
w, PlANC
“V Reference Manual

,ND-60.117.5 EN

PMMC
Referenm Manual
KID-«60.1 17.5 EN

NOTICE
The information in this document is subject to change without notice. Norsk Data
A.S assumes no responsibility for any errors that may appear in this document
Norsk Data A.S assumes no responsibility for the use or reliability of its software
on equipment that is not furnished or supported by Norsk Data AS.

The information described in this document is protected by copyright. it may not
be photocopied, reproduced or translated without the prior consent of Norsk Data A.S.

Copyright © 1986 by Norsk Data A.S.

PRINTING RECORD
Printing Notes

10/79 Original Printing

06/80 Second Edition

01/82 Third Edition

06/83 Fourth Edition
12/83 Revision A

The following pages have been revised or added’

ix, 2, 4, 8-9, 11, 20 - 21, 35 a 36, 38 ' 39, 43, 45, 48, 58, 61, 72, 79, 87,

102,104,107,110,119,126-127,129,138-140,149,151,154~156,
156a ‘1566, 158 ~162,166,173,175,182, 184,186 -188, 190,

205 . 206, 216, 219, 225 - 226, 226a, 229, 231, 237 — 239, 241 - 243, 245,
249, 251 - 253, 279 . 288, 291, 295 - 304.
Page 305 has been removed.

03/86 Fifth Edition

Norsk Data A.S
Graphic Center

N I00
P.O.Box 25, Bogerud

NOI'Sk Data 0621 Oslo 6, Norway

1
l
I

XX

D
D
D

iv

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one
or more single pages to be merged into the manual by the user, each revised
page being listed on the new printing record sent out with the revision. The
old printing record should be replaced by the new one.

New versions and revisions are announced in the Customer Support Information
(CSI) and can be ordered as described below.

The reader's comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms and comments should be sent to:

Documentation Department
Norsk Data A.S
PO. Box 25, Bogerud
0621 Oslo 6, Norway

Requests for documentation should be sent to the local ND office or (in Norway)
to:

Graphic Center
Norsk Data A.S
PO. Box 25, Bogerud
0621 Oslo 6, Norway

Preface:

THE PRODUCTS

This manual describes products which run under the SINTRAN III

operating system:

Compilers

PLANC Compiler ~ ND-lOO ND—10309
PLANC Compiler ~ ND-SOO ND-10310
PLANC Compiler - MC68000 ND-1049l

Runtime Systems

PLANC—lBANK - ND-lOO ND-10309
PLANC-ZBANK - ND-lOO ND-10309
PLANC~LIB — ND-SOO ND-lO3lO
PLANC—MC68 — MC68000 ND-10491

THE READER

(version
(version
(version

(version
(version
(version
(version

G)
G)
G)
G)

This manual will be of interest to those wishing to write or read

PLANC programs.

PREREQUISITE KNOWLEDGE

The reader should have had some programming experience prior to using
a systems programming language like PLANC. A general knowledge of

compilation and execution of programs under the SINTRAN III operating
system would also be useful.

RELATED MANUALS

Related manuals for basic SINTRAN knowledge:

SINTRAN III Introduction ND—60.125
SINTRAN III Timesharing/Batch Guide ND-60.132

THE MANUAL

This manual is primarily intended for reference purposes and is

organized in a progressive sequence of topics from chapter 2 onwards.
Chapter 1 however, is intended to give an overview of the whole

language for the less experienced programmer, or for a user only
requiring a reading knowledge of PLANC programs.

Norsk Data ND—60.117.5 EN

W

CHANGES FROM THE PREVIOUS VERSION

This manual corresponds to versions, noted above, of the various PLANC
compilers and runtime systems.

This version of the manual contains changes, corrections and additions
to the previous version. In addition, the USING feature, which will be
available from version G and on, is described here. The appearance of
the manual has been changed, and a new extensive and entirely revised
index is included - for details about the index, see the last appendix
in the manual.

Norsk Data ND—60.117.5 EN

vii

T A B L E O F C 0 N T E N T S

Section Page

1 INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE 3

1.1 PLANC Language Overview 4

1.2 A Simple PLANC Program 4

1.3 Data Types . 5

1.4 Type Specification 5

1.5 Records 7

1.6 List Processing . . 8

1.7 Sequence Control Statements 9

1.8 Routines 11

1.9 Modules . 15

1.10 Scope of Identifiers 16

1.11 Simple Input/Output to the Terminal 17

1.12 A More Complex Example 18

2 BASIC LANGUAGE ELEMENTS 19

2.1 Introduction 19

2.2 Character Set 19

2.3 Standard Symbols 20

2.4 Statements 22

2.5 Continuation of Statements 22

2.6 Comments 23
2.7 Literals . 24
2.7.1 Integer Literals 24

2.7. Real Literals 25

2.7.3 Boolean Literals 26

2.8 Literal Expressions . 26

2.8.1 Integer Literal Expressions 26

2.8.2 Real Literal Expressions 27

2.8.3 Boolean Literal Expressions 28

2.9 Single Character Literals 29

2.10 String Literals 29

2.11 Identifier Names . . 30

2.12 Enumeration Literal Lists 31

2.13 Implied Range 32

3 DATA DECLARATION AND SIMPLE DATA TYPES 35

3.1 Definition of PLANC Terminology 35

3.2 Integer Data-Elements 37

3.3 Real Data-Elements 38

3.4 Boolean Data~Elements 39

3.5 Constant Declarations 3g

3.6 Enumeration Data~Elements 40
3.7 Pointers . . 42

3.8 Pointer Implied Range 44

Norsk Data ND—60.117.5 EN

viii

Section Page

3.9 Labels 44
3.10 Void . . 44
3.11 Modified Data Types 45
3.11.1 Range Modification 45
3.11.2 Precision Modification 46
3.11.3 Access Modification 47
3.12 Predefined Data Types 48
3.12.1 BYTE Data-Elements 48
3.12.2 BYTES Data——Elements 48
3.12.3 BITS Data--Elements . 49
3.13 Type Specification and User Defined Types 49
3.14 TYPEOF Standard Routine . 50
3.15 Equivalent Data Storage for Data——Elements 50
3.16 Predeclaration of Data——Elements 51
3.17 SIZE Standard Routine 52

4 DATA DECLARATION AND COMPOSITE DATA TYPES 53

4.1 Arrays . 53
4.1.1 Array Declarations . 54
4.1.2 Array Type Specification and User Defined Types 57
4.1.3 Reference to Array Elements and Access Mode 58
4.1.4 Operations on Entire Arrays and Array Access 59
4.1.5 Index Set Information 60
4.1.6 Subarrays . 61
4.1.7 Predefined Data Types Using Arrays . . 62
4.1.7.1 BYTES ~ Arrays Used to Represent Character Strings 62
4.1.7.2 BITS - Arrays Used to Represent Sequences of Bits 64
4.2 Records . . . 65
4.2.1 Record Declarations and Type specification 65
4.2.2 Variant Record Type Specification . 68
4.2.3 Reference to Record Components and Access Mode 70
4.2.4 Operations on Entire Records and Record Access 71
4.2.5 PACKED Option for Arrays and Records 73
4.3 Sets . 74
4.3.1 Set Declarations 74
4.3.2 Set Type Specification and User Defined Types 76
4.3.3 Operations on Sets 77
4.4 Routines . 82
4.5 Dynamic Allocation of Data Elements 82
4.6 Processing of Records in List Structures 85

5 EXPRESSIONS - FORMATION AND EVALUATION 89

5.1 Assignment Operators 91
5.2 Arithmetic Operators 94
5.3 Logical Operators 97
5.4 Relational Operators 101
5.5 Conversion between Data Types . . 103
5.6 Accessing Record Components with the USING statement 105

Norsk Data ND—60.117.5 EN

Section Page

6 SEQUENCE CONTROL STATEMENTS 107

6.1 GO Statement 107
6.2 IF Statement 108
6.3 CASE Statement 111
6.4 DO Statement 113
6.5 FOR Statement 114
6.6 WHILE Statement 120
6.7 ASSERT Statement . . 123
6.8 Exception and Error Handling 123

7 ROUTINES 127

7.1 Routine Declaration . . . 127
7.2 In Value and Out——Value of Routines 133
7.3 Routine Invocation 135
7.4 Parameter Transfer 143
7.5 Exit from a ROUTINE 146
7.6 User Defined Routine TYPE Specification 147

7.7 Recursive Routines . 148
7.8 Scope of Identifiers in PLANC Routines 150
7.9 Standard Routines Available in PLANC 150
7.10 Table of PLANC Standard Routines 157

8 PROGRAM STRUCTURE 161

8.1 Basic MODULE 161
8.2 Main PROGRAM 163
8.3 EXPORT/IMPORT — Communication between modules 164

8.4 ALIAS Use in a Module 167
8.5 Module Structure and Separate Compilation 173

8.6 Data—Element Storage and the Program Stack 174

8.7 Scope of Identifier Names in PLANC Modules 176

9 INPUT/OUTPUT 177

9.1 Input/Output Terms and Concepts 177
9.2 Formatted INPUT Standard Routines . 179
9.2.1 I Format, Integer INPUT Standard Routine 180
9.2.2 0 Format, Octal INPUT Standard Routine 181
9.2.3 F Format, Fixed Decimal Point INPUT Standard Routine 182
9.2.4 B Format, Fixed Decimal Point Normalized with Exponent

INPUT 1 183
9.2.5 A Format, Alphanumeric INPUT Standard Routine 184

9.2.6 L Format, Boolean INPUT Standard Routine 184
9.2.7 Random Unformatted INPUT Standard Routine 185
9.3 Formatted OUTPUT Standard Routines 186

Norsk Data ND—60.117.5 EN

Section Page

9.3.1 I Format, Integer OUTPUT Standard Routine 188

9.3.2 0 and Z Format, Octal OUTPUT Standard Routine 188
9.3.3 F Format, Fixed Decimal Point OUTPUT Standard Routine . . 189
9.3.4 E Format, Fixed Decimal Point Normalized with Exponent

OUTPUT . 190
9.3.5 D Format, Fixed Decimal Point Normalized with Exponent

OUTPUT . 190
9.3.6 A/AL Format, Alphanumeric OUTPUT Standard Routine 191
9.3.7 L Format, Boolean OUTPUT Standard Routine 191
9.3.8 Random Unformatted OUTPUT Standard Routine 192
9.4 OPEN Standard Routine 193
9.5 CLOSE Standard Routine 194
9.6 BLOCKSIZE Standard Routine 194
9.7 FILESIZE Standard Routine 194

APPENDIX

A COMPILER COMMANDS 197
0.1 Table of Compiler Commands 199
0.2 Compiler Invocation . 200
0.3 Compilation of Source Programs 202
0.4 HELP Command . 203
0.5 Compiler Termination 1 . . 203
0.6 End of File Command 203

0.7 Immediate Preparation of Executable Programs 204
0.8 Including Text from Other Source Files 205
0.9 Compile Time Constants 206
0.10 Conditional Compilation 206
0.11 Compile Time Macros 208
0.12 Cross Reference Listing and Linkage Information 209

0.13 Listing Control 211
0.14 Runtime Options for the ND- 100 211
0.15 Data Type Defaults . 212
0.16 Creation of Libraries 212
0.17 Entire Modules as Libraries 213
0.18 Debugging 213
0.19 Assembler Code in PLANC Programs 214
0.20 DATE Command . 215
0.21 TARGET MACHINE Command 215
0.22 OPTION Compiler Command 216

B ERROR MESSAGES . 217
0.1 Compiler Messages . 219
0. Runtime Messages . 225

C MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC 227
0.1 Introductory Notes . 229
0.2 Storage Mapping . 229

Norsk Data ND—60.117.5 EN

xi

Section Page

0.3 Storage Alignment 236
0.4 PACKED Option 238

D MIXED LANGUAGE PROGRAMMING 241
0.1 Introduction 243
0.2 Interfacing with PLANC on the ND-100 244
0.3 Interfacing with PLANC on the ND—500 248
0.4 Interfacing with PLANC on the MC68000 249
0.5 Invoking PLANC from FORTRAN 249
0.6 Invoking FORTRAN from PLANC . . . 256
0.7 Accessing FORTRAN COMMON from PLANC 260
0.8 Invoking PLANC from COBOL 261
0.9 Invoking COBOL from PLANC 263
0.10 Invoking PLANC from BASIC on the ND-100 265
0.11 Invoking BASIC from PLANC on the ND-100 267
0.12 Invoking PLANC from MAC 1 269
0.13 Invoking MAC from PLANC on the ND~100 270

E USING SINTRAN MONITOR CALLS 271
0.1 SINTRAN Monitor Calls 273
0. Monitor Calls Available on the ND‘lOO and the ND~500 274

F ‘ BNF SYNTAX DESCRIPTION OF PLANC 283

G PLANC IMPLEMENTATION RESTRICTIONS 295

H INDEX 303

Norsk Data ND~60.117.5 EN

Index term

ll

o\°
o\°

o\°

character

character

character
in string

% operator

character
in string

character
in string

character

character

character

character

32 bit code

48 bit code

-0 character

I N D E X

Norsk Data

._1_

ND—60.117.

L I S T

5 EN

Reference

20

20

20
29
23

20
29

20
29

20

20

20

20

212

212

20

Index term Reference

:=: operator value of . . 93
:PLNC file . 202
:SYMB file . . 202
:XREF file type . . 209

=: operator . . 91

? character . . 20

@ character . . 20
@ commercial at character in ROUTINE . 133
@ in—value . 133

ABS SET operator . 79
ABS, operator . . 21, 97
access by dots, repeated . 70
access mode for RECORDS . . 71
access modification of data types . . . 47
access modification of formal ROUTINE parameters . 129
access modification of simple data types . 6, 36
access READ, ROUTINE parameters . . 143
access to ARRAY element . . 58
access to entire ARRAY . 59
access to RECORD . 71
access to RECORD component . 70, 105
access to RECORD components . . . 105
access to WRITE data~element, restriction . . 298
access WRITE, ROUTINE parameters . 143
access, ARRAY READ . . 6O
access, ARRAY WRITE . . . 6O
access, default after declaration . . 47
access, default for ROUTINE parameters . 143
access, READ . . 47
access, WRITE 47
accessing FORTRAN COMMON from PLANC . . 260
actual parameters to ROUTINEs . . 135
ADDR and POINTER . . 42
ADDR and ROUTINE restriction . 297
ADDR for ARRAY PACKED component access . 299
ADDR for RECORD PACKED component access . . 299
ADDR in subarrays . . 61
ADDR standard routine . . . 150
ADDR, restriction on multiple . . 300
address variables (pointers) . 5
ALIAS and loading . . 173

Norsk Data ND~60.117.5 EN

Index term Reference

ALIAS and SYSTEM qualfier for EXPORT/IMPORT 131
ALIAS identifier length restriction 300
ALIAS in a MODULE 167
ALIAS option 130
ALIAS ROUTINEs, name conflicts and 243
ALIAS, alternative to 131
alignment of data—elements in storage 236
allocated data-elements, static 174
allocation at TYPE specification of data-element . . 57
allocation of dynamic data 153
allocation of storage 52
allocation, dynamic data storage 82 .
allocation, FREE_P pointer in dynamic data allocation 83
AND operator . 21, 97
AND SET operator 79
apostrophes and BYTES data— element 55
APPEND standard routine 85, 151
APPEND to a linked list 85
arithmetic expressions, parentheses in 96
arithmetic operations, type of result of 94
arithmetic operators 94
ARRAY access of entire 59
ARRAY and predefined data types 62
ARRAY component type 53
ARRAY composite data type 36
ARRAY declaration 54
ARRAY element access 58
ARRAY element reference 58
ARRAY element specification 54
ARRAY element storage order, default 235
ARRAY index bounds 6O
ARRAY index set information 6O
ARRAY name . 54
ARRAY PACKED 73
ARRAY PACKED component access using ADDR 299
ARRAY POINTER, storage requirement for 232
ARRAY READ access 6O
ARRAY TYPE specification 57
ARRAY WRITE access 60
ARRAY, BITS . 53

ARRAY, BYTES . 53
ARRAY, data-elements 53
ARRAY, default element sequence 55
ARRAY, index check of 212
ARRAY, multi-dimensional 53
ARRAY, storage requirement for 235
ARRAY-INDEX-CHECK compiler option 212
ARRAY-INDEX-CHECK, restriction on 299
assembler code, inline in PLANC 214
assembler routine 131
assembler routine and scope level restriction 298
assembler, restriction for ND- 100 inline 301
ASSERT and exception handling 123

Norsk Data ND—60.117.5 EN

Index term Reference

ASSERT statement . . 123
ASSERTFALSE exception condition . . . 124
ASSERTFALSE exception handler missing . . 125
assignment of data to BYTES . . 58
assignment operator priority . 91
assignment operators . . . 91
assignment operators, definition . 91

Backus—Naur form (BNF) . 282
base RECORD, definition . . 68
base type for SET . . 74
base type, definition of . 36
basic MODULE . . . 161
BASIC, invoking PLANC from . . 267
BASIC, invoking PLANC from . 265
binary operator . . . 89
bit string . 6
bit strings 62
BIT, standard routine . . 151
BITS ARRAY,. . 53
BITS data type 6, 62
BITS data-elements . . 49
BITS relationship with BOOLEAN . 64
BITS, data type 48
BIT POSITION, standard routine . 151
BIT:SIZE, standard routine . 151
BLOCKSIZE in file control . . 177
BLOCKSIZE, setting for files , 194
BLOCKSIZE, standard routine . . 151, 194
BNF notation . . . 282
Boolean data—elements . . 39
Boolean literal expressions . . . 28
Boolean literals TRUE and FALSE . . 26
BOOLEAN simple data type . . 35
BOOLEAN, relationship to BITS . . . 64
BOOLEANZ-ENUMERATIONZ compiler option . . 216
bounds for ARRAY indexes . 6O
BYTE data type . 6, 48
BYTE data-elements . 48
BYTES ARRAY . . . 53
BYTES data type . . 6, 48, 62
BYTES data-elements . . , 48
BYTES data—elements and apostrophes . . 55
BYTES data-elements, PACKing of . . 238
BYTES, data assignment to . . 58
BYTES, definition of . 62
BYTES, initialization of . 63
BYTES, referencing of . . 58

Norsk Data ND-60.117.5 EN

Index term Reference

call of subroutine, see ROUTINE invocation 243
CALL-HIERARCHY, compiler command 209

calls, hierarchy of routine 209
calls, SINTRAN III monitor 273
cardinal number of SET 79
CASE branching statement 10, 111
CASE statement, ELSE in 111
CASE statement, ENDCASE and 111
CASE statement, INCASE in 111
change operator, value of 93
character literal, single 29
character sets in PLANC 19
character string 6, 62
character, single 6

characters, PLANC special 20
characters, special 20

check of ARRAY index 212
checking file size 194
classes of operators 90
CLOSE in file control 177, 194
CLOSE standard routine 151, 194
COBOL and FORTRAN ROUTINE, calls from 145
COBOL from PLANC, invoking 263
COBOL routines, similar routines in PLANC 138
COBOL, invoking PLANC from . .~. 261

code optimization on ND--100 212
command table compiler 199
command, see also compiler command 199
commands in source programs for the PLANC compiler . 201
comments and% 10, 23
commercial at character (@) in ROUTINE 133
COMMON from PLANC, accessing FORTRAN COMMON 260
COMMON option for FORTRAN COMMON import 165
communication between MODULES 164
compilation and loading of MODULES 173
compilation of source programs 202
compilation, conditional 206
compilation, MODULE structure and separate 173
COMPILE restriction 298
compile time constants 206
compile time macros 208
compiler command CALL~HIERARCHY 209
compiler command CONSTANT 206
compiler command CROSS——REFERENCE 209
compiler command DATE 215
compiler command DEBUG—MODE 213
compiler command DEFINE 205
compiler command EJECT 211
compiler command ELSE 206
compiler command ELSIF 206
compiler command ENDIF 206
compiler command ENDMACRO 208
compiler command EOF 203

Norsk Data ND-60.117.5 EN

Index term Reference

compiler command EXIT . . 203
compiler command HELP . . 203
compiler command IF . . 206
compiler command INCLUDE . 205
compiler command KILL . . . 206
compiler command LIBRARY—MODE . . 212
compiler command LINE~BIAS . 211
compiler command LINKAGE—REFERENCE . 210
compiler command LIST . . 211
compiler command LOAD . 204
compiler command MACRO . . 208
compiler command MODULE——LIBRARY—MODE . 213
compiler command NDlOO——EXTENDED . . 211
compiler command OPTION . . 212, 216
compiler command FROG—FILE . 204
compiler command REAL-PRECISION . . 212
compiler command SEPARATE‘DATA . 211
compiler command TARGET—MACHINE . . 215
compiler commands in PLANC source program . . 201
compiler commands, table . 199
compiler invocation . . . 200
compiler linkage information . 209
compiler MACRO, parameters to . . 208
compiler messages 219
compiler option ARRAY- INDEX-CHECK . . 212
compiler option BOOLEANZ—ENUMERATIONZ . . 216
compiler option SQUEEZE . . 212
component access RECORD . . 105
component access, RECORD . 70, 105
component READ RECORD . . 71
component reference record . 71
component, RECORD . . . 65
component, WRITE RECORD . . 71
components of a MODULE . 161
composite data type ARRAY . . 36
composite data type RECORD . 36
composite data type ROUTINE . . 36
composite data type SET . . 36
composite data types . . 5, 36, 53
composite data—element, definition . 35
compression of data: PACKED . . 238
conditional compilation . . . 206
conditional compilation example . . 207
conditional statement IF . 9
conditions, exception . . 123
CONSTANT compiler command . . 206
constant declaration 39
CONSTANT declarations, rules for . 4O
CONSTANT value, default . . 40
CONSTANT, global TYPE and . . . 173
CONSTANT, IMPORT of TYPE and to inner MODULES . . 166
constants, compile time . . 206
continuation statement . 22

Norsk Data ND-60.117.5 EN

Index term Reference

control statements, sequence . 9, 107
control structures . . 107
control variable in FOR loop . 114
control with files: BLOCKSIZE . . 177
control with files: CLOSE . . 177
control with files: FILESIZE . 177
control with files: OPEN . . 177
control with PACKED variable in loops . . 115
control with POINTER implied ranges in loops . 115
control, WHILE and EXITWHILE in loops . . 120
control, WHILE statement in loops . . 120
conversion between data types . . 103
CONVERT standard routine . 103, 151
creating a stack . 175
creating an identifier . . 176
cross reference listing from compiler . . 209
CROSS~~REFERENCE compiler command . . 209
CROSS-REFERENCE identifier length, restriction on . . 300
CROSS—REFERENCE incompatibility with

LINKAGE—REFERENCE . . . 211

data allocation, dynamic . . . 82, 153
data allocation, use of FREE P pointer for dynamic . 83
data area for ROUTINE calls . . 243
data compression . . 238
data deallocation, dynamic . 151
data declaration . 35
data declarations . . . 53
data transfer, INPUT and . 177
data transfer, OUTPUT and . . 177
data type ARRAY . . 36
data type BITS . 6, 48, 62
data type BOOLEAN . . 35
data type BYTE . . 6, 48
data type BYTES . . 6, 48, 62
data type defaults . 212
data type ENUMERATION . . 5, 35
data type INTEGER . . 35
data type LABEL . . . 35, 44
data type modification, simple types . 36
data type POINTER 5, 35
data type REAL . . 35
data TYPE RECORD . 7, 36, 65
data type ROUTINE . . 36
data type SET . . . 36, 74
data TYPE specification . . 6
data type VOID . 5, 35, 44, 129,

133
data type, definition of modified types . . 45
data type, legal in-values to ROUTINE . . 129
data type, legal out-values from ROUTINE . 129

Norsk Data ND—60.ll7.5 EN

Index term Reference

data type, precision modified . . 46
data type, ROUTINE as . . 127, 147
data types _ 5
data types, access modified . . 47
data types, composite . . . 5, 36
data types, conversion between . 103
data types, definition . 35
data types, predefined . 6, 48
data types, predefined using ARRAY . 62
data types, RANGE modified . . 45
data types, simple . . 5, 35
data, assignment to BYTES . . 58
data, global . 174
data, PACKED . . 238
data-allocating routine NEW 82
data-element allocation and TYPE specification . 57
data-element ARRAY . 53
data-element RECORD 65
data-element restriction: access to WRITE elements . 298
data-element SET 74
data-element storage and the program stack . 174
data~elements BITS . 49
data—elements BYTE . 48
data-elements BYTES . . 48
data—elements, apostrophes used to speCify BYTES . 55
data-elements, Boolean 39
data—elements, definition . . . 24, 35
data-elements, definition of composite . 35
data-elements, definition of simple . . 35
data-elements, ENUMERATION . 4O
data-elements, in linked lists . 44
data-elements, integer 37
data—elements, multi-CPU synchronization of . . 236
data—elements, PACKing of BYTES . . 238
data—elements, PACKing of ENUMERATION . . 238
data—elements, PACKing of INTEGER RANGE . . 238
data—elements, POINTER 42
data-elements, predeclaration . . 51
data-elements, real . . 38
data—elements, statically allocated . . 174
DATE compiler command 215
DEBUGGER and ROUTINE out-value restriction . 298
DEBUGGER restriction and ELSE . . 298
DEBUGGER restriction and EXITFOR . 298
DEBUGGER restriction and EXITWHILE . 298
DEBUGGER restriction and INCASE . . 298
debugging 213
DEBUG~MODE compiler command . . 213
DEBUG~MODE restriction . 298
declaration ARRAY . . 54
declaration of composite data . . 53
declaration of CONSTANTS . 39
declaration of data . . 35

Norsk Data ND~60.117.5 EN

Index term Reference

declaration of equivalence between variables . 51
declaration ROUTINE . . 127
declaration rule for CONSTANTS . 4O
declaration SET . . 74
declaration, definition . . 36
declaration, LABEL . 44
declarations within a MODULE, global . 161
declarations, default access for variables . 47
declarations, general form . . 36
default access after variable declaration . . 47
default ARRAY element storage . . 235
default CONSTANT value . , 40
default element sequence in ARRAYS . 55
default ROUTINE parameter access . 143
default SET initialization . 75
defaults for data type . 212
DEFINE compiler command . . 205
defined TYPES, user . . . 49, 57
definition assignment operators . . 91
definition BYTES . . 62
definition composite data~element . . 35
definition data types . . . 35
definition data-element 24, 35
definition declaration . 36
definition file records . 178
definition literal expressions . 26
definition literals . . 24
definition modified data type . . 45
definition MODULE 161
definition of a file . 178
definition of base types . . 36
definition of executable PROGRAM . 161
definition ROUTINE . . 127
definition simple data-element . 35
definition, expressions . 89
definition, ROUTINE body . 128
definition, ROUTINE headers . 128
definition, standard routines . 150
descriptor format . . . 178
descriptors INPUT format . 180
descriptors OUTPUT format . . 187
digits in REAL data, number of significant . 212
DISPOSE parameter . . 83
DISPOSE standard routine . . 43, 83, 151
division of integers and remainders . 94
DO and ON ... ENDON error handling . 123
D0 and ON ... ENDON exception handling . 123
D0 ENDDO loop 113
D0 loop . . . 9
D0 loop, WHILE and . 120
D0 statement . 113
D0 WHILE loop . . 9
dot access, repeated . 70

Norsk Data ND-60.ll7.5 EN

10.

Index term Reference

dot notation . . 7O
dynamic data allocation . . . 82, 153
dynamic data allocation, FREE P pointer and . . 83
dynamic data deallocation . . 151

EJECT compiler command . 211
element access in ARRAYS . . 58
element POINTER is NIL in lists . . 87
element reference in ARRAYS . . 58
element sequence in ARRAYS default . 55
element Specification in ARRAYS . . 54
element storage, default in ARRAYS . 235
ELSE and DEBUGGER, restriction . 298
ELSE compiler command . . 206
ELSE in CASE statement . 111
ELSE in IF statement . 108
ELSIF compiler command . 206
ELSIF in IF statement . . 108
ENDCASE in CASE statement . . 111
ENDDO, DO loop termination . 113
ENDFOR, FOR loop termination . 114
ENDIF compiler command . 206
ENDIF in IF statement . . 108
ENDIF, $ENDIF restriction . . 299
ENDMACRO compiler command . . 208
ENDON after ERRETURN 147
ENDON, and error handling with ON ... DO . 123
ENDON, ON exception handler termination . . 123
ENDROUTINE statement . 146
entering and exiting from STANDARD RDUTINE . 246
entire ARRAY access 59
entire RECORD operation . . 71
ENUMERATION and loops . . 115
ENUMERATION data type . . 5
ENUMERATION data-elements 40
ENUMERATION data~elements, PACKing of . . 238
ENUMERATION literal list . . . 31
ENUMERATION simple data type . 35
ENUMERATION, storage requirement . 231
EOF compiler command . 203
EOF in source file . 203
equivalence declaration . . 51
equivalent Storage locations . . 50
ERRCODE system variable, ERRETURN and . . 146
ERRETURN and ERRCODE system variable . 146
ERRETURN and exception handling . . . 146
ERRETURN and ON ... ENDON exception handler . . 146
ERRETURN 0N ... ENDON 147
ERRETURN simulation on ROUTINEERROR . . 124
ERRETURN statement 146
error handling with ON ... DO ... ENDON . . 123

Norsk Data ND—60.117.5 EN

..11_

Index term Reference

error handling, exceptions and . 123
error message not given when TYPE is wrong . 297
error messages . . . 219
example % and & in strings . 29
example ALIAS usage 125
example arithmetic operators . 96
example array declaration . . 56
example array type declarations . . 57
example assembler, inline . . 215
example ASSERT statement . 123
example BIT standard routine . 151
example BITS data~elements . 64
example Boolean declarations . 39
example Boolean literals . 26
example byte declarations . . 48
example BYTES datavelements 62
example CASE ... INCASE ... ENDCASE . . 10
example CASE statement . . 112
example comments and° . . . 23
example conditional compilation . . 207
example constant declaration . 40
example CONVERT routine . , 104
example cross-referencing . . 210
example DO ... ENDDO loop . . 9
example DO statement . . 113
example dynamic data creation . . 84
example ENUMERATION . . 5
example exception handler . . 123
example EXPORT . . . 164, 166
example FOR ... ENDFOR loop . . . 9
example FOR and pointer implied ranges . 116
example FOR loop with WHILE . . 9
example FOR statement . . 114
example FORCE routine . . 104
example global variable . . 16
example GO statement 108
example I/O using the terminal . l7
example identifier names . 30
example IF ... ENDIF . 9
example IF statement . 109
example IMPORT . . . 165, 166
example IMPORT of a ROUTINE . . 165
example INISTACK . . 175
example INISTACK use . 175
example inline assembler . 215
example integer declarations . 38
example integer INPUT . . 17
example integer literals . 24
example integer OUTPUT . 17
example label declarations . 44
example line continuation . . . 22
example linked list predeclaration . 52
example list implied DO loop . 18

Norsk Data ND~60.117.5 EN

-12-

Index term Reference

example list processing . . 8
example local variable . 16
example logical operators . . 98, 100
example logical operators and SET . . 100
example MACRO usage . . 208
example main PROGRAM . 163
example MOD operator . 95
example MODULE . . 15, 162
example MODULE nesting , 174
example MODULE structure . 15
example multiple % . . . 23
example NEW standard routine , 154
example NEW statement . . . 84
example new type specifications . . 49
example octal integer literals , 24
example ON ... ENDON statement . 123
example OPEN statement . 194
example operator usage . 92
example operators compatible with Boolean variables . 28
example operators compatible with integers . 26
example operators compatible with reals . . 27
example PLANC program . ' . 4
example POINTER . . . 5
example POINTER and ROUTINE . . 132
example POINTER ARRAY . . . 6
example precision specification . . 94
example PRED standard routine . . 155
example real literals 25
example RECORD component access . . . 8, 70, 71, 105
example record TYPE declaration and specification . . 66
example RECORD TYPE specification . . 7
example RECORDS and list processing . . 8
example recursion 148, 149
example recursive MODULES . . 174
example relational operators . 102
example routine 11, 12, 130
example ROUTINE and @ (commercial at) . 134
example ROUTINE and POINTER . . 132
example ROUTINE as data . . 148
example ROUTINE as operator . . , 14
example ROUTINE composite in—value . 133
example ROUTINE invocation . l4
example ROUTINE parameter access . 133
example ROUTINE predeclaration . 51
example ROUTINE recursion 148, 149
example ROUTINE specified as TYPE . . 147
example ROUTINE with an in—value . 13
example ROUTINE with an out—value . . . 13
example ROUTINE with in- and out-values . . 14
example ROUTINE with out-value . 12
example ROUTINES . . 130
example scope of identifiers . 16
example SET and logical operators . . 100

Norsk Data ND~60.117.5 EN

-13_

Index term Reference

example SET declarations . 76
example set member addition . . 81
example set member removal . 81
example SET store operation (=:) . 78
example set TYPE declarations . . 76, 80
example sets and relational operators . . 79
example SHIFT operator . 95
example simple program 4
example single character (BYTE) literal, £ . 29
example string literals (BYTES) . 29
example SUCC standard routine . . 156
example TYPE specification . . 6
example TYPE specification of ROUTINE . . 147
example TYPEOF usage . 50
example USING ... ENDUSING . . 106
example variant RECORD specification . 7
example WHILE statement . . . 120
example WHILE statements, multiple in loop . 122
exception and INPUT, ROUTINEERROR in . 177
exception and OUTPUT, ROUTINEERROR in . . 177
exception condition ASSERTFALSE . . 124
exception condition OVERFLOW . 124
exception condition POINTERERROR . 124
exception condition RANGEERROR . 124
exception condition ROUTINEERROR . 124
exception condition STACKERROR . 124
exception conditions . 123
exception handler missing on ASSERTFALSE . 125
exception handling ERRETURN and ON . 146
exception handling with ON DO ENDON . . 123
exception handling, ASSERT and . 123
exceptions and error handling . . 123
executable PROGRAM definition . . 161
execution immediate program . . 204
EXIT compiler command . . 203
exit from ROUTINEs . . 146
EXITFOR and DEBUGGER, restriction . . 298
EXITFOR in FOR loop 114
exiting from STANDARD ROUTINE, entering and . . 246
EXITWHILE and DEBUGGER, restriction . . . 298
EXITWHILE in loop control . 120
EXPORT and IMPORT qualifier SYSTEM . . 164
EXPORT and predefined ROUTINEs or operators,

restriction 297
EXPORT from MODULES . . 161
EXPORT name restriction . . 301
EXPORT restrictions . . 164
EXPORT statement . 15, 164
expression, Boolean literal . 28
expression, definition . 89
expression, integer literal . 26

expression, literal . . 26
. 89expression, operands in .

Norsk Data ND~60.117.5 EN

._14_

Index term Reference

expression, operator in . . 89
expression, parentheses in . . 90
expression, parentheses in arithmetic . . 96
expression, real literal . 27
expression, resulting value of . 89
expression, ROUTINE priority in . . . 9O
expression, user defined routine priority in . 90
expressions with multiple store operators . . 92

file :PLNC . 202
file :SYMB . 202
file :XREF . . 209
file CLOSEing . . . 194
file control CLOSE in . . 177
file control, BLOCKSIZE in . 177
file control, FILESIZE and . 177
file control, OPEN and . 177
file INPUT, random . 185
file OPENing . . 193
file OUTPUT, random . . 192
file PLNC 202
file record, formatted . 178
file record, unformatted . 178
file size checking . 194
file size setting . . 194
file SYMB 202
file, BLOCKSIZE setting . . 194
file, definition of . . 178
file, list . 202
file, number of . . 178
file, records on . 178
FILESIZE in file control . 177
FILESIZE standard routine . . 152, 194
FOR ENDFOR loop . . 114
FOR loop . . 9
FOR loop, control variabie in . . 114
FOR 100p, EXITFOR in . 114
FOR loop, REVERSE in . 115
FOR loop, WHILE in . 120
FOR statement 114
FOR statement and linked lists . 116
FORCE standard routine . . 103, 152
formal parameters, ROUTINE identification:

restriction 297
formal ROUTINE parameter access, modification of . 129
format descriptor . . 178
format descriptors INPUT . 180
format descriptors OUTPUT . . 187
formatted file record . . 178
formatted INPUT standard routine . 179
formatted OUTPUT standard routine . . 186

Norsk Data ND-60.117.5 EN

._15,_

Index term Reference

FORTRAN and COBOL, routines similar to . 138
FORTRAN COMMON, IMPORT COMMON option for . 165, 260
FORTRAN, invoking PLANC from . . 249, 256
FORTRAN, ROUTINE call from COBOL and . . 145
FREE_P pointer for dynamic data allocation . 83
FREE_P, NEW and dynamic data allocation in

free memory 84

global data . . . 174
global declarations within a MODULE . . 161
global TYPE and CONSTANT . 173
global variable, example . 16
GO statement . 44, 107

header, definition of ROUTINE . . 128
header, main PROGRAM . 163
HELP compiler command . . 203
hierarchy of ROUTINE calls . 209

identification of ROUTINEs . 127
identifier length restriction . . 300
identifier scope and ROUTINEs . . 150
identifier, name of . . 30
identifier, scope of . 16
identifiers, creation of . 176
identifiers, local . 150
identifiers, scope . . . 150, 176
IF command for conditional compilation . 206
IF conditional statement . 9
IF statement 108
IF statement, ELSE in . . 108
IF statement, ELSIF in . 108
IF statement, ENDIF in . 108
IF statement, THEN in . . 108
immediate program execution . . 204
implementation restrictions in PLANC . 297
implied range, POINTER and . 32, 44, 85
implied ranges . 32
implied SET member . 75
implied subarray . . . 61
IMPORT COMMON option for accessing FORTRAN COMMON . . 165
IMPORT into MODULES 161
IMPORT name restriction . . 301
IMPORT of a ROUTINE . . . 165
IMPORT of TYPE and CONSTANT . . 166
IMPORT qualifier SYSTEM . . 164
IMPORT statement . . 15, 164

Norsk Data ND—60.117.5 EN

._15_

Index term Reference

IN operator 21
IN option and dynamic data allocation . . 83
IN specification and dynamic data allocation . 82
1n— value ROUTINE . . 133
IN, restriction on . . 297
INCASE and DEBUGGER, restriction . 298
INCASE in CASE statement . 111
INCASE values, maximum number of . lll
INCLUDE compiler command . 205
INCLUDE restriction . . . 297
IND and subarray elements . . 61
IND restriction . . 297
IND standard routine . 43, 152
index bounds for ARRAY . 60
index checking in ARRAYS . 212
index information for ARRAYS . 6O
INISTACK example . . 4, 175
INISTACK standard routine . . 152, 175
initialization of strings of BYTES . 63
inline assembler . 214
INLINE ROUTINE call, restriction . 297
INLINE ROUTINE modifier . . 128, 131
INLINE ROUTINEs, restriction on ROUTINEERROR and . 298
INPUT formatted . . . 179
INPUT from random file . 185
INPUT in data transfer . 177
INPUT standard routine . 152, 177
INPUT statement 17
INPUT wit format descriptors . . 180
INPUT, ROUTINEERROR exception and . . 177
INSERT and linked lists . . . 85
INSERT standard routine 85, 152
INSERTing elements in lists, routine for . 152
INSERTing elements in SETs, routine for . . 80, 152
integer data—elements . . 37
integer expressions . . 26
integer literals . 24
integer literals, octal . . . 24
INTEGER RANGE data—elements, PACKing of . . 238
INTEGER RANGE, storage requirements for . . 230
INTEGER simple data type . . 35
integers and division 94
interfacing from other languages to PLANC ROUTINES . 243
in-value @ 133
in-value to ROUTINE 11, 127
in—value to ROUTINEs, legal data types . 129
invoking BASIC from PLANC 267
invoking COBOL from PLANC . . 263
invoking FORTRAN from PLANC . . 256
invoking MAC from PLANC . . 270
invoking PLANC from BASIC . . 265
invoking PLANC from COBOL . . 261
invoking PLANC from FORTRAN . . 249

Norsk Data ND-60.1l7.5 EN

17

Index term Reference

invoking PLANC from MAC . . 269
invoking ROUTINEs . . 135
invoking the compiler . 200

keywords in PLANC . . 20
KILL compiler command . . 206

LABEL declaration . . 44
LABEL simple data type . 35, 44
libraries, creation of . 212
libraries, entire MODULES as . 213
LIBRARY-MODE compiler command . . 212
LINE-BIAS compiler command . 211
linkage information from compiler . . 209
LINKAGE""REFERENCE compiler command . . 210
LINKAGE-REFERENCE, incompatibility with

CROSS-REFERENCE 211
linked lists and FOR statement . 116
linked lists and predeclarations for

initialization of static . . 52
linked lists, APPENDing to . 85
linked lists, INSERTing in 85
linked lists, RECORD data-elements in . . 44
linked lists, REMOVEing from . 85
LIST compiler command 211
list element POINTER is NIL . . 87
list file for output from compilation . . 202
list of ENUMERATION literals . 31
list of linked data-elements . 44
list of SET members . . 75
list processing example 8
listing of compiler cross references . 209
lists of RECORDS . . 85
lists, APPEND to linked . . 85
lists, INSERT and linked . . 85
lists, predeclaration of static linked . 52, 86
lists, REMOVE from linked . . 85
literal expressions, Boolean . 28
literal expressions, integer . 26
literal expressions, real . . 27
literal list, ENUMERATION . . 31
literal, Boolean . 26
literal, definition . . 24
literal, expression . . 26
literal, integer . 24
literal, octal integer . 24
literal, real 25
literal, single character . . 29
literal, string . . 29

Norsk Data ND-60.1l7.5 EN

48——

Index term Reference

LOAD compiler command 204
loading, ALIAS and 173
loading, MODULE compilation and 173
local identifiers and scope 150
local variable, example of scope 16
logical operand types 98
logical operation results 98
logical operators 97
logical operators and SETS 79
loop control variable in FOR 114
loop control with PACKED variables 115
loop control with POINTER implied ranges 115
loop control, WHILE and EXITWHILE in 120
loop control, WHILE statement and 120
loops, DO . 9
loops, DO ... ENDDO 113
loops, DO ... WHILE 9
loops, ENUMERATION and 115
loops, EXITFOR in FOR 114
loops, FOR . 9
loops, FOR ... ENDFOR 114
loops, REVERSE in FOR 115
loops, WHILE in D0 loops 120
loops, WHILE in FOR loops 120
lower bound for stack arrays 175

MAC from PLANC invoking 270
MAC, invoking PLANC from 269
MACRO compiler command 208
MACROs, compile time 208
MACROs, parameters to compiler 208
MACROs, restriction 297
main PROGRAM . 161
main PROGRAM header 163
main PROGRAM termination 163
MARKSTACK, removal in future compilers 300
maximum number of INCASE values 111
MAXINDEX restriction 297
MAXINDEX standard routine 60, 153
MC68000 memory usage 229
MC68000 STANDARD ROUTINE layout 249
MC68000 STANDARD ROUTINE, out-value return from . . . 249
MC68000 storage mapping 229
MC68000 word size 229
memory usage MC68000 229
memory usage ND—lOO 229
memory usage ND—SOO 229
messages from the compiler 219
messages, error 219
MININDEX standard routine 60, 153
MININDEX, restriction 297

Norsk Data ND-60.117.5 EN

19

Index term Reference

mixed language programming 243
mixed language programs, STANDARD ROUTINE and 243
MOD and SHIFT operator 95
MOD operator 21, 94
modification of ACCESS to simple data types 6, 36
modification, access modified 36
modification, PRECISION 36
modification, RANGE 6, 36
modification, READ 6, 47
modification, REAL PRECISION 46
modification, WRITE 6, 47
modified data types, definition 45
modifier, INLINE ROUTINE 128, 131
modifier, REFERENCE ROUTINE 128, 132
modifier, SPECIAL ROUTINE 128, 131
modifier, STANDARD ROUTINE 128, 131
MODULE as library 213
MODULE nesting 173
MODULE structure and separate compilation 173
MODULE, ALIAS in a 167
MODULE, basic 161
MODULE, compilation and loading of 173
MODULE, components of a 161
MODULE, definition 161
MODULE, example 4, 15
MODULE, EXPORT from 161
MODULE, global declarations within a 161
MODULE, IMPORT to 161
MODULE-LIBRARY-MODE compiler command 213
MODULES, communication between 164
MODULES, usage of 164
monitor call B4INW 277
monitor call BBOUT 276
monitor call BRKM 274
monitor call CIBUF a . 275
monitor call CLOCK 279
monitor call CLOSE 276
monitor call COBUF 275
monitor call COMND 278
monitor call DBRK 277
monitor call DESCF 278
monitor call ECHOM 274
monitor call EESCF 278
monitor call ERMSG 277
monitor call FSCNT 282
monitor call FSDCNT 282
monitor call GDEVT 281
monitor call GETRT 276
monitor call HOLD 279
monitor call INBT 274
monitor call INSTR 281
monitor call IOSET 280
monitor call ISIZE 278

Norsk Data ND—60.117.5 EN

_20 _.

Index term Reference

monitor call LEAVE . 274
monitor call MBINB . 275
monitor call MBOUT . 276
monitor call MAGTP . 281
monitor call MCALL . 280
monitor call MDLFI . 277
monitor call MGTTY . 275
monitor call MOINF . 282
monitor call MSG . 276
monitor call MSTTY . 275
monitor call OPEN . . 277
monitor call OUTBT . 274
monitor call OUTST . 281
monitor call QERMS . 277
monitor call REABT . 278
monitor call REENT . 281
monitor call RELES . 280
monitor call RESRV . 280
monitor call RFILE . 279
monitor call RMAX . . 277
monitor call ROBJE . 276
monitor call RSIO . . 280
monitor call RUSER . 276
monitor call SBRK . . 277
monitor call SETBS . 278
monitor call SETBT . 278
monitor call SETCM . 274
monitor call SMAX . . 278
monitor call TSINB . 282
monitor call TIME . . 274
monitor call TUSED . 279
monitor call WFILE . . 279
monitor calls on ND-lOO . . 274
monitor calls on ND-SOO . . 274
monitor calls SINTRAN III . 273
MONITOR_CALL standard routine . . 153
multi~dimensional ARRAY 53
multiple store operators, expression with . . 92

name conflict and ALIAS ROUTINEs . 243
names of identifiers 3O
ND—lOO inline assembler, restriction . 301
ND-lOO memory usage . . 229
ND—lOO REAL4 REAL8 parameters, restriction . 299
ND—lOO run time options 211
ND-lOO STANDARD ROUTINE invocation, register usage . 244
ND—lOO STANDARD ROUTINE layout . 244
ND—lOO STANDARD ROUTINES, out-value register for . 245
ND-lOO storage mapping . . . 229
ND——100 word size . . . 229
ND- 100, code optimization on . 212

Norsk Data ND—60.117.5 EN

-21..

Index term Reference

ND—lOO, monitor calls . . . 274
NDlOO--EXTENDED compiler command . . 211
ND—SOO memory usage . . 229
ND~500 monitor calls . 274
ND—SOO STANDARD ROUTINE layout . . 248
ND-SOO STANDARD ROUTINE, outwvalue return . . 248
ND—SOO storage mapping . 229
ND~500 word size 229
nested inner ROUTINE invokation, restriction . 300
nested MODULES . 173
NEW and FREE_P . . . 84
NEW data-allocating routine . . 82
NEW standard routine . . 43, 82, 153
NIL value for list element POINTERS . . 87
NIL, POINTER value . 42, 44
NOT operator . 21, 97
NOT SET operator . 79
number of file . . 178
number of significant digits in REAL data . . 212
number SET cardinal . . 79

octal integer literal . . . 24
ON ... DO ... ENDON and error/exception handling . 123
ON ... ENDON after ERRETURN 147
ON exception handler, ERRETURN and . 146
ON OVERFLOW, restriction . 297
ON ROUTINEERROR and INLINE ROUTINES, restriction . 298
OPEN and file control . 177, 193
OPEN standard routine . . 155, 193
operand type logical . 98
operand type rule . . 91
operands in expressions . . 89
operands, type of relational . 101
operation on SETS, store . 78.
operations on entire RECORDS and their data-elements 71
operations on SETS, logical . .779
operations on SETS, relational . 77
operations, result of logical . . . 98
operations, type of result of arithmetic . 94
operator — . 21, 23, 89, 91,

93-97
operator + . 21
operator :=: . 21
operator =: . 21
operators 94
operators in PLNC 89
operators MOD and SHIFT . . 95
operators, arithmetic . . 94
operators, assignment . . 91
operators, binary . . 89
operators, classes . 9O

Norsk Data ND—60.117.5 EN

22

Index term Reference

operators, expressions with multiple store . 92
operators, legal in PLANC . . 21
operators, logical . 97
operators, relational . 101
operators, restriction EXPORT and

predefined routine or 297
operators, ROUTINES and priorities 132
operators, ROUTINES as . 132
operators, store . 91
operators, unary . . . 89
operators, value of change operations . . 93
optimizing ND-100 code: SQUEEZE . . 212
option ALIAS and resolution of references by loaders 130
option ARRAY——INDEX—CHECK, to compiler . . 212
option BOOLEANZ—~ENUMERATION2, compiler . 216
OPTION compiler command . . . 212, 216
option IMPORT COMMON for accessing FORTRAN COMMON . . 165
option IN and dynamic data allocation . . . 83
option SQUEEZE, for code optimization on ND-100 . . 212
option, PACKED . 238
optional ROUTINE types . 128, 131
options for ND—-100, Runtime . . 211
OR as SET operator . 79
OR operator . . . 21, 97
OUTPUT format descriptors . . 187
OUTPUT in data transfer . . 177
OUTPUT standard routine . . . 155, 177
OUTPUT standard routine, formatted output a . 186
OUTPUT statement, terminal I/O . l7
OUTPUT to random file . . 192
OUTPUT, the ROUTINEERROR exception and . 177
out-value data types, legal . . 129
out-value from ROUTINEs . . 11, 127, 133
out-value register for ND—lOO STANDARD ROUTINE . 245
out—value restriction, DEBUGGER and ROUTINE . . 298
out-value return from MC68000 STANDARD ROUTINE . 249
out—value return in ND—SOO STANDARD ROUTINE . . 248
out-value specification in ROUTINE declarations . . 127
out-value storage restriction . . 298
OVERFLOW exception condition . 124
OVERFLOW statement, restriction in ON OVERFLOW . 297

PACK keyword, removal of in future versions of PLANC 300
PACKED ARRAYS . . . 73
PACKED BYTES data-elements . . . 238
PACKED component access, ADDR for packed ARRAYS . . 299
PACKED component access, ADDR for packed RECORDS . 299
PACKED data 238
PACKED ENUMERATION data—elements . 238
PACKED INTEGER RANGE data~elements . 238
PACKED option . . 238

Norsk Data ND-60.117.5 EN

23

Index term Reference

PACKED RECORDS 73
PACKED variables, loop control with 115
parameter access READ in ROUTINE declarations 143
parameter access WRITE in ROUTINE declarations . . . 143
parameter access, default when passed to ROUTINES . . 143
parameter list, STANDARD ROUTINE 243
parameter modification, READ in ROUTINE 129
parameter modification, WRITE in ROUTINE . . . 129
parameter passing, restriction for REFERENCE ROUTINEs 299
parameter passing, restriction for STANDARD ROUTINES 299
parameter restriction on NDelOO REAL4 REALB 299
parameter to DISPOSE 83
parameter transfer to REFERENCE ROUTINES 143
parameter transfer to ROUTINEs 143
parameter transfer to STANDARD ROUTINEs 143
parameters for

ROUTINE identification, restriction on formal . . 297
parameters to compiler MACROs 208
parameters to ROUTINEs, actual 135
parameters, access modification of formal ROUTINE . . 129
parentheses in expressions 90, 96
parentheses omitted in ROUTINE invocation 136
PLANC character set 19
PLANC compiler commands in source programs 201
PLANC example 4
PLANC from BASIC, invoking 265
PLANC from COBOL, invoking 261
PLANC from FORTRAN, invoking 249
PLANC from MAC, invoking 269
PLANC implementation restrictions 297
PLANC keywords 20
PLANC operators 21
PLANC reserved words 20
PLANC ROUTINES, interface with other languages . . . 243
PLANC special characters 20
PLANC standard symbols 20
PLANC syntax 282
PLANC SYSTEM ROUTINE name protection 131
PLANC, accessing FORTRAN COMMON from 260
PLANC, assembler code in 214
PLANC, invoking BASIC from 267
PLANC, invoking COBOL from 263
PLANC, invoking FORTRAN from 256
PLANC, invoking MAC from 270
PLANC, starting the compilers 200
PLNC file . 202
POINTER data type 5
POINTER data—element 42
POINTER for dynamic data allocation, FREE_P 83
POINTER implied linked lists 116
POINTER implied ranges 44, 85
POINTER implied ranges, loop control with 115
POINTER to variant RECORD . .1. 69

Norsk Data ND—60.1l7.5 EN

-24-

Index term Reference

POINTER value NIL . . 42, 44
POINTER, NIL value of list element . 87
POINTER, simple data type . . 35
POINTER, storage requirement . . 231
POINTER, storage requirement for ARRAYs . . 232
POINTERERROR exception condition . 124
POINTERS and implied ranges . . 32
POINTERS, ADDR and . . 42
POINTERs, data—space restriction when using
predeclarations . . . 299
PRECISION modification . . 36
PRECISION modification of REALs . . 46
PRECISION modified data type . 46
PRED standard routine . . . 31, 155
predeclaration of data-elements . . 51
predeclaration of ROUTINEs 127, 132
predeclaration of static linked lists 52, 86
predeclared ROUTINE and PROGRAM restriction . . 298
predefined ARRAY data type . 62
predefined data type . . 6, 48
predefined routine or operator restriction,

EXPORT and . . . 297
priority in expressions of user defined routines . 90
priority of user defined routines . . 136
priority, assignment operators . 91
priority, standard routines . . 150, 157
PROG—FILE compiler command . 204
program compilation . . . 202
program execution, immediate . . . 204
PROGRAM restriction, predeclared ROUTINE as . . 298
PROGRAM routine, main . . . 161
program stack, data—element storage and the . . 174
program structure . . 161
program structuring . . . 107
program structuring statements . 9
PROGRAM, definition of executable . . . 161
PROGRAM, ROUTINE header in main programs . 163
program, STANDARD ROUTINE header for mixed language . 243
PROGRAM, termination of main programs 163
programming, mixed language . . 243

random file INPUT . . 185
random file OUTPUT . 192
RANGE modification . 6, 36, 45
range, implied . . 32
range, loop control with POINTER implied . 115
range, POINTER implied . . . 32, 44, 85
RANGEERROR exception condition . 124
READ access to data—element 47
READ access and ARRAYS 60
READ access and RECORD components . . 71

Norsk Data ND~60.117.5 EN

25

Index term Reference

READ and WRITE restriction with RECORD TYPE . . 301
READ modification 1 . 6, 47
READ, ROUTINE parameter access . . 143
READ, ROUTINE parameter modification . . 129
REAL data, number of significant digits in . 212
REAL data, storage requirement . 233
REAL data~e1ements . 38
real literal . . 25
real literal expressions . 27
REAL PRECISION modification . . 46
REAL simple data type . . . 35
REAL4/REAL8 parameter restriction ND--100 . 299
REAL-PRECISION compiler command 212
RECORD TYPE specification, variant RECORDS . . 68
RECORD access 71
RECORD access mode . 71
RECORD component access . . 70, 105
RECORD component READ . . 71
RECORD component reference . 71
RECORD component with WRITE access . 71
RECORD components 65
RECORD composite data type . 36
RECORD data TYPE . 7, 65
RECORD definition . . . 65
RECORD PACKED component access ADDR for . . 299
RECORD type 53
RECORD TYPE specification . . 65
RECORD, definition of base . 68
RECORD, POINTERS to variant . . 69
RECORD, variant . . 68
RECORDS, lists of . . 85
records, on files . . . 178
records, on formatted files . . 178
records, on unformatted files . . 178
RECORDS, operations on entire . . 71
RECORDS, PACKED 73
RECORDS, READ/WRITE access modification restriction . 301
RECORDS, storage requirement . 235
recursion, restriction on . . 148
recursive ADDRS, restriction . . 300
recursive inner ROUTINE invokation, reStriction on . 300
recursive MODULE declarations . . 173
recursive ROUTINE example . . 148, 149
recursive ROUTINES . . . 148
REFERENCE ROUTINE restriction . . . 300
REFERENCE ROUTINE, parameter transfer 143
REFERENCE ROUTINES, parameter passing restriction . . 299
REFERENCE, ROUTINE modifier 132
referencing BYTES strings . 58
referencing ARRAY element . . 58
referencing RECORD components . . 71
REFERNCE, ROUTINE modifier . 128
register for ND—lOO STANDARD ROUTINE out-value . 245

Norsk Data ND—60.117.5 EN

~26—

Index term Reference

register usage ND—lOO STANDARD ROUTINE invocation . . 244
relational operands, types of lOl
relational operations on SETS . . 77
relational operators . lOl
relationship between BITS and BOOLEAN variables . 64
removal of MARKSTACK standard routine . . 300
REMOVE and linked lists . . 85
REMOVE standard routine . . 155
REMOVE, SET ROUTINE . . 80
repeated dot access . . 70
reserved words in PLANC . . 20
restriction on $COMPILE compiler command . 298
restriction on SDEBUG—MODE . 298
restriction on $ENDIF . . . 299
restriction on $SEPARATE—DATA . . 298
restriction on ADDR and ROUTINEs as parameters . 297
restriction on ADDR: multiple (recursive) ADDRs . . 300
restriction on ALIAS identifier length . 300
restriction on ARRAY- INDEX-CHECK . . 299
restriction on assembler routines and scope levels . 298
restriction on CROSS- REFERENCE identifiers . 300
restriction on DEBUGGER and ROUTINE out-values . 298
restriction on ELSE while DEBUGGERing . . 298
restriction on EXITFOR while DEBUGGERing . 298
restriction on EXITWHILE while DEBUGGERing . 298
restriction on EXPORT and predefined

ROUTINEs or operators . . . 297
restriction on formal parameters for

ROUTINE identification . . . 298
restriction on IMPORTed/EXPORTed variable names . . 301
restriction on IN standard routine . . 297
restriction on INCASE while DEBUGGERing . . 298
restriction on IND standard routine . . 297
restriction on INLINE ROUTINEs . 297
restriction on MACROs . . 297
restriction on MAXINDEX standard routine . 297
restriction on MININDEX standard routine . 297
restriction on ND-lOO inline assembler . . 301
restriction on ND*100 REAL4 REAL8 parameter . . 299
restriction on nested inner ROUTINE invokation . 300
restriction on ON OVERFLOW statement . . 297
restriction on ON ROUTINEERROR and INLINE ROUTINES . 298
restriction on out—value storage . 298
restriction on placement of EXPORT statements . 164
restriction on POINTER data-space after

predeclarations . 299
restriction on predeclared ROUTINEs as PROGRAM . 298
restriction on RECORD TYPES with READ WRITE access . 301
restriction on recursive ROUTINEs . . . 148
restriction on REFERENCE ROUTINE parameter passing . 299
restriction on REFERENCE ROUTINES 300
restriction on security of access to

WRITE data-element . . 298

Norsk Data ND-60.117.5 EN

-27_

Index term Reference

restriction on SPECIAL ROUTINEs . . . 300
restriction on STANDARD ROUTINE parameter passing . . 299
restriction on STANDARD ROUTINEs . . 297, 300
restriction on the $INCLUDE compiler command . 297
restrictions on identifier lengths . 300
restrictions on the PLANC implementations . . 297
RETURN from ROUTINE . . 134
RETURN statement . 134, 146
REVERSE in FOR loop 115
routine FILESIZE, standard . . 194
routine INISTACK, standard . . 175
routine ADDR, standard . 150
routine and scope level restriction with

inline assembler . . 298
routine APPEND, standard . 85, 151
ROUTINE as data type . 127, 147
ROUTINE as operator . . . 132
ROUTINE as PROGRAM restriction when predeclared . . 298
routine BIT, standard 151
routine BIT POSITION, standard . 151
routine BIT:SIZE, standard . 151
routine BLOCKSIZE, standard . . 151, 194
ROUTINE body, definition . 128
ROUTINE call data area . 243
routine call hierarchy . . 209
ROUTINE calls from COBOL and FORTRAN . 145
routine CLOSE, standard . . 151, 194
ROUTINE composite data type . . 36
routine CONVERT, standard . . 103, 151
ROUTINE declaration . . 127
ROUTINE definition . . 127
routine DISPOSE, standard . . 43, 83, 151
routine FILESIZE, standard . . 152
ROUTINE for mixed language programming: STANDARD . 243
routine FORCE, standard 103, 152
routine header for main PROGRAMS . 163
ROUTINE header, definition . 128
ROUTINE identification . . . 127
ROUTINE identification restriction,

formal parameters for . 298
ROUTINE identifiers,

! " $ * + — . / : < = > ? T \ [] as . . 129
routine IND, standard 43, 152
routine INISTACK, standard . 152
routine INPUT, standard . . 152, 177

routine INSERT SET . 80
routine INSERT, standard 85, 152
ROUTINE interface from other languages to PLANO . . 243
ROUTINE in-value 11, 127, 133
ROUTINE in—value specification . 127
ROUTINE invocation 135
ROUTINE invocation, register usage in ND-lOO STANDARD

. . 136ROUTINE invocations, parentheses omitted in .

