THE DATABASE SYSTEM

o | SIBAS I1I/D
ND User's Manual

ND-60.127.03 -

NORSK DATA AS

THE DATABASE SYSTEM

SIBAS Ii/D

ND User's Manual
, ND-60.127.03

NOTICE

The information in this document is subject to change without notice. Norsk Data
A.S assumes no responsibility for any errors that may appear in this document.
Norsk Data A.S assumes no responsibility for the use or reliability of its software
on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. It may not
be photocopied, reproduced or translated without the prior consent of Norsk

Data A.S.

Copyright @ 1983 by Norsk Data A.S

Denne handboken er i losbladsystem for & forenkie oppdatering. Gamle sider kan
fiernes og nye sider settes inn pa en enkel méate hvis hadndboken er revidert.

Losbladsystemet gjor det ogsd mulig & plassere handboken i en ringperm (A) for
& beskytte den og for & gjore det lett & sla opp i den. Ringpermer med 4 ringer
tilsvarende hullene i hdndboken kan bestilles i to bredder, 30 mm og 40 mm. Bruk
bestillingsskjema nederst pa siden.

Handboken kan ogsa plasseres i plastomslag (B). Dette omslaget passer bedre
for handboker pa 100 sider eller mindre enn for sterre hdndboeker. Plastomslag
kan ogsa bestilles nederst pd siden.

N

/_\N ™
P =R] . [0
.l NCRSK DATA AS
)
2320 153 2220 333 .
5\ TR 3 ?! ::30 :: 3 z“
=Res =
‘1 /\)
A Ringperm B Plastomslag

Vennligst send bestillingen til det iokale ND kontoret eller {i Norge) til:
Dokumentasjonsavdelingen
Norsk Data A.S

Postboks 4, Lindeberg gard
Oslo 10

BESTILLING

Jeg onsker & bestille:
....... Ringpermer, 30 mm, nkr 20,- pr. stk.
....... Ringpermer, 40 mm, nkr 25,- pr. stk.

....... Plastomslag, nkr 10,- pr. stk.

i

PRINTING RECORD

Printing

Notes

02/80

Version 01 — Replaces the previous manuals numbered ND-60.057.

07/80

Revision A

The following pages have been revised:

Xiii 1o xv

3-b

4-11to 4--16

5-6to 5-3b

6-—5,6-—6,6—9 and 6—-21 to 6—-22

7—3to 7—4a

A—-1to A-2

D-1

F—1to F-2

09/81

Version 02

10/82

Revision A

Thz following pages have been revised or added:

Xito xvi

1-2,1-4

3-51t0 3-6, 3—15to 3—16

4-1104-6,4-15 10 4—16,4-3110 4-48

5.2,5-5t0 5-6,5-19 to 5—20a, 5-29 to 5-32, 535 to 536

6-17 to 6-20,6-22

7-3to 7-5

Index

02/83

Version 03

THE DATA BASE SYSTEM — SIBAS |1
NORD User's Manual
Publication No. ND-60.127.03

Feb. 1983
@80 00
2000 [1-3.4
20000 @0
2000000CO
50000000
e6e 00000
[-3:4::] 8000
eoe (41}

:0.0000

32302283, NORSK DATA A.S
S00nees2? P.O.Box4, Lindeberg gard
20200828 (Oslo 10, Norway

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one or
more single pages to be merged into the manual by the user, each revised page
being listed on the new printing record sent out with the revision. The old
printing record should be replaced by the new one.

New versions and revisions are announced in the ND Bulletin and can be ordered
as described below.

The reader's comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms, together with all types of inquiry and requests for documentation
should be sent to the local ND office or {in Norway) to:

Documentation Department
Norsk Data A.S

P.0. Box 4, Lindeberg gérd
Oslo 10

The SIBAS database system, originally developed by the Central Institute for
Industrial Research (CIIR) in Oslo, Norway, is the first fully developed database
system following the CODASYL DBTG recommendations for implementation on a
mini computer.

The system described in this manual has also been implemented on other com-
puter systems, such as UNIVAC 1100, IBM 360/370, CDC CYBER and DEC 10. It
has been expanded and optimized in a joint development project with the
company offering SIBAS on large computer systems: A/S Shipping Research
Services, Oslo, together with the Central Institute for Industrial Research, Oslo,
and Norsk Data A.S.

The implementation of SIBAS on the ND computers utilizes the advanced
facilities of the SINTRAN Il Virtual Storage Operating System, and offers
multiple user programs simultaneous access to the same data base in a con-
trolled and secure manner, thus minimizing the amount of additional routines in
the user’s programs.

Norsk Data wishes to thank the user’s group reference committee for their
contributions and kind assistance in the writing of this manual. Their comments
have proved to be very helpful and we look forward to receiving all users
cooperation in the future.

Norsk Data A.S.
Software Department

ND 60.127.03

vi

vii

PREFACE

The Product

This manual describes the SIBAS |l Database Management System, version D.
SIBAS Il is delivered as one standard package. There are additional modules.
The standard system contains the following modules:

Modules:

SIBAS System Generation
SIB-SYSGN: BATC
SIB-LOAD:BATC

SIBAS Real-Time Segments
SIB-MAIN: BPUN
SIB-REEN: BPUN
SIB-OPEN: BPUN
SIB-WORK: BPUN

SIBAS Data Manipulation Libraries
SIBLIB-2N-MH
SIBLIB-TN-MH
SIBLIB-1R-MH
SIB2-DML-B-MH
SIB2-DML-R-MH

SIBAS Background Programs
SiB-DRL: PROG
SIB-DBM: PROG
SIB-SERV: PROG
Additional Modules are:
SIBAS Backend Programs
SIB-LOOK-AT-LOG:PROG
SIBAS 1/0 modules for delayed update feature (SIBIO)
SIBINTER
SIBAS Conversion Aids
SIB-CONVERSION-PLANNING: SYMB

SiB-CONVERT-SCHEMA: PROG
SIB-CONVERT-DATA: PROG

ND-60.127.03

viii

THE READER

SIBAS 1l User’s manual is written for a wide variety of users, but the different
chapters are oriented towards different classes of readers:

Programmers, who write application programs which make use of SIBAS.

Database administrators who are concerned with secure and efficient
operations of the overall system.

Any one else who is generally interested in database management systems.
The database administrator should read the whole manual.

The application programmer will be more concerned with Chapters 4 and 7;
Data Manipulation and Error Reporting.

The “generally interested”” reader may limit him/herself to the first two
chapters.

PREREQUISITE KNOWLEDGE

The first two chapters do not need any prerequisite knowledge, but it is assumed
that application programmers are familiar with the SINTRAN 11] operating system
and at least one programming language. More specifically, they should be
familiar with the concept of calling subroutines since SIBAS is accessed via sub-
routine calls.

The database administrator must be familiar with the real-time features of
SINTRAN 11l since SIBAS makes extensive use of them.

ND-60.127.03

THE MANUAL

Chapters 1 and 2 are an introduction to SIBAS and should give the necessary
background to go on to the following chapters.

Chapter 3 gives a detailed description of how one can define or redefine a data-
base — it is of special interest for a database administrator, but may also be of

interest to a programmer.

Chapter 4 gives a detailed description of how to call SIBAS data manipulation
functions. This chapter is oriented towards application programmers.

Chapter 5 describes how to administrate and operate a SIBAS database. This
chapter is writzen for database administrators.

Chapter 6 is a description of some utility programs provided with SIBAS. This
chapter is also written for database administrators.

Chapter 7 is a list of errors and how to handie them.

The appendicies give reference information in a compressed form.

Related Manuals:
SINTRAN il User's Guide

SIBINTER User's Guide
NORD RELOCATING LOADER User’'s Manual

ND-60.127.03

Section:

1.1

1.1

1.2
1.3
1.4

2.1
2.2

221
222
223
224
225
226

23

2.3
232

23.21
2322
2323
2324
24

241

2411
2412

242

24.21
2422

Xi

TABLE OF CONTENTS

+ + +
Page:
INTRODUCTION 1—1
The SIBAS Database System ... 1—1
SIBAS Backend ... 1-—2
ND SIBAS implementation ... 13

SIBAS Using the ND-500 System 1—4

SIBAS Modules ..ot 1—6
SIBAS PRINCIPLES 2—1
The Database Concept ..o 2—1
Data Structurecoiiiiiiiii e 2-9
[EEMS 2—12
Group Items ... 212
Record Types ... 2—13
Search Keys and Indexes 2—15
Realim 217
Database ... 218
Data Relationsccooiiiiiiiiii 2—20
Search Regions ... 2—-20
S BES 2--22
Set ltems ... 224
Set OCCUITeNCes ... 2--24
Chain Representation of Set Types 225
Storage Classcccoiviiiiiiiiiiii 230
Data Manipulation ... 233
Access Principles ..o 233
General oo 233
Currency Indicators ... 2—-35
Connecting and Disconnecting, Inserting and
Removing ... 238
Connecting and Disconnecting 238
Inserting and Removing from an Index 242

ND-60.127.03

Section:

243

2431

2432

2433
2434

244

2441
2442
2443

3.1
3.2
3.3
34
35
3.6
3.7
3.8
3.3
3.10
3.1
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25

4.1
42

Xii

Concurrent Processing ...

Database Reservation
Realm Usage Modes and Realm Protection
Modes

Privacy on Database Level
Privacy on Record Occurrence Level
Summary of the Setting of Current

Password ...

DEFINITION/REDEFINITION LANGUAGE {DRL)

Introduction ...
How the Definition/Redefinition Module Works ...
Global Rules ...
Start Initiation

New Calc Realm
New Item
New Group ...
New Set ...

Change Calc Realm ...
Change Set
Dimension Database Parameters
How to Run DRL on the Computer
Examples ...
DATA MANIPULATION LANGUAGE (DML)
General ...
Parameter Descriptions ...

ND-60.127.03

Section:

4.21
4272
423
424
425
426
4.27
4.2.8
4.29
4.2.10
4.2.11
4212
4213
4214
4.2.15
4.2.16
4217
4218
4.2.19
4.2.20
4221
4.2.22
4.2.23
4.2.24
4.2.25
4.2.26

4.3

4.31

4311

4312

43.2

4.3.21

4322

433

4.4

4.41

442

443
444

How to Load Application Programs

xiii

Open Database ..o
Close Database ...
Ready Realm ...
Finish Realm ...,
Direct Find ..o

Brase o

Forget
LOCK
UNIOCK o
Change-Password ...
ACCEPT oo

Host Language Considerations

FORTRAN o,
General Rules for Fortran on The SIBAS-500 .
Standard 'Cookbook’ for Programming

Fortran Applications ...

General Rules for Cobol on The SIBAS-500
Standard 'Cookbook’ for Programming
Cobol Applications ...

Description ...
Different types of simulators
Choosing simulators ...
Loading Nonreentrant Programs with SIBAS

ND-60.127.03

Section:

445
448
447

4471

448

449

4491
4492

5.1

5.1.1
5.1.2

5.2
5.3

5.3.1
5.3.2
5.3.3

5.3.3.1
5.3.3.2

534
53.41
534.2
53.4.3
5344
5345
535
5.3.6
5.3.7
53.71

53.7.2

5.4

Xiv

Loading 2BANK Programs with SIBAS ...
Loading Reentrant Programs with SIBAS
Loading Real Time Programs with SIBAS

Cooperating RT Programs Working as one
"“SIBAS USER"”

Table of SIBAS Simulators (Libraries)
Applications on ND-500 Systems

Applications running on the 500 CPU
Applications running on the 100 CPU

DATABASE ADMINISTRATION

Critical Sequence ...
Reprocessing ...

Delayed Updating

SIBAS 1/0 System (SIBIO)o,
The Update File

Backup

Restart from a Backup Copy and a Routine
LOg
Restart from a Database with Update File/
Before Image and Routine Log

Detailed Description of the Calls

ND-60.127.03

Section:

541
54.2

543
54.4
545
546
547
548
548
5410
541
5.4.12
54.13
5.4.14
5415
54.16
5417

551
55.2
553
554

o
[ep}

6.1

6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
6.1.6
6.1.7
6.1.8
6.1.9

6.1.9.1
6.19.2
6.1.9.3
6.1.9.4

6.1.10
6.1.11

XV

Page:
Start/Stop SIBAS/Get State ... 524
Run/Pause/Recover/Finish/Set Passive/
Repro-Status ... 525
Inittate-Log ... 5--27
Begin/End Sequence ... 5--28
Set Routine Logging On/Off 5—29
Log Message ... 5--30
Write-Log-Buffer-Onto-Routine-Log 5---30
Checkpoint ... 531
Roll-Back USSR 5--32
Set-Conditions-For-Reprocessing 5-32
Reprocess-Routine-Log ... 5.--34
Update-Data-Base-In-Place ... 535
Set SIBAS System Number ... 5--36
Reserve/Release SIBAS ... 5.-36
Execute-Macro ... 537
DBA Calls . 5--38
Force-Close Database ... 538
Special SIBAS-500 Featuresoociieiiiiii 5—-39
Calls with Different Functions 5--39
Calls Not Available
Exceeding the Size of a Direct Routine Log ... 540
SIBAS-500 MACROS 5--40
How to Install SIBAS ... 540
UTILITIES 61
Database Maintenance Module 6-—1
Introduction ... 61
STart 6-—3
Exit, Stop the DBM Module ... 6-—3
Ready Realms ... 6—4
Finish Realms ... 6-—4
PNt 6-—5
Patch 6-—6
Reset-Error-Flags ... 6--7
PrIVECY i 6—8
General ... 68
Define Password ... 6—13
Remove Password ... 614
Display Password/Privacy 6—14
Index Compression ... 6—15
Consistency Checking ..o 6-—16

ND-60.127.03

Xvi

Section: Page:
6.1.11.1 General ... 616
6.1.11.2 Calc Key Verification ... 618
6.1.11.3 Index Key Verification ... 619
6.1.11.4 Set Verification 620
6.1.1156 Page-Link Verification ... 622
6.1.12 Free-Space-Statistics ... 622
6.1.13 Example ... 6—23
6.1.14 Unload/Load ... 624
6.1.15 Make-modefile for Unload/Load Program 6—25
6.1.16 Clear System-Realm ... 626
6.2 SIBAS Service Program ... 6—27
6.2.1 SIBAS-Service Extensions SIBAS-500 ... 6—29
7 ERROR AND EXCEPTION CONDITIONS 71
7.1 Fatal Errors . 72
7.2 Interface and Simulator Errors 73
7.3 DML Diagnostics, Database Exception Conditions
(DBECS) oo 7—6

7.4 Run-time Message — Messages from SIBIO ... 7—16
75 Run-time Message — from SIBAS ... 7—17
Appendix: Page:
A SUMMARY OF THE DML STATEMENTS ... A—1
B SUMMARY OF THE SIB-DRL STATEMENTS B—1
C SUMMARY OF THE SIB-DBM STATEMENTS ... C—1
D SUMMARY OF THE SIB-SERVICE STATEMENTS ... D—1
E SUMMARY OF THE DATABASE EXCEPTION

CONDITIONS E—1
F SUMMARY OF THE DML ROUTINE LOG NUMBERS .. F—1
G CONSTANTS AND LIMITATIONS ... G—1

INDEX

ND-60.127.03

1.1

INTRODUCTION

THE SIBAS DATABASE SYSTEM

SIBAS is a Database Management System, originally designed by the Central
Institute for Industrial Research in Oslo, and presently implemented on IBM,
UNIVAC, CDC, DEC 10, SEL and ND computers. The data management

capabilities correspond to the recommendations contained in the CODASYL
report.

The implementation of SIBAS for ND computers contains some extensions as
compared to the CODASYL report. Another important characteristic of this
implementation is the strict orientation towards a multiprogrammed, terminal
oriented computing environment. This means that many users may access one
database simultaneously, and also that it is possible to have several databases in
a system at the same time. Great efforts have been made to provide safe and
effective tools for control of data integrety and security.

The ND SIBAS system includes a data definition and redefinition facility, a
run-time database manipulating package and a comprehensive set of interactive
utility programs.

In general terms, a Database Management System (DBMS) is a software
concept or environment which allows a database to be structured and accessed
in a standarized way. It includes a set of program functions which the application
programmer uses when operating in the DBMS environment. In this way, his own
work will be reduced, since he does not need to solve the corresponding design
problems and program the general service routines himself. The ND SIBAS
system has been extensively used in a number of installations since 1975 and is
today a well-proven and reliable system.

Using a DBMS is a way of adding intelligence to the computer system. Data
items may be connected to each other depending on defined relational patterns.
Those connections could well be done in the logic of a progrem using ordinary
data files, but such a solution would be expensive both in development and
maintenance costs. The DBMS allows application programs to be reduced in size
and complexity. However, the relations between data will be described as
pointers and tables within the database. This means that the overhead in
program complexity is changed into an overhead in storage space.

By "overhead in space’ we here mean the difference between the total size of
the database and the size of the "pure data’’. The overhead depends on the
access facilites desired and deserves careful consideration by the database
designer.

ND-60.127.03

SIBAS BACKEND

The SIBAS DBMS may now be accessed from a remote ND-500, ND-100 or
ND-10 computer through a transparent, safe and efficient communication
package.

The new product may be used to increase the capacity of database oriented
applications because it makes it possible and easy to implement a number of
configurations.

As an example, one can imagine a system based on one rachine with sizable
SIBAS activity. To increase the capacity of the system, one machine may be
added, and the total load split in such a way that one machine runs only applica-
tions {Application machine), and the other runs both database(s) and some appli-
cations (Database machine). Such a change may be made with small modifica-
tion in the application programs. The system may be upgraded later on with mo-
re machines to further increase the capacity.

Another example is the case where a database is held at a central site, but may
be accessed from {an) other computer(s)} through telephone links.

The software features automatic checks and retransmission on both sides.
Intermittent power failures are also taken care of.

The Apgplication machine The Database machine
APM DB M
Application HDLC Application
\ a1 COMA

- SIB-DML-x SIB-DML-x

:

SIB 2A

Figure 1.1: In this case, one database is accessed by several applications divided
between two computers.

ND-60.127.03

1.2

1-3

ND SIBAS IMPLEMENTATION

In the ND SIBAS implementation, the real-time processing facilities of SINTRAN
have been used to a great extent. The run-time Database Control System (DBCS)
is loaded and operated as a real-time program. Since SIBAS code is reentrant,
several databases may be handled concurrently with only a limited increase in
memory requirements.

The application programs may be run in time sharing, batch or real-time mode,
and several users may call one database simultaneously. Only one call is pro-
cessed by one SIBAS program at a time, however, and SINTRAN facilities are
used to queue the calls.

Application proagrams communicate with the SIBAS system by means of a set of
subroutine calls. The subroutines execute at the priority level of the calling
program, and cause a call to be made to the separate SIBAS process by means
of the internal device mechanism. The calling program is then halted until the
answer arrives from the higher priority SIBAS system.

The Norsk Data versions of COBOL, FORTRAN, BASIC, PLANC and MAC all con-

tain a CALL facility enabling application programs to communicate with the
SIBAS subrout.:ne package.

ND 60.127.03

1.3

SIBAS USING THE ND-500 SYSTEM

SIBAS is implemented on the ND-500 computers and uses their huge address
space and fast CPU. Running a database by means of a S BAS-500 process will
keep the whole database in virtual memory by using the «file-as-segment» con-
cept. No explicit disk transfers are executed and consequently a reduced /0
overhead is achieved. If enough (physical) memory is available, the whole data-
base may actually reside in physical memory at run-time.

All the SIBAS-II C-version DML-calls (with a few minor exceptions, see section
6.1) are implemented on the ND-500. Their functions are exactly the same as in a
SIBAS-100 system and the database format is also identical. This means that the
same applications (and databases) may use both SIBAS-100 and SIBAS-500, and
that applications (and databases) are easily moved between an ND-100 and an
ND-500 system.

Today, the definition/redifinition module (DRL) runs on the 100 CPU (of the
ND-500 system) together with the database maintenance module (DBM). These
modules are the same as on a SIBAS-100 system, but later on the DBM will be
implemented on the 500 CPU. The SIBAS-service program tan be used to super-
vise and control both SIBAS-100 and SIBAS-500 processes even when they are
running simultaneously on an ND-500 system. We recommend starting and con-
trolling SIBAS-500 processes by using this standard service program. Control can
also be obtained by including SIBAS-calls in applications. For on-line interaction
with a SIBAS-500 process, without having to write application programs, the
standard SIBINTER may be used directly. SIBINTER will run on the 100 CPU.

ND-60.127.03

SIBAS 11 MODULES

N) CD

SIBAS USER
SIBINTER SERVICE APPLICATION
PROGRAM PROGRAM
\ E 4
\ ' / ;
NATABASE DATABASE DATA DEFINI-
MAINTENANCE CONTHROL TION AND
MODULE SYSTEM REDEFINITION
(DBM) (DBCS) MODULE
({DRL)

DATABASE
DESCRIPTION
\DATA FILE \ &)ATA FILE \

DATABASE

Figure 1.2: SIBAS Modules

ND-60.127.03

1.4

SIBAS MODULES

The SIBAS Database Control System (DBCS) is the module called from the
application program for storing, reading, modifying and deleting the information
in the database. It is run as a real-time task.

The SIBAS data definition and redefinition module (DRL) is used for defining a
database, i.e., defining the structure, the access keys, the size of the database
and for changing such parameters.

SIBINTER is a module that enables users to access a SIBAS data base inter-
actively without having to write application programs. It is particularly well suited
for educational purposes.

The SIBAS service program is background utility to start/stop and manage the
DBCS module.

The SIBAS Database Maintenance {(DBM) is a background utility used mainly to
check a large amount of data. It has some repair facilities and does not make
use of the DBCS.

ND-60.127.03

2.1

SIBAS PRINCIPLES

THE DATABASE CONCEPT

What is a database? Well, this is a rather complicated question to answer. Since
a good understanding of some basic principles is essential for reading the rest of
this manual, this chapter will discuss an example of information storage and
retrieval. The description in this chapter should answer the question to such a
degree that the reader will be able to understand the detailed description of the
SIBAS database system in the following chapters.

Let us assume that we run a railway company. It has been growing for some
years, and we are having trouble in planning and maintaining time tables,
scheduling the utilization of engines and cars, planning the work of our personel,
etc. What do we do? We design a database and make the computer help us
keep track of our business.

First, we think of a file describing all our engines. The following information
ITEMS need to be stored for each one of our 159 engines:

— serial number

— supplier name

— type

— latest service inspection
— capacity

— allocated to train number

Then we decide to have a similar file for all our cars. It must contains the
following information for each car:

— serial numkter

— supplier name

— type

— number of passengers/tons load
— allocated tc train number

We also want a personel file containing the following information for each
person:

— name
family name
surname
— home address
— position (engine driver, conductor, etc.)
— allocated to train number

For convenience, we have grouped the two basic items Family Name and

Surname in a group called Name. We call this construct a GROUP ITEM and use
it in all cases when we want the entire name of the person.

ND-60.127.03

Now we have three files, and we find that ‘in the engine file there will be 159
RECORDS because we have 159 engines, each record giving us a limited
description of one engine. Similarly, there will be one record for each car or
person in the other files. We have also specified the records with respect to the
information contained in them, and we notice that all records in one file quite
naturally will have the same length.

Having our three basic files, we now want to make up a time table. In our data-
base we illustrate this with a fourth file, the time table file, containing the
following information:

— train number

— line number

— time of departure
— average speed

— time of arrival

But now we want to describe trains containing a variable number of cars.

What we do to assemble a train is to select the desired number of cars and put
them together into a SET. In this set, we also include the 2ngine, engine driver
and conductor. Finally, we assign the train {set) to a specfic entry in the time
table, which is identified by means of a train number.

In the database, we create the set simply by storing the train number in the
engine record, the car records, the engine driver recorc and the conductor
record. The time table record is said to be the SET OWNER and all the others
are called SET MEMBERS.

In our example, it should be apparent that a file is a collection of similar but
unrelated records. With the concept of sets, we have included relations between
records in the discussion. We consider a set to be a collection of records having
some common characteristic, in this case the train number. While the records
are restricted to fixed length, depending on the data elements contained in them,
a set may contain a variable number of member records.

Time Table Record Engine Record Engine Driver Record Car Record Car Record

Train number |—#~{ Train number |—#=!| Train number |——-| Train number | -—g|{ Train number

Figure 2.1: The Set

ND-60.127.03

Records in one file have the same length and organization, but contain various
data. Engine number 11 is not the same as engine number 137, but they are
described in the same way in the file. The way the description appears is called
the RECORD TYPE and each individual description is called RECORD
OCCURRENCE. Those expressions are frequently used in this manual.

Similarly, we use the expression SET TYPE and SET OCCURRENCE. The set type
in this example gives a description of a variable train length. The set occurrence
describes a soecific train connected to a specific line and departure time. Obvi-
ously, we have one set occurrence for each record occurrence in the time table
file, i.e., for each set owner record.

TIME TABLE FILE

Line 1
09 03

Lire 2
10.16

Lire 3
1154

Line 1
12.06

Lire 3
13.15

Search region
Lire 4 Departure times 1200-1700
16.30

Lire 2
16 .55

Line 1
17 .09

Figure 2.2: The Search Region

ND-60.127.03

24

Now that we have our railroad database, we want to print out time tables for
each line. This means that we want to scan the time tahle file and select all
records for line 1, line 2, etc. This can also be thought of as a division of the time
table into classes, one for each line.

For other purposes, we may also need other classes within the time table
register, for example all departures between 12:00 and 17:30 hours, or even all
records in the time table file. In SIBAS, such classes of records within a file are
called SEARCH REGIONS.

Our railway network branches out from a central station in a treelike structure
without connections between the different branches.

Q\m?

Central Station

B1321

Figure 2.3: The Railroad Network

ND-60.127.03

We want to add a description of this network to our database. The following
items shall be included:

— station name
— name of inner station
- distance to inner station

By inner station, we mean the one which is the next station when travelling
towards the central station. The station file will have the following layout:

" N
Central Station

Station
Record

> Branch

A1l
Central Station
6 km.

A1 Branch
A1l

10 km

A12
Al
13 km

/

A121

A12 Branch
5km

A122
A12
9 km

Figure 2.4: The Station File

ND-60.127.03

In this file, all stations directly connected to each other are gathered in groups or
classes in a similar way as were the records in the train set earlier. But in the
train set, one record type was the set owner and other record types were set
members. Here in the station register, the set owner record type and the set
member record type are the same. However, the set owner item (station name)
is different from the set member item (inner station name). This grouping of
equal records is called an INVOLUTED SET.

Now our database is almost ready. We only need one extra device to make it
useful. Consider the personnel file containing informatior on all the persons
working in our company.

Quite often, we want to select the record for one specific person because we, for
example, want to increase his salary. We know his name and want the rest of the
information. We would like to supply the name to an access mechanism in the
database system and to get the corresponding record back.

The device that facilitates this is the definition of a RECOFRD KEY. In this case,
we use the name of the person, which happens to be a group item. Any item or
group item can be defined to be a key to the file.

Foreman;
Office Serial Storage Area
Section A Section B Section C

Figure 2.5: Storehouse Layout

In the storehouse the railway company has at the central station, some kinds of
goods are stored in a shared area such that arriving articles are just put into the
first available place in the area. Other articles, like dynamite, animals, etc., are
always put in the same places or sections in the store house. Fach of these two
methods of allocating space in the storehouse has certain advantages and
disadvantages.

The utilization of space is probably better in the first case, but it may be
necessary to search for the different articles there. In order to reduce the search
time, the foreman saves all the delivery notes in alphabetical order and makes a
little note on them as to the location of the goods.

In the other area, on the other hand, the staff always knows exactly where to

find a specific article. But the utilization of space is a bit uneconomical. For con-
venience, the foreman saves the deliverly notes in a bunch for each section.

ND 60.127.03

We use quite similar methods for storing records in the data base. The first case
in the storehouse corresponds to the SERIAL LOCATION MODE in the data base.
Arriving records are stored in the first available space, and the values of the re-
cord key and location are stored in an INDEX TABLE, in sorted order. When the
record is to be found again, the index table is searched until the key value is
found and the location code is used to find the record.

INDEX TABLE REGISTER
KEY VALUE LOCATION
RECORDC
A "——\.\
B ‘\
C e
RECORD A
RECORD B

Figure 2.6: Indexed Register

ND-60.127.03

The other case in the storehouse corresponds to the CALCULATED LOCATION
MODE in the database. Here we divide the available storage space into a number
of boxes or BUCKETS. When a record is to be stored in this part of the data-
base, we take the key value of the record and calculate a bucket number from it.
We have chosen the calculation method such that an approximately equal
number of records will be stored in each bucket. When a record is to be
retrieved from the database, we calculate its bucket number from the key value,
go into the bucket and search it through until we find the record.

Bucket
Number:

1 Record Record Record Record Record Link

> Main area

> Qverflow
area

Figure 2.7: Buckets

Unfortunately, we cannot rely on the assumption that records will be equally dis-
tributed over the buckets. We must prepare ourselves for the case when a
bucket overflows. We do it by reserving a number of buckets to serve as
OVERFLOW BUCKETS. When we want to add a new record in a bucket that is al-
ready filled up, we make a little note in it and place the racord in the overflow
bucket.

Now that this little discussion reaches its end, you may feel you still don't know
what a database really is. But is is really quite simple. A dztabase is nothing but
well defined data and relations between data, just like our little railway company
example. A real database tends to be somewhat larger, but is nevertheless built
up with the same building blocks.

ND-60.127.03

2.2

2--9

DATA STRUCTURE

Data that are stored in the database have a certain structure, defined in the
database definition. This structure defines the name, length, and role of each
single data element. Data definition will be described in this section.

Data elements may also be related to each other due to common characteristics,
etc. Such aspects of the database will be discussed in the next section.

The structuring principles used in SIBAS are outlined in the following figures.

DATA BASE

- REALM B

REALM A
/ RECORD A -n

RECORD A-2

RECORD A-1
GROUP ITEM

ITEM ITEM ITEM ITEM

Figure 2.8.

ND-60.127.03

An Example might look like this:

TAX PAYER RECORD
IDENTITY GROUP ITEM
NUMBER ITEM
LAST NAME ITEM
FIRST NAME ITEM
ADDRESS GROUP ITEM
STREET ITEM
CiTY ITEM
CODE ITEM
REGISTRATION GROUP ITEM
DATE

Figure 2.9.

From the figures, it will be seen that SIBAS, which follows the CODASYL
terminology here, uses five different structure levels: ITEM, GROUP ITEM,
RECORD TYPE, REALM, DATABASE.

As an example, consider data concerning an employee in a company:

EMPLOYEE
NAME
NUMBER
BIRTH DATE
SALARY
JOB TITLE

The name EMPLOYEE is used to identify a record type in the data base. The da-
tabase will normally contain several such record types. Furthermore, there will be
several occurrences of each record type. If there are 1000 employees in the
company, then there will be 1000 record occurrences of the record type
EMPLOYEE in the database. A “record occurrence’ can usually be referred to
simply as a “record” with the full term “record occurrence’” being used
occasionally for the purpose of extra clarification. Experience with this class of
DBMS has indicated that it is very important for the user to distinguish clearly
between ""record type’’ and “‘record occurrence’’.
ND-60.127.03

2-11

Each record type contains a number of items. In the above example there are fi-
ve items as listed. An occurrence of this record type would consist of one value
for each of the five items. For instance, a record occurence might be as follows:

SMITH

74890

420531

43000
PROGRAMMER

The above concepts are fairly commonplace to any user versed in the practices
of commercial data processing. It must be mentioned that in SIBAS all records

of a given type are of the same length.

We will now gwve a fuller explanation of the terms we have used in the preceding
examples.

ND-60.127.03

2.2.1

222

2-12

ftems

The item in SIBAS has the same role as the elementary item in COBOL or a
variable in FORTRAN. An item declared in the schema DRL (definition/redefini-

tion language) must be designated as either INTEGER, FLOATING or
CHARACTER.

The following table indicates the correspondence between SIBAS item types and
COBOL and FORTRAN item types.

SIBAS COBOL FORTRAN
INTEGER COMPUTATIONAL INTEGER
FLOATING NOT AVAILABLE FLOATING
CHARACTER DISPLAY INTEGER ARRAY

Group Items

It may be useful to assign a name to a collection of items in a record type. In
this case, the collection is referred to as a group item. The items need not be
contiguous items in the record. The sequence of the items in the group may also
be different from the sequence in the record type. Only one level of naming is
allowed. in other words, it is not possible to define a group item which includes
another group item, and the constituents in a group item must all be elementary
items. However, an item may participate in more than one group item. This could
be used to implement multilevel groups by including all items from one or more
group iterms in a new group item.

As a special case, a group could consist of only one item. This enables the user
to define multiple names on items.

The group item provides a shorthand representation for identifying a collection of
elementary items.

"

ND-60.127.03

2.2.3

Record Types

Several items together are collectively referred to as a record type. Each SIBAS
item is associated with a single record type in the database.

Each record type must be assigned a name which is different from other names
in the schema. Furthermore, a location mode must be assigned to each record
type. The location mode is essentially a mechanism which controls where the
record is to be stored in the database.

SIBAS supports two location modes which are referred to as CALCULATION
MODE and SERIAL MODE. In the first case, the user must designate either an
item or a group item to serve as the primary record key to be used when calcu-
lating the location.

Records with serial location mode will be stored in the first available location in
the realm.

CALC LOCATION MODE

For CALC records, a standard system supplied hashing or randomizing algorithm
is used to distribute the record occurrences equally over a space on direct ac-
cess storage (see Figure 2.10). The space assigned to a record type is called a
realm. The data administrator must divide the realm into two areas called the
main area and the overflow area. Each of these two areas is further subdivided
into a number of buckets. This number must be a prime number.

— 1 RECORD 1

RECORD 2
KEY > i‘:é';gﬁw w . IreEcoRD3
"~ |RECORD n

Figure 2.10: Calc Keys

ND-60.127.03

Each occurrence of a CALC record type is then stored in a bucket in the main
area or possibly in the overflow area. The bucket number in the main area is
computed from the value of the key and the number of buckets as follows:

Key Value
= | + Remainder
Number of buckets

where | is the integral part of the quotient. The remainder is directly used as the
bucket number, and the record occurrence is stored in that bucket if there is
space available. If not, then a bucket in the overflow area is used (refer to Figure
2.11).

Such overflow buckets are accessible from the main arza bucket through a
pointer. Records are stored in the first available location of the bucket. When the
CALC key is used as a basis for finding the record, the same hashing algorithm is
used and a sequential search is made through the mairi area bucket and if
necessary also the relevant overflow bucket(s).

The data administrator must decide, when defining the CALC key item, whether
or not duplicate values of the key are allowed. If not, then attempt to store a
record which has a primary key value equivalent to that in a record of the same
type already in the realm will be unsuccessful.

ANDERSON g RECORD 1
BENGTSON
GUSTAVSON
JOHANSEN

, RECORD 2
OMAN

MERCEDES
VOLVO
VOLVO
VOoLvao
SAAB
SAAB

RECORD 3

\ \

Figure 2.11: CALC Records
SERIAL LOCATION MODE:

Records for which no CALC key is designated will have location mode of SERIAL.
Records of this type will be stored in the first available free location in the realm.
If a record is deleted, then the next time a new record of the same type is stored
in the realm, it automatically takes the space vacated by the deleted record.

ND-60.127.03

2.2.4

Search Keys and Indexes

It is possible 0 assign one or more search keys (index keys) to a record type
independent of whether its location mode is CALC or SERIAL. As in the case of
CALC, a decision must be taken on whether more than one record with the same
key value is allowed or not. Normally, at time of initial load, the user would be
advised to ensure that records are in ascending value of a primary key value,
especially if he wishes to make frequent sequential scans through these records
using the primary index as the basis for his accesses.

In fact, in some cases where the record type has a location mode of SERIAL and
there are search keys defined, it may be rather arbitrary which of the keys is
regarded as the primary key and which are the secondary keys. In practice, if one
index is more likely to be used than the others for serial processing of the
records, then that index should be regarded as the primary key, and the records
should preferably be loaded initially into the database in ascending order of the
values of this key.

Indexes are maintained in ascending order of the key values, and the records in
the realm may be processed in this sequence if required.

Level 1
RK RP
ADAM 15
Ak A ALEX e}
= Record key
A
TP= Table pointer LLEN 20
RP= Record pointer Level 2
» v/
ﬁ ADAM 11
ANNE 12— RK RP
/ EVA 13 ZNNE 2
/ CARL 13
Level 3 DON 8
RK TP / RK ki
JERRY 2.1
ADAM 1 P
RK RP
JERRY 2 " LEE 2.2
SAM 3 LOUIS 2.3 EVA 9
FRED 25
IGOR 3
RK TP
SAM 3.1 —
TOM 3.2 i
WILLY 3.3 e

Figure 2.12: Index Keys

Since both CALC keys and search keys may be group items, it is possible for an
elementary item to be used as part of several keys.

An index must be designated as either automatically maintained or manually
maintained.

ND-60.127.03

If the index is automatically maintained, then at the time a new record is stored
in the realm, the index is automatically updated by the DBCS (database control
system). If the index is manually maintained, then the programmer must include
an extra statement in his program if and when he wishes to cause the index to
be updated.

SIBAS COLLATING SEQUENCE:

There is no restriction on the composition of group items or single items which
may serve as index keys. The values of index items are treated as bit strings and
the index table is sorted in ascending order of the item valuss.

NULL VALUES OF KEYS:

Null values are represented by zeros or blanks depending on the item type, and
any item not being a key is allowed to take that value.

Key items, however, must not take a completely null value. This applies to the
calc keys, index keys, search keys, owner set items and member set items. Any
of these may be a group item, in which case it may be partially null but not
entirely null.

Any attempt to store a record which has a completely null value for a key or set
item will be unsuccessful. Any attempt to modify an item in a record already in
the database which would result in such a condition will also be unsuccessful.

INDEX TABLES — Representation of Indexes

When a record type has primary or secondary index keys, then for each key an
index is built up during initial load and maintained, where necessary, during
subsequent processing. Each index consists of a number of levels, and each level

contains a number of index tables.

The index tables must be assigned to a system realm.

ND-60.127.03

225

Realm

A realm is a storage space assigned to one record type. Often it corresponds to
a SINTRAN file, but it is also possible to store more than one realm in a file. The
realms are of two types, user realms containing data records and system realms
containing index tables, etc.

In SIBAS, all occurrences of one record type must be assigned to one user
realm. The usar realm name will also be the name of the record type. As
mentioned, system realms are used for storing levels of an index table when
either a primary index or secondary indexes are defined.

The data administrator must estimate the number of record occurrences to be
stored in each realm. Since records of the same type are of equal length, this
facilitates an estimate of the maximum size of the realm.

In the case of indexed records, the data administrator must also estimate the
space required for the index tables.

In the case of CALC records, it is necessary to regard the realm as being divided
into a primary area and an overflow area. Each of these areas is further divided
into equal size buckets. A bucket occupies one page.

ND-60.127.03

Database

For completeness, the database is identified as the collection of all records,
indexes, set types and realms which are defined in one single use of the schema

DRL.
SOURCE USERS
SCHEMA APPLICATION
PROGRAM
3

DATA DATA BASE
DEFINITION/ CONTROL
REDEFINITION SYSTEM
PROGRAM

4

0OBJECT

SCHEMA DATABASE

]

USERS

|

!
APPLICATION
PROGRAM

Figure 2.13: The Main Components of the Database

Each database has corresponding to it a source schema In addition, there exists
an object schema which is the set of internal tables generated when a source
schema is translated using the schema translator (see Figure 2.13).

DATABASE

SIBAS
SYSTEM
REALM

USER
SYSTEM
REALM

USER
SYSTEM

Figure 2.14: The Database Concept

REALM

CONTROL INFORMATION

> INDEX TABLES

RECORD
TYPE 1
REALM

RECORD
TYPE m
REALM

RECORD TYPE 1
RECORD TYPE m

ND-60.127.03

A program is normally written to process the data in a single database. However,
several users may access one database concurrently.

It must be emphasized that in SIBAS it is necessary for the program to declare
its intention to process a database by executing an explicit OPEN statement on
the database. In fact, this has the effect of opening a SIBAS system realm which
contains among other things the object schema. Each realm in the database
which the programmer wishes to process must also be opened, and this is done
using a READY statement. A system realm containing an index table to a realm
will be automatically opened when the realm is readied.

In a given installation on a given hardware configuration, there may be several

databases, each known to the operating system through the name of its system
realm.

ND-60.127.03

2.3

2.3.1

DATA RELATIONS

Search Regions

2-20

Records stored in the same realm, i.e., records with a common type, can be
grouped together in search regions. This means that all records in the realm
having a specific common property constitute a defined class of records within

that realm.

The following record classes may be handled as search regions:

— records having the same key value (duplicates allowed)
— records having key values within a specified range
— all records on the realm

e

SEARCH REGION
DUPLICATE KEY
(VOLVO)
~

——

ANDERSON
VOLVO

Tst STREET
CARPENTER

BENGTSON
VOLVO

2nd STREET
BRICK LAYER

GUSTAVSON
MERCEDES
3rd STREET
FOREMAN

JOHANSON
VOLVO

5th STREET
CARPENTER

KARLSON
SAAB

10th STREET
ELECTRICIAN

Figure 2.14B: The Search Region Concept

ND-60.127.03

SEARCH REGION

KEYS BETWEEN)

STREET—Z-S/

—

SEARCH REGION
ALL RECORDS OF
CERTAIN TYPE

2-21

A search region is established as soon as a record belonging to the correspond-
ing class is located in the database (see the description of the FIND statement).
The program may then access the other records in the search region sequential-
ly.

The search region identification is stored in a system variable called Current
Search Region Indicator, which can be referenced, saved and restored by the
program.

A search region is a “navigation” concept, used at run-time, and it is not neces-

sary to declare it at the definition time. Another concept, that of a SET, must be
declared at definition time.

ND-60.127.03

2-22

2.3.2 Sets

A set is normally a relationship between two or more record types. In each set,
one record type must be designated as the owner and each of the others is then
a member.- A single member set type is a set where the member records all are
of the same record type, while a multi-member set type is a set where the mem-
ber records are of more than one record type (see the following figures). There is
also a third set type called an involuted set type which does not fall into either of
these two ciasses and will be discussed separately.

SALESMAN RECORDS CUSTOMER RECORDS

CALC INDEX

SALESMAN SET OCCURRENCE A CUSTOMER \
% A 1

UNIQUE
CUSTOMER

2

CUSTOMER
3

rd

TN
SALESMAN CUSTOMER \
B 4
SET OCCURRENCE B
CUSTOMERY (|} 7
\ 5
pd
e
QOften Hlustrated as:
SALESMAN
CUSTOMER

Figure 2.15: Single Member Set

ND 60.127.03

2--23

SALESMAN RECORDS CUSTOMER RECORDS PROSPECT RECORDS
SALESMAN CUSTOMER PROSPECT
A 1 1
CUSTOMER PROSPECT
2 2
CUSTOMEH PROSPECT
3 3
\\
PROSPECT
- 3
SET OCCURRENCE A
\\—/

Often illustrated as:

SALESMAN

P el

CUSTOMER PROSPECT

Figure 2.16: Multi-Member Set

ND-60.127.03

23.2.

224

SET ITEMS

When defining a single or multi-member set type in S'BAS, it is first necessary
that a CALC or index key is defined for the owner record type. Furthermore, the
key must be defined such that duplicate values of the key are not allowed.

To be able to define a single member set type, there must be an item {element-
ary or group) in both the owner record type and the member record type which
“corresponds'’ in length and type, but not necessarily in name. In the case of
group items, there should normally be correspondence in the constituent
elementary item types, although it would be possible for an elementary character
item in the owner to correspond to two or more elementary character items in
the member. The item in the owner record type is referred to as the owner set
item. The item in the member record is referred to as the member set item.

The owner set item must be defined as a CALC or index key for which duplicates
are not allowed. The member set item may or may not be defined as CALC or
index key. Duplicates will generally be aliowed for member set items.

In the case of multi-member set types, there must be a member set item in each
member record type which bears the relationship as described above to the
owner set item. In addition, the member set item in each member must have the
same name as in all the other members in the set type.

In all cases, the choice of an item to be an owner set itam or a member set item
imposes no restrictions on its use as primary key or search key.

SET OCCURRENCES

Each set type in the database will have a number of set occurrences {more
simply referred to as sets). Fach set contains one occurrence of the owner re-
cord type and zero or more occurrences of each member record type. Sets with
no members are called empty sets.

For a given set type, there are in the database as manv sets as there are occur-
rences of the owner record type.

It is the set item which determines how member occurrences belong to a set. If
the value of the member set item for a set type has the same value as an owner
set item, then the member record is "connected” to the owner's set. At what
time this connection will be established depends on the “storage class’ of the
set type (see Section 2.3.2.4).

ND-60.127.03

2.3.2.3

2-25

CHAIN REPRESENTATION OF SET TYPES

The physical representation of a set occurrence in the data base is achieved by a
chaining technique. This means that the owner record in the set contains a
pointer to the first member record in the set which in turn contains a pointer to
the next recorc and so on. The last record in the set points back to the owner.
The order of the member records in the set is generaily determined by “time of
arrival”. A chain representation of this kind is essentially uni-directional.
Problems can arise in long chains when a record is deleted as it is necessary for
the DBCS (database control system) to circumnavigate the whole chain in order
to modify the pointer in the record prior to the one deleted.

To avoid problems of time consuming deletes in long chains, it is possible and
often advisable for the data administrator to designate a set type with double
finks, which means that each record in each occurrence of the set type contains

both a "next’” pointer as above and also a “'prior” pointer in the opposite direc-
tion.

Defining a set type with double links does not add any extra processing capa-
bility, but it does have the effect that certain statements which depend on the
set type relationship may be executed more rapidly.

~

MEMBER MEMBER

N

SINGLE LINK CHAINING

vemser % 7 memeen

DOUBLE LINK CHAINING
Figure 2.17: Chaining of Records

ND-60.127.03

)

Hustration of SET TYPE and SET OCCURRENCE:

To clarify the concepts of set types and chains, Figure 2.18 illustrates a single
member set type. Figure 2.19 illustrates two occurrences of this set type. Figure
2.20 illustrates how the same sets would appear if the set type in Figure 2.19 had
been declared with double links. In these figures, the convention of using a
rectangle to represent a record type .and a circle to represent a record occurr-
ence is followed.

in the example illustrated, the set item could be BRANCH {D which would then
be found in both record types BRANCH and CUSTOMER. All occurrences of
CUSTOMER having the same value of BRANCH ID would then be chained to the
BRANCH record having the value for the item BRANCH ID.

BRANCH

HAS 4

CUSTOMER

Figure 2. 18: Logical Relationship

BRANCH
1

<c3

Figure 2. 19: Occurrences of HAS with Link to Next Only

BRANCH
1

BRANCH
5

Cc2

Figure 2.20: Occurrences of HAS with Link to Next and Prior

ND-60.127.03

2-27

Involuted Set Types:

In SIBAS it is possible to have a special set type in which the owner record type
and the member record type are the same. This special set type is referred to as
an involved set type because the set relationship is involuted {or turns on itself).

An involuted set type may only be defined if the set item which designates
ownership and the set item which designates membership are different in name
and correspond in type and length. Both items are of course in the same record
type.

This involuted set type (which is not supported in the CODASYL Database facility
proposal) is useful for example in a Bill of Materials application. Graphically, an
involuted set type is depicted as follows:

PART

\

Figure 2.21.

CONTAINS

In the example, the record type PART might contain two items, PART NO. and
CONTAINED IMN which should be defined with the same length and type. PART
NO. will be the owner set item and CONTAINED-IN will be the member set item.

If a given assembly, X, contains three identical subassemblies Y, Z and Q then
that part of the overall structure may be depicted as in Figure 2.23.

ND-60.127.03

NAME IS
UNIQUE KEY

MEMBER SET ITEM
NOT THE SAME AS
OWNER SET ITEM

Figure 2.22: Involuted Set

PERSON RECORDS

/ NILSSON
PRESIDENT

JOHANSSON
MANAGER
NILSSON

/ MANSSON

MANAGER
NILSSON

RSON

ASSIST. MANAG
MANSSON

SVENSSON
OFFICE SECRETARY
PERSON

N T

y

PETTERSSON
SECRETARY
PERSON

ND-60.127.03

SET OCCURRENCE
NiLSSON

SET OCCURRENCE
MANSSON

SET OCCURRENCE
PERSON

OWNER PARTNO. =X
CONTAINED IN=7?
MEMBERS Z
PARTNO.=Y PARTNO.=2 PARTNO.=Q
CONTAINED IN = X CONTAINED IN=X CONTAINED IN =X

Figure 2.23: Involuted Set Type

In Figure 2.23, each of the four circles represents an occurrence of the record
type PART. The owner set item (PART NO.) identifies each record occurrence
uniquely. The member set item (CONTAINED ID) identifies the owner record of
each set occurrence.

ND-60.127.03

2.3.24

2-30

STORAGE CLASS

It was mentioned in Section 2.3.2.2 that the time an occurrence of a member
record is connected to its associated owner occurrence depends on the storage
class.

Storage class is a property of each set type. The storage class must be declared
as either automatic or manual. If the storage class is automatic, then a member
occurrence is automatically connected into the appropriate set occurrence at the
time the record is stored in the database, using a DML STORE statement.

If the storage class is manual, then the connection is not made when the STORE
is executed, but the programmer may cause the connection to be made by using
a CONNECT statement. lrrespective of storage class, a record may not be con-
nected into any occurrence of a set type into which it is already connected;
furthermore, it may be connectad into no more than one occurrence of any given
set type.

In SIBAS, storage class is a property of a set type. This applies to a singie
member set type, a multi-member set type and an involuted set type. A record
type may of course be defined as member of several automatic set types and, at
the same time, of several manual set types.

Storage class is regarded as being of sufficient importance in the structure of a
database to merit a special graphic formalism to be used when depicting the
structure of the database graphically. A continuous line is used to illustrate an
automatic set type relationship and a dotted line to represent a manual set type
relationship. The various possibilities are indicated in Figure 2.24,

It must be noted that, in SIBAS, the storage class also has an effect on whether
or not it is permissible to disconnect a record from a set. If the storage class is
automatic, then this is not permitted, although the record would be moved from
one set to another if the value of the member set item changes. If the storage
class is manual, a record may be disconnected from a set using a DISCONNECT
statement.

Finally, it should be noted that it is possible to order the members of a set type
which is manually maintained. This is done by using the CONNECT BEFORE or
CONNECT AFTER statement which will link the record into the set occurrence
before or after an already existing record in the set occurrence.

ND-60.127.03

Automatic Single Member

/ EFG

2-31

Automatic Multi-Member

involuted Automatic

M
\)MM

Two single rnember set types,
one automatic, one manual.
Set types have same member,

O

.._._6....

Manual Single Member

P
e N
7 MK ~
Z S
K
Manual Multi-Member
N L
\, NN
~_7
Involuted Manual
\‘Q
T
~ TuU
A\\
U

Two single member set types,
one automatic, one manual:
member in one is owner in other,

Figure 2.24: Examples of Possible Set Types

ND.60.127.03

Note on Set Occurrences:

As in the CODASYL proposal there is one important property to note about the
way in which a member record can be connected to a set. If the record type is a
member of a given set type, then an occurrence of the record type may be con-
nected into no more than one occurrence of that set type. That is, a member
may only have one owner in one set occurrence. The record type could, however,
be defined as a member of other set types (Figure 2.24).

Removal Class:

In SIBAS the removal class will depend on the option given in the ERASE state-
ment. This is discussed in more detail under the definition of this statement.

ND-60.127.03

24

2.41

2411

2-33

DATA MANIPULATION

The CODASYL Database Facility approach to processing a data base calls for the
programmer to be able to enter the database from outside and to navigate his
way around inside. The SIBAS approach to search keys makes it possible to ac-
cess all records from outside in several ways and also to conduct searches in
certain regions within the database, relative to a previously found record. The
fact that several users access the database concurrently necessitates some con-
trol mechanism. This is discussed in more detail in this chapter.

Access Principles

GENERAL

With a SIBAS database, it is possible for a program to make two kinds of acces-
ses to the database. The first class is called an “out of the blue'" access. The
programmer provides the value of a key, and a single record is found in the data
base whose key value corresponds to the key value specified.

The other class of access is called a relative access, and the record found always
has some relationship to one found previously — normally the record most
recently found.

It must be emghasized that, since the database is in direct access storage, both
classes of access are essentially “direct’” in the normally accepted meaning of
the term. The first access to a database which is made in any program must
necessarily be an “out of the blue” one. However, a program will normally con-
tain a mix of statements from both classes.

The statement which is used to locate (that is, confirm the presence of) a record
in the database is the FIND statement. Numerous options of FIND are available
and may be listed as follows:

1. FIND based on calc key or index key (this could define a search region).

2. FIND first or last member record in a set occurrence.

3. FIND next or prior member record in a set relative to a record recently
found.

4. FIND first record in a realm (which defines a search region).

5. FIND next record in a search region.

6. FIND owner occurrence relative to & member occurrence recently found.

ND-60.127.03

2-34

The execution of a FIND statement may be successful or unsuccessful. If
successful, a record is located, and an indicator is se: to point to that record,
called the CURRENT OF RUN-UNIT indicator. This means that further DML or
host language type actions can be performed on that record. However, no host
language statement such as the COBOL MOVE or a FORTRAN ASSIGN may be
meaningsfully executed on the data in the record until a successful GET state-
ment has been executed.

A FIND may be unsuccessful. In the case of an out of the blue access, for
example, this may mean that there is no record of the type sought in the data
base whose key values correspond to those specified in the FIND statement. The
relative classes of FIND may be unsuccessful for a variety of reasons which are
defined in detail in another chapter.

If the FIND, or any other statement, is unsuccessful, then a Database Exception
Condition (DBEC -~ see Section 7.3) is set. It is the responsibility of the
programmer to be fully aware of the database exception conditions which may
occur in the course of execution of his program and to build in appropriate tests
and courses of action in each case.

LOCATE THE RECORDS DATA BASE GET DATA
RECORD 1
= /—N\\\\
{
DIRECT ———>y | |RECORD2 ! —=> SELECTED DATA
FIND WITH KEY | | ELEMENT
: I
| l
| l
RELATIVE FIND | |RECORD3 |
z [
| l
!
|
| | |
| I i
‘ |
l 1
| l
| |RECORD 4 !
! |
! |
(N Y
SET OR SEARCH
REGION RECORD m

Figure 2.25: Access Ways
ND-60.127.03

24.1.2

2--35

CURRENCY INDICATORS

Different programs accessing a SIBAS database may execute concurrently. It is
also possible that the same program may be executing two or more times
concurrently with different parameter values. For convenience, each executing
instance of a program is referred to as a run-unit.

As already indicated, a run-unit in the course of its execution may need to find a
record relative to some recently found record that is found in the same run-unit.
The way in which both the run-unit and the DBCS keep track of where in the
database processing has reached is by means of two currency indicators. in
SIBAS, the two indicators are referred to as:

CURRENT OF RUN-UNIT INDICATOR (CRUI)
CURRENT SEARCH REGION INDICATOR (CSRI)

CSRI
AN

o¥oNoNoNo¥o

CRUI
Figure 2.26: lilustration of CSRI and CRU/!

Current of Run-unit Indicator (CRUI)

The CRUI is always updated after the successful execution of each FIND or STO-
RE statement. The content of this currency indicator is always a unique identifi-
cation of a record in the database.

This record identification is a quantity which distinguishes one record occurrence
in the database from all others. It is not based on the data values in the record
but rather on the physical address of the record in the data base. The physical
address of a record may of course change during the life of a run-unit, but the
CRUI will then be updated accordingly.

The CURRENT OF RUN-UNIT INDICATQOR is maintained by the exeuction of the
FIND and STORE statements. Several other DML statements actually operate on
the record designated by the CRUI, but only successful execution of FIND or
STORE will update CRUI.

