
PLANC
Reference Manual

ND-'-60.117.04 Revision A

\NorskData/

PLANC
Reference Manual

NBA-30117.04 Revision A

mm.

\gstnm;ang/, ,,

ea; ,
,, (J37 I, '

NGTICE

The information in this document is subject to change without notice. Norsk Data
AVS assumes no responsibility for any errors that may appear in this document.
Norsk Data A.S assumes no responsibility for the: use or reliability of its software
on equipment that is not furnished or supported by Norsk Data AS.

The information described in this document is protected by copyright. lt may not
be photocopied, reproduced or translated withaut the prior consent of Norsk
Data AS.

Copyright © 1983 by Norsk Data A.S

iii

PRENTING RECORD
Printing Notes

10/79 Original Printing
06/80 Second Edition
01/82 Third Edition
06/83 Fourth Edition
12/83 Revision A

The foliowing pages ha ve been revised or added:

ix, 2,4,8 -9, 11,20 ~21,35 ~36, 38 ~39,43, 45, 48,58,61,72,79, 87,
102,104,107,110,119,126 -127,129,138 -140,149,151,154 - 156,
156a ~156b, 158 -162,166,”3,175,182,184, 186 -188, 190,
205 ~ 206, 216, 219, 2235 - 226, 226a, 229, 231, 237 - 239, 241 - 243, 245,
249,251 ~ 253,279 - 238, 291 , 295 ~ 304

Page 305 has been removed.

..
..

..
.O

0
.0

9
9

9
9

9

Pubi. No. NED-60.11704, Rev. A
PLANC Reference Manuai
December 1983

0
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

5&3235: NORSK DATA A.S
:::”.::: PO. Box 4, Lindeberg gérd
:33”- Oslo 10, Norway

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one or
more single pages to be merged into the mental by the user, each revised page
being listed on the new printing record sent out with the revision. The old
printing record should be replaced by the new one.

New versions and revisions are announced in the ND Bulletin and can be ordered
as described below.

The reader’s comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms, together with all types of inquiry and requests for documentation
should be sent to the local ND office or (in Norway) to:

Documentation Department
Norsk Data A.S
PO. Box 4, Lindeberg gard
Oslo 10

This manual is in loose leaf form for ease of updating. Old pages may be
removed and new pages easily inserted if the manual is revised.

The loose leaf form also al ows you to place the manual in a ring binder (A) for
greater protection and convenience of use. Ring binders with 4 rings corre-
sponding to the holes in the manual may be ordered in two widths, 30 mm and
40 mm. Use the order form below.

The manual may also be placed in a plastic cover (B). This cover is more suitable
for manuals of less than 130 pages than for large manuals. Plastic covers may
also be ordered below.

.\~

x "l w— --- H
I ._ '(_~. A

”\ NCRSK DATA AS mm an A5

m‘ 5:3. m: 55:. E
as; are 55 ea

"‘ /‘\ ’
A Ring Binder B Plastic Cover

Please send your order to the local ND office or (in Norway) to:

Documentation Department
Norsk Data AS
RD. Box 4, Lindeberg gérd
Oslo 10

ORDER FORM

1 would like to order

....... Ring Binders, 3:) mm, at nkr 20,- per binder

....... Ring Binders, 4-3 mm, at nkr 25,- per binder

....... Plastic Covers at nkr 10,- per cover

Name ...
Company ..
Address ..

Preface:

THE PRODUCTS

This manual describes products which run under the SINTRAN III
operating system

Compilers

PLANC Compiler — ND—100 ND—(OBOS (release 0)
PLANC Compiler ~ ND'SOO ND~10310 (release C)
PLANC Compiler — MCEBOOO ND—10491 (release 8)

Run—time Systems

PLANC~1BANK - ND~1OU NDu10309
PLANC-ZBANK — ND~100 ND-10309
PLANC — ND~SOO ND~10310
PLANC~MC58 — MC68000 ND-10491

THE READER

This manual will be of interest to the users wishing to write Or read
PLANC programs.

PREREOUISITE KNOWLEDGE

The reader should have had some programming experience prior to using
a systems programming language like PLANC. A general knowledge of
compilation and execution of programs under the SINTRAN III operating
system would also be useful.

RELATED MANUALS

Related manuals for basic SINTRAN knowledge

SINTRAN [11 Introduction ND—60.125
SINTRAN III Time—sharing Batch Guide ND-60.132

THE MANUAL

This manual is primarily intended for reference purposes and is
organised in a progressive sequence of topics from chapter 2 onwards.
Chapter 1 however, is intended to give an overview of the whole
language for the less experienced programmer, or for a user only
requiring a reading knowledge of PLANC programs.

This version of the manual corresponds to releases, noted above, of
the various PLANC compiler products.

This version of the manual contains details of the new product. the
compiler for the MCSBOOO. Two new Appendices have been added.
Otherwise the changes and additions are mainly corrections and
clarification of details which have been reported by users.

ND‘60.317.04

V“

[.A 8 L E 0 F C 0 N T E N T S

.11 Simple Input/Output to the Terminal

.12 A More Complex Example

Section

1 INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1.1 PLANC Language Overview
1.2 A Simple PLANC Program
1.3 Data Types
1.4 Type Specification
1.5 Records .
1.6 List Processing .
1.7 Sequence Control Statements
1.8 Routines
1.9 Modules .
1.10 Scope of Identif ers
1
1

2 BASIC LANGUAGE ELEMENTS

Introduction
The Character Set
Standard Symbols
Statements
Continuation of Statements
Comments
Literals .

Integer LiterL s
.2 Real Literals
.3 Boolean Litera3.s

Literal Expressions
.1 Integer Liter33 Expressions
.2 Real Literal Expressions
.3 Boolean Literal Expressions

Single Character Literals
String Literals
Identifier Names .
Enumeration Liteial Lists
Implied Range

m
m

o
o

o
o

w
u

s
ix

t
m

m
r
u

N
L

_.

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N

d
‘
d

g
o

N
—

J
O

_. L.)

3 DATA DECLARATION AND SIMPLE DATA TYPES

Definition of PLANC Terminology
Integer Data—Elements
Real Data—Elements
Boolean Data-Elements
Constant Declarations
Enumeration Data-elements
Pointers .
Pointer Implied Range
Labelsm

m
w

w
w

w
u

m
m

L
O

O
D

N
a
fl
-C

‘L
A

J
N

—
h

£322

19

19
19
2O
22
22
23
24
24
25
25
26
28
27
27
28
28
29
30
31

33

33
35
36
37
38
39
40
41
42

U’I
m

a
m

m
a

l

N
N

N
N

N
M

—
h

—
A

—
h

_
h

_
§

d
_

b
—

n
—

A
U

i-
i‘
L

J
N

-
«

e
N

N
N

N
m

U
I-

t‘
w

N
—

A

WH

Void
Modified Data Types

.1 Range Modification

.2 Precision Modification

.3 Access Modification
Predefined Data Types

.1 BYTE Data—elements

.2 BYTES Dataeelements

.3 BITS Data—elements

U
1

4
‘L

A
J
N

—
e

_.s

Type Specification and User Defined Types
TYPEOF Standard Routine
Equivalent Data Storage for Datavelements
Predeclaration
SIZE Standard Routine

DATA DECLARATION AND COMPOSITE DATA TYDES

Arrays
Array Declarations . .
Array Type Specification and User Defined Types
Reference to Array Elements and Access Mode
Operations on Entire Arrays and Array Access
Index Set Information
Subarrays .
Predefined Data Types Using Arrays .

.1 BYTES — Arrays Used to Represent Character Strings

.2 BITS — Arrays Used to Represent Sequences of Bits
Records . .

Record Declarations and Type Specification
Variant Record Type Specification
Reference to Record Components and Access Mode
Operations on Entire Records and Record Access
PACKED Option for Arrays and Records

Sets .
Set Declarations .
Set Type Specification and User Defined Types
Operations on Sets

Routines .
Dynamic Allocation of Data— elements
Processing of Records in List Structures

EXPRESSIONS ~ FORMATION AND EVALUATION

Assignment Operators
Arithmetic Operators
Logical Operators
Relational Operators .
Conversion Between Data Types

SEQUENCE CONTROL STATEMENTS

60 Statement
IF Statement

ND—60.117.04

42
43
1.3
1.1.
45
4s
45
46
4s
1,7
48
4a
49
51

53

53
54
58
59
61
62
63
84
64
68
67
67
7D
72
73
74
75
75
77
78
83
84
87

89

91
95
99

102
104

107

107
108

ix

Section Paqe

6.3 CASE Statement 111
6.4 00 Statement 112
6.5 FOR Statement 113
6.6 WHILE Statement 119
6.7 The ASSERT Statement . 122
6.8 Exception and Error Handling 123

7 ROUTINES 125

7.1 Routine Declarati.on . 125
7.2 In value and Out value of Routines 131
7.3 Routine Invocation 133
7.4 Parameter Transfer 141
7.5 Exit from a ROUTINE . . 144
7.6 Routine TYPE Speczification and User Defined Routine TYPE 146
7.7 Recursive Routines. 147
7.8 Scope of Identifiers in PLANC Routines 149
7.9 Standard Routines Available in PLANC 150
7.10 Table of PLANC Standard Routines 156

8 PROGRAM STRUCTURE 157

8.1 Basic MODULE 157
8.2 Main PROGRAM 159
8.3 EXPORT/IMPORT — Communication Between modules 160
8.4 ALIAS Use in a Module . 153
8.5 Module Structure and Separate Compilation 168
8.6 Data— element Stalage and the Program Stack 170
8.7 Scope of Identifier Names in PLANC Modules 172

9 INPUT/OUTPUT 173

9.1 Input/Output Terms and Concepts 173
9.2 Formatted INPUT Routines . 175
9.2.1 I Format, Integer INPUT Standard Routine 177
9.2.2 0 Format. Octa INPUT Standard Routine 177
9.2.3 F Format. Fixed Decimal Point INPUT Standard Routine 178
9.2.4 E Format Fixed Decimal Point Normalized with Exponent

INPUT Standard Routine . . 179
9.2.5 A Format. Alphanumeric INPUT Standard Routine 180
9.2.6 L Format. Boolean INPUT Standard Routine 180
9.3 Random Unformatted INPUT Standard Routine 181
9.4 Formatted OUTPUT Standard Routines . 182
9.4.1 I Format, Integer OUTPUT Standard Routine 184
9.4.2 0 and 2 Format, Octal OUTPUT Standard Routine 184
9.4.3 F Format. Fixed Decimal Point OUTPUT Standard Routine 185
9.4.4 E Format. Fixed Decimal Point Normalized with Exponent

OUTPUT Standard Routine 186
9.4.5 D Format, Fixed Decimal Point Normalized with Exponent

OUTPUT Standard Routine 186
9.4.6 A/AL Format. Alphanumeric OUTPUT Standard Routine 187
9.4.7 L Format, Boolean OUTPUT Standard Routine 187
9.5 Random Unformatted OUTPUT Standard Routine 188

NO-60.117.04 Revision A

§§ction Page

9 7 CLOSE File . 189
9.8 Set BLOCKSIZE of a File 190
9 9 Set/Check Size of a File 191

APPENDIX

A COMPILER COMMANDS 193
0.1 Compiler Invocation 195
0.2 Compilation of Source Programs 196
0.3 Help . 197
0.4 Compiler Termination 197
0.5 End of File 197
0.6 Immediate Preparation of Executable Programs 198
0.7 Including Text from Other Source Files 200
0.8 Compile—time Constants 200
0.9 Conditional Compilation 201
0.10 Compile Time Macros 202
0.11 Cross Reference Listing and Linkage Information 204
0.12 Listing Control . 205
0.13 Run Time Options for the ND—100 208
0.14 Data Type Oefaults . 207
0.15 Creation of Libraries 207
0.16 Debugging . 208
0.17 Assembler Code in PLANC Programs 208
0.18 DATE Command . 209
0.19 OPTION Compiler Command 209

8 ERROR MESSAGES . 211
0.1 Compiler Messages . 213
0.2 Run-time Messages . 219

C MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC 221
0.1 Storage Mapping . 223
0.2 Storage Alignment . 230
0.3 PACKED option . 232

D MIXED LANGUAGE PROGRAMMING 235
0.1 Introduction 237
0.2 Interfacing with PLANC on the ND‘100 238
0.3 Interfacing with PLANC on the ND—SOO 241
0.4 Interfacing with PLANC on the MC68000 242
0.5 Invoking PLANC from Fortran 243
0.6 Invoking Fortran from PLANC 249
0.7 Accessing Fortran COMMON from PLANC 253
0.8 Invoking PLANC from COBOL 254
0.9 Invoking COBOL from PLANC 256
0.10 Invoking PLANC from BASIC 258
0.11 Invoking BASIC from PLANC 260
0.12 Invoking P|_ANC from MAC 262
0.13 Invoking MAC from PIANC on the N0 100 263

E USING SINTRAN MONITOR CALLS 265

ND-60.117.04

m

§§£LL9£ £3393

0.1 SINTRAN Monitor Calls , . . 267
0.2 Monitor Calls Available on the ND 100 and the ND—SOO . . . 268

F BNF Syntax Description 0? PLANC 277

G PLANC IMPLEMENTATION RESTRICTIONS 289

Index 295

ND—60.117.04

PLANC Reference Manual

Notation

xm

In This Manual
The notation used throughout the manual to describe PLANC statements
and constructs is listed below

I)

2)

3)

4)

Square brackets, [and 3. indicate optional items.

An ellipsis‘ ..., following square brackets specifies that
the preceding optional items may appear one or more times in
succession.

Parentheses, (and), sometimes referred to as round
brackets. are part of the PLANC language and must be coded
where shown.

Blanks are used to improve readability, but unless otherwise
noted have no significance.

ND-80.117.04

PLANC Reference Manual 1

1 INIRDIIJL‘IION.AMLL‘ME'R]MELOE_IHEiELAN£i-LANGUAGE

The PLANC (Programming Language ND Computers) is designed as a high—
level systems programming language. It is a member of the ALGOL/PASCAL
family of block structured languages. PLANC is used mainly for writing
systems software such as operating systems and compilers. It has been
defined in a machine—independent manner and machine—dependent features
(eg. data allocation strategies,interfaces to programs in other
languages) for particular machines will be specifically noted in this
manual.

In the late 60’s and early 70's many computer scientists and software
developers identified the 'software crisis‘. One trend from this
recognition of problems and difficulties in software development was
that using assembly languages for large software projects was
inadequate. The first move was more extensive use of macro processors
to create single language constructs which gave more powerful
facilities to an assembly language, in a reliable and consistent way.
The next step was to develop 'middle—level' languages, primarily for
systems programming, but with features similar to the popular high-
level languages, eg. Fortran, Cobol and Algol. A notable middle—level
language was PL360, developed by N. Wirth for the IBM 8/360. and was
the forerunner of PASCAL which is very widely used now.

The early 70's saw the emergence of PASCAL, BCPL. BLISS, C and other
languages designed for writing systems software such as compilers and
operating systems. Some of these developments had as a side benefit,
fairly straightforward techniques for implementation on various
hardware. System software development began to escape from the
exclusive province of the hardware manufacturers. Further, these
languages extended some areas in which the previous high~level
languages were limited or simply did not have. eg. data structures and
the so~called structured programming control mechanisms IF—THEN ELSE,
CASE and DO—WHILE etc. This has also affected the recent development
of general~purpose languages, namely some of the particular features
specified for Fortran 77 and Ada.

ND-60.117.04

2 PLANC Reference Manual
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

EVIW

This chapter is a detailed overview of the PLANC language and should
enable programmers to read and understand PLANC programs. A detailed

presentation of PLANC will appear in later chapters. for those who
wish to write large complex programs and systems or to interface to

programs and systems written in PLANC.

7V . 2! WWW

WLANC programs are structured into modules and routines: the routine
concept. as will be seen, is a broad one compared with other

programming languages.

But first a simple example. The program below consists of a module
muggig which contains a routine mprog, of the special routine type,
main program, for specifying the entry point at execution time. The
program also contains some examples of simple declarations, a standard

routine. and the use of the assignment operator.

EXAMPLE 1.1 A VERY SIMPLE PROGRAM

MODULE mudpie
INTEGER ARRAY : stack (0:100)
PROGRAM : mprog
INTEGER : i,j.k,m
INISTACK stack
1 =: i
2 =2 j
i+j =: k =: m
ENDROUTINE
ENDMODULE

The first line declares a module which is the smallest section of a
PLANC program that can be compiled separately.

On line 2, a single dimension array with bounds of 0 and 100 is
declared as a data—element in the basic module mudpie. Note that the
lower index bound must be 0 to be used by the INISTACK standard
routine.

Variables local to mprog appear in a declaration statement in line 4.
i and j are set to 1 and 2 and their sum is assigned to both k and m,
within one expression.

However simple a program may be, the INISTACK standard routine, shown
on line 5. must appear in the main program (here mprog) before any
other routines are called. It creates a stack to provide storage for
dynamic allocation of the data—elements within each routine while it
is being executed. In the above example this stack will be called
"stack“, declared in the main module.

ND—60.117.04 Revision A

PLANC Reference Manual 3
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1 . 3 DAILIXEES

Having looked at a basic PLANC program we will now look in greater
detail at the way in which data is described.

PLANC supports a variety of data types which are divided into the
categories of simple and composite. A data—element of composite type
may be subdivided into simple or further composite types. They are the
following:

§1MPLE TYPES QQMEQSITE IIPES

INTEGER ARRAY
REAL RECORD
BOOLEAN SET
LABEL ROUTINE
VOID
ENUMERATION
POINTER

The PLANC data types ENUMERATION and VOID are unusual; since the type
VOID only appears in the declaration of routines it is described along
with them. Data type ENUMERATION enables a data—element to take any
value from an explicitly specified ordered group. Examples of
declarations would be:

ENUMERATION (hot,warm,mild,cool,cold) : weather,temperature
ENUMERATION (lousy,firstclass.luxury,deluxe) : hotel :=lousy

Note that hotel has been set to an initial value of "lousy” (hopefully
our program will be able to improve it!).

POINTERS are data types which are "addresses“ of variables of some
other type. For instance. we could declare:

REAL : r
REAL POINTER : rp := ADDR(r)

where the pointer data-element rp is initialised with the address of
the REAL data~element r.

ND—60.117.04

4 PLANC Reference Manual
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

Some of the simple data types may have certain characteristics
modified. Thus type INTEGER may have its RANGE modified, type REAL its
PRECISION modified. and any simple type may be ACCESS modified.

Access modified types are either READ or WRITE modified. If the
modification is READ then write operations on the data—element are
illegal, ie. the data~element may only take the initial value.
Conversely. NRITE modification usually precludes read access. This
facility can be useful when a data—element is used as a routine
parameter.

There are also some predefined types of data (ie. they can be defined
in terms of already existing simple types) for holding sequences of
characters (sometimes called character strings) or sequences of binary
bits. They are:

1) BYTE : For containing a single character

2) BYTES : For containing character strings

3) BITS : For containing bit strings

1.4 WEIEAHM

Just as predefined and modified data types are based on the simple
data types, it is also possible in PLANC for the user to define his
own data types in terms of any of these three. However, a user type
specification differs in that it does not cause a data—element to be
constructed. This will only occur on a subsequent declaration
statement.

Examples of the use of the TYPE specification are:

TYPE personnel_number = INTEGER RANGE (0 : 999999)
TYPE calc = REAL READ
TYPE section = REAL ARRAY POINTER

Note that the data type section represents a pointer to an array of
reels. Contrast this with:

TYPE sparse = REAL POINTER ARRAY

where sparse is an array of pointers, each pointing to a single real.

ND—60.1)7.04 Revision A

PLANC Reference Manual 5
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1. 5 RECORDS

Using a TYPE specification for the declaration of RECORD data types
provides a ”structure template" for the components of a record as seen
in the example.

EXAMPLE 1.2 A RECORD TYPE SPECIFICATION

TYPE monthnames = ENUMERATIONIjan,Teb,mar,apr,...,nov,dec)

TYPE date : RECORD
INTEGER RANGE (1:31) 2 day
monthnames : month
INTEGER RANGE (022000) : year

ENDRECORD
Z declare some data~elements of the newly specified data type

date : startdate,end_date

The above record has three components but it could have had any number
of them.

Note that as this is an example of a TYPE specification no data—
element is constructed unless a declaration statement is encountered
such as the last line of the example.

ND-60.117.06

5 PLANC Reference Manual
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

It is possible to define a record which has components in addition to
those of an existing one. This variant record will then have the
components defined in the page record together with the new components
from the variant part.

EXAMPLE 1.3 A VARIANT RECORD

TYPE part = RECORD
REAL : partno. buyprice, sellprice

ENDRECORD
TYPE tax_rating = part RECORD

INTEGER : taxcode
ENDRECORD

TYPE stock = part RECORD
BYTES : wharehouset1:4)
REAL : quantity

ENDRECORD
Z declare some record data—elements

part : frame
tax_rating : boughtin
stock : screw

Thus records of type tax_rating (eg. boughtin) will have components
partno, buyprice, sellprice, and taxcode, and records of type stock
(eg. screw) will have components partno, buyprice, sellprice.
wharehouse and quantity.

To access components of a record a dot notation is used. Thus to
access components in the records of example 1.3 we would use
references like:

frame.buyprice
boughtin.taxcode

It can be useful to have an empty base record which can serve as a
common entry point to the variant ones by using a pointer which
references the base record.

ND—60.117.0b

PLANC Reference Manual
[NTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

‘f. 6 LISLERDCESSING

List structures can be defined as record structures
below.

EXAMPLE 1.4 RECORD TYPES IN LIST PROCESSING

TYPE element = RECORD
element POINTER : NEXT

2 other components

ENDRECORD

as illustrated

Z pointer for the start of a linked list of records
element POINTER : HEAD

The pointer HEAD would point to the first element in the list and the
pointer NEXT in each record would point to each successive element in
a list.

There are 3 standard routines available in PLANC for list processing:

INSERT will insert a new element at the head of a list

APPEND will append a new element at the end of a list

REMOVE removes any element from the list

ND~SO.117.04

8 PLANC Reference Manual
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1 . 7 WWENIS

Control statements enable the normal sequence of statement execution
to be altered. PLANC has a number of facilities to form repetitive
loops or select a course of action from a number of possibilities.

The FOR and ENDFOR statements create a very simple loop. The code
bounded by them must include a DO statement as shown in the example.

EXAMPLE 1.5 A SIMPLE FOR~ENDFOR LOOP

FOR count IN 1:n DO
count+sum :zsum

ENDFOR

Another simple loop is formed by the DO—ENDDO statements. The
structure is:

DO
statements for execution

ENDDO

Either of the two loops above may contain a WHILE statement. For
example:

EXAMPLE 1.6 ANOTHER FOR~ENDFOR LOOP

INTEGER : lower,upper
INTEGER ARRAY : a(0:10)
FOR i IN lower upper 00

a(i~1)+a(i) =:a(i)
1 continue the loop only for negative array elements

WHILE a(i)<0
Z

ENDFOR

A simple conditional statement is the IF statement. It must always be
followed by a corresponding ENDIF as in:

EXAMPLE 1.? IF—THEN~ENDIF

Z make the value positive
IF x < 0 THEN

~x =:x
ENOIF

IF statements may be nested, and there are no restrictions on the
executable statements which may be contained in a nested IF statement.

ND—60.117.04 Revision A

PLANC Reference Manual 9
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

Further. PLANC has a CASE statement. It selects one of a number of a
group of statements to be executed, the remaining groups are ignored.

EXAMPLE 1.8 THE CASE STATEMENT

ENUMERATION (stop_signal,go_signal) : action
TYPE colour_list : ENUMERATION (red,blue,green.amber)

colour_list : colour

CASE colour
INCASE red

stop_signal =:action
INCASE green

go_signal =:action
ELSE

Z
2 control only comes here For other colours
Z

ENDCASE

Note the percent character (Z) indicating a comment line. It may
appear in any column of a statement. Everything following the percent
character. on the same line, is ignored by the compiler.

ND-60.117.04 Revision A

10 PLANC Reference Manual
INTRODUCTION AND OVERVIEN OF THE PLANC LANGUAGE

1.8 RDlJIINES

From a language point of view, routines can be regarded as composite
data—elements. When a routine is declared. a data—element is
constructed which is sufficiently large to contain all of the storage
the routine will require. (Storage required at run time is provided by
the INISTACK standard routine. as illustrated in the very First
example.)

PLANC routines are similar to the subprograms of other languages but
they have an extra feature in that a specific single value can be
supplied to the routine by the caller, and vice versa, such that the
value input is available anywhere within the routine. These values are
in addition to the usual parameters. For example:

EXAMPLE 1.9 A SIMPLE ROUTINE

ROUTINE VOID,VOID (INTEGER WRITE) : simple(intpara)

no values supplied into or out of the routine SIMPLE.
it has only one integer parameter intpara

N
N

N
N

INTEGER 2 local,int
FOR local IN 1,2,3,8:10 DO

A executable statements within the loop

ENDFOR
Z intpara will be returned to caller

int=:intpara
RETURN
ENOROUTINE

The use of the data type VOID is shown, so—named since it indicates
the absence of the in~value data—element or the out—value data-element
respectively. The routine body contains control statements for a
simple repetitive loop.

Only one parameter (within the parentheses following the routine name)
will be passed to the routine and it is declared to have WRITE access
only. Parameters have by default READ access only. The keyword WRITE
allows this parameter to have values stored into it and the actual
parameter will not receive this new value before the routine has
returned to its caller.

ND—60.117.04

PLANC Reference Manual 11
INTRODUCTION AND OVERVIEN OF THE PLANC LANGUAGE

A more sophisticated example of sorting by successive maxima follows.
The mechanism used is to find the maximum element of an array which is
"swapped” with the first element. The subarray of all elements, except
the first, is now scanned and the maximum element will be interchanged
with the second of the original array, and so on. Within the routine
the standard routine MAXINOEX yields the maximum index (upper bound)
of "vector", and the invocation of "highest" obtains the index of the
maximum element of each subarray. (The routine ”highest" is in tact
given as example 1.12.)

EXAMPLE 1.10 SORTING 8T SUCCESSIVE MAXIMA

ROUTINE VOID.VOID (REAL ARRAY READ WRITE) : sort(vector)
REAL : temp
INTEGER : k.highval

FOR k IN vector DO
highest(vector(k : MAXINDEX1vector,1))) =2highval
vector(highval) =:temp; vector(k) =:vector(highval)
temp =:vector(k)

ENDFOR
ENDROUTINE

The next example returns an out—value, ie. it is like a Fortran
function reference. whizh indicates whether an array contains all the
same values or not. The out~value is declared as BOOLEAN in the
routine declaration so that a value of TRUE or FALSE can be returned.
In this case it depends on whether or not all the values of an integer
array are unequal.

EXAMPLE 1.11 ROUTINE WITH AN OUT—VALUE

ROUTINE VOID,BOOLEAN (INTEGER ARRAY) : func1arrx)

no in—value, out-value BOOLEAN. in the routine func
having 1 parameter. arrx, an INTEGER array

N
N

N
N

INTEGER : i,j
Z loop through all the elements of the array

FOR i IN arrx 30
Z loop through eacn element prior to this element of the array

FOR j IN 1:i-1 00
Z is there a different value ?

IF arrx1i) >< arrx(j) THEN
Z all array elements not the same value

FALSE RETURN
ENDIF

ENDFOR
ENDFOR

Z all elements are the same value
TRUE RETURN
ENOROUTINE

ND-60.117.04 Revision A

12 PLANC Reference Manual
INTRODUCTION AND OVERVIEN OF THE PLANC LANGUAGE

The routine “highest“, invoked in example 1.10, is a Further example
we can give at this point. It returns the index of the maximum value
in an array (MININDEX obtains the value of the lower bound).

EXAMPLE 1.12 ANOTHER ROUTINE WITH AN OUT‘VALUE

ROUTINE VOID.INTEGER(REAL ARRAY) : highest(v)
REAL : max
INTEGER : answer,i

Z set an initial index of the highest value
v(MININDEX(V,T)=:answer) =:max

Z scan the array for the highest value
FOR i IN v 00

IF v(i) > max THEN
Z note the use of the resulting value as the subscript

v(i=:answer) =:max
ENDIF

ENDFOR
Z give back the index of the highest value as an out—value

answer RETURN
ENOROUTINE

In the case where there is an in-value, this can be referenced within
the routine by use of the 3 (commercial at) character. If the routine
has an in—value but no out-value it will simply store the in—value it
receives; the in~value will be the data~element associated with the
identifier referred to immediately preceding the routine invocation.
Example 1.13 shows some of the principles involved.

EXAMPLE 1.13 ROUTINE WITH AN IN—VALUE BUT NO OUT-VALUE

INTEGER : paramziprog_data_el ; REAL : param1
Z set up the in~value

INTEGER : inval
2::inval

Z invoke the routine rtn with inval as the in—value
inval rtn(param1,param2)

Z after the routine call. parm2 will have the value 1
Z it could be assigned to a program data—element

param2=zprog_data_el

The routine declaration might be

ROUTINE INTEGER.VOID (REAL,INTEGER WRITE) : rtn (p1,p2)
Z
Z and the routine body might contain
Z

IF a>o THEN Z reference in—value
1::p2

ENDIF
Z

RETURN
ENDROUTINE

A routine of this type might be used in situations such as reading or
writing to/from Files or similar service functions, thus saving the
programmer some coding.

ND—60.117.04

PLANC Reference Manual 13
INTRODUCTION AND OVERVIiw OF THE PLANC LANGUAGE

Finally. the routine with both an in—value and an out-value. As an
example, the routine below adds two complex numbers represented as
records.

EXAMPLE 1.14 ROUTINE WITH BOTH IN AND OUT—VALUES

Z a record type specification of a complex number
TYPE complex : RECORD

REAL : r,i
ENDRECORD

Z
Z a routine to perform addition of two complex numbers
Z

ROUTINE complex,complex (complex) : plus(cnum)
Z the out~value is declared as complex

complex : result
I the in—value, referenced by a, is one complex number.
Z the parameter is the other

8.r + cnum.r=:result.r
3.1 + cnum.i=:result.i

1 put the sum of the two complex numbers into the out—value
result RETURN
ENDROUTINE

The routine plus could be invoked by

CT plus c2

where c1 and c2 have been declared as:

complex :c1,c2

Since routine identifiers can be a string of letters or special
characters, the routine name might equally well have been + or *+, and
the invocation:

c1 + c2 or
c1 *+ c2

thus the routine defines a user—written operator.

ND-60.117.04

14 PLANC Reference Manual
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1 . 9 HULIJLES

A module, which is the smallest unit of a PLANC program which can be
compiled separately, can be contained within other modules. Thus we
can have basic modules and any number of compound ones. All program
and data must be inside a basic module and in addition. if it is to be
independently executable, it must contain a main program, as shown in
example 1.1. However, only one main program routine can exist per
executable program since it is this which defines the executionwtime
entry point.

Large programs are usually subdivided into logical groups, ie.
modules, to simplify their administration. Access from one module to
the data and routines of another is controlled by the two PLANC
statements: EXPORT and IMPORT.

An IMPORT statement defines items of other modules to be accessible in
the present module. An EXPORT statement defines items in the present
module to be accessible to other modules. In the example below we show
the structure of a compound module which contains two basic modules,
together with a simple usage of the IMPORT and EXPORT statements.

EXAMPLE 1.15 MODULE STRUCTURE

MODULE comp Z Compound module
MODULE basic1 2 Basic module
EXPORT x
IMPORT REAL : y
INTEGER : x

Z
Z
Z

ENDMODULE Z End of module basic1
Z

MODULE basic2 Z Another basic module
EXPORT y
IMPORT INTEGER : x
REAL : y

X
Z
Z

ENDMODULE Z End of module basicZ
ENDMODULE Z End of compound module comp

ND-60.117.04

PLANC Reference Manual
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1. 10 SCDEEWDEJDENIIEIERS

An identifier has a scope which is the routine. or

For example:

EXAMPLE 1.16 SCOPE OF IDENTIFIERS

MODULE update
2 global variables

BOOLEAN ARRAY : busy(0:100)

ROUTINE VOID,INTEGER : reserve
INTEGER : i.j

FOR 1 IN busy DO

ENDFOR
j RETURN

ENDROUTINE

ROUTINE INTEGEQ,VOID : release
INTEGER : i,j

ENDROUTINE
ENDMODULE

The array busy has the scope of module update, and is
the routines reserve and release. The variables i,
different from the i. j in release.

ND-60.117.04

15

module, which
contains its declaration and all the routines, or modules, within

also known
j in reserve

it.

by
are

15 PLANC Reference Manual
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1. 11 SIUELE.INEUIZDUIEULIZLIHLIEEMINAL

PLANC has no extensive facilities for handling input and output.
However, there are some system—supplied routines to handle the simple
case. As an example, the statement

INPUT (1“15',number)

will read an integer from the terminal and place it in number.

For output. the statement

OUTPUT (1,'IS'.number)

will write number as an integer using 5 places on the output line.

We can now write a PLANC program to read 2 numbers from the terminal.
and write out their sum.

EXAMPLE 1.17 SIMPLE I/O USING THE TERMINAL

MODULE summer
INTEGER ARRAY : stack(0:100)

Z a main 'PROGRAM‘ routine Follows
PROGRAM : sum
INTEGER : a.b,c
INISTACK : stack

Z get two numbers from the terminal
INPUT (1.'IS',a)
INPUT (1,'IS',b)

Z output the sum of the two numbers on the terminal
a+b=zc
OUTPUT (1,'IS',C)
ENDROUTINE Z end of routine 'sum'

ENDMODULE

ND-60.117.04

PLANC Reference Manual 17
INTRODUCTION AND OVERVIEW OF THE PLANC LANGUAGE

1. 12 AUDREEDHELELEXAHELE

So that we can see how some OF the previously mentioned features might
be combined, we give a final example. Suppose it is required to find
the area of a farm where each field is represented by a record in a
linked list of records. In the given code these records are chained
together through the record component data—element next.

EXAMPLE 1.18 DINKUM PLANC

Z specify a RECORD data type for each field of the Farm
TYPE field = RECORD

REAL : area
field POINTER : next

ENDRECORD

a pointer data—element to begin a linked list
- see later chapters for details of building the list

N
N

N
N

field POINTER : pepfarm
Z a data—element for the area of the farm

REAL : farmsize
Z invoke the routine to compute the total farm area

acreage(pepfarm)=:farmsize

ROUTINE VOID,REAL (field POINTER) : acreage(first)
Field POINTER : work
REAL : answer

0.0 =:answer
Z scan the list of field records to compute the total area

FOR work IN firstznext DO
answer + work.area =2answer

ENDFOR
answer RETURN

ENDROUTINE

The FOR—ENDFOR loop contains an "pointer implied range" firstznext
which describes a linked list of pointers. The data—element before the
colon is a record pointer indicating the start of the chain. Following
the colon is the data—element within the record which contains the
linking pointers through the chain. In this way we can access a linked
list of records using a simple FOR—ENDFDR loop, a useful facility when
processing lists.

ND‘60.117.04

18

ND—60.117.04

PLANC Reference Manual

PLANC Reference Manual 19
BASIC LANGUAGE ELEMENTS

2 BASICJANGUAGLELEMENIS

2. 1 INIRDIIJCIIDN

Following the overview of the PLANC language as a whole we will now
begin to look at the language features in complete detail.

This chapter will present the lowest level language elements; such as
the character set. identifiers and literals; with which PLANC source
language statements can be formed. A number of source statements can
then be put together to construct a complete PLANC program. This
program can be submitted to the PLANC compiler to produce an
executable program if the compilation process is successful.

2 ., 2 IHE_CHARACIER.SEI

The full ASCII character set may be used in PLANC programs. However
particular elements of the language may be made up of a restricted
subset of characters as indicated in the following sections. Lower
case alphabetic characters are converted to upper case except when
used in string literals.

ND—60.117.04

20 PLANC Reference Manual
BASIC LANGUAGE ELEMENTS

.2. .3 WSW

The Standard Symgols have predefined meanings in the PLANC language.
They are special characters or are formed from special characters and
letters. Standard Symbols comprising alphabetic ’characters only are
often referred to as keywords. A list of all the Standard Symbols
follows

52W

1 — treat the rest of this line as comnent text.
& — the statement on this line is continued on the next line.
; — terminate the preceding language statement on this line.

Note this is used to put more than 1 statement on a line.

- single apostrophe, is used to delimit a string literal.
3 - precedes a single character literal.
(- opening parenthesis.
J - closing parenthesis.
: — delimiter in declaration statement or range expression.
. — delimiter in a list of identifiers.

Q — routine in-value qualifier.
. — dot notation for accessing record components.
? - predeclaration indicator.
3 — as first character indicates line is a compiler command.
" ~ enclose macro parameters within the macro definition.

gggywords

ALIAS ENDRECORD INTEGER1 RECORD
ARRAY ENDROUTINE INTEGERZ REFERENCE
ASSERT ENDMODULE INTEGER4 RETURN
ASSERTFALSE ENDON LABEL REVERSE
BITS ENUMERATION MODULE ROUTINE
BOOLEAN ERRCODE NIL ROUTINEERROR
BYTE ERRETURN 0N SET ,
BYTES EXITFOR OVERFLON SPECIAL
CASE EXITNHILE PACKED STANDARD
COMMON EXPORT POINTER STACKERROR
CONSTANT FALSE POINTERERROR SYSTEM
00 FOR PRECISION THEN
ELSE GO PROGRAM TRUE
ELSIF IF RANGE TYPE
ENDCASE IMPORT RANGEERROR VOID
ENDOO INCASE READ NHILE
ENDFOR INLINE REAL WRITE
ENDIF INTEGER REAL8

ND-60.117.04 Revision A

PLANC Reference Manual
BASIC LANGUAGE ELEMENTS

9ws

ABS
MOO
SHIFT

V
I
I
/
\
V

l
l

assignment
change
addition
subtraction (binary operator).
multiplication
division
exponentation
absolute value or maximum number of SET members
modulo
shift bits

greater than
less than
equivalent value
greater than or equal
less than or equal
not equal
membership

logical and
inclusive or
exclusive or
logical negation
assignment in CONSTANT statement.
and identifier data type in TYPE specifications
initial value in declaration statements

§tandard Routines

ADDR
APPEND
BIT
BLOCKSIZE
CLOSE
CONVERT

DISPOSE
FILESIZE
FORCE
INO
INISTACK
INSERT

N3-60.11T.

INPUT
MAXINDEX
MININDEX
NEW
OPEN
OUTPUT

04 Revision A

storage equivalence

FRED
REMOVE
SIZE
SUCC
TYPEOF

21

negation (unary operator)

22 PLANC Reference Manual
BASIC LANGUAGE ELEMENTS

2. 4 SIAIHBJIS

PLANC statements are usually written one per line. A statement may be
terminated by a semicolon character (;) but this is not required.
However more than one statement may be included on one line by using
the semicolon character (;) to terminate each statement within the
line. All alphabetic characters in PLANC statements may be typed in
lower or upper case but the compiler will convert all the alphabetic
characters to upper case with the exception of single character
literals and string literals, including format descriptors in
INPUT/OUTPUT statements ie. anything between single apostrophes. For
clarity it is suggested that all keywords are typed in upper case. A
single blank must be present immediately before and after most
keywords, but more blanks are not treated as significant by the
compiler. Some keywords may be preceded or followed by operators or
delimiters. While PLANC has a free format, it is recommended that
blanks be used generously to indent and space source code elements for
clarity and readability.

For example

INTEGER : int1.int2 ; REAL : r11 ; BOOLEAN : booll

2. 5 CHNIINUAIIDLDEJIAIEMENIS

Sometimes it may be necessary to write a statement which is longer
than one line. If a statement is to be continued on the next line, an
ampersand character (&) must be placed after the statement text on the
first line. and the compiler will append the next line to ~the first
line and treat both lines together as a single language statement.

For example

INTEGER : int1.int2,int3. & Z this line will be continued
int4.int5

ND-60.117.0k

PLANC Reference Manual 23
BASIC LANGUAGE ELEMENTS

2. 6 EDHHENIS

Comments within program source, are important for documentation
purposes and they may be included on any lines of PLANC source by
inserting a percent character (2). All text following the percent
character (Z) on the same line will be regarded as comment text by the
compiler and have no effect on the program.

For example

INTEGER : integT,integZ
Z

.
Z The line above, this line and the following 2 lines
Z are comment lines. They have no effect on the program.
Z

INTEGER : integ3
INTEGER : inte94 Z This is also comment text ! aha !

Note that there is a special use of two consecutive percent characters
(22), see section 2.10.

For example

1122 this is not a comment line
Z 11 but this is

ND—60.117.04

24 PLANE Reference Manual
BASIC LANGUAGE ELEMENTS

2. 7 LIIERALS

A literal is an integer, real, boolean, character or string constant.
Literals do not change their value during the execution of the
program. A literal value is held in a storage entity known as a data—
element.

2. 7. 1 INIEBER.LIIERALS

The form of an integer literal is an optional minus sign followed by a
string of digits.

Examples of integer literals

D
123
—1
123455

The maximum and minimum possible values and the actual size of the
data—element used to store the integer literal is machine-dependent.
In general the smallest data~element possible to contain the actual
value will be allocated by the compiler.

For example on the ND—1UD the values must lie between

~2147483648 and 2147483647 inclusive,
351 will be stored in an INTEGERZ data-element.

For full details of limits on possible range of values and actual
storage allocated, see Appendix C.

An integer literal in PLANC may be written as an octal value rather
than as a decimal value. An octal literal is an optional minus sign
followed by a string of digits. each in the range 0 to 7 inclusive.
and followed by the letter 8.

Examples of octal integer literals

DB
7778
~7858

The range of values possible and the storage allocated by the compiler
will be the same as For decimal literals. For example

on the N0—100

5378 (351 decimal) will be stored in an INTEGERZ
data—element.

ND—60.117.04

PLANC Reference Manual 25
BASIC LANGUAGE ELEMENTS

2. 7. 2 REALLIIERALS

The form of a basic real literal is an optional minus sign, a whole
number part, a decimal point and a fractional part. Both the whole
number part and the fractional part are strings of digits; the whole
number part must be present.

A real exponent consists of the letter E followed by an unsigned whole
number for a positive exponent or a minus sign and a whole number for
a negative exponent. The value of a real literal containing an
exponent is the product of the basic real literal preceding the E and
the power of 10 indicated by the number following the E. The exponent
must not be preceded by a space.

Examples of some valid real literals

0.0
11.
3.1415927
~728.998
—98765.0
1.23E2 exponent form of a real literal
1.32E—4 real literal with a negative exponent

Examples of some invalid real literals

12 a valid integer but no decimal point
.0 no digit preceding the decimal point
+1.2 must not be preceded by a + sign
1.5E2.5 exponent must be a whole number
1.6E+2 exponent must not have a + sign

The real value is an approximation to the actual value of a
mathematical expression. The actual internal representation of real
values may not be the same in all implementations of PLANC. The
maximum and minimum real values possible may vary on different model
machines or according to the type of floating—point hardware on a
particular machine‘ Further, the number of significant digits which
may be represented accurately also depends on the machine model and
the floating—point hardware present. Full details of storage
allocation. maximum ard minimum possible values, and the number of
significant digits whicr can be represented accurately are available
in Appendix C.