Norsk Data ND-60.ll7.5 EN

244

»—28—

Index term Reference

ROUTINE invokation restriction, nested inner . 300
ROUTINE layout, MC68000 STANDARD ROUTINES . . 249
ROUTINE layout, ND-100 STANDARD 244
ROUTINE layout, ND-SOO STANDARD ROUTINEs . 248
routine MAXINDEX, standard . . . 60, 153
routine MININDEX, standard . 60, 153
ROUTINE modifier INLINE . . 128, 131
ROUTINE modifier REFERENCE . 128, 132
ROUTINE modifier SPECIAL . 128, 131
ROUTINE modifier STANDARD . . . 128, 131
routine MONITOR_CALL, standard . 153
ROUTINE name conflict and ALIAS . . . 243
ROUTINE name in PLANC, SYSTEM qualifier . . 131
routine NEW data-allocating . . . 82
routine NEW, standard . . 43, 82, 153
routine OPEN, standard . 155, 193
ROUTINE options . . . 131
ROUTINE options STANDARD, REFERENCE, SPECIAL, INLINE 128
routine or operator restriction,

EXPORT and predefined . 297
routine OUTPUT, standard . 155, 177, 186
ROUTINE out—value . . 11,127, 133
ROUTINE out—value restriction, DEBUGGER and . 298
ROUTINE out-value return from MC68000 STANDARD ROUTINE§49
ROUTINE out-value return in ND— 500 STANDARD ROUTINEs 248
ROUTINE out—value specification 127
ROUTINE parameter access READ . . 143
ROUTINE parameter access WRITE . 143
ROUTINE parameter access, default 143
ROUTINE parameter list, STANDARD ROUTINE . 243
ROUTINE parameters, access modification of formal . . 129
ROUTINE parameters, READ modified . . 129
ROUTINE parameters, WRITE modified . 129
routine PRED, standard . 31, 155
ROUTINE predeclaration . . 127, 132
routine priority in expressions when user defined . . 9O
routine REMOVE SET . 80
routine REMOVE, standard . 85, 155
ROUTINE restriction, ADDR and . . . 297
ROUTINE restriction, REFERENCE ROUTINES . . 300
ROUTINE restriction, SPECIAL ROUTINEs . . 300
ROUTINE restriction, STANDARD ROUTINEs . 297, 300
routine SIZE, standard . 52, 155
routine SUCC, standard . . . 31, 156
routine termination when it is main PROGRAM . . 163
ROUTINE type . . . 53
routine TYPEOF, standard . 50, 156
ROUTINE, example . . 11
ROUTINE, IMPORT of a . 165
routine, main PROGRAM as . . 161
ROUTINE, TYPE specification with ROUTINE in it . 147
ROUTINEERROR and INLINE restriction 298
ROUTINEERROR exception and INPUT . 177

Norsk Data ND-60.117.5 EN

29

Index term Reference

ROUTINEERROR exception and OUTPUT . . 177
ROUTINEERROR exception condition . . 124
ROUTINEERROR, ERRETURN simulation and . . 124
ROUTINES examples of recursion . 149
routines in assembly language . . . 131
ROUTINES similar to FORTRAN and COBOL routines . 138
ROUTINES, actual parameters to . . . 135
ROUTINEs, commercial at (@) characters in . . 133
ROUTINEs, entering and exiting from STANDARD . 246
ROUTINEs, examples 130

ROUTINEs, exiting from . . 146
ROUTINEs, identifier scope and . 150

ROUTINES, list of standard . . 21
ROUTINES, parameter transfer REFERENCE ROUTINEs . . 143
ROUTINEs, parameter transfer to 143
ROUTINEs, parameter transfer to STANDARD ROUTINEs . . 143
ROUTINEs, recursive 148
ROUTINEs, RETURN from . . 134
ROUTINEs, similarly named . . 127, 129
routines, standard . . 150
rules for CONSTANT declarations . . 40
rules for operand type . 91
run time options ND—lOO . . 211

scope of identifiers . 16, 150, 176
scope of identifiers in PLANC ROUTINEs . 150
scope, restriction on calls from

assembler code to ROUTINEs . . . 298
separate compilation, MODULE structure and . 173
SEPARATE—DATA compiler command . 211
SEPARATE-DATA restriction . . 298
sequence control statements . . 9, 107
sequence, ARRAY default element . . 55
SET and logical operators . . 79
SET and user defined TYPES . 76
SET cardinal number . . 79
SET composite data type . . 36
SET data type 53, 74
SET data—element . 74
SET declarations . . . 74
SET initialization, default . . 75
SET member list . . 75
SET member, implied . . 75
SET members, initial . 74
SET routine INSERT . 80
SET routine REMOVE . 80
SET storage requirement . . 235
SET store operation (=:) . 78
SET type restriction . 75
SET TYPE specification . 76

. 74SET, base types for

Norsk Data ND-60.117.5 EN

.130_

Index term Reference

SETS, relational operations on . 77
setting file BLOCKSIZE . 194
setting file size . . 194
SHIFT operator . . 21
SHIFT operator, MOD and 95
significant digits in REAL data, number of . 212
similarly named ROUTINEs . 127, 129
simple data type BOOLEAN . 35
simple data type ENUMERATION . 35
simple data type INTEGER . 35
simple data type LABEL . 35
simple data type modification . . 36
simple data type POINTER . 35
simple data type REAL . . 35
simple data type VOID . . 35
simple data types . . 5, 35
simple data~element, definition . . 35
simulation and ROUTINEERROR ERRETURN . 124
single Character . 6
single character literal . 29
SINTRAN III monitor calls . . . 273
size of simple data types and RECORD components . . 151
SIZE standard routine . . 52, 155
source file inclusion . . 205
source files, EOF in 203
source programs, PLANC compiler commands in . . 201
special characters in PLANC . . 20
SPECIAL ROUTINE modifier . 128, 131
SPECIAL ROUTINE restriction . . 300
specification of ARRAY element . 54
specification of ARRAY TYPE . . 57
specification of data TYPE . 6, 49
specification of
data-e1ement,storage allocation for TYPE . 57
specification of RECORD TYPE . 65
specification of SET TYPE . . 76
specification of stack
for dynamic data allocation with IN . . 82
specification of subarrays . . 61
specification of variant RECORD TYPE. . 68
SQUEEZE compiler option . . 212
stack ARRAYS, correct value of lower bound . 175
stack creation 175
STACKERROR exception condition . . 124
stacks and the data-element storage of the programs . 174
standard routines, list of . . 21
standard routine ADDR . . . 150
standard routine APPEND . . 85, 151
standard routine BIT . . 151
standard routine BIT_POSITION . . 151
standard routine BIT_SIZE . . 151
standard routine BLOCKSIZE . 151, 194
standard routine CLOSE . 151, 194

Norsk Data ND—60.117.5 EN

33

Index term Reference

standard routine CONVERT . 103, 151
standard routine DISPOSE . 43, 83, 151
standard routine FILESIZE 152, 194
standard routine for formatted OUTPUT 186
STANDARD ROUTINE for mixed language programming . . 243
standard routine FORCE 103, 152
standard routine IND . . . 43, 152
standard routine INISTACK . . 152, 175
standard routine INPUT . 152, 177
standard routine INSERT . . 85, 152
STANDARD ROUTINE invocation,

register usage on the ND-lOO . . 244
STANDARD ROUTINE layout ND—lOO . 244
STANDARD ROUTINE layout ND-500 . 248
standard routine MAXINDEX . . 153
standard routine MININDEX . . 153
standard routine MONITOR_CALL . . 153
standard routine NEW . . 43, 82, 153
standard routine OPEN . . 155, 193
standard routine OUTPUT 155, 177
STANDARD ROUTINE parameter list . . 243
standard routine PRED . . 31, 155
standard routine priority . . 150, 157
standard routine REMOVE . . 85, 155
STANDARD ROUTINE restriction . 300
standard routine SIZE . . 52, 155
standard routine SUCC . . 31, 156
standard routine TYPEOF . . 50, 156
standard routines as operators . 150
standard routines available in PLANC . 150
standard routines, definition . . . 150
STANDARD ROUTINEs, entering and exiting from . 246
STANDARD ROUTINEs, layout on the MC68000 . . 249
STANDARD ROUTINEs, out—value register on the ND-lOO . 245
STANDARD ROUTINEs, out~va1ue return from the MC68000 249
STANDARD ROUTINEs, out~va1ue return in ND—SOO . . 248
STANDARD ROUTINEs, parameter passing restriction . 299
STANDARD ROUTINES, parameter transfer . . 143
standard routines, restriction . 297
STANDARD, ROUTINE modifier . 128, 131
starting PLANC . . . 200
statement ASSERT and exception handling . . 123
statement CASE branching . . 111
statement CASE, branching . . 10
statement continuation . 22
statement DO and loops . 113
statement ELSE in CASE . 111
statement ENDCASE in CASE . . . 111
statement ENDROUTINE to exit from ROUTINEs . 146
statement ERRETURN to exit from ROUTINEs . . 146
statement EXPORT for inter~MODULE communication . . 164
statement EXPORT, inter-MODULE communication . 15
statement FOR and loops . . 114

Norsk Data ND—60.117.5 EN

32

Index term Reference

statement GO, transfer of control in program . 44, 107
statement IF, conditional execution . . . 108
statement IMPORT for inter—MODULE communication . . 164
statement IMPORT, inter—MODULE communication . 15
statement INCASE in CASE . lll
statement INPUT, terminal I/O . 17
statement OUTPUT . 17
statement RETURN to exit from ROUTINES . 134, 146
statement USING and RECORD components . . 105
statement WHILE and loop termination . 120
statements IF, conditional . 9
statements, introduction to . . 22
statements, program structuring . . 9
statements, sequence control . 9

statements, sequence controlling . 107
statically allocated data—elements . 174
storage alignment . . 236
storage allocation 52
storage locations, equivalent . . 50
storage mapping in the MC68000 . 229
storage mapping in the ND— 100 . 229
storage mapping in the ND— 500 229
storage of data-elements and the program stack 174
storage requirement for ARRAY POINTER data—elements 232
storage requirement for ARRAY datatelements . 235
storage requirement for ENUMERATION data—elements . . 231
storage requirement for POINTER data— elements . 231
storage requirement for REALs . 233
storage requirement RECORD . 235
storage requirement SET . 235
storage requirements for INTEGER RANGE data-elements 230
storage restriction out-value . . . 298
storage synchronization between different CPUs . 236
storage, default order of ARRAY elements . 235
store operation and SETS . 78
store operator . . 91
store operators, expressions with multiple . 92
store—into function . . 141
string literal . 29
string of BITS . 6, 62
string of characters . 6, 62
string, % in . 29
string, & in . 29
string, in . 29
string, delimiter . . 29
structure of programs . . 161
structures for program control . 107
structuring (control) statements . 9, 107
subarray ADDR . . 61
subarray implied . 61
subarray IND . . 61
subarray specification . . . 61
subroutine calls, see ROUTINE invocation . 243

Norsk Data ND-60.117.5 EN

_.33~

Index term Reference

SUCC standard routine . . 31, 156
swap operator 93
SYMB file . . . 202
symbols, standard PLANO . . . 20
synchronization of data-elements on different OPUS . 236
syntax of PLANC (in BNF notation) . . 282
SYSTEM EXPORT IMPORT qualifier and system routines . 164
SYSTEM ROUTINE, making with PLANC 131
system variable ERRCODE and programmed ERRETURN . . 146

table of compiler commands . . 199
TARGET-MACHINE compiler command . . 215
terminal I/O . . 17
termination main PROGRAM routine . 163
THEN in IF statement , 108
transfer of REFERENCE ROUTINE parameters . 143
transfer of STANDARD ROUTINE parameters . . 143
TYPE and CONSTANT, global (preceding MODULES) . 173
TYPE and CONSTANT, IMPORT of 166
type ARRAY 53
type ARRAY, composite data ‘ . 36
type BITS . . . 48, 62
type BITS, predefined . . 6
type BOOLEAN, simple data . . 35
type BYTE 48
type BYTE, predefined . . 6
type BYTES . 48, 62
type BYTES, predefined . 6
type conversion . . 103
type default data . . 212
type ENUMERATION . . . 5
type ENUMERATION, simple data . . 35
type INTEGER, simple data . . 35
type LABEL . . 44
type LABEL, simple data . . 35
type logical operand 98
type modification, simple data types . 36
type of relational operands . . . 101
type of result of arithmetic operation . 94
type POINTER . . 5
type POINTER, simple data . . 35
type REAL, simple data . 35
type RECORD . . . 53, 65
TYPE RECORD specification . . 7
type RECORD, composite data . . 36
type restriction on SETS . 75
type ROUTINE . . 53, 147
type ROUTINE, composite data . 36
type rule: operand compatibility . 91
type SET . . 53, 74
TYPE SET and user defined TYPES . . 76

Norsk Data ND-60.117.5 EN

134..

Index term Reference

type SET as base type . . 74
type SET, composite data . 36
TYPE specification 49
TYPE specification and data-element allocation . 57
TYPE specification of new data structures a . 6
TYPE specification of RECORDS . . 65
TYPE specification with ARRAYS . . 57
TYPE specification with ROUTINE in it . . 147
TYPE specification with SETS . . 76
TYPE Specification, variant RECORDS . . 68
type VOID . . 5, 44
type VOID data . 133‘
type VOID, simple data . . 35
TYPE wrong without error message . 297
TYPEOF standard routine . . 50, 156
types of composite data . . 5, 36
types of data . . 5
types of data that are predefined . . 6
types of simple data . . 5
types, composite data . . 53
types, definition of base . . . 36
types, definition of data types . . . 35
types, definition of modified data types . 45
types, predefined ARRAY data . 62
types, predefined data 48
types, simple data . 35
TYPES, user defined . . 49, 57

unary operator . . 89
unformatted file records 178
user defined ROUTINES, priority in expressions . 90
user defined routines, priority of . 136
user defined TYPES . . . 49, 57
user defined TYPES, SET and . . 76
USING statement . . . 105
USING statement, effect of . 106

value NIL for POINTERS . 42, 44
value of :=: operator . . 93
value of change operator . 93
value of expressions . 89
value, default for CONSTANTS . 40
values, maximum number for INCASE . . 111
variable addressing and POINTERS . 5
variables for FOR loop control . 114
variables, example of global . 16
variables, example of local . . 16
variables, loop control with PACKED . . 115
variant RECORD POINTER . 69

Norsk Data ND~60.117.5 EN

-35_

Index term Reference

variant RECORD TYPE specification . . 68
variant RECORD, definition . 68
VOID data type . 5, 44, 129, 133
VOID keyword . . 133
VOID simple data type . . 35

WHILE and DO loop 9, 120
WHILE and EXITWHILE in loop control . . 120
WHILE and FOR loop 120
WHILE statement 120
WHILE statement in loop control . . 120
word size MC68000 . . 229
word size ND-lOO . 229
word size ND-SOO . 229
words that are reserved in PLANC . 20
WRITE access . . 47
WRITE access and ARRAYS 6O
WRITE access to RECORD components 71
WRITE as ROUTINE parameter modification . . . 129
WRITE data-element, no error message when fetching . 298
WRITE modification 6, 47
WRITE ROUTINE parameter access . 143
WRITE/READ restriction RECORD . . 301

XOR operator . 21, 97
XOR SET operator . 79
XREF file type . 209

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 1

NOTATION

The notation used throughout the manual to describe PLANC statements
and constructs is listed below:

I]

()

Square brackets indicate optional items

An ellipsis following square brackets specifies that the
preceding optional items may appear one or more times in
succession.

Parentheses, sometimes referred to as round brackets,
are part of the PLANC language and must be coded where
shown.

Minus—signs or hyphens are sometimes used to increase
legibility in syntax definitions. Note that this does
not imply that hyphens are accepted in variable names in
programs.

Blanks are used to improve readability, but unless
otherwise noted have no significance.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 3
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

l. INTROflJCTIm AND OVERVIEW (F THE PIANC LANGLAE
The PLANC (Programming Language ND Computers) is designed as a high"
level systems programming language. It is a member of the ALGOL/PASCAL
family of block structured languages. PLANC is used mainly for writing
systems software such as operating systems and compilers. It has been
defined in a machine-independent manner and machine—dependent features
(e.g. data allocation strategies, interfaces to programs in other
languages) for particular machines will be specifically noted in this
manual.

In the late 60's and early 70's many computer scientists and software
developers identified the‘ 'software crisis‘. One trend from this
recognition of problems and difficulties in software development was
that using assembly languages for large software projects was
inadequate.

The first move was more extensive use of macro processors to create
single language constructs which gave more powerful facilities to an
assembly language, in a reliable and consistent way. The next step was
to develop 'middle—level' languages, primarily for systems
programming, but with features similar to the popular high-level
languages, e.g. FORTRAN, COBOL and ALGOL. A notable middle—level
language was PL360, developed by N. Wirth for the IBM 8/360, and was
the forerunner of Pascal which is now very widely used.

The early 70’s saw the emergence of Pascal, BCPL, BLISS, C and other
languages designed for writing systems software such as compilers and
operating systems. Some of these developments produced as a side
benefit, fairly straightforward techniques for implementation on
various hardware. System software development thus began to escape
from the exclusive province of the hardware manufacturers.

Further, these languages extended some areas in which the previous
high—level languages were limited or simply did not have, e.g. data
structures and the so-called structured programming control mechanisms
IF—THEN—ELSE, CASE and DO-WHILE etc. This has also affected the recent
development of general—purpose languages, namely some of the
particular features specified for FORTRAN 77 and ADA.

Norsk Data ND-60.ll7.5 EN

4 PLANC Reference Manual
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1.1. HANC LANGUAGE OVERVIEW

This chapter is a detailed overview of the PLANC language and should
enable programmers to read and understand PLANC programs. A more
detailed presentation of PLANC will appear in later chapters, for
those who wish to write large complex programs and systems or to
interface to programs and systems written in PLANC.

1.2. A SIMPLE PMNC PROGRAM

PLANC programs are structured into modules and routines; the routine
concept, as will be seen later, is a broad one compared with other
programming languages.

But first a simple example. The program below consists of a module
mudpie which contains a routine mprog, of the special routine type,
main program, that must be used for specifying the entry point at
execution time. The program also contains some examples of simple
declarations, a standard routine, and the use of the assignment
operator.

EXAHPLE 1.1 A VERY SIMPLE PROGRAM

MODULE mudpie
INTEGER ARRAY : stack [0:100]
PROGRAM : mprog

INTEGER : i,j,k,m
INISTACK stack
1 =: i
2 =: j
i+j =: k =: m

ENDBOUTINE
EWDMDDULE

The first line declares a module which is the smallest section of a
PLANC program that can be compiled separately.

On line 2, a single dimension array with bounds of O and 100 is
declared as a data-element in the basic module mudpie. Note that the

lower index bound must be 0 to be used by the INISTACK standard
routine.

Variables local to mprog appear in a declaration statement in line 4.
i and j are set to l and 2 and their sum is assigned to both k and m,
within one expression.

However simple a program may be, the INISTACK standard routine, shown
on line 5, must appear in the main program (here mprog) before any
other routines are called. It creates a stack to provide storage for
dynamic allocation of the data-elements within each routine while it
is being executed. In the previous example, this stack will be called
stack, declared in the main module.

Norsk Data ND-60.ll7.5 EN

PLANC Reference Manual 5
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1.3. DATA TYPES

Having looked at a basic PLANC program we will now look in greater
detail at the way in which data is described.

PLANC supports a variety of data types which are divided into the
categories of simple and composite. A data—element of composite type
may be subdivided into simple or further composite types. They are the
following:

SIMPLE TYPES COMPOSITE TYPES

INTEGER ARRAY
REAL RECORD
BOOLEAN SET
LABEL ROUTINE
VOID
ENUMEHATION
POINTER

The PLANC data types ENUMERATION and VOID are unusual; since the type
VOID only appears in the declaration of routines it is described along
with them. Data type ENUMERATION enables a data—element to take any
value from an explicitly specified ordered group. Examples of
declarations would be:

ENUMEHATION [hot,warm,mild,cool;cold] : weather,temperature
ENUMEFATION (lousy,firstclass,luxury,deluxe] : hotel :=lou5y

Note that hotel has been set to an initial value of lousy (hopefully
our program will be able to improve it!).

POINTERS are data types which are "addresses" of variables of some
other type. For instance, we could declare:

HEAL : r
REAL POINTER : rp := ADDB[r]

where the pointer data—element rp is initialized with the address of
the REAL data-element r.

Norsk Data ND-60.ll7.5 EN

5 PLANC Reference Manual
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

Some of the simple data types may have certain characteristics
modified. Thus type INTEGER may have its RANGE modified, type REAL its
PRECISION modified, and any simple type may be ACCESS modified.

Access modified types are either READ or WRITE modified. If the
modification is READ then write operations on the data—element are
illegal, i.e. the data-element may only take the initial value.
Conversely, WRITE modification usually precludes read access. This
facility can be useful when a data—element is used as a routine
parameter.

There are also some predefined types of data (i.e. they can be defined
in terms of already existing simple types) for holding sequences of
characters (sometimes called character strings) or sequences of binary
bits. They are: .

l) BYTE : For containing a single character

"DA) BYTES : For containing character strings

3) BITS : For containing bit strings

1.1L jfvPE SPECIFICATION

Just as predefined and modified data types are based on the simple
data types, it is also possible in PLANC for the user to define his
own data types in terms of any of these three. However, a user type
specification differs in that it does not cause a data~element to be
constructed. This will only occur on a subsequent declaration
statement.

Examples of the use of the TYPE specification are:

TYPE personnel_number = INTEGER RANGE [0 : 999999]
TYPE calc = REAL READ
TYPE section = REEL ARRAY POINTER

Note that the data type section represents a pointer to an array of
reals. Contrast this with:

TYPE sparse = REAL POINTER ARRAY

where sparse is an array of pointers, each pointing to a single real.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 7

INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1.5. RECORDS

Using a TYPE specification for the declaration of RECORD data types
provides a "structure template" for the components of a record as seen
in the example.

EXAHPLE 1.2 A RECORD TYPE SPECIFICATION

TYPE monthnames = ENUMERATION[jan,feb,mar,apr,...,nov,dec]

TYPE date = RECORD
INTEGER RANGE [1:31] : day
monthnames : month
INTEGER RANGE [0:2000] : year

ENDRECORD
Z declare some data-elements of the newly specified data type
date : startdate,end_date

The above record has three components but it could have had any number
of them.

Note that as this is an example of a TYPE specification, no data—
element is constructed unless a declaration statement is encountered
such as the last line of the example.

It is possible to define a record which has components in addition to
those of an existing one. This variant record will then have the
components defined in the page record together with the new components
from the variant part.

EXAMPLE 1.3 A VARIANT RECORD

TYPE part = RECORD
REAL : partno, buyprice, sellprice

ENDHECORD
TYPE tax_rating = part RECORD

INTEGER : taxcode
ENDHECORD
TYPE stock = part RECORD

BYTES : warehouse[1:4]
REAL : quantity

EWDHECOBD
Z declare some record data-elements
part : frame

tax rating : boughtin
stock : screw

Thus records of type tax;rating (e.g. boughtin) will have components
partno, buyprice, sellprice, and taxcode, and records of type stock
(e.g. screw) will have components partno, buyprice, sellprice,
warehouse and quantity.

Norsk Data ND~60.117.5 EN

8 PLANC Reference Manual
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

To access components of a record a dot notation is used. Thus to
access components in the records of example 1.3 we would use
references like:

frame.buyprice

boughtin.taxcode

It can be useful to have an empty base record which can serve as a
common entry point to the variant ones by using a pointer which
references the base record.

1.6. [LIST PROCESSING

List structures can be defined as record structures as illustrated
below.

EXAMPLE 1.4 RECORD TYPES IN LIST PROCESSING

TYPE element = RECORD
element POINTER : NEXT

e\°
m other components

N

ENDRECORD
Z pointer for the start of a linked list of records
element POINTER : HEflD

The pointer HEAD would point to the first element in the list and the
pointer NEXT in each record would point to each successive element in
a list.

There are three standard routines available in PLANC for list
processing:

INSERT will insert a new element at the head of a list

APPEND will append a new element at the end of a list

REMOVE will remove any element from the list

Norsk Data ND-60.1l7.5 EN

PLANC Reference Manual 9

INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1.7. SEQUENCE CONTROL STATEMENTS

Control statements enable the normal sequence of statement execution

to be altered. PLANO has a number of facilities to form repetitive

loops or select a course of action from a number of possibilities.

The FOR and ENDFOR statements create a very simple loop. The code

bounded by them must include a DO statement as shown in the example.

EXAMPLE 1.5 A SIMPLE FOR—ENDFOR LOOP

FOB count IN 1:n D0
count+sum =:sum

ENDFOR

Another simple loop is formed by the DO—ENDDO statements.

EXAMPLE 1.6 A D0—ENDDO LOOP

D0
2 statements for execution

ENDDO

Either of the two loops above may contain a WHILE statement.

Forexample:

EXAMPLE 1.7 ANOTHER FOR—ENDFOR LOOP

INTEGER : lower,upper
INTEGER ARRAY : a[0:10}

FOR 1 IN lower:upper D0

a[i-1]+a[i] =:a[i]
2 continue the loop only for negative array elements

WHILE a[i]<0
z

ENDFOB

A simple conditional statement is the IF statement. It must always be

followed by a corresponding ENDIF as in:

EXAMPLE 1.8 AN IF~THEN~ENDIF STATEMENT

2 make the value positive

IF X < 0 THEN

-x =:x
EWDIF

IF statements may be nested, and there are no restrictions on the

executable statements which may be contained in a nested IF statement.

_Norsk Data ND—60.ll7.5 EN

10 PLANC Reference Manual
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

Further, PLANC has a CASE statement. It selects one of a number of a
group of statements to be executed, the remaining groups are ignored.

EXAMPLE 1.9 THE CASE STATEMENT

ENUMEBATION [stop signal,go signal} : action
TYPE colour_list : ENUMERATTON {red,blue,green,amber]
2
colour list : colour2 _

CASE colour
INCASE red

stop_signal =:action
INCASE green

go_signal =:action

2 control only comes here for other colours

Note the percent character (%) indicating a comment line. It may
appear in any column of a statement. Everything following the percent
character, on the same line, is ignored by the compiler.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 11
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1.8. ROUTINES

From a language point of View, routines can be regarded as composite
data-elements. When a routine is declared, a data*element is
constructed which is sufficiently large to contain all of the storage
the routine will require. (Storage required at runtime is provided by
the INISTACK standard routine, as illustrated in the very first
example.)

PLANC routines are similar to the subprograms of other languages but
they have an extra feature in that a specific single value can be
supplied to the routine by the caller, and vice versa, such that the
value input is available anywhere within the routine. These values are
in addition to the usual parameters. For example:

EXAMPLE 1.10 A SIMPLE ROUTINE

ROUTINE VOID,VOID [INTEGER WRITE] : simple[intpara]

a.
N no values supplied into or out of the routine SIMPLE,

it has only one integer parameter intparao\"
.\°

INTEGER : local,int
FOR local IN 1,2,3,8:10 DO

o\.

2 executable statements within the loop

ENDFOH
Z intpara will be returned to caller
int=:intpara

RETURN
ENDROUTINE

The use of the data type VOID is shown, so—named since it indicates
the absence of the inmvalue data—element or the out-value data~element
respectively. The routine body contains control statements for a
simple repetitive loop.

Only one parameter (within the parentheses following the routine name)
will be passed to the routine and it is declared to have WRITE access
only. Parameters have by default READ access only. The keyword WRITE
allows this parameter to have values stored into it and the actual
parameter will not receive this new value before the routine has
returned to its caller.

Norsk Data ND~60.117.5 EN

12 PLANC Reference Manual

INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

A more sophisticated example of sorting by successive maxima is shown
here. The method used is to find the maximum element of an array which
is “swapped" with the first element. The subarray of all elements,
except the first, is now scanned and the maximum element will be
interchanged with the second of the original array, and so on. Within
the routine the standard routine MAXINDEX yields the maximum index

(upper bound) of vector, and calling highest obtains the index of the
maximum element of each subarray. (The routine highest is in fact

given as example 1.13.)

EXAMPLE 1.11 SORTING BY SUCCESSIVE HAXIHA

ROUTINE VOID,VOID [REEL ARRAY REfiD WHITE] 3 sort[vector]

REAL : temp
INTEGER : k,highval
FOR k IN vector DO

highest[vector[k : MAXINDEX[veCtor,1]]] =:highval
vector[highval] =:temp; vector[k] =:vector[highval]
temp =:vector[k]

ENDFOH
ENDHOUTINE

The next example returns an out—value, i.e. it is like a FORTRAN
function reference, which indicates whether an array contains all the
same values or not. The out~value is defined as BOOLEAN in the routine
declaration so that a value of TRUE or FALSE can be returned. In this
case it depends on whether or not all the values of an integer array
are unequal. ' ”

EXAHPLE 1.12 ROUTINE WITH AN OUT—VALUE

ROUTINE VOID,BOOLEAN {INTEGER ARRAY] : func[arrx]
o ‘

:.\“
‘ no in-value, out—value BOOLEfiN, in the routine func

having 1 parameter, arrx, an INTEGER arrayN
.\°

INTEGER : i,j
2 loop through all the elements of the array

FOR 1 IN arrx DO
Z loop through each element prior to this element of the array

FOE j IN 1:1—1 D0
2 is there a different value ?
IF arrx[i] >< arrx[j] THEN

Z all array elements not the same value
FALSE RETURN

ENDIF
ENDFOE

ENDFOR
Z all elements are the same value
TRUE RETURN

ENDBOUTINE

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 13

INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

The routine highest, invoked in example 1.11, is a further example we
can give at this point. It returns the index of the maximum value in
an array (MININDEX obtains the value of the lower bound).

EXAMPLE 1.13 ANOTHER ROUTINE WITH AN OUT—VALUE

ROUTINE VOID,INTEGER{HEAL ARRAY] : highest[v]
REAL : max
INTEGER : answer,i
2 set an initial index of the highest value

v[MININDEX[V,1]=:answer] =:max
Z scan the array for the highest value

FOR 1 IN V DO
IF v[i] > max THEN

Z note the use of the resulting value as the subscript

v[i=:answer J =:maX
EWDIF

ENDFOB
2 give back the index of the highest value as an out-value
answer RETURN

ENDROUTINE

In the case where there is an in—value, this can be referenced within
the routine by use of the @ (commercial at) character. If the routine
has an in—value but no out-value it will simply store the in-value it
receives; the in—value will be the data-element associated with the
identifier referred to immediately preceding the routine invocation.
Example 1.14 shows some of the principles involved.

EXAMPLE 1.14 ROUTINE WITH AN IN—VALUE BUT NO OUT—VALUE

INTEGER : param2,prog_data*el ; REAL : paraml
2 set up the in-value

INTEGER : inval
2=:inval

Z invoke the routine rtn with inval as the in—value
inval rtn[param1,param2]
2 after the routine call, parm2 will have the value 1

2 it could be assigned to a program data-element

param2=:prog_data_el

The routine declaration might be

ROUTINE INTEGEH,VOID [HEHL,INTEGEH WHITE] : rtn [p1,p2]

no

2 and the routine body might contain

u\°

IF @>0 THEN 2 reference in—value
1=:p2

EWDIF
z
RETURN

ENDBOUTINE

Norsk Data ND-60.117.5 EN

14 PLANC Reference Manual
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

A routine of this type might be used in situations such as reading or
writing to/from files or similar service functions, thus saving the
programmer some coding.

Finally, the routine with both an in~value and an out~value. As an
example, the routine below adds two complex numbers represented as
records.

EXAMPLE 1.15 ROUTINE WITH BOTH AN IN-VALUE AND AN OUT-VALUE

Z a record type specification of a complex number

TYPE complex = RECORD
RE%L : r,i

ENDBECORD

N

Z a routine to perform addition of two complex numbers

N

ROUTINE complex,complex [complex] : plus[cnum]
Z the out-value is declared as complex
complex : result

u\° the in—value, referenced by @, is one complex number,
the parameter is the other

.r + cnum.r=:result.r

.i + cnum.i=:result.i
put the sum of the two complex numbers into the out-value

result RETURN
ENDHOUTINE

®
®

N
.\°

The routine plus could be invoked bv:

c1 plus 02

where c1 and c2 have been declared as:

complex :c1,c2

Since routine identifiers can be a string of letters or special
characters, the routine name might equally well have been + or *+, and
the invocation:

c1 + 02 or
cl *+ c2

thus the routine defines a user-written operator.

Norsk Data ND—60.ll7.5 EN

PLANC Reference Manual 15

INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1.9. l’muuzs

A module, which is the smallest unit of a PLANC program that can be
compiled separately, can be contained within other modules. Thus we
can have basic modules and any number of compound ones. All program
and data must be inside a basic module, and if it is to be indepen—
dently executable, it must contain a main program, as shown in example
1.1. However, only one main program routine can exist per executable
program since it is this which defines the execution~time entry point.

Large programs are usually subdivided into logical groups, i.e.
modules, to simplify their administration. Access from one module to
the data and routines of another is controlled by the two PLANC
statements: EXPORT and IMPORT.

An IMPORT statement defines items of other modules' to be made
accessible in the present module. An EXPORT statement defines items in
the present module to be made accessible to other modules. In example
1.16, we show the structure of a compound module which contains two
basic modules, together with a simple usage of the IMPORT and EXPORT
statements.

EXAMPLE 1.16 MODULE STRUCTURE

MODULE comp 2 Compound module
MODULE basic] 2 Basic module

EXPORT x
IMPORT REAL : y
INTEGER : x

2

ENDMODULE 2 End of module basic]
7,

MODULE basic2 2 Another basic module
EXPORT y
IMPORT INTEGER : x
REAL : y
z
7,

ENDMODULE 2 End of module basicZ
ENDMODULE Z End of compound module comp

Norsk Data ND-60.117.5 EN

16 PLANC Reference Manual
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1.10. SCOPE OF IDENTIFIERS

An identifier has a scope which is the routine, or module, which
contains its declaration and all the routines, or modules, within it.
For example:

EXAMPLE 1.17 SCOPE OF IDENTIFIERS

MODULE update
7. global variables
BOOLEflN ARRAY : busy[0:100]
Z
ROUTINE VOID,INTEGEH : reserve

INTEGER : i,j
FOR 1 IN busy D0

2
ENDFOH
j RETURN

ENDHOUTINE
'/,

ROUTINE INTEGEH,VOID : release
INTEGER : i,j
Z

ENDBOUTINE
EWDMODULE

The array busy has the scope of module update, and is also known by
the routines reserve and release. The variables 1, j in reserve are
different from the i, j in release.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 17
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1.11. SIMPLE INPUT/OJTPUT TO THE TERMINAL

PLANC has no extensive facilities for handling input and output.
However, there are some system-supplied routines to handle the simple
case. As an example, the statement:

INPUT [1,'I5',number]

will read an integer from the terminal and place it in number.

For output, the statement:

OUTPUT [1,'I5',number]

will write number as an integer using five places on the output line.

We can now write a PLANC program to read two numbers from the
terminal, and write out their sum.

EXAMPLE 1.18 SIMPLE I/O USING THE TERMINAL

MODULE summer
INTEGER ARRAY : stack[0:100]
Z a main 'PROGRAM' routine follows
PROGRAM : sum

INTEGER : a,b,c
INISTACK stack
2 get two numbers from the terminal
INPUT {1,'I5’,a}
INPUT [1,'I5',b]
2 output the sum of the two numbers on the terminal
a+b::c
OUTPUT [1,'15',C]

ENDHOUTINE 2 end of routine 'sum'
EWDMODULE

Norsk Data ND-60.117.5 EN

18 PLANC Reference Manual
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1.12. A l‘bRE CGVIPLEX EXAMPLE

To show how some of the previously mentioned features might be
combined, we give a final example. Suppose you want to find the area
of a farm where each field is represented by a record in a linked list
of records. In the given code, these records are chained together
through the record component data—element next.

EXAMPLE 1.19 DINKUH PLANC

2 specify 3 RECORD data type for each field of the farm
TYPE field = RECORD

HEAL : area
field POINTER : next

ENDHECORD

e\°
N a pointer data-element to begin a linked list

— see later chapters for details of building the list->\°
a\“

field POINTER : pepfarm
Z a data—element for the area of the farm
REAL : farmsize
Z invoke the routine to compute the total farm area
acreage[pepfarm]=:farmsize

ROUTINE VOID,BEHL [field POINTER] : acreage[first]
field POINTER : work
REKL : answer
0.0 =:answer
Z scan the list of field records to compute the total area

FOR work IN firstinext D0
answer + work.area =:answer

ENDFOH
answer RETURN

ENDBOUTINE

The FOR—ENDFOR loop contains a "pointer implied range" firsttnext
which describes a linked list of pointers. The data-element before the
colon is a record pointer indicating the start of the chain. Following
the colon is the data-element within the record which contains the
linking pointers through the chain. In this way we can access a linked
list of records using a simple FOR-ENDFOR loop, which is a useful
facility when processing lists.

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 19
BASIC LANGUAGE ELEMENTS

2. BASIC LANGUAGE ELEPENTS

2.1. INTRODUCTION

Following the overview of the PLANC language we will now begin to look
at the language features in complete detail.

This chapter will present the lowest level language elements, such as,
the character set, identifiers and literals, with which PLANC source
language statements can be formed. A number of source statements can
then be put together to construct a complete PLANC program. This
program can be submitted to the PLANC compiler to produce an
executable program if the compilation process is successful.

2.2. CHARACTER SE?

The full ASCII character set may be used in PLANC programs. However
particular elements of the language may be made up of a restricted
subset of characters as shown in the following sections. Lowercase
alphabetic characters are converted to uppercase except when used in
string literals.

Norsk Data ND—60.117.5 EN

20 PLANC Reference Manual

BASIC LANGUAGE ELEMENTS

2.3. STANDARD SWBOLS

The Standard Symbols have predefined meanings in the PLANC language.
They are special characters or are formed from special characters and
letters. Standard Symbols comprising alphabetic characters only are
often referred to as keygords. Here is a list of all the Standard
Symbols:

Special characters

n\‘ l treat the rest of this line as comment text.

62 - the statement on this line is continued on the next line.

; - terminate the preceding language statement: on this line.

Note: This is used to put more than 1 statement on a line.

’ - is used to delimit a string literal.

— precedes a single character literal.
[— opening parentheses.
J — closing parentheses.
' - delimiter in declaration statement or range expression.

, ~ delimiter in a list of identifiers.

@ ~ routine in—value qualifier.
— accesses record components.

? - predeclaration indicator.
$ — as first character indicates line is a compiler command.

" — enclose macro parameters within the macro definition.

Keywords

AL IAS ENDMODULE INTEGERI RECORD

ARRA Y ENDON INTEGERZ REFERENCE

A SSERT ENDRECORD INTEGER4 RETURN

ASSERTFALSE ENDROUTINE LABEL REVERSE

BI TS ENUMERA TI0N MODULE ROUTINE

BOOLEAN ERRCODE NIL ROUTINEERROR

BYTE ERRETURN ON SET

BYTES EXI TFOR OVERFLOW SPECIAL

CASE EXI TWHILE PACKED STACKERROR

COMMON EXPOR T POINTER S TANDARD

CONS TANT FAL SE POINTERERROR S YSTEM

DO FOR PRECIS ION THEN
ELSE GO PROGRAM TRUE
ELSIF IF RANGE TYPE
ENDCASE IMPOR T RANGEERROR VOID

ENDDO INCASE READ WHILE

ENDFOR INLINE REAL WRITE

ENDIF INTEGER REAL8

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 21

BASIC LANGUAGE ELEMENTS

Operators

ABS
MOD
SHIFT

assignment

change
addition
subtraction [binary operator], sign change [unary operator]
multiplication
division
exponentation

absolute value or maximum number of SET members
modulo
shift the bits in an integer a number of positions

greater than

less than
equivalent value
greater than or equal
less than or equal
not equal
membership

logical and

inclusive or
exclusive or
logical negation
assignment of value in CONSTANT statement, storage
equivalence and identifier data type in TYPE specifications
initial value in declaration statements

Standard Routines

ADDH CONVERT INPUT OUTPUT
APPEND DISPOSE MAXINDEX PRED
BIT FILESIZE MININDEX REMOVE
BIT_SIZE FORCE MONITOR_CALL SIZE
BIT_POSITION IND NEW SUCC
BLOCKSIZE INISTACK OPEN TYPEOF
CLOSE INSERT

Norsk Data ND—60.117.5 EN

22 PLANC Reference Manual
BASIC LANGUAGE ELEMENTS

2.1L STATEMENTS

PLANC statements are usually written one per line. A statement may be
terminated by a semicolon character (7) but this is not required.

However more than one statement may be included on one line by using
the semicolon character (7) to terminate each statement within the
line. All alphabetic characters in PLANC statements may be typed in
lowercase or uppercase but the compiler will convert all the
alphabetic characters to uppercase with the exception of single
characters and string literals, including format descriptors in
INPUT/OUTPUT statements (i.e. anything between single apostrophes).
For clarity, it is a good idea to type all keywords in uppercase.

A single blank space must be present immediately before and after most
keywords, but more blank spaces are not treated as significant.by the
compiler. Some keywords may be preceded or followed by operators or
delimiters. While PLANC has a free format, it is recommended that you
use blank spaces to indent and space source code elements for clarity
and readability.

For example:

INTEGER : int1,int2 ; REAL : r11 ; BOOLEfiN : booll

2.5. CONTINUATION OF STATB’ENTS

Sometimes you may need to write a statement which is longer than one
line. If a statement is to be continued on the next line, an ampersand
character (&) must be placed after the statement text on the first
line, and then the compiler will join the next line to the first line
and treat both together as a single language statement.

For example:

INTEGER : int1,int2,int3, & 2 this line will be continued
int4,int5

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 23

BASIC LANGUAGE ELEMENTS

2.6. Ccmsms

Comments within program source are important for documentation
purposes, and they may be included on any lines of PLANC source by
inserting a percent character (%). All text following the percent
character on the same line will be regarded as comment text by the
compiler and have no effect on the program.

For example:

INTEGER : integ1,integ2

o\‘
e\‘ The line above, this line and the following 2 lines

are comment lines. They have no effect on the program..\°
N

INTEGER : integ3
INTEGER : integ4 2 This is also comment text

Note that there is a special use of two consecutive percent characters
(%%), see section 2.10.

For example:

2222 this is not a comment line
22 but this isN

Norsk Data ND~60.117.5 EN

24 PLANC Reference Manual
BASIC LANGUAGE ELEMENTS

2.7. LITERALS

A literal is an integer, real, Boolean, character or string constant.
Literals do not change their value during the execution of the
program. A literal value is held in a storage entity known as a data—
element.

2.7.1. INTEGER LITERALS

The form of an integer literal is an optional minus sign followed by a
string of digits.

Examples of integer literals:

0
123
-1

123456

The maximum and minimum possible values and the actual size of the
data~element used to store the integer literal is machine—dependent.
In general the smallest data—element possible to contain the actual
value will be allocated by the compiler.

For example, on the ND—lOO the values must lie between:

—2147483648 and 2147483647 inclusive,
351 will be stored in an INTEGERZ data~element.

For full details of limits on the possible range of values and actual
storage allocated, see Appendix C.

An integer literal in PLANC may be written as an octal value rather
than as a decimal value. An octal literal is an optional minus sign
followed by a string of digits, each in the range 0 to 7 inclusive,
and followed by the letter B.

Examples of octal integer literals:

OB
7773

~7653

The range of values possible and the storage allocated by the compiler
will be the same as for decimal literals.

For example, on the ND—IOO:

537B [351 decimal} will be stored in an INTEGEHZ
data—element.

Norsk Data ND-60.1l7.5 EN

PLANC Reference Manual 25
BASIC LANGUAGE ELEMENTS

2.7.2. REAL LITERALS
The form of a basic real literal is an optional minus sign, a whole
number part, a decimal point and a fractional part. Both the whole
number part and the fractional part are strings of digits; the whole
number part must be present.

A real exponent consists of the letter E followed by an unsigned whole
number for a positive exponent or a minus sign and a whole number for
a negative exponent. The value of a real literal containing an
exponent is the product of the basic real literal preceding the E and
the power of 10 indicated by the number following the E. The exponent
must not be preceded by a space.

Examples of some valid real literals:

0.0
11.

3.1415927
—728.998
—98765.0

1.23E2 exponent form of a real literal
1.32EL4 real literal with a negative exponent

Examples of some invalid real literals:

12 a valid integer but no decimal point
.0 no digit preceding the decimal point

+1.2 must not be preceded by a + sign
1.5E2.5 exponent must be a whole number

1.6E+2 exponent must not have a + sign

The real value is an approximation to the actual value of a
mathematical expression. The actual internal representation of real
values may not be the same in all implementations of PLANC. The
maximum and minimum real values possible may vary on different model
machines or according to the type of floating-point hardware on a
particular machine. Further, the number of significant digits which
may be represented accurately also depends on the machine model and
the floating~point hardware present. Full details of storage
allocation, maximum and minimum possible values, and the number of
significant digits which can be represented accurately are available
in Appendix C.

Norsk Data ND-60.ll7.5 EN

26 PLANC Reference Manual
BASIC LANGUAGE ELEMENTS

2.7.3. BOOLEAN LITERALS

The possible values of a Boolean literal are TRUE or FALSE.

Examples of Boolean literals:

TRUE
FALSE

2.8. LITERAL EXPRESSIONS

A literal expression is an expression made up of either literals of
the same data type or identifiers which have already been declared in
a CONSTANT statement, thus having a literal value. For a detailed
description of the way expressions are evaluated, see Chapter 5,
EXPRESSIONS FORMATION AND EVALUATION. In addition to the operators
listed below for each data type, parentheses may be used for clarity
or to force an expression to be evaluated in a particular order of
operations.

2.8.1. INTEGER LITERAL EXPRESSIONS

Integer literal
elements and

expressions may be formed by using integer data~
the following operators and standard routines:

+ arithmetic plus
- arithmetic minus
- unary minus

arithmetic multiplication
/ arithmetic division
** exponentiation
MOD modulo
ABS absolute value
SHIFT shift bits
NOT logical complement

AND logical 'and'
OR logical 'inclusive or'
XOR logical 'exclusive or'
MININDEX array index lower bound
MAXINDEX array index upper bound
SIZE data-element size in bytes

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 27
BASIC LANGUAGE ELEMENTS

For example:

INTEGER : int1:=2*2 Z integer literals only
2 the indentifier int] will be initialized to 4.

CONSTANT four=4
INTEGER : int2:={1+four]*2 2 literals, constants mixed
2 the identifier int2 will be initialized to 10.

INTEGER : int3:=777B AND 17B 2 use of logical operator
Z the identifier int3 will be initialized to 17B

i.e. 15 decimal.\°

2.8.2. REAL LITERAL EXPRESSIONS

Real literal expressions may be formed by using real data-elements and
the following operators:

+ arithmetic plus
— arithmetic minus
— unary minus
* arithmetic multiplication
/ arithmetic division
ABS absolute value

For example:

REAL : r11:=2.5*4.0 2 real literals only
2 the identifier r11 will be initialized to 10.0.

CONSTANT rlconst=2.0
REAL : rlZ:=[5.7—rlconst]/2.0 Z literals, constants mixed
2 the identifier r12 will be initialized to 1.85.

Norsk Data ND-60.117.5 EN

28 PLANC Reference Manual
BASIC LANGUAGE ELEMENTS

2.8.3. BOOLEAN LITERAL EXPRESSIONS

Boolean literal expressions may be formed by using Boolean data—
elements and the following operators:

NOT logical negation
AND logical ’and'
OR logical 'inclusive or'

XOR logical 'exclusive or'

Furthermore, Boolean literal expressions may contain any of the
relational operators (see section 5.4) with integer operands only.

For example:

BOOLEAN : booll:=TRUE AND FALSE 2 literals only

2 the identifier booll will be initialized to FALSE.

CONSTANT bcl=TRUE
BOOLEAN : b0012:=bcl 0R TRUE 2 literals, constants mixed

2 the identifier boolZ will be initialized to TRUE.

BOOLEAN : bool3l=TRUE AND [2:3]
2 the Boolean expression in parentheses results in FALSE

2 and the identifier bool3 will be initialized to FALSE.

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 29

BASIC LANGUAGE ELEMENTS

2.9. SINGLE CHARACTER LITERALS

The form of a single character literal is the number sign character
(£) followed by one ASCII character.

