THE DATABASE SYSTEM
SIBAS Ii

ND User Manual

ND-60.1275 EN

THE DATABASE SYSTEM
SIBAS Ii
ND User Manual

ND-60.127.5 EN

NOTICE

The information in this document is subject to change without notice. Norsk Data
A.S assumes no responsibility for any errors that may appear in this document.
Norsk Data A.S assumes no responsibility for the use or reliability of its software
on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. It may not

be photocopied, reproduced or translated without the prior consent of Norsk
Data A S.

Copyright @ 1984 by Norsk Data A.S

PRINTING RECORD

Printing Notes
02/80 Version 01 — Replaces the previous manuals numbered ND-60.057
07/80 Revision A

The following pages have been revised:

xiii to xv, 3—5, 4—11 to 4-16, 5—6 to 5-35, 6--5, 6—-6, 6-9, 6-21, 6-22,

7-3to 7—4a, A—-1to A-2,D-1, F~11to F-2.

09/81 Version 02

10/82 Revision A

The following pages have been revised or added:

Xito xvi, 1-2, 1-4, 3—5 to 3—6, 3—15 to 3~16, 4—1 10 4-6, 4—15 to 4—16,

4-3110 4—-48,5-2,5-5 t0 5-6,5—-19 to 5—20a, 529 to 532, 5—35 t0 536

’

617 to 620, 6-22, 7-3 to 7—5, Index.

02/83 Version 03
08/84 Version 04
01/86 Version 05

THE DATABASE SYSTE M — SIBAS 1|
ND User Manual
Pubi.No. ND-60.127.5 EN

594
B0

000

+
D¢

b 44
94

3 1 Norsk Data A.S
D¢ 60o Graphic Center

DE S8
P.O.Box 25, Bogerud
Norsk Data 0621 Oslo 6, Norway

+

iv

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one
or more single pages to be merged into the manual by the user, each revised
page being listed on the new printing record sent out with the revision. The
old printing record should be replaced by the new one.

New versions and revisions are announced in the Customer Support Information
{CSI) and can be ordered as described below.

The reader's comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms and comments should be sent to:

Documentation Department
Norsk Data A.S

P.O. Box 25, Bogerud

0621 Oslo 6, Norway

Requests for documentation should be sent to the local ND office or {in Norway)
to:

Graphic Center
Norsk Data A.S
P.O. Box 25, Bogerud
0621 Osio 6, Norway

The SIBAS database system, originally developed by the Central Institute for
Industrial Research (CIIR) in Oslo, Norway, is the first fully developed database

system following the CODASYL DBTG recommendations for implementation on a
minicomputer.

The system described in this manual has also been implemented on other
coemputer systems, such as UNIVAC 1100, IBM 360/370, CDC CYBER and DEC 10.
It has been expanded and optimized in a joint development project with the
company offering SIBAS on large computer systems: A/S Shipping Research
Services, Oslo, together with the Central Institute for Industrial Research, Oslo,
and Norsk Data A.S.

The implementation of SIBAS on the ND computers utilizes the advanced
facilities of the SINTRAN Il Virtual Storage Operating System, and offers
multiple user programs simultaneous access to the same database in a
controlled and secure manner, thus minimizing the amount of additional routines
in the user’s programs.

Norsk Data wishes to thank the users’ group reference committee for their
contributions and kind assistance in the writing of this manual. Their comments

have proved to be very helpful and we look forward to receiving all users’
cocoperation in the future.

Norsk Data A.S.
Software Department

ND-60.127.5 EN

- Wi -

ND-60.127.5 EN

PREFACE

THE PRODUCT

This manual describes the SIBAS I Database Management System, version F.
Product number: SIBAS Il SUT 10166 E.

SIBAS Il is delivered as one standard package. There are additional modules.
The standard system contains the following modules:
Modules:

GIBAS System Generation
SiB2-INSTALL:COM

SIBAS Real-Time Segments
SIB2-PROG:BPUN
SiIB2-DATA:BPUN

SIBAS Data Manipulation Libraries
SIBLIB-2N-MX
SIBLIB-1N-MX
SIBLIB-1R-MX
SiB2-DML-B-MX
SiB2-DML-R-MX

SIBAS Background Programs
SiB2-DRL:PROG
SIB2-DBM:PROG
SIB2-SERV:PROG
SIBINTER:PROG

SIB2:LOOKLOG:PROG

Additional Modules are:

SIBAS Backend Programs

ND-60.127.5 EN

THE READER

SIBAS Il User's manual is written for a wide variety of users, but the different
chapters are oriented towards different classes of readers:

Programmers, who write application programs which make use of SIBAS.

Database administrators who are concerned with secure and efficient
operations of the overall system.

Any one else who is generally interested in database management systems.
The database administrator should read the whole manual.

The application programmer will be more concerned with Chapters 4 and 7;
Data Manipulation and Error Reporting.

The “generally interested’” reader may limit him/herself to the first two
chapters.

PREREQUISITE KNOWLEDGE

The first two chapters do not need any prerequisite knowledge, but it is assumed
that application programmers are familiar with the SINTRAN Il operating system
and at least one programming language. More specifically, they should be
familiar with the concept of calling subroutines since SIBAS is accessed via
subroutine calls.

The database administrator must be familiar with the real-time features of
SINTRAN Il since SIBAS makes extensive use of them. '

ND-60.127.5 EN

THE MANUAL

Chapters 1 and 2 are an introduction to SIBAS and should give the necessary
background to go on to the following chapters.

Chapter 3 gives a detailed description of how one can define or redefine a
database — it is of special interest for a database administrator, but may also be

of interest to a programmer.

Chapter 4 gives a detailed description of how to call SIBAS data manipulation
functions. This chapter is oriented towards application programmers.

Chapter 5 describes how to administrate and operate a SIBAS database. This
chapter is written for database administrators.

Chapter 6 is a description of some utility programs provided with SIBAS. This
chapter is also written for database administrators.

Chapter 7 is a list of errors and how to handle them.

The appendices give reference information in a compressed form.

RELATED MANUALS:

The following manuals describe Systems of greatest interest to the SIBAS
application programmer:

SINTRAN Il User's Guide ND-60.050
ND Relocating Loader ND-60.066

ND-60.1275 EN

WHAT IS NEW IN SIBAS-F

— The maximum number of realms that can be defined is now 255.
— The maximum number of pages per realm is increased to 2000 000.
- When a realm is full it can be extended automatically (see page 2-19).
e The maximum number OS-files per database is increased to 24.
— The maximum number of member realm types in a multi-member set is 4 (page 2-24).
— A realm may span over several OS-files (see pages 3-14, 3-15, 3-16, 3-33, 3-34, 3-35).
— The display and storage codes have been extended (see pages 3-45, 3-47, 3-49 to 3-50).
— The following new calls have been added:
SWHAT to obtain realm name and physical record number of the
current or any remembered record (see page 3-49).
SFRNO to find a record using its physical record number (see page
3-49).

SFRGT it is a combined SFRNO, SGET call (see page 3-49).

— It is now possible to take a ""synchronized checkpoint’'(see page 5-30).

ND-60.127.5 EN

Section:

1.1
1.2

1.2.1
1.2.2

1.3

2.1
2.2

2.2.1
222
223
224
225

2251

2.3.1
232

23.21
2322
2.3.2.3
2324
2.4
241

2411
2412

242

2421
2422

Xi

TABLE OF CONTENTS
+ o+ o+

INTRODUCTION

The SIBAS Database System
ND SIBAS Implementation ...

SIBAS on the ND-500 System
SIBAS in a Network: SIBAS Backend ...

SIBAS Modules

SIBAS PRINCIPLES

The Database Concept ...
Data Structure ...

Hems
Group tems ...
Record Types ...

SIS oo

Chain Representation of Set Types ...
Storage Class ...

Data Manipulation ...

General ...
Currency Indicators

Connecting and Disconnecting, Inserting and
Removing ...

Connecting and Disconnecting
Inserting into and Removing from an Index

ND-60.127.5 EN

Section:

243

2431
2432

2433
2434

244

24.41
2442
2443

25

251

3.1
3.2
33

3.31
3.3.2
3.33
3.3.4
335
3.36
3.3.7
3.3.8
339
3.3.10
3.3.1
3.3.12
3.3.13
3.3.14
3.3.15
3.3.16
3.3.17
3.3.18
3.3.19
3.3.20
3.3.21
3.3.22
3.3.23

xii

Concurrent ProCessiNg ...

Database Reservation
Realm Usage Modes and Realm Protection

MoOAES
Record Level Lock OQut ...
Notification of Change ...

Privacy System ...
Privacy on Database Level
Privacy on Record Occurrence Level
Summary of the Setting of Current
Password ..o

Data Dictionary ...

Definition of the Data Dictionary ...

DEFINITION/REDEFINITION LANGUAGE (DRL)

INtrodUcCtion .o
How the Definition/Redefinition Modute Works ...
DRL Input File ...

Global Rules ...
Common Part of the Statements
Start INIation
Start Redefinition ...
End/EXit
New OS File
New System Realm ...
New Serial-Realm ...
New Calc-Realm ...
New [tem
NEW GrOUP i
NEW S T o
NEW INAEX oo
NEW TeXE oo e
Delete St oo
Delete TeXt oo
Delete INdex ...
Delete Hem ...
Delete GrOUP oo
Change System-Realm ...
Change Serial-Realm ...
Change Calc Realm ...
Change Set ...

ND-60.127.5 EN

Xiii

Section: Page:
3.3.24 Change tem 3--40
3.3.25 Change Group ... B USRS 3 M
3.3.26 Change Text 342
3.3.27 Rename 3--43
3.4 The Data Description Catalogue ({DDC) in SIB2 DRL 344
3.41 Display Code 346
3.4.2 List of Legal Symbols and Rules

for the DISPLAY 347
343 Storage Code 350
344 List of Storage Code ... o351
3.4.5 Storage and Display in SIBAS: Date and Time .. 3-.59
3.5 Dimensioning of Database Parameters 3564
36 How to Run DRL on the Computer 3--57
3.7 Examples 358
4 DATA MANIPULATION LANGUAGE (DML) 4-— 3
4 General .. 4— 3
4.2 Parameter Descriptionsccooovveivveioiio 4— 4
421 Open Databaseccocoooiivoiiioae 4— 7
4.2.2 Close Databaseccoocoovveiiioii 4-- 9
423 Ready Realm ... 410
424 Finish Realm ... 4—13
425 Direct Find ..o 4—14
426 Relative Find ... 4-—-17
427 Find Set Ownerocoooocooiiiiii e 4-20
428 Get, Getn, Get INAeXS .voveeeeveeeeoeeee 421
429 Modify .o 4-23
4210 SOTE ittt 425
4211 Erase ... 4-27
4212 Connect ..o 4—29
4.2.13 Disconnectocooovviiiiiii e 430
4214 INSEIt .o 431
4215 RemMOve ..o 4--32
4.2.16 Remember ..o 433
4.2.17 FOrget e 434
4218 LoCk o 4-35
4219 Unlock ..o 4—36
4220 Change-Passwordcccocooviiiioi 436
42.21 ACCEPL it 4-37
4.2.22 Erase Element ... 4—-39
4223 Accumulate ... 440
4224 Fetch-Get ...ooooooiiiii e 4—41
4.2.25 Get Schemas Information ... 4—43
4.2.26 Transaction Units ..o 4--47
4.2.27 Calls Using Physical Record Number 4--48

ND-60.127.5 EN

Section:

4.3

4.3.1

4311

43.1.2

4.3.2

4.3.2.1
4322

43.3

4.4

4.41
442
443
444
445
4.4.6
4.4.7

4471
4472

5.1

.11
51.2

52
5.3

5.3.1
532
53.3

Xiv

Host Language Considerations
FORTRAN

General Rules for FORTRAN on

The SIBAS-500 ...
Standard ‘Cookbook’ for Programming
FORTRAN Applicationsccooooviiini,

General Rules for COBOL on The SIBAS-500 .
Standard ‘Cookbook’ for Programming
COBOL Applications ...

How to Load Application Programs ...

DeSCription ..o
Different Types of Simulators ...
Loading 1BANK Programs with SIBAS ...
Loading 2BANK Programs with SIBAS ...
Loading Reentrant Programs with SIBAS
Loading Real-Time Programs with SIBAS ...
Applications on ND-500 Systems

Applications Running on the 500 CPU
Applications Running on the ND-100 CPU ...

DATABASE ADMINISTRATION

Real-Time Organization of SIBAS ...
How is SIBAS Organized? ...
Organization of SIBAS on an ND-500 System

SIBAS StatesS .ooooiiiiiiiiiriiee e

Logging and Recovery Facilities ...
General ...
Checkpoint ...
Routine Logging ..o

ND-60.127.5 EN

Section:

5.4.1

FSINN
w

4.7

551
55.2
553
55.4

5.6
5.7

XV

Critical Sequence/Transaction Units
Before Image Logging ...
Backup ...
System Failure/Restart ...

Restart from a Backup Copy and a Routine
Log
Restart from a Database with Before Image
and Routine Log ...
Reprocessing after System Failure

Detailed Description of the Calls ...

Start/Stop SIBAS/Get-Stateccoiiiiiiiei
Run/Pause/Recover/Finish/Set Passive/

Repro-Status ...
Initiate-Log ...
Begin/End Sequence ...
Set Routine Logging On/Off
Log Message ... SRRSO
Write-Log-Buffer-Onto-Routine-Log
Checkpoint ... TR
Synchronized Checkpoint ...
Roll-Back ...
Set-Conditions-For-Reprocessing
Reprocess-Routine-Log ...
Set SIBAS System Number ...
Reserve/Release SIBAS ...
Execute-MACIO ..o
DBA-Calls ...

Special SIBAS-500 Features ...

Calls with Different Functions
Calls not Available ...
Exceeding the Size of a Direct Routine Log ...
SIBAS-500 Macros ...

How to Install SIBAS L

Routine for Reading SSI/SEC Code and lLog
Information ...

ND-60.127.5 EN

XVi

Section: Page:
6 UTILITIES 6— 3
6.1 Database Maintenance Module ... 6-— 3
6511 Introduction ... PPN 6 3
6.1.2 SATL o 6~ 5
6.1.3 Exit, Stop the DBM Module ... 6 b
6.1.4 Ready Realms ... 6— 6
6.1.5 Finish Realms . 6-— 6
6.1.6 P 6— 7
6.1.7 Pateh 6 8
6.1.8 Reset-Error-Flags .. 6 9
6.2 PriVaty oo 610
6.2.1 General 6—10
6.2.2 Define Password ... 613
6.2.3 Remove Password ... 614
6.2.4 Display Password/Privacy ... 614
6.2.5 Index Compression ... 615
6.3 Consistency Checking ... 6—16
6.3.1 General 6—16
6.3.2 Calc Key Verification ... 618
6.3.3 Index Key Verification ... 6—19
634 Set Verification ... 620
635 Page-Link Verification ... 622
536 Free -Space-Statistics ... 6--23
6.3.7 Example 624
638 Unload/Load ... 6—25
6.3.9 Clear System-Realm ... 627
6.4 SIBAS Service Program ... 6—28 "
6.4.1 SIBAS-Service Extensions SIBAS-500 6-—30
6.5 SIBINTER 6—31
6.5.1 INtroduction ... 6—31
6.52 The HELP Function ... 631
6.5.3 Syntax of the SIBINTER Commandscooo 6-—-32
6.5.4 Listing of the SIBINTER Commands 633
6.5.5 A SIBINTER Session ... 6-—34

ND-60.127.5 EN

XVii

Section:
7 ERROR AND EXCEPTION CONDITIONS
7.1 Fatal Errors ...
7.2 Interface and Simulator Errors ...
7.3 DML Diagnostics, Database Exception Conditions
(DBECS) o
7.4 Run-Time Message — from SIBAS ...
Appendix:
A SUMMARY OF THE DML STATEMENTS ...
B SUMMARY OF THE SIB-DRL STATEMENTS ...
C SUMMARY OF THE SiB-DBM STATEMENTS ...
D SUMMARY OF THE SIB-SERVICE STATEMENTS ...
E SUMMARY OF THE DATABASE EXCEPTION
CONDITIONS ... R ORPRORURRURNS
F SUMMARY OF THE DML ROUTINE NUMBERS
G CONSTANTS AND LIMITATIONS ...
H STORAGE CODES ...
INDEX

ND-60.127.5 EN

Page:

xviii

ND-60.127.5 EN

- Xix -

SIBAS I

The Database Management System

ND-60.127.5 EN

- XX -

DIALOGUE DIALOGUE is a new generation of database
management system. |t has the complete set of
tools and utilities for:

e high performance, easy expansion, and
redefinition of a database.

e creating tailored user interface;

e creating and maintaining applications easily and
efficiently;

® generating advanced reports;

e common data dictionary information for easy
coordination and maintenance of the database
and applications.

The modules of DIALOGUE are described below:

USER ENVIRONMENT The UE is an integrated part of the SINTRAN

operating system. It can be used to create a
tailor-made, individual interface for the ND system.

4TH GENERATION UNIQUE is a tool for application development. It

LANGUAGE can be used to develop screen pictures and specify
transactions directly on the screen. Productivity
gains by using UNIQUE are: about 90% of
development time and maintenance resources.

REPORT GENERATOR RG allows the definition of advanced reports in an

easy manner by drawing the desired layout on the
screen.

QUERY LANGUAGE ACCESS is the too! which can be used to look at
database information in terms of tables. It is
suitable for on-line use.

APPLICATION ABM can be used to make demanding transaction

BUILDING AND systems. It is used interactively with simple

MAINTENANCE directives. It saves about 50% of development time
and 90% of maintenance resources.

DATABASE SIBAS IS A FULL CODASYL DATABASE

MANAGEMENT MANAGEMENT SYSTEM. ITS FEATURES INCLUDE

HIGH PERFORMANCE, EASY EXPANSIOM AND
REDEFINITION OF DATABASE. IT IS WELL SUITED
FOR DISTRIBUTED PROCESSING ENVIRONMENTS,
AND PROVIDES FLEXIBILITY AND HIGH SECURITY.

ND-60.127.5 EN

1-1

CHAPTER 1. INTRODUCTION

ABSTRACT

SIBAS is a CODASYL database management system. Its features include: (i)
easy definition and redefinition of database structures and active dictionary
facilities; (ii) multiprogrammed, terminal oriented computing environment; (iii)
robust measures for data integrity and safety; and (iv) distributed data
processing capabilities.

TABLE OF CONTENTS

1.1 THE SIBAS DATABASE SYSTEM.

1.2 ND SIBAS IMPLEMENTATION.
1.2.1. SIBAS on the ND-500 System.
1.2.2. SIBAS in a network: SIBAS backend.

1.3 SIBAS MODULES

ND-60.127.5 EN

1-2

ND-60.127.5 EN

1.1

1-3

INTRODUCTION

THE SIBAS DATABASE SYSTEM

SIBAS is a Database Management System, originally designed by the Central
Institute for Industrial Research in Oslo, and presently implemented on IBM,
UNIVAC, CDC, DEC 10, SEL and ND computers. The data management

capabilities correspond to the recommendations contained in the CODASYL
report.

The implementation of SIBAS for ND computers contains some extensions as
compared to the CODASYL report. Another important characteristic of this
implementation is the strict orientation towards a multiprogrammed, terminal
oriented computing environment. This means that many users may access one
database simultaneously, and also that it is possible to have several databases in
a system at the same time. Great efforts have been made to provide safe and
effective tools for control of data integrety and security.

The ND SIBAS system includes a data definition and redefinition facility, a
run-time database manipulating package and a comprehensnve set of interactive
utility programs.

In general terms, a Database Management System (DBMS) is a software
concept or environment which allows a database to be structured and accessed
in a standardized way. It includes a set of program functions which the
application programmer uses when operating in the DBMS environment. In this
way, his own work will be reduced, since he does not need to solve the
corresponding design problems and program the general service routines
himself. The ND SIBAS system has been extensively used in a number of
installations since 1975 and is today a well-proven and reliable system.

Using a DBMS is a way of adding intelligence to the computer system. Data
items may be connected to each other depending on defined relational patths
These connections could well be done in the logic of a program using ordmary
data files, but such a solution would be expensive both in development and
maintenance costs. The DBMS allows application programs to be reduced in size
and complexity. However, the relations between data will be described as
pointers and tables within the database. This means that the overhead in
program complexity is changed into an overhead in storage space.

By "overhead in space”” we here mean the difference between the total size of
the database and the size of the "pure data’. The overhead depends on the
access facilities desired and deserves careful consideration by the database
designer.

ND-60.127.5 EN

1.2

1-4

ND SIBAS IMPLEMENTATION

In the ND SIBAS implementation, the real-time processing facilities of SINTRAN
have been used to a great extent. The run-time Database Control System (DBCS)
is loaded and operated as a real-time program. Since SIBAS code is reenirant,
several databases may be handled concurrently with only a limited increase in
memory requirements.

The application programs may be run in timesharing, batch or real-time mods,
and several users may call one database simultaneously. Only one call is
processed by one SIBAS program at a time, however, and SINTRAN facilities are
used to queue the calls.

Application programs communicate with the SIBAS system by means of a set of
subroutine calls. The subroutines execute at the priority level of the calling
program, and cause a call to be made to the separate SIBAS process by means
of the internal device mechanism. The calling program is then halted until the
answer arrives from the higher priority SIBAS system.

The Norsk Data versions of COBOL, FORTRAN, BASIC, PLANC and MAC all

contain a CALL facility enabling application programs to communicate with the
SIBAS subroutine package. ’

ND-60.127.5 EN

1.2.1

SIBAS on The ND-500 System

SIBAS is implemented on the ND-500 computers and uses their huge address
space and fast CPU. Running a database by means of a SIBAS-500 process will
keep the whole database in virtual memory by using the «file-as-segment»
concept. No explicit disk transfers are executed and consequently a reduced 1/0
overhead is achieved. If enough (physical) memory is available, the whole
database may actually reside in physical memory at run-time.

All the SIBAS-II DML-calls (with a few minor exceptions, see section 6.1) are
implemented on the ND-500. Their functions are exactly the same as in a
SIBAS-100 system and the database format is also identical. This means that the
same applications (and databases) may use both SIBAS-100 and SIBAS-500, and
that applications (and databases) are easily moved between an ND-100 and an
ND-500 system.

The SIBAS-service program can be used to supervise and control both
SIBAS-100 and SIBAS-500 processes even when they are running simultaneously
on an ND-500 system. We recommend starting and controlling SIBAS-500
processes by using this standard service program. Control can also be obtained
by including SIBAS-calls in applications. For on-line interaction with a SIBAS-500
process, without having to write application programs, the standard SIBINTER
may be used directly.

ND-60.127.5 EN

1.2.2

1-6

SIBAS in a Network: SIBAS Backend

The SIBAS DBMS may now be accessed from a remote ND-500, ND-100 or

ND-10 computer through a transparent, safe and efficient communication
package.

The new product may be used to increase the capacity of database oriented
applications because it makes it possible and easy to implement a number of
configurations.

As an example, one can imagine a system based on one machine with sizable
SIBAS activity. To increase the capacity of the system, one machine may be
added, and the total load split in such a way that one machine runs only
applications (Application machine), and the other runs both database(s) and
some applications {Database machine). Such a change may be made with small
modification in the application programs. The system may be upgraded later on
with more machines to further increase the capacity.

