PLANC
Reference Manual

ND--60.117.04 Revision A

& NorskData

PLANC
Reference Manual

ND--30.117.04 Revision A

s BT

{ '\ﬂStf&UUC‘;‘}gﬁ .
Q) Fa

05
5 (J'/7 I .

NOTICE

The information in this document is subject to change without notice. Norsk Data
A.S assumes no responsibility for any errors that may appear in this document.
Norsk Data A.S assumes no responsibility for the use or reliability of its software
on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. [t may not

be photocopied, reproduced or translated without the prior consent of Norsk
Data A.S.

Copyright @ 1983 by Norsk Data A.S

i

PRINTING RECORD

Printing Notes
10/79 Original Printing
06/80 Second Edition
01/82 Third Edition
06/83 Fourth Edition
12/83 Revisicn A

The following pages have been revised or added:

ix,2,4,8-9,11,20-21,35- 36, 38 - 39, 43, 45, 48,58, 61,72, 79, 87,

102,104,107, 110, 113, 126 - 127, 129, 138 - 140, 149, 151, 154 - 156,

156a - 166b, 158 - 162. 166, 173, 175, 182, 184, 186 - 188, 190,

205 - 206, 216, 219, 225 - 226, 226a, 229, 231, 237 - 239, 241 - 243, 245,

249,251 - 253, 279 - 238, 291, 295 - 304

Page 305 has been removed.

20000000

200009009

Publ. No. ND-60.117.04, Rev. A
PLANC Reference Manual
December 1983

20000000
050090000
000000060

6000000

555::355: NORSK DATA A.S
280000022 P.O.Box4, Lindeberg gard
g00s0000 Oslo 10, Norway

Manuais can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replazes the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one or
more single pages to be merged into the manual by the user, each revised page
being listed on the new printing record sent out with the revision. The old
printing record should be replaced by the new onz.

New versions and revisions are announced in the ND Bulletin and can be ordered
as described below.

The reader’s comments form at the back of “his manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms, together with all types of inquiry and requests for documentation
should be sent to the local ND office or {in Norwey) to:

Documentation Department
Norsk Data A.S

P.O. Box 4, Lindeberg gard
Oslo 10

This manual is in loose leaf form for ease of updating. Old pages may be
removed and new pages easily inserted if the manual is revised.

The loose leaf form also al'ows you to place the manual in a ring binder (A) for
greater protection and convenience of use. Ring binders with 4 rings corre-
sponding to the holes in the manual may be ordered in two widths, 30 mm and
40 mm. Use the order form below.

The manual may alsc be placed in a plastic cover (B). This cover is more suitable
for manuals of less than 130 pages than for large manuals. Plastic covers may
also be ordered below.

.\{
i - [el R
[@ Toae ¢ fremeun w amm
= NCRSIK DATA 2.5 NORSIK CATA AS
L 5, i s, 15 S
\ b0 60034 3 § 230 °303s £ E:
< 5 "8
J L
A Ring Binder B Plastic Cover

Please send your order to the local ND office or (in Norway) to:
Documentation Department
Norsk Data A.S

P.O. Box 4, Lindeberg gard
Oslo 10

ORDER FORM

| would like to order

....... Ring Binders, 39 mm, at nkr 20,- per binder

....... Ring Binders, 43 mm, at nkr 25,- per binder

....... Plastic Covers at nkr 10,- per cover

N BT e e e e

Company
Address

Preface.:

THE PRODUCTS

This manual describes products which run wunder the SINTRAN III
operating system

Compilers

PLANC Compiler - ND-100 ND-10309 (release D}
PLANC Compiler - ND-500 NDO-10310 (release C)
PLANC Compiler - MC68000 ND-10491 (release B)

Run-time Systems

PLANC-1BANK - ND-100 ND-10309
PLANC-2BANK - ND-100 ND-10309
PLANC - ND-500 ND-10310
PLANC-MCH8 - MC68000 ND-10481
THE READER

This manual will be of interest to the users wishing to write or read
PLANC programs.

PREREQUISITE KNOWLEDGE

The reader should have had some programming experience prior to using
a systems programming languiage like PLANC. A general knowledge of
compilation and execution of programs under the SINTRAN III operating
system would also be useful.

RELATED MANUALS

Related manuals for basic SINTRAN knowledge

SINTRAN III Introduction ND-60.125
SINTRAN III Time-sharing Batch Guide ND-60.132

THE MANUAL

This manual is primarily intended for reference purposes and 1s
organised 1in a progressive sequence of topics from chapter 2 onwards.
Chapter 1 however, is intended to give an overview of the whole
language for the less experienced programmer, or for a user only
requiring a reading knowledge 3f PLANC programs.

This version of the manual corresponds to releases, noted above, of
the various PLANC compiler products.

This version of the manual contains details of the new product, the
compiler for the MC68000. Two new Appendices have been added.
Otherwise the changes and additions are mainly corrections and
clarification of details which have been reported by users.

ND-60.117.0¢4

vii

I ABLE Q F CONTENTS

Section

1 [NTRODUCTION AND OYERVIEW OF THE PLANC LANGUAGE
1.1 PLANC Language Overview

1.2 A Simple PLANC Program

1.3 Data Types

1.4 Type Spec1f1catlon

1.5 Records .

1.6 List Processing .
1.7 Sequence Control Statements
1.8 Routines

1.9 Modules .

1.10 Scope of Identlf Lers

1

1

12 A More Complex Example

2 BASIC LANGUAGE ELEMENTS

Introduction
The Character Set
Standard Symbols
Statements
Continuation of Statements
Comments
Literals .

Integer thera S
.2 Real Literals
.3 Boolean Literals
Literal Expressions
1 Integer Literal ExpreSSLOns
.2 Real Literal Expressions
.3 Boolean Literal Expressions
Single Character Literals
String Literals
Identifier Names .
Enumeration Literal Llsts
Implied Range

D W WD~~~ O U S W N
—

PO N0 NN AN NN NN NN NN N R NN
e (D
N - o

—
(O]

3 DATA DECLARATION AND SIMPLE DATA TYPES

Definition of PLANC Terminology
Integer Data-Elements

Real Data-Elements

Boolean Data-flements

Constant Declarations
Enumeration Data-elements
Pointers .

Pointer Implled Range

Labels

W W W W W W W ww
W o ~N O S W N —

11 Simple Input/Output to the Termlnal

Fage

19

19
19
20
22
22
23
24
24
25
25
26
26
21
217
28
28
29
30
31

33
33
35
36
317
38
39
40
41
42

[553

Ui g 0 O Ot

B PN B N NI ek medh mh mt —a mh e b —h ek

DT W N e

~no

e N D U W N e

viii

Void
Modified Data Types

.1 Range Modification
L2 Precision Modification
.3 Access Modification

Predefined Data Types

L BYTE Data-elements
.2 BYTES Data-elements
.3 BITS Data-elements

(5 I N

—

Type Specification and User Deflnpd Typns
TYPEGF Standard Routine .
Equivalent Data Storage for Data elements
Predeclaration

SIZE Standard Routlnp

DATA DECLARATION AND COMPOSITE DATA TYP?ES

Arrays
Array Declaratlons . .
Array Type Specification and User)eflned Typps
Reference to Array Elements and Access Mode
Operations on Entire Arrays and Array Access
Index Set Information
Subarrays .
Predefined Data Types stng Arrays .

A BYTES - Arrays Used to Represent Character Strlngs
.2 BITS - Arrays Used to Represent Sequences of Bits

Records . .
Record Declaratlons and Type Spec1F1cat10n
Variant Record Type Specification
Reference to Record Components and ALcess Mode
Operations on Entire Records and Record Access
PACKED Option for Arrays and Records

Sets .
Set Declaratlons .
Set Type Specification and User DeFlned Types
Operations on Sets

Routines .

Dynamic Allocatlon of Data elements

Processing of Records in List Structures

EXPRESSIONS - FORMATION AND EVALUATION

Assignment Operators
Arithmetic Operators

Logical Operators

Relational Operators .
Conversion Between Data Types

SEQUENCE CONTROL STATEMENTS
GO Statement

IF Statement

ND-60.117.04

42
43
43
I
45
46
46
46
46
47
48
48
49
51

53

53
54
58
59
61
62
63
64
64
66
67
67
70
12
73
T4
15
75
77
78
83
84
87

89

91
35
99
102
104

107

107
108

1X

Section Page
6.3 CASE Statement 111
6.4 D0 Statement 112
6.5 FOR Statement 113
6.6 WHILE Statement 119
6.7 The ASSERT Statement . 122
6.8 Exception and Error Handling 123
7 ROUTINES 125
7.1 Routine Declaration . 125
7.2 In-value and Out-value of Routlnes 131
7.3 Routine Invocation 133
T.4 Parameter Transfer 141
1.5 Exit from a ROUTINE . . 1464
7.6 Routine TYPE Specification and User Deflned Routlne TYPE 146
1.7 Recursive Routines . 147
7.8 Scope of Identifiers in PLANC Routlnes 149
7.9 Standard Routines Available in PLANC 150
7.1 Table of PLANC Standard Routines 156
8 PROGRAM STRUCTURE 197
8.1 Basic MODULE 157
8.2 Main PROGRAM e e e e e e e 159
8.3 EXPORT/IMPORT - Communication Between modules 160
8.4 ALIAS Use in a Module . 163
8.5 Module Structure and Separate Compllatlon 168
8.6 Data-element Storage and the Program Stack 170
8.7 Scope of Identif:.er Names in PLANC Modules 172
] INPUT/OUTPUT 173
9.1 Input/Output Terms and Concepts 173
9.2 Formatted INPUT Routines . 175
9.2.1 I Format, Integer INPUT Standard Routlne 177
9.2.2 0 Format, Octal INPUT Standard Routine 111
9.2.3 F Format, Fixed Decimal Point INPUT Standard Routlne 178
9.2.4 E Format, Fixed Decimal Point Normalized with Exponent

INPUT Standard Routine . 179
3.2.5 A Format, Alphanumeric INPUT Standard Routlne 180
9.2.6 L Format, Boolean INPUT Standard Routine 180
9.3 Random Unformatted INPUT Standard Routine 181
9.4 Formatted OUTPUT Standard Routines . 182
9.4.1 I Format, Integer OUTPUT Standard Routlne 184
9.4.2 0 and Z Format K Octal QUTPUT Standard Routine 184
9.4.3 F Format, fFixed Decimal Point OUTPUT Standard Routine 185
9.4.4 E Format, Fixed Decimal Point Normalized with Exponent

QUTPUT Standard Routine 186
9.4.5 D Format, Fixed Decimal Point Normalized with Exponent

OUTPUT Standard Routine 186
9.4.6 A/AL Format, Alphanumeric OUTPUT Standard Routlne 187
9.4.17 . Format, Boolean OUTPUT Standard Routine 187
9.5 Random Unformatted OUTPUT Standard Routine 1688

ND-

60.117.0¢% Revision A

Section Page
9.7 CLOSE F1ile o189
3.8 Set BLOCKSIZE of a File 190
9.9 Set/Check Size of a File 191
AFPENDIX

A COMPILER COMMANDS 193
0.1 Compiler Invocation 195
0.2 Compilation of Source Programs 196
0.3 Helpo e, 197
0.4 Compiler Tarmlnatlon e e e e e 197
0.5 End of File e e e 197
0.6 Immediate Preparatlon of Executable Programs . v+« . . . 138
0.7 Including Text from Other Source Files 200
0.8 Compile-time Constants 200
0.9 Conditional Compilation . ., 201
0.10 Compile Time Macros 202
0.11 Cross Reference Listing and Llnkage Informatlon 204
0.12 Listing Control .. 205
0.13 Run Time Options for the ND-100 206
0.14 Data Type Defaults . 207
0.15 Creation of Libraries =207
0.16 Debugging ... =208
0.17 Assembler Code in PLANC Programs 208
0.18 DATE Command . . . e e o e e s e . 208
0.19 OPTION Compiler Command 2 1 K |
B ERROR MESSAGES 21
0.1 Compiler Messages . =213
0.2 Run-time Messages . 219
C MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC 221
0.1 Storage Mapping . 223
0.2 Storage Alignment . 230
0.3 PACKED option 232
D MIXED LANGUAGE PROGRAMMING 235
0.1 Introduction . . . S I 4
0.2 Interfacing with PLANC on the ND'1DD C o e v e 238
0.3 Interfacing with PLANC on the ND-500 241
0.4 Interfacing with PLANC on the MC68000 242
0.5 [nvoking PLANC from Fortran 243
0.6 Invoking Fortran from PLANC 249
0.7 Accessing Fortran COMMON from PLANC 253
0.8 Invoking PLANC from COBOL 254
0.9 Invoking COBOL from PLANC 258
0.10 Invoking PLANC from BASIC =258
0.11 Invoking BASIC from PLANC 280
0.12 Invoking PLANC from MAC . . . e e e e e e o .. 282
0.13 Invoking MAC from PLANC on the ND 100 2863
E USING SINTRAN MOMITOR CALLS 285

ND-60.117.04

Xi

Segtion Page
0.1 SINTRAN Monitor <Calls 281
0.2 Monitor Calls Available on the ND-100 and the ND-500 . . . 268
F BNF Syntax Description of PLANC 2711
G PLANC IMPLEMENTATION RESTRICTIONS 289
Index 295

ND-60.117.04

PLANC Reference Manual

Notation

xiii

In This Manual

The notation used throughout the manual to describe PLANC statements
and constructs is listed below

1)

2)

3)

4}

Square brackets, [and], indicate optional items.

An ellipsis, ..., following sqguare brackets specifies %that

the preceding optional items may appear one or more times 1in
succession.

Parentheses, (and }, sometimes referred to as round

brackets, are part of the PLANC language and must be coded
where shown.

Blanks are used to improve readability, but unless otherwise
noted have no significance.

ND-60.117.04

PLANC Reference Manual 1

1 INIRODUCTION AND_QVERVIEW OF THE PLANC [ANGUAGE

The PLANC (Programming l.anguage ND Computers) is designed as a high-
level systems programming language. It is a member of the ALGOL/PASCAL
family of block structured languages. PLANC is used mainly for writing
systems software such as operating systems and compilers. It has been
detined in a machine-independent manner and machine-dependent features
{(eg. data allocation strategies,interfaces to programs in other
languages) for particular machines will be specifically noted in this
manual.

In the late 60's and early 70's many computer scientists and software
developers ldentified the 'software «crisis’'. One trend from this
recognition of problems and difficulties in software development was
that wusing assembly languages for large software projects was
inadequate. The first move was more extensive use of mMacro pProcessors
to create single language constructs which gave more powerful
facilities to an assembly language, in a reliable and consistent way.
The next step was to develop 'middle-level' languages, primarily for
systems programming, Dbut with features similar to the popular high-
level languages, eg. Fortran, Cobol and Algol. A notable middle-level
language was PL360, developed by N. Wirth for the IBM S/360, and was
the forerunner of PASCAlL which is very widely used now.

The early 70's saw the emergence of PASCAL, BCPL, BLISS, C and other
languages designed for writing systems software such as compilers and
operating systems. Some of these developments had as a side benefit,
fairly straightforward techniques for implementation on various
hardware. System software development began to escape from the
exclusive province c¢f the hardware manufacturers. Further, these
languages extended some areas in which the previous high-level
languages were limited or simply did not have, eg. data structures and
the so-called structured programming control mechanisms IF-THEN-ELSE,
CASE and DO-WHILE etc. This has also affected the recent development
of general-purpose languages, namely some of the particular features
specifled for Fortran 77 and Ada.

ND-60.117.04

2 PLANC Reference Manual
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1.1 PLANC_LANGUAGE OVERVIEW

This chapter is a detailed overview of the FLANC language and should
enable programmers to read and understand PLANC programs. A detailed
presentation of PLANC will appear in later chapters, for those who
wish to write large complex programs and systems or to interface to
programs and systems written in PLANC.

1.2 A_SIMPLE PLANC PROGRAM

PLANC programs are structured into modules and routines; the routine
concept, as will be seen, 1s a broad one compared with other

programming languages.

flut first a simple example. The program below consists of a module
muclpie which contains a routine mprog, of the special routine type,
main program, for specifying the entry point at execution time. The
program also contains some examples of simple declarations, a standard
routine, and the use of the assignment operator.

EXAMPLE 1.1 A VERY SIMPLE PROGRAM

MODULE mudpie

INTEGER ARRAY : stack (0:100)
PROGRAM : mprog

INTEGER : i,3j,k,m

INISTACK stack

1 o= i

2 =: 7

i+j =: k =:m

ENDROUTINE

ENDMODULE

The first line declares a module which i3 the smallest section of a
PLANC program that can be compiled separately.

On line 2, a single dimension array with Dounds of 0 and 100 1is
declared as a data-element in the basic module mudpie. Note that the
lower index bound must be ¢ to be wused by the INISTACK standard
routine.

Variables local to mprog appear in a declarcation statement in line 4.
i and j are set to 1 and 2 and their sum is assigned to both k and m,
within one expression.

However simple a program may be, the INISTACK standard routine, shown
on line 5, must appear in the main program (here mprog) before any
other routines are called. It creates a stack to provide storage for
dynamic allocation of the data-elements within each routine while it
is being executed. In the above examplz this stack will be called
“stack”, declared in the main module.

ND-60.117.04 Revision A

PLANC Reference Manual 3
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1.3 DATA TYPES

Having looked at a basic PLANC program we will now look in greater
detall at the way in which data is described.

PLANC supports a variety of data types which are divided into the
categories of simple and composite. A data-element of composite type
may be subdivided into simple or further composite types. They are the
following:

SIMPLE TYPES COMPOSITE TYPES
INTEGER ARRAY

REAL RECORD
BOOLEAN SET

LABEL ROUTINE

voIbD

ENUMERATION

POINTER

The PLANC data types ENUMERATION and VOID are unusual; since the type
VOID only appears in the declaration of routines it is described along
with them. Data type ENUMERATION enables a data-element to take any
value from an explicitly specified ordered group. Examples of
declarations would be:

ENUMERATION (hot,warm,mild,cool,cold) : weather, temperature
ENUMERATION (lousy,firstclass,luxury,deluxe) : hotel :=lousy

Note that hotel has been set to an initial value of "lousy"” (hopefully
our program will be able to improve itt}).

POINTERS are data types which are "addresses” of variables of some
other type. For instance, we could declare:

REAL : r
REAL POINTER : rp := ADOR{r)

where the pointer data-element rp is initialised with the address of
the REAL data-element r.

ND-60.117.04

4 PLANC Reference Manual
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

Some of the simple data types may have certain characteristics
modified. Thus type INTEGER may have its RANGE modified, type REAL its
PRECISION modified, and any simple type may be ACCESS modified.

Access modified types are either READ or WRITE modified. If the
modification is READ then write operations on the data-element are
illegal, 1ie. the data-element may only take the initial value.
Conversely, WRITE modification usually precludes read access. This
facility can be wuseful when a data-element 1is used as a routine
parameter.

There are also some predefined types of data {ie. they can be defined
in terms of already existing simple types) for holding sequences of
characters {sometimes called character strings) or sequences of binary
bits. They are:

1) BYTE : For containing a single character
2) BYTES : For containing character strings
3) BITS : For containing bit strings

1.4 IYPE SPECIFICATION

Just as predefined and modified data types are based on the simple
data types, 1t 1is also possible in PLANC fcr the user to define his
own data types in terms of any of these three. However, a wuser type
specification differs in that it does not cause a data-element to be

constructed. This will only occur on a subsequent declaration
statement,

Examples of the use of the TYPE specification are:
TYPE personnel_number = INTEGER RANGE (0 : 999999)
TYPE calc = REAL READ
TYPE section = REAL ARRAY POINTER

Note that the data type gegtion represents a pointer to an array of
reals. Contrast this with:

TYPE sparse = REAL POINTER ARRAY

where sparse 1s an array of pointers, each pointing to a single real.

ND-60.117.04 Revision A

PLANC Reference Manual 5
INTRODUCTION AND OVERVIZEW OF THE PLANC LANGUAGE

1.5 RECORDS

Using a TYPE specification for the declaration of RECORD data types
provides a "structure template” for the components of a record as seen
in the example.

EXAMPLE 1.2 A RECORD TYPE SPECIFICATION

TYPE monthnames = ENUMERATION{jan,feb,mar,apr,...,nov,dec)

TYPE date = RECORD
INTEGER RANGE (1:31) : day
monthnames : month
INTEGER RANGE (0:2000) : vyear
ENDRECORD
7 declare some data-elements of the newly specified data type
date : startdate,end_date

The above record has three components but it could have had any number
of them.

Note that as this 1is5 an example of a TYPE specification no data-
element 1s constructed unless a declaration statement 1is encountered
such as the last line of the example.

ND-60.117.0¢4

b PLANC Reference Manual
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

[t 1s possible to define a record which has components in additicn to
those of an existing one. This variant record will then have the
components defined in the base record together with the new components
from the variant part,

EXAMPLE 1.3 A VARIANT RECORD

TYPE part = RECORD
REAL : partno, buyprice, sellprice
ENDRECORD
TYPE tax_rating = part RECORD
INTEGER : taxcode
ENDRECORD
TYPE stock = part RECORD
BYTES : wharehouse{1:4)
REAL : quantity
ENDRECORD
71 declare some record data-elements
part : frame
tax_rating : boughtin
stock : screw

Thus records of type tax_rating (eg. boughtin) will have components
partno, buyprice, sellprice, and taxcode, and records of type stock
{eg. screw) will have components partno, buyprice, sellprice,
wharehouse and quantity.

To access components of a record a dot notation 1s wused. Thus to
access components in the records of example 1.3 we would use
references like:

frame.buyprice
boughtin.taxcode

It can be wuseful to have an empty base record which can serve as a
common entry point to the wvariant ones by using a pointer which
references the base record.

ND-60.117.04

PLANC Reference Manual
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1.6 LIST _PROCESSING

List structures can be defined as record structures as
below.

EXAMPLE 1.4 RECORD TYPES IN LIST PROCESSING

TYPE element = RECORD
element POINTER : NEXT

A other components

ENDRECORD
7/ polnter for the start of a linked list of records
element POINTER : HEAD

illustrated

The pointer HEAD would peoint to the first element in the list and the
pointer NEXT in each record would point to each successive element in

a list.

There are 3 standard routines available in PLANC for list processing:

INSERT will insert a new element at the head of a list
APPEND will append a new element at the end of a list
REMOVE removes any element from the list

ND-60.117.04

8 PLANC Reference Manual
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1.7 SERUENCE CONTROL STATEMENTS

Control statements enable the normal sequence of statement execution
to be altered. PLANC has a number of facilities to form repetitive
loops or select a course of action from a number of possibilities.

The FOR and ENDFOR statements create a very simple loop. The code
bounded by them must include a DO statement as shown in the example.

EXAMPLE 1.5 A SIMPLE FOR-ENDFOR LOOP

FOR count IN 1:n DO
count+sum =:sum
ENDFOR

Another simple loop 1is formed by the DO-ENDDO statements. The
structure is:

DO
statements for execution
ENDDO

Either of the two loops above may contain a WHILE statement. For
example:

EXAMPLE 1.6 ANOTHER FOR-ENDFOR LOOP

INTEGER : lower,upper
INTEGER ARRAY : a(0:10)
FOR i IN lower:upper DO
at{i~t)vali) =:ali)
1 continue the loop only for negative array elements
WHILE a{i)<0
1
ENDFOR

A simple conditional statement is the IF statement. It must always be
followed by a corresponding ENDIF as in:

EXAMPLE 1.7 IF-THEN-ENDIF
1 make the value positive
IF x < 0 THEN

-X =X
ENDIF

IF statements may be nested, and there are no restrictions on the
executable statements which may be contained in a nested IF statement.

ND-60.117.04 Revision A

PLANC Reference Manual 9
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

Further, PLANC has a CASE statement. It selects one of a number of a
group of statements to be executed, the remaining groups are ignored.

EXAMPLE 1.8 THE CASE STATEMENT

ENUMERATION (stop_signal,go_signal) : action
TYPE colour_1list = ENUMERATION (red,blue,green,amber)

colour_list : conlour

CASE colour
INCASE red
stop_signal =:action
INCASE green
go_signal =:action
ELSE

L
L control only comes here for other colours

A
ENDCASE
Note the percent character (1) indicating a comment 1line. It may

appear 1in any column of a statement. Everything following the percent
character, on the same line, is ignored by the compiler.

ND-60.117.04 Revision A

10 PLANC Reference Manual
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1.8 ROUTINES

From a language point of view, routines can be regarded as composite
data-elements. When a routine 1s declared, a data-element 1is
constructed which 1s sufficiently large to contain all of the storage
the routine will require. {Storage required at run time is provided by
the INISTACK standard routine, as illustrated in the very +First
gxample.)

PLANC routines are similar to the subprograms of other languages but
they have an extra feature in that a specific single value can be
supplied to the routine by the caller, and vice versa, such that the
value input is available anywhere within th2 routine. These values are
in addition to the usual parameters. For example:

EXAMPLE 1.3 A SIMPLE ROUTINE
ROUTINE VOID,VOID (INTEGER WRITE) : simple{intpara)

no values supplied into or out of the routine SIMPLE,
it has only one integer parameter intpara

T OO

INTEGER : local,int
FOR local IN 1,2,3,8:10 0O

1 executable statements within the loop

ENDFOR
1 ilntpara will be returned to caller
int=:intpara
RETURN
ENDROUTINE

The wuse of the data type VOID is shown, s3o-named since it indicates
the absence of the in-value data-element or the gut-value data-element
respectively. The routine body <contains control statements for a
simple repetitive loop.

Only one parameter (within the parentheses following the routine name)
will be passed to the routine and it is declared to have WRITE access
only. Parameters have by default READ access only. The keyword WRITE
allows this parameter to have values stored into it and the actual
parameter will not receive this new value before the routine has
returned to its caller.

ND-60.117.04

PLANC Reference Manual 11
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

A more sophisticated ex<ample of sorting by successive maxima follows.
The mechanism used is to find the maximum element of an array which is
"swapped” with the first element. The subarray of all elements, except
the first, is now scanned and the maximum element will be interchanged
with the second of the original array, and so on. Within the routine
the standard routine MAXINDEX yields the maximum index (upper bound)
of “"vector", and the invocation of "highest"” obtains the index of the
maximum element of each subarray. (The routine “"highest” is in fact
given as example 1.12.)

EXAMPLE 1.10 SORTING BY SUCCESSIVE MAXIMA

ROUTINE VOID,VDOID {REAL ARRAY READ WRITE) : sort(vector}
REAL : temp
INTEGER : k,highval
FOR k IN vector DO
highest{vector(k : MAXINDEX({vector,1))) =:highval
vector{(highval) =:temp; vector(k) =:vector(highval)
temp =:vector(k}
ENDFOR
ENDROUTINE

The next example returns an out-value, ie. it is like a Fortran
function reference, which indicates whether an array contains all the
same values or not. The out-value 1is declared as BOOLEAN in the
routine declaration so that a value of TRUE or FALSE can be returned.
In this case it depends on whether or not all the values of an integer

array are unequal.
EXAMPLE 1.11 ROUTINE WITH AN OUT-VALUE
ROUTINE VOID,BJOLEAN (INTEGER ARRAY) : func(arrx)

no in-value, out-value BOOLEAN, in the routine func
having 1 parameter, arrx, an INTEGER array

T T TN

INTEGER : i,
1 loop through all the elements of the array
FOR 1 IN arrx DO
1 loop through each element prior to this element of the array
FOR j IN t:i-1 DO
7 is there a different value 7
IF arrx{i) >< arrx(Jj) THEN
7 all array elements not the same value
FALSE RETURN
ENDIF
ENDFOR
ENDFOR
7 all elements are the same value
TRUE RETURN
ENDROUTINE

ND-60.117.04 Revision A

12 PLANC Reference Manual
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

The routine “highest”, invoked in example 1.10, 1s a further example
w2 can give at this point. It returns the index of the maximum value
in an array (MININDEX obtains the value of the lower bound).

EXAMPLE 1.12 ANOTHER ROUTINE WITH AN OUT-VALUE

ROUTINE VOID,INTEGER(REAL ARRAY} : highest{v)
REAL : max
INTEGER : answer, i
1 set an initial index of the highest value
v{ MININDEX(v,1)=:answer) =:max
/. scan the array for the highest value
FOR L IN v DO
IF v{i) > max THEN
7 note the use of the resulting value as the subscript
v{ i=:answer) =:max
ENDIF
ENDFOR
7 give back the index of the highest value as an out-value
answer RETURN
ENDROUTINE

In the case where there is an in-value, this can be referenced within
the routine by use of the & {(commercial at) character. If the routine
has an in-value but no out-value it will simply store the in-value it
receives; the in-value will be the data-element associated with the
identifier referred to jmmediately preceding the routine invocation.
Example 1.13 shows some of the principles involved.

EXAMPLE 1.13 ROUTINE WITH AN IN-VALUE BUT NO OUT-VALUE

INTEGER : param2,prog_data_el ; REAL : paraml
7 set up the in-value
INTEGER : inval
2=:inval
7 invoke the routine rtn with inval as the in-value
inval rtn{param?, K param2)
7 after the routine call, parm2 will have the value 1
7 1t could be assigned to a program data-element
param2=:prog_data_el

The routine declaration might be

ROUTINE INTEGER,YOID (REAL,INTEGER WRITE) : rtn (p1,p2)

A
1 and the routine body might contain
A
IF a>0 THEN 1 reference in-value
1z:p2
ENDIF
A
RETURN
ENDROUTINE

A routine of this type might be used in situations such as reading or
writing to/from files or similar service functions, thus saving the
programmer some coding.

ND-60.117.04

PLANC Reference Manual
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

13

Finally, the routine with both an in-value and an out-value. As an
example, the routine below adds two complex numbers represented as

records.

EXAMPLE 1.14 ROUTINE WITH BOTH IN AND OUT-VALUES

Z a record type specification of a complex number

TYPE complex = RECORD
REAL : r.,1i
ENDRECORD

1 a routine to perform addition of two complex numbers

ROUTINE complex,complex (complex) : plus{cnum)

1 the out-value is declared as complex
complex : result

1 the in-value, referenced by @, is one complex number,

7 the parameter is the other
d.r + cnum.r=:result.r
.1 + cnum.i=:result.i

/ put the sum of the two complex numbers into the out-value

result RETURN
ENDROUTINE

The routine plus could he invoked by
cl plus c2

where c1 and c2 have been declared as:
complex :c¢i1,c2

Since routine 1identifiers can be a string

of letters or special

characters, the routine name might equally well have been + or *+, and

the invocation:

ct + c2 or
ct *+ ¢2

thus the routine defines a user-written operator.

ND-80.117.04

14 PLANC Reference Manual
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1.9 MODULES

A module, which is the smallest unit of a FLANC program which <can be
complled separately, «can be contained within other modules. Thus we
can have basic modules and any number of compound ones. All program
and data must be inside a basic module and in addition, 1f it is to be
independently executable, it must contain & main program, as shown in
example 1.1. However, only one maln program routine can exist per

executable program since it is this which cefines the execution-time
entry point.

lLarge programs are usually subdivided into logical groups, ie.
modules, to simplify thelr administration. Access from one module to
the data and routines of another 1s controlled by the two PLANC
statements: EXPORT and IMPORT.

An IMPORT statement defines items of other modules to be accessible in
the present module. An EXPORT statement cdefines items in the present
module to be accessible to other modules. In the example below we show
the structure of a compound module which contains two basic modules,
together with a simple usage of the IMPORT and EXPORT statements.

EXAMPLE 1.15 MODULE STRUCTURE

MODULE comp 1 Compound module
MODULE basict 7 Baslc module
EXPORT x
IMPORT REAL : vy
INTEGER : x
A
A
1
ENDMODULE 7 End of module basict
i
MODULE basic? 7 Another basic module
EXPORT vy
IMPORT INTEGER : x
REAL : vy
i
A
/)
ENDMODULE 7 End of module basic?
ENDMODULE 1 End of compound module comp

ND-60.117.04

PLANC Reference Manual
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1. 10 SCOPE_QOF _IDENTIFIERS
An lidentifier has a scope which 1s the routine, or
For example:
EXAMPLE 1.16 SCOPE OF IDENTIFIERS
MODULE update
7 global variables
BOOLEAN ARRAY : busy(0:100)}
ROUTINE VOID,INTEGER : reserve
INTEGER : 1,7
FOR i IN busy DO
ENDFOR
J RETURN
ENDROUTINE

ROUTINE INTEGER,V0ID : release
INTEGER : 1,3

ENDROUTINE
ENDMODULE

The array busy has the scope of module update, and is
the routines reserve and release. The variables 1,
different from the i, J in release.

ND-60.117.04

15

module, which
contains 1its declaration and all the routines, or modules, within

also known
J 1n reserve

it

by
are

16 PLANC Reference Manual
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1.11 SIMPLE_INPUT/OUTPUT TQO THE TERMINAL

PLANC has no extensive facilities for handling 1input and output.
However, there are some system-supplied routines to handle the simple
case. As an example, the statement

INPUT (1,715 ,number)
will read an integer from the terminal and place it in number.
For output, the statement
OUTPUT (1,715 ,number)
will write number as an integer using 5 places on the output line.

We can now write a PLANC program to read 2 numbers from the terminal,
and write out thelr sum.

EXAMPLE 1.17 SIMPLE I/0 USING THE TERMINAL

MODULE summer
INTEGER ARRAY : stacki{0:100)
4 a main 'PROGRAM’ routine follows
PROGRAM : sum
INTEGER : a,b,c
INISTACK : stack
/7 get two numbers from the terminal
INPUT (1,715 ,a})
INPUT (1,15 ,b)
/ output the sum of the two numbers on the terminal
atb=:c
QUTPUT (1,15 ,c)
ENDROUTINE 7 end of routine “sum’
ENDMODULE

ND-60G.117.04

PLANC Reference Manual 17
INTRODUCTION AND OVERVISEW OF THE PLANC LANGUAGE

1.12 A_MORE_COMPLEX EXAWPLE

So that we can see how some of the previously mentioned features might
be combined, we give a final example. Suppose it is required to find
the area of a farm where each field is represented by a record in a
linked 1list of vrecords. In the given code these records are chained
together through the record component data-element next.

EXAMPLE 1.18 DINKUM PLANC

1 specify a RECORD data type for each field of the farm
TYPE field = RECORD
REAL : area
field POINTER : next
ENDRECORD

a pointer data-element to begin a linked list
- see later chaplers for details of building the list

T ™

field POINTER : pepfarm

7 a data-element for the area of the farm
REAL : farmsize

Z invoke the routine to compute the total farm area
acreage(pepfarm)=:farmsize

ROUTINE VOID,REAL (field POINTER) : acreagel{first)
field POINTER : work
REAL : answer
0.0 =:answer
% scan the list of field records to compute the total area
FOR work IN first:next DO
answer + work.area =:answer
ENDFOR
answer RETURN
ENDROUTINE

The FOR-ENDFOR loop contains an “pointer implied range” first:next
which describes a linked list of pointers. The data-element before the
colon is a record pointer indicating the start of the chain. Following
the colon 1is the data-element within the record which contains the
linking pointers through the chain. In this way we can access a linked
list of records using a simple FOR-ENDFOR loop, a useful facility when
processing lists.

ND-60.117.04

18

ND-60.117.04

PLANC Reference Manual

PLANC Reference Manual 19
BASIC LANGUAGE ELEMENTS

2 BASIC LANGUAGE ELEMENTS

2.1 INTRODUCTION

Following the overview of the PLANC language as a whole we will now
begin to look at the language features in complete detail.

This chapter will present the lowest level language elements; such as
the character set, identifiers and literals; with which PLANC source
language statements can be formed. A number of source statements can
then be put together to construct a complete PLANC program. This
program can be submitted to the PLANC compiler to produce an
executable program if the compilation process 1s successful.

2.2 THE CHARACTER SET

The full ASCII character set may be used in PLANC programs. However
particular elements of the language may be made up of a restricted
subset of characters as 1indicated in the following sections. Lower
case alphabetic characters are converted to wupper case except when
used in string literals.

ND-60.117.04

20

2.3 SIANDARD SYMBOLS

The Standard Symbols have predefined meanings in the

PLANC Reference Manual
BASIC LANGUAGE ELEMENTS

PLANC language.

characters only are

A list of all the Standard Symbols

is used to delimit a string literal.

RECORD
REFERENCE
RETURN
REVERSE
ROUTINE
ROUTINEERROR
SET
SPECIAL
STANDARD
STACKERROR
SYSTEM
THEN

TRUE

TYPE

VOID

WHILE
WRITE

s

They are special characters or are formed from special characters and
letters. Standard Symbols comprising alphabetic
often referred to as keywords.
follows
special characters
A - treat the rest of this line as comment text.
& - the statement on this line is continued on the next line.
: - terminate the preceding language statement on this line.
Note this 1is used to put more than 1 statement on a line.
- single apostrophe,
- precedes a single character literal.
{ - opening parenthesis.
) - closing parenthesis.
: - delimiter in declaration statement or range expression.
, - delimiter in a list of identifiers.
3 - routine in-value qualifier.
. - dot notation for accessing record components.
? - predeclaration indicator.
$ - as first character indicates line is a compiler command.
" - enclose macro parameters within the macro definition.
Keywords
ALIAS ENDRECORD INTEGER1
ARRAY ENDROUTINE INTEGER?
ASSERT ENDMODULE INTEGER4
ASSERTFALSE ENDON LABEL
BITS ENUMERATION MODULE
BOOLEAN ERRCODE NIL
BYTE ERRETURN ON
BYTES EXITFOR OVERFLOW
CASE EXITWHILE PACKED
COMMON EXPORT POINTER
CONSTANT FALSE POINTERERROR
Do FOR PRECISION
ELSE GO PROGRAM
ELSIF IF RANGE
ENDCASE IMPORT RANGEERROR
ENDDO INCASE READ
ENDFOR INLINE REAL
ENDIF INTEGER REALS

ND-60.117.04

Revision A

PLANC Reference Manual
BASIC LANGUAGE ELEMENTS

{perators

ABS
MOD
SHIFT

VoAV

1

i

assignment
change
addition

subtraction (binary operator),

multiplication
division
exponentation

absolute value or maximum number of SET members

modulo
shift bits

greater than
less than
equivalent value

greater than or equal

less than or equal
not equal
membership

logical and
inclusive or
exclusive or
logical negation

assignment in CONSTANT statement,
and identifier data type in TYPE specifications
initial value in declaration statements

Standard Routines

ADDR
APPEND
BIT
BLOCKSIZE
CLOSE
CONVERT

DISPOSE
FILESIZE
FORCE
IND
INISTACK
INSERT

ND-60.117.

INPUT
MAXINDEX
MININDEX
NEW

OPEN
CUTPUT

04 Revision A

storage equivalence

PRED
REMOVE
SIZE
Succ
TYPEOF

21

negation (unary operator)

22 PLANC Reference Manual
BASIC LANGUAGE ELEMENTS

2.4 STATEMENTS

PLANC statements are usually written one per line. A statement may be
terminated by a semicolon character (;) but this is not required.
However more than one statement may be included on one line by using
the semicolon character (;) to terminate each statement within the
line. All alphabetic characters in PLANC statements may be typed in
lower or upper case but the compiler will convert all the alphabetic
characters to upper case with the exception of single character
literals and string 1literals, including format descriptors 1in
INPUT/OQUTPUT statements ie. anything between single apostrophes. For
clarity 1t is suggested that all keywords are typed in upper case. A
single blank must be present immediately before and after most
keywords, but more blanks are not treated as significant by the
compiler. Some keywords may be preceded or followed by operators or
delimiters. While PLANC has a free format, it is recommended that
blanks be used generously to indent and space source code elements for

clarity and readability.

For example

INTEGER : int1,int2 ; REAL : rl1 ; BOOLEAN : boolt

2.5 CONTINUATION OF STATEMENTS

Sometimes 1t may be necessary to write a statement which is longer
than one line. If a statement is to be continued on the next line, an
ampersand character (&) must be placed after the statement text on the
first line, and the compiler will append the next line to . the first
line and treat both lines together as a sirgle language statement.

For example

INTEGER : int?1,int2,int3, & 7 this line will be continued
inté, ints

ND-60.117.04

PLANC Reference Manual

23
BASIC LANGUAGE ELEMENTS

2.6 COMMENTS

Comments within program source, are important for documentation
purposes and they may be included on any lines of PLANC source by
inserting a percent character (7). All text following the percent
character (%) on the same line will be regarded as comment text by the
compiler and have no effect on the program.

For example

INTEGER : integtl,integ?

A .

% The line above, this line and the following 2 lines

YA are comment lines. They have no effect on the program.
YA

INTEGER : integ3

INTEGER : integ4 1 This is also comment text ! aha !

Note that there is a special use of two consecutive percent characters
(271}, see section 2.10.

For example

1177 this is not a comment line
L 7 but this 1is

ND-60.117.04

24 PLANC Reference Manual
BASIC LANGUAGE ELEMENTS

2.7 LITERALS

A literal is an integer, real, boolean, character or string constant.
Literals do not «change their value during the execution of the
program. A literal value is held in a storage entity known as a data-
element.

2.7.1 INTEGER L ITERALS

The form of an integer literal is an optional minus sign followed by a
string of digits.

Examples of integer literals

0

123

-1
123456

The maximum and minimum possible values and the actual size of the
data-element used to store the integer literal 1is machine-dependent.
In general the smallest data-element possible to contain the actual
value will be allocated by the compiler.

For example on the ND-100 the values must lie between

-2147483648 and 2147483647 inclusive,
351 will be stored in an INTEGER2 data-element.

For full details of 1limits on possible range of values and actual
storage allocated, see Appendix C.

An integer literal in PLANC may be written as an octal value rather
than as a decimal value. An octal literal is an optional minus sign
followed by a string of digits, each in the range 0 to 7 inclusive,
and followed by the letter 8.

Examples of octal integer literals
0B

1778
-7658

The range of values possible and the storage allocated by the compiler
will be the same as for decimal literals. For example

on the ND-100

5378 (351 decimal) will be stored in an INTEGER2
data-element.

ND-60.117.04

PLANC Reference Manual 25
BASIC LANGUAGE ELEMENTS

2.7.2 REAL_LITERALS

The form of a basic real literal is an optional minus sign, a whole
number part, a decimel point and a fractional part. Both the whole

number part and the fractional part are strings of digits; the whole
number part must be present,

A real exponent consists of the letter E followed by an unsigned whole
number for a positive exponent or a minus sign and a whole number for
a negative exponent. The value of a real literal containing an
exponent is the product of the basic real literal preceding the E and
the power of 10 indicated by the number following the E. The exponent
must not be preceded by a space.

Examples of some valid real literals

0.0

11,

3.1415927

-7128.998

~-98765.0

1.23E2 exponent form of a real literal
1.32E-¢% real literal with a negative exponent

Examples of some invalicd real literals

12 a vallid integer but no decimal point
.0 no digit preceding the decimal point
+1.2 must not be preceded by a + sign
1.5E2.5 exponent must be a whole number
1.6E+2 exponent must not have a + sign

The real wvalue 1is an approximation to the actual value of a
mathematical expression. The actual internal representation of real
values may not be the same in all implementations of PLANC. The
maximum and minimum real values possible may vary on different model
machines or according to the type of floating-point hardware on a
particular machine. Further, the number of significant digits which
may be represented accurately also depends on the machine model and
the floating-point hardware present. Full details of storage
allocation, maximum ard minimum possible values, and the number of
significant digits which can be represented accurately are available
in Appendix (.

2.7.3 BOOLEAN LITERALS
The possible values of a boolean literal are TRUE or FALSE.
Examples of boolean literals

TRUE
FALSE

ND-60.117.04

26 PLLANC Reference Manual
BASIC LANGUAGE ELEMENTS

2.8 LITERAL_EXPRESSIONS

A literal expression is an expression made up of either literals of
the same data type or identifiers which have already been declared in
a CONSTANT statement, thus having a literal value. For a detaliled
description of the way expressions are evaluated, see Chapter 5,
EXPRESSIONS - FORMATION AND EVALUATION. In addition to the
operators listed below for each data type, parentheses may be used for
clarity or to force an expression to be @valuated in a particular
order of operations.

2.8.1 INTEGER LITERAI EXPRESSIONS

Integer literal expressions may be formed by using integer data-
elements and the following operators and standard routines

+ arithmetic plus
- arithmetic minus
unary minus

* arithmetic multiplication
/ arithmetic division

* X exponentiation

MOD modulo

ABS absolute value

SHIFT shift bits

NOT logical complement

AND logical 'and’

OR logical 'inclusive or'
XOR logical 'exclusive or'

MININDEX array index lower bound
MAXINDEX array index upper bound
SIZE data-element size

For example

INTEGER : intt1:=2%2 7 integer literals only
1 the indentifier intl! will be initialised to &

CONSTANT four=4
INTEGER : int2:=(1+four)x*2 7 literals, constants mixed
1 the identifier intZ will be initialised to 10

INTEGER : 1nt3:=777B AND 17B 1 use of logical operator

the identifier int3 will be initialised to 17B
1 ie. 15 decimal

ND-60.117.04

PLANC Reference Manual 27
BASIC LANGUAGE ELEMENTS

2.8.2 REAL_LITERAL EXPRESSIONS

Real literal expressions may be formed by using real data-elements and
the following operators

+ aritnmetic plus
- aritametic minus
- unary minus

* aritnhmetic multiplication
/ aritametic division
ABS absolute value

For example

REAL : rlt:=2.5%4.0 1 real literals only
1 the identifier rlt! will be initlialised to 10.0

CONSTANT rlconst=2.0

REAL : rl2:=(5.7-rlconst}/2.0 / literals, constants mixed
7 the identifier rl2 will be initialised to 1.85

2.8.3 BOOLEAN LITERAL EXPRESSIONS

Boolean literal expressions may be formed by using boolean data-
elements and the following operators

NOT logical negation

AND logical ‘and’

OR logical "inclusive or’
XOR logical 'exclusive or'

Further, boolean literal expressions may contain any of the relational
operators (see section 5.4) with integer operands only.