For example:

#a value is lowercase 'a'
#2 value is uppercase 'Z'
#[value is left parentheses

PLANC has no 'character' data type. A single character literal will be
held in a data—element of the predefined data type BYTE (see section
3.12.1). With certain choices of data storage allocation, this enables
much faster handling of a single character than a character string of
length greater than one character.

Note that to specify the special characters percent (%), ampersand (&)
and apostrophe (') in a single character literal, only one occurrence
of such a character should follow the number sign character (£).

2.10. STRING LITERALS

The form of a string literal is the apostrophe character ('), followed
by one or more ASCII characters, terminated by another apostrophe
character ('). ‘

For example:

'this is a STRING of characters'

PLANC has no string data type. String literals will be held in a data-
element of the predefined data type BYTES (see section 4.1.7.1).

Uppercase alphabetic characters within string literals will not be
converted to lowercase.

Note: If % (percent), & (ampersand), or ' (apostrophe) characters are
to appear within a string literal, then these characters must be
duplicated for each occurrence required, in order to prevent their
usual 'special' interpretation in PLANC.

For example:

String Literal value

'his && hers' his & hers
'two 2222 characters' two 22 characters
'Tom"s 5 22 share' Tom's 5 2 share
I!!! [one apostrophe]

Note that 'a' is not equivalent to fa and has a different internal
representation.

Norsk Data ND—60.ll7.5 EN

30 PLANC Reference Manual
BASIC LANGUAGE ELEMENTS

2.11. IDENTIFIER NMES

An identifier name in PLANC is the name associated with a data~
element. An identifier is a sequence of letters, digits and underscore
characters, but the first character must be a letter. An underscore
must not be the last character of an identifier and only single
underscore characters may be used (i.e. two consecutive underscore
characters are invalid). While an identifier may be of any length,
only the first ten characters are used for unique identification.

For example:

integl
counter_VHRIABLE
a b c
53b; invalid, does not begin with a letter

in—valid invalid, contains an illegal
character, a hyphen [—]

abc_ invalid, ends with an underscore
a b invalid, two consecutive underscores

Since uppercase and lowercase letters are treated as equivalent by the
compiler, the identifiers:

ident] and
IDENT1

will be associated with the same data-element.

As only the first ten characters of identifier names are significant,
the identifiers:

a_very~long_name and
a_very_long_identifier

will be associated with the same data—element.

Norsk Data ND-60.ll7.5 EN

PLANC Reference Manual 31
BASIC LANGUAGE ELEMENTS

2.12. ENLI'ERATICN LITERAL LISTS

The form of an enumeration literal list is a list of enumeration
identifiers separated by commas. The general form is:

enun-ident[,enum—ident ...] where

enum~ident is formed under the same rules as identifiers

The order of appearance in the list specifies the sequence of the
enumeration identifier values for use as operands with the relational
operators (see section 5.4) or with the PRED and SUCC standard
routines (see section 7.9) which will return previous or successive
values respectively.

For example:

red,dark_blue,green,purple

is a valid enumeration literal list with four enumeration identifiers.

Norsk Data ND~60.117.5 EN

32 PLANC Reference Manual
BASIC LANGUAGE ELEMENTS

2.13. IWLIED RANGE

The imglied range is an abbreviated form for describing all or part of
a list of Integer values. Enumeration identifiers or Pointer data—
elements. The precise meaning of such a list depends on which PLANC
statement it is used in. It has the following general forms:

valuei : valueZ

or

expnl : exa

or

ptrl : ptr2

where

valuel, valueZ are both, either integer literals, enumeration
identifiers or the resulting value of literal
expressions of these data types.

expnl, expn2 are expressions which will be evaluated at runtime to
give an integer or enumeration resulting value.

Note: In both the above cases the second value must be
greater than or equal to the first value or a list with
no values will be generated.

ptrl, ptr2 are pointer identifiers within a linked list of record
data-elements, or a linked list of pointer data—
elements.

Exanples of implied ranges:

H 2 : 36
Z specifies the list of integer values

12, 13, 14, ... , 35, 36e\‘

2*[3+1] : 10**2
2 specifies the list of integer values
2 8, 9, 10, ... , 99, 100

ENUMERATION (white,black,red,blue,grey,green,mauve]
followed by a statement containing red : green
specifies the enumeration literal list, i.e. enumeration
identifiers

u
\‘
o

\‘
n

\'
°\

f

red, blue, grey, green

Norsk Data ND-60.ll7.5 EN

PLANC Reference Manual 33
BASIC LANGUAGE ELEMENTS

The implied pointer range is discussed in more detail in section 3.8,
together with the description of the Pointer data type. For, examples
of the use of an implied pointer range, see FOR - ENDFOR loops,
section 6.5, and Processing of Records in List Structures section 4.6.

Norsk Data ND-60.117.5 EN

34

Norsk Data ND-60.117.5 EN

PLANC Reference Manual

PLANC Reference Manual 35
DATA DECLARATION AND SIMPLE DATA TYPES

3. DATA IECUXRATHN AND SIWLE DATA TYPES
This chapter will describe some of the basic terms and concepts
associated with the storage and accessing of data values in PLANC
programs. Only the simple data types will be discussed here. More
complex data structures are available in PLANC, e.g. arrays and
records, but they will be discussed later.

3.1. DEFINITION OF HANC TERMINOLOGY

Two of the basic language elements in PLANC, literals and identifiers,
have already been discussed (Chapter 2, BASIC LANGUAGE ELEMENTS).
Another basic language element is the data—element. A data~element is
any area of storage that can be referred to as an entity and that may
contain a definite value. Most dataeelements are referred to by an
identifier name but some, such as literals, do not have any associated
name. Each data~element is of a defined data type which specifies two
characteristics:

1) the format and range of possible values of information stored.
in the data-element.

2) the operations which may be applied to the data—element.

Data-elements may be of either a simple or a compgsite data type. A
data-element of a simple data type is an entity which may not be split
into any components. A data-element of a composite data type consists
of components, each of which is a data—element of simple or composite
type.

The PLANC language has a variety of data types available.

Simple data types are:

l) INTEGER

2) REAL

3) BOOLEAN

4) LABEL

5) VOID

6) ENUMERATION

7) POINTER

Norsk Data ND—60.117.5 EN

36 PLANC Reference Manual

DATA DECLARATION AND SIMPLE DATA TYPES

Composite data types are:

1) ARRAY

2) RECORD

3) SET

4) ROUTINE

Some simple data types may have particular characteristics modified.
The modifications which are available are:

l) RANGE — for INTEGER type only

2) PRECISION — for REAL type only

3) ACCESS MODIFIED — for some simple and composite data types

In a PLANC program, a new data type may be created by defining the new
type in terms of existing data types. The existing simple data type
used in such a definition is called the base type of the new data
type.

A declaration specifies an identifier name to be associated with a
data-element, the data type of the data—element and allocates

appropriate storage to contain the values of the data-element. A
declaration may also optionally specify an initial value to be present
in the data-element when the program begins execution. The general
form of a declaration statement for a simple data type is:

data—type : ident[:=lit—exp] [,ident[:=lit~exp]]

where

data—type is a valid simple data type

ident is a valid identifier

lit-exp is a literal expression of appropriate type

Note: Initial value is valid only for INTEGER, REAL, BOOLEAN
types.

An initial value should normally be used in the outer level of a
module. If an identifier is to have an initial value inside a routine,
then its access must be declared as READ, see section 3.11.3.

Norsk Data ND~60.117.5 EN

PLANC Reference Manual 37
DATA DECLARATION AND SIMPLE DATA TYPES

3.2. INTEGER DATA‘ELB‘ENTS

The data type 'integer' specifies data-elements which can contain
whole number values. The general form of a declaration of an integer
data-elements is:

INTEGER : ident[:=lit-exp] [,ident[:=lit—exp]] ...

where

ident is a valid identifier

lit—exp is a integer literal expression

The range of possible values which can be held in an integer data—
element has been discussed briefly under Integer Literals (see section
2.7.1). For full details of the range of possible values and storage
allocated, see Appendix C.

Some variants of the INTEGER type are available and these have
particular range limits. These are:

l) INTEGERl ~ to be stored in an 8 bit field. The range of
possible values is:

—128 <= value <= 127.

2) INTEGERZ - to be stored in a 16 bit field. The range of
possible values is:

-32768 <= value <= 32767.

3) INTEGER4 — to be stored in a 32 bit field. The range of
possible values is:

—2147483648 <= value <= 2147483647.

The type INTEGER will default to one of the variants depending on the
machine implementation, see Appendix C.

During compilation, the initial value of an integer literal data-
element, will not cause a compiler error if it is too large for the
storage available for the data type declared: some form of truncation
will occur. During program execution no checks will be carried out
other than those provided by the hardware being used, e.g. overflow,
see Exception and Error Handling, section 6.8 and Appendix C.

Norsk Data ND-60.117.5 EN

38 PLANC Reference Manual

DATA DECLARATION AND SIMPLE DATA TYPES

Examples of integer declarations:

INTEGER I int],int2,int3,init1:=45,int4
INTEGER] : int8b:= ~22
INTEGER2 : int16b
INTEGER4 : int32b

3.3. REAL DATA-ELEMENTS

The data type 'real' specifies data-elements which can contain
floating-point values. The general form of a declaration of real data~
elements is:

REAL : ident[:=lit~exp] [,ident[:=lit~exp]]

where

ident is a valid identifier

lit-exp is a real literal expression

The range of possible values which can be held in a real data—element
has been discussed briefly under Real Literals, see section 2.7.2. For
full details of the range of possible values, the number of
significant digits and storage allocated, see Appendix C.

A variant of the REAL type is available and it has particular range
limits. It is:

REAL8 to be stored in a 64 bit field. The range of possible values
is: 10**-76 <= value <= 10**76

with accuracy of 15 significant digits.

The type REAL will default to a 32, 48 or 64 bit format depending on
the machine implementation and the floating—point hardware being used,
see Appendix C.

During compilation, the initial value of a real literal data-element,
will not cause a compiler error if the value is too large for the
storage available for the data type declared; some form of truncation
will occur. During program execution no checks will be carried out
other than those provided by the hardware being used (e.g. overflow),
see Exception and Error Handling, section 6.8 and Appendix C.

Examples of real declarations:

REAL : r11,r12,rinit1:=45.0,rinit2:=2.65E‘8,rl3
REHLB : rl64bit
HEHL8 : r164b:= -22.765E24

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 39
DATA DECLARATION AND SIMPLE DATA TYPES

3.4. BOOLEAN DATIHELB‘ENTS

The data type 'Eoolean' specifies data~elements which can contain
logical values. The general form of a declaration of Boolean data-
elements is:

BOOLEAN : ident[:=1it-exp] [,ident[:=1it-eXp]] ...

where

ident is a valid identifier

lit—exp is a Boolean literal expression

The possible values which can be held in a Boolean data-element are
TRUE or FALSE. They have been discussed briefly under Boolean
Literals, see section 26.

Examples of Boolean declarations:

BOOLEAN : b0011,b0012,bool3
BOOLEAN : blinit]:=TRUE,blinit2:=FALSE AND TRUE

3.5. CONSTANT DECLARATIONS

The 'constant' declaration specifies identifiers which will be
associated with data-elements whose value will be fixed at compile
time and not allowed to change during program execution. The general
form of a constant declaration is:

CONSTANT ident[=lit~exp] [,ident=lit~exp] ...

where

ident is a valid identifier

lit—exp is a literal expression of integer, real, Boolean type

Norsk Data ND—60.117.5 EN

40 PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

The following rules apply to CONSTANT declarations:

l) The data type of an identifier is determined by the data type
of the corresponding literal expression following the equals
character (=).

2) If the equals character (=) and the literal expression are
omitted, then the identifier type will be of type integer by
default. In this case the integer value stored in the data—
element will be the next integer value higher than the
previous integer value in this CONSTANT statement. If there
is no previous integer value specified in this CONSTANT
statement, either explicitly or by default, then 0 will be
the first value provided.

Examples of constant declarations:

CONSTANT int1=23,r11=3.14,b11=THUE

Z explicit value data types

CONSTANT zero,rl2=1.l,one,b12=FALSE,two
Z identifiers without values take values 0, 1, 2

CONSTANT four=4,five,nine=four+five
2 'five' takes the next higher value after 4

and 'nine' is the sum of 4 and 5
CONSTANT rl3=rll*r12,bl3=bll AND blZ
Z expressions result in r13 taking the value 3.454
2 and bl3 taking the value FALSE.

N

CONSTANT 04:1 CONVERT INTEGEH4
forces 04 to occupy four bytes when it is used,
although its value can be contained in a smaller
number of bytes.o

\'o
\°

n
\‘

3.6. ENLMERATION DATA—ELEMENTS

The data type 'enumeration' specifies data-elements which can take any
one of a finite number of values declared in an enumeration literal
list. The general form of a declaration of enumeration data-elements
is:

ENUHERATION (en-lit~list] : ident[:=en—id—val]
[,ident[:=en—id-va1]] ... where

en—lit—list is an enumeration literal list

ident is a valid identifier

en-id~val is one of the values in the enumeration literal list

The possible values which can be held in an enumeration data~element
are strictly limited to those values in the enumeration literal list
of this declaration statement. An enumeration data-element will

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 41

DATA DECLARATION AND SIMPLE DATA TYPES

usually be held in an integer size storage location which will
determine the maximum number of distinct values in the enumeration
literal list, for details see Appendix C.

Examples of enumeration declarations:

ENUMEHATION {saturday,sunday] : weekend_days,days
ENUMERATION [ringnes,becks,fosters] : goodbeer:=ringnes
ENUMERATION [ringnes,mack,fosters] : bestbeer:=fosters

The enumeration data type is of particular interest when used in
conjunction with the CASE statement, see section 6.3.

The SUCC standard routine and the FRED standard routine may be used to
obtain the following or previous enumeration values respectively. For
detailed description of these standard routines, see section 7.9.

Norsk Data ND~60.117.5 EN

42 PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

3.7. POINTERS

The data type 'pointer' specifies data—elements which can contain
references (addresses) to any data—element of a given data type. The
given data type for which a pointer identifier can hold references is
called the 'qualification' of the pointer. The general form of a
declaration of pointer data-elements is:

d—type POINTER : ident[:=p-ident] [,ident:=p—ident ...]

where

d—type is any valid data type

ident is any valid identifier

p—ident is any identifier of 'd-type' data type whose reference
is to be stored in the pointer data—element initially.

The value 'NIL' may be used to specify that a pointer identifier
should reference no data—element. This may be used as an initial value
or anywhere within the executable statements to reset the value of a
pointer data-element.

Examples of pointer declarations:

INTEGER : int1,int2
INTEGER POINTER : intptr1,intptr2:=int2
REAL POINTER : rlptr1,rlptr2:=NIL

The possible values of a pointer data-element will vary according to
the data type which is to be referenced. Details of storage
requirements of pointer data—elements for various data types may be
found in Appendix C.

Pointer data-elements may be initialized at compile time by using the
ADDR standard routine, providing the parameter of the standard routine
invocation can be evaluated by the compiler.

Norsk Data ND—60.ll7.5 EN

PLANC Reference Manual 43

DATA DECLARATION AND SIMPLE DATA TYPES

For example:

INTEGER POINTER : ip1:=int 2 has the same effect as

INTEGER POINTER : ip1:=ADDB{int]
z
INTEGER POINTER : ipt10:=ADDR[10}
2 will initialize the data~element with the address of the integer

Z constant 10.

Pointer identifiers may be used in expressions with all of the
relational operators, e.g. to compare addresses for equality in a
conditional statement. However it should be noted that evaluation of
such expressions and the resulting value depend critically on the
internal representation of addresses in each machine implementation of
PLANC, see Appendix C.

Pointer data-elements used as operands for the relational operators
are treated as unsigned integers for the purposes of comparison. For
the size of these integers on each particular machine implementation
see Appendix C.

The data-elements described so far are all static in that the
necessary memory is allocated for a data-element at the time that the
module containing the declaration is about to begin execution. It is
also possible to use dynamic data—elements which are created and
destroyed dynamically during the execution of the module. The standard
routines NEW and DISPOSE may be used for dynamically creating and
destroying data—elements respectively, see section 4.5. The POINTER
data type may be used to refer to either static or dynamically created
data~elements. Dynamically created data-elements do not have explicit
identifiers with which to access their values as do static data~
elements, so the standard routine IND (see section 7.9) may be used

to access the value of dynamically created data-elements.

Norsk Data ND—60.117.5 EN

44 PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

3.8. POINTER IMPLIED RANGE

The pointer implied range is an abbreviated form which describes a
linked list of pointer data-elements which may form a chain of
records. The syntax of the pointer implied range has been described in
section 2.13. A linked list of RECORDS may be set up statically or
created dynamically using the NEW standard routine.

The list of data—elements which such a pointer implied range
indicates, may be created at compile time or dynamically at runtime
when the appropriate addresses must be set up by the program. A list
being processed by the use of a implied pointer range will terminate
when a NIL pointer value is encountered. See Processing of Records in
List Structures, section 4.6, the IN operator, section 5.4, and FOR -
ENDFOR loop, section 6.5, for examples of the use of pointer implied
ranges.

3.9. LABELS

The data type 'label' defines an identifier which has no associated
data-element. A label identifier may only be placed at the start of an
executable statement. The general form is:

label—ident : executable-statement

Labels must be declared if they are to be referred to by GO
statements, see section 6.1. Labels will be further discussed in Scope
of Identifiers, see section 7.8. '

Examples of label declarations:

LABEL : lab1,loop,next

3.10. @113
The data type 'void' denotes the absence of a data-element where a
data-element could be present in a statement. The general form of a
void declaration is:

VOID

It has particular use in routine declarations and will be discussed in
more detail in Chapter 7, ROUTINES.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 45

DATA DECLARATION AND SIMPLE DATA TYPES

3.11. MODIFIED DATA TYPES

A 'modified data type' is one of the simple or complex data types with
certain of its characteristics restricted. The following modifications
of simple types are available:

1) Range Modification - for INTEGER data types only.

2) Precision Modification - for REAL data types only.

3) Access Modification — read/write access to data-elements of

all simple data types.

3.11.1. RANGE Mmmcmlou

A 'range modified' integer data-element has its value range restricted
to an explicit upper and lower bound. The general form of a range
modified integer declaration is:

INTEGER RANGE [int-lit—exp : int—lit—exp)
ident[:=int—lit~exp] [,ident[:=int-lit-eXp] 1...

where

int—lit—exp is a valid integer literal expression

ident is a valid identifier

The data~elements of a range-modified integer data type will be
allocated storage according to the smallest number of storage units
able to hold all values of the range explicitly declared.

Examples of range modified integer declarations:

INTEGER RANGE [~10:990000] : dblint1,dblint2:=99999
2 will require 32 bit integer data—elements

INTEGER RANGE [0:200] : int1,int2:=148
2 will require data—elements of at least 8 bits

During compilation of a program, the size of an integer literal, used
for an initial value of a range modified integer data-element, will
not cause a compiler error if the value is too large for the storage
available for the data type declared; some form of truncation will
occur. During program execution, no checks will be carried out other
than those provided by the hardware being used, e.g. overflow, see
Exception and Error Handling, section 6.8 and Appendix C.

Norsk Data ND-60.117.5 EN

45 PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

3.1.1.2. PRECISION MJDIFICATION

A 'precision modified‘ real data~element has its maximum number of
significant digits explicitly specified. The general form of a
precision modified real declaration is:

REAL PRECISION (int—lit) : ident[:=rea1—lit—exp]
[,ident[:=rea1~lit~exp]] ...

where

int~lit is an integer literal less than or equal to a number
determined by the machine and the floating-point
hardware being used.

ident is a valid identifier

real—lit—exp is a real literal expression

The data-elements of a precision—modified real data type will have
storage allocated as the smallest number of storage units able to give
the required number of significant digits.

Examples of precision modified real declarations:

REAL PRECISION [4} : rll,r12:=99.99
2 will require 32 bit real data-elements

HEAL PRECISION [8] : rl3,rl4:=919.99129
X will require 48 bit real data-elements

During compilation of a program, the size of a real literal, used for
an initial value of a precision-modified real datanelement, will not
cause a compiler error if the value is too large for the storage
available for the data type declared; some form of truncation will
occur. During program execution no checks will be carried out other
than those provided by the hardware being used, e.g. overflow, see
Exception and Error Handling section 6.8, and Appendix C.

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 47

DATA DECLARATION AND SIMPLE DATA TYPES

3.11.3. Access MDDIFICATICN

An ‘access modified' data—element may have its access restricted to
either READ or WRITE operations respectively. The general form of an
access modified declaration is:

data—type READ : identz=lit-exp[,ident:=lit-exp] ...

or

data—type WRITE : ident[,ident]

where

data—type is a simple data type

ident is a valid identifier

lit-exp is a literal expression resulting in a value of 'data-
type

READ access will not allow the value of a data-element to be changed
during program execution so it is necessary to initialize such
identifiers in a declaration statement.

WRITE access will only allow values to be stored into a data-element.
This is of particular interest in the declaration of arrays and
records, to control access to their component data-elements, see
sections 4.1.3 and 4.2.3. WRITE access is discussed also in relation
to parameter transfer in routines, see section 7.4.

The default access for all declarations is both READ and WRITE, except

for formal parameters of ROUTINES, see Chapter 7.

Norsk Data ND‘60.117.5 EN

48 PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

3.12. PREDEFINED DATA TYPES

Some predefined data types are provided in the PLANC compiler. The
predefined data types are defined in terms of the simple data types.
The simple data types have operators and operations defined for them,
however, the predefined have the same operators and operations as
those defined for the base data type from which the predefined type
has been derived. The following predefined data types are available:

1) BYTE - data-elements can contain single characters only.

2) BYTES - data—elements can contain character strings.

3) BITS - data-elements can contain sequences of bits.

3.12.1. BYTE DATA—ELEMENTS

The data—element of the BYTE predefined data type can contain a single
character only. It is eguivalent to the declaration:

INTEGER RANGE [0:255] : declaration-list

Thus BYTE data-elements may represent all characters in the ASCII
character set. However BYTE identifiers may be used as integer
identifiers with the operators defined for the integer data types.

Examples of BYTE declarations:

BYTE : ch1,ch2,ch3
BYTE : chinit:=#z 2 an initialized byte data-element
2
z
#x=:ch1 2 store ch. in a byte data~element
ch1+chinit=tch3 2 add two byte data—elements

3.12.2. BYTES DATA‘ELEMENTS

The BYTES predefined data type used for character strings will be
discussed in section 4.1.7.1.

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 49

DATA DECLARATION AND SIMPLE DATA TYPES

3.12.3. BITS DATA-ELEMENTS

The BITS predefined data type used for bit strings will be discussed
in section 4.1.7.2.

3.13. TYPE SPECIFICATION AND USER DEFINED TYPES

The predefined data types and the modified data types are examples of
variations of the simple data types described earlier. In a similar
sense, the programmer may define his own data types in terms of the
available data types, including the predefined and modified data
types. The general form of a type specification is:

TYPE new—type—ident = data—type

where

new-type-ident is an identifier to be used as the name of the newly
defined data type

data—type is a simple, predefined, modified data type or a
previously defined 'new' data type

It is important to note that a type specification statement will not
cause any data—elements to be constructed. A type specification
statement describes the precise characteristics to be associated with
a data-element defined by a declaration statement. Data-elements will
only be constructed, and storage allocated for program execution, as a
result of declaration statements for static data-elements or by using
the NEW standard routine for dynamically created data-elements.

Examples of new type specifications and their use:

TYPE mychar = INTEGER RANGE [0:127] Z i.e. 7 bit characters

2 this new type can now be used in a declaration

mychar : ch1,ch2,ch3

TYPE colour = EWUMERATION [red,green,blue,black,white]

colour : c11,012,cl3
Z a new data type 'colour' is now available

2 however, a similar effect could be achieved without creating

Z the new data type 'colour'
ENUMERATION [red,green,blue,black,white] : c11,012,c13

Norsk Data ND-60.117.5 EN

50 PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

3.14. TYPEOF STANDARD ROUTINE

The TYPEOF standard routine specifies identifiers to be of the same
data type as a previously declared identifier. The general form of use
of the TYPEOF invocation is:

TYPEDF p—ident : ident-list

where

p-ident is a previously declared identifier

ident~list is a list of identifier declarations

Example of use of the TYPEOF standard routine:

INTEGER : int1,int2,int3
TYPEOF int2 : id1,id2
2 id] and id2 are dependent on the data type of int2,

i.e. id], id2 are currently of type integern\°

3.15. EQUIVALENT DATA STORAGE FOR DATA—ELEMENTS

The eguivalence declaration will force two data-elements to begin at
the same storage location, regardless of their data types. The general
form of an equivalence declaration is:

data—type : identifier = previous—identifier

where

data~type is any valid data type

identifier is an identifier of type 'data—type'

previous—identifier is a previously declared identifier

Data—elements of different types require different amounts of storage,
so it will be necessary to know precise implementation details of
storage allocation in order to understand the consequences of
overlapping dataeelements with the equivalence declaration, see
Appendix C.

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 51

DATA DECLARATION AND SIMPLE DATA TYPES

Example of an equivalence declaration:

INTEGER : int1,int2
REAL : r11,r12=int1

The data—element for r12 will begin at the same storage location as
intl but will not he of the same length.

3.16. PREDECLARATION 0F DATArELEMENTS

The predeclaration facility may be used if it is necessary to refer to
a data-element in a statement which precedes the actual declaration of
that data-element. A predeclaration must precede the statement which
refers to the data—element. This predeclaration informs the PLANC
compiler that an actual declaration will occur somewhere further on in
the module.

A predeclaration is of the same form as the actual declaration, but a
question mark character (?) follows the data-element name.

For example:

INTEGER : int]?

is a predeclaration of int] and further in the module there must be a
following declaration:

INTEGER : int]

The predeclaration is of particular use if two routines have mutual
references, e.g. if two routines invoke each other.

For example:

2 predeclaration of routine data-element rt2

ROUTINE VOID,VOID : rt2?
2

ROUTINE VOID,VOID : rt]
2 invoke rt2
rt2

ENDROUTINE
z
ROUTINE VOID,VOID : rt2

Z Note the following invocation of rt1 prevents simply

Z exchanging the order of the routines

rt]
7,

ENDROUTINE

Norsk Data ND-60.1l7.5 EN

52 PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

A further possible use of predeclarations is to initialize a static
linked list of records.

For example:

2 define a data type for records in the linked list

TYPE myrecord = RECORD
myrecord POINTER : linkptr
INTEGER : recnumber

EWDHECORD
Z initialize a static linked list of records
myrecord : r1?,r2?,r3? Z predeclaration of data—elements

myrecord POINTER : listhead =ADDH[r1]
myrecord : r1:=[ADDB[r2],1]
myrecord : r2:=[ADDR[r3],2]
myrecord : r3:=[NIL,3 J
2 Note that predeclaration may be avoided by reversing the
2 order of the last four lines

3.17. SIZE STANDARD ROUTINE

The SIZE standard routine returns the number of bytes used for the
storage of the data—element associated with the identifier specified
in the call to the SIZE routine. As the storage requirements vary with
the different implementations of PLANC, see Appendix C, this standard
routine gives access to the quantity of storage used for a particular
data-element. This routine may als0' be used for composite data—
elements which could be of particular use for dynamically created
arrays or records, see section 4.5.

For example:

HEAL : r11
INTEGEBZ : int2,int2512e, realsize
2
SIZE r11 =: realsize
2 store the number of bytes used for a floating-point value
SIZE intZ =: int2size
2 store the number of bytes used for an INTEGERZ value

Note that the SIZE standard routine may be used to give the size of a
data—element of a user defined data type which appears in a TYPE
specification. Further, any data type keyword may also be used as the
parameter of the SIZE invocation.

Norsk Data ND‘60.117.5 EN

PLANC Reference Manual 53

DATA DECLARATION AND COMPOSITE DATA TYPES

4., DATA [EGARATION AND CU‘POSITE DATA TYPES

This chapter describes the composite data types available in PLANC.
Composite data types have components which are either further
composite data types, or simple data types which have been discussed
in Chapter 3. In array and record composite data—elements, the
component data-elements are uniquely identified and may be accessed
individually. The following composite data types are available in
PLANC:

l) ARRAY - has components, all of the same type.

2) RECORD — has components of different types.

3) SET - is a collection of elements, treated as an entity.

4) ROUTINE — is a subprogram to carry out some specific function.

4.1. ARRAYS

An array data—element is made up of a group of components, all of the
same type. The array elements may be either of a simple data type or
themselves be of a composite data type, e.g. an array or record. An
array whose components are arrays is called a multidimensional array.
All elements of an array data—element are uniquely identified by an
index value from a continuous integer range or from a range of values
of an enumeration set.

Array data-elements are the basis for the predefined data types, BYTES
for character strings and BITS for sequences of bits. Arrays may also
be used to represent other data structures by defining new data types.

Norsk Data ND-60.117.5 EN

54 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

lLl.1.. ARRAY DECLARATKNS

A declaration of an array data-element specifies the following
information:

1)

2)

3)

The gener

Array Name — an identifier which can be used to refer to the
array data-element as a single entity or to refer to
individual elements of the array by the use of unique index
values.

Number of Dimensions - specifies the number of index values
needed to uniquely identify an element of the array data—
element.

Range of Values for each Dimension - specifies the valid
range of values that each index may take in order to uniquely
identify an element of the array data—element.

Initial Element Values — optionally some or all array
elements may contain initial values at the beginning of
program execution.

a1 form of a declaration of array data-elements is:

data~type ARRAY [ARRAY] ... : array-dec1[,array—decl] ...

where

data—type is a simple, composite or predefined data type.

ARRAY

array—dec

identf

where

ident

low-bnd

up—bnd

Note:

is repeated as many times as the number of dimensions
required for the array data-elements specified here.

1 is declaration of one specific array data—element. It
has the following general form:

10w—bnd:up—bnd[,1ow-bndzup-bnd] ..][:=[value—list]]

is a valid identifier.

is a literal expression which results in an integer or
enumeration value when evaluated. This value is the
lowest value that an index for this dimension may take.

as for low—bnd and must be of the same data type as the
low~bnd. This value is the highest value that the index
for this dimension may take.

low—bnd:up-bnd is called the index set and there must
be one index set for each dimension specified for the
array data—element.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 55

DATA DECLARATION AND COMPOSITE DATA TYPES

value—list is a list of literal values which will be the initial
values of the array elements. For array elements of
composite or predefined data types, the data-elements
of the initial value list must be of the correct base
type.

Note: 1. That literal expressions may be used, provided that the
resulting value is of the correct type.

2. For array elements of the predefined type BYTES, string
literal values will have apostrophes instead of
parentheses.

The data type of all the elements of the array data~element is the
data—type specified in the declaration statement. The number of array
data—elements may be computed by taking the product of the number of
distinct values that each index set contains, i.e. the number of
values for each dimension specified for a multi—dimensional array. The
actual storage required for such an array depends on the storage
required for a single array element, then multiplied by the number of
elements specified in the array. For the storage requirements of the
simple data types, see Appendix C.

The array data~element may contain initial values when program
execution begins. These values are specified in the list of literal
expressions, which have evaluated results of the data type ‘data—
type'. The list of values is placed in the array in the following
order; set each index to its lowest value, then vary the indices
through their index sets to their highest value, with the last index
changing most rapidly. For multidimensional arrays, if an initial
value list is specified, then it must contain one level of parentheses
for each dimension, to uniquely define the correspondence of the
values to their array elements. An exception to this rule is available
for BYTES arrays of more than one dimension, see section 4.1.7.1.

Note: This default sequence of elements of an array is the same as
that used in the Pascal language, but different to that used in
FORTRAN. This is significant if modules of mixed languages are to
communicate satisfactorily, see Mixed Language Programming, Appendix
D.

If an array declaration contains a list of initial values which has
fewer values than specified by the index set, the specified number of
array elements will be initialized and the rest will be set to a null
value, in fact binary zeroes. For multidimensional arrays, the first
few elements of a group, corresponding to a particular index set, may
be initialized by the use of parentheses.

If a list of literal expressions, to be used as initial values in an
array data—element, is present in the declaration statement then the
index set may be omitted and the PLANC compiler will supply implicit
bounds so that the array will have sufficient elements to contain the
list of initial values. In this case the list of initial values will
implicitly determine the number of elements of the array data~element.
The implicit bounds are zero (0) and the number of elements minus one.

Norsk Data ND—60.117.5 EN

55 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

Exa-ples of array declarations:

2 two one—dimensional arrays, same number of elements, but

2 the values of each index range are different

REAL ARRAY : vector][1:11],vector2[—5:5]

Z the second array has a list of initial values
CONSTANT two=2
INTEGER ARRAY : arl[1:5],ar2[1:4]:=[—2,4+two,21,-108]

.\~ the array ar3 has the same size characteristics as ar2 above,
with an index set, with values 0:3, implicitly specified by

Z the list of initial values
INTEGER ARRAY : ar3:=[—2,4+two,21,—108}

‘\"
A: an array whose elements are range modified to be 6 bit

2 integers

INTEGER RANGE [1:63] ARRAY : modint{1:3]:=[2,4,6]

Z a real and an integer array with enumeration index sets
ENUMERATION [red,yellow,blue,white,black] : colour
REAL ARRAY : arenl[yellow:white]:=[1.0,2.0,3.0]
INTEGER ARRAY : aren2[red:blue]:=[2,3,5}

Z a two dimensional Boolean array and
Z a three dimensional real array:
BOOLEAN ARRAY ARRAY : b0012[1:5,1:10]
REAL ARRAY ARRAY ARRAY : rl3{1:2,1:3,1:4]

o\° cube is a three dimensional array with implicit index sets
equivalent to a declaration

cube{0:2,0:1,0:1]M
N

n\°

INTEGER ARRAY ARRAY ARRAY .- &
cube:=[[[1,31,[2,4]}, [[0,0],/0,2]], [(-1,1],[1,—1]]}

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 57

DATA DECLARATION AND COMPOSITE DATA TYPES

lI.l.2. ARRAY TYPE SPECIFICATION AND USER DEFINED TYPES

A type specification may be used to create a new data type based on
the array data type. This newly defined data type may then be used for
declaring data~elements with the characteristics of the newly defined
data type. The general form of an array type specification is:

TYPE type—ident = data—type ARRAY[ARRAY] ...

where

type-ident is an identifier which is the name of the new array
data type.

data-type is a simple data type as in an array declaration.

ARRAY;is repeated for the number of dimensions required
for each array data—element to be declared of this new
data type.

Note: For each 'ARRAY' keyword there must be an index set,
specified explicitly or implicitly, in each data-
element declaration of this new data type.

A type specification will not result in any dataeelements being
constructed, it only specifies certain characteristics that data—
elements will have if they are declared to be of a newly specified
type. Array data~elements will only be constructed in association with
a declaration statement.

Examples of array type specifications:

TYPE ivector = INTEGER RANGE [0:127] ARRAY
an array type of one dimensional arrays

2 with 7 bit unsigned integer array elements
ivector : ivc1[1:10],iv02[1:100]
Z 2 data—elements of the 'ivector’ array data type

~\‘

ENUMEEATION (red,b1ue,green,blue,pink] : colour
TYPE artype = INTEGER ARRAY ARRAY

2 type specification

,\o

artype : ar1[red:blue,red:pink] &

:=[{1,2,3,4,5],[6,7,8,9,10} J
2 this is a 2 dimensional 2*5 array with 10 integer elements
2 which may be accessed with enumeration identifier values

Norsk Data ND’60.117.5 EN

58 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

4.1.3. REFERENCE TO ARRAY ELEMENTS AND ACCESS MODE

In the executable part of a program, it is necessary to refer to
individual elements of an array data—element, either to store a value
or to access a stored value. The general form of a reference to an
array element is:

array—ident[index—expr[,index—expr] ...]

where

array—ident is the identifier in the array declaration.

index—expr is an expression of integer or enumeration data type to
match the type of the index set in the array
declaration.

Note: There must be the same number of index-expr's in an
array element reference, as index sets in the array
declaration.

Examples of array references:

BOOLEAN ARRAY : booll[1:20}
°/.

TRUE=:booll[2]
TRUE=:booll[1+1] Z is the same as the previous statement

ENUMERATION [red,blue,green,pink] : colour

INTEGER ARRAY ARRAY :iarl[red:green,blue:pink]
2
2=:iar1[blue,blue] 2 store 2 in the array element

An exception to the above is available for BYTES arrays with more than
one dimension. The last subscript may be omitted and the reference
will be to the entire string, i.e. the entire range of values of the
last index set.

For example:

BYTES ARRAY : b1[1:2,0:3]:=['abc’,'xyz']

BYTES : b2[1:3]
b1[1]=:b2

the string 'abc' will be stored in array b2

Note, one extra ARRAY keyword is implicitly included in a

BYTES declaration

~
\‘n

\‘
.\'

Note that there are certain restrictions on the ND-lOO concerning the
last dimension. It is imposed by hardware, and described in more
detail on page 235.

Norsk Data ND-60.ll7.5 EN

PLANC Reference Manual 59
DATA DECLARATION AND COMPOSITE DATA TYPES

In the previous example, the reference to the array bl, bl(1), is
equivalent to the subarray:

b1[1:1,0:3]

In an array declaration, the data type of the elements of the array
may be a modified simple data type. In particular, the READ 'access'
modified type may be used in the following manner:

HEAL READ ARRAY : rlar1[1:2]:=[8.0,9.0]

This declaration specifies that the array elements are for read access
only. Consequently no values can be stored into the individual array
elements during program execution.

14.1.4. OPERATIONS 0N ENTIRE ARRAYS AND ARRAY ACCESS

The contents of an array data—element may be copied into another data-
element by using the store operator. Such a copy operation treats an
array as a single entity. An array copy is only allowable if both
source and destination arrays have identical declaration
characteristics, i.e. elements of the same data type, same number of
dimensions and the same index sets.

Example of an array copy:

INTEGER ARRAY ARRAY .~ iarray1{1:2,1:2]:=[[1,2],{3,4]], &
iarray2[1:2,1:2]
z
iarray1=:iarray2 2 copy iarray] into iarrayZ

An entire array, i.e. all of its elements, may be assigned to a single
value by using the store operator in the following way:

expr=zarray~ident

where

expr has a value of the same data type as the declared data
type of the elements of the array.

array-ident is an array identifier.

Norsk Data ND—60.117.5 EN

50 PLANC Reference Manual

DATA DECLARATION AND COMPOSITE DATA TYPES

Example of assigning a single value into an entire array:

INTEGER ARRAY ARRAY : iarray[1:10,1:10]
’/,
'/

5+3**2=:iarray 2 stores 14 in each array element

Arrays have an access mode, identical to that for simple data types,
for operations which treat an array as a single entity. The entire
access mode may be declared as READ or WRITE, following the ARRAY
keywords.

Example of use of array access mode:

INTEGER ARRAY READ : iar1[1:10]

is an array into which entire array operations cannot store values.
However it is still valid to store into individual elements of the

array.

If the declaration is:

INTEGER READ ARRAY READ : iar2[1:10]

then it is not permitted to store into individual elements or into the
entire array as an entity.

Note that the access mode keywords, READ/WRITE, may not be placed
between the ARRAY keywords. READ/WRITE must precede or follow all the
ARRAY keywords of any ARRAY declaration.

4.1.5. INDEX SET INFommm

All array data—elements have a descriptor which contains information

specifying the number of dimensions, number of index sets, the range
of values for each index set and the data type of the array elements.

All array operations and operations on individual elements use this
descriptor information.

The lower and upper bound values for each index set are available
during program execution through the use of the following standard
routines:

l) MININDEX (array-ident,dimension number) — returns the lower
bound of the corresponding index set.

2) MAXINDEX (array-ident,dimension number) - returns the upper
bound of the corresponding index set.

These routines are described in Standard Routines Available in PLANC,

section 7.9.

Norsk Data ND~60.117.5 EN

PLANC Reference Manual 61

DATA DECLARATION AND COMPOSITE DATA TYPES

4.1.6. SUBARRAYS

A subarray is a part of an array which may be referred to as a single
entity. A subarray is specified by using a subarray index set for each
dimension of the original array. Each subarray index set must be a
subset of the corresponding index set in the original array.

Examples of subarrays:

REAL ARRAY : rvector1[1:10],rvector2[5:40]
2 copy one subarray to another
rvector1[4:8]=:rvector2[24:28]

INTEGER ARRAY ARRAY : intarl[0:10,]:5],intar2[1:11,-2:2]

2 copy subarrays of 2 dimensional arrays
intarl[0:10,i:k~2]=:intar2[1:11,i—3:k—5}
intar1[0:1,1:j]=:intar2[2:3,0:j~1]

If the ADDR standard routine (see section 7.9) is called with a
subarray as a parameter, then an array descriptor for the subarray
will be constructed. This descriptor may be stored in a pointer data—
element which is qualified to reference an array of these
characteristics. The subarray may then be treated as if it were an
array, just like a dynamically created array, and the IND standard
routine could be used to obtain the values of elements of this
subarray. '

If an array is declared with two or more dimensions, then a subarray
may be implied by omitting the last one or more dimensions. If the
array is declared with n dimensions, and the subarray has the last k
dimensions omitted (k<n), then the subarray will have n-k
dimensions.

For example:

INTEGER ARRAY ARRAY : twod[1:100,1:100]
INTEGER ARRAY : oned[1:100]
INTEGER : sub1,sub2

Z a one dimensional subarray may be referred as follows

twod{10]=:cned Z the explicit subarray twod[10:10,1:100]

Note that an element in the implied subarray twod(10), may be referred
to by the form twod(10) (2). An alternative to using this form would
be to refer to the original array twod, using twod(lO,2) which gives
much faster access at runtime.

Norsk Data ND‘60.117.5 EN

52 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

4.1.7. PREDEFINED DATA TYPES USING ARRAYS

The array data type is used as a base type for the following data
types

1) BYTES - arrays used to represent character strings.

2) BITS — arrays used to represent bit strings.

l1.1.7.1. BYTES — ARRAYS USED To REPRESENT CHARACTER STRINGS

A BYTES data-element can contain any number of characters. Each
character is held as an unsigned 8 bit integer and is equivalent to
the declaration:

TYPE bytes = BYTE ARRAY PACKED

Note: The keyword PACKED will be discussed in section 4.2.5.

The declaration of a BYTES data-element includes one ARRAY keyword
implicitly, as this predefined data type is defined as an array of
BYTE data-elements.

The elements of a BYTES data-element, i.e. a BYTE array, may be used
as operands for integer operators or the entire array may be treated
as an integer array, but the only specific character string operations
provided by the PLANC compiler are assignment and the relational
operators, see section 5.4. The user may of course create more string
functions, e.g. string concatenation.

Examples of BYTES data—elements:

BYTES : magic[1:100]

N

Z a data-element which can hold 100 separate characters

“\Q

I abracadabra'=:magic[10:20] 2 store 11 characters

BYTES : string:='i am the greatest'
a data-element which can hold 17 characters
the first character can be referenced by

string[0]
the second by

string[1] and so on.

M
N

N
A

“
o\‘

Norsk Data ND—50.117.5 EN

PLANC Reference Manual 63
DATA DECLARATION AND COMPOSITE DATA TYPES

If a BYTES array of more than one dimension is to be initialized, then
an exception to the normal predefined data type facilities is
available. This represents an array of strings, where the last
dimension may be initialized by a whole string.

For exanple:

BYTES ARRAY : bytes2by4[0:1,2:5]:=['abcd','wxyz’]
2 two strings, each containing 4 characters, in an array

It is of interest to note in the type specification, that the BYTES
type is effectively specified in terms of another predefined type.

As a consequence of the data type BYTES being defined as a BYTE ARRAY,
there may be a difficulty if an access mode, READ/WRITE is to be used
for each array element, i.e. each BYTE data-element which makes up the
BYTES array. In order to declare an access mode for each array
element, the access mode keyword, READ/WRITE, must precede all of the
ARRAY keywords. Since the BYTES declaration includes an implicit ARRAY
keyword, it is not possible to declare an explicit access mode keyword
prior to the first ARRAY keyword. If such an explicit access mode for
each element of a BYTES array is required, the user will have to
construct his own declaration as a BYTE array, with the access mode
keyword placed prior to all ARRAY keywords.

For example:

BYTE ARRAY ARRAY PACKED : safe_els {0:9,0:9]

is exactly equivalent to the declaration

BYTES ARRAY : safe_els [0:9,0:9]

However, if the array elements are to have a READ access mode only,

then the following declaration is the only way to achieve this:

BYTE READ ARRAY ARRAY PACKED : safe_els [0:9,0:9]

If a number of BYTES arrays were required with READ access mode for
each element, a newly defined data type could be created for
convenience.

For example:

TYPE mybytes = BYTE READ ARRAY ARRAY PACKED

Norsk Data ND—60.117.5 EN

54 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

4.1.7.2. BITS — ARRAYS USED TO REPRESENT SEQUENCES 0F a

A BITS data-element can contain a sequence of bits of any length. Each
bit is represented by a BOOLEAN data-element compressed into succesive
bits of storage. It is equivalent to the declaration:

TYPE bits = BOOLEAN'ARHAY PACKED

Note: The keyword PACKED will be discussed in section 4.2.5.

The elements of a BITS array may be used as operands for Boolean
operators or the entire array may be treated as a Boolean array, but
there are no specific bit operations provided by the PLANC compiler.
The user may of course create bit functions, e.g. concatenate two bit
strings. An element of a BITS array may take the values TRUE and
FALSE.

Examples of BITS data—elements:

BITS : flagsl[1:10]
2 set individual flags
THUE=:flagsl[1]
PfiLSE=:flag31[3]

BITS ARRAY .- flag52[1:2,1:2]:=[[TRUE,FALSE},[THUE,THUE}]
BOOLEAN .- b11 .
2 access a single bit value
flag52[2,2]=:b11

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 65
DATA DECLARATION AND COMPOSITE DATA TYPES

4.2. RECORDS

A record data~element is made up of components each of which may be of
any data type, simple, composite or newly defined. Each component of a
record data—element is uniquely identified by an identifier within the
record declaration. The RECORD data type must be declared in a TYPE
specification statement; declaration statements for RECORD data-
elements must use a record data type specified previously in the
program in which the declaration statement occurs.

l4.2.1. RECORD DECLARATIONS AND TYPE SPECIFICATION

A record type specification specifies the following information:

1) Record Type Name — an identifier to be used in declaration
statements to refer to the record data type.

2) Component Data Type — the data type of each component of the
record data—element.

3) Component Identifier - the name used to refer uniquely to
each component of a record.

The general form of a record type specification is:

TYPE rec~type~ident = RECORD

comp-data—type : comp-ident—list—l
conp-data—type : comp—ident‘list—Z

coup—...—list—n [HOD literal-expr]

ENDRECORD

where

rec-type—ident is an identifier to name the record data type.

comp-data—type is the data type of the component data-element.

comp—ident—list is one or more component identifiers.

Note: Use a list if a number of components of the same
type, grouped together, are required.

literal—expr is any literal expression.

A record type specification will not result in any data—elements being
constructed, it is only a description of which component data—elements
are constructed for declaration statements which use this newly
specified record data type. Records which are specified independently
of each other, i.e. not variants, may use the same identifier name for
a component.

Norsk Data ND-60.117.5 EN

66 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

Examples of record type specification and declaration:

Z specification of a 'parts' record type
TYPE partrec = RECORD

INTEGER : partnumber
BYTES : partname [1:20]
HEAL : partprice

ENDBECORD
2 each record has 3 components — a number, name and
2 price for a part
7,

Z declare 2 data—elements of the ’parts' data type
partrec : mypart,yourpart

Z a record may have arrays or records as components
TYPE person = RECORD

BYTES : personname[1:20]
INTEGER : age

ENDRECORD
TYPE team = RECORD

BYTES : teamname[1:15]
INTEGER ARRAY : teamnumbers [1:30]
person ARRAY : teammembers [1:30]

ENDHECORD
Z the record 'team' has an array 'teamnumbers' and
2 an array of records 'teammembers'
team : myteam Z a 'team' data—element declaration

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 67

DATA DECLARATION AND COMPOSITE DATA TYPES

The components of a record data~element may be initialized by the
compiler so that the values will be present when the program begins
execution. The initial values must be specified in the record data-
element declaration. If any components of a record data—element are to
be initialized, then all components of that record must be given an
initial value.

Example of initializing record components:

TYPE partrec = RECORD
INTEGER : partnumber
BYTES : partname [1:20]
REAL : partcost

ENDHECORD
Z declare a record data~element with components initialized
partrec : psupply:=[123,'power supply',100.2]

Note that if equivalence is used within record components and initial
values are to be placed in the data~element, only the first
declaration of the data—element may have an initial value.

The storage alignment of record component data—elements will be
carried out according to the descriptions in Appendix C. Alignment of
record component datamelements may be explicitly controlled by the MOD
alignment clause. A MOD alignment clause forces the data-element to be
allocated at an address, whose displacement from the start of the
record, is a multiple of the resulting value from evaluation of the
expression in the MOD clause.

Norsk Data ND—60.117.5 EN

68 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

l1.2.2. VARIANT RECORD TYPE SPECIFICATION

Record data—elements declared for a given data type have so far all
had the same structure of components. It is possible to specify two or
more records which have some common components and some components
which vary from one record to the next. Such related records are
called variant records. Variant records may be specified by specifying
a record type with all the common components, called the base record
and then specifying each variant record as comprising the base record
plus those components particular to the variant record.

The general form of a type specification of a variant record is:

TYPE var~rec—ident = base-rec~ident &
RECORD

var—conpl—data-type : var—compl—ident~list
var—coupZ-data-type : var—compZ-ident—list

EKDRBCORD

where

var—rec-ident is an identifier to name the variant record
type.

base—rec—ident is the identifier naming the base record
type.

var—compJ—data—type are the data types of the additional
components of the variant record.

var—compl-ident-list are identifiers to uniquely name the
additional components of the variant record.

Following type specifications of two or more variant record data
types, declarations of record data-elements of the variant data type
may be made as for normal record data-element declarations.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 69
DATA DECLARATION AND COMPOSITE DATA TYPES

Examples of variant record specification and declaration:

2 specify a 'Vehicle' record data type
TYPE vehicle = RECORD

HEAL : weight,length,width,height
ENDBECOED
2 specify first variant record data type using 'vehicle' as
Z the base record
TYPE bus = vehicle RECORD

INTEGER : seats,numbercrew
ENDRECOHD
2 specify second variant record data type
TYPE truck = vehicle RECORD

REAL : loadcapacity
BOOLEHN : automatic

ENDRECORD
Z declare 'bus' and 'truck' dataeelements with initial values
bus : localbus:=[100.0,10.1,3.4,2.1,44,1]
bus : toursbus:=[150.0,11.3,3.4,2.1,35,3]
truck : tiptruck:=[50.5,8.6,3.2,1.9,45.0,THUE]

Note that a record pointer identifier, declared for the base record,
may be used to contain addresses of base record data-elements or any
of its variant record data-elements.

If a routine declaration contains a base record data type for a
parameter, then an invocation of this routine may have any variant of
this record data type as an actual parameter. However, if the routine
declaration contains a variant record data type as a formal parameter,
only this variant record data type (or further variants of this data
type), may be used as an actual parameter in a routine invocation.

Norsk Data ND-60.117.5 EN

70 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

14.2.3. REFERENCE TO RECORD C(MPCNENTS AND ACCESS MODE

In the executable part of a program, it is necessary to refer to
components of a record data-element, either to store a value or to
access an already stored value. The general form of a reference to a
record data—element component is:

data—el—ident.conp—ident

where

data—el-ident is the identifier in a record declaration. Note that it
may be a record pointer, but the following references
will all access the same data-element:

rec.element Z rec is a record

recp.element Z recp is pointer to rec
ADDR rec.element

Note: The limitation on the last dimension of the BYTES ARRAY
for the ND-lOO, see page 235.

comp—ident is the component identifier in the record type
specification.

Note: If the component is itself a record, then use a further
dot followed by a component identifier from that
record.

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 71
DATA DECLARATION AND COMPOSITE DATA TYPES

Examples of record component references:

TYPE person = RECORD
BYTES : givenname [1:15]
BYTES : familyname [1:30]
INTEGER : age,heightcm

ENDHECORD
Z declare a 'friend' data—element of data type 'person'
person : friend:=['Fred','Bloggs',49,179]
2 access a component of a 'friend' data—element
friend.age=: ... 2 store the age of 'friend'
2 would access the value 49

2 specify a 'team' record type using 'person' from above
TYPE team = RECORD

person : captain

INTEGER ARRAY : teamnumbers [1:5]
ENDHECORD
Z declare a 'team' data—element
team : usteam:=[['Ronald','Haygun',79,141] ,1,3,5,7,9]
2 access a component of a record within a record
2 i.e. the 'family name' of the 'captain' of the 'usteam'
usteam.captain.familyname=:

2 would access the value 'Raygun'

14.2.4. OPERATIONS 0N ENTIRE RECORDS AND RECORD Access

The contents of a record data-element may be copied into another
record data—element by using the store operator. For such a copy, the
record data—elements must be of the same record data type.

Example of a record copy:

Z type specification of an 'address' record
TYPE address = RECORD

BYTES : name[1:30}
INTEGER : streetnumber
BYTES : streetname[1:20]
BYTES : city[1:15]

EWDRECORD
Z declare two address data-elements
address : NDaddress:=['NDOSLO',20,’jerikoveien','oslo 10']
address : myaddress

2 copy the initialized address to the other data—element
NDaddress=:myaddress

Records have an access mode, identical to that for simple data types,
for operations which treat a record as a single entity. The entire
access mode may be declared as READ or WRITE, following the RECORD
keyword.

Norsk Data ND-60.117.5 EN

72 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

Exanple of use of record access mode:

TYPE address = RECORD HERD 2 same as previous record

ENDHECOHD

This is a record into which entire record operations cannot store
values. However it is still valid to store into individual components
of such a record.

If the declaration is:

TYPE address = RECORD HEAD
7,

INTEGER HEAD : streetnumber
z

ENDRECORD

then it is not allowable to store into the name component of the
address record or into the entire record data—element as an entity.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 73

DATA DECLARATION AND COMPOSITE DATA TYPES

4.2.5. PAO<ED OPTION FOR ARRAYS AND RECORDS

For data~elements of simple data types, storage may be wasted in
particular machine implementations. For the composite data types,
arrays and records, space required for data~elements can be minimized
by using the option PACKED in a TYPE definition or a declaration, in
the case of an array.

For example:

INTEGEEJ ARRAY PACKED : minints[l:500]
2 will require 250 words on the ND-JOO whereas
INTEGEHJ ARRAY : ints[1 500]
2 will require 500 words and use only half of each word

Use of the PACKED option will minimize storage requirements but it
should be noted that this may cause a program to execute more slowly
because of time taken to extract component data-elements from the more
compact storage allocation being used.