Another example is the case where a database is held at a central site, but may
be accessed from (an) other computer(s) through telephone links.

The software features automatic checks and retransmission on both sides.
Intermittent power failures are also taken care of.

The Application machine The Database machine
APM DBM
Application COSMOS Application
Y————-——v XCOMA
SIBLIB-x SIBLIB-x

)

SIB 2A

Figure 1.1: In this case, one database is accessed by several applications divided
between two computers.

ND-60.127.5 EN

1.3

SIBAS MODULES

The SIBAS Database Control System (DBCS) is the module called from the
application program for storing, reading, modifying and deleting the information
in the database. It is run as a real-time task.

The SIBAS data definition and redefinition module (DRL} is used for defining a
database, i.e., defining the structure, the access keys, the size of the database
and for changing such parameters.

SIBINTER is a module that enables users to access a SIBAS data base
interactively without having to write application programs. It is particularly well
suited for educational purposes.

The SIBAS service program is a background utility to start/stop and manage the
DBCS module.

The SIBAS Database Maintenance (DBM) is a background utility used mainly to
check a large amount of data. It has some repair facilities and does not make
use of the DBCS.

ND-60.127.5 EN

1-8

SIBAS [t MODULES

SIBINTER

DATABASE
MAINTENANCE
MODULE
{DBM)

N

I ;U

LN

SIBAS USER
SERVICE IAPPLICATION
PROGRAM PROGRAM
. /<:
DATABASE DATA DEFINI-
CSNTROL TION AND
(SDBSZSE)M REDEFINITION
' MODULE
(DRL)

DATABASE
DESCRIPTION

DATA FILE DATA FILE

DATABASE

Figure 1.2: SIBAS Modules

ND-60.127.5 EN

2-1

CHAPTER 2. SIBAS PRINCIPLES

ABSTRACT

The SIBAS database is defined in terms of the CODASYL terminology: Data
Item, Group ltem, Record, Index, Realm and Set. These are defined by the Data
Definition/Redefinition Program {DRL).

A SIBAS database is accessed in two ways: (i) by direct access a specific record
is accessed by providing the value of an index key; (ii} by relative access: finding
a record relative to a record found previously (navigation). in SIBAS one can also
access a chunk of records by one single command.

Connecting and disconnecting records to a set are done automatically by the
STORE, MODIFY and ERASE statements.

SIBAS database protection and integrity are maintained by: (i) transaction units;
(i} realm protection; and (iii} record locking. Privacy of the database is supported
at the database and at the record occurrence level.

Descriptions of all data on the SIBAS database are maintained in the SIBAS
DATA DICTIONARY. This information is available on-line.

TABLE OF CONTENTS:

2.1 THE DATABASE CONCEPT.
2.2 DATA STRUCTURE.
2.2.1 items.
2.2.2 Group ltems.
2.2.3 Record Types.
2.2.4 Search Keys and Indexes.
2.25 Realm.
2.2.6 Database
2.3 DATA RELATIONS.
2.3.1 Search Regions.
2.3.2 Sets.
2.4 DATA MANIPULATION.
2.4.1 Access Principals.
2.4.2 Connecting & Disconnecting, Inserting & Removing.
2.4.3 Concurrent Processing.
2.4.4 Privacy System.
2.5 DATA DICTIONARY

ND-60.127.56 EN

ND-60.127.5 EN

2.1

SIBAS PRINCIPLES

THE DATABASE CONCEPT

What is a database? Well, this is a rather complicated question to answer. Since
a good understanding of some basic principles is essential for reading the rest of
this manual, this chapter will discuss an example of information storage and
retrieval. The description in this chapter should answer the question to such a
degree that the reader will be able to understand the detailed description of the
SIBAS database system in the following chapters.

Let us assume that we run a railway company. it has been growing for some
years, and we are having trouble in planning and maintaining time tables,
scheduling the utilization of engines and cars, planning the work of our
personnel, etc. What do we do? We design a database and make the computer
help us keep track of our business.

First, we think of a file describing all our engines. The following information
ITEMS need to be stored for each one of our 159 engines:

— serial number

— supplier name

— type

— latest service inspection
— capacity

— allocated to train number

Then we decide to have a similar file for all our cars. It must contain the
following information for each car:

-— serial number

- supplier name

— type

— number of passengers/tons load
— allocated to train number

We aiso want a personnel file containing the following information for each
person:

— name
family name
— home address
— position {engine driver, conductor, etc.)
— allocated to train number

For convenience, we have grouped the two basic items Family Name and

Surname in a group called Name. We call this construct a GROUP ITEM and use
it in all cases when we want the entire name of the person.

ND-60.127.5 EN

2-4

Now we have three files, and we find that in the engine file there will be 159
RECORDS because we have 159 engines, each record giving us a limited
description of one engine. Similarly, there will be one record for each car or
person in the other files. We have also specified the records with respect to the
information contained in them, and we notice that all records in one file quite
naturally will have the same length.

Having our three basic files, we now want to make up a time table. In our data-
base we illustrate this with a fourth file, the time table file, containing the
following information:

— train number

— line number

— time of departure
— average speed

— time of arrival

But now we want to describe trains containing a variable number of cars.

What we do to assemble a train is to select the desired number of cars and put
them together into a SET. In this set, we also include the engine, engine driver
and conductor. Finally, we assign the train (set) to a specific entry in the time
table, which is identified by means of a train number.

In the database, we create the set simply by storing the train number in the
engine record, the car records, the engine driver record and the conductor
record. The time table record is said to be the SET OWNER and all the others
are called SET MEMBERS.

In our example, it should be apparent that a file is a collection of similar but
unrelated records. With the concept of sets, we have included relations between
records in the discussion. We consider a set to be a collection of records having
some common characteristic, in this case the train number. While the records
are restricted to fixed length, depending on the data elements contained in them,
a set may contain a variable number of member records.

Time Table Record Engine Record Engine Driver Record Car Record Car Record

Train number |—-| Train number |——g| Train number |—g| Train number |-—gs=| Train number

Figure 2.1: The Set

ND-60.127.5 EN

2-5

Records in one file have the same length and organization, but contain various
data. Engine number 11 is not the same as engine number 137, but they are
described in the same way in the file. The way the description appears is called
the RECORD TYPE and each individual description is called RECORD
OCCURRENCE. These expressions are frequently used in this manual.

Similarly, we use the expression SET TYPE and SET OCCURRENCE. The set type
in this example gives a description of a variable train length. The set occurrence
describes a specific train connectad to a specific line and departure time. Obvi-
ously, we have one set occurrence for each record occurrence in the time table
file, i.e., for each set owner record.

TIME TABLE FILE

Line 1
09.03

Line 2
10.16

Line 3
11.54

Line 1
12.06

Line 3
13.15

Search region
Line 4 Departure times 1200-1700

16.30

Line 2
16.55

Line 1
17.08

Figure 2.2: The Search Region

ND-60.127.5 EN

2-6

Now that we have our railroad database, we want to print out time tables for
each line. This means that we want to scan the time table file and select all
records for line 1, line 2, etc. This can also be thought of as a division of the time
table into classes, one for each line.

For other purposes, we may also need other classes within the time table
register, for example all departures between 12:00 and 17:00 hours, or even all
records in the time table file. In SIBAS, such classes of records within a file are
called SEARCH REGIONS.

Our railway network branches out from a central station in a treelike structure
without connections between the different branches.

B12

B11

Central Station

(=)
N
N

B13

Figure 2.3: The Railroad Network

ND-60.127.5 EN

We want to add a description of this network to our database. The following
itemns shall be included:

— station name

— name of inner station
— distance to inner station

By inner station, we mean the one which is the next station when travelling
towards the central station. The station file will have the following layout:

Station
Record

Station File

Central Station

Al
Central Station
6 km.

A1
Al
10 km

A12
Al
13 km

A121
A12
5km

A122
A2
9 km

Figure 2.4: The Station File

ND-60.127.5 EN

> Branch

~

>‘ Branch

Branch

2-8

In this file, all stations directly connected to each other are gathered in groups or
classes in a similar way as were the records in the train set eartier. But in the
train set, one record type was the set owner and other record types were set
members. Here in the station register, the set owner record type and the set
member record type are the same. However, the set owner item (station name)
is different from the set member item (inner station name). This grouping of
equal records is called an INVOLUTED SET.

Now our database is almost ready. We only need one extra device to make it
useful. Consider the personnel file containing information on all the persons
working in our company.

Quite often, we want to select the record for one specific person because we, for
example, want to increase his salary. We know his name and want the rest of the
information. We would like to supply the name to an access mechanism in the
database system and to get the corresponding record back.

The device that facilitates this is the definition of a RECORD KEY. In this case,
we use the name of the person, which happens to be a group item. Any item or
group item can be defined to be a key to the file.

Foreman's
Office Serial Storage Area
Section A Section B |Section C

Figure 2.5: Storehouse Layout

In the storehouse the railway company has at the central station, some kinds of
goods are stored in a shared area such that arriving articles are just put into the
first available place in the area. Other articles, like dynamite, animals, etc., are
always put in the same places or sections in the store house. Each of these two
methods of allocating space in the storehouse has certain advantages and
disadvantages.

The utilization of space is probably better in the first case, but it may be
necessary to search for the different articles there. In order to reduce the search
time, the foreman saves all the delivery notes in alphabetical order and makes a
little note on them as to the location of the goods.

In the other area, on the other hand, the staff always knows exactly where to

find a specific article. But the utilization of space is a bit uneconomical. For con-
venience, the foreman saves the deliverly notes in a bunch for each section.

ND-60.127.5 EN

2-9

We use quite similar methods for storing records in the database. The first case
in the storehouse corresponds to the SERIAL LOCATION MODE in the database.
Arriving records are stored in the first available space, and the values of the
record key and location are stored in an INDEX TABLE, in sorted order. When the
record is to be found again, the index table is searched until the key value is
found and the location code is used to find the record.

INDEX TABLE REGISTER
KEY VALUE LOCATION
RECORDC
A RE—
B 9\\
C —— i
RECORD A
RECORD B

Figure 2.6: Indexed Register

ND-60.127.5 EN

Bucket .
Number:

2-10

The other case in the storehouse corresponds to the CALCULATED LOCATION
MODE in the database. Here we divide the available storage space into a number
of boxes or BUCKETS. When a record is to be stored in this part of the
database, we take the key value of the record and calculate a bucket number
from it. We have chosen the calculation method such that an approximately
equal number of records will be stored in each bucket. When a record is to be
retrieved from the database, we calculate its bucket number from the key value,
go into the bucket and search it through until we find the record.

Record Record Record Record Record Link

> Main area

> Qverfiow
area

Figure 2.7: Buckets

Unfortunately, we cannot rely on the assumption that records will be equally
distributed over the buckets. We must prepare ourselves for the case when a
bucket overflows. We do it by reserving a number of buckets to serve as
OVERFLOW BUCKETS. When we want to add a new record in a bucket that is
already filled up, we make a little note in it and place the record in the overflow
bucket.

Now that this little discussion reaches its end, you may feel fyou still don't know
what a database really is. But is is really quite simple. A datébase is nothing but
well defined data and relations between data, just like our Iitﬂe railway company
example. A real database tends to be somewhat larger, but 1s nevertheless built
up with the same building blocks.

ND-60.127.5 EN

2.2

2-11

DATA STRUCTURE

Data that are stored in the database have a certain structur
database definition. This structure defines the name, length,

e, defined in the
and role of each

single data element. Data definiticn will be described in this section.

Data elements may also be related to each other due to common characteristics,

etc. Such aspects of the database will be discussed in the next

section.

The structuring principles used in SIBAS are outlined in the following figures.

DATABASE
-7 | RreaLmB
REALM A
/ RECORD A -n /
/ /
i RECORD A-2 ,
RECORD A-1
GROUP ITEM
ITEM ITEM ITEM ITEM i
. v
%
v

Figure 2.8: SIBAS Database Structure

ND-60.127.5 EN

2-12

An Example might look like this:

TAX PAYER RECORD
IDENTITY GROUP ITEM
NUMBER ITEM
LAST NAME ITEM
FIRST NAME ITEM
ADDRESS GROUP ITEM
STREET ITEM
CITY ITEM
CODE ITEM
REGISTRATION GROUP ITEM
DATE

Figure 2.9: SIBAS Database Structure

From the figures, it will be seen that SIBAS, which follows the CODASYL
terminology here, uses five different structure levels: ITEM, GROUP ITEM,
RECORD TYPE, REALM, DATABASE.

As an example, consider data concerning an employee in a company:

EMPLOYEE
NAME
NUMBER
BIRTH DATE
SALARY
JOB TITLE

The name EMPLOYEE is used to identify a record type in the data base. The
database will normally contain several such record types. Furthermore, there will
be several occurrences of each record type. If there are 1000 employees in the
company, then there will be 1000 record occurrences of the record type
EMPLOYEE in the database. A "record occurrence” can usually be referred to
simply as a “record” with the full term “record occurrence’’ being used
occasionally for the purpose of extra clarification. Experience with this class of
DBMS has indicated that it is very important for the user to distinguish clearly
between “record type” and “record occurrence’’.

ND-60.127.5 EN

2-13

Each record type contains a number of items. In the above example there are
five items as listed. An occurrence of this record type would consist of one value
for each of the five items. For instance, a record occurrence might be as follows:

SMITH

74890

420531

43000
PROGRAMMER

The above concepts are fairly commonplace to any user versed in the practices
of commercial data processing. It must be mentioned that in SIBAS all records
of a given type are of the same length.

We will now give a fuller explanation of the terms we have used in the preceding
examples.

e REVIEW ¢

DATA ITEM: The smallest unit of named data is the Data
Item.
Synonyms: Data Element, ltem.

GROUP ITEM: A named group of Data ltems is called a Group
Item. The Data ltems in the group need not be
contiguous.

RECORD: A collection of Data items or Group ltems is

called a Record.

RECORD TYPE: The particular description or type of a
collection of Data items and/or Group ltems is
called the Record Type.

REALM: The storage space assigned to one Record
Type is called a Realm. In SIBAS a Realm and
a Record Type are synonymous.

SET: A Set is a named relationship between two or
more Record Types.

DATABASE: A collection of non-redundant and interrelated
data items, record types and sets is called a

Database.

ND-60.127.5 EN

2.2.1

2.2.2

2-14

Items

The item in SIBAS has the same role as the elementary item in COBOL or a
variable in FORTRAN. An item declared in the schema DRL (definition/
redefinition language) must be designated as either INTEGER, FLOATING or
CHARACTER.

The following table indicates the correspondence between SIBAS item types and
COBOL and FORTRAN item types.

SIBAS COoBOL FORTRAN
INTEGER COMPUTATIONAL INTEGER*2
FLOATING COMPUTATIONAL-2 REAL
CHARACTER ALPHANUMERIC CHARACTER

Group Items

It may be useful to assign a name to a collection of items in a record type. In
this case, the collection is referred to as a group item. The items need not be
contiguous items in the record. The sequence of the items in the group may also
be different from the sequence in the record type. Only one level of naming is
allowed. In other words, it is not possible to define a group item which includes
another group item, and the constituents in a group item must all be elementary
items. However, an item may participate in more than one group item. This could
be used to implement multilevel groups by including all items from one or more
group items in a new group item.

As a special case, a group could consist of only one item. This enables the user
to define multiple names on items.

The group item provides a shorthand representation for identifying a collection of
elementary items.

ND-60.127.5 EN

2.2.3

2-15

Record Types

Several items together are collectively referred to as a record type. Each SIBAS
item is associated with a single record type in the database.

Each record type must be assigned a name which is different from other names
in the schema. Furthermore, a location mode must be assigned to each record
type. The location mode is essentially a mechanism which controls where the
record is to be stored in the database.

SIBAS supports two location modes which are referred to as CALCULATION
MODE and SERIAL MODE. In the first case, the user must designate either an
item or a group item to serve as the primary record key to be used when
calculating the location.

Records with serial location mode will be stored in the first available location in
the realm.

CALC LOCATION MODE

For CALC records, a standard system supplied hashing or randomizing algorithm
is used to distribute the record occurrences equally over a space on direct
access storage (see Figure 2.10). The space assigned to a record type is called a
realm. The data administrator must divide the realm into two areas called the
main area and the overflow area. Each of these two areas is further subdivided
into a number of buckets. This number must be a prime number.

RECORD 1
RECORD 2
d
HASHING
RECORD
KEY —#| ALGORITHM —— o [RECORDS
I
i
I
1
i
RECORD n

Figure 2.10: Calc Keys

ND-60.127.5 EN

2-16

Each occurrence of a CALC record type is then stored in a bucket in the main
area or possibly in the overflow area. The bucket number in the main area is
computed from the value of the key and the number of buckets as follows:

Key Value
Number of buckets

= | + Remainder

where 1 is the integral part of the quotient. The remainder is directly used as the
bucket number, and the record occurrence is stored in that bucket if there is
space available. If not, then a bucket in the overflow area is used (refer to Figure
2.11).

Such overflow buckets are accessible from the main area bucket through a
pointer. Records are stored in the first available location of the bucket. When the
CALC key is used as a basis for finding the record, the same hashing algorithm is
used and a sequential search is made through the main area bucket and if
necessary also the relevant overflow bucket(s).

The data administrator must decide, when defining the CALC key item, whether
or not duplicate values of the key are allowed. If not, an attempt to store a
record which has a primary key value equivalent to that in a record of the same
type already in the realm will be unsuccessful.

ANDERSON & RECORD 1
BENGTSON B

GUSTAVSON
JOHANSEN
i # RECORD 2

OMAN B 4
i
t
13
t
t
b

.]

t
1]
L]
+
3
i
i
1
i
'

MERCEDES 2

vOLVO RECORD 3

vOLVO ™

vOLVO ~

SAAB

SAAB

Figure 2.11: CALC Records

SERIAL LOCATION MODE:

Records for which no CALC key is designated will have location mode of SERIAL.
Records of this type will be stored in the first available free location in the realm.
If a record is deleted, then the next time a new record of the same type is stored
in the realm, it automatically takes the space vacated by the deleted record.

ND-60.127.5 EN

2-17

224 Search Keys and Indexes

It is possible to assign one or more search keys (index keys) to a record type
independent of whether its location mode is CALC or SERIAL. As in the case of
CALC, a decision must be taken on whether more than one record with the same
key value is allowed or not. Normally, at time of initial load, the user would be
advised to ensure that records are in ascending value of a primary key value,
especially if he wishes to make frequent sequential scans through these records
using the primary index as the basis for his accesses.

In fact, in some cases where the record type has a location mode of SERIAL and
there are search keys defined, it may be rather arbitrary which of the keys is
regarded as the primary key and which are the secondary keys. In practice, if one
index is more likely to be used than the others for serial processing of the
records, then that index should be regarded as the primary key, and the records
should preferably be loaded initially into the database in ascending order of the
values of this key.

Indexes are maintained in ascending order of the key values, and the records in
the realm may be processed in this sequence if required.

Level 1
AK RP
ADAM 15
ALEX g9
RK= Record key ALLEN
TP= Tabie pointer - 20
RP= Record pointer Levei 2
» =/
ADAM 11
ANNE 12— RK RP
EVA 13 ANNE 2
CARL 13
Level 3 DON 8
AK ™ RK ™
JERRY 2.1
ADAM 1
JERRY] LEE 22 R ils
A 3 LouIs 23 EVA 19
FRED 25
IGOR 3
[RK T
SAM 3.1 —
TOM 32 i
WILLY 3.3 | ——

Figure 2.12: Index Keys

Since both CALC keys and search keys may be group items, it is possible for an
elementary item to be used as part of several keys.

ND-60.127.5 EN

2-18

An index must be designated as either automatically maintained or manually
maintained.

If the index is automatically maintained, then at the time a new record is stored
in the realm, the index is automatically updated by the DBCS (database control
system). If the index is manually maintained, then the programmer must include
an extra statement in his program if and when he wishes to cause the index to
be updated.

SIBAS COLLATING SEQUENCE:

There is no restriction on the composition of group items or single items which
may serve as index keys. The values of index items are treated as bit strings and
the index table is sorted in ascending order of the item values.

NULL VALUES OF KEYS:

Null values are represented by zeros or blanks depending on the item type, and
any item not being a key is allowed to take that value.

Key items, however, must not take a completely null value. This applies to the
CALC keys, index keys, search keys, owner set items and member set items. Any
of these may be a group item, in which case it may be partially null but not
entirely null.

Any attempt to store a record which has a completely null value for a key or set
item will be unsuccessful. Any attempt to modify an item in a record already in
the database which would result in such a condition will also be unsuccessful.

INDEX TABLES — Representation of Indexes

When a record type has primary or secondary index keys, then for each key an
index is built up during initial load and maintained, where necessary, during
subsequent processing. Each index consists of a number of levels, and each level
contains a number of index tables.

The index tables must be assigned to a system reaim.

ND-60.127.5 EN

2.25

2.25.1

Realm

A realm is a storage space assigned to one record type. Often it corresponds to
a SINTRAN file, but it is also possible to store more than one realm in a file. One
realm may also span over several SINTRAN files. The realms are of two types,
user realms containing data records and system realms containing index tables,
etc.

In SIBAS, all occurrences of one record type must be assigned to one user
realm. The user realm name will also be the name of the record type. As
mentioned, system realms are used for storing levels of an index table when
either a primary index or secondary indexes are defined.

The data administrator must estimate the number of record occurrences to be
stored in each realm. Since records of the same type are of equal length, this
facilitates an estimate of the maximum size of the realm.

In the case of indexed records, the data administrator must also estimate the
space required for the index tables.

In the case of CALC records, it is necessary to regard the realm as being divided
into a primary area and an overflow area. Each of these areas is further divided
into equal size buckets. A bucket occupies one page.

AUTOMATIC EXPANSION OF A REALM

In SIBAS-F when a realm is full it can be expanded automatically and space can
be allocated to it on a new (predefined) OS-file(s). However, to do this the
database must be defined with empty OS-file(s). If the files are contiguous, the
size must be the same as that in "ESIZE", defined at the time of loading SIBAS.
Default size is 10.000 pages. The automatic expansion feature must be enabled
when SIBAS is loaded/installed.

A message {warning) is given on the error device when a realm is expanded onto
a new OS-file.

When a realm is expanded onto a new 0S-file, the OS-file is attached to the
realm, and this 0S-file cannot be used by any other realm.

ND-60.127.5 EN

2.2.6

2-20

Database

For completeness, the database is identified as the collection of all records,
indexes, set types and realms which are defined in one single use of the schema
DRL.

SOURCE USERS USERS
SCHEMA APPLICATION APPLICATION
PROGRAM PROGRAM

X

DATA DATABASE
DEFINITION/ CONTROL
REDEFINITION SYSTEM
PROGRAM

h DATABASE

Figure 2.13: The Main Components of the Database

Each database has a corresponding source schema. In addition, there exists an
object schema which is the set of internal tables generated when a source
schema is translated using the schema translator (see Figure 2.13/2.14A).

