

PLANC

Reference Manual
ND-60.1175 EN

NOTICE

The information in this document is subject to change without notice. Norsk Data
A.S assumes no responsibility for any errors that may appear in this document.
Norsk Data A.S assumes no responsibility for the use or reliability of its software
on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. It may not
be photocopied, reproduced or translated without the prior consent of Norsk Data A.S.

Copyright (C) 1986 by Norsk Data A.S.

PRINTING RECORD

Printing Notes
10/79 Original Printing
06/80 Second Edition
01/82 Third Edition
06/83 Fourth Edition
12/83 Revision A

The following pages have been revised or added’

ix,2,4,89,11,20-21,35336, 38 - 39, 43, 45, 48, 58, 61,72,79, 87,

102, 104, 107, 110, 119, 126 - 127, 129, 138 - 140, 149, 151, 154 - 156,

156a - 156b, 158 - 162, 166, 173, 175, 182, 184, 186 - 188, 190,

205 - 206, 216, 219, 225 - 226, 226a, 229, 231, 237 - 239, 241 - 243, 245,

249, 251 - 253, 279 - 288, 291, 295 - 304.

Page 305 has been removed.

03/86 Fifth Edition

@0 i
hO© 09
h@ O

Norsk Data A.S
Graphic Center

P.0.Box 25, Bogerud
orsk Data 0621 Oslo 6, Norway

e
4
4

>4 100 000

iv

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one
or more single pages to be merged into the manual by the user, each revised
page being listed on the new printing record sent out with the revision. The
old printing record should be replaced by the new one.

New versions and revisions are announced in the Customer Support Information
(CSl) and can be ordered as described below.

The reader's comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms and comments should be sent to-

Documentation Department
Norsk Data A.S

P.O. Box 25, Bogerud

0621 Oslo 6, Norway

Requests for documentation should be sent to the local ND office or (in Norway)
to:

Graphic Center
Norsk Data A.S
P.O. Box 25, Bogerud
0621 Oslo 6, Norway

Preface:

THE PRODUCTS

This manual describes products which run under the SINTRAN III
operating system:

Compilers

PLANC Compiler - ND-100 ND-10309 (version G)
PLANC Compiler - ND-500 ND-10310 (version G)
PLANC Compiler - MC68000 ND-10491 (version G)

Runtime Systems

PLANC~-1BANK - ND-100 ND-10309 (version G)

PLANC-2BANK - ND-100 ND-10309 (version G)

PLANC-LIB -~ ND-500 ND-10310 (version G)

PLANC-MC68 - MC68000 ND-10491 (version G)
THE READER

This manual will be of interest to those wishing to write or read
PLANC programs.

PREREQUISITE KNOWLEDGE
The reader should have had some programming experience prior to using
a systems programming language like PLANC. A general knowledge of
compilation and execution of programs under the SINTRAN III operating
system would also be useful.
RELATED MANUALS
Related manuals for basic SINTRAN knowledge:

SINTRAN III Introduction ND-60.125

SINTRAN II1 Timesharing/Batch Guide ND-60.132
THE MANUAL
This manual is primarily intended for reference purposes and is
organized in a progressive sequence of topics from chapter 2 onwards.
Chapter 1 however, is intended to give an overview of the whole

language for the less experienced programmer, Or for a user only
requiring a reading knowledge of PLANC programs.

Norsk Data ND-60.117.5 EN

vi

CHANGES FROM THE PREVIOUS VERSION

This manual corresponds to versions, noted above, of the various PLANC
compilers and runtime systems.

This version of the manual contains changes, corrections and additions
to the previous version. In addition, the USING feature, which will be
available from version G and on, is described here. The appearance of
the manual has been changed, and a new extensive and entirely revised

index is included - for details about the index, see the last appendix
in the manual.

Norsk Data ND-60.117.5 EN

vii

TABLE OF CONTENTS

Section Page
1 INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE 3
1.1 PLANC Language Overview 4
1.2 A Simple PLANC Program 4
1.3 Data Types . 5
1.4 Type Spec1f1cat10n 6
1.5 Records 7
1.6 List Processing .. 8
1.7 Sequence Control Statements 9
1.8 Routines 11
1.9 Modules . 15
1.10 Scope of Identlflers 16
1.11 Simple Input/Output to the Termlnal 17
1.12 A More Complex Example 18
2 BASIC LANGUAGE ELEMENTS 19
2.1 Introduction 19
2.2 Character Set 19
2.3 Standard Symbols 20
2.4 Statements e 22
2.5 Continuation of Statements 22
2.6 Comments 23
2.7 Literals . 24
2.7.1 Integer therals 24
2.7. Real Literals 25
2.7.3 Boolean Literals 26
2.8 Literal Expressions . 26
2.8.1 Integer Literal Expressions 26
2.8.2 Real Literal Expressions 27
2.8.3 Boolean Literal Expressions 28
2.9 Single Character Literals 29
2.10 String Literals 29
2.11 Identifier Names .. 30
2.12 Enumeration Literal Lists 31
2.13 Implied Range 32
3 DATA DECLARATION AND SIMPLE DATA TYPES 35
3.1 Definition of PLANC Terminology 35
3.2 Integer Data-Elements 37
3.3 Real Data-Elements 38
3.4 Boolean Data-Elements 39
3.5 Constant Declarations 39
3.6 Enumeration Data-Elements 40
3.7 Pointers .. 42
3.8 Pointer Implled Range 44

Norsk Data ND-60.117.5 EN

viii

Section Page
3.9 Labels 44
3.10 Void .. 44
3.11 Modified Data Types 45
3.11.1 Range Modification 45
3.11.2 Precision Modification 46
3.11.3 Access Modification 47
3.12 Predefined Data Types 48
3.12.1 BYTE Data-Elements 48
3.12.2 BYTES Data-Elements 48
3.12.3 BITS Data-Elements . 49
3.13 Type Specification and User Deflned Types 49
3.14 TYPEOF Standard Routine . 50
3.15 Equivalent Data Storage for Data Elements 50
3.16 Predeclaration of Data-Elements 51
3.17 SIZE Standard Routine 52
4 DATA DECLARATION AND COMPOSITE DATA TYPES 53
4.1 Arrays . 53
4.1.1 Array Declaratlons . 54
4.1.2 Array Type Specification and User Deflned Types 57
4.1.3 Reference to Array Elements and Access Mode 58
4.1.4 Operations on Entire Arrays and Array Access 59
4.1.5 Index Set Information 60
4.1.6 Subarrays . 61
4.1.7 Predefined Data Types U51ng Arrays . . 62
4.1.7.1 BYTES - Arrays Used to Represent Character Strlngs 62
4.1.7.2 BITS - Arrays Used to Represent Sequences of Bits 64
4.2 Records . . . 65
4.2.1 Record Declaratlons and Type Spec1flcatlon 65
4.2.2 Variant Record Type Specification . 68
4.2.3 Reference to Record Components and Access Mode 70
4.2.4 Operations on Entire Records and Record Access 71
4.2.5 PACKED Option for Arrays and Records 73
4.3 Sets . 74
4.3.1 Set Declaratlons 74
4.3.2 Set Type Spec1flcatlon and User Deflned Types 76
4.3.3 Operations on Sets 77
4.4 Routines . 32
4.5 Dynamic Allocatlon of Data Elements 82
4.6 Processing of Records in List Structures 35
5 EXPRESSIONS - FORMATION AND EVALUATION 39
5.1 Assignment Operators g1
5.2 Arithmetic Operators g4
5.3 Logical Operators 97
5.4 Relational Operators 101
5.5 Conversion between Data Types . . 103
5.6 Accessing Record Components with the USING statement 105

Norsk Data ND-60.117.5 EN

Section Page
6 SEQUENCE CONTROL STATEMENTS 107
6.1 GO Statement 107
6.2 IF Statement 108
6.3 CASE Statement 111
6.4 DO Statement 113
6.5 FOR Statement 114
6.6 WHILE Statement 120
6.7 ASSERT Statement .o 123
6.8 Exception and Error Handllng 123
7 ROUTINES 127
7.1 Routine Declaration o 127
7.2 In-Value and Out-Value of Routlnes 133
7.3 Routine Invocation 135
7.4 Parameter Transfer 143
7.5 Exit from a ROUTINE 146
7.6 User Defined Routine TYPE Spec1f1catlon 147
7.7 Recursive Routines . 148
7.8 Scope of Identifiers in PLANC Routlnes 150
7.9 Standard Routines Available in-:PLANC 150
7.10 Table of PLANC Standard Routines 157
8 PROGRAM STRUCTURE 161
8.1 Basic MODULE 161
8.2 Main PROGRAM 163
8.3 EXPORT/IMPORT - Communlcatlon between modules 164
8.4 ALIAS Use in a Module e e e 167
8.5 Module Structure and Separate Compllatlon 173
8.6 Data-Element Storage and the Program Stack 174
8.7 Scope of Identifier Names in PLANC Modules 176
9 INPUT/OUTPUT 177
9.1 Input/Output Terms and Concepts 177
9.2 Formatted INPUT Standard Routines . . 179
9.2.1 I Format, Integer INPUT Standard Routlne 180
9.2.2 O Format, Octal INPUT Standard Routine 181
9.2.3 F Format, Fixed Decimal Point INPUT Standard Routlne 182
9.2.4 E Format, Fixed Decimal Point Normalized with Exponent

INPUT FO O S 183
9.2.5 A Format, Alphanumeric INPUT Standard Routine 184
g.2.6 L Format, Boolean INPUT Standard Routine 184
9.2.7 Random Unformatted INPUT Standard Routine 185
9.3 Formatted OUTPUT Standard Routines 186

Norsk Dzta ND-60.117.5 EN

Section Page
9.3.1 I Format, Integer OUTPUT Standard Routine 188
9.3.2 0 and Z Format, Octal OUTPUT Standard Routine 188
9.3.3 F Format, Fixed Decimal Point QUTPUT Standard Routlne . . 189
9.3.4 E Format, Fixed Decimal Point Normalized with Exponent

OUTPUT «« <19
9.3.5 D Format, Fixed Decimal Point Normalized with Exponent

OUTPUT « « « « « « v« v v v v19
8.3.6 A/AL Format, Alphanumeric OUTPUT Standard Routine 191
9.3.7 L Format, Boolean OUTPUT Standard Routine 191
9.3.8 Random Unformatted OUTPUT Standard Routine 192
9.4 OPEN Standard Routine 1963
9.5 CLOSE Standard Routine 194
9.6 BLOCKSIZE Standard Routine 194
9.7 FILESIZE Standard Routine 194
APPENDIX

A COMPILER COMMANDS+ . .+« <« v « .« 197
0.1 Table of Compiler Commands 199
0.2 Compiler Invocation . 200
0.3 Compilation of Source Programs 202
0.4 HELP Command + . « « « « <« < 203
0.5 Compiler Termination 203
0.6 End of File Command e e o 203
0.7 Immediate Preparation of Executable Programs c 204
0.8 Including Text from Other Source Files 205
0.9 Compile Time Constants 206
0.10 Conditional Compilation 2086
0.11 Compile Time Macros . . . e e e e e 208
0.12 Cross Reference Listing and Llnkage Informatlon 209
0.13 Listing Control 3 0 |
0.14 Runtime Options for the ND 100 = 5 o |
0.15 Data Type Defaults . 212
0.16 Creation of Libraries 212
0.17 Entire Modules as Libraries 213
0.18 Debugging B |
0.19 Assembler Code in PLANC Programs e e e e e s s, 214
0.20 DATE Command . . . - B
0.21 TARGET-MACHINE Command . o
0.22 OPTION Compiler Command 216
B ERROR MESSAGES « « © « v« « v v e w217
0.1 Compiler Messages« .« « v « v v v o« o 219
0. Runtime Messages« 225
C MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC 227
0.1 Introductory Notes . 229
0.2 Storage Mapping o 229

Norsk Data ND-60.117.5 EN

xi

Section Page
0.3 Storage Alignment 236
0.4 PACKED Option 238
D MIXED LANGUAGE PROGRAMMING 241
0.1 Introduction e e e e e 243
0.2 Interfacing with PLANC on the ND-100 244
0.3 Interfacing with PLANC on the ND-500 248
0.4 Interfacing with PLANC on the MC68000 249
0.5 Invoking PLANC from FORTRAN 249
0.6 Invoking FORTRAN from PLANC e 256
0.7 Accessing FORTRAN COMMON from PLANC 260
0.8 Invoking PLANC from COBOL 261
0.9 Invoking COBOL from PLANC Lo 263
0.10 Invoking PLANC from BASIC on the ND-100 265
0.11 Invoking BASIC from PLANC on the ND-100 267
0.12 Invoking PLANC from MAC 269
0.13 Invoking MAC from PLANC on the ND-100 270
E USING SINTRAN MONITOR CALLS 271
0.1 SINTRAN Monitor Calls e e e e 273
0. Monitor Calls Available on the ND-100 and the ND-500 274
F BNF SYNTAX DESCRIPTION OF PLANC 283
G PLANC IMPLEMENTATION RESTRICTIONS 295
H INDEX 303

Norsk Data ND-60.117.5 EN

Index term

INDEX

LIST

Reference

"

character

£ character

character
in string
% operator

ol o\@ o\@

& character
& in string

character
in string

{ character

) character

, character

. character

32 bit code

48 bit code

: character

Norsk Data

ND-60.117.

5

EN

20

20

20
29
23

20
29

20
29

20

20

20

20

212

212

20

Index term Reference
:=: operator value of . . 93
:PLNC file . 202
:SYMB file . . 202
:XREF file type . . 209
=: operator . . 91
? character . . 20
@ character . . 20
@ commercial at character in ROUTINE . 133
@ in-value . 133
ABS SET operator . 79
ABS, operator . .21, 97
access by dots, repeated . 70
access mode for RECORDs . .71
access modification of data types . . . 47
access modification of formal ROUTINE parameters . 129
access modification of simple data types . 6, 36
access READ, ROUTINE parameters . . 143
access to ARRAY element . . 58
access to entire ARRAY . 59
access to RECORD .71
access to RECORD component . 70, 105
access to RECORD components . . . 105
access to WRITE data—-element, restrlctlon . . 298
access WRITE, ROUTINE parameters . 143
access, ARRAY READ .. . 60
access, ARRAY WRITE . . . 60
access, default after declaratlon . . 47
access, default for ROUTINE parameters . 143
access, READ . . 47
access, WRITE 47
accessing FORTRAN COMMON from PLANC . . 260
actual parameters to ROUTINEs . . 135
ADDR and POINTER . . 42
ADDR and ROUTINE restrlctlon . 297
ADDR for ARRAY PACKED component access . 299
ADDR for RECORD PACKED component access . . 299
ADDR in subarrays . . 61
ADDR standard routine . . . 150
ADDR, restriction on multlple . . 300
address variables (pointers) . 5
ALIAS and loading . . 173

Norsk Data ND-60.117.5 EN

Index term Reference
BALIAS and SYSTEM qualfier for EXPORT/IMPORT 131
ALIAS identifier length restriction 300
ALIAS ina MODULE « « v « « v v o« . . 167
ALIAS option . . B K 14
ALIAS ROUTINEs, name confllcts and Y X
ALIAS, alternative to 131
alignment of data-elements in storage 236
allocated data-elements, static 174
allocation at TYPE specification of data-element . . 57
allocation of dynamic data 153
allocation of storage 7
allocation, dynamic data storage .o . 82 .
allocation, FREE P pointer in dynamic data allocatlon 83
AND operator . . . « « « « +« & v e e e e s e . 21,97
AND SET operator . . . B A
apostrophes and BYTES data— element e e v e o o . . . 55
APPEND standard routine 85, 151
APPEND to a linked list P - 1o
arithmetic expressions, parentheses in 9
arithmetic operations, type of result of 94
arithmetic operators9
ARRAY access of entire . . 1
ARRAY and predefined data types B ¥4
ARRAY component type 53
ARRAY composite data type 36
ARRAY declaration5
ARRAY element access . . + - + « « « « « « « « . . . 58
ARRAY element reference 58
ARRAY element specification 7
ARRAY element storage order, default e e e e o .. . 235
ARRAY index bounds « « . .+ .« .«60
ARRAY index set information 60
ARRAY Name . . . + « « « « o « 4 4« o+« e v o . . .54
ARRAY PACKED B i
ARRAY PACKED component access us1ng ADDR e e o . . 299
ARRAY POINTER, storage requ1rement for 232
ARRAY READ access . . . O <10
ARRAY TYPE specxflcatlon - Y
ARRAY WRITE access . . . « « + « « « « « « v« « . . 60
ARRAY, BITS « « v « & v & « v « v v v v « . .53
ARRAY, BYTES « « « « « v « v v v v . . .53
ARRAY, data—-elements . . . o X
ARRAY, default element sequence B 1]
BARRAY, index check of + .« « . . . 212
ARRAY, multi-dimensional53
ARRAY, storage requirement for 235
ARRAY-INDEX-CHECK compiler option 212
ARRAY-INDEX-CHECK, restrictionon 299
assembler code, inline in PLARC 214
assembler routine w131
assembler routine and scope level restrlctlon 298
assembler, restriction for ND-100 inline 301
ASSERT and exception handling 123

Norsk Data ND-60.117.5 EN

Index term Reference
ASSERT statement . . 123
ASSERTFALSE exception condltlon . . . 124
ASSERTFALSE exception handler missing . . 125
assignment of data to BYTES . . 58
assignment operator priority . 91
assignment operators . . . 91
assignment operators, deflnltlon .9
Backus-Naur form (BNF) . 282
base RECORD, definition . . 68
base type for SET . . 74
base type, definition of . 36
basic MODULE . . . 16l
BASIC, invoking PLANC from . . 267
BASIC, invoking PLANC from . 265
binary operator . . . 89
bit string . 6
bit strings 62
BIT, standard routlne . . 151
BITS ARRAY e e e e e e e e e e . 53
BITS data type+ . . 6, 62
BITS data-elements . . 49
BITS relationship with BOOLEAN . 64
BITS, data type 48
BIT POSITION, standard routlne . 151
BIT_SIZE, standard routine . 151
BLOCKSIZE in file control . . 177
BLOCKSIZE, setting for files . 194
BLOCKSIZE, standard routine . . 151, 194
BNF notation . . . 282
Boolean data—elements . . 39
Boolean literal expressions . . . 28
Boolean literals TRUE and FALSE . . 26
BOOLEAN simple data type . . 35
BOOLEAN, relationship to BITS . . . 64
BOOLEAN2-ENUMERATION2 compiler option . . 216
bounds for ARRAY indexes . 60
BYTE data type . 6, 48
BYTE data-elements . 48
BYTES ARRAY . . . 53
BYTES data type . . 6, 48, 62
BYTES data—elements . . . 48
BYTES data-elements and apostrophes . . 55
BYTES data-elements, PACKing of . . 238
BYTES, data assignment to . . 58
BYTES, definition of . 62
BYTES, initialization of . 63
BYTES, referencing of . . 58

Norsk Data ND-60.117.5 EN

Index term Reference
call of subroutine, see ROUTINE invocation 243
CALL-HIERARCHY, compiler command 209
calls, hierarchy of routine 209
calls, SINTRAN III monitor 273
cardinal number of SET 19
CASE branching statement10, 111
CASE statement, ELSE in 111
CASE statement, ENDCASE and 111
CASE statement, INCASE in 111
change operator, value of 93
character literal, single29
character sets in PLANC19
character string6, 62
character, single o . o 6
characters, PLANC special 20
characters, special « .« . . .00 20
check of ARRAY index « « « « « « o « o « « . 212
checking file size « . . « 194
classes of operators . . .« . +« +« « +« o o o o o . . 90
CLOSE in file control « « « « « « « « . . 177, 194
CLOSE standard routine « . « « « . . 151, 194
COBOL and FORTRAN ROUTINE, calls from 145
COBOL from PLANC, invoking . . . e v e« . . 263
COBOL routines, similar routines in PLANC 138
COBOL, invoking PLANC from « « « « . . 261
code optimization on ND-100 212
command table compiler . . . S > 2
command, see also compiler command e e . . 199
commands in source programs for the PLANC compller . 201
comments and % . e v e .. . 10, 23
commercial at character (@) in ROUTINE e e 133
COMMON from PLANC, accessing FORTRAN COMMON 260
COMMON option for FORTRAN COMMON import 165
communication between MODULEs 164
compilation and loading of MODULEs 173
compilation of source programs 202
compilation, conditional e e ... 206
compilation, MODULE structure and separate R
COMPILE restriction« « « « « . . . 298
compile time constants 206
compile time macros . . . O ¢
compiler command CALL~HIERARCHY e e e e e e e e e .. 209
compiler command CONSTANT . . . c e e e e e e .. . 206
compiler command CROSS- REFERENCE e e e e e e . 209
compiler command DATE 215
compiler command DEBUG-MODE 213
compiler command DEFINE 205
compiler command EJECT « 211
compiler command ELSE 206
compiler command ELSIF 206
compiler command ENDIF 206
compiler command ENDMACRO 208

compiler command EOF 203

Norsk Data ND-60.117.5 EN

Index term Reference
compiler command EXIT . . 203
compiler command HELP . . 203
compiler command IF . . 206
compiler command INCLUDE . 205
compiler command KILL . . . 206
compiler command LIBRARY—MODE . . 212
compiler command LINE-BIAS . 211
compiler command LINKAGE-REFERENCE . 210
compiler command LIST . . 211
compiler command LOAD . 204
compiler command MACRO . . 208
compiler command MODULE-LIBRARY- MODE . 213
compiler command ND1OO-EXTENDED . . 211
compiler command OPTION . . 212, 216
compiler command PROG-FILE . 204
compiler command REAL-PRECISION . . 212
compiler command SEPARATE-DATA . 211
compiler command TARGET-MACHINE . . 215
compiler commands in PLANC source program . . 201
compiler commands, table . 199
compiler invocation . . . 200
compiler linkage 1nformat10n . 209
compiler MACRO, parameters to . . 208
compiler messages 219
compiler option ARRAY- INDEX—CHECK . . 212
compiler option BOOLEAN2-ENUMERATIONZ2 . . 216
compiler option SQUEEZE . . 212
component access RECORD . . 105
component access, RECORD . 70, 105
component READ RECORD . .71
component reference record . 71
component, RECORD . . . 65
component, WRITE RECORD . . 71
components of a MODULE . 16l
composite data type ARRAY . . 36
composite data type RECORD . 36
composite data type ROUTINE . . 36
composite data type SET . . 36
composite data types . . 5, 36, 53
composite data-element, deflnltlon . 35
compression of data: PACKED . . 238
conditional compilation . . . 206
conditional compilation example . . 207
conditional statement IF . 9
conditions, exception . . 123
CONSTANT compiler command . . 206
constant declaration e e . 39
CONSTANT declarations, rules for . 40
CONSTANT value, default . . 40
CONSTANT, global TYPE and . . . 173
CONSTANT, IMPORT of TYPE and to inner MODULES . . 166
constants, compile time . . 206
continuation statement . 22

Norsk Data ND-60.117.5 EN

Index term Reference
control statements, sequence .9, 107
control structures . . 107
control variable in FOR loop . 114
control with files: BLOCKSIZE . . 177
control with files: CLOSE . . 177
control with files: FILESIZE 177
control with files: OPEN . . 177
control with PACKED variable in loops . . 115
control with POINTER implied ranges in loops . 115
control, WHILE and EXITWHILE in loops . . 120
control, WHILE statement in loops . . 120
conversion between data types . . 103
CONVERT standard routine . 103, 151
creating a stack . 175
creating an identifier . . 176
cross reference listing from compller . . 209
CROSS~REFERENCE compiler command .. 209
CROSS~REFERENCE identifier length, restrlctlon on . . 300
CROSS~REFERENCE incompatibility with

LINKAGE-REFERENCE R . 211
data allocation, dynamic . . . 82, 153
data allocation, use of FREE P p01nter for dynamlc . 83
data area for ROUTINE calls . . 243
data compression . . 238
data deallocation, dynamlc . 151
data declaration . 35
data declarations . . . 53
data transfer, INPUT and . 177
data transfer, OUTPUT and . . 177
data type ARRAY . . 36
data type BITS . 6, 48, 62
data type BOOLEAN . . 35
data type BYTE . . 6, 48
data type BYTES . . 6, 48, 62
data type defaults . 212
data type ENUMERATION . .5, 35
data type INTEGER . . 35
data type LABEL . . . 35, 44
data type modification, 51mple types . 36
data type POINTER . e e .5, 35
data type REAL . . 35
data TYPE RECORD . 7, 36, 65
data type ROUTINE . . 36
data type SET . . . 36, 74
data TYPE specxflcatlon . . 6
data type VOID . 5, 35, 44, 129,

133

data type, definition of modified types . . 45
data type, legal in-values to ROUTINE . . 129
data type, legal out-values from ROUTINE . 129

Norsk Data ND-60.117.5 EN

Index term Reference
data type, precision modified . . 46
data type, ROUTINE as . . 127, 147
data types e e e . 5
data types, access modified . . 47
data types, composite . . . 5, 36
data types, conversion between . 103
data types, definition . 35
data types, predefined . 6, 48
data types, predefined using ARRAY . 62
data types, RANGE modified . . 45
data types, simple . .5, 35
data, assignment to BYTES . . 58
data, global . 174
data, PACKED . . 238
data~allocating routlne NEW 82
data-element allocation and TYPE spec1flcat10n . 57
data-element ARRAY . 53
data—~element RECORD 65
data~element restriction: access to WRITE elements . 298
data—-element SET 74
data~element storage and the program stack . 174
data~elements BITS . 49
data-elements BYTE . 48
data-elements BYTES . . 48
data-elements, apostrophes used to spe01fy BYTES . 55
data-elements, Boolean e e e e e e . 39
data~elements, definition . . . 24, 35
data-elements, definition of comp031te . 35
data-elements, definition of simple . . 35
data-elements, ENUMERATION . 40
data-elements, in linked lists . 44
data-elements, integer 37
data—-elements, multi-CPU synchronlzatlon of . . 236
data—-elements, PACKing of BYTES . . 238
data-elements, PACKing of ENUMERATION . . 238
data~-elements, PACKing of INTEGER RANGE . . 238
data—-elements, POINTER e e . 42
data-elements, predeclaration . . 51
data-elements, real . . . 38
data~elements, statically allocated . . 174
DATE compiler command . e coe . 215
DEBUGGER and ROUTINE out-value restriction . 298
DEBUGGER restriction and ELSE . . 298
DEBUGGER restriction and EXITFOR . 298
DEBUGGER restriction and EXITWHILE . 298
DEBUGGER restriction and INCASE . . 298
debugging 213
DEBUG-~MCUDE compller command . . 213
DEBUG-MODE restriction . 298
declaraticn ARRAY . . 54
declaration of composite data . . 53
declaration of CONSTANTs . 39
declaration of data . . 35

Norsk Data ND-60.117.5 EN

Index term Reference
declaration of equivalence between variables . 51
declaration ROUTINE . . 127
declaration rule for CONSTANTS . 40
declaration SET . . 74
declaration, definition . . 36
declaration, LABEL . 44
declarations within a MODULE global . 161
declarations, default access for variables . 47
declarations, general form . . 36
default access after variable declaratlon . . 47
default ARRAY element storage . . 235
default CONSTANT value . . 40
default element sequence in ARRAYS . 55
default ROUTINE parameter access . 143
default SET initialization . 75
defaults for data type . 212
DEFINE compiler command . . 205
defined TYPEs, user . . . 49, 57
definition assignment operators . . 91
definition BYTES . . 62
definition composite data~element . . 35
definition data types .. . 35
definition data-element 24, 35
definition declaration . 36
definition file records . 178
definition literal expressions . 26
definition literals . . 24
definition modified data type . . 45
definition MODULE 16l
definition of a file . 178
definition of base types . . 36
definition of executable PROGRAM . 161
definition ROUTINE . . 127
definition simple data—element . 35
definition, expressions . 89
definition, ROUTINE body . 128
definition, ROUTINE headers . 128
definition, standard routines . 150
descriptor format . . . 178
descriptors INPUT format . 180
descriptors OUTPUT format . . . 187
digits in REAL data, number of 31gn1f1cant . 212
DISPOSE parameter . . 83
DISPOSE standard routlne . . 43, 83, 151
division of integers and remalnders . 94
DO and ON ... ENDON error handling . 123
DO and ON ... ENDON exception handling . 123
DO ENDDO loop . e e e e e e . 113
DO loop . . . 9
DO loop, WHILE and . 120
DO statement . 113
DO WHILE loop . . 9
dot access, repeated . 70

Norsk Data ND-60.117.5 EN

~10—

Index term Reference
dot notation . . 70
dynamic data allocatlon . . 82, 153
dynamic data allocation, FREE P p01nter and . . 83
dynamic data deallocation . . 151
EJECT compiler command . 211
element access in ARRAYs . . 58
element POINTER is NIL in lists . . 87
element reference in ARRAYs . . 58
element sequence in ARRAYs default . 55
element specification in ARRAYs . . 54
element storage, default in ARRAYs . 235
ELSE and DEBUGGER, restriction . 298
ELSE compiler command . . 206
ELSE in CASE statement . 111
ELSE in IF statement . 108
ELSIF compiler command . 206
ELSIF in IF statement . . 108
ENDCASE in CASE statement . 111
ENDDO, DO loop termination . 113
ENDFOR, FOR loop termination . 114
ENDIF compiler command . 206
ENDIF in IF statement . . 108
ENDIF, SENDIF restriction . . 299
ENDMACRO compiler command . . 208
ENDON after ERRETURN e . 147
ENDON, and error handling w1th ON ... DO . 123
ENDON, ON exception handler termination . . 123
ENDROUTINE statement . 146
entering and exiting from STANDARD ROUTINE . 246
entire ARRAY access . e e e e e . 59
entire RECORD operation . .71
ENUMERATION and loops . . 115
ENUMERATION data type . . 5
ENUMERATION data-elements 40
ENUMERATION data-elements, PACKlng of . . 238
ENUMERATION literal list R . 31
ENUMERATION simple data type . 35
ENUMERATION, storage requirement . 231
EOF compiler command . 203
EOF in source file . 203
equivalence declaration . . 51
equivalent storage locations . . 50
ERRCODE system variable, ERRETURN and . . 146
ERRETURN and ERRCODE system variable . 146
ERRETURN and exception handling . . . 146
ERRETURN and ON ... ENDON exception handler . . 146
ERRETURN ON ... ENDON . . . 147
ERRETURN simulation on ROUTINEERROR . . 124
ERRETURN statement e e e e e . 146
error handling with ON ... DO ... ENDON . . 123

