US50 Course Manual
for NORD-50 Software Courses

NORSK DATA AS




USS50 Course Manual
for NORD-50 Software Courses



NOTICE

The information in this document is subject to change without notice. Norsk
Data A.S assumes no responsibility for any errors that may appear in this docu-
ment. Norsk Data A.S assumes no responsibility for the use or reliability of its
software on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. It may not

be photocopied, reproduced or translated without the prior consent of Norsk
Data A.S.

Copyright (C) 1979 by Norsk Data A.S,



ii

PRINTING RECORD

Printing Notes

08/79 ORIGINAL PRINTING

US50 Course Manual for NORD-50 Software Courses

ND-60.118.01

o0o  NORSK DATA A.S
PPN+ P.0. Box 4, Lindeberg gard
coeocs®  OUslo 10, Norway



PREFACE

This manual is meant to serve as a supplement to the existing documentation on
NORD-50 software. The manual does not intend to be complete or self-
contained in any way, and is primarily written to be part of the course material in
a related course.

ND-60.118.01



TABLE OF CONTENTS

+ + +
Section: Page:
1 INTRODUCTION ... 1—1
2 HARDWARESUMMARY ... ... .. . 2—-1
3 NORD-50MONITOR ... 3—1
4 SUBSYSTEMS FORNORD-B0 ... ... .. it 4—1
4.1 NORD-BOFORTRAN ... 4—1
4.2 NORD-B0 Assembler ... .. .. ... .. ... ... ... 42
4.3 NORD-BOLoader .......... ... ... ... ... it 4-9
5 FILE HANDLING FROM NORD-50 PROGRAMS ........ 51
8 4 NORD-50'S SYSTEM (F16 Configuration} ............ 6—1
7 PROGRAMMINGEXAMPLES ... ... ... .. . .. 7—1
7.1 Running a Simple NORD-80 Program ... .............. 7—1
7.2 Sharing Data Between NORD-10/S and NORD-G0 . ... ... 7—4
7.3 Calling an Assembly Routine from FORTRAN .......... 7—8

ND-60.118.01



INTRODUCTION

The NORD-50 processor is constructed to be part of an integrated computer
system under control of a NORD-10/S8 (NORD-100). The characteristics of the
NORD-80 processor includes high execution speed, high data precision and large
physical address space.

These qualities, combined with the flexible interaction with SINTRAN lil on the

NORD-10/S, makes the NORD-50 Computer System especially suited for
applications in the fields of science and industry.

ND-60.118.01



HARDWARE SUMMARY

The NORD-50 Computer System consists of:

—  NORD-10/5 (or NORD-100) CPU
—  NORD-BOCPU

— Muitiport Memory System

— 1/0 Bystem and Peripherals

Figure 2.1 illustrates a NORD-50 Computer System configuration.

The two processors communicate through a NORD-10/S 1/0 bus in the /0
system. Both processors are connected to the Multiport Memory Systemn and
may both use the shared memory. Therefore, this area also provides means of
communication between the processors. In addition, each processor may have
its private memory, inaccesible to the other.

The peripherals of the {/0 system must be accessed through the NCRD File
System, which is part of SINTRAN il on the NORD-10/S. For this reason, /O
to the NORD-50 CPU must normally go through the NORD-10/S CPU. This is a
rather slow method. Therefore, there exists a feature for optimized file transfer to
digk and magnetic tape, where the initiation of the file transfer is performed in
the file system, while the transfer itself only involves the 1/0 system and shared
memory. This feature is referred to as direct memory access (DMA).

ND-60.118.01



MAX. 512 K BYTES

MAX.4 M BYTES - N -
A
N
!
PRIVATE SHARED PRIVATE NORD-10
NORD-50 CPU MEMORY MEMORY
MEMORY
i
i 3
32 8(T DATA HIGH SPEED DATA 16 BIT DATA
CHANNEL
, 16 BIT DATA
|
NORD-50 CPU NORD-10 CPU
\
5
CONTROL
%
> 1/0 SYSTEM

.
S
S

Figure 2. 1: NORD-50 Computer System Parts

The NORD-50 CPU is a 32 bit processor. It has an extensive instruction set.
Instruction look-ahead and specialized units for arithmetical and logical oper-
ations give increased performance. Data elements include fixed point and single
or double floating point precision, the latter given a precision of 16 decimal
digits. The range of floating print data is from 10776 to 1076. The format of data
elements is illustrated in Figure 2.2.