SIBAS
SYSTEM
REALM CONTROL INFORMATION

USER
SYSTEM
REALM

! > INDEX TABLES

USER
DATABASE SYSTEM
REALM

RECORD
TYPE 1
REALM

i RECORD TYPE 1
: { RECORD TYPE m
RECORD
TYPE m
REALM

Figure 2.14A: The Database Concept

ND-60.127.5 EN

2-21

A program is normally written to process the data in a single database. However,
several users may access one database concurrently.

It must be emphasized that in SIBAS it is necessary for the program to declare
its intention to process a database by executing an explicit OPEN statement on
the database. In fact, this has the effect of opening a SIBAS system realm which
contains among other things the object schema. Each realm in the database
which the programmer wishes to process must also be opened, and this is done
using a READY statement. A system realm containing an index table to a realm
will be automatically opened when the realm is readied.

In a given installation on a given hardware configuration, there may be several
databases, sach known to the operating system through the name of its system
realm.

e REVIEW e
REALMS: A user realm is a CALC or a SERIAL realm.
o The user realm name will be the name of the
record type.
e Size of the realm needs to be estimated.

@

RECORD TYPE: e Each record type must have a unique name
e A location mode must be assigned to each
record type.

LOCATION MODE: e In CALCULATION LOCATION mode, records
are distributed over a space using a hashing
algorithm,

o In SERIAL LOCATION mode records are stored
in the first available space.

INDEX KEYS: ® It is possible to assign index keys to record

types independent of its location mode.

@ Key items may be single DATA ITEMS or
GROUP ITEMS.

@ At least one key in a record MUST have a
value.

e Each record type may have any number of
index keys.

e Index keys may be maintained MANUALLY or
AUTOMATICALLY.

ND-60.127.5 EN

2.3

2.31

2-22

DATA RELATIONS

Search Regions

Records stored in the same realm, i.e., records with a common type, can be
grouped together in search regions. This means that all records in the realm
having a specific common property constitute a defined class of records within
that realm.

The following record classes may be handled as search regions:
— records having the same key value (duplicates allowed)
— records having key values within a specified range

— all records on the realm

(See figure 2.14B.)

SEARCH REGION
DUPLICATE KEY
(VOLVO)

Figure 2.14B: The Search Region Concept

ANDERSON
VOLVO

1st STREET
CARPENTER

BENGTSON
VOLVO

2nd STREET
BRICK LAYER

SEARCH REGION
KEYS BETWEEN
STREET 25

GUSTAVSON
MERCEDES
3rd STREET
FOREMAN

JOHANSON
VOLVO

5th STREET
CARPENTER

KARLSON
SAAB

10th STREET
ELECTRICIAN

ND-60.127.5 EN

SEARCH REGION
ALL RECORDS OF
CERTAIN TYPE

2-23

A search region is established as soon as a record belonging to the
corresponding class is located in the database (see the description of the FIND
statement). The program may then access the other records in the search region
sequentially.

The search region identification is stored in a system variable called Current
Search Region Indicator, which can be referenced, saved and restored by the
program.

A search region is a ‘'navigation” concept, used at run-time, and it is not
necessary to declare it at the definition time. Another concept, that of a SET,
must be declared at definition time.

ND-60.127.5 EN

2.3.2

Sets

2-24

A set is normally a relationship between two or more record types. In each set,
one record type must be designated as the owner and each of the others is then
a member. A single member set type is a set where the member records all are
of the same record type, while a multi-member set type is a set where the
member records are of more than one record type (see the following figures).
There is also a third set type called an involuted set type which does not fall into

either of these two classes and will be discussed separately.

CALC INDEX

—

UNIQUE

Figure 2.15: Single Member Set

SALESMAN RECORDS

CUSTOMER RECORDS

N

AN

SALESMAN SET OCCURRENCE A CUSTOMER
A 1
CUSTOMER
2
\
CUSTOMER
3
SALESMAN CUSTOMER
B 4
SET OCCURRENCE B
CUSTOMER
\ 5

\

Often illustrated as:

SALESMAN,

CUSTOMER

ND-60.127.5 EN

2-25

SALESMAN RECORDS CUSTOMER RECORDS PROSPECT RECORDS
SALESMAN CUSTOMER PROSPECT \
A 1 1
CUSTOMER PROSPECT
2 2
CUSTOMER PROSPECT
3 3
\
\
\ PROSPECT
3
SET OCCURRENCE A
\\
Often iilustrated as:
SALESMAN
/ \
CUSTOMER PROSPECT

Figure 2.16: Multi-Member Set

NOTE;
The maximum number of member realm types in a multi-member set is 4.

ND-60.127.5 EN

2.3.21

2.3.2.2

2-26

SET ITEMS

When defining a single or multi-member set type in SIBAS, it is first necessary
that a CALC or index key is defined for the owner record type. Furthermore, the
key must be defined such that duplicate values of the key are not allowed.

To be able to define a single member set type, there must be an item
(elementary or group) in both the owner record type and the member record type
which “corresponds’ in length and type, but not necessarily in name. In the case
of group items, there should normally be correspondence in the constituent
elementary item types, although it would be possible for an elementary character
item in the owner to correspond to two or more elementary character items in
the member. The item in the owner record type is referred to as the owner set
item. The item in the member record is referred to as the member set item.

The owner set item must be defined as a CALC or index key for which duplicates
are not allowed. The member set item may or may not be defined as CALC or
index key. Duplicates will generally be allowed for member set items.

In the case of multi-member set types, there must be a member set item in each
member record type which bears the relationship as described above to the
owner set item. In addition, the member set item in each member must have the
same name as in all the other members in the set type.

In all cases, the choice of an item to be an owner set item or a member set item
imposes no restrictions on its use as primary key or search key.

SET OCCURRENCES

Each set type in the database will have a number of set occurrences (more
simply referred to as sets). Each set contains one occurrence of the owner
record type and zero or more occurrences of each member record type. Sets
with no members are called empty sets.

For a given set type, there are in the database as many sets as there are
occurrences of the owner record type.

It is the set item which determines how member occurrences belong to a set. If
the value of the member set item for a set type has the same value as an owner
set item, then the member record is "'connected”’ to the owner's set. At what
time this connection will be established depends on the “storage class” of the
set type (see Section 2.3.2.4).

ND-60.1275 EN

2.3.23

2-27

CHAIN REPRESENTATION OF SET TYPES

The physical representation of a set occurrence in the database is achieved by a
chaining technique. This means that the owner record in the set contains a
pointer to the first member record in the set, which in turn contains a pointer to
the next record, and so on. The last record in the set points back to the owner.
The order of the member records in the set is generally determined by "'time of
arrival”. A chain representation of this kind is essentially uni-directional.
Problems can arise in long chains when a record is deleted, as it is necessary for
the DBCS (database control system) to circumnavigate the whole chain in order
to modify the pointer in the record prior to the one deleted.

To avoid problems of time consuming deletes in long chains, it is possible and
often advisable for the data administrator to designate a set type with double
links, which means that each record in each occurrence of the set type contains
both a "next”” pointer as above, and a "'prior” pointer in the opposite direction.

Defining a set type with double links does not add any extra processing
capability, but it does have the effect that certain statements which depend on
the set type relationship may be executed more rapidly.

SINGLE LINK CHAINING

DOUBLE LINK CHAINING

Figure 2.17: Chaining of Records

ND-60.127.5 EN

2-28

Hiustration of SET TYPE and SET OCCURRENCE:

To clarify the concepts of set types and chains, Figure 2.18 illustrates a single
member set type. Figure 2.19 illustrates two occurrences of this set type. Figure
2.20 illustrates how the same sets would appear if the set type in Figure 2.19 had
been declared with double links. In these figures, the convention of using a
rectangle to represent a record type and a circle to represent a record
occurrence is followed.

In the example illustrated, the set item could be BRANCH ID which would then
be found in both record types BRANCH and CUSTOMER. All occurrences of
CUSTOMER having the same value of BRANCH 1D would then be chained to the
BRANCH record having the value for the item BRANCH ID.

BRANCH

HAS

CUSTOMER

Figure 2.18: Logical Relationship

BRANCH BRANCH
1 5
C3 S m C4
YN
Figure 2.19: Occurrences of HAS with Link to Next Only
BRANCH BRANCH
1 5

c2

Figure 2.20: Occurrences of HAS with Link to Next and Prior

ND-60.127.5 EN

Involuted Set Types:

In SIBAS it is possible to have a special set type in which the owner record type
and the member record type are the same. This special set type is referred to as

2-29

an involved set type because the set relationship is involuted (or turns on itself).

An involuted set type may only be defined if the set item which designates
ownership and the set item which designates membership are different in name
and correspond in type and length. Both items are of course in the same record
type, see figure 2.22.

This involuted set type {which is not supported in the CODASYL Database facility
proposal) is useful for example in a Bill of Materials application. Graphically, an

involuted set type is depicted as follows:

PART

CONTAINS

Figure 2.21: Basic Involuted Set Type

In the example, the record type PART might contain two items, PART NO. and
CONTAINED IN which should be defined with the same length and type. PART
NO. will be the owner set item and CONTAINED-IN will be the member set item.

If a given assembly, X, contains three identical subassemblies Y, Z and Q then

that part of the overall structure may be depicted as in Figure 2.23.

SETS:

o REVIEW ¢

Each set type MUST have one OWNER record
type, and one or more MEMBER record types.
The maximum number of member record types
is 4 (multimember set).

The owner item of a set MUST be defined
either as a CALC key or as an index key.

The owner item and the member item MUST
have the same length and MUST be of same
type.

A set type is defined with single or double
links (for retrieval efficiency).

A set type is maintained MANUALLY or
AUTOMATICALLY.

ND-60.127.5 EN

NAME IS
UNIQUE KEY

MEMBER SET ITEM
NOT THE SAME AS
OWNER SET ITEM

Figure 2.22: Involuted Set

2-30

PERSON RECORDS

ﬁmssow
PRESIDENT

JOHANSSON
MANAGER
NILSSON

ﬂnANSSON

MANAGER
NILSSON

frson

ASSIST. MANAG
MANSSON

ha

SVENSSON
OFFICE SECRETARY|

PERSON

PETTERSSON
SECRETARY
PERSON

ND-60.127.5 EN

2-31

OWNER PART NO. = X
CONTAINED IN = ?

MEMBERS Y Q
PARTNO.=Y PARTNO.=Z PARTNO.=Q
CONTAINED IN=X CONTAINED IN=X CONTAINED IN =X

Figure 2.23: Involuted Set Type

In Figure 2.23, each of the four circles represents an occurrence of the record
type PART. The owner set item {PART NO.) identifies each record occurrence
uniquely. The member set item (CONTAINED ID) identifies the owner record of
each set occurrence.

ND-60.127.5 EN

2324

2-32

STORAGE CLASS

It was mentioned in Section 2.3.2.2 that the time an occurrence of a member
record is connected to its associated owner occurrence depends on the storage
class.

Storage class is a property of each set type. The storage class must be declared
as either automatic or manual. If the storage class is automatic, then a member
occurrence is automatically connected into the appropriate set occurrence at the
time the record is stored in the database, using a DML STORE statement.

If the storage class is manual, then the connection is not made when the STORE
is executed, but the programmer may cause the connection to be made by using
a CONNECT statement. Irrespective of storage class, a record may not be
connected into any occurrence of a set type into which it is already connected;
furthermore, it may be connected into no more than one occurrence of any given
set type.

In SIBAS, storage class is a property of a set type. This applies to a single
member set type, a multi-member set type and an involuted set type. A record
type may of course be defined as member of several automatic set types and, at
the same time, of several manual set types.

Storage class is regarded as being of sufficient importance in the structure of a
database to merit a special graphic formalism to be used when depicting the
structure of the database graphically. A continuous line is used to illustrate an
automatic set type relationship and a dotted line to represent a manual set type
relationship. The various possibilities are indicated in Figure 2.24.

It must be noted that, in SIBAS, the storage class also has an effect on whether
or not it is permissible to disconnect a record from a set. If the storage class is
automatic, then this is not permitted, although the record would be moved from
one set to another if the value of the member set item changes. If the storage
class is manual, a record may be disconnected from a set using a DISCONNECT
statement.

Finally, it should be noted that it is possible to order the members of a set type
which is manually maintained. This is done by using the CONNECT BEFORE or
CONNECT AFTER statement which will link the record into the set occurrence
before or after an already existing record in the set occurrence.

ND-60.127.5 EN

2-33

Automatic Single Membe

EFG

r

Automatic Multi-Member

M
\)MM

involuted Automatic

TS

Q

P

e
< QR

R

Two single member set types,
one automatic, one manual.
Set types have same member.

Figure 2.24: Examples of Possible Set Types

ND-60.127.5 EN

Manual Single Member

Manual Multi-Member

Involuted Manual

Two single member set types,
one automatic, one manual:
member in one is owner in other

2-34

Note on Set Occurrences:

As in the CODASYL proposal there is one important property to note about the
way in which a member record can be connected to a set. If the record type is a
member of a given set type, then an occurrence of the record type may be
connected into no more than one occurrence of that set type. That is, a member
may only have one owner in one set occurrence. The record type could, however,
be defined as a member of other set types (Figure 2.24).

Removal Class:

In SIBAS the removal class will depend on the option given in the ERASE
statement. This is discussed in more detail under the definition of this statement.

ND-60.127.5 EN

2.4

2.4

2411

2-35

DATA MANIPULATION

The CODASYL Database Facility approach to processing a data base calls for the
programmer to be able to enter the database from outside and to navigate his
way around inside. The SIBAS approach to search keys makes it possible to
access all records from outside in several ways and also to conduct searches in
certain regions within the database, relative to a previously found record. The
fact that several users access the database concurrently necessitates some
control mechanism. This is discussed in more detail in this section.

Access Principles

GENERAL

With a SIBAS database, it is possible for a program to make two kinds of
accesses to the database. The first class is called an "out of the blue’ access.
The programmer provides the value of a key, and a single record is found in the
database whose key value corresponds to the key value specified.

The other class of access is called a relative access, and the record found always
has some relationship to one found previously — normally the record most
recently found.

It must be emphasized that, since the database is in direct access storage, both
classes of access are essentially “direct” in the normally accepted meaning of
the term. The first access to a database which is made in any program must
necessarily be an “out of the blue” one. However, a program will normally
contain a mixture of statements from both classes.

The statement which is used to locate {that is, confirm the presence of} a record
in the database is the FIND statement. Numerous options of FIND are avaifable

and may be listed as follows:

1. FIND based on CALC key or INDEX key (this could define a search region).

2. FIND first or last member record in a set occurrence.

3. FIND next or prior member record in a set relative to a record recently
found.

4. FIND first record in a realm {which defines a search region).

5. FIND next record in a search region.

6. FIND owner occurrence relative to a member occurrence recently found.

ND-60.127.5 EN

2-36

The execution of a FIND statement may be successful or unsuccessful. If
successful, a record is located, and an indicator is set to point to that record,
called the CURRENT OF RUN-UNIT indicator. This means that further DML or
host language type actions can be performed on that record. However, no host
language statement such as the COBOL MOVE or a FORTRAN ASSIGN may be
meaningsfully executed on the data in the record until a successful GET
statement has been executed.

A FIND may be unsuccessful. In the case of an out of the blue access, for
example, this may mean that there is no record of the type sought in the data
base whose key values correspond to those specified in the FIND statement. The
relative classes of FIND may be unsuccessful for a variety of reasons which are
defined in detail in another chapter.

If the FIND, or any other statement, is unsuccessful, then a Database Exception
Condition (DBEC — see Section 7.3) is set. It is the responsibility of the
programmer to be fully aware of the database exception conditions which may
occur in the course of execution of his program and to build in appropriate tests
and courses of action in each case.

LOCATE THE RECORDS DATABASE GET DATA
RECORD 1
—T T~
-~
‘/ \\‘
, RECORD 2 :
? RECT :@ | | ——=> SELECTED DATA
IND WITH KEY] | ELEMENT
? 1
{ 1
I l
RELATIVE FIND | |RECORD3 |
I [
| [
! 7 |
f !
| I :
l 1 F
| | §
| f i
] i
' 1 Z
{ i
| |RECORD 4 I
| |
! |
\ J
L= -
SET OR SEARCH
REGION RECORD m

Figure 2.25: Access Ways

ND-60.127.5 EN

2412

2-37

CURRENCY INDICATORS

Different programs accessing a SIBAS database may execute concurrently. It is
also possible that the same program may be executing two or more times
concurrently with different parameter values. For convenience, each executing
instance of a program is referred to as a run-unit.

As already indicated, a run-unit in the course of its execution may need to find a
record relative to some recently found record that is found in the same run-unit.
The way in which both the run-unit and the DBCS keep track of where in the
database processing has reached is by means of two currency indicators. In
SIBAS, the two indicators are referred to as:

CURRENT OF RUN-UNIT INDICATOR (CRUI)
CURRENT SEARCH REGION INDICATOR (CSRI)

CSRI
A

OOOOOE

CRUI
Figure 2.26: lllustration of CSR! and CRU/

Current of Run-unit Indicator (CRUI)

The CRUI is always updated after the successful execution of each FIND or
STORE staternent. The content of this currency indicator is always a unique
identification of a record in the database. See figure 2.26.

This record identification is a guantity which distinguishes one record occurrence
in the database from all others. It is not based on the data values in the record
but rather on the physical address of the record in the data base. The physical
address of a record may of course change during the life of a run-unit, but the
CRUI will then be updated accordingly.

The CURRENT OF RUN-UNIT INDICATOR is maintained by the execution of the
FIND and STORE statements. Several other DML statements actually operate on
the record designated by the CRUI, but only successful execution of FIND or
STORE will update CRUI.

Temporary-Database-Key

It is possible for a program to "remember’”’ a CRUI in a temporary-database-key.
The CRUI could then be referred to directly from the same run-unit by use of the
temporary-database-key, even if another record is current. If the user remembers
more than one CRUI, the system will build up a remembered list where the
temporary-database-keys are used to identify the entries in the list. Each time a
REMEMBER statement is executed a new entry is added to the list and the
entries are removed from the list by executing the FORGET statement.

ND-60.127.5 EN

2-38

Any statement which operates on a record identified by the CRUI can equally
well operate on a record which is identified by a temporary database key. For
example, it is possible to MODIFY a record identified by a
temporary-database-key without making it CURRENT OF RUN-UNIT first.

If a record which is identified by a temporary-database-key is moved physically
in the realm, the address in the temporary-database-key, and all other entries in
the currency and temporary-database-key lists for all concurrent run-units
referring to this unique record will be updated accordingly.

Note that a temporary-database-key may only be used during the “life of a
run-unit”’.

Current Search Region Indicator (CSRI)

An "out of the blue” access to the database may have the effect of setting the
CSRI to a new search region. A search region can be defined as a collection of

records which have something in common. See figure 2.26. It can be any of the
following:

All records with same value of CALC KEY (duplicates allowed).

All records with same value of an INDEX KEY {duplicates allowed).
All records in a realm (i.e., of same type).

All records whose index key values are between defined limits,

W

The setting of the CSRI depends partly on the form of the FIND statement and
partly on the key specified in the FIND. The setting of the CSRI to the four types
of search regions given above is done in the following way:

FIND using a CALC key for which duplicate values are allowed.

FIND using an INDEX key for which duplicate values are allowed.

FIND first in realm using the name of the reaim.

FIND between limits giving the upper and lower limit of an index key item.

ALy -

These four forms of the FIND statement are the only possible ways of changing
the value of the CSRI.

As with the CRUI, it is possible to “remember’ the contents of the CSRI! in a
temporary search region indicator. The system builds up a remembered list for

temporary search region indicators in the same way as for temporary database
keys.

Also, either the CSRI or a remembered temporary search region indicator may be
used in accesses to the database which are in the class: ’‘relative to some
previously found record”.

ND-60.127.5 EN

2-39

The Use of CRUI and CSR!

At the beginning of the execution of any run-unit, both the CRUI and the CSRI
are regarded as undefined. Hence, the first FIND statement to be executed must
be one which does not use these indicators, but which does in fact set them.

When a FIND NEXT in search region relative to some previously found record is
executed and if CSRI is used to identify the search region, the search region will
be the one defined in the latest executed FIND of one of the different forms, i.e.,
the current search region.

Furthermore, iz should be noted that if the current record has been ERASED,
CRUI will be undefined. If the current record has been MODIFIED, CRU! will still
be defined, but the record it is identifying may have been moved out of the
current search region. This situation will be illustrated by an example.

In the example above, a FIND using a key (INDEX or CALC) for which duplicates
are allowed has been executed. The current search region will be defined as all
records with the same value {B) of the key, and the current record will be the
first of these records. If a FIND NEXT in search region using CSRI and CRUI is
executed, the next record with value B on the key will be found and made the
current record, and CSRI will remain unchanged. If the key is then MODIFIED in
this record, the record will be moved out of the current search region, but it will
remain the current record.

A FIND NEXT using CSRI and CRUI in this situation will have no meaning. If the
user wants to FIND the third record with value B on the key, he should execute
REMEMBER for the first record using a temporary-database-key, and then
perform a FIND relative to this record. It should be noted that this situation only
occurs if the key used to define the search region has been MODIFIED.

ND-60.127 5 EN

242

2.4.2.1

2-40

Connecting and Disconnecting, Inserting and
Removing

CONNECTING AND DISCONNECTING

Connecting and disconnecting records to sets is normally done autornatically by
SIBAS through execution of STORE, MODIFY or ERASE statements.

Manually, however, it is possible under certain circumstances to connect a
record into a set and disconnect it from a set. In SIBAS, it is possible to use
similiar facilities to update an index. Each is described separately.

Connecting To and Disconnecting from a Manually Maintained Set

If a record type participates in a set type as a member, then its occurrences may
{at any time during the life of the database) be either connected or not
connected into a set of that set type. When the connection actually takes place
depends on the storage class of the set type.

If storage class is automatic, it means that the record will be connected at the
time the STORE is executed. This means that there must be an occurrence of the
owner record type in the database whose owner set item values correspond to
the member set item values in the record being stored. If this is not the case,
then the record cannot be stored, and hence not connected. However, if the
attempt to store the record does not include an attempt to store the member set
item (it may be a group item), then the store may be successful, if all other
restrictions are satisfied, but the connection into the set item is not made. The
member set item value will then be undefined. A subsequent modification of
such a record which provides a value or values for the complete member set
item would cause the connection to be made. Considerable care is called for in a
multi-user environment when allowing this situation to occur.

If the storage class of the set type is manual, then no connection is made when
the record is stored. However, the CONNECT statement may be used to connect
a record into the set of the set type in which it is a member. Again there must be
an owner in the database with an equal valued set item for the connection to be
successful. Exactly where in the set the record is connected depends on the
option used. It is possible to connect it at the end of the set (i.e., last in order of
the link to next) or else adjacent to some previously found record in the set. In
this case, it can be connected before or after the previously found record. If the
storage class is manual, then it is also possible to DISCONNECT a record from a
set into which it previously had been connected.

ND-60.127.5 EN

2-41

The various alternative actions which can take place when a STORE, CONNECT
or DISCONNECT is executed are summarized in the following table. The storage
class is taken into account, as is also, for each storage class, the value of the
member set item (MSI) with respect to owner set item values (OSl) already in
the database.