For example

BOOLEAN : booll:=TRUE AND FALSE { literals only
7 the identifier booll will be initialised to FALSE

CONSTANT bc1=TRUE
BOOLEAN : bool2:=bct OR TRUE /1 literals, constants mixed
/ the identifier bool2 will be initialised to TRUE

BOOLEAN : bool3:=TRUE AND (2=3)

/7 the boolean expression in parenthesis results in FALSE
7 and the identifier bool3 will be initialised to FALSE

ND-B60.117.04

28 PLANC Reference Manual
BASIC LANGUAGE ELEMENTS

2.9 SINGLE_CHARACTER | ITERALS

The form of a single character literal is the number sign character
{#) followed by one ASCII character. For example

#a value is lower case 'a’
$2 value is upper case '2°
#(value is left parenthesis

PLANC has no 'character’' data type. A single character literal will be
held in a data-element of the predefined data type BYTE {see section

3.12.1). With certain choices of data storage allocation, this
enables much faster handling of a single character than a character
string of length greater than one character.

Note that to specify the special characters percent (/),ampersand (&)
and apostrophe (') in a single character literal, only one occurrence
of such a character should follow the number sign character(#).

2.10 SIRING LITERALS

The form of a string literal is the apostrophe character ('), followed
by one or more ASCII characters, terminated by another apostrophe
character {').

For example
"this is a STRING of characters'’

PLANC has no string data type. String literals will be held in a data-
element of the predefined data type BYTES (see section Ho1.7.1).

Upper case alphabetic characters within string literals will not be
converted to lower case.

Note : if 7 (percent), & (ampersand), or ' (apostrophe) characters are
to appear within a string 1literal then these characters must be
duplicated for each occurrence required, in order to prevent their
usual 'special’ interpretation in PLANC. For example

String Literal value

"his && hers’ his & hers

“two 1117 characters’ two 171 characters
‘Tom''s 5 11 share’ Tom's 5 1 share

o

{one apostrophe)

Note that 'a’' is not equivalent to #a and has a different internal
representation.

ND-60.117.04

PLANC Reference Manual 29
BASIC LANGUAGE ELEMENTS

2. 11 IDENTIFIER NAMES

An identifier in PLANC is the name associated with a data-element. An
identifier is a sequence of letters, digits and underscore characters,
but the first character of which must be a letter. An underscore must
not be last <character of an identifier and only single underscore
characters may be used, ie. two consecutive underscore characters are
invalid. While an identifier may be of any length, only the first ten
characters are used as for unique identification. For example

integt

counter_VARIABLE

a_b_c

5abc invalid, does not begin with a letter

in-valid invalid, contains an illegal
character, a hyphen (-)

abe_ invalid, ends with an underscore

a__b invalid, two consecutive underscores

Since uppercase and lowercase letters are treated as equivalent by the
compiler, the identifiers

ident1 and
IDENT1

will be associated with the same data-element.

As only the first ten characters of identifier names are significant,
the identifiers

a_very_long_naine and
a_very_long_idantifier

will be associated with the same data-element.

ND-60.117.04

30 PLANC Reference Manual
BASIC LANGUAGE ELEMENTS

2.12 ENIMERATION LITERAL I ISIS

The form of an enumeratlon literal list is a list of enpumeration

identifiers separated by commas. The general form is
enum-ident{, 6 enum-ident ...]

where

enum-ident is formed under the same rules as identifiers

The order of appearance in the list specifies the sequence of the
enumeration 1identifier values for use as operands with the relational
operators {see section 5.4} or with the PRED and SUCC standard
routines (see section 7.9) which will return previous or successive
values respectively.

For example

red,dark_blue,green,purple

15 a valid enumeration literal list with four enumeration identifiers.

ND-60.117.04

PLANC Reference Manual 31
BASIC LANGUAGE ELEMENTS

2.13 IMPLIED RANGE

The implied range is an abbreviated form for describing all or part of
a list of Integer values, Enumeration identifiers or Pointer data-
elements. The precise meaning of such a list depends on which PLANC
statement it 1s used in. It has the following general form

valuetl : value? or
expnl : expn? or
ptrt . ptr2
where
valuetl, value?2 are both, either integer literals, enumeration

identifiers or the resulting value of literal
expressions of these data types.

expnl, expn? are expressions which will be evaluated at run-time to
give an .integer or enumeration resulting value.

Note : in both the above «cases the second value must be

greater %“han or equal to the first value or a list with
no values will be generated.

ptr1, ptr2 are pointer identifiers within a linked list of record
data-elements, or a linked 1list of pointer data-
elements .

Examples of implied ranges

12 : 36
/ specifies the list of integer values
7 12, 13, 14, ... , 35, 36

2% {(3+1) : 10%*
. specifies the list of integer values
1 8, 9, 10, .. . , 99, 100

ENUMERATION (white,black,red,blue,grey,green,mauve)
7 followed by a statement containing
red : green
7 specifies the enumeration literal list, ie. enumeration
identifiers
JA red, blue, ¢grey, green

2 ™

The implied pointer range is discussed in more detail in section
3.8, together with the description of the Pointer data type. For
examples of the use of an implied pointer range, see FOR -~ ENDFOR

1lnops, section 6.5, and Processing of Records in List Structures
section 4.6.

ND-60.117.04

32

PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

ND-60.117.04

PLANC Reference Manual 33
DATA DECLARATION AND SIMPLE DATA TYPES

J DATA DECLARATION AND_SIMPLE DATA TYPES

This chapter will describe some of the basic terms and concepts
assoclated with the storage and accessing of data wvalues in PLANC
programs. Only the simple data types will be discussed here. More
complex data structures are available in PLANC, eg. arrays and
records, but they will be discussed later.

3.1 DEEINITION OF PLANC TERMINOLOGY

Amongst the basic language elements of PLANC, literals and identifiers
have already been discussed (Chapter 2, BASIC LANGUAGE ELEMENTS). A
data-element 1is any area of storage that can be referred to as an
entity and may contain a definite value. Most data-elements are
referred to by an identifier name but some, such as literals do not
have any associated name. Each data-element is of a defined data tvpe
which specifies two characteristics

1) the format and range of possible values of information stored
in the data-element.

2) the operations which may be applied to the data-element.
Data-elements may be of either a simple or a composite data type. A
data-element of a simple data type is an entity which may not be split
into any components. A data-element of a composite data type consists
of components, each of which is a data-element of simple or <composite
type.

The PLANC language has a variety of data types available.
Simple data types are

1) INTEGER

2) REAL

3) BOOLEAN

4) LABEL

5) VOID

6) ENUMERATION

7) POINTER

ND-60.117.04

34 PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

Composite data types are
1)} ARRAY
2) RECORD
3) SET

4) ROUTINE

Some simple data types may have particular characteristics modified.
The modifications which are available are :

1) RANGE - for INTEGER type only
2) PRECISION - for REAL type only

3) ACCESS MODIFIED - for some simple and composite data types

In a PLANC program a new data type may be created by defining the new
type 1n terms of existing data types. The existing simple data type
used in such a definition is called the base type of the new data
type.

A declaration specifies an identifier name to be associated with a
data-element, the data type of the data-element and allocates
appropriate storage to <contain the values of the data-element. A
declaration may also optionally specify an initial value to be present
in the data-element when the program begins execution. The general
form of a declaration statement for a simple data type is

data-type : identl[:=lit-expl [,ident(:=1lit-exp]]

where

data-type ‘ is a valid simple data type

ident 1s a valid identifier

lit-exp is a literal expression of appropriate type

Note : initial wvalue is valid only for INTEGER, REAL, BOOLEAN
types.

An initial wvalue should normally be vused in the outer level of a
module. If an identifier is to have an initial value inside a routine,
then its access must be declared as READ, see section 3.11.3.

ND-608.117.04

PLANC Reference Manual 35
DATA DECLARATION AND SIMPLE DATA TYPES

3.2 INTEGER DATA-ELEMENTS
The data type 'integer specifies data-elements which can contain
whole number values. The general form of a declaration of an integer

data-elements is

INTEGER : identl[:=lit-exp) [,identl:=lit-expl]

where
ident is a valid identifier
lit-exp is a integer literal expression

The range of possible values which can be held in an integer data-
element has been discussed briefly under Integer Literals, see section

2.7.1 . For full details of the range of possible values and storage
allocated, see Appendi» C,.

Some variants of the INTEGER type are available and these have
particular range limits. These are

1) INTEGER! - +to be stored in an 8 bit field. The range of
possible values is
-128 <= value <= 127

2) INTEGER2 - to be stored in a 16 bit field. The range of
possible values is
-32768 <= value <= 32767

3) INTEGER¢ - to be stored in a 32 bit field. The range of
possible values is
~2147483648 <= value <= 2147483647

The type INTEGER will default to one of the variants depending on the
machine implementation, see Appendix C.

During compilation, the initial value of an integer literal data-
e2lement, will not «csuse a compiler error if it is too large for the
storage available for the data type declared; some form of truncation
will occur. During grogram execution no checks will be carried out
other than those proviced by the hardware being used, eg. overflow,
see Exception and Error Handling, section 6.8 and Appendix C.

Examples of integer declarations
INTEGER : int1,int2,int3,init1:=45,int4
INTEGERT : int8b:= -22

INTEGER2 : inti6b
INTEGERG : int32b

ND-60.117.04 Revision A

36 PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

3.3 REAL DATA-ELEMENTS
The data type 'real’ specifies data-elements which can contain
floating-point values. The general form of a declaration of real data-

elements 1is

REAL : ident[:=lit-expl} [,ident[:=1lit-exp]]

where
ident is a valid identifier
lit-exp is a real literal expression

The range of possible values which can be held in a real data-element
has been discussed briefly under Real Literals, see section 2.7.2
For full details of the range of possible values, the number of
significant digits and storage allocated, see Appendix C.

A variant of the REAL type is available and it has particular range
limits. These are

1) REALB - to be stored in a 64 bit field. The range of possible
values 1is
10**-76 <= value <= 10%¥x76
with accuracy of 15 significant digits.

The type REAL will default to a 32, 48 or b4 bit format depending on
the machine implementation and the floating-point hardware being used,
see Appendix C.

During compilation, the initial value of a real literal data-element,
will not <cause a compiler error if the value is too large for the
storage available for the data type declared; some form of +truncation
will occur. During program execution no checks will be carried out
other than those provided by the hardware being wused, eg. overflow,
see Exception and Error Handling, section 6.8 and Appendix C.

Examples of real declarations
REAL : rl11,r12,rinit1:=45.0,rinit2:=2.65€E~-8,rl13

REALS : rl6ébit
REAL8 : rl64b:= -22.765E24

ND-60.117.04 Revision A

PLANC Reference Manual 37
DATA DECLARATION AND SIMPLE DATA TYPES

3.4 BOOLEAN DATA-ELEMENTS

The data type 'hoolean’ specifies data-elements which «can contain
logical values. The general form of a declaration of boolean data-
elements is

BOOLEAN : ident[:=1lit-expl [,ident[:=lit-expl]

where
ident is a valid identifier
lit-exp is a boolean literal expression

The possible values which can be held in a boolean data-element are
TRUE or FALSE. They have been discussed briefly under B8oolean
Literals, see section 2.7.3

Examples of boolean declarations

BOOLEAN : booll,bool2,bool3
BOOLEAN : blinit1:=TRUE,blinit2:=FALSE AND TRUE

ND-60.117.04

33 PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

3.5 CONSTANT_DECLARATIONS

The ‘'constant’ declaration specifies identifiers which will be
associated with data-elements whose value will be fixed at compile
time and not allowed to change during program execution. The general
form of a constant declaration 1is

CONSTANT ident[=1it-exp] [,ident=lit-exp]l

where
ident is a valid identifier
lit-exp is a literal expression of integer, real, boolean type

The following rules apply to CONSTANT declarations

1) The data type of an identifier is determined by the data type
of the corresponding literal expression following the equals
character (=).

2) If the equals character (=) and the literal expression are
omitted, then the identifier type will be of type integer by
default. In this case the integer value stored in the data-
element will be the next integer value higher than the
previous integer value in this CONSTANT statement. If there
is no previous integer value specified in this CONSTANT
statement, either explicitly or by default, then 0 will be
the first value provided.

Examples of constant declarations

CONSTANT int1=23,r11=3.14,b1l1=TRUE
1 explicit value data types

CONSTANT zero,rl2=1.1,0ne,bl2=FALSE, two
1 identifiers without values take values 0, 1, 2

CONSTANT four=é¢,five,nine=four+five
1 "five' takes the next higher value after 4
1 and 'nine’ is the sum of 4 and §

CONSTANT rl3=rl11#rl2,bl3=bl1 AND bl2

1 expressions result in rl3 taking the value 3.6454%
7 and bl3 taking the value FALSE.

ND-50.117.04 Revision A

PILANC Reference Manual 39
DATA ODECLARATION AND SIMPLE DATA TYPES

3.6 EMUMERATION DATA-ELEMENTS

The data type 'enumeration’ specifies data-elements which can take any
one of a finite number of values declared in an enumeration literal
list. The general form of a declaration of enumeration data-elements
is

ENUMERATION (en-1it-l1list } : identl:=zen-id-vall
[,ident(:=en-id-val]]

where

en~lit-1list is an enumeration literal list

ident is a valid identifier

en-id-val is one of the values in the enumeration literal list

The possible values which can be held in an enumeration data-element
are strictly limited to those values in the enumeration literal list
of this declaration statement. An enumeration data-element will
usually be held in an integer size storage location which will
determine the maximum number of distinct values in the enumeration
literal list, for details see Appendix C.

Examples of enumeration declarations
ENUMERATION (ssturday,sunday) : weekend_days,days
ENUMERATION (ringnes,becks,fosters) : goodbeer:=ringnes
ENUMERATION (ringnes,mack,fosters) : bestbeer:=fosters

The enumeration data type is of particular interest when wused in
conjunction with the CASE statement, see section 6.3

The SUCC standard routine and the PRED standard routine may be used to

obtain the following or previous enumeration values respectively. For
detailed description of these standard routines see section 1.9

NC-60.117.04 Revision A

40 PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

3.7 POINIERS

The data type 'pointer’ specifies data-elements which can contain
references (addresses) to any data-element of a given data type. The
given data type for which a pointer identifier can hold references is
called the ‘'qualification' of the pointer. The general form of a
declaration of pointer data-elements 1is

d-type POINTER : ident(:=p-ident] [,ident:=p-ident ...]
where
d-type is any valid data type
ident is any valid identifier
p-ident is any identifier of 'd-type’ data type whose reference

1s to be stored in the pointer data-element initially.

The value 'NIL' may be used to specify that a pointer identifier
should reference no data-element. This may be used as an initial value
or anywhere within the executable statements to reset the value of a
pointer data-element.

Examples of pointer declarations

INTEGER : int1,int2
INTEGER POINTER : intptrl,intptr2:=int2
REAL POINTER : rlptri1,rlptr2:=NIL

The possible values of a pointer data-element will vary according to
the data type which is to be referenced. Details of storage
requirements of pointer data-elements for various data types may be
found 1in Appendix C.

Pointer data-elements may be initialised at compile time by using the
ADDR standard routine, providing the parameter of the standard routine
invocation can be evaluated by the compiler.

For example

INTEGER POINTER : iptl:=int 7 has the same effect as
INTEGER POINTER : ipt1:=ADDR({int)

INTEGER POINTER : ipt10:=ADDR(10)

will initialise the data-element with the address of the integer
constant 10.

Pointer identifiers may be wused in expressions with all of the
relational operators, eg. to compare addresses for equality in a
conditional statement. However it should be noted that evaluation of
such expressions and the resulting value depend critically on the

internal representation of addresses in each machine implementation of
PLANC, see Appendix C.

ND-60.117.04

PLANC Reference Manual &1
OATA DECLARATION AND SIMPLE DATA TYPES

Pointer data-elements wused as operands for the relational operators
are treated as unsigned integers for the purposes of comparison. For
the size of these integers on each particular machine implementation
see Appendix C.

The data-elements described so far are all static in that the
necessary memory is allocated for a data-element at the time that the
module containing the declaration is about to begin execution. It is
also possible to wuse dynamic data-elements which are created and
destroyed dynamically during the execution of the module. The standard
routines NEW and DISPOSE may be used for dynamically creating and
destroying data-elements respectively, see section 4.5, The POINTER
data type may be used tn refer to either static or dynamically created
data-elements. Dynamically created data-elements do not have explicit
identifiers with which to access their values as do static data-
elements, so the standard routine IND {(see section 7.9) may be wused
to access the value of dynamically created data-elements.

J.8 POINTER IMPLIE(RANGE

The pointer implied range 1is an abbreviated form which describes a
linked list of pointer data-elements which may form a chain of
records. The syntax of the pointer implied range has been described in
section 2.13 . A linked list of records may be set up statically or
created dynamically using the NEW standard routine.

The 1list of data-elements which such a pointer implied range implies,
may be created at compile time or dynamically at run-time when the
appropriate addresses must be set up by the program. A list being
processed by the use of a implied pointer range will terminate when a
NIL pointer wvalue 1is encountered. See Records and List Processing,
section 4.6, the IN operator, section 5.4, and FOR - ENDFOR loops,
section 6.5, for examples of the use of pointer implied ranges.

ND-60.117.04

42 PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

3.9 LABELS
The data type "label’ defines an identifier which has no associated
data-element. A label identifier may only be placed at the start of an
executable statement. The general form 1is

label-ident : executable-statement
Labels must be declared if they are to be referred to by GO
statements, see section 6.1. Labels will be further discussed in
Scope of lIdentifiers, see section 7.8.

Examples of label declarations

LABEL : lab1,loop,next

3.10 voID

The data type 'void' denotes the absence of a data-element where a
data-element could be present in a statement. The general form of a
void declaration is

VOID

It has particular use in routine declarations and will be discussed in
more detail in Chapter 7, ROUTINES.

ND-60.117.04

PLANC Reference Manual 43
DATA DECLARATION AND SIMPLE OATA TYPES

J.11 MODIFIED DATA TYPES

A ‘'modified data type’ is one of the simple or complex data types with
certain of its characteristics restricted. The following modifications
of simple types are available

1} Range Modification - for INTEGER data types only.
2) Precision Modification - for REAL data types only.

3) Access Modification - read/write access to data-elements of
all simple data types.

J.11. 1 RANGE_MODIFICATIIN

A ‘range modified’' integer data-element has its value range restricted
to an explicit wupper and lower bound. The general form of a range
modified integer declaration is

INTEGER RANGE (int-lit-exp : int-lit-exp)
ident[:=int-1lit-exp) [,ident{:=int-1lit-expl J...

where
int-1lit-exp is a valid integer literal expression
ident 1s a valid identifier

The data-elements of a range modified integer data type will have
storage allocated as the smallest number of storage units able to hold
all values of the range explicitly declared.

Examples of range modified integer declarations

INTEGER RANGE (-10:990000) : dblint1,dblint2:=99999
7 will require 32 2it integer data-elements

INTEGER RANGE (0:200) : int1,int2:=148
7 will require data-elements of at least 8 bits

During compilation of a program, the size of an integer literal, wused
for an initial value of a range modified integer data-element, will
not cause a compiler error if the value is too large for the storage
available for the data type declared; some form of truncation will
occur. During program execution no checks will be carried out other
than those provided by the hardware being used, eg. overflow, see
Exception and Error Handling, section 6.8 and Appendix C.

NJ-60.117.04 Revision A

bé PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

3.11.2 PRECISION MODIFICATION

A 'precision modified' real data-element has 1its maximum number of
significant digits wexplicitly specified. The general form of a
precision modified real declaration is

REAL PRECISION {int-1it) : ident(:=real-lit-exp]
[,ident[:=real-lit-expl 1]

where

int-1lit is an 1integer literal less than or equal to a number
determined by the machine and the floating-point
hardware being used.

ident is a valid identifier

real-lit-exp is a real literal expressior

The data-elements of a precision modified real data type will have
storage allocated as the smallest number of storage units able to give
the required number of significant digits.

Examples of precision modified real declarstions

REAL PRECISION (4) : rlt,r12:=99.¢9
/ will require 32 bit real data-elements

REAL PRECISION (8) : rl13,r14:=919.9912%
7 wlll require 48 bit real data-elements

During compilation of a program, the size of a real literal, used for
an initial wvalue of a precision modified real data-element, will not
cause a compiller error if the value is tcoo large for the storage
available for the data type declared; some form of truncation will
occur. During program execution no checks will be carried out other
than those provided by the hardware being used, eg. overflow, see
Exception and Error Handling section 6.8, and Appendix C.

ND-60.117,04

PLANC Reference Manual &5
DATA OECLARATION AND SIMPLE DATA TYPES

J.11.3 ACCESS _MODIFICATION

An "access modified' data-element may have its access restricted to
either READ or WRITE operations respectively. The general form of an
access modified declaration is

data-type READ : ident:=lit-expl,ident:=lit-expl
or
data-type WRITE : identl, ident]

where

cdata-type is a simple data type

ident is a valid identifier

lit-exp is a literal expression resulting in a value of ‘'data-

type’

READ access will not allow the value of a data-element to be changed
during program execution so 1t 1is necessary to initialise such
identifiers in a declaration statement.

WRITE access will only allow values to be stored into a data-element.
This 1s of particular interest in the declaration of arrays and
records, to control access to their component data-elements, see
sections 4.1.3 and £.2.3 . WRITE access 1is discussed also in
relation to parameter transfer in routines, see section 7.4

The default access for all declarations 1is both READ and WRITE, except
for formal parameters of ROUTINES, see Chapter 1

ND-60.117.04 Revision A

46 PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

3.12 PRELEFINED DATA TYPES

Some predefined data types are provided in the PLANC compiler. The
predefined data types are defined in terms of the already described
simple data types. The simple data types have operators and operations
defined for them, however, the predefined have the same operators and
operations as those defined for the base cata type from which the
predefined type has been derived. The following predifned data types
are available

1) BYTE - data-elements can contain single characters only.
2) BYTES - data-elements can contain character strings.

3) BITS - data-elements can contain cequences of bits.

3.12. 1 BYIE DATA-ELEMENTS

The data-element of the BYTE predefined data type can contain a single
character only. It is equivalent to the declaration

INTEGER RANGE {0:255) : declaration-list
Thus BYTE data-elements may represent all <characters in the ASCII
character set. However BYTE identifiers may be used as integer
identifiers with the operators defined for the integer data types.

Examples of BYTE declarations

BYTE : chi1,ch2,ch3

BYTE : chinit:=#z 7 an initialised byte data-element
J/
A
#x=:chit 1 store ch. in a byte data-element
chi+chinit=:ch3 7/ add two bvte data-elements

J.12.2 BYIES NATA-EILEMENTS

The BYTES predefined data type used for character strings will be
discussed in section H.1.7.1.

3.12.3 BIIS_DATA-ELEMENTS

The BITS predefined data type used for bit strings will be discussed
in section h.1.7.2.

ND-60.117.04

FLANC Reference Manual &7
DATA DECLARATION AND SIMPLE DATA TYPES

3.13 IYPE SPECIFICATION AND USER [FFINED TYPES
The predefined data types and the modified data types are examples of

variations of the simple data types described earlier. In a similar
sense, the programmer may define his own data types in terms of the
available data types, including the predefined and modified dats
types. The general form of a type specification is

TYPE new-type-ident = data-type

where

new-type-ident is an identifier to be used as the name of the newly
defined data type

data-type 1s a simple, predefined, modified data type or a
previously defined 'new' data type

It is important to note that a type specification statement will not
cause any data-elements to be constructed. A type specification
statement describes the precise characteristics to be associated with
a data-elements defined by a declaration statement. Data-elements will
only be constructed, and storage allocated for program execution, as a
result of declaration statements for static data-elements or by using
the NEW standard routine for dynamically created data-elements.

Examples of new type specifications and their use

TYPE mychar = [NTEGER RANGE (0:127) 1/ ie. 7 bit characters
I this new type can now be used in a declaration
mychar : ch1,ch2,ch3

TYPE colour = ENUMERATION (red,green,blue,black,white)
colour : clt,cli2,cl3
1 a new data type colour’' is now available

L however, a similar effect could be achieved without creating

* the new data type ‘colour’
ENUMERATION (red,green,blue,black,white) : cl1,cl2,cl3

ND-60.117.04

48 PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

3. 14 IYPEDF STANDARD ROUTINE

The TYPEOF standard routine specifies identifiers to be of the same
data type as a previocusly declared identifier. The general form of use
of the TYPEOF invocation 1is

TYPEOF p-ident : ident-list

where
p-ident is a previously declared identifier
ident-1list is a list of identifier declarations

Example of use of the TYPEOF standard routine

INTEGER : intt,int2,1int3

TYPEQOF int2 : id1,id2
7 id1 and id2 are dependent on the data type of int2,
7 ie. id1, id2 are currently of type integer

3.15 EQUIVALENT DATA STORAGE FOR DATA-ELEMENTS
The equivalence declaration will force two data-elements to begin at
the same storage location, regardless of their data types. The general

form of an equivalence declaration is:

data-type : identifier = previous-identifier

where

data-type is any valid data type

identifier is an identifier of type 'data-type’
previous-identifier is a previously declared identifier

lata-elements of different types require diiferent amounts of storage,
$0 1t will be necessary to know precise implementation details of
starage allocation in order to understand the consequences of
overlapping data-elements with the equivalence declaration, see
Appendix C.

Example of an equivalence declaration

INTEGER : int1,int2
REAL : rlt,rl2=int1t

The data-element for rl2 will begin at the same storage location as
int1 but will not be of the same length.

ND-60.117.04 Revision A

PLANC Reference Manual 49
CATA DECLARATION AND SIMPLE DATA TYPES

3.16 PREDECLARATION

The predeclaration facility may be used if it is necessary to refer to
a data-element in a statement which precedes the actual declaration of
that data-element. A predeclaration must precede the statement which
refers to the data-element. This predeclaration informs the PLANC
compiler that an actual declaration will occur somewhere further on in
the module.

A predeclaration is of the same form as the actual declaration, but a
question mark character (?) follows the data-element name.

For example
INTEGER : int1?

is a predeclaration of int1 and further in the module there must be a
following declaration

INTEGER : int1

The predeclaration 1is of particular use if two routines have mutual
references, eg. if two routines invoke each other.

For example

1 predeclaration of routine data-element rt2
ROUTINE VOID,VOID : rt2?
A
ROUTINE VOID,VJID : rt1
1 invoke rt2
rt2
ENDROUTINE

ROUYINE VOID,VJID : rt2
7 Note the following invocation of rti1 prevents simply
/1 exchanging the order of the routines

rtl

ENDROUTINE

ND-60.117.04

50 PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

A further possible wuse of predeclarations is to initialize a static
linked list of records.

For example

/ define a data type for records in the linked list
TYPE myrecord = RECORD
myrecord POINTER : linkptr
INTEGER : recnumber

ENDRECORD
i initialise a static linked list of records
myrecord : r1?,r2?7,r3? | predeclaration of data-elements
myrecord POINTER : listhead:=ADDRIr?t)
myrecord : ri:=(ADDR(r2),1)
myrecord : r2:={ ADDRI(r3),2)
myrecord : r3:={ NIL,3)

7 Note that predeclaration may be avoided by reversing the
/ order of the last four lines

ND-60.117.04%

PLANC Reference Manual 51
DATA DECLARATION AND SIMPLE DATA TYPES

3.17 SIZE_STANDARD ROUT.INE

The SIZE standard routine returns the number of bytes wused for the
storage of the data-element associated with the identifier specified
in the call to the SIZE routine. As the storage requirements vary with
the different implementations of PLANC, see Appendix C, this standard
routine gives access to the quantity of storage used for a particular
data-element. This routine may also be used for composite data-
elements which could be of particular wuse for dynamically created
arrays or records, see section 6.5,

For example:

REAL : rli
INTEGERZ2 : int?,int2size, realsize
i
SIZE rl1 =: realsize
/ store the number of bytes used for a floating-point value
SIZE int2 =: int2size

7 store the number of bytes used for an INTEGER2 value

Note that the SIZE standard routine may be used to give the size of a
data-element of a user defined data type which appears in a TYPE
specification. Further, any data type keyword may also be used as the
parameter of the SIZE invocation.

ND-60.117.04

52

ND-60.117.04

PLANC Reference Manual

PLANC Reference Manual 53
DATA DECLARATION AND COMPOSITE DATA TYPES

4 DATA DECLARATION AND IZOMPOSITE DATA TYPES

This chapter will describe the composite data types available in
PLANC. Composite data types have components which are either further
composite data types, or simple data types which have been discussed
in Chapter 3 . In array and record composite data-elements, the
component data-elements are wuniquely identified and may be accessed

individually. The following composite data types are available in
PLANC

1) ARRAY - has components, all of the same type.
2} RECORD - has components of different types.
3) SET - 1s a collection of elements, treated as an entity.
4) ROUTINE - is a subprogram to carry out some specific
function.
4.1 ARRAYS

An arrav data-element is made up of a group of components, all of the
same type. The array elements may be either of a simple data type or
themselves be of a composite data type, eg. an array or record. An
array whose components are arrays is called a multidimensional array.
All elements of an array data-element are uniquely identified by an
index value from a continuous integer range or from a range of values
of an enumeration set.

Array data-elements are the basis for the predefined data types, BYTES
for character strings and BITS for sequences of bits. Arrays may also
be used to represent other data structures by defining new data types.

ND-80.117.04

54 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

4.1.1 ARRAY_DECLARATIONS

A declaration of an array data-element specifies the following
information

1) Array Name - an identifier which can be used to refer to the
array data-element as a single entity or to refer to
individual elements of the array by the use of unique index

values.

2) Number of Dimensions - specifies the number of index values
needed to uniguely identify ar element of the array data-
element.

3) Range of Values for each Dimensicn -~ specifies the valid

range of values that each 1index may take in order to uniquely
identify an element of the array cata-element.

4) Initial Element Values - opticnally some or all array

elements may contain initial values at the beginning of
program execution.

ND-60.117.04

PLANC Reference Manual 55
DATA ODECLARATION AND COMPOSITE DATA TYPES

The general form of a declaration of array data-elements is
data-type ARRAY [ARRAY] ... : array-decl[,array-decl]

where

data-type 1s a simple, composite or predefined data type.

ARRAY is repeated as many times as the number of dimensions
required for the array data-elements specified here.

array-decl is declaration of one specific array data-element. It
has the following general form

1dent (low-bnd:up-bnd(,low-bnd:up-bnd] Lo lislvalue-
list)]

where
ident is a valid identifier.

low-bnd is a literal expression which results in an integer or
enumeration value when evaluated. This value is the
lowest value that an index for this dimension may take.

up-bnd as for low-bnd and must be of the same data type as the
low-bnd. This value is the highest value that the index
for this dimension may take.

Note : low-bnd:up-bnd 1is called the jindex set and there must
be one index set for each dimension specified for the
array data-element.

value-list is a list of literal values which will be the initial
values of the array elements. For array elements of
composite or predefined data types, the data-elements
of the initial value list must be of the correct base
type.

Note : 1. that literal expressions may be used, provided that the
resulting value is of the correct type.

2. For arrav elements of the predefined type BYTES, string

literal values will have apostrophes instead of
parentheses.

The data type of all the elements of the array data-element is the
data-type specified in the declaration statement. The number of array
data-elements may be computed by taking the product of the number of
distinct values that each index set contains, ie. the number of values
for each dimension specified for a multidimensional array. The actual
storage required for such an array depends on the storage required for
a single array elemert, then multiplied by the number of elements
specified in the array. For the storage requirements of the simple
data types see Appendix C.

ND-60.117.04

56 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

The array data-element may contain initial wvalues when program
execution begins. These values are specified in the 1list of 1literal
expressions, which have evaluated results of the data type 'data-
type'. The list of values is placed in the array in the following
order; set each 1index to 1its 1lowest value, then vary the indices
through their index sets to their highest value, with the last 1index
changing most rapidly. For multidimensional arrays, if an initial
value list is specified, then it must contain one level of parentheses
for weach dimension, to uniquely define the correspondence of the
values to their array elements. An exception to this rule 1is available
for BYTES arrays of more than one dimension, see section o171,

Note : this default sequence of elements of an array 1is the same as
that used in the PASCAL language, but different to that wused 1in
FORTRAN. This 1is significant 1if modules of mixed languages are to
communicate satisfactorily, see Mixed Language Programming, Appendix
D

If an array declaration contains a list of initial values which has
fewer values than specified by the index set, the specified number of
array elements will be initialized and the rest will be set to a null
value, in fact binary zeroes. For multidimensional arrays, the first
few elements of a group, corresponding to a particular index set, may
be initialized by the use of parentheses.

If a list of literal expressions, to be used as initial values 1in an
array data-element, 1s present in the declaration statement then the
index set may be omitted and the PLANC compiler will supply implicit
bounds 50 that the array will have sufficient elements to contain the
l1ist of initial values. In this case the list of initial values will
implicitly determine the number of elements of the array data-element.
The implicit bounds are zero (0) and the number of elements minus one.

ND-60.117.04

PLANC Reference Manual 57
DATA DECLARATION AND COMPOSITE DATA TYPES

Examples of array declarations

A
3

TN TS T

two one-dimensional arrays, same number of elements, but
the values of each index range are different
REAL ARRAY : vectori1(1:11),vector2(-5:5)

the second array has a list of initial values
CONSTANT two=2
INTEGER ARRAY : art1(1:5),ar2(1:4):=(-2,4+two,21,-108)

the array ar3 has the same size characteristics as ar2 above,
with an index set, with values 0:3, implicitly specified by
the list of initial values

INTEGER ARRAY : ar3:=(-2,4+two,21,-108)

an array whose elements are range modified to be 6 bit
integers
INTEGER RANGE (1:63) ARRAY : modint{(1:3):=(2,4,6)

a real and an integer array with enumeration index sets
ENUMERATION (red,vellow,blue,white,black) : colour
REAL ARRAY : arent{yellow:white):=(1.0,2.0,3.0)
INTEGER ARRAY : aren2(red:blue):={2,3.,5)

a 2 dimensional boolean array and a 3 dimensional real array
BOOLEAN ARRAY ARRAY : bool2(1:5,1:10)
REAL ARRAY ARRAY ARRAY : rl13(1:2,1:3,1:4%)

cube 1is a 3 dimensional array with implicit index sets
equivalent to a declaration
cube(0:2,0:1,0:1}
INTEGER ARRAY ARRAY ARRAY : &
cube:=(((1,3),(2,4)), ((0,0),(0,2)), ({=-1,1),01,~-1)))

ND-60.117.04

58 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

4.1.2 ARRAY TYPE SPECIFICATION AND USER DEFINED TYPES

A type specification may be used to create a new data type based on
the array data type. This newly defined data type may then be used for
declaring data-elements with the characteristics of the newly defined
data type. The general form of an array type specification is

TYPE type-ident = data-type ARRAY[ARRAY]

where

type-ident is8 an identifier which is the name of the new array
data type.

data-type is a simple data type as in an array declaration.

ARRAY;is repeated for the number of dimensions required

for each array data-element to be declared of this new
data type.

Note : For each 'ARRAY' keyword there must be an index set,
specified explicitly or implicitly, 1in each data-
element declaration of this new data type.

A type specification will not result in any data-elements being
constructed, it only specifies <certain characteristics that data-
¢lements will have if they are declared to ke of a newly specified
type. Array data-elements will only be constructed in association with
a declaration statement.

Examples of array type specifications

TYPE ivector = INTEGER RANGE (0:127) ARRAY

1 an array type of one dimensional arrays

L with 7 bit unsigned integer array elements
ivector : ivc1(1:10),ivec2(1:100)

1 2 data-elemants of the 'ivector’ array data type

ENUMERATION (red,blue,green,blue,pink)} : colour
TYPE artype = INTEGER ARRAY ARRAY
1 type specification

artype : ari(red:blue,red:pink) &
:=((1,2,3,%4,5),(6,7,8,9,10))
Z this 1s a 2 dimensional 2*5 array with 10 integer elements
1 which may be accessed with enumeraticn identifier values

ND-60.117.04 Revision A

PLANC Reference Manual 59
DATA DECLARATION AND COMPOSITE DATA TYPES

4.1.3 REEERENCE T ARRA)(ELEMENTS AND ACCESS MODE

In the executable part of a program 1t 1is necessary to refer to
individual elements of an array data-element, either to store a value

or to access a stored value. The general form of a reference to an
array element 1is

array-ident{index-exprl, index-exprl ...}
where
array-ident is the identifier in the array declaration.
index-expr 1s an expression of integer or enumeration data type to

match the type of the 1index set 1in the array
declaration.

Note : there must be the same number of dindex-expr’'s in an

array element reference, as index sets in the array
declaration.

Examples of array referesnces

BOOLEAN ARRAY : boolt1{1:20)

/A
TRUE=:bool1(2)}
TRUE=:bool1(1+1}) 1 is the same as the previous statement
ENUMERATION (red,blue,green,pink} : colour
INTEGER ARRAY ARRAY :iarilred:green,blue:pink)
[

2=:1ar1{blue,blue) 7 store 2 in the array element

An exception to the above is available for BYTES arrays with more than
cne dimension. The last subscript may be omitted and the reference
will be to the entire string, le. the entire range of values of the
last index set.

For example

BYTES ARRAY : b1{1:2,1:3):=("abc’, "xyz')

BYTES : b2({1:3)

b1{1)=:b2
7 the string 'abc' will be stored in array b2
7 Note, one extra ARRAY keyword is implicitly included in a
7 BYTES declaration

In the above example the reference to the array bi, bt{1), is
equivalent to the subarray

b1(1:1,1:3)

ND-60.117.04

60 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

In an array declaration the data type of the elements of the array may
be a modified simple data type. 1In particular, the READ ‘'access’
modified type may be used in the following manner

REAL READ ARRAY : rlari1(1:2):={(8.0,9.0)
This declaration specifies that the array elements are for read access

only. Consequently no values can be stored into the individual array
elements during program execution.

ND-60.117.04

PLANC Reference Manual 61
DATA DECLARATION AND COMPOSITE DATA TYPES

The contents of an array data-element may be copied into another data-
element by using the store operator. Such a copy operation treats an
array as a single entity. An array copy is only allowable if both
source and destination arrays have identical declaration
characteristics, ie. elements of the same data type, same number of
dimensions and the same index sets.

Example of an array copy

INTEGER ARRAY ARRAY : iarrayl{1:2,1:2):=((1,2),(3,4))}, &
iarray2(1:2,1:2)

larrayl=:iarray?2 % copy dilarray!l into iarray?2

An entire array, ie. all of its elements, may be assigned to a single
value by using the store operator in the following way

expr=:array-ident

where

expr has a value of the same data type as the declared data
typg of the elements of the array.

array-ident 1s an array identifier.

Example of assigning a single value into an entire array

INTEGER ARRAY ARRAY : iarray(1:10,1:10)

§5+3%%2=:1iarray 7 stores 14 in each array element

Arrays have an access mode, identical to that for simple data types,
for operations which treat an array as a single entity. The entire
access mode may be declared as READ or WRITE, following the ARRAY
keywords.

ND-60.117.04 Revision A

62 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

Example of use of array access mode

INTEGER ARRAY READ : iari1{1:10)
is an array into which entire array operations cannot store values.
However it is still valid to store into individual elements of the
array.
If the declaration is

INTEGER READ ARRAY READ : iar2(1:10)

then it 1s not permitted to store into individual elements or into the
entire array as an entity.

Note that the access mode keywords, READ/WRITE, may not be placed
between the ARRAY keywords. READ/WRITE must precede or follow all the
ARRAY keywords of any ARRAY declaration.

4.1.5 INDEX SET INFORMATION

All array data-elements have a descriptor which contains 1information
specifying the number of dimensions, numter of index sets, the range
of values for each index set and the data type of the array elements.
All array operations and operations on individual elements use this
descriptor information.

The lower and upper bound values for each 1index set are available
during program execution through the use of the following standard

routines

1) MININDEX (array-ident,dimension number) - returns the lower
bound of the corresponding index set.

2) MAXINDEX f{array-ident,dimension number) - returns the upper

bound of the corresponding lndex cet.

These routines are described in Standard Routines, section 7.9.

ND-60.117.04

PLANC Reference Manual 63
OATA DECLARATION AND COMPOSITE DATA TYPES

4.1.6 SUBARRAYS

A subarray is a part of an array which may be referred to as a single
entity. A subarray is specified by using a subarray index set for =ach
dimension of the original array. Each subarray index set must be a
subset of the corresponiding index set in the original array.

Examples of subarrays

REAL ARRAY : rvector1{(1:10),rvector2(5:40)
/ copy one subarray to another
rvector1(4:8)=:rvectar2(24:28)

INTEGER ARRAY ARRAY : intart{0:10,1:5),intar2{1:11,-2:2)
1 copy subarrays of 2 dimensional arrays

intart(0:10,1i:k-2)=:intar2{1:11,i-3:k-5}

intart(0:1,1:j)=:intar2(2:3,0:3-1)

[f the ADDR standard routine (see section 7.9) 1is called with a
subarray as a parameter then an array descriptor for the subarray will
be constructed. This descriptor may be stored in a pointer data-
element which is Jualified to reference an array of these
characteristics. The subarray may then be treated as if it were an
array, Jjust like a dynamically created array, and the IND standard
routine could be used to obtain the values of elements of this
subarray.

If an array is declared with two or more dimensions, then a subarray
may be implied by omitting the last one or more dimensions. If the
array 1s declared with n dimensions, and the subarray has the last k
dimensions ommitted (k<n), then the subarray will have n-k
dimensions,

For example

INTEGER ARRAY ARRAY : twod({1:100,1:100)
INTEGER ARRAY : oned(1:100)
INTEGER : sub?1,sub?2
7 a one dimensional subarray may be referred as follows
twod(10)=:0ned 1 the explicit subarray twod(10:10,1:100}

Note that an element in the implied subarray twod(10}, may be referred
to by the form twod(108) (2). An alternative to using this form would
be to refer to the original array twod, using twod(10,2) which gives
much faster access at run-time.

ND-60.117.04

5é PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

4.1.7 PREDEFINED DATA TYPES_USING_AREAYS

The array data type is used as a base type for the following data
types

1) BYTES - for character strings.

2) BITS - for bit strings.

4.1.7.1 BYTES - ARRAYS USED T0O REPRESENT CHARACTER STRINGS

A BYTES data-element «can contain any number of <characters. Each
character is held as an unsigned 8 bit integer and is eguivalent to
the declaration

TYPE bytes = BYTE ARRAY PACKED
Note : the keyword PACKED will be discussed in section b.2.95.

The declaration of a BYTES data-element includes one ARRAY keyword

implicitly, as this predefined data type is defined as an array of
BYTE data-elements.

The elements of a BYTES data-element, ie. a BYTE array, may be used as
operands for integer operators or the entire array may be treated as
an integer array, but the only specific character string operations
provided by the PLANC compiler are assignment and the relational
operators, see section 5.4. The user may of course create more
string functions, eg. string concatenation.

Examples of BYTES data-elements

BYTES : magic{1:100)
/
7 a data-element which can hold 100 separate characters
A

"abracadabra’=:magic(10:20) 7 stcre 11 characters

BYTES : string:="1i am the greatest’
1 a data-element which can hold 17 characters
1 the first character can be referenced by
1 string(0)
7 the second by
1 string(1) and so on

ND-60.117.04

PLANC Reference Manual 65
DATA DECLARATION AND COMPOSITE DATA TYPES

If a BYTES array of more than one dimension is to be initialized, then
an exception to the normal predefined data type facilities 1is
avallable. Thils represents an array of strings, where the Last
dimenslon may be initialized by a whole string.

For example

BYTES ARRAY : bytes2hy4(0:1,2:5):=("abcd’', wxyz')
L two strings, each containing & characters, in an array

It is of interest to note in the type specification, that the BYTES
type is effectively specified in terms of another predefined type.

As a consequence of the data type BYTES being defined as a BYTE ARRAY,
there may be a difficulty if an access mode, READ/WRITE is to be used
for each array element, ie. each BYTE data-element which makes up the
BYTES array. In order to declare an access mode for each array
element, the access mode keyword, READ/WRITE, must precede all of the
ARRAY keywords. Since the BYTES declaration includes an implicit ARRAY
keyword, it 1s not possible to declare an explicit access mode keyword
prior to the first ARRAY keyword. If such an explicit access mode for
each element of a BYTES array is required, the wuser will have to
construct his own declaration as a BYTE array, with the access mode
keyword placed prior to all ARRAY keywords.

For example

BYTE ARRAY ARRAY PACKED : safe_els (0:9,0:9)
1s exactly equivalent to the declaration

BYTES ARRAY : safe_els (0:9,0:9)

However, i1f the array elements are to have a READ access mode only,
then the following declaration is the only way to achieve this

BYTE READ ARRAY ARRAY PACKED : safe_els (0:9,0:9)
If a number of BYTES arrays were required with READ access mode for
each element, a newly defined data type «could be created for
convenience.

For example

TYPE mybytes = BYTE READ ARRAY ARRAY PACKED

ND-60.117.04

66 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

4.1.7.2 BITIS - ARRAYS USED_TO_REPRESENT_SEJUENCES (OF BITS

A BITS data-element can contain a sequence of bits of any length. Fach
bit is represented by a BOOLEAN data-element compressed into succesive
bits of storage. It is equivalent to the declaration

TYPE bits = BOOLEAN ARRAY PACKED

Note : the keyword PACKED will be discussed in section 4.2,

wn

The elements of a BITS array may be used as operands for boolean
operators or the entire array may be treated as a boolean array, but
there are no specific bit operations provided by the PLANC compiler.
The wuser may of course create bit functions, eg. concatenate two bit

strings. An element of a BITS array may take the values TRUF and
FALSE.,

Examples of BITS data-elements

BITS : flagst{t:10)
7 set individual flags

TRUE=:flagst{1)

FALSE=:flags1(3)

BITS ARRAY : flags2{1:2,1:2):=({TRUE,FALSE},(TRUE,TRUE})
BOOLEAN : blt

/1 access a single bit value
flags2({2,2)=:bl1

ND-60.117.04

PLANC Reference Manual 67
DATA DECLARATION AND COMPOSITE DATA TYPES

4.2 RECORDS

A record data-element is made up of components each of which may be of
any data type, simple, composite or newly defined. Each component of a
record data-element 1s uniquely identified by an identifier within the
record declaration. The RECORD data type must be declared in a TYPE
specification statement; declaration statements for RECORD data-
elements must wuse a record data type specified previously in the
program in which the declaration statement occurs.

4.2.1 RECORD _DECLARATIONS _AND TYPE _SPECIFICATION
A record type specification specifies the following information

1) Record Type Name - an identifier to be wused 1in declaration
statements to refer to the record data type.

2) Component Dats Type - the data type of each component of the
record data-element.

3) Component Identifier - the name used to refer wuniquely to
each component of a record.

