

CALL SRECO (status)

FIN/SH

Funcfion:

Change tre SlBAS process from the RECOVERY state to the DBA state.

Format:

CALL SFlNl (status)

REPROS TA TUS

Function:

Get the status of reprocessing (from D version this call is DUMMY).

Format:

CALL STREP (status)

Rules:

This call can be repeatedly used from your program until SIBAS has
returned all status information about the reprocessing. Calls to SFINI will
give error status until all the reprocessing statuses are read by STREP.
From D version STREP will always return status==1, but the call SREPR
(reprocess) returns reprocessing status.

SET-PASSIVE

Function:

Change the SlBAS process from the READY state to the PASSlVE state.

Format:

CALL SPASS (status)

ND-60.127.5 EN

5.4.3

5-25

Initiate—Log

Function:

Define/remove/connect or reset the log files a SlBAS process will use.

Format:

CALL lNL()G (owner, database name, code, log directory, type, number of
pages, status)

Ruies:

”number of pages” gives the size of the log file in the number cf lK word pages,

"code" = init routine log
reset routine log
remove routine log
connect routine log
init before image page log
remove page iog0

0
1

$
d

"type” when code = l:

2 direct routine iog (noncircular)
3 circular routine log

when code = 5:

"type" = checkpoint triggering size in number of 1K word pages.
If zero is given, SlBAS will compute a suitable defa llt value.

In case circular routine log is not selected, the system wil stop if the log
becomes full.

NDa60,127.5 EN

5.4.4

5—26

Begin/End Sequence

Function:

These statements have to do with recovery. They signal in your program the
beginning and the end of a sequence of statements which are interdependent. if
the system goes down in the middle of a sequence, it is possible when
reprocessing to undo the partly executed sequence or sequences specified by
the SICO

Format:

N call.

CALL BSEQU/ESEQU (sequence name, status)

Rules:

Routine logging must be in effect and the database opened for update,
otherwise a negative status is returned.

”Sequence name" is an 8 character field just as other SIBAS names. This name
is chosen by the user and identifies the critical sequence.

The "seq uence name" and the time will be logged on the routine log file and the
current log buffer will be written on the disk, ensuring a consistent basis if
recovery

Those ca
Critical 5
requires

is needed.

lls make it possible for SIBAS to edit the routine log during recovery.
equences cannot be nested within the same run-unit. This technique
little overhead, but to work properly one must carefully analyze the

applications in order to avoid interactions between concurrent sequences. See
the sections on Concurrent Processing in, Chapter 2.

ND—60.'l27.5 EN

5.4.5

5-27

Set Routine Logging On/Off

Function:

These statements have to do with recovery. They may be used in your program
to lower the volume of the routine log and consequently speed up recovery if
reprocessing is needed.

Format:

CALL OFLOG (status)
CALL ONLOG (status)

Rules:

OFLOG defines the start of a section and ONLOG defines the end of a section in
which the logging is not in effect: for the calling run—unit. Rou
be in effect, otherwise an error status is returned.

tine logging must

The use of OFLOG/ONLOG imposes severe restrictions on the run—unit logic. A
section that starts with an OFiLOG and terminates with CNLOG, must be
completely unrelated to sections using logging. Reprocessing without the section
must give the same database changes as reprocessing with the

Remembered and current records; and remembered and curre

section.

nt search regions
set up before and within the scope of an OFLOG/ONLOG section cannot be after
the section anc are automatically removed from currency tab
call.

e by the ONLOG

The ONLOG statement is automatically executed when CLOSE~DATA-BASE is
executed.

Several "updating" calls can be made legal in OFLOG mode by
run flag (see RUN).

ND—60.127.5 EN

the setting of the

5.4.6

5.4.7

5—28

Log Message

Function:

This statement has to do with recovery. The given message will be written on the
routine log file and it will be printed in case of recovery.

Format:

CALL SMESS (length, message, status)

Rules:

if the R—log is not active, the message will only be written out on the SIBAS
error device. The status will be 1.

”Length” is the number of words the "message" contains. The message will also
be printed on the SlBAS console.

This statement may be used from your program to signal the status of different
tasks and may simpiify the recovery procedure.

Write-Log—Buffer—Onto-Rioutine—Log

Function:

This statement has to do with recovery. it forces the writing of the log buffer
onto the routine log file when used in your program.

Format:

CALL UTBLK (status)

Rules:

Routine logging must be in effect. The routine log file is buffered for
performance reasons. Such a buffer may contain 10 to 30 calls. if the system
crashes, the buffer is lost. In some situations, it is required to write out the
buffer to ensure consistency of the database in case of recovery.

This statement is automatically executed at BEGIN/END SEQUENCE, CLOSE
DATABASE or CHECKPOiNT and when SIBAS is normally stopped.

ND~60.127.5 EN

5.4.8

5-29

Checkpoint

Function:

The CH ECKPOINT statement defines a point on the log file(s) where the database
is consistent. lr: case of a fatal error, the database may later on be returned to
the state it had when the checkpoint was taken.

Format 1:

CALL SCHPO (checkpoint—id, status)

Format 2:

CALL GCHPO (checkpoint-id, status)

Rules:

Before image must be in effect when these statements are executed, otherwise
only the routine log buffers are written out (UTBLK).

The run-unit must have update access (”mode" parameter in SOPDB)

in the case of format 1, SCHPO will return a ”checkpoint-id” generated by the
DBCS.

In the case of format 2, GCHPO will accept a "checkpoint-id" generated by the
run-unit.

This statement is costly and should not be used too often frorr your program. It
forces the writing of all modified database pages from the buffer area to the
disk.

Synchronization of concurrent run-units and restart strategies of run-units are
not the topic of SlBAS. However, Norsk Data offers a comprehensive Transaction
Processing System (ND TPS) which deals with such questions.

Note: the database is not necessarily valid at checkpoint time because some
transactions may not be finished.

Return—status = 0 means that BlM—log is not active. R~log has been,
nevertheless, checkpointed.

The runflag must allow the GCHPO to be executed. (See SRUN, Section 5.4.2)

ND-50.127.5 EN

5.4.9

5—30

Synchronized Checkpoint

The syn hronized checkpoint statement will basically checkpoint the database
(similar to SCHPO) but options are available for suspending the SlBAS process
and/or to reset ReLOG after the checkpoint has beer taken. in addition, the
synchrorized checkopint will be delayed until all critical sequences and
transaction units are ended. lf such a sequence/transaction is active when the
synchronized checkpoint is requested, SIBAS will let these
sequences/transactions continue until their completion. All other applications will
wait for the synchronized checkpoint to complete and no new
sequences/transactions will be allowed. Note that a synchronized checkpoint will
be taken immediately if no transaction/sequence is in progress when SlBAS
receives the request. lf the checkpoint has to be postponed (due to active
sequences) the requester may, at any time, issue a status call to find out if the
checkpoint has been taken. S/he will also be given the time.

The synchronized checkpoint is transparent to all applications (local or remote)
using the database. They will, however, "hang” until the checkpoint has been
taken (and SIBAS ”continued" it the suspend option is used. See below).

Requeirements:
.__ SlBAS must be in running or DBA state;
m» Database must be opened for update by caller;
._, illegal if caller is inside transaction unit.

Call sequence:
CALL SVNCP(CODE,CHECKPOINTJDSTATUS)

Parameter description:
"Code" is a single integer which determines the function of the SYNCP call:

Codezl Request synchronized checkpoint. Reset R-log and suspend
SIBAS when checkpoint has been taken.

Codes Request synchronized checkpoint. Reset R«-log, but do not
suspend SlBAS when checkpoint has been taken.

Code—:3 Not used
Coderr:4 Request synchronized checkpoint. Do not reset R-Iog, but

suspend SIBAS when checkpoint has been taken.
Coder-5 Request Synchronized checkpoint, Do not reset R»log and do

not suspend SlBAS when checkpoint has been taken.
Code—:6 Suspend SlBAS immediately (without any checkpoint or reset

of R~log).
Code ::7 Return synchronized checkpoint status. Input parameter

"checkpoint~id” must be set to request time (returned from
code::sl, 2, 4 or 5).

Code=8 Release suspended SlBAS
Coder—9 Reset (forget) a pending/uncompleted SYNCP request.

"Checkpoint-id" is a time parameter which will be returned from SYNCP id
code is l, 2,4 or 5. This value must be used as input parameter for code 7 and 9.

ND»60.i27.5 EN

5.4.10

5.4.11

5—31

"Status" is set to 1 if the required function is completed, for example if code 1
was used and the checkpoint has been taken, R-log is reset and SlBAS
suspended. If the required function is accepted but not completed, status will be
set to O.

Roll—Back

Function:

This statement reestablishes the database state at a previous cl eckpoint.

Format:

CALL SROLL (checkpoint—id, dbname, password, status)

Rules:

The before image log must be in effect, otherwise the statement will be ignored

if the routine log is in effect, it is also rolled back and will be ready for
reprocessing from that point

if the before irrage log is in effect, there is only one checkpoint on the log, the
latest one.

Set—Conditions-For—Reprocessing

Function:
@

Specify which calls on the routine log are to be included in reprocessing. This
must be done for each individual run—unit. The reprocessing condition for each
run-unit is put nto the reprocessing control table which will be used when the
SREPR call is given (see below). The specified calls will then be processed as
indicated by the SREPR call. (See 5411)

Format:

CALL SlCDN (code, runsid, time, sequence-name, status)

Rules:

”Code" defines the condition to be set. Different conditions may be set up after
each other by calling SICON as many times as necessary.

"Time" is an array of 7 words containing the time and date of a critical sequence
or a checkpoint

"Sequencename" is the name of a critical sequence

NIB-760.1275 EN

5-32

”Sequence-name” is the name of a critical sequence.

"Code" may take different values:

0 release control table entry for the run~id (to remove earlier SICON call
settings for the run-id)

remove the sequence identified by ”time" for the runsid

remove all the sequences identified by ”sequence name” and run—id

remove all the sequences identified by "sequence name" and run—id
executed after "time”

remove all calls for the run‘id

remove all calls for the run-id from beginning of ”sequence—name"

remove all calls for the run-id from the beginning of the sequence
identified by ”time"

remove uncompleted sequences for the run~id or for all run-units when
run—id = 0.

A call with code 7 must be executed prior to any other recovery action.

Then you may call SlCON for specific run—ids (code 1—6). If you want to call
another SICON call for one of the run—ids, you must first release its entry
by a SlCON call with code 0. Only the last SlCON call for a specific run-id
wi i be processed by SREPR.

NB! A SICON call with code 7 can not be executed after rollback.

ND-60.127i5 EN

5.4.12

5—33

Reprocess—Routine-Log

Function:

Process, reprocess and/or print the calls which were recorded on the routine log
file according to the conditions specified in the call and the conditions set up by
the preceding SlCON calls. Usually the STANDARDeREPROC ESS command in
SIBAS~SERVICE can be used instead of SlCON and SREPR calls (see section
64).

Format:

CALL SREPR (condition, mode, time, no.—call, print-option, run—id,
remove—fiag, status)

Rules:

After some conditions for reprocessing have been set up (by SlCON), one can
reprocess and/or print all or parts of the routine log file. Further options may be
specified:

"condition"

0 process to end of file or "no. call"
1 process but remove all critical sequences starting after "time"
2 = process up to a checkpoint identified by ”time" or later
3 process up to a log block written by "time" or later.

ll
ll

il

"mode"

0 = continue processing (with "mode” parameter as before the previous
reprocessing stopped)

1 = start reprocessing without print
2 = start reprocessing and print
3 = start print only (not reprocess)
4 = start print short (not reprocess)
—l, ~2, «3, --4 as 1, 2, 3, 4 but mean continue processing from where the
previous processing stopped, but with new "mode" parameter. Note: The
”continue processing” facilities cou/d be dangerous!

"no. call"

0 = means all the calls
not 0 == specifies the maximum number of calls to reprocess

”printvoption”

specifies print—option if printing is on (see "mode")
1 print only candidates to remove/reinsert

print all the calls
print only checkpoints

= print begin and end sequence and checkpoints
ND~80.127‘5 EN

ll
ll

ll

2
3
4

5.4.13

5-34

”run—id"

Select owe run—unit to print. If the value is zero, all rumunits are processed
according to the selected options.

”remove~flag"

= 1 remove the calls according to the reprocessing control table (while
reprocessing).
= ——l reinsert the calls according to the reprocessing control table (when they
have been previously removed).

Set SIBAS System Number

Function:

Set the SIBAS system number to be accessed by the subsequent calls in the
run—unit.

Format:

lSTAT = SETDV (SlBAS system number)

Rules:

"SIBAS system number” is an integer value specifying which SIBAS process the
run—unit will use. if this call is not given, the default SlBAS process accessed is O
(SlBZA). it is a good programming practice to include this call as the first SlBAS
in all your application programs. it is necessary to include it in case your
database was not connected to process 0 (SlBZA) when the SIBAS process was
called.

You are advised to test the status from SETDV, especially if you access a remote
database system.

Possible status codes from SETDV are:

~— 58 Communication program not running
—— 59 Database-machine name unknown
—— 76 SIBAS is in PASSIVE state
._ 78 SlBAS system number out of range

KID-60.1275 EN

5.4M

5.4.l5

5—35

Reserve/Release SIBAS

Function:

Reserve SlBAS for exclusive use for this run-unit; other run-units will not be
allowed to access SIBAS facilities at all. RELEASE—SIBAS signals the other
run~units that SlBAS may now be accessed.

Format:

CALL RESlB/RELSI (status)

Rules:

These calls permit the elimination of concurrent processing problems since the
whole database becomes unavailable to other run-units. These calls should be
used very carefully. If the run-unit has reserved SlBAS, but does not release it
for some reason (a coffee break is one), all other run—units will hang. See the
section "Concurrent Processing'C

SCLDB will automatically release SIBAS.

Execute-Macro

Function:

SlBAS statemewts may be extended by a user-written subrout ne, which may in
turn call normal DML statements, thus providing a way to complement
user—defined "MACROs". An execute—macro statement will be executed
uninterrupted by other run-units. Another advantage of using this facility is that
communication overhead is reduced

Format:

CALL SEXlVlC (input, length of input, output, length of output, status)

Rules:

SlBAS-SOO Macros: See Section 5.5.4.

ND-60.127.5 EN

5—36

The use of this statement implies that the SIBAS process is loaded with a
user-written subroutine, which has the same name (SEXMC) and parameters as
described in the format. The loading of the SIBAS process is specified in the
installation guide.

"Input" contains the values which will be passed to the user subroutine loaded
with SlBAS. ”Length of input” is the number of words the values occupy
altogether. ”Output” will contain the values returned by the user macro to the
run~unit. "Length of output” is set by the user-defined macro. ”Status” is also
set by the macro.

A number of restrictions apply when writing such a subroutine:

—~ It must be written in FORTRAN and compiled reentrant except for
SlBAS—SOO. (For SlBAS—SOO the source code should be included in the
load—file, which in turn will trigger the compiling.)

— There is a limit in size for both the code and stack requirements. The limits
are given in the installation guide.

w There can be no terminal input or output.

—~ The subroutine requires exclusive use of SlBAS, and while it is executed
other users must wait.

Note:

More than one "macro" can easily be implemented by using one of the input
values as switch parameter, choosing a selected execution path.

ND-60.127.5 EN

5-37

5.4.‘i6 DBA Calls

Function:

Maintenance and timing.

Format:

CALL CHCOM (status)
CALL STRLG (terminal-number, mode, status) (not available for SIBAS~500)
CALL SISTA (values, status)
CALL RELAN (index, output value, status)
CALL ZTFlB (length, index, output value, status)

Rules:

CHCOM makes; SlBAS switch to an alternative communication procedure and
releases the old one (for TPS use only).

STRLG turns on/off the printing of the trace of SlBAS calls.

ll"Mode" 0, turn off the terminal log.
"Mode" 1, turn on the terminal log
"Mode" = 2, turn on the terminal log and a special internal SIBAS trace and

debug. Mode 2 uses; the console device for input; this device must
therefore be free (logged out).

ll

SlSTA is used 1:0 fetch the information on Fl—block O.
RBLAN is used to fetch 1 word from the schema.
ZTRB is used to fetch a string from the schema.

ND—60.127.5 EN

5.4.

5-38

FORCE-CLOSE Database

Function:

Performs close database for given run-unit or at! run units.

Format:

CALL SABOR (database name, status, userid)

Rules:

User—id == ~—1 means a“ users with database opened‘

Remark:

This call is logged and executed as one or more calls to SCLDB.

ND—60.127‘5 EN

5.5

5.5.?

5.5.2

5—39

SPECIAL SSIBAS-500 FEATURES

In this chapter we will present some of the special features concerning
SlBAS-500. Most of these features are available only on SlBAS-SUO at present.

Calls with Different Functions

Applications which need to know whether they are using a SlBAS-lOO or a
SlBAS—SOO process may get this information through the STGET call
("get—SlBAS-state"). The returned status will always be 500 if the SIBAS
process is a SlBAS-500 process and the call was successfully executed
(unsuccessful implies status < l).For SlBAS—lOO, the returned status of a
successfully executed STGET call will always be 1.

The ”work~area-size" in the START call has no function at all. Any legal number
will do, but it will not have any functional meaning since 32 K will always be used
on SIBAS-SOO. (SlBAS—service requires the ”work—area-size’ to be specified in
the START—DATABASE and SUPER-START commands. Any dummy number will
do if SIBAS-500 is used).

SETDV may be used as a function when called from a FORTRAN program. The
function value will be 1 if the call was successfully executed. This is a useful
solution since SETDV has no returned status—parameter. As a good programming
practice, programmers are advised to always include SETDV as the first
SlBAS—call in their applications.

As we already have pointed out, the length—of—value-parameter ”value-length”
(the last parameter in SFTCH, SFEBL, SFLBL, SMDFY and STORE) specifies
length in number of SIBAS-words, i.e., number of 16 bit words. This implies no
differences for the same application running on the ND—lOO or ND«500 CPU.

Calls not Available

The following calls are at present not available from SlBAS-SOO:

ACCFD % accumulate floating
STRLG % printing of trace

ND~60.127.5 EN

5.5.3

5.5.4

5.6

5-40

Exceeding the Size of a Direct Routine Log

Whenever the maximum limit of a direct routine log (call log/Ralog) is exceeded
on a SlBAS—500 process, i.e., the routine log is full, no more users will be
allowed to open the database. Negative status will be returned. (See section
4.2.1) The DBA will get a special message through the DATABASE—STATUS
command in SlBAS-service telling him to reset or remove the routine log, and a
message will be printed on the SlBAS error—device. Applications running (with
the database opened) will be allowed to finish their work until close-data-base is
called.

SlBAS—500 Macros

SlBAS macros (SEXMC) can very easily be used in conjunction with SlBAS—500.
Macros are normally used to include two or more normal DML statements (e.g.,
SFTCH and SMDFY) as one unit.

An execute~macro statement in an application program (i.e., CALL SEXMC) will
be executed uninterrupted by other run-units, and there will be no intermediate
communication between SlBAS and the application transmitting the call. Thus
communication overhead will be reduced. The user-written SEXMC FORTRAN
source—routine has to be included in the appropriate SlBAS-500 load file, instead
of the default DUMMY—SEXMC routine.

Let us say that a user-written SEXMC routine, residing on the tile
USER-SEXMC:SYMB, is to be included into SlBZA—SOO. The only operations
required would be to simply substitute all occurrences of DUMMY-SEXMC with
USER-SEXMC in the file SlBZA-5002LOAD, and then (re)run that mode-tile. Ail
formal parameters should be declared (default) lNTEGER. Compilation inside the
mode—file will force the correct mode.

The actual parameters, input and output, must be declared lNTEGER ' 2 in the
application program (i.e. they are handled as value buffers).

Note that ’length«of-value-parameters' (i.e., "key~length” and ”value—length”)
must be omitted for DML statements residing in a SlBAS macro. (For a detailed
description of parameters etc, please refer to section 5.4.14).