It must be noted that the STORE statement operates on a record occurrence
built up in a record area in core by the programmer. The programmer must
designate which of the items in the record type he intends to provide values for.
The CONNECT and DISCONNECT act on a record which is already stored in the
database, and it is the value of the member set item there which may influence
the success or failure of the statement.

A DISCONNECT or a CONNECT or both may take place implicity during the
course of execution of a MODIFY if the member set item values are changed.
What exactly happens depends both on the storage class of the set type and on
whether or not the member record was already connected into some set. The
complete picture is summarized in the following table, which examines 12
situations depending on storage class of the set type, whether the member
record was previously connected or not and the relationship of the new member
set item values to owner set item values already in the data base. In the cases
where the member was in fact connected, it is only the set item values of other
owners which are of interest.

ND-60.127.5 EN

2-42

Storage
Class Situation STORE CONNECT DISCONNECT
A
MS! = OSI (some) Y (connect)
MSI =+ OSI (some) N
Automatic MSI not completely | Y (no connect) I'(Jot applicable Not allowed with
given in record area automatic
MSI! null in member | N null member set
record in database item value not
allowed
7/
MS! = OSI {some) Y Y
MSI =% OSl (some) N Not applicable
Manual MSI not completely

given in record area

MSI null in member
record in database

kA!ways successful.
MSI not examined.

Not applicable

Not applicable

Not applicable

Explanation:

MS! means member set item value
0S! means owner set item value

Y means execution should be successful if no other conditions prevent it
N means execution will not be successful

Table 2.1: Using the STORE, CONNECT, DISCONNECT Commands

ND-60.127.5 EN

2-43

Modify member set item values
Storage Previous DISCONNECT|CONNECT Net result
Class State Situation from oid to new of MODIFY
new MS| = NULL Possible but |Not possible| Fail
not done
Connected|{new MSI + 0OSI Possible but |Not possible| Fail
(other than previous owner) not done
new MS! = 0S| Y Y Success
{other than previous owner)
Automatic
new MSI = NULL Not applicable|Not possible] Fail
Not
connected | new MSI 4 OSI {any in Not applicable|N Fail
database)
new MSI = OSI {any in database)| Not applicablelY Success
~
new MSI = NULL Y N
Connected| new MSI # OSI Y N Success
{other than previous owner) including
DISCONNECT
new MIS = 0OSI Y N
(other than previous owner)
-
Manual EN
new MS! = NULL Not applicableN
Not
connected | new MSI = OSI (any other) Not applicablgN >Success
MSI not
examined
new MSI = OS! (some) Not applicablelN .
J

Explanation:

MSI means member set item values

OSl means owner set item values

Y means action performed uniess MODIFY fails for other reason

N means action not performed

Table 2.2: Using the MODIFY Command

ND-60.127.5 EN

2422

243

2-44

INSERTING INTO AND REMOVING FROM AN INDEX

If there are one or more index keys (search keys) defined for a record type, then
the data administrator must decide when defining the schema whether the
indexes are automatically maintained or manually maintained. For completeness
and consistency it must be emphasized that when a record type has a location
mode of CALC, the calc access mechanism is of necessity ""automatically
maintained”, but the data administrator must not define this for CALC key items.

Returning to indexes, the concept of an automatically maintained index is almost
completely analogous to an automatic set type. The "insertion’ is normally made
when the STORE is executed, but it depends on the value of the index key item
or search key item. It also depends on whether the key item is named in the list
of items to be stored. If, because of the omission of these items from the list,
the index is not automatically updated at time of STORE, it will be automatically
updated if the index key item in this record occurrence is given a value later
{using MODIFY).

A manually maintained index is also analogous to a manual set type. It is
possible to insert and subsequently to remove a record from an index by using
the INSERT or REMOVE statements. The value of the key item is important in a
similar way to the importance of the member set item of the manual set type.

In the case of both automatically and manually maintained indexes, the data
administrator must decide whether or not to allow duplicate values of the key
item in the index. If duplicates are allowed, there is never any problem about
inserting a record with non-null key values into an index. If duplicates are not
allowed, then whether an INSERT or, in the case of automatically maintained
index, a STORE, is successful or not depends on the absence or presence of an
entry in the index with the same key value as the new record.

Concurrent Processing

In SIBAS considerable attention has been given to concurrency problems. The
philosophy has been to avoid deadlocks and associated costly logic at the
expense of some few restrictions. There are four levels of protection between
concurrently executing run-units:

Database reservation
Realm protection mode
Record lock
Notification of change

A=

ND-60.127.5 EN

2.4.3.1

2432

2-45
DATABASE RESERVATION

A run-unit may reserve/release SIBAS, preventing any other run-unit from
accessing SIBAS during the duration of the sequence enclosed by reserve and
release. This is a very effective method of preventing interferences between
concurrent run-units, but it has its drawbacks. The sequences must be short and
cannot contain terminal input/output.

The ACCUMULATE calls are examples of this method. The possibility given to
the user of writing so-called “MACRQ"s which are executed uninterrupted is
another example.

The transaction units are also an example of database reservation (see Chapter
5).

REALM USAGE MODES AND REALM PROTECTION MODES

At the time a run-unit executes a READY statement, the programmer is required
to declare the way in which he intends to use the realm and at the same time
how he wishes his run-unit to co-exist with other run-units using the realm.
These two factors are called the usage mode and the protection mode
respectively.

SIBAS supports three realm usage modes as follows:

RETRIEVAL (FIND, GET)
LOAD (STORE, CONNECT, FIND, GET)
UPDATE (ALL)

and two realm protection modes:

NON-PROTECTED (other run-units may update the realm concurrently)
EXCLUSIVE UPDATE (no other run-units may perform update or connect in
realm, but may retrieve records in the realm)

When a run-unit readies a realm in usage mode RETRIEVAL, the realm will be
available to the run-unit for execution of FIND and GET statements only. Usage
mode LOAD allows the user to perform STORE and CONNECT in addition to
FIND and GET. Usage mode UPDATE includes use of all SIBAS statements on
records in the realm.

When protection mode EXCLUSIVE UPDATE is given for a realm, concurrent
run-units will be restricted to perform FIND and GET statements on the realm

(i.e., retrieval only).

When a realm is readied for “"NON-PROTECTED" use, concurrent run-units may
update, load and retrieve in the realm.

ND-60.127.5 EN

2433

2434

RECORD LEVEL LOCK OUT

In the case when a realm is readied for "NON-PROTECTED" use, it is possible
for the brogrammer to lock individual records. This is necessary if the
programmer wants to ensure that a record or a group of records are not updated
while he is using them. (Protection mode of EXCLUSIVE UPDATE avoids this
problem by locking out the whole realm for other run-units which intend to
update it.)

The record level lock out is imposed using a LOCK statement. The LOCK
statement can be used to lock a single specified record or a group of specified
records. In the latter case the LOCK statement will only be successfully executed
provided that all the desired records are simultaneously available. The criterion
for a record to be available is that it is not concurrently locked by any other
run-unit. This restriction is necessary to prevent deadlock situations.

When a run-unit has successfully executed a LOCK statement, all the locked

records must be released by performing an UNLOCK statement before another:

LOCK statement can be executed. This restriction is necessary if deadlock is to
be avoided.

NOTIFICATION OF CHANGE

The record level lock out enables a programmer to ensure that a record or a
group of records are protected against concurrent run-units. But a programmer
might find it too restrictive to lock records, or records might be modified, erased,
etc. during the time it takes to locate all the records the programmer intends to
lock simultaneously in a LOCK statement. To solve this problem, the current
record of a run-unit and all the records a run-unit has remembered (i.e., all
records on the remembered list), are always in what is called extended monitor
mode. If a record has been modified, erased, connected or disconnected by
another run-unit while it is in extended monitor mode, a warning will be issued to
the run-units which have the record on their remember list. The warning will
have the form of a DBEC (Database Exception Condition), which will have a
specific value depending on what other run-units have done to the record, and
what the present run-unit is trying to do. The programmer will then have to take
action according to the DBEC. The DBEC could be:

Record has been connected or disconnected

Record has been modified

Record has been erased

Record is locked for exclusive update by concurrent run-unit
Record has been inserted in or removed from an index
Record’s physical location on the database has changed

A o e

ND-60.127.5 EN

244

2-41

Privacy System

SIBAS supports two levels of privacy.

1. Privacy on database level
2. Privacy on record occurrence level

The privacy checks performed on all levels use a password supplied by the
run-unit to check if the run-unit has authority to carry out theiintended operation.
All privacy checking in SIBAS is performed at run-time and it is therefore
possible to redefine the passwords as often as desired.

A run-unit supplies the run-unit’s password when the database is opened. This
password remains the run-unit's “current password’’ until modified using the
CHANGE CURRENT PASSWORD statement. This special statément may be used
to change the run-unit's current password whenever necessary.

The table below shows how privacy restrictions on a database are defined, how
and when passwords may be defined and modified, and when the privacy checks
are performed by the SIBAS run-time control system (DBCS).

Privacy How Privacy Restr. How Valid When Passwords

Level is Defined Passwords are: are Checked
Defined Changed

Database using DBM using DBM at database open

module module

Record using schema re- |when a recordiwhen a recordiwhen run-unit

occurrence | definition language Joccurrence is |occurrence is jwants to modify,
stored modified delete or get

items

The password is of the same length and type as used for definition of data
item names for the installation.

ND-80.127.5 EN

2.4.41

2442

2-48

PRIVACY ON DATABASE LEVEL

As indicated above, database privacy restrictions and passwords are defined by
use of the Database Maintenance Module (collection of utility programs).

The password is given as a parameter in the OPEN DATABASE STATEMENT.

There is a limit to the number of times a run-unit unsuccessfully may try to open
the database.

PRIVACY ON RECORD OCCURRENCE LEVEL

It is possible with SIBAS to define privacy items on the record occurrence level.

This privacy item is stored together with the record. For this reason, the
definition of the privacy item which will contain the value of the record
occurrence password has to be part of the record type description. Privacy
restrictions on the record occurrence level must therefore be defined using the
Definition/Redefinition Language. Record occurrence passwords are considered
as a spedial data item type just as other items may be of type INTEGER or
CHARACTER.

The privacy item is given a value in the same way as other items in the record,
when the record is stored or modified (see Figure 2.27).

DATA
MANIPULA -
TION LANGU-
AGE

ITEM 1 ITEM2 [ITEM3 [ITEM4 [PRIVACY ITEM
STORE OR = = = = =X XX
MODIFY

Figure 2.27: Giving Value to Privacy Item

Like other items, the privacy item need not be given a value when the record is
stored. The privacy item will then be set to a null value by the DBCS. A record
for which privacy on record occurrence level is defined, but with null value on
the privacy item, may be manipulated as if no privacy item was defined for that
record type.

The privaéy check is performed when a run-unit tries to retrieve information from
the record (the GET statement) and when a run-unit tries to modify or delete the
record or its set membership. Note that no restriction is put on the use of FIND
statements.

ND-60.127.5 EN

2-49

2443 SUMMARY OF THE SETTING OF CURRENT PA\SSWORD

Initially the current password is set for a run-unit when the database is opened
(see Figure 2.28). Unless a CHANGE PASSWORD is performed, the value of
current password will remain unchanged. If the run-unit performs a record
manipulation statement on records where the value of the record lock is different
from the realm password, current password for the run-unit must be changed
before the manipulation statement is successfully executed.

CHECK
PASSWORD

OPEN DATABASE=#
GIVE PASSWORD/| PASSWORD NOT VALID

DATABASE OPENED

| ;
| CHANGE CUR - |
| RENT PASSWORD)

| IF NECESSARY |

_“T"ﬁ“‘

PERFORM
MANIPULATION
B~ STATEMENT ON
RECORDS

CHANGE
CURRENT CHECK ™
PASSWORD - PASSWORD :>
PASSWORD
NOT VALID

RECORDS MANIPULATED

CONTINUE

Figure 2.28: Use of Current Password

ND-60.127.5 EN

2.5

2-50

DATA DICTIONARY

The SIBAS DATA DICTIONARY can be used to document the SIBAS database.
The DATA DICTIONARY will contain descriptions of all data in a database. The
data contained in the Data Dicticnary can also be used by other programs such
as Query Languages, Report Generators, Screen Handling Programs and Program
Generators,

The content of the dictionary is described in the following table:

database éIBAS length type date | heading| purpose | extent | display | storage|dictionary
unit name (size) name
database X X X X X X

realm X X X X X X X

item X X X X X X X X X X
set X X X X X X

text X X X X X

The information in the Data Dictionary is normally set up when the database is
initiated. This information is then available while running a database, provided
the transaction calls are legal. The information in the Data Dictionary may be
changed when redefining the database or by using the service program
SIBINTER.

ND-60.127.5 EN

2.5.1

2-51

Definition of the Data Dictionary

Here we give an explanation of the Dictionary parameters:

SIBAS name:

ldentify the database unit. For example database name, realm name, item name,
set name, user-defined text name.

TIMESTAMP

SIBAS will automatically record the time when any database unit is created or
changed in the Dictionary.

PURPOSE

This information will be used as documentation of the database unit. It can also
be used as HELP information while using the database on-line.

HEADING

This is usually a short text indicating the context of the database unit. It can also
be used, for instance, as a leading text in screen displays or as report headers.

DISPLAY (for data items only)

This indicates how the stored data should be edited. It can also be used by a
screen handler or a report writer for formatting information.

STORAGE (for data items only)

This information allows programs to convert data correctly from a stored bit
pattern and a readable version, or vice versa.

DATA DESCRIPTION NAME (for data items only)

This is, for instance, a name given to a number of items which have the same
description.

EXTENSION

This is defined by the user. Extension numbers 50 to 99 are, however, reserved
for future extensions of SIBAS.

TEXT

This can be any text defined by the user. This will, then, be accessible at
database run-time.

ND-60.127.5 EN

2-52

ND-60.127.5 EN

3-1

CHAPTER Ill. DEFINITION/REDEFINITION
LANGUAGE (DRL)

ABSTRACT

A SIBAS database is defined by the program called Definition/Redefinition
Language {DRL). The DRL has 4 types of statements: (i) for creation (the NEW
statement), (ii) for deletion (the DELETE statement), (iii) for changes (the
CHANGE statement), and (iv) for renaming (the RENAME statement).

Descriptions of the data items, which may have been repeated in different
realms, are stored non-redundantly in the Data Description Catalogue.

The DRL can also be used to produce useful estimates of the various database
parameters.

TABLE OF CONTENTS:

3.1 DRL INTRODUCTION.
3.2 HOW DRL WORKS.
3.3 DRL INPUT FILE.

3.3.1 Global Rules.

3.3.2 Common part of Statements.

to 3.3.26 The DRL Statements.

3.4 THE DATA DESCRIPTION CATALOGUE.
3.5 DIMENSIONING OF DATABASE PARAMETERS.
3.6 HOW TO RUN DRL.
3.7 EXAMPLES

ND-60.127.5 EN

3-2

ND-60.127.5 EN

3.1

3-3

DEFINITION/REDEFINITION
LANGUAGE (DRL)

INTRODUCTION

A SIBAS database must be defined before any data may be loaded in it. A
definition is the process of producing an internal representation of the schema,
the object schema, from the source schema written in a COBOL like syntax. A
redefinition is the process of amending the object schema, and making the
changes on the database.

Experience with all DBMS to date has indicated the importance of being able to
redefine the database when new requirements are identified. It is a widely
recognized objective that this redefinition should be possible without causing
unnecessary modification to the programs, which have been written to process
the database as initially structured. The degree to which a DBMS can meet this
objective is essentially a measure of the degree of data independence offered by
the DBMS.

With SIBAS, the same language is used to define or redefine a database. The
statements {directives) provided may be classified in 4 categories:

1. creations the NEW ... statements

2. deletions the DELETE ... statements
3. changes the CHANGE ... statements
4. renaming the RENAME ... statements

Each of these statements will be described in detail later in this chapter.

The DRL statements available are:

START INITIATION first statement of an initiation (definition) run.
START REDEFINITION first statement of a redefinition run.

END last statement of a run.

NEW OS-FILE adds a SINTRAN file to the database.

NEW SYSTEM REALM defines a new system realm.

NEW SERIAL REALM defines a new user realm with location mode serial.
NEW CALC-REALM defines a new user realm with location mode CALC

and the corresponding CALC key

NEW ITEM defines a new item in an existing or new record
type.

ND-60.127.5 EN

NEW GROUP

NEW SET

NEW INDEX

NEW TEXT

DELETE SET

DELETE INDEX

DELETE ITEM

DELETE GROUP

DELETE TEXT

CHANGE SYSTEM-REALM

CHANGE SERIAL-REALM

CHANGE CALC-REALM

CHANGE ITEM

CHANGE GROUP

CHANGE SET

CHANGE TEXT

RENAME éEALM
RENAME ITEM
RENAME GROUP
RENAME TEXT

RENAME SET

3-4
defines a new group item in an existing or new
record type.
defines a new set type in the database.

adds the index key property to an existing or new
item, and defines the storage of the index table.

defines a new text in the database.
removes a set type from the database.

removes the index property from an existing item
and deletes the corresponding index table.

deletes an item from an existing record type.

removes a group item definition from an existing
record type.

deletes a text from the database.

changes the definition of an existing system realm.
changes the definition of an existing user realm
with location mode serial, or changes the location
mode from CALC to serial.

changes the definition of an existing user realm
with location mode CALC, or changes the location
mode from serial to CALC and defines the

corresponding CALC key.

changes the definition of an item in an existing
record type.

changes the definition of a group item in an existing
record type.

changes the definition of an existing set type.

changes the content of a text defined in the
database.

renames a realm existing in the database.
renames an item in an existing record type.
renames a group in an existing record type.
renames a text existing in the database.

renames a set existing in the database.

ND-60.127.5 EN

3.2

3-5

HOW THE DEFINITION/REDEFINITION MODULE

WORKS

The DRL module requires exclusive use of the whole database and accesses the

realms directly without using a SIBAS process at all.

The functions of the statements are to create and update the

object schema and

perform the corresponding actions on the database. A documentation of the

database may also be produced as shown in Figure 3.1.

END

.

DEFINE START

SIB2-DRL

VAN

WG UE //
\\

INPUT FILE

OBJECT
SCHEMAS = DICTIONARY

FILE FILE

'\-—//

Figure 3.1: The Data Definition and Redefinition Module

ND-60.127.5 EN

DRL
REPORTS

When the DRL module is used, it requires the exclusive use of the database files.
Definition:
A complete example of a DRL run is shown at the end of this chapter. It must be
noted that if there are CALC realms, the DRL module must preformat them (this
operation may take time).

Redefinition:
You should note that some apparently minor amendments might result in iarge
computer resource usage. A good practice is to take a full back-up copy of the

database before you run a redefinition. An example of a DRL run for redefinition
is shown at the end of this chapter.

ND-60.1275 EN

3.3

3.3.1

3-7

DRL INPUT FILE

Global Rules

Syntax

Statements must be between columns 1 to 72 otherwise the DEF/REDEF module
truncates.

The syntax of the definition and redefinition language is sentence oriented, just
like COBOL. It means that all statements consist of a series of one or more
words terminated by a period (.). The period indicates the end of a statement. A
statement may begin anywhere in a line and may continue on any number of
lines. However, a word cannot cross a line boundary. Words in a sentence may
be key words or parameters. Key words may be abbreviated, parameters cannot
be abbreviated. The parameters may be names or numbers.

L Y

A line starting with asterix will be treated as a comment line and ignored.

The syntax is described with the following conventions:

EY KEY is a key word which must be present.

ANY-STRING is merely a noise word which ‘helps document the
input, but may be omitted.

< any-name-or-value > "any-name-or-value’’ is a parameter.
<realm-name > one of the two alternatives must be given: either
KEY the parameter ‘‘realm-name’” or the key word
“"KEY".
(NOT) the key word NOT in the parentheses is optional.

Statement Sequence

A DRL input sequence must start with the START statement and end with the
END statement or EXIT.

The sequence of the other statements is generally free, but when a statement
refers to an existing name, the name must have been previously defined. For
example, the statement

NEW SYSTEM-REALM <realm-name> OS-FILE <file name>

defines a new “realm-name’’ but refers to the ""file-name”’.

ND-60.127.5 EN

3-8
3-

Names

SIBAS recognizes a number of names such as database name, set name, item
name, etc. Each name in SIBAS must contain between 1 and 8 alphanumeric
characters. No embedded blanks are permitted, but terminal blanks are. The first
character of a SIBAS name must be alphabetic.

Abbreviation Lookup

All key words (not parameters) can be abbreviated. However, ambiguity is not
handled. The first match is always used.

Numbers

In some of the statements, the length of a record expressed as a number of
computer words must be given. On the ND-10 or ND-100, a computer word is
taken as 2 bytes (16 bits). On the ND-500 a computer word is 32 bits, but in
format descriptions in this manual «word» means 2 bytes (16 bits) also for the
ND-500, for instance to make the same schema run on all ND-machines. See
also 4.3.

Additions to a Schema

The most common kind of definition or redefinition which would be performed is
the addition of new structural components.

Changes to a Schema

Many changes can be performed on an existing schema. In the CHANGE
statements, most of the possible changes are given as options and the defauit
value will always be that the definition is unchanged. The RENAME statement
makes it possible to rename the database-units.

Deletions from a Schema

In the case of deletions, any program which uses any of the properties deleted
must be carefully modified. Normally, however, deletions would only be made if
the programs which process the database using these properties are themselves
obsolete.

Database-unit

The term Database-unit is used to describe the database itself. It consists of data

items, records, sets, realms etc. Database-unit is, thus, the part of the database
that is defined by the START and NEW statements.

ND-60.127.5 EN

3.3.2

Common Part of the Statements

In most statements extra information can be given in terms of HEADING,
PURPOSE and EXTENSION. The syntax of this part of the statement is similar for
all statements. We will, therefore, not repeat this in each statement. The rules
applying to this common part of the statements are described below.

Example:
CHANGE /NEW
{ HEADING * <heading>"")
{ PURPGSE " <purpose>"')
{ EXTENSION <code> ''<extension> "'
(<code> '"'<extension>"..}).
Rules:

<heading> An alphanumerical string of maximum 30 characters. The
<heading> will be used as header for automatic generation of
screen layouts, reports etc.

<purpose> An alphanumerical string of maximum 1000 characters. The
<purpose> is used to document a particular database-unit. It can
also be used as on-line help. The first character of <purpose> is
used as a line separator. There should not be more than 60
characters between line separators.

Example:
PURPOSE "/ "
vy .
"y .
EXTENSION
< code> a number between 1 and 49, to identify the <extension> string

that follows <code>.

< extension> a string of maximum 1000 characters.

ND-60.127.5 EN

3.3.3

3-10

Start Initiation

Function:

A new database is defined using the DRL module. The statement START
INITIATION will define a new database with the name given in the START

statement.

Format:

START INITIATION DATABASE < database-name)

(

SUPPRESS (REALM) (RECORD-TYPE) (ITEM) (SET) (INDEX-TABLE) (IEXT))

{ SIZE

< no-of-64w-pages >)

{ HEADING "<heading>")
(PURPOSE "<purpose>"”)
{ EXTENSION <code> "<extension>” [<code> "<extensiond>") ...)