Temporary-Database-Key

It is possible for a program to ‘remember” a CRUI in a temporary-database-key.
The CRUI could then be referred to directly from the same run-unit by use of the
temporary-database-key, even if another record is current. If the user remembers
more than one CRUI, the system will build up a remembered list where the
temporary-database-keys are used to identify the entries in the list. Each time a
REMEMBER statement is executed a new entry is added to the list and the
entries are removed from the list by executing the FORGET statement.

ND-60.127.03

Any statement which operates on a record identified by the CRUI can equally
well operate on a record which is identified by a temporary database key. For
example, it is possible to MODIFY a record identified by a temporary-database-
key without making it CURRENT OF RUN-UNIT first.

If a record which is identified by a temporary-database-key is moved physically
in the realm, the address in the temporary-database-key, and all other entries in
the currency and temporary-database-key lists for all concurrent run-units referr-
ing to this unique record will be updated accordingly.

Note that a temporary-database-key may only be used during the 'life of a
run-unit”,

Current Search Region Indicator (CSRI)

An “out of the blue” access to the database may have the effect of setting the
CSRI to a new search region. A search region can be cefined as a collection of
records which have something in common. It can be any of the following:

All records with same value of CALC KEY (duplicates allowed).

All records with same value of an INDEX KEY (duplicates allowed).
All records in a realm (i.e., of same type).

All records whose index key values are between defined limits.

L -

The setting of the CSRI depends partly on the form of the FIND statement and
partly on the key specified in the FIND. The setting of the CSRI to the four types
of search regions given above is done in the following way:

FIND using a CALC key for which duplicate values are allowed.

FIND using an INDEX key for which duplicate values are allowed.

FIND first in realm using the name of the realm.

FIND between limits giving the upper and lower limit of an index key item.

Hw -

These four forms of the FIND statement are the only possible ways of changing
the value of the CSRI.

As with the CRUI, it is possible to "remember’” the contents of the CSRI in a
temporary search region indicator. The system builds up a remembered list for

temporary search region indicators in the same way as for temporary database
keys.

Also, either the CSRI or a remembered temporary search region indicator may be
used in accesses to the database which are in the class: “relative to some
previously found record’’.

ND-60.127.03

2-37

The Use of CRUI and CSRI

At the beginning of the execution of any run-unit, both the CRU| and the CSRI
are regarded as undefined. Hence, the first FIND statement to be executed must
be one which does not use these indicators, but which does in fact set them.

When a FIND NEXT in search region relative to some previously found record is
executed and if CSRI is used to identify the search region, the search region will
be the one defined in the latest executed FIND of one of the different forms, i.e.,
the current search region.

Furthermore, it should be noted that if the current record has been ERASED,
CRULI will be undefined. If the current record has been MODIFIED, CRU! will still
be defined, but the record it is identifying may have been moved out of the
current search region. This situation will be illustrated by an example.

In the example above, a FIND using a key (INDEX or CALC) for which duplicates
are allowed has been executed. The current search region will be defined as all
records with the same value (B} of the key, and the current record will be the
first of these records. If a FIND NEXT in search region using CSRI and CRUI is
executed, the rext record with value B on the key will be found and made the
current record, and CSRI will remain unchanged. If the key is then MODIFIED in

this record, the record will be moved out of the current search region, but it will
remain the currant record.

A FIND NEXT using CSR} and CRUI in this situation will have no meaning. If the
user wants to FIND the third record with value B on the key, he should execute
REMEMBER for the first record using a temporary-database-key, and then
perform a FIND relative to this record. It should be noted that this situation only
occurs if the key used to define the search region has been MODIFIED.

ND-60.127.03

2.4.2

2.4.2.1

Connecting and Disconnecting, Inserting and
Removing

CONNECTING AND DISCONNECTING

Connecting and disconnecting records to sets is normally done automatically by
SIBAS through execution of STORE, MODIFY or ERASE statements.

Manuelly, however, it is possible under certain circumstances to connect a
record into a set and disconnect it from a set. In SIBAS, it is possible to use
similiar facilities to update an index. Each is described separately.

Connecting To and Disconnecting from a Manually Maintained Set

If a record type participates in a set type as a member, then its occurrences may
(at any time during the life of the database) be either connected or not con-
nected into a set of that set type. When the connection actually takes place
depends on the storage class of the set type.

If storage class is automatic, it means that the record will be connected at the
time the STORE is executed. This means that there must be an occurrence of the
owner record type in the database whose owner set item values correspond to
the member set item values in the record being stored. If this is not the case,
then the record cannot be stored, and hence not corinected. However, if the
attempt to store the record does not include an attempt to store the member set
item (it may be a group item), then the store may be successful, if all other
restrictions are satisfied, but the connection into the set item is not made. The
member set item value will then be undefined. A subsequent modification of
such a record which provides a value or values for the complete member set
item would cause the connection to be made. Considerable care is called for in a
multi-user environment when allowing this situation to occur.

If the storage class of the set type is manual, then no connection is made when
the record is stored. However, the CONNECT statement may be used to connect
a record into the set of the set type in which it is a member. Again there must be
an owner in the database with an equal valued set item for the connection to be
successful. Exactly where in the set the record is connected depends on the
option used. It is possible to connect it at the end of the set {i.e., last in order of
the link to next) or else adjacent to some previously found record in the set. in
this case, it can be connected before or after the previously found record. If the
storage class is manual, then it is also possible to DISCONNECT a record from a
set into which it previously had been connected.

The various alternative actions which can take place when a STORE, CONNECT
or DISCONNECT is executed are summarized in the following table. The storage
class is taken into account, as is also, for each storags class, the value of the
member set item (MSI) with respect to owner set item values (0Sl) already in
the database.

ND-60.127.03

2-39

It must be noted that the STORE statement operates on a record occurrence
built up in a record area in core by the programmer. The programmer must
designate which of the items in the record type he intends to provide values for.
The CONNECT and DISCONNECT act on a record which is already stored in the
database, and it is the value of the member set item there which may influence
the success or failure of the statement.

A DISCONNECT or a CONNECT or both may take place implicity during the
course of execution of a MODIFY if the member set item values are changed.
What exactly happens depends also on the storage class of the set type and also
on whether or not the member record was already connected into some set. The
complete picture is summarized in the following table, which examines 12
situations depending on storage class of the set type, whether the member
record was previously connected or not and the relationship of the new member
set item values to owner set item values already in the data base. In the cases
where the member was in fact connected, it is only the set item values of other
owners which are of interest.

ND 60.127.03

2-40

Storage
Class Situation STORE CONNECT DISCONNECT
MSI = OSI (some) Y (connect)
MSI + OSI (some) N
Automatic MSI not completely | Y (no connect) Not applicable , Not allowed with
given in record area automatic
MSI null in member | N null member set
record in database item value not
allowed
MSI = OSl (some) Y Y
MSI + OSl (some) N Not applicable
Manual MSI not completely |bAlways successful.

given in record area

MSI null in member
record in database

MSI not examined.

Not applicable

Not applicable

N

Not applicable

Explanation:

MSI means member set item value
OS! means owner set item value

Y means execution should be successful if no other conditions prevent it
N means execution will not be successful

Table 2.1: Using the STORE, CONNECT, DISCONNECT Commands

ND-60.127.03

Modify member set item values

Storage Previous DISCONNECT]CONNECT Net result
Class State Situation from old 10 new of MODIFY
new MSI = NULL Possible but |Not possible| Fail
not done
Connected| new MSI + 0OSIi Possible but |Not possible} Fait
(other than previous owner) not done
nen MS| = 0OSI Y Y Success
(other than previous owner)
Automatic
new MSI = NULL Not applicablgfNot possible | Fail
Not
connected | new MSI + OSI (any in Not applicablefN Fail
daabase)
new MSI = OSI {any in database)] Not applicablelY Success
new MSI = NULL Y N
Connected|new MS!I + 0S| Y N Success
(other than previous owner) Vincluding
DISCONNECT
new MIS = 0OSI Y N
{other than previous owner)
Manual
new MSI = NULL Not applicablelN
Not
connected |new MSI + OS! (any other) Not applicable|N rSuccess
MSI not
examined
new MS! = 0SI (some) Not applicable|N
Explanation:

MSI means member set item values
OS! means owner set item values

Y means action performed unless MODIFY fails for other reason
N means action not performed

Table 2.2: Using the MODIFY Command

ND-60.127.03

2.4.2.2

243

2--42

INSERTING INTO AND REMOVING FROM AN INDEX

If there are one or more index keys (search keys) defined for a record type, then
the data administrator must decide when defining the schema whether the
indexes are automatically maintained or manually maintained. For completeness
and consistency it must be emphasized that when a record type has a location
mode of CALC, the calc access mechanism is of nacessity '‘autornatically
maintained”’, but the data administrator must not define this for CALC key items.

Returning to indexes, the concept of an automatically maintained index is almost
completely analogous to an automatic set type. The "insertion’’ is normally made
when the STORE is executed, but it depends on the value of the index key item
or search key item. It also depends on whether the key item is named in the list
of items to be stored. If, because of the omission of these items from the list,
the index is not automatically updated at time of STORE, it will be autoratically

updated if the index key item in this record occurrence is given a value later
{using MODIFY).

A manually maintained index is also analogous to a manual set type. It is possi-
ble to insert and subsequently to remove a record from an index by using the
INSERT or REMOVE statements. The value of the key item is important in a
similar way to the importance of the member set item of the manual set type.

In the case of both automatically and manually maintained indexes, the data
administrator must decide whether or not to allow duplicate values of the key
item in the index. If duplicates are allowed, there is never any problem about
inserting a record with non-null key values into an index. If duplicates are not
allowed, then whether an INSERT or, in the case of automatically maintained
index, a STORE, is successful or not depends on the absence or presence of an
entry in the index with the same key value as the new record.

Concurrent Processing

In SIBAS considerable attention has been given to concurrency problems. The
philosophy has been to avoid deadlocks and associatad costly logic at the
expense of some few restrictions. There are four levels of protection between
concurrently executing run-units:

Database reservation
Realm protection mode
Record lock
Notification of change

BwwN e

ND-60.127.03

2.4.31

2.4.3.2

DATABASE RESERVATION

A run-unit may reserve/release SIBAS, preventing any other run-unit from
accessing SIBAS during the duration of the sequence enclosed by reserve and
release. This is a very effective method of preventing interferences between
concurrent run-units, but it has its drawbacks. The sequences must be short and
cannot contain terminal input/output.

The ACCUMULATE calls are examples of this method. The possibility given 1o
the user of writing so-called "MACRQ’'s which are executed uninterrupted is
another example.

REALM USAGE MODES AND REALM PROTECTION MODES

At the time a run-unit executes a READY statement, the programmer is required
to declare the way in which he intends to use the realm and at the same time
how he wishes his run-unit to co-exist with other run-units using the realm.
These two factors are called the usage mode and the protection mode
respectively.

SIBAS supports three realm usage modes as follows:

RETRIEVAL (FIND, GET)
LOAD (STORE, CONNECT, FIND, GET)
UPDATE (ALL)

and two realm protection modes:

NON-PROTECTED (other run-units may update the realm concurrently)
EXCLUSIVE UPDATE (no other run-units may perform update or connect in
realm, but may retrieve records in the realm)

When a run-unit readies a realm in usage mode RETRIEVAL, the realm will be
available to th2 run-unit for execution of FIND and GET statements only. Usage
mode LOAD ellows the user to perform STORE and CONNECT in addition to
FIND and GET. Usage mode UPDATE includes use of all SIBAS statements on
records in the reaim.

When protection mode EXCLUSIVE UPDATE is given for a realm, concurrent run-
units will be restricted to perform FIND and GET statements on the reaim {i.e
retrieval only).

.

When a realm is readied for "NON-PROTECTED" use, concurrent run-units may
update, load and retrieve in the realm.

ND-60.127.03

2433

2434

244

RECORD LEVEL LOCK OUT

In the case when a realm is readied for "NON-PROTECTED"' use, it is possibie
for the programmer to lock individual records. This is necessary if the program-
mer will ensure that a record or a group of records are not updated while he is
using them. (Protection mode of EXCLUSIVE UPDATE avoids this problem by
focking out the whole realm for other run-units which intend to update it.)

The record level lock out is imposed using a LOCK statement. The LOCK state-
ment can be used to lock a single specified record cr a group of specified
records. In the latter case the LOCK statement will only be successfully executed
provided that a/l the desired records are simultaneously available. The criterion
for a record to be available is that it is not concurrently locked by any other
run-unit. This restriction is necessary to prevent deadlock situations.

When a run-unit has successtully executed a LOCK staterment, all the locked
records must be released by performing an UNLOCK statement before another
LOCK statement can be executed. This restriction is necessary if deadlock is to
be avoided.

NOTIFICATION OF CHANGE

The record level lock out enables a programmer to ensure that a record or a
group of records are protected against concurrent run-units. But a programmer
might find it too restrictive to lock records, or records might be modified, erased,
etc. during the time it takes to locate all the records the programmer intends to
lock simultaneously in a LOCK statement. To solve th:s problem, the current
record of a run-unit and all the records a run-unit has remembered (i.e., all
records on the remembered list), are always in what is called extended monitor
mode. If a record has been modified, erased, connected or disconnected by
another run-unit while it is in extended monitor mode, a warning will be issued to
the run-units which have the record on their remember list. The warning will
have the form of a DBEC (Database Exception Condition), which wili have a
specific value depending on what other run-units have done to the record, and
what the present run-unit is trying to do. The programmer will then have to take
action according to the DBEC. The DBEC could be:

Record has been connected or disconnected

Record has been modified

Record has been erased

Record is locked for exclusive update by concurrent run-unit
Record has been inserted in or removed from an index
Record’s physical location on the database has changed

AN o e

ND-60.127.03

244

245

Privacy System

SIBAS supports two levels of privacy.

1. Privacy on database level
2. Privacy on record occurrence level

The privacy checks performed on all levels use a password supplied by the
run-unit to check if the run-unit has authority to carry out the intended operation.
All privacy checking in SIBAS is performed at run-time and it is therefore possi-
ble to redefine the passwords as often as desired.

A run-unit supplies the run-unit's password when the database is opened. This
password remains the run-unit's "current password” until modified using the
CHANGE CURRENT PASSWORD statement. This special statement may be used
to change the run-unit’s current password whenever necessary.

The table below shows how privacy restrictions on a database are defined, how
and when passwords may be defined and modified, and when the privacy checks
are performed by the SIBAS run-time control system (DBCS).

Privacy How Privacy Restr. How Valid When Passwords

Level s Defined Passwords are: are Checked
Defined Changed

Database using DBM using DBM at database open

module module

Record using schema re- |when a recordjwhen a recordwhen run-unit

occurrence | definition language | occurrence is occurrence is jwants to modify,
stored modified delete or get

items

The password is of the same length and type as used for definition of data item
names for the installation.

ND-60.127.03

2.4.41

2442

2--46

PRIVACY ON DATABASE LEVEL

As indicated above, database privacy restrictions and pesswords are defined by
use of the Database Maintenance Module (collection of utility programs).

The password is given as a parameter in the OPEN DATABASE STATEMENT.

There is a limit to the number of times a run-unit unsuccessfully may try to open
the database.

PRIVACY ON RECORD OCCURRENCE LEVEL

It is possible with SIBAS to define privacy items on the.record occurrence level.

This privacy item is stored together with the record. For this reason, the
definition of the privacy item which will contain the value of the record
occurrence password has to be part of the record type description. Privacy
restrictions on the record occurrence level must therefore be defined using the
Definition/Redefinition Language. Record occurrence passwords are considered
as a special data item type just as other items may be of type INTEGER or
CHARACTER.

The privacy item is given a value in the same way as other items in the record,
when the record is stored or modified (see Figure 2.27).

DATA \

MANIPULA—
TION LANGU-

AGE

|
|
[
] ITEM1 | ITEM2 | ITEM3 |ITEM4 [PRIVACY ITEM
e —————

STORE OR = = -C = =X X X
MODIFY !

Figure 2.27: Giving Value to Privacy ftem

Like other items, the privacy item need not be given a value when the record is
stored. The privacy item will then be set to a null value by the DBCS. A record
for which privacy on record occurrence level is defined, but with null value on
the privacy item, may be manipulated as if no privacy item was defined for that
record type.

The privacy check is performed when a run-unit tries to retrieve information from
the record (the GET statement) and when a run-unit tries to modify or delete the
record or its set membership. Note that no restriction is put on the use of FIND
statements.

ND-60.127.03

2-47

2443 SUMMARY OF THE SETTING OF CURRENT PASSWORD

Initially the current password is set for a run-unit when the database is opened
{see Figure 2.23). Unless a CHANGE PASSWORD is performed, the value of cur-
rent password will remain unchanged. When a READY REALM is performed, cur-
rent password must match a password which is defined for the desired mode of
operation on the realm. If the run-unit performs a record manipulation statement
on records where the value of the record lock is different from the realm pass-
word, current password for the run-unit must be changed before the
manipulation statement is successfully executed.

OPEN DATA — CHECK

BASE [~_PASSWORD
GIVE PASSWORD| PASSWORD NOT VALID

DATABASE OPENED

-
| CHANGE CUR - |
I RENT PASSWORD
| IF NECESSARY !

PERFORM
MANIPULATION

' STATEMENT ON
RECORDS
CHANGE
CURRENT HECK
PASSWORD P ASSWORD PASSWORD >
NOT VALID i

RECORDS MANIPULATED

Figure 2.28: Use of Current Password

ND-60.127.03

2—-48

3.1

DEFINITION/REDEFINITION
LANGUAGE (DRL)

INTRODUCTION

A SIBAS database must be defined before any data may be loaded in it. A
definition is the process of producing an internal representation of the schema,
the object schema, from the source schema written in a COBOL like syntax. A
redefinition is the process of amending the object schema, and making the
changes on thz database.

Experience with all DBMS to date has indicated the importance of being able to
redefine the database when new requirements are identified. It is a widely
recognized objective that this redefinition should be possible without causing
unnecessary modification to the programs, which have been written to process
the database as initially structured. The degree to which a DBMS can meet this
objective is essentially a measure of the degree of data independence offered by
the DBMS.

With SIBAS, the same language is used to define or redefine a database. The
statements (directives) provided may be classified in 3 categories:

1. creations the NEW ... statements
2. deletions the DELETE ... statements
3. changes the CHANGE ... statements

Each of these statements will be described in detail later in this chapter.

The DRL statements available are:

START INITIATION first statement of an initiation (definition) run
START REDEFINITION first statement of a redefinition run

END last statement of a run

NEW OS-FILE adds a SINTRAN file to the database

NEW SYSTEM REALM defines a new system realm

NEW SERIAL REALM defines a new user reaim with location mode serial
NEW CALC-REALM defines a new user realm with location mode CALC

and the corresponding CALC key

NEW ITEM defines a new item in an existing or new record
type
NEW GROUP defines a new group item in an existing or new

record type

ND-60.127.03

NEW SET

NEW INDEX

DELETE SET

DELETE INDEX

DELETE ITEM

DELETE GROUP

CHANGE SYSTEM-REALM

CHANGE SERIAL-REALM

CHANGE CALC-REALM

CHANGE SET

defines a new set type in the database

adds the index key property to an existing or new
item, and defines the storags of the index table

removes a set type from the database

removes the index property from an existing item
and deletes the corresponding index table

deletes an item from an existing record type

removes a group item definition from an existing
record type

changes the definition of an existing system realm
changes the definition of an existing user realm
with location mode serial, or changes the location
mode from CALC to serial

changes the definition of an existing user realm
with location mode CALC, or changes the location
mode from serial to CALC and defines the corres-

ponding CALC key.

changes the definition of an existing set type

ND-60.127.03

3.2

HOW THE DEFINITION/REDEFINITION MODULE
WORKS

The DRL module requires exclusive use of the whole database and accesses the
realms directly without using a SIBAS process at all.

The functions of the statements are to create and update the object schema and
perform the corresponding actions on the database. A documentation of the
database may also be produced as shown in Figure 3.1.

END—"'M-]

-

INPUT FILE
W STEP1
SYNTAX
CHECK
\
&\ SYNTAX ERRORS
CONSISTENCY OF
NEW SCHEMA \\
*
SCHEMA CONSISTENCY
$ STEP 3 ERRORS
C?;‘:‘SIEDNDC:TA __tw DATA CONSISTENCY
. ERRORS
5§ ASE o
¢) ¢ DOCUMENTATION OF
STEP 4 THE NEW DATABASE
UPDATE OF OLD
DATABASE 1
4 LIST FILE
DRL MODULE
OBJECT SCHEMA OTHER
FILE DATABASE
FILE
OTHER
DATABASE

FILE

OATABASE FILES

Figure 3.1: The Data Definition and Redefinition Module

ND-60.127.03

34

When the DRL module is used, it requires the exclusive use of the database files.
Definition:

The SINTRAN files on which the database will be initiated must have been
created before the DRL module may be used.

A complete example of a DRL run is shown at the end of this chapter. It must be
noted that if there are CALC realms, the DRL module must preformat them (this
operation may take time).

Redefinition:

When the DRL module is used for redefining a database, two modes of oper-
ations are available, the test mode and the production mode. When running the
test mode, only the three first steps will be executed (see Figure 3.1). In
production mode, all the steps will be executed. It must be noted that some
apparently minor amendments might result in large computer resource usage. As
a good practice, take a full back-up copy of the database before you run a
redefinition. An example of a DRL run for redefinition is shown at the end of this
chapter.

ND-60.127.03

*3.3

3-b

GLOBAL RULES

Syntax

Statements must be between columns 1 to 72 otherwise the DEF/REDEF module
truncates.

The syntax of the definition and redefinition language is sentence oriented, just
like COBOL. It means that all statements consist of a series of one or more
words terminated by a period "".", the period indicating the end of a statement. A
statement may begin anywhere in a line and may continue on any number of
lines. However. a word cannot cross a line boundary. Words in a sentence may
be key words or parameters. Key words may be abbreviated, parameters cannot
be abbreviated. The parameters may be names or numbers.

A line starting with asterix ""*"’
and ignored.

in column one will be treated as a comment line

The syntax is described with the following conventions:

ANY-STRING ANY-STRING is a key word which must be present
ANY-STRING is merely a noise word which helps document the

input, but may be omitted.

<any-name-or-value > "any-name-or-value' is a parameter.

I <realm-name> ! one of the two alternativesmust be given: either the
! KEY ! parameter “realm-name’’ or the key word "KEY",
(NOT) the key word NOT is optional

Statement Sequence

A DRL input sequence must start with the START statement and end with the
END statement or EXIT.

The sequence of the other statements is generally free, but when a statement
refers to an existing name, the name must have been previously defined. For
example, the statement

NEW SYSTEM-REALM <realm-name> OS-FILE <file name> ...

defines a new “"realm-name” but refers to the "“file-name"".

Names

SIBAS recognizes a number of names; such as database name, set name, item
name, etc. Each name in SIBAS must contain between 1 and 8 alphanumeric
characters. No embedded blanks are permitted, but terminal blanks are. The first

character of a 5IBAS name must be alphabetic.

ND-60.127.03

Abbreviation Lookup

All key words (not parameters) can be abbreviated. However, ambiguity is not
handled. The first match is always used.

Numbers

In some of the statements, the length of a record expressed as a number of
computer words must be given. On the ND-10 or ND-100, a computer word is ta-
ken as 2 bytes (16 bits). On the ND-500 a computer word is 32 bits, but in format
descriptions in this manual «word» means 2 bytes (16 bits) also for the ND-500,
to make f.i. the same schema run on all ND-machines. See also 4.3.

Additions to a Schema

The most common kind of definition or redefinition which would be performed is
the addition of new structural components.

Changes to a Schema

Many changes can be performed on an existing schema. In the CHANGE state-
ments, most of the possible changes are given as options and the default value
will always be that the definition is unchanged.

Deletions from a Schema

In the case of deletions, any program which uses any of the properties deleted
must be carefully modified. Normally, however, deletions would only be made if

the programs which process the database using these properties are themselves
obsolete.

ND-60.127.03

3.4 START INITIATION

Function

A new database is defined using the DRL module. The statement START
INITIATION will define a new database with the name given in the START
statement.

Format

START INITIATION DATABASE <dh~name>

(SUPPRESS (REALM) (RELORD-TYPE) C(ITEM) (SET) (INDEX-TABLE))

SIZE <no-of-64w=-pages> .

Rules:

1. In the START INITIATION statement, the name of the database which is to
be defined is given. It is the name of a SINTRAN Operating System (0S)
file of type DATA which must have been previously created. This OS file is
used as the SIBAS system realm and cannot be shared by any other realm.
It should not be declared with a NEW QS FILE statement. The SIBAS
system realm is where the object schema is stored. Additional user system
realms may be defined with the NEW SYSTEM REALM statement.

2. SUPPRESS. The SUPPRESS clause can be used to suppress the documen-
tation of realms, record types, items, sets or index tables. This will have
no influence on the resulting database definition. I1f the SUPPRESS clause
is omitted, a full documentation of the database will be printed.

3. SIZE. In the SIZE clause the expected size of the object schema is given in
number of 64 word blocks. The object schema is stored in the SIBAS
System Realm. To avoid problems, give a large number, for example 1000,
and create the SINTRAN file as an "INDEXED FILE". This may be done by
@ CREATE-FILE <db name>,,, before the DRL module is used.

ND-60.127.03

3.5

START

START REDEFINITION

Function

This statement will start the schema DRL for the database identified in the
statement. The size of the file provided for the object schema (i.e., the SIBAS

system realm) may be changed. The statement is also used to select the mode of
operation.

Format:

REDEFINITION DATABASE <db-name» (DBA-PASSWORD <password>

(SUPPRESS C(REALM) (RECORD=-TYPE) (ITEM) (SET) (INDEX-TABLE)

SIZE <non-af=-b4w-pages>

p—y
i

! st !
MODE ! ! COPY OF SYSTEM-REALM <f{le-name-1>
! PRODUCTION !

——————————

|

SCRATCH=FILE <flle=name=-2> ,

Rules:

1. In the START REDEFINITION statement the name of the database which is
to be redefined is given, and if privacy is defined for the database through
the DBM modules (see 6.1.7) the DBA PASSWORD is given.

2. All realms in the database will automatically be readied with protection
mode EXCLUSIVE when the START statement is given.

3. SUPPRESS. The SUPPRESS clause can be used to suppress the documen-
tation of realms, record types, items, and sets of index tables. This will ha-
ve no influence on the resulting database definition. If the SUPPRESS clau-
se is omitted, a full documentation of the new database will be printed.

4. MODE. The two modes of operation are Test Mode and Production Mode.
One should take a backup copy of the database before running the
redefinition program in production mode.

5. SCRATCH FILE. If the execution of the DRL incluces a CHANGE REALM or
NEW INDEX the "file-name-2'' must be the name of a file with maximum 8
characters, which is big enough to hold any of the realms in the database
which are to be changed. If the scratch file is not big enough, the execu-
tion of the redefinition may stop in the middle of step 4, leaving a destroy-
ed database.

6. COPY OF SYSTEM REALM. “File-name-1" must hold the name of a file
with maximum 8 characters which holds a copy of the object schema
(SIBAS system realm). The schema DRL will give an error message if this
is not the case. After an unsuccessful execution of the DRL or after an ex-
ecution in Test Mode, the content in "'file-name-1'" must be copied back to
SIBAS system realm for the database.

ND-60.127.03

3.6

3-9

END/EXIT

Function:

The statements indicate the end of the database definition or redefinition.

Format:

END REDEF.
or
EXIT

Rules:

1. Any staternent following END or EXIT will be ignored.

ND-60.127.03

3.7

NEW OS FILE

Function:

The statement will define a new OS file for the database.

Format:

NEW

OS-FILE <flle-name> (PAGESIZE <no-of-words>)

(DIRECTORY <abbreviated~dir-name>)

-

Rules:

Hints:

FILE NAME. The parameter "file name’ must not be the same as the name
of any existing SINTRAN file for this database. The type of the file is auto-
matically DATA. The "file name’’ is treated as any other SIBAS name. The
file must have been previously created in SINTRAN.

PAGE SIZE. The ""page size”” is the number of words that will be read into
the SIBAS buffer area when a realm located on this 0S file is accessed.
The default value is 512 words. Guidelines on how to estimate the ''page
size’” are given at the end of this chapter. It must te between 64 and 2048,

DIRECTORY. The “abbreviated-directory-name’’ is a four character
abbreviation of the directory where the file is placed. If the substatement is
omitted, the default directory will be used.

In a test phase it is recommended that a SINTRAN "INDEXED FILE" is used.
When the database is in operation, response time will be improved by changing
the file to CONTINOUS. This is done by

@CREATE—FILE <new>:DATA < size >
@COPY—FILE <new> DATA < file-name
@RENAME—FILE < file-name > < new > :data

<size> can be found in the SIB—DRL documentation.

ND-60.127.03

3.8

3-11

NEW SYSTEM REALM

Functi

on:

The statement will define a new user system realm for the data base.

Format:

NEW

SYSTEM-REALM _ <realm-name> O0OS-FILE <file-name>

Rules:

1.

HEALMSIZE <no-of-pages> .

REALM MAME. The parameter “realm-name’’ must not be the same as the
name of any existing reaim.

FILE NAME. The parameter ''file-name’" must be the name of an OS file
previously defined using NEW OS-FILE.

REALM SIZE. The parameter "no.-of-pages” gives the size of the system
realm in terms of OS file pages. Guidelines on how to estimate the size of

system realms are given at the end of this chapter.

STATEMENT SEQUENCE. The OS file referred to must be defined prior to
this statement using NEW OS-FILE,

ND-60.127.03

3.9

NEW

3--12

NEW SERIAL REALM

Function:

The function of this statement is to define a new serizgl realm for the database,

which

Forma

SERI

implies adding a new record type to the database.
1

AL-REALHM <realm=-rame> O0S-FILE <file-name>

RE

ALMSIZE <no-of-pages>

RE

(

Rules:

CORD LENGTH <no~of-words>

MAIN <system-realm> (ADDITIQONAL <system-realm>

(<system-realm>) (<system-realm>))) .,

REALM NAME. The parameter “realm-name’ must not be the same as the
name of an existing realm.

FILE NAME. The parameter '‘file-name’ must be the name of an OS file
previously defined using NEW QS FILE.

(Remember there is an upper total limit of 65533 pages that can be
assigned to this file).

REALM SIZE. The parameter "'no.-of-pages’’ gives the size of the realm in
number OS file pages.

RECORD LENGTH. The record “length” must be given for all user realms.
The record length must include all pointers in number of words in the
record. The length of a pointer is 2 words. Space must be allowed for two
or one pointers for each set type the record type is defined with link to,
depending on whether the set type is defined with link to prior or not.

SYSTEM REALMS. The parameters "main-system-realm” and
“system-realm-1" to “system-realm-3" must contain the names of system
realms defined by using NEW SYSTEM-REALM prior to this statement. The
system realms will be used for storing index tables. The same system
realm may be used for more than one user realm. if MAIN option not used,
the first system realm defined by NEW SYSTEM REALM will be used.

MINIMUM RECORD CONTENT. For all user realms, there must be at least
one elementary item defined by using NEW ITEM.

STATEMENT SEQUENCE. The OS file and any system realms must be

defined prior to this statement using NEW OS-FILE and NEW SYSTEM-
REALM.

ND-60.127.03

3.10

NEW CALC REALM

Function:

The function of this statement is to define a new calc realm for the databas:,
which implies that a new record type will be added to the data base.

Format:

NEW ,CALC-REALM <realm-name> 0S-FILE <file-name>

REALMSIZE <no-of=-pages>

MAIN-AREA <no=of=pages>

RECORD LENGIH <no-of-words>

CALC~KEY <key=-pame> DUPLICATES ARE (NOT) ALLOWED

(MAIN <system=-realm> (ADDITIONAL <system-realm>
(<system-realm>) (<system-realm>

Rules:

1. REALM NAME. The parameter "realm-name’* must not be the same as the
name of any existing realm.

2. FILE NAME. The parameter "file-name’ must be the name of an 0S file
previously defined using NEW OS-FILE.

3. REALM SIZE. The parameter "'no.-of-pages’’ gives the total size of the
realm in number of OS file pages.

4. MAIN AREA/OVERFLOW AREA. The space in which the records are to be
stored must be divided into a main area and an overflow area. Each of
these areas must be further divided into a number of buckets. All buckets
both in the main area and in the overflow area are of equal size. The
bucket size is always one SIBAS page. The number of buckets in MAIN
AREA, "no.-of-pages” should be a prime number. The number of buckets
in OVERFLOW AREA will be the difference between the total number of
pages given for REALM SIZE and the number of pages given for MAIN
AREA.

5. RECORD LENGTH. The "'record-length” must be given for all user realms in
the number of words. The length of a pointer is 2 words. Space must be
allowed for one or two pointers for each set type the record type is defined
as member or owner of, depending on whether the set type is defined with
link to pricr or not.

ND-60.127.03

©

10.

3-14

CALC KEY. The "key-name'’ must refer to an item or a group item which
must be defined for the record type using NEW ITEM or NEW GROUP in a
fater statement. The item/group item will automatically be assigned the
CALC KEY property. Duplicates will be allowed cn the key, unless the NOT
option is given.

SYSTEM REALMS. The - parameters ’rnain-system-realm” and
“system-realm-1" to “system-realm-3" must contain the names of system
realms defined by using NEW SYSTEM-REALM prior to this statement. The
system realms will be used for storing index tables. The same system
realm may be used for more than one realm.

MINIMUM RECORD CONTENT. For all CALC realms there must be defined
an elementary item serving as CALC key defined by using NEW ITEM.

STATEMENT SEQUENCE. The OS file and any system realms must be
defined prior to this statement using NEW OS-FILE and NEW SYSTEM
REALM. The CALC key item must be defined later using NEW ITEM or
NEW GROUP.

All the main buckets are preformated at initiation time. The user must
ensure there is enough disk space and be aware that the preformating
takes some time.

ND-60.127.03

3-15

3.11 NEW ITEM

Function:

The function of this statement is to define a new item for a record type previous-
ly defined using NEW CALC REALM or NEW SERIAL REALM. ltems defined must
be given type and length, and the position within the record type may be
specified.

Format
NEW ITEM <realm-name> <item=name>

INTEGER !

0A !
CHARACTER !
PRIVACY~ITEM !

1YRE START <word=no>

o hn b pom

! BIT PNSITION <first-bit> !
LENGTH <no> ! WORD [
! BYTE POSITION <first-pbyte> !

Rules:

1. REALM NAME. The “realm-name’” must refer to a realm defined using
NEW CALC-REALM or NEW SERIAL-REALM prior to this statement.

2. ITEM NAME. The “item-name’’ must be different from all other items or
group iterns in the same record type.

3. ITEM TYPE. A type must be specified for the item. If an item is defined as
PRIVACY-ITEM, the length and definition of the item must be the same as
for item names, realm names, etc. (i.e., four words). When a record of this
type is retrieved, the person retrieving the record must provide the value of
the privacy item in order for the retrieval to be successful.

4. START POSITION. The "word-number” must contain an integer greater
than or egual to 1 to indicate in which computer word in the record the
start of the item value is to be stored.

5. LENGTH. If the item occupies cne word or more, the length must be given
in “no.-of-words™". If the item occupies less than one word the length is
given in number of bits or number of bytes. The postion in the word must
be completed with an integer greater than or equal to zero to indicate the
first bit or the first byte in the word which the item value occupies. If
length is given in bytes and the position is not given the item will start in
the second byte (number 1) in the word. Bit counting starts with bit
number 0.

6. SIZE OF INTEGERS. If the item is defined as integer, then its minimum
tength is 1 bit, and its maximum length can be freely chosen by the user.

ND-60.127.03

10.

11.

12.

3-16

SIZE OF FLOATING. If the item is defined as floating, it will normally
occupy an integral number of words which may ke freely chosen by the
user.

SIZE OF CHARACTER. If the item is defined as character, then it may
occupy less than one word. The item may occupy more than one word as
long as it is allocated in integral number of words.

CALC KEY ITEM. The NEW CALC-REALM statement is used to define the
item as CALC KEY.

OWNER SET ITEM. The NEW SET statement is used to define the item as
owner set item.

MEMBER SET ITEM. The NEW SET statement is used to define the item as
member set item.

INDEX KEY. The NEW INDEX statement is used to define the item as an
index key.

ND-60.127.03

3.12

3-17

NEW GROUP

Function:

The function of this statement is to give a name to a group of elmentary items
within a record type. The items need not be contiguous in the record type. The
sequence of the items in the group may be different from the sequence in the
record type, and an item may also participate in more than one group item.
Properties as calc key, index key, member set item and owner set item may be
assigned to a group item in the same way as they are assigned to an elementary
item. If the group item is going to be assigned the calc key property the best
performance will be achieved if the group consists of contiguous items.

Format:

NE GROUP <realm-name> <group-name>

<item-name> (<item-name>) .

Rules:

1. REALM NAME. The “realm-name” must refer to realm defined using NEW
CALC-REALM or NEW SERIAL-REALM prior to this statement.

2. GROUP NAME. The "group-name’’ must be different from all item or group
item names in the record type.

3. ITEM NAMES. The "item-name-1", "item-name-2"', etc. must refer to
elementary items in the record type defined by using NEW ITEM prior to
this statement.

4. ORDER OF ITEMS. The order in which the elementary items are defined
may be quite independent of the order in which they are defined using
NEW ITEM. However, the order, once defined, is significant and must be
preserved when values of the group are given in DML statements.

5 ITEMS IN MORE THAN ONE GROUP ITEM. Any elementary item may be a
constituent item in one or more groups of the same record type.

6. NUMBER OF ITEMS. The maximum number of elementary items in a group
item is approximately 50.

7. CALC KEY ITEM. The NEW CALC-REALM statement is used to designate
the group item as CALC KEY.

8. OWNER SET ITEM. The NEW SET statement is used to define the group
item as owner set item.

9. MEMBER SET ITEM. The NEW SET statement is used to define the groups
item as member set item.

ND-60.127.03

10.

11.

3--18

INDEX KEY. The NEW INDEX statement is used to define the group item as
an index key.

EXTRA NAMES OF ITEMS. If the group item consists of only one elemen-
tary item, the effect of the group item will be to give an extra name to the
elementary item. This can be useful if an elemertary item is used as a
member set item in two different set types.

ND-60.127.03

3--19

3.13 NEW SET

Function:

The statement defines a new set type for the database. The owner and member
record types must be record types defined prior to this statement. The statement
will also assign the properties of member set item and owner set item to the
item/group item in the member and owner record type.

Format:

NEW SET <set-pame>

|

LINK IS ! SINGLE !

! DOUBLE |
STQRAGE=-CLASS IS ! AUTOMATIC !
! MANUAL !

OQWNER <owner-set-item> <realm-name>
MEMBER <member-set-item> <realm-name> (<realm-name>)

Rules:

1. SET NAME. The ""set name’” must be different from the name of any other
set type in the same database.

2. LINK. If the SINGLE option is given, the set will have a link to next member
only. If the DOUBLE option is given, each member will have link to next
and prior member.

3. STORAGE CLASS. If the AUTOMATIC option is given, the set type will
have a storage class of automatic. When a STORE or MODIFY is executed
on a member record, it will be automatically connected into a set occur-
rence. It the MANUAL option is given, the set type has a storage class of
manual and records will not be connected into a set of this type when a
STORE is executed. In SIBAS the storage class is the same as the removal
class. Whether a member record is automatically erased when the owner is
erased, depends on the option given in the ERASE statement.

4, OWNER. The "owner-set-item’ must be defined as an item or group item
for the owner record type. The name of the owner record type is given in
“realm-name’’. Furthermore, the “owner-set-item’’ must either be defined
as calc kay or as index key with NO DUPLICATES allowed. The key must be
defined prior to this statement. The item/group item given will be assigned
the property of owner set item, unless it already has this property.

5. MEMBER. The “member-set-item” must be defined as an item or group
item for the member record type(s). The member record type(s) are given
in “realm-name-1", "realm-name-2", etc. (maximum 46 member record

types). The item/group item given will be assigned the property of member
set item, unless it is already used for another set type. In this case the item
must be given an extra name by defining it as a group item. Note that the
member set items must have the same name in all realms.

ND-60.127.03

6.

3-20

INVOLUTED SET TYPE. If the member record type and the owner record
type is the same for a set type, the set type is involuted. Then the
"member-set-item” and the "owner-set-item” must both be defined as
items or group items for the record type, but they must have different
names.

CORRESPONDENCE BETWEEN MEMBER SET ITEM AND OWNER SET
ITEM. The "owner-set-item” and the 'member-set-item’ must correspond
in length and item type. The two items may also have the same name
unless the set type is involuted. Correspondence in the case of group items
means that it must be possible for the concatenated values of the con-
stituent elementary items to be exactly equal.

ND-60.127.03

3.14 NEW INDEX

Function:

The function of this statement is to define an item or group item as index key
and define the storage of the corresponding index table.

Format:

NEW INDEX <realm=-name> <key-name>

UPDATE IS | MANUAL ! DUPLICATES ARE (NOT) ALLOWED
| AUTOMATIC |

(SYSTEM-REALM <system=-realm-name>)

(MIN-VALUE <value> MAX~-VALYE <value») .,

Rules:

1. REALM NAME. The ''realm-name’ must refer to a realm defined prior to
this statement.

2. KEY NAME. The "key-name' must refer to an item or group item defined
for the record type named in "realm-name". The item/group item will be
assigned the index key property.

3. UPDATE If the MANUAL option is given, the index will be manually
maintained, and the index table will not be updated when a STORE or
MODIFY is executed. If the AUTOMATIC option is given, the index table
will be automatically maintained when a STORE or MODIFY is executed.

4. DUPLICATES. If the NOT option is given, an attempt to store a record of
this record type will fail if there is already an entry in the index table with
this key value. If the NOT option is omitted, it means that duplicate values
of this index key are permitted.

5. SYSTEM REALM. The "system-realm’’ in which all tables are stored must
either be the main system realm for the record or an additional system
realm, already defined by using NEW SYSTEM REALM.

6. MIN VALUE/MAX VALUE. If the actual minimum and maximum values of
the index key are known at the time when the database is defined, these
values should be given to achieve better performance when using the index
key. Note that it is enough that the key wsually is between the limits,
exceptions are allowed. The parameter “value’’ must be a positive integer.
If a key consists of more than one word, the value of the first word is gi-
ven. If the key is alphanumeric, “value” should be the corresponding in-
teger value (if any) of the first word of the key.

ND-60.127.03

3.15

3--22

DELETE SET

Function:

The function of this statement is to delete a set type from the database schema.
When a set type is deleted, the record types which serve as its owners and
members remain in the database. All these record types are adjusted so that
there is no space assigned for pointers, but the record length will remain
unchanged unless it is changed by use of CHANGE REALM. The member set
item of all member record types will cease to have this role. The owner set item
of the owner record types will cease to have this role if it was owner set item on-
ly for the deleted set type.

Format:

DELETE SET - <set-name> .

Rules:

1. Name of SET TYPE. The ""set name’ must be the name of a set type which

is defined in the old database schema.
2. OWNER SET ITEM. If the owner set item of the owner record type does
not serve as owner set item of any other set type, the item will automatic-

ally be redefined such that it no longer is an owner set item.

3. MEMBER SET ITEM. The member set item of all member record types will
automatically be redefined such that they no longer are member set items.

ND-60 12703

3.16

3-23

DELETE INDEX

Function:

The function of this statement is to remove the index property from an item or
group item, ard to delete the corresponding index table.

Format:

DELETE INDEX <realm-name> <key-name> .

Rules:

1. REALM NAME. The “realm-name"” must be the name of an existing realm.

2. KEY NAME. The "key-name’ must identify an item or group item defined
as index key for this record type.

3. INDEX KEY PROPERTY. The index key property will automatically be
removec from the item identified by "key-name’’.

4. SET OWNER. If the item given in ""key-name’’ is defined as owner set item,
the set rnust be deleted prior to this statement.

ND-60.127.03

3.17

DELETE ITEM <realm-name> <item-name>

3-24

DELETE ITEM

Function:

The function of this statement is to remove an item from an existing record type.
The record length will remain unchanged uniess it is changed by use of CHANGE
REALM.

Format:

Rules:

NAME OF REALM. "Realm-name’ must be the name of the realm where
records of this type are stored.

NAME OF ITEM. "ltem-name’” must be the name of an item which is
defined for the record type, identified by '"realm-name’’. The item may play
different roles in the record type and the consequences of the DELETE
ITEM are given in the following rules.

INDEX KEY {TEM. if the item given is defined as an index key or is part of

an index key, the index table must be deleted prior to this statement using
DELETE INDEX.

MEMBER OF GROUP ITEM. If "“item-name" identifies an item which is
defined as member of a group item, the item will automatically be deleted
from the group description, unless the group is defined as index key, calc
key or set item (see rules 3, 5 and 6). It is not necessary to change the
group composition using a CHANGE GROUP statement, which is therefore
not provided.

CALC KEY. If the item given is defined as a calc <ey or is a part of a calc
key, a new calc key must be defined for the record type {using CHANGE
CALC-REALM) or the location mode of the realm must be changed from
calc to serial (using CHANGE SERIAL-REALM). The CHANGE CALC-REALM
or CHANGE SERIAL-REALM must be given prior t¢ DELETE ITEM.

MEMBER SET ITEM/OWNER SET ITEM. If the item given in “item-name’’ is
defined as member set item or owner set item for a set type, or if it is part
of a set item, the set type must be deleted using DELETE SET or changed
using CHANGE SET prior to this statement.

STATEMENT SEQUENCE. The following statements may have to be given
prior to DELETE ITEM (see rules 3, 5 and 6).

CHANGE CALC-REALM
CHANGE SERIAL-REALM
DELETE SET

CHANGE SET

DELETE INDEX

ND-60.127.03

3.18

3-25

DELETE GROUP

Function:

The function of this statement is to remove a group item from an existing record
type. The result of this is that the group item can no longer be referred to from
the DML statements, but the items constituting the group item will remain in the
record type.

Format:

DELETE GROUP <realm=name>» <group-name> .

Rules:

1.

NAME OF REALM. "Realm-name’" must be the name of the realm where
records of this type are stored.

NAME OF GROUP ITEM. "Group-name’* must be the name of a group item
which is defined for the record type identified by “realm-name’. The group
item may play different roles in the record type and the consequences are
given in the following rules.

INDEX KEY ITEM. If the group item given is defined as an index key, the in-
dex table must be deleted prior to this statement using DELETE {NDEX.

CALC KEY. If the group item given is defined as a calc key, a new calc key
must be defined for the record type (using CHANGE CALC-REALM), or the
location mode of the realm must be changed from calc to serial (using
CHANGE SERIAL REALM). The CHANGE CALC-REALM or CHANGE SE-
RIAL-REALM must be given prior to DELETE GROUP.

MEMBEFR SET ITEM/OWNER SET ITEM. If “"group-name’’ is defined as
member set item or owner set item for a set type, the set type must be
deleted using DELETE SET or changed using CHANGE SET prior to this
statement.

STATEMENT SEQUENCE. The following statements may have to be given
prior to DELETE GROUP (see rules 3, 4 and 5).

CHANGE CALC-REALM
CHANGE SERIAL-REALM
DELETE SET

CHANGE SET

DELETE INDEX

ND-60.127.03

3-26

3.19 CHANGE SYSTEM REALM

Function:

The function of this statement is to change the realm size of an existing system
realm, or the page size by moving it to another 0S-file with a different page size.

Format:

CHANGE SYSTEM-REALM <Rrealm-name>

(REALMSIZE <no-of-pages>)

Rules:

1. REALM NAME. The "‘realm-name” must identify an existing user system
realm (not SIBAS system realm).

2. REALM SIZE. The parameter 'no.-of-pages’ gives the maximum size of the

system realm in terms of OS file pages. Guidelines on how to estimate the
size of system realms are given at the end of this chapter.

ND-60.127.03

3.20

3-27

CHANGE SERIAL REALM

Function:

The function of this statement is to change the definition of an existing serial
realm, or to change an existing calc realm to serial realm. In the latter case the
calc key will automatically cease to have this role.

Format:

CHANGE

SERIAL~REALM <realm-name>

(0S-FILE <fille-pame>) (REALMSIZE <no=-of-paqges>)

(RECORD LENGTH <no-of-words>) .

Rules:

1. REALM NAME. The parameter 'realm-name’’ must be the same as the
name of axisting serial realm or calc realm.

2. O3S FILE. The “file-name’ must be the name of an existing OS FILE.

3. REALM SIZE. If this option is used, the parameter "‘no.-of-pages’” must
give the maximum number of OS file pages estimated for the realm. If the
realm is changed from CALC to serial the REALM SIZE option must be
given.

4. RECORD LENGTH. If new items have been defined for the record type, or if

the record type is defined as owner or member of new set types, the
record length may have to be increased. The record length must include ail
pointers in the record. The length of a pointer is 2 words. Space must be
allowed for one or two pointers for each set type the record type is defined
as member or owner of, depending on whether the set type is defined with
link to prior or not.

CHANGE OF LOCATION MODE. If "realm-name’’ identifies a realm with lo-
cation mode calc, the location mode will be changed to serial and the calc
key will automatically cease to have this role. If no "main-system-realm’’
was defined for the calc realm, the MAIN option must be given,

STATEMENT SEQUENCE. The following statements may have to be given
prior to this statement (rule 5).

DELETE INDEX
NEW INDEX
NEW SYSTEM-REALM

3.21

CHANGE CALC REALM

Function:
The function of this statement is to change the defintion of an existing calc
realm, or to change an existing serial realm to calc realm. In the latter case, an

existing item in the record type must be defined as calc key.

Format:

CHANGE CALC~REALM <realm-name>

(REALMSIZE <no-of-pages>)
(MAIN-AREA <no=-of=-pages®>)
(RECORD LENGTH <no-of-words>)

(CALC-KEY <key=-name> DUPLICATES ARE .(NQOT) ALLOWED) »

Rules:

1. REALM NAME. The parameter "realm-name’” must be the same as the
name of an existing serial realm or calc realm.

2. REALM SIZE. The ""no.-of-pages’’ gives the total length of the realm in
number of OS file pages.

3. MAIN AREA/OVERFLOW AREA. If this option is given, all records in the
realm will be recalculated and stored according to the new definition.
""No.-of-pages’” should be a prime number.

4. RECORD LENGTH. If new items have been defined for the record type, or if
the record type is defined as owner or member of new set types, the
record length may have to be increased. The reco-d length must include all
pointers in the record. Space must be allowed for one or two pointers for
each set type the record is defined as member or owner of, depending on
whether the set type is defined with link to prior or not.

5. CALC KEY. If this option is given, the "key-name” must refer to an item or
a group item which is defined for the record type. The item/group item
must have non null values on the database. The izem/group item will auto-
matically be assigned the CALC KEY property. No other item/group item in
the record type must have been defined as CALC KEY. If the "realm-name”’
refers to a realm with location mode SERIAL, the location mode will be
changed to CALC. In this case the CALC KEY option must be given. it must
be given whether DUPLICATES are allowed for the key or not. if "key-na-
me'" already has the role of CALC KEY, this option may be used to change
it from DUPLICATES NOT ALLOWED to DUPLICATES ALLOWED or vice
versa.

ND-60.127.03

CHANGE OF LOCATION MODE. If “"realm name'’ identifies a realm with lo-
cation mode serial, the location mode will be changed to calc. The CALC
KEY and the MAIN AREA options must then be given.

STATEMENT SEQUENCE. The following statements may have to be given
prior to this statement (rule 7).

DELETE INDEX

NEW INDEX
NEW SYSTEM-REALM

ND-60.127.03

3.22 CHANGE SET

Function:

The function of this statement is to change the properties of an existing set type.
The link may be changed from single to double or vice versa. The storage class
may be changed from manual to automatic or vice versa. New member record
types may be added or existing member record types may be deleted.

Format:

CHANGE SET <set-name>

om——

(LINK IS | SINGLE !)
! DOUBLE !
(STORAGE~-CLASS IS ! AUTOMATIC !
' MANUAL !

{ MEMBER <member-set-item> <realm-name> (<realm-name>)

Rules:
1. SET NAME. The "set-name” must be the name of an existing set type.
2. LINK. This option may be used to remove prior link (SINGLE) or to include

prior link {(DOUBLE). If a change is made to remove the prior link, then for
all member record occurrences the space occupied by the link is made
available. It must be noted that the record length as specified in NEW
REALM for this record type is the length including set pointers, and
consequently removing the prior link of a set type will leave empty space in
the owner and member record type.

If a change is made to include the prior link, then the record length may
have to be increased for the owner and rmember record type. In production
mode, the link to prior is automatically established for every set occurr-
ence.

3. STORAGE CLASS. The storage class of the set type may be changed from
manual to automatic or vice versa. If the storage class of a set type is
changed from manual to automatic, then all occurrences of the member
record types are examined to see whether they can be connected to a set
of the set type. If so, the connection is made in the same way as if a
CONNECT were executed on the record and set type. Member records for
which no matching set exists in the database are listed in a report, and the
production mode will not be executed. If the storege class of a set type is
changed from automatic to manual, then no charges are made to occur-
rences of the set type.

ND-60.127.03

MEMBER. It is possible to define new member record types in a set type
and to remove old member record types. If the MEMBER clause is given,
all the member record types for the changed set type must be listed.
Whether the new members are connected into sets will depend on the
storage class of the set type. If it is automatic, then an attempt is made to
connect each new member. Cases are listed where no owner is found in
the database for the values of the member set item. If the storage class is
manual, no connections are made, and step 4 (see fig. 3.1) is not executed.

In the case that the set type is old and the member record type is new
(that is being defined in the same use of the restructuring facility), then
there are no occurrences of the record type in the database, and the exist-
ing sets of the set type are not affected.

The MEMBER clause may also be used to change member set item. The
"member set item’’ must be defined as an item or a group item for all
member record types, and this item will automatically be given the pro-
perty of member set item. It must, of course, correspond to the owner set
item (see 3.13.7).

When member set item is changed for a set type, all existing members will
be disconnected from the set, and if the set type has automatic storage
class all members will be connected according to the value of the new
member set item and cases are listed where no owner is in the database
for the values of the member set item. In this case step 4 will not be ex-
ecuted.

ND-60.127.03

3.23

DIMENSIONING DATABASE PARAMETERS

SIBAS realms are stored on SINTRAN files, which may be created as INDEXED
or CONTINUOUS files. Such files always occupy an integral number of
"SINTRAN pages”, i.e., 1024 words. SIBAS default length is 512 words. The mini-
mum page size is 64 words, the practical maximum is 2K words {SINTRAN-1II de-
fault value for the device buffer size). If the file type is INDEXED, disk space is
allocated when the demand arises. One is then recommended to be generous
when estimating the size of the REALM. SIB-DRL prints out usefu! information
about the size of the realms and gives estimates for the size of the index tables.
The maximum number of “SIBAS pages” on an OS-—FILE (SINTRAN file) is
65533. l.e. the practical maximum size of one OS—FILE is about 250 Megabytes.
The maximum number of "*SIBAS pages” for any realm type is 65533.

SIBAS System Realm

When a SIBAS database is defined and initialized or redefined using the SIBAS
Definition/Redefinition Language, an object version of the data base definition
will be generated. The object version of the schema will be stored on the SIBAS
system realm. In the following we will give some rules for estimating the space
requirements for the SIBAS system realm.

The page size is always 64 words, and the system realrn must be on a separate
SINTRAN file. It will contain the realm description table, the 1/0 table, the set
description table, the record description tables and the index description tables
— usually the record description tables are the most voluminous. As a rule of
thumb, 50 + 10" (no. of realms) pages suffice. However, one is recommended to
be generous when estimating the size of this reaim, to allow future redefinition,
change, etc.

User System Realms

A user system realm contains one page reserved for 5IBAS and a number of
pages for the index tables stored on it. Index tables are organized as a hierarchy
of tables, each occupying one page.

One index table is divided into a table head and a number of entries. At the
lowest level, by far the most common, one index table antry consists of one key
and one pointer. Since the key values are stored randcmly, the packing density
of the index tables is on average 60%.

