
USSO Course Manual
for NORD-50 Software Courses

NORSK DATA A.S

NOT/CE

The information in this document is subject to change without notice. NorskData A48 assumes no responsibility for any errors that may appear in this docu-ment. Norsk Data A.S assumes no responsibility for the use or reliability of itssoftware on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. it may notbe photocopied, reproduced or translated without the prior consent of NorskData A.S.

Copyright © 1979 by Norsk Data A.s.

FREN’NNG FECQRW
o e@Fimémg Nam;
08 9 ORIGINAL PRENTING

U850 Course Mama: for NORD~50 Software Courses

END—60118.0”:

NGRSK DATA A.S
f mggfig PO. Box 4, Léndeberg gérd’ 333$ 0350 m, Norway

PREFACE

This manual is meant to serve as a supplement to the existing documentation on
NORD-SO software. The manual does not intend to be complete or self—
contained in any way, and is primarily written to be part of the course material in
a related course.

ND~60.118.01

TAB LE OF CONTENTS

+ + +

Section: Page:

“% 5N'E’RODUCTEON 1~1

2 HARDWARE SUMMARY 2—1

a NORD-SO MONITOR 3—1

4 SUBSYSTEMS FOR NORD—BO 4—1

4.1 MORE-50 FORTRAN 4—1
4.2 NGRD—SO Assembler 4~2
4.3 NORD~50 Loader 4—9

‘5 FELE HANDLENG FROM NORD-50 PROGRAMS 5—1

8 4 NOR D-SO'S SYSTEM (F16 Configuration) 6—1

7 PROGRAMMiNG EXAMPLES 7—1

7.1 Running a Simple NORD-SO Program 7—1
7.2 Sharing Data Between NORD-10/S and NORD-ESO 7—4
7.3 Caéiing an Assembiy Routine from FORTRAN 7—8

NDEOJTSOT

iNTRODUCTlON

The MORE—50 processor is constructed to be part of an integrated computer
system under control of a NORD-lO/S WORD-100). The characteristics of the
NORDSO processor includes high execution speed, high data precision and large
physical address space.

These qualities, combined with the flexible interaction with SINTRAN ill on the
NORD-‘lG/S, makes the NORD-SO Computer System especially suited for
applications in the fieids of science and industry.

N 060.118.01

2—?

HARDWARE SUMMARY

fhe NOED—‘SO Computer System consists of:

~ NGRQ-iG/S (or MORE—100) CPU
~ NGRB-BO CPU
— Multiport Memory System
— l/O System and Peripherals

Figure 2.? illustrates a MORE—50 Computer System configuration.

The two processors communicate through a l‘iORD-iO/S l/O bus in the i/O
system. Both processors are connected to the Multiport Memory System and
may both use the shared memory. Therefore, this area also provides means of
communication between the processors. in addition, each processor may have
its private memory, inaccesibie to the other.

The peripherals of the HO system must be accessed through the NORD File
System, which is part of SINTRAN ill on the NORD-lO/S. For this reason, l/O
to the NORD-SO CPU must normally go through the NORD-‘iO/S CPU. This is a
rather siow method. Therefore, there exists a feature for optimized file transfer to
disk and magnetic tape, where the initiation oi the file transfer is performed in
the file system, while the transfer itself only involves the 5/0 system and shared
memory. This feature is referred to as direct memory access (DMA).

ND-60.118.01

MAX. 512 K BYTES
MAX.4 M BYTES I A NA \

i
PR‘iVATE SHARED PRIVATE NORD-lO
NORD-SO cpu MEMORY MEMORY
MEMORY

i

l l
32 BIT DATA HIGH SPEED DATA 16 BIT DATA

CHANNEL

? 18 BIT DATA

NORDSO cpu NORD-lO CPU

i
ii

CONTROL

ii
‘

l/O SYSTEM

C
r:

Figure 2. 7: NORD—50 Computer System Parts

The NORD—SO CPU is a 32 bit processor. lt has an extensive instruction set.
instruction look-ahead and specialized units for arithmetical and logical oper-
ations give increased performance. Data elements include fixed point and single
or double floating point precision, the latter given a precision of 16 decimal
digits. The range of floating print data is from 10-76 to 1075. The format of data
elements is illustrated in Figure 2.2.

ND-60.118.01

Si 0

Fixed Point Format

Negative numbers are represented in two’s complement.
Range: —2,147,483,648 to 2,147,483,647

El l
31 30 22 :21 0iexponent field 5 mantissa field E

l ilg i' il s
l ll ll 2

L15 l
22 mantissa 0

Single Precision Format:

Bit 31 holds the sign of the mantissa. The exponent is biased. 4003 is added to it
before it is stored in the exponent field.

