@ NORD File System
System Documentation

NORSK DATA AS

NORD File System
System Documentation

NOTICE

The information in this document is subject to change without notice. Norsk
Data A.S assumes no responsibility for any errors that may appear in this docu-
ment. Norsk Data A.S assumes no responsibility for the use or reliability of its
software on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. It may not
be photocopied, reproduced or translated without the prior consent of Norsk
Data A.S.

Copyright @ 1979 by Norsk Data A.S.

ND-60.122.02

PRINTING RECORD

Printing Notes

10/79 Original Printing

01/80 Second Edition

NORD FILE SYSTEM - System Documentation
Publication No. ND-60.122.02

NORSK DATA A.S

P.O. Box 4, Lindeberg gard
Oslo 10, Norway

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one or
more single pages to be merged into the manual by the.user, each revised page
being listed on the new printing record sent out with the revision. The old prin-
ting record should be replaced by the new one.

New versions and revisions are announced in the ND Bulletin and can be ordered
from the Documentation Department as described below.

The reader’'s comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are weicome.

These forms, together with all types of inquiry and requests for documentation
should be sent to:

Documentation Department
Norsk Data A.S

P.O. Box 4, Lindeberg g&rd
Oslo 10

ND-60.122 02

PREFACE

The Product

This manual gives a detailed description of the NORD File System operations and
design, as implemented under SINTRAN 111, version 79.07.15A.

The Reader

The manual is addressed to system programmers working with support and
development functions.

Prerequisite Knowledge

The reader of this manual is supposed to possess a general knowledge of file
operations from the user’s viewpoint. He/she should also have a broad knowledge
of SINTRAN Il design, and should know segment handling and background
procesor operations particularly well. Recommended manuals supplying this
knowledge are:

SINTRAN 1l User's Guide (ND-60.050)
SINTRAN Il System Documentation (ND-60.062)

The Manual

This manual is part of the course material for a related course, but it may also be
used for self-studies or as reference material for maintenance and development
purposes.

ND-60.122.02

Section:

2.1
22
23

24
2.5
26
2.7
2.8
29

3.1
3.2
33
3.3.1
33.2
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.45
3.4.6
3.4.7
3.4.8
349
3.4.10
3.4.11
3.5
3.5.1
352
3.56.3
3.5.4
355
3.5.6
3.5.7
358

vii

TABLE OF CONTENTS

+ o+ o+

MEDIA

Physical Layoutof Disks
Physical Layout of Floppy Disks
Logical Structure {Directory) on Disks and Floppy

Disks
DirectoryEntry
UserFile
ObjectFile i,
BitFile

Memory Organization
System Disk Organization
Interface to Other Parts of SINTRANHI
File System Monitor Call Handling
File System Command Handling
Data Structures
Memory Map of Data Structures
NameTable
DirectoryTable
UserFileBuffer
ObjectFileBuffer
BitFileBuffers
SystemSegment
OpenFileTables
DeviceBuffers
File SystemStack
File System ErrorHandling
File SystemCommands
Parameter Collection
Create Directory
EnterDirectory
CreateUser
DeleteUser
CreateFile
DeleteFile
OpenFile

ND-60.122.02

viii

Section: Page:
3.6 File Handling Monitorcalls 3—46
3.6.1 RFILE/WFILE 3—-46
3.6.2 inputByte 3—-47
Appendix:

A AGUIDETO THEFILESYSTEMLISTING A—1

ND-60.122.02

INTRODUCTION

The NORD File System is an integrated part of the operating system SINTRAN
lIl. Its function is to offer organized structures for storing and retrieving data.
The user of SINTRAN Il may operate on data through commands and monitor
calls. When a file system command or monitor call is used, SINTRAN Il will
invoke the corresponding routine in the file system.

The file system gives the user simplified functions for accessing data on various
file media. These functions are based on logical structures (directories). The
physical organization, storing and retrieving of data is taken care of by appro-
priate calls to the 1/0 system from the file system. Figure 1.1 illustrates the file
system’s place in SINTRAN (iI.

PARTS OF
SINTRAN i

USER

l
|
{ FILE /0 < >
| PROGRAM (g L | SYSTEM Le¢ o SYSTEM w
|
|
I

Figure 1.1: File System’s Function

The file system uses a set of internal tables and buffers holding information on the
item (device, user, directory, etc.) being processed. Through reentrant routines
and systematic lock techniques, several users may simultaneously use the file
sytem.

ND-60.122.02

2.1

PHYSICAL AND LOGICAL STRUCTURE OF FILE MEDIA

PHYSICAL LAYOUT OF DISKS

The file system supports a number of different disk types with different physical

layout. The general structures, however, are common to all of them and will be
discussed first,

Ali disk packs consist of one or more platters, providing a number of recordable
surfaces.

Figure 2. 1: Disk Pack

For a given disk, some of the surfaces are used for alignment purposes, while the
rest are available for data. The available surfaces are numbered from 0 and
upwards. The numbering method is disk dependent.

Each surface has a number of concentric circles, called tracks. The number of

tracks is disk dependent, varying between 400 and 823 for our disk types. The
tracks are numbered from 0 and upwards, starting at the outer track.

Figure 2.2: Surface with Tracks

ND-60.122.02

Each surface has a track number 0, a track number 1, etc. All tracks of a given
number are referred to as a cylinder. Thus, we may speak of cylinder 0 being track
0 on all surfaces.

DISK CYLINDER

CARRIAGE ARM
HOLDING
READ/WRITE HEADS

READ/WRITE
HEADS

Figure 2.3: Disk Cylinder

Physical disk addresses are organized by disk cylinders, i.e., the lowest disk
addresses are in cylinder 0, the next in cylinder 1, etc. This reduces carriage arm
movements when accessing data at subsequent disk addresses. In each cylinder
the lowest disk addresses are on surface 0, the next on surface 1, etc.

Each track is divided into sectors. The number of sectors per track is 16, 18 or 24
for our disk systems. The sectors are numbered from 0 and upwards.

SECTOR O
SECTOR 1
SECTOR 2
SECTOR 3

Figure 2.4: Sectors

Each sector consists of a number of 8 bit bytes. in our disk systems this number is
either 256 or 1024. The number of bytes per sector is the same for all tracks on a
disk. Therefore, the tracks closer to the center of the disk have a higher density
than those at the edge.

The file system operates in units of pages (= 1024 words = 2048 bytes). The table

below gives the physical characteristics of the disk types supported by SINTRAN
.

ND-60.122.02

2-3

Disk Size Exact| No. of No. of| No. of No. of | No. of | Total capacity
type desig- capacity |surfaces tracks/ | sectors/ bytes/ | pages/ in pages
nation in bytes surface track sector | cylinder
HAWK | 5MB 5,591,040 | 2/pack 405 24 256 6 2,430
SMD (33MB 32,768,000 5 400 16 1024 40 16,000
SMD |66MB 65,536,000 5 800 16 1024 40 32,000
SMD |37MB 37,969,920 5 412 18 1024 45 18,540
SMD ([75MB 75,847,680 5 823 18 1024 45 37,035
CMD (30MB 30,339,072 2 823 18 1024 18 14,814
CMD [60MB 60,678,144 4 823 18 1024 36 29,628
CMD 90MB 91,017,216 6 823 18 1024 54 44,442
SMD |288MB 288,221,184 19 823 18 1024 171 140,733

Figure 2.5: Physical Characteristics of Various Disk Types

The numbering of the surfaces is illustrated in Figure 2.6.

ND-60.122.02

214

0 Removable (5MB)
HAWK 1
2 Fixed (5MB)
3
0
SMD 33MB 1
SMD 66MB alignment surface
SMD 37MB 2
SMD 75MB 3
4
0
cmb 30MB alignment surface
CMD 60MB 2 {for 60MB and SOMB only)
CMD S0MB 3 (for 60MB and 90MB only)
1
alignment surface
4 {for 9OMB only)
5 {for 9OMB only)
0
SMD 288MB 1
2
3
N
5
6
7
8
9
alignment surface
10
1
12
13
14
15
16
17
18

Figure 2.6: Numbering of Disk Pack Surfaces

ND-60.122.02

2.2

2.3

NIRECTOR
ENTRY

PHYSICAL LAYOUT OF FLOPPY DISKS

Floppy disks have the same general physical structure as disks (see Section 2.1).
The file system supports only one type of floppy disks, with the following

physical characteristics.

Exact capacity in bytes — 315,392
No. of surfaces -1

No. of tracks - 77

No. of sectors/track -8

No. of bytes/sector — 512
Total capacity in pages — 154

LOGICAL STRUCTURE (DIRECTORY) ON DISKS AND FLOPPY

DISKS

All mass storage devices use a page (1K words) as the logical storage unit. From
the file system, devices are addressed using page numbers, and file transfers are

performed in units of 1 page.

A directory on a disk or floppy disk is logically organized as follows:

MASTER BLOCK

-

Figure 2.7: Directory

The master block is a 1K block located at the lowest address on the medium,
i.e., page 0. The first part (the shaded region) of the master block may contain a
bootstrap program to load SINTRAN. The remaining part of the master block
(address 1760g - 1777,) holds a directory entry.

// > OBJECT
/ FILE
DIRECTORY
NAME
PAGES LEFT USER FILE
e
BIT FILE

ND-60.122.02

DATA
FILE

DIRECTORY ENTRY

The directory entry contains the directory name, pointers to the object file, user
file, and bit file, and the number of unreserved pages on the directory.

The layout of the directory entry is as follows:

0
DIRECTORY
NAME
16 CHAR.

7

10 OBJECT FILE
POINTER

12 USER FiLE
POINTER

14 BIT FILE
POINTER

16 PAGES NOT
RESERVED

Figure 2.8: Directory Entry

All pointers on file media are double word pointers. The two most significant bits
are used to indicate subindexing and indexing as illustrated below.

17g 16 0

S|

Figure 2.9: Pointer Layout

ND-60.122.02

S — subindexing
I — indexing

The following combinations apply:

S: B

0 0 no indexing is used

0 1 indexing is used

1 0 subindexing is used

1 1 error in file structure (this should not occur)

Examples of indexed and subindexed structures follow in the discussion on the
user file, object file and data files.

ND-60.122.02

2.5

USERFILE

The user file contains information on all the users of the medium. Each medium
may have 256 users. Each user has a 32 word entry in the user file.

The user file is organized as an indexed file, i.e., the user file pointer in the
directory entry points to an index block. The index block contains up to 8 double
word pointers to user file pages. This structure is illustrated in Figure 2.10.

USER FILE
PAGES
MASTER USER 0
BLOCK
¢ USER 1
USER FILE
INDEX BLOCK
1772 [040000 SER 31
1773 000000 u 10
2l 000000
USER 32,
%l 000000
UNUSE '
/// USER 63,
7
| S
USER 224
10
USER 255,

Figure 2. 10: User File

Location 17724 in the master block has bit 16, set to indicate that indexing is
used.

The layout of a user file entry is illustrated in Figure 2.11.

ND-60.122.02

1"
12

14

20

22
23

24

30

37

Figure 2.11: User File Entry

All dates in the file system are represented in double word elements with the

17

107

u

] F] ENTER COUNT

USER NAME

(16,4 CHARACTERS)

PASSWORD

DATE CREATED

LAST DATE ENTERED

NO. OF PAGES RESERVED

NO. OF PAGES USED

USER INDEX

MAIL FLAG

USER DEFAULT FILE ACCESS

s /// 7

DICiAlW

R

USER INDEX

following layout:

U — ENTRY USED

F —USER/OBJECT FLAG (1 '= USER)

FRIEND TABLE

U — ENTRY USED

D — DIRECTORY ACCESS
C — COMMON ACCESS

A — APPEND ACCESS

W — WRITE ACCESS

R — READ ACCESS

374 208:178 0
L YEAR - 1950, | MONTH | DAY | I'HOUR T MINUTE | secono |
6 4 5 | 5 6 6

Figure 2.12: Date Layout

ND-60.122.02

2.6

OBJECT FILE

The object file contains information on all users’ files on a medium. Each medium
may have 256, files for each user. Each file has a 32, word entry in the object
file. The first 256,, entries are reserved for user 0, the next 256,, entries are
reserved for user 1, etc. i.e., each user has maximum 8 pages of entries.

The object file is organized as an indexed or subindexed file. If the highest user
index is less than 64,,, the object file is indexed, with the structure illustrated in
Figure 2.13.

OBJECT FILE
PAGES

MASTER (_—-D Object entry 0
User 0

BLOCK
Object entry 1

I lser) |
17705 [040000 OBJECT FILE
17714 —] o NDEX BLOCK Object entry 31
000000 J | User O |
2| 0000060
8 ENTRIE]
. Object entry 33
. Llecar O
20§ 000000
- —
Object entry
User 0
000000
S Ea—

————{Object entry 0
User 1

Object entry31
User 1

Object entry
User 63

Object entry 255
User 63

Figure 2.13: Object File with Index Block

ND-60.122.02

Bit 164 in location 1770 in the master block is set to indicate indexing.

If a directory contains a user with user index exceeding 63,, the object file must
be subindexed. (The file system will automatically establish a subindexed
structure when user 64,, is created.) The subindexed structure is illustrated in

Figure 2.14.

[Object entry
OBJECT FILE User O
MASTER INDEX BLOCK 1
BLOCK 000000
OBJECT FILE Sz;eg"y 3
SUB-INDEX BLOC
1770, | 100000 J.Q 040000
17718 2 000000 .
040000 > 0bj. entry 224
how— fllser 3|
4l 040000
T—1)| OBJECTFILE
6 040000 INDEX BLOCK 2
Obj.entry 254
7 000000 User 63
Ve
NUSE
Obj.entry 0
/// User 64
ya
Obj.entry 31
User 64
OBJECT FILE
INDEX BLOCK 3
]
Obj.entry 0
11
OBJECT FILE
INDEX BLOCK 4
\—f 000000
Obj.entry 31
User 192
000000
bj.entry 224
User 2565

Obj.entry 255

Lser 265

Figure 2. 14: Object File with Subindex Block

ND-60.122.02

Bit 174 in location 17704 in the master block is set to indicate subindexing.
The layout of an object file entry is illustrated in Figure 2.15.

17 7 0
o[u] w] rRlm] [Fl
1
OBJECT NAME
(1610 CHARACTERS)
11
TYPE {4 CHARACTERS)
13 | POINTER TO OBJECT ENTRY OF NEXT VERSION
14 | POINTER TO OBJ.ENTRY OF PREVIOUS VERSION
15 lPublic access. ,l Friend access Owner access
16 ™ U mlalcli TsTe]r
17 | DEVICE NO. WHEN PERIPHERAL FILE
20 | Term. no. of res. user l User index of res.user
21 OBJECT INDEX OF THIS OBJECT ENTRY
22 | CURRENT OPEN COUNT (Simultaneous)
23 | TOTAL OPEN COUNT
24
DATE CREATED
26 | | AST DATE OPENED FOR READ
30
LAST DATE OPENED FOR WRITE
32 | NO.OF PAGES IN FILE
34
MAX.BYTE POINTER
36

El

FILE POINTER

Figure 2. 15: Object File Entry

ND-60.122.02

U — ENTRY USED

W — OPEN FOR WRITE AT PRESENT

R — RESERVED

M — HAS NOT BEEN MODIFIED

{NOT IN USE)

EACH FIELD IS ;
FILE TYPE:

TM — TEMPORARY FILE

L - LIBRARY FILE

M — MAGNETIC TAPE FILE
A — ALLOCATED FILE

C —CONTIGUOUS FILE

| — INDEXED FILE

S — SPOOLING FILE

P — PERIPHERAL FILE

T — TERMINAL FILE

S — SUBINDEXED
| — INDEXED

fcfa[w]R]

2.7

BIT FILE

The bit file contains a free/reserved map of the file medium. Each bit in the bit file
corresponds to one page (1K words} of the file medium. The page is free if the bit
is 0, and reserved if the bitis 1.

The bit file is a contiguous file. Its size depends on the file medium as listed below:

File Medium: Bit File Size (in pages):
Floppy disk 1

Disks:

5MB 1

30MB 2 (1 per unit)
33MB 1

37MB 2

60M8B 4 (1 perunit)
66MB 2

75MB 3

90MB 6 (1 per unit)
288MB 9

The bit in the bit file corresponding to a given page is found as follows:

Suppose bits 17; - 0 contain a page number. Then, bits 17; - 4 give word
number in bit file and bits 3 - 0 give bit number in the word, counted from
right to left. This is illustrated in Figure 2.16.