Norsk Data ND-60.117.5 EN

—11—

Index term Reference
error handling, exceptions and . 123
error message not given when TYPE is wrong . 297
error messages . . 219
example % and & in strlngs . 29
example ALIAS usage 125
example arithmetic operators . 96
example array declaration . . 56
example array type declarations . . 57
example assembler, inline . . 215
example ASSERT statement . 123
example BIT standard routine . 151
example BITS data-elements . 64
example Boolean declarations . 39
example Boolean literals . 26
example byte declarations . . 48
example BYTES data—-elements . R . 62
example CASE ... INCASE ... ENDCASE . . 10
example CASE statement . 112
example comments and 3 .o .23
example conditional compllatlon . . 207
example constant declaration . 40
example CONVERT routine . . 104
example cross-referencing . . 210
example DO ... ENDDO loop . . 9
example DO statement . . 113
example dynamic data creation . . 84
example ENUMERATION . . 5
example exception handler . . 123
example EXPORT . . . 164, 166
example FOR ... ENDFOR loop . . .9
example FOR and pointer implied ranges . 116
example FOR loop with WHILE . . 9
example FOR statement . . 114
exanple FORCE routine . . 104
example global variable . . 16
example GO statement R . 108
example I/0 using the terminal . 17
example identifier names . 30
example IF ... ENDIF .9
example IF statement . 109
example IMPORT . . . 165, 166
example IMPORT of a ROUTINE . . 165
example INISTACK . 175
example INISTACK use . 175
example inline assembler . 215
example integer declarations . 38
example integer INPUT . .17
example integer literals . 24
example integer OUTPUT . 17
example label declarations . 44
example line continuation . . . 22
example linked list predeclaratlon . 52
example list implied DO loop . 18

Norsk Data ND-60.117.5 EN

—12 -

Index term Reference
example list processing . . 8
example local variable . 16
example logical operators . . 98, 100
example logical operators and SET . . 100
example MACRO usage . . 208
example main PROGRAM . 163
example MOD operator . 95
example MODULE . . 15, 162
example MODULE nesting . 174
example MODULE structure . 15
example multiple % . . . 23
example NEW standard routlne . 154
example NEW statement . . . 84
example new type spe01f1cat10ns . . 49
example octal integer literals . 24
example ON ... ENDON statement . 123
example OPEN statement . 194
example operator usage . 92
example operators compatible w1th Boolean varlables . 28
example operators compatible with integers . 26
example operators compatible with reals . . 27
example PLANC program . : . 4
example POINTER . . .5
example POINTER and ROUTINE . . 132
example POINTER ARRAY . . . 6
example precision specification . . 94
example PRED standard routine . . 155
example real literals . .o . 25
example RECORD component access . . 8, 70, 71, 105
example record TYPE declaration and spe01flcatlon . . 66
example RECORD TYPE specification . .7
example RECORDs and list processing . . 8
example recursion . e e . . 148, 149
example recursive MODULEs . . 174
example relational operators . 102
example routine11, 12, 130
example ROUTINE and @ (commercial at) . 134
example ROUTINE and POINTER . . 132
example ROUTINE as data . . 148
example ROUTINE as operator . . .14
example ROUTINE composite in-value . 133
example ROUTINE invocation .14
example ROUTINE parameter access . 133
example ROUTINE predeclaration . 51
example ROUTINE recursion 148, 149
example ROUTINE specified as TYPE . . 147
example ROUTINE with an in-value . 13
example ROUTINE with an out-value . . .13
example ROUTINE with in- and out-values . . 14
example ROUTINE with out-value .12
example ROUTINEs . . 130
example scope of 1dent1f1ers . 16
example SET and logical operators . . 100

Norsk Data ND-60.117.5 EN

—13—

Index term Reference
example SET declarations . 76
example set member addition . . 81
example set member removal . 81
example SET store operation (=:) . 78
example set TYPE declarations . . 76, 80
example sets and relational operators . . 79
example SHIFT operator . 95
example simple progran . e e e e . 4
example single character (BYTE) literal, £ . 29
example string literals (BYTES) . 29
example SUCC standard routine . . 156
example TYPE specification . . 6
example TYPE specification of ROUTINE . . 147
example TYPEOF usage . 50
example USING ... ENDUSING . . 106
example variant RECORD specification .7
example WHILE statement . . . 120
example WHILE statements, multlple in loop . 122
exception and INPUT, ROUTINEERROR in . 177
exception and OUTPUT, ROUTINEERROR in . . 177
exception condition ASSERTFALSE . . 124
exception condition OVERFLOW . 124
exception condition POINTERERROR . 124
exception condition RANGEERROR . 124
exception condition ROUTINEERROR . 124
exception condition STACKERROR . 124
exception conditions . . 123
exception handler missing on ASSERTFALSE . 125
exception handling ERRETURN and ON . 146
exception handling with ON DO ENDON . . 123
exception handling, ASSERT and . 123
exceptions and error handling . . 123
executable PROGRAM definition . . 16l
execution immediate program . . 204
EXIT compiler command . . 203
exit from ROUTINEs . . 146
EXITFOR and DEBUGGER, restrlctlon . . 298
EXITFOR in FOR loop 114
exiting from STANDARD ROUTINE enterlng and . . 246
EXITWHILE and DEBUGGER, restriction . . . 298
EXITWHILE in loop control . . 120
EXPORT and IMPORT qualifier SYSTEM . . 164
EXPORT and predefined ROUTINEs or operators,

restriction . e e e e e e e . . 297
EXPORT from MODULEs . . 161
EXPORT name restriction . . 301
EXPORT restrictions . . 164
EXPORT statement . 15, 164
expression, Boolean llteral . 28
expression, definition . 89
expression, integer literal . 26
expression, literal . . 26
expression, . 89

operands in .

Norsk Data ND-60.117.5 EN

14—

Index term Reference
expression, operator in . . 89
expression, parentheses in . . 90
expression, parentheses in arlthmetlc . . 96
expression, real literal . 27
expression, resulting value of . 89
expression, ROUTINE priority in . . . 90
expression, user defined routine prlorlty in . 90
expressions with multiple store operators . . 92
file :PLNC . 202
file :SYMB . 202
file :XREF . . 209
file CLOSEing . . . 194
file control CLOSE in . . 177
file control, BLOCKSIZE in . 177
file control, FILESIZE and . 177
file control, OPEN and . 177
file INPUT, random . 185
file OPENing . . 193
file OUTPUT, random . . 192
file PILNC 202
file record, formatted . 178
file record, unformatted . 178
file size checking . 194
file size setting . 194
file SYMB 202
file, BLOCKSIZE settlng . . 194
file, definition of . . 178
file, list . 202
file, number of . . 178
file, records on . 178
FILESIZE in file control 177
FILESIZE standard routine . . 152, 194
FOR ENDFOR loop . . 114
FOR loop . . 9
FOR loop, control varlable in . . 114
FOR loop, EXITFOR in . 114
FOR loop, REVERSE in . 115
FOR loop, WHILE in . 120
FOR statement . . . 114
FOR statement and llnked 1lsts . 116
FORCE standard routine . . 103, 152
formal parameters, ROUTINE 1dent1f1catlon

restriction 297
formal ROUTINE parameter access, modlflcatlon of . 129
format descriptor . . 178
format descriptors INPUT . 180
format descriptors OUTPUT . . 187
formatted file record . . 178
formatted INPUT standard routlne . 179
formatted OUTPUT standard routine . . 186

Norsk Data ND-60.117.5 EN

15—

Index term Reference
FORTRAN and COBOL, routines similar to . 138
FORTRAN COMMON, IMPORT COMMON option for . 165, 260
FORTRAN, invoking PLANC from . . 249, 256
FORTRAN, ROUTINE call from COBOL and . . 145
FREE P pointer for dynamic data allocation . 83
FREE P, NEW and dynamic data allocation in

free memory e e e e e e . 84
global data . . . 174
global declaratlons w1th1n a MODULE . . 16l
global TYPE and CONSTANT . 173
global variable, example . 16
GO statement . 44, 107
header, definition of ROUTINE . . 128
header, main PROGRAM . 163
HELP compiler command . . 203
hierarchy of ROUTINE calls . 209
identification of ROUTINEs . 127
identifier length restriction . . "300
identifier scope and ROUTINEs . . 150
identifier, name of . . 30
identifier, scope of . 16
identifiers, creation of . 176
identifiers, local . 150
identifiers, scope .. . 150, 176
IF command for conditional compllatlon . 206
IF conditional statement .9
IF statement c o . 108
IF statement, ELSE in . . 108
IF statement, ELSIF in . 108
IF statement, ENDIF in . 108
IF statement, THEN in . . 108
immediate program execution . . 204
implementation restrictions in PLANC . 297
implied range, POINTER and . 32, 44, 85
implied ranges . 32
implied SET member . 75
implied subarray . . . 61
IMPORT COMMON option for acce351ng FORTRAN COMMON . . 165
IMPORT into MODULEs . e e e e e e . 16l
IMPORT name restriction . . 301
IMPORT of a ROUTIKE . . . 165
IMPORT of TYPE and CONSTANT . . 166
IMPORT qualifier SYSTEM . . 164
IMPORT statement . . 15, 164

Norsk Data ND-60.117.5 EN

—16—

Index term Reference
IN operator 2 |

IN option and dynamlc data allocatlon e . .« . . 83

IN specification and dynamic data allocatlon B2

in- value ROUTINE + « + « .« . . . 133

IN, restriction on . . e e e e e e e L 297
INCASE and DEBUGGER, restrlctlon e e e e e ... 298
INCASE in CASE statement . . . B B N
INCASE values, maximum number of B N o]
INCLUDE compiler command 205
INCLUDE restriction 297

IND and subarray elements 61

IND restriction « « « v v« v v v w00 oL 297

IND standard routine 43, 152
index bounds for ARRAY 60
index checking in ARRAYs 212
index information for ARRAYs 60
INISTACK example S Y 41
INISTACK standard routlne G e e e e e e .. 152,175
initialization of strings of BYTES B o
inline assembler . . . A -
INLINE ROUTINE call, restrlctlon e e e e e e e .. 297
INLINE ROUTINE modifier 128, 131
INLINE ROUTINEs, restriction on ROUTINEERROR and . . 298
INPUT formatted « + « « « « « . . 179
INPUT from random file &+ 185
INPUT in data transfer 177
INPUT standard routine 152, 177
INPUT statement P
INPUT wit format descrlptors e e e e e e e e ... 180
INPUT, ROUTINEERROR exception and 177
INSERT and linked lists 85
INSERT standard routine v+ .+« . . . 85, 152
INSERTing elements in lists, routlne for B K<
INSERTing elements in SETs, routine for 80, 152
integer data~elements 37
integer expressions+ . . .« . .+ . . .26
integer literals « .+ .« v v oL . 24
integer literals, octal . . . e e e ... 24
INTEGER RANGE data-elements, PACKlng of c e o 238
INTEGER RANGE, storage requirements for 230
INTEGER simple data type 35
integers and division 94
interfacing from other 1anguages to PLANC ROUTINEs . 243
in-value @ e O K
in-value to ROUTINE e e e e e e .. 11, 127
in-value to ROUTINEs, legal data types B A"
invoking BASIC from PLANC 267
invoking COBOL from PLANC 263
invoking FORTRAN from PLANC 256
invoking MAC from PLANC 270
invoking PLANC from BASIC 265
invoking PLANC from COBOL 261
invoking PLANC from FORTRAN 249

Norsk Data ND-60.117.5 EN

17—

Index term Reference
invoking PLANC from MAC . . 269
invoking ROUTINEs . . 135
invoking the compiler . 200
keywords in PLANRC . . 20
KILL compiler command . . 206
LABEL declaration . . 44
LABEL simple data type . 35, 4
libraries, creation of . . 212
libraries, entire MODULES as . 213
LIBRARY-MODE compiler command . . 212
LINE-BIAS compiler command . 211
linkage information from compiler . . 209
LINKAGE-REFERENCE compiler command . . 210
LINKAGE-REFERENCE, 1ncompat1b111ty with

CROSS—~REFERENCE c o . 211
linked lists and FOR statement . 116
linked lists and predeclarations for

initialization of static . . 52
linked lists, APPENDing to . 85
linked lists, INSERTing in RN . . 85
linked lists, RECORD data-elements in . . 44
linked lists, REMOVEing from . 85
LIST compiler command . . . 211
list element POINTER is NIL . . 87
list file for output from compilation . . 202
list of ENUMERATION literals .31
list of linked data-elements . 44
list of SET members . . 75
list processing example . .o . 8
listing of compiler cross references . 209
lists of RECORDs . . 85
lists, APPEND to llnked . . 85
lists, INSERT and linked . . . 85
lists, predeclaration of static 11nked . 52, 86
lists, REMOVE from linked . . 85
literal expressions, Boolean . 28
literal expressions, integer . 26
literal expressions, real . . 27
literal list, ENUMERATION . . 31
literal, Boolean . 26
literal, definition . . 24
literal, expression . . 26
literal, integer . 24
literal, octal integer . 24
literal, real 25
literal, single character . . 29
literal, string . . 29

Norsk Data ND-60.117.5 EN

—18-

Index term Reference
LOAD compiler command +« 204
loading, ALIAS and . . R |
loading, MODULE compllatlon and O
local identifiers and scope 150
local variable, example of scope 16
logical operand types98
logical operation results 98
logical operators . . . Y
logical operators and SETs O A
loop control variable in FOR 114
loop control with PACKED variables 115
loop control with POINTER implied ranges 115
loop control, WHILE and EXITWHILE in 120
loop control, WHILE statement and 120
loops, DO « . .« . o o . . 0. oo w .09
loops, DO ... ENDDO 113
loops, DO ... WHILE9
loops, ENUMERATION and , 115
loops, EXITFOR in FOR 114
loops, FOR« v v v v v oo 0.9
loops, FOR ... ENDFOR 114
loops, REVERSE in FOR 115
loops, WHILE in DO loops 120
loops, WHILE in FOR loops 120
lower bound for stack arrays 175
MAC from PLANC invoking 270
MAC, invoking PLANC from 269
MACRO compiler command 208
MACROs, compile time . . . e e e e e e e e 208
MACROs, parameters to compller e v e e e v v v . . . 208
MACROs, restriction 297
main PROGRAM « « v v v v v v+ . .16l
main PROGRAM header + « . « « . . . 163
main PROGRAM termination . . B X
MARKSTACK, removal in future compllers .« o« + « . . . 300
maximum number of INCASE values 111
MAXINDEX restriction 297
MAXINDEX standard routine 60, 153
MC68000 memory usage . . e e e e e e e ... 229
MC68000 STANDARD ROUTINE layout RN ... 249
MC68000 STANDARD ROUTINE, out-value return from ... 249
MC68000 storage mapping « . « « 229
MC68000 word size « « « v 4 v 4 229
memory usage MC68000 229
memory usage ND-100 229
memory usage ND-500 o 229
messages from the compiler 219
messages, error . . . B 3 R
MININDEX standard routlne B < T P R
MININDEX, restriction 297

Norsk Data ND-60.117.5 EN

—19—

Index term Reference
mixed language programming . . co.o. . 243
mixed language programs, STANDARD ROUTINE and 243
MOD and SHIFT operator« « +95
MOD operator . . e .. .21, 94
modification of ACCESS to 31mp1e data types86, 36
modification, access modified 36
modification, PRECISION 36
modification, RANGE86, 36
modification, READ 6,47
modification, REAL PRECISION 46
modification, WRITE B - -
modified data types, deflnltlon Y- 151
modifier, INLINE ROUTINE 128, 131
modifier, REFERENCE ROUTINE 128, 132
modifier, SPECIAL ROUTINE 128, 131
modifier, STANDARD ROUTINE 128, 131
MODULE as library « +« « « « v v « « o « « . . 213
MODULE nesting e 173
MODULE structure and separate compllatlon e e e o . 173
MODULE, ALIAS ina . . . « . « « v v v « « v o « . . 167
MODULE, basic . . . B (1
MODULE, compilation and loadlng of S
MODULE, components of a2 16l
MODULE, definition 16l
MODULE, example« 4,15
MODULE, EXPORT from . . . e e e e e e e e . . 161
MODULE, global declaratlons w1th1n a .+«16l
MODULE, IMPORT to . . . B 1231
MODULE-LIBRARY-MODE compller command e e e e e .. 213
MODULEs, communication between 164
MODULEs, usage of « . « « 164
monitor call B4INW « .« « « o o . .27
monitor call B8OUT 276
monitor call BRKM274
monitor call CIBUF « « « « « . . 275
monitor call CLOCK « « « v v .« . .27
monitor call CLOSE + « v « v « . . 276
monitor call COBUF« 275
monitor call COMND 278
monitor call DBRK « . « « v « v o o .. 217
monitor call DESCF« . .« 278
monitor call ECHOM 274
monitor call EESCF « « .« .« 278
monitor call ERMSG« .+ .« o . .. 277
monitor call FSCNT « +« « « « « . . . 282
monitor call FSDCNT 282
monitor call GDEVI 281
monitor call GETRT 2176
monitor call HOLD279
monitor call INBT 214
monitor call INSTR 281
monitor call IOSET« « . . . 280
monitor call ISIZE 278

Norsk Data ND-60.117.5 EN

20~

Index term Reference
monitor call LEAVE . 274
monitor call MBINB . 275
monitor call MBOUT . 276
monitor call MAGTP . 281
monitor call MCALL . 280
monitor call MDLFI . 277
monitor call MGTTY . 275
monitor call MOINF . 282
monitor call MSG . 276
monitor call MSTTY . 275
monitor call OPEN . . 277
monitor call OUTBT . 274
monitor call OUTST . 281
monitor call QERMS . 277
monitor call REABT . 278
monitor call REENT . 281
monitor call RELES . 280
monitor call RESRV . 280
monitor call RFILE . 279
monitor call RMAX . . 277
monitor call ROBJE . 276
monitor call RSIO . . 280
monitor call RUSER . 276
monitor call SBRK . . 277
monitor call SETBS . 278
monitor call SETBT . 278
monitor call SETCM . 274
monitor call SMAX . . 278
monitor call TBINB . 282
monitor call TIME . . 274
monitor call TUSED . 279
monitor call WFILE . . 279
monitor calls on ND-lOO . . 274
monitor calls on ND-500 . . 274
monitor calls SINTRAN III . 273
MONITOR CALL standard routine . . 153
multi-dimensional ARRAY 53
multiple store operators, expression w1th . . 92
name conflict and ALIAS ROUTINEs . 243
names of identifiers e e e . 30
ND-100 inline assembler, restriction . 301
ND-100 memory usage . . 229
ND-100 REAL4 REALS parameters, restrlctlon . 299
ND-100 run time options 211
ND-100 STANDARD ROUTINE 1nvocat10n reglster usage . 244
ND-100 STANDARD ROUTINE layout . 244
ND-100 STANDARD ROUTINEs, out-value reglster for . 245
ND-100 storage mapping . . 229
ND-100 word size .. . 229
ND-100, code optlmlzatlon on . 212

Norsk Data ND-60.117.5 EN

21—

Index term Reference
ND-100, monitor calls . . . 274
ND10O-EXTENDED compiler command . . 211
ND-500 memory usage . . 229
ND-500 monitor calls . 274
ND-500 STANDARD ROUTINE 1ayout . . 248
ND-500 STANDARD ROUTINE, out-value return . . 248
ND-500 storage mapping . 229
ND-500 word size . e e e e e . 229
nested inner ROUTINE 1nvokat10n, restriction . 300
nested MODULEs . 173
NEW and FREE P .o . 84
NEW data—allocatlng routlne . . 82
NEW standard routine . . 43, 82, 153
NIL value for list element POINTERS . . 87
NIL, POINTER value . 42, 44
NOT operator .21, 97
NOT SET operator . 79
number of file . . . 178
number of significant dlglts in REAL data . . 212
number SET cardinal . . .79
octal integer literal . . . 24
ON ... DO ... ENDON and error/exceptlon handllng . 123
ON ... ENDON after ERRETURN . e e . 147
ON exception handler, ERRETURN and . 146
ON OVERFLOW, restriction . 297
ON ROUTINEERROR and INLINE ROUTINES, restrlctlon . 298
OPEN and file control . 177, 193
OPEN standard routine . . 155, 193
operand type logical . 98
operand type rule . . 91
operands in expressions . . 89
operands, type of relational . 101
operation on SETs, store . 78
operations on entire RECORDs and thelr data—elements 71
cperations on SETs, logical . . 79
operations on SETs, relational .77
operations, result of logical . . 98
operations, type of result of arithmetic .9
operator - . 21, 23, 89, 91,
93-97
operator + .21
operator :=: .21
operator =: .21
operators . e e e . 94
operators in PLNC P -
operators MOD and SHIFT . . 95
operators, arithmetic . . 94
operators, assignment . . 91
operators, binary . . 89
operators, classes . 90

Norsk Data ND-60.117.5 EN

29

Index term Reference
operators, expressions with multiple store . 92
operators, legal in PLANC . . 21
operators, logical . 97
operators, relational . 101
operators, restriction EXPORT and

predefined routine or e e . 297
operators, ROUTINEs and prlorltles e e . 132
operators, ROUTINEs as . 132
operators, store . 91
operators, unary . . . 89
operators, value of change operatlons . . 93
optimizing ND-100 code: SQUEEZE . . 212
option ALIAS and resolution of references by loaders 130
option ARRAY-INDEX-CHECK, to compiler . . 212
option BOOLEANZ2-ENUMERATIONZ, compiler . 216
OPTION compiler command . . . 212, 216
option IMPORT COMMON for acces51ng FORTRAN COMMON . . 165
option IN and dynamic data allocation . . . 83
option SQUEEZE, for code optimization on ND- lOO . . 212
option, PACKED e e . 238
optional ROUTINE types . 128, 131
options for ND-100, Runtime . . 211
OR as SET operator . 79
OR operator . . . 21, 97
OUTPUT format descrlptors . . 187
OUTPUT in data transfer . . 177
OUTPUT standard routine . . . 155, 177
OUTPUT standard routine, formatted output . . 186
OUTPUT statement, terminal I/0 .17
OUTPUT to random file . . 192
OUTPUT, the ROUTINEERROR exceptlon and . 177
out~value data types, legal . . 129
out-value from ROUTINEs . . 11, 127, 133
out-value register for ND-100 STANDARD ROUTINE . 245
out—-value restriction, DEBUGGER and ROUTINE . . 298
out-value return from MC68000 STANDARD ROUTINE . 249
out-value return in ND-500 STANDARD ROUTINE . . 248
out-value specification in ROUTINE declarations . . 127
out-value storage restriction . . 298
OVERFLOW exception condition . 124
OVERFLOW statement, restriction in ON OVERFLOW . 297
PACK keyword, removal of in future versions of PLANC 300
PACKED ARRAYs . . .73
PACKED BYTES data—elements . . . 238
PACKED component access, ADDR for packed ARRAYS . . 299
PACKED component access, ADDR for packed RECORDs . 299
PACKED data . e e e e . 238
PACKED ENUMERATION data—elements . 238
PACKED INTEGER RANGE data-elements . 238
PACKED option . . 238

Norsk Data ND~60.117.5 EN

—23—

Index term Reference
PACKED RECORDs Y A
PACKED variables, loop control w1th S B 15
parameter access READ in ROUTINE declarations 143
parameter access WRITE in ROUTINE declarations . . . 143
parameter access, default when passed to ROUTINEs . . 143
parameter list, STANDARD ROUTINE 243
parameter modification, READ in ROUTINE 129
parameter modification, WRITE in ROUTINE . . . 129

parameter passing, restriction for REFERERCE ROUTINES 299
parameter passing, restriction for STANDARD ROUTINEs 299

parameter restriction on ND-100 REAL4 REAL8 299
parameter to DISPOSE B3
parameter transfer to REFERENCE ROUTINEs coee ... 143
parameter transfer to ROUTINEs 143
parameter transfer to STANDARD ROUTINEs 143
parameters for

ROUTINE identification, restriction on formal . . 297
parameters to compiler MACROs 208
parameters to ROUTINEs, actual 135
parameters, access modification of formal ROUTINE . . 129
parentheses in expressions v v . . . 90, 96
parentheses omitted in ROUTINE 1nvocat10n e ... 136
PLANC character set P A
PLANC compiler commands in source programs ... 201
PLANC example e
PLANC from BASIC, invoking e e e e e e e e e e e .. 265
PLANC from COBOL, invoking 261
PLANC from FORTRAN, invoking 249
PLANC from MAC, invoking 269
PLANC implementation restrictions 297
PLANC keywords . . . « « « « « « v v v v v v v o o . 20
PLANC operators . . . « . « « « « « « o« o« o o« « o « . 21
PLANC reserved words 20
PLANC ROUTINEs, interface w1th other 1anguages ... 243
PLANC special characters20
PLANC standard symbols e e e e e e e e e e e 20
PLANC syntax . . . e e e e 282
PLANC SYSTEM ROUTINE name protectlon O 3 X
PLANC, accessing FORTRAN COMMON from 260
PLANC, assembler code in 214
PLANC, invoking BASIC from 267
PLANC, invoking COBOL from 263
PLANC, invoking FORTRAN from 256
PLANC, invoking MAC from 270
PLANC, starting the compilers 200
PLNC file . . . 14
POINTER data type o
POINTER data-element . . T)
POINTER for dynamic data allocatlon, FREE P83
POINTER implied linked lists 1ll6
POINTER implied ranges 44, 85
POINTER implied ranges, loop control w1th . . < .+ . . 115
POINTER to variant RECORD 69

Norsk Data ND-60.117.5 EN

24—

Index term Reference
POINTER value NIL . . 42, 44
POINTER, NIL value of llst element . 87
POINTER, simple data type . . 35
POINTER, storage requirement . . 231
POINTER, storage requirement for ARRAYs . . 232
POINTERERROR exception condition . 124
POINTERs and implied ranges . . 32
POINTERs, ADDR and . . 42
POINTERs, data-space restrlctlon when using

predeclarations . . . 299
PRECISION modlflcatlon . . 36
PRECISION modification of REALs . . 46
PRECISION modified data type . 46
PRED standard routine . . . 31, 155
predeclaration of data—elements . . 51
predeclaration of ROUTINEs s e e e . 127, 132
predeclaration of static linked llStS e e e . 52, 86
predeclared ROUTINE and PROGRAM restriction . . 298
predefined ARRAY data type . 62
predefined data type . . 6, 48
predefined routine or operator restrlctlon,

EXPORT and . . . 297
priority in expressions of user deflned routlnes . 90
priority of user defined routines . . 136
priority, assignment operators .91
priority, standard routines . . 150, 157
PROG-FILE compiler command . 204
program compilation . . . 202
program execution, 1mmed1ate . . . 204
PROGRAM restriction, predeclared ROUTINE as . . 298
PROGRAM routine, main . . . 16l
program stack, data-element storage and the . . 174
program structure . . 16l
program structuring . . . 107
program structuring statements . 9
PROGRAM, definition of executable . . . 161
PROGRAM, ROUTINE header in main programs . 163
program, STANDARD ROUTINE header for mixed language . 243
PROGRAM, termination of main programs 163
programming, mixed language . . 243
random file INPUT . . 185
random file OUTPUT . 192
RANGE modification . 6, 36, 45
range, implied . . 32
range, loop control w1th POINTER 1mp11ed . 115
range, POINTER implied .. . 32, 44, 85
RANGEERROR exception condltlon . 124
READ access to data-element e e e . 47
READ access and ARRAYs . . . e e e . 60
READ access and RECORD components . .71

Norsk Data ND-60.117.5 EN

25

Index term Reference
READ and WRITE restriction with RECORD TYPE . . 301
READ modification . . 6, 47
READ, ROUTINE parameter access . . 143
READ, ROUTINE parameter modification . . 129
REAL data, number of significant digits in . 212
REAL data, storage requirement . 233
REAL data—elements . 38
real literal . . 25
real literal expressions . 27
REAL PRECISION modification . . 46
REAL simple data type . . . 35
REAL4/REALB parameter restrlctlon ND 100 . 299
REAL-PRECISION compiler command 212
RECORD TYPE specification, variant RECORDS . . 68
RECORD access . e e e e e e e .71
RECORD access mode .71
RECORD component access . . 70, 105
RECORD component READ . .71
RECORD component reference .71
RECORD component with WRITE access . 71
RECORD components 65
RECORD composite data type . 36
RECORD data TYPE . 7, 65
RECORD definition . . . 65
RECORD PACKED component access ADDR for . . 299
RECORD type . . . e . 53
RECORD TYPE specxflcatlon . . 65
RECORD, definition of base . 68
RECORD, POINTERs to variant . . 69
RECORD, variant . . 68
RECORDs, lists of . . 85
records, on files . . . 178
records, on formatted flles . . 178
records, on unformatted files . . 178
RECORDs, operations on entire . .71
RECORDs, PACKED 73
RECORDs, READ/WRITE access modlflcatlon restrlctlon . 301
RECORDs, storage requirement . 235
recursion, restriction on . . 148
recursive ADDRs, restriction . . 300
recursive inner ROUTINE invokation, restrlctlon on . 300
recursive MODULE declarations . . 173
recursive ROUTINE example . . 148, 149
recursive ROUTINEs . . . 148
REFERENCE ROUTINE restrlctlon . . . 300
REFERENCE ROUTINE, parameter transfer . B X X
REFERENCE ROUTINEs, parameter passing restriction . . 299
REFERENCE, ROUTINE modifier . e e e e . 132
referencing BYTES strings . 58
referencing ARRAY element . . 58
referencing RECORD components . .71
REFERNCE, ROUTINE modifier . 128
register for ND-100 STANDARD ROUTINE out value . 245

Norsk Data ND-60.117.5 EN

—26—

Index term Reference
register usage ND-100 STANDARD ROUTINE invocation . . 244
relational operands, types of . .o . 101
relational operations on SETs . . 77
relational operators . 101
relationship between BITS and BOOLEAN varlables . 64
removal of MARKSTACK standard routine . . 300
REMOVE and linked lists . . 85
REMOVE standard routine . . 155
REMOVE, SET ROUTINE . . 80
repeated dot access . . 70
reserved words in PLANC . . 20
restriction on $COMPILE compller command . 298
restriction on $DEBUG-MODE . 298
restriction on S$ENDIF . . . 299
restriction on $SEPARATE-DATA . . 298
restriction on ADDR and ROUTINEs as parameters . 297
restriction on ADDR: multiple (recursive) ADDRs . . 300
restriction on ALIAS identifier length . 300
restriction on ARRAY~INDEX-CHECK .. 299
restriction on assembler routines and scope levels . 298
restriction on CROSS~ REFERENCE identifiers . . 300
restriction on DEBUGGER and ROUTINE out-values . 298
restriction on ELSE while DEBUGGERing . . 298
restriction on EXITFOR while DEBUGGERing . 298
restriction on EXITWHILE while DEBUGGERing . 298
restriction on EXPORT and predefined

ROUTINEs or operators . . . 297
restriction on formal parameters for

ROUTINE identification . . . 298
restriction on IMPORTed/EXPORTed varlable names . . 301
restriction on IN standard routine . . 297
restriction on INCASE while DEBUGGERing . . 298
restriction on IND standard routine . . 297
restriction on INLINE ROUTINEs . 297
restriction on MACROs . . 297
restriction on MAXINDEX standard routlne . 297
restriction on MININDEX standard routine . 297
restriction on ND-100 inline assembler . . 301
restriction on ND-100 REAL4 REAL8 parameter . . 299
restriction on nested inner ROUTINE invokation . 300
restriction on ON OVERFLOW statement .. 297
restriction on ON ROUTINEERROR and INLINE ROUTINES . 298
restriction on out-value storage . 298
restriction on placement of EXPORT statements . 164
restriction on POINTER data—space after

predeclarations . 299
restriction on predeclared ROUTINEs as PROGRAM . 298
restriction on RECORD TYPEs with READ WRITE access . 301
restriction on recursive ROUTINEs . . . 148
restriction on REFERENCE ROUTINE parameter pa581ng . 299
restriction on REFERENCE ROUTINEs 300
restriction on security of access to

WRITE data-element . . 298

Norsk Data ND-60.117.5 EN

—27—

Index term Reference
restriction on SPECIAL ROUTINEs . . . 300
restriction on STANDARD ROUTINE parameter passing . . 299
restriction on STANDARD ROUTINEs . . 297, 300
restriction on the $INCLUDE compiler command . 297
restrictions on identifier lengths . 300
restrictions on the PLANC implementations . . 297
RETURN from ROUTIRNE . . 134
RETURN statement . 134, 146
REVERSE in FOR loop 115
routine FILESIZE, standard . . 194
routine INISTACK, standard . . 175
routine ADDR, standard . 150
routine and scope level restrlctlon w1th

inline assembler . . 298
routine APPEND, standard . 85, 151
ROUTINE as data type . 127, 147
ROUTINE as operator . . . 132
ROUTINE as PROGRAM restrlctlon when predeclared . . 298
routine BIT, standard . e e e e e e . 151
routine BIT_ POSITION, standard . 151
routine BIT_SIZE, standard . 151
routine BLOCKSIZE, standard . . 151, 194
ROUTINE body, definition . 128
ROUTINE call data area . 243
routine call hierarchy . . 209
ROUTINE calls from COBOL and FORTRAN . 145
routine CLOSE, standard . . 151, 194
ROUTINE composite data type . . 36
routine CONVERT, standard . . 103, 151
ROUTINE declaration . . 127
ROUTINE definition . . 127
routine DISPOSE, standard . . 43, 83, 151
routine FILESIZE, standard . . . 152
ROUTINE for mixed language programming: STANDARD . 243
routine FORCE, standard . e e e . 103, 152
routine header for main PROGRAMs . 163
ROUTINE header, definition . 128
ROUTINE identification . . . 127
ROUTINE identification restrlctlon,

formal parameters for . 298
ROUTINE identifiers,

1" 8%+ -, /i <C=57 T \[]as . . 129
routine IND, standard . e e e e . 43, 152
routine INISTACK, standard . 152
routine INPUT, standard . . 152, 177
routine INSERT SET . 80
routine INSERT, standard 85, 152
ROUTINE interface from other 1anguages to PLANC . . 243
ROUTINE in-value e e e e e .11, 127, 133
ROUTINE in-value spe01flcat10n . 127
ROUTINE invocation 135

ROUTINE invocation, reglster usage in ND—lOO STANDARD
. 136

ROUTINE invocations, parentheses omitted in .