Although the mantissa field has 22 bits only, the mantissa has 23 bits because
the most significant bit is always assumed to be 1. Mantissa is always in the
range 0.5 to l .0.

Range; 10‘76 to ’iO’6
Precision16-7 decimal digits.

t i i ii «i l t
63 62 54 {53 31 0%lA, ll

i iE i, i i
“e i l
54 mantissa 0

Double Precision Format

Range: ii)“ to i076
Precision: 16 decimal digits.

Figure 2.2: Format of Da ta Elements

ND-BOJ 18.01

2—-4

The processor’s register block contains, logically, 64 registers of 32 bits each.
These may be used as general single word (fixed point) registers, single precision
floating point registers, base registers, index registers and modification registers.
They may also be used in pairs to form double precision floating point registers
of 64 bits. Certain restrictions on the usage of the registers are enforced by the
hardware logic of the register block.

The hardware structure of the register block is illustrated in Figure 2.3.

GENERAL SlNGLE PRECISION DOUBLE PREClSlON
REGISTERS REGISTERS REGISTERS

0 Bits 63-32

Base. Index
Registers Registers

15
‘5 Bits 310

Modification
Registers

31
32

47
48

63

Figure 2. 3: Hardware Structure of the Register Block

ND-60.118.0‘i

The figure iiiustrates that the number of physicai registers is 192. However,
registers in the same horizontal position have the same contents. The reason for
this design is to open for paraliei operations on, virtuaiiy, one register.

The first register in the register block, register 0, has a speciai function. its
contents is aiways 0 and it is therefore used for a number of ”clear” operations.

in addition to the register biock, the NORDoSO CPU contains 3 auxiiiary, internai
registers: the Overflow Register holding the upper 32 bits after a muitipiication,
the Remainder Register holding the remainder after a division and the Carry
Register.

"the memory of a NORD-SO Computer System consists of 16 bit words. Two
consecutive words must therefore be used to form a 32 bit NORD-SO word. A
word at an even memory address constitutes the most significant part of this 32
bit word, whiie the word at the subsequent odd memory address constitutes the
least significant part. See Figure 2.4.

EVEN 16 UPPER BITS
ODD 16 LOWER BITS

fig—‘_'1E>81TS ‘—%

Figure 2. 4: Memory

ND-60.118.01

2—6

Memory is organized in units called memory banks. By hardware construction
even and odd addresses are located in separate banks. A memory access from
the NORD-SO CPU (i.e., accessing a 32 bit word) will therefore affect two
separate banks which are accessed in parallel to reduce memory cycle time.

The maximum physical memory available to the NORD-50 CPU is ‘l M words of
32 bits (i.e., 4 MB). The NORD-SO address 0 must be within the NORD-‘lO
memory space, so that the two processors have some shared memory.

The NORD—SO CPU is controlled from the NORD-lO/S through an l/O bus.
Functionally, NORD—‘iO/S performs this control as if the NORD-SO CPU was an
t/O device. lt issues lOX instructions to transfer data between the A register of
the NORD-iO/S CPU and the interface and communication registers in the
NORDSO CPU. (See NORD-SO Monitor User’s Guide and System Documenta-
tion, Figure 1.2.)

The lOX instruction transfers a 16 bit value to/from the A register of the
NORD—‘lO/S. To communicate with a 32 bit register in the NORD-SO CPU, two
20X instructions must be executed. The argument of the lOX instruction must be
set to select upper or lower part of the NORD-SO register.

l\lD-60.118.01

NGRD-EO MONITOR

The NORD-BO Monitor is an optionat integrated part of SINTRAN ill. its task is to
supervise the operation of the NORD-50 and provide the programmer with
efficient tools to control the supervision.

The bulk of the NORD-SO Monitor resides on the NORD—SO Monitor segment
(segment no. 12). The segment contains the NORD-SO Monitor Command
Processor, various routines performing the commands, and tables and buffers
holding data. Segment 12 is a demand segment with logical address space from
1000008.

Some of the NORD-SO Monitor resides in SINTRAN’S memory resident area.
This includes the ”Enter NORD-SO Monitor” routine (called from the background
processor when the command @NORD-50 is issued), the NORD-SO data field
(having the same function as data fields for NO devices), and some HO and file
handling routines which have to be memory resident by the requirements of the
i/O system. See Figure 3.1.

