THE DATABASE SYSTEM

o | SIBAS I1I/D
ND User's Manual

ND-60.127.03 -

NORSK DATA AS




THE DATABASE SYSTEM

SIBAS Ii/D

ND User's Manual
, ND-60.127.03



NOTICE

The information in this document is subject to change without notice. Norsk Data
A.S assumes no responsibility for any errors that may appear in this document.
Norsk Data A.S assumes no responsibility for the use or reliability of its software
on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. It may not
be photocopied, reproduced or translated without the prior consent of Norsk

Data A.S.

Copyright @ 1983 by Norsk Data A.S



Denne handboken er i losbladsystem for & forenkie oppdatering. Gamle sider kan
fiernes og nye sider settes inn pa en enkel méate hvis hadndboken er revidert.

Losbladsystemet gjor det ogsd mulig & plassere handboken i en ringperm (A) for
& beskytte den og for & gjore det lett & sla opp i den. Ringpermer med 4 ringer
tilsvarende hullene i hdndboken kan bestilles i to bredder, 30 mm og 40 mm. Bruk
bestillingsskjema nederst pa siden.

Handboken kan ogsa plasseres i plastomslag (B). Dette omslaget passer bedre
for handboker pa 100 sider eller mindre enn for sterre hdndboeker. Plastomslag
kan ogsa bestilles nederst pd siden.

N

/_\N ™
P =R ] . [0
.l NCRSK DATA AS
)
2320 153 2220 333 .
5\ TR 3 ?! ::30 :: 3 z“
=Res =
‘1 /\ )
A Ringperm B Plastomslag

Vennligst send bestillingen til det iokale ND kontoret eller {i Norge) til:
Dokumentasjonsavdelingen
Norsk Data A.S

Postboks 4, Lindeberg gard
Oslo 10

BESTILLING

Jeg onsker & bestille:
....... Ringpermer, 30 mm, nkr 20,- pr. stk.
....... Ringpermer, 40 mm, nkr 25,- pr. stk.

....... Plastomslag, nkr 10,- pr. stk.




i

PRINTING RECORD

Printing

Notes

02/80

Version 01 — Replaces the previous manuals numbered ND-60.057.

07/80

Revision A

The following pages have been revised:

Xiii 1o xv

3-b

4-11to 4--16

5-6to 5-3b

6-—5,6-—6,6—9 and 6—-21 to 6—-22

7—3to 7—4a

A—-1to A-2

D-1

F—1to F-2

09/81

Version 02

10/82

Revision A

Thz following pages have been revised or added:

Xito xvi

1-2,1-4

3-51t0 3-6, 3—15to 3—16

4-1104-6,4-15 10 4—16,4-3110 4-48

5.2,5-5t0 5-6,5-19 to 5—20a, 5-29 to 5-32, 535 to 536

6-17 to 6-20,6-22

7-3to 7-5

Index

02/83

Version 03

THE DATA BASE SYSTEM — SIBAS |1
NORD User's Manual
Publication No. ND-60.127.03

Feb. 1983
@80 00
2000 [ 1-3.4
20000 @0
2000000CO
50000000
e6e 00000
[-3:4::] 8000
eoe (41}

:0.0000

32302283, NORSK DATA A.S
S00nees2? P.O.Box4, Lindeberg gard
20200828  (Oslo 10, Norway




Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one or
more single pages to be merged into the manual by the user, each revised page
being listed on the new printing record sent out with the revision. The old
printing record should be replaced by the new one.

New versions and revisions are announced in the ND Bulletin and can be ordered
as described below.

The reader's comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms, together with all types of inquiry and requests for documentation
should be sent to the local ND office or {in Norway) to:

Documentation Department
Norsk Data A.S

P.0. Box 4, Lindeberg gérd
Oslo 10



The SIBAS database system, originally developed by the Central Institute for
Industrial Research (CIIR) in Oslo, Norway, is the first fully developed database
system following the CODASYL DBTG recommendations for implementation on a
mini computer.

The system described in this manual has also been implemented on other com-
puter systems, such as UNIVAC 1100, IBM 360/370, CDC CYBER and DEC 10. It
has been expanded and optimized in a joint development project with the
company offering SIBAS on large computer systems: A/S Shipping Research
Services, Oslo, together with the Central Institute for Industrial Research, Oslo,
and Norsk Data A.S.

The implementation of SIBAS on the ND computers utilizes the advanced
facilities of the SINTRAN Il Virtual Storage Operating System, and offers
multiple user programs simultaneous access to the same data base in a con-
trolled and secure manner, thus minimizing the amount of additional routines in
the user’s programs.

Norsk Data wishes to thank the user’s group reference committee for their
contributions and kind assistance in the writing of this manual. Their comments
have proved to be very helpful and we look forward to receiving all users
cooperation in the future.

Norsk Data A.S.
Software Department

ND 60.127.03



vi



vii

PREFACE

The Product

This manual describes the SIBAS |l Database Management System, version D.
SIBAS Il is delivered as one standard package. There are additional modules.
The standard system contains the following modules:

Modules:

SIBAS System Generation
SIB-SYSGN: BATC
SIB-LOAD:BATC

SIBAS Real-Time Segments
SIB-MAIN: BPUN
SIB-REEN: BPUN
SIB-OPEN: BPUN
SIB-WORK: BPUN

SIBAS Data Manipulation Libraries
SIBLIB-2N-MH
SIBLIB-TN-MH
SIBLIB-1R-MH
SIB2-DML-B-MH
SIB2-DML-R-MH

SIBAS Background Programs
SiB-DRL: PROG
SIB-DBM: PROG
SIB-SERV: PROG
Additional Modules are:
SIBAS Backend Programs
SIB-LOOK-AT-LOG:PROG
SIBAS 1/0 modules for delayed update feature (SIBIO)
SIBINTER
SIBAS Conversion Aids
SIB-CONVERSION-PLANNING: SYMB

SiB-CONVERT-SCHEMA: PROG
SIB-CONVERT-DATA: PROG

ND-60.127.03



viii

THE READER

SIBAS 1l User’s manual is written for a wide variety of users, but the different
chapters are oriented towards different classes of readers:

Programmers, who write application programs which make use of SIBAS.

Database administrators who are concerned with secure and efficient
operations of the overall system.

Any one else who is generally interested in database management systems.
The database administrator should read the whole manual.

The application programmer will be more concerned with Chapters 4 and 7;
Data Manipulation and Error Reporting.

The “generally interested”” reader may limit him/herself to the first two
chapters.

PREREQUISITE KNOWLEDGE

The first two chapters do not need any prerequisite knowledge, but it is assumed
that application programmers are familiar with the SINTRAN 11] operating system
and at least one programming language. More specifically, they should be
familiar with the concept of calling subroutines since SIBAS is accessed via sub-
routine calls.

The database administrator must be familiar with the real-time features of
SINTRAN 11l since SIBAS makes extensive use of them.

ND-60.127.03



THE MANUAL

Chapters 1 and 2 are an introduction to SIBAS and should give the necessary
background to go on to the following chapters.

Chapter 3 gives a detailed description of how one can define or redefine a data-
base — it is of special interest for a database administrator, but may also be of

interest to a programmer.

Chapter 4 gives a detailed description of how to call SIBAS data manipulation
functions. This chapter is oriented towards application programmers.

Chapter 5 describes how to administrate and operate a SIBAS database. This
chapter is writzen for database administrators.

Chapter 6 is a description of some utility programs provided with SIBAS. This
chapter is also written for database administrators.

Chapter 7 is a list of errors and how to handie them.

The appendicies give reference information in a compressed form.

Related Manuals:
SINTRAN il User's Guide

SIBINTER User's Guide
NORD RELOCATING LOADER User’'s Manual

ND-60.127.03






Section:

1.1

1.1

1.2
1.3
1.4

2.1
2.2

221
222
223
224
225
226

23

2.3
232

23.21
2322
2323
2324
24

241

2411
2412

242

24.21
2422

Xi

TABLE OF CONTENTS

+ + +
Page:
INTRODUCTION 1—1
The SIBAS Database System ... 1—1
SIBAS Backend ... 1-—2
ND SIBAS implementation ... 13

SIBAS Using the ND-500 System .............................. 1—4

SIBAS Modules ..ot 1—6
SIBAS PRINCIPLES 2—1
The Database Concept ..o 2—1
Data Structure ..........coiiiiiiiii e 2-9
[EEMS 2—12
Group Items ... 212
Record Types ... 2—13
Search Keys and Indexes ................................... 2—15
Realim 217
Database ... 218
Data Relations .............ccooiiiiiiiiii 2—20
Search Regions ... 2—-20
S BES 2--22
Set ltems ... 224
Set OCCUITeNCes ... 2--24
Chain Representation of Set Types ................. 225
Storage Class .........cccoiviiiiiiiiiiii 230
Data Manipulation ... 233
Access Principles ..o 233
General oo 233
Currency Indicators ... 2—-35
Connecting and Disconnecting, Inserting and
Removing ... 238
Connecting and Disconnecting ...................... 238
Inserting and Removing from an Index .......... 242

ND-60.127.03



Section:

243

2431

2432

2433
2434

244

2441
2442
2443

3.1
3.2
3.3
34
35
3.6
3.7
3.8
3.3
3.10
3.1
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25

4.1
42

Xii

Concurrent Processing ...

Database Reservation ..........................
Realm Usage Modes and Realm Protection
Modes

Privacy on Database Level ............................
Privacy on Record Occurrence Level ............
Summary of the Setting of Current

Password ...

DEFINITION/REDEFINITION LANGUAGE {DRL)

Introduction ...
How the Definition/Redefinition Module Works ...
Global Rules ...
Start Initiation

New Calc Realm
New Item
New Group ...
New Set ...

Change Calc Realm ...
Change Set ... ..
Dimension Database Parameters ... ...
How to Run DRL on the Computer .......................
Examples ...
DATA MANIPULATION LANGUAGE (DML)
General ...
Parameter Descriptions ...

ND-60.127.03



Section:

4.21
4272
423
424
425
426
4.27
4.2.8
4.29
4.2.10
4.2.11
4212
4213
4214
4.2.15
4.2.16
4217
4218
4.2.19
4.2.20
4221
4.2.22
4.2.23
4.2.24
4.2.25
4.2.26

4.3

4.31

4311

4312

43.2

4.3.21

4322

433

4.4

4.41

442

443
444

How to Load Application Programs

xiii

Open Database ..o
Close Database ...
Ready Realm ...
Finish Realm ...,
Direct Find ..o

Brase o

Forget
LOCK
UNIOCK o
Change-Password ...
ACCEPT oo

Host Language Considerations ................................

FORTRAN o,
General Rules for Fortran on The SIBAS-500 .
Standard 'Cookbook’ for Programming

Fortran Applications ...

General Rules for Cobol on The SIBAS-500
Standard 'Cookbook’ for Programming
Cobol Applications ...

Description ...
Different types of simulators
Choosing simulators ...
Loading Nonreentrant Programs with SIBAS

ND-60.127.03



Section:

445
448
447

4471

448

449

4491
4492

5.1

5.1.1
5.1.2

5.2
5.3

5.3.1
5.3.2
5.3.3

5.3.3.1
5.3.3.2

534
53.41
534.2
53.4.3
5344
5345
535
5.3.6
5.3.7
53.71

53.7.2

5.4

Xiv

Loading 2BANK Programs with SIBAS ...
Loading Reentrant Programs with SIBAS
Loading Real Time Programs with SIBAS

Cooperating RT Programs Working as one
"“SIBAS USER"”

Table of SIBAS Simulators (Libraries)
Applications on ND-500 Systems

Applications running on the 500 CPU .............
Applications running on the 100 CPU ..............

DATABASE ADMINISTRATION

Critical Sequence ...
Reprocessing ...

Delayed Updating

SIBAS 1/0 System (SIBIO) ... .o,
The Update File

Backup

Restart from a Backup Copy and a Routine
LOg
Restart from a Database with Update File/
Before Image and Routine Log .......................

Detailed Description of the Calls ..........................

ND-60.127.03



Section:

541
54.2

543
54.4
545
546
547
548
548
5410
541
5.4.12
54.13
5.4.14
5415
54.16
5417

551
55.2
553
554

o
[ep}

6.1

6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
6.1.6
6.1.7
6.1.8
6.1.9

6.1.9.1
6.19.2
6.1.9.3
6.1.9.4

6.1.10
6.1.11

XV

Page:
Start/Stop SIBAS/Get State ... 524
Run/Pause/Recover/Finish/Set Passive/
Repro-Status ... 525
Inittate-Log ... 5--27
Begin/End Sequence ... 5--28
Set Routine Logging On/Off ... ... 5—29
Log Message ... 5--30
Write-Log-Buffer-Onto-Routine-Log ................... 5---30
Checkpoint ... 531
Roll-Back ................... USSR 5--32
Set-Conditions-For-Reprocessing ....................... 5-32
Reprocess-Routine-Log ... 5.--34
Update-Data-Base-In-Place ... 535
Set SIBAS System Number ... 5--36
Reserve/Release SIBAS ... 5.-36
Execute-Macro ... 537
DBA Calls . 5--38
Force-Close Database ... 538
Special SIBAS-500 Features ............oociieiiiiii 5—-39
Calls with Different Functions ......................... 5--39
Calls Not Available
Exceeding the Size of a Direct Routine Log ... 540
SIBAS-500 MACROS ... ... 5--40
How to Install SIBAS ... 540
UTILITIES 61
Database Maintenance Module ............................ 6-—1
Introduction ... 61
STart 6-—3
Exit, Stop the DBM Module ... 6-—3
Ready Realms ... 6—4
Finish Realms ... 6-—4
PNt 6-—5
Patch 6-—6
Reset-Error-Flags ... 6--7
PrIVECY i 6—8
General ... 68
Define Password ... 6—13
Remove Password ... 614
Display Password/Privacy .......................... 6—14
Index Compression ... 6—15
Consistency Checking ..o 6-—16

ND-60.127.03



Xvi

Section: Page:
6.1.11.1 General ... 616
6.1.11.2 Calc Key Verification ... 618
6.1.11.3 Index Key Verification ... 619
6.1.11.4 Set Verification ... ... 620
6.1.1156 Page-Link Verification ... 622
6.1.12 Free-Space-Statistics ... 622
6.1.13 Example ... 6—23
6.1.14 Unload/Load ... 624
6.1.15 Make-modefile for Unload/Load Program ... .. 6—25
6.1.16 Clear System-Realm ... 626
6.2 SIBAS Service Program ... 6—27
6.2.1 SIBAS-Service Extensions SIBAS-500 ... 6—29
7 ERROR AND EXCEPTION CONDITIONS 71
7.1 Fatal Errors . 72
7.2 Interface and Simulator Errors ... ... 73
7.3 DML Diagnostics, Database Exception Conditions
(DBECS) oo 7—6

7.4 Run-time Message — Messages from SIBIO ... 7—16
75 Run-time Message — from SIBAS ... 7—17
Appendix: Page:
A SUMMARY OF THE DML STATEMENTS ... A—1
B SUMMARY OF THE SIB-DRL STATEMENTS .............. B—1
C SUMMARY OF THE SIB-DBM STATEMENTS ... C—1
D SUMMARY OF THE SIB-SERVICE STATEMENTS ... D—1
E SUMMARY OF THE DATABASE EXCEPTION

CONDITIONS E—1
F SUMMARY OF THE DML ROUTINE LOG NUMBERS .. F—1
G CONSTANTS AND LIMITATIONS ... G—1

INDEX

ND-60.127.03



1.1

INTRODUCTION

THE SIBAS DATABASE SYSTEM

SIBAS is a Database Management System, originally designed by the Central
Institute for Industrial Research in Oslo, and presently implemented on IBM,
UNIVAC, CDC, DEC 10, SEL and ND computers. The data management

capabilities correspond to the recommendations contained in the CODASYL
report.

The implementation of SIBAS for ND computers contains some extensions as
compared to the CODASYL report. Another important characteristic of this
implementation is the strict orientation towards a multiprogrammed, terminal
oriented computing environment. This means that many users may access one
database simultaneously, and also that it is possible to have several databases in
a system at the same time. Great efforts have been made to provide safe and
effective tools for control of data integrety and security.

The ND SIBAS system includes a data definition and redefinition facility, a
run-time database manipulating package and a comprehensive set of interactive
utility programs.

In general terms, a Database Management System (DBMS) is a software
concept or environment which allows a database to be structured and accessed
in a standarized way. It includes a set of program functions which the application
programmer uses when operating in the DBMS environment. In this way, his own
work will be reduced, since he does not need to solve the corresponding design
problems and program the general service routines himself. The ND SIBAS
system has been extensively used in a number of installations since 1975 and is
today a well-proven and reliable system.

Using a DBMS is a way of adding intelligence to the computer system. Data
items may be connected to each other depending on defined relational patterns.
Those connections could well be done in the logic of a progrem using ordinary
data files, but such a solution would be expensive both in development and
maintenance costs. The DBMS allows application programs to be reduced in size
and complexity. However, the relations between data will be described as
pointers and tables within the database. This means that the overhead in
program complexity is changed into an overhead in storage space.

By "overhead in space’ we here mean the difference between the total size of
the database and the size of the "pure data’’. The overhead depends on the
access facilites desired and deserves careful consideration by the database
designer.

ND-60.127.03



SIBAS BACKEND

The SIBAS DBMS may now be accessed from a remote ND-500, ND-100 or
ND-10 computer through a transparent, safe and efficient communication
package.

The new product may be used to increase the capacity of database oriented
applications because it makes it possible and easy to implement a number of
configurations.

As an example, one can imagine a system based on one rachine with sizable
SIBAS activity. To increase the capacity of the system, one machine may be
added, and the total load split in such a way that one machine runs only applica-
tions {Application machine), and the other runs both database(s) and some appli-
cations (Database machine). Such a change may be made with small modifica-
tion in the application programs. The system may be upgraded later on with mo-
re machines to further increase the capacity.

Another example is the case where a database is held at a central site, but may
be accessed from {an) other computer(s)} through telephone links.

The software features automatic checks and retransmission on both sides.
Intermittent power failures are also taken care of.

The Apgplication machine The Database machine
APM DB M
Application HDLC Application
\ a1 COMA

- SIB-DML-x SIB-DML-x

:

SIB 2A

Figure 1.1: In this case, one database is accessed by several applications divided
between two computers.

ND-60.127.03



1.2

1-3

ND SIBAS IMPLEMENTATION

In the ND SIBAS implementation, the real-time processing facilities of SINTRAN
have been used to a great extent. The run-time Database Control System (DBCS)
is loaded and operated as a real-time program. Since SIBAS code is reentrant,
several databases may be handled concurrently with only a limited increase in
memory requirements.

The application programs may be run in time sharing, batch or real-time mode,
and several users may call one database simultaneously. Only one call is pro-
cessed by one SIBAS program at a time, however, and SINTRAN facilities are
used to queue the calls.

Application proagrams communicate with the SIBAS system by means of a set of
subroutine calls. The subroutines execute at the priority level of the calling
program, and cause a call to be made to the separate SIBAS process by means
of the internal device mechanism. The calling program is then halted until the
answer arrives from the higher priority SIBAS system.

The Norsk Data versions of COBOL, FORTRAN, BASIC, PLANC and MAC all con-

tain a CALL facility enabling application programs to communicate with the
SIBAS subrout.:ne package.

ND 60.127.03



1.3

SIBAS USING THE ND-500 SYSTEM

SIBAS is implemented on the ND-500 computers and uses their huge address
space and fast CPU. Running a database by means of a S BAS-500 process will
keep the whole database in virtual memory by using the «file-as-segment» con-
cept. No explicit disk transfers are executed and consequently a reduced /0
overhead is achieved. If enough (physical) memory is available, the whole data-
base may actually reside in physical memory at run-time.

All the SIBAS-II C-version DML-calls (with a few minor exceptions, see section
6.1) are implemented on the ND-500. Their functions are exactly the same as in a
SIBAS-100 system and the database format is also identical. This means that the
same applications (and databases) may use both SIBAS-100 and SIBAS-500, and
that applications (and databases) are easily moved between an ND-100 and an
ND-500 system.

Today, the definition/redifinition module (DRL) runs on the 100 CPU (of the
ND-500 system) together with the database maintenance module (DBM). These
modules are the same as on a SIBAS-100 system, but later on the DBM will be
implemented on the 500 CPU. The SIBAS-service program tan be used to super-
vise and control both SIBAS-100 and SIBAS-500 processes even when they are
running simultaneously on an ND-500 system. We recommend starting and con-
trolling SIBAS-500 processes by using this standard service program. Control can
also be obtained by including SIBAS-calls in applications. For on-line interaction
with a SIBAS-500 process, without having to write application programs, the
standard SIBINTER may be used directly. SIBINTER will run on the 100 CPU.

ND-60.127.03



SIBAS 11 MODULES

N ) CD

SIBAS USER
SIBINTER SERVICE APPLICATION
PROGRAM PROGRAM
\ E 4
\ ' / ;
NATABASE DATABASE DATA DEFINI-
MAINTENANCE CONTHROL TION AND
MODULE SYSTEM REDEFINITION
(DBM) (DBCS) MODULE
({DRL)

DATABASE
DESCRIPTION
\DATA FILE \ ...... &)ATA FILE \

DATABASE

Figure 1.2: SIBAS Modules

ND-60.127.03



1.4

SIBAS MODULES

The SIBAS Database Control System (DBCS) is the module called from the
application program for storing, reading, modifying and deleting the information
in the database. It is run as a real-time task.

The SIBAS data definition and redefinition module (DRL) is used for defining a
database, i.e., defining the structure, the access keys, the size of the database
and for changing such parameters.

SIBINTER is a module that enables users to access a SIBAS data base inter-
actively without having to write application programs. It is particularly well suited
for educational purposes.

The SIBAS service program is background utility to start/stop and manage the
DBCS module.

The SIBAS Database Maintenance {(DBM) is a background utility used mainly to
check a large amount of data. It has some repair facilities and does not make
use of the DBCS.

ND-60.127.03



2.1

SIBAS PRINCIPLES

THE DATABASE CONCEPT

What is a database? Well, this is a rather complicated question to answer. Since
a good understanding of some basic principles is essential for reading the rest of
this manual, this chapter will discuss an example of information storage and
retrieval. The description in this chapter should answer the question to such a
degree that the reader will be able to understand the detailed description of the
SIBAS database system in the following chapters.

Let us assume that we run a railway company. It has been growing for some
years, and we are having trouble in planning and maintaining time tables,
scheduling the utilization of engines and cars, planning the work of our personel,
etc. What do we do? We design a database and make the computer help us
keep track of our business.

First, we think of a file describing all our engines. The following information
ITEMS need to be stored for each one of our 159 engines:

— serial number

— supplier name

— type

— latest service inspection
— capacity

— allocated to train number

Then we decide to have a similar file for all our cars. It must contains the
following information for each car:

— serial numkter

— supplier name

— type

— number of passengers/tons load
— allocated tc train number

We also want a personel file containing the following information for each
person:

— name
family name
surname
— home address
— position (engine driver, conductor, etc.)
— allocated to train number

For convenience, we have grouped the two basic items Family Name and

Surname in a group called Name. We call this construct a GROUP ITEM and use
it in all cases when we want the entire name of the person.

ND-60.127.03



Now we have three files, and we find that ‘in the engine file there will be 159
RECORDS because we have 159 engines, each record giving us a limited
description of one engine. Similarly, there will be one record for each car or
person in the other files. We have also specified the records with respect to the
information contained in them, and we notice that all records in one file quite
naturally will have the same length.

Having our three basic files, we now want to make up a time table. In our data-
base we illustrate this with a fourth file, the time table file, containing the
following information:

— train number

— line number

— time of departure
— average speed

— time of arrival

But now we want to describe trains containing a variable number of cars.

What we do to assemble a train is to select the desired number of cars and put
them together into a SET. In this set, we also include the 2ngine, engine driver
and conductor. Finally, we assign the train {set) to a specfic entry in the time
table, which is identified by means of a train number.

In the database, we create the set simply by storing the train number in the
engine record, the car records, the engine driver recorc and the conductor
record. The time table record is said to be the SET OWNER and all the others
are called SET MEMBERS.