ND-60.118.01



31 U
Fixed Point Format
Negative numbers are represented in two's complement.
Range: —2,147,483,648 10 2,147,483,647
L |
31 30 22 121 o
exponent field g mantissa field i
¢ 13
H i
= !
H i
; |
i i
t H
! ¥
£ 1
|1 ]
22 mantissa Q
Single Precision Format:
Bit 31 holds the sign of the mantissa. The exponent is biased. 400, is added to it
before it is stored in the exponent field.
Although the mantissa field has 22 bits only, the mantissa has 23 bits because
the most significant bit is always assumed to be 1. Mantissa is always in the
range 0.510 1.0.
Range: 10778 1c 107¢
Precision: 6-7 decimal digits.
RS ! |
Lol ; j
63 62 54 |53 31 of
¢
! i
i
|
| |
&
s §
i %
L |
54 mantissa 0

Doubile Precision Format

Range: 1077 to 1076
Precision: 16 decimal digits.

Figure 2.2: Format of Data Elernents

ND-60.118.01



24

The processor’s register block contains, logically, 84 registers of 32 bits each.
These may be used as general single word (fixed point) registers, single precision
floating point registers, base registers, index registers and modification registers.
They may also be used in pairs to form double precision floating point registers
of 64 bits. Certain restrictions on the usage of the registers are enforced by the

hardware logic of the register block.

The hardware structure of the register block is illustrated in Figure 2.3.

- Base.
Registers

Index
Registers

GENERAL SINGLE PRECISION  DOUBLE PRECISION
REGISTERS REGISTERS REGISTERS

Y Bits 63-32 i@
15

16 Bits 310 ja—

3

32 .

47

48 .

63

Figure 2.3: Hardware Structure of the Register Block

ND-60.118.01

Modification
Registers




The figure illustrates that the number of physical regisiers is 192. However,
registers in the same horizontal position have the same contents. The reason for
this design is to open for parallel operations on, virtually, one register.

The first register in the register block, register 0, has a special function. Its
contents is always 0 and it is therefore used for a number of ""clear’”’ operations.

{n addition to the register block, the NORD-50 CPU contains 3 auxiliary, internal
registers: the Overflow Register holding the upper 32 bits after a multiplication,
the Remainder Register holding the remainder after a division and the Carry
Register.

The memory of a NORD-50 Computer System consists of 16 bit words. Two
consecutive words must therefore be used to form a 32 bit NORD-50 word. A
word at an even memory address constitutes the most significant part of this 32
bit word, while the word at the subsequent odd memory address constitutes the
least significant part. See Figure 2.4.

EVEN 16 UPPER BITS
ODbD 16 LOWER BITS

Figure 2.4: Memory

ND-60.118.01



2—6

Memory is organized in units called memory banks. By hardware construction
even and odd addresses are located in separate banks. A memory access from
the NORD-50 CPU (i.e., accessing a 32 bit word) will therefore affect two
separate banks which are accessed in parallel to reduce memory cycle time.

The maximum physical memory available to the NORD-50 CPU is 1 M words of
32 bits (i.e., 4 MB). The NORD-50 address 0 must be within the NORD-10
memory space, so that the two processors have some shared memory.

The NORD-50 CPU is controlled from the NORD-10/S through an 1/0O bus.
Functionally, NORD-10/S performs this control as if the NORD-50 CPU was an
1/0 device. It issues 10X instructions to transfer data between the A register of
the NORD-10/S CPU and the interface and communication registers in the
NORD-50 CPU. (See NORD-50 Monitor User's Guide and System Documenta-
tion, Figure 1.2.)

The 10X instruction transfers a 16 bit value to/from the A register of the
NORD-10/S. To communicate with a 32 bit register in the NORD-EQ CPU, two
IOX instructions must be executed. The argument of the 10X instruction must be
set to select upper or lower part of the NORD-50 register.

ND-60.118.01



NORD-50 MONITOR

The NORD-50 Monitor is an optional integrated part of SINTRAN 1. Its task is to
supervise the operation of the NORD-50 and provide the programmer with
efficient tools to control the supervision.

The bulk of the NORD-50 Monitor resides on the NORD-50 Monitor segment
{segment no. 12). The segment contains the NORD-50 Monitor Command
Processor, various routines performing the commands, and tables and buffers

holding data. Segment 12 is a demand segment with logical address space from
100000,.

Some of the NORD-50 Monitor resides in SINTRAN’s memory resident area.
This includes the "Enter NORD-50 Monitor” routine (called from the background
processor when the command @NORD-50 is issued), the NORD-50 data field
{having the same function as data fields for 1/0 devices), and some 1/0 and file
handling routines which have to be memory resident by the requirements of the
i/0 system. See Figure 3.1.