2. 7. 3 BOOLEALLIIEBALS

The possible values of a boolean literal are TRUE or FALSE.

Examples of boolean literals

TRUE
FALSE

ND~60.117.04

26 PLANC Reference Manual
BASIC LANGUAGE ELEMENTS

2. 8 LIIERALEXERESSIDNS

A literal expression is an expression made up of either literals of
the same data type or identifiers which have already been declared in
a CONSTANT statement, thus having a literal value. For a detailed
description ot the way expressions are evaluated. see Chapter 5 ,

EXPRESSIONS — FORMATION AND EVALUATION. In addition to the
operators listed below for each data type, parentheses may be used for
clarity or to force an expression to be evaluated in a particular
order of operations.

2. 8. 1 INIEGERJIIERALEXERESSIDNS

Integer literal expressions may be formed by using integer data~
elements and the following operators and standard routines

+ arithmetic plus
— arithmetic minus

unary minus
* arithmetic multiplication
/ arithmetic division
** exponentiation
MOD modulo
ABS absolute value
SHIFT shift bits
NOT logical complement
AND logical ‘and'
OR logical 'inclusive or'
XOR logical 'exclusive or'
MININDEX array index lower bound
MAXINDEX array index upper bound
SIZE data-element size

For example

INTEGER : int1::2*2 Z integer literals only
Z the indentifier int1 will be initialised to 4

CONSTANT four=4
INTEGER : int2:=(1+four)*2 Z literals, constants mixed

Z the identifier int? will be initialised to 10

INTEGER : int3z=7778 AND 178 1 use of logical operator
the identifier int3 will be initialised to 178

1 ie. 15 decimal

ND-60.117.04

PLANC Reference Manual 27
BASIC LANGUAGE ELEMENTS

2‘. 8.2 REALLIIERALEXERTESSIDNS

Real literal expressions may be formed by using real data-elements and
the following operators

+ aritwmetic plus
- aritwmetic minus
— unary minus
* aritnmetic multiplication
/ aritwmetic division
ABS absolute value

For example

REAL : r11::2.5*4.0 Z real literals only
Z the identifier rll will be initialised to 10.0

CONSTANT rlconst22.0
REAL : r12::(5.7—rlconst)/2.0 Z literals, constants mixed

Z the identifier rl2 will be initialised to 1.85

2. 8. 3 BODLEAN.,LIIERAL_EKERESSIDNS

Boolean literal expressions may be formed by using boolean data—
elements and the following operators

NOT logical negation
AND logical 'and'
OR logical 'inclusive or'
XOR logical 'exclusive or'

Further, boolean literal expressions may contain any of the relational
operators (see section 5.4) with integer operands only.

For example

BOOLEAN : boollzzTRUE AND FALSE Z literals only
Z the identifier bool1 will be initialised to FALSE

CONSTANT bc1=TRUE
BOOLEAN : boolz::bc1 0R TRUE Z literals, constants mixed

Z the identifier boolZ will be initialised to TRUE

BOOLEAN : bool3z=TRUE AND (2:3)
Z the boolean expression in parenthesis results in FALSE
Z and the identifier bool3 will be initialised to FALSE

ND—80.117.04

28 PLANC Reference Manual
BASIC LANGUAGE ELEMENTS

2. 9 SINGLECHARACIERJIIERALS

The form of a single character literal is the number sign character
(t) followed by one ASCII character. For example

#a value is lower case 'a'
#2 value is upper case '2‘
#(value is left parenthesis

PLANC has no 'character' data type. A single character literal will be
held in a data—element of the predefined data type BYTE (see section

3.12.1). with certain choices of data storage allocation. this
enables much faster handling of a single character than a character
string of length greater than one character.

Note that to specify the special characters percent (Z),ampersand (&)
and apostrophe (') in a single character literal. only one occurrence
of such a character should follow the number sign character(#).

2. 10 SIRINGJIIERALS

The form of a string literal is the apostraphe character ('), followed
by one or more ASCII characters, terminated by another apostrophe
character (').

For example

'this is a STRING of characters'

PLANC has no string data type. String literals will be held in a data—
element of the predefined data type BYTES (see section 4.1.7.1).

Upper case alphabetic characters within string literals will not be
converted to lower case.

Note : if Z (percent). & (ampersand), or ‘ (apostrophe) characters are
to appear within a string literal then these characters must be
duplicated for each occurrence required. in order to prevent their
usual 'special' interpretation in PLANC. For example

String Literal valJe

'his && hers' his & hers
'two 2212 characters' two 1% characters
'Tom"s 5 11 share' Tom's 5 I share
. ;

(ane apostrophe)

Note that 'a' is not equivalent to #a and has a different internal
representation.

ND~60.117.U4

PLANC Reference Manual 29
BASIC LANGUAGE ELEMENTS

2’. 11 IDEAlIIEIER_NAMES

An identifier in PLANC is the name associated with a data—element. An
identifier is a sequence of letters, digits and underscore characters,
but the first character of which must be a letter. An underscore must
not be last character of an identifier and only single underscore
characters may be used, ie. two consecutive underscore characters are
invalid. While an identifier may be of any length. only the first ten
characters are used as for unique identification. For example

integi
counter_VARIABLE
a_b_c
Sabc invalid, does not begin with a letter
in—valid invalid. contains an illegal

character, a hyphen (-)
abc_ invalid, ends with an underscore
a_*b invalid. two consecutive underscores

Since uppercase and lowercase letters are treated as equivalent by the
compiler, the identifiers

ident1 and
IDENT1

will be associated with the same data—element.

As only the first ten characters of identifier names are significant,
the identifiers

aflveryfllongflname and
agvery_long_identifier

will be associated with the same data~element.

ND-60.117.04

30 PLANC Reference Manual
BASIC LANGUAGE ELEMENTS

2. 12 ENWERAHOMLIIERALLISIS

The form of an enumeration literal list is a list of enumeration
identifiers separated by commas. The general form is

enum~ident{,enum«ident ...3

where

enum—ident is formed under the same ruies as identifiers

The order of appearance in the list specifies the sequence of the
enumeration identifier values for use as operands with the relational
operators (see section 5.4) or with the PRED and SUCC standard
routines (see section 7.9) which will return previous or successive
values respectively.

For example

red.dark_blue,green,purple

is a valid enumeration literal list with four enumeration identifiers.

ND—60.117.04

PLANC Reference Manual 31
BASIC LANGUAGE ELEMENTS

2. 13 IUELIEDNRANEE

The implied range is an abbreviated form for describing all or part of
a list of Integer values. Enumeration identifiers or Pointer data—
elements. The precise meaning of such a list depends on which PLANC
statement it is used in. It has the following general form

value1 : valuez or
expn1 : exa or
ptr1 : ptr2

where

value1. valueZ are both, either integer literals, enumeration
identifiers or the resulting value of literal
expressiens of these data types.

expn1, exa are expressions which will be evaluated at run—time to
give an integer or enumeration resulting value.

Note : in both the above cases the second value must be
greater than or equal to the first value or a list with
no values will be generated.

ptr1, ptr2 are pointer identifiers within a linked list of record
data—elements, or a linked list of pointer data—
elements.

Examples of implied ranges

12 : 36
Z specifies the list of integer values
X 12, 13, 14, ... , 35, 36

2*(3+1) : 1U**2
. specifies the list of integer values

2 8, 9. i0, . . , 99, 100

ENUMERATION (white,black,red,blue,grey,green,mauve)
Z followed by a statement containing

red : green
Z specifies the enumeration literal list, ie. enumeration

identifiers
[red, blue, grey, green

‘
N

The implied pointer ranqe is discussed in more detail in section
3.8, together with the description of the Pointer data type. For

examples of the use of an implied pointer range, see FOR — ENflFOR
loops. section 6.5. and Processing of Records in List Structures
section 4.6.

ND~60.117.04

32 PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

ND—60.117.04

PLANC Reference Manual 33
DATA DECLARATION AND SIMPLE DATA TYPES

3 DAILDEELARAIIDN.-AND.SIHELE_BAIL IYBES

This chapter will describe some of the basic terms and concepts
associated with the storage and accessing of data values in PLANC
programs. Only the simple data types will be discussed here. More
complex data structures are available in PLANC, eg. arrays and
records. but they will be discussed later.

3. 1 DEEINIIIDN_DE.-ELANC..IERMINHLDGY

Amongst the basic language elements of PLANC, literals and identifiers
have already been discussed (Chapter 2. BASIC LANGUAGE ELEMENTS). A
data—element is any area of storage that can be referred to as an
entity and may contain a definite value. Most data—elements are
referred to by an identifier name but some, such as literals do not
have any associated name. Each data—element is of a defined Q§§§__lXQ§
which specifies two characteristics

1) the {ormat and range of possible values of information stored
in the data~element.

2) the operations which may be applied to the data—element.

Data—elements may be of either a simple or a composite data type. A
data—element of a simple data type is an entity which may not be split
into any components. A data~element of a composite data type consists
of components. each of which is a data—element of simple or composite
type.

The PLANC language has a variety of data types available.

Simple data types are

1) INTEGER

2) REAL

3) BOOLEAN

4) LABEL

5) VOID

6) ENUMERATION

7) POINTER

ND—80.117.04

34 PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

Composite data types are

1) ARRAY

2) RECORD

3) SET

4) ROUTINE

Some simple data types may have particular characteristics modified.
The modifications which are available are -

1) RANGE — for INTEGER type only

2) PRECISION — for REAL type only

3) ACCESS MODIFIED — for some simple and composite data types

In a PLANC program a new data type may be created by defining the new
type in terms of existing data types. The existing simple data type
used in such a definition is called the base type of the new data
type.

A declaration specifies an identifier name to be associated with a
data—element, the data type of the datavelement and allocates
appropriate storage to contain the values of the data~element. A
declaration may also optionally specify an initial value to be present
in the data—element when the program begins execution. The general
form of a declaration statement for a simple data type is

data—type : identizzlit—exp] [.ident[:=lit~exp]]

where

dataetype ‘ is a valid simple data type

ident is a valid identifier

lit—exp is a literal expression of appropriate type

Note : initial value is valid only for INTEGER, REAL. BOOLEAN
types.

An initial value should normally be used in the outer level of a
module. If an identifier is to have an initial value inside a routine,
then its access must be declared as READ. see section 3.11.3.

ND-BD.117.04

PLANC Reference Manual 35
DATA DECLARATION AND SIMPLE DATA TYPES

.3. 2 INIEEERjél'AzéfLEflElIIS

The data type 'integer’ specifies data—elements which can contain
whole number values. The general form of a declaration of an integer
data—elements is

INTEGER : ident[:=lit*exp] [.ident[:=lit—exp] 1

where

ident is a valid identifier

lit—exp is a integer literal expression

The range of possible values which can be held in an integer datam
element has been discussed briefly under Integer Literals. see section
2.7.1 . For full details of the range of possible values and storage
allocated, see Appendix C.

Some variants of the INTEGER type are available and these have
particular range limits. These are

1) INTEGER1 ~ to be stored in an 8 bit field. The range of
possible values is

—126 <= value <= 127

2) INTEGERZ - to be stored in a 16 bit field. The range of
possible values is

—32768 <= value <= 32767

3) INTEGERk — to be stored in a 32 bit field. The range of
possible values is

—2147483548 <= value <= 2147483647

The type INTEGER will default to one of the variants depending on the
machine implementation. see Appendix C.

During compilation, the initial value of an integer literal data"
element, will not cause a compiler error if it is too large for the
storage available for the data type declared; some form of truncation
will occur. During program execution no checks will be carried out
other than those proviced by the hardware being used, eg. overflow.
see Exception and Error Handling, section 6.8 and Appendix C.

Examples of integer declarations

INTEGER : int1,int2.int3,init1:=45,int4
INTEGER1 : int8bz= —22
INTEGERZ : int16b
INTEGER4 : int32b

ND-BU.117.04 Revision A

36 PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

3.3 REALW

The data type 'real‘ specifies data—elements which can contain
floating—point values. The general form of a declaration of real data—
elements is

REAL : ident[:=lit—exp3 [.ident[:=lit~exp] 3

where

ident is a valid identifier

lit-exp is a real literal expression

The range of possible values which can be held in a real data~element
has been discussed briefly under Real Literals, see section 2.7.2
For full details of the range of possible values, the number of
significant digits and storage allocated, see Appendix C.

A variant of the REAL type is available and it has particular range
limits. These are

1) REALB - to be stored in a 64 bit field. The range of possible
values is

10**—76 (2 value <= 10**76
with accuracy of 15 significant digits"

The type REAL will default to a 32, 48 or 54 bit format depending on
the machine implementation and the Floating-point hardware being used,
see Appendix C.

During compilation, the initial value of a real literal data—element.
will not cause a compiler error if the value is too large for the
storage available for the data type declared; some form of truncation
will occur. During program execution no checks will be carried out
other than those provided by the hardware being used, eg. overflow.
see Exception and Error Handling, section 6.8 and Appendix C.

Examples of real declarations

REAL 2 r11,r12.rinit1:=L5.U,rinit2:=2.65E—8.rl3
REAL8 : rlGAbit
REALB : r164bz= «22.765E26

ND—60.117.04 Revision A

PLANC Reference Manual 37
DATA DECLARATION AND SIMPLE DATA TYPES

3. 4 BUDLMDATAzELEHEMJCS

The data type 'boolean' specifies data—elements which can confiain
logical values. The general form of a declaration of boolean data—
elements is

BOOLEAN : ident[:=lit—exp] [.ident[:=lit—exp]]

where

ident is a valid identifier

lit—exp is a boolean literal expression

The possible values which can be held in a boolean data-element are
TRUE or FALSE. They have been discussed briefly under Boolean
Literals, see section 2 7.3

Examples of boolean declarations

BOOLEAN : booll,b0012,b0013
BOOLEAN : blinit1:=TRUE.blinit2:=FALSE AND TRUE

ND-60.117.04

38 PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

3. 5 CWSIANI_ECLARAIIMS

The 'constant' declaration specifies identifiers which will be
associated with data—elements whose value will be fixed at compile
time and not allowed to change during program execution. The general
form of a constant declaration is

CONSTANT ident[=lit—expl [.ident=lit—exp]

where

ident is a valid identifier

lit~exp is a literal expression of integer, real, boolean type

The following rules apply to CONSTANT declarations

1) The data type of an identifier is determined by the data type
of the corresponding literal expression following the equals
character (=).

2) If the equals character (=) and the literal expression are
omitted. then the identifier type will be of type integer by
default. In this case the integer value stored in the data»
element will be the next integer value higher than the
previous integer value in this CONSTANT statement. If there
is no previous integer value specified in this CONSTANT
statement, either explicitly or by default, then 0 will be
the first value provided.

Examples of constant declarations

CONSTANT int1=23,rl1=3.14,bl1=TRUE
Z explicit value data types

CONSTANT zero,r12=1.1,one,b12=FALSE,two
Z identifiers without values take values 0, 1, 2

CONSTANT four=4,five,nine=four+five
Z 'five' takes the next higher value after 4
Z and 'nine' is the sum of k and 5

CONSTANT r13=r11*r12,bl3=bl1 AND b12
Z expressions result in r13 taking the value 3.454
2 and bl3 taking the value FALSE.

ND—60.117.0é Revision A

PLANC Reference Manual 39
DATA DECLARATION AND SIMPLE DATA TYPES

3u6 EMUHERAIIQN_flAIézELEEKHHLS

The data type 'enumeration' specifies data~elements which can take any
one of a finite number of values declared in an enumeration literal
list. The general form of a declaration of enumeration data-elements
1:3

ENUMERATION (enmlit—list) : ident(:=en—id—val]
{.ident[:=en—id—va1] 1

where

en—lit—list is an enumeration literal list

ident is a valid identifier

en—idvval is one of the values in the enumeration literal list

The possible values which can be held in an enumeration data—element
are strictly limited to those values in the enumeration literal list
of this declaration statement. An enumeration data~element will
usually be held in an integer size storage location which will
determine the maximum number of distinct values in the enumeration
literal list. for details see Appendix C.

Examples of enumeration declarations

ENUMERATION (saturday.sunday) : weekend_days,days
ENUMERATION (ringnes,becks,fosters) : goodbeerz=ringnes
ENUMERATION (ringnes.mack,fosters) : bestbeerz=fosters

The enumeration data type is of particular interest when used in
conjunction with the CASE statement, see section 6.3

The SUCC standard routine and the PRED standard routine may he used to
obtain the following or previous enumeration values respectively. For
detailed description of these standard routines see section 7.$

ND-so.117.04 'Revision A

f

AD PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

3. 7 EQINLERS

The data type 'pointer' specifies data—elements which can contain
references (addresses) to any data—element of a given data type. The
given data type for which a pointer identifier can hold references is
called the 'qualification’ of the pointer. The general form of a
declaration of pointer data—elements is

d—type POINTER : ident[:=p~identl [.ident:=p—ident ...]

where

datype is any valid data type

ident is any valid identifier

p—ident is any identifier of 'd—type' data type whose reference
is to be stored in the pointer data—element initially.

The value 'NIL' may be used to specify that a pointer identifier
should reference no data—element. This may be used as an initial value
or anywhere within the executable statements to reset the value of a
pointer data~element.

Examples of pointer declarations

INTEGER : intT.int2
INTEGER POINTER : intptr1,intptr2:=int2
REAL POINTER : rlptr1,rlptr2:=NIL

The possible values of a pointer data—element will vary according to
the data type which is to be referenced. Details of storage
requirements of pointer data—elements for various data types may be
found in Appendix C.

Pointer data—elements may be initialised at compile time by using the
ADDR standard routine, providing the parameter of the standard routine
invocation can be evaluated by the compiler.

For example

INTEGER POINTER : ip1:=int X has the same effect as
INTEGER POINTER : ip1:=ADDR(int)

INTEGER POINTER : ipt10:=ADDR(10)

will initialise the data—element with the address of the integer
constant 10.

Pointer identifiers may be used in expressions with all of the
relational operators, eg. to compare addresses for equality in a
conditional statement. However it should be noted that evaluation of
such expressions and the resulting value depend critically on the
internal representation of addresses in each machine implementation of
PLANC, see Appendix C.

ND—60.117.04

PLANC Reference Manual 41
DATA DECLARATION AND SIMPLE DATA TYPES

Pointer data~elements used as operands for the relational operators
are treated as unsigned integers for the purposes of comparison. For
the size of these integers on each particular machine implementation
see Appendix C.

The data~elements described so far are all static in that the
necessary memory is allocated for a data—element at the time that the
module containing the declaration is about to begin execution. It is
also possible to use dynamic data—elements which are created and
destroyed dynamically during the execution of the module. The standard
routines NEW and DISPOSE may be used for dynamically creating and
destroying data~elements respectively, see section 4.5. The POINTER
data type may be used to refer to either static or dynamically created
data~elements. Dynamically created data—elements do not have explicit
identifiers with which to access their values as do static data~
elements, so the standard routine IND (see section 7.9) may be used
to access the value of dynamically created data-elements.

3. 8 EDINIERJMELIEHEANBE

The pointer implied range is an abbreviated form which describes a
linked list of pointer data—elements which may form a chain of
records. The syntax of the pointer implied range has been described in
section 2.13 . A linked list of records may be set up statically or
created dynamically using the NEW standard routine.

The list of data—elements which such a pointer implied range implies,
may be created at compile time or dynamically at run—time when the
appropriate addresses must be set up by the program. A list being
processed by the use of a implied pointer range will terminate when a
NIL pointer value is encountered. See Records and List Processing.
section 4.5, the IN operator, section 5.4. and FOR — ENDFOR loops,
section 6.5, for examples of the use of pointer implied ranges.

ND~BO.117.04

k2 @LANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

.349 LABEL5

The data type 'label' defines an identifier which has no associated
data-element. A label identifier may only be placed at the start of an
executable statement. The general form is

label—ident : executable-statement

labels must be declared if they are to be referred to by 60
statements. see section 6.1. Labels will be further discussed in
Scope of Identifiers. see section 7.8.

Examples of label declarations

LABEL : lab1,loop.next

.3. 10 YDID

The data type 'void' denotes the absence of a data—element where a
data—element could be present in a statement. The general form of a
void declaration is

VOID

It has particular use in routine declarations and will be discussed in
more detail in Chapter 7. ROUTINES.

ND-60.1J7.04

PLANC Reference Manual 43
DATA DECLARATION AND SIMPLE DATA TYPES

3. 11 MEIEMDAIAJXEES

A 'modified data type' is one of the simple or complex data types with
certain of its characteristics restricted. The following modifications
of simple types are available

1) Range Modification — for INTEGER data types only.

2) Precision Modification — for REAL data types only.

3) Access Modification — read/write access to data~elements of
all simple data types.

3. 11. 1 RANGE.MDIEICAHIM

A 'range modified' integer data—element has its value range restricted
to an explicit upper and lower bound. The general form of a range
modified integer declaration is

INTEGER RANGE (int-lit~exp : int—lit-exp)
ident[:=int~lit—exp] [,ident{:=int—lit—exp] 1...

where

int~lit~exp is a valid integer literal expression

ident is a valid identifier

The data—elements of a range modified integer data type will have
storage allocated as the smallest number of storage units able to hold
all values of the range explicitly declared.

Examples of range modified integer declarations

INTEGER RANGE (—10:990000) : dblint1.dblint2:=99999
Z will require 32 oit integer data—elements

INTEGER RANGE (0:200) : int1.int2:=148
Z will require data—elements of at least 8 bits

During compilation of a program, the size of an integer literal. used
for an initial value of a range modified integer data~element. will
not cause a compiler error if the value is too large for the storage
available for the data type declared; some form of truncation will
occur. During program execution no checks will be carried out other
than those provided by the hardware being used, eg. overflow, see
Exception and Error Handling, section 6.8 and Appendix C.

N0-60.117.04 Revision A

44 PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

3. 11.2 BRECISIDNJDUIEICALIDN

A "precision modified' real data—element has its maximum number of
significant digits explicitly specified. The general form of a
precision modified real declaration is

REAL PRECISION (int-lit) : ident[:=real-lit~exp]
[.ident[:=real‘lit~exp] 1

where

int-lit is an integer literal less than or equal to a number
determined by the machine and the floating—point
hardware being used.

ident is a valid identifier

real—lit—exp is a real literal expressior

The data—elements of a precision modified real data type will have
storage allocated as the smallest number of storage units able to give
the required number of significant digits.

Examples of precision modified real declarations

REAL PRECISION (4) : rl1,r12:=99.99
Z will require 32 bit real data—elements

REAL PRECISION (8) : rl3,rlk:=919.9912§
Z will require 48 bit real data—elements

During compilation of a program, the size of a real literal, used for
an initial value of a precision modified real data—element, will not
cause a compiler error if the value is too large for the storage
available for the data type declared; some form of truncation will
occur. During program execution no checks will be carried out other
than those provided by the hardware being used, eg. overflow, see
Exception and Error Handling section 6.8, and Appendix C.

ND—60.117.04

PLANC Reference Manual 45
DATA DECLARATION AND SIMPLE DATA TYPES

3. 11.3 accessmammzm

An 'access modified' data—element may have its access restricted to
either READ or WRITE operations respectively. The general form of an
access modified declaration is

data—type READ : ident:=lit—exp[,ident:=lit—exp]
or

data—type WRITE : ident[,ident3

where

data—type is a simple data type

ident is a valid identifier

lit—exp is a literal expression resulting in a value of 'data«
type'

READ access will not allow the value of a data—element to be changed
during program execution so it is necessary to initialise such
identifiers in a declaration statement.

WRITE access will only allow values to be stored into a data—elementt
This is of particular interest in the declaration of arrays and
records, to control access to their component data—elements, see
sections 4.1.3 and 4.2.3 . WRITE access is discussed also in
relation to parameter transfer in routines, see section 7.4

The default access for all declarations is both READ and WRITE. except
For formal parameters of ROUTINES, see Chapter 7

ND—SD.117.D$ Revision A

4B PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

3. 12 ERELEEINEILDAIéiIXEES

Some predefined data types are provided in the PLANC compiler. The
predefined data types are defined in terms of the already described
simple data types. The simple data types have operators and operations
defined for them, however, the predefined have the same operators and
operations as those defined for the base _§ata type from which the
predefined type has been derived. The following predifned data types
are available

1) BYTE - data~elements can contain single characters only.

2) BYTES — data~elements can contain character strings.

3) BITS ~ data—elements can contain sequences or bits.

3. 12. ’i Bl’IELDAIAzdEMENIS

The datawelement of the BYTE predefined data type can contain a single
character only. It is equivalent to the declaration

INTEGER RANGE (0:255) : declaration—list

Thus BYTE data-elements may represent all Characters in the ASCII
character set. However BYTE identifiers may be used as integer
identifiers with the operators defined for the integer data types.

Examples of BYTE declarations

BYTE : Ch1,ch2,ch3
BYTE : chinit:=#z Z an initialised byte data~element

Z
Z

#x=:ch1 Z store ch. in a byte dataeelement
ch1+chinitzzch3 Z add two byte data—elements

3 . 12. 2 BXIES_DAIA:ELEUENIS

The QYTE§ predefined data type used for character strings will be
discussed in section 4.1.7.1.

3. 12. 3 B.II$_DAIA:ELEHENIS

The BITS predefined data type used for bit strings will be discussed
in section 4.1.7.2.

ND'60.117.04

PLANC Reference Manual 4?
DATA DECLARATION AND SIMPLE DATA TYPES

3’. 13 HELSHWIMMLUSHLQEINmIEES

The predefined data types and the modified data types are examples of
variations of the sinple data types described earlier. In a similar
sense, the programmer may define his own data types in terms of the
available data types, including the predefined and modified data
types. The general form of a type specification is

TYPE new—type—ident : data—type

where

new-type-ident is an identifier to be used as the name of the newly
defined data type

data-type is a simple. predefined, modified data type or a
previously defined 'new' data type

It is important to note that a type specification statement will not
cause any data~elements to be constructed. A type specification
statement describes the precise characteristics to be associated with
a data—elements defined by a declaration statement. Data—elements will
only be constructed. and storage allocated for program execution, as a
result of declaration statements for static data—elements or by using
the NEW standard routine for dynamically created data—elements.

Examples of new type specifications and their use

TYPE mychar = [NTEGER RANGE (0:127) Z ie. 7 bit characters
Z this new type can now be used in a declaration

mychar : ch1,ch2.ch3

TYPE colour : ENUMERATION (red,green,blue.black.white)
colour : cll.c;2.cl3

Z a new data type colour' is now available

1 however, a similar effect could be achieved without creating
Z the new data type 'colour'

ENUMERATION (red,green,blue,black,white) : cl1,c12,c13

ND-80.117.04

$8 PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

3.14 HEEDESIANHWINE

The TYPEOF standard routine specifies identifiers to be of the same

data type as a previously declared identifier. The general form of use

of the TYPEOF invocation is

TYPEOF p-ident : ident—list

where

p—ident is a previously declared identifier

ident—list is a list of identifier declarations

Example of use of the TYPEOF standard routine

INTEGER : int1.int2,int3
TYPEOF int2 : id1,id2

Z id1 and id2 are dependent on the data type of intZ,
2 ie. idl, id2 are currently of type integer

5?. 15 WSIDRAGEEHRW’IS

The gguiyalenge declaration will force two data-elements to begin at
the same storage location, regardless of their data types. The general
form of an equivalence declaration is:

data—type : identifier = previous-identifier

where

data—type is any valid data type

identifier is an identifier of type 'data—type‘

previous—identifier is a previously declared identifier

Data—elements of different types require different amounts of storage,
so it will be necessary to know precise implementation details of
storage allocation in order to understand the consequences of
overlapping data—elements with the equivalence declaration. see
Appendix C.

Example of an equivalence declaration

INFEGER : int1.int2
REAL : rl1.r12=int1

The data‘element for r12 will begin at the same storage location as
int1 but will not be of the same length.

N0-60.117.04 Revision A

PLANC Reference Manual 49
DATA DECLARATION AND SIHPLE DATA TYPES

3'. 16 .BREDECLABAIIDIN

The pregeglaratign facility may be used if it is necessary to refer to
a data—element in a statement which precedes the actual declaration of
that data—element. A predeclaration must precede the statement which
refers to the data~element. This predeclaration informs the PLANC
compiler that an actual declaration will occur somewhere further on in
the module.

A predeclaration is of the same form as the actual declaration, but a
question mark character (?) follows the data—element name.

For example

INTEGER : int1?

is a predeclaration of int1 and further in the module there must be a
following declaration

INTEGER : int1

The predeclaration is of particular use if two routines have mutual
references, eg. if two routines invoke each other.

For example

I predeclaration of routine data—element rtZ
ROUTINE VOID,VDID : rt2?

Z
ROUTINE VOID,VDID : rt?

2 invoke rt2
rt2
ENDROUTINE

ROUTINE VOID.VJID : rt2
Z Note the following invocation of rtI prevents simply
Z exchanging the order of the routines

rt1

ENDROUTINE

ND-60.117.04

50 PLANC Reference Manual
DATA DECLARATION AND SIMPLE DATA TYPES

A further possible use of predeclarations is to initialize a static
linked list of records.

For example

2 define a data type for records in the linked list
TYPE myrecord = RECORD

myrecord POINTER : linkptr
INTEGER : recnumber

ENDRECORD
Z initialise a static linked list of records

myrecord : r1?,r2?,r3? Z predeclaration of datawelements
myrecord POINTER : listhead:=ADDR1r1)
myrecord : r1:=(ADDR(r2).1)
myrecord : r2:=(ADDR(r3).2)
myrecord : r3:=(NIL,3)

Z Note that predeclaration may be avoided by reversing the
2 order of the last four lines

ND-50.117.04

PLANC Reference Manual 51
DATA DECLARATION AND SIMPLE DATA TYPES

3. 17 SIZEJIMDARlfllJUHNE

The SIZE standard routine returns the number of bytes used for the
storage of the data—element associated with the identifier specified
in the call to the SIZE routine. As the storage requirements vary with
the different implementations of PLANC, see Appendix C, this standard
routine gives access to the quantity of storage used for a particular
data—element. This routine may also be used For composite data—
elements which could be of particular use for dynamically created
arrays or records. see section 6.5.

For example:

REAL : r11
INTEGERZ : int2,int25ize, realsize

Z
SIZE r11 :2 realsize

Z store the number of bytes used for a floating—point value
SIZE int2 =: int2$ize

Z store the number of bytes used for an INTEGERZ value

Note that the SIZE standard routine may be used to give the size of a
data~element of a user defined data type which appears in a TYPE
specification. Further, any data type keyword may also be used as the
parameter of the SIZE invocation.

ND—60.117.04

52

ND—60.117.04

PLANC Reference Manual

PLANC Reference Manual 53
DATA DECLARAEIDN AND COMPOSITE DATA TYPES

4 DAILDECLMIAIIDN_ANDJZDHEDSIILDAILIIEES

This Chapter will describe the composite data types available in
PLANC. Composite data types have components which are either further
composite data types. or simple data types which have been discussed
in Chapter 3 . In array and record composite data—elements, the
component datamelements are uniquely identified and may be accessed
individually. The following composite data types are available in
PLANC

1) ARRAY — has components. all of the same type.

2) RECORD « has components of different types.

3) SET ~ is a collection of elements. treated as an entity.

4) ROUTINE » is a subprogram to carry out some specific
function.

4. 1 ARRAYS

An array data—element is made up of a group of components, all of the
same type. The array elements may be either of a simple data type or
themselves be of a composite data type, eg. an array or record. An
array whose components are arrays is called a multidimensional array.
All elements of an array data—element are uniquely identified by an
index value from a continuous integer range or from a range of values
of an enumeration set.

Array data—elements are the basis for the predefined data types, BYTES
for character strings and BITS for sequences of bits. Arrays may also
be used to represent other data structures by defining new data types.

ND—60.117.04

54 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

4. 1. 1 ARM..DECLARAIIDNS

A declaration of an array data—element specifies the following
information

1) Array Name — an identifier which can be used to refer to the
array data—element as a single entity or to refer to
individual elements of the array by the use of unique index
values.

2) Number of Dimensions — specifies the number of index values
needed to uniquely identify ar element of the array data»
element.

3) Range of Values for each Dimension ~ specifies the valid
range of values that each index may take in order to uniquely
identify an element of the array cata~element.

4) Initial Element Values ~ optionally some or all array
elements may contain initial values at the beginning of
program execution.

NDe80.117.04

PLANC Reference Manual 55
DATA DECLARATION AND CDflPOSITE DATA TYPES

The general term of a declaration of array dataeelements is

data~type ARRAY [ARRAY] ... : array—decl[.array-decl]

where

data—type is a simole, composite or predefined data type.

ARRAY is repeated as many times as the number of dimensions
required for the array dataeelements specified here.

array~decl is declaration of one specific array data—element. It
has the Following general form

ident(low—bnd:up~bnd[,lOW*bnd:up—bnd] .p)[::(value*
list)3

where

ident is a valid identifier.

low~bnd is a literal expression which results in an integer or
enumeration value when evaluated. This value is the
lowest value that an index for this dimension may take.

up—bnd as for low-bnd and must be of the same data type as the
low—bnd. This value is the highest value that the index
for this dimension may take.

Note : low~bndzup—bnd is called the index set and there must
be one index set for each dimension specified for the
array data-element.

value—list is a list of literal values which will be the initial
values of the array elements. For array elements of
composite or predefined data types, the data—elements
of the initial value list must be of the correct base
type.

Note : 1. that literal expressions may be used. provided that the
resulting value is of the correct type.

2. For array elements of the predefined type BYTES, string
literal values will have apostrophes instead of
parentheses.

The data type of all the elements at the array data-element is the
data—type specified in the declaration statement. The number of array
data—elements may be computed by taking the product of the number of
distinct values that each index set contains, ie. the number of values
for each dimension specified for a multidimensional array. The actual
storage required for such an array depends on the storage required for
a single array element, then multiplied by the number of elements
specified in the array. For the storage requirements of the simple
data types see Appendix C.

NDe80.117.04

56 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

The array data—element may contain initial values when program
execution begins. These values are specified in the list of literal
expressions, which have evaluated results of the data type 'data~
type‘. The list of values is placed in the array in the following
order; set each index to its lowest value, then vary the indices
through their index sets to their highest value, with the last index
changing most rapidly. For multidimensional arrays, if an initial
value list is specified. then it must contain one level of parentheses
for each dimension, to uniquely define the correspondence of the
values to their array elements. An exception to this rule is available
for BYTES arrays of more than one dimension, see section 4.1.7.1.

Note : this default sequence of elements of an array is the same as
that used in the PASCAL language, but different to that used in
FORTRAN. This is significant if modules of mixed languages are to
communicate satisfactorily, see Mixed Language Programming, Appendix

D

If an array declaration contains a list of initial values which has
fewer values than specified by the index set, the specified number of
array elements will be initialized and the rest will be set to a null
value, in fact binary zeroes. For multidimensional arrays, the first
{ew elements of a group, corresponding to a particular index set, may
be initialized by the use of parentheses.

If a list of literal expressions, to be used as initial values in an
array data~element, is present in the declaration statement then the
index set may be omitted and the PLANC compiler will supply implicit
bounds so that the array will have suffiCient elements to contain the
list of initial values. In this case the list of initial values will
implicitly determine the number of elements of the array data—element.
The implicit bounds are zero (0) and the number of elements minus one.

ND~60.117.04

PLANC Reference Manual 5?
DATA DECLARATION AND COMPOSITE DATA TYPES

Examples of array declarations

Z
Z

N
N

N
N

two one—dimensional arrays, same number of elements. but
the values of each index range are different

REAL ARRAY : vectorl(l:11),vector2(-5:5)

the second array has a list of initial values
CONSTANT two=2
INTEGER ARRAY : ar1(1:5),ar2(1:4):=(—2,4+two.21,~108)

the array ar3 has the same size characteristics as ar2 above.
with an index set, with values 0:3, implicitly specified by
the list of initial values

INTEGER ARRAY : ar3:=(—2,4+two.21.—108)

an array whose elements are range modified to be 6 bit
integers

INTEGER RANGE (1:63) ARRAY : modint(1:3):=(2,4,6)

a real and an integer array with enumeration index sets
ENUMERATION (red,yellow,blue,white,black) : colour
REAL ARRAY : aren1(yellow:white):=(l.D,2.0,3.0)
INTEGER ARRAY : aren2(red:blue):=(2,3.5)

a 2 dimensional boolean array and a 3 dimensional real array
BOOLEAN ARRAY ARRAY : boolZ(1:5,1:10)
REAL ARRAY ARRAY ARRAY : rl3(1:2.1:3.1:4)

cube is a 3 dimensional array with implicit index sets
equivalent to a declaration

cube(0:2.0:1,0:1)

INTEGER ARRAY ARRAY ARRAY : &
cube:=(((1.3).(2,4)). ((0.0),(0.2)). ((—1,1),(1,-1)))

ND-60.117.04

58 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

4?. 1.2 WWWMWW

A type specification may be used to create a new data type based on
the array data type. This newly defined data type may then be used for
declaring data-elements with the characteristics of the newly defined
data type. The general form of an array type specification is

TYPE type—ident = data-type ARRAYE ARRAY]

where

type—ident is an identifier which is the name of the new array
data type.

data~type is a simple data type as in an array declaration.

ARRAY;is repeated for the number of dimensions required
for each array dataaelement to be declared of this new
data type.

Note : For each 'ARRAY' keyword there must he an index set,
specified explicitly or inplicitly. in each data~
element declaration of this new data type.

A type specification will not result in any datavelements being
constructed, it only specifies certain characteristics that data—
elements will have if they are declared to be of a newly specified
type. Array data—elements will only be constructed in association with
a declaration statement.

Examples of array type specifications

TYPE ivector = INTEGER RANGE (0:12?) ARRAY
2 an array type of one dimensional arrays
Z with 7 bit unsigned integer array elements

ivector : ivc1(1:10).ivc2(1:100)
Z 2 data—elements of the 'ivector' array data type

ENUMERATION (red.blue,green,blue,pink) : colour
TYPE artype = INTEGER ARRAY ARRAY

2 type specification

artype : ar1(red:blue.red:pink) &
:=((1.2.3,t,5).(6,7,8,9.10))

Z this is a 2 dimensional 2*5 array with 10 integer elements
2 which may be accessed with enumeration identifier values

ND—60.117.04 Revision A

PLANC Reference Manual 59
DATA DECLARATION AND COMPOSITE DATA TYPES

4. ‘F . 3 REEEREML‘ElIfliARRAlf..-ELEMENIS_ANH_ACCESS.HDDE

In the executable part of a program it is necessary to refer to
individual elements of an array data~element, either to store a value
or to access a stored value. The general form of a reference to an
array element is

array-ident(index»expr[,index—expr] ...)

where

array—ident is the identifier in the array declaration.

index~expr is an expression of integer or enumeration data type to
match the type of the index set in the array
declaration.

Note : there must be the same number of indexMexpr’s in an
array element reference. as index sets in the array
declaration.

Examples of array references

BOOLEAN ARRAY : bool1(1:20)
Z

TRUE=2bool1(2)
TRUE=:bool1(1+1) Z is the same as the previous statement

ENUMERATION (red,blue,green,pink) : colour
INTEGER ARRAY ARRAY :iari(red:green.blue:pink)

Z
2::iar1(blue,blue) 2 store 2 in the array element

An exception to the above is available for BYTES arrays with more than
one dimension. The last subscript may be omitted and the reference
will be to the entire string, ie. the entire range of values of the
last index set.

For example

BYTES ARRAY : b1(1:2.1:3):=('abc','xyz')
BYTES : b2(1:3)
b1(1)=:b2

Z the string 'abc' will be stored in array b2
Z Note, one extra ARRAY keyword is implicitly included in a
Z BYTES declaration

In the above example the reference to the array b1, b1(1). is
equivalent to the subarray

b1(1:1,1:3)

ND—60.117.04

80 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

In an array declaration the data type of the elements of the array may
be a modified simple data type. In particular, the READ 'access'
modified type may be used in the Following manner

REAL READ ARRAY 2 rlar1(1:2):=(6.0.9.0)

This declaration specifies that the array elements are for read access
only. Consequently no values can be stored into the individual array
elements during program execution.

ND-80.117.04

PLANC Reference Manual 51
DATA DECLARATION AND COMPOSITE DATA TYPES

The contents of an array data-element may be copied into another data-
element by using the store operator. Such a copy operation treats an
array as a single entity. An array copy is only allowable if both
source and destination arrays have identical declaration
characteristics, ie, elements of the same data type, same number of
dimensions and the same index sets.

Example of an array copy

INTEGER ARRAY ARRAY : iarray1(1:2,1:2):=((1,2).(3.4)). &
iarray2(1:2.1:2)

iarray1=:iarray2 Z copy iarrayl into iarrayz

An entire array, ie. all of its elements, may be assigned to a single
value by using the store operator in the following way

expr=zarray—ident

where

expr has a value of the same data type as the declared data
type of the elements of the array.

array—ident is an array identifier.

Example of assigning a single value into an entire array

INTEGER ARRAY ARRAY : iarray‘1:10,1:10)

5+3**2=:iarray Z stores 14 in each array element

Arrays have an access mode, identical to that for simple data types.
for operations which treat an array as a single entity. The entire
access mode may be declared as READ or WRITE, Following the ARRAY
keywords.

ND-60.117.04 Revision A

62 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

Example of use of array access mode

INTEGER ARRAY READ : iar1(1:10)

is an array into which entire array operations cannot store values.
However it is still valid to store into individual elements of the
array.

If the declaration is

INTEGER READ ARRAY READ : iar2(1:10)

then it is not permitted to store into individual elements or into the
entire array as an entity.

Note that the access mode keywords, READ/WRITE, may not be placed
between the ARRAY keywords. READ/WRITE must precede or follow all the
ARRAY keywords of any ARRAY declaration.

4. 1 . 5 INDELSEIJNEQRMAIIDN

All array data—elements have a descriptor which contains information
specifying the number of dimensions, numter of index sets, the range
of values for each index set and the data type of the array elements.
All array operations and operations on individual elements use this
descriptor in¥ormation.

The lower and upper bound values for each index set are available
during program execution through the use of the following standard
routines

1) MININDEX (array—ident,dimension number) ~ returns the lower
bound of the corresponding index set.

2) MAXINDEX (array~ident,dimension number) ~ returns the upper
bound of the corresponding index set.

These routines are described in Standard Routines, section 7.9.

ND—60.117.04

PLANC Reference Manual 63
DATA DECLARATION AND COMPOSITE DATA TYPES

45. 1 . 8 SUBARRAYS

A subarray is a part of an array which may be referred to as a single
entity. A subarray is specified by using a subarray index set for each
dimension of the original array. Each subarray index set must be a
subset of the corresponding index set in the original array.

Examples of subarrays

REAL ARRAY : rvector1(1:10).rvector2(5:40)
Z copy one subarray to another

rvector1(4:8):2rvector2(24:28)

INTEGER ARRAY ARRAY : intari(0:10,1:5).intar2(1:1t,-2:2)
Z copy subarrays of 2 dimensional arrays

intar1(0:10,1:k—2)=:intar2(1:11,i-3:k~5)
intar1(0:1.1:j)=:intar2(2:3,0:j—1)

If the AODR standard routine (see section 7.9) is called with a
subarray as a parameter then an array descriptor for the subarray will
be constructed. This descriptor may be stored in a pointer data-
element which is qualified to reference an array of these
characteristics. The subarray may then be treated as if it were an
array, just like a dynamically created array, and the IND standard
routine could be used to obtain the values of elements of this
subarray.