In our example, it should be apparent that a file is a collection of similar but
unrelated records. With the concept of sets, we have included relations between
records in the discussion. We consider a set to be a collection of records having
some common characteristic, in this case the train number. While the records
are restricted to fixed length, depending on the data elements contained in them,
a set may contain a variable number of member records.

Time Table Record Engine Record Engine Driver Record Car Record Car Record

Train number |—#~{ Train number |—#=!| Train number |——-| Train number | -—g|{ Train number

Figure 2.1: The Set

ND-60.127.03



Records in one file have the same length and organization, but contain various
data. Engine number 11 is not the same as engine number 137, but they are
described in the same way in the file. The way the description appears is called
the RECORD TYPE and each individual description is called RECORD
OCCURRENCE. Those expressions are frequently used in this manual.

Similarly, we use the expression SET TYPE and SET OCCURRENCE. The set type
in this example gives a description of a variable train length. The set occurrence
describes a soecific train connected to a specific line and departure time. Obvi-
ously, we have one set occurrence for each record occurrence in the time table
file, i.e., for each set owner record.

TIME TABLE FILE

Line 1
09 03

Lire 2
10.16

Lire 3
1154

Line 1
12.06

Lire 3
13.15

Search region
Lire 4 Departure times 1200-1700
16.30

Lire 2
16 .55

Line 1
17 .09

Figure 2.2: The Search Region

ND-60.127.03



24

Now that we have our railroad database, we want to print out time tables for
each line. This means that we want to scan the time tahle file and select all
records for line 1, line 2, etc. This can also be thought of as a division of the time
table into classes, one for each line.

For other purposes, we may also need other classes within the time table
register, for example all departures between 12:00 and 17:30 hours, or even all
records in the time table file. In SIBAS, such classes of records within a file are
called SEARCH REGIONS.

Our railway network branches out from a central station in a treelike structure
without connections between the different branches.

Q\m?

Central Station

B1321

Figure 2.3: The Railroad Network

ND-60.127.03



We want to add a description of this network to our database. The following
items shall be included:

— station name
— name of inner station
- distance to inner station

By inner station, we mean the one which is the next station when travelling
towards the central station. The station file will have the following layout:

" N
Central Station

Station
Record

> Branch

A1l
Central Station
6 km.

A1 Branch
A1l

10 km

A12
Al
13 km

/

A121

A12 Branch
5km

A122
A12
9 km

Figure 2.4: The Station File

ND-60.127.03



In this file, all stations directly connected to each other are gathered in groups or
classes in a similar way as were the records in the train set earlier. But in the
train set, one record type was the set owner and other record types were set
members. Here in the station register, the set owner record type and the set
member record type are the same. However, the set owner item (station name)
is different from the set member item (inner station name). This grouping of
equal records is called an INVOLUTED SET.

Now our database is almost ready. We only need one extra device to make it
useful. Consider the personnel file containing informatior on all the persons
working in our company.

Quite often, we want to select the record for one specific person because we, for
example, want to increase his salary. We know his name and want the rest of the
information. We would like to supply the name to an access mechanism in the
database system and to get the corresponding record back.

The device that facilitates this is the definition of a RECOFRD KEY. In this case,
we use the name of the person, which happens to be a group item. Any item or
group item can be defined to be a key to the file.

Foreman;
Office Serial Storage Area
Section A Section B Section C

Figure 2.5: Storehouse Layout

In the storehouse the railway company has at the central station, some kinds of
goods are stored in a shared area such that arriving articles are just put into the
first available place in the area. Other articles, like dynamite, animals, etc., are
always put in the same places or sections in the store house. Fach of these two
methods of allocating space in the storehouse has certain advantages and
disadvantages.

The utilization of space is probably better in the first case, but it may be
necessary to search for the different articles there. In order to reduce the search
time, the foreman saves all the delivery notes in alphabetical order and makes a
little note on them as to the location of the goods.

In the other area, on the other hand, the staff always knows exactly where to

find a specific article. But the utilization of space is a bit uneconomical. For con-
venience, the foreman saves the deliverly notes in a bunch for each section.

ND 60.127.03



We use quite similar methods for storing records in the data base. The first case
in the storehouse corresponds to the SERIAL LOCATION MODE in the data base.
Arriving records are stored in the first available space, and the values of the re-
cord key and location are stored in an INDEX TABLE, in sorted order. When the
record is to be found again, the index table is searched until the key value is
found and the location code is used to find the record.

INDEX TABLE REGISTER
KEY VALUE LOCATION
RECORDC
A "——\.\
B ‘\
C e
RECORD A
RECORD B

Figure 2.6: Indexed Register

ND-60.127.03



The other case in the storehouse corresponds to the CALCULATED LOCATION
MODE in the database. Here we divide the available storage space into a number
of boxes or BUCKETS. When a record is to be stored in this part of the data-
base, we take the key value of the record and calculate a bucket number from it.
We have chosen the calculation method such that an approximately equal
number of records will be stored in each bucket. When a record is to be
retrieved from the database, we calculate its bucket number from the key value,
go into the bucket and search it through until we find the record.

Bucket
Number:

1 Record Record Record Record Record Link

> Main area

> Qverflow
area

Figure 2.7: Buckets

Unfortunately, we cannot rely on the assumption that records will be equally dis-
tributed over the buckets. We must prepare ourselves for the case when a
bucket overflows. We do it by reserving a number of buckets to serve as
OVERFLOW BUCKETS. When we want to add a new record in a bucket that is al-
ready filled up, we make a little note in it and place the racord in the overflow
bucket.

Now that this little discussion reaches its end, you may feel you still don't know
what a database really is. But is is really quite simple. A dztabase is nothing but
well defined data and relations between data, just like our little railway company
example. A real database tends to be somewhat larger, but is nevertheless built
up with the same building blocks.

ND-60.127.03



2.2

2--9

DATA STRUCTURE

Data that are stored in the database have a certain structure, defined in the
database definition. This structure defines the name, length, and role of each
single data element. Data definition will be described in this section.

Data elements may also be related to each other due to common characteristics,
etc. Such aspects of the database will be discussed in the next section.

The structuring principles used in SIBAS are outlined in the following figures.

DATA BASE

- REALM B

REALM A
/ RECORD A -n

RECORD A-2

RECORD A-1
GROUP ITEM

ITEM ITEM ITEM ITEM

Figure 2.8.

ND-60.127.03



An Example might look like this:

TAX PAYER RECORD
IDENTITY GROUP ITEM
NUMBER ITEM
LAST NAME ITEM
FIRST NAME ITEM
ADDRESS GROUP ITEM
STREET ITEM
CiTY ITEM
CODE ITEM
REGISTRATION GROUP ITEM
DATE

Figure 2.9.

From the figures, it will be seen that SIBAS, which follows the CODASYL
terminology here, uses five different structure levels: ITEM, GROUP ITEM,
RECORD TYPE, REALM, DATABASE.

As an example, consider data concerning an employee in a company:

EMPLOYEE
NAME
NUMBER
BIRTH DATE
SALARY
JOB TITLE

The name EMPLOYEE is used to identify a record type in the data base. The da-
tabase will normally contain several such record types. Furthermore, there will be
several occurrences of each record type. If there are 1000 employees in the
company, then there will be 1000 record occurrences of the record type
EMPLOYEE in the database. A “record occurrence’ can usually be referred to
simply as a “record” with the full term “record occurrence’” being used
occasionally for the purpose of extra clarification. Experience with this class of
DBMS has indicated that it is very important for the user to distinguish clearly
between ""record type’’ and “‘record occurrence’’.
ND-60.127.03



2-11

Each record type contains a number of items. In the above example there are fi-
ve items as listed. An occurrence of this record type would consist of one value
for each of the five items. For instance, a record occurence might be as follows:

SMITH

74890

420531

43000
PROGRAMMER

The above concepts are fairly commonplace to any user versed in the practices
of commercial data processing. It must be mentioned that in SIBAS all records

of a given type are of the same length.

We will now gwve a fuller explanation of the terms we have used in the preceding
examples.

ND-60.127.03



2.2.1

222

2-12

ftems

The item in SIBAS has the same role as the elementary item in COBOL or a
variable in FORTRAN. An item declared in the schema DRL (definition/redefini-

tion language) must be designated as either INTEGER, FLOATING or
CHARACTER.

The following table indicates the correspondence between SIBAS item types and
COBOL and FORTRAN item types.

SIBAS COBOL FORTRAN
INTEGER COMPUTATIONAL INTEGER
FLOATING NOT AVAILABLE FLOATING
CHARACTER DISPLAY INTEGER ARRAY

Group Items

It may be useful to assign a name to a collection of items in a record type. In
this case, the collection is referred to as a group item. The items need not be
contiguous items in the record. The sequence of the items in the group may also
be different from the sequence in the record type. Only one level of naming is
allowed. in other words, it is not possible to define a group item which includes
another group item, and the constituents in a group item must all be elementary
items. However, an item may participate in more than one group item. This could
be used to implement multilevel groups by including all items from one or more
group iterms in a new group item.

As a special case, a group could consist of only one item. This enables the user
to define multiple names on items.

The group item provides a shorthand representation for identifying a collection of
elementary items.

"

ND-60.127.03



2.2.3

Record Types

Several items together are collectively referred to as a record type. Each SIBAS
item is associated with a single record type in the database.

Each record type must be assigned a name which is different from other names
in the schema. Furthermore, a location mode must be assigned to each record
type. The location mode is essentially a mechanism which controls where the
record is to be stored in the database.

SIBAS supports two location modes which are referred to as CALCULATION
MODE and SERIAL MODE. In the first case, the user must designate either an
item or a group item to serve as the primary record key to be used when calcu-
lating the location.

Records with serial location mode will be stored in the first available location in
the realm.

CALC LOCATION MODE

For CALC records, a standard system supplied hashing or randomizing algorithm
is used to distribute the record occurrences equally over a space on direct ac-
cess storage (see Figure 2.10). The space assigned to a record type is called a
realm. The data administrator must divide the realm into two areas called the
main area and the overflow area. Each of these two areas is further subdivided
into a number of buckets. This number must be a prime number.

— 1 RECORD 1

RECORD 2
KEY > i‘:é';gﬁw w . IreEcoRD3
"~ |RECORD n

Figure 2.10: Calc Keys

ND-60.127.03



Each occurrence of a CALC record type is then stored in a bucket in the main
area or possibly in the overflow area. The bucket number in the main area is
computed from the value of the key and the number of buckets as follows:

Key Value
= | + Remainder
Number of buckets

where | is the integral part of the quotient. The remainder is directly used as the
bucket number, and the record occurrence is stored in that bucket if there is
space available. If not, then a bucket in the overflow area is used (refer to Figure
2.11).

Such overflow buckets are accessible from the main arza bucket through a
pointer. Records are stored in the first available location of the bucket. When the
CALC key is used as a basis for finding the record, the same hashing algorithm is
used and a sequential search is made through the mairi area bucket and if
necessary also the relevant overflow bucket(s).

The data administrator must decide, when defining the CALC key item, whether
or not duplicate values of the key are allowed. If not, then attempt to store a
record which has a primary key value equivalent to that in a record of the same
type already in the realm will be unsuccessful.

ANDERSON g RECORD 1
BENGTSON
GUSTAVSON
JOHANSEN

, RECORD 2
OMAN

MERCEDES
VOLVO
VOLVO
VOoLvao
SAAB
SAAB

RECORD 3

\ \

Figure 2.11: CALC Records
SERIAL LOCATION MODE:

Records for which no CALC key is designated will have location mode of SERIAL.
Records of this type will be stored in the first available free location in the realm.
If a record is deleted, then the next time a new record of the same type is stored
in the realm, it automatically takes the space vacated by the deleted record.

ND-60.127.03



2.2.4

Search Keys and Indexes

It is possible 0 assign one or more search keys (index keys) to a record type
independent of whether its location mode is CALC or SERIAL. As in the case of
CALC, a decision must be taken on whether more than one record with the same
key value is allowed or not. Normally, at time of initial load, the user would be
advised to ensure that records are in ascending value of a primary key value,
especially if he wishes to make frequent sequential scans through these records
using the primary index as the basis for his accesses.

In fact, in some cases where the record type has a location mode of SERIAL and
there are search keys defined, it may be rather arbitrary which of the keys is
regarded as the primary key and which are the secondary keys. In practice, if one
index is more likely to be used than the others for serial processing of the
records, then that index should be regarded as the primary key, and the records
should preferably be loaded initially into the database in ascending order of the
values of this key.

Indexes are maintained in ascending order of the key values, and the records in
the realm may be processed in this sequence if required.

Level 1
RK RP
ADAM 15
Ak A ALEX e}
= Record key
A
TP= Table pointer LLEN 20
RP= Record pointer Level 2
» v/
ﬁ ADAM 11
ANNE 12— RK RP
/ EVA 13 ZNNE 2
/ CARL 13
Level 3 DON 8
RK TP / RK ki
JERRY 2.1
ADAM 1 P
RK RP
JERRY 2 " LEE 2.2
SAM 3 LOUIS 2.3 EVA 9
FRED 25
IGOR 3
RK TP
SAM 3.1 —
TOM 3.2 i
WILLY 3.3 e

Figure 2.12: Index Keys

Since both CALC keys and search keys may be group items, it is possible for an
elementary item to be used as part of several keys.

An index must be designated as either automatically maintained or manually
maintained.

ND-60.127.03



If the index is automatically maintained, then at the time a new record is stored
in the realm, the index is automatically updated by the DBCS (database control
system). If the index is manually maintained, then the programmer must include
an extra statement in his program if and when he wishes to cause the index to
be updated.

SIBAS COLLATING SEQUENCE:

There is no restriction on the composition of group items or single items which
may serve as index keys. The values of index items are treated as bit strings and
the index table is sorted in ascending order of the item valuss.

NULL VALUES OF KEYS:

Null values are represented by zeros or blanks depending on the item type, and
any item not being a key is allowed to take that value.

Key items, however, must not take a completely null value. This applies to the
calc keys, index keys, search keys, owner set items and member set items. Any
of these may be a group item, in which case it may be partially null but not
entirely null.

Any attempt to store a record which has a completely null value for a key or set
item will be unsuccessful. Any attempt to modify an item in a record already in
the database which would result in such a condition will also be unsuccessful.

INDEX TABLES — Representation of Indexes

When a record type has primary or secondary index keys, then for each key an
index is built up during initial load and maintained, where necessary, during
subsequent processing. Each index consists of a number of levels, and each level

contains a number of index tables.

The index tables must be assigned to a system realm.

ND-60.127.03



225

Realm

A realm is a storage space assigned to one record type. Often it corresponds to
a SINTRAN file, but it is also possible to store more than one realm in a file. The
realms are of two types, user realms containing data records and system realms
containing index tables, etc.

In SIBAS, all occurrences of one record type must be assigned to one user
realm. The usar realm name will also be the name of the record type. As
mentioned, system realms are used for storing levels of an index table when
either a primary index or secondary indexes are defined.

The data administrator must estimate the number of record occurrences to be
stored in each realm. Since records of the same type are of equal length, this
facilitates an estimate of the maximum size of the realm.

In the case of indexed records, the data administrator must also estimate the
space required for the index tables.

In the case of CALC records, it is necessary to regard the realm as being divided
into a primary area and an overflow area. Each of these areas is further divided
into equal size buckets. A bucket occupies one page.

ND-60.127.03



Database

For completeness, the database is identified as the collection of all records,
indexes, set types and realms which are defined in one single use of the schema

DRL.
SOURCE USERS
SCHEMA APPLICATION
PROGRAM
3

DATA DATA BASE
DEFINITION/ CONTROL
REDEFINITION SYSTEM
PROGRAM

4

0OBJECT

SCHEMA DATABASE

]

USERS

|

!
APPLICATION
PROGRAM

Figure 2.13: The Main Components of the Database

Each database has corresponding to it a source schema In addition, there exists
an object schema which is the set of internal tables generated when a source
schema is translated using the schema translator (see Figure 2.13).

DATABASE

SIBAS
SYSTEM
REALM

USER
SYSTEM
REALM

USER
SYSTEM

Figure 2.14: The Database Concept

REALM

CONTROL INFORMATION

> INDEX TABLES

RECORD
TYPE 1
REALM

RECORD
TYPE m
REALM

RECORD TYPE 1
RECORD TYPE m

ND-60.127.03



A program is normally written to process the data in a single database. However,
several users may access one database concurrently.

It must be emphasized that in SIBAS it is necessary for the program to declare
its intention to process a database by executing an explicit OPEN statement on
the database. In fact, this has the effect of opening a SIBAS system realm which
contains among other things the object schema. Each realm in the database
which the programmer wishes to process must also be opened, and this is done
using a READY statement. A system realm containing an index table to a realm
will be automatically opened when the realm is readied.

In a given installation on a given hardware configuration, there may be several

databases, each known to the operating system through the name of its system
realm.

ND-60.127.03



2.3

2.3.1

DATA RELATIONS

Search Regions

2-20

Records stored in the same realm, i.e., records with a common type, can be
grouped together in search regions. This means that all records in the realm
having a specific common property constitute a defined class of records within

that realm.

The following record classes may be handled as search regions:

— records having the same key value (duplicates allowed)
— records having key values within a specified range
— all records on the realm

e

SEARCH REGION
DUPLICATE KEY
(VOLVO)
~

——

ANDERSON
VOLVO

Tst STREET
CARPENTER

BENGTSON
VOLVO

2nd STREET
BRICK LAYER

GUSTAVSON
MERCEDES
3rd STREET
FOREMAN

JOHANSON
VOLVO

5th STREET
CARPENTER

KARLSON
SAAB

10th STREET
ELECTRICIAN

Figure 2.14B: The Search Region Concept

ND-60.127.03

SEARCH REGION

KEYS BETWEEN )

STREET—Z-S/

—

SEARCH REGION
ALL RECORDS OF
CERTAIN TYPE




2-21

A search region is established as soon as a record belonging to the correspond-
ing class is located in the database (see the description of the FIND statement).
The program may then access the other records in the search region sequential-
ly.

The search region identification is stored in a system variable called Current
Search Region Indicator, which can be referenced, saved and restored by the
program.

A search region is a “navigation” concept, used at run-time, and it is not neces-

sary to declare it at the definition time. Another concept, that of a SET, must be
declared at definition time.

ND-60.127.03



2-22

2.3.2 Sets

A set is normally a relationship between two or more record types. In each set,
one record type must be designated as the owner and each of the others is then
a member.- A single member set type is a set where the member records all are
of the same record type, while a multi-member set type is a set where the mem-
ber records are of more than one record type (see the following figures). There is
also a third set type called an involuted set type which does not fall into either of
these two ciasses and will be discussed separately.

SALESMAN RECORDS CUSTOMER RECORDS

CALC INDEX

SALESMAN SET OCCURRENCE A CUSTOMER \
% A 1

UNIQUE
CUSTOMER

2

CUSTOMER
3

rd

TN
SALESMAN CUSTOMER \
B 4
SET OCCURRENCE B
CUSTOMERY (|} 7
\ 5
pd
e
QOften Hlustrated as:
SALESMAN
CUSTOMER

Figure 2.15: Single Member Set

ND 60.127.03



2--23

SALESMAN RECORDS CUSTOMER RECORDS PROSPECT RECORDS
SALESMAN CUSTOMER PROSPECT
A 1 1
CUSTOMER PROSPECT
2 2
CUSTOMEH PROSPECT
3 3
\\
PROSPECT
- 3
SET OCCURRENCE A
\\—/

Often illustrated as:

SALESMAN

P el

CUSTOMER PROSPECT

Figure 2.16: Multi-Member Set

ND-60.127.03




23.2.

224

SET ITEMS

When defining a single or multi-member set type in S'BAS, it is first necessary
that a CALC or index key is defined for the owner record type. Furthermore, the
key must be defined such that duplicate values of the key are not allowed.

To be able to define a single member set type, there must be an item {element-
ary or group) in both the owner record type and the member record type which
“corresponds'’ in length and type, but not necessarily in name. In the case of
group items, there should normally be correspondence in the constituent
elementary item types, although it would be possible for an elementary character
item in the owner to correspond to two or more elementary character items in
the member. The item in the owner record type is referred to as the owner set
item. The item in the member record is referred to as the member set item.

The owner set item must be defined as a CALC or index key for which duplicates
are not allowed. The member set item may or may not be defined as CALC or
index key. Duplicates will generally be aliowed for member set items.

In the case of multi-member set types, there must be a member set item in each
member record type which bears the relationship as described above to the
owner set item. In addition, the member set item in each member must have the
same name as in all the other members in the set type.

In all cases, the choice of an item to be an owner set itam or a member set item
imposes no restrictions on its use as primary key or search key.

SET OCCURRENCES

Each set type in the database will have a number of set occurrences {more
simply referred to as sets). Fach set contains one occurrence of the owner re-
cord type and zero or more occurrences of each member record type. Sets with
no members are called empty sets.

For a given set type, there are in the database as manv sets as there are occur-
rences of the owner record type.

It is the set item which determines how member occurrences belong to a set. If
the value of the member set item for a set type has the same value as an owner
set item, then the member record is "connected” to the owner's set. At what
time this connection will be established depends on the “storage class’ of the
set type (see Section 2.3.2.4).

ND-60.127.03



2.3.2.3

2-25

CHAIN REPRESENTATION OF SET TYPES

The physical representation of a set occurrence in the data base is achieved by a
chaining technique. This means that the owner record in the set contains a
pointer to the first member record in the set which in turn contains a pointer to
the next recorc and so on. The last record in the set points back to the owner.
The order of the member records in the set is generaily determined by “time of
arrival”. A chain representation of this kind is essentially uni-directional.
Problems can arise in long chains when a record is deleted as it is necessary for
the DBCS (database control system) to circumnavigate the whole chain in order
to modify the pointer in the record prior to the one deleted.

To avoid problems of time consuming deletes in long chains, it is possible and
often advisable for the data administrator to designate a set type with double
finks, which means that each record in each occurrence of the set type contains

both a "next’” pointer as above and also a “'prior” pointer in the opposite direc-
tion.

Defining a set type with double links does not add any extra processing capa-
bility, but it does have the effect that certain statements which depend on the
set type relationship may be executed more rapidly.

~

MEMBER MEMBER

N

SINGLE LINK CHAINING

vemser % 7 memeen

DOUBLE LINK CHAINING
Figure 2.17: Chaining of Records

ND-60.127.03

)



Hustration of SET TYPE and SET OCCURRENCE:

To clarify the concepts of set types and chains, Figure 2.18 illustrates a single
member set type. Figure 2.19 illustrates two occurrences of this set type. Figure
2.20 illustrates how the same sets would appear if the set type in Figure 2.19 had
been declared with double links. In these figures, the convention of using a
rectangle to represent a record type .and a circle to represent a record occurr-
ence is followed.

in the example illustrated, the set item could be BRANCH {D which would then
be found in both record types BRANCH and CUSTOMER. All occurrences of
CUSTOMER having the same value of BRANCH ID would then be chained to the
BRANCH record having the value for the item BRANCH ID.

BRANCH

HAS 4

CUSTOMER

Figure 2. 18: Logical Relationship

BRANCH
1

<c3

Figure 2. 19: Occurrences of HAS with Link to Next Only

BRANCH
1

BRANCH
5

Cc2

Figure 2.20: Occurrences of HAS with Link to Next and Prior

ND-60.127.03



2-27

Involuted Set Types:

In SIBAS it is possible to have a special set type in which the owner record type
and the member record type are the same. This special set type is referred to as
an involved set type because the set relationship is involuted {or turns on itself).

An involuted set type may only be defined if the set item which designates
ownership and the set item which designates membership are different in name
and correspond in type and length. Both items are of course in the same record
type.

This involuted set type (which is not supported in the CODASYL Database facility
proposal) is useful for example in a Bill of Materials application. Graphically, an
involuted set type is depicted as follows:

PART

\

Figure 2.21.

CONTAINS

In the example, the record type PART might contain two items, PART NO. and
CONTAINED IMN which should be defined with the same length and type. PART
NO. will be the owner set item and CONTAINED-IN will be the member set item.

If a given assembly, X, contains three identical subassemblies Y, Z and Q then
that part of the overall structure may be depicted as in Figure 2.23.