Page size —11

Number of entries on a page = 60% * -
’ Pag ' Key size +2

Number of pages for one index = Number of records

Mumber of entries on a page

It must be noted that index tables might be compressed by a utility statement of
the SIB-DBM module.

ND-60.127.03

Serial Realms

A serial realm contains one page reserved for SIBAS and a number of pages for
use by the records. A page is always headed by a pointer (2 words) and contains
an integer number of records. Estimating the size of a serial realm is then an ea-
sy matter.

Page size —2
Number of record a m e,
umber of records on a page Record longth
Maximum number of records
Number of records on a page

Number of pages for the realm =

CALC Realms

The main parameter when dimensioning a calc realm is the number of buckets in
the main area. Choosing an optimum value for this number is not a straight-for-
ward procedure. This number will also give the number of pages in the main area
and, together with the page size, it will limit the total number of records in the
main area. A prime number is used to give a better distribution with the
randomizing algorithm SIBAS uses.

Overflow pages are linked to the main page when overflow occurs. They (over-
flow pages) are not preallocated to a specific main bucket (page). An overflow
page belongs to only one main page.

Main and overflow pages have the same size and the same layout: they are
headed by a pointer and contain an integer number of records. Estimating the
size of a calc rezalm may be done as follows:

Page size —2
Record length

Number of records on a page =

Number of buckets in main = Numbers of pages in main

Total number of records

Number of pages in main =
pages in mai Number of records on a page

Number of pages for the realm = Number of pages in main +

1 Estimated Overflowing Records

3

66% Number of records on a page

ND-60.127.03

3.24

HOW TO RUN DRL ON THE COMPUTER

Use an editor to write the source schema (with the necessary statements from
this chapter) and store it on a file with name <datzbase name>:SYMB, for
example create the necessary SINTRAN files, by commands like:

@CREATE-FILE <database name > DATA

@CREATE-FILE <name of OS-FILE1 > :DATA
@CREATE-FILE <name of OS-FILE2 > :DATA

Make sure you were logged in under the SINTRAN-user name where you want
the database to reside.

Make sure user RT has write access to this user’s files, by a command like:
@CREATE-FRIEND RT

for example.

Then run the DRL by the command
®@SIB2-DRL.

(See the examples in the next section.) Answering questions by just CR, will be
taken to mean NO.

ND-60.127.03

3.25 EXAMPLES

An initiation run

CUOELETE-FILE FORDE:DATA

QUELETE-FILE SYSFILESDATA
RCREATE-FILE SYSFILE!DATA O
BCREATE-FILE FORLEBIDATA Q
RBSIH2-DRL

S I RBR2 -0 R L SEFT 79
EXFLANATION 7 NO

INTERACTIVE 7 NO

INFUT-FILE v FORDEISYMH
LIST~FILE ¢L-F

|

R AOK K OKOK R KKK K AR K K K KK KK 3K K K S5O oK 35K 0K 3K R K 5K 3K K KK K 3K 0K 3K 3K 3K 3K 3K 3 3K 3K 3K 3K 3K 5K K 3K K K o oK KK K oK 0K 3K K oK
L ATAERASE FORDR INITIATEDID 36 15 12 10 1979%
KKK K KKK ACROROKKOK KK KK KK AR K K 3K KKK K MK SRR 3K 3K KRR 0K KK 3K 8 K oK oK 3K K o K K OK oK 3K 3K K K OIOK 3K oK K 3K K ok

000754 STOP 0

The output from the initiation run:

1% *
2% - * C 2URSE . DATABASE 0CcT, 79
2% * ’
[
Sx START INITIATION DATABASE FORDS .
&% SUPPRESS REALM RECNRD ITEM SET INDEX
7% SIZE - 171 .
S*
9% MEW O0S~-FILE SYSFILE PAGESIZE 256.
10
11% NEW SYSTEM=RFALM SYSFILE 0S~FILE SYSFILE REALMSIZE 19 6.
12« NEW SERIAL-RFALM RERSON 0S~FILE SYSFILF REALMSIZE 51
13% RECORD LEHMNGTH 51
14% MAIN SYSFILE .,
15 NEW SERIAL-REALM JOBB 0S~FILE SYSFILE REALMSIZE 119
16% RECNRD LENGTH 20
17% MAIN SYSFILE .
18% NEW CALC-REALM RAPPORT OS~FILE SYSFILE REALMSIZE 142
19 % MAIN=-AREA 122
20« RECORD LENGTH 25
21 CALC~KEY JOBRNR DUPLICATES
22* MAIN SYSFILE .
23%
24 % NEW ITEM PERSON AVDELING
25% TYPE CHARACTER
26% START 39 LENGTH 3.
27 * NEW ITEM PERSON FDATO
28« TYPE CHARACTER
29% START 1 LENGTH 3.
30* NEW ITEM PERSON FNR
31« - TYPE CHARACTER
32 START 4 LENGTH 3.

ND-60.127.03

33«%
34 %
35
36*
37
38x%
39%
L *
[A I
L2x
43 %
LG *
45%
NS
L7 %
4R %
L Q%
SO
51x%
52%*
53
54 %
55%*
S6*
57 %
SR«
S9x
AQ*
Alx
A2 %
A 3%
Abx
A5
Ahb*
AT *
AR%
A9 *
70 %
77 %
72 *
73*
Thx
7 5%
76%
77 %
73*
79 %
R0 *
81 %
R2*
33 %
R *
85%
Ré&*
]7 *
8% *
839 %
Q0%
Q1%
92 %
93%
A
Q5%
D6+
97 *
0%
99 %

HEW
NEW
NEW
NEY

NEW

NEU
NEW
NEW
MEW
NEW
NEW
NEW
NEW
NEM

NEW

NEW
NEW
NEW
NEW
NEW
NEW

MEW

ITEM PERSON KJONN
TYPE CHARACTER
START 35 LENGTH

ITEM PERSON PERSADR
TYPE CHARACTER
START 20 LENGTH

ITEM PERSON
TYPE CHARACTER
START 7 LENGTH

ITEM PERSON
TYPE CHARACTER
START 42 LENGTH

ITEM PERSOM
TYPE INTEGER
START 34 LENGTH

GROUP PERSON AVDPERS
AVDELIMG PERSNAVN

GROUP PERSON PERSNR
FOATO FNR

ITEM JOBRR BUDGTIM

TYPE INTEGER

START 10 LENARTH
ITEM JoBr FDATO

TYPE CHARACTER

START 15 LENGTH
ITEM JOBR FNR

TYPE CHARACTER

START 18 LENATH

ITE" J0BRA JORBNAVN
TYPE CHARACTER
START 2 LENGTH
ITEM JoBA JOBRNR
TYPE INTEGER
START 1 LENGTH
ITEM goBs JOBBTYPE
TYPE CHARACTER
START 7 LENGTH
ITEM J0BA JRESERVE

TYPE CHARACTER

START 21 LENGTH
ITEM JoB8B MEDGTIM

TYPE INTEGER

START 12 LENGTH

GROUR JO0OBB JOTYPENR
JOBBTYPE JORBNR

GROUP JOBB PERSANR
FDATO FNR

ITEM RAPPORT ANTTIM
TYPE INTEGER
START 9 LENGTH
ITEM RAPPORT FDATO
TYPE CHARACTER
START 1 LEMNGTH
ITEM RAPPORT FNR
TYPE CHARACTER
START 4 LENGTH
ITEM RAPPORT JOBRNR
TYPE INTEGER
START 7 LENGTH
ITEM RAPPORT PERIODE
TYPE IMTEGER
START 8 LENGTH

ITEM RAPPORT RRESERVE

TYPE CHARACTER
START 12 LENGTH

ND-60.127.03

PERSMAVN

PRESERVE

TIMELONN

1.

15,

13.

100
101 »
102*
103 *
104 %
105*
106«
107~
108
109 %
110
111 %
112
1T13%
114 %
1156
116%*

117* -

118*
119%
120 %
121 *
122 %
123%*
124 %
125%
126%
127
128%*
129 %
130w
131
132%
133«
134
135*
136
137»
138%
139%

END OF

END OF

END OF

STEP

“sTEP

STEP

NEW

NEW

NEW

NEW

NEW

NEW

NEW

MEW

NEW

NEW

MEW

ENO

GROUP RAPPORT PERJOBB

PERI

0ODE JOBBNR

GROUP RAPPORT PERSNR
FDATO FNR

INDEX

PERSON AVD

UPDATE IS AUTOMATIC
DUPLICATES ARE NOT

INDEX

PERSON PER

UPDATE IS AUTOMATIC
DUPLICATES ARE NOT

INDEX

PERSON PER

UPDATE IS AUTOMATIC

buUPL
INDEX

ICATES ARE NOT
JORA3 JOB

UPDATE IS AUTOMATIC
DUPLICATES ARE NOT

INDEX

J0RBs3 JOoT

UPDATE IS AUTOMATIC
DUPLICATES ARE NOT

INDEX
upDa

RAPPORT PER
TE IS AUTOMATIC

PERS

ALLOWED,

SNAVN

ALLOWED,

SNR -

ALLOWED,

BNR

ALLNOWFD,

YPENR

ALLOWED,

JOBA

PUPLICATES ARE ALLOWED.
RAPPORT PERSNR

UPDATE IS AUTOMATIC
DUPLICATES ARE ALLOWED,

INDEX

SET PERRAP

LINK

IS DOURBLE

STORAGE=~CLASS IS AUTOMATIC
OWNER PERSNR

MEMRER PERSNR
SET JOBRAP
LINK IS DOUBLE

PERSON
RAPPORT

STORAGE-CLASS IS AUTOMATIC
OWNER JOBRNR -
MEMBER JOBBNR

REDEF.

NUMBER OF ERRORS

NUMRER OF ERRORS

NUMBER OF ERRORS

ND-60.127.03

J0OBB
RAPPORT

3--38

END OF DATABASE DEFINITION

NUMBER OF WARNINGS

= 0
NUMBER OF ERRORS = 0
SIZE OF DML RESIDENT TABLES = 832
THE DATABASE IS INITIATED
kkA kA K KA
END OF STEP 4 NUMBER OF ERRORS = - 0

Akkdk kA dkhk bk hh Ak dhk Ak kA kb kA k kA hdh ok khkkd kA Fhh A Ak ke h P FhkhkFP Ao s kkkk

DATABASE FORDB INITIATED 36 15 12 10 1979«
Hhk ok k ok ok kR Rk kA kR Ak kA AR kAR F Ak h Ak kA Ak kA A Ak ko ok ok Pk kA A Ak ok h ko k ok kA A A kA kA Ak

ND-60.127.03

A redefinition run:

®COPY-FILE ' FORDBCOP: DATA'* FORDB:DATA
®CREATE-FILE SCRATCH: DATA, ,,

ESIR2-DRL

SIRB2~-DRL SEFT 79
EXFLANATION 7 NO
INTERACTIVE 7 NGO
INFUT-FILE ¢ FOR-CHANGE
LIST-FILE + TERM
1% X
2% % COURSE DATARASE CHANGE
K$ 4 X)
4% START REDEFINITION ©LDATABASE FORDE.
3% i SUFFRESS REALM RECORD ITEM SET INDEX
6% MODE FRODUCTION
7% COFY OF SYSTEM-REALM FORDECOP
8x% SCRATCH~-FILE SCRATCH.
?%
10x% X
11% X EXFAND THE JORR REALM
12% %
13% CHANGE SERIAL-REALM JORB
14x% REALMSIZE 150,
19%
16% END,
ENDN OF STEFP 1 NUMEER OF ERRORS = 0

oo WARNING .. 103 STATEMENT STARTING LINE 16
CALC KEY IS NON-CONSECUTIVE GROUF» EAD FERFORMANCE

END' OF STEF 2 NUMBER OF ERRORS = 0
ENII OF STEF 3 HUMERER OF ERRORS = 0
gﬁﬂ DE DATABASE LDEFINITION

NUMEBER OF WARNINGS = 1

NUMBER OF ERRORS = 0

SIZE OF DML RESIDENT TAELES = 832
THE DATABASE IS INITIATED

KKK OKACK KK KK
ENDI OF STEF 4 NUMEBER OF ERRORS = 0

KKK KK HOK KK KKK O OK K HOKK ORI RO K KR AOK SO K K oK OK 5 KoK 5K oK 3K KK K KoK KKK oK
LATABRBASE FORDR INITIATED 33 15 12 1<
AR ACKR KK KRR KKK AR KA R KO OK KK KK KKK HHOK KK K 3K 30K KKK A KKK KK KK HOK KK KKK K K0

ND-60.127.03

3-40

4.1

DATA MANIPULATION LANGUAGE
(DIML)

SIBAS provides a selection of DML statements. Fach DML statement has 2
forms, a short form, e.g., GET, MODIFY, STORE, and an encoded CALL form.
The CALL form is to be used in application programming. The short forms are
used in SIBINTER.

GENERAL

For a program to be able to access a SIBAS database, some or all of the record
types in the database must be defined in the host language program.

It is important to note that not all record types in the data base need to be
defined, but only those required. Furthermore, the same applies to items in a
record type. If a program does not need to process all the items in a given re-
cord type, then those not required may be omitted from the record description in
the program. This provides a subschema facility and enables the programmer to
minimize the core space required at execution time.

The DML statzments in SIBAS have the general form of a CALL statement.
When this form is used, SIBAS may be used from any host language which
provides a CALL statement facility. The description of records and items must
then follow the conventions of the host language.

The programmer may choose his own names to identify the parameters in the
various DML CALL statements. In order to clarify the role of each parameter in
the following sections, each parameter is identified by a lower case narrative
name which does not necessarily conform to the name conventions of the host
languages.

In many of the DML statements, it is necessary to use parameters which identify
a FORTRAN one dimensional array or a COBOL storage area. The values to be
used by the Database Control System (DBCS) when processing the DML state-
ment must be stored in the array or table prior to the execution of the DML
CALL. It is important to note that each value which is to be passed to the DBCS
in this way must start on a word boundary.

The form of a DML CALL statement in Fortran is as follows:
CALL SDML (param-1, param-2, }
In COBOL the form is CALL 'SDML’ USING param-1, param-2,.....

A full description of the DML statement is given later in this chapter, with the
Fortran form of the call indicated.

ND-60.127.03

4.2

PARAMETER DESCRIPTIONS

To avoid repetition in defining the statements, the syntax of the most common
parameters is defined here. Other parameters are described as ''special
parameters’”’ under the special statements where they are used. This section
should not be read alone, but along with the special stataments.

When parameter names are passed through arrays or areas, it is important to
note that there must be exactly eight characters in each name, left justified and

with trailing blanks.

The general description of the parameters are given below. For examples: See
4.3.

The specific usage is defined in the various DML statements.
"“"mode”’

“Mode'" is a single integer which declares whether the run-unit wants to
change the database or not.

"data-base-name”’
"Data-base-name’” defines a field or an array in the user area containing
the eight character name of the database. This name must be identical to
that defined in the Database Schema.

""password”’, “new-password”’
“Password” and ""new-password” define a field or an array in the user area
containing the eight character passwords to be checked by the database
control system.

“realm-name"’
“Realm-name’ defines a field or an array in the user area containing the
eight character name of the relevant realm. This name must be identical to
a realm name in the database schema.

""no.-of-realms”’

“No.-of-realms” defines a single integer variable in the user area contain-
ing the number of realms to be readied in one READY REALM statement.

"key-name"’
"Key-name” defines a field or an array in the user area containing the eight

character name of an item or a group item defined in the data base
schema as an index key or calc key for the relevant record type.

ND-60.127.03

"key-value”

"Key-value” defines a field or an array in the user area containing or
receiving the eight character value of an index key or a calc key.

"low-limit", “h:gh-limit”’

“Low-limit” and high-limit” define fields or arrays in the user area
containing lower and upper limit values of a corresponding index key. The
length ard type of “fow limit” and "high limit”" must be the same as that
of the corresponding key.

“set-name’’

"Set-name’’ defines a field or an array in the user area containing the eight
character name of a set type defined in the database schema.

"temporary-data-base-key'

"Temporary-data-base-key"’ defines a single integer variable in the user
area.

Using the value zero in this parameter means that the call (e.g., GET or
MODIFY) will work on the current record (defined by the CRUI, see 2.4.1.2).
If you want the call to work on a record not current anymore, you must ha-
ve issued a REMEMBER when the record still was current. A number identi-
fying the record would then have been stored in your “temporary-data-ba-
se-key''-variable. Using this number instead of zero in the call, will make
the call work on that record instead of the record now being current. Note
that the parameter is an output parameter only in case of REMEMBER,
otherwise it is an input parameter.

"temporary-search-region-indicator”

“Temporary-search-region-indicator’” defines a single integer variable in
the user area.

The value zero in this parameter means that the current search region is to
be used — as defined by the CSRI (see 2.4.1.2). In case you want to oper-
ate on a search region not current any longer, you must have issued a RE-
MEMBER for that search region when it still was current. The identifying
number then stored in your "“temporary-search-region-indicator’'-variable,
must be used instead of the zero when you want this search region.

Note that the parameter is an output parameter only for REMEMBER,
otherwise it is an input parameter.

ND-60.127.03

"no.-of-items”’, "'no.-wanted”’, "'no.-found”’

"No.-of-items’’ defines a single integer variable in the user area containing
the number of item names that have been placed in ‘item-list”.
"No.-of-items” must have a value greater than or equal to one and less
than or equal to the total number of items and group items in the record
type. "No.-wanted” defines an integer value giving the number of records
or keys the run-unit wishes to read, '‘no.-found”’ tells the run-unit how ma-
ny records or keys it received.

"item-list”’

“Item-list” defines a field or an array in the user area containing eight
character names of data items or group items defined in the database
schema for a record type.

"item-values”’

“ltem-values” defines a field or an array in the user area containing or
receiving the values of the items and group items named in the "item-list”
in corresponding order. Space must be allocated for each item corres-
ponding to the data format definition in the database schema.

"option-code’’, “usage-mode’’, '‘protection-mode’’

“Option-code”, “usage-mode’ and ''protection-mode” define single in-
teger variables whose values are used to specify certain options to be se-
lected in various DML statements.

g

"key-length”, "value-length”’

"Key-length” and "'value-length”" are single integer variables defining the
length of a field to be passed to SIBAS, expressed in number of words.

"status”’

“Status” is an output parameter (single integer variable) which the DBCS
sets to different values. The status value +1 indicates that the statement
execution has been successful. The other values indicate an unsuccessful
execution, implying a Database Exeception Condition (DBEC) in most cases
(see Chapter 7).

Summary:

1 successful

0: normal exception condition such as end of search region

—1: abnormal exception condition, more information is to be
found by calling SDBEC

—2 to —6: after SOPDB

Other negative values indicating error conditions may be returned to the
run-unit, a list of which is given in the ERROR REPORTING chapter of this
manual, but in those cases no more information may be found by calling
SDBEC.

ND-60.127.03

4.21

4—-5

Open Database

Function:

The function of the OPEN-DATA-BASE statement is to indicate the run-unit's
intention of processing the data in the database.

Format:

CALL SOPDB (mode, database name, password, status)

Rules:

A SIBAS process for this database must be running. This might be done by the
SIBAS-service program before running your application program (see 6.2}, or by
including calls from section 5.4 in your program. If the SIBAS process is not
number zero, a SETDV-call must be included before SOPDB, see 5.4.13.

The ""mode” must define a variable or an array in the user storage area
containing an integer; 0 if the run-unit will not change the database, 15473 if the
run-unit intends to change the database.

The first run-urit which executes the OPEN-DATA-BASE statement will ready the
SIBAS system realm. The user defined system realms will be readied when the
relevant user realms are readied.

The effect of ooening a database is to permit execution of READY statements on

the realms on the database. It a database is not open, it's realms cannot be read-
ied.

If privacy is defined for the database through the DBM-module (see 6.1.9), the
"password’” will be checked by the SIBAS DBCS to decide whether or not the
user is allowed to open the data base.

The function of OPEN-DATA-BASE is essentially that of "logging in"”' to the
particular database. The first run-unit to execute an OPEN-DATA-BASE on a
closed database will cause it to be “"physically” opened, and this run-unit also
decides which database is opened.

When the last run-unit “logs off” with the CLOSE-DATA-BASE statement the
database will be physically closed.

In case of unsuccessful open database, exception conditions cannot be set and
SOPDB returns one of the following negative statuses:

|

|
[Sa R

. illegal uszr identification (internal error)

|

: unconsisient database name given
. security breach occurred

1
1

- one realm damaged

cunable to RTOPEN database (check if user RT has write access to the
database files)

ND-60.127.03

4.2.2

— B: SIBAS work area space is insufficient.

—72: Direct R-log is full, R-logging stopped. Illegal to open the database.
DBA should reset or remove the R-log. This status will be returned from
SOPDB if a direct R-log is filled.

—76: SIBAS is not active.

In case SIBAS is not running, your program will try continuously to open the da-
tabase, i.e., your program will “hang”. It will continue only if someone makes the

SIBAS process run (through SIBAS-service or through the call SRUN from
another application program).

Close Database

Function

The function of the CLOSE-DATA-BASE statement is tc indicate that the run-unit
has finished accessing the database.

Format:
CALL SCLDB (data-base-name, status)
Rules:

In order for CLOSE to be successful the database identified by
""data-base-name’’ must have previously been opened by the run-unit.

The effect of closing a database is to prevent further execution of any DML
statement other than OPEN-DATA-BASE from this run-unit, and to release

allocated resources.

If realms in the database are still in ready status at the time the CLOSE is
executed, then the realms are automatically finished for the run-unit.

A CLOSE, in a critical sequence, will automatically cause an ESEQU. (See
5.3.3.1.)

ND-60.127.03

4.2.3

47

Ready Realm

Function:

The function of the READY-REALM statement is to indicate to the DBCS that the
run-unit wishes to process records in one or more realms, to indicate the way in
which the data will be processed, and to check possible interference with
concurrently executing run-units.

Format:

CALL SRRLM (no.-of-realms, realm-names, usage-modes, protection-mode, sta-
tus)

Rules:
"Realm-names’’ contains a list of names of the realms to be readied.

"Usage-modes’”’ defines an array or table containing an integer value for each
one of the realms to be readied. The following usage mode values apply:

Usage Mode: Value:
RETRIEVAL 0
LOAD 1
UPDATE)

"Protection-mode” defines an array or table containing an integer value for each
one of the realms to be readied. The following protection modes/values apply:

Protection Mode: Value:

NON-PROTECTION 0
EXCLUSIVE-UPDATE 1

Each realm in the list must be a part of the database which has been opened pri-
or to execution of the READY-REALM statement. Each realm must not already be
in ready status for the run-unit.

The effect of the READY-REALM statement is to make the records in the listed

realms available for processing by other DML statements within the limitation set
by the usage mode and protection mode.

ND-60.127.03

The different “usage modes” given for each realm restricts execution of the
DML statements on the records in the realm according to the following table:

Usage Mode: Value: DML Statements Allowed:
RETRIEVAL 0 FIND, GET, REMEMBER and FORGET
LOAD 1 FIND, GET, STCRE, CONNECT,
INSERT, REMEMBER and FORGET
UPDATE 2 ALL DML staternents allowed

The different "'protection modes’™ given for each realm are checked for possible
conflict with other run units concurrently processing in the same realm according
to the following table:

Protection Mode: Value Other Run-Units:

NON-PRQTECTED 0 May execute ary DML statement except
ERASE.

EXCLUSIVE-UPDATE 1 May execute any DML statements

If a READY-REALM statement refers to more than ore realm and any of the
realms cannot be readied, the READY-REALM statement will not be sucessful,
and none of the realms will be readied. All the realms will then remain unchang-
ed but the status will indicate a DBEC condition about which information may be
obtained by using the ACCEPT statement.

All realms to be readied for EXCLUSIVE-UPDATE for a run-unit must be readied
in the same READY-REALM statement.

A realm cannot be readied for EXCLUSIVE-UPDATE if concurrent run-units have
locked records in it.

If the user wants to change the USAGE MODE or PROTECTION MODE for a

realm, then the realm must first be finished and readied again with the new
USAGE MODE/PROTECTION MODE,

ND-60.127.03

Resolution of Ready Conflicts:

Eariier Subject Protection
entities by run-unit Mode NON-PROTECTED EXCLUSIVE UPDATE
other run-units Usage
Mode RetrievallLoad Update| Retrievalload Update
Protection Usage /
Mode Mode -~
Retrieval Y Y Y Y Y Y
Non-
Protected
Load Y Y Y N N N
Update Y Y Y N N N
Retrieval Y N N N N N
Exclusive
Update
Load Y N N I N N N
Update Y N N N N N

This table indicates how conflicts are resolved when the run-unit tries to ready a
realm which has previously been successfully readied by some other concurrently
executing run-unit but not yet finished. Y indicates that the run-unit is
succussful, N indicates that the status indicator is set.

ND-60.127.03

4.2.4

4-10

Finish Realm

Function:

The function of FINISH-REALM is to prevent further processing of the data in the
realm by the run-unit,

Format:
CALL SFRLM (no.-of-realms, realm-names, status)

Rules:
“Realm-names’’ contains a list of names of the realms to be finished.

Realms readied for the run-unit with different usage moces may all be finished i
one statement.

If a realm cannot be finished, the status will indicate an error and the name of
the first offending realm may be found with the ACCEPT statement. If the
FINISH-REALM statement involves more than one realm, those which can be
finished will be finished.

If a FINISH-REALM statement is executed on a realm previously readied for
EXCLUSIVE-UPDATE by the run-unit, the realm is then available for updating by
other run-units.

When a FINISH-REALM is executed all remembered or locked records of this
realm are forgotten or unlocked for this run-unit.

The effect of executing the FINISH-REALM statement is that the finished realms
will not be available to the run-units until a new READY-REALM statement is
executed. The contents of the SIBAS system buffers belonging to the finished
realms will be written back to secondary storage. If the calling run-unit is the last
one using a realm, the realm can be regarded as physically closed.

ND-60.127.03

425 Direct Find

Function:

The function of DIRECT FIND is to locate a specific record. The record is
specified by means of a calc key or an index key.

A search region will be established, its type depending on the statement format

used.
Format:
Format 1:
FIND-USING-KEY
CALL SFTCH (realm-name, key-name, key-value, status, key-length)
Format 2:
FIND-FIRST-BETWEEN-LIMITS-USING-KEY
CALL SFEBL (realm-name, key-name, low-limit, high-limit, status,
key-length)
FIND-LAST-BETWEEN-LIMITS-USING-KEY
CALL SFLBL (realm-name, key-name, low-limit, high-limit, status,
key-length)
Format 3:
FIND-FIRST-IN-REALM
CALL SRFIR {realm-name, status)
Rules:

The realm named in "realm-name’” must have been previously readied by the
run-unit.

The "key-name’’ defines the name of an item or a group item which is defined as
an index key or a calc key in the database schema.

The "key-value™, “low-limit" and “high-limit'” must have the same type and

length as the corresponding item or group item. The “key-length’ is expressed in
number of words.

if format 2 is used, the "key-name' must identify an item or a group item which
is defined as an index key in the database schema.

After successful execution of a FIND statement, the contents of the record may
be processed by means of the GET, MODIFY, and ERASE statements.

ND-60.127.03

After successful execution of the FIND statement, the current of run-unit
indicator is set to a unique value identifying the record found.

After successful execution of a FIND statement the setting of the current search
region indicator depends on the format used. In format 1, FIND-USING-KEY,
where duplicate values of the key are allowed, the indicator will be set to both
the key item name and the value of the key used. If duplicate keys are not
allowed the setting of CSRI remains unchanged.

In format 2, FIND-BETWEEN-LIMITS, the current search region indicator will be
set to the index item name and the value range between low-limit’ and
"high-limit”.

In format 3, FIND-FIRST-IN-REALM, the current search region indicator is set to
the realm name.

After successful execution of a FIND statement the record selected depends on
the format used.

In format 1, FIND-USING-KEY, if the key item is one for which duplicate values
are allowed, then the DBCS selects the ''first” record where the meaning of
“first” is the record with the lowest physical address (i.2., storing nearest to the
beginning of the realm).

In format 2, FIND-FIRST-BETWEEN-LIMITS, the record found is either one with
key value equal to or next higher to the value of “low-limit” but the value must
be lower than or equal to the "high-limit"" value. If duplicate values are allowed
the record found is the one with the lowest physical address.

In format 2, FIND-LAST-BETWEEN-LIMITS, the record found is either one with
key value equal or next lower to the value of "high-limit" but the value must be
lower than or equal to the “low-limit” value. If duplicete value is allowed, the
“record found is the one with the highest physical address.

To obtain the next or prior record within the range specified, the FIND-NEXT-IN-
SEARCH-REGION or FIND-PRIOR-IN-SEARCH-REGION statements must be us-
ed.

In format 3, FIND-FIRST-IN-REALM, the DBCS attempts to find the physically
first record in the realm. If location mode is calc this will be the first record in
the first non-empty bucket. If location mode is SERIAL it will be the record in the
realm with the lowest physical address. To obtain the next record of the realm
the FIND-NEXT-IN-SEARCH-REGION statement must be used.

ND-60.127.03

4—-13

The table belcw gives a summary of the settings of CRUI and CSR! when a FIND
from outside the database is executed.

Format of FIND

CURRENT of RUN-UNIT
INDICATOR

CURRENT SEARCH
REGION INDICATOR

FIND Format 1 set to uniquely identify the not updated
successful (Duplicate not record with the given value
allowed) of the key used.
Format 1 set to uniquely identify the set to key item name and
{Duplicates “first” record with the given value of key used
allowed) value of the key used.
Format 2 set to uniquely identify the set to INDEX key item
"first’” or "last” record with- name, and the value
in the given range range between low limit
and high limit
Format 3 set to uniquely identify the set to the realm name
“first”” record in the given
realm
FIND not
successful All formats Not updated

Not updated

ND-60.127.03

426 Relative Find

Function

The function of the RELATIVE FIND is to locate a record relative to some other
record, and to make it available in the SIBAS buffer area.

The record is specified by means of a set or search region and a search type
{NEXT, PRIOR, etc.)

Format:
Format 1:

FIND-FIRST-IN-SET
CALL SRFSM (temporary-data-base-key, set-name. status)

Format 2:

FIND-LAST-IN-SET
CALL SRLSM {temporary-data-base-key, set-name status)

Format 3:

FIND-PRIOR-IN-SET
CALL SRPSM (temporary-data-base-key, set-name, status)

Format 4:

FIND-NEXT-IN-SET
CALL SRNSM (temporary-data-base-key, set-name, status)

Format 5:

FIND-NEXT-IN-SEARCH-REGION
CALL SRNIS {temporary-data-base-key, temporary-search-region-
indicator, status)

FIND-PRIOR-IN-SEARCH-REGION
CALL SRPIS ({temporary-data-base-key, temporary-search-region-indicator,

status)

Rules:
The owner and all the member record types of any set type indicated by
“set-name’’ must be known to the program and also be in realms which have

been readied for use by the run unit.

“"Temporary-data-base-key'" identifies the record from which the new record is
searched.

ND-60.127.03

fn the case of FIND-FIRST or FIND-LAST, the record identified by the
“temporary-data-base-key”” must be an owner of the set type named in
“set-name”’. The record found will be one which is logically contiguous to the
owner in the set occurrence. If the set occurrence is empty, the FIND will be
unsuccessful and the “status’’ parameter is set to zero.

In the case of FIND-FIRST, the record found is that which would be found

earliest by following LINK-TO-NEXT, i.e., the latest connected to the set
occurence.

In the case of FIND-LAST, the record found is that which would be found earliest
by following the LINK-TO-PRIOR, i.e., the earliest connected to the set
occurrence. If there is no LINK-TO-PRIOR for the set type, then the same record
is found but the execution is normally more time consuming as one must follow
the LINK-TO-NEXT round the set occurrence. In a multi-member set type, the
record found may be of any member record type.

In the case of FIND-NEXT or FIND-PRIOR, the record identified by
“temporary-data-base-key’” must be a member of the set type named in
“set-name’’. The record found will be one which is logically contiguous to the
identified member.

if this is the owner of the set occurrence, the FIND is unsuccessful and the
"'status’’ parameter is set to zero.

In the case of FIND-PRIOR, the record found is the member record which would
be found first from the identified member using a LINK-TO-PRIOR. If there is no

such link, the same record is found, but the execution is normally more time
consuming.

In the case of FIND-NEXT, the record found is the member record which would
be found first from the identified member using LINK-TO-NEXT.

In the case of FIND-NEXT/PRIOR-IN-SEARCH-REGION, the record identified by
the "temporary-data-base-key”" must be located in the search region identified
by "temporary-search-region-indicator’’.

The meaning of this is explained in the following:

— When the search region is identified by the name and the value of an index
or calc key item for which duplicates are allowed, the identified record
must have the same value of the key item.

— When the search region is identified by a lower and an upper limit of an
index key item, the identified record must have a value for the index key
item which is within the given range.

o When the search region is identified by a realm name, the identified record
must be located in that realm. (Not applicable for FIND-PRIOR-IN-
SEARCH-REGION)

ND.60.127.03

FIND-PRIOR-IN-SEARCH-REGION is not applicable for a search region set to the
realm name (by FIND-FIRST-IN-REALM).

In the case of FIND-NEXT-IN-SEARCH-REGION, the record found will be the
one which is next in the search region to the record identified by
"temporary-data-base-key"’.

In the case of FIND-PRIOR-IN-SEARCH-REGION, the record found will be the

one which is prior in the search region to the record identified by “‘temporary-
data-base-key".

The execution of FIND-NEXT/PRIOR-IN-SEARCH-REGION, will be unsuccessful
and the "status’”” parameter set to zero if the record identified by '‘temporary-
data-base-key'' is the last record of the identified search region.

In the case of any successful FIND, the CRUI is always updated. The CSRI will

not be updated by FIND of the type ''RELATIVE-TO-RECENTLY-FOUND-
RECORD".

ND-60.127.03

4.2.7

Find Set Owner

Function

The function o this FIND statement is to find the owner of a set occurrence
from one of its members.

Format:
CALL SRSOW (temporary-database-key, set name, status)
Rules:
The owner anc all the member record types of the set type named by “set
name” must be known to the program and must all be in realms which have

been readied for use by the run-unit.

The effect of executing FIND OWNER is to find the owner of the set occurrence
of “set name” from the member record identified by "temporary database key'".

It the record identified by “temporary-database-key” is not connected into an
occurrence of the named set type, the FIND will be unsuccessful, and the

“status’’ parameter set to zero.

If the execution of FIND OWNER is successful the CRUI will be updated to
identify the owner record. The CSRI will remain unchanged.

ND-60.127.03

428

Get, Getn, Get Indexes

Function:

The function of the GET statement is to make the relevant items or group items
available in the run-unit's data area so that the items can be processed. GETN
reads a number of records in a search region. GET INDEXES reads a number of
index keys.

In the case of GETN or GET INDEXES, the records can 2e obtained in ascending
or descending order in the search region.

Format:

GET

CALL SGET ({temporary-database-key, no. of items, item list, item values,
status)

GETN

CALL SGETN (temporary-database-key, temporary search region
indicator, no. wanted, no. of items, item list, item values, no. found,
status)

GET-INDEXES

CALL SGIXN (temporary-database-key, temporary search region indicator,
no. wanted, item values, no. found, status)

Rules:

“ltem list” must be a list of names of items and group items in the user pro-
gram. The corresponding values of the items and group items will be transferred
to the area named "item values’. Each value in the "item values’ starts on a
new word boundary. “Item values’ cannot be larger than 500 words.

The "item list” should contain the names of the relevant items and group items
in the record identified by "tempocrary-database-key’’. Not all items and group
items defined for the record type need to be given in "item list” and the
sequence of the items need not be the same as defined for the record type. The
same item may be repeated in the "item list” but the total number of items gi-
ven must not exceed the total number of items and group items defined for the
record type.

The effect of executing a GET is to cause values of the items and group items
named in the "item list” to be stored in the data area of the user program. In the
case of GETN, the values corresponding to "'no. found’ records are transferred.

In the case of GET INDEX, the values corresponding to “"no. found” keys are
transferred.

ND-60.127.03

4--19

“"No. wanted”” can be positive or negative. If positive, records are found in
ascending order, as when FIND-NEXT-IN-SEARCH-REGION is used. If negative,
records are found in descendingdorder, as when FIND-PRIOR-IN-SEARCH-REGI-
ON is used. The maximum "'no wanted'’ for SGETN is 50.

The values of the items will be stored in the area named “item values’ in the
user program in an order corresponding to the order of the “‘item names”. The
CRULI and the CSRI will remain unchanged when a GET is executed.

For a GETN or GET-INDEXES, the CRUI is updated and points to the next record
within the search region, as when using FIND-NEXT-IN-SEARCH-REGION / FIND-
PRIOR-IN-SEARCH-REGION. If end/begin of the search region is encountered

the CRUI points to the last/first record in the search region. "Status’ is set to
zero.

If the run-unit attempts to get a record which has been changed by an(\)ther
run-unit, and is in “extended mode” (see 2.4.3.4), the GET will be unsuccessful.

ND-60.127.03

4.2.9

Modify

Function:

The function of MODIFY is to give new values to one or more of the items or
group items in a record already existing in the database.

Format:

CALL SMDFY (temporary-database-key, no. of items, item list, item
values, status, value length)

Rules:

“ltem list” must be a list of names of items and group items given in the user
program.

The corresponding values of the items and group items must be given in "item
values’”. Each value must start on a new word boundary. "Value length” is the
number of words the item values occupy.

The “item list” should contain the names of the relevant items and group items
in the record identified by "temporary-database-key”’. Not all items and group
items defined for the record type need to be given in “item list”, and the
sequence of the items may be chosen freely.

It is the user's responsibility that the sequence of the items in “item list”
corresponds to the sequence of the values in "item values”.

The realm in which the identified record is stored must have been readied for
update. If the value of the member set item is being modified, realms indirectly
referenced via set membership must have been readied for load or updated.

The effect of executing a MODIFY is to cause the values of the items named in
“item list” to be stored in the record in the database identified by "temporary-
database-key”. Iltems not named in "item list” are not affected by the MODIFY.

If the record type of the identified record is a mernber in an automatically
maintained set type and if the value of the member set item is modified, then the
record will be disconnected from the set into which it was previously connected.
If an occurrence of the owner record type of the set type has an owner set item
value which is equal to the new value of the member set item in the modified
record, the modified record is connected to the set owned by that record. If no
such owner record is in the database and the storage class is manual for the set
type, then the modified record is not connected to any occurrence of the set
type. If the storage class for the set type is automatic and no owner record
exists, then the MODIFY is unsuccessful.

If the identified record is an owner of a non-empty set occurrence and the owner
set item is named in the "item list’" then the execution is unsuccessful.

ND-60.127.03

If any of the items modified are index or calc keys for the record type, then the
new values must not be null and must not cause prohibited duplicates. The index
is updated only if the index is automatically maintained.

If any of the items modified is a calc key for the record type, then the modified
record is deleted from its previous position in the realm and stored in a position
based on the new value of its calc key. The new value may not be null and may
not cause proh-bited duplicates.

If any of the items modified is a member of a group item which is defined as an
index key, calc key, owner set item or member set item, then the same rules
apply as if the item was itself defined as a key or a set item.

if any elementary item is named more than one time in the "item list"" either
directly or indirectly in a group item, the last value given in the “item list" will be
the one stored for the item.

If a privacy itern is defined for the record type and the run-unit has been allowed
to update the record, the privacy item may also be updated.

The CRUI and the CSRI will remain unchanged when a MODIFY is executed.
If the record type of the identified record is a member of a set, and an error has
occurred when executing MODIFY, the identified record may be displaced in the

chain and placed such that it will be found by executing a FIND-FIRST-IN-SET
statement.

ND-60.127.03

4.2.10

4--22

Store

Function:

The function of the STORE statement is to store a record or a part of a record in
its designated realm in the database, taking into account the location mode of
the record type. The record stored may be connected into occurrences of
automatic set types. Any indexes defined for the record type, which have been
defined to be automatically maintained, are updated during the course of
execution of the STORE.

Format:

CALL STORE (realm name, no. of items, item list, item values, status,
value length)

Rules:

“Item list” must be a list of names of items and group items given in the user
programs. The corresponding values of the items and group items must be given
in the “item values''. Each value must start on a new word boundary. "‘Value
length” is expressed in number of words. The total length of all the parameters
cannot exceed 500 words.

The “item list” should contain the names of the relevant items and group items
in the records. Not all items and group items defined for the record type need to
be given in “item list”, and the sequence of the items may be chosen freely.

It is the user's responsibility that the sequence of the items in “item list”
corresponds to the sequence of the values in “item values’.

The realm in which records of this type are stored and also the realms containing
owners and members of any automatic set type in which this record type is a
member must have been readied for update or load by the run-unit.

The effect of executing a STORE is to cause the values of the items and group
items named in "item list"” to be stored in the realm named in “realm name"".

The location mode of "realm name’ determines wherz and how the record is
stored in the realm. If the location mode is calc, the calc key item must be given
in the "item list” and the value must be non-null. The given calc value will be
transformed into a bucket number. The record will then be stored in the first
available space in the bucket or in an overflow bucket. If the location mode is
serial the record will be stored in the first available space in the realm.

Not all items defined for the record type need to be given values when a STORE
is executed. The items in the record type which are not named in the "item list”’
will be given a null value in that record occurrence. The items can be given
values later by use of MODIFY.

ND 60.127.03

It should be ncted that a calc key item must always be given a non-null value. If
location mode is serial and automatically maintained index key(s) are defined for
the record type, and/or the record type is a member of an automatic set, at least
one of the index keys or member set items must be given a non-null value.

When a record is stored, it will be connected into occurrences of automatic set
types and inserted into indexes which are automatically maintained provided that
the item or group item defined as member set item or index key is named in
“item list”. If an index key/member set item is a group item, at least one of the
items composing the group item must be named in the “item list".

If this condition is not satisfied the record may be connected into the set(s) or
inserted into the index{es) later by executing MODIFY on the relevant item(s).

The record is connected into the set occurrence(s) such that it is found by
executing FIND-FIRST from the owner record.

If the record type is a member of an automatic set type, and the member set
item is named in "item list”, the owner record must be present when the mem-
ber record is stored. If the owner record is not present, the execution of the
STORE will be unsuccessful.

It a key item (calc or index key) were defined as not allowing duplicates and if
storing the record in the database would violate this, then the store will be
unsuccesstul. When a privacy item is defined for a record type, it must be given
a non-null value when a record of this type is stored.

If the store is executed successfully, then the CRUI is set to identify the stored
record. CSRI is not affected.

NE-60.127.03

4.2.11

4-—24

Erase

Function:

The function of the ERASE statement is to remove the record and all references
to it from the database.

Format:
CALL SRASE (temporary-database-key, option code, status)

Rules:
The "temporary-database-key’ identifies the record that is to be erased.

The realm in which the record identified by ""temporary-database-key'" is stored
must have been readied with usage mode of UPDATE. In the multi-user version
of SIBAS, if "option code’ greater than or equal to 1 is used, all indirectly and
directly referenced realms must also have been readied with a protection mode
of EXCLUSIVE UPDATE by the run-unit.

The “option code” can have the values 0, 1, 2 or 3 specifying the various ERASE
options:

0 The record identified by the “temporary-database-key'' will be erased from
the database as long as it is not an owner record with connected set
members. If it is, the ERASE will not be successful.

1 The record identified by the “temporary-database key' will be erased from
the database if no records are connected to the identified record as
members of an automatic set type. If this is the case the ERASE will not be
successful. If any records are connected to the identified record as
members of a manual set type, the records will be disconnected from the
identified record.

2 The record identified by the “temporary-database-key” will be erased from
the database. If any records are connected to the identified record as
members of a manual set type, the records will be disconnected from the
identified record. If any records are connected tc the identified record as
members of an automatic set type, these records are also erased. If any of
these records are owners of non-empty sets, then the same rules are used
for these as for the record identified by the “temporary-database-key’.

3 The record identified by the "temporary-database-key'" will be erased from
the database. If it is the owner of any non empty sets (manual or
automatic), then all member records in these set occurrences are also
erased. If any of these records are themselves owners of other non-empty
sets, then their connected members are also erased. This process
continues down the hierarchical structure. The maximum number of levels
is 16.

ND-60.127.03

4.2.12

If an erased record has one or more index keys, the indexes will be updated
whether they are defined as automatically maintained or not.

If an erased record is 8 member of one or more sets, the record will be removed
from the set occurrences, and the links to the adjacent members will be updated.

After executior of ERASE, the erased record and it's associated records, if any,

_marked as "erased’ in a multi-user environment.

Connect

Function:

The function of the CONNECT statement is to link a record already stored in the
database into @ manually maintained set of which its record type is defined as a
member.

Format:

CONNECT:
CALL SCONN (temporary-database-key-1, set name, status)

CONNECTY-BEFORE:
CALL SCONB (temporary-database-key-1, temporary-database-key-2, set
name, status)

CONNECT-AFTER:
CALL SCONA {temporary-database-key-1, temporary-database-key-2, set
name, status)

Rules:

The set type identified by "'set name” must have been defined as manually
maintained in the database schema.

The owner record type and the member record type(s) of the set type "'set
name’” must be in realms which have been readied for load or update by the
run-unit.

In the case of CONNECT, the record identified by “temporary-database-key-1"
will be connected into the set occurrence whose owner set item value is equal to
the member set item value of the identified record. The identified record will be
connected into the set occurrence such that it is found by executing FIND-FIRST
from the owner of the set occurrence. The record must not already be connected
to the set occurrence.

ND-60.127.03

I the BEFORE or the AFTER option is used, 'temporary database-key-1" must
identify a record which is not connected into a set occurrence of the set type
identified by "set name’” and “temporary-database-key-2'* must identify a record
which was previously connected into a set occurrence of the set type identified
by "set name'. Furthermore, the value of the member set item for the set type
must be the same for the two records,

It the BEFORE option is used, the record identified by ‘temporary-database -key
17 will be connected to the correct set occurrence of the set type identified by
“set name’’. It is connected so that the record identified by “temporary-data
base-key-2" s found executing FIND-NEXT relative to
“temporary-database-key-1""

If the AFTER option is used, the record identified by “temporary database key 1"
will be connected to the correct set occurrence of the set type identified by “set
name’’. It is connected so that the record identified by ' temporary data base key
2" is found hy executing FIND -PRIOR relative to "temporary database key 1. It
should be noted that if the set type has link to next only, the CONNECT-AFTER
can be very time consuming.

The CRUI and CSRI will remain unchanged when a CONNECT is executed.

ND-60.127.03

4213

Disconnect

Function:

The function of the DISCONNECT statement is to delink a record in the data-
base from a manually maintained set into which it has previously been
connected.

Format:
CALL SDCON {temporary-database-key, set name, status)

Rules:

The set type identified by "'set name” must have been specified as a manual set
type in the database schema. The realms containing the owner records and the
occurrences of other member record types must be in realms which have been
readied for update by the run-unit.

The effect of executing a DISCONNECT is to delink the identified record from the
occurrence of the set in which it has previously been connected. The identified
record remains in the database and it remains connected into sets of other set
types into which it was connected before the DISCONNECT was executed. The
two records which were logically contiguous to the identified record in the set
before the DISCONNECT is executed are logically contiguous to each other after
execution. If the record was not in fact connected into any occurrence of the set,
the DISCONNECT is unsuccessful and "'status’’ is set to zero.

The CRUI and CSRI will remain unchanged when a DISCONNECT is executed.

ND-60.127.03

4214

Insert

Function:

The function of the INSERT statement is to insert an index key of a record
already stored in the database into a manually maintained index.

Format:
CALL SINSR {temporary-database-key, key name, status)
Rules:

"Key name” must identify the name of an item or group item defined as a
manually maintained INDEX key for the record type in tha database schema.

The item or group item named "key name” in the identified record rmust have
been given a non-null value prior to the execution of INSERT. It must not
previously have been inserted into the index.

The effect of executing INSERT is to update the index with the value of the item
or group item named "'key name’’, so that the record may be accessed by use of

the "key name"".

If duplicates are not allowed for the index key item, an attempt to INSERT a
duplicate value will cause a database exception condition to occur.

The CRUI and CSRI will remain unchanged when INSERT is executed.

ND-60.127.03

4.2.15

Remove

Function:

The function of the REMOVE statement is to remove an index key from a
manually mainteined index.

Format:
CALL SREMO {temporary-database-key, key name, status)
Rules:

The record must be in a realm which has been readied for update by the run-

’

unit. "Key name’ must identify the name of an item or group item defined as a
manually maintained index key for the record type in the database schema.

The identified record must previously have been inserted into the index.
The effect of executing a REMOVE is to take out the entry from the index table,
so that the "'key name’’ cannot be used as an access key to the record identified

by “temporary-database-key"".

The CRUI and CSRI remain unchanged when a REMOVE is executed.

ND-60.127.03

4.2.16

Remember

Function:

The function of the REMEMBER statement is to remember either the identifi-
cation of the record contained in the CRUI or else to remember the search regi-
on which is contained in the CSRI. A remembered record or search region can
be referenced directly in all DML statements as an alternative to the CRUI or
CSRL

Format:
CALL SREMB (temporary id, option code, status)
Rules:

"Option code’” must be given one of the values 0 or 1. If “option code” is set to
0, the REMEMBER-RECORD is executed and “temporary id" will identify
"temporary-database-key”. f “‘option code’’ is set to 1, then REMEMBER-
SEARCH-REGION is executed and “temporary id” will identify a "‘temporary
search region indicator’”’. All other settings of “option code’ are prohibited.

The effect of executing REMEMBER-RECORD is to make the record identified by
CRUI available to the run-unit after the CRUI has been updated. This record is
later referenced by use of the number received by the REMEMBER statement in
the variable "temporary id"".

The effect of executing REMEMBER-SEARCH-REGION is to make the search
region identified by CSRI available to the run-unit after the CSRI has been
updated. This region is later referenced by use of the number received in the
variable ""temporary id”’.

A REMEMBER is local to the run-unit. Two concurrently processing run-units may
remember the same record or the same search region without conflict.

A REMEMBER lasts only for the duration of a run-unit. After closing the data
base, anything which has been remembered for a run-unit is automatically
forgotten.

The number of times a REMEMBER may be executed in a run-unit without
executing a FORGET depends on the variant of SIBAS in use. It is, however,
recommended that each REMEMBER is matched with a FORGET as soon as what
has been remembered is of no use to the run-unit. This is because the FORGET

statement releases entries in the remembered list for further use by the
REMEMBER statement.

The CRUI and the CSRI will remain unchanged when the REMEMBER is
executed.

The maximum number of remembered record by run-unit is 30 while the maxi-
mum number of remembered search-region for one run-unit is 5.

ND-60.127.03

4.2.17

Forget

Function:

The function of the FORGET statement is to nullify the effect of executing a
REMEMBER.

Format:
CALL SFOFRG (temporary id, option code, status)
Rules:

“"Option code” must be set to an integer between 0 and 3 and the meaning of
the "temporary id"” will depend on the setting of "option code’".

The meaning of the possible values of “option code’ is explained below:

“option code”” FORGET option executed meaning of “temporary id”
0 FORGET-RECORD “"temporary-database-key"
1 FORGET-SEARCH-REGION “temporary search region
indicator"’
2 FORGET-ALL-RECORDS undefined
3 FORGET-ALL-SEARCH-REGIONS undefined

FORGET-RECORD causes the record identified by "temporary-database-key" to
be deleted from the list of the remembered records for the run-unit.

FORGET-ALL-RECORDS causes all records previously remembered by the
run-unit to be deleted from the remembered list.

FORGET-SEARCH-REGION causes the search region identified by “temporary
search region indicator” to be deleted from the list of remembered search
regions for the run-unit.

FORGET-ALL-SEARCH-REGIONS causes all search regions previously
remembered by the run-unit to be deleted from the remembered list.

The number of times a REMEMBER may be executed in a run-unit without
executing @ FORGET depends on the variant of SIBAS in use. It is, however,
recommended that each REMEMBER is matched by a FORGET as soon as what
has been remembered is of no use to the run-unit. This is because the FORGET
statement releases entries in the remembered list for further use by the
REMEMBER statement.

The CRUI and the CSRI will remain unchanged when a FORGET is executed.
It the records specified in FORGET were locked, they are automatically unlocked

by a successful execution of the FORGET statement.
ND-60.127.03

4218

Lock

Function:

The function of the LOCK statement is to indicate to the DBCS that the run-unit
wishes to obtain one or all of its remembered records (those in extended monitor
mode) for exclusive update.

Format:

CALL SLOCK (temporary-database-key, option code, status)

Rules:
The “option code' must have one of the two values 0 or 1, where:

0: lock record identified by “"temporary-database-key’'
1: lock all the records in the run-units remembered list.

The value of "temporary-database-key”’ needs only tc be defined for “option
code’’ value 0.

The effect of the LOCK statement is to cause one or all records in one run-unit's
remembered list to be set in the status of EXCLUSIVE UPDATE for the run-unit
including the record identified by the CRULI.

The LOCK statement will only be successful as long as none of the required
records are already locked to another run-unit, and none of the records are in
realms readied for EXCLUSIVE UPDATE by another run-unit.

If the run-unit has previously executed a LOCK statement, an UNLOCK statement
must be executed prior to the execution of a new LOCK. This restriction avoids
the problem of deadlock between records in SIBAS.

After the successful execution of a LOCK statement the status will be set to
either 0 or 1. In the case of status 0, one or more of the locked records have
been affected by another run-unit. By “affected” is meant that one of the follow-
ing statements has been executed on the record: ERASE, MODIFY, CONNECT,
DISCONNECT, INSERT or REMOVE. In the case of status 1, none of the locked
records have been affected after they were set in extended monitor mode by the
run-unit.

Locked records can be released for updating by other run-units after execution of
an UNLOCK, FORGET-ALL or & CLOSE-DATA-BASE statement. FORGET and
FORGET-ALL do not unlock the CRUI.

The CRUI and the CSRI will remain unchanged when a LOCK statement is
executed.

ND-60.127.03

4.2.19

4.2.20

Unlock

Function:

The function of the UNLOCK statement is to make any records that are locked to
the calling run-unit available for updating by concurrent run-units.

Format:
CALL SUNLK (status)
Rules:

The UNLOCK statement is always successfully executed.

Change-Password

Function:
The function of the CHANGE-PASSWORD statement is to change the value of
the current password for the calling run-unit, to conform with the password of a
record to be looked at.
Format:

CALL SCHPW (new password, status)

Rules:

The current password will be set to a value for each run-unit when OPEN-DATA-
BASE is executed. The effect of executing CHANGE-PASSWORD is to change
the value of the current password for the calling run-unit. The use of current
password is described in Chapter 2. See also Section 6.1.9.

ND-60.127.03

4.2.21

Accept

Function:

The function of the ACCEPT statement is to move to user defined areas the

contents of various system registers set when a database exception condition
occurs.

Format:

CALL SDBEC (set name, realm name 1, realm name 2, item name, DML
statement code, dbec)

Rules:

"Set name'’, “realm name 17, "realm name 2" and "item name’ must be

defined in the host language program to correspond to a SIBAS character item
which will hold eight characters.

DML statement code’” and "dbec’ must both be defined in the host language
program to correspond to an integer item which could hold at least four digits.

The ACCEPT statement will always be successful. The most recently executed
DML statement will set the system registers to the values which are obtained by
the ACCEPT statement.

Before the OPEN-DATA-BASE statement is executed by the run-unit, the system
registers will have a null value.

The effect of executing the ACCEPT statement is to move the contents of various
system registers into the user defined parameters. The setting of the parameters
will be as follows:

o "Set name’’ will be set to the name of the set type referenced in the most
recently executed DML statement. If no set is referred to, “set name’’ will
be set to null value.

- "Realm name 1" will be set to the name of the realm referenced in the
most recently executed DML statement. If no realm is referred to, ""realm
name 1" will be set to null value.

— “"Realm name 2" will be set to the name of the realm which caused the
DBEC if this is different from ""realm name 1. If not, "realm name 2’ will
be set to null value.

— “ltem name’ will be set to the name of the item or group item which

caused the most recently executed DML statement. If no item is referred
to, "item name’ will be set to null value.