If an array is declared with two or more dimensions, then a subarray
may be implied by omitting the last one or more dimensions. If the
array is declared with n dimensions, and the subarray has the last k
dimensions ommitted (k<n), then the subarray will have n—k
dimensions.

For example

INTEGER ARRAY ARRAY : tw0d(1:100,1:100)
INTEGER ARRAY : oned(1:100)
INTEGER : sub1,sub2

Z a one dimensional subarray may be referred as follows
twod(10)=:oned Z the explicit subarray twpd(10:10,1:100)

Note that an element in the implied subarray twod(10), may be referred
to by the form twod(10) (2). An alternative to using this form would
be to refer to the original array twod. using twod(10.2) which gives
much faster access at rin—time.

ND-60.117.04

E4 PLANC Reference Manual

DATA DECLARATION AND COMPOSITE DATA TYPES

4 . 1. 7 EEEMINED.-DAIA_IYEES_USINELARBAXS

The array data type is used as a base type for the following data
types

1) BYTES — for character strings.

2) BITS ~ for bit strings.

4. 1. 7. 7 BYIES_.:_ARRAYS_USED_IQ_EEERESENI_CHWIEBKSIRINGS

A BYTES data~element can contain any number of characters. Each
character is held as an unsigned 8 bit integer and is equivalent to

the declaration

TYPE bytes = BYTE ARRAY PACKED

Note : the keyword PACKED will be discussed in section 4.2.5.

The declaration of a BYTES data—element includes one ARRAY keyword
implicitly. as this predefined data type is defined as an array of
BYTE data—elements.

The elements of a BYTES data—element, ie. a BYTE array, may be used as
operands for integer operators or the entire array may be treated as
an integer array, but the only specific character string operations
provided by the PLANC compiler are assignment and the relational
operators, see section 5.4. The user may of course create more
string functions, eg. string concatenation.

Examples of BYTES data—elements

BYTES : magic(1:100)
Z
Z a data—element which can hold 100 separate characters
2

'abracadabra'=:magic(10:20) Z store 11 characters

BYTES : string:='i am the greatest'
Z a data—element which can hold 17 characters
Z the first character can be referenced by
Z string(0)
Z the second by
Z string(1) and so on

ND~60.117.04

PLANC Reference Manual 65
DATA DECLARATION AND COMPOSITE DATA TYPES

If a BYTES array of more than one dimension is to be initialized, then
an exception to the normal predefined data type Facilities is
available. This represents an array of strings, where the last
dimension may be initialized by a whole string.

For example

BYTES ARRAY : bytesy4(D:1.2:5):r('abcd','wxyz')
Z two strings, each containing 4 characters, in an array

It is of interest to note in the type specification, that the BYTES
type is effectively specified in terms of another predefined type.

As a consequence of the data type BYTES being defined as a BYTE ARRAY.
there may be a difficulty if an access mode. READ/wRITE is to be used
for each array element, ie. each BYTE data‘element which makes up the
BYTES array. In order to declare an access mode for each array
element. the access mode keyword. READ/WRITE, must precede all of the
ARRAY keywords. Since the BYTES declaration includes an implicit ARRAY
keyword. it is not possible to declare an explicit access mode keyword
prior to the first ARRAY keyword. If such an explicit access mode for
each element of a 8YTES array is required. the user will have to
construct his own declaration as a BYTE array, with the access mode
keyword placed prior to all ARRAY keywords.

For example

BYTE ARRAY ARRAY PACKED : safegels (D 9,0:9)

is exactly equivalent to the declaration

BYTES ARRAY : 5afe_els (029,0:9)

However, if the array elements are to have a READ access mode only,
then the following declaration is the only way to achieve this

BYTE READ ARRAY ARRAY PACKED : safe_els (029,029)

If a number of BYTES arrays were required with READ access mode for
each element, a newly defined data type could be created for
convenience.

For example

TYPE mybytes = BYTE READ ARRAY ARRAY PACKED

ND-60.117.04

66 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

4. 1. 7. 2 1811’s-:..ABRAYS-USEDWIG_REERESENI_SE72UENCES_0E_BIIS

A BITS data—element can contain a sequence of bits of any length. Each
bit is represented by a BOOLEAN dataeelement compressed into succesive
bits of storage. It is equivalent to the declaration

TYPE bits : BOOLEAN ARRAY PACKED

Note 2 the keyword PACKED will be discussed in section 4.2. (.11

The elements of a BITS array may be used as operands for boolean
operators or the entire array may be treated as a boolean array. but
there are no specific bit operations provided by the PLANC compiler.
The user may of course create bit functions, eg. concatenate two bit
strings. An element of a BITS array may take the values TRUE and
FALSE.

Examples of BITS datawelements

BITS : flagsI(1:10)
1 set individual flags

TRUE=ztlagsl(1)
FALSE::flags1(3)

BITS ARRAY : flagsZ(1:2,1:2):=((TRUE,FALSE),(TRUE,TRUE))
BOOLEAN : bl1

2 access a single bit value
FlagsZI2,2)=:blI

NDw60.317.04

PLANC Reference Manual 67
DATA DECLARATION AND COMPOSITE DATA TYPES

4. 2 RECDRDS

A record data element is made up of components each of which may be of
any data type, simple, composite or newly defined. Each component of a
record data~element is uniquely identified by an identifier within the
record declaration. The RECORD data type must he declared in 3 TYPE
specification statement; declaration statements for RECORD data~
elements must use a record__gata type specified previously in the
program in which the declaration statement occurs.

4. 2. 1 RECORDiDECLARAIIDALSiAND...IIBLSEEL‘IEICAIIUN

A record type specification specifies the following information

1) Record Type Name - an identifier to be used in declaration
statements to refer to the record data type.

2) Component Data Type - the data type of each component of the
record data—element.

3) Component Identifier — the name used to refer uniquely to
each component of a record.

The general form of a record type specification is

TYPE rec~type ident r RECORD

comp datamtype : comp~ident~list~1
comp-data—type : comp—ident—list-Z

comp“...—list~n [MOD literal~expr3

ENDRECORD

where

rec—type—ident is an identifier to name the record data type.

comp—data—type is the data type of the component data—element.

comp-ident~1ist is one or more component identifiers.

Note : use a list if a number of components of the same type,
grouped together, are required.

literal—expr is any literal expression.

ND-60.117.04

68 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

A record type specification will not result in any data~elements being
constructed, it is only a description of which component data~elements
are constructed for declaration statements which use this newly
specified record data type. Records which are specified independently
of each other, ie. not variants, may use the same identifier name for
a component.

Examples of record type specification and declaration

Z specification of a 'parts' record type
TYPE partrec = RECORD

INTEGER : partnumter
BYTES : partname (1:20)
REAL : partprice

ENDRECORD
/ each record has 3 components ' a number, name and
2 price for a part
7
/1 declare 2 data—elements of the 'parts' data type

partrec : mypart,yourpart

Z a record may have arrays or records as components
TYPE person = RECORD

BYTES : personname(1:20)
INTEGER 2 age

ENDRECORD
TYPE team = RECORD

BYTES : teamname(1:15)
INTEGER ARRAY : teamnumbers (1:30)
person ARRAY : teammembers (1:30)

ENDRECORD
Z the record 'team' has an array 'teannumbers' and
Z an array of records 'teammembers‘

team : myteam Z a 'team' data—element declaration

ND*60.117.U4

PLANC Reference Manual 69
DATA DECLARATION AND COMPOSITE DATA TYPES

The components of a record data—element may be initialized by the
compiler so that the values will be present when the program begins
execution. The initial values must be specified in the record data"
element declaration. If any components of a record data~element are to
be initialized, then all components of that record must be given an
initial value.

Example of initializing record components

TYPE partrec = RECORD
INTEGER : partnumber
BYTES : partname (1:20)
REAL : partcost

ENORECORD
Z declare a record data—element with components initialized

partrec : psupply:=(123,'power supply'.100.2)

Note that if equivalence is used within record components and initial
values are to be pgaced in the data-element, only the first
declaration of the data element may have an initial value.

The storage alignment of record component data-elements will be
carried out according to the descriptions in Appendix C . Alignment
of record component data—elements may be explicitly controlled by the
MOD alignment clause. A MOD alignment clause forces the data—element
to be allocated at an address, whose displacement from the start of
the record, is a multiple of the resulting value from evaluation of
the expression in the MOD clause.

ND~80.117.04

70 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

4. 2. 2 MARIANLREIEDRDlIYEE_SEEBIEICAHDN

Record data~elements declared for a given data type have so far all
had the same structure of components. It is possible to specify two or
more records which have some common components and some components
which vary from one record to the next. Such related records are
called yariant records. Variant records may be specified by specifying
a record type with all the common components, called the base record
and then specifying each variant record as comprising the base record
plus those components particular to the variant record. The general
form of a type specification of a variant record is

TYPE var~rec~ident : base~rec~ident &
RECORD

var~comp1»data—type : varwcompl-ident—list
var~comp2*data-type : var—compZ—ident—list

ENDRECORD

where

var~rec«ident is an identifier to name the variant record
type.

base—rec~ident is the identifier naming the base record
type.

var-comp1«data—type are the data types of the additional
components of the variant record.

var-comp1-ident—list are identifiers to uniquely name the
additional components of the variant record.

Following type specifications of two or more variant record data
types, declarations of record datawelements of the variant data type
may be made as for normal record data—element declarations.

ND~60.117.U4

PLANC Reference Manual 71
DATA DECLARATION AND COMPOSITE DATA TYPES

Example of variant record specification and declaration

Z specify a 'vehicle' record data type
TYPE vehicle = RECORD

REAL : weight,length,width,height
ENDRECORD

Z specify first variant record data type using ‘vehicle' as
Z the base record

TYPE bus = vehicle RECORD
INTEGER : seats.numbercrew

ENDRECORD
2 specify second variant record data type

TYPE truck = vehicle RECORD
REAL : loadcapacity
BOOLEAN : automatic

ENDRECORD
Z declare 'bus' and 'truck' data—elements with initial values

bus : localbus:=(100.0,10.1,3,4,2.1,44,1>
bus : toursbus:=(150.0,11.3,3.4.2.1,35,3)
truck : tiptruck:=(50.5,8.8,3.2.1.9.45.0,TRUE)

Note that a record pointer identifier, declared for the base record.
may be used to contain addresses of base record data—elements or any
of its variant record data—elements.

If a routine declaration contains a base record data type for a
parameter. then an invocation of this routine may have any variant of
this record data type as an actual parameter. However, if the routine
declaration contains a variant record data type as a formal parameter,
only this variant record data type (or further variants of this data
type). may be used as an actual parameter in a routine invocation.

ND—80.117.04

72 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

4?. 2’. 3 www.mmwmm

In the executable part of a program it is necessary to refer to
components of a record data—element. either to store a value or to
access an already stored value. The general form of a reference to a
record data-element component is

data—el—ident.comp—ident

where

datavel—ident is the identifier in a record declaration.
Note that it may be a record pointer. but the following
references will all access the same data—element

rec element 2 rec is a record
recp.element Z recp is pointer to rec
ADDR rec.element

comp—ident is the component identifier in the record type
specification.

Note : if the component is itself a record, then use a further
dot followed by a component identifier from that
record.

Examples of record component references

TYPE person = RECORD
BYTES : givenname (1:15)
BYTES : familyname (1:30)
INTEGER : age.heightcm

ENDRECORD
Z declare a 'friend' data—element of data type 'person'

person : friend:=('Fred',’Bloggs’,49,179)
Z access a component of a 'friend' data—element

friend.age=z ... Z store the age of 'friend'
Z would access the value 49

Z specify a 'team' record type using 'person' from above
TYPE team = RECORD

person : captain
INTEGER ARRAY : teamnumbers (1:5)

ENDRECORD
I declare a ”team' data~element

team : usteam:=(('Ronald'.‘Raygun',79,141) ,1,3.5,7.9)
1 access a component of a record within a record
Z ie. the 'family name' of the 'captain' of the 'usteam'

usteam.captain.familyname=:
2 would access the value 'Raygun'

ND~60.117.D4 Revision A

PLANC Reference Manual 73
DATA DECLARATION AND CDPPOSITE DATA TYPES

4.. 2. 4 flEEBAIIDNS.-0MENIlRE..REBDRDS-.AND.RECORDlAECEfifi

The contents of a record data element may be copied into another
record data—element by using the store operator. For such a copy the
record data~elements must be of the same record data type.

Example of a record copy

Z type specification of an 'address' record
TYPE address 2 RECORD

BYTES : name(1:30)
INTEGER : streetnumber
BYTES : streetname(1:20)
BYTES : city(1:15)

ENDRECORD
Z declare two address data—elements

address : NDaddress:=('NDDSLO',20,'jerikoveien'.'oslo 10‘)
address : myaddress

Z copy the initialized address to the other data—element
NDaddress=:myaddress

Records have an access mode. identical to that for simple data types,
for operations which treat a record as a single entity. The entire
access mode may be declared as READ or WRITE. following the RECORD
keyword.

Example of use of record access mode

TYPE address 2 RECORD READ Z same as previous record

ENDRECORD

is a record into which entire record operations cannot store values.
However it is still valid to store into individual components of such
a record.

If the declaration is

TYPE address 2 RECORD READ

INTEGER READ : streetnumber

ENDRECORD

then it is not allowable to store into the name component of the
address record or into the entire record dataeelement as an entity.

ND—60.117.04

74 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

4. 2. 5 EAEKED.UBIIQMIOLARRAYS.AND.-REEDRDS

For data—elements of simple data types storage may be wasted in
particular machine implementations. For the composite data types.
arrays and records, space required for data~e1ements can be minimized
by using the option PACKED in a TYPE definition or a declaration, in
the case of an array.

For example

INTEGER! ARRAY PACKED : minints(1:500)
X will require 250 words on the ND—1OD whereas

INTEGER1 ARRAY : ints(1:500)
X will require 500 words and use only half of each word

Use of the PACKED option will minimize storage requirements but it
should be noted that this may cause a program to execute more slowly
because of time taken to extract component data~elements from the more
compact storage allocation being used.

Further examples of the effect of the PACKED option

Z on the ND—lOD
TYPE letters : ENUMERATION (a.b,c.d)
letters ARRAY : waste(1:10)

Z will require a 16—bit word per array element, ie. 10 words
letters ARRAY PACKED 2 nowaste(l:10)

Z will require an 8~bit field per array element. ie. 5 words

Z on the ND—100
TYPE myrec = RECORD PACKED

letters 2 alphabet Z 2~bit instead of 16—bit field
BYTE : bytvar Z 8-bit instead of 16-bit field
BOOLEAN : b1 1 1*bit instead of 16~bit field

ENDRECORD

The specific rules of how PACKED affects the storage requirements of a
data—element, on both the ND-1OO and the ND-SDD, are described in
Appendix C.

NDm60.117.04

PLANC Reference Manual 75
DATA DECLARATION AND COMPOSITE DATA TYPES

4. 3 SEIS

A set data—element is of a composite data type that, like the array
and record, is made up of a collection of components. However, unlike
the array or record. we neither index nor access the individual
components of a set. Instead a set is used only as a single entity.

The components that comprise a particular set are chosen from the
possible values of a simple data type called the base type of the set.
The valid base types for sets in PLANC are

1) INTEGER RANGE

2) ENUMERATION

A set datawelement may represent all subsets of the value of the base
data type of the set, including the 'empty' set. There is no mutual
ordering between the components of a set.

Thus the set data type in PLANC corresponds to the mathematical notion
of a set, with some restriction as to what may form the members of the
set. The usual mathematical set operations, eg. union, intersection,
difference and complement are available as operators for use with set
operands.

4. 3. 1 SEI._DECLARAIIDNS

A set data-element declaration specifies the following information

1) Set Name w an identifier which can be used to refer to the
set data element as a single entity.

2) Base Type — a data type which will specify all the possible
members of a set data element.

3) Initial Members — optionally specify a subset of the base
type values to be members of a set at the beginning of
program execution.

ND~60.117.04

75 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

The general form of a declaration of set data—elements is

base~type SET : ident[:=memb~list] [.ident[::memb»listl 3

where

basevtype is one of the data types ENUMERATION, INTEGER RANGE or
a data type newly defined with one of these as a base
type.

Note : integer range base type is restricted to a maximum of
256 values and the lower bound must be zero. Te. an
INTEGER RANGE must be 0:x, where x <= 255.

ident is a valid identifier.

memb—list is a list of values, selected once only, from the
possible values of the base data type.

Note : that literal expressions may be used, provided that the
resulting value is of the correct type.

The 'memb~list' may be partly or entirely specified by an implied
range providing that the list of values is of the correct data type,
see section 2.13

If the 'memb—list' is omitted, then the set will be empty when program
execution begins.

A set data—element will require enough storage to hold an indicator of
the presence or absence of every possible member of the set, ie. every
valid value of the base type of the set. For details of the actual
storage used see Appendix C.

Examples of set declarations

2 specify an enumeration data type
TYPE day = ENUMERATION (monday,tuesday,wednesday,

thursday,firiday.saturday,sunday)
I declare a set data—element with the weekend days as members

day SET : weekend:=(saturday,sunday)
Z declare a set data—element for the week days using an
X implied enumeration range

day SET : workdays:=(monday:friday)

Z declare a set of base type integer using an implied integer
2 range to specify a list of integer values

INTEGER RANGE(0:255) SET : twenties:=(20:27,28,29)

I declare a set which will be empty initially
INTEGER range(0:255) SET : emptyint

NDe60.117.0k

PLANC Reference Manual 7?
DATA DECLARATION AND COMPOSITE DATA TYPES

4. 3. 2 SEI.IXEE_SEECIEICAIIDN_AND.,USERiDEEINEDiIl’BES

A type specification may be used to describe a new data type based on
the set data type. This newly defined data type may then be used for
declaring data elements with the characteristics of the newly defined
data type. The general Jorm of a set type specification is

TYPE set~type~ident : set~base~type SET

where

set type~ident is an identifier which is the name of the new set data
type

set-base-type is the base data type for this set data type.

A type speciTication will not result in any data—elements being
constructed, it only specifies certain characteristics that data~
elements will have if they are declared to be of a newly specified
type. Set data~elements will only be constructed in association with a
declaration statement.

Examples of set type specifications

TYPE numbers = INTEGER RANGE(0:127) SET
Z declare data-elements of the 'numbers’ data type

numbers : tensset::(10,20,30,40,50.80,70,80.90)
numbers : digitsset:=(0:9)

TYPE colours = ENUMERATION (black,red,blue,green,white)
TYPE houses : colours SET

Z declare a data~element of the 'houses' data type
houses : myhouse:=(red,white,blue)

ND—60.117.04

78 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

4. 3. 3 QEEBAIIUNS._DN_SEIS

The relational operators (see. section 5.4) may be used with set
data~elements. As for other data types. evaluation of a relational
operator with two set data~elements as operands will give a boolean
resulting value, ie. TRUE or FALSE. The relational operators and their
meanings when used with set data elements as operands are as follows

= true if both sets contain the same members.
>< true if at least one member of one set is not a

member of the other set.
>: true if the left»side set has as a subset the

right—side set.
<= true if the left~side set is a subset of the

right~side set.
> true if the left~side set has as a true subset

the rightwside set.
< true if the left—side set is a true subset of

the right—side set.
IN true if the left~side identifier is a member

of the rightrside set.

Note : the IN operator is the only relational operator without
both operands as sets. The first operand data»element
of the IN operator must have a base type of INTEGER
RANGE, ENUMERATION or POINTER and the second operand
data—element is a set of the corresponding base type.

Examples of sets and relational operators

Z declare some sets
TYPE day = ENUMERATION (monday,tuesday,wednesday, &

thursday,friday.saturday,sunday)
day SET : week::(monday,tuesday.wednesday,thursday, &

friday,saturday,sunday)
day SET : weekend:=(saturday.sunday)
day SET : workdays:=(monday,tuesday,wednesday, &

thursday.fricay)
Z

expression r so t

week = workdays false
weekend >< workdays true
week >= workdays true
week > workdays true
weekend <= week true
weekend < week true

monday IN weekend false
monday IN week true

ND—60.I17.04

PLANC Reference Manual 79
DATA DECLARATION AND COMPOSITE DATA TYPES

The store operator =:, see section 5.1. may be used with set data—
elements as operands. It will have the effect of setting the members
of one set data—element exactly equal to the members of another set
data-element.

Example of sets and the store operator

INTEGER RANGE (0:10) SET : odds:=(1,3,5,7,9),numbers
1 store the members of set 'odds' in set 'numbers'

odds=znumbers

Beware that the way the set "odds“ is initialised above, cannot be
used in an executable statement in exactly the same way, eg.

(1.3.5.7,9)::numbers

will give a compile error. The correct way to specify an unnamed set
with a constant group of members requires the set base data type. This
is described following the description of the logical operators below.

The logical operators, see section 5.3. may be used with set data—
elements. Evaluation of logical operators with set data—elements as
operands gives a resulting value of the set data type with the
exception of the ABS operator which gives an integer result. The set
operators and their meanings when used with set data~elements as
operands are as follows

AND set intersection. ie. result is a set with members
which are members of both operand sets.

0R set union,ie. result is a set with members which are
members of either operand set or both.

XOR set difference, ie. result is a set with members which
are members of one of the two operand sets and not
members of the other.

NOT set negation, ie. result is a set which has as members
all the members which are not members of the operand
set.

ABS cardinal number, ie. result is an integer value of the
maximum possible number of members of the operand set.

ND-60.117.04 Revision A

80 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

Examples of sets and logical operators

Z declare some sets
TYPE colour = ENUMERATION (red,green.blue,pink,ash, &

yellow,white,black)
colour SET : bright:=(red,green,yellow,pink),anycolour
colour SET : pastel:=(blue,yellow,pink)
INTEGER : int1

2 union — result will have red, green, yellow, pink, blue
bright OR pastel =: anycolour

Z intersection - result will have yellow, pink
pastel AND bright 2: anycolour

Z difference — result will have red, green, blue
bright XOR pastel =2 anycolour

Z negation — result will have ash. yellow, white. black
NOT bright =: anycolour

Z set cardinal number — result is 8
A85 bright =: int1

ND~60.117.04

PLANC Reference Manual 81
DATA DECLARATION AND COWPDSITE DATA TYPES

The following standard routines are provided to carry out operations
on set data—elements

1) Specify a set data—element with a constant group of members.

2) INSERT

3) REMOVE

To specify an unnamed set data—element with a constant group of
members use the general Form

set'dataetype (memb—list)

where

set—data~type is data type with a set base data type.

memb-list is a list of literals, selected once only. from the
possible values of the base data type.

Note : 1. this list may include literal expressions which are to
be evaluated at compile~time.

2. omission of the 'memb‘list' from the parenthesis
denotes the 'empty' set for that base data type.

Example

TYPE tnumbers r INTEGER RANGE (0:100) SET
tnumbers : numbers
TYPE colour : ENUMERATION (red,blue,grey,pink,black)
TYPE tcolour = colour SET
tcolour : luckyset
INTEGER : intl

Z store an unnamed constant set data‘element
tnumbers (1,3,5,7) =:numbers
tnumbers (1,3,Hz10) =2 numbers
tcolour (bluezblack) =:luckyset Z lots of luck !

Z use an expression evaluated at compile—time
CONSTANT int2=i5
tnumbers (int2’3+4.int2:int2+5)=:numbers

2 an empty 'colour' set data—element
tcolour () =:luckyset I no luck at all !

Restriction : such an unnamed set data—element with a constant group
of members, must not be the first statement of a
routine, unless the entire statement is contained
within parentheses.

ND-60.117.0k

82 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

Add a member to a set data—element

set‘membernident INSERT setwident

where

set-member—ident is a data~element of the set base data type.

Note : this may be an expression to be evaluated at runwtime.

set—ident is a set identifier,

Example

INTEGER : int
INTEGER RANGE(0:100) SET : numbers

Z add a member to the 'numbers' set data~element
3 INSERT numbers
int*2 INSERT numbers

Remove a member from a set data‘element

set—member~ident REMOVE set ident

where

set—member—ident is a data—element of the set base data type.

Note : this may be an expression to be evaluated at run—time.

set—ident is a set identifier.

Example

INTEGER : int
INTEGER RANGE(U:10) SET : evens:=ZO,2.4,6,8.10)

2 remove a member from the 'evens' set data-element
6 REMOVE evens
int+5 REMOVE evens

ND~60.117.04

PLANC Reference Manual 83
DATA DECLARATION AND COWPOSITE DATA TYPES

4. 4 RDUIINES

The 'routine' is defined in the PLANC language as a composite data
type. While this may seem a little unusual. it is of benefit in
declaring a routine name to be used as a generic function with in fact
a family of similar routines which differ only in that their
parameters are of different data types and perhaps their return values
too, 99. a 'plus' operator may be thus created for integer,real and
complex parameters.

A full description of the syntax of routine type specification.
declaration. invocation and the use of parameters to communicate
information to and from routines may be found in Chapter 7,

ROUTINES.

NDn80.117.04

84 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

4. 5 DIWIILALLDCAHDN.GE_DAIA:ELEUENIS

During execution of a PLANC program. data—elements may be dynamically
created and destroyed in storage. The actual storage used for
dynamically created data—elements may be the program stack or an
INTEGER array. If the program stack is used. it must be declared with
enough space to hold all the dynamically created data~elements as well
as all the other usual runvtime requirements. One or more INTEGER
arrays may be used as storage for dynamically created data elements.

The NEW standard routine will dynamically create unnamed simple or
composite data~elements. Invocations to the NEW standard routine
return a pointer data~element of the type of the parameter used in the
call. Invocations of the NEW standard routine are as follows

For simple or composite data—elements use

NEW data type [IN int—array~ident]

where

data—type is any simple. composite. predefined or user defined
data type.

int—array-ident
is an integer array identifier.

For arrays or subarrays it is possible to use

NEW (arvtypeflident(index—set[,index-set] ...))[as above]

where

ar—type~ident is array data type identifier.

index~set is an index set specifier for each corresponding index
set for this array data type.

Example of dynamic creation of a simple data—element

INTEGER ARRAY : store(1:1000)
REAL POINTER : rlptr

NEW REAL=zrlptr
Z dynamic creation of a real data—element on the program stack
Z

NEW REAL IN store=:rlptr
Z dynamic creation of a real data—element in an integer array

ND—60.117.04

PLANC Reference Manual 85
DATA DECLARATION AND COMPOSITE DATA TYPES

Dynamically allocated datavelements will be created in the local data
area of a routine unless an INTEGER ARRAY from an outer level routine
is used in the NEW routine call. Note that all data»elements,
including those dynamically created, in the routine‘s local data_“a;ga
will be lost when an exit from a routine occurs.

The DISPOSE standard routine is used to deallocate dynamically created
data—elements, ie. a data—element which has been created by use of the
NEW data type IN array standard routine. Invocations of the DISPOSE
standard routine are to be used as follows

DISPOSE pointer~ident

where

pointer—ident is a pointer data element with a value pointing to the
data element to be deallocated.

ND-80.117.04

85 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

During execution, an INTEGER ARRAY POINTER called FREENP is available.
It is initialized to point to the memory location immediately
following the PLANC library routines loaded from the appropriate PLANC
library files. In order to safely use this pointer to utilise the free
space, the library routines must be loaded last.

In order to use the free space available, the declaration

IMPORT INTEGER ARRAY POINTER : FREE_P

must appear in the appropriate module. MININDEX(IND(FREE"P).1) and
MAXINOEX(INO(FREE_P),1) give the low and high addresses of the Free
memory area, represented as unsigned iwtegers. This pointer may be
used with the NEW standard routine as follows

NEW ... IN IND(FREE’P)::ptr

Examples of dynamic creation of array and record data~elements

2 specify an array data type
TYPE doublereal = REAL ARRAY ARRAY

Z declare a pointer data—element for the array data—element
doublereal POINTER : arraypointer
REAL : rll

Z dynamically create an array and store its pointer value
NEW (doublereal(l:5,0:10)) 2: arraypointer

Z .
Z access an element of the array data—element as follows

IND (arraypointer) (1,10) =: rll Z store value in rll

Z specify a record data type
TYPE complex = RECORD

REAL : realpart,imagpart
ENDRECORD

I declare a constant value record data—element
complex : constcomplex:=(1.0,l.0)

I declare pointer data~element for the 'complex' data type
complex POINTER : complexpointer

l dynamically create another 'complex' record
NEW (complex) =2 complexpointer

Z store the constant record into the dynamically created
'complex' record data—element

constcomplex =: IND(complexpointar)

N

ND~60.117.04

PLANC Reference Manual 8?
DATA DECLARATION AND COMPOSITE DATA TYPES

4!. 6 BRDCESSINfiflElflEEflRflS.ILLISLSIMITRES

The following standard routines are available for processing linked
lists of record data—elements

1) The INSERT standard routine will add a record data-element to
the front of a linked list.

2) The APPEND standard routine will add a record data—element to
the end of a linked list.

3) The REMOVE standard routine will remove a record data—element
from anywhere in a linked list.

The general form of the invocations of all of these standard routines
is

rec—pntr INSERT list-pntr—range

where

rec—pntr is a pointer to the record to be processed.

list—pntr—range
is a pointer implied range, describing the linked list.

The use of these list processing routines is illustrated in the
following code examples.

Set up a static linked list.

Z define a record data type for the linked list
TYPE myrecord = RECORD

myrecord POINTER : linkptr
INTEGER : recordnumber

ENDRECORD
Z initialise a static linked list of records

myrecord : r1?,r2?,r3? Z predeclaration of data~elements
myrecord POINTER : listhead:=ADOR(r1),anyrecptr
myrecord : r1:n(ADDR(r2).1)
myrecord : r2::(ADOR(r3),2)
myrecord : r3:n(NIL,3)

Z declare some records to illustrate list processing
myrecord : front:=(NIL.—T).back:=(NIL,99)
myrecord POINTER : frontptr:=ADDR(front).backptr:=ADDR(hack)

The record frggt may be added to the start of the linked list by the
statement,

frontptr ENSERT listheadzlinkptr

Following the execution of this statement, the linked list will
contain four records whose record numbers are —1. 1, 2, 3.

ND—SO.117.04 Revision A

88 PLANC Reference Manual
DATA DECLARATION AND COMPOSITE DATA TYPES

The record back may be added to the erd of the linked list by the
statement,

backptr APPEND listhead linkptr

Following the execution of this statement, the linked list will
contain five records whose record numbers are ~T, 1. 2, 3, 99.

The record 31 may be removed From the linked list by the following
statements,

ADDR(r1)=:anyrecptr
anyrecptr REMOVE listheadzlinkptr

Now the linked list will have only four records, with the record
numbers ~1. 2, 3. 99.

The standard routines will do all the necessary changes to the linkptr
component data-elements of records affected by the changes in the
linked list. eg. when record L1 is removed. record number —1 is
changed to point to record Lg (number 2).

Record data-elements may be created dynamically by the use of the NEW
standard routine. Such record data—elements may be manipulated in
linked lists in the same way as the explicitly declared record data—
elements above. In fact an entire list may be constructed from such
unnamed dynamically allocated record data-elements.

If a new record is to be placed in the middle of the linked list. then
the program will have to change the linkptr component data—elements
explicitly.

Note that the standard routines INSERT, APPEND and REMOVE will not
give any error indication if the record pointer in the routine
invocation is empty, ie. the pointer to the record to be processed has
a value NIL. This also applies to the REMOVE standard routine if the
linked list is empty. Beware that if INSERT or APPEND is used on a
record that is already in a linked list, there is no error indication,
but the address link field will be overwritten.

ND—60.117.04

PLANC Reference Manual 89
EXPRESSIONS — FORMATION AND EVALUATION

5' EXERESSIDNS--:iEDRMAIION_AND..EYALUAIIDN

An expression comprises operators and datawelements as operands,
formed according to a set of rules. During program execution, an
expression may be evaluated to give a resultiflgnyalue which may be
stored in a data—element. PLANC, unlike most high level languages,
does not have an assignment statement. It has assignment operators
which may be used within expressions to store any temporary resulting
value during the evaluation of an expression. At any point during
evaluation of an expression, a temporary resulting value is available.
Evaluation of one expression may store a number of values into data‘
elements. or if the expression is simply to invoke a routine with no
out-value, see section 7.2, then there is no resulting value and no
value is stored. The PLANC compiler will, if possible. try to evaluate
an expression at compile—time, eg. if it contains literals only.

The gperaggs used to form an expression may be literals, identifiers
or routine invocations. An expression must contain operands whose
corresponding data~elements are of one data type only, or parts of the
expression must give a resulting value data~element of the correct
data type required for Further evaluation. This means that in general,
there is no automatic conversion of the operand data~elements to the
data types required by a specific operator. A routine invocation,
within an expression evaluation, may have a side-effect of modifying a
data—element value which is to be used later in the evaluation.

The operators in PLANC are defined for one or more data types. The
following sections will describe all the available operators for each
specific data type. Further, some operators are binary, ie. they may
be used with two operands. For example, the sum of the values held in
two integer data~elements may be obtained by the following part of an
expression,

integ1+inte92

by using the binary + operator for the integer data type. Other
operators are unary. ie. they may be used with only one operand. For
example, the complement of a boolean data~element may be obtained by
the following part of an expression,

NOT bool1

by using the unary VOT operator for the boolean data type. The
evaluation of any operator and its operands will give a resulting
value, except for routines with no out-value. This resulting value,
which the run—time system may store in a temporary data—element, may
be explicitly stored by the use of the assignment operators.

ND—60.11?.04

90 PLANC Reference Manual
EXPRESSIONS ~ FORMATION AND EVALUATlON

The operators available in PLANC each have a priority which determines
the order of evaluation within the expression. An expression is
evaluated by first forming the resulting values of the highest
priority operators. These resulting values replace the operator and
its operands and then the next highest priority operators are
evaluated. For operators of the same priority, evaluation is from left
to right.

flarentheses may be used to enclose part of an expression, causing that
part to be evaluated separately from anything outside the parentheses.

User defined routines may be used within expresions and will be
evaluated accordingly. Such routines have a higher priority than all
the PLANC defined operators.

There are four Classes of operators

~ assignment

— arithmetic

logical

relational

ND~60.117.04

PLANC Reference Manual 91
EXPRESSIONS ~ FORMATION AND EVALUATION

5. 1 ASSIGNMENI.-QEEBAIDRS

PtANC has two assignment operators which may be included within
expressions. The assignment operators are used to store values, into
data—elements, during evaluation of an expression. More than one
assignment operator may be used in an expression, causing a number of
values to be stored during evaluation of this expression. PLANC has no
distinct assignment statement as many other high‘level languages have.

The assignment operators have a priority associated with each side of
the operator. The left—side priority is the lowest possible priority,
to ensure that the entire expression to the left of the operator has
been evaluated before evaluation of the assignment operator.

Both operands for an assignment operator may be of any simple,
composite or predefinec data types. Both operands must be of the same
data type. If however tte operands are modified integer or real data
types, they may be of different modified data types, ie. integer range
or real precision. and appropriate conversion will take place prior to
evaluation of the assignment operator, provided the receiving data«
element is large enough to contain the value to be stored. If not,
truncation will occur ard no runwtime error indication will be given.

If the operands are data~elements of composite data types, then the
value of the entire data-element will be moved by the store operator.
eg. a store operator with array operands will move the entire array as
an entity, see section 4.1.4

The two assignment operators are

Operator Priority Operation Data types

=2 1, left~side Store all simple,
12. right—side composite and

predefined

;:; 1, left—side Change all simple
12, right~side

When evaluation 0? an expression reaches a store operatgr. the
resulting value of the part of the expression, immediately to the left
of the store operator, will be stored into the data—element associated
with the operand immediately to the right of the store operator.

The resulting value after evaluation of a store operator has the same
value as the resulting value immediately prior to the evaluation of
the store operator, ie. evaluation of a store operator does not change
the resulting value of tie expression during evaluation.

ND~60.117.04

92 PLANC Reference Manual
EXPRESSIONS ~ FORMATION AND EVALUATION

For example

1. 53::int

will store the integer literal value in the integer datawelement
associated with the identifier int.

2. 3+5=zint

will evaluate the sum of the two integer literals first because the
integer + operator has a priority of 8. The left—side priority of the
store operator is 1, ie. lower than that for the + operator, and thus
it will be evaluated after the +. The resulting value of evaluation of
the integer + operator is 8, and will then be stored in the integer
data—element associated with the identifier int.

3. intvalzzint

will store the value stored in the datawelement associated with the
identifier intval, into the data—element associated with the
identifier int.

4. 2+2::int1=:int2

will store the value of the sum, 4, into the datanelement associated
with the identifier int1. The resulting value at this point of the
expression evaluation is 4. Then evaluation of the second assignment
operator stores the resulting value 4 into the data~element associated
with the identifier int2.

5. 1+2=:int1+4=:int2

will have a resulting value 3 from the First sum. Evaluation of the
first store operator will store the resulting value 3 in the data~
element associated with the identifier int1. Then second + operator
will have a resulting value of the sum. 3+4. This resulting value, 7,
will be stored by the second store operator into the data—element
associated with the identifier int2.

ND—60.117.04

PLANC Reference Manual 93
EXPRESSIONS — FORMATION AND EVALUATION

6. 5*4+1::int
will store the value ot the entire expression, ie. 21, into the data~
element associated with the identifier int. If however, parentheses
were used,

5*(#+1)=:int

the order of evaluation of the operators is different. In the
expression without parentheses, the product 5*4 is evaluated to give
the resulting value 20. Then the sum 2041 is evaluated to give the
resulting value 21, which is then stored. In the expression with
parentheses, first the sum 4+1 is evaluated to give the resulting
value 5. Then the product 5*5 is evaluated to give the resulting value
25, which is then stored. Note that the parentheses not only change
the order of evaluation within the expression, but cause a different
final result, depending on the mixture of operators used in the
expression.

ND»60.117.04

94 PLANC Reference Manual
EXPRESSIONS , FORMATION AND EVALUATION

When evaluation of an expression reaches a ghanggmgperatgg, the
resulting value of the part of the expression, immediately to the left
of the store operator. will be stored into the data~element associated
with the operand immediately to the right of the store operator. This
is identical to the store operator.

The resulting value, From evaluation of a change operator, is
different to that of a store operator. The value of the data element
to receive the value to be stored by a change operator, iflmggLyatelv
prior to evaluation of the change operator, will be the resulting
value following evaluation of the change operator.

For example

1. 3::int Z store 3 into datavelement associated with int
42::int

will store the integer literal value 4 into the datawelement
associated with the identifier int, but the resulting value of the
expression following evaluation of the change operator is 3, ie. the
value that was in the data-element associated with int before
evaluation of the change operator.

2. 3 l Z store 3 into data—element associated with i
4=zj Z store 4 into data—element associated with j
i:=:j=:i Z exchange the values of i and 3

will store the value, 3, from the data~element associated with the
identifier i into the data—element associated with j. However the
resulting value of the change operator is the value in j prior to
evaluation of the change operator. ie. 4. Then the resulting value, 4,
is stored by the second operator in the expression, ie. 4 is stored
into the data—element associated with i.

ND«80.117.04

PLANC Reference Manual 95
EXPRESSIONS

- FORMATION AND EVALUATION

5". 2 ARIIHMEIIC.DEERAIDRS

PLANC has a number of arithmetic operators which are available for
operands whose data elenents are integer or real data types. There are
both unary and binary arithmetic operators. The operands for a binary
operator must both be either real or integer, but the operands may
vary in the declared modifications, ie. range for integer and
precision for real.

The following table lists all the available arithmetic operators

Operator Priority Operation Data types

+ binary 8 addition integer, real
binary 8 subtraction integer, real
unary 1U negation integer, real

* binary 9 multiplication integer, real
/ binary 9 division integer, real
** binary 11 exponentiation integer, real
ABS unary 11 absolute value integer, real
MOD binary 11 modulo integer
SHIFT binary 8 shift bits integer

The binary operators +, -, * and /, and the unary operators ~ and ABS
can have operand data elements of either integer or real data types.
Further, the operands may be modified, ie. integer range or real
precision. Various modified integer data type operand data—elements
may be mixed when used with the binary operators. Likewise. modified
real operands may be mixed when used with the binary operators.

The resulting value datawelement will be of the same data type as the
operands. If the operands are different modifications of one data
type, then the resulting value will be a data-element of the data type
appropriate to hold the larger of the two operand modified data types,
ie. For integer data—elements, a data—element of the larger range, and
for real data‘elements, a data—element of the larger precision.

For example

REAL PRECISION (15) : r11
REAL PRECISION (7) : r12

rl1+r12

evaluation of the real addition operator within an expression would
give a resulting value at that point in the expression, in a REAL
PRECISION (15) data—element, for further expression evaluation.

Note that the integer division will not return any remainder, the MOD
operator must be used.

ND~60.117.04

96 PLANC Reference Manual
EXPRESSIONS ~ fORMATION AND EVALUATION

The ** operator. for exponentiation, may have a first operand data—

element of integer or real data type. The second operand data~element
can only be an integer data type.

the binary operators, MOD and SHIFT, must have integer. or integer
modified, operands only. They both give a resulting value in an
integer data~element.

The SHIFT operator will shift bits in the first operand data~element.
The second operand specifies the number of bit positions to be shifted
and if this operand is positive, then the shift is to the left.
negative means shift to the right. If the First operand data—element
is a signed integer data type. then the sign bit is not affected by
left shifts and it is extended for right shifts. If the first operand
data—element is an unsigned data type, ie. a non~negative integer
range‘ then zeroes are shifted in from the left in right shifts, and
they are shifted in from the right for left shifts.

For example

778 SHIFT 3

gives a resulting value 7708.

The MOD operator gives a resulting value of the first operand modulo
the second operand, ie. the remainder after dividing the first operand
value by the second operand value.

For example

27 M00 5

gives a resulting value of 2, ie. remainder of 27/5,

—27 MOD 5

gives a resulting value of -2,

2? MOD —5

gives a resulting value of 2,

~27 MOD -5

gives a resulting value of -2.

ND~60.117.04

PLANC Reference Manual 97
EXPRESSIONS FORMATION AND EVALUATION

Examples of the use of the arithmetic operators

1. x+y

X'y

x+y+z

x+y—z

x*y/z

x/y*z

x*y+z

x+y*z

"X**2

will form the sum of x and y.

will subtract y from x.

will sum together x. y and 2.

will add x and y and then subtract 2 from the result,
see note below.

will multiply x and y before dividing the result by 2,
see note below.

will divide x by y first, and then multiply the result
by 2.

will multiply x and y and add 2 to the result.

will multiply y and z and add x to the result. The
order is determined by the different priorities. * is 9
and + is 8.

Since the operator ** has a higher priority. 11. its
operands will be combined first. Thus the expression
will be interpreted as
—(x**2).

ND~60.117.04

98 PLANC Reference Manual
EXPRESSIONS V FORMATION AND EVALUATION

If the operator priorities do not give the desired order of
evaluation, then parts of an expression may be enclosed in
parentheses. Parts thus enclosed are evaluated as a whole expression
before being used as an operand.

For example

1. x+ylz will cause division of y by 2 before adding x to form
the result. because of operator priority.