ND—60.118.01

PAGE TABLE 0
0

SINTRAN III
MEMORY RESIDENT
(INC LU DING NORD-SO MONITOR'S
MEMORY RESIDENT PART)

28

32 100 0008

NORD‘SO
MONITOR
(SEGMENT 12)

61 ‘I720008

63

Memory resident part of NORD-SD Monitor consists of:

—- NORD-50 Data field
— Enter NORD—SO Monitor routine
— Interrupt drivers (IeveIs 3 and 12)
— Subroutines for RFILE, WFILE, ABSTR and MAGTP

Figure 3. 7: NORB-50 Monitor, Virtual Memory Layout

DID-60.11801

"r'he "Enter NORD-SO Monitor" routine checks if? the NORD—SO is already in use.
(A NORD—SO may only execute one program at a time.) if not, the NORD-SO data
field is reserved and the NORD—SO Monitor segment is activated by calling the
NORD—EO Monitor Command Processor.

The absence of a memory management system in the NORD~5O disallows a dy-
namic swapping of NORD—SO memory during program execution. Therefore, all
parts of a program must be in memory prior to its execution, and it must remain
there throughout the execution. This also applies to the pages in shared memo-
ry. Being a part of the NORD—iO/S memory, the pages in shared memory are
normally subject to swapping outside the programmer’s control.

A way to prevent SlNTRAN from swapping a specific physical area is to load a
segment and ”fix” it in memory using the FlXC monitor call. This is performed
automatically by the NORD—SO Monitor when preparing for the execution of a
program. in Figure 3.2 the NORD-SO program resides in the shaded region.

\

PRNATE jSiNTRAN RESIDENT MEMORY
NORD-iO/S \MEMORY

r SUBJECT TO SWAPPlNG

lk

SHA
MEM

E3?\‘\Vr l > Fixso (NOT TO BE SWAPPED)

,1
/

PRIVATE
oaoso

MEMORY

// / / I /

\\

Figure 3.2: Physical Memory Organization

Ala-60318.01

3—4

Some NORD—SO programs will not occupy the entire shared memory. in such ca-
ses it is ineconomicai to fix it ail. A better utilization of shared memory is obtain-
ed by spiitting it into partitions, where each partition is represented by a seg-
ment. See Figure 3.3.

PRiVATE
NORD-iO/S
MEMORY

SHARED MEMORY
SPLIT IN SEGMENTS

PRIVATE
NORD-SO
MEMORY

Figure 3.3: Shared Memory Split/n Segments

ND~60.118.01

The segments may be of different sizes. Each segment is fixed separately if the
corresponding memory space is required by a NORD-SO program.

An important note should be made at this point:

The finer the partition (i.e., the smaller the segments), the better the
utilization of shared memory will be. But, increased administrational over-
head is the price we have to pay. Figure 3.3 illustrates how shared memory
should be utilized.

\\\\ 1:3
/.</\<

//
STD/RE

REF.
NORD~10

BO "‘

\\ NORD-SO

i

L

BP and BO define break area set by:

NORD-SO Loader
*EXlT (stored in block 0 of program)
*BREAK—CONDlTiONS

NORD-SO Monitor
*BREAK-CONDiTlONS

Figure 3. 4: Shared Memory Allocation

in the discussion above we have assumed all segments in shared memory to be
dynamic segments. A dynamic segment has the quality that it will only be fixed
when required. A static segment, however, will be fixed the first time it is
required, and will remain fixed whatever program is being run.

An RT common area may also be part of shared memory. The organization of
physical memory is mapped by the NORD-SO Memory Segment table. This table
is illustrated in Figure 3.5.

ND-60.118.01

3—6

PHYSKIAL MEMORY

NORD-SO MEMORY
SEGMENT TABLE

ADD 50

TABLE CREATED BY THE
SET-MEMORY COMMAND

Figure 3. 5: NORB-50 Memory Segment Tab/e

Figure 3.6, 3.7 and 3.8 illustrate the format of an executable program and how
the NORD-50 Monitor loads and starts the program.

ND—60.118.01

WVOOW

OL'GHON

....

GEUVHS

WVOO‘I

OQ'OUON

F?
STATUS
INFORMATION

REGISTER
BLOCK BLOCK 0

SAVE/UNSAVE

BIT MAP 1

r-
a

T

BLOCK 1

g

i 1'§ 3PROGRAM
<

X;ig
5 s

l
E z it * z s5 i i:

(wwwwm

WWW.

Figure 3. 6: Executable Program

N 0-6011801

TO RE
PLACED
IN
SHARED
MEMORY

TO BE
PLACED
|N NORD~
LOCAL
MEMORY

EXECUTABLE PROGRAM

PHYSICAL MEMORY

V
50

Figure 3. 7: Operations at PLA (35/L DAD

NED-60118.01

\
BLOCKO

}
> ABLOCKOAREA

I
BLOCK]

‘
//8UFFER //

“i ?