ND-60.127.03

4.2.22

— "DML statement code’ will be set to the code for the most recently
executed DML statement. The codes for all DML statements are listed in
Appendix E.

— “"DBEC"” will be set to the code of the DBEC. If the DML statement was
successfully executed, ""dbec’” will be set to null value.

The table containing all possible values for DBEC and DML statement codes is
given in the chapter "Error Reporting’’.

Erase Element

Function:

The function of ERASE-ELEMENT is to give null values for one or more items or
group items in a record already existing in the database.

Format:

CALL SEREL (temporary-database-key, no. of items, item names, status)

Rules:

“item list"” must be a list of names of items and group items given in the user
program.

The “item list” should contain the names of the relevant items and group items
in the record identified by “temporary-database-key''. The sequence of the items
may be chosen freely.

The realm in which the identified record is stored must have been readied for
update. Realms indirectly referenced via set membership must have been readied
for load or update.

The effect of executing an ERASE-ELEMENT is to cause the values of the items
named in "item list” to be modified to null values in the record identified by
“temporary-database-key’’. Items not named in “item list” will only be affected
by the ERASE-ELEMENT if they are members of a group item and the group item
is named in the “item list”. If a group item is named in the “item list”, all
member item values of that group item will be erased for this record occurrence.

If the record type of the identified record is a member of a set and if the value of

the member set item is erased, then the record will be disconnected from the set
into which it was previously connected.

ND-60.127.03

4.2.23

If the identified record is an owner of a non-empty set occurrence and the owner
set item is named in the "item list” or is a group item which has been modified
to null, then the execution is unsuccessful.

If any of the items modified to null are index keys for the record type, then the
corresponding entry is removed from the index.

If any of the items modified to null is a calc key for the record type, then the
execution is unsuccessful.

If all key items and member set items which exist for the record are modified to
null, then the execution is unsuccessful.

If any item is named more than once in the “item list’’, this has no effect.

If a privacy item is defined for the record type and the run-unit has been allowed
to modify the record, the privacy item may also be set to a null value.

The CRUI and the CSRI will remain unchanged when an ERASE-ELEMENT is
executed.

Accumulate

Function:

Accumulates integer or floating or double integer data elements for one or more
items in an already found record. It is a GET followed by a MODIFY in only one
statement. These statements reduce the possibility of interference between
concurrent run-units.

Format:

CALL ACCID/ACCFD/ACCDD (temporary-database-key, no. of items,
item list, increments, new values, status)

Rules:

The record identified by "temporary-database-key’" must be in a realm which has
been readied for update by the run-unit. "'Increments’’ are the values to be
added to the items named in the “item list'"". The “new values’ are the values
returned by the call.

The item names in "item list” must be elementary items, i.e. not groups.

ACCFD is not available from SIBAS-500.

ND-60.127.03

4.2.24

Fetch-Get

Function:

The function of FETCH-GET is to retrieve a specific record. The record is
specified by means of a calc key or an index key.

_A search region will be established if the key has duplicates allowed..

Format:

CALL SFTGT (realm-name, key-name, length of key, key value, number of
items, item list, item values, status)

Rules:

Same as if the following was executed:

call SFTCH
if sftch-status = 1 then call SGET endif

The realm named in ""realm-name’” must have been previously readied by the
run-unit.

The "key-name’ defines the name of an item or a group item which is defined as
an index key or a calc key in the database schema.

After successful execution of the FIND statement, the current of run-unit
indicator is set to a unique value identifying the record found.

After successful execution of a FIND statement, the current search region
indicator will ke set to both the key item name and the value of the key used. If
duplicate keys are not allowed the setting of CSRI remains unchanged.

If the key item is one for which duplicate values are allowed, then the DBCS
selects the “first’” record where the meaning of “first” is the record with the
lowest physical address (i.e., storing nearest to the beginning of the realm.

The values of the items will be stored in the area named “item values’ in the
user program in an order corresponding to the order of the "item names’’. The
CRUI and the TSRI will remain unchanged when a GET is executed.

“Item list” must be a list of names of items and group items in the user pro-
gram. The corresponding values of the items and group items will be transferred
to the area named "item values”. Each value in the "item values' starts on a
new word boundary. "“ltems values’ cannot be larger than 500 words.

ND-60.127.03

The "item list” should contain the names of the relevart items and group items
in the record identified by ""temporary-database-key”. Not all items and group
items defined for the record type need to be given in "item list” and the
sequence of the items need not to be the same as defined for the record type.
The same item may be repeated in the "item list” but the total number of items
given must not exceed the total number of items and group items defined for the
record type.

The effect of executing a GET is to cause values of the items and group items
named in the "item list” to be stored in the data area of the user program.

. If the run-unit attempts to get a record which has been changed by another
run-unit, and is in "extended mode’’ (see 2.4.3.4), the GET will be unsuccessful.

4.2.25 Get Schemas Information

Function:

The function of GET-SCHEMAS-INFORMATION is to get information about
realms, records and items from the database schemas at run-time.

Format:

CALL SINFO (code, namel, name2, length, array, status)

Rules:
Realm(s) must be in ready mode.
Input: code Qutput: array

1. Get realm names in database. 1-4 first realm name
5-8 next realm name etc.

2. get realm description and 1 realm type
free-space statistics 2 pagesize
3 record-length (type 2),
pagesize (type 1)
4 pages reserved

(8]

pages used
6 freed records (type 2,3)
freed pages (type 1)

3. Get record description for realm 4 words per item name

ND 60.127.03

4. Get item or group description word 1 item type subfield

Bit counting from right to left:

bit 0-1

bit 2=1
bit 3=1
bit 4 =1
bit b=1

bit 6=1
bit7=1
bit8=1
bit 9=1
bit 10=1
bit 11 =1
bit 12=1
bit 13=1

bit 14=1

word 2

word 3

word 4

word b

word 6

00 integer, 01 floating

10 character, 11 mixed
access via calc

access via index

member of set

unique access key

0 - duplicates allowed

1 - duplicates not allowed
automatic member of set
automatic acces key
access-lock

owner of set

group item

member of a group
pointer item

pointer is defined to be
double

pointer is owner of chain

word start of item in
record

length of item

bit 12=0 - bit 0-11 =
length

bit 12=1 ~ bit 0-5 = bit
start

offset to group description
(0 = if item not group)
bit 12 of word 3

(1 = if item length is part
of a word)

bit 1 of word 1

(1 = if character item)

if group item then

word 7-10 first item name
word 11-14 next item name

ND-60.127.05

5. get access path to realm 1
2
3
4-7
8
9
10-13
14
15
16-19
n- n+3
+1
+2
+3- +6
code 1 2 3
namel - realm name realm name
name?2 o — e
OUTPUT

“length” is length of array

realm name

calc access, yes = 1, no
= 0

number of index-accesses
number of set-accesses

CALC ACCESS
item-name

duplicates (0) or not (1)
automatic (1) or not (0)

INDEX ACCESS

first item name
duplicates (0) or not (1)
automatic (1) or not (0)
next item name etc.

SET ACCESS

first set name

member (0)/owner (1} of
the set

automatic (1) or not (0)
naxt set name etc.

realm name

item name —

“array” is a user defined integer array of maximum 500 elements.

"status’’ is set to -1 if errors occurs.

ND-60.127.03

4.2.26

Transaction Units

Function:

A TRANSACTION UNIT is a sequence of database processing which brings the
database from one user consistent state to another user consistent state. A

transaction unit generally corresponds to the completion of a unit of work
significant to the user.

SIBAS takes into account transaction units by explicit declaration from a user
program which determines the ""scope’” of a transaction unit at run-time. SIBAS
imposes severe restrictions on the “scope’” of a transaction unit. However, the
restrictions imposed on the user program make it possible to implement the
TRANSACTION UNIT efficiently in SIBAS.

SUBEG declares to SIBAS the RUN-UNIT intention to process a unit of work
which must be either completely executed or not executed at all. SIBAS will
reserve the whole DATABASE for exclusive use for the duration of the
transaction unit.

SUEND declares to SIBAS the RUN-UNIT completion of a transaction unit. The
completion can be normal, or not. In the later case, the database will be restored
to the state it was at SUBEG.

Format:

CALL SUBEG {run-id, t-unit type, status)
CALL SUEND (run-id, COMIT or ROLL-BACK, status)

Rules:
1. The BIM option must be in effect, otherwise an error status is given.
2. Normally, <run-id> should be left = 0, but a monitoring program can also

execute SUBEG/SUEND for other run-units.

3. A transaction unit cannot last more than a certain elapsed time. This is to
prevent a looping or waiting T.U. to hang up concurrent run-units. The
maximumn elapsed time a T.U. can last is a system generation parameter,
normally 20 seconds.

4, <t-unit type > = 1 the database is reserved for exclusive read.
2 the database is reserved for exclusive update.

I

5. <COMIY or ROLL> = 1 COMMIT, all changes are applied to the database.
-1 ROLL, all changes are discarded, and the
database is left as it was when the transaction unit
started.

ND-60.127.03

If a transaction unit is not terminated within the specified time, SIBAS will
automatically execute a SUEND {ROLL,) for the run urit.

If a run-unit has been ROLLed back by either SIBAS or a monitoring pro-
gram, it will get a negative status for the next call. All currency indicators
are cleared as if FORGET-ALL-RECORDS and FORGET-ALL-SEARCH-
REGIONS were executed.

OPEN-DATA-BASE, CHECKPOINT, ROLL-BACK, READY/FINISH-REALM,
BSEQU/ESEQU, RESIB/RELSI, CLOSE-DATA-BASE are not allowed within
the scope of a transaction unit, and will give an error status.

If application programs can be written so that SUBEG/SUEND brackets all

database updates, concurrency problems are almost eliminated, i.e., LOCK/
UNLOCK, notification of changes, BSEQU, ESEQU ... are unnecessary.

ND-60.127.03

4.3

HOST LANGUAGE CONSIDERATIONS

SIBAS data manipulation services are generally accessed via calls. The reason is
that calling subroutines is a fairly standard and formalized way of interfacing pro-

grams written in different programming languages. SIBAS adheres to the FOR-
TRAN call formalism.

SIBAS-500

SIBAS-500 data manipulation language (DML) is generally accessed via calls just
like SIBAS-100 DML. Programmers should write SIBAS application programs in a
standardized way, independent of whether they are to be run on an ND-100 (us-
ing SIBAS-100) or an ND-500 system (using SIBAS-100 and/or SIBAS-500). In
this chapter we present such a standardized way to construct SIBAS applica-
tions. Some special rules concerning SIBAS-500 are presented, but program-
mers following the given standard '‘cookbooks” will be able to run their applica-
tions on both SIBAS-100 and SIBAS-500 without any modifications of their
source code. The rules given below may at first seem very complex, but experi-

ence shows that it is very easy to convert existing SIBAS applications from
ND-10/100.

ND-60.127.03

4.3.1

4.3.1.1

FORTRAN

Calling SIBAS subroutines from a FORTRAN program is just the same as calling
any other FORTRAN subroutine, as shown in the example.

It is not possible to use character parameters directly. However, this restriction
can be bypassed by "EQUIVALENCing” character fields to integer arrays.

FORTRAN ON THE SIBAS-500

Calling SIBAS subroutines from a Fortran-500 program is exactly the same pro-
cess as calling any other Fortran subroutine, and hence the same as calling
SIBAS from a Fortran-100 program. There are .however, some restrictions as to
how SIBAS value buffers are to be declared in a Fortran-500 application, i.e., a
Fortran application running on the 500 CPU.

General Rules for Fortran on the SIBAS-500

The default integer size on the ND-500 CPU is 32 bits, as opposed to the default
integer size of 16 bits on the ND-10/100 CPU. This is because on the ND-10/100
CPU one word is 16 bits, and on the ND-500 CPU one word is 32 bits. The
SIBAS-500 simulator (SIBAS-LIBRARY) assumes that applications are compiled
in the default integer mode and takes care of converting single integer par-
ameters to/from SIBAS-mode (i.e., 16 bit integer format) kefore receiving/send-
ing parameters from/to SIBAS. In addition, the database format is a 16 bit in-
teger format, i.e., all value buffers (containing database values) sent to/from a
SIBAS process must be packed in a 16 bit word format. Tc avoid problems con-
cerning different integer modes it is best to simply declare all value buffers
(passed to/from SIBAS) as INTEGER®2 in all Fortran applications. INTEGER®2
{which specifies a 16 bit integer format) is the default on the ND-10/100 CPU.

(Note that 500-applications must follow the given rule.) All other parameters are

declared (default) integer (i.e., INTEGER, hence 32 bits in Fortran-500) and can be
handled in the same way as in a Fortran-100 SIBAS application.

ND-60.127.03

4.3.1.2

Standard 'Cookbook’ for Programming Fortran
Applications

In this manual the value buffers are:

"key-value"”
"item-values”
"fow-limit"
"high-limit”
"increments’’
"new values”

They are used in the following SIBAS DML-calls:

SFTCH(P1, P2, "key-value’, P4, P5)

SGET(P1, P2, P3, "item-values”, P5)

STORE(P1, P2, P3, “item-values”, P5, P§)

SMDFY(F1, P2, P3, “item-values’, P5, P6)

SFEBL{P1, P2, "low-limit"”, "high-limit"’, P5, P6)
SFLBL(P1, P2, "low-limit™, "high-limit"’, P5, P6)
SGETN(P1, P2, P3, P4, P5, P6, "item-values”, P8, P9)
SGIXN(P1, P2, P3, "item-values", P5, P6)
ACCID/DD(P1, P2, P3, “increments”, "new values’’, P6)

Declare all such value buffers to be INTEGER*2, all other parameters are
declared INTEGER. In addition this is also the only difference when applications
are to be converted from ND-10/100.

Example:
ND-100 ND-500
INTEGER ITEMP,NOITM,ISTAT INTEGER ITEMP,NOITM,ISTAT
INTEGER IVBUF(10) INTEGER*2 IVBUF(10)

CALL SGET(ITEMP,NOITM, "REALMXX " IVBUF,ISTAT)

As we see, only the declaration of IVBUF is different, — the call sequence and all
other declarations are identical. Note that the ‘ND-500 solution’ is the best way
of construction all SIBAS Fortran applications since this solution also can be run
on the ND-10/100 without any modifications.

ND-60.127.03

SPECIAL CONSIDERATIONS:

1. Since the default single integer mode is 32 bits in Fortran-500, integer
constants cannot be used as value buffers when such a buffer consists of
only one single SIBAS-word {i.e. length-of-value-buffer is 1).

Example:
CALL SFTCH{ P1, P2,1999, P4, P5)

This construction cannot be used to fetch a specific record {where P2 is
the key item declared integer in the database definition with a length of 1
SIBAS-word). (A SIBAS-word = 16 bits.)

Instead the solution shown below should be used. (The use of an array is
not really necessary here.)

INTEGER*2 IVBUF(n)
IVBUF(1) = 1999
CALL SFTCH(P1, P2, IVBUF , P4, P5

2. Names of the database, realms, items, etc., can be handled as they are
handled in a Fortran-100 application.

For example:
(Note that both of the solutions shown can be used.)

a. including names directly as the actual parameters surrounded by
double quotes.

Ex.:
CALL SOPDB(15473,"TESTBAS ","GXZZXG ',IST)

b. ‘equivalencing” CHARACTER variables (containing names) with the
actual INTEGER parameters.
To avoid a waste of space we recommend using DOUBLE INTEGER
because double integer is 32 bits on both the ND-10/100 and the
ND-500 CPU.

Ex:
CHARACTER DBNAM*8, PASSW'8
DOUBLE INTEGER IBASE(2),IPASS(2)
EQUIVALENCE (IBASE,DBNAM), (IPASS,PASSW)
DBNAM = 'TESTBAS
PASSW = ‘GXZZXG
CALL SOPDB(15473,IBASE,IPASS,IST)

ND-60.127.03

Remarks:

i} Instead of declaring IBASE and IPASS as double integer, they
could just as well have been declared as:

INTEGER IBASE(4), IPASS(4)

in Fortran-500 applications it would be sufficient to use 2 as di-
mension, but this would make it impossible to run the applica-
tion on an ND-10/100 CPU.

i) A constant (156473) can be used as the first parameter because
it is not a value buffer.

The application programmer is advised to be very careful when local

INTEGER variables in the application program are ‘equivalenced’ with value
buffers which are declared INTEGER*2.

ND-60.127.03

PROGRAM LOADPER

PURPOSE
LOAD PERSON RECORDS IN A COURSE DATABASE

DECLARE BUFFERS INTEGER*2 FOR THIS TO BE
COMPATIBLE WITH SIBAS-500

INTEGER*2 IUBUF (45}

INTEGER"2 ITVAL1(35), ITVAL2(9), HSALARY

CHARACTER ITLISTI8)#8
EQUIVALENCE (IUBUF (1) 9 ITVAL1) o (IUBUF (36) yHSALARY) 9
* (TUBUE (37) s ITVAL2) o (ITLIST s INAME)

DATA ITLIST(1)/'BDATE v/

DATA ITLIST(2)/°98NO v/

DATA ITLIST(3)/'RERSNAME/

DATA ITLIST(4)/°PERSADDRY/

DATA ITLIST(5)/9SEX '/

DATA ITLIST(6)/%HSALARY 9/

DATA ITLIST(7)/'DEPARTM o/

DATA ITLIST(B)/¢PRESERYV ¢/

DO o000

WRITE(1+100)
100 FORMAT (1H}s5X»#PROGRAM FPERL=GH*,
i £o6X s *NEW PERSON=RECORDS TO DATABASE®,/)
c
C OPEN=-DATABASE:
c
CALL SOPDB(154734"GENDB~GB"s IPASS,IST)
IF (IST«LT.0) THEN
CALL ERROR(1)
GO TO 180
ENDIF

READY REALM FOR LOAD » NOTE THE USE OF " TO DELIMIT RMOLLER, CONSTANTE

(e XeX e

CALL SRRLM(1,"PERSON "51,05IST)
IF (IST.LT.1l) THEN

CALL ERROR(2)

GO TO 180
ENDIF

OPEN THE INPUT=-FILE FOR READING:

OO0

OPEN (UNIT=20.FILE=*GPERREC:DATAY,
+ STATUS=¢0LD* y ACCESS=¢R* ;RECL=45)
IF (ERRCODE.NE.O) THEN
CALL ERROR(3)
GO TO 175
ENDIF

LOOP HERE FOR EACH RECORD

125 READ (20+130END=160) ITVALL HSALARYITVALZ
130 FORMAT (3A2+2A2sA 01342+ 15A25A1916934296A2)
IF (ERRCODE.NE.D) THEN
‘CALL ERROR (&)
GO0 TO 1258
ENDIF
WRITE(1+1640) ITVALL+HSALARYITVALZ

ND-60.127.03

140 FORMAT (1H 93A251X92A29A101X913A2s1Xs15A201XeAloiXeI6be]Xe
- 3A2,1Xs6A2)

C

C STORE THE PERSON<-RECORD READ:

C

CALL STORE("PERSON ",8¢INAME, IUBUF 4 15T 445)
IF (IST.NE,1) CALL ERRQOR{(S)

GO TO 125
c
C END OF LOOP
c
160 WRITE (15170) ‘
170 FORMAT (1H0+6X s #LOADING PERSON~-RECORDS TERMINATED®)

CLOSE (UNIT=20)
C
C DATABASE IS CLOSED (FOR THIS USER)
C
175 CALL SCLDB("GENDB=GB",IST)

IF (ISTeNEW1) CALL ERROR(6)
180 STOP

END

SUBROUTINE ERROR (N)

PURPQSE
PRINT OUT ERROR MESSAGES

INPUT PARAMETER
N ERROR NUMBER

ODOOOOOO0O0n

INTEGER RNAME] (4) s RNAMEZ (4) s SNAME (4) 3 INAME (4)
CHARACTER ERRLIST(6)%30

DATA ERRLIST(1)/'ERROR IN OPEN-DATABASE '/
DATA ERRLIST(2)/*ERROR IN READY=-REALM'/

DATA ERRLIST(3)/*ERROR IN OPEN INPUT=FILE®Y/
DATA ERRLIST (4)/'ERROR WHEN READING A RECORDt/
DATA ERRLIST(S)/'ERROR IN STORE v/

DATA ERRLIST(6)/'ERROR IN CLOSE-DB v/

GET THEZ DATABASE EXEPTION CONDITION CODE

OO0

CALL SDBEC(SNAMEsRNAME] sRNAME2, INAME 5 IDML ¢ IDBEC)

WRITE (1+90C) ERRLIST(N) s IDBECY IDML o SNAME s RNAME L ¢ RNAME2 ¢ INAME
300 FORMAT ('0%4b4/52Xe'DBEC $telbess

. CXe'DML=CALL :'slGe/s
+ 2Xs'SET=NAME : 994429/
+ 2Xe tREALMI HEREYY V-V
+ 2X¢ 'REALM? HERNYY V- Y
- 2Xs*ITEM HIR R Y'Y V-ED!
RETURN
END

ND-60.127.03

4.3.2

COBOL

Calling SIBAS subroutines from a COBOL program is just the same as cailing a
FORTRAN subroutine. The programmer must be aware of two things:

1. Parameters must always start on a word boundary
2. The values passed to or from SIBAS are always an integral number of
SIBAS-words.

The concept of “word” is somewhat strange to a COBOL programmer, but a
“word" is made of 2 bytes on ND-10 or ND-100, 4 bytes on ND-500. A
SIBAS-word is always 2 bytes, which requires some precaution on the ND-500.

The COBOL compilers automatically align 01 level anc 77 level on word
boundaries.

As a good programming practice, define the length of the data items passed to
or from SIBAS as an even number of bytes. If the last byte of a DISPLAY field is
never used, fill it with a default byte, for example space.

To arrive at the number of bytes, add one to the number of 9's in the picture
and, using integer division, divide the sum by 2. If the nurnber of bytes is odd,
you should insert a filler with a picture X, VALUE zero after the definition of the
item. The following is an example of how this would look:

01 RECORD.
05 REC-ITT PIC 89 COMP-3.
05 FILLER PIC X VALUE 0.
05 REC-1T2 PIC 598898 COMP-3.

Otherwise, COBOL is very well suited to writing programs accessing a SIBAS
database, mainly because it has a DATA DIVISION wherz the data areas are
clearly defined.

ND-60.127.03

4.3.2.1

General Rules for COBOL on the SIBAS-500

The programmer must be aware of four different aspects:

Parameters must always start on a word boundary. The ND Cobol
compilers automatically align 01 level and 77 level on word boundaries. All
parameters called "'single integer’ in the SIBAS User’s manual should be
given 77 level and always be defined as COMP (computational) without any
PICTURE clause. Names (database name, etc.) and value buffers (see the
previous section) are given 01 level. All names should be defined with the
PICTURE clause without computational.

The values passed to/from SIBAS (100 and 500) are always an integral
number of SIBAS-words. (One SIBAS-word is made up of 2 bytes). As a
good practice, define the length of the data items passed to/from SIBAS
as an even number of bytes. If the last byte of a DISPLAY field is never us-
ed, fill it with a default byte, for example space.

Value buffers ("item-values' etc., see section 4.1.3.2 for a more detailed
description) are most easily handled when all items are given the type
CHARACTER in the SIB-DRL input file (i.e., all database items are declared
as CHARACTER in the database schema). If they are, all value buffers in
the Cobol-500 application can be declared with the PICTURE clause accord-
ing to the length of the item-value in the database schema. In such cases

the computational clause should never be used in conjunction with the
picture clause.

Note, however, that declaring all items of type CHARACTER may require a
great deal of unused/wasted disc-space.

If there are items in the database schema of type INTEGER, some special
rules have to be followed for 500 applications passing values to/from these
items: Cobol-500 will cause variables declared with the COMPUTATIONAL
option to occupy 32 bits (4 bytes) as long as the PICTURE clause is not
used, or if the PICTURE clause is wused (in combination with
COMPUTATIONAL), with field length equal to five or greater. If computa-
tional is used togehter with a picture clause specifying four characters or
less (ex: 01 DBVAL PIC 9(4) COMP.), then Cobol-500 will assign 16 bits of
storage to the variable.

Cobol storage allocation:

COMP only . 32 bits
COMP and PIC 9(i) where i >4 . 32 bits
COMP and PIC 9(j) where j<5 : 16 bits

Since integer items in the SIBAS database are 16 bits, 500-applications
which pass value buffers to/from such integer items must define these as
COMP + PIC 9(n), where n<5.

ND-60.127.03

4.3.2.2

Standard 'Cookbook’ for Progamming COBOL Applications

The programmer of Cobol applications should follow the “cookbook’” given be-
low concerning SIBAS calls:

A.

All parameters denoted ''single integer” in the SIBAS-II User's manual
should be given level-77 and defined as COMPUTATIONAL. The value clau-
se can be used to initialize them. Do not use the picture clause.

The most common “single integer”’ parameters (in the manual’s
terminology):

“"mode”’

"no-of-realms”’
"no-of-items”

"“no-wanted”

"no-found”’

"option-code”’
"key-length”
“value-length”
"temporary-data-base-key'’
"temporary-search-region-indicator”
“SIBAS-system-number’’
"DML-statement-code’’

“dbec”
"status”’
Examples:
77 SIBAS-STATUS COMP VALUE 0.
77 FIVE-REALMS COMP VALUE 5.
77 SIBAS-DEVICE CoOmP VALUE 2.
77 OPEN-MODE ComMP VALUE 15473.
77 KEY-LENGTH COMP VALUE 4.
Note that Jength-of-value-parameters (i.e., "key-length” and 'value-

length”) specifies the number of SIBAS-words {i.e., the number of 16 bits
words}).

The two integer tables (arrays) "usage-modes’ and '‘protection-modes’”
used in the SRRLM-call must be defined as COMPUTATIONAL with an ad-
ditional OCCURS clause if more than one realm is readied. Use level-01.

Examples:
01 USAGE-LIST.

03 USAGE-MODE compP OCCURS 5.
01 PROT-LIST.

03 PROTECT-MODE COMP OCCURS b.

ND-60.127.03

C. All names are given level-01 and sized by means of the PICTURE clause.

Names are:

"data-base-name”’
"password”’
“realm-name"’
"set-name”’
"item-list”
"key-name’’

Examples:

01 SET-NAME

01 DB-NAME

01 REALM-NAMES.

03 REALM

D. Value buffers are given 01-level and are sized by means of the PICTURE

PICTURE X(8).

PICTURE A(8) VALUE 'TESTBAS

PICTURE A(8) OCCURS 5.

clause. If all items in the database schema are defined to be of type

CHARACTER (and this is recommended), all use of the computational clau-
se should be avoided. Items declared as INTEGER in the SIBAS schema

require value buffers (passing values to/from these items) to be defined
with the combination of COMP and PICTURE 9(n} (where n<5).

Examples:

01 ART-VALUE.
03 ART-NUMBER
03 ART-DESCR
03 ART-ANTALL
03 ART-PRICE

01 KUNDE-VALUES.
03 KUNDE-NR
03 KUNDE-NAVN

PIC
PIC
PIC
PiC

PIC
PIC

X(8).
A(16).
(4).
(6).

> O

9(4) COMP.

9(24).

ND-60.127.03

%
%
%

%

%

declared as
CHARACTER in
the SIBAS
schema

INTEGER in schema

NORSK DATA COBOL = VER H. COB=-EX TIME 12.06 DATE 05.02.80

1 IDENTIFICATION DIVISION,

2 #

3 PROGRAM=ID.,

4 CPERL=~GB.

5 AUTHOR,

6 J F BOHMER DES 1979.

7 BUHBB DT IR BB LR RBRR P BB DR R G R T BRI R RO TR B BDR OB R BB DL ISRBERREHERBRTRLD
8 = PROGRAM READS PERSONAL RECORDS FROM A DISC FILE AND PLACES
9 # EACH RECORD INTO THE DATABASE. EACH RECORD IS ALSU LISTeu
10 * ON THE TERMINAL AFTER EDITING.

11 * ## ERROR CONDITIONS ARE REPORTED ON TERMINAL ®#+

l2 * ## INPUT FILE WAS BUILT dY ANOTHER FROGRAM el

13 L2 AR A S A S Ll a s E R st ER L s R L e Y e Y LT ey
14 ®

15 ENVIRONMENT DIVISION.

16 #

17 CONFIGURATION SECTION.

18 SOURCE“COMPUTER N=10=S,

19 O0BJECT=COMPUTER N=10-=S,
20 INPUT=QUTPUT SECTION.
21 FILE~CONTROL.
22 SELECT TEXTOUT ASSIGN *TERM?®,
23 SELECT PERSON] ASSIGN $GPERREC:DATA' STATUS ERRUR=PRO,
24 1=0=CONTROL,»
25 »
26 DATA DIVISION.
27 i
28 FILE SECTION.
29 #*
30 FD TEXTOUT

31 LABEL RECORD OMITTED.

32 - 01 TEXTLINE PIC X(lg01},

a3 01 PERSREC.

34 02 0BDATE PIC X(6).

35 02 FILLER PIC X,
36 02 0BNO PIC X(5).
37 02 FILLER PIC X.

38 02 OPERSNAME PIC A(26).,
39 02 FILLER PIC X,
40 02 OPERSADDR PIC X(30).
4] 02 FILLER PIC X,
«2 02 0SEX PIC A(1).
43 02 FILLER PIC Xa
G4 02 CHSALARY PIC 2Z9.99,
45 02 FILLER PIC X.
46 02 ODEPARTM PIC X(6)s
47 02 FILLER PIC X.
48 02 OPRESERV PIC X(12).
49 #

50 01 ERROR=LINE,
Sl 02 E-TEXT PIC X(20).,
5e 02 E~GROUP,

53 03 E-DML PIC S(4).

54 03 FILLER PIC X.

55 03 £-DBEC PIC 9(4).

56 03 FILLER PIC X

ND-60.127.03

NORSK DATA C0OBOL = VER He COB-EX TIME 12.06 DATE 05.,02.80
57 03 E-INAME PIC X(8)«
58 03 FILLER PIC X.
59 03 E=SNAME PIC Xx(8).
60 03 FILLER PIC Xe.
61 03 E~RNAME]l PIC X(8).
62 03 FILLER PIC X.
63 03 E-RNAMEZ PIC X(8).
64 i
65 FD PERSON1
66 BLOCK CONTAINS 0 RECORDS
67 LABEL RECORD OMITTED.
68 01 IPERSREC.
69 02 IBDATE PIC X(6).
70 02 IBNQ PIC X(S).
71 02 IPERSNAME PIC A(26).,
T2 02 IPERSADDR PIC X(30).
73 02 ISEX PIC A(l)e.
T4 02 IHSALARY PIC 9(4)V9S,
75 02 IDEPARTM PIC X(6).
76 02 IPRESERV PIC x(12).
77 A
78 *
79 WORKING~STORAGE SECTION. :
80 R e Al e R g R e R L L N S s L L T LT e ey
8l s THE 77 LEVELS ARE CONSTANTS USED MAINLY FOR THE CALLS TU
82 # SIBAS ‘
83 <+
84 #
85 3+
86 <
87 77 PROGNAME PIC X(8) VALUE *CPERL-GB®.
88 77 HEADING PIC X(30) i
89 VALUE 'NEw PERSON=-RECORDS TO DATABASE®,
90 77 DATA=BASE PIC X(8) VALUE *GENDB=GB?.
31 77 PASS=WORD PIC X(8) VALUE ¢ LI
92 77 RUN=ID VALUE 15473 COMP.
G3 77 STAT VALUE 0 COMF.
S4 77T NO=OF=-REALMS VALUE 1 CUMP.
95 77 Uus VALUE 1 CumP,
96 77 PROT : VALUE 0 CUMP,
97 77 RECL VALUE 46 CUMP,
98 77 NO=QOF=-ITEMS VALUE 8 CuUuMP.
95 77 ERROR=NOQ Cump,
100 77 REALM PIC X(8) VYALUE *PERSON ¢,
101 77 ERROR=PRO PIC Xx(2) vALur '00°'.
loz 88 ON-ERROR VALUE *30°¢ 340,
103 AR AR A e SR R L R Ry L Y T R Y T T T T Sy
104 & THE ITEM=LIST CONTAINS THE ©LITERAL NAMES® FOR THE ITEM>
105 & DEFINED IN THE DATABASE UEFINITION. ONLY THOSE ITEMS
106 & REQUIRED NEED BE LISTED AND THE ORDER IS NOT IMPORTANT.
107 L e A A e R L T T T L ¥ O Ry
108 - THE LITERALS #MUST®# BE 8 CHARACTERS LONG!
109 L e b L e R LR T T T R TR R R S S GG AN
110 *
111 01 ITEM=-LIST,
112 02 LBDA PIC A(8) VALUE 'BDAIE '

ND-60.127 03

NORSK DATA COBOL - VER H. COB=EX TIME 12.06 DATE 05.02.80
113 02 LBNO PIC A{(8) VALUE '8NO ',
114 02 LPNA PIC A(8) VALUE *PERSNAME®,
115 02 LPAD PIC A(8) VALUE 'PERSADCR?.
116 02 LSEX PIC A(8) VALUE ?SEX ',
117 02 LSAL PIC A{B) VALUE ?*HSALARY ',
118 02 LDER PIC A(B8) VALUE !DEPARTM ¢,
119 02 LRES PIC A(8) VALUE ?PRESERV °,
120 &###”Q*##é#%%#%ﬂb##&0##%%#000%6#%&0660901?0QéﬁQQ#######Q####QGGO?@G
121 # ITEM=VAL IS A “RECORD® STRUCTURE DEFINING THE PLACE THAT
122 # THE #VALUES®* FROM/TO THE DATABASE ARE TO BE FOUND/PLACED.
123 » THE FIELDS #MUST® DESCRIBE #EXACTLY® THE SIZE AS DEFINEU
124 # BY THE DATABASE DEFINITIUN, AND #MUST® APPEAR IN THE EXALT
125 # SEQUENCE SHOWN IN THE ITEM=LIST (DE* INED ABOVE). V
1 26 #QG%%GQ##&Q%%O%ﬂ###ﬁb#*&%#i###@"##bbﬁﬁﬁiéﬂ O#i%#########%##o##o’??%
127 =
128 01 ITEM=VAL .
129 02 BDATE PIC X(6)e
130 02 BNO PIC X(5).
131 02 FILLER PIC X VALUE SPALE«
132 02 PERSNAME PIC A(26),
133 02 PERSADDR PIC X(30),
134 02 SEX PIC A(l)e.
135 02 FILLER PIC X VALUE SPACE
136 02 HSALARY PIC 9(5) COMP.
137 02 DEPARTM PIC X(6).
138 02 PRESERV PIC X(12).
139 01 ERROR=CODE .
140 02 DML come,
141 02 DBEC COMP,
142 02 INAME PIC X(8),
143 02 SNAME PIC X(8).,
1446 02 RNAME1 PIC X{(B).
145 02 RNAMEZ PIC X{(8).
146 #
147 "
148 »
149 PROCEDURE DIVISION.
150 »
151 MAIN=-PROGRAM SECTION.
1 52 #ﬂOQ##Q##éﬁ#6#%%#44606###0é#%@##é*#06490#0'!’#*i(t%b-ﬁ{#%%#####bé#ﬁ‘“#@
153 # P=START TO NEXT=REC.,
154 » OPEN THE 1/0 FILES » SET=UP AND LIS! THE REPORT HEADINGs
155 2 OPEN THE DATABASE AND READY THE REALM TO RECIEVE DATA.
1 56 ¢-6#994#4*900*%#%0%6-#4#9&##»&#*#QQO%&004-9#Q‘##GGQQQ##Q#%O*&QQ#Q@Q
157 P<-START,
158 OPEN INPUT PERSON1ls OUTPUT TEXTOUT.
159 »
160 MOVE PROGNAME TO TEXTLINE,
161 WRITE TEXTLINE AFTER PAGE.
162 MOVE HEADING TO TEXTLINE.
163 WRITE TEXTLINE AFTER 1.
164 MOVE SPACE TO TEXTLINE.
1-65 WRITE TEXTULINE AFTER 1.
166 »
167 CALL ?SOPDB' USING RUN~=ID DATA~BASE PASS=wORD STAT.
168 IF STAT < 0 MOVE 1 TO ERKOR=NO

ND-60.127.03

NCRSK DATA COBOL - VER H. COB=EX TIME 12,06 BATE 05.02.80

169 PERFORM ERROR=REP

170 GO TO EUl.

171 CALL "SRRLM' USING NO=OF~REALMS REALM US PROT STAT.

172 IF STAT < 0 MOVE 2 TO ERROR=NO

173 PERFORM ERROR=REP

174 GO TO Eul.

175 QQ#éQb#6iﬂl'«b%Q##QGQQQ#G#G#O#Q##é##ﬁ#é##bﬁé#“{6{9460####99#0#1?@4&99?*
176 # NEXT=REC TO FIN,

177 2 READ 1 RECORD FROM THE PERSON]1 FILEs IF NOT END THEN MOVE
178 ® ITEMS INTO THE DATABASE ITEM=VAL ARLA AND THE REPORT LINE.
179 ® OUTPUT THE REPORT LINE AND TO THE BATABASE.

180 &#*94946#‘6#%%QG*G#%Q#QQG#*GQ#QG#Q&GG&Q&Q#Q#%’IO#Q&%Q#*##G%#GQ(&Q’??Q
181 NEXT=REC,

182 READ PERSON]1 INTO IPERSREC AT END GU TQ FINe.

183 IF ON=-ERROR MOVE 3 TO ERROR-NO

184 PERFORM ERROR=REP

185 GO TO NEXT=REC.

186 MOVE SPACE TO PERSREC.

187 MOVE IBDATE TO BDATE OBDATE.

188 MOVE IBNO TO BNO OBNQ.

189 MOVE IPERSNAME TO PERSNAME OPERSNAME .

190 MOVE IRERSADDR TO PERSADDR OPERSADDK.

191 MOVE ISEX TO SEX OSEX.

192 INSPECT IMSALARY REPLACING LEADING SPACE BY tgn,

193 MOVE IHSALARY TO HSALARY OHSALARY,

194 MOVE IDEPARTM TO DEPARTM CUEPARTM.

195 MOVE IPRESERV TO PRESERVY OPRESERV.

196 WRITE PERSREC AFTER 1.

197 CALL 'STORE?

198 USING REALM NO=-OF=-ITEMS [TEM={ IST ITEM=VAL STAT RECL.

199 IF STAT < 0 OR STAT = 0 MOVE 4 TO ERROR=NO

200 PERFORM ERROR-~REP,

201 GO TO NEXT=REC,

202 b##ﬁQ%*#Qd'-ﬂr4#{}<#0%QO#QO#d-##-H'9#%0%#4606#“690#4#4##0660#%0600’“?%
203 * FIN TO ERROR=REP SECTION.

204 3 REPORT END FILE REACHEDs CLOSE I/0 rILESs CLOSE DATABASL«
205 R REPORT IF ANY ERROR ON CLOSE DATABASEs STOP RUN.

206 od#####%iﬂ#%*94000#0**6G%Q*##Q#“#Q9##0##4#%#*0QO#&##OOQO#%Q#GQQ‘?_?Q
207 FINe

208 # READING TERMINATED.

209 MOVE *LOADING TERMINATED' TO TEXTLINE,

210 WRITE TEXTLINE AFTER 2.

211 EUl.

212 CLOSE PERSONl TEXTOUT.

213 CALL 'SCLDB® USING DATA=BASE STAT,

214 IF STAT < 0 MOVE S TO ERROR=NO

215 PERFORM ERROR-REP,

2le6 STOP RUN.

217 ERROR=REP SECTION,

218 ﬂv#G‘Qb###QG#G‘%%##%G%#“Q#%#G#%GG#‘?#%#Qﬂ*###ﬂ@é“iQ#¢¢¢#§§¢G¢Q60¢¢f9q{?
219 ¢ E~S TC E=~E,

220 @ IF ERRORS OCCUR DURING PROCESSING THIS SECTION IS CALLEU
221 * WITH ERROR-NO SET TO SELECT THE DESLIRED ERROR MESSAGE Tu
222 # BE REPORTED ON THE TERMINAL. RETURN TE CALLER AFTER OUTFUT.
223 6%#%##Gid%#**%%“#Q*####*OQ%##Q#“QQQ#Qb&#o#0§§##¢##a0#§#¢¢¢¢4§b’?§9
224 &

ND-60.127.03

NORSK DATA COBOL = VER H. COB-EX TIME 12.06 BDATE 05.02.80
225 E=Soe

226 - FOR EXCEPTIONAL CONDITIONS,

227 CALL f*SDBECY* USING SNAME RNAME]l RNAMEZ INAME DML DBEC.
228 MOVE SPACE TO ERROR-LINE.

229 MOVE DML TO E«DMLe.

230 MOVE DBEC T0 E=-DBEC.

231 MOVE INAME TO E-INAME,

232 MOVE tauosssssas TO E=-SNAME.

233 MOVE RNAME]l TO E-RNAMELl.

234 MOVE t#eraasnde TO E«-RNAMEZ.

235

236 GO TO ERR1 ERRZ2 ERR3 ERR4 ERRS DEPENDING ERROR=NO,
237 ERRL,

238 MOVE fERROR IN OPEN DB TO E-~TEXT,

239 WRITE ERROR=LINE AFTER 1.

240 GO TO E-E.

241 ERRZ,

242 MOVE 'ERROR IN READY~REALM®* TO E-TEXTs

243 WRITE ERROR-LINE AFTER 1.

244 GO TO E=E.

2"45 ERRBQ

246 MOVE SPACE TO TEXTLINE,

2467 STRING ?ERROR IN RECORD ' IBDATE IBNGC IPERSNAME
28 DELIMITED SIZE INTO TEXTLINE.

249 WRITE TEXTLINE AFTER 1.

250 GO TO E=E.

251 ERRG,

252 MOVE *ERROR IN STORE' TO E=TEXT.

253 WRITE ERROR=-LINE AFTER 1.

254 GO TO E-E,

255 ERRS.

256 MOVE 'ERROR IN CLOSE OB ' TO E=TEXT.

257 WRITE ERROR=-LINE AFTER 1.

258 E=E.

259 EXIT,

*a

NO DIAGNOSTIC

MESSAGE (S) =+

ND-60.127.03

4.3.3

PLANC

Calling SIBAS subroutines from a PLANC program is the same as calling Fortran
subroutines frorn PLANC. The programmer should declare his PLANC routines to
be of type "ROUTINE STANDARD(VOID VOID)"'. Names should be built and sent
in BYTE ARRAYs. (NOTE: Always specify arrays with lower index = 0 when they
are used as actual parameters in SIBAS). As in Fortran applications, single in-
teger parameters must be declared INTEGER, and value buffers must follow the
same rules outlined in the description of Fortran applications (i.e., declared
INTEGER2). (For more detailed information — see section 4.3.1. Fortran.)

ND-60.127.03

4.4

4.4.1

4.4.2

HOW TO LOAD APPLICATON PROGRAMS

Description

Application programs must be loaded with one of the available SIBAS libraries
{called simulators). The simulators’ functions are basically mo collect parameters,
send them to SIBAS and receive the output values.

Different types of simulators

There are five types of simulators, i.e., five different sets of routines one may
load together with the application programs, depending upon the mode of ope-
ration of the application programs.

The simulators named SIBLIB-nx-xx are compiled with new FORTRAN-100 compi-
ler and must be used with systems and applications compiled with FORTRAN-100
compiler, or compilers compatible to this compiler in 1-bank or 2-bank mode
{i.e.,COBOL, PLANC).

The ones named SIB2-DML-x-xx are compiled with the cld FTN compiler and
must be used with applications compiled with that compiler or compatible com-

pilers, e.g., BASIC.

For further explanation of the meaning of 1BANK, 2BANK, recursive and non-
recursive, please consult the NORD RELOCATING LOADER User's Manual.

ND-60.127.03

4.4.3

4.4.4

Choosing simulators

SIBLIB-TN-MH:BRF is for use by non-reentrant 1-bank programs, usually back-
ground programs.

SiB2-DML-B-MH:BRF is the same library compiled with the old FTN.

SIBLIB-1R-MH:BRF is for use for reentrant application, either real-time or
dumped reentrant with the SINTRAN command @ DUMP-REENTRANT.

S1B2-DML-R-MH:BRF is the same simulator compiled with the old FTN.
SIBLIB-ZN-MH:BRF is for use by non-recursive 2-bank programs.

All libraries have two common blocks that need totally 532D locations.

Loading Nonreentrant Programs with SIBAS

This should not present special difficulties. The library acts as fortran library and
FORTRAN-1BANK library must be loaded together with the application and the
SIBLIB-1N-MH library. (See example 1.)

if SIB2-DML-B-MH is used, FTNLIBR must be loaded.

Example 1: Loading of Background Programs:

“FORT

ND-100 ANSI 77 FORTRAN COMPILER - 203053A
FTN:COM INSERT, , SCRA

- CPU TIME USED: 5.6 SECONDS. 92 LINES COMPILED.
- NO MESSAGES

- PROGRAN SIZE=812 COMMON SIZE=0

FTN: EX

WNRL

RELOCATING LOADER ~ AUGUST 18, 1982
“PROG- FILE INSERT- 1N
*LOAD SCRA

FREE: 001454177777
*LOAD SIBLIB-1N-MH
FREE: 011160-176753
“LOAD FORTRAN- 1BANK
FREE: 041230-176753
‘E-U

FREE: 041230-176753
"EXIT

ND-60.127.03

445 Loading 2BANK Programs with SIBAS

The FORTRAN-2BANK library must be loaded together with the application and
the SIBLIB-2N-MH library. {See example 2.)

Example 2: Loading of 2-bank Programs:

@FORT

ND-100 ANST 77 FORTRAN COMPILER - 203053A

FTN: SEPARATE-DATA ON

FTN: COM INSERT, , SCRA

- CPU TIME USED: 5.6 SECONDS. 92 LINES COMPILED.
- NO MESSAGES

- PROGRAM SIZE=361 DATA SIZE=452 COMMON SIZE=0
FTN: EX

PNRL

RELOCATING LOADER - AUGUST 18, 1982

"PROG-FILE INSERT-2N

*LOAD SCRA

FREE: 000551-177777 FREE DATA AREA: 000704-177777
“LOAD SIBLIB-2N-MH

FREE: 006150-177777 FREE DATA AREA: 004172-177777
*LLOAD FORTRAN-2BANK

FREE: 032316-177777 FREE DATA AREA: 010356-177777
“E-U

FREE: 032316-177777 FREE DATA AREA: 010356-177777
TEXIT

ND-60.127.03

4.4.6

Loading Reentrant Programs with SIBAS

These are programs to be dumped reentrant with the Sl command
@DUMP-REENTRANT. The FORTRAN-1BANK library must be loaded together
with the applications and SIBLIB-1R-MH library. (See example 3.)

If SIB2-DML-R-MH is used, FTNRTLIBR must be loaded.
Example 3: Loading of Reentrant Programs:

2FORT

ND-100 ANST 77 FORTRAN COMPILER - 203053A

FTN: REENTRANT

FTN: COM INSERT, , SCRA

- CPU TIME USED: 5.2 SECONDS. 92 LINES COMPILED.
- NO MESSAGES

- PROGRAM SIZE=965 COMMON SIZE=0

FTN: EX

ONRL

RELOCATING LOADER - AUGUST 18, 1982
“IM 100

“LOAD SCRA

FREE: 001705-177777
“LOAD SIBLIB-1R-MH
FREE: 007737-176753
“{OAD FORTRAN- 1BANK
FREE: 036744-176753
“E-U

5STLEN=000015 U

FREE: 036744-176753
“DEFINE BSTLEN 10000
“BPUN INSERT-REENT O O
“EXIT

ND-60.127.03

4.477

Loading Real Time Programs with SIBAS

The FORTRAN-1BANK library must be loaded together with the actual SIBLIB
library. (Reentrant or non-reentrant version, depending on the RT-program.) (See
exaple 4, loading of a non-reentrant RT-program.)

If SIB2-DML lib is used, FTN-lib must be loaded.

The common blocks SIBSYS and SIBCOM must be placed on a write permitted
segment. The common location SIBSYS(2) (IBRIX) must contain zero as an initial
value. Then it will be replaced with the programs RT-description address when
the program is started. If the SIBLIB code is shared between several RT pro-
grams, they should have their own common blocks loaded on different segments
at the same logical address.

Example 4: Loading of non-reentrant Real Time Programs:

OFORT

ND-100 ANSI 77 FORTRAN COMPILER - 203053A
FTN: COM (B--S)INSERT, , SCRA

- CPU TIME USED: 6.2 SECONDS. 92 LINES COMPILED.
- NO MESSAGES

~ PROGRAM SIZE=812 COMMON SIZE=0

FTN: EX

SRT-L

REAL-TIME LOADER, SINTRAN III - H
*CL-SEG 276

RT-PROGRAMS ON SEGMENT:

NINSERT

DELETING THIS RT-PROGRAM(S)? Y
“NEW-SEGMENT 276, 1
Y

"Y PLACE COMMON BLOCKS SIBSYS AND SIBCOM
Y

"PRESET-COMMON-ADDRESS 276 50000
"SET-LOAD-ADDRESS 276 0

"LOAD SCRA, ,

"LOAD (B--S}SIBLIB-1N-MH, ,,,

*LOAD FORTRAN- 1BANK, , ,
“WRITE-LOAD-ADDRESS, ,,,

::::::

ND-60.127.03

L. ADR. 0 U. ADR: 41227 C. LADR: 41230

“WRITE-COMMON-LABELS, ,,

SIBCOM 276 1021

SIBSYS 276 3

Y

*Y SET UPPER LIMIT OF SEGMENT BEHIND COMMON BLOCKS
'Y

*SET-LOAD-ADDRESS 276 52000

'Y

'Y INITIALIZE SIBSYS(2) (IBRIX) WITHO

'Y

“CHANGE - LOCATION, , ,,

50001/ 00
42240 .
"END-LOAD, , .,
COMMON AREA ADDR. SPECIFIED IN THE PRESET-COMMON COMMAND IS LESS
THAN THE CURRENT LOAD ADDR.
SEGMENT NO. 276
Y
Y THIS ‘WAS JUST A MESSAGE FROM THE LOADER (NOT AN ERROR OR WARNING)
'Y
“WRITE-SEGMENT 276, , ,,,

276 0 51777 12361 0 1 1 RFW NON DEMAND

“EX

ND-60.127.03

4471

4.4.8

466

Cooperating RT Programs Working as one ""SIBAS USER"”

Normally, the RT-description address of the application process is used as user
identification. The identification can, however, be defined in another way. This is
done by giving the common location SIBSYS(2) (IBRIX) an initial value equal to
the wanted identification (NOT zero).

Table of SIBAS Simulators (Libraries)

The following chart (along with the preceding examples of lnading and compiling
programs} may help to make things a little clearer,

Application environment Library to use Comment
Examples
2BANK non-recursive 2
New linkage | programs | (usual) SIBLIB-2N-MH (4.4.5)
convention
as
non-reentrant
FORTRAN-T7 usually 1 and 4
COBOL background SIBLIB-IN-MH | (4.4.4 and
PLANC application y.4.7
1BANK
programs
reentrant and
recursive
usually 3
dumped-reentrant| SIBLIB-1R-MH (4.4.6)
and often
RT-programs
0ld non-reentrant
linkage usually background SI8-DML.-B-MH
conventions application
as
(8FTN reentrant and recursive
compiler usually dumped-reentrant SIB-DML~R-MH
and FTN and often RT-programs
compatible
languages)

ND-60.127.03

4.4.9

4.4.9.1

4.49.2

Applications on ND-500 Systems

Applications running on the 500 CPU

Applications running on the 500 CPU should link to a common SIBAS-LIBRARY
segment {(where all SIBAS entry points are defined). Note that the same library is
used independently of the SIBAS-process used (SIBAS-100 or SIBAS-500).
Execution of the SETDV-call will select the correct SIBAS. In addition to the
SIBAS-LIBRARY, the application has to be linked to the SIBAS.-500 message
system (SIBAS-MESSAGE).

Example:

Notes:
N11: SET-DOMAIN <domain-name >
N11: OPEN-SEGMENT <segment-name> ,,,
N11: LOAD-SEGMENT < application >
N11: FORCE-SEG-LINK (SIB-500)SIBAS-LIBRARY i
N11: LINX-SEG (SiB-500)SIBAS-MESSAGE ii
N11: EXIT iii

Notes:

i) FORCE-SEG-LINK must be used since the SIBAS-LIBRARY segment
also is linked to the message system. SIB-500 is the username where
the iibrary is assumed to reside.

ii) Linking to the message system is necessary to get access to global
datz. If linking to SIBAS-MESSAGE is forgotten/skipped, the error-
message "PROTECT VIOLATION” will occur on your terminal when
the program is started.

iii) If the size of RT-common is changed after SIBAS-500 applications
are loaded, they all have to be re-loaded, including the SIBAS-
LIBRARY segment.

Applications running on the 100 CPU

All applications running on the 100 CPU can use the standard SIBAS-100 LI-
BRARIES (see Section 4.4.2)regardless of which SIBAS process they are using
(SIBAS-100 or SIBAS-500). The SIBAS system number (used in SETDV) will se-
lect the correct SIBAS process without regard to whether SIBAS is running on
the 100 or the 500 CPU.

ND-60.127.03

DATABASE ADMINISTRATION

This chapter contains information about the administration of the SIBAS system
itself. In small systems, this may be done by the SIBAS users (i.e., program-
mers). In larger systems, there will probably be one persan who has the respon-
sibility for administrating the SIBAS system (i.e., the data base administrator).

Database administration, as described in this chapter, includes such tasks as
starting and stopping SIBAS, determining the logging and recovery facilities
required, and carrying out rollback and recovery functions when needed.

Those functions can be carried out in two ways: either as SIBAS-SERVICE
commands or by calling the proper routines from an application program.

Other tasks of the database administrator include such things as defining privacy
requirements, taking consistency checks of the data base, and printing and
patching the database. These tasks are carried out using special utility programs
and are described in Chapter 6.

The application oriented tasks of a database administrator, such as determining
the contents and structure of the database, were discussed earlier in this
manual.

This chapter starts out with some general information on the structure of SIBAS,
its operating requirements and its running states. The logging and recovery
facilities are then discussed, and finally the SIBAS calls used to carry out admin-
istrative functions are described in detail.

ND-60.127.03

5.1

5.1.1

REAL-TIME ORGANIZATION OF SIBAS

How is SIBAS organized?

SIBAS is a multi-user, single thread database management system in that one
SIBAS system is associated with one database and one SIBAS system executes
only one SIBAS statement at a time. However, there may be several SIBAS
systems (called processes) active, each accessing their respective databases.

queue
SYSTEM "\
T l
l
STELTR l INTERFACE
{SIMULATOR) |
: |
APPLICATION [SIBAS
|
l
] DATABASE
PUBLIC l
l RT
l
Figure 5.1: Simplified Overview of SIBAS — Application Communication on

ND-10, ND-100

SINTRAN provides the two-way communication between one SIBAS process and
the rest of the world. The communication path is depicted below.

ND-60.127.03

User
SINTRAN SIBAS
Appl. Simulator
call SDML
(P1,P2..Pn)

builds a SIBAS

packet
enqueue SIBAS
move packet
from user
to RTCOMMON decode packet

l____._.—i’ call SDML
MON send- ‘b
receive execute call
dequeue SIBAS
4 4
move packet send packet,
from RTCOMMON wait for next
to user packet
A 4
pass parm 1
values
J
\ 4
continue

ND-60.127.03

Simulator:

The SIBAS simulators are a set of routines which must be loaded together with
the application programs in order to access SIBAS. The simulator’s functions are
basically to collect parameters, send them to SIBAS and receive the output
values.

As explained in the sections under 4.4 (How to load application programs) there
are several versions of the simulator the use of which depend on 2 criteria:

1. The language and mode of execution in which the applications are written,
eg.. @FTN or FORTRAN-77 compilers.

2. Whether the SIBAS process is located in the same machine or not.

Interface.

The interface is a part of the SIBAS process and is shown here for complete-
ness.