2. (x+y)/z will ensure that x and y are added, and then that
result will be divided by z.

3. (X+y)/(x+z) here x+y and x+z will be computed separately and
subsequently. the former result will be divided by the
latter. Note that either x+y or x+z may be evaluated
first.

While the operators +. ~, *, / and ** represent the usual mathematical
operations, one must be aware that the uaderlying computing hardware
has fixed limits to the precision and accuracy of representation of
values and the results of operations. T7859 limits are described in
Appendix C

Note : The order of operations on computer hardware is such
that the result would be mathematically exact if the
hardware were mathematically precise. If a particular
order of operations is vital ror numerical accuracy, it
is best to use parentheses to force the order.

For example

1. x+y+z represents the sum of x, y and z. The computation may
add x to y and then add 2. or it may add y to z and
then add x.

But,

2. (x+y)~z will ensure that x and y are added together, before 2
is added to the result.

ND~60.117.04

PLANC Reference Manual 99
EXPRESSIONS — FORMATION AND EVALUATION

5. 3 LDGICALDEERAIGRS

PLANC has logical operators which are available for operands whose
data—elements are of the integer, boolean or set data types. There are
both unary and binary logical operators. The operands for a binary
operator must both be either integer, boolean or set, but the operands
may vary in the declared modifications, ie. range for integer.

The following table lists all the available logical operators

_ _ l_ls_lllm“lll__l_w_1
Operator Priorlty Operation {Oata types

AND binary 3 logical and integer,boolean,set
OR binary 2 inclusive or integer boolean, set
XOR binary 2 exclusive or intege1,boolean, set g
NOT unary A logical negation integer, boolean set 3
ABS unary 11 cardinal number set _j

The binary operators, the AND operator, the OR operator and the XOR
operator, and the unary NOT operator can have operand data—elements of
either integer, boolean or set data types. Further, modified integers
may be used as operands. Integer range and modified integer operands
may be mixed when used with the binary operators.

The resulting value will be of the same data type as the operands. If
the operands are different modifications of integer data type, then
the resulting value will be an integer data~element appropriate to
hold the larger range of the two modified integer operand data“
elements.

The ABS operator will give as a resulting value, the maximum number of
members declared For the operand set data—element. The resulting value
will be an integer data element.

It should be noted that the evaluation rules described, are for
explanatory purposes so that an expression can be correctly
interpreted. However, the actual order of interpretation is not Fixed
so long as the result is mathematically and logically equivalent.
Indeed it can happen that part of an expression is not evaluated at
all. For example

IF (i=1 OR 1.5+i::r>10.1) THEN

in which, if i has the value 1, then the expression in parentheses is
known to have the value TRUE after testing i For 1. Further, no value
will be stored into r during evaluation of the expression in
parentheses.

ND—60.117.04

100

The resulting value 0
boolean operand data"

PLANC Reference Manual
EXPRESSIONS m FORMATION AND EVALUATION

f expressions involving the above operators, with
elements

b? NOT b1

TRUE FALSE

b1 b2 b1 AND b2

TRUE TRUE TRUE
TRUE FALSE FALSE
FALSE TRUE FALSE
FALSE FALSE FALSE

b1 b2 b1 0R b2

TRUE TRUE TRUE
TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE FALSE FALSE

b1 b2 b1 XOR b2

TRUE TRUE FALSE
TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE FALSE FALSE

If these operators
the operator will be
element, where a bit

If these operators
operators will carry
sets.

are used with integer operand data—elements, then
applied to all bits in the entire integer data»
value 1 is interpreted as TRUE and 0 as FALSE.

are used with set operand data—elements. the
out the usual mathematical operations on the

ND—60.117.04

PLANC Reference Manual 101
EXPRESSIONS A FORMATION AND EVALUATION

Examples of the use of Logical operators

INTEGER : intl =128.int2:=148

A NOT intT .. 2 resulting binary value is ..10101

Z int! AND intZ .. Z resulting binary value is ..01000

Z int! OR int2 .. 2 resulting binary value is ..01110

A int1 XOR intz .. Z resulting binary value is ..10110

Examples of sets and logical operators

Z declare some sets
TYPE colour : ENUMERATION (red.green,blue,pink,ash, &

yellow,white.black)
colour SET : brightz:(red,green,yellow,pink).anycolour,Fool
colour SET : pastel:=(blue,yellow,pink)
INTEGER : int1

Z inclusive or — result is red, green, yellow, pink, blue
bright OR pastel =: anycolour

Z logical and - result is yellow, pink
pastel AND bright =: anycolour

Z exclusive or — result is red. green, blue
bright XOR pastel :: anycolour

Z logical negation - result is blue, ash, white, black
NOT bright :: fool

Z set maximum number of members - result is 8
ABS bright :2 int1

ND—60.117.04

102 PLANC Reference Manual
EXPRESSIONS ~ FORMATION AND EVALUATION

5.4! WM

PLANC has relational operators which are available for operands whose
data~elements are of the integer, real, enumeration. pointer and set
data types. There are only binary relational operators.

The following table lists all the available relational operators

Operator Priority Operation Data types

= binary 6 equal integer,real,set,
enumeration,pointer

>< binary 6 not equal integer,real,set,
enumeration,pointer

)= binary 6 greater than or integer.real,set,
equal enumeration.pointer

<= binary 6 less than or integer,real.set.
equal enumeration,pointer

> binary 6 greater than integer,real,set,
enumeration,pointer

< binary 8 less than integer.real,set,
enumeration,pointer

IN binary 5 membership integer,set,
enumeration,pointer

All relational operators, except IN, must have both operand data—
elements of the same data type. Operand data—elements of integer or
real data types may be modified, ie. integer range or real precision,
and modified integer or real data type operand data-elements may be
mixed when used with the binary relational operators.

If the IN operator has a first operand data—element of integer.
enumeration or pointer data types, then the second operand is a list
of data—elements of the same data type as the tirst operand. This list
may contain explicit literals, constant identifiers, identifiers,
expressions to be evaluated at run—time or implied ranges of the
correct data type. If the IN operator has a second operand data—
element of the set data type, then the first operand must be a
possible member value of the set, which may be evaluated from an
expression at run-time.

The resulting value from evaluation of any relational operator will be
stored in a boolean data-element.

ND-SD.117.04 Revision A

PLANC Reference Manual 103
EXPRESSIONS — FORMATIOh AND EVALUATION

Examples of the use of relational operators

INTEGER : int}
INTEGER RANGE (0:200) : intZ

54::int1
int? >= 0 .. Z resulting value TRUE

20000::int1; E=:int2
intI < intZ .. Z resulting value FALSE

21=zint1; —3=:int2
int1*int2 = 0.. 2 resulting value FALSE

5::int1; 10::int2
int1~1 IN 1.3,S,int2 .. Z resulting value FALSE
int1-2 IN 1:100,2*int2 .. Z resulting value TRUE

REAL : r11
REAL PRECISION (9) : rl2
1.5::r11; 3.7::r12

r11 >< r12 .. Z resulting value TRUE

ENUMERATION (pink,blue,bottle,red) : mycolor,yourcolor
red=zmycolor; blue=:yourcolor

mycolor > yourcolor .. Z resulting value TRUE
bottle IN mycolor,yourcolor.. Z resulting value FALSE
mycolor IN bluezred .. Z resulting value TRUE

INTEGER ARRAY : vectorlist (1:100)
INTEGER ARRAY POINTER : &

listhead:=ADDR(vectorlist(MININDEX(vectorlist,1) I), &
listtail::AUDR(vectorlist(MAXINDEX(vect0rlist,1)))
listhead = listtail .. Z resulting value FALSE

INTEGER RANGE (1:100) SET : odds:=(1,3,5,7,9)
1+3 IN odds .. Z resulting value FALSE

ND-60.117.04

104 PLANC Reference Manual

EXPRESSIONS ~ FORMATION AND EVALUATION

The rules for forming expressions in PLANC restrict the way data types
may be used, especially for moving and storing data~element values of
a particular data type. Sometimes it may be necessary to move a value
into a data—element of a different data type or simply convert between
different data types, eg. integer to real. While good programming
practices generally try to avoid this sort of operation, care should
be taken if it is necessary to use this sort of operation. The
following Standard Routines are provided in the PLANC language

1) CONVERT — convert between the various integer and real data
types.

2) FORCE ~ take the value from one data—element, and store it
into another data—element of a different data type to the
first, but of exactly the same size.

These standard routines give a value in a temporary resulting value
data—element. ie. the routine out~value. which should be stored with
one of the assignment operators.

The general form of the routine invocations are

identifier CONVERT data—type
or identifier FORCE data—type

where

identifier is an identifier whose data—element value is to be
converted.

data-type is the data type of the data—element into which the
value is to be stored.

The CONVERT routine may be used for a data type conversion with an
assignment operator to simply store the value.

For example

INTEGER : int
REAL : rl
12=:int

I convert an integer value to real value
int CONVERT REAL =2rl

Z use conversion within expression
3.0+2.0*(int CONVERT REAL)=:rl

Z note, parentheses not required, but they help visually

ND—60.117.04 Revision A

PLANC Reference Manual 105
EXPRESSIONS ~ FORMATION AND EVALUATION

The FORCE standard routine may be used with any mixture of simple,
composite, predefined or user specified data types.

For example

TYPE colour : ENUMERATION (red.pink,blue)
INTEGER : intl
INTEGER : int

Z put an integer value into a real pointer data—element
int FORCE REAL POINTER

Z for some bizarre reason the following might be done!
12=2int1
int1 FORCE colour

Note that the data~element data type to receive the value from the
FORCE standard routine should be exactly the same size as the
originating data~element. For example

INTEGERI : int
int FORCE REAL

will give unpredictable results. A compile—time message will occur.

The FORCE standard routine must be used with great care. The internal
representation of the data types involved must be known, see Appendix

C, otherwise results may be unpredictable after use of the FORCE
routine.

ND-60.117.04

108 PLANC Reference Manual

ND-60.117.04

PLANC Reference Manual 107
SEQUENCE CONTROL STATEMEVTS

6 WWWLS

The executable statements discussed so far will be executed strictly
in the sequence that they appear in the source program. PLANC has a
number of statements which will unconditionally or conditionally
change the sequence of statements to be executed or cause a group of
statements to be executed repeatedly under some form of iteration
control. The sequence control statements available are

1) GO - unconditional change of sequence.

2) IF - conditional change of sequence.

3) CASE - multi—choice conditional change of sequence.

4) DO — repetitive execution, of a group of statements.

5) FOR — repetitive execution. of a group of statements, a
specified number of times.

6) WHILE — repetitive execution, of a group of statements.
until a condition is satisfied.

7) ASSERT - run~time error occurs if a specified condition is
not true.

6 . 1 GlLSIAIEHEUI

The 'GO' statement unconditionally transfers control to another
statement within a routine. The general form of a GO statement is

GO label—identiJier

where

label—identifier is a label, declared within the scope of this
60 statement.

Note. for a full description of 'scope of identifier" rules. see
section 7.8

Beware that control transfers into structures such as FOR — ENDFOR or
00 - WHILE — ENDOO loops may have unpredictable results.

Example of the use of a 60 statement

Z declarations
INTEGER : int?
LABEL : lab1,lab2,lab3

Z
Z executable program
1
lab1 : 1::int3 2 any executable statement

1
GO lab? 2 transfer to statement '1ab1‘

ND~60.117.04 Revision A

108 PLANC Reference Manual
$EQUENCE CONTROL STATEMENTS

45. J? MIAMI

The 'IF' statement will conditionally execute one or more groups of
executable statements. The groups of statements executed in this
manner may contain further 'nested' IF statements. The general Form of
an IF statement is

IF expr THEN
ex—stmts

[ELSIF expr THEN
ex-stmts}...

[ELSE
ex—stmts]

ENDIF

where

expr is an expression with a boolean resulting value.

ex~stmts is a group of executable statements.

If expression immediately following the IF gives a value TRUE, the
group of statements immediately following the THEN will be executed.
and then control will be transferred to the statement immediately
following the ENDIF.

If this expression gives a value FALSE then

if 'there is neither an ELSI: nor ELSE present, control
will pass to the statement following the ENDIF,

~ if the IF ~ ENDIF contains any ELSIF's, the expression
immediately following each ELSIF will determine whether
its THEN group of statements is to be executed or not.
This process will continue for each next ELSIF,For each
expression which gives a value FALSE. If a THEN path is
taken, the control will pass to the statement following
the ENDIF after that group of statements has been
executed,

if the IF - ENDIF contains an ELSE. control passes to
the group of statements Following the ELSE only if the
expressions oF the IF and those of any ELSIF's present,
all give the value FALSE.

ND-60.117.04

PLANC Reference Manual
SEQUENCE CONTROL STATEMENTS

Examples of IF statements

1. A simple IF — THEN.

Z test for a full page
IF currentline4lines > linesperpage THEN

Z yes, start a new page
newpage
0=zcurrentline
printheading

ENDIF

2. An IF - THEN — ELSE.

Z adjust wages for tax
IF taxed THEN

Z yes, reduce payment by tax amount
gross — tax(gross)=:nett

ELSE
I no, pay Full amount

grosszznett
ENOIF

3. An IF - THEN v ELSIF - ELSE

Z compute area of a many~sided Figure
IF sides : 3 THEN

Z area of a triangle
(a+b+C)/2.U::s
sqrt(s*(s~a)*(s—b)*(s—c))::area

ELSIF sides = L THEN
I area of a rectangle

a*b=:area
ELSE

Z approximate other figures by the area of a circle
pi*(radius‘*2)=:area

ENDIF

ND~60.117.04

109

110 PLANC Reference Manual
VSEQUENCE CONTROL STATEMENTS

4. Nested IF's.

Z check document signatures
IF amount > 10000 THEN

Z large amount, check number of signatures
IF signatures < 2 THEN '

Z reject
setnogood

ELSE
Z large amount check

bigcheck
ENDIF

ELSIF amount > 300 THEN
Z medium amount check

midcheck
ENDIF

Z i? passed. pay it
IF chequeok THEN

payit
ELSE

chequeerror
ENDIF

ND—60.117.04 Revision A

PLANC Reference Manual 111
SEQUENCE CONTROL STATEMENTS

6. 3 CASEiSIAIEMENI‘

The 'CASE' statement will select one 0? a number of groups of
executable statements to be executed. During one execution of a CASE
statement, only one of the groups will be executed and the remaining
groups will be skipped. The selection of a particular group of
statements is by the CASE expression whose value must correspond to
the integer or enumeration data type values used in the INCASE parts
of the CASE statement. The general Form of the CASE statement is

CASE expr
INCASE value-list

ex~stmts
[INCASE value list

estmts]...
[ELSE

ex~stmtsl
ENDCASE

where

expr is an expression with a resulting value data type.
corresponding to the data type of the INCASE value~
lists.

value~list is a list of integer or enumeration literal values.
Note : it may be expressed as an implied range.

ex~stmts is a group of executable statements.

The values in each INCASE part must all be of the same data type as
expr. Each value which occurs in an INCASE part, must not occur more
than once in all of the value-list's of the entire CASE statement.

The group of statements following the ELSE will be executed if the
value of the expression is valid but does not appear in any INCASE
value list. If the value-lists do not contain all possible values. an
ELSE must be present.

If the value of the expression is invalid, eg. outside a defined
integer range. control will be transferred to the statement
immediately following the ENDCASE, ie. the CASE statement will be
skipped, unless an ELSE part is present. If an ELSE part is present.
the group of statements following the ELSE will be executed.

Note : if the values belong to an INTEGER RANGE, the lower
bound of the INTEGER RANGE must be 0. The values
actually checked currently are U and the nearest higher
power of 2 to the upper bound.

ND-60.117.04

112 PLANC Reference Manual
SEQULNCE CONTROL STATEMENTS

Examples of CASE statements

TYPE days = ENUMERATION (monday,tuesday,wednesday, &
thursday,Friday,satuvday,sunday)

days : thisday

CASE thisday
INCASE saturday

shopping
INCASE sunday

dayofrest
[NCASE monday : thursday

workdays
ELSE

2 control comes here only for the value friday
leftovers

ENDCASE

6 . 4 00_SIAIEMENI

The ”00' statement may be used to repetitively execute a group of
statements with no control of the number oF the repetitions or of the
termination condition to exit from such a 100p. The general form of a
00 ~ ENDDO loop is

DO
ex~stmts

ENDDO

where

ex—stmts is a group of executable statements.

The group of statements will be executed repeatedly. At least one GO
statement must be in the group of statements to leave the loop under
some condition. If not the program will contain an infinite loop.

Example of a DO ~ ENDDO loop

REAL startz=1.U.increment:20.1,1imit:z2.0,value
LABEL 2 next

Z loop through a series of fractional values
start22value
DO

I use 'value‘ for computation
Z
2 test for end of loop

increment+value=zvalue
IF value > limit THEN

G0 next
ENDIF

ENDDO
next

ND-60.117.D4

PLANC Reference Manual 113
SEQUENCE CONTROL STATEMENTS

6. 5 EDR...SIAIEMENI

The 'FOR' statement will cause repeated execution of a group of
statements bounded by the FOR and ENDFOR. The number of repetitions is
speCified during execution just prior to entering a FOR — ENDFOR loop
For the first time. The group of statements may be executed the
specified number of times or perhaps fewer times if some exceptional
condition arises during the repetitive execution. The general form of
the FOR ~ ENDFOR loop is

FOR control—ident IN [REVERSE] list 00
ex—stmts

[EXITFOR
ex~stmtsl

ENDFOR

where

control-ident is an identifier whose data type must correspond with
that ol the 'list' values.

list is a list of data~elements of INTEGER. ENUMERATION,
ARRAY or POINTER data type.

ex~stmts is a group of executable statements.

The control identifier will take the values of the 'list' in the
sequence that they have been specified. The control identifier is
available within the loop but care must be taken if its value is
changed. as this may interfere with orderly control of the loop. Upon
exit from a FOR » EVDFOR loop, the control identifier will have an
unpredictable value. This applies as soon as the loop exit action
begins, namely if an EXITFOR is present. the control identifier value
will not have a predictable value on entering the EXITFDR group of
statements.

The list of the FOR ~ ENDFOR loop is an implicit or explicit list of
values which will deterhine the number of repetitions of the loop. The
list may comprise

~ Integer, Enumeration or Pointer data elements which
may be literal expressions or expressions evaluated at
run—time. The control identifier must be of the same
data type. Expressions are evaluated at run»time within
the looa initialisation so that modifying identifiers
used in such an expression during execution of the loop
will have no effect on the control of the loop.

ND~60.117.04

114 PLANC Reference Manual
SEQUENCE CONTROL STATEMENTS

— An implied range. of type Integer er Enumeration. may
be used for any elements of such a list or for the
whole list. The upper and lower bounds of an implied
range. which must be evaluated at run-time, will be
computed during loop initialisation — as is the case
for explicit data~elements. However, when using an
implied range, altering the value of the control
identifier during execution of the loop may affect the
loop control, see paragraph on loop testing below.

~ The list may contain one or more single—dimensioned
array data—elements. In this case the control
identifier must be an integer data type, which will
take the successive values of the index sets of the
specified arrays in the list.

The control identifier may also be a pointer data-
element of the same base data type as the elements of
the arrays specified in the list. However. a pointer

‘must not be used for the control identifier if the
array has been declared with the PACKED option, and the
elements of the array require less storage than the
smallest addressable unit on a particular machine. eg.
on the ND—100 an array whose elements were declared as
INTEGER1 PACKED would produce unpredictable results.
Further, if the control identifier is an pointer data-
element, only one array is permitted in the list.

— The list may contain one or more Pointer Implied
Ranges. This is used to step through some records in a
linked list, see section 4.6

The keyword REVERSE, if present, applies to each implied range in the
list, with the exception of Pointer implied ranges. It will cause the
loop control to begin with the second value (the last value as
declared) in each implied range and step downwards to the first value
of the range. Note that implied ranges must be specified in ascending
order. The REVERSE option may not be used with a Pointer implied
range.

The keyword REVERSE also applies to any arrays in the list. If the
control identifier is either an integer or a pointer data—element, it
will begin with the value corresponding to the upper bound of the
index set and take successive values until the lower bound of the

' index set is reached.

A FOR ~ ENDFOR loop contains a test to check if the required number of
repetitions has been completed. This test is done at the end of the
loop. Further, if one or more implied ranges is in the list of the FOR

,statement, then incrementing through the implied range values will
also take place at the end of the loop. Note that while stepping
through the values of an implied range. if the value of the control
identifier is explicitly set greater than or equal to the final value
of the range, then that will terminate loosing through the values of
that particular implied range.

ND‘60.117.04

PLANL Reference Manual 115
SEQUENCE CONTROL STATEMENTS

If the list of a FDR - ENDFOR loop contains one or more implied
ranges. a further test is placed within the loop initialisation‘ If
the values of the implied range can be computed at compile time, then
if the terminal value of the implied range is smaller than the initial
value, the entire FOR — ENDFOR loop will be skipped, ie. it will not
be executed at all. If the values of the implied range can only be
computed at execution time. then a run~time check within the loop
initialisation will result in zero repetitions of the loop if the
terminal value of the range is smaller than the initial value,

The group of executable statements may include any executable
statements but statements such as DO — ENDDO and IF ~ ENDIF must be
entirely contained within the FOR — ENDFOR loop. Loops may be nested
to any number of levels provided each loop is entirely contained
within an outer level loop. While the number of levels of nesting is
theoretically unlimited, the actual number is limited by the memory
available to the PLANC compiler.

If an EXITFOR is present, then when all the list values are exhausted,
control will be passed to the statement immediately following the
EXITFOR.‘ Following the execution of this group of statements, control
will be passed to the statement immediately following the ENDFOR. If
an exit from the loop is made by any other means than exhausting the
value list, the EXITFOR group will not be entered.

ND-60.117.04

PLANC Reference Manual
SEQUENCE CONTROL STATEMENTS

Examples of FOR ~ ENOFOR loops

1.

2.

6.

7.

A simple loop with explicit integer values.

INTEGER : intcontrol
FOR intcontrol IN T,5,TS,3.17 DO

Z group of statements ~ to be executed 5 times
ENDFOR

A simple loop With expliCit enumeration values.

ENUMERATION (red,pink,blue,grey,brown) : colour
FOR colour IN pink,grey,red.brown DO

1 group of statements — to be executed 4 times
ENDFOR

A simple loop With explicit pointers in the FOR list.

INTEGER POINTER : ptrcontrol,ptr1.ptr2,ptr3
2 put some addresses into ptr1,ptr2 and ptr3

FOR ptrcontrol IN ptr1,ptr2,ptr3 DO
Z group of statements ~ to be executed 3 times

ENDFOR

A simple loop with implied ranges in the FOR list.

INTEGER : intcontrol
FOR intcontrol IN 1:10.21,24,51:60,101 00

Z group of statements ~ to be executed 23 times
ENDFOR

A simple loop with implied ranges, using REVERSE.

INTEGER : intcontrol
FOR intcontrol IN REVERSE 1:10,21.24,51:60,101 DO

I group of statements
- to be executed 23 times

Z Note : the sequence of values of the control identifier is
X 10,9,...,1,21,24,60,59,...,51,101

ENDFOR

A simple loop, values in FOR list to be evaluated at run~time_

INTEGER : intcontrol,int1,int2,int3
FOR intcontrol 1N int1,int2:int3*2 DO

1 group of statements — to be executed n times,
I ie. l+(int3*2 int2+1), evaluated at run~time.
Z intcontrol takes the values int1,int2.int2+1,...,int3*2.

ENDFOR

A simple loop with arrays in the FOR list.

INTEGER : intcontrol
REAL ARRAY : arrea11(1:3),arrea12(1:7)
FOR intcontrol IN arreall,arrea12 DO

2 group of statements — to be executed 10 (ie. 3+7) times
X control identifier takes the values 1,2,3,1.2,3,4,5,6,7

ENDFOR

NDu60.117.04

PLANC Referenee Manual 117
SEQUENCE CONTROL STATEMENTS

8. A simple loop, arrays in FOR list, a p01nter control identifier.

REAL POINTER : ptrcontrol
REAL ARRAY : a1real1(1:3)
FOR ptrcontrol IN arreall 00

Z group of statemerts - to be executed 3 times
X control identifier takes the addresses of the array elements
X arrvall(1),(2),(3)

ENDFOR

9. A Simple loop, pointer implied range in FOR list.

Z define a record cata type for the linked list
TYPE myrecord ' RECORD

myrecord POINTER : linkptr
INTEGER : recnumber

ENDRECORD
Z initialise a static linked list of records

myrecord : r1?,r2?,r3? Z predeclaration of data~elements
myrecord POINTER : listhead::AODR(r1)
myrecord : r1:=(ADDR(r2).1)
myrecord : r2::(ADDR(r3),2)
myreoord : r3: (NIL,3)

Z declare a record pointer for scanning the list
myrecord POINTER : ptrcontrol

Z loop through all records in the linked list
FOR ptrcontrol IN listhead linkptr DO

Z group of statements to process one record data‘element
ENDFOR

10. A nested loop.

INTEGER ; rowelement,colelement
REAL ARRAY ARRAY : square(1:5,1:5)
REAL : sum

Z sum elements to the left of the diagonal element
FOR rowelement IN 1:MAXINDEX(square,1) DO

0.0::sum
FOR colelement IN 1 rowelement 1 DO
sum+square(colelement,rowelement)=:sum
ENDFOR

I store the sum in the diagonal array element
sum::square<rowelement,rowelement)
ENDFOR

NDWGD.117.04

11. A simple loop with an EXITFOR part.

next

INTEGER intcontrol,sum,limit
BOOLEAN sumflag
LABEL next
INTEGER ARRAY vectort1:100)
0::sum ; FALSE=zsumflag ;
FOR intcontrol IN vector 00

sum+vector(intcontrol)=:sum
IF sum < limit THEN

GO next
ENDIF

EXITFOR
IF sum < 0 THEN

FALSE=zsumflag
ENDIF

ENDFOR

ND-60.117.04

PLANC Reference Manual
SEQUENCE CONTROL STATEMENTS

500::limit

PLANC Reference Manual 119
SEQUENCE CONTROL STATEMENTS

6’ . B MLLSIAIWM

The 'WHILE' statement may be used within DO — ENDDO or FOR — ENDFOR
loops to exit when a condition becomes false. While the condition
remains true, the loop control will not be affected. The general form
of a WHILE statement used within a loop is

In a DO - ENDDO loop

00
ex-stmts
WHILE expr
ex—stmts

[EXITWHILE
ex—stmts]

ENDOO

!In a FOR ENDFOR loop

FOR control~ident [N [REVERSE] list 00
ex-stmts
WHILE expr
ex—stmts

[EXITWHILE
ex—stmts

[EXITFOR
ex—stmts]

ENDFOR

where

expr is an expression with a boolean resulting value.

ex-stmts is a group of executable statements.

The effect of the WHILE statement each time it is executed within the
loop, is to test if the resulting value of the expression is TRUE. If
it is, pass control to the executable statement immediately following
the WHILE. If the resulting value of the expression is FALSE, then
control will exit from the loop and pass to the statement immediately
Following the ENDFOR or ENDDO.

If an EXITWHILE is present within the loop, the group of statements
following the EXITWHILE will be executed as soon as the loop exit
action begins, as a consequence of the relevant WHILE statement. Note
however, that if an EXITWHILE and an EXITFOR are both present in a FOR
— ENDFOR loop, then an exit from the loop effected by the WHILE
condition will execute the EXITWHILE group of statements but not the
EXITFOR group of statements, prior to the exit from the loop.

A WHILE statement may be placed anywhere within the group of
executable statements of a loop, depending on where a loop exit is
desired under the control of a logical condition. Further. any number
of WHILE statements may he used within a FOR — ENDFOR or a DO — ENUDO
loop.

ND-60.117.04 Revision A

PLANC Reference Manual
SEQUENCE CONTROL STATEMENTS

Examples of use of the WHILE statement

1.

2.

Within a DO — ENDDO loop.

N
N

N
N

INTEGER : records
BOOLEAN : endoffile

read first record of a file
0::records
openfile
nextrecord

loop through all records in the file
DO

if end of file, exit from loop
wHILE NOT endoffile

process a record
1+records=zrecords

end of the loop statements

loop exit condition
EXITNHILE

close file
closefile

ENDDO

A NHILE used to leave a FOR — ENDFOR loop without using a label.

>4

INTEGER : intcontrol

FOR intcontrol IN 1:100 DO

exit from loop under certain conditions

IF NOT checkvalid THEN
WHILE FALSE

ENDIF

things are ok, continue looping

EXITNHILE
ENDFOR

ND-80.117.0k

PLANC Reference Manual 121
SEQUENCE CONTROL STATEMENTS

3. Multiple WHILE's within a FOR ~ ENDFOR loop.

CONSTANT row32110,cols:=10
INTEGER rowelement.colelement
REAL ARRAY ARRAY : matrix(1:rows,1:cols)
REAL ARRAY : rowsum(1:rows)
REAL : limitsum

1 loop through all rows of the matrix
100.0=:limitsum
FOR rowelement IN 1zrows DO

0.0=:rowsum(rowelement)
Z sum the row elements. provided it is within limits

FOR colelement IN Izcols DO
matrixtrowelement,colelement)+rowsum(rowelement) K

=:rowsum(rowelement)
Z check sum limits

NHILE rowsum(rowelement) < limitsum
Z too many elements for sum ?

WHILE colelement CONVERT REAL < limitsum/k.0
Z in case of abnormal exit, set sum negative

EXITWHILE
—1.0=:rowsum(rowelement)

2 end of inner loop
ENDFOR

ENDFOR

ND-60.117.04

I22 PLANC Reference Manual
SEQUENCE CONTROL STATEMENTS

5.7 IBE;ASSERI_§IAIEHENI

An 'ASSERT' statement requires an associated condition to be true
whenever the statement is encountered. The general Form of the ASSERT
statement is

ASSERT expr

where

expr is an expression with a boolean resulting value.

Suring program execution, if the resulting value of the expression is
TRUE then control will simply pass to the next executable statement.
If however the resulting value of the expression is FALSEfi an error
condition arises and control will be transferred elsewhere depending
on what has been specified for handling ‘ASSERT' errors. For further
details of how 'ASSERT' errors may be handled see Exceptions and Error
Handling, section 6.8. This provides an explicit means for
supplementing the normal run-time checks provided by the system.

Examples of ASSERT statements

ASSERT int1 < number*2
ASSERT int2 < 1 AND red IN mycolours

ND-60.117.0£

PLANC Reference Manual 123
SEQUENCE CONTROL STATEMENTS

5. 8 EXCEEIIBM_MD_EBROR_HANDLINE

PLANC provides a mechanism for handling specific sorts of error
conditions which may arise during program execution. A part of the
program. called an 'exception handler', may have control passed to it
when the corresponding error condition occurs. rather than continue
executing statements in the normal way. The general form of such an
exception handler is

ON exceptionE,exception]... DO
ex-stmts

ENDON

where

exception is any dedined exception condition.

ex~stmts is a group of executable statements.

An exception handler may handle errors due to one or more exception
conditions. An exception condition will be sensed only. in the source
code following the ON statement — ENDON statement group of source
statements, within a routine. If more than one 0N — ENDON exception
handler appears in a routine. then the one immediately preceding the
occurrence of an exception. in the source code. will be activated to
handle the exception.

The particular exception conditions defined in PLANC are

ASSERTFALSE — for the expression in an ASSERT statement giving
a value FALSE.

OVERFLOW — arithmetic overflow.
Note : hardware checks only activate this exception.

POINTERERROR — attempt to use a data—element, referenced by a
pointer whose value is NIL. (not implemented)
The NEH..[N standard routine will trap such errors it
the space to be used is not adequate.

RANGEERROR - array index or integer range error.
(not implemented)

ROUTINEERROR — 3 called routine has taken an ERRETURN exit.
STACKERROR — stack overflow or underflow has occurred, 99. when

using the NEw standard routine.

Executing an exception handler is similar to execution of a routine
invocation. The ENDON is in this sense equivalent to the RETURN
statement, passing control back to the place that exception condition
occured.

Note that a ROUTINEERROR exception handler cannot set—up or repair the
out—value, or output parameters which would have been passed back by
successful execution. after invocation of the routine which generated
the exception condition.

ND~80.117.04

‘24 PLANC Reference Manual
SEQUENCE CONTROL STATEMENTS

If a ROUTINEERROR exception occurs and no exception handler has been
provided. an ERRETURN exit from the routine will be simulated. Control
will pass back up the invocation hierarcny as described in section

7.5.

Examples of exception handlers

0N ASSERTFALSE DO
0=:int1
GO out

ENDON

0N STACKERROR,OVERFLON DO
int2 ERRETURN

ENDON

Note that the PLANC run-time system has a routine which will be
invoked if an ASSERT condition is FALSE and the user has no ON
ASSERTFALSE exception handler. The form of the declaration of this
routine is

Z on the ND-100
ROUTINE SPECIAL VOID,VOID : assertmhandler ALIAS 'SFATA'

Z on the ND-SOO
ROUTINE SPECIAL VOID,VOID : assertmhandler ALIAS 'fiFAfA'

IF a user wishes to replace this routine with another, the user
written routine must be loaded before PLANC library routines.

ND—R0,117.UL

PLANC Reference Manual 125
ROUTINES

7 BLIUHNES

A PLANC routine is groap of statements which can be referred to as an
entity to carry out a particular function. A routine comprises
executable statements and declarations of any identifiers used within
the routine. The routine concept in PLANC is defined as a composite
data type, whose declaration includes data types of the data—elements
to be used in communication between the routine and its caller. A
routine has an expliCi: in-value and out—value which affect the way a
routine invocation appears in a calling routine.

A routine may be invoked to carry out a specific function or
operation. The PLANC routine is similar to the 'subprogram' concept of
other programming languages. However, a PLANC routine has one gfllLMLLt
in-value and one explicit out—value. A PLANC routine may also have a
list of formal parameters declared, for transmitting data—elements
into or out of the routine. A routine may be invoked from another
routine in the same module or a routine in a separate module.

7. 1 RDUIINLDECLARAIIDN

A routine is a composite data type. Consequently, a routine
declaration causes the construction of a dataaelement which includes
all the memory area used for the routine, excepting dynamically
created data—elements.

A routine declaration will include the following

1) Options which cetermine the specific structure of the routine
for particular types of routine invocation.

2) The data types of the explicit in-value and out~value of the
routine.

3) The data types of any formal parameters used within the
routine, which will consequently be required in any call to
the routine.

4) The identifier to be used as a routine name for invoking the
routine.

5) The identifiers of any formal parameters declared, to be used
within the routine.

6) The declarations of local data~elements which will only be
available inside the routine.

7) Executable statements which carry out the desired operations
required of the routine.

ND-60.117.06

126 PLANC Reference Manual
ROUTINES

The First five of the above items are called the routine header. The
last two items are called the routine body.

The general form of a ROUTINE declaration is

ROUTINE — rest of routine header
routine body

ENDROUTINE

The general form of a ROUTINE header is

ROUTINE [option[option]...] invdata~type,out—data—type
[(p-data~types)] : rout—ident [(p-ident—list)3

[ALIAS 'a—rout~ident']

where

option is one of the ROUTINE modifiers STANDARD, REFERENCE,
SPECIAL or INLINE.

in-data—type is the data type of the in—value.

out-data-type is the data type of the out—value.

p-data—types is a list of the data types of the formal parameters of
this routine.

rout—ident is the identifier for referring to this routine.

Note : special characters allowed, see below.

a~routeident is a text string. It qualifies the routine name to
distinguish routines with the same structure, eg. same
parameters, but of different jata types.

Note : the string may contain any characters. p-identalist
is a list of identifiers of the formal parameters

of this routine.

Nete. that there is a special form of a routine header. namely for a
main PROGRAM routine, see 8.2

As an alternative to the normal identifier name formation rules, a
rnutine identifier name may be made up oF the following special
characters only

! " S * + - . / 3 < = > ? f \ E 3

ND—60.117.04 Revision A

PLANC Reference Manual 127
ROUTlNES

Further, such a routine identifier name may be a mixture of these
special characters. but the rules concerning number of characters in
an identifier still apply, see section 2.11

Note : 1. A dollar character (3) cannot begin a routine
identifier.

2. A full stop character (.) can only begin a routine
identifier.

3. A space character must precede the routine identifier
if it begins with one of the above special characters.

Several routines may be declared with the same routine identifier. ThePLANC compiler will only accept these routines if they can be
distinguished by the data types of the in—value and the parameters.
For examples and details of such families of routines, see section

8.4

A routine has one distinct in—value data—element and one distinct out—
value data—element. The in-value and out—value data—elements may he of
any valid data type, ie. simple, composite, predefined or user—
defined. Further, if either in—value or out—value data—element is not
required for a particular routine, then the keyword VOID may be used
to denote the absence of a data—element in the formal routine
declaration,ie. in the routine header.

A routine may be declared with any number of formal parameters for
communication between the invoker and the routine itself. A parameter
may be used to transfer a value into a routine or to transfer a value
out of a routine or both. It is generally regarded as an unwise
practice to use one parameter for transferring values in both
directions. The routine header contains a declaration of the data type
of each formal parameter. It also contains the identifier names of
each formal parameter which must be used to refer to each parameter
within the routine. The data type of each formal parameter may be
§§§85§ modified, see section 3.11.3, with READ or WRITE. The default
access for each declared formal parameter is READ. Parameter transferis discussed in more detail in section 7.4

ND~60.117.04 Revision A

128 PLANC Reference Manual
ROUTINES

Examples of simple routines

1. A routine to return the larger of two integer values.

ROUTINE VOID,VOID (INTEGER,INTEGEH,INTEGER WRITE) : &
simple<in1,in2,outval)

Z in-value and out—value data-elements are absent
2
Z declarations local to this routine
Z

INTEGER : local
Z select the larger parameter value

in2::local
IF inT > in2 THEN

in1=slocal
ENDIF

Z transfer the larger value back to the invoking routine
local=20utval
RETURN
ENDROUTINE

2. A similar routine, using the out—value to return the value.

ROUTINE VOID,INTEGER (INTEGER,INTEGER) : simple(in1,in2)

Z declarations local to this routine

INTEGER : local
Z select the larger parameter value

in2=zlocal
IF in1 > in2 THEN

in1=zlocal
ENDIF

Z send the larger value back to caller
Z Note that the out-value is part of toe RETURN statement

local RETURN
ENDROUTINE

A routine is normally invoked by use of the routine name identifier in
the declaration. However, if a number of routines have the same name
and the same number of parameters, eg. an operator myglus may be
required to handle various data types, then each routine may be
uniquely identified by use of an ALIAS name for access from another
module (see Chapter 8. PROGRAM STRUCTURE). Further, any module
wishing to use such a family of routines. must IMPORT each one of theFamily it wishes to use. The IMPORT statements may use either the
originally declared routine name identi$ier or the ALIAS name (seesection 8.4), as the routine identifier and whichever is chosen must
he used For all routine invocations in that module. This use of ALIASis necessary to generate adequate information for the Loader to
resolve all references correctly. For examples of use of the ALIASoption, see section 8.4. If a module containing a family of routines
is to be accessible within a library file, the SLIBRARY—MODE commandmust be used. see Appendix A.

ND-60.117.04

PLANC Reference Manual 129
ROUTINES

The name in the ALIAS text string may contain characters which form an
identifier which is illegal as a routine name identifier in PLANC or
other languages. This facility may be used to create a protection
mechanism. for preventing a user program from inadvertently naming and
invoking a system routine, which would normally only be invoked by
other systems software, eg. the Fortran {/0 routines.

A system routine with a (SYSTEM) EXPORT qualifier, will enable other
modules to access it, provided that the (SYSTEM) IMPORT qualifier is
used, see 8.3 . Then this identifier will be handled by the Loader
in the same way as an ALIAS name. For example, most of the Fortran
run—time library routines are protected from unintentional invocation
by names declared with this protection mechanism. This may be set-up
by the use of the EXPORT/IMPORT qualifier, (SYSTEM), or an ALIAS name.
Beware, this protection mechanism must be used with the greatest care
possible, as it may lead to conflicts with system routines.

Routine declarations may be nested to any number of levels within
another routine. However, there are some restrictions on the recursive
invocation of routines, see section 7.7

The optional routine modifiers specify how the compiler should
construct routines with regard to parameter transfer and calling
sequence. The following modifiers are available

1) INLINE — the data—element of such a routine will have no
object code generated by the compiler. Each invocation of
this routine will have the entire routine data—element
instead of the usual call sequence. This will result in a
larger program with several copies of the routine. But the
program will execute faster as the invocation overheads are
not incurred for each use of the routine. INLINE should only
be used for small routines, eg. 1 — 5 lines. An INLlNE
routine cannot be declared or invoked within another INLINE
routine.

2) SPECIAL — no routine entry/exit sequence at all is provided.
The invocation of such a routine can be made faster than for
a normal routine, as the usual register storage and stack
initialisation will not be done. Consequently the extra speed
might be sainec with a Wemmflm of
the environment during the execution of such a routine. this
should only be used by the most experienced and knowledgeable
users, who may be using assembly code!

3) STANDARD - a calling sequence, including parameter transfer,
is generated which is the standard used by Fortran and Cobol
to call subprograms. In—values are not allowed. Note that the
standard routines, MININDEX, MAXINDEX for array parameters
and ERRETURN, are not available in STANDARD routines, either
PLANC calling other language routines or vica verse. For
examples of the use of such mixed language combinations of
routines see Appendix D.

A) REFERENCE — normally parameters whose data—elements are of
the simple data types are transferred by value. In a
REFERENCE routine all parameter data~elements are transferred
by reference, ie. the routine is given the address of each
data—element concerned. The calling sequence is not the same
as for STANDARD.

ND—60.117.04 Revision A

130 PLANC Reference Manual
ROUTINES

While routines are defined as a composite data type in PLANC, the
invocation of any routine is treated as an occurrence of an operator.
when treated in this manner as an operator. a routine has the priority
11 for the purposes of evaluation of any expressions containing
routine invocations. However, if a routine name is the same as any
operator defined by the PLANC compiler. eg. +, * or ABS, then this
routine will have the same priority as the predefined operator, for
the purposes of expression evaluation.

Predeclaration of a routine may be used in the same way as for data—
elements of any other data type. An illustration of this facility is
in section 3.18

A pointer data—element may be declared to reference a routine data—
element. If this is done, then the pointer data—element and the {N0
standard routine may be used to invoke the routine. Note that the IND
standard routine may only invoke routines in the outer level of a
module, see section 7.9.

For example

Z define a data type for a sort of routine
TYPE myroutine = ROUTINE VOID,VOID

Z declare a routine datauelement
myroutine : myfirst

ENDROUTINE
Z declare a pointer for the defined routine data type

myroutine POINTER : mypointer

executable statements

set—up the address of the routine data-element

N
N

N
N

N

ADDR myfirst =:mypointer
Z invoke the routine

IND mypointer

ND-60.117.04

PLANC Reference Manual 131
ROUTINES

7. 2 IN:YALUE_AND.M:YALUE.DE_RDUIINES

PLANC routines have one explicit in-value data~element and one
explicit out—value data-element. Either the in~value or out—value may
not be required for a specific routine declaration and the keyword
VOID denotes the absence of a data—element.