\ SHARED
MEMORY

NORD~50
CPU

Mwé
LOCAL
NORD~50
MEMORY

WI

NORDASO
ONlTOR

PHYSICAL MEMORY PHYSICALMEMORY

NOR 0-50 MONITOR “W“ ” Area

Buffer

1 2

First Block Area ‘— NORD.50 ADDRESS 0 ————> First Block Area

3

NORD~50
CPU

REGISTERS

PHYSICAL MEMORY PHYSICAL MEMORY

flunk u my. :1
NOR D-50 MON ITO R

Buffer

First Bl ock area <-——-—- NORD-SO ADDRESS 0-—> First Black Area

6 STARTS
EXECUTTON

Figure 3. 8: Operations at RUN

ND-60.118.01

.gas

.423) ms

SUSSYSTEMS FOR NORD-SG

WORD—50 FOR TRAN

The NORD—SO FORTRAN is source program compatible with the NORD-SO
FORTRAN. Nevertheless, differences imposed by hardware may produce
unexpected deviations unless the programmer is cautious.

-— Standard NORD—SO FORTRAN has 16 bit integers while MOPED—50
FORTRAN has 32 bit integers. The programmer should be aware of this
difference in range, and also take precautions when using integers in
equivalence clauses. The $DOUBLE-lNTEGER-MODE command to the
NORD—‘lO FORTRAN computer or the DOUBLE lNTEGER type declaration
in the source program will overcome the problem by forcing allocation of 32
bit integers in the NORD-lO.

— Standard NORD-lO floating point format (48 bits) is incompatible with
NORD-SO floating point representation. However, an option in NORD-lO
configurations offers 32 bit floating point format, compatible with
NORD-SO single precision floating point. Unless this option is selected,
equivalence clauses with real type elements will cause problems.

For further details see NORD-lO FORTRAN System Reference Manual
(ND-60.07402) and NORD-BO FORTRAN Reference Manual (ND-60.09502).

ND-60.118.0i

Eu NOfiD-SGASSEMBL ER

The WORD—50 Assembler is documented in a separate manual (ND-60.07501).
line NORD-SO Reference Manual (ND-05003.01) may also be helpful when
writing assembly programs.

A summary of all instructions, with the relevant operands ‘for each of them
follows.

Summary of /nstruclions

Memory Reference lnstructions:

Mnemonic:

RT.)
EXC
MlN
CRG
CRL
CRE
CRD
JRP
JRN
JRZ
JR):
JPN)
JNM
JZM
JFEV)
ADD
SUB
AND
LDR
ADM
XMR
STR
MPY
(31V
1’”

(U
U

.

33’“

(2007:)cU

”r:

C7
"1”)

"Ti

”Ti

"f1

"(1

g
m
m
1:»

C:
emuo
rev
rave

R,D,B,X,l
R,D,B,X,l
R,D,B,X,l
R,D,B,X,l
R,D,B,X,l
R,D,B,X,l
R,D,B,X,l
R,D,B,X,)
R,D,B,X,l
R,D,B,X,l
R,D,B,X,l
R,D,B,X,l
R,D,B,X,l
R,D,8,X,l
R,D,B,X,l
R,S,B,X,l
R,D,B,X,l
R,D,B,X,i
R,D,B,X,l
R,D,B,X,l
R,D,B,X,l
R,D,B,X,l
R,D,B,X,l
R,D,B,X,l
R,D,B,X,l
R,D,8,X,l
R,D,B,X,l
R,D,8,X,l
R,D,B,X,l
R,D,B,X,l
R,D,B,X,l
R,D,B,X,(
R,D,B,X,l
R D B X (~

Action:

Returnjump
Remote execute
Memory increment
Skip if(R) 2 (Ea)
Skip if(R)< (Ea)
Skipi‘HR) = (Ea)
SkipiHR) ¢ (Ea)
Jumpif(R) 20
Jump if(R)<0
Jump if (R) = 0
Jump if(R) #0
Modify (R) andjump if (R) 2 0
Modify (Blandjumpif (R) <0
Modifymmndjumpif (R) = 0
Modify (R) and jump if (R) at 0
Add (Ea)to(R)
Subtract (Ea) from (R)
Logical AND between (Ea) and (R)
Load (R) with (Ea)
Add (R)to(Ea)
Exchange (Ea) and (R)
Store(R) in (Ea)
Multiply (R) by (Ea)
Divide (R) by (Ea)
Load (FD)with (Ea, Ea + 1)
Store(FD) in (Ea, Ea + 1)
Add (Ea)to(F)
Add (Ea, Ea +1)to(FD)
Subtract (Ea) from (F)
SubtracHEa, Ea + 1)from (FD)
Multiply (F) by (Ea)
Multiply(FD) by(Ea, Ea + 1)
Divide (F) by (Ea)
Divide(FD)by(Ea, Ea + 1)

