
Q00
0

0
0

3
0

0
0

0
0

®
0

0
0

0
0

0
0

0
0

3
0

0
0

0
0

0
0

0
0

@
$

0
0

0
.0

0
...

0
0

0
0

0
0

0
0

0
0

@
0

..9
0

0
0

0
0

$
0

0
0

.0
0

...
0

0
0

0
0

0
0

0
0

0
$

0
0

0
.0

0
...

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

$
0

0
0

0
0

0
...

$
0

0
0

.0
0

...
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

9
0

0
0

0
0

9
0

0
0

0
0

0
0

0
0

0
0

@
0

0
.0

0
.0

0
0

0
@

0
0

0
0

0
0

0
0

@
@

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
Q

0
0

0
0

0
0

$
C

®
@

@
@

®
G

®
0

3
0

0
3

0
0

5(hfldeI

ND—60.124.05

IVD——PA£HJAL
User



IND—PASCAL
User's Guide

ND—60.124.05



NOTICE ,

The information in this document is subject to change without notice Norsk Data
AS assumes no responsibility tor any errors that may appear in this document
Norsk Data AS assumes no responsibility for the use or reliability of its software
on equipment that is not furnished or supported by Norsk Data AS

The information described in this document is protected by copyright It may not
be photocopied, reproduced or translated without the prior consent of Norsk
Data AS.

Copyright © 1984 by Norsk Data AS



This manual is in loose leal lorm for ease ol updating Old pages may be
removed and new pages easily inserted if the manual is revised,

The loose leaf form also allows you to place the manual in a ring binder (A)
for greater protection and convenience of user Ring binders with 4 rings
corresponding to the holes in the manual may be ordered in two widths, 30
mm and 40 mmr Use the order form below.

The manual may also be placed in a plastic cover (B). This cover is more
suitable for manuals of less than 100 pages than for large manuals. Plastic
covers may also be ordered below.

j
=§ ~*‘~‘ 1

=\ NORSKDATAAS («gamma

as 5559} 33$
a ‘ti 8i “ E

-\ O

A. Ring Binder 8: Plastic Cover

Please send your order to the local ND office or (in Norway) to:

Norsk Data A.S
Graphic Center
PO. Box 25, Bogerud
0621 Oslo 6, Norway

ORDER FORM
l would like to order

..... Ring Binders, 30 mm, at nkr 20," per binder

...... Ring Binders, 40 mm, at nkr 25,- per binder

...... Plastic Covers at nkr 10p per cover

Name ..........................................................................................................................

Company ....................................................................................................................

Address



Printing Notes

iii/8O Version 03

04/82 Version 04
01/84 Version 05

ND PASCAL User’s Guide
Publ.No. ND—604124.05
January 1984

Norsk Data A6
Graphic Center#10
P.O.Box 25, Bogerud

NO'TSk Data 0621 Oslo 6, Norway

X
xx

D
D
)



iv

Manuals can be updated in two ways, new versions and revisions. New lversions
consist of a complete new manual which replaces the old manual, New versions
incorporate all revisions since the previous version. Revisions consist of one
or more single pages to be merged into the manual by the user, each revised
page being listed on the new printing record sent out with the revision. The
old printing record should be replaced by the new one,

New versions and revisions are announced in the ND Bulletin and can be
ordered as described below.

The reader’s comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms and comments should be sent to:

Documentation Department
Norsk Data AS
PO. Box 25, Bogerud
0621 Oslo 6, Norway

Requests for documentation should be sent to the local ND office or (in Norway)
to:

Graphic Center
Norsk Data AS
PO. Box 25, Bogerud
0621 Oslo 6, Norway



The Product

This manual describes version J of the Pascal compilers for the ND»100
and the ND—SOO. The ND-TOU Pascal compiler is delivered in two
versions. one for 32—bit and one for 48—bit floating point hardware.
As the three compilers differ only in machineedependent respects, they
are described in the same manual.

The Reader

The reader is assumed to know the Pascal language, as this manual
mainly describes only the extensions and differences between ND—Pascal
and Standard Pascal as described in Jensen and Wirth: Pascal User
manual and Report.

The reader is also expected to have sufficient experience with the
SINTRAN operating system to be able to enter a program through an
editor. and to load and execute the compiled program.

The Manual

The manual is organized as a reference manual, with the information
ordered according to function. For the most part, only differences
between Standard Pascal and ND—Pascal are described. For a complete
example of a Pascal program. refer to chapter 9. Compiler error
messages and run time error messages are listed in Appendices A and B.

The manual uses the term ND-Pascal to mean either of the compilers.
Those parts of the manual which are relevant to only one of the
computers. are marked as such in the chapter or section heading. Also.
a part of the text may be marked with the comment N100 or N500 to
signify that the text is relevant to the ND—100 or the ND—SOO only.

ND—60.124.05



vi



vfi

T A B L E 0 F C 0 N T E N T S

ND—BD.124.0S

Section Pace

1 INTRODUCTION 1

1.1 The Pascal Compiler 1

1.2 The Main Implementation Dependent Characteristics 2

1.3 The Main Extensions 2

2 THE SOURCE PROGRAM 4

2.1 Special Symbols 4

2.2 Identifiers 5

2.3 Keywords 5

2.4 Standard Identifiers 5

2.5 Compiler Commands 6
2.5.1 Conditional compilation 6
2.5.2 Multiple source files 7
2.5.3 Intermixing definition sections 8
2.5.4 Options 8
2.5.5 Program listing 10

2.6 Implementation Dependent Features 11
2.6.1 Standard types 11
2.6.2 Structured types 12
2.6.3 Packed structures 12
2.6.4 Strings and character arrays 13
2.6.5 Procedure parameters 13

5.1 Conformant arrays 13
5.2 Formal procedures 15

2.8.6 ND—SOO traps 15

2.7 Extensions in ND—Pascal 16
2.7.1 Variable initialization 16
2.7.2 External Pascal routines 16
2.7.3 External routines in other languages 17
2.7.4 Standard procedures and functions 18
2.7.5 External procedures and functions 18
2.7.6 Generic functions 23



vm

Section Paqe

2.7.7 Miscellaneous extensions 23

3 PROGRAM COMPILATION . . . . . . . . . . . . . . . . . . . . 25

3.1 HELP 25

3.2 COMPILE 25

3.3 RUN 27

3.4 CLEAR 28

3.5 OPTIONS 28

3.6 SET and RESET 28

3.7 EXIT 28

3.8 LINESPP 28

3.9 VALUE 28

3.10 SINTRAN Commands 29

3.11 Program Compilation Example 29

4 PROGRAM LOADING AND EXECUTION . . . . . . . . . . . . . . . 31

4.1 Program Loading 31
4.1.1 ND~100 program loading 31
4.1.2 ND—SOO program loading 32

4.2 Run—Time Errors 33
4.2.1 Trapping runwtime errors 34

5 INPUT/OUTPUT . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 File Variables 35
5.1.1 The type TEXT 35
5.1.2 Standard files 36
5.1.3 Packed files 36
5.1.4 Non-TEXT 11195 ’ 37

ND—60.124.05



f ‘1' ‘
Paqe

5.2 Association to External Files 37
5.2.1 CONNECT 38
5.2.2 DISCONNECT 38
5.2.3 Scratch files 39
5.2.4 Program heading parameters 39

5.3 Terminal I/O 40

5.4 Random Access I/O 41

6 NO~IOD REAL—TIME PROGRAMS 43

7 NO»1OU OVERLAY PROGRAMS 45

7.1 Modules 45

7.2 Compilation of Modules 46

7.3 Loading Overlay Programs 49

7.4 Executing Overlay Programs 51

8 IMPLEMENTATION DESCRIPTION 53

8.1 ND—1OO Implementation 53
8 1.1 Memory layout 53

1.1 One bank programs 54
1.2 Two»bank programs 55
1.3 Forced allocation of stack and heap 55

8.1.2 Loader symbols 58
8.1 3 Procedure and function calls 56
8.1 4 Interface to FORTRAN and PLANC 58
8.1 5 Input/Output 58

8.2 ND—SOO Implementation 60
8.2.1 Memory layout 60

1.1 Forced allocation of stack and heap 61
1.2 The size of the heap 61

8.2.2 Loader symbols 61
8.2.3 Procedure and function calls 62
8.2.4 Input/Output 63

9 SAMPLE Pascal PROGRAM 65

NDEBU.124.05



Ligation Paqe

9.1 ND—iUO Sample Program 65

9.2 ND—SOO Sample Program 87

APPENDIX A Compile“ Time Error Messages 69

APPENDIX 8 Run— Time Error Messages 73

78Index

NDHBO.124.05



ND»Pascal 1
INTRODUCTION

1 lNTRODUCTION

The Pascal language was designed in 1971 by Niklaus Nirth. The
language design had two principal aims. The first was to make
available a language suitable to teach programming as a systematic
discipline, the second was to develop implementations of this language
which are both reliable and efficient on presently available
computers.

The success of this language design proves that Pascal is not "yet
another language”. Today, Pascal has been implemented on almost all
computers commonly in use, ranging from the very large computers to
mini— and micro—computers.

This manual contains the information necessary to compile and execute
Pascal programs on the ND—TOD and the NO—SUU. It is assumed that the
reader is familiar with the Pascal language. The uninitiated reader is

ireferred to the Pascal Report or to an appropriate textbook.

The present chapter gives a general description of the ND—Pascal
system. The specific information necessary for the compilation and
execution of Pascal programs is found mainly in chapters 2 to 4. Most
of chapters 5 to 8 describe features for the more advanced use of ND—
Pascal.

ND~Pascal has been implemented according to the definition in ”Niklaus
Mirth: The Programming Language Pascal. Revised Report. (1973)". Also.
the specifications in the ISO Pascal standard have been adhered to.
Hereafter this language definition will be referred to as Standard
Pascal.

ND‘Pascal is a superset of Standard Pascal. and has several extensions
in relation to it. Especially, extensions have been introduced to
facilitate the compilation and execution of Pascal programs in a time»
sharing environment. Explicit extensions of the Standard Pascal
language will be noted as such in this manual. The extensions should
be avoided if program exportation is planned or probable.

1.1 The Pascal Compiler

The ND—Pascal compiler was developed from the Pascal TRUNK compiler
designed at ETH. Zurich. The compiler produces relocatable code.
which can be loaded by the appropriate loader (ND—TOO NRL or NDMSOO
Linkage Loader) and then executed. A program may refer to separately
compiled procedures and functions written in Pascal, FORTRAN, PLANC,
COBOL or assembly language.

The ND—Pascal compiler is itself written in Pascal. Also, parts of the
run~time library are written in Pascal.

ND~80.124.05



2 ND—Pascal
INTRODUCTION

1.2 The Main Implementation Dependent Characteristics

The maximum set size is 255 elements. A variable of type set will
occupy the minimum number of words necessary to represent the values
in the set type. Sets of subranges of integer will contain 256
elements.

NAQQ: A Pascal program may be run either as a one—bank or a two~bank
program. As a one~bank program, all program and data reside
within 128K bytes of memory. As a two—bank program, the program
may occupy up to 128K bytes in the instruction bank. and the
data occupy up to 128K bytes in the data bank. 0ne~ or two—bank
execution may be selected at compile—time with the 8 option, or
at load—time with the DEFINE NOBKS command.

A Pascal program may be run as a real—time program.

Large program systems may be overlaid using the standard NRL
overlaying mechanism.

N500: The buddy instructions of the ND—SOO hardware are utilized when
a program administers the heap with the NEW and DISPOSE
procedures.

1.3 The Main Extensions

Variables in the main program can be initialized. There is a
convenient syntax for array initialization.

Variable conformant arrays, as specified in the ISO Pascal standard.
are implemented. With this mechanism. a formal parameter will be
compatible with actual array parameters of different sizes.

N100: The type LONGlNT is a standard integer type with a precision of
32 bits.

N500: The type LONGREAL is a standard real type with a precision of
approximately 16 digits.

The procedures CONNECT and DISCDNNECT enable a program to associate a
Pascal file variable with an external file at run—time. CONNECT has
been implemented such that the actual name of the external file easily
can be entered from the terminal running the program.

Random access [/0 can be performed with the procedures GETRAND and
PUTRAND.

Through the use of the FAULT procedure, a program may trap run~time
errors.

ND~60.124.05



ND*Pascal

ND~60.124.05



4 ND~Pasca1
THE SOURCE PROGRAM

2 lfl§w§QQB§§_£RQ§RAM

A Pascal source file must contain either

1) A full Pascal program, or
2) One or more procedures or functions, or
3) fiJOD: One or more procedures, functions. or modules.

The source language must be Standard Pascal, with the restrictions and
possible extensions described in this manual.

A full Pascal program compiles into an executable object program,
while procedures and functions compile into code that may be loaded
together with a full program. A source file of the latter kind must be
terminated with the character " (period).

The source file character set must be ASCII, where the lines are
separated by the Carriage Return character, and optionally. the Line
Feed character. Files produced by QED, TED and PED are acceptable as
input to the compiler.

The compiler recognizes the source file types :PASC and :SYMB by
default, :PASC being the primary type. Any other file type must be
specified explicitly.

A source input line must not exceed 96 characters. The Pascal
compiler indicates a longer line as an error.

.1 e ’ b

Some of the special symbols in Standard Pascal have one or more
alternate representations in ND—Pascal:

Standard Pascal ND~Pascal

or 8
or (*
or *)
or .

J or .)
and or &

as: or ":1
9

)
L

a
m

b
—

4
M

”

“i fil
l

”
W

A
-
.
1

i

The ~ symbol has various external representations on different
terminals and printers.

A comment opening with the character "{” must be closed with the
character "}". Similarly, "(*“ is matched only by "*)“.

ND~60.124.05



ND~Pascal 5
THE SOURCE PROGRAM

2.2 Identifiers

An identifier may be of any length, but only the first eight
characters are significant. within an identifier, lower case letters
are converted to upper case, unless the U option is ff.

2.3 Keywords

The following are Pascal keywords, and cannot be used as identifiers:

Standard Pascal keywords:

and arm begin sass.
cons; giy do downto
else and file. £9.11
junction suite ii in
label mod. all not.
oi 52.1: W mm
mm m urea; set.
then to use until
11;: mile W

Extra keywords in ND—Pascal:

module valu

Note: The keyword module is legal, but has no effect in ND—SOO Pascal.
It is retained in ND—SDO Pascal to facilitate porting of
programs between the ND—lDO and the ND-SOO.