ND-60.118.01



PAGE TABLED

0
SINTRAN i
MEMORY RESIDENT
{INCLUDING MORD-50 MONITOR'S
MEMORY RESIDENT PART)
28
32 100 000g
NORD-50
MONITOR
(SEGMENT 12)
61 ‘1720008
63

Memory resident part of NORD-50 Monitor consists of:
— NORD-50 Data field
—  Enter NORD-50 Monitor routine

— interrupt drivers (levels 3 and 12)
— Subroutines for RFILE, WFILE, ABSTR and MAGTP

Figure 3.1: NORD-50 Monitor, Virtual Memory Layout

ND-60.118.01



The "Enter NORD-50 Monitor’’ routine checks ¥ the NORD-B0 is already in use.
{A NORD-50 may only execute one program at & time.} If not, the NORD-50 data
field is reserved and the NORD-50 Monitor segment is activated by calling the
NORD-50 Monitor Command Processor.

The absence of a memory management system in the NORD-50 disallows a dy-
namic swapping of NORD-50 memory during program execution. Therefore, all
parts of a program must be in memory prior to its execution, and it must remain
there throughout the execution. This also applies to the pages in shared memo-
ry. Being & part of the NORD-10/S memory, the pages in shared memory are
normally subject to swapping outside the programmer’s control.

A way to prevent SINTRAN from swapping a specific physical area is to load a
segment and “fix"" it in memory using the FIXC monitor cail. This is performed
automaticaily by the NORD-50 Monitor when preparing for the execution of a
program. In Figure 3.2 the NORD-50 program resides in the shaded region.

N
PRIVATE j SINTRAN RESIDENT MEMORY
NORD-10/S 4
MEMORY

7 SUBJECT TO SWAPPING

AN

SHARED //
« MEMORY

» FIXED (NOT TO BE SWAPPED)

J

PRIVATE /

ORD-50
MEMORY /

s 7 7 7

Figure 3.2: Physical fiMlemory Organization

NG-80.118.01



34

Some NORD-50 programs will not occupy the entire shared memory. in such ca-
ses it is ineconomical to fix it all. A better utilization of shared memory is obtain-
ed by spiitting it into partitions, where each partition is represented by a seg-
ment. See Figure 3.3.

PRIVATE
NORD-10/S
MEMORY

- SHARED MEMORY
SPLIT IN SEGMENTS

PRIVATE
NORD-50
MEMORY

Figure 3.3: Shared Memory Splitin Segments

ND-60.118.01



The segments may be of different sizes. Each segment is fixed separately if the
corresponding memory space is required by a NORD-50 program.

An important note should be made at this point:

The finer the partition {i.e., the smaller the segments}), the better the
utilization of shared memory will be. But, increased administrational over-

head is the price we have to pay. Figure 3.3 illustrates how shared memory
should be utilized.

[ \\\\ ———————— } NORD-50
BP e e

7T
/)

BREAK ON

NORD-10
STORE REF.

SHARED ¢

/ < o _.
BN

BP and BQ define break area set by:

NORD-50 Loader
*EXIT (stored in block 0 of program)
*BREAK-CONDITIONS

NORD-50 Monitor
*BREAK-CONDITIONS

Figure 3.4: Shared Memory Allocation

In the discussion above we have assumed ali segments in shared memory to be
dynamic segments. A dynamic segment has the quality that it will only be fixed
when required. A static segment, however, will be fixed the first time it is
required, and will remain fixed whatever program is being run.

An RT common area may also be part of shared memory. The organization of

physical memory is mapped by the NORD-50 Memory Segment table. This table
is illustrated in Figure 3.5.

ND-60.118.01



3-6

PHYSICAL MEMORY

TVvO0T 0L-QHON

NORD-50 MEMORY
SEGMENT TABLE

ADD 50 7
Segment No.
—_

Size \

Tyoe

/

J3YVvHS

,____/

w307 05-JHON

TABLE CREATED BY THE
SET-MEMORY COMMAND

Figure 3.5: NORD-50 Memory Segment Table

Figure 3.6, 3.7 and 3.8 illustrate the format of an executable program and how
the NORD-50 Monitor loads and starts the program.