The general form of a record type specification 1is
TYPE rec-type-ident = RECORD

comp-data-type : comp-ident-list-1

comp-data-type : comp-ident-list-2
comp-...-11ist-n [MOD literal-expr]
ENDRECORD

where
rec-type-ident is an identifier to name the record data type.

comp-data-type is the dsta type of the component data-element.

comp-ident-list is one or more component identifiers.

Note : use a 1list if a number of components of the same type,
grouped together, are required.

literal-expr is any literal expression.

ND-60.117.04

68 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

A record type specification will not result in any data-elements being
constructed, it is only a description of which component data-elements
are constructed for declaration statements which wuse this newly
specified record data type. Records which are specified independently
of each other, 1e. not variants, may use the same identifier name for
a component.

Examples of record type specification and declaration
7 specification of a 'parts’ record type

TYPE partrec = RECORD
INTEGER : partnumbter

BYTES : partname (1:20)
REAL : partprice
ENDRECORD

7 each record has 3 components - a number, name and
1 price for a part
/A
/A

/ declare 2 data-elements of the 'parts’ data type
partrec : mypart,yourpart

/7 a record may have arrays or records as components
TYPE person = RECORD
BYTES : personname{1:20)
INTEGER : age
ENDRECORD
TYPE team = RECORD
BYTES : teamname{1:15)
INTEGER ARRAY : teamnumbers (1:30)
person ARRAY : teammembers (1:30)
ENDRECORD
1 the record 'team’ has an array 'teamnumbers' and
/7 an array of records ‘'teammembers’
team : myteam 7 a "team' data-element declaration

ND-B0.117.04

PLANC Reference Manual 69
OATA DECLARATION AND COMPOSITE DATA TYPES

The components of a record data-element may be initialized by the
compiler so that the values will be present when the program begins
execution. The initial values must be specified in the record data-
element declaration. I[f any components of a record data-element are to
be initialized, then all components of that record must be given an
initial value,

Example of initializing record components

TYPE partrec = RECORD
INTEGER : partnumber
BYTES : partname (1:20)
REAL : partcost
ENDRECORD
% declare a record data-element with components initialized
partrec : psupply:=(123, power supply',100.2)

Note that if equivalence is used within record components and initial
values are to bhe placed 1n the data-element, only the first
declaration of the data-element may have an initial value.

The storage alignment of record component data-elements will be
carried out according to the descriptions in Appendix C . Alignment
of record component data-elements may be explicitly controlled by the
MOD alignment clause. A MOD alignment clause forces the data-element
to be allocated at an address, whose displacement from the start of
the record, 1is a mulliple of the resulting value from evaluationr of
the expression in the MUOD clause.

ND-60.117.04

70 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

4.2.2 YARIANT RECORD TYPE SPECIFICATION

Record data-elements declared for a given data type have so far all
had the same structure of components. It Ls possible to specify two or
more records which have some common components and some components
which vary from one vrecord to the next. Such related records are
called variant records. Variant records may be specified by specifying
a record type with all the common components, called the base record
and then specifying each variant record as comprising the base record
plus those components particular to.the variant record. The general
form of a type specification of a varlant record 1is

TYPE var-rec-ident = base-rec-ident &
RECORD

var-compi-data-type : var-compl-ident-list

var-comp2-data-type: : var-comp2-ident-list

ENDRECORD

where

var-rec-ident is an identifier to name the wvariant record
type.

base-rec-ident is the 1dentifier naming the base record
type.

var-compl-data-type are the data types of the additional
components of the variant record.

var-compt-ident-list are identifiers to uniguely name the

additional components of the variant record.

Following type specifications of two or more variant record data
types, declarations of record data-elements of the variant data type
may be made as for normal record data-element declarations.

ND-60.117.04

PLANC Reference Manual 71
DATA DECLARATION AND CCMPOSITE DATA TYPES

Example of variant record specification and declaration

1 specify a ‘vehicle' record data type
TYPE vehicle = RECORD
REAL : weight,6length,width,height
ENDRECORD
1 specify first variant record data type using ‘vehicle' as
/7 the base record
TYPE bus = vehicle RECORD
INTEGER : seats,numbercrew
ENDRECORD
I specify second variant record data type
TYPE truck = vehicle RECORD
REAL : loadcapacity
BOOLEAN : automatic
ENDRECORD
7 declare 'bus’' and "truck’' data-elements with initial values
bus : localbus:={(100.0,10.1,3.4,2.1,44,1}
bus : toursbus:={150.0,11.3,3.4,2.1,35,3)
truck : tiptruck:=(50.5,8.6,3.2,1.9,45.0,TRUE)

Note that a record pointer identifier, declared for the base record,

may be used to contain addresses of base record data-elements or any
of 1ts variant record data-elements.

If a routine declaration contains a base record data type for a
parameter, then an invocation of this routine may have any variant of
this record data type as an actual parameter. However, if the routine
declaration contains a variant record data type as a formal parameter,
only this variant record data type (or further variants of this data
typel), may be used as an actual parameter in a routine invocation.

ND-60.117.04

12 PLANC Reference Manual
DATA DECLARATICN AND COMPOSITE DATA TYPES

4.2.3 REFERENCE T0 RECORD COMPONENTS AND ACLESS MODE

In the executable part of a program 1t is necessary to refer to
components of a record data-element, either to store a value or to
access an already stored value. The general form of a reference to a
record data-element component is

data-el-ident.comp-ident
where

data-el-ident is the identifier in a record declaration.
Note that it may be a record pointer, but the following
references will all access the same data-element
rec.element 1 rec is a record
recp.element 1 recp is pointer to rec
ADDR rec.element

comp-ident is the component identifier in the record type
spacification.

Note : if the component is itself a record, then use a further
dot followed by a <component identifier from that
record.

Examples of record component references

TYPE person = RECORD
BYTES : givenname {(1:15)
BYTES : familyname (1:30)
INTEGER : age,heightcm
ENORECORD
1 declare a 'friend' data-element of data type 'person’
person : friend:=('Fred', 'Bloggs' ,43,179)
L access a component of a 'friend' data-element
frisnd.age=: ... 1 store the age of 'friend’
1 would access the value 49

1 specify a 'team’ record type using 'psrson’ from above
TYPE team = RECORD
person : captain
INTEGER ARRAY : teamnumbers (1:5)

ENDRECORD
1 declare a "team’ data-element
team : usteam:=(('Ronald’, 'Raygun’',79,141) ,1,3,5,7,9)

1 access a component of a record within a record

1 ie. the 'family name’' of the 'captain' of the 'usteam’
usteam.captain.familyname=:

1 would access the value 'Raygun'

ND-60.117.04 Revision A

PLANC Reference Manual 73
OATA DECLARATION AND COMPOSITE DATA TYPES

4.2.4 OPERATIONS ON ENTIRE RECORDS_AND_RECORD ACLESS

The contents of a recorc¢ data-element may be copied 1into another
record data-element by using the store operator. For such a copy the
record data-elements must be of the same record data type.

Example of a record copy

1 type specificaticn of an ‘address’ record
TYPE address = RECORD
BYTES : name(1:30)
INTEGER : streetnumber
BYTES : streetname(1:20)
BYTES : city(1:15)
ENDRECORD
/ declare two address data-elements
address : NDaddress:=('NDOSLO',20, "jerikoveien ', 'oslo 10')
address : myaddress

7 copy the initial:zed address to the other data-element
NDaddress=:myaddress

Records have an access riode, identical to that for simple data types,
for operations which treat a record as a single entity. The entire
access mode may be declared as READ or WRITE, following the RECORD
keyword.

Example of use of record access mode

TYPE address = RECORD READ / same as previous record

ENDRECORD
15 a record into which entire record operations cannot store values.
However 1t is still valid to store into individual components of such
a record.
If the declaration 1is
TYPE address = RECORD READ
INTEGER READ : streetnumber

ENDRECORD

then 1t is not allowable to store into the name component of the
address record or into the entire record data-element as an entity.

ND-80.117.04

14 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

4.2.5 PACKED OPTION_FOR_ARRAYS AND RECORDS

For data-elements of simple data types storage may be wasted in
particular machine implementations. For the composite data types,
arrays and records, space required for data-elements can be minimized
by wusing the option PACKED in a TYPE definition or a declaration, in
the case of an array.

For example

INTEGER1 ARRAY PACKED : minints{1:500)
/ will require 250 words on the ND-100 whereas
INTEGERT ARRAY : ints(1:500)
7 will require 5060 words and use only half of each word

Use of the PACKED option will minimize storage requirements but it
should be noted that this may cause a program to execute more slowly
because of time taken to extract component data-elements from the more
compact storage allocation being used.

Further examples of the effect of the PACKED option

7 on the ND-100
TYPE letters = ENUMERATION (a,b,c,d)
letters ARRAY : waste(1:10)

7 will require a 16-bit word per array element, ie. 10 words
letters ARRAY PACKED : nowaste(1:10)

1 will require an 8-bit field per array element, ie. 5 words

7 on the ND-100
TYPE myrec = RECORD PACKED
letters : alphabet J 2-bit instead of 16-bit field

BYTE : bytvar 1 8-bit instead of 16-bit field
BOOLEAN : b1 1 1-bit instead of 16-bit field
ENDRECORD

The specific rules of how PACKED affects the storage requirements of a

data-element, on both the ND-100 and the ND-500, are described in
Appendix C.

ND-60.117.04

PLANC Reference Manual 75
DATA DECLARATION AND COMPOSITE DATA TYPES

4.3 SEIS

A set data-element is of a composite data type that, like the array
and record, is made up of a collection of components. However, unlike
the array or record, we nelther index nor access the individual
components of a set. Instead a set 1s used only as a single entity.

The components that comprise a particular set are chosen from the
possible values of a simple data type called the base type of the set.
The valid base types for sets in PLANC are

1) INTEGER RANGE

2) ENUMERATION

A set data-element may represent all subsets of the value of the base
data type of the set, including the ‘empty’ set. There is no mutual
orderinyg between the components of a set.

Thus the set data type in PLANC corresponds to the mathematical notion
of a set, with some restriction as to what may form the members of the
set. The usual mathematical set operations, eg. wunion, intersection,
difference and complement are available as operators for use with set
operands.

4.3.1 SET_DECLARATIONS
A set data-element decleration specifies the following information

1} Set Name - an identifier which can be used to refer to the
set data-element as a single entity.

2) Base Type - ¢ data type which will specify all the possible
members of a se¢t data-element.

3) Initial Members - optionally specify a subset of the bhase

type values to be members of a set at the beginning of
program execution,

ND-60.117.04

76 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

The general form of a declaration of set dita-elements 1is

base-type SET : ident{:=memb-list] [,ident[:=memb-1list]]

where

base-typs 1s one of the data types EMUMERATION, INTEGER RANGE or
a data type newly defined with one of these as a base
type.

Note : integer range base type is restricted to a maximum of

256 values and the 1lower bound must be zero. Ie. an
INTEGER RANGE must be 0:x, where x <= 25%5.

ident 1s a valid identifier.

memb-list is a list of wvalues, selected once only, from the

possible values of the base data type.

Note : that literal expresslons may be used, provided that the
resulting value is of the correct type.

The 'memb-list’ may be partly or entirely specified by an implied
range providing that the list of values 1is of the correct data type,
see section 2.13

1¥ the 'memb-list’ is omitted, then the set will be empty when program
executlion begins.

A set data-element will require enough storage to hold an indicator of
the presence or absence of every possible member of the set, ie. every
valid value of the base type of the set. For details of the actual
storage used see Appendix C.

Examples of set declarations

7 specify an enumeration data type
TYPE day = ENUMERATION (monday,tuesday,wednesday,
thursday,friday,saturday, sunday)
/ declare a set data-element with the weekend days as members
day SET : weekend::={saturday, sunday)
7/ declare a set data-element for the week days using an
7 implied enumeration range
day SET : workdays:={monday:fridav)

7/ declare a set of base type integer using an implied integer
1 range to specify a list of integer values

INTEGER RANGE{0:255) SET : twenties:=(20:27,28,29)

1 declare a set which will be empty initially
INTEGER range(0:255) SET : emptyint

ND-60.117.04

PLANC Reference Manual 7
OATA DECLARATION AND COMPOSITE DATA TYPES

4.3.2 SEI_TYPE_SPECIFICATION AND USER_DEFINED TYPES

A type specification may be used to describe a new data type based on
the set data type. This newly defined data type may then be used for
declaring data-elements with the characteristics of the newly defined
data type. The general “orm of a set type specification is

TYPE set-type-ident = set-base-type SET

where

set-type-ident is an identifier which 1s the name of the new set data
type

set-base-type 1s the base data type for this set data type.

A type specification will not result in any data-elements being
constructed, 1t only specifies certain characteristics that data-
elements will have 1f +they are declared to be of a newly specified
type. Set data-elements will only be constructed in association with a
declaration statement.

Examples of set type specifications

TYPE numbers = INTEGER RANGE(0:127) SET

7 declare data-elements of the 'numbers’ data type
numbers : tensset:={10,20,30,40,50,60,70,80,90)
numbers : digitsset:=(0:9)

TYPE colours = ENUMERATION (black,red,blue,green,white)
TYPE houses = colours SET

7 declare a data-element of the '"houses' data type
houses : myhouse:=(red,white,blue)

ND-60.117.04

78 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYFES

4.3.3 OPERATIONS ON_SETS

The relational operators (see, section 5.4) may be used with set
data-elements. As for other data types, evaluation of a relational
operator with two set data-elements as operands will give a boolean
resulting value, le. TRUE or FALSE. The relational operators and their
meanings when used with set data-elements as operands are as follows

= true 1f both sets contain the same members.

>< true if at least one member of one set is not a
member of the other set.

>= true 1f the left-side set has as a subset the
right-side set,.

(= true if the left-side set 1is a subset of the
right-side set.

> true if the left-side set has as a true subset
the right-side set.

< true if the left-side set is a true subset of
the right-side set.

IN true 1f the left-side identifier 1s a member

of the right-side set.

Note : the IN operator is the only relational operator without
both operands as sets. The first operand data-element
of the IN operator must have a base type of INTEGER
RANGE, ENUMERATION or POINTER and the second operand
data-element i1s a set of the corresponding base type.

Examples of sets and relational operators

7/ declare some sets
TYPE day = ENUMERATION (monday,tuesday,wednesday, &
thursday,friday,saturday, sunday)
day SET : week:={monday,tuesday,wednesday,thursday, &
friday,saturday,sunday)
day SET : weekend:={saturday,sunday)
day SET : workdays:=(monday,tuesday,wednesday, &
thursday, fricay}

/A
expression result
week = workdays false
weekend >< workdays true
week >= workdays true
week > workdays true
weekend <= week true
weekend < week true
monday IN weekend false
monday IN week true

ND-60.117.04

PLANC Reference Manual 79
DATA DECLARATION AND COMPOSITE DATA TYPES

The store operator =:, see section 5.1, may be used with set data-
elements as operands. It will have the effect of setting the members
of one set data-element exactly equal to the members of another set
data-element.

Example of sets and the store operator

INTEGER RANGE (0:10) SET : odds:={1,3.,5,7,9),numbers
L store the members of set 'odds’ in set 'numbers'
odds=:numbers

Beware that the way the set "odds” is initialised above, cannot be
used in an executable statement in exactly the same way, eg.

(1,3,5,7,9)=:numbers

will give a compile error. The correct way to specify an unnamed set
with a constant group of members requires the set base data type. This
is described following the description of the logical operators below.

The logical operators, see section 5.3, may be used with set data-
elements. Evaluation of logical operators with set data-elements as
operands gives a resuiting value of the set data type with the
exception of the ABS operator which gives an integer result. The set
operators and their meanings when used with set data-elements as
operands are as follows

AND set intersection, ie. result is a set with members
which are members of both operand sets.

OR set wunion,ie. result is a set with members which are
members of either operand set or both.

XOR set difference, ie. result is a set with members which
are members of one of the two operand sets and not
members of the other.

NOT set negation, ie., result is a set which has as members
all the members which are not members of the operand

set.

ABS cardinal number, ie. result is an integer value of the
maximum possible number of members of the operand set.

ND-60.117.04 Revision A

80 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

Examples of sets and logical operators

1 declare some sets
TYPE colour = ENUMERATION {red,green,blue,pink,ash, &
yellow,white,black)
colour SET : bright:={(red,green,yellow,pink),anycolour
colour SET : pastel:={blue,yellow,pink)
INTEGER : int1
1 union - result will have red, green, yellow, pink, blue

bright OR pastel =: anycolour
7 intersection - result will have yellow, pink
pastel AND bright =: anycolour
7 difference - result will have red, green, blue
bright XOR pastel =: anycolour
7 negation - result will have ash, yellow, white, black
NOT bright =: anycolour
7 set cardinal number - result is 8
ABS bright =: intt

ND-60.117.04

PLANC Reference Manual 81
OATA DECLARATION AND COMPOSITE DATA TYPES

The following standard routines are provided to carry out operations
on set data-elements

1) Specify a set data-element with a constant group of members.
2} INSERT

3) REMOVE

To specify an wunnamed set data-element with a constant group of
members use the general form

set-data-type [memb-list)

where
set-data-type 1is data type with a set base data type.

memb-Llist 1s a list of literals, selected once only, from the
possible values of the base data type.

Note : 1. this list may include literal expressions which are to
be evaluated at compile-time.

2. omission of the ’'memb-list’ from the parenthesis
denotes the 'empty’ set for that base data type.

Example

TYPE tnumbers = INTEGER RANGE (0:100) SET
tnumbers : numbers
TYPE colour = ENUMERATION (red,blue,grey,pink,black)
TYPE tcolour = colour SET
tcolour : luckvset
INTEGER : inti
/ store an unnamed constant set data-element
tnumbers (1,3,%,7) =:numbers
tnumbers (1,3,5%:10) =: numbers
tcolour (blue:black) =:luckyset 7 lots of luck !
7 use an expression evaluated at compile-time
CONSTANT int2:=!5
tnumbers (int2'3+4,int2:int2+5)=:numbers
7 an empty ‘colour’' set data-element
tcolour () =:luckyset 7 no luck at all !

Restriction : such an unnamed set data-element with a constant group
of members, must not be the first statement of a
routine, unless the entire statement is contained
within psrentheses.

ND-60.117.04

82 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

Add a member to a set data-element

set-member-ident INSERT set-ident

where

set-member-ident 1s a data-element of the set base data type.
Note : this may be an expression to be evaluated at run-time.

set-ident 3s a set identifier.

Example

INTEGER : 1int
INTEGER RANGE(O0:100) SET : numbers
7 add a member to the 'numbers’ set data-element
3 INSERT numbers
Lnt*2 INSERT numbers

Remove a member from a set data-element

set-member-ident REMOVE set-ident

where

set-member-ident is a data-element of the set base data type.
Note : this may be an expression to be evaluated at run-time.

set-ident 1s a set identifier.

Example

INTEGER : int

INTEGER RANGE(D:10) SET : evens:-.0,2,4,6,8,10)
. remove a member from the 'evens’' sef data-element

6 REMOVE evens

int+5 REMOVE evens

ND-60.117.04

PLANC Reference Manual 83
DATA DECLARATION AND COMPOSITE DATA TYPES

4.4 ROUTINES

The 'routine’ is defined in the PLANC language as a composite data
type. While this may seem a little wunusual, it is of benefit in
declaring a routine name to be used as a generic function with in fact
a family of similar vroutines which differ only in that their
parameters are of different data types and perhaps their return valiues
too, eg. a ‘plus’ operator may be thus created for integer,real and
complex parameters.

A full description of the syntax of routine type specification,

declaration, invocation and the wuse of parameters to communicate
information to and from routines may be found in Chapter 7,
ROUTINES.

ND-60.117.04

84 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

4.5 DYNAMIC ALLOCATION OF DATA-ELEMENTS

During execution of a PLANC program, data-zlements may be dynamically
created and destroyed in storage. The actual storage wused for
dynamically created data-elements may be the program stack or an
INTEGER array. If the program stack is used, it must be declared with
enough space to hold all the dynamically created data-elements as well
as all the other wusual run-time requirements. One or more INTEGER
arrays may be used as storage for dynamically created data-elements.

The NEW standard routine will dynamically create wunnamed simple or
composite data-elements. Invocations to the NEW standard routine
return a pointer data-element of the type of the parameter used in the
call. Invocations of the NEW standard routine are as follows

For simple or composite data-elements use

NEW data-type [IN int-array-ident]

where

data-type 1s any simple, composite, predefined or user defined
data type.

int-array-ident
1s an integer array identifier.
For arrays or subarrays it is possible to use
NEW (ar-type-identlindex-set[,index-set] ...))[as abovel
where
ar-type-ident 1is array data type identifier.
index-set 1s an index set specifier for each corresponding index
set for this array data type.
Example of dynamic creation of a simple daza-element

INTEGER ARRAY : store(1:1000)
REAL POINTER : rlptr

NEW REAL=:rlptr
/1 dynamic creation of a real data-element on the program stack
7

NEW REAL IN store=:rliptr
1 dynamic creation of a real data-element in an integer array

ND-60.117.04

FLANC Reference Manual 85
DATA DECLARATION AND COMPOSITE DATA TYPES

Dynamically allocated data-elements will be created in the local data
area of a routine unless an INTEGER ARRAY from an outer level routine
is wused in the NEW routine call. Note that all data-elements,
including those dynamically created, in the routine's local data area
will be lost when an exit from a routine occurs.

The DISPOSE standard routine is used to deallocate dynamically created
data-elements, ie. a data-element which has been created by use of the
NEW data tvpe IN array standard routine. Invocations of the DISPOSE
standard routine are to be used as follows

DISPOSE pointer-ident
where

pointer-ident 1is a pointer data-element with a value pointing to the
data-element to be deallocated.

ND-60.117.0¢

36 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

During execution, an INTEGER ARRAY POINTER called FREE P is available.
It is 1initialized to point to the mamory location immediately
following the PLANC library routines loaded from the appropriate PLANC
library files. In order to safely use this pointer to utilise the free
space, the library routines must be loaded last.

In order to use the free space available, the declaration

IMPORT INTEGER ARRAY POINTER : FREE_P

must appear 1in the appropriate module. MININDEX{ IND(FREE_P),1) and
MAXINDEX{ IND(FREE_P),1) give the low and high addresses of the free
memory area, represented as unsigned integers. This polnter may be
used with the NEW standard routine as follows

NEW ... IN IND(FREE_Pl}=:ptr
Examples of dynamic creation of array and record data-elements

/ specify an array data type
TYPE doublereal = REAL ARRAY ARRAY

7 declare a pointer data-element for the array data-element
doublereal POINTER : arraypointer
REAL : rli

% dynamically create an array and store its pointer value

NEW (doublereal{1:5,0:10) } =: arraypointer

Y .

/1 access an element of the array data-element as follows
IND (arraypointer) (1,10) =: rl1 1/ store value in rlt

7 specify a record data type
TYPE complex = RECORD
REAL : realpart,imagpart

ENDRECORD
/ declare a constant value record data-element
complex : constcomplex:=(1.0,1.0)

/ declare pointer data-element for the 'complex’ data type
complex POINTER : complexpointer

7 dynamically create another 'complex record
NEW {(complex) =: complexpointer
1 store the constant record into the dynamically created
‘complex’ record data-element
constcomplex =: IND{ complexpointar)

™

ND-60.117.04

FPLANC Reference Manual av
DATA DECLARATION AND COMPOSITE DATA TYPES

4.6 PROCESSING OF RECORDS IN LIST STIRUCTURES

The following standard routines are available for processing linked
lists of record data-elements

1) The INSERT standard routine will add a record data-element to
the front of a linked list.

2) The APPEND standard routine will add a record data-element to
the end of a linked list.

3) The REMOVE standard routine will remove a record data-element
from anywhere in a linked list.

The general form of th2 invocations of all of these standard routines
is

rec-pntr INSERT list-pntr-range

where

rec-pntr i1s a poiater to the record to be processed.

list-pntr-range
is a pointer implied range, describing the linked list.

The use of these 1list processing routines is illustrated in the
following code examples,

Set up a static linked List.

L define a record data type for the linked list
TYPE myrecord = RECORD
myrecord POINTER : linkptr
INTEGER : recordnumber
ENDRECORD
7 initialise a static linked list of records
myrecord : r1?,r27,r3? 1 predeclaration of data-elements
myrecord POINTER : listhead:=ADDR(r1),anyrecptr
myrecord : ri:=(ADDR(r2),1)
myrecoxd : r2:={ ADDR(r3),2)
myrecord : r3:=(NIL,3)
/. declare some records to illustrate list processing
myrecord : front:={ NIL,-1),back:=(NIL,99)
myrecord POINTER : frontptr:=ADDR(front),backptr:=ADDR(back)

The record front may be added to the start of the linked list by the
statement,

frontptr INSERY listhead:linkptr

Following the execution of this statement, the linked list will
contain four records whose record numbers are -1, 1, 2, 3.

NO-60.117.04 Revision A

88 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

The record back may be added to the erd of the linked list by the
statement,

backptr APPEND listhead:linkptr

Following the execution of this statement, the linked 1list will
contain five records whose record numbers sre -1, 1, 2, 3, 99.

The record r1 may be removed from the linked list by the following
statements,

ADDR(r1)=:anyrecptr
anyrecptr REMOVE listhead:linkptr

Now the linked 1list will have only four records, with the record
numbers -1, 2, 3, 99.

The standard routines will do all the necessary changes to the linkptr
component data-elements of records affected by the changes in the
linked list, eg. when record ! 1s removed, record number -1 1is
changed to point to record r2 {(number 2).

Record data-elements may be created dynamically by the use of the NEW
standard routine. Such record data-elements may be manipulated 1in
linked lists in the same way as the explicitly declared record data-
elements above. In fact an entire list may be constructed from such
unnamed dynamically allocated record data-elements,

I¥ a new record is to be placed in the middle of the linked 1list, then
the program will have to change the Llinkptr component data-elements
explicitly.

Note that the standard routines INSERT, APPEND and REMOVE will not
give any error 1indication 1f the record pointer 1in the routine
invocation 1s empty, l1e. the pointer to the record to be processed has
a value NIL. This also applies to the REMOVE standard routine 1f the
linked 1list 1is empty. Beware that if INSERT or APPEND is used on a
record that is already in a linked list, there is no error indication,
but the address link field will be overwritten.

ND-60.117.04

PLANC Reference Manual 89
EXPRESSIONS - FORMATION AND EVALUATION

5 EXPRESSIONS. - FORMATIIN AND EVALUATION

An expression comprises operators and data-elements as operands,
formed according to a set of rules. During program execution, an
expression may be evaluated to give a resulting value which may be
stored in a data-element. PLANC, unlike most high level languages,
does not have an assignment statement. It has assignment operators
which may be used within expressions to store any temporary resulting
value during the evaluation of an expression. At any point during
evaluation of an expression, a temporary resulting value is available.
Evaluation of one expression may store a number of values into data-
elements, or if the expression is simply to invoke a routine with no
out-value, see section 7.2, then there 1is no resulting value and no
value is stored. The PLANC compiler will, if possible, try to evaluate
an expression at compile-time, eg. 1f it contains literals only.

The operands wused to form an expression may be literals, identifiers
or routine invaocations. An expression must contain operands whose
corresponding data-elements are of one data type only, or parts of the
expression must give a resulting value data-element of the correct
data type required for further evaluation. This means that in general,
there is no automatic conversion of the operand data-elements to the
data types required by a specific operator. A routine invocation,
within an expression evaluation, may have a side-effect of modifying a
data-element value which is to be used later in the evaluation.

The ogperators in PLANC are defined for one or more data types. The
following sections will describe all the available operators for each
specific data type. Further, some operators are binary, ie. they may
be used with two operands. For example, the sum of the values held 1in
two integer data-elements may be obtained by the following part of an
expression,

integl+integ?

by using the binary + operator for the integer data type. Other
gperators are wunary, ie. they may be used with only one operand. For
example, the complement of a boolean data-element may be obtained by
the following part of an expression,

NOT bool1

by wusing the wunary NOT operator for the boolean data type. The
evaluation of any operator and its operands will give a resulting
value, except for routines with no out-value. This resulting value,
which the run-time system may store in a temporary data-element, may
be explicitly stored by the use of the assignment operators.

ND-60.117.04

50 PLANC Reference Manual
EXPRESSIONS -~ FORMATION AND EVALUATION

The operators available in PLANC each have a priority which determines
the order of evaluation within the expression. An expression 1is
evaluated by first forming the vresulting values of the highest
priority operators. These resulting values replace the operator and
1ts operands and then the next highest priority operators arve
evaluated. For operators of the same priority, evaluation is from left
to right.

Parentheses may be used to enclose part of an expression, causing that
part to be evaluated separately from anything outside the parentheses.

User defined routines may be wused within expresions and will be
evaluated accordingly. Such routines have a higher priority than all
the PLANC defined operators.
There are four classes of operators
-~ assignment
- arithmetic
logical

relational

ND-60.117.04

PLANC Reference Manual 91
EXPRESSIONS - FORMATION AND EVALUATION

5.1 ASSIGNMENT. (PERATORS

PLANC has two assignment operalors which may be included within
expressions. The asslgnment operators are used to store values, into
data-elements, during evaluation of an expression. More than one
assignment operator may be used in an expression, causing a number of
values to be stored during evaluation of this expression. PLANC has no
distinct assignment statement as many other high-level languages have.

The assignment operators have a priority associated with each side of
the operator. The left-:side priority is the lowest possible priority,
to ensure that the entire expression to the left of the operator has
been evaluated before evaluation of the assignment operator.

Both operands for an assignment operator may be of any simple,
composite or predefinec data types. Both operands must be of the same
data type. If however tte operands are modified integer or real data
types, they may be of different modified data types, ile. integer range
or real precision, and appropriate conversion will take place prior to
evaluation of the assignment operator, provided the receiving data-
element 1s large enough to contain the value to be stored. If not,
truncation will occur ard no run-time error indication will be given.

I+ the 9operands are data-elements of composite data types, then the
value of the entire data-element will be moved by the store operator,
eg. a store operator with array operands will move the entire array as
an entity, see section 4.1.4

The two assignment operators are

Operator Priority Operation Data types

= 1, left-side Store all simple,
12, right-side composite and

predefined

S 1, left-side Change all simple

12, right-side

When evaluation of an expression reaches a store operator, the
resulting value of the part of the expression, immediately to the left
of the store operator, will be stored into the data-element associated
with the operand immediately to the right of the store operator.

The resulting value after evaluation of a store operator has the same
value as the resultiny value immediately prior to the evaluation of
the store operator, ie. 2valuation of a store operator does not change
the resulting value of tae expression during evaluation.

ND-60.117.0¢4

32 PLANC Reference Manual
EXPRESSIONS - FORMATION AND EVALUATION

For example
1. 53=:1int

will store the integer literal value in the integer data-element
associated with the identifier int,

2. 3+5=:1nt

will evaluate the sum of the two integer literals first because the
integer + operator has a priority of 8. The left-side priority of the
store operator is 1, ie. lower than that for the + operator, and thus
it will be evaluated after the +. The resulting value of evaluation of
the integer + operator is 8, and will then be stored in the integer
data-element associated with the identifier int,

3. intval=:1int

will store the value stored in the data-element associated with the
identifier intval, 1into the data-element assoclated with the
identifier int.

4. 2+2=:1nt1=:1nt2

will store the value of the sum, 4, into the data-element associated
with the identifier intl. The resulting value at this point of the
expression evaluation is 4. Then evaluation of the second assignment
operator stores the resulting value &4 into the data-element associated
with the identifier int2.

5. 1+2=:1nt1+4=:1int2

will have a resulting value 3 from the first sum. Evaluation of the
first store operator will store the resulting value 3 in the data-
element associated with the identifier int1. Then second + operator
will have a resulting value of the sum, 3+4. This resulting value, 7,
will be stored by the second store operator into the data-element
associated with the identifier int2.

ND-60.117.04

PLANC Reference Manual 93
EXPRESSIONS -~ FORMATION AND EVALUATION

6. 5%4+1=:1nt
will store the value of the entire expression, ie. 21, into the data-
element associated with the identifier int. If however, parentheses

were used,
S¥(t+1)=:1nt

the order of evaluation of the operators is different. 1In the
expression without parentheses, the product 5%4 is evaluated to give
the resulting value 20. Then the sum 20+1 is evaluated to give the
resulting value 21, which is then stored. In the expression with
parentheses, first the sum 4+1 1is evaluated to give the resulting
value 5. Then the product 5%35 Ls evaluated to give the resulting value
?5, which 1s then stored. Note that the parentheses not only change
the order of evaluation within the expression, but cause a different
final result, depending on the mixture of operators used in the
expression.

ND-60.117.04

94 PLANC Reference Manual
EXPRESSIONS - FORMATION AND EVALUATION

When evaluation of an expression vreaches a change operator, the
resulting value of the part of the expression, immediately to the left
of the store operator, will be stored into the data-element associated
with the operand immediately to the right of the store operator. This
is identical to the store operator.

The resulting wvalue, from evaluation of a change operator, 1is
different to that of a store operator. The value of the data element
to receive the wvalue to be stored by a change operator, immediately

prior to evaluation of the change operator, will be the resulting
value following evaluation of the change operator.

For example

1. 3=:1int 7 store 3 into data-element associated with int
bi=:lnt

will store the integer 1literal wvalue 4 into the data-element
associated with the 1identifier int, but the resulting value of the
expression following evaluation of the change operator is 3, 1ie. the
value that was in the data-element associated with int before
evaluation of the change operator.

2. 3=:1 7L store 3 into data-element associated with i
b=:7 1 store 4 into data-element associated with
1:5:J=:1 [exchange the values of i and j

will store the value, 3, from the data-element associated with the
identifier 1 into the data-element associated with j. However the
resulting value of the change operator is the value in prior to
evaluation of the change operator, ie. 4. Then the resulting value, 4,
1s stored by the second operator in the expression, ie. 4 is stored
into the data-element associated with 1.

ND-60.117.04

PLANC Reference Manual g5
EXPRESSIONS - FORMATION AND EVALUATION

3.2 ARITHMETIC OPERATORS

FLANC has a number of arithmetic operators which are available for
oparands whose data-elements are integer or real data types. There are
both unary and binary arithmetic operators. The operands for a binary
operator must both be either real or integer, but the operands may
vary in the declared modifications, ie. range for integer and
precision for real.

The following table lists all the available arithmetic operators

Operator Prioraity Operation Data types
+ binary 8 addition integer, real
binary 8 subtraction integer, real
unary 10 negation integer, real
* binary 9 multiplication integer, real
/ binary g division integer, real
* % binary 11 exponentiation integer, real
ABS unary 11 absolute value integer, real
MOD binary 1" modulo integer
SHIFT binary 8 shift bits integer
The binary operators +, -, * and /, and the unary operators - and ABS
can have operand data-elements of either integer or real data types.
Further, the operands may be modified, ie. integer range or real
precision. Various modified integer data type operand data-elements
may be mixed when used with the binary operators. Likewise, modified

real operands may be mixed when used with the binary operators.

The resulting value data-element will be of the same data type as the
operands. If the operands are different modifications of one data
type, then the resulting value will be a data-element of the data type
appropriate to hold the larger of the two operand modified data types,
ie. for integer data-elements, a data-element of the larger range, and
for real data-elements, a data-element of the larger precision.

For example

REAL PRECISION {15) : rit
REAL PRECISION (7) : ri2

rlt+rl2
evaluation of the real addition operator within an expression would
give a resulting value at that point in the expression, in a REAL

PRECISION (15) data-elenent, for further expression evaluation.

Note that the integer division will not return any remainder, the MOD
operator must be used.

ND-60.117.04

96 PLANC Reference Manual
EXPRESSIONS - FORMATION AND EVALUATION

The *x operator, for exponentiation, may have a first operand data-
element of integer or real data type. The second operand data-element
can only be an integer data type.
The binary operators, MOD and SHIFT, must have integer, or integer
modified, operands only. They both give a resulting value 1in an
integer data-element.
The SHIFT operator will shift bits in the first operand data-element.
The second operand specifies the number of bit positions to be shifted
and 1if this operand 1s positive, then the shift 1s to the left,
negative means shift to the right. [f the first operand data-element
is a signed integer data type, then the sign bit is not affected by
left shifts and it 1s extended for right shifts. [f the first operand
data-element 1is an unsigned data type, ie. a non-negative integer
range, then zeroes are shifted in from the left in right shifts, and
they are shifted in from the right for left shifts,
For example

71TB SHIFT 3
gives a resulting value 7708.

The MOD operator gives a resulting value of the first operand modulo
the second operand, ie. the remainder after dividing the first operand
value by the second operand value.
For example
27 MOD 5
gives a resulting value of 2, le. remalinder of 27/5,
-27 MOD 5
gives a resulting value of -2,
27 MOD -5
gives a resulting value of 2,

-27 MOD -5

gives a resulting value of -2.

ND-60.117.0¢4

PLANC Reference Manual 97

EXPRESSIONS

FORMATION AND EVALUATION

Examples of the use of the arithmetic operators

1.

Xty
X-y
X+y+2Z

X+y-2

xxylz

xly*z

XXy +2Z

X+y*z

~yk kD

will form the sum of x and y.
will subtract y from x.
will sum together x, v and z.

will add x and y and then subtract z from the result,
see note below.

will multiply x and y before dividing the resultl by 2z,
see note below.

will divide x by vy first, and then multiply the result
by z.

will multiply x and y and add z to the result.

will multiply vy and z and add x to the result. The
order is determined by the different priorities, ¥ is §
and + 1s 8.

Since the operator ** has a higher priority, 11, 1ts
operands will be combined first. Thus the expression
will be interpreted as

-{xx%x2),

ND-60.117.04

93 PLANC Reference Manual
EXPRESSIONS - FORMATION AND EVALUATION

If the operator priorities do not give the desired order of
evaluation, then parts of an expression may be enclosed in
parentheses. Parts thus enclosed are evaluated as a whole expression

before being used as an operand.
For example

1. x+y/z will cause division of y by z before adding x to form
the result, because of operator priority.

2. {x+yl/fz will ensure that x and vy are added, and then that
result will be divided by z.

3. {x+y)/{x+z) here x+y and x+z will b2 computed separately and
subsequently, the former ra2sult will be divided by the
latter. Note that either x+y or x+z may be evaluated
first.

While the operators +, -, *, / and ** represent the usual mathematical
operations, one must be aware that the uaderlying computing hardware
has fixed limits to the precision and accuracy of representation of
values and the results of operations. Trese limits are described in
Appendix C

Note : The order of operations on computer hardware 1s such
that the result would be mathematically exact if the
hardware were mathematically precise. If a particular
order of operations 1s vital for numerical accuracy, it
1s best to use parentheses to force the order.

For example

1. X+y+2z represents the sum of x, y and z. The computation may
add x to y and then add z, o2r it may add vy to =z and
then add «x.
But,

2. (x+y)+ez will ensure that x and y are added together, before z

is added to the result.

ND-60.117.04

PLANC Reference Manual 98
EXPRESSIONS - FORMATION AND EVALUATION

5.3 LOGICAL QOPERATORS

PLANC has logical operators which are available for operands whose
data-elements are of the integer, boolean or set data types. There are
both unary and binary logical operators. The operands for a binary
operator must both be e.ther integer, boolean or set, but the operands
may vary in the declared modifications, ie. range for integer.

The following table lists all the available logical operators

Operator Prior.ity|Operation Data types
AND binary 3 logical and integer,boolean, set
OR binary 7 inclusive or integer, boolean, set
XOR bilnary 2 exclusive or integer,boolean,set
NOT unary 4 logical negation]integer,boolean, set
ABS unary 11 cardinal number |set

The binary operators, the AND operator, the OR operator and the XOR
operator, and the unary NOT operator can have operand data-elements of
elther integer, boolean or set data types. Further, modified integers
may be used as operands. Integer range and modified integer operands
may bhe mixed when used with the binary operators.

The resulting value will be of the same data type as the operands. If
the operands are different modifications of iLnteger data type, then
the resulting value will be an integer data-element appropriate to
hold the larger range of the two modified integer operand data-
elements.

The ABS operator will give as a resulting value, the maximum number of
members declared for the operand set data-element. The resulting value
will be an integer data-element.

It should be noted <hat the evaluation rules described, are for
explanatory purposes 350 that an expression can be correctly
interpreted. However, the actual order of interpretation 1s not fixed
so long as the result is mathematically and logically equivalent.
Indeed 1t «can happen that part of an expression is not evaluated at
all. For example

IF (1=1 OR 1.%+1=:r>10.1) THEN
in which, 1f i has the wvalue 1, then the expression in parentheses is
known to have the value TRUE after testing i for 1. Further, no value

will be stored into r during evaluation of the expression in
parentheses.

ND-60.117.04

100

The resulting value o
boolean operand data-

PLANC Reference Manual
EXPRESSIONS ~ FORMATION AND EVALUATION

f expressions involving the above operators, with
elements

b1 NOT bt

TRUE FALSE

b1 b2 b1 AND b2
TRUE TRUE TRUE

TRUE FALSE FALSE
FALSE TRUE FALSE
FALSE FALSE FALSE

b1 b2 b1 OR b2
TRUE TRUE TRUE

TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE FALSE FALSE

b1 b2 b1 XOR b2
TRUE TRUE FALSE
TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE FALSE FALSE

If these operators
the operator will be
element, where a bit

If these operators
operators will carry
sets,

are used with integer operand data-elements, then
applied to all bits in the entire integer data-
value 1 1s interpretecd as TRUE and 0 as FALSE.

are used with set operand data-elements, the
out the wusual mathematical operations on the

ND-60.117.04

PLANC Reference Manual
EXPRESSIONS - FORMATION AND EVALUATION

Examples of the use of ..ogical operators

INTEGER : int1:=128,1int2::=148

A NOT int1 .. 7 resulting binary value 1s
: int! AND int2 .. 1 resulting binary value 1s
: intt OR int2 .. 1 resulting binary value 1s
: int1 XOR int2 .. 7 resulting binary value 1s

Examples of sets and loyical operators

1 declare some sets
TYPE colour = ENUMERATION (red,green,blue,pink,ash,
yellow,white, black)

10101

.01000

.01110

10110

&

101

colour SET : bright:=(red,green,yellow,pink},anycolour, fool

colour SET : pastel:=(blue,yellow,pink)
INTEGER : int1

Z inclusive or - result is red, green, yellow, pink, blue

bright OR pastel =: anycolour
4 logical and - result is yellow, pink
pastel AND bricht =: anycolour
/ exclusive or - result is red, green, blue
bright XOR pastel =: anycolour
%1 logical negation - result is blue, ash, white, black
NOT bright =: fool
1 set maximum number of members - result is 8
ABS bright =: int1t

ND-60.117.04

102 PLANC Reference Manual
EXPRESSIONS - FORMATION AND EVALUATION

5.4 RELATIONAL OPERATORS
PLLANC has relational operators which are available for operands whose
data-elements are of the lnteger, real, enumeration, pointer and set

data types. There are only binary relational operators.

The following table lists all the available relational operators

Operator Priority|Operation Data types
= binary 6 equal integer,real,set,
enumeration,pointer
>< binary 6 not equal integer,real,set,
enumeration,pointer
>= binary 6 greater than or |integer,real,set,
equal enumeration,pointer
(= binary 6 less than or integer,real, set,
equal enumeration,pointer
> binary 6 greater than integer,real,set,
enumeration,pointer
< binary 6 less than integer,real, set,
enumeration,pointer
IN binary 5 membership integer, set,
enumeration,pointer

All relational operators, except IN, must have both operand data-
elements of the same data type. Operand data-elements of integer or
real data types may be modified, ie. integer range or real precision,
and modified integer or real data type operand data-elements may be
mixed when used with the binary relational operators.

It the IN operator has a first operand cdata-element of integer,
enumeration or pointer data types, then the second operand is a list
of data-elements of the same data type as the first operand. This list
may contain explicit literals, constant identifiers, identifiers,
expressions to be evaluated at run-time or implied ranges of the
correct data type. If the IN operator has a second operand data-
element of the set data type, then the first operand must be a
possible member value of the set, which may be evaluated from an
expression at run-time.

The resulting value from evaluation of any relational operator will be
stored in a boolean data-element.

ND-60.117.04 Revision A

PLANC Reference Manual 103
EXPRESSIONS - FORMATIOM AND EVALUATION

Examples of the use of relational operators

INTEGER : int!
INTEGER RANGE (0:200) : int2

S4=:int1
intt >= 0 .. / resulting value TRUE

20000=:1int1; S=:int2
intt < intz .. / resulting value FALSE

21=:1ntt; -3=:1int2
int1*int2 = 0.. 1 resulting value FALSE

5=:intt1; 10=:int?2
int1-1 IN 1,3,5,int2 .. 7 resulting value FALSE
int1-2 IN 1:100,2*int2 .. / resulting value TRUE

REAL : rlt
REAL PRECISION {(9) : rl2
1.5=:1r11; 3.7=:rl12
rl1 >< rlz .. / resulting value TRUE

ENUMERATION (pink,blue,bottle,red) : mycolor,vyourcolor
red=:mycolor; blue=:yourcolor
mycolor > yourcolor .. [resulting value TRUE
bottle IN mycolor,yourcolor.. { resulting value FALSE
mycolor IN blue:red .. / resulting value TRUE

INTEGER ARRAY : vectorlist (1:100)

INTEGER ARRAY POINTER : &
listhead:=AlDR({vectorlist(MININDEX{vectorlist,1))), &
listtail:=AUDR{vectorlist{ MAXINDEX(vectorlist,1) 1))

listhead = listtail .. { resulting value FALSE

INTEGER RANGE (1:100) SET : odds:=(1,3,5,7,9)
1+3 IN odds .. 7 resulting value FALSE

ND-60.117.04

104 PLANC Reference Manual
EXPRESSIONS - FORMATION AND EVALUATION

The rules for forming expressions in PLANC restrict the way data types
may be used, especially for moving and storing data-element values of
a particular data type. Sometimes it may be necessary to move a value
into a data-element of a different data type or simply convert between
different data types, eg. integer to real. While good programming
practices generally try to avoid this sort of operation, care should
be taken if it is necessary to wuse this sort of operation. The
following Standard Routines are provided in the PLANC language

1) CONVERT - convert between the various integer and real data
types.
2} FORCE - take the value from one data-element, and store it

into another data-element of a different data type to the
first, but of exactly the same size.

These standard routines give a value in a temporary resulting value
data-element, ie. the routine out-value, which should be stored with
one of the assignment operators.