A keyword may be written with lower and/or upper case characters.
However, within a keyword all lower case characters will be converted
to upper case. Thus,

end END End

are all representations of the keyword end.

2.4 Standard Identifiers

Following is a list of the standard identifiers in ND—Pascal. A
standard identifier may be considered as if it were defined in a block
enclosing the program, and as such. may be redefined. Normally, such
redefinition should be avoided, since it easily may lead to confusion.

ND-60.124.05



6 ND—Pascal
THE SOURCE PROGRAM

Standard identifiers in Standard Pascal:

ABS ARCTAN BOOLEAN CHAR
CHR COS DISPOSE EOLN
EOF EXP FALSE GET
INPUT INTEGER LN MAXINT
NEW ODD ORD OUTPUT
PACK PAGE PRED PUT
READ READLN REAL RESET
REWRITE ROUND SIN SOR
SORT SUCC TEXT TRUE
TRUNC UNPACK WRITE WRITELN

Extra standard identifiers in ND—Pascal:

CONNECT COSH OISCONNECT FIRST
GETRAND HALT LAST LMAXINT
LONGINT LONGREAL LROUND LTRUNC
MARK MAXREAL POWER PUTRAND
RELEASE SINH

All standard identifiers are written in upper case letters.

2.5 Compiler Commands

The source program text may contain commands to the compiler. A
command is signalled by the character "3” in position one of a source
line. The rest of such a line is treated as a command to the compiler.
and no part of it will be included in the proper program text.

The available compiler commands are

$567
SRESET
$IFTRUE
SIFFALSE
SENDIF
SOPTIONS
$INCLUDE
$EOF
$LINESPP
$PAGE

A compiler command may be abbreviated to its shortest unambiguous
form.

. . a , . n

The ND—Pascal compiler may be instructed to skip specified parts of
the source text. This may be useful in order to generate different
versions of a program from the same source file.

NO—SD.124.05



ND—Pascal 7
THE SOURCE PROGRAM

The skipping of source text is steered by flags, which are Boolean
variables. The flag identifiers are distinct from the program
identifiers, therefore no name conflicts between flag and program
identifiers can occur. A flag identifier can have up to eight
significant characters. No distinction is made between upper and lower
case characters.

A flag is given the value TRUE by the command

SSET (flag)

A flag is given the value FALSE by the command

$RESET <flag>

The skipping of source text is effected by the commands

$IFTRUE, SIFFALSE, and $ENDIF

The command

$IFTRUE (flag)

has the effect:

If (flag) has the value TRUE: No effect.

If (flag) has the value FALSE:
Skip source text up to an SENDIF (flag) with the same flag name.

The command

SIFFALSE (flag)

has the effect:

If (flag) has the value TRUE:
Skip source text up to an $ENDIF (flag) with the same flag name.

If <flag> has the value FALSE: No effect.

If an $IFTRUE or $IFFALSE command has a flag parameter that was not
previously defined. it will become defined and given the value FALSE.

Note that when source text is skipped. compiler commands (such as
SSET, SIFTRUE etc.) will also be skipped.

2.5.2 Multiple source files

The SINCLUDE~command facilitates insertion of source text from an
alternate file in the program being compiled. This is useful when a
set of programs (within the same project. say) use a common set of
type, variable, and procedure definitions. Also, "standard" data
structures and procedures for handling problems within a specific
problem area, can easily be incorporated in a program with the

ND~60.124.05



8 ND—Pascal
THE SOURCE PROGRAM

SINCLUDE—command.

The INCLUDE file may be divided into sections by the SEOF—command.

The command

SINCLUDE <filename>

has the effect of switching the input stream from the present input
file to <filename>. When end of file or SEOF on <filename> is reached,
the input stream will be switched back to the previous input file. The
effect is to insert the text in <filename> at the place where the
SINCLUDE—command occurs.

The command

SINCLUDE

has the effect that the next section of the most recent INCLUDE File
is inserted in the program.

$INCLUDE~commands may be nested to a maximum depth of four.

2.5.3 Intermixinq definition sections

In the standard mode, when the N option is 9:1. ND—Pascal requires
that the label, const, type, var, value, and procedure/function
sections of a block appear in this order. When the N option is on,
these sections may appear in any order, and each section kind may
appear more than once. However, a main program may not contain another
ya; section after a value section, or after the first procedure or
function declaration.

2.5.4 Options

There is a set of options that affect the output produced by the
Pascal compiler. Each option has a one—letter name.

Some of the options are associated with counters. A counter value
greater than zero means that the option is on, a value equal to or
less than zero means that the option is off. The remaining options are
associated with specific values.

A counter option is increased or decreased by one by writing the
option name followed by "+" or "a". respectively.

The available options are (counter options are indicated by the
character "*"):

ND»60.124.05



ND—Pascal 9
THE SOURCE PROGRAM

Bn

Ck

Ic

Lt

Mk

Nk

Rn

Ta

N133: Specify n—bank execution of program (n:1 or n=2). when n22
the compiler will produce two—bank BRF code. Default value
is n=1.

When Qfl, the value range of CHAR is extended to 256 values
(internal values 0 to 255). Also, on TEXT files parity will not
be removed on input, nor generated on output, and both values 15
octal and 215 octal will give EOLN = TRUE. The default value is
0 (gjf), which implies that CHAR is the ASCII set (128 values).
and that parity is removed (generated) on input (output) from/to
TEXT files.

Allow c as a legal character in an identifier. c must be in the
set {'!'.'"','#','Z','?','_','I'.'\'}. The character "a" should
in general be avoided, since it is used in entry point names in
the Pascal library.

Generate listing. Default value is 1 (on).

List generated object code in symbolic form. Default value is 0
(off).

This option (Non~standard) must be Qfl to allow the following
extensions to be used:

a) Intermixing definition sections.
b) Use of the FAULT procedure For error trapping.

Default value is 0 (Qii).

Program code dump. Default value is 0 (off). This option
produces listing output which enables a closer inspection of the
code generated by the compiler. This is very useful when tracing
a possible error in the Pascal system. Therefore. whenever there
is reason to believe that a failure is caused by erroneous
object code, the user is requested to submit a listing of a P
dump compilation together with the error report.

N100: Specify n-word real (n=2 or n=3). Default value is 2 on
ND—TOOs with 32~bit floating point hardware, and 3 on ND-
1005 with 48—bit hardware. A program that is to be cross-
compiled must not contain real constants.

Generate code to check array indices, subrange assignments,
pointer values and arithmetic overflow. Turning this option gii
will make the object program smaller and faster, but also
unsafe. Default value is 1 (pg).

The T option may be switched on and off at any point in the
program, in order to perform run time checks in selected parts
of the program.

fllgfl: The ND—1DU hardware does not facilitate the checking of
overflow on floating point arithmetic operations.
Therefore, ND-Pascal can only detect overflow on integer
operations. As a special case, attempted floating division
by zero is detected.

ND-60.124.05



1D ND—Pascal
THE SOURCE PROGRAM

N500; In the ND-SDD. overflow is trapped by hardware. and not by
explicit code checking for overflow. This implies that
check for overflow will 39; be turned off by turning the T
option off. However, a program may use the SETE and CLTE
procedures (cfr. section 2.7.5) to dynamically turn any
hardware trap on or off.

U* Convert lower case characters outside strings to upper case.
Default is 1 (93).

V* For each procedure, list local variables in alphabetical order,
with their respective relative addresses and the number of times
each variable is referenced. Default value is 0 (off).

X* When 33, the loader symbols generated as entry point names for
procedures/functions on the outermost level of a main program or
a separately compiled file will be the names given by the
programmer. If the option is off, anonymous entry point names
will be generated for these routines (cfr. chapter 8). Default
value is 0 (i).

2* Initialize all variables to zero: At load—time, initialize all
main program variables to zero before the value section is
loaded. At run-time, every time a procedure is called, or an
object generated by NEw. all variables local to that procedure
or object will be initialized to zero. Default value is 0 (gif).

Options may be set within a comment in the source program. The first
character within the comment must be "$". Thereafter, option settings
separated by "," may follow. Options may also be set following the
SOPTIONS compiler command.

Examples:

{$M+,I”,T—} means:

M+ List object code.
1_ Allow "w” as a legal character in an identifier.
7— Do not generate testing instructions.

SOPT 2+,Uw means:

Z+ Initialize all variables to zero.
U— Do not convert lower case characters to upper case.

2.5.5 Program listing

The command

SLINESPP h

ND~BU.124.05



ND~Pascal 11THE SOURCE PROGRAM

orders the Pascal compiler to print the program listing with n lines
per page. The default value for n is 80. (This default may be set to
some other value when the ND~Pascal system is installed.)

The command

SPAGE

gives new page in the program listing.

2.6 Implementation Dependent Features

2.6.1 Standard types

Standard Pascal has the following standard types:

BOOLEAN, CHAR, INTEGER. REAL, TEXT

ND-Pascal in addition has the following standard types:

LONGINT, LONGREAL

Actually, LONGINT is an extension only in ND~100 Pascal, while
LONGREAL is an extension only in ND-SOU Pascal. [n ND~1DO Pascal
LONGREAL is equivalent to REAL. In NDmSUO Pascal LONGINT is equivalent
to INTEGER.

The following table gives the memory space, in bytes, occupied by
variables of the standard types (provided they do not occur within
packed structures):

N100 fllflfl Hill
32 blt 48~bit

BOOLEAN 2 2 1
CHAR 2 2 1
INTEGER 2 2 A
LONGINT 4 4 4
REAL 4 5 4
LONGREAL 4 s 8
TEXT 16 16 23

NDw60.124.05



12 ND—Pascal
THE SOURCE PROGRAM

The maximum values and accuracy of the arithmetic types are given in
the following table:

Maximum value Precision

2—byte INTEGER 32,757 -
4 byte INTEGER 2,147,483,647 ,
4—byte REAL 10175 7 digits
6~byte REAL 1014930 10 digits
B-byte REAL 10176 16 digits

An integer constant which exceeds the 16-bit integer maximum value
will get the type LONGINT. Also, an integer constant may be suffixed
with the letter L to force it to become a LONGINT constant.

The standard functions LROUND and LTRUNC are available to round or
truncate, respectively. reals to LONGINT.

In an array declaration, the indices may not be of type LONGINT.

LMAXINT is a standard constant with a value equal to the maximum
LONGINT value.

A real constant with 10 or more digits is given the type LONGREAL.
Also, the type of a real constant will be LONGREAL if the exponent
character D is used instead of E.

When necessary, NDuPascal automatically converts from INTEGER to REAL
or LONGREAL. and between REAL and LONGREAL.

MAXREAL is a standard constant with a value equal to the maximum
floating point value.

2.6.2 Structured types

Variables of structured types (records and arrays) may be assigned to
and compared for equality or inequality, provided the variable type is
not packed nor contains packed variables. Variables of type packed
array [...] of CHAR may be assigned to and compared using all the
relational operators (=, <>, <. <=, >=. >).

Note that there is no syntax for the specification of a structured
constant.

2.6.3 Packed structures

Record and array types may be specified as packed. Each single
variable will then occupy a minimum number of bits. and several single
variables may be packed into one computer byte or word. A record or an
array will always start at a word (N10Q) or byte (flfiflg) boundary.

ND~60.124.05



ND-Pascal 13
THE SOURCE PROGRAM

Ihe use of packed structures saves data space, but may increase
execution time Significantly.

A variable within a packed structure cannot be used as a ya; parameter
to a procedure. However. the standard procedure READ may have an
element of a packed array ... of CHAR as a parameter.

See chapter 5 for information on packed files.

2.6.4 Strings and character arrays

A string constant is padded with blanks to the required length. The
string may occur in a yalue section, in an assignment statement, as an
actual parameter, or in a Boolean expression. This is an extension to
Standard Pascal.

In Standard Pascal, a string constant with n characters is of the type
gagged array {1..n] 2i CHAR. This inhibits assignment of, or parameter
substitution with, a string to a variable or formal of type packed
array [...] gi CHAR where the lower bound is different from 1. In ND—
Pascal such assignment or substitution is legal, provided the length
of the string is equal to the length of the array.

2.8.5 Procedure parameters

2.6.5.1 Conformant arrays

Variable conformant arrays, as specified in the ISO Pascal standard,
are implemented in ND-Pascal. (Conformant arrays by value is not

implemented.)

A variable (nonwvalue) formal parameter may be specified as a
conformant array. It is then possible to transmit array parameters of

different sizes through this formal parameter. The index bounds of the
actual parameter are implicitly available to the body of the called

procedure.

A conformant array parameter is specified as such in the procedure
heading by the following syntax:

(variable parameter—specification) ::=
”var" (identifier—list)
( (type—identifier) I <conformant~array~schema> )

<conformant-array—schema> :2:
a u u[“ (index type~specification>
{ ";" (index—type—specification) } "3" "£1"

ND-60.124.05



14 ND-Pascal
THE SOURCE PROGRAM

( (typeeidentifier> I (conformant—arrayeschema) )

(index—typewspecification) 2::
(boundwidentifier> ”..” <bound~identifier>
<0rdinal~type~identifier)

<bound~identifier> ::2
<identifier>

Example:

procedure matmult1yar x, y, z: array [11..h1: INTEGER] pi
array [12..h2: INTEGER] oi REAL);

If the component of a conformant—array—schema is itself a conformantu
array~schema, then an abbreviated term of definition. equivalent to
the abbreviated form of multipleudimension array definition, may be
used.

Example:

array [l1..h1: T1] of array [12..h2: T2] oi T3

is equivalent to

aggay [11..h1: T1; l2..h2: T2] of T3

When transmitting an array as a parameter through a formal conformant
array parameter, the actual parameter must be conformable with the
conformant~arrayeschema. The term conformable is defined as follows:

If T1 is an array~type, and T2 is the type denoted by the ordinal~
type~identifier of the index—type~specification of a conformant-
array—schema, then T1 is conformable with the conformantnarray"
schema if all the following four statements are true.

(a) The index~type of T1 is compatible with T2.

(b) The smallest and largest value of the index~type of T1 lie
within the closed interval defined by values of T2.

(c) The component type of T1 is the same as the component type of
the conformant—array~schema, or is conformable to the component
conformant<array~schema.