HOW TO INSTALL SlBAS

The procedure is explained on the sheets attached to the diskettes.

ND—60.127.5 EN

5.7

5—41

ROUTlNE FOR READING SSE/SEC CODE AND LOG
BNFORMATION

The SEMSG routine can basically be used to find SSl/SEC code for a given
DBEC value and SlBAS routine name for a given routine nurrber. The SSl/SEC
code can be used in subsequent calls to the UE-library to get the corresponding
error message text

In addition the SEMSG call can be used to read various log information and
statist

Input:

Code

Code

Code

Code

Code

Code

Code

ics.

CALL SEMSG (Code, Values, Buffer, Status)

ll Lo

Code lNTEGER
Values lNTEGER'Z ARRAY
Buffer lNTEGER'Z ARRAY
Status lNTEGER

returns standard SSI/SEC code and/or SlBAS routine name, given
SlBAS DBEC and/or DML routine number:

VALUES (1) = SlBAS DBEC number
VALUES (2) = SlBAS DlVlL routine number

If 0 (zero) is specified for DBEC or routine number, a null value will
be returned in corresponding buffer location (see below).

returns SlBAS version and revision number, ie. which version of
SlBAS is being used.

returns database name and owner of active database, which log
types are in use, total number of calls, etc. (see below).

returns information conerning the BIM—LOG, assuming BlMeLOG is
defined and database open.

returns information conserning the R-LOG, assuming R—LOG is
defined.

returns logical user-id for given physical user—id, Physical user~id
must be passed in VALUES:

VALUES(1:2) := physical user'id

returns information about a user, such as number of calls
executed, time for open database etc. Logical user—id must be
passed in first location of VALUES:

VALUES(l) = logical user-id (0 implies myself)

ND-60r127b EN

Output:

Code=1;

Code=2;

Code=3;

Code=4;

Code=5;

Code=6;

Buffer(1)
Buffer(2:5)

Buffer(1)
Buffer(2)
Buffer(3)

Buffer(1 :3)
Buffer(4:7)
Buffer(8)

Butter(9)
Buffer(10)

Buffer(11)
Buffer(l2)
Buffer(l3:14)

Buffer“)
Buffer(2)
Buffer(3)
Buffer(4)
Buffer(5:11)

Buffer(l)
Buffer(2)
Buffer(3)
Buffer(4)
Buffer(5:6)
Buffer(7:10)
Buffer(1 1 :17)

Buffer(1)
Buffer(2:3)
Buffer(4)

ll
ll

ll
ll

ll
ll

ll
ll

51.42

SSé/SEC code (numeric)
SIBAS routine name (ascii).

SlBAS version, ascii (for example ’F’)
SlBAS revision number (numeric).
SIBAS type;
bit~0 set: SlBAS runn'ng in ND—lOO CPU
bit-1 set: SIBAS runnng in ND—SOO CPU
bit—2 set: SIBAS BACKEND

Database name
Database owner
Avtive logs; 0=non, 1::RLOG, 2: 81M,
3: RLOG+ BlM
Number of users with database opened (total)
Number of users with database opened for
update
Number of users with uncompletecl sequence
User-id of active transaction unit, else 0
Total number of calls after start, all users

Max BlM—LOG size (in pages)
Current BlM—LOG page number
BlM trigger size (page number)
Counter for number of BlM CP/reset
Time of last BlM CP/reset

Max ReLOG size (in pages)
Current R—LOG page number
Rum‘lag
R—LOG type; OlRECT else ClRCULAR (count)
Number of calls on R-LOG
R-LOG directory name
Time of last checkpoint

Logical user—id
Physical user‘id
Flagword;
bit‘() set: user has database opened for update
bit-l set: R»LOG is turned off (OFLDG)
bit-2 set: has uncompieted sequence (BSEQU)
bit—3 set: has uncompleted transaction (SUBEG)

ND-60.127.5 EN

Codez7;

Status

5—43

l3ufferl1) 2 Logical user-id
l3uffer(2:3) = Physical user~id
Buffer(4) : Flagword;

bit-0 set: user has database ooened for update
bit»1 set: R-LOG is turned of (OFLOG)
bit~2 set: has uncompleted sequence (BSEQU)
bit-3 set: has uncompleted transaction (SUBEG)

Buffer(5 :6) = Total number of calls since open database
l3uffer(7) = Total number of STORE calls executed
l3uffer(8) = Total number of SlVlDFY cal s executed
l3utfer(9) = Total number of SRASE calls executed
l3uffer(10) = Total number of SRASE calls executed
l3ufterl11z17) = Time when database was opened by user
l3ufter(18:24) = Time start if uncompleted sequence, else 0

z 1 OK
2 0 DBEC/routine number unknown, or log not defined
2 -1 Error. SSl/SEC code is returned in Buffer(1),

ND—60.127.5 EN

6-1

CHAPTER VI: UTILITIES

ABSTRACT

The Database Maintenance (DBM) module offers three important functions: (i)
management of privacy on the database, (ii) consistency checking of the
database, and (iii) an interactive utility for doing inspection and/or emergency
repairs of the database.

The DBM module can be used to: restrict the use of the database to autorized
users only.

The DBM module can also be used to verify or check the consistency of the
CALC KEY, INDEX KEY, SET or PAGE-LINK. Consistency checking, however, does
not include checking the logical validity of the database.

Minor repairs and/or inspection of the database can be done by the on—line utility
SlBlNTER. SlBlNTER is also subject to the same privacy restrictions as any other
applications.

TABLE OF CONTENTS:

6.1 DATABASE MAINTENANCE MODULE
6.1.1 DBM Statements

to 6.1.8 DBM Statements
62 PRIVACY
6‘3 CONSISTESNCY CHECKlNG
6.4 SlBAS SERVlCE PROGRAM
6.5 SiBlNTER

ND~60.127.5 EN

63-2

ND.60‘127.5 EN

6~3

UTILITIES

DATABASE MAINTENANCE MODULE

Introduction

The DBM module is a tool which enables the Database Administrator to control

the efficient and reliable use of the database. The functions included in the DBlVl

module are shown in the figure below.

START
READY

CONSISTENOY M SCE LANEOUS
PRIVACY CHECKWG | L

DEFINE VERIFY FREE-SPACE
PASSWORD CALC STAT

REMOVE: VERIFY PRINT
PASSWORD INDEX PATCH

DISPLAY VERIFY RESET
PASSWORD SET ERROR-FLAG

VERIFY COMPRESSPAGE—LINK INDEX

LOAD/UNLOAD
CLEAR—SYSTEM
REALM

FINISH
EXIT

Figure 6. 7: Database Administration Functions

The DBM module requires exclusive use of the whole database, and accesses
the realms directly without using a SIBAS process at all In fact, the DEM
module and the SIBAS processes mutually exclude each other when attempting
to Open the database.

ND-60.l27.5 EN

6—4

The use of any of the DBM functions is controlled by the START statement. In
this statement a DBA password may be provided, and the validity of this
password is checked on the database. This prevents the unauthorized use of the
DBM module on a particular database.

Syntax Description

The database maintenance statements are written in a syntax where key words
and parameters must appear in a defined order, in the same way as for COBOL.

The syntax is phrase oriented, and all statements must be terminated by period
:1 u. and carriage return.

Throughout this chapter, wherever a statement is described, these conventions
are used:

Kg! the key word KEY must be present

KEY the key word KEY is optional

lAl the key words A or B must be present
lBI

<par> ”par is a required parameter

(<par>) ”par" is an optional parameter

Parameter Values

Parameter values may be SlBAS names, integers or pointer values.

Abbreviation Lookup

All key words (not parameters) can be abbreviated. However,
ambiguity is not handled. The first match is always used.

Octal N mers

All octal numbers must have 0 as first digit. Otherwise, the typed
number is treated as decimal.

Pain tars

All pointers contain two machine words, typed as two octal numbers
separated by ”“"

Example:

000400 " 012345

ND—60.127,5 EN

6.1.2 Start

Funcfion:

The function of this statement is to indicate the user's intention to process
database maintenance statements, and to check that the user is allowed to do
so.

Format:

$511 <database—name> (<dba—password>).

Rules:

1. "Database name" is the name of the database as given in
OPEN-DATA—BASE.

2. If privacy is defined for the database, the "dba password” will be checked
to decide whether or not the user is allowed to process DBM statements.
(See section 6.2.)

3. The effect of this statement is to physically open the database.

Exit, Stop the DBM Module

Function:

To prevent the further processing of database maintenance statments apart from
START.

Format:

l. The effect of this statement is to physically close the database.

2. Realms previously readied with READY statement are automatically
finished by STOP or EXlT.

ND-60.127i5 EN

6.1.4 Ready Realms

Function:

This statement indicates to the DBM MODULE the user's intention to process;
records on one or more realms.

Format:

BEADY REALM <realm-name>
ALL

Rules:

1. The effect of this statement is to ready the realm "realm name" or all the
reaims in the database for exclusive update.

2. This statement must be successfully executed before any PRlNT, PATCH or
VERIFY statement may be executed.

6.1.5 Finish Realms

Function

To prevent further processing of the data on one or all realms.

Format:

FINISH REALM <realm—name>

ALL

Rules:

1. The effect of this statement is to prevent further use of the referred realms
for PRINT, PATCH or VERIFY.

2. The STOP or EXlT statement automatically finishes all realms.

ND-60.1127.5 EN

Prin

Functi

6-7

t

on:

To print the content of the specified units of information in a formatted dump

form on the terminal.

Format:

PRINT <number7> RECORD REALM<realm«name>

ALL PAGE
WORD
BUCKET

PRINT REALM <realm~name> ENTER <address>.

Rules:

"number" is an integer if neither "number" nor ALL

<from~unit>
TER <‘address>POIN

is specified, it is

assumed that "number" is equal to it Note that the maximum number of

records printed by one PRINT command is 100.

A unit may be specified as a database address or a we
the realm "realm name".

rd address within

When RECORD is specified, all records within the defined range are
printed, deleted records as well as active records.

All the realms involved must be readied prior to PRINT.

"from-unit" specifies the start for the dump as a BUCKET , PAGE, RECORD,
or WORD number. PAGE counting begins at 0, RECORD, BUCKET, and
WORD counting begins at 1.

"Address” may be specified in decimal or octal, an "add
0 (zero) being treated as octal.

ND-60.127.5 EN

ess" starting with

6.1.7

6-8

Patch

Function:

To replace one word in the database,

Format:

BATCH REALM <‘reatm-name> <page-rn0><word-disp>
POINTER <address>

Rules:

1. The use of this statement implies a very good knowledge of how a SIBAS
da abase is built up internally, and should only be used in extreme cases.

The page containing the word to be replaced is identified either as an
ab olute address in the database, or by giving the realm—name and the
page number within the realm

"Word~disp" identifies the word to be patched in the page. Word
displacement starts at zero.

Carriage return (.3) must be given after the page and word are identified
The value of the identified word will then be printed as follows:

PATCH AT POINTER: aaaaaa'aaaaaa
OLD VALUE: vvvvvv OCTAL NEW VALUE:

where aaaaaa *aaaaaa : the absolute address and vvvvvv : the old value.

The new value must then be given, followed by 3 . The replacement will be
made and the value of the next word printed. This word can then be given
a new value, etc.

The new value must be specified as a B—digit octal number, for example
000001 for 1.

Giving just 3 for the new value will give a new value of zero.

Giving . (period/full stop) and a for the new value will terminate the
patching sessions

Since no logging takes place while the DBM module is under execution, it
may be necessary to take new copies of all or part of the database after
use of the PATCH function,

ND~60.l27.5 EN

6—9

6.1.8 Reset-Error—Flags

Function:

To reset all the "DATABASE IN ERROR MODE” flags.

Format:

RESET—ERROR—FLAGS.

Rule:

1. This statement is reserved. Note that it does not repair the database, which
might still be in error. '

ND—60.127.5 EN

6.2

6.2.1

DATABASE
LEVEL

PRIVACY

General

6-10

The privacy system enables the DBM to restrict the use of the database to
authorized users. This is done by defining passwords for the database, or for a
part of the database. Privacy can be defined on 2 levels:

1. Privacy on the database level.
2. Privacy on the record occurrence level.

The privacy functions of the DBM module are used to define and give values to
passwords on the database (Figure 6.2.). The data definition/redefinition language
is used to define privacy on the record occurrence level, and the data
manipulation language is used to give values to the privacy items in each record
occurrence (Figure 6.3).

DATABASE

DBAPASSWO R D

PA SSWO R D

DEFlNlTlON
AND VALUE

DBA
MODULE

Figure 6.2: Defining and Giving Values to Passwords on the Database Level

lTEM ‘l lTEM 2 PRIVACY lTEM PRIVACY
mam

RECORD TYPE

DEFlNlNG
ITEMS

LANGUAGE

REDEFlN-
lTlON

/ DATA
l (MANIPULATlO

1 A SECRET GIVING
2 a PRIVATE PRIVACY VALUE TO

lTEM ITEMS

3 PRlVATE
\ LANGUAGE

Figure 6.3: Defining and Giving Value to Privacy Items on the Record Occurrence
Level

ND—60.’i27.5 EN

6-“

if privacy is defined on the database level for a database, e ach run~unit must
give a password with the OPEN—DATA-BASE statement. The validity of this
password will be checked and, if it is valid, it will remain "current password" for
the run-unit until CHANGE-PASSWORD is used to update the
The use of the special calls SlNFO/SWINF is protected by DBA

lf privacy is defined on the record occurrence level, each

current password.
-PASSWORD.

run—unit's current
password will be checked for validity when the run-unit attempts to execute a
MODIFY, ERASE, CONNECT, lNSERT or GET on a record. The
must match the value of the privacy item in the record. in c
records to be erased in a single ERASE statement are checked

A DBA password may be defined in addition to other pas

current password
ass of ERASE, all

swords. The DBA
password will allow a user (database administrator) to execute START and to
perform any of the functions included in the DBM MODULE, the DRL MODULE
and OPEN DATABASE call.

Table 6.1 shows how privacy restrictions on a database are
when passwords may be defined and modified, and when the
performed by the SlBAS data manipulation routines.

defined, how and
privacy checks are

Type of privacy How privacy is How passwords How passwords When the validity of our-
defined are given values are modified rent password is checked

DBA password Using DBM Using DBM Using DBM At execution of open data-
module module module base, start, DBM module,

Start DRL, SINFO, SWlNF

Database level Using DBM Using DBM Using DBM At execution of open datav
module module module base, ready realm

Record occur— Using defini- When a record When a record At execution of modify,
rence level tion/redefinition occurrence is occurrence is get, erase,

language stored modified connect/disconnect,
insert/remove

Table 6.7: Defining and Contra/ling Passwords

ND-60,127t5 EN

6—12

Summary of the Setting of Current Password

Initially, the current password is set for a run—unit when the database is opened.
Unless a CHANGE-PASSWORD statement is performed, the value of the current
password will remain unchanged. If the run-unit performs a data manipulation
statement on records where the value of the privacy item is different from the
realm password, the current password for the run-unit must be changed to
match the value of the privacy item before the data manipulation statement is
successfully executed.

ND-60.127.5 EN

6.2.2

6-13

Define Password

Function:

The function of this statement is to register a new password. Fasswords can be
of two different types. One type of password gives the right to 09 in SlBAS, but
not to use the definition/redefinition and the maintenance modules. The other
type of password gives the right to log in SIBAS and to use both modules.

Format:

This statement has 2 different formats, one for each password type:

DEFINE DEA—PASSWORD <dba—password> .

DEFINE PASSWORD <password> .

Ruies:

1. LENGTH OF PASSWORDS. All passwords must follow the same
conventions as SlBAS names, i.e., up to 8 bytes, starting with a letter. No
embedded blanks are allowed, but trailing blanks are.

2. DBA—PASSWORD. A ”dba-password" must be defined for a database if
passwords are to be used at all. The ”dba—password” a so allows one to
execute any DML statement in addition to the START statement.

3. lt is allowed to have any number of passwords of both types. The first
password must be a DEA—PASSWORD. There must always be at least one
DEA-PASSWORD.

ND—l30.127.5 EN

6.2.3

6.2.4

Remo

Function

6-14

ve Password

The function of this statement is to remove a single password defined on
database level, or to remove all privacy defined on database level.

Format:

EMOVE

Rules:

1 RE
pa
lev

2. RE

ALLIBIMAQX
EA§SWORD <password>

MOVE PASSWORD "password". This operation will remove the
ssword given in "password" from the list of passwords on database
el.

MOVE ALL PRlVACY. This option will remove all passwords defined on
the database. it will also remove the DBA password.

3. If passwords are used, there must be at least one DBA—PASSWORD.

Display Password/Privacy

Function:

The function of this statement is to print the values and the description of all or
some V8

Format:

LZISPLAY

Rules:

1. if
val

id passwords on the terminal.

ALL PRIVAQX
PA§§WDRD <password> l

the ALL option is given, a complete report is printed containing the
ues of all passwords defined for the database.

2. If the PASSWORD option is given, the type of password will be shown.

ND*60.127.5 EN

6.2.5

645

Index Compression

Function:

Index tables are dynamically read, written upon or updated by SIBAS. Normal
utilization of index tables leads to some disk—space waste, because random
insertion and deletion of keys fills the table to about 60%. Compression of index
tables will reorganize them, and achieve a disk-space utilization of about 90%.

Format:

COMPRESS INDEX DATABASE
REALM <realm-name> (<key-name>)

Rules:

1. All the realms containing the keys must be readied.

2. If the DATABASE option is given, all indexes in the database will be
compressed. ’

3. When the REALM option is given, if only the "realm name" is specified, all
the index tables relative to this realm will be compressed

4. When the REALM option is given and, a ”key name’ is specified, the
named index table will be compressed.

5. ln all cases, information is printed on the terminal, showing the amount of
space saved.

ND—60.127.5 EN

6.3

6.3.1

6-48

COMSISTENCY CHECKING

General

The consistency checking functions are a part of the integrity control system for
the database. These functions are used to detect integrity breaches. When
breaches on the database integrity are detected, the recovery system will
normally be used to bring the database back to a consistent state. in some
cases, the patch functions can be used to do minor repairs on the database. in
some cases, the REGENERATE or automatic REPAIR modes may also be used to
make a damaged database readable.

It should be noted that consistency checking does not include validity checking.
Validity checking is concerned with the logical contents of the database as
viewed by the user, consistency checking is concerned with the physical contents;
of the database and its consistency vis—a—vis the database’s physical
construction.

The types of consistency checking which can be performed in SlBAS are:

-— CALC KEY verification
«— lNDEX KEY verification
——— SET verification
— PAGE—LINK verification

if errors are detected, the following information will be given:

Message:
"Message describing the type of error”

lnformat on about the record:
”Realm name", ”item name”
”Physical position of the record (pointer)”
”item value”
"Comparing value"
”Dump of record”

It must be noted that the item name can be the name of a pointer (see record
layout printed from DRL processor).

All realms to be verified must be readied.

ND—60.127.5 EN

6—17

A sequence of VERIFY commands may start with the f

defining the mode of later verifications:
o lowing statement

Format:

READ—ONLY
VERIFY MODE REGENERATE

COLJNT

Rules:

1. In READvONLY mode, subsequent VERIFY commands will try to detect

errors, but do nothing with them if an error is found.

2. In REGENERATE mode, subsequent VERIFY commands cause large
changes: automatic set/index is completely rebuilt. Manual sets/indexes

are completely disconnected.

3. COUNT is a simplified and faster version of the READ-only option and

applies only for VERIFY INDEX. Only the number of indexes is counted and

compared with the number of records, and consequently this is not a

”complete" verify.

NDA60.127.5 EN

6.3.2

6-18

CALC Key Verification

Function:

This function provides for the verification of Calc key consistency. For each Calc
key verification, the Calc key of all records stored in the specified realm will be
checked. The value of the Gale key is checked against the bucket number of the
record.

No attempt is made to correct errors which are detected by Calc key verification,
regardless of mode. (See section 6.3.1.) Information about the record and its
physical position is printed.