The general form of the routine invocations are

identifier CONVERT data-type
or identifier FORCE data-type

where

identifier is an identifier whose data-element value 1is to be
converted.

data-type 1s the data type of the data-element into which the

value is to be stored.

The CONVERT routine may be used for a data type conversion with an
assignment operator to simply store the value.

For example

INTEGER : int
REAL : rl
12=:1int
1 convert an integer value to real value
int CONVERT REAL =:rl
7 use conversion within expression
3.0+2.0*%(int CONVERT REAL)=:rl
1 note, parentheses not required, but they help visually

ND-60.117.04 Revision A

PLANC Reference Manual 105
EXPRESSIONS - FORMATION AND EVALUATION

The FORCE standard routine may be used with any mixture of simple,
composite, predefined or user specified data types.

For example

TYPE colour = ENUMERATION (red,pink,blue)
INTEGER : intl
INTEGER ; int

L put an integer value into a real pointer data-element
int FORCE REAL POINTER

/1 for some bizarre reason the following might be done!
12=:1int1
int1 FORCE colour

Note that the data-element data type to receive the value from the
FORCE standard routine should be exactly the same size as the
originating data-element. For example

INTEGER?T : int
int FORCE REAL

will give unpredictable results. A compile-time message will occur.
The FORCE standard voutine must be used with great care. The internal
representation of the data types involved must be known, see Appendix

C, otherwise results may be unpredictable after use of the FORCE
routine.

ND-60.117.04

106 PLANC Reference Manual

ND~-60.117.04

PLANC Reference Manual 107
SEQUENCE CONTROL STATEMENTS

6 SEQUENCE CONTROL STATEMENTS

The executable statements discussed so far will be executed strictly
in the sequence that they appear in the source program. PLANC has a
number of statements which will unconditionally or conditionally
change the sequence of statements to be executed or cause a group of
statements to be executed repeatedly under some form of iteration
control. The sequence control statements available are

1) GO - unconditional change of sequence.

2) IF - conditional change of sequence.

3) CASE - multi-choice conditional change of sequence.

&) DO - repetitive execution, of a group of statements.

5) FOR - repetitive execution, of a group of statements, a

specified number of times.

6) WHILE - repetitive execution, of a group of statements,
until a condition is satisfied.

7) ASSERT - run-time error occurs if a specified condition is
not true.

6.1 GO_STATEMENT

The 'G0' statement unconditionally transfers control to another
statement within a routine. The general form of a GO statement is

G0 label-identi-fier

where

label-identifier is a label, declared within the scope of this
GO statement.

Note, for a full description of ’'scope of identifier' rules, see

section 7.8

Beware that control transfers into structures such as FOR - ENDFOR or
DO - WHILE - ENDDO loops may have unpredictable results.

Example of the use of a (0 statement
7 declarations

INTEGER : intt
LABEL : labt,lab2,lab3

1
1 executable program
4
labt : 1=:int1 1 any executable statement
7

GO lab? 7 transfer to statement ‘labt’

ND-60.117.04 Revision A

108 PLANC Reference Manual
SEQUENCE CONTROL STATEMENTS

6.2 IE_STATEMENT

The "IF' statement will conditionally execuZe one or more groups of
axecutable statements. The groups of statements executed in this
manner may contain further 'nested’ IF statements. The general form of
an IF statement 1is

IF expr THEN
ex-stmts

[ELSIF expr THEN
ex-stmts]...

[ELSE
ex-stmts]
ENDIF
where
BXPYT 1s an expression with a boolean resulting value.
ax-stmts 1s a group of executable statements.

If expression immediately following the IF gives a value TRUE, the
group of statements i1mmediately following the THEN will be executed,
and then control will be transferred to the statement 1Immediately
following the ENDIF.

I+ this expression gives a value FALSE then

if ‘there is neither an ELSI® nor ELSE present, control
will pass to the statement following the ENDIF,

- 1f the I[F - ENDIF contains any ELSIF's, the expression
immediately following each EILSIF will determine whether
its THEN group of statements 1s to be executed or not.
This process will continue for each next ELSIF,fcr each
expression which gives a value FALSE. If a THEN path 1is
taken, the control will pass to the statement following
the ENDIF after that group of statements has been
executed,

if the IF - ENDIF contains an ELSE, control passes to
the group of statements following the ELSE only i1f the
expressions of the IF and those of any ELSIF's present,
all give the value FALSE.

ND-60.117.04

PLANC Reference Manual 109
SEQUENCE CONTROL STATEMENTS

Examples of IF statements
1. A simple IF - THEN.

7 test for a full page
IF currentline+lines > linesperpage THEN
7 yes, start a new page
newpage
0=:currentline
printheading
ENDIF

2. An IF - THEN - ELSE.

7 adjust wages for tax
IF taxed THEN
7 yes, reduce payment by tax amount
gross - tax{gross}=:nett
ELSE
7 no, pay full amount
gross=:nett
ENDIF

3. An IF - THEN - ELSIF - ELSE

/ compute area of & many-sided figure
IF sides = 3 THEN
7 area of a triangle
{atb+cl)/2.0=:5
sqrt(s*{s-al*{s-bl*(s-c))=:area
ELSIF sides = ¢ THEN
/7 area of a rectangle
a*b=:area

ELSE
7/ approximate other figures by the area of a circle
pl*{radius *2)=:area
ENDIF

ND-60.117.04

110 PLANC Reference Manual
SEQUENCE CONTROL STATEMENTS

4, Nested IF's.

1 check document signatures
IF amount > 10000 THEN
1 large amount, check number of signatures
IF signatures < 2 THEN ;
1 reject
setnogood
ELSE
1 large amount check
bigcheck
ENDIF
ELSIF amount > 100 THEN
Z medium amount check
midcheck
ENDIF
1 1Lf passed, pay it
IF chequeok THEN
payit
ELSE
chequeerror
ENDIF

ND-60.117.04 Revision A

PLANC Reference Manual 111
SEQUENCE CONTROL STATEMENTS

6.3 CASE_STATEMENT

The "CASE' statement will select one of a number of groups of
executable statements to be executed. During one execution of a CASE
statement, only one of the groups will be executed and the remaining
groups will be skipped. The selection of a particular group of
statements is by the CASE expression whose value must correspond to
the integer or enumeration data type values used in the INCASE parts
of the CASE statement. The general form of the CASE statement %S

CASE expr
INCASE value list
ex-stmts
[INCASE value list
ex-stmts]. ..

[ELSE
ex-stmts]
ENDCASE
where
expr 18§ an expression with a resulting value data tvpe,
corresponding to the data type of the INCASE value-
lists.
value~list 1s a list of integer or enumeration literal values.
Note : it may be expressed as an implied range.
ex-stmts is a group of executable statements.

The wvalues in each INCASE part must all be of the same data type as
expr. Each value which occurs in an INCASE part, must not occur more
than once in all of the value-list's of the entire CASE statement.

The group of statements following the ELSE will be executed if the
value of the expression is valid but does not appear in any INCASE
value-list, [f the value-lists do not contain all possible values, an
ELSE must be present.

If the value of the expression 1is invalid, eg. outside a defined
integer range, control will be transferred to the statement
immediately following the ENDCASE, ie. the CASE statement will be
skipped, unless an ELSE part is present. If an ELSE part 1s present,
the group of statements following the ELSE will be executed.

Note : if the velues belong to an INTEGER RANGE, the 1lower
bound of the INTEGER RANGE must be 0. The values

actually checked currently are 0 and the nearest higher
power of 2 to the upper bound.

ND-60.117.04

112 PLANC Reference Manual
SCQUENCE CONTROL STATEMENTS

Examples of CASE statements

TYPE days = ENUMERATION (monday,tuesday,wednesday, &
thursday, friday,saturday, sunday)
days : thisday

CASE thisday
INCASE saturday
shopping
INCASE sunday
dayofrest
[NCASE monday : thursday
workdays
ELSE
1 control comes here only for the value friday
leftovers
ENDCASE

6.4 DO_STATEMENT

The DO’ statement may be wused to repetitively execute a group of
statements with no control of the number of the repetitions or of the

termination condition to exit from such a loop. The general {form of a
00O - ENDDO loop is

DO
ex-stmts
ENDDO

where

ex-stmts 1s a group of executable statements.

The group of statements will be executed repeatedly. At least one GO
statement must Dbe in the group of statements to leave the loop under
some condition. If not the program will coatain an infinite loop.

Example of a DO - ENDDO loop

REAL start:=1.0,increment:=0.1,1imit:=2.0,value
LABEL : next
7 loop through a series of fractional values
start=:value
Do
/1 use 'value ' for computation
J/
1 test for end of loop
increment+value=:value
IF value > limit THEN
GO next
ENDIF
ENDDO
next

ND-60.117.04

PLANC Reference Manual 113
SEQUENCE CONTROL STATEMENTS

6.5 EOR_STATEMENT

The "FOR' statement will cause repeated execution of a group of
statements bounded by the FOR and ENDFOR. The number of repetitions is
specirfied during execution Jjust prior to entering a FOR - ENDFOR loop
for the first time. The group of statements may be executed the
specified number of times or perhaps fewer times if some exceptional
condition arises during the repetitive execution. The general form of
the FOR - ENDFOR loop is

FOR control-ident IN [REVERSE] list DO
ex-stmts

[EXITFOR
ex-stmts]

ENDFOR

where

control-ident 1s an identifier whose data type must correspond with
that of the "list’ values.

list 1s a list of data-elements of INTEGER, ENUMERATION,
ARRAY or POINTER data type.

ex~-stmts is a group of executable statements.

The control identifier will take the values of the 'list' in the
sequence that they have been specified. The control identifier 1is
available within the loop but care must be taken if its value is
changed, as this may interfere with orderly control of the loop. Jpon
exit Afrom a FOR - ENDFOR loop, the control identifier will have an
unpredictable value. This applies as soon as the loop exit action
begins, namely 1f an EXITFOR is present, the control identifier value
will not have a predictable value on entering the EXITFOR group of
statements.

The list of the FOR - ENDFOR loop is an implicit or explicit list of
values which will determine the number of repetitions of the loop. The
list may comprise

- Integer, Enumeration or Pointer data-elements which
may be literal expressions or expressions evaluated at
run-time. The «control identifier must be of the same

data typz. Expressions are evaluated at run-time within
the lood initialisation so that modifying identifiers
used in such an expression during execution of the loop
wlll havz no effect on the control of the loop.

ND-60.117.04

114 PLANC Reference Manual
SEQUENCE CONTROL STATEMENTS

-~ An implied range, of type Integer or Enumeration, may
be used for any element: of such a list or for the
whole list. The upper and lower bounds of an implied
range, which must be evsluated at run-time, will be
computed during loop initialisation - as 1s the —case
for explicit data-elements. However, when using an
implied range, altering the wvalue of the control
identifier during execution of the loop may affect the
loop control, see paragraph on loop testing below.

- The list may contain one or more single-dimensioned
array data-elements. In this case the control
identifier must be an integer data type, which will
take the successive values of the index sets of the
specified arrays in the list.

The control identifier may also be a pointer data-
element of the same base data type as the elements of
the arrays specified 1in the list. However, a pointer
"must not be wused for the control identifier 1f the
array has been declared with the PACKED option, and the
elements of the array require less storage than the
smallest addressable unit on a particular machine, eg.
on the ND-100 an array whose elements were declared as
INTEGERT PACKED would produce unpredictable results.
Further, 1f the control identifier is an pointer data-
element, only one array 1s permitted in the list.

- The list may contaln one or more Pointer Implied

Ranges. This 1s used to step through some records in 2
linked list, see section 4.8

The keyword REVERSE, if present, applies ©o each implled range in the
list, with the exception of Pointer implied ranges. It will cause the
loop control to begin with the second wvalue (the last value as
declared) in each implied range and step downwards to the first value
of the range. Note that implied ranges must be specified in ascending
order. The REVERSE option may not be wused with a Pointer implied
range.

The keyword REVERSE also applies to any arrays in the list. If the
control identifler is either an integer or a pointer data-element, it
will begin with the wvalue corresponding %o the upper bound of the
index set and take successive values until the lower bound of the
~index set is reached.

A FOR - ENDFOR loop contains a test to check if the required number of
repetitions has been completed. This test is done at the end of the
loop. Further, if one or more implied ranges is in the list of the FOR
_statement, then incrementing through the implied range values will
also take place at the end of the loop. Note that while stepping
through the values of an implied range, if the value of the control
identifier 1is explicitly set greater than or egual to the final value
of the range, then that will terminate looping through the values of
that particular implied range.

ND-60.117.04

PLANC Retference Manual 115
SEQUENCE CONTROL STATEMSENTS

If the 1list of a FOR - ENDFOR loop contains one or more impiied
ranges, a further test is placed within the 1loop initialisation. If
the wvalues of the implied range can be computed at compile time, then
if the terminal value of the implied range is smaller than the initial
value, the entire FOR - ENDFOR loop will be skipped, ie. it will not
be executed at all. If the values of the implied range can only be
computed at execution time, then a run-time check within the loop
initialisation will result in zero repetitions of the loop 1f the
terminal value of the range is smaller than the initial value.

The group of executable statements may include any executable
statements but statements such as DO - ENDDO and IF - ENDIF must be
entirely contained witchin the FOR - ENDFOR loop. Loops may be nested
te any number of levels provided each loop is entirely contained
within an outer level loop. While the number of levels of nesting is
theoretically unlimited, the actual number is limited by the memory
available to the PLANC compiler.

If an EXITFOR is present, then when all the list values are exhausted,
control will be passed o the statement immediately following the
EXITFOR.' Following the execution of this group of statements, control
will be passed to the statement immediately following the ENDFOR. If
an exit from the loop is made by any other means than exhausting the
value list, the EXITFOR group will not be entered.

ND-60.117.04

116 PLANC Reference Manual
SEQUENCE CONTROL STATOMENTS

Examples of FOR - ENDFOR loops
T. A simple loup with explicit integer values.

INTEGER : intcontrol
FOR intcorntrol IN 1,%,15,3.17 DO

L group of statements - to be executed 5 timss
ENDFOR

2. A simple loop with explicit enumeration values.

ENUMERATION (red,pink,blue,grey,brown) : colour
FOR colour IN pink,grey,red, brown DO

7 group of statements - to be executed 4 times
ENDFOR

3. A simple loop with explicit pointers in the FOR 1list.

INTEGER POINTER : ptrcontrol,ptrt,ptr2,ptr3
L put some addresses into ptr1,ptr2 and ptr3
FOR ptrcontrol IN ptrt,ptr2,ptr3 DO
, group of statements - to be executed 3 times
ENDFOR

4. A simple loop with implied ranges in the FOR list.

INTEGER : intcontrol
FOR intcontrol IN 1:10,21,24,51:60,101 DO

7 group of statements - to be executed 23 times
ENDFOR

5. A simple loop with implied ranges, using REVERSE.

INTEGER : 1lntcontrol
FOR 1ntcontrol IN REVERSE 1:10,21,24,51:60,101 DO

L group of statements - to be executed 23 times
7 Note : the sequence of values of the control identifier is
A 10,9,...,1,21,24,60,59,...,51,101

ENDFOR

6. A simple loop, values in FOR 1list to be svaluated at run-time.

INTEGER : intcontrol,intt,int2,1int3
FOR intcontrol IN int1,int2:int3%*2 DO

7 group of statements - to be executed n times,

L die. t+{int3*2 1nt2+1), evaluated at run-time.

L intcontrol takes the values intt1,int2,int2+1,...,int3*2.
ENDFOR

7. A simple loop with arrays in the FOR list.

INTEGER : intcontrol
REAL ARRAY : arreall{1:3),arreal2(1:7)
FOR intcontrol IN arrealt,arreal2 DO

/1 group of statements - to be executed 10 (ie. 3+7) times
1 control identifier takes the values 1,2,3,1,2,3,4,5,6,7
ENDFOR

ND-60.117.04

PLANC Reference Manual
SEQUENCE CONTROL STATEMENTS

8. A simple loop, arraye in FOR list, a pointer control identifier.

REAL POINTER : ptrecontrol

REAL ARRAY : arreall(1:3)

FOR ptrcontrol IN arreall DO
Z group of statemerts - to bhe executed 3 times
I control 1dentifier takes the addresses of the array elements
Ioarreali{n),{2),(2)

ENDFOR

9. A simple loop, pointer implied range in FOR list.

/ define a record cata type for the linked list
TYPE myrecord - RECORD
myrecord POINTER : linkptr
INTEGER : recnumber
FNDRECORD
/ initlalise a static linked list of records
myrecord : ri1?,r2?,r3? { predeclaration of data-elements
myrecord POINTER : listhead:=ADDR(r1)
myrecord : rl:={ ADDR(r2),1)
myrvecord : r2:={ ADDR(r3),2)}
myrecord @ y3::{ NIL,3)
7 declare a record pointer for scanning the list
myrecord POINTER : ptrcontrol
7 loop through all records in the linked list
FOR ptrcontrol IN listhead:linkptr DO
7 group of statements to process one record data-element
ENDFOR

10. A nested loop.

INTEGER : rowelement,colelement
REAL ARRAY ARRAY : square{1:5,1:5)
REAL : sum
7 sum elements to the left of the diagonal element
FOR rowelement IN 1:MAXINDEX(square,1) DO
0.0=:sum
FOR colelement IN t:rowelement-1 DO
sumtsquaref{colelement, rowelement)=:sum
ENDFOR
/ store the sum in the diagonal array element
sum=:square{rowelement, rowelement)
ENDFOR

ND-6O.117.04

118 PLANC Reference Manual
SEQUENCE CONTROL STATEMENTS

11. A simple loop with an EXITFOR part.

INTEGER : intcontrol,sum,limit
BOOLEAN : sumflag
LABEL : next
INTEGER ARRAY : vector(1:100)
0=:sum ; FALSE=:sumflag ; 500=:1imit
FOR 1intcontrol IN vector DO
sum+vector{intcontrol)=:sum
IF sum < limit THEN
G0 next
ENDIF
EXITFOR
IF sum < 0 THEN
FALSE=:sumflag
ENDIF
ENDFOR
next

ND-60.117.04

PLANC Reference Manual 119
SEQUENCE CONTROL STATEMENTS

6.6 WHILE STATEMENT

The 'WHILE' statement may be used within DO - ENDDO or FOR - ENDFOR
loops to exit when a condition becomes false. While the condition
remains true, the loop control will not be affected. The general form
of a WHILE statement used within a loop is

In a DO - ENDDO looap

Do
ex-stmts
WHILE expr
ex-stmts
[EXITWHILE
ex-stmts]
ENDDO

i

In a FOR ENDFOR loop
FOR control-ident IN [REVERSE] list DO
ex-stmts
WHILE expr
ex-stmts
[EXITWHILE
ex-stmts
(EXITFOR
ex-stmts]
ENDFOR

where

expr is an expression with a boolean resulting value.

ex-stmts 1s a group of executable statements.

The effect of the WHILE statement each time it is executed within the
loop, 1is to test if the resulting value of the expression is TRUE. If
it 1is, pass control to the executable statement immediately following
the WHILE. [If the resulting value of the expression is FALSE, then
control will exit from the loop and pass to the statement immediately
following the ENDFOR or ENDDO.

If an EXITWHILE 1is present within the loop, the group of statements
following the EXITWHILE will be executed as soon as the loop exit
action begins, as a consequence of the relevant WHILE statement. Note
however, that if an EXITWHILE and an EXITFOR are both present in a FOR
- ENDFOR 1loop, then an exit from the loop effected by the WHILE
condition will execute the EXITWHILE group of statements but not fthe
EXITFOR group of statements, prior to the exit from the loop.

A WHILE statement may be placed anywhere within the group of
executable statements of a loop, depending on where a loop exit is
desired under the controul of a logical condition. Further, any number
of WHILE statements may be used within a FOR - ENDFOR or a DO - ENODO
loop.

ND-60.117.04 Revision A

PLANC Reference Manual
SEQUENCE CONTROL STATEMENTS

Examples of use of the WHILE statement

1.

2.

Within a DO - ENDDO loop.

TV T ™ T2

INTEGER : records
BOOLEAN : endoffile
read first record of a file
0=:records
openfile
nextrecord
loop through all records in the file
DO
1f end of file, exit from loop
WHILE NOT endoffile
process a record
f+rrecords=:records

end of the loop statements

loop exit condition
EXITWHILE
close file
closefile
ENDDO

A WHILE used to leave a FOR - ENDFOR loop without using a label.

™

INTEGER : intcontrol
FOR intcontrol IN 1:100 DO
exit from loop under certain conditions
IF NOT checkvalid THEN
WHILE FALSE
ENDIF

things are ok, continue looping

EXITWHILE
ENDFOR

ND-60.117.04

PLANC Reference Manual 121
SEQUENCE CONTROL STATEMENTS

3. Multiple WHILE's within a FOR - ENDFOR loop.

CONSTANT rows::10,cols:=10
INTEGER rowelement,colelement
REAL ARRAY ARRAY : matrix(1:rows,1:cols)
REAL ARRAY : rowsum(1i:rows)
REAL : limitsum
i loop through all rows of the matrix
100.0=:1imitsum
FOR rowelement IN 1:rows DO
0.0=:rowsum{:rowelement)
1 sum the row elements, provided it is within limits
FOR colelement IN 1:cols DO
matrix{rowelement,colelement)+rowsum{rowelement) b
z:rowsum{rowelement)
1 check sum limits
WHILE rowsum{rowelement) < limitsum
1 too many elements for sum ?
WHILE colelement CONVERT REAL < limitsum/4.0
Z in case of abnormal exit, set sum negative
EXITWHILE
-1.0=:rowsum(rowelement)
1 end of inner loop
ENDFOR
ENDFOR

ND-60.117.04

122 PLANC Reference Manual
SEQUENCE CONTROL STATEMENTS

5.7 THE ASSERT STATEMENT

An "ASSERT' statement requires an associated condition to be true
whenaver the statement is encountered. The general form of the ASSERT
statement is

ASSERT expr
whera

BXPT i1s an expression with a boolean resulting value.

During program execution, if the resulting value of the expression is
TRUE then control will simply pass to the nuxt wexecutable statement.
If however the resulting value of the expression is FALSE, an error
condition arises and control will be transferred elsewhere depending
on what has been specified for handling "ASSERT' errors. For further
details of how "ASSERT' errors may be handled see Exceptions and Error
Handling, section 6.8. This provides an explicit means for
supplementing the normal run-time checks provided by the system.

Examples of ASSERT statements

ASSERT 1nt?1 < number*2
ASSERT int2 < 1 AND red IN mycolours

ND-60.117.0¢%

PLANC Reference Manual 123
SEQUENCE CONTROL STATEMENMTS

6.8 EXCEPTION AND ERROR HANDL ING

PLANC provides a mechanism for handling specific sorts of error
conditions which may arise during program execution. A part of the
program, called an 'exception handler', may have control passed to it
when the corresponding error condition occurs, rather than continue

executing statements in the normal way. The general form of such an
exception handler is

ON exception{, exception]... DO
ex-stmts
ENDON

where
exception is any defined exception condition.

ex-stmts 1s a group of executable statements.

An exception handler may handle errors due to one or more exception
conditions. An exception condition will be sensed only, 4in the source
code following the ON statement - ENDON statement group of source
statements, within a outine. If more than one ON - ENDON exception
handler appears in a routine, then the one immediately preceding the

occurrence of an excep:ion, in the source code, will be activated to
handle the exception.

The particular exception conditions defined in PLANC are

ASSERTFALSE -~ for the expression in an ASSERT statement giving
a value FALSE.
OVERFLOW - arithmetic overflow.
Note : hardware checks only activate this exception.
POINTERERROR - attempt to use a data-element, refererfced by a
pointer whose value is NIL. (not implemented)
The NEW..IN standard routine will trap such errors if
the space to be used 1s not adequate.
RANGEERROR - array index or integer range error.
(not implemented)
ROUTINEERROR - a called routine has taken an ERRETURN exit.
STACKERROR - stack overflow or underflow has occurred, eg. when

using the NEW standard routine.

Executing an exception handler is similar to execution of a routine
invocation. The ENDON is in this sense equivalent to the RETURN
statement, passing control back to the place that exception condition
occured,

Note that a ROUTINEERROR exception handler cannot set-up or repair the
out-value, or output parameters which would have been passed back by

successful execution, after invocation of the routine which generated
the exception condition.

ND-60.117 .04

124 PLANC Reference Manual
SEQUENCE CONTROL STATEMENTS

If a ROUTINEERROR exception occurs and no exception handler has been

provided, an ERRETURN exit from the routine will be simulated. Control

will pass back up the invocation hierarchy as described in section
7.5.

Examples of exception handlers

ON ASSERTFALSE DO
0=:int1
GO out

ENDON

ON STACKERROR,OVERFLOW DO
int2 ERRETURN
ENDON

Mote that the PLANC run-time system has a routine which will be
invoked if an ASSERT condition 1is FALSE and the wuser has no ON

ASSERTFALSE exception handler. The form of the declaration of this
routine 1is

1 on the ND-100

ROUTINE SPECIAL VOID,VOID : assert_handler ALIAS "SFATA'
1 on the ND-500

ROUTINE SPECIAL VOID,VOID : assert_handler ALIAS "HFATA’

If a wuser wishes to replace this routine with another, the user
written routine must be loaded before PLANC library routines.

ND-RN . 117 .04

PLANC Reference Manual 125
ROUTINES

7 ROUTINES

A PLANC routine is group of statements which can be referred to as an
entity to «carry out a1 particular function. A routine comprises
executable statements and declarations of any identifiers used within
the routine. The routine concept in PLANC is defined as a composite
data type, whose declaration includes data types of the data-elements
to be used in communication between the routine and its caller. A
routine has an explici: in-value and out-value which affect the way a
routine invocation appears in a calling routine.

A routine may be invoked to carry out a specific function or
operation. The PLANC routine is similar to the ‘subprogram’ concepht of
other programming languages. However, a PLANC routine has one_explicit
in-value and one expl.icit out-value. A PLANC routine may also have a
list of formal parameters declared, for transmitting data-elements
into or out of the routine. A routine may be invoked from another
routine 1in the same module or a routine in a separate module.

7.1 ROUTINE DECIARATION

A Toutine 1s a compusite data type. Consequently, a routine
declaration causes the construction of a data-element which includes
all the memory area wused for the routine, excepting dynamically
created data-elements.

A routine declaration will include the following

1) Options which cetermine the specific structure of the routine
for particular types of routine invocation.

2) The data types of the explicit in-value and out-value of the
routine,

3) The data types of any formal parameters used within the
routine, which will consequently be required in any c¢all to

the routine.

4) The identifier to be used as a routine name for invoking the
routine.

5) The identifiers of any formal parameters declared, to be used
within the routine.

6) The declarations of local data-elements which will only be
availlable inside the routine.

7) Executable statements which carry out the desired operations
required of the routine.

ND-60.117.04

126 PLANC Reference Manual
ROUTINES

The first five of the above items are called the routine header. The
last two items are called the routine body.

The general form of a ROUTINE declaration is

ROUTINE - rest of routine header

routine body

ENDROUTINE
The general form of a ROUTINE header is

ROUTINE [option[optionl...] in-data-type,out-data-type

[(p-data-types)] : rout-ident [(p-ident-list)]
[ALIAS "a-rout-ident’]

where

optiaon is one of the ROUTINE modifiers STANDARD, REFERENCE,
SPECIAL or INLINE.

in-data-type is the data type of the in-value.
out-data-type 1is the data type of the out-value.

p-data-types is a list of the data types of the formal parameters of
this routine.

royt-ident is the identifier for referring to this routine.

Note : special characters allowed, see below.

a-rout-ident is a text string. It qualifies the routine name to
distinguish routines with the same structure, eg. same
parameters, but of different data types.

Note : the string may contain any characters. p-ident-list
is a list of identifiers of the formal parameters
of this routina.

Note, that there is a special form of a routine header, namely for a
main PROGRAM routine, see 8.2

As an alternative to the normal identifier name formation rules, a
routine identifier name may be made up of the following special

characters anly

P x s -) 2 ¢=>721t\ (]

ND-60.117.04 Revision A

PLANC Reference Manual 127
ROUTINES

Further, such a routine identifier name may be a mixture of these
special characters, but the rules concerning number of characters in
an identifier still apply., see section 2.11

Note : 1. A dollar character ($) cannot begin a routine
identifier.

2. A full stop character (.) can only begin a routine
identifier.

3. A space character must precede the routine identifier
if it begins with one of the above special characters.

Several routines may be declared with the same routine identifier. The

PLANC compiler will only accept these routines if they can be

distinguished by the data types of the in-value and the parameters.

For examples and details of such families of routines, see section
8.4

A routine has one distinct in-value data-element and one distinct out-
value data-element. The in-value and out-value data-elements may be of
any valid data type, ie. simple, composite, predefined or user-
defined. Further, if either in-value or out-value data-element is not
required for a particular routine, then the keyword VOID may bhe used
to denote the absence of a data-element in the formal routine
declaration,ie. in the routine header,

A routine may be declared with any number of formal parameters for
communication between the invoker and the routine itself. A parameter
may be used to transfer a value into a routine or to transfer a value
out of a routine or beth. It is generally regarded as an unwise
practice to wuse one parameter for transferring values in bath
directions. The routine header contains a declaration of the data type
of each formal parameter. It also contains the identifier names of
each formal parameter which must be used to refer to each parameter
within the routine. The data type of each formal parameter may be
access modified, see section 3.11.3, with READ or WRITE. The default
access for each declared formal parameter 1is READ. Parameter transfer
1s discussed in more detail in section 7.4

ND-60.117.04 Revision A

128 PLANC Reference Manual

ROUTINES
Examples of simple routines
. A routine to return the larger of two integer values.
ROUTINE VOID,VOID {INTEGER, INTEGEFR , INTEGER WRITE) : &
simple{ini,in?,outval)}
Z in-value and out-value data-elements are absent
A
%1 declarations local to this routine
i
INTEGER : ;ocal
1 select the larger parameter value
in2=:local
IF int > 1in2 THEN
int=:local
ENDIF
% transfer the larger value back to the invoking routine
local=:outval
RETURN
ENDRQUTINE
2. A similar routine, using the out-value to return the value.
ROUTINE VOID,INTEGER (INTEGER,INTEGER) : simple{int,in2)

L declarations local to this routine

INTEGER : local
L select the larger parameter value
in2=:local
IF in1 > 1n2 THEN
int=:1local
ENDIF
7 send the larger value back to caller
7 Note that the out-value is part of the RETURN statement
local RETURN
ENDROUTINE

A routine is normally invoked by use of the routine name identifier in
the declaration. However, if a number of routines have the same name
and the same number of parameters, eg. an operator myplus may be

required to handle various data types, then each routine may be
uniguely identified by use of an ALIAS name for access from another
module {see Chapter 8, PROGRAM STRUCTURE). Further, any module

wishing to use such a family of routines, rust IMPORT each one of the
family it wishes to use. The IMPORT statements may use either the
originally declared routine name identi-ier or the ALIAS name (see
section 8.4), as the routine identifier and whichever 1s chosen must
be used for all routine invocations in that module. This use of ALIAS
is necessary to generate adequate information for the Loader to
resolve all references correctly. For examples of use of the ALIAS
option, see section 8.4. If a module contuining a family of routines
is to be accessible within a library file, the $LIBRARY-MODE command
must be used, see Appendix A.

ND-60.117.04

PLANC Reference Manual 129
ROUTINES

The name in the ALIAS text string may contain characters which form an
identifier which is illegal as a routine name identifier in PLANC or
other 1languages. This facility may be used to create a protection
mechanism, for preventing a user program from inadvertently naming and
invoking a system routine, which would normally only be invoked by
other systems software, eg. the Fortran [/0 routines.

A system routine with a (SYSTEM) EXPORT qualifier, will enable other
modules to access it, provided that the (SYSTEM) IMPORT qualifier is
used, see 8.3 . Then tnis identifier will be handled by the Loader
in the same way as an ALIAS name. For example, most of the Fortran
run-time library routines are protected from unintentional invocation
by names declared with this protection mechanism. This may be set-up
by the use of the EXPORT/IMPORT qualifier, (SYSTEM), or an ALIAS name.
Beware, this protection mechanism must be used with the greatest care
possible, as it may lead to conflicts with system routines.

Routine declarations may be nested to any number of levels within
another routine. However, there are some restrictions on the recursive
invocation of routines, see section 1.7

The optional routine modifiers specify how the compiler should
construct routines with regard to parameter transfer and calling
sequence. The following modifiers are available

1) INLINE - the data-element of such a routine will have no
object code generated by the compiler. Each invocation of
this routine will have the entire routine data-element
instead of the usual call sequence. This will result in a
larger program with several copies of the routine. But the
program will execute faster as the invocation overheads are
not incurred for each use of the routine. INLINE should only

be wused for «mall routines, eg. 1 - 5 lines. An INLINE
routine cannot he declared or invoked within another INLINE
routine.

2) SPECIAL - no routine entry/exit sequence at all is provided.

The invocation of such a routine can be made faster than for
a normal routine, as the usual register storage and stack
initialisation will not be done. Consequently the extra speed
might be gainec with a corresponding decrease jn securitv of
the environment during the execution of such a routine. This
should only be used by the most experienced and knowledgeable
users, who may ke using assembly code!

3) STANDARD - a calling sequence, including parameter transfer,
is generated which is the standard used by Fortran and Cobol
to call subprograms. In-values are not allowed. Note that the
standard routines, MININDEX, MAXINDEX for array parameters
and ERRETURN, are not available in STANDARD routines, either
PLANC calling other 1language routines or vica versa. For
examples of the use aof such mixed language combinations of
routines see Appendix D.

%) REFERENCE - normally parameters whose data-elements are of
the simple data types are transferred by wvalue. In a
REFERENCE routine all parameter data-elements are transferred
by reference, ie. the routine is given the address of each
data-element concerned. The calling sequence is not the same
as for STANDARD.

ND-B0.117.04 Revision A

130 PLANC Reference Manual
ROUTINES

While routines are defined as a composite data type in PLANC, the
invocation of any routine is treated as an occurrence of an operator.
When treated in this manner as an operator, a routine has the priority
117 for the purposes of evaluation of any expressions containing
routine Invocations. However, 1f a routine name 13 the same as any
operator defined by the PLANC compiler, eg. +, * or ABS, then this
routine will have the same priority as the predefined operator, for
the purposes of expression evaluation.

Predeclaration of a routine may be used in the same way as for data-
elements of any other data type. An illustration of this facility 1is
in section 3.18§

A pointer data-element may be declared t> reference a routine data-
2lement. [f this i1s done, then the pointer Jdata-element and the IND
standard routine may be used to invoke the routine. Note that the IND
standard routine may only invoke routines 171 the outer level of a
module, see section 7.9.

For example
/. define a data type for a sort of routine
TYPE myroutine = ROQUTINE VOID,VOID

/ declare a routine data-element
myroutine : myfirst

ENDROUTINE
L declare a pointer for the defined routine data type
myroutine POINTER : mypoilnter

executable statements

set-up the address of the routine da‘a-element

TR T T o=

ADDR myfirst =:mypocinter
1 invoke the routine
IND mypointer

ND-60.117.04

PLANC Reference Manual 131
ROUTINES

7.2 IN-YALUE AND OUT-VALUE OF ROUTINES

PLANC routines have one explicit in-value data-element and one
explicit out-value data-element. Either the in-value or out-value may
not be required for a specific routine declaration and the keyword
VOID denotes the absence of a data-element.

If an in-value is present in the routine declaration, then executable
statements within the routine can refer to the in-value data-element
by using the Commercial At <character (). The & character may be
looked upon as the identifier associated with the in-value data-
element and of the same data type.

For example

ROUTINE REAL,VOID (REAL WRITE) : donothing (giveitback)
7 simply return the in-value in the parameter

d=:giveitback

ENDROUTINE

If the in-value is a composite data type, eg. a record, then the 2
character will precede the normal way of referencing a component of
the data-element of the composite data type.

For example

TYPE myrecord = RECORD
INTEGER : fieldt
REAL : field2

ENDRECORD
1
1 routine declaration
1

ROUTINE myrecord,VOID {INTEGER WRITE) : simplertn (out)
1 return twice the value of the first field in the record

d.field1*2=:0ut

ENDROUTINE

Now some code to invoke the routine

INTEGER : outparam

1 declare a record data-element with initial values
myrecord : rect:={(10,23.5)

1 invoke a routine, passing it a record data-element
rect! simplertn (outparam)

If routines are nested, the Commercial at character (3) refers to the

in-value of the inner most routine with respect to the place where the
d 1s used.

HD 60,117 .04

132 PLANC Reference Manual
ROUTINES

The out-value data-element of a routine will have a value stored into
it when a RETURN statement is executed to terminate a routine, see
section 7.5. If an expression precedes the RETURN, then the
resulting value from evaluation of the expression .must be of the
correct data type to match the routine declaration. This will be
checked at compilation time.

For exampls

ROUTINE REAL,REAL : twice
I double the in-value and put it into the out-value
REAL : localreal
d%*2.0=:localreal
localreal RETURN
ENDROUTINE

This could also coded in the following way

ROUTINE REAL,REAL : twice
1 double the in-value and put it into the out-value
REAL : localreal
d=:localreal
2.0%localreal RETURN
ENDROUTINE

But the simplest way of all is

ROUTINE REAL,REAL : twice

7 double the in-value and put it into the out-value
2.0%3 RETURN
ENDROUTINE

Note that in-value and out-value declarations for composite data-
elements will result in transfer by referernce during execution of a

routine invocation, ie. only an address is passed not the entire data-
element.

ND 60.117.04

PLANC Reference Manual 133
ROUTINES

7.3 ROUTINE INVOCATION

A routine will be invoked, by simply executing a statement containing
the identifier in the routine declaration. If the routine declaration
has an in-value, then the identifier immediately preceding the routine
invocation, will indicate the data-element to be used as the in-value.
If the routine declaration includes parameters, then the actual
parameters in the source program, may be expressions or identifiers
separated by commas, enclosed in parentheses, immecdiately following
the routine invocation. For each formal parameter in the routine
declaration, there must be an actual parameter in the routine
invocation, ie. a data-element, of the formal parameter's data type 1in
the routine declaration. If not, the compiler will give an error
message.

For example

1 program code to invoke a routine
INTEGER : invalue,p2actual
REAL : ptactual

1 invoke routine with an in-value and 2 actual parameters
51=:invalue ; %.35=:plactual
invalue artn {(pfactual,p2actual}

Z use value returned from routine in the 2nd actual parameter
p2actual=:localint 1 value returned = 1

The following routine declaration can be invoked by the above code

i

ROUTINE INTEGER,VOID (REAL,INTEGER WRITE) : artni{fpi,fp2)

7 set 2nd parameter : 1, in-value and 1st parameter +ve
1 2, not{in-value and 1st parameter +ve)
A
IF @>0 AND fpi1>0.0 THEN
t=:fp2
ELSE
2=:fp2
ENDIF
A
RETURN
ENDROUTINE

Note that i1f the actual parameter is of the same base tvpe, but &
different modification to the formal parameter, eg. INTEGER4 actual
parameter and formal declaration is INTEGER!, then during execution
precision may be lost, cdepending on the value held in the actual
parameter. ’

ND-60.117.04

134 PLANC Reference Manual
ROUTINES

{f the parameter list of a routine declaration comprises only one

formal parameter, then the parentheses may be omitted for any
invocation,

If the routine 1nvocation 1is within an expression, then the evaluation
will proceed by the normal rules, see Chapter S5 EXPRESSIONS -
FORMATION AND EVALUATION, with the routine invocations being treated
as operators with priority 11. The resulting value from evaluation of

an expression may become the in-value for the routine invocation, by
the use of parentheses.

If the routine declaration includes an out-value, and the routine
invocation 1s within an expression, then the out-value returned from

the routine invocation will be used for the further evaluation of the
expression.

Note that if a routine 1is declared with an in-value and an out-value,
and it 1s invoked in an expression in the following way, ie. with an

assignment operator immediately before and after the routine
invocation

1 =: rtn =: 3

then the value of i will be the value stored in j, not the out-value
of the routine linvocation.

Invocation of a routine within another routine, ie. nested routine

invocations, must not be carried out by the use of the IND standard
routine.

Examples
1. A routine invocation within an expression.

1 program code to invoke a routine
INTEGER : localint,invalue,p2actual
REAL : ptactual
1 invoke routine with an in-value 5, and 2 actual parameters
S=:invalue ; 5.5=:plactual
2+invalue artn (plactual,p2actual)+3=:localint
7 evaluation becomes 2+1+3, ie. localint=§

Routine declaration, to be invoked as above
ROUTINE INTEGER,INTEGER (REAL,INTEGER WRITE) : artnifpt,fp2)

1 set 2nd parameter - 1, in-value and 1st parameter +ve
and out-value 2, not(in-value and 1st parameter +ve)

™

IF @>0 AND fpi1>0.0 THEN
1=:fp2
ELSE
2=:¥p2
ENDIF
1 set out-value equal to 2nd parameter
fp2 RETURN
ENDROQUTINE

ND-60.117.04

PLANC Reference Manual 135
ROUTINES

2.

A routine invocation with an expression as an in-value.

/1 program code to invoke a routine
INTEGER : localint,int., p2actual
REAL : ptactual
/ invoke routine with an in-value -4, and 2 actual parameters
1 note, first actual parameter 1s an expression
5=:int ; 5.5=:ptactual
(int-9) artn (2.0*ptactual,p2actual)+3=:localint
1 evaluation becomes (-4) artn (...} +3
/ then 2+3, le. localint=%

Routine declaration, to be invoked as above

ROUTINE IMTEGER,INTEGER (REAL,INTEGER WRITE) : artn(fpl,fp2)

1 set 2nd parameter - 1, in-value and 1st parameter +ve
7 and out-value 2, not{in-value and 1st parameter +ve)
1 .
IF @>0 AND fp1>0.0 THEN
1=:fp2
ELSE
2z:fp2
ENDIF
1 set out-value equal to 2nd parameter
fp2 RETURN
ENDROUTINE

ND-60.117.04

136 PLANC Reference Manual
ROUTINES

Routines will have functionally different characteristics depending on
the presence or absence of an in-value and an out-value data-element.
The 1lnvocation of a routine will have distinct form for each of the
four different possible in-value and out-value configurations.

in-value absent, out-value absent

A routine with no in-value or out-value data-element will be invoked
by an executable statement containing nothing other than the routine
name, and actual parameters if any have been declared. Since there 1is
no out-value, the routine must terminate an expression. Since there is
no in-value, the routine can be preceded by nothing in an expression.

Such an executable statement will carry out a well-defined operation.
Communication of values into and out of the routine can only be
accomplished by use of routine parameters. This appears like the
Subroutine construct of languages such as Fortran or Cobol. In fact,
this form of a routine used in conjunction with the STANDARD routine
modLfier, will create a routine which is callable from a Fortran or
Cobol program, and behave like a subroutine.

For example

ROUTINE VOID,VOID (REAL,REAL,REAL WRITE) : &

add{add1,add2, sum)
7 routine which behaves like a subroutine, eg. Fortran

1 add the first two parameters and re:urn the sum in the third
addi+add?2=:sum

RETURN
ENDROUTINE
7
7 code to invoke the 'subroutine' routine
A
REAL READ : first:=5.3,second:=6."
REAL : total
A

add{first,second,total) 1 total = 12.0
% invocation stands alone as an execu“able statement

ND-60.117.04

PLANC Reference Manual 137
ROUTINES

in-value absent, out-value present

A routine with an out-value, but no in-value will be i1nvoked as part
of an executable statement which contains an expression to be
evaluated. In the expression containing such a routine invocation, the
routine name plus optionally, a parameter list, may be looked upon as
an identifier which will have a definite value during evaluation of
the expression. Even though the routine isg technically an operator
with priority 11, a routine of this nature behaves like an identifier
with an associated data-element. These characteristics, used with READ
only parameters, are similar to a Fortran function subprogram. In
fact, this form of a routine with READ only parameters wused 1in
conjunction with the STANDARD routine modifier, will create a routine
callable from Fortran, and behave like a function subprogram.

For example

ROUTINE VOID,INTEGER (INTEGER) : twicelinvalue)
Z routine which behaves like a function, eg. Fortran
7 return double the value input

2*¥1invalue RETURN

7 invoke the above routine within an expression

INTEGER : int
S5+twice(3)+4=::nt L result is 5+6+4=15

ND-60.117.0¢4

138 PLANC Reference Manual
ROUTINES

in-value present, out-value absent

A routine with an in-value, but no out-value may be invoked within an
expression. Since the routine has no out-value, it must terminate the
expression. Such a routine will simply store the in-value it receives.

A routine of this form is sometimes referred to as a "store-into
subroutine’. It may be used to store a value into a data structure,
while completely separating the actual details of the data structure
from the program using the data structure.

For example

MODULE tables

EXPORT inentry
L global table and table pointer, to be stored over successive
1 routine invocations

INTEGER : tablepointer

INTEGER ARRAY : table(1:100)

ROUTINE INTEGER,VOID : inentry
1 add another value to the table

ENOROUTINE
ENDMODULE

module to use the table via the above routine - could be
separately compiled

MODULE usetable
IMPORT (ROUTINE INTEGER,VOQID : inentry)
INTEGER ARRAY : stack(0:1000)

PROGRAM : doit
INTEGER : intt,int2,int3
1 executable program - compute value anc¢d store in the table
INISTACK stack
(int1+int2*int3) inentry

ENDROUTINE
ENDMODULE

For details of MODULE's and EXPORT/IMPOR] statements, see sections
8.5 and 8.3

The user program can now put values into a table, but does not see the
structure of the table. Indeed the MODULE tables, could be recoded to
store the table entries in a linked list of RECORD data-elements, and
the MODULE wusetable would require no change. A matching routine to
return a table entry could be written. This routine should have no in-
value and an out-value. Then the pair of routines together, could be
thought of as a composite data-element, eg. a table with certain
Characteristics, whose actual implementation details are completely
separated from a user of the data-element.

NO-60.117.04% Revision A

PLANC Reference Manual 139
ROUTINES

in-value present, out-value present

A routine with both an in-value and an out-value may be invoked within
an expression. Since an invocation of such a routine is preceded by a
data-element, and returns a data-element, it will represent an
operator within the expression if the routine 1is declared with one
parameter. Note, that routine invocations have priority 11, ie. higher
than most operators.

A routine of this form is sometimes referred to as a 'store-into
function’. It «can be used to create operators, analogous to existing
operators, eg. + or - for existing data types, eg. BOOLEAN. Further,
operators may be created for newly defined data types, eg. operators
for a newly defined 'complex’ data type.