(d) If T1 is designated packed then T2 must be declared as packed.

It is an error if the smallest or largest value of the index_type of
T1 lies outside the closed interval defined by the values of T2.

The boundwidentifiers denote the smallest and largest values,
respectively, of the index~type of the actual parameters. These values
are implicitly transmitted to the called procedure. The procedure may
not change the values of the bound~identifiers.

N0*60.124.05



ND-Pascal 15
{HE SOURCE PROGRAM

Example:

var x, y, z: array [1 .10] pi REAL;
p, q, r: array [0..100] oi REAL;

procedure product1yar a, b, c: array [low..high: INTEGER] oi REAL);
var i: INTEGER;
hfifllfl
fig; 1 :2 low to high do

cli) :2 a[i]*b[i]
end (*product‘);

product(x,y.z);

product1p.q,r);

2.8.5.2 Formal procedures

A procedure which appears as an actual procedure parameter, may itself
only have value parameters. On entry to a formal procedure, ND—Pascal
checks the actual parameters only to see if they occupy the same
number of words as the Formal parameters. The user is warned that the
use of formal procedures with pointer parameters is unsafe.

246.6 ND—SOD graps

When an ND—SOU Pascal programs is started, the following traps are set
in the OTE register:

bit 9 overflow
bit 11 invalid operation
bit 12 divide by zero
bit 14 floating overflow
bit 16 illegal operand value
bit 24 address zero access
bit 25 descriptor range
bit 26 illegal index
bit 27 stack overflow

when a routine defined as STANDARD is entered, all trap bits are
switched off. The trap bits are restored when return to Pascal is
made.

The reader is referred to the ND-SUO Reference Manual (ND 05.009) for
Further details on hardware traps.

ND‘60.124.05



16 NDnPascal
THE SOURCE PROGRAM

2.? Extensions in ND-Pascal

This section describes most extensions in ND—Pascal. Refer to chapter
5 for I/O extensions. Real time programs are described in chapter 6,
and overlays are described in chapter 7.

2.7.1 Variable initialization

Scalar and array variables in the main program may be initialized.
Initialization is signalled by the keyword valge. A yalue section must
appear after the yar—declarations and before the first procedure or
function declaration. or main program begin.

Packed arrays. except for packed array ... 9i CHAR. records, sets and
pointers may not be initialized.

The syntax for initialization is:

(variableinit) ::= "value“ (initialization)
{ (initialization) }

(initialization) ::= (variable) ":" (val) ";"
(val) ::= (constant) I "(" (valuelist) ")"
(valuelist) ::z (aval) { "," (aval) }
(aval) ::2 (constant) I (count) "*” (constant)
(count) ::= (integer constant)

Examples;

value
X : 2.55:
I = 19;
TABLE = (1,3,2*7,—1,11*0);
NAME 2 (‘PASCAL ');

Since a string has the type packed array [1..n] oi CHAR, a string
constant must be enclosed in parentheses as shown in the last example.

2.7.2 External Pascal routines

The compiler accepts a source file containing procedure and Function
declarations only. The file must be terminated with a period.

The generated relocatable File may be loaded with any Pascal main
program which contains external declarations of one or more of the
Pascal routines. Only those routines which are actually referred, are
loaded (each external Pascal routine contains a LIB (entrypoint)
loader directive). An external declaration is a procedure or function
heading followed by a body consisting of the word “EXTERN”. Example:

NDr60.124.05



ND—Pascal 17
THE SOURCE PROGRAM

function f(x: REAL): INTEGER; EXTERN;

External routines may use external declarations to get access to
routines on the outermost level of the main program, provided the main
program was compiled with the X option on.

There is no check of the correspondence between the parameter list of
the external declaration and of the separately compiled procedure.

A file of Pascal routines may be headed by constant, type and variable
definitions. The variable definitions, if present, will overlap the
variables of the main program. These definitions may be used in
parameter specifications, or within the routines. The user is warned
that ND—Pascal does not check that the definitions are consistent with
corresponding definitions in the main program. It is therefore
strongly recommended that the SINCLUDE facility be used to incorporate
global definitions in an external program module.

2.7.3 External routines in other lanquaqes

Separately compiled FORTRAN, PLANC or COBOL subroutines may be called
from an ND—Pascal program. Such a routine must be declared in the
Pascal program with a procedure or function heading. and a body
consisting of the word ”STANDARD”. Example:

procedure ext(var x, y: REAL); STANDARD;

Parameters of any type and kind, except Pascal procedure or function
names, may be transmitted to the external routine; however, no check
is made that the parameters are consistent with the formal arguments
of that routine.

EIOQ: In order to interface to the old version of ND-100 FORTRAN, the
routine must be specified as “FORTRAN".

N500; All hardware traps are switched off when entering a STANDARD
routine. The original traps are restored when returning to
Pascal.

Pointers to the actual arguments are transferred to the external
routine. A value (non-var) parameter will be copied to a scratch area.
and a pointer to this copy transferred.

Be aware that many library utility routines in other languages may get
the parameters transferred in a non—standard way, and thus may not be
called directly from a Pascal program.

when loading modules for a mix of Pascal and routines in other
languages, the following order must be observed:

1) Pascal main program

ND-60.124.05



18 ND—Pascal
THE SOURCE PROGRAM

2) Pascal and other external routines
3) Other language libraries as necessary
A) Pascal library

4 S o edur 5 nd f c

In addition to the standard procedures and functions in Standard
Pascal. the following are standard in ND~Pascal.

SINH_a COSH

These real functions calculate the arithmetic functions sinh and
cosh respectively.

Emflfii

POWER is a real function with two parameters x and y which
calculates the function xly. When y is real. n is calculated by
the formula n = eI(y*ln(x)). Thus, POWER(—1.U,2.0) will give a
runtime error, while POWER(~1.U,2) will give the correct result 1.0.

flALT

HALT is a procedure which takes an optional string parameter. HALT
writes the string (if any) to the terminal, and aborts the program.

MARK and Rat§A§fi

MARK and RELEASE provide an alternative to DISPOSE for the
deallocation of heap space. In applications where heap space is
allocated and deallocated in a stack fashion, the use of MARK and
RELEASE is more efficient, and may be more convenient, than the use
of DISPOSE.

Both procedures take a pointer variable as a parameter. The call
MARK(<ptr>) assigns the address of the current heap top to <ptr>.
The call RELEASET<ptr>) deallocates all variables on the heap beyond
the value of <ptr>.

A program which calls DISPOSE may not call MARK or RELEASE.

2.7.5 External procedures and functions

The Pascal library contains a set of external procedures and
functions. To use one of these, the procedure or function must be
declared as external within the program.

An installation may choose to have a system file containing external
declarations for these external procedures and functions. This file
may then be included in a program with the SINCLUDE compiler command.

N0—60.124.05



ND—Pascal 19
THE SOURCE PROGRAM

IUSED

External declaration:

function TUSED: REAL; EXTERN;

TUSED gives the elapsed CPU time in seconds.

TIME and DATE

External declarations:

procedure TIMEtvar hour, min, sec: INTEGER); EXTERN;

procedure DATE(1ar year, month, day: INTEGER); EXTERN;

TIME and DATE give the current time and date, respectively.

ESE!!!

External declaration:

pgggggugg ECHOM(echomode: INTEGER); EXTERN;

Executes MON ECHOM with echomode as parameter. This will define the
echo mode For the terminal as specified in the SINTRAN manual.

Note: The Tile CONNECTed to the terminal must have logical unit
number 1.

mm

External declaration:

procedure BRKM(breakmode: INTEGER); EXTERN:

Executes MON BRKM with breakmode as parameter. This will define the
break mode for the terminal as specified in the SINTRAN manual.

Note: The file CONNECTed to the terminal must have logical unit
number 1.

was

External declaration:

procedure ERMSG(errorno: INTEGER); EXTERN;

Executes MON ERMSG with errorno as parameter. This will write the
SINTRAN error message corresponding to the given error number to the
terminal.

ND~60.124.05



ND—Pascal
THE SOURCE PROGRAM

HOLQ

External declaration:

pr02eggrg HOLD(time: REAL); EXTERN;

Suspends execution of the program in (time) seconds. (time) is
accurate to 20 milliseconds.

VERSN

External declaration:

procedure VERSN(1§L year. month. day: INTEGER); EXTERN;

Gives the date when the executing program was compiled.

gimme

External declaration:

fghgtion RUNMODE: INTEGER; EXTERN;

Gives the execution mode of the running program:

— interactive
— batch

mode
real~timeL

A
N

—
A

D

‘
l

EREEMEM

External declaration:

function FREEMEM: LONGINT; EXTERN;

Gives the size of the present free memory. that is, the size of the
area between stack top and heap top, in number of bytes.

LLJJLLI

External declaration:

function LUNIT(1§; f: <filetype>): INTEGER; EXTERN;

Gives the logical unit number of the (open) file f.

11111;

External declaration:

functigfl ISIZE(lun: INTEGER): INTEGER; EXTERN;

ND~60.124.05



ND~Pascal 21
THE SOURCE PROGRAM

Gives the result of a MON ISIZE on the given logical unit.

QSIZE

External declaration:

Function OSIZE(lun: INTEGER): INTEGER; EXTERN:

Gives the result of a MON OSIZE on the given logical unit.

ROEJEN!

External declaration:

procedure ROBJENT(lun: INTEGER; var b: BUFFER;
ya; status: INTEGER); EXTERN;

Reads the object entry of the file with logical unit lun into the
buffer b. BUFFER may be any type with a length of at least 64 bytes.
The SINTRAN status of the operation is left in the status parameter.

QOMMAND

External declaration:

procedure COMMANO(str: STRING); EXTERN;

Performs MON COMND with str as parameter. The type STRING must be
defined as packed array ... pi CHAR. The value str must be
terminated by the character "'" (written """ within a string
constant).

N100: In ND—100 Pascal the type STRING must have a length greater
than 16.

N500: The ND~500 monitor allows only a subset of the SINTRAN
commands to be executed by the COMND monitor call.

m1.

External declaration:

procedure MDLFI(1§£ str: STRING); EXTERN;

Deletes the file with the name Found in str.

REABT

External declaration:

proceguze REABT(lunit: INTEGER; var ibyte: LONGINT); EXTERN;

Executes the REABT monitor call.

N0-60.124.US



ND—Pascal
THE SOURCE PROGRAM

5.5.3.1

External declaration:

procedure SETBT(lunit: INTEGER; ibyte: LONGINT); EXTERN;

Executes the SETBT monitor call.

BHAX

External declaration:

procedure RMAX(lunit: INTEGER; var ibyte: LONGINT); EXTERN;

Executes the RMAX monitor call:

SMAX

External declaration:

procedure SMAX(lunit: INTEGER; ibyte: LONGINT); EXTERN;

Executes the SMAX monitor call.

R NDOM

External declaration:

function RANDOM(var x: REAL): REAL; EXTERN;

This function produces a uniformly distributed pseudo random number
in the open interval (0,1). Each new value is calculated from the
value of the parameter. The new value is also assigned to the
parameter variable. Thus, successive calls on RANDOM with the same
variable as a parameter, produces a uniformly distributed pseudo
random number stream.

£139.92 .Sfilfi

External declaration:

procedure SETE(bitno: INTEGER); EXTERN;

Sets the given bit in own trap enable register.

ELIE

External declaration:

grocedure CLTE(bitnO: INTEGER); EXTERN;

Clears the given bit in own trap enable register.

ND—BO,324.0S



ND—Pascal 23
THE SOURCE PROGRAM

2.7.6 Generic functions

For each scalar type T there is a function TIn) which converts the
integer n to the value of type T with ordinal number n.

Example:

type
Season : (Winter,Spring,Summer,Autumn);

iii
3: Season;

5 :: SeasonIZ):

5 now has the value Summer.

The functions FIRSTIT) and LASTIT), where T is an ordinal type
identifier. gives the value of type T which is the smallest and
greatest value, respectively, within the type T.

Example:

LASTISeason) is equal to Autumn.

2.7.? Miscellaneous extensions

The compiler accepts octal and hexadecimal integer constants. The
syntax is as follows:

(octal constant) ::= (Sign) (octdig) { (octdig) } (size) "8"
(hex constant) 2:: (sign) (digit) { (hexdig) I (size) "H"
(sign) ::= (empty) I ”+" I "~"
(octdig) ::= "0"I"1"|"2"|"3"I"4"|"5"I"5"|"7"
(hexdig) ::= <diglt> I "A" I "B" I "C" I "D" I "E" I "F"
(size) ::= (empty) I "L"

ND-60.124.05



24

ND—60.124.05

ND~Pascal



ND—Pascal 25
PROGRAM COMPILATION

3 PROGRAM COMPILATIQfi

The ND—Pascal compiler is invoked by the command

fllflflz QPASCAL NSQO: END—SOO—MONITOR PASCAL

Initially. the compiler enters into a command processing mode, to
enable the user to specify source. list and code files. options etc.
The command processor prompts the user to give a new command with the
character "S".

ujgg: If the compiler has been aborted by typing the ESC key, it may
be resumed with the aCONTINUE command. In this case the previous
Flag and option settings are retained. However, files have been
closed and their names are no longer known to the compiler.

The available commands are:

HELP
COMPILE
RUN
CLEAR
OPTIONS
SET
RESET
VALUE
LINESPP
EXIT

A command may be abbreviated to its shortest unambiguous form.

Note that the SET, RESET, LINESPP, and OPTIONS commands also are
available as compiler commands (cfr. section 2.5).

3.1 HELP

The HELP command lists the available commands on the user's terminal
(or batch output file). The list includes both the command processor
commands and the compiler commands.

3.2 COMPILE

The COMPILE command instructs ND—Pascal to compile the specified
source file. The present setting of flags and options will be used
during the compilation.

The syntax of the COMPTLE command is

ND—60.124.05



26 ND—Pascal
PROGRAM COMPILATION

COMPILE (source file), (list file), (code file)

The entire parameter list may be omitted, in which case the command
processor prompts the user to specify the files one by one. If only
one or two parameters are specified. defaults are assumed for the
remaining parameters.

The parameters to COMPILE may either be the actual file names. or the
logical units (octal) of open files.

(source file) contains the program to be compiled. The default file
types are :PASC and :SYMB, :PASC being the primary type.