Further examples of the effect of the PACKED option:

2 on the ND—IOO
TYPE letters = ENUMERATION [a,b,c,d]
letters ARRAY : waste[1:10]
2 will require a 16 bit word per array element, i.e. 10 words
letters ARRAY PACKED : nowaste{1:10]
2 will require an 8 bit field per array element, 1.9. 5 words

2 on the ND-IOO
TYPE myrec = RECORD PACKED

letters : alphabet Z 2 bit instead of 16 bit field
BYTE : bytvar 8 bit instead of 16 bit field
BOOLEAN : b1 1 bit instead of 16 bit field

ENDRECORD

.\.
n\‘

The specific rules of how PACKED affects the storage requirements of a
data-element, on both the ND-lOO, the ND-SOO and the MC68000, are
described in Appendix C.

Norsk Data ND-60.117.5 EN

74 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

1L3. S_E_T_§

A set data-element is of a composite data type that, like the array
and record, is made up of a collection of components. However, unlike
the array or record, we neither index nor access the individual
components of a set. Instead a set is used only as a single entity.

The components that comprise a particular set are chosen from the
possible values of a simple data type called the base type of the set.
The valid base types for sets in PLANC are:

l) INTEGER RANGE

2) ENUMERATION

A set data-element may represent all subsets of the value of the base
data type of the set, including the 'empty' set. There is no mutual
ordering between the components of a set.

Thus the set data type in PLANC corresponds to the mathematical notion
of a set, with some restriction as to what may form the members of the
set. The usual mathematical set operations, e.g. union, intersection,
difference and complement are available as operators for use with set
operands.

4.3.1. SET DECLARATIONS

A set data~element declaration specifies the following information:

1) Set Name — an identifier which can be used to refer to the
set data-element as a single entity.

2) Base Type — a data type which will specify all the possible
members of a set data—element.

3) Initial members - optionally specify a subset of the base
type values to be members of a set at the beginning of
program execution.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 75

DATA DECLARATION AND COMPOSITE DATA TYPES

The general form of a declaration of set data-elements is:

base—type SET : ident[:=memb—list] [,ident[:=memb~list]]

where

base—type is one of the data types ENUMERATION, INTEGER RANGE or
a data type newly defined with one of these as a base
type.

Note: Integer range base type is restricted to a maximum of
256 values and the lower bound must be zero. In other
words, an INTEGER RANGE must be O:x, where x <= 255.

ident is a valid identifier.

memb-list is a list of values, selected once only, from the
possible values of the base data type.

Note: That literal expressions may be used, provided that the
resulting value is of the correct type.

The 'memb—list' may be partly or entirely specified by an implied
range providing that the list of values is of the correct data type,
see section 2.13.

If the 'memb—list' is omitted, then the set will be empty when program
execution begins.

A set data-element will require enough storage to hold an indicator of
the presence or absence of every possible member of the set, i.e.
every valid value of the base type of the set. For details of the
actual storage used, see Appendix C.

Norsk Data ND—60.117.5 EN

75 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

Examples of set declarations:

2 specify an enumeration data type
TYPE day = ENUMERATION [monday,tuesday,wednesday,
thursday,friday,saturday,sunday]
Z declare a set data—element with the weekend days as members
day SET : weekend:=[saturday,sunday]
Z declare a set data-element for the week days using an
2 implied enumeration range
day SET : workdays:=[monday:friday]

N declare a set of base type integer using an implied integer
2 range to specify a list of integer values
INTEGER RANGE[0:255] SET : twenties:=[20:27,28,29]

Z declare a set which will be empty initially
INTEGER range[0:255] SET : emptyint

14.3.2. SEI TYPE SPECIFICATION AND USER IIFINED TYPES

A type specification may be used to describe a new data type based on
the set data type. This newly defined data type may then be used for
declaring data—elements with the characteristics of the newly defined
data type. The general form of a set type specification is:

TYPE set—type-ident = set—base—type SET

where

set—type~ident is an identifier which is the name of the new set
data type

set-base-type is the base data type for this set data type.

A type specification will not result in any data-elements being
constructed, it only specifies certain characteristics that data-
elements will have if they are declared to be of a newly specified
type. Set data-elements will only be constructed in association with a
declaration statement.

Examples of set type specifications:

TYPE numbers = INTEGER RANGE[0:127] SET
2 declare data~elements of the 'numbers' data type
numbers : tensset:=[10,20,30,40,50,60,70,80,90]
numbers : digitsset:=[0:9]

TYPE colours = ENUMERATION [black,red,blue,green,white}
TYPE houses = colours SET
2 declare a data—element of the 'houses' data type
houses : myhouse:=[red,white,blue]

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 77
DATA DECLARATION AND COMPOSITE DATA TYPES

“3.3. OPERATIONS 0N SETS

The relational operators (see section 5.4) may be used with set data-
elements. As for other data types, evaluation of a relational operator
with two set data—elements as operands will give a Boolean resulting
value, i.e. TRUE or FALSE. The relational operators and their meanings
when used with set data-elements as operands are as follows:

IN

Note:

true if both sets contain the same members.
true if at least one member of one set is not a

member of the other set.
true if the left-side set has as a subset the

right—side set.
true if the left-side set is a subset of the

right-side set.
true if the left-side set has as a true subset

the right-side set.
true if the left—side set is a true subset of

the right—side set.

true if the left-side identifier is a member
of the right—side set.

The IN operator is the only relational operator without
both operands as sets. The first operand data~element
of the IN operator must have a base type of INTEGER
RANGE, ENUMERATION or.POINTER and the second operand
data~element is a set of the corresponding base type.

Norsk Data NDe60.1l7.5 EN

7g PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

Exanples of sets and relational operators:

2 declare some sets
TYPE day = ENUMERATION [monday,tuesday,wednesday, &

thursday,friday,saturday,sunday]

day SET : week:=[monday,tuesday,wednesday,thursday, &
friday,saturday,sunday]

day SET : weekend:=[saturday,sunday]
day SET : workdays:=[monday,tuesday,wednesday, &

thursday,friday}
Z

After these declarations, the operators give the following results:

expression result

week = workdays false
weekend)(workdays true
week)= workdays true

week > workdays true
weekend = week true
weekend < week true
monday IN weekend false

monday IN week true

The store operator =: (see section 5.1), may be used with set data-
elements as operands. It will have the effect of setting the members
of one set data-element exactly equal to the members of another set
data-element.

Example of sets and the store operator:

INTEGER RANGE [0:10] SET : odds:=[1,3,5,7,9],numbers
Z store the members of set 'odds' in set 'numbers'
odds=:numbers

You should remember that the way the set "odds” is initialized above,
cannot be used in an executable statement in exactly the same way,
e.g.

[1,3,5,7,9]=:numbers

will give a compile error. The correct way to specify an unnamed set
with a constant group of members requires the set base data type. This
is described following the description of the logical operators below.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 79
DATA DECLARATION AND COMPOSITE DATA TYPES

The logical operators, see section 5.3, may be used with set data—
elements. Evaluation of logical operators with set data—elements as
operands gives a resulting value of the set data type with the
exception of the ABS operator which gives an integer result. The set
operators and their meanings when used with set data-elements as
operands are as follows:

AND set intersection, i.e. result is a set with members
which are members of both operand sets.

0R set union,i.e. result is a set with members which are
members of either operand set or both.

XOR set difference, i.e. result is a set with members which
are members of one of the two operand sets and not
members of the other.

NOT set negation, i.e. result is a set which has as members
all the members which are not members of the operand
set.

ABS cardinal number, i.e. result is an integer value of the
maximum possible number of members of the operand set.

Examples of sets and logical operators:

2 declare some sets
TYPE colour = ENUMERATION [red,green,blue,pink,ash, &

yellow,white,black]
colour SET : bright:=[red,green,yellow,pink],anycolour
colour SET : pastel:=(blue,yellow,pink}
INTEGER : intl
2 union - result will have red, green, yellow, pink, blue
bright OB pastel =: anycolour

Z intersection ~ result will have yellow, pink

pastel AND bright =: anycolour

2 difference - result will have red, green, blue
bright XOR pastel =: anycolour
Z negation - result will have ash, yellow, white, black
NOT bright =: anycolour

2 set cardinal number — result is 8
ABS bright =: intl

Norsk Data ND-60.1l7.5 EN

30 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

The following standard routines are provided to carry out operations
on set data-elements:

l) Specify a set data—element with a constant group of members.

2) INSERT

3) REMOVE

To specify an unnamed set data-element with a constant group of
members use the general form:

set—data—type [nenb—list]

where

set-data—type is data type with a set base data type.

memb-list is a list of literals, selected once only, from the
possible values of the base data type.

Note: 1. This list may include literal expressions which are to
be evaluated at compile time.

2. Omission of the ‘memb-list' from the parentheses
denotes the 'empty' set for that base data type.

Example:

TYRE tnumbers = INTEGER RANGE [0:100] SET
tnumbers : numbers
TYPE colour = ENUMEEATION (red,blue,grey,pink,black]
TYPE tcolour = colour SET
tcolour : luckyset
INTEGER : intl
2 store an unnamed constant set data-element
tnumbers [1,3,5,7] =:numbers
tnumbers [1,3,5:10] =: numbers
tcolour [blue:black] =:luckyset 2 lots of luck 1
2 use an expression evaluated at compile time
CONSTANT int2=15
tnumbers [int2*3+4,int2:int2+5]=:numbers
2 an empty 'colour’ set data-element
tcolour [] =:luckyset 2 no luck at all !

Restriction: such an unnamed set data-element with a constant group
of members, must not be the first statement of a
routine, unless the entire statement is contained
within parentheses.

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 81

DATA DECLARATION AND COMPOSITE DATA TYPES

Add a member to a set data-element:

set—member—ident INSERT set~ident

where

set-member-ident is a data-element of the set base data type.

Note: This may be an expression to be evaluated at
runtime.

set—ident is a set identifier.

Example:

INTEGER : int
INTEGER HANGE[0:100] SET : numbers
2 add a member to the 'numbers' set data~element

3 INSERT numbers
int’2 INSERT numbers

Remove a member from a set data~elementz

set-menber—ident REHOVE set—ident

where

set-member—ident is a data-eiement of the set base data type.

Note: This may be an expression to be evaluated at
runtime.

set—ident is a set identifier.

Example:

INTEGER : int
INTEGER RANGE[0:10] SET : evens:=[0,2,4,6,8,10]
2 remove a member from the 'evens' set data—element

6 REMOVE evens
int+5 REMOVE evens

Norsk Data ND—60.117.5 EN

82 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

M. ROUTINES

The 'routine' is defined in the PLANC language as a composite data
type. While this may seem a little unusual, it is of benefit in
declaring a routine name to be used as a generic function with in fact
a family of similar routines which differ only in that their
parameters are of different data types and perhaps their return values
too, e.g. a ’plus' operator may therefore be created for integer, real
and complex parameters.

A full description of the syntax of routine type specification,
declaration, invocation and the use of parameters to communicate
information to and from routines may be found in Chapter 7, ROUTINES.

4.5. DYNAMIC ALLOCATION OF DATA—ELEMENTS

During execution of a PLANC program, data—elements may be dynamically
created and destroyed in storage. The actual storage used for
dynamically created data-elements may be the program stack or an
INTEGER array. If the program stack is used, it must be declared with
enough space to hold all the dynamically created data-elements as well
as all the other usual runtime requirements. One or more INTEGER
arrays may be used as storage for dynamically created data—elements.

The NEW standard routine will dynamically create unnamed simple or
composite data-elements. Invocations to the NEW standard routine
return a pointer data-element of the type of the parameter used in the
call. Invocations of the NEW standard routine are as follows:

For simple or composite data~e1ements use:

NEW data—type [IN int—arrayuident]

where

data-type is any simple, composite, predefined or user defined
data type, except arrays.

int~array~ident
is an integer array identifier.

For arrays or subarrays, it is possible to use:

NEW ar-type [index—set[,index—set] ...] [as above]

where

ar—type is any array data type. Optionally, the data type can
be enclosed in parentheses.

index-set is an index set specifier for each corresponding index
set for this array data type.

Norsk Data ND—60.ll7.5 EN

PLANC Reference Manual 83

DATA DECLARATION AND COMPOSITE DATA TYPES

Example of dynamic creation of a simple data—element:

INTEGER ARRAY : store[1:1000]
REAL POINTER : rlptr
7,

NEW REAL=:rlptr
2 dynamic creation of a real data-element on the program stack

‘\°

NEW REAL IN store=:rlptr
2 dynamic creation of a real data-element in an integer array

Dynamically allocated data-elements will be created in the local data
area of a routine unless an INTEGER ARRAY from an outer level routine
is used in the NEW routine call. Note that all data~elements,
including those dynamically created, in the routine's local data area
will be lost when an exit from a routine occurs.

The DISPOSE standard routine is used to deallocate dynamically created
data—elements, i.e. a data-element which has been created by use of
the NEW data type IN array standard routine. Invocations of the
DISPOSE standard routine are to be used as follows:

DISPOSE pointer—ident

where

pointer—ident is a pointer data-element with a value pointing to the
data—element to be deallocated.

During execution, an INTEGER ARRAY POINTER called FREE_P is available.
It is initialized to point to the memory location immediately
following the PLANC library routines loaded from the appropriate PLANC
library files. In order to safely use this pointer to utilize the free
space, the library routines must be loaded last.

In order to use the free space available, the declaration:

IHPOBT INTEGER ARRAY POINTER : FREE_P

must appear in the appropriate module. MININDEX(IND(FREE_P),1) and
MAXINDEX(IND(FREE_P),1) give the low and high addresses of the free
memory area, represented as unsigned integers.

Norsk Data ND-60.117.5 EN

84 PLANC Reference Manual

DATA DECLARATION AND COMPOSITE DATA TYPES

This pointer may be used with the NEW standard routine as follows:

NEW ... IN IND[FREE;P]=:ptr

Examples of dynamic creation of array and record data—elements:

2 specify an array data type

TYPE doublereal = REAL ARRAY ARRAY
Z declare a pointer data—element for the array data—element

doublereal POINTER : arraypointer

REAL : r11

.\°

2 dynamically create an array and store its pointer value
NEW [doublereal[l:5,0:10] J =: arraypointer
‘4

2 access an element of the array data~element as follows

IND [arraypointer] [1,10] =: r11 2 store value in r11
2
2 specify a record data type
TYPE complex = RECORD

REAL : realpart,imagpart
ENDRECORD
Z declare a constant value record data-element
complex : constcomplex:=[1.0,1.0]
2 declare pointer data-element for the 'complex' data type
complex POINTER : complexpointer

N

Z dynamically create another 'complex' record
NEW [complex] =: complexpointer
2 store the constant record into the dynamically created
Z 'complex' record data-element
constcomplex =: IND[complexpointer]

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 85

DATA DECLARATION AND COMPOSITE DATA TYPES

4.6. PROCESSING OF RECORDS IN LIST STRUCTURES

The following standard routines are available for processing linked
lists of record data—elements:

l) The INSERT standard routine will add a record data-element to
the front of a linked list.

2) The APPEND standard routine will add a record data-element to
the end of a linked list.

3) The REMOVE standard routine will remove a record data-element
from anywhere in a linked list.

The general form of the invocations of all of these standard routines
lS:

rec-pntr INSERT list-pntr—range

where

reC°pntr is a pointer to the record to be processed.

list—pntr—range is a pointer implied range, describing the linked
list.

The use of these list processing routines is illustrated in the
following code examples.

Norsk Data ND-60.117.5 EN

86 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

Set up a static linked list:

3 define a record data type for the linked list
TYPE myrecord = RECORD

myrecord POINTER : linkptr
INTEGER : recordnumber

ENDHECOBD
Z initialize a static linked list of records
myrecord : r1?,r2?,r3? Z predeclaration of data~elements
myrecord POINTER : listhead:=ADDH[r1],anyrecptr

myrecord : r1:=[ADDR[r2],1]
myrecord : r2:={ ADDR[r3],2]
myrecord : r3:=[NIL,3]
Z declare some records to illustrate list processing
myrecord : front:=[NIL,~1],back:=[NIL,99]
myrecord POINTER : frontptr:=ADDH[front],backptr:=ADDB[back}

The record front may be added to the start of the linked list by the
statement,

frontptr INSERT listhead:linkptr

Following the execution of this statement, the linked list will
contain four records whose record numbers are -l, l, 2, 3.

The record back may be added to the end of the linked list by the
statement,

backptr APPEND listhead:linkptr

Following the execution of this statement, the linked list will
contain five records whose record numbers are —l, l, 2, 3, 99.

The record r1 may be removed from the linked list by the following
statements,

ADDH[r1]=:anyrecptr
anyreoptr REMOVE listhead:linkptr

Now the linked list will have only four records, with the record
numbers —1, 2, 3, 99.

The standard routines will do all the necessary changes to the linkptr
component data—elements of records affected by the changes in the
linked list, e.g. when record fl is removed, record number ~-1 is
changed to point to record 53 (number 2).

Record data—elements may be created dynamically by the use of the NEW
standard routine. Such record data-elements may be manipulated in
linked lists in the same way as the explicitly declared record data—
elements above. In fact an entire list may be constructed from such
unnamed dynamically allocated record data-elements.

If a new record is to be placed in the middle of the linked list, then
the program will have to change the linkptr component data—elements
explicitly.

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 87

DATA DECLARATION AND COMPOSITE DATA TYPES

Note that the standard routines INSERT, APPEND and REMOVE will not
give any error indication if the record pointer in the routine
invocation is empty (i.e. the pointer to the record to be processed
has a value NIL). This also applies to the REMOVE standard routine if
the linked list is empty. Take care to remember that if INSERT or
APPEND is used on a record that is already in a linked list, there is
no error indication, but the address link field will be overwritten.

Norsk Data ND~60.117.5 EN

88

Norsk Data ND—60.117.5 EN

PLANC Reference Manual

PLANC Reference Manual 89

EXPRESSIONS — FORMATION AND EVALUATION

5. EXPRESSHNS - FWTIW AND EVAUJATIO‘J

An expression comprises operators and data-elements as operands,
formed according to a set of rules. During program execution, an
expression may be evaluated to give a resulting value which may be
stored in a data-element.

PLANC, unlike most high level languages, does not have an assignment
statement. It has assignment operators which may be used within
expressions to store any temporary resulting value during the
evaluation of an expression. At any point during evaluation of an
expression, a temporary resulting value is available. Evaluation of
one expression may store a number of values into data-elements, or if
the expression is simply to invoke a routine with no out—value (see
section 7.2) then there is no resulting value and no value is stored.
The PLANC compiler will, if possible, try to evaluate an expression at
compile time (e.g. if it contains literals only).

The operands used to form an expression may be literals, identifiers
or routine invocations. An expression must contain operands whose
corresponding data-elements are of one data type only, or parts of the
expression must give a resulting value data-element of the correct
data type required for further evaluation. This means that in general,
there is no automatic conversion of the operand data—elements to the
data types required by a specific operator. A routine invocation,

within an expression evaluation, may have a side‘effect of modifying a
data-element value which is to be used later in the evaluation.

The operators in PLANC are defined for one or more data types. The
following sections will describe all the available operators for each
specific data type. Further, some operators are binary, i.e. they may
be used with two operands. For example, the sum of the values held in
two integer data-elements may be obtained by the following part of an
expression:

integl+integZ

by using the binary + operator for the integer data type. Other
operators are unary, i.e. they may be used with only one operand. For
example, the complement of a Boolean data-element may be obtained by
the following part of an expression:

NOT bool]

by using the unary NOT operator for the Boolean data type. The
evaluation of any operator and its operands will give a resulting
value, except for routines with no out-value. This resulting value,
which the runtime system may store in a temporary data-element, may be
explicitly stored by the use of the assignment operators.

Norsk Data ND-60.1l7.5 EN

90 PLANC Reference Manual
EXPRESSIONS — FORMATION AND EVALUATION

The operators available in PLANC each have a priority which determines
the order of evaluation within the expression. An expression is
evaluated by first forming the resulting values of the highest
priority operators. These resulting values replace the operator and
its operands and then the next highest priority operators are
evaluated. For operators of the same priority, evaluation is from left
to right.

Parentheses may be used to enclose part of an expression, causing that
part to be evaluated separately from anything outside the parentheses.

User defined routines may be used within expressions and will be
evaluated accordingly. Such routines have a higher priority than all
the PLANC defined operators.

There are four classes of operators:

~ assignment

- arithmetic

- logical

— relational

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 91

EXPRESSIONS — FORMATION AND EVALUATION

5.1. ASSIGMENT OPERATORS

PLANC has two assignment operators which may be included within
expressions. The assignment operators are used to store values, into
data—elements, during evaluation of an expression. More than one
assignment operator may be used in an expression, causing a number of
values to be stored during evaluation of this expression. PLANC has no
distinct assignment statement as many other high-level languages have.

The assignment operators have a priority associated with each side of
the operator. The left—side priority is the lowest possible priority,
to ensure that the entire expression to the left of the operator has
been evaluated before evaluation of the assignment operator.

Both operands for an assignment operator may be of any simple,
composite or predefined data types. Both operands must be of the same
data type. If however the operands are modified integer or real data
types, they may be of different modified data types (i.e. integer
range or real precision) and appropriate conversion will take place
prior to evaluation of the assignment operator, provided the receiving
data—element is large enough to contain the value to be stored. If
not, truncation will occur and no runtime error indication will be
given.

If the operands are data-elements of composite data types, then the
value of the entire data—element will be moved by the store operator,
e.g. a store operator with array operands will move the entire array
as an entity (see section 4.1.4).

The two assignment operators are:

Operator Priority Operation Data types

=: 1, left—side Store all simple,
12, right~side composite and

predefined

= 1, left—side Change all simple
12, right-side

When evaluation of an expression reaches a store operator, the
resulting value of the part of the expression, immediately to the left
of the store operator, will be stored into the data-element associated
with the operand immediately to the right of the store operator.

The resulting value after evaluation of a store operator has the same
value as the resulting value immediately prior to the evaluation of
the store operator, i.e. evaluation of a store operator does not
change the resulting value of the expression during evaluation.

Norsk Data ND~60.117.5 EN

92 PLANC Reference Manual
EXPRESSIONS - FORMATION AND EVALUATION

Examples:

1. 53=:int

will store the integer literal value in the integer data—element
associated with the identifier int.

2. 3+5=:int

will evaluate the sum of the two integer literals first because the
integer + operator has a priority of 8. The left-side priority of the
store operator is l, i.e. lower than that for the + operator, and thus
it will be evaluated after the +. The resulting value of evaluation of
the integer + operator is 8, and will then be stored in the integer
data-element associated with the identifier int.

3. intval=:int

will store the value stored in the data—element associated with the
identifier intval, into the data—element associated with the
identifier int.

4. 2+2=:int1=:int2

will store the value of the sum, 4, into the data~element associated
with the identifier intl. The resulting value at this point of the
expression evaluation is 4. Then evaluation of the second assignment
operator stores the resulting value 4 into-the data-element associated
with the identifier int2.

5. 1+2=:int1+4=:int2

will have a resulting value 3 from the first sum. Evaluation of the
first store operator will store the resulting value 3 in the data-
element associated with the identifier intl. Then second + operator
will have a resulting value of the sum, 3+4. This resulting value, 7,
will be stored by the second store operator into the data—element
associated with the identifier int2.

6. 5*4+1=:int

will store the value of the entire expression, i.e. 21, into the data-
element associated with the identifier int. If however, parentheses
were used:

5*[4+1]=:int

the order of evaluation of the operators is different. In the
expression without parentheses, the product 5*4 is evaluated to give
the resulting value 20. Then the sum 20+l is evaluated to give the
resulting value 21, which is then stored. In the expression with
parentheses, first the sum 4+1 is evaluated to give the resulting
value 5. Then the product 5*5 is evaluated to give the resulting value
25, which is then stored. Note that the parentheses not only change

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 93

EXPRESSIONS - FORMATION AND EVALUATION

the order of evaluation within the expression, but cause a different
final result, depending on the mixture of operators used in the
expression.

When evaluation of an expression reaches a change operator, the
resulting value of the part of the expression, immediately to the left
of the store operator, will be stored into the data-element associated
with the operand immediately to the right of the store operator. This
is identical to the store operator.

The resulting value, from evaluation of a change operator, is
different to that of a store operator. The value of the data-element
to receive the value to be stored by a change operator, immediately
prior to evaluation of the change operator, will be the resulting
value following evaluation of the change operator.

For example:

1. 3=:int 2 store 3 into data—element associated with int
4:=:int

will store the integer literal value 4 into the data-element
associated with the identifier lint, but the resulting value of the
expression following evaluation of the change operator is 3, i.e. the
value that was in the data-element associated with int before
evaluation of the change operator.

2. 3::1 2 store 3 into data-element associated with i
4=:j 2 store 4 into data—element associated with j
i:=:j=:i 2 exchange the values of i and j

will store the value, 3, from the data—element associated with the
identifier i into the data—element associated with j. However, the
resulting value of the change operator is the value in j prior to
evaluation of the change operator, i.e. 4. Then the resulting value,
4, is stored by the second operator in the expression, i.e. 4 is
stored into the data-element associated with i.

3. 1=:a 2 store 1 into data~element associated with a
2=:b 2 store 2 into data-element associated with b
0=:c{1]=:c[2] 2 likewise, store 0 into the elements 1 and 2

o\. of array C

a:=:b=:c[b] =\° — what are the contents of c now? See below

Execution of the last statement goes as follows:

1) First, the l stored in a is also stored in b, while the new value
of the expression becomes 2, which is the previous value of b.

2) Then the 2 is stored in that element of c having a number which
corresponds to the new value of b (which is 1). That is, c[b] is
now the same as c[1], and has the value of the expression in it,
which is 2. The element c[2] still has the value 0.

Norsk Data ND-60.ll7.5 EN

94 PLANC Reference Manual
EXPRESSIONS — FORMATION AND EVALUATION

5.2. ARIT‘rMETIC OPERATORS

PLANC has a number of arithmetic operators which are available for
operands whose data-elements are integer or real data types. There are
both unary and binary arithmetic operators. The operands for a binary
operator must both be either real or integer, but the operands may
vary in the declared modifications (i.e. range for integer and
precision for real).

The following table lists all of the available arithmetic operators:

Operator Priority Operation Data types

+ binary 8 addition integer, real
- binary 8 subtraction integer, real.
— unary 10 negation integer, real
* binary 9 multiplication integer, real
/ binary 9 division integer, real
** binary ll exponentiation integer, real
ABS unary ll absolute value integer, real
MOD binary ll modulo integer
SHIFT binary 8 shift bits integer
++ unary 10 add one integer, real,

simple pointer
—— unary 10 subtract one integer, real,

simple pointer

The binary operators +, -, * and /, and the unary operators ~ and ABS
can have operand data—elements of either integer or real data types.
Further, the operands may be modified (i.e. integer range or real
precision). Various modified integer data type operand data-elements
may be mixed when used with the binary operators. Likewise, modified
real operands may be mixed when used with the binary operators.

The resulting value data-element will be of the same data type as the
operands. If the operands are different modifications of one data
type, then the resulting value will be a dataeelement of the data type
appropriate to hold the larger of the two operand modified data types,
i.e. for integer data—elements, a data~element of the larger range,
and for real data-elements, a data—element of the larger precision.

For example:

HEAL PRECISION [15] : r11
REflL PRECISION [7] : r12
2

r11+r12 ...

evaluation of the real addition operator within an expression would
give a resulting value at that point in the expression, in a REAL
PRECISION (15) data~element, for further expression evaluation.

Note that the integer division will not return any remainder, the MOD
operator must be used.

Norsk Data ND-60.ll7.5 EN

PLANC Reference Manual 95
EXPRESSIONS — FORMATION AND EVALUATION

The ** operator, for exponentiation, may have a first operand data—p
element of integer or real data type. The second operand data-element
can only be an integer data type.

The binary operators, MOD and SHIFT, must have integer, or integer
modified, operands only. They both give a resulting value in an
integer data—element.

The SHIFT operator will shift bits in the first operand data-element.
The second operand specifies the number of bit positions to be shifted
and if this operand is positive, then the shift is to the left,
negative means shift to the right. If the first operand data-element
is a signed integer data type, then the sign bit is not affected by
left shifts and it is extended for right shifts. If the first operand
data~element is an unsigned data type, i.e. a non-negative integer
range, then zeroes are shifted in from the left in right' shifts, and
they are shifted in from the right for left shifts.

For example:

773 SHIFT 3

gives a resulting value 7708.

The MOD operator gives a resulting value of the first operand modulo
the second operand, i.e. the remainder after dividing the first
operand value by the second operand value.

For example:

27 MOD 5

gives a resulting value of 2, i.e. remainder of 27/5,

-27 MOD 5

gives a resulting value of —Z,

27 MOD ~5

gives a resulting value of 2,

~27 MOD -5

gives a resulting value of -2.

Norsk Data ND—60.ll7.5 EN

96 PLANC Reference Manual
EXPRESSIONS - FORMATION AND EVALUATION

Examples of the use of the arithmetic operators :

1.

2.

10.

11.

X+y

x-y

X+y+z

X+y—z

x*y/z

x/y*z

x*y+z

X+y*z

_X*X’2

++i

will form the sum of x and y.

will subtract y from x.

will sum together x, y and 2.

will add x and y and then subtract 2 from the result,
see note on page 97.

will multiply x and y before dividing the result by 2,
see note on page 97.

will divide x by y first, and then multiply the result
by 2.

will multiply x and y and add 2 to the result.

will multiply y and z and add x to the result. The
order is determined by the different priorities, * is 9
and + is 8.

since the operator ** has a higher priority, 11, its
operands will be combined first. Thus the expression
will be interpreted as -{X**2].

has the same effect as 1+1 =: i. The statement 2*[++i]
will

a) increment the previous value of i by one and store
the result in i

b) multiply the incremented value of i by 2 and store
the resulting value in j

has the same effect as 1—1 =: 1. The statement 2*[——i]
will

a) decrement the previous value of i by one and store
the result in i

b) multiply the decremented value of i by 2 and store
the resulting value in j

If the operator priorities do not give the desired order of
evaluation, then parts of an expression may be enclosed in
parentheses. Parts thus enclosed are evaluated as a whole expression
before being used as an operand.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 97

EXPRESSIONS - FORMATION AND EVALUATION

For example:

1. x+y/2 will cause division of y by 2 before adding x to form
the result, because of operator priority.

2. [x+y]/z will ensure that x and y are added, and then that
result will be divided by z.

3. (X+y]/[X+Z] here X+y and x+z will be computed separately and
subsequently, the former result will be divided by the
latter. Note that either X+y or X+z may be evaluated_
first.

While the operators +, —, *, / and ** represent the usual mathematical
operations, one must be aware that the underlying computing hardware
has fixed limits to the precision and accuracy of representation of
values and the results of operations. These limits are described in
Appendix C.

Note: The order of operations on computer hardware is such
that the result would be mathematically exact if the
hardware were mathematically precise. If a particular
order of operations is vital for numerical accuracy, it
is best to use parentheses to force the order.

For example:

1. X+y+z represents the sum of x, y and z. The computation may
add x to y and then add 2, or it may add y to z and
then add x.

But:

2. [x+y]+z will ensure that x and y are added together, before 2
is added to the result.

5.3. LOGICAL OPERATORS

PLANC has logical operators which are available for operands whose
data—elements are of the integer, Boolean or set data types. There are
both unary and binary logical operators. The operands for a binary
operator must both be either integer, Boolean or set, but the operands
may vary in the declared modifications (i.e. range for integer).

Norsk Data ND-60.117.5 EN

98 PLANC Reference Manual
EXPRESSIONS — FORMATION AND EVALUATION

The following table lists all of the available logical operators:

Operator Priority Operation Data types

AND binary 3 logical and integer,Boolean,set
OR binary 2 inclusive or integer,Boolean,set
XOR binary 2 exclusive or integer,Boolean,set
NOT unary 4 logical negation integer,Boolean,set
ABS unary ll cardinal number set

The binary operators, the AND operator, the OR operator and the XOR
operator, and the unary NOT operator can have operand data~elements of
either integer, Boolean or set data types. Further, modified integers
may be used as operands. Integer range and modified integer operands
may be mixed when used with the binary operators.

The resulting value will be of the same data type as the operands. If
the operands are different modifications of integer data type, then
the resulting value will be an integer data-element appropriate to
hold the larger range of the two modified integer operand data-
elements.

The ABS operator will give as a resulting value, the maximum number of
members declared for the operand set data-element. The resulting value
will be an integer data—element.

It should be noted that the evaluation rules described, are for
explanatory purposes so that an expression can be correctly
interpreted. However, the actual order of interpretation is not fixed
so long as the result is mathematically and logically equivalent.
Indeed it can happen that part of an expression is not evaluated at
all.

For example:

IF [i=1 0H 1.5+i=:r>10.1] THEN .H

in which, if i has the value 1, then the expression in parentheses is
known to have the value TRUE after testing 1 for 1. Further, no value
will be stored into r during evaluation of the expression in
parentheses.

The resulting value of expressions involving the above operators, with
Boolean operand data—elements:

Norsk Data ND~60.117.5 EN

PLANC Reference Manual 99

EXPRESSIONS - FORMATION AND EVALUATION

bl NOT bl

TRUE FALSE

bl b2 bl AND b2

TRUE TRUE TRUE
TRUE FALSE FALSE
FALSE TRUE FALSE
FALSE FALSE FALSE

bl b2 bl OR b2

TRUE TRUE TRUE
TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE FALSE FALSE

bl b2 bl XOR b2

TRUE TRUE FALSE
TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE FALSE FALSE

If these operators are used with integer operand data-elements, then
the operator will be applied to all bits in the entire integer data—
element, where a bit value 1 is interpreted as TRUE and 0 as FALSE.

If these operators are used with set operand data-elements, the
operators will carry out the usual mathematical operations on the
sets.

Norsk Data ND—60.117.5 EN

100 PLANC Reference Manual
EXPRESSIONS - FORMATION AND EVALUATION

Examples of the use of logical operators:

INTEGER : int1:=12B,int2:=14B
2

NOT int] .. 2 resulting binary value is ..10101
2

int] AND int2 .. 2 resulting binary value is ..01000
7,

intl 0H int2 ., 2 resulting binary value is ..01110
7,

int] XOR int2 .. 2 resulting binary value is ..10110

Examples of sets and logical operators:

2 declare some sets
TYPE colour = ENUMEHATION [red,green,blue,pink,ash, &
yellow,white,black]
colour SET : bright:=[red,green,yellow,pink],anycolour,fool
colour SET : pastel:=[blue,yellow,pink]
INTEGER : int]
2 inclusive or - result is red, green, yellow, pink, blue
bright OH pastel =: anycolour
Z logical and - result is yellow, pink

pastel AND bright =: anycolour
Z exclusive or - result is red, green, blue

bright XOR pastel =: anycolour
Z logical negation ~ result is blue, ash, white, black
NOT bright =: fool .
2 set maximum number of members — result is 8
ABS bright =: int]

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 101

EXPRESSIONS - FORMATION AND EVALUATION

5.4. RELATIONAL OPERATORS

PLANC has relational operators which are available for operands whose
data-elements are of the integer, real, enumeration, pointer and set
data types. There are only binary relational operators.

The following table lists all the available relational operators:

Operator Priority Operation Data types

= binary 6 equal integer,real,set,
enumeration,pointer,
bytes, record

>< binary 6 not equal integer,real,set,
enumeration,pointer,
bytes, record

>= binary 6 greater than or integer,real,set,
equal enumeration,pointer,

bytes

<= binary 6 less than or integer,real,set,
equal enumeration,pointer,

bytes

> binary 6 greater than integer,real,set,
enumeration,pointer,
bytes

< binary 6 less than integer,real,set,
enumeration,pointer,
bytes

IN binary 5 membership integer,set,
enumeration,pointer

All relational operators, except IN, must have both operand data-
elements of the same data type. Operand data—elements of integer or
real data types may be modified (i.e. integer range or real
precision). Modified integer or real data type operand data-elements
may be mixed when used with the binary relational operators.

Norsk Data ND~60.117.5 EN

102 PLANC Reference Manual
EXPRESSIONS — FORMATION AND EVALUATION

If the IN operator has a first operand data-element of integer,
enumeration or pointer data types, then the second operand is a list
of data-elements of the same data type as the first operand. This list
may contain explicit literals, constant identifiers, identifiers,
expressions to be evaluated at runtime or implied ranges of the
correct data type. If the IN operator has a second operand data-
element of the set data type, then the first operand must be a
possible member value of the set, which may be evaluated from an
expression at runtime.

The resulting value from evaluation of any relational operator will be
stored in a Boolean data-element.

Examples of the use of relational operators:

INTEGER : int]
INTEGER RANGE [0:200] : int2
z
54::int1

intl >= 0 ., 2 resulting value TRUE
7,,

20000::int1; 5=:int2
int] < int2 .. 2 resulting value FALSE

N
.

21=:int1; -3=:int2
int1*int2 = 0.. 2 resulting value FALSE

2
=:int1; 10=rint2

intlal IN 1,3,5,int2 .. 2 resulting value FALSE

intl—Z IN 1:100,2*int2 .. 2 resulting value TRUE
'/,

REAL : r11
REAL PRECISION [9] : r12
1.5=:rll; 3.7::rl2

r11 >< r12 .. 2 resulting value TRUE
7,

ENUMERATION [pink,blue,bottle,red] : mycolor,yourcolor
red=:mycolor; blue=:yourcolor

mycolor) yourcolor .. 2 resulting value TRUE

bottle IN mycolor,yourcolor.. 2 resulting value FALSE
mycolor IN blue:red .. 2 resulting value TRUE

2
INTEGER ARRAY : vectorlist [1:100]
INTEGER ARRAY POINTER f &
listhead:=ADDR[vectorlist[MININDEX[vectorlist,1] J], &
listtail:=ADDR[vectorlist[MAXINDEX[vectorlist,1]]]

listhead = listtail .. 2 resulting value FALSE
2

INTEGER RANGE [1:100] SET : Odds:=[1,3,5,7,9]

1+3 IN odds .. 2 resulting value FALSE

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 103

EXPRESSIONS - FORMATION AND EVALUATION

5.5. CONVERSION BETWEEN DATA TYPES

The rules for forming expressions in PLANC restrict the way data types
may be used, especially for moving and storing data-element values of
a particular data type. Sometimes it may be necessary to move a value
into a data-element of a different data type or simply convert between
different data types (e.g. integer to real). Generally, good
programming practises try to avoid this sort of operation, but if it
is necessary, great care should be taken.

The following Standard Routines are provided in the PLANC language:

CONVERT convert between the various integer and real data types.

FORCE take the value from one data-element, and store it into
another data—element of a different data type to. the first,
but of exactly the same eiie.

These standard routines give a value in a temporary resulting value
data-element (i.e. the routine out-value), which should be stored with
one of the assignment operators.

The general forms of the routine invocations are:

identifier CONVERT data-type

or

identifier FORCE data-type

where

identifier is an identifier whose data-element value is to be
converted.

data-type is the data type of the data—element into which the
value is to be stored.

The CONVERT routine may be used for a data type conversion with an
assignment operator to simply store the value.

Norsk Data ND-60.117.5 EN

104 PLANC Reference Manual
EXPRESSIONS — FORMATION AND EVALUATION

For example:

INTEGER : int
REAL : rl
12=:int
2 convert an integer value to real value
int CONVERT REAL =:rl
2 use conversion within expression

3.0+2.0*[int CONVERT HEAL]=:rl
2 note, parentheses not required, but they help visually

The FORCE standard routine may be used with any mixture of simple,
composite, predefined or user specified data types.

For example:

TYPE colour = ENUMEBATION [red,pink,blue]
INTEGER : intl
INTEGER : int
2 put an integer value into a real pointer data—element
int FORCE BEHL POINTER .H
2 for some bizarre reason the following might be done!
12::int1
intl FORCE colour .

Note that the data—element data type to receive the value from the
FORCE standard routine should be exactly the same size as the
originating data—element.

For example:

INTEGER] : int
int FORCE REAL

will give unpredictable results. A compile time message will occur.

The FORCE standard routine must be used with great care. The internal
representation of the data types involved must be known, see Appendix
C, otherwise results may be unpredictable after use of the FORCE
routine.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 105

EXPRESSIONS - FORMATION AND EVALUATION

5.6. ACCESSING RECORD CmPONENTs mm THE USING STATEMENT

This section describes a feature in PLANC which is available from

version G.

When accessing a RECORD data-element in any of the ways described in
section 4.2.3, it is quite usual to make several references to its
components within a small region of the program.

Consider the following RECORD:

TYPE partrec = RECORD
BYTES : partname [1:20]
INTEGER : partnumber

HEfiL : partcost
ENDRECORD

partrec ARRAY : part [1:100]

Then, the variable part[1] might be initialized as

' part[1].partname
’ part[1].partnumber
' part[1}.partcost

'Power supply'
19

49.95

In these circumstances, repeated references to components in a record
by writing the RECORD data—element name or access specification as a
qualifier to the required component identifier soon becomes tedious.
PLANC provides a statement for use with RECORD data-elements that
enables reference to records without having to repeat the RECORD data—
element identifier each time you wish to access a component. This is
the USING~statement.

The general form of the USING statement is:

USING data—element—list

statements

ENDUSING

where data-element—list is an expression resulting in a RECORD data—
element, or a pointer to a RECORD data~element. If there are several
such expressions, they must be separated by commas.

Within the statement controlled by a USING statement, the components
of the RECORD datamelements in the data-element-list may be accessed
by use of the component name alone.

The effect of a USING statement is to open a neg scope which contains
the component identifiers corresponding to each of the named record—
variables in the list. This means that the component identifiers can
be used as variables within the USING statement. (For a full

Norsk Data ND—60.ll7.5 EN

106 PLANC Reference Manual
EXPRESSIONS — FORMATION AND EVALUATION

description of Iscope of identifier' rules, see section 7.8.) The
initialization of the variable part may thus be written as:

USING part[1]
'Power supply' =' partname
19 =' partnumber
49.95 =' partcost

ENDUSINU

The general form of the USING statement,

USING v1, v2, ... vn

é
ENDUSING

is equivalent to

USING v1
USING v2

USING vn

S

ENDUSING

ENDUSING
ENDUSING

That is, the scopes are opened, and therefore nested, in the order in
which are listed in the USING-statement.

Thus, if the RECORD data-elements v1 and v2 each have a component
identified by F3 then a simple occurrence of F‘within 5 denotes the
corresponding component of v2, not that of v1, by the rules of nested
scopes. The component P‘of v1 can be denoted within S only by writing
v1.F‘explicitly.

The use of a USING statement not only reduces the amount of program
text, but also increases its readability, and in some cases may
produce a more efficient program.

Note: All the elements in a USING element list are stored in temporary
pointers to their respective records. These pointers are used when
accessing record components in the scope of the current USING
statement (i.e., between USING and ENDUSING). Thus, if a record
pointer referred to in the USING element list changes value inside the
scope of the USING statement, this has no effect on statements with
access to record components by component name only.

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 107

SEQUENCE CONTROL STATEMENTS

6. 8mm (INTRO. STATEMENTS
The executable statements discussed so far will be executed strictly
in the sequence that they appear in the source program. PLANC has a
number of statements which will unconditionally or conditionally
change the sequence of statements to be executed or cause a group of
statements to be executed repeatedly under some form of iteration
control. The sequence control statements available are:

GO unconditional change of sequence.

IF conditional change of sequence.

CASE multi~choice conditional change of sequence.

DO repetitive execution, of a group of statements.

FOR repetitive execution, of a group of statements, a specified
number of times.

WHILE repetitive execution, of a group of statements, until a
condition is satisfied.

ASSERT runtime error occurs if a specified condition is not true.

6.1. 60 STATEI’ENT

The lGO' statement unconditionally transfers control to another
statement within a routine. The general form of a GO statement is:

GO label—identifier

where

label—identifier is a label, declared within the scope of this
GO statement.

Note, for a full description of 'scope of identifier' rules, see
section 7.8.

Take care to remember that control transfers into structures such as
FOR - ENDFOR or DO ~ WHILE ~ ENDDO loops may have unpredictable
results.

Norsk Data ND-60.1l7.5 EN

108 PLANC Reference Manual
SEQUENCE CONTROL STATEMENTS

Example of the use of a G0 statement:

2 declarations
INTEGER : intl
LABEI : lab1,lab2,lab3

Z executable program

lab] : 1=:int1 2 any executable statement

GO lab] 2 transfer to statement 'labl’

6.2. IF STATBENT

The 'IF' statement will conditionally execute one or more groups of
executable statements. The groups of statements executed in this
manner may contain further 'nested’ IF statements. The general form of
an IF statement is:

IF expr THEN
ex-stnts

[ELSIF expr THEN
ex—stnts]...

[ELSE
ex-stnts]

ENDIF

where

expr is an expression with a Boolean resulting value.

ex—stmts is a group of executable statements.

If the expression immediately following the IF gives a value TRUE, the
group of statements immediately following the THEN will be executed,
and then control will be transferred to the statement immediately
following the ENDIF.

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 109
SEQUENCE CONTROL STATEMENTS

If this expression gives a value FALSE then:

— if there is neither an ELSIF nor ELSE present, control
will pass to the statement following the ENDIF,

- if the IF - ENDIF contains any ELSIF's, the expression
immediately following each ELSIF will determine whether
its THEN group of statements is to be executed or not.
This process will continue for each next ELSIF,for each
expression which gives a value FALSE. If a THEN path is
taken, the control will pass to the statement following
the ENDIF after that group of statements has been
executed,

if the IF - ENDIF contains an ELSE, control passes to
the group of statements following the ELSE only if the
expressions of the IF and those of any ELSIF's present,
all give the value FALSE.

Examples of IF statements:

1.

2.

3.

A simple IF - THEN.

2 test for a full page
IF currentline+lines > linesperpage THEN

2 yes, start a new page
newpage
=:currentline

printheading
ENDIF

An IF - THEN — ELSE.

2 adjust wages for tax
IF taxed THEN

2 yes, reduce payment by tax amount
gross — tax{gross]=:nett

ELSE
2 no, pay full amount

gross=:nett

EWDIF

An IF - THEN — ELSIF ~ ELSE

2 compute area of a many-sided figure
IF sides = 3 THEN

2 area of a triangle
[a+b+c]/2.0=:s
sqrt{ s*[s-a]*[s-b]*[s-c]]=:area

ELSIF sides = 4 THEN
2 area of a rectangle
a*b=:area

EZSE
Z approximate other figures by the area of a circle
pi*[radius**2]=:area

ENDIF

Norsk Data ND~60.117.5 EN

110 PLANC Reference Manual
SEQUENCE CONTROL STATEMENTS

4. Nested IF's.

2 check document signatures
IF amount) 10000 THEN

2 large amount, check number of signatures
IF signatures < 2 THEN

Z reject
setnogood

ELSE
2 large amount check
bigcheck

ENDIF
ELSIF amount) 100 THEN

2 medium amount check
midcheck

ENDIF
2 if passed, pay it
IF chequeok THEN

payit

EZSE
chequeerror

ENDIF

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 111

SEQUENCE CONTROL STATEMENTS

6.3. CASE STATEMENT

The 'CASE' statement will select one of a number of groups of
executable statements to be executed. During one execution of a CASE
statement, only one of the groups will be executed and the remaining
groups will be skipped. The selection of a particular group of
statements is by the CASE expression whose value must correspond to
the integer or enumeration data type values used in the INCASE parts
of the CASE statement. The general form of the CASE statement is:

CASE expr
INCASE value—list

ex—stnts

[INCASE value-list
ex—stnts]-..

[ELSE
ex-stmts}

ENDCASE

where

expr is an expression with a resulting value data type,
corresponding to the data type of the INCASE value—
lists. The expr may have a maximum of 256 different
values, and must be either:

a) an enumeration with a maximum of 256 different
values

b) integers ranging between 0 and 255

value-list is a list of integer or enumeration literal values.

Note: It may be expressed as an implied range.

ex~stmts is a group of executable statements.

The values in each INCASE part must all be of the same data type as
expr. Each value which occurs in an INCASE part, must not occur more
than once in all of the value~list's of the entire CASE statement.

The group of statements following the ELSE will be executed if the
value of the expression is valid but does not appear in any INCASE
value—list. If the value-lists do not contain all possible values, an
ELSE must be present.

If the value of the expression is invalid, e.g. outside a defined
integer range, control will be transferred to the statement
immediately following the ENDCASE, i.e. the CASE statement will be
skipped, unless an ELSE part is present. If an ELSE part is present,
the group of statements following the ELSE will be executed.

Norsk Data ND—60.1l7.5 EN

112 PLANC Reference Manual
SEQUENCE CONTROL STATEMENTS

Note: If the values belong to an INTEGER RANGE, the lower
bound of the INTEGER RANGE must be 0. The values
actually checked currently are 0 and the nearest higher
power of 2 to the upper bound.

Exa-ples of CASE state-ants:

TYPE days = ENUMEBATION [monday,tuesday,wednesday, &
thursday,friday,saturday,sunday]
days : thisday
2
CASE thisday

INCASE saturday
shopping

INCASE sunday
dayofrest

INCASE monday : thursday
workdays

EISE
2 control comes here only for the value friday
leftovers

ENDCASE

Norsk Data ND-6O 117.5 EN

PLANC Reference Manual 113

SEQUENCE CONTROL STATEMENTS

6.14. 1]) STATEMENT

The 'DO' statement may be used to repetitively execute a group of
statements with no control of the number of the repetitions or of the
termination condition to exit from such a loop. The general form of a
DO - ENDDO loop is:

DO
ex—stmts

ENDDO

where

ex—stmts is a group of executable statements.

The group of statements will be executed repeatedly. At least one GO
statement must be in the group of statements to leave the loop under
some condition. If not the program will contain an infinite loop.

Example of a DO — ENDDO loop:

HEfiL start:=1.0,increment:=0.1,1imit:=2.0,value
LABEL : next
2 loop through a series of fractional values
start=tvalue
D0

2 use ’value' for computation
Z
2 test for end of loop
increment+value=:value
IF value > limit THEN

GO next
ENDIF

ENDDO
next

Norsk Data ND-60.117.5 EN

114 PLANC Reference Manual
SEQUENCE CONTROL STATEMENTS

6.5. HR STATEVENT

The 'FOR' statement will cause repeated execution of a group of
statements bounded by the FOR and ENDFOR. The number of repetitions is
specified during execution just prior to entering a FOR ~ ENDFOR loop
for the first time. The group of statements may be executed the
specified number of times or perhaps fewer times if some exceptional
condition arises during the repetitive execution. The general form of
the FOR ~ ENDFOR loop is:

FOR controleident IN [REVERSE] list In
ex-stmts

[EXITFOR
ex-stmts]

ENDFDR

where

control—ident is an identifier whose data type must correspond with
that of the 'list' values.

list is a list of data-elements of INTEGER, ENUMERATION,
ARRAY or POINTER data type.

ex-stmts is a group of executable statements.

The control identifier will take the values of the 'list' in the
sequence that they have been specified. The control identifier is
available within the loop but care must be taken if its value is
changed, as this may interfere with orderly control of the loop. Upon
exit from a FOR — ENDFOR loop, the control identifier will have an
unpredictable value. This applies as soon as the loop exit action
begins, namely if an EXITFOR is present, the control identifier value
will not have a predictable value on entering the EXITFOR group of
statements.

Norsk Data ND~60.117.5 EN

PLANC Reference Manual 115
SEQUENCE CONTROL STATEMENTS

The list of the FOR - ENDFOR loop is an implicit or explicit list of
values which will determine the number of repetitions of the loop. The
list may comprise:

- Integer, Enumeration or Pointer data-elements which may be
literal expressions or expressions evaluated at runtime. The
control identifier must be of the same data type. Expressions are
evaluated at runtime within the loop initialization so that
modifying identifiers used in such an expression during execution
of the loop will have no effect on the control of the loop.

— An implied range, of type Integer or Enumeration, may be used for
any elements of such a list or for the whole list. The upper and
lower bounds of an implied range, which must be evaluated at
runtime, will be computed during loop initialization - as is the
case for explicit data—elements. However, when using an implied
range, altering the value of the control identifier during
execution of the loop may affect the loop control (see paragraph
below on loop testing).

- The list may contain one or more single-dimensioned array data-
elements. In this case the control identifier must be an integer
data type, which will take the successive values of the index
sets of the specified arrays in the list.

The control identifier may also be a pointer data—element of the
same base data type as the elements of the arrays specified in
the list. However, a pointer must not be used for the control
identifier if the array has been declared with the PACKED option,
and the elements of the array require less storage than the
smallest addressable unit on a particular machine, e.g. on the
ND—lOO an array whose elements were declared as INTEGERl PACKED
would produce unpredictable results. Further, if the control
identifier is a pointer data-element, only one array is permitted
in the list.

- The list may contain one or more Pointer Implied Ranges. This is
used to step through some records in a linked list (see section
4.6).

The keyword REVERSE, if present, applies to each implied range in the
list, with the exception of Pointer implied ranges. It will cause the
loop control to begin with the second value (the last value as
declared) in each implied range and step downwards to the first value
of the range. Note that implied ranges must be specified in ascending
order. The REVERSE option may not be used with a Pointer implied
range.

The keyword REVERSE also applies to any arrays in the list. If the
control identifier is either an integer or a pointer dataselement, it
will begin with the value corresponding to the upper bound of the
index set and take successive values until the lower bound of the
index set is reached.

Norsk Data ND-60.117.5 EN

116 PLANC Reference Manual
SEQUENCE CONTROL STATEMENTS

A FOR - ENDFOR loop contains a test to check if the required number of
repetitions has been completed. This test is done at the end of the
loop. Further, if one or more implied range is in the list of the FOR
statement, then incrementing through the implied range values will
also take place at the end of the loop. Note that while stepping
through the values of an implied range, if the value of the control
identifier is explicitly set greater than or equal to the final value
of the range, then this will terminate looping through the values of
that particular implied range.

If the list of a FOR — ENDFOR loop contains one or more implied range,
a further test is placed within the loop initialization. If the values
of the implied range can be computed at compile time, then if the
terminal value of the implied range is smaller than the initial value,
the entire FOR - ENDFOR loop will be skipped, i.e. it will not be
executed at all. If the values of the implied range can only be
computed at execution time, then a runtime check within the loop
initialization will result in zero repetitions of the loop if the
terminal value of the range is smaller than the initial value.

The group of executable statements may include any executable
statements but statements such as DO - ENDDO and IF ~ ENDIF must be
entirely contained within the FOR — ENDFOR loop. Loops may be nested
in any number of levels, provided each loop is entirely contained
within an outer level loop. While the number of levels of nesting is
theoretically unlimited, the actual number is limited by the memory
available to the PLANC compiler.

If an EXITFOR is present, then when all the list values are exhausted,
control will be passed to the statement immediately following the
EXITFOR. Following the execution of this group of statements, control
will be passed to the statement immediately following the ENDFOR. If
an exit /from the loop is made by any other means than exhausting the
value list, the EXITFOR group will not be entered.

Note: That pointer implied range constructs such as

FOB X IN listhead:listpointer
Z actions

ENDFOH

will give NIL as the final value of x if the loop is left upon
exhaustion of the linked list.