ND-60.117.04 Revision A

140

PLANC Reference Manual

For example

E

Note,
from

1 the following two modules must be nested to be able to
1 the newly defined data type "complex"
MODULE complexoperators
TYPE complex = RECORD
REAL : realpart,imagpart
ENDRECORD
EXPORT +1, x|
% add two complex data-elements
1 formula used is (a+i.b)+(c+i.d)=(a+c | +i.(b+d)
ROUTIMNE complex,complex (complex) : +!{follow)
complex : local
a.realpart+follow.realpart=:local.realpart
a.imagpart+follow.imagpart=:local.imagpart
local RETURN
ENDROUTINE
Z multiply two complex data-elements
1 formula used is {a+i.b)*(c+i.d)={ac-td)+i.(ad+bc)
ROUTINE complex,complex {complex} : *!({follow)
complex : local
a.realpart*follow.realpart~8.imagpart*follow.imagpart
=:local.realpart
a.realpart*follow.imagpart+a.imagpart*fcllow.realpart
=:local.imagpart
local RETURN
ENDROUTINE

a nested module - to use the complex data type

MODULE usecomplex

IMPORT complex

IMPORT (ROUTINE complex,complex (complex) : +!)
IMPORT (ROUTINE complex,complex (complex) : %!)

INTEGER ARRAY : stack{0:1000}
PROGRAM : docomplex
complex READ : cpx1:=(1.06,2.0),cpx2{3.0,4.0)

complex : cpx3

INISTACK stack

add two complex data-elements
cpxt +! cpx2 =: cpx3 1 result is 4+6i
multiply two complex data-elements
cpxt *! cpx2 =: cpx3 7 result is -5+101
ENDROUTINE
ENOMODULE 1 end of usecomplex
ENOMODULE 1 end of complexoperators

ROUTINES

import

&

&

the data type complex must be IMPORT'ed into a nested module

an outer module.

ND-60.117.04 Revision A

PLANC Reference Manual 1461
ROUTINES

7.4 PARAMETER TRANSFER

A routine declaration will declare the data types of any formal
parameters to be used by the routine. Any invocation of a routine must
include actual parameter data-elements of data types corresponding to
those of the declared formal parameters. Parameters of the simple data

types are transferred in a different way to parameters of the
composite data types.

The simple data types are transferred by value. This means that a
routine invocation results in the value stored in the actual parameter
data-element being copied into a temporary data-element, created
locally in the routine’s memory area. During execution of the routine,
all references to the formal parameter will operate on the temporary,
locally created data-elament. The default access mode for parameter
data-elements 1s READ only. The transfer of the actual parameter data-
element value to the temporary local data-element, takes place before
execution of the routine begins. If WRITE, or READ WRITE has been
declared as access mode, during execution the routine may store a
value 1in a formal parama2ter for return to the invoking routine. Such a
value will be transferra2d to the actual parameter data-element, from
the temporary local data-element, after a normal exit from the
routine. Such transfers will not take place if an abnormal routine
exit occurs, see 7.5. If WRITE only has been declared as access
mode, then the temporary local data-element will have an undefined
value at the beginning of execution of the routine. Further, any
invocation of a routine with any WRITE only parameters, must have
explicit actual parameter data-elements for such parameters.
Expressions are invalid as actual parameters for such declared WRITE
only formal parameters, as they have only a temporary data-element for
the resulting value of axpression evaluation.

Note that for any roJtine declared with the routine gqualifiers
REFERENCE or STANDARD, and an array as a parameter, an invocation of
this routine should only use as an actual parameter, an array with the
lower bound of each dimension declared as zero. Otherwise the array
elements will not be referenced correctly within the invoked routine.

ND-60.117.04

142 PLANC Reference Manual
ROUTINES

Examples of parameter transfer
1. A parameter, default READ only access made.

ROUTINE VOID,INTEGER {INTEGER) : twice (paramt)
1 param! refers to the temporary local data-element which has
1 received the value of the actual parameter data-element on
1 entry to the routine

2*paramt! RETURN

ENDROUTINE
1
1 code to invoke the above routine
1
INTEGER : int1,int2
4

twice(5)=:int1 1 result is 1(

1 an expression as the actual parameter
twice(3+2%4)=:int1 1 result is 22

1 invocation cannot change value in data-element of int1
2=:1intt
twice{intt1)=:1int?2 1 result is 4

ND-60.117.04

PLANC Reference Manual 143
ROUTINES

2. A parameter, with READ WRITE access mode.

ROUTINE VOID,VOID (INTEGER READ WRITE) : twice (paramt)
1 param! refers to the temporary local data-element which has
L received the value of the actual parameter data-element on
1 entry to the routine
2%*parami=z:paramt
7 value in the temporary local data-element is transferred back
7 to the actual parameter data-element after the RETURN
1 statement is executed

RETURN
ENDROUTINE
A
71 code to invoke the above routine
A
3=:1int
twice(int) 1 after invocation int = 6

L the following is equivalent to the previous invocation
twicel{3=:1int)

L Note, following invocation is invalid, it has no explicit

7 actual parameter data-element, for the value to be returned
twice(3+2%5}

3. A parameter with WRITE only access mode.

ROUTINE INTEGER,VOID (INTEGER WRITE) : triple (paramt)

3*d =: paraml
L value in the temporary local data-element is transferred back
Z to the actual parameter data-element after the RETURN
1 statement 1s executed

RETURN
ENDROUTINE
A
1 code to invoke the above routine
7
INTEGER : int
7
2 triple {(int) 1 after invocation int = 6
% Note, the following invocation is invalid
2 triple (3+5) 1 no explicit actual parameter

1 data-element
The composite data types are transferred by reference. This means that
during execution of a routine, the address of each actual parameter
data-element is transferred into the routine. Then each reference to 4
formal parameter will cause the actual parameter data-element to be
referenced directly during execution of the routine.

In Ffortran and Cobol parameters are always transferred by reference.
Consequently, a routine written in PLANC must include the routine
modifier STANDARD, in its declaration, to be callable from Fortran or
Cobol.

ND-60.117.04

144 PLANC Reference Manual
ROUTINES

7.5 EXIT FROM A ROUTINE

Exit from a routine will take place when execution reaches a RETURN,
an ERRETURN or an ENDROUTINE statement. Any number of RETURN and
ERRETURN statements may appear in a routine.

The general form of a RETURN statement is

[expression] RETURN

where

expression must be present 1f the routine has an out-value
declared. The resulting value of the expression must be
of the data type declared fcr the out-value.

The general form of an ERRETURN statement is
expression ERRETURN

where

expression is the resulting value of the expression which must be
of the data type INTEGER.

A RETURN or an ENDROUTINE may be used for normal exit from a routine.
However, 1if the routine has an out-value declared, then exit from the
routine must be via a RETURN or an ERRETURN statement. The PLANC
compiler will check that at least one RETURN is present, if the
routine is declared with a non VOID out-value.

The RETURN statement will transmit the out-value of a routine back to
the invoking routine.

Exit via an ERRETURN statement will transfer control back to the
invoking routine. If the invoking routine has a ON ROUTINEERROR
statement prior to the routine invocation statement, then control will
be transferred to the beginning of that exception handling group of
statements. Otherwise, control will be transferred to the next higher
level in the routine invocation hierarchy, and so on, until a level is
reached containing a routine exception handler, or the outer level 1is
reached where the program execution will terminate, see section 6.8

for conditions to enter the exception handler, and a run-time error
message will be issued.

Exit wvia an ERRETURN statement will make the resulting value of the
expression available in the system variable, ERRCODE, which has a
data-element of the integer data type.

ND-60.117.04

PLANC Reference Manual 145

ROUTINES

If an exit via an ERRETURN statement has transferred control to a user
routine exception handler, then followlng completion of the exception

handler,

control will be transferred in one of the following ways

an ENDON acts as if the 1last executed routine call had
executed a RETURN. Note that an out-value data-element or
actual parameler data-elements with WRITE access, would
contain unpredictable values.

a GO statement may transfer control to a label.

a RETURN or ERFETURN will exit from the routine containing
the exception handler to its caller.

ND-60.117.0¢

146 PLANC Reference Manual
ROUTINES

7.6 ROUTINE TYPE SPECIFICATION AND USER DEFINED ROUTINE TYPE

A routine 1is a composite data type in PLANC. Thus, a routine 1is made
up of components of other data types. Further, the facility of a user
specifying his own composite data types in terms of those already
avallable, also applies to the routine dats type.

A user may define a new data type based on the routine data type. This
TYPE specification will include

1) Routine modifier options, eg. STAMDARD, INLINE, if required.
2} The data types of the routine’'s ir-value and out-value.

3) The data types of all of the formsl parameters, which will be

present in any routine data-element of this newly defined
TYPE.

Thus, part of the routine header is specified for every routine data-
element declared to be of this user definec TYPE. This mechanism may
be wused to «create a family of routines with similar structure, 1ie.

same in-value and out-value data types, same number of parameters and
parameter data types.

For example

TYPE rtnfamily = ROUTINE REAL,VOID (INTEGER WRITE)

A possible application might be to creste a stack for a particular
record data type data-element, with functicns such as push, pop, etc.,
each routine handling one record data-element and the stack

TYPE stackrec = RECORD
INTEGER : 11,12
REAL :r1,r2
ENDRECORD

TYPE stackrtn = ROUTINE VOID,VOID (stackrec READ WRITE)}
1 declare various routines in the stack handling family
stackrtn : push {inrec)
1 put the record on the global stack

ENDROUTINE

stackrtn : pop (outrec})
I return a record from the global stack

ENDROUTINE

ND-60.117.0¢4

PLANC Reference Manual 147
ROUTINES

7.7 RECURSIVE ROUTINES

Routines 1n PLANC may invoke themselves recursively with certain
restrictions. For direct recursion, a routine may invoke itself only
1f it is declared in the outer-most level of a module. This also
applies to modules nested within other modules. An alternative
explanation is that any routine nested within another routine must not
invoke itself recursively. Indirect recursive invocations are allowed
at any level of nested routines or nested modules, provided that the
chain of routine invocations goes via the routine at the outer level
of the module containing the nested routine which is then invoked by
indirect recursion.

For example

ROUTINE VOID,INTEGER (INTEGER) : factorial {(number)
7 compute n! [(n factorial) recursively
IF number > 1 THEN
Z invoke factorial again recursively for next lower value
number*factorial{number-1) RETURN
7 terminal condition of recursion

ELSE
1 RETURN

ENDIF

ENDROUTINE
A
7 code to invoke the above recursive routine
1

INTEGER : int
1

factorial{9)=:1nt I result is H5*4%x3%x2x1 = 120

Note that routines with the qualifiers, SPECIAL or INLINE, cannot
invoke themselves recursively.

ND-60.117.04

148

The

PLANC Reference Manual
ROUTINES

following examples show which routines may legitimately invoke

themselves recursively

1.

2.

A routine declared in the outer level of a mcduleT

MODULE abc
)
ROUTINE ... : rtnyes
7 this routine, rtnyes, may invoke itself recursively
ROUTINE ... : rtnno
I this nested routine, rtnno, may not invoke itself recursively
ENDROUTINE
ENDROUTINE
ENDMODULE

A routine declared within a nested module.

MODULE outer

J
MODULE abc
1
ROUTINE rtnyes
. this routine, rtnyes, may invoke itself recursively
ROUTINE ... : rtnno
7z this nested routine, rtnno, may not invoke itself recursively
ENDROUTINE
ENDROUTINE
ENDMODULE 1 end of abc
ENOMODULE 7 end of outer

Indirect recursion, routines declared in separate modules.

MODULE his
1 necessary EXPORT/IMPORT statements
ROUTINE ... popeye
1 this routine may invoke "oliveoil”
ROUTINE ... roughhouse
1 this routine may invoke "oliveoil"”
ENOROUTINE
ENDROUTINE
ENDMODULE 1 end of his

MODULE hers .
1 necessary EXPORT/IMPORT statements

ROUTINE ... oliveoil

1 this routine may invoke “"popeye” creating indirect recursion
ENDROUTINE
ENDMODULE 1 end of hers

ND-60.117.04

PLANC Reference Manual 149
ROUTINES

7.8 SCOPE OF IDENTIFIERS IN PLANC ROUTINES

An identifier may be created in a routine by a normal declaration or a
type specification. Identifiers defined within a routine will have a
scope including the entire routine. However such identifiers may not
have an identifier name which is identical to an identifier whose
scope includes this routine, ie. an identifier may not be declared
twice within nested routines.

If routine declarations are nested, then identifiers created within
the inner routines have the same restriction as above concerning the
choice of identifier names. Note that while INLINE routines expansions
are inserted at each invocation, this does not restrict the identifier
names which may be used locally within the INLINE routine. The INLINE
routine may use local identifier names which are the same as names
with a scope which includes the invocation of the INLINE routine.

NO-60.117.04 Revision A

150 PLANC Reference Manual
ROQUTINES

7.9 STANDARD_ROUTINES AVAILABLE IN_PLANC

The standard routines are listed in this section in alphabetical
order.

ADDR

The ADDR standard routine takes as a parameter, an identifier of any
data type, le. simple, composite, predefined or user defined. It will
return the address in memory of the corresponding data-element.

Note, 1if several routines in one module have the same routine name,
then the ADDR standard routine will return the address of the first
routine declared in the module. If the ADDR standard routine refers to
a routine data-element, the routine identifier must not be enclosed in
parentheses.

APPEND

The APPEND standard routine will add a record to the end of a linked
list of records. for a detailed illustration of the use of APPEND, see
section 4.6

81T

The BIT standard routine will store or retrieve a boolean value

into/from one bit position of the data-element associated with an
identifier. For example

INTEGER : int
BOOLEAN : bl1
TRUE=:8IT{1nt,3)
BIT(int,3)=:bl1

will store a value 1 into bit 3 {the fourth bit from the right) of the
integer data-element assoclated with 1int. The third bit of int is
retrieved and stored into blt.

BLOCKSIZE

The BLOCKSIZE standard routine will set the blocksize of a file. For a
detailed description see section 9.8.

CLOSE

The CLOSE standard routine will terminate the connection of an
external file to an internal file number. For a detailed description
see section 9.7.

ND-60.117.04

PLANC Reference Manual 151
ROUTINES

CONVERT
The CONVERT standard routine will carry out conversion between various
integer and real data-elements. For a detailed description see section

5.5

DISPOSE

The DISPOSE standard routine is used to deallocate dynamically created
data-elements. For a detailed description see section 4.5

The form of the routine declaration of the DISPOSE standard routine
follows

ROUTINE INTEGER POINTER,VOID &
XDISPOSE ALIAS 'S5DISPOSE’ % ALIAS "#DISPOSE' on ND-500

where

in-value is the address of the data-element to be deallocated.

FILESIZE

The FILESIZE standard routine is used to set the size of a file, or to
inquire as to the present size of a file. For a detaliled description
see section 9.9

FORCE

The FORCE standard routine will move a value from one data-element to
another, regardless of the data types. For a detailed description see
section 5.5

IND

The IND standard routine will get the value of a data-element. The
parameter to the IND standard routine must be an appropriate pointer
identifier, to reference the data-element. All data types may have
their data-element value picked up in this way, ie. simple, composite,
predefined and user defined data types.

INISTACK

The INISTACK standard routine will create a new stack area. For a
detailed description see section 8.6

ND-60.117.04 Revision A

152 PLANC Reference Manual
ROUTINES

INSERT

The INSERT standard routine will add a record to the beginning of a

linked list of records. For a detailed illustration of the use of

INSERT, see section 4.6 . It may also add a member to a set data-

element.

JNPUT

The INPUT standard routine may be used for formatted input or for
random unformatted INPUT. For detailed description of the various
INPUT routines see chapter 9

MAXINDEX

The MAXINDEX standard routine will return the declared upper bound of
an array. The routine invocation may be used as follows

MAXINDEX(array~-identifier,dimension-number)

where

array~identifier 1s the identifier of the array whose upper bound
is required

dimension-number is the number ({from 1) of the index set, from

which the upper bound is required.

Note that the dimension number must be an integer literal, it cannot
be an identifier or an expression.

MININDEX

The MININDEX standard routine will return fhe declared lower bound of
an array. The routine invocation may be used as follows

MININDEX(array-identifier,dimension-number)

where

array~-identifier
1s the identifier of the array whose lower bound 1is
required

dimension-number

1s the number {(from 1) of the index set, from which the
lower bound is required.

Note that the dimension number must be an .nteger literal, it cannot
be an identifier or an expression.

ND-60.117.04

PLANC Reference Manual 153
ROUTINES

NEW

The NEW standard routine will dynamically create unnamed simple or
composite data-elements. For a detailed description of the parameters
and invocation of the NEW standard routine, see section 4.5

If the NEW standard routine dynamically creates a data-element within
an explicitly declared srray, eg.

INTEGER ARRAY : area(1:1000):=0 1 see note below
REAL POINTER : rp
NEW REAL IN area =: rp

This will create an unnamed real data-element in the array garea. The
address of the real cata-element will be stored in the real pointer
Ip.

Some of the array elemerts of the array will be required for storage
management of the memcry used for dynamically created data-elements.
The details of the storage management are

—1 free area pointer 1 word
maximum area pointer 1 word
storage management 15 words
area

dynamically created
data-elements

—| free area

For every Llnvocation of the NEW standard routine which creates a data-
element within an array, there will be two extra words required, in
addition to the storage used for the created data-element.

If a DISPOSE is used to deallocate a data-element, then the area may
be reused only if there is a request for a data-element of exactly the
same size. Garbage collection, or reorganization of such an area is
not carried out.

Note : prior to the first invocation of NEW, for a particular
array, the area wused for storage management, must be
initialized to contain zeroes.

ND-60.117.04

154 PLANC Reference Manual
ROUTINES
The form of the routine declaration of the MEW standard routine is

ROUTINE INTEGER,INTEGER POINTER (INTEGER ARRAY) &
XNEW (arr) ALIAS 'SNEW' I ALIAS "#NEW' on the ND-500

where

in-value 1s the size of the data-element to be created in bytes.

out-value address of the created data-element.

parameter is the array in which the data-element is to be
created.

UPEN

The OPEN standard routine will establish the connection of an external
file to an internal file number. For a detailed description see
section 9.6

QUIPUT

The OUTPUT standard routine may be used for formatted output or for
random unformatted OUTPUT. For detailed description of the various
QUTPUT routines see chapter 9

The PRED standard routine may be used on enumeration data-elements
only. It will return the previous enumeration value, within the
declared 1list of enumeration values, to that contained in the data-
element which is the parameter for the routine invocation.

For example

ENUMERATION {good,better,best) : moral

best=:moral

PRED{moral)=:moral 7 stores the value 'better’

PRED(good) ... I will return an unpredictable value
REMOVE

The REMOVE standard routine will remove a record from a linked list of
records. For a detailed illustration of the use of REMOVE, see section
4.6 . It may also remove a member from a set data-element.

len

IZE
The SIZE standard routine returns the number of bytes used for storage
of a data-element. It may also be used to get the number of bytes
required for any data-element of a specified data type. For a more
detailed description see section 3.17

ND-60.117.04 Revision A

PLANC Reference Manual 155
ROUTINES

SUCC

The SUCC standard routine may be used on enumeration data-elements
only. It will return the following enumeration value, within the
declared 1list of enumeration values, to that contained in the data-
element which is the pi:rameter for the routine invocation.

For example

ENUMERATION (cood,better,best) : moral

better=:moral

SUCC{morall=:moral 1 stores the value 'best’

SUCC(best) ... 7 will return an unpredictable value
TYPEOQ
The TYPEOF standard routine specifies identifiers to be of the same

data type as a previously declared identifier. For detaliled
description see section 3.14

MD-60.117.04 Revision A

156

PLANC Reference Manual

ROUTINES
7.10 Table of PLANC Standard Routines
Abbreviations used in the following table
-V in-value
o-v out-value
n/a not applicable
Standard brief function allowed parameter|parameter
Function description data typel{s) description
name
ADDR get address of a i-v void n/a
data-element o-v any address an address
data-element data-element
1. any data type |[name of a
data-element
APPEND add a record to the i-v record append record
end of a linked list o~-v void n/a
1. address list specifier
impliasd range
BIT store a boolean (bit) i-v boolzan value for store
value o-v void n/a
1. identifier of |[store into
a simdole type data-element
2. integaer liter.|bit number
or constant
BIT extract a boolean i-v void n/a
{(bit) value o-v boolezan value stored
1. identifier of |get value from
a simple type data-element
2. integer liter.|bit number
or constant
BLOCKSIZE |set blocksize of a fileji-v integer blocksize
o-v void n/a
1. integer file number
CLOSE close a file i-v void n/a
o-v void n/a
1. integar file number
CONVERT convert to or from real|i-v real’/integer |from data-element
and integer types o-v real/integer |to data-element
1. REAL/INTEGER target data type
DISPCSE deallocate dynamically |i-v int. pointer |data-element
allocated data-element address
o-v void n/a

ND-60.117.04

Revision A

PLANC Reference Manual 156a
ROUTINES
Standard brief functian allowed parameter|parameter
Function description data typel(s) description
name
FILSIZE set/read filesize of i-v integers set file size to
a file o-v integeré4 read file size
1. integer file-number
FORCE interpret data-element |i-v data-element |from value
value as a different o-v data-element |[to value
data type 1. any data type
IND get a data-element i-v void n/a
value via a pointer to |o-v any data typelvalue retrieved
it 1. pointer data pointer tec¢ the
type data-element
INISTACK create a new stack area|i-v void n/a
o-v void n/a
1. integer array |area for stack
INSERT add a record to the i-v record insert record
head of a linked list o-v void n/a
1. address list specifier
implied range
INPUT formatted input i-v void n/a
o-v integer chs. transferred
1. integer device number
2. bytes format descriptor
3. any data-elem.|input data-elem.
INPUT random unformatted i-v void n/a
input o-v integer chs. transferrad
1. integer file number
2. integer block number
3. bytes Llnput area
MAXINDEX get current upper bound|i-v void n/a
of an array o-v integer upper bound
1. array ident. name of array
2. integer liter.|index set no.
or constant
MININDEX get current lower bound|i-v void n/a
of an array o-v integer lower bound
1. array ident. name of array
2. integer liter.}index set no.
or constant
NEW dynamically create a i-v void n/a

new data-element

ND-60.117.0¢%

o-v pointer
data-element
1. any data type

Revision A

adr. of new
data-element
data type of new
data-element

156b PLANC Reference Manual
ROUTINES
Standard brief function allowed parameter|parameter
Function description data typels) description
name
UPEN cpen a SINTRAN file i-v void n/a
o-v integer chs. transferred
1. integer file number
2. bytes file access code
3. bytes file name
4, bytes file type
GUTPUT formatted output i-v void n/a
o-v integer chs. transferred
1. integer device number
2. bytes format descriptor
3. specified typeloutput data-elem.
QUTPUT random unformatted i-v void n/a
output o-v integer chs. transferred
1. integer file number
2. integer block number
3. bytes input area
PRED get the immediately i-v void nf/a
prior enumeration o-v enum. value prior value
value 1. enum. ident.
REMOVE remove a record from i-v record remove record
a linked list o-v void n/a
1. address list specifier
implied range
SIZE get storage, in bytes, |i-v void n/a
used by a data type 0o-v integer? number of bytes
1. ident:.fier or
data type
succ get the immediately i-v void n/a
prior enumeration value|o-v enum. value following value
1. enum. ident.
TYPEOF specify identifiers i-v void n/a
to be of the same data |o-v any data type|type of elem.
type 1. list of

ND-60.117.0¢4

ident.fiers

Revision A

PLANC Reference Manual 157
PROGRAM STRUCTURE

8 PROGRAM_STRUCTLURE

In order to construct a complete PLANC program which can be executed,
the following things must be present

1) At least one MODULE with its component parts.

2) One MODULE must contain at least one routine, of the special
type PROGRAM, to define a main entry point to begin
execution.

8.1 BASIC MODULE

A MODULE 1is the smallest independent part of a PLANC program which czan
be compiled separately. Further, it is the minimum entity required to
form a program which can be executed as an independent program,
providing it contains a main PROGRAM routine, see section 6.2,

In large or complex systems it is usually desirable to group into
separate entities, similar functions or data structures.This may serve
the purpose of being able to more effectively administer the functions
required 1in the system, or making a single copy of a widely used data
structure available to any part of the system from one central place.
In PLANC the MODULE is the mechanism to do this, by collecting
appropriate or related routines into a suitably chosen number of
MODULE's for a system.

The form of a basic MODULE comprises the following components
1) The declared MODULE name.
2) EXPORT declarations for data-elements, declared in this
MODULE, to be made available to other MODULE's, see section

8.3.

3) IMPORT declarations for data-elements from another MODULE, to
be accessible within this MODULE, see section 8.3.

4) Declarations and TYPE specifications, local to a MODULE,
which will be global to all levels of routines declared
within this MODJLE. These declarations include all routine
declarations for this MODULE.

5) Executable statsments,if any, required for this MODULE.

ND-60.117.04

158 PLANC Reference Manual

PROGRAM STRUCTURE

The general form of a MODULE declaration 1is

MODULE mod-ident

i EXPORT statements for data-elemenfs required externally
4
1 body of the module
ENOMODULE
where

mod-ident 1s an identifier for this module.

Note that any EXPORT statements required for this module, must precede

all other declarations. However, TYPE specifications and IMPORT
statements may precede an EXPORT statement in a module.

For example

MODULE mymodule
EXPORT myint ,
1 only identifiers global in this module may be EXPORT ed
INTEGER : myint
PROGRAM : mainprogram
1 declarations local to the main programn
INTEGER : locint
1 executable part of main program routine
ENDROUTINE
ENOMODULE

ND-60.117.04 Revision A

PLANC Reference Manual 159
PROGRAM STRUCTURE

8.2 MAIN_PROGRAM
A special type of routine is the main PROGRAM. There must be one main
PROGRAM routine in a program to be executed. The general form of a
routine header of a main PROGRAM routine 1is

PROGRAM : routine-name

where

routine-name is a valid identifier which is the main entry point to
be used to begin program execution.

The main PROGRAM routin2 has no in-value, out-value or parameters. All
other things permitted for routines, eg. declarations, type
definitions and inner n2sted routines, may be used in a main PROGRAM
routine. A main program routine must be terminated by an ENDROUTINE
statement in the same way as a normal routine.

For example
PROGRAM : myprogram
1 an inner routine
ROUTINE VOID,INTEGER (INTEGER} : myroutine (intparam)

1 routine body
intparam RETURN

ENDROUTINE
A
1 local declarations for main PROGRAM routine
YA
INTEGER : int
yA
7 executable statements
i
10=:1int
A
1 end of main PROGRAM
A
ENDROUTINE

The above main PROGRAM would have to be compiled in a MODULE, then
linked with a Loader. The name 'myprogram’ will be the main entry
point which can be used to begin execution of the program.

ND-60.117.04 Revision A

150 PLANC Reference Manual
PROGRAM STRUCTURE

8.3 EXPORT/IMPORT - COMMUNICATION BETWEEN MODULES

Modules are used in large systems to group routines and data-elements
in some way appropriate to the particular design for the project. It
will often be necessary to access data-elements, declared in one

module, from one or more other modules. PLANC requires explicit
declarations for both the module containing the data-slement and the
mocules wishing to gain access. For the purposes of inter-module

communication, routines are treated as other data-elements.

An EXPORY statement, in a module, makes available particular data-
elements for access by other modules.

The general form of an EXPORT statement is

EXPORT [{SYSTEM)] identifier([,identifier]...

where

identifier is an identifier associazed with a data-element
declared within this module.

The optional qualifier, (SYSTEM), will make the routine identifier

associated with a data-element inaccessible unless IMPORT'ed with the
(SYSTEM) qualifier. If this option is used in an EXPORT statement,
then it must be used in any matching IMPORT statements. This is of
particular interest as an extra protection to avoid naming conflicts
for system provided routines, in run-time systems. The ALIAS facility
can be wused in a similar way, see section 7.1 . Users are strongly
advised to use the ALIAS facility if special routine names are
Tequired.

It 1is illegal to EXPORT a family of routines, with the routine name
identifier the same as the name of a PLANC predefined standard routine

or operator, see section 8.4 for the use of a family of routines.

EXPORT statements must be placed immediately following the MODULE
statement.

For example
MODULE exhibit
EXPORT bool,vector
BOOLEAN : bool
INTEGER ARRAY : vector(1:100)

ENDMODULE

ND-60.117.04 Revision A

PLANC Reference Manual 161
PROGRAM STRUCTURE

An IMPORT statement, specifies data-elements to be used in a module,
providing they have been made available in another module by an EXPORT
statement.

The general form of an IMPORT statement is

IMPORT [(option)] declaration[,declaration]...

where

declaration 1s the same as the declaration of the data-element in
the module containing the original declaration.

option is either SYSTEM or COMMON.

[f the option (SYSTEM) is present in the matching EXPORT statement,
then it must also be praesent in the IMPORT statement.

[f the option (COMMON)} is used, the identifier{s) may only be used to
link to a named COMMON onlock defined in a Fortran program, see section
0.7, Appendix D for more details.

If declarations of diffarent data types are to be included in one
IMPORT statement, then each declaration must be included in
parentheses.

For example
IMPORT (INTEGER : 1i1,i2),(REAL : r1,r2), (BOOLEAN : b1)

As an IMPORT statement contains the data type of each IMPORT'ed data-
element, all of the normal compilation checks will be carried ouf on
the identifier. These checks apply within the module containing the
IMPORT statement. The PILLANC compiler checks the correct correspondence
with the data-element’'s data type, declared in the originating module
and in the IMPORT statement, if both modules are nested within another
module. If the two modules with the corresponding EXPORT/IMPORT
statements are not nested within another module, ie. they are
separately compiled, then these correspondence checks are not done.

If the data-element IMPORT'ed is a routine, then its declaration in
the IMPORT statement must be in parentheses. Further, the list of
formal parameter identifiers declared in the routine, must not be
included in the IMPORT statement.

For example

IMPORT (ROUTINE VOID,VOID (INTEGER) : doit)}
For families of routines, declared in another single module, the use
of ALIAS names is necessary. This allows one or more variants, of
routines declared with the same identifier, to be accessed by the
IMPORT statement, see section 8.4
A user defined data type, specified in a TYPE statement, or

identifiers declared in a CONSTANT statement, may be IMPORT ed intc an
inner nested module, se¢ section 8.5

ND-60.117.04 Revision A

162 PLANC Reference Manual
PROGRAM STRUCTURE

Examples of the use of EXPORT/IMPORT statements
1. Some simple data-elements.

MODULE source
EXPORT int,rl,bool

1
INTEGER : int
REAL: rl
BOOLEAN : bool
A
ROUTINE VOID,VOID : looknice
1 .
ENDROUTINE
ENDMODULE
1
7 a separate module which could be compiled separately
A
MODULE getem
IMPORT (INTEGER : int), (REAL : rl)
IMPORT BOOLEAN : bool
/s
£ now 'int', ‘rl’ and 'bool’ are availuable in this module
1

ENDMODULE
2. A routine to be accessed from another module.

MODULE service
EXPORT useful

ROUTINE VOID,INTEGER (INTEGER) : useful (param)
7 body of the routine

ENDROUTINE
ENDMODULE

A
1 a separate module which could be compiled separately
A

MODULE getit

IMPORT (ROUTINE VOID,INTEGER (INTEGER) : useful)
/4
Z now ‘useful’' is available in this module
A

ENDMODULE

For more complex use of routines and EXPORT/IMPORT statements, see
section 8.4

ND-60.117.04 Revision A

PLANC Reference Manual 163
PROGRAM STRUCTURE

8.4 ALIAS USE IN A MODULE

A family of routines to create an operator for various data types, may
be declared in one module. All the routines will have the same routine
name identifier. If the routines are to be invoked by other routines
within the same module, then nothing further is required. The PLANC
compiler will compile each invocation with a reference to the correct
routine, which requires an exact match of the data types of the in-
value and the parameters. If there is not an exact match, the compiler
will give an error message unless there are corresponding parameters
with some data type modifications. For range or precision
modification, accurracy may be lost.

For example

MODULE allinone
INTEGER ARRAY : stack{0:1000)

1
1 define a family of routines for a +++, plus 1 operator
1
1 each routine will "add’' 1 for a particular data type
1 and return the result as an out-value
A
ROUTINE INTEGER,INTEGER : +++
@+1 RETURN 7 return in-value+1
ENDROUTINE
1
ROUTINE REAL,REAL : +++
@+1.0 RETURN 7 return in-value+1.0
ENDROUTINE
/A
ROUTINE BOOLEAN,BOOLEAN : +++
NOT & RETURN I return complement of in-value
ENDROUTINE
)
1 program to invoksz the above +++ routines
A

PROGRAM : myplus

INTEGER : int ; REAL : rl ; BOOLEAN : bool
1 executable program

INISTACK stack
. invoke the integaer version of +++

5 +++ =:int I result is 6
1 invoke the real version of +++

3.51 ++¢+ =: 11 1 result is 4.51
1 invoke the boolean version of +++

TRUE +++ =: bool 1 result is FALSE
b4

ENDROUTINE

ENDMODULE

The routine name identifier of a family of routines should not be the
same as the name of a PILLANC predefined standard routine or operator as
it is illegal to EXPORT a family of routines with such a name.

ND-GO.117.0¢4

164 PLANC Reference Manual
PROGRAM STRUCTURE

[f such a family of routines were created in one module, but the
routines were to be invoked from another module, then ALIAS names
would be required for each routine in the family. Further, the family
wcould have to be EXPORT'ed from its module and IMPORT ed into the
module contalning the routine invocations.

For example
MODULE family

1 define a family of routines for a +++, plus 1 operator

/4
A
7
7 each routine will 'add’ 1 for a particular data type
Z and return the result as an out-value

/A

/A

set-up access to the family of routines
EXPORT +++

1
ROUTINE INTEGER,INTEGER : +++ ALIAS “intplus’
d+1 RETURN 7 return in-value+1
ENDROUTINE
ROUTINE REAL,REAL : +++ ALIAS 'reazlplus’
d+1.0 RETURN I return in-value+1.0
ENDROUTINE
ROUTINE BOOLEAN,BOOLEAN : +++ ALIAS "boolplus’
NOT & RETURN I return complement of in-value
ENDROUTINE
ENDMODULE . end of module family

7

MODULE usethem

1 set-up access to the module with the +++ routines
IMPORT(ROUTINE INTEGER,INTEGER : +++ ALIAS "intplus’)
IMPORT(ROUTINE REAL,REAL : +++ ALIAS 'realplus’)
IMPORT(ROUTINE BOOLEAN,BOOLEAN : +++ ALIAS 'boolplus’)
INTEGER ARRAY : stack(0:1000)

L program to invoke the above +++ routines from another module

PROGRAM : myplus

INTEGER : int i REAL : rl1 ; BOOLEAN : bool
L executable program

IMISTACK stack
1 invoke the integer version of +++

5 +++ =:int 1 result is 6
I invoke the real version of +++
3.51 +#++ =: rl L result is 4.51
7 invoke the boolean version of +++
TRUE +++ =: bool 1 result is FALSE
A
ENMDROUTINE
EMDMODULE 1 end of module usethem

Note, that these two modules could be compiled together in one file,
or separately, prior to execution. In fact 1if these modules were

nested within another module, then the ALIAS names would not bhe
necessary.

ND-GO. 117 04

PLANC Reference Manual
PROGRAM STRUCTURE

165

The previous example could be coded differently, with the module which
15 to invoke the routines referring to the unique ALIAS names only.
This applies to the IMPORT statements and the routine invocations.

For example

Note,

MODULE family
define a family of routines for a +++, plus 1 operator

each routine will. "add’' 1 for a particular data ftype
and return the result as an out-value

set-up access to the family of routines
EXPORT +++

ROUTINE INTEGER,INTEGER : +++ ALIAS 'intplus’
2+1 RETURN 7 return in-value+]
ENDROUTINE

ROUTINE REAL,REAL : +++ ALIAS 'realplus’
J+1.0 RETURN / return in-value+1.0
ENDROUTINE

ROUTINE BOOLEAMN,BOOLEAN : +++ ALIAS 'boolplus’

NOT @ RETURN / return complement of in-value
ENDROQUTINE
ENDMODULE 7 end of module family

MODULE usethem
set-up access to the module with the +++ routines
note, that now reference 1s directly to the ALIAS names
IMPORT{ ROUTINE INTEGER,INTEGER : intplus)
IMPORT({ ROUTINE REAL,REAL : realplus)
IMPORT({ ROUTINE BOOLEAN,BOOLEAN : boolplus)
INTEGER ARRAY stack(0:1000)

program to invoke the above +++ routines from another module

PROGRAM : myplus

INTEGER : int ; REAL : ril i BOOLEAN : bool
executable program

INISTACK stack
invoke the integer version of +++

5 intplus =:int / result is 6
invoke the real version of +++
3.51 realplus =: rl / result 1is 4.51
invoke the boolean version of +++
TRUE boolplus =: bool 7 result is FALSE
ENDROUTINE
ENDMODULE I end of module usethem

these twe modules could be compiled together in one file,

or

separately, prior to execution. These modules cannot be both nested
one module as the 1loader must complete the links for ALIAS

within
names.

ND-60.117.04

166 PLANC Reference Manual
PROGRAM STRUCTURE

The family of routines can be given a new family name within the
program which will invoke the appropriate routine in the family.
For example
MODULE family
; define a family of routines for a +++, plus 1 operator

1

1 each routine will 'add’ 1 for a particular data type
{ and return the result as an out-value
A
A

set-up access to the family of routines
EXPORT +++

ROUTINE INTEGER,INTEGER : +++ ALIAS 'intplus’

ad+1 RETURN 1 return in-value+1
ENDROUTINE

1
ROUTINE REAL,REAL : +++ ALIAS ‘realplus’
d+1.0 RETURN 1 return in-value+1.0
ENDROUTINE

A
ROUTINE BOOLEAN,BOOLEAN : +++ ALIAS 'boolplus’
NOT @ RETURN 7 return complement of in-value
ENDROUTINE
ENDMODULE 1 end of module family

i

MODULE usethem

7 set-up access to the module with the +++ routines

L note, that now reference is through a new family name
IMPORT(ROUTINE INTEGER,INTEGER : plusi ALIAS ‘intplus’)
IMPORT(ROUTINE REAL,REAL : plust! ALIAS ‘realplus’')
IMPORT{ ROUTINE BOOLEAN,BOOLEAN : plusi ALIAS ‘boolplus’')
INTEGER ARRAY : stack(0:1000)

% program to invoke the above +++ routines from another module

PROGRAM : myplus

INTEGER : int ; REAL : rl ; BOOLEAN : bool
I executable program

INISTACK stack
1 invoke the integer version of +++

5 plust =:int 1 result is 6
1 invoke the real version of +++
3.51 plus! =: rl 7 result is 4.5t

7 ilnvoke the boolean version of +++
TRUE plust =: bool 1 result is FALSE

ENDROUTINE
ENDMODULE 1 end of module usethem

Note, these two modules could be compiled together in one file, or
separately, prior to execution. These modules cannot be both nested
within one module as the loader must complete the links for ALIAS
names.

ND-60.117.0¢4% Revision A

PLANC Reference Manual
PROGRAM STRUCTURE

167

The famlly of routines can be given new individual names within the
program which invokes each of the routines in the family.

For example
MODULE familily

define a family c¢f routines for a +++, plus 1 operator

A
1
A
1 each routine will 'add’ 1 for a particular data type
7 and return the result as an out-value

1

/A

set-up access to the family of routines

EXPORT +++

1
ROUTINE INTEGER,INTEGER +++ ALIAS "intplus’
d+1 RETURN 7 return in-value+1
ENDROUTINE

1
ROUTINE REAL,REAL +++ ALIAS 'realplus’
d+1.0 RETURN 7 return in-value+1.0
ENDROUTINE

A
ROUTINE BOOLEAM,BOOLEAN +++ ALIAS 'boolplus’
NOT @ RETURN 1 return complement of in-value
ENDROQUTINE
ENDMODULE 1 end of module family

/

MODULE usethem ‘
L set-up access to the module with the +++ routines

Z note, that now we create local names for each routine
IMPORT(ROUTINE INTEGER, INTEGER intt ALIAS "intplus’)
IMPORT(ROUTINE REAL,REAL realt ALIAS ‘realplus’)}
IMPORT(ROUTINI BOOLEAN,BOOLEAN boolt ALIAS "boolplus’)
INTEGER ARRAY stack(0:1000)
1
1 program to invoke the above +++ routines from another module
1 .
PROGRAM myplus
INTEGER int i REAL rl ; BOOLEAN bool
1 executable program
INISTACK stack
7 invoke the integer. version of +++
S5 intt =:int i result is 6
7 invoke the real version of +++¢
3.51 realt =: 1 I result is 4.51
/ invoke the hoolean version of +++
TRUE boolt =: ool I result is FALSE
A
ENDROUTINE
ENDMODULE 1 end of module usethem
Note, that these two modules could be compiled together in one file,
or separately, prior to execution. These modules cannot be both nested
within another module as the loader must complete the links for ALIAS
names.

ND-60.117.04

168 PLANC Reference Manual
PROGRAM STRUCTURE

8.5 MODULE STRUCTURE_AND SEPARATE COMPILAT!ON

Modules are independent entities which may be compiled separately by
the PLANC compiler. Then a Loader must be wused to link all the
necessary separate modules together. All required 1links between the
separately compiled modules will be resolved, by the Loader as
external references. This can only be done successfully if the links
between the modules have been correctly defined with EXPORT/IMPORT
statements, see 8.3

If several routines in a module have the sume name, then the Loader
would not be able to resolve such an ambiguity, unless ALIAS names

have been used to give a unique gualifier name to each routine, see
section 8.4

TYPE specification and CONSTANT statements may precede all modules on
a file. In this case these staments will not be contained within any
module. During the compilation, identifiers thus created will be
globally available to all modules in the compilation. In fact, user
specified data types will appear identical to the data types defined
within the PLANC compiler. Further, TYPE specifications to be used in

this way may be inserted by an INCLUDE compiler command, see Appendix
A

Modules may be pested within other outer modules to any practical
number of levels. If modules are nested, “he inner modules can access
data-elements declared in outer module levels, only by the usual means
of EXPORT/IMPORT statements. This would be exactly the same as if the
inner module was removed and compiled as a separate module.

However, nesting of modules does offer extra facilities.

1) If a new data type is specified in an outer level module,
then the type specification may be IMPORT ed to an inner
level nested module. If the new data type is to be IMPORT ed
over several levels of nested modules, then it must be
IMPORT 'ed at every level between the original TYPE

specification and the inner level module wishing to access
it.

2) Identifiers declared in CONSTANT statements may be accessed
in nested modules in exactly the same way as TYPE
specifications, without EXPORT statements, but with IMPORT
statements at every level Dbetween the original TYPE

specification and the inner level module wishing to access
it.

3) I+ modules are nested within other modules, then checking of
the correspondence of the declared data types in matching
EXPORT and [IMPORT statements is carried out at compilation
time,

ND-60.117.04

PLANC Reference Manual 169
PROGRAM STRUCTURE
For example

MODULE outer
TYPE goods = INTEGER RANGE (1:128)

MODULE innert
IMPORT goods

MODULE inner?2
IMPORT goods

ENDMODULE 7 end of inner?

ENDMODULE 7 end of innert
ENDMODULE 1 end of outer

If modules are nested, routines and executable code may only be within
the innermost module. However if there are two separate nests of
modules within an outer module, then each separate nest of modules may
have executable routine within its innermost module.

ND-60.117.04

PLANC Reference Manual
PROGRAM STRUCTURE

8.6 DATA-EIEMENT STORAGE AND_THE PROGRAM._STACK

Allocation strategy of data-elements and datailed memory requirements
are described for each PLANC implementation, see Appendix C.

However, some aspects of data-element storage allocation apply to all
PLANC compiler implementations.

In PLANC the distinction has been made between statically and
dynamically allocated data-elements.

Statically allocated data-elements include
1) Global data-elements declared in a basic MODULE.

2) Local data-elements, declared in a routine, whose access 1is
READ only.

3) Data-elements, constructed by the NEW standard routine,
within a global data-element, see section 4.5

Oynamically allocated data-elements include

1) Local data-elements, _declared in a routine, whose access 1s
not READ only.

2) Data-elements, constructed by the NEW standard routine,

within a local data-element or on the program stack, see
section 4.5

A static data-element may be initialized with a specific value, in its
declaration, provided that it is not within a nested routine. Static
data-elements may be initialized within a nested routine if it is
declared as READ only. Dynamically created data-elements are allocated

on a stack, either when a routine is invoked, or when the NEW standard
routine 1is invoked to create a data-element.

ND-GO.117.04

PLANC Reference Manual 171
PROGRAM STRUCTURE

The stack wused, 1is referred to as the ‘current’ stack. The INISTACK
standard routine must be used to <create a current stack at the
beginning of program execution. It may be wused during program
execution to create further stacks.

The general form of the INISTACK standard routine invocation is

INISTACK int-array

where

int-array is an INTEGER ARRAY, of one dimension, with an index
set lower bound of zero.

The array, used in an INISTACK invocation, will remain the current
stack until another INISTACK invocation, or until the routine with the
INISTACK invocation terminates. When a routine terminates and returns
to its invoker, all stack space allocated during execution of the
routine will be released. The stack pointer will automatically be
reset to the value it had prior the routine invocation.

Example of INISTACK use
MODULE mymodule

INTEGER ARRAY : stackarray (0:1000)
PROGRAM main
1
7 mandatory at the start of the executable program statements

/
INISTACK stackarray
1
ENDROUTINE
ENDMODULE

ND-GO.117.04

172 PLANC Reference Manual
PROGRAM STRUCTURE

8.7 SCOPE_OF_IDENTIFIER NAMES IN_PLANC_MODULES

In a module, 1ldentifiers may be created by declaration statements,
TYPE specification statements or IMPORT statements. All identifiers
created within the cuter level of the module are available throughout
the module, le. the identifiers have a scope of the outer module only.
However, if another module is nested, then the identifiers created in
the outer module are available within the nested module in the
following ways

1) Identifiers created in the outer module by the usual
declaration statements, eg. INTEGER or ENUMERATION, must have
a corresponding IMPORT/EXPORT pair of statements, to make the
identifier available within the nested module.