ND-60.118.01



STATUS
INFORMATION

REGISTER
BLOCK

SAVE/UNSAVE

BIT MAP

S

BLOCK O

PROGRAM <

BLOCK 1

1gure 3.6: Executable Program

ND-60.118.01



TO RE
PLACED
IN
SHARED
MEMORY

TO BE
PLACED

IN NORD-

LOCAL
MEMORY

EXECUTABLE PROGRAM

PHYSICAL MEMORY

\/

< 7

50

Figure 3.7: Operations at PLACE/LOAD

ND-60.118.01

S

NORD-50
CPU

Y

%
BLOCK O } > 77 BLOCK UARER
’
BLOCK 1 ) //BUFFER //
< 7

SHARED
MEMORY

LOCAL
NORD-50
MEMORY

NORD-50
ONITOR



PHYSICAL MEMORY PHYSICALMEMORY
NORD-50 MONITOR Hlack LA
Butter
1 2
First Block Area e NORD-50 ADDRESS 0 —e—pd  First Biock Area
3

NORD-50

CPU

REGISTERS
PHYSICAL MEMORY PHYSICAL MEMORY

Btk

NORD-50 MONITOR

Butfer

First Bl ock area (- NORD-50 ADDRESS Q=+ First Block Area

6 STARTS
EXECUTION

Figure 3.8: Operations at RUN

ND-60.118.01



L

N

[ N

SUBSYSTEMS FOR NORD-50

NORD-50 FORTRAN

The NORD-50 FORTRAN is source program compatible with the NORD-50
FORTRAN. Nevertheless, differences imposed by hardware may produce
unexpected deviations uniess the programmer is cautious.

— Standard NORD-50 FORTRAN has 16 bit integers while NORD-50
FORTRAN has 32 bit integers. The programmer should be aware of this
difference in range, and aiso take precautions when using integers in
equivalence clauses. The $DOUBLE-INTEGER-MODE command to the
NORD-10 FORTRAN computer or the DOUBLE INTEGER type declaration
in the source program will overcome the problem by forcing allocation of 32
bit integers in the NORD-10.

—  Standard NORD-10 floating point format {48 bits) is incompatible with
NORD-50 floating point representation. However, an option in NORD-10
configurations offers 32 bit floating point format, compatible with
NORD-80 single precision floating point. Unless this option is selected,
equivalence clauses with real type elements will cause problems.

For further details see NORD-10 FORTRAN System Reference Manual
{ND-60.074.02) and NORD-50 FORTRAN Reference Manual (ND-60.095.02).

ND-60.118.01



o

NORD-50 ASSENIBLER

The NORD-80 Assembler is documented in a separate manual (ND-60.075.01).
The NORD-B0 Reference Manual {ND-05.003.01) may aiso be helpful when
writing assembly programs.

A summary of all instructions, with the relevant operands for each of them
follows.

Summary of Instructions

Memory Reference instructions:

Mnemonic: Action:

RTJ ], D,8, X1 Returnjump

EXC #,D,B, X1 Remote execute

MIN R, D,B X! Memory increment

CRG R, DB X1 Skip if (R) > (Ea)

CRL R,D,B, X1 Skip if (R) < (Ea)

CRE R,D,B, X! Skip if (R) = (Ea)

CRD R,D,B X1 Skip if {R) # (Ea)

JRP R,D,B, X1 Jump if (R) 20

JRN R,D, B, X, Jump if (R )<O

JRZ R, D, B X Jump if (R} =

JRF R, D, B, X1 Jump if (R) #

JPM R, D, B, X1 Modify (R) and;ump (R =20
JNM R, D, B, X Modify (R)and jump if {R) <0
JZMA R, D,B, X1 Modify (R)andjump (R} = 0
JFM R, 0,8, X1 Modify (R)and jump (R) #0
ADD ], D,B, X1 Add (Ea) to (R)

SUB R,D,B, X1 Subitract {Ea) from (R)

AND R,D, B X1 Logical AND between (Ea) and (R)
LDR R,D,8, X! Load (R) with {Ea)

ADM R, D, B, X1 Add (R} to (Ea)

XMR R, D, B, X1 Exchange (Ea) and (R)

STR R,D, B, X! Store (R} in (Ea)

MPY R, D, 8, X1 Multiply {R) by (Ea)

DIV R,D,B, X, 1 Divide (R) by (Ea)

LoD R, D, B, X Load {FD) with (Ea, Ea + 1)
FTD R,D, B, X1 Store (FD) in{Ea, Ea + 1)
FAD R,D, B, X! Add (Ea) to {F)

FADD R,D, B, X, i Add (Ea, Ea + 1) to {FD)

FSB R,D, B, X Subtract (Ea) from (F)