If an in~value is present in the routine declaration, then executable
statements within the routine can refer to the in—value data—element
by using the Commercial At character (a). The a character may be
looked upon as the identifier associated with the in~value data—
element and of the same data type.

For example

ROUTINE REAL,VOID (REAL WRITE) : donothing (giveitback)
2 simply return the in—value in the parameter

8::giveitback
ENDROUTINE

If the in—value is a composite data type, eg. a record, then the a
character will precede the normal way of referencing a component of
the data~element of the composite data type.

For example

TYPE myrecord = RECORD
INTEGER : fieldi
REAL : fieldz

ENDRECORD
Z
Z routine declaration
Z

ROUTINE myrecord,VOID (INTEGER WRITE) : simplertn (out)
1 return twice the value of the first field in the record

3.?ield1*2=:out
ENDROUTINE

Now some code to invoke the routine

INTEGER : outparam
I declare a record data—element with initial values

myrecord : rec1:=(10,23.5)
Z invoke a routine. passing it a record data—element

recT simplertn (outparam)

If routines are nested, the Commercial at character (9) refers to the
in~value of the inner most routine with respect to the place where the
a is used.

HP $0 117.04

132 PLANC Reference Manual
ROUTINES

The out-value data—element of a routine will have a value stored into
it when a RETURN statement is executed to terminate a routine. see
section 7.5. If an expression precedes the RETURN, then the
resulting value from evaluation of the expression .must be of the
correct data type to match the routine declaration. This will be
checked at compilation time.

For example

ROUTINE REAL.REAL : twice
Z double the in—value and put it into the out—value

REAL : localreal
8*2.0=:localreal
localreal RETURN
ENDROUTINE

This could also coded in the following way

ROUTINE REAL.REAL : twice
2 double the in-value and put it into the out—value

REAL : localreal
8::localreal
2.0*localreal RETURN
ENDROUTINE

But the simplest way of all is

ROUTINE REAL,REAL : twice
1 double the in~value and put it into the out—value

2.0ra RETURN
ENOROUTINE

Note that in—value and out—value declarations for composite data—
elements will result in transfer by reference during execution of a
routine invocation, ie. only an address is passed not the entire data—
element.

ND 00.117.04

PLANC Reference Manual 133
ROUTINES

7. 3 RDUIINEJNYDCAIIM

A routine will be invoked, by simply executing a statement containing
the identifier in the routine declaration. If the routine declaration
has an in—value, then the identifier immediately preceding the routine
invocation, will indicate the data—element to be used as the in—value.
if the routine declaration includes parameters, then the actual
parameters in the source program, may be expressions or identifiers
separated by commas. enclosed in parentheses. immediately following
the routine invocation. For each formal parameter in the routine
declaration, there must be an actual parameter in the routine
invocation, ie. a data—element, of the formal parameter's data type in
the routine declaration‘ If not, the compiler will give an error
message.

For example

Z program code to invoke a routine
INTEGER ; invalue,p2actual
REAL : plactual

Z invoke routine with an innvalue and 2 actual parameters
51::invalue ; 5.35::p1actual
invalue artn (p1actual.pZactual)

Z use value returned from routine in the 2nd actual parameter
p2actual=zlocalint Z value returned = 1

The following routine declaration can be invoked by the above code l

ROUTINE INTEGER.VOID (REAL.INTEGER WRITE) : artn(fp1,fp23
Z set 2nd parameter : 1, in—value and 1st parameter +ve
Z 2, not(in-value and lst parameter +ve)
Z

IF a>o AND fp1>0.0 THEN
1::fp2

ELSE
2::fp2

ENDIF
Z

RETURN
ENDROUTINE

Note that if the actual parameter is of the same base type, but a
different modification to the formal parameter. eg. INTEGERk actual
parameter and formal declaration is INTEGERI, then during execution
precision may be lost, depending on the value held in the actual
parameter. '

[VIN-60,117.04

134 PLANC Reference Manual
ROUTINES

if the parameter list of a routine declaration comprises only one
formal parameter, then the parentheses may be omitted for any
invocation.

If the routine invocation is within an expression. then the evaluation
will proceed by the normal rules, see Chapter 5 EXPRESSIONS ‘
FORMATION AND EVALUATION, with the routine invocations being treated
as operators with priority 11. The resulting value from evaluation of
an expression may become the in—value for the routine invocation. by
the use of parentheses.

If the routine declaration includes an out-value. and the routine
invocation is within an expression. then the out-value returned from
the routine invocation will be used for the further evaluation of the
expression.

Note that if a routine is declared with an in~value and an out—value.
and it is invoked in an expression in the following way, ie. with an
assignment operator immediately before and after the routine
invocation

i =: rtn =: j

then the value of i will be the value stored in j, not the out—value
of the routine invocation.

Invocation of a routine within another routine. ie. nested routine
invocations, must not be carried out by the use of the IND standard
routine.

Examples

1. A routine invocation within an expression.

Z program code to invoke a routine
INTEGER : localint,invalue.p2actual
REAL : p1actual

Z invoke routine with an in—value 5, and 2 actual parameters
S=:invalue ; 5.5::p1actual
2*invalue artn (p1actual.p2actual)+3=:localint

Z evaluation becomes 2+1+3, ie. localint=6

Routine declaration, to be invoked as above

ROUTINE INTEGER.INTEGER (REAL,INTEGER WRITE) : artn(fp1.fpz)
Z set 2nd parameter ~ 1, in—value and Tst parameter +ve

and out—value 2, not(in—valua and 1st parameter +ve)N

IF e>o AND fp1>0.0 THEN
1::fp2

ELSE
2::fp2

ENDIF
Z set out—value equal to 2nd parameter

fp2 RETURN
ENDROUTINE

NDw60.117.04

PLANC Reference Manual 135
ROUTINES

2. A routine invocation with an expression as an in—value.

Z program code to invoke a routine
INTEGER : localint,intwp2actual
REAL : p1actua1

Z invoke routine with an in—value ~4, and 2 actual parameters
Z note, first actual parameter is an expression

5=zint ; 5.5::p1actual
(int—9) artn (2.0*p1actual.p2actual)+3=:localint

Z evaluation becomes (—k) artn (...) +3
Z then 2+3. ie. localint=5

Routine declaration, to be invoked as above

ROUTINE INTEGER,INTEGER (REAL,INTEGER WRITE) : artn(fp1,f92)
2 set 2nd parameter — 1. in—value and 1st parameter +ve
Z and out«value 2. not(in-value and 1st parameter +ve)
Z .

IF a>o AND fp1>0.0 THEN
1::fp2

ELSE
2::fp2

ENDIF
Z set out-value equal to 2nd parameter

s RETURN
ENDROUTINE

ND—60.117.04

136 PLANC Reference Manual
ROUTINES

Routines will have functionally different characteristics depending on
the presence or absence of an in—value and an out-value data—element.
The invocation of a routine will have distinct form for each of the
four different possible in—value and out-value configurations.

in~value absent. out-value absent

A routine with no in—value or out—value data—element will be invoked
by an executable statement containing nothing other than the routine
name, and actual parameters if any have been declared. Since there is
no out-value, the routine must terminate an expression. Since there is
no in-value. the routine can be preceded by nothing in an expression.

Such an executable statement will carry out a well—defined operation.
Communication of values into and out of the routine can only be
accomplished by use of routine parameters. This appears like the
Subroutine construct of languages such as Fortran or Cobol. In fact.
this form of a routine used in conjunction with the STANDARD routine
modifier. will create a routine which is callable from a Fortran or
Cobol program, and behave like a subroutine.

For example

ROUTINE VOID,VOID (REAL,REAL.REAL WRITE) 2 &
add(add1.add2,sum)

Z routine which behaves like a subroutine, eg. Fortran
Z add the first two parameters and return the sum in the third

add1+add2=zsum
RETURN
ENDROUTINE

Z
2 code to invoke the 'subroutine' routine
Z

REAL READ 2 first:=5.3.second:=6.7
REAL : total

Z
add(¥irst.second,total) Z total = 12.0

2 invocation stands alone as an executable statement

ND~60.117.04

PLANC Reference Manual 13?
ROUTINES

in~value absent. out~value present

A routine with an out-value. but no in—value will be invoked as part
of an executable statement which contains an expression to be
evaluated. In the expression containing such a routine invocation, the
routine name plus optionally, a parameter list. may be looked upon as
an identifier which will have a definite value during evaluation of
the expression. Even though the routine is technically an operator
with priority 11, a raltine of this nature behaves like an identifierwith an associated data-element. These characteristics, used with READ
only parameters, are similar to a Fortran function subprogram. In
fact, this Form of a routine with READ only parameters used in
conjunction with the STANDARD routine modifier. will create a routine
callable From Fortran, and behave like a function subprogram.

For example

ROUTINE VOID,INTEGER (INTEGER) : twice(invalue)
Z routine which behaves like a Tunction, eg. Fortran
Z return double the value input

2*invalue RETURN

Z invoke the above routine within an expression

INTEGER : int
5+twice(3)+4=:;nt Z result is 5+6+4=15

ND-60.117.04

136 PLANC Reference Manual
ROUTINES

in—value present, out-value absent

A routine with an in—value. but no out-value may be invoked within an
expression. Since the routine has no out-value. it must terminate the
expression. Such a routine will simply store the in—value it receives.

A routine of this form is sometimes referred to as a 'store—into
subroutine'. It may be used to store a value into a data structure,
while completely separating the actual details of the data structure
from the program using the data structure.

For example

MODULE tables
EXPORT inentry

1 global table and table pointer, to be stored over successive
Z routine invocations

INTEGER : tablepointer
INTEGER ARRAY : table(1:100)

ROUTINE INTEGER,VOID : inentry
Z add another value to the table

ENDROUTINE
ENDMODULE

module to use the table via the above routine — could be
separately compiled

MODULE usetable
IMPORT (ROUTINE INTEGER,VOID : inentry)
INTEGER ARRAY : stack(0:1000)

PROGRAM : doit
INTEGER : int1.int2,int3

Z executable program - compute value and store in the table
INISTACK stack
(int1+int2*int3) inentry

ENDROUTINE
ENDMODULE

For details of MODULE's and EXPORT/IMPORT statements, see sections
8.5 and 8.3

The user program can now put values into a table, but does not see the
structure of the table. Indeed the MODULE tables, could be receded to
store the table entries in a linked list of RECORD data—elements. and
the MODULE usetable would require no change. A matching routine to
return a table entry could be written. This routine should have no in-
value and an out-value. Then the pair of routines together, could be
thought of as a composite data—element, eg. a table with certain
characteristics, whose actual implementation details are completely
separated from a user of the data—element.

ND-GD.117.0£ Revision A

PLANC Reference Manual 139
ROUTINES

WW;

A routine with both an in-value and an out—value may be invoked within
an expression. Since an invocation of such a routine is preceded by a
data-element, and returns a data—element, it will represent an
operator within the expression if the routine is declared with one
parameter. Note, that routine invocations have priority 11, ie. higher
than most operators.

A routine of this form is sometimes referred to as a 'store—into
function'. It can be used to create operators, analogous to existing
operators, eg. + or — for existing data types. eg. BOOLEAN. Further,
operators may be created for newly defined data types, 99. operators
for a newly defined 'complex‘ data type.

NO~60.117.04 Revision A

11:0 PLANC Reference Manual
ROUTINES

For example

N

Note,
from

Z the following two modules must be nested to be able to import
Z the newly defined data type “complex”

MODULE complexoperators
TYPE complex = RECORD

REAL : realpart,imugpart
ENDRECORD

EXPORT +!.*!
2 add two complex data—elements
Z formula used is (a+i.b)+(c+i.d)=(a+c}+i.(b+d)

ROUTINE complex.complex (complex) : +!(follow)
complex : local
a.realpart+follow.realpart=:local.realpert
3.1magpart+follow.imagpart=:local.imagpart
local RETURN
ENDROUTINE

Z multiply two complex data—elements
Z formula used is (a+i.b)*(c+i.d)=(ac-bd)+i.(ad+bc)

ROUTINE complex,complex (complex) 2 *!(follow)
complex : local
a.realpart*follow.realpart~a.imagpart*follow.imagpart &

=:local.realpart
a.realpart*follow.imagpart+8.imagpart*follow.realpart &

=:local.imagpart
local RETURN
ENDROUTINE

a nested module — to use the complex data type

MODULE usecomplex
IMPORT complex
IMPORT (ROUTINE complex.complex (complex) : +!)
IMPORT (ROUTINE complex.complex (complex) : *!)

INTEGER ARRAY : stack(0:1000)

PROGRAM : docomplex
complex READ : cpx1:=(1.0.2.0).cpx2(3.fl.4.0)
complex : cpx3

INISTACK stack
add two complex data-elements

cpx) +! cpx2 =2 cpx3 2 result is (+61
multiply two complex data—elements

cpx1 *! cpx2 =: cpx3 2 result is —5+101
ENOROUTINE
ENDMODULE Z end of usecomolex
ENDMOOULE 2 end of complexoperators

the data type complex must be IMPORT'ed into a nested module
an outer module.

ND—60.117.04 Revision A

PLANC Reference Manual 1A1
ROUTINES

7. 4 EARAHEIER_IRANSEER

A routine declaration will declare the data types of any formal
parameters to be used by the routine. Any invocation of a routine must
include actual parameter data—elements of data types corresponding to
those of the declared formal parameters. Parameters of the simple data
types are transferred in a different way to parameters of the
composite data types.

The simple data types are transferred by value. This means that a
routine invocation results in the value stored in the actual parameter
data—element being copied into a temporary data—element, created
locally in the routine's memory area. During execution of the routine,
all references to the Formal parameter will operate on the temporary,
locally created data-element. The default access mode for parameter
data~elements is READ only. The transfer of the actual parameter data—
element value to the temporary local data—element, takes place before
execution of the routine begins. If WRITE, or READ WRITE has been
declared as access mode, during execution the routine may store a
value in a formal parameter for return to the invoking routine. Such a
value will be transferred to the actual parameter data~element, from
the temporary local data—element, after a normal exit from the
routine. Such transfers will not take place if an abnormal routine
exit occurs, see 7.5. If WRITE only has been declared as access
mode, then the temporary local data—element will have an undefined
value at the beginning of execution of the routine. Further. any
invocation of a routine with any WRITE only parameters, must have
explicit actual parameter data~elements for such parameters.
Expressions are invalid as actual parameters for such declared WRITE
only formal parameters, as they have only a temporary data—element for
the resulting value of expression evaluation.

Note that' for any reitine declared with the routine qualifiers
REFERENCE or STANDARD, and an array as a parameter, an invocation of
this routine should only use as an actual parameter, an array with the
lower bound of each dimension declared as zero. Otherwise the array
elements will not be referenced correctly within the invoked routine.

NDEGD.117.04

142 PLANC Reference Manual
ROUTINES

Examples of parameter transfer

1. A parameter. default READ only access mode.

ROUTINE VOID,INTEGER (INTEGER) : twice (paramT)
Z param1 refers to the temporary local data—element which has
Z received the value of the actual parameter data—element on
2 entry to the routine

2*param1 RETURN
ENDROUTINE

Z
Z code to invoke the above routine
2

INTEGER 2 int1,int2
Z

twice(5)=:int1 Z result is 10
Z an expression as the actual parameter

twice(3+2*4)=:int1 Z result is 22
Z invocation cannot change value in data—element of intfl

2=:int1
twice(int1)=:int2 Z result is 4

N0760.117.04

PLANC Reference Manual 143
ROUTINES

2. A parameter, with READ WRITE access mode.

ROUTINE VOID,VOID (INTEGER READ WRITE) : twice (paraml)
Z parami refers to the temporary local data—element which has
Z received the value of the actual parameter data—element on
Z entry to the routine

2*param1=:param1
Z value in the temporary local data~element is transferred back
Z to the actual parameter data-element after the RETURN
Z statement is executed

RETURN
ENDROUTINE

Z
Z code to invoke the above routine
Z

3::int
twice(int) Z after invocation int = 6

Z the following is equivalent to the previous inmocation
twice(3::int)

Z Note, following invocation is invalid. it has no explicit
Z actual parameter data—element. for the value to be returned

twice(3+2*5)

3. A parameter with WRITE only access mode.

ROUTINE INTEGER,VOID (INTEGER WRITE) : triple (paraml)
3*8 =: param1

Z value in the temporary local data~element is transferred back
Z to the actual parameter data—element after the RETURN
Z statement is executed

RETURN
ENDROUTINE

Z
Z code to invoke the above routine
Z

INTEGER : int
Z

2 triple (int) Z after invocation int = 6
Z Note, the following invocation is invalid

2 triple (3+5) Z no explicit actual parameter
Z data~element

The composite data type; are transferred by reference. This means that
during execution of a routine, the address of each actual parameter
data-element is transferred into the routine. Then each reference to a
formal parameter will cause the actual parameter data—element to be
referenced directly during execution of the routine.

In Fortran and Cobol parameters are always transferred by reference.
Consequently, a routine written in PLANC must include the routine
modifier STANDARD, in its declaration, to be callable from Fortran or
Cobol.

ND-BD.117.04

144 PLANC Reference Manual
ROUTINES

7. 5 EXIIiEROHARfllHINE

Exit from a routine will take place when execution reaches a RETURN.
an ERRETURN or an ENDROUTINE statement. Any number of RETURN and
ERRETURN statements may appear in a routine.

The general form of a RETURN statement is

[expression] RETURN

where

expression must be present if the routine has an out—value
declared. The resulting value of the expression must be
of the data type declared for the out~value.

The general form of an ERRETURN statement is

expression ERRETURN

where

expression is the resulting value of the expression which must be
of the data type INTEGER.

A RETURN or an ENDROUTZNE may be used for normal exit from a routine.
However, if the routine has an out—value declared, then exit from the
routine must be via a RETURN or an ERRETURN statement. The PLANC
compiler will check that at least one RETURN is present, if the
routine is declared with a non VOID out-value.

The RETURN statement will transmit the out—value of a routine back to
the invoking routine.

Exit via an ERRETURN statement will transfer control back to the
invoking routine. If the invoking routine has a 0N ROUTINEERROR
statement prior to the routine invocation statement, then control will
be transferred to the beginning of that exception handling group of
statements. Otherwise. control will be transferred to the next higher
level in the routine invocation hierarchy. and so on. until a level is
reached containing a routine exception handler. or the outer level is
reached where the program execution will terminate, see section 8.8
for conditions to enter the exception handler. and a run—time errormessage will be issued.

Exit via an ERRETURN statement will make the resulting value of the
expression available in the system variable. ERRCODE, which has a
data—element of the integer data type.

N0w80.117.04

PLANC Reference Manual 145
ROUTINES

If an exit via an ERRETURN statement has transferred control to a user
routine exception handler, then following completion of the exception
handler, control will be transferred in one of the following ways

an ENDON acts as if the last ekecuted routine call had
executed a RETURN. Note that an out—value data-element or
actual parameter data-elements with wRITE access, would
contain unpredictable values.

a 60 statement may transfer control to a label.

a RETURN or ERRETURN will exit from the routine containing
the exception handler to its caller.

NDn60.117.04

146 PLANC Reference Manual
ROUTINES

7’. 6 RETUIINE.IXELSEEL‘IEILIAIIOMAND.USEilEEINELRDUIINELIl’EE
A routine is a composite data type in PLANC. Thus. a routine is made
up of components of other data types. Further, the facility of a user
specifying his own composite data types in terms of those already
available. also applies to the routine data type.

A user may define a new data type based on the routine data type. This
TYPE specification will include

1) Routine modifier options, eg. STANDARD, INLINE, if required.

2) The data types of the routine's in-value and out—value.

3) The data types of all of the formal parameters, which will be
present in any routine data~element of this newly defined
TYPE.

Thus. part of the routine header is specified for every routine data—
element declared to be of this user defined TYPE. This mechanism may
be used to create a family of routines with similar structure. ie.
same in-value and out-value data types. same number of parameters and
parameter data types.

For example

TYPE rtnfamily = ROUTINE REAL.VOID (INTEGER WRITE)

A possible application might be to create a stack For a particular
record data type data—element. with functions such as push. pop. etc.,
each routine handling one record data-element and the stack

TYPE stackrec : RECORD
INTEGER : i1,i2
REAL :r1,r2

ENDRECORD

TYPE stackrtn = ROUTINE VOID.VOID (stackrec READ WRITE)
Z declare various routines in the stack handling family

stackrtn 2 push (inrec)
I put the record on the global stack

ENDROUTINE

stackrtn : pop (outrec)
2 return a record from the global stack

ENDROUTINE

ND—60.117.04

PLANC Reference Manual 147
ROUTINES

7. 7 RECURSIYLRHUHNES

Routines in PLANC may invoke themselves recursively with certain
restrictions. For direct recursion, a routine may invoke itself only
if it is declared in the outer—most level of a module. This also
applies to modules nested within other modules. An alternative
explanation is that any routine nested within another routine must not
invoke itself recursively. Indirect recursive invocations are allowed
at any level of nested routines or nested modules, provided that the
chain of routine invocations goes via the routine at the outer level
of the module containing the nested routine which is then invoked by
indirect recursion.

For example

ROUTINE VOID,INTEGER (INTEGER) : factorial (number)
Z compute n! (n Factorial) recursively

IF number > 1 THEN
Z invoke factorial again recursively For next lower value

number*factorial(number-1) RETURN
Z terminal condition of recursion

ELSE
1 RETURN

ENDIF
ENDROUTINE

Z
Z code to invoke the above recursive routine
Z

INTEGER : int
Z

factorial(5)=:int Z result is 5*4*3*2*l = 120

Note that routines with the qualifiers, SPECIAL or INLINE, cannot
invoke themselves recursively.

ND-BD.l17.04

148

The

PLANC Reference Manual
ROUTINES

following examples show which routines may legitimately invoke
themselves recursively

1.

2.

A routine declared in the outer level of a moduleT

MODULE abc
Z

ROUTINE ... : rtnyes
1 this routine, rtnyes. may invoke itself recursively

ROUTINE ... : rtnno
Z this nested routine, rtnno, may not invoke itself recursively

ENDROUTINE
ENDROUTINE
ENDMODULE

A routine declared within a nested module.

MODULE outer
Z

MODULE abc
Z

ROUTINE ... : rtnyes
Z this routine. rtnyes. may invoke itself recursively

ROUTINE ... : rtnno
Z this nested routine. rtnno, may not invoke itself recursively

ENDROUTINE
ENDROUTINE
ENDMODULE 2 end of abc

ENDMODULE Z and of outer

Indirect recursion, routines declared in separate modules.

MODULE his
2 necessary EXPORT/IMPORT statements

ROUTINE ... popeye
I this routine may invoke "oliveoil"

ROUTINE ... roughhouse
2 this routine may invoke ”oliveoil"

ENDROUTINE
ENDROUTINE
ENDMODULE Z and of his

MODULE hers .
Z necessary EXPORT/IMPORT statements

ROUTINE ... oliveoil
1 this routine may invoke "popeye' creating indirect recursion

ENDROUTINE
ENDMODULE Z and of hers

ND~60.117.04

PLANC Reference Manual 149
ROUTINES

7. 8 www.mmmm

An identifier may be created in a routine by a normal declaration or a
type specification. Identifiers defined within a routine will have a
scope including the entire routine. However such identifiers may not
have an identifier name which is identical to an identifier whose
scope includes this routine, ie. an identifier may not be declared
twice within nested routines.

If routine declarations are nested, then identifiers created within
the inner routines have the same restriction as above concerning the
choice of identifier names. Note that while INLINE routines expansions
are inserted at each invocation, this does not restrict the identifier
names which may be used locally within the INLINE routine. The INLINE
routine may use local identifier names which are the same as names
with a scope which includes the invocation of the INLINE routine.

ND—h0.117.04 Revision A

150 PLANC Reference Manual
ROUTINES

i7. 9 mamanurmesmmmemwc

The standard routines are listed in this section in alphabetical
order.

AQQB.

The ADDR standard routine takes as a parameter, an identifier of any
data type, ie. simple, composite. predefined or user defined. It will
return the address in memory of the corresponding data—element.

Note. if several routines in one module have the same routine name,
then the ADDR standard routine will return the address of the first
routine declared in the module. If the ADDR standard routine refers to
a routine data—element, the routine identifier must not be enclosed in
parentheses.

APPENQ

The APPEND standard routine will add a record to the end of a linked
list of records. For a detailed illustration of the use of APPEND, see
section 4.6

fill

The BIT standard routine will store or retrieve a boolean value
into/from one bit position of the data~element associated with an
identifier. For example

INTEGER : int
BOOLEAN : b11
TRUE=:8IT(int,3)
BIT(int,3)=:bll

will store a value 1 into bit 3 (the fourth bit from the right) of the
integer datauelement associated with int. The third bit of int is
retrieved and stored into bll.

_8_LOCKSIZ§E_

The BLOCKSIZE standard routine will set the blocksize of a file. For a
detailed description see section 9.8.

.QLQAEL

The CLOSE standard routine will terminate the connection of an
external file to an internal file number. For a detailed description
see section 9.7.

ND-60.T17.04

PLANC Reference Manual 151
ROUTINES

CONVERT

The CONVERT standard routine will carry out conversion between various
integer and real data~elements. For a detailed description see section
5.5

DISPOSE

The DISPOSE standard routine is used to deallocate dynamically created
data—elements. For a detailed description see section 4.5

The form of the routine declaration of the DISPOSE standard routine
follows

ROUTINE INTEGER POINTER.VOID &
XDISPOSE ALIAS 'SDISPOSE' Z ALIAS 'RDISPOSE‘ on ND~500

where

in—value is the address of the dataeelement to be deallocated.

FELESIZE

The FILESIZE standard rautine is used to set the size of a file, or to
inquire as to the present size of a file. For a detailed description
see section 9.9

FORCE

The FORCE standard routine will move a value from one data—element to
another, regardless of the data types. For a detailed description see
section 5.5

;_Q

The IND standard routine will get the value of a data~element. The
parameter to the {NO standard routine must be an appropriate pointer
identifier. to reference the data—element. All data types may have
their data—element value picked up in this way, ie. simple, 60mp03lte,
predefined and user defined data types.

INISTACK

The INISTACK standard routine will create a new stack area. For a
detailed description see section 8.6

ND~60.117.04 Revision A

152 PLANC Reference Manual
ROUTINES

insenr

The INSERT standard routine will add a record to the beginning of a
linked list of records. For a detailed illustration of the use of
INSERT, see section 4.6 . It may also add a member to a set data—
element.

ELEM.

The INPUT standard routine may be used for formatted input or for
random unFormatted INPUT. For detailed description of the various
INPUT routines see chapter 9

mgeoex

The MAXINDEX standard routine will return the declared upper bound of
an array. The routine invocation may be used as follows

MAXINDEX(array-identifier,dimension-number)

where

array~identifier is the identifier of the array whose upper bound
is required

dimension-number is the number (from 1) of the index set, from
which the upper bound is required.

Note that the dimension number must be an integer literal, it cannot
be an identifier or an expression.

tfllflflflél

The MININDEX standard routine will return the declared lower bound of
an array. The routine invocation may be used as follows

MININDEXtarray—identifier,dimension‘number)

where

array~identifier
is the identifier of the array whose lower bound is
required

dimension—number
is the number (from 1) of the index set, from which the
lower bound is required.

Note that the dimension number must be an integer literal, it cannot
be an identifier or an expression.

ND—60.117.04

PLANC Reference Manual 153
ROUTINES

M

The NEW standard routine will dynamically create unnamed simple or
composite data-elements. For a detailed description of the parameters
and invocation of the NEW standard routine. see section 4.5

If the NEW standard routine dynamically creates a datawelement within
an explicitly declared array. eg.

INTEGER ARRAY : area(1:1000)::0 Z see note below
REAL POINTER : rp
NEW REAL IN area =2 rp

This will create an unnamed real data-element in the array area. The
address of the real data—element will be stored in the real pointer
IQ~

Some of the array elements of the array will be required for storage
management of the memory used for dynamically created data—elements.
The details of the storage management are

-* free area pointer 1 word

maximum area pointer 1 word

storage managenent 15 words
area

dynamically created
data—elements

-4 free area

For every invocation of the NEw standard routine which creates a data—
element within an array, there will be two extra words required, in
addition to the storage used for the created data—element.

If a DISPOSE is used to deallocate a data—element, then the area may
be reused only if there is a request for a data—element of exactly the
same size. Garbage collection. or reorganization of such an area is
not carried out.

Note : prior to the tirst invocation of NEW. for a particular
array, the area used For storage management. must be
initialized to contain zeroes.

ND-60.117104

T54 PLANC Reference Manual
ROUTINES

The form of the routine declaration of the NEW standard routine is

ROUTINE INTEGER,INTEGER POINTER (INTEGER ARRAY) &
XNEW (arr) ALIAS 'SNEW' Z ALIAS 'fiNEN' on the ND-SDD

where

inwvalue is the size of the data-element to be created in bytes.

out~value address of the created data-element.

parameter is the array in which the data—element is to be
created.

OPEN

The OPEN standard routine will establish the connection of an external
file to an internal file number. For a detailed description see
section 9.6

9212.91

The OUTPUT standard routine may be used for formatted output or for
random unformatted OUTPUT. For detailed description of the various
OUTPUT routines see chapter 9

The PRED standard routine may be used on enumeration data—elements
only. It will return the previous enumeration value, within the
declared list of enumeration values. to that contained in the data—
element which is the parameter for the routine invocation.

For example

ENUMERATION (good,better,best) : moral
best=:moral
PRED(moral)=:moral 2 stores the value 'better'
PRED(good) ... Z will return an unpredictable value

REMQXE

The REMOVE standard routine will remove a record from a linked list of
records. For a detailed illustration of the use of REMOVE, see section
%.6 . It may also remove a member from a set data~element.

iv
:..I__§

The SIZE standard routine returns the number of bytes used for storage
of a data~element. It may also be used to get the number of bytes
required for any data-element of a specified data type. For a more
detailed description see section 3.17

ND-SO.117.04 Revision A

PLANC Reference Manual 155
ROUTINES

§UC§

The SUCC standard routine may be used on enumeration datanelements
only. It will return the Following enumeration value, within the
declared list of enumeration values. to that contained in the data—
element which is the parameter for the routine invocation.

For example

ENUMERATION (good,better,best) : moral
better=zmoral
SUCC(moral)=:moral 2 stores the value ’best'
SUCC(best) ... X will return an unpredictable value

TY 0

The TYPEOF standard routine specifies identifiers to be of the same
data type as a previously declared identifier. For detailed
description see section 3.14

H0—60.117.04 Revision A

156 PLANC Reference Manual
ROUTINES

7.10 Laglg 9f ELAEQ Standard Routines

Abbreviations used in the following table

—v in-value
o v out—value
n/a not applicable

Standard brief function allowed parameter parameter
Function description data type(s) description
name

ADDR get address of a i—v void n/a
data—element o—v any address an address

data~element data-element
1. any data type name of a

dataeelement

AP?END add a record to the i—v record append record
and of a linked list o~v void n/a

1. address list specifier
implied range

BET store a boolean (bit) i-v boolean value for store
value o—v void n/a

1. identifier of store into
a simple type data-element

2. integer liter. bit number
or constant

BET extract a boolean i—v void n/a
(bit) value o—v boolean value stored

1. identifier of get value from
a simple type data-element

2. integer liter. bit number
or constant

BLOCKSlZE set blocksize of a file i—v integer blocksize
o—v void n/a
1. integer file number

CLOSE close a file i—v void n/a
o~v void n/a
1. integer file number

CONVERT convert to or from real i~v reallinteger from data~element
and integer types o—v real/integer to data—element

1. REAL/[NTEGER target data type

DISPOSE deallocate dynamically i-v int. pointer data-element
allocated data—element address

o—v void n/a

ND-60.117.04 Revision A

PLANC Reference Manual 1553
ROUTINES

Standard brief function allowed parameter parameter
Function description data type(s) description
name

FILSIZE set/read filesize of i-v integer4 set file size to
a file o—v integeré read file size

1. integer file—number

FORCE interpret data—element i-v data—element from value
value as a different o—v data—element to value
data type 1. any data type

IND get a data—element i-v void n/a
value via a pointer to o—v any data type value retrieved
it 1. pointer data pointer to the

type data—element

INISTACK create a new stack area i—v void n/a
o—v void n/a
1. integer array area for stack

INSERT add a record to the i—v record insert record
head of a linked list o—v void n/a

1. address list specifier
implied range

INPUT formatted input i—v void n/a
o—v integer chs. transferred
1. integer device number
2. bytes format descriptor
3. any data-elem. input data-elem.

INPUT random unformntted i—v void n/a
input o—v integer chs. transferred

1. integer file number
2. integer block number
3. bytes input area

MAXINDEX get current upper bound i—v void n/a
of an array o—v integer upper bound

1. array ident. name of array
2. integer liter. index set no“

or constant

MININDEX get current lower bound i-v void n/a
of an array o-v integer lower bound

1. array ident. name of array
2. integer liter. index set no.

or constant

new dynamically create a i-v void n/a
new data—element o—v pointer adr. of new

ND-60.117.04

data—element
1. any data type

Revision A

data—element
data type of new
data—element

156p PLANC Reference Manual
ROUTINES

Standard brief function allowed parameter parameter
Function description data type(s) description
name

OPEN open a SINTRAN file i—v void n/a
o-v integer chs. transferred
1. integer file number
2. bytes file access code
3. bytes file name
4. bytes file type

OUTPUT formatted output i-v void n/a
o—v integer chs. transferred
1. integer device number
2. bytes format descriptor
3. specified type output data—elem.

OUTPUT random unformatted i—v void n/a
output o—v integer chs. transferred

1. integer file number
2. integer block number
3. bytes input area

FRED get the immediately i—v void n/a
prior enumeration o—v enum. value prior value
value 1. enum. ident.

REMOVE remove a record from i—v record remove record
a linked list o—v void n/a

1. address list specifier
implied range

SIZE get storage, in bytes, i—v void n/a
used by a data type o-v integer? number of bytes

1. identifier or
data type

SUCC get the immediately i—v void n/a
prior enumeration value o—v enum, value following value

1. enum. ident.

TYPEOF specify identifiers i—v void n/a
to be of the same data o-v any data type type of elem.
type 1. list of

ND-80.117.06

identifiers

Revision A

PLANC Reference Manual 157
PROGRAM STRUCTURE

8 ERDERALSIRUQZ'URE

In order to construct a complete PLANC program which can be executed,
the following things must be present

1) At least one MODULE with its component parts.

2) One MODULE must contain at least one routine. of the special
type PROGRAM. to define a main entry point to begin
execution.

8. 1 BASILMDDULE

A MODULE is the smallest independent part of a PLANC program which can
be compiled separately. Further, it is the minimum entity required to
form a program which can be executed as an independent program,
providing it contains a main PROGRAM routine, see section 8.2.

In large or complex systems it is usually desirable to group into
separate entities, similar functions or data structures.This may serve
the purpose of being able to more effectively administer the functions
required in the system, or making a single copy of a widely used data
structure available to any part of the system from one central place.
In PLANC the MODULE is the mechanism to do this, by collecting
appropriate or related routines into a suitably chosen number of
MODULE's for a system.

The form of a basic MODULE comprises the following components

I) The declared MODULE name.

2) EXPORT declarations for data—elements, declared in this
MODULE, to be made available to other MODULE's, see section

8.3.

3) IMPORT declarations for data—elements from another MODULE, to
be accessible within this MODULE, see section 8.3.

4) Declarations and TYPE specifications, local to a MODULE,
which will be global to all levels of routines declared
within this MOOJLE. These declarations include all routine
declarations for this MODULE.

5) Executable statements,if any, required for this MODULE.

ND-60.117.04

Ififi PLANC Reference Manual
PROGRAM STRUCTURE

The general form of a MODULE declaration is

MODULE mod—ident
2 EXPORT statements for data—elements required externally
Z
Z body of the module

ENOMODULE

where

modmident is an identifier for this module.

Note that any EXPORT statements required for this module, must precede
all other declarations. However. TYPE specifications and IMPORT
statements may precede an EXPORT statement in a module.

For example

MODULE mymodule
EXPORT myint ,

Z only identifiers global in this module may be EXPORT'ed
INTEGER : myint
PROGRAM : mainprogram

Z declarations local to the main program
INTEGER : locint

Z executable part of main program routine
ENDROUTINE
ENOMODULE

ND—60.117.0k Revision A

PLANC Reference Manual 159
PROGRAM STRUCTURE

B. 2 UAINJZRDGRAH

A special type of routine is the maifl_flRQ§fiAfi. There must be one main
PROGRAM routine in a program to be executed. The general form of a
routine header of a main PROGRAM routine is

PROGRAM : routine—name

where

routine—name is a valid identifier which is the main entry point to
be used to begin program execution.

The main PROGRAM routine has no in—value, out-value or parameters. All
other things permitted for routines. e9. declarations. type
definitions and inner nested routines, may be used in a main PROGRAM
routine. A main program routine must be terminated by an ENDROUTINE
statement in the same way as a normal routine.

For example

PROGRAM : myprogram

I an inner routine

ROUTINE VOID,INTEGER (INTEGER) : myroutine (intparam)
Z routine body

intparam RETURN
ENDROUTINE

Z
Z local declarations for main PROGRAM routine
Z

INTEGER : int
Z
Z executable statements
Z

10=zint
Z
Z end of main PROGRAM
Z

ENDROUTINE

The above main PROGRAM would have to be compiled in a MODULE, then
linked with a Loader. The name ‘myprogram' will be the main entry
point which can be used to begin execution of the program.

N0n60.117.04 Revision A

160 PLANC Reference Manual
PROGRAM STRUCTURE

8.. 3 BHRL’WWWWIWLES

Modules are used in large systems to group routines and data—elements
in some way appropriate to the particular design for the project. It
will often be necessary to access data—elements, declared in one
module. from one or more other modules. PLANC requires explicit
declarations for both the module containing the data—element and the
modules wishing to gain access. For the purposes of inter-module
communication, routines are treated as other data~elements.

An EXPORT statement. in a module, makes available particular data—
elements for access by other modules.

The general form of an EXPORT statement is

EXPORT [(SYSTEM)] identifier[,identifier3...

where

identifier is an identifier associated with a data—element
declared within this module.

The optional qualifier. (SYSTEM), will make the routine identifier
associated with a data~element inaccessible unless IMPORT'ed with the
(SYSTEM) qualifier. If this option is used in an EXPORT statement,
then it must be used in any matching IMPORT statements. This is of
particular interest as an extra protection to avoid naming conflicts
for system provided routines, in run—time systems. The ALIAS facility
can be used in a similar way, see section 7.1 . Users are strongly
advised to use the ALIAS facility if special routine names are
required.

It is illegal to EXPORT a family of routines, with the routine name
identifier the same as the name of a PLANC predefined standard routine
or operator, see section 8.4 for the use of a family of routines.

EXPORT statements must be placed immediately following the MODULE
statement.

For example

MODULE exhibit
EXPORT bool,vector
BOOLEAN : bool
INTEGER ARRAY : vector(1:100)

ENDMODULE

ND-80.117.04 Revision A

PLANC Reference Manual 161
PROGRAM STRUCTURE

An IMPORT statement, specifies data—elements to be used in a module.
providing they have been made available in another module by an EXPORT
statement.

The general form of an IMPORT statement is

IMPORT [(option)] declarationI,declaration]...

where

declaration is the same as the declaration of the data—element in
the module containing the original declaration.

option is either SYSTEM or COMMON.

If the option (SYSTEM) is present in the matching EXPORT statement,
then it must also be present in the IMPORT statement.

If the option (COMMON) is used, the identifier(s) may only be used to
link to a named COMMON clock defined in a Fortran program, see section

0.7, Appendix D for more details.

If declarations of different data types are to be included in one
IMPORT statement, then each declaration must be included in
parentheses.

For example

IMPORT (INTEGER : iT,i2).(REAL : r1,r2),(BOOLEAN : b1)

As an IMPORT statement contains the data type of each IMPORT'ed data—
element, all of the normal compilation checks will be carried out on
the identifier. These checks apply within the module containing the
IMPORT statement. The PLANC compiler checks the correct correspondence
with the dataeelement's data type. declared in the originating module
and in the IMPORT statement. if both modules are nested within another
module. If the two modules with the corresponding EXPORT/IMPORT
statements are not nested within another module, ie. they are
separately compiled, then these correspondence checks are not done,

If the data—element IMPORT'ed is a routine, then its declaration in
the IMPORT statement must be in parentheses. Further, the list of
formal parameter identifiers declared in the routine. must not be
included in the IMPORT statement.

For example

IMPORT (ROUTINE VOID.VOID (INTEGER) : doit)

For families of routines, declared in another single module, the use
of ALIAS names is necessary. This allows one or more variants, of
routines declared with the same identifier, to be accessed by the
IMPORT statement, see section 8.4

A user defined data type, specified in a TYPE statement. or
identifiers declared in a CONSTANT statement, may be IMPORT'ed into an
inner nested module, see section 8.5

ND—50.117.04 Revision A

162 PLANC Reference Manual
PROGRAM STRUCTURE

Examples of the use of EXPORT/IMPORT statements

1" Some simple data—elements.

MODULE source
EXPORT int,rl,bool

Z
INTEGER : int
REAL: rl
BOOLEAN : bool

Z
ROUTINE VOID.VOID : looknice

Z .
ENDROUTINE
ENDMODULE

Z
Z a separate module which could be compiled separately
Z

MODULE getem
IMPORT (INTEGER : int). (REAL : rl)
IMPORT BOOLEAN : bool

Z
Z now 'int', 'rl' and 'bool' are available in this module
Z

ENDMODULE

2. A routine to be accessed from another module.

MODULE service
EXPORT useful

ROUTINE VOID,INTEGER (INTEGER) : useful (param)

Z body of the routine

ENDROUTINE
ENDMODULE

Z
Z a separate module which could be compiled separately
Z

MODULE getit
EMPORT (ROUTINE VOID.INTEGER (INTEGER) : useful)

Z
Z now ‘useful‘ is available in this module
Z

ENDMODULE

For more complex use of routines and EXPORT/IMPORT statements. see
section 804

ND-60.117.04 Revision A

PLANC Reference Manual 183
PROGRAM STRUCTURE

8. 4 ALIAS_USE_1N.A.HDLLLLE

A family of routines to create an operator for various data types, may
be declared in one module. All the routines will have the same routine
name identifier. If the routines are to be invoked by other routines
within the same module, then nothing further is required. The PLANC
compiler will compile each invocation with a reference to the correct
routine, which requires an exact match of the data types of the in~
value and the parameters. If there is not an exact match. the compiler
will give an error message unless there are corresponding parameters
with some data type modifications. For range or precision
modification, accurracy may be lost.

For example

MODULE allinone
INTEGER ARRAY : stack(0:1000)

Z
Z define a family of routines for a +++, plus 1 operator
Z
Z each routine will 'add' 1 for a particular data type
Z and return the result as an out—value
Z

ROUTINE INTEGER,INTEGER : +++
8+1 RETURN Z return in—value+1
ENDROUTINE

Z
ROUTINE REAL.REAL : +++
3+1.0 RETURN Z return in—value+1.0
ENDROUTINE

Z
ROUTINE BOOLEAN.BOOLEAN : +++
NOT a RETURN Z return complement of in-value
ENDROUTINE

Z
Z program to invoke the above +++ routines
2

PROGRAM : myplus
INTEGER : int ; REAL : rl ; BOOLEAN : bool

Z executable program_
INISTACK stack

Z invoke the integer version of +++
5 +++ =:int Z result is 6

Z invoke the real version of +++
3.51 +++ 2: rl Z result is 4.51

Z invoke the boolean version of +++
TRUE +++ =: bool Z result is FALSE

2
ENDROUTINE
ENDMODULE

The routine name identifier of a family of routines should not be the
same as the name of a PLANC predefined standard routine or operator as
it is illegal to EXPORT a family of routines with such a name.