ND-60.127.03



NAME IS
UNIQUE KEY

MEMBER SET ITEM
NOT THE SAME AS
OWNER SET ITEM

Figure 2.22: Involuted Set

PERSON RECORDS

/ NILSSON
PRESIDENT

JOHANSSON
MANAGER
NILSSON

/ MANSSON

MANAGER
NILSSON

RSON

ASSIST. MANAG
MANSSON

SVENSSON
OFFICE SECRETARY
PERSON

N T

y

PETTERSSON
SECRETARY
PERSON

ND-60.127.03

SET OCCURRENCE
NiLSSON

SET OCCURRENCE
MANSSON

SET OCCURRENCE
PERSON



OWNER PARTNO. =X
CONTAINED IN=7?
MEMBERS Z
PARTNO.=Y PARTNO.=2 PARTNO.=Q
CONTAINED IN = X CONTAINED IN=X  CONTAINED IN =X

Figure 2.23: Involuted Set Type

In Figure 2.23, each of the four circles represents an occurrence of the record
type PART. The owner set item (PART NO.) identifies each record occurrence
uniquely. The member set item (CONTAINED ID) identifies the owner record of
each set occurrence.

ND-60.127.03



2.3.24

2-30

STORAGE CLASS

It was mentioned in Section 2.3.2.2 that the time an occurrence of a member
record is connected to its associated owner occurrence depends on the storage
class.

Storage class is a property of each set type. The storage class must be declared
as either automatic or manual. If the storage class is automatic, then a member
occurrence is automatically connected into the appropriate set occurrence at the
time the record is stored in the database, using a DML STORE statement.

If the storage class is manual, then the connection is not made when the STORE
is executed, but the programmer may cause the connection to be made by using
a CONNECT statement. lrrespective of storage class, a record may not be con-
nected into any occurrence of a set type into which it is already connected;
furthermore, it may be connectad into no more than one occurrence of any given
set type.

In SIBAS, storage class is a property of a set type. This applies to a singie
member set type, a multi-member set type and an involuted set type. A record
type may of course be defined as member of several automatic set types and, at
the same time, of several manual set types.

Storage class is regarded as being of sufficient importance in the structure of a
database to merit a special graphic formalism to be used when depicting the
structure of the database graphically. A continuous line is used to illustrate an
automatic set type relationship and a dotted line to represent a manual set type
relationship. The various possibilities are indicated in Figure 2.24,

It must be noted that, in SIBAS, the storage class also has an effect on whether
or not it is permissible to disconnect a record from a set. If the storage class is
automatic, then this is not permitted, although the record would be moved from
one set to another if the value of the member set item changes. If the storage
class is manual, a record may be disconnected from a set using a DISCONNECT
statement.

Finally, it should be noted that it is possible to order the members of a set type
which is manually maintained. This is done by using the CONNECT BEFORE or
CONNECT AFTER statement which will link the record into the set occurrence
before or after an already existing record in the set occurrence.

ND-60.127.03



Automatic Single Member

/ EFG

2-31

Automatic Multi-Member

involuted Automatic

M
\)MM

Two single rnember set types,
one automatic, one manual.
Set types have same member,

O

.._._6....

Manual Single Member

P
e N
7 MK ~
Z S
K
Manual Multi-Member
N L
\, NN
~_7
Involuted Manual
\‘Q
T
~ TuU
A\\
U

Two single member set types,
one automatic, one manual:
member in one is owner in other,

Figure 2.24: Examples of Possible Set Types

ND.60.127.03




Note on Set Occurrences:

As in the CODASYL proposal there is one important property to note about the
way in which a member record can be connected to a set. If the record type is a
member of a given set type, then an occurrence of the record type may be con-
nected into no more than one occurrence of that set type. That is, a member
may only have one owner in one set occurrence. The record type could, however,
be defined as a member of other set types (Figure 2.24).

Removal Class:

In SIBAS the removal class will depend on the option given in the ERASE state-
ment. This is discussed in more detail under the definition of this statement.

ND-60.127.03



24

2.41

2411

2-33

DATA MANIPULATION

The CODASYL Database Facility approach to processing a data base calls for the
programmer to be able to enter the database from outside and to navigate his
way around inside. The SIBAS approach to search keys makes it possible to ac-
cess all records from outside in several ways and also to conduct searches in
certain regions within the database, relative to a previously found record. The
fact that several users access the database concurrently necessitates some con-
trol mechanism. This is discussed in more detail in this chapter.

Access Principles

GENERAL

With a SIBAS database, it is possible for a program to make two kinds of acces-
ses to the database. The first class is called an “out of the blue'" access. The
programmer provides the value of a key, and a single record is found in the data
base whose key value corresponds to the key value specified.

The other class of access is called a relative access, and the record found always
has some relationship to one found previously — normally the record most
recently found.

It must be emghasized that, since the database is in direct access storage, both
classes of access are essentially “direct’” in the normally accepted meaning of
the term. The first access to a database which is made in any program must
necessarily be an “out of the blue” one. However, a program will normally con-
tain a mix of statements from both classes.

The statement which is used to locate (that is, confirm the presence of) a record
in the database is the FIND statement. Numerous options of FIND are available
and may be listed as follows:

1. FIND based on calc key or index key (this could define a search region).

2. FIND first or last member record in a set occurrence.

3. FIND next or prior member record in a set relative to a record recently
found.

4. FIND first record in a realm (which defines a search region).

5. FIND next record in a search region.

6. FIND owner occurrence relative to & member occurrence recently found.

ND-60.127.03



2-34

The execution of a FIND statement may be successful or unsuccessful. If
successful, a record is located, and an indicator is se: to point to that record,
called the CURRENT OF RUN-UNIT indicator. This means that further DML or
host language type actions can be performed on that record. However, no host
language statement such as the COBOL MOVE or a FORTRAN ASSIGN may be
meaningsfully executed on the data in the record until a successful GET state-
ment has been executed.

A FIND may be unsuccessful. In the case of an out of the blue access, for
example, this may mean that there is no record of the type sought in the data
base whose key values correspond to those specified in the FIND statement. The
relative classes of FIND may be unsuccessful for a variety of reasons which are
defined in detail in another chapter.

If the FIND, or any other statement, is unsuccessful, then a Database Exception
Condition (DBEC -~ see Section 7.3) is set. It is the responsibility of the
programmer to be fully aware of the database exception conditions which may
occur in the course of execution of his program and to build in appropriate tests
and courses of action in each case.

LOCATE THE RECORDS DATA BASE GET DATA
RECORD 1
= /—N\\\\
{
DIRECT ———>y | |RECORD2 ! —=>  SELECTED DATA
FIND WITH KEY | | ELEMENT
: I
| l
| l
RELATIVE FIND | |RECORD3 |
z [
| l
!
|
| | |
| I i
‘ |
l 1
| l
| |RECORD 4 !
! |
! |
(N Y
SET OR SEARCH
REGION RECORD m

Figure 2.25: Access Ways
ND-60.127.03



24.1.2

2--35

CURRENCY INDICATORS

Different programs accessing a SIBAS database may execute concurrently. It is
also possible that the same program may be executing two or more times
concurrently with different parameter values. For convenience, each executing
instance of a program is referred to as a run-unit.

As already indicated, a run-unit in the course of its execution may need to find a
record relative to some recently found record that is found in the same run-unit.
The way in which both the run-unit and the DBCS keep track of where in the
database processing has reached is by means of two currency indicators. in
SIBAS, the two indicators are referred to as:

CURRENT OF RUN-UNIT INDICATOR (CRUI)
CURRENT SEARCH REGION INDICATOR (CSRI)

CSRI
AN

o¥oNoNoNo¥o

CRUI
Figure 2.26: lilustration of CSRI and CRU/!

Current of Run-unit Indicator (CRUI)

The CRUI is always updated after the successful execution of each FIND or STO-
RE statement. The content of this currency indicator is always a unique identifi-
cation of a record in the database.

This record identification is a quantity which distinguishes one record occurrence
in the database from all others. It is not based on the data values in the record
but rather on the physical address of the record in the data base. The physical
address of a record may of course change during the life of a run-unit, but the
CRUI will then be updated accordingly.

The CURRENT OF RUN-UNIT INDICATQOR is maintained by the exeuction of the
FIND and STORE statements. Several other DML statements actually operate on
the record designated by the CRUI, but only successful execution of FIND or
STORE will update CRUI.

Temporary-Database-Key

It is possible for a program to ‘remember” a CRUI in a temporary-database-key.
The CRUI could then be referred to directly from the same run-unit by use of the
temporary-database-key, even if another record is current. If the user remembers
more than one CRUI, the system will build up a remembered list where the
temporary-database-keys are used to identify the entries in the list. Each time a
REMEMBER statement is executed a new entry is added to the list and the
entries are removed from the list by executing the FORGET statement.

ND-60.127.03



Any statement which operates on a record identified by the CRUI can equally
well operate on a record which is identified by a temporary database key. For
example, it is possible to MODIFY a record identified by a temporary-database-
key without making it CURRENT OF RUN-UNIT first.

If a record which is identified by a temporary-database-key is moved physically
in the realm, the address in the temporary-database-key, and all other entries in
the currency and temporary-database-key lists for all concurrent run-units referr-
ing to this unique record will be updated accordingly.

Note that a temporary-database-key may only be used during the 'life of a
run-unit”,

Current Search Region Indicator (CSRI)

An “out of the blue” access to the database may have the effect of setting the
CSRI to a new search region. A search region can be cefined as a collection of
records which have something in common. It can be any of the following:

All records with same value of CALC KEY (duplicates allowed).

All records with same value of an INDEX KEY (duplicates allowed).
All records in a realm (i.e., of same type).

All records whose index key values are between defined limits.

L -

The setting of the CSRI depends partly on the form of the FIND statement and
partly on the key specified in the FIND. The setting of the CSRI to the four types
of search regions given above is done in the following way:

FIND using a CALC key for which duplicate values are allowed.

FIND using an INDEX key for which duplicate values are allowed.

FIND first in realm using the name of the realm.

FIND between limits giving the upper and lower limit of an index key item.

Hw -

These four forms of the FIND statement are the only possible ways of changing
the value of the CSRI.

As with the CRUI, it is possible to "remember’” the contents of the CSRI in a
temporary search region indicator. The system builds up a remembered list for

temporary search region indicators in the same way as for temporary database
keys.

Also, either the CSRI or a remembered temporary search region indicator may be
used in accesses to the database which are in the class: “relative to some
previously found record’’.

ND-60.127.03



2-37

The Use of CRUI and CSRI

At the beginning of the execution of any run-unit, both the CRU| and the CSRI
are regarded as undefined. Hence, the first FIND statement to be executed must
be one which does not use these indicators, but which does in fact set them.

When a FIND NEXT in search region relative to some previously found record is
executed and if CSRI is used to identify the search region, the search region will
be the one defined in the latest executed FIND of one of the different forms, i.e.,
the current search region.

Furthermore, it should be noted that if the current record has been ERASED,
CRULI will be undefined. If the current record has been MODIFIED, CRU! will still
be defined, but the record it is identifying may have been moved out of the
current search region. This situation will be illustrated by an example.

In the example above, a FIND using a key (INDEX or CALC) for which duplicates
are allowed has been executed. The current search region will be defined as all
records with the same value (B} of the key, and the current record will be the
first of these records. If a FIND NEXT in search region using CSRI and CRUI is
executed, the rext record with value B on the key will be found and made the
current record, and CSRI will remain unchanged. If the key is then MODIFIED in

this record, the record will be moved out of the current search region, but it will
remain the currant record.

A FIND NEXT using CSR} and CRUI in this situation will have no meaning. If the
user wants to FIND the third record with value B on the key, he should execute
REMEMBER for the first record using a temporary-database-key, and then
perform a FIND relative to this record. It should be noted that this situation only
occurs if the key used to define the search region has been MODIFIED.

ND-60.127.03



2.4.2

2.4.2.1

Connecting and Disconnecting, Inserting and
Removing

CONNECTING AND DISCONNECTING

Connecting and disconnecting records to sets is normally done automatically by
SIBAS through execution of STORE, MODIFY or ERASE statements.

Manuelly, however, it is possible under certain circumstances to connect a
record into a set and disconnect it from a set. In SIBAS, it is possible to use
similiar facilities to update an index. Each is described separately.

Connecting To and Disconnecting from a Manually Maintained Set

If a record type participates in a set type as a member, then its occurrences may
(at any time during the life of the database) be either connected or not con-
nected into a set of that set type. When the connection actually takes place
depends on the storage class of the set type.

If storage class is automatic, it means that the record will be connected at the
time the STORE is executed. This means that there must be an occurrence of the
owner record type in the database whose owner set item values correspond to
the member set item values in the record being stored. If this is not the case,
then the record cannot be stored, and hence not corinected. However, if the
attempt to store the record does not include an attempt to store the member set
item (it may be a group item), then the store may be successful, if all other
restrictions are satisfied, but the connection into the set item is not made. The
member set item value will then be undefined. A subsequent modification of
such a record which provides a value or values for the complete member set
item would cause the connection to be made. Considerable care is called for in a
multi-user environment when allowing this situation to occur.

If the storage class of the set type is manual, then no connection is made when
the record is stored. However, the CONNECT statement may be used to connect
a record into the set of the set type in which it is a member. Again there must be
an owner in the database with an equal valued set item for the connection to be
successful. Exactly where in the set the record is connected depends on the
option used. It is possible to connect it at the end of the set {i.e., last in order of
the link to next) or else adjacent to some previously found record in the set. in
this case, it can be connected before or after the previously found record. If the
storage class is manual, then it is also possible to DISCONNECT a record from a
set into which it previously had been connected.

The various alternative actions which can take place when a STORE, CONNECT
or DISCONNECT is executed are summarized in the following table. The storage
class is taken into account, as is also, for each storags class, the value of the
member set item (MSI) with respect to owner set item values (0Sl) already in
the database.

ND-60.127.03



2-39

It must be noted that the STORE statement operates on a record occurrence
built up in a record area in core by the programmer. The programmer must
designate which of the items in the record type he intends to provide values for.
The CONNECT and DISCONNECT act on a record which is already stored in the
database, and it is the value of the member set item there which may influence
the success or failure of the statement.

A DISCONNECT or a CONNECT or both may take place implicity during the
course of execution of a MODIFY if the member set item values are changed.
What exactly happens depends also on the storage class of the set type and also
on whether or not the member record was already connected into some set. The
complete picture is summarized in the following table, which examines 12
situations depending on storage class of the set type, whether the member
record was previously connected or not and the relationship of the new member
set item values to owner set item values already in the data base. In the cases
where the member was in fact connected, it is only the set item values of other
owners which are of interest.

ND 60.127.03



2-40

Storage
Class Situation STORE CONNECT DISCONNECT
MSI = OSI (some) Y (connect)
MSI + OSI (some) N
Automatic MSI not completely | Y (no connect) Not applicable , Not allowed with
given in record area automatic
MSI null in member | N null member set
record in database item value not
allowed
MSI = OSl (some) Y Y
MSI + OSl (some) N Not applicable
Manual MSI not completely |bAlways successful.

given in record area

MSI null in member
record in database

MSI not examined.

Not applicable

Not applicable

N

Not applicable

Explanation:

MSI means member set item value
OS! means owner set item value

Y means execution should be successful if no other conditions prevent it
N means execution will not be successful

Table 2.1: Using the STORE, CONNECT, DISCONNECT Commands

ND-60.127.03




Modify member set item values

Storage Previous DISCONNECT]CONNECT Net result
Class State Situation from old 10 new of MODIFY
new MSI = NULL Possible but |Not possible| Fail
not done
Connected| new MSI + 0OSIi Possible but |Not possible} Fait
(other than previous owner) not done
nen MS| = 0OSI Y Y Success
(other than previous owner)
Automatic
new MSI = NULL Not applicablgfNot possible | Fail
Not
connected | new MSI + OSI (any in Not applicablefN Fail
daabase)
new MSI = OSI {any in database)] Not applicablelY Success
new MSI = NULL Y N
Connected|new MS!I + 0S| Y N Success
(other than previous owner) Vincluding
DISCONNECT
new MIS = 0OSI Y N
{other than previous owner)
Manual
new MSI = NULL Not applicablelN
Not
connected |new MSI + OS! (any other) Not applicable|N rSuccess
MSI not
examined
new MS! = 0SI (some) Not applicable|N
Explanation:

MSI means member set item values
OS! means owner set item values

Y means action performed unless MODIFY fails for other reason
N means action not performed

Table 2.2: Using the MODIFY Command

ND-60.127.03



2.4.2.2

243

2--42

INSERTING INTO AND REMOVING FROM AN INDEX

If there are one or more index keys (search keys) defined for a record type, then
the data administrator must decide when defining the schema whether the
indexes are automatically maintained or manually maintained. For completeness
and consistency it must be emphasized that when a record type has a location
mode of CALC, the calc access mechanism is of nacessity '‘autornatically
maintained”’, but the data administrator must not define this for CALC key items.

Returning to indexes, the concept of an automatically maintained index is almost
completely analogous to an automatic set type. The "insertion’’ is normally made
when the STORE is executed, but it depends on the value of the index key item
or search key item. It also depends on whether the key item is named in the list
of items to be stored. If, because of the omission of these items from the list,
the index is not automatically updated at time of STORE, it will be autoratically

updated if the index key item in this record occurrence is given a value later
{using MODIFY).

A manually maintained index is also analogous to a manual set type. It is possi-
ble to insert and subsequently to remove a record from an index by using the
INSERT or REMOVE statements. The value of the key item is important in a
similar way to the importance of the member set item of the manual set type.

In the case of both automatically and manually maintained indexes, the data
administrator must decide whether or not to allow duplicate values of the key
item in the index. If duplicates are allowed, there is never any problem about
inserting a record with non-null key values into an index. If duplicates are not
allowed, then whether an INSERT or, in the case of automatically maintained
index, a STORE, is successful or not depends on the absence or presence of an
entry in the index with the same key value as the new record.

Concurrent Processing

In SIBAS considerable attention has been given to concurrency problems. The
philosophy has been to avoid deadlocks and associatad costly logic at the
expense of some few restrictions. There are four levels of protection between
concurrently executing run-units:

Database reservation
Realm protection mode
Record lock
Notification of change

BwwN e

ND-60.127.03



2.4.31

2.4.3.2

DATABASE RESERVATION

A run-unit may reserve/release SIBAS, preventing any other run-unit from
accessing SIBAS during the duration of the sequence enclosed by reserve and
release. This is a very effective method of preventing interferences between
concurrent run-units, but it has its drawbacks. The sequences must be short and
cannot contain terminal input/output.

The ACCUMULATE calls are examples of this method. The possibility given 1o
the user of writing so-called "MACRQ’'s which are executed uninterrupted is
another example.

REALM USAGE MODES AND REALM PROTECTION MODES

At the time a run-unit executes a READY statement, the programmer is required
to declare the way in which he intends to use the realm and at the same time
how he wishes his run-unit to co-exist with other run-units using the realm.
These two factors are called the usage mode and the protection mode
respectively.

SIBAS supports three realm usage modes as follows:

RETRIEVAL (FIND, GET)
LOAD (STORE, CONNECT, FIND, GET)
UPDATE (ALL)

and two realm protection modes:

NON-PROTECTED (other run-units may update the realm concurrently)
EXCLUSIVE UPDATE (no other run-units may perform update or connect in
realm, but may retrieve records in the realm)

When a run-unit readies a realm in usage mode RETRIEVAL, the realm will be
available to th2 run-unit for execution of FIND and GET statements only. Usage
mode LOAD ellows the user to perform STORE and CONNECT in addition to
FIND and GET. Usage mode UPDATE includes use of all SIBAS statements on
records in the reaim.

When protection mode EXCLUSIVE UPDATE is given for a realm, concurrent run-
units will be restricted to perform FIND and GET statements on the reaim {i.e
retrieval only).

.

When a realm is readied for "NON-PROTECTED" use, concurrent run-units may
update, load and retrieve in the realm.

ND-60.127.03



2433

2434

244

RECORD LEVEL LOCK OUT

In the case when a realm is readied for "NON-PROTECTED"' use, it is possibie
for the programmer to lock individual records. This is necessary if the program-
mer will ensure that a record or a group of records are not updated while he is
using them. (Protection mode of EXCLUSIVE UPDATE avoids this problem by
focking out the whole realm for other run-units which intend to update it.)

The record level lock out is imposed using a LOCK statement. The LOCK state-
ment can be used to lock a single specified record cr a group of specified
records. In the latter case the LOCK statement will only be successfully executed
provided that a/l the desired records are simultaneously available. The criterion
for a record to be available is that it is not concurrently locked by any other
run-unit. This restriction is necessary to prevent deadlock situations.

When a run-unit has successtully executed a LOCK staterment, all the locked
records must be released by performing an UNLOCK statement before another
LOCK statement can be executed. This restriction is necessary if deadlock is to
be avoided.

NOTIFICATION OF CHANGE

The record level lock out enables a programmer to ensure that a record or a
group of records are protected against concurrent run-units. But a programmer
might find it too restrictive to lock records, or records might be modified, erased,
etc. during the time it takes to locate all the records the programmer intends to
lock simultaneously in a LOCK statement. To solve th:s problem, the current
record of a run-unit and all the records a run-unit has remembered (i.e., all
records on the remembered list), are always in what is called extended monitor
mode. If a record has been modified, erased, connected or disconnected by
another run-unit while it is in extended monitor mode, a warning will be issued to
the run-units which have the record on their remember list. The warning will
have the form of a DBEC (Database Exception Condition), which wili have a
specific value depending on what other run-units have done to the record, and
what the present run-unit is trying to do. The programmer will then have to take
action according to the DBEC. The DBEC could be:

Record has been connected or disconnected

Record has been modified

Record has been erased

Record is locked for exclusive update by concurrent run-unit
Record has been inserted in or removed from an index
Record’s physical location on the database has changed

AN o e

ND-60.127.03



244

245

Privacy System

SIBAS supports two levels of privacy.

1. Privacy on database level
2. Privacy on record occurrence level

The privacy checks performed on all levels use a password supplied by the
run-unit to check if the run-unit has authority to carry out the intended operation.
All privacy checking in SIBAS is performed at run-time and it is therefore possi-
ble to redefine the passwords as often as desired.

A run-unit supplies the run-unit's password when the database is opened. This
password remains the run-unit's "current password” until modified using the
CHANGE CURRENT PASSWORD statement. This special statement may be used
to change the run-unit’s current password whenever necessary.

The table below shows how privacy restrictions on a database are defined, how
and when passwords may be defined and modified, and when the privacy checks
are performed by the SIBAS run-time control system (DBCS).

Privacy How Privacy Restr. How Valid When Passwords

Level s Defined Passwords are: are Checked
Defined Changed

Database using DBM using DBM at database open

module module

Record using schema re- |when a recordjwhen a recordwhen run-unit

occurrence | definition language | occurrence is occurrence is jwants to modify,
stored modified delete or get

items

The password is of the same length and type as used for definition of data item
names for the installation.

ND-60.127.03




2.4.41

2442

2--46

PRIVACY ON DATABASE LEVEL

As indicated above, database privacy restrictions and pesswords are defined by
use of the Database Maintenance Module (collection of utility programs).

The password is given as a parameter in the OPEN DATABASE STATEMENT.

There is a limit to the number of times a run-unit unsuccessfully may try to open
the database.

PRIVACY ON RECORD OCCURRENCE LEVEL

It is possible with SIBAS to define privacy items on the.record occurrence level.

This privacy item is stored together with the record. For this reason, the
definition of the privacy item which will contain the value of the record
occurrence password has to be part of the record type description. Privacy
restrictions on the record occurrence level must therefore be defined using the
Definition/Redefinition Language. Record occurrence passwords are considered
as a special data item type just as other items may be of type INTEGER or
CHARACTER.

The privacy item is given a value in the same way as other items in the record,
when the record is stored or modified (see Figure 2.27).

DATA \

MANIPULA—
TION LANGU-

AGE

|
|
[
] ITEM1 | ITEM2 | ITEM3 |ITEM4 [PRIVACY ITEM
e —————

STORE OR = = -C = =X X X
MODIFY !