PAGE NO.
17g A 43 0
| l \]
0 AN
1 N
BIT FILE
e

Figure 2. 16: Correspondence between Page Number and Bit File Element
ND-60.122.02

2.8

DATAFILES

Data files contain user data. All data files have a corresponding object entry. If a
data file has any pages, the file pointer of the object entry will point to these
pages (see Section 2.2).

A data file is either indexed or contiguous.

A contiguous file has all its pages located in a contiguous area on the file

medium, as illustrated in Figure 2.17.

OBJECT ENTRY

0
DATA PAGES
FiRST PAGE
36 000000
SECOND PAGE
LAST PAGE

Figure 2.17: Contiguous File

ND-60.122.02

An indexed file has its pages arbitrarily located on the file medium. Each page is
referenced by a pointer in an index block. If the file has less than 513 data pages,
the structure is as illustrated in Figure 2.18.

OBJECT EN TRY

DATA FILE
INDEX BLOCK
36 040000
DATA PAGES
~— » 000000
000000 FIRST PAGE
e

SECOND
PAGE

Figure 2.18: Indexed File with less than 513 Data Pages

ND-60.122.02

If an indexed file has more than 512 data pages, a subindex block is used, as
illustrated in Figure 2.19.

DATA FILE
INDEX BLOCK 1 DATA PAGES
(‘. 000000 —J—’
OBJECT ENTRY : 1st
) PAGE
0
000000
—]-—.
DATAFILE 512th
36| 700000 SUBINDEX BLOCK PAGE
040000
040000
— 1
DATAFILE
INDEX BLOCK 2 513th
PAGE
000000
000000
1024th
PAGE

Figure 2.19: Indexed File with more than 512 Pages
The maximum number of data pages in an indexed file is:

512x 512 pages = 262,144 pages = 512 MB

ND-60.122.02

2.9

PERIPHERALS

The file system may support all kinds of peripherals available. Each peripheral
device unit to be supported by the file system must be represented by an object
entry belonging to user SYSTEM on the main directory. Such an object entry is
entered with the SINTRAN commands @SET-PERIPHERAL-FILE and
@SET-TERMINAL-FILE. Consequently, a file is either a mass storage file, a
peripheral file or a terminal file. The object entries of these 3 types of files
compared in Figure 2.20. See also Figure 2.15.

MASS STORAGE FILE PERIPHERAL FILE TERMINAL FILE

0

16 pio [']o [q
17 — Device no. of per. Device no. of terminal
20 — — —

36 FILE POINTER - -

Figure 2.20: Object Entries for a Mass Storage File, a Peripheral File and a
Terminal File

ND-60.122.02

3

3.1

70000

FILESYSTEM DESIGN

MEMORY ORGANIZATION

The bulk of the file system is placed on a separate file system segment, segment
number 6, with logical address space from 100000; to 173777, (page 40,
through 75). Some parts of the file system interfacing the 1/0 system must be
resident. (This is required by the I/0 system.) Since the file system supports users
of a multi-programming operating system, its services must be available to several
users simultaneously. Therefore, the file system segment contains only reentrant
routines. The data area and some non-reentrant routines needed by a file system
user are allocated on the user’'s system segment (if background) or on the fore-
ground data area in resident memory (if foreground). The system segment lies in
the logical address space from 70000, to 77777, (page 34
through 37;).

Figure 3.1 iliustrates how the parts of the file system fit together.

ol RESIDENT
SINTRAN 111

Resident
Parts of file system

—_ - _ 1

Resident
Parts of file system

—— e age s e e g o ——

Resident
System System Foreground System System

Segment Segment Programs’ Segment Segment
Data area

[

File System
Segment

100000

(Segment No. 6)

Figure 3.1: Memory Organization

ND-60.122.02

3.2

3-2

SYSTEM DISK ORGANIZATION

On a system disk the code of the file system segment is placed in the
MACM-AREA file, while the code of the system segments is placed on the
SINTRAN file.

If SINTRAN Il is initialized with the JHENT command in MACM the file system
segment code will be moved from the MACM-AREA file to the file system
segment (segment 6) on SEGFILO. Also, the system segments code and constants
will be copied from the SINTRAN file into all system segments in the system.

Figure 3.2 shows a system disk layout with the relevant parts.

MASTER BLOCK

SINTRAN RESIDENT

> SINTRAN: DATA

SYSTEM SEGMENT CODE
AND CONSTANTS

FILE SYSTEM SEGMENT 1 MACM-AREA: DATA
CODE AND CONSTANTS

P
S
MEMORY IMAGE AREA

FILE SYSTEM \SEGMENT

> SEGFILO: DATA

SYSTEM SEGMENT 1

BACKGROUND SEGMENT 1

Figure 3.2: System Disk Layout
ND-60.122.02

3.3 INTERFACE TO OTHER PARTS OF SINTRAN I

The file system is entered because:
— amonitor call involving file system functions has been executed

— afile system command has been issued

SINTRAN 111
)/MONITOR COMMAND
CALL

REAL-TIME BACKGROUND

MONITOR ~ PROCESSOR ~—
- VN !

MONITOR COMMAND
CALL DECODER PROCESSOR

FILE
SYSTEM

Figure 3.3: Interface to Other Parts of SINTRAN 11|

The two events are treated differently and will be discussed separately.

ND 60.122.02

3.3.1

34

File System Monitor Call Handling

The monitor call decoder takes different actions for background and foreground
programs. For background programs the routine COMENTRY on the system
segments gets control. This routine calls the routine MMEXY to bring in the file
system segment. Then the proper monitor call routine on the file system
segment is called. Upon return to COMENTRY the background segment is
brought back through a new call to MMEXY. This sequence of operations is
illustrated in Figure 3.4.

ol T T T T '} o T T T 77 I of—— =7 ™7 o~ T '“l
Resident I			H	
SINTRAN]				
{1			} l	
	i i		'	
Montor call	; l			
decoder		l	i '	
1				
Cal! Comentry [~ ; : ! | : |
) |]
[e — A | ' I |
70000 70000|— ————— '] 70000
System | I
Lo Segment i |
Comentry : l
Call MMEXY | : |
Call MRSTA I L | Call MMEXY
100000
File System
Segment
h Monitor
call routine

Figure 3.4: File System Monitor Call Handling from Background Programs

Note that both the resident part of SINTRAN and the system segment (with all
tables and buffers) are available when executing the monitor call routine on the file
system segment.

Foreground programs have no corresponding system segment. File system
monitor calls are therefore adminstrated from special file transfer RT programs.
There is one file transfer RT program per device type. The proper file transfer RT
program is started from the monitor call decoder. The RT program has its code in
SINTRAN's resident part. The code contains a call to the routine MMEXY to bring
in the file system segment. Then the proper monitor call routine on the file system
segment is called. Upon return the file transfer RT program terminates itself. These
operations are illustrated in Figure 3.5.

ND-60.122.02

T I e BT sttt BRI St
I Resident | | I | | I
' SINTRAN | | | I | |
|
Monitor call I : I l l I
decoder | | | I I I
Start file trans- | | j I | |
fer RT program | i | I | |
I I Fiie transfer RT l l
I | program | |
Call MMEXY RTEXT
e Call MRSTA ! [
70000 | File system i | | | | |
| data for foregr. ' | | | | | }
100000
L—— Monitor call
routine
File system
segment

Figure 3.5: File System Monitor Call Handling from Foreground Programs
Note that the resident part of SINTRAN, including file system data for

foreground programs, is available when executing the monitor call routine on the
file system segment.

ND-60.122.02

3-6

3.3.2 File System Command Handling

The command segment contains a command processor. When the command
processor finds a file system command, the routine FILSYS on the system
segment is called. One parameter, the address of the file system command
monitor (CMMON) is transferred in the call. FILSYS exchanges segments by
bringing in the file system segment on the expense of the command segment. The
routine CMMON on the file system segment (parameter to FILSYS) is then called,
taking care of the file system operations. Upon return to FILSYS, the command
segment is brought back and control is returned to the command processor. These
operations are illustrated in Figure 3.6.

70000 1= — T — — 1 70000 70000 |—— — — — 70000 700001 —=
System |
Segment l

(TFILSYS
Call MMEXY

|
' |
l Catl CMMON) l —» Call MMEXY
l |

100000 | Command 1opo0 |/ /S 100000 Fite System | 100000 \\ “\r0000di Command
4
Segment Exchanged Segment E xchanged Segment

Fqial_'.'CYS(CMMOJ /// — CMMON \\ L._
7 R —

Figure 3.6: File System Command Handling

ND-60.122.02

3.4

3.4.1

DATA STRUCTURES

Memory Map of Data Structures

Figure 3.7 gives an example of the placement of the most important data
structures used by the file system. The addresses given are taken from a specific

system and may differ somewhat from one system to another.

0

13300 Resident routines, user file buffer

15736 and object file butfer
41061 Device buffers
41213

_——— e e] e o o e e
e s g
70747

71014 \\\\\\ Open file number table 458 words
71241 \\\\ \ Open file table and sequential buffers
74271 K\

30 entries of 1018 words = 30308 words

100000 //// Name table
100341 / Dir. table

Bit file buffers

177777

Figure 3.7: Data Structures used by the File System

ND-60.122.02

1N3QIS3Y

LN3WO3S

LN3WO3s
WILSAS 3714

W3ISAS

3.4.2 Name Table

Figure 3.8 shows an example of a configuration with some mass storage devices.

NORD-10/S

DISC-10MB-1

DISC-33MB-1 FLOPPY-DISC-1

Figure 3.8: Mass Storage Devices

The name table has one entry per mass storage device type available to a given
SINTRAN system. A name table entry gives some general information on the
corresponding device type. Each entry aiso has a text string identifying the name
of the device. {The name table is defined in SINTRAN il listing, part 2, Section
28.13.) The start address of the name tabie is 100000,. Each name table entry
consists of 16, words. Figure 3.9 illustrates the layout of a name table entry (as
defined in the file system listing, Section 1.5). Figure 3.10 illustrates the
complete name table.

0
DVNAM DEVICE NAME
(MAX. 208 CHARACTERS)
10 PAVA1
PAVAI T . i
hy PAV A } otal r?o of pages available
on device
12 SECTO Sector size ('no. of words/sector)
13 NFLAG See below
14 PTRNS Address of driver routine
15 NLOCK Logical device no. of file transfer lock
2}
$&E 3
££3 §
nFLag [[] [1 1

CTBIT — Cartridge disk
DRBIT —- Drum
TUSER — Single user device

5F LOP — Floppy 'disk
Figure 3.9: Name Table Entry

ND-60.122.02

NAMTAB
(100000g) NTLEN
ENDNT

Figure 3. 10: Name Table

ND-60.122.02

3.4.3

Directory Table

The directory table has one entry per file unit in the system, i.e., there is one
entry corresponding to each device being capable of holding a directory, as
illustrated in Figure 3.11.

DIRTARB 8 DISC-33MB-1 Unit 0
} DTLEN k_/: DISC-33MB-1 Unit 1
:258
O FLOPPY-DISC-1
ENDDT

Figure 3. 11: Directory Table

Some of the information in a directory table entry is fixed at system generation
(defined in SINTRAN Il listing, part 2, Section 19.14), while some of it changes
dynamicaily depending on the medium currently mounted, the usage of the
medium, etc. Each directory table entry has 25, words with layout illustrated in
Figure 3.12 {as defined in the File System listing, Section 1.4).

The entries OBFIL, USFIL, BIFIL and BLEFT are double word elements. The

entries LOBFI, LOSFI, LFILE and CFILE used for tapes, are single word
elements, they occupy only the first word in the double word element.

ND-60.122.02

o

DN AW N =

1"
12
13
14
15

17

21

23
24

DFLAG See below
DUNIT See below
LUNIT See below
DLOCK Logical «device no. of | directory lock
DRESE Reserve no. for directory
DNAME - [-)_irectoF\? n;nam;;. Easg\ar—acte_rs)_ _______ -
OBFIL (LOBF1) Object file pointer
Tape: Highest object index
USFIL (LUSFI} User file pointer
Tape: Highest user index
BIFIL (LFILE) Bit file pointer
Tape: Last file
PLEFT (CFILE) Pages left (not reserved) Tape: Current file
(CRECO) __ Tape: Current recordwithinfile ____ o
O
LSS
SIS
&9
ortac [[T 1 1 | FiLE OPEN COUNT |
17 1615 1413 12 0
DENTE — directory entered
DMAIN — main device
DTAPE — tapeflag
DDAUF — default directory
DTUSE — tape used
DUNIT ﬁys. unit] Device no.]
17 14 13 0
LUNIT [Logical unit | Name index
17 107 0

Figure 3. 12: Directory Table Entry

ND-60.122.02

AHLIN3 AHOLD34I4

Figure 3.13 illustrates the permanent relationship between a directory table entry
and the name table.

DIRECTORY TABLE ENTRY NAME TABLE

NAMTAB

LUNIT] — —J_ _ _ ___

Figure 3.13: Directory Table Entry/Name Table Rela tionship

The broken line indicates an “implicit”’ pointer represented by an entry number
used as index to locate the proper entry in the name table.

Operations in the directory table are protected to prevent simultaneous accesses to
common data. All searches for a specific directory are protected through a general
lock semaphore, GLDN. Once the desired directory entry is found, the directory
lock semaphore, DLOCK, of this specific directory entry is reserved, before the
geneal lock semaphore is released.

ND-60.122.02

3.4.4

UEBUF

25
26

36
37

41

43

47
50
51

55

0

W N =

3-13

User File Buffer

The user file buffer resides in resident memory. It is preceded by a control
information part related to the index block structure of the user file. The buffer
area is used for one user file entry at a time. The size of the user file buffer and
preceding control information is 65;. It has the iayout illustrated in Figure 3.14.

ULOCK Logical device no. of user file buffer tock
UDIRI Directory index
UPART Current user index in index buffer
UINDP Firstindex no. in index buffer

Tape: Position of current user entry
UINDX Array for 108 indices

Copied from index block
208 words

—_———— e —

UENTE See below
UNAME User name (max. 208 characters)
108 words
UPASS Password
UDATE Date created
UDENT Last date entered
UPAVA No. of pages available for this user
UPUS1
UPUS?2 UPUSE — No. of pages used by this user
UNDEX User index of this entry
MAILF Mail flag
DFIAC See below
UFREE Free
UFRIE Friend table for 8 friends (see below)
108 words

ND-60.122.02

4344N89 374 43IsN

@
0<<

O N
UENTE L l\\\\\\\\\\\N l Enter Count
17 10 7

Q
<
350

ol

UUSED — entryinuse flag
UOFLG — user object entry flag (1 = user entry)
ENTER COUNT — gives the number of times this user has been entered
<
T
R\
DFIAC L Default file access I J]
17 21 0
BROAF — broadcast flag
MESSF — message flag

An entry in friend table has the following layout:

MD lC IA[WlRl User Index

17 1615 1413 12 1110 7

oL

entry used
directory access
common access
append access
write access
read access

TSP OOC

Figure 3. 14: User File Buffer

Operations on a user file entry takes place when the entry resides in the user file
buffer. The program operating on the buffer has reserved the user file buffer lock,
ULOCK. The locations UDIRI and UPART identify the contents of the buffer. The
array UINDX holds 10; indices (20, words) from the user file index block of the
corresponding directory (see Figure 2.10). This, in fact, is the entire index infor-
mation. Therefore, UINDP, which was supposed to identify which part of the

index block that was present in UINDX, is redundant and is not used.

ND-60.122.02

3-15

3.4.5 Object File Buffer

The object file buffer is organized in the same way as the user file buffer. It
resides in resident memory. The layout is illustrated in Figure 3.15.