Norsk Data ND-60.117.5 EN

244

—28—

Index term Reference
ROUTINE invokation restriction, nested inner . 300
ROUTINE layout, MC68000 STANDARD ROUTINEs . . 249
ROUTINE layout, ND-100 STANDARD 244
ROUTINE layout, ND-500 STANDARD ROUTINES . 248
routine MAXINDEX, standard .. . 60, 153
routine MININDEX, standard . 60, 153
ROUTINE modifier INLINE . . 128, 131
ROUTINE modifier REFERENCE . 128, 132
ROUTINE modifier SPECIAL . 128, 131
ROUTINE modifier STANDARD . . 128, 131
routine MONITOR CALL, standard . 153
ROUTINE name conflict and ALIAS . . . 243
ROUTINE name in PLANC, SYSTEM qualifier . . 131
routine NEW data-allocating . . . 82
routine NEW, standard . . 43, 82, 153
routine OPEN, standard . 155, 193
ROUTINE options . . . 131
ROUTINE options STANDARD REFERENCE SPECIAL INLINE 128
routine or operator restriction,

EXPORT and predefined . 297
routine OUTPUT, standard . 155, 177, 186
ROUTINE out-value . .11, 127, 133
ROUTINE out-value restrlctlon DEBUGGER and . 298
ROUTINE out-value return from MC68000 STANDARD ROUTINE§49
ROUTINE out-value return in ND-500 STANDARD ROUTINEs 248
ROUTINE out-value specification 127
ROUTINE parameter access READ . . 143
ROUTINE parameter access WRITE . 143
ROUTINE parameter access, default . . . 143
ROUTINE parameter list, STANDARD ROUTINE . 243
ROUTINE parameters, access modification of formal . . 129
ROUTINE parameters, READ modified . . 129
ROUTINE parameters, WRITE modified . 129
routine PRED, standard . 31, 155
ROUTINE predeclaration . . 127, 132
routine priority in expres51ons when user deflned . . 90
routine REMOVE SET . 80
routine REMOVE, standard . 85, 155
ROUTINE restriction, ADDR and . . . 297
ROUTINE restriction, REFERENCE ROUTINES . . 300
ROUTINE restriction, SPECIAL ROUTINEs . . 300
ROUTINE restriction, STANDARD ROUTINEs . 297, 300
routine SIZE, standard . 52, 155
routine SUCC, standard .o . 31, 156
routine termination when it is main PROGRAM . . 163
ROUTINE type . . . 53
routine TYPEOF, standard . 50, 156
ROUTINE, example . 11
ROUTINE, IMPORT of a . 165
routine, main PROGRAM as . . 161
ROUTINE, TYPE specification w1th ROUTINE in 1t . 147
ROUTINEERROR and INLINE restriction 298
ROUTINEERROR exception and INPUT 177

Norsk Data ND-60.117.5 EN

~29_

Index term Reference
ROUTINEERROR exception and OUTPUT . . 177
ROUTINEERROR exception condition . . 124
ROUTINEERROR, ERRETURN simulation and . . 124
ROUTINEs examples of recursion . 149
routines in assembly language . . . 131
ROUTINEs similar to FORTRAN and COBOL routlnes . 138
ROUTINEs, actual parameters to .. . 135
ROUTINEs, commercial at (@) characters in . . 133
ROUTINEs, entering and exiting from STANDARD . 246
ROUTINEs, examples e e e e e e e . 130
ROUTINEs, exiting from . . 146
ROUTINEs, identifier scope and . 150
ROUTINEs, list of standard . .21
ROUTINEs, parameter transfer REFERENCE ROUTINES . . 143
ROUTINEs, parameter transfer to 143
ROUTINEs, parameter transfer to STANDARD ROUTINES . . 143
ROUTINEs, recursive . c e . 148
ROUTINEs, RETURN from . . 134
ROUTINEs, similarly named . . 127, 129
routines, standard . . 150
rules for CONSTANT declaratlons . . 40
rules for operand type . 91
run time options ND-100 . . 211
scope of identifiers . 16, 150, 176
scope of identifiers in PLANC ROUTINEs . 150
scope, restriction on calls from

assembler code to ROUTINEs 298
separate compilation, MODULE structure and . 173
SEPARATE-DATA compiler command . 211
SEPARATE-DATA restriction . . 298
sequence control statements . . 9, 107
sequence, ARRAY default element . . 55
SET and logical operators . .79
SET and user defined TYPEs . 76
SET cardinal number . . 79
SET composite data type . . 36
SET data type 53, 74
SET data-element . 74
SET declarations . . . 74
SET initialization, default . . 75
SET member list . . 75
SET member, implied . . 75
SET members, initial . 14
SET routine INSERT . 80
SET routine REMOVE . 80
SET storage requirement . . 235
SET store operation (=:) . 78
SET type restriction .75
SET TYPE specification . 76

. . 74

SET, base types for .

Norsk Data ND-60.117.5 EN

30—

Index term Reference
SETs, relational operations on .77
setting file BLOCKSIZE . 194
setting file size . . 194
SHIFT operator . .21
SHIFT operator, MOD and . . . 95
significant digits in REAL data, number of . 212
similarly named ROUTINEs . 127, 129
simple data type BOOLEAN . 35
simple data type ENUMERATION . 35
simple data type INTEGER . 35
simple data type LABEL . 35
simple data type modification . . 36
simple data type POINTER . 35
simple data type REAL . . 35
simple data type VOID . . 35
simple data types . . 5, 35
simple data-element, deflnltlon . . 35
simulation and ROUTINEERROR ERRETURN . 124
single character . . 6
single character llteral . 29
SINTRAN III monitor calls . . . 273
size of simple data types and RECORD components . . 151
SI7ZE standard routine . . 52, 155
source file inclusion . . 205
source files, EOF in e . 203
source programs, PLANC compller commands in . . 201
special characters in PLANC . . 20
SPECIAL ROUTINE modifier . 128, 131
SPECIAL ROUTINE restriction . . 300
specification of ARRAY element . 54
specification of ARRAY TYPE . . 57
specification of data TYPE . 6, 49
specification of

data-element,storage allocation for TYPE . 57
specification of RECORD TYPE . 65
specification of SET TYPE . . 76
specification of stack

for dynamic data allocation with IN . . B2
specification of subarrays . . 61
specification of variant RECORD TYPE . 68
SQUEEZE compiler option . . 212
stack ARRAYs, correct value of lower bound . 175
stack creation . . . Coe e e . 175
STACKERROR exception condltlon . . 124
stacks and the data-element storage of the programs . 174
standard routines, list of . .21
standard routine ADDR . . . 150
standard routine APPEND . . 85, 151
standard routine BIT . . 151
standard routine BIT POSITION . . 151
standard routine BIT SIZE . . 151
standard routine BLOCKSIZE . 151, 194
standard routine CLOSE . 151, 194

Norsk Data ND-60.117.5 EN

_31—

Index term Reference
standard routine CONVERT . 103, 151
standard routine DISPOSE . 43, 83, 151
standard routine FILESIZE 152, 194
standard routine for formatted OUTPUT 186
STANDARD ROUTINE for mixed language programming . . 243
standard routine FORCE e e e e e e . 103, 152
standard routine IND . . . 43, 152
standard routine INISTACK . . 152, 175
standard routine INPUT . 152, 177
standard routine INSERT . . 85, 152
STANDARD ROUTINE invocation,

register usage on the ND-100 . . 244
STANDARD ROUTINE layout ND-100 . 244
STANDARD ROUTINE layout ND-500 . 248
standard routine MAXINDEX . . 153
standard routine MININDEX . . 153
standard routine MONITOR CALL . . 153
standard routine NEW . . 43, 82, 153
standard routine OPEN . . 155, 193
standard routine OUTPUT 155, 177
STANDARD ROUTINE parameter list . . 243
standard routine PRED . . 31, 155
standard routine priority . . 150, 157
standard routine REMQVE . . 85, 155
STANDARD ROUTINE restriction . 300
standard routine SIZE . . 52, 155
standard routine SUCC . .-31, 156
standard routine TYPEOF . . 50, 156
standard routines as operators . 150
standard routines available in PLANC . 150
standard routines, definition . . . 150
STANDARD ROUTINEs, entering and ex1t1ng from . 246
STANDARD ROUTINEs, layout on the MC68000 . . 249
STANDARD ROUTINEs, out-value register on the ND—lOO . 245
STANDARD ROUTINEs, out-value return from the MC68000 249
STANDARD ROUTINEs, out-value return in ND-500 . . 248
STANDARD ROUTINEs, parameter passing restriction . 299
STANDARD ROUTINEs, parameter transfer . . 143
standard routines, restriction . 297
STANDARD, ROUTINE modifier . 128, 131
starting PLANC . . . 200
statement ASSERT and exceptlon handllng . . 123
statement CASE branching . 111
statement CASE, branching . . 10
statement continuation . 22
statement DO and loops . 113
statement ELSE in CASE . 111
statement ENDCASE in CASE . . . 111
statement ENDROUTINE to exit from ROUTINES . 146
statement ERRETURN to exit from ROUTINEs . . 146
statement EXPORT for inter—MODULE communication . . 164
statement EXPORT, inter—-MODULE communication .15
statement FOR and loops . . 114

Norsk Data ND-60.117.5 EN

30

Index term Reference
statement GO, transfer of control in program . 44, 107
statement IF, conditional execution . . . 108
statement IMPORT for inter-MODULE communlcatlon . . 164
statement IMPORT, inter-MCDULE communication . 15
statement INCASE in CASE . 111
statement INPUT, terminal I/0 . 17
statement OUTPUT . 17
statement RETURN to exit from ROUTINES . 134, l46
statement USING and RECORD components . . 105
statement WHILE and loop termination . 120
statements IF, conditional . 9
statements, introduction to . . 22
statements, program structuring . . 9
statements, sequence control . 9
statements, sequence controlling . 107
statically allocated data—elements . 174
storage alignment . . 236
storage allocation 52
storage locations, equivalent . . 50
storage mapping in the MC68000 . 229
storage mapping in the RD-100 . 229
storage mapping in the ND-500 229
storage of data-elements and the program stack 174
storage requirement for ARRAY POINTER data-elements 232
storage requirement for ARRAY data-elements . 235
storage requirement for ENUMERATION data-elements . . 231
storage requirement for POINTER data- elements . 231
storage requirement for REALs . 233
storage requirement RECORD . 235
storage requirement SET . 235
storage requirements for INTEGER RANGE data—elements 230
storage restriction out-value . . . 298
storage synchronization between dlfferent CPUs . 236
storage, default order of ARRAY elements . 235
store operation and SETs . 78
store operator . . 91
store operators, expre551ons w1th multlple . 92
store-into function . . 141
string literal . 29
string of BITS . 6, 62
string of characters . 6, 62
string, % in . 29
string, & in . 29
string, ' in . 29
string, delimiter . . 29
structure of programs . . 161
structures for program control . 107
structuring (control) statements . 9, 107
subarray ADDR . . 61
subarray implied . 61
subarray IND . . 61
subarray specification . . . 61
subroutine calls, see ROUTINE 1nvocat10n . 243

Norsk Data ND-60.117.5 EN

—33—

Index term Reference
SUCC standard routine . . 31, 156
swap operator« .+ o+ o« v . . . 93
SYMB file . . . 202
symbols, standard PLANC . . . 20
synchronization of data-elements on dlfferent CPUs . 236
syntax of PLANC (in BNF notation) . . 282
SYSTEM EXPORT IMPORT gqualifier and system routlnes . 164
SYSTEM ROUTINE, making with PLANC 131
system variable ERRCODE and programmed ERRETURN . . 146
table of compiler commands . . 199
TARGET-MACHINE compiler command . . 215
terminal I/0 . . 17
termination main PROGRAM routlne . 163
THEN in IF statement . 108
transfer of REFERENCE ROUTINE parameters . 143
transfer of STANDARD ROUTINE parameters . . 143
TYPE and CONSTANT, global (preceding MODULEs) . 173
TYPE and CONSTANT, IMPORT of e e e e . 166
type ARRAY e e e . 53
type ARRAY, composnte data : . 36
type BITS . . . 48, 62
type BITS, predeflned . . 6
type BOOLEAN, simple data . . 35
type BYTE 48
type BYTE, predeflned . . 6
type BYTES . 48, 62
type BYTES, predeflned . 6
type conversion . . 103
type default data . . 212
type ENUMERATION . . . 5
type ENUMERATION, simple data . . 35
type INTEGER, 51mp1e data . . 35
type LABEL . . 44
type LABEL, simple data . . 35
type logical operand c e . . 98
type modification, simple data types . 36
type of relational operands . . . 101
type of result of arithmetic operation . 94
type POINTER . . 5
type POINTER, simple data . . 35
type REAL, simple data . 35
type RECORD . . . 53, 65
TYPE RECORD spe01f1catlon . .7
type RECORD, composite data . . 36
type restriction on SETs .75
type ROUTINE . . 53, 147
type ROUTIRE, comp051te data . 36
type rule: operand compatibility . 9
type SET . .53, 74
TYPE SET and user deflned TYPEs . . 76

Norsk Data ND-60.117.5 EN

34—

Index term Reference
type SET as base type . . 74
type SET, composite data . 36
TYPE specification e e e e e e e e e . 49
TYPE specification and data-element allocation . 57
TYPE specification of new data structures . . 6
TYPE specification of RECORDs . . 65
TYPE specification with ARRAYs . . 57
TYPE specification with ROUTINE in it . . 147
TYPE specification with SETs . . 76
TYPE specification, variant RECORDs . . 68
type VOID . .5, 44
type VOID data . 133
type VOID, simple data . . 35
TYPE wrong without error message . 297
TYPEOF standard routine . . 50, 156
types of composite data . . 5, 36
types of data . . 5
types of data that are predeflned . . 6
types of simple data . .5
types, composite data . . 53
types, definition of base . . . 36
types, definition of data types . . . 35
types, definition of modified data types . 45
types, predefined ARRAY data . 62
types, predefined data 48
types, simple data . 35
TYPEs, user defined . . 49, 57
unary operator . . 89
unformatted file records e e e . 178
user defined ROUTINEs, priority in expressions . 90
user defined routines, priority of . 136
user defined TYPEs .. . 49, 57
user defined TYPEs, SET and . . 76
USING statement . . . 105
USING statement, effect of . 106
value NIL for POINTERs . 42, 44
value of :=: operator . . 93
value of change operator . 93
value of expressions . 89
value, default for CONSTANTS . 40
values, maximum number for INCASE . . 111
variable addressing and POINTERs . 5
variables for FOR loop control . 114
variables, example of global . 16
variables, example of local . . 16
variables, loop control with PACKED . . 115
variant RECORD POINTER . 69

Norsk Data ND-60.117.5 EN

—35—

Index term Reference
variant RECORD TYPE specification . . 68
variant RECORD, definition . 68
VOID data type . 5, 44, 129, 133
VOID keyword . . 133
VOID simple data type . . 35
WHILE and DO loop9, 120
WHILE and EXITWHILE in loop control . . 120
WHILE and FOR loop e e . . 120
WHILE statement . . . 120
WHILE statement in loop control . . 120
word size MC68000 . . 229
word size ND-100 . 229
word size ND-500 . 229
words that are reserved in PLANC . 20
WRITE access . . 47
WRITE access and ARRAYs . . 60
WRITE access to RECORD components . .71
WRITE as ROUTINE parameter modification . .. 129
WRITE data-element, no error message when fetchlng . 298
WRITE modification .. . 6, 47
WEITE ROUTINE parameter access . 143
WRITE/READ restriction RECORD . . 301
XOR operator . 21, 97
XOR SET operator . 79
XREF file type . 209

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 1

NOTATION

The notation used throughout the manual to describe PLANC statements
and constructs is listed below:

[]

()

Square brackets indicate optional items

An ellipsis following square brackets specifies that the
preceding optional items may appear one or more times in
succession.

Parentheses, sometimes referred to as round brackets,
are part of the PLANC language and must be coded where
shown.

Minus-signs or hyphens are sometimes used to increase
legibility in syntax definitions. Note that this does
not imply that hyphens are accepted in variable names in
programs.

Blanks are used to improve readability, but unless
otherwise noted have no significance.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 3
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1. INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

The PLANC (Programming Language ND Computers) is designed as a high-—
level systems programming language. It is a member of the ALGOL/PASCAL
family of block structured languages. PLANC is used mainly for writing
systems software such as operating systems and compilers. It has been
defined in a machine-independent manner and machine-dependent features
(e.g. data allocation strategies, interfaces to programs in other
languages) for particular machines will be specifically noted in this
manual.

In the late 60's and early 70's many computer scientists and software
developers identified the 'software crisis’'. One +trend from this
recognition of problems and difficulties in software development was
that using assembly languages for large software projects was
inadequate.

The first move was more extensive use of macro processors to create
single language constructs which gave more powerful facilities to an
assembly language, in a reliable and consistent way. The next step was
to develop ‘middle-level’ languages, primarily for systems
programming, but with features similar to the popular high-level
languages, e.g. FORTRAN, COBOL and ALGOL. A notable middle-level
language was PL360, developed by N. Wirth for the IBM S/360, and was
the forerunner of Pascal which is now very widely used.

The early 70's saw the emergence of Pascal, BCPL, BLISS, C and other
languages designed for writing systems software such as compilers and
operating systems. Some of these developments produced as a side
benefit, fairly straightforward techniques for implementation on
various hardware. System software development thus began to escape
from the exclusive province of the hardware manufacturers.

Further, these languages extended some areas in which the previous
high~level languages were limited or simply did not have, e.g. data
structures and the so-called structured programming control mechanisms
IF-THEN-ELSE, CASE and DO-WHILE etc. This has also affected the recent
development of general-purpose languages, namely some of the
particular features specified for FORTRAN 77 and ADA.

Norsk Data ND-60.117.5 EN

4 PLANC Reference Manual
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1.1. PLANC LANGUAGE OVERVIEW

This chapter is a detailed overview of the PLANC language and should
enable programmers to read and understand PLANC programs. A more
detailed presentation of PLANC will appear in later chapters, for
those who wish to write large complex programs and systems or to
interface to programs and systems written in PLANC.

1.2. A SimpLE PLANC ProGrAM

PLANC programs are structured into modules and routines; the routine
concept, as will be seen later, is a broad one compared with other
programming languages.

But first a simple example. The program below consists of a module
mudpie which contains a routine mprog, of the special routine type,
main program, that must be used for specifying the entry point at
execution time. The program also contains some examples of simple
declarations, a standard routine, and the use of the assignment
operator.

EXAMPLE 1.1 A VERY SIMPLE PROGRAM

MODULE mudpie
INTEGER ARRAY : stack [0:100)
PROGRAM : mprog
INTEGER : 1i,j,k,m
INISTACK stack

1 =: 1
2 =: j
i+j =2 k =: m
ENDROUTINE
ENDMODULE

The first line declares a module which is the smallest section of a
PLANC program that can be compiled separately.

On 1line 2, a single dimension array with bounds of 0 and 100 is
declared as a data-element in the basic module mudpie. Note that the
lower index bound must be 0O to be used by the INISTACK standard
routine.

Variables local to mprog appear in a declaration statement in line 4.
i and j are set to 1 and 2 and their sum is assigned to both k and m,
within one expression.

However simple a program may be, the INISTACK standard routine, shown
on line 5, must appear in the main program (here mprog) before any
other routines are called. It creates a stack to provide storage for
dynamic allocation of the data-elements within each routine while it
is being executed. In the previous example, this stack will be called
stack, declared in the main module.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 5
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1.3. Dara Types

Having looked at a basic PLANC program we will now look in greater
detail at the way in which data is described.

PLANC supports a variety of data types which are divided into the
categories of simple and composite. A data-element of composite type
may be subdivided into simple or further composite types. They are the
following:

SIMPLE TYPES COMPOSITE TYPES
INTEGER ARRAY

REAL RECORD

BOOLEAN SET

LABEL ROUTINE

VoIiD

ENUMERATION

POINTER

The PLANC data types ENUMERATION and VOID are unusual; since the type
VOID only appears in the declaration of routines it is described along
with them. Data type ENUMERATION enables a data-element to take any
value from an explicitly specified ordered group. Examples of
declarations would be:

ENUMERATION (hot,warm,mild,cool,cold] : weather,temperature
ENUMERATION (lousy,firstclass,luxury,deluxe] : hotel :=lousy

Note that hotel has been set to an initial value of lousy (hopefully
our program will be able to improve it!).

POINTERS are data types which are "addresses" of variables of some
other type. For instance, we could declare:

REAL : r

REAL POINTER : rp := ADDR(r]

where the pointer data-element rp is initialized with the address of
the REAL data-element r.

Norsk Data ND-60.117.5 EN

6 PLANC Reference Manual
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

Some of the simple data types may have certain characteristics
modified. Thus type INTEGER may have its RANGE modified, type REAL its
PRECISION modified, and any simple type may be ACCESS modified.

Access modified types are either READ or WRITE modified. If the
modification is READ then write operations on the data-element are
illegal, i.e. the data-element may only take the initial value.
Conversely, WRITE mnmodification usually precludes read access. This
facility can be useful when a data-element 1is used as a routine
parameter.

There are also some predefined types of data (i.e. they can be defined
in terms of already existing simple types) for holding sequences of
characters (sometimes called character strings) or sequences of binary
bits. They are: :

1) BYTE : For containing a single character

o]

2) BYTES : For containing character strings

3) BITS : For containing bit strings

1.4. Tvype SpeCIFICATION

Just as predefined and modified data types are based on the simple
data types, it is also possible in PLANC for the user to define his
own data types in terms of any of these three. However, a user type
specification differs in that it does not cause a data-element to be
constructed. This will only occur on a subsequent declaration
statement.

Examples of the use of the TYPE specification are:
TYPE personnel number = INTEGER RANGE (0 : 999999)
TYPE calc = REAL RFAD
TYPE section = REAL ARRAY POINTER

Note that the data type section represents a pointer to an array of
reals. Contrast this with:

TYPE sparse = REAL POINTER ARRAY

where sparse is an array of pointers, each pointing to a single real.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 7
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1.5. Recorps

Using a TYPE specification for the declaration of RECORD data types
provides a "structure template" for the components of a record as seen
in the example.

EXAMPLE 1.2 A RECORD TYPE SPECIFICATION
TYPE monthnames = ENUMERATION(jan,feb,mar,apr,...,nov,dec)

TYPE date = RECORD
INTEGER RANGE (1:31)] : day
monthnames :@ month
INTEGER RANGE [0:2000)] : year
ENDRECORD
% declare some data-elements of the newly specified data type
date :@ startdate,end date

The above record has three components but it could have had any number
of them.

Note that as this is an example of a TYPE specification, no data-
element is constructed unless a declaration statement is encountered
such as the last line of the example.

It is possible to define a record which has components in addition to
those of an existing one. This variant record will then have the
components defined in the base record together with the new components
from the variant part.

EXAMPLE 1.3 A VARIANT RECORD

TYPE part = RECORD
REAL : partno, buyprice, sellprice
ENDRECORD
TYPE tax rating = part RECORD
INTEGER : taxcode
ENDRECORD
TYPE stock = part RECORD
BYTES : warehouse(1:4])
REAL : quantity
ENDRECORD
% declare some record data-elements
part : frame
tax rating : boughtin
stock : screw

Thus records of type tax rating (e.g. boughtin) will have components
partno, buyprice, sellprice, and taxcode, and records of type stock
(e.g. screw) will have components partno, buyprice, sellprice,
warehouse and quantity.

Norsk Data ND-60.117.5 EN

8 PLANC Reference Manual
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

To access components of a record a dot notation is used. Thus to

access components in the records of example 1.3 we would use
references like:

frame.buyprice
boughtin. taxcode

It can be useful to have an empty base record which can serve as a

common entry point to the variant ones by using a pointer which
references the base record.

1.6. List PROCESSING

list structures can be defined as record structures as illustrated
below.

EXAMPLE 1.4 RECORD TYPES IN LIST PROCESSING

TYPE element = RECORD
element POINTER : NEXT

N

e

other components

N

ENDRECORD

% pointer for the start of a linked list of records
element POINTER : HEAD

The pointer HEAD would point to the first element in the list and the
pointer NEXT in each record would point to each successive element in
a list.

There are three standard routines available in PLANC for 1list
processing:

INSERT will insert a new element at the head of a list
APPEND will append a new element at the end of a list
REMOVE will remove any element from the list

Norsk Data ND-60.117.5 EN

PLANC Reference Manual o]
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1.7. SequeENCE CONTROL STATEMENTS

Control statements enable the normal sequence of statement execution
to be altered. PLANC has a number of facilities to form repetitive
loops or select a course of action from a number of possibilities.

The FOR and ENDFOR statements create a very simple loop. The code
bounded by them must include a DO statement as shown in the example.

EXAMPLE 1.5 A SIMPLE FOR-ENDFOR LOOP

FOR count IN 1:n DO
count+sum =:sum
ENDFOR

Another simple loop is formed by the DO-ENDDO statements.
EXAMPLE 1.6 A DO-ENDDO LOOP

DO
% statements for execution
ENDDO

Either of the two loops above may contain a WHILE statement.
Forexample:

EXAMPLE 1.7 ANOTHER FOR-ENDFOR LOOP

INTEGER : lower,upper
INTEGER ARRAY : a(0:10)
FOR i IN lower:upper DO
ali-1)+a(i] =:alil
% continue the loop only for negative array elements
WHILE a(i)<0O
%

ENDFOR

A simple conditional statement is the IF statement. It must always be
followed by a corresponding ENDIF as in:

EXAMPLE 1.8 AN IF-THEN-ENDIF STATEMENT
% make the value positive
IF x < O THEN
-X =:!X

ENDIF

IF statements may be nested, and there are no restrictions on the
executable statements which may be contained in a nested IF statement.

_Norsk Data ND-60.117.5 EN

10 PLANC Reference Manual

INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

Further, PLANC has a CASE statement. It selects one of a number of a
group of statements to be executed, the remaining groups are ignored.

EXAMPLE 1.9 THE CASE STATEMENT

ENUMERATION [stop_signal,go_signal] : action

TYPE colour list = ENUMERATION (red,blue,green,amber)
%

colour list : colour

%

CASE colour

INCASE red

stop signal =:action
INCASE green

go_signal =:action
ELSE

% control only comes here for other colours

Note the percent character (%) indicating a comment line. It may
appear in any column of a statement. Everything following the percent
character, on the same line, is ignored by the compiler.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 11
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1.8. RoutInes

From a language point of view, routines can be regarded as composite
data-elements. When a routine is declared, a data-element is
constructed which is sufficiently large to contain all of the storage
the routine will require. (Storage required at runtime is provided by
the INISTACK standard routine, as illustrated in the very first
example.)