ND-80.118.01

R : register
D = displacement
B = base register
X 2 index register
i = indirect addressing

inter Register Operations

Shift instructions:

Mnemonic:

SLR DR, SR, SC
SRR DR, SR, SC
SLA DR, SR, SC
SRA DR, SR, SC
SLL '

DR, SR, SC
SRL DR, SR, SC
SLRD DR, SR, SC
SRRD DR, SR, SC
SLAD DR, SR, SC
SRAD DR, SR, SC
SLLD DR, SR, SC
SRLD DR, SR, SC

DR = destination register
SR source register
SC 2 shift count

Action:

Left rotational shift
Rig ht rotational shift
Left arithmetical shift
Right arithmetical shift
Left logical shift
Right logical shift
Left rotational double register shift
Right rotational double register shift
Left arithmetical double register shift
Right arithmetical double register
Left logical double register shift
Right logical double register shift

0 < SC < 31 for single register operations
0 S SC S 63 for double register operations

ND-60.i 18.01

Miscellaneous Operations:

Mnemonic:

BST DR, SR, 8N
BCM DR, SR, 8N
BCL DR, SR, RN
882 DR, SR, SM
880 DR, SR, 8N
Fix DR, SR
FlR DR, SR
FlXD DR, SR
FIRD DR, SR

FLO DR, SR
FLOD DR, SR
RlN DR,, ER
ROUT ,SR, ER

EN = bit number
0 S RN <31

ER = external register
2 — OR (overflow register)
3 — RR (remainder register)

4—4

Action:

Bit set
Bit complement
Bit clear
Bit skip on zero
Bit skip in one
Convert floating to integer
Convert floating to rounded integer
Convert double precision floating to integer
Convert double precision floating to rounded
integer
Convert integer to floating
Convert integer to double precision floating
Register input
Register output

RID-60.11801

Arithmetic Operations:

Mnemonic:

RAD
R88
EMU
RDV
RAF
RSF
RMF
RDF
RAFD
RSFD
RMFD
RDFD
RAS
RAA
RASA
RSS
RSA
RSSA

DR,SRA,SRB
DR,SRA,SRB
DR,SRA,SRB
DR,SRA,SRB
DR,SRA,SRB
DR,SRA,SRB
DR,SRA,SRB
DR,SRA,SRB
DR,SRA,SRB
DR,SRA,SRB
DR,SRA,SRB
DR,SRA,SRB
DR,SRA,SRB
DR,SRA,SRB
DR,SRA,SRB
DR,SRA,SRB
DR,SRA,SRB
DR,SRA,SRB

SRA = source registerA
SR8 = source register 8

Action:

Register add
Register subtract
Register multiply
Register divide
Floating register add
Floating register subtract
Floating register multiply
Floating register divide
Double precision floating register add
Double precision floating register subtract
Double precision floating register multiply
Double precision floating register divide
Register add set carry
Register add add carry
Register add add and set carry
Register subtract set carry
Register subtract add carry
Register subtract add and set carry

ND-60.118.01

Test and Skip:

Mnemonic:

868
A86
SLE
ASL
SEQ
ASE
SUE
ASU
SGF

ASGF
SLF

ASLF
SEF

ASEF
SUF

ASUF
SGD

AGFD
SLD

ALFD
BED

rem
sue

AUFD

DR,SRA,SRB
DR,SRA,SRB
DR,SRA,SRB
DR,SRA,SRB
DR,SRA,SRB
DR,SRA,SRB
DR,SRA,SRB
DR,SRA,SRB
DR,SRA,SRB

DR, SRA, SR8
DR, SRA, SRB

DR, SRA, SRB
DR, SRA, SRB

DR, SRA, SRB
DR, SRA, SR8

DR, SRA, SRB
DR, SRA, SRB

DR, SRA, SRB
DR, SRA, SR8

DR, SRA, SR8
DR, SRA, SR8

DR, SRA, SR8
DR, SRA, SR8

DR, SRA, SR8

4—6

Action: ,

Subtract registers and skip it result 2 0
Add registers and skip it result 2 0
Subtract registers and skip if result < 0
Add registers and skip if result < 0
Subtract registers and skip if result = 0
Add registers and skip if result = O
Subtract registers and skip if result ¢ 0
Add registers and skip it result ¢ 0
Subtract floating registers and skip it result 2
0
Add floating registers and skip if result 2 0
Subtract floating registers and skip it result
< 0
Add floating registers and skip if result < 0
Subtract floating registers and skip if result =
0
Add floating registers and skip if result as 0
Subtract floating registers and skip if result ¢
0
Add floating registers and skip if result 7% 0
Subtract double precision and skip if result 2
0
Add double precision and skip it result 2 0
Subtract double precision and skip if result
< 0
Add double precision and skip it result < 0
Subtract double precision and skip if result =
0
Add double precision and skip if result = O
Subtract double precision and skip if result ¢
0
Add double precision and skip if result ¢ 0

l\lD-60.118.01

Logical Operations:

Mnemonic:

RND
RNDA
RNDB
RXO
RXOA

RXOB

ROR
RORA
RORB
SZR
RNAB

ROAB

RXAB

DR, SRA, SRB
DR, SRA, SRB
DR, SRA, SRB
DR, SRA, SRB
DR, SRA, SRB

DR,SRA,SRB

DR,SRA,SRB
DR,SRA,SRB
DR,SRA,SRB
DR,SRA,SRB
DR,SRA,SRB

DR,SRA,SRB

DR, SRA, SRB

Action:

Register AND
Register AND, use complement of (SRA)
Register AND, use complement of (SRB)
Register exclusive OR
Register exclusive OR, use complement of
(SRA)
Register exclusive OR, use complement or
(SRB)
Register OR
Register OR, use complement of (SRA)
Register OR, use complement of (SRB)
Set all zeros
Register AND, use complement of SRA and
SRB
Register OR, use complement of SRA and
SRB
Register exclusive OR, use complement of
SRA and SRB

ND-60.118.01

Argument instructions:

Mnemonic:

XORA
ANDA
ORA
SETA
SECA
ADDA
ADCA
DDP
DDN
DDZ
DDF
DSP
DSN
DSZ
DSF

DR, ARG
DR, ARCS
DR, ARG
DR, ARG
DR, ARG
DR, ARG'
DR, ARG
DR, ARG
DR, ARG
DR, ARG
DR, ARG
DR, ARG

'DR, ARG
DR, ARG
DR, ARG

ARG = argument

Action:

Exclusive OR
AND
OR
Set register
Set register to complement
Add
Add complement
Skip if (DR) 2 A86
Skip if (DR) < ARG
Skip if (DR) = ARG
Skip if (DR) ¢, ARG
Skip if (DR) 2 —ARG
Skip if (DR) < —ARG
SkipiflDR) = —ARG
Skip if (DR) 5': —ARG

N 0-60.11801

The(‘53 NGRD—EO l. OADER

'E’he NORD-fia‘) Loader is nearly identical to the NORD-‘IO Relocating Loader, both
En design and operation. The NORD—ESO Loader is documented in the NORD-SO
Loader User's Guide (ND-60.08302).

N060.118.01

FlLE HANDLlNG FROM NORD-SO PROGRAMS

The NORD-SO has neither an l/O system nor a file system. Therefore, normal
peripheral access from NORD-SO programs must go through SlNTRAN’s file
handling routines in the NORD-lO/S. This has two advantages:

—— The NORD-EO user is provided with a powerful l/O system and file handling
tools compatible to those of the NORD-lO/S user.

— Distribution of file processing activities allows a parallel
NORD-SO/ NOR D-‘l O execution giving increased performance.

Unconsidered programming, however, may lead to a reduction in performance if
the NORD-SO frequently awaits termination of HO operations taking place in the
NORD—lO/S. ln order to avoid awkward program design some facts on the file
processing strategies of the NORD-SO should be observed.

At lNBT/OUTBT one character at a time will be transfered between SlNTRAN’s
resident buffer and the communication register of the NORD-SO.

RFlLE/WFlLE is either performed indirectly, through a buffer, or directly to the
programs data area.

At indirect RFlLE/WFlLE, the NSOFlO (loaded from the FORTRAN library) will
contain a buffer to be used in read/write operations. lf the buffer resides in
shared memory, physical l/O may go directly to memory. The user should there-
fore arrange his program so that the buffer is placed in shared memory. This will
be the result when normal loading is performed, because the loader will always
lead NSOFlO first. it the buffer resides in private NORD-SO memory, physical l/O
goes to a buffer in the NORD-SO Monitor and a word by word copying will take
place between the buffer and the NORD-SO communication registers.

Direct file transfer will automatically take place if the file has been opened in a
special modus. When RFlLE/WFlLE is used in the NORD—SO program, an
optimized disk transfer (with ABSTR) will take place. Certain limitations on direct
file transfer exists. See NORD-SO Monitor User's Guide and System Documen-
tation (ND-60076.02). Among the limitation is the requirement that the file be
contiguous. The following table illustrates the access mode to be used in the
various situations to obtain the optimal file transfer.