17 16 1514 13

OEBUF 0 OLOCK Logical device no. of object file buffer lock
1 ODIRI Directory index
2 OPART Current object index in index buffer
3 OINDP First index no. in index buffer
Tape: position of current object entry
5 OINDX Array for 108 indices
Copied from index block
208 words
25 OFLAG See below T T T T T T —™—
26 ONAME Object name (max. 20B characters)
108 words
36 OTYPE N File type
40 DNEXT Next version
41 QOPREV Previous version
42 OACCE See below
43 OFTYP See below
44 ODEVN Device no. if peripheral file
45 OUSER See below
46 ONDEX Object index of this object entry
47 OCOUN Current open count
50 OOPEN Total open count
51 ODATC Date created
53 ODATR Last date opened for read
55 ODATW Last data opened for write
57 OPAGE No. of pages in file
61 OBYTE No. of bytes in file
63 OPOIN See below
“ o &
CLH& O
NI
g O O O
oftag | | [T]
0

(continues)

ND-60.122.02

H334Nn8 3714 1L23ra0

(continued)
QOUSED — entry used
OWRTE - opened for write at present
ORESE — reserved
OBACK — has been modified (originally aimed towards backup
systems. Not in use at present)
Public Friend Owner

OACCE | |DCAWR [DCAWRJDCAWR |

16 12 11 54 0
D directory name
C common access
A append access
W write access
R read access

A
A
T N A A SA &
Q@ NOA N AN
FFL IS IEL @
SO XS o000 9

OFTYP | [TTTTTT

OTMBIT — temporary file
oLBIT — library file
OMBIT — magnetic tape file
OABIT — allocated file
OCBIT — contiguous file
OIBIT — index sequential file
OSBIT — spooling file
OPBIT — peripheral file
oTBIT — terminal file
OUSER [TERM [USER]
TERM — terminal number of reserving user
USER — userindex of reserving user
e
S&
RS

OPOIN —I-—' FILE POINTER

SUBIN — subindex pointer
INDX — index pointer

Figure 3. 15: Object File Buffer

ND-60.122.02

3.4.6

3-17

Bit File Buffers

There is one 20, words buffer for each disk or drum directory entry. The buffer
will only hold the current part of the bit file. Each buffer is preceded by 3 words
control information. The layoutis illustrated in Figure 3.16.

0 BDIRI w Directory index

1 BPART Current 208 word block in buffer

2 BLOCN Logical device no. of bit file buffer lock
3 BBUFF

Bit file buffer

g BBLEN = 23g

Figure 3.16: Bit File Buffer

The bit file buffers reside on the file system segment {segment 6) from location
BFBUF to location ENDBF.

A bit file is split into logical blocks of 20, words. BDIRI and BPART identify the
block being present in the buffer. Operations on the bit file are protected through
reservation and release of the bit file buffer lock semaphore, BLOCN. To maintain
a high degree of security, the file system attempts 10 keep directory structures
consistent at all times. As part of this attempt, the file system will always write a
bit file buffer back to the device as soon as possible whenever a change has taken
place.

ND-60.122.02

3.4.7

3-18

System Segment

The first part of every system segment is used by the file system for operations
requested by the corresponding background program. Foreground programs do
not have a system segment. Instead, all foreground programs share a file system
data area in resident memory with the same layout as the system segments. The
logical (and physical) address space of this area corresponds to the logical
address space of the system segments. This has been done to allow similar
operations for background and foreground programs. In the rest of this section
we discuss the layout of system segments. The discussion also applies to the fite
system data area for foreground programs.

Each system segment has the layout illustrated in Figure 3.17.

ND-60.122.02

3-19

70000 |TDVN List device no. (=1)
1 CUSER Current user entered (= —1 initially)
2 USDI User’s default directory
3 USNO User index in default directory
4 CRTREF RTREF of calling program
5 QOFLCK Logical device no. of open file table lock
6 [STACK Stack used for data by
routines in the file system
7008 words
70706 ESTCK Stack overflow area
7 words
70715 ASTCK A & D registers saved by ENTER
70717 JCSTCK Current stack pointer (= STACK initially)
70720 SUUBR SPUSH Push routine for ENTER
70736 SUBR SPOP Pop routine for LEAVE
70747 NV 100 Max. no. of files simuntaneously: opened
70750 OPTAB Open file no. table
Table t6 convert from file no. to address of
408 words corresponding file table entry. Used by routine
LOGPH.
71010 OPSPO Table for spooling entries
71014 SPOOL Start of free list
71015 NPOOL
71016 SDFLAG
71017 Misc. monitor call routines
for INBT and OUTBT
71145 (continues)

ND-60.122.02

3-20

(continued)
71146 ADDR

47 BACKX

50 BBREG

51 TTREG

52 {SASEG

53 (COPSEG))

54 > Subroutine to call routines on.

operator communication segment
Code

J

712563 BPOOL Buffer poo! containing open file table
and buffers for sequentially accessed files.

30308 words

74302

Figure 3.17: System Segment Layout

There must be at least one 64,, word buffer for each open file (see Section
3.4.8). These buffers are allocated from BPOOL. Each buffer is preceded by a
link cell giving the layout of Figure 3.18.

-1 BLINK Buffer link
0 BDATA
'IOO8 words

Buffer data used for open file table
entries (see Section 3.4.8),

library table entries and sequential buffer data !

77 J

Figure 3. 18: Buffer Layout

ND-60.122.02

3.4.8

3-21
Open File Tables

Open file tables contain information on opened files. Open file table entries of
background programs are aliocated from the BPOOL area on the corresponding
system segment (see Figure 3.17). Open file table entries of foreground programs
are allocated from the resident file system data area.

Each opened file has an associated file number in the range 100, - 121,. The open
file number table, OPTAB, has a pair of entries for each file number. The first
entry of the pair is used when a file is opened for input, while the second entry is
used when a file is opened for output. Each entry contains the address of the
corresponding open file table entry. OPTAB resides on the system segments (for
background programs) and in the resident file system data area (for foreground
programs). See Figure 3.19. The structure of OPTAB is similar to that of the
logical number tables used by the I/O system. Therefore, the routine LOGPH is
used for lookup in both tables.

OPTAB File na. 1003 - input
File no. 1008 - output

File no. 1078 -input |

File no. 1078 - output

BPOOL

Open file table entry

Figure 3.19: Correspondence between File Number and Open File Table Entry
ND-60.122.02

~N O s WN - O

- 4 a3 e ew
D oA W = O

—_
~

NN
- O

N
N

NN
How

N
)]

27

31

51

53

71

OFTYR Ll

{continues)

The layout of an open file table entry is illustrated in Figure 3.20.

Since a file may be reserved, the first part of an open file table entry may be used
to establish the entry as an element in a reservation queue. This explains the
resemblance with the standard part of data fields.

OFRSL RESLINK

OFRTR RTRES Corresponds to standard

OFRWL RWLINK part of data fields

OFTYR TYPRING (See below)

RWFIELD Data field address for monitor calis

OFACC Opened access code

OFFTP File type

DFFLG Flag word (see below)

OFBUF Buffer pointer

OFLIB Library buffer pointer

QFCB Current buffer filling into

NFENB No. of buffers in buffer queue

QFBLZ Logical block size

OFDIR Directory index

OFOBJ Obiject index

QFIP1 FIP Byte pointer (current)

QFIP2

DOFOP1

OFOP2 OFOP Byte pointer (max.)

QEIND OF 10D Peripheral: Input data field - Cont. file: No. of pages
QFOuUD {OFPAG)Peripheral: Output data field expanfied or no. of
OFFP File pointer pages in file
INDX1 Current index in first index buffer

INDA1 First index buffer

208 words

INDX2 Current index in second index buffer

INDA2 Second index buffer

208 words

&L
o

o O
——

17 1

ND-60.122.02

3-23

(continued)
OFIOB — opened for sequential access
OFRFI — mass storage file
& . <&
SIT o8&
RESISIEESRS
OFFLG HEREEN]
17 16 15 1413 12 0
PERMF — permanent opened file
INFLG — change index buffer flag
0 = first buffer last changed
1 = last buffer last changed
OFWRT — file opened for write
INDB1 — write back index buffer one
INDB2 — write back index buffer two
OFSCR — scratch file

Figure 3.20: Open File Table Entry

Open file table is allocated from BPOOL (declared in file system listing, Sections
1.6.3and 1.2.8) at address 71253,.

ND-60.122.02

3.4.9

3--24

Device Buffers

Device buffers are used for random 1/0. Each device buffer has room for one page
(1K words}. The minimum number of device buffers in a system is:

— one for each floppy unit

— one for each mag. tape unit
— one for each spooling device
— one shared among all disks

If additional device buffers are wanted, this must be specified through a SINTRAN
generation parameter.

{f a block oriented device is accessed sequentially, only a %K part of the buffer is
used. This will be indicated in the device buffer header location DNUMB (see

below), and applies to Versatec, mag. tape, floppy disk and spooling devices.

Each device buffer has a corresponding device buffer header. The header contains
descriptive information identifying the contents of the buffer.

The layout of a device buffer header is as given in Figure 3.21.

0 RESLINK
1 OFRTR RTRES
2 RWLINK Standard data field part
3 TYPRING
4 DNUMB Directory index (see below)
5 CPAG1 (PART 1)
6 CPAG2 }CPAGE (current page in buffer)
7 LNUMB Logical device no. of device buffer jock
10 DZERO Memory address (part one)
11 BUFFER Buffer address
12 DBLOC No. of sectors {(words)
13 DBLOA Block address
14 DKFUN Transfer function
15 DPNTO
16 DPNT1
Parameter pointers for ABSTR
17 DPNT2
20 DPNT3
21 D4SI1Z No. of 25610 words buffers occupied
DBLEN = 229
1 14 0 0 - 377 fil tem direct
- : ile system director
DNUMB l 1 ’ Directory Index 1 400: onlyy%K in use Y

Figure 3.21: Device Buffer Header

ND-60.122.02

The device buffers reside in resident memory from DEVBU to ENDBU (declared
in SINTRAN Il listing, part 2, Section 29.10) .

Figure 3.22 illustrates some relations between data structures.

DEVICE
_ BUFFER
OPEN FILE TABLE
ENTRY
OFBUF)
OFDIR o]
DIRECTORY
TABLE ENTRY
LUNIT
NAME TABLE
ENTRY
PTANS o

DRIVER
ROUTINE

Py

Figure 3.22: Some Relations between Data Structures

ND-60.122.02

3.4.10 File System Stack

3-26

Each system segment has a stack (STACK) used for data by routines in the file
system (see Figure 3.18). Foreground programs use a stack in resident memory.
This allows several background programs and one foreground program to be
inside the file system simultaneously. Figure 3.23 illustrates how the file system
utilizes several stacks simultaneously.

RESIDENT
MEMORY

FILE
SYSTEM

(reentrant)

STACK

FOREGR.
RT PROG.

STACK

STACK

STACK

Figure 3.23: File System Stack Usage

ND-60.122.02

SYSTEM
SEGMENTS

BACKGROUND

EGMENTS

3-27

Whenever a routine in the file system has been called, an entry in the active
stack {i.e., the stack on the system segment of the active background program
or the stack used for foreground RT programs) is allocated. The size of the entry
varies depending on the called routine. The area is released prior to return from
the routine.

The administration of the file system stack is performed by two sequences of
instructions enclosing all routines. These sequences (macro expansions) are

called ENTER and LEAVE, respectively. See Figure 3.24.

ENTER % allocate stack entry
% routine code
LEAVE % release stack entry

Figure 3.24: File System Routine Organization

The actual operations on the stack are performed in the routines SPUSH
(allocate) and SPOP (release). These routines are called from ENTER and
LEAVE, respectively. SPUSH and SPOP operate on the current stack pointer,
CSTCK, which always points to the first free iocation in the stack. See Figure
3.25.

\
STACK
HJUSE/////
CSTCK
FREE } 7008 WordS
ESTCK STACK
OVERFLOW 7 words
AREA

Figure 3.25: Stack Organization

ND-60.122.02

3-28

The overflow area is used as stack entry for the error routine in case of stack
overflow.

A stack entry consists of two parts: a 6 word register save area and a variable
length data area. The layout is given in Figure 3.26.

XREG
TREG
AREG
DREG
LREG
BREG

DATA

AREA
- 172 words

Figure 3.26: Stack Entry

ENTER and LEAVE flow charts are illustrated in Figure 3.27 and 3.28, respective-
ly.

ENTER: Enter Sequence

AD = :ASTCK
L=:A
B =D

Stack entry size = :B

CALL SPUSH

Figure 3.27: ENTER

LEAVE: Leave sequence

--STACK ENTRY SIZE =:2

CALL SPOP

Figure 3.28: LEAVE

ND-60.122.02

The routines SPUSH and SPOP, are described in flow charts in Figure 3.29 and
3.30, respectively. The state of the stack before and after ENTER is illustrated in
Figure 3.31, while Figure 3.32 shows the state before and after LEAVE.

SPUSH: Stack Push

X = :STACK (CSTCK)

AD =:STACK (CSTCK +4)

X+B=:0
B << ESTCK
YES NO
B = :CSTCK STACK
OVERFLOW
X = :B

T= :STACK {8 +1)

ASTCK = : STACK (B +2)
(double word)

STACK (B) = :X

EXIT

Figure 3.29: SPUSH

ND-60.122.02

3-30

SPOP : Stack pop

CSTCK + A =:CSTCK
B=:X

STACK (CSTCK +4) =:L
STACK (CSTCK +5) =B
STACK (CSTCK + 1) =T
STACK (CSTCK +2) = :A
STACK (CSTCK +3) = :D
STACK {CSTCK) =:X

EXIT

Figure 3.30: SPOP

BEFORE ENTER AFTER ENTER

XVAL
TVAL

CSTCK CSTCK | i AVAL
DVAL
LYAL

| BvaL.

X|XVAL X —

TITVAL T TVAL

AlAVAL A AV AL

DiNVAL D DVAL

L|LVAL L

B{B8vAL 8 J

REGISTERS REGISTERS

STACK STACK

Figure 3.31: Stack State before and after ENTER

ND-60.122.02

> Stack

entry size

3-31

BEFORE LEAVE AFTER LEAVE
XVAL W
TVAL
CSTCK B AVAL CSTCK FREE
PVAL
LVAL
BV AL >Stack
entry size X XVAL
T| TVAL
Al AVAL
D| DVAL
J L] Lvar
- 8| BVAL
REGISTERS
STACK STACK

Figure 3.32: Stack State before and after LEAVE

ND-60.122.02

3-32

Due to the systematic stack technique used in the file system, it is possible to
read the dynamic routine call structure out of the stack.

The LREG location in a stack entry always gives the return address from the
corresponding routine. The BREG location in a stack entry always gives the
address of the previous stack entry. See Figure 3.33.

4—7
LREG return address
BREG —t
fg—,
LREG return address
BREG J

LREG return address
BREG

estox [3—J | enee

Figure 3.33: Stack Showing Dynamic Routine Call Structure

ND-60.122.02

3.4.11

3-33

File System Error Handling

The File System is organized as a set of routines. For a given operation a certain
calling sequence will be performed. With a few exceptions all routine calls have
two return points: an error return and a normal return. The error return is the
instruction following the call, while the normal return is the second instruction
following the call, therefore referred to as the skip return.

Example from the FOPEN routine (9.5):

CALLFCON

GO ERET % error return
IF.... % normal (skip) return

The called routine (FCON in the example above) has the responsibility of returning
to the proper address. The LREG location in the stack entry (see Figure 3.33) will,
as a result of the SPUSH routine (part of the ENTER macro), contain the address
following the call, i.e., the error return address. LREG is used by the SPOP routine
{part of the LEAVE macro) when a routine wants to return to the caller. When skip
return is desired, the LREG locatin must be incremented by 1 prior to execution of
SPOP. Therefore, the final part of routines usually read:

MIN LREG % increment LREG

*LEAVE % return

The structured error hapdling design described above, enables the file system to
report an error situation upward in the call hierarchy. An error detected in a routine
at any level can be reported all the way up to the top before it is communicated to
the user. For file system commands the top of the hierarchy is represented by the
routine CMMON on the system segment (see Section 3.3.2). This routine also has
an error return and a normal return. The error return part will call an error routine
which will communicate the error message to the user’s terminal. For monitor calls
the top of the hierarchy is rapresented by the COMENTRY routine on the system
segment for background programs, and by the COMMON routine called form the
file transfer RT programs (part of the I/O system) for foreground programs (see
Section 3.3.1). These routines also have an error return and a normal return. In the
normal return part the P register of the calling program will be incremented by 1, in
the error return part it will not. Thus, the error is reported over to the calling
program where a corresponding error return/normal return technique may be used
to take care of file system errors. The structure of the routines CMMON and
COMENTRY is shown below.

ND-60.122.02

3-34

CMMON:

JPL 0, X % Call some file system routine

CALL ERROR % Error return

*LEAVE % Normal return

COMENTRY:

CALL MRSTA % Call some file system routine (MRSTA is a location in a
% working data field)

GO ERET % Error return

MIN ZPREG % Normal return

% {Increment P register of calling program)

The routine COMMON has a structure similar to that of COMENTRY.