(list file) is the file to which the listing of the compiled program
is written. The <list file) parameter may be omitted, in which
case no listing is generated.

The listing contains:

in column 1: The character "*" if the line contains one or more
language features not in Standard Pascal. Otherwise
the character

in column 2: Program (source) line number.

in column 3: Source file line number and nesting level for
INCLUDEd files.

in column 4: Relative program and variable addresses (octal).

in column 5: A numbering of the beginnend. repeat—until,
gage—egg, and ij—else pairs in the program, to
indicate the nesting structure of the program. Also.
the declaration level for each procedure and
function is indicated.

in column 6: The source program.

Columns 4 and 5 are suppressed if the listing file is the
terminal.

The listing is divided into pages with a heading on each page
containing: version of compiler. date and time of compilation, and
page number.

The listing indicates a language syntax error at the exact spot
where it was discovered. together with an error number. If a part
of the source text was skipped as a result of the error. the part
that was skipped is indicated by a line containing the text
**SKIP* at the left, and hyphens under the skipped text. Lines
containing syntax errors are also written to the terminal.

At the end of the listing a list of the error numbers and an
explanatory text for each error will appear.

ND-60.124.05



ND—Pascal 2?
PROGRAM COMPILATION

A list of all compiler error messages is found in appendix A.

(code file> is the file on which the relocatable output will be
written. The (code file) parameter may be omitted, in which case
no object code is generated. Be aware that the ND—SOU Linkage
Loader does not accept a file number as an NRF input ¥ile.

In a second or following COMPILE command, only (source file) need be
specified. The previous (list file) and (code file) are used if they
were specified in a previous COMPILE command. If a new (list file) or
(code file) is specified, the previous file is closed, and the new
file opened.

Be aware that option and flag values may be affected by a compilation,
and thus may influence the result of a succeeding compilation. Use the
CLEAR command to bring the processor back to its initial state.

3.3 R_U_N_

The RUN command may be used to compile and execute a program, or to
load and execute a previously compiled program.

The syntax of the RUN command is

RUN <filename>

where the <filename> parameter is optional. If not present. the most
recently produced relocatable file is loaded and executed.

If <filename> is given, the following actions are taken:

Pascal attempts to open (filename>:PASC (or <filename>:SYMB) and
(filename>:BRF (N100) or <filename>zNRF (N500):

a) If only the :PASC (:SYMB) file exists, the program is compiled
to a scratch File, and then loaded and executed.

b) If only the file containing the relocatable code exists. then
this program is loaded and executed.

c) If both exist, a compilation to the relocatable file is done if
the :PASC (:SYMB) file is more recent than the relocatable file.
Then the relocatable file is loaded and executed.

Note: After a program has finished a RUN execution, the SINTRAN "a"
prompt character will not appear. The user therefore must type ESC
to get back to SENTRAN command mode.

ND-60.124.05



28 ND—Pascal
PROGRAM COMPILATION

3.4 CLEAR

The CLEAR command brings the command processor back to its initial
state. The following actions are taken by CLEAR:

Set all options to their default values.
Delete all flags.
Close (list file> and (code file).

3.5 OPTIONS

The OPTIONS command is used to set compiler options. The command and
the options are described in section 2.5.4.

T d T

The SET and RESET commands set a flag to TRUE and FALSE. respectively.
These commands, and the use and effect of flags are described in
section 2.5.1.

3.7 EXIL

The EXIT command closes all files and returns control to the operating
system.

2,8 LINESPP

The LINESPP command is described in section 2.5.5.

3.9 VALUE

The command

SVALUE OPTIONS

lists the current value of all options.

The command

SVALUE FLAGS

lists the current value of all flags.

ND—60.124.05



ND~Pascal 29
PROGRAM COMPILATION

3.10 SINTRAN Commands

SINTRAN commands may be executed by starting a command line with the
character "a". Pascal will then pass the rest of the line to SINTRAN
for interpretation and execution.

figgg: The NO—SOO monitor allows only a subset of the SINTRAN commands
to be executed. When attempting to execute a SINTRAN command
outside this subset, the SINTRAN error message is written to the
terminal.

3.11 Program Compilation Example

Following is an example of a program compilation. User input is
underlined.

Terminal input/output Comments

QEAEEAL Call Pascal compiler
or

8NDw500-MONITOR PASCAL Call Pascal compiler
PASCAL/ND~xxx VERSION J 83—xx~xx Identifying text
$0PTION_1;LM: Suppress generation of test

instructions and list generated
object code.

SSET PARIS Generate "PARIS” version of
program. (Assumes source file
contains SIFTRUE and SIFFALSE
tests on flag with name PARIS.)

SCOMPILE Compile
Source File=MYPROG Source is MYPROG
List file=LIN§—PRINI§R Listing to line printer
Code file=MYPBO§QOQ§ Relocatable code to MYPROGCODE

NO ERRORS Messages from compiler
LENGTH OF PROGRAM: 010778 WORDS/BYTES
LENGTH OF FIXED DATA: 002030 WORDS/BYTES

6 USES OF NON-STANDARD FEATURES
24.32 SECONDS COMPILATION TIME

EXIT Exit
Control to SINTRAN

Cfr. chapter 9 for a complete example of a program compilation and
execution.

ND—50.124.05



30

ND~60.124.05

ND—Pascal



ND Pascal 31
PROGRAM LOADING AND EXECUTION

4 PROGRAM LOADING AND EXECUTION

5:1 Program Loading

This chapter gives examples of the loading and execution of ND~Pascal
programs. Further information on memory allocation, absolute programs
etc. is found in chapter 8. Cfr. chapter 9 for a complete example of a
program compilation and execution.

4.1.1 ND‘100 proqram loadinq

A compiled ND—1OO Pascal program must be loaded by the NRL loader
before it can be executed. Also, the Pascal library must be loaded
together with the object program. The library comes in two versions:
PASCAL~LTBzBRF for one-bank code, and PASCAL—2L18:BRF for two-bank
code. The reader should consult the NRL manual (ND—60.066) for details
concerning the loader and the loading process.

Example (one~bank program):

Terminal input/output Comments

QNBL Call loader
RELOCATING LOADER LDR~1935x Identifying text
*LOAD MYPROGCODE PASCAL—LIB Load code file and Pascal library
FREE:027433~182504 Free memory area
*RUN Execute program

8 Execution finished

A two-bank program may be generated in one of two ways:

1. aCC Compile program, producing oneubank code
858i.
RELOCATING LOADER
*OEFINE NOBKS ;
*LOAD MYPROGCODE PASCAL~LIB
* .RJlLl

2. QCC Compile program with option 82, producing two—bank code
QNRL
RELOCATING LOADER

*LOAD MYPROGCODE PASCAL-ZLIB
*EXIT

ND~60.124.05



32 ND—Pascal
PROGRAM LOADING AND EXECUTION

Method number 2 will save space in the instruction bank, however,
method number 1 must be used with SINTRAN version H or earlier if the
program is to be dumped as a re—entrant subsystem. The reader should
consult section 8.1.1 for further details on two-bank programs.

When loading files for a Pascal execution, the main program must
always be loaded first, and the Pascal library last. This means that
all external Pascal, FORTRAN or assembly routines and other libraries
(i.e. FTNLIBR) must be loaded between the main program and the Pascal
library.

Take note of the fact that NRL uses entry point names with seven
letters, and gives no warning when an already defined name is
redefined. This may lead to undetected name conflicts when loading a
Pascal program which was compiled with the X option Qfl, or when
loading separately compiled Pascal procedures. Under these
circumstances, procedure and function names therefore should be
distinct within the first seven letteres. Cfr. section 8.1.2 for
further details on entry point names.

Instead of direct execution with the RUN—command, as shown in the
above example, a program may be dumped on a :PROG file and
subsequently executed any number of times. Also, by generating a :BPUN
file, a Pascal program may be dumped as a re~entrant subsystem. The
entry point name of the start address of the program is the name which
appears in the program statement. This name and the corresponding
program address are found in the loader map.

If the label 0 (zero) appears in the main program, its address will
appear in the loader map with the name CONTINU. This address may be
used as a restart address for the program. It is the programmer's
responsibility that necessary reinitialization is done after a
restart. For example, files which might have been open when the
program was aborted, should be DISCONNECTed in order to deallocate I/O
buffers.

The NRL command PROGFFILE should be used with great care due to
limitations in the SINTRAN RECOVER command. Unless special precautions
are taken, a "hole" may remain in the area between code and data. If
there are pages that have never been loaded to (and therefore never
assigned to the file), a SINTRAN error message: NO SUCH PAGE will be
returned when the program is executed.

4.1.2 ND—SOU program loading

A compiled ND~500 Pascal program must be loaded by the ND—SOO Linkage
Loader before it can be executed. Also, the Pascal library must be
loaded together with the object program. The library is found on the
file PASCAL-LIBzNRF. The reader should consult the ND-SOO Linkage
Loader manual (ND—60.136) for details concerning the loader and the
loading process.

ND-60.124.05



ND-Pascal 33
PROGRAM LOADING AND EXECUTION

Example:

Terminal input/output Comments

3ND—500~MONITOR LINKAGE LOADER Call loader
ND—Linkage~Loader — x Identifying text
NLL:SET—DOM SCRATCH~DOMAIN
NLL:[QAD~§EG MYPRQGQOQE Load code file
Program:....xxxxx P01 Data: ....... xxxxx 001
NLLzEXIT
SEGMENT N0 ......... xx IS LINKED Pascal library is auto—linked
3ND—500~MONITOR SCRATCH—DOMAIN Execute program

a Execution finished

4.2 Run—Time Errors

If a program attempts to do an illegal operation, the program is
aborted with an appropriate error message. If the error was an illegal
I/O operation, the name of the file variable involved will be part of
the message. A list of all run~time error messages is Found in
appendix 8.

The error message indicates at which absolute address (octal) the
error occurred, and, if the T option was Qfl during compilation, which
line number in the source program this address corresponds to.

Be aware of the following pitfalls regarding the source program line
number:

1) 1f the T option was turned off and Qfl one or more times during the
compilation. the source line number may be wrong.

2) If the program calls separately compiled procedures, the source
line number may be that of an external procedure, if that
procedure was compiled with the T option 93.

3) If an error occurs within an external routine in another language.
the Pascal system will not be able to give any information about
the error.

If there is any doubt regarding the source line number given in cases
I) and 2) above, you should correlate the octal address in the error
message with the octal program addresses in the listing by the help of
a loader map. The loader map can be acquired by the NRL ENTRIES—
DEFINED command or the Linkage Loader LIST—MAP command.

ND-60.124.05



34 ND~Pascal
PROGRAM LOADING AND EXECUTION

4.2.1 Trapping run—time errors

A Pascal main program may contain the declaration of a procedure

procedure FAULT(erno, lino, objad, status: INTEGER);

m;
The effect is that when a runwtime error occurs, FAULT will be called.

Note: The N option must be on in order to make FAULT have this effect.

The parameters are

erno The error number. The meaning of these is found in appendix
8.

lino The source program line number at which the error occurred.

objad The object code address at which the error occurred.

status The SINTRAN error status in case of a file system or 1/0
error (error numbers 17, 33, and 3?).

The procedure may contain any legal Pascal code - for example, if the
error is considered non-fatal, a jump to a main program label. If the
procedure exits through its egg, the normal error processing is done.

It is the programmer's responsibility that the declaration of FAULT
follows the rules above, and that a program does not continue
execution after a fatal error has occurred. In particular. be aware of
the possibility that FAULT will be called recursively if an error
occurs within the FAULT routine itself.

NDu60.124.05



ND—Pascal 35
INPUT/OUTPUT

5 INPUTZOUTPUT

Input/output is that part of a programming language which is most
operating system dependent. Several design and implementation
decisions therefore must be taken by any implementor of Pascal. The
reader is warned that some of the features described in this chapter
may not be implemented, or may work differently, in other Pascal
implementations.

F‘ V ‘ b 9

File types may be used as any other type in a Pascal program, with the
following limitations:

1) iile of T where T is or contains a file type is not allowed.

2) File variables, or structures containing file variables may not be
generated with the NEW constructor. A File variable may not occur
in a variant of a record.

3) Assignment to a file variable f (not to be confused with the file
buffer fl) is not possible, nor is the use of a file variable in
an expression.

5.1.1 The type TEXT

There is a standard file type TEXT. A file of type TEXT is assumed to
contain a sequential text, subdivided into lines. A line may contain
any number of characters.

Note: The type TEXT is not equivalent to the type packed file of CHAR.
The latter type will be interpreted as a sequence of characters
where no line subdivision is visible.

The following procedures and functions may be used on files of type
TEXT:

EOLN READ READLN WRITE WRITELN

0n input, the CR character (value 15 octal) is taken as a line
separator. An LF character (value 12 octal) following CR is ignored.
According to Standard Pascal, EOLN(<file>) becomes TRUE when a
READ(<file>,c) reads the last character before the CR. Nhen
EOLN(<file>) is TRUE, the next READ(<file>,c) delivers the space
character (value 40 octal). 0n input, character parity is removed.

0n output, WRITELN writes the two characters CR and LF. Characters
output will have even parity.

ND-60.124.05



38 ND—Pascal
INPUT/OUTPUT

The characters in a TEXT file are assumed to be ASCII characters with
internal values in the range 0..127. When the C option is Qfl. however,
the internal values can be in the range 0..255. In this case, the
parity bit is neither removed on input. nor generated on output.

The editing specifications in READ and WRITE are extended to enable
1/0 of non—decimal representation of integers. In READ, an integer
parameter may be followed by a :(radix) specification, while in WRITE,
an integer parameter may have a :<radix) specification after the
2<field width) speciTication. In this case, the <radix)«base
representation of the integer is read or written. (radix) must be in
the range 2 to 35. Digits in the range 10..35 are represented by the
uppercase letters A..Z.

The following table gives the number of character positions used in
the output file when a value needing a minimum of p characters for its
representation is written. In the table. w is the value of (field
width).

default 0 < w < p p <= w (1)
11199 £15,911

CHAR 1 1 ~ w
BOOLEAN 6 6 w (3) w
INTEGER, decimal 6 12 p w
LONGINT. decimal 12 12 p w
INTEGER. non—decimal — — w (4) w
LONGINT. non-decimal — ~ w (4) w
REAL, floating point 12 (5) 12 w (2) w
REAL, fixed point - — p w
string p p w (3) w

(1) Blank fill to the left
(2) Minimum 10 for 48—bit reals, minimum 8 for 32- and 64—bit

reals
(3) The initial w characters of the string

('FALSE ' and ’TRUE ' when Boolean)
(4) The w least significant digits
(5) 12 for 32—bit reals, 1B for 48—bit reals

a d r .l 3

There are two standard Tiles. INPUT and OUTPUT. both of type TEXT.
These files may therefore be used without declaration.