Format:

VERIFY CALC REALM <realm~name> (MAXREC <integer>).
DATABASE

Rules:

‘1. DATABASE. if the DATABASE option is given, all Calc keys on the data
base will be checked.

2. REALM. if the REALM option is given, the Calc keys on the specified realm
will be checked. If no Index key is given, then all indexes defined for this
realm will be checked.

3. MAXREC. If the MAXREC option is used, the verification process will stop
when ”integer” records have been checked.

4. ERROR MESSAGE. lf one or more inconsistent Calc keys are detected, the
following message is given for each error:

CALCULATED KEY DOES NOT CORRESPOND TO RECORD KEY

Information about the record will be printed for each error detected.

ND~60.127.5 EN

6.3.3

4. ERROR MESSAGE. The errors that may be detected are:

6-19

index Key Verification

Function:

This function checks the consistency of index key values and index table entries.

The command specifications allow for the checking of all index tables in the
database, or specified index tables in a realm.

The function of the index key verification is to check the cons istency of the key
value of each entry in the index table with the corresponding key value in the
record for each index key defined. The consistency checks are
ways:

performed in two

1. By reading all the entries in the index table and finding the corresponding
records.

2. By scanning all the records and using the key values to find the
corresponding table entries. This check is performed
maintained indexes only.

Format:

REALM <realmsname>
VERIFY INDEX REALM <realm~name><key—name>(<key—name>. .

DATABASE

Rules:

for automatically

) (MAXREC <integer>) .

i. DATABASE. If the DATABASE option is given, all index keys defined for
the database will be checked.

2. REALM. If the REALM option is given, all index keys given in the key
names will be checked. If no index key is given, then all indexes defined for
this realm will be checked.

3. MAXREC. if the MAXREC option is used, the verification
when ”integer" records have been checked.

process will stop

a) ENTRY lN INDEX TABLE DOES NOT MATCH RECORD KEY
b) RECORD HAS NO CORRESPONDING ENTRY lN lNDEX TABLE

Information about the record will be printed for each error detected.

ND»60.127.5 EN

6.3.4

6-20

Set Verification

Function:

This function is used for verifying set relationships within the database. This
function is performed by traversing records of a set and examining their types
and their pointers.

The set verification utility may be requested to vary its domain of examination
from a single set occurrence, to all occurrences of a specified set, or to all sets
of a database, through the specification of the appropriate format of the VERlFY
command.

The consistency checks are performed in two ways:

1. By following all chains from the owner records.

2. By scanning all the member records and using the member set—item value
to find an owner record. This check will be performed for automatically
maintained sets only.

Format:

The set verification command has 2 formats:

Format 1:

VERIFY §_E__T <set—name>
DATABASE

(M XRE <integer>)

Format 2:

VERIFY§__ET <set—name> USING <owner—item-value>.

Rules:

1. DATABASE. This version of Format 1 is used when all occurrences of all
sets defined for the database are to be verified. The user is warned that
the amount of processing required to accomplish such a function may be
considerable.

2. ALL SET OCCURRENCES W A GlVEN SET. Format 1 with <set-name> is
used to verify all occurrences of a given set.

3. SlNGLE SET OCCURRENCES. Format 2 is used to verify specified
occurrences of a given set. Each set occurrence is identified uniquely by
the value of the owner set item.

4. MAXREC. The MAXREC clause is used to specify the maximum number of
rec)rds to be verified.

AID-60.1275 EN

6-231

5. ”OWNER ITEM VALUE". Each item composing ”owner-item-value” must
be given a value. If it is a character item, it is written as a character string
delimited by quotes. If it is an integer item, it is written as an integer
number.

6. ERROR MESSAGES. The errors detected may be:

a

0
.0

0
”

I
I
)
I
)

”h
m

I

NO OWNER RECORD FOUND WITH GIVEN OCCURRENCE
POINTER POINTS OUTSIDE SET
MEMBER ITEM VALUE NOT EQUAL TO OWNER ITEM VALUE
BACKWARD POINTER IS ERRONEOUS
OWNER POINTS TO ITSELF
MEMBER HAS NO OWNER
LOOP, POINTER POINTS TO A PREVIOUS MEMBER OF SET
OCCURRENCE
MEMBER HAS DIFFERENT OWNER
NUMBER OF RECORDS READ VIA SET DOES NCT CORRESPOND
TO NUMBER OF RECORDS READ IN PHYSICAL ORDER

For each error detected, information about the record involved 5 printed out (see
section 6.3.1).

Loops in a member chain are not detected if they are more than 504 records
long.

For error i), additional information is printed:

Two integers = no. of records read in physical order and no. of records read via
set.

ND-60.IZ7.5 EN

6.3.5

6-22

Page-Link Verification

Function:

This function is used for verifying or rebuilding the freespace links within a realm
or for the whole database.

The effect of VERIFY PAGE—LINK differs depending on whether VERIFY is in
READ~ONLY mode or in REGENERATE mode.

1. In READ-ONLY Mode

The function examines how much unused space there is in the realm specified.
Information about maximum number of records to be inserted, number of
records in the realm up to now, and number of free record spaces are printed
out.

2. In REGENERATE Mode

function checks every data page and rebuilds freespace links.

Error messages and information will be printed out.

Format

DATABASE;
VERIFY PAGE—LINK REALM <realm name> -

Rules:

1. DATABASE. AII realms in the database will be verified.

2. The reaim specified must be in READY mode.

3. Realm name must be a serial realm or a system realm.

4. When you want to rebuild freespace pointers (page—links) within a realm,
you must do the following:

VERIFY MODE REGENERATE.
VERIFY PAGE-LINK

ND~60,127.5 EN

6.3.6

6-23

Free-Space—Statistics

Function:

Give an overview of the realm space utilization.

Format:

FREE~SPACE~STAT

ND~60.127.5 EN

6137

@8I82«Onm

S I B 2 w U B M

EXPLANATION ’ 4
INTERACTIVE . ’ES

1: SWANT FURUB

D

.g ./

Exanufie

SENT. 79

Q? READY ALL‘
53 FREKwSPflfifiwdTAT,

REALM {YPE

8Y8
SYS
SERIAL
SERIAL
CALC

FUHDB
SYSFILE
PERSON
JDBB
RAPPORT

4: CDMPRESS

‘REALM‘
REALM
REALM
REALM
REALM
REALM
REALM o.

00
O6

.0
.0

so
90

L“. ..

SET 3
EQLJrfllkfXFQ [)F7
NUMHER 0F
MEMBER

SET :
NUMBER OF
NUMBER OF
NEMBEH

RESERUVU

PERSON
PERSON
PERSON
JOHB
JOBB
RAPPORT
RAPPORT

VERIFY SET MATABASE.

READ

REAH

PAGES

182
196

L? ,-
\J .2),

120
144

INDEX DATABASE¢

INDEX
INEEX
INDEX
INDEX
INDEX

INDEX

JOBRAP
D b] N [C R S R L? A [I
MEMBERS READ

PERRAP
OWNERS READ
MEMBERS READ

IN PHYSICAL

614

PAGES
USHD

60
1

INDEX

0
0

O
O

4
3
r)

123

AUD
PER
PER
JOB
JOT
PER
PER00

09
.9

o.
96

96
oo

IN PHYSIEAL ORDER

DRHER

MAX N0.
RECORDS

182
196
260
960

1440

PERS
SNAVN
SNR
BNR
YPENR
JOBB
SNR

6
3

ND»60.127.5 EN

FREE
RECOR

122
182
245
944
210

+
US

+-
++

—
+-

+

0
O
O
0
0
O
0

F REEB

O
O

O
O

O

PAGES
PAGES
PAGES
PAGES
PAGES
PAGES
PAGES

VIA SET 3

VIA SET 3

PERCENT
USED

7

5
1

85

FREED
FREED

‘FREED
FREED
FREED
FREED
FREED

6.3.8

6-25

Unload/Load

UNLOAD

Function:

To dump the contents of a realm on a SINTRAN lll file.

Format:

wREALM <realm-name> 0N <file'name>

Rules:

1. ’Realm~name' must be readied.

2. Default type for ’file—name’ is :DATA.

No. of records unloaded and logical record length are written on the terminal.
Deleted records will not be unloaded.

LOAD

Function:

To load a realm from a SlNTRAN lll file.
LOAD together with the REGENERATE option of VERIFY is substantially faster

than standard STORE.

Format:

_L_0_l___l1 REALM <realm~name> FROM <tile—name> (RECL <rec~length>).

Rules:

1. ’Realm-name’ must be in READY mode.

2. Default type of ’tile—name' is :DATA.

3. The input file byte pointer must be correctly set (at end of last record). This
is automaticaly done by UNLOAD. 'Rec—length' must be less than or equal

to the record length in the realm. It the given ’rec~length’ is smaller than
the realm record length, the rest of the record is padded out with binary

zeros. lf 'REC-length’ is omitted, the length is taken from the schema.

ND~60.127.5 EN

6-26

4. Automatic index tables and set relationships must be regenerated using
VERIFY in REGENERATE model The index keys and sets involved are
written on the terminal. Remember that manual index tables and set
relationships are removed by VERlFY in REGENERATE mode.

5. LOAD assumes that the items in the record have same length and order as
in the schema. (Documented by SlB-DRL). Remember that null values are
spaces for characters items, otherwise they are binary zerosl Old contents
of the realm will be lost after a LOAD.

Hints:

Both LOAD and UNLOAD are faster if the SENTRAN lll file is continuous

ND~60.127.5 EN

6.3.9

6-27

Clear System-Realm

Function:

The function of this statement is to clear the realm completely
the old indexes as in clear NEW lNDEX (see 3.3.13). That is
exist, but will be empty after this call.

Format:

CLEAR~SYSTEM~REALM <realm--name> .

Rules:

and then rebuild
the indexes will

1. REALM NAME. The "realm-name" must identify an existing user system
realm (not SIBAS system realm).

2. To be used if serious errors in the index tables. To rebuild automatic
indexes afterwards, use VERIFY INDEX in REGENERATE-mode.

ND-60.127.5 EN

6.4 SIBAS SERVlCE PROGRAM

6—228

SlBAS service program is an interactive utility which intends to make life a bit
easier for the SlBAS operator.

The program can be used to start/stop SlBAS RT processes, get statistics; about
database space utilization, routine log status, update file status, etc. Most of the
calls described in Chapter 5 are directly implemented as commands but only
users RT or SYSTEM are allowed to use this program.

Command Syntax:

The command syntax is very close to SINTRAN lll, with abbreviated look—up,
parameter prompting, etc. Only three control characters are implemented:

Control A, backspace one character
Control 0, delete current line
Control D followed by return, deletes the current command

Any line beginning with a space will be treated as comments. lf a line begins
with "@” the rest of the line will be executed as a SlNTRAN lll command.

The available commands are:

CHANGECOMMUNICATON“PROCEDURE
CHANGE—SlBAS—SYSTEM
CLOSE~DATABASE
DATABASE—STATUS
EXIT
FlNlSH
FORCE—CLOSE
GET—SlBAS~STATE
GlVE-CHECKPOINT
GlVE~MESSAGE—TO~S|BAS
HELP
lNlTlATE~LOG
OPEN—DATABASE
PAUSE
RECOVER
REPROCESS—DATABASE
RETURN~CHECKPOINT
ROLL~BACK
RUN—DATABASE
SET—CONDlTlON~FOR—REPROCESSING
SET-PASSIVE
SET—ROUTINE—LOGGING-ON/OFF
SET-SlBAS—AVAILABLE
SET~S|BAS—UNAVAlLABLE

ND--60,l27.5 EN

as CHCOM for TPS
as SETDV
as SCLDB
as SlSTA

as SFlNl
as SABOR
as STGET
as GCHPO
as SMESS
list the available commands
as INLOG
as SOPDB
as SPAUS
as SRECO
as SREPR
as SCHPO
as SROLL
as SRUN
as SlCON
as SPASS
as OFLOG/ONLOG

6-229

STANDARD-REPROCESS

START-DATABASE
STO P— DATABASE
SU PER -STA RT

SUPER-STOP

TURN-ON/OFF—TERMINAL-LOG
EXPLAIN

> > EXPL GlV-CH

Skip uncompieted sequences with
or without FOLL-BACK
reprocess the R-
as START
as STOPS

and
.0G to the end.

This command brings SIBAS from
the READY state to RUNNING and
opens the database.
The opposite of SUPER—START:
the database is closed and SIBAS
state changed f
READY.

‘om RUNNING to

as STRLG
States the parameter of a
command and gives an
expianation. Use the EXPLAIN
command to get the full
documentation of alI the
commands. The following is an
exampie of one cf these.

GIVE—CHECKPOINT <BASIC UNIT> <SECOND> < MINUTE>
<DAY> <MONTH > <YEAR >

<HOUR>

Define a checkpoint on log file(s) where the database is consistent. It a FATAL
ERROR occurs at a later point in time, then the database can be restored to the
consistent state when the last CHECKPOINT was taken. "Delayed-update" or
"Before-image log" must be in use, otherwise oniy the ”ro
wouId be written.
RUN-FLAG must permit this caii (see RUN~DATABASE).
SIBAS state: RUNNING

ND~60.‘I27.5 EN

utine~Iog" buffers

6.4.1

6-30

SlBAS-Service Extensions SlBAS-500

So that the SiBAS-service program may be used to service and control
SlBAS-SOO processes, the program has been expanded with some extra
'SlBAS—SOO facilities’. First of all, it must be emphasized that a 'cold start' of a
SlBAS-SOO process, ie., transfer SlBAS—BOO from passive to ready state, will be a
more tim e~consuming operation than for SlBAS—TOO.

As already mentioned, the work-area‘size in the START call is a dummy on
SIBASaSOO, and it is not required in the START and SUPER—START commands. if
a direct R—log is filled, a message in conjunction with the DATABASE-STATUS
command, will be displayed telling the user to reset or remove the R-log. A full
backup 5 would be taken.

An additional feature: When transmitted to a SlBAS—SOO process, the
DATABA
executed
recovery

SE-STATUS command will specify the total number of SIBASSOO calls
since start, i.e., the total number of calls, including SiBAS-service and
calls, executed since the database state was changed from READY to

DBA. To notify SlBASvSOO, the SlBAS-service program will always display
SIBAS~5CO STATE: when a SlBAS—SOO process is being used, and SIBAS STATE:
wheneve it is a SlBAS—100 process.

Examp/e (state is running):

> > SIBASSOO STATE: RUNNING % SIBAS-500
> ,> SIBAS STATE: RUNNING % SlBAS—lOO

ND~60.127.5 EN

6.5

6.5.1

6-31

SEBINTER

Introduction

SlBlNTER is an on-line facility designed for doing mino
inspections of a SlBAS database It has a HELP function whic
get explanations for each of the commands available in SlBINT
be used with CHECK mode on or off. This is explained below.

Tlhe HELP Function

The HELP function can be used to list all commands, or any pa
available in SlBlNTER. Each command is listed with the syntax

Example:

r repairs and/or
h can be used to
ER. SlBlNTER can

rticuiar command,
and explanations.

SIBINTER Version xx

SIBI:HE;LE EI!!Q'..E.I_B§_I$_C_R_Z

FIND-FIRST—BETWEEN—LIMITS—USING~KEY
FIND-FIRSTrIN-REALM
FIND—FIRST‘IN-SET

SIBI :flELE FIND-FIRST-IN—REALM<CR>

FIND—FIRST~IN-REALM / SRFIR (realm name)

list
starting with FIND~FIRST

particular command

By this command you can find the first record

the commands

gives the
explanation of a

ND-60.127,5 EN

6-32

6.5.3 Syntax of the SIBINTER Commands

A complete description of the syntax of each SIBINTER command can be

obtained by the command DESCRIBE-SYNTAX.

ND—60.127.5 EN

6-33

6.5.4 Listing of the SHBENTER Commands

Comme 1ts:

+/—\CCEPT/ SDBEC
ACCUMULATE-DOUBLE /ACCDD
ACCUMULATE—FLOATING / ACCFD
ACCUMULATE—INTEGER /ACClD
CHANGE~PASSWORD / SCHPW
CHECK—MODE

+CLOSE-DATABASE / SCLDB a the database
CONNECT / SCONN will be closed
CONNECT~BEFORE / SCONB automatically
CONNECT—AFTER / SCONA if CHECI mode
DESCRIBE / SYNTAX is ON.

+DlSCONNECT / SDCON
+ERASE / SRASE

ERASE—ELEMENT/ SEREL
EXIT
FETCH-GET / SFTGT

+FlND~FIRST—BETWEEN»L|MITS—USlNG—KEY/
SFEBL a the FINE command

FlND~FlRST—lN REALM / SRFlR can be Lsed to
FlND-FlRST-IN~SET / SRFSlVl locate a record
FlND-LAST—BETWEEN-LllVlITS-USlNGMKEY/ in the database.

SFLBL
FlNDnLAST—lN—SET / SRNSM
FlND~NEXTelN—SEARCH—REGlON / SRNIS
FlND~NEXT~lN~SET / SRNSlVl
FlND~PR|OR—|N—SEARCH—REGlON / SRPlS
FlND-PRIORJNSET / SRPSM
FlND—SET—OWNER / SRSOW
FlND-USlNG—KEY / SFTCH
FINISH—REALM / SFRLlVl
FORGET / SFORG

+GET / SGET
GETJNDEXES / SGlXN
GET-SCHEMASJNFORMATION / SlNFO a get information
GETN / SGETN about items,

+ HELP realms, records,
+ INSERT / SlNSR free space etc,

LIST—SIBAS—SCHEMAS from the database.
+ LOCK / SLOCK e LlST wil print out
+ MODlFY / SMDFY a complete source

MODIFYSCHEMAS—lNFORlVlATlON / SWlNF schema of a
+OPEN—DATABASE / SOPDB database in SIB-DRL

READYREALM / SRRLM syntaxt
+REMEMBER / SREMB

REMOVE / SRElVlO
SET—SlBAS‘DEVlCE / SETDV

+STORE
TRANSACTION—BEGIN / SUBEG
TRANSACTION—END / SUEND
UNLOCK / SUNLK

+ commands marked with a " + sign can be executed by typing in the first letter of
the respective command,

ND—60427r5 EN

6-34

A SIBINTER Session

Q§IELNIER

S I B A S — II SIBINTER version xx E Date
11;; g, n: ..

SIBI:SET—51BA§—QEV1QE<QR2 ' give the‘ 3
Device no.:0/<QE> SIBAS DEVICE no.

SIBI:QEEN ~ 5
Database name:EXAMPLE<CR> OPEN the EXAMPLE fl

0:Read—only. database. ’
1:Read and write. ‘? 7. ”we 1””;

Mode:0/gCB> :
Passwordzgggz 5

Status: 1

SIBI:R§ALI~BEALM<CR>
No. of
Realm r

0:
1:
2:

realms:3/]<§8>
ames:RE1/$§Bz
Retrieval.
Load.
Update.

Usage modes:0/<§Rz
0: Non protection.
1: Exclusive update.

Protection modes:0/<§R>
Status 1

SIBI:FIND—FIRST—IN-REALM<CR>
Realm name:RE/<§Bz

Status 1

SIBI:5X11$§R>
The opened database will be closed!
status 1

"parameters of the command

-“J1"nj:22={
l‘ready ‘EALM no.1

5lease lote: the

can be given on a single
line. .> »

.a~ ~ Inna.
find the irst realm

in the database. I,
. .1 :-. ‘ .. ”‘1

‘JV , <d(- l,l‘"”“
the da abase will be

closed automatically
V if CHECK? ode is ONV

., a

ND~60.127.5 EN

CHAPTER VII: ERRORS AND
IIIONDITEONS

EXCEPTION

TABLE OF CONTENTS ::

7.1
7.2
7.3
7.4

ERROR AND EXCEPTION CONDITIONS
FATAL ERRORS
INTERFACE AND SIMULATOR ERRORS
DML DIAGNOSTICS
RUN—TIME MESSAGES FROM SIBAS

ND-60.127.5 EN

7.-2

IUD—60.1276 EN

7-3

ERROR AND EXCEPTEON CONDITIONS

Errors occurring when using the SlBAS database control system may be
classified in 3 classes:

FATAL ERRORS

Usually associated with serious malfunctions of the software or the
hardware. This kind of error is often accompanied by SlNTRAN messages
and SIBAS run-time messages.

lNTERFACE or SIMULATOR ERRORS

Usually associated with errors in operating the database control system.
Those errors are signalled with a negative status, a list of which is given
later in this chapter.