ND-60.122.02

3.6

3.5.1

70000

100000

3-35

FILE SYSTEM COMMANDS

Parameter Collection

When a user issues a file system command, the appropriate routine on the file
system segment is entered (see Section 3.3.2). The parameters to the command
will then be collected by calls to the file system routine CLPAR. CLPAR will be
called once for each parameter. CLPAR will then call the routine OPCAL on the
system segment. OPCAL exchanges the file system segment with the command
segment and calls the routine GLPAR on the command segment. GLPAR is the
general parameter collect routine used for all commands. When control is returned
to OPCAL, the original (file system) segment is brought back (exchanged with the
command segment) and control is then returned to the routine CLPAR.

Figure 3.34 illustrates the sequence of operations involved in parameter collecting.
Note that OPCAL is a general routine taking one parameter, which is the routine to
be called (GLPAR in this case).

o—————o === Fo—=—==
Syrom | | | | '
Segment | OPCAL | | | '

I ICALL MMEXY] I | | |
| CALL GLPAR ™Y | CALL MMEXY | 1
} | I r. | |
—_————d e R

Segment i Exchanged Exchanged

/ Command / File System
File System Sagment Segment

/1 /]

GLPAR /

CLPAR

CALL OPCAL |/ / / CLPAR
'/ /

Figure 3.34. Parameter Collection

ND-60.122.02

3.5.2

Create Directory

Below is a flow diagram of the create directory routine. (The number in paren-

theses refers to the section number in the file system listing.)

CRDIR: Create directory (10.2)

*ENTER

Collect Parameters

Is this a single user device?
Yes

No

L Is this user SYSTEM?

Yes

No

General lock

Error: you are
not authorized
to do this

s a directory with this name already

I
Nom es

Error:
Does unit exist? Directory’
Yes No ~eatgred __—
Error: No such

Is a directory entered on the unit?

logical unit

No es
Error:
Lock directory unit occupied

General uniock

May this unit be reserved?
No Yes

Reserve for DUMMY . Reservation

\ Yes

Error: Device

o Floppy disk?
Yes

ecial use

Set format = 0 in data field

Move 1 param. (directory name) to DNAME in directory entry

Clear object and user file printer

Find bit file address, either specified as parameter or defauited to
end of device for drum, middle of device for disk and floppy disk.

Set PLEFT in directory equai to PAV Al in name table entry

{continues)

ND-60.122.02

No funit reserved for

(continued)

Test device by writing onto the bit file

Reserve page for master block

Reserve page(s) for bit Read and compare all
file other pages

Read master block

Copy directory entry to master biock

Unlock directory

Write master block

Increment return address

Directory reserved?
Yes

No

Release directory

*LEAVE

Figure 3.35: Create Directory

ND-60.122.02

3.6.3

Enter Directory

ENDIR: Enter directory (10.4)

*ENTER

Is a user entered?

No

Is a directory entered

No

Yes

Coltlect parameters

Error: No user
entered

Set format = 0 in data field

Read master block

Compare 1 par. (dir. name) with DNAME in
dir, entry, Match.

General lock
Directory entered?
No es
Error: unit
Lock directory occupied
General uniock
May this unit be reserved?
No Yes
Reserve for DUMMY, Reservation ok?
Yes No
. Error: device
Fioppy disk?
Py unit reserved
Yes No

Yes — No
Is directory name already in use? Error: directory
not on specified
No as nit

Set up directory entry

if the contents of the user and/or object buffer is related to this
directory index, indicate that the contents are obsolete. (Belonged
to the previously-entered directory on this unit.)

Indicate that bit file buffer contents are obsoite.

{continues)

ND-60.122.02

Error: directory|

entered

(continued)

For user 0 to user 3778 do

Does user exist?

Yes
For file Q to file 3778 do
Does file exist?
Yes o

Clear ““open for write” bit, “reserved’’ bit,

‘‘reserving user’’ information, and “durrent

open count’ if necessary.

4 1

Is a main directory already entered?

No

Yes

For user 0 to user 3778 do

Does user exist and is
enter count |
Yes No

Clear enter count l

Clear “main’’ bit and
default bit of this
entry

Set “main bit and ‘‘default’’ bit of this entry

Set "‘entered’’ bit

Increment return address

Unlock directory

* LEAVE

Figure 3.36: Enter Directory

ND-60.122.02

3.5.4

3-40

Create User

CRUSE: Create user (10.10)

Collect parameters and
separate string

General lock

Is directory specified?

repeat until unused user entry

Yes No
Get specified Get main
| directory index directory index
Get directory address
Get name table address
Is the device a single
user device?
Yes No
Is this user SYSTEM?
Yes No
., Error: You are
Lock directory not authorized
hi
Main directory “"d"\‘y
Yes No
Does user exist in main
Yes irectory? Nq
General uniock Error:No
such user in

paindirectory

Read next user entry
and test UUSED bit

Entry found

Yes No
Create new user Error: Too
entry by setting many users

UUSED-bit, copying
user name (parameter)
clearing password,
and setting creation
date

Increment return address

Unilock directory

LEAVE

Figure 3.37: Create User

ND-60.122.02

3.6.6

3—-41

Delete User

DLUSE:

Delete user {10.12)

Collect user name

Get directory address

Get name table address

Yes

Single user device
(e.g. floppy)?

No

Is this user SYSTEM

?
Yes

No

Lock directory

Read user entry

Yes

No. of pages used -?0

No

Error: You are
not authorized
o do this

Yes

I's this on main

directory? has files

No

Yes

Is user logged in?

No

Error: User

for all user emries on this directory do

entered

Is entry us7ed
Yes . Ng

for ail friend entries do

Is entry us;d
Yes - Ng

Is friend index=
deleted user
Yes ? Ng

—p

Clear entry

Return reserved pages
to directory

Clear user entry

Increment return address

Uniock directory

LEAVE

Figure 3.38: Delete User

ND-60.122.02

Error: User

3-42

3.5.6 Create File

CRFIL: Create file (10.26)

Collect parameters

1 Create object entry (entries)

Indexed file {i.e. 2.;:ar =0)

2 Change ‘‘pages used’’ in user entry

3 Search for a contiguous
area, start at high end
of disk addresses

4 Allocate pages By
setting bits in bit file

5 Set file pointer and
number of pages in object
entry

Increment return address

Unlock directory

LEAVE

Figure 3.39: Create File

If a file is to be created in several versions or if the command CREATE-NEW-
VERSIONS is issued, the actions in the boxes numbered 2, 3, 4 and 5 will be
repeated for each version. Also, the box numbered 1 will create one object entry
for each version.

ND-60.122.02

3.6.7 Delete File

DLF{L: Delete file (10.31)

Collect parameter (file name)

Get file index

Get directory address

Is this a tape device?
No Yes

Hepeat for all versions of the Tile Error: lilegal
Get next version (version 1 first) on tape device
Get file access
Does this user have directory
Yes access? No
Error: Not
Delete object entry directory access

Write back bit file buffer

Increment return address

Get directory address

Unlock directory

LEAVE

Figure 3.40: Delete File

ND-60.122.02

344

3.56.8 Open File

OPENF
10.38
CLPAR CLPAR
1244 1244 Open file and return file no.
Collect 1 parameter Collect 2 parameter
{file name) (access)
File connect
Find file to open Set up open file table entry
ROBJE GDIRA WOBJE
8.2 4.1 83
Find open file Read object Get directory Get name Get buffer Write object
table entry entry address table address set from pool entry

Figure 3.41: Open file command — Call Hierarchy

ND-60.122.02

3-45

OPENF: Open file (10.38)

Colilect parameters

Legal access code combination?

Yes

No

Lock open file table (foreground) ERbB2

CALL FOPEN
{Open file and return file number)

Unlock open file table

Output applied file number

Increment return address

LEAVE

Figure 3.42: Open File Routine — Flow Diagram

The last parameter to the open file command, the access type parameter, is
returned (from GLPAR) as a function value in the A register. The access type is
coded in the 6 rightmost bits as follows:

15 54 3 2 10

InPXcialwir

All legal combinations form a set of values. The table below shows the legal
combinations, the corresponding values returned in the A register, and the internal
access codes used by the file system.

Parameter Value returned from GLPAR Internal access code

W 2 0
R 1 1
WX 22 2
RX 21 3
RW 3 4
WA 6 5
wC 12 6
RC " 7

ND-60.122.02

3-46

3.6 FILE HANDLING MONITOR CALLS

For a general discusssion on file system monitor call handling see Section 3.3.1.

3.6.1 RFILE/WFILE

RFILE/WFILE: Read file and write file (11.5)

Is there a file opened with this file number?

o
; i1) rror: No file
Is this a mass storage file ? bpened with this
Yes No number
Open for sequential access? Error: Not mass
storage file
No Y
Block address —1 Error: Not
opened for ran-
Yes No read/wri
WFILE?
Current byte pointer (OF |P): =
block address * block size * 2 — 1 Yes No

Max. byta pointer (OFQP): =
current byte pointer (OFIP)

y
WFILE ?
Yes No
CALL FWRT (mem. ad., no. of AGTP and currant > max.
words) No as

Error: End of
CALL FREA (mem. ad., no. of words) file

MAGTP?
Yes No

Return actual number of words
transferred

LEAVE

Figure 3.43: RFILE/WFILE

ND-60.122.02

347

3.6.2 Input Byte from File

This routine is executed on level 4 {INBT/OQUTBT level).

FINBT: Input byte {(11.1)

Is the file empty (max. byte pointer, OFOP, = —1)?

No es

is max. byte pointer < current byte pointer

No es
Current buffer empty? E_"Of: End of
Yes No file
CALL MRFI
{Read buffer)

increment current byte pointer (OF IP)

Get byte (return in programs A reg.)

Increment programs P reg. (Skip return}

WAIT

Figure 3.44: FINBT

ND-60.122.02

APPENDIX A
A GUIDE TO THE FILE SYSTEM LISTING

The most frequently used routines on the file system segment are placed at its
beginning in order to reduce swapping ovérhead.

The routines in the file system listing, however, are organized with respect to
coherent operations. This will not coincide with an ordering based on memory
addresses.

Table A.1 illustrates the correspondence between memory address and file
system section number.

Table A.2 gives the contents of the listing ordered by chapter, while Table A.3

lists all routines ordered by section number. Table A.4 lists all routine names
ordered alphabetically.

ND-60.122.02

Address
in resident

14140
14312
15511
15603
15675
15763
16044
16263
16326
16412
16717
16733
16764
17002
17112
17115
17433

17516

Section in
Listing

1.8-1.9

2.0

3.5-3.7.1

3.9-3.10

41-42

9.13 (last part)

9.14-9.15

9.16 - 9.17 (parts)

11.7 (partly)

11.9 (partly)

1.1

11.12

11.14

11.15

12.1

12.2.2-12.3.5

12.7.4

Address on file

Section in

system segment Listing

101300
103267
104416
106421
107013
110356
110500
110550
112026
112233
113410
116322
137102
141205
173331

173645

Address on

2.1-29

6.1-6.2

9.11-9.13

9.16-9.17

11.3-11.14

121

9.21

3.1-34

3.7.2-38

3.11-3.15

4.3-5.8

6.3-9.10

9.18-9.27

10.2-10.63

12.4-12.6

Section in

system segment Listing

70000
70750
71014
71017
71146

74252

Table A. 1: Memory Address — Section Number

ND-60.122.02

1.6.1

1.6.2

1.6.3

11.1-11.2

12.8-129

Chapter:
1 Definitions
2 Buffer routines
3 Auxiliary routines
4 Directory routines
5 Bit file routines
6 Index block routines and spooling routines
7 User file routines
8 Obiject file routines
9 Open file table routines
10 Command processing
1 Monitor call processing
12 ABSTR, MAGTP, semaphore lock routines, etc.

Table A.2: Chapters of the File System Listing

ND-60.122.02

A4

Table A.3: Sections of the File System Listing

1.01
1.02
1.03
1.04
1.05
1.06.1
1.06.1
1.06.1
1‘06.2
1.06.3
1.07
1.08
1.09
1.10
2.00
2.00
2.00
2.00
2.00
2,00
2.00
2.01
2.01A
2.02
c.03
2.03A
2.04
ZOOAA
2.05
2.06
2.09
3.01.1
3.01.1
3.01.2
3.01.2
3.01.3
3'01.3
3.01.3
3.01.3
3.02'1
2.02.1
3.03.1
2.03.1
2.03.2
3.04
3.04
2.05
2.05
3.07.1
3.07.1
3.07.2
3.08
3.09
3.10

AUXTLIARY
MACROES

NDEVICE RUFFERS
DIRECTCRY TABLE

NAME TABLE

SPOP

SPUSH

SUBR. STACK
CONTEXT BL

RUFFER POOL

BIT FILE BUFFER
USER FILE BUFF
NBJ. FILE BUFF

FILE RT=-PROG
G3RUF
G3IBUF
G3NWT
CS5BUF
R3BUF
R3IBUF
R5BUF
GDEVS
FIDBU
RDEVR
RRLOC
RCBLO
wBLOC
WwCBLO
PTAPE
WEOT
WTAPE
MOCTA
OCTAL
DECIM
MDECI
DDECI
MDDEC
MTwOD
TWODE
OUTRC
QUTST
LDATE
MDATE
LACCwW
INSTR
STRNG
GETCH
PUTCH
ACOPY
COPYS
APPST
COMPS
SETBL
coPyB

DECLARATIONS
DECLARATIONS
DECLARATIONS
DECLARATIONS
DECLARATIONS
SYSEG

SYSEG

SYSEG
CECLARATIONS
SYSEG
DECLARATIONS
FILSEG?2
FILSEG?
DECLARATIONS
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
FILSEG]
FILSEG]
FILSEG]
FILSEG]
FILSEG]
FILSEG]
FILSEG1
FILSEG]
FILSEGI
FILSEGI
FILSEG2
FILSEG2
FILSEG?2
FILSEG2
FILSEG2
FILSEG?
FILSEG?2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG?
FILSEG2
FILSEG?2
FILSEG?2
RESIDENT
RESIDENT
RESIDENT
RESIDENT
FILSEG2
FILSEG?
RESIDENT
RESIDENT

ND-60.122.02

SYMBOL DEFINITIONS
REGISTER DEFINITIONS

POP SUBRCUTINE STACK
PUSH SUBROUTINE STACK
ENTER/LEAVE STACK
OPEN FILE TABLE

BUFFER FCR USER ENTRY
BUFFER FCR OBJUECT ENTRY

GET MASS STORAGE BUFFER

GET MASS STORAGE BUFFER

GET MASS STORAGE BUFFER

GET MASS STORAGE BUFFER
RELEASE MASS STORAGE BUFFER
RELEASE MASS STORAGE BUFFER
RELEASE MASS STORAGE BUFFER
GET DEVICE BUFFER

FIND DEVICE BUFFER HEADER
RELEASE BEVICE BUFFER

READ 1K FROM DEVICE

READ AND COMPARE 1K FROM DEVI
WRITE 1K TO DEVICE

WRITE ANG COMPARE 1K TO DEVIC
POSITION TAPE

WRITE END OF TAPE

WRITE DATA ON TAPE

OUTPUT OCTAL NUMBER ON TERMg
OUTPUT OCTAL NUMBER ON TERM,
OUTPUT DECIMAL NUMBER ON TERM,
OUTPUT DECIMAL NUMBER ON TERM.
OUTPUT DCUBLE DECIMAL NUMBER
OUTPUT DCUBLE DECIMAL NUMBER
OUTPUT TWO DIGITS DECIMAL
OUTPUT Tw0o DIGITS DECIMAL
OUTPUT STRING ON TERMINAL
OUTPUT STRING ON TERMINAL
LIST DATE

LIST DATE

LIST ACCESS WORD

INPUT STRING

INPUT STRING

GET CHARACTER FROM STRING

PUT CHARACTER TO STRING

COPY STRING (ALT. PAGE TABLE)
COPY STRING

APPEND STRING TO STRING
COMPARE STRINGS

SET BLOCK CONTENTS

COPY BLOCK

3.11
3.11
3.12
3.13
3.14
3.15
4.01
4,02
4,03
4,064
4,05
‘0.06
4.0h
4.07
4,08
S.01
5.02
5.03
S.04
S.05
S.06
5.05
5.07
5.08
€,01
€.01A
6.02
€.03
€.006
€.0S
€.05
€.05
€.05
6.06
€.07
€6€.08
6.09
€.09
€.10
6.11
6.12
.13
6.10
€.15
€.16
€.16
€.17
6.18
€.19
€.20
6.21
€.22
€.23
€.24
€.25
€.26
6.27
€.28
€.28