Backup/Recovery must make the interface more complicated than it appears in
the figure, because the interface may log the packets on a logfile.

SIBAS Requirements:

This section requires a working knowledge of SINTRAN Ill real-time features,
SIBAS requirements (real-time segments, memory) vary with the options in use
and the number of processes involved.

Each SIBAS process requires 1K words of RT-COMMON area.

SIBAS Segments:

SIBAS programs are quite large. To run efficiently, up to 31K data buffer is
required. This leaves about 32K for the rest of code which is actually about 42K.
This code is segmented using the SINTRAN RT segmentation scheme. Most of
the code is reentrant, giving the possibility of accessing simultaneously more
than one database with the same code. There must be enough space on the seg-
ment files for the SIBAS segments. Necessary space is 42K words for the
reentrant part and 35K words per SIBAS process.

ND-60.127.03

0
16K
37777
40000
10K
63777
A 64000
36K
(32K
butfer
_',
3K routines)
v 171777
172000
3K
177777

WORK
SEGMENT
CODE

™~

SIB2F

DATA

AND

NON
REENTRANT

OPEN
SEGMENT
CODE
REEN
SEGMENT
CODE
SIB2A
DATA | L
AND
NON
REENTRANT
ROUTINES

ROUTINES

RT COMMON

REENTRANT
PART

NONREENTRANT
PART

Figure 5.2: Virtual Memory Layout of the SIBAS Processes on ND-10 and ND-100.

The upper boundary of the SIBAS data segment may be changed at system
generation to accomodate bigger RT-COMMON.

ND-60.127.03

5.1.2

Organization of SIBAS on an ND-500 System

A SIBAS process running on the 500 CPU is called SIBAS-500, while SIBAS-100
denotes a process running on the 100 CPU.

Currently, there is an upper limit of six SIBAS processes running simultaneously
on an ND-500 system {but SINTRAN may be patched to run 11 processes). It is
up to the database administrator (DBA) to decide at the time of installation how
many of these six processes he wants to be SIBAS-500 processes. The DBA may
for instance decide to have two SIBAS-100 processes (SIB2A, SIB2B) and four
SIBAS-500 processes (SIB2C, SIB2D, SIB2E, SIB2F) instzlled on an ND-500 sys-
tem, and have them run simultaneously. (See figure 5.2A)

Application programs may access both SIBAS-100 processes and SIBAS-500 pro-
cesses, i.e., they don't have to run on the same CPU as the SIBAS process.

It must, however, be emphasized that normally the best way to increase perform-
ance is to run both the application and SIBAS on the 500 CPU. All other solutions
will introduce extra communication overhead.

Communication between applications and SIBAS

The SIBAS-LIBRARY (simulator) linked to an appplication program running on
the 500 CPU builds a packet for each SIBAS call. These packets are passed
through a special purpose message system common to a| SIBAS-500 processes.
Packets to SIBAS-500 coming from 500-applications are linked into a queue
associated with the destination SIBAS-500 system number. SIBAS-500 will hand-
te these packets in standard FIFQ {first-in-first-out) manner.

After having linked its packet into the correct SIBAS-500 queue, the
500-application will enter a waiting state. It will later on be restarted by SIBAS
when its answer-packet has been made ready in the message system. A
SIBAS-500 process will stay active as long as there is at least one SIBAS call
waiting for execution on this SIBAS-500 process. When the queue is empty,
SIBAS enters a waiting state. SIBAS will be restarted as soon as there is a call in
its queue.

All data areas used in the message system reside on a shared ND-500 data seg-
ment partly fixed in memory.

If the SIBAS calls address a SIBAS-100 process, the packets will be sent via
RT-common to the SIBAS-100 process. It picks them up just as if the packets
came from an application running on the 100 CPU {see 5.1.1).

Applications running on the 100 CPU will (by their library, see 4.4.1) send packets
through RT common as described in 5.1.1. If the calls address a SIBAS-500 pro-
cess, the packets will be picked up by a special 500-application program {as-
sociated with that SIBAS-500 process) called a Server. It then sends the packets
in the standard way to SIBAS-500 via the message system.

ND-60.127.03

ND-500
100 CPU 500 CPU

SIB-DRL Applications

using SIBAS-500
SIB-DBM and/or SIBAS-100
SIBINTER SiB2C-500
SIBAS-SERVICE SIB2D-500

SIB2E-500
Applications
using SIBAS-100 SIB2F-500
and/or SIBAS-500
SIB2A-100
SIB2B-100

DATA BASES

ND-60.127.03

Figure 5.2A: Example of an ND-500 system running six SIBAS processes

5.2 SIBAS STATES

A SIBAS process is always in one of the five different states shown in the
following diagram:

PASSIVE
SET-PASSIVE "GIVE SIBAS SYSTEM MUMBER"/@RT SiB2x
A
READY D INITIATE-LOG
STOP START

DBA Q DBA CALLS
RUN RECOVER
AUSE FINISH:

RUNNING RECOVERY
DML CALLS REPROCESS/ROLL BACK
Figure 5.3.

A box represents a state
An arrow represents an action

If SIBAS is in any other state than RUNNING and a DML call is requested, the
call will be placed in a waiting queue and executed when SIBAS enters
RUNNING state again.

ND-60.127.03

PASSIVE State:

After loading of the SIBAS processes with the RT loader, all the SIBAS
processes are in PASSIVE state. The SIBAS process may also enter the PASSIVE
state by executing the SPASS call.

READY State:

A SIBAS process is put in READY state by issuing the command @RT SIB2x or
by giving the system number when using @ SIBAS-SERVICE. One can then initi-
ate the various types of logs using the INLOG call.

DBA State:

This is a privileged state where: different maintenance calls may be executed
while SIBAS process activity is suspended.

RUNNING State:

This is the most common and normal state of the SIBAS process where the
different data manipulation calls are executed.

RECOVERY State:

This is an exception state where reprocessing and roliback activities are carried
out.

ND-60.127.03

5.3 LOGGING and RECOVERY FACILITIES

5.3.1 General

SIBAS offers three kinds of logging facilities

1. Routine logging

2. Delayed updating (not with a SIBAS-500 process).
3. Before image logging

illustrated as follows:

SYSTEM
|
|
l
1

USER I

APPLICATION l SIBAS /
| / ROUTINE
' LOG
l
| -y
| NV
’ BEFORE
| DATA IMAGE
‘ AREA
l DATABASE

PuUBLIC l RT

Figure 5.4.

When a run-unit calls SIBAS, a "call packet” is passed to SIBAS, and before the
routine in SIBAS is activated, the ""call packet” can be recorded on the ROUTINE
log. If SIBAS processing results in database changes, the changes can be
recorded on an UPDATE FILE and the database itself will be updated later on.

Before image and delayed updating excluded each other and are optional.

Routine logging is also optional and works independent of the other forms of
logging.

ND 60.127.03

53.2

Checkpoint

A checkpoint is a point of time where the database is consistent on the disk. All
buffers are written on the disk and also all internal tables. A special checkpoint
record is written to indicate that a checkpoint has been taken at this time.

Even though the database is internally consistent when a checkpoint is taken
(i.e., a complete VERIFY of the database would not detect errors), it does not
necessarily follow that the database is meaningful, i.e., that the data itself is
correct.

A checkpoint is normally taken automatically when the database is physically
closed, when an update-in-place is initiated or when the before image log
approaches the end of the file. Additional checkpoints must be initiated by the
user either with the GCHPO/SCHPO call or the CHECKPOINT commands.

Even if delayed update or before image logging are not in use, a checkpoint re-
cord is always written on the routine log when the database is physically closed.
This gives a point of time where the database is consistent and, in case of failu-
re, the possibility to reprocess up to that particular point.

ND-60.127.03

53.3

5—-12

Routine Logging

The routine log {R-log) is essentially a sequential file where the SIBAS input
packets (calls) are recorded before they are processed. SIBAS output packets
are also recorded. Optionally, returned values from SGET might be omitted to sa-
ve disk space. Routine logging is specified in the starting procedure of SIBAS
and provides a simple and robust reprocessing mechanism.

When routine logging is on, SIBAS input packets from updating run-units are
written on the log file. In case of breakdown, this ing file can be used in
conjunction with a backup copy of the database or a rolled back database, to
reprocess the input to SIBAS and bring the database to a state just before the
breakdown occurred.

The log file is buffered, i.e., the input packets are not immediately written on the
output medium. If the SIBAS process is aborted, the content of the log buffer is
lost, and reprocessing brings the database back to a state corresponding to the
last written log block.

Some calls force the current log block to be written: UTBLK, SOPDB, SCLDB,
SCHPO, GCHPO, BSEQU, and ESEQU. The same calls (except UTBLK) also force
the first block (a control block) of the routine log to be written out. It is possible
to set a flag which forces the log-block to be written for =zach call.

Ample facilities are provided to edit, print and select calls on the routine log,
providing a useful aid in recovery situations. (See 5.4.10 and 5.4.11)

If the routine log is used in conjunction with the delayed update or before image
option, the file may be used in a circular manner. In this way, one saves disk
space but one also loses the possibility of reconstructing the database from a full
back-up copy of the database.

The routine log is activated using ®@SIBAS-SERVICE which initiates/resets or
removes the R-log using the INITIATE-LOG command. (The file must first be
created by the "database owner’') The name of the routine log file is the same
as the database name. The file type is :LOGG. The directory name is given in the
INITIATE-LOG command (INLOG call).

Routine log statistics are displayed by the DATABASE-STATUS command under
@SIBAS-SERVICE.

ND-60.127.03

5.3.3.1

Critical Sequence
Consider a transaction which updates a price list by updating the unit price for
some PARTS records and then updating the SUM record.

If the transaction aborts after updating the PARTS records but before it got a
chance to update the SUM record, the price list will no longer be valid.

Before Update Transaction: After "Interrupted’” Update:

50 — 50—

Figure 5.5.
Reprocessing of the database calls will not help in this situation. The transaction
contains a "‘critical sequence’ which must be completed once it has started.
However the database could be consistent if one stripped off the incompleted
sequence from the routine log before it is reprocessed.
This is done by the following mechanism:
In the programs, 2 SIBAS calls must be given:

Call BSEQU (<seguence name>, <time>, <status:>) before the sequence
begins

Call ESEQU {<sequence name>, <time>, <status>) after the sequence
ends

in case of breakdown, this procedure must be followed:

Remove incompleted sequence from routine log file.
Reprocess the routine log.

ND-60.127.03

5.3.3.2

5—14

Reprocessing

After a system failure, the routine log {R-log) is used to reprocess the calls to
SIBAS, either from a backup copy or a rolled back database.

It is often desirable to avoid reprocessing of some of the calls, for example, all
uncompleted critical sequences. Another example is all changes made to the
database after a well defined point of time.

Facilities are supplied to list the routine log and/or set conditions for subsequent
reprocessing.

When conditions are set, the calls which are not reprocessed will be marked on
the routine log, i.e., the routine log is edited. Normally the editing and reproces-
sing are carried out in one pass. For more explicit contro of the editing, one can
use more than one pass, for example, one pass to list without reprocessing the
ending section of the R-log and one pass to edit and reprocess the R-log. Should
the reprocessing fail, it is possible to reinsert the removed calls and reprocess
once more.

The editing conditions are set up by the SET-CONDITION-FOR-REPROCESSING
command (SICON call); only one condition may be specified for one run-unit.
The actual reprocessing/listing/editing is initiated by the REPROCESS command
(SREPR call).

ND-60.127.03

534

53.4.1

Delayed Updating (not available with a SIBAS-500
process)

A database can consist of two parts: the main part which is unchanged and the
update file which records all the changes requested for the main part. There may
be several subdivisions in this update file, each one corresponding to a
checkpoint. The main database is regularly merged with the update file, thereby
emptying it (UPDATE-IN-PLACE). An update file is a type of audit trail, but actual
updates have not yet occurred. If the system crashes at any point in time, the
database is automatically rolled back to the state it had at the latest checkpoint
by deleting the updates after the checkpoint (ROLL BACK).

After ROLL BACK to the checkpoint, RECOVERY may be done in two ways:
1. Without ROUTINE LOGGING, by re-executing the run-units (i.e., rerunning
the programs). In many situations this is not feasible because the run-unit

executior may depend on terminal input which has been lost.

2. With ROUTINE LOGGING, by reprocessing the input to SIBAS from the
fog.

SIBAS I/0 System (SIBIO) (not available for SIBAS-500)

The delayed update function uses a separate RT process named SIBIO. SIBIO
handles all the disk addresses for SIBAS and manages the update file.

A roll-back can be performed automatically and immediately by SIBIO in case of
system failure. Roll-back cannot cross the time of an update-in-place, but all oth-
er combinations are allowed (see Figure 5.6).

All communication between SIBAS and SIBIO is performed through a pair of in-
ternal devices and RT common.

An application program will not see any difference between a SIBAS with or

without SIBIO. The difference will only be visible for the database administrator
{or TPS).

The SIBIO buffer size is a system generation parameter, specified in the
SIBIO-SYSGN file.

ND-60.127.03

5—-16

5342 The Update File (not relevant for a SIBAS-500 process)

The delayed update option is activated by the @ SIBAS-SERVICE program which
initiates the update file with the INITIATE-LOG command (the file must first be
created by the "database owner””). The name of the update file is the same as
the database name. The file belongs to the database “owner"”. File type is :UPDT.
The directory name is given in the INITIATE-LOG command (INLOG call).

The update file is organized as a ring and may contain an unlimited number of
checkpoints and update-in-places. The file size is limited to 128 Mb and it is the
user himself who sets the size when the file is initiated the first time.

All updates are written to the update file and the user can at any time start the
operation called "update-in-place” to write the updates to the database itself.
When this is done, a checkpoint is first generated and then all updates done
after the last update-in-place and up to the checkpoint are written to the data-
base. Normal SIBAS processing, including updates, can be done even if an up-
date-in-place is active. These updates will be written to the database at the next
update-in-place.

Second to last update-in-place start-checkpoint
heckpoint (CP)

Last update-in-place checkpoint (U-1-P)

______ UIP tinished
The first user CP after a U-1-P is finished will
be marked as a U-1-P finish — CP and the
/ pages behind the U-1-P start-CP will be freed.
Figure 5.6.

Checkpoint and update-in-place may be called by users at any time, regardless
of the validity of the database. It is important that an update-in-place is not in-
itiated while any run-unit is within a single SIBAS call cr critical sequence. |t is

normally the responsibility of the database administrator (or TPS) to halt
concurrent run-units in order to initiate update-in-place outside the scope of
critical sequences.

An update-in-place should be initiated at fixed intervals to prevent the update file
from becoming full. An automatic update-in-place will be initiated if the file is
full, but in that case SIBIO will hang until the update-in-place is finished, causing
SIBAS and all applications accessing SIBAS to hang for a while.

ND-60.127.03

5343

Taking Checkpoints

The user defines the checkpoint identification (normally the SINTRAN time and a

sequence number). The identification of the checkpoint must be greater than the
previous one.

An immediate start of an update-in-place will also take a checkpoint with the
user defined checkpoint identification.

SIBIO also takes its own checkpoints in special cases:
— when starting an update-in-place if the update if full

— when closing the database

These internal SIBIO checkpoints are given a checkpoint identification equal to
the last used checkpoint identification + 1 basic unit.

ND-60.127.03

5344

Update-In-Place (not relevant for a SIBAS-500 process)

It is the responsibility of the database administrator (or TPS) to initiate an
update-in-place. When and how often this is necessary depends on the size of
the update file, the degree of changes in the database and how these changes
are distributed in time. But with the help of statistics from SIBIO this should be

easy to decide. The statistics can be fetched by a @SIBAS-SERVICE command
(GET-UPDATE-STATISTICS).

An update-in-place will always increase the load of SIBIO and should therefore,
if possible, be initiated when the load of the system is low. The ratio between
the updating function and other functions of SIBIO can be decided by the user
when initiating an update-in-place.

If an update-in-place is active when closing the database, then the update will be
completed before the database will be closed.

The database itself is only open for write access for the duration of the update.
Then it is closed and reopened for read access. This means that a backup of the
database can be taken by @ COPY-FILE while transactions update the database
{i.e., the update file).

The backup reflects the situation of the database at the time the last update-in-
place was initiated. In other words, a database can be opereated on 24 hours a
day.

An update-in-place can either be initiated by the SIBAS-SERVICE program or by
a SIBAS call (SUPLA) from an application program. There are three different wa-
ys of starting an update-in-place:

1. Take a checkpoint and start update immediately
2. Start update-in-place at next user checkpoint
3. Start update-in-place at close-data-base

The last one (3) implies that the update file will be empty of SIBAS updates
when the database is closed and a complete backup of the data base can be ta-
ken (SIBIO gives a message on the log console when the file is empty).

ff the database is to be used by SIBAS without SIBIO or by the @SIB-DBM or

the
@SIB-DRL modules, the update file must be empty of SIBAS updates.

ND-60.127.03

5345

535

Roll-Back

When the roll-back routine is called, SIBIO will perform a quick roll-back to the
given checkpoint. If the checkpoint identification given to SIBAS is equal zero (0,
0,0,0,0,0,0), SIBIO will perform a roll-back to the most recent checkpoint and
return its identification.

A roll-back cannot cross the checkpoint of an update-in-place (see Figure 5.6).

It an update-in-place was active at the checkpoint the data base is being rolled
back to, the update-in-place will be reactivated and continue from the state it
was in at that time.

Before Image Logging

The Before Image logging is a limited alternative to delayed updating. With this
method, a copy of a page is recorded on the Before Image area in the SIBAS
SYSTEM REALM just before the page is updated. When a checkpoint is taken, all
buffers are flushed out, the state of the SIBAS process is recorded and the
Before Image area is emptied.

Should the system crash at any time, the database can be rolled back to the
state it was in at the latest checkpoint by copying all ""Before Images’’ out to the
database and rsstoring the state of the SIBAS process.

Checkpointing may be done directly by the user {GCHPO/SCHPO) or be
automatically triggered when approaching the end of the Before Image Area. The

maximum size of the Before Image Area is limited to approximately 2000 pages
(4 Mbytes).

ND-60.127.03

5.3.6

5.3.7

Backup

A full copy (called BACKUP) of the database must be taken at regular intervals. It
is often advantageous to combine it with the system backup. A number of older
backups and logs may also be retained, to give the possibility to reconstruct the
database even if the current database and the backup are damaged.

Full copies of the routine logs and/or update files can also be taken for the same
purpose.

System Failure/Restart

Experience to date shows that at one time or another the system will go down. It

must be restarted without {too much) loss of information. This is not a trivial
matter. It involves:

— Backup frequency, secondary storage capacity, dead time allowable

— Degree of concurrency possible between the run units (this must be taken
into account at the application design stage). A high degree of concurrency
often implies complicated restart.

— Restart strategy

— Operating procedures

Each of these aspects have sizeable economic consequences.

ND-60.127.03

53.7.1

53.7.2

Restart from a Backup Copy and a Routine Log

In case of a system failure, a number of actions must be taken to restart the
database:

Depending upon the failure; garbage collection, forced close of the data
base for all users. Use @ SET-UNAVAILABLE and @ MAIL to request users
to disconnect.

Copy the backup to the database.
Initiate SIBAS for a reprocessing of the routine log (SREPR call). If critical
sequences are in use (BSEQU/ESEQU calls), they must be skipped (see the

SICON cali).

Normal operation again. Use @ SET-AVAILABLE and @MAIL to signal to
users thet the database is operational again.

Restart from a Database with Update File/Before Image and
Routine Log

1.

Depending upon the failure, garbage collection, @ MAIL, etc.

Since the update file/before image is in use, the database and SIBAS must
be rolled back to the most recent checkpoint. Initiate SIBAS for a repro-
cessing of the routine log from the latest checkpoint. If critical sequences

are in use, they must be skipped.

Normal operation again.

ND-60.127.03

5.4

DETAILED DESCRIPTION OF THE CALLS

The calls described in this section are concerned with the operation of the
SIBAS process rather than manipulating data to or from the database itself.
More specifically, many of the statements operate at the SIMULATOR/LIBRARY
or the INTERFACE level without any action at a lower level (see Figure 5.2 and
5.3). These calls should be executed through SIBAS-SERVICE (see 6.2). When

they should not be,the opposite is explicitly indicated below.

Some parameters have the same meaning in several calls. A detailed description
of them will be given here to avoid tedious repetition.

<status>

A single integer returned by the SIBAS process to indicate the result of an

operation.

1 means a successful execution

< 0 means an unsuccessful execution. A list of the possible values and
their meaning is given in the chapter ERROR REPORTING.

<run-id >

<sequence-name >

A single integer, used by the SIBAS process to identify a run-unit (a user)
in its user table. Normally the start address of the RT-DESCRIPTION of the
run-unit is used. This parameter will often be zero indicating all run-units.
To get the run-ids, you may run REPROCESS-ROUTINE-LOG with print-op-
tion 3 (print only}.

Remark: When using @ SIBAS-SERVICE, input of run-id is octal and must

be terminated by "B’ for example, 23456B.

A field of 8 bytes containing the name of a critical sequence. The name is

freely chosen by the programmer and consists of 1 - 8 characters.

<time >

A field of 7 single integers which has the following format:

Basic Unit Second Minute Hour Day Month Year
Word 1 Word 2 Word 3 Word 4 Word 5 Word 6 Word 7
Figure 5.7.

ND-60.127.03

< checkpoint-id >

A field of 7 integers used by SIBAS to identify a checkpoint. It has the
same format as <time > .

<owner >

A field of 8 bytes identifying the user that “owns” the database files and
the routine log file.

< log directory >

A field of 4 bytes specifying on which directory the routine log file is to be
found. If this field contains spaces, the default directories will be used.

ND-60.127.03

5.4.1

START/STOP SIBAS/GET-STATE

START
Function:

Make a SIBAS process ready to be run, ie., change SIBAS from the READY
state to the DBA state.
Note that the SIBAS process must be activated before execution of this CALL.
We recommend activating it by giving system no. in SIBAS-SERVICE (see 6.2),
but the command @RT SIB2x from user RT also does it. (Here x must be one of
the letters A-F)
Format:

CALL START (owner, data-base-name, work-area-size, status)

Rules:

“"work-area-size" is the size of the buffer {in Kilo-words) the SIBAS process will
use. SIBAS performances are directly related to this parameter. The bigger it is
the better, provided there is enough physical storage [as opposed to virtual). It
must be between 7 and 32.

"Work-area-size’’ is dummy on SIBAS-500.
STOP
Function:
Change SIBAS from the DBA state to the READY state.
Format:
CALL STOPS (status)
GET-STATE

Function:

Read the SIBAS STATE code (see Figure 5.3).
Format:

CALL STGET (state, status)

Note that a succesful execution of a STGET call using a Sibas-500 process will
return STATUS =500 {Sibas-100 will return STATUS =1)
Return state has the following meaning:

“state” = 0 if READY
1if DBA
2 if RUNNING

3 if RECOVER
ND-60.127.03

54.2

RUN/PAUSE/RECOVER/FINISH/SET

PASSIVE/

REPRO-STATUS

RUN

Function:

Change the SIBAS process from the DBA state to the RUNNING state.

Format:

CALL SRUN (flag word, status)

"Flag word"’ contains flag bits with the following meaning:

Bit 0 = returned values from SGET will not be logged
Bit 1 = the OFLOG/ONLOG calls are allowed
Bit 2 = SRRLM, SFRLM are allowed when log is turned off
Bit 3 = SLOCK, SUNLK are allowed when log is turned off
Bit 4 =1 SINSR, SREMO are allowed when log is turned off
Bit 5 1 SCONN, SDCON, SCONA, SCONB are allowed when log is
turned off
Bit 6 = 1 STORE is allowed when log is turned off
Bit 7 =1 SMOFY, SEREL are allowed when log is turned off
Bit 8 = 1 SRASE is allowed when log is turned off
Bit 9 =1 GCHPO is allowed when log is turned off
Bit 10 = 1 SEXMC is allowd when log is turned off
Bit 12 = 1 SIBAS is set unavailable
Bit 13 = 1 no buffering of the routine log
Bit 14 = 1 all user logged regardless of the <mode >
parameter in SOPDB
Bit 16 = 1 database updating is not allowed.
Flag word = —1 if the old flag word is to be used.
PAUSE
Function:

Change the SIBAS process from the RUNNING state to the DBA state.

Format:

CALL SPAUS (status)

RECOVER

Function:

Change the SIEAS process from the DBA state to the RECOVERY state.

Format:

CALL SRECO (status)

ND-60.127.03

FINISH
Function:
Change the SIBAS process from the RECOVERY state tc the DBA state.
Format:
CALL SFINI (status)
Rules:

SFINI is not correctly executed until all reprocessing error codes are read
using the call to STREP.

REPRO-STATUS

Function:

Get the status of reprocessing (from D version this call is DUMMY).

Format:
CALL STREP (status)

Rules:
This call can be repeatedly used from your program until SIBAS has return-
ed all status information about the reprocessing. Calls to SFINI will give er-
ror status until all the reprocessing statuses are read by STREP.
From D version STREP will always return status=1, but the call SREPR
(reprocess) returns reprocessing status.

SET-PASSIVE

Function:

Change the SIBAS process from the READY state to the PASSIVE state.

Format:

CALL SPASS (status)

ND-60.127.03

543 INITIATE-LOG

Function:
Define/remove or reset the log files a SIBAS process will use.

Format:

CALL INLOG (owner, database name, code, log directory, type, number of
pages, status)

Rules:

"number of pages’ gives the size of the log file in the number of 1K word pages.

“code” = 1 init routine log

2 reset routine log

3 remove routine log

4 init delayed update page log (not available for SIBAS-500)
5 init before image page log

6 remove page log

“type” is used only when code = 1:
1 magnetic tape routine log
2 direct routine log {noncircular)

3 circular routine log

In case circular routine log is not selected, the system will stop if the log
becomes full.

ND-60.127.03

544

BEGIN/END SEQUENCE

Function:

These statements have to do with recovery. They signal in your program the be-
ginning and the end of a sequence of statements which are interdependent. If
the system goes down in the middle of a sequence, it is possible when repro-

cessing to undo the partly executed sequence or sequences specified by the
SICON call.

Format:
CALL BSEQU/ESEQU (sequence name, status)

Rules:

Routine logging must be in effect and the database opened for update, other-
wise a negative status is returned.

"Sequence name” is an 8 character field just as other SIBAS names. This name
is chosen by the user and identifies the critical sequencea.

The “sequence name” and the time will be logged on the routine log file and the
current log buffer will be written on the disk, ensuring a consistent basis if
recovery is needed.

Those calls make it possible for SIBAS to edit the routine log during recovery.
Critical sequences cannot be nested within the same run-unit. This technique
requires little overhead, but to work properly one must carefully analyse the
applications in order to avoid interactions between ccncurrent sequences. See
the sections on Concurrent Processing in Chapter 2.

ND-60.127.03

545

SET ROUTINE LOGGING ON/OFF

Function:

These statements have to do with recovery. They may be used in your program
to lower the volume of the routine log and consequently speed up recovery if
reprocessing is needed.

Format:

CALL OFLOG (status)
CALL ONLOG (status)

Rules:

OFLOG defines the start of a section and ONLOG defines the end of a section in
which the logging is not in effect for the calling run-unit. Routine logging must
be in effect, otherwise an error status is returned.

The use of OFLOG/ONLOG imposes severe restrictions on the run-unit logic. A
section that starts with an OFLOG and terminates with ONLOG, must be
completely unrelated to sections using logging. Reprocessing without the section
must give the same database changes as reprocessing with the section.

Remembered and current records and remembered and current search regions
set up before and within the scope of an OFLOG/ONLOG section cannot be after
the section and are automatically removed from currency table by the ONLOG
call.

The ONLOG statement is automatically executed when CLOSE-DATA-BASE is
executed.

Several "updating’’ calls can be made legal in OFLOG mode by the setting of the
run flag (see RUN).

ND-60.127.03

5.4.6

5.4.7

LOG MESSAGE

Function:

This statement has to do with recovery. The given message will be written on the
routine log file and it will be printed in case of recovery.

Format:
CALL SMESS (length, message, status)

Rules:

If the R-log is not active, the message will only be writzen out on the SIBAS er-
ror device. The status will be 1.

“Length” is the number of words the “message’” contains. The message will also
be printed on the SIBAS consocle.

This statement may be used from your program to signal the status of different
tasks and may simplify the recovery procedure.

WRITE-LOG-BUFFER-ONTO-ROUTINE-LOG

Function:

This statement has to do with recovery. It forces the writing of the log buffer
onto the routine log file when used in your program.

Format:

CALL UTBLK (status)
Rules:
Routine logging must be in effect. The routine log file is buffered for perfor-
mance reasons. Such a buffer may contain 10 to 30 calls. If the system crashes,
the buffer is lost. in some situations, it is required to write out the buffer to

ensure consistency of the database in case of recovery.

This statement is automatically executed at BEGIN/END SEQUENCE, CLOSE
DATABASE or CHECKPOINT and when SIBAS is normally stopped.

ND-60.127.03

5438

CHECKPOINT

Function:

The CHECKPOINT statement defines a point on the log file(s) where the data
base is consistent. In case of a fatal error, the database may later on be returned
to the state it had when the checkpoint was taken.
Format 1:

CALL SCHPO (checkpoint-id, status)
Format 2:

CALL GCHPO {checkpoint-id, status)

Rules:

Delayed update or before image must be in effect when these statements are
executed, otherwise only the routine log buffers are written out (UTBLK).

The run-unit must have update access ('mode’’ parameter in SOPDB)

In the case of format 1, SCHPO will return a ""checkpoint-id’* generated by the
DBCS.

In the case of format 2, GCHPO will accept a ""checkpoint-id’" generated by the
run-unit.

When the delayed update option is in effect, the last run-unit executing a CLOSE
DATABASE wil trigger the execution of a CHECKPOINT statement.

This statement is costly and should not be used too often from your program. It

forces the writing of all modified database pages from the buffer area to the
disk.

Synchronization of concurrent run-units and restart strategies of run-units are
not the topic of SIBAS. However, Norsk Data offers a comprehensive Transaction

Processing System {ND TPS) which deals with such gquestions.

Note: the database is not necessarily valid at checkpoint time because some
transactions may not be finished.

Return-status = 0 means that BIM-log, or Delayed update, is not active. R-log
has been, nevertheless, checkpointed.

The runflag must allow the GCHPO to be executed. (See SRUN, Section 5.4.2)

ND-60.127.03

549

5.4.10

ROLL-BACK

Function:
This statement reestablishes the database state at a previous checkpoint.
Format:
CALL SROLL (checkpoint-id, dbname, password, status)
Rules:

The delayed update option or before image log must be in effect, otherwise the
statement will be ignored.

If the "checkpoint-id’’ is equal to 7 zeros, the database will be rolled back to the
latest checkpoint. If the ""checkpoint-id"” is not null, the database will be rolled
back to a checkpoint with the given time and date or the closest earlier
checkpoint. f the routine log is in effect, it is also rolled back and will be ready
for reprocessing from that point.

If the before image log is in effect, there is only one checkpoint on the log, the
latest one.

SET-CONDITIONS-FOR-REPROCESSING

Function:

Specify which calls on the routine log are to be included in reprocessing. This
must be done for each individual run-unit. The reprocessing condition for each
run-unit is put into the reprocessing control table which will be used when the
SREPR call is given (see below). The specified calls will then be processed as
indicated by the SREPR call. (See 5.4.11)

Format:

CALL SICON (code, run-id, time, sequence-name, status)

Rules:

"Code" defines the condition to be set. Different conditions may be set up after
each other by calling SICON as many times as necessary.

"Time" is an array of 7 words containing the time and date of a critical sequence
or a checkpoint.

"Sequence-name'’ is the name of a critical sequence.

ND-60.127.03

“Code’ may take different values:

0

release control table entry for the run-id (to remove earlier SICON call
settings for the run-id)

remove the sequence identified by ""time’’ for the run-id
remove all the sequences identified by “sequence name’’ and run-id

remove all the sequences identified by ‘'sequence name’” and run-id
executed after "time”’

remove all calls for the run-id
remove all calls for the run-id from beginning of "'sequence-name”

remove all calls for the run-id from the beginning of the sequence
identified by ""time"

remove uncompleted sequences for the run-id or for all run-units when
run-id = 0.

A call with code 7 must be executed prior to any other recovery action.
Then you may call SICON for specific run-ids {code 1-6). If you want to call
another SICON call for one of the run-ids, you must first release its entry
by a SICON call with code 0. Only the last SICON call for a specific run-id
will be processed by SREPR.

NB! A SICON call with code 7 can not be executed after rollback.

ND-60.127.03

5.4.11

REPROCESS-ROUTINE-LOG

Function:

Process, reprocess and/or print the calls which were recorded on the routine log
file according to the conditions specified in the call and the conditions set up by
the preceding SICON calls. Usually the STANDARD-REPROCESS cornmand in
SIBAS-SERVICE can be used instead of SICON and SREPR calls (see 6.2.2).

Format:

CALL SREPR (condition, mode, time, no.-call, print-option, run-id,
remove-flag, status)

Rules:
After some conditions for reprocessing have been set up {by SICON) one can
reprocess and/or print all or parts of the routine log file. Further options may be

specified:

"condition”’

i

process to end of file or “no. call”

process but remove all critical sequences starting after “"time”’
process up to a checkpoint identified by "time’’ or later
process up to a log block written by “"time’’ or later.

[=
[

If

""mode”’

o
il

continue processing (with “mode’’ parameter as before the previous
reprocessing stopped)

= start reprocessing without print

= start reprocessing and print

= start print only {(not reprocess)

= start print short (not reprocess)

—~1, —2, =3, —4 as 1, 2, 3, 4 but means continue processing from where the
previous processing stopped, but with new "‘'mode’’ parameter. Note: The "‘conti-
nue processing '’ facilities could be dangerous/

How N -
I

"no. call”

0 = means all the calls
not 0 = specifies the maximum number of calls to reprocess

"print-option”’

specifies print-option /f printing is on {see "'mode”’)
1 print only candidates to remove/reinsert

print all the calls

print only checkpoints

print begin and end sequence and checkpoints

il

i

i

2
3
4

i

ND-60.127.03

5.4.12

"run-id"”

Select one run-unit to print. If the value is zero, all run-units are processed
according to the selected options.

"remove-flag”
= 1 remove the calls according to the reprocessing control table {while repro-
cessing)

= —1 reinsert the calls according to the reprocessing control table (when they
have been previously removed)

UPDATE-DATA-BASE-IN-PLACE

Function:

Apply the updates on the update file to the database files and release space on
the update file.

Format:

CALL SUPLA (update-ratio, trigger-code, checkpoint-id, status)
Rules:
Not available for a SIBAS-500 process.
All the pages which were changed up to the checkpoint will be moved from the
update file to the original database files. Before this operation is initiated, a
checkpoint is automatically taken, insuring the consistency of all disk files.
“"Update-ratio” indicates the number of pages to be updated while a certain load
of normal activity is carried on. A high number will almost hang up any other

activity but the updating process will terminate sooner.

"Trigger-code" indicates when the update will be initiated

0 immediately

1 at the next checkpoint

2 at the physical close of the database (the last user that closes the data
base

SIBAS may be running at a lower speed than usual while the data base is being
updated.

ND-60.127.03

5.4.13

5414

SET SIBAS SYSTEM NUMBER

Function:

Set the SIBAS system number to be accessed by the subsequent calis in the
run-unit.

Format:
CALL SETDV (SIBAS system number)

Rules:

"SIBAS system number” is an integer value specifying which SIBAS process the
run-unit will use. If this call is not given, the default SIBAS process accessed is 0
{SIB2A). It is a good programming practice to include this call as the first SIBAS
in all your application programs. It is necessary to include it in case your
database was not connected to process 0 (SIB2A} when the SIBAS process was
called.

RESERVE/RELEASE SIBAS

Function:

Reserve SIBAS for exclusive use for this run-unit: other run-units will not be
allowed to access SIBAS facilities at all. RELEASE-SIBAS signals the other
run-units that SIBAS may now be accessed.
Format:

CALL RESIB/RELSI (status)

Rules:

These calls permit the elimination of concurrent processing problems since the
whole database becomes unavailable to other run-units. These calls should be
used very carefully. If the run-unit has reserved SIBAS but does not release it for
some reason (a coffee break is one), all other run-units will hang. See the
section "'Concurrent Processing’.

SCLDB will automatically release SIBAS.

ND-60.127.03

5.4.15

EXECUTE-MACRO

Function:

SIBAS statements may be extended by a user written subroutine which may in
turn call normal DML statements, thus providing a way to complement user
defined "MACROs"". An execute-macro statement will be executed uninterrupted
by other run-units. Another advantage of using this facility is that communication
overhead is reduced.

Format:

CALL SEXMC (input, length of input, output, length of output, status)
Rules:

SIBAS-500 Macros: See Section 5.5.4.

The use of this statement implies that the SIBAS process is loaded with a user
written subroutine which has the same name (SEXMC) and parameters as
described in the format. The loading of the SIBAS process is specified in the
SIB-SYS-GEN: BATC file.

“Input” contains the values which will be passed to the user subroutine loaded
with SIBAS. "Length of input’” is the number of words the values occupy
altogether. "Output” will contain the values returned by the user macro to the
run-unit. "Length of output” is set by the user defined macro. "'Status’’ is also
set by the macro.

A number of restrictions apply when writing such a subroutine:

e [t must be written in FORTRAN and compiled reentrant except for
SIBAS-5C0. (For SIBAS-500 the source code should be included in the
load-file, which in turn will trigger the compiling.)

— There is a limited size to both the code and stack requirements. The limits
are given in the SIB2-LOAD: BATC file {only for ND-10, ND-100,
SIBAS-1C0).

— There can be no terminal input or output.

— The subroutine requires exclusive use of SIBAS and while it is executed
other users must wait.

Note:

More than one "macro” can easily be implemented by using one of the input
values as switch parameter, choosing a selected execution path.

ND-60.127.03

5.4.16

5.4.17

DBA Calis

Function:
Maintenance and timing.
Format:

CALL CHCOM (status)

CALL STRLG (terminal-number, mode, status) (not available for SIBAS-500)
CALL SISTA (values, status)}

CALL SERVC {function, input-values, length-of-input, output-values,
length-of-output, status)

CALL RBLAN (index, output value, status)

CALL ZTRB (length, index, output value, status)

Rules:

CHCOM makes SIBAS switch to an alternative communication procedure and re-
leases the old one (for TPS use only).

STRLG turns on/off the printing of the trace of SIBAS calls.

"Mode’" = 0, turn off the terminal log.
“Mode" = 1, turn on the terminal log
"Mode" = 2, turn on the terminal log and a special internal SIBAS trace and

debug. Mode 2 uses the console device for input; this device must
therefore be free (logged out).

SISTA, SERVC, RBLAN, and ZTRB.are privileged calls used by @SIBAS-
SERVICE.

FORCE-CLOSE Database

Function:
Performs close database for given run-unit or all run units.
Format:

CALL SABOR (database name, status, user-id)
Rules:
User-id = —1 means all users with database opened.
Remark:

This call is logged and executed as one or more calls to SCLDB.

ND-60.127.03

5.5

551

552

SPECIAL SIBAS-500 FEATURES

in this chapter we will present some of the special features concerning
SIBAS-500. Most of these features are available only on SIBAS-500 at present.

Calls with Different Functions

Applications which need to know whether they are using a SIBAS-100 or a
SIBAS-500 process may get this information through the STGET call {get-
sibas-state”). The returned status will always be 500 if the SIBAS process is a
SIBAS-500 process and the call was successfully executed (not successful
implies status < 1).For SIBAS-100 the returned status of a successfully executed
STGET call will always be 1.

The "work-area-size’’ in the START cali has no function at all. Any legal number
will do, but it will not have any functional meaning since 32K will always be used
on SIBAS-500. (SIBAS-service requires the "work-area-size’ to be specified in
the START-DATABASE and SUPER-START commands. Any dummy number will
do if SIBAS-500 is used).

SETDV may be used as a function when called from a Fortran program. The
function value will be 1 if the call was successfully executed. This is a useful so-
fution since SETDV has no returned status-parameter. As a good programming
practice, programmers are advised to always include SETDV as the first
SIBAS-call in their applications.

As we already have pointed out, the length-of-value-parameter ’“value-length”
(the last parameter in SFTCH, SFEBL, SFLBL, SMDFY and STORE) specifies

length in number of SIBAS-words, i.e., number of 16 bit words. This implies no
differences for the same application running on the 100 or 500 CPU.

Calls not Available

The following calls are at present not available from SIBAS-500:

ACCFD % accumulate floating
STRLG % printing of trace
SIBIO-calls % all calls conserning SIBIO

ND-60.127.03

55.3

554

5.6

Exceeding the Size of a Direct Routine Log

Whenever the maximum limit of a direct routine log (call log/R-log} is exceeded
on a SIBAS-500 process, i.e., the routine log is full, no more users will be allow-
ed to open the database. Negative status will be returned. (See 4.2.1) The DBA
will get a special message through the DATABASE-STATUS command in SIBAS-
service telling him to reset or remove the routine log, and a message will be
printed on the SIBAS error-device. Applications running (with the database
opened) will be allowed to finish their work until close-data-base is called.

SIBAS-500 Macros

SIBAS macros (SEXMC) can very easily be used in con:unction with SIBAS-500.

Macros are normally used to include two or more normal DML statements (e.g.,
SFTCH and SMDFY) as one unit.

An execute-macro statement in an application program (i.e., CALL SEXMC) will
be executed uninterrupted by other run-units, and there will be no intermediate
communication between SIBAS and the application transmitting the call. Thus
communication overhead will be reduced. The user-written SEXMC Fortran sour-
ce-routine has to be included in the appropriate SIBAS-500 load file, instead of
the default DUMMY-SEXMC routine.

Let us say that a user-written SEXMC routine, residing on the file
USER-SEXMC:SYMB, is to be included into SIB2A-500. The only operations
required would be to simply substitute all occurences of DUMMY-SEXMC with
USER-SEXMC in the file SIB2A-500:LOAD, and then {(re}run that mode-file. All
formal parameters should be declared (default) INTEGER. Compilation inside the
mode-file will force the correct mode.

The actual parameters, input and output, must be declared INTEGER * 2 in the
application program (i.e. they are handled as value buffers).

Note that ‘length-of-value-parameters’ (i.e., "’key-length”’ and “value-length”)
must be omitted for DML statements residing in a SIBAS macro. (For a detailed
description of parameters etc., please refer section 5.4.15).

HOW TO INSTALL SIBAS

The procedure is explained on the sheets attached to the diskettes.

ND-60.127.03

6.1

6.1.1

UTILITIES

DATABASIEE MAINTENANCE MODULE

Introduction

The DBM module is a tool which enables the Database Administrator to control
the efficient and reliable use of the database. The functions included in the DBM
module are shown in the figure below.

START
READY

CONSISTENCY
CHECKING. . MISCELLANEOUS

PRIVACY
DEFINE VERIEY FREE-SPACE
PASSWORD CALC STAT
—{tIVIUVt; VERIFY PRINT
PASSWORD INDEX PATCH
DISPLAY VERIFY CLEAR-SYS-
PASSWORD) SET REALM
VERIFY COMPRESS
PAGE-LINK INDEX ,
LOAD/UNLOAD
FINISH
EXIT

Figure 6.1: Database Administration Functions

The DBM module requires exclusive use of the whole database and accesses the
realms directly without using a SIBAS process at all. In fact, the DBM module
and the SIBAS processes mutually exclude each other when attempting to open

the database.

ND-60.127.03

The use of any of the DBM functions is controlled by the START statement. In
this statement a DBA password may be provided, and the validity of this pass-
word is checked on the database. This prevents the unauthorized use of the
DBM module on a particular database.

Syntax Description

The database maintenance statements are written in a syntax where key words
and parameters must appear in a defined order in the same way as for COBOL.

The syntax is phrase oriented and all statements must be terminated by period
""" and carriage return.

Throughout this chapter, wherever a statement is described, these conventions
are used:

KEY the key word KEY must be present
KEY the key word KEY is optional

LAl the key words A or B must be present
1B

<par> “par is a required parameter
(<par>) “par”is an optional parameter

Parameter Values
Parameter values may be SIBAS names, integers or pointer values.

Abbreviation Lookup

All key words (not parameters) can be abbreviated. However,
ambiguity is not handled. The first match is always used.

Octal Numbers

All octal numbers must have 0 as first digit. Otherwise, the typed
number is treated as decimal.

Pointers

All pointers contain two machine words, typed as two octal numbers
separated by """,

Example:

000400 * 012345

ND-60.127.03

START

Function:

The function of this statement is to indicate the user’s intention to process data-
base maintenance statements and to check that the user is allowed to do so.

Format:
START <database~name> (<dba-password>) .

Rules:

1. "Database name’ is the name of the database as given in OPEN-DATA-
BASE.

]

If privacy is defined for the database, the ""dba password” will be checked

to decide whether or not the user is allowed to process DBM statements.
(See 6.1.9)

3 The effect of this statement is to physically open the database.

EXIT, STOP THE DBM MODULE

Function:

To prevent the further processing of database maintenance statments apart from
START.

Format:

STOP.

or

EXIT.

Rules:

1. The effect of this statement is to physically close the database.

2. Realms previously readied with READY statement are automatically
finished by STOP.

ND-60.127.03

6.1.4

READY REALMS

Function:

This statement indicates to the DBM MODULE the usar's intention to process
records on one or more realms.

Format:
READY | HEALM <realm-name> ! .
! ALL : !
Rules:
1. The effect of this statement is to ready the realm “‘realm name’’ or all the

realms in the database for exclusive update.

2. This statement must be successfully executed before any PRINT, PATCH or
VERIFY statement may be executed.

FINISH REALMS

Function:

To prevent further processing of the data on one or all realms.

Format;
FINISH !} REALM <realm=-name> ! .
! ALL |
Rules:
1. The effect of this statement is to prevent further use of the referred realms

for PRINT, PATCH or VERIFY.

2. The STOP statement automatically finishes all realms.

ND-60.127.03

6.1.6 PRINT

Function:

To print the content of the specified units of information in a formatted dump
form on the terrminal.

Format:
PRINT | <number> ! | RECORD | | REALM <realm=-name> (<from-unit>)
boALL !} PAGE ! ! POINTER <address>
! WORD !
! BUCKET !

PRINT POINTER <address> .

Rules:

1.

"number’ is an integer. If neither "number” nor ALL are specified, it is
assumed that “‘number’” is equal to 1. Note that the maximum number of
records printed by one PRINT command is 100.

A unit may be specified as a database address or a word address within
the realm "realm name’".

When RECORD is specified, all records within the defined range are
printed, deleted records as well as active records.

All the realms involved must be readied prior to PRINT.
"from-unit’”’ specifies the start for the dump as a BUCKET, PAGE, RECORD,
or WORD number. PAGE counting begins at 0. RECORD, BUCKET, and

WORD counting begins at 1.

"Address’ may be specified in decimal or octal, an ""address’’ starting with
0 (zero) being treated as octal.

ND-60.127.03

!

i

i

6.1.7

PATCH

Function:
To replace one word in the database.

Format:

PATCH ! REALM <realm-name> <page-no> ! <word-disp>
! <address> !

Rules:

1. The use of this statement implies a very good knowledge of how a SIBAS
database is built up internally and should only be used in extreme cases.

2. The page containing the word to be replaced is identified either as an abso-
lute address in the database or by giving the realm-name and the page
number within the realm.

3. “"Word-disp” identifies the word to be patched in the page. Word displace-
ment starts at zero.

4. Carriage return (2) must be given after the page and word are identified.
The value of the identified word will then be printec as follows:

PATCH AT POINTER: aaaaaa¥*aaaaaa
OLD VALUE: vvvvyy OCTAL NEW VALUE:

where aaaaaa xaaaaaa = the absolute address and vwwvw = the old value.

The new value must then be given followed by 1. The replacement will be

made and the value of the next word printed. This word can then be given
a new value, etc.

5. The new value must be specified as a 6 digit octal number, for example
000001 for 1.

6. Giving just 1 for the new value will give a new value of zero.

7. Giving . (period/full stop} and 1 for the new value will terminate the
patching session.

8. Since no logging takes place while the DBM module is under execution, it
may be necessary to take new copies of all or part of the data base after
use of the PATCH function.

ND-60.127.03

RESET-ERROR-FLAGS

Function:
To reset all the "DATABASE IN ERROR MODE" flags.
Format:

RESET-ERROR-FLAGS.

Rules:

1. This statement is reserved. Note that it does not repair the database which
might still be in error.

ND-60.127.03

6.1.9 PRIVACY

6.1.9.1 GENERAL

The privacy system enables the DBM to restrict the use of the database to
authorized users. This is done by defining passwords for the data base or a part
of the database. Privacy can be defined on 2 levels:

1. Privacy on the database level.
2. Privacy on the record occurrence level.

The privacy functions of the DBM module are used to define and give values to
passwords on the database (Figure 6.2). The data definition/redefinition language
is used to define privacy on the record occurrence level, and the data
manipulation fanguage is used to give values to the privacy items in each record
occurrence (Figure 6.3).

o pAss@\ .
GLOBAL DEFINITION DBA
PASSWORD AND VALUE R ODULE

LOCAL
PASSWORD

NATA BASE
LEVEL DATA BASE

Figure 6.2: Defining and Giving Values to Passwords on the Database Level

DEFINING
ITEM 1 ITEM2 |PRIVACY ITEM PRIVACY ITEMS
ITEM REDEFIN-

ITION
RECORD TYPE LANGUAGE

1 A SECRET -
GIVING
) B PRIVATE ‘ PRIVACY VALUE TO
ITEM ITEMS LANGUAGE
3 Cc PRIVATE

Figure 6.3: Defining and Giving Value to Privacy Items on the Record Occurrence
Level

ND-60.127.03

If privacy is defined on the database level for a database, each run unit must
give in a password with the OPEN-DATA-BASE statement. The validity of this
password will be: checked and, if it is valid, it will remain “current password" for
the run unit until CHANGE-PASSWORD is used to update the current password.

If privacy is defined on the record occurrence level, each run unit's current
password will be checked for validity when the run unit attempts to execute a
MODIFY, ERASE, CONNECT, INSERT or GET on a record. The current password
must match the value of the privacy item in the record. In case of ERASE, all
records to be erased in a single ERASE statement are checked.

A DBA password may be defined in addition to other passwords. The DBA pass-
word will aliow a user (database administrator) to execute START and to perform
any of the functions included in the DBM MODULE and any DML statement.

Table 6.1 shows how privacy restrictions on a database are defined, how and
when passwords may be defined and modified, and when the privacy checks are
performed by the SIBAS data manipulation routines.

Type of privacy | How privacy is | How passwords | How passwords | When the validity of cur-
defined are given values| are modified rent password is checked
DBA password | Using DBM Using DBM Using DBM At execution of open data
module module module base, ready realm, start
DBM module
Database level | Using DBM Using DBM Using DBM At execution of open data
module module module base, ready realm
Record occur- Using defini- When a record | When a record | At execution of modify,
rence level tion/redefinition} occurrence is occurrence is get, erase,
language stored modified connect/disconnect,
insert/remove

Table 6.1. Defining and Controlling Passwords

ND-60.127.03

6—10

Local and Global Passwords
Passwords defined on the database level can be either local or global.

A local password on the database level is valid for OPEN-DATA-BASE only. If
privacy is defined on record occurrence level a new current password may have
to be given before GET, MODIFY, ERASE, CONNECT, DISCONNECT, INSERT or
REMOVE can be executed.

A global password on the database level is valid for OPEN-DATA-BASE. In
addition, it will allow the run-unit to execute READY REALM, with the USAGE
MODE and PROTECTION MODE defined for the password, on any realm in the
database. It will also allow the run-unit to execute other DML statements,
regardless of the value of the privacy item in each record (MODIFY and ERASE
can only be executed if the realm was readied with usage mode CONNECT,
DISCONNECT, INSERT, and REMOVE, can be executed if the realm was readied
with usage mode LOAD).

The DBA PASSWORD is a global password on the database level with usage
mode UPDATE and protection mode EXCLUSIVE.

Usage Mode and Protection Mode
USAGE MODE and PROTECTION MODE must be defired for global passwords
on the database level. The possible usage modes are RETRIEVAL, LOAD and

UPDATE. The possible protection modes are NON-PROTECTED and EXCLUSIVE,

Table 6.2 gives a summary of the functions allowed for different types of
passwords, assuming that privacy is defined on both levals.

ND-60.127.03

D
TYPE OF PASSWORD i DATABASE LEVEL
P
A GLOBAL
S L
3\, 8 NON-
O | A |PROTECTED EXCLUSIVE
R L -
FUNCTION D z pr
i TR o
o a < @ o <
|l |l | | < | &
w O a w C o
o i) [0 - 2
OPEN-DATA-BASE X X X X X X X X
N
8 RETRIEVAL | X X X | X X X | x
P
R
0
T |LoAD X X | x X | X
READY- £
C
T
REALM £
D |UPDATE X X %
E
X |RETRIEVAL | X X X | x
C
L
U
S |LOAD X X | x
|
v
E
UPDATE X X
STORE X X | X X | x
GET X X X | X X X | x
MODIFY. ERASE-ELEMENT X X X
ERASE X X X
INSERT, REMOVE,
CONNECT DISCONNECT X X | X X X
START DBM MODULS X

Table 6.2. Functions allowed for Different Types of Privacy

ND-60.127.03

Summary of the Setting of Current Password

Initially, the current password is set for a run-unit when the database is opened.
Unless a CHANGE-PASSWORD statement is performed, the value of the current
password will remain unchanged. When a READY-REALM statement is perform-
ed, the current password must match a password whict is defined for the desir-
ed mode of operation on the realm. If the run-unit performs a data manipulation
statement on records where the value of the privacy item is different from the
realm password, the current passwaord for the run-unit must be changed to
match the value of the privacy item before the data manipulation statement is
successfully executed.

ND-60.127.03

The function of this statement is 'to register a new password. Passwords can be
three different types, and for one of them USAGE MODE and PROTECTION

This statement has 3 different formats, one for each password type:

DBA=-PASSWORD <dba-password> .

LOCAL-PASSWORD <password> DATABASE.

6.1.9.2 DEFINE PASSWORD
Function:
MODE is given with the password.
Format:
DEFINE
DEFINE
DEFINE

GLOBAL-PASSWORD <password> DATABASE

| RETRIEVAL ! ! NON-PROTECTED
USAGE ! LOAD ! PROTECTION ! EXCLUSIVE
! UPDATE !

Rules:

LENGTH OF PASSWORDS. All passwords must follow the same conven-
tions as SIBAS names, i.e., up to 8 bytes, starting with a letter, no
embedded blanks, but trailing blanks allowed.

DBA-PASSWORD. When a ""dba-password” is defined for a data base it
must always be given with the START statement. The ""dba-password’" will
also serve as a GLOBAL-PASSWORD on a DATABASE with USAGE
UPDATE and PROTECTION EXCLUSIVE. This implies that the
""dba-password’’ also allows one to execute any DML statement in addition
to the START statement.

LOCAL PASSWORD ON DATABASE. ""Password-1" will serve as a local
password on the database level. The validity of this password is restricted
to the OPEN-DATA-BASE statement, and records where the value of the
privacy items happens to coincide with the passwords.

GLOBAL PASSWORD ON DATABASE. "Password-2"" will serve as a global
password on the database level. In addition to its use with the OPEN-
DATA-BASE statement, the password will be valid for the execution of
READY-REALM with the USAGE mode and PROTECTION mode given, and
for the execution of any other DML statements covered by the usage
mode.

ND-80.127.03

6.1.9.3

6.1.94

6—14

REMOVE PASSWORD

Function:

The function of this statement is to remove a single password defined on data-
base level or to remove all privacy defined on database level.

Format:

REMOVE-PASSWORD P <passworad> | w
' DATARASE !

Rules:

1. REMOVE-PASSWORD "password”. This operation will remove the pass-
word given in "password’’ from the list of passwords on data base level.