DML DlAGNOSTlCS

By far the most common error or exception conditions They are associated
with "normal" use of the database control system. Those diagnostics are
signalled by a status value equal to -—l for error conditions or a status
value equal to 0 for exception conditions. An exception condition is not an
error, just a warning, for example reaching the end of a search region. In
case of DML diagnostics, further information may be obtained from SIBAS
to identity the error — the ACCEPT (SDBEC) statement is provided for this
purpose. Each error or exception condition is identified by a number, the
Database Exception Condition number (DBEC) listed later in this chapter.

No.60i275 EN

71 FATAL

7-4

ERRORS

SlBAS code has many internal checks and if any check fails, it may result in a
FATAL ERROR. In this way, malfunctions are detected very soon and damages
are not propagated onto the database. A FATAL. ERROR stops SlBAS
immediately and results in the hanging up of applications trying to access the
database.

Recovery
unsuccess

DBEC

221

711

741

991

885

In the cas

In most cases, recovery actions must be taken.

actions may also be undertaken after DML diagnostics, usually after an
ful ERASE operation

Meaning

lmplicitly referenced realm not readied, ERASE partially executed

Attempt to erase owner of non—empty set, ERASE partially executed

Loop in set structure, ERASE partially executed

Privacy breach counter overflow, ERASE partially executed

Database left in error mode

e of "partially executed ERASE”, the database is still consistent. The
erase function did delete some of the records in a set structure, however, but not
all of the
records.

m. Some corrective action must be taken to delete the rest of the

When a ElBAS process terminates abnormally, it will automatically open a file
under use r RT with the name SlBASDUMP.

If the file does not exist, it will be created. Therefore, the DBA must ensure that
enough space is available for user RT. (One dumpfile will require about 200
pages)

When a SlBAS process terminates itself in this way, the following message will
be printed on the actual SlBAS error—device:

SIBAS—II / ND—BOO INTERNAL EtiRUR hh. mm yyyy. mm.dd

>>DUMP WI LL TAKE TIME (MINUTES, BE PATIENT . .. —— WAIT «—
>>SIBAS~EOO DUMPING COMPLETED

The last message will appear on the error—device when the dumping is
completed and the dump resides on the specified file.

Note that a SlBAS dump is a "heavy" affair, and may require a considerable
amount of time.

ND—60.127.5 EN

7.2 llNTERFACIE AND SIMULATOR ERRORS

7-5

These errors are signalled by a negative value in the status parameter upon
return from a SIBAS call. The SlBAS process continues to run, but some of the
errors are so serious that SlBAS should be stopped manually.

Status

~128

—127

~126

~125

—124

—-123

~122

~121

~120

—119

—118

——ll7

—-116

——l15

Meaning

Call is not allowed in current state.
SlBAS reserved by another user

Interface buffer full (too many return values).
Attempt to send more than 500 words from SIBAS

Interface user table full
More than 60 updating users trying to access SIBAS
For SlBAS—BOO: 188 updating users

Illegal to call STOPS when database open

R-log not initiated for this database
Heading of log file does not contain database name

Current time is before current R-log block.
The machine time has not been properly set.

Work area specified is inadequate. Try a different value between 7
and 32.

Error in opening new log file
SlNTRAN message on error device gives more information

illegal routine number in input packet
Communication error or DML-SlB version does rot correspond to
SlBAS version.

Error when using terminal log device
A SlNTRAN message on the error device gives more information.

Incorrect number of words in a routine log block
The routine log has been damaged

Ready realm for update, or load, invalid after open database for
retrieval, or when database is set read—only by run—f ag

R-log initiated for another database

lllegal to nest critical sequences or transaction units

ND-ESO.127.5 EN

Status

«114

«113

w—112

——111

~—11O

w109

——108

«107

——106

~—105

——104

~103

——102

——101

——100

7--6

Meaning

Error in opening log file
See error message on SlNTRAN error messages

lllegal call when log is turned off
Calls that could influence other users are not allowed unless
specified in the run call.

Routine log file must contain a positive number of pages

Log is not active

Error status is set recover
Recover (and rollback) must be done

Answer mismatch when reprocessing

Max. no. of calls scanned

Scanned to desired checkpoint/log block

Scanning error, STREP must be called to get status

Checkpoint not found on R~log.

Call not allowed with transaction unit

lllegal to remove not empty update file

lllegal routine log type

Illegal code to lNLOG or S'YNCP

Reprocessing control table is full
At least 48 entries.

Time given is before initiation of R-log

Time given is after last written block

Time given is before current checkpoint

User lD is already entered in reprocessing control table

lllegal control code

Illegal reprocessing condition

lllegal scanning mode

lllegal list option code

ND»601127.5 EN

Status

“91

7-7

Meaning

Database is not rolled back
Must be done when call log is circular and has gone around.

Database rolled back
lllegal to remove ”incompleted sequences” after ro lback

illegal to start scanning once more
"Continue scanning” or ”SFINl" must be used.

lllegal to reprocess opened database without rollback
Database ls not a bacitup copy.

lllegal to list only after roll back
It is only allowed to reprocess after rollback

Remove flag must be +1 or ml

Log already defined

Entry not found in reprocessing control table

SCHPO/GCHPO/SYNCP not allowed when db not oaen for update

Before lmage log size illegal

GCHPO not allowed by "rum‘lag" parameter.

SIBAS process unavailable

Attempt to send more than 504 words to SlBAS (max = 495 words
user data).
Probably missing length parameter in STORE, SMDFY, SFTCH, SFEBL
or SFLBL.

Error in reserving internal devices (user side)
SiNTRAN is probably not generated for this SIBAS system number.

lllegal communication procedure

SlBAS process is passive, from SOPDB, STGET, SDBEC, or SCLDB

Call is not implemented on SlBAS-SOO

lliegal length of item(s) in accumulate call

lllegal to set bit 14/15?» in runflag when database open, i.e., it is not
legal to force R—logging for all users, regardless of the "mode"
parameter in SOPDlEi, when the database is physically opened
(runflag bit 14). Furthermore, it is not legal to set the database
read~only when it is already physically opened (bit 15).

ND«60.127.5 EN

72

71

70

59

58

57

Til—8

Direct R«log is full, Relogging stopped. Illegal to open the database.
DBA should reset or remove the Relog. This status will be returned
from SOPDB and BSEQU if a direct R—log is filled.

SlNTRAN is not generated for this SIBAS process.

Another (incompatible) SYNCF’ code already in progress.

System name is unknown by the Application Machine

Communication program not running on the database machine

SETDV not successful (no SlBAS process connected)

inconsistent database name given

security breach occurred

one realm damaged

unable to RTOPEN database (check if user RT has write access to the
database files)

SlBAS work area space is insufficient.

Database is not in the version F format. You should convert the
format of the database with the conversion program supplied wit-1
SIBAS.

ND-60.l27.5 EN

7.3

7—9

DML DIGANOSTICS, DATABASE EXCEPTION
CONDITIONS (DBECS)

110

120

132—145

170

210

211

220

THE RECORD IS ALREADY LOCKED BY THIS RUN-L NIT

The record Identified by "temporary—data-base-key"
by this rundunit.

is already locked

THE RECORD IS ALREADY LOCKED BY ANOTHER FUNAUNIT

The record identified by "temporaryxdata—base-key”
by another run»uniti

RECORD UPDATED BY CONCURRENT RUN-UNIT

The record identified by "temporary—database
updated by a concurrent run-unit.

PAGE LOGGING NOT ACTIVE

But application program attempts a page Ioggi
SUFLA/SCHPO/GCHPCI/SROLL.

END OF SET OR SEARCH REGION

Find next/prior in set:

There are no more members of this set occurrence.

Find next in search region:

There are no more records in this search region

The DBCS will set the ”status" parameter to the val

END OF REALM

is already locked

key" has been

ng call such as

JG 0.

The "record-number” is located after last used/allocated page in
realm. The DBCS will set the "status" parameter to

IMPLICITLY REFERENCED REALM NOT READIED

Find:

The next or prior owner/set member relative to the
by "temporary-data—base~key" is located in a real
been readied.

ND-60.127.5 EN

the value 0.

record identified
’n which has not

221

225

230

240

250

7-10

Store/Mcdify:

If the record contains a non—null member set item of an automatic
set type, then the realm(s) where the owner and the first set member
are located must have been readied. if the ”item list" contains items
which are part of group items defined as member set items, the
realms cantaining owner and members of these set types must also
be readied. If a CALC key is stored, the realms containing owner and
members of all set types defined for this record type must have been
readied.

IMPLICITLY REFERENCED REALM NOT READIED, ERASE
PARTIAL-Y EXECUTED

When executing ERASE, a record to be erased or updated is
encountered on a realm not in ready mode. ERASE could not restore
the database to the state before the ERASE was executed. Database
recovery should be taken.

llVlPLlClTLY REFERENCED REALM NOT PROPERLY READlED

When executing ERASE, an implicitly referenced realm has not been
readied with update usage mode and/or protection mode of exclusive
update. Database recovery should be taken.

NO CORRESPONDING SET OWNER

Store/Mcdify:

An attempt is made to store or change a record containing a non—null
member set item of an automatic set, type when the owner does not
exist.

Connect:

An atterr pt is made to connect a record in a set but there is no
owner.

NO RECORD FOUND WITH GIVEN KE‘I/ VALUE

A record with the given value of a CALC key, record number or an
INDEX key does not exist in the specified realm. The DBCS will set
"status" parameter to the value 0.

KEY ITEM IS MISSING FROM ITEM LIST

If one of the items of the record type is defined as a CALC key or an
INDEX key in the DATABASE SCHEMA, then at least one of the items
specified in ”item list" must be either a CALC key or an INDEX key.

ND--60.127.5 EN

260

270

290

291

310

320

330

ITEM NOT DEFINED AS INDEX KEY

The name given in "key name” is not defined as an INDEX key for
this record type in the DATABASE SCHEMA.

CALC KEY ITEM MISSING FROM ITEM LIST

The record type has a CALC key defined in the DATABASE SCHEMA,
but the item is missing from the "item list”.

ATTEMPT TO FIND FIRST OR LAST IN EMPTY SET or FIRST IN
EMPTY SEARCH REGION

Find first between limit:

The search region defined by "realm name", ”key name”, "low limit"
and "high limit" is empty. The DBCS will set ”status" parameter to
the value 0.

Find first in realm:

The realm "realm name" is empty.

Find first/last in set:

There are no members connected to the owner record identified by
"temporary—data~base--key" in the set "set name’C

REFERENCED RECORD IS NOT LOCATED IN REFERENCED
SEARCH REGION

The record identified by ”temporary-data—base-key" is outside the
search region identified by the ”temporary-search-region—indicator".

TEMPORARY DATABASE KEY IS INVALID

There is no entry in the remembered list corresponding to the
"temporary~data-base-—key" given.

TEMPORARY SEARCH REGION INDICATOR IS INVALID

There is no entry in the remembered list corresponding to the
"temporary—search-regionwindicator" given.

NO CURRENT OF RUN-UNIT EXISTS

There is no current of run—unit correponding to the value 0 of
"temporary—data~base--key".

ND—BGV127V5 EN

340

350

360

370

410

420

430

440

7-il2

NO CURRENT OF SEARCH REGION EXISTS

There is no current search region correponding to the value 0 of
”temporary-search—region-indicator".

ILLEGAL TO FORGET CURRENT OF RUN—UNIT

The entry in the remembered Iist corresponding to the
”temporary—data—basekey'" given is the current of run—unit. It is not
allowed to remove this entry from the list with a FORGET statement.

ILLEGAL TO FORGET CURRENT SEARCH REGION

The entry in the remembered list corresponding to the
”temporary-search~region—indicator” given is the current search
region. It is not allowed to remove this entry from the list: with a
FORGET statement.

ILLEGAL SEARCH-REGION FOR SGETN OR SGIXN

The search region must be an index table, i.e., a duplicate index key
or a ” between-limit” range.

SPECIFIED REALM NAME NOT CONSISTENT WITH REALM NAME
WRITTEN IN REALM

The realm corresponding to a realm name specified in "realm name”
does not contain the correct realm name in the identification area. An
incorrect realm has been assigned to the user.

INCORRECT DATABASE NAME GIVEN

The parameter given as database name to SCLDB does not match
the name of the database. Close is unsuccessful and the database
remains open.

SPECIFIED REALM NAME NOT DEFINED IN THE DATABASE
SCHEMA

A name given in "realm name" is not defined in the DATABASE
SCHEMA.

SPECIFIED ITEM NAME NOT DEFINED IN THE DATABASE
SCHEMA

The name given in ”key name” or ”item list” is not defined as an
item or group item name for this record type in the DATABASE
SCHEMA.

ND-60.127.I5 EN

450

455

460

461

510

520

530

SPECIFIED SET NAME NOT DEFINED IN THE DATABASE
SCHEMA

The name given in "set name” is not defined as a set name in the
DATABASE SCHEMA.

SPECIFIED TEXT-NAME is not defined in the database schema.

DATABASE IS NOT OPENED FOR THIS RUN—UNIT

The database has not been opened by this run—unit. If privacy is
defined, a valid password must be given when oper ing the database.

THE USER IS NOT ALLOWED TO ACCESS SYSTEM REALMS

The name given in "realm name” is defined as a system realm in the
DATABASE SCHEMA. A user is not allowed to use Data Manipulation
Language (DML) statements on a system realm.

ATTEMPT TO ERASE ALL ACCESS KEYS AND MEMBER SET
ITEMS FOR A RECORD

If one or more non-automatic access keys or member set items are
defined for the record type in the DATABASE SCHEMA, at least one
of these items must have a non—null value after ERASE ELEMENT has
been executed.

PROHIBITED DUPLICATE VALUE FOR CALC OR INDEX KEY

One of the item names given in "item list" is defined as a unique
CALC key or INDEX key in the DATABASE SCHEMA for this record
type. The value given in this item in the "item values" already exists
on the database for an occurrence of this record type.

NULL VALUE GIVEN ON CALC OR INDEX KEY

Modify:

It is illegal to modify a CALC key or an INDEX key tc a null value.

Store:

It is illegal to store a record with all keys having nLll values. At least
one of the keys must have a valid value.

Insert:

It is iléegal to insert a key with null value in an index table.

ND—60.127.5 EN

540

550

610

620

623

7l0

7II

7-44

NULL VALUE GIVEN ON MEMBER SET ITEM

Modify:

It is illegal to modify a member or owner set item to a null value.

Store:

It is illegal to give a null value to a member 0r owner set item.

MEMBER SET ITEMS NOT CONSISTENT

The member set item identified by "set name” has different values in
the record identified by ”temporary-data—baseekey—I” and in the
record identified by "temporary-data-base-key—Z".

INVALID INPUT PARAMETER VALUE

Get/Store/Modify:

The number given in "no. of items" must: be greater than zero, and
less than or equal to the total number of items and group items
defined for the record type corresponding to the
"temporary—databasekey" in the DATABASE SCHEMA.

Ready/Finish Realm:

Invalid value of one of the parameters "no. of realms", "usage

mode" or ”protection mode”.

Erase/Remember/Forget/Lock:

Invalid value of the parameter ”option code”.

PARAMETERS NOT CONSISTENT

The value given in "low limit” is greater than the value given in "high
limit".

TOO LONG VALUE BUFFER TO RETURN

The value to return from GET/GETN/GIXN exceeds 500 words.

ATTEMPT TO ERASE OWNER OF NON-EMPTY SET

An attempt is made to erase the owner of a non—empty set when the
"option code” given does; not allow it for this type of set.

ATTEMPT TO ERASE OWNER OF NON—EMPTY SET, ERASE
PARTIALLY EXECUTED

When executing ERASE, an owner of a non-empty set was
encountered. ERASE could not restore the database to the state
before the ERASE was executed. Database recovery should be taken.

ND~60.127.5 EN

720

730

740

741

810

820

830

835

7-15

ILLEGAL ERASE CODE IN MULTIxUSER ENVIRONMENT

The value given in "option code" is not allowe d in a multi—user
environment, unless all realms in the database are readied for
exclusive update.

RECORD ERASED BY CONCURRENT RUN—UNIT

The record identified by ”temporary-data~base—key
by a concurrent run~unit.

LOOP IN SET STRUCTURE

" has been erased

When executing ERASE, the number of levels in the set structure
from which records should be erased exceeded the maximum
number given in SIBAS. This number is 15 in the standard version of
SIBAS.

LOOP IN SET STRUCTURE, ERASE PARTIALLY EXECUTED

When executing ERASE, the number of levels in the set structure
from which records should be erased exceeds the maximum number
given in SIBAS. Database recovery should be taken. This number is
15 in the standard version of SIBAS.

RECORD IS ALREADY CONNECTED TO SET

The record identified by "temporary~data-base-key" is already
connected to a set identified by ”set name”. The DBCS will set
"status" parameter to the value 0.

INDEX KEY ITEM IS ALREADY INSERTED IN INDE TABLE

The INDEX key corresponding to "key name” in the record identified
by ”temporary~data-base—key" has already been in
table The DBCS will set the "status" parameter to

RECORD IS NOT CONNECTED TO SET

The record identified by "temporary~data—base—key’
to a set identified by ”set name”. The DBCS wil
parameter to the value 0.

serted in the index
the value 0.

is not connected
I set the "status"

REFERENCED RECORD IS NOT LOCATED IN SET OCCURRENCE

Find:

It the set type is defined as automatic, the ‘nember set item
corresponding to the set type identified by ”set name” for the record
identified by ”temp0rzsiry»data-base—key" has a null

ND-BO.127.5 EN

value.

840

850

860

870

871

872

880

746

If the set type is defined as manual, the record identified by
"temporaryedata—base—key" is not connected to an occurrence of the
set type identified by ”set name".

Connect:

The record identified by ”temporary—data-base—key-Z” is not
connected to an occurrence of a set type corresponding to "set
name".

RECORD TYPE IS NOT MEMBER OF GIVEN SET TYPE

The record type corresponding to "temporary~database—key” is not
defined as a member of the set type corresponding to ”set name” in
the DATABASE SCHEMA.

INDEX KEY ITEM IS NOT INSERTED IN INDEX TABLE

The INDEX key corresponding to "key name” in the record identified
by "temporary—datasbase-key” has not been inserted in the index
table. The DBCS will set the ”status” parameter to the value 0.

ATTEMPT TO MODIFY OWNER SET ITEM OF NON-EMPTY SET

An attempt is made to modify an owner set item of a non—empty set.
All the members of this set occurrence must either have been erased
or disconnected if the set type is manual, before the owner set item
can be modified.

RECORD TYPE IS NOT OWNER OF GIVEN SET TYPE

The record type corresponding to "temporary—database-key" is not
defined as an owner of the set type corresponding to "set name" in
the DATABASE SCHEMA.

SET TYPE IS DEFINED AS AUTOMATIC

The set type corresponding to ”set name” is defined as automatic in
the DATABASE SCHEMA. Manual operations are therefore illegal.

INDEX KEY IS DEFINED AS AUTOMATIC

The INDEX key corresponding to ”key name” has been defined as
automatic for the record type corresponding to
"temporary—data—base—key" in the DATABASE SCHEMA.

ATTEMPT TO FINISH REALM NOT IN READY MODE

One of the realms specified in ”realm names” is not in ready mode
for this user. The DBCS will set the "status” parameter to the value
0.

ND—60.127,5 EN

881

882

884

885

910

920

930

940

7—17

REALM IS NOT IN READY MODE

The realm identified by "realm name" has not bee
run-unit

ATTEMPT TO READY REALM IN READY MODE

One of the realms specified in ”realm names" is
mode for this user. The DBCS will set the "status'
value 0.