FSBD R,D,B, X! Subtract {Ea, Ea + 1) from (FD)
FMU R, D,B X Multiply {F) by {Ea)

FMUD R,D,B, X1 Multiply (FD) by (Ea, Ea + 1)
FDV R,D,B, X1 Divide {F} by {Ea)

FDVD R, D, B, X | Divide (FD) by (Ea, Ea + 1)

ND-60.118.01



R = register

D = displacement
B = base register
X = index register
i

= indirect addressing

Inter Register Operations

Shift Instructions:

Mnemonic: Action:

SLR DR, SR, SC Left rotational shift

SRR DR, SR, sSC Right rotational shift

SLA DR, S8R, sC Left arithmetical shift

SRA DR, SR, SC Right arithmetical shift

SLL- DR, SR, sC Left logical shift

SRL DR, SR, SC Right logical shift

SLRD DR, SR, SC Left rotational double register shift
SRRD DR, SR, sSC Right rotational double register shift
SLAD DR, SR, SC Left arithmetical double register shift
SRAD DR, 8R, sC Right arithmetical double register
SLLD DR, SR, SC Left logical double register shift
SRLD DR, SR, SC Right iogical double register shift
DR = destination register

SR

source register

SC = shiftcount
0 < SC < 31 for single register operations
0 < SC < 63 for double register operations

ND-60.118.01



Miscellaneous Operations:

Mnemonic:

BST DR, SR, BN
BCM DR, SR, BN
BCL DR, SR, BN
BSZ DR, SR, BN
BSO DR, SR, BN
FIX DR, SR

FIR DR, SR
FIXD DR, SR
FIRD DR, SR
FLO DR, SR
FLOD DR, SR
RIN DR,, ER
ROUT ,SR, ER

BN = bit number
0< BN <31

ER = external register
2 — OR (overflow register)
3 — RR {remainder register)

44

Action:

Bit set

Bit complement

Bitclear

Bit skip on zero

Bit skip in one

Convert floating to integer

Convert floating to rounded integer
Convert double precision floating to integer
Convert double precision floating to rounded
integer

Convertinteger to floating

Convert integer to double precision floating
Register input

Register output

ND-60.118.01



Arithmetic Operations:

Mnemonic:

RAD
RSB
RMU
RDvV
RAF
RSF
RMF
RDF
RAFD
RSFD
BMFD
RDFD
RAS
RAA
RASA
RSS
RSA
RSSA

fi

SRA
SRB

Il

DR, SRA, SRB
DR, SRA, SRB
DR, SRA, SRB
DR, SRA, SRB
DR, SRA, SRB
DR, SRA, SRB
DR, SRA, SRB
DR, SRA, SRB
DR, SRA, SRB
DR, SRA, SRB
DR, SRA, SRB
DR, SRA, SRB
DR, SRA, SRB
DR, SRA, SRB
DR, SRA, SRB
DR, SRA, SRB
DR, SRA, SRB
DR, SRA, SRB

source register A
source register B

Action:

Register add

Register subtract

Register multiply

Register divide

Floating register add

Floating register subtract

Floating register multiply

Floating register divide

Double precision floating register add
Double precision floating register subtract
Double precision floating register multiply
Double precision floating register divide
Register add set carry

Register add add carry

Register add add and set carry

Register subtract set carry

Register subtract add carry

Register subtract add and set carry

ND-60.118.01



Test and Skip:
Mnemonic:

SGR
ASG
GLE

ASL
SEQ
ASE
SUE
ASU
SGF

ASGF
SLF

ASLF
SEF
ASEF
SUF

ABUF
SGD

AGFD
SLD

DR, SRA, SRB
DR, SRA, SRB
OR, SRA, SRB
DR, SRA, SRB
DR, SRA, SRB
DR, SRA, SRB
DR, SRA, SRB
DR, SRA, SRB
DR, SRA, SRB

DR, SRA, SRB
DR, SRA, SRB

DR, SRA, SRB
DR, SRA, SRB

DR, SRA, SRB
DR, SRA, SRB

DR, SRA, SRB
DR, SRA, SRB

DR, SRA, SRB
DR, SRA, SRB

DR, SRA, SRB
DR, SRA, SRB

DR, SHA, 5RB
DR, SRA, SRB

DR, SRA, SRB

4-G

Action:

Subtract registers and skip if result 2 0

Add regisiers and skip if result 2 0

Subtract registers and skip if result <0

Add registers and skip if result <0

Subtract registers and skip if result = 0

Add registers and skip if resuit = 0

Subtract registers and skip if result # 0

Add registers and skip if result # 0

Subtract floating registers and skip if result >
0

Add floating registers and skip if result 2 0
Subtract floating registers and skip if result
<0