2) Identifiers created in TYPE specification or: CONSTANT
statements in the outer module, must be IMPORT'ed into the
nested MODULE, but no EXPORT stztement is to be used in the
outer module, see section 8.5 . Only the identifier name 1is
used in IMPORT statements used for this purpose.

3) Identifiers «created in the outer module by the use of an
IMPORT statement, must have @znother identical IMPORT
statement to make the identifier available 1in a nested
module, ie. an IMPORT statement must appear on every level
between the outermost module ancd the nested module in which
it is to be used. ‘

TYPE specification statements and CONSTANT declarations may be made
outside, or previous to any module in a compilation. These statements
are then treated like compiler commands. Identifiers created in this
way are globally available in all modules, separate or nested, without
IMPORT statements.

ND- GO.

-

17

—d
fom]
o~

PLANC Reference Manual 1713
INPUT/OUTPUT

9 INPUT/0UTPUT

The PLANC compiler and run-time system does not have very extensive
input/output facilities. A set of standard routines has been provided
for input/output, for wvarious of the PLANC data types, to files and
devices. One general limitation is that only one data-element may be
input/output by a single input/output standard routine invocation.
This has been done as it is envisaged that large systems programining
projects will design and implement their own set of input/output
routines, appropriate to their special needs.

The ROUTINEERROR exception will be activated by errors in any of the
input/output or open/close standard routines. If a ROUTINEERROR
condition occurs, the system variable, ERRCODE, will contain a value
from the file system, specifying the nature of the error.

9.1 Input/Qutput Terms and Concepts

Input routines control the transfer of data from external media into
internal storage. OQutput routines control the transfer of data from
internal storage to extarnal media.

In addition to the data transfer routines, other routines carry out
file control operations. The following standard routines are provided
in PLANC

1} INPUT - data transfer.
2) OUTPUT - data transfer.
3) OPEN - file control.
4) CLOSE - file control.

i

5) BLOCKSIZE file control.

6) FILESIZE file control.

ND-60.117.04 Revision A

174 PLANC Reference Manual
INPUT/OUTPUT

Records

A regord is a sequence of values or characters which is considered as
a single unit by the device it is being read to or written from. It
may correspond to a physical entity such as a disc block or a magnetic
tape block, but not necessarily.

There are two types of records

1) Formatted

2} Unformatted
A formatted record is one which is transferred under the control of a
format descriptor. Other records are urformatted records. During
unformatted transfers, data 1is transferred on a one-to-one

correspondence between external media and internal storage with no
conversion or formatting operations.

Files

A file is a sequence of records, exlsting on an external device,
accessible by a PLANC program via the SINTRAN file system.

File Number
A file number is a value in an INTEGER data-element, which specifies a
particular file internally within a program. A file number is returned

following the execution of the OPEN standard routine.

Format Descriptor

A format descriptor is a parameter in both Input and Output standard
routine declarations. It describes the physical characteristics of a
value after it has been transferred from a data-element by an output
routine, or the physical <characteristics before the value is to be
transferred into a data-element by an input routine.

ND-60.117.04

PLANC Reference Manual 175
INPUT/OUTPUT

9.2 FORMATIED INPUT ROUTINES
The formatted INPUT standard routines transfer one value into a data-
element. The general form of an invocation of a formatted INPUT

standard routine is

INPUT (file-number, ‘descriptor’',identifier)

where

file-number is the file number obtained by the OPEN invocation.
descriptor is the format descriptor.

identifier is associated with the data-element into which the

value is to be transferred.

Each of the formatted INPUT standard routines is declared with an out-
value. This out-value will return the number of characters which have
been transferred.

A field being read by an INPUT standard routine will terminate when
either the maximum number of characters specified in the format
descriptor has been read, or when a comma character (,}, or a carriage
return character is encountered.

If a field to be read by a formatted INPUT standard routine contains
leading blanks and a numeric value, then the blanks will be recognised
as part of the field width but will have no effect on the value
transferred into a data-element.

The data types of the parameters of the formatted INPUT standgard
routines are shown in the general form of the INPUT standard routine
declaration

ROUTINE VOID,INTEGER (INTEGER,BYTES,id-tvype) : INPUT (...}
where
id-type is the data type of the data-element to receive the

value read. This data type must correspond with that
implied by the format descriptor.

In the following sectionas on the formatted INPUT standard routines the
abbreviations used are

w 1s an unsigned integer number greater than zero.
d i1s an unsigned integer number greater than or equal to
zero.

ND-60.117.04 Revision A

116 PLANC Reference Manual
INPUT/OUTPUT

Format Descriptors

The following are the format descriptors available for the formatted
INPUT standard routines

Tw - Integer field descriptor

Ow

Fw.d ~ Floating-point numeric field descriptors
Ew.d

Avt - Alphanumeric data field clescriptor

Lw - Boolean data field descr:ptor

Note that if w or w.d 1is omitted, a maximum number of characters
(default for each data type) will be used.

ND-60.117.04

PLANC Reference Manual 177
INPUT/OUTPUT

8.2.1 I EORMAT. INTEGER INPUT_STANDARD ROUTINE

The Iw descriptor is for an integer value to be transferred into an
INTEGER data-element from a field of up to w character positions.

The input field consists of an optional minus sign followed by a
string of digits, ie. the same as an integer literal.

The field width described by an integer format descriptor can be
overridden by the wuse of any non-numeric character as a delimiter
between successive integer values to be read.

Examples

value input descriptor internal value

1 I 1

1 IS 1
10 I3 10
-15 I5 -15
1234 I2 12

The parameter data types of the integer INPUT standard routine are
shown in the routine declaration

ROUTINE VOID,INTEGER &
{ INTEGER, BYTES, INTEGER4 READ WRITE)

9.2.2 0_FORMAT. OCTAL INPUT STANDARD ROUTINE

The Ow descriptor is for an octal value to be transferred into an
INTEGER data-element from a field of up to w character positions.

kY

The input field consists of a string of digits with no sign.
Examples
value input descriptor internal value,dec
i 01 1
10 0S 8
1234 02 10

The parameter data types of the octal INPUT standard routine are shown
in the routine declaration

ROUTINE VOID,INTEGER &
{ INTEGER, BYTES, INTEGER& READ WRITE)

ND-60.117.04

178 PLANC Reference Manual
INPUT/OUTPUT

9.2.3 E_FORMAT. FIXED DECIMAL_POINT INPUT STANDARD ROUTINE

The Fw.d descriptor is for a fixed decimal point wvalue to be
transferred into a REAL data-element from a field of w character
positions.

The input field consists of an optional minus sign, followed by a
string of digits optionally containing a duecimal point. If there is no
decimal point, the rightmost d digits are interpreted as the
fractional part of the value. The rules are the same as for a REAL
literal, see section 2.7.2 . If the input field has enough space, the
value may be written in exponent form, see section 3.2.4%.

Examples
value input descriptor internal value
1.2 F5.0 1.0
-1.2 F5.0 -1.0
1.2 F5.1 1.2
-1.2 F5.1 -1.2
33 F10.3 33.0
3.2543 F10.3 3.254%

The parameter data types of the fixed dec.mal point INPUT standard
routine are shown in the routine declaration

ROUTINE VOID,INTEGER (INTEGER, BVTES, REAL READ WRITE)

ND-60.117.04

PLANC Reference Manual 179
INPUT/OUTPUT

9.2.4 E_FORMAT. EIXED DiXCIMAL POINT NORMALIZED WITH EXPONENT INPLT
STANDARD ROUTINE '

The Ew.d descriptor i1s for a fixed decimal point value, normalized
with an exponent, to be transferred into a REAL data-element from a
field of up to w character positions.

The input field may have the same form as described above for the F
descriptor. This field may optionally be followed by an exponent of
the form Enn or E€-nn, where nn is limited by the default REAL data
type characteristics of the particular machine implementation, see
Appendix C. The value from the input field will be multiplied by 10
to the power nn, to get the internally held value.

Examples
value input descriptor interhal value
1.2 ES. O 1.0
-1.2 E5.0 -1.0
1.2E2 E5.1 120.0
1.2E-2 E5.1 6.012
33 £10.3 33.0
3.2543E¢% E10.3 32540.0
9387654E-3 £10.3 987.65¢4

The parameter data types of the fixed decimal point normalized with
exponent INPUT standard routine are shown in the routine declaration

ROUTINE VOID,IMTEGER (INTEGER, BYTES, REAL READ WRITE)

ND-B0.117.04

180 PLANC Reference Manual
INPUT/OUTPUT

9.2.5 A EORMAT. AlPHANUMERIC INPUT STANDARL ROUTINE

The Aw descriptor 1is for an alphanumeric string to be transferred into
a BYTES data-element from a field of up to w character positions.

If more than w characters are input, then the first w characters only
will be stored in the data-element.

Examples
value input descriptor internal value
1 Al 1
i AS 1
1 AS 1
abcde Al abc

The data types of the alphanumeric INPUT standard routine are shown in
the routine declaration

ROUTINE VOID,INTEGER (INTEGER, BYTES, BYTES READ WRITE)

8.2.6 L_FORMAT. BOOLEAN INPUT STANDARD ROUTINE

The Lw descriptor is for a boolean value to be transferred into a
BOOLEAN data-element from a field of up to w character positions.

The 1input field is scanned for the first occurrence of one of the
letters T or F, and the BOOLEAN data-element will be set to TRUE or
FALSE accordingly. If no T or F is found in the input field, then the
BOOLEAN data-element will be set to a value FALSE.

Examples
value input descriptor internal value
T L1 TRUE
T L5 TRUE
F L3 FALSE
Xyz L3 FALSE

The data types of the boolean INPUT standard routine are shown in the
routine declaration

ROUTINE VOID,INTEGER &
{ INTEGER, BYTES, BOOLEAN READ WRITE)

Note that the out-value will contain the character position, relative
to 1, that the T or F has been found in.

ND-60.117.04

PLANC Reference Manual 181
INPUT/OUTPUT

9.3 BANDOM_LINFORMATTED INPUT_STANDARD ROLITINE

The random unformatted INPUT standard routine reads a record of data
from a file, into a BYTES array data-element. The record may be
selected randomly from any location within a file. The general form of
an invocation of a random unformatted INPUT standard routine is

INPUT (file-number,rec-number,array-ident)

where

file~number is the file number obtained by invocation of the OPEN
standard routine.

rec-number i1s the record number within the file,
Note : the first record i1s number 0.

array-ident is an identifier associated with the BYTES data-element

into which the value is to be transferred.
The parameter data types of the random unformatted INPUT standard
routine are shown in the following routine declaration
ROUTINE VOID,INTEGER (INTEGER, INTEGER, BYTES)
The out-value of the random unformatted INPUT standard routine will be

the number of characters actually transferred by the routine and this
may be used within an expression.

ND-60.117.04

162 PLANC Reference Manual
INPUT/OQUTPUT

9.4 EORMATTFD OQUTPUT STANDARD ROUTINES
The formatted QUTPUT standard routines transfer one value from a data-
glement to a file or a device. The general form of an invocation of a

formatted OUTPUT standard routine is

CUTPUT (file-number, ‘descriptor’,6 identifier)

wheare

file-number is the file number obtained by invocation of the OPEN
standard routine.

descriptor is the format descriptor.

identifier 1s associated with the data-element into which the

value is to be transferred.

Each of the formatted OUTPUT standard routines ig declared with an
out-value. This out-value will return the number of characters which
has been transferred to the file or device. The field width part of a
descriptor may be omitted and the out-value will have to be used to
find out how many characters have been transferred.

If the wvalue transferred does not fill the width specified for the
field, then usually leading blanks will be inserted by the formatted
OQUTPUT standard routines.

[f the internal value is too large to fit into the field width
specified, then the output field will be filled with asterisk (%)
characters.

The data types of the parameters of the formatted OUTPUT standard
routines are shown in the general form of the OUTPUT routine
daclaration

ROUTINE VOID,INTEGER (INTEGER,BYTES,id-type) : OUTPUT (...)

where

id-type is the data type of the data-element whose value is to
be ocutput. This data type must correspond with that
implied by the format descriptor.

In the following sections on the formatted OUTPUT standard routines
the abbreviations used are

i is an unsigned integer number greater than zero.
d is an unsigned integer number greater than or equal to
zero.

ND-60.117.04 Revision A

PLANC Reference Manual 183
INPUT/OUTPUT

The following are the format descriptors available for the formatted
QUTPUT standard routines

Iw - Integ2r field descriptor

Ow - Octal fleld descriptor

Zw - Octal field descriptor, with leading zeroes
Fw.d - Floating-point numeric field descriptors
Ew.d

Dw.d

Aw - Alphanumeric data field descriptor

Lw - Boolean data field descriptor

Note that 1f w or w.d 1s omitted, the minimum number of characters
required to output the data-element will be used.

ND-60.117.0¢4

184 PLANC Reference HManual
INPUT/QUTPUT

9.4.1 I_EORMAT. INTEGER OUTPUT STANDARD ROUITINE

The Iw descriptor is for a value to be transferred from an INTEGER
data-element to a field of w character positions, as a decimal value.

The wvalue will be right-justified in the field. If the value is
negative, one of the character positions will be wused for a minus
sign.

Examples

internal value descriptor output

1 I 1

1 15 1

+10 I5 10
-15 I5 -15
1234 14 1234
~-1234 14 LR R R

The parameter data types of the integer OUTFUT standard routine are
shown in the routine declaration

ROUTINE VOID,INTEGER (INTEGER, BYTES, INTEGER4)

9.4.2 0_AND Z FORMAT. OCTAL QUTPUT STANDARD ROUTINE

The Ow descriptor is for a value to be transferred from an INTEGER
data-element as an octal value, to a field of up to w character
positions.

The value will be right-justified 1in the field. If the value is
negative, one of the character positions will be wused for a minus

sign.

Fields output with an Ow descriptor will contain leading space
¢haracters. The Zw descriptor will give leading zero characters.

Examples
internal value,dec descriptor cutput

1 01 1

1 035 1

10 035 12

10 Z5 060012

-5 06 1777113
4085 05 1177
-4095 05 {170001) *xxxx

The parameter data types of the octal OUTPUT standard routine are
shown 1in the routine declaration

ROUTINE VOID,INTEGER { INTEGER, BYTES, INTEGER4)

ND-60.117.04 Revision A

PLANC Reference Manual 785
INPUT/OUTPUT

9.4.3 E_EORMAT. FIXED DECIMAL POINT OUTPLT_STANDARD ROUTINE

The Fw.d descriptor is for a value to be transferred from a REAL data-
element, as a fixed point wvalue, 1into a field of w character
positions.

The w character positicns will include a decimal point, and an
optional minus sign. If the value does not fill the entire field, then
the leading character pcsitions will be blank filled.

The value output will be rounded to the number of decimal places
specified, if necessary.

Examples
internal value descriptor cutput
1.2 F5.0 1.
-1.2 F5.0 -1.
1.2 F5.1 1.2
-1.2 Fs.1 -1.2
-10.33 F10.3 -10.330
12.3496 F5.2 (rounded) 12.35
1055.22 F5.2 Xk kXK

The parameter data types of the fixed decimal point OUTPUT standard
routine are shown in the routine declaration

ROUTINE VOID,INTEGER (INTEGER, BYTES, REAL)

ND-60.117.04

186 PLANC Reference Manual
INPUT/OUTPUT

The Ew.d descriptor is for a value to be transferred from a REAL data-
element to fixed decimal point normalized with exponent, into a field
¢of w character positions.

The value output will be scaled to have one digit before the decimal
point. There will be d digits after the decimal point. The exponent
will comprise the letter E, a sign and two digits which are the power
of ten to multiply the preceding value by.

Examples
internal value descriptor output
1.2 ESG.0 1.E+00
-1.2 E8.0 ~-1.E+00
120.0 E8.1 1.2E+02
0.012 E8.1 1.2E-02
.033 E13.3 3.300E-02
3.2543E4 E10.3 3.254E+04

The parameter data types of the fixed decimal point normalized with
exponent COUTPUT standard routine are shown in the routine declaration

ROUTINE VOID,INTEGER (INTEGER, BYTES, REAL)

9.4.5 [_FORMAT. FIXED [ECIMAL POINT NORMALIZED WITH EXPONENT OUTPUT
STANDARD ROUTINE

The Dw.d descriptor is for a value to be transferred from a double
precision REAL data-element to fixed decimal point normalized with
gxponent, into a field of w character positions.

The value output will be in exactly the same format as that described
#bove for the E descriptor.

Examples
internal value descriptor output
.033 D13.3 3.300€-02
3.2543E4 0D10.3 3.254E+04

The parameter data types of the fixed decimal point normalized with
exponent OUTPUT standard routine are shown in the routine declaration

ROUTINE VOID,INTEGER (INTEGER, BYTES, REAL)

NO-60.117.04 Revision A

PLANC Reference Manual 187
INPUT/OUTPUT

9.4.6 A/AL_FORMAT. AlPHAMUMERIC OUTPUT STANDARD ROUTINE

The Aw/ALw descriptor is for an alphanumeric string to be transferred
from a BYTES data-element into a field of w character positions.

The character string will be output as ASCII characters. If the field
width w is greater than the length of the string, then the string will
be right-justified in the field and trailing character positions blank
filled. If the AL descriptor is used then the character string will be
left-justified and leading character positions blank filled.

Note that a single dollar character ($) in the string to be output
will be <converted, during output, to carriage return+line feed
characters. To print a single dollar character ($), two consecutive
dollar characters must be present in the string.

Examples
internal value descriptor output
abcde A5 abcde
abc A5 _abc
abc ALS abec__

The data types of the alphanumeric OUTPUT standard routine are shown
in the routine declaration

ROUTINE VOID,INTEGER (INTEGER, BYTES, BYTES)

9.4.7 L_FORMAT. BOQLEAN MITPUT STANDARD ROUTINE

The Lw descriptor is for a value to be transferred from a BOOLEAN
data-element into a field of w character positions.

The right-most character position of the output field will have the
letter T if the BOOLEAN data-element has a value TRUE, and the letter
F i1f the BOOLEAN data-eslement has the wvalue FALSE. The leading
character positions of the output field will be blank filled.

Examples
internal value descriptor cutput
TRUE L1 T
FALSE LS F

The parameter data types of the boolean OUTPUT standard vroutine are
shown in the routine declaration

ROUTINE VOID,INTEGER (INTEGER, BYTES, BOOLEAN)

ND-60.117.04 Revision A

168 PLANC Reference Manual
INPUT/OUTPUT

9.5 RANIOM UMFORMATTED (MITPUT STANNARD ROUTIME

The random unformatted OUTPUT standard routine writes a record of data
from a BYTES array data-element to a file. The record location may be
selected randomly from within the file. “he general form of an
invocation of a random unformatted OUTPUT standard routine is

OUTPUT (file-number,rec-number,arrav-ident)

where
file-number is the file number obtained by the OPEN invocation.
rec-number is the record number within the file.
Note : the first record is number 0.
array-ident is an identifier associated with the BYTES data-element

from which the value is to be transferred.
The parameter data types of the random unformatted OUTPUT standard
routine are shown in the following routine declaration
ROUTINE VOID,INTEGER (INTEGER, INTEGER, BYTES)
Since the random unformatted OUTPUT standard routine has an out-value,

the number of characters actually transferred by the routine, may be
used within an expression.

ND-60.117.04 Revision A

PLANC Reference Manual 189
INPUT/OUTPUT

9.6 OPEN FILE

The OPEN standard routine will return a file number, corresponding to
the named file, to be used within the program to execute input/output

operations. An 1invocation of the OPEN standard routine will take the
form

OPEN (file-numoer,file-access,file-name,file-type!

where

file-number is the file number obtained by invocation of the OPEN
standard routine.

file-access is the type of input/output which 1is to be executed
with this file. For details see MON 50 in the SINTRAN
Reference Manual.

file-name is the SINTRAN file name.

file-type is the SINTRAN file type.

Note : the default type 1s SYMB.
The data types of the formal parameters may be seen 1in the CPEN
standard routine declaration

ROUTINE VOID,VOID &
(INTEGER READ WRITE, BYTES, BYTES, B8YTES) : OPEN (...}

9.7 CLOSE_FEILE
The CLOSE standard routine will terminate the connection of a
particular external file to an internal file number. An invocation of
the CLOSE standard routine will take the form

CLOSE (file-number)

where

file-number 1s the internal file number within the program.
The data types of the formal parameters may be seen in the CLOSE
standard routine declaration

ROUTINE VOID,VOID (INTEGER) : CLOSE {...)

ND-60.117.04

190 PLANC Reference Manual
INPUT/OUTPUT

9.8 SEI_BLOCKSIZE (OF A FILE
The BLOCKSIZE standard routine will set the blocksize of a file which
has been previously OPEN'ed. The block size may be set to any number

greater than or equal to 1. The form of the routine invocation 1is

int BLOCKSIZE (file-number)

where
file-number is the internal file number within the program.
int is an integer identifier.

The value passed into the BLOCKSIZE standard routine must be the
block size in bytes.

The data types of the formal parameters may be seen from the routine
declaration : :

ROUTINE INTEGER,VOID (INTEGER} : BLOCKSIZE (...)

HD-60.117.04 Revision A

PLANC Reference Manual 191
INPUT/OUTPUT

9.9 SET/CHECK SIZE OF A FILE

The FILESIZE standard routine may be used either to set the size of a
file, in bytes, or to inquire as to the present size of a file.

To set the size of a file, the form of the routine invocation is

int FILESIZE (file-number)

where
file-number 1s the internal file number within the program.
int 1s an INTEGER4 identifier.

The value passed to the FILESIZE standard routine is the file size in
bytes.

The parameter data types may be seen from the routine declaration
ROUTINE INTEGER4,VOID (INTEGER) : FILESIZE (...)

If the file size is required, then the routine invocation should be

FILESIZE(file-number)=:int

where
file-number is the file number of the open file.
int 1s an INTEGER4 identifier.

The parameter data types may be seen from the routine declaration

ROUTINE VOID,INTEGERS (INTEGER) : FILESIZE(...)

ND-60.117.04

ND-60.117.04

PLANC Reference Manual

PLANC Reference Manual 193

APPENDIX A

COMPILER COMMANDS

ND-B60.117.04

194 PLANC Reference Manual

ND- GO . 117,04

PLANC Reference Manual 195
COMPILER COMMANDS

0.1 COMPILER INYOCATION

The compiler is invoked from SINTRAN by the command

dPLANC-100 on the ND-100
APLANC-MCE8

AND-500 PLANC-500 on the ND-500

The compiler responds with a notification of the version in wuse. It
then prompts by writing on the terminal

4

which indicates that the compiler is in command mode.

The command names car be abbreviated. Only the number of letters
needed to make 1t unique need be typed, but more may be given 1if
required (le. for readability or documentation). The parameters for a
command can be written c¢cn the same 1line as the command name but
separated from it by one or more blanks and at most one comma.
Alternatively, if parameters are expected but not given, the compiler
will prompt fcr them in turn.

Most commands may alsc be written as part of the source program, but
1n this case all parameters must be on the same line as the command
name, and the command name must be preceded by a dollar character ($).
B8lanks may appear before the $ and the command name. Such commands can
only be written between statements. They cannot occur in the middle of
a statement, or between successive continuation lines of a statement.

NO-GO. 117 .04

196 PLANC Reference Manual
COMPILER COMMANDS

0.2 COMPILATION_OF SOLRCE_PROGRAMS

The most important command is that which determines the program to be
compiled and where the output is to be placed. This is written

$COMPILE source list object

where

source 1s the name of the file, or unit number, containing the
PLANC program to be compiled. This parameter cannot be
omitted. If TERMINAL or unit 1 is specified, input 1is
accepted from the terminal, line by line, until a S$EOF
command 1is encountered in the input stream. If a file
name i3 specified, it must obey the wusual SINTRAN
syntactic form and conventions. Default type is SYMB.

list 1s the name of the file or unit number to which the
source listing will be printed by the compiler. The
format of the output will be suitable for printing and
will contain the ASCII characters, line feed (LF),
carriage return (CR), and form feed (FF) for carriage
control.

If 0 15 specified or the parameter is omitted, the
listing 1is suppressed. The default list file type 1is
SYMB.

object 1s the name of the file, or unit number, which will
contain the compiled relocatable version of the
program. This is the input to the loader when creating

an executable program. HSee the respective Loader
manuals for details.

If 0 is specified, no relocatable code is_ generated,
but a complete compilation takes place, thus giving any

diagnostic messages that may occur.

The default type of the object file is BRF on the ND-
100, NRF on the ND-500 and NRF for the MC68000.

Ff a unit number is given, it must be octal without any trailing
letter B.

ND-60.117,04

PLANC Reference Manual 197
COMPILER COMMANDS

Any diagnostics generated by the compiler are listed on the terminal,
and also on the list file, if they are not the same. The messages may
be warnings or errors.

The end of the source text is the end-of-file or a SEQF encountered in
the source file.

0.3 HELP

In command mode, the command
SHELP

will list all available commands together with their possible
parameters.

HELP itself has no parameters.

0.4 COMPILER TERMINATION

The command
SEXIT

will return control to SINTRAN after all source, list, and object
files have been closed.

0.5 END_OF FILE

The command
SEOF

signifies that the reading of the current file is complete. Reading
continues at the next outer INCLUDE level.

ND-60.117.04

198 PLANC Reference Manual
COMPILER COMMANDS

0.6 IMMEDIATE PREPARATION OF EXECUTABLE PROGRAMS
This section applies to the ND-100 only.

An executable program may be prepared and output to a file, by using
the command

SPROG-FILE file-name

where

file-name is the name of a file to receive the executable
program.

The default file type is PROG.

If the COMPILE command is used subsequent to the PROG-FILE command,
then the compiler will generate the executable program directly on to
this file. The COMPILE command will still generate an object file if
it 1s specified, in addition to the PROG f.le.

The executable program is completed automatically, by loading the
PLANC library (1 or 2 bank, depending on the setting of the $SEPARATE-
DATA option), when the SEXIT is taken out of the compiler. A list of
entry points and addresses will be output.

The S$PROG-FILE command can be issued at most once during any
invocation of the compiler.

To complete the executable program, libraries or other object files
may be added by using the command

SLOAD file-namel,file-namel...

where

file-name is the name of an object file or library.
The default type of the file loaded will b2 BRF.

Any error messages which appear while the $LOAD command 1is being
executed can be found in the ND Relocating Loader manual (ND-60.066).

ND-G60.117.0¢4

PLANC Reference Manual 199
COMPILER COMMANDS

To define entry points in the loader table use the command

SDEFINE entry-rame,value,mode

where

entry-name

value

mode

specifies the name of an entry point. If an asterisk
(¥*) is used, the current address will be wused as the
next losd address. If a question mark (?) is used, a
map of undefined entries will be output. If this
parameter 1i1s blank, a map of defined entries will be
output.

specifies the load address in octal.

may be P to specify a program area, or D to specify a
data area.

ND-60.317.04

200 PLANC Reference Manual
COMPILER COMMANDS

0.7 INCLUDING TEXT FROM_QTHER SOURCE_FILES

Other files can be incorporated in the source program at the points
indicated by the command

SINCLUDE filename

where

filename is the name of the file or unit number to be read. The
parameter cannot be omitted: the default file type 1is
SYMB.

The reading of the source program by the compiler is switched +to the
named file and continues until a $EOF command is encountered. The file
is then closed and the text following the $INCLUDE command is read.
The named file may itself contain further $INCLUDE commands, but no

more than 16 incomplete SINCLUDE s may be in existence at any one
time.

For example, a number of separate modules may require the same user
defined data type. The TYPE specification may be held on a file called
COMDEF:SYMB. Then by writing

SINCLUDE COMDEF

at the appropriate point in each module, the TYPE specification is
brought into the source file. Thus only one copy of the TYPE
specification is kept, and all modules have identical coplies of 1it.

0.8 COMPILE-TIME CONSTANTS

In certain cases it may be desirable to set a parameter value to be
tested by a $IF group of a command external to the source text being
compiled, ie. prior to the outmost module level. The normal CONSTANT

statement as defined in the PLANC language may be wused in command
mode .

ND-60.117.0¢4

PLANC Refwerence Manual 201
COMPILER COMMANDS

0.9 CONDITIONAL COMPILATION

It 1s possible to select parts of a file or program to be wused in a
particular compilation, depending on varlous parameters and their
values. There is a set of commands which may be used for this purpose,
within the source program. These commands are

SIF expression STHEN

- PLANC source statements or compiler commands
SELSIF expression S$THEN

- PLANC source statements or compiler commands
SELSE

~ PLANC source statements or compililer commands
SENDIF

where

expression 1s an zxpression, which when evaluated, will give &
result of TRUE or FALSE.

The expression may «contain literals and constant identifiers as

operands for any legitimate PLANC operators, eg. arithmetic and
relational.

There may be =zero or more instances of S$ELSIF in a SIF command. The
SELSE may be omitted.

Within a group of commands, only those lines which 1lie between the
first occurrence of expression which has the value TRUE, or the $ELSE
command if all the expressions are FALSE, and the next command of the
group, are included as valid source 1lines. The rest are listed,

without line numbers, but are otherwise ignored.
The SIF groups may be nested to 11 levels. :

All groups within INCLUDE'd text must be complete before the INCLUDE
is terminated.

For example

CONSTANT maxsizel1=255,maxsize2=32767

CONSTANT s51ze=1000

SIF size <= maxsizel S$THEN
INTEGERT : index

SELSIF size > maxsizel AND size <= maxsize? STHEN
INTEGER2 : index

SELSE
INTEGER4 : index

SENDIF

In this case, size has a value 1000 which will result in the line of
code, INTEGER2 ... being included in the compilation.

ND-60.117.0¢

202 PLANC Reference Manual
COMPILER COMMANDS

0.10 COMPILE TIME MACROS

Another method of conditional compilation is to define a macro, which
may be invoked within the source lines, ard then substitute text where
macro name appears. Parameters may be used within the macro expansion
to control the particular text output from the macro.

The general form of a macro definition is

SMACRO macname [(parameter(,parameter]...)]
macro body
SENDMACRO
where
macname 1s the name to be used to invoke the macro.
parameter 1s a valid identifier name.
macro body 1s text to be expanded by a2 macro invocation.

The macro name must be formed according to the rules for PLANC

identifiers. It will be wused to 1invcoke the macro from within the
source lines of code.

The names of formal parameters of the macro definition are formed
according to the rules for PLANC identifiers. Within the macro body
the value of each formal parameter may e referenced during macro
expansion, by the formal parameter nsime enclosed by double quote
characters ("). The couble quote character may not be used for any
other purpose within the macro body.

The macrc body may contain text which will be output unchanged during
the macro expansion, or modified by substitution of thé value of
actual parameters. It may also contain other compiler commands, eg.
SIF ... SENDIF, with the exception of arother $MACRO command, ie.
nested macro definitions are not allowed. However, it should be noted
that any compiler commands within a macro will be carried out at the
time that the macrc is being expanded, and its output going into the

source of the PLANC program, prior to compilation of the PLANC source
code.

Example of a macro definition

SMACRO exmac (parami,param2)
“paraml1”"param2” SENDMACRO

NMD-60.117.04

PLANC Reference Manual 203
COMPILER COMMANDS

An actual parameter may be any text string of <characters, not
including the comma, r:.ght parenthesis or double quote characters, 1ie.
. or)} or " characters. However, if a comma or a right parenthesis 1is
required within an actual parameter, the entire actual parameter must
be enclosed by double quote characters. The actual parameter value
will be substituted wherever it has been referenced within the macro
body.

For example, the above macro definition may be 1nvoked by the
following

exmac(INTEGER,2) : 1,5
exmac{REAL,4) : r.,s

will generate

INTEGERZ : 1i,:
REALL : 1,5

The macro body may contain macro invocations, ie. macro invocations
may be nested. Macrc invocations may be recursive, ie. a macro may
invoke itself from withrin its own macro body .

204 PLANC Reference Manual
COMPILER COMMANDS

0.11 CROSS_REFERENCE LISTING AND L INKAGE INEORMATION

The command may be used for obtaining an 1identifier <cross-reference
listing

SCROSS-REFERENCE filename

where

filename 1s the name of a file to be used as a temporary work
area. The default file type 1s XREF. The file must be
on a mass storage device.

This command will list all the identifiers and the line numbers where

they are wused. The output 1s on the listfile, and it follows the
source listing.

A list of the routine call hilerarchy may be obtained by wusing the
command

SCALL-HIERARCHY ON
and this option may switched off by,
SCALL-HIERARCHY OFF

The CALL-HIERARCHY listing follows the source listing and precedes the
cross-reference listing if it is present. The initial value is OFF.

Detailed linkage information may be obtained with the command
SLINKAGE-REFERENCE file-name
where

file-name is the name of a work file.

This command will produce a sorted 1list of all EXPORT ed/IMPORT ed
items from the outermost module level. UJse of the LINKAGE-REFERENCE

command, prior to one or more $COMPILE commands, will cause a return
to command mode after each compile.

ND-60.117.04

PLANC Reference Manual 205
COMPILER COMMANDS
The layout of the list output is as follows

End of source listing
kx**t**‘k**t'kﬂ'**k*k*tfc*‘k*‘k*******t**kt*tk***t*kkﬂ:*’k*k*'k*t'k*****‘k*

ROUTH A_LINKR* 8_LINKR
ROUT2 B_LINKR* A_LINKR
VAR1 A_LINKR* B_LINKR
VAR?Z B_LINKR* A_LINKR

If an item is EXPORT ed from a module, the module name will be marked
with an asterisk (x)

The LINKAGE-REFERENCE command and the CROSS-REFERENCE command must not
be used together in one compile.

0.12 LISTING CONTROL

The listing of source iines on the listfile may be conftrolled by the
use of the command

SLIST ON

will cause lines of the source text to be output to the listfile. It
resumes the listing from a previous LIST OFF command.

SLIST OFF
will suppress output going to the listfile. The initial value is ON.

A skip to a new page may be requested by using the command

SEJECT
which will output a form feed to the listfile.

The line numbers printed in the source listing may be changed, in
order to continue from a different number by using the command

SLINE-BIAS line-number
where

line-number 1is the number to continue line numbers from.

ND-60.117.04% Revision A

206 PLANC Reference Manual
COMPILER COMMANDS

0.13 RUN_TIME OPTIONS FOR THE ND-100

The execution of a PLANC program may be modified by the following
options provided by the compiler.

The code and data of a program may be generated for separate memory
areas by the use of the command

SSEPARATE-DATA ON
and this option may switched off by,
SSEPARATE-DATA OFF
The initial value 1s OFF.
The extra instructions of the ND-100/CE model may be generated by the
use of the command
SND100-EXTENDED ON
and this option may be switched off by,
SND100-EXTENDED OFF

The initial value is OFF.

Optimization of memory requirements and execution speed will ©be
attempted by the compiler with the following option

SOPTION SQUEEZE ON

and this option may be switched off by,
SOPTICN SQUEEZE OFF

The initial value 1s OFF.

Fach access to an array element will be checked at either compile time
or during execution with the following opticn

SOPTION ARRAY-INDEX-CHECK ON
and this option may be switched off by,
SOPTION ARRAY-INDEX-CHECK OFF

This option may be used in several places in & program to switch
checking on and off, as required.

The initial value is OFF.

ND-60.117.04 Revision A

P{ANC Reference Manual 207
COMPILER COMMANDS

0.14 DATA_TYPE DEFALLIS

The number of significant digits of the REAL data type may be altered
by using the command

SREAL-PRECISION number

where

number is the number of significant digits required.

0.15 CREATION OF L IBRARIES

To create a 1library from one or more outer level modules in one
compilation, use the command :

SLIBRARY-MODE ON
and this option may be switched off by,
SLIBRARY~-MODE OFF

The LIBRARY option will generate a preceding BRF or NRF library mark
for each outer level module in the compiled file. The loader will not

load a module unless there is an unresolved reference to an EXPORT " ed
identifier in the module.

If the EXPORT ed identifier has one or more ALIAS names, an ALIAS must
be present in the EXPORT statement as well as in each relevant routine

declaration. Further, the ALIAS in the EXPORT statement may use the
following general form

EXPORT ... ALIAS 'name’ [OR 'name’'l...

a

The list of ALIAS names is not permitted in an ALIAS used for a normal
routine declaration.

If OFF is used, these library marks are suppressed and :he loader will
load the module anyway. The initial value is OFF.

For details of library marks and files see ND Relocating Loader manual
(ND-60.066) on the ND-100, or the ND-500 Loader/Monitor manual (ND-
60.136) on the ND-500.

ND-GO.117.04

208 PLANC Reference Manual
COMPILER COMMANDS

0. 16 DEBUGGING

The output from the compiler can be made to include information for
use by the Symbolic Debugger. In order to have the debug information
generated by the compiler use the command

SOEBUG-MODE ON
and this option may be switched off by,

SDEBUG-MODE OFF

For detailed descriptions of how to use the facilities of the Symbolic
Debugger see the Symbolic Debugger Reference Manual, ND-60.160 . The
initial value is OFF.

0.17 ASSEMBLER CODE IN_PLANC PROGRAMS

Assembly code may be placed within PLANC source statements and it will

be translated by an 1in-line assembler for the appropriate target
machine.

Assembly code lines must begin with a dollar character ($) followed by
an asterisk character (*). Mulitple instructions on one line are
separated by a semicolon character (:).

The syntax of machine instructions submitted to the inline assembler
1s described in the following manuals

ND-100 Reference Manual ND-06.020
ND-500 Reference Manual ND-05.010
MC68000 16 BIT MICROPROCESSOR User’'s Manual (third edition}

Chapter 2, Appendices A and B in the MC68200 manual are of particular
relevance.)

PLANC declared wvariables or labels may be wused as operands in
assembler instructions and the 1in-line assembler will generate the
appropriate references. However the PLANC identifiers, used in the
assembler instructions, must be used without the special addressing

mechanisms, eg. base registers or indirect, as these will be generated
for each PLANC identifier.

Beware of possible name conflicts between PLANC identifiers and
assembler mnemonics, 28g9. I for indirection in the ND-100.

Examples
Sx LDA 0,X; SAD SHR 20: SAT 4; RDIV ST 7 ND-100 Code
$* W1 DIV4 B.24B:S,4,W2 7 ND-500 Code
$* MOVE 22B{A6),D0; EXT.L DO; DIVS #4B,D0 7 MC68000 Code

ND-GO.117.04

PLANC Reference Manual 209
COMPILER COMMANDS

0.18 DATE COMMAND

The DATE command puts todays date {of the compilation) into a string.
The date is 1n the following format

month dd, 19yy
and may obtained by the following declaration,
BYTES READ : date:= SDATE 1 a blanxk must precede the $

For example the identifier date will receive a string as follows

DECEMBER 25, 1347

0.19 OPTION_COMPILER COMMAND
The OPTION command 1s wused to switch on or off some optional
facilities of the PLANC compiler. These facilities have been described
in this chapter. The general form of this command, to switch an option
on Lis

SOPTION option-name ON
and to switch an option off 1is

SOPTION opticn-name OFF
The options available are

1) HELP

2} SQUEEZE

3) ARRAY-INDEX-CHECK

210

ND-60.117.04

PLANC Reference Manual

PLANC Reference Manual

APPENDIX 8

ERROR_MESSAGES

ND-B0.117.0¢4

212

ND

60

4
I

17.

0

PLANC

Reference

Manual

FLANC Reference Manual 213
ERROR MESSAGES

0.1 COMPILER MESSAGES

AMBIGUOUS COMMAND

Abbreviation of the command name has resulted in a non-unique
command name.

ARRAY BOUNDS CONFLICT WITH A PREDECLARATION
No further explanation.

ARRAY BOUNDS MISSING

An array declaration must have explicit array bounds, unless
initial values imply the array bounds.

COMMAND NOT PERMITTED WITHIN A MODULE
Certain compiler commands must only be wused as global to the
outermost module level.

CONFLICTING DATA TYPES IN CORRESPONDING IMPORT/EXPORT
The corresponding IMPORT/EXPORT statements of communicating

modules have different data types in the declaration of one data-
element.

DATA TYPE NOT PREVIOUSLY SPECIFIED

An identifier has been used as a user defined data type without a
type specification.

EQUIVALENCE MAY CAUSE STORAGE CONFLICT
The use of equlvalence (=) here for overlapping data-elements
could cause storage conflicts because of different length or
storage layout of different data types. [(ND-100 only)

EXITFOR ALREADY PRESENT WITHIN THE LOOP
There is already one EXITFOR within this FOR-ENDFOR loop.

EXITWHILE ALREADY PRESENT WITHIN THE LOOP
There 1s already one EXITWHILE within this loop.

EXPONENT IS TOO LARGE
See Appendix D.

EXPORTED IDENTIFIER IMPORTED IN AN OUTER MOCULE
No further explanation.

EXPRESSION DOES NOT STORE A VALUE
No further explanation.

ND-60.117.04

214 PLANC Reference Manual
ERROR MESSAGES

[OENTIFIER ALREADY SPECIFIED/DECLARED

The identifier has already appeared in a declaration statement or
a type specification statement.

IDENTIFIER IN EXPORT, BUT NO DECLARATION
The 1dentifier which has been used in an export statement has not
been declared within this module.

IDENTIFIER USED IN DOT NOTATION IS NOT A RECORD
No further explanation.

IDENTIFIER USED IN DOT NOTATION IS NOT A RECORO COMPONENT
No further explanation.

ILLEGAL CHARACTER

A character has been used in a context in which it is not allowed,
eg. a digit as the first character of an identifier name or a real
exponent containing a non-numeric character. :

ILLEGAL CONSTRUCTION OF SIF-SENDIF COMMAND
No further explanation.

ILLEGAL CONTROL IDENTIFIER

The data type of the control identifier of the FOR statement does
not match the data type of the FOR list values.

ILLEGAL DATA-ELEMENT TO BE CONVERTED

The size of the data-element referred tc by a FORCE or CONVERT
standard routine does not match the target data type. There may be
no conversion routine available.

ILLEGAL DATA TYPE
The data type of an identifier has beer used illegally.

ILLEGAL FORMAL PARAMETER IN MACRO

A macro definition parameter 1list contains an identifier name
which conflicts with a previous declaration. *

TLLEGAL INLINE INVOCATION

It is illegal to have an invocation of an INLINE routine within

another INLINE routine, ie. nested INLINE invocations are not
allowed.

[LLEGAL MODULE TERMINATION

The module structure has not been correctly terminated by an
ENDMODULE statement.

ILLEGAL NESTED MACRO CEFINITION
No further explanation.

PLANC Reference Manual 215
ERROR MESSAGES

ILLEGAL PARAMETER REFERENCE IN MACRO BODY
When referring to a macro parameter within the macro body, the
parameter must be bounded by double quote characters.

ILLEGAL PREDECLARATION
The predeclared identifier has appeared previously 1n a
predeclaration statement, or it may not be used in this context.

ILLEGAL OPERAND FOR STORE OQOPZRATOR
No further explanation.

ILLEGAL SYNTAX
The compiler has been wunable to correctly translate this
statement. This may be due to a missing or misplaced delimiter,
misspelled keyword or scope problems.

ILLEGAL TO EXPORT THIS IDENTIFIER
No further explanation.

ILLEGAL TO IMPORT THIS IDENTIFIER
No further explanation.

INCASE CONTAINS INVALID VALUE
The INCASE part of a CASE statement has either an invalid value,
eg. which 1s not a member of the set being used, or a value which
has occured in a previous INCASE of this CASE statement.

INCOMPATIBLE DATA TYPES

A pointer data-element must be initialized +to 1its corresponding
data type.

INCONSISTENT DIMENSIONS
The index set{s) in an array declaration do not correspond to the
number of array keywords i1n the declaration,

INISTACK INVOCATION MISSING
A PROGRAM routine must contain an INISTACK invocation to
initialize the stack area at run-time.

INITIALIZATION VALUES OVERFLOW DECLARED SIZE
The number of elements declared for an array 1is less than the
number of values to be initially placed in this array.

INSUFFICIENT BUFFER SPACE FOR COMPILER
The compiler has insufficient buffer space, eg. for macro
definitions, expansions or INLINE routine declarations or
invocations.

INITIAL VALUE ILLEGAL HERE
No further explanation.

ND-60.117.04

2186 PLANC Reference Manual
ERROR MESSAGES

INVALID ACTUAL PARAMETER, FORMAL PARAMETER CECLARED AS WRITE
The actual parameter in the routine invocation is invalid because
the formal parameter in the routine declaration has been declared
as WRITE or READ WRITE.

INVALID ARRAY FOR INISTACK INVOCATION
The array in the INISTACK invocation must be global or imported,
declared with one dimension only and a lower bound of zero.

INVALID COMMAND
No further explanation.

INVALID CONDITIONAL EXPRESSION
No further explanation.

INVALID PARAMETER
An 1invalid parameter has been used in a compiler command.

INVALID PARAMETER LIST
In a routine declaration the number of formal parameters does not
match the declared data types. In a macro invocation, the number
of parameters is incorrect.

INVALID TYPE FOR IN-VALUE/OUT-VALUE/PARAMETER
The data type of a routine in-value, out-value or parameter must
not be a routine. Note that a pointer to a routine data-element
may be used.

INVALID USE OF KEYWORD
A valid keyword has been used in a statement illegally.

LINE IS TOO LONG
No further explanation.

MAX. NO. OF ARRAY ELEMENTS EXCEEDED
The number of elements declared for an array has exceeded the
compiler’'s available memory space. (ND-100 only)

MISPLACED SENDMACRO COMMAND
No further explanation.

MISPLACED STATEMENT
It 1s not legal to have this statement at this point in the
program.

MISSING KEYWORD, ENDIF/ENDCASE/ENDFOR/ENDDO OR ENDON
No further explanation.

MORE SUBSCRIPTS THAN IN THE ARRAY DECLARATICN
No further explanation.

MULTIDIMENSIONAL ARRAY NOT ALLOWED HERE

In some statements an array is allowed, but only a one dimensional
array.

ND-60.117.04% Revisicn A

PLANC Reference Manual
ERROR MESSAGES

~o
—_
-

NEGATIVE BOUND ILLEGAL
No further explanation. {(ND-100 only)

NO MORE SPACE FOR LOCAL DATA-ELEMENTS
No further explanation. (MD-100 only)

NOT IMPLEMENTED
No further explanation.

NOT PREVIOUSLY DECLARED
An identifier has bzen used without a declaration of an associated
data-element, or without a type specification.

QUALIFIER REQUIRED FOR THIS RECORD COMPONENT
This record component identifier has been specified in more than
one record. Consequently a record identifier must be used as a
qualifier to wuniquely reference the desired component data-
element.