DATABASE HAS ALRIEEADY BEEN OPENED FOR TH

n readied for this

already in ready
parameter to the

S RUN—UNIT

The database identified by "database name" has already been
opened. The DBCS will set the "status” parameter

DATABASE IN ERROR MODE

A realm has not been properly finished before
DBCS indicates that a realm corresponding to
"realm names" has not been properly finished b
occurred on the database. The database is possi
and recovery should be taken.

SPACE IN REALM IS EXHAUSTED

The maximum space defined for the realm ide

00.

an interrupt. The
a name given in
efore an interrupt
sly in error mode

wtified by ”realm
name" in the DATABASE SCHEMA is exhausted for this realm.

SPACE IN INDEX TABLE IS EXHAUSTED

The maximum space defined in the DATABASE
system realm(s) containing the index tables for an
record type identified by ”realm name”, has been e

MAXIMUM SIZE OF DICTIONARY INFORMATION E

Maximum size is 2000 words.

SCHEMA for the
NDEX key for the

xhausted.

XCEEDED

MAXIMUM NUMBER OF REMEMBERED TEMPORARY DATA
BASE KEYS EXCEEDED

The maximum number or remembered current of run-units for this
user is exceeded; A FORGET statement must be executed before
further REMEMBER statements can be executed.

MAXIMUM NUMBER OF REMEMBERED SEARCH REGION
INDICATORS EXCEEDED

The maximum number of remembered current search regions for this
user is exceeded. A FORGET statement must be executed before
further REMEMBER statements can be executed.

ND~60.127I5 EN

950

951

952

953

954

981

983

984

7-18

REALM NOT READIED FOR THIS USAGE MODE

The realm containing the record identified by
"temporary—data»base-key" has not been readied for load or update.

REALM READIED FOR EXCLUSIVE UPDATE BY ANOTHER
RUN—UNIT

One of the realms specified in ”realm names” has been readied for
exclusive update by another user_ It cannot be readied for load or
update until it has been finished by that users

REALM NOT ASSIGNED

One of the realms specified in ”realm names" has not been assigned
to this run—unit.

ATTEMPT TO READY REALM FOR EXCLUSIVE UPDATE WHEN
REALM IS READIED FOR LOAD OR UPDATE BY ANOTHER
RUN~UNIT

One of the realms specified in ”realm names” is requested for
exclusive update, but the realm has been readied for load or update
by another run~unit.

ATTEMPT TO READY REALM FOR EXCLUSIVE UPDATE WHEN
RECORDS IN THIS REALM ARE LOCKED TO ANOTHER RUN-UNIT

One of the realms specified in ”realm names" is requested for
exclusive update, but records in this realm have been locked to
another run—unit.

PRIVACY BREACH ON DICTIONARY

A run—unit attempts to read/write the dictionary, but does not have a
password with sufficient clearance,

PRIVACY BREACH ON RECORD

Current password is not consistent with the value of the privacy item
in one of the records to be erased.

PRIVACY BREACH ON RECORD, ERASE PARTIALLY EXECUTED

Current password is not consistent with the value of the privacy item
in one of the records to be erased. ERASE could not restore the data
base to the state before the ERASE was executed. Database recovery
should be taken,

ND~6OII275 EN

990

991

7—19

PRIVACY BREACH COUNTER OVERFLOW

The aIlowed number of privacy breaches for this run—unit has been
exceeded.

PRIVACY BREACH COUNTER OVERFLOW, ERASE PARTIALLY
EXECUTED

The allowed number of privacy breaches for this run—unit has been
exceeded. ERASE could not restore the database to the state before
the ERASE was executed. Database recovery shouIi be taken.

ND~-60.127.5 EN

7.4

7-20

RUN—TIME MESSAGES —— FROM SIBAS

USER ER ROR 60 SUBERROR xx on SINTRAN ERROR-DEVICE

This is an l/O—ERROR, and xx (decimal) is the file—system err—number.

The message is followed by a standard SIBAS error message on SIBAS
ERR-DEV CE

US ER ERROR 59 SUBERROR 5 on SINTRAN ERROR—DEVICE

SIBAS (ddddddd) ccccccccccccccccccccc
‘ERROR’ REALM rrrrrrrr CANNOT BE READ/WRITE

where: dddddddd is the database name
000.000 is the clock of the machine
rrrrrrrr is the realm involved.

SIBAS w II then issue RTOFF and RIWI (put itself in wait state).

The user can now correct the reason for l/O—ERROR and continue without loss of
data by:

@RTON SIBZx
@RT SlBZx

USER ERROR 59 SUBERROR y on SINTRAN ERROR—DEVICE

Followed by a message on SIBAS ERROR-DEVICE

y = l: REALM rrrrrrrr IS FULL
2: SlBAS SYSTEM REALMS FULL

only if before image logging is active
3: REALM rrrrrrrr IS FULL

index table splitting and space exhausted
4: FILE rrrrrrrr CANNOT BE OPENED/CLOSED
5: REALM rrrrrrrr CANNOT BE READ/WRITE
6: SlBlO/BIM WARNING STATUS = s

8: RECORD/PAGE ALLOCATION ERROR AT pppppp’pppppp
the error is fixed at run-time by discarding the free record/page
pool. Contact ND support.

9: RECORD FREED/DAMAGED AT pppppp‘pppppp
the error is fixed at runtime. Contact ND support.

ND~60.'I27.5 EN

APPENDIX:

APPENDIX A: Summary of the DML Statements.

APPENDIX B: Summary of the SIB-DRL Statements.

APPENDIX C: Summary of the SIB—DBM Statements.

APPENDIX D: Summary of the SIB~SERVICE Statements

APPENDIX E: Summary of the Database Exception Cond tions.

APPENDIX E: Summary of the DML Routine Numbers.

APPENDIX G: Constants and Limitations.

APPENDIX H: Storage Codes.

ND~60tI27.5 EN

NDv—60.1127.5 EN

A—3

APPENDIX A

SUMMARY OF THE DML STAT

OPEN—DATA-BASE

CALL SOPDB (mode, database name, password, status)

CLOSE~DATA-BASE

CALL SCLDB (database name, status)

READY»REALM

EMENTS

CALL SRRLM (no. of realms, realm names, usage modes, protection
modes, status)

FlNlSH-REALM

CALL SFRLM (no. of realms, realm names, status)

FlND—USlNG-KEY

CALL SFTCH (realm name, key name, key-value, status, key length)

FlND—FlRST-BETWEEN-LlMlTS~USING~KEY

CALL SFEBL (realm name, key name, low limit, high
length)

FIND-LAST—BETVVEEN-LlMlTS-USlNG—KEY

CALL SFLBL (realm name, key name, low limit, high
length)

FlND—FlRST—lN—REALM

CALL SRFIR (realm name, status)

FlND—FlRST-lN-SET

CALL SRFSM (temporary~dzzitabase«key, set name, status)

FlND-LAST—lN-SET

CALL SRLSM (temporary-database-key, set name, status)

FlND-PRIOR—lN-SET

CALL SRPSM (temporary-database—key, set name, status

ND»ESO.127,5 EN

limit, status, key

limit, status, key

A—4

FlND—NEXT—lN-SET

CALL SRNSM (temporary—database-key, set name, status)

FlND—NEXT—lN—SEARCH—REGION

CALL SRNlS (temporaryudatabase—key, temporary search region indicator,
status)

FlND—PRIOR-lN-SEARCH-REGION

CALL SRPlS (temporary~database—key, temporary search region indicator,
status)

FIND‘SET-OWNER

CALL SRSOW (temporary-database—key, set name, status)

GET

CALL SGET (temporaryndatabase—key, no. of times, item list, item values,
status)

GETN

CALL SGETN (temporary—database—key, temporary search region indicator,
no. wanted, no. of items, item list, item values, no. found, status)

GET-lNDEXES

CALL SGlXN (temporary-database-key, temporary search region indicator,
no. wanted, item values, no. found, status)

MODlFY

CALL SMDFY (temporary—database~key, no. of items, item list, item values,
status, value length) '

STORE

CALL STORE (realm name, no. of items, item list, item values, status, value
length)

ERASE

CALL SRASE (temporary~database~key, option code, status)

CONNECT

CALL SCONN (temporary-database—key i, set name, status)

ND-60.127.5 EN

A-S

CONNECT-BEFORE

CALL SCONB (temporary-database-key 1, temporary database key 2, set
name, status)

CONNECT—AFTER

CALL SCONA (temporary—database-key 1, temporary database key 2, set
name, status)

DISCONNECT

CALL SDCON (ternporary—da'tabase-key, set name, status)

INSERT

CALL SiNSR (temporary~database—key, key name, status)

REMOVE

CALL SREMO (temporary—database-key, key name, status)

REMEMBER

CALL SREMB (temporary id, option code, status)

FORGET

CALL SFORG (temporary id, option code, status)

LOCK

CALL SLOCK (temporary-database—key, option code, status

UNLOCK

CALL SUNLK (status)

CHANGE-PASSWORD

CALL SCHPW (new password, status)

ACCEPT

CALL SDBEC (set name, realm name i, realm name 2,
statement code, dbec)

ERASE~ELEMENT

item name, dm!

CALL SEREL (temporary—database-key, no. of items, item iist, status)

NIB-60.1275 EN

A-B

ACCUlVl JLATE

CA
list,

LL ACClD/ACCFD/ACCDD (temporaryvdatabase-key, no. of items, item
increments, new values, status)

(ACCFD not available for SlBAS-BOO)

FETCH—G

CA

ET

LL SFTGT (realm name, key name, key length, key value, no. of items,
item list, item values, status)

GET-SCHEMAS—lNFORMATION

CA LL SlNFO (code, namel, name2, length, array, status)

TRANSACTlON BEGlN

CA

TRANSA

CA

FlND—US

CA

LL SUBEG (run—id, unit type, status)

CTlON END

LL SUEND (run-id, COMlT or ROLL-BACK, status)

lNG—RECORD—NUMBER

LL SFRNO (realm-name, record—number, status)

FlND—RECORD—NUMBER-AND—GET

CALL SFRGT (realm-name, record~number, number of items, item list, item
valJes, status)

WHAT—IE

CA

SYNCHR

CA

~CURRENT

LL SWHAT (temperary—database—key, reaml-name, recordstatus)

ONlZED-CHECKPOINT

LL SYNCP (code, checkpoint-id, status)

ND~60.127_5 EN

B-1

APPENDIX B

SUMMARY OF THE SIB—DEL
STATEMENTS

£1531 INITIATION QATA§A§E < database~name>

(§QEPR§S§ (ggggn) (RECORD—TYPE) (ITEM) (SET) (Inogx—ngg) (n1))

(fill; < no-of—k—pages >)

(flgAQLflfi "<heading>")
(figfifigfifi “(purpose)”)
(§£1£fl§lflfl <code> ”(extension)” ((code) "<9xtension>") ...)

§TAR1 ggQfiFINILQE QATA§A§§ (database—name) (QEA—PASSQORQ <password>)

(§fl£fl£§§§ (REALM) (BECORQ-TYEE) (Llifl) (5&1) (LflflfilzlAfiLfi) (lill))

§CRATCH~FILE <file-name) (DIRECTORY <abbreviated—dir—name>)
(fillfi (no. of 6&—word 93993))

(flfiAfilflg "(heading)“)
(Eflfifig§§ ”(purpose)")
(EXIEBSIQQ (coda) "(extension)” ((code) "(extension>") ...)

N ~F (file-name) (PAG§§Lfi§ <no—of-words))

(QIBEQIORI (abbreviated—dir—name>)

QEW fixglfiM—REALH <realm-name)
Qg—FILE (file-name) ggggn§lgg <no-of—pages)

(ADDITIONAL Q§~E1L§ (file-name) §Llfi <no—of—pages>)

(EEAQING ”(heading)”)
(Egggggg "(purpose)”)
(fizlfiflglgfl <code> “(extension)” ((code) "<9xtension>") ...)

ggw figgIAL—BEALM (realm—name)
(EgALM§Ig§ <no—of—pages>)
(ADDITIONAL QS-FLLE (file—name) §lg§ <no—of—pages>)

RECORD DENGTH <no—of—words)

(MALfl (system’realm>)
(flgAQING ”(heading)”)
(9W "<purpose>")
(T ON (code) ”(extension)“ ((code) "(extension>“) ...)

ND-v60.127.5 EN

B~2

NEH QALQ—REALM (realm-name)
(REALn§Izg <na—of—pagos>)
(ADDITIONAL g§3FILE <file-name> SIZE <no-of—pages>)

"AXE—AREA <no-cf—pages)

RECORD LENQTH <no—of—words)

M1 (key—name) W AtRE (11g;) ALLOWED

(HALE <3ystem-realm>)
(HEAQINQ “<haading)“)

i PURPQ§§ “(purpose)”)
EXIEN§IQfl (code) ”<9xtension)” ({0069) “<9xtnnsion>")

1. Format 1 of NEW ITEM

fig“ ITEM (realm-name) (item—name)

1NT§G§R
TYPE ELQAIING (§[ART {word—no>)

QHAEAQTEB
[RIVAQI-Ilfifi

BI! POSITION <first»bit>
Lfiflfilfl (no) (gggg) (KEEE-VALQE)

DITE POSITION (first-byte)

(§TORA§E ”(storage)”)
(QISELA! "(display)“)
(HEAQINQ "<haading>“)
(figgfig§§ '<purpose>“)
(§x1§fi§lgfl (code) ”(extension)“ ((coda) '(extension>")

2. Format 2 of NEW ITEM, in connection with DDC.

ugw ITEM <realm—name> (item—name) D— A (dd—name)

1 flfiggjflfi “(heading)”)
(EURPQ§E “(purpose)”)
(EXT§N§ION (code) "(extension)" ((code) "(extension>“)

ND~60.127.5 EN

figfi GRQQP (realm-name) <9roup-name)

(item—name) ((item—name))

(HEAQING ‘(heading>")
(PQEEQ§§ ”(purpose)")
(gxlgugggu (code) "<9xtension)" ((code) “<extansit>n>“)

Egg SET <set~name>

glfiGLE
LIEK IS DQU§L§

Aurgmglgg
§TQ§A§§~§LA§§ Is MAHHAL

Qfififig. <0wner—set—itom) (realm-name)
flfififififi (mamber-set—item) (realm—name) (

(fifigfllfifi "(heading)”)
(gggzggg ”(purpose)")

<realm-name>

(fifilfififilflfi <code> “<3xtension)" ((code) ”(extension>")

.)

Egg lflflfix (realm—name) (key-name)

UPQATE IS flANuAL QQPLICATES ARE (NQT) ALLOWED
AQTQHATIQ

(§I§!§M—R§ALM) (system-realm—name>)
(filN-XALQE (value) MAX-VAEQE (value))

NEH IEXT < text—name >

(HEADINQ ”(heading)”)
(£fl££§§§ "(Purpose)")
(gxrgmgggu (code) ”(extension)" ((coda) '(extension>')

Qfigfilg §§l (set~name>

nglg LNQEX (realm-name) <kay-name>

NEL60J275 EN

B—4

DELETE ITEM (realm—name) (item-name)

DELETE figOQP (realm—name) (group namn)

DELETE nl (text—name)

QHANQE §I§l§H~REA N (realm-name)
(REALE§1ZE <no-of—pages>)
(ADDITIONAL g§~FLLE (file—name) glgg <no—of—pagas>)
(figgLn§11§ <no—of~pagos>)

(uggglmg “(heading)")
(PURPOSE “(purpose)")
(§Xl§fl§IQN <code> “(extension)“ ((code) “(extenaion>”)

QflANfiE §§glAL~F§ALM (realm—name)

(REALM§IZQ (no~of—pagas>)

(RECORD LENGTH <no—of—words))

(flgAfllflfi ’<heading>")
(PugEOSE “(purpose)“)
(§x1§N§Lon (code) “(extension)" ((code) ”(extension>”)

gHAggg gALQ-REALM <realm—name>

(REALMSIZE <no-of—pages))

(flAJE-AREA <no—of—pages))

(RECORD LENGTH (no-of—words))

(QALC—KEY (key-name) DUPLICATE§ ARE (591) ALLOWED)

(flEADINfi “(heading)")
(EQEPQSE ”(purpose)")
(gglgugyug (code) “(extension)” ((code) “(extension>“)

ND-60,127.5 EN

QflAMfiE 5&1 (set—name)

SLNQLE
(LINK IS DUB)

AQ!QMATZC

(51W- A315 WELL. 3

(figmggg <member~set«item> <realm-name) (<rea1m~name> .))

(uggggug "(heading)")
(£§gfig§§ ”(purpose)“)
(X I N (code) ”(extension)" ((code) '<axtension>”) .).

gflgwgg IIEH <realm~name> (item-name)

QLT POSITION (first-bit)
(Lfiflfilfl <no> (H232))

ng POSITION (first-byte)

(ilQBAfifi ”<3torage)“)
(ELSPLAY ”(display)")
(flfiAflLflfi “(heading)")
(fiUREQ§§ "(purpose)")
(fillfiflgigfl (code) "(extension)" (<code> "(extension>”)...).

sugggg ggoup (realm-name) (group—name)

(flgAfiLflfi "<haading >" 3
(PuRPQ§E ”(purpose >" 9
(§51§5§193 (code) ”(extension)“ ((code) ”(extension>“)

QfiAgfifi nT < name >

(HEAQLNG ”(heading)”)
(agapggg ”(purpose)”)
(figlfiflfilgfl (code) "<9xtension)" ((code) “<9xtansion>")...)

R A M (old—name) (now—name)
5:1 (old—name) <now~name>

figugng LTEQ (realm—name) (old—name) (now—name)
figOQP <rea1m~name> <o£d~name> (new—name)
TEXT (old-name) (new-name)

ND~60.127.5 EN

B—6

ND-60.1:27.5 EN

C-I

APPENDIX C

SUMMARY OF TEHE SIB-DBM
STATEMENTS

STAQ_ (database-name) (<dba—passwurd>).

REAQ_ ’ REALM (realm—name)
ALL

FINL§fi l REALM (realm—name)
ALL

STOP

EXII

PRIN_ (number) RECORD ,
5;; PAGE

WORD
BUCKET

PRINl REALfl (realm—name)

PATQfi REALfi <realm~name>

RESET-ERROR-FLAGS.

FREE;§PACE—STAT.

COMPRESS KNDEX DATABASE

POINTER (address).

(page—no)
POINTER <address>

REALM (realm—name) (<key—name>)

REAQ—ONLY
VERIFY MODE COUNT

REGENERATE

ND-60.127‘5 EN

REALM (realm—name) (from units)
POINTER (address) .

(word-no) (new value)
(naw value...>.

(2-2

REALM (realm—name>
VERIFY INDEX REALM (realm—name>(key—name>(<key—name...)

DATABASE

VERIFY PAGE—LINK DATABASE (realm—name)
REALM

VERIFY QALQ REALM (realm—name)
DATABASE

(MAXREC (integer>).

VERIFY ET I (set—name) (MAXREQ <integer>).
DATABASE

VERIFY Sgl (set-name) USING (owner—item-value).

DEFINE DEA—PASSWORD (dba~password>.

DEFINE PASSWORD (password).

REMOVE ’ ALL EBJVACY
PASSWORD (password)

DISPLAY 3 ALL DRIVACY
PASSNORD (password)

UNLOAD REALM (realm—name) ON (file-name).

LOAD REALM <reaim~name> FROM (File—name)
RECL (rec-length).

CLEAR—SYSIEM—REALM (realm—name).

DID—60.1275 EN

(MAXREC (integer>).