Add floating registers and skip if result <0
Subtract floating registers and skip if resuit =
0

Add floating registers and skip if result # 0
Subtract floating registers and skip if result #
0

Add floating registers and skip if result # 0
Subtract double precision and skip if result >
0

Add double precision and skip if result 20
Subtract double precision and skip if result
<0

Add double precision and skip if result <0
Subtract double precision and skip if result =
C

Add double precision and skip if result = 0
Subtract double precision and skip if result #
0

Add double precision and skip if resuit # 0

ND-60.118.01



Logical Operations:

Mnemonic:

RND
RNDA
RNDB
RXO
RXOA

RXOB
ROR

RORA
RORB
SZR

RNAB
ROAB

RXAB

DR, SRA, SRB
DR, SRA, SRB
DR, SRA, SRB
DR, SRA, SRB
DR, SRA, SRB

DR, SRA, SRB
DR, SRA, SRB
DR, SRA, SRB
DR, SRA, SRB
DR, SRA, SRB
DR, SRA, SRB
DR, SRA, SRB

DR, SRA, SRB

Action:

Register AND

Register AND), use complement of (SRA)
Register AND, use compiement of (SRB)
Register exclusive OR

Register exclusive OR, use complement of
(SRA)

Register exclusive OR, use complement or
{SRB)

Register OR

Register OR, use complement of (SRA)
Register OR, use complement of (SRB)

Setall zeros

Register AND, use complement of SRA and
SRB

Register OR, use complement of SRA and
SRB

Register exclusive OR, use complement of
SRA and SRB

ND-60.118.01



Argument Instructions:

Mnemonic: Action:

XORA DR, ARG Exclusive OR

ANDA DR, ARG AND

ORA DR, ARG OR

SETA DR, ARG Set register

SECA DR, ARG Set register to complement
ADDA DR, ARG Add

ADCA DR, ARG Add complement
DDP DR, ARG Skip if (DR) = ARG
DDN DR, ARG Skip if (DR)< ARG
DDz DR, ARG Skip if (DR) = ARG
DDF DR, ARG Skip if (DR) # ARG
osp DR, ARG Skip if (DR) = — ARG
DSN ‘DR, ARG Skip if (DR} < —ARG
DSZ DR, ARG Skip if (DR) = — ARG
DSF DR, ARG Skip if (DR} # —ARG

ARG = argument

ND-60.118.01



:&e

(€3]

NORD-50 LOADER

The NORD-50 Loader is nearly identical to the NORD-10 Relocating Loader, both
in design and operation. The NORD-B0 Loader is documented in the NORD-50
Loader User's Guide (ND-60.083.02).

ND-60.118.01



FILE HANDLING FROM NORD-50 PROGRAMS

The NORD-50 has neither an 1/0 system nor a file system. Therefore, normal
peripheral access from NORD-50 programs must go through SINTRAN's file
handling routines in the NORD-10/S. This has two advantages:

—  The NORD-50 user is provided with a powerful |/O system and file handling
tools compatible to those of the NORD-10/S user.

- Distribution  of file  processing activities allows a  paraliel
NORD-50/NORD-10 execution giving increased performance.

Unconsidered programming, however, may lead to a reduction in performance if
the NORD-B0 frequently awaits termination of /0 operations taking place in the
NORD-10/S. In order to avoid awkward program design some facts on the file
processing strategies of the NORD-50 should be observed.

At INBT/OUTBT one character at a time will be transfered between SINTRAN's
resident buffer and the communication register of the NORD-50.

RFILE/WFILE is either performed indirectly, through a buffer, or directly to the
programs data area.

At indirect RFILE/WFILE, the NBSOFIO (loaded from the FORTRAN library) will
contain a buffer to be used in read/write operations. If the buffer resides in
shared memory, physical 1/O may go directly to memory. The user should there-
fore arrange his program so that the buffer is placed in shared memory. This will
be the result when normal loading is performed, because the loader will always
load NBOFIO first. If the buffer resides in private NORD-50 memory, physical /0
goes to a buffer in the NORD-50 Monitor and & word by word copying will take
place between the buffer and the NORD-50 communication registers.