2. REMOVE-PASSWORD DATABASE. This option will remove all passwords
defined on the database. It will also remove the DEA password.

DISPLAY PASSWORD/PRIVACY

Function:

The function of this statement is to print the values and the description of all or
some valid passwords on the terminal.

Format:
DISPLAY VOALL PRIVACY ! .
! PASSWORD <password> !
Rules:
1. If the ALL option is given, a complete report is printed containing the

values of all passwords defined for the database. The report will also
contain the type, usage mode and protection mode for each password.

2. It the PASSWORD option is given, the type(s), usage mode and protection

mode for the password specified are given. All definitions of the password
with the given value will be printed.

ND-60.127.03

6.1.10

Index Compression

Function:

Index tables ars dynamically read, written upon or updated by SIBAS. Normal
utilization of index tables leads to some disk space waste because random
insertion and deletion of keys fills the table to about 60%. Compression of index
tables will reorganize them, and achieve a disk space utilization of about 90%.

Format:

COMPRESS INDEX

DATABASE !
"REALM <realm-name> (<key-name>) !

Rules:

All the realms containing the keys must be readied.

If the DATABASE option is given, all indexes in the database will be
compressad.

When the REALM option is given, if only the "‘realm name'’ is specified, all
the index tables relative to this realm will be compressed.

When the REALM option is given and a "'key name’ is specified, the
named index table will be compressed.

In all cases, information is printed on the terminal, showing the amount of
saved space.

ND-60.127.03

6.1.11

6.1.11.1

6—16

Consistency Checking

GENERAL

The consistency checking functions are a part of the integrity control system for
the database. These functions are used to detect integrity breaches. When
breaches on the database integrity are detected, the recovery system will
normally be used to bring the database back to a consistent state. in some
cases, the patch functions can be used to do minor repairs on the database. In
some cases, the REGENERATE or automatic REPAIR modes may also be used to
make a damaged database readable.

It should be noted that consistency checking does not include validity checking.
Validity checking is concerned with the logical contents of the database as
viewed by the user, consistency checking is concerned with the physical contents
of the database and its consistency vis a vis the database’s physical construc-
tion.

The types of consistency checking which can be performead in SIBAS are:
— CALC KEY verification

- INDEX KEY verification

— SET verification

— PAGE-LINK verification

If errors are detected, the following information will be gven:

Message:
"Message describing the type of error”

Information about the record:

"Realm name’’, "item name’’
""Physical position of the record (pointer)”
“ltem value”’

"Comparing value”
"Dump of record”’

It must be noted that the item name can be the name of a pointer (see record
layout printed from DRL processor).

All realms to be verified must be readied.

ND-60.127.03

A sequence of VERIFY commands may start with the following statement defin-
ing the mode of later verifications:

Format:
! READ-ONLY !
VERIFY MODE ! REPAIR !
! REGENERATE !
Rules:
1. In READ-ONLY mode subsequent VERIFY commands will try to detect

errors, but do nothing with them if an error is found.

2. In REPAIR mode, subsequent VERIFY commands will try to repair minor
damage such as a missing key, unconsistency between keys and records,
etc.

3. In REGENERATE mode subsequent VERIFY commands cause large
changes: automatic set/index is completely rebuilt. Manual sets/indexes
are completely disconnected.

ND-60.127.03

6.1.11.2 CALC KEY VERIFICATION

Function:

This function provides for the verification of calc key consistency. For each calc
key verification, the calc key of all records stored in the specified realm will be
checked. The value of the calc key is checked against the bucket number of the
record.

No attempt is made to correct errors which are detected by calc key verification,
regardless of mode. (See 6.1.11.1.} Information about the record and its physical
position is printed.

Format:

VERIFY CALC I REALM <realm-name>! (MAXRE(C <integer>).
I DATABASE !

Rules:

1. DATABASE. If the DATABASE option is given, all calc keys on the data
base will be checked.

2. REALM. If the REALM option is given, the calc keys on the specified realm
will be checked.

3. MAXREC. If the MAXREC option is used, the verification process will stop
when “integer’”’ records have been checked.

4. ERROR MESSAGE. If one or more inconsistent calc keys are detected, the
following message is given for each error:

CALCULATED KEY DOES NOT CORRESPOND TO RECORD KEY

information about the record will be printed for each error detected.

ND-60.127.03

6.1.11.3 INDEX KEY VERIFICATION

Function:
This function checks the consistency of index key values and index table entries.

The command specifications allow for the checking of all index tables in the da-
tabase, or specified index tables in a realm.

The function of the index key verification is to check the consistency of the key
value of each entry in the index table with the corresponding key value in the
record for each index key defined. The consistency checks are performed in two

ways:
1. By reading all the entries in the index table and finding the corresponding
records.
2. By scanning all the records and using the key values to find the corres-
ponding table entries. This check is performed for automatically maintained
indexes only.
Format:
VERIFY INDEX ! _REALM <realm=name> <key-name> (<key=-name> ...) ! (_MAXREC <integer>),
! _DATAEASE _ R
Rules:

1. DATABASE. If the DATABASE option is given, all index keys defined for
the database will be checked.

2. REALM. If the REALM option is given, all index keys given in the key
names will be checked.

3 MAXREC. if the MAXREC option is used, the verification process will stop
when “integer” records have been checked.

4. ERROR MESSAGE. The errors that may be detected are:

a}) ENTRY IN INDEX TABLE DOES NOT MATCH RECORD KEY
b) RECORD HAS NO CORRESPONDING ENTRY IN INDEX TABLE

Information about the record will be printed for each error detected.

ND-60.127.03

6.1.11.4

SET VERIFICATION

Function:

This function is used for verifying set relationships within the database. This
function is performed by traversing records of a set and examining their types
and their pointers.

The set verification utility may be requested to vary its domain of examination
from a single set occurrence, to all occurrences of a specified set, to all sets of a
database, through the specification of the appropriate format of the VERIFY
command.

The consistency checks are performed in two ways:

1.

By following all chains from the owner records.

2. By scanning all the member records and using the member set item value
to find an owner record. This check will be performed for automatically
maintained sets only.

Format:

The set verification command has 2 formats:

Format 1:

VERIFY SET ! <set-name> ! (MAXREC <integer>) .
! DATABASE !

Format 2:

VERIFY SE <set=-name> USING <owner=-item-value> .

Rules:

DATABASE. This version of Format 1 is used wken all occurrences of all
sets defined for the database are to be verified. The user is warned that
the amount of processing required to accomplish such a function may be
considerable.

ALL SET OCCURRENCES IN A GIVEN SET. Format 1 with <set-name> is
used to verify all occurrences of a given set.

SINGLE SET OCCURRENCES. Format 2 is used to verify specified occur-
rences of a given set. Each set occurrence is identified uniquely by the

value of the owner set item.

MAXREC. The MAXREC clause is used to specify the maximum number of
records to be verified.

ND-60.127.03

5. "OWNER ITEM VALUE". Each item composing ~owner-item-value’” must
be given a value. lf it is a character item, it is written as a character string
delimited by quotes. If it is an integer item, it is written as an integer
number.

6. ERROR MESSAGES. The errors detected may be:

a) NO OWNER RECORD FOUND WITH GIVEN OCCURRENCE
b} POINTER POINTS OUTSIDE SET
c) MEMBER ITEM VALUE NOT EQUAL TO OWNER ITEM VALUE
d) BACKWARD POINTER IS ERRONEOUS

)

OWNER POINTS TO ITSELF

f) MEWMBER HAS NO OWNER

g} LOOP, POINTER POINTS TO A PREVIOUS MEMBER OF SET
OCCURRENCE

h) MEMBER HAS DIFFERENT OWNER

i) NUMBER OF RECORDS READ VIA SET DOES NOT CORRESPOND

TO NUMBER OF RECORDS READ IN PHYSICAL ORDER

)

For each error detected, information about the record involved is printed out (see
Section 6.1.11.1).

Loops in a member chain are not detected if they are more than 504 records
long.

For error i), additional information is printed:

Two integers = no. of records read in physical order and no. of records read via
set.

ND-60.127.03

6.1.11.5

6.1.12

PAGE-LINK VERIFICATION

Function:

This function is used for veritying or rebuilding the freespace links within a
realm.

The effect of VERIFY PAGE-LINK is different depending on whether VERIFY is in
READ-ONLY mode or in REGENERATE mode.

1. In READ-ONLY Mode

The function examines how much unused space there is in the realm specified.
Information about maximum number of records to be inserted, number of re-
cords in the realm up to now, and number of free record space are printed out.

2. In REGENERATE Mode

function checks every data page and rebuilds freespace Iinks.
Error messages and information will be printed out.
Format

VERIFY PAGE-LINK REALM <realm name> .

Rules:
1. The realm specified must be in READY mode.
2. Realm name must be a serial realm.

3. When you want to rebuild freespace pointers (page-links) within a realm
you must do the following:

’

VERIFY MODE REGENERATE.
VERIFY PAGE-LINK REALM <name> .

Free-Space-Statistics

Function:
Give an overview of the realm space utilization.

Format:

FREE-SPACE~STAT

ND-60.127.03

6.1.13 Example

R R R I L SEPTS

ettt FREED PERTENT

RESTENN

el Fr IRNETRT:
Rl UL

YSFTLE
P RS 0N
JOER S
ROFPORT Call

i e b e e
—
-

3 COMPRESS THDEX DATARASE .

. D ORERJO) 0
R FFORT §ORERSHER 0

oo VERTEY

i dUBRAE
OF OUHERS
OF ERRERS R
REAL M FHY

M 3
(SRS N ' Sula HET 3 35

PORERRAR

2+
4 Lo
i
¥

ORTER S 30VIa GEY 3

GR2U064 BTOF ¥

ND-60.127.03

6.1.14 Unload/Load

UNLOAD
Function:
To dump the contents of a realm on a SINTRAN-1II file.

Format:

UNLOAD REALM <realm name> ON <file-name>
Rules:
1. ‘Realm-name’ must be readied.

2. Default type for ‘file-name’ is :DATA.

No. of records unloaded and logical record length are written on the terminal.
Deleted records will not be unloaded.

LOAD
Function:

To load a realm from a SINTRAN-III file.
LOAD together with the REGENERATE option of VERIFY is substantially faster
than standard STORE,

Format:

LOAD REALM <realm-name> FROM <file-name>
RECL <rec-lenght>

Rules:

1. ‘Realm-name’ must be in READY mode.

2. Default type of 'file-name’ is :DATA.

3. The input file byte pointer must be correctly set (at end of last record). This
is automaticaly done by UNLOAD. 'Rec-length’ must be less than or equal
to the record length in the realm. If the given ‘rec-length’ is smaller than

the realm record length, the rest of the record is padded out with binary
zeros.

ND-60.127.03

6.1.156

4, Automatic index tables and set relationships must be regenerated using

VERIFY in REGENERATE mode. The index keys and sets involved are writ-
ten on the terminal. Remember that manual index tables and set relation-
ships are removed by VERIFY in REGENERATE mode.

5. LOAD assumes that the items in the record have same length and order as
in the schema. {Documented by SIB-DRL). Remember that null values are

spaces for characters items, otherwise they are binary zeros. Old contents
of the realm will be lost after a LOAD.

Hints:

Both LOAD and UNLOAD are faster if the SINTRAN-III file is continous.

Make Modefile for Unload/lLoad Program

Function:

To make a modefile for running the program "'SIB-UNLOAD-LOAD:PROG”
(ND-number 10141A) which copies a database by using two SIBAS processes
and standard DML calls.

Format:

MAKE-MODEFILE ON <file-name>

Rules:

1. File 'file-name’ must exist and default type is :MODE.

The routine finds the correct sequence of realms to be copied, by taking account

of set relationships. Manual sets that lead to a loop in the structure diagram are
omitted. These set names are printed on the terminal.

ND-60.127.03

6.1.16

CLEAR SYSTEM—REALM

Function:

The function of this statement is to clear the realm completely, and then rebuild
the old indexes as in clear NEW INDEX (see 3.14). That is, the indexes will exist
but will be empty after this call.

Format:

CLEAR-SYSTEM-REALM <realm-name>

Rules:

1. REALM NAME. The “realm-name” must identify an existing user system
realm (not SIBAS system realm).

2. To be used if sesions errors in the index tables. To rebuild automatic
indexes afterwards, use VERIFY INDEX in REGENERATE-mode.

ND-60.127.03

6.2

SIBAS SERVICE PROGRAM

SIBAS service program is an interactive utility which intends to make life a bit
easier for the SIBAS operator.

The program car be used to start/stop SIBAS RT processes, get statistics about
database space utilization, routine log status, update file status, etc. Most of the
calls described in Chapter 5 are directly implemented as commands but only
users RT or SYSTEM are allowed to use this program.

Command Syntax:

The command syntax is very near to SINTRAN IlIl with abbreviated look-up,
parameter prompting, etc. Only three control characters are implemented:

Control A which deletes the last typed character
Control Q which deletes the last typed line

Control D followed by return which deletes the last typed command

Any line beginning with a space will be treated as comments. If a line begins
with " @" the rest of the line will be executed as a SINTRAN Il command.

ND-60.127.03

The available commands are:

EXIT
HELP
OPEN-DATABASE
CLOSE-DATABASE
GIVE-CHECKPOINT
RETURN-CHECKPOINT
ROLL-BACK
UPDATE-DATABASE-IN-PLACE
FORCE-CLOSE
CHANGE-COMMUNICATON-
PROCEDURE
DATABASE-STATUS
FINISH
GET-SIBAS-STATE
GET-UPDATE-STATISTICS
GIVE-MESSAGE-TO-SIBAS
INITIATE-LOG
PAUSE
RECOVER
REPROCESS-DATABASE
RUN-DATABASE

SET-CONDITION-FOR-REPROCESSING

SET-PASSIVE

SET-ROUTINE-LOGGING-ON/OFF

START-DATABASE
STOP-DATABASE
TURN-ON/OFF-TERMINAL-LOG
SUPER-START

SUPER-STOP

STANDARD- REPROCESS

EXPLAIN

> > EXPL GIV-CH

list the availakle commands
as SOPDB
as SCLDB
as GCHPO
as SCHPO
as SROLL
as SUPLA
as SABOR

as CHCOM for TPS

as SISTA

as SFINI

as STGET

restricted call

as SMESS

as INLOG

as SPAUS

as SRECO

as SREPR

as SRUN

as SICON

as SPASS

as OFLOG/ONLOG

as START

as STOPS

as STRLG

This command brings SIBAS from the
READY state to RUNNING and opens
the database.

The opposite of SUPER-START: the da-
tabase is closed and SIBAS state
changed from RUNNING to READY.
Skip uncompleted sequences with or
without ROLL-BACK and reprocess the
R-LOG to the end.

States the parameter of a command and
gives an explanation. Use the EXPLAIN
command to get the full documentation
of all the commands. The following is an
example of one of these.

GIVE-CHECKPOINT <BASIC UNIT> < SECOND > < MINUTE> < HOUR >

< DAY > <MONTH > <YEAR >

Define a check-point on log file(s) where the database is consistent. If a FATAL
ERROR occurs at a later point in time, then the database can be restored to the
consistent state when the last CHECKPOINT was taken. "Delayed-update” or
"Before-image log” must be in use, otherwise only the ''routine-log” buffers

would be written.

RUN-FLAG must permit this call (see RUN-DATABASE).

Sibas state: RUNNING

ND-80.

127.03

6.2.1

SIBAS-Service Extensions SIBAS-500

So that the SIBAS-service program may be used to service and control
SIBAS-500 processes, the program has been expanded with some extra
'SIBAS-500 facilities’. First of all, it must be emphasized that a 'cold start’ of a
SIBAS-500 process, ie., transfer SIBAS-500 from passive to ready state, will be a
more time consuming operation than for SIBAS-100.

As already mentioned, the work-area-size in the START call is a dummy on
SIBAS-500, and it is not required in the START and SUPER-START commands. If
a direct R-log is filled, a message in conjunction with the DATABASE-STATUS
command, will be displayed telling the user to reset or remove the R-log. A full
back-up should be taken.

An additional feature: When transmitted to a SIBAS-500 process, the DATA-
BASE-STATUS command will specify the total number of SIBAS-500 calls
executed since start, ie., the total number of calls, including SIBAS-service and
recovery calls, executed since the database state was changed from READY to
DBA. To notily SIBAS-500, the SIBAS-service program will always display
SIBAS-500 STATE: when a SIBAS-500 process is being used, and SIBAS STATE:
whenever it is a SIBAS-100 process.

Example (state is running):

> > SIBAS-500 STATE: RUNNING % SIBAS-500
> > SIBAS STATE: RUNNING % SIBAS-100

ND-60.127.03

6-—-30

ERROR AND EXCEPTION CONDITIONS

Errors occurring when using the SIBAS database control system may be
classified in 3 classes:

FATAL ERRORS

Usually associated with serious malfunctions of the software or the
hardware This kind of error is often accompanied by SINTRAN messages
and SIBAS run-time messages.

INTERFACE or SIMULATOR ERRORS

Usually associated with errors in operating the database control system.
Those errors are signalled with a negative status, a list of which is given
later in this chapter.

DML DIAGNOSTICS

By far the most common error or exception conditions. They are associated
with “normal” use of the database control system. Those diagnostics are
signalled by a status value equal to —1 for error conditions or a status va-
lue equal to 0 for exception conditions. An exception condition is not an er-
ror, just a warning, for example reaching the end of a search region. In ca-
se of DML diagnostics, further information may be obtained from SIBAS to
identify the error — the ACCEPT {SDBEC) statement is provided for this
purpose. Each error or exception condition is identified by a number, the
Database Exception Condition number (DBEC) listed later in this chapter.

ND-60.127.03

7.1

FATAL ERRORS

SIBAS code has many internal checks and if any check fails, it may result in a
FATAL ERROR. In this way, malfunctions are detected very soon and damages
are not propagated onto the database. A FATAL ERROR stops SIBAS
immediately and results in the hanging up of applications trying to access the
database. In most cases, recovery actions must be taken.

Recovery actions may also be undertaken after DML diagnostics, usually after an
unsuccessful ERASE operation.

DBEC Meaning

221 Implicitly referenced realm not readied, ERASE partially executed
711 Attempt to erase owner of nonempty set, ERASE partially executed
741 Loop in set structure, ERASE partially executed

991 Privacy breach counter overflow, ERASE partially executed

885 Database left in error mode

In the case of "partially executed ERASE"”, the database is still consistent, but
the erase function did delete some of the records in a set structure, but not all of
them. Some corrective action must be taken to delete the rest of the records.

When a SIBAS-500 abnormally terminates, it will automatically open a file under
user RT with the name SIB2x:DUMP where x is AB, ... or F according to the
actual SIBAS-500 process terminating.

If the file does not exist, it will be created. Therefore, the DBA must ensure that
enough space is available for user RT. {One dumpfile will require about 170

pages).

When a SIBAS-500 process terminates itself in this way, the following message
will be printed on the actual SIBAS error-device:

SIBAS-II / ND-500 INTERNAL ERROR hh.mm yyyy.mm. dd
(DUMPING ON FILE (RT)SIB2x: DUMP)

>>DUMP WILL TAKE TIME (MINUTES, BE PATIENT ... —— WAIT —
>>SIBAS-500 DUMPING COMPLETED

The last message will appear on the error-device when the dumping is
completed and the dump resides on the specified file.

Note that a SIBAS-500 dumping is a 'heavy’ affair and may require a consider-
able amount of time.

ND-60.127.03

7.2

INTERFACE AND SIMULATOR ERRORS

These errors are signalled by a negative value in the status parameter upon
return from a SIBAS call. The SIBAS process continues running but some of the
errors are so serious that SIBAS should be stopped manually.

Status

—128

—127

—126

—125

—124

—123

—122

—121

—120

—119

—118

—117

—~116

—115

Meaning

Call is not allowed in current state.
SIBAS reserved by another user

Interface buffer full (too many return values).
Attempt to send more than 500 words from SIBAS

Interface user table full
More than 64 updating users trying to access SIBAS
For SIBAS-500: 90 updating users

lllegal to call STOPS when database open

R-log not initiated for this database.
Heading of log file does not contain database name

Current time is before current R-log biock.
The machine time has not been properly set.

Work area specified is inadequate. Try a different value between 7
anc 32.

Error in opening new log file
SINTRAN message on error device gives more information

lllegal routine number in input packet
Communication error or DML-SIB version does not correspond to

SIBAS version.

Error when using terminal log device
A SINTRAN message on the error device gives more information,

Incorrect number of words in a routine log block
The routine log has been damaged

Ready realm for update, or load, invalid after open database for retri-
eval, or when database is set read-only by run-flag

R-log initiated for another database

Illegal to nest critical sequences or transaction units

ND-60.127.03

Status Meaning

—114 Error in opening log file
See error message on SINTRAN error messages

—113 lliegal call when log is turned off
Calls that could influence other users are nct allowed unless specif-
ied in the run call.

—112 Routine log file must contain a positive number of pages
—111 Log is not active
—110 Error status is set recover

Recover (and rollback) must be done

—108 Answer mismatch when reprocessing

—108 Max. no. of calls scanned

—107 Scanned to desired checkpoint/log block

—1086 Scanning error, STREP must be called to get status
—105 Checkpoint not found on R-log.

—104 Call not allowed with transaction unit

—103 lllegal to remove not empty update file

—102 lllegal routine log type

—101 lllegal code to IN LOG call

—100 Reprocesing control table is full

At least 48 entries.

— 99 Time given is before initiation of R-log

— 98 Time given is after last written block

— 97 Time given is before current checkpoint

— 96 User ID is already entered in reprocessing control table
— 85 lllegal contro! code

— 94 lllegal reprocessing condition

- 93 lllegal scanning mode

— 92 Ilegal list option code

- 91 Database is not rolled back

Must be done when call log is circular and has gone around.
ND-60.127.03

Status

— 30

Meaning

Database rolled back
lllega! to remove "uncompleted sequences’’ after rollback

Illegal to start scanning once more
“Continue scanning’’ or "SFINI"" must be used.

lllegal to reprocess opened database without rollback
Database is not a backup copy.

lllegal to list only after roli back
It is only allowed to reprocess after rollback

Remove flag must be +1 or —1

Log already defined

Entry not found in reprocessing control table

SCHPO/GCHPO not allowed when db not open for update

Before Image log size illegal

GCHPO not allowed by "'runflag’’ parameter.

SIBAS process unavailable

Attempt to send more than 508 words to SIBAS

Probably missing length parameter in STORE, SMDFY, SFTCH, or
SFEBL

Error in reserving internal devices (user side)
SINTRAN is probably not generated for this SIBAS system number.

lilegal communication procedure

SIBAS process is passive, from SOPDB, STGET, SDBEC, or SCLDB
Call is not implemented on SIBAS-500

lllegal length of item(s) in accumulate call

lllegal to set bit 14/15 in runflag when database open, i.e., it is not le-
gal to force R-logging for all users, regardless of the "mode’ par-
ameter in SOPDB when the database is physically opened (runfliag bit
14). Furthermore, it is not legal to set the database read-only when it
is already physically opened (bit 15).

Direct R-log is full, R-logging stopped. lllegal to open the database.

DBA should reset or remove the R-log. This status will be returned
from SOPDB if a direct R-log is filled.

ND-60.127.03

DML DIAGNOSTICS, DATABASE EXCEPTION
CONDITIONS (DBECS)

110 THE RECORD IS ALREADY LOCKED BY THIS RUN-UNIT

The record identified by “"temporary-data-base-key' is already locked
by this run-unit.

§i>‘120 k THE RECORD 1S ALREADY LOCKED BY ANOTHER RUN-UNIT

The record identified by "temporary—d‘\ata-base-key" is already locked
by another run-unit.
N

- ».
(132-145 / RECORD UPDATED BY CONCURRENT RUN-UNIT
\ 7
\ %

The record identified by “temporary-data-base-key’” has been
updated by a concurrent run-unit,

170 PAGE LOGGING NOT ACTIVE

But application program attempts a page logging call such as
SUPLA/SCHPO/GCHPO/SROLL.

210 END OF SET OR SEARCH REGION
Find next/prior in set:
There are no more members of this set occurrence.
Find next in search region:
There are no more records in this search region.
The DBCS will set the ""status’ parameter to the value 0.
220 IMPLICITLY REFERENCED REALM NOT READIED
Find:
The next or prior owner/set member relative to the record identified
by “temporary-database-key” is located in a realm which has not
been readied.

Store/Modify:

If the record contains a non-null member set item of an automatic
set type, then the realm(s) where the owner and the first set member
are located must have been readied. If the "item list’" contains items
which are part of group items defined as member set items, the
realms containing owner and members of these set types must also
be readied. If a calc key is stored, the realms containing owner and

members of all set types defined for this reccrd type must have been
readied.

ND-60.127.03

221

225

230

240

250

260

270

IMPLICITLY REFERENCED REALM NOT READIED, ERASE
PARTIALLY EXECUTED

When executing ERASE, a record to be erased or updated is encoun-
tered on a realm not in ready mode. ERASE could not restore the
database to the state before the ERASE was executed. Database
recovery should be taken.

IMPLICITLY REFERENCED REALM NOT PROPERLY READIED

When executing ERASE, an implicitly referenced realm has not been
readied with update usage mode and/or protection mode of exclusive
update. Database recovery should be taken.

NO CORRESPONDING SET OWNER

Store/Modify:

An attempt is made to store or change a record containing a non-null
member set item of an automatic set, type when the owner does not
exist.

Connect:

An attempt is made to connect a record in a set but there is no
owner.

NO RECORD FOUND WITH GIVEN KEY VALUE

A record with the given value of a CALC key or an INDEX key does
not exist in the specified realm. The DBCS will set “'status”
parameter to the value 0.

KEY ITEM IS MISSING FROM ITEM LIST

If one of the items of the record type is defined as a CALC key or an
INDEX key in the DATABASE SCHEMA, then at least one of the items
specified in "item list”" must be either a CALC key or an INDEX key.

ITEM NOT DEFINED AS INDEX KEY

The name given in “'key name’ is not defined as an INDEX key for
this record type in the DATABASE SCHEMA.

CALC KEY ITEM MISSING FROM ITEM LIST

The record type has a CALC key defined in the DATABASE SCHEMA,
but the item is missing from the "item list".

ND-60.127.03

290

291

310

320

330

340

350

ATTEMPT TO FIND FIRST OR LAST IN EMPTY SET or FIRST IN
EMPTY SEARCH REGION

Find first between limit:

The search region defined by "realm name’’, "key name’, “low limit”
and “high limit” is empty. The DBCS will set ''status’ parameter to
the value 0.

Find first in realm:

The realm “realm name" is empty.

Find first/last in set:

There are no members connected to the owner record identified by
"temporary-database-key” in the set “set name’".

REFERENCED RECORD 1S NOT LOCATED IN REFERENCED
SEARCH REGION

The record identified by “temporary-data-base-key”” is outside the
search region identified by the "temporary-search-region-indicator”’.

TEMPORARY DATABASE KEY IS INVALID

There is no entry in the remembered list corresponding to the
“temporary-database-key’ given.

TEMPORARY SEARCH REGION INDICATOR 15 INVALID

There is no entry in the remembered list corresponding to the
“temporary-search-region-indicator’” given.

NO CURRENT OF RUN-UNIT EXISTS

There is no current of run-unit correponding to the value 0 of
"temporary-database-key"".

NO CURRENT OF SEARCH REGION EXISTS

There is no current search region correponding to the value 0 of
“temporary-search-region-indicator’’.

ILLEGAL TO FORGET CURRENT OF RUN-UNIT
The entry in the remembered list corresponding to the '"temporary-

database-key’” given is the current of run-unit. It is not allowed to
remove this entry from the list using a FORGET statement.

ND-60.127.03

360

370

410

420

430

440

450

460

461

ILLEGAL TO FORGET CURRENT SEARCH REGION

The entry in the remembered list corresponding to the "temporary-
search-region-indicator’ given is the current search region. it is not
allowed to remove this entry from the list using a FORGET statement.

ILLEGAL SEARCH-REGION FOR SGETN OR SGIXN

The search region must be an index table i.e. A duplicate index key
or a " between-limit” range.

SPECIFIED REALM NAME NOT CONSISTENT WITH REALM NAME
WRITTEN IN REALM

The realm corresponding to a realm name specified in “realm name”
does not contain the correct realm name in the identification area. An
incorrect realm has been assigned to the user.

INCORRECT DATABASE NAME GIVEN

The parameter given as database name to SCLDB does not match
the name of the database. Close is unsuccessful and the database
rernains open.

SPECIFIED REALM NAME NOT DEFINED IN THE DATABASE
SCHEMA

A name given in ‘‘realm name’’ is not defined in the DATABASE
SCHEMA.

SPECIFIED ITEM NAME NOT DEFINED IN THE DATABASE
SCHEMA

The name given in “key name’ or "item list”" is not defined as an

item or group item name for this record type in the DATABASE
SCHEMA.

SFECIFIED SET NAME NOT DEFINED IN THE DATABASE
SCHEMA

The name given in ""set name’ is not defined as a set name in the
DATABASE SCHEMA.

DATABASE IS NOT OPENED FOR THIS RUN-UNIT

The database has not been opened by this run-unit. If privacy is
defined, a valid password must be given when opening the data base.

THE USER IS NOT ALLOWED TO ACCESS SYSTEM REALMS
The name given in "'realm name” is defined as a system realm in the
DATABASE SCHEMA. A user is not allowed to use Data Manipulation

Language (DML) statements on a system realm.

ND-60.127.03

7—10

510 ATTEMPT TO ERASE ALL ACCESS KEYS AND MEMBER SET
ITEMS FOR A RECORD

If one or more non-automatic access keys or member set items are
defined for the record type in the DATABASE SCHEMA, at least one
of these items must have a non-null value after ERASE ELEMENT has
been executed.

520 PROHIBITED DUPLICATE VALUE FOR CALC OR INDEX KEY

One of the item names given in "item list” is defined as a unique
CALC key or INDEX key in the DATABASE SCHEMA for this record
type. The value given in this item in the "item values’ already exists
on the database for an occurrence of this record type.

530 NULL VALUE GIVEN ON CALC OR INDEX KEY
Modify:

Itis illegal to modify a CALC key or an INDEX key to a null value.

N Store:

%\ﬂ @%&{g\!t is illegal to store a record with all keys having null values. At least
\(f‘ g;‘ one of the keys must have a valid value.
R
%Qtﬁ“’ Insert:

s It is illegal to insert a key with null value in an index table.
540 NULL VALUE GIVEN ON MEMBER SET ITEM
Modify:
It is illegal to modify a member or owner set item to a null value.
Store:

Itis illegal to give a null value to a member or owner set item.

550 MEMBER SET ITEMS NOT CONSISTENT

The member set item identified by 'set nams’ has a different value
in the record identified by "temporary-database-key-1"' and in the
record identified by ""temporary-database-key-2".

ND-60.127.03

610

620

623

710

711

720

730

INVALID INPUT PARAMETER VALUE

Get/Store/Modify:

The number given in "“no. of items” must be greater than zero and
less than or equal to the total number of items and group items
defned for the record type corresponding to the "'temporary-data-
base-key'' in the DATABASE SCHEMA.

Ready/Finish Realm:

Invalid value of one of the parameters ‘‘no. of realms"”, "'usage
mode"’ or ""protection mode"’.

Erase/Remember/Forget/Lock:
Invalid value of the parameter “option code”".

PARAMETERS NOT CONSISTENT

The value given in "low limit"" is greater than the value given in "high
limit".

TOO LONG VALUE BUFFER TO RETURN
The value to return from GET/GETN/GIXN exceeds 500 words.
ATTEMPT TO ERASE OWNER OF NON-EMPTY SET

An attempt is made to erase the owner of a non-empty set when the
"“option code” given does not allow this for this set type.

ATTEMPT TO ERASE OWNER OF NON-EMPTY SET, ERASE
PARTIALLY EXECUTED

When executing ERASE, an owner of a non-empty set was encoun-
tered. ERASE could not restore the database to the state before the
ERASE was executed. Database recovery should be taken.

ILLEGAL ERASE CODE IN MULTI-USER ENVIRONMENT

The value given in "‘option code’ is not allowed in a multi-user
environment, unless all realms in the database are readied for
exclusive update.

RECORD ERASED BY CONCURRENT RUN-UNIT

The record identified by "temporary-database-key'' has been erased
by a concurrent run-unit.

ND-60.127.03

740

741

810

820

830

835

7—12

LOOP IN SET STRUCTURE

When executing ERASE, the number of levels in the set structure
from which records should be erased exceeded the maximum num-
ber given in SIBAS. This number is 15 in the standard version of Sli-
BAS.

LOOP IN SET STRUCTURE, ERASE PARTIALLY EXECUTED

When executing ERASE, the number of levels in the set structure
from which records should be erased exceeds the maximum number
given in SIBAS. Database recovery should ke taken. This number is
15 in the standard version of SIBAS.

RECORD IS ALREADY CONNECTED TO SET

The record identified by '‘temporary-database-key’" is already
connected to a set identified by "set name”. The DBCS will set
“status’’ parameter to the value 0.

INDEX KEY ITEM IS ALREADY INSERTED IN INDEX TABLE

The INDEX key corresponding to ""key name’' in the record identified
by “temporary-database-key” has already been inserted in the index
table. The DBCS will set the “'status’’ parameter to the value 0.

RECORD IS NOT CONNECTED TO SET

The record identified by “temporary-database-key” is not connected
to a set identified by 'set name”. The DBCS will set the '‘status’
parameter to the value 0.

REFERENCED RECORD IS NOT LOCATED IN SET OCCURRENCE
Find:

If the set type is defined as automatic, the member set item cor-
responding to the set type identified by “set name” for the record
identified by ""temporary-database-key'’ has a null value.

If the set type is defined as manual, the record identified by
“temporary-database-key'’ is not connected to an occurrence of the
set type identified by "set name”’.

Connect:

The record identified by “temporary-database-key-2”’ is not

connected to an occurrence of a set type corresponding to “‘set
name'’.

ND-60.127.03

840

850

860

870

871

872

880

881

882

RECORD TYPE IS NOT MEMBER OF GIVEN SET TYPE

The record type corresponding to ''temporary-database-key'' is not
defined as a member of the set type corresponding to “set name’ in
the DATABASE SCHEMA.

INDEX KEY ITEM IS NOT INSERTED IN INDEX TABLE

The INDEX key corresponding to ""key name” in the record identified
by "temporary-database-key'"’ has not been inserted in the index
tabie. The DBCS will set the ""status’’ parameter to the value 0.

ATTEMPT TO MODIFY OWNER SET ITEM OF NON-EMPTY SET

An attempt is made to modify an owner set item of a non-empty set.
All the members of this set occurrence must either have been erased
or disconnected if the set type is manual, before the owner set item
can be modified.

RECORD TYPE IS NOT OWNER OF GIVEN SET TYPE

The record type corresponding to "temporary-database-key” is not
defined as an owner of the set type corresponding to ''set name’ in
the DATABASE SCHEMA.

SET TYPE IS DEFINED AS AUTOMATIC

The set type corresponding to ""set name’’ is defined as automatic in
the DATABASE SCHEMA. Manual operations are therefore illegal.

INDEX KEY IS DEFINED AS AUTOMATIC
The INDEX key corresponding to “key name’ has been defined as

ausomatic for the record type corresponding to "temporary-data-
base-key'" in the DATABASE SCHEMA.

ATTEMPT TO FINISH REALM NOT IN READY MODE

One of the realms specified in “'realm names’ is not in ready mode
for this user. The DBCS will set the “"status’ parameter to the value
0.

REALM IS NOT IN READY MODE

The realm identified by "‘realm name" has not been readied for this
run-unit.

ATTEMPT TO READY REALM IN READY MODE
Orne of the realms specified in "realm names’ is already in ready

mode for this user. The DBCS will set the “status’” parameter to the
value 0.

ND-60.127.03

884

885

910

920

930

940

950

951

DATABASE HAS ALREADY BEEN OPENED FOR THIS RUN-UNIT

The database identified by '‘database name’ has already been
opened. The DBCS will set the "'status’’ parameter to 0.

DATABASE IN ERROR MODE

A realm has not been properly finished bafore an interrupt. The
DBCS indicates that a realm corresponding to a name given in
“realm names'’ has not been properly finished before an interrupt oc-
curred on the database. The database is possibly in error mode and
recovery should be taken.

SPACE IN REALM 1S EXHAUSTED

The maximum space defined for the realm identified by '‘realm
name’’ in the DATABASE SCHEMA is exhausted for this reaim.

SPACE IN INDEX TABLE IS EXHAUSTED

The maximum space defined in the DATABASE SCHEMA for the
system realm(s) containing the index tables for an INDEX key for the
record type identified by "'realm name’’ has been exhausted.

MAXIMUM NUMBER OF REMEMBERED TEMPORARY DATA
BASE KEYS EXCEEDED

The maximum number or remembered current of run-units for this
user is exceeded. A FORGET statement must be executed before
further REMEMBER statements can be executed.

MAXIMUM NUMBER OF REMEMBERED SEARCH REGION
INDICATORS EXCEEDED

The maximum number of remembered current search regions for this
user is exceeded. A FORGET statement must be executed before
further REMEMBER statements can be executed.

REALM NOT READIED FOR THIS USAGE MODE

The realm containing the record identified by “‘temporary data base
key' has not been readied for load or update.

REALM READIED FOR EXCLUSIVE UPDATE BY ANOTHER
RUN-UNIT

One of the realms specified in “realm names’’ has been readied for
exclusive update by another user It cannot be readied for load or
update until it has been finished by that user.

ND-60.127.03

952

953

954

983

984

990

991

7—15

REALM NOT ASSIGNED

One of the realms specified in “realm names’ has not been assigned
to this run-unit.

ATTEMPT TO READY REALM FOR EXCLUSIVE UPDATE WHEN
REALM IS READIED FOR LOAD OR UPDATE BY ANOTHER
RUN-UNIT

One of the realms specified in "'realm names’ is requested for
exclusive update, but the realm has been readied for load or update
by another run-unit.

ATTEMPT TO READY REALM FOR EXCLUSIVE UPDATE WHEN
RECORDS IN THIS REALM ARE LOCKED TO ANOTHER RUN-UNIT

One of the realms specified in "realm names” is requested for
exclusive update, but records in this realm have been locked to
another run-unit.

PRIVACY BREACH ON RECORD

Current password is not consistent with the value of the privacy item
in one of the records to be erased.

PRIVACY BREACH ON RECORD, ERASE PARTIALLY EXECUTED
Current password is not consistent with the value of the privacy item
in one of the records to be erased. ERASE could not restore the data

base to the state before the ERASE was executed. Database recovery
should be taken.

PRIVACY BREACH COUNTER OVERFLOW

The allowed number of privacy breaches for this run-unit has been
exceeded.

PRIVACY BREACH COUNTER OVERFLOW, ERASE PARTIALLY
EXECUTED

The allowed number of privacy breaches for this run-unit has been
exceeded. ERASE could not restore the database to the state before
the ERASE was executed. Database recovery should be taken.

ND-60.127.03

1.4

7-—-16

RUN-TIME MESSAGES — Messages from SIBIO
SIBIO writes messages on a log console. These messages can be error messages
or useful information about the update file:
INVALID CHECKPOINT TIME
invalid checkpoint time in rollback checkpoint
INVALID TO CROSS U-I-P CHECKPOINT
Invalid to cross U-I-P checkpoint in rollback
UPDATE FILE IS FULL
Update file is full, an automatic U-1-P will be started
U-1-P ALREADY INITIATED

Trying to initiate a U-1-P while a U-1-P is active {a checkpoint will be
taken, however)

UPDATE-IN-PLACE STARTED

A U-I-P has been started
UPDATE-IN-PLACE FINISHED

A U-1-P is finished
UPDATE FILE EMPTY AFTER CLOSE-DATA-BASE

A U-1-P has been performed at close-data-base and the update file is
empty.

WAIT TiLL U-1-P IS FINISHED

The update file is full and a U-1-P is active. The system will hang until
the U-1-P is finished.

All other messages indicate serious errors or illegal use of SIBIO.

ND-860.127.03

7.5

7—17

RUN-TIME MESSAGES — FROM SIBAS

USER ERROR 60 SUBERROR xx on SINTRAN ERROR-DEVICE
This is an 1/O-ERROR, xx (decimal) is the file-system err-number.

The message is followed by a standard SIBAS error message on SIBAS
ERR-DEVICE

USER ERROR 59 SUBERROR 5 on SINTRAN ERROR-DEVICE

SIBAS {ddddddd) CCCCCCCCCCEeeeeceeeee
"ERROR*® REALM rrrrrrrr CANNOTR BE READ/WRITE

where: dddddddd is the database name
cce.cece is the clock of the machine
rrreerer is the realm involved.

SIBAS will then issue RTOFF and RTWT (put itself in wait state).

The user can then correct the reason for I/O-ERROR and continue without loss of
data by:

@RTON SIB2x
@RT SiB2x

USER ERROR 59 SUBERROR y on SINTRAN ERROR-DEVICE

Followed by a message on SIBAS ERROR-DEVICE

y = 1 REALM rrereere IS FULL

2: SIBAS SYSTEM REALMS FULL

only it before image logging is active
3: REALM rrrrrrrr 1S FULL

index table splitting and space exhausted
4: FILE rrrrrrrr CANNOT BE OPENED/CLOSED
5: REALM rrerreer CANNOT BE READ/WRITE
6: SIBIO/BIM WARNING STATUS = s

8: RECORD/PAGE ALLOCATION ERROR AT pppppp pppppp
the error is fixed a run-time by discarding the free record/page
pool. Contact ND support.

9: RECORD FREED/DAMAGED AT pppppp*pppppp
the error is fixed at run-time. Contact ND support.

ND-60.127.03

APPENDIX A

SUMMARY OF THE DML STATEMENTS

OPEN-DATA-BASE

CALL SOPDB (mode, database name, password, status)
CLOSE-DATA-BASE

CALL SC.DB (database name, status)
READY-REALWM

CALL SRRLM (no. of realms, realm names, usage modes, protection
modes, status)

FINISH-REALM

CALL SFRLM (no. of realms, realm names, status)
FIND-USING-KEY

CALL SFTCH (realm name, key name, key-value, status, key length)
FIND-FIRST-BETWEEN-LIMITS-USING-KEY

CALL SFEBL {realm name, key name, low limit, high limit, status, key
length)

FIND-LAST-BETWEEN-LIMITS-USING-KEY

CALL SFLBL (realm name, key name, low limit, high limit, status, key
fength)

FIND-FIRST-IN-REALM

CALL SEFIR (realm name, status)
FIND-FIRST-IN-SET

CALL SRFSM (temporary-database-key, set name, status)
FIND-LAST-IN-SET

CALL SRLSM (temporary-database-key, set name, status)
FIND-PRIOR-IN-SET

CALL SRPSM (temporary-database-key, set name, status)

ND-60.127.03

FIND-NEXT-IN-SET
CALL SRNSM (temporary-database-key, set name, status)
FIND-NEXT-IN-SEARCH-REGION

CALL SRNIS (temporary-database-key, temporary search region indicator,
status)

FIND-PRIOR-IN-SEARCH-REGION

CALL SRPIS (temporary-database-key, temporary search region indicator,
status)

FIND-SET-OWNER
CALL SRSOW (temporary-database-key, set name, status)
GET

CALL SGET (temporary-database-key, no. of times, item list, item values,
status)

GETN

CALL SGETN (temporary-database-key, temporary search region indicator,
no. wanted, no. of items, item list, item values, no. found, status)

GET-INDEXES

CALL SGIXN {temporary-database-key, temporary search region indicator,
no. wanted, item values, no. found, status)

MODIFY

CALL SMDFY (temporary-database-key, no. of items, item list, item values,
status, value length)

STORE

CALL STORE (realm name, no. of items, item list, item values, status, value
length)

ERASE
CALL SRASE (temporary-database-key, option code, status)

CONNECT

CALL SCONN ({temporary-database-key 1, set name, status)

ND-60.127.03

CONNECT-BEFORE

CALL SCONB (temporary-database-key 1, temporary database key 2, set
name, stetus)

CONNECT-AFTER

CALL SCONA (temporary-database-key 1, temporary database key 2, set
name, status)

DISCONNECT
CALL SDCON (temporary-database-key, set name, status)

INSERT

CALL SINSR (temporary-database-key, key name, status)
REMOVE

CALL SREMO (temporary-database-key, key name, status)
REMEMBER

CALL SREMB (temporary id, option code, status)
FORGET

CALL SFORG (temporary id, option code, status)
LOCK

CALL SLOCK ({temporary-database-key, option code, status)
UNLOCK

CALL SUNLK (status)
CHANGE-PASSWORD

CALL SCHPW (new password, status}
ACCEPT

CALL SDBEC (set name, realm name 1, realm name 2, item name, dml
statement code, dbec)

ERASE-ELEMENT

CALL SEREL ({temporary-database-key, no. of items, item list, status)

ND 60.127.03

ACCUMULATE
CALL ACCID/ACCFD/ACCDD (temporary-database-key, no. of items, item
list, increments, new values, status)

(ACCFD not available for SIBAS-500)

FETCH-GET

CALL SFTGT {realm name, key name, key length, key value, no. of items,
item list, item values, status)

GET-SCHEMAS-INFORMATION

CALL SINFO (code, namel, name2, length, array, status)
TRANSACTION BEGIN

CALL SUBEG (run-id, unit type, status)
TRANSACTION END

CALL SUEND (run-id, COMIT or ROLL-BACK, status)

ND-60.127.03

B—1

APPENDIX B

SUMMARY OF THE SIB-DRL
STATEMENTS

START INITIATION DATABASE <db-name>

(SUPPRESS (REALM) (RECORD~TYPE) (ITEM) (SET) C(INDEX-TABLE))

SIZE <no=-of=-64w=-pages> .

START REDEFINITION DATABASE <db-name> (DBA-PASSWORD <password>)

(SUPPRESS (REALM) (RECORD=-TYPE) (ITEM) (SET) (INDEX~TABLE))

SIZE <nn-of-bbtw=-pages>

! TEST !

MODE ! ! COPY OF SYSTEM-REALM <file=name-1>
! PRODUCTION !

SCRATCH-FILE <file-name=2>

-

ND REDEF, or
XIT

m

TRACE (STEP1) (STEP2) (STEP3) (STEP4)

NO-TRACE.

NEW OS-FILE <file-name> (PAGESIZE <no=-of-words>)

(DIRECTORY <abbreviated-dir-name>) .

NEW SYSTEM=~-REALM <realm—name> O0S~FILE <file-name>

REALMSIZE <no-~of-pages> .

NEWw SERIAL-REALM <realm—-name> OS~FILE <file-name>

REALMSIZE <no~of-pages>
RECORD LENGTH <no-of=-words>
(MAIN <system-realm> (ADDITIONAL <system=-realm>

(<system-realm>) (<system~-realm>))) .

ND-60.127.03

NEW CALC-REALM <realm-namne> 0S~FILE <file-rame>

REALMSIZE <no-of-pages>

MAIN-AREA <no-of-pages>
RECORD LENGTH <no-of-words>
CALC-KEY <key=-name> DUPLICATES ARE (NOT) ALLOWED

MAIN <system-realm> (ADDITIONAL <system-realm>

(<system~realm>) (<system-realm>)) .

MEW ITEM <realm=name> <item=-name>

! INTEGER !

TYPE ! FLOATING ! START <word=no>
! CHARACTER !
i !

PRIVACY~ITEM

! BIT POSITION <first-bit> !
LENGTH <no> ! WORD !

! BYTE POSITION <first-oyte> !

NEW GROUP <realm-name> <group=-name>
<item=name> (<item=-name>) .
NEW SET <set-name>

STORAGE~-CLASS IS ! AUTOMATIC !
- ! MANUAL !

OWNER <owWner=-set-item> <realm-name>

MEMBER <member-set-item> <realm-name> (<realm=name>

weee).

NEW INDEX <realm—name> <key-name>

UPDATE IS ! MANUAL ! DUPLICATES ARE (NOT) ALLOWED
! AUTOMATIC !

(SYSTEM-REALM <system-realm-name>)

(MIN=-VALUE <value> MAX-VALUE <value>)

ND-60.127.03

B3

DELETE SET <set-name> .

DELETE IMNDEX <realm-name> <key-name> .
DELETE ITEM <realm—=name> <item-name> .,
DELETE GROUP <realm-name> <group-name> .

CHANGE SYSTEM=-REALM <Rrealm-name>

(REALMSIZE <no-of-pages>) .

CHANGE SERIAL~REALM <realm=-name>

(DS-FILE <file-name>) (REALMSIZE <no-of=-pages>)

(RECORD LENGTH <no-of-words>).,

CHANGE CALC-REALM <realm-name>

(REALMSIZE <no-of=-pages>)
(MAIN-AREA <no-of-pages>)
(RECORL LENGTH <no-of=-words>)

(CALC-KEY <key-name> DUPLICATES ARE (NOT) ALLOWED).

CHANGE SET <set-name>

¢ LINK IS ! SINGLE !)
! DOUBLE !
(STORAGE-CLASS IS ! AUTQOMATIC !)
! MANUAL !

(MEMBER <member-set-item> <realm-name> (<realm-name>

cens)

ND-60.127.03

APPENDIX C
SUMMARY OF THE SiIB-DBM

START <database-name> (<dba=-password>) .
READY ! REALM <realm—-name> ! .
! ALL !
FINISH ! REALM <realm-name> ! .
! ALL !
STOP .
EXIT .
PRINT ! <number> ! ! RECORD ! ! REALM <realm~name> <from=unit> ! .
!oALL ! ! PAGE ! ! POINTER <address> !
' WORD H
! BUCKET !

PRINT POINTER <address> .

PAfCH ! REALM <realm=name> <page-no> ! <word-no> <new-value>
! <address> !

<new=value> .

RESET-ERROR~FLAGS .

FREE-SPACE~-STAT

COMPRESS INDEX ! DATABASE !
! REALM <realm—name> (<key=-name>) !

READ-ONLY !
VERIFY MOOE ! REPAIR L
! REGENERATE !
VERIFY INDEX ! REALM <realm-name> <key-name> ! (MAXREC <integer>) .
! DATABASE !

ND-60.127.03

VERIFY CALC ! REALM <realm-name> ! (MAXREC <integer>) ,
. ! DATABASE !
VERIFY SET ! <set-name> ! (MAXREC <integer>) .
! DATABASE !

VERIFY SET <set-name> USING <owner-item=value>

DEFINE DBA-PASSWORD <dba-password>»

DEFINE LOCAL~PASSWORD <password> DATABASE,

DEFINE GLNBAL-PASSWORD <password> DATABASE

RETRIEVAL |
LOAD ! PROYECTION
UPDATE !

! NON-PROTECTED !
i

USAGE EXCLUSIVE ! -

can s wem

REMOYE=PASSWORD <password> | ,

DATABASE !

DISPLAY ALL PRIVACY’ o

PASSWORD <password> !

MAKE-MODEFILE ON <file-name> .