ND'DD.117.04

164 PLANC Reference Manual
PROGRAM STRUCTURE

If such a Family of routines were created in one module, but the
routines were to be invoked From another module, then ALIAS names
would be required for each routine in the family. Further, the Family
WGJld have to be EXPORT'ed from its module and IMPORT'ed into the
module containing the routine invocations.

For example

MODULE family

2 define a family of routines for a +++, plus 1 operator

/
/
Z
Z each routine will 'add' 1 for a particular data type
/ and return the result as an out—value
/
/ set~up access to the family of routines

EXPORT +++
Z

ROUTINE INTEGER.INTEGER : +++ ALIAS ’intplus'
3+1 RETURN Z return in—value+1
ENDROUTINE
ROUTINE REAL,REAL : +++ ALIAS ‘realplus’
3+1.0 RETURN Z return in-value+1.0
ENDROUTINE
ROUTINE BOOLEAN.BOOLEAN : +++ ALIAS 'boolplus'
NOT a RETURN Z return complement of in~value
ENDROUTINE
ENDMODULE Z end of module family

Z
MODULE usethem

Z set~up access to the module with the +++ routines
INPORT(ROUTINE INTEGER,INTEGER : +++ ALIAS 'intplus')
IMPORT(ROUTINE REAL.REAL : +++ ALIAS 'realplus')
IMPORTI ROUTINE BOOLEAN,BOOLEAN : +++ ALIAS 'boolplus')
INTEGER ARRAY : stack(0:1000)

Z program to invoke the above +++ routines from another module

PROGRAM : myplus
INTEGER : int ; REAL : rl ; BOOLEAN : bool

Z executable program
INISTACK stack

Z invoke the integer version of +++
5 +++ =:int Z result is 6

Z invoke the real version of +++
3.51 +++ =; rl 2 result is 4.51

Z invoke the boolean version of +++
TRUE +++ =: bool 2 result is FALSE

Z
ENDROUTINE
ENDMODULE 2 end of module usethem

Note. that these two modules could be compiled together in one file.
or separately. prior to execution. In Fact if these modules were
nested within another module, then the ALIAS names would not be
necessary.

ND~'60.11?_(?-’.

PLANC Reference Manual 165
PROGRAM STRUCTURE

The previous example could be coded differently, with the module which
is to invoke the routines referring to the unique ALIAS names only.
This applies to the IMPORT statements and the routine invocations.

For example

MODULE family

1 define a family of routines for a +++, plus 1 operator
/
/
/
Z each routine will 'add' 1 for a particular data type
/ and return the result as an out—value
/
/ set—up access to the family of routines

EXPORT +++
Z

ROUTINE INTEGER,INTEGER : +++ ALIAS 'intplus'
8+1 RETURN Z return in_value+1
ENDROUTINE

Z
ROUTINE REAL,REAL : +++ ALIAS 'realplus'
8+1.0 RETURN Z return in-value+1.0
ENDROUTINE

Z
ROUTINE BOOLEAN,BOOLEAN : +++ ALIAS 'boolplus‘
NOT a RETURN 2 return complement of in~yalue
ENDROUTINE
ENDMODULE Z end of module family

Z
MODULE usethem

Z set—up access to the module with the +++ routines
Z note, that now reference is directly to the ALIAS names

IMPORT(ROUTINE INTEGER,INTEGER : intplus)
IMPORT(ROUTINE REAL,REAL : realplus)
IMPORT(ROUTINE BOOLEAN,BOOLEAN : boolplus)
INTEGER ARRAY stack(0:1000)

Z program to invoke the above +++ routines from another module

PROGRAM : myplus
INTEGER : int ; REAL : rl ; BOOLEAN : bool

Z executable program
INISTACK stack

Z invoke the integer version of +++
5 intplus = int Z result is 6

Z invoke the real version of +++
3.51 realplus r: rl Z result is 4.51

Z invoke the booleen version of +++
TRUE boolplus 1: bool Z result is FALSE
ENDROUTINE
ENDMODULE Z end of module usethem

Note, these two modules could be compiled together in one file, or
separately, prior to execution. These modules cannot be both nested
within one module as the loader must complete the links for ALIAS
names.

ND—60.117.04

166 PLANC Reference Manual
PROGRAM STRUCTURE

The family of routines can be given a new family name within the
program which will invoke the appropriate routine in the family.

For example

MODULE family

: define a family of routines for a +++. plus 1 operator
A
I each routine will 'add‘ 1 for a particular data type
1 and return the result as an out~value
7
/ set—up access to the family of routines

EXPORT +++

ROUTINE INTEGER.INTEGER : +++ ALIAS ’intplus'
8+1 RETURN Z return in—value+1
ENDROUTINE

Z
ROUTINE REAL,REAL : +++ ALIAS ’realplus‘
8+1.0 RETURN Z return in—value+1.0
ENDROUTINE

Z
ROUTINE BOOLEAN.BOOLEAN : +++ ALIAS 'boolplus'
NOT a RETURN 2 return complenent of in—value
ENOROUTINE
ENDMODULE Z and of module family

Z
MODULE usethem

Z set—up access to the module with the +++ routines
L note, that now reference is through a new family name

IMPORT(ROUTINE INTEGER,INTEGER : plus1 ALIAS 'intplus')
IMPORT(ROUTINE REAL,REAL : plusl ALIAS 'realplus')
IMPORT(ROUTINE BOOLEAN,BOOLEAN : plus1 ALIAS 'boolplus')
INTEGER ARRAY : stack(0:1OOU)

A program to invoke the above +++ routines from another module

PROGRAM : myplus
INTEGER : int ; REAL : rl ; BDOLEAN : bool

Z executable program
INISTACK stack

2 invoke the integer version o? +++
5 plusl =:int 2 result is 6

Z invoke the real version of +++
3.51 plus1 =: rl Z result is 4.51

l invoke the boolean version of +++
TRUE plus1 =: bool 2 result is FALSE

ENDROUTINE
ENDHODULE Z and of module usethem

Note, these two modules could be compiled together in one file. or
separately, prior to execution. These modules cannot be both nested
within one module as the loader must complete the links for ALIAS
names“

ND-60.117.04 Revision A

PLANC Reference Manual 167
PROGRAM STRUCTURE

The family of routines can be given new individual names within the
program which invokes each of the routines in the family.

For example

MODULE family

define a family of routines for a +++, plus 1 operator
/
Z
Z
Z each routine will 'add' 1 for a particular data type
7 and return the result as an out—value
Z
/ set—up access to the family of routines

EXPORT +++
Z

ROUTINE INTEGER,INTEGER : +++ ALIAS 'intplus’
3+1 RETURN Z return in~value+1
ENDROUTINE

Z
ROUTINE REAL,REAL : +++ ALIAS 'realplus'
9+1.0 RETURN Z return in—value+1.0
ENDROUTINE

Z
ROUTINE BOOLEAN.BOOLEAN : +++ ALIAS ’boolplus'
NOT a RETURN Z return complement of in—value
ENDROUTINE
ENDMODULE Z end of module family

Z
MODULE usethem

Z set—up access to the module with the +++ routines
Z note. that now we create local names for each routine

IMPORT(ROUTINE INTEGER,INTEGER : int1 ALIAS 'intplus')
IMPORT(ROUTINE REAL,REAL : real1 ALIAS 'realplus')
IMPORT(ROUTINE BOOLEAN.BOOLEAN : bool? ALIAS 'boolplus' J
INTEGER ARRAY ; stack(0:1000)

Z
Z program to invoke the above +++ routines from another module
Z

‘

PROGRAM : myplus
INTEGER : int ; REAL : rl ; BOOLEAN : bool

Z executable program
INISTACK stack

Z invoke the integer version of +++
5 intT =:int Z result is 6

Z invoke the real version of +++
3.51 realT =: :1 Z result is 4.51

Z invoke the boolean version of +++
TRUE booll =: bool Z result is FALSE

Z
ENDROUTINE
ENDMODULE Z end of module usethem

Note. that these two modules could be compiled together in one file,
or separately, prior to execution. These modules cannot be both nested
within another module as the loader must complete the links for AtIAS
names.

NDu60.117.04

168 PLANC Reference Manual
PROGRAM STRUCTURE

8’. 5 HUWL£_.SIRUCIURE_AND_SEEARAIE_CDHEILAHDU

Modules are independent entities which may be compiled separately by
the PLANC compiler. Then a Loader must be used to link all the
necessary separate modules together. All required links between the
separately compiled modules will be resolved, by the Loader as
external references. This can only be done successfully if the links
between the modules have been correctly defined with EXPORT/IMPORT
statements, see 8.3

If several routines in a module have the same name, then the Loader
would not be able to resolve such an ambiguity, unless ALIAS names
have been used to give a unique qualifier name to each routine, see
section 8.4

TYPE specification and CONSTANT statements may precede all modules on
a file. In this case these staments will not be contained within any
module. During the compilation, identifiers thus created will be
globally available to all modules in the compilation. In fact. user
specified data types will appear identical to the data types defined
within the PLANC compiler. Further, TYPE specifications to be used in
this way may be inserted by an INCLUDE compiler command, see Appendix

A

Modules may be nested within other outer modules to any practical
number of levels. If modules are nested, the inner modules can access
data—elements declared in outer module levels, only by the usual means
of EXPORT/IMPORT statements. This would be exactly the same as if the
inner module was removed and compiled as a separate module.

However, nesting of modules does offer extra facilities.

1) If a new data type is specified in an outer level module,
then the type specification may be IMPORT'ed to an inner
level nested module. If the new data type is to be IMPORT’ed
over several levels of nested modules, then it must be
INPORT'ed at every level between the original TYPE
specification and the inner level module wishing to access
it.

2) Identifiers declared in CONSTANT statements may be accessed
in nested modules in exactly the same way as TYPE
specifications, without EXPORT statements. but with IMPORT
statements at every level between the original TYPE
specification and the inner level module wishing to access
it.

3) If modules are nested within other modules. then checking of
the correspondence of the declared data types in matching
EXPORT and IMPORT statements is carried out at compilation
time.

ND~60.117.04

PLANC Reference Manual 169
PROGRAM STRUCTURE

For example

MODULE outer
TYPE goods = INTEGER RANGE (1:128)

MODULE innerl
IMPORT goods

MODULE innerz
IMPORT goods

ENDMODULE Z end of inner2
ENDMODULE Z end of inner1
ENDMODULE Z end of outer

If modules are nested. routines and executable code may only be within
the innermost module. However if there are two separate nests of
modules within an outer module, then each separate nest of modules may
have executable routine within its innermost module.

ND’GD.117.04

PLANC Reference Manual
PROGRAM STRUCTURE

8. 6’ DAIA:ELEHENLSIDRAGE.AND.HI&ERHGRAM.SIACK

Allocation strategy of data—elements and detailed memory requirements
are described for each PLANC implementation, see Appendix C.
However, some aspects of data-element storage allocation apply to all
PLANC compiler implementations.

In PLANC the distinction has been made between statically and
dynamically allocated data-elements.

Statically allocated data—elements include

1) Global data—elements declared in a basic MODULE.

2) Local data—elements, declared in a routine, whose access is
READ only.

3) Data—elements. constructed by the NEW standard routine,
within a global data—element, see section 4.5

Dynamically allocated data—elements include

1) Local data—elements, .declared in a routine, whose access is
not READ only.

2) Data—elements. constructed by the NEW standard routine.
within a local data-element or on the program stack, see
section 4.5

A static data~element may be initialized with a specific value, in its
declaration. provided that it is not within a nested routine. Static
data—elements may be initialized within a nested routine if it is
declared as READ only. Dynamically created data~elements are allocated
on a stack. either when a routine is invoked, or when the NEN standard
routine is invoked to create a data—element.

ND 60.117.04

PLANC Reference Manual 171
PROGRAM STRUCTURE

The stack used, is referred to as the ‘current' stack. The INISTACK
standard routine must be used to create a current stack at the
beginning of program execution. It may be used during program
execution to create further stacks.

The general form of the INISTACK standard routine invocation is

INISTACK int—array

where

int—array is an INTEGER ARRAY, of one dimension, with an index
set lower bound of zero.

The array, used in an INISTACK invocation, will remain the current
stack until another INISTACK invocation. or until the routine with the
INISTACK invocation terminates. When a routine terminates and returns
to its invoker, all stack space allocated during execution of the
routine will be released. The stack pointer will automatically be
reset to the value it had prior the routine invocation.

Example of INISTACK use

MODULE mymodule

INTEGER ARRAY : stackarray (021000)
PROGRAM main

Z
Z mandatory at the start of the executable program statements
I

INISTACK stackarray
Z

ENDROUTINE
ENDMODULE

ND'GO.117.04

172 PLANC Reference Manual
PROGRAM STRUCTURE

8. 7 SCDEELOE.HENIIEIER.NAMES_IN..ELANC_MDHJLES
In a module. identifiers may be created by declaration statements.
TYPE specification statements or IMPORT statements. All identifiers
created within the outer level of the module are available throughout
the module. ie. the identifiers have a scope of the outer module only.
However, if another module is nested. then the identifiers created in
the outer module are available within the nested module in the
following ways

1) Identifiers created in the outer module by the usual
declaration statements, eg. INTEGER or ENUMERATION, must have
a corresponding IMPORT/EXPORT pair of statements, to make the
identifier available within the nested module.

2) Identifiers created in TYPE specification orl CONSTANT
statements in the outer module, must be IMPORT’ed into the
nested MODULE, but no EXPORT statement is to be used in the
outer module, see section 8.5 . Only the identifier name is
used in IMPORT statements used for this purpose.

3) Identifiers created in the outer module by the use of an
IMPORT statement, must have another identical IMPORT
statement to make the identifier’ available in a nested
module. ie. an IMPORT statement must appear on every level
between the outermost module and the nested module in which
it is to be used. ‘

TYPE specification statements and CONSTANT declarations may be made
outside, or previous to any module in a compilation. These statements
are then treated like compiler commands. Identifiers created in this
way are globally available in all modules, separate or nested, without
IMPORT statements.

ND DD. _.\ 1 2
-

x

C) ,;x

PLANC Reference Manual 173
INPUT/OUTPUT

9 INEUIZDUIEUI

The PLANC compiler and run~time system does not have very extensive
input/output facilities. A set of standard routines has been provided
for input/output, for various of the PLANC data types, to files and
devices. One general limitation is that only one data~element may be
input/output by a single input/output standard routine invocation.
This has been done as it is envisaged that large systems programming
projects will design and implement their own set of input/output
routines. appropriate to their special needs.

The ROUTINEERROR exception will be activated by errors in any of the
input/output or open/close standard routines. If a ROUTINEERROR
condition occurs, the system variable. ERRCODE, will contain a value
from the file system, specifying the nature of the error.

9.1 Input/Output Terms and Concepts

Input routines control the transfer of data from external media into
internal storage. Output routines control the transfer of data from
internal storage to external media.

In addition to the data transfer routines. other routines carry out
file control operations. The following standard routines are provided
in PLANC

1) INPUT - data transfer.

2) OUTPUT — data transfer.

3) OPEN — file control.

4) CLOSE — file control.

I5) BLOCKSIZE file control.

6) FlLESIZE file control.

ND—60.117.04 Revision A

174 PLANC Reference Manual
INPUT/OUTPUT

figcords

A record is a sequence of values or characters which is considered as
a single unit by the device it is being read to or written from. It
may correspond to a physical entity such as a disc block or a magnetic
tape block. but not necessarily.

There are two types of records

1) Formatted

2) Unformatted

A formatted record is one which is transferred under the control of a
format descriptor. Other records are ugformatted records. During
unformatted transfers, data is trarsterred on a one~to~one
correspondence between external media and internal storage with no
conversion or ¥ormatting operations.

fiiles

A file is a sequence of records, existing on an external device,
accessible by a PLANC program via the SINTRAN File system.

,fiile Number

A file number is a value in an INTEGER datavelement, which specifies a
particular file internally within a program. A file number is returned
following the execution of the OPEN standard routine.

‘Egrmat Descriptor

A format descriptor is a parameter in both Input and Output standard
routine declarations. It describes the physical characteristics of a
value after it has been transferred from a data—element by an output
routine. or the physical characteristics before the value is to be
transferred into a data—element by an input routine.

ND-60.117.04

PLANC Reference Manual 175
INPUT/OUTPUT

9. 2 EDRUAIIEDJNEHLROUHNES

The formatted INPUT standard routines transfer one value into a data—
element. The general form of an invocation of a formatted INPUT
standard routine is

INPUT (file—number,'descriptor‘,identifier)

where

file—number is the file number obtained by the OPEN invocation.

descriptor is the format descriptor.

identifier is associated with the data—element into which the
value is to be transferred.

Each of the formatted INPUT standard routines is declared with an out—
value. This out—value will return the number of characters which have
been transferred.

A field being read by an INPUT standard routine will terminate when
either the maximum number of characters specified in the format
descriptor has been read. or when a comma character (,), or a carriage
return character is encountered.

If a field to be read by a formatted INPUT standard routine contains
leading blanks and a nuneric value, then the blanks will be recognised
as part of the field width but will have no effect on the value
transferred into a data—element.

The data types of the parameters of the formatted INPUT standard
routines are shown in the general form of the INPUT standard routine
declaration

ROUTINE VOID,INTEGER (INTEGER,BYTES,id—type) : INPUT (...D

where

id—type is the data type of the data-element to receive the
value read. This data type must correspond with that
implied by the format descriptor.

In the following sectiows on the formatted INPUT standard routines the
abbreviations used are

w is an unsigned integer number greater than zero.

d is an unsigned integer number greater than or equal to
zero.

ND«60.117.04 Revision A

178

figrmat Desgrigtors

The following
INPUT standard routines

Iw
Ow

Fw.
Ew.

Aw

Lw

Note that if

PLANC Reference Manual
INPUT/OUTPUT

are the format descriptors available for the formatted

fl

Integer Field descriptor

Floating—point numeric field descriptors

Alphanumeric data field descriptor

Boolean data Field descriptor

or w.d is omitted. a maximum number of characters
(default for each data type) will be used.

ND—60.117.04

PLANC Reference Manual 177
INPUT/OUTPUT

9.2. 1 I_EDRMAL-MEBER_INEULSIANDARD_RUUHNE I

The Iw descriptor is for an integer value to be transferred into an
INTEGER data—element from a field of up to w character positions.

The input field consists of an optional minus sign followed by_a
string of digits. ie. the same as an integer literal.

The field width described by an integer format descriptor can be
overridden by the use of any non—numeric character as a delimiter
between successive integer values to be read.

Examples

value input descriptor internal value

1 I1 1
1 IS 1

10 IS 10
—15 IS ~15

1234 I2 12

The parameter data types of the integer INPUT standard routine are
shown in the routine declaration

ROUTINE VOID,INTEGER &
(INTEGER, BYTES, INTEGER4 READ WRITE)

9 . 2. 2 0.EDRHA[_0CIAL_IHEUI.SIANDARD_RQUHNE

The CW descriptor is for an octal value to be transferred into an
INTEGER data-element from a field of up to w character positions.

\

The input field consists of a string of digits with no sign.

Examples

value input descriptor internal value,dec

1 01 1
10 05 8

123k 02 10

The parameter data types of the octal INPUT standard routine are shown
in the routine declaration

ROUTINE VOID,INTEGER &
1 INTEGER. BYTES. INTEGER‘ READ WRITE)

ND»60.117.04

178 PLANC Reference Manual
INPUT/OUTPUT

9. 2. 3 E.EDT?HAL.EIXEILDEL‘IMALEUINLINEUL.‘SIANDARLLRDUIINE
The Fw.d descriptor is for a fixed decimal point value to be
transferred into a REAL data—element From a field of w character
positions.

The input Field consists of an optional minus sign, followed by a
string of digits optionally containing a decimal point. If there is no
decimal point. the rightmost d digits are interpreted as the
fractional part of the value. The rules are the same as for a REAL
literal. see section 2.7.2 . If the input fiield has enough space, the
value may be written in exponent form. see section 9.2.4.

Examples

value input descriptor internal value

1.2 F5.0 1.0
-1.2 F5.0 —1.0

1.2 FS.1 1.2
—1.2 F5.1 -1.2

33 F10.3 33.0
3.2543 F10.3 3.254

The parameter data types of the fixed deCLmal point INPUT standard
routine are shown in the routine declaration

ROUTINE VOID,INTEGER (INTEGER, BVTES, REAL READ WRITE)

NDv60.117.04

PLANC Reference Manual 179
INPUT/OUTPUT

9. 2. 4 EIORMAL-EIXED.DiECIHALEDINLNQRHALIZI-Ilfll'iEXEflNl-XLINEUI
SMNMRQRDUIINE '

The Ew.d descriptor is for a fixed decimal point value, normalized
with an exponent, to be transferred into a REAL dataeelement From a
field of up to w character positions.

The input field may have the same form as described above for the F
descriptor. This field may optionally be Followed by an exponent of
the form Enn or E—nn, where on is limited by the default REAL data
type characteristics of the particular machine implementation, see
Appendix C. The value from the input field will be multiplied by 10
to the power on, to get the internally held value.

Examples

value input descriptor internal value

1.2 E5.0 1.0
—1.2 E5.0 —1.0

1.2E2 ES.1 120.0
1.2Ew2 ES.1 0.012

33 E10.3 33.0
3.2543E4 E10.3 32540.0

987654E—3 E10.3 987.654

The parameter data types of the fixed decimal point normalized Wlth
exponent INPUT standard routine are shown in the routine declaration

ROUTINE VOID,INTEGER (INTEGER. BYTES, REAL READ WRITE)

ND‘50.11?.04

180 PLANC Reference Manual
INPUT/OUTPUT

9. 2. 5 AEDEMALJLEHANUUEBICJNE’ULSIANDARELRDLIIIME

The Aw descriptor is For an alphanumeric string to be transferred into
a BYTES data-element from a field of up to w character positions.

If more than w characters are input. then the first w characters only
will be stored in the data—element.

Examples

value input descriptor internal value

1 A1 1
1 AS 1

1 A5 1
abcde A3 abc

The data types of the alphanumeric INPUT standard routine are shown in
the routine declaration

ROUTINE VOID,INTEGER (INTEGER. BYTES. BYTES READ WRITE)

9. 2 . 6 LJFDBIMAIiiBDflLEANJNEULSIANDAELRflUJINE

The Lw descriptor is for a boolean value to be transferred into a
BOOLEAN data-element from a field of up to w character positions.

The input field is scanned for the first occurrence of one of the
letters T or F, and the BOOLEAN data~element will be set to TRUE or
FALSE accordingly. If no T or F is found in the input field, then the
BOOLEAN data~element will be set to a value FALSE.

Examples

value input descriptor internal value

T L1 TRUE
T__ L5 TRUE

F L3 FALSE
xyz L3 FALSE

The data types of the boolean INPUT standard routine are shown in the
routine declaration

ROUTINE VOID,INTEGER &
(INTEGER, BYTES, BOOLEAN READ WRITE)

Note that the out~value will contain the character position, relative
to 1. that the T or F has been found in.

ND'60.117.04

PLANC Reference Manual 181
INPUT/OUTPUT

9. 3 RANDDLUNEBRHAIIED. INEULSIANDARDMUIIME

The random unformatted INPUT standard routine reads a record of data
from a file, into a BYTES array data~element. The record may be
selected randomly from any location within a file. The general form of
an invocation of a random unformatted INPUT standard routine is

INPUT (file—number.rec~number.array—ident)

where

file-number is the file number obtained by invocation of the OPEN
standard routine.

rec—number is the record number within the File.
Note ; the first record is number 0.

array-ident is an identifier associated with the BYTES data—element
into which the value is to be transterred.

The parameter data types of the random unformatted INPUT standard
routine are shown in the following routine declaration

ROUTINE VOID,INTEGER (INTEGER. INTEGER, BYTES)

The out~value of the random unformatted INPUT standard routine will be
the number of characters actually transferred by the routine and this
may be used within an expression.

ND—60.117.04

182 PLANC Reference Manual
INPUT/OUTPUT

£3. 41 EDWWEWIINES

The formatted OUTPUT standard routines transfer one value from a data—
element to a file or a device. The general form of an invocation of a
formatted OUTPUT standard routine is

OUTPUT (file—number,'descriptor',identifier)

where

file~number is the file number obtained by invocation of the OPEN
standard routine.

descriptor is the format descriptor.

identifier is associated with the data—element into which the
value is to be transferred.

Each of the formatted OUTPUT standard routines is declared with an
out—value. This out-value will return the number of characters which
has been transferred to the file or device. The field width part of a
descriptor may be omitted and the out~value will have to be used to
find out how many characters have been transferred.

If the value transferred does not fill the width specified for the
field. then usually leading blanks will be inserted by the formatted
OUTPUT standard routines.

{f the internal value is too large to fit into the field width
specified, then the output field will be filled with asterisk (*)
characters.

The data types of the parameters of the formatted OUTPUT standard
routines are shown in the general form of the OUTPUT routine
declaration

ROUTINE VOID.INTEGER (INTEGER.BYTES.id~type) : OUTPUT (...)

where

id~type is the data type of the data~element whose value is to
be output. This data type must correspond with that
implied by the format descriptor.

in the following sections on the formatted OUTPUT standard routines
the abbreviations used are

w is an unsigned integer number greater than zero.

d is an unsigned integer number greater than or equal to
zero.

ND—50.117.04 Revision A

PLANC Reference Manual 183
INPUT/OUTPUT

The following are the format descriptors available for the formatted
OUTPUT standard routines

Iw — Integer field descriptor
0w — Octal Field descriptor
Zw — Octal Field descriptor. with leading zeroes

Fw.d — Floating~point numeric Field descriptors
Ew.d
Dw.d

Aw - Alphanumeric data field descriptor

Lw — Boolean data field descriptor

Note that if fl or mhg is omitted, the minimum number of characters
required to output the data~element will be used.

ND-60.117.04

184 PLANC Reference Manual
INPUT/OUTPUT

£1. 4. 1 LELWWIEUIWINE

The Iw descriptor is for a value to be transferred from an INTEGER
data—element to a field of w character positions, as a decimal value.

The value will be right—justified in the field. If the value is
negative, one of the character positions will be used for a minus
sign.

Examples

internal value descriptor output

1 I1 1
1 IS 1

+10 IS 10
—15 IS ~15

1234 IL 1234
-1234 I4 ****

the parameter data types of the integer OUTFUT standard routine are
shown in the routine declaration

ROUTINE VOID,INTEGER (INTEGER, BY7ES. INTEGER4 1

iii. 41. 2 UAIQLEDRMALJEIALDUIEULSIANDARAROUTINE

the 0w descriptor is for a value to be transferred from an INTEGER
data—element as an octal value, to a field of up to w character
positions.

Yhe value will be right—justified in the field. If the value is
negative. one of the character positions will be used for a minus
sign.

Fields output with an Ow descriptor will contain leading space
characters. The Zw descriptor will give leading zero characters.

Examples

internal value,dec descriptor output

1 O1 1
1 05 1

10 05 12
10 25 00012
‘5 05 177773

4095 05 7777
—4095 05 (170001) *****

the parameter data types of the octal OUTPUT standard routine are
shown in the routine declaration

ROUTINE VOID.INTEGER 1 INTEGER. BYTES, INTEGER4)

ND—60.117.01 Revision A

PLANC Reference Manual 285
INPUT/OUTPUT

9. 4. 3 EiDRMAIJIXElDEYCIMALEUINLDUIEULSMNMARDUIIME

The Fw.d descriptor is for a value to be transferred from a REAL data—
element. as a fixed point value. into a field of w character
positions.

The w character positicns will include a decimal point. and an
optional minus Sign. If the value does not fill the entire field, then
the leading character pcsitions will be blank filled.

The value output will be rounded to the number of decimal places
specified, if necessary.

Examples

internal value descriptor output

1.2 F5.0 1.
—1.2 F5.0 —1.

1.2 F5.1 1.2
—1.2 F5.1 ~1.2

—10.33 F10.3 —10.330
12.3496 F5.2 (rounded) 12.35
1055.22 F5.2 *****

The parameter data types of the fixed decimal point OUTPUT standard
routine are shown in the routine declaration

ROUTINE VOID,INTEGER (INTEGER, BYTES, REAL)

ND~60.117.04

186 PLANC Reference Manual
INPUT/OUTPUT

The Ew.d descriptor is for a value to be transferred from a REAL data—
element to fixed decimal point normalized with exponent, into a field
of w character positions.

The value output will be scaled to have one digit before the decimal
point. There will be d digits after the decimal point. The exponent
will comprise the letter E, a sign and two digits which are the power
of ten to multiply the preceding value by.

Examples

internal value descriptor output

1.2 68.0 1.E+00
~1.2 E8.0 ~1.E+00

120.0 E8.1 1.ZE+02
0.012 E8.1 1.25-02

.033 E13.3 3.3006—02
3.254384 E10.3 3.254E+04

The parameter data types of the fixed decimal point normalized with
exponent OUTPUT standard routine are shown in the routine declaration

ROUTINE VOID,INTEGER (INTEGER. BYlES, REAL)

El. 4! . 5 [LEMMJIMLWINLWWWIMIEUI
smmanm

The Dw.d descriptor is for a value to be transferred from a double
precision REAL data—element to fixed decimal point normalized with
exponent. into a field of w character positions.

The value output will be in exactly the same format as that described
above for the E descriptor.

Examples

internal value descriptor output

.033 013.3 3.300E—02
3.2543E4 010.3 3.254E+04

The parameter data types of the fixed decimal point normalized with
exponent OUTPUT standard routine are shown in the routine declaration

ROUTINE VOID.INTEGER (INTEGER, BYTES. REAL)

NO—60.117.0& Revision A

PLANC Reference Manual 187
INPUT/OUTPUT

9. 4. 6 WWLMMSMNHARDWE

The Aw/ALw descriptor is for an alphanumeric string to be transferred
from a BYTES data—element into a field of w character positions.

The character string will be output as ASCII characters. If the field
width w is greater than the length of the string, then the string will
be right—justified in the field and trailing character positions blank
filled. If the AL descriptor is used then the character string will be
left—justified and leading character positions blank filled.

Note that a single dollar character (3) in the string to be output
will be converted, during output, to carriage return+line feed
characters. To print a single dollar character (3), two consecutive
dollar characters must be present in the string.

Examples

internal value descriptor output

abcde A5 abode
abc A5 _~abc
abc ALS abc_m

The data types of the alphanumeric OUTPUT standard routine are shown
in the routine declaration

ROUTINE VOID,INTEGER (INTEGER, BYTES. BYTES)

9. 4. 7 LEDRHALWTMIELE_SIANDARD.RQUHNE

The Lw descriptor is for a value to be transferred from a BOOLEAN
data—element into a field of w character positions.

The right—most character position of the output field will have the
letter T if the BOOLEAN data—element has a value TRUE, and the letter
F if the BOOLEAN data—element has the value FALSE. The leading
character positions of the output field will be blank filled.

Examples

internal value descriptor output

TRUE L1 T
FALSE L5 F

The parameter data types of the boolean OUTPUT standard routine are
shown in the routine declaration

ROUTINE VOID,INTEGER (INTEGER, BYTES, BOOLEAN)

ND—60.117.0k Revision A

188 PLANC Reference Manual
INPUT/OUTPUT

5L 5? WWUIEULSIANDARDWIE

The random unformatted OUTPUT standard routine writes a record of data
from a BYTES array data—element to a file. ”he record location may be
selected randomly from within the file. ”he general form of an
invocation of a random unformatted OUTPUT standard routine is

OUTPUT (file—number,rec~number,array—ident)

where

file—number is the file number obtained by the OPEN invocation.

reennumber is the record number within the file.
Note : the first record is number 0.

array—ident is an identifier associated With the BYTES data—element
from which the value is to be transferred.

The parameter data types of the random unformatted OUTPUT standard
routine are shown in the following routine declaration

ROUTINE VOID,INTEGER (INTEGER, INTEGER, BYTES)

Since the random unformatted OUTPUT standard routine has an out—value,
the number of characters actually transferred by the routine, may be
uaed within an expression.

ND-60.117.04 Revision A

PLANC Reference Manual 189
INPUT/OUTPUT

9. 6 DEEBLEILE

The OPEN standard routine will return a file number, corresponding to
the named file, to be Jsed within the program to execute input/output
operations. An invocation of the OPEN standard routine will take the
form

OPEN (fileenumaer,file—access,file—name,file-type)

where

file—number is the file number obtained by invocation of the OPEN
standard routine.

file—access is the type of input/output which is to be executed
with this file. For details see MON 50 in the SINTRAN
Reference Manual.

file-name is the SINTRAN file name.

file—type is the SINTRAN file type.

Note : the default type is SYMB.

The data types of the formal parameters may be seen in the OPEN
standard routine declaration

ROUTINE VOID,VOID &
(INTEGER READ WRITE. BYTES. BYTES, BYTES) : OPEN (...)

9. 7 CLDSE_EILE

The CLOSE standard routine will terminate the connection of a
particular external file to an internal file number. An invocation of
the CLOSE standard routine will take the form

CLOSE (file—number)

where

file-number is the internal file number within the program.

The data types of the formal parameters may be seen in the CLOSE
standard routine declaration

ROUTINE VOID.VOID (INTEGER) : CLOSE (...)

NO-SO.117.04

190 PLANC Reference Manual
INPUT/OUTPUT

5i). 6! SBLBLDLXSIZLQELEILE

The BLOCKSIZE standard routine will set the blocksize of a file which
has been previously OPEN'ed. The block size may be set to any number
greater than or equal to 1. The form of the routine invocation is

int BLOCKSIZE (file—number)

where

File—number is the internal file number within the program.

int is an integer identifier.

The value passed into the BLOCKSIZE standard routine must be the
block size in bytes.

the data types of the formal parameters may be seen From the routine
declaration : ‘

ROUTINE INTEGER.VOID (INTEGER) : BLOCKSIZE (...)

ND-60.117.04 Revision A

PLANC Reference Manual 191
INPUT/OUTPUT

9. 9 SEIZCHECLSIZLDEAEILE

The FILESIZE standard routine may be used either to set the size as a
file, in bytes. or to inquire as to the present size of a file.

To set the size of a file, the form of the routine invocation is

int FILESIZE (File—number)

where

file—number is the internal file number within the program.

int is an INTEGERA identifier.

The value passed to the FILESIZE standard routine is the file size in
bytes.

The parameter data types may be seen from the routine declaration

ROUTINE INTEGE24.VOID (INTEGER) : FILESIZE (...)

If the file size is required, then the routine invocation should be

FILESIZE(file—number)=:int

where

file—number is the file number of the open file.

int is an INTEGERL identifier.

The parameter data types may be seen from the routine declaration

ROUTINE VOID,INTEGER4 (INTEGER) : FILESIZE(...)

ND’60.117.04

NDu60.117.04

PLANC Reference Manual

PLANC Reference Manual 193

AE.E_E_ALD_I_X___A

COMEILERJQMMANDS

N0~80.117.04

19¢ PLANC Reference Manual

ND~EU.117.04

PLANC Reference Manual 195
COMPILER COMMANDS

0 . 1 CDMEILERJNYDCMION

The compiler is invoked From SINTRAN by the command

QPLANC-TOU on the ND-iOO
QPLANC~MC68

8ND-500 PLANC~EOO 0n the ND—SOO

The compiler responds with a notification of the version in use. It
then prompts by writing on the terminal

k

which indicates that the compiler is in command mode.

The command names car be abbreviated. Only the number of letters
needed to make it unique need be typed, but more may be given if
required tie. for readability or documentation). The parameters For a
command can be written tn the same line as the command name but
separated from it by one or more blanks and at most one comma.
Alternatively. if parameters are expected but not given. the compiler
will prompt for them in turn.

Most commands may also be written as part of the source program‘ but
in this case all parameters must be on the same line as the command
name, and the command name must be preceded by a dollar character S).
Blanks may appear before the S and the command name. Such commands can
only be written between statements. They cannot occur in the middle of
a statement, or between successive continuation lines of a statement.

N0 00,117.04

106 PLANC Reference Manual
COMPILER COMMANDS

0. 2 CDHEIDUION_DE.SDIJRCE_BRDGRAMS

The most important command is that which determines the program to be
compiled and where the output is to be placed. This is written

SCOMPILE source list object

where

source is the name of the file, or unit number, containing the
PLANC program to be compiled. This parameter cannot be
omitted. If TERMINAL or unit I is specified, input is
accepted from the terminal, line by line. until a SEOF
command is encountered in the input stream. If a file
name is specified, it must obey the usual SINTRAN
syntactic form and conventions. Default type is SYMB.

list is the name of the file or unit number to which the
source listing will be printed by the compiler. The
format of the output will be suitable for printing and
will contain the ASCII characters, line feed (LF),
carriage return (CR), and Form feed (FF) For carriage
control.

If 0 is specified or the parameter is omitted, the
listing is suppressed. The default list file type is
SYHB.

object is the name of the file, or unit number. which will
contain the compiled relocatable version of the
program. This is the input to the loader when creating
an executable program. See the respective Loader
manuals for details.

If 0 is specified, no relocutable code is, generated,
but a complete compilation takes place, thus giving any
diagnostic messages that may occur.

The default type of the object file is BRF on the ND—
100, NRF on the ND—SDO and NRF for the MCBBOOO.

If a unit number is given. it must be octal without any trailing
letter 8.

ND -6I1.I‘.7.U/.

PLANC Reference Manual 197
COMPILER COMMANDS

Any diagnostics generated by the compiler are listed on the terminal,
and also on the list File, if they are not the same. The messages may
be warnings or errors.

The end of the source text is the end—0F file or a $EOF encountered in
the source file.

0.3 HELE

In command mode, the command

$HELP

will list all available commands together with their possible
parameters.

HELP itself has no parameters.

0.4 CDMEILERlIERHIMAIIDW

The command

SEXIT

will return control to SINTRAN after all source, list, and object
files have been closed.

0.5 END_0E;E1LE

The command

SEOF

signifies that the reading of the current file is complete. Reading
continues at the next outer INCLUDE level.

ND>60.117.04

198 PLANC Reference Manual
COMPILER COMMANDS

U. 6 IHMEDIAIEEREEARAJTIDN_0E_EXECUIABLE_ER£IGRAHS

This section applies to the ND—1OU only.

An executable program may be prepared and output to a file. by using
the command

SPROG-FILE file-name

where

file—name is the name of a file to receive the executable
program.

The default file type is PROG.

If the COMPILE command is used subsequent to the FROG-FILE command,
then the compiler will generate the executable program directly on to
this file. The COMPKLE command will still generate an object file if
it is specified, in addition to the PROG File.

lhe executable program is completed automatically, by loading the
PLANC library (1 or 2 bank, depending on the setting of the SSEPARATE—
DATA option), when the SEXIT is taken out of the compiler. A list of
entry points and addresses will be output.

The SPROG~FILE command can be issued at most once during any
invocation of the compiler.

To complete the executable program. libraries or other object files
may be added by using the command

SLOAD file-name[,file—name]...

where

file—name is the name of an object file or library.

The default type of the file loaded will be BRF.

Any error messages which appear while the SLOAO command is being
executed can be found in the ND Relocating Loader manual (ND—60.056).

ND~GU.117.04

PLANC Reference Manual 199
COMPILER COMMANDS

To define entry points in the loader table use the command

SOEFINE entry~rame.value,mode

where

entry-name

value

mode

specifies the name of an entry point. If an asterisk
(*) is used. the current address will be used as the
next load address. If a question mark (?) is used,.a
map of undefined entries will be output. If this
parameter is blank, a map of defined entries will be
output.

specifies the load address in octal.

may be 3 to specify a program area, or Q to specify a
data area.

ND~60.117.04

200 PLANC Reference Manual
COMPILER COMMANDS

£7. 7 INCLUDZNQIEXI.EELIM_DIHER.$DURCE_EIUES

Other files can be incorporated in the source program at the points
indicated by the command

SlNCLUDE filename

where

Filename is the name of the file or unit number to be read. The
parameter cannot be omitted; the default file type is
SYMB.

The reading of the source program by the compiler is switched to the
named file and continues until a $EOF command is encounteredg The file
is then closed and the text following the $INCLUDE command is read.
The named file may itself contain further SINCLUDE commands. but no
more than 16 incomplete SINCLUDE's may be in existence at any one
time.

For example, a number of separate modules may require the same user
defined data type. The TYPE specification may be held on a file called
COMDEF:SYMB. Then by writing

SINCLUDE COMOEF

at the appropriate point in each module, the TYPE specification is
brought into the source file. Thus only one copy of the TYPE
specification is kept. and all modules have identical copies of it.

Q. 8 ELMILEEIMSEWSIMIS

In certain cases it may be desirable to set a parameter value to be
tested by a SIF group of a command external to the source text being
compiled, ie. prior to the outmost module level. The normal CONSTANT
statement as defined in the PLANC language may be used in command
mode.

ND-BO.117.04

PLANC Reference Manual 20‘COMPILER COMMANDS

0.9 CDNDIIIQMAL_CDHEILAIIDN

It is possible to select parts of a file or program to be used in a
particular compilation, depending on various parameters and their
values. There is a set of commands which may be used for this purpose,
within the source program. These commands are

SIF expression STHEN
~ PLANC source statements or compiler commands

SELSIF expression STHEN
— PLANC source statements or compiler commands

SELSE
~ PLANC source statements or compiler commands

$ENDIF

where

expression is an expression, which when evaluated. will give a
result of TRUE or FALSE.

The expression may contain literals and constant identifiers as
operands for any legitimate PLANC operators. eg. arithmetic and
relational.

There may be zero or more instances of SELSIF in a SIF command. The
SELSE may be omitted.

Within a group of commands, only those lines which lie between the
first occurrence of expression which has the value TRUE. or the SELSE
command if all the expressions are FALSE, and the next command of the
group, are included as valid source lines. The rest are listed,
without line numbers, but are otherwise ignored.

The SIF groups may be nested to 11 levels. ‘

All groups within INCLUDE'd text must be complete before the ENCLUDE
is terminated.

For example

CONSTANT maxsixelzZSS,maxsize2=3276?
CONSTANT size: 000
SIF size <= maxsize1 STHEN

INTEGERl : index
SELSIF size > maxsize1 AND size <= maxsize2 $THEN

INTEGER2 : index
SELSE

INTEGERG : index
SENDIF

In this case, size has a value 1000 which will result in the line or
code, INTEGERZ ... being included in the compilation.

N0v60.117.04

202 PLANC Reference Manual
COMPILER COMMANDS

0. 10 CDHEILLIIMEMACRDS

Another method of conditional compilation is to define a macro, which
may be invoked within the source lines, ard then substitute text where
macro name appears. Parameters may be used within the macro expansion
to control the particular text output from the macro.