PLANC routines are similar to the subprograms of other languages but
they have an extra feature in that a specific single value can be
supplied to the routine by the caller, and vice versa, such that the
value input is available anywhere within the routine. These values are
in addition to the usual parameters. For example:

EXAMPLE 1.10 A SIMPLE ROUTINE

ROUTINE VOID,VOID (INTEGER WRITE) : simple(intparal]

e

ae

no values supplied into or out of the routine SIMPLE,
it has only one integer parameter iIintpara

N

BN

INTEGER : local,int
FOR local IN 1,2,3,8:10 DO

AN

% executable statements within the loop

ENDFOR
% intpara will be returned to caller
int=:intpara
RETURN
ENDROUTINE

The use of the data type VOID is shown, so-named since it indicates
the absence of the in-value data-element or the out-value data-element
respectively. The routine body contains control statements for a
simple repetitive loop.

Only one parameter (within the parentheses following the routine name)
will be passed to the routine and it is declared to have WRITE access
only. Parameters have by default READ access only. The keyword WRITE
allows this parameter to have values stored into it and the actual
parameter will not receive this new value before the routine has
returned to its caller.

Norsk Data ND-60.117.5 EN

12 PLANC Reference Manual
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

A more sophisticated example of sorting by successive maxima is shown
here. The method used is to find the maximum element of an array which
is "swapped" with the first element. The subarray of all elements,
except the first, is now scanned and the maximum element will be
interchanged with the second of the original array, and so on. Within
the routine the standard routine MAXINDEX yields the maximum index
(upper bound) of vector, and calling highest obtains the index of the
maximum element of each subarray. (The routine highest is in fact
given as example 1.13.)

EXAMPLE 1.11 SORTING BY SUCCESSIVE MAXIMA

ROUTINE VOID,VOID [REAL ARRAY READ WRITE) : sort(vector)
RFAL : temp
INTEGER : k,highval
FOR kx IN vector DO
highest(vector(k : MAXINDEX(vector,1])) =:highval
vector{highval) =:temp; vector(k] =:vector(highvall
temp =:vector(k)
ENDFOR
ENDROUTINE

The next example returns an out-value, i.e. it is 1like a FORTRAN
function reference, which indicates whether an array contains all the
same values or not. The out-value is defined as BOOLEAN in the routine
declaration so that a value of TRUE or FALSE can be returned. In this
case it depends on whether or not all the values of an integer array
are unequal. ST

EXAMPLE 1.12 ROUTINE WITH AN OUT-VALUE

ROUTINE VOID,BOOLEAN (INTEGER ARRAY) : func(arrx)

o,

<

e

no in-value, out-value BOOLEAN, in the routine func
having 1 parameter, arrx, an INTEGER array

N

&N

INTEGER : 1i,j
% loop through all the elements of the array
FOR i IN arrx DO
% loop through each element prior to this element of the array
FOR j IN 1:i-1 DO
% is there a different value ?
IF arrx{i) >< arrx(j] THEN
% all array elements not the same value
FALSE RETURN
ENDIF
ENDFOR
ENDFOR
% all elements are the same value
TRUE RETURN
ENDROUTINE

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 13
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

The routine highest, invoked in example 1.11, is a further example we
can give at this point. It returns the index of the maximum value in
an array (MININDEX obtains the value of the lower bound) .

EXAMPLE 1.13 ANOTHER ROUTINE WITH AN OUT-VALUE

ROUTINE VOID, INTEGER[REAL ARRAY) : highest(v])
REAL :@ max
INTEGER : answer,i
% set an initial index of the highest value
v{ MININDEX(v,1)=:answer] =:max
% scan the array for the highest value
FOR i IN v DO
IF v(i) > max THEN
% note the use of the resulting value as the subscript
v({ i=:answer)} =:max
ENDIF
ENDFOR
% give back the index of the highest value as an out-value
answer RETURN
ENDROUTINE

In the case where there is an in-value, this can be referenced within
the routine by use of the @ (commercial at) character. If the routine
has an in-value but no out-value it will simply store the in-value it
receives; the in-value will be the data-element associated with the
identifier referred to immediately preceding the routine invocation.
Example 1.14 shows some of the principles involved.

EXAMPLE 1.14 ROUTINE WITH AN IN-VALUE BUT NO OUT-VALUE

INTEGER : param2,prog data el ; REAL : paraml

% set up the in-value

INTEGER : inval

2=:inval

% invoke the routine rtn with inval as the in-value
inval rtn{paraml,param2)

% after the routine call, parm2 will have the value 1
% it could be assigned to a program data-element
paramZ::prog_data_el

The routine declaration might be

ROUTINE INTEGER,VOID (REAL,INTEGER WRITE] : rtn (pl,p2)

Ne

% and the routine body might contain

BN

IF @>0 THEN % reference in-value
1=:p2
ENDIF
%
RETURN
ENDROUTINE

Norsk Data ND-60.117.5 EN

14 PLANC Reference Manual
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

A routine of this type might be used in situations such as reading or
writing to/from files or similar service functions, thus saving the
programmer some coding.

Finally, the routine with both an in-value and an out-value. As an
example, the routine below adds two complex numbers represented as
records.

EXAMPLE 1.15 ROUTINE WITH BOTH AN IN-VALUE AND AN OUT-VALUE

% a record type specification of a complex number
TYPE complex = HECORD

REAL : r,i
ENDRECORD

N

% a routine to perform addition of two complex numbers

N

ROUTINE complex,complex (complex) : plus(cnum)
% the out-value is declared as complex
complex :@ result

N

the in-value, referenced by @, is one complex number,

the parameter is the other

.r + cnum.r=:result.r

.1 + cnum.i=:result.i

put the sum of the two complex numbers into the out-value
result RETURN

ENDROUTINE

D D N

Ne

The routine plus could be invoked b&:
cl plus c2
where cl1 and c¢2 have been declared as:
complex :cl,c2
Since routine identifiers can be a string of letters or special
characters, the routine name might equally well have been + or *+, and

the invocation:

cl + c2 or
cl *+ c2

thus the routine defines a user-written operator.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 15
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1.9. MopuLes

A module, which is the smallest unit of a PLANC program that can be
compiled separately, can be contained within other modules. Thus we
can have basic modules and any number of compound ones. All program
and data must be inside a basic module, and if it is to be indepen-
dently executable, it must contain a main program, as shown in example
1.1. However, only one main program routine can exist per executable
program since it is this which defines the execution-time entry point.

Large programs are usually subdivided into logical groups, i.e.
modules, to simplify their administration. Access from one module to
the data and routines of another is controlled by the two PLANC
statements: EXPORT and IMPORT.

An IMPORT statement defines items of other modules to be made
accessible in the present module. An EXPORT statement defines items in
the present module to be made accessible to other modules. In example
1.16, we show the structure of a compound module which contains two
basic modules, together with a simple usage of the IMPORT and EXPORT
statements.

EXAMPLE 1.16 HMODULE STRUCTURE

MODULE comp % Compound module
MODULE basicl % Basic module
EXPORT x
IMPORT REAL : y
INTEGER :@ x
%
ENDMODULE % End of module basicl
%
MODULE basicZ2 % Another basic module
EXPORT y
IMPORT INTEGER : x
REAL : y
s
%
ENDMODULE % End of module basicZ2
ENDMODULE % End of compound module comp

Norsk Data ND-60.117.5 EN

16 PLANC Reference Manual
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1.10. Score oF IDENTIFIERS

An identifier has a scope which 1is the routine, or module, which
contains its declaration and all the routines, or modules, within it.
For example:

EXAMPLE 1.17 SCOPE OF IDENTIFIERS

MODULE update
% global variables
BOOLFEAN ARRAY : busy(0:100)
%
ROUTINE VOID,INTEGER : reserve
INTEGER : i,
FOR i IN busy DO
%
ENDFOR
J RETURN
ENDROUTINE
%
ROUTINE INTEGER,VOID : release
INTEGER : i,
%
ENDROUTINE
ENDMODULE

The array busy has the scope of modulé update, and is also known by

the routines reserve and release. The variables i, j in reserve are
different from the i, j in release.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 17
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1.11. Simpie Input/QurPut TO THE TERMINAL

PLANC has no extensive facilities for handling input and output.
However, there are some system-supplied routines to handle the simple
case. As an example, the statement:

INPUT (1,'I5' ,number)
will read an integer from the terminal and place it in number.
For output, the statement:
OUTPUT (1,'I5',number)
will write number as an integer using five places on the output line.

We can now write a PLANC program to read two numbers from the
terminal, and write out their sum.

EXAMPLE 1.18 SIMPLE 1/0 USING THE TERMINAL

MODULE summer

INTEGER ARRAY : stack(0:100)

% a main 'PROGRAM' routine follows

PROGRAM : sum
INTEGER : a,b,c
INISTACK stack
% get two numbers from the terminal
INPUT (1,'I5",a)
INPUT (1,'I5',b)
% output the sum of the two numbers on the terminal

a+b=:c
ouTPUT (1,'I15',c)
ENDROUTINE % end of routine 'sum’
ENDMODULE

Norsk Data ND-60.117.5 EN

18 PLANC Reference Manual
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1.12. A More CompLEX ExampLE

To show how some of the previously mentioned features might be
combined, we give a final example. Suppose you want to find the area
of a farm where each field is represented by a record in a linked list
of records. In the given code, these records are chained together
through the record component data-element next.

EXAMPLE 1.19 DINKUM PLANC

% specify a RECORD data type for each field of the farm
TYPE field = RECORD

REAL : area

field POINTER : next
ENDRECORD

N

N

a pointer data-element to begin a linked list
-~ see later chapters for details of building the list

N

N

field POINTER : pepfarm

% a data-element for the area of the farm

REAL : farmsize

% invoke the routine to compute the total farm area

acreage (pepfarm)=:farmsize

ROUTINE VOID,REAL (field POINTER) : acreage(first])
field POINTER :@ work
REAL : answer
0.0 =:answer
% scan the list of field records to compute the total area
FOR work IN first:next DO
answer + work.area =:answer
ENDFOR
answer RETURN
ENDROUTINE

The FOR-ENDFOR loop contains a ‘“pointer implied range" first:next
which describes a linked list of pointers. The data—element before the
colon is a record pointer indicating the start of the chain. Following
the colon is the data-element within the record which contains the
linking pointers through the chain. In this way we can access a linked
list of records using a simple FOR-ENDFOR 1loop, which is a useful
facility when processing lists.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 19
BASIC LANGUAGE ELEMENTS

2. BASIC LANGUAGE ELEMENTS

2.1. INTRODUCTION

Following the overview of the PLANC language we will now begin to look
at the language features in complete detail.

This chapter will present the lowest level language elements, such as,
the character set, identifiers and literals, with which PLANC source
language statements can be formed. A number of source statements can
then be put together to construct a complete PLANC program. This
program can be submitted to the PLANC compiler to produce an
executable program if the compilation process is successful.

2.2. (HARACTER SET

The full ASCII character set may be used in PLANC programs. However
particular elements of the language may be made up of a restricted
subset of characters as shown in the following sections. Lowercase
alphabetic characters are converted to uppercase except when used in
string literals.

Norsk Data ND-60.117.5 EN

20 PLANC Reference Manual
BASIC LANGUAGE ELEMENTS

2.3. STANDARD SYMBOLS

The Standard Symbols have predefined meanings in the PLANC language.
They are special characters or are formed from special characters and
letters. Standard Symbols comprising alphabetic characters only are
often referred to as keywords. Here is a list of all the Standard

Symbols:

Special characters

™
1

treat the rest of this line as comment text.
& - the statement on this line is continued on the next line.
; - terminate the preceding language statement on this line.

Note: This is used to put more than 1 statement on a line.
! - is used to delimit a string literal.
- precedes a single character literal.
{ - opening parentheses.
] - closing parentheses.
: - delimiter in declaration statement or range expression.
s ~ delimiter in a list of identifiers.
@ - routine in-value qualifier.
- accesses record components.
? - predeclaration indicator.
¥ - as first character indicates line is a compiler command.
! - enclose macro parameters within the macro definition.
Keywords
ALIAS ENDMODULE INTEGER1 RECORD
ARRAY ENDON INTEGERZ REFERENCE
ASSERT ENDRECORD INTEGER4 RETURN
ASSERTFALSFE ENDROUTINE LABEL REVERSE
BITS ENUMERATION MODULE ROUTINE
BOOLEAN ERRCODE NIL ROUTINEERROR
BYTE ERRETURN ON SET
BYTES EXITFOR OVERFLOW SPECIAL
CASE EXITWHILE PACKED STACKERROR
COMMON EXPORT POINTER STANDARD
CONSTANT FALSE POINTERERROR SYSTEM
DO FOR PRECISION THEN
ELSE GO PROGRAM TRUE
ELSIF IF RANGE TYPE
ENDCASE IMPORT RANGEERROR VOID
ENDDO INCASE READ WHILE
ENDFOR INLINE REAL WRITE
ENDIF INTEGER REALS8

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 21
BASIC LANGUAGE ELEMENTS

Operators

ABS
MOD
SHIFT

assignment

change

addition

subtraction (binary operator], sign change (unary operator)
multiplication

division

exponentation

absolute value or maximum number of SET members

modulo

shift the bits in an integer a number of positions

greater than

less than

equivalent value
greater than or equal
less than or equal
not equal

membership

logical and

inclusive or

exclusive or

logical negation

assignment of value in CONSTANT statement, storage
equivalence and identifier data type in TYPE specifications
initial value in declaration statements

Standard Routines

ADDR CONVERT INPUT ouTPUT
APPEND DISPOSE MAXINDEX PRED
BIT FILESIZE MININDEX REMOVE
BIT SIZE FORCE MONITOR CALL SIZE
BIT POSITION IND NEW succ
BLOCKSIZE INISTACK OPEN TYPEOF
CLOSE INSERT

Norsk Data ND-60.117.5 EN

22 PLANC Reference Manual
BASIC LANGUAGE ELEMENTS

2.4, STATEMENTS

PLANC statements are usually written one per line. A statement may be
terminated by a semicolon character (;) but this is not required.

However more than one statement may be included on one line by using
the semicolon character (;) to terminate each statement within the
line. All alphabetic characters in PLANC statements may be typed in
lowercase or uppercase but the compiler will convert all the
alphabetic characters to uppercase with the exception of single
characters and string literals, including format descriptors in
INPUT/OUTPUT statements (i.e. anything between single apostrophes).
For clarity, it is a good idea to type all keywords in uppercase.

A single blank space must be present immediately before and after most
keywords, but more blank spaces are not treated as significant by the
compiler. Some keywords may be preceded or followed by operators or
delimiters. While PLANC has a free format, it is recommended that you
use blank spaces to indent and space source code elements for clarity
and readability.

For example:

INTEGER : intl,int2 ; REAL : rll ; BOOLEAN : booll

2.5. CONTINUATION OF STATEMENTS

Sometimes you may need to write a statement which is longer than one
line. If a statement is to be continued on the next line, an ampersand
character (&) must be placed after the statement text on the first
line, and then the compiler will join the next line to the first line
and treat both together as a single language statement.

For example:

INTEGER : intl,intZ2,int3, & % this line will be continued
int4,inth

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 23
BASIC LANGUAGE ELEMENTS

2.6. CovMeNTS

Comments within program source are important for documentation
purposes, and they may be included on any lines of PLANC source by
inserting a percent character (%). All text following the percent
character on the same line will be regarded as comment text by the
compiler and have no effect on the program.

For example:

INTEGER : integl,integl

BN

BN

The line above, this line and the following 2 lines
are comment lines. They have no effect on the program.

N

N

INTEGER : integ3
INTEGER : integ4 % This is also comment text

Note that there is a special use of two consecutive percent characters
(%%), see section 2.10.

For example:

%%%% this 1is not a comment line
%% but this is

BN

Norsk Data ND-60.117.5 EN

24 PLANC Reference Manual
BASIC LANGUAGE ELEMENTS

2.7. LITERALS

A literal is an integer, real, Boolean, character or string constant.
Literals do not change their value during the execution of the
program. A literal value is held in a storage entity known as a data-
element.

2.7.1. INTEGER LITERALS

The form of an integer literal is an optional minus sign followed by a
string of digits.

Examples of integer literals:

0

123

-1
123456

The maximum and minimum possible values and the actual size of the
data—element used to store the integer literal is machine-dependent.
In general the smallest data-element possible to contain the actual
value will be allocated by the compiler.

For example, on the ND-100 the values must lie between:

-2147483648 and 2147483647 inclusive,
351 will be stored in an INTEGERZ data-element.

For full details of limits on the possible range of values and actual
storage allocated, see Appendix C.

An integer literal in PLANC may be written as an octal value rather
than as a decimal value. An octal literal is an optional minus sign
followed by a string of digits, each in the range 0 to 7 inclusive,
and followed by the letter B.
Examples of octal integer literals:
OB
777B
-765B

The range of values possible and the storage allocated by the compiler
will be the same as for decimal literals.

For example, on the ND-100:

5378 {351 decimal) will be stored in an INTEGERZ2
data-element.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 25
BASIC LANGUAGE ELEMENTS

2.7.2. Rear LiTerais

The form of a basic real literal is an optional minus sign, a whole
number part, a decimal point and a fractional part. Both the whole
number part and the fractional part are strings of digits; the whole
number part must be present.

A real exponent consists of the letter E followed by an unsigned whole
number for a positive exponent or a minus sign and a whole number for
a negative exponent. The value of a real literal containing an
exponent 1is the product of the basic real literal preceding the E and
the power of 10 indicated by the number following the E. The exponent
must not be preceded by a space.

Examples of some vzlid real literals:

0.0
11.
3.1415927
~-728.998
-98765.0
1.23E2 exponent form of a real literal
1.32E-4 real literal with a negative exponent

Examples of some iuvalid real literals:

1z a valid integer but no decimal point

.0 no digit preceding the decimal point
+1.2 must not be preceded by a + sign
1.5E2.5 exponent must be a whole number
1.6E+2 exponent must not have a + sign

The real value 1is an approximation to the actual value of a
mathematical expression. The actual internal representation of real
values may not be the same in all implementations of PLANC. The
maximum and minimum real values possible may vary on different model
machines or according to the type of floating-point hardware on a
particular machine. Further, the number of significant digits which
may be represented accurately also depends on the machine model and
the floating-point hardware present. Full details of storage
allocation, maximum and minimum possible values, and the number of
significant digits which can be represented accurately are available
in Appendix C.

Norsk Data ND-60.117.5 EN

26 PLANC Reference Manual

BASIC LANGUAGE ELEMENTS

2.7.5. BooLEAN LITERALS

The possible values of a Boolean literal are TRUE or FALSE.

Examples of Boolean literals:

TRUE
FALSE

2.8. LITERAL EXPRESSIONS

A literal expression is an expression made up of either literals of
the same data type or identifiers which have already been declared in
a CONSTANT statement, thus having a literal value. For a detailed
description of the way expressions are evaluated, see Chapter 5,
EXPRESSIONS FORMATION AND EVALUATION. In addition to the operators

listed below for each data type, parentheses may be used for clarity
or to force an expression to be evaluated in a particular order of
operations.

2.8.1. INTEGER LITERAL EXPRESSIONS

Integer literal
elements and

expressions may be formed by using integer data-
the following operators and standard routines:

+ arithmetic plus

- arithmetic minus

- unary minus

arithmetic multiplication

/ arithmetic division

*H exponentiation

MOD modulo

ABS absolute value

SHIFT shift bits

NOT logical complement

AND logical "and’

OR logical 'inclusive or'
XOR logical 'exclusive or’
MININDEX array index lower bound
MAXINDEX array index upper bound
SIZE data-element size in bytes

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 27
BASIC LANGUAGE ELEMENTS

For example:

INTEGER : intl:=2%2 % integer literals only
% the indentifier intl will be initialized to 4.

CONSTANT four=4
INTEGER : int2:=(1+four]*2 % literals, constants mixed
% the identifier intZ2 will be initialized to 10.

INTEGER : int3:=777B AND 17B % use of logical operator
% the identifier int3 will be initialized to 17B
i.e. 15 decimal

N

2.8.2. ReaL LiTErRAL EXPRESSIONS

Real literal expressions may be formed by using real data-elements and
the following operators:

+ arithmetic plus
- arithmetic minus
- unary minus

* arithmetic multiplication
/ arithmetic division

ABS absolute value
For example:

REAL : rl1:=2.5%4.0 % real literals only
% the identifier rll will be initialized to 10.0.

CONSTANT rlconst=2.0

REAL : rl2:=(5.7-rlconst)/2.0 % literals, constants mixed
% the identifier rl2 will be initialized to 1.85.

Norsk Data ND-60.117.5 EN

28 PLANC Reference Manual
BASIC LANGUAGE ELEMENTS

2.8.3. BooLEAN LITERAL EXPRESSIONS

Boolean literal expressions may be formed by using Boolean data-
elements and the following operators:

NOT logical negation

AND logical 'and’

OR logical 'inclusive or’
XOR logical 'exclusive or’

Furthermore, Boolean literal expressions may contain any of the
relational operators (see section 5.4) with integer operands only.

For example:

BOOLEAN : booll:=TRUE AND FALSE % literals only
% the identifier booll will be initialized to FALSE.

CONSTANT bcl=TRUE
BOOLEAN : boolZ2:=bcl OR TRUE % literals, constants mixed
% the identifier bool2 will be initialized to TRUE.

BOOLEAN : bool3:=TRUE AND (2=3)

% the Boolean expression in parentheses results in FALSE
% and the identifier bool3 will be initialized to FALSE.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 29
BASIC LANGUAGE ELEMENTS

2.9. SINGLE (HARACTER LITERALS

The form of a single character literal is the number sign character
(£) followed by one ASCII character.

For example:

#a value is lowercase 'a'’
#Z value is uppercase 'Z’
#(value is left parentheses

PLANC has no 'character' data type. A single character literal will be
held in a data-element of the predefined data type BYTE (see section
3.12.1). With certain choices of data storage allocation, this enables
much faster handling of a single character than a character string of
length greater than one character.

Note that to specify the special characters percent (%), ampersand (&)

and apostrophe (') in a single character literal, only one occurrence
of such a character should follow the number sign character (£).

2.10. StrinG LITERALS

The form of a string literal is the apostrophe character ('), followed
by one or more ASCII characters, terminated by another apostrophe
character ('). :

For example:
‘this is a STRING of characters’

PLANC has no string data type. String literals will be held in a data-
element of the predefined data type BYTES (see section 4.1.7.1).

Uppercase alphabetic characters within string literals will not be
converted to lowercase.

Note: If % (percent), & (ampersand), or ' (apostrophe) characters are
to appear within a string literal, then these characters must be
duplicated for each occurrence required, in order to prevent their
usual 'special' interpretation in PLANC.

For example:

String Literal value

"his && hers’ his & hers

'two %%%% characters’ two %% characters
"Tom' 's 5 %% share’ Tom's 5 % share

[

(one apostrophe]

Note that 'a' is not equivalent to £a and has a different internal
representation.

Norsk Data ND-60.117.5 EN

30 PLANC Reference Manual
BASIC LANGUAGE ELEMENTS

2.11. IDENTIFIER NAMES

An identifier name in PLANC is the name associated with a data-
element. An identifier is a sequence of letters, digits and underscore
characters, but the £first character must be a letter. An underscore
must not be the last character of an identifier and only single
underscore characters may be used (i.e. two consecutive underscore
characters are invalid). While an identifier may be of any length,
only the first ten characters are used for unique identification.

For example:

integl
counter VARIABLE
abc
SEbE invalid, does not begin with a letter
in-valid invalid, contains an illegal
character, a hyphen (-]
abc_ invalid, ends with an underscore
a b invalid, two consecutive underscores .

Since uppercase and lowercase letters are treated as equivalent by the
compiler, the identifiers:

identl and
IDENT1

will be associated with the same data-element.

As only the first ten characters of identifier names are significant,
the identifiers:

a_very~long_name and
a_very_long_identifier

will be associated with the same data-element.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 31
BASIC LANGUAGE ELEMENTS

2.12. EnuveraTION LiTERAL LisTs

The form of an enumeration literal 1list is a list of enumeration
identifiers separated by commas. The general form is:

enum-ident| ,enum-ident ...] where
enum-ident is formed under the same rules as identifiers
The order of appearance in the list specifies the sequence of the
enumeration identifier values for use as operands with the relational
operators (see section 5.4) or with the PRED and SUCC standard
routines (see section 7.9) which will return previous or successive
values respectively.
For example:

red,dark_blue,green,purple

is a valid enumeration literal list with four enumeration identifiers.

Norsk Data ND-60.117.5 EN

32 PLANC Reference Manual
BASIC LANGUAGE ELEMENTS

2.13. ImpLiED RANGE

The implied range is an abbreviated form for describing all or part of
a list of Integer values, Enumeration identifiers or Pointer data-
elements. The precise meaning of such a list depends on which PLANC
statement it is used in. It has the following general forms:

valuel : value2
or

expnl : expn2
or

ptrl : ptr2
where

valuel, valueZ are both, either integer literals, enumeration
identifiers or the resulting value of literal
expressions of these data types.

expnl, expn2? are expressions which will be evaluated at runtime to
give an integer or enumeration resulting value.

Note: In both the above cases the second value must be
greater than or equal to the first value or a list with
no values will be generated.

ptrl, ptr2 are pointer identifiers within a linked list of record
data-elements, or a linked 1list of pointer data-
elements.

Examples of implied ranges:

.

2 : 36
% specifies the list of integer values
12, 13, 14, ... , 35, 36

&

2%(3+1) : 10**2
% specifies the list of integer values
% 8, 9, 10, ... , 99, 100

ENUMERATION [white,black,red,blue,grey,green,mauve)
followed by a statement containing red :@ green

specifies the enumeration literal list, i.e. enumeration
identifiers

NN R

red, blue, grey, green

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 33
BASIC LANGUAGE ELEMENTS

The implied pointer range is discussed in more detail in section 3.8,
together with the description of the Pointer data type. For examples
of the use of an implied pointer range, see FOR - ENDFOR loops,
section 6.5, and Processing of Records in List Structures section 4.6.

Norsk Data ND-60.117.5 EN

34

Norsk Data ND-60.117.5 EN

PLANC Reference Manual

PLANC Reference Manual 35
DATA DECLARATION AND SIMPLE DATA TYPES

3. DATA DECLARATION AND SIMPLE DATA TYPES

This chapter will describe some of the basic terms and concepts
associated with the storage and accessing of data values in PLANC
programs. Only the simple data types will be discussed here. More
complex data structures are available in PLANC, e.g. arrays and
records, but they will be discussed later.

3.1. DeriniTioN oF PLANC TerMINOLOGY

Two of the basic language elements in PLANC, literals and identifiers,
have already been discussed (Chapter 2, BASIC LANGUAGE ELEMENTS).
Another basic language element is the data-element. A data-element is
any area of storage that can be referred to as an entity and that may
contain a definite value. Most data-elements are referred to by an
identifier name but some, such as literals, do not have any associated
name. Each data-element is of a defined data type which specifies two
characteristics:

1) the format and range of possible values of information stored
in the data-element.

2) the operations which may be applied to the data-element.
Data—-elements may be of either a simple or a composite data type. A
data-element of a simple data type is an entity which may not be split
into any components. A data-element of a composite data type consists
of components, each of which is a data-element of simple or composite
type.

The PLANC language has a variety of data types available.
Simple data types are:

1) INTEGER

2) REAL

3} BOOLEAN

4) LABEL

5) VOID

6) ENUMERATION

7) POINTER

Norsk Data ND-60.117.5 EN

36 PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

Composite data types are:

1) ARRAY
2) RECORD
3) SET

4) ROUTINE

Some simple data types may have particular characteristics modified.
The modifications which are available are:

1) RANGE ~ for INTEGER type only
2) PRECISION - for REAL type only

3) ACCESS MODIFIED - for some simple and composite data types

In a PLANC program, a new data type may be created by defining the new
type in terms of existing data types. The existing simple data type
used in such a definition 1is called the base type of the new data

type.

A declaration specifies an identifier name to be associated with a
data—element, the data type of the data-element and allocates
appropriate storage to contain the values of the data-element. A
declaration may also optionally specify an initial value to be present
in the data-element when the program begins execution. The general
form of a declaration statement for a simple data type is:

data-type : ident[:=lit-exp] [,ident[:=lit-expl]

where

data-type is a valid simple data type

ident is a valid identifier

lit-exp is a literal expression of appropriate type

Note: Initial value is valid only for INTEGER, REAL, BOOLEAN

types.

An initial value should normally be used in the outer level of a
module. If an identifier is to have an initial value inside a routine,
then its access must be declared as READ, see section 3.11.3.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 37
DATA DECLARATION AND SIMPLE DATA TYPES

3.2. InTeGer DaTA-tLEMENTS

The data type 'integer' specifies dJdata-elements which can contain
whole number values. The general form of a declaration of an integer
data-elements is:

INTEGER : ident[:=lit-exp] [,ident[:=lit-exp] 1 ...

where
ident is a valid identifier
lit-exp is a integer literal expression

The range of possible values which can be held in an integer data-
element has been discussed briefly under Integer Literals (see section
2.7.1). For full details of the range of possible values and storage
allocated, see Appendix C.

Some variants of the INTEGER type are available and these have
particular range limits. These are:

1) INTEGERL - to be stored in an 8 bit field. The range of
possible values is:

~128 <= value <= 127.

2) INTEGER2 ~ to be stored in a 16 bit field. The range of
possible values is:

~32768 <= value <= 32767.

3) INTEGER4 - to be stored in a 32 bit field. The range of
possible values is:

~-2147483648 <= value <= 2147483647.

The type INTEGER will default to one of the variants depending on the
machine implementation, see Appendix C.

During compilation, the initial value of an integer literal data-
element, will not cause a compiler error if it is too large for the
storage available for the data type declared; some form of truncation
will occur. During program execution no checks will be carried out
other than those provided by the hardware being used, e.g. overflow,
see Exception and Error Handling, section 6.8 and Appendix C.