Figure 2.27: Giving Value to Privacy ftem

Like other items, the privacy item need not be given a value when the record is
stored. The privacy item will then be set to a null value by the DBCS. A record
for which privacy on record occurrence level is defined, but with null value on
the privacy item, may be manipulated as if no privacy item was defined for that
record type.

The privacy check is performed when a run-unit tries to retrieve information from
the record (the GET statement) and when a run-unit tries to modify or delete the
record or its set membership. Note that no restriction is put on the use of FIND
statements.

ND-60.127.03



2-47

2443 SUMMARY OF THE SETTING OF CURRENT PASSWORD

Initially the current password is set for a run-unit when the database is opened
{see Figure 2.23). Unless a CHANGE PASSWORD is performed, the value of cur-
rent password will remain unchanged. When a READY REALM is performed, cur-
rent password must match a password which is defined for the desired mode of
operation on the realm. If the run-unit performs a record manipulation statement
on records where the value of the record lock is different from the realm pass-
word, current password for the run-unit must be changed before the
manipulation statement is successfully executed.

OPEN DATA — CHECK

BASE [ ~_PASSWORD
GIVE PASSWORD| PASSWORD NOT VALID

DATABASE OPENED

-
| CHANGE CUR - |
I RENT PASSWORD
| IF NECESSARY !

PERFORM
MANIPULATION

' STATEMENT ON
RECORDS
CHANGE
CURRENT HECK
PASSWORD P ASSWORD PASSWORD >
NOT VALID i

RECORDS MANIPULATED

Figure 2.28: Use of Current Password

ND-60.127.03



2—-48



3.1

DEFINITION/REDEFINITION
LANGUAGE (DRL)

INTRODUCTION

A SIBAS database must be defined before any data may be loaded in it. A
definition is the process of producing an internal representation of the schema,
the object schema, from the source schema written in a COBOL like syntax. A
redefinition is the process of amending the object schema, and making the
changes on thz database.

Experience with all DBMS to date has indicated the importance of being able to
redefine the database when new requirements are identified. It is a widely
recognized objective that this redefinition should be possible without causing
unnecessary modification to the programs, which have been written to process
the database as initially structured. The degree to which a DBMS can meet this
objective is essentially a measure of the degree of data independence offered by
the DBMS.

With SIBAS, the same language is used to define or redefine a database. The
statements (directives) provided may be classified in 3 categories:

1. creations the NEW ... statements
2. deletions the DELETE ... statements
3. changes the CHANGE ... statements

Each of these statements will be described in detail later in this chapter.

The DRL statements available are:

START INITIATION first statement of an initiation (definition) run
START REDEFINITION first statement of a redefinition run

END last statement of a run

NEW OS-FILE adds a SINTRAN file to the database

NEW SYSTEM REALM defines a new system realm

NEW SERIAL REALM defines a new user reaim with location mode serial
NEW CALC-REALM defines a new user realm with location mode CALC

and the corresponding CALC key

NEW ITEM defines a new item in an existing or new record
type
NEW GROUP defines a new group item in an existing or new

record type

ND-60.127.03



NEW SET

NEW INDEX

DELETE SET

DELETE INDEX

DELETE ITEM

DELETE GROUP

CHANGE SYSTEM-REALM

CHANGE SERIAL-REALM

CHANGE CALC-REALM

CHANGE SET

defines a new set type in the database

adds the index key property to an existing or new
item, and defines the storags of the index table

removes a set type from the database

removes the index property from an existing item
and deletes the corresponding index table

deletes an item from an existing record type

removes a group item definition from an existing
record type

changes the definition of an existing system realm
changes the definition of an existing user realm
with location mode serial, or changes the location
mode from CALC to serial

changes the definition of an existing user realm
with location mode CALC, or changes the location
mode from serial to CALC and defines the corres-

ponding CALC key.

changes the definition of an existing set type

ND-60.127.03



3.2

HOW THE DEFINITION/REDEFINITION MODULE
WORKS

The DRL module requires exclusive use of the whole database and accesses the
realms directly without using a SIBAS process at all.

The functions of the statements are to create and update the object schema and
perform the corresponding actions on the database. A documentation of the
database may also be produced as shown in Figure 3.1.

END—"'M-]

-

INPUT FILE
W STEP1
SYNTAX
CHECK
\
&\ SYNTAX ERRORS
CONSISTENCY OF
NEW SCHEMA \\
\*
SCHEMA CONSISTENCY
$ STEP 3 ERRORS
C?;‘:‘SIEDNDC:TA __tw DATA CONSISTENCY
. ERRORS
5§ ASE o
¢ ) ¢ DOCUMENTATION OF
STEP 4 THE NEW DATABASE
UPDATE OF OLD
DATABASE 1
4 LIST FILE
DRL MODULE
OBJECT SCHEMA OTHER
FILE DATABASE
FILE
OTHER
DATABASE

FILE

OATABASE FILES

Figure 3.1: The Data Definition and Redefinition Module

ND-60.127.03



34

When the DRL module is used, it requires the exclusive use of the database files.
Definition:

The SINTRAN files on which the database will be initiated must have been
created before the DRL module may be used.

A complete example of a DRL run is shown at the end of this chapter. It must be
noted that if there are CALC realms, the DRL module must preformat them (this
operation may take time).

Redefinition:

When the DRL module is used for redefining a database, two modes of oper-
ations are available, the test mode and the production mode. When running the
test mode, only the three first steps will be executed (see Figure 3.1). In
production mode, all the steps will be executed. It must be noted that some
apparently minor amendments might result in large computer resource usage. As
a good practice, take a full back-up copy of the database before you run a
redefinition. An example of a DRL run for redefinition is shown at the end of this
chapter.

ND-60.127.03



*3.3

3-b

GLOBAL RULES

Syntax

Statements must be between columns 1 to 72 otherwise the DEF/REDEF module
truncates.

The syntax of the definition and redefinition language is sentence oriented, just
like COBOL. It means that all statements consist of a series of one or more
words terminated by a period "".", the period indicating the end of a statement. A
statement may begin anywhere in a line and may continue on any number of
lines. However. a word cannot cross a line boundary. Words in a sentence may
be key words or parameters. Key words may be abbreviated, parameters cannot
be abbreviated. The parameters may be names or numbers.

A line starting with asterix ""*"’
and ignored.

in column one will be treated as a comment line

The syntax is described with the following conventions:

ANY-STRING ANY-STRING is a key word which must be present
ANY-STRING is merely a noise word which helps document the

input, but may be omitted.

<any-name-or-value > "any-name-or-value' is a parameter.

I <realm-name> ! one of the two alternativesmust be given: either the
! KEY ! parameter “realm-name’’ or the key word "KEY",
(NOT) the key word NOT is optional

Statement Sequence

A DRL input sequence must start with the START statement and end with the
END statement or EXIT.

The sequence of the other statements is generally free, but when a statement
refers to an existing name, the name must have been previously defined. For
example, the statement

NEW SYSTEM-REALM <realm-name> OS-FILE <file name> ...

defines a new “"realm-name” but refers to the "“file-name"".

Names

SIBAS recognizes a number of names; such as database name, set name, item
name, etc. Each name in SIBAS must contain between 1 and 8 alphanumeric
characters. No embedded blanks are permitted, but terminal blanks are. The first

character of a 5IBAS name must be alphabetic.

ND-60.127.03



Abbreviation Lookup

All key words (not parameters) can be abbreviated. However, ambiguity is not
handled. The first match is always used.

Numbers

In some of the statements, the length of a record expressed as a number of
computer words must be given. On the ND-10 or ND-100, a computer word is ta-
ken as 2 bytes (16 bits). On the ND-500 a computer word is 32 bits, but in format
descriptions in this manual «word» means 2 bytes (16 bits) also for the ND-500,
to make f.i. the same schema run on all ND-machines. See also 4.3.

Additions to a Schema

The most common kind of definition or redefinition which would be performed is
the addition of new structural components.

Changes to a Schema

Many changes can be performed on an existing schema. In the CHANGE state-
ments, most of the possible changes are given as options and the default value
will always be that the definition is unchanged.

Deletions from a Schema

In the case of deletions, any program which uses any of the properties deleted
must be carefully modified. Normally, however, deletions would only be made if

the programs which process the database using these properties are themselves
obsolete.

ND-60.127.03



3.4 START INITIATION

Function

A new database is defined using the DRL module. The statement START
INITIATION will define a new database with the name given in the START
statement.

Format

START INITIATION DATABASE <dh~name>

( SUPPRESS (REALM) (RELORD-TYPE) C(ITEM) (SET) (INDEX-TABLE) )

SIZE <no-of-64w=-pages> .

Rules:

1. In the START INITIATION statement, the name of the database which is to
be defined is given. It is the name of a SINTRAN Operating System (0S)
file of type DATA which must have been previously created. This OS file is
used as the SIBAS system realm and cannot be shared by any other realm.
It should not be declared with a NEW QS FILE statement. The SIBAS
system realm is where the object schema is stored. Additional user system
realms may be defined with the NEW SYSTEM REALM statement.

2. SUPPRESS. The SUPPRESS clause can be used to suppress the documen-
tation of realms, record types, items, sets or index tables. This will have
no influence on the resulting database definition. I1f the SUPPRESS clause
is omitted, a full documentation of the database will be printed.

3. SIZE. In the SIZE clause the expected size of the object schema is given in
number of 64 word blocks. The object schema is stored in the SIBAS
System Realm. To avoid problems, give a large number, for example 1000,
and create the SINTRAN file as an "INDEXED FILE". This may be done by
@ CREATE-FILE <db name>,,, before the DRL module is used.

ND-60.127.03



3.5

START

START REDEFINITION

Function

This statement will start the schema DRL for the database identified in the
statement. The size of the file provided for the object schema (i.e., the SIBAS

system realm) may be changed. The statement is also used to select the mode of
operation.

Format:

REDEFINITION DATABASE <db-name» ( DBA-PASSWORD <password>

( SUPPRESS C(REALM) (RECORD=-TYPE) (ITEM) (SET) (INDEX-TABLE)

SIZE <non-af=-b4w-pages>

p—y
i

! st !
MODE ! ! COPY OF SYSTEM-REALM  <f{le-name-1>
! PRODUCTION !

——————————

|

SCRATCH=FILE <flle=name=-2> ,

Rules:

1. In the START REDEFINITION statement the name of the database which is
to be redefined is given, and if privacy is defined for the database through
the DBM modules (see 6.1.7) the DBA PASSWORD is given.

2. All realms in the database will automatically be readied with protection
mode EXCLUSIVE when the START statement is given.

3. SUPPRESS. The SUPPRESS clause can be used to suppress the documen-
tation of realms, record types, items, and sets of index tables. This will ha-
ve no influence on the resulting database definition. If the SUPPRESS clau-
se is omitted, a full documentation of the new database will be printed.

4. MODE. The two modes of operation are Test Mode and Production Mode.
One should take a backup copy of the database before running the
redefinition program in production mode.

5. SCRATCH FILE. If the execution of the DRL incluces a CHANGE REALM or
NEW INDEX the "file-name-2'' must be the name of a file with maximum 8
characters, which is big enough to hold any of the realms in the database
which are to be changed. If the scratch file is not big enough, the execu-
tion of the redefinition may stop in the middle of step 4, leaving a destroy-
ed database.

6. COPY OF SYSTEM REALM. “File-name-1" must hold the name of a file
with maximum 8 characters which holds a copy of the object schema
(SIBAS system realm). The schema DRL will give an error message if this
is not the case. After an unsuccessful execution of the DRL or after an ex-
ecution in Test Mode, the content in "'file-name-1'" must be copied back to
SIBAS system realm for the database.

ND-60.127.03



3.6

3-9

END/EXIT

Function:

The statements indicate the end of the database definition or redefinition.

Format:

END REDEF.
or
EXIT

Rules:

1. Any staternent following END or EXIT will be ignored.

ND-60.127.03



3.7

NEW OS FILE

Function:

The statement will define a new OS file for the database.

Format:

NEW

OS-FILE <flle-name> ( PAGESIZE <no-of-words> )

( DIRECTORY <abbreviated~dir-name> )

-

Rules:

Hints:

FILE NAME. The parameter "file name’ must not be the same as the name
of any existing SINTRAN file for this database. The type of the file is auto-
matically DATA. The "file name’’ is treated as any other SIBAS name. The
file must have been previously created in SINTRAN.

PAGE SIZE. The ""page size”” is the number of words that will be read into
the SIBAS buffer area when a realm located on this 0S file is accessed.
The default value is 512 words. Guidelines on how to estimate the ''page
size’” are given at the end of this chapter. It must te between 64 and 2048,

DIRECTORY. The “abbreviated-directory-name’’ is a four character
abbreviation of the directory where the file is placed. If the substatement is
omitted, the default directory will be used.

In a test phase it is recommended that a SINTRAN "INDEXED FILE" is used.
When the database is in operation, response time will be improved by changing
the file to CONTINOUS. This is done by

@CREATE—FILE <new>:DATA < size >
@COPY—FILE <new> DATA < file-name
@RENAME—FILE < file-name > < new > :data

<size> can be found in the SIB—DRL documentation.

ND-60.127.03



3.8

3-11

NEW SYSTEM REALM

Functi

on:

The statement will define a new user system realm for the data base.

Format:

NEW

SYSTEM-REALM _ <realm-name> O0OS-FILE <file-name>

Rules:

1.

HEALMSIZE <no-of-pages> .

REALM MAME. The parameter “realm-name’’ must not be the same as the
name of any existing reaim.

FILE NAME. The parameter ''file-name’" must be the name of an OS file
previously defined using NEW OS-FILE.

REALM SIZE. The parameter "no.-of-pages” gives the size of the system
realm in terms of OS file pages. Guidelines on how to estimate the size of

system realms are given at the end of this chapter.

STATEMENT SEQUENCE. The OS file referred to must be defined prior to
this statement using NEW OS-FILE,

ND-60.127.03



3.9

NEW

3--12

NEW SERIAL REALM

Function:

The function of this statement is to define a new serizgl realm for the database,

which

Forma

SERI

implies adding a new record type to the database.
1

AL-REALHM <realm=-rame> O0S-FILE <file-name>

RE

ALMSIZE <no-of-pages>

RE

(

Rules:

CORD LENGTH <no~of-words>

MAIN <system-realm> ( ADDITIQONAL <system-realm>

(<system-realm>) (<system-realm>))) .,

REALM NAME. The parameter “realm-name’ must not be the same as the
name of an existing realm.

FILE NAME. The parameter '‘file-name’ must be the name of an OS file
previously defined using NEW QS FILE.

(Remember there is an upper total limit of 65533 pages that can be
assigned to this file).

REALM SIZE. The parameter "'no.-of-pages’’ gives the size of the realm in
number OS file pages.

RECORD LENGTH. The record “length” must be given for all user realms.
The record length must include all pointers in number of words in the
record. The length of a pointer is 2 words. Space must be allowed for two
or one pointers for each set type the record type is defined with link to,
depending on whether the set type is defined with link to prior or not.

SYSTEM REALMS. The parameters  "main-system-realm”  and
“system-realm-1" to “system-realm-3" must contain the names of system
realms defined by using NEW SYSTEM-REALM prior to this statement. The
system realms will be used for storing index tables. The same system
realm may be used for more than one user realm. if MAIN option not used,
the first system realm defined by NEW SYSTEM REALM will be used.

MINIMUM RECORD CONTENT. For all user realms, there must be at least
one elementary item defined by using NEW ITEM.

STATEMENT SEQUENCE. The OS file and any system realms must be

defined prior to this statement using NEW OS-FILE and NEW SYSTEM-
REALM.

ND-60.127.03



3.10

NEW CALC REALM

Function:

The function of this statement is to define a new calc realm for the databas:,
which implies that a new record type will be added to the data base.

Format:

NEW ,CALC-REALM <realm-name> 0S-FILE <file-name>

REALMSIZE <no-of=-pages>

MAIN-AREA <no=of=pages>

RECORD LENGIH <no-of-words>

CALC~KEY  <key=-pame> DUPLICATES ARE ( NOT ) ALLOWED

( MAIN <system=-realm> ( ADDITIONAL <system-realm>
(<system-realm>) (<system-realm>

Rules:

1. REALM NAME. The parameter "realm-name’* must not be the same as the
name of any existing realm.

2. FILE NAME. The parameter "file-name’ must be the name of an 0S file
previously defined using NEW OS-FILE.

3. REALM SIZE. The parameter "'no.-of-pages’’ gives the total size of the
realm in number of OS file pages.

4. MAIN AREA/OVERFLOW AREA. The space in which the records are to be
stored must be divided into a main area and an overflow area. Each of
these areas must be further divided into a number of buckets. All buckets
both in the main area and in the overflow area are of equal size. The
bucket size is always one SIBAS page. The number of buckets in MAIN
AREA, "no.-of-pages” should be a prime number. The number of buckets
in OVERFLOW AREA will be the difference between the total number of
pages given for REALM SIZE and the number of pages given for MAIN
AREA.

5. RECORD LENGTH. The "'record-length” must be given for all user realms in
the number of words. The length of a pointer is 2 words. Space must be
allowed for one or two pointers for each set type the record type is defined
as member or owner of, depending on whether the set type is defined with
link to pricr or not.

ND-60.127.03

©



10.

3-14

CALC KEY. The "key-name'’ must refer to an item or a group item which
must be defined for the record type using NEW ITEM or NEW GROUP in a
fater statement. The item/group item will automatically be assigned the
CALC KEY property. Duplicates will be allowed cn the key, unless the NOT
option is given.

SYSTEM REALMS. The - parameters ’rnain-system-realm”  and
“system-realm-1" to “system-realm-3" must contain the names of system
realms defined by using NEW SYSTEM-REALM prior to this statement. The
system realms will be used for storing index tables. The same system
realm may be used for more than one realm.

MINIMUM RECORD CONTENT. For all CALC realms there must be defined
an elementary item serving as CALC key defined by using NEW ITEM.

STATEMENT SEQUENCE. The OS file and any system realms must be
defined prior to this statement using NEW OS-FILE and NEW SYSTEM
REALM. The CALC key item must be defined later using NEW ITEM or
NEW GROUP.

All the main buckets are preformated at initiation time. The user must
ensure there is enough disk space and be aware that the preformating
takes some time.

ND-60.127.03



3-15

3.11 NEW ITEM

Function:

The function of this statement is to define a new item for a record type previous-
ly defined using NEW CALC REALM or NEW SERIAL REALM. ltems defined must
be given type and length, and the position within the record type may be
specified.

Format
NEW  ITEM <realm-name> <item=name>

INTEGER !

0A !
CHARACTER !
PRIVACY~ITEM !

1YRE START <word=no>

o hn b pom

! BIT PNSITION <first-bit> !
LENGTH <no> ! WORD [
! BYTE POSITION <first-pbyte> !

Rules:

1. REALM NAME. The “realm-name’” must refer to a realm defined using
NEW CALC-REALM or NEW SERIAL-REALM prior to this statement.

2. ITEM NAME. The “item-name’’ must be different from all other items or
group iterns in the same record type.

3. ITEM TYPE. A type must be specified for the item. If an item is defined as
PRIVACY-ITEM, the length and definition of the item must be the same as
for item names, realm names, etc. (i.e., four words). When a record of this
type is retrieved, the person retrieving the record must provide the value of
the privacy item in order for the retrieval to be successful.

4. START POSITION. The "word-number” must contain an integer greater
than or egual to 1 to indicate in which computer word in the record the
start of the item value is to be stored.

5. LENGTH. If the item occupies cne word or more, the length must be given
in “no.-of-words™". If the item occupies less than one word the length is
given in number of bits or number of bytes. The postion in the word must
be completed with an integer greater than or equal to zero to indicate the
first bit or the first byte in the word which the item value occupies. If
length is given in bytes and the position is not given the item will start in
the second byte (number 1) in the word. Bit counting starts with bit
number 0.

6. SIZE OF INTEGERS. If the item is defined as integer, then its minimum
tength is 1 bit, and its maximum length can be freely chosen by the user.

ND-60.127.03




10.

11.

12.

3-16

SIZE OF FLOATING. If the item is defined as floating, it will normally
occupy an integral number of words which may ke freely chosen by the
user.

SIZE OF CHARACTER. If the item is defined as character, then it may
occupy less than one word. The item may occupy more than one word as
long as it is allocated in integral number of words.

CALC KEY ITEM. The NEW CALC-REALM statement is used to define the
item as CALC KEY.

OWNER SET ITEM. The NEW SET statement is used to define the item as
owner set item.

MEMBER SET ITEM. The NEW SET statement is used to define the item as
member set item.

INDEX KEY. The NEW INDEX statement is used to define the item as an
index key.

ND-60.127.03



3.12

3-17

NEW GROUP

Function:

The function of this statement is to give a name to a group of elmentary items
within a record type. The items need not be contiguous in the record type. The
sequence of the items in the group may be different from the sequence in the
record type, and an item may also participate in more than one group item.
Properties as calc key, index key, member set item and owner set item may be
assigned to a group item in the same way as they are assigned to an elementary
item. If the group item is going to be assigned the calc key property the best
performance will be achieved if the group consists of contiguous items.

Format:

NE GROUP <realm-name> <group-name>

<item-name> (<item-name> ....) .

Rules:

1. REALM NAME. The “realm-name” must refer to realm defined using NEW
CALC-REALM or NEW SERIAL-REALM prior to this statement.

2. GROUP NAME. The "group-name’’ must be different from all item or group
item names in the record type.

3. ITEM NAMES. The "item-name-1", "item-name-2"', etc. must refer to
elementary items in the record type defined by using NEW ITEM prior to
this statement.

4. ORDER OF ITEMS. The order in which the elementary items are defined
may be quite independent of the order in which they are defined using
NEW ITEM. However, the order, once defined, is significant and must be
preserved when values of the group are given in DML statements.

5 ITEMS IN MORE THAN ONE GROUP ITEM. Any elementary item may be a
constituent item in one or more groups of the same record type.

6.  NUMBER OF ITEMS. The maximum number of elementary items in a group
item is approximately 50.

7. CALC KEY ITEM. The NEW CALC-REALM statement is used to designate
the group item as CALC KEY.

8. OWNER SET ITEM. The NEW SET statement is used to define the group
item as owner set item.

9. MEMBER SET ITEM. The NEW SET statement is used to define the groups
item as member set item.

ND-60.127.03



10.

11.

3--18

INDEX KEY. The NEW INDEX statement is used to define the group item as
an index key.

EXTRA NAMES OF ITEMS. If the group item consists of only one elemen-
tary item, the effect of the group item will be to give an extra name to the
elementary item. This can be useful if an elemertary item is used as a
member set item in two different set types.

ND-60.127.03



3--19

3.13 NEW SET

Function:

The statement defines a new set type for the database. The owner and member
record types must be record types defined prior to this statement. The statement
will also assign the properties of member set item and owner set item to the
item/group item in the member and owner record type.

Format:

NEW SET <set-pame>

|

LINK IS ! SINGLE !

! DOUBLE |
STQRAGE=-CLASS IS ! AUTOMATIC !
! MANUAL !

OQWNER <owner-set-item> <realm-name>
MEMBER <member-set-item> <realm-name> ( <realm-name> .... )

Rules:

1. SET NAME. The ""set name’” must be different from the name of any other
set type in the same database.

2. LINK. If the SINGLE option is given, the set will have a link to next member
only. If the DOUBLE option is given, each member will have link to next
and prior member.

3. STORAGE CLASS. If the AUTOMATIC option is given, the set type will
have a storage class of automatic. When a STORE or MODIFY is executed
on a member record, it will be automatically connected into a set occur-
rence. It the MANUAL option is given, the set type has a storage class of
manual and records will not be connected into a set of this type when a
STORE is executed. In SIBAS the storage class is the same as the removal
class. Whether a member record is automatically erased when the owner is
erased, depends on the option given in the ERASE statement.

4, OWNER. The "owner-set-item’ must be defined as an item or group item
for the owner record type. The name of the owner record type is given in
“realm-name’’. Furthermore, the “owner-set-item’’ must either be defined
as calc kay or as index key with NO DUPLICATES allowed. The key must be
defined prior to this statement. The item/group item given will be assigned
the property of owner set item, unless it already has this property.