Norsk Data ND’60.117.5 EN

PLANC Reference Manual 117
SEQUENCE CONTROL STATEMENTS

Examples of PCB ~ ENDFOR loops:

1. A si-ple loop with explicit integer values.

INTEGER : intcontrol
FOR intcontrol IN l,5,15,3,17 D0

2 group of statements — to be executed 5 times

ENDFOH

A si-ple loop with explicit enumeration values.

ENUMERATION {red,pink,blue,grey,brown] : colour
FOR colour IN pink,grey,red,brown D0

2 group of statements — to be executed 4 times
ENDFOH

A simple loop with explicit pointers in the FDR list.

INTEGER POINTER : ptrcontrol,ptr1,ptr2,ptr3
2 put some addresses into ptr1,ptr2 and ptr3
FOB ptrcontrol IN ptr1,ptr2,ptr3 D0

04 group of statements — to be executed 3 times

ENDFOH

A simple loop with implied ranges in the FOR list.

INTEGER : intcontrol ~
FOR intcontrol IN 1:10,21,24,51:60,101 DO

2 group of statements — to be executed 23 times
ENDFOR

A simple loop with implied ranges, using REVERSE.

INTEGER : intcontrol
FOB intcontrol IN REVERSE 1:10,21,24,51:60,101 D0

2 group of statements — to be executed 23 times
2 Note : the sequence of values of the control identifier is
1 10,9,...,1,21,24,60,59,...,51,101

ENDFOR

6. A simple loop, values in FOR list to be evaluated at runtine.

INTEGER : intcontrol,int1,int2,int3
FOR intcontrol IN int1,int2:int3*2 D0

2 group of statements — to be executed n times,
2 i.e. 1+[int3*2—int2+1], evaluated at runtime.
Z intcontrol takes the values int1,int2,int2+1,...,int3*2.

EWDFOH

Norsk Data ND—60.117.5 EN

118 PLANC Reference Manual
SEQUENCE CONTROL STATEMENTS

7. A simple loop with arrays in the FOR list.

INTEGER : intcontrol
REfiL ARRAY : arreall[1:3],arrea12[1:7]
FOR intcontrol IN arreall,arreal2 DO

2 group of statements — to be executed 10 [i.e. 3+7] times
2 control identifier takes the values 1,2,3,1,2,3,4,5,6,7

ENDFOH

8. A simple loop, arrays in FOR list, a pointer control identifier.

REAL POINTER : ptrcontrol
REflL ARRAY : arreall[1:3]
FOR ptrcontrol IN arreall D0

2 group of statements — to be executed 3 times
control identifier takes the addresses of the array elements

2 arreall[1],[2],[3]
EWDFOR

.\‘

9. A si-ple loop, pointer implied range in FOR list.

2 define a record data type for the linked list
TYPE myrecord = RECORD

myrecord POINTER : linkptr
INTEGER : recnumber

ENDRECORD
Z initialize a static linked list of records
myrecord : r1?,r2?,r3? Z predeclaration of data—elements
myrecord POINTER : listhead:=ADDR[r1]
myrecord : r1:=[ADDR{r2],1]
myrecord : r2:=[ADDR[r3],2]
myrecord : r3:=[NIL,3]
2 declare a record pointer for scanning the list
myrecord POINTER : ptrcontrol
2 loop through all records in the linked list

FOR ptrcontrol IN listheadzlinkptr DO
2 group of statements to process one record data—element

ENDFOR
2 now the value of ptrcontrol is NIL

10. A nested loop.

INTEGER : rowelement,colelement
REAL ARRAY ARRAY : square[l:5,1:5]
REflL : sum
2 sum elements to the left of the diagonal element
FOR rowelement IN 1:MAXINDEX[square,1] DO

0.0::sum
FOR colelement IN 1:rowelement~1 DO

sum+square[colelement,rowelement]=:sum
ENDFOR
2 store the sum in the diagonal array element
sum::square[rowelement,rowelementI

ENDFOR

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 119

SEQUENCE CONTROL STATEMENTS

11. A simple loop with an EXITFOR part.

INTEGER : intcontrol,sum,limit
BOOLEAN : sumflag
LABEL : next
INTEGER ARRAY : vector{1:100]
0=:sum ; FHLSEE:sumflag ; 500::limit
FOR intcontrol IN vector DO

sum+vector[intcontrol]=:sum
IF sum < limit THEN

GO next
EWDIF

EXITFOB
IF sum < 0 THEN

FflLSEE:sumflag
ENDIF

ENDFOE
next :

Norsk Data ND—60.117.5 EN

120 PLANC Reference Manual
SEQUENCE CONTROL STATEMENTS

6.6. WILE STATEMENT

The 'WHILE' statement may be used within DO - ENDDO or FOR - ENDFOR
loops to exit when a condition becomes false. While the condition
remains true, the loop control will not be affected. The general form
of a WHILE statement used within a loop is:

In a DO - ENDDO loop:

DO
ex-stlts

WHILE expr
ex~stlts

[EXITHHILB
ex—st-ts]

ENDDO

In a FOR - ENDFOR loop:

FOR control—ident IN [REVERSE] list DD
ex-stnts

WHILE expr
ex—stnts

[EXITWHILE
ex-stmts

[EXITFOR
ex—stnts]

ENDFOR
where

expr is an expression with a Boolean resulting value.

ex—stmts is a group of executable statements.

The effect of the WHILE statement each time it is executed within the
loop, is to test if the resulting value of the expression is TRUE. If
it is, pass control to the executable statement immediately following
the WHILE. If the resulting value of the expression is FALSE, then
control will exit from the loop and pass to the statement immediately
following the ENDFOR or ENDDO.

If an EXITWHILE is present within the loop, the group of statements
following the EXITWHILE will be executed as soon as the loop exit
action begins, as a consequence of the relevant WHILE statement. Note
however, that if an EXITWHILE and an EXITFOR are both present in a FOR
— ENDFOR loop, then an exit from the loop effected by the WHILE
condition will execute the EXITWHILE group of statements but not the
EXITFOR group of statements, prior to the exit from the loop.

A WHILE statement may be placed anywhere within the group of
executable statements of a loop, depending on where a loop exit is
desired under the control of a logical condition. Further, any number
of WHILE statements may be used within a FOR — ENDFOR or a D0 — ENDDO
loop.

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 121

SEQUENCE CONTROL STATEMENTS

Exanples of use of the WHILE statement:

1. Within a DO ~ ENDDD loop.

INTEGER : records
BOOLEAN : endoffile
2 read first record of a file
=:records

openfile
nextrecord
2 loop through all records in the file
D0

2 if end of file, exit from loop
WHILE NOT endoffile

2 process a record
1+records=:records

«a

end of the loop statementso\°
a\‘

o. loop exit condition
EXITWHILE

2 close file

closefile
ENDED

2. A WHILE statement used to leave a FOR - ENDFOR loop without using a

label. ‘

INTEGER : intcontrol

FOR intcontrol IN 1:100 DO

Z exit from loop under certain conditions

IF NOT checkvalid THEN
WHILE FALSE

ENDIF

2 things are ok, continue looping

EXITWHILE
ENDFOR

Norsk Data ND-60.117.5 EN

122 PLANC Reference Manual
SEQUENCE CONTROL STATEMENTS

3. Hultiple WHILE statements within 3 FOR — ENDFOB loop.

CONSIANT rows:=10,cols:=10
INTEGER rowelement,colelement
REflL ARRAY ARRAY : matrix[1:r0ws,1:cols]
HEAL ARRAY : rowsum[1:rows]
HEAL : limitsum
2 loop through all rows of the matrix
100.0=:limitsum
FOR rowelement IN 1:rows D0

0.0::rowsum[rowelement]

2 sum the row elements, provided it is within limits
FOR colelement IN llcols D0

matrix[rowelement,colelement]+rowsum[rowelement] &
=:rowsum[rowelement]
2 check sum limits
WHILE rowsumfrowelement] < limitsum

2 too many elements for sum ?
WHILE colelement CONVERT REAL < limitsum/Z.0

Z in case of abnormal exit, set sum negative
EXITWHILE

—1.0=:rowsum{rowelement]
Z end of inner loop

ENDFOH
EWDFOB

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 123

SEQUENCE CONTROL STATEMENTS

6.7. ASSERT STATBENT

An 'ASSERT' statement requires an associated condition to be true
whenever the statement is encountered. The general form of the ASSERT
statement is:

ASSERT expr

where

eXpr is an expression with a Boolean resulting value.

During program execution, if the resulting value of the expression is
TRUE then control will simply pass to the next executable statement.
If however the resulting value of the expression is FALSE, an error
condition arises and control will be transferred elsewhere depending
on what has been specified for handling 'ASSERT' errors. For further
details of how 'ASSERT' errors may be handled, see Exception and Error
Handling, section 6.8. This provides an explicit means for
supplementing the normal runtime checks provided by the system.

Exanples of ASSERT statements:

ASSERT int] < number*2
ASSEHT int2 < 1 AND red IN mycolours

6.8. EXCEPTION AND ERROR HANDLIPG

PLANC provides a mechanism for handling specific sorts of error
conditions which may arise during program execution. A part of the
program, called an ‘exception handler', may have control passed to it
when the corresponding error condition occurs, rather than continue
executing statements in the normal way. The general form of such an
exception handler is

ON exception[,exception]... DO
ex—stnts

ENDON

where

exception is any defined exception condition.

ex—stmts is a group of executable statements.

An exception handler may handle errors due to one or more exception
conditions. An exception condition will be sensed only in the source
code following the ON statement — ENDON statement group of source
statements, within a routine. If more than one ON - ENDON exception
handler appears in a routine, then the one immediately preceding the
occurrence of an exception, in the source code, will be activated to
handle the exception.

Norsk Data ND—60.117.5 EN

124 PLANC Reference Manual
SEQUENCE CONTROL STATEMENTS

The particular exception conditions defined in PLANC are:

ASSEHTFALSE for the expression in an ASSERT statement giving a
value FALSE.

OVEHFLOW arithmetic overflow. Note: That hardware checks only
activate this exception.

POINTEHEHROB attempt to use a data—element, referenced by a pointer
whose value is NIL (not implemented). The NEW..IN
standard routine will trap such errors if the space to
be used is not adequate.

RANGEEBROR array index or integer range error (not implemented).

ROUTINEEHBOH a called routine has taken an ERRETURN exit.

STACKERROR stack overflow or underflow has occurred, e.g. when
using the NEW standard routine (not implemented).

Executing an exception handler is similar to execution of a routine
invocation. The ENDON is in this sense equivalent to the RETURN
statement, passing control back to the place where that exception
condition occurred.

Note that a ROUTINEERROR exception handler cannot set-up or repair the
out—value, or output parameters which would have been passed back by
successful execution, after invocation of the routine which generated
the exception condition. -

Consider the following facts concerning exceptions: Stack overflow
from recursive routine calls will never invoke exception blocks.
ROUTINEERROR blocks will be invoked from NEW, but will receive error
code -l if the allocation was in the stack, and 0 if the allocation
was in another area. POINTERERROR blocks will only be invoked on
overflow from NEW in a special area. The system routine which handles
stack overflow can be overloaded by a user written routine with its
own stack. The ALIAS name must be 5STCO, or £STCO.

If a ROUTINEERROR exception occurs and no exception handler has been
provided, an ERRETURN exit from the routine will be simulated. Control
will pass back up the invocation hierarchy as described in section
7.5.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 125
SEQUENCE CONTROL STATEMENTS

Examples of exception handlers:

0N ASSEHTFALSE D0
0=:int1
GO out

ENDON

0N STACKERROH,0VEHFLOW D0
int2 ERHETURN

ENDON

Note that the PLANC runtime system has a routine which will be invoked
if an ASSERT condition is FALSE and the user has no 0N ASSERTFALSE
exception handler. The form of the declaration of this routine is:

Z on the ND-100
ROUTINE SPECIAL VOID,VOID :
Z on the ND~500
ROUTINE SPECIAL VOID,VOID :

assert_handler ALIAS '5FATA'

assertflhandler ALIAS '#FATA'

If a user wishes to replace this routine with another, the user
written routine must be loaded before PLANC library routines.

Norsk Data ND-60.117.5 EN

126 PLANC Reference Manual

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 127
ROUTINES

7. RGJTINES
A PLANC routine is group of statements which can be referred to as an
entity to carry out a particular function. A routine comprises
executable statements and declarations of any identifiers used within
the routine. The routine concept in PLANC is defined as a composite
data type, whose declaration includes data types of the data-elements
to be used in communication between the routine and its caller. A
routine has an explicit invvalue and out-value which affect the way a
routine invocation appears in a calling routine.

A routine may be invoked to carry out a specific function or
operation. The PLANC routine is similar to the 'subprogram' concept of
other programming languages. However, a PLANC routine has one explicit
in—value and one explicit out-value. A PLANC routine may also have a
list of formal parameters declared, for transmitting -data—elements
into or out of the routine. A routine may be invoked from another
routine in the same module or a routine in a separate module.

7.1. ROUTINE DECMRATION

A routine is a composite data type. Consequently, a routine
declaration causes the construction of a data-element which includes
all the memory area used for the routine, except for dynamically
created data—elements.

A routine declaration will include the following:

1) Options which determine the specific structure of the routine
for particular types of routine invocation.

2) The data types of the explicit in—value and out-value of the
routine.

3) The data types of any formal parameters used within the
routine, which will consequently be required in any call to
the routine.

4) The identifier to be used as a routine name for invoking the
routine.

5) The identifiers of any formal parameters declared, to be used
within the routine, or a ? (question mark) for
predeclaration.

6) The optional ALIAS name.

7) The declarations of local data—elements which will only be
available inside the routine.

8) Executable statements which carry out the desired operations
required of the routine.

Norsk Data ND-60.ll7.5 EN

128 PLANC Reference Manual
ROUTINES

The first six points on the previous page items are called the routine
header. The last two items are called the routine body. Accordingly, a
predeclaration has no routine body.

The general form of a ROUTINE declaration is:

ROUTINE — rest of routine header
routine body

ENDBDUTINE

The general form of a ROUTINE header is:

ROUTINE [option[option]...] in-data—type,out-data—type
[(p—data—types)] : rout—ident [[D-ident—list] / ?]

[ALIAS 'a-rout—ident']

where

option is one of the ROUTINE modifiers STANDARD, REFERENCE,
SPECIAL or INLINE.

in—data-type is the data type of the in—value.

out—data—type is the data type of the out~value.

p—data—types is a list of the data types of the formal parameters of
this routine.

rout—ident is the identifier for referring to this routine.

p—ident-list is a list of identifiers of the formal parameters of
this routine, or a ? (question mark) for
predeclaration.

a-rout—ident is a text string. It qualifies the routine name to
distinguish routines with the same structure, e.g. same
parameters, but of different data types.

Note: 1. Special characters allowed, see below.

2. That there is a special form of a ROUTINE header,
namely for a main PROGRAM routine, see 8.2.

The limits on the number of significant characters in rout~ident and
a~rout—ident are described in section 2.11 and on page 300.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 129
ROUTINES

As an alternative to the normal identifier name formation rules, a
routine identifier name may be made up of the following special
characters only:

g " s * + — . / : < = > ? T \ []

Further, such a routine identifier name may be a mixture of these
special characters, but the rules concerning the number of characters
in an identifier still apply, see section 2.11.

Note: 1. A dollar character ($) cannot begin a routine
identifier.

2. A full stop character (.) can only begin a routine
identifier.

3. A space character must precede the routine identifier
if it begins with one of the above special characters.

Several routines may be declared with the same routine identifier. The
PLANC compiler will only accept these routines if they can be
distinguished by the data types of the in-value and the parameters.
For examples and details of such families of routines (see section
8.4).

A routine has one distinct in~value data-element and one distinct out-
value data-element. The in—value and out—value data-elements may be of
any valid data type, i.e. simple, composite, predefined or user-
defined. Further, if either in-value or out~value data-element is not
required for a particular routine, then the keyword VOID may be used
to denote the absence of a data-element in the formal routine
declaration, i.e. in the routine header.

A routine may be declared with any number of formal parameters for
communication between the invoker and the routine itself. A parameter
may be used to transfer a value into a routine or to transfer a value
out of a routine or both. It is generally regarded as an unwise
practice to use one parameter for transferring values in both
directions. The routine header contains a declaration of the data type
of each formal parameter. It also contains the identifier names of
each formal parameter which must be used to refer to each parameter
within the routine. The data type of each formal parameter may be
access modified (see section 3.11.3), with READ or WRITE. The default
access for each declared formal parameter is READ. Parameter transfer
is discussed in more detail in section 7.4.

Norsk Data ND-60.ll7.5 EN

130 PLANC Reference Manual
ROUTINES

Examples of simple routines:

1. A routine to return the larger of two integer values.

ROUTINE VOID,VOID [INTEGER,INTEGEH,INTEGER WRITE] : &
simple[in1,in2,outval]

in—value and out—value data~elements are absent

n\
“~

\°
e.\° declarations local to this routine

o\‘

INTEGER : local
Z select the larger parameter value
in2=:local
IF in] > in2 THEN

in1=:local
ENDIF
2 transfer the larger value back to the invoking routine
local=:outval
RETURN

ENDROUTINE

2. A similar routine, using the out—value to return the value.

ROUTINE VOID,INTEGEB [INTEGER,INTEGEE] : simple[in1,in2]

no

Z declarations local to this routine

o\'

INTEGER : local
2 select the larger parameter value
in2=:local
IF inl > in2 THEN

in1=:local
ENDIF
2 send the larger value back to caller
Z Note that the out—value is part of the RETURN statement
local RETURN

EWDROUTINE

A routine is normally invoked by use of the routine name identifier in
the declaration. However, if a number of routines have the same name
and the same number of parameters (e.g. an operator myplus may be
required to handle various data types), then each routine may be
uniquely identified by use of an ALIAS name for access from another
module (see Chapter 8, PROGRAM STRUCTURE). Further, any module
wishing to use such a family of routines, must IMPORT each one of the
family it wishes to use. The IMPORT statements may use either the
originally declared routine name identifier or the ALIAS name (see
section 8.4), as the routine identifier and whichever is chosen must
be used for all routine invocations in that module. This use of ALIAS
is necessary to generate adequate information for the Loader to
resolve all references correctly. For examples of use of the ALIAS
option, see section 8.4. If a module containing a family of routines
is to be accessible within a library file, the $LIBRARY~MODE command
must be used, see Appendix A.

The name in the ALIAS text string may contain characters which form an
identifier which is illegal as a routine name identifier in PLANC or

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 131
ROUTINES

other languages. This facility may be used to create a protection
mechanism for preventing a user program from inadvertently naming and
invoking a system routine, which would normally only be invoked by
other systems software, e.g. the FORTRAN I/O routines.

A system routine with a (SYSTEM) EXPORT qualifier, will enable other
modules to access it, provided that the (SYSTEM) IMPORT qualifier is
used, see section 8.3. Then this identifier will be handled by the
Loader in the same way as an ALIAS name. For example, most of the
FORTRAN runtime library routines are protected from unintentional
invocation by names declared with this protection mechanism. This may
be set-up by the use of the EXPORT/IMPORT qualifier, (SYSTEM), or an
ALIAS name. Take care to remember, this protection mechanism must be
used with the greatest care possible, as it may lead to conflicts with
system routines.

Routine declarations may be nested to any number of levels within
another routine. However, there are some restrictions on the recursive
invocation of routines, see section 7.7.

The optional routine modifiers specify how the compiler should
construct routines with regard to parameter transfer and calling
sequence. The following modifiers are available:

1) INLINE - the data—element of such a routine will have no
object code generated by the compiler. Each invocation of
this routine will have the entire routine data~element
instead of the usual call sequence. This will result in a
larger program with several copies of the routine. But the
program will execute faster as the invocation overheads are
not incurred for each use of the routine. INLINE should only
be used for small routines, e.g. l — 5 lines. An INLINE
routine cannot be declared or invoked within another INLINE
routine.

2) SPECIAL — no routine entry/exit sequence at all is provided.
Calling such a routine can be made faster than for a normal
routine, as the usual register storage and stack
initialization will not be done. Consequently the extra
speed might be gained with a corresponding decrease in
security of the environment during the execution of such a
routine. This should only be used by the most experienced
and knowledgeable users, who may be using assembly code!

3) STANDARD - a calling sequence, including parameter transfer,
is generated which is the standard used by FORTRAN and COBOL
to call subprograms. In~values are not allowed. Note that
the standard routines, MININDEX, MAXINDEX for array
parameters and ERRETURN, are not available in STANDARD
routines, either PLANC calling other language routines or
vice versa. For examples of the use of such mixed language
combinations of routines, see Appendix D.

4) REFERENCE — normally, parameters whose datanelements are of
the simple data types are transferred by value. In a
REFERENCE routine all parameter data-elements are
transferred by reference, i.e. the routine is given the

Norsk Data ND—60.117.5 EN

132 PLANC Reference Manual
ROUTINES

address of each data—element concerned. The calling sequence
is not the same as for STANDARD.

While routines are defined as a composite data type in PLANC, calling
any routine is treated as an occurrence of an operator. When treated
in this manner as an operator, a routine has the priority 11 for the
purposes of evaluation of any expressions containing routine
invocations.

However, if a routine name is the same as any operator defined by the

PLANE compiler, e.g. +, * or ABS, then this routine will have the same
priority as the predefined operator, for the purposes of expression
evaluation.

Predeclaration of a routine may be used in the same way as for data~
elements of any other data type. An illustration of this facility is
in section 3.16.

A pointer data—element may be declared to reference a routine data-
element. If this is done, then the pointer data-element and the IND
standard routine may be used to invoke the routine. Note that the IND
standard routine may only invoke routines in the outer level of a
module, see section 7.9.

For example:

2 define a data type for a sort of routine

TYPE myroutine = ROUTINE VOID,VOID
2 declare a routine data—element
myroutine : myfirst
Z .

EWDROUTINE
Z declare a pointer for the defined routine data type
myroutine POINTER : mypointer

Z executable statements

2 set—up the address of the routine data—element

ADDB myfirst =:mypointer
Z invoke the routine
IND mypointer

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 133
ROUTINES

7.2. lu-VALUE AND OUT-VALUE 0F ROUTINES

PLANC routines have one explicit in-value data-element and one
explicit out'value data—element. Either the in~value or out—value may
not be required for a specific routine declaration and the keyword
VOID denotes the absence of a data-element.

If an in—value is present in the routine declaration, then executable
statements within the routine can refer to the in~value data-element
by using the Commercial At character (@). The @ character may be
looked upon as the identifier associated with the in-value data-
element and of the same data type.

For example:

ROUTINE REAL,VOID [REflL WHITE] : donothing [giveitback]
2 simply return the in~value in the parameter
@=:giveitback

ENDROUTINE

If the in-value is a composite data type, e.g. a record, then the @
character will precede the normal way of referencing a component of
the data-element of the composite data type.

For example:

TYPE myrecord = RECORD
INTEGER : field]
HEflL : field2

ENDBECOHD

N

2 routine declaration

A?

ROUTINE myrecord,VOID [INTEGER WHITE] : simplertn [out]
2 return twice the value of the first field in the record
@.field1*2=:out

ENDROUTINE

2 Now some code to invoke the routine

INTEGER : outparam
Z declare a record dataaelement with initial values
myrecord : rec1:=[10,23.5]
Z invoke a routine, passing it a record data—element

rec] simplertn [outparam]

If routines are nested, the Commercial at character (@) refers to the
in-value of the inner most routine with respect to the place where the
@ is used.

Norsk Data ND-60.117.5 EN

134 PLANC Reference Manual
ROUTINES

The out-value data-element of a routine will have a value stored into
it when a RETURN statement is executed to terminate a routine, see
section 7.5. If an expression precedes the RETURN, then the resulting
value from evaluation of the expression must be of the correct data
type to match the routine declaration. This will be checked at
compilation time.

For exauple:

ROUTINE REKL,RE%L : twice
Z double the in—value and put it into the out-value
REfiL : localreal
@*2.0=:localreal
localreal RETURN

ENDROUTINE

This could also coded in the following way:

ROUTINE REHL,REHL : twice
2 double the in—value and put it into the outevalue
REfiL : localreal
@=:localreal
2.0*localreal RETURN

ENDHOUTINE

But the simplest way of all is:

ROUTINE REKL,RE%L : twice
2 double the inevalue and put it into the out~value
2.0*@ RETURN

ENDROUTINE

Note that in—value and out-value declarations for composite data-
elements will result in transfer by reference during execution of a
routine invocation, i.e. only an address is passed not the entire
data-element.

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 135
ROUTINES

7.3. ROUTINE INVOCAHON

A routine will be invoked, by simply executing a statement containing
the identifier in the routine declaration. If the routine declaration
has an in—value, then the identifier immediately preceding the routine
invocation, will indicate the data-element to be used as the in—value.
If the routine declaration includes parameters, then the actual
parameters in the source program, may be expressions or identifiers
separated by commas, enclosed in parentheses, immediately following
the routine invocation. For each formal parameter in the routine
declaration, there must be an actual parameter in the routine
invocation, i.e. a data-element, of the formal parameter's data type
in the routine declaration. If not, the compiler will give an error
message.

For example:

2 program code to invoke a routine
INTEGER : invalue,p2actual
REAL : p1actual
Z invoke routine with an in—value and 2 actual parameters
51=:invalue ; 5.35::p1actual
invalue artn [p1actual,p2actual]
2 use value returned from routine in the 2nd actual parameter
p2actual=:localint 2 value returned = 1

Z The following routine declaration can be invoked by the above code,

ROUTINE INTEGER,VDID [REAL,INTEGEH WRITE] : artn[fp1,fp2]
2 set 2nd parameter : 1, in-value and let parameter +ve

2, not{in—va1ue and let parameter +ve]

o\
'o

\'

IF @>0 AND fp1>0.0 THEN
1=:fp2

ELSE
2=:fp2

ENDIF
Z
RETURN

ENDHOUTINE

Note that if the actual parameter is of the same base type, but a
different modification to the formal parameter, e.g. INTEGER4 actual
parameter and formal declaration is INTEGERl, then during execution
precision may be lost, depending on the value held in the actual
parameter.

Norsk Data ND~60.117.5 EN

136 PLANC Reference Manual
ROUTINES

If the parameter list of a routine declaration comprises only one
formal parameter, then the parentheses may be omitted for any
invocation.

If the routine invocation is within an expression, then the evaluation
will proceed by the normal rules, see Chapter 5 EXPRESSIONS -
FORMATION AND EVALUATION, with the routine invocations being treated
with priority ll unless it has the same name as an operator or
standard routine. In the latter case, it has the same priority as the
operator or standard routine. The resulting value from evaluation of
an expression may become the in-value for the routine invocation, by
the use of parentheses.

If the routine declaration includes an out-value, and the routine
invocation is within an expression, then the out-value returned from
the routine invocation will be used for the further evaluation of the
expression.

Note that if a routine is declared with an in-value and an out-value,
and it is invoked in an expression in the following way, i.e. with an
assignment operator immediately before and after the routine
invocation:

i =: rtn =: j

then the value of i will be the value stored in j, not the out-value
of the routine invocation.

Invocation of a routine within another routine, i.e. nested routine
invocations, must not be carried out by the use of the IND standard
routine.

Examples:

1. A routine invocation within an expression.

2 program code to invoke a routine
INTEGER : localint,invalue,p2actual
REfiL : plactual
Z invoke routine with an in—value 5, and 2 actual parameters
5=:invalue ; 5.5=:p1actual

2+invalue artn [plactual,p2actual]+3::localint
2 evaluation becomes 2+1+3, i.e. localint=6
Z Routine declaration, to be invoked as above
ROUTINE INTEGER,INTEGEB [HEAL,INTEGEH WRITE] : artn[fp1,fp2]

2 set 2nd parameter ~ 1, inevalue and lst parameter +ve
Z and out—value 2, not[in~value and let parameter +ve]

..\°

IF @>0 AND fp1>0.0 THEN
1::fp2

ELSE
2=:fp2

ENDIF
2 set out-value equal to 2nd parameter
fp2 RETURN

ENDROUTINE

Norsk Data ND—60.ll7.5 EN

PLANC Reference Manual 137

ROUTINES

2. A routine invocation with an expression as an in—value.

2 program code to invoke a routine
INTEGER : localint,int,p2actual

BEfiL : plactual
2 invoke routine with an in—value ~4, and 2 actual parameters
2 note, first actual parameter is an expression
=:int ; 5.5=:p1actual

[int—9} artn [2.0*p1actual,p2actual]+3=:localint
evaluation becomes [-4] artn [...] +3

then 2+3, i.e. localint=5

N
.\‘

. Routine declaration, to be invoked as above\°

ROUTINE INTEGEH,INTEGER [REAL,INTEGER WHITE] : artn[fp1,fp2]
Z set 2nd parameter — 1, in—value and lst parameter +ve

Z and out—value 2, not[in~value and lst parameter +ve]

.\'

IF @>0 AND fp1>0.0 THEN
1=:fp2

ELSE
2=:fp2

ENDIF
2 set out-value equal to 2nd parameter

fp2 RETURN
ENDROUTINE

Norsk Data ND-60.117.5 EN

138 PLANC Reference Manual
ROUTINES

Routines will have functionally different characteristics depending on
the presence or absence of an in-value and an out—value data~element.
The invocation of a routine will have distinct form for each of the
four different possible in-value and out-value configurations.

IN—VALUB ABSENT, OUT-VALUE ABSENT

A routine with no in-value or out-value data—element will be invoked
by an executable statement containing nothing other than the routine
name, and actual parameters if any have been declared. Since there is
no out—value, the routine must terminate an expression. Since there is
no in—value, the routine can be preceded by nothing in an expression.

Such an executable statement will carry out a wellmdefined operation.
Communication of values into and out of the routine can only be
accomplished by use of routine parameters. This appears like the
Subroutine construct of languages such as FORTRAN or COBOL. In fact,
this form of a routine used in conjunction with the STANDARD routine
modifier, will create a routine which is callable from a FORTRAN or
COBOL program, and behave like a subroutine.

For example:

ROUTINE VOID,VOID [HEHL,HEAL,BEAL WRITE] : &
addfadd1,add2,sum]
Z routine which behaves like a subroutine, e.g. FORTRAN
2 add the first two parameters and return the sum in the third
add1+add2=:sum
RETURN

ENDBOUTINE

.\‘

2 code to invoke the 'subroutine' routine

.\‘

HEAL READ : first:=5.3,second:=6.7
REAL : total
2 .
add[first,second,total] 2 total = 12.0
2 invocation stands alone as an executable statement

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 139
ROUTINES

IN-VALUE ABSENT, 0UTnVALUE PRESENT

A routine with an out-value, but no in—value will be invoked as part
of an executable statement* which contains an expression to be
evaluated. In the expression containing such a routine invocation, the
routine name plus optionally, a parameter list, may be looked upon as
an identifier which will have a definite value during evaluation of
the expression. Even though the routine is technically an operator
with priority 11, a routine of this nature behaves like an identifier
with an associated data-element. These characteristics, used with READ
only parameters, are similar to a FORTRAN function subprogram. In
fact, this form of a routine with READ only parameters used in
conjunction with the STANDARD routine modifier, will create a routine
callable from FORTRAN, and behave like a function subprogram.

For example:

ROUTINE VOID,INTEGEE [INTEGER] : twice[invalue]
Z routine which behaves like a function, e.g. FORTRAN
2 return double the value input

2*invalue RETURN

.\°

2 invoke the above routine within an expression

N

INTEGER : int

5+twice[3]+4=:int 2 result is 5+6+4=15

Norsk Data ND—60.117.5 EN

140 PLANC Reference Manual
ROUTINES

IN—VALUE PRESENT, OUT—VALUE ABSENT

A routine with an in-value, but no out~value may be invoked within an
expression. Since the routine has no out—value, it must terminate the
expression. Such a routine will simply store the in-value it receives.

A routine of this form is sometimes referred to as a 'store'into
subroutine'. It may be used to store a value into a data structure,
while completely separating the actual details of the data structure
from the program using the data structure.

For example:

MODULE tables
EXPORT inentry
2 global table and table pointer, to be stored over successive
Z routine invocations
INTEGER : tablepointer
INTEGER ARRAY : table[1:100]
°/,

ROUTINE INTEGER,VDID : inentry
2 add another value to the table
2 .

EWDROUTINE
ENDMODULE

.\~
.\° module to use the table via the above routine - could be

separately compiled ' 'o\'
N

MODULE usetable
IMPORT [ROUTINE INTEGER,VOID : inentry J
INTEGER ARRAY : stack[0:1000]
’4

PROGRAM : doit
INTEGER : int1,int2,int3
Z executable program — compute value and store in the table
INISTACK stack
[int1+int2*int3] inentry
2

ENDROUTINE
EWDMDDULE

For details of MODULES and EXPORT/IMPORT statements, see sections 8.3
and 8.5.

The user program can now put values into a table, but does not see the
structure of the table. Indeed the MODULE tables, could be recoded to
store the table entries in a linked list of RECORD data-elements, and
the MODULE usetable would require no change. A matching routine to
return a table entry could be written. This routine should have no in-
value and an out-value. Then the pair of routines together, could be
thought of as a composite data-element, e.g. a table with certain
characteristics, whose actual implementation details are completely
separated from a user of the data—element.

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 141
ROUTINES

IN—VALUE PRESENT, OUTnVALUE PRESENT

A routine with both an in—value and an out—value may be invoked within
an expression. Since an invocation of such a routine is preceded by a
data-element, and returns a data-element, it will represent an
operator within the expression if the routine is declared with one
parameter. Note, that routine invocations have priority 11, i.e.
higher than most operators.

A routine of this form is sometimes referred to as a 'store—into
function'. It can be used to create operators, analogous to existing
operators, e.g. + or — for existing data types, e.g. BOOLEAN. Further,
operators may be created for newly defined data types, e.g. operators
for a newly defined complex data type.

Norsk Data ND-60.117.5 EN

142 PLANC Reference Manual
ROUTINES

For exa-ple:

Z the following two modules must be nested to be able to import
Z the newly defined data type ”complex”
MODULE complexoperators

TYPE complex = RECORD
RERL : realpart,imagpart

ENDRECORD
EXPORT +!,*!
. add two complex data—elements
2 formula used is [a+i.b]+[c+i.d]:[a+c]+i.[b+d]
ROUTINE complex,complex [complex] : +![follow]

complex : local
@.realpart+follow.realpart=:local.realpart
@.imagpart+follow.imagpart=:local.imagpart
local RETURN

ENDROUTINE
2 multiply two complex data-elements
Z formula used is [8+1.b]*[c+i.d]=[ac—bd]+i.[ad+bc]
ROUTINE complex,complex [complex] : *![follow]

complex : local

@.realpart*follow.realpart~@.imagpart*follow.imagpart &
=:local.realpart

@.realpart*follow.imagpart+@.imagpart*follow.realpart &
=:local.imagpart

local RETURN
ENDROUTINE

\‘
.\‘

2 a nested module — to use the complex data type

N

MODULE usecomplex
IMPORT complex
IMPORT [ROUTINE complex,complex [complex] : +!]
IMPORT [ROUTINE complex,complex [complex] : *1]
'/.

INTEGER ARRAY : stack[0:1000]
7,,

PROGRAM : docomplex
complex READ : cpxl:=[l.0,2.0],cpx2[3.0,4.0}
complex : c3
Z
INISTACK stack
2 add two complex data~elements
cpxl +! c2 =: cpx3 2 result is 4+61
Z multiply two complex data~elements
cl *! c2 =: cpx3 2 result is —5+101

ENDROUTINF
ENDMODULE 2 end of usecomplex

ENDMODULE 2 end of complexoperators

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 143
ROUTINES

Note, the data type complex must be IMPORT'ed into a nested module
from an outer module.

7.1L PARNoETER TRANSFER

A routine declaration will declare the data types of any formal
parameters to be used by the routine. Any invocation of a routine must
include actual parameter data~elements of data types corresponding to
those of the declared formal parameters. Parameters of the simple data
types are transferred in a different way to parameters of the
composite data types.

The simple data types are transferred by value. This means that a
routine invocation results in the value stored in the actual parameter
data-element being copied into a temporary data-element, created
locally in the routine's memory area. During execution of the routine,
all references to the formal parameter will operate on the temporary,
locally created data-element.

The default access mode for parameter data-elements is READ only. The
transfer of the actual parameter data-element value to the temporary
local data-element, takes place before execution of the routine
begins. If WRITE, or READ WRITE has been declared as access mode,
during execution the routine may store a value in a formal parameter
for return to the invoking routine. Such a value will be transferred
to the actual parameter data~element, from the temporary local data~
element, after a normal exit from the routine. Such transfers will not
take place if an abnormal routine exit occurs, see 7.5.

If WRITE only has been declared as access mode, then the temporary
local data-element will have an undefined value at the beginning of
execution of the routine. Further, any invocation of a routine with
any WRITE only parameters, must have explicit actual parameter data~
elements for such parameters. Expressions are invalid as actual
parameters for such declared WRITE only formal parameters, as they
have only a temporary data-element for the resulting value of
expression evaluation.

Note that for any routine declared with the routine qualifiers
REFERENCE or STANDARD, and an array as a parameter, an invocation of
this routine should only use as an actual parameter, an array with the
lower bound of each dimension declared as zero. Otherwise the array
elements will not be referenced correctly within the invoked routine.

Norsk Data ND-60.117.5 EN

144 PLANC Reference Manual
ROUTINES

Exa-ples of parameter transfer:

1. A parameter, default READ only access mode.

ROUTINE VOID,INTEGER [INTEGER] : twice [paraml]
Z paraml refers to the temporary local data—element which has

received the value of the actual parameter data-element on
2 entry to the routine
2*param1 RETURN

ENDROUTINE

N

o\‘

2 code to invoke the above routine

n\'

INTEGER : int1,int2
'/.

twice[5]=:int1 2 result is 10
2 an expression as the actual parameter
twice[3+2*4}=:int1 2 result is 22
Z invocation cannot change value in data—element of int]
=:int1

twice[int1]=:int2 2 result is 4

A parameter, with READ WRITE access mode.

ROUTINE VOID,VOID {INTEGER READ WRITE] : twice [paraml]
2 paraml refers to the temporary local data—element which has

received the value of the actual parameter data-element on
2 entry to the routine
2*paraml=:param1
2 value in the temporary local data—element is transferred back
2 to the actual parameter data—element after the RETURN
2 statement is executed
RETURN

ENDROUTINE

e\'

2 code to invoke the above routine
2
3::int
twice[int] 2 after invocation int = 6
Z the following is equivalent to the previous invocation
twice[3=:int]
Z Note, following invocation is invalid, it has no explicit
2 actual parameter data-element, for the value to be returned
twice[3+2*5}

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 145

ROUTINES

3. A parameter with WRITE only access mode.

ROUTINE INTEGER,VOID {INTEGER WHITE] : triple {paraml}

3*@ =: paraml
2 value in the temporary local data—element is transferred back

Z to the actual parameter data~element after the RETURN
2 statement is executed

RETURN
ENDROUTINE

2 code to invoke the above routine

INTEGER : int

2 triple [int] 2 after invocation int = 6
Z Note, the following invocation is invalid

2 triple [3+5] Z no explicit actual parameter
2 data—element

The composite data types are transferred by reference. This means that
during execution of a routine, the address of each actual parameter
data-element is transferred into the routine. Then each reference to a
formal parameter will cause the actual parameter data-element to be
referenced directly during execution of the routine.

In FORTRAN and COBOL, parameters are always transferred by reference.

Consequently, a routine written in PLANC must include the routine
modifier STANDARD, in its declaration, to be callable from FORTRAN or

COBOL. ‘ ‘

Norsk Data ND—60.117.5 EN

146 PLANC Reference Manual
ROUTINES

7.5. EXIT mm A RGJTINE

Exit from a routine will take place when execution reaches a RETURN,
an ERRETURN or an ENDROUTINE statement. Any number of RETURN and
ERRETURN statements may appear in a routine.

The general form of a RETURN statement is:

[expression] RETURN

where

expression must be present if the routine has an out-value
declared. The resulting value of the expression must be
of the data type declared for the out~value.

The general form of an ERRETURN statement is:

expression ERRETURN

where

expression is the resulting value of the expression which must be
of the data type INTEGER.

A RETURN or an ENDROUTINE may be used for normal exit from a routine.
However, if the routine has an out—value declared, then exit from the
routine must be via a RETURN or an ERRETURN statement. The PLANC
compiler will check that at least one RETURN is present, if the
routine is declared with a non VOID out—value.

The RETURN statement will transmit the out—value of a routine back to
the invoking routine.

Exit via an ERRETURN statement will transfer control back to the
invoking routine. If the invoking routine has a ON ROUTINEERROR
statement prior to the routine invocation statement, then control will
be transferred to the beginning of that exception handling group of
statements. Otherwise, control will be transferred to the next higher
level in the routine invocation hierarchy, and so on, until a level is
reached containing a routine exception handler, or the outer level is
reached where the program execution will terminate, see section 6.8
for conditions to enter the exception handler, and a runtime error
message will be issued.

Exit via an ERRETURN statement will make the resulting value of the
expression available in the system variable, ERRCODE, which has a
data-element of the integer data type.

If an exit via an ERRETURN statement has transferred control to a user
routine exception handler, then following completion of the exception
handler, control will be transferred in one of the following ways:

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 147

ROUTINES

- an ENDON acts as if the last executed routine call had
executed a RETURN. Note that an out—value data-element or
actual parameter data-elements with WRITE access, would
contain unpredictable values.

— a GO statement may transfer control to a label.

- a RETURN or ERRETURN will exit from the routine containing
the exception handler to its caller.

7.6. USER DEFINED ROUTINE TYPE SPECIFICATION

A routine is a composite data type in PLANC. Thus, a routine is made
up of components of other data types. Further, the facility of a user
specifying his own composite data types in terms of those already
available, also applies to the routine data type.

A user may define a new data type based on the routine data type. This
TYPE specification will include:

1) Routine modifier options, e.g. STANDARD, INLINE, if required.

2) The data types of the routine's in~value and out—value.

3) The data types of all of the formal parameters, which will be
present in any routine data-element of this newly defined
TYPE.

Thus, part of the routine header is specified for every routine data-
element declared to be of this user defined TYPE. This mechanism may
be used to create a family of routines with similar structure, i.e.
same in-value and out-value data types, same number of parameters and
parameter data types.

For example:

TYPE rtnfamily = ROUTINE REAL,VOID [INTEGER WRITE]

Norsk Data ND—60.117.5 EN

148 PLANC Reference Manual
ROUTINES

A possible application might be to create a stack for a particular
record data type data—element, with functions such as push, pop, etc.,
each routine handling one record data-element and the stack:

TYPE stackrec = RECORD
INTEGER : 11,12
HEAL :r1,r2

ENDRECOED
2

TYPE stackrtn = ROUTINE VOID,VOID [stackrec HEAD WHITE]
2 declare various routines in the stack handling family
stackrtn : push [inrec]
2 put the record on the global stack
2 .

ENDROUTINE
Z
stackrtn : pop [outrec]
Z return a record from the global stack

o\°

ENDROUTINE

7.7. RECURSIVE ROUTINES

Routines in PLANC may invoke themselves recursively with certain
restrictions. For direct recursion, a routine may invoke itself only
if it is declared in the outer-most level of a module. This also
applies to modules nested within other ‘modules. An alternative
explanation is that any routine nested Within another routine must not
invoke itself recursively. Indirect recursive invocations are allowed
at any level of nested routines or nested modules, provided that the
chain of routine invocations goes via the routine at the outer level
of the module containing the nested routine which is then invoked by
indirect recursion.

For example:

ROUTINE VOID,INTEGEH [INTEGER] : factorial [number]
2 compute n! [n factorial] recursively
IF number > 1 THEN

Z invoke factorial again recursively for next lower value
number*factorial[number-1] RETURN
2 terminal condition of recursion

ELSE
1 RETURN

ENDIF
ENDROUTINE

.\°

2 code to invoke the above recursive routine

.\V

INTEGER : int
2
factorial[5]=:int 2 result is 5*4*3*2*1 = 120

Note: that routines with the qualifiers SPECIAL or INLINE cannot
invoke themselves recursively.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 149
ROUTINES

The following examples show which routines nay legiti-ately invoke
the-selves recursively: '

1. A routine declared in the outer level of a nodule.

MODULE abc
Z
ROUTINE ... : rtnyes

2 this routine, rtnyes, may invoke itself recursively
ROUTINE ... : rtnno

Z this nested routine, rtnno, may not invoke itself recursively
ENDROUTINE

ENDROUTINE
ENDMODULE

2. A routine declared within a nested module.

MODULE outer
'/,

MODULE abc
z
ROUTINE ... : rtnyes

2 this routine, rtnyes, may invoke itself recursively
ROUTINE ... : rtnno

2 this nested routine; rtnno, may not invoke itself recursively
EWDROUTINE ‘

ENDROUTINE
EWDMODULE 2 end of abc

ENDMODULE 2 end of outer

3. Indirect recursion, routines declared in separate nodules.

MODULE his
2 necessary EXPORT/IMPORT statements

ROUTINE ... popeye
2 this routine may invoke ”oliveoil“
ROUTINE ... roughhouse

2 this routine may invoke "oliveoil"
ENDROUTINE

ENDBOUTINE
ENDMODULE 2 end of his
2
MODULE hers

Z necessary EXPORT/IMPORT statements
ROUTINE ... oliveoil

2 this routine may invoke ”popeye" creating indirect recursion
ENDROUTINE

ENDMODULE 2 end of hers

Norsk Data ND-60i117.5 EN

150 PLANC Reference Manual
ROUTINES

7.8. SCOPE OF IDENTIFIERS IN PLANC ROUTINES

An identifier may be created in a routine by a normal declaration or a
type specification. Identifiers defined within a routine will have a
scope including the entire routine. However such identifiers may not
have an identifier name which is identical to an identifier whose
scope includes this routine, i.e. an identifier may not be declared
twice within nested routines.

If routine declarations are nested, than identifiers created within
the inner routines have the same restriction as above concerning the
choice of identifier names. Note that while INLINE routine expansions
are inserted at each invocation, this does not restrict the identifier
names which may be used locally within the INLINE routine. The INLINE
routine may use local identifier names which are the same as names
with a scope which includes calling the INLINE routine. -

7.9. STANDARD RourINEs AVAILABLE IN PlANC

The standard routines are predefined PLANC language constructs. Their
names and tasks are described in the following section, arranged
alphabetically.

The PLANC standard routines, which must not be confused with ROUTINEs
declared with the STANDARD modifier, are called with the usual PLANC
syntax for ROUTINE calls. When the compilers encounter such a call in
the source code, however, they generate code to perform the function
asked for immediately, instead of generating a ROUTINE call. Thus, the
compiler behaves as if it were encountering an operator. The PLANC
standard routines have another feature in common with operators: they
have a priority when used in complex expressions. These routine
priorities are given in the table in section 7.10.

ADDR

The ADDR standard routine takes as a parameter, an identifier of any
data type, i.e. simple, composite, predefined or user defined. It will
return the address in memory of the corresponding data-element.

Note, if several routines in one module have the same routine name,
then the ADDR standard routine will return the address of the first
routine declared in the module. If the ADDR standard routine refers to
a routine data-element, the routine identifier must not be enclosed in
parentheses.

Norsk Data ND—60.ll7.5 EN

PLANC Reference Manual 151
ROUTINES

APPEHD

The APPEND standard routine will add a record to the end of a linked
list of records. For a detailed illustration of the use of APPEND, see
section 4.6.

BIT

The BIT standard routine will store or retrieve a Boolean value
into/from one bit position of the data-element associated with an
identifier. For example:

INTEGER : int
BOOLEflN : bl]
TRUE=:BIT[int,3]
BIT{int,3}=:bll

will store a value 1 into bit 3 (the fourth bit from the right) of the
integer data-element associated with int. The third bit of int is
retrieved and stored into bll.

BIT POSITION

The BIT_POSITION standard routine has one parameter, which must be the
name of a RECORD component. If the component name is not unique, you
may use dot notation to specify which RECORD type you are looking at.
It returns the position of the first bit occupied by the specified
entity in the record it belongs to.

BIT SIZE

The BIT_SIZE standard routine has one parameter, which must be the
name of a RECORD component or a simple data type. If the RECORD
component name is not unique, you may use dot notation to specify
which RECORD type you are looking at. BIT_SIZE returns the number of
bits used by the specified type or RECORD component.

BLOCKSIZE

The BLOCKSIZE standard routine will set the blocksize of a file. For a
detailed description see section 9.6.

CLOSE

The CLOSE standard routine will terminate the connection of an
external file to an internal file number. For a detailed description
see section 9.5.

CONVERT

The CONVERT standard routine will carry out conversion between various
integer and real data-elements. For a detailed description, see
section 5.5.

Norsk Data ND—60.117.5 EN

152 PLANC Reference Manual
ROUTINES

DISPOSE

The DISPOSE standard routine is used to deallocate dynamically created
data-elements. For a detailed description see section 4.5.

The form of the routine declaration of the DISPOSE standard routine
follows:

ROUTINE INTEGER POINTER,VOID &
: XDISPOSE ALIAS '5DISPOSE' Z ALIAS 'fiDISPOSE' on HD—SOO

where

in-Value is the address of the data—element to be deallocated.

FILESIZE

The FILESIZE standard routine is used to set the size of a file, or to
inquire as to the present size of a file. For a detailed description
see section 9.7.

FORCE

The FORCE standard routine will move a value from one data—element to
another, regardless of the data types. For a detailed description see
section 5.5.

.132
The IND standard routine will get the value of a data—element. The
parameter to the IND standard routine must be an appropriate pointer
identifier, to reference the data-element. All data types may have
their data—element value picked up in this way, i.e. simple,
composite, predefined and user defined data types.

INISTACK

The INISTACK standard routine will create a new stack area. For a
detailed description see section 8.6.

INPUT

The INPUT standard routine may be used for formatted input or for
random unformatted INPUT. For detailed description of the various
INPUT routines, see chapter 9.

INSERT

The INSERT standard routine will add a record to the beginning of a
linked list of records. For a detailed illustration of the use of
INSERT, see section 4.6.

The INSERT standard routine will also add a member to a set data—
element.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 153
ROUTINES

HAXINDEX

The MAXINDEX standard routine will return the declared upper bound of
an array. The routine invocation may be used as follows:

HAXINDEX[array—identifier,dimension—number)

where

array-identifier is the identifier of the array whose upper bound
is required.

dimension-number is the number (from 1) of the index set, from
which the upper bound is required.

Note that the dimension number must be an integer literal, it cannot
be an identifier or an expression.

HININDEX

The MININDEX standard routine will return the declared lower bound of
an array. The routine invocation may be used as follows:

HININDEX[array-identifier,dimension—nunber)

where

array-identifier is the identifier of the array whose lower bound
is required

dimension—number is the number (from 1) of the index set, from
which the lower bound is required.

Note that the dimension number must be an integer literal, it cannot
be an identifier or an expression.

MONITOR CALL

This new standard routine is invoked as follows:

HONITDR_CALL [param1, paranZ, ...]

The number and types of the parameters may vary (as opposed to
ordinary PLANC routines).

The first parameter has to be of type INTEGER or BYTES. If it is
INTEGER, then it is the number of the monitor call. If it is BYTES, it
has to be a BYTES constant which is the name of the monitor call.

The monitor call names are as found in the SINTRAH III Reference
Manual, ND-60.128 EN. After the monitor call identification, come the
parameters for that monitor call. See the manual SINTRAN III Monitor
Call Guide, ND—60.228 EN (forthcoming), for details.

Norsk Data ND-60.1l7.5 EN

154 PLANC Reference Manual
ROUTINES

“J";
The NEW standard routine will dynamically create unnamed simple or
composite dataeelements. For a detailed description of the parameters
and invocation of the NEW standard routine, see section 4.5.

If the NEW standard routine dynamically creates a data—element within
an explicitly declared array, e.g.

INTEGER ARRAY : area[1:1000]
HEAL POINTER : rp
NEW HEAL IN area =: rp

This will create an unnamed real data-element in the array area. The
address of the real data-element will be stored in the real pointer
£2.

Some of the array elements of the array will be required for storage
management of the memory used for dynamically created data-elements.
The details of the storage management are:

—— free area pointer l word

maximum area pointer l word

storage management 15 words
area

dynamically created
data-elements

—* free area

For every invocation of the NEW standard routine which creates a data-
element within an array, there will be two extra words required, in
addition to the storage used for the created data-element.

If a DISPOSE is used to deallocate a data-element, then the area may
be reused only if there is a request for a data~e1ement of exactly the
same size. Garbage collection, or reorganization of such an area is
not carried out.

Note: Prior to the first invocation of NEW, for a particular
array, the area used for storage management must be
initialized thus:

0 =: arr[minindex[arr,1]]

where italics=arr; represents the name of the array you
are using.

Norsk Data ND—60.ll7.5 EN

PLANC Reference Manual 155
ROUTINES

The form of the routine declaration of the NEW standard routine is:

ROUTINE INTEGER,INTEGER POINTER (INTEGER ARRAY) &
: KNEW [arr] ALIAS 'SNEV' Z ALIAS '#NEW' on the ND—SOO

where

in-value is the size of the data—element to be created in
bytes.

out—value address of the created data-element.

parameter is the array in which the data—element is to be
created.

OPEN

The OPEN standard routine will establish the connection of an external
file to an internal file number. For a detailed description, see
section 9.4.

OUTPUT

The OUTPUT standard routine may be used for formatted output or for
random unformatted OUTPUT. For detailed description of the various
OUTPUT routines, see chapter 9.

FRED

The PRED standard routine may be used on enumeration data-elements
only. It will return the previous enumeration value, within the
declared list of enumeration values, to that contained in the data—
element which is the parameter for the routine invocation.

For exanple:

ENUMERATION [good,better,beet] : moral
best=:moral
PRED{moral]=:moral 2 stores the value 'better'
PHED[good] ... 2 will return an unpredictable value

REHOVE

The REMOVE standard routine will remove a record from a linked list of
records. For a detailed illustration of the use of REMOVE, see section
4.6.

The REMOVE standard routine will also remove a member from a set data-
element.

SIZE

The SIZE standard routine returns the number of bytes used for storage
of a data~e1ement. It may also be used to get the number of bytes
required for any data-element of a specified data type. For a more
detailed description, see section 3.17.

Norsk Data ND—60.ll7.5 EN

156 PLANC Reference Manual
ROUTINES

SUCC

The SUCC standard routine may be used on enumeration data-elements
only. It will return the following enumeration value, within the
declared list of enumeration values, to that contained in the data—
element which is the parameter for the routine invocation.