NORD-lO/S
I

NOR D-50 indexed file NORD~50 contiguous file

R RX D or DC
W WX D or DC

By using the ACCESS = ’READ’ and ACCESS = 'WRlTE’ clauses in open
statements, the most optimal access mode will be selected automatically.

Note that the RFILE/WFlLE calls have a flag. If set, the NORD—SO program will
continue in parallel with the file transfer. The WAlTF call may be used to check if
the transfer has terminated.

Nil-60118.01

ii NORD—SU'S SYSTEM (F16 Configuration)

in the Fir”) Configurations one NORD‘iO/S and 4 NORD-SOS are used. Physical
memory is organized as shown in Figure 6.1.

NORD-iO/s NORD-SO NORD~50 NORD-SO NORD~SO
1 2 3 4

96K LOCAL 0 V LOCAL 4
NORD-iO/S LOCAL 1 LOCAL 2 LOCAL 3 A

32K HOLE _____ ___ __ ___ Hoé'e
SHARED 100
NORD-iO/S / / / / //128K &NORD.503

/ / /.____._ /___ //___ A___ J
200 i $3 3 é, i i E i l

LOCAL i i i i i ii i g g i i i
300

2 g g
E

i i

i HOLE i i i i gg i 1 i i400 g l i i i
i i i HOLE i i i
i i i i i
g f

i
g g HOLE

i'
i

500 ___i i g E i i
SHARED / E g i i
‘l and 2

/
i E g

2x E i ii // 9 i-..-
600 E

iLOCAL 3 i g
i

__ W i
700 SHARED //

3 & 4

/777 ____ //

Figure 6. 7: F 76 Configuration Memory Organization WORD-50 addresses are
given in octa/ K words (32 bits/J

There are 4 independent NORD-SO Monitors, one for each NORD-SO. When the
command @NORD—EG is issued, the first available NORD-SO is reserved. if a
soecific NORD-SO is required, the NORD-SO number must foiiow as parameter to
the command (e.g. @NORD-SO 3).

The MORE—50 monitors use reenrrant routines on segment 12. In addition, they
each have a 5 K data segment, segments 15, 16, 17 and 20 respectiveiy.

ND-60.1i8.01

7.?

PROGRAMMENG EXAMPLES

RUNNING A SIMPLE NORD-50 PROGRAM

Running a simple NORD—50 program:

Figure 7.1 shows the operations needed to prepare and run a FORTRAN
program on the NORD-SO.

ETERMINAL “
QED

SOURCE

NORDSOFTN
COMHLER

BRFS RELOCATABLE

?

saws NORD50
LOADER

LBRARY
5"

EXECUTABLENORS ‘

NORDEO
MONITOR

RUN

PLACE/LOAD

NORD-ESO
MEMORY

A

NORD~5O
CPU

Figure 7. 7: Preparing and Running a NORD-50 Program

Note that QED, compiler and loader operations are done on the NORD-10.

ND60.118.01

The example below illustrates how to compile, load and execute a NORD-SO
FORTRAN program.

First, the compiler is invoked and compilation requested.

@NEO-FORTRAN

— NORD—SO FTN COMPlLER 2159C —

$COMSPROG,1,1OO

1* PROGRAM EX1
2* WRlTEl1,10)
3* 10 FORMAT (*THIS is A TYPE<OUT*)
4* END

4 STATEMENTS COMPILED. OCTAL SIZE = 42
sex

The relocatable program was output to the scratch file (file no. 100) and may
now be input to the loader which will produce an executable program.

@NSO-LOADER
NORD-EO LOADER — K
MEMORY-lMAGE FILE:

Note that the present processing takes place on the NORD-lo. Therefore, a
”memory image” file is used by the loader when producing an executable
program. The above request must be answered by giving the file name of the file
to receive output from the loader. Default file type is NORS.

MEMORY-iMAGE FILE: ENORD
*LOAD‘lOO
FREE 0016330 0177777
*EX
FREE 0016330 0177777

The program may now be executed by invoking the NORD~50 Monitor and using
the subcommand LOAD.

@NORD—SO
NORD-SO MONlTOR — J
*LOAD ENORD
THlS l8 ATYPE—OUT
—~ *** END *** — AT: 000017 —
*EX

ND-60.118.01

A“ necessary commands are summarized below. For the sake of comparison the
simiiar procedure for a NORD-‘iO program is presented.