UNLOAD REALM <realm-name> ON <file-name>

LOAD REALM <realm-name> FROM <file-name>
RECL <rec-lenght>

ND-60.127.03

APPENDIX D

SUMMARY OF THE SIB-SERVICE
STATEMENTS

HELP
CHANGE-COMMUNICATION-PROCEDURE
CLOSE-DATABASE

EXIT

FINISH

GET-SIBAS-STATE

INITIATE-LOG
DATABASE-STATUS
OPEN-DATABASE

PAUSE

RECOVER

ROLL-BACK
REPROCESS-DATABASE
RUN-DATABASE
SET-CONDITIONS-FOR-REPROCESSING
SET-PASSIVE
SET-ROUTINE-LOGGING-ON/OFF
START-DATABASE
STOP-DATABASE

SUPER-START

SUPER-STOP

GIVE-CHECKPOINT
RETURN-CHECKPOINT
TURN-ON/OFF-TERMINAL-LOG
UPDATE-DATABASE-IN-PLACE
GET-UPDATE-STATISTICS
FORCE-CLOSE

EXPLAIN
STANDARD-REPROCESS

ND-60.127.03

APPENDIX E

SUMMARY OF THE DATABASE
EXCEPTION CONDITIONS

ND-60.127.03

W GO0 GEOY Ay SN STINO QUMY (NMDD QUENID LRNMUD MG 2wy CTRTS CUISS CUOTY CINN0 QIR0 Cnoms Gnmon Quuws L l’illlll‘lllll"'l‘l'lllllllllllllll.‘l
s G G Gows O DM CHES CIIN G CUTR CHD GHGI GNSN NI G SIS SIS R GRS (IS G O b enon] o omd eoy gmse] cvmnd cned o] euond omed et et e comed wed ae)) Crd G} ored ammel arend med e oo el G weed e o o] aom] cwood] oun] o o
O CEMD GUMED EERNR CUING WD) COMWE €N EHED CHANN DDMR TONN (TS WMTS SO MMM MM My gumy s geme Sy ameed st amewd e goed et oo ooy ool oo eoed seed swed mreeed el st e e peed cnnd osd oot oo coned e ol Gy Gy iy G aat Gl e ol e Gl camme
TRy SR OESD 2D G O CNED GRPT CUOD GNRY OmN0 GImM e (N G GHDo CFRD G SRR GRRD GR00 GRoW R GDwRg Gy Gased enend Guied RIS ooen! ARSI crEtnd omony Gioog oty ©owRE Guowd dowly anawg Comed exme) econd omesd el gomed oy ety dowsg emooed ey ey ey vy evort] CTITE Co—" O
o e gams Gus XD G Gy EIUNI CmII GINS NS GeHe SR GECE G GOR G GNND G GHES WU cred wone] e enond cwnd e e el] a eod asd cmnd aned covd el i e wu oamd cwed] o o cowd cwed g s ovoed T P P e
> Jasn Buoum oy pardwaiie QNINS 0614 L
o Cxes CINED TS oS GE GERR OUMGY (IS TR CHID QUIRI OWD ST G CTED GRS G G W G G e o ey amay Gy oy cueey awod coess e cmnd s et ey oy v} e} ooy o] cwed el eoe ced wre e dmeed e emy o} cowd ewer] Crowy cuna o
M Jaylo Ag xoeq pajjol Hun-uny 08L ¢ L
“ [WSS W NG N WA MY SR WOV N Wy Y Copan OO COCON CONNON CRUTS Mgy GIue emwTh eNSUSS gy g gmeeey oesny crony GRNTY SOUN CEINY GOSN GRS GOSN Gomd Gnatd @aned GLaag Grend GReuey Gound GRod arwy cumnd aauwed casnd camed el cowed comed comend drwmd eosned gowed ol g ol sueed cesad cawd e O
Wl!"liiigiliiglg ggggggg po Comud emamd ey memnd ool gound TR SO GRS GRS GIUTN GAGY GRS GROORS GO GRS TRCcy GRaty CRUNE GRS CUUSCH (il CRNGY GRODT GRRGN GIRAT] WIRON CoMeN] RO G el GRi Gnsy Coml Guny Gy SR Gl
17 ani1oe 1ou Buibboy abegy o718 0
T TR TN Eiue CHTD EMDS G0 GINTS CIURD CEWR) STTOP CHOMIS (msh WIEYS Cumy CONTY (UTEN (UNGN) Gy ANNTD SRS cmem e o] ermoed ced comed exvd envwed o] omeed e omnd ceug aexd oacod) cvong Gome] ever] ey oo o] cnmod e Guve] s cooe] Gwed are] TR ST G G ST O
Z 1un-un Jayjoue Aq patepdn pioday Ghi—ZEl § 1 XEXIX [X x| X X XEXPXPXIX X }x] xix X X
m po Um0 GNDE GumEs CUORS SR GURN GTNSD CINRN CHMD GROG) GNP GEUNS GG WD TN NS GV CHw o e e emon] cmed esey emnd omnd g aued owed oo @oed esnd cnwd exd xwd oyoe] el Gy o) el G emed emeed ond G Gued ewod cxve] G e oy comved oot ceond end oo ag
b
m B CITEY mEvE CmOm sy COEY UMD SITND IS SENOS SR GTD COMED Gmemg Gummes st gewen shesn GUNID GNIWD (OMED AR CRUie (ool cpmoTy CNEwy s SuR GRS R G SRRy Gy Gy G CISGY SRy GRSy SRS Gy CUNGY CUSSy GG ey ey GIUoy TR SR R R SRRy G Sy ORI M Sy
=z 1un-uni iayioue Aq pexoo) Apeasjesipiooai syl 0z f x{xixIxIx]x}x]x}x X
O s cunss comn on e tRoT G CE GNED CUm G CRID GRSD G CHN G S GNS G Cuse @uud Sl exmd amed cowd o e o] cod esnd crmed enud e wd ened motd cud coeed eumd e oo e] g o cne]] coxoef G cwed o O S R U AR TR
Q Itun-una siyl Aq payooj Apessje siprotarayy QOLL g L . X
N be cows Cow mutes tones dinoy Vom0 CUNGY GRID TS CUIGE GHNTR GIUT Iy CRUWD NS Cmes G Ghem dees Gors WO quud Gwmd oonf emeod o] ewon] owed “wwow eres cieed eved aawd orond oeed wondt ool v coxg mend @od cow oned el exed oed ced ound oued v R ace ored Geod cwed e EEd enwos o8
O 3402 PSS TN 2 PN PN SN G P DR S PR N N T P 2 G P P NG D S DG G SRS Ay G Y SR P PG PN) P P
— HLRLOGWMMMMWSS)EYELNNABROBBMMWBGKKOL
= CBIBWE SSSSOIITRFSENONNSWDDLLPMRCLPL
Q. = e fod LHTIEA LR R NSHG AR Gl el el o It el {1 1] lel 1 o mim it io o= mio
W [COR[PN (oA 1P] ol b Lo o Lo et LA A oA A (G S P A | SN SIS (SR [SIIS g TR ISR o<1 29 (S] [o=4 [295 N6 § { {B] [+
O w Nnninjnininjnininininininininjininjninjininjininininjninininininiyinicin
X z (\/\./\(/.\((\I:\/\(/\(((\((((/\f\((\((/\(((/\(/\/\/\(\W(
(@]
wi = jea} ; = [
- 2l |k O &
L a O + []
9 z °l gl B8 =1 &
< Q e |8 z e ~
foe) O =4 a =1 2]
g 2 <] e 5l 8
= Q Bl 1E]= £ | =l |@
< = mEEOI wlmliale] [<l=la
o) a. < [+5 FGWESSE iz 23] 0
L B+ 1o =R {25] %] %] | {H m m|en o
o SE = i m i == (2] &= je v =t o
x = =4 11 1] =4 =11 = mmO <|m|_ =iz
L anizi=iH = HIO fx1 fz m b3 W) 751
> 4] {30 < OO e st [l 1% = TﬂE < || 1) £~
o Gl RBEREERRGERE == SIS SR o gL
& SMIAHCCMRIAWMRW Bl 2 e e <|m e % oflx
o D s i]3O | i< ol A|O= os) o CNCCTWD i e e g m
s 1) 0Ny Ol jmim |6 O mm o mixuijoislem| (O
fa] 21 NNDDDDDDD/RISSWCNNEONSDIb U100
2 NmNNTAANNNNNNNTODAA SNNSWEOANAMRCLEL
O = e e e [T [T H [T O e e O OO = o laimHimlibiololzi|o
w £ { e [0 e JOO [6t f 0 [o o i B i JO [OHE R B O QO (O H I OO | i JO [i [D O i
s} o] i ko je-— [i hinfo oo [~ lanfmia [— sl finho o f— oy ool To = fos fenjoa b
olojclolojojol i |—|—i—|—]l imimionfo]ar [or far for = = O OO N RO RO RO WO ([T
olojolo|olo|dlolojo|o|olololoiololojololololojololojolojolojolojolololo

ND-60.127.03

o ern CRAD GSH G ANl S SO GRED GG GO CHID GHwe R WG GRID GRER) GINND (HSHD GIND CHND CRA G GHID UG GWSS DD CHN GAD (6 GIC GIMD GDND GSEY R (SR G G o

e o S e G G Gae 5N G GHD CR G S Gie GRS GO GENS G GHS) iGN G Gme O
v s G comed Goe ORI CHND UGS CTNGD CUID (NI GTIN GMNGD GO G0 GNGN RN CRISD GNRD Gy WIS GG geowd ensod ound oo vamnf emed ecmsd ecwed emed owed cood cemd coud sl ey G ooeg gl Gy cxod cang o oo ey Qg e eaag Gy ey P B T e R
paipess Ajledosd 10U wieal paJuaiafel AjLoidiug qzZ el } X
e amen Cvosh GOED GNGd GNNGD GURG Gy CAWSD QWK CPNI0 CUMS CRID GRS CRIDD (END GRS XD QUKD Wos GNey Gfle cavod QRTY GUIRNY SUERE SO Gomd Gtund eseed Qe GITOg Guaty emad CNcON Srowd o e Guall ooy domad Gxoud coseed cresed Koeel G sl @mod Cew| Geoed e e Sl sond G oy oo 6F
b> wmos GEEd eI CEING VR CRGH DI GUNND Gy GOGR0 LTURG GUNTD Mo UM (DM GIHDO CANED CHOW CUSKY GRS UHGY Geoy gmd e qued) aod sncd OTRY GRAN EENoy @ emed el saad oue oy Gy SToRY e orvey Omony ol womd Gosw] Ot Coatd Qe S oy goweed orny cwned Outad G OF
uoBey yoieas PEOUBLIS,BI Ul PEIEDO] 10U S| PIOTBS PROUEISIEY (G2 F L- X
s o o G Gt Gurere G G G TR D GRRR GH RS IR G GRS G e Chn e e] eoed G] RIS (VNS SR UV R QR I QU (U RN g QU GRS gL P e wonn] cmed cnd s s
1 co_wm:ﬂﬂmwm 062 vO v o g ol wwnd llﬂm.ﬂlll s el a o o
Ajdtis uf 15414 20 285 Aldwe ulise] 10 ISy puiy 03 dwsnly
l'"ll‘l‘l'““‘llll‘l!lll oo aswnd swed ewend Gowsd et euod] wewsey e CA] OMG I AL Gl ewnnd G N Gl Cused SIS GG e e mmand W QoY Sy G S
W 1Y walt wouy Buissiuw st wal AN JIVD 042§ L ¥
A L, oo amue omb G GUW G G CIWO M GRS SHNI CONMY G D G O GMNEN CEND GYed GTU e omoed cood cawed cuad Gnokg cmeed xwod] ol et emcd el scued o G ound) wry oo e camol ency Gl cu o] wwa] wxesd) ot e e awd axend e o
A3y Xapuj Se pauljep 1ou wel| 09z ¥ I- X X | x
M o e cmas e G GRS o CIAT N CIES ORI GRS G GRS GN CHERS GADM GG GRE G608 DG e el amcad G eud acued ea o exend Gl cod cmod esmod VS JERRE. g QRS e A U R T R P R P s el] wwsnd anaed s of
= 1S1} wiay wody Buissiwe st wiay Aay QGZ i L- [XX X
U _-'l!‘l!l‘l'i‘l!l'll"‘ltl!l..Illllll.ll'll‘l!llllllllll!!lll] curd e soond ced cxxn o
wn anjen Aay Uantb ylim punoy piodas oN ObZ 00 | Xix
T e O o e s s s S i G L G G e G s S e G S Sy ey P B e e e e e e B [RSN U QU PR P N gy i RS PR PUR PR e oxond wsu od anoed woscr of
o) 13umo 188 Butpuodssiioo ON OSZ £ L- xix x | x X | X
T onm oo cooe cEe QU Give GEIED QR0 GRS RN GRGD GRF CRIGR GSNE GINGH CAKS QIS0 GG s QMG R o cuaend cuowd omend emund ceoon] Gwed G G s e evn s Groedl el s wed amanl] e] movad seeod e weed wewed i e Doow Do) wIES G S o8
= fornoexe Ajjeinied 35y ‘paIpas: 10U WiEs: padusiejes Aldldull tcc it X
D e O OIS G CINMG CSIND Gt SR GISN IRND CuS ENIID GENGS GHT00 GRS NN CRIND CIGRD RN RGO Gl fagle s g e weond ol o] cxecd snnd G coed o e R e e e e e e D el s oo oo cren{ mm o
W paipeas 10U Wieas padualajel Ajuoydwy 0ZZ g L- XIX Ix {xjx XX X
Ly ComD o GRS GREWS GNIh Ciimed SEFNO G (GTEIS GG GHUMD (MAND e G GNID QXN CNA CRGS GO G SIS Guusy IO R SR sy] e sl cowed arns o e e L e e B e e R s R e et ooy G0N QR S O
o U0ibs 4o48ss 16 185 JO pug OIC §0 XX X
N !"‘!'!‘l'!l’l'l'l‘llﬂl‘l'l;lnl.Illllllllllllll‘lllﬂ.l!l.'lllllllllllll'l!!llllnlll!llllﬁl'li
P e 0] O HO SR A LE[VNV il el Zjen oINS EIZIRUMINKIOND
W.. CBIBFEWSSSSOIITRFSEWON%SMDDLLPWRCLPL
i 120 IR 0N MR L R I S A T [N 5] 1A 1 M i3 {ad Im] ET8 [l (@) L] L] (@] b (23] s TR PV) oo [aog el ololzkz|o
il iR Dl ol E i ROI]O IO O[O e (O i (32 1O 1
) nlnjnjnjniniajnluninjnjnininiainininin|nlnjnjnin|n|ninininininininivisiv
> A3 A3 N NG vl Nl N2 Pl ol Nl i N2 N2 NI NI N2 3 N2 N N2 SN2 (g ANV SN NS DNV DNOVS DG g N3 LN (g B et NS et
o
5T}
53] = O
= o ooy
% o % m i O
g £ MEEIREE = &
m Y e (8] IEhn =
P & = a = 2]
= X gl 2157 Bl |2
, = Bz B] j
< . gl [EEIEIsE] llulklk] [€=la
-] < 2 N a e S RN G A R R e e = £ f=
> Bl MNEWS | || |+ £ =110 oo
n SE =4 i |m = k=1] £ e [+ V)]t O
et Laal 153} = Lol Ran k1= 2o e = [Ea]) < |Mm > b1
— m [saR {79 R - g I HIO <2 i m g MR]
tw © - < |00 o | e [T L] = TME <3l £
o« [1= STWWIITOSTETV/ 23] L] m < |4 e] bt =414
2]] g E e Bl lnlz <o) B2) PR IS) =S o e HIO
w Z SmIAHCCWRIAWMRT £ | B <iofe 5] Ol
v O D e O lett e ol o= ledm] e olzlololemin @) (slegm
Aﬂ = " nin (SR ONRIGHAT el]l log EYSGWE O i
o — [a] [a){a] zlzlninlalnlaiala|NimlRinjnlziolziZRIO =N IZ [GR R LOF (S I
<0 = NNTAANNNNNNNTODAANSNNSWEOANAWRCLEL
- Z ImIIERRIIIIIEIETORROIOON [N AR} I]] ten) ololz|xio
< 0O i e O B e e e o e [e O T B R R O | JO O [H jec |O [O | e e [O e i |1 D O
8o —laifenlar o bo bl i]l hinfo oo jalmlzr e ool hinho o - o fo e jadfen i =y
oclolololololole i [« =~ & imim]mimla = [1= | = = o o OO Ro ro ho et
oloicioibidioloioloiololololojolclololololololojolololojojoioioiolo|o o

ND-60.127.03

DATABASE EXCEPTION CONDITION SUMMARY

!
| N O N A N A DR DN N A R
(S N I N TR R N AN N N A N (N |
CURRENCY INDICATOR EXCEPTION e e
CONDITIONS I -1 R D D A O O O I
U | I T I £ 1 T T T I B
I = T I = Nc1 B A A N B B
| gl st b bgtstal -1 v 11
l.gl 8l g | Az 0000
1 I = T T O O I
=12l 31 d stalal L LT
| ;! 2] = 3 sl g! =] I T R R
P31 = zlﬁlgl 1 =1 N A T I T B
'g' %' E! ag' g;lg ' ' l l l '
R IO - - - I I T I
| 51 & 5l [I Bt 1 A N Y TR B B
gt gl §l = Nl it i D I O O O
PEV gl ol JEVEE 11
Tk nhR R
Slol ol o) S oF o1 o

JULEEEE L EENEEN
DML STATEMENT CODE kR EEE
001 FIND USING K&y (SFTCH) 1 | | I T O I
002 FIND FIRST BETWEEN LIMITS USING KEY (SFEBL) | | [
003 FIND FIRST IN REALM GRFIR) I 1 1T 1L 1L 1T 11 1Yy 111 i
004 FIND LAST BETWEEN LIMIT (SPLBL) | I 1 T P U b b1 b b1
005 GET SCHEMAS INFORMATION (SINFO) § e
006 THANSACTION BEGIN (SUBEG) |§ o bt 8t
007 TRANSACTION =ND SUEMD) 1 1T 1 1 1L 1L L L Lt 1t 11y
011 FIND NEXT IN SET (SRNSM) P>f 1> 1 1+ L 1L Lt L i1t
012 FIND PRIOR IN SET GSRPSM) 1=t 1= 1 1L 1l 11 ittt 1
013 FIND FIRST IN SET - (SRFSM) § x| L b
014 FIND LAST IN SET (SRLSM) § x| IR,
015 FIND OWNER (SRSOW) | * § I 1 1 | S I N T T |
016 _FIND NEXT IN SEARCH REGION (SRNIS) | x| =i x| x| | | |
018 FIND PREVIOUS IN " " (SRPIS) | Ll i |
020 GET/GETN/GET INDEXES (SGET) { x x | T | -
031 STORE (STORE) ¢ { 1 ¢ b 1 1 1 1 v ¢ 1 11
032 MODIFY (SMDFY) 1x1 1L L I 1 1t 1t 1t 11 {
033 ERASE (SRASE) 11 11 1 U 1 b1 1 L 01 i
034 ERASE ELEMENT (SEREL) §>*¢ 1> 1 1 L L1 1 111 i
041 CONNECT (SCONN) 1=] 1> 1L 1 I 1 vt L 1 11
042 DISCONNECT (SDCON) 1 xi I =1 L 1 1 L bttt 11 i
043 CONNECT AFTER (SCONA) 11 1> 1 U It 1 1 L Lt
QUL CONNECT BEFORE (SCONB) #>x1 1> 1 L | ¢t 1 1 &t 11 |
045 INSERT (SINSR) =1 1 =L ¢ 0 | ¢ 1 L Lt 11
046 REMOVE (SREMO) 1 x1 1= I L | L L1t L1 1 {
050 OPEN DATA BASE sopdB) § | L B 1 1 1 1 1 1L LiLL
051 CLOSE DATA BASE scLbB) 1 1t b b U L Lt
052 READY REALM (SRRLM) { 1 1 i 1 1 1 L1 L1
053 FINISH REALM (SFRLM] ¢ i i i
050 CHANGE PASSWORD (SCHPW) § i 1 i
060 REMEMBER (SREMB) § | 11> L L 1 L1 & 11 |

061 FORGET (SFORG) P11 4 1*(X1 1 L 1L 1 1 1
062 LOCK SLOCK) 11 11 I 1 L & Lt 1 11 g
063 UNLOCK (SUNLK) | 1 1 t 1 b b1 1
072 CHECKPOINT (SCHPO/GCHPO) | | 1 1 | L v 1 11
074 ROLL BACK (SROLL) ! ! ! ! ! g ! ! [N R |

ND-60.127.03

P Gus Cams Coue eI (U (M0 GRIGH GO GRS GAU G CUTKD G GRAD GIN) GO OO NG OCWe CUND GRED GHMNL GRND GIND QG SR G GO GO GNE SI0 GINE GUS GRS GINGY GRGD GO GRS CHED SHITD GO CHA GO SN (NN WIS SIS G GHMS CHMN SAGS SN SR SIS ORI VNG GRIE GO &

n o o
L, cime e guss g omor mvam evmes 0N SURD EIDD GROD IR GRIG MG IR GEEG G e s (o G0 o el cand el wmd cand comod omd cod e el wed o wnnd sl Grood st anead ownd ool wxaed wacet maed el wond woved cod onnd woned mnd st ek - od
e GO GUCHS Grans Ciwd GOND CRCNE GIND AN SRID GING GHUD GG CINAS GNOD LMY MINR CRGD GWD (N0 GWID GE RN O Cud emid e ciund eant cond Chmd Soou] ool coosd Gooag setnd wued GO G Gl Eeed cond Boed eomal Gl Cud Ceed) Cwed cumd G soced cound Ced owmd e e mned G of
-l-lﬁl-lllll-'i'll“t‘l"ll"!ll'lll'lllllll.llilll.!l!.lll.lll'llllllllll.il.l-.ll.l-lll..ll e L L R e L
y Cas kit EEAS GGD NG EOMS CITR GO CILD QDR CIE CHID GOUD GURD GRD GRD E GRS G G oge e wuul] onng e onodd e g eud woa oxsd eom] aaud esod eood el e G ooy eund e ol sl e el G w el vmed] P EUE RE S QURE PRI
V| o cumm GRS GRS GRS GO G GHEmD CIND GRS CHNEG CHEID (RN GRS G0 GHES LY QUUD CUNS CXG G O el ol qund wonod o] Quod gwed oued g g o] ot ety e avnn] oo cond s wseed coed] cened e omed owasy Guwed cuowd axnd ecied esme o
[l Cm>_m awiey aseqgelep Paunodu| 02y i- X
A s caue COED oo G SRR R CURG CINGD GURITE GRAKD WD CUSID CRI0 GRS GURD GUND (I €MD CHn WG GIB0 Gy wIDoN auce sl Cowd amd o ol Gl Coed o camod Cod]) wol onG ol ol ooy Do G cuced sl eewd e S cweed Duwd comd comed oot Cwe e ce o
W -i"ll"ll"l""'l'llllsll'l!l..ll-IIIILII..IInlllllcll'll.ll.lll.ll.llll.lll.l.l..l.ll'lolll.l'l'llllllll,.ll.llllll-ln
) sujesad walsAs $sa008 01 pamojje Jjou st issnayf L9 - XXX X X i X
s oo o GoR wmE G G GWRD CHISS QIR OO GUI GRS CERS GNP A0 NI SR CIAD D GwED Gie emw cud sl ad wosd cmnd und e e esnnd sz saend) crmnd e e wwed amod seed sond swon] amad Gxe s s oy o) G G o
n HuUN-uNJ siyl Jo§ UwchOuOCw_ aseqeieq Q9b XXX XIX] XE X| XX XEX IX XX XX XX IX IX XX IXIXIXPXIXX
N s o GHEN MIND CEWS AN GO G G GRS GRS CHA GIRD N GSUY GIYS O QLN G e o i coued wond] g GG SaG K SR G Sy G S iy Gy Gl G G B G W o— G G A, S [t e . e
m VINIHOS 3SYEVYLYQ eyl U] peulep 10U elwey 1es peiyveds ()G i- X§ X XE X{X X|XiXiX
T ly crots oo oo GND G CEND GN GHD0 SO GAT CITD CITR G GRS G SN CHSs G Gxums Gy e wuie] el wmod eued axd e el o s el G cued woed wy T T 0 R [. R, R [R RN g ewn] Gwnd cud wwmd aneed e o
m YWIHOIS 3SYHEVLVQ 84l Ut peulep 10U Buwey Wwell Pelyoeds Oy 8 1- | XIX XX X X XX
N e iR GO T GRS GOMD GO GHID GID CNHD GHNGD CHIND GAUED GANTH GEND GNID CUND CNID MMD QI GRn Gdbe o wxod cuned comed gong cumed avond wmd el omed ooy Gueweh o eownl asncd rand eoaed el ouad v el s cowed ol avowy seie] caomd woed emace o
(@) VYW3IHOS 3SVYE VY.LV 8yl Ut pouliep Jou suwRU Wiess psiyoedy Ly - xXpxx X X X
eI GO IS Coneh SRR CRID CONED GISND STRTD GIRT (NN CREN0 (e Camy Cuas oxtl ewss owwe odie wed g o ooy ez Gwosed emend el Gsd g o szond coeed evimd cowsd ovnd commd cmond exun] csd o e g Bwoe] Gt ey Grad e e o
© vrMHW%MMCE swizu UNBS YA JUBISISUOD Jou ewey udees peiydedS Gib & |- X
w ll."""ll""ll"‘!llil'lll..'lllll'lllll.ll.lll.l'llnlllll'll’lll!}llll’lllll’l
- HLRLOGWMMMMWSS)EYELNNAMROBBMMWBGKKOL
L Bz inimizlodc]ainlzlaimioialg|xjojlo|o|0ol= [oRY PUR] Yoo [eof a0} QolZ Lo
(&) o e [- D D jed e e e oo fea e JO T e O IQ OO H I TO O fex [O e i [5 O e
Nnjnnjnjuninininninin|nniunn | nINIuIIvHnin N ininininn inviinnin jinin o v
X z e P P s s B e s e s v I e o e e I B [e e e e e I e e e e e B e R e N
(15 o
] fx1 ; = P
L C o m O e
w a. O L) ©
<L [T} [&) ez Ol= 2]
o 2 £ E S5 = -
=l @ 8l |25 =, |8
Tn P Wm i3 = R (3 -2 124
<L o m <zl oz B[x| jm
o = EHlEiEo] Jedmlmie] <=0
< <q ies MGDESSE £x] [+ 2 £ [}
3 £l] @ l=ln ol (0| |H £ @ |0 =
= sm = i m = b= |%2] [} oo e U<t (@}
LT H bl Ll Ll =1 Ao = jal el < |m ==
o Z m min itz iz — O 3] [1] m =l
W o |) £ <o |O el © HO m TME <l 3 [£
o =2 Q= STWIITOSTETV/ O m <t JB e 0] et 2z
h -4 et ig} B b [2 e ita b= m 3] Ll BB RSB o (0] Fe ot =10
= SmIAHCCMRIAWWRT Bz e <|laje 28] ol
w N el e 110 et Ly o LN O 0. > CNCCTWD I mie 0. m
=z s} 0yl O & A I O 1 e e EYSGWWE O
Z O M Zibslgiz|z |zl aiZ = (O] %] NSWEOANAMRCLEL
et B i T L oo P E U A D T S R B B IO TG R JO T O 1O B I OO Z I O
fra fo [0 o JO fE 1E o [0 oo i 0 i e O DR O QO O -] O O o e jO s I [D O |
— IO O N RO JE- 1 O OO T HUOV O OO O e 1N [1 f— O OO HN RO TO | [N O e (O FON N =
(o) (o)l lo]{e) eollallad Ll Ll bal Rat b bad S i B A I S ol R SR R A LT EER1 Il [Tq) Yol Mok Kok (Nof i nul ny
OO OO IO ||| IC]OIOIC|OIOIO|OIOIOIOIO|IO|OIOIO|OIOIOIOICIOIC|O OO

ND-60.127.03

"""ll’i"l‘l!"’ll‘l'l'l"ll'lll‘lllll!"!li!l’!‘I!l’lllll
PO S e e Grer cwn CouD G G GRS G GHO QIS GIUY GEND GRS GO GRG0 e Ol el wue o] euod cnd ennd oo cme o sewe] emmed caved coind cmend comy eovd e G} ol sl coomd wmwd Gy o] meed cromd el o e el ek ool o] aremd eroren
vlgx!giiggsssgssll'llll’l!'!!ll‘ll'llllll]’l‘liili!gg;gg;giiaﬂ
P o G G e @R G GSIm RO GT G G WS G GUES (M SDN NS ST GREY ST Ot cumd o G ewd cud e cmued e Gued ced omed auont oned comed omt o camed ool e ol awed o] anne] moed ouwd @] e cxmd Exod el ey ey mod] o oy . o o
U"’l‘l'!""'c‘"ll"llr!lll“lll!llll!l"l‘!ll‘ll]lll tomng cwomed et Cumey ey cmen o
D jp o o oo cwn @un omn enm G2 D Gr G G G €800 @t Swel G o SO S G aw] wed comd ool v ewed o] cud] emad ewod] e oweond oo ouneed cowd axeed o] comd e o] wmved] Cwony et sowed L L e e L
o
A (0 RS GRS QRN AT (RHIY GRS ST QWTD G G CTEN GNIMD (IDMD GIETS D G QNS D GOS0 G0 o enmd st eswed aoad cumsd cxoted emed comag aon] oo cmd cmed ssmed o] cund comed ey cme comed emmd sow] anved cwned wd o] comd mesed comd Ersd ound wemel] Cuewd G s o] G
55 P oom cuve ame aus co enee au GO Swe SHNe e omr TS SN GRS QRO SM Gwrs ts mee Ofe v e v ewed €] owved croe] cmeg exe] ewred e cumd oo aousd eud eoed g g T Guad e emod ool oy cowel Com] eueed oowed aend ol comvy oo Coe| o] Coml e cm of
% U!il'llllllgl’l‘ll!'lll‘llil!llllll!l"l‘i'i"lll’lllllll'lllli
1UISISUCO 10U SWiall 385 Jaquidyy OGS § |- XX
N PP OON GMTD R) Gy CHTT) GRS AT GINDD GRS RN CESKD GUOWY GRG0 EINES GO (N GIU GTGD G TRy oge enve] o) wvend eommed exmmd ezl cavond cound e cand exed comed @t erome) ool cue) oree) Gosed woe] el euwoed aroe eseow] xece e L e B B £ T
m walf 185 Jaquinu uo uaaib enjen jinN opG 8 |- X § X X X {X
b B oo owme men ams G coon ones cE anen e cms e gE G R G @ W G o il eed oo v so] o] cod cod s o] e e cno] el ol g o) vl eome] erand @oved comed eomd Gl o o coed o] wcrmad] ceseed sand cmes o
m A% X3 QNI 10 D1vD uo uaab anjeA |InN 0ES § |- | X X 1X X X
N i emnes e emxes @ome OEEE) €N GG CRNI) CTAI SINR) COUTY WD GRS Cmmn Cho G0V G G RN D GRS e ool eaned cused wonad emmd orand worsd cmet cow comd el et aned e cund cund comd v o] cmoed oo e owesd omd e wonsd e e e B P
o A8 XJANI +0 51D 104 enjea a1eaiidnp palqyolg 0ZS § L- x|x| Ix x e
() [o coms o Gnm SIS G G GRS SR IS (N (I G G0 A S GO SIS S I ot s s i IS N e . o .. . LR P P :
plo2es g 104 SWAL} 165 1aquusty 10 sAeY {1e sseis 0] 3dwelly 0lS i- . X N
m vl'!l'l'll'!l"lgglﬂo'l'l-lll_lcl.ll'lllll!l'!lllllllllllllnlllllllllll.llculllllll.ll.lllll.l.llnlxlll Mulv
0 HLRLOGWMMMMWSS\}EYELNNABROBBMMWBGKKOL O
O M 100 e, 10 ot ininlZlozizIn| s ool a3 s e o, =
L e D2 e I EHO Q[e OO0 jo|=Z | i ek o o= [|O
O B i i - D D o e i pc e o O IS Lo O QO O H e O 1O e i 1O es i [D (O e
¢ niviininimninivin ity uaininininininivimnininininininlinininlonioion
u /\/\/\/\/.\I.\/\/u\/.\f\/.\/\/l\/\/.\(\/\/\/\(\(/\(\/\/\/\(/\/\r\/\((\/\ﬂ/u/\
=1 =4 0.,
i) m (@) 2
2 3 el ol Z
0 ol 1B glo @l L
< Z = 18] &8 %)
= - <E 5l |2
< Wl. MND.\.N E e s £
(o] w ElHiEoH] lelmm|e] jalzia
Q b [+ O Qv -z 23] o
x | 3nd gl X NEWS v v} = x3 jsaglvg] s
i Sm =3 =Him =4 b= 210 | [2=B e U<t (o]
w v i b=t Ll Lan B b= D e = 1O < im0 =R
3 2 W.w minizl=zi i IO =l =] m pag MRS (7
0 |} B+ QO o 2 O = TME < i<t {U) £
= [a) = (2015 HIH B O B BB I fx} | & m <n j B 1 egifn] fex =z
| L 12317 TTXIRSNVAEW mm 3} B fetl {00 j0u o Ll L]
> = SmIAHCCWRIAWMR N I <o, 2% ol=
MD] s |3 O fext |t e O [2RE 13 > CNCCTWD jeolica) s il R [V o8
EN] L 23 798175] O e e O] oo EYSGWE [1
T.O [[a) 2] NNDDDDDDD/RISSNCNWEONSDIN Ui OO
- O NMNNTAANNNNNNNTODAANSN SWEOANAMRCLEL
Land P e oS [e P A P I RO en I O T O O | O I B O 1O S R 1O
Fra fon JBe § B JOO 16 B {0y f o | 0 {0 T | I B O OO IS M O [OO O O jc s O e i Ja D O oo
Ll AN 2 BRIl TR =1 IO O HIOPRO 0 fO T I IO = T O O IO RO (O fr— O M (O ([I (oS =1
O ICIQCIO IO IO IO e~ e b~ Ll IO NN e Lo Lo L Lo L N B PN o hoho ho o bo eI
=iiedisdicdiedi=li=liel (el leticiiedi=lielicliclel =] =] [e) o] (e} o] e} e} (e} o] (o} o} o] (o} o} o] {a] (o} [e]

DATABASE EXCEPTION CONDITION SUMMARY

SYNTAX ERRORS

Invalid input parameter value
Parameters not consistent

CODE
610
620

CTTD RO AT D G LT CICTD SIOUD SmHTS ETS SUED T SND OOWD W

g return value

Too lon

623

DML STATEMENT CODE

-1
-1

-1

oo ofhor exsocs omow cxmm e owm

e hewer homess hroneoe frurte ey proves Juvrs s frene foucoes funas fusns offes s sesm T WD Sem> IR EEITD HED GUID GHTO SN OIS EUED G GIMD GHND CEID KEKD SNTD G 6

S g B R i S T N T S e g . e T I R g g e e T L

e g o S I g R g R 3 Y oy o e B g e el e el e S o e Ll R e D Rt Lo B Rl ihand

Pasme Jruvctn pucat s Pos Bosets Pewerts Porcts fotnts [umceh frams Qi Gt i Gouet furis [nems PUDRD Pureess PRTS JIwars SIS [RCHS pmen ce U s froae e w0 GO SRNID CMID SN CNIR OIS ISR GNLT) GRSED GRILY SR GO SRR SRR SR G SISO G ewmD Gw o

R N R Nl g e g e e e e g S Nl] o T U g g g e e IR b e R

i

7 v 7 pp—— i

| { | (I |

| | | P b |

| i i R |

| i ! i

| | l I | |

i | | b1 |

| | | b |

I 1 I | (I {

i 31 | | I i

i 31 I | | |

i el | | P 1 |

| € | | P11 i

I 5l | | [|

| <1 | | | |

I 21 i | P11]

| =l i I [I i

I si | | N |

i =1 | i I |

I | | I i

I | | I | |

] } } i |

| i | | 1 }

001 FIND USING REY (SFTCH) § | i 1 1 11 i

002 FIND FIRST BETWEEN LIMITS USING kEY (SFEBL) | | x §] 1 1 1 i

003 FIND FIRST IN REALM (SRFIR) | | 1 i i | - i

004 FIND LAST BETWEEN LIMIT (SFLBL) | | i | i | | |

005 GET SCHEMAS INFORMATION (SINFO) § | |] i L1 i |

006 TRANSACTION BEGIN (SUBEG) | |] | i | i

007 TRANSACTION END (SUEND) § | | | | I }

011 FIND NEXT IN SET (SRNSM) | 1 1 i | 1.1 i

012 FIND PRIOR IN SET (SRPSM) 1 |] i | P11 {

013 FIND FIRST IN SET (SRFSM) | | | | | L171 §

014 FIND LAST IN SET (SRLSM) | | i i 1 | I . | i

015 FIND OWNER (SRSOW) | | | i | 1 1 1 |

016 FIND NEXT IN SEARCH REGION (SRNIS) | |] | § 11 i

018 FIND PREVIOUS IN © n (SRPIS) | |] | | i1 |

020 GET/GETN/GET INDEXES {SGET) | x| x| { T L 1§ i i

031 STORE (STORE) | x{ | L1111 |

032 MODIFY (SMDFY) § x| i 1 1Lt {

033 ERASE (SRASE) | x| i |]

034 ERASE ELEMENT (SEREL) § * |] | | i

OW1 CONNECT (SCONN) § | [l L. 1 1 1 1 11 i

042 DISCONNECT (SDCON) | | | N A A s O | |

043 CONNECT AFTER (SCONA) | | i j I I N I T]

044 CONNECT BEFORE (SCONB) § | 1 | I N T I O i

045 INSERT (SINSR) § | i L b1 111 |

046 REMOVE (SREMO) § | { Lt 1 11 }

050 OPEN DATA BASE (SOPDB) | | i L L i 1 b1]

051 CLOSE DATA BASE (SCLDB) t | | L i1 i

052 READY REALM (SRRLM) | x| i | |

053 FINLISH REALM (SFRLM) | *} i F Ly 1t i

0hL CHANGE PASSWORD (SCHPW) | |] L Lt |

060 REMEMBER (SREMB) <} T ¢+ ¢t 1 1 1 L L b b b1

061 FORGET (SFORG) fx} | | 1 v 11 1 1 1+ 4 11

062 LOCK GSLOCK) 11 1 1T L 41 bt b1 L

063 UNLOCK (SUNLKD § 1§ 1 b b bbb b1

072 CHECKPOINT (SCHPO/GCHPO) { { 1T 1T L 1L 1L 1T 1 1 1 11 i

074 ROLL BACK SrOLL) | P V0V Vbbb v v vt
ND-60.127.03

DATABASE EXCEPTION CONDITION SUMMARY

i
%
[T T T R NN N A R N NS RN N
izt rr e
ERASE RECORD EXCEPTION O =1 T T O T (N T N N TR SO B
CONDITIONS N +:1 U N N -1 A Y NN N I B B
P <1210 1 1 T T T I B B
st 71N =1 N NS (e [A N S T A
{ §I§'!,§|'§I =zt b v i
I iz 1 gl gl | Eﬂ I I T T I
| §Ig I I O I T T T T O |
i glg t3tst 120 bbb
] alg =1 11 I 7 I N N T I N
PelsPEb el el 1 1 DL 1
I I) DG R -1 I T T R T O
ISR R-(I-TO- -1 B O A A B
PolStgt 80321 L 1 b 111
a2l gl gl ﬁ 4 N TS R N N A A |
I %igl gl §l = 14 N I N T N B
P2i=1 21 2l < 0= N N T R T A T
LI Rl 51‘:?! I O O O

v e o ™ <
EOUELLEREREEE
DML STATEMENT CODE RSN TR TRCH T ey e T O T I I O
001 FIND USING KEY {SFTCE) 1 1 i1 1 1 | 1 T
002 FIND FIRST BETWEEN LIMITS USING KEX (SFEBL) | L1 | | N
003 FIND FIRST IN REALM (SRFIR) | | i 11 | I
004 FIND LAST BETWEEN LIMIT (SFLBL) ¢ § § § | | 1 S I O O O
005 GET SCHEMAS INFORMATION (SINFO) | 1 1 1 | T O I O
006 TRANSACTION BEGIN (SUBEG) | o4 8 v it
007 TRANSACTION END (SUEND) | 1 ¢+ b 1 4 0 1 bV 1 1 1t 11
011 FIND NEXT IN SET SRESM) | ¢ 1 1L 1 1 1 1 L1111
012 FIND PRIOR IN SET SR
013 FIND FIRST IN SET (SREsM) 1 1 ¢t 1<t 1 L i1 1t L1t
QT4 FIND LAST IN SET (SRLsM) 1 ¢+ L i 11 b Lt Lttt
015 FIND OWNER (SRSOW) 1 1 L b x1 1 | I I T
016 FIND NEXT IN SEARCH REGION (SRNIS) | TN { I . T O A
018 FIND PREVIOUS IN " " (SRPIS) | | 1 T
020 GET/GETN/GET INDEXES (SGET) o TS T N TN N OO O O B
031 STORE (STORE) § 1 1 L 1L 1 1 v 1t b bt b 1
032 MODIFY GSMDFY) ¢ 1 1 1L L L Lt L1 |
033 ERASE (SRASE) { P >*f P> %>t ¢ L Lt 1 11
034 ERASE ELEMENT (SEREL) | 1 L 0>t ¢ 1 & ¢ 1 1 1 11
041 CONNECT (SCONN) § 1 & 1 xb 1 1t t v 4 1 U 11
QU2 DISCONNECT (spcoM) § § 1 bt=f b 1 1ttt L1 11
043 CONNECT AFTER (SCONA) § ¢ 1 1>t L 1 1 1 1 1 1 1
044 CONNECT BEFORE (SCONB) § 1 | Iad N NN RS IO A OO N O
QU5 INSERT (SINSE) | | | kel O T T I O R O R
046 REMOVE (SREMO) { { I 1L V1 111 1 b 1
050 OPEN DATA BASE (SOPDE) | 1 1 1t 1 b1 1L L Lt Ly i
051 CLOSE DATA BASE (SCLoE) § {1 &I L1 ittt
052 READY REALM (SRRLM) 1 1 1 ¢ b b ¢+ 1 1 L1 1t
053 FINISH REALM (SFRLM) { { L |
058 CHANGE PASSWORD (SCHPW) | i] |
060 REMEMBER (SREME) | 1 1 1 1t 1 1Lt Lt 1t |
061 FORGET (SFORG) | | | | L. ¢ 1 11 1 1 1 11
062 LOCK (SLOCK) | | 1T 1< I 1L 1L Lt 7T 1 11 |
063 UNLOCK (SUNLK) 1 1T 1L L Lt L L Lt | N
072 CHECKPOINT (SCHPO/GCHPO) | | 1 + L T 1 ¢+ ¢ U L 1 1 1
074 ROLL BACK (SROLL) ! ! ! ! ! z ! ! ! ! ! ! ! !

ND-60.127.03

nggiﬁasggigiigii"gﬁgliﬁiiiﬂii!l!!!iill’!lt!llgii‘l'l’l’ll‘ll
anﬂBKﬂﬁugEggﬁaﬁgﬁllgg.giiiglvggiiga_agﬁﬂﬁﬂﬁaﬂﬂﬂ_ﬂgﬂnﬁﬂﬂﬂﬁﬁgﬁtgﬁﬁft oy g o Cou G 6
P U GRS D (DRSS G (R GRS QAT IR GUASY RIS GOASD CHOU GINS Simn GHIH ORID GRS GNTe SR OL e el vl eme cond asud mnd cws ool emnd gl o ssey s oo AT G oo G e Gl cxvey Gl Gmead e Tawed Guned s G Lo Lo T R o Py
b CHRD R GRIS GRS CRERD (RIS GIT GRSED GIUM QRIS GNTRD GR QIR GRGD SUND GO (NND (Sss GRS SMDIN G GRS GSHR GO GUIG GRUT GAT G G s ool ecnd tosed caioe aeed el eued cund onod e i el ewed coed g o o sy e w0l ot Sun Gl G quust sans o
otiewone se pauigep st adA118g /8 §I- xIxtx})x
Y by comn omwe o @ D Gavey GRS CTIRGH GRS CAUNH SULGND 620m0 SUANI oYM CWNS ORW6 CRD G G0 SR omeg e o o) g osud ouay (s guesd Gy G Ry G GG SRR erming Gl enon el emnd ool ol Goad wmed wmed s Gueey Gaed cusad cucl s 6
o A1 185 uaAtb O JBUMO 30U Si adA1piooay (/8 f1- x | x
A bs een agnaon n‘llﬂ"‘!!!'l‘ﬁ!dilgllvﬂl'ﬂll!.ll.lllll[ll.ll'l cond ey erad g G oy oo oo Guad Gniod cod emecd et g ey o oxmd oo el oo o
s 185 Aidiie-Uou JO way 18s Jaumo Apipows 01 1dwially 0og f1- X X
o g T Y RSP ISPV UIIDE (IR PRI JURE PR UGS IS BUNE PR U R P J RN [T U QRN RN U U UK U PR (USSR DI DU DR DS PUVE JUNG PSS DU U RO
- 8|ge3 xapuy ul paliasul Jou st wal A9Y XIAN! 058 10 X
[20 N cans sy i o cmme o e G G G SR el ool e coel e ez cmand coazed cannd e, vy o e} o - R N el emond cwed emxsed coneen
> =TT 5dRY 158 UaAID 10 IsquuaW J0U S1 8A3 pioday Ov8 11- B D v vy | EEEINnE])
O (P GO CURT) QNN IR RS GRG0 GIGTH SIS GONnD (RN S IS GUT G RER D G GITe Gumn QU GRS Smey ey cuzg omwg et cwed cow CEE GRI G SRE G R e Tos B e B e o e s e s ey ooy case] camd eoare of
< 85UB.INOT0 J8S Ui POIBDOJ J0U I PJOJAS PaDUBIBIBY GER B0 X |x X x| x
” Y Ny (NG R GIRO TR CHND KEND ORNR) I CRR CRRS (IS N0 G GRID HS) M Gt G Gex Gupr Gumad oWy] Crwd GeeY oo G GRSl SR G G en S G il ey ewew e cu emeed omod ot ez emed come® e goed R s G SRRIR Gany G O
) 195 01 PIdBULOS 10U §I PI0OBY (88 KO X
Lo b e e oo P L oy npummp— rp— = 5 o] o o p— coned) cnmod emend e - U P R -
o 3{Gey XapUi Uf patlasul Apeaije st Wal Aoy x3aN! oeg 10 1 1 111111111 7 B A £ e e e = A
C e e D CRR (EARD AR R CMD G SR s G Cumd Gun) R Po R R R R PR, Rt T Rt PR L R Ut [t U QO Qe TR [e Gnd omnd G Cow] G O
= 185 01 Pa10aUU0d Apeadie Sf DIOOAY 0Lg o X X 1 X
O R O Ly e R S e B R o R s R s U [QI O e e e R e L s LT T U, e I (R QY QS [PUN WS N W QN U [N U pU——
o HLRLOGWMMMMWSS\/EYELNNABROBBMMWBGKKOL
w CBIBWE vHU oI niiz|olzizinisialalJaia e Eicioain]a
O - il f o mipZ o NGOG IOJOIOIo Rl J]xic | lk[ojoi=in o
fo o e Hu H D Do o i o i o s i oI]O JoIHc OO i O [LD o x
b4 Nnnnjnin jninininininininjnininininianinininlininialninjnininininlunléin
93} j£a] =4 25
) el {H) 5
(@) H O
< z O £l O %)
m S 2l o = ~—
< - = & & o
~ & al I°=[3i= x| |
< & gl Inl&i-Is 23l
o 4 B = |z o b e fes RS
= DT IO e le <LEZ O
e < g FGWESSE 23} Lagll f-f =1]
o [il O 2 i 2] %] ZIIR] =1} o
T Smm = {0 Hx] = 2] £ o e)<t O
5 L i =1 Ll Lanl 1A Izl =l = O < im ==
z Z min =z i IO Im 3] Ikl m =3
5 % MG = l=iolo! |miel || Injo o I N <|Jl=ln B
= = = 723 [HIHE O RIE S 25 &) m <t [| e 0] Jed Zind
fome - 4 [aB1op] TTXIRSNXEW ﬂw £x3 Hi<gidetnagos 10O
<0 21 R IR STl il i HlZlgie <|ojx £l o] b=
g3 Z TS e O feg g [T §<9 M Lok 1= S0 15 1 I 1 &} CCTWI I ED) (R (R
w o £ L2331 O 0 B O [o EYSGWE O Ihd
o O o] [a) =] Zleioinininin i~ ininizZiolzizin|oOl|nini-iz (OS] [GF [&)]
= NNTAANNNNNNNTODAANSNNSWEOANAMRCLEL
ImIIERRIIIIIIIETORROIOON b siH oo |z |o
B f e e e JO B = O o o 0 [| I e O [PR T O [O O e O (O | s O s [f o JO
I e O RO e~ [faufen=r inpo o jo b iafontar e fo fenfar o jo [Janimbr jo j— jasfenjou f=r
oo oo IO|O|— i il NI imm|ar o g g o lninninio ko o ho [
ojojojov oo jolojojojojojolojolojojololojololojolojojoloiojo|ololojo

ND-60.127.03

E—10

ll-'l'li'!ii!ﬂ"ﬁu'gﬂggglllﬂ‘!l!'l]l'll!‘il‘!"!"”S!l"!"ll!'l‘l
'l!l'i‘!lll'll""'llll'llltll'I.I.Illl-‘l!llll‘lll’lll'l!llll mneeed coond emund ceoed gued e o
vl!llllilllll'l'lllllnllllilllllllllillvlll'lll|l|llllllL!lil-l..llllll'll..l'l'llllllcl..nl.l-lllnl-llla.l_llal.llllll
uﬂﬁugEgnitlt";l""l"lll!ll’Aal_anlﬂﬂlunlE«Rﬂﬁﬂﬂggﬁﬁn&nﬁll!“lll‘l conwg cmmd end ol cuomd ooy wd
vll"""l“lllll!l‘ll.'l"lllllllllll ey cowc Cownd e o) cmml Sweed owal cemed el ol Emeed e T oems Cwes) cxsel tend ueed cwonf oo =
m .-'l-lllcll'ca‘l'l‘l"l!ll'!lll-l‘!'lll..lll.ll'..ll b B B £ Ko n £ T Ko B 0 I 0 2 e AR ownd ey wwwet aned coued coms o
m.llllllllllllllllllll!lll!llllllll e e A R U O S
M "lllQ':l.lQ.lllﬂlﬂll'lll'l'll"'r.v.l-lll.l-lllall!.lcllll][l Ty Gy wmed G crumy qusud e eme] tosed oot e wred sy wooed cuvg coug ey o oo of
o Atiedoid :mwwn _ﬂo..WCm_mm Fw_mom»..o@ GNMW_RJSS ut eseqezeg 988 §1i- X
[75] [* oM Gtwey Guwe g (NN TS ETIT GRS G GURI G GSRED GO GETD GNSR (S GHD G GRN SR ORge emue cmewy emesy wway sson oumey scid ooy Coed siwe gemd ewd gl ceved oo cxowd e el coml) ool cund ad esal cwedll ol sl sl s om.d wnd gmsek send e o
> Hun-uni siyl oy pauado usag Apessje sey aseqeleq g8 Io X
O P e @wss Cmo G W Qiiwe €N CHND SN GTDR TS TIRTS SENe GHGD QN CEXS G N e Cove Odbe wwd mood L B Bt B B T R s PVANE PO, e Uy CIRRY GITOY G GRNY GIITN G U Gt Ceswal Cmmel| G L T P R L TR
” P MO s eXy G COUD GWee SHTEe T UNNSH G SLNID GEENIS XKD GUTNE DNTS (INND TP MW Gews Qo Wb exwwd ceme] eoumed saceml ool emod ot ouond emed coned e cmed v ased) woud v emd casd e woad o] cund eod e omed cueeg ewwe o
Q apow Apeas ul wieas Apeas o1 1dweanly 288 10 X
N ""l'llll"llllll'!'l‘l g oo cesd cutend ovend gused coeed aseed exvond Cwowy Wy amency womeg oy crees) aued cowel onmd eneed asowd coeg wneed cnornt wxmoel Guang ol coned aumn o m
apous Apesis ut 10U SI W|es - xixix X ~
p p !
o ! 1eayd 188 41 ;
o~
i R R apmpmm——" 1 g emn e exnd ened oond comed e cwmd emesd evond e oo cwest ey eeed el evmaf cund G oved vl aomed o et cvmnd woonf enef exusd avmn of —
z spow Apeai uf jou wieas ysiuly o) 1dwally 088 f0 X o
O > GuSey Eomcy oy Cwwe Cnces Gonmee Cwers SR Sowa G SRS GSMYS GHEID GRAIN QR GRes Gwns Gume et Gneos oipe cumd ewd ned cowd cwd wond] cuce] el wed ad owd crd wond ool ol T e ced ool Co o] oo oand Comd Eed Ges] el Cod Ooud) e el S] el . 6
Pt 200 -/
[2402 o~~~ |~~~ |~~~ ~|~]~]~]~ A~~~ |~~~ |~~~]~~~ e~ FNL
0. HLHLOGWMMMMWSS\/EYELNNAWROBBMMWBGKKOL
1 O 00 {0 [IO I I IO SWDDLLPWRCLPL
O TEFLNBWNPFLSNPEODAROCOON [s R e cg [P o] Oo=hxio
CTRIcIg [eog [OT) [0] (o] AlALI A RA A e S PN [A IGHSIHAY (BT S IT oA ToR {E) o [N S {0479 NE] L) (8] I+
X njunmnjuninnjinininiulnininjnjnininininjinjnjnjninjnjiajajninjnjnjninjnijcin
L ((I«\(/\/\/\(/\/\/\(/\/\/\(/\l-\(/\((/\/\/\/\/.\/\/\/\/.\/\/\(W(\
5 gl | 5 2
. al B = &
< Ol |ol &= o= Z!
m P-4 = HIO 4] ~
<1 @ =B EE =l |
= b il &1 ML o wl e
< uj gl _i= Ol= >
0 o << =z 1 Bt)
g mEEOI lmlmle] [<l=la
w <5 © WGMESSE 3k Land 1o [£3])
[3 Ll 2]) 1] %} = x] i o
i Sm m [aa B e e} 143] }—4 =4 w) [[sef 1 Ul Q
[24 €23 Z e = g | ol = 30O < im = =
o = m M =z H} 1o im 5] I m b-24 N6 3179
s Q O e OlO] jmleq) PO &l IBl=8 il i) E
_H (&) -4 211 IITOSTWTV/ | &) m < {E-t | o] el =8]
> = Land ==y 1] I8 Iad Bod Ll 123 12 = mm &3] |58 Dl 1537 =g 1408 [e IO
Qo 12 IAHCCMRIAWMMRT NI RN iy e [£3] O |<<
< 2 an] P 1O e fe | 3O O fixd Ll CNCCTWD o JEd [0 B i o.M
w o (28 722 1] O e D O B o EYSGWE [SF |
x o [=)] WD NwmDDDDDD/RISSWCWWEONSDXN O OO
Nm =g ol] = b= i~ = b= A L Sl [OF [a] Lo £o v SMEOANAWRCLEL
L] e e e P P P B e e e R O e s O IO o = i ol [i OO iO
fra o MO e D B b T L O il B [s JO TR I T O IO IO IO - OO Fec i IO oo i 1D O e
I o po e~ o inbr info o jo e o imar - faujonj=r lnho o - Ty jm O e o fonic b
olooloiooioli— I r il {ojonjonionion]ar = (= = = o o o o o o o ho o je-je-
olojiolooololo|olojololololoioiolololoiclolciolo|oioioivolojclolololo

E—11

DATABASE EXCEPTION CONDITION SUMMARY

]

] R 2 ® ¥ L] L] L L J L] L 3 L2 ¥ v !