BDUMP
DUMP
CHANG
SEPST
SEPPA
SEPFS
GDIRA
GNAMA
GDIRI
GNAMI
GDIRE
COLDE
xCOLD
GMAIN
WDIRE
FBFBU
RBFBL
WBFBL
WBFBU
ALBIT
ALPAG
RLPAG
TPAGF
RSPAG
RINDX
FINDX
WINDX
STARS
STSPL
ABORS
STOPR
STAPR
RESTS
LSPOQ
APPES
DELES
RMSPF
GIVES
TAKES
SPOPL
INPER
FINDQ
DEAKR
GFILN
HEAPRINT
TRAPRINT
LOCKQ
UNLCG
READQ
wRITQ
APPEQ
TAKEG
INITQ
FPRERIV
FFILISA
MSPRENT
SNSPCOPY
FWSPRINT
RSPRINT

FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
RESIDENT
RESIDENT
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG]
FILSEG]
FILSEG]
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG?
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG?
FILSEG2
FILSEG2
FILSEG2
FILSEG?
FILSEG2
FILSEG2

ND-60.122.02

DUMP BLOCK ON TERMINAL
DUMP BLOCK ON TERMINAL
CHANGE BLOCK

SEPARATE STRING

SEPARATE FILE STRING
SEPARATE FILE STRING IN THREE
GET DIRECTORY ADDRESS

GET NAME TABLE ADDRESS

GET DIRECTORY INDEX

GET NAME INDEX

GET BIRECTORY INDEX

COLLECT DEVICE NAME AND UNIT
COLLECT BEVICE NAME AND UNIT
GET MAIN DIRECTORY INDEX
WRITE DIRECTORY ENTRY

FIND BIT FILE BUFFER ADDRESS
READ BIT FILE BLOCK

WRITE BIT FILE BLOCK

WRITE BIT FILE BUFFER

FIND BIT FILE ADDRESS
ALLOCATE PAGE IN BIT FILE
RELEASE FAGE IN BIT FILE
TEST PAGE FREE

RESERVE FIRST FREE PAGE
READ INDEX BLOCK

READ INDEX BLOCK

WRITE INGEX BLOCK

START SPCOLING

STOP SPOCLING

ABORT SPCOLING PRINT

STOP PRINT

START PRRINT

RESTART SPOOLING PRINT

LIST SPOCLING QUEUE

APPEND SPOOLING GUEUE
DELETE SPOOLING FILE

REMOVE FROM SPOO. QUEUE
GIVE SPOCLING PAGES

TAKE SPOGLING PAGES

NUMBER OF SPOOL. PAGES LEFT
INPUT SPCOLING PERIPHERAL
FIND SPOGLING QUEUE
DEABBREVIATE FILE NAME

GET FILE NAME

PRINT SPCOLING HEADER

PRINT SPCOLING TRAILER

FIND NUMEBER CF ELEM. IN QUEUE
UNLOCK QUEUE

READ ONE QUEUE ELEMENT
WRITE ONE QUEUE ELEMENT
APPEND TG QUEUE

TAKE FROM SPOOLING QUEUE
INITIALIZE QUEUE

FIND PERIPHFRAL VERSION
FIND FILE IN SPOOL. QUEUE
MOVE SPOCL. QUEUE ENTRY

SET NO. CF PRINT COPIES
FORWARD SPACE PRINT
BRACKSFACE PRINT

DSCOND
TUSSY
TUSRT
TUSEN
RUSPW
FUSEB
RUSER
WUSER
RUSEB
GUSE]
GMUST
COLUN
GUSEN
CUSED
GDEFD
GUSAC
FOBJR
ROBJE
WwOBJE
ROBJB
GOBJI
SEPGCB
GFILI
GPREV
GNEXV
COBJE
CHIGV
CNEWV
CROBJ
pLOBY
CRNEW
GVERS
GFIAC
GCFIL
DLPAG
DLSPA
FFILE
FOFT
SOFT
OFRND
FCON
FOPEN
FCLOS
XFCLOS
XFCLOS
GBUF
GBUFS
RBUF
SBLSZ
SETPO
GPADR
GPREA
WBACK
GPAGE
RESSTAR
REBUF
FLYTT
WRBUF
FGET

A—6

FILSEGZ
FILSEG?2
FILSEG?
FILSEG?
FILSEG?
FILSEG?
FILSEG?2
FILSEG?
FILSEG2
FILSEG2
FILSEG?
FILSEGZ
FILSEG?2
FILSEG2
FILSEG2
FILSEGZ2
FILSEG2
FILSEG2
FILSEGZ
FILSEG2
FILSEGZ
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEGZ
FILSEG2
FILSEG2
FILSEGZ2
FILSEG2
FILSEGZ2
FILSEG?2
FILSEG2
FILSEG?2
FILSEG2
FILSEG?2
FILSEGe
FILSEG2
FILSEG?2
FILSEG2
FILSEG?
FILSEGZ2
FILSEG2/RESIDENT
FILSEG2
FILSEG?2
FILSEG2
FILSEG2
FILSEG?2
FILSEG2
FILSEG1
FILSEG]
FILSEG]
FILSEG1
FILSEG1
FILSEG]
RESIDENT
FILSEG]
FILSEG]

ND-60.122.02

DEFINE SPOOLING CONDITIONS
TEST USER SYSTEM

TEST USER RT

TEST USER ENTERED

READ USER PASSWORD

FIND USER ENTRY BUFFER
READ USER ENTRY

WRITE USER ENTRY

RELEASE USER ENTRY

GET USER INDEX

GET MAIN USER INDEX
COLLECT USER NAME

GET USER NAME

CHANGE USER SPACE

GET DEFAULT DIRECTORY

GET USER ACCESS

FIND OBJECT ENTRY BUFFER
READ OBJUECT ENTRY

WRITE OBJECT ENTRY
RELEASE CBJECT ENTRY BUFFER
GET OBUECT INDEX

SEPARATE OBJECT NAME

GET FILE INDEX

GET PREVIOUS VERSION

GET NEXT VERSION

CREATE OEBJECT ENTRY
CREATE NEW HIGHER VERSION
CREATE NEW VERSION

CREATE OBJECTS

DELETE OBJECT

CREATE NEW VERSION OF FILE
GET VERSION NUMBER

GET FILE ACCESS

GET OR CREATE FILE

DELETE PAGES OF FILE
DELETE PAGES OF FILE

FIND FILE TO OPEN

FIND OPEN FILE TABLE

SET UP OPEN FILE TABLE
OPEN FILE FOR RANDOM ACCESS
FILE CONNECT

FILE OPEM

FILE CLOSE

CLOSE SPCOLING FILE

FILE CLOSE (NO VERSION CHANGE)

GET BUFEER FROM POOL

GET BUFFRER SET FROM POOL

RETURN BLFFER TO POOL

SET BLOCK SIZE

SET PERMANENT OPEN

GET PAGE ADDRESS OF FILE

GET PAGE ADDRESS FOR READ
WRITE BACK INDEXES

GET PAGE FOR FILE

RESER. SEMAPH, FOR START PROG

READ BUFFERS FROM FILE
MOVE 100 WORDS

WRITE BUFFERS ON FILE
GET BYTE FROM FILE

9,15
9,16
S.16
S.17
9'17
9.18
.18
G.18
95.18
9.19
G.20
S.21
S.22
9.23
9.24
5.25
.26
S.27
10.02
10.03
10.04
10.05
10.06
10.07
10.07
10.08
10.09
10.10
10.11
10.12
10.13
10.14
10.15
10.15
10.16
10,17
10.18
10.19
10.20
10.21
10.22
10.23
10.2¢4
10.25
10.26
10.26
10.27
10.27
10.28
10.30
10.31
10.32
10.32
10,33
10.36
10.,34A
10.35
10.35
10.35

FPUT
FREA
FREA
FWRT
FWRT
RBYTE
RMAXB
SBYTE
SMAXB
SBLOP
SDATF
CDATF
0PSCR
CPFIL
COLFI
CLOUT
REMOPF I
NBAVA
CRDIR
RNDIR
ENDIR
RLDIR
SDDIR
DIRST
LIDIR
DUDIR
CHDIR
CRUSE
RNUSE
DLUSE
GIUSE
TAUSE
LIUSE
USEST
puusSeE
CHUSE
ENUSE
RLUSE
CHANP
CLPAS
CRFRI
DLFRI
SFR1A
LIFRI
CRFIL
CRNVE
ALFIL
ALNVE
EXFIL
RNFIL
NLFIL
STERF
STMPF
SPERF
SFLAC
SDFIA
DEUFI
FILST
LIFIL

FILSEGI
FILSEG1/RESIDENT
RESIDENT/FILSEG]
FILSEG1/RESIDENT
RESIDENT/FILSEG]
FILSEG?
FILSEG?2
FILSEGZ2
FILSEG2
FILSEG2
FILSEGZ
FILSEGZ
FILSEG2
FILSEG?
FILSEGZ
FILSEG?2
FILSEG?2
FILSEG?2
FILSEG?
FILSEGZ2
FILSEG2
FILSEG?2
FILSEG2
FILSEGZ
FILSEGZ
FILSEG?2
FILSEG?
FILSEG?Z
FILSEG?2
FILSEG?
FILSEG?
FILSEG?
FILSEG?
FILSEG?2
FILSEG2
FILSEGZ
FILSEGZ
FILSEG2
FILSEG2
FILSEG?2
FILSEG?2
FILSEGZ
FILSEGZ
FILSEG?2
FILSEG2
FILSEG?2
FILSEG?
FILSEG?
FILSEG?
FILSEG2
FILSEG?
FILSEGZ2
FILSEG?
FILSEG2
FILSEGZ
FILSEG?2
FILSEG2
FILSEG?
FILSEG?

ND-60.122.02

PUT BYTE ON FILE

FILE READ

FILE READ

FILE WRITE

FILE WRITE

READ BYTE POINTER

READ MAX POINTER

SET BYTE POINTER

SET MAX POINTER

SET BLOCK POINTER

SET BATAFIELD RESERVED
CLEAR DATAFIELD RESERVED
OPEN SCRATCH FILE

COPY FILE

COLLECT FILE NAME

CLOSE OUTPUT FILE
REMOTE OPEN FILE

WAIT FOR ANSWER ON REMOTE BR.
CREATE DIRECTORY

RENAME DIRECTORY

ENTER DIRECTORY

RELEASE EIRECTORY

SET DEFALLT DIRECTORY
DIRECTCRY STATISTICS
LIST DIRECTORIES ENTERED
DUMP DIRECTORY ENTRY
CHANGE DIRECTORY ENTRY
CREATE USER

RENAME USER

DELETE USER

GIVE USER SPACE

TAKE USER SPACE

LIST USERS

USER STATISTICS

OUMP USER ENTRY

CHANGE USER ENTRY

ENTER USER

RELEASE USER

CHANGE PASSWORD

CLEAR PASSWORD

CREATE FRIEND

DELETE FRIEND

SET FRIEND ACCESS

LIST FRIENDS

CREATE FILE

CREATE NEW FILE VERSION
ALLOCATE FILE

BLLOCATE NEW FILE VERSION
EXPAND FILE

RENAME FILE

DELETE FILE

SET TERMINAL FILE

SET TEMPCRARY FILE

SET PERIPHERAL FILE

SET FILE ACCESS

SET DEFAULLT FILE ACCESS
DELETE VUSERS FILES

FILE STATISTICS

LIST FILES

10.36
10.37
10.38
10.39
10,40
10,41
10.41
10.42
10.43
10.44
10.45
10,46
10,47
10.48
10,49
10.50
10.51
10.51
10,52
10.53
10.54
10.55
10.56
10.56
10.57
10,57
10.58
10.58
10.59
10.60
10,61
10,62
10.63
11.01
11.01
11.01
11.02
11.02
11.02
11.03
11.03
11.04
11.04
11.05
11.05
11.07
11.07
11.07
11.07
11.08
11.09
11.09
11.09
11.09
11.09
11,09
11.09
11.09
11.09

DUOBY
CcHOBY
OPENF
CONNF
CLOSF
LIOPF
LIRTO
SBLOS
SPERO
SBYTP
SBLOC
RESFI
RELFI
WHEF 1
OPRTF
CORTF
CLRTF
OPENS
DUPAG
CHPAG
DUBIT
CHAIT
REGDTI
TESDI
COPDI
COPFI
RELTU
RESTU
SAVDI
CREVOL
LIVOL
CPUFIL
CLPRY
FINBT
INBT
SBINRT
FOUTART
ouTsT
SBOUTBT
RPAGE
WPAGE
RDISK
WDISK
RFEILE
WFILE
oLDoOP
OLDOP
OPFIL
oPFIL
CLOF1I
RPEABT
RMAX
SBSIZ
SETBC
SETBY
SETUP
SETW
SMAX
wCl

FILSEG?
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG?
FILSEG2
FILSEG?
FILSEGR2
FILSEG2
FILSEG?2
FILSEG?
FILSEG2
FILSEG?
FILSEG?
FILSEG2
FILSEG2
FILSEG?2
FILSEG2
FILSEGR
FILSEG?2
FILSEG2
FILSEG?
FILSEG?
FILSEG2
FILSEGZ
FILSEG?2
FILSEG2
FILSEG?2
FILSEG2
FILSEG?
FILSEG2
FILSEG?
SYSEG
SYSEG
SYSEG
SYSEG
SYSEG
SYSEG
FILSEG]
FILSEG]
FILSEG]
FILSEGI1
FILSEG]
FILSEGI
FILSEGI/RESINENT
RESIDENT/FILSEG]
FILSEGL1/RESIDENT
RESIDENT/FILSEG]
FILSEGL
FILSEG1
FILSEGI]
FILSEGI
FILSEG]
FILSEG]
RESIDENT
RESIDENT
FILSEGI
RESIDENT

ND-60.122.02

DUMP OBJECT ENTRY
CHANGE OBJECT ENTRY
OPEN FILE

CONNECT FILE

CLOSE FILE

LIST OPENED FILES
LIST RT CPENED FILES
SET BLOCK SIZE

SET PERMANENT OPENED
SET BYTE POINTER

SET BLOCK POINTER
RESERVE FILE

RELEASE FILE

WHERE IS FILE

OPEN RT FILE

CONNECT RT FILE
CLOSE RT FILE

OPEN SCRATCH FILE
DUMP PAGE

CHANGE PAGE

DUMP BIT TABLE
CHANGE BIT TABLE
REGENERATE DIRECTORY
TEST DIRECTORY

COPY DIRECTORY

COPY FILE

RELEASE CEVICE UNIT
RESERVE BEVICE UNIT
SAVE DIRECTORY
CREATE VCLUME

LIST VOLUME

COPY USERS FILES
CLEAR PARITY IN TAPE LABEL
INPUT BYTE

INPUT BYTE

INPUT BYTE

OUTPUT BYTE

OUTPUT BYTE

OUTPUT BYTE

READ PAGE

WRITE PACGE

READ DISK

WRITE DISK

READ FILE

WRITE FILE

OLD OPEN FILE

OLD OPEN FILE

OPEN FILE

OPEN FILE

CLOSE FILE

READ BYTE POINTER
READ MAX POINTER

SET BLOCK SIZE

SET BLOCK POINTER
SET BYTE POINTER
STRING DESCRIPTOR SET UP
SET WRITE POINTER OF STRING
SET MAX POINTER
WRITE BYTE TO STRING

11.10
11.10
11.11
11.11
11.12
11.13
11.12
11.15
12.01
12.01
12,01
12.01
12.01
12.02.3
12.03.1
12.03.2
12.03.3
12.03.4
12.03.5
12.,04.3
12.04.4
12.04.5
12.05.1
12.06
12.07.4
12.07.4
12.08

ERMSG
QERMS
MROBJ
MROBJ
MRUSE
MPYAT
MRUSE
RSPQE
£ 0CK
EULOC
FATAL
LOCK

UNLOC
WHERE
CARST
DRABS
BABST

MABST

FDAES
CMMON
CLPAR

ERROR
INITF

GDATE

SINBT
SOUTRT
OPCAL

FILSEG]