Direct file transfer will automatically take place if the file has been opened in a
special modus. When RFILE/WFILE is used in the NORD-50 program, an
optimized disk transfer {with ABSTR) will take place. Certain limitations on direct
file transfer exists. See NORD-50 Monitor User's Guide and System Documen-
tation (ND-60.076.02). Among the limitation is the requirement that the file be
contiguous. The following table illustrates the access mode to be used in the
various situations to obtain the optimal file transfer.

NORD-10/S ' NORD-50 indexed file NORD-50 contiguous file
R RX DorDC
W WX DorDC

By using the ACCESS = ‘READ’ and ACCESS = 'WRITE’ clauses in open
statements, the most optimal access mode will be selected automatically.

Note that the RFILE/WFILE calls have a flag. If set, the NORD-50 program will
continue in parallel with the file transfer. The WAITF call may be used to check if
the transfer has terminated.

ND-60.118.01



&
4

4 NORD-50"S SYSTEM (F16 Configuration)

in the F16 Configurations one NORD-10/S and 4 NORD-50s are used. Physical
memory is organized as shown in Figure 6.1.

NORD-10/S NORD-50 NORD-50 NORD-50 NORD-50-
1 2 3 4
gsk | LOCAL G LOCAL 4
NORD-10/S LOCAL 1 LOCAL 2 LOCAL 3 @
HOLE
3K HOLE | . L L ¥
SHARED 100
NORD-10/5 % / / //
128K | & NORD-50s / /
o ///*__ . /fj___ /fj
200 R R
i i g
LOCAL 1 { i i | I ]
ﬁ Lo o i
300 % [ P E
oe || L |
! P i E
400 i ! | ! |
i | | HOLE § % g
! !
g P | | woie |
é P L |
| P by g
500 - ] ;
SHARED i 5 ‘
T and 2 / g ! % é
{ b :
Ny R g i
600 i g
LOCAL 3 § §
i
—_ g i
700 |syaReD /
3%4
W7

Figure 6.1: FI16 Configuration Memory Organization (NORD-50 addresses are
given in octal K words (32 bits). )

There are 4 independent NORD-50 Monitors, one for each NORD-50. When the
command @NORD-50 is issued, the first available NORD-50 is reserved. if a
specific NORD-80 is required, the NORD-50 number must follow as parameter to
the command (e.g. @NORD-50 3).

The NORD-50 monitors use reentrant routines on segment 12. In addition, they
each have a 5 K data segment, segments 15, 16, 17 and 20 respectively.

ND-60.118.01



PROGRAMMING EXAMPLES

RUNNING A SIMPLE NORD-50 PROGRAM

Running a simple NORD-50 program:

Figure 7.1 shows the operations needed to prepare and run a FORTRAN
program on the NORD-50.

gTERMlNAL ™ qep

SOURCE

NORD-50 FTN
COMPILER

4

BRFS < RELOCATABLE

4

<, %—o NORD-50
BRFS
LOADER

LIBRARY

7

NORS ‘ EXECUTABLE

NORD.50 RUN NORD-50
MONITOR cru

PLACE/LOAD

NORD-50 &
MEMORY

Figure 7.1: Preparing and Running a NORD-50 Program

Note that QED, compiler and loader operations are done on the NORD-10.

ND-60.118.01



The example below illustrates how to compile, load and execute a NORD-50
FORTRAN program.

First, the compiler is invoked and compilation requested.
@NEBO-FORTRAN
— NORD-80 FTN COMPILER 2159C —

$ COM SPROG, 1, 100

1* PROGRAM EX1

2* WRITE (1, 10)

3* 10 FORMAT (*THIS IS ATYPE-OUT*)
4% END

4 STATEMENTS COMPILED. OCTAL SIZE = 42
$EX

The relocatable program was output to the scratch file (file no. 100) and may
now be input to the loader which will produce an executable program.

@NB0-LOADER
NORD-50 LOADER — K
MEMORY-IMAGE FILE:

Note that the present processing takes place on the NORD-10. Therefore, a
"memory image” file is used by the loader when producing an executable
program. The above request must be answered by giving the file name of the file
10 receive output from the loader. Default file type is NORB.

MEMORY-IMAGE FILE: ENORD
*LOAD 100

FREE 0018330 0177777
*EX

FREE 0018330 0177777

The program may now be executed by invoking the NORD-50 Monitor and using
the subcommand LOAD.

@NORD-50

NORD-50 MONITCR — J
*LOAD ENORD
THISISATYPE-OUT

— F¥YEND *** — AT: 000017 —
*EX

ND-60.118.01



All necessary commands are summarized below. For the sake of comparison the
similar procedure for a NORD-10 program is presented.