5. MEMBER. The “member-set-item” must be defined as an item or group
item for the member record type(s). The member record type(s) are given
in “realm-name-1", "realm-name-2", etc. (maximum 46 member record

types). The item/group item given will be assigned the property of member
set item, unless it is already used for another set type. In this case the item
must be given an extra name by defining it as a group item. Note that the
member set items must have the same name in all realms.

ND-60.127.03



6.

3-20

INVOLUTED SET TYPE. If the member record type and the owner record
type is the same for a set type, the set type is involuted. Then the
"member-set-item” and the "owner-set-item” must both be defined as
items or group items for the record type, but they must have different
names.

CORRESPONDENCE BETWEEN MEMBER SET ITEM AND OWNER SET
ITEM. The "owner-set-item” and the 'member-set-item’ must correspond
in length and item type. The two items may also have the same name
unless the set type is involuted. Correspondence in the case of group items
means that it must be possible for the concatenated values of the con-
stituent elementary items to be exactly equal.

ND-60.127.03



3.14 NEW INDEX

Function:

The function of this statement is to define an item or group item as index key
and define the storage of the corresponding index table.

Format:

NEW INDEX <realm=-name> <key-name>

UPDATE IS | MANUAL ! DUPLICATES ARE ( NOT) ALLOWED
| AUTOMATIC |

(SYSTEM-REALM <system=-realm-name>)

( MIN-VALUE <value> MAX~-VALYE <value» ) .,

Rules:

1. REALM NAME. The ''realm-name’ must refer to a realm defined prior to
this statement.

2. KEY NAME. The "key-name' must refer to an item or group item defined
for the record type named in "realm-name". The item/group item will be
assigned the index key property.

3. UPDATE If the MANUAL option is given, the index will be manually
maintained, and the index table will not be updated when a STORE or
MODIFY is executed. If the AUTOMATIC option is given, the index table
will be automatically maintained when a STORE or MODIFY is executed.

4. DUPLICATES. If the NOT option is given, an attempt to store a record of
this record type will fail if there is already an entry in the index table with
this key value. If the NOT option is omitted, it means that duplicate values
of this index key are permitted.

5. SYSTEM REALM. The "system-realm’’ in which all tables are stored must
either be the main system realm for the record or an additional system
realm, already defined by using NEW SYSTEM REALM.

6. MIN VALUE/MAX VALUE. If the actual minimum and maximum values of
the index key are known at the time when the database is defined, these
values should be given to achieve better performance when using the index
key. Note that it is enough that the key wsually is between the limits,
exceptions are allowed. The parameter “value’’ must be a positive integer.
If a key consists of more than one word, the value of the first word is gi-
ven. If the key is alphanumeric, “value” should be the corresponding in-
teger value (if any) of the first word of the key.

ND-60.127.03



3.15

3--22

DELETE SET

Function:

The function of this statement is to delete a set type from the database schema.
When a set type is deleted, the record types which serve as its owners and
members remain in the database. All these record types are adjusted so that
there is no space assigned for pointers, but the record length will remain
unchanged unless it is changed by use of CHANGE REALM. The member set
item of all member record types will cease to have this role. The owner set item
of the owner record types will cease to have this role if it was owner set item on-
ly for the deleted set type.

Format:

DELETE SET - <set-name> .

Rules:

1. Name of SET TYPE. The ""set name’ must be the name of a set type which

is defined in the old database schema.
2. OWNER SET ITEM. If the owner set item of the owner record type does
not serve as owner set item of any other set type, the item will automatic-

ally be redefined such that it no longer is an owner set item.

3. MEMBER SET ITEM. The member set item of all member record types will
automatically be redefined such that they no longer are member set items.

ND-60 12703



3.16

3-23

DELETE INDEX

Function:

The function of this statement is to remove the index property from an item or
group item, ard to delete the corresponding index table.

Format:

DELETE INDEX <realm-name> <key-name> .

Rules:

1. REALM NAME. The “realm-name"” must be the name of an existing realm.

2. KEY NAME. The "key-name’ must identify an item or group item defined
as index key for this record type.

3. INDEX KEY PROPERTY. The index key property will automatically be
removec from the item identified by "key-name’’.

4. SET OWNER. If the item given in ""key-name’’ is defined as owner set item,
the set rnust be deleted prior to this statement.

ND-60.127.03



3.17

DELETE ITEM <realm-name> <item-name>

3-24

DELETE ITEM

Function:

The function of this statement is to remove an item from an existing record type.
The record length will remain unchanged uniess it is changed by use of CHANGE
REALM.

Format:

Rules:

NAME OF REALM. "Realm-name’ must be the name of the realm where
records of this type are stored.

NAME OF ITEM. "ltem-name’” must be the name of an item which is
defined for the record type, identified by '"realm-name’’. The item may play
different roles in the record type and the consequences of the DELETE
ITEM are given in the following rules.

INDEX KEY {TEM. if the item given is defined as an index key or is part of

an index key, the index table must be deleted prior to this statement using
DELETE INDEX.

MEMBER OF GROUP ITEM. If "“item-name" identifies an item which is
defined as member of a group item, the item will automatically be deleted
from the group description, unless the group is defined as index key, calc
key or set item (see rules 3, 5 and 6). It is not necessary to change the
group composition using a CHANGE GROUP statement, which is therefore
not provided.

CALC KEY. If the item given is defined as a calc <ey or is a part of a calc
key, a new calc key must be defined for the record type {using CHANGE
CALC-REALM) or the location mode of the realm must be changed from
calc to serial (using CHANGE SERIAL-REALM). The CHANGE CALC-REALM
or CHANGE SERIAL-REALM must be given prior t¢ DELETE ITEM.

MEMBER SET ITEM/OWNER SET ITEM. If the item given in “item-name’’ is
defined as member set item or owner set item for a set type, or if it is part
of a set item, the set type must be deleted using DELETE SET or changed
using CHANGE SET prior to this statement.

STATEMENT SEQUENCE. The following statements may have to be given
prior to DELETE ITEM (see rules 3, 5 and 6).

CHANGE CALC-REALM
CHANGE SERIAL-REALM
DELETE SET

CHANGE SET

DELETE INDEX

ND-60.127.03



3.18

3-25

DELETE GROUP

Function:

The function of this statement is to remove a group item from an existing record
type. The result of this is that the group item can no longer be referred to from
the DML statements, but the items constituting the group item will remain in the
record type.

Format:

DELETE GROUP <realm=name>» <group-name> .

Rules:

1.

NAME OF REALM. "Realm-name’" must be the name of the realm where
records of this type are stored.

NAME OF GROUP ITEM. "Group-name’* must be the name of a group item
which is defined for the record type identified by “realm-name’. The group
item may play different roles in the record type and the consequences are
given in the following rules.

INDEX KEY ITEM. If the group item given is defined as an index key, the in-
dex table must be deleted prior to this statement using DELETE {NDEX.

CALC KEY. If the group item given is defined as a calc key, a new calc key
must be defined for the record type (using CHANGE CALC-REALM), or the
location mode of the realm must be changed from calc to serial (using
CHANGE SERIAL REALM). The CHANGE CALC-REALM or CHANGE SE-
RIAL-REALM must be given prior to DELETE GROUP.

MEMBEFR SET ITEM/OWNER SET ITEM. If “"group-name’’ is defined as
member set item or owner set item for a set type, the set type must be
deleted using DELETE SET or changed using CHANGE SET prior to this
statement.

STATEMENT SEQUENCE. The following statements may have to be given
prior to DELETE GROUP (see rules 3, 4 and 5).

CHANGE CALC-REALM
CHANGE SERIAL-REALM
DELETE SET

CHANGE SET

DELETE INDEX

ND-60.127.03



3-26

3.19 CHANGE SYSTEM REALM

Function:

The function of this statement is to change the realm size of an existing system
realm, or the page size by moving it to another 0S-file with a different page size.

Format:

CHANGE SYSTEM-REALM <Rrealm-name>

( REALMSIZE <no-of-pages> )

Rules:

1. REALM NAME. The "‘realm-name” must identify an existing user system
realm (not SIBAS system realm).

2. REALM SIZE. The parameter 'no.-of-pages’ gives the maximum size of the

system realm in terms of OS file pages. Guidelines on how to estimate the
size of system realms are given at the end of this chapter.

ND-60.127.03



3.20

3-27

CHANGE SERIAL REALM

Function:

The function of this statement is to change the definition of an existing serial
realm, or to change an existing calc realm to serial realm. In the latter case the
calc key will automatically cease to have this role.

Format:

CHANGE

SERIAL~REALM <realm-name>

( 0S-FILE <fille-pame> ) ( REALMSIZE <no=-of-paqges> )

( RECORD LENGTH <no-of-words> ) .

Rules:

1. REALM NAME. The parameter 'realm-name’’ must be the same as the
name of axisting serial realm or calc realm.

2. O3S FILE. The “file-name’ must be the name of an existing OS FILE.

3. REALM SIZE. If this option is used, the parameter "‘no.-of-pages’” must
give the maximum number of OS file pages estimated for the realm. If the
realm is changed from CALC to serial the REALM SIZE option must be
given.

4. RECORD LENGTH. If new items have been defined for the record type, or if

the record type is defined as owner or member of new set types, the
record length may have to be increased. The record length must include ail
pointers in the record. The length of a pointer is 2 words. Space must be
allowed for one or two pointers for each set type the record type is defined
as member or owner of, depending on whether the set type is defined with
link to prior or not.

CHANGE OF LOCATION MODE. If "realm-name’’ identifies a realm with lo-
cation mode calc, the location mode will be changed to serial and the calc
key will automatically cease to have this role. If no "main-system-realm’’
was defined for the calc realm, the MAIN option must be given,

STATEMENT SEQUENCE. The following statements may have to be given
prior to this statement (rule 5).

DELETE INDEX
NEW INDEX
NEW SYSTEM-REALM



3.21

CHANGE CALC REALM

Function:
The function of this statement is to change the defintion of an existing calc
realm, or to change an existing serial realm to calc realm. In the latter case, an

existing item in the record type must be defined as calc key.

Format:

CHANGE CALC~REALM <realm-name>

( REALMSIZE <no-of-pages> )
( MAIN-AREA <no=-of=-pages®> )
( RECORD LENGTH <no-of-words> )

( CALC-KEY <key=-name> DUPLICATES ARE .(NQOT) ALLOWED ) »

Rules:

1. REALM NAME. The parameter "realm-name’” must be the same as the
name of an existing serial realm or calc realm.

2. REALM SIZE. The ""no.-of-pages’’ gives the total length of the realm in
number of OS file pages.

3. MAIN AREA/OVERFLOW AREA. If this option is given, all records in the
realm will be recalculated and stored according to the new definition.
""No.-of-pages’” should be a prime number.

4. RECORD LENGTH. If new items have been defined for the record type, or if
the record type is defined as owner or member of new set types, the
record length may have to be increased. The reco-d length must include all
pointers in the record. Space must be allowed for one or two pointers for
each set type the record is defined as member or owner of, depending on
whether the set type is defined with link to prior or not.

5. CALC KEY. If this option is given, the "key-name” must refer to an item or
a group item which is defined for the record type. The item/group item
must have non null values on the database. The izem/group item will auto-
matically be assigned the CALC KEY property. No other item/group item in
the record type must have been defined as CALC KEY. If the "realm-name”’
refers to a realm with location mode SERIAL, the location mode will be
changed to CALC. In this case the CALC KEY option must be given. it must
be given whether DUPLICATES are allowed for the key or not. if "key-na-
me'" already has the role of CALC KEY, this option may be used to change
it from DUPLICATES NOT ALLOWED to DUPLICATES ALLOWED or vice
versa.

ND-60.127.03



CHANGE OF LOCATION MODE. If “"realm name'’ identifies a realm with lo-
cation mode serial, the location mode will be changed to calc. The CALC
KEY and the MAIN AREA options must then be given.

STATEMENT SEQUENCE. The following statements may have to be given
prior to this statement (rule 7).

DELETE INDEX

NEW INDEX
NEW SYSTEM-REALM

ND-60.127.03



3.22 CHANGE SET

Function:

The function of this statement is to change the properties of an existing set type.
The link may be changed from single to double or vice versa. The storage class
may be changed from manual to automatic or vice versa. New member record
types may be added or existing member record types may be deleted.

Format:

CHANGE SET <set-name>

om——

( LINK IS | SINGLE ! )
! DOUBLE !
( STORAGE~-CLASS IS ! AUTOMATIC !
' MANUAL !

{ MEMBER <member-set-item> <realm-name> ( <realm-name> .... )

Rules:
1. SET NAME. The "set-name” must be the name of an existing set type.
2. LINK. This option may be used to remove prior link (SINGLE) or to include

prior link {(DOUBLE). If a change is made to remove the prior link, then for
all member record occurrences the space occupied by the link is made
available. It must be noted that the record length as specified in NEW
REALM for this record type is the length including set pointers, and
consequently removing the prior link of a set type will leave empty space in
the owner and member record type.

If a change is made to include the prior link, then the record length may
have to be increased for the owner and rmember record type. In production
mode, the link to prior is automatically established for every set occurr-
ence.

3. STORAGE CLASS. The storage class of the set type may be changed from
manual to automatic or vice versa. If the storage class of a set type is
changed from manual to automatic, then all occurrences of the member
record types are examined to see whether they can be connected to a set
of the set type. If so, the connection is made in the same way as if a
CONNECT were executed on the record and set type. Member records for
which no matching set exists in the database are listed in a report, and the
production mode will not be executed. If the storege class of a set type is
changed from automatic to manual, then no charges are made to occur-
rences of the set type.

ND-60.127.03



MEMBER. It is possible to define new member record types in a set type
and to remove old member record types. If the MEMBER clause is given,
all the member record types for the changed set type must be listed.
Whether the new members are connected into sets will depend on the
storage class of the set type. If it is automatic, then an attempt is made to
connect each new member. Cases are listed where no owner is found in
the database for the values of the member set item. If the storage class is
manual, no connections are made, and step 4 (see fig. 3.1) is not executed.

In the case that the set type is old and the member record type is new
(that is being defined in the same use of the restructuring facility), then
there are no occurrences of the record type in the database, and the exist-
ing sets of the set type are not affected.

The MEMBER clause may also be used to change member set item. The
"member set item’’ must be defined as an item or a group item for all
member record types, and this item will automatically be given the pro-
perty of member set item. It must, of course, correspond to the owner set
item (see 3.13.7).

When member set item is changed for a set type, all existing members will
be disconnected from the set, and if the set type has automatic storage
class all members will be connected according to the value of the new
member set item and cases are listed where no owner is in the database
for the values of the member set item. In this case step 4 will not be ex-
ecuted.

ND-60.127.03



3.23

DIMENSIONING DATABASE PARAMETERS

SIBAS realms are stored on SINTRAN files, which may be created as INDEXED
or CONTINUOUS files. Such files always occupy an integral number of
"SINTRAN pages”, i.e., 1024 words. SIBAS default length is 512 words. The mini-
mum page size is 64 words, the practical maximum is 2K words {SINTRAN-1II de-
fault value for the device buffer size). If the file type is INDEXED, disk space is
allocated when the demand arises. One is then recommended to be generous
when estimating the size of the REALM. SIB-DRL prints out usefu! information
about the size of the realms and gives estimates for the size of the index tables.
The maximum number of “SIBAS pages” on an OS-—FILE (SINTRAN file) is
65533. l.e. the practical maximum size of one OS—FILE is about 250 Megabytes.
The maximum number of "*SIBAS pages” for any realm type is 65533.

SIBAS System Realm

When a SIBAS database is defined and initialized or redefined using the SIBAS
Definition/Redefinition Language, an object version of the data base definition
will be generated. The object version of the schema will be stored on the SIBAS
system realm. In the following we will give some rules for estimating the space
requirements for the SIBAS system realm.

The page size is always 64 words, and the system realrn must be on a separate
SINTRAN file. It will contain the realm description table, the 1/0 table, the set
description table, the record description tables and the index description tables
— usually the record description tables are the most voluminous. As a rule of
thumb, 50 + 10" (no. of realms) pages suffice. However, one is recommended to
be generous when estimating the size of this reaim, to allow future redefinition,
change, etc.

User System Realms

A user system realm contains one page reserved for 5IBAS and a number of
pages for the index tables stored on it. Index tables are organized as a hierarchy
of tables, each occupying one page.

One index table is divided into a table head and a number of entries. At the
lowest level, by far the most common, one index table antry consists of one key
and one pointer. Since the key values are stored randcmly, the packing density
of the index tables is on average 60%.

Page size —11

Number of entries on a page = 60% * -
’ Pag ' Key size +2

Number of pages for one index = Number of records

Mumber of entries on a page

It must be noted that index tables might be compressed by a utility statement of
the SIB-DBM module.

ND-60.127.03



Serial Realms

A serial realm contains one page reserved for SIBAS and a number of pages for
use by the records. A page is always headed by a pointer (2 words) and contains
an integer number of records. Estimating the size of a serial realm is then an ea-
sy matter.

Page size —2
Number of record a m e,
umber of records on a page Record longth
Maximum number of records
Number of records on a page

Number of pages for the realm =

CALC Realms

The main parameter when dimensioning a calc realm is the number of buckets in
the main area. Choosing an optimum value for this number is not a straight-for-
ward procedure. This number will also give the number of pages in the main area
and, together with the page size, it will limit the total number of records in the
main area. A prime number is used to give a better distribution with the
randomizing algorithm SIBAS uses.

Overflow pages are linked to the main page when overflow occurs. They (over-
flow pages) are not preallocated to a specific main bucket (page). An overflow
page belongs to only one main page.

Main and overflow pages have the same size and the same layout: they are
headed by a pointer and contain an integer number of records. Estimating the
size of a calc rezalm may be done as follows:

Page size —2
Record length

Number of records on a page =

Number of buckets in main = Numbers of pages in main

Total number of records

Number of pages in main =
pages in mai Number of records on a page

Number of pages for the realm = Number of pages in main +

1 Estimated Overflowing Records

3

66% Number of records on a page

ND-60.127.03



3.24

HOW TO RUN DRL ON THE COMPUTER

Use an editor to write the source schema (with the necessary statements from
this chapter) and store it on a file with name <datzbase name>:SYMB, for
example create the necessary SINTRAN files, by commands like:

@CREATE-FILE <database name > DATA

@CREATE-FILE <name of OS-FILE1 > :DATA
@CREATE-FILE <name of OS-FILE2 > :DATA

Make sure you were logged in under the SINTRAN-user name where you want
the database to reside.

Make sure user RT has write access to this user’s files, by a command like:
@CREATE-FRIEND RT

for example.

Then run the DRL by the command
®@SIB2-DRL.

(See the examples in the next section.) Answering questions by just CR, will be
taken to mean NO.

ND-60.127.03



3.25 EXAMPLES

An initiation run

CUOELETE-FILE FORDE:DATA

QUELETE-FILE SYSFILESDATA
RCREATE-FILE SYSFILE!DATA O
BCREATE-FILE FORLEBIDATA Q
RBSIH2-DRL

S I RBR2 -0 R L SEFT 79
EXFLANATION 7 NO

INTERACTIVE 7 NO

INFUT-FILE v FORDEISYMH
LIST~FILE ¢L-F

|

R AOK K OKOK R KKK K AR K K K KK KK 3K K K S5O oK 35K 0K 3K R K 5K 3K K KK K 3K 0K 3K 3K 3K 3K 3K 3 3K 3K 3K 3K 3K 5K K 3K K K o oK KK K oK 0K 3K K oK
L ATAERASE FORDR INITIATEDID 36 15 12 10 1979%
KKK K KKK ACROROKKOK KK KK KK AR K K 3K KKK K MK SRR 3K 3K KRR 0K KK 3K 8 K oK oK 3K K o K K OK oK 3K 3K K K OIOK 3K oK K 3K K ok

000754 STOP 0

The output from the initiation run:

1% *
2% - * C 2URSE . DATABASE 0CcT, 79
2% * ’
[
Sx START INITIATION DATABASE FORDS .
&% SUPPRESS REALM RECNRD ITEM SET INDEX
7% SIZE - 171 .
S*
9% MEW O0S~-FILE SYSFILE PAGESIZE 256.
10
11% NEW SYSTEM=RFALM SYSFILE 0S~FILE SYSFILE REALMSIZE 19 6.
12« NEW SERIAL-RFALM RERSON 0S~FILE SYSFILF REALMSIZE 51
13% RECORD LEHMNGTH 51
14% MAIN SYSFILE .,
15 NEW SERIAL-REALM JOBB 0S~FILE SYSFILE REALMSIZE 119
16% RECNRD LENGTH 20
17% MAIN SYSFILE .
18% NEW CALC-REALM RAPPORT OS~FILE SYSFILE REALMSIZE 142
19 % MAIN=-AREA 122
20« RECORD LENGTH 25
21 CALC~KEY JOBRNR DUPLICATES
22* MAIN SYSFILE .
23%
24 % NEW ITEM PERSON AVDELING
25% TYPE CHARACTER
26% START 39 LENGTH 3.
27 * NEW ITEM PERSON FDATO
28« TYPE CHARACTER
29% START 1 LENGTH 3.
30* NEW ITEM PERSON FNR
31« - TYPE CHARACTER
32 START 4 LENGTH 3.

ND-60.127.03



33«%
34 %
35
36*
37
38x%
39%
L *
[A I
L2x
43 %
LG *
45%
NS
L7 %
4R %
L Q%
SO
51x%
52%*
53
54 %
55%*
S6*
57 %
SR«
S9x
AQ*
Alx
A2 %
A 3%
Abx
A5
Ahb*
AT *
AR%
A9 *
70 %
77 %
72 *
73*
Thx
7 5%
76%
77 %
73*
79 %
R0 *
81 %
R2*
33 %
R *
85%
Ré&*
]7 *
8% *
839 %
Q0%
Q1%
92 %
93%
A
Q5%
D6+
97 *
0%
99 %

HEW
NEW
NEW
NEY

NEW

NEU
NEW
NEW
MEW
NEW
NEW
NEW
NEW
NEM

NEW

NEW
NEW
NEW
NEW
NEW
NEW

MEW

ITEM PERSON KJONN
TYPE CHARACTER
START 35 LENGTH

ITEM PERSON PERSADR
TYPE CHARACTER
START 20  LENGTH

ITEM PERSON
TYPE CHARACTER
START 7 LENGTH

ITEM PERSON
TYPE CHARACTER
START 42 LENGTH

ITEM PERSOM
TYPE INTEGER
START 34 LENGTH

GROUP PERSON AVDPERS
AVDELIMG PERSNAVN

GROUP PERSON PERSNR
FOATO FNR

ITEM JOBRR BUDGTIM

TYPE INTEGER

START 10 LENARTH
ITEM JoBr FDATO

TYPE CHARACTER

START 15 LENGTH
ITEM JOBR FNR

TYPE CHARACTER

START 18 LENATH

ITE" J0BRA JORBNAVN
TYPE CHARACTER
START 2 LENGTH
ITEM JoBA JOBRNR
TYPE INTEGER
START 1  LENGTH
ITEM goBs JOBBTYPE
TYPE CHARACTER
START 7 LENGTH
ITEM J0BA JRESERVE

TYPE CHARACTER

START 21 LENGTH
ITEM JoB8B MEDGTIM

TYPE INTEGER

START 12 LENGTH

GROUR JO0OBB JOTYPENR
JOBBTYPE JORBNR

GROUP JOBB PERSANR
FDATO FNR

ITEM RAPPORT ANTTIM
TYPE INTEGER
START 9 LENGTH
ITEM RAPPORT FDATO
TYPE CHARACTER
START 1 LEMNGTH
ITEM RAPPORT FNR
TYPE CHARACTER
START 4 LENGTH
ITEM RAPPORT JOBRNR
TYPE INTEGER
START 7 LENGTH
ITEM RAPPORT PERIODE
TYPE IMTEGER
START 8 LENGTH

ITEM RAPPORT RRESERVE

TYPE CHARACTER
START 12 LENGTH

ND-60.127.03

PERSMAVN

PRESERVE

TIMELONN

1.

15,

13.