5,1.3 Packed files

In a GET or PUT~operation, an integral number of 8~bit bytes will
always be transferred. If the file is not designated packed, this
number may be deduced from the table in section 2.6.1.

ND~60.124.05



ND Pascal 37
INPUT/OUTPUT

In the declaration

Basted. file .Qf. T.

the keyword gagged has an effect only if the values of type T occupy
no more than eight bits (N100) or 16 bits (N500). In these cases, PUT
and GET will read or write the minimum number of bytes necessary to
represent the value.

Since the internal representation of values may use a different number
of bytes on the ND—TOO and the N0~500, non—packed files may be
incompatible as seen From ND—TOU Pascal and ND~500 Pascal. That is, a
file 91 T generated on one computer may not be readable on the other
computer, using the same file declaration.

If a file type is designated packed, however, the external file
structures assumed by ND~100 Pascal and ND—SDD Pascal will usually be
identical. Especially, if the type T occupies eight bits or less, then
packed file of T will always correspond to the same file structure on
the two computers.

5.1.4 Non-TEXT files

When f is not of type TEXT, then

READ(f,x); is equivalent to

begin x := fl; get(f) egg;

WRITE(f,x); is equivalent to

begin fl :: x; put(f) gag;

READ(f.x1,x2,...,xn); is equivalent to

READ(€,X1); READ(f.X2); ... REAO(F,xn);

wRITE(f,x1,x2.....xn); lS equivalent to

WRITE(€,X1); WRITE(f,X2): ... WRITE(f.Xn):

5,2 Association to External Files

The procedures CONNECT and DISCONNECT have been implemented in ND~
Pascal to enable run—time association between a file variable and an
external file.

ND~60.124.05



38 ND—Pascal
INPUT/OUTPUT

icZiLLQIiN. E C T

The CONNECT procedure can have up to five parameters:

CONNECT(<file>,<filename>.<type>,<access>,<status>)

(file) is the variable name of the file.

<filename> is either an integer giving the logical unit number of
an open file, or a string (or a packed array gj CHAR)
containing the external name of the file.

(type) is a string giving the default file type.

(access) is a string giving the file access mode (w, R. WX, RX,
RN, WA, WC or RC. or the reverse of one of these strings).

(status) is an integer variable where status for the CONNECT
operation is left. If the CONNECT was successful. (status)
will be equal to zero; if an error occurred, (status) will
be equal to the SINTRAN error number.

The <file) parameter is mandatory. One or more of the remaining
parameters may be omitted, either by leaving the parameter position
empty, or by prematurely closing the parameter list with the right
parenthesis.

The effect of omitting one of the parameters <filename), (type) and
<access> is that Pascal will enquire the user to supply the value from
the terminal. When CONNECTing a logical unit the (type) parameter may
be omitted, and in that case will not be enquired for.

The effect of omitting the <status>- parameter is: If the CONNECT
operation failed, then write the error message to the terminal. Repeat
the CONNECT operation if the file name was specified from the terminal
and the job is interactive, otherwise abort the program.

Remember that RESET or REWRITE must be called before sequential 1/0 on
the file can be performed.

Example:

CONNECT(infile,,‘SYMB',’R'); RESET(infile);

5.2.2 DISCONNECT

The OISCONNECT procedure has one parameter:

DISCONNECT(<¥ile>)

The external file will be disassociated from the (file) variable. If a
File name was given when (file) was opened, the external file will be
Closed. A (file) opened with a logical unit number will not be closed.
A later CONNECT may associate (File) with another external file.

ND-60.124.05



ND~Pascal 39
INPUT/OUTPUT

When ND—Pascal goes through a block egg, all files local to that block
will implicitly be DISCONNECTed.

Q‘Z.3 §cratchviiles

If a REWRITE(<file>) is done on an un—CONNECTed file, Pascal will
create, if necessary, a scratch file with the name <file>~cc:TEMP, and
open it. cc are two characters generated to make filenames distinct.

IF a scratch file is DISCONNECTed, or the program terminates normally,
the file will be deleted.

5.2.4 Program heading parameters

The program heading may have file variable names as parameters. For
each of these file variables the compiler automatically generates some
code in the beginning of the main program:

For the file INPUT:

CONNECT(INPUT,0,,'R'); RESET(INPUT):

For the file OUTPUT:

CONNECT(OUTPUT.T,,'W‘); REWRITE(OUTPUT):

For other Tile variables F:

CONNECT(F);

The effect is that for every user~defined file variable in the program
heading. the user is enquired to supply the actual file name, type and
access mode. The files INPUT and OUTPUT are associated with the
standard input and output files, i.e. the terminal for interactive
jobs. and the appropriate disk or terminal files for mode and batch
jobs. Files other than INPUT and OUTPUT must be declared in the main
program var section.

For all file names in the program heading. except INPUT and OUTPUT,
the call on RESET or REWRITE must be programmed.

Since CONNECT and DISCONNECT are not part of Standard Pascal. file
variables in programs that are to be ported should appear in the
program heading. instead of being explicitly opened by calls on
CONNECT.

ND-60.124.05



4U ND—Pascal
INPUT/OUTPUT

5.3 Terminal [/0

When the actual external file is the terminal running the program,
certain special actions are taken by the [/0 system.

On input, a RESET will flgt read the first character into the file
window, as specified in Standard Pascal. Instead. RESET will put the
space character into the window. Thus, in the input from the terminal,
an extra initial space will appear. The reason for this modification
is to permit output to the terminal prior to the first input without
program hang—up.

On the first file which a program CONNECTS for input from the terminal
(as for instance the default connection of INPUT), EOLN will be TRUE
initially if no text followed the program name in the program call
command line.

An input TEXT file associated with "TERMINAL" is given logical unit
number zero. This enables editing of the terminal input with CTRL A
and CTRL 0. Be aware that SINTRAN converts lower case characters to
upper case on input from unit zero. A file may be CONNECTed for input
from logical unit one, where this conversion is not done. Editing with
CTRL A and CTRL Q is not possible on unit one.

In some applications (9.9. screen—handling) it is necessary to read
from the keyboard on a character«by—character basis, and with no echo.
To do this from a Pascal program, use the method illustrated by the
following example:

yar keyboard: TEXT;

procedure ECHOM(mode: INTEGER): EXTERN;
procedure BRKM(mode: INTEGER); EXTERN;

Qggifl (* Main program *)
CONNECT(keyboard,1,,‘R'); RESET(keyboard);
ECHOM(~1); 8RKM(0);

repeat
GET(keyboard);
(* 00 action on character now in keyboard] *)
(* Program must do its own echoing *)

until

end.

In a READ operation from the terminal, a number syntax error does not
result in the program being aborted (provided the program is run
interactively). Instead, the message

ILLEGAL NUMBER SYNTAX

ND“60.124.05



ND-Pascal 41
INPUT/OUTPUT

lS written to the terminal, and the READ performed anew such that the
correct number can be retyped.

5.5 Random Access 1/0

A file variable may be associated with an external random access file.
Random access [/0 may be done on that file with the procedures PUTRAND
and GETRAND:

PUTRAND(<f>: <filetype>; (block number): INTEGER;
var (status): INTEGER);

GETRAND(<f>: <flletype>; (block number): INTEGER;
var <status>z INTEGER);

PUTRAND writes the current content of the file window to the given
(block number) on the file. GETRAND reads the block in (block number)
on the file into the file window.

The (status) parameter is optional. If present, the SINTRAN status of
the 1/0 operation is left in this variable. If not present, the
program aborts in case PUTRAND or GETRAND fails.

The block size is equal to the number of bytes occupied by the file
component type. This block size is determined when the file is opened
by a call on CONNECT. Note that the smallest block size that SINTRAN
accepts is two; therefore it is not possible to randomly access single
bytes of a file.

RESET and REWRITE have no effect on random access files.

A random access file cannot be packed. but may contain packed
elements.

ND-60.124.05



42

ND~60.124.05

ND-Pascal



ND~Pascal 43
ND—TOO REAL-TIME PROGRAMS

6 ND~100 REAL-TIME PROGRAMS

Any ND-Pascal program may be run as a real—time program. This requires
no changes to the ERF code generated by the compiler. Thus, the same
code may be used for both regular and real~time execution.

To load a program for real~time execution, enter the command

*REFER—SYMBOL SRTPM

before the Pascal library is loaded. This will have the effect of
selecting library routines adapted to real~time execution. In
particular, the following effects should be noted:

1. When a run—time error occurs, the following statements will be
executed:

ERMON(SO.<Pascal error number)); (* Cfr. appendix 8 *)
ERMON(51,<source line number>);
RTEXT:

2. No terminal will be connected to the program. Thus, to execute a
CONNECT operation where one or more parameters are missing, unit
1 must be reserved prior to the CONNECT.

The Pascal library is not completely re~entrant. However, several
real time programs may share the same (resentrant) segment containing
external procedures and/or the Pascal library, provided the real~time
programs have the same COMMON start address.

The STACK-HEAP area will by default be allocated as for background
programs (cfr. section 8.1). The placement and size of this area may
be determined by the user if some other allocation is desired (cfr.
section 8.1).

For a real—time program, RUNMODE is equal to 3 (cfr. section 2.7.5).

FORTRAN routines compiled with the old FORTRAN compiler in re—entrant
mode may not be called from a Pascal program.

ND"60.124.05



44

ND~60.12£.05

ND~Pascal



ND Pascal 45
ND—100 OVERLAY PROGRAMS

7 NDilgfliQXEBLAXUERQQEAMS

Large program systems written in ND—Pascal may be run as a set of
overlaid programs. The Pascal overlay system is adapted to the NRL
overlay generation facility. The reader is referred to the NRL manual
(version G or later) for details concerning the overlaying of
programs.

].1 Modules

A Pascal program system which is to be run in overlay mode will
consist of a set of mggglgs. A Pascal main program is the base. or
root, module. All other modules will be procedures or functions. A
procedure or function will become an overlay module when the key~word
module precedes the procedure/function declaration.

Example: mgggle proceggre OSLO(yaL n: NORWEGIAN);

Modules may be nested. The maximum number of overlay levels is ten.

Modules may appear either

1) Within a main program, or

2) in a separately compiled file containing external
modules, procedures and functions.

The modules for a program system may be generated in either way, or by
using a combination of the two.

A module which calls an external, separately compiled module, must
contain an external declaration of the latter module.

Example: module procedgge MADRIO(x,y: SPANIARD); EXTERN;

A module may not be forward declared.

A file containing module declarations may be headed by a copy of the
main program const, type and lag definitions. This feature allows for
easy communication between modules through main program variables. In
a similar manner, nested modules may be used to allow child modules to
communicate through the local variables of the mother module.

If an external module, procedure or function refers to procedures or
functions in the main program, the main program must be compiled with
the X option Qfl (ctr. section 8.1.2).

ND—60.124.05



46 ND—Pascal
ND~i00 OVERLAY PROGRAMS

7.2 Compilation of Modules

The code for each module must be written on a separate BRF file. The
compiler will prompt the user to specify the BRF file when a module
declaration is encountered in the source file. lhis means that when
compiling a file of modules only, no code file should be specified in
the SCOMPILE command.

Mia

The following example consists of a main program with modules, and one
external module which the main program calls.

ND~60.124.05



ND~Pascal
ND—IOO OVERLAY PROGRAMS

'n r m:

Egggggm EXAMPLE(0UTPUT):

cgngL SIZE

Le INDEX

yar A, 8, C:
II

= 10;

1..SIZE;

gzrgy [INDEX,INDEX] 91 REAL;
I: INTEGER:

ggocedure
1;; I. J:
WV
fig; I

mm
19;

RESULT:
INDEX:

2: 1 Lg SIZE Q9

3 z: 1 L2 SIZE fig WRITE(C[I.J]:10):
WRITELN

end
end (*RESULT*);

a p, I. 3:

IEE
’

I
or Jl

module progegqgg INIT;
v INDEX;

:1 1 39 SIZE fig
z: 1 Lg SIZE gg

Qegin AII,J3 := SQR(I)*3;
B[I,J] :2 LN(I)*SQR(J):
C[1.J] := U

fiflfl;
RESULT

gflg (*INIT*);

module fgnggion FACTOR(I: INTEGER): INTEGER;
pegln

if I <= 1 Lflgfl FACTOR := 1
Q1§e FACTOR := I*FACTOR(I~1)

find (*FACTOR*);

mgggig grogedggg ACCUM; EXTERN;

pgglfl (*MAIN PROGRAM*)
INIT;
jg; I :=
ACCUM

3951-

1 fig 7 fig WRITELN(FACTOR(I):10);

ND—60.124.05

47



48 ND—Pascal
ND—TOU OVERLAY PROGRAMS

External mogglg:

Eons: SIZE = 10;

Eiflg INDEX 11 1..SIZE;

ya; A, B, C: @1531 [INDEX,INDEX] of REAL;
I: INTEGER;

goggle grocedure ACCUM;
xi; 1, STATUS: INTEGER;

exogeggre RESULT; EXTERN;

pgggeggge ROW1J: INDEX);
vgr K: INDEX;

SUM: REAL;
Qgggg SUM z: 0.0;

$9; K 1 :9 SIZE go SUM := SUM+A[I,K]*B[K,JI;
Li SUM > 1.0E6 L333 STATUS :3 1;
CII,J] := SUM

egg (*R0w*);

module procedure COLUMN(I: INTEGER);
Mg; J: INDEX;
beggn STATUS :: 0;
fig; 3 := 1 Lg SIZE g9 RON(J)

egg (*COLUMN*);

module ngedggg NRITCOL(I: INTEGER);
3;; J: INDEX;
@1343.
fig; J 2: 1 Lo SIZE QQ WRITETCII,J]:12);
WRITELN

gflfl (*NRITCOL*);

Q§Qlfl (*ACCUM*)
fig; 1 :2 1 Lg SIZE g9
beglh COLUMN(I);

l1 STATUS = 0 then WRITCOL(I)
glfig WRITELN('COLUMN',I:3,' IN ERROR')

gag;
RESULT

(*ACCUM*);

This program contains examples of the following:

Child modules communicate through variables of the mother module
(STATUS)

Child modules use a procedure within the mother module (ROW)

ND<BD.124.05



ND~Pascal 49
ND—100 OVERLAY PROGRAMS

A module may be called recursively » in this case the call is
executed as a normal procedure or function call (FACTOR)

Compilation of the example programs:

QP_ASCAL
PASCAL/ND~100 VERSION 3 03-xx~xx
SpPr ><__
$COMPILE EXAMPLE LINE PRINTER "EXAMPLE"
Codefile for module INIT : :lfill;
Codefile for module FACTOR : gigglgg;

NO ERRORS
LENGTH OF PROGRAM: 0003638 WORDS
LENGTH OF FIXED DATA: 0021468 WORDS

7 USES OF NON STANDARD FEATURES
1.34 SECONDS COMPILATION TIME

SCOMPILE ACCUM LINE—PRINTER
Codefile for module ACCUM : "ACCUM:
Codefile for module COLUMN : "COLUMN"
Codefile for module WRITCOL : :WRITCQL:

NO ERRORS
LENGTH OF PROGRAM: 0004038 WORDS
LENGTH OF FIXED DATA: 0000108 WORDS

7 USES OF NONwSTANDARD FEATURES
1.20 SECONDS COMPILATION TIME

SEXI

7.3 Loadinq Overlay Programs

When loading modules to create a system of overlaid programs, the
following points must be noted:

~ The user must allocate the STACKeHEAP area with the
*DEFINE STACK xxxxx and *DEFINE HEAP xxxxx commands (ctr. section
8.1). It may be necessary to do a trial load of the system in
order to determine the optimum setting of STACK and HEAP.