APPENDIX D

SUMMARY OF THE SIB-SERVI
STATEMENTS

CHANGE-COMMUNICATlON—PROCEDURE
CHANGE—SIBASSYSTEM
CLOSE—DATABASE
DATABASE-STATUS
EXIT
EXPLAIN-COMMAND
FINISH
FORCE-CLOSE
GET-SlBAS-STATE
GIVE—CHECKPOINT
HELP
lNITIATE—LOG
OPEN—DATABASE
PAUSE
RECOVER
REPROCESS-DATABASE
RETURN-CHECKPOINT
ROLL-BACK
RUN-DATABASE
SET-CONDiTlONS—FOR-REPROCESSING
SET-PASSIVE
SET—ROUTINE—LOGGING-ON/OFF
SET-SIBAS-AVAILABLE
SET-SlBAS-UNAVAILABLE
STANDARD-REPROCESS
START-DATABASE
STOP-DATABASE
SUPER'START
SUPER—STOP
TURN-ON/OFF—TERMINAL-LOG

ND-60.127,5 EN

CE

0.2

ND~60‘127.5 EN

E-‘I

APPENDIX E

SUMMARY OF THE DATABASE
EXCEPTION CONDITIONS

ND—60.127V5 EN

E—Z

am:
95:55»

85533
DZm

09
P

-

F
4

X

8
5

0
?

;xu
m

n
vm

:o
_

u
_

:3
.::m

om—
x

X
X

X
x

X
X

X
X

X
X

x
X

X
x

X
X

x
X

X
X

X
X

X
X

X
X

95%
Ho:

9:30.
wmmn.

o:

357:2
850cm

3
33m

Eoomm
mvplwm—

“E
:

-5:
$595

>9
Exec.

>
323

m_
“:8

2
9:.

owe

“2
5

-5
:

35
>9

U
v
o

.
>

3
8

8
2

2
8

2
m

f.
o

:

J
3

2
).

U
C

C
L

ND—60,127.5 EN

DATA BASE EXCEPTION CONDITION SUMMARY

LIMITS USING KEYFIND FIRST 8

CONCURRENCY EXCEPTION
CONDlTlONS

074 ROLL BACK

YRAMUSN0ITIDN0CNOITI.PECVAEESABATAD

Emfiwm
“8

ucw
Cm

3
6

8
1

/2
3

0
5

Sc
EEQ

38:93m
2

5
.2

.
mNN

£039
£953

0
8

:9
3

9
.

5
@

380.
“on

m_
E

co?
vwocmhmwwm

m

:2
Lem

m
a

OQN
395.5

E
5

.:
.0

:3.
5

5
:5

E
SE

.0
H

E
:

“E
:

ow
H

Q
E

m
C

<

a:
Em:

E0:
933E

x
E3.

>3
0.20

omm

>3
3

?
:

mm
8

::m
Ho:

Eu:
8N

um:
Em

:
E

0;
95m

g
3

C
E:

3x
0mm

02?
>mx

cmzm
5:;

958
983

02
gm

5:26
6m

9
5

:8
3

:0
0

02
gm

Sum
xm

2
5

:8
wm

<m
w

.3
5

2
:

5:
E

62
3

0
:2

9
5

.
3

:2
3

5
.

"mm

85m
m

:
#0:

ER
?

3
8

5
5

?
:

>E
o:Q

E
_

0mm

:03?
£053

5
Sm

*0
«Em

opm

mQOU

DATA BASE RETRIEVAL EXCEPTION
CONDITIONS

BACK07/» ROLL

NOV-60127.5 EN

[SE —4

WUSNOITIDNOCN.0..T.PECXEESABATAD

CURRENCY DICATOR EXCEPTION
CONDlTlON

s
Q

z
E

u
w

.8
8

5
2

-5
5

3
58.:

c038
5053

E
8

5
0

$
9

8
8

Em
m

i

3
5

.5
:

”6
3

2
:5

3
9

8
9

$92:

wExm
:2

9
:

58mm;
Em

tzo
oz

338
:c

s
é

f
Co

2
2

:8
02

Em
a:

2
5

:8
6

5
.532

5053
3

8
3

:3
;

EE>E
fl

>3.
38

8mm
E

E
O

Q
E

E
,

LIMITS USING KEYFIND FIRST

O7 4 ROLL BACK

NDAGOJI27‘5 EN

VJ

W..USNOITT.DNOCNOITP.ECXEESABATAD

:25
mEmc

338%
8250:.

ON?
P.

mmv
mph—

mm:
Ew

am
>m

m
m

m
oom

OH
U

m
>>O

=m
HOE

mm
hum

:
e

r
pm

?

€5.55.
m2“

E3
8

:3
0

“0:
fl

ummnmwmo
8v

.8
mm<m<k<o

.2:
5

8&8
8:

8:2
am

8:25
8v

.8
mm<m<k<o

2:
E

853.0
8:

we?
eat

8:685
8v

(E
N

IO
W

m
m

<m
<F<D

9:
E

UmECmU
uoc

mEmc
r5

2
:

Voguouw
OM?

E
S

P
.

O
rv

r:
:3

3
»

?
oEm

c
EEE

53>
Em

uflm
coo

no:
aEm

:
E

S
?

Ufltum
m

mwQOo

NAME SPECIFICATION EXCEPTION
CONDITIONS

FIND FIRST BEWEEN LIMITS USING KEY

X
X

X
X

X
X

X
X

X

X
X

X
X

O74 ROLL BACK

ND~60I1275 EN

E-S

H
C

Q
Vm

C
O

U
“0C

m
Em

t
«mm

Lm
D

Ew
E

88..
“mm

59:3:
go

:03
2:8,

:32
ovmomm

owm

moz.
S

35
co

8:
mam;

:32
E8

02$
Ewe

an
tm

tn
fo

i
E

E
L

O
m

x
:m

33m
9

u
E

w
fi<

2m

wOOU

DATA BASE EXCEPTION CONDITION SUMMARY

LIMITS USING KEYFIRST 8

ITEM VALUE EXCEPTION
CONDITIONS

FIND

O7 4 ROLL BACK

NDVGO I275 EN

DATA BASE EXCEPTION CONDITION SUMMAR

SYNTAX E R RO RS

In
va

lid
in

61
0

-1
62

0
Pa

ra
m

et
er

s
no

-1
62

3
To

o

-1

FIND FIRST BETWEEN LIMITS USING KEY

074 ROLL BACK (SROLL)

ND-ESO.127,5 EN

E~B

W.USNOITIDNOCN0ITPECXEESABATAD

8
5

8
5

3
.2

2
8

wm
<m

w
.8

3
2

5
»

“mm
E

@
001.

9
5

8
:?

“mm
E

aooq

2
5

.2
:

E
8

5
8

8
>3

ummEm
Ecomm

0mm

Em
EcoEEw

3
3

.3
.2

:
E

mug
82m

.
:

own

233098
:N

2
2

:3
3

m
w

<m
m

JR
>

u
a

E
w

c
o

:
Co

E
m

cao
35m

9
5

:5
5

4

“mm
EQ

EM
IBC

*0
5:26

38¢
9

E
E

E
E

o:

mOOo

ERASE RECORD EXCEPTION
CONDITIONS

LIMITS USING KEYFIND FIRST

07 4 ROLL BACK

ND~60.127V5 EN

E‘9

nuSu“nuIMLInumunuflynunuImlfitannuVAEVa8ABAmiannu

2
m

n
mm

R
EED

mm
>3

Xm
oz.

otm
E

oS
m

mm
«

5
:t

2
ma?

Sm

max;
8»

:3
5

we
.5550

“o:
2

a?
98m

m

we
Em:

«3
5:26

350E
8

EEm
fi<

2a
x22:

5
UmtmmE

Ho:
3

ES;
v.

Xm
Q

Z.

“mm
53

+0
Em

oEm
E

8c
.3

33
98m

m

8
5

:3
8

8“
E

U
880.

“o:
3

Boom:
Um

ocfifim
m

H8
9

Umuumcconu
Ho:

&
28m

m

snsxm
oggcm

tag
Eeaeam

:
V3353

Em
8

@
3858

BEE
mm

Ecoom

I"
RELATIONSHIP EXCEPTION

>)ITIONSCON

0mm

omm9m

wQOO

FIND FIRST BETWEEN LIMITS USING KEY

07 4 ROLL BACK

Nil-60.1275 EN

iii—10

DATA BASE EXCEPTION CONDITION SUMMARY

3
5

::
Ca

E
gon

U
m

cflct
3

.3
0

5
cwm

n
8

:
mm:

E
3

0
.

<
.m

U
O

E
.9

5
c.

m
m

m
nm

um
o

3
5

.:3
25

.8
U

380
coma

332%
mm:

832m
m

mcoE
Em:

E
E62

>38
8

3
E

3
;

muoE
359.

E
Ho:

2
Emma

.39:
US:

5
“0:

E32
23::

3
BEBE

READY MOD EXCEPTXON
CONDITIONS

LIMITS USING KEYFIND FIRST

O7 4 ROLL BACK

ND»60J27.5 EN

USNOITIDNOCNOIml.P..
.4DATA BASE EXCI

3
3

8
$

5
2

3
8

.2
5

395520
We

mum
E:E_Xm

§

U
Q

E
Q

U
X

G
$0829.;

.563
55mm

UmhmnEmEm.
we

5
3

:5
:

E:E_xm
§

Dmvmmoxm
m

>m
x

R
a

n
g

e
“.

\C
S

O
Q

E
m

u
D

m
hm

nE
m

E
m

.
we

$
2

8
3

:
(5

4
::m

Umumsmzxm.
3

238
mE

E
momqw

Umumnmcxm
mm

SEE
E

Scam

)URCE ALLOCATION
,.
(x.

EXCEPTION CONDITIONS
RES

FIND FIRST BETWEEN LIMITS USING KEY

074 ROLL BACK

ND--60,127.5 EN

E-IZ

$
5

.5
:

$598
2

Exam:
Em

EEE
H

c
5

:;
33288

B»,
SEE

Em:
9

50m:
Em

fi<
vmm

3
5

8
5

:,
3m

:5
Lo

w
E

m2
SEE

S
ana:

m
zm

iuxm
5%

E
38

2mm”:
8

uaE
flw

d.

8
:9

3
6

«0:
Emma

”€5.53
hmfiocm

n
38%

$7.388
b2

36%
:

Emma

muoE
£5

8*
86mm:

.5:
E32“.

DATA BASE EXCEPTION CONDITION SUMMARY

LIMITS USING KEY

PROTECTIO EXCEPTION
CONDITION

FIND FIRST

O7 4 ROLL BACK

ND~60.127.5 EN

E-13

USNOITIDNOCNOITPECxEESABATAD

>um
cozvzu

:0
C

um
t

>Lm
E

C
¢

P

ESom
xm

>
2

2
t

mm<mw
5

3
:6

3
L

3
5

8
5m

a
n

ti
am

2
6

:5
3

5
:5

8
585

>095
omm

3
3

3
8

8
:3

t
mw<mm

.9
8

2
so

585
E

g
g

vmm

PRIVACY EXCEPTION
CONDITIONS

9
8

2
so

5035
>om>tm

mmm

E33
:o

585
>325

Nmm

mDOU

FIND FIRST BETWEEN LIMITS USING KEY

07 4 ROLL BACK

MID—60.1275 EN

E--14

NDV60.127.5 EN

F-‘i
APPENlDIX F

SUMMARY OF THE DML ROUTINE
NUMBERS

Table of Routine Numbers

The SlBAS routine logging uses one set of routine numb ars. SIBAS error
reporting uses another set as seen in the database exception condition summary.
The former is logged on the routine log. The latter is returned by calls to SDBEC.
When no value is specified for "Dl‘.ALNO.", the value is undefined.

CALL MEANlNG STATE LOG DML lNDEX
NO. NO.

ACCDD accumulateoouble—integer run 48 20, 32 4.2.23
ACCFD accumulate—floating run 46 20, 32 4.2.23
ACCID accumulateeinteger run 47 20, 32 4.2.23
BSEQU initiate“criticalsequence run 44 5.3.3

CHCOM change—communication:modus dba 98 5.4.15
ESEQU endcritical—sequence run 45 5.3.3

GCHPO give—checkpoint (to SlBAS) run 55 72 5.4.8
lNLOG initiate—logging (all kinds) rdy 96 5.4.3
OFLOG sel—routine—logging-off run 87 5.4.5
ONLOG seteroutine-logging-on run 88 5.4.5
RBLAN read—SlBAS-common run 36 5.4.15
RELSl releasevSlBAS run 59 5.4.13

RESIB reserve~SlBAS run 58 5.4.13

SABOR forcedeclose dba 104 51 5.4.16
SCHPO return'checkpoint (from SlBAS) run 32 72 5.4.8
SCHPW change—password run 28 54 4.2.20
SCLDB close—database run 22 51 4.2.2

SCONA connect~after run 27 43 4.2.12
SCONB connect-before run 26 44 4.2.12
SCONN connect run 16 41 4.2.12

SDBEC accept run 29 4.2.21

SDCON disconnect run 18 42 4.2.13
SEREL erasevelement run 30 34 4.2.22
SETDV set~SlBAS—system—number run 5.4.12
SEXMC execute-macro run 56 5.4.14

SFEBL findfirst-between—limils run 23 2 4.2.5
SFlNl finish (recovery) rec 89 5.4.2
SFLBL find—lastwbetween-limits run 53 4 4.2.5
SFORG forget run 13 61 4.2.17
SFRGT finderecord—number-andvget— run 64 1,20
SFRLM finish-realm run 21 53 4.2.4

SFRNO find~using-record~number run 62 9
SFTCH find-using-key run 1 1 4.2.5
SFTGT fetch-get run 33 1,20 4.2.24
SGET get run 7 20 4.2.8
SGETN get~n~records run 34 20 4.2.8
SGlXN get—indexes run 43 17 4.2.8
SlCON set»conditions—for—reprocessing rec 92 5.4.10
SINFO get—schemas~information run 35 5 4.2.25
SINSR insert run 15 45 4.2.14

ND 60127.5 EN

F~2

CALL MEANING STATE LOG DML INDEX
NO. NO.

SlSTA set-SlBAS~state all 101 34.15
SLOCK lock run 12 62 4.2.18
SMDFY modify run 8 32 4.2.9
SMESS log-message run 49 5.4.6
SOPDB open-database run 20 50 4.2.1
SPASS set—passive rdy 97 5.4.2
SPAUS pause run 94 5.4.2
SRASE erase run 10 33 4.2.11
SRECO recover dba 102 5.4.2
SREMB remember run 11 60 4.2.16
SREMO remove run 17 46 4.2.15
SREPR reprocess—routine—log rec 91 5.4.11
SRFIR findefirst—ln—realm run 24 3 4.2.5
SRFSM find—first—ln—set run 2 13 4.2.6
SRLSM find—last«in—set run 4 14 4.2.6
SRNIS find—next-in—search—region run 25 16 4.2.6
SRNSM find«neXt—in—set run 3 11 4.2.6
SROLL roll—back rec 90 74 5.4.9
SRPlS find-prior—ln—search”region run 54 18 4.2.6
SRPSM find-prior—in-set run 5 12 4.2.6
SRRLM ready-realm run 19 52 4.2.3
SRSOW find-set-owner run 6 15 4.2.7
SRUN run—database dba 99 5.4.2
START start—database rdy 95 5.4.1
STGET get-SlBAS-state all 57 5.4.1
STOPS stop—database dba 106 5.4.1
STORE store run 9 31 4.2.10
STREP get-status-from*reprocessing rec 93 5.4.2
STRLG set—terminaHog (on/off) dba 105 5.4.15
STRLG turn-on/off—terminal—log dba 105 5.4.15
SUBEG transaction—unit-begin run 39 6 4.2.26
SUEND transaction-unit-end run 40 7 4.2.26
SUNLK unlock run 14 63 4.2.19
SWHAT what—is—current run 63 10
SWINF update—schema~information run 41 8
SYNCP synchronizedcheckpoint run 42
UTBLK write—log-buffenonto-r—log run 31 5.4.7
ZTRB privileged run 38 5.4.15

ND—60.127.5 EN

SIB—DRL

DML

64

APPENDIX G

CflNfi‘TANTS AND LIMITATIONS

CONSTANTS AND LIMITATIONS

Maximum

Maximum

Maximum

Maximum

Maximum

Maximum

Maximum

Maximum

Maximum

Maximum

Maximum

Maximum

Maximum

Maximum

Maximum

Maximum

Maximum

Maximum

Maximum

Maximum

Maximum

Maximum

Maximum

number of OS—FILES in one database
(including the object: schemas)

number of REALMS in one database
(including the SIBAS system realm)

number of ITEMS in one REALM
(including GROUP items)

number of ITEMS in one GROUP

number of lNDEXes on one REALM

number of SETS in one database

number of pages in an OS~FILE

number of pages in a REALM

page size for an OS»FILE

record size

number of records by page

size of an index key item

Size of an item

MEMBERAREALMS in 3 Multi Member set

number of SIBAS processes by machine

number of opened databases by machine

number of concurrently updating
runwunits on the same database

size of Routine Log (R~I-OG)

size of the Before Image area (BIM Iog)

number of temporary database keys
by runxunit

number of temporary searcharegion
indicators by run—unit

number of set Ievels

MEMBER-REALMS in a Multi Member set

ND~60.127.5 EN

24 OS—FILES

255 F EALMS

ca. I00 ITEMS

ca. 50 ITEMS

all ITEMS are indexes

49 SETS

262144 pages

2000(00 pages

W ith BIM: 2 Kw
without BIM: 8 Kw

realrr page size .2

254 r ecords

sysrealm p. Size —5

494 v

4

vords

12 processes

12

ND1C0:60run-units
NDSCO: 188 run-units

64000 IK—pages

3200c IK~pageS

30 td

5 tsri

15

bk

G-2

ND-60.127.5 EN

APPENDIX H

STORAGE CODES

STORAGE CODE COMPATIBILITY

Abb ' t drev‘ae COBOL FORTRANW FOCUScode

A(n) OK Integer array OK
equivalenced

with Char.

N T(n) NA.