100
101 »
102*
103 *
104 %
105*
106«
107~
108
109 %
110
111 %
112
1T13%
114 %
1156
116%*

117* -

118*
119%
120 %
121 *
122 %
123%*
124 %
125%
126%
127
128%*
129 %
130w
131
132%
133«
134
135*
136
137»
138%
139%

END OF

END OF

END OF

STEP

“sTEP

STEP

NEW

NEW

NEW

NEW

NEW

NEW

NEW

MEW

NEW

NEW

MEW

ENO

GROUP RAPPORT PERJOBB

PERI

0ODE JOBBNR

GROUP RAPPORT PERSNR
FDATO FNR

INDEX

PERSON AVD

UPDATE IS AUTOMATIC
DUPLICATES ARE NOT

INDEX

PERSON PER

UPDATE IS AUTOMATIC
DUPLICATES ARE NOT

INDEX

PERSON PER

UPDATE IS AUTOMATIC

buUPL
INDEX

ICATES ARE NOT
JORA3 JOB

UPDATE IS AUTOMATIC
DUPLICATES ARE NOT

INDEX

J0RBs3 JOoT

UPDATE IS AUTOMATIC
DUPLICATES ARE NOT

INDEX
upDa

RAPPORT PER
TE IS AUTOMATIC

PERS

ALLOWED,

SNAVN

ALLOWED,

SNR -

ALLOWED,

BNR

ALLNOWFD,

YPENR

ALLOWED,

JOBA

PUPLICATES ARE ALLOWED.
RAPPORT PERSNR

UPDATE IS AUTOMATIC
DUPLICATES ARE ALLOWED,

INDEX

SET PERRAP

LINK

IS DOURBLE

STORAGE=~CLASS IS AUTOMATIC
OWNER PERSNR

MEMRER PERSNR
SET JOBRAP
LINK IS DOUBLE

PERSON
RAPPORT

STORAGE-CLASS IS AUTOMATIC
OWNER JOBRNR -
MEMBER JOBBNR

REDEF.

NUMBER OF ERRORS

NUMRER OF ERRORS

NUMBER OF ERRORS

ND-60.127.03

J0OBB
RAPPORT



3--38

END OF DATABASE DEFINITION

NUMBER OF WARNINGS

= 0
NUMBER OF ERRORS = 0
SIZE OF DML RESIDENT TABLES = 832
THE DATABASE IS INITIATED
kkA kA K KA
END OF STEP 4 NUMBER OF ERRORS = - 0

Akkdk kA dkhk bk hh Ak dhk Ak kA kb kA k kA hdh ok khkkd kA Fhh A Ak ke h P FhkhkFP Ao s kkkk

DATABASE FORDB INITIATED 36 15 12 10 1979«
Hhk ok k ok ok kR Rk kA kR Ak kA AR kAR F Ak h Ak kA Ak kA A Ak ko ok ok Pk kA A Ak ok h ko k ok kA A A kA kA Ak

ND-60.127.03



A redefinition run:

®COPY-FILE ' FORDBCOP: DATA'* FORDB:DATA
®CREATE-FILE SCRATCH: DATA, ,,

ESIR2-DRL

SIRB2~-DRL SEFT 79
EXFLANATION 7 NO
INTERACTIVE 7 NGO
INFUT-FILE ¢ FOR-CHANGE
LIST-FILE + TERM
1% X
2% % COURSE DATARASE CHANGE
K$ 4 X )
4% START REDEFINITION ©LDATABASE FORDE.
3% i SUFFRESS REALM RECORD ITEM SET INDEX
6% MODE FRODUCTION
7% COFY OF SYSTEM-REALM FORDECOP
8x% SCRATCH~-FILE SCRATCH.
?%
10x% X
11% X EXFAND THE JORR REALM
12% %
13% CHANGE SERIAL-REALM JORB
14x% REALMSIZE 150,
19%
16% END,
ENDN OF STEFP 1 NUMEER OF ERRORS = 0

oo WARNING .. 103 STATEMENT STARTING LINE 16
CALC KEY IS NON-CONSECUTIVE GROUF» EAD FERFORMANCE

END' OF STEF 2 NUMBER OF ERRORS = 0
ENII OF STEF 3 HUMERER OF ERRORS = 0
gﬁﬂ DE DATABASE LDEFINITION

NUMEBER OF WARNINGS = 1

NUMBER OF ERRORS = 0

SIZE OF DML RESIDENT TAELES = 832
THE DATABASE IS INITIATED

KKK OKACK KK KK
ENDI OF STEF 4 NUMEBER OF ERRORS = 0

KKK KK HOK KK KKK O OK K HOKK ORI RO K KR AOK SO K K oK OK 5 KoK 5K oK 3K KK K KoK KKK oK
LATABRBASE FORDR INITIATED 33 15 12 1<
AR ACKR KK KRR KKK AR KA R KO OK KK KK KKK HHOK KK K 3K 30K KKK A KKK KK KK HOK KK KKK K K0

ND-60.127.03



3-40



4.1

DATA MANIPULATION LANGUAGE
(DIML)

SIBAS provides a selection of DML statements. Fach DML statement has 2
forms, a short form, e.g., GET, MODIFY, STORE, and an encoded CALL form.
The CALL form is to be used in application programming. The short forms are
used in SIBINTER.

GENERAL

For a program to be able to access a SIBAS database, some or all of the record
types in the database must be defined in the host language program.

It is important to note that not all record types in the data base need to be
defined, but only those required. Furthermore, the same applies to items in a
record type. If a program does not need to process all the items in a given re-
cord type, then those not required may be omitted from the record description in
the program. This provides a subschema facility and enables the programmer to
minimize the core space required at execution time.

The DML statzments in SIBAS have the general form of a CALL statement.
When this form is used, SIBAS may be used from any host language which
provides a CALL statement facility. The description of records and items must
then follow the conventions of the host language.

The programmer may choose his own names to identify the parameters in the
various DML CALL statements. In order to clarify the role of each parameter in
the following sections, each parameter is identified by a lower case narrative
name which does not necessarily conform to the name conventions of the host
languages.

In many of the DML statements, it is necessary to use parameters which identify
a FORTRAN one dimensional array or a COBOL storage area. The values to be
used by the Database Control System (DBCS) when processing the DML state-
ment must be stored in the array or table prior to the execution of the DML
CALL. It is important to note that each value which is to be passed to the DBCS
in this way must start on a word boundary.

The form of a DML CALL statement in Fortran is as follows:
CALL SDML (param-1, param-2, .... }
In COBOL the form is CALL 'SDML’ USING param-1, param-2,.....

A full description of the DML statement is given later in this chapter, with the
Fortran form of the call indicated.

ND-60.127.03



4.2

PARAMETER DESCRIPTIONS

To avoid repetition in defining the statements, the syntax of the most common
parameters is defined here. Other parameters are described as ''special
parameters’”’ under the special statements where they are used. This section
should not be read alone, but along with the special stataments.

When parameter names are passed through arrays or areas, it is important to
note that there must be exactly eight characters in each name, left justified and

with trailing blanks.

The general description of the parameters are given below. For examples: See
4.3.

The specific usage is defined in the various DML statements.
"“"mode”’

“Mode'" is a single integer which declares whether the run-unit wants to
change the database or not.

"data-base-name”’
"Data-base-name’” defines a field or an array in the user area containing
the eight character name of the database. This name must be identical to
that defined in the Database Schema.

""password”’, “new-password”’
“Password” and ""new-password” define a field or an array in the user area
containing the eight character passwords to be checked by the database
control system.

“realm-name"’
“Realm-name’ defines a field or an array in the user area containing the
eight character name of the relevant realm. This name must be identical to
a realm name in the database schema.

""no.-of-realms”’

“No.-of-realms” defines a single integer variable in the user area contain-
ing the number of realms to be readied in one READY REALM statement.

"key-name"’
"Key-name” defines a field or an array in the user area containing the eight

character name of an item or a group item defined in the data base
schema as an index key or calc key for the relevant record type.

ND-60.127.03



"key-value”

"Key-value” defines a field or an array in the user area containing or
receiving the eight character value of an index key or a calc key.

"low-limit", “h:gh-limit”’

“Low-limit” and high-limit” define fields or arrays in the user area
containing lower and upper limit values of a corresponding index key. The
length ard type of “fow limit” and "high limit”" must be the same as that
of the corresponding key.

“set-name’’

"Set-name’’ defines a field or an array in the user area containing the eight
character name of a set type defined in the database schema.

"temporary-data-base-key'

"Temporary-data-base-key"’ defines a single integer variable in the user
area.

Using the value zero in this parameter means that the call (e.g., GET or
MODIFY) will work on the current record (defined by the CRUI, see 2.4.1.2).
If you want the call to work on a record not current anymore, you must ha-
ve issued a REMEMBER when the record still was current. A number identi-
fying the record would then have been stored in your “temporary-data-ba-
se-key''-variable. Using this number instead of zero in the call, will make
the call work on that record instead of the record now being current. Note
that the parameter is an output parameter only in case of REMEMBER,
otherwise it is an input parameter.

"temporary-search-region-indicator”

“Temporary-search-region-indicator’” defines a single integer variable in
the user area.

The value zero in this parameter means that the current search region is to
be used — as defined by the CSRI (see 2.4.1.2). In case you want to oper-
ate on a search region not current any longer, you must have issued a RE-
MEMBER for that search region when it still was current. The identifying
number then stored in your "“temporary-search-region-indicator’'-variable,
must be used instead of the zero when you want this search region.

Note that the parameter is an output parameter only for REMEMBER,
otherwise it is an input parameter.

ND-60.127.03



"no.-of-items”’, "'no.-wanted”’, "'no.-found”’

"No.-of-items’’ defines a single integer variable in the user area containing
the number of item names that have been placed in ‘item-list”.
"No.-of-items” must have a value greater than or equal to one and less
than or equal to the total number of items and group items in the record
type. "No.-wanted” defines an integer value giving the number of records
or keys the run-unit wishes to read, '‘no.-found”’ tells the run-unit how ma-
ny records or keys it received.

"item-list”’

“Item-list” defines a field or an array in the user area containing eight
character names of data items or group items defined in the database
schema for a record type.

"item-values”’

“ltem-values” defines a field or an array in the user area containing or
receiving the values of the items and group items named in the "item-list”
in corresponding order. Space must be allocated for each item corres-
ponding to the data format definition in the database schema.

"option-code’’, “usage-mode’’, '‘protection-mode’’

“Option-code”, “usage-mode’ and ''protection-mode” define single in-
teger variables whose values are used to specify certain options to be se-
lected in various DML statements.

g

"key-length”, "value-length”’

"Key-length” and "'value-length”" are single integer variables defining the
length of a field to be passed to SIBAS, expressed in number of words.

"status”’

“Status” is an output parameter (single integer variable) which the DBCS
sets to different values. The status value +1 indicates that the statement
execution has been successful. The other values indicate an unsuccessful
execution, implying a Database Exeception Condition (DBEC) in most cases
(see Chapter 7).

Summary:

1 successful

0: normal exception condition such as end of search region

—1: abnormal exception condition, more information is to be
found by calling SDBEC

—2 to —6: after SOPDB

Other negative values indicating error conditions may be returned to the
run-unit, a list of which is given in the ERROR REPORTING chapter of this
manual, but in those cases no more information may be found by calling
SDBEC.

ND-60.127.03



4.21

4—-5

Open Database

Function:

The function of the OPEN-DATA-BASE statement is to indicate the run-unit's
intention of processing the data in the database.

Format:

CALL SOPDB (mode, database name, password, status)

Rules:

A SIBAS process for this database must be running. This might be done by the
SIBAS-service program before running your application program (see 6.2}, or by
including calls from section 5.4 in your program. If the SIBAS process is not
number zero, a SETDV-call must be included before SOPDB, see 5.4.13.

The ""mode” must define a variable or an array in the user storage area
containing an integer; 0 if the run-unit will not change the database, 15473 if the
run-unit intends to change the database.

The first run-urit which executes the OPEN-DATA-BASE statement will ready the
SIBAS system realm. The user defined system realms will be readied when the
relevant user realms are readied.

The effect of ooening a database is to permit execution of READY statements on

the realms on the database. It a database is not open, it's realms cannot be read-
ied.

If privacy is defined for the database through the DBM-module (see 6.1.9), the
"password’” will be checked by the SIBAS DBCS to decide whether or not the
user is allowed to open the data base.

The function of OPEN-DATA-BASE is essentially that of "logging in"”' to the
particular database. The first run-unit to execute an OPEN-DATA-BASE on a
closed database will cause it to be “"physically” opened, and this run-unit also
decides which database is opened.

When the last run-unit “logs off” with the CLOSE-DATA-BASE statement the
database will be physically closed.

In case of unsuccessful open database, exception conditions cannot be set and
SOPDB returns one of the following negative statuses:

|

|
[Sa R

. illegal uszr identification (internal error)

|

: unconsisient database name given
. security breach occurred

1
1

- one realm damaged

cunable to RTOPEN database (check if user RT has write access to the
database files)

ND-60.127.03



4.2.2

— B: SIBAS work area space is insufficient.

—72: Direct R-log is full, R-logging stopped. Illegal to open the database.
DBA should reset or remove the R-log. This status will be returned from
SOPDB if a direct R-log is filled.

—76: SIBAS is not active.

In case SIBAS is not running, your program will try continuously to open the da-
tabase, i.e., your program will “hang”. It will continue only if someone makes the

SIBAS process run (through SIBAS-service or through the call SRUN from
another application program).

Close Database

Function

The function of the CLOSE-DATA-BASE statement is tc indicate that the run-unit
has finished accessing the database.

Format:
CALL SCLDB (data-base-name, status)
Rules:

In order for CLOSE to be successful the database identified by
""data-base-name’’ must have previously been opened by the run-unit.

The effect of closing a database is to prevent further execution of any DML
statement other than OPEN-DATA-BASE from this run-unit, and to release

allocated resources.

If realms in the database are still in ready status at the time the CLOSE is
executed, then the realms are automatically finished for the run-unit.

A CLOSE, in a critical sequence, will automatically cause an ESEQU. (See
5.3.3.1.)

ND-60.127.03



4.2.3

47

Ready Realm

Function:

The function of the READY-REALM statement is to indicate to the DBCS that the
run-unit wishes to process records in one or more realms, to indicate the way in
which the data will be processed, and to check possible interference with
concurrently executing run-units.

Format:

CALL SRRLM (no.-of-realms, realm-names, usage-modes, protection-mode, sta-
tus)

Rules:
"Realm-names’’ contains a list of names of the realms to be readied.

"Usage-modes’”’ defines an array or table containing an integer value for each
one of the realms to be readied. The following usage mode values apply:

Usage Mode: Value:
RETRIEVAL 0
LOAD 1
UPDATE )

"Protection-mode” defines an array or table containing an integer value for each
one of the realms to be readied. The following protection modes/values apply:

Protection Mode: Value:

NON-PROTECTION 0
EXCLUSIVE-UPDATE 1

Each realm in the list must be a part of the database which has been opened pri-
or to execution of the READY-REALM statement. Each realm must not already be
in ready status for the run-unit.

The effect of the READY-REALM statement is to make the records in the listed

realms available for processing by other DML statements within the limitation set
by the usage mode and protection mode.

ND-60.127.03



The different “usage modes” given for each realm restricts execution of the
DML statements on the records in the realm according to the following table:

Usage Mode: Value: DML Statements Allowed:
RETRIEVAL 0 FIND, GET, REMEMBER and FORGET
LOAD 1 FIND, GET, STCRE, CONNECT,
INSERT, REMEMBER and FORGET
UPDATE 2 ALL DML staternents allowed

The different "'protection modes’™ given for each realm are checked for possible
conflict with other run units concurrently processing in the same realm according
to the following table:

Protection Mode: Value Other Run-Units:

NON-PRQTECTED 0 May execute ary DML statement except
ERASE.

EXCLUSIVE-UPDATE 1 May execute any DML statements

If a READY-REALM statement refers to more than ore realm and any of the
realms cannot be readied, the READY-REALM statement will not be sucessful,
and none of the realms will be readied. All the realms will then remain unchang-
ed but the status will indicate a DBEC condition about which information may be
obtained by using the ACCEPT statement.

All realms to be readied for EXCLUSIVE-UPDATE for a run-unit must be readied
in the same READY-REALM statement.

A realm cannot be readied for EXCLUSIVE-UPDATE if concurrent run-units have
locked records in it.

If the user wants to change the USAGE MODE or PROTECTION MODE for a

realm, then the realm must first be finished and readied again with the new
USAGE MODE/PROTECTION MODE,

ND-60.127.03



Resolution of Ready Conflicts:

Eariier Subject Protection
entities by run-unit Mode NON-PROTECTED EXCLUSIVE UPDATE
other run-units Usage
Mode RetrievallLoad Update| Retrievalload Update
Protection Usage /
Mode Mode -~
Retrieval Y Y Y Y Y Y
Non-
Protected
Load Y Y Y N N N
Update Y Y Y N N N
Retrieval Y N N N N N
Exclusive
Update
Load Y N N I N N N
Update Y N N N N N

This table indicates how conflicts are resolved when the run-unit tries to ready a
realm which has previously been successfully readied by some other concurrently
executing run-unit but not yet finished. Y indicates that the run-unit is
succussful, N indicates that the status indicator is set.

ND-60.127.03



4.2.4

4-10

Finish Realm

Function:

The function of FINISH-REALM is to prevent further processing of the data in the
realm by the run-unit,

Format:
CALL SFRLM (no.-of-realms, realm-names, status)

Rules:
“Realm-names’’ contains a list of names of the realms to be finished.

Realms readied for the run-unit with different usage moces may all be finished i
one statement.

If a realm cannot be finished, the status will indicate an error and the name of
the first offending realm may be found with the ACCEPT statement. If the
FINISH-REALM statement involves more than one realm, those which can be
finished will be finished.

If a FINISH-REALM statement is executed on a realm previously readied for
EXCLUSIVE-UPDATE by the run-unit, the realm is then available for updating by
other run-units.

When a FINISH-REALM is executed all remembered or locked records of this
realm are forgotten or unlocked for this run-unit.

The effect of executing the FINISH-REALM statement is that the finished realms
will not be available to the run-units until a new READY-REALM statement is
executed. The contents of the SIBAS system buffers belonging to the finished
realms will be written back to secondary storage. If the calling run-unit is the last
one using a realm, the realm can be regarded as physically closed.

ND-60.127.03



425 Direct Find

Function:

The function of DIRECT FIND is to locate a specific record. The record is
specified by means of a calc key or an index key.

A search region will be established, its type depending on the statement format

used.
Format:
Format 1:
FIND-USING-KEY
CALL SFTCH (realm-name, key-name, key-value, status, key-length)
Format 2:
FIND-FIRST-BETWEEN-LIMITS-USING-KEY
CALL SFEBL (realm-name, key-name, low-limit, high-limit, status,
key-length)
FIND-LAST-BETWEEN-LIMITS-USING-KEY
CALL SFLBL (realm-name, key-name, low-limit, high-limit, status,
key-length)
Format 3:
FIND-FIRST-IN-REALM
CALL SRFIR {realm-name, status)
Rules:

The realm named in "realm-name’” must have been previously readied by the
run-unit.

The "key-name’’ defines the name of an item or a group item which is defined as
an index key or a calc key in the database schema.

The "key-value™, “low-limit" and “high-limit'” must have the same type and

length as the corresponding item or group item. The “key-length’ is expressed in
number of words.

if format 2 is used, the "key-name' must identify an item or a group item which
is defined as an index key in the database schema.

After successful execution of a FIND statement, the contents of the record may
be processed by means of the GET, MODIFY, and ERASE statements.

ND-60.127.03



After successful execution of the FIND statement, the current of run-unit
indicator is set to a unique value identifying the record found.

After successful execution of a FIND statement the setting of the current search
region indicator depends on the format used. In format 1, FIND-USING-KEY,
where duplicate values of the key are allowed, the indicator will be set to both
the key item name and the value of the key used. If duplicate keys are not
allowed the setting of CSRI remains unchanged.

In format 2, FIND-BETWEEN-LIMITS, the current search region indicator will be
set to the index item name and the value range between low-limit’ and
"high-limit”.

In format 3, FIND-FIRST-IN-REALM, the current search region indicator is set to
the realm name.

After successful execution of a FIND statement the record selected depends on
the format used.

In format 1, FIND-USING-KEY, if the key item is one for which duplicate values
are allowed, then the DBCS selects the ''first” record where the meaning of
“first” is the record with the lowest physical address (i.2., storing nearest to the
beginning of the realm).

In format 2, FIND-FIRST-BETWEEN-LIMITS, the record found is either one with
key value equal to or next higher to the value of “low-limit” but the value must
be lower than or equal to the "high-limit"" value. If duplicate values are allowed
the record found is the one with the lowest physical address.

In format 2, FIND-LAST-BETWEEN-LIMITS, the record found is either one with
key value equal or next lower to the value of "high-limit" but the value must be
lower than or equal to the “low-limit” value. If duplicete value is allowed, the
“record found is the one with the highest physical address.

To obtain the next or prior record within the range specified, the FIND-NEXT-IN-
SEARCH-REGION or FIND-PRIOR-IN-SEARCH-REGION statements must be us-
ed.

In format 3, FIND-FIRST-IN-REALM, the DBCS attempts to find the physically
first record in the realm. If location mode is calc this will be the first record in
the first non-empty bucket. If location mode is SERIAL it will be the record in the
realm with the lowest physical address. To obtain the next record of the realm
the FIND-NEXT-IN-SEARCH-REGION statement must be used.

ND-60.127.03



4—-13

The table belcw gives a summary of the settings of CRUI and CSR! when a FIND
from outside the database is executed.

Format of FIND

CURRENT of RUN-UNIT
INDICATOR

CURRENT SEARCH
REGION INDICATOR

FIND Format 1 set to uniquely identify the not updated
successful (Duplicate not record with the given value
allowed) of the key used.
Format 1 set to uniquely identify the set to key item name and
{Duplicates “first” record with the given value of key used
allowed) value of the key used.
Format 2 set to uniquely identify the set to INDEX key item
"first’” or "last” record with- name, and the value
in the given range range between low limit
and high limit
Format 3 set to uniquely identify the set to the realm name
“first”” record in the given
realm
FIND not
successful All formats Not updated

Not updated

ND-60.127.03




426 Relative Find

Function

The function of the RELATIVE FIND is to locate a record relative to some other
record, and to make it available in the SIBAS buffer area.

The record is specified by means of a set or search region and a search type
{NEXT, PRIOR, etc.)

Format:
Format 1:

FIND-FIRST-IN-SET
CALL SRFSM (temporary-data-base-key, set-name. status)

Format 2:

FIND-LAST-IN-SET
CALL SRLSM {temporary-data-base-key, set-name status)

Format 3:

FIND-PRIOR-IN-SET
CALL SRPSM (temporary-data-base-key, set-name, status)

Format 4:

FIND-NEXT-IN-SET
CALL SRNSM (temporary-data-base-key, set-name, status)

Format 5:

FIND-NEXT-IN-SEARCH-REGION
CALL SRNIS {temporary-data-base-key, temporary-search-region-
indicator, status)

FIND-PRIOR-IN-SEARCH-REGION
CALL SRPIS ({temporary-data-base-key, temporary-search-region-indicator,

status)

Rules:
The owner and all the member record types of any set type indicated by
“set-name’’ must be known to the program and also be in realms which have

been readied for use by the run unit.

“"Temporary-data-base-key'" identifies the record from which the new record is
searched.

ND-60.127.03



fn the case of FIND-FIRST or FIND-LAST, the record identified by the
“temporary-data-base-key”” must be an owner of the set type named in
“set-name”’. The record found will be one which is logically contiguous to the
owner in the set occurrence. If the set occurrence is empty, the FIND will be
unsuccessful and the “status’’ parameter is set to zero.

In the case of FIND-FIRST, the record found is that which would be found

earliest by following LINK-TO-NEXT, i.e., the latest connected to the set
occurence.

In the case of FIND-LAST, the record found is that which would be found earliest
by following the LINK-TO-PRIOR, i.e., the earliest connected to the set
occurrence. If there is no LINK-TO-PRIOR for the set type, then the same record
is found but the execution is normally more time consuming as one must follow
the LINK-TO-NEXT round the set occurrence. In a multi-member set type, the
record found may be of any member record type.