REQUIRE ELSE OR ALL POSSIEBLE VALUES USED IN INCASE PARTS
A CASE statement must include all possible values in its INCASE
parts, or an [LLSE must be present.

INVALID TYPE FOR IN-VALJE/OUT-VALUE/PARAMETER
The data type of 3 routine in-value, out-value or parameter must
not be a routine. Nate that a pointer to a routine data-element
may be used.

ROUTINE WITH AN QUT-VALUE REQUIRES A RETURN
A routine which 1is declared with an out-value must contain at
least one return statement.

SET MEMBER OVERLAP .
A set member value has been used more than once in initializing
the set data-element.

SQUEEZE OPTION GENERATES INCORRECT CODE FOR THIS ROUTINE
Optimization of this routine generates incorrect execution code.
The SQUEEZE option must be switched off in order to compile this
routine correctly. (ND-100 only)

STORAGE OVERFLOW IN COMPILER
No further explanation.

ND-60.117.04

218 PLANC Reference Manual
ERROR MESSAGES

TARGET MACHINE ADDRESS IS TOO LARGE
During a cross-compilation an address for the target machine 1is
required, but is too large for the compiler on this machine.

TOO MANY LEVELS OF MODULE NESTING
This 1s limited by the space available to the compiler.

TOO MANY NESTED INCLUDES, MACRO/INLINE EXPANSIONS
There are too many nested INCLUDE's, nested macro expansions or

INLINE routine invocations for the storage available to the
compiler.

UNABLE TO EVALUATE EXPRESSION AT COMPILE-TIME

The expression contains identifiers whose values are not constant
at compile time.

WRITE DECLARATION ILLEGAL IN READ ONLY RECORD
If a record data-element has been declared as READ only, 1ts
component data-elements must not be declared as WRITE only.

ND-60.117.04

PLANC Reference Manual 219
ERROR MESSAGES

0.2 RUN-TIME MESSAGES

- NO ON ROUTINEERROR HANDLER, ERRETURN= value
A routine has taken an ERRETURN exit and there is no exception
handler specified to which control can be passed. The ERRETURN
value may have been set in the user code or it may be from
SINTRAN, see the SINTRAN Reference Manual (ND-60.128).

- ASSERT VIOLATION AT address
I1f the candition in an ASSERT statement 1s evaluated, and gives a
resulting value FALSE, and the program has no ON ASSERTFALSE
exception handler, the program has terminated execution at the
"address’' in the message.

- STACK OVERFLOW AT address
The requirements for storage have exceeded that available, and the
program has no ON STACKERROR exception handler, so the program has
terminated execution at the ‘"address’ in the message.

ND-80.117.04 Revision A

220 PLANC Reference Manual

ND-60.117.04

PLANC Reference Manual 221

APPENDIX C

MACHINE DEPENDENT | ANGUAGE FEATURES_IN PLANC

ND-60.117.04

ND-60.117.04

PLANC Reference Manual

PLANC Reference Manual 223
MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC

2 bytes ND-100
word size = 2 bytes MC68000
4 bytes ND-500

0.1 SIORAGE MAPPING
PLANC data-elements are stored in the following way

BOOLEAN (ND-100/MC6800C)

0 ofv
15 10
Bits 15-1 : set to O
Bit 0 (V) : 0 = FALSE
1 = TRUE
BOOLEAN (ND-500)
0 o{v
31 10
Bits 31-1 : set to O
Bit e (V) 0 = FALSE
1 = TRUE
INTEGER!
S value
7 6]
Bit 7 : 0 = greater than or equal to zero
1 = negative
Bits 6-0 : value held in twos-complement form
BYTE
value
7 0
Bits 7-0 : unsigned integer value

ND-60.117.04

224 PLANC Reference Manual
MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC

INTEGER2
S value
15 14 0
Bit 15 : 0 = greater than or equal to zero
1 = negative
Bits 14-0 : value held in twos-complement form
INTEGERS4
}
) value J
31 30 0
Bit 31 0 = greater than or equzl to zero
1 = negative
Bits 30-0 : value held in twos-complement form

INTEGER RANGE

Data types whose base type is integer range, will require storage for
each data-element depending on the values specified for the upper and
lower bounds. Each data-element will be allocated the smallest
available addressable unit which has enough bits to contain the next

higher power of 2, greater than the number of values in the specified
range,

On the ND-100 the addressable units used are 1 word (16 bits) and 2
words (32 bits). On the ND-500 the addressable units used are 1 byte
{8 bits), 2 bytes (16 bits) and 4 bytes (32 bits). On the MC68000 the
addressable wunits wused are 1 byte (8 bits), 2 bytes (16 bits) and 4
bytes (32 bits).

For example : *
INTEGER RANGE (0:32)

will require 6 bits to hold 33 distinct values. On the ND-100 1 word

will' be wused, 1e. 16 bits. On the ND-500 and MC68000 1 byte will be
used, ie. B bits.

If INTEGER RANGE is the base type of a SIET data-element, then the
data-element may have waste bits depending on the range specified. In
the above example 31 bits of space would be wasted in each data-

element, ie. a 64 bit data-element is allocated, although only 33 bits
are used.

If a CASE statemeni wuses an INTEGER RANGE for its multiple
possibilities, then bits may be wasted in the same way as in a SET
data-element. A number of words {in a table of addresses) may be

wasted, 1ie. the size of the table of addrosses will be a power of two
entries.

ND-60.117.04

PLANC Reference Manual 225
MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC

E ERATION

An ENUMERATION data-element will occupy one word on the ND-100/MC68000
and the ND-500 respectively. The data-element will contain an integer
value corresponding to the position in the 1list of possible
ENUMERATION values declared. The first ENUMERATION value will be
counted as zero. Herce the maximum possible number of distinct
ENUMERATION values in cne declaration is 32768 for the ND-100/MC68000
and 2147483648 for the ND-500.

POINTER

Pointer data-elements for all data types, except arrays, will occupy
one word (2 bytes) on the ND-100 and 4 bytes on the ND-500
respectively. On the MC68000, a pointer data-element will occupy two
words {4 bytes).

Since the ND-100 has word addressing only, for array elements or
record components which are smaller than one word, a pointer to an
array element or a record component will contain the address of the
word containing the data-element. It will not necessarily be the exact
address of the data-element. However for statements such as
expressions with assignment operators, the run-time system will access
the data-element correctly.

This may affect addressing of array elements where the elements are
smaller than one word, eg. INTEGER RANGE (0:7) PACKED, or components
of a packed record.

On the ND-500/MC68000 byte addressing is available, so a pointer, to

data-elements which are array elements or record components, may
contain a byte address.

ND-60.117.04 Revision A

226 PLANC Reference Manual
MACHINE DEPENDENT ILANGUAGE FEATURES IN PLANC

ARRAY POINTER

An array pointer will require 3 pieces of information per dimension
declared for the array. But the first elemen: of the three, for the
first declared dimension, 1s an address {(a pointer data-element). All
the rest of the elements are default inzeger data-slements. For
example a two dimensional array will have 6 elements in its array
pointer data-element, the first of which 1s an address.

Following 1is a diagram of the layout of an array pointer data-element.
Each part 1is a default integer size except the first which is an
address.

address used for comput.ing element addresses

lower bound 1 first dimension

upper bound 1

constantt 1+ upper bound 1 - lower bound 1

lower bound 2 second dimension

upper bound 2

constant2 1+ upper bound 2 - lower bound 2

etc

An array may be declared with n dimensions as follows
ar{lowl:hight,low2:high2,...).

The address in the first element of the array descriptor, 1ie. the
array pointer, 1is used for computing addresses of any element of the
array. This address is an imaginary point in memory, which is obtained
by setting each index to zero, regardless of the declared bounds. This
imaginary point in memory would be the address of the first element of
the declared array, if all of its lower bounds were declared as zero.

The address, of the 1imaginary point in memory, is obtained by
computing an offset and subtracting it from the actual memory address,
where the first element of the array i3 located. The following
formulae may be used to compute the offset, in array element units:

lowi*constanti+low2 ¢ dimensional array
and {lowi*constanti+low?2)*constant2+lowl 3 dimensional array

and so on for arrays of more dimensions.

ND-60.117.04 Revision A

PLANC Reference Manual 226a
MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC

The result from the above formulae, in array element units, must be
multiplied by the length of an array element in machine addressing
units, le. bytes for the ND-500 and words for the ND-100. Note that on
the ND-100 a byte occupies one half word, and consequently the result
of the formulae must be even to give a valid address offset. Beware
that the data type, of ihe array elements of a PACKED array, may
modify the computZation by which array element units are converted to
machine addressing units.

The above formulae may also be used for computing the address of any
element of the array. Substitute each subscript value for the
caorresponding lower bound values, and the formulae will give an offset
in array element units. This offset must be converted to machine
addressing units and then added to the address in the first word of
the array descriptor, giving the address of a specific array element.

ND-60.117.04 Revision A

PLANC Reference Manual 2217
MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC

REAL (32-bit floating-pcint hardware)

Slexponent mantissa
31 30 22 21 i}
Bit I : 0 = greater than or equal to zero
1 = negative
Bits 30-22 : Binary exponent

Stored with a bias of 256 (400 octal). This is
a power of 2 that the mantissa must be
multiplied by. A value of 256 means that the
mantissa is the value.

If the exponent 1s 0, the whole value 1is zerxo.

Bits 21-0 : mantissa
Stored without the 0.5 (0.1 binary) excess,
unless the value is zero. The binary point 1is
one place to the left of the mantissa. The
mantissa 1s normalised so that
0.5 <= mantissa < 1.0

This gives an accuracy of 7 significant
digits.

REAL (48-bit floating-point hardware)

Slexponent mantissa
47 46 32 31 0
Bit &7 : 0 = greater than or equal to zero
1 = negative
Bits 46-32 : Binary exponent

Stored with a bias of 16384 (40000 octal).
This is a power of 2 that the mantissa must be
multiplied by. A value of 40000B means that
the mantissa is the value.

If the exponent is 0, the whole value is zero.

Bits 31-0 : mantissa

Stored with all bits included. The binary
point is immediately to the left of bit 31.

This gives an accuracy of 8 significant
digits. -

ND GO.117.0¢4

228 PLANC Reference Manual
MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC

REALS8 (64-bit floating-point)

Siexponent ma;£;;sa
63 62 56 53 0
Bit 63 : 0 = greater than or equal to zero
1 = negative
Bits 62-54 : Binary exponent

Stored with a bias of 256 (400 octal). This is
a power of 2 that the mantissa must be
multiplied by. A value of 256 means that the
mantissa is the value.

If the exponent 1s 0, the whole value is zero.

Bits 21-0 : mantissa .
Stored without the 0.5 (0.1 binary} excess,
unless the value is zero. The binary point 1is
one place to the left of the mantissa. The
mantissa is normalised so that
0.5 <= mantissa ¢ 1.0

This gives an accuracy of 15 significant
digits. :

ND-B60.117.04

PLANC Reference Manual 229
MACHINE ODEPENDENT LANGUAGE FEATURES IN PLANC :

ARRAY

The storage required for an array data-element is simply the number of
elements declared times the storage required for one element of the
array.

The array elements s&sre stored in ascending order of the subscript
values. Arrays of more than one dimension are stored with the last
index changing most rapidly. This is identical to the scheme used for
PASCAL and different from the scheme used in Fortran.

The maximum number of elements of an array is 1limited by the way
subscripts are storecd internally. Subscripts are stored in a signed
default integer data-element. Hence, on the ND-100/MC68000, the
maximum number of elements which an array may be declared with (this
depends on the number of dimensions and the wupper and lower bound
values of each dimensicon), is 32K, ie. 32768.

On the ND-100, a PACKED ARRAY which is declared with 8-bit integer
elements, must not have a negative lower bound in any of 1its index
sets.

On the ND-100, note that due to the scheme of computing the memory
addresses of array elements, the declared lower index bounds must
result in

1} the first element of a PACKED INTEGER modified array being an
odd byte, and

2} the first element of a PACKED BOOLEAN array being any bit
within a word.

This may be achieved on the ND-100, for arrays of two or more
dimensions having elements smaller than one word in the following way.
The lower bound of the last dimension and the number of values in the
index set, must be a multiple of the number of elements per word.

RECORD

The storage required for a record data-element is simply the total
storage required by all the component data-elements, plus any waste
space between the component data-elements due to the alignment
requirements of each component.

SET

A SET data-element will have one hit per possible member, ie. the
data-element will recuire the number of bits corresponding to the
maximum number of members declared. The bits are grouped into words.
If a bit has the value one, then that corresponding possible value is
a member of the SET data-element.

ND-60.117.04 Revision A

230 PLANC Reference Manual
MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC

0.2 STORAGE Al IGNMENT

The followling tables give the size in bytes and storage alignment of
each of the different data-element data types on each machine.

Table 1 : ND-10 or ND-100 with 48-bit Floating-point Hardware

data type iength in bytes alignment{Note 1)
BOOLEAN 2 word
INTEGER (INTEGERZ) 2 word
INTEGER1 1 word
BYTE 1 word
INTEGER?Z 2 word
INTEGERY 4 word
REAL 6 word
REALS8 ({Note 2) 8 word
ENUMERATION 2 word
ARRAY variable word
RECORD variable word
SET 2%((members+«15}/16) word

Table 2 : ND-10 or ND-100 with 32-bhit Floafing-point Hardware

All data types not listed in table 2 are the same as in table 1.

data type length in bytes alignment(Note 1)

REAL 4 word

ND-60.117.04

PLANC Reference Manual 231
MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC

Jable 3 : ND-500

data tvpe lenath in bhytes alignment{Note 1)
BOOLEAN 4 word
INTEGER (INTEGER&) 2 word
INTEGER1 1 byte

BYTE 1 byte
INTEGER2 2 half-word
INTEGERS b word
REALS 8 word
ENUMERATION 4 word
ARRAY variable word
RECORD variable word

SET 2%({(members+15)/16) word

Table & : MC68000

data tvpe ~_ length ipn bvtes alignment(Note 1)

BOOLEAN 2 word
INTEGER (INTEGER2) 2 word
INTEGERT{ 1 byte
BYTE 1 byte
INTEGER2 2 word
INTEGERS b word
REALSB 8 word
ENUMERATION 2 word
ARRAY variable word
RECORD variabhle word
SET 2*({members+15)/16) waord

Notes

1. For the ND-10 and the ND-100, a word is 16 bits, ie. 2 bytes. For
the ND-500, a word is 32 bits, ie. & bytes. For the MC68000 a word 1is
16 bits, ie. 2 bytes.

2. The REALS8 data type is identical on all machines. For the ND-10 and

the NO-100 the implementation 1is by software routines and is
relatively slow.

ND-60.117.04% Revision A

232 PLANC Reference Manual
MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC

0.3 PACKED OPTION

The PACKED option may be used on arrays and records. It will affect
the alignment of the data-elements of simple data types within the
composite data-element.

In arrays and records, each BOOLEAN data-element will be stored in 1
bit.

In arrays wusing the PACKED option INTEGER RANGE and ENUMERATION
component data-elements will have space allocated as described for
INTEGER RANGE data-elements. One exception is for ARRAY PACKED data-
elements on the ND-100, where the smallest unit of space used is 1
byte (8 bits).

In records wusing the PACKED option INTEGER RANGE and ENUMERATION
component data-elements will require the next higher power of 2 bits,

greater than the number of Dbits necessary, to hold the required
values.

In a PACKED record, no data-elements of the simple data types will be
split across a word boundary.

The following declarations

TYPE minrec = RECORD PACKED

INTEGER RANGE (-8:7) : ir / requires 4 bits
BYTE : onebyte 1 requires 8 bilits
BOOLEAN : flag 1 requires 1 bit
ENUMERATION (a,b,c) : ch [requires 2 bits
BYTES : chars(0:4) / require 8 bits/element
ENDRECORD
would require the following storage on the ND-100
1S5 11 7 3 0
T
1r{4) onebyte(8) f{1lch(2) W 1 bit waste
chars{(0)}|(8 bits) chars{1) no waste
chars{2) chars{3) no waste
chars{4) L W 8 bits waste

Note the BYTES array chars has an implicit PACKED within the
predefined data type. This causes its elements to be stored two to a
word here. If this array had been declared as INTEGER RANGE (0:255),
then 1its elements would have been stored one to a word within the
above record.

ND-60.117.04

PLANC Reference Manual 233
MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC

The above record would require the following storage on the ND-500

31 15 0

ir(4) onebyte(8) f(1) ch(2) W|/chars(0) (8 bits) chars(1)

chars(2) chars(3) chars(4) next data-elem.

The above record would require the following storage on the M(C68000

15 11 7 3 0

ir(4) onebyte(8) f{1) chi(2) W 1 bit waste
chars(0)}|(8 bits) chars(1)} no waste
chars(2) chars(3) no waste
chars(4&) next datalelement

The PACKED option used on an array or record, only affects alignment
of entire composite data type data-elements declared within the array
or record. The PACKED option may be used on an array or record
declared as an array element or record component. Thus in the above
examples, the array chars is word aligned on the ND-100 and byte
aligned on the ND-500.

2

34

ND-G6O.117.04

PLANC Reference Manual

PLANC Refle:znce Manual 235

APPENDIX D

MIXED LANGUAGE PROGRAMMING

ND -60.117.04

[a¥]

o

ND-60.117.04

PLANC Reference Manual

PLANC Reference Manual 237
MIXED LANGUAGE PROGRAMMING

0.1 INTROOUCTION

PLANC has a standard calling sequence for its routine invocations.
This will facilitate the interfacing of programs and subprograms
written in other languages and those written in PLANC. This interface
is described in detail first and then examples showing how to wuse it
to interface to other languages on both the ND-100 and ND-500 follow.

The following general advice should be observed for interfacing to
PLANC routines

1) All PLANC routines invoked by another language routine should
be STANDARD.

2) A1l routines IMPORT'ed into a PLANC routine should be
STANDARD.

Each PLANC routine holds its local variables in a local data area. If
a program comprises a number of routines, the local data area for each
subprogram may be dynamically allocated from a single stack, or from
multiple stacks created by INISTACK invocations. The B-register must

always address the appropriate stack element during execution of a
PLANC routine,.

The actual parameter list of STANDARD routines consists of a sequence
of words, one for each parameter. For explicit data-elements or
expressions with a temporary data-element, the corresponding word
contains the address of the data-element. For arrays the word contains
the address of the imaginary element of the array, with all indexes
set to zero, which 1is wused for computing memory addresses of each
array element.

If a number of routines are written in a language other than PLANC, it
may be necessary to have two or more routines with the same ALIAS
name, but each routine having a different number of parameters. While
this 1s not allowed in PLANC, IMPORT statements may be written for

such a group of routines, written in some other language, in order to
invoke the routine accordingly.

ND-60.117.04 Revision A

238 PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

0.2 INTERFACING WITH PLANC ON_THE NO-100

offset from the content
B-reg (octal) in

bytes

-200 LINK link register, address for normal return

-1717 PREVB previous B-register, Reloaded on exit

—] -175 FREES - points to the free area of stack which

immediately follows this stack element

-175% EOS - points to the word immediately following
the whole stack

-174 SYS - run-time system use

-173 ERRCODE ERRCODE ({value)

-172 stack first parameter acdress if any
element
Ly
free free area of the stack
area
e

When PLANC invokes a STANDARD routine, the registers are used as
follows

= return address

= current stack element; must be restored on return
= number of parameters

parameter list address

= unused

= unused

= entry point of called routine

T X O > - m
"

ND-60.117.04 Revision A

PLANC Reference Manual 239
MIXED LANGUAGE PROGRAMMING

On return from a routine, the out-value of the routine is returned as
follows

BOOLEAN,BYTE, INTEGER1,INTEGER2Z, A-register
ENUMERATION

INTEGERA AD-register
REAL {32-bit floating-point hardware) AD-register

REAL (48-bit floating-point hardware) TAD-register

REALS A-register points to the
result

POINTER A-register

RECORD,ARRAY,SET (address) A-register

If a routine has [expression] ERRETURN, the value of expression is set
in the ERRCODE position in the invoker's stack element.

For two-bank programs, all parameter values and their descriptors must
be in the data bank.

ND-60.117.04 Revision A

240 PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

The PLANC Run-time Entry and Exit Routines

The heading of a PLANC routine contains an invocation of either SINIT
or SENTR in the run-time system in order to establish a new stack
entry of a required size. SINIT 1s invoked from main programs and from
routines with INISTACK invocations, otherwise S5ENTR is called.

The tasks of SINIT and S5ENTR are

- Establish the stack entry with sufficient space.

- Save the return address, in LINK. In a main program the
return address 1is set to 5QUIT.

- Save the previous B-reglster value (PREVB).

- Update the free stack pointer (FREES) and end of stack
address (EO0S).

- Check for stack overflow.
On routine exit either SLEAV, for RETURN and ENDROUTINE, or SERET, for
ERRETURN, are invoked.
The tasks of SLEAV and SERET are

- Restore the B8-register to its wvalue wupon entry to the
routine.

- Return to the location following3 the JPL instruction of the
actual invocation, through 5SER:ZIT, or skip to the next
location, through SLEAV. The location following the JPL
instruction contains either a jumo to ROUTINEERROR group of
statements or another SERET invocation.

ND-60.117.04

PLANC Reference Manual 241
MIXED LANGUAGE PROGRAMMING

Example of a main program layout in MAC equivalent

SAX 0 1 main entry
JPL I (SINIT

1 stack space requirement
7 stack array address
1 entire stack array size in words
. 1 two bank flag
0 7 unused
A
/1 executable code
A
JPL I {5LEAV 1 exit from routine

Example of layout of a routine containing an INISTACK invocation in
MAC equivalent

COPY SL DX 7 return address
JPL I (S5INIT

7 stack space requirement
/7 stack array address
7 entire stack array size in words
. 7 two bank flag
0 1 unused
A
7 executable code
A
JPL I (SLEAV 1 exit from routine

Example of routine layout (not containing an INISTACK invocation) in
MAC equivalent

COPY SL DX 7 return address
JPL I {5ENTR
7 stack space requirement
/A
1 executable code
A
JPL I (S5LEAV 1 exit from routine

MND-B60.117.04 Revision A

242 PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

0.3 INTERFACING WITH PLANC ON THE NO-500

offset from the content
B-reg (octal) in

bytes

0 PREVB previous B-register, Reloaded on exit.

4 RETA link register, address for normal return.
—1 10 FREES points to the free area of stack which

immediately follows this stack element.

14 ERRCODE ERRCODE (value).

20 N number of parameters.
24 stack first parameter address if any.
element
nd free free area of the stack.
area

On return from a routine, the out-value of the routine is returned as
follows

BOOLEAN,BYTE, INTEGER?, INTEGERZ, It-register

ENUMERATION

REAL (32-bit floating-point) Al-register
REALS (B4-bit floating-point) D1-register
POINTER I1-register
ARRAY ,RECORD,SET (address) I1-register

1¥ a routine has [expression] ERRETURN, the value of expression is set
in the ERRCODE position in the invoker's stack element. Further an
FRRETURN exit will set 1 in the STATUS.K bit (the K status bit in the
signalling and synchronization status). A normal routine exit will set
0 in the STATUS.K bit.

ND-60.117.04 Revision A

PLANC Reference Manual 243
MIXED LANGUAGE PROGRAMMING

0.4 INTERFACING WITH PLANC ON THE MCE8000

offset from the content
A6-reg (octal) in

bytes
- - — AB
0 PREVB Previous Ab6-register, reloaded on exit.
— 4 STP Points to the free area of stack which
immediately follows this stack element.
11 10 SMAX Points to the top of free stack (A7)
14 SYST Run-time system use
20 ERRCODE ERRCODE (value)
22 stack First parameter address if any.
element
- fFree area Free area of the stack
(The stack grows both upwards and downwards |
in parallel with some information in both parts)
e— — — AT
—- 0 ENTLINK System link
4 LINK Address of return

Top of stack

On return from a routire, the out-value of the routine is returned as
follows:

BOOLEAN,BYTE,INTEGER1T, INTEGER2, Di-register
ENUMERATION

REAL8 (B4-bit flcating-point) Al-register as pointer
POINTER Al-register

ARRAY ,RECORD,SET (address) Al-register

I[f a routine has {expression) ERRETURN, the value of expression is set
in the ERRCODE position in the invoker's stack element. Further an

ERRETURN exit will return according to LINK (in stack upper part)
while normal return jumps back to LINK + 2.

ND-60.117.04 Revision A

244 PLANC Reference Manual

MIXED LANGUAGE PROGRAMMING

0.5 INVOKING PLANC EROM_FORTRAN

All PLANC routines «called from Fortran must be STANDARD. All arrays
transferred from Fortran, should be accessed in PLANC as if they had
been declared with a lower index bound of U.

Example 1 - a simple subroutine call

To «call a subroutine with no complex arithmetic actual arguments, the
following can be written in Fortran

EXTERNAL PLSUBR
INTEGER I
REAL R
C INVOKE A SUBROUTINE WRITTEN IN PLANC
CALL PLSUBRI(I,R}
and the corresponding PLANC code 1is

MODULE msubr
EXPORT plsubr
INTEGER ARRAY : stack{0:1000)
ROUTINE STANDARD VOID,VOID(INTEGER,6 REAL)
INISTACK stack
7 body of routine
ENDROUTINE
EMDMODULE

plsubr{int,rl}

Example 2 - a simple function call

To invoke & function which returns a non-complex arithmetic result.

In Fortran

EXTERNAL PLFUNC
REAL X,Y,PLFUNC
DOUBLE PRECISION D
C INVOKE A FUNCTION WRITTEN IN PLANC
Y=PLFUNC(X,D)
and in PLANC

ROUTINE STANDARD VOID,REAL(REAL,REALS)
INISTACK stack
#» PLANC REALS8 is the same as Fortran DOUBLE PRECISION
RETURN
ENMDROUTINE

plfunci{rl,db)

ND-60.117.04

PLANC Reference Manual 245
MIXED LANGUAGE PROGRAMMING

Example 3 - use of logical arguments on the ND-100

Fortran LOGICAL*2 corresponds to PLANC BOOLEAN. Fortran LOGICALX4 is
the following PLANC data type

TYPE booleané = RECORD
BOOLEAN : unused / first word always zero
BOOLEAN : value { contains actual value
ENDRECORD
LOGICAL*4 cannot be returned from a PLANC STANDARD routine.

In Fortran

EXTERNAL PLBOCL

LOGICAL FLBOOL,V

LOGICAL*4 Mé

V=PLBOOL(V,6M4)
In PLANC

ROUTINE STANDARD VOID,BOOLEAN (BOOLEAN,boolean4) : &
plbool{m,mé)
INISTACK stack
IF mé.value THEN
m RETURN
ENDIF
NOT m RETURN
ENDROUTINE

ND-60.117.04 Revision A

2486 PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

Cn the ND-500

Fortran LOGICAL*4 corresponds to PLANC BOOLEAN. The Fortran LOGICALX2
data type has no direct equivalent in PLANC. Fortran LOGICAL*2 can be
handled in PLANC in the following way

In Fortran

EXTERNAL PLBOOL

LOGICAL PLBOOL,V

LOGICAL*2 M2

V=PLBOOLI(V, M2)
In PLANC

ROUTINE STANDARD VOID,BOOLEAN (BOOLEAN,INTEGER2) : &
plbool (m,m2}
INISTACK stack
¥ the 2 integers must be contiguous 1n memory
INTEGER2 : intt,int?2
BOOLEAN : boolil=int1
m2=:1int2
D=:int1
IF booll THEN
m RETURN
ENDIF
NOT m RETURN
ENDRCUTINE

ND-60.117.04

PLANC Reference Manual 247
MIXED LANGUAGE PROGRAMMING

Example 4 - character string arguments

Since Fortran passes character strings through a descriptor, PLANC
routines must accept these as records. It is often most convenient to
recast the Fortran string descriptor as a PLANC bytes pointer. Thus

On the ND-100
TYPE ftnstring = RECORD
BYTES : ftnchars (0: -1) 7 c¢ch. data
ENDRECORD / a blank must precede -1

TYPE ftndesc = RECORD PACK

ftnstring POINTER : cstring 1 address of string

INTEGER RANGE {0:18B) : coddbyte [left/right byte start

INTEGER RANGE (0:178) : cunused [unused

INTEGER RANGE (0:3777B) : clength 7 length of string
ENDRECORD i

Then in Fortran

CHARACTER H*20
INTEGER 1,3
EXTERNAL HSUB

CALL HSUB(H(I:J))

which can be picked up in PLANC by
ROUTINE STANDARD VOID,VOID (ftndesc) : hsub{hij}

BYTES POINMTER : bp
INISTACK stack

ADDR{ hij.cstring.ftnchars &

(hij.coddbyte : hij.clength-1+hij.coddbyte))=:bp

i bp now contains the address of the Fortran character string
ENDROUTINE

HD-60.117.0¢4

248 PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

On the ND-500

TYPE ftnstring = RECORD
BYTES : ftnchars {(0: -1) ¥ ch. data
ENDRECORD 1 a blank must precede -1

TYPE ftndesc = RECORD
INTEGER RANGE (0:777777777B) : clength
ftnstring POINTER : cstring
ENDRECORD
Then in Fortran

CHARACTER H*20
INTEGER I,3J
EXTERNAL HSUB

CALL HSUB{ H(I:J))

which can be picked up in PLANC by

ROUTINE STANDARD VOID,VOID (ftndesc) : hsub({hij)
BYTES POINTER : bp
INISTACK stack
ADDR(hij.cstring.ftnchars{(0 : hij.clength-1})=:bp
7 bp now contains the address of the Fortran character string
ENDROUTINE

ND-GO.117.04

PLANC Reference Manual 249
MIXED LANGUAGE PROGRAMMING

Example 5 - functions returning a character value

The definition of character data types must be made as in example &,
But in this case there can be no true return value for the function,
so the PLANC code must simulate the return.

On the ND-100
In Fortran

CHARACTER H*20,HFUNC*10
EXTERNAL HFUNC

H{1:10)=HFUNC(...)
In PLANC

ROUTINE STANDARD VOID,VOID : hfunc
BYTES POINTER : bp
ftndesc POINTER : dreg
INISTACK stack
$* COPY SD DA; STA dreg 7 return value descriptor

ADDR{ dreg.cstring.ftnchars &
(dreg.coddbyte : dreg.clength-1+dreg.coddbyte))=:bp
‘0123456789 ' =:IND(bp) 1 set 'return value'
ENDROUTINE

On the ND-500
In Fortran

CHARACTER H*20,HFUNC*10
EXTERNAL HFUNC
H{1:10)=HFUNC(...)

In PLANC

ROUTINE STANDARD VOID,VOID : hfunc
BYTES POINTER : bp
ftndesc POINTER : rreg
INISTACK stack
$%* R=:B.rreg 1 return value descriptor
ADDR{ rreg.cstring.ftnchars{0 : rreg.clength-1) J)=:bp
"0123456789 =:IND(bp) 1 set ‘return value’
ENDROUTINE

ND-60.117.04 Revision A

250 PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

(.6 INVOKING FORTRAN_FROM_PLANC

All Fortran subprograms invoked from PLANC must be IMPORT'ed as
STANDARD routines. Fortran functions have out-values, but no Fortran
routines have in-values.

Example 1 - a simple subroutine

Invoke a Fortran subroutine with non-complex arithmetic dummy
arguments.,

In PLANC
IMPORT (ROUTINE STANDARD VOID,VOID!REAL,REAL8) : fsubr)
/A
REAL : r
REALS : d

...fsubr{r,d)
In ForZran
SUBROUTINE FSUBR{R,D)
REAL R
DOUBLE PRECISION D
END
Example 2 - a simple function
Invoke a Fortran function returning a non-complex arithmetic result.

In PLANC

IMPORT { ROUTINE STANDARD VOID,INTEGER({INTEGER4) : ifunc)

INTEGER : k
INTEGERS : kd
ifunclkd)=:k

In Fortran

INTEGER FUNCTION IFUNC(KD)
INTEGER*4 KD

IFUNC=. ..

RETURN

END

ND-60.117.04

PLANC Reference Manual 251
MIXED LANGUAGE PROGRAMMING

Example 3 - use of log.cal arguments

PLANC BOOLEAN is the same as LOGICAL in Fortran, LOGICAL*2 on the NO-
100 and LOGICAL*4 on the ND-500. LOGICAL*4 on the ND-100 or LOGICAL%?2
on the ND-500 may be <«imulated as in example 3 of the previous
section.

On the ND-100
In PLANC
IMPORT { ROUTINE STANDARD VOID,BOOLEAN(boolean4):1func)

boolean4 : m4
IF 1func (mé) THEN

In Fortran

LOGICAL FUNCTION LFUNC(M4)
LOGICAL*4& Mé

LFUNC=. ..

RETURN

END

On the ND-500

In PLANC

IMPORT (ROUTINE STANDARD VOID,BOOLEAN{INTEGERZ2):1func)
1 the 2 integers must be contiguous in memory
INTEGER2 : int1,int2
BOOLEAN : booli=int1
I put a value in the boolean data-element
...=:boolt
IF 1func (irt2) THEN

In Fortran

LOGICAL FUNCTION LFUNC({M2)
LOGICAL*2 M2

LFUNC=. ..

RETURN

END

ND-60.117.04 Revision A

252 PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

Example & - character string arguments

Fortran handles character strings by means of descriptors, which can
he declared 1in PLANC as in example 4 of <the previous section. These
descriptors must be created in PLANC before invocation of the Fortran
subprogram takes place.

In PLANC

IMPORT (ROUTINE STANDARD VOID,VOID{ftndesc) : hsub)
ftndesc : fd
BYTES : arg(1:100) 7 begins in left byte of word
INTEGER : 1,73

1 now transfer arg(i:3j) to Fortran
ADDR{arg(i}) FORCE ftnstring POINTER=:fd.cstring

7 the following 2 lines are for the ND-100 only
1-(1 MOD 2} =:fd.coddbyte I left/right byte
0=:fd.cunused

j-i+1=:fd.clength 1 length of string
hsub{fd) 7 invoke Fortran subprogram

In Fortran

SUBROUTINE HSUBI(FD)
CHARACTER FDx(x)

END

ND-60.117.04 Revision A

PLANC Reference Manual 253
MIXED LANGUAGE PROGRAMMING :

Example 5 - character {functions

Characters cannot be returned by Fortran to PLANC as out-values. The
memory area for the returned string must be allocated before invoking
the function and a special calling sequence 1is required.

In PLANC
IMPORT (ROUTIME STANDARD VOID,VOID : hfunc)
ftndesc : fd
BYTES : val(0:19) 7 value returned here
ftndesc POINTER : fdp
YA

ADDR({val{0}) FORCE ftnstring POINTER =:fd.cstring
7 the following 2 lines are required for the ND-100 only
0=:fd.coddbyte
=:fd.cunused

MAXINDEX (val, 1)-MININDEX({val,1)+1=:fd.clength
ADDR(Fd)=: fdp
7 on the ND-100 use

$* LDA fdp 1 return descriptor address
7 on the ND-500 use

$* R:=fdp 7 return descriptor address
A

hfunc 1 put result in ‘val’

In Fortran

CHARACTER *(*] FUNCTION HFUNC
HFUNC=. ..

RETURN

END

MD-60.117.04 Revision A

254 PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

0.7 ACCESSING FORTRAN COMMON_EROM_PLANC

A COMMON block may be defined 1n a Fortran maln program, a subprogram
or a BLOCK DATA subprogram. fFortran COMMON blocks may be accessed from
a PLANC main program or a subprogram.

A PLANC program can access a fFortran COMMOM block by using the COMMON
gption 1in the IMPORT statement which enables the appropriate linkage
to be established.

For example

BLOCK DATA

COMMON /COMBLOC/INT1,INT2,INT3
DATA INT1/10/,INT2/101/,INT3/58/
END

MODULE usecommon
TYPE comrec = RECORD
INTEGER : i1,12,1i%
ENDRECORD
IMPGORT (COMMON) comrec:combloc

} rest of program
INTEGER : int
7 acces a value in the COMMON block

combloc.i2=:1int

This technique may also be used for RT proyrams, written in PLANC,
which are to access RTCOMMON.

ND-60.117.04

PLANC Reference Manual 255
MIXED LANGUAGE PROGRAMMING

0.8 INVOKING PLANC FROM COBOL

On both the ND-100 and =-he ND-500, a COBOL program may call a routine
written in PLANC. The PLANC routine must be declared as STANDARD.
Parameters are transferred by reference between PLANC and COBOL. The
data types which correspond in PLANC and COBOL are as follows

-PLANC coBoL

INTEGER2, 16-bits PIC S9({n) COMPUTATIONAL
where 1<{=n<=4%

INTEGER4, 32-bits PIC S9(n) COMPUTATIONAL
where 5<=n<=10

REAL, 32/48-bits COMPUTATIONAL—ZI(ND-100)
REALSB, B4-bits COMPUTATIONAL-2 (ND-500)
BYTES (0 as lower bound) PIC X{n)
where n 1s the number of
bytes

OMPUTATIONAL-2 variables may only be used as a parameter in a
subroutine call to or from COBOL, or to convert to/from COMPUTATIONAL-
3 variables.

Parameters from COBOL must start on a word boundary, on the ND-100.
For example
In COBOL

DATA DIVISION.
WORKING-STORAGE SECTION.

01 PLANC-INT2 PIC S9(4) COMP VALUE 123.

01 PLANC-INT4 PIC S9(6) COMP VALUE 123456.
01 CB-REAL PIC S9({3}V3I(6) COMP-3 VALUE -2.71.
01t PLANC-REAL COMP-2.

01 PLANC-BYTES pIC X(10) VALUE "A123456789"
01 PLANC-BYTES-WDS PIC S9(4) COMP VALUE §.

* NUMBER OF CHARACTERS PER WORD IS DIFFERENT ON THE ND-500
PROCEDURE DIVISION.

PARA-1.
* CONVERT THE INTERNAL COBOL FORM TO THE PLANC REAL FORM
MOVE CB-REAL TO PLANC-REAL.
* INVOKE A PLANC SUBROUTINE
CALL "PLANCSUB"™ USING PLANC-INT2
PLANC-REAL
PLANC-INTS%

PLANC-BYTES
PLANC-BYTES-WDS.

[

GO.117.04

256 PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

In PLANC

ROUTINE STANDARD VOID,VOID &
(INTEGER2, REAL, INTEGER4, BYTES, INTEGER2) : PLANCSUB &
{ int2, rl, int4, string, stringwords)}
INISTACK stack
/ may now access values passed from COBOL and return values
7 to COBOL in the normal manner
RETURN
END

ND-60.117.04

PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

0.9 INYOKING COBOL FROM PLANC

On both the ND-100 and the ND-500,
written 1i1n COBOL. Parameters
PLANC and COBOL.
are as follows

are

-PLANC

INTEGER2, 16-bits

INTEGERS, 32-bits

REAL, 32/48-bits

REALSB, B4-bits

BYTES (0 as lower bound)

COMPUTATIONAL-2 wvariables
subroutine call to or from
3 variables.

may
cosoL,

only

For example

In PLANC
ROUTINE VOID, VOID (...)
IMPORT (ROUTINE STANDARD VOID,
{ INTEGER2,REAL,INTEGER4 ,BYTES)
7
INTEGER2 int?
REAL : rl
INTEGER#% inta
56=:1int2

54.12345=:x1
123456=:1inté

1 invoke a COBOL subroutine
CBSUB(int2,rl,int4, 'string’)

a PLANC program may call a

257

routine

transferred by reference hetween
The data types which correspond 1in

PLANC and (COBOL

cosoL

PIC S3(n) COMPUTATIONAL
where 1<=n<=4%

PIC S9{n) COMPUTATIONAL
where 5<=n<=10

COMPUTATIONAL-2- (ND-100)
COMPUTATIONAL-2 (ND-500)
PIC X{n)

where n 1s the number of

bytes

be wused as a parameter in a

or to convert to/from COMPUTATIONAL-

callcobol (...)

voIbD &
cBsus)

ND-60.117.04

A
wn
[e-)

In CoBOL

*

IDENTIFICATION DIVISION.
PROGRAM-ID. CBSUB.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 CB-REAL
LINKAGE SECTION.
01 PLANC-INT2
01 PLANC-INTS
01 PLANC-REAL
01 PLANC-STRING

PROCEDURE DIVISION USING

PARA-1,

CONVERT THE PLANC REAL VALUE TO
MOVE PLANC-REAL

ND

PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

PIC S9(3)VI(6) COMP-3,
PIC S9(4)
PIC S9{(6)
COMP-2.
PIC Xi(6).
PLANC-INT2
PLANC-REAL
PLANC-INT4
PLANC-STRING.

COMP.
CoMP.

THE INTERNAL COBOL FORM
TO TB8-REAL.

60.117.04

PLANC Reference Manual 259
MIXED LANGUAGE PROGRAMMING

0.10 INVOKING PLAN{: FROM _BASIC

All PLANC routines called from BASIC must be STANDARD. All arrays
transferred from BASIC, should be accessed in PLANC as 1f they had
been declared with a lower index bound of 0.

Example 1 - a simple subroutine call

To call a subroutine, the following can be written in BASIC

10 EXTERNAL PLSUBR
20 INTEGER I

30 REAL R

40 REM

50 REM INVOKE A SUBROUTINE WRITTEN IN PLANC
60 REM

70 CALL PLSUBR!I,R)
and the corresponding PLANC code 1is

MODULE msubr
EXPORT plsubr
INTEGER ARRAY stack(0:1000)
ROUTINE STANDARD VOID,VOID{INTEGER,REAL} : plsubr(int,rl)
INISTACK stack
I body of routine
ENDROUTINE
ENDMODULE

Example 2 - a simple function call
To invoke a function
In BASIC

10 EXTERNAL PLFUNC

20 REAL X,Y,PL-UNC,Z

30 REM

40 REM INVOKE A FUNCTION WRITTEN IN PLANC
50 REM

60 Y=PLFUNCI(X,2)

and in PLANC

ROUTINE STANDARD VOID,REAL(REAL,REAL) : plfuncirt,r2)
INISTACK stack

ri+r2 RETURN

ENDROUTINE

ND-60.117.04

260 PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

Example 3 - character string arguments

Since BASIC passes character strings through a descriptor, PLANC
routines must accept these as records. It is often most convenlient to
recast the BASIC string descriptor as a PLANC bytes pointer. Thus,

On the ND-100
TYPE basicstring = RECORD
BYTES : basicchars (0: -1) 1 ch. data
ENDRECORD 1 a blank must precede -1

TYPE basicdesc = RECORD PACK

basicstring POINTER : cstring 1 address of string

INTEGER RANGE (0:18B}) : ctunused 1 unused

INTEGER RANGE (0:178) : c2unused 1 unused

INTEGER RANGE (0:3777B) : clength 71 length of string
ENDRECORD

Then in BASIC

10 EXTERNAL HSUB
20 AS="MY FRIEND"
30 CALL CHSUB(AS)

which can be picked up in PLANC by

ROUTINE STANDARD VOID,VOID (basicdesc) : chsub(hij)
BYTES POINTER : bp

INISTACK stack
ADDR{ hij.cstring.basicchars{(0:hij.clength-1))=:bp
/. bp now contains the address of the BASIC character string

A
1 a string value may be returned as {ollows
"123456789 =:IND(bp) 1 set 'return value’
ENDROUTINE

ND-60.117.04

PLANC Reference Manual 261
MIXED LANGUAGE PROGRAMMING

0.11 INVOKING BASIC FROM PLANC

All BASIC subprograms invoked from PLANC must be IMPORT ed as STANDARD
routines. BASIC functions have out-values, but no BASIC routines have
in-values.

Example 1 - a simple subroutine

Invoke a BASIC subroutine with non-complex arithmetic dummy arguments.
In PLANC

IMPORT { ROUTINE STANDARD VOID,VOID(REAL,REAL} : bsubr)

REAL : ri1,r2
...bsubr{rt,r2)

In BASIC
10 SUBROUTINE BSUBR(R1,R2)
20 REAL R1,R2
30 REM BODY CF THE SUBROUTINE
40 END
Example 2 - a simple function
Invoke a BASIC functior returning a non-complex arithmetic result.

In PLANC

IMPORT (ROUTINE STANDARD VOID,INTEGER(INTEGER4) : 1ifunc}

YA
INTEGER : 'k
INTEGERS : kd
ifuncikd)=:k
In BASIC

10 FUNCTION IFUNC(KD)
20 INTEGER IFUNC

30 DOUBLE KD

40 IFUNC=...

50 END

ND-60.117.0¢4

262 PLANC Refererce Manual
MIXED LANGUAGE PROGRAMMING

Example 3 - character string arguments

BASIC handles character strings by means of descriptors, which can be
declared 1n PLANC as in example 3 of the previous section. These
descriptors must be created in PLANC before invocation of the BASIC
subprogram takes place.

In PLANC

IMPORT (ROUTINE STANDARD VOID,VO0lD(basicdesc) : chsub)}
basicdesc : bd
BYTES : argl0:100) 7 begins in left byte of word
INTEGER : 1,7

7 now transfer arg(i:j) to BASIC. NB i must be an even value.
ADDR{arg(i)) FORCE basicstring POINTER=:bd.cstring

1 set up speclal descriptor constants
O0=:bd.clunused
108=:bd.c2unused

Jj-1+1=:bd.clength 7 length of string
chsub{fd) 1 invoke BASIC subprogram

In BASIC
10 SUBROUTINE CHSUB({FDS)

20 REM BODY OF SUBROUTINE
30 END

ND-GO.11T7.04

PLANC Reference Manual 263
MIXED LANGUAGE PROGRAMMING

0.12 INVOKING PLANI: EROM MAC

A MAC program, running on the ND-100, may invoke a routine written in
PLANC. The PLANC routine should be declared as STANDARD. The contents
of the B-register and the L-register are described in section 0.2

The MAC program must sef up the A-register to contain the address of
the list of parameter addresses and the T-register to contain the

number of parameters.

Example of a MAC program invoking a PLANC routine

)9BEG
J9EXT SUBR
LDA (PLIST 1 set up address of the list of
1 parameter addresses :
SAT N 1 set up the number of parameters
JPL I SUBR 7 invoke the routine
7 routine will return here
JA
/1 executable code
7
i
7 list of parameter addresses
A
PLIST,PARAM1 7 address of first parameter
PARAM2 7 address of second parameter
7 to n parameters
JFILL
JEND

Note that there is no Layader check of mixing two bank PLANC routines
with MAC routines.