Rules:

In the START INITIATION statement, the name of the database which is to
be defined is given. It is the name of a SINTRAN Operating System (0S)
file of type DATA. This OS file is used as the SIBAS system realm and
cannot be shared by any other realm. It should not be declared with a NEW
OS FILE statement. The SIBAS system realm is where the object schema is
stored. Additional user system realms may be defined with the NEW
SYSTEM REALM statement.

SUPPRESS. The SUPPRESS clause can be used to suppress the
documentation of realms, record types, items, sets, index tables or texts.
This will have no influence on the resulting database definition. If the
SUPPRESS clause is omitted, a full documentation of the database will be
printed.

SIZE. In the SIZE clause the expected size of the object schema is given in
number of 64 word blocks. If the size clause is omitted, SIZE is set to 4800,
i.e., 300 K SINTRAN pages. The 64-word pagesize is only used for the
object schema. The object schema is stored in the SIBAS System Realm.
To avoid problems, give a large number, for example 5000, and create the
SINTRAN file as an "INDEXED FILE”. This may be done by
@CREATE-FILE <db name>,, before the DRL module is used. I not,
SIB2-DRL will create an indexed file when initiating the database.

ND-60.127.5 EN

3.3.4 Start Redefinition

Function:

This statement will start the schema DRL for the database identified in the
statement.

Format;

START REDEFINTION DATABASE <database-name) (DBA-PASSWORD <password>)

(SUPPRESS (REALM) (RECORD-TYPE) (ITEM) (SET) (INDEX-TABLE) (IEXT))

SCRATCH-FILE <file-name> (DIRECTORY <abbreviated-dir-name))
(SIZE <no. of 64-word pages>)

(HEADING "<heading>")
{ PURPOSE "<purpose>")
(EXTENSION <code> “"<extension>" (<code> "<extension>") ...)

Rules:

1. In the START REDEFINITION statement the name of the database which is
to be redefined is given, and if privacy is defined for the database through
the DBM modules (see 6.1.7) the DBA PASSWORD is given

2. All realms in the database will automatically be readied with protection
mode EXCLUSIVE when the START statement is given.

3. SUPPRESS. The SUPPRESS clause can be used to suppress the
documentation of realms, record types, items, sets, index tables or texts.
This will have no influence on the resulting database definition. {f the
SUPPRESS clause is omitted, a full documentation of the new database
will be printed.

4. SCRATCH FILE. If the execution of the DRL includes a CHANGE REALM or
NEW INDEX the “file-name” must be the name of a file with maximum 8
characters, which is big enough to hold any of the realms in the database
which are to be changed. Default file type is :DATA. If the scratch file is
not big enough, the execution of the redefinition may stop in the middle of
step 4, leaving a destroyed database.

5. DIRECTORY. The “abbreviated-directory-name’ is an eight character
abbreviation of the directory where the scratch-file is placed. If the
substatement is omitted, the default directory will be used.

6. SIZE. The size clause can be used to change the size of the object schema.

The size is given as number of 64-word pages.

ND-60.127.5 EN

3-12

3.35 End/Exit

Function:

The statements indicate the end of the database definition or redefinition.
Format:

END REDEF.

or

EXIT

Rules:

1. Any statement following END or EXIT will be ignored.

ND-60.127.5 EN

3-13

3.36 New OS File

Function:
The statement will define a new OS file for the database.

Format:

N ~-F1 <file-name> (PAGESIZE <no-of-words)>)

(DIRECTORY <abbreviated-dir-name> }

Rules:

1. FILE NAME. The parameter "file name’ must not be the same as the name
of any existing SINTRAN file for this database. The type of the file is
automatically DATA. The "'file name’ is treated as any other SIBAS name.
It the file is not previously created in SINTRAN, SIB2-DRL will create it as
an "indexed" file.

2. PAGESIZE. The “page size” is the number of words that will be read into
the SIBAS buffer area when a realm located on this OS file is accessed.
The default value is 512 words. Guidelines on how to estimate the "page
size’" are given at the end of this chapter. This page size is the size of a
SIBAS page for all realms defined on the OS-FILE.

3. DIRECTORY. The "abbreviated-directory-name” is a eight character
abbreviation of the directory where the file is placed. If the substatement is
omitted, the default directory will be used.

Hints:

In a test phase it is recommended that a SINTRAN "INDEXED FILE” is used.
When the database is in operation, response time will be improved by changing
the file to CONTINUOUS. This is done by

@ CREATE—FILE <new:> :DATA <size>
@COPY--FILE <new> :DATA < file-name >
®@RENAME—FILE <file-name > <new> :data

<size> can be found in the SIB—DRL documentation of OS-FILES.

ND-60.127.5 EN

3.3.7

3-14

New System Realm

Function:

The statement will define a new user system realm for the database. A system
realm contains index tables for user realms.

Format:

NEW SYSTEM-REALM <realm-name>

0S-FILE <file-name> REALMSIZE <no-of-pages>

ADDITIONAL OS-FILE <file-name> SIZE <no-of-pages>)

HEADING “<heading>")
PURPOSE “<purpose>”)
EXTENSION <code> "<extension>” (<code> "<extension>")} ...}

Rules:

1. REALM NAME. The parameter "“realm-name’ must not be the same as the
name of any existing realm.

2. FILE NAME. The parameter "“file-name” must be the name of an OS file
previously defined using NEW OS-FILE.

3. REALM SIZE. The parameter ""no.-of-pages’’ gives the size of the system
realm in terms of SIBAS pages. Guidelines on how to estimate the size of
system realms are given at the end of this chapter.

4. ADDITIONAL OS-FILE. One realm may span over several 0S-files. The
parameter "'file-name’” must be the name of an 0S-file previously defined
using NEW OS-FILE. The parameter ""no-of-pages’’ gives the size of the
realm extension defined in the additional OS-file. One may define 3
additional OS-files at a time.

NOTE: An additional OS-file may be used only by one user realm.

5. STATEMENT SEQUENCE. The OS file referred to must be defined prior to
this statement using NEW OS-FILE.

ND-60.127.5 EN

3.3.8

3-15

New Serial-Realm

Function:

The function of this statement is to define a new serial realm for the database,
which implies adding a new record type to the database.

Format:

{
(

NEW SERIAL-REALM <realm-name>

REALMSIZE <no-of-pages>)
ADDITIONAL OS-FILE <file-name> SIZE <no-of-pages>)

RECORD LENGTH <no-of-words>

MAIN <system-realm>)
HEADING "<heading>")
PURPOSE "<purpose>"”)

EXTENSION <code> "<extension>" (<code> "<extension>") ...)

Rules:

1. REALM NAME. The parameter "'realm-name’ must not be the same as the
name of an existing realm.

2. FILE NAME. The parameter “file-name” must be the name of an OS file
previously defined using NEW OS FILE.

3. REALM SIZE. The parameter "no-of-pages” gives the size of the realm in
number SIBAS pages.

4. ADDITIONAL OS-FILE. One realm may span over several OS-files. The
parameters "File-name’’ must be the name of an 0S-file previously defined
using NEW OS-FILE. The parameter "no-of-pages’ gives the size of the
realm extension defined in the additional OS-file. One may define 3
additional 0S-files at a time.

NOTE: An additional OS-file may be used only by one user realm.

5. RECORD LENGTH. The record “length” must be given for all user realms.
The record length must include all pointers in number of words in the
record. The length of a pointer is 2 words. Space must be allowed for one
or two pointers for each set type the record type is defined as having a link
to, depending on whether the set type is defined with link to prior or not.

6. SYSTEM REALMS. The system realm will be used for storing index tables.
The same system realm may be used for more than one user realm. If
MAIN option is not used, the first system realm defined by NEW SYSTEM
REALM will be used.

7. MINIMUM RECORD CONTENT. For all user realms, there must be at least
one elementary item defined by using NEW ITEM,

8. STATEMENT SEQUENCE. The OS file and any system realms must be
defined prior to this statement using:

NEW OS-FILE
NEW SYSTEM-REALM.
ND-60.127.5 EN

3-16

3.39 New Calc-Realm

Function:

The function of this statement is to define a new CALC-realm for the database,

which implies that a new record type will be added to the database.

Format:

NEW CALC-REALM <realm-name>

{REALMSIZE <no-of-pages>)
(ADDITIONAL OS-FILE <file-name> S1ZE <no-of-pages>)

MAIN-AREA <no-of-pages>
RECORD LENGTH <no-of-words>

CALC-KEY <key-name> DUPLICATES ARE (NOT) ALLOWED

{ MAIN <system-realm>)
{ HEADING "<heading>")}
{ PURPOSE "<purposed>”)
{ e

EXTENSION <code> "<extension>" (<code> "<extensiond>") ...)

Rules:

1. REALM NAME. The parameter '"realm-name’ must not be the same as the
name of any existing reatm.

2. FILE NAME. The parameter "file-name’” must be the name of an OS file
previously defined using NEW OS-FILE.

3. REALM SIZE. The parameter ''no-of-pages’” gives the total size of the
realm in number of SIBAS pages.

4. ADDITIONAL OS-FILE. One realm may span over several OS-files. The
parameter “file-name” must be the name of an 0S-file previously defined
using NEW OS-FILE. The parameter "'no-of-pages’ gives the size of the
realm extension defined on the additional 0S-file. One may define three
additional 0S-files at a time.

NOTE: An additiona! OS-file may be used only be one user realm.

5 MAIN AREA/OVERFLOW AREA. The space in which the records are to be
stored must be divided into a main area and an overflow area. Each of
these areas must be further divided into a number of buckets. in SIBAS a
bucket is equal to a SIBAS page. All pages both in the main area and in
the overflow area are of equal size. The number of SIBAS pages in MAIN
AREA, "no-of-pages’ should be a prime number. The number of pages in
OVERFLOW AREA will be the difference between the total number of
SIBAS pages given for REALM SIZE and the number of SIBAS pages given
for MAIN AREA.

ND-60.127.5 EN

1.

3-17

RECORD LENGTH. The "record-length” must be given for all user realms in
the number of words. The length of a pointer is 2 words. Space must be
allowed for one or two pointers for each set type the record type is defined
as member or owner of, depending on whether the set type is defined with
link to prior or not.

CALC KEY. The "key-name’ must refer to an item or a group item which
must be defined for the record type using NEW ITEM or NEW GROUP in a
later statement. The item/group item will automatically be assigned the
CALC KEY property. Duplicates will be allowed on the key, unless the NOT
option is given.

SYSTEM REALMS. The parameter “system-realm’ must contain the name
of a system realm defined by using NEW SYSTEM-REALM prior to this
statement. The system realm will be used for storing index tables. The
same system realm may be used for more than one realm.

MINIMUM RECORD CONTENT. For all CALC realms there must be defined
an item or group item serving as CALC key defined by using NEW ITEM.

All the main buckets are preformatted at initiation time. The user must
ensure there is enough disk space and be aware that the preformatting
takes some time.

STATEMENT SEQUENCE. The OS file and any system realms must be
defined prior to this statement using NEW OS-FILE and NEW SYSTEM-
REALM. The CALC key item must be defined later using NEW ITEM or
NEW GROUP.

ND-60.127.5 EN

3-18

3.3.10 New Item
Function:
The function of this statement is tc define a new item for a record type
previously defined using NEW CALC-REALM or NEW SERIAL-REALM. items
defined must be given type and length, and the position within the record type
may be specified.
Format
1. Format 1 of NEW ITEM
NEW ITEM <realm-name> <(item-name>
INTEGER
TYPE FLOATING (START <word-no>)
CHARACTER
PRIVACY-ITEM
BIT POSITION <first-bit>
LENGTH <no> {WORD) {KEEP-VALUE)
BYTE POSITION <(first-byte>
{ STORAGE “"<storage>")
{ DISPLAY “<display>")
(HEADING “<heading>")
{ PURPOSE “<purpose>")
{ EXTENSION <code> "<extension>" (<code> "<extension>") ...}
2. Format 2 of NEW ITEM, in connection with DDC.
NEW ITEM <realm-name> <(item-name> DD-NAME <dd-name>
{ HEADING “"<heading>")
{ PURPQSE “"<purpose>”)
{ EXTENSION <code> "“<extension>" (<code> “"<extension>") ...)
Rules:

1. REALM NAME. The "realm-name” must refer to a realm defined using
NEW CALC-REALM or NEW SERIAL-REALM prior to this statement.

2. ITEM NAME. The "item-name’’ must be different from all other items or
group items in the same record type.

3. DD-NAME. The DD-name must be a name of a Data Description existing in
the Data Description Catalogue {DDC). The item properties will be the

same as the properties of the DD-name. See the section Data Description
Catalogue.

ND-60.127.5 EN

10.

11.

12.

13.

14.

3-18

DISPLAY. Follows closely the COBOL picture editing syntax. It is a code
which may be used by Query Language, Report Generator etc. A full
description of the syntax is given in the section Data Description
Catalogue.

STORAGE is used together with DISPLAY. The syntax is given in the
section Data Description Catalogue.

ITEM TYPE. A type must be specified for the item. If an item is defined as
PRIVACY-ITEM, the length and definition of the item must be the same as
for item names, realm names, etc. (i.e., four words). When a record of this
type is retrieved, the person retrieving the record must provide the value of
the privacy item in order for the retrieval to be successful.

START POSITION. The “"word-number” must contain an integer greater
than or equal to 1 to indicate in which computer word in the record the
start of the item value is to be stored.

LENGTH. If the item occupies one word or more, the length must be given
in "no.-of-words”. If the item occupies less than one word, the length is
given in number of bits or number of bytes. The postion in the word must
be completed with an integer greater than or equal to zero, to indicate the
first bit or the first byte in the word which the item value occupies. If
length is given in bytes and the position is not given, the item will start in
the second byte (number 1) in the word. Bit counting starts with bit
number O.

KEEP-VALUE. If it is necessary to divide an item into several items without
losing the item’s value, then use the option KEEP-VALUE. This option
makes sense only if there is data in the item. The item must first be
deleted (see section 3.3.18). Then, divide the old item into the required
number of items. Use the NEW-ITEM statement to define the new items.
Remember to use the START clause so that new items overlap the space
of the old item. When you use the KEEP-VALUE clause, the value of the old
item is not destroyed.

SIZE OF INTEGERS. If the item is defined as integer, then its minimum
length is 1 bit, and its maximum length can be freely chosen by the user.

SIZE OF FLOATING. If the item is defined as floating, it will normally
occupy an integral number of words which may be freely chosen by the
user.

SIZE OF CHARACTER. If the item is defined as character, then it may
occupy less than one word. The item may occupy more than one word as
long as it is allocated in integral number of words.

CALC KEY ITEM. The NEW CALC-REALM statement is used to define the
item as CALC KEY.

OWNER SET ITEM. The NEW SET statement is used to define the item as
owner set item.

ND 601275 EN

3-20

15, MEMBER SET ITEM. The NEW SET statement is used to define the item as
member set item.

16. INDEX KEY. The NEW INDEX statement is used to define the item as an
index key.

17. STATEMENT SEQUENCE.
NEW OS-FILE.
NEW SYSTEM-REALM.
NEW SERIAL-REALM/NEW CALC-REALM.

3.3.11 New Group

Function:

The function of this statement is to give a name to a group of elmentary items
within a record type. The items need not be contiguous in the record type. The
sequence of the items in the group may be different from the sequence in the
record type, and an item may also participate in more than one group item.
Properties as CALC key, INDEX key, member set item and owner set item may be
assigned to a group item in the same way as they are assigned to an elementary
item. If the group item is going to be assigned the CALC key property, the best
performance will be achieved if the group consists of contiguous items.

Format:

NEW GROUP <realm-name> <group-name>

<item-name> (<item-name>)

{ HEADING "<heading>")
(PURPOQSE "<purpose>”)
(EXTENSION <code> "<extension>" { <code> "<extensiom>") ...)

ND-60.127.5 EN

3-21

Rules:

10.

11.

12.

REALM NAME. The "realm-name’ must refer to realm defined using NEW
CALC-REALM or NEW SERIAL-REALM prior to this statement.

GROUP NAME. The ""group-name’” must be different from all item or group
item names in the record type.

ITEM NAMES. The "item-name-1", "item-name-2"', etc. must refer to
elementary items in the record type defined by using NEW ITEM prior to
this statement.

ORDER OF ITEMS. The order in which the elementary items are defined
may be quite independent of the order in which they are defined using
NEW [TEM. However, the crder, once defined, is significant and must be
preserved when values of the group are given in DML statements.

ITEMS IN MORE THAN ONE GROUP ITEM. Any elementary item may be a
constituent item in one or more groups of the same record type.

NUMBER OF ITEMS. The maximum number of elementary items in a group
item is approximately 50.

CALC KEY ITEM. The NEW CALC-REALM statement is used to designate
the group item as CALC KEY.

OWNER SET ITEM. The NEW SET statement is used to define the group
item as owner set item.

MEMBER SET ITEM. The NEW SET statement is used to define the groups
item as mernber set item.

INDEX KEY. The NEW INDEX statement is used to define the group item as
an index key.

EXTRA NAMES OF ITEMS. If the group item consists of only one
elementary item, the effect of the group item will be to give an extra name
to the elementary item. This can be useful if an elementary item is used as
a member set item in two different set types.

STATEMENT SEQUENCE.

NEW OS-FILE

NEW SYSTEM-REALM

NEW SERIAL-REALM/NEW CALC-REALM
NEW ITEM.

ND-60.127.5 EN

3.3.12

3-22

New Set
Function:
The statement defines a new set type for the database. The owner and member
record types must be record types defined prior to this statement. The statement
will also assign the properties of member set item and owner set item to the
item/group item in the member and owner record type.
Format:

NEW SET <set-name>

{

LINK IS DOUBLE

SINGLE

AUTOMATIC

STORAGE-CLASS IS MANUAL

L

OWNER <owner-set-item> <realm-name>

MEMBER <member-set-item> <realm-name> { <realm-name) ...)
{ HEADING "<heading>")
{ PURPOSE "<purpose>")

XT

ON <code> "<extension>” { <code> "<extension>")

Rules:

SET NAME. The “set name” must be different from the name of any other
set type in the same database.

LINK. If the SINGLE option is given, the set will have a link to next member
only. If the DOUBLE option is given, each member will have links to next
and prior member.

STORAGE CLASS. If the AUTOMATIC option is given, the set type will
have a storage class of automatic. When a STORE or MODIFY is executed
on a member record, it will be automatically connected into a set
occurrence. If the MANUAL option is given, the set type has a storage
class of manual and records will not be connected into a set of this type
when a STORE is executed. In SIBAS the storage class is the same as the
removal class. Whether a member record is automatically erased when the
owner is erased, depends on the option given in the ERASE statement.

OWNER. The "owner-set-item” must be defined as an item or group item
for the owner record type. The name of the owner record type is given in
“realm-name”’. Furthermore, the "‘owner-set-item’" must either be defined
as CALC key or as INDEX key with NO DUPLICATES allowed. The key must
be defined prior to this statement. The item/group item given will be
assigned the property of owner set item, unless it already has this property.

ND-60.127.5 EN

3-23

MEMBER. The ""member-set-item’ must be defined as an item or group
item for the member record type(s). The member record type(s) are given
in “realm-name-1"‘, "realm-name-2", etc. (maximum 4 member record
types). The item/group item given will be assigned the property of member
set item, unless it is already used for another set type. In this case the item
must be given an extra name by defining it as a group item. Note that the
member set items must have the same name in all realms.

INVOLUTED SET TYPE. If the member record type and the owner record
type is the same for a set type, the set type is involuted. Then the
“member-set-item’” and the ""owner-set-item’ must both be defined as
items or group items for the record type, but they must have different
names.

CORRESPONDENCE BETWEEN MEMBER SET ITEM AND OWNER SET
ITEM. The "owner-set-item’” and the "'member-set-item’ must correspond
in length and item type. The two items may also have the same name
unless the set type is involuted. Correspondence in the case of group items
means that it must be possible for the concatenated values of the
constituent elementary iterns to be exactly equal.

STATEMENT SEQUENCE.

NEW OS-FILE

NEW SYSTEM-REALM

NEW SERIAL-REALM/NEW CALC-REALM
NEW ITEM

NEW INDEX.

ND-60.127.5 EN

3.3.13

3-24

New Index

Function:

The function of this statement is to define an item or group item as index key
and define the storage of the corresponding index table.

Format:

INDEX <realm-name> <key-name>

UPDATE IS MANUAL DUPLICATES ARE { NOT } ALLOWED
AUTOMATIC

(SYSTEM-REALM) <system-realm-named>)
{ MIN-VALUE <value> MAX-VALUE <value>)

Rules:

1. REALM NAME. The "realm-name’” must refer to a realm defined prior to
this statement.

2. KEY NAME. The "'key-name’ must refer to an item or group item defined
for the record type named in “realm-name”. The item/group item will be
assigned the Index key property.

3. UPDATE. f the MANUAL option is given, the index will be manually
maintained, and the index table will not be updated when a STORE or
MODIFY is executed. If the AUTOMATIC option is given, the index table
will be automatically maintained when a STORE or MODIFY is executed.

4, DUPLICATES. If the NOT option is given, an attempt to store a record of
this record type will fail if there is already an entry in the index table with
this key value. If the NOT option is omitted, it means that duplicate values
of this index key are permitted.

5. SYSTEM REALM. The "system-realm’’ in which all tables are stored must

be the system realm for the record already defined by using NEW SYSTEM
REALM.

6. MIN VALUE/MAX VALUE. If the actual minimum and maximum values of
the Index key are known at the time when the database is defined, these
values should be given to achieve better performance when using the Index
key. Note that it is enough that the key usually is between the limits,
exceptions are allowed. The parameter “'value’” must be a positive integer.
if a key consists of more than one word, the value of the first word is
given. If the key is alphanumeric, "value’’ should be the corresponding
integer value (if any) of the first word of the key.

ND-60.127.5 EN

3-25

STATEMENT SEQUENCE.

NEW OS-FILE

NEW SYSTEM-REALM

NEW SERIAL-REALM/NEW CALC-REALM
NEW ITEM.

ND-60.127.5 EN

3-26

3.3.14 New Text

Function:

The function of this statement is to define a new text for the database and to
store the content of the text by initiation or redefinition. The text must consist of
only HEADING, PURPOSE and EXTENSION.

Format:

2
™

TJEXT < text-name >

{ HEADING “<heading>")
{ PURPOSE "<purpose>"”)

{ EXTENSIQON <code> "<extension>" { <code> "<extension>")} ...)
Rules:
1. TEXT-NAME. The parameter “text-name’” must not be the same as the

name of any existing text.

2. HEADING, PURPOSE, EXTENSION. See section on Common Parts of the
Statements.

ND-60.127.5 EN

3-27

3.3.15 Delete Set

Function:

The function of this statement is to delete a set type from the database schema.
When a set type is deleted, the record types which serve as its owners and
members remain in the database. All these record types are adjusted so that
there is no space assigned for pointers, but the record length will remain
unchanged unless it is changed by use of CHANGE REALM. The member set
item of all member record types will cease to have this role. The owner set item
of the owner record types will cease to have this role if it was owner set item
only for the deleted set type.