For example:

ENUMERATION [good,better,best] : moral
better=lmoral
SUCC[moral]=:moral 2 stores the value 'best'
SUCC[best] ... 2 will return an unpredictable value

TYPEOF

The TYPEOF standard routine specifies identifiers to be of the same
data type as a previously declared identifier. For detailed
description, see section 3.14.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 157
ROUTINES

7.10. TABLE OF PUWC STANDARD ROUTINES

standard brief function allowed parameter parameter
function description data type(s) description
name and
priority

ADDR get address of a i-v void n/a
14 data-element o-v any address an address

data-element data-element
1. any data type name of a

data-element

APPEND add a record to the i-v record append record
5 end of a linked list o~v void n/a

1. address list specifier
implied range

BIT store a Boolean (bit) i~v Boolean value for store
11 value o-v void n/a

1. identifier of store into
a simple type data-element

2. integer liter. bit number
or constant

BIT extract a Boolean , i-v void n/a
11 (bit) value o-v Boolean value stored

l. identifier of get value from
a simple type data-element

2. integer liter. hit number
or constant

BIT_POSI~ find position of first i-v void n/a
TION bit of RECORD component o-v integer first bit number

11 1. component with component name
optional dot
notation

BIT_SIZE find size of data» i-v void n/a
11 element o-v integer size in no. of

Abbreviations used in the table:

i-v = in—value, O‘V =

Norsk Data ND-60.

out—value, n/a =

l. element/compo-
nent with
optional dot
notation

117.5 EN

data-element/
component name

not applicable

PLANC Reference Manual
ROUTINES

Standard brief function allowed parameter parameter
function description data type(s) description
name and
priority

BLOCKSIZE set blocksize of a file i—v integer blocksize
ll o—v void n/a

1. integer file number

CLOSE close a file i-v void n/a
11 o~v void n/a

1. integer file number

CONVERT convert to or from real i-v real/integer from data—element
11 and integer types o—v real/integer to data-element

l. REAL/INTEGER target data type

DISPOSE deallocate dynamically i—v int. pointer data-element
ll allocated data-element address

o-v void n/a

FILESIZE set/read filesize of i—v integer4 set file size to
11 a file o-v integer4 read file size

1. integer file-number

FORCE interpret data-element i-v data—element from value
11 value as a different o~v data—element to value

data type 1. any data type

IND get a data~element i—v void n/a
14 value via a pointer to o—v any data type value retrieved

it I. pointer data pointer to the
type data‘element

INISTACK create a new stack area i-v void n/a
14 o—v void n/a

1. integer array area for stack

INSERT add a record to the i—v record insert record
5 head of a linked list o—v void n/a

1. address list specifier
implied range

INSERT add a data—element to i~v data—element insert data—element
5 a SET o-v void n/a

1. set set specifier

i—v = in-value, o-v =

Abbreviations used in the table:

Norsk Data ND~60.

out—value, n/a =

117.5 EN

not applicable

PLANC Reference Manual 159
ROUTINES

Standard brief function allowed parameter parameter
function description data type(s) description
name and
priority

INPUT formatted input i-v void n/a
11 0*v integer chs. transferred

1. integer device number
2. bytes format descriptor
3. any data—elem. input data—elem.

INPUT random unformatted i-v void n/a
11 input o-v integer chs. transferred

1. integer file number
2. integer block number
3. bytes input area

MAXINDEX get current upper bound i-v void n/a
11 of an array o—v integer upper bound

1. array ident. name of array
2. integer liter. index set no.

or constant

MININDEX get current lower bound i-v void n/a
11 of an array o~v integer lower bound

1. array ident. name of array
2. integer liter. index set no.

or constant

MONI- execute a SINTRAN III i—v void n/a
TOR CALL monitor call o-v void n/a
11 _ 1. mon. call. no. number or name

/BYTES string of call
2.~ .. call see SINTRAN III

parameters Ref. Man. for
details

NEW dynamically create a i-v void n/a
11 new data-element o-v pointer adr. of new

data-element data—element
1. any data type data type of new

data-element

Abbreviations used in the table:

i-v = in—value, o—v = out—value, n/a = not applicable

Norsk Data ND—60.117.5 EN

160 PLANC Reference Manual
ROUTINES

Standard brief function allowed parameter parameter
function description data type(s) description
name and
priority

OPEN open a SINTRAN file i— v void n/a
11 o—v integer chs. transferred

1. integer file number
2. bytes file access code
3. bytes file name
4. bytes file type

OUTPUT formatted output i—v void n/a
11 o-v integer chs. transferred

1. integer device number
2. bytes format descriptor
3. specified type output data—elem.

OUTPUT random unformatted i—v void n/a
11 output o-v integer chs. transferred

1. integer file number
2. integer block number
3. bytes input area

PRED get the immediately i-v void n/a
11 prior enumeration o—v enum. value prior value

value 1. enum. ident.

REMOVE remove a record from i-v record remove record
5 a linked list o—v void n/a

l. address list specifier
implied range

REMOVE remove a data—element i-v data-element remove data—element
5 from a set o~v void n/a

l. set set specifier

SIZE get storage, in bytes, i-v void n/a
ll used by a data type o—v integer number of bytes

l. identifier or
data type

SUCC get the immediately i-v void n/a
11 prior enumeration value o—v enum. value following value

l. enum. ident.

TYPEOF specify identifiers i—v void n/a
11 to be of the same data o—v any data type type of elem.

type 1. list of
identifiers

Abbreviations used in the table:

i-v = in—value, o-v =

Norsk Data ND—60.

out-value, n/a =

117.5 EN

not applicable

PLANC Reference Manual 161

PROGRAM STRUCTURE

8. PROGRAM STRUCTURE
In order to construct a complete PLANC program which can be executed,
the following things must be present:

1) At least one MODULE with its component parts.

2) One MODULE must contain at least one routine, of the special
type PROGRAM, to define a main entry point to begin

execution.

8.1. BASIC MILE

A MODULE is the smallest independent part of a PLANO program which can
be compiled separately. Further, it is the minimum entity required to
form a program which can be executed as an independent program,
providing it contains a main PROGRAM routine, see section 8.2.

In large or complex systems it is usually desirable to group into
separate entities, similar functions or data structures.This may serve
the purpose of being able to more effectively administer the functions
required in the system, or making a single copy of a widely used data
structure available to any part of the system from one central place.
In PLANO the MODULE is the mechanism to do this, by collecting
appropriate or related routines into a suitably chosen number of
MODULE's for a system.

The form of a basic MODULE comprises the following components:

1) The declared MODULE nwne.

2) EXPORT declarations for data~elements, declared in this
MODULE, to be made available to other MODULE'S, see section
8.3.

3) IMPORT declarations for data-elements from another MODULE, to
be accessible within this MODULE, see section 8.3.

4) Declarations and TYPE specifications, local to a MODULE,
which will be global to all levels of routines declared
within this MODULE. These declarations include all routine
declarations for this MODULE.

5) Executable statements,if any, required for this MODULE.

Norsk Data ND—60.117.5 EN

162 PLANC Reference Manual
PROGRAM STRUCTURE

The general form of a MODULE declaration is:

HODULE nod—ident
EXPORT statements for datanelements required externally

N
N

N

body of the module
ENDHODULE

where

mod—ident is an identifier for this module.

Note that any EXPORT statements required for this module, must precede
all other declarations. However, TYPE specifications and IMPORT
statements may precede an EXPORT statement in a module.

For example:

MODULE mymodule
EXPORT myint
2 only identifiers global in this module may be EXPOHT’ed
INTEGER : myint
PROGRAM : mainprogram

2 declarations local to the main program
INTEGER : locint
Z executable part of main program routine

ENDROUTINE
EWDMODULE

Norsk Data ND~60.117.5 EN

PLANC Reference Manual 163
PROGRAM STRUCTURE

8.2. MAIN PRUSIW!

A special type of routine is the main PROGRAM. There must be one main
PROGRAM routine in a program to be executed. The general form of a
routine header of a main PROGRAM routine is:

PROGRAM : routine—name

where

routineename is a valid identifier which is the main entry point to
be used to begin program execution.

The main PROGRAM routine has no in—value, out-value or parameters. All
other things permitted for routines, e.g. declarations, type
definitions and inner nested routines, may be used in a main PROGRAM
routine. A main program routine must be terminated by an ENDROUTINE
statement in the same way as a normal routine.

For example:

PROGRAM : myprogram

o\
°-

\°

an inner routine

o\°

ROUTINE VOID,INTEGER [INTEGER] : myroutine [intparam]
Z routine body

intparam RETURN
ENDROUTINE

Z local declarations for main PROGRAM routine

2 end of main PROGRAM

EWDROUTINE

The above main PROGRAM would have to be compiled in a MODULE, then
linked with a Loader. The name ‘myprogram' will be the main entry
point which can be used to begin execution of the program.

Norsk Data ND-60.117.5 EN

164 PLANC Reference Manual
PROGRAM STRUCTURE

8.3. EXPORT/1mm - CGMJNICATION BETWEEN MODULES

Modules are used in large systems to group routines and data-elements
in some way appropriate to the particular design for the project. It
will often be necessary to access data—elements, declared in one
module, from one or more other modules. PLANC requires explicit
declarations for both the module containing the data-element and the
modules wishing to gain access. For the purposes of interumodule
communication, routines are treated as other data-elements.

An EXPORT statement, in a module, makes available particular data-
elements for access by other modules.

The general form of an EXPORT statement is:

EXPORT {(SYSTEHJ] identifier[,identifier].._

where

identifier is an identifier associated with a data-element
declared within this module.

The optional qualifier, (SYSTEM), will make the routine identifier
associated with a data-element inaccessible unless IMPORT‘ed with the
(SYSTEM) qualifier. If this option is used in an EXPORT statement,
then it must be used in any matching IMPORT statements. This is of
particular interest as an extra protection to avoid naming conflicts
for system provided routines, in runtime systems. The ALIAS facility
can be used in a similar way, see section 7.1. Users are strongly
advised to use the ALIAS facility if special routine names are
required.

It is illegal to EXPORT a family of routines, with the routine name
identifier the same as the name of a PIANC predefined standard routine
or operator, see section 8.4 for the use of a family of routines.

EXPORT statements must be placed immediately following the MODULE
statement.

For example:

MODULE exhibit

EXPORT bool,vector
BOOLEAN : bool

INTEGER ARRAY : vector[1:100]
Z .

ENDMODULE

Norsk Data ND-60.ll7.5 EN

PLANC Reference Manual 165
PROGRAM STRUCTURE

An IMPORT statement, specifies data-elements to be used in a module,
providing they have been made available in another module by an EXPORT
statement.

The general form of an IMPORT statement is:

IHPORT [(option]] declarationE,declaration]...

where

declaration is the same as the declaration of the data-element in
the module containing the original declaration.

option is either SYSTEM or COMMON.

If the option (SYSTEM) is present in the matching EXPORT statement,
then it must also be present in the IMPORT statement.

If the option (COMMON) is used, the identifier(s) may only be used to
link to a named COMMON block defined in a FORTRAN program, see section

0.7, Appendix D for more details.

If declarations of different data types are to be included in one
IMPORT statement, then each declaration must be included in
parentheses. -

For example:

IMPORT [INTEGER : i1,12],{REAL : r1,r2],[BOOLEAN : b1]

As an IMPORT statement contains the data type of each IMPORT'ed data-
element, all of the normal compilation checks will be carried out on
the identifier. These checks apply within the module containing the
IMPORT statement. The PLANC compiler checks the correct correspondence
with the data—element’s data type, declared in the originating module
and in the IMPORT statement, if both modules are nested within another
module. If the two modules with the corresponding EXPORT/IMPORT
statements are not nested within another module, i.e. they are
separately compiled, then these correspondence checks are not done.

If the data-element IMPORT'ed is a routine, then its declaration in
the IMPORT statement must be in parentheses. Further, the list of
formal parameter identifiers declared in the routine, must not be
included in the IMPORT statement.

For example:

IMPORT [ROUTINE VOID,VOID [INTEGER] : doit J

For families of routines, declared in another single module, the use
of ALIAS names is necessary. This allows one or more variants, of
routines declared with the same identifier, to be accessed by the
IMPORT statement, see section 8.4.

Norsk Data ND-60.117.5 EN

166 PLANC Reference Manual
PROGRAM STRUCTURE

A user defined data type, specified in a TYPE statement, or
identifiers declared in a CONSTANT statement, may be IMPORT'ed into an
inner nested module, see section 8.5.

Examples of the use of EXPORT/IMPORT statements:

1. Sane simple data—elements.

MODULE source
EXPORT int,rl,bool
Z

INTEGER : int
REAL: rl
BOOLEAN : bool
Z
ROUTINE VOID,VOID : looknice

Z .
EWDROUTINE

ENDMODULE

~
\‘-

\'

8 separate module which could be compiled separately

.*

MODULE getem
IMPORT [INTEGER .~ int J, { REAL .- rl J
IMPORT BOOLEAN : 13001

2 now int', 'rl' and 'bool' are available in this module

EWDMODULE

2. A routine to be accessed from another module.

MODULE service
EXPORT useful
2
ROUTINE VOID,INTEGEH [INTEGER] : useful {param}

.9

2 body of the routine

.0

ENDROUTINE
ENDMODULE

u\'

2 a separate module which could be compiled separately

‘*

MODULE getit
IMPORT [ROUTINE VOID,INTEGER [INTEGER] : useful J

-\
°~

\"

now 'useful' is available in this module

a

ENDMODULE

For more complex use of routines and EXPORT/IMPORT statements, see
section 8.4.

Norsk Data ND—60.Zl7.5 EN

PLANC Reference Manual _ 167
PROGRAM STRUCTURE

8.4. ALIAS USE IN A Mann:

A family of routines to create an operator for various data types, may
be declared in one module. All the routines will have the same routine
name identifier. If the routines are to be invoked by other routines
within the same module, then nothing further is required. The PLANC
compiler will compile each invocation with a reference to the correct
routine, which requires an exact match of the data types of the in—
value and the parameters. If there is not an exact match, the compiler
will give an error message unless there are corresponding parameters
with some data type modifications. For range or precision
modification, accuracy may be lost.

For example:

MODULE allinone
INTEGER ARRAY : stack{0:1000]

a\“
a\‘ define a family of routines for a +++, plus 1 operator

o\
‘n

\“

each routine will 'add' 1 for a particular data type
and return the result as an out-valuen\‘

o\“

ROUTINE INTEGEH,INTEGEB : +++
@+1 RETURN 2 return in-Value+1

ENDHOUTINE
z
ROUTINE HEHL,HE%L : +++

@+1.0 RETURN 2 return in—value+1.0
ENDHOUTINE
'/.

ROUTINE BOOLEAN,BOOLEHN : +++
NOT @ RETURN 2 return complement of in—value

ENDHOUTINE

.\°

2 program to invoke the above +++ routines

N

PROGRAM : myplus
INTEGER : int ; REAL : rl ; BOOLEAN : bool
Z executable program
INISTACK stack
2 invoke the integer version of +++
5 +++ =:int 2 result is 6
Z invoke the real version of +++
3.51 +++ =: r1 2 result is 4.51
2 invoke the Boolean version of +++
TRUE +++ =: bool 2 result is FALSE
2

ENDROUTINE
ENDMODULE

Norsk Data ND—60.ll7.5 EN

168 PLANC Reference Manual
PROGRAM STRUCTURE

The routine name identifier of a family of routines should not be the
same as the name of a PLANC predefined standard routine or operator as
it is illegal to EXPORT a family of routines with such a name.

If such a family of routines were created in one module, but the

routines were to be invoked from another module, then ALIAS names
would be required for each routine in the family. Further, the family

would have to be EXPORT'ed from its module and IMPORT'ed into the
module containing the routine invocations.

For example:

MODULE family

o9
9\\° define a family of routines for a +++, plus 1 operator

N
N each routine will 'add' 1 for a particular data type

and return the result as an out—value

«
\‘N

N set-up access to the family of routines
EXPORT +++
“/0

ROUTINE INTEGER,INTEGER : +++ ALIAS 'intplus'
@+1 RETURN 2 return in—Value+1

ENDROUTINE
ROUTINE REAL,REAL : +++ ALIAS 'realplus'

@+1.0 RETURN 2 return in~value+1.0
ENDROUTINE
ROUTINE BOOLEAN,BOOLEAN : +++ ALIAS 'boolplus'

NOT @ RETURN 2 return complement of in-value
ENDROUTINE

ENDMODULE 2 end of module family
2

MODULE usethem
Z set—up access to the module with the +++ routines
IMPORT[ROUTINE INTEGER,INTEGER : +++ ALIAS 'intplus']
IMPORT[ROUTINE REAL,REAL : +++ ALIAS 'realplus']

IMPORT[ROUTINE BOOLEAN,BOOLEAN : +++ ALIAS 'boolplus']
INTEGER ARRAY : stack{0:1000]

u
\°

.\
:

program to invoke the above +++ routines from another module

o\'

PROGRAM : myplus
INTEGER : int ; REAL : rl ; BOOLEAN : bool
Z executable program
INISTACK stack

invoke the integer version of +++N

5 +++ =:int 2 result is 6
Z invoke the real version of +++
3.51 +++ =: rl 2 result is 4.51
2 invoke the boolean version of +++
TRUE +++ =: bool 2 result is FALSE

ENDROUTINE
ENDMODULE 2 end of module usethem

(notes next page]

Norsk Data ND—60.117.5 EN

PLANC Reference Manual
PROGRAM STRUCTURE

Note, that the two modules on the previous page could be compiled
in one file, or separately, prior to execution. In fact, if

these modules were nested within another module, then the ALIAS names
together

would not be necessary.

The previous
is to invoke
This applies

For example:

MODULE family

o
\°

‘\
"‘

\’
o

\‘
o

\'
~

°
.\°

define a family of routines for a +++, plus 1 operator

each routine will ’add‘ 1 for a particular data type
and return the result as an out-value

set—up access to the family of routines
EXPORT +++
'/,,

ROUTINE INTEGER,INTEGER I +++ ALIAS 'intplus'
@+1 RETURN 2 return in-value+1

ENDROUTINE
o/.

ROUTINE HEAL,HEAL : +++ ALIAS 'realplus'
@+1.0 RETURN 2 return in-value+l.0

ENDHOUTINE
2
ROUTINE BO0LEAN,BOOLEAN': +++ ALIAS 'boolplus'

NOT @ RETURN 2 return complement of in~value
ENDEOUTINE

ENDMODULE 2 end of module family
‘4

(cont. next page]

Norsk Data ND-60.117.5 EN

example could be coded differently, with the module which
the routines referring to the unique ALIAS names only.
to the IMPORT statements and the routine invocations.

170

MODULE usethem

PLANC Reference Manual
PROGRAM STRUCTURE

Z seteup access to the module with the +++ routines
2 note,

IMPORT[ROUTINE REAL,REAL

INTEGER ARRAY : stack[0:1000]

-\
“-

\‘
.\°

PROGRAM : myplus
INTEGER : int ; REAL
Z executable program
INISTACK stack

invoke the integer version

rl

.\~

5 intplus =:int 2 result
2 invoke the real version of
3.51 realplus =: rl 2 result
2 invoke the Boolean version
TRUE boolplus =: bool

ENDHOUTINE
EWDMODULE Z

Note, these two modules could be compiled together
separately,
within one module as the loader must
names.

that now reference is directly to the ALIAS names
IMPORT[ROUTINE INTEGER,INTEGEH : intplus J

‘ realplus]
IMPOHT[ROUTINE BOOLEAN,BOOLEAN : boolplus J

program to invoke the above +++ routines from another module

; BOOLEAN : bool

of +++
is 6
+++
is 4.51
of +++

2 result is FALSE

end of module usethem

in one file, or
prior to execution. These modules cannot be both nested

complete the links for ALIAS

Norsk Data ND-60.117.5 EN

PLANC Reference Manual
PROGRAM STRUCTURE

171

The family of routines can be given a new family name within the
program which will invoke the appropriate routine in the family.

For example:

MODULE family
“a

e\~ define a family of routines for a +++, plus 1 operator

N
W

each routine will 'add' 1 for a particular data type
and return the result as an out-value

~
\'~

\'
N set—up access to the family of routines

EXPORT +++
2
ROUTINE INTEGER,INTEGER :

@+1 RETURN 2
EWDROUTINE
Z
ROUTINE REAL,REAL

@+1.0 RETURN
ENDROUTINE
Z
ROUTINE BOOLEANQBOOLEAN :

NOT @ RETURN
ENDROUTINE

ENDMODULE
'/,

MODULE usethem
2 set-up access to the module with the +++ routines
2 note, that now reference is through a new family name
IMPORT[ROUTINE INTEGER,INTEGER : plusl ALIAS 'intplus']
IMPORT[ROUTINE REAL,REAL ' plusl ALIAS 'realplus']
IMPORT[ROUTINE BOOLEAN,BOOLEAN : plus] ALIAS 'boolplus']
INTEGER ARRAY : stack[0:1000]

+++ ALIAS 'intplus'
return in-value+1

+++ ALIAS 'realplus'
2 return in—value+1.0

+++ ALIAS 'boolplus'
2 return complement of in-value

2 end of module family

.\’

2 program to invoke the above +++ routines from another module

-\"

PROGRAM : myplus
INTEGER : int ; REAL ' rl ; BOOLEAN : bool
2 executable program
INISTACK stack
2 invoke the integer version of +++
5 plusl =:int 2 result is 6
Z invoke the real version of +++
3.51 plus] =: rl Z result is 4.51
2 invoke the Boolean version of +++
TRUE plus] =: bool 2 result is FALSE
'4

ENDROUTINE
ENDMODULE 2 end of module usethem

Note, these two modules could be compiled together in one file, or
separately, prior to execution. These modules cannot be both nested
within one module as the loader must complete the links for ALIAS
names.

Norsk Data ND—60.117.5 EN

172 PLANC Reference Manual
PROGRAM STRUCTURE

The family of routines can be given new individual names within the
program which invokes each of the routines in the family.

For example:

MODULE family

“0
~\" define a family of routines for a +++, plus 1 operator

.\°

each routine will 'add' 1 for a particular data type

and return the result as an out—value

«
\‘
o

\‘
o

\°
N set—up access to the family of routines

EXPORT +++
Z
ROUTINE INTEGER,INTEGER : +++ ALIAS ’intplus'

@+1 RETURN 2 return in—value+1
ENDROUTINE
Z

ROUTINE REAL,REAL : +++ ALIAS 'realplus'
@+1.0 RETURN 2 return in-value+1.0

ENDROUTINE
Z

ROUTINE BOOLEAN,BOOLEAN : +++ ALIAS 'boolplus'
NOT @ RETURN 2 return complement of in—value

ENDROUTINE
ENDMODULE 2 end of module family
2
MODULE usethem

Z set-up access to the module with the +++ routines

2 note, that now we create local names for each routine

IMPORT[ROUTINE INTEGER,INTEGER : int] ALIAS 'intplus']

IMPORT[ROUTINE REAL,REAL : reall ALIAS 'realplus’ }

IMPORT[ROUTINE BOOLEAN,BOOLEAN : booll ALIAS 'boolplus’]

INTEGER ARRAY : stack[0:1000}

u\°
.\' program to invoke the above +++ routines from another module

N

PROGRAM : myplus
INTEGER : int ; REAL : rl ; BOOLEAN : bool

Z executable program
INISTACK stack
2 invoke the integer version of +++
5 int1 =:int 2 result is 6
2 invoke the real version of +++
3.51 real] =: rl 2 result is 4.51
2 invoke the Boolean version of +++
TRUE bool] =: bool 2 result is FALSE
2

ENDROUTINE
ENDMODULE 2 end of module usethem

Note, that these two modules could be compiled together in one file,
or separately, prior to execution. These modules cannot be both nested
within another module as the loader must complete the links for ALIAS
names.

Norsk Data ND-6O 117.5 EN

PLANC Reference Manual 173

PROGRAM STRUCTURE

8.5. MIMLE STRUCTURE AND SEPARATE COPILATIOV

Modules are independent entities which may be compiled separately by
the PLANC compiler. Then a Loader must be used to link all the
necessary separate modules together. All required links between the
separately compiled modules will be resolved, by the Loader as
external references. This can only be done successfully if the links
between the modules have been correctly defined with EXPORT/IMPORT
statements, see 8.3.

If several routines in a module have the same name, then the Loader
would not be able to resolve such an ambiguity, unless ALIAS names
have been used to give a unique qualifier name to each routine, see
section 8.4.

TYPE specification and CONSTANT statements may precede all modules on
a file. In this case these staments will not be contained within any
module. During the compilation, identifiers thus created will be
globally available to all modules in the compilation. In fact, user
specified data types will appear identical to the data types defined
within the PLANC compiler. Further, TYPE specifications to be used in
this way may be inserted by an INCLUDE compiler command, see Appen—
dix A.

Modules may be nested within other outer modules to any practical
number of levels. If modules are nested, the inner modules can access
data—elements declared in outer module levels, only by the usual means
of EXPORT/IMPORT statements. This would be exactly the same as if the
inner module was removed and compiled as a separate module.

However, nesting of modules does offer extra facilities, such as:

1) If a new data type is specified in an outer level module,
then the type specification may be IMPORT'ed to an inner
level nested module. If the new data type is to be IMPORT'ed
over several levels of nested modules, then it must be
IMPORT'ed at eve level between the original TYPE
specification and the inner level module wishing to access
it.

2) Identifiers declared in CONSTANT statements may be accessed
in nested modules in exactly the same way as TYPE
specifications, without EXPORT statements, but with IMPORT
statements at every level between the original TYPE
specification and the inner level module wishing to access
it.

Norsk Data ND-60.117.5 EN

174 PLANO Reference Manual
PROGRAM STRUCTURE

3) If modules are nested within other modules, then checking of
the correspondence of the declared data types in matching
EXPORT and IMPORT statements is carried out at
compilation time.

For example:

MODULE outer
TYPE goods = INTEGER RANGE [1:128]
Z .
MODULE inner]

IMPORT goods
2 .
MODULE inner2

IMPORT goods
2

ENDMQDULE 2 end of innerZ
ENDMDDULE 2 end of inner]

EWDMODULE Z end of outer

If modules are nested, routines and executable code may only be within
the innermost module. However if there are two separate nests of
modules within an outer module, then each separate nest of modules may
have executable routine within its innermost module.

8.6. DATA—ELEMENT STORAGE AND THE PRmRAM STACK

Allocation strategy of data~elements and detailed memory requirements
are described for each PLANC implementation, see Appendix C. However,
some aspects of data—element storage allocation apply to all PLANC
compiler implementations.

In PLANC the distinction has been made between statically and
dynamically allocated data-elements.

Statically allocated data—elements include:

1) Global data~elements declared in a basic MODULE.

2) Local data—elements, declared in a routine, whose access is
READ only.

3) Data—elements, constructed by the NEW standard routine,
within a global data—element, see section 4.5.

Dynamically allocated data-elements include:

1) Local data-elements, declared in a routine, whose access is
not READ only.

2) Data-elements, constructed by the NEW standard routine,
within a local data-element or on the program stack, see
section 4.5.

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 175

PROGRAM STRUCTURE

A static data—element may be initialized with a specific value, in its
declaration, provided that it is not within a nested routine. Static
data-elements may be initialized within a nested routine if it is
declared as READ only. Dynamically created data‘elements are allocated
on a stack, either when a routine is invoked, or when the NEW standard
routine is invoked to create a data-element.

The stack used, is referred to as the 'current' stack. The INISTACK
standard routine must be used to create a current stack at the
beginning of program execution. It may be used during program
execution to create further stacks.

The general form of the INISTACK standard routine invocation is:

INISTACK int-array

where

int-array is an INTEGER ARRAY, of one dimension, with an index
set lower bound of zero.

The array, used in an INISTACK invocation, will remain the current
stack until another INISTACK invocation, or until the routine with the
INISTACK invocation terminates. When a routine terminates and returns
to its invoker, all stack space allocated during execution of the
routine will be released. The stack pointer will automatically be
reset to the value it had prior the routine invocation.

Example of INISTACK use:

MODULE mymodule
Z

INTEGER ARRAY : stackarray [0:1000]
PROGRAM main

2

Z mandatory at the start of the executable program statements

.\~

INISTACK stackarray
'/.

ENDROUTINE
ENDMODULE

Norsk Data ND—60.117.5 EN

176 PLANC Reference Manual
PROGRAM STRUCTURE

8.7. SCOPE OF IDENTIFIER NMES m PLANE MMLES

In a module, identifiers may be created by declaration statements,
TYPE specification statements or IMPORT statements. All identifiers
created within the outer level of the module are available throughout
the module, i.e. the identifiers have a scope of the outer module
only. However, if another module is nested, then the identifiers
created in the outer module are available within the nested module in
the following ways:

l) Identifiers created in the outer module by the usual
declaration statements, e.g. INTEGER or ENUMERATION, must
have a corresponding IMPORT/EXPORT pair of statements, to
make the identifier available within the nested module.

2) Identifiers created in TYPE specification or CONSTANT
statements in the outer module, must be IMPORT'ed into the
nested MODULE, but no EXPORT statement is to be used in the
outer module, see section 8.5. Only the identifier name is
used in IMPORT statements used for this purpose.

3) Identifiers created in the outer module by the use of an
IMPORT statement, must have another identical IMPORT
statement to make the identifier available in a nested
module, i.e. an IMPORT statement must appear on every level
between the outermost module and the nested module in which
it is to be used. ~

TYPE specification statements and CONSTANT declarations may be made
outside, or previous to any module in a compilation. These statements
are then treated like compiler commands. Identifiers created in this
way are globally available in all modules, separate or nested, without
IMPORT statements.

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 177
INPUT/OUTPUT

9. IW/(IHHH
The PLANC compiler and runtime system does not have very extensive
input/output facilities. A set of standard routines has been provided
for input/output, for various of the PLANO data types, to files and
devices. One general limitation is that only one data-element may be
input/output by a single input/output standard routine invocation.
This has been done as it is envisaged that large systems programming
projects will design and implement their own set of input/output
routines, appropriate to their special needs.

The ROUTINEERROR exception will be activated by errors in any of the
input/output or Open/close standard routines. If a ROUTINEERROR
condition occurs, the system variable, ERRCODE, will contain a value
from the file system, specifying the nature of the error.

9.1. INPUT/OUTPUT TERMS AND CONCEPTS

Input routines control the transfer of data from external media into
internal storage. Output routines control the transfer of data from
internal storage to external media.

In addition to the data transfer routines, other routines carry out
file control operations. The following standard routines are provided
in PLANC:

1) INPUT — data transfer. See section 9.2.

2) OUTPUT - data transfer. éee section 9.3.

3) OPEN - file control. See section 9.4.

4) CLOSE — file control. See section 9.5.

5) BLOCKSIZE file control. See section 9.6.

6) FILESIZE file control. See section 9.7.

Definitions of these terms are found on the next page.

Norsk Data ND‘60.117.5 EN

178 PLANC Reference Manual
INPUT/OUTPUT

RECORDS

A record is a sequence of values or characters which is considered as
a single unit by the device it is being read to or written from. It
may correspond to a physical entity such as a disk block or a magnetic
tape block, but not necessarily.

There are two types of records:

1) Formatted

2) Unformatted

A formatted record is one which is transferred under the control of a
format descriptor. Other records are unformatted records. During
unformatted transfers, data is transferred on a one—to—one
correspondence between external media and internal storage with no
conversion or formatting operations.

FILES

A file is a sequence of records, existing on an external device,
accessible by a PLANC program via the SINTRAN file system.

FILE NUMBER

A file number is a value in an INTEGER data—element, which specifies a
particular file internally within a program. A file number is returned
following the execution of the OPEN standard routine.

FORMAT DESCRIPTOR

A format descriptor is a parameter in both Input and Output standard
routine declarations. It describes the physical characteristics of a
value after it has been transferred from a data-element by an output
routine, or the physical characteristics before the value is to be
transferred into a data—element by an input routine.

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 179

INPUT/OUTPUT

9.2. FORMUED 1W STANDARD ROUTINES

The formatted INPUT standard routines transfer one value into a data-
element. The general form of an invocation of a formatted INPUT
standard routine is:

INPUT [file-number,'descriptor',identifier]

where

file—number is the file number obtained by the OPEN invocation.

descriptor is the format descriptor.

identifier is associated with the data-element into which the
value is to be transferred.

Each of the formatted INPUT standard routines is declared with an out—
value. This out—value will return the number of characters which have
been transferred.

A field being read by an INPUT standard routine will terminate when
either the maximum number of characters specified in the format
descriptor has been read, or when a comma character (,), or a carriage
return character is encountered.

If a field to be read by a formatted INPUT standard routine contains
leading blanks and a numeric value, then the blanks will be recognized
as part of the field width but will have no effect on the value
transferred into a data-element.

The data types of the parameters of the formatted INPUT standard
routines are shown in the general form of the INPUT standard routine
declaration:

ROUTINE VOID,INTEGER [INTEGER,BYTES,id—type] : INPUT [...)

where

id—type is the data type of the data-element to receive the
value read. This data type must correspond with that
implied by the format descriptor.

Norsk Data ND-60.ll7.5 EN

180 PLANC Reference Manual
INPUT/OUTPUT

In the following sections on the formatted INPUT standard routines the
abbreviations used are:

w is an unsigned integer number greater than zero.

d is an unsigned integer number greater than or equal to zero.

FOBHAT DESCRIPTORS

The following are the format descriptors available for the formatted
INPUT standard routines:

Iw - Integer field descriptor
0w

Fw.d ~ Floating~point numeric field descriptors
Ew.d

Aw - Alphanumeric data field descriptor

Lw - Boolean data field descriptor

Note that if g or w.d is omitted, a maximum number of characters

(default for each data type) will be used.

9.2.1. I Fawn, INTEGER 1W STANDARD ROUTINE

The Iw descriptor is for an integer value to be transferred into an

INTEGER data~element from a field of up to w character positions.

The input field consists of an optional minus sign followed by a
string of digits, i.e. the same as an integer literal.

The field width described by an integer format descriptor can be

overridden by the use of any non~numeric character as a delimiter
between successive integer values to be read.

Examples:

value input descriptor internal value

1 I1 1

1 I5 1

10 I5 10

—15 I5 —15

1234 I2 12

The parameter data types of the integer INPUT standard routine are
shown in the routine declaration:

ROUTINE VOID,INTEGER &
[INTEGER, BYTES, INTEGER4 READ WRITE]

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 181

INPUT/OUTPUT

9.2.2. 0 FORMAT. 0cm. IM’UF STAINDARD ROUTINE

The Ow descriptor is for an octal value to be transferred into an
INTEGER data-element from a field of up to w character positions.

The input field consists of a string of digits with no sign.

Examples:

value input descriptor internal value,dec

1 01 1
10 05 8

1234 02 10

The parameter data types of the octal INPUT standard routine are shown
in the routine declaration:

ROUTINE VOID,INTEGER &
(INTEGER, BYTES, INTEGERfi READ WRITE]

Norsk Data ND-60.117.5 EN

182 PLANC Reference Manual
INPUT/OUTPUT

9.2.3. F FORMAT. FIXED DECIMAL POINT 1W STANDARD ROUTINE

The Fw.d descriptor is for a fixed decimal point value to be
transferred into a REAL data-element from a field of w character
positions.

The input field consists of an optional minus sign, followed by a
string of digits optionally containing a decimal point. If there is no
decimal point, the rightmost d digits are interpreted as the
fractional part of the value. The rules are the same as for a REAL
literal, see section 2.7.2. If the input field has enough space, the
value may be written in exponent form, see section 9.2.4.

Examples:

value input descriptor internal value

1.2 F5.0 1.0
-1.2 F5.0 ~1.0
1.2 F5.1 1.2

—1.2 F5.1 —1.2
33 F10.3 33.0

3.2543 F10.3 3.254

The parameter data types of the fixed decimal point INPUT standard
routine are shown in the routine declaration:

ROUTINE VOID,INTEGER (INTEGER, BYTES, REAL READ WRITE)

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 183

INPUT/OUTPUT

9.2.11. E Foam. FIXED DECIMAL POINT Nowuza) WITH EXPONENT IM’UT

STANDARD ROUTINE

The Ew.d descriptor is for a fixed decimal point value, normalized
with an exponent, to be transferred into a REAL data-element from a
field of up to w character positions.

The input field may have the same form as described above for the F
descriptor. This field may optionally be followed by an exponent of
the form Enn or E-nn, where nn is limited by the default REAL data
type characteristics of the particular machine implementation, see
Appendix C. The value from the input field will be multiplied by 10 to
the power nn, to get the internally held value.

Examples:

value input descriptor internal value

1.2 E5.0 1.0
-1.2 E5,0 -1.0

1.2E2 E5.1 120.0
1.25‘2 E5.1 0.012

33 E10.3 33.0
3.2543E4 E10.3 32540.0

987654553 E10.3 987.654

The parameter data types of the fixed decimal point normalized with
exponent INPUT standard routine are shown in the routine declaration:

ROUTINE VOID,INTEGER [INTEGER, BYTES, REAL READ WRITE)

Norsk Data ND~60.117.5 EN

184 PLANC Reference Manual
INPUT/OUTPUT

9.2.5. A FORMAT. ALWRIC 1W STANDARD ROUTINE

The Aw descriptor is for an alphanumeric string to be transferred into
a BYTES data—element from a field of up to w character positions.

If more than w characters are input, then the first w characters only
will be stored in the data—element.

Exa-ples:

value input descriptor internal value

1 A1 1
1 A5 1

1 A5 1
abode A3 abc

The data types of the alphanumeric INPUT standard routine are shown in
the routine declaration:

ROUTINE VOID,INTEGEH (INTEGER, BYTES, BYTES READ WRITE]

9.2.6. L FORMAT. BOOLEAN INPUf STANDARD ROUTINE

The Lw descriptor is for a Boolean value to be transferred into a
BOOLEAN data‘element from a field of up to w character positions.

The input field is scanned for the first occurrence of one of the
letters T or F, and the BOOLEAN data—element will be set to TRUE or
FALSE accordingly. If no T or F is found in the input field, then the
BOOLEAN data-element will be set to a value FALSE.

Examples:

value input descriptor internal value

T L1 TRUE
T__ L5 TRUE

F L3 FALSE
xyz L3 FflLSE

The data types of the Boolean INPUT standard routine are shown in the
routine declaration:

ROUTINE VOID,INTEGER &
[INTEGER, BYTES, BOOLEAN READ WRITE]

Note that the out-value will contain the character position, relative
to 1, that the T or F has been found in.

Norsk Data ND~60.117.5 EN

PLANC Reference Manual 185
INPUT/OUTPUT

9.2.7. Rmnm LNmTED INPUJ STANDARD ROUTINE

The random unformatted INPUT standard routine reads a record of data
from a file, into a BYTES array data—element. The record may be
selected randomly from any location within a file. The general form of
an invocation of a random unformatted INPUT standard routine is:

INPUT [file-number,rec—number,array—ident]

where

file—number is the file number obtained by invocation of the OPEN
standard routine.

rec—number is the record number within the file.
Note: The first record is number 0.

array—ident is an identifier associated with the BYTES data-element
into which the value is to be transferred.

The parameter data types of the random unformatted INPUT standard
routine are shown in the following routine declaration:

ROUTINE VOID,INTEGER (INTEGER, INTEGER, BYTES]

The out-value of the random unformatted INPUT standard routine will be
the number of characters actually transferred by the routine and this
may be used within an expression.

Norsk Data ND—60.ll7.5 EN

186 PLANC Reference Manual
INPUT/OUTPUT

9.3. FORMATTED (INPUT STANDARD ROUTINES

The formatted OUTPUT standard routines transfer one value from a data—
element to a file or a device. The general form of an invocation of a
formatted OUTPUT standard routine is:

OUTPUT (file—number,'descriptor',idemtifier]

where

file—number is the file number obtained by invocation of the OPEN
standard routine.

descriptor is the format descriptor.

identifier is associated with the data—element into which the
value is to be transferred.

Each of the formatted OUTPUT standard routines is declared with an
out—value. This out—value will return the number of characters which
has been transferred to the file or device. The field width part of a
descriptor may be omitted and the out~value will have to be used to
find out how many characters have been transferred.

If the value transferred does not fill the width specified for the
field, then usually leading blanks will be inserted by the formatted
OUTPUT standard routines.

If the internal value is too large to fit into the field width
specified, then the output field will be filled with asterisk (*)
characters.

The data types of the parameters of the formatted OUTPUT standard
routines are shown in the general form of the OUTPUT routine
declaration:

ROUTINE VOID,INTEGER (INTEGER,BYTES,id—type) : OUTPUT [...)

where

id-type is the data type of the data-element whose value is to
be output. This data type must correspond with that
implied by the format descriptor.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 187
INPUT/OUTPUT

In the following sections on the formatted OUTPUT standard routines
the abbreviations used are:

w is an unsigned integer number greater than zero.

d is an unsigned integer number greater than or equal to zero.

FORMAT DESCRIPTORS

The following are the format descriptors available for the formatted
OUTPUT standard routines:

Iw - Integer field descriptor
0w - Octal field descriptor
Zw ~ Octal field descriptor, with leading zeroes

Fw.d — Floating-point numeric field descriptors
Ew.d
Dw.d

Aw - Alphanumeric data field descriptor

Lw - Boolean data field descriptor

Note that if g or w.d is omitted, the minimum number of characters
required to output the data—element will be used.

Norsk Data ND~60.117.5 EN

188 PLANC Reference Manual
INPUT/OUTPUT

9.3.1. I FORMAT. INTEGER (lITPUT STANDARD ROUTINE

The Iw descriptor is for a value to be transferred from an INTEGER
data~element to a field of w character positions, as a decimal value.

The value will be right-justified in the field. If the value is
negative, one of the character positions will be used for a minus
sign.

Exa-ples:

internal value descriptor output

1 I] 1
1 I5 1

+10 I5 10

~15 15 —15
1234 I4 1234

—1234 I4 ****

The parameter data types of the integer OUTPUT standard routine are
shown in the routine declaration:

ROUTINE VOID,INTEGER [INTEGER, BYTES, INTEGER4 }

9.3.2. 0 AND Z FORMAT. OCTAL (INPUT STANDARD ROUTINE

The Ow descriptor is for a value to be transferred from an INTEGER
data-element as an octal value, to a field of up to w character
positions.

The value will be right-justified in the field. If the value is
negative, one of the character positions will be used for a minus
sign.

Fields output with an Ow descriptor will contain leading space
characters. The Zw descriptor will give leading zero characters.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 189
INPUT/OUTPUT

Exanples:

internal value,dec descriptor output

1 01 1
1 05 1

10 05 12
10 Z5 00012
-5 06 177773

4095 05 7777
~4095 05 [170001] *****

The parameter data types of the octal OUTPUT standard routine are
shown in the routine declaration:

ROUTINE VOID,INTEGEE [INTEGER, BYTES, INTEGER4]

9.3.3. F FORMAT. FIXED DECIMAL POINT (INPUT STANDARD ROUTINE

The Fw.d descriptor is for a value to be transferred from a REAL data-
element, as a fixed point value, into a field of w character
positions.

The w character positions will include a decimal point, and an
optional minus sign. If the value does not fill the entire field, then
the leading character positions will be blank filled.

The value output will be rounded to the number of decimal places
specified, if necessary.

Examples:

internal value descriptor output

1.2 F5.0 1.
—1.2 F5.0 ~1.
1.2 F5.1 1.2

~1.2 F5.1 —1.2
-10.33 F10.3 —10.330

12.3496 F5.2 [rounded] 12.35
1055.22 F5.2 *****

The parameter data types of the fixed decimal point OUTPUT standard
routine are shown in the routine declaration:

ROUTINE VOID,INTEGER (INTEGER, BYTES, REAL]

Norsk Data ND-60.ll7.5 EN

190 PLANC Reference Manual
INPUT/OUTPUT

9.3.4. E FORMAT. FIXED DECIMAL POINT NORMALIZED NITH EXPONENT CUYPUI

STANDARD ROUTINE

The Ew.d descriptor is for a value to be transferred from a REAL data-
element to fixed decimal point normalized with exponent, into a field
of w character positions.

The value output will be scaled to have one digit before the decimal
point. There will be d digits after the decimal point. The exponent
will comprise the letter E, a sign and two digits which are the power
of ten to multiply the preceding value by.

Examples:

internal value descriptor output

1.2 58.0 1.E+00
~1.2 E8.0 -1.E+00

120.0 E8.1 1.2E+02
0.012 E8.1 1.2E—02

.033 E13.3 3.300Ee02
3.254354 E10.3 3.254E+04

The parameter data types of the fixed decimal point normalized with
exponent OUTPUT standard routine are shown in the routine declaration:

ROUTINE VOID,INTEGER (INTEGER, BYTES, REAL]

9.3.5. D FOWT. FIXED DECIMAL POINT NORMALIZED NITH EXPONENT OUTPUT

STANDARD ROUTINE

The Dw.d descriptor is for a value to be transferred from a double
precision REAL data~element to fixed decimal point normalized with
exponent, into a field of w character positions.

The value output will be in exactly the same format as that described
above for the E descriptor.

Exanples:

internal value descriptor output

.033 D13.3 3.3OOE>02
3.2543E4 D10.3 3.254E+04

Norsk Data ND—60.ll7.5 EN

PLANC Reference Manual 191
INPUT/OUTPUT

The parameter data types of the fixed decimal point normalized with
exponent OUTPUT standard routine are shown in the routine declaration:

ROUTINE VOID,INTEGER [INTEGER, BYTES, REAL]

9.3.6. A/AL FORMAT. ALPIMMERIC (INPUT STANDARD ROUTINE

The Aw/ALw descriptor is for an alphanumeric string to be transferred
from a BYTES data-element into a field of w character positions.

The character string will be output as ASCII characters. If the field
width w is greater than the length of the string, then the string will
be right-justified in the field and trailing character positions blank
filled. If the AL descriptor is used then the character string will be
left-justified and leading character positions blank filled.

Note that a single dollar character ($) in the string to be output
will be converted, during output, to carriage return+line feed
characters. To print a single dollar character ($), two consecutive
dollar characters must be present in the string.

Examples:

internal value descriptor output

abode A5 abcde
abc A5 __abc

abc AL5 abc

The data types of the alphanumeric OUTPUT standard routine are shown
in the routine declaration:

ROUTINE VOID,INTEGER [INTEGER, BYTES, BYTES]

9.3.7. L FORMAT, BOOLEAN (INPUT STANDARD ROUTINE

The Lw descriptor is for a value to be transferred from a BOOLEAN
data-element into a field of w character positions.

The right-most character position of the output field will have the
letter T if the BOOLEAN data—element has a value TRUE, and the letter
F if the BOOLEAN data—element has the value FALSE. The leading
character positions of the output field will be blank filled.

Norsk Data ND~60.117.5 EN

192 PLANC Reference Manual
INPUT/OUTPUT

Exa-ples:

internal value descriptor output

TRUE L1 T
FfiLSE L5 F

The parameter data types of the Boolean OUTPUT standard routine are
shown in the routine declaration:

ROUTINE VOID,INTEGER [INTEGER, BYTES, BOOLEAN)

9.3.8. RANDm [Momma (INPUT STANDARD ROUTINE

The random unformatted OUTPUT standard routine writes a record of data
from a BYTES array data—element to a file. The record location may be
selected randomly from within the file. The general form of an
invocation of a random unformatted OUTPUT standard routine is:

OUTPUT [file-number,rec-number,array~ident]

where

file—number is the file number obtained by the OPEN invocation.

rec—number is the record number within the file.

Note: The first record is number 0.

array~ident is an identifier associated with the BYTES data-element
from which the value is to be transferred.

The parameter data types of the random unformatted OUTPUT standard
routine are shown in the following routine declaration:

ROUTINE VOID,INTEGER (INTEGER, INTEGER, BYTES]

Since the random unformatted OUTPUT standard routine has an out-value,
the number of characters actually transferred by the routine, may be
used within an expression.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 193

INPUT/OUTPUT

9.14. (PEN STANDARD ROUTINE

The OPEN standard routine will return a file number, corresponding to
the named file, to be used within the program to execute input/output
operations. An invocation of the OPEN standard routine will take the
form:

OPEN [file—number,file~access,file-name,file-type]

where

file—number is the file number obtained by invocation of the OPEN
standard routine,

file-access is the type of input/output which is to be executed
with this file. For legal access codes, see below. For
details, see MON 50 in the SINTRAN Reference Manual,
ND~60.128 EN.

file-name is the SINTRAN file name.

file—type is the SINTRAN file type.

Note: The default type is SYMB.

The data types of the formal parameters may be seen in the OPEN
standard routine declaration:

ROUTINE VOID,VOID &
(INTEGER READ WRITE, BYTES, BYTES, BYTES) : OPEN (...]

The legal file-access types are shown in the following table:

Access Type of access allowed

R Sequential read
W Sequential write
RW Sequential read and write
WA Sequential write append
RX Random read
WX Random read and write
RC Random read common
WC Random read and write common
D Direct transfer
DC Direct transfer with file closed

Norsk Data ND—60.117.5 EN

194 PLANC Reference Manual
INPUT/OUTPUT

Thus, a legal call of the OPEN routine may be as follows:

OPEN [file_no,'RX',’DATA—FILE','DATA'}

9.5. CLOSE STANDARD ROUTINE

The CLOSE standard routine will terminate the connection of a
particular external file to an internal file number. An invocation of
the CLOSE standard routine will take the form:

CLOSE (file—number]

where

file—number is the internal file number within the program.

The data types of the formal parameters may be seen in the CLOSE
standard routine declaration:

ROUTINE VOID,VOID (INTEGER) : CLOSE [...]

9.6. HJXXSIZE STANDARD ROUTINE

The BLOCKSIZE standard routine will set the blocksize of a file which
has been previously OPEN‘ed. The block size may be set to any number
greater than or equal to 1. The form of the routine invocation is:

int BLOCKSIZE (file*number]

where

file—number is the internal file number within the program.

int is an integer identifier.

The value passed into the BLOCKSIZE standard routine must be the
block size in bytes.

The data types of the formal parameters may be seen from the routine
declaration:

ROUTINE INTEGER,VOID (INTEGER) : BLOCKSIZE (0..)

9.7. FILESIZE STANDARD ROUTINE

The FILESIZE standard routine may be used either to set the size of a
file, in bytes, or to inquire as to the present size of a file.

To set the size of a file, the form of the routine invocation is:

int FILESIZE (file—number]

Norsk Data ND-60.1l7.5 EN

PLANC Reference Manual 195
INPUT/OUTPUT

where

file-number is the internal file number within the program.

int is an INTEGER4 identifier.

The value passed to the FILESIZE standard routine is the file size in
bytes.

The parameter data types may be seen from the routine declaration:

ROUTINE INTEGER4,VOID [INTEGER] : FILESIZE [...]

If the file size is required, then the routine invocation should be:

FILESIZE[file—nunber]=:int

where

file~number is the file number of the open file.

int is an INTEGER4 identifier.

The parameter data types may be seen from the routine declaration:

ROUTINE VOID,INTEGER4 [INTEGER] : FILESIZE(...]

Norsk Data ND-60.117.5 EN

196 PLANC Reference Manual

Ndrsk Data ND-60.117.5 EN

PLANC Reference Manual 197

APPE_NDIX A

cumgk cum

Norsk Data ND—60.117.5 EN

198 PLANC Reference Manual

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 199
COMPILER COMMANDS

0.1. TABLE OF CCM’ILER CCMVIAMB

The following table summarizes the PLANC compiler commands. The ND-lOO
, ND-SOO and MC68000 columns show which machines the command is valid
for. The Command Name column indicates whether or not the command may
be issued interactively to the compiler during a compilation session.
The Source column shows which commands may be included in the source
files which are submitted to the compiler.

Command Name ND- ND- MC— Com— 80— Comment
100 500 68000 mand urce

EXIT o o a o 0 Leave compiler
HELP 0 o o o 0 Get command info.

COMPILE o o o o o Compile a file
DEFINE a o . Make loader entry
LOAD o o o Commands for
FROG—FILE o o 0 direct loading

DEBUG-MODE o o a o c To set compilation
NDlOO—EXTENDED o o 0 modes
OPTION 0 o o o o
REAL-PRECISION o c o o o
SEPARATE-DATA o 0 o o
LIBRARY-MODE o o o , o o
MODULE—LIBRARY— 0

MODE 0 o o o

CALL—HIERARCHY o o o o 0 To control the
CROSS—REFERENCE o o o a 0 output from a
EJECT o o o o compilation
LINE—BIAS o o o o o
LINKAGE—REFERENCE o o c o 0
LIST 0 a c o o
MESSAGE-T0-

TERMINAL 0 o o o 0

(Continued)

Norsk Data ND-60.117.5 EN

200 PLANC Reference Manual
COMPILER COMMANDS

Table of Compiler Commands (continued)

Command Name ND— ND— MC- Com- So- Comment
100 500 68000 mand urce

DATE 0 o o 0 Return current
date in a string

INCLUDE o o o 0 Starts and stops
EOF o o o a source file

inclusion

TARGET-MACHINE a o o m o Commands for
KILL o o o o o conditional
CONSTANT o o o m o compilation
IF—THEN o o o o
ELSIF o o o o

ELSE o o o a

ENDIF o o o o

MACRO o o o o Begin/End of
ENDMACRO o .0 o o macros

* a o o o Inline assembler
statement follows

0.2. Camus? INVOCATION

The compiler is invoked from SINTRAN by the command:

@PLANC—IOO on the ND—100
@PLANC'HC68 on the ND-IOO

@PLANC~500 on the ND—500
@ND‘500 PLANC—500 if PLKNC is not a standard

domain on the ND-SOO

The compiler responds with a notification of the version in use. It
then prompts for a command by writing an asterisk on the terminal:

”I

which indicates that the compiler is in command mode.

The command names can be abbreviated. Only the number of letters
needed to make it unique need be typed, but more may be given if
required (i.e. for readability or documentation). The parameters for a
command can be written on the same line as the command name but
separated from it by one or more blanks and at most one comma.
Alternatively, if parameters are expected but not given, the compiler
will prompt for them in turn.

Most commands may also be written as part of the source program, but

Norsk Data ND—60.1l7.5 EN

PLANC Reference Manual 201
COMPILER COMMANDS

in this case all parameters must be on the same line as the command
name, and the command name must be preceded by a dollar character ($).
Blanks may appear before the S and the command name. Such commands can
only be written between statements. They cannot occur in the middle of
a statement, or between successive continuation lines of a statement.

Norsk Data ND'60.117.5 EN

202 PLANC Reference Manual
COMPILER COMMANDS

0.3. CCM’ILATICN OF SOURCE PROGRAMS

The most important command is that which determines the program to be
compiled and where the output is to be placed. This is written:

$COHPILE source list object

where

source

list

object

If a unit
letter B.

is the name of the file, or unit number, containing the
PLANC program to be compiled. This parameter cannot be
omitted. If TERMINAL or unit 1 is specified, input is
accepted from the terminal, line by line, until a $EOF
command is encountered in the input stream. If a file
name is specified, it must obey the usual SINTRAN
syntactic form and conventions. Default type is SYMB or
PLNC. The compiler first looks for type SYMB, then for
type PLNC.

is the name of the file or unit number to which the
source listing will be printed by the compiler. The
format of the output will be suitable for printing and
will contain the ASCII characters, line feed (LF),
carriage return (CR), and form feed (FF) for carriage
control.