The Pascal library must be loaded together with the main program,
and with any module which refers routines in the library not
referred to in the main program. To be safe. the library may be
loaded with every module (only those routines not already present
will actually be loaded).

— When loading two~bank code, one must enter the command

SET‘MODE DATA

before the first OVERLAY—GENERATION command.

ND—60.124.05



50 NDvPascal
ND-IOO OVERLAY PROGRAMS

— The modules must be loaded in an order which corresponds to the
overlay tree structure, that is:

1. The main program. Call this the current module.

2. The next module within the current module. This module becomes
the current module. Apply rule 2 recursively.

Be aware that when specifying entry point names to the loader, NRL
reads the last 7 characters, whereas Pascal uses the 7 first.
Therefore. to avoid problems. never specify entry point names longer
than 7 characters.

A file containing an overlay program (:PROG file) should not be
renamed with the SINTRAN RENAME—FILE command‘ as the absolute program
must contain a record of the file name where the overlay segments are
found. This record is not updated with the RENAME—FILE command.

The file name is recorded exactly as specified in the DUMP command.
Therefore, to avoid ambiguity with file names created at a later time,
it is recommended that the file name is not abbreviated. If the user
name is specified. the :PROG file cannot be copied to other users and
executed. (If the receiving user has access to the original owner's
file, the root segment will be taken from the receiver and the overlay
segments from the original owner. This is, at best. hazardous.)

ND~50.124.05



ND»Pascal 51
NO—tflfl OVERLAY PROGRAMS

Exgmgle

Loading of the program example in section 7.2:

QEEL
RELOCATING LOADER LDR—1935x
*IMAG§;ELL§M1QQ
*OVERLAY—GENERATION 10
*QEFKNE STACK 0
*DEFINE HEAP 150000
*DEFINE NOBKS 2
*LOAD EXAMPLE PASCALwLIB
FREE: 012774-175473
*OVERLAY~ENTRY (1) INIT
*L D NIT
OVERLAY 1 LEVEL 1 COMPLETED. AREA: 012774»013115

5LDAT=012774 INIT=012774 HEAP=1SOOOU
*OVERLAY-ENTRY (1) FACTOR
* A FACTOR
OVERLAY 2 LEVEL 1 COMPLETED. AREA: 012774-013033

FACTOR=O12774
*0VERLAY-EN1RY (1) ACCUM
*LOAD_ACCUM
OVERLAY 3 LEVEL 1 COMPLETED. AREA: 012774~O13263

ROWFS*20127?4 ACCUM=013140 ACCUFQ&/l75483
*OVERLAY ENTRY (2) COLUMN
*LOAD COLUMN PASCAL-LIB
OVERLAY 4 LEVEL 2 COMPLETED, AREA: 013264-013320

COLUMN=013284
*0VERLAY—ENTRY (2) WRITCOL
*LOAD WRITCOL
OVERLAY 5 LEVEL 2 COMPLETED. AREA: 013264wfl13341
WRITCOL=013264
*DUMP "EXAMPLE"
*Eill

7.4 Executing Overlay Programs

An overlaid program is activated by calling the root module, i.e.

3EXAMPLE

Note: If an overlaid program is interrupted by ESCAPE, it may not be
continued with the OCONTKNUE command.

NDnOO.124.05



52

ND—BU.124A05

ND—Pascal



ND Pascal 53
IMPLEMENTATION DESCRIPTION

8 l PLEMENI TIUU ESQRLEJIQH

This chapter gives some information on how the ND—Pascal system works
internally, to enable more advanced use of the system. Be aware that
most of the features described in this chapter are machine and SINTRAN
dependent. Therefore, the reader should not assume that other Pascal
implementations work in the same or a similar manner. Also, the readex
is warned that implementation details may change in future versions of
ND—Pascal.

8.1 ND~100 Implementation

8.1,1 Memory layout

The following figures show how memory is utilized by a running ND—IUO
Pascal program (including the Pascal compiler itself).

One—bank program Two—bank program
(onevbank library)

address
0 I (LOADER) I I (LOADER) I STACK II ——————————— ~I I ——————————— I I

I PROGRAM I I PROGRAM I I
I ——————————— «I I ——————————— I I
I STACK I I I- II- « — w ~ ~I I I I
I I I I I
I HEAP I I I HEAP I
I I I I ~ ~-I
I CONSTAN I II(constants) I CONSIANTS I
I- I I I I
I MAIN DATA I IImain dataII MAIN DATA I
I- ~~~~~~~~~ I I~-~~ I I

177777 I SYS DATA ”I IIsys data) I SYS DATA |

ND—80.124.05



54 ND—Pascal
IMPLEMENTATION DESCRIPTION

Two bank program
(two—bank library)

address
0 I I SYS DATA I

I I ~~~~~~~~~~~~~ I
I I MAIN DATA I
I PROGRAM I ——————————— I
I I CONSTANTS I
I I ——————————— II~~ ~~~I I
I I STACK I
I I II I— ~ — ~ _ —I
I I I
I I HEAP I
I I I

177777 I I I

PROGRAM The Pascal program together with the necessary library
routines.

STACK The memory used by procedures and functions that the program
calls. The stack grows from low towards high addresses.

HEAP The memory used by data allocated with the NEN constructor.
The heap grows from high towards low addresses.

CONSTANTS The constants referred to by procedures. For each procedure,
a common block containing such data is allocated within the
CONSTANTS area.

MAIN DATA All variables declared in the main program. This area is a
common block named C.MAIN.

SYS DATA The variables and constants used by the Pascal library
routines. This area consists of two common blocks named
SCRTL and SCRTD.

B.I.I.I One—bank programs

In a one—bank execution, Pascal places the stack and heap in the
largest of the two areas

a) address zero to first PROGRAM location
b) last PROGRAM location to First CONSTANTS location

To make maximum space for the stack and heap, one may either do an
image load, or use the NRL SET—LOADmADDRESS command to minimize area
b).

ND~60.124.05



ND-Pascal 55
IMPLEMENTATION DESCRIPTION

Be aware that the area between the last PROGRAM location and the first
CONSTANTS location Will occupy space on the :PROG file. If the default
load address is used. the size of the :PROG file will be in excess of
50 pages. To make a minimal absolute version of a program, use the
SET-LOAbmADDRESS command to minimize area b).

8.1.1.2 Two-bank programs

A two-bank program may be generated in one of two ways. as described
in section 4.1.1.

Method 1

Compile the program, producing one—bank code. Before loading, enter
the command

*DEFINE NOBKS 2

Then load the program together with PASCAtwLIB. The program is loaded
exactly as a one—bank program. Before execution starts, the CONSTANTS,
MAIN DATA, and SYS DATA areas will be copied to the data bank. The
data will be located at the same addresses as they had in the
instruction bank.

To make a minimal absolute version of a the program, use the SET»LOAD~
ADDRESS command to minimize the space between the PROGRAM and
CONSTANTS areas. The absolute program may be dumped to a :PROG file,
or dumped as a re—entrant subsystem.

This method uses more space in the instruction bank than method 2, but
must be used if the program is to be dumped as a re—entrant subsystem
under SINTRAN version H or earlier.

Method 3

Compile the program with option 82 set, thereby producing tw0mbank
code. Then load the program with PASCAL~2LIB. The absolute program may
be dumped to a :PROG file, or dumped as a re~entrant subsystem under
SINTRAN version I or later.

It is not possible to force a one—bank execution from a program
compiled in two”bank mode.

8.1.1.3 Forced allocation of stack and heap

The user may determine where to allocate the stack and heap. This can
be done [at load—time by entering the following commands before the
Pascal library is loaded:

ND~60.124.05



56 ND—Pascal
IMPLEMENTATION DESCRIPTION

*DEFINE STACK (value)
*DEFINE HEAP (value)

The starting addresses for the stack and heap will then be the given
values. it is the user's responsibility that the definitions are
consistent, and that no part of the stack—heap area overlaps the
program or common areas. The result of doing one of the definitions
and omitting the other is undefined.

13.4.22 Lesser JS mbollS.

The compiler generates Tuletter entry point names. The names found in
the loader map are constructed as follows:

Main entry point: The first 7 letters of the name given by the
programmer in the PROGRAM statement.

Modules regardless of declaration level; procedures and functions on
the outermost level of a separately compiled file; procedures and
functions on the outermost level of a main program when the X option
is 93: The name given by the programmer. Note that the loader uses
T-letter names. so that these identifiers must be distinct within
the 7 first letters.

Procedures and functions local to other routines or modules; all
procedures and functions when the X option is i: These have the
form nnnndd* where nnnn are the first four characters of the
procedure or function name. dd are two characters generated to make
entry point names distinct.

Non—local labels: These have the form nnnndd+ where nnnn are the
first four characters of the name of the procedure or function
Within which the label occurs. dd are generated characters.

External procedures and functions: The name given by the programmer.

Labelled common areas: These have the form nnnnddh where nnnn are the
first four characters of the name of the procedure or function with
which this common area is associated. dd are generated characters.

8.1.3 Procedure and function calls

The following information on how procedure and function calls are
handled by ND—Pascal should enable a user to write simple external
routines in MAC or NPL.

For each procedure or function call, Pascal generates an object on top
of the stack to hold system data, parameters, and data local to the
routine. At the time of entry to the routine. the registers and stack
contain the followrng data:

ND~60.124.05



ND Pascal 57
IMPLEMENTATION DESCRIPTION

X Static Link
A Top of new procedure object relative to B
8 Dynamic Link (calling procedure object)
L Return Address

Stack:

(A)+(B) ~> system location (0)
system location (1)
system location (2)
system location (3)
system location (4)
system location (5)
function value
parameter (1)
parameter (2)

parameter (n)

In a proper Pascal procedure system location (0) contains Return
Address, system location (1) contains Dynamic Link. and system
location (4) contains Static Link. The other system locations are not
used by Pascal.

The function value occupies zero words if the object is a procedure;
one, two, or three words if the object is a function.

parameter (1) can have the following form:

when var parameter reference to actual
when value parameter k—word value if k <= 8 or value is a set,

otherwise reference to actual

The routine may use 200 octal stack locations without causing stack“
heap overflow.

0n exit from a procedure or function, the following conditions must be
satisfied:

1) The 8 register must hold the same value as it had on entry.

2) For a function. the Au, AD~. or TAD—register must hold the
function value.

3) The exit must be to Return Address (: contents of L register on
entry).

ND~60.124.05



58 ND'Pascal
IMPLEMENTATION DESCRIPTION

Example:

The Pascal program contains

function mgngre(a, b: INTEGER): BOOLEAN; EXTERN;

This is an assembly routine which returns the value TRUE if the
magnitude of a is greater than or equal to the magnitude of b.

Assembly routine:

)SBEG
)BLIB MGNGRE
)OENT MGNGRE

FVAL: 6 Z FUNCTION VALUE
AA: 7 Z ARGUMENT A
AB: 10 X ARGUMENT B

MbNGRE= *
COPY SA DX
LDD AA,X,B
RCLR DT Z 0 = FALSE
SKP IF 0A MLST SD
RINC DT Z 1 : TRUE
COPY ST DA
EXIT

)QEND

8.1.4 Interface to FORTRAN and PLANC

The routine to be called has to be defined with the body STANDARD.
PLANC routines with or without INISTACK may be called. There is no
check for stack overflow in the PLANC routines, therefore. HEAP data
in the Pascal program may be destroyed.

FORTRAN routines with or without REENTRANT—MODE set may be called. To
interface to the old FTN, use the body FORTRAN. with FTN, REENTRANT—
MODE may not be used.

8.1.5w1n9ut/0utgut

To save 1/0 execution time, ND—Pascal buffers access to sequential
files. This is handled automatically by Pascal, and requires no
intervention by the user. Pascal allocates n buffers of 256 words for
the buffering. Up to n disk files which the program has CONNECTed for
sequential 1/0 will then be accessed via buffers.

By default the number of buFfers, n, is equal to three. To redefine
this number, either to save space. or to simultaneously access more
than three files via buffers, enter the command

ND—60.124.05



ND~Pascal
IMPLEMENTATION DESCRIPTION

*DEFINE NOBUF n

before loading the program. The maximum legal value for n is 10.

ND-80.124.05



60 NDwPascal
IMPLEMENTATION DESCRIPTION

8.2 ND—SUD Implementation

fiizlliMemery_laieel

The following figure shows how memory is utilized by a running ND~SOO
Pascal program (including the Pascal compiler itself).