Format:

DELETE SET <set-name>

Rules:

1. Name of SET TYPE. The "set-name’’ must be the name of a set type which
is defined in the old database schema.

2. OWNER SET ITEM. If the owner set item of the owner record type does
not serve as owner set item of any other set type, the item will

automatically be redefined such that it no longer is an owner set item.

3. MEMBER SET ITEM. The member set item of all member record types will
automatically be redefined such that they no longer are member set items.

ND-60.127.5 EN

3-28

3.3.16 Delete Text

Function:
The function of this statement is to delete a text from the database.

Format:

DELETE TEXT <text-name>

Rules:

1. TEXT-NAME. The parameter must be the name of an existing text.

ND-60.127.5 EN

3.3.17

3-29

Delete Index

Function:

The function of this statement is to remove the index property from an item or
group item, and to delete the corresponding index table.

Format:

DELETE INDEX <realm-name> <key-name>

Rules:

1.

REALM NAME. The ""realm-name" must be the name of an existing realm.

KEY NAME. The "key-name’" must identify an item or group item defined
as index key for this record type.

INDEX KEY PROPERTY. The index key property will automatically be
removed from the item identified by ""key-name’’.

SET OWNER. If the item given in "key-name" is defined as owner set item,
the set must be deleted prior to this statement.

STATEMENT SEQUENCE.
DELETE SET.

ND-60.127.5 EN

3.3.18

3-30

Delete Item

Function:

The function of this statement is to remove an item from an existing record type.
The record length will remain unchanged unless it is changed by use of CHANGE
REALM.

Format:

DELETE ITEM <realm-name> <item-name>

Rules:

1.

NAME OF REALM. "Realm-name’ must be the name of the realm where
records of this type are stored.

NAME OF ITEM. "item-name’ must be the name of an item which is
defined for the record type, identified by "realm-name’’. The item may play
different roles in the record type and the consequences of the DELETE
ITEM are given in the following rules.

INDEX KEY ITEM. If the item given is defined as an index key or is part of
an index key, the index table must be deleted prior to this statement using
DELETE INDEX.

MEMBER OF GROUP ITEM. If "item-name’ identifies an item which is
defined as member of a group item, the item will automatically be deleted
from the group description, unless the group is defined as index key, CALC
key or set item (see rules 3, b and 6). It is not necessary to change the
group composition using a CHANGE GROUP statement, which is therefore
not provided.

CALC KEY. If the item given is defined as a CALC key or is a part of a
CALC key, a new CALC key must be defined for the record type (using
CHANGE CALC-REALM) or the location mode of the realm must be
changed from CALC to serial (using CHANGE SERIAL-REALM). The
CHANGE CALC-REALM or CHANGE SERIAL-REALM must be given prior to
DELETE ITEM.

MEMBER SET ITEM/OWNER SET ITEM. If the item given in "item-name’' is
defined as member set item or owner set item for a set type, or if it is part
of a set item, the set type must be deleted using DELETE SET or changed
using CHANGE SET prior to this statement.

ND-60.127.5 EN

3-31

STATEMENT SEQUENCE. The following statements may have to be given
prior to DELETE ITEM (see rules 3, 5 and 6).

CHANGE CALC-REALM
CHANGE SERIAL-REALM
DELETE SET

CHANGE SET

DELETE INDEX

ND-60.1275 EN

3.3.19

3-32

Delete Group

Function:

The function of this statement is to remove a group item from an existing record
type. The result of this is that the group item can no longer be referred to from
the DML statements, but the items constituting the group item will remain in the
record type.

Format:

DELETE GROUP <realm-name> <group-name

Rules:

1. NAME OF REALM. "Realm-name” must be the name of the realm where
records of this type are stored.

2. NAME OF GROUP ITEM. “Group-name’’ must be the name of a group item
which is defined for the record type identified by “realm-name’’. The group
item may play different roles in the record type and the consequences are
given in the following rules.

3. INDEX KEY ITEM. If the group item given is defined as an index key, the
index table must be deleted prior to this statement using DELETE INDEX.

4. CALC KEY. If the group item given is defined as a CALC key, a new CALC
key must be defined for the record type (using CHANGE CALC-REALM]}, or
the location mode of the realm must be changed from CALC to serial
{using CHANGE SERIAL-REALM). The CHANGE CALC-REALM or CHANGE
SERIAL-REALM must be given prior to DELETE GROUP.

5. MEMBER SET ITEM/OWNER SET ITEM. If “"group-name’ is defined as
member set item or owner set item for a set type, the set type must be

deleted using DELETE SET or changed using CHANGE SET prior to this
statement.

6. STATEMENT SEQUENCE. The foliowing statements may have to be given
prior to DELETE GROUP (see rules 3, 4 and 5).

CHANGE CALC-REALM
CHANGE SERIAL-REALM
DELETE SET

CHANGE SET

DELETE INDEX

ND-60.127.5 EN

3.3.20

3-33

Change System-Realm

Functi

on:

The function of this statement is to change the realm size of an existing system

realm.

Format:

CHANGE SYSTEM-REALM <realm-name)

{ REALMSIZE
{ ADDITIONAL OS-FILE <file-name> SIZE <no-of-pages>)
{ REALMSIZE

<{no-of-pages>)

<no-of-pages>)}

{ HEADING “"<heading>")
{ PURPOSE "<purpose>”)
(EXTENSION

<code> "<extension>” { <code> "<extensiomn>") ...}

Rules:

REALM NAME. The “realm-name’ must identify an existing user system
realm (not SIBAS system realm).

REALM SIZE. The parameter "'no.-of-pages’’ gives the maximum size of the
system realm in terms of SIBAS pages. Guidelines on how to estimate the
size of system realms are given at the end of this chapter.

ADDITIONAL OS-FILE. One realm may span over several OS-files. The
parameter "file-name’ must be the name of an 0S-file previously defined
using the function NEW OS-FILE. The parameter “no-of-pages’ gives the
size in number of SIBAS pages of the realm extension defined in the
option ADDITIONAL OS-FILE.

{a) An ADDITIONAL OS-FILE may be used only by one user realm.

{b) One may define up to 3 ADDITIONAL OS-FILEs at a time.

(c) An ADDITIONAL OS-FILE may be changed or deleted.

(d) Only the last defined ADDITIONAL OS-FILE may be changed or
deleted.

(e} An ADDITIONAL OS-FILE is deleted by setting the "no-of-pages’ to
zero.

{f) An ADDITIONAL OS-FILE is changed by changing the size of the
"no-of-pages’’.

{g) The ADDITIONAL OS-FILEs defined last must be deleted before
changing or deleting the previously defined ADDITIONAL OS-FILEs.

We advise you to redefine cne realm at a time.

ND-60.127.5 EN

3.3.21

3-34

Change Serial-Realm

Function:
The function of this statement is to change the definition of an existing serial
realm, or to change an existing CALC realm to serial realm. In the latter case the

CALC key will automatically cease to have this role.

Format:

CHANGE SERJAL-REALM <realm-name’

REALMSIZE <no-of-pages>)}

RECORD LENGTH <no-of-words>)

HEADING "<heading>")
PURPOSE “<purpose>” }

EXTENSION <code> “"<extension>” (<code> "<extension>") ...)
Rules:
1. REALM NAME. The parameter "realm-name’” must be the same as the

name of an existing serial realm or CALC realm.

2. REALM SIZE. The ""no-of-pages” gives the total length of the realm in
number of SIBAS pages.

3. ADDITIONAL OS-FiLE. One realm may span over several 0S-files. The
parameter "'file-name” must be the name of an 0S-file previously defined
using the function NEW OS-FILE. The parameter ''no-of-pages’ gives the
size in number of SIBAS pages of the realm extension defined in the
option ADDITIONAL OS-FILE.

(a) An ADDITIONAL OS-FILE may be used only by one user realm.
(b} One may define up to 3 ADDITIONAL OS-FILEs at a time.
{c) Only the last defined ADDITIONAL OS-FILE may be cHanged or

deleted.

{d) Only the last defined ADDITIONAL OS-FILE may be changed or
deleted.

(e) An ADDITIONAL OS-FILE is deleted by setting the ""no-of-pages’” to
zero.

(f} An ADDITIONAL OS-FILE is changed by changing the size of the
"no-of-pages’’.

(g) The ADDITIONAL OS-FILEs defined last must be deleted before
changing or deleting the previously defined ADDITIONAL OS-FILEs.

4. MAIN AREA/OVERFLOW AREA. If this option is given, all records in the

realm will be recalculated and stored according to the new definition.
"No-of-pages’ should be a prime number.

ND-60.127.5 EN

[Ga]

3-35

as member or owner of, depending on whether the set type is defined with
link to prior or not.

CHANGE OF LOCATION MODE. If "realm-name’ identifies a realm with
location mode CALC, the location mode will be changed to serial and the
CALC key will automatically cease to have this role.

We advise you to redefine one realm at a time.

STATEMENT SEQUENCE. The following statements may have to be given
prior to this statement (rule b) if there is change of location mode.

DELETE INDEX
NEW INDEX
NEW SYSTEM -REALM

ND-60.127.5 EN

3.3.22

Cha

Functi

3-36

nge CALC Realm

on:

The function of this statement is to change the definition of an existing CALC
realm, or to change an existing serial realm to CALC realm. In the latter case, an
existing item in the record type must be defined as CALC key.

Format:

CHANGE CALC-REALM <realm-named

{

{

MAIN~AREA <no-of-pages>)
RECORD LENGTH <no-of-words>)
CALC-KEY <key-name> DUPLICATES ARE (NOT) ALLOMWED)

HEADING “"<heading>"” }
R E "<purpose>"”)

P

{ REALMSIZE <no-of-pages>)

xT i

H <code> "<extension>"” { <code> “<extension>") ...}

Rules:

REALM NAME. The parameter “realm-name’’ must be the same as the
name of an existing serial realm or CALC realm.

REALM SIZE. The '"no-of-pages’” gives the total length of the realm in
number of SIBAS pages.

ADDITIONAL OS-FILE. One realm may span over several OS-files. The
parameter ‘file-name’” must be the name of an 0S-file previously defined
using the function NEW OS-FILE. The parameter “no-of-pages’” gives the
size in number of SIBAS pages of the realm extension defined in the
option ADDITIONAL OS-FILE.

(a) An ADDITIONAL OS-FILE may be used only be one user realm.

(b} One may define up to 3 ADDITIONAL OS-FILEs at a time.

{c) Only the last defined ADDITIONAL OS-FILE may be changed or

deleted.

(d) Only the last defined ADDITIONAL OS-FILE may be changed or
deleted.

() An ADDITIONAL OS-FILE is deleted by setting the "“no-of-pages’ to
zero.

{f) An ADDITIONAL OS-FILE is changed by changing the size of the
“no-of-pages’’.

(g) The ADDITIONAL OS-FILEs defined last must be deleted before
changing or deleting the previously defined ADDITIONAL OS-FILEs.

MAIN AREA/OVERFLOW AREA. If this option is given, all records in the
realm will be recalculated and stored according to the new definition.

"No-of-pages’’ should be a prime number.
ND-60.1275 EN

3-37

RECORD LENGTH. If new items have been defined for the record type, or if
the record type is defined as owner or member of new set types, the
record length may have to be increased. The record length must include all
pointers in the record. The length of a pointer is 2 words. Space must be
allowed for one or two pointers for each set type the record is defined as
member or owner of, depending on whether the set type is defined with
link to prior or not.

CALC KEY. If this option is given, the "key-name’ must refer to an item or
a group item which is defined for the record type. The item/group item
must have non null values on the database. The item/group item will
automatically be assigned the CALC KEY property. No other item/group
item in the record type must have been defined as CALC KEY. If the
“realm-name"” refers to a realm with location mode SERIAL, the location
mode will be changed to CALC. In this case the CALC KEY option must be
given. It must be given whether DUPLICATES are allowed for the key or
not. If "key-name’ already has the role of CALC KEY, this option may be
used to change it from DUPLICATES NOT ALLOWED to DUPLICATES
ALLOWED or vice versa.

CHANGE OF LOCATION MODE. If “realm name' identifies a realm with
location mode serial, the location mode will be changed to CALC. The
CALC KEY and the MAIN AREA options must then be given.

We advise you to redefine one realm at a time.

STATEMENT SEQUENCE. The following statements may have to be given
prior to this statement (rule 7).

DELETE INDEX

NEW INDEX
NEW SYSTEM-REALM

ND-60.127.5 EN

3-38

3.3.23 Change Set

Function:

The function of this statement is to change the properties of an existing set type.
The link may be changed from single to double or vice versa. The storage class
may be changed from manual to automatic or vice versa. New member record
types may be added or existing member record types may be deleted.

Format:
CHANGE SE <set-name>
.
SINGLE
{ LINK IS DOUBLE)
AUTOMATIC
{ STORAGE-CLASS IS MANUAL)
L

MEMBER <(member-set-item> <realm-name> { <realm-name> ..})}

HEADING “<heading>”)
PURPOSE “"<purpose>")
EXTENSION <code> "<extension>” { <code> "<extension>")

Rules:

SET NAME. The 'set-name’’ must be the name of an existing set type.

LINK. This option may be used to remove prior link (SINGLE) or to include
prior link {DOUBLE). If a change is made to remove the prior link, then for
all member record occurrences the space occupied by the link is made
available. It must be noted that the record length as specified in NEW
REALM for this record type is the length including set pointers, and
consequently removing the prior link of a set type will leave empty space in
the owner and member record type.

If a change is made to include the prior link, then the record length may
have to be increased for the owner and member record type. The link to
prior is automatically established for every set occurrence.

STORAGE CLASS. The storage class of the set type may be changed from
manual to automatic or vice versa. If the storage class of a set type is
changed from manual to automatic, then all occurrences of the member
record types are examined to see whether they can be connected to a set
of the set type. If so, the connection is made in the same way as if a
CONNECT were executed on the record and set type. Member records for
which no matching set exists in the database are listed in a report, and the
redefinition will not be successfully executed. If the storage class of a set
type is changed from automatic to manual, then no changes are made to
occurrences of the set type.

ND-60.127.5 EN

3-39

MEMBER. It is possible to define new member record types in a set type
and to remove old member record types. If the MEMBER clause is given,
all the member record types for the changed set type must be listed.
Whether the new members are connected into sets will depend on the
storage class of the set type. If it is automatic, then an attempt is made to
connect each new member. Cases are listed where no owner is found in
the database for the values of the member set item. If the storage class is
manual, no connections are made, and step 4 is not executed.

In the case that the set type is old and the member record type is new
(that is being defined in the same use of the restructuring facility), then
there are no occurrences of the record type in the database, and the
existing sets of the set type are not affected.

The MEMBER clause may also be used to change member set item. The
"member set item” must be defined as an item or a group item for all
member record types, and this item will automatically be given the
property of member set item. It must, of course, correspond to the owner
set item (see 3.3.12).

When member set item is changed for a set type, all existing members will
be disconnected from the set, and if the set type has automatic storage
class, all members will be connected according to the value of the new
member set item, and cases are listed where no owner is in the database
for the values of the member set item. In this case step 4 will not be
executed.

ND-60.127.5 EN

3.3.24

Cha

3-40

nge ltem

Function:

The function of this statement is to change the definition of an item. The length
of the item may be increased or decreased and data-dictionary information may
be changed or added. Key items or set member items cannot be changed.

Format:

CHANGE ITEM {realm-name> <item-name>

{

{
{
{ H
{
{

BIT POSITION <first-bit>
LENGTH <no> (WORD))
BYTE POSITION <first-byte>

STORAGE “"<storage>”)
DISPLAY "<display>")
)

ADING "<heading>”

PURPOSE “"<purpose>")
EXTENSION <code> "<extension>" [<code> "<extension>")..

L)

REALM-NAME. The parameter “‘realm-name” must be the name of an
existing realm.

ITEM-NAME. The parameter “item-name’’ must be the name of an existing
item in the record-type. ltem cannot be member/owner of a set or
CALC/index key.

LENGTH. If the item occupies one word or more, the length must be given
“no-of-words”". If the item occupies less than one word, the length is given
in number of bits or number of bytes. The position in the word must be
completed with an integer greater than or equal to zero, to indicate the
first bit or the first byte in the word which the item value occupies. If
length is given in bytes and the position is not given, the item will start in
the second byte {number 1) in the word. Bit counting starts with bit
number 0.

DISPLAY. Closely follows the COBOL picture editing syntax. A full
description of the syntax is given in section 3.4 on Data Description
Catalogue.

STORAGE is used together with DISPLAY. The syntax is given in section
3.4 on Data Description Catalogue.

STATEMENT SEQUENCE.
CHANGE SERIAL-REALM/CHANGE CALC-REALM.

ND-60.127 5 EN

3-41

3.3.25 Change Group

Function:

The function of this statement is to change or to add data-dictionary information
to a group-item.

Format:

CHANGE GROUP <realm-name> <group-name>

{ HEADING “<heading »>" }

{ PURPOSE "<purpose >")

(EXTENSION <code> "<extension>" { <code> "<extension>")
Rules:

1. REALM-NAME. The parameter ''realm-name’” must be the name of an

existing realm.

2. GROUP-NAME. The parameter ‘"group-name’’ must be the name of an
existing group-item in the record-type.

ND-60.127.5 EN

3.3.26

3-42

Change Text

Function:

The function of this statement is to change or to add information to a text.

Format:

CHANGE JEXT < name >

(HEADING “<heading>”)

{ PURPOSE “{purpose>")

{ TENSION <code> “"<extension>" (<code> "<extension>")...)

Rule:

1. TEXT-NAME. The parameter "‘text-name’’ must be the name of an existing
text.

ND-60.127.5 EN

3-43

3.3.27 Rename

Function:

The function of this statement is to rename realm, set, item, group or text in the

database.

Format:
REALM <old-name> <new-name>
SET {old-name> <new-name)>

RENAME ITEM <realm-name> <old-name> <new-name>

GROUP <realm-name> <old-name> <new-name)
TEXT <old-name> <new-name>

Rules:

1. REALM-NAME. If the ITEM/GROUP option is used, the parameter
“realm-name’” must be given. "Realm-name’ must be the name of an
existing realm.

2. OLD-NAME. The parameter “old-name’ must be that of an existing
database-unit (realm, set, item, group, text).

3. NEW-NAME. The parameter “"new-name’’ is the new name of the
database-unit {realm, set, item, group, text).

ND-60.127.5 EN

3.4

3-44

THE DATA DESCRIPTION CATALOGUE (DDC)
IN SiB2-DRL

A Data Description Catalogue {DDC)} is a symbolic file that contains data
descriptions and definitions. The purpose of DDC is to define uniquely the data
descriptions which are common 1o one or more databases. A data description is
only used in connection with definition of a new item (NEW ITEM-statement). A
data description must contain type-description and length of an item. In addition,
STORAGE and DISPLAY may be defined by the DEFINE-statement. Once the
DDC is defined it should NOT be changed. For further information, see format 2
for NEW ITEM.

Maximum number of data descriptions defined in the DDC is 1000. Syntax rules
for the DEFINE-statement are the same as for other statements in SIB-DRL. The
name of the DDC-file must be given as input-parameter to SIB-DRL if the data
description option in NEW ITEM is to be used. If not, no names has to be given.
Note: The Data Description may only consist of DEFINE-statements and an
END-statement. The END-statement indicates the end of the data description
definitions.

Format for data description definition in DDC:

{
{

DEFINE

TYPE

<data description-name>

INTEGER
FLOATING BIT POSITION <first-bit>

CHARACTER LENGTH <no> {WORD)
PRIVACY-JTEM BYTE POSITION <first-byte>

STORAGE “<storage>”)
DISPLAY “<display>”)

Rules:

1. ITEM-TYPE. A type must be specified for the item. If an item is defined as
PRIVACY-ITEM, the length and definition of the item must be the same as
for item names, realm names, etc. (ie. four words). When a record of this
type is retrieved, the person retrieving the record must provide the value of
the privacy item in order for the retrieval to be successful.

2. LENGTH. If the item occupies one word or more, the length must be given
""no-of-words”. If the item occupies less than one word, the length is given
in humber of bits or number of bytes. The position in the word must be
completed with an integer greater than or equal to zero to indicate the first
bit or the first byte in the word which the item value occupies. If length is
given in bytes and the position is not given, the item will start in the
second byte (number 1) in the word. Bit counting starts with bit number 0.

ND-60.127.5 EN

3-45

SIZE OF INTEGERS. If the item is defined as integer, then its minimum
length is 1 bit, and its maximum length can be freely chosen by the user.

SIZE OF FLOATING. If the item is defined as floating, it will normally

occupy an integral number of words which may be freely chosen by the
user.

SIZE OF CHARACTER. If the item is defined as character, then it may

occupy less than one word. The item may occupy more than one word as
long as it is allocated in integral number of words.

ND-60.127.5 EN

3.4.1

Displa

The displ

few extensions.

possibilit

Example:

3-46

y Code

ay code closely follows the COBOL syntax for editing pictures, with a

The extensions have to do with the justification and the

of inserting text strings in an item when it is printed or displayed.

item content

Display code

Displayed as:

“Bill Hansen "

“Bill H”

"Bill Hansen

“Mr.Bill Hansen '

""10000.00"

" +10000.00"

"kr.10000.00"
200.00”

"00200.00-"

'00200.00-"

" $200.00-"

" Kr.200.00-"

Bill H”
"Bill H

1985-10-09
The year 1985
09/10-01

1985-40:Su
‘NN Monday in week no.: 40
. 'NN Monday in week no.: 40
Week number 07 in ‘85
Week number 54 in 00

230134
23.01:7?

At 10 o’clock
At 23 o'clock
At 11 PM

At 12:30 AM
At 12:30 PM

12 char "Bill Hansen XXX KXXXXXXXX

12 char "Bill Hansen XXXXXX

12 char "Bill Hansen " x(12}

12 char "Bill Hansen " "Mr. x (12)

5 char 10000" 72272.22

5 char ""10000" +z7222.22

5 char "10000” kr." zzzzz.Z2

5 char " -200" +2z2722.72

5 char ™ -200" 99999.99-

Integer -200 99999.99-

Integer-200 '$'$$$%$9.99-

Integer-200 Kr'$$$5$9.99-

12 char "Bill Hansen " = % (6)

12 char "Bill Hansen " < x (6)

DATE:

19851008 YYYY'-'MM'-'DD

00000009 YYYY'-"MM' ="DD

19851009 ‘The year 'YYYY

20011009 DD/ MM'-'YY

WEEK NUMBER:

19854007 YYYY'-'NN""WW

19854001 WWWWWWWW' in week no.:

19854001 <WWWWWWWW- in week no

19850701 "Week number 'NN"in "YY

20005400 "Week number ‘NN in 'YY

TIME:

230134 HH"MM''SS

230199 HH'MM'’'SS

100199 "At "HH'0"clock’

239999 ‘At 'HH' o""clock’

239999 ‘At 'HH' 'AM

003090 At HH MM AM

123099 ‘At 'HH' MM 'AM
ND-60.127.5 EN

3.4.2

List of Legal Symbols and Rules for the D

Symbol Rules

X

Z

3-47

ISPLAY

indicates a position to be filled by a character from the data (which

must be alphanumeric text).

indicates a position to be filled by a digit from the da
a number). A leading zero in this position will be dis
All positions between the blank leading zeros will be
too.

as Z above, but a leading zero in this position will be d

ta {which must be
played as a blank.
filled with blanks

isplayed as a ‘0.