Norsk Data ND-60.117.5 EN

38 PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

Examples of integer declarations:
INTEGER : intl,int2,int3,initl:=45,int4
INTEGER1 : int8b:= ~22

INTEGERZ : intléb
INTEGER4 : int32b

3.3. Rear DataEiements

The data type 'real' specifies data-elements which can contain
floating-point values. The general form of a declaration of real data-
elements is:

REAL : ident[:=lit-exp] [,ident[:=lit-exp] 1

where
ident is a valid identifier
lit-exp is a real literal expression

The range of possible values vwhich can be held in a real data-element
has been discussed briefly under Real Literals, see section 2.7.2. For
full details of the range of possible values, the number of
significant digits and storage allocated, see Appendix C.

A variant of the REAL type is available and it has particular range
limits. It is:

REALS to be stored in a 64 bit field. The range of possible values
is: 10**-76 <= value <= 10**76

with accuracy of 15 significant digits.

The type REAL will default to a 32, 48 or 64 bit format depending on
the machine implementation and the floating-point hardware being used,
see Appendix C.

During compilation, the initial value of a real literal data-element,
will not cause a compiler error if the value 1is too large for the
storage available for the data type declared; some form of truncation
will occur. During program execution no checks will be carried out
other than those provided by the hardware being used (e.g. overflow),
see Exception and Error Handling, section 6.8 and Appendix C.

Examples of real declarations:
REAL : rll1,rl2,rinitl1:=45.0,rinit2:=2.65E-8,rl13

REALS : rl64bit
REAL8 : rl64b:= -22.765E24

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 39
DATA DECLARATION AND SIMPLE DATA TYPES

3.4, BooLean DATA-ELEMENTS

The data type 'Boolean' specifies data-elements which can contain
logical values. The general form of a declaration of Boolean data-
elements is:

BOOLEAN : ident[:=lit-exp] [,identl:=lit-exp] 1 ...

where
ident is a valid identifier
lit-exp is a Boolean literal expression

The possible values which can be held in a Boolean data-element are
TRUE or FALSE. They have been discussed briefly under Boolean
Literals, see section 26.

Examples of Boolean declarations:

BOOLFEAN : booll,booll,bool3
BOOLEAN : blinitl:=TRUE,blinit2:=FALSE AND TRUE

3.5. ConsSTANT DECLARATIONS

The 'constant' declaration specifies identifiers which will be
associated with data-elements whose value will be fixed at compile
time and not allowed to change during program execution. The general
form of a constant declaration is:

CONSTANT ident[=lit-exp] [,ident=lit-exp]l ...

where
ident is a valid identifier
lit-exp is a literal expression of integer, real, Boolean type

Norsk Data ND-60.117.5 EN

40

PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

The following rules apply to CONSTANT declarations:

1)

2)

Examples

The data type of an identifier is determined by the data type
of the corresponding literal expression following the equals
character (=).

If the equals character (=) and the literal expression are
omitted, then the identifier type will be of type integer by
default. In this case the integer value stored in the data-
element will be the next integer value higher than the
previous integer value in this CONSTANT statement. If there
is no previous integer value specified in this CONSTANT
statement, either explicitly or by default, then 0 will be
the first value provided.

of constant declarations:

CONSTANT intl1=23,rll1=3.14,bl1=TRUFE
% explicit value data types

CONSTANT zero,rl2=1.1,one,bl2=FALSE, two
% identifiers without values take values 0, 1, 2

CONSTANT four=4,five,nine=four+five
% 'five' takes the next higher value after 4

N

and

'nine’ is the sum of 4 and 5

CONSTANT rl3=ril1*rl12,bl3=bl1 AND blZ2
% expressions result in rl3 taking the value 3.454

% and

bl3 taking the value FALSE.

CONSTANT c4=1 CONVERT INTEGER4

RN

forces c4 to occupy four bytes when it is used,
although its value can be contained in a smaller
number of bytes.

3.6. EnuMeraTiON DATA-ELEMENTS

The data type 'enumeration' specifies data-elements which can take any
one of a finite number of values declared in an enumeration literal
list. The general form of a declaration of enumeration data-elements

is:

ENUMERATION [en-lit~list]} : ident[:=en-id-vall

en-1it-11

ident

en-id-val

[,ident|:=en-id-val] 1 ... where
st is an enumeration literal list
is a valid identifier

is one of the values in the enumeration literal list

The possible values which can be held in an enumeration data-element
are strictly limited to those values in the enumeration literal list

of this

declaration statement. An enumeration data-element will

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 41
DATA DECLARATION AND SIMPLE DATA TYPES

usually be held in an integer size storage location which will
determine the maximum number of distinct values in the enumeration
literal list, for details see Appendix C.

Examples of enumeration declarations:

ENUMERATION (saturday,sunday] : weekend days,days
ENUMERATION (ringnes,becks,fosters) : goodbeer:=ringnes
ENUMERATION (ringnes,mack,fosters] : bestbeer:=fosters

The enumeration data type is of particular interest when used in
conjunction with the CASE statement, see section 6.3.

The SUCC standard routine and the PRED standard routine may be used to

obtain the following or previous enumeration values respectively. For
detailed description of these standard routines, see section 7.9.

Norsk Data ND-60.117.5 EN

42 PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

5.7. PoINTERS

The data type 'pointer' specifies data-elements which can contain
references (addresses) to any data-element of a given data type. The
given data type for which a pointer identifier can hold references is
called the 'qualification' of the pointer. The general form of a
declaration of pointer data-elements is:

d-type POINTER : ident[:=p-ident] [,ident:=p-ident ...]
where
d-type is any valid data type
ident is any valid identifier
p-ident is any identifier of 'd-type’ data type whose reference

is to be stored in the pointer data-element initially.

The value 'NIL' may be used to specify that a pointer identifier
should reference no data-element. This may be used as an initial value
or anywhere within the executable statements to reset the value of a
pointer data—element.

Examples of pointer declarations:

INTEGER : intl,int2
INTEGER POINTER : intptrl,intptr2:=int2
RFEAL POINTER : rlilptrl,rlptr2:=NIL

The possible values of a pointer data-element will vary according to
the data type which is to be referenced. Details of storage
requirements of pointer data-elements for various data types may be
found in Appendix C.

Pointer data-elements may be initialized at compile time by using the

ADDR standard routine, providing the parameter of the standard routine
invocation can be evaluated by the compiler.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 43
DATA DECLARATION AND SIMPLE DATA TYPES

For example:

INTEGER POINTER : ipl:=int % has the same effect as

INTEGER POINTER : ipl:=ADDR(int)

%

INTEGER POINTER : ipt10:=ADDR(10)

% will initialize the data-element with the address of the integer
% constant 10.

Pointer identifiers may be used in expressions with all of the
relational operators, e.g. to compare addresses for equality in a
conditional statement. However it should be noted that evaluation of
such expressions and the resulting value depend critically on the
internal representation of addresses in each machine implementation of
PLANC, see Appendix C.

Pointer data-elements used as operands for the relational operators
are treated as unsigned integers for the purposes of comparison. For
the size of these integers on each particular machine implementation
see Appendix C.

The data-elements described so far are all static in that the
necessary memory is allocated for a data—element at the time that the
module containing the declaration is about to begin execution. It is
also possible to use dynamic data-elements which are created and
destroyed dynamically during the execution of the module. The standard
routines NEW and DISPOSE may be used for dynamically creating and
destroying data-elements respectively, see section 4.5. The POINTER
data type may be used to refer to either static or dynamically created
data-elements. Dynamically created data-elements do not have explicit
identifiers with which to access their values as do static data-
elements, so the standard routine IND {see section 7.9) may be used
to access the value of dynamically created data-elements.

Norsk Data ND-60.117.5 EN

44 PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

3.8. PoINTER IMPLIED RANGE

The pointer implied range is an abbreviated form which describes a
linked list of pointer data-elements which may form a chain of
records. The syntax of the pointer implied range has been described in
section 2.13. A linked list of RECORDs may be set up statically or
created dynamically using the NEW standard routine.

The list of data-elements which such a pointer implied range
indicates, may be created at compile time or dynamically at runtime
when the appropriate addresses must be set up by the program. A list
being processed by the use of a implied pointer range will terminate
when a NIL pointer value is encountered. See Processing of Records in
List Structures, section 4.6, the IN operator, section 5.4, and FOR -
ENDFOR loop, section 6.5, for examples of the use of pointer implied
ranges.

3.9. LaBELS

The data type 'label' defines an identifier which has no associated
data-element. A label identifier may only be placed at the start of an
executable statement. The general form is:

label-ident : executable-statement
Labels must be declared if they are to be referred to by GO
statements, see section 6.1. Labels will be further discussed in Scope
of Identifiers, see section 7.8. '

Examples of label declarations:

LABEL : labl,loop,next

3.10. Vo

The data type 'void' denotes the absence of a data-element where a
data-element could be present in a statement. The general form of a
void declaration is:

VOID

It has particular use in routine declarations and will be discussed in
more detail in Chapter 7, ROUTINES.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 45
DATA DECLARATION AND SIMPLE DATA TYPES

3.11. Mopiriep Data Types

A 'modified data type' is one of the simple or complex data types with
certain of its characteristics restricted. The following modifications
of simple types are available:

1) Range Modification - for INTEGER data types only.
2) Precision Modification - for REAL data types only.

3) Access Modification - read/write access to data-elements of
all simple data types.

3.11.1. Rance MoDIFICATION

A 'range modified' integer data-element has its value range restricted
to an explicit upper and lower bound. The general form of a range
modified integer declaration is:

INTEGER RANGE (int-lit-exp : int-lit-exp)
ident[:=int-1lit-exp] [,ident[:=int-lit-exp]l]...

vhere
int-lit-exp is a valid integer literal expression
ident is a valid identifier

The data-elements of a range-modified integer data type will be
allocated storage according to the smallest number of storage units
able to hold all values of the range explicitly declared.

Examples of range modified integer declarations:

INTEGER RANGE (-10:990000) : dblintl,dblint2:=99999
% will require 32 bit integer data-elements

INTEGER RANGE (0:200) : intl,int2:=148
% will require data-elements of at least 8 bits

During compilation of a program, the size of an integer literal, used
for an initial value of a range modified integer data-element, will
not cause a compiler error if the value is too large for the storage
available for the data type declared; some form of truncation will
occur. During program execution, no checks will be carried out other
than those provided by the hardware being used, e.g. overflow, see
Exception and Error Handling, section 6.8 and Appendix C.

Norsk Data ND-60.117.5 EN

46 PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

3.11.2. Precision MobIFICATION

A ‘'precision modified' real data-element has its maximum number of
significant digits explicitly specified. The general form of a
precision modified real declaration is:

REAL PRECISION {(int-1it) : ident| :=real-lit-exp]
[,ident{:=real-lit-exp] 1 ...

where

int-1it is an integer literal less than or equal to a number
determined by the machine and the floating-point
hardware being used.

ident is a valid identifier

real-lit-exp is a real literal expression

The data-elements of a precision-modified real data type will have
storage allocated as the smallest number of storage units able to give
the required number of significant digits.

Examples of precision modified real declarations:

REAL PRECISION (4) : rll,r12:=99.99
% will require 32 bit real data-elements

RFEAL PRECISION (8] : rl3,rl4:=919.99129
% will require 48 bit real data-elements

During compilation of a program, the size of a real literal, used for
an initial value of a precision-modified real data-element, will not
cause a compiler error if the value is too large for the storage
available for the data type declared; some form of truncation will
occur. During program execution no checks will be carried out other
than those provided by the hardware being used, e.g. overflow, see
Exception and Error Handling section 6.8, and Appendix C.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 47
DATA DECLARATION AND SIMPLE DATA TYPES

3.11.3. Access MoDIFICATION

An ‘access modified' data-element may have its access restricted to
either READ or WRITE operations respectively. The general form of an
access modified declaration is:

data-type READ : ident:=lit-expl,ident:=lit-expl ...

or
data-type WRITE : ident[,ident]
where
data-type is a simple data type
ident is a valid identifier
lit-exp is a literal expression resulting in a value of 'data-

type

READ access will not allow the value of a data-element to be changed
during program execution so it is necessary to initialize such
identifiers in a declaration statement.

WRITE access will only allow values to be stored into a data-element.
This is of particular interest in the declaration of arrays and
records, to control access to their component data-elements, see
sections 4.1.3 and 4.2.3. WRITE access is discussed also in relation
to parameter transfer in routines, see section 7.4.

The default access for all declarations is both READ and WRITE, except
for formal parameters of ROUTINES, see Chapter 7.

Norsk Data ND-60.117.5 EN

48 PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

3.12. PreperineD DATA Types

Some predefined data types are provided in the PLARC compiler. The
predefined data types are defined in terms of the simple data types.
The simple data types have operators and operations defined for them,
however, the predefined have the same operators and operations as
those defined for the base data type from which the predefined type
has been derived. The following predefined data types are available:

1) BYTE - data—elements can contain single characters only.
2) BYTES - data-elements can contain character strings.

3) BITS - data-elements can contain sequences of bits.

3.12.1. BYIE Dara-ELements

The data-element of the BYTE predefined data type can contain a single
character only. It is equivalent to the declaration:

INTEGER RANGE [0:255) : declaration-1list
Thus BYTE data-elements may represent all characters in the ASCII
character set. However BYTE identifiers may be used as integer
identifiers with the operators defined for the integer data types.

Examples of BYTE declarations:

BYTE : chl,ch2,ch3

BYTE : chinit:=#z % an initialized byte data-element
%

%

#x=:chl % store ch. in a byte data-element
chl+chinit=:ch3 % add two byte data-elements

3.12.2. BYTES Data-ELEMENTS

The BYTES predefined data type used for character strings will be
discussed in section 4.1.7.1.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 49
DATA DECLARATION AND SIMPLE DATA TYPES

3.12.3. BITS Dara-ELeMenTs

The BITS predefined data type used for bit strings will be discussed
in section 4.1.7.2.

3.13. Type Specirication AND User DerineD Types

The predefined data types and the modified data types are examples of
variations of the simple data types described earlier. In a similar
sense, the programmer may define his own data types in terms of the
available data types, including the predefined and modified data
types. The general form of a type specification is:

TYPE new-type-ident = data-type
where

new-type-ident is an identifier to be used as the name of the newly
defined data type

data-type is a simple, predefined, modified data type or a
previously defined 'new' data type

It is important to note that a type specification statement will not
cause any data-elements to be constructed. A type specification
statement describes the precise characteristics to be associated with
a data-element defined by a declaration statement. Data-elements will
only be constructed, and storage allocated for program execution, as a
result of declaration statements for static data-elements or by using
the NEW standard routine for dynamically created data-elements.

Examples of new type specifications and their use:

TYPE mychar = INTEGER RANGE (0:127) % i.e. 7 bit characters
% this new type can now be used in a declaration
mychar : chl,ch2,ch3

TYPE colour = ENUMERATION (red,green,blue,black,white]
colour : cll,cl2,cl3
% a new data type 'colour’' is now available

% however, a similar effect could be achieved without creating

% the new data type 'colour’
ENUMERATION (red,green,blue,black,white] : cll,cl2,cl3

Norsk Data ND-60.117.5 EN

50 PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

5.14, TYPEOF StanparD RouTine

The TYPEOF standard routine specifies identifiers to be of the same
data type as a previously declared identifier. The general form of use
of the TYPEOF invocation is:

TYPEOF p~ident : ident-list

where
p-ident is a previously declared identifier
ident-list is a list of identifier declarations

Example of use of the TYPEOF standard routine:

INTEGER : intl,int2,int3

TYPEOF int2 : idl1l,id2

% idl and idZ2 are dependent on the data type of int2,
i.e. idl, idZ2 are currently of type integer

N

5.15. EeuivaLent DATA StorRAGE FOR DATA-FLEMENTS

The equivalence declaration will force two data-elements to begin at
the same storage location, regardless of their data types. The general
form of an equivalence declaration is:

data-type : identifier = previous-identifier
where
data-type is any valid data type
identifier is an identifier of type 'data-type'
previous-identifier is a previously declared identifier

Data-elements of different types require different amounts of storage,
so it will be necessary to know precise implementation details of
storage allocation in order to understand the consequences of
overlapping data-elements with the equivalence declaration, see
Appendix C.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 51
DATA DECLARATION AND SIMPLE DATA TYPES
Example of an equivalence declaration:

INTEGER : intl,int2
REAL : rll,rl2=intl

The data-element for rl12 will begin at the same storage location as
intl but will not be of the same length.

3.16. PrepecLARATION OF DATA-ELEMENTS

The predeclaration facility may be used if it is necessary to refer to
a data-element in a statement which precedes the actual declaration of
that data-element. A predeclaration must precede the statement which
refers to the data-element. This predeclaration informs the PLANC
compiler that an actual declaration will occur somewhere further on in
the module.

A predeclaration is of the same form as the actual declaration, but a
question mark character (?) follows the data-element name.

For example:
INTEGER : intl?

is a predeclaration of intl and further in the module there must be a
following declaration:

INTEGER : intl

The predeclaration is of particular use if two routines have mutual
references, e.g. if two routines invoke each other.

For example:

% predeclaration of routine data-element rtz2
ROUTINE VOID,VOID : rt2?
%
ROUTINE VOID,VOID : rtl
% invoke rtZ2
rt2
ENDROUTINE
P
ROUTINE VOID,VOID : rt2
% Note the following invocation of rtl prevents simply
% exchanging the order of the routines
rtli
%

ENDROUTINE

Norsk Data ND-60.117.5 EN

52 PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

A further possible use of predeclarations is to initialize a static
linked list of records.

For example:

% define a data type for records in the linked list
TYPE myrecord = RECORD

myrecord POINTER : linkptr

INTEGER : recnumber

ENDRECORD
% initialize a static linked list of records
myrecord : rl1?,r2?,r3? % predeclaration of data-elements

myrecord POINTER : listhead:=ADDR(r1)

myrecord : rl:=[ADDR(r2},1)

myrecord : r2:=[ADDR(r3}),2)

myrecord : r3:={ NIL,3]

% Note that predeclaration may be avoided by reversing the
% order of the last four lines

3.17. SIZE StanDARD ROUTINE

The SIZE standard routine returns the number of bytes used for the
storage of the data-element associated with the identifier specified
in the call to the SIZE routine. As the storage requirements vary with
the different implementations of PLANC, see Appendix C, this standard
routine gives access to the quantity of storage used for a particular
data~element. This routine may also be used for composite data-
elements which could be of particular use for dynamically created
arrays or records, see section 4.5.

For example:
REAL : rll

INTEGER2 : int2,int2size, realsize

%

SIZE rll1 =: realsize
% store the number of bytes used for a floating-point value
SIZE int2 =: int2size

% store the number of bytes used for an INTEGERZ value

Note that the SIZE standard routine may be used to give the size of a
data-element of a user defined data type which appears in a TYPE

specification. Further, any data type keyword may also be used as the
parameter of the SIZE invocation.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 53
DATA DECLARATION AND COMPOSITE DATA TYPES

4, DATA DECLARATION AND COMPOSITE DATA TYPES

This chapter describes the composite data types available in PLANC.
Composite data types have components which are either further
composite data types, or simple data types which have been discussed
in Chapter 3. In array and record composite data-elements, the
component data-elements are uniquely identified and may be accessed
individually. The following composite data types are available in
PLANC:

1) ARRAY - has components, all of the same type.

2) RECORD ~ has components of different types.

3) SET - is a collection of elements, treated as an entity.
4) ROUTINE - is a subprogram to carry out some specific function.

I.1. ARRAYS

An array data-element is made up of a group of components, all of the
same type. The array elements may be either of a simple data type or
themselves be of a composite data type, e.g. an array or record. An
array whose components are arrays is called a multidimensional array.
All elements of an array data—element are uniquely identified by an
index value from a continuous integer range or from a range of values
of an enumeration set.

Array data-elements are the basis for the predefined data types, BYTES
for character strings and BITS for sequences of bits. Arrays may also
be used to represent other data structures by defining new data types.

Norsk Data ND-60.117.5 EN

54

PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

4.1.1. ARrAY DECLARATIONS

A declaration of an array data-element specifies the following
information:

1)

2)

3)

The gener

Array Name - an identifier which can be used to refer to the
array data-element as a single entity or to refer to
individual elements of the array by the use of unique index
values.

Number of Dimensions - specifies the number of index values
needed to uniquely identify an element of the array data-
element.

Range of Values for each Dimension - specifies the valid
range of values that each index may take in order to uniquely
identify an element of the array data-element.

Initial Element Values - optionally some or all array

elements may contain initial values at the beginning of
program execution.

al form of a declaration of array data-elements is:

data-type ARRAY [ARRAY] ... : array-decl{,array-decl] ...
where
data-type is a simple, composite or predefined data type.

ARRAY

array-dec

ident(
where
ident

low-bnd

up-bnd

Note:

is repeated as many times as the number of dimensions
required for the array data-elements specified here.

1 is declaration of one specific array data-element. It
has the following general form:

low-bnd:up-bnd[,low-bnd:up-bnd] ..)[:=(value-list])]

is a valid identifier.

is a literal expression which results in an integer or
enumeration value when evaluated. This value is the
lowest value that an index for this dimension may take.

as for low-bnd and must be of the same data type as the
low-bnd. This value is the highest value that the index
for this dimension may take.

low-bnd:up-bnd 1is called the index set and there must
be one index set for each dimension specified for the
array data-element.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 55
DATA DECLARATION AND COMPOSITE DATA TYPES

value-list is a 1list of literal values which will be the initial
values of the array elements. For array elements of
composite or predefined data types, the data-elements
of the initial value list must be of the correct base

type.

Note: 1. That literal expressions may be used, provided that the
resulting value is of the correct type.

2. For array elements of the predefined type BYTES, string
literal wvalues will have apostrophes instead of
parentheses.

The data type of all the elements of the array data-element is the
data-type specified in the declaration statement. The number of array
data-elements may be computed by taking the product of the number of
distinct values that each index set contains, i.e. the number of
values for each dimension specified for a multi-dimensional array. The
actual storage required for such an array depends on the storage
required for a single array element, then multiplied by the number of
elements specified in the array. For the storage requirements of the
simple data types, see Appendix C.

The array data-element may contain initial values when program
execution begins. These values are specified in the list of literal
expressions, which have evaluated results of the data type 'data-
type'. The 1list of values is placed in the array in the following
order; set each index to its lowest value, then vary the indices
through their index sets to their highest value, with the last index
changing most rapidly. For multidimensional arrays, if an initial
value list is specified, then it must contain one level of parentheses
for each dimension, to uniquely define the correspondence of the
values to their array elements. An exception to this rule is available
for BYTES arrays of more than one dimension, see section 4.1.7.1.

Note: This default sequence of elements of an array is the same as
that used in the Pascal language, but different to that used in
FORTRAN. This is significant if modules of mixed languages are to
communicate satisfactorily, see Mixed Language Programming, Appendix
D.

If an array declaration contains a list of initial values which has
fewer values than specified by the index set, the specified number of
array elements will be initialized and the rest will be set to a null
value, in fact binary zeroes. For multidimensional arrays, the first
few elements of a group, corresponding to a particular index set, may
be initialized by the use of parentheses.

If a list of literal expressions, to be used as initial values in an
array data-element, is present in the declaration statement then the
index set may be omitted and the PLANC compiler will supply implicit
bounds so that the array will have sufficient elements to contain the
list of initial values. In this case the list of initial values will
implicitly determine the number of elements of the array data-element.
The implicit bounds are zero (0) and the number of elements minus one.

Norsk Data ND-60.117.5 EN

56 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

Examples of array declarations:

% two one-dimensional arrays, same number of elements, but
% the values of each index range are different
REAL ARRAY : vector1(1:11),vector2(-5:5]

% the second array has a list of initial values
CONSTANT two=2
INTEGER ARRAY : arl(1:5),ar2(1:4):=(-2,4+two,21,-108)

&

the array ar3 has the same size characteristics as ar2 above,
with an index set, with values 0:3, implicitly specified by
% the list of initial values

INTEGER ARRAY : ar3:=(-2,4+two,21,-108)

N

e

an array whose elements are range modified to be 6 bit
% integers
INTEGER RANGE (1:63) ARRAY : modint(1:3):=(2,4,6)

% a real and an integer array with enumeration index sets
ENUMERATION (red,yellow,blue,white,black] : colour

REAL ARRAY : arenl(yellow:white):=(1.0,2.0,3.0)

INTEGER ARRAY : aren2(red:blue):=(2,3,5)

% a two dimensional Boolean array and

% a three dimensional real array:
BOOLEAN ARRAY ARRAY : bool2(1:5,1:10)
REAL ARRAY ARRAY ARRAY : r13(1:2,1:3,1:4)

N

cube is a three dimensional array with implicit Iindex sets
equivalent to a declaration
cube(0:2,0:1,0:1)

RN

BN

INTEGER ARRAY ARRAY ARRAY : &
cube:={ ((1,3),(2,4]), ((0.,0]),(0,2]]), ((-1,1),(1,-1]))

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 57
DATA DECLARATION AND COMPOSITE DATA TYPES

4.1.2. Array TyPE SPecIFIcATION AND USer DerFInNeD Types

A type specification may be used to create a new data type based on
the array data type. This newly defined data type may then be used for
declaring data-elements with the characteristics of the newly defined
data type. The general form of an array type specification is:

TYPE type-ident = data-type ARRAY[ARRAY] ...

where

type-ident is an identifier which is the name of the new array
data type.

data-type is a simple data type as in an array declaration.
ARRAY;is repeated for the number of dimensions required
for each array data-element to be declared of this new
data type.

Note: For each 'ARRAY' keyword there must be an index set,

specified explicitly or implicitly, in each data-
element declaration of this new data type.

A type specification will not result in any data-elements being
constructed, it only specifies certain characteristics that data-
elements will have if they are declared to be of a newly specified
type. Array data-elements will only be constructed in association with
a declaration statement.

Examples of array type specifications:

TYPE ivector = INTEGER RANGE (0:127] ARRAY

an array type of one dimensional arrays

% with 7 bit unsigned integer array elements
ivector : ivel(1:10),ivec2{(1:100)

% 2 data-elements of the 'ivector' array data type

N

ENUMERATION (red,blue,green,blue,pink] : colour
TYPE artype = INTEGER ARRAY ARRAY
% type specification

&

artype : arl(red:blue,red:pink] &

= (1,2,3,4,5),(6,7,8,9,10])
% this is a 2 dimensional 2*5 array with 10 integer elements
% which may be accessed with enumeration identifier values

Norsk Data ND-60.117.5 EN

58 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

4.1.3. Rererence TO ARRAY ELeMEnTs AND Access Mobe

In the executable part of a program, it is necessary to refer to
individual elements of an array data-element, either to store a value
or to access a stored value. The general form of a reference to an
array element is:

array-ident (index-expr[,index-expr] ...])

where

array-ident is the identifier in the array declaration.

index-expr is an expression of integer or enumeration data type to
match the type of the index set in the array
declaration.

Note: There must be the same number of index-expr's in an
array element reference, as index sets in the array
declaration.

Examples of array references:

BOOLEAN ARRAY : booll(1:20)

%

TRUE=:bool1{2)

TRUE=:bool1(1+1) % is the same as the previous statement

ENUMERATION (red,blue,green,pink) : colour
INTEGER ARRAY ARRAY :iarl{red:green,blue:pink])
%

2=:iarl(blue,blue] % store 2 in the array element

An exception to the above is available for BYTES arrays with more than
one dimension. The last subscript may be omitted and the reference
will be to the entire string, i.e. the entire range of values of the
last index set.

For example:

BYTES ARRAY : b1(1:2,0:3):=("abc’, xyz')

BYTES : b2(1:3)

bi(1)=:b2

the string 'abc’ will be stored in array b2

Note, one extra ARRAY keyword is implicitly included in a
BYTES declaration

NN

&N

Note that there are certain restrictions on the ND-100 concerning the
last dimension. It is imposed by hardware, and described in more
detail on page 235.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 59
DATA DECLARATION AND TOMPOSITE DATA TYPES

In the previous example, the reference to the array bl, bl(l), is
equivalent to the subarray:

b1(1:1,0:3)
In an array declaration, the data type of the elements of the array
may be a modified simple data type. In particular, the READ 'access'
modified type may be used in the following manner:

REAL READ ARRAY : rlar1(1:2):=(8.0,9.0])
This declaration specifies that the array elements are for read access

only. Consequently no values can be stored into the individual array
elements during program execution.

if.1.4. OperATIONS ON ENTIRE ARRAYS AND ARRAY ACCESS

The contents of an array data-element may be copied into another data-
element by using the store operator. Such a copy operation treats an
array as a single entity. An array copy is only allowable if both
source and destination arrays have identical declaration
characteristics, i.e. elements of the same data type, same number of
dimensions and the same index sets.

Example of an array copy:

INTEGER ARRAY ARRAY : iarrayl(1:2,1:2):=((1,2),(3,4)], &
iarray2(1:2,1:2)
Py

jarrayl=:iarray?2 % copy iarrayl into iarray?2

An entire array, i.e. all of its elements, may be assigned to a single
value by using the store operator in the following way:

expr=:array-ident

where

expr has a value of the same data type as the declared data
type of the elements of the array.

array-ident is an array identifier.

Norsk Data ND-60.117.5 EN

60 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

Example of assigning a single value into an entire array:

INTEGER ARRAY ARRAY : iarray(1:10,1:10)
M4
%

5+3**2=:iarray % stores 14 in each array element
Arrays have an access mode, identical to that for simple data types,
for operations which treat an array as a single entity. The entire
access mode may be declared as READ or WRITE, following the ARRAY
keywords.
Example of use of array access mode:

INTEGER ARRAY READ : iar1(1:10)

is an array into which entire array operations cannot store values.
However it is still valid to store into individual elements of the
array.

If the declaration is:

INTEGER READ ARRAY READ : iar2(1:10)

then it is not permitted to store into individual elements or into the
entire array as an entity.

Note that the access mode keywords, READ/WRITE, may not be placed

between the ARRAY keywords. READ/WRITE must precede or follow all the
ARRAY keywords of any ARRAY declaration.

4.1.5. Inpex SET INFORMATION

All array data-elements have a descriptor which contains information
specifying the number of dimensions, number of index sets, the range
of values for each index set and the data type of the array elements.
All array operations and operations on individual elements use this
descriptor information.

The lower and upper bound values for each index set are available
during program execution through the use of the following standard

routines:

1) MININDEX (array-ident,dimension number) - returns the lower
bound of the corresponding index set.

2) MAXINDEX (array-ident,dimension number) - returns the upper
bound of the corresponding index set.