In the case of FIND-NEXT or FIND-PRIOR, the record identified by
“temporary-data-base-key’” must be a member of the set type named in
“set-name’’. The record found will be one which is logically contiguous to the
identified member.

if this is the owner of the set occurrence, the FIND is unsuccessful and the
"'status’’ parameter is set to zero.

In the case of FIND-PRIOR, the record found is the member record which would
be found first from the identified member using a LINK-TO-PRIOR. If there is no

such link, the same record is found, but the execution is normally more time
consuming.

In the case of FIND-NEXT, the record found is the member record which would
be found first from the identified member using LINK-TO-NEXT.

In the case of FIND-NEXT/PRIOR-IN-SEARCH-REGION, the record identified by
the "temporary-data-base-key”" must be located in the search region identified
by "temporary-search-region-indicator’’.

The meaning of this is explained in the following:

—  When the search region is identified by the name and the value of an index
or calc key item for which duplicates are allowed, the identified record
must have the same value of the key item.

— When the search region is identified by a lower and an upper limit of an
index key item, the identified record must have a value for the index key
item which is within the given range.

o When the search region is identified by a realm name, the identified record
must be located in that realm. (Not applicable for FIND-PRIOR-IN-
SEARCH-REGION )

ND.60.127.03



FIND-PRIOR-IN-SEARCH-REGION is not applicable for a search region set to the
realm name (by FIND-FIRST-IN-REALM).

In the case of FIND-NEXT-IN-SEARCH-REGION, the record found will be the
one which is next in the search region to the record identified by
"temporary-data-base-key"’.

In the case of FIND-PRIOR-IN-SEARCH-REGION, the record found will be the

one which is prior in the search region to the record identified by “‘temporary-
data-base-key".

The execution of FIND-NEXT/PRIOR-IN-SEARCH-REGION, will be unsuccessful
and the "status’”” parameter set to zero if the record identified by '‘temporary-
data-base-key'' is the last record of the identified search region.

In the case of any successful FIND, the CRUI is always updated. The CSRI will

not be updated by FIND of the type ''RELATIVE-TO-RECENTLY-FOUND-
RECORD".

ND-60.127.03



4.2.7

Find Set Owner

Function

The function o this FIND statement is to find the owner of a set occurrence
from one of its members.

Format:
CALL SRSOW (temporary-database-key, set name, status)
Rules:
The owner anc all the member record types of the set type named by “set
name” must be known to the program and must all be in realms which have

been readied for use by the run-unit.

The effect of executing FIND OWNER is to find the owner of the set occurrence
of “set name” from the member record identified by "temporary database key'".

It the record identified by “temporary-database-key” is not connected into an
occurrence of the named set type, the FIND will be unsuccessful, and the

“status’’ parameter set to zero.

If the execution of FIND OWNER is successful the CRUI will be updated to
identify the owner record. The CSRI will remain unchanged.

ND-60.127.03



428

Get, Getn, Get Indexes

Function:

The function of the GET statement is to make the relevant items or group items
available in the run-unit's data area so that the items can be processed. GETN
reads a number of records in a search region. GET INDEXES reads a number of
index keys.

In the case of GETN or GET INDEXES, the records can 2e obtained in ascending
or descending order in the search region.

Format:

GET

CALL SGET ({temporary-database-key, no. of items, item list, item values,
status)

GETN

CALL SGETN (temporary-database-key, temporary search region
indicator, no. wanted, no. of items, item list, item values, no. found,
status)

GET-INDEXES

CALL SGIXN (temporary-database-key, temporary search region indicator,
no. wanted, item values, no. found, status)

Rules:

“ltem list” must be a list of names of items and group items in the user pro-
gram. The corresponding values of the items and group items will be transferred
to the area named "item values’. Each value in the "item values’ starts on a
new word boundary. “Item values’ cannot be larger than 500 words.

The "item list” should contain the names of the relevant items and group items
in the record identified by "tempocrary-database-key’’. Not all items and group
items defined for the record type need to be given in "item list” and the
sequence of the items need not be the same as defined for the record type. The
same item may be repeated in the "item list” but the total number of items gi-
ven must not exceed the total number of items and group items defined for the
record type.

The effect of executing a GET is to cause values of the items and group items
named in the "item list” to be stored in the data area of the user program. In the
case of GETN, the values corresponding to "'no. found’ records are transferred.

In the case of GET INDEX, the values corresponding to “"no. found” keys are
transferred.

ND-60.127.03



4--19

“"No. wanted”” can be positive or negative. If positive, records are found in
ascending order, as when FIND-NEXT-IN-SEARCH-REGION is used. If negative,
records are found in descendingdorder, as when FIND-PRIOR-IN-SEARCH-REGI-
ON is used. The maximum "'no wanted'’ for SGETN is 50.

The values of the items will be stored in the area named “item values’ in the
user program in an order corresponding to the order of the “‘item names”. The
CRULI and the CSRI will remain unchanged when a GET is executed.

For a GETN or GET-INDEXES, the CRUI is updated and points to the next record
within the search region, as when using FIND-NEXT-IN-SEARCH-REGION / FIND-
PRIOR-IN-SEARCH-REGION. If end/begin of the search region is encountered

the CRUI points to the last/first record in the search region. "Status’ is set to
zero.

If the run-unit attempts to get a record which has been changed by an(\)ther
run-unit, and is in “extended mode” (see 2.4.3.4), the GET will be unsuccessful.

ND-60.127.03



4.2.9

Modify

Function:

The function of MODIFY is to give new values to one or more of the items or
group items in a record already existing in the database.

Format:

CALL SMDFY (temporary-database-key, no. of items, item list, item
values, status, value length)

Rules:

“ltem list” must be a list of names of items and group items given in the user
program.

The corresponding values of the items and group items must be given in "item
values’”. Each value must start on a new word boundary. "Value length” is the
number of words the item values occupy.

The “item list” should contain the names of the relevant items and group items
in the record identified by "temporary-database-key”’. Not all items and group
items defined for the record type need to be given in “item list”, and the
sequence of the items may be chosen freely.

It is the user's responsibility that the sequence of the items in “item list”
corresponds to the sequence of the values in "item values”.

The realm in which the identified record is stored must have been readied for
update. If the value of the member set item is being modified, realms indirectly
referenced via set membership must have been readied for load or updated.

The effect of executing a MODIFY is to cause the values of the items named in
“item list” to be stored in the record in the database identified by "temporary-
database-key”. Iltems not named in "item list” are not affected by the MODIFY.

If the record type of the identified record is a mernber in an automatically
maintained set type and if the value of the member set item is modified, then the
record will be disconnected from the set into which it was previously connected.
If an occurrence of the owner record type of the set type has an owner set item
value which is equal to the new value of the member set item in the modified
record, the modified record is connected to the set owned by that record. If no
such owner record is in the database and the storage class is manual for the set
type, then the modified record is not connected to any occurrence of the set
type. If the storage class for the set type is automatic and no owner record
exists, then the MODIFY is unsuccessful.

If the identified record is an owner of a non-empty set occurrence and the owner
set item is named in the "item list’" then the execution is unsuccessful.

ND-60.127.03



If any of the items modified are index or calc keys for the record type, then the
new values must not be null and must not cause prohibited duplicates. The index
is updated only if the index is automatically maintained.

If any of the items modified is a calc key for the record type, then the modified
record is deleted from its previous position in the realm and stored in a position
based on the new value of its calc key. The new value may not be null and may
not cause proh-bited duplicates.

If any of the items modified is a member of a group item which is defined as an
index key, calc key, owner set item or member set item, then the same rules
apply as if the item was itself defined as a key or a set item.

if any elementary item is named more than one time in the "item list"" either
directly or indirectly in a group item, the last value given in the “item list" will be
the one stored for the item.

If a privacy itern is defined for the record type and the run-unit has been allowed
to update the record, the privacy item may also be updated.

The CRUI and the CSRI will remain unchanged when a MODIFY is executed.
If the record type of the identified record is a member of a set, and an error has
occurred when executing MODIFY, the identified record may be displaced in the

chain and placed such that it will be found by executing a FIND-FIRST-IN-SET
statement.

ND-60.127.03



4.2.10

4--22

Store

Function:

The function of the STORE statement is to store a record or a part of a record in
its designated realm in the database, taking into account the location mode of
the record type. The record stored may be connected into occurrences of
automatic set types. Any indexes defined for the record type, which have been
defined to be automatically maintained, are updated during the course of
execution of the STORE.

Format:

CALL STORE (realm name, no. of items, item list, item values, status,
value length)

Rules:

“Item list” must be a list of names of items and group items given in the user
programs. The corresponding values of the items and group items must be given
in the “item values''. Each value must start on a new word boundary. "‘Value
length” is expressed in number of words. The total length of all the parameters
cannot exceed 500 words.

The “item list” should contain the names of the relevant items and group items
in the records. Not all items and group items defined for the record type need to
be given in “item list”, and the sequence of the items may be chosen freely.

It is the user's responsibility that the sequence of the items in “item list”
corresponds to the sequence of the values in “item values’.

The realm in which records of this type are stored and also the realms containing
owners and members of any automatic set type in which this record type is a
member must have been readied for update or load by the run-unit.

The effect of executing a STORE is to cause the values of the items and group
items named in "item list"” to be stored in the realm named in “realm name"".

The location mode of "realm name’ determines wherz and how the record is
stored in the realm. If the location mode is calc, the calc key item must be given
in the "item list” and the value must be non-null. The given calc value will be
transformed into a bucket number. The record will then be stored in the first
available space in the bucket or in an overflow bucket. If the location mode is
serial the record will be stored in the first available space in the realm.

Not all items defined for the record type need to be given values when a STORE
is executed. The items in the record type which are not named in the "item list”’
will be given a null value in that record occurrence. The items can be given
values later by use of MODIFY.

ND 60.127.03



It should be ncted that a calc key item must always be given a non-null value. If
location mode is serial and automatically maintained index key(s) are defined for
the record type, and/or the record type is a member of an automatic set, at least
one of the index keys or member set items must be given a non-null value.

When a record is stored, it will be connected into occurrences of automatic set
types and inserted into indexes which are automatically maintained provided that
the item or group item defined as member set item or index key is named in
“item list”. If an index key/member set item is a group item, at least one of the
items composing the group item must be named in the “item list".

If this condition is not satisfied the record may be connected into the set(s) or
inserted into the index{es) later by executing MODIFY on the relevant item(s).

The record is connected into the set occurrence(s) such that it is found by
executing FIND-FIRST from the owner record.

If the record type is a member of an automatic set type, and the member set
item is named in "item list”, the owner record must be present when the mem-
ber record is stored. If the owner record is not present, the execution of the
STORE will be unsuccessful.

It a key item (calc or index key) were defined as not allowing duplicates and if
storing the record in the database would violate this, then the store will be
unsuccesstul. When a privacy item is defined for a record type, it must be given
a non-null value when a record of this type is stored.

If the store is executed successfully, then the CRUI is set to identify the stored
record. CSRI is not affected.

NE-60.127.03



4.2.11

4-—24

Erase

Function:

The function of the ERASE statement is to remove the record and all references
to it from the database.

Format:
CALL SRASE (temporary-database-key, option code, status)

Rules:
The "temporary-database-key’ identifies the record that is to be erased.

The realm in which the record identified by ""temporary-database-key'" is stored
must have been readied with usage mode of UPDATE. In the multi-user version
of SIBAS, if "option code’ greater than or equal to 1 is used, all indirectly and
directly referenced realms must also have been readied with a protection mode
of EXCLUSIVE UPDATE by the run-unit.

The “option code” can have the values 0, 1, 2 or 3 specifying the various ERASE
options:

0 The record identified by the “temporary-database-key'' will be erased from
the database as long as it is not an owner record with connected set
members. If it is, the ERASE will not be successful.

1 The record identified by the “temporary-database key' will be erased from
the database if no records are connected to the identified record as
members of an automatic set type. If this is the case the ERASE will not be
successful. If any records are connected to the identified record as
members of a manual set type, the records will be disconnected from the
identified record.

2 The record identified by the “temporary-database-key” will be erased from
the database. If any records are connected to the identified record as
members of a manual set type, the records will be disconnected from the
identified record. If any records are connected tc the identified record as
members of an automatic set type, these records are also erased. If any of
these records are owners of non-empty sets, then the same rules are used
for these as for the record identified by the “temporary-database-key’.

3 The record identified by the "temporary-database-key'" will be erased from
the database. If it is the owner of any non empty sets (manual or
automatic), then all member records in these set occurrences are also
erased. If any of these records are themselves owners of other non-empty
sets, then their connected members are also erased. This process
continues down the hierarchical structure. The maximum number of levels
is 16.

ND-60.127.03



4.2.12

If an erased record has one or more index keys, the indexes will be updated
whether they are defined as automatically maintained or not.

If an erased record is 8 member of one or more sets, the record will be removed
from the set occurrences, and the links to the adjacent members will be updated.

After executior of ERASE, the erased record and it's associated records, if any,

_marked as "erased’ in a multi-user environment.

Connect

Function:

The function of the CONNECT statement is to link a record already stored in the
database into @ manually maintained set of which its record type is defined as a
member.

Format:

CONNECT:
CALL SCONN (temporary-database-key-1, set name, status)

CONNECTY-BEFORE:
CALL SCONB (temporary-database-key-1, temporary-database-key-2, set
name, status)

CONNECT-AFTER:
CALL SCONA {temporary-database-key-1, temporary-database-key-2, set
name, status)

Rules:

The set type identified by "'set name” must have been defined as manually
maintained in the database schema.

The owner record type and the member record type(s) of the set type "'set
name’” must be in realms which have been readied for load or update by the
run-unit.

In the case of CONNECT, the record identified by “temporary-database-key-1"
will be connected into the set occurrence whose owner set item value is equal to
the member set item value of the identified record. The identified record will be
connected into the set occurrence such that it is found by executing FIND-FIRST
from the owner of the set occurrence. The record must not already be connected
to the set occurrence.

ND-60.127.03



I the BEFORE or the AFTER option is used, 'temporary database-key-1" must
identify a record which is not connected into a set occurrence of the set type
identified by "set name’” and “temporary-database-key-2'* must identify a record
which was previously connected into a set occurrence of the set type identified
by "set name'. Furthermore, the value of the member set item for the set type
must be the same for the two records,

It the BEFORE option is used, the record identified by ‘temporary-database -key
17 will be connected to the correct set occurrence of the set type identified by
“set name’’. It is connected so that the record identified by “temporary-data
base-key-2" s found executing FIND-NEXT relative to
“temporary-database-key-1""

If the AFTER option is used, the record identified by “temporary database key 1"
will be connected to the correct set occurrence of the set type identified by “set
name’’. It is connected so that the record identified by ' temporary data base key
2" is found hy executing FIND -PRIOR relative to "temporary database key 1. It
should be noted that if the set type has link to next only, the CONNECT-AFTER
can be very time consuming.

The CRUI and CSRI will remain unchanged when a CONNECT is executed.

ND-60.127.03



4213

Disconnect

Function:

The function of the DISCONNECT statement is to delink a record in the data-
base from a manually maintained set into which it has previously been
connected.

Format:
CALL SDCON {temporary-database-key, set name, status)

Rules:

The set type identified by "'set name” must have been specified as a manual set
type in the database schema. The realms containing the owner records and the
occurrences of other member record types must be in realms which have been
readied for update by the run-unit.

The effect of executing a DISCONNECT is to delink the identified record from the
occurrence of the set in which it has previously been connected. The identified
record remains in the database and it remains connected into sets of other set
types into which it was connected before the DISCONNECT was executed. The
two records which were logically contiguous to the identified record in the set
before the DISCONNECT is executed are logically contiguous to each other after
execution. If the record was not in fact connected into any occurrence of the set,
the DISCONNECT is unsuccessful and "'status’’ is set to zero.

The CRUI and CSRI will remain unchanged when a DISCONNECT is executed.

ND-60.127.03



4214

Insert

Function:

The function of the INSERT statement is to insert an index key of a record
already stored in the database into a manually maintained index.

Format:
CALL SINSR {temporary-database-key, key name, status)
Rules:

"Key name” must identify the name of an item or group item defined as a
manually maintained INDEX key for the record type in tha database schema.

The item or group item named "key name” in the identified record rmust have
been given a non-null value prior to the execution of INSERT. It must not
previously have been inserted into the index.

The effect of executing INSERT is to update the index with the value of the item
or group item named "'key name’’, so that the record may be accessed by use of

the "key name"".

If duplicates are not allowed for the index key item, an attempt to INSERT a
duplicate value will cause a database exception condition to occur.

The CRUI and CSRI will remain unchanged when INSERT is executed.

ND-60.127.03



4.2.15

Remove

Function:

The function of the REMOVE statement is to remove an index key from a
manually mainteined index.

Format:
CALL SREMO {temporary-database-key, key name, status)
Rules:

The record must be in a realm which has been readied for update by the run-

’

unit. "Key name’ must identify the name of an item or group item defined as a
manually maintained index key for the record type in the database schema.

The identified record must previously have been inserted into the index.
The effect of executing a REMOVE is to take out the entry from the index table,
so that the "'key name’’ cannot be used as an access key to the record identified

by “temporary-database-key"".

The CRUI and CSRI remain unchanged when a REMOVE is executed.

ND-60.127.03



4.2.16

Remember

Function:

The function of the REMEMBER statement is to remember either the identifi-
cation of the record contained in the CRUI or else to remember the search regi-
on which is contained in the CSRI. A remembered record or search region can
be referenced directly in all DML statements as an alternative to the CRUI or
CSRL

Format:
CALL SREMB (temporary id, option code, status)
Rules:

"Option code’” must be given one of the values 0 or 1. If “option code” is set to
0, the REMEMBER-RECORD is executed and “temporary id" will identify
"temporary-database-key”. f “‘option code’’ is set to 1, then REMEMBER-
SEARCH-REGION is executed and “temporary id” will identify a "‘temporary
search region indicator’”’. All other settings of “option code’ are prohibited.

The effect of executing REMEMBER-RECORD is to make the record identified by
CRUI available to the run-unit after the CRUI has been updated. This record is
later referenced by use of the number received by the REMEMBER statement in
the variable "temporary id"".

The effect of executing REMEMBER-SEARCH-REGION is to make the search
region identified by CSRI available to the run-unit after the CSRI has been
updated. This region is later referenced by use of the number received in the
variable ""temporary id”’.

A REMEMBER is local to the run-unit. Two concurrently processing run-units may
remember the same record or the same search region without conflict.

A REMEMBER lasts only for the duration of a run-unit. After closing the data
base, anything which has been remembered for a run-unit is automatically
forgotten.

The number of times a REMEMBER may be executed in a run-unit without
executing a FORGET depends on the variant of SIBAS in use. It is, however,
recommended that each REMEMBER is matched with a FORGET as soon as what
has been remembered is of no use to the run-unit. This is because the FORGET

statement releases entries in the remembered list for further use by the
REMEMBER statement.

The CRUI and the CSRI will remain unchanged when the REMEMBER is
executed.

The maximum number of remembered record by run-unit is 30 while the maxi-
mum number of remembered search-region for one run-unit is 5.

ND-60.127.03



4.2.17

Forget

Function:

The function of the FORGET statement is to nullify the effect of executing a
REMEMBER.

Format:
CALL SFOFRG (temporary id, option code, status)
Rules:

“"Option code” must be set to an integer between 0 and 3 and the meaning of
the "temporary id"” will depend on the setting of "option code’".

The meaning of the possible values of “option code’ is explained below:

“option code””  FORGET option executed meaning of “temporary id”
0 FORGET-RECORD “"temporary-database-key"
1 FORGET-SEARCH-REGION “temporary search region
indicator"’
2 FORGET-ALL-RECORDS undefined
3 FORGET-ALL-SEARCH-REGIONS undefined

FORGET-RECORD causes the record identified by "temporary-database-key" to
be deleted from the list of the remembered records for the run-unit.

FORGET-ALL-RECORDS causes all records previously remembered by the
run-unit to be deleted from the remembered list.

FORGET-SEARCH-REGION causes the search region identified by “temporary
search region indicator” to be deleted from the list of remembered search
regions for the run-unit.

FORGET-ALL-SEARCH-REGIONS  causes all  search regions  previously
remembered by the run-unit to be deleted from the remembered list.

The number of times a REMEMBER may be executed in a run-unit without
executing @ FORGET depends on the variant of SIBAS in use. It is, however,
recommended that each REMEMBER is matched by a FORGET as soon as what
has been remembered is of no use to the run-unit. This is because the FORGET
statement releases entries in the remembered list for further use by the
REMEMBER statement.

The CRUI and the CSRI will remain unchanged when a FORGET is executed.
It the records specified in FORGET were locked, they are automatically unlocked

by a successful execution of the FORGET statement.
ND-60.127.03



4218

Lock

Function:

The function of the LOCK statement is to indicate to the DBCS that the run-unit
wishes to obtain one or all of its remembered records (those in extended monitor
mode) for exclusive update.

Format:

CALL SLOCK (temporary-database-key, option code, status)

Rules:
The “option code' must have one of the two values 0 or 1, where:

0: lock record identified by “"temporary-database-key’'
1: lock all the records in the run-units remembered list.

The value of "temporary-database-key”’ needs only tc be defined for “option
code’’ value 0.

The effect of the LOCK statement is to cause one or all records in one run-unit's
remembered list to be set in the status of EXCLUSIVE UPDATE for the run-unit
including the record identified by the CRULI.

The LOCK statement will only be successful as long as none of the required
records are already locked to another run-unit, and none of the records are in
realms readied for EXCLUSIVE UPDATE by another run-unit.

If the run-unit has previously executed a LOCK statement, an UNLOCK statement
must be executed prior to the execution of a new LOCK. This restriction avoids
the problem of deadlock between records in SIBAS.

After the successful execution of a LOCK statement the status will be set to
either 0 or 1. In the case of status 0, one or more of the locked records have
been affected by another run-unit. By “affected” is meant that one of the follow-
ing statements has been executed on the record: ERASE, MODIFY, CONNECT,
DISCONNECT, INSERT or REMOVE. In the case of status 1, none of the locked
records have been affected after they were set in extended monitor mode by the
run-unit.

Locked records can be released for updating by other run-units after execution of
an UNLOCK, FORGET-ALL or & CLOSE-DATA-BASE statement. FORGET and
FORGET-ALL do not unlock the CRUI.

The CRUI and the CSRI will remain unchanged when a LOCK statement is
executed.

ND-60.127.03



4.2.19

4.2.20

Unlock

Function:

The function of the UNLOCK statement is to make any records that are locked to
the calling run-unit available for updating by concurrent run-units.

Format:
CALL SUNLK (status)
Rules:

The UNLOCK statement is always successfully executed.

Change-Password

Function:
The function of the CHANGE-PASSWORD statement is to change the value of
the current password for the calling run-unit, to conform with the password of a
record to be looked at.
Format:

CALL SCHPW (new password, status)

Rules:

The current password will be set to a value for each run-unit when OPEN-DATA-
BASE is executed. The effect of executing CHANGE-PASSWORD is to change
the value of the current password for the calling run-unit. The use of current
password is described in Chapter 2. See also Section 6.1.9.

ND-60.127.03



4.2.21

Accept

Function:

The function of the ACCEPT statement is to move to user defined areas the

contents of various system registers set when a database exception condition
occurs.

Format:

CALL SDBEC (set name, realm name 1, realm name 2, item name, DML
statement code, dbec)

Rules:

"Set name'’, “realm name 17, "realm name 2" and "item name’ must be

defined in the host language program to correspond to a SIBAS character item
which will hold eight characters.

DML statement code’” and "dbec’ must both be defined in the host language
program to correspond to an integer item which could hold at least four digits.

The ACCEPT statement will always be successful. The most recently executed
DML statement will set the system registers to the values which are obtained by
the ACCEPT statement.

Before the OPEN-DATA-BASE statement is executed by the run-unit, the system
registers will have a null value.

The effect of executing the ACCEPT statement is to move the contents of various
system registers into the user defined parameters. The setting of the parameters
will be as follows:

o "Set name’’ will be set to the name of the set type referenced in the most
recently executed DML statement. If no set is referred to, “set name’’ will
be set to null value.

- "Realm name 1" will be set to the name of the realm referenced in the
most recently executed DML statement. If no realm is referred to, ""realm
name 1" will be set to null value.