Pt r v e

T I5-1 -1 N T N NN IO N N B

RESOURCE ALLOCATION EXCEPTION BN
CONDITIONS (T -1 -1 R T T T O N T O B

N T A - T R N N R N BN B B

N T -0 -2 N N N N O N N B B

I O -0 T2 N N N N T S N B

[-1 - - N T N N N A O N N |

Poiglgslist 1D L DB UL T

A =1 - - N N T N D I O B B

BTN I N T O R O T T I
HEHHEEEEEEEEE

tatgisis¢ v b v 11t

belxlzlz b L v b b1 1

Pgrzizizte v v vt 1

bebeledlel VU L LU E U LI

Pl gledel 1 1 L bbbV 1

" Y- I I T T T B N T R

=% I I W DN R R R I R BN B B B

SIZISISIEL L v L1

B e e e e e . s e

DML STATEMENT CODE | IR R RS R T TS N OO T T

001 FIND USING KEY (SFTCH) |§ Lt 10 vt
002 FIND FIRST BETWEEN LIMITS 0SING KEY (SFEBL) | | | I A
003 FIND FIRST IN REALM (SRFIR) 1 1 &t i Ll bttt 1
004 FIND LAST BETWEEN LIMIT (SFLBL) § B 1 1 ¢ ¢ b b 1 1 1t 1 11
005 GET SCHEMAS INFORMATION (SINFO) 1 1 1L 1 L 1 | R
006 TRANSACTION BEGIN (SUBEG) | I 1 1t 1 1 TN
007 TRANSACTION END (SUEND) | L 1 1 1 Lt 1t 0 1 1 111
011 FIND NEXT IN SET GSRNSM) | 1 1 L1 1 L Lt
012 FIND PRIOR IN SET SRESM) | 1 1 L 1L 1L i Ll ittt
013 FIND FIRST IN SET ~(SRESM) | P bbbt Lt
015 FIND LAST IN SET (SRLSM) 1 1t 1t b
015 FIND OWNER (SRSoWw) 1 L 1. 1 1 i L b1
016 FIND NEXT IN SEARCH REGION (SRNIS) | 1 |
018 FIND PREVIOUS IN * " (SRPIS) | i Pt
020 GET/GETN/GET INDEXES (SGET) | 1 b b1 11
031 STORE (STORE) 11>} 1 4 1 1 1 |
032 MODIFY (SMDFY) 11>t + 1 1 1 1 I
033 ERASE (SRASE) § 1 1 Vb b b L1 i
034 ERASE ELEMENT (SEREL) | I L 1 1 1 L b1t 1 11 i
041 CONNECT (SCONN) ¢ 1 L 1 1 ¢t 1 1 v 01 11
Q42 DISCONNECT (SpcoN) § 1 b & L1 b btr vy
043 CONNECT AFTER , (scoNm) ¢ 1 1 1 L v 11 1 1 1 11
OLL"CONNECT BEFORE (SCoNB) ¢ | 1 1 % 1 b & 1 1 1 1 1 3
Q45 INSERT (SINSR) § 11 1 § L b 0 1 1 1 5 11
OlU6 REMOVE (SREMO) § | 1 1 1 1 0V T 1 o 1 1 1
050 OPEN DATA BASE (soppB) | I L 1 1 1 1 1 1 1111
051 CLOSE DATA BASE (scLoB) § 1 1 B 0 U b L
052 READY REALM (SRRLM) { L1 L L 1
053 FINISH REALM (SFRLM) | i
054 CHANGE PASSWORD (SCEPW) | i
060 REMEMBER (SREMB) | | x | % L bbb L1y
061 FORGET (SFORG) | |] N
062 LOCK (SLOCK) | 1 1 L1 L1 b b
063 UNLOCK (SUNLK) § | § & I 1 U1 U 1 1 11
072 CHECKPOINT (SCHPO/GCHPO) | 1 | {1 1 t § & 1 1 L 114
074 ROLL BACK GSROLLY ¢ | I ¢V T 0 0 0V vVt 1 11

ND-60.127.03

E—12

PO CTON @A gows WA GIND RHKD CIMEY GUNGM G (IO AUNER GTAN GNTD G ST CHTY GTRC VD GINID RS LN GUGD GID QA QNS GNT) £ GOy GO (SO ASHIN GOSY SRIN CHIWD CRIY CINE CINCT) QUM (RAE) GNTEY TN GO GA) cha) (RGN M) DUUD GHN GOWO GLIn Sy CIn G ONT GRS GH) emms

PR GO G CMIS GETUS GIMOD TORS S ST XN WG SIS GUIOR GITIG €U0 ETOIS CHES uan emees wm Sbls qoeed eweod emued cromd exed] coud comed awed s omed comd wwd awe el qwmcd exvrt caws el aved aroed o] wTved s wom g ewwer Lo o L 0 S
o oM GIS B G e (o WM GHECS GUID R WD CTEE) CORS EXCE e G Geat oue e eowee eede el wzond wed weef comnd e ol comd weond e coeed ool secnd ol wwed oued xud cond et el el ewef Cud cud comd ownd e vt cwmd ot wwed arnel eow of
b e I ROD WS EEN) CTN GIRT G GIWS CEED GINR CHAD (OTCH SHT G GRETD I e Ot Coww oie coeed vt cmeek cmedl seel el emeed sl svmeel sersd sorend e v Ty eoIRY S SRy Sy GRRGy GRS WU Gy Geuey G s me Cmny I wTg wut el ceocve ok
"ill"llll!l""l’!"'l met cong el swed cnt axwd e e S cuond cowed cownd sl awed axsed owed cowed owed enand emund e g el Cwwnt cxee o4
Vl P O cume G Chre EE WS DU GRS EITKS TROO GNP STTED GIND GMES CRMID CIOO) TN SHINS CEER Cuwe S amed g wend wxoed cwel cueoy conel g exmd ol ame) wmed wnd cxcml ool wmed oo el ol evonnd crmd emmnd amnd oy G cand o o
o
A e N RIS ey CAT I CIE GUTI) €ORIS RS CUNS GIES GEED COWH SRS CRE) CENS GO EIW GHNe i S aomd wang crnd comel axeed omnd caed womd crmd aued evond] aet o s comed oo cmed e el oveed ez e eme] e o come] comd e dwnad amne o
N | . Jun-unt lsyloue o1 paxool aie Wwieal siyy ul spiogat
¢TI TR e o s L onuom dede omees ol ST WD DIND GUD ID SR i weeees e e e oy i W —— A WL W G Vi ey wyowy mxme) ewed ok cawell atwed G e anm o wwenf oweed cus o
W usym alepdn anisnjaxa 1o} wieas Apeal 03 1dwally pGe 11- = X
o wl""ll‘l‘l'l‘lllﬂﬂpﬂ_‘l_ﬂwlll-l]lll-l'l.ll'!.l.lnl:Iiﬂln‘ﬂnﬂﬂllﬂlﬂlﬂilﬂlﬁlll"l’ll oz emnd wrmg eed o Cu 6
Z [e o e '2Y10UE AG P1RPAN 10 PROJ SO DAIDEAL SI WiESI e]] e ek .
A o - s 1L —— o, comed p— o p— aef] el
m uaym a1epdn aaIsN|oxa 1o} wieas Apeas 01 1dwonY £G6 § L- 1 = NEEE BEEEE X B
b [oo conce quan emve ees comor exme erowe ares dase Qe o emm CTUT CEI g gz G G @ EHs o L o s oy oo cuned cresnd creud e emend - e couef o of
m U@C@_wmm 00 E_mmwm Nmm - L L R R L @y <oy o o o ond b o s eng
3P GIEUN CEXES DO TEWS GO TN GMED CHRNT CHNE QRS CIN COOND COMS MBI CTCIS CNDE GITIR GO GRIGUS COTWE CEDe auwd Lo ‘cxoen] exzroey g cuoocd vy vy emued coned i e -
W 1un-unJ Jayloue Ag slepdn aalsnjoxa 1oy paipess wiesy |GE §1- 1171717 X X]
by Cupis (oIS Comue eéEY CUD CNEES CHNTE CHTI OTUNS CTET) CGUTN QU0 GITTS CSTTS GNP (SRS ENEN e e ey] cmend omnm]] sy S RS g oo e o
© apouw abesn sy} 10§ paipeas Jou E_mmm..lomm 1 =111 xi{x]x Ml.wlx x.lx xIx| 1 ™
w o e SR GRw QT @ GO SO S S SIS CIID GHE I GHID G G CHTY G G G Gigs cwd eoed cond el Guey ot ool wwd el awel cend coed ared casl e coed cund cned ol eond e comd ot emeed o] e conad comel o] el amad e cvd ammd e e e o
ﬂ wooo Y Y L TN T B T N P N e N e T P P P e)))))))))))))))))))))
£ slalRE kB EEER ek REEEEE S E BEERERERER
o1 IR O < OjOIO|O1= i inimjoiol=z]lmio
1] TEFLWBENPF wni=z (=) W.w = SIS
$) e fEx 100 I 4 D D oo poo foc fos e e fec T O R e T O IO O O T HI] O[O [JO I e [O i
< 2121222223 BB IA| DI 33|09 DB |)6 2| | 3|3 a3 | 3163 2 | e
E S’ B e [’ N’ e S P P I S
(o]
jeal ; =z
w a,
o [&] o
9] O m b= O
g (&) . [l | Ol= 7]
o z - Z] 1 = |~
< O = m = JE 7]
..A.n. = m‘WLM Sl |52
a.
<G| 1~ £+ E~ o fx}
o) w mEEOI e lalmle] |<l=]la
X ShldE e RIe R0 (B . a | B
h o
= 21 L 1l N = = e el | sBl | 25| =8
oz M = = = HIO M Ww B0, mnu MWW
o (&} = (e} {e] o e AN I (4] TM..E <l Ji<ln =
5= b= STWIITOST [34 [t [25] O o0 <f | B4 | e] Jen = Ind
Qe I mlnjEale el |n XEW mw {1 it miesin e =0
& SmIAHCCWRIA Bje TWTT «alnm = Ol
52 o]]3O |t = im0 I= oM i Q CCTWD lasg(ca] {7a] [0 el fm
Q8 i 153 (7117 (S31) SR ISHSTESHe 2k a1 EYSGWE (8719
T] ol NNDDDDDDD/RISSWCNNEONSDIN [©] 1] el IS N}
= Z e s R S S (S O <G < VIS [| U112 it [O <L 12 J<C [2 0 O | jET [od
() o e bar) [RY D Py] b o] bt b o] [R P 1G] P P 1S D] T ST BT 12 ool Dt P e i P PSS St
FFFFGTTFFFFFFFGSMEECDCCIRO&RFCRFLUCR
— IOt o RO (- — [od o Tinfo o (o [fod [ondar - Taulen=r finbo o f— faijmir [o = jafenfou =
oloiololololoi— i~ inIimioar = I = 1= = T o oo o ho ho ko e~
ojolojojojojolo|ojololo|olojo|ololololololo|olojoljoloiolololojololoiolo

ND-60.127.03

E—13

U]I.l-ninl-'l‘l;l!‘l!;'”lill-’lﬁl‘"!“l!"t‘l‘l‘lll!lli‘!l!-Il..lllllllllll"lgl
-!BII!gltl'l"l';;igiﬂvﬂggﬂﬂﬂKﬂuﬂﬂuHlﬂlﬁﬂﬁnﬁﬁﬁﬁf!‘lll‘ll!l]’i et ovand enod cnend e en of
ul"i'!!'ll‘l“;;!ggaaﬂuﬁ“ﬂ_“ﬂnﬂ“uﬂuﬂﬂﬂﬂ“ﬁﬂnﬁnﬁggtti“illlﬂ’l'ﬂi"llllll'lll
"i"'l-'!!‘I“llll‘ll‘ﬁlﬂllﬂllﬂlII.H_I_Bl..ll.alllllllll-llll.olllllllllllll]l.l!-llIlll!ll'lllllll.lllllinllllll
uﬁ'l!ll‘!'ll"l""t!!‘lTll.l'il.ll...l_.llllll‘lil'llllllﬂll'l‘!l!lllllll g ouid cwed coug sl cxwe of
w P o cumo cumd Cmed WD GXNO G CIND CIUD SRR CRETD GRS CHID GRS GRUD G O oW GER GRD G Cond cmun) cvang ooy ol Goned o oy cued e g, el Good g oRal GEnd CEOY QNG Gung GETY GReR Gy Cioed cume G Ry M cons) comw coed el oommd ol] oees o
m -!'l‘l"lll‘l!"l'l"‘gli‘l!l.‘l'llll.'lollll!l..lll!.l‘l'l'l'l'lll.lllllll"llll!ill'll‘l
M -"Illllllﬂl‘l‘ll""l!l".Ilnnlllﬂ-lull.'llllﬂlﬂlelnolulllllnll!l]l&lll‘l‘llll'lﬂllil‘ln
2 painoaxa
s P S CIEDH QRO G GO G QXU GRS GUED CHED GIIND CIUN GRS GRS G SR GO Gutts Gy @mu e] amed Gus] Gy awm et e aund ot eued eove] oo omd exed cond et cued aomy o T e el el e Ged o el wesd e P s P [NS Q.
Z Ajleiied 35V HT "MO[LIBAO JBIUNGCO Yoeaiq AJBALYd 166 §L- X
O s e QuiNs GEND GOy G GHSH GRS GIMID I GRS CRID VIR GRAR CRID G GES NS0 QN0 R GRS GiSe ewmw cond e gl Gl eoue oo ous wd s oo o g ossod sl oy comng e el owme cusd Quvel o sneed ewed Guad eosad e cmeed o el Gz e o] cames el
= MO[{IBA0 IB1UNOCO Yoeaiq AJBAlld 066 §f I X XEXIX [x|x]x]x|xfx X
— R S CUG CRTR GI GNP GRS GERS) GAREI G IS CNNS) GUR G CONND CHN CRED (RN GHUD CRER CARD SRR o] amex) eowed eued amml exved com] o amed e oo g ouad gussd IR CRRG Gy G GRS o Gaed e] eued awmy e exo evmod e eoh R ennud oy emed gued e of
o 108x3a Ajjetiied JQy ‘P40081 UO yoeaiq Adenatd - X
pa {[et JSvH3I d
N Py (D00 NN Oy Coum (I0D2D eutheh SIwS CEED (IRID CINND UMD SN CIIND CINED GG GRGRD GRS (OSTN ORIy QNS GR Qe llll!lllll‘lilggﬂﬂllg!‘lll‘ R B L R
@] piooss uo yoearqg Aceatld €86 U1~ X Xixix fxixix|xixix
C S0 G ot @IS GHAN IS GImI G GEOD Gmews gumey SIAMY CUAT GRRD G GRND GG CRID CRmd Gmeud CMIP A Gemmvd e B B L B R L Ce Lo B B Lo s R TR QU R [P QR PR QS JPOE, S VD G aomd omng o o] oo o e 6
g ufess uC Yyouwelq ASBALLd 86 Hi- X
0 Ill'l"""l'l'l"'!alvlll..l.lllll.llll'lllllilo.lllﬂlllnlll.ll!llll[l'l'lll“ll'lilllln
0. HLRLOGMMMMMWSS)EYELWNAWROBBMMWBGKKOL
Lid CEIBWE RN ORI]x Ol= SWDDLLPWRCLPL
O I 1] milZiolnldjnlzlodmiolQliic oo oo = [V PR ot [o] ojoj=z|mlo
fr fln doc T O D foc e e oo e oo oo M e S e I O T 1O O - e O 1O e e 10 s [[3 1B O s
x njinninininininininjininininininiuninjninlnininjn|uninlnlnjininivnininin|cin
Lit b [~~~ e I i e e e e e e e O O O O O O O N O RO R O RO R RO IR
o
53] €3] = o,
wn a m &) fosl
=4 |®] — (&}
(&} © | 1= Oi= (%]
M = 18] 1R 2 -
o = a un 7]
<! - g lalmls sl e
O o 5 <=2 = B e =l lu
= = & M O B4y 1 e < iZiey
| <t -3 E O IAK [0 SRR = [a)
& [l Cad D0 NEMS) 7] = 53] [315 o
& Sﬂ m Hlm zl= [2] = A I) et O
2 v [33] 2= Ziole =4 O < |m ol 2
> m mninj=l=|-H = HIO [|25} e m p 24 MR 155}
w5 [ds] £ < O lO e o 15 w,m TME <« | 3] [
> = (=34 STWIITOSTETV/ © [} < B e i [t Z
O = = @ i) e I i Z < m = mw =1 [l Beg RS A (a0 Fo =10
35 SmTAHCCMRTAWWRT [I I <ol £ o) =
> =g B0 TR [R 2l Py By 3O O il >t CNCCTWD o e e 1A M
Z Z t %8 211%) Ol e O {0 o EYSGWE O [
e O a) WD NNDDDDDDD/RISSWCNNEONSDIN [G1 (e] M|
o O = &l aglaizizziziz|=z=ieloal]a SNNSWEOANAWRCLEL
= HiH I e e e H IR R R IR e o e OO o= [T Y I oo olol=zxmlo
fra e fxa e JOO T 2 e O i o] e OO S I M O In OO IR e o Ol i O | {3 |2 (O |
— N RO (- oo oo o~ fcnimfa -l v o jo i~ o fmlr jo | — oo enfou =
olojolololoiol |l |l = for [= = [oo n O ko ko o e~
olojo|ojojojojo|olojololojojojolojojo|ojolo|ojoijololojojolololoicicio|o

ND-60.127.03

E—14

APPENDIX F

SUMMARY OF THE DVIL ROUTINE
NUMBERS

Table of Routine Numbers
The SIBAS routine logging uses one set of routine numbers. SIBAS error

reporting uses another set as seen in the database exception condition summary.
The former is logged on the routine log. The latter is returned by calls to SDBEC.

ND-60.127.03

CALL MEANING STATE LOG NO. DML NO. INDEX
ACCDD accumulate-double-integer run ug 20 L,2.23
ACCFD accumulate~floating run Le 20 4,2.23
ACCID accumulate-integer run i 20 h.,2.23
BSEQU initiate~critical-sequence run Ly 5.3.3
CHCOM change-communication-modus dba 98 5.4.16
ESEQU end-critical-sequence run 45 5.3.3
GCHPO give-checkpoint (to SIBAS) run 55 72 5.4.8
INLOG initiate-~logging (all kinds) rdy 96 5.4.3
OFLOG set-routine~logging-off run 87 5.4.5
ONLOG set-routine~logging-on run 88 5.4.5
RBLAN read-SIBAS~-common run 36 5.4.16
RELSI release-SIBAS run 59 5.4.14
RESIB reserve~SIBAS run 58 5.4,.14
SABOR forced-close dba 104 51 5.4.17
SCHPO return-checkpoint (from SIBAS) run 32 72 5.4.8
SCHPW change-password run 28 54 y,2.20
SCLDB close-database run 22 51 y.2.2
SCONA connect-after run 27 43 bh,2.12
SCONB connect-before run 26 3 42,12
SCONN connect run 16 41 h.2.12
SDBEC accept run 29 h,2.21
SDCON disconnect run 18 42 4,2.13
SEREL erase-element run 30 34 4,2.22
SETDV set-SIBAS~system-number run 5.4.13
SEXMC execute-macro run 56 5.4.15
SFEBL find-first~between-limits run 23 2 h.2.5
SFINT finish (recovery) rec 89 5.4.2
SFLBL find-~last-between-limits run 53 h 4,2.5
SFORG forget run 13 61 h,2.17
SFRLM finish-realm run 21 53 4,o.4
SFTCH find-using-key run 1 1 4,2.5
SFTGT fetch-get run 33 4.2.24
SGET get run 7 20 4,2.8
SGETN get-n-records run 34 4,2.8
SGIXN get-indexes run 43 §,2.8
SIBIO priviliged all 103 5.4.16
SICON set-conditions~for-reprocessing rec 92 5.4.10
SINFO get-schemas-information run 35 5 4,2.25
SINSR insert run 15 U5 h,2.14
SISTA set-SIBAS-state all 101 5.4.16
SLOCK lock run 12 62 y, 2,28
SMDFY modify run 8 32 h,2.9
SMESS log-message run 4g 5.4.6
SOPDB open-database run 20 50 §,2.1
SPASS set-passive rdy 97 5.4.2
SPAUS pause run gy 5.4.2
SRASE erase run 10 33 L,2,11
SRECO recover dba 102 5.4.2
SREMB remember run 11 60 b,2.16
SREMO remove run 17 ug 4,2.15
SREPR reprocess-routine-log rec 91 5.4,11

ND-60.127.03

CALL MEANING STATE LOG NO. DML NO. INDEX

SRFIR find-first~in-realm run 24 3 4.,2.5

SRFSM find-first-in-set run 2 13 h,2.6

SRLSM find-last-in-set run L 14 4,2.6

SRNIS find-next-in-search-region run 25 16 4,2.6

SRNSM find-next-in-set run 3 11 4,2,6

SROLL roll-back rec 90 74 5.4.9

SRPIS find-prior-in-search-region run 54 18 4,2.6

SRPSM find~prior-in-set run 5 12 §,2.6

SRRLM ready-realm run 19 52 h,2.3

SRSOW find-set-owner run 6 15 L,2.7

SRUN run-databzase dba 99 5.4.2

START start-datezbase rdy 95 5.4.1

STGET set-SIBAS-state all 57 5.4.16
STOPS stop-database dba 106 5.4.1

STORE store run o] 31 §.2.10
STREP get-status-from-reprocessing rec 93 5.4.2

STRLG set-terminal-~log (on/off) dba 105 5.4.16
STRLG turn-on/off-terminal-log dba 105 5.4.16
SUBEG transaction-unit-begin run 39 6 4,2.26
SUEND transaction-unit-end run 40 7 §,2.26
SUNLK unlock run 14 63 b.2.19
SUPLA update~database~-in-place dba 100 75 5.4.12
UTBLK write-log-buffer-onto-r-log run 31 5.4.7

ZTRB priviliged run 38 5.4.16
*

ND-60.127.03

APPENDIX G
CONSTANTS AND LIMITATIONS

ND-60.127.03

CONSTANTS and LIMITATIONS
SIB-DRL Max. number of lines in an initiation run ca. 2600 lines
Max. number of lines in a redefinition run ca. 500 lines
Maximum number of OS-FILEs in one database 12 OS-FILEs
(including the object schemas)
Maximum number of REALMs in one database 63 REALMs
(including the SIBAS system realm)
Maximum number of ITEMs in one REALM ca. 100 ITEMs
(including GROUP items)
Maximum number of ITEMs in one GROUP ca. 50 ITEMs
Maximum number of INDEXes on one REALM all ITEMs are
indexes
Maximum number of SETs in one database 49 SETs
Maximum number of pages in an OS-FILE 65533 pages
Maximum number of pages in a REALM 65533 pages
Maximum page size for an OS~FILE with BIM: 2 Kw
without BIM: 8 Kw
Maximum record size realm page size: 2
Maximium number of records by page 254 records
Maximum size of an index key item sysrealm p. size: 5
Maximum size of an item 500 words
DML Maximum number of SIBAS processes by machine]| 6 processes

Maximum number of

concurrently updating

run-units on the same database

Maximum size of Routine Log (R-LOG)

Maximum size of the Before Image area

Maximum number of

by run-unit

Maximum number of
indicators

(BIM log)

temporary database keys

temporary search-region
by run-unit

Maximum size of SIBAS-DML work area

Minimum size of SIBAS-DML work area

ND100: 63 run-units
ND500: 90 run-units

32000 1K-pages

2000 1K-~pages

30 tdbk

5 tsri

31 Kw

10 Kw

ND-60.127.03

COMMENTS TO INDEX

References are given for key words only where relevant information for the word
is given. Lower case letters are used throughout except for commands and
certain abbreviations, like SIBAS, CSRI efc.

References are separated by /' if placed on the same line, or frequently to save
space, on new lines,

Additional infcrmation is given for the key words, for example subsystems to
which the key words belong like (DML), or by giving the context in which the
word is used, for example checking, verification etc.

The key word is usually repeated if the information on the line is different from
the preceding. See for example references for ‘SIBAS’.

References with the asterisk prefix '*" mean that the key word is used in the
table of contents, and is usually the main reference if more than one is given.
See for example reference 'Calc key verification 6.1.11.2".

Cross references are frequently given, for example as follows:

Temporary database key
Database - temporary * key
Key - ternporary database *

ar

where """ replaces the key word in the context.

The additional information is usually separated from the key word by '-', for
ex'Bucket - main 2.1" which here could mean 'Main bucket’. But this is no
general rule.

ND-60.127.03

INDEX

ACCDD — call
ACCEPT

ACCFD — call
ACCID — call
ACCUMULATE

Abbreviation lookup
Accept — error condition
Accept — statemment
Access — direct

Access — random
Access — relative
Access principles
Access ways
Accumulate

Accumulate —
Additional sys realm
Additions — schema
Algorithm — hashing
Algorithm — random
Application programs —
Area — main

Area - overflow
Authorized users
Automatic maint index
Automatic storage class
Automatic update
Back-up

Background applications
Before-image logging
Begin/End sequence

Bit position

Bucket

Bucket — calc

Bucket — main

Bucket — overflow

Byte position

CHANGE CALC-REALM
CHANGE SERIAL-REALM
CHANGE SET

CHANGE SYSTEM-REALM
CHANGE-COM-PROC
CHANGE PASSWORD
CHCOM
CLOSE-DATA-BASE
CLOSE-DATABASE
COMPRESS
COMPRESS INDEX

— call

(DML)
(DRL)
(DRL)

(CRL)
load

(DBM)

(DRL)

(CML)

(DRL)

(DRL)
(DRL)
(DRL)
(DRL)
(DRL)
(SERV)
(DML)
(DBA)
(DML)
(SERV)
(DBM)
(DBM)

ND-60.127.03

4.2.23

4.2.21

4.2.23

4.2.23

4.2.23

6.1

*4.2.21

423

2.4.1.1
2.1/2.2.3
2.4.1.1

*2.4.1

2.4.1.1

*4.2.23

2.4.3.1

3.9

33

2.2.3

3.25

a4
2.1/(DRL)3.10
2.1/(DRL)3.10
6.1.9.1
2.2.4/2.4.2.2
2.3.2.4/2.4.2.1(DRL)3.13
3.14
(DBA)5.1/°5.3.6
4.4

‘5.3.5

"5.4.4

3.11
2.1/(DRL)3.25
225

2.1

2.1

3.11

3.23

3.22

3.24

3.21

6.2

4.2.20

5.4.16

4.2.2

6.2

6.1.10

6.1.10

CONNECT
CONNECT-AFTER
CONNECT-BEFORE
CRUI

CRUI — {find)

CRUI — current run-unit ind
CSRI

CSRI — (find)

CSRI — curr.search reg.ind
Calc key

Calc key

Calc key-checking

Calc key verification
Calc location mode

Calc mode

Calc mode location

Calc realm — change
Calc realm — new

Calc realms

Calc records

Calls — subroutine
Chain — set type

Chain — double link
Chain — singlz link
Chaining

Change calc-realm
Change serial-realm
Change set

Change systern-realm
Change-password
Changes — schema
Character

Character item
CHECKING CONSISTENCY
Checkpoint

Checkpoint
Checkpoint-id
Checkpoints -~ taking
Class — removal

Class — storage
CLEAR-SYSTEM-REALM
Close-data-base

Cobol — language cons.
Cobol program (ex)
Cobol storage area
Codasyl

Codasyl report

Code -- location
Collating sequence {SIBAS)
Compress index table
Computational {Cobol)

(DRL)
(DBM)
(DBM)

(DRL)

(DRL)

ND-60.127.03

4.2.12
4.2.12

4.2.12

4.2.16

425

24.12

4.2.16

425
2.3.1/2.4.1.2
22.3/2.3.2.1/2.4.1.2
3.9/(DML)4.2.5
6.1.11.2
*6.1.11.2/6.1.11.1
2.2.3
2.2.3/2.2.4

2.1

*3.23

*3.10

3.25
2.2.3/2.25

1.2

'2.3.2.3
2323

2.3.23

2323
3.1/*3.23
3.1/°3.22
3.1/°3.24
3.1/°3.21
2.2.4.3/4.2.20
3.3

3.11

2.2.1

5 /(DBM)*6.1.11
*5.3.2
5.3.4/°5.4.8
5.3.5.4/5.4
'5.3.4.3
2.3.2.4
*2.3.2.4

6.1.16

"4.2.2

“4.3.2

4.3.2

4.1
2.2/2.3.2.3/2.4
1.1

2.1

2.2.4

3.25

2.2.1

—q

Computational-3 fields
Concept — Database
Concurrency except.condition
Concurrent processing
Concurrent run-units — prot.

Conflicts — ready stat. {DML)

Connect — (DML
(DML)

Connect — records

Consistency — schema (DRL)

Consistency checking

Core space — minimize (DML)

Critical sequence

Critical sequence (logging)

Currency indicator exc.cond

Currency indicators

Current password — set (DBM)
Current password — setting

Current run unit ind (DML}

(CRUY)
Current search reg ind (CSRI)
Current-search-reg-ind (DML)

DATABASE ADMINISTRATION
DATA MANIPULATION LANGUAGE

DATABASE-STATUS (SERV)
DB definition syntax (DRL)
DBA calls (DBA)
DBA password (DBM)
DBA state (DBA)
DBA-password (DRL)
DBCS — DB control system

(DML)
DBEC — DB exceptionel cond.
DBEC — fatal errors
DBM — example
DBM module {mainten.) (DBM)
DBM password (DBM)

DBM statements summary
DBMS — DB management system
DDR — data def/redef prog

DEFINE DBA-PASSWORD (DBM)
DEFINE GLOBAL-PASSWORD (DBM)
DEFINE LOCAL-PASSWORD (DBM)
DEFINITION/REDEF LANGUAGE

DELETE GROUP (DRL)
DELETE INDEX (DRL)
DELETE ITEM (DRL)
DELETE SET (DRL)
DISCONNECT (DML)
DISPLAY (DBM)

DML diagnostics

ND-60.127.03

43.2

*2.1/2.2.6

App E
*2.43/5.4.13
24.3.4

423

2324

2.4.21
*2.4.2.1/°4.2.12
3.2

5./(DBM) *6.1.11

4.1

5.4.4
*5.3.3.1
App E
*2.4.1.2
6.1.9.1
*2443
425
241.2/2411
2.3.1/2.4.1.2
425

5.

4.

6.2

3.3

*5.4.16

6.1
5.2/5.4.1/542
3.5
1.2/2.4.4.2
4.1
2411/2434
(DML)4.2/°7.3
7.1

*6.1.13

6.1

6.1.9.1

*App C
1.1/3.

226
6.1.9.2
6.1.9.2
6.1.9.2

3.

3.18

3.16

3.17

3.15

4213
6.1.94

*7.3

DML resident tables (DRL) 3.26
DML routine Icg numbers “App F
DML statements 2.3.2.4/4.
DML-statements summary *App A
DRL module (DRL) 3.2
DRL statements summary "App B
DRL — examples (DRL) 3.26
Database 2.2/7226
Database — close *4.2.2
Database — define 3.
Database — dimension param *3.25
Database — document (DRL) 3.2
Database — force close *5.4.17
Database — main components 226
Database — open *4.2.1
Database — p-ivacy *24.4
Database — redefine 3.
Database — temporary * key 2412
Database — uoadate (DBA) *5.4.12
Database — utilities 6.
Database Except Conditions *App E
Database Maintain, example *6.1.13
Database Managem. — ex (DBM) 6.1.13
Database adm.functions (DBM) 6.1
Database administrator (DBM) 6.1
Database concept *2.1/2.2.6
Database contr system (DBCS) 1.2/(DML}41
Database definition (DRL) 3.2
Database exept.cond (DBEC) 2411
Database exept.cond (DML) 4.2/*7.3
Database maintenance module 24.41/°6.1
Database management system 1.1
Database names (DRL) 3.3
Database numbers (DRL) 3.3
Database parameters {DRL) 3.256
Database redefinition {DRL) 3.2
Database repairs (DBM) 6.1.11.1
Database reservation *2.4.3.1
Database systam 1.1
Database unavailable (DBA) 54.14
Data Manipul.Language (DBM) 6.1.9.1
Data consistency error (DRL) 3.2
Data division (DML) 4.3.2
Data indepencience 3.1
Data manipulation ‘2.4
Data reiations 1.1/72.3
Data structure *2.2
Database-name (DML} 4.2
Database definition (DRL) 3.26
Database initiation {ex) (DRL) 3.26
Deadlock — realm protec 2433
Deadlocks (concurr proc.) 243

ND-50.127.03

Define Database
Define checkpoint
Define password
Defined limits (key value)
Definition — Database
Definition syntax — DB
Definition/Redef module
Delayed update

Delete group

Delete index

Delete item

Delete set

Deletions — schema
Density — packing
Description of calls
Description of manual
Device — internal
Dimension Database param
Direct access

Direct find

Directory

Disconnect — records
Disconnect —

Display

Display {Cobol)

Display password/priv
Distribution — bucket
Documentation — DB
Double limk

Double link chain
Dump realm {to file)
Duplicate key
Duplicate key value
Duplicates

END

ERASE
ERASE-ELEMENT

(DBM)
(DRL)
(DRL)
(DRL)

(DBM)

(DRL)
(DRL)
(DML)
(DML)

ERROR AND EXCEPTION CONDS

EXIT
EXIT
EXIT
EXPLAIN

Ecceptional conds — fatal err

Element — erase

Empty sets

Encoded call from

End

Entry — record

Erase record

Erase —

Erase record except.cond.
Erase — element

(DRL)
(SERV)
(DBM)
(SERV)

(DML)
(DRL)
(DRL)

(DML)

ND-60.127.03

3.

548
‘6.1.9.2
2412
3.2

33

*3.2
5.3/'5.34
3.1/°3.18
3.1/°3.16
3.1/3.17
3.1/°3.15
3.3

3.25

*5.4

ix

1.2

*3.25
2411
425
3.7
*2.4.21/74213
23.24/2421
4.3.2
221
'6.1.94
3.26

3.2

3.13
2323
6.1.14
2.2.3/2.31
2321
3.9

3.6

4211
4222

*7

3.6

6.2

6.1.3

6.2

7.1
*4.2.22
2322

3.1
3.25
*4.2.11
2324
App E
*4.2.22

Error — DB example
Error — data consist

Error — schema consist
Error reports

Error-flag — reset

Errors — fatal

Errors — interface

Errors — simulator

Errors — syntax

Examples — running DBM
Examples ~- DB managem
Examples — Def/Redef
Exception conditions
Exclusive updaze — realm
Exclusive-update
Execute-macro

Extended monitor mode
FETCH-GET

FIND-FI-BETW. LIM-US-KEY

FIND-FIRST-IN-REALM
FIND-FIRST-IN-SET
FIND-LAST-IN-SET
FIND-NEST-IN-SET

FIND-NEXT-IN-SEARCH-REG

FIND-OWNER
FIND-PRIOR-IN-SET
FIND-USING-KEY
FINISH

FINISH
FINISH-REALM
FORCE-CLOSE
FORGET

FORTRAN
FREE-SPACE-STAT
Facilities — log/recover
Fatal errors
fetch-get

File — SIBAS [/0 update
File — new 0OS

Find

Find — direct

Find — relative
Find-set-owner
Finish

Finish-realm
Finish-realm

Flag — reset error
Floating

Floating item
Force-close database
Forget

Forget — record

DRL)
DRL)
DRL)
DML)
DBM)

(DRL)

(DBM)
(DRL)

(DML)

(DBA)

(DBM)
(DBM)
(DRL)

(DBA)
(DML)

ND-60.127.03

3.26
3.2

3.2

4.2
"6.1.8
"7
7.2
*7.2
3.2
"6.1.13
6.1.13
3.26

2432
423
'5.4.15
2434
4.2.24
4.2.5
425
4.2.6
426
426
426
427
426
425
6.2
6.1.5
4.2.4
6.2
4.2.17
2.21
6.1.12
5.3
71
4.2.24
*5.3.4.2
*3.7
2411
*4.25
*4.2.6
*4.2.7
‘5.4.2
*4.2.4
'6.1.5
'6.1.8
an
2.21
*5.4.17
2.4.21
*4.2.17

Forget -— all-records
Forget-all-search-reg
Forget-record
Forget-search-region
Fortran — language cons
Fortran array

Fortran program (ex)
Free-space-statistics
GCHPO — call
GET

GET-INDEXES

GET-SCHEMAS-INFORMATION

GET-SIBAS-STATE
GET-UPDATE-STATE

GETN

GIVE-CHECKPOINT
GIVE-MESS-TO-SIBAS call
Get

Get —

Get indexes
get~schremas-information
Get-state

Getn

Global passwords

Group — delete

Group — new

Group items

HELP

Hashing algorithm
High-limit

Host language considerations
Host language program
I/0-table

INITIATE-LOG

INLOG — call
INSERT

INTRODUCTION TO SIBAS
ldget — assembly routin
Implementation of SIBAS
Index — autom.maintained
Index — compress

Index — delete

Index — manual.maintained
Index — new

Index compression

Index description table
Index key

Index key

Index key — checking
index key property

Index key verification

Index levels

(DBM)

(SERV)
(DML)
(DML)
(DRL)
(SERV)

(DML)

(DML)

(DBM)

(DBM)
(DRL)

(DML)
(DBM)
(DRL)

(DBM)

ND-60.127.03

*4.2.8
6.1.9.1

*3.18

*3.12
2277222
6.2

2.2.3

4.2

*4.3

41

3.25

6.2

543

4214

1.

4.4

1.2
22472422
6.1.10

*3.18
2.2.4/2.42.2
*3.14
*6.1.10

3.25
"2.2.4/2.32.1/2.41.2
425
6.1.11.3
3.16
6.1.11.1/°6.1.11.3
224

Index table
Index table — compress

Index table — representation

Index tables — size
Indexes — get
Indicator — search region

Indicator — current run-unit

Indicator — status
Indicators — currency
Information retrievel
Information storage
Initiate-log

Initiation run (ex)
Initiation steps
Insert — record
Inserting — index
integer

Integer item
interface

Interface errors
Intrnal device
Involuted set
involuted set type
involuted set type
item

Item — character
Item — delete

Item — floating
ltem — integer
ftem — member set
ftem — new

item — owner set
item name

ftem type

Item value exception cond.
ftem-list

item-values
ftems

Key

Key — calc
Key — calc

Key — duplicate

Key — duplicate value
Key — index

Key — record

Key — search

Key — temporary database*
Key — unique

Key size

Key value

Key value — store
Key-length

(DRL)

(DRL)

(DML)

(DBA)
(DRL)
(DRL)

(DRL)

(DBA)

(DRL)

(DRL)

(DRL)

(DRL)
(DML)

ND-60.127.03

2.1

3.25

224

3.25
*4.2.8
2.3.1
2411
4.2.3
*2.4.1.2
2.1

21

*5.4.3
3.26

3.26
"4.2.14
*2.42.2
3.1

2.2.1

51

*7.2
1.2/(DBA}5.1
2.1
2.3.2/2.3.2.3
3.13

2.2

2241
*3.17
2.2.1

2.2.1
2.3.21
3N
2.3.2.1
3.1

31

App E
4.2

4.2
2.1/72.21
*2.2.4
2.2.3/2.3.2.1/2.41.2
3.9
2.2.3/2.31
2.3.21
2321/2412
21

24

2412
2.2.3/2.3.23
3.25
2.1/2.411
3.25

42

Key-name

Key-value

LOAD

LOCK

Language — host lang
Language considerations
Level — index tables
Levels — protection
Limits — (key value)

Link — double
Link — double chain
Link — single

Link — single chain

List — rememberd*

Load

Load — realm usage mode
Load application programs
Load records to (ex)
Load/unload

Loading progr w SIBAS
Local passwords

Locate record (find)
Location — calc mode
Location code

Location mode — serial
Lock — record

Lock records — realm protec
Lock out — record level
Log message
Log-buf-on-rout-log
Log-directory
Log-file-name

Logging — Routine On/Off
Logging — before-image
Logging — routine
Logging facilities

Logical relaticnship
Low-limit
MAKE-MODEFILE

MODIFY

MS! — member set item value

Macro

Macro — user defined
Main area

Main area

Main bucket

Main system realm
Maintenance module
Maintenance/timing
Make mode-file
Manipulation — data
Manual description

—10 —

(DRL)

(DRL)

(DML)

(DML)
(DBM)
(DML)
(DBM)
(DML)

(DBA
(DBA
(DBA
(DBA

L N e S

(DBA)
(DML)
(DBM)
(DML)
(DBA)
(DRL)

(DRL)

(DBA)
(DBM)

4.2

4.2
6.1.14
4.2.18
4.1
4.3
224
243
2412
3.13
2.3.2.3
3.13
2323
24.1.2
4.2.3
2432
‘4.4

4223
*6.1.14
4.4
6.1.9.1
425
2.1

2.1
2.2.3
*4.2.18
2433
*24.33
*5.4.6
*5.4.7
5.4

5.4
*5.45
*5.3.5
“5.3.3
5./'5.3
23.23
4.2
6.1.15
4238
2421
2.4.31
5.4.15
2.1/2.23
3.10/3.25
2.1

3.9

6.1
5416
*6.1.15
*2.4

*ix

ND-60.127.03

Manual storage class
Manual storage class
Manual update

Manually maintained index
Manually maintained set
Max-value (key)

Member — set

Member — single set
Member record

Member set item

Member set item
Message — log

Message — run-time
Message - run-time
Message to operator
Min-value (key)

Minimize core space
Mode (param.dasc)

Mode — production
Mode - test

Mode — usage/protection
Modefile — for Load/Unl
Modify

Modify — record

Module — Database mainten
Module — Definition/Redef
Modules available
Monitor mode -~ extended*
Multi-member set
Multi-user

NEW CALC REALM

NEW GROUP

NEW INDEX

NEW ITEM

NEW OS FILE

MEW SERIAL REALM
NEW SET

NEW SYSTEM REALM
Name specification exc.cond
Names — Dataoase

New OS-file

New calm realm

New group

New index

New item

New serial realm

New set

New system realm
New-password

Next — (search)
No-found

No-of-items

—_11 -

(DRL)
(DRL)

(DRL)

(DRL)
(DBA)
(SIBAS)
(SIBIO)
(DBA)
(DRL)
(DML)
(DML)
(DRL)
(DRL)

(DBM)
(DML)

2.3.2.4/2.4.21
3.13
3.14
2242442
2421
3.14
2.1
2.3.2
2.3.21
2.3.2.1
3.13
*5.4.6
*7.5
*7.4
5486
3.14
4.1

4.2

3.2

3.2
‘2432
*6.1.15
2421
429
6.1
*3.2
*PREFACE vii
2434
232
5.1

3.9
312
3.14
3.11
3.7
39
3.13
3.8
App E
3.3

3.1

3.1

3.1

3.1

3.1

3.1

3.1

31

42
426
4.2

4.2

ND-60.127.03

No-of-realms

No-wanted
Non-protected-realm
Non-protection
Nonreentrant programs
Natification of change
Null value — key

Null value — privacy item
Number — prime
Numbers — Database
OFLOG

ONLOG
OPEN-DATA-BASE
OPEN-DATABASE
OS file — delete

OS file — new
08S-file

OS! — owner set item value

Object schema
Object schema
Occurrence of set
Occurrence
Occurrence — record
Occurrence — set
Octal numbers

Open — statement
Open-data-base
Open-data-base
Operating system file
Operator — message to*
Optimum value (buckets)
Option code (erase)
Option-code
Organisation — Real-time
Overflow area
Overflow area
Overflow area — calc
Overflow bucket
Owerflow page
Owner

Owner — fined set"
Owner — set’

Owner record

Owner set item
Owner set item
PATCH

PAUSE

PRINT

Packing density

Page size

Parameter descrition
Parameter values

— call
— call

—12 —

(DML)
(DML)

(DML)
(DML)

(DRL)

(DRL)
(DBA)

ND-60.127.03

4.2
4.2
2432
4.2.3
4.4
*2.4.3.4
224
2.4.4.2
223
3.3
5.4.5
5.4.5
4.2.1
6.2
*3.20
*3.7
3.8/3.9/3.20
2.4.2.1
2.2.6
2.2.6/(DRL)3.2
*2.3.2.2
2.2

2.1
2.3.2/2.3.2.3
6.1
2.2.6
421
2.4.4.1
3.4
5.4.6
3.25
4.2.11
4.2

‘5.1
2.1/2.2.3
3.10
225
2.1

3.25

5.4
*4.2.7
2.1
2.3.2.1
2.3.2.1
3.13
6.1.7
6.2
6.1.6
3.25
3.7/3.25
‘42

6.1

Passive

Passive state
Password

Password — DBA
Password — change
Password — define
Password — privacy

Password — record occurrence

Password — remove
Password — setting current
Password/priv — displ
Patch

Patching Database

Pause

PLANC

Pointer — record

Pointer — record

Pointers

Prerequisite knowledge
Primary area — calc
Primary key (index)

Prime number

Prime number

Principles — access
Principles of SIBAS

Print

Prior — {search)

Privacy

Privacy exception cond.
Privacy — Database level
Privacy — Record level
Privacy — tablas

Privacy definition

Privacy item

Privacy item — record
Privacy system

Privacy table

Privacy-item

Processing — concurrent
Processing — real-time
Production mode

Program examples
Programs — Load application
Protect — concurr run-units
Protection exception cond.
Protection levels
Protection mode
Protection mode
Protection mode ~ Realm*
READY

READY-REALM

RECOVER

— 13 —

(DBA)
(DBA)
(DML}
(DRL)

(DBM)

(DRL)

(DRL)

(DBM)
(DML
(DBM)

(DBA)
(DBM)

(DBM)
(DRL)

(DML)
(DML)

(DBM)
(DML)

(DBM)
(DML)
(SERV)

5.4.2
5.2

4.2

3.5
*4.2.20
*6.1.9.2
244
2442
*6.1.9.3
*2.443
*6.1.9.4
*6.1.7
5.
*5.4.2
4.3.3.
2323
3.25
1.1/{DBM)6.1
*viii
2.25
224
223
3.25
*2.4.1
*2.
“6.1.6
426
*6.1.9
App E
*2.4.41
*2.4.42
244

5.
6.1.9.1
2441
*2.4.4
6.1.9.1
3.1
*2.4.3
1.2
3.2/35
4223
*4.4
2434
App E
2.4.3
6.1.9.1
4.2/423
"2.4.32
6.1.4
423
6.2

ND-60.127.03

— 14 -

RELSY - call (DBA) 54.14
REMBER (DML} 4.2.16
REMOVE (DML) 4215
REMOVE-PASSWORD (DBM) 6.1.9.3
REPROCESS-DATABASE (SERV} 6.2
RESET-ERROR-FLAG (DBM) 6.1.8
RESIB — call (DBA) 54.14
RETURN — CHECKPOINT {SERV) 6.2

RK — record key 2.2.4
ROLL-BACK (SERV) 6.2

RP — record pointrer 224
RT-common {DBA) 5.1
RT-common {DML) 4.4
RUN-DATABASE (SERV) 6.2
Random access 2.1/2.2.3
Randomizing alorithme (DRL) 3.25
Readers *The READER viii
Ready — statement 226
Ready conflicts (DML) 423
Ready mode except.cond App E
Ready state (DBA) 54.1/5.42/5.2
Ready-realm *4.2.3
Ready-realm (DBM) "6.1.4
Ready-realm — (DML) 2443
Real-time organis.of SIBAS "5
Real-time processing 1.2
Realm 2.2/°2.25/2.41.2
Realm — SIBAS system (DRL) 35
Realm — delete *3.19
Realm — finish *2.4.2
Realm — finish Mainten.mod *6.1.5
Realm — new calc *3.10
Realm — new serial *3.9
Realm — new system *3.8
Realm — ready 423
Realm — ready (DBM) ‘6.1.4
Realm — system 225
Realm — user 225
Realm description table (DRL} 3.25
Realm protection mode *2.432
Realm size 2.25
Realm size {DRL) 3.25
Realm space utilization (DBM) 6.1.12
Realm usage mode *24.32
Realm-name {DML) 4.2
Realms — calc (DRL) 3.25
Realms — user system® (DRL) 3.25
Record descript.table {DRL) 3.25
Record key 2.1/2.24
Record length {DRL) 3.10
Record occurrence 2.1
Record occurrence — privacy 244

ND-60.127.03

Record pointer

Record types

Records — connect/disconnect
Recover

Recovery

Recovery — message
Recovery — spzed up
Recovery facilities
Recovery state

Redefine Database
Redefine password
Redefinition run (ex)
Reentrant applications
Regenerate (Database)
Region — search
Regions for searching
Related manua:s
Relations — data
Relations of data
Relationship

Relationship except.cond,
Relationship — logical
Relative access

Relative find

Release SIBAS

Release SIBAS
Remainder
Remember-record
Remember-search-region
Remembered list
Remembered list
Removal class

Remove — record
Remove password
Removing — records
Repair {Database)

Report — Codasyl
Repro-status

Reprocess — set-conds
Reprocess-routine-iog
Reprocessing
Reprocessing (conds)
Reservation — Database
Reserve SIBAS

Reserve SIBAS
Reset-error-flag Mainten.mod
Resident tables (DML)
Resolut. — ready confl
Resource allocation exc.cond
Restart — Updat/Rout.
Restart Back-up/Routine log
Restart Update file/rout.log

— 15 —

DBA
DBA
DBA
DBA

(DRL)
(DML)
(DBM)

(DBM)
(DBA)
(DBA)
(DBA)

(DBA)

(DBA)

(DRL)
(DML)

(DBA)

ND-60.127.03

224
2.1/2.2/72.2.3
*24.2
*5.4.2
51/5.44
546
545
5./°6.3
5.2/5.4.2
3.

244
3.26
4.4
6.1.11.1
2.1
*2.31
*ix

1.1

*23
2411
App E
2.3.2.3
2417
*4.2.6
2431
*5.4.14
223
*4.2.16
4.2.16
2412
2434
23.24
*4.2.15
*6.1.9.3
*2.4.2.2
6.1.11.1
1.1
*5.4.2
*5.4.10
*5.4.11
*5.3.3.2
54.10
*2.4.31
2431
*5.4.14
*6.1.8
3.26
423
App E
53.7.2
*5.3.71
*5.3.7.2

Retrieval (DML)
Retrieval — realm usage mode
Retrieval except.condition

Retrieval — information

Ring buffers (DBA)
Roll-back (DBA)
Roll-back (SIB1O)
Roli-back facilities (DBA)
Routine log — volume (DBA)
Routine log file — def (DBA)
Routine log numbers — summary
Routine logging (DBA)
Routine logging

Routine logging On/Off

Routine-log — reproc (DBA)
Run (DBA)
Run-id (DBA)
Run-time message (S1B1O)
Run-time message (SIBAS)
Run-unit

Run-unit — current indicator

Run-unit password

Running state (DBA)
SCHPO — call (DBA)
SCHPW — call (DML)
SCLDB — call (DML}
SCONA — call (DML}
SCONB — call (DML}
SCONN — call (DML}
SDBEC — call (DML}
SDCON — call (DML}
SEREL — call (DML}
SERVC — call (DBA)
SET-COND-FOR-REPR (SERV)
SET-PASSIVE (SERV)
SET-ROUT-LOG-OFF (SERV)
SET-ROUT-LOG-ON (SERV)
SETDV — call (DBA)
SEXMC — call (DBA)
SFEBL — call {DML)
SFINI — call (DBA)
SFORG — call (DML)
SFRLM — call (DML)
SFTCH — call (DML)
SFTGT — call {DML)
SGET — call (DML)
SGETN — call (DML}
SGIXN ~ call (DML)
SIB-DEM statments summary

SIB-DRL (DBA)
SIB-DRL (DRL)

SIB-DRL statements summary

ND-60.127.03

423
2432
App E
2.1

5.1
5.3.5.6/5.4.9
*5.34.5
5.
545
54.3
App F
5.3
*5.3.3
*5.4.5
*5.4.11
*5.4.2
5.4
*7.4
*7.5
2411
2411
24.4
5.2/5.4.2
5.4.8
4.2.20
4.2.2
4.2.12
4.2.12
4.2.12
4.2.21
4.2.13
4.2.22
5.4.16
6.2
6.2
6.2
6.2
5413
5.4.15
425
542
4.2.17
424
425
4.2.24
428
428
428
*App C
55
3.25
*App B

SIB-SERVICE statements
SIB-SYS-GEN:batc
SIB2-DML-B-MH
SIB2-DML-R-MH

SIB2A

SIBAS — installing
SIBAS — release

SIBAS — reserve

SIBAS — start

SIBAS — stop

SIBAS Database system
SIBAS /0 system

SIBAS 1/0 system

SIBAS PRINCIFLES
SIBAS communication
SIBAS implementation
SIBAS libraries

SIBAS performance
SIBAS process number
SIBAS realms

SIBAS run-time messages
SIBAS segments

SIBAS service program
SIBAS states

SIBAS system number
SIBAS system number
SIBAS system realm
SIBAS system realm
SIBAS user

SIBAS-files
SIBAS-service
SIBAS/SIBIO

SIBINTER

SIBIO

SIBLIB-2N-MH
SIBLIB-TN-MH
SIBLIB-1R-MH

SICON —
SINFO —
SINSR -
SINTRAN

SISTA o
SLOCK —
SMDFY —
SMESS —
SOPDB —_
SPASS —
SPAUS —
SRASE -
SRECO —
SREMB —_—
SREMO —_

call
call
call

call
call
call
call
call
call
call
call
call
call
call

—17 —

(DBA)

(DBA)

(DBA)
(DBA)

(DBA)
(updating)

(DBA)

ND-60.127.03

*App D
5.4.15
4.4.3
443
5.1
*5.6
2431
2.4.31
*5.4.1
*5.4.1
*1.1
5.3.5.1
*5.3.4.1
2.

51
*1.2
4.4
5.4.1
5.4.13
3.25
7.5

5.1
“6.2
*5.2
4.4
54,13
2286
3.25
4.4
*PREFACE vii
5.
5353
1.2
5.3.5.1/56.356
443
443
443
5.4.10
4.2.25
4.2.14
1.2
54186
4218
429
54.6
421
5.4.2
5.4.2
4211
54.2
4.2.16
4.2.15

SREPR — call
SRFIR -— call
SRFSM - call
SRLSM — call
SRNIS — call
SRNSM — call
SROLL — call
SRPSM — call
SRRLM — call
SRSOW — call
SRUN — call
STANDARD-REPROC

START — call
START — call

START INIT DATABASE
START-DATABASE
START REDEFINITION

STOP — call
STOP-DATABASE

STOPS — call
STORE — call
STRLG — call
STREP — call
SUBEG — call
SUEND — call
SUNLK — call
SUPER-START

SUPER-STOP

SUPLA

SUPLA — call

Schema — object
Schema — object
Schema — source
Schema additions
Schema changes
Schema consist.error
Schema consistency
Schema deletions
Schema traslator
Scratch file

Search — sequential
Search key

Search region
Search region

Search region — temp”
Search regions

Secondary key (index)
Security breach

Sequence

Sequence — Begin/End
Sequence - critical logging
Seguence — statement

(DML}
ind

(DML)
(DBA)
(DBA)

(DRL)

ND-60.127.03

5.4.11
425
4.2.6
426
4.2.6
4.2.6
54.9
4.2.6
4.2.3
4.2.7
54.2
6.2
541
6.1.2
34
6.2
34
6.1.3
6.2
541
4.2.10
5.4.16
542
4.2.26
4.2.26
4.2.19
6.2
6.2
5355
5412
226
3.2
226
3.3
3.3
3.2
3.2
33
226
35
223
*2.24/2.4

2.1
425

241.2
*2.31
224
4241
54.4
4.4
3.3

SN

.
»

33

Seguence-name
Sequential search
Serial location mode
Serial mode

Serial realm — change
Serial realm — new
Serial realms

Service prog — SIBAS
Set — change

Set — delete

Set — empty

Set — involuted

Set — multi-member
Set — new

Set — single member
Set SIBAS systam no
Set description table
Set item

Set item — member
Set item — owner
Set member

Set occurrence

Set owner

Set owner — find

Set type

Set type — involuted
Set type — involuted
Set types — (examples)
Set verification
Set-conds-for-reproc
Set-name

Set-passive

Sets

Setting current password
Short form (statement)
Siflg — ext sybol
Simulator

Simulator

Simulator errors
Single link

Single link chain
Single member set
Sintran OS-file

Size — index tables
Size — object schema
Size — realm

Source schema

Space requirements
Stack area

Start —

Start SIBAS

Start initiation

54

223
2.1/2.23
223/2.2.4
*3.22
*3.9
3.25

6.2
*3.24
*3.15
23.2.2
2.1
23.2
*3.13
23.2
*5.4.13
3.25
*2.3.2.1
3.13
3.13

21
2.3.2/72.32.2/2.3.23
2.1
*4.2.7
2.3.2.3
2.3.2/2.3.23
3.13
2324
6.1.11.1/°6.1.11.4
*5.4.10
4.2
*5.4.2
*2.3.2
*2443
4.

4.4

5.1

4.4

*7.2
3.13
2323
232
34

3.25

3.4

3.25
226
3.25

4.4
'6.1.2
5./°6.4.1
3.1

ND-60.127.03

Start redefinition
Statement sequence
Statistics — free-space
Status

Status

Status — interface errors
Status — simulator errors
Status indicator

Stop —

Stop SIBAS

Storage — information
Storage class

Storage class — autom.
Storage class — automatic
Storage class — manual
Storage class — manual
Store — record

Store —

Store randomly
Structuring principles
Subroutine calls
Subschema fasility
Successful execution
Suppress documentation
Syntax — Database def
Syntax check

Syntax description
Syntax errors

Syntax errors except.cond
System failure/restart
System realm

System realm (SIBAS)
System realm — SIBAS
System realm — addit
System realm — change
System realm — new
System realm — system
System realm — user
TP — table pointer

TPS
TURN-OFF-TERM-LOG
TURN-ON-TERM-LOG
Table — index descript
Table — realm descript
Table -~ record descr
Table — set descript
Table pointer

Tables — DML resident
Tables — index
Temp-data-base-key
Temp-search-reg-ind

— 20 —

(DRL) 3.1
(DRL) 3.3
(DBM) *6.1.12
(DBA) 5.4
(DML) 42
7.2
7.2
(DML) 423
(DBM) *6.1.3
(DBA) 5./'5.4.1
2.1
*2.3.2.4/2.3.2.2/2.4.21
(DRL) 3.13
2324
2324
(DRL) 3.13
*4.2.10
(DBM) 2.4.21
{DBM) 2324
(DRL) 3.25
2.2
1.2
(DML) 4.1
{DML) 2411
{DRL) 3.4/35
{DRL) 3.3
(DRL) 3.2
(DBM) 6.1
(DRL) 3.2
App E
*5.3.7
225
(DRL) 3.5
228
(DRL) 3.9
*3.21
3.8
{DRL) 3.9
2.2.6
224
(DBA) 5353
(SERV) 6.2
(SERV) 6.2
(DRL) 3.25
(DRL) 3.25
(DRL) 3.25
(DRL) 3.25
224
(DRL) 3.26
1.1
(DML} 42
{DML) 4.2

ND-60.127.03

Temporary database key
Temporary search region ind
Test mode

Test mode

Time

Trailing blanks

Transaction units

Translator -—— schema
Trigger-code

UNLOAD

UNLOCK
UPDATE-DATAB-IN-PL
UTBLK — call
UTILITIES

Unconsistent DB name
Unigue key

Unload/load

Unlock — records
Unsuccessful exacution
Updat-dat-bas-in-plac
Update — old Database
Update

Update - realm usage mode
Update — automatic
Update — manual

Update file

Update file — SIBAS 1/0
Update-in-place

Update-in-place
Update-ratio
Updating — delayed
Usage mode

Usage mode

Usage mode — Realm
User applic program
User realm

User subroutine

User system realm
User system realms
VERIFY CALC

VERIFY INDEX

VERIFY MODE

VERIFY SET
Value-length
Verification — calc key
Verification — index key
Verification — set
Verfication mode

— 21 —

ND-60.127.03

2412
2412
3.2

3.5

54

4.2
4.2.26
226
5412
6.1.14
4219
6.2
547
6.

4.2.1
2.2.3/2.323
*6.1.14
2.433/°4.2.19
2411
*5.4.12
3.2
423
2.43.2
3.14
3.14
535.2
*53.4.2
534
5352
5355
‘53.44
5.4.12
*5.3.4
6.1.9.1
423
4.2
*2.4.3.2
226
225
5.4.15
226
3.25
6.1.11.2
6.1.11.3
6.1.11.1
6.1.11.4
4.2
*6.1.11.2
*6.1.11.3
"6.1.11.4
6.1.11.1

Virtual memory layout
Warning — (realm protec)
Warnings — DB example
Word

Word boundary
Work-area-size

ND-60.127.03

51
2434
3.26
3
4.1
5.4.1

The Competitive European Computer Company

NORSK DATA A.S JERIKOVN. 20 P.O. BOX 4 LINDEBERG GARD OSLO 10 NORWAY
TEL.: 02 - 30 90 30 - TELEX: 18661