FILSEG]
FILSEGI/RESIDENT
RESIDENT/FILSED]
FILSEG1/RESIDENT
FILSEGI
RESIDENT/FILSEG]
RESIDENT

FILSEGI

FILSEGI

RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT

FILSEG?2

FILSEG2

FILSEG?2

FILSEG2

FILSEG2

RESIDENT
RESIDENT

SYSEG

ND-60.122.02

WRITE ERRQR MESSAGE

WRITE ERROR MESSAGE AND STEP
READ OBJECT ENTRY

READ OBJECT ENTRY

READ USER ENTRY

AD:=A®T

READ USER ENTRY

READ SPOCLING QUEUE ENTRY
ESCAPE LCCK

ESCAPE UNLOCK

FATAL ERROR

LOCK SEMAPHORE

UNLOCK SEMAPHORE

WHERE IS SEMAPHORE
CARTRIOGE DISC ABSTRANS
DRUM ABSTRANS

BIG DISC ABSTRANS

MAG TAPE ABSTRANS

FLOPPY DISC ABSTRANS
COMMAND MONITOR

COLLECT PARAMETER

WRITE ERROR MESSAGE
INITIATE FILE SYSTEM TABLES
GET DATE

INPUT BYTE TO FILE SYSTEM
OUTPUT BYTE FROM FILE SYSTEM
CALL ROUTINE ON OP,COM.SEGs

€.05
3.07.1
5.05
10.27
10.27
5.06
6.21
€.07
3.07.2
1.01
12.03.3
3.11
1.07
€.28
1.06.3
12.03.1
S.21
3.12
10.20
10.55%
106.09
8.11
10.37
10.53
10,17
11.08
10.40
8,25
12.064.4
10.21
10.63
10.51
12.04,3
.11
2,10
4,06
S5.24
7.09
3.08
10.39
1.06.2
10.57
10.57
3.10
2.07.1
16.50
G.23
10.562
10.02
10.60
10.26
10.22
R.15

Table A.4: Routines in the File System, ordered alphabetically

ABORS
ACOPY
ALBIT
ALFIL
ALNVE
ALPAG
APPEQ
APPES
APPST
AUXILIARY
BABST
ROUMP
BIT FILE BUFFER
RASPRINT
BUFFER POOL
CABST
COATF
CHANG
CHANP
CHRIT
CHDIR
CHIGY
CHOBJ
CHPAG
CHUSE
CLOF1
CLOSF
CLOuUT
CLPAR
CLPAS
CLPRY
CLRTF
CMMON
CNEWV
CORJE
COLDE
COLFI
COLUN
COMPS
CONNF
CONTEXT BL
COPD1
COPF]
COPYR
COPYS
CORTF
CPFIL
CPUFTIL
CRDIR
CREVOL
CRFIL
CRFQI
CRNEW

FILSEGZ
RESIDENT
FILSEG2
FILSEG2
FILSEGZ2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
DECLARATIONS
RESIDENT
FILSEG2
CECLARATIONS
FILSEGZ
SYSEG
RESIDENT
FILSEG?
FILSEG?2
FILSEG?2
FILSEG?
FILSEG2
FILSEGZ
FILSEG?Z
FILSEG2
FILSEGZ2
FILSEG]
FILSEG2
FILSEG2
FILSEG2
FILSEG?2
FILSEGZ
FILSEG?2
FILSEG2
FILSEG?2
FILSEG2
FILSEG?
FILSEG2
FILSEG2
FILSEG?
FILSEG?
DECLARATIONS
FILSEG?2
FILSEG?
RESIDENT
RESIDENT
FILSEG?2
FILSEG2
FILSEG?2
FILSEG?
FILSEG?2
FILSEGZ2
FILSEG2
FILSEGZ

ND-60.122.02

ABORT SPCOLING PRINT

COPY STRING (ALT. PAGE TABLE)
FIND BIT FILE ADDRESS
ALLOCATE FILE

ALLOCATE NEW FILE VERSION
ALLOCATE PAGE IN BIT FILE
APPEND TC QUEUE

APPEND SPOOLING QUEUE
APPEND STRING TO STRING
SYMBOL DEFINITIONS

BIG DISC ABSTRANS

DUMP BLOCK ON TERMINAL

BACKSPACE PRINT

CARTRIDGE DISC ABSTRANS
CLEAR DATAFIELD RESERVED
CHANGE BLOCK

CHANGE PASSWORD

CHANGE BIT TABLE

CHANGE DIRECTORY ENTRY
CREATE NEW HIGHER VERSION
CHANGE OBJECT ENTRY
CHANGE PAGE

CHANGE USER ENTRY

CLOSE FILE

CLOSE FILE

CLOSE CUTPUT FILE

COLLECT PARAMETER

CLEAR PASSWORD

CLEAR PARITY IN TAPE LABEL
CLOSE RT FILE

COMMAND MONITOR

CREATE NEW VERSION

CREATE OBJECT ENTRY
COLLECT EEVICE NAME AND UNIT
COLLECT FILE NAME

COLLECT LSER NAME

COMPARE STRINGS

CONNECT FILE

OPEN FILE TABLE

COPY DIRECTORY

COPY FILE

COPY BLOCK

COPY STRING

CONNECT RT FILE

COPY FILE

COPY USERS FILES

CREATE DIRECTORY

CREATE VCLUME

CREATE FILE

CREATE FRIEND

CREATE NEW VERSION OF FILE

10.26
g.12
10.10
Te11
3.01.3
€.14
3.01.2
£.08
10.35
1.03
1.04
10.07
10.31
10.23
8.14
8.19
8.19
10.12
12.03.2
6.29
10.54
10.08
3.11
10.36
10.52
10.16
12.01
10.04
10.18
11.10
12,0445
12.01
10,28
12.01
.01
3.06
9,04
12.03.5
€.25
S.01
S.14
2.014
1.10
10.35
11.01
€.13
€.01A
5.13
.01
S.02
9,05
11.02
6024
9,15
S.16
G.16
7‘03
G.17
€.28

CRNVE
CROBJ
CRUSE
CUSED
DDECI
DEABB
DECIM
DELES
NEUF I
DEVICE RUFFERS
DIRECTORY TABLE
CIRST
DLFIL
NLFRI
pLOs8Y
DLPAG
DLSPA
CLUSE
NRA3S
DSCOND
pUBIT
DUDIR
DUMP
nuoBJ
DUPAG
DUUSE
ELOCK
ENDIR
ENUSE
ERMSG
ERROR
EULOC
EXFIL
FATAL
FBFBU
FCLOS
FCON
FDAGZS
FFILISQ
FFILE
FGET
F1DBY
FILE RT-PROG
FILST
FINBT
FINDG
FINDX
FLYTT
FoBJB
FOFT
FOPEN
FOUTAT
FPERIV
FPUT
FREA
FREA
FUSER
FWRT
FWSPRINT

FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG?
FILSEG2
DECLARATIONS
DECLARATIONS
FILSEG2
FILSEG2
FILSEG?
FILSEG?2
FILSEG?
FILSEG2
FILSEG2
RESIDENT
FILSEG2
FILSEG?2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG]
FILSEG?
FILSEG2
FILSEG]
FILSEG2
FILSEGL
FILSEG?2
RESIDENT
FILSEG2
FILSEG2
FILSEG2
RESIDENT
FILSEG?
FILSEG2
FILSEGL
FILSEG]
DECLARATIONS
FILSEG2
SYSEG
FILSEG2
FILSEGL
RESIDENT
FILSEG2
FILSEGR
FILSEG2
SYSEG
FILSEG2
FILSEG]
FILSEG1/RESIDENT
RESIDENT/FILSEG]
FILSEG2
FILSEG1/RESIDENT
FILSEG2

ND-60.122.02

CREATE NEW FILE VERSION
CREATE QBRJECTS

CREATE VUSER

CHANGE USER SPACE

OUTPUT DCUBLE DECIMAL NUMBER
DEABBREVIATE FILE NAME

OUTPUT BECIMAL NUMBER ON TERM,
DELETE SFOOLING FILE

DELETE USERS FILES

DIRECTORY STATISTICS
DELETE FILE

DELETE FRIEND

DELETE OBUECT

DELETE PAGES OF FILE
DELETE PAGES OF FILE
DELETE USER

DRUM ABSTRANS

DEF INE SFOOLING CONDITIONS
pumP BIT TABLE

DUMP DIRECTORY ENTRY

DUMP BLOCK ON TERMINAL
DUMP OBJECT ENTRY

DUMP PAGE

DUMP USER ENTRY

ESCAPE LCCK

ENTER DIRECTORY

ENTER USER

WRITE ERROR MESSAGE

WRITE ERROR MESSAGE
ESCAPE UNLOCK

EXPAND FILE

FATAL ERROR

FIND BIT FILE BUFFER ADDRESS
FILE CLOSE

FILE CONNECT

FLOPPY DISC ABSTRANS

FIND FILE IN SPOOL. QUEUE
FIND FILE TO OPEN

GET BYTE FROM FILE

FIND DEVICE BUFFER HEADER

FILE STATISTICS

INPUT BYTE

FIND SPOCLING QUEUE
READ INDEX BLOCK

MOVE 100 WORDS

FIND OBJUECT ENTRY BUFFER
FIND OPEN FILE TABLE
FILE OFEN

OUTPUT BYTE

FIND PERIPHERAL VERSION
PUT BYTE ON FILE

FILE READ

FILE REAB

FIND USER ENTRY BUFFER
FILE WRITE

FORWARD SPACE PRINT

9,17
2.00
2.00
2.00
2.00
9,07
9,07
2,18
12.06
7.12
2.01
4001
4,05
4,03
2,05
8,17
8.07
€.15
10.13
€.05
4.07
7.08
4,02
4,04
8,09
.05
9.11.1
G.11.3
S.11.1
R,08
7.13
7.07
7.10
A, 16
.16
11.01
12.05.1
€.,23
€.12
2,04
3,03.2
2,03.1
10.07
10.35
10.25
10.41
10.41
10.15
16.61
12.01
£.17
£.06
12.03.4
1.02
3.03.1
3.01.3
3.01.2
3.01.1
11.12

FWRT
G3BUF
G3IBUF
G3NWT
GSBUF
GBUF
GBUFS
GCFIL
GDATE
GDEFD
GDEVR
GDIRA
GDIRE
GDIRI
GETCH
GF IAC
GFILI
GF ILN
GIUSE
GIVES
GMAIN
GMUST
GNAMA
GNAMI
GNE XKV
GOBJ1
GPADR
GPAGE
GPREA
CPREV
GUSAC
GUSE1
GUSEN
GVERS
HEAPRINT
INBT
INITF
INITQ
INPER
INSTR
LACCW
LDATE
LIDIR
LIFIL
LIFRI
LIOPF
LIRTO
L TUSE
L IvoL
LoCK
LOCKG
LSPOQ
MABST
MACRGES
MDATE
MDDEC
MDECT
MOCTA
MPYAT

A-12

RESIDENT/FILSEG]
RESIDENT
RESIDENT
RESIDENT
RESIDENT
FILSEG2
FILSEGZ
FILSEG?
FILSEG?2
FILSEG2
FILSEG]
RESIDENT
FILSEG?2
FILSEG2
RESIDENT
FILSEG2
FILSEG?2
FILSEG2
FILSEG?
ILSEG?
FILSEG?
FILSEG?
RESIOENT
FILSEGZ
FILSEGZ2
FILSEG?
FILSEG!}
FILSEG]
FILSEG]
FILSEG2
FILSEG?
FILSEG?
FILSEG?
FILSEG?
FILSEG?2
SYSEG
FILSEG2
FILSEGZ
FILSEGZ2
FILSEG?
FILSEGe
FILSEG?2
FILSEG?2
FILSEG?2
FILSEGZ
FILSEG?
FILSEG?2
FILSEG?
FILSEG?2
RESTIDENT
FILSEG?2
FILSEG2
RESIDENT
DECLARATIONS
FILSEG?
FILSEG?
FILSEG2
FILSEG?
FILSEG]

ND-60.122.02

FILE WRITE

GET MASS STORAGE BUFFER
GET MASS STORAGE BUFFER
GET MASS STORAGE BUFFER
GET MASS STORAGE BUFFER
GET BUFFER FROM POOL

GET BUFFER SET FROM POOL
GET OR CREATE FILE

GET DATE

GET DEFAULT DOIRECTORY

GET BEVICE BUFFER

GET DIRECTORY ADDRESS

GET BIRECTORY INDEX

GET DIRECTORY INDEX

GET CHARACTER FROM STRING
GET FILE ACCESS

GET FILE INDEX

GET FILE NAME

GIVE USER SPACE

GIVE SPOCLING PAGES

GET MAIN DIRECTORY INDEX
GET MAIN USER INDEX

GET NAME TABLE ADDRESS
GET NAME INDEX

GET NEXT VERSION

GET OBJECT INDEX

GET PAGE ADDRESS OF FILE
GET PAGE FOR FILE

GET PAGE ADDRESS FOR READ
GET PREVIOUS VERSION

GET USER ACCESS

GET USER INDEX

GET USER NAME

GET VERSION NUMBER

PRINT SPCOLING HEADER
INPUT BYTE

INITIATE FILE SYSTEM TABLES
INITIALIZE QUEUE

INPUT SPCOLING PERIPHERAL
INPUT STRING

LIST ACCESS wORD

LIST DATE

LIST OIRECTORIES ENTERED
LIST FILES

LIST FRIENDS

LIST OPENED FILES

LIST RT CPENED FILES

LIST USERS

LIST VCLUME

LOCK SEMAPHORE

FIND NUMBER OF ELEM, IN QUERUE
LIST SPOCLING QUEUE

MAG TAPE ABSTRANS
REGISTER DEFINITIONS

LIST DATE

OUTPUT DCUBLE DECIMAL NUMBER
OUTPUT DECIMAL NUMBER ON TERM,
QUTPUT OCTAL NUMBER ON TERM,
AD:t=A®T

11.11
11.11
11.12
€.26
11.12
3.01.3
1.05
9,27
1.09
2.01.1
G.03A
11.07
11.07
12.08
10.38
10.51
11.07
11.07
10.49
9.22
11.02
3.02.1
3.02.1
2.05
3.05
11.10
2.00
2.00
2.00
.02
2.03
S5.08
5.18
2.C03A
2.02
11.04
11.09
€.19
S.12
10.55
10.47
10.58
S.26
10.46
S.11.4
6.05
10.58
11.05
€.01
10,05
S.06
10.19
11.09
S.18
€.073
10.03
10.30
10,11
8,04

MROBJ
MROBY
MRUSE
MSPQENT
MRUSE
MTWOD
NAME TABLE
NBAVA
0BJe. FILE BUFF
OCTAL
OFRND
oLDOP
oLDOP
0PCAL
OPENF
OPENS
OPFIL
OPFIL
OPRTF
OPSCR
ouTBT
OUTRC
OUTST
PTAPE
PUTCH
QERMS
R3BUF
R3IRBUF
RSBUF
RBFBL
RBLOC
RBUF
RBYTE
RCBLO
RDEVB
RDISK
REABT
READQ
REBUF
REGDI
RELFI
RELTU
REMOPF I
RESFI
RESSTAR
RESTS
RESTU
RFILE
RINDX
RLDIR
RLPAG
RLUSE
RMAX
RMAXB
RMSPF
RNDIR
RNFIL
RNUSE
RORJB

FILSEGI/RESIDENT
RESIDENT/FILSEG]
FILSEG1/RESIDENT
FILSEGZ
RESIDENT/FILSEG]
FILSEG2
DECLARATIONS
FILSEGZ

FILSEG2

FILSEGZ2

FILSEG2
FILSEGI/RESIDENT
RESIDENT/FILSEG]
SYSEG

FILSEG2

FILSEG?
FILSEGI/RESIDENT
RESIDENT/FILSEOG]
FILSEG2

FILSEG2

SYSEG

FILSEG?

FILSEG?

FILSEGI]

RESIDENT

FILSEG]

RESIDENT
RESIDENT
RESIDENT

FILSEG2

FILSEGI

FILSEG?2

FILSEG2

FILSEGI]

FILSEG]

FILSEG]

FILSEG]

FILSEG2

FILSEGI

FILSEG?2

FILSEG?