U D(n,m) OK NOAO NO

U D(n,m)S OK NA. OK

P D(n,m) OK N./-\. OK

P D(n,m)U OK NA OK

R4 C OK' OK
R6 C OK“ OK
R8 C OK OK

I: OK OK OK
[4 OK OK, OK

Nln)

Notes:

OK 2 directly supported C
NA = No arithmetic
NO -:. not supported
. m please fill in

ND-60.127.5 EN

RG

OK

OK

OK

OK

OK

OK
OK
OK

OK
OK

ACCE

OK

Ol

0%

OK

OK

OK

OK

OK

OK

OK

OK
OK
OK

OK
OK

OK
OK

type is supported
but data must
be moved (converted)
to another type for
computation
depending on
FORTRAN han
but never both.

wardware,
dles R4 or R6,

SSUNlOUE SlBAS

Chart

Float
Float.
Float.

lnt.
Int‘

H -2

ND-6(l.127.5 EN

- 1 -

INDEX

ACCDD
- call (DlVlL) 4.223

ACCEPT (DML) 4.221
ACCFD ~ call (DlVIL) 4.2.23
ACClD ~— call (DlVlL) 4.2.23
ACCUMULATE (DIVIL) 42.23
Abbreviation lookup (DBM) 6.1
Accept — error condition “4.2.21
Accept — statemment (DEVIL) 42.3
Access — direct 2.4.1.1
Access — random 2.1/22.3
Access — relative 2.4.1.1
Access principles ‘2.4.1
Access ways 2.4.1.1
Accumulate *4223
Accumulate — (DML) 2.4.3.1
Additional sys. realm (DRL) 3.38
Additions —~ schema (DRL) 3.3.1
Algorithm ~ hashing 2.2.3
Algorithm — random (DRL) 3.7
Application programs — load ‘44
Area — main 2.1/(DRL)3.3.9
Area ... overflow 2.1/(DRL)3.3.9
Authorized users (DBM) 6.4
Automatic maint. index 224/2422
Automatic storage class 2.32.4/2421(DRL)3.3.12
Automatic update (DRL) 3.3.13
Backup (DBA)5.1/‘5.3.6
Background applications (DlVlL) 4.4
Beforevimage logging ‘53.?)
Begin/End sequence ‘5.4.4
Bit position (DRL) 3.3.10
Bucket 2.1/(DRL)3.7
Bucket —» CALC 2.2.5
Bucket — main 2.1
Bucket ~— overflow 2.1
Byte position (DRL) 3.3.10
CHANGE CALC~REALM (DRL) 323
CHANGE SERIAL-REALM (DRL) 3.3.23
CHANGE SET (DRL) 3.6
CHANGE SYSTEM-REALM (DRL) 3.3.22
CHANGE—COM-PROC (SERV) 6.4
CHANGE PASSWORD (DML) 4.2.20
CHCOM _. call (DBA) 5.4.16
CLOSE-DATABASE (DlVlL) 4.2.2
CLOSE—DATABASE (SERV) 6.4
COMPRESS (DBM) 6.2.5

(COMPRESS lNDEX DBM) 6.2.5

ND760.127.5 EN

CONNE
CONNE
CONNE
CRUl

CT
CT~AFTER
CTCBEFORE

CRUl .4 (find)
CRUl ~— current run~unit ind
CSRI
CSRl — (find)
CSRl — curr.search regind
Calc key
Calc key
Calc key—checking
Calc key verification
Calc location mode
Calc mode
Calc mode location
Calc realm —~ change
Calc realm — new
Calc realms
Calc records
Calls —~ subroutine
Chain ~ set type
Chain .2 double link
Chain 2.. single link
Channn
Change
Change
Change
Change
Change
Change
Change
Change
Change
Charact
Charact
CHECM
Checkp
Checkp
Checkp

3
Cale—realm
Group
ltem
Serial-realm
Set
System—realm
Text
password

5 —— schema
er
er item
NG CONSISTENCY
Jim
Jim
>int~id

Class — removal
Class — storage
CLEAR-
Close‘d
COBOL
COBOL
COBOL
CODAS
CODAS

SYSTEM-REALM
ata~base
— language cons.
program (ex)
storage area
YL
YL report

Code ~— location
Collatin 3 sequence (SIBAS)

(DRL)
(DBM)
(DBM)

(DRL)

(DRL)

(DRL)
(DRL)
(DRL)

(DML)
(DRL)
(DRL)

NED-60427.5 EN

4.2.12
4.2.12
4.2.12
4.2.16
425
24.1.2
4216
4.2.5
231/2412
2.2.3/2321/2412
3.3.8/(DML)4.2.5
6.32
*632/631
223
223/224
21
'3322
‘339
3.7
223/225
12
23.23
2323
2,323
2.323
3.1/‘3322
3.3.25
3.3.24
31/3321
31/3323
31/3320
3.3.25
2.24.3/‘4220
3.31
3.3.10
221
5./(DBM)‘6.3
“5.3.2
534/548
54
2.324
“232.4
6.3.9
“422
14.3.2
4.3.2
4.1
2.2/2.323/24
1.1
2.1
2.2.4

Compress index table (DRL)
Computational (COBOL)

ComputationalvB fields
Concept — Database
Concurrency exceptcondition
Concurrent processing
Concurrent runwunits — prot.
Conflicts w ready stat. (DML)
Connect w (DML)

(DML)
Connect ~ records
Consistency m schema (DRL)
Consistency checking
Core space ~~ minimize (DML)
Critical sequence
Critical sequence (logging)
Currency indicator exccond
Currency indicators
Current password A set (DBM)
Current password .. setting
Current run‘unit ind. (DML)

(CRUI)
Current search reg ind. (CSRI)
Currentrsearch—regind. (DML)
DATABASE ADMINISTRATION
DATA DESCRIPTION
CATALOGUE
DATA MANIPULATION LANGUAGE
DATABASE—STATUS (SERV)
DB definition syntax (DRL)
DBA calls (DBA)
DBA password (DBM)
DBA state (DBA)
DBA-password (DRL)
DBCS _ DB control system

(DML)
DBEC ~ DB exceptional cond.

DBEC — fatal errors
DBM m example
DBM module (mainten) (DEM)
DEM password (DEM)
DEM statements summary
DBMS ~ DB management system
DRL m data def./redef. prog
DEFINE DBA~PASSWORD (DEM)
DEFINE GLOBAL-PASSWORD (DBM)
DEFINE LOCAL—PASSWORD (DBM)
DEFINITION/REDEF LANGUAGE
DELETE GROUP (DRL)
DELETE INDEX (DRL)
DELETE ITEM (DRL)

NDVGO.127.5 EN

37
2.2.1

4.3.2
‘2.1/2.2.6
App E
‘2.4.3/5.4.12
2.4.3.4
42.3
2.3.2.4
2.4.2.1
‘2.4.2.1/‘4.2.12
3.2
5./(DBM) ‘63
4.1
5.4.4
*5.3.4
App. E
*2.4.1.2
6.2.1
‘2.4.4.3
4.2.5
2.4.1.2/2.4.1.1
2.3.1/2.4.1.2
4.2.5
‘5.

3.4
'4.
6.4
3.3.1
‘5416
6.1
5.2/6.4.1/542
3.3.4
12/2442
41
2.4.1.1/2.4.3.4
(DML)4.2/‘7.3
7.1
“6.3.7
‘6.1
6.2.1
‘App. C
1.1/1.3.
2.2.6
6.2.2
6.2.2
6.2.2
‘3.
3.3.19
3.3.17
3.3.18

DELETE SET (DRL)
DELETE TEXT
DISCONAECT (DML)
DISPLAY (DBM)
DML diagnostics
DML resident tables (DRL)
DML routine log numbers
DML statements
DML—statements summary
DRL module (DRL)
DRL statements summary
DRL ._, examples (DRL)
Database
Database - close
Database — define
Database — dimension param
Database —— document (DRL)
Database — force close
Database ~— main components
Database —— open
Database — privacy
Database — redefine
Database — temporary * key
Database «— utilities
Database Except Conditions
Database Maintain. example
Database Managem. — ex. (DBM)
Database admfunctions (DBM)
Database administrator (DBM)
Database concept
Database contr. system (DECS)
Database definition (DRL)
Database exeptcond. (DBEC)
Database exeptcond. (DML)
Database maintenance module
Database management system
Database names (DRL)
Database numbers (DRL)
Database parameters (DRL)
Database redefinition (DRL)
Database repairs (DBM)
Database reservation
Database system
Database unavailable (DBA)
Data Man pul.Language (DBM)
Data consistency error (DRL)
Data divis'on (DML)
Data inde sendence
Data man pulation
Data reiat ons
Data structure

ND-»60.127.5 EN

3.3.15
3.3.16
4.2.13
6.2.4
‘73
3.7
‘App. F
2.3.2.4/4.
‘App. A
3.2
‘App. B
3.7
2.2/‘226
“4.2.2
3.
“3.5
3.2
”54.16
2.2.6
‘4.2.1
*2.4.4
3.
2.4.1.2
‘6.
”App. E
’637
6.3.7
6.1
6.1
‘2.1/2.2.6
1.2/(DML)4.1
32
2.4.1.1
4.2/‘73
2.4.4.1/‘61
1.1
3.3.1
3.3.1
3.5
3.2
6.3.1
*2.4.3.1
'1.1
5.4.13
6.2.1
3.2
4.3.2
3.1
*2.4
1.1/‘23
”2.2

Database—name
Database initiation (ex)
Deadlock — realm protec.
Deadlocks (concurr. proc.)
Define Database
Define checkpoint
Define password
Defined limits (key value)
Definition — Database
Definition syntax ~— DB
Definition/Redef. module
Delete group
Delete index
Delete item
Delete set
Deletions — schema
Density — packing
Description of calls
Description of manual
Device —— internal
Dimension Database param.
Direct access;
Direct find
Directory
Disconnect —~ records
Disconnect ~—
Display
Display (COBOL)
Display Code
Display Code rules
Display password/priv.
Distribution —>— bucket
Documentation — DB
Double link
Double link chain
Dump realm (to file)
Duplicate key
Duplicate key value
Duplicates
END
ERASE
ERASE-ELEMENT

(DML)
(new

(DRu
(DRU
(DML)
UDML)

ERROR AND EXCEPTION CONDS
EXIT
EXlT
EXlT
EXPLAIN
Element —— etase
Empty sets
Encoded call from

(new
(SERV)
(DBM)
(SERV)

(DML)

ND~60.127.5 EN

4.2
3.7
2.4.3.3
2.4.3
3.
5.4.8
“6.2.2
2.4.1.2
3.2
3.3.1
*3.2
3.1/‘3.3.19
3.1/‘3317
3.1 /*3.3.18
3.1/‘3.3.1 5
3.3.1
3.7
”5.4
‘ix
1.2
”3.5
2.4.1.1
‘4.2.5
3.3.6
‘2.4.2.1/’4.2.1 3
2.3.2.4/2.4.2.1
4.3.2
2.2.1
3.4.1
3.4.2
‘6.2.4
3.5
3.2
3.3.12
2.3.2.3
6.3.8
223/231
2.3.2.1
3.3.8
33.5
4.2.11
4.2.22
'7
3.3.5
6.4
6.1.3
6.4
’4.2.22
2.3.2.2
4.

End
Entry —— record
Erase record
Erase ~—
Erase record exceptcond.
Erase — element
Error — DB example
Error —— data consist
Error .2 schema consist
Error reports
Error~flag ~ reset
Errors .. fataI
Errors —~ interface
Errors — simulator
Errors — syntax
Examples w running DBM
Examples —- DB managem.
Examples ~ Def/Redef.
Exception conditions
Exceptional conds. .2 fatal err.
Exclusive update H realm
Exclusive—update
Execute~macro
Extended monitor mode
FETCH-GET
FIND—FIvBETW-LlM-US-KEY
FIND-FlRST-IN-REALM
FlND-FIRSTJNSET
FlND-LAST~IN—SET
FlND-NEST-IN—SET
FIND-NEXT-INSEARCHREG
FIND—OWNER
FlND—PRIOR—INSET
FIND»USING-KEY
FINISH
FINISH
FINISH~REALIVI
FORCE-CLOSE
FORGET
FORTRAN
FREESPACE-STAT
Facilities — log/recover
Fatal errors
fetch—get
File — new 08
Find
Find — direct
Find — relative
Find-set—owner
Finish
Finish-res
Finish-rea

m

m

(DRL)

(DBIVI)
(DRL)

(DML)

(DBA)

(DBM)

ND-60.'I27.5 EN

3.1
3.7
*4.2.11
2.3.2.4
App. E
“42.22
3.7
3.2
3.2
4.2
“6.1.8
“7.1
'7.2
'72
3.2
‘6.3.7
6.3.7
3.7
‘6.
7.1
2.4.3.2
4.2.3
15.4.15
2.4.3.4
4.2.24
4.2.5
4.2.5
4.2.6
4.2.6
4.2.6
4.2.6
4.2.7
4.2.6
4.2.5
6.4
6.1.5
4.2.4
6.4
4.217
2.21
6.3.6
'53
‘7.1
4.2.24
“3.3.6
2.4.1.1
‘4.2.5
“4.2.6
'4.2.7
“"542
“4.2.4
“6.1.5

Flag — reset error
Floating
Floating item
Force-close database
Forget
Forget
Forget —- all‘records
Forget-all—search-reg.
Forget
Forget—search—region
FORTRAN -—~ language cons.

—- record

—record

FORTRAN array
FORTRAN program (ex)
Free-space-statistics
GCHPO
GET
GET-INDEXES
GET-SCHEMAS-INFORMATION
GET-SlBAS-STATE
G ET-UPDATE~STATE
GETN
GlVE—CHECKPOINT
GIVE-MESS-TO—SIBAS call
Get
Get —
Get indexes
Get-schemas-information
Get-state
Getn
Global
Group
Group
Group
HELP

passwords
—— delete
—— new
items

Hashing algorithm
Hmhm
Host language considerations
Host language program

mit

l/O-table
INITIATE-LOG
INLOG
INSER
INTRODUCTION TO SIBAS
ldget — assembly routine
Implementation of SIBAS
Inconsistent 98 name
Index —- autommaintained
Index
Index
Index
Index

T

— compress
—— delete
—— manua|.maintained
-— new

Index compression

(DBM)

(SERV)

UDML)

(DML)
(Dnu
(SERV)

UDML)

(DML)

UDML)

(DEM)

(DEM)

ND»-60.127.5 EN

‘6.1.8
3.3.10
2.2.1
”5.4.16
2.4.2.1
“4.2.17
4.2.17
4.2.17
4.2.17
4.2.17
*4.3.1
4.1
4.2.23
‘6.3.6
5.4.8
4.2.8
4.2.8
4.225
6.4
6.4
4.2.8
6.4
6.4
”4.2.8
2.4.1.1
‘4.2.8
4.2.25
‘5.4.1
‘4.2.8
6.2.1
‘3.3.19
’3.3.11
2.2/‘222
6.4
2.2.3
4.2
‘4.3
4.1
3.7
6.4
5.4.3
4.2.14
‘1.
4.4
'1 .2
4.2.1
224/2422
6.2.5
‘3.3.17
2.2.4/2.4.2.2
“3.3.13
’6.2.5

Index description table
Index key
Index key
Index key —~ checking
Index key property
Index key verification
index levels
index table
Index table — compress
index table —— representation
index tables —— size
indexes — get
indicator -— search region
indicator —— current run—unit
indicator — status
indicators — currency
information retrievei
information storage
Initiate—log
initiation run (ex)
initiation steps
insert ~— record
Inserting ~— index
integer
integer item
Interface
Interface errors
lnvoluted set
Involuted set type
Involuted set type
Item
Item ~— character
item ~ delete
Item —— floating
Item ——- integer
Item — member set
Item -— new
item — owner set
Item name
Item type
Item value exception cond.
Item-list
|tem~vaiues
Items
Key
Key — Calc
Key — Caic
Key —~ cuplicate
Key — duplicate value
Key —— iwdex
Key —— itdex

(DML)

(DBAI
(DRL)
(DRL)

(DRL)

(DBA)

(DRL)

(DRL)
(DRL)

(DML)
(DML)

(DRL)

(DML)

ND—60.127.5 EN

3.7
'2.2.4/2.3.2.1/2.4.1.2
4.2.5
6.3.3
3.3.17
6.3.1/‘633
2.2.4
2.1
3.7
2.2.4
3.7
’4.2.8
2.3.1
2.4.1.1
4.2.3
’2.4.1.2
2.1
2.1
‘5.4.3
3.7
3.7
“4.2.14
“2.4.22
3.3.10
2.2.1
5.1
“7.2
2.1
232/2323
3.3.12
2.2
2.2.1
”3.3.18
2.2.1
2.2.1
2.3.2.1
’3.3.10
2.3.2.1
3.3.10
3.3.10
App E
4.2
4.2
2.1/“2.2.1
”2.2.4
2.2.3/2.3.2.1/2.4.1.2
3.3.8
2.2.3/2.3.1
2.3.2.1
'2.2.4/2.3.2.1/2.4.1.2
4.2.5

Key —— record
Key —— search
Key — temporary database‘
Key — unique
Key size
Key value
Key value — store
Key-length
Key~name
Key—value
LOAD
LOCK
Language —— host lang.
Language considerations
Level —— index tables
Levels —- protection
Limits —- (key value)
Link —- double
Link ~ double chain
Link — single
Link — single chain
List _ remembered“
Load
Load — realm usage mode
Load application programs
Load records to (ex)
Load/unload
Loading progr. w SlBAS
Local passwords
Locate record (find)
Location — Calc mode
Location code
Location mode —~ serial
Lock — recorcl
Lock records -~~ realm protec.
Lock out — record level
Log message
Log—buf—on-rout-log
Log-directory
Log-file-name
Logging — Routine On/Off
Logging — be‘iorenimage
Logging — routine
Logging facilities
Logical relationship
Low—limit
MAKE-MODEFILE
MODIFY
MSl — member set item value
Macro
Macro ~— user defined
Main area

ND-60.127.5 EN

(DRL)

(DRL)

(DML)

DML)
DBM)
DlVlL)
DBM)
DlVlL)A

,
.
\
,
\
,
.
\
,
\

(DBA)

(DML)
(DBM)
(DlVlL)

(DBA)

2.1
2.4
2.4.1.2
2.2.3/2.3.2.3
3.5
2.1/2.4.1.1
3.7
4.2
4.2
4.2
6.3.8
4.2.18
4.1
‘43
2.2.4
2.4.3
2.4.1.2
3.3.12
2.3.2.3
3.3.12
2.3.2.3
2.4.1.2
4.2.3
2.4.3.2
“4.4
4.223
”6.38
4.4
6.2.1
4.2.5
2.1
2.1
2.2.3
'4.2.18
2.4.3.3
*2.4.3.3
‘5.4.6
’547
5.4
5.4
“5.4.5
‘53.?)
‘5.3.3
5./'5.3
2.3.2.3
4.2
6.3.9
4.2.8
2.4.2.1
2.4.3.1
5.4.15
2.1/2.2.3

Main area
Main bucket
Main system realm
Maintenance module
Maintenance/timing
Manipulation m data
Manual description
Manual storage class
Manual storage class
Manual update
Manually maintained index
Manually maintained set
Max—value (key)
Member —« set
Member — single set
Member record
Member set item
Member set item
Message ~— log
Message — run~time
Message — run»time
Message to operator
Min-value (key)
Minimize core space
Mode (paramdesc)
Mode —— production
Mode — test
Mode — usage/protection
Modify
Modify - record
Module —~ Database mainten.
Module —» Definition/Redet.
Modules available
Monitor mode —-« extended‘
Multi—member set
Multi-user
NEW CALC REALM
NEW GROUP
NEW lNDEX
NEW lTEM
NEW OS FILE
NEW SERIAL REALM
NEW SET
NEW SYSTEM REALM
NEW TEXT
Name specification exccond.
Names — Database
New OS~file

-10—

(DRL) 3.39/37
2.1

(DRL) 3.3.8
“6.1

(DBA) 5.4.16
’24
‘ix
2.3.2.4/2.4.2.1

(DRL) 3.3.12
(DRL) 3.3.13

2.2.4/2.4.4.2
2.4.2.1

(DRL) 3.313
2.1
2.3.2
2.3.2.1
2.3.2.1

(DRL) 3.3.12
(DBA) “5.4.6
(SlBAS) “7.4
(SlBlO} ‘7.4
(DBA) 5.4.6
(DRL) 3.3.13
(DML) 4.1
(DML) 4.2
(D RL) 3.2
(D RL) 3.2

’2.4.3.2
(DML) 2.4.2.1

“4.2.9
“6.1
‘32
‘PREFACE vii
2.4.3.4
2.3.2

(DBA) 5.1
(DRL) 3.3.9
(DRL) 3.3.11
(DRL) 3.3.13
(DRL) 3.3.10
(DRL) 3.3.6
(DRL) 3.3.8
(DRL) 3.3.12
(DRL) 3.3.7
(DRL) 3.3.14

App. E
(DRL) 3.3.1
(DRL) 3.1

ND—60.127.5 EN

New CALC realm
New group
New index
New item
New serial realm
New set
New text
New system realm
New—passworo‘.
Next - (search)
No—found
No-of-items
No~of~realms
No—wanted
Non-protected—realm
Non—protection
Nonreentrant programs
Notification of change
Null value — key
Null value — privacy item
Number — prime
Numbers — Database
OFLOG
ONLOG
OPEN-DATABASE
OPEN-DATABASE
08 file — delete
OS file ~— new
OS—file
()8! ~ owner set item value
Object schema
Occurrence
Occurrence of set
Occurrence — record
Occurrence — set
Octal numbers;
Open — statement
Open-data—base
Open-database
Operating system file
Operator —— message to”
Optimum value (buckets)
Option code (erase)
Optionecode
Organization -2 Real-time
Overflow area
Overflow area
Overflow area — calc
Overflow bucket
Owerflow page
Owner
Owner — fined set‘

- call
—— call

ND-60.127.5 EN

—11

(DBL)
(DBA)