ND-GO.117.04

264 L ANC Reference Manual
MIXED LANGUAGE PROGRAMMING

0.13 INYOKING MAC FROM PLANC_ON_THE ND-100

A PLANC program, running on the ND-100, may invoke a routine written
in MAC. The MAC routine should be IMPORT ed as STANDARD. The contents
of the B-register and the L-register are described in section 0.2

On entry to the MAC routine, the A-register contains the address of

the list of parameter addresses, the T-register contains the number of
parameters.

Example of a MAC routine

}9BEG
JGENT SUBR

SUBR, SWAP SA DB
STA SAVB /1 saves value in the B-register
LDA I 0.8 7 value of first parameter

LDA I N-1,B 1 value of the n'th parameter
1
1 executable code

na CAVD
LA oY

COPY SA DB
EXIT 7 return to invoker

Mote that there is no Loader check of mixing twu bank PLANC routines
with MAC routines.

PLANC Reference Manual 265

APPENDIX E

USING SINTRAN MONITOR CALLS

MDOBD 11T 04

266

HD

60.117.4

!
“

PLANC Reference Manual

PLANC Reference Manual 267
USING SINTRAN MONITOR CaALLS

0.1 SINTRAN MONITOR CALLS

A number of SINTRAN monitor call routines are available to be called
from PLANC, provided as part of the PLANC run-time system. The
definition of what monitor calls do «can be found in the SINTRAN
Reference Manual (ND-60.128). This section contains a description of
those monitor calls relevant to PLANC programs with the routine name,
the data types of the ia1-value, out-value and parameters, plus any
notes which relate to the particular use of such a monitor call from
PLANC. The list is in tnhe sequence of the monitor call numbers.

Any monitor calls not listed here, may be called from a PLANC routine
if a suitable interface routine is constructed by the user. If this is

done, the user must load the interface routine before the PLANC run-
time library.

ND-60.117.04

268 PLANC Reference Manual
USING SINTRAN MONITOR CALLS

0.2 MONITOR CALLS AVAILABLE OM_ THE NO-100 AND THE ND-500

MONO - LEAVE

ROUTINE VOID,VOID : MONO
MON1 - INBT

ROUTINE VOID,BYTE (INTEGER) : MON1 (dev)

1 parameter : dev = logical device number
7 out-value : 8 bit character
MON2 - QUTBT
ROUTINE BYTE,VOID { INTEGER) : MON2 (dev)
7 in-value : B bit character
7 parameter : dev = logical device number
MON3 - ECHOM
ROUTINE VOID,VOID &
{ INTEGER,INTEGER,BOOLEAN ARRAY PACKED) &
MON3 {dev,mode,table)
7 parameters : dev = logical device number
1 : mode = echo strategy
/3 : table = 8 words containing bit map if mode=7

ROUTINE VOID,VOID &
{ INTEGER,INTEGER,BOOLEAN ARRAY PACKED,INTEGER) &
MON4 {dev,mode,table,max)

1 parameters : dev logical device number
1 : mode = break strategy
1 : table 8 words containing bit map if mode=1

MON11 - TIME

ROUTINE VOID,INTEGERL : MON11
‘l out-value : time in basic units
MON1Q - SETCM
ROUTINE VOID,VOID (BYTES) : MON12 (command)

1 parameter : command = command string

NC GT.11T.04

PLANC Reference Manual 269
JSING SINTRAN MONITOR CALLS

ROUTINE VOID, NTEGER (INTEGER) : MON13 (dev)

. parameter : dev = loglical device number
1 out-value : previous value of A-register or error value
{(ROUTINEERROR exit will be taken)

MON14 - COBUF

ROUTINE VOID,Y0ID { INTEGER) : MONt4 (dev)
7 parameter : dev = logical device number

MON1G - MGTTY

ROUTINE VOID, INTEGER (INTEGER) : MON16 (dev)

l parameter : dev = logical device number
1 out-value : terminal type

MON17 - MSTTY

ROUTINE INTEGER,VOID (INTEGER) : MON17 (dev)

I input para : terminal type
1 parameter : dev = logical device type

MON21 - MBINB (ND-100)

TYPE IW = INTEGER WRITE
ROUTINE VOID,vYOID &
(INTEGER,IW,IW,IW,IW,IW) &
MONZ21({dev,wl,w2,w3,wk,num)

L parameters : dev = logical device type
7 i wl = byte 1 and 2
[/ w2 = byte 3 and 4
1 w3 = byte 5 and 6
/A whk = byte 7 and 8
A num = number of bytes read
MONZ21 - MBINB (ND-500)
ROUTINE VOID,VOID &
(INTEGER,INTEGER WRITE,BYTES) &

MON21(dev,num,inbytes)
parameters : dev = logical device type

1
1 : nuin = number of bytes read
7 inbytes = bytes input

ND-60.117.04

270 PLANC Reference Manual
USING SINTRAN MONITOR CALLS

MON22 - MEoUT

ROUTINE VOID,VOID &
{ INTEGER,INTEGER,INTEGER,INTECER,INTEGER) &
MON22{dev,wl,w2,w3 , wh)

1"

logical device type

1 parameters : dev

1 wl = BYTES{0:1)
1 : w2 = BYTES{2:3)
1 : w3 = BYTES(4:5)
1 : wk = BYTES(6:7)

MONZ24 - BBOUT

ROUTINE INTEGER,VOID { INTEGER ARFAY) : MON24 (ival)

I in-value : logical device number
1 parameter : ival = 8 bytes to be written

MON30 - GETRT

ROUTINE VOID,INTEGER : MON30
1 out-value : address of RT-description

MON32 - MSG

ROUTINE VOID,VOID (BYTES) : MONJ2 {MSG)

1 parameter : msg = bytes to be written

MON41 - ROBJE

ROUTINE VOID,VOID (INTEGER,INTEGER ARRAY) &
MON41 (dev,ob3j)

L parameters : dev = logical device number
A : 0bj the file object entry

MONS3 - CLOSE
ROUTINE VOID,VOID (INTEGER) : MON43 (dev)

1 parameter : dev = logical device number

MON44 - RUSER

ROUTINE VOID,VOID { BYTES,INTEGER ARRAY) &
MON44 (user,usentry)

i

! parameters : user user name
1 : usentry = user entry

PLANC Reference Manual 271
USING SINTRAN MONITOR CALLS

MON45S - DBRK (ND-100 only)

ROUTINE VOID,VOID (INTEGER ARRAY,INTEGER) %
MON45 (rb.lock,bhand)

{1 parameters : rblock = register block
1 : bhand break-point execution routine address

MON4&7 - SBRK (ND-100 only)
ROUTINE VOID,VvOID (INTEGER ARRAY) : MON47 (rblock!
7 parameter rblack = register block

MONSQ - QPEN

ROUTINE VOID,INTEGER { BYTES,BYTES,INTEGER) - &
MONS0 (file,default,code)

1 parameters : file = file name

A : default = default file type
1 : code = access code

7 out-value : logical device number

MONS4 - MDLFI]

ROUTINE VOID,VOID { BYTES)} : MON54 (mem)
7 parameter : mem = file name to be deleted

MONGB2 - RMAX

ROUTINE VOID,INTEGER4 (INTEGER)} : MONB2 (dev)

7 parameter : dev = logical device number
7 out-value : number of bytes

MONE3 - B4INW

ROUTINE VOID,INTEGER ARRAY { INTEGER } : MONG63 (1ldn)

7 parameter : ldr = logical device number
1 out-value : BYTES (0:7) READ

MONG4 - ERMSG

ROUTINE INTEGER,VOID : MONG64
1 in-value : error number to be printed
MONGS - QGERMS
ROUTINE INTEGER,VOID : MONGS

1 in-value : error number to be printed

ND-60.117.04

MONG66 - ISIZE

ROUTINE

1 parameter
7 out-value

MONTO - COMND

ROUTINE
1 parameter

HMONT1 - DESCF

ROUTINE

1 parameter
MONTg - EESCF

ROUTINE

1 parameter

MOMTI - SMAX

ROUTINE

1 in-value
1 parameter

MONT& - SETBT

ROUTINE

1 in-value
1 parameter

MONTS -~ REABT

ROUTINE

I parameter
1 out-value

MONTE - SETBS

ROUTINE

I in-value
1 parameter

PLANC Reference Manual

USING SINTRAN MONITOR CALLS

VOID, INTEGER (INTEGER) MONG6E (dev)

dev = logical device number
number of bytes 1in input. buffer

VOID,VOID (BYTES) MONTO ({command)

command = command to be executed

VOID,VOID { INTEGER) MOHT1 (dev)

dev = logical device number

VOID,VOID (INTEGER) MONT2 (dev)

dev = logical device numnber

INTEGER4 ,VOID (INTEGER)} MONT3 (dev)

maximum byte pointer

dev = logical device number

INTEGER4,VOID { INTEGER) MONT4 {dev)

byte pointer

dev = logical device number

VOID, INTEGER4 { INTEGER) MONT5 {dev)

dev = logical device
byte pointer

number

INTEGER,VOID (INTEGER) MONTE (dev)

block size in words
dev = logical device number

NO-GO.117.04

PLANC Reference Manual

USING

SINTRAN MONITOR CALLS

MON'Q4 HOLD
ROUTINE VOID,VOID (INTEGER,INTEGER) : MN104 {(ntu,tu)
7 parameters : ntu = number of time units in wait state
A tu = time mode
MON113 - CLOCK
ROUTINE VOID,VOID (INTEGER ARRAY WRITE) : MN113 {cal)
1 parameter : cal = time return array
MON114 - TUSED
ROUTINE VOID,INTEGER4 : MN114
1 out-value : cpu time used
MON117 - RFILE
ROUTINE VOID,VOID &
{ INTEGER,INTEGER,INTEGER ARRAY,INTEGER,INTEGER) &
MN117 (dev,zero,dadr,bl,words)
1 parameters : dev = logical device number
4 Tozero = return parameter
1 dadr = destination array
1 bl = number of file block where data starts
A words = number of words to be transferred
MON120 - WFILE
ROUTINE VOID,VOID
{ INTEGER,INTEGER,INTEGER ARRAY,INTEGER,INTEGER)
MN120 (dev,zero,dadr,bl,words)
1 parameters : dev = logical device number
YA . zero = return parameter
1 dadr = destination array
JA bl = number of file block where data starts
1 words = number of words in the extent

274 PLANC Reference Manual
USING SINTRAN MONITOR CALLS

MONT22 - RESRV

ROUTINE VOID,INTEGER { INTEGER,INTEGER,INTEGER) &
MN122 {dev,liof,iret)

4 parameters : dev = logical device number

1 : iof = input - or output part

I : iret = return status

1 out-value : return status dependingy on iret

MON123 - RELES

ROUTINE VOID,VOID { INTEGER,INTEGER) : MN123 (dev,iof)
I parameters : dev = logical device number
) : 1of = input- or output part

MON132 - MCALL {(ND-100 only)

ROUTINE VOID,VOID (INTEGER,INTEGER)} : MN132 (subr)newsg)

1 parameters : subr = subroutine address
1 newsg = new segment to be loaded

MON141 - TOSET (ND-100 only)

ROUTINE VOID, INTEGER .
{ INTEGER INTEGER,INTEGER,INTEGER) &
MN141 (dev,io0f,iprog,ccode)

el

1 parameters : dev = logical device number
1 : iof = input - or output part
A iprog = RT description
[: ccode = control code
1 out-value : status
MON143 - RSIO
ROUTINE VOID,VOID 8
{ INTEGER WRITE,INTEGER WRITE,INTEGER WRITE, &
INTEGER WRITE) &
MN143 (mode,inpt,outpt,usn)
1 parameters : mode = executing mode
A : inpt = file number of command iLnput file
1 : outpt = file number of command output file
1 :oush = user number the program 1s running under

ND-60.117.04

PLANC Reference Manual 215

USING

SINTRAN MONITOR CALLS

MON144 - MAGTP
ROUTINE VOID,INTEGER &
{ INTEGER,INTEGER ARRAY.INTEGER.INTEGER, &
INTEGER WRITE) &
MN144 (fc,madr,dev,maxw,readw)
1 parameters : fc = function to be performed
A madr = memory area to be used
1 dev = logical device number
1 maxw = device dependent
7 : readw = device dependent
Z out-value : status= read status value for function 208 and 248
otherwise zero
MON161 - INSTR
ROUTINE VOID,INTEGER &
{ INTEGER,BYTES,INTEGER,INTEGER) &
MN161 (dev,dar,dno,dte)
%7 parameters : dev s logical device number
[/ dar = input data buffer
A dno = maximum nuber of characters to be read
A : dt2 = terminal character
1 out-value : status return
MON162 - QUTST
ROUTINE VOID,INTEGER &
(INTEGER,BYTES,INTEGER)} : MN162 {dev,dar,dno}
1 parameters : dev = logical device number
/A : dar = array of data destination
1 : dno = number of characters to be written
1 out-value : status return
MON1B7 - REENT {(ND-100 only)
ROUTINE INTEGER,VOID : MN167
1 in-value : segment number
MON263 - GDEVT
ROUTINE VOID,VOID &
(INTEGER,INTEGER,INTEGER WRITE,INTEGER4 WRITE) &
MN263 (dev,ioflag,devtype,attr)
1 parameters : dev = logical device number
1 input : ioflag = input/output flag
1 output : devtype = device type
1 : attr = device attributes

ND-60.117.04

216 PLANC Reference Manual
USING SINTRAN MONITOR CALLS

MON310 - T8INB (ND-100 only)

ROUTINE VOID,VOID
(INTEGER,BYTES WRITE,INTEGER WRITE) &
MN310 {dev,string,num) ‘

foad

/1 parameters

YA input : dev = logical device number
1 output : string = character string read
A num = number of bytes read

MON312 - MOINF (ND-100 only)

ROUTINE VOID,BOOLEAN { INTEGER } : MN312 (num)

7 parameters : num = monitor call numrber
7 out-value : monitor call present or not

MON412 - FSCNT (ND-500 only)

ROUTINE VOID,VO0ID &
(INTEGER,INTEGER,INTEGER,INTEGER WRITE) &
MN412 (fno,lseg,ctype,segno)

7 parameters : fno = flle number
1 : lseg = logical segmert number
1 ctype = connect type
1 segno = segment number
MON413 - FSOCNT (ND-500 only)
ROUTINE VOID,VOID &
(INTEGER,INTEGER) &
MN413 (fno,segno)
I parameters : fno = file number
1 : segno = segment number

PLANC Reference Manual

APPENDIX F

BNE_SYNTAX DESCRIPTION OF PLANC

ND-60.117.04

217

278

ND-60.117.04

PLANC Reference Manual

PLANC Reference Manual 219
BNF Syntax Description of PLANC

This appendix contains a Backus-Naur Form (BNF) syntax description of
the PLANC language.

Notation used in this appendix

[and 3, ..., [and)

Square brackets, ellipsis and parentheses are used in the same
way as described in Notation in This Manual.

, 1:=, <symbol>
are used in the usual way defined for Backus-Naur Form.

BNF Syntax
<identifier>::= <letter> ‘8 l
<letter>[<identifier char>l...<letter>
<letter>[<identifier char>]l...<digit>
<identifier char>::= <(letter> l(digit> ‘_
<number>::= <decimal number> I(octal number> '
<floating point number>
<decimal number>::= [-]l<unsigned decimal number>
<unsigned decimal number>::;= <decimal digit>...
<decimal digit>::= <octal digit> '8 |9

<octal digit>::= O ‘1 |2 !3 |4 lS !6 '7
<floating point number>::=
<decimal number>.<unsigned decimal number)>
{E<decimal number>]

<character literal>::= # <{character>

<string>::= '<character>...’

ND-60.117.0¢4 Revision A

280 PLANC Reference Manual
BNF Syntax Description of PLANC

<simple type specification statement)::=
TYPECtype identifier> = <simple type>

<type identifier>::= <identifier>
<simple type>::= <standard data Type> l<enumeration type> !
{pointer type> |<mocified type>

<standard data type>::= INTEGER |REAL IBOOLEAN |LABEL |VOID

<enumeration type>::= ENUMERATION(<identifier>
[,<identifier>]...)

<pointer typed>::= <qualification> POINTER

<type identifjer> }(simple type> l
<array type> T(record type> T<set type>

"

<qualification>::

<range modified type> l
<precision modified type>
<read modified tyfpe>

<modified type>::

{range modified type>::= INTEGER RANGE{<lower>:<upper>)
<lower>::= <constant expression>

<upper>::= <constant expression>

{precision modified type>::= REAL PRECISION (<precision)>)
<{precision>::= <{constant expression)

<read modified type>::= <simple data typed<access mode>
<access mode>::= READ [WRITE

<constant specification)>::= <identifier> |<expression>

{(simple type declaration statement>:::=
<simple type specifier>:<identifier clause>
[,<identifier clause>l...

<simple type specifier>::= <simple type> |<type identifier>
TYPEOF(<identifier>)

ND-60.117.04 Revision A

PLANC Reference Manual 281
BNF Syntax Description of PLANC

<identification clause>::= <construction clause> I

<equivalence clause>
{postponement clause>

<construction claused::= <identifier>[:=<(expression>]
<equivalence clause)>::= <identifierd>=<identifier>
<postponement claused::= <(identifier>?

<composite type specification statement>:::=

{array type specification statement>
<record type specification statement>
<variant part record type specification statement>
<enumeration set tvpe specification statement)
<{routine type specification statement>

<array type specification statement)>::=
TYPE<type identifier> = <array type>

<mode specification>::= <{storage mode)> |<access mode)
<{storage mode>::= PACKED
<access mode>::= READ [WRITE

<array type declaration statement>::=
<array type specifierd>:<array identification clause>
[. <array identification clause>]...

<array type specifier>::= <array type> |[<(type identifier>

<array identification clause>::=

<dimension clause>[<initialization part>]
<array initialization clause>

<dimension claused::=
<identifier>(<index set>[,<index set>...)

<array initialization clause>::= <identifier>
<initialization part>

<initialization part>::= :=<initial array values>

<initial array values>::= <(initial array values> f
[,<initial array values>]... l
{<expression>[,<expression>]}...)

{index setd>::= <{(expression)>:<expression>

NEW<array type specifier> {<{sub-array index set>
[.<sub-array index set>]...)

<sub-array specification>::=

<identifier>(<{sub-array index set>
[,<sub-array index set>]...)

<sub-array index set)>::= <expressiond>:<expression>
<expression>

ND-60.117.04% Revision A

282 PLANC Reference Manual
BNF Syntax Description of PLANC

{record type specification statement>::=
TYPE<type identifier> = RECORD [<mode specification>]...
[<data declaration statement>]...
ENDRECORD

<data declaration statement>::=

<simple type declaration statement>
<array type declaration statement>
{record type declaration statement>

{set type declaration statement>
<mode specification>::= <storage mode> |<access mode>
{storage mode>::= PACKED
{access mode> = READ [WRITE

<variant part record specification>::=
TYPE<record type identifier>=
<base record>RECORD[<mode specification>]...
[<declaration statement>]...
ENDRECORD

<base record>:.:= <type identifier>
<record type declaration statement>::=
{record type specifier>:<record identification clause>
[,<record identification clause>]...

<record type specifier>::= <{type identifier>

<record identification claused>::=
<identifiler>{:=<initial record values>]

<initial record values>::=
{(<initial value>[, = <initial value>]...)

<initial valued>::= <(expression>

<initial array values>
<initial record values>

ND-60.117.04 Revisiaon A

PLANC Reference Manual 283
BNF Syntax Description of PLANC

<set type specification statement)::=
TYPE<type specifier> = (set type>
<set type>::= <base type> SET

<base typed>::= <(type identifier> |<range modified type>
<2numeration type>

<set declaration statement>::=- <set declaration>
(,<set declaration>...]

<set declaration’>»::=
<set type specifier>:<identifier>[:={member list>)]

<set type specifier>::= <(type specifier> l(set type>
<{member list>::= <{member list element>

[.<member list element>]... l
<identifier>

<{member list element>::= <(expression>
{expression>:<expression>

ND-60.117.04 Revision A

284 PLLANC Reference Manual
BNF Syntax Description of PLANC

<action>::= [<label>:]<expression>

[<label>:]<sequencing controcl statement>
{<label>:l<exception handler>

<label>::= <identifier>
<action sequence)>::= <action>(,<action>...]
<expression>::= <{value expr> l<void expression>

<data-element> l

[<value expr>l<operator><expression> '
<value expr>[<assignment op T
{store-into function call> T

{<value expr>) T(function call>

{value expr>::

<void expr>::= <store-into subroutine call> ‘
<subroutine call>
<value expr>[<assignment op>]

<store-into subroutine call>
<value expr>[<assignment op>l<subroutine call>

{constant expression>::= <constant> ’

<constant expression><operator>
<{constant>
<constant>::= <constant identifier> |<literal>

<data-element>::= <literal> |<identifier>[,<identifier>]...
<identifier>(<index>[,<index>}...)

<index>::= <(value expr>

<operator>::= + |*% 11 lATS lM?D ANT lOT IXOR !NOT ISHIFT l
= > |>= <= |>» |< {IN J<assignment op>

<assignment op>::= =: ':=:

ND-60.117.04 Revision A

PLANC Reference Manual 244
BNF Syntax Description of PLANC

<sequencing statementg>::= <go statement> l
<if statement> T case statement) T
<{for statement> T< 0o statement>
<while statement> T assert statement>
{return statement> f(do-while statement>
{for-while statement>

GO0<label>

<go statement>::

1"

<if statement>::
IF<expression>THEN<Caction sequence>
[ELSIF<expression>THEN<Caction sequence)]
[ELSE<action sequence>]
ENDIF

<condition)>::= <expression>

<case statement>:::=

CASE<expression>

INCASE<member list>

<action sequence>
[INCASE<member list>
<action sequence>]...

[ELSE<action sequence>]

ENDCASE

<for statement)>::=
FOR didentifier> IN <set> DO
<action sequence>
[EXITFOR <action sequence>]
ENDFOR

<do statement>::= DO <action sequence> ENDDO
<while statement>::= WHILE <expression>

<do-while statement>::=
Do
{<action sequence>]
WHILE <expression>
[<action sequence>]
[EXITWHILE <action sequence>]
ENDDO

<for-while statement>::=

FOR <identifier> IN <set> DO
[<action sequence>]
WHILE <expression>
[<action sequence>]
[EXITFOR <action sequenced]
[EXITWHILE <action sequence)]

ENDFOR

ND-60.117.04 Revision A

286

PLANC Reference Manual
BNF Syntax Description of PLANC

{assert-statement>::= ASSERT <expression>

i

RETURN {<expression>RETURN
<{expression>ERRETURN

<return statement)>::

<exception handler>::= ON <exception>[<exception>]...DO
<action sequence)
ENDON

<exceptiond>::= ROUTINEERROT IOVERFLow IATSERTFALSE !
RANGEERROR |POINTERERROR |STACKERROR

ND-B0.117.04 Revision A

PLANC Reference Manual 287
BNF Syntax Description of PLANC

<routine type specification statement>::=
TYPE <type identifier> = <routine type>

<routine type>::= ROUTINE [INLINE] [STANDARD] [REFERENCE]
[SPECIAL]
<type in>,<type out>[(<parameter type>

[<parameter type>]...)1]

{(type im> = {type identifier>
<type out>::= <type identifier>
<parameter typed>::= <(type identifier>{<access>]

<access> ::= READ |WRITE

{routine declaration>::=

<routine heading> <routine body> ENDROUTINE
<postponed routine declaration>

<routine heading>::=
{routine type specifler>:<routine name>
[(<formal par>[,<formal par>}...)]

<routine type specifier>::= <(type identifier> |[<routine type>
<routine named>::= <{identifier>
<formal par>::= <identifier>

<postponed routine declaration)::=
<routine type specifier>:<{routine name)>?
[,<routine name>?...]

<routine body>::= [<local declaration>]l...<action sequence>
<local declaration>::= <declaration statement I
<routine declaration>

{type specification statement>
{routine calld>::= <routine named>[<parameter list>]

{parameter listd>::= <identifier> l
<expression>[,<expression>l...)

<data declaration statement>::=
<simple type declaration statement) '
<array type declaration statement>
<record type declaration statement>
{set type declaration statement)

<subroutine call> <routine call>

<function call)

<routine call>

i

<store-into subroutine call>::= <routine call>

{store-into function call>::

H

<routine call>

ND-60.117.0¢4 Revision A

238 PLANC Reference Manual
BNF Syntax Description of PLANC

<{main program>::=
<main program heading> <main program body> ENDROGUTINE

<main program heading>::= PROGRAM : <identifier>

{main program body>::=
[<local declaration>]...<action sequence>

<basic module>::=
<module header> <basic module body> ENDMODULE

{module header>::=
MODULE <identifier>[<header statement>]

<header statement>::= <import statement)
<export statement>

<type specification statement>
<constant statement>

<import statement>::=
IMPORT [SYSTEM] [COMMON] <import unit> [,<import unit>]...

<export statement>::=
EXPORT [SYSTEM] [COMMON] <identifie=r> [,<identifier>]...

<type specifier statement>::=

<simple type specification statement>
<composite type specification statement>

<basic module body>::= [<declaration unit>]...
<declaration unit>::= <data declaratipn statement> ‘
: <{main program> T

¢routine declaration>

<compound moduled>::=
<{module header> <compound module body> ENDMODULE

<compound module body>::= <module>...

<module>::= <compound module> [<basic module>

ND-60.117.04 Revision A

FLANC Reference Manual 283

APPENDIX G

PLANC IMPLEMENTATION RESTRICTIONS

ND-GO.117.04%

290 PLANC Reference Manual

PLANC Reference Manual 291
PLANC Implementation Restrictions

This appendix describes various restrictions which may cause users
difficulties. Some may appear in the text of the manual, but apply to
more than one part of it, so they are listed here to make it easier to
find them.

1)

2)

3)

4)

5)

6)

7]

8)

9)

A statement containing either a MACRO call, an INLINE routine
call or a SINCLUDE command, may be terminated by a semicolon,
no other statements may follow the semicolon.

The IND standard routine cannot have as a parameter a pointer
which qualifies a routine with an in-value.

If the ADDR standard routine has a parameter which is a
routine data-c¢lement, this parameter must not be enclosed in
parentheses.

If the ADDR standard routine has as a parameter, a routine
with an outvalue, the outcome of the ADDR routine invocation
will be the address of the routine, not the out-value of the
routine.

Within a routine, the MININDEX, MAXINDEX and IN standard
routines cannot have as an actual parameter, any ¢of the
routine’s formal parameters, if the routine has been declared
with the STANDARD modifier. Note that the compiler does not
detect this condition or give any error message.

The ON OVERFLOW statement does not detect overflow conditions
for unsigned integer data-elements.

It is 1llegal to EXPORT a family of routines, with the
routine name identifier the same as the name of a PLANC
predefined standard routine or operator, see section 8.4 for
the use of a family of routines.

The following TYPE declaration is illegal, but the compiler
does not give any error message:

TYPE A=RECORD
ENDRECORD
TYPE B=A 7 illegal TYPE declaration.

If a family of routines is declared, it is not adequate to
have formal rparameters with an identical data type and
different access modifiers, the formal parameters must have
distinct data types. For example

ROUTINE VOID,VOID({INTEGER): RUT?
ROUTINE VOID,VOID(INTEGER WRITE): RUT?

The compiler can not distinguish between the two declarations
and will give a compile error message.

ND-60.117.04 Revision A

292 » PLANC Reference Manual
PLANC IMPLEMENTATION RESTRICTIONS

11) ON ROUTINEERROR does not work correctly in routines declared
as INLINE.

12) A routine name declared in predeclaration, must not appear
later, as the identifier, 1in a PROGRAM statement. The
compiler does not detect this or give an error message.

13) The SSEPARATE-DATA and S$DEBUG-MODZ commands must be used
outside the outermost module level.

14) If assembler code refers to a routine, then if the routine
referred to is not on the same scope level, the reference
will not be <compiled <correctly. In particular, beware of
reference to a nested routine.

15) The Break function of the Symbolic Debugger must be used with
care. If a Break upon routine entry is specified, then the
in-value which will be used within the routine will not be
displayed correctly by the Debujyger, although as execution
continues the correct value will be used in the routine. The
same result may be achieved with a Break on the first
executable statement of the routine and then the in-value may
be displayed correctly by the Debugger.

A similar difficulty occurs in specifying a 8reak-return
within a routine, where the out-value of the routine may not
be displayed by the Debugger, since 1t has not yet been
stored. The out value can only be correctly displayed by the
Debugger after execution of the statement which invokes the
routine has been completed.

If any of the conditional execution constructs such as ELSE,
INCASE, EXITFOR and EXITWHILE are followed, on the same line,
by executable source code, the Debugger B8reak function will
only stop at the <code which wends Just prior to the
conditional construct, not the codsz following it.

16) If a data-element has been declared with WRITE access only, a
statement which tries to fetch a value from such a data-
element will not generate an error message during compilation
but the results are unpredictable.

17) It 1s legitimate in an invocation of a user written routine,
which is declared with an out-valu2, not to store the out-
value. The compiler will not 3ive any warning or error
messages.

18) If a POINTER for a data type, which has not yet been defined,
15 declared then space will be allocated as if the POINTER

data-element is for any of the simple data types, ie. usually
one word.

For example

I n.b. the TYPE norec has not yet been defined
norec pointer: bp 7 allocates one word only

ND-60.117.04

PLANC Reference Manual 293
PLANC IMPLEMENTATION RESTRICTIONS

19)

22)

23)

24)

251

If SENDIF 1is wused as a parameter iLn a macro call, then 1t
must be terminated by at least one space.

On the ND-100, if a routine is declared with a formal
parameter which is REALS and with WRITE or READ WRITE access
modified, and a2 routine invocation contains a REALL actual
parameter, the compiler automatically carries out a
conversion. However a value which should be stored into the
actual parameter will not be correctly stored.

If a component of a RECORD PACKED or an ARRAY PACKED data-
element 1s a different size from an addressable element, or
not aligned with an addressable element of the same size,
then use of the ADDR standard routine to write values into
the component data-element may overwrite adjacent memory
areas.

Beware that parameters of routines declared as STANDARD or
REFERENCE transfer values by passing ‘addresses, ie.
implicitly using the ADDR standard routine, so the above
difficulties may arise.

If ARRAY-INDEX-CHECK 1is switched on, and a subarray is used
with bounds outside those declared for the original array,
the compiler does not give any warning. Further, during
execution the checking of array element accesses will be
carried out incorrectly after reference to such a subarray,
which has bounds outside those of the original array.

There are a number of difficulties in invoking inner nested
routines

1) Inner routines, ie. other than the outermost level,
may not invoke themselves recursively.

i1) An inner level routine which 1is predeclared, or
invoked by the IND standard routine, will not be
executed correctly. .

iii) I an invocation of an inner level routine is to
have as an actual parameter another inner level
routine, then the actual parameter will be
transferred correctly only if it is the first
parameter in the parameter list.

iv) Inner routines which are declared as STANDARD or
REFERENCE, will not be executed correctly.

ADDR(ADDR(an ARRAY data-element)) will not work correctly.
The correct result may be achieved by using two statements
with an explicitly declared ARRAY POINTER data-element.

The standard rouéine MARKSTACK will be removed in a future

version of the compiler, so users are advised to avoid its
use.

ND-60.117.04

294

26)

21)

PLANC Reference Manual
PLANC IMPLEMENTATION RESTRICTIONS

The keyword PACK will be removed in a future version of the
compiler, so users are advised to avoid its use.

Names used in PLANC programs in IMPORT/EXPORT statements,
will be truncated to the first ten characters normally.
However, note that NRL on the ND-100 wuses only the first
seven characters, so names must be distinct from each other,
up to the seventh character to avoid problems.

ND-GO.177.0¢

PLANC Reference Manual
Index

SCALL-HIERARCHY
SCOMPILE .
$CROSS-REFERENCE
SDATE
SDEBUG-MODE
SDEFINE
$EJECT
SELSE
SELSIF
SENDIF
SENDMACRO
SEOF
SEXIT
SHELP
SIF
SINCLUDE
SLIBRARY-MODE
SLINE-BIAS ..
SLINKAGE-REFERENCE
SLIST
$LOAD
$MACRO .
SND10O-EXTENDED
SOPTION Coe
ARRAY-INDEX-CHECK
SQUEEZE
SPROG-FILE
SREAL-PRECISION
SSEPARATE-DATA
access
array
modified

READ
WRITE

actual parameter

ALTIAS

APPEND

arithmetic operator
array

access

data

Index

ND-60.117.04

Revision A

295

2064 .

196, 204, 291,
204 .

209,

208, 292.

1938.

205.

201.

201,

201, 202, 293,
202, 216.

196, 197, 200.
197, 198.

187.

200-202.

200, 291.

128, 207.

205.

204,

205.

198.

202.

206.

209.

206.

206.

198.

207,

198, 206, 292,

61, 62.
b, 34, &5, GO,
127, 293.

4, 10, 45, 60,
65.

10, 45, 145,
292, 243.
16, 71, 133,

136, 141, 143,
145, 202, 203,
216, 237, 291,
293.

20, 124, 126,
128, 129, 157,
154, 1860, 167,
163-168, 207,
237,

1, 21, 22, 87,

88, 150.
95, 97.
61, 62.

53-56, 58, 59,
61, 62, 64, 84,
1164, 181, 1886,
229, 2%43.

296

declaration

identifier
type

ARRAY-INDEX~-CHECK
SOPTION
ASSERTFALSE

assignment operator
baslc module

BITS predefined
body macro
BOOLEAN

data

declaration
literal
BYTE predefined
BYTES predefined
change operator
character literal
characters special

comment
COMMON

compound module
constant

declaration
identifier
data

ND-60.117.04

Revision A

PLANC Reference Manual

Index

54, 56-60, 62,
213, 215, 216.
61, 84.

58, 280-282,
287,

206, 208, 293.
206.

20, 123, 124,
219, 286.

2, 89, 91, 92,
104, 134, 225.
2, 14, 157, 170,
288.

46 .

202, 203, 215.

27, 37, 66, 89,
162, 180, 187,
232.

37.

25, 271, 31.

56,

56.

96.

20, 22, .28, 279.
13, 20, 28, 126,
127.

9, 20, 23.

6, 20, 70, 161,
254, 288.

14, 288,

20, 21, 24, 26,
38, 40, 81, 161,
168, 172, 200,
218, 280, 284,
288.

38.

102, 201, 284.
1-5, 10, 12, 14,
17, 21, 24,
26-29, 31,
33-51, 53-89,
91-96, 99, 100,
102, 104, 105,
T, 113, 114,
123, 125-133,
136-141,
143-146,
150-155, 157,
158, 160, 161,
163, 168, 170,
173~191, 199,
200, 206, 207,
209, 213-218,
223-221,
229-233, 2371,
239, 245, 246,
248, 254, 255,

PLANC Reference Manual
Index

array

BOOLEAN

enumeration

integer

modified

pointer

real

routine

set

declaration

array

BOOLEAN
CONSTANT
enumeration
integer
real
routine

set

ELSE

ND-60.117.04

Revision A

257, 267,
275, 280,
284, 287,
291-293.

2971

2173,
282,
288,

53-56, 58, 59,
61, B2, 64, 84,

188,

21, 37, 66, 89,

114, 181,
229, 293.
102, 180,
232.

39, 58, 1
154, 155,

187,

11,
225.

26, 35, 43, 46,
83, 82, 95, 96,

39, 100, 114,
144, 150, 174,
177, 184, 226,
229, 291.

b, 43, &5, &7,
91, 95.

3, 31, 40, 41,
63, 84, 85, 102,
185, 113, 114,
136, 215, 225,
226, 292, 293.

3, 21, 36, 43,
44, 91, 95, 96,

102, 104,
153, 178,
185, 186,
129, 130,
150, 2186,
291.
15-79, 81
39, 102,
156, 217,
229.

151,
179,
2071,
146,
217,

+ 82:
152,
224,

54, 56-60, 62,

213, 215, 216.
37.

is.

39.

35, 43.

36, 44.

11, 42, 71,
125-127, 129,
131-134, 141,
149, 151, 154,
157, 174, 175,
177-182,
184-191, 207,
215, 216, 287,
288.

283.

20, 108, 111,
211, 2%2.

238

ELSIF
ENDCASE
ENDDO
ENDFOR

ENDIF
ENDMODULE

ENDON
ENDRECORD
ENDROUTINE
enumeration
data
declaration
identifier
literal
equivalence

ERRCODE

exception

EXITFOR

EXITWHILE

exponent

expression

literal

ND-60.117.04

Revision A

PLANC Reference Manual

20, 108.
20, 111,
20, 112,
285,

Index

285.

119,

8, 20, 113, 115,

119, 285.

8, 20, 108, 285.

20, 158,

288.

20, 123,

216, 286.

214,

145,

20, 67, 70, 282,

291.

20, 128,
159, 240,
288.

39, 59, 1
154, 155,
38.

30, 31.
30, 39, 1

144,
287,

11,
225.

11.

21, 48, 68, 213,

281.
20, 144,
239, 242,

173,
243.

22, 35, 36, 43,
44, 56, 59, 65,

79, 113, 114,
122-124, 144,
145, 173, 202,
219, 232, 286.
20, 113, 115,
119, 213, 285,
292.

20, 119, 213,
285, 292.

25, 178, 179,
186, 213, 214,
221, 228.

2, 20, 25-27,
31, 34-38, 40,
43-45, 55, 56,
59, 67, 69, 16,
81, 82, 89-105,
108, 111, 113,
119, 122, 123,
130, 132-134,
136-139, 141,
144, 152, 181,
188, 201, 213,
216, 218, 225,
237, 239, 242,
243, 280-287.
26, 27, 31,
34-38, 43-43,
55, 56, 67, 76,
81, 113.

PLANC Reference Manual
Index

formal parameter

formatted
INPUT
QUTPUT
identifier
array
CONSTANT
enumeration
integer
IF nested
implied pointer
in-value routine
INCASE

INLINE

INPUT
formatted
unformatted

INSERT

integer
data

declaration
identifier
literal

invocation macro

keyword

label

libraries
library

mark
literal
BOOLEAN

ND-60.117.04

Revision A

298
45, 71, 125~-127,
133, 134, 141,
143, 146, 161,
189, 190, 202,
214, 216, 291,
293.
152, 175, 176.
154, 182, 183.
61, 84.
102, 201, 28+4.
30, 31.
46, 190.
8, 108.
17, &1, 87, 114.
216, 217.
20, 111, 215,
217, 282.
20, 126, 1289,
146, 147, 149,
208, 214, 215,
218, 287, 291,
292.
152, 175, 176.
152, 181.
1, 21, 81, 82,
87, 88, 152.
26, 35, 43, 46,
89, 92, 85, 96,
89, 100, 114,
146, 150, 174,
177, 184, 226,
229, 291.
35, &3.
46, 190.
24, 26, 31, 35,
43, 44, 92, 84,
162, 177,
202, 203, 218.
10, 20, 22, 51,
58, 61, 62,
64-66, 73, 114,
127, 131, 215,
216, 234.
3, 20, 33, &2,
107, 145, 208,
280, 284.
198, 207.
86, 124, 128,
129, 1398, 207,
267.
207.
25, 21, 37.

300

character
enumeration
expression

integer

octal
real

string

logical operator
loop

macro
body
invecation
name

main program

mark library
MAXINDEX

MININDEX

modified
access

data

precision

range
module

basic

compound
nested

structure
name macro
nested

IF

module

routine

octal literal

ND-60.117.04

Revision A

PLANC Reference Manual

Index

20, 22, 28, 2189.
30, 39, 111.

26, 27, 31,
34-38, 43-45,
55, 56, 67, 76,
81, 113.

24, 26, 31, 35,
43, 44, 892, 94,
152, 177.

24.

25, 27, 36, 44,
178.

19, 20, 22, 28,
55.

79, 80, 89, 101.
3, 8, t0, 17,
19, 31, 41, 107,
112-116, 119,
131, 137, 213.

202, 203, 215.
202, 203, 218.
202.

2, 14, 128, 157,
189, 240, 241,
254, 288.

207,

11, 21, 26, 82,
86, 129, 152,
291.

12, 21, 26, 62,
86, 129, 152,
291.

4, 34, 45, 60,
127, 293.

b, &3, 45, 47,
81, 95.

b, 44, 280.

4, 43, 280, 283.

2, 14, 157, 170,
288,

14, 288.

140, 147, 161,
168, 172.

168, 214,

202.

8, 108.

140, 147, 161,
168, 172.

134, 147, 170,
292.

24 .

PLANC Reference Manual
Index

ON statement

operator
arithmetic
assignment

change
logical
relational

store
out-value routine
OUTPUT

formatted

unformatted
OVERFLOW

parameter

actual

formal

routine
pointer
data

ND-60.117.04

Revision A

301

123,

85, 97.

2, 89, 91, 92,
104, 134, 225,
94.

19, 80, 99, 101.
27, 30, &0, at,
64, 78, 102,

103.

61, 73, 19, 91,
92, 94, 215.
104.

154, 182, 183,
154, 188.

20, 35, 38, 43,
bh, 123, 215,
217, 219, 240,
286, 291.

4, 10, 20, 40,
45, 51, 63, 71,
83, 84, 123,
125-129, 133,
134, 136, 137,
139, 141-143,
145, 146, 150,
151, 163-155,
159, 161, 163,
174, 175,
177-179, 181,
182, 184-191,
195-197,
199-203,
214217, 237,
239, 285, 257,

263, 264,
267-276, 287,
291, 293.

10, 71, 133,
136, 141, 143,
145, 202, 203,
216, 237, 291,
293.

45, T1, 1285-127,
133, 134, 1471,
143, 146, 161,
189, 190, 20z,
216, 216, 291,
293.

L, 136.

3, 31, 40, &1,
63, 84, 85, 102,
108, 113, 1%4,
130, 215, z2%,
226, 292, 29:3.

302

implied
POINTERERROR
precision modified
predeclaration

predefined
BITS
BYTE
BYTES

pregram
main

structure .
random unformatted

range modified
RANGEERROR
READ access

real
data

declaration
literal

record variant
recursive ..
relational operator
REMOVE

routine

data

declaration

in-value
nested

out-value
parameter
type

ND-60.117.04

Revision A

PLANC Reference Manual

Index

17, 41, 87, 114,
20, 123, 286.

4, &4, 280.

49, 130, 213,
215, 292.

46,
46.
48.

2, 14, 126, 157,
153, 240, 241,
254, 288.
157-1172.

152, 154, 181,
188.

4, 43, 280, 283.
20, 123, 286.

4, 10, &5, 60,
65.

3, 27, 36, 43,

44, 91, 95, 96,
102, 104, 151,

153, 178, 179,

185, 186, 207.

36, 64,

25, 27, 36, 44,
178.

&6, 70, 71.

129, 147, 203.

27, 30, 40, 41,

64, 78, 102,
103.

1, 21, 81, 82,
87, 88, 154.

129, 130, 146,
150, 215, 217,
291,

11, 42, 71,
125-127, 129,
131-134, 141,
149, 151, 154,
157, 174, 115,
177-182,
184~191, 207,
215, 218, 287,
288.

216, 217.

134, 147, 170,
292.

104.

4, 136.

2, 83, 148, 281,
287.

PLANC Reference Manual
Index

ROUTINEERROR

scope

set
data

declaration
type

special characters

specification TYPE

SQUEEZE
SOPTION
STACKERROR

statement ON
store operator

string literal
structure
module
program
subarray
type
array
routine

set

specification

ND-60.117.04

Revision A

20, 123,
144, 173
240, 269
292,

15, 42,
149, 172
292.
75-79, 8
39, 102,
154, 217
229.
283.
17, 280-
287.

13, 20,
127.

b, 5, 21
51, 58,
68, 70,
83, 145,
157, 158
172, 200
2146, 217
280-283,
288.
206, 209
206.

20, 123,
286.
123.

61, 73,
92, 9%,
19, 20,
55.

168, 214
157-172.
11, 8§89,
58, 280~
287.

2, 83, 1
2871.

17, 280~
287,

4, 5, 21
51, 58,
68, 70,
83, 146,
157, 158
172, 200
214, 217
280-283,
288.

303

124,
, 219,
, 286,

107,
, 215,

1, 82,
152,
. 224,

283,
28, 126,

, &7,

65, 67,

12, 17,
148,

, 168,

. 213,

287,
. 217,

219,

79, 31,
215.
22, 28,

63, 233.

282,

46, 281,

283,

, 7

65, 67,

12, 17,
149,

., 168,

, 213,

287,

304 PLANC Reference Manual
Index

unformatted
INPUT o . . 152, 181,
QUTPUT e 154, 188,
random 4 . 4 e i e e w o« o4 152, 154, 181,
188.
varliant record + « 4« « 4 « « « 4 . B, 70, 71,
VOID e . e e e e s s .. .3, 10, 20, 33,
62, 127, 131,
144, 280, 284,
WRITE access« . « v v v v v v v v v v v . 16, 45, 145,
292, 293.

ND-60.117.04 Revision A

* %k ok xk ok k ok x SEND US YOUR COMMENTS!!! 5 % % % % % % % 5 %

? N ? Are you frustrated because of unclear information
. -~ { O in this manual? Do you have trouble finding
O (3 ? things? Why don’t you join the Reader’s Club and
v send us a note? You will receive a membership
? 4 Y card - and an answer to your comments.
» [

Please let us know if you

—_—
* find errors
* cannot understand information \ - N\ _
* cannot find information @ @' —~—
* find needless information
Do you think we could improve the manual by rearranging the ' v
contents? You could also tell us if you like: the manual!! / S \

* %% % %% %% x HELP YOURSELF BY HELPING US!! % % % % % % # % *

Manual nameSINTRAN Il Reference Manual Manual number: ND-60.128.04

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual?

Your name: Date:
Company: Position:
Address:

What are you using this manual for?

Sendto: Norsk Data A.S. i
Documentation Department :,‘:_“‘:- Q
P.O. Box 4, Lindeberg Gard i e
- >

Oslo 10, Norway

Norsk Data’s answer will be found on reverse side

Answer from Norsk Data

Answered by il Date

Norsk Data A.S.
Documentation Department
P.O. Box 4, Lindeberg Gard
Oslo 10, Norway

Systems that put people first

NORSK DATA A.S JERIKOVN. 20 P.O. BOX 4 LINDEBERG GARD OSLO 10 NORWAY
TEL.: 02 - 30 90 30 - TELEX: 18661