Each 9 in the display code must be to the right of every Z in the display

code.
as Z above, but a leading zero in this position will be d

Each ™ in the display code must be to the left of eve
code. Z and * cannot both be used in the same displa

Y

isplayed as an

ry 9 in the display
y code.

as Z above, but the text (in single quotes) given immediately before the

first $ in the display code, will be moved towards

the first non-zero

digit from the data. Blanks will be used in the positions to the left of this

text, starting from the old position of the text.

Each $ in the display code must be to the ieft of eve
code. $ cannot be used together with Z and * inad
The first minus in a display code for number indicate
filled with a blank if the data is greater than or equ
minus if it is negative. This first minus must be b
positions for digits.

If there is more than one minus, the additional minus
meaning as the Z above, except that the sign will be n
first non-zero digit coming from the data. (Blanks w

ry 9 in the display
isplay code.

s a position to be

al to zero, with a
efore or after all

es have the same

noved towards the

il be used in the

positions to the left of the sign, starting with the first minus position.)

When more than one minus is given, it is illegal to use

Z, " or $ inthe

same string, and every minus must be before every 9 in the display

code.

' (apostrophe) indicates that the positions in the displa
occupied by the text inside the display code. This te

next character and ends with the next single occurre

quote character (') in the display code.

Note that ' (two single apostropes) are taken as the
within the text. Such a double occurrence is not take
of the text.

ND-60.127.5 EN

y string should be
xt starts with the
snce of the single

'

single character
n to mark the end

DB

CR

e -~

3-48

as minus above, except that when data is greater than or equal to zero,
the position will be filled by a + instead of the blank. The same rules
apply to + as to — . It is not allowed to use both a minus and a plus
in a display code.

indicates two positions to show the sign of the data (which must be in
the numeric category). If the data item is greater than or equal to zero,
the positions are blanked. If the data is negative, they are filled with
'DB".

DB must be given after all the symbols denoting positions for the
digits. It cannot be used together with + or — in a display code. Only
one occurrence of DB is allowed in a display code.

as DB, except that if the data is negative, the two positions will be filled
with "CR" instead of 'DB’. The same rules apply for CR as for DB. You
cannot use CR in a display code where DB is used.

indicates the position of the decimal point. Only one occurrence is
allowed. The data must be numeric. Positions for decimals must be
indicated when a decimal point is indicated.

same as * . See ' above.

same as '/'. See ' above.

same as ‘0. See ' above.

, ([comma) same as ’,". See ' above.

this indicates a repetition after a B, 0, /, comma, —, +, $, ", 9, Z, X It
must be followed by an integer (giving the number of repetitions of the
symbol} and a).

indicates left justification when the field is displayed.

indicates right justification when the field is displayed.

indicates a digit for the year in a DATA or WEEK item. When a Y is
used, there must be one group of 2 or 4 Y's.

indicates a digit for the month in a DATA or the minute in a TIME item.
When M is used, there must be a group of 2 M's.

indicates a digit for the day in a DATA item. When D is used there must
be a group of 2 D's.

indicates a digit of the week Number in WEEK item. When N is used,
there must be a group of 2 N's.

indicates a letter position for the name of the weekday in a WEEK item.

ND-60.127.5 EN

AM

indicates a digit for the hour in a TIME item. Whe
must be a group of 2 H's.

indicates a digit for tht second in a TIME item. Whe
must be a group of 2 S's.

indicates AM or PM for a TIME item. The display
adjusted accordingly in the range 1 to 12,

ND-60.127.5 EN

H is used, there

S is used, there

>d hour must be

343

Storage Code

3-50

The storage code indicates how data is stored on disk. The storage code is
required for electronic data processing such as data computation and conversion

of one field to another.

In many cases a storage code can be generated automatically from a given

display code.

Different programming languages and software packages may not be able to
handle all types of storage codes. You must remember this when you choose a
storage code for a particular item.

Example:
Storage code
Possible
Dictionary syntax COBOL FORTRAN-77 Display code
ALPHANUMERIC (12) | PIC x(12). character#12 XXXXXXXXXXXX
equivalenced with
INTEGER (6)
INTEGER 2 PIC S9999 COMP. INTEGER#*2 —2z279
INTEGER 4 PIC S9(8) COMP. INTEGER#4 — 27222229
UNPACKED DEC (5,2} | PIC $99999Vv83 N.A. —22777.22
PACKED DEC (5,2) PIC Szzzz.zz N.A. —72222.22
COMP-3
PACKED DEC (12,2) PIC Sz{12).zz N.A. —2(12).zz
COMP-3
REAL 8 N.A. REAL#8 or —z(12).zz
DOUBLE
PRECISION
N.A. = No Arithmetic Possible
on this Storage code

Appendix H in the manual indicates which storage codes are directly supported
by COBOL, FORTRAN 77, ABM-FOCUS, RG, QL and UNIQUE.

ND-60.127.5 EN

3-51
344 List of Storage Code
The n and m in the table below may be any positive integers or zero. Note that
the division is an integer division. As: 5/2 = 2. If the SIBAS item length contains
more bytes than required, data is left justified in the item. The filler byte(s) to the
right is blank if type is character, and binary zero if type is integer or floating.
Standard Length
Storage code Abbreviated Display of item
in bytes
ALPHANUMERIC (n) Afn) x(n) n
All printable characters
sometime called TEXT
NUMERIC TEXT (n} N T(n) x{n) n
Alphanumeric field with only
one number in. WP and RG
can compute on such fields.
*) UNPACKED DECIMAL (n,m}U D(n,m) -z{n-1)9.9(m) n-+m
UNPACKED DECIMAL (n,m)
SEPARATE U D{n.m)S -z{n-1)9.9(m) n+m-1
PACKED DECIMAL (n,m) P D(n.m) -z{n-1)9.9(m) {(n+m)/2 +1
sometime called BCD
PACKED DECIMAL (n,m) PD(nm)U z{(n-1)9.9(m) (n-+mj)/2 +1
UNSIGNED
REAL 4 R4 — 4
REAL G R6 — 6
REAL 8 R8 e 8
INTEGER?2 12 22229 2
INTEGER4 14 -22227222229 4
DATE D YYYY - 'MM-'DD4
WEEK W YYYY'-'NN-"WW 4
TIME T HH:"MM"'SS 4
NONSTANDARD{n) N(n) x{2n) n
displayed
HEXADECIMAL
REPEAT k Rk ()=k
The item is repeated k times
*) is the usual COBOL UNPACKED DECIMAL as for ex. PIC 59999
‘Signed is leading’ is not implemented as a storage code.
ND-60.127.5 EN

3-52

3.45 Storage and Display in SIBAS: Date and Time

There are three storage codes, DATE, WEEK and TIME, for storing date and time
in a SIBAS item.

DATE
Date is stored as a double integer in the SIBAS item. The format of the storage
code is:
YYYYMMDD YYYY for Year NOTE: YYYY, MM or DD can have
MM for Month 0 (zero) as values.
DD for Day
Example:
19850001 means the first in some month, 1985.
YYYY'-'MM'-'DD 19851009 1985-10-09
YYYY'-"MM'-'DD (0000009 ?772-22-09
‘The year 'YYYY 19851009 The year 1885
DD'/'MM'-"YY 20011009 09/10-01
WEEK

The date is stored as a double integer in the SIBAS item. The format of the
storage code is:

YYYYNNWW YYYY for Year

NN for Number of Week

Ww for Week Day (eg. 01 for Monday)
Example:

19854002 means Tuesday in week number 40, 1985.

Stored
Display code: value: Displayed value:
YYYY'-'NN""WW 19854007 1985-40:Su

WWWWWWWW'’ in week no.: ‘NN 19854001 Monday in week no.: 40
<WWWWWWWW’ in week no.: ‘NN 19854001 Monday in week no.: 40

"Week number 'NN" in ”'YY 19850701 Week number 07 in ‘85
"Week number ‘NN’ in 'YY 20005400 Week number 54 in 00
TIME

Time is stored as a double integer. The format of the storage code is:
HHMMSS HH for Hour (in the range 0 to 23)

MM for Minute (in the range 0 to 59)
SS for Second (in the range o to 59)

ND-60.127.5 EN

3-53

Examples:

040531 means 31 seconds and 5 minutes after 4 AM.
130359 means 59 seconds and 3 minutes after 1 PM.
000000 means at Midnight.

If an number is outside its range, it is taken to mean unspecified.

Display code: Stored value: Displayed valued:
HH:"MM"'SS 230134 23:01:34

HH "MM"'SS 230199 23:01:7?

‘At 'HH' o""clock’ 100199 At 10 o'clock

At 'HH' o''clock’ 239999 At 23 o'clock

‘At 'HH 'AM 239999 At 11 PM

At THH MM AM 003099 At 12:30 AM

‘At "HH' 'MM" ‘AM 123099 At 12:30 PM

NOTE; If you include AM in the format, the time will be displayed with hours
between 1 and 12, together with AM of PM.

To make sure that an unspecified item gets a value that is interpreted correctly,
the SIBAS type should be INTEGER when storage code is DATE or WEEK, and
type CHARACTER when storage code is TIME. SIBAS will then put the value
00000000 into a DATA or WEEK item, the value 538976288 into a TIME item — if a
record is stored without a value for this item.

ND-60.127.5 EN

3.5

3-54

DIMENSIONING OF DATABASE PARAMETERS

In this section we explain how to compute values of the disk file parameters. The
actual formulas for computing these parameters are inconvenient to use.
Therefore, we recommend that you use SIB2-DRL to compute these parameters,
especially:

— The record sizes

— The datafile sizes, and

— The index table sizes.

To get a good estimate of these parameters run the SIB2-DRL utility two times.
For the first run:

1. Make all files INDEXED.

2. Give an overestimate of space to all record sizes.
3. Give an overestimate of the number of pages for the realms.

This first run will produce a DRL report with information on the disk file
parameters. Use this information to adjust the values of the parameters in the
DRL input file, for the second run.

SIBAS realms are stored on SINTRAN files, which may be created as INDEXED
or CONTINUOUS files. Such files always occupy an integral number of
"SINTRAN pages”, i.e., 1024 words. A SIBAS pagesize is variable. However, all
SIBAS pages in one OS-file have the same size, defined by the NEW-OS-FILE
statement. The default length is 512 words. The minimum page size is 64 words,
the practical maximum is 2 K words {SINTRAN-IIl default value for the device
buffer size). If the file type is INDEXED, disk space is allocated when the demand
arises. One is then recommended to be generous when estimating the size of the
REALM. SIB-DRL prints out useful information about the size of the realms and
gives estimates for the size of the index tables.

The maximum number of “SIBAS pages” on an OS-FILE is about 2000 000.
However, for performance reasons try to limit the size of any OS-FILE to
approximately 128 Megabytes (i.e. 65000 SINTRAN pages), in particular if
SIBAS-500 is used.

The maximum number of “"SIBAS-pages’ for any realm type is 2000 000. Any
realm type can span over one or more OS-FILEs, provided all OS-FILEs have the
same pagesize.

SIBAS System Realm

When a SIBAS database is defined and initialized, or redefined using the SIBAS
Definition/Redefinition Language, an object version of the data base definition
will be generated. The object version of the schema will be stored on the SIBAS
system realm. In the following we will give some rules for estimating the space
requirements for the SIBAS system realm.

ND-60.127.5 EN

3-55

The page size of a SIBAS system realm is always 64 words
realm must be on a separate SINTRAN file. It will contain the
table, the 1/0O table, the set description table, the record desc

, and the system

realm description

ription tables, the

index description tables and other dictionary information — usually the record
description tables are the most voluminous. As a rule of thumb use an “indexed

file” for the object schemas and do not specify any size for the

User System Realms

object schemas.

SIBAS-DRL prints cut useful estimates about the size of user system realms.

These estimates are based on the following:

A user system realm contains one SIBAS page reserved for
the realm description and a number of SIBAS pages for the ir
on it. Index tables are organized as a hierarchy of tables, ea
SIBAS page. :

One index table is divided into a table head and a number
lowest level, by far the most common, one index table entry ¢
and one pointer. Since the key values are stored randomly, th
of the index tables is on average 60%.

Number of entries on a SIBAS page 6

Number of records

SIBAS containing
dex tables stored

ch occupying one

of entries. At the
onsists of one key

e packing density

Number of SIBAS pages for one index

Number of entries on a

It must be noted that index tables might be compressed by a
the SIB-DBM module.

Record size

In the case of records without set, the record size is the sum of
the case of records in a set, SIBAS adds a single or a doub!
record and the record size must be computed accordingly.
occupies 2 words.

Serial Realms

A serial realm contains one page reserved for SIBAS and a nur
use by the records. A page is always headed by a pointer (2 wo
an integer number of records. Estimating the size of a serial
easy matter.

Number of records on a page Record length

Maximum number of records

* 1.05
SIBAS page

tility statement of

the item sizes. In

e pointer to each

A SIBAS pointer

nber of pages for

rds) and contains
realm is then an

Number of pages for the realm =

Number of records on a page

ND-60.127.5 EN

CALC Realms

The main

parameter when dimensioning a CALC realm is the number of buckets

in the main area. For SIBAS one bucket equals one page. Choosing an optimum
value for the number of pages in the main area is not a straightforward
procedure. This number will also give the number of SIBAS pages in the main

area and

Overflow

, together with the page size, it will limit the total number of records in
the main
randomiz

area. A prime number is used to give a better distribution with the
ng algorithm SIBAS uses.

pages are linked to the main page when overflow occurs. They

(overflow pages) are not preallocated to a specific main page. An overflow page

belongs t

o only one main page.

Main and overflow pages have the same size and the same layout: they are
headed hy a pointer and contain an integer number of records. Estimating the

size of a

Number

Number

Number

CALC realm may be done as follows:

Page size —2

Jf record SIBAS ~ Record lenath
ecords on a page = o ord fength

Total number of records

f SIBAS i in =
1 pages in main Number of records on a SIBAS page

of SIBAS pages for the realm = Number of SIBAS pages in main -+

1 Estimated Overflowing Records
60% Number of records on a SIBAS page

ND-80.127.5 EN

3.6

3-57

HOW TO RUN DRL ON THE COMPUTER

Use an editor to write the source schema and the data description catalogue file
(with the necessary statements from this chapter) and store these on files named
<database name>:SYMB, and <data description catalogue file>:SYMB
respectively. For example create the necessary SINTRAN files, by commands
like:

@CREATE-FILE <database name> :DATA

@CREATE-FILE <name of OS-FILE1 > :DATA
@ CREATE-FILE <name of OS-FILE2> :DATA

Make sure you were logged in under the SINTRAN-user name where you want
the database to reside.

Make sure user RT has write and append access to this user’s files:

@ CREATE-FRIEND RT
@SET-FRIEND-ACCESS RT, RWA

for example.
Then run the DRL by the command
@SIB2-DRL.

(See the examples in the next section.) Answering questions by just CR, will be
taken to mean NO.

3.7

EXAM

An initiat

QCREATE-FI
QCREATE-FI

AS182-DRL

S 1BAS

EXPLANATIO
INTERACTIV

PLES

ion run:

LE

INPUT-FILE
LIST-FILE
DD-CATALOG

KKK K KKK KKK
*D ATA

IR E SRS SRS E RS RS RS S SRR RS R SRR SRR R R SR EEELES

000754 ST

- I 1 - E, DEFINITION-REDEFINITION LANGUAGE
N (Y/N) 7N '
E (Y/N) 2 N § file EMPDATA:SYMB)
contains the schema J
i definitions '
file EMPDATA:LIST
EMPDATA:SYMB contains the documentation
LMPDATALLIST of the database after
UE : DD-NAMES:SYMB initiation

********tt****txt*tk****t*****t*******!**

B ASE

oP 0

EMPDATA:DATA O
LE SYSFILE:DATA O

EMPDATA

-58

the database file

. EMPDATA and the file
SYSFILE:DATA may be created 5

before the database is initiated, {

otherwise SIB2-DRL will create [

these files as indexed files. g/

T a2

INITIATED 15.30 1983.04.14 x|
xR xEEKXRE N

£ tile DD-NAMES:SYMB
'.:{contains the data

descriptions

ND-60.127.5 EN

3-59

*®
2% % Data Description Catalogue -~ DDC e
3x % . when the data
hroox /| item descriptions are
5% % Data Descriptions provided here you need not
gx x \, repeat the descriptions
7% DEFINE DATE TYPE CHARACTER LENGTH 3'%.es
gx STORAGE "ALPHANUMERIC (6)
gx DISPLAY "XX'. XX . XX .
10% DEFINE NAME TYPE CHARACTER LENGTH 13
11x% STORAGE "ALPHANUMERIC (26)"
12% DISPLAY “ 'Name: X(26)"
13%* DEFINE SALARY TYPE FLOATING LENGTH 3
14% STORAGE "REALG"
15% DISPLAY "’'Salary: B'$'$3$" "$$9.99"
16% END.
1% x
2%
3% START INITIATION DATABASE EMPDATA
4% SUPPRESS REALM RECORD-TYPE ITEM SET
5% INDEX-TABLE TEXT
6 % SIZE 1000
7% HEADING "/THIS DATABASE CONTAINS EMPLOYEES' _
g ADDRESS /AND INFORMATION ABOUT ‘' g
g% THEIR EMPLOYMENT " g &
0 give a
11* NEW OS-FILE SYSFILE PAGESIZE 256. large number
12% of pages to the
13 NEW SYSTEM-REALM INDRELM OS-FILE SYSFILE g Si2¢ clause
14% REALMSIZE 50.
15%
16%* NEW SERIAL-REALM PERSON OS-FILE SYSFILE
171% REALMSIZE 60 -
18% RECORD LENGTH 48 SYSFILE must
19% MAIN INDRELM not be the same
20% HEADING "EMPLOYEES' ADDRESS". as the database
21% : file
22% NEW CALC-REALM EMPLOYEE OS-FILE SYSFILE N
23% REALMSIZE 31
24% MAIN-AREA 23
25% RECORD LENGTH 27
26% CALC-KEY SOCSECNO DUPLICATES NOT
27% MAIN INDRELM o
28% HEADING "EMPLOYMENT INFORMATION" i REALM
20% % {/ name must be unique.
30 * Realm : PERSON { OS-FILE must have been
31% % defined before. .
J2% (
33x NEW ITEM PERSON BDATE
34% DD~-NAME DATE
35% HEADING “date of birth"
36% NEW ITEM PERSON BNUMBER
37% TYPE CHARACTER LENGTH 3

ND-60.

1275 EN

38%
39%
40%
L1x
42%
43%
by
45%
46%
4T%
48%
49%
50%
51%
52%
53%
54%
55%
56 %
57%
58%
59%
60*
61%
g2*
63*
B4*
65%
66%
7%
68*
69*
70%
T1%
72%
73%
Thx
75%
76%
17%
78%
79%
80*
B1¥
82*
83%
84%
85%
86%
87*
8g*
89
90*
91x
g2
93%
g4x

NEW

NEW I

NEW I

ITEM

TEM

TEM

¥* group items

3-60

HEADING “birth-number”.
PERSON NAME

DD-NAME NAME

HEADING “employee's name.
PERSON ADDRESS

TYPE CHARACTER LENGTH 20
STORAGE "ALPHANUMERIC{40)"
DISPLAY "X{40)"

HEADING “"employee’'s address”.
PERSON STATYS

TYPE CHARACTER LENGTH 5
DISPLAY "’status: X{10}"

$ DD-NAME gives ¢

" the Data Description)

name. Since it is defined |

in the Data Description

Catalogue, it need not
be described here

2 again.

the group
item is defined 1
{| as a combination

‘ of two data
items.

define the
data items of the |
REALM EMPLOYEE. jj

define the O
index for PERSON
» and EMPLOYEE.

define the

NEW GROUP PERSON SOCSECNO BDATE BNUMBER
HEADING “social security no.”
b 4
¥ Realm : EMPLOYEFTE
*
NEW ITEM EMPLOYEE SOCSECND
TYPE CHARACTER LENGTH 6
STORAGE “ALPHANUMERIC(12)"
DISPLAY "X(6)1BX{(5})"
HEADING "social security number”
NEW ITEM EMPLOYEE DEPT
TYPE INTEGER LENGTH 1
STORAGE "INTEGER2"
DISPLAY "999"
HEADING "department”.
NEW ITEM EMPLOYEE POSITION
TYPE CHARACTER LENGTH 10
HEADING "posistion”.
NEW ITEM EMPLOYEE SALARY
DD-NAME SALARY.
NEW ITEM EMPLOYEE HDATE
DD-NAME DATE
HEADING "hire-date"”.
b 4
* Indexes
*
NEW INDEX PERSON NAME
UPDATE AUTOMATIC DUPLICATES ALLOWED.
NEW INDEX PERSON SOCSECNO
UPDATE AUTOMATIC DUPLICATES NOT ALLOWED.
NEW INDEX EMPLOYEE DEPT
UPDATE AUTOMATIC DUPLICATES ALLOWED.
¥
* Sets
%
NEW SET EMPSET

SET.

LINK DOUBLE STORAGE-CLASS AUTOMATIC
OWNER SOCSECNO EMPLOYEE

ND-60.127.5 EN

3-61

g5% MEMBER SOCSECNO PERSON
g6 % HEADING "PERSON/ EMPLOYMENT"
g7x PURPOSE "TO LINK INFORMATION IN REALM EMPLOYEE"
ggx "TO INFORMATION IN REALM PERSON".
gg9x *
100% % Text
101% x
102%
103% NEW TEXT TEXT1
104% HEADING "OTHER DATABASE INFORMATION"
105% PURPOSE "THIS TEXT MAY CONTAIN INFORMATION ABOUT"
106%* "CHANGES IN THE DATABASE. FOR EXAMPLE,"
107% “DATE AND DETAILS OF REDEFINITIONS."
108* END.
END OF STEP 1 NUMBER OF ERRORS = 0
END OF STEP 2 NUMBER OF ERRORS = 0
END OF STEP 3 NUMBER OF ERRORS = 0

DATABASE DEFINED

EMPDATA
HEADING
/THIS 1S DATABASE CONTAINS EMPLOYEES'
ADDRESS /AND INFORMATION
ABOUT THEIR EMPLOYMENT

¥% NO. WARNINGS : 0

** NO. ERRORS :]

¥%* SIZE OF DML RESIDENT TABLES : 555 WORDS

** SIZE OF DATA DICTIONARY INFORMATION : 64 WORDS
¥x%x SIZE OF SIBAS SYSTEM-REALM IS : 613 WORDS

* THE USER IS RECOMMENDED TO GIVE A LARGE NO. OF PAGES

* IF CREATING <database>:DATA AS A CONTINUOUS FILE,
* T.E 300 SINTRAN PAGES.