These routines are described in Standard Routines Available in PLANC,
section 7.9.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 61
DATA DECLARATION AND COMPOSITE DATA TYPES

4.1.6. SuBARRAYS

A subarray is a part of an array which may be referred to as a single
entity. A subarray is specified by using a subarray index set for each
dimension of the original array. Each subarray index set must be a
subset of the corresponding index set in the original array.

Examples of subarrays:

REAL ARRAY : rvectorl(1:10),rvector2(5:40)
% copy one subarray to another
rvectorl(4:8)=:rvector2{24:28])

INTEGER ARRAY ARRAY : intar1(0:10,1:5),intar2(1:11,-2:2)
% copy subarrays of 2 dimensional arrays
intar1(0:10,i:k-2)=:intar2(1:11,i-3:k-5)
intar1(0:1,1:j)=:intar2{(2:3,0:j-1])

If the ADDR standard routine (see section 7.9) is called with a
subarray as a parameter, then an array descriptor for the subarray
will be constructed. This descriptor may be stored in a pointer data-
element which is qualified to reference an array of these
characteristics. The subarray may then be treated as if it were an
array, Jjust like a dynamically created array, and the IND standard
routine could be used to obtain the values of elements of this
subarray. ‘

If an array is declared with two or more dimensions, then a subarray
may be implied by omitting the last one or more dimensions. If the
array is declared with n dimensions, and the subarray has the last k
dimensions omitted (k<n), then the subarray will have n-k
dimensions.

For example:

INTEGER ARRAY ARRAY : twod({1:100,1:100)

INTEGER ARRAY : oned(1:100)

INTEGER : subl,sub2

% a one dimensional subarray may be referred as follows
twod{10])=:oned % the explicit subarray twod(10:10,1:100)

Note that an element in the implied subarray twod(10), may be referred
to by the form twod(10) (2). An alternative to using this form would
be to refer to the original array twod, using twod(10,2) which gives
much faster access at runtime.

Norsk Data ND-60.117.5 EN

62 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

4.1.7. PreperINeD DATA TyPes USING ARRAYS

The array data type is used as a base type for the following data
types

1) BYTES - arrays used to represent character strings.

2) BITS - arrays used to represent bit strings.

4.1.7.1. BYTES - ArrAYs UseD 1O REPRESENT CHARACTER STRINGS

A BYTES data-element can contain any number of characters. Each
character is held as an unsigned 8 bit integer and is equivalent to
the declaration:

TYPE bytes = BYTE ARRAY PACKED
Note: The keyword PACKED will be discussed in section 4.2.5.

The declaration of a BYTES data-element includes one ARRAY keyword
implicitly, as this predefined data type is defined as an array of
BYTE data-elements.

The elements of a BYTES data-element, i.e. a BYTE array, may be used
as operands for integer operators or the entire array may be treated
as an integer array, but the only specific character string operations
provided by the PLANC compiler are assignment and the relational
operators, see section 5.4. The user may of course create more string
functions, e.g. string concatenation.

Examples of BYTES data-elements:

BYTES : magic(1:100)

&

% a data-element which can hold 100 separate characters

e

1

abracadabra'=:magic(10:20) % store 11 characters

BYTES : string:='i am the greatest’
a data-element which can hold 17 characters
the first character can be referenced by
string(0)
the second by
string(1) and so on.

NS

N

e

Norsk Data ND-50.117.5 EN

PLANC Reference Manual 63
DATA DECLARATION AND COMPOSITE DATA TYPES

If a BYTES array of more than one dimension is to be initialized, then
an exception to the normal predefined data type facilities is
available. This represents an array of strings, where the last
dimension may be initialized by a whole string.

For example:

BYTES ARRAY : bytes2by4(0:1,2:5):=("abcd’, wxyz'])
% two strings, each containing 4 characters, in an array

It is of interest to note in the type specification, that the BYTES
type is effectively specified in terms of another predefined type.

As a consequence of the data type BYTES being defined as a BYTE ARRAY,
there may be a difficulty if an access mode, READ/WRITE is to be used
for each array element, i.e. each BYTE data-element which makes up the
BYTES array. In order to declare an access mode for each array
element, the access mode keyword, READ/WRITE, must precede all of the
ARRAY keywords. Since the BYTES declaration includes an implicit ARRAY
keyword, it is not possible to declare an explicit access mode keyword
prior to the first ARRAY keyword. If such an explicit access mode for
each element of a BYTES array is required, the user will have to
construct his own declaration as a BYTE array, with the access mode
keyword placed prior to all ARRAY keywords.

For example:
BYTE ARRAY ARRAY PACKED : safe_els (0:9,0:9)
is exactly equivalent to the declaration
BYTES ARRAY : safe _els (0:9,0:9)

However, if the array elements are to have a READ access mode only,
then the following declaration is the only way to achieve this:

BYTE READ ARRAY ARRAY PACKED : safe_els {0:9,0:9)
If a number of BYTES arrays were required with READ access mode for
each element, a newly defined data type could be created for
convenience.

For example:

TYPE mybytes = BYTE READ ARRAY ARRAY PACKED

Norsk Data ND-60.117.5 EN

64 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

4.1.7.2. BITS - ArRrAYS USeD TO REPRESENT SEQUENCES OF BITs

A BITS data—element can contain a sequence of bits of any length. Each
bit is represented by a BOOLEAN data-element compressed into succesive
bits of storage. It is equivalent to the declaration:

TYPE bits = BOOLEAN ARRAY PACKED

Note: The keyword PACKED will be discussed in section 4.2.5.

The elements of a BITS array may be used as operands for Boolean
operators or the entire array may be treated as a Boolean array, but
there are no specific bit operations provided by the PLANC compiler.
The user may of course create bit functions, e.g. concatenate two bit
strings. An element of a BITS array may take the values TRUE and
FALSE.

Examples of BITS data-elements:

BITS : flags1(1:10)

% set individual flags
TRUE=:flags1(1)
FALSE=:flags1(3)

BITS ARRAY : flags2{1:2,1:2):=((TRUE,FALSE]),(TRUE,TRUE)]
BOOLEAN : bll

% access a single bit value

flags2(2,2)=:bl1

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 65
DATA DECLARATION AND COMPOSITE DATA TYPES

}.72. Recorps

A record data-element is made up of components each of which may be of
any data type, simple, composite or newly defined. Each component of a
record data-element is uniquely identified by an identifier within the
record declaration. The RECORD data type must be declared in a TYPE
specification statement; declaration statements for RECORD data-
elements must use a record data type specified previously in the
program in which the declaration statement occurs.

4.2.1. RecorD DECLARATIONS AND TYPE SPECIFICATION

A record type specification specifies the following information:

1) Record Type Name — an identifier to be wused in declaration
statements to refer to the record data type.

2) Component Data Type - the data type of each component of the
record data-element.

3) Component Identifier - the name used to refer uniquely to
each component of a record.

The general form of a record type specification is:

TYPE rec-type-ident = RECORD
comp-data-type : comp-ident-list-1
comp~data-type : comp-ident-list-2

éomp—...—list—n [MOD literal-exprl
ENDRECOBb
where
rec-type-ident is an identifier to name the record data type.
comp-data-type is the data type of the component data-element.
comp-ident-1list is one or more component identifiers.
Note: Use a list if a number of components of the same
type, grouped together, are required.
literal-expr is any literal expression.

A record type specification will not result in any data-elements being
constructed, it is only a description of which component data-elements
are constructed for declaration statements which wuse this newly
specified record data type. Records which are specified independently
of each other, i.e. not variants, may use the same identifier name for
a component.

Norsk Data ND-60.117.5 EN

66 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

Examples of record type specification and declaration:

% specification of a 'parts’' record type
TYPE partrec = RECORD
INTEGER :@ partnumber

BYTES : partname (1:20)
REAL . partprice
ENDRECORD
% each record has 3 components - a number, name and
% price for a part
%
% declare 2 data-elements of the 'parts’ data type

partrec :@: mypart,yourpart

% a record may have arrays or records as components
TYPE person = RECORD

BYTES : personname(1:20])

INTEGER :@ age
ENDRECORD
TYPE team = RECORD

BYTES : teamname(1:15])

INTEGER ARRAY : teamnumbers (1:30])

person ARRAY : teammembers (1:30)
ENDRECORD
% the record 'team’ has an array 'teamnumbers' and
% an array of records 'teammembers’
team : myteam % a 'team’ data-element declaration

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 67
DATA DECLARATION AND COMPOSITE DATA TYPES

The components of a record data-element may be initialized by the
compiler so that the values will be present when the program begins
execution. The initial values must be specified in the record data-
element declaration. If any components of a record data-element are to
be initialized, then all components of that record must be given an
initial value.

Example of imitializing record components:

TYPE partrec = RECORD
INTEGER : partnumber
BYTES : partname (1:20)
REAL : partcost
ENDRECORD
% declare a record data-element with components initialized
partrec : psupply:=(123,’ power supply’',100.2)

Note that if equivalence is used within record components and initial
values are to be placed in the data-element, only the first
declaration of the data-element may have an initial value.

The storage alignment of record component data-elements will be
carried out according to the descriptions in Appendix C. Alignment of
record component data-elements may be explicitly controlled by the MOD
alignment clause. A MOD alignment clause forces the data-element to be
allocated at an address, whose displacement from the start of the
record, is a multiple of the resulting value from evaluation of the
expression in the MOD clause.

Norsk Data ND-60.117.5 EN

68 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

4,2.2. VARIANT RecorD TYPE SPECIFICATION

Record data-elements declared for a given data type have so far all
had the same structure of components. It is possible to specify two or
more records which have some common components and some components
which vary from one record to the next. Such related records are
called variant records. Variant records may be specified by specifying
a record type with all the common components, called the base record
and then specifying each variant record as comprising the base record
plus those components particular to the variant record.

The general form of a type specification of a variant record is:

TYPE var-rec-ident = base-rec-ident &
RECORD
var-compl—-data-type : var-compl-ident-list
var—-comp2-data~-type : var-comp2-ident-list

ENDRECORD

where

var-rec-ident is an identifier to name the variant record
type.

base-rec-ident is the identifier naming the base record
type.

var-compl-data-type are the data types of the additional
components of the variant record.

var-compl-ident-list are identifiers to uniquely name the

additional components of the variant record.

Following type specifications of two or more variant record data
types, declarations of record data-elements of the variant data type
may be made as for normal record data-element declarations.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 69
DATA DECLARATION AND COMPOSITE DATA TYPES

Examples of variant record specification and declaration:

% specify a 'vehicle' record data type
TYPE vehicle = RECORD
REAL : weight,length,width,height
ENDRECORD
% specify first variant record data type using 'vehicle' as
% the base record
TYPE bus = vehicle RECORD
INTEGER :@ seats,numbercrew
ENDRECORD
% specify second variant record data type
TYPE truck = vehicle RECORD
REAL : loadcapacity
BOOLEAN : automatic
ENDRECORD
% declare 'bus' and 'truck’' data-elements with initial values
bus : localbus:={100.0,10.1,3.4,2.1,44,1)
bus : toursbus:={150.0,11.3,3.4,2.1,35,3)
truck : tiptruck:={ 50.5,8.6,3.2,1.9,45.0,TRUE)

Note that a record pointer identifier, declared for the base record,
may be used to contain addresses of base record data-elements or any
of its variant record data-elements.

If a routine declaration contains a base record data type for a
parameter, then an invocation of this routine may have any variant of
this record data type as an actual parameter. However, if the routine
declaration contains a variant record data type as a formal parameter,
only this variant record data type (or further variants of this data
type), may be used as an actual parameter in a routine invocation.

Norsk Data ND-60.117.5 EN

70 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

4.2.5. Rererence 10 RecorD CoMPONENTS AND Access Mobe

In the executable part of a program, it is necessary to refer to
components of a record data-element, either to store a value or to
access an already stored value. The general form of a reference to a
record data-element component is:

data—-el-ident.comp-ident
where
data-el-ident 1is the identifier in a record declaration. Note that it
may be a record pointer, but the following references
will all access the same data-element:
rec.element %X rec 1is a record

recp.element % recp 1s pointer to rec
ADDR rec.element

Note: The limitation on the last dimension of the BYTES ARRAY
for the ND-100, see page 235.

comp-ident is the component identifier in the record type
specification.

Note: If the component is itself a record, then use a further
dot followed by a component identifier from that
record.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 71
DATA DECLARATION AND COMPOSITE DATA TYPES

Examples of record component references:

TYPE person = HECORD
BYTES : givenname (1:15)
BYTES : familyname (1:30)
INTEGER : age,heightcm
ENDRECORD
% declare a 'friend' data-element of data type 'person’
person : friend:=('Fred', 'Bloggs',49,179)
% access a component of a 'friend' data-element
friend.age=: ... % store the age of 'friend’
% would access the value 49

% specify a 'team’ record type using 'person’ from above
TYPE team = RECORD

person ! captain
INTEGER ARRAY : teamnumbers (1:5)
ENDRECORD

% declare a 'team' data-element

team :@ usteam:=(('Honald','Raygun’',79,141) ,1,3,5,7,9)
% access a component of a record within a record

% i.e. the 'family name' of the 'captain’ of the 'usteam’
usteam.captain. familyname=:

% would access the value 'Raygun’

4.2.4. OperaTIONS ON ENTIRE RECORDS AND RECORD ACCESS

The contents of a record data-element may be copied into another
record data~element by using the store operator. For such a copy, the
record data-elements must be of the same record data type.

Example of a record copy:

% type specification of an 'address' record
TYPE address = RECORD
BYTES : name(1:30)
INTEGER : streetnumber
BYTES : streetname(1:20)
BYTES : city(1:15]
ENDRECORD
% declare two address data-elements
address : NDaddress:={('NDOSLO',20,' jerikoveien','oslo 10')
address : myaddress

% copy the initialized address to the other data-element
NDaddress=:myaddress

Records have an access mode, identical to that for simple data types,
for operations which treat a record as a single entity. The entire
access mode may be declared as READ or WRITE, following the RECORD
keyword.

Norsk Data ND-60.117.5 EN

72 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES
Example of use of record access mode:

TYPE address = RECORD READ % same as previous record

ENDRECORD

This is a record into which entire record operations cannot store
values. However it is still valid to store into individual components
of such a record.

If the declaration is:

TYPE address = RECORD READ
14
INTEGER READ :@: streetnumber
%

ENDRECORD

then it is not allowable to store into the name component of the
address record or into the entire record data-element as an entity.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 73
DATA DECLARATION AND COMPOSITE DATA TYPES

4.2.5. PACKED OpTiON FOR ARRAYS AND RECORDS

For data-elements of simple data types, storage may be wasted in
particular machine implementations. For the composite data types,
arrays and records, space required for data-elements can be minimized
by using the option PACKED in a TYPE definition or a declaration, in
the case of an array.

For example:

INTEGER1 ARRAY PACKED : minints(1:500])

% will require 250 words on the ND-100 whereas

INTEGER1 ARRAY : ints(1:500)

% will require 500 words and use only half of each word

Use of the PACKED option will minimize storage requirements but it
should be noted that this may cause a program to execute more slowly
because of time taken to extract component data-elements from the more
compact storage allocation being used.

Further examples of the effect of the PACKED option:

% on the ND-100

TYPE letters = ENUMERATION (a,b,c,d)

letters ARRAY : waste(1:10)

% will require a 16 bit word per array element, i.e. 10 words
letters ARRAY PACKED : nowaste(1:10)

% will require an 8 bit field per array element, i.e. 5 words

% on the ND-100

TYPE myrec = RECORD PACKED
letters : alphabet % 2 bit instead of 16 bit field
BYTE : bytvar 8 bit 1instead of 16 bit field
BOOLEAN : bl 1 bit instead of 16 bit field

ENDRECORD

R

N

The specific rules of how PACKED affects the storage requirements of a
data-element, on both the ND-100, the ND-500 and the MC68000, are
described in Appendix C.

Norsk Data ND-60.117.5 EN

74 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

4.5. Sers

A set data-element is of a composite data type that, like the array
and record, is made up of a collection of components. However, unlike
the array or record, we neither index nor access the individual
components of a set. Instead a set is used only as a single entity.

The components that comprise a particular set are chosen from the
possible values of a simple data type called the base type of the set.
The valid base types for sets in PLANC are:

1) INTEGER RANGE

2) ENUMERATION

A set data-element may represent all subsets of the value of the base
data type of the set, including the 'empty’' set. There is no mutual
ordering between the components of a set.

Thus the set data type in PLANC corresponds to the mathematical notion
of a set, with some restriction as to what may form the members of the
set. The usual mathematical set operations, e.g. union, intersection,
difference and complement are available as operators for use with set
operands.

4.3.1. Ser DECLARATIONS

A set data-element declaration specifies the following information:

1) Set Name - an identifier which can be used to refer to the
set data-element as a single entity.

2) Base Type - a data type which will specify all the possible
members of a set data—element.

3) Initial Members - optionally specify a subset of the base

type values to be members of a set at the beginning of
program execution.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 75
DATA DECLARATION AND COMPOSITE DATA TYPES

The general form of a declaration of set data-elements is:

base-type SET : ident[:=memb-list] [,ident[:=memb-list]]

where

base~-type is one of the data types ENUMERATION, INTEGER RANGE or
a data type newly defined with one of these as a base
type.

Note: Integer range base type is restricted to a maximum of
256 values and the lower bound must be zero. In other
words, an INTEGER RANGE must be 0:x, where x <= 255,

ident is a valid identifier.

memb-1ist is a list of values, selected once only, from the
possible values of the base data type.

Note: That literal expressions may be used, provided that the

resulting value is of the correct type.

The 'memb-list' may be partly or entirely specified by an implied
range providing that the list of values is of the correct data type,
see section 2.13.

If the 'memb-list' is omitted, then the set will be empty when program
execution begins.

A set data-element will require enough storage to hold an indicator of
the presence or absence of every possible member of the set, i.e.
every valid value of the base type of the set. For details of the
actual storage used, see Appendix C.

Norsk Data ND-60.117.5 EN

76 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

Examples of set declarations:

% specify an enumeration data type

TYPE day = ENUMERATION [monday,tuesday,wednesday,

thursday, friday,saturday,sunday)

% declare a set data-element with the weekend days as members
day SET : weekend:=(saturday,sunday)

% declare a set data-element for the week days using an

% implied enumeration range

day SET : workdays:={monday:friday]

&

declare a set of base type integer using an implied integer
% range to specify a list of integer values
INTEGER RANGE(0:255) SET : twenties:=(20:27,28,29)

% declare a set which will be empty initially
INTEGER range{0:255) SET : emptyint

44,3.2. Ser Type SPeciFIcATION AND USerR DerINED Types

A type specification may be used to describe a new data type based on
the set data type. This newly defined data type may then be used for
declaring data-elements with the characteristics of the newly defined
data type. The general form of a set type specification is:

TYPE set-type-ident = set-base-type SET

where

set-type-ident is an identifier which is the name of the new set
data type

set-base-type is the base data type for this set data type.

A type specification will not result in any data-elements being
constructed, it only specifies certain characteristics that data-
elements will have if they are declared to be of a newly specified
type. Set data-elements will only be constructed in association with a
declaration statement.

Examples of set type specifications:

TYPE numbers = INTEGER RANGE(0:127) SET

% declare data-elements of the 'numbers’' data type
numbers : tensset:=[10,20,30,40,50,60,70,80,90)
numbers : digitsset:={0:9)

TYPE colours = ENUMERATION (black,red,blue,green,white)
TYPE houses = colours SET

% declare a data-element of the 'houses' data type
houses : myhouse:=[red,white,blue)

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 77
DATA DECLARATION AND COMPOSITE DATA TYPES

4,3.3. OPERATIONS ON SETS

The relational operators (see section 5.4) may be used with set data-
elements. As for other data types, evaluation of a relational operator
with two set data—elements as operands will give a Boolean resulting
value, i.e. TRUE or FALSE. The relational operators and their meanings
when used with set data-elements as operands are as follows:

IN

Note:

true if both sets contain the same members.

true if at least one member of one set is not a
member of the other set.

true 1if the left-side set has as a subset the
right-side set.

true if the left-side set is a subset of the
right-side set.

true if the left-side set has as a true subset
the right-side set.

true if the left-side set is a true subset of
the right-side set.

true if the left-side identifier is a member
of the right-side set.

The IN operator is the only relational operator without
both operands as sets. The first operand data-element
of the IN operator must have a base type of INTEGER
RANGE, ENUMERATION or .POINTER and the second operand
data~element is a set of the corresponding base type.

Norsk Data ND-60.117.5 EN

78 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

Examples of sets and relational operators:

% declare some sets

TYPE day = ENUMERATION (monday,tuesday,wednesday, &
thursday, friday, saturday, sunday)

day SET : week:={monday,tuesday,wednesday, thursday, &
friday,saturday,sunday]

day SET : weekend:={(saturday,sunday)

day SET : workdays:={(monday,tuesday,wednesday, &
thursday, friday)

%

After these declarations, the operators give the following results:

expression result
week = workdays false
weekend >< workdays true
week >= workdays true
week > workdays true
weekend <= week true
weekend < week true
monday IN weekend false
monday IN week true
The store operator =: (see section 5.1), may be used with set data-

elements as operands. It will have the effect of setting the members
of one set data—element exactly equal to the members of another set
data-element.

Example of sets and the store operator:

INTEGER RANGE [0:10) SET : odds:=(1,3,5,7,9),numbers
% store the members of set 'odds’' in set 'numbers’
odds=:numbers

You should remember that the way the set “odds"” is initialized above,
cannot be used in an executable statement in exactly the same way,

e.q.
{1,3,5,7,9)=:numbers
will give a compile error. The correct way to specify an unnamed set

with a constant group of members requires the set base data type. This
is described following the description of the logical operators below.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 79
DATA DECLARATION AND COMPOSITE DATA TYPES

The logical operators, see section 5.3, may be used with set data-
elements. Evaluation of logical operators with set data-elements as
operands gives a resulting value of the set data type with the
exception of the ABS operator which gives an integer result. The set
operators and their meanings when used with set data-elements as
operands are as follows:

AND set intersection, i.e. result is a set with members
which are members of both operand sets.

OR set union,i.e. result is a set with members which are
members of either operand set or both.

XOR set difference, i.e. result is a set with members which
are members of one of the two operand sets and not
members of the other.

NOT set negation, i.e. result is a set which has as members
all the members which are not members of the operand
set.

ABS cardinal number, i.e. result is an integer value of the

maximum possible number of members of the operand set.

Examples of sets and logical operators:

% declare some sets

TYPE colour = ENUMERATION (red,green,blue,pink,ash, &
yellow,white,black]

colour SET : bright:={(red,green,yellow,pink],anycolour
colour SET : pastel:=(blue,yellow,pink]

INTEGER : intl

% union - result will have red, green, yellow, pink, blue
bright OR pastel =: anycolour

% intersection - result will have yellow, pink

pastel AND bright =: anycolour

% difference - result will have red, green, blue

bright XOR pastel =: anycolour

% negation - result will have ash, yellow, white, black
NOT bright =: anycolour

% set cardinal number - result is 8

ABS bright =: intl

Norsk Data ND-60.117.5 EN

80 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

The following standard routines are provided to carry out operations
on set data-elements:

1) Specify a set data-element with a constant group of members.
2) INSERT

3) REMOVE

To specify an unnamed set data-element with a constant group of
members use the general form:

set-data~type (memb-list])
where
set-data-type 1is data type with a set base data type.

memb-1ist is a 1list of 1literals, selected once only, from the
possible values of the base data type.

Note: 1. This 1list may include literal expressions which are to
be evaluated at compile time.

2. Omission of the ‘'memb-list' from the parentheses
denotes the 'empty’' set for that base data type.

Example:

TYPE tnumbers = INTEGER RANGE (0:100) SET
tnumbers : numbers

TYPE colour = ENUMERATION (red,blue,grey,pink,black)
TYPE tcolour = colour SET

tcolour : luckyset

INTEGER : intl

% store an unnamed constant set data-element
tnumbers (1,3,5,7) =:numbers

tnumbers (1,3,5:10) =: numbers

tcolour (blue:black) =:luckyset % lots of luck !
% use an expression evaluated at compile time
CONSTANT int2=15

tnumbers ([int2*3+4,int2:int2+5)=:numbers

% an empty 'colour’' set data-element

tcolour [) =:luckyset % no luck at all !

Restriction: such an unnamed set data-element with a constant group
of members, must not be the first statement of a
routine, unless the entire statement 1is contained
within parentheses.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 81
DATA DECLARATION AND COMPOSITE DATA TYPES

Add a member to a set data-element:

set-member-ident INSERT set-ident

where

set-member-ident is a data-element of the set base data type.

Note: This may be an expression to be evaluated at
runtime.

set-ident is a set identifier.

Example:

INTEGER : int

INTEGER RANGE(0:100) SET : numbers

% add a member to the 'numbers’' set data-element
3 INSERT numbers

int*2 INSERT numbers

Remove a member from a set data-—element:

set-member-ident REMOVE set-ident

where

set-member-ident is a daté—eiement of the set base data type.

Note: This may be an expression to be evaluated at
runtime.

set-ident is a set identifier.

Example:

INTEGER : int

INTEGER RANGE(0:10) SET : evens:={0,2,4,6,8,10)

% remove a member from the 'evens' set data-element
6 REMOVE evens

int+5 REMOVE evens

Norsk Data ND-60.117.5 EN

82 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

4.4, RoUTINES

The 'routine' is defined in the PLANC language as a composite data
type. While this may seem a little unusual, it is of benefit in
declaring a routine name to be used as a generic function with in fact
a family of similar routines which differ only in that their
parameters are of different data types and perhaps their return values
too, e.g. a 'plus’' operator may therefore be created for integer, real
and complex parameters.

A full description of the syntax of routine type specification,

declaration, invocation and the use of parameters to communicate
information to and from routines may be found in Chapter 7, ROUTINES.

45, Dvynamic ALLocaTioN OF DATA-ELEMENTS

During execution of a PLANC program, data-elements may be dynamically
created and destroyed in storage. The actual storage used for
dynamically created data-elements may be the program stack or an
INTEGER array. If the program stack is used, it must be declared with
enough space to hold all the dynamically created data-elements as well
as all the other usual runtime requirements. One or more INTEGER
arrays may be used as storage for dynamically created data-elements.

The NEW standard routine will dynamically create unnamed simple or
composite data-elements. Invocations to the NEW standard routine
return a pointer data—element of the type of the parameter used in the
call. Invocations of the NEW standard routine are as follows:
For simple or composite data-elements use:

WEW data-type [IN int-array-ident]

where

data~type is any simple, composite, predefined or user defined
data type, except arrays.

int-array-ident
is an integer array identifier.

For arrays or subarrays, it is possible to use:

NEW ar-type [index-set[,index-set] ...) [as above]
where
ar-type is any array data type. Optionally, the data type can

be enclosed in parentheses.

index-set is an index set specifier for each corresponding index
set for this array data type.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 83
DATA DECLARATION AND COMPOSITE DATA TYPES

Example of dynamic creation of a simple data-element:

INTEGER ARRAY : store(1:1000)

REAL POINTER : rlptr

%

NEW REAL=:rlptr

% dynamic creation of a real data-element on the program stack

N

NEW REAL IN store=:rlptr
% dynamic creation of a real data-element in an integer array

Dynamically allocated data-elements will be created in the local data
area of a routine unless an INTEGER ARRAY from an outer level routine
is used in the NEW routine call. Note that all data-elements,
including those dynamically created, in the routine's local data area
will be lost when an exit from a routine occurs.

The DISPOSE standard routine is used to deallocate dynamically created
data-elements, i.e. a data-element which has been created by use of
the NEW data type IN array standard routine. Invocations of the
DISPOSE standard routine are to be used as follows:

DISPOSE pointer-ident
where
pointer-ident 1is a pointer data-element with a value pointing to the

data-element to be deallocated.

During execution, an INTEGER ARRAY POINTER called FREE P is available.
It is initialized to point to the memory location immediately
following the PLANC library routines loaded from the appropriate PLANC
library files. In order to safely use this pointer to utilize the free
space, the library routines must be loaded last.

In order to use the free space available, the declaration:
IMPORT INTEGER ARRAY POINTER : FREE P
must appear in the appropriate module. MININDEX(IND(FREE P),1) and

MAXINDEX(IND(FREE P),1) give the low and high addresses of the free
memory area, represented as unsigned integers.

Norsk Data ND-60.117.5 EN

84 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

This pointer may be used with the NEW standard routine as follows:
NEW ... IN IND[FREE;P]=:ptr
Examples of dynamic creation of array and record data-elements:
% specify an array data type
TYPE doublereal = REAL ARRAY ARRAY
% declare a pointer data-element for the array data-element

doublereal POINTER : arraypointer
REAL :@ ri11

e

% dynamically create an array and store its pointer value

NEW (doublereal(1:5,0:10)) =: arraypointer

%

% access an element of the array data-element as follows
IND (arraypointer) (1,10) =: rll % store value in rll

%

% specify a record data type
TYPE complex = RECORD
REAL : realpart,imagpart
ENDRECORD
% declare a constant value record data-element
complex : constcomplex:={1.0,1.0)
% declare pointer data-element for the 'complex’ data type
complex POINTER : complexpointer

N

% dynamically create another 'complex' record

NEW (complex) =: complexpointer

% store the constant record into the dynamically created
% 'complex’' record data-element

constcomplex =: IND(complexpointer)

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 85
DATA DECLARATION AND COMPOSITE DATA TYPES

I}.6. ProcessiNg OF RECORDS IN LIST STRUCTURES

The following standard routines are available for processing linked
lists of record data-elements:

1) The INSERT standard routine will add a record data-element to
the front of a linked list.

2) The APPEND standard routine will add a record data-element to
the end of a linked list.

3) The REMOVE standard routine will remove a record data-element
from anywhere in a linked list.
The general form of the invocations of all of these standard routines

1s:

rec-pntr INSERT list-pntr-range

wvhere
rec-pntr is a pointer to the record to be processed.
list-pntr-range is a pointer implied range, describing the linked

list.

The use of these list processing routines is illustrated in the
following code examples.

Norsk Data ND-60.117.5 EN

86 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

Set up a static linked list:

% define a record data type for the linked 1ist
TYPE myrecord = RECORD
myrecord POINTER : linkptr
INTEGER :@ recordnumber
ENDRECORD
% initialize a static linked list of records
myrecord : rl1?,r2?,r3? % predeclaration of data-elements
myrecord POINTER : listhead:=ADDR(rl1],anyrecptr
myrecord : rl:={ ADDR(r2),1)
myrecord : r2:=(ADDR[(r3),2)
myrecord : r3:={ NIL,3]
% declare some records to illustrate list processing
myrecord : front:={ NIL,-1),back:=(NIL,99)
myrecord POINTER : frontptr:=ADDR(front],backptr:=ADDR(back)

The record front may be added to the start of the linked list by the
statement,

frontptr INSERT listhead:linkptr

Following the execution of this statement, the linked list will
contain four records whose record numbers are -1, 1, 2, 3.