The general form of a macro definition is

SMACRO macname [(parameter[.parameter]...)1
macro body

SENDMACRO

where

macname is the name to be used to invoke the macro.

parameter is a valid identifier name.

macro body is text to be expanded by a macro invocation.

The macro name must be formed according to the rules for PLANC
identifiers. It will be used to invoke the macro from within the
source lines of code.

The names of formal parameters of the macro definition are formed
according to the rules for PLANC identifiers. Within the macro body
the value of each formal parameter may be referenced during macro
expansion, by the formal parameter name enclosed by double quote
characters (“). The couble quote character may not be used for any
other purpose within the macro body.

The macro body may contain text which will be output unchanged during
the macro expansion, or modified by substitution of the value of
actual parameters. It may also contain other compiler commands, eg.
SIF ... SENDIF, with the exception of another SMACRO command, ie.
nested macro definitions are not allowed. However. it should be noted
that any compiler commands within a macro will be carried out at the
time that the macro is being expanded, and its output going into the
source of the PLANC program, prior to compilation of the PLANC source
code.

Example of a macro definition

SMACRO exmac (param1,param2)
”param1”"param2” SENDMACRO

ND 60.1i7.04

PLANC Reference Manual 203
COMPILER COMMANDS

An actual parameter may be any text string of characters, not
including the comma, right parenthesis or double quote characters, ie.
, or) or " characterfi, However, if a comma or a right parenthesis is
required within an actual parameter, the entire actual parameter must
be enclosed by double quote characters. The actual parameter value
will be substituted wherever it has been referenced within the macro
body.

For example, the above macro definition may be invoked by the
following

exmac(INTEGER,2) : i,j
exmac(REAL,4) : r,s

will generate

INTEGERZ : 1.:
REALk : r,s

The macro body may contain macro invocations, ie. macro invocations
may be nested. Macro invocations may be recursive, ie. a macro may
invoke itself from wittin its own macro body.

204 PLANC Reference Manual
COMPILER COMMANDS

0. 11 CROSS_REEERENCE_LISIIAlfiiANELLINKAGEJNEDRMAIION

The command may be used for obtaining an identifier cross—reference
listing

SCROSS-REFERENCE filename

where

filename is the name of a file to be used as a temporary work
area. The default file type is XREF. The Tile must be
on a mass storage device.

This command will list all the identifiers and the line numbers where
they are used. The output is on the listfile, and it follows the
source listing.

A list of the routine call hierarchy may be obtained by using the
command

SCALL-HIERARCHY ON

and this option may switched off by,

SCALL—HIERARCHY OFF

The CALLeHIERARCHY listing Follows the source listing and precedes the
CIOSSereference listing if it is present. The initial value is OFF.

Detailed linkage information may be obtained with the command

SLINKAGE—REFERENCE file~name

where

file-name is the name of a work file.

This command will produce a sorted list of all EXPORT'ed/IMPORT‘ed
items from the outermost module level. Jse of the LINKAGE—REFERENCE
command, prior to one or more SCOMPILE commands, will cause a return
to command mode after each compile.

NDm60.317.04

PLANC Reference Manual 205
COMPILER COMMANDS

The layout of the list output is as follows

End of source listing
kt*flt***t*t*1t**X‘ktfitft‘k‘k‘k‘k‘kt‘k‘ktk‘ktttkt*tk**tk*t***k***t'k*****‘k*

ROUT1 A_LINKR* B_LINKR
ROUTZ 8_LINKR* A_LINKR
VAR1 A_LINKR* BflLINKR
VARZ B_LINKR* AWLINKR

If an item is EXPORT'ed from a module, the module name will be marked
with an asterisk (*)

The LINKAGE REFERENCE command and the CROSS~ Rl-.FERENCE command must not
be used together in one «:ompile.

0.12 LISIING_EONIRDL

The listing of source lines on the listfile may be controlled by the
use of the command

SLIST GM

will cause lines of the source text to be output to the listfileu It
resumes the listing From a previous LIST OFF command.

$LIST OFF

will suppress output going to the listfile. The initial value is ON.

A skip to a new page may be requested by using the command

$EJECT

which will output a form feed to the listfile.

The line numbers printed in the source listing may be changed, in
order to continue from a different number by using the command

SLINE—BIAS line-number

where

line-number is the number to continue line numbers from.

ND—60.117.04 Revision A

206 PLANC Reference Manual
COMPILER COMMANDS

O. ‘33 M_HHE_DBIIDN3_EIWD:JDD

The execution of a PLANC program may be modified by the following

options provided by the compiler.

The code and data of a program may be generated for separate memory

areas by the use of the command

$SEFARATE—DATA 0N

and this option may switched off by.

SSEPARATE-DATA OFF

The initial value is OFF.

The extra instructions of the ND—100/CE model may be generated by the

use of the command
$NDlOO—EXTENDED ON

and this option may be switched off by.

$ND100-EXYENOEO OFF

The initial value is OFF.

Optimization of memory requirements and execution speed will be

attempted by the compiler with the following option

SOPTION SOUEEZE ON

and this option may be switched off by,

SOPTION SOUEEZE OFF

The initial value is OFF.

Each access to an array element will be checked at either compile time
or during execution with the following option

$OPTION ARRAY—INDEX—CHECK 0N

and this option may be switched off by,

$OPTION ARRAY~INDEX—CHECK OFF

This option may be used in several places in a program to switch

thecking on and off, as required.

The initial value is OFF.

ND—60.117.04 Revision A

PTANC Reference Manual 207
COMPILER COMMANDS

0.14 QAIA-IXPE;DEEAULIS

The number of significafit digits of the REAL data type may be altered
by using the command

SREAL-PRECISIOV number

where

number is the number of significant digits required.

0.15 CREAIIUN_HELLIBRARIES

To create a library from one or more outer level modules in one
compilation, use the command ‘

SLIBRARY—MODE ON

and this option may be switched off by.

SLIBRARY~MODE OFF

The LIBRARY option will generate a preceding BRF or NRF library mark
for each outer level module in the compiled file. The loader will not
load a module unless there is an unresolved reference to an EXPORT'ed
identifier in the module.

If the EXPORT'ed identifier has one or more ALIAS names, an ALIAS must
be present in the EXPORT statement as well as in each relevant routine
declaration. Further, the ALIAS in the EXPORT statement may use the
following general Form

EXPORT ... ALIAS 'name' [OR 'name']...
1

The list of ALIAS names is not permitted in an ALIAS used for a normal
routine declaration.

If OFF is used, these library marks are suppressed and the loader will
load the module anyway. The initial value is OFF.

For details of library marks and files see ND Relocating Loader manual
(ND-80.066) on the NO-TOO, or the ND<SOO Loader/Monitor manual CNO~
80.136) on the ND—SOO.

ND»60.117.04

208 PLANC Reference Manual
COMPILER COMMANDS

0. 16 DEBUEGING

The output from the compiler can be made to include information {or
use by the Symbolic Debugger. In order to have the debug information
generated by the compiler use the command

SDEBUG-MODE 0N

and this option may be switched off by,

SDEBUG—MODE OFF

For detailed descriptions of how to use the facilities of the Symbolic
Debugger see the Symbolic Debugger Reference Manual, ND—60.160 . The
initial value is OFF.

0“ 17 ASSEHBLER_L‘UIE_IILELANC.ER£IGRAHS

Assembly code may be placed within PLANC source statements and it will
be translated by an in—line assembler for the appropriate target
machine.

Assembly code lines must begin with a dollar character ($) followed by
an asterisk character (*). Mulitple instructions on one line are
separated by a semicolon character (;).

The syntax of machine instructions submitted to the inline assembler
is described in the following manuals

ND-100 Reference Manual NO—06.020
NO—SUU Reference Manual ND«OS.010
MCSBOOO 16 BIT MICROPROCESSOR User's Manual (third edition)

Chapter 2, Appendices A and B in the MC68300 manual are of particular
relevance. ’

PLANC declared variables or labels may be used as operands in
assembler instructions and the in-line assembler will generate the
appropriate references. However the PLANC identifiers. used in the
assembler instructions, must be used without the special addressing
mechanisms, eg. base registers or indirect, as these will be generated
for each PLANC identifier.

Beware of possible name conflicts between PLANC identifiers and
assembler mnemonics, eg. I for indirection in the ND-100.

Examples
3* LDA 0.x; SAD SHR 20; SAT 4; RDIV ST 2 ND-100 Code

5* N1 DIVk e.24a:s.4,w2 Z ND~500 Code

3* MOVE 228(A6l.DD; EXT.L DO; DIVS $48.00 Z MCEBUOO Code

ND 60.117.04

PLANC Reference Manual “09
COMPILER COMMANDS

0 . 18 DAILCUMHAND

The DATE command puts todays date (of the compilation) into a string.
The date is in the Following Format

month dd, 19yy

and may obtained by the Following declaration,

BYTES READ : date:= $DATE Z a blan< must precede the S

For example the identifier date will receive a string as Follows

DECEMBER 25, 1347

0 . 19 DEIIQNJHMEIMCDMMAND

The OPTION command is used to switch on or off some optional
facilities of the PLANC compiler. These Facilities have been described
in this chapter. The general form of this command, to switch an option
on is

SOPTION option—name 0N

and to switch an option off is

SOPTION option~name OFF

The options available are

1) HELP

2) SOUEEZE

3) ARRAY-INDEX-CHECK

210

ND~60.117.04

PLANC Reference Manual

PLANC Reference Manual

A_E..E.EJLD_I_X___B

ERRDKMESSAGES

ND~GO.117.04

212

ND 80. 1
l 17. U!

PLANC Reference Manual

PLANC Reference Manual 213
ERROR MESSAGES

0. 1 CUMEILEELMESSATGES

AMBIGUOUS COMMAND
Abbreviation of the command name has resulted in a non—unique
command name.

ARRAY BOUNDS CONFLICT NITH A PREDECLARATION
No further explanation.

ARRAY BOUNDS MISSING
An array declaration must have explicit array bounds. unless
initial values imply the array bounds.

COMMAND NOT PERMITTED WITHIN A MODULE
Certain compiler commands must only be used as global to the
outermost module level.

CONFLICTING DATA TYPES IN CORRESPONDING IMPORT/EXPORT
The corresponding IMPORT/EXPORT statements of communicating
modules have different data types in the declaration of one data«
element.

DATA TYPE NOT PREVIOUSLY SPECIFIED
An identifier has been used as a user defined data type without a
type specification.

EQUIVALENCE MAY CAUSE STORAGE CONFLICT
The use of equivalence (=) here for overlapping data—elements
could cause storage conflicts because of different length or
storage layout of different data types. (ND-100 only)

EXITFOR ALREADY PRESENT WITHIN THE LOOP
There is already one EXITFOR within this FOR—ENDFOR loop.

EXITWHILE ALREADY PRESENT NITHIN THE LOOP
There is already one EXITNHILE within this loop.

EXPONENT IS TOO LARGE
See Appendix D.

EXPORTED IDENTIFIER IMPORTED IN AN OUTER MODULE
No further explanation.

EXPRESSION DOES NOT STORE A VALUE
No further explanation.

ND-60.117.04

21¢ PLANC Reference Manual
ERROR MESSAGES

IDENTIFIER ALREADY SPECIFIED/OECLARED
The identifier has already appeared in a declaration statement or
a type specification statement.

IDENTIFIER IN EXPORT, BUT NO DECLARATION
The identifier which has been used in an export statement has not
been declared within this module.

IDENTIFIER USED IN DOT NOTATION IS NOT A RECORD
No further explanation.

IDENTIFIER USED IN DOT NOTATION IS NOT A RECORD COMPONENT
No further explanation.

ILLEGAL CHARACTER
A character has been used in a context in which it is not allowed.
eg. a digit as the First character of an identifier name or a real
exponent containing a non-numeric character. '

ILLEGAL CONSTRUCTION OF SIF—SENDIF COMMAND
No further explanation.

ILLEGAL CONTROL IDENTIFIER
The data type of the control identifier of the FOR statement does
not match the data type of the FOR list values.

ILLEGAL DATA-ELEMENT TO BE CONVERTED
The size of the data-element referred to by a FORCE or CONVERT
standard routine does not match the target data type. There may be
no conversion routine available.

ILLEGAL DATA TYPE
The data type of an identifier has beer used illegally.

ILLEGAL FORMAL PARAMETER IN MACRO
A macro definition parameter list contains an identifier name
which conflicts with a previous declaration. ‘

ILLEGAL INLINE INVOCATION
It is illegal to have an invocation of an INLINE routine within
another INLINE routine, ie. nested INLINE invocations are not
allowed.

ILLEGAL MODULE TERMINATION
The module structure has not been correctly terminated by an
ENDMODULE statement.

ILLEGAL NESTED MACRO DEFINITION
No further explanation.

PLANC Reference Manual 215
ERROR MESSAGES

ILLEGAL PARAMETER REFERENCE IN MACRO BODY
When referring to a macro parameter within the macro body, the
parameter must be bounded by double quote characters.

ILLEGAL PREDECLARATION
The predeclared identifier has appeared previously in a
predeclaration statement, or it may not be used in this context.

ILLEGAL OPERAND FOR STORE OPERATOR
No Further explanation.

ILLEGAL SYNTAX
The compiler has been unable to correctly translate this
statement. This may be due to a missing or misplaced delimiter,
misspelled keyword or scope problems.

ILLEGAL TO EXPORT THIS IDENTIFIER
No further explanation.

ILLEGAL TO IMPORT THIS IDENTIFIER
No further explanation.

INCASE CONTAINS INVALID VALUE
The INCASE part of a CASE statement has either an invalid value,
eg. which is not a member of the set being used. or a value which
has occured in a previous INCASE of this CASE statement.

INCOMPATIBLE DATA TYPES
A pointer data—element must be initialized to its corresponding
data type.

INCONSISTENT DIMENSIONS
The index set) in an array declaration do not correspond to the
number of array keywords in the declaration.

INISTACK INVOCATION MISSING

A PROGRAM routine must contain an INISTACK invocation to
initialize the stack area at run‘time.

INITIALIZATION VALUES OVERFLOW DECLARED SIZE
The number of elements declared for an array is less than the
number of values to be initially placed in this array.

INSUFFICIENT BUFFER SPACE FOR COMPILER
The compiler has insufficient buffer space. eg. for macro
definitions, expanSions or INLINE routine declarations or
invocations.

INITIAL VALUE ILLEGAL HERE
No further explanation.

ND-SG.117.U4

218 PLANC Reference Manual
ERROR MESSAGES

INVALID ACTUAL PARAMETER, FORMAL PARAMETER DECLARED AS WRITE
The actual parameter in the routine invocation is invalid because
the formal parameter in the routine declaration has been declared
as wRITE or READ wRITE.

INVALID ARRAY FOR INISTACK INVOCATION
The array in the INISTACK invocation must be global or imported.
declared with one dimension only and a lower bound of zero.

INVALID COMMAND
No further explanation.

INVALID CONDITIONAL EXPRESSION
No further explanation.

INVALID PARAMETER
An invalid parameter has been used in a compiler command.

INVALID PARAMETER LIST
In a routine declaration the number of formal parameters does not
match the declared data types. In a macro invocation. the number
of parameters is incorrect.

INVALID TYPE FOR IN—VALUE/OUT«VALUE/PARAMETER
The data type of a routine in—value. out—value or parameter must
not be a routine. Note that a pointer to a routine data—element
may be used.

INVALID USE OF KEYNORD
A valid keyword has been used in a statement illegally.

LINE IS TOO LONG
No further explanation.

MAX. NO. OF ARRAY ELEMENTS EXCEEDED
The number of elements declared for an array has exceeded the
compiler‘s available memory space. (ND«TDD only)

MISPLACED SENDMACRO COMMAND
No further explanation.

MISPLACED STATEMENT
It is not legal to have this statement at this point in the
program.

MISSING KEYWORD. ENDIF/ENDCASE/ENDFOR/ENDDO OR ENDON
No further explanation.

MORE SUBSCRIPTS THAN IN THE ARRAY DECLARATION
No further explanation.

MULTIDIMENSIONAL ARRAY NOT ALLOWED HERE
In some statements an array is allowed, but only a one dimensional
array.

ND—60.117.04 Revision A

PLANC Reference Manual
ERROR MESSAGES

”v .i —4

NEGATIVE BOUND ILLEGAL
No further explanation. (ND—100 only)

NO MORE SPACE FOR LOCAL DATA—ELEMENTS
No further explanation. (ND-100 only)

NOT IMPLEMENTED
No further explanation.

NOT PREVIOUSLY DECLARED
An identifier has been used without a declaration of an associated
data element, or without a type specification.

QUALIFIER REQUIRED FOR THIS RECORD COMPONENT
This record component identifier has been specified in more than
one record. Consequently a record identifier must be used as a
qualifier to uniqlely reference the desired component data-
element.

REQUIRE ELSE OR ALL POSSIBLE VALUES USED IN INCASE PARTS
A CASE statement must include all possible values in its INCASE
parts, or an ELSE mist be present.

INVALID TYPE FOR INwVALJE/OUTeVALUE/PARAMETER
The data type of a routine in~value, out—value or parameter must
not be a routine. Note that a pointer to a routine data—element
may be used.

ROUTINE WITH AN OUT—VALJE REQUIRES A RETURN
A routine which is declared with an out~value must contain at
least one return statement.

SET MEMBER OVERLAP _
A set member value was been used more than once in initializing
the set data~element.

SOUEEZE OPTION GENERATES INCORRECT CODE FOR THIS ROUTINE
Optimization of this routine generates incorrect execution code.
The SOUEEZE optioa must be switched off in order to compile this
routine correctly. (NO—IOU only)

STORAGE OVERFLOW IN COMPILER
No further explanation.

ND-BD.117.04

2‘3 PLANC Reference Manual
ERROR MESSAGES

TARGET MACHINE ADDRESS IS TOO LARGE
During a cross—compilation an address for the target machine is
required. but is too large For the compiler on this machine.

TOO MANY LEVELS OF MODULE NESTING
This is limited by the space available to the compiler.

TOO MANY NESTED INCLUDES. MACRO/INLINE EXPANSIONS
There are too many nested INCLUDE'S, nested macro expansions or
INLINE routine invocations for the storage available to the
compiler.

UNABLE TO EVALUATE EXPRESSION AT COMPILE~TIME
The expression contains identifiers whose values are not constant
at compile time.

WRITE DECLARATION ILLEGAL IN READ ONLY RECORD
If a record data~element has been declared as READ only, its
component data-elements must not be declared as WRITE only.

NDw60.117.U4

PLANC Reference Manual 219
ERROR MESSAGES

0.2 MWESSAGES

— NO ON ROUTIMEERROR HANDLER, ERRETURN= value
A routine has taken an ERRETURN exit and there is no exception
handler specified to which control can be passed. The ERRETURN
value may have been set in the user code or it may be from
SINTRAN. see the SINTRAN Reference Manual (ND~60.128).

— ASSERT VIOLATION AT address
If the condition in an ASSERT statement is evaluated, and gives a
resulting value FALSE. and the program has no 0N ASSERTFALSE
exception handler. the program has terminated execution at the
'address' in the message.

— STACK OVERFLON AT address
The requirements for storage have exceeded that available, and the
program has no 0N STACKERROR exception handler, so the program has
terminated execution at the ‘address' in the message.

ND~60.117.04 Revision A

220 PLANC Reference Manual

ND~60.117.04

PLANC Reference Manual 221

1LE_E_E_N,D_I_XM~E

MACHINE-DEEENDENLLANGUAGE.EEAlURES_1N_ELANC

ND—BU.117.04

ND-60.117.U4

PLANC Reference Manual

PLANC Reference Manual 223
MACHINE DEPENDENT LANGLAGE FEATURES IN PLANC

2 bytes ND—100
word size = 2 bytes MC68UOO

4 bytes ND—SOU

0. 1 SIDRAGE.-MAEEIA!B

PLANC data-elements are stored in the following way

BOOLEAN (ND‘100/MCBBDUC)

0 0 V

15 1 0

Bits 1S~1 : set to 0

Bit 0 (V) : 0 = FALSE
1 = TRUE

BOOLEAN (ND—500)

0 0 V

31 1 0

Bits 31w1 : set to 0

Bit 0 (V) 0 = FALSE
1 = TRUE

INTEGER1

S value

7 6 0

Bit 7 : 0 = greater than or equal to zero
1 = negative

Bits 6—0 : value held in twee—complement form

fijlg

value

7 0

Bits 7~0 : unsigned integer value

ND~60.117.D4

224 PLANC Reference Manual
MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC

INTEGERZ

3 value

15 14 0

Bit 15 : 0 = greater than or equal to zero
1 = negative

Bits 14—0 : value held in twos-complement form

lyTEGER4

3
8 value j

3! 30 0

Bit 31 : O = greater than or equal to zero
1 = negative

Bits 30-0 : value held in twos«complement form

INTEGER RANQQ

Data types whose base type is integer range, will require storage for
each data—element depending on the values specified for the upper and
lower bounds. Each data-element will be allocated the smallest
available addressable unit which has enough bits to contain the next
higher power of 2, greater than the number of values in the specified
range.

On the ND—(OO the addressable units used are 1 word (16 bits) and 2
words (32 bits). 0n the ND—SOU the addressable units used are 1 byte
(8 bits). 2 bytes (16 bits) and 4 bytes (32 bits). 0n the HCBBUOD the
addressable units used are 1 byte (8 bits). 2 bytes (16 bits) and 4
bytes (32 bits).

For example : ‘

INTEGER RANGE (0:32)

will require 5 bits to hold 33 distinct values. On the ND—100 1 word
will" be used, ie. (5 bits. 0n the ND-SOU and MCGBOOO 1 byte will be
used. ie. 8 bits.

If INTEGER RANGE is the base type of a SET datavelement, then the
data*element may have waste bits depending on the range specified. In
the above example 31 bits of space would be wasted in each data—
element, ie. a 66 bit data-element is allocated. although only 33 bits
are used.

If a CASE statement uses an INTEGER RANGE for its multiple
possibilities, then bits may be wasted in the same way as in a SET
data-element. A number of words (in a table of addresses) may be
wasted. ie. the size of the table of addresses will be a power of two
entries.

ND~60.117.04

PLANC Reference Manual 225
MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC

E E T N

An ENUMERATION data—element will occupy one word on the ND—1UO/MC68000
and the ND-SOO respectively. The data-element will contain an integer
value corresponding to the position in the list of possible
ENUMERATION values declared. The first ENUMERATION value will be
counted as zero. Hence the maximum possible number of distinct
ENUMERATION values in one declaration is 32758 for the ND—100/MC88000
and 2147483648 for the ND-SOO.

POINTER

Pointer data—elements for all data types, except arrays, will occupy
one word (2 bytes) on the ND—100 and 4 bytes on the ND-SOO
respectively. On the MC68000. a pointer data—element will occupy two
words (4 bytes).

Since the ND~100 has word addressing only, for array elements or
record components which are smaller than one word, a pointer to an
array element or a record component will contain the address of the
word containing the data—element. It will not necessarily be the exact
address of the data—element. However for statements such as
expressions with assignment operators, the run~time system will access
the data«element correctly.

This may affect addressing of array elements where the elements are
smaller than one word. eg. INTEGER RANGE (0:7) PACKED. or components
of a packed record.

0n the ND~500IMC68000 byte addressing is available, so a pointer, to
data~elements which are array elements or record components, may
contain a byte address.

ND—60.117.04 Revision A

226 PLANC Reference Manual
MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC

AfiflfiY POINTER

An array pointer will require 3 pieces of information per dimension
declared for the array. But the first element of the three, for the
first declared dimension, is an address (a pointer data—element). All
the rest of the elements are default integer data-elements. For
example a two dimensional array will have 6 elements in its array
pointer datawelement, the first of which is an address.

Following is a diagram of the layout of an array pointer data~element.
Each part is a default integer size except the first which is an
address.

address used for computing element addresses

lower bound 1 first dimension

upper bound 1

constanti 1+ upper bound 1 ~ lower bound 1

lower bound 2 second dimension

upper bound 2

constantz 1+ upper bound 2 — lower bound 2

etc

An array may be declared with n dimensions as follows

ar(low1:high1,low2:high2,...).

The address in the first element of the array descriptor. ie. the
array pointer, is used for computing addresses of any element of the
array. This address is an imaginary point in memory, which is obtained
by setting each index to zero, regardless of the declared bounds. This
imaginary point in memory would be the address of the first element of
the declared array, if all of its lower bounds were declared as zero.

The addressn of the imaginary point in memory. is obtained by
computing an offset and subtracting it from the actual memory address.
where the first element of the array is located. The following
formulae may be used to compute the offset, in array element units:

low1*constant1+low2 2 dimensional array
and (low1*constant%+low2)*constant2+low3 3 dimensional array

and so on for arrays of more dimensions.

ND—60.117.04 Revision A

PLANC Reference Manual 226a
MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC

The result from the above formulae, in array element units, must be
multiplied by the length of an array element in machine addressing
units, ie. bytes for the ND~500 and words for the NDm100. Note that on
the ND—100 a byte occupies one half word, and consequently the result
of the formulae must be even to give a valid address offset. Beware
that the data type. of the array elements of a PACKED arraya may
modify the computation by which array element units are converted to
machine addressing units.

The above formulae may also be used for computing the address of any
element of the array” Substitute each subscript value for the
corresponding lower bound values, and the formulae will give an offset
in array element units. This offset must be converted to machine
addressing units and then added to the address in the First word of
the array descriptor, giving the address of a specific array element.

ND-50.117.04 Revision A

PLANC Reference Manual 227
MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC

REA! (32—bit floating~pcint hardware)

S exponent mantissa

31 30 22 21 0

Bit 31 : 0 = greater than or equal to zero
1 = negative

Bits 30—22 : Binary exponent
Stored with a bias of 256 (400 octal). This is
a power of 2 that the mantissa must be
multiplied by. A value of 256 means that the
mantissa is the value.

If the exponent is 0, the whole value is zero.

Bits 21~D : mantissa
Stored without the 0.5 (0.1 binary) excess,
unless the value is zero. The binary point is
one place to the left of the mantissa, The
mantissa is normalised so that

0.5 <= mantissa < 1.0

This gives an accuracy of 7 significant
digits.

REAL (40—bit floating—paint hardware)

S exponent mantissa

47 46 32 31 0

Bit 47 : 0 = greater than or equal to zero
1 = negative

Bits 46—32 : Binary exponent
Stored with a bias of 16384 (40000 octal).
This is a power of 2 that the mantissa must be
multiplied by. A value of 400008 means that
the mantissa is the value.

If the exponent is 0. the whole value is zero.

Bits 31—0 : mantissa
Stored with all bits included. The binary
point is immediately to the left of bit 31.

This gives an accuracy of 9 significant
digits.‘

ND 50.137.04

228 PLANC Reference Manual
MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC

REALB (84—bit Floating'point)

S exponent mantissa

63 62 54 53 0

Bit 63 2 0 = greater than or equal to zero
1 = negative

Bits 62-54 : Binary exponent
Stored with a bias of 256 (400 octal). This is
a power of 2 that the mantissa must be
multiplied by. A value of 256 means that the
mantissa is the value.

If the exponent is 0. the whole value is zero.

Bits 21—0 : mantissa .
Stored without the 0.5 (0.1 binary) excess,
unless the value is zero. The binary point is
one place to the left of the mantissa. The
mantissa is normalised so that

0.5 <= mantissa < 1.0

This gives an accuracy of 15 significant
digits. '

ND~60.1!7.04

PLANC Reference Manual 229
MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC *

AR AY

The storage required for an array data—element is simply the number of
elements declared times the storage required for one element of the
array.

The array elements are stored in ascending order of the subscript
values. Arrays of more than one dimension are stored with the last
index changing most rapidly. This is identical to the scheme used for
PASCAL and different from the scheme used in Fortran.

The maximum number of elements of an array is limited by the way
subscripts are stored internally. Subscripts are stored in a signed
default integer data—element. Hence. on the ND—100/MCGBODD, the
maximum number of elements which an array may be declared with (this
depends on the number of dimensions and the upper and lower bound
values of each dimension), is 32K. ie. 32768.

On the ND—1OD. a PACKED ARRAY which is declared with 8—bit integer
elements, must not have a negative lower bound in any of its index
sets.

0n the ND—IOD. note that due to the scheme of computing the memory
addresses of array elements, the declared lower index bounds must
result in

1) the first element of a PACKED INTEGER modified array being an
odd byte, and

2) the first element of a PACKED BOOLEAN array being any bit
within a word.

This may be achieved on the ND~100, for arrays of two or more
dimensions having elements smaller than one word in the following way.
The lower bound of the last dimension and the number of values in the
index set, must be a multiple of the number of elements per word.

BEQQRQ

The storage required for a record data—element is simply the total
storage required by all the component data-elements, plus any waste
space between the component data—elements due to the alignment
requirements of each component.

§£l

A SET data—element will have one bit per possible member, ie. the
data—element will recuire the number of bits corresponding to the
maximum number of members declared. The bits are grouped into words.
If a bit has the value one, then that corresponding possible value is
a member of the SET data—element.

ND-60.117.06 Revision A

230 PLANC Reference Manual
MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC

0 . 2 SIURAGELALIGNMENI

The following tables give the size in bytes and storage alignment of
each of the different data—element data types on each machine.

Table 1 : ND—10 or ND—100 with 48 bit Floatinq—moint Hardware

data tvoe lenqth in bvtes aliqnment1Note 1)

BOOLEAN 2 word

INTEGER (INTEGERZ) 2 word
INTEGER1 1 word
BYTE 1 word
INTEGER2 2 word
INTEGER4 A word

REAL 6 word
REAL8 (Note 2) 8 word

ENUMERATION 2 word

ARRAY variable word

RECORD variable word

SET 2*((members+15)/16) word

Table 2 : ND*10 or ND—100 with 32—bit Floatinq—boint Hardware

All data types not listed in table 2 are the same as in table 1.

data type length in bytes alignment(Note 1)

REAL 4 word

ND—60.117.04

PLANC Reference Manual 231
MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC

Iahle 3 . NQ-iflfl

Qaia_ixne___i__i____len3&nlin_hxie§____alignmenttNote 1)

BOOLEAN 4 word

INTEGER (INTEGERA) 2 word
INTEGER? 1 byte
BYTE 1 byte
INTEGERZ 2 half—word
INTEGER4 A word

REALB 8 word

ENUNERATION 4 word

ARRAY variable word

RECORD variable word

SET 2*((members+15)/15) word

Table 4 : MCBBGUO

g££fi_$12§_____-n_m__l£flfliflulfl.fixififi____§liSHEER:(Note 1)

BOOLEAN 2 word

INTEGER (INTEGERZ) 2 word
INTEGER1 1 byte
BYTE 1 byte
INTEGERZ 2 word
INTEGER4 4 word

REALB 8 word

ENUMERATION 2 word

ARRAY variable word

RECORD variable word

SET 2*((members+15)/16) word

Notes

1. For the ND—TO and the ND—100. a word is 16 bits, ie. 2 bytes. For
the NO-SOO, a word is 32 bits, ie. 4 bytes. For the MCEBOOO a word is
16 bits. ie. 2 bytes.

2. The REALS data type is identical on all machines. For the ND-IO and
the NO-TUO the implementation is by software routines and is
relatively slow.

ND-GO.117.04 Revision A

232 PLANC Reference Manual
MACHINE DEPENDENT LANGUAGE FEATURES IN PLANC

10. 3 EAEKEILHE’IIDN

The PACKED option may be used on arrays and records. It will affect
the alignment of the data—elements of simple data types within the
composite data~element.

In arrays and records, each BOOLEAN data—element will be stored in 1
bit.

In arrays using the PACKED option INTEGER RANGE and ENUMERATION
component data—elements will have space allocated as described For
INTEGER RANGE data—elements. One exception is for ARRAY PACKED data-
elements on the ND-lOO, where the smallest unit of space used is 1
byte (8 bits).

In records using the PACKED option INTEGER RANGE and ENUMERATION
component data—elements will require the next higher power of 2 bits.
greater than the number of bits necessary, to hold the required
values.

In a PACKED record, no data—elements of the simple data types will be
split across a word boundary.

The Following declarations

TYPE minrec = RECORD PACKED
INTEGER RANGE ("82?) : ir / requires 4 bits
BYTE : onebyte 2 requires 8 bits
BOOLEAN : flag Z requires 1 bit
ENUMERATION (a,b.c) : ch Z requires 2 bits
BYTES : chars(0:4) 2 require 8 bits/element

ENDRECORD

would require the following storage on the ND—lOD

15 11 7 3 D

:
ir(4) onebyte(8) F(1)ch(2) w 1 bit waste

chars(0) (8 bits) chars(1) no waste

chars(2) chars(3) no waste

chars(4) w N 8 bits waste

Note the BYTES array chars has an implicit PACKED within the
predefined data type. This causes its elements to be stored two to a
word here. If this array had been declared as INTEGER RANGE (D 255),
then its elements would have been stored one to a word within the
above record.

ND—80.117.04

PLANC Reference Manual 233
HAfHINE DEPENDENT LANGUAGE FEATURES IN PLANC

The above record would require the Following storage on the ND 500

31 15 0

ir(4) onebyte(8) f(1) ch(2) w chars(0) (8 bits) chars(1)

chars(2) charsK3) chars(4) next data—elem.

The above record would require the Following storage on the MCGSOOO

15 11 7 3 0

ir(4) onebyte(8) f(1) chlZ) w 1 bit waste

chars(0) (8 bits) chars(1) no waste

chars(2) chars(3) no waste

chars(4) next datalelement

The PACKED option used on an array or record. only affects alignment
of entire composite data type data—elements declared within the array
or record. The PACKED option may be used on an array or record
declared as an array element or record component. Thus in the above
examples, the array chars is word aligned on the ND-100 and byte
aligned on the ND-SOO.

9 34

ND-80.117.04

PLANC Reference Manual

PLANC Rere;-2nce Manual 235

LLB.E_N_Q_LX.__D

MIXEDJANBUAELEROBRAMMING

ND'GD.H?.:’JI.

{\J O")

ND»60.117.04

PLANC Reference Manual

PLANC Reference Manual 237
MIXED LANGUAGE PROGRAMMING

0. 1 INIRQW’CIIQN

PLANC has a standard calling sequence for its routine invocations.
This will facilitate the interfacing of programs and subprograms
written in other languages and those written in PLANC. This interface
is described in detail first and then examples showing how to use it
to interface to other languages on both the ND-TOD and ND-SOO follow.

The following general advice should be observed for interfacing to
PLANC routines

1) All PLANC routines invoked by another language routine should
be STANDARD.

2) All routines IMPORT'ed into a PLANC routine should be
STANDARD.

Each PLANC routine holds its local variables in a local data area. If
a program comprises a number of routines, the local data area for each
subprogram may be dynamically allocated from a single stack, or from
multiple stacks created by INISTACK invocations. The 8—register must
always address the appropriate stack element during execution of a
PLANC routine.

The actual parameter list of STANDARD routines consists of a sequence
of words, one for each parameter. For explicit data—elements or
expressions with a temporary data~element, the corresponding word
contains the address of the data—element. For arrays the word contains
the address of the imaginary element of the array, with all indexes
set to zero. which is used for computing memory addresses of each
array element.

If a number of routines are written in a language other than PLANC. it
may be necessary to have two or more routines with the same ALIAS
name, but each routine having a different number of parameters. While
this is not allowed in PLANC, IMPORT statements may be written for
such a group of routines, written in some other language, in order to
invoke the routine accordingly.

NDs60.117.05 Revision A

Z38 PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

£1“? INIEREACINE.HI11:LELANC_DN.1HE_ND:JBD

content

link register. address for normal return

previous B—register, Reloaded on exit

points to the free area of stack which
immediately follows this stack element
points to the word immediately following
the whole stack
run—time system use

ERRCODE (value)

first parameter address if any

free area of the stack

STANDARD routine, the registers are used as

current stack element: must be restored on return

offset from the
B—reg (octal) in
bytes

~200 LINK

~17? PREVB

—— —176 FREES

—175 E03

—174 SYS

—173 ERRCODE

~172 stack
element

w;

free
area

—-~—0

When PLANC invokes a
rollows

L return address
8
T ‘ number of parameters
A parameter list address
D unused
X unused
p entry point of called routine

ND—BD.117.04 Revision A

PLANC Reference Manual 239
MIXED LANGUAGE PROGRAMMING

On return from a routine, the out—value of the routine is returned as
follows

BOOLEAN,BYTE,INTEGER1.INTEGERZ, A*register
ENUMERATION

INTEGER4 AD—register
REAL (32—bit floating—point hardware) AD-register

REAL (48—bit floating—point hardware) TAD~register

REALB A—register points to the
result

POINTER A—register

RECORD.ARRAY.SET (address) A—register

If a routine has [expression] ERRETURN, the value of gfigression is set
in the ERRCODE position in the invoker's stack element.

For two-bank programs, all parameter values and their descriptors must
be in the data bank.

ND—60.117.0h Revision A

240 PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

The PLANC Run-time Entry and Exit Routines

The heading of a PLANC routine contains an invocation of either SINIT
or SENTR in the run—time system in order to establish a new stack
entry of a required size. SINIT is invoked from main programs and From
routines with INISTACK invocations, otherwise SENTR is called.

The tasks of SINIT and SENTR are

— Establish the stack entry with suFficient space.

- Save the return address, in LINK. In a main program the
return address is set to SOUIT.

— Save the previous B—register value (PREVB).

— Update the free stack pointer (FREES) and end 0? stack
address (EOS).

— Check for stack overflow.

On routine exit either SLEAV, for RETURN and ENDROUTINE, or SERET, for
ERRETURN, are invoked.

The tasks of SLEAV and SERET are

— Restore the B—register to its value upon entry to the
routine.

— Return to the location following the JPL instruction of the
actual invocation, through SERET, or skip to the next
location. through SLEAV. The location following the JPL
instruction contains either a jumo to ROUTINEERROR group of
statements or another SERET invocation.

ND—60.117.04

PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

Example of a main program layout in MAC equivalent

SAX 0 Z
JPL I (SINIT

Z
Z
Z

. Z
0 Z

Z
Z executable code
Z

JPL I (SLEAV Z

Example of layout of a routine
MAC equivalent

COPY SL BX Z
JPL I (SINIT

Z
Z
Z

. Z
0 Z

Z
Z executable code
Z

JPL I (SLEAV Z

main entry

stack space requirement
stack array address
entire stack array size in words
two bank flag
unused

exit from routine

containing an INISTACK invocation

return address

stack space requirement
stack array address
entire stack array size in words
two bank flag
unused

exit from routine

241

in

Example of routine layout (not containing an INISTACK invocation) in
MAC equivalent

COPY SL 0X Z
JPL I (SENTR

Z
Z
Z executable code
Z

JPL I (SLEAV 1

return address

stack space requirement

exit from routine

ND-60.117.0A Revision A

242 PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

6.3 IhflI3HaM2UWEJELIH.ELANC.QH.IHE_NQ:500

offset from the content
B‘reg (octal) in
bytes

0 PREVB previous B—register, Reloaded on exit.

4 RETA link register. address for normal return.

-— 10 FREES points to the Free area of stack which
immediately follows this stack element.

14 ERRCODE ERRCODE (value).

20 N number of parameters.

24 stack first parameter address if any.
element

-* free free area of the stack.
area

On return from a routine. the out—value of the routine is returned
follows

BOOLEAN.BYTE.INTEGER1,INTEGERZ, I1—register
ENUMERATION

REAL (32~bit floating—point) A1—register

REALB (84»bit floating—point) DI-rsgister

POINTER I1—rsgister

ARRAY,RECORD,SET (address) I1—register
If a routine has {expression} ERRETURN, the value of expression is
in the ERRCODE position in the invoker's stack element. Further

ERRETURN exit will set 1 in the STATUS.K bit (the K status bit in
signalling and synchronization status). A normal routine exit will
0 in the STATUS.K bit.

ND-60.117.04 Revision A‘

as

set
an

the
set

PLANC Reference Manual 243
MIXED LANGUAGE PROGRAMMING

0.4 INIEBEAACINfiHIIiE’LMCJN.[HELHCBBDQH

offset from the content
AB—reg (octal) in
bytes

+— ~ — A6
0 PREVB Previous AS—register, reloaded on exit.

—- 4 STP Points to the free area of stack which
immediately follows this stack element.

——- 10 SMAX Points to the top of free stack (A7)

14 SYST Run—time system use

20 ERRCODE ERRCODE (value)

22 stack First parameter address if any.
element

~+ Free area Free area of the stack
(The stack grows both upwards and downwards '
in parallel with some information in both parts)

+~ ~ — A7
-—+ 0 ENTLINK System link

4 LINK Address or return

Top of stack

On return from a routine, the out~value of the routine is returned as
follows:

BOOLEAN,BYTE,INTEGER1.INTEGERZ, D1—register
ENUMERATION

REALB (64«bit floating~point) A1—register as pointer

POINTER A1-register

ARRAY.RECORD,SET (address) A1-register

If a routine has (expression) ERRETURN, the value of expression is set
in the ERRCODE position in the invoker‘s stack element. Further an
ERRETURN exit will return according to LINK (in stack upper part)
while normal return jumps back to LINK + 2.

ND—60.117.04 Revision A

2A4 PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

0. 5 IMMUKIATEBLANLLEROHERIRAN

All PLANC routines called from Fortran must be STANDARD. All arrays
transferred from Fortran. should be accessed in PLANC as if they had
been declared with a lower index bound of C.

Example 1 - a simple subroutine call

To call a subroutine with no complex arithmetic actual arguments, the
following can be written in Fortran

EXTERNAL PLSUBR
INTEGER I
REAL R

C TNVOKE A SUBROUTINE WRITTEN IN PLANC
CALL PLSUBR(I,R)

and the corresponding PLANC code is

MODULE msubr
EXPORT plsubr
INTEGER ARRAY : stack(0:1000)
ROUTINE STANDARD VOID.VOID(INTEGER,REAL)
INISTACK stack

Z body of routine
ENDROUTINE
ENDMODULE

plsubr(int,rl)

Example 2 - a simple Function call

To invoke a Function which returns a non—complex arithmetic result.

In Fortran

EXTERNAL PLFUNC
REAL X,Y,PLFUNC
DOUBLE PRECISION D

C INVOKE A FUNCTION WRITTEN IN PLANC
Y=PLFUNC(X,D)

and in PLANC

ROUTINE STANDARD VOID,REAL(REAL.REAL8)
INISTACK stack

1 PLANC REAL8 is the same as Fortran DOUBLE PRECISION
RETURN

ENDROUTINE

plfunc(rl,db)

ND—50.117.U4

PLANC Reference Manual 245
MIXED LANGUAGE PROGRAMMING

Example 3 — use of logical arguments on the ND-1DO

Fortran LOGICAL*2 corresponds to PLANC BOOLEAN. Fortran LOGICAL*4 is
the following PLANC data type

TYPE booleané = RECORD
BOOLEAN : unused Z first word always zero
BOOLEAN : value Z contains actual value

ENDRECORD
LOGICAL*A cannot be returned from a PLANC STANDARD routine.