— “"Realm name 2" will be set to the name of the realm which caused the
DBEC if this is different from ""realm name 1. If not, "realm name 2’ will
be set to null value.

— “ltem name’ will be set to the name of the item or group item which

caused the most recently executed DML statement. If no item is referred
to, "item name’ will be set to null value.

ND-60.127.03



4.2.22

— "DML statement code’ will be set to the code for the most recently
executed DML statement. The codes for all DML statements are listed in
Appendix E.

— “"DBEC"” will be set to the code of the DBEC. If the DML statement was
successfully executed, ""dbec’” will be set to null value.

The table containing all possible values for DBEC and DML statement codes is
given in the chapter "Error Reporting’’.

Erase Element

Function:

The function of ERASE-ELEMENT is to give null values for one or more items or
group items in a record already existing in the database.

Format:

CALL SEREL (temporary-database-key, no. of items, item names, status)

Rules:

“item list"” must be a list of names of items and group items given in the user
program.

The “item list” should contain the names of the relevant items and group items
in the record identified by “temporary-database-key''. The sequence of the items
may be chosen freely.

The realm in which the identified record is stored must have been readied for
update. Realms indirectly referenced via set membership must have been readied
for load or update.

The effect of executing an ERASE-ELEMENT is to cause the values of the items
named in "item list” to be modified to null values in the record identified by
“temporary-database-key’’. Items not named in “item list” will only be affected
by the ERASE-ELEMENT if they are members of a group item and the group item
is named in the “item list”. If a group item is named in the “item list”, all
member item values of that group item will be erased for this record occurrence.

If the record type of the identified record is a member of a set and if the value of

the member set item is erased, then the record will be disconnected from the set
into which it was previously connected.

ND-60.127.03



4.2.23

If the identified record is an owner of a non-empty set occurrence and the owner
set item is named in the "item list” or is a group item which has been modified
to null, then the execution is unsuccessful.

If any of the items modified to null are index keys for the record type, then the
corresponding entry is removed from the index.

If any of the items modified to null is a calc key for the record type, then the
execution is unsuccessful.

If all key items and member set items which exist for the record are modified to
null, then the execution is unsuccessful.

If any item is named more than once in the “item list’’, this has no effect.

If a privacy item is defined for the record type and the run-unit has been allowed
to modify the record, the privacy item may also be set to a null value.

The CRUI and the CSRI will remain unchanged when an ERASE-ELEMENT is
executed.

Accumulate

Function:

Accumulates integer or floating or double integer data elements for one or more
items in an already found record. It is a GET followed by a MODIFY in only one
statement. These statements reduce the possibility of interference between
concurrent run-units.

Format:

CALL ACCID/ACCFD/ACCDD (temporary-database-key, no. of items,
item list, increments, new values, status)

Rules:

The record identified by "temporary-database-key’" must be in a realm which has
been readied for update by the run-unit. "'Increments’’ are the values to be
added to the items named in the “item list'"". The “new values’ are the values
returned by the call.

The item names in "item list” must be elementary items, i.e. not groups.

ACCFD is not available from SIBAS-500.

ND-60.127.03



4.2.24

Fetch-Get

Function:

The function of FETCH-GET is to retrieve a specific record. The record is
specified by means of a calc key or an index key.

_A search region will be established if the key has duplicates allowed..

Format:

CALL SFTGT (realm-name, key-name, length of key, key value, number of
items, item list, item values, status)

Rules:

Same as if the following was executed:

call SFTCH
if sftch-status = 1 then call SGET endif

The realm named in ""realm-name’” must have been previously readied by the
run-unit.

The "key-name’ defines the name of an item or a group item which is defined as
an index key or a calc key in the database schema.

After successful execution of the FIND statement, the current of run-unit
indicator is set to a unique value identifying the record found.

After successful execution of a FIND statement, the current search region
indicator will ke set to both the key item name and the value of the key used. If
duplicate keys are not allowed the setting of CSRI remains unchanged.

If the key item is one for which duplicate values are allowed, then the DBCS
selects the “first’” record where the meaning of “first” is the record with the
lowest physical address (i.e., storing nearest to the beginning of the realm.

The values of the items will be stored in the area named “item values’ in the
user program in an order corresponding to the order of the "item names’’. The
CRUI and the TSRI will remain unchanged when a GET is executed.

“Item list” must be a list of names of items and group items in the user pro-
gram. The corresponding values of the items and group items will be transferred
to the area named "item values”. Each value in the "item values' starts on a
new word boundary. "“ltems values’ cannot be larger than 500 words.

ND-60.127.03



The "item list” should contain the names of the relevart items and group items
in the record identified by ""temporary-database-key”. Not all items and group
items defined for the record type need to be given in "item list” and the
sequence of the items need not to be the same as defined for the record type.
The same item may be repeated in the "item list” but the total number of items
given must not exceed the total number of items and group items defined for the
record type.

The effect of executing a GET is to cause values of the items and group items
named in the "item list” to be stored in the data area of the user program.

. If the run-unit attempts to get a record which has been changed by another
run-unit, and is in "extended mode’’ (see 2.4.3.4), the GET will be unsuccessful.

4.2.25 Get Schemas Information

Function:

The function of GET-SCHEMAS-INFORMATION is to get information about
realms, records and items from the database schemas at run-time.

Format:

CALL SINFO (code, namel, name2, length, array, status)

Rules:
Realm(s) must be in ready mode.
Input: code Qutput: array

1. Get realm names in database. 1-4 first realm name
5-8 next realm name etc.

2. get realm description and 1 realm type
free-space statistics 2 pagesize
3 record-length (type 2),
pagesize (type 1)
4 pages reserved

(8]

pages used
6 freed records (type 2,3)
freed pages (type 1)

3. Get record description for realm 4 words per item name

ND 60.127.03



4. Get item or group description word 1 item type subfield

Bit counting from right to left:

bit 0-1

bit 2=1
bit 3=1
bit 4 =1
bit b=1

bit 6=1
bit7=1
bit8=1
bit 9=1
bit 10=1
bit 11 =1
bit 12=1
bit 13=1

bit 14=1

word 2

word 3

word 4

word b

word 6

00 integer, 01 floating

10 character, 11 mixed
access via calc

access via index

member of set

unique access key

0 - duplicates allowed

1 - duplicates not allowed
automatic member of set
automatic acces key
access-lock

owner of set

group item

member of a group
pointer item

pointer is defined to be
double

pointer is owner of chain

word start of item in
record

length of item

bit 12=0 - bit 0-11 =
length

bit 12=1 ~ bit 0-5 = bit
start

offset to group description
(0 = if item not group)
bit 12 of word 3

(1 = if item length is part
of a word)

bit 1 of word 1

(1 = if character item)

if group item then

word 7-10 first item name
word 11-14 next item name

ND-60.127.05



5. get access path to realm 1
2
3
4-7
8
9
10-13
14
15
16-19
n- n+3
+1
+2
+3- +6
code 1 2 3
namel - realm name realm name
name?2 o — e
OUTPUT

“length” is length of array

realm name

calc access, yes = 1, no
= 0

number of index-accesses
number of set-accesses

CALC ACCESS
item-name

duplicates (0) or not (1)
automatic (1) or not (0)

INDEX ACCESS

first item name
duplicates (0) or not (1)
automatic (1) or not (0)
next item name etc.

SET ACCESS

first set name

member (0)/owner (1} of
the set

automatic (1) or not (0)
naxt set name etc.

realm name

item name —

“array” is a user defined integer array of maximum 500 elements.

"status’’ is set to -1 if errors occurs.

ND-60.127.03



4.2.26

Transaction Units

Function:

A TRANSACTION UNIT is a sequence of database processing which brings the
database from one user consistent state to another user consistent state. A

transaction unit generally corresponds to the completion of a unit of work
significant to the user.

SIBAS takes into account transaction units by explicit declaration from a user
program which determines the ""scope’” of a transaction unit at run-time. SIBAS
imposes severe restrictions on the “scope’” of a transaction unit. However, the
restrictions imposed on the user program make it possible to implement the
TRANSACTION UNIT efficiently in SIBAS.

SUBEG declares to SIBAS the RUN-UNIT intention to process a unit of work
which must be either completely executed or not executed at all. SIBAS will
reserve the whole DATABASE for exclusive use for the duration of the
transaction unit.

SUEND declares to SIBAS the RUN-UNIT completion of a transaction unit. The
completion can be normal, or not. In the later case, the database will be restored
to the state it was at SUBEG.

Format:

CALL SUBEG {run-id, t-unit type, status)
CALL SUEND (run-id, COMIT or ROLL-BACK, status)

Rules:
1. The BIM option must be in effect, otherwise an error status is given.
2. Normally, <run-id> should be left = 0, but a monitoring program can also

execute SUBEG/SUEND for other run-units.

3. A transaction unit cannot last more than a certain elapsed time. This is to
prevent a looping or waiting T.U. to hang up concurrent run-units. The
maximumn elapsed time a T.U. can last is a system generation parameter,
normally 20 seconds.

4, <t-unit type > = 1 the database is reserved for exclusive read.
2 the database is reserved for exclusive update.

I

5. <COMIY or ROLL> = 1 COMMIT, all changes are applied to the database.
-1 ROLL, all changes are discarded, and the
database is left as it was when the transaction unit
started.

ND-60.127.03



If a transaction unit is not terminated within the specified time, SIBAS will
automatically execute a SUEND {ROLL,) for the run urit.

If a run-unit has been ROLLed back by either SIBAS or a monitoring pro-
gram, it will get a negative status for the next call. All currency indicators
are cleared as if FORGET-ALL-RECORDS and FORGET-ALL-SEARCH-
REGIONS were executed.

OPEN-DATA-BASE, CHECKPOINT, ROLL-BACK, READY/FINISH-REALM,
BSEQU/ESEQU, RESIB/RELSI, CLOSE-DATA-BASE are not allowed within
the scope of a transaction unit, and will give an error status.

If application programs can be written so that SUBEG/SUEND brackets all

database updates, concurrency problems are almost eliminated, i.e., LOCK/
UNLOCK, notification of changes, BSEQU, ESEQU ... are unnecessary.

ND-60.127.03



4.3

HOST LANGUAGE CONSIDERATIONS

SIBAS data manipulation services are generally accessed via calls. The reason is
that calling subroutines is a fairly standard and formalized way of interfacing pro-

grams written in different programming languages. SIBAS adheres to the FOR-
TRAN call formalism.

SIBAS-500

SIBAS-500 data manipulation language (DML) is generally accessed via calls just
like SIBAS-100 DML. Programmers should write SIBAS application programs in a
standardized way, independent of whether they are to be run on an ND-100 (us-
ing SIBAS-100) or an ND-500 system (using SIBAS-100 and/or SIBAS-500). In
this chapter we present such a standardized way to construct SIBAS applica-
tions. Some special rules concerning SIBAS-500 are presented, but program-
mers following the given standard '‘cookbooks” will be able to run their applica-
tions on both SIBAS-100 and SIBAS-500 without any modifications of their
source code. The rules given below may at first seem very complex, but experi-

ence shows that it is very easy to convert existing SIBAS applications from
ND-10/100.

ND-60.127.03



4.3.1

4.3.1.1

FORTRAN

Calling SIBAS subroutines from a FORTRAN program is just the same as calling
any other FORTRAN subroutine, as shown in the example.

It is not possible to use character parameters directly. However, this restriction
can be bypassed by "EQUIVALENCing” character fields to integer arrays.

FORTRAN ON THE SIBAS-500

Calling SIBAS subroutines from a Fortran-500 program is exactly the same pro-
cess as calling any other Fortran subroutine, and hence the same as calling
SIBAS from a Fortran-100 program. There are .however, some restrictions as to
how SIBAS value buffers are to be declared in a Fortran-500 application, i.e., a
Fortran application running on the 500 CPU.

General Rules for Fortran on the SIBAS-500

The default integer size on the ND-500 CPU is 32 bits, as opposed to the default
integer size of 16 bits on the ND-10/100 CPU. This is because on the ND-10/100
CPU one word is 16 bits, and on the ND-500 CPU one word is 32 bits. The
SIBAS-500 simulator (SIBAS-LIBRARY) assumes that applications are compiled
in the default integer mode and takes care of converting single integer par-
ameters to/from SIBAS-mode (i.e., 16 bit integer format) kefore receiving/send-
ing parameters from/to SIBAS. In addition, the database format is a 16 bit in-
teger format, i.e., all value buffers (containing database values) sent to/from a
SIBAS process must be packed in a 16 bit word format. Tc avoid problems con-
cerning different integer modes it is best to simply declare all value buffers
(passed to/from SIBAS) as INTEGER®2 in all Fortran applications. INTEGER®2
{which specifies a 16 bit integer format) is the default on the ND-10/100 CPU.

(Note that 500-applications must follow the given rule.) All other parameters are

declared (default) integer (i.e., INTEGER, hence 32 bits in Fortran-500) and can be
handled in the same way as in a Fortran-100 SIBAS application.

ND-60.127.03



4.3.1.2

Standard 'Cookbook’ for Programming Fortran
Applications

In this manual the value buffers are:

"key-value"”
"item-values”
"fow-limit"
"high-limit”
"increments’’
"new values”

They are used in the following SIBAS DML-calls:

SFTCH(P1, P2, "key-value’, P4, P5)

SGET(P1, P2, P3, "item-values”, P5)

STORE(P1, P2, P3, “item-values”, P5, P§)

SMDFY(F1, P2, P3, “item-values’, P5, P6)

SFEBL{P1, P2, "low-limit"”, "high-limit"’, P5, P6)
SFLBL(P1, P2, "low-limit™, "high-limit"’, P5, P6)
SGETN(P1, P2, P3, P4, P5, P6, "item-values”, P8, P9)
SGIXN(P1, P2, P3, "item-values", P5, P6)
ACCID/DD(P1, P2, P3, “increments”, "new values’’, P6)

Declare all such value buffers to be INTEGER*2, all other parameters are
declared INTEGER. In addition this is also the only difference when applications
are to be converted from ND-10/100.

Example:
ND-100 ND-500
INTEGER ITEMP,NOITM,ISTAT INTEGER ITEMP,NOITM,ISTAT
INTEGER IVBUF(10) INTEGER*2 IVBUF(10)

CALL SGET(ITEMP,NOITM, "REALMXX " IVBUF,ISTAT)

As we see, only the declaration of IVBUF is different, — the call sequence and all
other declarations are identical. Note that the ‘ND-500 solution’ is the best way
of construction all SIBAS Fortran applications since this solution also can be run
on the ND-10/100 without any modifications.

ND-60.127.03



SPECIAL CONSIDERATIONS:

1. Since the default single integer mode is 32 bits in Fortran-500, integer
constants cannot be used as value buffers when such a buffer consists of
only one single SIBAS-word {i.e. length-of-value-buffer is 1).

Example:
CALL SFTCH{ P1, P2,1999, P4, P5)

This construction cannot be used to fetch a specific record {where P2 is
the key item declared integer in the database definition with a length of 1
SIBAS-word). (A SIBAS-word = 16 bits.)

Instead the solution shown below should be used. (The use of an array is
not really necessary here.)

INTEGER*2 IVBUF(n)
IVBUF(1) = 1999
CALL SFTCH( P1, P2, IVBUF , P4, P5

2. Names of the database, realms, items, etc., can be handled as they are
handled in a Fortran-100 application.

For example:
(Note that both of the solutions shown can be used.)

a. including names directly as the actual parameters surrounded by
double quotes.

Ex.:
CALL SOPDB(15473,"TESTBAS ","GXZZXG ',IST)

b. ‘equivalencing” CHARACTER variables (containing names) with the
actual INTEGER parameters.
To avoid a waste of space we recommend using DOUBLE INTEGER
because double integer is 32 bits on both the ND-10/100 and the
ND-500 CPU.

Ex:
CHARACTER DBNAM*8, PASSW'8
DOUBLE INTEGER IBASE(2),IPASS(2)
EQUIVALENCE (IBASE,DBNAM), (IPASS,PASSW)
DBNAM = 'TESTBAS
PASSW = ‘GXZZXG
CALL SOPDB(15473,IBASE,IPASS,IST)

ND-60.127.03



Remarks:

i} Instead of declaring IBASE and IPASS as double integer, they
could just as well have been declared as:

INTEGER IBASE(4), IPASS(4)

in Fortran-500 applications it would be sufficient to use 2 as di-
mension, but this would make it impossible to run the applica-
tion on an ND-10/100 CPU.

i) A constant (156473) can be used as the first parameter because
it is not a value buffer.

The application programmer is advised to be very careful when local

INTEGER variables in the application program are ‘equivalenced’ with value
buffers which are declared INTEGER*2.

ND-60.127.03



PROGRAM LOADPER

PURPOSE
LOAD PERSON RECORDS IN A COURSE DATABASE

DECLARE BUFFERS INTEGER*2 FOR THIS TO BE
COMPATIBLE WITH SIBAS-500

INTEGER*2 IUBUF (45}

INTEGER"2 ITVAL1(35), ITVAL2(9), HSALARY

CHARACTER ITLISTI8)#8
EQUIVALENCE (IUBUF (1) 9 ITVAL1) o (IUBUF (36) yHSALARY) 9
* (TUBUE (37) s ITVAL2) o (ITLIST s INAME)

DATA ITLIST(1)/'BDATE v/

DATA ITLIST(2)/°98NO v/

DATA ITLIST(3)/'RERSNAME/

DATA ITLIST(4)/°PERSADDRY/

DATA ITLIST(5)/9SEX '/

DATA ITLIST(6)/%HSALARY 9/

DATA ITLIST(7)/'DEPARTM o/

DATA ITLIST(B)/¢PRESERYV ¢/

DO o000

WRITE(1+100)
100 FORMAT (1H}s5X»#PROGRAM FPERL=GH*,
i £o6X s *NEW PERSON=RECORDS TO DATABASE®,/)
c
C OPEN=-DATABASE:
c
CALL SOPDB(154734"GENDB~GB"s IPASS,IST)
IF (IST«LT.0) THEN
CALL ERROR(1)
GO TO 180
ENDIF

READY REALM FOR LOAD » NOTE THE USE OF " TO DELIMIT RMOLLER, CONSTANTE

(e XeX e

CALL SRRLM(1,"PERSON "51,05IST)
IF (IST.LT.1l) THEN

CALL ERROR(2)

GO TO 180
ENDIF

OPEN THE INPUT=-FILE FOR READING:

OO0

OPEN (UNIT=20.FILE=*GPERREC:DATAY,
+ STATUS=¢0LD* y ACCESS=¢R* ;RECL=45)
IF (ERRCODE.NE.O) THEN
CALL ERROR(3)
GO TO 175
ENDIF

LOOP HERE FOR EACH RECORD

125 READ (20+130END=160) ITVALL HSALARYITVALZ
130 FORMAT (3A2+2A2sA 01342+ 15A25A1916934296A2)
IF (ERRCODE.NE.D) THEN
‘CALL ERROR (&)
GO0 TO 1258
ENDIF
WRITE(1+1640) ITVALL+HSALARYITVALZ

ND-60.127.03



140 FORMAT (1H 93A251X92A29A101X913A2s1Xs15A201XeAloiXeI6be]Xe
- 3A2,1Xs6A2)

C

C STORE THE PERSON<-RECORD READ:

C

CALL STORE("PERSON ",8¢INAME, IUBUF 4 15T 445)
IF (IST.NE,1) CALL ERRQOR{(S)

GO TO 125
c
C END OF LOOP
c
160 WRITE (15170) ‘
170 FORMAT (1H0+6X s #LOADING PERSON~-RECORDS TERMINATED®)

CLOSE (UNIT=20)
C
C DATABASE IS CLOSED (FOR THIS USER)
C
175 CALL SCLDB("GENDB=GB",IST)

IF (ISTeNEW1) CALL ERROR(6)
180 STOP

END

SUBROUTINE ERROR (N)

PURPQSE
PRINT OUT ERROR MESSAGES

INPUT PARAMETER
N ERROR NUMBER

ODOOOOOO0O0n

INTEGER RNAME] (4) s RNAMEZ (4) s SNAME (4) 3 INAME (4)
CHARACTER ERRLIST(6)%30

DATA ERRLIST(1)/'ERROR IN OPEN-DATABASE '/
DATA ERRLIST(2)/*ERROR IN READY=-REALM'/

DATA ERRLIST(3)/*ERROR IN OPEN INPUT=FILE®Y/
DATA ERRLIST (4)/'ERROR WHEN READING A RECORDt/
DATA ERRLIST(S)/'ERROR IN STORE v/

DATA ERRLIST(6)/'ERROR IN CLOSE-DB v/

GET THEZ DATABASE EXEPTION CONDITION CODE

OO0

CALL SDBEC(SNAMEsRNAME] sRNAME2, INAME 5 IDML ¢ IDBEC)

WRITE (1+90C) ERRLIST(N) s IDBECY IDML o SNAME s RNAME L ¢ RNAME2 ¢ INAME
300 FORMAT ('0%4b4/52Xe'DBEC $telbess

. CXe'DML=CALL :'slGe/s
+ 2Xs'SET=NAME : 994429/
+ 2Xe tREALMI HEREYY V-V
+ 2X¢ 'REALM? HERNYY V- Y
- 2Xs*ITEM HIR R Y'Y V-ED!
RETURN
END

ND-60.127.03



4.3.2

COBOL

Calling SIBAS subroutines from a COBOL program is just the same as cailing a
FORTRAN subroutine. The programmer must be aware of two things:

1. Parameters must always start on a word boundary
2. The values passed to or from SIBAS are always an integral number of
SIBAS-words.

The concept of “word” is somewhat strange to a COBOL programmer, but a
“word" is made of 2 bytes on ND-10 or ND-100, 4 bytes on ND-500. A
SIBAS-word is always 2 bytes, which requires some precaution on the ND-500.

The COBOL compilers automatically align 01 level anc 77 level on word
boundaries.

As a good programming practice, define the length of the data items passed to
or from SIBAS as an even number of bytes. If the last byte of a DISPLAY field is
never used, fill it with a default byte, for example space.

To arrive at the number of bytes, add one to the number of 9's in the picture
and, using integer division, divide the sum by 2. If the nurnber of bytes is odd,
you should insert a filler with a picture X, VALUE zero after the definition of the
item. The following is an example of how this would look:

01 RECORD.
05 REC-ITT PIC 89 COMP-3.
05 FILLER PIC X VALUE 0.
05 REC-1T2 PIC 598898 COMP-3.

Otherwise, COBOL is very well suited to writing programs accessing a SIBAS
database, mainly because it has a DATA DIVISION wherz the data areas are
clearly defined.

ND-60.127.03



4.3.2.1

General Rules for COBOL on the SIBAS-500

The programmer must be aware of four different aspects:

Parameters must always start on a word boundary. The ND Cobol
compilers automatically align 01 level and 77 level on word boundaries. All
parameters called "'single integer’ in the SIBAS User’s manual should be
given 77 level and always be defined as COMP (computational) without any
PICTURE clause. Names (database name, etc.) and value buffers (see the
previous section) are given 01 level. All names should be defined with the
PICTURE clause without computational.

The values passed to/from SIBAS (100 and 500) are always an integral
number of SIBAS-words. (One SIBAS-word is made up of 2 bytes). As a
good practice, define the length of the data items passed to/from SIBAS
as an even number of bytes. If the last byte of a DISPLAY field is never us-
ed, fill it with a default byte, for example space.

Value buffers ("item-values' etc., see section 4.1.3.2 for a more detailed
description) are most easily handled when all items are given the type
CHARACTER in the SIB-DRL input file (i.e., all database items are declared
as CHARACTER in the database schema). If they are, all value buffers in
the Cobol-500 application can be declared with the PICTURE clause accord-
ing to the length of the item-value in the database schema. In such cases

the computational clause should never be used in conjunction with the
picture clause.

Note, however, that declaring all items of type CHARACTER may require a
great deal of unused/wasted disc-space.

If there are items in the database schema of type INTEGER, some special
rules have to be followed for 500 applications passing values to/from these
items: Cobol-500 will cause variables declared with the COMPUTATIONAL
option to occupy 32 bits (4 bytes) as long as the PICTURE clause is not
used, or if the PICTURE clause is<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>