The record back may be added to the end of the linked 1list by the
statement,

backptr APPEND listhead:linkptr

Following the execution of this statement, the linked list will
contain five records whose record numbers are -1, 1, 2, 3, 99,

The record rl1 may be removed from the linked 1list by the following
statements,

ADDR(r1])=:anyrecptr
anyrecptr REMOVE listhead:linkptr

Now the linked list will have only four records, with the record
numbers -1, 2, 3, 99.

The standard routines will do all the necessary changes to the linkptr
component data-elements of records affected by the changes in the
linked 1list, e.g. when record rl1 is removed, record number -1 is
changed to point to record r2 (number 2).

Record data-elements may be created dynamically by the use of the NEW
standard routine. Such record data-elements may be manipulated in
linked lists in the same way as the explicitly declared record data~-
elements above. In fact an entire list may be constructed from such
unnamed dynamically allocated record data-elements.

If a new record is to be placed in the middle of the linked list, then

the program will have to change the linkptr component data-elements
explicitly.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 87
DATA DECLARATION AND COMPOSITE DATA TYPES

Note that the standard routines INSERT, APPEND and REMOVE will not
give any error indication if the record pointer in the routine
invocation is empty (i.e. the pointer to the record to be processed
has a value NIL). This also applies to the REMOVE standard routine if
the 1linked 1list is empty. Take care to remember that if INSERT or
APPEND is used on a record that is already in a linked list, there is
no error indication, but the address link field will be overwritten.

Norsk Data ND-60.117.5 EN

88

Norsk Data ND-60.117.5 EN

PLANC Reference Manual

PLANC Reference Manual 89
EXPRESSIONS ~ FORMATION AND EVALUATION

5. EXPRESSIONS - FORMATION AND EVALUATION

An expression comprises operators and data-elements as operands,
formed according to a set of rules. During program execution, an
expression may be evaluated to give a resulting value which may be
stored in a data-element.

PLANC, unlike most high level languages, does not have an assignment
statement. It has assignment operators which may be used within
expressions to store any temporary resulting value during the
evaluation of an expression. At any point during evaluation of an
expression, a temporary resulting value is available. Evaluation of
one expression may store a number of values into data-elements, or if
the expression is simply to invoke a routine with no out-value (see
section 7.2) then there is no resulting value and no value is stored.
The PLANC compiler will, if possible, try to evaluate an expression at
compile time (e.g. if it contains literals only).

The operands used to form an expression may be literals, identifiers
or routine invocations. An expression must contain operands whose
corresponding data-elements are of one data type only, or parts of the
expression must give a resulting value data-element of the correct
data type required for further evaluation. This means that in general,
there is no automatic conversion of the operand data-elements to the
data types required by a specific operator. A routine invocation,
within an expression evaluation, may have a side-effect of modifying a
data-element value which is to be used. later in the evaluation.

The operators in PLANC are defined for one or more data types. The
following sections will describe all the available operators for each
specific data type. Further, some operators are binary, i.e. they may
be used with two operands. For example, the sum of the values held in
two integer data-elements may be obtained by the following part of an
expression:

integl+integl?

by using the binary + operator for the integer data type. Other
operators are unary, i.e. they may be used with only one operand. For
example, the complement of a Boolean data-element may be obtained by
the following part of an expression:

NOT booll

by using the unary NOT operator for the Boolean data type. The
evaluation of any operator and its operands will give a resulting
value, except for routines with no out-value. This resulting value,
which the runtime system may store in a temporary data-element, may be
explicitly stored by the use of the assignment operators.

Norsk Data ND-60.117.5 EN

90 PLANC Reference Manual
EXPRESSIONS - FORMATION AND EVALUATION

The operators available in PLANC each have a priority which determines
the order of evaluation within the expression. An expression is
evaluated by first forming the resulting values of the highest
priority operators. These resulting values replace the operator and
its operands and then the next highest priority operators are
evaluated. For operators of the same priority, evaluation is from left
to right.

Parentheses may be used to enclose part of an expression, causing that
part to be evaluated separately from anything outside the parentheses.

User defined routines may be used within expressions and will be
evaluated accordingly. Such routines have a higher priority than all
the PLANC defined operators.

There are four classes of operators:

- assignment

- arithmetic

- logical

- relational

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 91
EXPRESSIONS - FORMATION AND EVALUATION

5.1. AssicNMENT OPERATORS

PLANC has two assignment operators which may be included within
expressions. The assignment operators are used to store values, into
data-elements, during evaluation of an expression. More than one
assignment operator may be used in an expression, causing a number of
values to be stored during evaluation of this expression. PLANC has no
distinct assignment statement as many other high-level languages have.

The assignment operators have a priority associated with each side of
the operator. The left-side priority is the lowest possible priority,
to ensure that the entire expression to the left of the operator has
been evaluated before evaluation of the assignment operator.

Both operands for an assignment operator may be of any simple,
composite or predefined data types. Both operands must be of the same
data +type. If however the operands are modified integer or real data
types, they may be of different modified data types (i.e. integer
range or real precision) and appropriate conversion will take place
prior to evaluation of the assignment operator, provided the receiving
data-element is large enough to contain the value to be stored. If
not, truncation will occur and no runtime error indication will be
given.

If the operands are data-elements of composite data types, then the
value of the entire data-element will be moved by the store operator,
e.g. a store operator with array operands will move the entire array
as an entity (see section 4.1.4).

The two assignment operators are:

Operator Priority Operation Data types

= 1, left-side Store all simple,
12, right-side composite and

predefined

= 1, left-side Change all simple

12, right-side

When evaluation of an expression reaches a store operator, the
resulting value of the part of the expression, immediately to the left
of the store operator, will be stored into the data-element associated
with the operand immediately to the right of the store operator.

The resulting value after evaluation of a store operator has the same
value as the resulting value immediately prior to the evaluation of
the store operator, i.e. evaluation of a store operator does not
change the resulting value of the expression during evaluation.

Norsk Data ND-60.117.5 EN

g2 PLANC Reference Manual
EXPRESSIONS - FORMATION AND EVALUATION

Examples:
1. 53=:int

will store the integer 1literal wvalue in the integer data-element
associated with the identifier int.

2. 3+5=:1int

will evaluate the sum of the two integer literals first because the
integer + operator has a priority of 8. The left-side priority of the
store operator is 1, i.e. lower than that for the + operator, and thus
it will be evaluated after the +. The resulting value of evaluation of
the integer + operator is 8, and will then be stored in the integer
data—-element associated with the identifier int.

3. intval=:int

will store the value stored in the data-element associated with the
identifier intval, into the data-element associated with the
identifier int.

4. 2+2=:intl=:1int2

will store the value of the sum, 4, into the data-element associated
with the identifier intl. The resulting value at this point of the
expression evaluation is 4. Then evaluation of the second assignment
operator stores the resulting value 4 into the data-element associated
with the identifier int2.

5. 1+2=:intl+4=:int2

will have a resulting value 3 from the first sum. Evaluation of the
first store operator will store the resulting value 3 in the data-
element associated with the identifier intl. Then second + operator
will have a resulting value of the sum, 3+4. This resulting value, 7,
will be stored by the second store operator into the data-element
associated with the identifier int2.

6. 5*4+1=:int

will store the value of the entire expression, i.e. 21, into the data-
element associated with the identifier int. If however, parentheses
were used:

5% (4+1)=:int

the order of evaluation of the operators is different. In the
expression without parentheses, the product 5*4 is evaluated to give
the resulting value 20. Then the sum 20+l is evaluated to give the
resulting value 21, which is then stored. In the expression with
parentheses, first the sum 4+1 is evaluated to give the resulting
value 5. Then the product 5*%5 is evaluated to give the resulting value
25, which is then stored. Note that the parentheses not only change

Nbrsk Data ND-60.117.5 EN

PLANC Reference Manual 93
EXPRESSIONS - FORMATION AND EVALUATION

the order of evaluation within the expression, but cause a different

final result, depending on the mixture of operators used in the
expression.

When evaluation of an expression reaches a change operator, the
resulting value of the part of the expression, immediately to the left
of the store operator, will be stored into the data-element associated
with the operand immediately to the right of the store operator. This
is identical to the store operator.

The resulting value, from evaluation of a change operator, is
different to that of a store operator. The value of the data-element
to receive the value to be stored by a change operator, immediately
prior to evaluation of the change operator, will be the resulting
value following evaluation of the change operator.

For example:

1. 3=:int % store 3 into data-element associated with int
4:=:int

will store the integer literal value 4 into the data-element
associated with the identifier int, but the resulting value of the
expression following evaluation of the change operator is 3, i.e. the
value that was in the data-element associated with int before
evaluation of the change operator.

2. I=:1 % store 3 into data-element associated with 1
4=:j % store 4 into data-element associated with j
i:=:j=:1 % exchange the values of i and j

will store the value, 3, from the data-element associated with the
identifier 1 into the data-element associated with j. However, the
resulting value of the change operator is the value in J prior to
evaluation of the change operator, i.e. 4. Then the resulting value,
4, is stored by the second operator in the expression, i.e. 4 is
stored into the data-element associated with i.

3. 1=:a % store 1 into data-element associated with a
2=:b % store 2 into data-element associated with b
O=:c{1)=:c(2) % likewise, store O into the elements 1 and 2

NS

of array c

a:=:b=:c(b) - what are the contents of ¢ now? See below

N

Execution of the last statement goes as follows:

1) First, the 1 stored in a is also stored in b, while the new value
of the expression becomes 2, which is the previous value of b.

2) Then the 2 is stored in that element of ¢ having a number which
corresponds to the new value of b (which is 1). That is, c(b) is
now the same as c¢(1), and has the value of the expression in it,
which is 2. The element c¢(2] still has the value 0.

Norsk Data ND-60.117.5 EN

94 PLANC Reference Manual
EXPRESSIONS - FORMATION AND EVALUATION

5.2. ArimETIC OPERATORS

PLANC has a number of arithmetic operators which are available for
operands whose data-elements are integer or real data types. There are
both unary and binary arithmetic operators. The operands for a binary
operator must both be either real or integer, but the operands may
vary in the declared modifications (i.e. range for integer and
precision for real).

The following table lists all of the available arithmetic operators:

Operator Priority | Operation Data types

+ binary 8 addition integer, real

- binary 8 subtraction integer, real .

- unary 10 negation integer, real

* binary 9 multiplication integer, real

/ binary 9 division integer, real

*% binary 11 exponentiation | integer, real

ABS unary 11 absolute value | integer, real

MOD binary 11 modulo integer

SHIFT | binary 8 shift bits integer

++ unary 10 add one integer, real,
simple pointer

- unary 10 subtract one integer, real,
simple pointer

The binary operators +, -, * and /, and the unary operators - and ABS
can have operand data-elements of either integer or real data types.
Further, the operands may be modified (i.e. integer range or real
precision). Various modified integer data type operand data-elements
may be mixed when used with the binary operators. Likewise, modified
real operands may be mixed when used with the binary operators.

The resulting value data-element will be of the same data type as the
operands. If the operands are different modifications of one data
type, then the resulting value will be a data-element of the data type
appropriate to hold the larger of the two operand modified data types,
i.e. for integer data-elements, a data-element of the larger range,
and for real data-elements, a data-element of the larger precision.

For example:

REAL PRECISION (15) : rll

REAL PRECISION (7) : rl12

%

rll+rl2 ...

evaluation of the real addition operator within an expression would
give a resulting value at that point in the expression, in a REAL
PRECISION (15) data-element, for further expression evaluation.
Note +that the integer division will not return any remainder, the MOD

operator must be used.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 95
EXPRESSIONS - FORMATION AND EVALUATION

The ** operator, for exponentiation, may have a first operand data-
element of integer or real data type. The second operand data-element
can only be an integer data type.

The binary operators, MOD and SHIFT, must have integer, or integer

modified, operands only. They both give a resulting value in an
integer data-element.

The SHIFT operator will shift bits in the first operand data-element.
The second operand specifies the number of bit positions to be shifted
and if this operand is positive, then the shift is to the left,
negative means shift to the right. If the first operand data-element
is a signed integer data type, then the sign bit is not affected by
left shifts and it is extended for right shifts. If the first operand
data-element is an unsigned data type, i.e. a non-negative integer
range, then zeroes are shifted in from the left in right shifts, and
they are shifted in from the right for left shifts.
For example:

77B SHIFT 3
gives a resulting value 770B.
The MOD operator gives a resulting value of the first operand modulo
the second operand, i.e. the remainder after dividing the Ffirst
operand value by the second operand value.
For example:

27 MOD 5
gives a resulting value of 2, i.e. remainder of 27/5,

-27 MOD 5
gives a resulting value of -2,

27 MOD -5
gives a resulting value of 2,

-27 MOD -5

gives a resulting value of -2.

Norsk Data ND-60.117.5 EN

96

PLANC Reference Manual
EXPRESSIONS - FORMATION AND EVALUATION

Examples of the use of the arithmetic operators :

1.

2.

10.

11.

Xty
X~y
x+y+z

X+y-2Z

x*y/z

x/yv*z

x*y+z

x+y*z

_X*X’z

++1

will form the sum of x and y.
will subtract y from x.
will sum together x, y and =z.

will add x and y and then subtract z from the result,
see note on page 97.

will multiply x and y before dividing the result by z,
see note on page 97.

will divide x by y first, and then multiply the result
by =z.

will multiply x and y and add z to the result.

will multiply y and =z and add x to the result. The
order is determined by the different priorities, * is 9
and + is 8.

since the operator ** has a higher priority, 11, its
operands will be combined first. Thus the expression
will be interpreted as -(x**2).

has the same effect as i+1 =: i. The statement 2*[++i)
will

a) increment the previous value of i by one and store
the result in i

b) multiply the incremented value of i by 2 and store
the resulting value in j

has the same effect as i-1 =: i. The statement 2*(--i)
will

a) decrement the previous value of i by one and store
the result in i

b) multiply the decremented value of i by 2 and store
the resulting value in j

If the operator priorities do not give the desired order of

evaluation,

then parts of an expression may be enclosed in

parentheses. Parts thus enclosed are evaluated as a whole expression
before being used as an operand.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual g7
EXPRESSIONS - FORMATION AND EVALUATION

For example:

1. x+y/z will cause division of y by =z before adding x to form
the result, because of operator priority.

2. [(x+y]/z will ensure that x and y are added, and then that
result will be divided by =z.

3. (x+y]/(x+z] here x+y and x+z will be computed separately and
subsequently, the former result will be divided by the
latter. Note that either x+y or x+z may be evaluated
first.

While the operators +, -, ¥, / and ** represent the usual mathematical
operations, one must be aware that the underlying computing hardware
has fixed limits to the precision and accuracy of representation of
values and the results of operations. These limits are described in
Appendix C.

Note: The order of operations on computer hardware is such
that the result would be mathematically exact if the
hardware were mathematically precise. If a particular
order of operations is vital for numerical accuracy, it
is best to use parentheses to force the order.

For example:

1. x+y+z represents the sum of x, y and z. The computation may
add x to y and then add z, or it may add y to =z and
then add x.
But:

2. (x+y)+z will ensure that x and y are added together, before :z

is added to the result.

5.3. LosicaL OPERATORS

PLANC has logical operators which are available for operands whose
data-~elements are of the integer, Boolean or set data types. There are
both unary and binary logical operators. The operands for a binary
operator must both be either integer, Boolean or set, but the operands
may vary in the declared modifications (i.e. range for integer) .

Norsk Data ND-60.117.5 EN

98 PLANC Reference Manual
EXPRESSIONS -~ FORMATION AND EVALUATION

The following table lists all of the available legical operators:

Operator Priority {Operation Data types
AND binary 3 logical and integer,Boclean, set
OR binary 2 inclusive or integer,Boolean,set
XOR binary 2 exclusive or integer,Boolean, set
NOT unary 4 logical negation|integer,Boolean,set
ABS unary 11 cardinal number |[set

The binary operators, the AND operator, the OR operator and the XOR
operator, and the unary NOT operator can have operand data-elements of
either integer, Boolean or set data types. Further, modified integers
may be used as operands. Integer range and modified integer operands
may be mixed when used with the binary operators.

The resulting value will be of the same data type as the operands. If
the operands are different modifications of integer data type, then
the resulting value will be an integer data-element appropriate to
hold the larger range of the two modified integer operand data-
elements.

The ABS operator will give as a resulting value, the maximum number of
members declared for the operand set data-element. The resulting value
will be an integer data-element.

It should be noted that the evaluation rules described, are for
explanatory purposes so that an expression can be correctly
interpreted. However, the actual order of interpretation is not fixed
so long as the result is mathematically and logically equivalent.
Indeed it can happen that part of an expression is not evaluated at
all.

For example:

IF { i=1 OR 1.5+i=:r>10.1] THEN ...
in which, if i has the value 1, then the expression in parentheses is
known to have the value TRUE after testing i for 1. Further, no value
will be stored into r during evaluation of the expression in

parentheses.

The resulting value of expressions involving the above operators, with
Boolean operand data-elements:

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 99
EXPRESSIONS - FORMATION AND EVALUATION

bl NOT bl

TRUE FALSE

bl b2 bl AND b2

TRUE TRUE TRUE
TRUE FALSE | FALSE
FALSE | TRUE FALSE
FALSE | FALSE | FALSE

bl b2 bl OR b2

TRUE TRUE TRUE
TRUE FALSE | TRUE
FALSE | TRUE TRUE
FALSE | FALSE | FALSE

bl b2 bl XOR b2

TRUE TRUE FALSE
TRUE FALSE | TRUE
FALSE | TRUE TRUE
FALSE | FALSE | FALSE

If these operators are used with integer operand data-elements, then
the operator will be applied to all bits in the entire integer data-
element, where a bit value 1 is interpreted as TRUE and O as FALSE.

If these operators are used with set operand data-elements, the

operators will carry out the usual mathematical operations on the
sets.

Norsk Data ND-60.117.5 EN

100 PLANC Reference Manual
EXPRESSIONS - FORMATION AND EVALUATION

Examples of the use of logical operators:

INTEGER : intl:=12B,int2:=14B

%

NOT intl1 .. % resulting binary value is ..10101
%

intl AND int2 .. % resulting binary value is ..01000
%

intl OR intZ2 .. % resulting binary value is ..01110
%

intl XOR int2 .. % resulting binary value is ..10110

Examples of sets and logical operators:

% declare some sets

TYPE colour = ENUMERATION (red,green,blue,pink,ash, &
yellow,white,black]

colour SET : bright:=(red,green,yellow,pink),anycolour,fool
colour SET : pastel:=(blue,yellow,pink])

INTEGER : intl

% inclusive or - result is red, green, yellow, pink, blue

bright OR pastel =: anycolour

% logical and - result is yellow, pink

pastel AND bright =: anycolour

% exclusive or - result is red, green, blue

bright XOR pastel =: anycolour

% logical negation - result is blue, ash, white, black
NOT bright =: fool .

% set maximum number of members - result is 8

ABS bright =: intl

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 101
EXPRESSIONS -~ FORMATION AND EVALUATION

5.4. ReLationaL OPERATORS

PLANC has relational operators which are available for operands whose
data-elements are of the integer, real, enumeration, pointer and set
data types. There are only binary relational operators.

The following table lists all the available relational operators:

Operator Priority |Operation Data types

= binary 6 equal integer,real,set,
enumeration,pointer,
bytes, record

>< binary 6 not equal integer,real,set,
enumeration,pointer,
bytes, record

>= binary 6 greater than or {integer,real,set,
equal enumeration,pointer,
bytes
= binary 6 less than or integer, real,set,
equal enumeration,pointer,
bytes
> binary 6 greater than integer,real,set,
enumeration,pointer,
bytes
< binary 6 less than integer,real,set,
enumeration,pointer,
bytes
IN binary 5 membership integer,set,

enumeration,pointer

All relational operators, except IN, must have both operand data-
elements of the same data type. Operand data-elements of integer or
real data types may be modified (i.e. integer range or real
precision). Modified integer or real data type operand data-elements
may be mixed when used with the binary relational operators.

Norsk Data ND-60.117.5 EN

102 PLANC Reference Manual
EXPRESSIONS - FORMATION AND EVALUATION

If the IN operator has a first operand data-element of integer,
enumeration or pointer data types, then the second operand is a 1list
of data—elements of the same data type as the first operand. This list
may contain explicit literals, constant identifiers, identifiers,
expressions to be evaluated at runtime or implied ranges of the
correct data type. If the IN operator has a second operand data-
element of the set data type, then the first operand must be a
possible member value of the set, which may be evaluated from an
expression at runtime.

The resulting value from evaluation of any relational operator will be
stored in a Boolean data-element.

Examples of the use of relational operators:

INTEGER : intl
INTEGER RANGE (0:200) : int2
%
54=:intl
intl >= 0 .. % resulting value TRUFE
%
20000=:intl1; 5=:intZ2
intl < int2 .. % resulting value FALSE

N o

21=:intl; -3=:intl2
intl1*int2 = 0.. % resulting value FALSE
%
=:intl; 10=:int2
intl-1 IN 1,3,5,int2 .. % resulting value FALSE
intl1-2 IN 1:100,2%int2 .. % resulting value TRUE
%
REAL : rii
REAL PRECISION (9] : ri2
1.5=:rl11; 3.7=:rl2
ril1 >< rl2 .. % resulting value TRUFE
4
ENUMERATION (pink,blue,bottle,red] : mycolor,yourcolor
red=:mycolor; blue=:yourcolor

mycolor > yourcolor .. % resulting value TRUE
bottle IN mycolor,yourcolor.. % resulting value FALSFE
mycolor IN blue:red .. % resulting value TRUFE

P2
INTEGER ARRAY : vectorlist [1:100)
INTEGER ARRAY POINTER : &
listhead:=ADDR(vectorlist(MININDEX{vectorlist,1))], &
listtail:=ADDR(vectorlist(MAXINDEX{vectorlist,1) })
listhead = listtail .. % resulting value FALSFE
z
INTEGER RANGE (1:100)] SET : odds:=(1,3,5,7,9)
1+3 IN odds .. % resulting value FALSE

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 103
EXPRESSIONS - FORMATION AND EVALUATION

5.5. Conversion BeTween Data Types

The rules for forming expressions in PLANC restrict the way data types
may be used, especially for moving and storing data-element values of
a particular data type. Sometimes it may be necessary to move a value
into a data-element of a different data type or simply convert between
different data types (e.g. integer to real). Generally, good
programming practises try to avoid this scrt of operation, but if it
is necessary, great care should be taken.

The following Standard Routines are provided in the PLANC language:

CONVERT convert between the various integer and real data types.

FORCE take the value from one data-element, and store it into
another data—element of a different data type to the first,
but of exactly the sdauc -ioc.

These standard routines give a value in a temporary resulting value
data-element {(i.e. the routine out-value), which should be stored with
one of the assignment operators.
The general forms of the routine invocations are:

identifier CONVERT data-type

or

identifier FORCE data-type

where

identifier is an identifier whose data-element value is to be
converted.

data-type is the data type of the data-element into which the

value 1is to be stored.

The CONVERT routine may be used for a data type conversion with an
assignment operator to simply store the value.

Norsk Data ND-60.117.5 EN

104 PLANC Reference Manual
EXPRESSIONS - FORMATION AND EVALUATION

For example:

INTEGER : int

REAL : rl

12=:int

% convert an integer value to real value

int CONVERT REAL =:rl

% use conversion within expression

3.0+2.0*% (int CONVERT REAL)=:rl

% note, parentheses not required, but they help visually

The FORCE standard routine may be used with any mixture of simple,
composite, predefined or user specified data types.

For example:

TYPE colour = ENUMERATION (red,pink,blue)

INTEGER : intl

INTEGER : int

% put an integer value into a real pointer data-element
int FORCE RFAL POINTER ...

% for some bizarre reason the following might be done!
12=:intl

intl FORCE colour .

Note that the data-element data type to receive the value from the
FORCE standard routine should be exactly the same size as the
originating data-element.

For example:

INTEGER1 : int
int FORCE REAL

will give unpredictable results. A compile time message will occur.
The FORCE standard routine must be used with great care. The internal
representation of the data types involved must be known, see Appendix

C, otherwise results may be unpredictable after use of the FORCE
routine.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 105
EXPRESSIONS - FORMATION AND EVALUATION

5.6. Accessing Recorp CompoNeNTS wWiTH THE USING STATEMENT

This section describes a feature in PLANC which is available from
version G.

When accessing a RECORD data-element in any of the ways described in
section 4.2.3, it 1is quite usual to make several references to its
components within a small region of the program.

Consider the following RECORD:

TYPE partrec = RECORD

BYTES : partname [(1:20)
INTEGER : partnumber
REAL : partcost
ENDRECORD
partrec ARRAY : part (1:100)

Then, the variable part(1] might be initialized as

: part(1).partname
: part(1).partnumber
: part(1).partcost

' Power supply'
19
49.95

In these circumstances, repeated references to components in a record
by writing the RECORD data-element name or access specification as a
qualifier to the required component identifier soon becomes tedious.
PLANC provides a statement for use with RECORD data-elements that
enables reference to records without having to repeat the RECORD data-
element identifier each time you wish to access a component. This is
the USING-statement.

The general form of the USING statement is:

USING data-element-list

statements

ENDUSING

where data-element-list is an expression resulting in a RECORD data-
element, or a pointer to a RECORD data-element. If there are several
such expressions, they must be separated by commas.

Within the statement controlled by a USING statement, the components
of the RECORD data-elements in the data-element-list may be accessed
by use of the component name alone.

The effect of a USING statement is to open a new scope which contains
the component identifiers corresponding to each of the named record-
variables in the list. This means that the component identifiers can
be used as variables within the USING statement. (For a full

Norsk Data ND-60.117.5 EN

106 PLANC Reference Manual
EXPRESSIONS -~ FORMATION AND EVALUATION

description of ‘'scope of identifier' rules, see section 7.8.) The
initialization of the variable part may thus be written as:

USING part(1)

' Power supply’ =: partname

19 =: partnumber

49,95 =: partcost
ENDUSING

The general form of the USING statement,
USING vi, v2, ... vn
s
ENDGSING
is equivalent to

USING vi
USING v2

USING wvn

S

ENDUSING

ENDUSING
ENDUSING

That is, the scopes are opened, and therefore nested, in the order in
which are listed in the USING-statement.

Thus, if the RECORD data-elements v1 and v2 each have a component
identified by F, then a simple occurrence of F within S denotes the
corresponding component of v2, not that of vi, by the rules of nested
scopes. The component F of vI can be denoted within S only by writing
vl.F explicitly.

The use of a USING statement not only reduces the amount of program
text, but also increases its readability, and in some cases may
produce a more efficient program.

Note: All the elements in a USING element list are stored in temporary
pointers to their respective records. These pointers are used when
accessing record components in the scope of the current USING
statement (i.e., between USING and ENDUSING). Thus, if a record
pointer referred to in the USING element list changes value inside the
scope of the USING statement, this has no effect on statements with
access to record components by component name only.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 107
SEQUENCE CONTROL STATEMENTS

6. SEQUENCE CONTROL STATEMENIS

The executable statements discussed so far will be executed strictly
in the sequence that they appear in the source program. PLANC has a
number of statements which will unconditionally or conditionally
change the sequence of statements to be executed or cause a group of
statements to be executed repeatedly under some form of iteration
control. The sequence control statements available are:

GO unconditional change of sequence.

IF conditional change of sequence.

CASE multi-choice conditicnal change of sequence.

Do repetitive execution, of a group of statements.

FOR repetitive execution, of a group of statements, a specified

number of times.

WHILE repetitive execution, of a group of statements, until a
condition is satisfied.

ASSERT runtime error occurs if a specified condition is not true.

6.1. GO StareMent

The 'GO' statement unconditionally transfers control to another
statement within a routine. The general form of a GO statement is:

GO label-identifier
where

label-identifier is a label, declared within the scope of this
GO statement.

Note, for a full description of 'scope of identifier' rules, see
section 7.8.

Take care to remember that control transfers into structures such as

FOR - ENDFOR or DO - WHILE -~ ENDDO loops may have unpredictable
results.

Norsk Data ND-60.117.5 EN

108 PLANC Reference Manual
SEQUENCE CONTROL STATEMENTS
Example of the use of a GO statement:
% declarations
INTEGER : intl
LABEL : labl,lab2,lab3
% executable program

labl : 1=:intl % any executable statement

GO labl % transfer to statement 'labl’

6.2. IF StATEMENT

The 'IF' statement will conditionally execute one or more groups of
executable statements. The groups of statements executed in this
manner may contain further 'nested’ IF statements. The general form of
an IF statement is:

IF expr THEN
ex-stmts

[ELSIF expr THEN
ex-stmts]...

[ELSE
ex-stmts]
ENDIF
where
expr is an expression with a Boolean resulting value.
ex-stmts is a group of executable statements.

If the expression immediately following the IF gives a value TRUE, the
group of statements immediately following the THEN will be executed,
and then control will be transferred to the statement immediately
following the ENDIF.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 109
SEQUENCE CONTROL STATEMENTS

If this expression gives a value FALSE then:

if there is neither an ELSIF nor ELSE present, control
will pass to the statement following the ENDIF,

if the IF - ENDIF contains any ELSIF's, the expression
immediately following each ELSIF will determine whether
its THEN group of statements is to be executed or not.
This process will continue for each next ELSIF,for each
expression which gives a value FALSE. If a THEN path is
taken, the control will pass to the statement following
the ENDIF after that group of statements has been
executed,

if the 1IF - ENDIF contains an ELSE, control passes to
the group of statements following the ELSE only if the
expressions of the IF and those of any ELSIF's present,
all give the value FALSE.

Examples of IF statements:

1. A simple IF - THEN.

2.

3.

% test for a

IF currentli
% yes, st
newpage

full page
ne+lines > linesperpage THEN
art a new page

=:currentline
printheading

ENDIF

An IF - THEN -~ ELSE.