FILSEG2

FILSEG2

FILSEG2

FILSEGI

FILSEG?2

FILSEG2

FILSEG]

FILSEG]

FILSEG2

FILSEG2

FILSEG2

FILSEG]

FILSEG2

FILSEGR

FILSEG2

FILSEG2

FILSEG2

FILSEG?

ND-60.122.02

READ OBJECT ENTRY

READ OBJECT ENTRY

READ USER ENTRY

MOVE SPOOLING QUEUE ENTRY
READ USER ENTRY

OUTPUT TWO DIGITS DECIMAL

WAIT FOR ANSWER ON REMOTE GP,
BUFFER FCR OBJUECT ENTRY
OUTPUT OCTAL NUMBER ON TERM,
OPEN FILE FOR RANDOM ACCESS
OLD OPEN FILE

OLD OPEN FILE

CALL RQUTINE ON OP¢COM,SEG.
OPEN FILE

OPEN SCRATCH FILE

OPEN FILE

OPEN FILE

OPEN RT FILE

OPEN SCRATCH FILE

OUTPUT BYTE

OUTPUT STRING ON TERMINAL
OUTPUT STRING ON TERMINAL
POSITION TAPE

PUT CHARACTER TO STRING
WRITE ERFKOR MESSAGE AND STGP
RELEASE MASS STORAGE BUFFER
RELEASE MASS STORAGE BUFFER
RELEASE MASS STORAGE BUFFER
READ BIT FILE BLOCK

READ 1K FROM DEVICE

RETURN BUFFER TO POOL

READ BYTE POINTER

READ AND COMPARE 1K FROM DEVI
RELEASE CEVICE BUFFER

READ DISK

READ BYTE POINTER

READ ONE QUEUE ELEMENT

PEAD BUFFERS FROM FILE
REGENERATE DIRECTORY
RELEASE FILE

RELEASE CEVICE UNIT

REMOTE OFEN FILE

RESERVE F]ILE

RESER. SEMAPH, FOR START P®OG
RESTART SPOOLING PRINT
RESERVE CEVICE UNIT

READ FILE

READ INDEX BLOCK

RELEASE CIRECTORY

RELEASE PAGE IN BIT FILE
FELEASE LUSER

READ MAX POINTER

READ MAX POINTER

REMOVE SPQOOL. QUEUE ENTRY
PENAME DIRECTORY

RENAME FILE

RENAME USER

RELEASE CBJECT ENTRY BUFFER

R.02
11.03
5.08
11.15
T7.06
7.04
7.02A
10.59
11.01
10,45
5.19
10.42
.09
11.02
11.09
9.18
10,64
9.20
10.06
10.34A
3.15
8.06
3.14
3.13
11.09
3.C9
11.09
G.10
11.09
11.09
10.34
10.24
12.07.4
11.09
G.18
€.27
9.03
12.07.4
10.33
10.43
1.06.1
€.11
1.05.1
€.05
€.03
10.32
10.32
€.,05
J.04
€.04
1.06.1
€.22
€.10
10.14
10.56
.07
6.16
7.02
7.01.2

ROBJE
RPAGE
RSPAG
RSPQE
RUSER
RUSER
RUSPW
SAVDI
SBINBT
SBLOC
SBLOP
SBLOS
SBLS?Z
SBOUTBT
58517
SBYTE
SBYTP
SDATF
SDDIR
SDFIA
SEPFS
SEPOR
SEPPA
SEPST
SETBC
SETBL
SET3Y
SETRO
SETUP
SETW
SFLAC
SFRIA
SINBT
SMAX
SMAXR
SNSPCOPY
SOFT
SOUTRBRT
SPERF
SPERO
SPOP
SPOPL
SPUSH
STAPR
STARS
STERF
STMPF
STOPR
STRNG
STSPL
SUBR, STACK
TAKEG
TAKES
TAUSE
TESDI
TPAGF
TRAPRINT
TUSEN
TUSRT

FILSEG?2
FILSEG]
FILSEG2
RESIDENT
FILSEG2
FILSEG?
FILSEG2
FILSEG?2
SYSEG
FILSEG2
FILSEG2
FILSEG2
FILSEG2
SYSEG
FILSEGI
FILSEG2
FILSEG2
FILSEG2
FILSEG?2
FILSEG2
FILSEG?2
FILSEG?2
FILSEG2
FILSEG2
FILSEGI
RESTDENT
FILSEGI
FILSEG2
RESIDENT
RESIDENT
FILSEG2
FILSEG?
RESIDENT
FILSEG1
FILSEG2
FILSEG2
FILSEG2
RESIDENT
FILSEG2
FILSEG2
SYSEG
FILSEG2
SYSEG
FILSEG?
FILSEG?2
FILSEG?2
FILSEG2
FILSEG2
FILSEGZ2
FILSEG2
SYSEG
FILSEG?
FILSEG2
FILSEG?
FILSEG?2
FILSEGR2
FILSEG?2
FILSEGZ2
FILSEG2

ND-60.122.02

READ OBJECT ENTRY

READ PAGE

RESERVE FIRST FREE PAGE
READ SPOCLING QUEUE ENTRY
RELEASE USER ENTRY

READ USER ENTRY

READ USER PASSWORD

SAVE DIRECTORY

INPUT BYTE

SET BLOCK POINTER

SET BLOCK POINTER

SET BLOCK SIZE

SET BLOCK SIZE

OUTPUT BYTE

SET BLOCK SIZE

SET BYTE POINTER

SET BYTE POINTER

SET DATAFIELD RESERVED
SET DEFALLT DIRECTORY

SET DEFALLT FILE ACCESS
SEPARATE FILE STRING IN THNEE
SEPARATE OBJECT NAME
SEPARATE FILE STRING
SEPARATE STRING

SET BLOCK POINTER

SET BLGOCK CONTENTS

SET BYTE POINTER

SET PERMANENT OPEN

STRING DESCRIPTOR SET UP
SET WRITE POINTER OF STRING
SET FILE ACCESS

SET FRIEND ACCESS

INPUT BYTE TO FILE SYSTEM
SET MAX ROINTER

SET MAX POINTER

SET NO., CF PRINT COPIES
SET UP OPEN FILE TABLE
OUTPUT BYTE FROM FILE SYSTEM
SET PERIPHERAL FILE

SET PERMANENT OPENED

POP SUBRCUTINE STACK
NUMBEK OF SPOOL. PAGES LEFT
PUSH SUBROUTINE STACK
START PRINT

START SPCOLING

SET TERMINAL FILE

SET TEMPCRARY FILE

STOP PRINT

INPUT STRING

STOP SPOCLING

ENTER/LEAVE STACK

TAKE FROM SPOOLING QUEUE
TAKE SPOOLING PAGES

TAKE USER SPACE

TEST DIRECTORY

TEST PAGE FREE

PRINT SPCOLING TRAILER
TEST USER ENTERED

TEST USER RT

A-15

7.01.1 TUSSY FILSEG2 TEST USER SYSTEM

3.01.3 TWODE FILSEG2 OUTPUT TwO DIGITS DECIMAL
€.18 UNLCQ FILSEG2 UNLOCK QUEUE

12.01 UNLOC RESIDENT UNLOCK SEMAPHORE

1.08 USER FILE RUFF FILSEG? BUFFER FOR USER ENTRY

10.15 USEST FILSEGZ USER STATISTICS

S.11.2 WBACK FILSEGI] WRITE BACK INDEXES

5.03 wBFBL FILSEG? WRITE BIT FILE BLOCK

S.04 wWBFBU FILSEG2 WRITE BIT FILE BUFFER

2.04 wBLOC FILSEG] WRITE 1K TO DEVICE

2. 044 WwCBLO FILSEGI] WRITE AND COMPARE 1K TO DEVIC
11.09 wCl RESIDENT WRITE BYTE TO STRING

4,08 WO IRE FILSEG2 WRITE DIRECTORY ENTRY

11.04 wD1SK FILSEG] WRITE DISK

2.06 wEOT FILSEGI WRITE ENB OF TAPE

11.05 WFILE FILSEG1 WRITE FILE

10,48 WHEFI FILSEG2 WHERE IS FILE

12.02.3 WHERE RESIDENT WHERE IS SEMAPHORE

€.02 wINDX FILSEGI] WRITE INBEX BLOCK

R,03 WOBJE FILSEG2 WRITE CBJUECT ENTRY

11.03 WPAGE FILSEGI] WRITE PACE

G.13 WRBUF FILSEGI] WRITE BUFFERS ON FILE

£.20 WRITQ FILSEG2 WRITE ONE QUEUE ELEMENT

2,09 WTAPE FILSEG] WRITE DATA ON TAPE

7.05 WUSER FILSEG?2 WRITE USER ENTRY

4.06 XCOLD FILSEG? COLLECT BEVICE NAME AND UNIT
5.06 XFCLOS FILSEGZ FILE CLOSE (NO VERSION CHANGE)

ND-60.122.02

1.01
1.02
1.03
1.04
1‘05
1.06.2
1.07
1'10
2.01
2,014
2.02
2.03
2.03A
2.04
2.04A
2.05
2,06
ZOOQ
€.01
€.01A
€.02
S.11.1
S.11.1

« s e e
— et e e
W M) et e
« » e
S wmn

(o JRVe N o Vs IRV s Vs |

5.15

S.16

9.17
11.03
11.03
11.04
11.0¢4
11.05
11.05
11.07
11.07
11.08
llloq
11.09
11.09
11.09
11.09
11.09
11.10
11.10
11.11
11.12
11413
12.01

MEMORY AND

AUXILIARY
MACROES
DEVICE BUFFERS
DIRECTCRY TABLE
NAME TABLE
CONTEXT BL
BIT FILE BUFFER
FILE RT-PROG
GDEVE
FIDBU
RDEVB
RBLOC
RCBLO
WBLOC
wCBLO
PTAPE

WEOT

wWTAPE
RINDX
FINDX
WINDX
GRADR
GPREA
wBACK
GPAGE
RESSTAR
RERUF
WRBUF

FGET

FPUT

FREA

FWRT

RPAGE
WPAGE
RDISK

WD SK
RFILE
WFILE
oLCcOP
OPFIL
CLOFT
REABT

PMAX

SRSIZ
SETAEC
SETBY

SMAX

ERMSG
GERMS
MROBJ
MRUSE
MPYAT
ELOCK

SEGMENT

DECLARATIONS
DECLLARATIONS
DECLARATIONS
DECLARATIONS
DECLARATIONS
DECLARATIONS
DECLARATIONS
DECLARATIONS
FILSEG]

FILSEG]

FILSEG]

FILSEG]

FILSEG]

FILSEGI

FILSEG1

FILSEG!

FILSEG1

FILSEGI

FILSEGI]

FILSEGI1

FILSEG1

FILSEG1

FILSEG]

FILSEG]

FILSEGI]

FILSEG]

FILSEG]

FILSEG]

FILSEGL

FILSEG!
FILSEGI/RESIDENT
FILSEGI/RESIDENT
FILSEG]

FILSEGIL

FILSEGI

FILSEG]

FILSEG]

FILSEG]
FILSEGI/RESIDENT
FILSEGI/RESIDENT
FILSEGL

FILSEG]

FILSEG]

FILSEG!

FILSEG]

FILSEGI]

FILSEG]

FILSEG1

FILSEGI
FILSEG1/RESIDENT
FILSEGI/RESIDENT
FILSEGIL

FILSEGI

ND-60.122.02

M

A

p

SYMBOL DEFINITIONS
REGISTER DEFINITIONS

OPEN FILE TABLE

GET DEVICE BUFFER

FIND DEVICE BUFFER HEADER
RELEASE DEVICE BUFFER
READ 1K FROM DEVICE

READ AND COMPARE 1K FROM DEVI
WRITE 1K TO DEVICE

WRITE AND COMPARE 1K TO DEVIC
POSITION TAPE

WRITE ENC OF TAPE

WRITE DATA ON TAPE

READ INDEX BLOCK

READ INDEX BLOCK

WRITE INCEX BLOCK

GET PAGE ADDRESS OF FILE
GET PAGE ADDRESS FOR READ
WRITE BACK INDEXES

GET PAGE FOR FILE

RESER. SEMAPH, FOR START PHOG
READ BUFFERS FROM FILE
WRITE BUEFERS ON FILE

GET BYTE FROM FILE

PUT BYTE ON FILE

FILE REAE

FILE wWRITE

READ PAGE

WRITE PACE

RPEAD DISK

WRITE DISK

READ FILE

WRITE FILE

OLD OPEN FILE

OPEN FILE

CLOSE FILE

READ BYTE POINTER

READ MAX POINTER

SET BLOCK SIZE

SET BLOCK POINTER

SET BYTE POINTER

SET MAX FOINTER

WRITE ERROR MESSAGE

WRITE ERROR MESSAGE AND STep
READ OBJECT ENTRY

READ USER ENTRY

AD:t=A®T

ESCAPE LCCK

12.01
1.08
1.09
J.01.1
2.01.1
3.01.2
3.01.2
3.01.3
3.01.3
3.01.3
3.01.3
3'02.1
3.02.1
3.03.1
3.03.1
3.03.2
3.04
3.04
3.07.2
3.08
3'11
3.11
3.12
3.13
3.1“
3.15
4,03
4,04
4.05
4,06
4.06
4.07
4,08
S.01
5.02
£.03
.04
.05
.05
S.06
S.07
.08
€.03
€.04
€.05
€.05
€.05
€.05
€.06
6.07
€.08
€.08
€.09
6.10
6e11
€.12
6.13
€.la
€.15

EULOC
USER FILE BUFF
0BJe. FILE BUFF
MOCTA
OCTAL
DECIM
MDECT
DDECT
MODEC
MTWOD
TWODE
QUTRC
QUTST
LDATE
MDATE
LACCwW
INSTR
STRNG
APPST
COMPS
RDUMP
DUMP
CHANG
SEPST
SEPPA
SEPFS
GDIRI
GNAMT
GDIRE
COLLE
XCOLD
GMAIN
WDIRE
FBFBU
RBFBL
WRFBL
wBFBU
ALBIT
ALPAG
RLPAG
TPAGF
RSPAG
STARS
STSPL
ABORS
RESTS
STOPR
STAPR
LSPOQ
APPES
DELES
RMSPF
GIVES
TAKES
SPOPL
INPER
FINDQ
DEAESR
GFILN

FILSEGI]
FILSEG2
FILSEG2
FILSEG2
FILSEGZ
FILSEG?
FILSEG?
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG?
FILSEG2
FILSEG2
FILSEGZ
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG?
FILSEG2
FILSEG2
FILSEG2
FILSEG?Z2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG?
FILSEG2
FILSEGZ
FILSEG2
FILSEG2
FILSEGZ
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG?
FILSEGZ
FILSEG2
FILSEGZ2
FILSEG2
FILSEGe
FILSEG2
FILSEG?Z2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG?2
FILSEG?
FILSEG2
FILSEG2
FILSEG?