3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
4.2
4.2.6
4.2
4.2
4.2
4.2
2.43.2
4.23
4.4
~2.4.3.4
2.2.4
2.44.2
2.23
3.3.1
5.4.5
5.4.5
4.2.1
6.4
“3321
*3.3.6
3.3.7/3.3.8/3.3.21
2.4.2.1
2.2.6/(DRL)3.2
2.2
‘2.3.2.2
2.1
2.3.2/2.3.2.3
6.1
2.2.6
‘4.2.1
2.4.4.1
3.3.3
5.4.6
3.7
42.11
4.2
‘51
2.1/2.2.3
3.3.9
2.2.5
2.1
3.7
5.4
“4.2.7

Owner —— set“
Owner record
Owner set item
Owner set item
PATCH
PAUSE
PRINT
Packing density
Page size
Parameter description
Parameter values
Passive
Passive state
Password
Password —— DBA
Password -— change
Password — define
Password ~— privacy
Password - record occurrence

Password — remove
Password ~ setting current
Password/priv. —— displ.
Patch
Patching Database
Pause
PLANC
Pointer — record
Pointer —~ record
Pointers
Prerequisite knowledge
Primary area —— Calc
Primary key (index)
Prime number
Prime number
Principles —— access
Principles of SIBAS
Print
Prior —— (search)
Pflvacy
Privacy exception cond.
Privacy -— Database level
Privacy — Record level
Privacy -— tables
Privacy definition
Privacy item
Privacy item — record
Privacy system
Privacy table
Privacy-item
Processing —— concurrent
Processing — real-time
Program examples
Programs —— Load application

-12

(DRL)

(DBM)
(DML)
(DBM)

(DBA)
(DEM)

(DEM)
(DRL)

(DML)

ND-60.127.5 EN

2.1
2.3.2.1
2.3.2.1
3.3.12
6.1.7
6.4
6.1.6
3.7
3.3.6/3.7
“4.2
6.1
5.4.2
5.2
4.2
3.3.4
“4.2.20
“6.2.2
2.4.4
2.4.4.2
“6.2.3
“2.4.4.3
“6.2.4
“6.1.7
5.
“5.4.2
4.3.3.
2.3.2.3
3.7
1.1/(DBM)6.1
“viii
2.2.5
2.2.4
2.2.3
3.7
“2.4.1
“2.
“6.1.6
4.2.6
“6.2
App E
“2.4.4.1
“2.4.4.2
2.4.4
5.
6.2.1
2.4.4.1
“2.4.4
6.2.1
3.3.10
“2.4.3
1.2
4.2.23
“4.4

- 13 _

Protect — concurr. run-units 2.4.3.4
Protection exception cond. App E
Protection levels 2.4.3
Protection mode (UBM) 6.2.1
Protection mode (DML) 4.2/4.2.3
Protection mode —— Realm‘ ’2.4.3.2
READY (DBM) 6.1.4
READY—REALM (DML) 4.2.3
RECOVER (SERV) 6.4
RELSl ~ call (DBA) 5.4.13
REMBER (DML) 4.2.16
REMOVE (DML) 4.2.15
REMOVE-PASSWORD (DBM) 6.2.3
REPROCESS-DATABASE (SERV) 6.4
RESET-ERROR-FLAG (DBM) 6.1.8
RESIB — call (DBA) 5.4.14
RETURN — CHECKPOlNT (SERV) 6.4
RK —— record key 2.2.4
ROLL—BACK (SERV) 6.4
RP — record pointrer 2.2.4
RT—common (DBA) 5.1
RT-common (DML) 4.4
RUN-DATABASE (SERV) 6.4 _
Random access 2.1/2.2.3
Randomizing algorithm (DRL) 3.7
Readers “The READER viii
Ready — statement 2.2.6
Ready conflicts (DML) 4.2.3
Ready mode exceptcond App E
Ready state (DBA) 5.4.1/542/52
Ready—realm “4.2.3
Ready~realm (DBM) ‘6.1.4
Ready~rea|m w (DML) 2.4.4.3
Real-time organiz. of SlBAS ‘5.1
Real—time processing 1.2
Realm 2.2/‘2.2.5/2.4.1.2
Realm-automatic expansion 2.2.5.1
Realm — SIBAS system (DRL) 3.3.4
Realm — delete ‘3.3.2O
Realm space utilization (DBM) 6.3.6
Realm usage mode ’2.4.3.2
Realmename (DML) 4.2
Realms —— Calc (DRL) 3.7
Realms .2 user system“ (DRL) 3.7
Record descripttable (DRL) 3.7
Record key 2.1/2.2.4
Record length (DRL) 3.3.9
Record number 4.2.27
Record occurrence 21
Record occurrence —— privacy 2.4.4

NIH-60127.5 EN

Record pointer
Record types
Records — connect/disconnect
Recover
Recovery
Recovery ~ message
Recovery -_ speed up
Recovery facilities
Recovery state
Redefine Database
Redefine password
Redefinition run (ex)
Reentrant applications
Regenerate (Database)
Region — search
Regions for searching
Related manuals
Relations —~ data
Relations of data
Relationship
Relationship exceptcond.
Relationship ~~ logical
Relative access
Relative find
Release SIBAS
Release SIBAS
Remainder
Remember—record
Remember—searchregion
Remembered list
Remembered list
Removal class
Remove _ record
Remove password
Removing ~— records
Rename
Repair (Database)
Report - CODASYL
Reproastatus
Reprocess ~ set—conds.
Reprocess—routine~log
Reprocessing

-14-

2.2.4
2.1/2.2/‘223
'242

(DBA) ’5.4.2
(DBA) 5.1/5.4.4
(DBA) 5.4.6
(DBA) 5.4.5
(DBA) 5./’5.3
(DBA) 52/542

3.
2.4.4

(DRL) 3.7
(DML) 4.4
(DBM) 6.3.1

2.1
“2.3.1
”ix
1.1
'23
2.4.1.1
App. E
2.3.2.3
2.4.1.1
‘4.2.6
2.4.3.1

(DBA) ’5414
2.2.3

(DML) ‘4216
(DML) 4.2.16
(CRUI) 2.4.1.2
(CSRI) 2.4.3.4

2.3.24
‘4.2.15

(DBNI) ‘6.2.3
‘2.4.2.2

(DRL) 3.3.27
(DBM) 6.3.1

1.1
(DBA) *5.4.2
(DBA) ’5.4.11
(DBA) “5.4.12

‘5.3.7.3

ND—60,127.5 EN

Reprocessing (conds.)
Reservation _.- Database
Reserve SlBAS
Reserve SIBAS
Reseterror—fiag Maintenmod.
Resident tables (DML)
Resolut. — ready confl.
Resource allocation exc.cond.
Restart — Updat./Rout.
Restart Backup/Routine log
Restart Update file/routlog
Retrieval
Retrieval —~ realm usage mode
Retrieval exceptcondition
Retrieval ~ information
Ring buffers
Roll-back
Roll-back facilities
Routine log —~- volume
Routine log file — def.

(DBA)

(DBA)

(DRL)
(DML)

(DBA)

(DML)

(DBA)
(DBA)
(DBA)
(DBA)
(DBA)

Routine iog numbers - summary
Routine logging
Routine logging
Routine logging On/Off
Routine~log --— reproc.
Run
Run—id.
Run-time message
Run-unit
Run-unit —~ current indicator
Run-unit password
Running state
SCHPO ~—
SCHPW 2.
SCLDB ——
SCONA —
SCONB _
SCONN -
SDBEC «—
SDCON 2.
SEMSG —-
SEREL ~—
SERVC _.
SET-COND-FOR-REPR
SET—PASSIVE
SET~ROUT-LOG«OFF
SET—ROUT~LOG—ON
SETDV —
SEXMC ——
SFEBL —
SFlNl —
SFORG —
SFRLM —-

call
call
call
call
call
call
call
call
call
call
call

call
call
call
call
call
call

(DBA)

DBA)
USA)

C CD 3

ND~60.127.5 EN

5.4.11
“2.4.3.1
2.4.31
‘5.4.14
“6.1.8
3.7
4.2.3
App. E
5.3.7.2
’5.3.7.1
‘5.3.7.2
4.2.3
2.4.3.2
App. E
2.1
5.1
‘549
5.
5.4.5
5.4.3
App. F
5.3
‘5.3.3
“5.4.5
“5.4.12
‘5.4.2
5.4
‘74
2.4.1.1
2.4.1.1
2.4.4
5.2/5.4.2
5.4.8
4.2.20
4.2.2
4.2.12
4.2.12
4.2.12
4.2.21
4.2.13
4.4.1
4.2.22
5.4.16
6.4
6.4
6.4
6.4
5.4.12
5.4.15
4.2.5
5.4.2
4.2.17
4.2.4

SFTCH —~ call
SFTGT — call
SGET - call
SGETN «— call
SGlXN — call
SlB«DB v1 statements summary
SlB-DRL
SlB—DRL statements summary
SlB~SERVlCE statements
SlBZA
SlBAS ~— installing
SIBAS - loading
SIBAS w release
SIBAS ~— reserve
SIBAS ~ start
SlBAS ~—— stop
SlBAS Database system
SIBAS PRINCIPLES
SlBAS communication
SlBAS implementation
SlBAS libraries
SlBAS performance
SlBAS process number
SlBAS realms
SIBAS run-time messages
SIBAS segments
SlBAS service program
SlBAS states
SlBAS system number
SlBAS system number
SlBAS system realm
SIBAS system realm
SlBAS user
SlBAS—files
SlBAS—service
SlBlNTER
SlBlNTER Command syntax
SIBlNTER Command list
SlBlNTER HELP function
SlBlNTER Session
SlCON — call
SINFO — call
SlNSR — call
SlNTRAN
SISTA —— call
SLOCK — call
SMDFY — call

.15-

(DRL)

(DBA)

(DBA)
(USA)

(USA)
(DML)
(DML)

(DEA;
(DML)
(DML)

ND‘60.127.5 EN

4.2.5
4.2.24
4.2.8
4.2.8
4.2.8
‘App. C
3.7
‘App. 8
‘App. D
5.1
‘55
4.4
2.4.3.1
2.4.3.1
’541
“5.4.1
”1.1
*2.
5.1
‘1.2
4.4
5.41
5.413
3.7
7.4
5.1
”6.4
‘52
4.4
5.4.13
2.2.6
3.7
4.4
’PREFACE vii
5.
6.5
6.5.3
6.5.4
6.5.2
6.5.5
5.4.11
4.2.25
4.2.14
1.2
5.4.16
4.2.18
4.2.9

SMESS —
SOPDB —
SPASS ——
SPAUS 4»
SRASE —
SRECO —
SREMB .—
SREMO —
SREPR —
SRFlR _
SRFSM _
SRLSM .2
SRNlS _
SRNSM w
SROLL —
SRPSM _.
SRRLM __
SRSOW —~
SRUN _
STANDARD-REPROC
START .2
START —
START INlT DATABASE
START~DATA8ASE
START REDEFlNlTlON
STGET
STOP _.
STOP~DATABASE
STOPS .—
STORE ——
STRLG —
STREP ——
SUBEG —
SUEND _
SUNLK .4
SUPER~START
SUPER~STOP _
Schema — object
Schema —— object
Schema — source
Schema additions
Schema changes
Schema consisterror
Schema consistency
Schema deletions
Schema translator
Scratch file
Search -— sequential
Search key
Search region
Search region
Search region —— temp‘

call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call

call
call

call

call
call
call
call
call
call
call

.17.

(06A) 546
(DML) 424
(06A) 542
(06A) 542
(DML) 4241
(DBA) 542
(DML) 4246
(DML) 4245
(DBA) 5442
(DML) 426
(DML) 426
(DML) 426
(DML) 426
(DMu 426
(DBA) 549
(DML) 426
(DML) 426
(DML) 422
(DBA) 542
(SERV) 64
(DBA) 544
(DBM) 612
(can 553
(SERV) 64
(can 553

(DBM) 646
(SERV) 64
(DBA) 544
(DML) 4240
(DBA) 5446

542
(DML) 4226
(DML) 4226
(DML) 4249
(SERV) 64
(SERV) 64

226
(can 32

226
(DRU 554
(can 354
(DRM 52
(can 52
(DRL) 364

226
(onu 534

225
‘224m4
21

(DML) 426
ma 2442

ND«-605127.5 EN

Search regions
Secondary key (index)
Security breach
Sequence
Sequence ~— Begin/End
Sequence — critical logging
Sequence — statement
Sequence—name
Sequential search
Serial location mode
Serial mode
Serial realm — change
Serial reaim — new
Serial realms
Service prog. — SlBAS
Set -— change
Set — delete
Set - empty
Set —— involuted
Set — multi—member
Set - new
Set —— single member
Set SlBAS system no.
Set description table
Set item
Set item ~— member
Set item ~ owner
Set member
Set occurrence
Set owner
Set owner - find
Set type
Set type ~ involuted
Set type — involuted
Set types —— (examples)
Set verification
Set—conds.—for—reproc.
Setname
Set—passive
Sets
Setting current password
Short form (statement)
Simulator
Simulator
Simulator errors
Single link
Single link chain
Single member set
SlNTRAN OS-file
Size — index tables
Size -— object schema

~18-

*231
2.2.4

(DML) 4.2.1
(DBA) 5.4.4
(DBA) “5.4.4

“5.3.4
(DRL) 3.3.1
(DBA) 5.4

2.2.3
2.1/2.2.3
223/224
”3.3.21
”3.3.8

(DRL) 3.7
(SERV) 6.4

“3.6
33.15
2.3.2.2
2.1
2.3.2
'3.3.12
2.3.2

(DBA) 54.12
(DRL) 3.7

23.21
(DRL) 3.3.12
(DRL) 3.3.12

2.1
2.3.2/‘2322/2323
2.1
‘42]
2.3.2.3
232/2323

(DRL) 3.3.12
2.3.2.4

(DBM) 6.3.1/‘6.3.4
(DBA) ”5.4.10
(DML) 4.2
(DBA) *5.4.2

'2.3.2
2443

(DML) 4.
(DBA) 5.1
(DML) 4.4

'72
(DRL) 3.3.12

2.3.2.3
2.3.2

(DRL) 3.3.3
(DRL) 3.7
(DRL) 3.33

ND—60.127.5 EN

Size —- realm
Source schema
Space requirements
Stack ar
Start —

ea

Start SlBAS
Start initiation
Start redefinition
Statement sequence
Statistics — free-space
Status
Status
Status —— interface errors
Status —— simulator errors
Status indicator
Stop ~—
Stop SlBAS
Storage — information
Storage
Storage
Storage
Storage
Storage
Storage

class
class
class
class
class
Code

— autom.
- automatic
— manual
>—- manual

Storage Code list
Store — record
Store —-

Store randomly
Structuring principles
Subroutine calls
Subschema facility
Successful execution
Suppress documentation
Syntax — Database def.
Syntax check
Syntax description
Syntax errors
Syntax errors exceptcond.
System failure/restart
System
System
System
System
System
System
System
System

realm
realm
realm
realm
realm
realm
realm
realm

(SlBAS)
-— SlBAS
-~ addit
-— change
-— new
._ system
~— user

TP — table pointer
TURN—OFF—TERM—LOG
TURN-ON—TERM—LOG
Table — index descript.

-19-

(DRL)

(DRL)

(oat)

(SERV)
(SERV)
(Dru)

ND—60.127.5 EN

3.7
2.2.6
3.7
4.4
“6.1.2
5./*5.4.1
3.1
3.1
3.3.1
‘6.3.6
5.4
4.2
7.2
7.2
4.2.3
‘6.1.3
5,/'5.4.1
2.1
’2.3.2.4/2.3.2.2/2.4.2.1
3.3.12
2.3.2.4
2.3.2.4
3.3.12
3.4.3
3.4.4
‘4.2.10
2.4.2.1
2.324
3.7
2.2
1.2
4.1
2.4.1.1
333/334
3.3.1
3.2
6.1
3.2
App. E
‘5.3.7
2.2.5
3.3.4
2.2.6
3.3.8
’3.3.22
“3.3.7
3.3.8
2.2.6
2.2.4
6.4
6.4
3.7

Table — realm descript.
Table —- record descr.
Table —~ set descript.
Table pointer
Tables —— DML resident
Tables — index
Temp—data—base-key
Temp~search~reg~ind
Temporary database key
Temporary search region ind.
Test mode
Test mode
Time
Trailing blanks
Transaction units
Translator -— schema
UNLOAD
UNLOCK
UTBLK
UTILITIES
Unique key
Unload/load
Unlock —— records
Unsuccessful execution
Update — old Database
Update
Update —~ realm usage mode
Update —— automatic
Update —— manual
Update—in-place
Usage mode
Usage mode

~— call

Usage mode — Realm
User applic program
User realm
User subroutine
User system realm
User system realms
VERIFY CALC
VERIFY INDEX
VERIFY MODE
VERIFY SET
Valueélength
Verification — Calc key
Verification — Index key
Verification -— set
Verfication mode
Virtual memory layout
Warning — (realm protec)
Warnings -— DB example"
Word
Word bo Jndary
Work-area-size

.20..

(DBM)

(DML)
(DRL)
(DML)

(DRL)
(DRL)
(DBA)
(DBM)
(DML)
(DML)

ND-60.127.!5 EN

3.7
3.7
3.7
2.2.4
3.7
1.1
4.2
4.2
2.4.1.2
2.4.1.2
3.2
3.3.4
5.4
4.2

2.2.6
6.3.8
4.2.19
5.4.7
'6.
2.2.3/2.3.2.3
“6.3.8
2.4.3.3/‘4.2.1f’9
2.4.1.1
3.2
4.2.3
2.4.3.2
3.3.13
3.3.13
5.3.4
6.2.1
4.2.3
4.2
'2.4.3.2
2.2.6
2.2.5
5.4.14
2.2.6
3.7
6.3.2
6.3.3
6.3.1
6.3.4
4.2
'6.3.2
'6.3.3
“6.3.4
6.3.1
5.1
2.4.3.4
3.7
3.3.10
4.1
5.4.1

COMIVllENTS TO INDEX

References are given for key words only where relevant information for the word
is given. Lowercase letters are used throughout, except for commands and
certain abbreviations, like SIBAS, CSRl etc.

References are separated by '/' if placed on the same line or, frequently to save
space, on new lines.

Additional information is given for the key words, for example subsystems to
which the key words belong like (DML), or by giving the context in which the
word is used, for example checking, verification etc.

The key word is usually repeated if the information on'the line is different from
the preceding. See for example references for 'SIBAS’.

References with the asterisk prefix ”" mean that the key word is used in the
table of contents, and is usually the main reference if more than one is given,
See for example reference 'Calc key verification 6.1.11.2'.
Cross references are frequently given, for example as follows:

Temporary database key
Database — temporary ' key
Key - temporary database “

where "’ replaces the key word in the context.

The additional information is usually separated from the key word by for
ex’Bucket - main 2.1', which here could mean 'Main bucke1'. But this is no
general rule.

NDt60.127.5 EN

ND—60.127.5 EN

************** SlEND US Youni COMMENTS!'! **************

Are you frustrated because of unclear information in
this manual? Do you have trouble finding things?
Why don’t you join the Reader's Club and send us a
note? You will receive a membership card — and
an answer to your comments.

Please let us know if you
" find errors
" cannot understand information
' cannot find information
' find needless: information

Do you think we could improve the manual by
rearranging the contents? You could also tell
us if you like the manual!

HHHHHH HELIP YOURSELF BY HELPING U$!! HHHHflfl

Manual name: The Database System SIBAS || ND User Manual Manual number: ND-60.127.5 EN

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual ?’

Your name: Date'

Company: Position'

Address:

What are you using this manual for ?

NOTE! Send to:
This form is primarily for Norsk Data A.S ____>documentation errors. Software and Documentation Department
system errors should be reported on P.O. Box 25, Bogerud Norsk Data's answer will be foundCustomer System Reports. 0621 Oslo 6, Norway on reverse side

Answer from Norsk Data

Answered by

Norsk Data A.S

Documentation Department
P.O. Box 25, Bogerud
0621 Oslofi, Norway

x
r,

T,
,,

z
.

.
v».

fiw
kw

fi
VA/uk

-
-