% adjust wages for tax
IF taxed THEN
% yes, reduce payment by tax amount

gross - t
ELSE

ax{gross]=:nett

% no, pay full amount
gross=:nett

ENDIF

An IF - THEN - ELSIF - ELSE

% compute area of a many-sided figure
IF sides = 3 THEN
% area of a triangle
(a+b+cl/2.0=:s
sqrt{ s*{s-al*(s-b]*(s-c]]=:area

ELSIF sides

= 4 THEN

% area of a rectangle

a*b=:rarea
ELSE
% approxi

mate other figures by the area of a circle

pi*(radius**2}=:area

ENDIF

Norsk Data ND-60.117.5 EN

110

PLANC Reference Manual
SEQUENCE CONTROL STATEMENTS

Nested IF's.

% check document signatures
IF amount > 10000 THEN
% large amount, check number of signatures
IF signatures < 2 THEN
% reject
setnogood
ELSE
% large amount check
bigcheck
ENDIF
ELSIF amount > 100 THEN
% medium amount check
midcheck
ENDIF
% if passed, pay it
IF chequeok THEN
payit
ELSE
chequeerror
ENDIF

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 111
SEQUENCE CONTROL STATEMENTS

6.3. C(ASE StTATEMENT

The 'CASE' statement will select one of a number of groups of
executable statements to be executed. During one execution of a CASE
statement, only one of the groups will be executed and the remaining
groups will be skipped. The selection of a particular group of
statements is by the CASE expression whose value must correspond to
the integer or enumeration data type values used in the INCASE parts
of the CASE statement. The general form of the CASE statement is:

CASE expr
INCASE value-list
ex—-stmts
[INCASE value-list
ex-stmts]...

[ELSE
ex-stmts]
ENDCASE
where
expr is an expression with a resulting value data type,
corresponding to the data type of the INCASE value-
lists. The expr may have a maximum of 256 different
values, and must be either:
a) an enumeration with a maximum of 256 different
values
b) integers ranging between 0 and 255
value~list is a list of integer or enumeration literal values.
Note: It may be expressed as an implied range.
ex-stmts is a group of executable statements.

The values in each INCASE part must all be of the same data type as
expr. Each value which occurs in an INCASE part, must not occur more
than once in all of the value-list's of the entire CASE statement.

The group of statements following the ELSE will be executed if the
value of the expression is valid but does not appear in any INCASE
value-list. If the value-lists do not contain all possible values, an
ELSE must be present.

If the value of +the expression is invalid, e.g. outside a defined
integer range, control will be transferred to the statement
immediately following the ENDCASE, i.e. the CASE statement will be
skipped, unless an ELSE part is present. If an ELSE part is present,
the group of statements following the ELSE will be executed.

Norsk Data ND-60.117.5 EN

112 PLANC Reference Manual
SEQUENCE CONTROL STATEMENTS

Note: If the values belong to an INTEGER RANGE, the lower
bound of the INTEGER PRANGE must be 0. The values
actually checked currently are 0 and the nearest higher
power of 2 to the upper bound.

Examples of CASE statements:

TYPE days = ENUMERATION (monday,tuesday,wednesday, &
thursday,friday,saturday, sunday)
days : thisday
%
CASE thisday
INCASE saturday
shopping
INCASE sunday
dayofrest
INCASE monday : thursday
workdays
ELSE
% control comes here only for the value friday
leftovers
ENDCASE

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 113
SEQUENCE CONTROL STATEMENTS

6.4. DO STATEMENT

The 'DO' statement may be used to repetitively execute a group of
statements with no control of the number of the repetitions or of the
termination condition to exit from such a loop. The general form of a
DO - ENDDO loop is:

Do
ex-stmts
ENDDO

where
ex-stmts is a group of executable statements.
The group of statements will be executed repeatedly. At least one GO
statement must be in the group of statements to leave the loop under
some condition. If not the program will contain an infinite loop.
Example of a DO - ENDDO loop:

REAL start:=1.0,increment:=0.1,limit:=2.0,value

LABEL :@: next

% loop through a series of fractional values
start=:value

DO
% use 'value' for computation
%
% test for end of loop
increment+value=:value
IF value > limit THEN
GO next
ENDIF
ENDDO
next

Norsk Data ND-60.117.5 EN

114 PLANC Reference Manual
SEQUENCE CONTROL STATEMENTS

6.5. FOR StATEMENT

The 'FOR' statement will cause repeated execution of a group of
statements bounded by the FOR and ENRDFOR. The number of repetitions is
specified during execution just prior to entering a FOR - ENDFOR loop
for the first time. The group of statements may be executed the
specified number of times or perhaps fewer times if some exceptional
condition arises during the repetitive execution. The general form of
the FOR ~ ENDFOR loop is:

FOR control-ident IN [REVERSE] list DO
ex—-stmts

[EXITFOR
ex-stmts]

ENDFOR

where

control-ident 1is an identifier whose data type must correspond with
that of the 'list' values.

list is a list of data-elements of INTEGER, ENUMERATION,
ARRAY or POINTER data type.

ex-stmts is a group of executable statements.

The control identifier will take the values of the 'list' in the
sequence that they have been specified. The control identifier is
available within the 1loop but care must be taken if its value is
changed, as this may interfere with orderly control of the loop. Upon
exit from a FOR ~ ENDFOR loop, the control identifier will have an
unpredictable value. This applies as soon as the loop exit action
begins, namely if an EXITFOR is present, the control identifier value
will not have a predictable value on entering the EXITFOR group of
statements.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 115
SEQUENCE CONTROL STATEMENTS

The 1list of the FOR - ENDFOR loop is an implicit or explicit list of
values which will determine the number of repetitions of the loop. The
list may comprise:

- Integer, Enumeration or Pointer data-elements which may be
literal expressions or expressions evaluated at runtime. The
control identifier must be of the same data type. Expressions are
evaluated at runtime within the 1loop initialization so that
modifying identifiers used in such an expression during execution
of the loop will have no effect on the control of the loop.

-~ An implied range, of type Integer or Enumeration, may be used for
any elements of such a list or for the whole list. The upper and
lower bounds of an implied range, which must be evaluated at
runtime, will be computed during loop initialization - as is the
case for explicit data-elements. However, when using an implied
range, altering the value of the control identifier during
execution of the loop may affect the loop control (see paragraph
below on loop testing).

- The 1list may contain one or more single-dimensioned array data-
elements. In this case the control identifier must be an integer
data type, which will take the successive values of the index
sets of the specified arrays in the list.

The control identifier may also be a pointer data-element of the
same base data type as the elements of the arrays specified in
the list. However, a pointer must not be used for the control
identifier if the array has been declared with the PACKED option,
and the elements of the array require less storage than the
smallest addressable unit on a particular machine, e.qg. on the
ND-100 an array whose elements were declared as INTEGERlL PACKED
would produce unpredictable results. Further, if the control
identifier is a pointer data-element, only one array is permitted
in the list.

— The 1list may contain one or more Pointer Implied Ranges. This is
used to step through some records in a linked list (see section
4.6).

The keyword REVERSE, if present, applies to each implied range in the
list, with the exception of Pointer implied ranges. It will cause the
loop control to begin with the second value {the last value as
declared) in each implied range and step downwards to the first value
of the range. Note that implied ranges must be specified in ascending
order. The REVERSE option may not be used with a Pointer implied
range.

The keyword REVERSE also applies to any arrays in the list. If the
control identifier is either an integer or a pointer data-element, it
will begin with the value corresponding to the upper bound of the
index set and take successive values until the lower bound of the
index set is reached.

Norsk Data ND-60.117.5 EN

116 PLANC Reference Manual
SEQUENCE CONTROL STATEMENTS

A FOR ~ ENDFOR loop contains a test to check if the required number of
repetitions has been completed. This test is done at the end of the
loop. Further, if one or more implied range is in the list of the FOR
statement, then incrementing through the implied range values will
also take place at the end of the loop. Note that while stepping
through the values of an implied range, if the value of the control
identifier is explicitly set greater than or equal to the final value
of the range, then this will terminate looping through the values of
that particular implied range.

If the list of a FOR - ENDFOR loop contains one or more implied range,
a further test is placed within the loop initialization. If the values
of the implied range can be computed at compile time, then if the
terminal value of the implied range is smaller than the initial value,
the entire FOR - ENDFOR 1loop will be skipped, i.e. it will not be
executed at all. If the values of the implied range can only be
computed at execution time, then a runtime check within the loop
initialization will result in zero repetitions of the loop 1if the
terminal value of the range is smaller than the initial value.

The group of executable statements may include any executable
statements but statements such as DO - ENDDO and IF - ENDIF must be
entirely contained within the FOR - ENDFOR loop. Loops may be nested
in any number of levels, provided each loop is entirely contained
within an outer level loop. While the number of levels of nesting is
theoretically unlimited, the actual number is limited by the memory
available to the PLANC compiler.

If an EXITFOR is present, then when all the list values are exhausted,
control will be passed to the statement immediately following the
EXITFOR. Following the execution of this group of statements, control
will be passed to the statement immediately following the ENDFOR. If
an exit from the loop is made by any other means than exhausting the
value list, the EXITFOR group will not be entered.

Note: That pointer implied range constructs such as
FOR x IN listhead:listpointer
% actions

ENDFOR

will give NIL as the final value of x if the 1loop is 1left upon
exhaustion of the linked list.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual
SEQUENCE CONTROL STATEMENTS

Examples of FOR - ENDFOR loops:

1.

A simple loop with explicit integer values.

INTEGER : intcontrol
FOR intcontrol IN 1,5,15,3,17 DO

% group of statements -~ to be executed 5 times
ENDFOR

A simple loop with explicit enumeration values.

ENUMERATION (red,pink,blue,grey,brown] : colour
FOR colour IN pink,grey,red,brown DO

% group of statements - to be executed 4 times
ENDFOR

A simple loop with explicit pointers in the FOR list.

INTEGER POINTER : ptrcontrol,ptrl,ptr2,ptr3
% put some addresses into ptrl,ptr2 and ptr3
FOR ptrcontrol IN ptrl,ptre,ptr3 DO

e,

% group of statements - to be executed 3 times
ENDFOR

A simple loop with implied ramges in the FOR list.

INTEGER : intcontrol .
FOR intcontrol IN 1:10,21,24,51:60,101 DO

% group of statements - to be executed 23 times
ENDFOR

A simple loop with implied ranges, using REVERSE.

INTEGER : intcontrol
FOR intcontrol IN REVERSE 1:10,21,24,51:60,101 DO

% group of statements - to be executed 23 times
% Note :@: the sequence of values of the control identifier is
% 10,9,...,1,21,24,60,59,...,51,101

ENDFOR

6. A simple loop, values in FOHR list to be evaluated at runtime.

INTEGER : intcontrol,intl,int2,int3
FOR intcontrol IN intl,ipt2:int3*2 DO

% group of statements - to be executed n times,

% i.e. 1+[(int3*2-int2+1)], evaluated at runtime.

% intcontrol takes the values intl,int2,int2+1,...,int3%2.
ENDFOR

Norsk Data ND-60.117.5 EN

117

118 PLANC Reference Manual
SEQUENCE CONTROL STATEMENTS

7. A simple loop with arrays in the FOR list.

INTEGER : intcontrol
REAL ARRAY : arreall(1:3),arreal2(1:7)
FOR intcontrol IN arreall,arreal2 DO
% group of statements - to be executed 10 ([i.e. 3+7) times
% control identifier takes the values 1,2,3,1,2,3,4,5,6,7
ENDFOR

8. A simple loop, arrays in FOR list, a pointer control identifier.

RFEAL POINTER : ptrcontrol

REAL ARRAY : arreall(1:3)

FOR ptrcontrol IN arreall DO
% group of statements - to be executed 3 times

control identifier takes the addresses of the array elements
% arreall(1],(2),(3)

ENDFOR

BN

9. A simple loop, pointer implied range in FOR list.

% define a record data type for the linked list
TYPE myrecord = RHECORD
myrecord POINTER : linkptr
INTEGER :@ recnumber
ENDRECORD
% initialize a static linked list of records
myrecord : r1?,r2?,r3? % predeclaration of data-elements
myrecord POINTER : listhead:=ADDR(r1]
myrecord : ril:=(ADDR(r2],1)
myrecord : r2:={ ADDR(r3),2]
myrecord : r3:={ NIL,3)
% declare a record pointer for scanning the list
myrecord POINTER : ptrcontrol
% loop through all records in the linked list
FOR ptrcontrol IN listhead:linkptr DO
% group of statements to process one record data-eliement
ENDFOR
% now the value of ptrcontrol is NIL

10. A nested loop.

INTEGER :@ rowelement,colelement

REAL ARRAY ARRAY : square(1:5,1:5)

RFEAL : sum

% sum elements to the left of the diagonal element

FOR rowelement IN 1:MAXINDEX(square,1)] DO
0.0=:sum
FOR colelement IN 1:rowelement-1 DO

sum+square[colelement ,rowelement]=:sum

ENDFOR
% store the sum in the diagonal array element
sum=:square (rowelement ,rowelement]

ENDFOR

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 119
SEQUENCE CONTROL STATEMENTS

i1. A simple loop with an EXITFOR part.

INTEGER : intcontrol,sum,limit
BOOLEAN : sumflag
LABEL :@ next
INTEGER ARRAY : vector(1:100)
O=:sum ; FALSE=:sumflag ; 500=:limit
FOR intcontrol IN vector DO
sum+vector(intcontrol]=:sum
IF sum < limit THEN
GO next
ENDIF
EXITFOR
IF sum < O THEN
FALSE=:sumflag
ENDIF
ENDFOR
next :

Norsk Data ND-60.117.5 EN

120 PLANC Reference Manual
SEQUENCE CONTROL STATEMENTS

6.6. WHILE Starement

The 'WHILE' statement may be used within DO - ENDDO or FOR - ENDFOR
loops to exit when a condition becomes false. While the condition
remains true, the loop control will not be affected. The general form
of a WHILE statement used within a loop is:

In a DO - ENDDO loop:

DO
ex-stmts
WHILE expr
ex—-stmats
{EXITWHILE
ex-stmts]
ENDDO

In a FOR - ENDFOR loop:

FOR control-ident IN [REVERSE] list DD
ex-stmts

WHILE expr
ex-stats
[EXITWHILE
ex—-stmts
[EXITFOR
ex-stmts]
ENDFOR
where
expr is an expression with a Boolean resulting value.
ex-stmts is a group of executable statements.

The effect of the WHILE statement each time it is executed within the
loop, 1is to test if the resulting value of the expression is TRUE. If
it is, pass control to the executable statement immediately f£ollowing
the WHILE. If the resulting value of the expression is FALSE, then
control will exit from the loop and pass to the statement immediately
following the ENDFOR or ENDDO.

If an EXITWHILE is present within the loop, the group of statements
following the EXITWHILE will be executed as soon as the loop exit
action begins, as a consequence of the relevant WHILE statement. Note
however, that if an EXITWHILE and an EXITFOR are both present in a FOR
- ENDFOR 1loop, then an exit from the loop effected by the WHILE
condition will execute the EXITWHILE group of statements but not the
EXITFOR group of statements, prior to the exit from the loop.

A WHILE statement may be placed anywhere within the group of
executable statements of a loop, depending on where a loop exit is
desired under the control of a logical condition. Further, any number
of WHILE statements may be used within a FOR - ENDFOR or a DO - ENDDO
loop.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 121

SEQUENCE CONTROL STATEMENTS

Examples of use of the WHILE statement:

1. Within a DO - ENDDO loop.

INTEGER : records
BOOLEAN : endoffile
% read first record of a file
= records
openfile
nextrecord
% loop through all records in the file
DO
% if end of file, exit from loop
WHILE NOT endoffile
% process a record
l+records=:records

e

end of the loop statements

a

N

s

, loop exit condition
EXITWHILE
% close file
closefile
ENDDO

2. A WHILE statement used to leave a FOR - ENDFOR loop without using a
label. :

INTEGER : intcontrol
FOR intcontrol IN 1:100 DO
% exit from loop under certain conditions
IF NOT checkvalid THEN
WHILE FALSE

ENDIF

% things are ok, continue looping

EXITWHILE
ENDFOR

Norsk Data ND-60.117.5 EN

122 PLANC Reference Manual

SEQUENCE CONTROL STATEMENTS

3. HMultiple WHILE statements within a FOR - ENDFOR loop.

CONSTANT rows:=10,cols:=10
INTEGER rowelement,colelement
REAL ARRAY ARRAY : matrix(1:rows,1:cols)
REAL ARRAY : rowsum(1:rows)
REAL : limitsum
% loop through all rows of the matrix
100.0=:1imitsum
FOR rowelement IN 1:rows DO
0.0=:rowsum{rowelement]
% sum the row elements, provided it is within limits
FOR colelement IN 1:cols DO
matrix{rowelement,colelement]+rowsum{rowelement] &
=:rowsum{rowelement)
% check sum limits
WHILE rowsum{rowelement) < limitsum
% too many elements for sum ?
WHILE colelement CONVERT REAL < limitsum/4.0
% in case of abnormal exit, set sum negative
EXITWHILE
-1.0=:rowsum{rowelement)

% end of inner loop
ENDFOR
ENDFOR

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 123
SEQUENCE CONTROL STATEMENTS

6.7. ASSERT Starement

An 'ASSERT' statement requires an associated condition to be true
whenever the statement is encountered. The general form of the ASSERT
statement is:

ASSERT expr
where

expr is an expression with a Boolean resulting value.

During program execution, if the resulting value of the expression is
TRUE then control will simply pass to the next executable statement.
If however the resulting value of the expression is FALSE, an error
condition arises and control will be transferred elsewhere depending
on what has been specified for handling 'ASSERT' errors. For further
details of how 'ASSERT' errors may be handled, see Exception and Error
Handling, section 6.8. This provides an explicit means for
supplementing the normal runtime checks provided by the system.

Examples of ASSERT statements:
ASSERT intl < number*2

ASSERT int2 < 1 AND red IN mycolours

6.8. Exception AND ERrROR HANDLING

PLANC provides a mechanism for handling specific sorts of error
conditions which may arise during program execution. A part of the
program, called an ‘exception handler', may have control passed to it
when the corresponding error condition occurs, rather than continue
executing statements in the normal way. The general form of such an
exception handler is

ON exception|,exception]... DO
ex-stmts
ENDON
where
exception is any defined exception condition.
ex-stmts is a group of executable statements.

An exception handler may handle errors due to one or more exception
conditions. An exception condition will be sensed only in the source
code following the ON statement - ENDON statement group of source
statements, within a routine. If more than one ON - ENDON exception
handler appears in a routine, then the one immediately preceding the
occurrence of an exception, in the source code, will be activated to
handle the exception.

Norsk Data ND-60.117.5 EN

124 PLANC Reference Manual
SEQUENCE CONTROL STATEMENTS

The particular exception conditions defined in PLANC are:

ASSERTFALSE for the expression in an ASSERT statement giving a
value FALSE.

OVERFLOW arithmetic overflow. Note: That hardware checks only
activate this exception.

POINTERERROR attempt +to use a data-element, referenced by a pointer
whose value is NIL (nct implemented). The NEW..IN
standard routine will trap such errors if the space to
be used is not adequate.

RANGEERROR array index or integer range error (not implemented).
ROUTINEERROR a called routine has taken an ERRETURN exit.

STACKERROR stack overflow or underflow has occurred, e.g. when
using the NEW standard rcutine (not implemented).

Executing an exception handler is similar to execution of a routine
invocation. The ENDON is in this sense equivalent to the RETURN
statement, passing control back to the place where that exception
condition occurred.

Note that a ROUTINEERROR exception handler cannot set-up or repair the
out-value, or output parameters which would have been passed back by
successful execution, after invocation cf the routine which generated
the exception condition. :

Consider the following facts concerning exceptions: Stack overflow
from recursive routine calls will never invoke exception blocks.
ROUTINEERROR blocks will be invoked from NEW, but will receive error
code -1 if the allocation was in the stack, and 0 if +the allocation
was in another area. POINTERERROR klocks will only be invoked on
overflow from NEW in a special area. The system routine which handles
stack overflow can be overloaded by a user written routine with its
own stack. The ALIAS name must be 5STCO, or £STCO.

If a ROUTINEERROR exception occurs and no exception handler has been
provided, an ERRETURN exit from the routine will be simulated. Control
will pass back up the invocation hierarchy as described in section
7.5.

Nérsk Data ND-60.117.5 EN

PLANC Reference Manual 125
SEQUENCE CONTROL STATEMENTS

Examples of exception handlers:

ON ASSERTFALSE DO
O=:intl
GO out

ENDON

ON STACKERROR,OVERFLOW DO
int2 ERRETURN
ENDON

Note that the PLANC runtime system has a routine which will be invoked
if an ASSERT condition is FALSE and the user has no ON ASSERTFALSE

exception handler. The form of the declaration of this routine is:

% on the ND-100

ROUTINE SPECIAL VOID,VOID :
% on the ND-500

ROUTINE SPECIAL VQID,VOID :

assert_handler ALIAS '5FATA’
assert handler ALIAS '#FATA'

If a wuser wishes to replace this routine with another, the user
written routine must be loaded before PLANC library routines.

Norsk Data ND-60.117.5 EN

126 PLANC Reference Manual

Norsk Data ND~-60.117.5 EN

PLANC Reference Manual 127
ROUTINES

7. ROUTINES

A PLANC routine is group of statements which can be referred to as an
entity to carry out a particular function. A routine comprises
executable statements and declarations of any identifiers used within
the routine. The routine concept in PLANC is defined as a composite
data type, whose declaration includes data types of the data-elements
to be used in communication between the routine and its caller. A
routine has an explicit in-value and out-value which affect the way a
routine invocation appears in a calling routine.

A routine may be invoked to carry out a specific function or
operation. The PLANC routine is similar to the 'subprogram' concept of
other programming languages. However, a PLANC routine has one explicit
in-value and one explicit out-value. A PLANC routine may also have a
list of formal parameters declared, for transmitting -data-elements
into or out of the routine. A routine may be invoked from another
routine in the same module or a routine in a separate module.

7.1. RoutiNe DECLARATION

A routine is a composite data type. Consequently, a routine
declaration causes the construction of a data-element which includes
all the memory area used for the routine, except for dynamically
created data-elements.

A routine declaration will include the following:

1) Options which determine the specific structure of the routine
for particular types of routine invocation.

2) The data types of the explicit in-value and out-value of the
routine.

3) The data types of any formal parameters used within the
routine, which will consequently be required in any call to

the routine.

4) The identifier to be used as a routine name for invoking the
routine.

5) The identifiers of any formal parameters declared, to be used
within +the routine, or a ? (question mark) for
predeclaration.

6) The optional ALIAS name.

7) The declarations of local data-elements which will only be
available inside the routine.

8) Executable statements which carry out the desired operations
required of the routine.

Norsk Data ND-60.117.5 EN

128 PLANC Reference Manual
ROUTINES

The first six points on the previous page items are called the routine
header. The last two items are called the routine body. Accordingly, a
predeclaration has no routine body.
The general form of a ROUTINE declaration is:
ROUTINE - rest of routine header
routine body
ENDROUTINE
The general form of a ROUTINE header is:
ROUTINE [option[option]...] in-data-type,out-data-type
[{p-data-types)] : rout-ident [(p-ident-list) / ?]
[ALIAS 'a-rout-ident']

where

option is one of the ROUTINE modifiers STANDARD, REFERENCE,
SPECIAL or INLINE.

in-data-type is the data type of the in-value.
out-data-type 1is the data type of the out-value.

p-data-types is a list of the data types of the formal parameters of
this routine.

rout-ident is the identifier for referring to this routine.

p-ident-1list is a 1list of identifiers of the formal parameters of
this routine, or a ? (question mark) for
predeclaration.

a~rout-ident is a text string. It qualifies the routine name to
distinguish routines with the same structure, e.g. same
parameters, but of different data types.

Note: 1. Special characters allowed, see below.

2. That there is a special form of a ROUTINE header,
namely for a main PROGRAM routine, see 8.2.

The 1limits on the number of significant characters in rout-ident and
a-rout-ident are described in section 2.11 and on page 300.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 129
ROUTINES

As an alternative +to the normal identifier name formation rules, a
routine identifier name may be made up of the following special
characters only:

P " §$*+ - . [/ <C=>27 T N[]
Further, such a routine identifier name may be a mixture of these

special characters, but the rules concerning the number of characters
in an identifier still apply, see section 2.11.

Note: 1. A dollar character ($) cannot begin a routine
identifier.

2. A full stop character (.) can only begin a routine
identifier.

3. A space character must precede the routine identifier

if it begins with one of the above special characters.

Several routines may be declared with the same routine identifier. The
PLANC compiler will only accept these routines if they can be
distinguished by the data types of the in-value and the parameters.
For examples and details of such families of routines {see section
8.4).

A routine has one distinct in-value data-element and one distinct out-
value data-element. The in-value and ocut-value data-elements may be of
any valid data type, i.e. simple, composite, predefined or user-
defined. Further, if either in-value or out-value data-element is not
required for a particular routine, then the keyword VOID may be used
to denote the absence of a data-element in the formal routine
declaration, i.e. in the routine header.

A routine may be declared with any number of formal parameters for
communication between the invoker and the routine itself. A parameter
may be used to transfer a value into a routine or to transfer a value
out of a routine or both. It is generally regarded as an unwise
practice to use one parameter for transferring values in both
directions. The routine header contains a declaration of the data type
of each formal parameter. It also contains the identifier names of
each formal parameter which must be used to refer to each parameter
within the routine. The data type of each formal parameter may be
access modified (see section 3.11.3), with READ or WRITE. The default
access for each declared formal parameter is READ. Parameter transfer
is discussed in more detail in section 7.4.

Norsk Data ND-60.117.5 EN

130 PLANC Reference Manual
ROUTINES

Examples of simple routines:

1. A routine to return the larger of two integer wvalues.

ROUTINE VOID,VOID (INTEGER,INTEGER,INTEGER WRITE)] : &
simple(inl,in2,outval)
in-value and out-value data-elements are absent

NN

Qe

declarations local to this routine

N

INTEGFR : local
% select the larger parameter value
inl2=:1local
IF inl > inZ2 THEN
inl=:local
ENDIF
% transfer the larger value back to the invoking routine
local=:outval
RETURN
ENDROUTINE

2. A similar routine, using the out-value to return the value.

ROUTINE VOID,INTEGER [INTEGER,INTEGER] : simple(inl,in2)

ARG

% declarations local to this routine

N

INTEGER :@ local
% select the larger parameter value
in2=:local
IF inl > inZ2 THEN
inl=:local
ENDIF
% send the larger value back to caller
% Note that the out-value is part of the RETURN statement
local RETURN
ENDROUTINE

A routine is normally invoked by use of the routine name identifier in
the declaration. However, if a number of routines have the same name
and the same number of parameters (e.g. an operator myplus may be
required to handle various data types), then each routine may be
uniquely identified by use of an ALIAS name for access from another
module {see Chapter 8, PROGRAM STRUCTURE)}. Further, any module
wishing to use such a family of routines, must IMPORT each one of the
family it wishes to use. The IMPORT statements may use either the
originally declared routine name identifier or the ALIAS name (see
section 8.4), as the routine identifier and whichever is chosen must
be used for all routine invocations in that module. This use of ALIAS
is necessary to generate adequate information for the Loader to
resolve all references correctly. For examples of use of the ALIAS
option, see section 8.4. If a module containing a family of routines
is to be accessible within a library file, the $LIBRARY-MODE command
must be used, see Appendix A.

The name in the ALIAS text string may contain characters which form an
identifier which 1is illegal as a routine name identifier in PLANC or

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 131
ROUTINES

other languages. This facility may be used to create a protection
mechanism for preventing a user program from inadvertently naming and
invoking a system routine, which would normally only be invoked by
other systems software, e.g. the FORTRAN I/0 routines.

A system routine with a (SYSTEM) EXPORT qualifier, will enable other
modules to access it, provided that the (SYSTEM) IMPORT qualifier is
used, see section 8.3. Then this identifier will be handled by the
Loader in the same way as an ALIAS name. For example, most of the
FORTRAN runtime library routines are protected from unintentional
invocation by names declared with this protection mechanism. This may
be set-up by the use of the EXPORT/IMPORT qualifier, {(SYSTEM), or an
ALIAS name. Take care to remember, this protection mechanism must be
used with the greatest care possible, as it may lead to conflicts with
system routines.

Routine declarations may be nested to any number of levels within
another routine. However, there are some restrictions on the recursive
invocation of routines, see section 7.7.

The optional routine modifiers specify how the compiler should
construct routines with regard to parameter transfer and calling
sequence. The following modifiers are available:

1) INLINE - the data-element of such a routine will have no
object code generated by the cowmpiler. Each invocation of
this routine will have the entire routine data-element
instead of the usual call sequence. This will result in a
larger program with several copies of the routine. But the
program will execute faster as the invocation overheads are
not incurred for each use of the routine. INLINE should only

be used for small rcutines, e.g. 1 - 5 1lines. An INLINE
routine cannot be declared or invoked within another INLINE
routine.

2} SPECIAL - no routine entry/exit sequence at all is provided.
Calling such a routine can be made faster than for a normal
routine, as the usual register storage and stack
initialization will not be done. Consequently the extra
speed might be gained with a corresponding decrease in
security of the environment during the execution of such a
routine. This should only be used by the most experienced
and knowledgeable users, who may be using assembly code!

3) STANDARD - a calling sequence, including parameter transfer,
is generated which is the standard used by FORTRAN and COBOL
to call subprograms. In-values are not allowed. Note that
the standard routines, MININDEX, MAXINDEX for array
parameters and ERRETURN, are not available in STANDARD
routines, either PLANC calling other language routines or
vice versa. For examples of the use of such mixed language
combinations of routines, see Appendix D.

4) REFERENCE - normally, parameters whose data-elements are of
the simple data types are transferred by value. In a
REFERENCE routine all parameter data-elements are
transferred by reference, 1i.e. the routine is given the

Norsk Data ND-60.117.5 EN

132 PLANC Reference Manual
ROUTINES

address of each data-element concerned. The calling sequence
is not the same as for STANDARD.

While routines are defined as a composite data type in PLANC, calling
any routine is treated as an occurrence of an operator. When treated
in this manner as an operator, a routine has the priority 11 for the
purposes of evaluation of any expressions containing routine
invocations.

However, if a routine name is the same as any operator defined by the
PLANC compiler, e.g. +, ¥ or ABS, then this rqutine will have the same
priority as the predefined operator, for the purposes of expression
evaluation.

Predeclaration of a routine may be used in the same way as for data-
elements of any other data type. An illustration of this facility is
in section 3.16.

A pointer data-element may be declared to reference a routine data-
element. If this is done, then the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>