If 0 is specified or the parameter is omitted, the
listing is suppressed. The default list file type is
SYMB.

is the name of the file, or unit number, which will
contain the compiled relocatable version of the
program. This is the input to the loader when creating
an executable program. See the respective Loader
manuals for details.

If 0 is specified, no relocatable code is generated,
but a complete compilation takes place, thus giving any
diagnostic messages that may occur.

The default type of the object file is BRF on the
ND-lOO , NRF on the ND~500 and NRF for the MC68000.

number is given, it must be octal without any trailing

Norsk Data ND~60.117.5 EN

PLANC Reference Manual 203
COMPILER COMMANDS

Any diagnostics generated by the compiler are listed on the terminal,
and also on the list file, if they are not the same. The messages may
be warnings or errors.

The end of the source text is the end—of—file or a $EOF encountered in
the source file.

0.4. IEJ’ 011mm

In command mode, the command:

SHELF

will list all available commands together with their possible
parameters.

HELP itself has no parameters.

0.5. COPILER TERMINATION

The command:

$EXIT

will return control to SINTRAN after all source, list, and object
files have been closed.

0.6. END OF FILE Comm

The command:

$EOF

signifies that the reading of the current file is complete. Reading
continues at the next outer INCLUDE level.

Norsk Data ND—60.117.5 EN

204 PLANC Reference Manual
COMPILER COMMANDS

0.7. IMVEDIATE PREPARATION OF EXECUTABLE PRUSRAMS

This section applies to the ND-lOO only.

An executable program may be prepared and output to a file, by using
the command:

$PROG—FILE file—name

where

file-name is the name of a file to receive the executable
program.

The default file type is PROG.

If the COMPILE command is used subsequent to the PROG~FILE command,

then the compiler will generate the executable program directly on to
this file. The COMPILE command will still generate an object file if
it is specified, in addition to the PROG file.

The executable program is completed automatically, by loading the
PLANC library (1 or 2 bank, depending on the setting of the $SEPARATE-
DATA option), when the SEXIT is taken out of the compiler. A list of
entry points and addresses will be output.

The $PROG—FILE command can be issued at most once during any
invocation of the compiler. ‘ ”

To complete the executable program, libraries or other object files
may be added by using the command:

$LOAD file-naue[.file-nane]...

where

file—name is the name of an object file or library.

The default type of the file loaded will be BRF.

Any error messages which appear While the $LOAD command is being
executed can be found in the ND Relocating Loader manual (ND-60.066).

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 205

COMPILER COMMANDS

To define entry points in the loader table use the command:

$DEFINE entry—name,va1ue,mode

where

entry—name specifies the name of an entry point. If an asterisk
(*) is used, the current address will be used as the
next load address. If a question mark (?) is used, a
map of undefined entries will be output. If this
parameter is blank, a map of defined entries will be
output.

value specifies the load address in octal.

mode may be P to specify a program area, or Q to specify a
data area.

0.8. INCLUDING TEXT FRCM OIHER SOURCE FILES

Other files can be incorporated in the source program at the points
indicated by the command:

$INCLUDE filename

where

filename is the name of the file or unit number to be read. The
parameter cannot be omitted; the default file type is
SYMB.

The reading of the source program by the compiler is switched to the
named file and continues until a $EOF command is encountered. The file
is then closed and the text following the $INCLUDE command is read.
The named file may itself contain further $INCLUDE commands, but no
more than 16 incomplete $INCLUDE’s may be in existence at any one
time.

For example, a number of separate modules may require the same user
defined data type. The TYPE specification may be held on a file called
COMDEF:SYMB. Then by writing:

$INCLUDE COHDEF

at the appropriate point in each module, the TYPE specification is
brought into the source file. Thus only one copy of the TYPE
specification is kept, and all modules have identical copies of it.

Norsk Data ND-60.117.5 EN

206 PLANC Reference Manual
COMPILEB COMMANDS

0.9. Comm: TIME Cousmns

In certain cases, it may be desirable to set a parameter value to be
tested by a $IF group of a command external to the source text being
compiled, i.e. prior to the outmost module level. The normal CONSTANT
statement as defined in the PLANC language may be used as a compiler
command, and their values may be removed and reinserted during the
compilation session by use of the $KILL command.

For example:

$CONSTANT A=10, 8:20, C=THUE, D=FALSE
$KILL A, C
$CONSTANT C=FALSE

0.10. CONDITIONAL CamuAnou

It is possible to select parts of a file or program to be used in a
particular compilation, depending on various parameters and their
values. There is a set of commands which may be used for this purpose,
within the source program. These commands are:

31F expression $THEN
— PLANC source statements or compiler commands

SELSIF expression $THEN
— PLANC source statements or compiler commands

SELSE
~ PLANC source statements or compiler commands

5mm

where

expression is an expression, which when evaluated, will give a
result of TRUE or FALSE.

Norsk Data ND’60.117.5 EN

PLANC Reference Manual 207

COMPILER COMMANDS

The expression may contain literals and constant identifiers as
operands for any legitimate PLANC operators, e.g. arithmetic and
relational.

There may be zero or more instances of $ELSIF in a $IF command. The
$ELSE may be omitted.

Within a group of commands, only those lines which lie between the
first occurrence of expression which has the value TRUE, or the $ELSE
command if all the expressions are FALSE, and the next command of the
group, are included as valid source lines. The rest are listed,
without line numbers, but are otherwise ignored.

The $IF groups may be nested to 11 levels.

All groups within INCLUDE'd text must be complete before .the INCLUDE
is terminated.

For example:

CONSTANT maxsizel=255,maxsize2=32767
CONSTANT constsize=1000
$IF constsize <= maxsizel $THEN

INTEGER] : index
$ELSIF constsize > maxsizel AND constsize <= maxsizeZ $THEN

INTEGEHZ : index
$ELSE

INTEGER4 : index
$ENDIF

In this case, constsize has a value 1000 which will result in the line
of code, INTEGERZ ... being included in the compilation.

Norsk Data ND—60.ll7.5 EN

208 PLANC Reference Manual
COMPILER COMMANDS

0.11. Camus THE MACROS

Another method of conditional compilation is to define a macro, which

may be invoked within the source lines, and then substitute text where
macro name appears. Parameters may be used within the macro expansion
to control the particular text output from the macro.

The general form of a macro definition is:

$HACRO nacname [[paraneter[,paraneter]...]]
macro body

$EHDHACRO

where

macname is the name to be used to invoke the macro.

parameter is a valid identifier name.

macro body is text to be expanded by a macro invocation.

The macro name must be formed according to the rules for PLANC
identifiers. It will be used to invoke the macro from within the
source lines of code.

The names of formal parameters of the macro definition are formed
according to the rules for PLANC identifiers. Within the macro body
the value of each formal parameter may be referenced during macro
expansion, by the formal parameter name enclosed by double quote
characters ("). The double quote character may not be used for any
other purpose within the macro body.

The macro body may contain text which will be output unchanged during
the macro expansion, or modified by substitution of the value of
actual parameters. It may also contain other compiler commands, e.g.
$IF ... $ENDIF, with the exception of another $MACRO command, i.e.
nested macro definitions are not allowed. However, it should be noted
that any compiler commands within a macro will be carried out at the
time that the macro is being expanded, and its output going into the
source of the PLANC program, prior to compilation of the PLANC source
code.

Example of a macro definition:

$MACBO exmac [param1,param2]
"param1""param2"

$ENDMACRO

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 209

COMPILER COMMANDS

An actual parameter may be any text string of characters, not
including the comma, right parentheses or double quote characters,
i.e. , or) or " characters. However, if a comma or a right
parentheses is required within an actual parameter, the entire actual
parameter must be enclosed by double quote characters. The actual
parameter value will be substituted wherever it has been referenced
within the macro body.

For example, the above macro definition may be invoked by the

following:

exmac[INTEGER,2] : i,j
exmac[HEAL,4] : r,s

will generate

INTEGERZ : i,j
REAL4 : r,s

The macro body may contain macro invocations, i.e. macro invocations
may be nested. Macro invocations may be recursive, i.e. a macro may
invoke itself from within its own macro body.

0.12. CROSS REFERENCE LISTING AND LINKAGE INFORMATIm

The command may be used for obtaining an identifier cross—reference
listing :

SCROSS—REFERENCE filename

where

filename is the name of a file to be used as a temporary work
area. The default file type is XREF. The file must be
on a mass storage device.

This command will list all the identifiers and the line numbers where
they are used. The output is on the listfile, and it follows the
source listing.

A list of the routine call hierarchy may be obtained by using the
command :

SCALL—HIEBARCHY 0N

and this option may switched off by,

$CALL—HIEBARCHY OFF

The CALL—HIERARCHY listing follows the source listing and precedes the
cross~reference listing if it is present. The initial value is OFF.

Norsk Data ND-60.ll7.5 EN

210 PLANC Reference Manual
COMPILER COMMANDS

Detailed linkage information may be obtained with the command:

$LINKAGE—REFEBENCE file—name

where

file~name is the name of a work file.

This command will produce a sorted list of all EXPORT'ed/IMPORT'ed
items from the outermost module level. Use of the LINKAGE-REFERENCE

command, prior to one or more $COMPILE commands, will cause a return
to command mode after each compile.

The layout of the list output is as follows:

@PLANC~100

— ND—IOO PLANC COMPILEH - JUNE 18, 1985
2?

*COM lin-ref,1,100
1 $link-ref link list
2 module onedule
3 import integer: one
4 export two, three, four
5 integer: two, three, four alias ’quatro’
6 routine void, void: rouone
7
8
9

one + two + three =: four
endroutine
endmodule

10
11 module twodule
12 import integer: two, three, four alias 'quatro'
13 export one
14 integer: one
15 routine void, void: routwo
16 one + two + three =: four
17 endroutine
18 endmodule
19 $eof

19 LINES COMPILED. 0 DIAGNOSTICS.

20 LINES COMPILED. O DIAGNOSTICS.

*EXIT

FOUR ONEDULE* TWODULE
ONE TWODULE* ONEDULE
THREE ONEDULE* TWODULE
TWO ONEDULE* TWODULE
quatro IS ALIAS NAME

TWODULE
2O LINES COMPILED. 0 DIAGNOSTICS.

If an item is EXPORTed from a module, the module name will be marked
with an asterisk (*).

The LINKAGE-REFERENCE command and the CROSS-REFERENCE command must not

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 211

COMPILER COMMANDS

be used together in one compile.

0.13. LISTING CONTROL

The listing of source lines on the listfile may be controlled by the
use of the command:

$LIST ON

will cause lines of the source text to be output to the listfile. It
resumes the listing from a previous LIST OFF command.

5LI ST OFF

will suppress output going to the listfile. The initial value is ON.

A skip to a new_p§g§ may be requested by using the command:

$EJECT

which will output a form feed to the listfile.

The line numbers printed in the source listing may be changed, in
order to continue from a different number by using the command:

$LINE-BIAS line-number

where

line-number is the number to continue line numbers from.

0.14. RONTIVE OPTIONS FOR THE ND—lCX)

The execution of a PLANC program may be modified by the following
options provided by the compiler.

The code and data of a program may be generated for separate memory
areas by the use of the command:

$SEPABATE—DmTA ON

and this option may switched off by,

$SEPARATE—DATA OFF

The initial value is OFF.

The extra instructions of the ND—lOO/CE model may be generated by the
use of the command:

$ND100-EXTENDED ON

and this option may be switched off by,

$ND100-EXTENDED OFF

Norsk Data ND—60.117.5 EN

212 PLANC Reference Manual
COMPILER COMMANDS

The initial value is OFF.

Optimization of memory requirements and execution speed will be
attempted by the compiler with the following option:

$0PTION SQUEEZE ON

and this option may be switched off by,

$0PTION SQUEEZE OFF

The initial value is OFF.

Each access to an array element will be checked at either compile time
or during execution with the following option:

$OPTION ARBAY—INDEX—CHECK ON

and this option may be switched off by,

SOPTION ARRAY—INDEX—CHECK OFF

This option may be used in several places in a program to switch
checking on and off, as required.

The initial value is OFF.

0.15. QATA TYPE DEFAULTS

The number of significant digits of the REAL data type may be altered
by using the command:

$REAL—PRECISION number

where

number is the number of significant digits required.

If the compiler executes on a machine with 48 bit floating point
hardware instructions, then $REAL 7 forces the compiler to produce 32

bit floating point code, which will only execute on a machine with 32
bit floating point operations. Conversely, $REAL lO forces code for a
machine with 48 bit floating point operations to be compiled on a 32
bit floating point machine.

0.16. CREATION OF LIBRARIES

To create a library from one or more outer level modules in one
compilation, use the command:

$LIBRARY—HODE ON

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 213
COMPILER COMMANDS

and this option may be switched off by,

$LIBRARY—HODE OFF

The LIBRARY option will generate a preceding BRF or NRF library mark
for each outer level module in the compiled file. The loader will not
load a module unless there is an unresolved reference to an EXPORTed
identifier in the module.

If the EXPORTed identifier has one or more ALIAS names, an ALIAS must
be present in the EXPORT statement as well as in each relevant routine
declaration. Further, the ALIAS in the EXPORT statement may use the
following general form:

EXPORT ... ALIAS 'name' [OR 'name']...

The list of ALIAS names is not permitted in an ALIAS used for a normal
routine declaration.

If OFF is used, these library marks are suppressed and the loader will
load the module anyway. The initial value is OFF.

For details of library marks and files see ND Relocating Loader manual
(ND—60.066 EN) on the ND—lOO, or the ND-SOO Loader/Monitor manual
(ND-60.136) on the NDn500.

0.17. ENTIRE l’muuss As LIBRARIES ‘
The creation of libraries can be simplified somewhat through use of
the command:

$HODULE—LIBRARY—HODE ON

which is switched off by

$HODULE-LIBRARY'HODE OFF

When $MODULE-LIBRARY~MODE ON has been given, every routine on the
first level in a module becomes a separate library module, and it is
exported in library mode in the same operation.

0.18. DEBUGGIM;

The output from the compiler can be made to include information for
use by the Symbolic Debugger. In order to have the debug information
generated by the compiler, use the command:

$DEBUG—HODE ON

and this option may be switched off by,

$DEBUG-HODE OFF

For detailed descriptions of how to use the facilities of the Symbolic

Norsk Data ND-60.117.5 EN

214 PLANC Reference Manual
COMPILER COMMANDS

Debugger, see the Symbolic Debugger User's Guide, ND—60.158 EN. The
initial value is OFF.

0.19. ASSEFBLER CODE IN PUNC PROGRAMS

Assembly code may be placed within PLANC source statements and it will
be translated by an inline assembler for the appropriate target
machine.

Assembly code lines must begin with a dollar character ($) followed by
an asterisk character (*). Multiple instructions on one line are
separated by a semicolon character (;).

The inline assemblers are 90 - 95 percent similar to the MAC, the
ND~500 Assembler and the MC68000 assembler. The differences are:

9 Numbers can be given instead of instruction mnemonics

e The compiler will fill in the appropriate addressing mode when
referencing variables which are declared in the PLANC program

Note: Record components cannot be reached through the
customary dot notation

The syntax of machine instructions submitted to the inline assembler
is described in the following manuals:

NDs100 Reference Manual - ND—06.014 EN
ND~500 Reference Manual - ND—05.009 EN
MC68000 16 BIT MICHOPROCESSOB User's Manual [third edition]

Chapter 2, Appendices A and B in the MC68000 manual are of particular
relevance.

PLANC declared variables or labels may be used as operands in
assembler instructions and the inline assembler will generate the
appropriate references. However, the PLANC identifiers, used in the
assembler instructions, must be used without the special addressing
mechanisms, e.g. base registers or indirect, as these will be
generated for each PLANC identifier.

Take care to remember of possible name conflicts between PLANC
identifiers and assembler mnemonics, e.g. I for indirection in the
ND-lOO.

Also note that some new MAC mnemonics are not present in the ND-lOO
inline assembler. For a list of such constants, see p. 301.

Examples:

$* LDA 0,X; SAD SHE 20; SAT 4; HDIV ST 2 ND—JOO Code

$* W1 DIV4 B.24B:S,4,W2 Z ND—SOO Code

$* MOVE 228(A6],D0; EXT.L D0; DIVS #4B,D0 Z MC68000 Code

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 215
COMPILER COMMANDS

0.20. INE CUMMND
The DATE command puts today's date (of the compilation) into a string.
The date is in the following format:

month dd, 19yy

and may obtained by the following declaration,

BYTES REflD : date:= $DATE Z a blank must precede the $

For example the identifier datewill receive a string as follows:

DECEMBER 25, 1947

0.21. TAREH’ACHIIE COMAND
The command

$TARGET-HACHINE CPU—type

returns an integer number indicating which CPU—type the compiler is
generating code for ~ in other words, either 100, 500 or 68000.

A blank or a special character must precede the command, and a space
must follow it in accordance with the PLANC naming rules.

For example:

Constant ERJOU=[$Ta-Ma =100] 2 True if PLANE—100
Constant E3500=[$Ta-Ma =500] True if PLANC—SOO
Constant EXMC68:= $Ta—Ma 68000 if PLANC-68000

2
°/,

Norsk Data ND-60.117.5 EN

216 PLANC Reference Manual
COMPILER COMMANDS

0.22. (PTION C(N’ILER Cd/MAND

The OPTION compiler command is used to switch on or off some optional
facilities of the PLANC compiler. These facilities have been described
in this chapter. The general form of this command, to switch an option
on is:

$0PTION option—name 0N

and to switch an option off is:

SOPTION option—name OFF

The options available are:

1) HELP

2) SQUEEZE

0 tries to make the code as compact as possible

3) ARRAY-INDEX-CHECK

0 makes the compiler generate code for checking the indexes to
arrays

4) BOOLEANZ‘ENUMERATIONZ

o forces the compilers for ND¢500 and MC68000 to allocate two bytes
for BOOLEAN and ENUMERATION variables, thus synchronizing data
size with the ND—lOO

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 217

APP~ENDIX B

@301 WESSAGES

Norsk Data ND—60.117.5 EN

218 PLANC Reference Manual

Norsk Data ND~60.117.5 EN

PLANC Reference Manual 219
ERROR MESSAGES

0.1. COVPILER MESSAGES

AHBIGUOUS COMMAND
Abbreviation of the command name has resulted in a non-unique
command name.

ARRAY BOUNDS CONFLICT WITH A P'REDECLABATION
No further explanation.

ARRAY BOUNDS MISSING
An array declaration must have explicit array bounds, unless
initial values imply the array bounds.

COMMAND NOT PERMITTED WITHIN A MODULE
Certain compiler commands must only be used as global to the
outermost module level.

CONFLICTING DATA TYPES IN CORRESPONDING IMPORT/EXPORT
The corresponding IMPORT/EXPORT statements of communicating
modules have different data types in the declaration of one data-
element.

DATA TYPE NOT PREVIOUSLY SPECIFI-
An identifier has been used as a user defined data type without a
type specification.

EQUIVALENCE MAY CAUSE STORAGE CONFLICT
The use of equivalence (a) here for overlapping data—elements
could cause storage conflicts because of different length or
storage layout of different data types (ND-100 only).

EXITFOR ALREADY PRESENT WITHIN THE LOOP
There is already one EXITFOR within this FOR-ENDFOR loop.

EXITHHILE ALREADY PRESENT WITHIN THE LOOP
There is already one EXITWHILE within this loop.

EXPONENT IS TOO LARGE
See Appendix D.

EXPORTED IDENTIFIER IMPORTED m AN OUTER MODULE
No further explanation.

EXPRESSION DOES NOT STORE A VALUE
No further explanation.

FOR-HIDFOR LOOP WITH MAXIMUM 11 ITERATION
Given if a FOR .. ENDFOR construction does not result in a loop at
all.

Norsk Data ND-60.117.5 EN

220 PLANC Reference Manual
ERROR MESSAGES

IDENTIFIER ALREADY SPECIFIED/DECLARED
The identifier has already appeared in a declaration statement or
a type specification statement.

IDENTIFIER IN EXPORT, BUT NO DECLARATION
The identifier which has been used in an export statement has not
been declared within this module.

IDENTIFIER USED IN DOT NOTATION IS NOT A RECORD
No further explanation.

IDENTIFIER USED IN DOT NOTATION IS NOT A RECORD COMPONENT

No further explanation.

ILLEGAL CHARACTER
A character has been used in a context in which it is not allowed,
e.g. a digit as the first character of an identifier name or a
real exponent containing a non—numeric character.

ILLEGAL COMMAND IN DEBUG—MODE
No further explanation. Included from the G-version of PLANC.

ILLEGAL COMMAND IN HODULE~LIBRARY~HODE
No further explanation. Included from the G-version of PLANC.

ILLEGAL CONSTRUCTION OF $IF‘5ENDIF COMMAND
No further explanation.

ILLEGAL CONTROL IDENTIFIER
The data type of the control identifier of the FOR sztatement does
not match the data type of the FOR list values.

ILLEGAL DATA-ELEMENT TO BE CONVERTED
The size of the data-element referred to by a FORCE or CONVERT
standard routine does not match the target data type. There may be
no conversion routine available.

ILLEGAL DATA TYPE
The data type of an identifier has been used illegally.

ILLEGAL FORMAL PARAMETER IN MACRO
A macro definition parameter list contains an identifier name
which conflicts with a previous declaration.

ILLEGAL INLINE INVOCATION
It is illegal to have an invocation of an INLINE routine within
another INLINE routine, i.e. nested INLINE invocations are not
allowed.

ILLEGAL MODULE TERHINATION
The module structure has not been correctly terminated by an
ENDMODULE statement.

Norsk Data ND-60.1l7.5 EN

PLANC Reference Manual 221

ERROR MESSAGES

ILLEGAL NESTED MACRO DEFINITION
No further explanation.

ILLEGAL PARAMETER REFERENCE IN MACRO BODY
When referring to a macro parameter within the macro body, the
parameter must be bounded by double quote characters.

ILLEGAL PREDECLARATION
The predeclared identifier has appeared previously in a
predeclaration statement, or it may not be used in this context.

ILLEGAL OPERAND FOR STORE OPERATOR
No further explanation.

ILLEGAL SYNTAX
The compiler has been unable to correctly translate this
statement. This may be due to a missing or misplaced delimiter,
misspelled keyword or scope problems.

ILLEGAL TO EXPORT THIS IDENTIFIER
No further explanation.

ILLEGAL TO IMPORT THIS IDENTIFIER
No further explanation.

INCASE CONTAINS INVALID VALUE .
The INCASE part of a CASE statement has either an invalid value,
e.g. which is not a member of the set being used, or a value which
has occured in a previous INCASE of this CASE statement.

INCOHPATIBLE DATA TYPES
A pointer data-element must be initialized to its corresponding
data type.

INCONSISTENT DIMENSIONS
The index set(s) in an array declaration do not correspond to the
number of array keywords in the declaration.

INISTACK INVOCATION MISSING

A PROGRAM routine must contain an INISTACK invocation to
initialize the stack area at runtime.

INITIAL VALUE ILLEGAL HERE
No further explanation.

INITIALIZATION VALUES OVERFLOW DECLARED SIZE
The number of elements declared for an array is less than the
number of values to be initially placed in this array.

INSUFFICIENT BUFFER SPACE FOR COHPILER
The compiler has insufficient buffer space, e.g. for macro
definitions, expansions or INLINE routine declarations or
invocations.

Norsk Data ND—60.ll7.5 EN

222 PLANC Reference Manual
ERROR MESSAGES

INVALID ACTUAL PARAHETER, FORMAL PARAHETER DECLARED AS WRITE
The actual parameter in the routine invocation is invalid because
the formal parameter in the routine declaration has been declared
as WRITE or READ WRITE.

INVALID ARRAY FOR INISTACK INVOCATION
The array in the INISTACK invocation must be global or imported,
declared with one dimension only and a lower bound of zero.

INVALID CONHAND
No further explanation.

INVALID CONDITIONAL EXPRESSION
No further explanation.

INVALID PARAMETER
An invalid parameter has been used in a compiler command.

INVALID PARAMETER LIST
In a routine declaration, the number of formal parameters does not
match the declared data types. In a macro invocation, the number
of parameters is incorrect.

INVALID TYPE FOR IN—VALUE/OUT“VALUE/PARAMETER
The data type of a routine in—value, out-value or parameter must
not be a routine. Note that a pointer to a routine data-element
may be used.

INVALID USE OF KEYWORD
A valid keyword has been used in a statement illegally.

LINE IS TOO LONG
No further explanation.

LOCAL/TEMPORARY VARIABLES REQUIRE STACK SPACE IN
This warning will be followed by the name of a SPECIAL routine
which uses stack space.

MAX. NO. OF ARRAY ELEHENTS EXCEEDED
The number of elements declared for an array has exceeded the
compiler's available memory space (ND-100 only).

HISPLACED $ENDNACRO COMMAND
No further explanation.

HISPLACED STATEHENT
It is not legal to have this statement at this point in the
program.

KISSING KEYWORD, ENDIF/ENDCASE/ENDFOR/ENDDO OR ENDON
No further explanation.

MORE SUBSCRIPTS THAN IN THE ARRAY DECLARATION
No further explanation.

Norsk Data ND-60.ll7.5 EN

PLANC Reference Manual 223
ERROR MESSAGES

HULTIDIHENSIONAL ARRAY NOT ALLOWED HERB
In some statements an array is allowed, but only a one dimensional
array.

NEGATIVE BOUND ILLEGAL
No further explanation (NlOO only).

NO HOHB SPACE FOR LOCAL DATA-ELEMENTS
No further explanation (ND~100 only).

NOT IHPLEHENTED
No further explanation.

NOT PREVIOUSLY DECLARED

An identifier has been used without a declaration of an associated
data—element, or without a type specification.

QUALIFIER REQUIRED FOR THIS RECORD COMPONENT
This record component identifier has been specified in more than
one record. Consequently a record identifier must be used as a
qualifier to uniquely reference the desired component data-
element.

REQUIRE ELSE OR ALL POSSIBLE VALUES USED IN INCASE PARTS
A CASE statement must include all possible values in its INCASE’
parts, or an ELSE must be present.

ROUTINE WITH AN OUT—VALUE REQUIRES A RETURN

A routine which is declared with an out—value must contain at
least one return statement.

SET HEHBER OVERLAP
A set member value has been used more than once in initializing
the set data-element.

SQUEEZE OPTION GENERATES INCORRECT CODE FOR THIS ROUTINE
Optimization of this routine generates incorrect execution code.
The SQUEEZE option must be switched off in order to compile this
routine correctly (ND—100 only).

STORAGE OVERFLOH IN COHPILER
No further explanation.

TARGET HACHINE ADDRESS IS TOO LARGE
During a cross~compilation, an address for the target machine is
required, but is too large for the compiler on this machine.

TOO MANY LEVELS OF HODULE NESTING
This is limited by the space available to the compiler.

Norsk Data ND—60.ll7.5 EN

224 PLANC Reference Manual
ERROR MESSAGES

TOO MANY NESTED INCLUDES, MACRO/INLINE EXPANSIONS
There are too many nested INCLUDE'S, nested macro expansions or
INLINE routine invocations for the storage available to the
compiler.

UNABLE TO EVALUATE EXPRESSION AT COHPILE—TIHE
The expression contains identifiers whose values are not constant
at compile time.

WRITE DECLARATION ILLEGAL IN READ ONLY RECORD
If a record data-element has been declared as READ only, its
component data—elements must not be declared as WRITE only.

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 225

ERROR MESSAGES

0.2. RUNTIME MESSAGES

— NO ON ROUTINEERROR HANDLER, ERBETURN
A routine has taken an ERRETURN exit and there is no exception
handler specified to which control can be passed. The ERRETURN
value may have been set in the user code or it may be from
SINTRAN, see the SINTRAN Reference Manual (ND—60.128 EN).

~ ASSERT VIOLATION AT address
If the condition in an ASSERT statement is evaluated, and gives a
resulting value FALSE, and the program has no ON ASSERTFALSE
exception handler, the program has terminated execution at the
'address' in the message.

- STACK OVERFLCM AT address
The requirements for storage have exceeded that available. The
program has terminated execution at the 'address' in the message.
Note that the ON STACKERROR exception handler has not been
implemented_yet.

Norsk Data ND-60.117.5 EN

226 PLANC Reference Manual

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 227

PPENDIX C

MWINE WT LANflJAGE FEATIRES IN PLANC

Norsk Data ND-60.117.5 EN

228 PLANC Reference Manual

Norsk Data ND~60.117.5 EN

PLANC Reference Manual 229

MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC

0.1. INTRaMcmRv NOTES

From version F of MC68000 PLANC, the size of one word is defined to be
4 bytes, instead of 2 bytes as in previous versions of that compiler.
Consequently,

2 bytes on ND~100

word size = 4 bytes on NDm500
4 bytes on MC58000

The storage mappings can be synchronized for inter-CPU data transfer
by specifying the number of bytes each variable can occupy in the
program as in INTEGERZ, REAL4 and so on.

0.2. STORAGE MAPPING
PLANC data~elements are stored in the following way:

BOOLEAN [ND-100]

O O V

15 l O

Bits 15—1 : set to 0

Bit O (V) : O = FALSE
1 = TRUE

BOOLEAN [ND—500/HC68000]

0 O V

31 l O

Bits 31-1 : set to 0

Bit 0 (V) : 0 = FALSE
1 = TRUE

Norsk Data ND-60.117.5 EN

230 PLANC Reference Manual
MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC

INTEGERI

S value

7 6 0

Bit 7 : 0 = greater than or equal to zero
1 = negative

Bits 6-0 : value held in twos—complement form

BYTE

value

7 O

Bits 7-0 : unsigned integer value

INTEGERZ

S value

15 14 0

Bit 15 : O = greater than or equal to zero
1 = negative

Bits 14-0 : value held in twos—complement form

INTEGER4

S value

31 30 0

Bit 31 : O = greater than or equal to zero
1 = negative

Bits 30~O : value held in twos-complement form

INTEGER RANGE

Data types whose base type is integer range, will require storage for
each data-element depending on the values specified for the upper and
lower bounds. Each data—element will be allocated the smallest
available addressable unit which has enough bits to contain the next
higher power of 2, greater than the number of values in the specified
range.

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 231
MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC

On the ND-lOO the addressable units used are l word (16 bits) and 2
words (32 bits). On the ND—SOO the addressable units used are 1 byte
(8 bits), 2 bytes (16 bits) and 4 bytes (32 bits). On the MC68000 the
addressable units used are 1 byte (8 bits), 2 bytes (16 bits) and 4
bytes (32 bits).

For example:

INTEGER RANGE [0:32]

will require 6 bits to hold 33 distinct values. On the ND-lOO, l word
will be used, i.e. 16 bits. On the ND-SOO and MC68000, 1 byte will be
used, i.e. 8 bits.

If INTEGER RANGE is the base type of a SET data—element, then the
data~element may have waste bits depending on the range specified. In
the above example 31 bits of space would be wasted in each data—
element, i.e. a 64 bit data-element is allocated, although only 33
bits are used.

If a CASE statement uses an INTEGER RANGE for its multiple
possibilities, then bits may be wasted in the same way as in a SET
data-element. A number of words (in a table of addresses) may be
wasted, i.e. the size of the table of addresses will be a power of two
entries.

ENUHERATION

An ENUMERATION data—element occupies one word. The data—element
contains an integer value corresponding to the position in the list of
possible ENUMERATION values declared. The first ENUMERATION value will
be counted as zero. Hence the maximum possible number of distinct
ENUMERATION values in one declaration is 32768 for the ND—lOO, and
2147483648 for the ND-SOO and the MC68000.

POINTER

Pointer data-elements for all data types, except arrays, will occupy
one word.

Since the ND—lOO has word addressing only, for array elements or
record components which are smaller than one word, a pointer to an
array element or a record component will contain the address of the
word containing the data-element. It will not necessarily be the exact
address of the data-element. However for statements such as
expressions with assignment operators, the runtime system will access
the data-element correctly.

This may affect addressing of array elements where the elements are
smaller than one word, e.g. INTEGER RANGE (0:7) PACKED, or components
of a packed record.

On the ND—SOO/MC68000 byte addressing is available, so a pointer, to
data—elements which are array elements or record components, may
contain a byte address.

Norsk Data ND—60.ll7.5 EN

232 PLANC Reference Manual
MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC

ARRAY POINTER

An array pointer will require three pieces of information per
dimension declared for the array. But the first element of the three,
for the first declared dimension, is an address (a pointer data-
element). All the rest of the elements are default integer data-
elements. For example a two dimensional array will have 6 elements in
its array pointer data—element, the first of which is an address.

Following is a diagram of the layout of an array pointer data-element.
Each part is a default integer size except the first which is an
address.

address used for computing element addresses

lower bound 1 first dimension

upper bound 1

constantl 1+ upper bound 1 ~ lower bound 1

lower bound 2 second dimension

upper bound 2

constantZ 1+ upper bound 2 - lower bound 2

etc

An array may be declared with n dimensions as follows:

ar[low1:high1,low2:high2,...].

The address in the first element of the array descriptor, i.e. the
array pointer, is used for computing addresses of any element of the
array. This address is an imaginary point in memory, which is obtained
by setting each index to zero, regardless of the declared bounds. This
imaginary point in memory would be the address of the first element of
the declared array, if all of its lower bounds were declared as zero.

The address, of the imaginary point in memory, is obtained by
computing an offset and subtracting it from the actual memory address,
where the first element of the array is located. The following
formulae may be used to compute the offset, in array element units:

low1*constant1+low2 w two dimensional array
and

[low]*constant1+low2]*oonstant2+low3 2 three dimensional array

o\°

and so on for arrays of more dimensions.

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 233
MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC

The result from the above formulae, in array element units, must be
multiplied by the length of an array element in machine addressing
units, i.e. bytes for the ND~500 and words for the ND~100. Note that
on the ND-lOO a byte occupies one half word, and consequently the
result of the formulae must be even to give a valid address offset.
Take care to remember that the data type, of the array elements of a
PACKED array, may modify the computation by which array element units
are converted to machine addressing units.

The above formulae may also be used for computing the address of any
element of the array. Substitute each subscript value for the
corresponding lower bound values, and the formulae will give an offset
in array element units. This offset must be converted to machine
addressing units and then added to the address in the first word of
the array descriptor, giving the address of a specific array element.

REAL [32 bit floating—point hardware)

S exponent mantissa

31 30 22 21 0

Bit 31 : 0 = greater than or equal to zero
1 = negative

Bits 30—22 : Binary exponent

Stored with a bias of 256 (400 octal). This is
a power of 2 that the mantissa must be
multiplied by. A value of 256 means that the
mantissa is the value.

If the exponent is 0, the whole value is zero.

Bits 21-0 : mantissa

Stored without the 0.5 (0.1 binary) excess,
unless the value is zero. The binary point is
one place to the left of the mantissa. The
mantissa is normalized so that

0.5 <= mantissa < 1.0

This gives an accuracy of 7 significant
digits.

Norsk Data ND-60.117.5 EN

234 PLANC Reference Manual
MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC

REAL [48 bit floating—point hardware]

S exponent mantissa

47 46

Bit

Bits

Bits

32 31

47 : 0 =
l

0

greater than or equal to zero
negative

46-32 : Binary exponent

Stored with a bias of 16384 (40000 octal).
This is a power of 2 that the mantissa must be
multiplied by. A value of 400008 means that
the mantissa is the value.

If the exponent is 0, the whole value is zero.

31-0 : mantissa

Stored with all bits included. The binary
point is immediately to the left of bit 31.

This gives an accuracy of 9 significant
digits.

REALB [64 bit floating—point]

= greater than or equal to zero

Stored with a bias of 256 (400 octal). This is
a power of 2 that the mantissa must be
multiplied by. A value of 256 means that the
mantissa is the value.

If the exponent is 0, the whole value is zero.

S exponent mantissa

63 62 54 53 0

Bit 63
= negative

Bits 62—54 : Binary exponent

Bits 53—0 mantissa

Stored without the 0.5 (0.1 binary) excess,
unless the value is zero. The binary point is
one place to the left of the mantissa. The
mantissa is normalized so that

0.5 <= mantissa < 1.0

This gives an accuracy of 15 significant
digits.

Norsk Data ND—6O 117.5 EN

PLANC Reference Manual 235

MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC

ARRAY

The storage required for an array data-element is simply the number of
elements declared times the storage required for one element of the
array.

The array elements are stored in ascending order of the subscript
values. Arrays of more than one dimension are stored with the last
index changing most rapidly. This is identical to the scheme used for
Pascal and different from the scheme used in FORTRAN.

The maximum number of elements of an array is limited by the way
subscripts are stored internally. Subscripts are stored in a signed
default integer data—element. Hence, on the ND-lOO, the maximum number
of elements which an array may be declared with (this depends on the
number of dimensions and the uppei and lower bound values of each
dimension), is 32K, i.e. 32768.

On the ND-lOO, a PACKED ARRAY which is declared with 8 bit integer
elements, must not have a negative lower bound in any of its index
sets.

On the ND—lOO, note that due to the scheme of computing the memory
addresses of array elements, the declared lower index bounds must
result in

l) the first element of a PACKED INTEGER modified array being an
odd byte, and

2) the first element of a PACKED BOOLEAN array being any bit
within a word.

This may be achieved on the ND~lOO, for arrays of two or more
dimensions having elements smaller than one word in the following way.
The lower bound of the last dimension and the number of values in the
index set, must be a multiple of the number of elements per word.

RECORD

The storage required for a record data-element is simply the total
storage required by all the component data-elements, plus any waste
space between the component data-elements due to the alignment
requirements of each component,

SET

A SET data—element will have one bit per possible member, i.e. the
data—element will require the number of bits corresponding to the
maximum number of members declared. The bits are grouped into words.
If a bit has the value one, then that corresponding possible value is
a member of the SET data-element.

Norsk Data ND—60.117.5 EN

236 PLANC Reference Manual
MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC

0.3. STORAGE ALIGMENT

The following tables give the size in bytes and storage alignment of
each of the different data—element data types on each machine.

Table 1: ND—IO or DID—100 with 48 bit Floating—point Hardware

data type length in bytes alignment [Note 1]

BOOLEAN 2 word

INTEGER 2 word

INTEGERJ 2 word

BYTE 2 word

INTEGEH2 2 word

INTEGER4 4 word

HEAL 6 word

HEAL8 [te 2] 8 word

ENUMERATION 2 word

ARRAY variable word

RECORD variable ' ' word

SET 2*[[members+15]/16 J word

Table 2: ND-10 or ND-IOO with 32 bit Floating—point Hardware

All data types not listed in table 2 are the same as in table 1.

data type length in bytes alignment [Note 1]

HEAL 4 word

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 237
MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC

Table 3 : ND-SOO

data type length in bytes alignment [Note 1]

BOOLEAN 4 word

INTEGER 4 word
INTEGEHJ 1 byte
BYTE 1 byte
INTEGERZ 2 half—word
INTEGER4 4 word

REAL 4 word
HEALB 8 word

ENUMERATION 4 ward

ARRAY variable word

RECORD variable word

SET 4*{ [members+31]/32] word

Table 4: HC68000

data type length in bytes alignment (te 1]

BOOLEAN . 4 word

INTEGER {INTEGERZ} 4 word

INTEGER] 1 byte
BYTE 1 byte

INTEGEHZ 2 half-word

INTEGEH4 4 word

REAL 4 word
HEAL8 8 word

ENUMERATION 4 word

ARRAY variable word

RECORD variable word

SET 4*[[members+31]/32] word

Note:

The REAL8 data type is identical on all machines. For the ND—lO and
the ND-lOO, the implementation is by software routines and is
relatively slow.

Norsk Data ND~604117.5 EN

238 PLANC Reference Manual
MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC

0.4. PAG<ED OPTION

The PACKED option may be used on arrays and records. It will affect
the alignment of the data—elements of simple data types within the
composite data—element.

In arrays and records, each BOOLEAN data—element will be stored in 1
bit.

In arrays using the PACKED option, INTEGER RANGE and ENUMERATION
component data-elements will have space allocated as described for
INTEGER RANGE data-elements, but the smallest unit of space used is 1
byte (8 bits). On the ND—lOO, two BYTES are PACKed into one word.

In records using the PACKED option, INTEGER RANGE and ENUMERATION
component data-elements will require the next higher power of 2 bits
greater than the number of bits necessary to hold the required values.

In a PACKED record, no data-elements of the simple data types will be
split across a word boundary on the ND-lOO/ND-SOO or across halfwords
on the MC68000.

The following declarations:

TYPE minrec = RECORD PACKED
INTEGER RANGE [—8:7] : 1r 2 requires 4 bits

BYTE : onebyte 2 requires 8 bits
BOOLEAN : flag 2 requires 1 bit

ENUMEHATION [a,b,c] : Ch 2 requires 2 bits
BYTES : chars[0:4] 2 require 8 bits/element

EWDRECOBD

would require the following storage on the ND—lOO:

15 ll 3 2 O bit~position

ir onebyte f Ch W 1 bit waste

chars(0) chars(l) no waste

chars(2) chars(3) no waste

chars(4) W W 8 bits waste

15 7 O bit-position

Note the BYTES array chars has an implicit PACKED within the
predefined data type. This causes its elements to be stored two to a
word here. If this array had been declared as INTEGER RANGE (0:255),
then its elements would have been stored one to a word within the
above record.

Norsk Data ND-60.ll7.5 EN

PLANC Reference Manual 239
MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC

The record on the previous page would require the following storage on
the ND‘SOO:

31 27 19 18 16 15 7 0 bit-Egsition

ir onebyte f ch W chars(0) chars(l) 1 bit waste

chars(2) chars(3) chars(4) next data~elem. no waste

31 23 15 7 O bit-Egsition

The record on the previous page would require the following storage on
the MC68000 (note division into half-words):

15 ll 3 2 O bit~position

ir onebyte f ch W 1 bit waste

chars(0) chars(l) no waste

chars(2) chars(3) no waste

chars(4) next data element no waste

15 7 O bit—position

The PACKED option used on an array or record, only affects alignment
of entire composite data type data—elements declared within the array
or record. The PACKED option may be used on an array or record
declared as an array element or record component. Thus in the above
examples, the array chars is word aligned on the ND—lOO and byte
aligned on the ND-SOO.

Norsk Data ND-60.117.5 EN

240 PLANC Reference Manual

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 241

APPENDIX D

MIXED LAMSUAE PRUEIWMING

Norsk Data ND~60.117.5 EN

242 PLANC Reference Manual

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 243

MIXED LANGUAGE PROGRAMMING

0.1. INTRowcnou

PLANC has a standard calling sequence for its routine invocations.
This will facilitate the interfacing of programs and subprograms
written in other languages and those written in PLANC. This interface
is described in detail first and then examples showing how to use it
to interface to other languages on both the ND-lOO and ND~500 follow.

The following general advice should be observed for interfacing to
PLANC routines:

1) All PLANC routines invoked by another language routine should
be STANDARD.

2) All routines IMPORT'ed into a PLANC routine should be
STANDARD.

Each PLANC routine holds its local variables in a local data area. If
a program comprises a number of routines, the local data area for each
subprogram may be dynamically allocated from a single stack, or from
multiple stacks created by INISTACK invocations. The B-register must
always address the appropriate stack element during execution of a
PLANC routine.

The actual parameter list of STANDARD routines consists of a sequence
of words, one for each parameter. For explicit data—elements or
expressions with a temporary data~element, the corresponding word
contains the address of the data-element. For arrays, the word
contains the address of the imaginary element of the array, with all
indexes set to zero, which is used for computing memory addresses of
each array element.

If a number of routines are written in a language other than PLANC, it
may be necessary to have two or more routines with the same ALIAS
name, but each routine having a different number of parameters. While
this is not allowed in PLANC, IMPORT statements may be written for
such a group of routines, written in some other language, in order to
invoke the routine accordingly.

Norsk Data ND-60.117.5 EN

244

0.2.

PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

INTERFACING WITH PLANC ON THE Nil-1(1)

offset from the
B-reg (octal) in
aides

~200 LINK

#177 PREVB

—- -l76 FREES

~l75 EOS

-l74 SYS

-l73 ERRCODE

—l72 stack
element

** free
area

content

link register, address for normal return

previous B—register, Reloaded on exit

points to the free area of stack which
immediately follows this stack element
points to the word immediately following
the whole stack
runtime system use

ERRCODE (value)

first parameter address if any

free area of the stack

When PLANC invokes a STANDARD routine, the iregisters are used as
follows

L =
B:

T =
A =

D = unused
X = unused
p =

return address
current stack element; must be restored on return
number of parameters
parameter list address

entry point of called routine

Norsk Data ND~60.117.5 EN

PLANC Reference Manual 245
MIXED LANGUAGE PROGRAMMING

On return from a routine, the out-value of the routine is returned as
follows:

BOOLEAN}BYTE,INTEGER1,INTEGEW2, A—register
ENUMERATION

INTEGEB4 AD-register
REML {32 bit floatingepoint hardware] AD-register

REAL {48 bit floating-point hardware] TAD-register

HEHLB A-register points to the
result
POINTER A—register

RECORD,ARRAY,SET [address] A-register

If a routine has [expression] ERRETURN, the value of eggression is set
in the ERRCODE position in the invoker's stack element.

For two-bank programs, all parameter values and their descriptors must
be in the data bank.

Norsk Data ND—60.117.5 EN

246 PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

The PLANC Buntine Entry and Exit Routines

The heading of a PLANC routine contains an invocation of either SINIT
or SENTR in the runtime system in order to establish a new stack entry
of a required size. SINIT is invoked from main programs and from
routines with INISTACK invocations, otherwise SENTR is called.

The tasks of SINIT and SENTR are:

~ Establish the stack entry with sufficient space.

- Save the return address, in LINK. In a main program the
return address is set to SQUIT.

— Save the previous B-register value (PREVB).

— Update the free stack pointer (FREES) and end of stack
address (EDS).

- Check for stack overflow.

0n routine exit either SLEAV, for RETURN and ENDROUTINE, or SERET, for
ERRETURN, are invoked.

The tasks of SLEAV and SERET are:

- Restore the B-register to its value upon entry to the
routine.

- Return to the location following the JPL instruction of the
actual invocation, through SERET, or skip to the next
location, through SLEAV. The location following the JPL
instruction contains either a jump to ROUTINEERROR group of
statements or another SERET invocation.

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 247

MIXED LANGUAGE PROGRAMMING

Exa-ple of a main program layout in HAC equivalent:

SAX 0 2 main entry
JPL I [SINIT

»\' stack space requirement
stack array address

entire stack array size in words
two bank flag
unused

N
O

‘

-\
“\

’-
\‘
n

\’

N executable code

.\‘

JPL I [SLEAV o\° exit from routine

Example of layout of a routine containing an INISTACK invocation in
HAC equivalent:

COPY SL DX
JPL I [5INIT

§\° return address

u\~ stack space requirement

stack array address
entire stack array size in words

two bank flag
unused

.\
'.
\°

.\
~

o
\'
Q

'

,\o

.\' executable code

n\.

JPL I [5LEAV n\° exit from routine

Example of routine layout [not containing an INISTACK invocation] in
HAC equivalent:

COPY SL DX 2 return address
JPL I [SENTH

Z stack space requirement

N
-

Z executable code
7,

JPL I [SLEAV 2 exit from routine

Norsk Data ND-60.117.5 EN

248 PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

0.3. INTERFACING WITH PLANC ON THE MESH)

offset from the
B-reg (octal) in
we

0 PREVB

4 RETA

——lO FREES

l4 ERRCODE

20 N

24 stack
element

—v free
area

Content

previous B-register, Reloaded on exit.

link register, address for normal return.

points to the free area of stack which
immediately follows this stack element.

ERRCODE (value).

number of parameters.

first parameter address if any.

free area of the stack.

On return from a routine, the out—value of the routine is returned as
follows:

BO0LEAN,BYTE,INTEGEB1,INTEGER2, Il-register
ENUMERATION

HEAL [32 bit floating-point] Al—register

HEML8 [64 bit floating—point] Dl—register

POINTER IJ-register

ARRAY,RECOHD,SET [address] Il-register

If a routine has [expression] ERRETURN, the value of expression is set
in the ERRCODE position in the invoker's stack element. Further an
ERRETURN exit will set 1 in the STATUS.K bit (the K status bit in the
signalling and synchronization status). A normal routine exit will set
0 in the STATUS.K bit.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 249

MIXED LANGUAGE PROGRAMMING

0.4. INTERFACING mm PIANC ON THE mam)

offset from the
A6~reg (octal) in
bytes Content

«— — —.A6
0 PREVB Previous A6—register, reloaded on exit.

—— 4 STP Points to the free area of stack which
immediately follows this stack element.

—-— 10 SMAX Points to the top of free stack (A7)

14 SYST Runtime system use

20 ERRCODE ERRCODE (value)

24 stack First parameter address if any.
element

—. Free area Free area of the stack
(The stack grows both upwards and downwards
in parallel with some information in both parts)

«~ — —-A7
——+ O ENTLINK System link

4 LINK Address of return
Top of stack

On return from a routine, the out-value of the routine is returned as

follows:
BOOLEAN,BYTE,INTEGEB1,INTEGEHZ, DO—register
ENUMERATION

REAL8 [64 bit floating-point] AO-register as pointer

POINTER AO—register

ARRAY,RECORD,SET [address] AO-register

If a routine has (expression) ERRETURN, the value of aggression is set
in the ERRCODE position in the invoker's stack element. Further an
ERRETURN exit will return according to LINK (in stack upper part)
while normal return jumps back to LINK + 2.

0.5. INVOKING PIANC FRm FGWRAN

All PLANC routines called from FORTRAN must be STANDARD. All arrays
transferred from FORTRAN, should be accessed in PLANC as if they had
been declared with a lower index bound of 0.

Norsk Data ND—60.117.5 EN

250 PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

Exalple 1 - a simple subroutine call

To call a subroutine with no complex arithmetic actual arguments, the
following can be written in FORTRAN:

EXTERNAL PLSUBR
INTEGER I
REAL R

C INVOKE A SUBROUTINE WRITTEN IN PLANC
CALL PLSUBR[I,R]

and the corresponding PLANC code is:

MODULE msubr
EXPORT plsubr
INTEGER ARRAY : stack[0:1000]
ROUTINE STANDARD VOID,VOID[INTEGER,REAL} : plsubrfint,rl}

INISTACK stack
'/. body of routine

ENDROUTINE
ENDMODULE

Example 2 - a simple function call

To invoke a function which returns a non-complex arithmetic result.

In FORTRAN:

EXTERNAL PLFUNC
REAL X, Y,PLFUNC
DOUBLE PRECISION D

C INVOKE A FUNCTION WRITTEN IN PLANC
Y=PLFUNC[X,D]

and in PLANC:

ROUTINE STANDARD VOID,REAL[REAL,REAL8] : plfunc[rl,db]
INISTACK stack
'4 PLANC REAL8 is the same as FORTRAN DOUBLE PRECISION

RETURN
ENDROUTINE

Norsk Data ND-60.117.5 EN

PLANC Reference Manual

MIXED LANGUAGE PROGRAMMING

Example 3 — use of logical arguments on the ND-IOO:

FORTRAN LOGICAL*2 corresponds to PLANC BOOLEAN. FORTRAN
the following PLANO data type:

TYPE boolean4 2 RECORD
BOOLEAN : unused 2 first word always zero

BOOLEAN : value 2 contains actual value

ENDHECORD

251

LOGICAL*4 is

LOGICAL*4 cannot be returned from a PLANC STANDARD routine.

In FORTRAN:

EXTERNAL PLBOOL
LOGICAL PLBOOL,V
LOGICAL*4 M4
V=PLBOOL(V,M4]

In PLANC:

ROUTINE STANDARD VOID,BOOLEAN [BOOLEAN,boolean4] : &
plbool[m,m4]
INISTACK stack
IF m4.value THEN

m RETURN
ENDIF
NOT m RETURN

ENDROUTINE

Norsk Data ND—60.117.5 EN

252 PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

On the ND-SOO:

FORTRAN LOGICAL*4 corresponds to PLANC BOOLEAN. The FORTRAN LOGICAL*2
data type has no direct equivalent in PLANC. FORTRAN LOGICAL*2 can be
handled in PLANO in the following way:

In FORTRAN:

EXTERNAL PLBOOL
LOGICAL PLBOOL,V
LOGICAL*2 M2
V=PLBOOL[V,M2]

In PLANC:

ROUTINE STMNDARD VOID,BOOLEMN [BOOLEHN,INTEGERZ] : &
plbool [m,m2}
INISTACK stack
2 the 2 integers must be contiguous in memory
INTEGER2 : int1,int2
BOOLEAN : booll=int1
m2=:int2
=:int1

IF booll THEN
m RETURN

ENDIF
NOT m RETURN

ENDEOUTINE

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 253

MIXED LANGUAGE PROGRAMMING

Example 4 - character string arguments

Since FORTRAN passes character strings through a descriptor, PLANC
routines must accept these as records. It is often most convenient to
recast the FORTRAN string descriptor as a PLANC bytes pointer. Thus:

On the ND~100:

TYPE ftnstring = RECORD
BYTES : ftnchars [0: -1] 2 ch. data

ENDRECORD Z a blank must precede ~1

TYPE ftndesc = RECORD PACK
ftnstring POINTER : cstring 2 address of string

INTEGER RANGE [0 1B] : coddbyte Z left/right byte start
INTEGER RANGE [0:178] : cunused Z unused
INTEGER RANGE [0:3777B] : clength 2 length of string

ENDBECOHD

Then in FORTRAN:

CHARACTER H*20
INTEGER I,J
EXTERNAL HSUB
CALL HSUB[H[I:J]]

which can be picked up in PLANC by:

ROUTINE STANDARD VOID,VOID [ftndesc] : h5ub[hij]

BYTES POINTER : bp
INISTACK Stack
ADDR[hij.cstring.ftnchars &
[hij.coddbyte : hij.clength-1+hij.coddbyte]]=:bp
2 bp now contains the address of the FORTRAN character string

ENDHOUTINE

Norsk Data ND~60.117.5 EN

254

On

The

whi

the ND-SOO:

TYPE ftnstring = RECORD
BYTES .

ENDRECORD Z a blank must precede —1

TYPE ftndesc = RECORD
INTEGER RANGE [0:7777777773]
ftnstring POINTER

ENDRECORD

n in FORTRAN:

CHARACTER H*20
INTEGER I,J
EXTERNAL HSUB
CALL HSUB[H[I:J]]

ch can be picked up in PLANC by:

ROUTINE STANDARD VOID,VOID [ftndesc]
BYTES POINTER : bp

INISTACK stack
ADDR[hij.cstring.ftnchars[0 :

ftnchars [0: -1] 2 ch.

hij

PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

data

clength
cstring

: hsub[hij]

.clength—l]]=:bp
Z bp now contains the address of the FORTRAN character string

ENDROUTINE

Norsk Data ND-60.117.5 EN

PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

Example 5 — functions returning a character value

The definition of character data types must be made as in example 4.
But in this case there can be no true return value for the function,
so the PLANC code must simulate the return.