ND-60.122.02

ESCAPE UNLOCK

BUFFER FCR USER ENTRY

BUFFER FCR OBJECT ENTRY
OUTPUT OCTAL NUMBER ON TERM¢
OUTPUT OCTAL NUMBER ON TERNg
OUTPUT DECIMAL NUMBER ON TERM,
QUTPUT DECIMAL NUMBER ON TERM,
OUTPUT DCUBLE DECIMAL NUMBER
OUTPUT DOUBLE DECIMAL NUMBER
QUTPUT TwO DIGITS DECIMAL
OUTPUT TwO DIGITS DECIMAL
OUTPUT STRING ON TERMINAL
OUTPUT STRING ON TERMINAL
LIST DATE

LIST DATE

LIST ACCESS WORD

INPUT STRING

INPUT STRING

APPEND STRING TO STRING
COMPARE STRINGS

DUMP BLOCK ON TERMINAL

DUMP BLOCK ON TERMINAL
CHANGE BLOCK

SEPARATE STRING

SEPARATE FILE STRING
SEPARATE FILE STRING IN THREE
GET DIRECTORY INDEX

GETY NAME INDEX

GET DPIRECTORY INDEX

COLLECT BEVICE NAME AND UNIT
COLLECT BEVICE NAME AND UNIT
GET MAIN DIRECTORY INDEX
WRITE DIRECTORY ENTRY

FIND BIT FILE RUFFER ADDRESS
READ BIT FILE BLOCK

WRITE BIT FILE BLOCK

WRITE BIT FILE BUFFER

FIND BIT FILE ADDRESS
ALLOCATE PAGE IN BIT FILE
RELEASE FAGE IN BIT FILE
TEST PAGE FREE

RESERVE FIRST FREE PAGE
START SPCOLING

STOP SPROCLING

ABORT SPCOLING PRINT

RESTART SPOOLING PRINT

STOP PRIAT

START PRINT

LIST SPOCLING QUEUE

APPEND SFOOLING QUEUE

DELETE SFOOLING FILE

REMOVE FROM SPOOL. QUEUE
GIVE SPOOLING PAGES

TAKE SPOCLING PAGES

NUMBER OF SPOOL. PAGES LEFT
INPUT SPGOLING PERIPHERAL
FIND SFOGLING QUEUE
DEARBREVIATE FILE NAME

GET FILE NAME

6.16
€.16
6.17
€.18
€.19
6.20
€.21
€.22
6.23
6.2“
€.25
€.26
€.27
€.28
€.28
€.29
7.01.1
T.01e2
7.02
7.02A
7.03
T.0u
7.05
7.06
7.07
7.08
7.09
7.10
7.11
7.12
7.13
8.01
f.02
A.03
8,04
8.05
8.06
8.07
8.08
8.09
g.1¢
8.11
R.11
8.12
8.1“
£.15
8.16
8.17
8.1R
g.19
8.19
S.01
G.02
5.03
9.034
S.04
9.05
9.06
S.06

HEAPRINT
TRAPRINT
LOCKG
UNLCQ
READG
WRITQ
APPEQ
TAKEQ
INITQ
FPERIV
FFILISQ
MSPQENT
SNSPCOPY
FWSPRINT
ASPRINT
DSCOND
TUSSY
TUSRT
TUSEN
RUSPW
FUSEB
RUSER
WUSER
RUSER
GUSET
GMUST
COLUN
GUSEN
CUSED
GDEFD
GUSAC
FORJB
RORJE
WORJE
ROBJB
GOBJI
SEPOB
GFILT
GPREV
GNEXY
COBJE
CHIGY
CNEWYV
CROBY
DLOBJ
CRNE w
GVERS
GFIAC
GCFIL
DLPAG
DLSPA
FFILE
FOFT
SOFT
OFRND
FCON
FOPEN
FCLOS
XFCLOS

FILSEG2
FILSEGZ
FILSEG2
FILSEGZ
FILSEG2
FILSEGZ2
FILSEG?2
FILSEG?
FILSEGZ
FILSEG?2
FILSEG2
FILSEGZ
FILSEGe
FILSEGZ2
FILSEG?2
FILSEG2
FILSEG?2
FILSEG2
FILSEG?2
FILSEG2
FILSEGZ2
FILSEG2
FILSEG?2
FILSEG2
FILSEG?
FILSEGZ
FILSEG2
FILSEG2
FILSEGZ2
FILSEGZ
FILSEG2
FILSEG2
FILSEGZ2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG?2
FILSEG2
FILSEGZ
FILSEGZ2
FILSEGZ2
FILSEGZ
FILSEG?2
FILSEG2
FILSEGZ2
FILSEGZ2
FILSEG2
FILSEGZ
FILSEG?2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2/RESIDENT
FILSEG?

ND-60.122.02

PRINT SPCOLING HEADER
PRINT SPCOLING TRAILER
FIND NUMEER OF ELEM, IN QUEUE
UNLOCK QUEUE

READ ONE QUEUE ELEMENT
WRITE ONE QUEUE ELEMENT
APPEND TC QUEUE

TAKE FROM SPOOLING QUEUE
INITIALIZE QUEUE

FIND PERIPHERAL VERSION
FIND FILE IN SPOOL. QUEUE
MOVE SPOGCL. QUEUE ENTRY
SET NO. OF PRINT COPIES
FORWARD SPACE PRINT
BACKSPACE PRINT

DEFINE SPOOLING CONDITIONS
TEST USER SYSTEM

TEST USER RT

TEST USER ENTERED

READ USER PASSWORD

FIND USER ENTRY BUFFER
READ USER ENTRY

WRITE USER ENTRY

RELEASE USER ENTRY

GET USER INDEX

GET MAIN USER INDEX
COLLECT LSER NAME

GET USER NAME

CHANGE USER SPACE

GET DEFAULLT DIRECTORY

GET USER ACCESS

FIND OBJECT ENTRY BUFFER
READ OBJECT ENTRY

WRITE OBJECT ENTRY

RELEASE CBJECT ENTRY BUFFER
GET OBJECT INDEX

SEPARATE OBJECT NAME

GET FILE INDEX

GEY PREVIOUS VERSION

GET NEXT VERSION

CREATE OEJECT ENTRY

CREATE NEW HIGHER VERSION
CREATE NEW VERSION

CREATE OBUJECTS

DELETE OBUECT

CREATE NEW VERSION OF FILE
GET VERSION NUMBER

GET FILE ACCESS

GET OR CREATE FILE

DELETE PAGES OF FILE
DELETE PAGES OF FILE

FIND FILE TO OPEN

FIND OPEN FILE TABLE

SET UP OPEN FILE TABLE
OPEN FILE FOR RANDOM ACCESS
FILE CONNECT

FILE OPEN

FILE CLOSE

FILE CLOSE (NO VERSION CHANGE)

9.07
9.07
9.08
9.09
9.10
5.18
9'18
9.18
S.18
8.19
9,20
9.21
S,22
9.23
9.24
5.25
5,26
9.27
10.02
10.03
10.04
10.05
10.06
10.07
10.07
10.08
10.09
10,10
10.11
10.12
10.13
10.14
10.15
10.15
10.16
10.17
10.18
10.19
10.20
10.21
10.22
10.23
10.24
10.25
10.26
10.26
10.27
10.27
10.28
10.30
10,31
10.32
10.32
10.33
10.34
10,344
10.35
10.35
10.35

GBUF
GBUFS
RBUF
SBLSZ
SETPO
RBYTE
RMAXB
SBYTE
SMAXB
SBLOP
SDATF
CDATF
OPSCR
CPFIL
COLFI
cCLOUT
REMOPF 1
NBAVA
CRDIR
RNDIR
ENDIR
RLDIR
SDDIR
DIRST
LIDIR
DUDIR
CHDIR
CRUSE
RNUSE
DLUSE
GIUSE
TAUSE
LIUSE
USEST
DUUSE
CHUSE
ENUSE
RLUSE
CHANP
CLPAS
CRFRI
DLFRI
SFRIA
LIFRI
CRFIL
CRNVE
ALFIL
ALNVE
EXFIL
RNFIL
DLFIL
STERF
STMPF
SPERF
SFLAC
SDFIaA
DEUFI
FILST
LIFIL

FILSEGZ
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEGZ
FILSEG2
FILSEGe
FILSEGZ
FILSEG2
FILSEG2
FILSEG?
FILSEG?
FILSEG?
FILSEGZ
FILSEG?2
FILSEG2
FILSEG?2
FILSEGZ2
FILSEG2
FILSEG?2
FILSEG?2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEGe
FTLSEG?2
FILSEGZ
FILSEG?2
FILSEGZ
FILSEG?2
FILSEG?
FILSEGZ
FILSEG2
FILSEG?
FILSEG?2
FILSEGZ
FILSEGZ2
FILSEG?2
FILSEG2
FILSEG2
FILSEG2
FILSEG?2
FILSEG2
FILSEG?
FILSEG?2
FILSEG2
FILSEG?2
FILSEG2
FILSEG2
FILSEG2
FILSEG2

ND-60.122.02

GET BUFFER FROM POOL
GET BUFFER SET FROM POOL
RETURN BUFFER TO POOL
SET BLOCK SIZE

SET PERMANENT OPEN

READ BYTE POINTER

READ MAX POINTER

SET BYTE POINTER

SET MAX POINTER

SET ALOCK POINTER

SET BATAFIELD RESERVED
CLEAR DATAFIELD RESERVED
OPEN SCRATCH FILE

COPY FILE

COLLECT FILE NAME

CLOSE OUTPUT FILE
REMOTE OFEN FILE

WAIT FOR ANSWER ON REMOTE ©R,
CREATE DIRECTORY

RENAME DIRECTORY

ENTER DIRECTORY

RELEASE DIRECTORY

SET DEFAULY DIRECTORY
DIREETORY STATISTICS
LIST DIRECTORIES ENTERED
DUMP DIRECTORY ENTRY
CHANGE DIRECTORY ENTRY
CREATE USER

RENAME USER

DELETE USER

GIVE USER SPACE

TAKE USER SPACE

LIST USERS

USER STATISTICS

DUMP USER ENTRY

CHANGE USER ENTRY

ENTER USER

RELEASE USER

CHANGE PASSWORD

CLEAR PASSWORD

CREATE FRIEND

DELETE FRIEND

SET FRIEND ACCESS

LIST FRIENDS

CREATE FILE

CREATE NEW FILE VERSION
ALLOCATE FILE

ALLOCATE NEW FILE VERSION
EXPAND FILE

RENAME FILE

DELETE FILE

SET TERMINAL FILE

SET TEMPCRARY FILE

SET PERIRHERAL FILE

SET FILE ACCESS

SET DEFAULT FILE ACCESS
DELETE USERS FILES

FILE STATYISTICS

LIST FILES

A-20

10.36 ouoBy FILSEG? CUMP OBJUECT ENTRY
10.37 cHOBY FILSEG? CHANGE OBUECT ENTRY

10.38 OPENF FILSEG2 OPEN FILE

10.39 CONNF FILSEG? CONNECT FILE

10.40 CLOSF FILSEG2 CLOSE FILE

10.41 LIOPF FILSEG2 LIST OPENED FJILES

10.41 LIRTC FILSEG2 LIST RT CPENED FILES

10.42 ' S8L0s FILSEGZ SET BLOCK SIZE

10.43 SPERO FILSEG?Z2 SET PERMANENT OPENED

10.%44 SBYTP FILSEG2 SET BYTE POINTER

10.45 S8LoC FILSEG?2 SET B8LOCK POINTER

10.46 RESFI FILSEGZ RESERVE FILE

10.47 PELFI FILSEG2 RELEASE FILE

10.48 WHEF I FILSEG2 WHERE IS FILE

10.49 OPRTF FILSEG2 OPEN RT FILE
10.50 CORTF FILSEG2 CONNECT RT FILE
10.51 CLRTF FILSEGZ CLOSE RT FILE
10.51 QPENS FILSEG2 OPEN SCRATCH FILE
10.52 DUPAG FILSEG2 DUMP PAGE
10.53 CHPAG FILSEG2 CHANGE PAGE

10.54 cuslT FILSEG? DuUMP BIT TABLE

10.55 CHBIT FILSEG2 CHANGE BIT TABLE

10.56 REGDI FILSEG? REGENERATE DIRECTORY

10.56 TESDI FILSEG2 TEST DIRECTORY

10,57 COPDI FILSEG2 COPY DIRECTORY
10.57 COPF I FILSEG?2 COPY FILE

10.58 RELTU FILSEG2 RELEASE CEVICE UNIT

10.58 RESTU FILSEG?2 RESERVE CEVICE UNIT

10.59 SAVDI FILSEG? SAVE DIRECTORY
10.60 CREVOL FILSEG? CREATE VCLUME
10.61 LIvOL FILSEG?2 LIST VOLULME

10.62 CPUFIL FILSEG2 COPY USERS FILES
10.63 CLPRY FILSEG? CLEAR PARITY IN TAPE LABEL
12.04.3 CMMON FILSEG2 COMMAND MONITOR

12.04.4 CLPAR FILSEGe COLLECT FARAMETER

12.04.5 FRROR FILSEG2 WRITE ERROR MESSAGE
12.05.1 INITF FILSEG2 INITIATE FILE SYSTEM TABLES
12.06 GDATE FILSEG? GET DATE

2.00 G3RUF RESIDENT GET MASS STORAGE BUFFER
c.00 G3IRUF RESIDENT GET MASS STORAGE BUFFER
2.00 G3NWT RESIDENT GET MASS STORAGE BUFFER
2.00 GS5BUF RESIDENT GET MASS STORAGE BUFFER
2.00 R3BUF RESIDENT RELEASE MASS STORAGE BUFFER
2.00 R3IBUF RESIDENT RELEASE MASS STORAGE BUFFER
2.00 R53UF RESIDENT RELEASE MASS STORAGE BUFFER
2.05 GETCH RESIDENT GET CHARACTER FROM STRING
3.05 PYTCH RESIDENT PUT CHARACTER TO STRING
3.07.1 ACOPY RESIDENT COPY STRING (ALT,., PAGE TABLE)
2.07.1 COPYS RESIDENT COPY STRING

3.09 SETBL RESIDENT SET BRLOCK CONTENTS

3.10 coPYR RESIDENT COPY BLOCK

4,01 GDIRA RESIDENT GET DIRECTORY ADDRESS

4.02 GNAMA RESIDENT GET NAME TABLE ADDRESS
S.13 FLYTT RESIDENT MOVE 100 wORDS

G.1%6 FREA RESIDENT/FILSEG] FILE READ

5.17 FWRT RESIDENT/FILSEGI] FILE WRITE

1.07 oLboe RESIDENT/FILSEG] OLD OPEN FILE

.1.07 OPFIL RESIDENT/FILSEG] OPEN FILE

1.09 SETUP RESIDENT STRING DESCRIPTOR SET UP

ND-60.122.02

11.09
11.09
11.11
11.12
11.15
12,01
12.01
12.01
12.02.3
12.03.1
12.03.2
12.03.3
12.03.4
12.03.5
12.07.4
12.07.4
1.06.1
1.06.1
1‘06'1
1.06.3
11.01
11.01
11.01
11.02
11.02
11.02
12.08

SETW
WwCl
MROBJ
MRUSE
RSPQE
FATAL
LOCK
UNLOC
WHERE
CABST
DRABS
BABST
MARST
FDAZS
SINBT
SOUTRT
SPOP
SPUSH
SUBR, STACK
BUFFER POOL
FINBT
INBT
SBINBT
FOUTRT
ouTBT
sS8ouUTBT
OPCAL

RESIDENT
RESIDENT
RESIDENT/FILSEG)
RESIDENT/FILSEG]
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
SYSEG
SYSEG
SYSEG
SYSEG
SYSEG
SYSEG
SYSEG
SYSEG
SYSEG
SYSEG
SYSEG

ND-60.122.02

SET WRITE POINTER OF STRING
WRITE BYTE TO STRING

READ OBJECT ENTRY

READ USER ENTRY

READ SPOCLING QUEUE ENTRY
FATAL ERROR

LOCK SEMAPHORE

UNLOCK SEMAPHORE

WHERE IS SEMAPHORE
C2RTRIDGE DISC ABSTRANS
DRUM ABSTRANS

BIG DISC ABSTRANS

MAG TAPE ABSTRANS

FLOPPY DISC ABSTRANS

INPUT BYTE TO FILE SYSTEM
OUTPUT BYTE FROM FILE SYSTEM
POP SUBRCUTINE STACK

PUSH SUBROUTINE STACK
ENTER/LEAVE STACK

INPUT BYTE

INPUT BYTE

INPUT BYTE

OUTPUT BYTE

OUTPUT BYTE

QUTPUT BYTE

CALL ROUTINE ON OP.COM.SEGs

%% %% x%**xx SENDUS YOUR COMMENTS!!! % % % % % % % % % %

? ? Are you frustrated because of unclear information
: 9 o in this manual? Do you have trouble finding
things? Why don’t you join the Reader’s Club and
' send us a note? You will receive a membership
. ? ? card - and an answer to your comments.
] L4

Please let us know if you

* find errors \ /
* cannot understand information
* cannot find information ~———
* find needless information
Do you think we could improve the manual by rearranging the :
contents? You could also tell us if you like the manual!! / \

% % % % % % x * HELP YOURSELF BY HELPING US!! % % % % % % % % *

Manual name: NORD FILE SYSTEM Manual number: ND-60, 122. 02
System Documentation

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual?

Your name: Date:
Company: Position:
Address:

What are you using this manual for?

Sendto: Norsk Data A.S.
Documentation Department

P.O. Box 4, Lindeberg Gard —_

Oslo 10, Norway

Norsk Data’s answer will be found on reverse side

Answer from Norsk Data

Answered by Date

Norsk Data A.S.
Documentation Department
P.O. Box 4, Lindeberg Gard
Oslo 10, Norway

— we make bits for the future

NORSK DATA A.S BOX 4 LINDEBERG GARD OSLO 10 NORWAY PHONE: 30 90 30 TELEX: 18661