NORD-SO: NORD-10:

@NSO-FORTRAN @N10 FTN
$00M SPROG,1,100 $00M SPROG,1,100
$Ex $Ex

@NSO—LOADER @NRL
MEMORY-IMAGE FELEzENORD
*LOAD 100 *LOAD 100

*DUMP ENORD
*EX *EX

@NORD—SO
*LOAD ENORD @ENORD

ND-60.118.01

k3

7—23

SHARING DA TA BETWEEN NORD— 70/8 AND NOED—50

‘i‘he ioiiowing exemeie Elius‘tretes how data may be stored in shared memory by a
RT program in NDRDJO and read by a woes-50 program. This is obtained by
using a iabeiied COMMON area, 'i‘TF, pieced on a segment to be put in shared
memory. The RT program in NORD—‘aO stores the vaiue ’i in the integer V1 in The
COMMON area. The program Kooks as follows:

PROGRAM N10PUT,30
COMMON/WWW]
DOUBLE ENTEGER V‘i
V”; = 1
END

The NORD-SO program reads the value of V1 by outputting it to the terminal.
The NORD-SO program iooks as foliows:

PROGRAM NEOGET
COMMON/TTF/W
INTEGER V’i
WRiTE (i, 10) Vi

“i0 FORMAT(*V1= *, ii)
END

After having compiied both programs, the NORD-‘io program is ioaded to
segment 123 with the i‘oiiowing sequence:

@RT-LOADER

REAL-TiME LOADER 78,10,188

*NEW “NW?
NEW’SEGMENT NO; 123
*PRESET—COMMON 123, 37700
*NRE {LAS$E) NTOPUTH
*END
*EX

NIB—60118.01

Segment 123 now looks as follows:

0

CODE AND LOCAL DATA

37700
COMMON AREA

37777

The program is now started with the command @RT N10PUT and V1 will receive
the value 1.

The NORD-SO program is now to be loaded by the NORD-SO Loader. However,
the normal memory configuration of shared memory must be modified, so that,
whenever this program is being run, segment 123 will be part of shared memory.
The following sequence will do the job.

ND-60.118.01

'3
3
)._(
3
'I.

ND~60.118.01

it":1M
’T‘2i2-

F’h

'13
‘1}

1.33
a.

w

\"W

.\{W

{T I
i]...

HI:
«"

IYNAMI I...
(T

.1
)L.

‘C
5
‘(12 \.‘

I.

I:22’:
r‘
A

{32'
.

5%I(.7
.
\

/
13'7")

.,
.r\
m;

/

V

.
,x’"

v.”
,.)
.7

Now, the NORD—SO Monitor is entered, and the program is executed as fonows:

@NORD—SO
NORD-EO MONSTOR —~ J
*LOAD ”:00

V12?
—— *** END *** — AT: 0000247 —
*EX

NED-603118.01

?—8

CAL/LING AN ASSEMBI. Y/?OUT/NE FROM FORTHAN

The fofiewing program system contains a main program, MAW, wrifien in
FORTRAN, and an assembiy routine, ABOUT, caiied from MAIN. AROUT is
caried with one parameter, an integer variabie, containing a character in the
rightmost byte. This character is output to a terminai.

2‘0RTRAN program:

PROGRAM MAIN
iNTEGER A
A = 4H x
CALL AROUT (A)
END
The caning sequence iooks as foiiows in assembly code:

8‘22) 5, * +14”?
ACN AROUT
r
<address of A>

Assembiy program:

REF AROUT
AROUT LDR 11, 0, 6 % Rn: = address of

AROUT
LDR 32, 2, 6, 0,1 % R32: = A
STR 32, PARI, 17 % 9AM: = A
STOP 2 % OUTBT character
ACN PARO
STOP 0
ADD 6, 1,6 % R5: = 86 + no. of

parameters
RTJ O, 2, 6 % return

PARC) GCN 1
PAR? 888 1

END

See aieo NORD-SO FORTRAN Reference Manual (ND-60.09502), Appendix E2.

NIB-60.118131

0@®@@@@@ 9®@@@@@® GQ®$®®®®

®®@@
eeee

9@@@
O®®®$®fi® 00@@%@@@ O®®@@@@@ 09®$©@@® 00$®@@@@ O@@@@@@@ 0&0

03%

00%

8&9

09%

99%

009®@@®@
099993

eeee

NORSK DATA A.S
PO. Box 4, Lindeberg gércl
Oslo 10, Norway

CQMMENT AND EVALUATION SHEET
U850 Course Manual for NORD-SO Software Courses
Publication No. ND-60.118.01

Au gust 1979

in order for this manual to develop to the point where it best suits your
needs, we must have your comments, corrections, suggestions for
additions, etc. Please write down your comments on this preaddressed
form and mail it. Please be specific wherever possible.

..

..

..

— we make bits for the future

9

NORSK DATA A.S BOX 4 LINDEBERG GARD OSLO 10 NORWAY PHONE: 3916 01 TELEX: 18661