On the ND-lOO:

In FORTRAN:

CHARACTER H*20,HFUNC*10
EXTERNAL HFUNC
H[1:10]=HFUNC[...]

In PLANC:

On

In

In

ROUTINE STANDARD VOID,VOID : hfunc
BYTES POINTER : bp
ftndesc POINTER : dreg

INISTACK stack
3* COPY SD DA; STA dreg 2 return value descriptor

ADDR[dreg.cstring.ftnchars &
[dreg.coddbyte : dreg.clength—1+dreg.coddbyte}]=:bp
'0123456789'=:IND[bp] 2 set 'return value'

ENDHOUTINE '

the ND-SOO:

FORTRAN:

CHARACTER H*20,HFUNC*10
EXTERNAL HFUNC
H[1:10]=HFUNC[...]

PLANC:

ROUTINE STANDARD VOID,VOID : hfunc
BYTES POINTER : bp
ftndesc POINTER : rreg
INISTACK stack

$* R=:B.rreg 2 return value descriptor

ADDR[rreg.cstring.ftnchars[0 : rreg.clength-1]]=:bp
'0123456789'=:IND[bp] 2 set 'return value'

ENDHOUTINE

Norsk Data ND~60.117.5 EN

256 PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

0.6. INVOKING FmTRAN FRGVI PIANC
All FORTRAN subprograms invoked from PLANC must be IMPORT'ed as
STANDARD routines. FORTRAN functions have out-values, but no FORTRAN
routines have in—values.

Exanple 1 — a simple subroutine

Invoke a FORTRAN subroutine with non-complex arithmetic dummy
arguments.

In PLANC:

IMPORT [ROUTINE STANDARD VOID,VOID[HEAL,REAL8J : fsubr]
2
REAL I r
REAL8 : d
...fsubr[r,d}

In FORTRAN :

SUBROUTINE FSUBR[B,D]
HEAL R
DOUBLE PRECISION D C
END

Example 2 — a simple function

Invoke a FORTRAN function returning a non-complex arithmetic result.

In PLANC:

IMPORT [ROUTINE STANDARD VOID,INTEGEH[INTEGEH4] : ifunc J
°/,

INTEGER : k

INTEGEH4 : kd
ifunc[kd}=:k

In FORTRAN:

INTEGER FUNCTION IFUNC[KD]
INTEGEH*4 KD
IFUNC=...
RETURN
END

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 257

MIXED LANGUAGE PROGRAMMING

Example 3 — use of logical arguments

PLANC BOOLEAN is the same as LOGICAL in FORTRAN, LOGICAL*2 on the ND-
100 and LOGICAL*4 on the ND—SOO. LOGICAL*4 on the ND-lOO or LOGICAL*2
on the ND—SOO may be simulated as in example 3 of the previous
section.

On the ND-lOO:

In PLANC:

IMPORT [ROUTINE STANDARD VOID,BOOLEAN{bcolean4]:lfunc]
c4
boolean4 : m4
IF lfunc [m4] THEN ..

In FORTRAN :

LOGICAL FUNCTION LFUNC[M4]
LOGICAL*4 M4
LFUNC=...
RETURN
END

On the ND-SOO:

In PLANC:

IMPORT { ROUTINE STANDARD VOID,BOOLEAN[INTEGER2J:lfunc]

Z the 2 integers must be contiguous in memory

INTEGER2 : int1,int2
BOOLEAN : booll=int1
2 put a value in the boolean data-element

...=:booll
IF lfunc [intZ] THEN .H

In FORTRAN :

LOGICAL FUNCTION LFUNC[M2]
LOGICAL*2 M2
LFUNC=...
RETURN
END

Norsk Data ND-60.117.5 EN

258 PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

Example 4 ~ character string arguments

FORTRAN handles character strings by means of descriptors, which can
be declared in PLANC as in example 4 of the previous section. These
descriptors must be created in PLANC before invocation of the FORTRAN
subprogram takes place.

In PLANC:

IMPORT [ROUTINE STANDARD VOID,VOID[ftndesc] f hsub]

ftndesc : fd
BYTES : arg[1:100] Z begins in left byte of word
INTEGER : i,j
2 now transfer arg[i:j] to FORTRAN
ADDR[arg{i]] FORCE ftnstring POINTER=ifd.cstring
Z the following 2 lines are for the ND-lOO only

1—[i MOD 2] =:fd.coddbyte Z left/right byte
0=:fd.cunused
Z
j-i+1=:fd.clength 2 length of string
h5ub[fd} 2 invoke FORTRAN subprogram

In FORTRAN:

SUBBOUTINE HSUB[FD]
CHARACTER FD*[*] C
END

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 259

MIXED LANGUAGE PROGRAMMING

Example 5 — character functions

Characters cannot be returned by FORTRAN to PLANC as out—values. The
memory area for the returned string must be allocated before invoking
the function and a special calling sequence is required.

In PLANC:

IMPORT [ROUTINE STANDARD VOID,VOID : hfunc]

ftndesc : fd
BYTES : val[0:19] Z value returned here
ftndesc POINTER : fdp
’/,

ADDH[va1[0]] FORCE ftnstring POINTER =:fd.cstring
Z the following 2 lines are required for the ND—JOO only

0=:fd.coddbyte
0=:fd.cunused

o\"

MAXINDEX[val,1]~MININDEX[val,1]+1=:fd.clength

ADDR[fd]=:fdp
Z on the ND—lOO use
$* LDA fdp 2 return descriptor address
2 on the ND-500 use
$* R:=fdp 2 return descriptor address
2
hfunc 2 put result in 'val'

In FORTRAN:

CHARACTER *[*] FUNCTION HFUNC
HFUNC=...
RETURN
END

Norsk Data ND-60.117.5 EN

260

0.7. ACCESSING FORTRAN C(M’O‘l FROM PLANC

A COMMON block may be defined in a FORTRAN main program, a subprogram
or a BLOCK DATA subprogram. FORTRAN COMMON blocks may be accessed from
a PLANC main program or a subprogram.

A PLANC program can access a FORTRAN COMMON block by using the COMMON
option in the IMPORT statement which enables the appropriate linkage

to be established.

For example:

BLOCK DATA
COMMON /COMBLOC/INT1,INT2,INT3
DATA INT1/10/,INT2/101/,INT3/58/
END

MODULE usecommon

This

TYPE comrec = RECORD
INTEGER : 11,12,13

ENDBECOBD
IMPORT [COMMON] comrec:combloc
2
2 rest of program
2
INTEGER : int
2 acces a value in the COMMON block
combloc.12=:int

technique may also be used for RT programs, written in PLANC,
which are to access RTCOMMON.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

PLANC Reference Manual 261
MIXED LANGUAGE PROGRAMMING

0.8. Iuvoxms HANC FRm (BBQ.

On both the ND-lOO and the ND—SOO, a COBOL program may call a routine
written in PLANC. The PLANC routine must be declared as STANDARD.
Parameters are transferred by reference between PLANC and COBOL. The

data types which correspond in PLANC and COBOL are as follows:

'PLANC COBOL

INTEGERZ, 16 bits PIC 59[n] COMPUTATIONAL where 1<=n<=4

INTEGER4, 32 bits PIC 59[n] COMPUTATIONAL where 5<=n(=10

HEAL, 32/48 bits COMPUTATIONAL—2 {ND‘IOOJ

REAL8, 64 bits COMPUTATIONAL—2 {NDr5OUJ

BYTES [0 as lower bound] PIC X(n] where n is the number of bytes

COMPUTATIONAL—2 variables may only be used as a parameter in a
subroutine call to or from COBOL, or to convert to/from COMPUTATIONAL-
3 variables.

Parameters from COBOL must start on a word boundary, on the ND-lOO.

For example :

In COBOL:

DATA DIVISION.
WORKING- STORAGE SECTION.
01 PLANC~INT2 PIC 59(4) COMP VALUE 123.
01 PLANC-INT4 PIC 59(6] COMP VALUE 123456.
01 CB-REAL PIC SQ{3]V9{6] COMP—3 VALUE -2.71.
01 PLANC— REAL COMP~ 2 .
01 PLANC-BYTES PIC X{10] VALUE "A123456789".
01 PLANC-BYTES~WDS PIC 59(4) COMP VALUE 5.

* NUMBER OF CHARACTERS PER WORD IS DIFFERENT ON THE ND-500
PROCEDURE DIVISION.
PARA- 1 .

* CONVERT THE INTERNAL COBOL FORM TO THE PLANC REAL FORM
MOVE CB-REAL TO PLANC-REAL.

* INVOKE A PLANC SUBROUTINE
CALL "PLANCSUB" USING PLANC—INTZ
PLANC‘REAL
PLANC— INT4
PLANC- BYTES
PLANC- BYTES— WDS.

Norsk Data ND—60.117.5 EN

262 PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

In PLANC:

ROUTINE STKNDARD VOID,VOID &
[INTECEF2, REAL, INTEGER4, BYTES, INTEGEHZ] : PLANCSUB &
[int2, r1, int4, string, stringwords]
INISTACK stack
2 may now access values passed from COBOL and return values

X to COBOL in the normal manner
RETURN

END

Norsk Data ND-60.1l7.5 EN

PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

0.9. INVOKING C0321 FRm PUWC

263

On both the ND~100 and the ND—SOO, a PLANC program may call a routine
written in COBOL. Parameters are transferred by reference between
PLANC and COBOL. The data types which correspond in PLANC and COBOL
are as follows:

~PLANC

INTEGERZ, 16 bits

INTEGEH4, 32 bits

REAL, 32/48 bits

HEAL8, 64 bits

BYTES [0 as lower bound]

COBOL

PIC 59[n] COMPUTATIONAL where 1<=n<=4

PIC Sa] COMPUTATIONAL where 5<=n<=10

COMPUTATIONAL“2 {ND'IOO}

COMPUTATIONAL'Z [ND-SUOJ'

PIC a] where n is the number of bytes

COMPUTATIONAL~2 variables may only be used as a parameter in a
subroutine call to or from COBOL, or to convert to/from COMPUTATIONAL-
3 variables.

For example:

In PLANC:

ROUTINE VOID, VOID [...] callcobol [...]
IMPORT { ROUTINE STANDARD VOID, VOID &
[INTEGERZ,HEHL,INTEGER4,BYTES] : CBSUB]
a4

INTEGEBZ : intZ
REAL : rl
INTEGER4 : int4
56::int2
54.12345=:r1
123456=:int4
Z invoke a COBOL subroutine
CBSUB[int2,rl,int4,'string']

Norsk Data ND—60.117.5 EN

264 PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

In COBOL:

IDENTIFICATION DIVISION.
PROGRAM— ID. CBSUB .
DATA DIVISION.
WORKING- STORAGE SECTION.
01 CB-REAL PIC S9[3]V9[6} COMP—3.
LINKAGE SECTION.
01 PLANC— INT2 PIC 59[4] COMP.
01 PLANC— INT4 PIC 59[6] COMP.
01 PLANC-REAL COMP-2.
01 PLANO—STRING PIC Xf6].
PROCEDURE DIVISION USING PLANC- INT2

PLANC~REAL
PLANC- INT4
PLANC-STRING.

PARA- 1 .
* CONVERT THE PLANC REAL VALUE TO THE INTERNAL COBOL FORM

MOVE PLANC~REAL TO CB—REAL.

Norsl: Data ND—60.117.5 EN

PLANC Reference Manual 265

MIXED LANGUAGE PROGRAMMING

0.10. INVOKING PLANC FROM BASIC ON THE NIHG)

All PLANC routines called from BASIC must be STANDARD. All arrays
transferred from BASIC, should be accessed in PLANC as if they had
been declared with a lower index bound of 0.

Example 1 — a si-ple subroutine call

To call a subroutine, the following can be written in BASIC:

10 EXTERNAL PLSUBR
20 INTEGER I
30 REAL R
40 REM
50 REM INVOKE A SUBROUTINE WRITTEN IN PLANC
60 REM
70 CALL PLSUBR[I,R]

and the corresponding PLANC code is:

MODULE msubr
EXPORT plsubr
INTEGER ARRAY : stack[0:1000]

ROUTINE STANDARD VOID,VOID[INTEGER,REAL] : plsubr[int,rl]

INISTACK stack
2 body of routine

ENDROUTINE
ENDMODULE

Example 2 - a simple function call

To invoke a function

In BASIC:

10 EXTERNAL PLFUNC
20 REAL X,Y,PLFUNC,Z
30 REM
40 REM INVOKE A FUNCTION WRITTEN IN PLANE
50 REM
60 Y=PLFUNC[X,Z}

and in PLANC:

ROUTINE STANDARD VOID,REAL{ REAL,REAL] : plfunc[r1,r2}
INISTACK stack
r1+r2 RETURN

ENDROUTINE

Norsk Data ND-60.117.5 EN

266 PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

Example 3 - character string arguments

Since BASIC passes character strings through a descriptor, PLANC
routines must accept these as records. It is often most convenient to
recast the BASIC string descriptor as a PLANC bytes pointer. Thus,

On the ND-lOO:

TYPE basicstring = RECORD
BYTES : basicchars [0: —1] 2 ch. data

ENDRECORD Z a blank must precede -1

TYPE basicdesc = RECORD PACK
basicstring POINTER : cstring 2 address of string
INTEGER RANGE [0:18] : clunused Z unused
INTEGER RANGE [0:178] : c2unused Z unused
INTEGER RANGE [0:37773} : clength 2 length of String

ENDHECOHD

Then in BASIC:

10 EXTERNAL HSUB
20 A$=”MY FRIEND"
30 CALL CHSUB[A$]

which can be picked up in PLANC by:

ROUTINE STANDARD VOID,VOID [basicdesc] : chsub[hij}

BYTES POINTER : bp
INISTACK stack
ADDB[hij.cstring.basicchars[0:hij.clength—l]]=:bp
2 bp now contains the address of the BASIC character string

.\'

Z a string value may be returned as follows

'123456789'=:IND[bp] 2 set 'return value’
ENDROUTINE

Norsk Data ND~60.117.5 EN

PLANC Reference Manual 257

MIXED LANGUAGE PROGRAMMING

0.11. INVOKING BASIC FRm PIANC ON THE ND-Im

All BASIC subprograms invoked from PLANC must be IMPORT'ed as STANDARD
routines. BASIC functions have out-values, but no BASIC routines have
in-values.

Example 1 - a simple subroutine

Invoke a BASIC subroutine with non—complex arithmetic dummy arguments.

In PLANC:

IMPORT [ROUTINE STANDARD VOID,VOID[HEAL,REAL] : bsubr]
‘/

HEAL : r1,r2
...bsubr[r1,r2]

In BASIC :

10 SUBROUTINE BSUBH[H1,R2]
20 REAL H1,R2
30 BEN BODY OF THE SUBHOUTINE
40 END

Example 2 — a simple function

Invoke a BASIC function returning a non-complex arithmetic result.

In PLANC:

IMPORT [ROUTINE STANDARD VOID,INTEGEH[INTEGEH4] I ifunc]
z
INTEGER I k

INTEGER4 I kd

ifunc[kd]=:k

In BASIC :

10 FUNCTION IFUNC[KD]
20 INTEGER IFUNC
30 DOUBLE KB
40 IFUNC=...
50 END

Norsk Data ND-60.117.5 EN

268 PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

Exanple 3 - character string arguments

BASIC handles character strings by means of descriptors, which can be
declared in PLANC as in example 3 of the previous section. These
descriptors must be created in PLANC before invocation of the BASIC
subprogram takes place.

In PLANC:

IMPORT [ROUTINE STANDARD VOID,VOID{basicdesc] : chsub]

basicdesc : bd
BYTES : arg[0:100] 2 begins in left byte of word
INTEGER : i,j
2 now transfer arg[i:j] to BASIC. NB 1 must be an even value.
ADDH[arg[i]] FORCE basicstring POINTER=:bd.cstring
Z set up special descriptor constants

O=:bd.c1unused
108::bd.02unused
'/,

j-i+1=:bd.clength 2 length of string

chsub[fd] Z invoke BASIC subprogram

In BASIC:

10 SUBHOUTINE CHSUB{FD$]
20 HEM BODY OF SUBBOUTINE
30 END

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 269
MIXED LANGUAGE PROGRAMMING

0.12. INVOKING PLANC FRm MC

A MAC program, running on the ND~lOO, may invoke a routine written in
PLANC. The PLANC routine should be declared as STANDARD. The contents
of the B-register and the L-register are described on page 244.

The MAC program must set up the A—register to contain the address of
the list of parameter addresses and the T—register to contain the
number of parameters.

Example of a MAC program invoking a PLANC routine:

JQBEG
J9EXT SUBE
LDA [PLIST 2 set up address of the list of
Z parameter addresses
SAT N 2 set up the number of parameters
JPL I SUBR Z invoke the routine

o\\° routine will return here

N
o\" executable code

.\.
o\"

N list of parameter addresses

.\°

PLIST,PAHAM1 2 address of first parameter
PAHAM2 2 address of second parameter
2 to n parameters
JFILL
JEND

Note that there is no Loader check of mixing two bank PLANC routines
with MAC routines.

Norsk Data ND-60.117.5 EN

270 PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

0.13. INVOKIm MC FRm PLANC ON THE ND—lm

A PLANC program, running on the ND—lOO, may invoke a routine written
in MAC. The MAC routine should be IMPORT’ed as STANDARD. The contents
of the B-register and the L—register are described on page 244.

On entry to the MAC routine, the A—register contains the address of
the list of parameter addresses, the T-register contains the number of
parameters.

Example of a MAC routine:

JQBEG
)9ENT SUBH

SUBR, SWAP SA DB
STA SAVB Z saves value in the B—register
LDA I 0,8 2 value of first parameter
2
LDA I N;1,B 2 value of the n'th parameter
2
2 executable code
7,

LDA SAVE
COPY SA DB
EXIT Z return to invoker
SAVB,0
)9END

Note that there is no Loader check of mixing two bank PLANC routines
with MAC routines.

Norsk Data ND~60.117.5 EN

PLANC Reference Manual 271

APPENDIX E

USING SINTRAN MNITCR MLLS

Norsk Data ND~60.117.5 EN

272 PLANC Reference Manual

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 273

USING SINTHAN MONITOR CALLS

0.1. SINlRAN MONITOR CALLS

A number of SINTRAN monitor call routines are available to be called
from PLANC, provided as part of the PLANC runtime system. The
definition of what monitor calls do can be found in the SINTRAN
Reference Manual (ND—60.128 EN). This section contains a description
of those monitor calls relevant to PLANC programs with the routine
name, the data types of the in-value, out-value and parameters, plus
any notes which relate to the particular use of such a monitor call
from PLANC. The list is in the sequence of the monitor call numbers.

Any monitor calls not listed here, may be called from a PLANC routine
if a suitable interface routine is constructed by the user. If this is
done, the user must load the interface routine before the PLANC
runtime library.

Yet another approach is to use the MONITOR_CALL standard routine, as
described on page 153.

Norsk Data ND—60.117.5 EN

274 PLANC Reference Manual
USING SINTRAN MONITOR CALLS

0.2. MONITOR CALLS AVAILABLE ON THE ND—lm AND THE W

MONO ~ LEAVE

ROUTINE VOID,VOID : MONO

HONl ~ INBT

ROUTINE VOID,BYTE (INTEGER) : MONl (dev)

parameter : dev = logical device number
out—value : 8 bit charactero\°

o\°

HONZ ~ OUTBT

ROUTINE BYTE,VOID (INTEGER) : MONZ (dev)

in—value : 8 bit character
parameter : dev = logical device numbero\°

o\°

HONB — ECHOH

ROUTINE VOID,VOID &
(INTEGER,INTEGER,BOOLEAN ARRAY PACKED) &

: MON3 (dev,mode,table)

% parameters : dev = logical device number
% : mode = echo strategy
% : table = 8 words containing bit map if mode=7

HON4 — BRKH

ROUTINE VOID,VOID &
(INTEGER,INTEGER,BOOLEAN ARRAY PACKED,INTEGER) &

: MON4 (dev,mode,table,max)

% parameters : dev = logical device number
% : mode = break strategy
% : table = 8 words containing bit map if mode=7

HONII - TIHE

ROUTINE VOID,INTEGER4 : MONll

% out-value : time in basic units

HONIZ — SETCH

ROUTINE VOID,VOID (BYTES) : MONIZ (command)

% parameter : command = command string

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 275
USING SINTRAN MONITOR CALLS

HON13 — CIBUF

ROUTINE VOID,INTEGER (INTEGER) : MON13 (dev)

% parameter : dev = logical device number
% out~va1ue : previous value of A—register or error value

(ROUTINEERROR exit will be taken)

1401114 - comm

ROUTINE VOID,VOID (INTEGER) : MON14 (dev)

% parameter : dev = logical device number

HON16 ~ HGTTY

ROUTINE VOID,INTEGER (INTEGER) : MON16 (dev)

% parameter : dev = logical device number
% out—value : terminal type

HON17 - HSTTY

ROUTINE INTEGER,VOID (INTEGER) : MON17 (dev)

input para : terminal type
parameter : dev = logical device typeo\°

o\°

HONZI - HBINB [ND—100]

TYPE IW = INTEGER WRITE ROUTINE VOID,VOID &
(INTEGER,IW,IW,IW,IW,IW) &

: MONZl(dev,wl,w2,w3,w4,num)

% parameters : dev = logical device type
% : wl = byte 1 and 2
% : w2 = byte 3 and 4
% : w3 = byte 5 and 6
% : W4 = byte 7 and 8
% : num = number of bytes read

HONZI - HSINB [ND—500]

ROUTINE VOID,VOID &
(INTEGER,INTEGER WRITE,BYTES) &

: MON21(dev,num,inbytes)

% parameters : dev logical device type
% : num = number of bytes read
% : inbytes = bytes input

Norsk Data ND—60.117.5 EN

276 PLANC Reference Manual
USING SINTRAN MONITOR CALLS

HONZZ ~ HSOUT

ROUTINE VOID,VOID &
(INTEGER,INTEGER.INTEGER,INTEGER,INTEGER) &

: MON22(dev,wl,w2,w3,w4)

parameters : dev = logical device type
: wl = BYTES(0:l)
: w2 = BYTES(2:3)
: w3 = BYTES(4:5)

o\°
o\°

o\0
o\°

o\°

: W4 = BYTES(6:7)

HON24 ~ BBOUT

ROUTINE INTEGER,VOID (INTEGER ARRAY) : MON24 (ival)

in-value : logical device number
parameter : ival = 8 bytes to be writteno\°

o\°

HONBO - GETRT

ROUTINE VOID,INTEGER : MON30

% out-value : address of RT—description

HONBZ — MSG

ROUTINE VOID,VOID (BYTES) : MON32 ('MSGI

% parameter : msg = bytes to be written

HON41 - ROBJE

ROUTINE VOIDIVOID (INTEGER,INTEGER ARRAY) &
: MON41 (dev,obj)

% parameters : dev = logical device number
% : obj the file object entry

HON43 — CLOSE

ROUTINE VOID,VOID (INTEGER) : MON43 (dev)

% parameter : dev = logical device number

HON44 " RUSEB

ROUTINE VOID,VOID (BYTES,INTEGER ARRAY) &
: MON44 (user,usentry)

% parameters : user = user name
% : usentry user entryll

Norsk Data ND~60.117.5 EN

PLANC Reference Manual 277
USING SINTRAN MONITOR CALLS

HDN45 — DBRK [ND-100 only]

ROUTINE VOID,VOID (INTEGER ARRAY,INTEGER) &
: MON45 (rblock,bhand)

% parameters : rblock = register block
% : bhand break—point execution routine address

NON47 - SBRK (ND-100 only]

ROUTINE VOID,VOID (INTEGER ARRAY) : MON47 (rblock)

% parameter : rblock = register block

HONSO - OPEN

ROUTINE VOID,INTEGER (BYTES,BYTES,INTEGER) &
: MONSO (file,default,code)

% parameters : file = file name
% : default = default file type
% : code = access code
% out-value : logical device number

HON54 ~ HDLFI

ROUTINE VOID,VOID (BYTES) : MON54 (mem)

% parameter : mem = file name to be deleted

HONGZ - RHAX

ROUTINE VOID,INTEGER4 (INTEGER) : MON62 (dev)

parameter : dev = logical device number
out-value : number of byteso\°

o\°

HON63 - B4INW

ROUTINE VOID,INTEGER ARRAY (INTEGER) : MON63 (ldn)

% parameter : ldn = logical device number
% out-value 2 BYTES (0:7) READ

MON64 ~ ERHSG

ROUTINE INTEGER,VOID : MON64

% in—value : error number to be printed

HONGS — QERHS

ROUTINE INTEGER,VOID : MON65

O6 in-value : error number to be printed

Norsk Data ND-60.117.5 EN

278 PLANC Reference Manual
USING SINTRAN MONITOR CALLS

HOMES — ISIZE

ROUTINE VOID,INTEGER (INTEGER) : MON66 (dev)

parameter : dev = logical device number
out-value : number of bytes in input buffer

%
9
O

HON70 - COHND

ROUTINE VOID,VOID (BYTES) : MON70 (command)

% parameter : command = command to be executed

HON71 - DESCF

ROUTINE VOID,VOID (INTEGER) : MON71 (dev)

% parameter : dev = logical device number

HON72 - EESCF

ROUTINE VOID,VOID (INTEGER) : MON72 (dev)

% parameter : dev = logical device number

HON73 ~ SHAX

ROUTINE INTEGER4,VOID (INTEGER) : MON73 (dev)

% in—value : maximum byte pointer
% parameter : dev = logical device number

HON74 — SETBT

ROUTINE INTEGER4,VOID (INTEGER) : MON74 (dev)

% in-value : byte pointer
% parameter : dev = logical device number

HON75—REABT

ROUTINE VOID,INTEGER4 (INTEGER) : MON75 (dev)

% parameter : dev = logical device number
% out—value : byte pointer

HON76 — SETBS

ROUTINE INTEGER,VOID (INTEGER) : MON76 (dev)

% in-value : block size in words
% parameter : dev = logical device number

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 279

USING SINTRAN MONITOR CALLS

HON104 — HOLD

ROUTINE VOID,VOID (INTEGER,INTEGER) : MN104 (ntu,tu)

% parameters : ntu = number of time units in wait state
% : tu = time mode

MON113 — CLOCK

ROUTINE VOID,VOID (INTEGER ARRAY WRITE) : MN113 (cal)

% parameter : cal = time return array

flON114 - TUSED

ROUTINE VOID,INTEGER4 : MN114

% out-value : cpu time used

HON117 — RFILE

ROUTINE VOID,VOID &
(INTEGER,INTEGER,INTEGER ARRAY,INTEGER,INTEGER) &

: MNll? (dev,zero,dadr,bl,words)

% parameters : dev = logical device number
% : zero = return parameter
% : dadr = destination array
% : bl = number of file block where data starts
% : words = number of words to be transferred

HON120 — VFILE

ROUTINE VOID,VOID &
(INTEGER,INTEGER,INTEGER ARRAY,INTEGER,INTEGER) : &

MNlZO (dev,zero,dadr,b1,words)

% parameters : dev = logical device number
% : zero = return parameter
% : dadr = destination array
% : bl = number of file block where data starts
% : words = number of words in the extent

Norsk Data ND—60.117.5 EN

280 PLANC Reference Manual
USING SINTRAN MONITOR CALLS

HON122 — RESRV

ROUTINE VOID,INTEGER (INTEGER,INTEGER,INTEGER) &
: MNIZZ (dev,iof,iret)

parameters : dev = logical device number
: iof input- or output part

o\°
o\°

o\°
o\°

: iret = return status
out~value : return status depending on iret

HON123 — RELES

ROUTINE VOID,VOID (INTEGER,INTEGER) : MN123 (dev,iof)

parameters : dev = logical device number
iof input~ or output parto\°

o\°

nomsz — HCALL [ND—100 only]

ROUTINE VOID,VOID (INTEGER,INTEGER) : MN132 (subr,newsg)

parameters : subr = subroutine address
newsg = new segment to be loadedo\°

o\°

HON141 — IOSET (ND—100 only)

ROUTINE VOID,INTEGER ' &
(INTEGER INTEGER,INTEGER,INTEGER) &

: MNI41 (dev,iof,iprog,ccode)

parameters : dev = logical device number
: iof = input- or output part
: iprog = RT description

o\°
o\°

o\°
o\°

o\°

: ccode = control code
out-value : status

HON143 — RSIO

ROUTINE VOID,VOID &
(INTEGER WRITE,INTEGER WRITE,INTEGER WRITE, &

INTEGER WRITE) &
: MN143 (mode,inpt,outpt,usn)

% parameters : mode = executing mode
% : inpt = file number of command input file
% : outpt = file number of command output file
% : usn = user number the program is running under

Norsk Data ND-60.ll7.5 EN

PLANC Reference Manual 281
USING SINTRAN MONITOR CALLS

HON144 — HAGTP

ROUTINE VOID,INTEGER &
(INTEGER,INTEGER ARRAY,INTEGER,INTEGER, &

INTEGER WRITE) &
: MN144 (fc,madr,dev,maxw,readw)

parameters : fc
: madr
: dev
: maxw

o\°
o\°

o\°
o\°

o\°
o\°

o\°

5011161 —- INSTR

: readw
out-value : status

ROUTINE VOID,INTEGER
(INTEGER,BYTES,INTEGER,INTEGER) &

: MNl6l (dev,dar,dno,dte)

= function to be performed

ll

memory area to be used
logical device number
device dependent
device dependent
read status value for function 20B and 24B
otherwise zero

% parameters : dev = logical device number
% : dar = input data buffer
% : dno = maximum nuber of characters to be read
% : dte = terminal character
% out-value : status return

HON162 - OUTST

ROUTINE VOID,INTEGER &
(INTEGER,BYTES,INTEGER) : MN162 (dev,dar,dno)

parameters : dev = logical device number%
% : dar = array of data destination
% : dno = number of characters to be written
% out-value : status return

HON167 - BRENT [ND~100 only]

ROUTINE INTEGER,VOID

O

HON263 - GDEVT

ROUTINE VOID,VOID

: MN167

6 in-value 2 segment number

&
(INTEGER,INTEGER,INTEGER WRITE,INTEGER4 WRITE) &

: MN263 (dev,ioflag,devtype,attr)

% parameters : dev =
% input : ioflag =
% output : devtype =
% : attr =

logical device number
input/output flag
device type

device attributes

Norsk Data ND—60.117.5 EN

282 PLANC Reference Manual
USING SINTRAN MONITOR CALLS

HONBIO - T8INB [ND—100 only]

ROUTINE VOID,VOID &
(INTEGER,BYTES WRITE,INTEGER WRITE) &

2 MN3lO (dev,string,num)

% parameters :
% input : dev = logical device number
% output : string = character string read

H: num number of bytes read

HON312 ~ HOINF (ND—100 only]

ROUTINE VOID,BOOLEAN (INTEGER) : MN312 (num)

parameters : num = monitor call number
0

Oa
% ut-value : monitor call present or not

HON412 - FSCNT (ND~500 only)

ROUTINE VOID,VOID &
(INTEGER,INTEGER,INTEGER,INTEGER WRITE) &
: MN412 (fno,lseg,ctype,segno)

parameters : fno = file number
: lseg = logical segment number
: ctype = connect type
: segno “ segment numbero\°

o\0
a\0

o\°

HOH413 ~ FSDCNT [ND—500 only]

ROUTINE VOID,VOID &
(INTEGER,INTEGER) &

: MN413 (fno,segno)

% parameters : fno = file number
% : segno = segment number

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 283

APPENDIX F

BNF SYNTAX [ESCRIPTIOV (I: PlANC

Norsk Data ND—60.117.5 EN

284 PLANC Reference Manual

Norsk Data ND—60 117.5 EN

PLANC Reference Manual 285
BNF SYNTAX DESCRIPTION OF PLANC

This appendix contains a Backus-Naur Form (BNF) syntax description of
the PLANC language.

Notation used in this appendix

[and], ..., (and) Square brackets, ellipsis and parentheses are
used in the same way as described in Notation in This Manual.

I, ::=, (symbol) are used in the usual way defined for Backus—Naur
Form.

BNF Syntax

(identifier)::= (letter) I@
(letter)[<identifier char)]...<1etter) I
(letter>[<identifier char)]...<digit>

(identifier char)::= (letter) I<digit> I_

(number)::= (decimal number) I<octa1 number) I
(floating point number)

(decimal number)::= [—](unsigned decimal number)

(unsigned decimal number>zz= (decimal digit)...

(decimal digit)::= (octal digit) I8 I9

(octal digit>::= 0 I1 I2 I3 I4 I5 I6 I7

(floating point number)::=
(decimal number).(unsigned decimal number)
[E(decimal number)]

(character literal)::= £ (character)

(string>::= '(character)...'

Norsk Data ND-60.117.5 EN

286 PLANC Reference Manual
BNF SYNTAX DESCRIPTION OF PLANC

(simple type specification statement)::=
TYPE<type identifier) = (simple type)

(type identifier)::= (identifier)

(simple type)::= (standard data type) l<enumeration type) {
(pointer type) [(modified type)

(standard data type)::= INTEGER [REAL [BOOLEAN [LABEL [VOID

(enumeration type)::= ENUMERATION(<identifier>
[,(identifier>]...)

(pointer type)::= (qualification) POINTER

(qualification)::= (type identifier) I<simple type) |
(array type) [(record type) [(set type)

(modified type)::= (range modified type) I
(precision modified type) I
(read modified type)

(range modified type)::= INTEGER RANGE((lower>:(upper))

(lower)::= (constant expression)

(upper)::" (constant expression)

(precision modified type)::= REAL PRECISION ((precision))

(precision)::= (constant expression)

(read modified type)::= (simple data type)<access mode)

(access mode)::= READ [WRITE

(constant specification)::= (identifier) (expression)

(simple type declaration statement>zz=
(simple type specifier):(identifier clause)
[,(identifier clause>]...

(simple type specifier)::= (simple type) ‘(type identifier) l
TYPEOF((identifier))

Norsk Data ND‘60.117.5 EN

PLANC Reference Manual 287
BNF SYNTAX DESCRIPTION OF PLANC

(identification clause)::= (construction clause)
(equivalence clause) I
(postponement clause)

(construction clause>::= (identifier>[:=(expression>]

(equivalence clause)::= (identifier)=(identifier)

(postponement clause>::= (identifier)?

(composite type specification statement>::=
(array type specification statement)
(record type specification statement)
(variant part record type specification statement)
(enumeration set type specification statement)
(routine type specification statement)

(array type specification statement>::=
TYPE<type identifier) = (array type)

(mode specification>::= (storage mode) |<access mode)

(storage mode)::= PACKED

(access mode)::= READ iWRITE

(array type declaration statement>zz=
(array type specifier):(array identification clause)
[,(array identification clause>]...

(array type specifier)::= (array type) |(type identifier)

(array identification clause)::=
(dimension clause)[(initialization part)] I
(array initialization clause)

(dimension clause>::=
(identifier)((index set)[,(index set)...)

(array initialization clause)::= (identifier)
(initialization part)

(initialization part)::= :=(initial array values)

(initial array values)::= (initial array values)
[,(initial array values)]... I
((expression)[,(expression>]...)

(index set)::= (expression):(expression)

NEW<array type specifier) ((sub-array index set)
[,(sub—array index set)]...)

(sub-array specification>::=
(identifier>((sub~array index set)
[,(sub-array index set)]...)

Norsk Data ND—60.117.5 EN

288 PLANC Reference Manual
BNF SYNTAX DESCRIPTION OF PLANC

(sub-array index set)::= (expression):(expression) I
(expression)

(record type specification statement)::=
TYPE<type identifier) = RECORD [<mode specification)]...
[(data declaration statement)]...
ENDRECORD

(data declaration statement)::=
(simple type declaration statement)
(array type declaration statement)
(record type declaration statement)
(set type declaration statement)

(mode specification>::= (storage mode) (access mode)

(storage mode):: PACKED

(access mode) READ [WRITE

(variant part record specification)::=
TYPE<record type identifier)=
(base record)RECORD[(mode specification)]...
[(declaration statement)]...
ENDRECORD

(base record)::= (type identifier)

(record type declaration statement)::=
(record type specifier>:(record identification clause)
[,(record identification c1ause)]...

(record type specifier)::= (type identifier)

(record identification clause>zz=
(identifier)[:=<initial record values>]

(initial record values)::=
((initial value)[, = (initial value)]...)

(initial value)::= (expression) I
(initial array values) I
(initial record values)

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 289

BNF SYNTAX DESCRIPTION OF PLANC

(set type specification statement>zz=
TYPE<type specifier) = (set type)

(set type)::= (base type) SET

(base type)::= (type identifier) |(range modified type) I
(enumeration type)

(set declaration statement)::= (set declaration)
[,(set declaration)...]

(set declaration)::=
(set type specifier):(identifier)[:=(member list))]

(set type specifier>::= (type specifier) |<set type)

(member list)::= (member list element)
[,(member list element)]...]
(identifier)

(member list element)::= (expression)
(expression):(expression)

Norsk Data ND-60.117.5 EN

290 PLANC Reference Manual
BNF SYNTAX DESCRIPTION OF PLANC

(action>::= [(label):](expression)
[(label):](sequencing control statement)
[(label>:](exception handler)

(label)::= (identifier)

(action sequence>::= (action)[,(action>...]

(expression):: (value expr) [(void expression)

(value expr>:: (datanelement> [
[(value expr>](operator>(expression>
(value expr>[(assignment op) |
(store—into function call) |
(<value expr>) {(function call)

(void expr)::= (store—into subroutine call)
(subroutine call) ‘
(value expr)[(assignment op)]
(storeeinto subroutine call) I
(value expr)[(assignment op)](subroutine call)

(constant expression)::= (constant) 1
(constant expression)(operator>
(constant)

(constant)::= (constant identifier) l<literal>

(data-element)::= (literal) |(identifier>[,(identifier)]...
(identifier)((index)[,(index)]...)

(index)::= (value expr)

(operator>::= + 1* |/ [ABS p401) [AND [OR |XOR {NOT |SHIFT
= |>< |>= 1 <= |>]< [IN](assignment op)

(assignment op)::= =: }:=:

Norsk Data ND-60.117.5 EN

PLANC Reference Manual
BNF SYNTAX DESCRIPTION OF PLANC

(sequencing statements)::= (go statement) I
(if statement) [(case statement) |
(for statement) i<do statement) I
(while statement) ‘(assert statement) I
(return statement) |<do—while statement) 1
(for—while statement)

(go statement):: GO<1abel>

(if statement)::
IF(expression)THEN<action sequence)
[ELSIF<expression>THEN<action sequence)]
[ELSE(action sequence>]
ENDIF

(condition)::= (expression)

(case statement)::=
CASE<expression>
INCASE<member list)
(action sequence)
[INCASE(member list)
(action sequence)]...
[ELSE(action sequence)]
ENDCASE

(for statement)::=
FOR (identifier) IN (set) DO
(action sequence)
[EXITFOR (action sequence)]
ENDFOR

(do statement)::= DO (action sequence) ENDDO

(while statement)::= WHILE (expression)

(do-while statement)::=
DO
[(action sequence)]
WHILE (expression)
[(action sequence)]
[EXITWHILE (action sequence)]
ENDDO

(for-while statement)::=
FOR (identifier) IN (set) DO
[(action sequence)]
WHILE (expression)
[<action sequence)]
[EXITFOR (action sequence>]
[EXITWHILE (action sequence)]
ENDFOR

Norsk Data ND~60.117.5 EN

291

292 PLANC Reference Manual
BNF SYNTAX DESCRIPTION OF PLANC

<assert-statement>::= ASSERT (expression)

(return statement>zz= RETURN l<expression>RETURN l
<expression>ERRETURN

(exception handler>zz= 0N <exception>[<exception>]...D0
(action sequence)
ENDON

(exception): := ROUTINEERROR OVERFLOW IASSERTFALSE
RANGEERROR |POINTERERROR STACKERROR I

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 293

BNF SYNTAX DESCRIPTION OF PLANC

(routine type specification statement)::=
TYPE (type identifier) = (routine type)

(routine type>zz= ROUTINE [INLINE] [STANDARD] [REFERENCE]
[SPECIAL]
(type in),(type out)[((parameter type)
[(parameter type)]...)]

(type in) = (type identifier)

(type out)::= (type identifier)

(parameter type>::= (type identifier>[(access)]

(access) ::= READ IWRITE

(routine declaration)::=
(routine heading) (routine body) ENDROUTINE I
(postponed routine declaration)

(routine heading>zz=
(routine type specifier):(routine name)
[((formal par>[,(formal par>]...)]

(routine type specifier)::= (type identifier) (routine type)

(routine name)::= (identifier)

(formal par>::= (identifier)

(postponed routine declaration)::=
(routine type specifier):(routine name)?
[,(routine name)?...]

(routine body)::= [(local declaration>]...(action sequence)

(local declaration)::= (declaration statement) I
(routine declaration) I
(type specification statement)

(routine call)::= (routine name)[(parameter list)]

(parameter list>::= (identifier) I
(expression)[,(expression>]...)

(data declaration statement>zz=
(simple type declaration statement) I
(array type declaration statement) I
(record type declaration statement) I
(set type declaration statement)

(routine call)(subroutine call)

1!(function call) (routine call)

[I(store-into subroutine call):: (routine call)

Norsk Data ND-60.117.5 EN

294 PLANC Reference Manual
BNF SYNTAX DESCRIPTION OF PLANC

(store~into function call)::= (routine call)

(main program)::=
(main program heading) (main program body) ENDROUTINE

(main program heading)::= PROGRAM : (identifier)

(main program body>::=
[<local declaration)]...(action sequence)

(basic module)::=
(module header) (basic module body) ENDMODULE

(module header>::=
MODULE (identifier)[(header statement>}

(header statement)::= (import statement) ‘
(export statement) {
(type specification statement) I
(constant statement)

(import statement>::=
IMPORT [SYSTEM] [COMMON] (import unit) [,(import unit)]...

(export statement>zz=
EXPORT [SYSTEM] [COMMON] (identifier) [,(identifier)]...

(type specifier statement)::=
(simple type specification statement) I
(composite type specification statement)

(basic module body>zz= [(declaration unit>]...

(declaration unit>::= (data declaration statement)
(main program) ‘
(routine declaration)

(compound module)::=
(module header) (compound module body) ENDMODULE

(compound module body)::= (module)...

(module)::= (compound module) [(basic module)

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 295

APPENDIX G

PMNC IM’IHENTATIG‘J RESTRICTIOVS

Norsk Data ND—60.117.5 EN

296 PLANC Reference Manual

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 297

PLANC IMPLEMENTATION RESTRICTIONS

This appendix describes various restrictions which may cause users
difficulties. Some may appear in the text of the manual, but apply to
more than one part of it, so they are listed here to make it easier to
find them.

1)

2)

3)

4)

5)

6)

7)

8)

9)

A statement containing either a MACRO call, an INLINE routine
call or a SINCLUDE command, may be terminated by a semicolon,
no other statements may follow the semicolon.

The IND standard routine cannot have as a parameter a pointer
which qualifies a routine with an in—value.

If the ADDR standard routine has a parameter which is a
routine data—element, this parameter must not be enclosed in
parentheses.

If the ADDR standard routine has as a parameter, a routine
with an out value, the outcome of the ADDR routine invocation
will be the address of the routine, not the out~value of the
routine.

Within a routine, the MININDEX, MAXINDEX and IN standard
routines cannot have as -an actual parameter, any of the
routine's formal parameters, if the routine has been declared
with the STANDARD modifier. Note that the compiler does not
detect this condition or give any error message.

The ON OVERFLOW statement does not detect overflow conditions
for unsigned integer data-elements.

It is illegal to EXPORT a family of routines, with the
routine name identifier the same as the name of a PLANC
predefined standard routine or operator, see section 8.4 for
the use of a family of routines.

The following TYPE declaration is illegal, but the compiler
does not give any error message:

TYPE A=BECORD

ENDRECORD
TYPE B=A Z illegal TYPE declaration.

If a family of routines is declared, it is not adequate to
have formal parameters with an identical data type and
different access modifiers, the formal parameters must have
distinct data types.

Norsk Data ND—60.117.5 EN

298

10)

ll)

12)

13)

14)

15)

l6)

l7)

PLANC Reference Manual
PLANC IMPLEMENTATION RESTRICTIONS

For example:

ROUTINE VOID,VOID[INTEGEH] : HUT?
ROUTINE VOID,VOID[INTEGEB WRITE] : HUT?

The compiler cannot distinguish between the two declarations
and will give a compile error message.

The (source file) parameter of the $COMPILE command must be
separated from the command by at least one space.

0N ROUTINEERROR does not work correctly in routines declared
as INLINE.

A routine name declared in predeclaration, must not appear
later as the identifier in a PROGRAM statement. The compiler
does not detect this or give an error message.

The $SEPARATE~DATA and $DEBUG—MODE commands must be used
outside the outermost module level.

If assembler code refers to a routine, then if the routine
referred to is not on the same scope level, the reference
will not be compiled correctly. In particular, Take care to
remember of reference to a nested routine.

A difficulty occurs in specifying a Break—return within a
routine, where the out—value of the routine may not be
displayed by the Debugger, since it has not yet been stored.
The out-value can only be correctly displayed by the Debugger
after execution of the statement which invokes the routine
has been completed.

If any of the conditional execution constructs such as ELSE,
INCASE, EXITFOR and EXITWHILE are followed, on the same line,
by executable source code, the Debugger Break function will
only stop at the code which ends just prior to the
conditional construct, not the code following it.

If a data—element has been declared with WRITE access only, a
statement which tries to fetch a value from such a data-
element will not generate an error message during compilation
but the results are unpredictable.

It is legitimate in an invocation of a user written routine,
which is declared with an out~value, not to store the out-
value. The compiler will not give any warning or error
messages.

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 299
PLANC IMPLEMENTATION RESTRICTIONS

18)

19)

20)

21)

22)

If a POINTER for a data type which has not yet been defined
is declared then space will be allocated as if the POINTER
data-element is for any of the simple data types, i.e.
usually one word.

For example:
2 n.b. the TYPE norec has not yet been

norec pointer: bp 2 allocates one word only

If $ENDIF is used as a parameter in a macro call, then it
must be terminated by at least one space.

On the ND-lOO, if a routine is declared with a formal
parameter which is REAL8 and with WRITE or READ WRITE access
modified, and a routine invocation contains a REAL4 actual
parameter, the compiler automatically carries out a
conversion. However a value which should be stored into the
actual parameter will not be correctly stored.

If a component of a RECORD PACKED or an ARRAY PACKED data—
element is a different size from an addressable element, or
not aligned with an addressable element of the same size,
then use of the ADDR standard routine to write values into
the component data—element may overwrite adjacent memory
areas.

Take care to remember that parameters of routines declared as
STANDARD or REFERENCE transfer values by passing addresses,
i.e. implicitly using the ADDR standard routine, so the above
difficulties may arise.

If ARRAY—INDEX-CHECK is switched on, and a subarray is used
with bounds outside those declared for the original array,
the compiler does not give any warning. Further, during
execution the checking of array element accesses will be
carried out incorrectly after reference to such a subarray,
which has bounds outside those of the original array.

Norsk Data ND-60.117.5 EN

defined

300

23)

24)

25)

26)

27)

PLANC Reference Manual
PLANC IMPLEMENTATION RESTRICTIONS

There are a number of difficulties in invoking inner nested
routines:

i) Inner routines, i.e. other than the outermost level,

may not invoke themselves recursively.

ii) An inner level routine which is predeclared, or
invoked by the IND standard routine, will not be
executed correctly.

iii) If an invocation of an inner level routine is to
have as an actual parameter another inner level
routine, then the actual parameter will be
transferred correctly only if it is the first
parameter in the parameter list.

iv) Inner routines which are declared as STANDARD,
REFERENCE or SPECIAL, will not be executed

correctly.

ADDR(ADDR(an ARRAY data-element)) will not work correctly.
The correct result may be achieved by using two statements
with an explicitly declared ARRAY POINTER data—element.

The standard routine MARKSTACK will be removed in a future
version of the compiler, so users are advised to avoid its
use. ' ~

The keyword PACK will be removed in a future version of the
compiler, so users are advised to avoid its use.

Restrictions on PLANC identifiers:

A) In PLANC, an identifier may have any length, but the
first ten characters only are significant to the
compiler.

B) However, if a PLANC compiler executes on an ND—lOO
machine, only eight characters are significant in the
cross-reference ($CROSS—REFERENCE ...) information.

C) For EXPORTed and IMPORTed identifiers in BRF relocatable
code on the ND—lOO, the first seven characters only are
significant. In NRF relocatable code on the
ND—SOO/MC68000, there is no practical restriction on the
length of exported/imported identifiers, but PLANC still
observes the 10 character limit internally.

D) If you want to EXPORT/IMPORT identifiers with ALIAS
names, note that up to the first 29 characters of ALIAS
names are passed to the loaders. This limitation has
consequences on ND—SOO/MC68000 NRF code only.

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 301
PLANC IMPLEMENTATION RESTRICTIONS

28)

29)

If a RECORD TYPE is modified with READ or WRITE, these
modifiers will have no consequence. However, it is possible
to create RECORD TYPES with READ or WRITE in the
specification.

The inline assembler/disassembler does not include the new
mnemonics in the list below:

2 Missing mnemonics in PLANC inline
2 assembler/disassembler for ND—100
CONSTANT ADDD:140120B, SUBD=140121B, COMD=1401228, TSET=140123B
CONSTANT UPACK=1401258, SHDE=140126B, HDUS=140127B,BFILL= OB
CONSTANT MOVBF: OB,SETPT=1403OOB,CLEPT=140301B,CLEPU=140304B
CONSTANT LDATX=143300B,LDXTX=1433OIB,LDDTX=1433OZB,LDBTX=143303B
CONSTANT STZTX=143305B,STDTX=143306B, LWCS=143SOOB,OPCOM51504OOB
CONSTANT REXh150407B, IOXT=1504ZSB, EXAM5150416B, DEPO=150417B
CONSTANT CLNREENT=140302B,CHHEENTPAGES=140303B ,IPACK=140124B
CONSTANT LEAVE=140136B,ELEAV=140137B,IDENT=1436OOB, MOVE: OB
CONSTANT FANS: OB, PANC= OB, LMP=OOOOOZB, CSH=OOOOIOB
CONSTANT ACTL= OB, UCIL=000012B, PGC=OOOOJ4B,MOVEW=143100B
CONSTANT STATXEJ43304B, SEX=150406B, LCIL=000011B

With these definitions, .it is possible to write assembly
statements like: $* LEAVE; TRR LMP

Norsk Data ND-60.117.5 EN

302 PLANC Reference Manual

Norsk Data ND—60.117.5 EN

PLANC Reference Manual 303

APPENDIX H

INIIEX

Norsk Data ND~60.117.5 EN

304 PLANC Reference Manual

Norsk Data ND-60.117.5 EN

PLANC Reference Manual 305
INDEX

This manual's index is entirely rewritten as compared to the latest
version of the manual, and much extended.

Throughout the index, an effort has been made to make the entries as
descriptive as possible, and to provide "pointers" to useful parts of
the text as seen from the user's point of view.

Therefore, the examples have been indexed: For instance, if you look
up "example" in the manual, you will find an extensive list of
examples with a short description of their themes. So if you look for
"how to"-information, the the part of the index concerned with the
examples is a good place to start.

A likely source of difficulties when using PLANC is the implementation
restrictions. In this manual, you will find the restrictions listed
under ”restrictions on" in the index, as well as under the topics they
are concerned with. For example, if you are uncertain of the effect of
the ”ARRAY-INDEX~CHECK ON" compiler command, you will find a pointer
to restrictions under both ”ARRAY-INDEX-CHECK" and "compiler commands"
in the index.

Furthermore, an effort has been made in the index to distinguish
between PLANC keywords and "ordinary" words and phrases through
printing the keywords in CAPITAL letters and the others in small
letters. Consequently, it is possible to distinguish between the
”records" which we write onto a file and the RECORD data type used
internally in programs, and between "standard routines" such as INPUT,
OUTPUT and MONITOR_*CALL, which is something entirely different from
the STANDARD modifier to ROUTINE declarations.

Commonly used and important words and phrases, such as "data-element",
"literal" and others, are defined quite precisely when they are
introduced the first time in the manual. Later on, it is taken for
granted that the reader understands the meaning of these words and
phrases, so that they need not be described when they are re-
introduced. If you feel that your understanding of such a phrase is
vague, you are advised to look up the phrase in the index and see if
you can find a pointer there to a definition for it. Or you can look
for it under the "definitions" entries in the index.

The index also is a convenient place to look for condensed lists of
monitor call routines directly available from PLANC (where the
MONITOR~CALL routine is not needed), and of different types of data-
elements and compiler commands etc.

Norsk Data ND-60.ll7.5 EN

************** SEND US YOUR COMMENTS!!! **************

Are you frustrated because of unclear information in
this manual? Do you have trouble finding things?
Why don’t you join the Reader's Club and send us a
note? You will receive a membership card -- and
an answer to your comments.

Please let us know if you
' find errors
' cannot understand information
' cannot find information
' find needless information

Do you think we could improve the manual by
rearranging the contents? You could also tell
us if you like the manual! ‘

"Hung“... HELP YOURSELF BY HELPING US!! HHHHfln

Manual name: PLANC REFERENCE MANUAL 1 Manual number: ND-60.1l7.5 EN

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual ?

Your name: Date-

Company: Position'

Address:

What are you using this manual for ?

NOTE! Send to:
This form is primarily for , Norsk Data A.S _____>
documentation errors. Software and Documentation Department
system errors should be reported on PO. Box 25, Bogerud Norsk Data’s answer will be found
Customer System Reports. 0621 Oslo 6, Nonivay on reverse side

Answer from Norsk Data

Answered by Date

Norsk Data A.S
Documentation Department
PO. Box 25, Bogerud
0621 Oslofi, Norway

************** SEIND US YOUR COMMENTS!!! **************

Please let us know if you
' find errors
' cannot understand information
' cannot find information
‘ fincl needless information

Do you think we could improve the manual by
rearranging the contents? You could also tell
us if you like the manuall ‘

Are you frustrated because of unclear information in
this manual? Do you have trouble finding things?
Why don’t you join the Reader’s Club and send us a
note? You will receive a membership card — and
an answer to your comments.

HHHHflfl HELP YOURSELF BY HELPING US” “HHHH”

Manual name: PLANC REFERENCE MANUAL

What problems do you have? (use extra pages if needed)

Manual number: ND-60.117.5 EN

Do you have suggestions for improving this manual ?

Your name: Data

Company: .Position'

Address:

What are you using this manual for ?

NOTE! Send to:
This form is primarily for Norsk Data A.S —_>documentation errors. Software and Documentation Department
system errors should be reported on PD. Box 25, Bogerud Norsk Data's answer will be foundCustomer System Reports. 0621 Oslo 6, NonNay on reverse side

Answer from Norsk Data

Answered by Date

Norsk Data A.s
Documentation Department
PO. Box 25, Bogerud
0621 Os|06, Norway