Instruction Data Data
segment segment 0 segment I

address ww-lwmw_m_ __Ww__w_~_*- ~w~_-
0 I I I I I SYS DATA I

I PROGRAM I I STACK I I ————————————— I
I I IM _ n _ I I MAIN DATA I
I I I I | ~~~~~~~~~~~~~~ I
I I I HEAP I I CONSTANTS I
I-.. ._ ._ I I I I________..._. I
I I
I I
I I
I I

777777777 I’WM~WW”_A‘_I

PROGRAM The Pascal program together with the necessary library

STACK

HEAP

CONSTANTS

MAIN DATA

SYS DATA

routines.

The memory used by procedures and functions that the program
calls. The stack grows from low towards high addresses.

The memory used by data allocated with the NEW constructor.
When deallocation is done with the use of MARK and RELEASE,
the heap grows from high towards low addresses. When DISPOSE
is used, the HEAP area has a fixed size which may be defined
at load~time (see below).

The constants referred to by procedures. For each procedure,
a common block containing such data is allocated within the
CONSTANTS area.

All variables declared in the main program.

The variables and constants used by the Pascal library
routines. SYS DATA and MAIN DATA lie in a common block named
C.MAIN.

ND‘60.124.05



ND-Pascal 61
IMPLEMENTATION DESCRIPTION

8.2.1.1 Forced allocation of stack and bean

The default size of the STACK-HEAP area is 400000 octal (= 131,072
decimal) bytes. The area is allocated by the GSWSP monitor call. This
allocation may be redefined at load time by entering the following
command before the main program is loaded:

DEFINE~ENTRY STHPSIZE (value) D

The minimum size of the STACK—HEAP area is determined by the number of
1/0 buffers (cfr. section 8.2.4). If the area is too small, the
program will be aborted at the outset with the error message STACK-
HEAP OVERFLOW.

8.2.1.2 The size of the heap

When deallocation of dynamic data is done With DISPOSE, Pascal uses
the ND—SOU buddy allocator. In this case the heap area has a fixed
size. The default size is 200000 octal (z 65.538 decimal) bytes.
(200000 octal bytes are then left for the stack.) This size may be
redefined at load~time by entering the command

DEFINE ENTRY HEAPSIZE <value> D

before the main program is loaded. Take care that a definition of
HEAPSIZE is consistent with the definition of STHPSIZE.

Note: ND—Pascal does not combine non—used neighbour buddies.

2 oader m l

The compiler generates entry point names with maximum 10 letters. The
names found in the loader map are constructed as follows:

Main entry pOint: The name given by the programmer in the PROGRAM
statement.

Procedures and functions on the outermost level of a separately
compiled file; procedures and functions on the outermost level of a
main program when the X option is on: The name given by the
programmer.

Procedures and functions local to other routines; all procedures and
functions when the X option is gjf: These have the form <name>c*
where (name) is the procedure or function name. c is a character
generated to make entry point names distinct.

Non~local labels: These have the form <name>c+ where <name> is the
name of the procedure or function within which the label is
declared, and c is a generated character.

ND~80.124.05



62 ND-Pascal
IMPLEMENTATION DESCRIPTION

External procedures and Functions: The name given by the programmer.

Labelled common areas: These have the form <name>c& where (name) is
the name of the procedure or function with which this common area is
associated. c is a generated character.

8.2.3 Procedure and function calls

The following information on how procedure and function calls are
handled by ND~Pascal should enable a user to write simple external
routines in assembly code.

When Pascal calls a procedure or function, it will first place the
parameters on the stack beyond the locations needed for system
information. Pascal then executes a CALL instruction to the routine.
When entering the routine, the situation is as follows:

(8) —> PREVB
RETA
SP
AUX
NARG
function value
parameter (1)
parameter (2)

parameter (n)

An assembly routine with parameters therefore must be entered by an
appropriate ENTS instruction.

The function value and each parameter are located at word addresses
relative to 8. If a value occupies less than four bytes, it will lie
left justified within a word. One to three trailing bytes may be
unused if the needed space (in bytes) is not a multiple of four.

The tunction value occupies zero bytes if the routine is a procedure.
and from one to eight bytes, depending on the type of the result. if
the routine is a function.

A value parameter occupies the minimum number of bytes necessary to
represent values of the given type. A ya: parameter is a pointer to
the actual parameter. and occupies 4 bytes. A procedure or function
parameter occupies 3 words:

1. length of parameter area in bytes
2. address of routine
3. static link of routine

A function result must be left in the W1 or F1 (01) register before
exit From the function, which should be done with a PET instruction.

ND“60.124.05



ND~Pascal 63
IMPLEMENTATION DESCRIPTION

An assembly routine may use all registers except the R register, which
must have the same value on exit as it had on entry.

Example:

The Pascal program contains

function mgngre(a. b: INTEGER): BOOLEAN; EXTERN;

This is an assembly routine which returns the value TRUE if the
magnitude of a is greater than or equal to the magnitude of b.

Assembly routine:

MODULE MAGNITUDE

EXPORT MGNGRE
LIB MGNGRE

STACK
FVAL: W BLOCK 1 Z FUNCTION VALUE
AA: W BLOCK 1 Z ARGUMENT A
AB: W BLOCK 1 Z ARGUMENT 8

ENDSTACK

ROUTINE MGNGRE

MGNGRE:
ENTS #SCLC
W1 CLR 1 0 = FALSE
W COMP2 B.AA,B.AB
[F << GO FALSE

W SET1 R? Z 1 = TRUE
FALSE: RET

ENDROUTINE

ENDMODULE

Q4 . I Out ut

To save I/O execution time, ND~Pascal buffers access to sequential
files. Ihis is handled automatically by Pascal, and requires no
intervention by the user. Pascal allocates n buffers of 2048 bytes for
the buffering. Up to n disk files which the program has CONNECTed for
sequential 1/0 will then be accessed via buffers.

By default, the number of buffers, n, is equal to Four. To redefine
this number, either to save space, or to simultaneously access more
than four files via buffers, enter the command

ND~60.124.05



64 ND—Pascal
IMPLEMENTATION DESCRIPTION

DEFINE-ENTRY NOBUF (value) 0

before loading the program.

ND~80.124.05



ND~Pascal
SAMPLE Pascal PROGRAM

9 SAMPLE Pascal PROGRAM

9.1 ND‘1UO Sample Program

afASCAL
PASCAL/ND—1OO VERSION 3 83 xx-xx
SCOMPILE PASSCAN. TERMINAL, "PASSCAN"

PASCAL/ND~1OD VERSION J 83*Xx-XX

1 PROGRAM PASSCAN (OUTPUT);
2 (* TIMES THE AVERAGE OF N X N ACCESSES *)

, 3 CONST MAXARRAY : 1000;
4 CHUNK = 200;
5 VAR X.Y,K : INTEGER;
6 Z : REAL;
7 STIME. ETIME : REAL;
8 TABLE : ARRAY I1..MAXARRAY] OF REAL;
9

* TU F‘UNC‘ITIEN "HEEL? : PIAL: EXT:
11
12 BEGIN K :2 CHUNK;
13 REPEAT
14 FOR X z: 1 TO K DD BEGIN
15 STIME = TUSED;
16 FOR Y :2 1 TO K 00 Z :: TABLEIY];
17 ETIME :2 TUSED;
18 TABLEIX] :: ETIME » STIME
19 END ;
20 Z I: 0;
21 FOR X := 1 TO K 00 Z := Z + TABLEIX];

1 AAAAAA 22 Z := Z / K;
23 WRITELN (' AVERAGE TUSED TO ACCESS ', K.
24 ' X ‘, K,' ELEMENTS ='.Z:8:4);
25 K := K + CHUNK
26 UNTIL K > MAXARRAY
2? END.

NO ERRORS
LENGTH OF PROGRAM: 0002648 WORDS
LENGTH OF FIXED DATA: 0062728 WORDS

1 USES OF NON—STANDARD FEATURES
1.46 SECONDS COMPILATION TIME

SELLI

(continued on next page)

ND*EO.124.05



66 ND»Pascal
SAMPLE Pascal PROGRAM

MEL.
RELOCATING LOADER LDR~1935X
*SET—LOAD~ADDRESS 160000

FREE: 170270-171332
*QUMP ”EASSCAN"
mm;
QPASSCAN

AVERAGE TUSED TO ACCESS 200 X 200 ELEMENTS = 0.0072
AVERAGE TUSED TO ACCESS 400 X 400 ELEMENTS = 0.0140
AVERAGE TUSED TO ACCESS 600 X 800 ELEMENTS = 0.0211
AVERAGE TUSED TO ACCESS 800 X 800 ELEMENTS = 0.0287
AVERAGE TUSED TO ACCESS 1000 X 1000 ELEMENTS ? 0.0356

ND—60.124.05



ND-Pasca] 67
SAMPLE Pascal PROGRAM

9.2 ND—SOO Sample Proqram

$ND~SDDFMONIT0R PASCAL
PASCAL/ND-SOO VERSION 3 83~XX-Xx
SCOMPILE PASSCAN, TERMINALl "PASSCAN"

PASCAL/ND-SOO VERSION J 83~xx~xx

1 PROGRAM PASSCAN (OUTPUT):
2 (* TIMES THE AVERAGE OF N X N ACCESSES *)
3 CONST MAXARRAY : 1000;
4 CHUNK : 200;
S VAR X,Y,K : INTEGER;
6 Z : REAL;
7 STIME. ETZME : REAL;
8 FABLE : ARRAY [1..MAXARRAYJ OF REAL:
9

* 10 FUNCTION TUSED : REAL; EXTERN;
11
12 BEGIN K :2 CHUNK;
13 REPEAT
14 FOR X t: 1 TO K 00 1110113
15 STIME :2 TUSED;
16 FOR Y :2 1 TO K DO 2 :: TABLFIYI;
1? ETIME :2 TUSED;
18 TABLELX] :: LIIME STIML
19 END ;
20 Z :: 0;
21 FOR X 1: 1 TO K 00 Z 2: Z + TABLELXI;
22 Z 2: Z / K;
23 WRITELN (' AVERAGE TUSED TO ACCESS ', K,
24 ’ X ‘, K,' ELEMENTS =',Z:8:4);
25 K :: K + CHUNK
26 UNTIL K > MAXARRAY
2? END.

N0 ERRORS
LENGTH OF PROGRAM: 000007118 BYTES
LENGTH OF FIXED DATA: 000102338 BYTES

1 USES OF NON STANDARD FEATURES
0.60 SECONDS COMPILATION TIME

SEMI.

(continued on next page)

N0~60.124.05



68

8ND~500—MONITOR LINKAGE~LOADER
ND~Linkage~Loader — x
NLL: SE1;DOMAIN "PASSCANL
NLL: LQAD—SEGMEN! PASSCAN
Program: ....... 711 P01 Data: ........ 10233 001
NLL: EXJI
SEGMENT NO ...... 15 IS LINKED
END—500~MONITOR PASSCAN

AVERAGE TUSED TO ACCESS 200
AVERAGE TUSED TO ACCESS 400
AVERAGE TUSED TO ACCESS 600
AVERAGE TUSED TO ACCESS 800
AVERAGE TUSED TO ACCESS 1000

ND-60.124.05

ELEMENTS
ELEMENTS
ELEMENTS
ELEMENTS
ELEMENTS

ND~Pascal
SAMPLE Pascal PROGRAM

©
0

0
0

0

.0023

.0038

.0050

.0065

.0082



ND»Pascal
CompilewTime Error Messages

APPENDIX A Compile—Time Error Messages

Compile-Time Error Messages

O
D

N
m

U
’I
b

L
J
N

—
e

N
..

..
_

.\
_

._
s
_

._
.¢

_
x
._

a
_

x
O

L
D

O
D

N
m

m
J
‘U

N
—

‘Q
L

D
M

N
N

—
b

50:
51:
52:
53:
54:
55:
58:
57:
58:
59:
60:

101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:

Error in simple type
Identifier expected
'PROGRAM' expected
')' expected
' expected
Illegal symbol
Error in parameter list
'OF' expected
'1' expected
Error in type
'I' expected
'1’ expected
'END’ expected
';' expected
Integer constant expected
':' expected
'BEGIN' expected
Error in declaration part
Error in field—list
‘,' expected
'*' expected
Illegal character

Error in constant
':=' expected
'THEN' expected
'UNTIL' expected
'00' expected
'IO'l'DOWNTO' expected
'IF' expected
'FILE' expected
Error in factor
Error in variable
' expected

Identifier declared twice in same block
Lowbound exceeds highbound
Identifier is not of appropriate class
Identifier not declared
Sign not allowed here
Number expected
Incompatible subrange types
File not allowed here
Type must not be real or longint
Tagfield type must be ordinal
Incompatible with tagfield type
Index type must not be real or longint
Index type must be ordinal

ND—60.124.05

69



114:
115:
118:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
138:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
119:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
180:
161:
162:
183:
164:
185:
168:
167:
188:
169:
170:

ND~Pascal
Compile—Time Error Messages

Base type must not be real or longint
Base type must be ordinal
Error in type of standard procedure parameter
Unsatisfied forward reference
Forward reference type identifier in variable declaration
Forward declared — repetition of parameter list not allowed
Function result type must be simple or pointer
File value parameter not allowed
Forward declared function ~ repetition of result type not allowed
Missing result type in function declaration
Second format specifier only allowed for real and integer
Error in type of standard function parameter
Number of parameters does not agree with declaration
Illegal parameter substitution
Result type of function parameter does not agree with declaration
Types of operands conflict
Exepression is not of set type
Only tests on equality allowed
Strict inclusion not allowed
File comparison not allowed
Illegal type of operand1s)
Type of operand must be Boolean
Set element type must be ordinal
Set element types not compatible
Type of variable is not array
Index type is not compatible with declaration
Type of variable is not record
Type of variable must be file or pointer
Illegal parameter substitution
Illegal type of loop control variable
Illegal type of expression
Type contlict
Assignment of files not allowed
Label type incompatible with selecting expression
Subrange bounds must be ordinal
Index type must not be integer
Assignment to standard function is not allowed
Assignment to function formal parameter is not allowed
No such field in this record
Type error in read
Actual parameter must be a variable
Loop control variable must be local
Multidefined case label
Too many cases in case statement
Corresponding variant declaration is missing
Real and string tagfields not allowed
Previous declaration was not forward
Multiple forward declarations
Parameter size must be constant
Missing variant in declaration
Substitution of standard procedure/function not allowed
Multiderined label
Multideclared label
Undeclared label
Undetined label
Error in base set
Value parameter expected