--- DATABASE IS INITIATED ---

END OF STEP 4 NUMBER OF ERRORS = 0

R R R R R R A R R R R R R A R AR R A KA AR KRR R KK AR KR KRR KK KRR R KR R
* DATABASETEMPDATA I NI T I ATETD 13.20 1984

AR R R R R R R R R R R T R R A R R R K R R A A R AR R A R A R R R R R AR R R R A KRR R AR AR AR KKK

KXEXK AKX

04.13

* user ©

defined text
can be stored inj}
_the database. ¢

*

ND-60.127.5 EN

3-62

A REDEFINITION RUN :

QdCOPY-FILE
QCOPY-FILE

@dSIB2-DRL

SI1BAS

EXPLANATI
INTERACTI
INPUT-FIL
LIST-FILE
DD~ CATALO

1%
2%
3%
hx
"%
R4
7%
8x
g%
10%
11%
12%
13%
14%

KKk %
* %
kkk%k
%

STA

PUR
X %

* %
CHA

%

END OF
END OF STE
END OF STE
DATABASE D

STE

EMPDATA
HEAD

DATABA

END OF STE

PO S SN &S S S

D ATA

KkXkEk XX k%

®

END.

"EMPCOPY:DATA" EMPDATA:DATA
"SYSFILE-COP:DATA™ SYSFILE:DATA take a backu
of the databa
- 11-E, DEFINITION-REDEFINITION LANGUAGE
ON {Y/N} ? N
VE (Y/N)}) ? N
E EMP-CHANGE
EMPDATA:LIST
GUE
R R R 2R R R R R 222 R R R R R RS R R R R RO R RO R eSS
Change of database EMPDATA %%

k************k***************************k#gi*&”f
RT REDEFINITION DATABASE EMPDATA ; redefine the
SUPPRESS REALM RECORD-TYPE ITEM SET TEXT Y database
SCRATCH-FILE SCRATCH T
POSE "EXAMPLE 7O ILLUSTRATE REDEFINITION RUN"
Expand realm PERSON

NGE SERIAL-REALM PERSON
REALMSIZE 60.

P NUMBER CGF ERRORS = 0

P2 NUMBER OF ERRORS = 0

P 3 NUMBER OF ERRORS = 0

EFINED

ING
/THIS DATABASE CONTAINS EMPLOYEES' ADDRESS
/AND INFORMATION ABOUT THEIR EMPLOYMENT

0SE EXAMPLE TC ILLUSTRATE REDEFINITION RUN

ABASE REDEFINITION

* NO. WARNINGS 0

* NO. ERRORS 0

* SIZE OF DML RESIDENT TABLES 862 WORDS
SE IS REDEFINED ---

P 4 NUMBER OF ERRORS = 0

I PR R R RS2 ES RS S R R RS R R R SRR R RS RR RS RRR R RS R R R SRR EREREss S

B ASEEMPDATA R EDEF I NED 13.20 1984.04.137%
ER A KKK KA KA KRR IR IR KK LKA KR KA AR A A AKI KR KA KKK XXX

ND-60.127.5 EN

CHAPTER IV: DATA MANIPULATION
LANGUAGE (DML)

ABSTRACT

SIBAS provides a number of statements for {i) opening, closing or reserving the
database, (ii) finding and modifying records, (iii} storing and manipulating index
keys, and for {iv) obtaining information about the database schemas.

The data manipulation statements are of two forms: (i} the short form, e.g., GET,
MODIFY, ERASE etc. and (ii) the CALL form which is to be used in application
programming.

SIBAS data manipulation services are generally accessed via calls. SIBAS uses
the FORTRAN call syntax. The application programs may, however, be written in
any language which has a CALL statement facility.

TABLE OF CONTENTS:

4.1 DATA MANIPULATION LANGUAGE (DML).
42 PARAMETER DESCRIPTIONS.
4.2.1 DML Statements
to 4.2.26 DML Statements
4.3 HOST LANGUAGE CONSIDERATIONS
44 HOW TO LOAD APPLICATION PROGRAMS

ND-60.127.5 EN

ND-60.127.5 EN

4.1

4-3

DATA MANIPULATION LANGUAGE
(DIVIL)

SIBAS provides a selection of DML statements. Each DML statement has 2
forms, a short form, e.g., GET, MODIFY, STORE, and an encoded CALL form.
The CALL form is to be used in application programming. The short forms are
used in SIBINTER.

GENERAL

For a program to be able to access a SIBAS database, some or all of the record
types in the database must be defined in the host language program.

It is important to note that not all record types in the data base need to be
defined, but only those required. Furthermore, the same applies to items in a
record type. If a program does not need to process all the items in a given
record type, then those not required may be omitted from the record description
in the program. This provides a subschema facility and enables the programmer
to minimize the core space required at execution time.

The DML statements in SIBAS have the general form of a CALL statement.
When this form is used, SIBAS may be used from any host language which
provides a CALL statement facility. The description of records and items must
then follow the conventions of the host language.

The programmer may choose his own names to identify the parameters in the
various DML CALL statements. In order to clarify the role of each parameter in
the following sections, each parameter is identified by a lower case narrative
name which does not necessarily conform to the name conventions of the host
languages.

In many of the DML statements, it is necessary to use parameters which identify
a FORTRAN one dimensional array or a COBOL storage area. The values to be
used by the Database Control System (DBCS) when processing the DML
statement must be stored in the array or table prior to the execution of the DML
CALL. It is important to note that each value which is to be passed to the DBCS
in this way must start on a word boundary.

The form of a DML CALL statement in FORTRAN is as follows:
CALL SDML (param-1, param-2,)
In COBOL the form is CALL 'SDML’ USING param-1, param-2,.....

A full description of the DML statement is given later in this chapter, with the
FORTRAN form of the call indicated.

ND-60.127.5 EN

4.2

4-4

PARAMETER DESCRIPTIONS

To avoid repetition in defining the statements, the syntax of the most common
parameters is defined here. Other parameters are described as 'special
parameters’”’ under the special statements where they are used. This section
should not be read alone, but along with the special statements.

When parameter names are passed through arrays or areas, it is important to
note that there must be exactly eight characters in each name, left justified and

with trailing blanks.

The general description of the parameters are given below. For examples: See
4.3.

The specific usage is defined in the various DML statements.

“"mode’’

"Mode” is a single integer which declares whether the run-unit wants to
change the database or not.

""data-base-name”’

"Data-base-name” defines a field or an array in the user area containing
the eight character name of the database. This name must be identical to
that defined in the Database Schema.

"passward’’, “'new-password’’
""Password” and ""'new-password”’ define a field or an array in the user area
containing the eight character passwords to be checked by the database

control system.

“realm-name’”’

"Realm-name’’ defines a field or an array in the user area containing the
eight character name of the relevant realm. This name must be identical to
a realm name in the database schema.

""no.-of-realms”’

"No.-of-realms” defines a single integer variable in the user area

containing the number of realms to be readied in one READY REALM
statement.

"key-name”’

"Key-name” defines a field or an array in the user area containing the eight
character name of an item or a group item defined in the database schema
as an index key or calc key for the relevant record type.

ND-60.127.5 EN

""key-value”

"Key-vailue’' defines a field or an array in the user area containing or
receiving the value of an index key or a calc key.

trore

“low-limit”, “high-limit”

"Low-limit”" and "‘high-limit” define fields or arrays in the user area
containing lower and upper limit values of a corresponding index key. The
length and type of "low limit” and “high limit" must be the same as that
of the corresponding key.

"set-name’’

“Set-name’’ defines a field or an array in the user area containing the eight
character name of a set type defined in the database schema.

""temporary-data-base-key"’

"Temporary-data-base-key'' defines a single integer variable in the user
area. Using the value zero in this parameter means that the call (e.g., GET
or MODIFY) will work on the current record (defined by the CRUI, see
2.4.1.2). if you want the call to work on a record not current anymore, you
must have issued a REMEMBER when the record still was current. A
number identifying the record would then have been stored in your
"temporary-data-base-key''-variable. Using this number instead of zero in
the call, will make the call work on that record instead of the record now
being current. Note that the parameter is an output parameter only in case
of REMEMBER, otherwise it is an input parameter.

“temporary-search-region-indicator’’

“"Temporary-search-region-indicator’” defines a single integer variable in
the user area. The value zero in this parameter means that the current
search region is to be used — as defined by the CSRi (see 2.4.1.2). In case
you want to operate on a search region not current any. longer, you must
have issued a REMEMBER for that search region when it still was current.
The identifying number then stored in your
“"temporary-search-region-indicator'’-variable, must be used instead of the
zero when you want this search region.

Note that the parameter is an output parameter only for REMEMBER,
otherwise it is an input parameter.

roay

""no.-of-items’’, "'no.-wanted’’, "no.-found”

"No.-of-items” defines a single integer variable in the user area containing
the number of item names that have been placed in “item-list’".
"No.-of-items” must have a value greater than or equal to one and less
than or equal to the total number of items and group items in the record
type. “No.-wanted”’ defines an integer value giving the number of records
or keys the run-unit wishes to read, ""no.-found” tells the run-unit how
many records or keys it received.

ND-60.127.5 EN

"item-list’’

“ltem-list” defines a field or an array in the user area containing eight
character names of data items or group items defined in the database
schema for a record type.

"item-values”’

“ltem-values” defines a field or an array in the user area containing or
receiving the values of the items and group items named in the "item-list”
in corresponding order. Space must be allocated for each item
corresponding to the data format definition in the database schema.

roar g

"option-code"”’, “usage-mode’’, "'protection-mode”’

"Option-code”, “usage-mode” and “protection-mode’’ define single
integer variables whose values are used to specify certain options to be
selected in various DML statements.

ot

"key-length”, "value-length"’

"Key-length” and ’'value-length” are single integer variables defining the
length of a field to be passed to SIBAS, expressed in number of words.

"status’’

"Status’ is an output parameter (single integer variable) which the DBCS
sets to different values. The status value +1 indicates that the statement
execution has been successful. The other values indicate an unsuccessful

execution, implying a Database Exeception Condition (DBEC) in most cases
(see Chapter 7).

Summary:

1: successful

0: normal exception condition such as end of search region

—1: abnormal exception condition, more information is to be
found by calling SDBEC

—2 to —86: after SOPDB

Other negative values indicating error conditions may be returned to the

run-unit, a list of which is given in the ERROR REPORTING chapter of this

manual, but in those cases no more information may be found by calling
SDBEC.

ND-60.127.5 EN

4.2.1

4-7

Open Database

Function:

The function of the OPEN-DATA-BASE statement is to indicate the run-unit's
intention of processing the data in the database.

Format:
CALL SOPDB (mode, database name, password, status)

Rules:

A SIBAS process for this database must be running. This might be done by the
SIBAS-service program before running your application program (see section
6.4), or by including calls from section 5.4 in your program. If the SIBAS process
is not number zero, a SETDV-call must be included before SOPDB, see section
5.4.12.

The "mode” must define a variable or an array in the user storage area
containing an integer; 0 if the run-unit will not change the database, 15473 if the
run-unit intends to change the database.

The first run-unit which executes the OPEN-DATA-BASE statement will ready the
SIBAS system realm. The user defined system realms will be readied when the
relevant user realms are readied.

The effect of opening a database is to permit execution of READY statements on
the realms on the database. If a database is not open, its realms cannot be
readied.

If privacy is defined for the database through the DBM-module (see section 6.2),
the ""password” will be checked by the SIBAS DBCS to decide whether or not
the user is allowed to cpen the data base.

The function of OPEN-DATA-BASE is essentially that of "logging in” to the
particular database. The first run-unit to execute an OPEN-DATA-BASE on a

closed database will cause it to be “physically” opened.

When the last run-unit "logs off”’ with the CLOSE-DATA-BASE statement the
database will be physically closed.

ND-60.127.5 EN

In case of unsuccessful open database, exception conditions cannot be set and
SOPDB returns one of the following negative statuses:

1: illegal user identification (internal error)

2. incensistent database name given

— 3: security breach occurred

4: cne realm damaged

5: unable to RTOPEN database (check if user RT has write access to the
database files)

— 6: SIBAS work area space is insufficient.

— 7: Database is not in the version F format. You should convert the format
of the database with the conversion program supplied with SIBAS.

—72: Direct R-log is full, R-logging stopped. lllegal to open the database.
DBA should reset or remove the R-log. This status will be returned from
SQOPDB if a direct R-log is filled.

—76: SIBAS is not active.

In case SIBAS is not running, your program will try continuously to
open the database, i.e., your program will ""hang”. It will continue only if
someone makes the SIBAS process run (through SIBAS-service or through the
call SRUN from another application programj.

ND-60.127.5 EN

4.2.2

4-9

Close Database

Function

The function of the CLOSE-DATA-BASE statement is to indicate that the run-unit
has finished accessing the database.

Format:
CALL SCLDB (data-base-name, status)

Rules:

In order for CLOSE to be successful the database identified by
"data-base-name” must have previously been opened by the run-unit.

The effect of closing a database is to prevent further execution of any DML

statement other than OPEN-DATA-BASE from this run-unit, and to release
allocated resources.

If realms in the database are still in ready status at the time the CLOSE is
executed, then the realms are automatically finished for the run-unit.

A CLOSE, in a critical sequence, will automatically cause an ESEQU. {See section
534)

ND-60.127.5 EN

4.2.3

Ready Realm

Function:

The function of the READY-REALM statement is to indicate to the DBCS that the
run-unit wishes to process records in one or more realms, to indicate the way in
which the data will be processed, and to check possible interference with

concurrently executing run-units.

Format:

CALL SRRLM (no.-of-realms, realm-names, usage-modes, protection-mode,
status)

Rules:
""Realm-names’’ contains a list of names of the realms to be readied.

“Usage-modes” defines an array or table containing an integer value for each
one of the realms to be readied. The following usage mode values apply:

Usage Mode: Value:
RETRIEVAL 0
LOAD 1
UPDATE 2

"Protection-mode” defines an array or table containing an integer value for each
one of the realms to be readied. The following protection modes/values apply:

Protection Mode: Value:
NON-PROTECTION 0
EXCLUSIVE-UPDATE 1

Each realm in the list must be a part of the database which has been opened
prior to execution of the READY-REALM statement. Each realm must not already
be in ready status for the run-unit.

The effect of the READY-REALM statement is to make the records in the listed

realms available for processing by other DML statements within the limitation set
by the usage mode and protection mode.

ND-60.127.5 EN

4-1

The different "usage modes' given for each realm restrict execution of the DML
statements on the records in the realm according to the following table:

Usage Mode: Value: DML Statements Allowed:
RETRIEVAL 0 FIND, GET, REMEMBER and FORGET
LOAD 1 FIND, GET, STORE, CONNECT,
INSERT, REMEMBER and FORGET
UPDATE 2 ALL DML statements allowed

The different ""protection modes’” given for each realm are checked for possible
conflict with other run units concurrently processing in the same realm according
to the following table:

Protection Mode: Value Other Run-Units:

NON-PROTECTED 0 May execute any DML statement except
ERASE.

EXCLUSIVE-UPDATE 1 May execute any DML statements

If a READY-REALM statement refers to more than one realm and any of the
realms cannot be readied, the READY-REALM statement will not be sucessful,
and none of the realms will be readied. All the realms will then remain
unchanged but the status will indicate a DBEC condition about which information
may be obtained by using the ACCEPT statement.

A realm cannot be readied for EXCLUSIVE-UPDATE if concurrent run-units have
locked records in it.

All realms to be readied for EXCLUSIVE-UPDATE for a run unit should be readied
in the same READY-REALM statement. If more than one READY-REALM
statement is used to ready realms for EXCLUSIVE-UPDATE, all statements must
be sucessful. If not, none of the realms will be readied for exclusive update (i.e.
previously readied realms for exclusive update will be closed).

If the user wants to change the USAGE MODE or PROTECTION MODE for a
realm, then the realm must first be finished and readied again with the new
USAGE MODE/PROTECTION MODE.

If "no-of-reaims” is set to -1, this implies ready all realms in the database. The
“realm names’ parameter will be ignored and only one value can be specified
for “usage-mode” and one for “protection-mode”’, i.e. all realms will be readied
in the same ""usage-mode’’ and in the same "protection-mode"’.

ND-60.127.5 EN

4-12

Resolution of Ready Conflicts:

Earlier Subject Protection
entities by run-unit Mode NON-PROTECTED EXCLUSIVE UPDATE
other run-units Usage
Mode RetrievallLoad Update | RetrievallLoad Update
Protection Usage
Mode Mode
Retrieval Y Y Y Y Y Y
Non-
Protected
Load Y Y Y N N N
Update Y Y Y N N N
Retrieval Y N N N N N
Exclusive
Update
Load Y N N N N N
Update Y N N N N N

This table indicates how conflicts are resolved when the run-unit tries to ready &
realm which has previously been successfully readied by some other concurrently
executing run-unit, but not yet finished. Y indicates that the run-unit is
successful, N indicates that the status indicator is set.

ND-60.127.5 EN

424

4-13

Finish Realm

Function:

The function of FINISH-REALM is to prevent further processing of the data in the
realm by the run-unit.

Format:

CALL SFRLM (no.-of-realms, realm-names, status)

Rules:

""Realm-names"’ contains a list of names of the realms to be finished.

Realms readied for the run-unit with different usage modes may all be finished in
one statement.

If a realm cannot be finished, the status will indicate an error and the name of
the first offending realm may be found with the ACCEPT statement. If the
FINISH-REALM statement involves more than one realm, those which can be
finished will be finished.

If a FINISH-REALM statement is executed on a realm previously readied for
EXCLUSIVE-UPDATE by the run-unit, the realm is then available for updating by
other run-units.

If "no-of-realms’ is set to -1, this implies that all realms the run unit has readied
will be finished. The "realm-names’’ parameter will be ignored.

When a FINISH-REALM is executed all remembered or locked records of this
realm are forgotten or unlocked for this run-unit.

The effect of executing the FINISH-REALM statement is that the finished realms

will not be available to the run-units until a new READY-REALM statement is
executed.

ND-60.127.5 EN

4.25

4-14

Direct Find

Function;

The function of DIRECT FIND is to locate a specific record. The record is
specified by means of a Calc key or an Index key.

A search region will be established, its type depending on the statement format
used.

Format:
Format 1:

FIND-USING-KEY
CALL SFTCH (realm-name, key-name, key-value, status, key-length)

Format 2:
FIND-FIRST-BETWEEN-LIMITS-USING-KEY

CALL SFEBL {realm-name, key-name, low-limit, high-limit, status
key-length)

'

FIND-LAST-BETWEEN-LIMITS-USING-KEY
CALL SFLBL (realm-name, key-name, low-limit, high-limit, status,
key-length)

Format 3:

FIND-FIRST-IN-REALM
CALL SRFIR (realm-name, status)

Rules:

The realm named in “realm-name’”” must have been previously readied by the
run-unit.

The "key-name" defines the name of an item or a group item which is defined as
an index key or a calc key in the database schema.

The "key-value”, “low-limit” and "high-limit" must have the same type and
length as the corresponding item or group item. The “key-length’’ is expressed in

number of words.

If format 2 is used, the "key-name’’ must identify an item or a group item which
is defined as an index key in the database schema.

After successful execution of a FIND statement, the contents of the record may
be processed by means of the GET, MODIFY, and ERASE statements.

ND-60.127.5 EN

4-15

After successful execution of the FIND statement, the current of run-unit
indicator is set to a unique value identifying the record found.

After successful execution of a FIND statement the setting of the current search
region indicator depends on the format used. In format 1, FIND-USING-KEY,
where duplicate values of the key are allowed, the indicator will be set to both
the key item name and the value of the key used. If duplicate keys are not
allowed the setting of CSRI remains unchanged.

In format 2, FIND-BETWEEN-LIMITS, the current search region indicator will be
set to the index item name and the value range between “low-limit” and
"high-limit".

In format 3, FIND-FIRST-IN-REALM, the current search region indicator is set to
the realm name.

After successful execution of a FIND statement the record selected depends on
the format used.

In format 1, FIND-USING-KEY, if the key item is one for which duplicate values
are allowed, then the DBCS selects the “first”” record where the meaning of
""first” is the record with the lowest physical address (i.e., storing nearest to the
beginning of the realm).

In format 2, FIND-FIRST-BETWEEN-LIMITS, the record found is either one with
key value equal to or next higher to the value of “low-limit” but the value must
be lower than or equal to the "high-limit"” value. If duplicate values are allowed
the record found is the one with the lowest physical address.

in format 2, FIND-LAST-BETWEEN-LIMITS, the record found is either one with
key value equal or next lower to the value of “high-limit" but the value must be
higher than or equal to the "low-limit"” value. If duplicate value is allowed, the
record found is the one with the highest physical address.

To obtain the next or prior record within the range specified, the
FIND-NEXT-IN-SEARCH-REGION or FIND-PRIOR-IN-SEARCH-REGION
statements must be used.

In format 3, FIND-FIRST-IN-REALM, the DBCS attempts to find the physically
first record in the realm. If location mode is CALC, this will be the first record in
the first non-empty bucket. If location mode is SERIAL it will be the record in the
realm with the lowest physical address. To obtain the next record of the realm,
the FIND-NEXT-IN-SEARCH-REGION statement must be used.

ND-60.127.5 EN

4-16

The table below gives a summary of the settings of CRUI and CSRI when a FIND
from outside the database is executed.

Format of FIND

CURRENT of RUN-UNIT
INDICATOR

CURRENT SEARCH
REGION INDICATOR

FIND Format 1 set to uniquely identify the not updated
successful {Duplicate not record with the given value
allowed) of the key used.
Format 1 set to uniquely identify the set to key item name and
(Duplicates “first” record with the given value of key used
allowed) value of the key used.
Format 2 set to uniquely identify the set to INDEX key item
“first” or “last” record name, and the value
within the given range range between low limit
and high limit
Format 3 set to uniquely identify the set to the realm name
“first” record in the given
realm
FIND not
successful All formats Not updated Not updated

ND-60.127.5 EN

4.2.6

4-17

Relative Find

Function

The function of the RELATIVE FIND is to locate a record relative to some other
record, and to make it available in the SIBAS buffer area.

The record is specified by means of a set or search region and a search type
{NEXT, PRIOR, etc.)

Format:
Format 1:

FIND-FIRST-IN-SET
CALL SRFSM (temporary-data-base-key, set-name, status)

Format 2:

FIND-LAST-IN-SET
CALL SRLSM (temporary-data-base-key, set-name, status)

Format 3:

FIND-PRIOR-IN-SET
CALL SRPSM (temporary-data-base-key, set-name, status)

Format 4:

FIND-NEXT-IN-SET
CALL SRNSM (temporary-data-base-key, set-name, status)

Format b:

FIND-NEXT-IN-SEARCH-REGION

CALL SRNIS (temporary-data-base-key, temporary-search-region-
indicator, status)

FIND-PRIOR-IN-SEARCH-REGION
CALL SRPIS (temporary-data-base-key, temporary-search-region-indicator,

status)

Rules:
The owner and all the member record types of any set type indicated by
“set-name’’ must be known to the program and also be in realms which have

been readied for use by the run unit.

"Temporary-data-base-key'’ identifies the record from which the new record is
searched.

ND-60.127.5 EN

4-18

In the case of FIND-FIRST or FIND-LAST, the record identified by the
"temporary-data-base-key”" must be an owner of the set type named in
"“set-name”’. The record found will be one which is logically contiguous to the
owner in the set occurrence. If the set occurrence is empty, the FIND will be
unsuccessful and the "status’ parameter is set to zero.

In the case of FIND-FIR<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>