NORD-50: NORD-10:

@N50-FORTRAN @N10FTN

$COM SPROG, 1, 100 $COM SPROG, 1, 100

$EX $EX

@N50-LOADER @NRL

MEMORY-IMAGE FILE:ENORD

*LOAD 100 *LOAD 100
*DUMP ENORD

*EX *EX

@NORD-50

*LOAD ENORD @ENORD

ND-60.118.01



fo

74

SHARING DATA BETWEEN NORD-10/S AND NORD-50

The foliowing example illustrates how data may be stored in shared memory by a
RT program in NORD-10 and read by a NORD-50 program. This is obtained by
using a labelied COMMON area, TTF, placed on a segment to be put in shared
memory. The RT program in NORD-10 stores the value 1 in the integer V1 in the
COMMON area. The program looks as follows:

PROGRAM N1OPUT, 10
COMMON/TTF/VI
DOUBLE INTEGER V1
Vi =1

END

The NORD-50 program reads the value of V1 by outputting it to the terminal.
The NORD-50 program looks as follows:

PROGRAM NBOGET
COMMON/TTF/V1
INTEGER V1
WRITE (1, 10) V1

10 FORMAT (*V1 = * 11)
END

After having compiled both programs, the NORD-10 program is loaded to
segment 123 with the following seguence:

@RT-LOADER
REAL-TIME LOADER 78.10.188

NEW ,,, WP

NEW SEGMENT NO.: 123
*PRESET-COMMON 123, 37700
*NRE{LASSE) N1OPUT,,

¥END

*EX

ND-60.118.01



Segment 123 now looks as follows:

6
CODE AND LOCAL DATA
37700
COMMON AREA
37777

The program is now started with the command @RT N10PUT and V1 will receive
the value 1.

The NORD-50 program is now to be loaded by the NORD-50 Loader. However,
the normal memory configuration of shared memory must be modified, so that,

whenever this program is being run, segment 123 will be part of shared memory.
The following sequence will do the job.

ND-60.118.01



LS S

M

ey g
PR RIS

[T

EEs

ND-60.118.01

RES]

{1

.

Ml

S50

oL

P

I

il

-

L0

o)

A A

S
1}

{

s

YLD
PN

Y0

’

H

24

1014

ey .

4

1

SR




Now, the NORD-50 Monitor is entered, and the program is executed as follows:

@NORD-50
NORD-50 MONITOR — J
*LOAD 100

V1 =1

— ***END *** — AT: 0000247 —
*EX

ND-60.118.01



7-8

CALLING AN ASSEMBLY ROUTINE FROM FORTRAN

The following program system contains a main program, MAIN, written in
FORTRAN, and an assembly routine, ARCUT, called from MAIN. ARCUT is
called with one parameter, an integer variable, containing a character in the
rightmost byte. This character is output to a terminal.

FORTRAN program:

PROGRAM MAIN
INTEGER A
A=4H X
CALL AROUT (A)
END

The calling sequence looks as foliows in assembly code:
RTd 6,*+1,4,,1
ACN AROUT

i
<address of A>

Assembly program:

REF AROUT
AROUT LDR 11,0,6 % Ryt = address of
AROUT
LDR 32,2,6,0,1 % Ryt = A
STR 32, PART, 11 % PART: = A
STOP 2 % CUTBT character
ACN PARO
STCP 0
ADD 5,1,6 % Rg: = Ry + no. of
parameters
RTJ 0,2,6 % return
PARC GCN 1
PARY BSS 1
END

See aiso NORD-50 FORTRAN Reference Manual {ND-60.085.02), Appendix E.2.

ND-60.118.01



OB000OR®
S0000DEe
02090009
0cee
000
00
006G
Q00000909
OPP06D0Q

0000008
2000200
[ Ld-LRok Lok
®6e [-1-1]
00 (L1
(-1 19] (L L]
60026009
00908¢
(1217

NORSK DATA A.S

P.0. Box 4, Lindeberg gérd
Oslo 10, Norway

COMMENT AND EVALUATION SHEET

US50 Course Manual for NORD-50 Software Courses

Publication No. ND-60.118.01

August 1979

In order for this manual to develop to the point where it best suits your
needs, we must have your comments, corrections, suggestions for
additions, etc. Please write down your comments on this preaddressed
form and mail it. Please be specific wherever possible.

..........................................

------------------------------------------

..........................................



— we make bits for the future

NORSK DATA A.S BOX 4 LINDEBERG GARD OSLO 10 NORWAY PHONE: 39 16 01 TELEX: 18661