ND«60.124.05



NDwPascal 71
Compile~Time Error Messages

171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:

190:
191:

193:

200:
201:
202:
203:
204:
205:
208:
207:
203:
209:

250:
251:
252:
253:
254:
255:
256:
257:
258:
259:
260:
261:
262:

300:
101:
302:
303:
304:
305:

320:

Standard file redeclared
Undeclared external file
Fortran procedure or function expected
Pascal procedure or function expected
File 'INPUT' missing from program heading
File 'OUTPUT' missing from program heading
Illegal assignment to control variable
Variable used as control variable in outer loop
Read into control variable not allowed
Source line too long
Value of tagfield out of range
Illegal assignment to function name
Forward declared procedure/function not defined
Illegal jump to label
Variant already defined
Assignment of conformant array not allowed
Illegal assignment to conformant array bound
Variant selector not in range of tagfield type

Type must be ordinal or array
Value list too long

Modules cannot be forward declared

Illegal label value
Error in real constant v digit expected
String constant must not cross line boundary
Integer constant exceeds range
8 or 9 or hex—digit in octal number
Real number overflow
Real number underflow
Too many deCimal places
String of length zero not allowed
Hex—digit in decimal number

100 many nested scopes of identifiers
Too many nested procedures/functions
Too many forward references to procedure/function entries
Procedure/function too long
700 many long constants in procedure/function
Too many errors in this source line
Too many external references
Too many external files
Too many local files
Expression too complicated
Too many local variables
Too many nested scopes of overlays
No assignment to function name

Division by zero
No case provided for this value
Index expression out of bounds
Value to be assigned is out of bounds
Element expression out of range
Second operand to mod operator must be > 0

Internal error (reference out of range)

ND~80.124.05



72

322:

331:
332:
333:

380:
381:
382:
383:
384:
385:
388:
387:

390:

398:
399:
400:

Compile Time Error Messages

Internal error (GETOPR)

Internal error (LOADAD v packed address)
Internal error (LOADAD — condition address)
Internal error (MAKEMREG)

Internal error (SELECTREG)

Illegal compiler command
Unknown compiler command
Ambiguous compiler command
Too many flags
Too deep nesting of INCLUDE files
[NCLUOE open error
Missing file name in INCLUDE
Code file open error

EOF encountered on source file

Implementation restriction
Variable~dimension arrays not implemented
Internal error (MOVATTR, RESETGATTRP)

ND~60.124.05

NDvPascal



ND—Pascal 73
Run~Time Error Messages

APPENDIX B Run—Time Error Messages

£99;Timemfirrpj Us? 5 8 age 5

19

20

23

25

33

17

12

32

ARGUMENT TO EXP TOO BIG
The argument to EXP will cause arithmetic overflow.

ARGUMENT T0 LN WAS <: D
The logarithm of a negative number or zero is not defined.

ARGUMENT TO SIN OR COS TOO BIG
Lost accuracy makes the function result meaningless.

ARGUMENT TO SINH OR COSH T00 BIG
The argument will cause arithmetic overflow in the result.

ARGUMENT TO SORT WAS < 0
The square root of a negative number is not defined.

ARITHMETIC OVERFLOW
Overflow caused by

a) arithmetic operations,
b) division by zero, or
c) conversion of REAL to INTEGER. or
d) conversion of LONGINT t0 INTEGER.

BAD ARGUMENT T0 ARCTAN
Lost accuracy makes the function result meaningless.

BLOCK DOES NOT EXIST
Program tried to read non-existing block on a random file.

CONNECT ERROR
Failure in an attempt to CONNECT a file. The SINTRAN error message
will indicate the cause.

EOF 0N INPUT
Program tried to read past end ofwfile on an input file.

FILE ALREADY CONNECTED
Program tried to CONNECT an already connected Tile.

FILE NOT CONNECTED
Program tried to access a non connected file.

FILE NOT RANDOM
Program tried random access to a sequential file.

ND—60.124.05



74

31

21.

38

34

42

26

3?

4O

39

29

30

ND—Pascal
Run—Time Error Messages

FILE NOT SEQUENTIAL
Program tried sequential access to a random file.

ILLEGAL ARGUMENT(S) TO POWER
Either attempt to raise negative number to a real power. or the
arguments will cause arithmetic overflow.

ILLEGAL CALL OF MARK OR RELEASE
MARK or RELEASE was called from a program which also uses DISPOSE.

ILLEGAL CASE INDEX
The case label corresponding to the value of the case variable is
not defined.

ILLEGAL FORTRAN CALL
A FORTRAN routine was called from a two~bank Pascal program.

ILLEGAL MOO OPERATION
Attempted mpg operation with second operand zero or negative.

ILLEGAL NUMBER SYNTAX
The number being read did not have the correct syntax.

ILLEGAL PARAMETER(S) TO FORMAL PROCEDURE OR FUNCTION
The actual parameters to a formal procedure or function did not
correspond in number or type to the formal parameters.

ILLEGAL SUBRANGE ASSIGNMENT
Attempted assignment of a value outside the subrange, or the
controlled variable in a for—loop was of a subrange type and lower
or upper bound of the loop was outside the subrange.

INTERNAL PASCAL ERROR
Error within the Pascal system. Contact a systems expert.

I/O ERROR
An I/O operation failed. The SINTRAN error message will indicate
the cause.

INVALID OPERAND
Illegal argument to POWER or SORT.

INVALID OPERATION
Error within the Pascal system. Contact a systems expert.

NO RESET
Program tried to read from a file without a previous RESET.

NO REWRITE
Program tried to write to a file without a previous REWRITE.

NUMBER TOO BIG
The number being read was too big to be represented in the
computer.

ND-60.124.05



ND»Pascal 75
Run-Time Error Messages

0

TO

43

18

11

41

POINTER TS NIL
Attempted access to data via a pointer with the value nil, or call
on DISPOSE or RELEASE with a nil~valued pointer parameter.

POINTER IS OUTSIDE HEAP
Attempted access to data via a pointer which did not point to data
within the heap, or call on DlSPOSE or RELEASE with a pornter
parameter that did not point within the heap.

PUTRAND 0N INPUT FILE
Program attempted PUTRAND on a read only file.

RESET ON OUTPUT FTLE
RESET was attempted on a write only file.

REWRITE 0N INPUT FILE
REWRITE was attempted on a read only file.

SET ELEMENT OUT OF RANGE
Program attempted to construct a set with an element value not
within the set type.

STACK~HEAP OVERFLOW
The program generated too much data by calling procedures
recursively or with the NEW constructor.

SUBSCRIPT OUT OF RANGE
The index(es) to an array are outside the array bounds.

UNAUTHORIZED USE OF PASCAL
The soft~key for Paseal has not been entered in the SINTRAN
system.

UNKNOWN LOGICAL UNIT
There is no file open on this logical unit.

WRONG I/O PARAMETER
Illegal specification of the formatting of a number.

NRONG LIBRARY VERSTON
Either

a) program was compiled with one version of the Pascal compiler
and loaded with another version of the Pascal library, or

b) N100: floating format (32—bit or 48 bit) in program and library
are not the same, or

c) N100: tw0wbank program was loaded with one~bank library or vice
versa.

NU~GO.124.05



76 ND~Pascal
Index

‘v—
n E 1;?

assembly routines . . . . . . . . . . . . . . . . . 56, 62.
banks . . . . . . . . . . . . . . . . . . . . . . . . 2. 9, 53.
BOOLEAN . . . . . . . . . . . . . . . . . . . . . . . 11.
BRKM . . . . . . . . . . . . . . . . . . . . . . . . 19.
CHAR . . . . . . . . . . . . . . . . . . . . . . . . 9, 11.
character

parity . . . . . . . . . . . . . . . . . . . . . . 9, 35.
set . . . . . . . . . . . . . . . . . . . . . . . 4. 9, 10.

CLEAR . . . . . . . . . . . . . . . . . . . . . . . . 28.
CLTE . . . . . . . . . . . . . . . . . . . . . . . . 22.
COBOL . . . . . . . . . . . . . . . . . . . . . . . . 17.
code file . . . . . . . . . . . . . . . . . . . . . 25.
COMMAND . . . . . . . . . . . . . . . . . . . . . . . 21.
comments . . . . . . , . . . . . . . . . . . . . . . 4.
COMPILE . . . . . . . . . . . . . . . . . . . . . . . 25.
compller commands . . . . . . . . . . . . . . . . . 8.
compiletime errors . . . . . . . . . . . . . . . . . 69.
conditional compilation . . . . . . . . . . . . . . 6. ““““ ‘
conformant arrays . . . . . . . . . . . . . . . . . 13.
CONNECT . . . . . . . . . . . . . . . . . . . . . . . 38.
CONTINUE . . . . . . . . . . . . . . . . . . . . . . 32.
COSH . . . . . . . . . . . . . . . . . . . . . . . . 18.
DATE . . . . . . . . . . . . . . . . . . . . . . . . 19.
DISCONNECT . . . . . . . . . . . . . . . . . . . . . 38.
ECHOM . . . . . . . . . . . . . . . . . . . . . . . . 18.
ENDIF . . . . . . . . . . . . . . . . . . . . . . . . B.
EOF . . . . . . . . . . . . . . . . . . . . . . . . . 7.
ERMSG . . . . . . . . . . . . . . . . . . . . . . . . 19.
EXIT . . . . . . . . . . . . . . . . . . . . . . . . 28.
extensions . . . . . . . . . . . . . . . . . . . . . 16.
external

functions . . . . . . . . . . . . . . . . . . . . 56, 51. 62.
procedures . . . . . . . . . . . . . . . . . . . . 16, 18. 55, 81,

62.
FAULT . . . . . . . . . . . . . . . . . . . . . . . . 3, 34.
file . . . . . . . . . . . . . . . . . . . . . . . . 2D, 21, 35.

type . . . . . . . . . . . . . . . . . . . . . . . 4.

FIRST . . . . . . . . . . . . . . . . . . . . . . . . 23.
Flags . . . . . . . . . . . . . . . . . . . . . . . . B.
formal procedures . . . . . . . . . . . . . . . . . 15.
FORTRAN . . . . . . . . . . . . . . . . . . . . . . . 17, 43, 58.
FREEMEM . . . . . . . . . . . . . . . . . . . . . . . 20.
generic functions . . . . . . . . . . . . . . . . . 23.
GETRAND . . . . . . . . . . . . . . . . . . . . . . . 41.
HALT . . . . . . . . . . . . . . . . . . . . . . . . 18.
HEAP . . . . . . . . . . . . . . . . . . . . . . . . 18. 20, 53. 80.
HELP . . . . . . . . . . . . . . . . . . . . . . . . 25.
hexadecimal constants . . . . . . . . . . . . . . . 23.
HOLD . . . . . . . . . . . . . . . . . . . . . . . . 28.
1dent1fier . . . . . . . . . . . . . . . . . . . . . 5, 9.
IFFALSE . . . . . . . . . . . . . . . . . . . . . . . 8.
IFTRUE . . . . . . . . . . . . . . . . . . . . . . . 6.

ND 60.124.05



ND~Pascal
Index

lmplementation
INCLUDE
INPUT
inputoutput
INIEGER
[SIZE
keyword
LAST
LINESPP
list file
LMAXINT
LUNGINT
LONGREAL
LROUND
LTRUNC
LUNIT
MARK
MAXREAL
MDLFI
module .
multiple source
NDPascal
octal

constants
[0

options
OSIZE
OUTPUT
overlay
packed

files
structures

PAGE
PLANC
POWER
procedure parameters
program

compilation

executron

heading
loading

overlay
sample

PUTRAND
RANDOM

access
REABT
REAL .
realtime programs

53,

36.
35,
11.
20.

23.
10,
25.

23.
36.
8.
21.
36.
45.

36.
12.
10.
17,
18.
13.

25,
67.
19,
60.
39.
10,
56.
45.
64,
41.
22.
41.
21.
9.
43.

ND-60.124.05

77

60.

40, 58, 63

28.

45, 56.

27. 28.

58.

15.

29, 46, 64,

27, 31. 53.
68, 68.

17‘ 31, 49.
B1, 66. 68.

67.

11



78

RELEASE
RESET
RMAX
ROBJENT
RUN
RUNMODE
runtime errors
scratch files
segment
set

command
type

SETBT
SETE
SINH . .
SINTRAN command
SMAX
source

file
program

special symbols
STACK
Standard

files
functions
identifier
Pascal
procedures
types

strings
structured types
syntax errors
terminal
TEXT
TIME
traps
TUSED
value . . . . ..
variable initialiration
VERSN

NDEBU.124.05

18.

22.
21.
27.
2D.

39.
80.

6 .

22.
22.
18.
21
22.

25.

20
17.
36.
18

18.
11.
13.

'1L .

26
19
11
19.
15
19.
5 .
16.
20.

28.

33.

28.

29.

53.

23.

ND~Pascal

43,

50.

#0.

Index

73.



HH*HH*HH SEND US YOUR COMMENTS!!!

Please let us know if you
“ find errors
' cannot understand information
" cannot find information
" find needless information

Do you think we could improve the manual by
rearranging the contents? You could also tell
us if you like the manual!

**************

Are you frustrated because of unclear information in
this manual? Do y0u have trouble finding things?
Why don't you join the Reader's Club and send us a
note? You will receive a membership card — and
an answer to your comments.

HHHHHH HELP YOURSELF BY HELPING US” HHHHH“

Manual name: ND PASCAL User’s Guide Manual number: ND—60.124.05

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual ?

Your name: Date:

Company: Position"

Address:

What are you using this manual for .7

NOTE! Send to:
This form is primarily for Norsk Data A.S ‘ .
documentation errors. Software and Documentation Department
system errors should be reported on PO. Box 25, Bogerud Norsk Data’s answer will be found
Customer System Reports. 0621 Oslo 6, Norway on reverse side



Answer from Norsk Data

Answered by Date

Norsk Data A.S

Documentation Department
PO. Box 25, Bogerud
0621 Os|06, Norway



Systems that put people first

NORSK DATA A.S OLAF HELSETS VEI 5 PO. BOX 25 BOGERUD 0621 OSLO 6 NORWAY
TEL.: 02 - 29 54 00'- TELEX: 18284 NDN