In Fortran

EXTERNAL PLBOCL
LOGICAL PLBOOL,V
LOGICAL*4 M4
V=PLBOOL(V,M4)

In PLANC

ROUTINE STANDARD VOID.BOOLEAN (BOOLEAN.boolean4) : &
p1bool(m,m4)

INISTACK stack
IF m4.value THEN

m RETURN
ENDIF
NOT m RETURN
ENDROUTINE

NO—60.117.04 Revision A

248 PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

On the ND-SOO

Fortran LOGICAL*4 corresponds to PLANC BOOLEAN. The Fortran LOGICAL*2
data type has no direct equivalent in PLANC. Fortran LOGICAL*2 can be
handled in PLANC in the following way

In Fortran

EXTERNAL PLBOOL
LOGICAL PLBOOL.V
LOGICAL*2 M2
V=PLBOOL(V,M2)

In PLANC

ROUTINE STANDARD VOID.BOOLEAN (BOOLEAN,INTEGER2) : &
plbool (m,m2)

INISTACK stack
1 the 2 integers must be contiguous in memory

INTEGERZ : int1.int2
BOOLEAN : boosintT
m2=zint2
0=zint1
IF bool1 THEN

m RETURN
ENDIF
NOT m RETURN
ENDROUTINE

ND—60.117.04

PLANC Reference Manual 247
MIXED LANGUAGE PROGRAMMING

Example 4 — character string arguments

Since Fortran passes character strings through a descriptor. PLANC
routines must accept these as records. It is often most convenient to
recast the Fortran string descriptor as a PLANC bytes pointer. Thus

On the ND~100

TYPE ftnstring = RECORD
BYTES : Ttnchars (0: —1) Z Ch. data

ENDRECORO Z a blank must precede —1

TYPE Ftndesc = RECORD PACK
ftnstring POINTER ; cstring Z address of string
INTEGER RANGE (0:18) : coddbyte Z left/right byte start
INTEGER RANGE (0:178) : cunused Z unused
INTEGER RANGE (0:37778) ; clength Z length of string

ENDRECORD 1
Then in Fortran

CHARACTER H*20
INTEGER 1.3
EXTERNAL HSUB
CALL HSUB(H(I:J))

which can be picked up in PLANC by

ROUTINE STANDARD VOID‘VOID (ftndesc) : hsub(hij)
BYTES POINTER : bp

INISTACK stack
ADDR(hij.cstring.ftnchars &

(hij.coddbyte : hij.clength—1+hij.coddbyte))=:bp
Z bp now contains the address of the Fortran character string

ENDROUTINE

ND~60.117.04

248 PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

On the ND~500

TYPE ftnstring = RECORD
BYTES : ftnchars (D: —1) Z ch. data

ENDRECORD Z a blank must precede —1

TYPE ftndesc = RECORD
INTEGER RANGE (027777777778) : clength
ftnstring POINTER : cstring

ENDRECORD
Then in Fortran

CHARACTER H*20
INTEGER I.)
EXTERNAL HSUB
CALL HSUB(H(I:J))

which can be picked up in PLANC by

ROUTINE STANDARD VOID.VOID (ftndesc) : hsub(hij)
BYTES POINTER : bp

INISTACK stack
ADDR(hij.cstring.ftnchars(0 : nij.clength—1))=:bp

2 bp now contains the address of the =ortran character string
ENDROUTINE

ND~GU.11?.04

PLANC Reference Manual 249
MIXED LANGUAGE PROGRAMMING

Example 5 — functions returning a character value

The definition of character data types must be made as in example 4.
But in this case there can be no true return value for the function,
so the PLANC code must simulate the return.

0n the ND—1OO

In Fortran

CHARACTER H*20,HFUNC*10
EXTERNAL HFUNC
H(I:10)=HFUNC(...)

In PLANC

ROUTINE STANDARD VOID,VOID : hfunc
BYTES POINTER : bp
ftndesc POINTER : dreg

INISTACK stack
$* COPY SD DA; STA dreg Z return value descriptor
AO0R(dreg.cstring.€tnchars R

(dreg.coddbyte : dreg.clength—1+dreg.coddbyte))=:bp
'O123458789'=:IND(bp) Z set 'return value'

ENOROUTINE

On the ND—SOO

In Fortran

CHARACTER H*20,HFUNC*10
EXTERNAL HFUNC
H(1:10)=HFUNC(...)

In PLANC

ROUTINE STANDARD VOID,VOID : hfunc
BYTES POINTER : bp
ftndesc POINTER : rreg

INISTACK stack
3* R=:B.rreg Z return value descriptor
ADDR(rreg.cstring.ftncnars(O : rreg.clength-I))=:bp
'0123456789'=:IND(bp) Z set 'return value'

ENDROUTINE

ND—60.117.04 Revision A

L50 PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

0. 6 INJlDKIMLEDRIRANmflANC

All Fortran subprograms invoked from PLANC must be IMPORT'ed as
STANDARD routines. Fortran functions have out—values, but no Fortran
routines have in—values.

Example 1 — a simple subroutine

Invoke a Fortran subroutine with non-complex arithmetic dummy
arguments.

In PLANC

IMPORT (ROUTINE STANDARD VOID.VOIDIREAL,REAL8) : f5ubr)
Z

REAL : r
REALB : d
...fsubr(r.d)

In Fortran

SUBROUTINE FSUBR(R.D)
REAL R
DOUBLE PRECISION 0

END

Example 2 — a simple function

Invoke a Fortran function returning a non complex arithmetic result.

In PLANC

IMPORT (ROUTINE STANDARD VOID,INTEGER(INTEGER4) : ifunc)

INTEGER : k
INTEGER4 : kd

ifunc(kd)=:k

In Fortran

INTEGER FUNCTION IFUNCTKD)
INTEGER*4 KD
IFUNC=...
RETURN
END

ND-50.117.04

PLANC Reference Manual 251
MIXED LANGUAGE PROGRAMMING

Example 3 - use of logzcal arguments

PLANC BOOLEAN is the same as LOGICAL in Fortran, LOGICAL*2 on the ND—
100 and LOGICAL*A on the ND—SOO. LOGICAL*4 on the ND—IOO or LOGICAL*2
on the ND—SOO may be simulated as in example 3 of the previous
section.

On the NDvIOO

In PLANC

IMPORT I ROUTINE STANDARD VOID,BOOLEAN(boolean4I:lfunc I

booleané : m4
IF lfunc (m4) THEN

In Fortran

LOGICAL FUNCTION LFUNC(M4)
LOGICAL*6 M4
LFUNC=...
RETURN
END

0n the ND—SDO

In PLANC

IMPORT (ROUTINE STANDARD VOID.BOOLEAN(INTEGER2I:lfunc)
Z the 2 integers must be contiguous in memory

INTEGERZ : int1,int2
BOOLEAN : booli=int1

Z put a value in the boolean data—element
...=:b0011

IF lfunc (ihtZ) THEN

In Fortran

LOGICAL FUNCTION LFUNC(M2I
LOGICAL*2 M2
LFUNC2...
RETURN
END

ND~60.117.04 Revision A

252 PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

Example 4 ~ character string arguments

Fortran handles character strings by means of descriptors, which can
be declared in PLANC as in example A of the previous section. These
descriptors must be created in PLANC before invocation of the Fortran
subprogram takes place.

In PLANC

IMPORT (ROUTINE STANDARD VOID.VOID(ftndesc) : hsub)
ftndesc : fd
BYTES : arg(1:100) Z begins in left byte of word
INTEGER : i,j

Z now transfer arg(i:j) to Fortran
ADDR(arg(i)) FORCE ftnstring POINTER=zfd.cstring

Z the following 2 lines are for the ND~100 only
1-(i MOD 2) =2fd.coddbyte Z left/right byte
0=zfd.cunused

j—i+1=:fd.clength 2 length of string
hsub(fd) Z invoke Fortran subprogram

In Fortran

SUBROUTINE HSU8(FD)
CHARACTER FD*(*)

END

ND—60.117.04 Revision A

PLANC Reference Manual 253
MIXED LANGUAGE PROGRAMMING '

Example 5 — character functions

Characters cannot be returned by Fortran to PLANC as out-values. The
memory area for the returned string must be allocated before invoking
the function and a special calling sequence is required.

In PLANC

IMPORT (ROUTINE STANDARD VOID.VOID : hfunc)
ftndesc : fd
BYTES : val(0:19) Z value returned here
ftndesc POINTER : fdp

Z
ADDR(val(O)) FORCE ftnstring POINTER =:fd.cstring

Z the following 2 lines are required for the NO—100 only
0=:fd.coddbyte
=:fd.cunused

MAXINDEX(Val,l)-MININDEX(Val.1)+1=:fd.clength
ADDR(fd)=:fdp

Z on the ND—100 use
3* LDA fdp Z return descriptor address

Z on the ND~500 use
3* sfdp Z return descriptor address

2
hfunc 2 put result in 'val'

In Fortran

CHARACTER *(*} FUNCTION HFUNC
HFUNC=...
RETURN
END

ND—60.117.04 Revision A

254 PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

0’. 7 AL.‘CFfiSINEjDRIRANilZ‘DMMDNJRflmfiLANC

A COMMON block may be defined in a Fortran main program. a subprogram
or a BLOCK DATA subprogram. Fortran COMMON blocks may be accessed from
a PLANC main program or a subprogram.

A PLANC program can access a Fortran COMMON block by using the COMMON
option in the IMPORT statement which enables the appropriate linkage
to be established.

For example

BLOCK DATA
COMMON /COMBLOC/INT1,INT2,INT3
DATA INT1/10/.INT2/103/.[NT3/58/
END

MODULE usecommon
TYPE comrec = RECORD

INTEGER : i1,i2,i3
ENDRECORD

IMPORT (COMMON) comrec:combloc

Z rest of program

INTEGER : int
Z acces a value in the COMMON block

combloc.12=:int

This technique may also be used for RT programs, written in PLANC,
which are to access RTCOMMON.

ND—60.117.04

PLANC Reference Manual 255
MIXED LANGUAGE PROGRAMMING

0. 8 INVOKINLELANEfRflLCDBDL

On both the ND—100 and the ND—SOO, a COBOL program may call a routine
written in PLANC. The PLANC routine must be declared as STANDARD.
Parameters are transferred by reference between PLANC and COBOL" The
data types which correspond in PLANC and COBOL are as follows

~PLANC COBOL

INTEGERZ. 16*bits PIC 39(n) COMPUTATIONAL
where 1<=n<=4

INTEGERA. 32—bits PIC 39(n) COMPUTATIONAL
where 5<=n<:10

REAL. 32/48-bits COMPUTATIONAL-21(ND—100)

REALG. 64-bits COMPUTATIONAL~2 (NDaSOD)

BYTES (0 as lower bound) PIC X(n)
where n is the number of
bytes

OMPUTATIONAL-Z variables may only be used as a parameter in a
subroutine call to or from COBOL, or to convert to/from COMPUTATIONAL—
3 variables.

Parameters From COBOL must start on a word boundary. on the ND—1DD.

For example

In COBOL

DATA DIVISION.
WORKING—STORAGE SECTION.
01 PLANCulNTZ PIC 39(4) COMP VALUE T23.
01 PLANC~INT4 PIC 39(6) COMP VALUE 123456.
01 CB—REAL PIC SQ(3)V9(E) COMP—3 VALUE ~2.71.
OT PLANC¢REAL COMP—2.
OT PLANC~BYTES PIC X(TO) VALUE "A123456789"
01 PLANC~BYTES-WDS PIC 59(4) COMP VALUE 5.

* NUMBER OF CHARACTERS PER WORD IS DIFFERENT ON THE ND-SOD
PROCEDURE DIVISION.
PARA-1.

* CONVERT THE INTERNAL COBOL FORM TO THE PLANC REAL FORM
MOVE CB~REAL T0 PLANC-REAL.

* INVOKE A PLANC SUBROUTINE
CALL "PLANCSUB" USING PLANC-INTZ

PLANC—REAL
PLANC-INT4
PLANC-BYTES
PLANC-BYTES*NDS.

L3 UD.TI7.0A

255 PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

In PLANC

ROUTINE STANDARD VOID,VOID &
(INTEGERZ. REAL. INTEGERk, BYTES. INTEGERZ) : PLANCSUB &
(int2, rl. intL, string, stringwords)

INISTACK stack
X may now access values passed From COBOL and return values
Z to COBOL in the normal manner

RETURN
END

ND'60.117.04

PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

0. 9 INVDKINLLCOBDLERDLELANC

On both the ND~100 and the ND—SDD,
written in COBOL. Parameters
PLANC and COBOL.
are as follows

are

-PLANC

INTEGERZ. 15-bits

INTEGER‘, 32-bits

REAL, 32/48-bits

REALB, 64~bits

BYTES (O as lower bound)

COMPUTATIONAL—2 variabies
subroutine call to or from
3 variables.

may
COBOL.

only

For example

In PLANC

ROUTINE VOID, VOID (...)
IMPORT (ROUTINE STANDARD VOID.

(INTEGER2.REAL,INTEGER4,BYTES)
Z

INTEGERZ int2
REAL : rl
INTEGER‘ intd
56=zint2
5k.123k5=:rl
123456=zint$

Z invoke a COBOL subroutine
CBSU8(int2.r1,int4,'string')

a PLANC program may call a

257

routine
transferred by reference between

The data types which correspond in PLANC and COBOL

COBOL

PIC 39(n) COMPUTATIONAL
where 1<=n<=4

PIC 59(n) COMPUTATIONAL
where 5<=n<=10

COMPUTATIONAL‘ZZINO-100)

COMPUTATIONAL—2 (ND—500)

PIC X(n)
where n is the number of
bytes

be used as a parameter in a
or to convert to/from COMPUTATIONAL-

callcobol (...)
VOID &

CBSUB I

ND»BO.117.04

N (J1 m

In COBOL

:l'

IDENTIFICATION DIVISION.
PROGRAM—ID. CBSUB.
DATA DIVISION.
WORKING'STORAGE SECTION.
01 CB-REAL
LINKAGE SECTION.
01 PLANC—INT2
01 PLANC-INTL
OI PLANC—REAL
O1 PLANC-STRING
PROCEDURE DIVISION USING

PARA—1.
CONVERT THE PLANC REAL VALUE TO

MOVE PLANC—REAL

ND

PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

PIC SQ(3)V9(5) COMP—3.

PIC 39(4)
PIC 39(6)
COMP-2.
PIC X(6).
PLANC—INTZ
PLANC-REAL
PLANC—INT4
PLANC—STRING.

COMP.
COMP.

THE INTERNAL COBOL FORM
TO CB—REAL.

80,117.04

PLANC Reference Manual 259
MIXED LANGUAGE PROGRAMMING

0. 10 INYDKINLELAMLERLIHLBASIC

All PLANC routines called from BASIC must be STANDARD. All arrays
transferred from BASIC, should be accessed in PLANC as if they had
been declared with a lower index bound of 0.

Example 1 — a simple subroutine call

To call a subroutine. the following can be written in BASIC

TU EXTERNAL PLSUBR
20 INTEGER I
30 REAL R
40 REM
50 REM INVOKE A SUBROUTINE WRITTEN IN PLANC
80 REM
TO CALL PLSUBRTI,R)

and the corresponding PLANC code is

MODULE msubr
EXPORT plsubr
INTEGER ARRAY stack(0:1000)
ROUTINE STANDARD VOID.VOIO(INTEGER,REAL) : plsubr(int,rl)
INISTACK stack

2 body of routine
ENDROUTINE
ENDMODULE

Example 2 — a simple function call

To invoke a function

In BASIC

10 EXTERNAL PLEUNC
20 REAL X,Y,PL:UNC,Z
30 REM
40 REM INVOKE A FUNCTION WRITTEN IN PLANC
50 REM
60 Y=PLFUNC(X,Z)

and in PLANC

ROUTINE STANDARD VOID.REAL(REAL,REAL) : plfunc(r1,r2)
INISTACK stack
r1+r2 RETURN
ENDROUTINE

ND~60.117.04

260 PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

Example 3 ~ character string arguments

Since BASIC passes character strings through a descriptor, PLANC
routines must accept these as records. It is oFten most convenient to
recast the BASIC string descriptor as a PLANC bytes pointer. Thus,

0n the ND-100

TYPE basicstring = RECORD
BYTES : basicchars (O: —1) Z ch. data

ENDRECORD Z a blank must precede —1

TYPE basicdesc = RECORD PACK
basicstring POINTER : cstring 2 address of string
INTEGER RANGE (0:18) : c1unused Z unused
INTEGER RANGE (0:178) : c2unused Z unused
INTEGER RANGE (0:37778) : clength Z length of string

ENDRECORD

Then in BASIC

10 EXTERNAL HSUB
20 A$=“MY FRIEND"
30 CALL CHSUB(A$)

which can be picked up in PLANC by

ROUTINE STANDARD VOID.VOID (basicdesc) : chsub(hij)
BYTES POINTER : bp

INISTACK stack
ADDR(hij.cstring.basicchars(0:hij.clength—1))=:bp

1 bp now contains the address of the BASIC character string
Z
Z a string value may be returned as follows

'123‘56789’=:IND(bp) Z set 'return value'
ENDROUTINE

ND—60.117.04

PLANC Reference Manual 261
MIXED LANGUAGE PROGRAMMING

0 . 11 MYDKINEJASILERDLELANE

All BASIC subprograms invoked From PLANC must be IMPORT'ed as STANDARD
routines. BASIC Functions have out-values, but no BASIC routines have
in»values.

Example 1 - a simple subroutine

Invoke a BASIC subroutine with non-complex arithmetic dummy arguments.

In PLANC

IMPORT (ROUTINE STANDARD VOID.VOID(REAL.REAL) : bsubr)

REAL : r1.r2
...bsubr(r1,r2)

In BASIC

10 SUBROUTINE BSUBR(R1,R2)
20 REAL R1,R2
30 REM BODY OF THE SUBROUTINE
40 END

Example 2 — a simple function

Invoke a BASIC functior returning a non-complex arithmetic result.

In PLANC

IMPORT (ROUTINE STANDARD VOID.INTEGER(INTEGERL) : ifunCT
Z

INTEGER :‘k
INTEGER4 : kd

ifunc(kd)=:k

In BASIC

10 FUNCTION IFUNCIKD)
20 INTEGER IFUNC
3O DOUBLE KB
40 IFUNCm...
SD END

ND~60.?17.04

262 PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

Example 3 - character string arguments

BASIC handles character strings by means of descriptors, which can be
declared in PLANC as in example 3 of the previous section. These
descriptors must be created in PLANC before invocation of the BASIC
subprogram takes place.

In PLANC

IMPORT (ROUTINE STANDARD VOID,VOID(basiCdesc) : chsub)
basicdesc : bd
BYTES 2 arg(0:100) Z begins in left byte of word
INTEGER : i.j

2 now transfer arg(i:j) to BASIC. NB i must be an even value.
ADDR(arg(i)) FORCE basicstring POINTERz:bd.cstring

2 set up special descriptor constants
0=:bd.c1unused
108=zbd.c2unused

j—i+1=:bd.clength Z length of string
chsub(fd) Z invoke BASIC subprogram

In BASIC

10 SUBROUTINE CHSU8(FD$)
20 REM BODY OF SUBROUTINE
3O END

ND 50,117.04

PLANC Reference Manual 263
MIXED LANGUAGE PROGRAMMING

0. 12 INYDKIMG.ELAMZ.ERH£LMAC

A MAC program. running on the ND—100, may invoke a routine written in
PLANC. The PLANC routine should be declared as STANDARD. The contents
of the B—register and the L-register are described in section 0.2

The MAC program must set up the A-register to contain the address of
the list of parameter addresses and the T—register to contain the
number of parameters.

Example of a MAC program invoking a PLANC routine

)QBEG
)9EXT SUBR
LDA (PLIST Z set up address of the list of

Z parameter addresses ‘
SAT N Z set up the number of parameters
JPL I SUBR Z invoke the routine

Z routine will return here
Z
Z executable code
Z

Z
I list of parameter addresses
Z

PLIST.PARAM1 I address of first parameter
PARAMZ Z address of second parameter

Z to n parameters
)FILL
)END

Note that there is no Lzader check of mixing two bank PLANC routines
with MAC routines.

ND~GUtl17.04

384 PLANC Reference Manual
MIXED LANGUAGE PROGRAMMING

0. 13 INKUKING.MAILERDLELANLDMIHLNDflOD

A PLANC program, running on the ND—IOU, may invoke a routine written
in MAC. The MAC routine should be IMPORT'ed as STANDARD. The contents

of the B register and the L—register are described in section 0.2

On entry to the MAC routine. the A—register contains the address of

the list of parameter addresses, the T-register contains the number of
parameters.

Example of a MAC routine

)SBEG
)SENT SUBR

SUBR, SNAP SA 08
STA SAVB Z saves value in the B—register
LOA I 0.8 Z value of first parameter

LDA I N—1.B 2 value of the n'th parameter
1
Z executable code

hA PAUD
LUH JHVU

COPY SA 08
EXIT 2 return to invoker

Note that there is no Loader check of mixing tWU bank PLANC routines
with MAC routines.

PLANC Reference Manual 265

A_E..E_E_DLD_LX___E

USIMSINWHMIIMCALLS

ND 513.137.01.

266

ND 60.117.“ I‘1

PLANC Reference Manual

PLANC Reference Manual 267
USING GINTRAN MONITOR CALLS

0. 1 SINIRALHONIIDKCAUS

A number of SINTRAN monitor call routines are available to be called
from PLANC, provided as part of the PLANC run—time system. The
definition of what monitor calls do can be found in the SINTRAN
Reference Manual (ND—80.128). This section contains a description of
those monitor calls relevant to PLANC programs with the routine name,
the data types of the iiavalue, out—value and parameters. plus any
notes which relate to the particular use of such a monitor call from
PLANC. The list is in tie sequence of the monitor call numbers.

Any monitor calls not listed here. may be called from a PLANC routine
if a suitable interface routine is constructed by the User. If this is
done. the user must load the interface routine before the PLANC run~
time library.

ND~60.117.04

258 PLANC Reference Manual

USING SINTRAN MONITOR CALLS

UIZ MONIIQR.CALLS_AyAILABLE;0H_IHE;ND:JDO.AND_IHE.ND;500

MQNQ_;_L§AXE

ROUTINE VOID,VOID : MONO

lflflill;llflfil

ROUTINE VOID,BYTE (INTEGER) : MON1 (dev)

Z parameter : dev = logical device number
2 out—value : 8 bit character

flpNZ — OUTBT

ROUTINE BYTE.VOID (INTEGER) : MDNZ (dev)

Z in-value : 8 bit character
2 parameter : dev : logical device number

fi0N3 - ECHOM

ROUTINE VOID,VOID
(INTEGER,INTEGER,BOOLEAN ARRAY PACKED) &

MON3 (dev.mode,table)

?‘

1 parameters : dev = logical device number
Z : mode : echo strategy
Z : table = 8 words containing bit map if mode=7

MQHA_;l£REM

ROUTINE VOID,VOID &
(INTEGER.INTEGER,BOOLEAN ARRAY PACKED.INTEGER) &

MON4 (dev,mode.table,max)

1 parameters : dev logical device number
2 : mode = break strategy
Z : table 8 words containing bit map if mode=7

Mflflll_;mllflfi

ROUTINE VOID.INTEGERL : MON11

AZ out—value : time in basic units

EEHIULl;,iEl£M

ROUTINE VOID,VOID (BYTES) : MON12 (command)

Z parameter : command = command string

NS CT.?17.UA

PLANC Reference Manual 269
USING SINTRAN MONITOR CALLS

MONT} CEBUF

ROUTINE VOID, NTEGER (INTEGER) : MONT3 (dev)

Z parameter : dev = logical device number
Z out—value : previous value of A—register or error value

(ROUTINEERROR exit will be taken}

MONTA — COBUF

ROUTINE VOID,VOID (INTEGER) : MON14 (dev)

Z parameter : dev = logical device number

MON1§ — MEIII

ROUTINE VOID.[NTEGER (INTEGER) : MON18 (dev)

Z parameter : dev = logical device number
Z out~value : terminal type

MONT? - MSTTY

ROUTINE INTEGER.VOID (INTEGER) : MONT? (dev)

Z input para : terminal type
Z parameter : dev = logical device type

MON21 - MBINB (NO—IOU)

TYPE IN = INTEGER WRITE
ROUTINE VOID,VOIO &

(INTEGER,[W,IW,IW,IN,IW) &
MONZI(dev,w1,w2,w3,w4,num)

/ parameters : dev = logical device type
7 ‘ W1 2 byte 1 and 2
l . w2 = byte 3 and 4
Z : w3 = byte 5 and 6
7 ‘ wk 2 byte 7 and 8
/ num = number of bytes read

MQNZJ - NOISE (ND~SOO)

ROUTINE VOID,VOID &
(INTEGER,INTEGER WRITE,BYTES) &

MON21(dev,num,inbytes)

parameters : dew = logical device type2
Z : num = number of bytes read
Z inbytes = bytes input

ND“BO.117.04

270 PLANC Reference Manual
USING SINTRAN MONITOR CALLS

fiONZZ - MSOUT

ROUTINE VOID,VOID &
(INTEGER,INTEGER,INTEGER,INTEGER,INTEGER) &

MON22(dev.w1,w2.w3,w4)

MZ parameters : dev logical device type
rL : WI = BYTES(O:1)
I : w2 = BYTES(2:3)
Z : w3 = BYTES(4:5)
Z : wk = BYTES(5:7)

ROUTINE INTEGER.VOID (INTEGER ARRAY) : MON24 (ival)

1 in~value : logical device number
1 parameter : ival : 8 bytes to be written

t30 ~ GETRT

ROUIINE VOID,INTEGER : MON30

1 out—value : address of RT—description

fiflfllfi;;l§§

ROUTINE VOID.VOID (BYTES) : MONHZ (MSG)

l parameter : msg = bytes to be written

Mflflil_;_fiflfilfi

ROUTINE VOID.VOID (INTEGER.INTEGER ARRAY) &
MON41 (dev,obj)

Z parameters : dev : logical device number
Z : obj the file object entry

Mflflil;;ilflifi

ROUTINE VOID.VOID (INTEGER) : MON43 (dev)

Z parameter : dev = logical device number

MQNLL;;BH§£R

ROUTINE VOID,VOID (BYTES,INTEGER ARRAY) &
MONAk (user.usentry)

H1 parameters : user user name
Z : usentry ~ user entry

PLANC Reference Manual 271
USING SINTRAN MONITOR CALLS

MQN45 - QBRE (ND-100 only)

ROUTINE VOID.VOID (INTEGER ARRAY,INTEGER) &
MONQS (rblock.bhand)

Z parameters : rblock ~ register block
I : bhand break—point execution routine addresg

W (ND‘IOU OMVI

ROUTINE VOIO,VOID (INTEGER ARRAY) : MON47 (rblockT

Z parameter : rblock = register block

Mflfl§fl_;_flfiifi

ROUTINE VOID‘INTEGER (BYTES,8YTES,INTEGER) -&
MON5O (file,default,code)

1 parameters : file = File name
Z : default = default file type
Z : code = access code
Z out-value : logical device number

MON§§ — MOLEI

ROUTINE VOID.VOID (BYTES) : MONSA (mem)

Z parameter : mem : file name to be deleted

M N ~ M

ROUTINE VOID,INTEGER4 (INTEGER I : MON52 (dev)

Z parameter : dev = logical device number

Z outevalue : number of bytes

MON63 — BAINW

ROUTINE VOID,INTEGER ARRAY (INTEGER I 2 MONBB (ldn)

Z parameter : ldn = logical device number
Z out~value : BYTES (0:7) READ

MON64 - ERMSG

ROUTINE XNTEGER,VOID : MON64

Z in—value : erIor number to be printed

MQN§1_;_QE&M§

ROUTINE INTEGER.VOID : MONSS

Z in—value : error number to be printed

ND-OO.117.04

~ ISIZE

ROUTINE

Z parameter
Z out—value

Irlgl!7_0_:_.C_0.___M N D

ROUTINE

Z parameter

NQNLL_;_QE§£E

ROUTINE

Z parameter

Iflflill;;_ifi§££

ROUTINE

Z parameter

Irmlflllw

ROUTINE

Z in~value
Z parameter

yow74 - serer

ROUTINE

Z in«value
Z parameter

mgy7s ~ REABT

ROUTINE

Z parameter
2 out~value

n yrs ~ SETBS._. ~.—.__.._—___

ROUTINE

Z inevalue
Z parameter

PLANC Reference Manual
USING SINTRAN MONITOR CALLS

VOID,INTEGER (INTEGER) MONSB (dev)

dev : logical device number
number of bytes in input buffer

VOID,VOID (BYTES) MONTH (command)

command = command to be executed

VOID,VOID (INTEGER) MONT} (dev)

dev = logical device number

VOID,VOID (INTEGER) MONTZ (dev)

dev = logical device number

INTEGER4,VOID (INTEGER) MON73 (dev)

maximum byte pointer
dev = logical device number

INTEGERL.VOID (INTEGER) MON74 (dev)

byte pointer
dev = logical device number

VOID.INTEGERL (INTEGER) MON75 (dev)

dev = logical device
byte pointer

number

INTEGER.VOID (INTEGER) MONTE (dev)

block size in words
dev = logical device number

ND-GD.T17.04

PLANC Reference Manual 273
USING SINTRAN MONITOR CALLS

MON104 * HOLD

ROUTINE VOID.VOID (INTEGER,INTEGER) : MNTOI (ntu.tu)

Z parameters : ntu = number of time units in wait state
Z : tu : time mode

MON113 — CLOCK

ROUTINE VOID.VOID (INTEGER ARRAY WRITE) : MN113 (cal)

Z parameter : cal : time return array

Mflfllli_;_lUiEQ

ROUTINE VOID.INTEGER4 : MN114

Z out-value : cpu time used

ROUTINE VOID.VOID &
I INTEGER,INTEGER,INTEGER ARRAY,INTEGER.INTEGER) &

MN117 (dev.zero,dadr,bl.words)

Z parameters : dev = logical device number
Z zero = return parameter
Z : dadr : destination array
Z bl = number of file block where data starts
Z words = number of words to be transferred

N - F

ROUTINE VOID,VOID
(INTEGER,INTEGER,INTEGER ARRAY.INTEGER,INTEGER)

MN120 (dev,zero.dadr,bl,words)

Z parameters : dev = logical device number
Z : zero 2 return parameter
Z : dadr = destination array
Z ' bl = number of file block where data starts
2 words = number of words in the extent

274 PLANC Reference Manual
USING SINTRAN MONITOR CALLS

0;: 2 — RESRV

ROUTINE VOID,INTEGER (INTEGER,INTEGER,INTEGER) &

MN122 (dev,iof.iret)

Z parameters : dev = logical device number
1 - 10? = input — or OUtt part
Z . iret 2 return status
1 out—value : return status depending on iret

flgN123 — EEIES

ROUTINE VOID,VOID (INTEGER,INTEGER) : MN123 (dev.iof)

2 parameters : dev = logical device number
Z : iof = input— or output part

flpN132 — MCALL (ND-100 only)

ROUTINE VOID,VOID (INTEGER,INTEGER) : MN132 (subrlnewsg)

Z parameters : subr : subroutine address
Z newsg = new segment to be loaded

mpN141 — IOSET (ND—100 only)

ROUTINE VOID,INTEGER .
(INTEGER INTEGER,INTEGER’INTEGER) &

MN141 (dev,iof,iprog.ccode)

?

Z parameters : dev = logical device number
I - iof = input — or output part
2 iprog = RT description
2 . ccode = control code
I out—value : status

MQfilil_;_R§lQ

ROUTINE v010.v010 “&
(INTEGER WRITE,INTEGER WRITE,INTEGER WRITE, &

INTEGER WRITE I &
MN143 (mode,inpt,outpt,usn)

2 parameters : mode = executing mode
2 . inpt = file number of command input file
I : outpt = file number of command output file
1 ' usn = user number the program is running under

ND‘GO.117.04

PLANC Reference Manual 275
USING SINTRAN MONITOR CALLS

MON144 - MAQIP

ROUTINE VOID,INTEGER
(INTEGER,INTEGER ARRAY.INTEGER,INTEGER,

INTEGER WRITE) ' a
MN144 (fc.madr,dev,maxw.readw)

”
9

‘

Z parameters : fc = function to be performed
Z mad: : memory area to be used
2 dev = logical device number
Z maxw = device dependent
Z . readw = device dependent
Z out-value : status: read status value for function 208 and 248

otherwise zero

MON161 - INSTR

ROUTINE VOID,INTEGER
(INTEGER,8YTES,INTEGER,INTEGER I &

MN161 (dev.dar,dno‘dte)

Q‘

2 parameters : dev = logical device number
Z ' dar = input data buffer
Z dna : maximum nuber of characters to be read
2 . dte 2 terminal character
Z out-value : status return

MUNJEZ - QHISI

ROUTINE VOID,INTEGER &
(INTEGER,BYTES.INTEGER) : MN162 (dev.dar,dn0)

2 parameters : dev = logical device number
Z : dar = array of data destination
1 : dno = number of characters to be written
Z out~value 2 status return

flgfll§l_;_Riflfll (ND—100 only)

ROUTINE INTEGER.VOID : MNTS?

Z in—value : segment number

MQEZ§1_;_QQEMI

ROUTINE VOID.VOID &
(INTEGER,INTEGER,INTEGER wRITE,INTEGER4 WRITE) &

MN263 (dev,ioflag,devtype,attr)

Z parameters : dev = logical device number
1 input : ioflag = input/output flag
2 output : devtype = device type
I - attr 2 device attributes

ND~60.117.04

278 PLANC Reference Manual
USING SINTRAN MONITOR CALLS

flON31O — TBINB (NDr100 only)

ROUTINE VOID.VOID
(INTEGER.BYTES WRITE,INTEGER WRITE) &

MN31D (dev,string.num) '

9‘

Z parameters
1 input : dev = logical device number
2 output : string = character string read
2 num = number of bytes read

MON31Z — MOINF (ND—100 only)

ROUTINE VOID.BOOLEAN (INTEGER) : MN312 (num)

2 parameters : num = monitor call number
2 out—value : monitor call present or not

fl0N412 — FSCNT (ND-500 only)

ROUTINE VOID.VDID &
(INTEGER,INTEGER,XNTEGER,INTEGER WRITE) &

MN412 (fno,lseg.ctype.segno)

Z parameters : fno = file number
I - lseg = logical segmert number
2 ctype = connect type
Z segno : segment number

NON413 - FSDCNT (ND—500 only)

ROUTINE VOID,VOID
(INTEGER,INTEGER) &

MN‘13 (fno,segno)
Q0

1 parameters : fno = file number
2 2 segno - segment number

PLANC Reference Manual

LE.E_E.N_D_I_X_-_E

BNE..SYNIAX.DESCRIEIIDN.0E.ELANC

ND~60.117.04

277

278

ND“60.117.04

PLANC Reference Manual

PLANC Reference Manual 279
BNF Syntax Description of PLANC

This appendix contains a Backus—Naur Form (BNF) syntax description of
the PLANC language.

flotation used in this appendix

[and 3, ..., (and)
Square brackets. ellipsis and parentheses are used in the same
way as described in Notation in This Manual.

, ::=. (symbol)
are used in the usual way defined for Backus~Naur Form.

BNF Syntax

<identifier)::= (letter) ‘8 I
(letter)[<identifier char)3...(letter>
(letter)[(identifier char)]...<digit)

(identifier char)::= (letter) l<digit> ‘_

<number)::= (decimal number) |<octa1 number) I
(floating point number)

(decimal number)::= ["}(unsigned decimal number)

(unsigned decimal number)::= (decimal digit)...

(decimal digit)::= (octal digit) '8 '9

(octal digit)::= 0 ‘1 l2 ’3 l4 ‘5 ‘6 l7

(floating point number>zz=
(decimal number).(unsigned decimal number)

[E(decimal number)]

(character literal)::= # (character)

(string)::: '(character)...'

ND—60.117.04 Revision A

280 PLANC Reference Manual
BNF Syntax Description of PLANC

(simple type specification statement>::=
TYPE<type identifier) = (simple type)

(type identifier)::= (identifier)

(simple type)::= (standard data Type) I<enumeration type) !
(pointer type) (modified type)

(standard data type)::= INTEGER IREAL IBOOLEAN ILABEL lVOID

(enumeration type)::= ENUMERATION((ioentifier)
[.(identifier)]...)

(pointer type)::= (qualification) POINTER

(type identif er) l<simple t pe) I
(array type) T<record type) T<set type)

II(qualification)::

(range modified type) I
(precision modified type)
(read modified type)

(modified type>zz

(range modified type)::= INTEGER RANGE((lower):(upper>)

(lower)::= (constant expression)

(upper)::= (constant expression)

(precision modified type)::= REAL PRECISION ((precision))

<precision)::= (constant expression)

(read modified type)::= (simple data type)(access mode)

(access mode)::= READ WRITE

(constant specification)::= (identifier) (expression)

(simple type declaration statement)::=
(simple type specifier):(identifier clause)
[,(identifier clause>]...

(simple type specifier)::= (simple type) (type identifier)
TYPEOF((identifier))

ND-60.117.04 Revision A

PLANC Reference Manual 281
BNF Syntax Description of PLANC

(identification clause>::: (construction clause) I
(equivalence clause)
(postponement clause)

(construction clause>cz= (identifier)[:=(expression>]

(equivalence clause)::: (identifier)=(identifier)

(postponement clause)::= (identifier)?

(composite type specification statement>zz=
(array type specification statement)
(record type specification statement)
(variant part record type specification statement)
(enumeration set type specification statement)
(routine type specification statement)

(array type specification statement)::=
TYPE<type identifier) = (array type)

(mode specification)::= (storage mode) (access mode)

(storage mode)::= PACKED

(access mode)::= READ WRITE

(array type declaration statement)::=
(array type specifier):(array identification clause)
[,(array identification clause>]...

(array type specifier)::= (array type) (type identifier)

(array identification olause)::=
(dimension clause)[(initialization part)]
(array initialization clause)

(dimension clause)::=
(identifier>((index set>[,(index set)...)

(array initialization clause>::= (identifier)
(initialization part)

(initialization part)::= :=(initial array values)

(initial array values)::= (initial array values) f
{.(initial array values>]... !
((expression>[.(expression)]...)

(index set)::= (expression):(expression)

NEW<array type specifier) ((sub—array index set)
[.(sub—array index set>]...)

(sub—array specification)::=
(identifier>((sub-array index set)

[,(sub—array index set)]...)

(sub—array index set)::= (expression):(expression)
(expression)

ND—60.117.04 Revision A

282 PLANC Reference Manual
BNF Syntax Description 0? PLANC

(record type specification statement)::=
TYPE<type identifier) = RECORD [(mode specification)]...

{(data declaration statement>]...
ENDRECORD

(data declaration statement)::=

(simple type declaration statement)
(array type declaration statement)
(record type declaration statement)
(set type declaration statement)

(mode specification>::= (storage mode) (access mode)

(storage mode)::= PACKED

(access mode) = READ WRITE

(variant part record specification)::=
TYPE<record type identifier):

(base record)RECOR0[(mode specification)1...
[(declaration statement)3...

ENDRECORD

(base record)::= (type identifier)

(record type declaration statement)::=
(record type specifier):(record identification clause)

[,(record identification c1ause))...

(record type specifier>zz= (type identifier)

(record identification clause>::=
(identifier){:=(initial record values)]

(initial record values>::=
((initial value)[. = (initial value)]...)

(initial value)::= (expression)
(initial array values)
(initial record values)

ND~60.117.04 Revision A

PLANC Reference Manual 283
BNF Syntax Description of PLANC

(set type specification statement)::=
TYPE<type specifier) = (set type)

(set type)::= (base type) SET

(base type)::= (type identifier) (range modified type)
(enumeration type)

(set declaration statement)::= (set declaration)
[.(set declaration)...]

(set declaration>::=
(set type 5pecifier):<identifier>[:=(member list))]

(set type specifier)::= (type specifier) l<set type)

(member list)::= (member list element)
[.(member list element>]... !

(identifier)

(member list element)::= (expression)
(expression):(expression)

NDe80.117.04 Revision A

284 PLANC Reference Manual
BNF Syntax Description of PLANC

<action)::= [(label>:]<expression>
[<label):]<sequencing control statement)
[(label):]<exception handler)

(label>::= (identifier)

(action sequence)::= <action)[.(action>...]

(expression>::= (value expr) {(void expression)

(data—element) I
[(value expr)](operator><expr ssion) I
(value expr>[(assignment op T
(store—into fun tion call) 1
((value expr)) T<function call)

(value expr)::

(void expr>::= (store~into subrou ine call) ‘
(subroutine call)
(value expr>[(assignment op)!

(store—into subroutine call)
(value expr>[(assignment op>](subroutine call)

(constant expression>22= (constant) ,
(constant expression)<operator>

(constant)

(constant>::= (constant identifier) l<literal>

(data—element)::= (literal) l<identifier>£,(identifier>]...
(identifier>((index>[.(index>]...)

<index)::= (value expr)

(operator)::= + * ‘{ 'ATS IM?D ANT IOT [XOR {NOT lSHIFT l
=)(>= (= > (IN (assignment op)

(assignment op)::= =2 ':=:

ND—80.117.04 Revision A

PLANC Reference Manual 295
BNF Syntax Description of PLANC

(sequencing statement)::= (go statemen) i
(if statement) T case statement) T
(for statement) T< 0 statement)
(while statement) T assert statement)
(return statement) [(do-while statement)
(for—while statement)

GO(1abel>(90 statement)::

II(if statement)::
IF(expression)THEN(action sequence)

[ELSIF<expression>THEN<action sequence)]
[ELSE(action sequence>}

ENDIF

(condition)::= (expression)

(case statement>::=
CASE<expression>

INCASE<member list)
(action sequence)

{INCASE(member list)
(action sequence>]...

{ELSE(action sequence>1
ENDCASE

(for statement):;=
FOR (identifier) IN (set) 00

(action sequence)
[EXITFOR (action sequence>]
ENDFOR

(do statement)::= 00 (action sequence) ENDDO

(while statement)::= WHILE (expression)

(do—while statement)::=
00

[(action sequence>3
WHILE (expression)
[(action sequence)]
{EXITNHILE (action sequence)}

ENDDO

(for-while statement>::=
FOR (identifier) IN (set) D0

[(action sequence)]
WHILE (expression)
[<action sequence>]
[EXITFOR (action sequence>]
[EXITNHILE (action sequence>1

ENDFOR

ND—60.117.04 Revision A

286 PLANC Reference Manual
BNF Syntax Description of PLANC

<assert-statement>::= ASSERT (expression)

N RETURN <expression>RETURN
<expression>ERRETURN

(return statement>::

(exception handler>::= ON <exception>£<exception>3...DO
(action sequence>

ENOON

<exception>::= ROUTINEERROT IOVERFLOW lAfSERTFALSE !
RANGEERROR POINTERERROR STACKERROR

ND-80.117.04 Revision A

PLANC Reference Manual 287
BNF Syntax Description of PLANC

(routine type specification statement)::=
TYPE (type identifier) = (routine type)

(routine type>zz= ROUTINE [INLINE] [STANDARD] [REFERENCE3
{SPECIAL}

(type in),(type out)[(<parameter type)
[(parameter type)}...)]

(type in) = (type identifier)

(type out)::= (type identifier)

(parameter type)::= (type identifier)[(access>}

(access) ::= READ WRITE

(routine declaration)::=
(routine heading) (routine body) ENDROUTINE
(postponed routine declaration)

(routine heading>zz=
(routine type specifier>:(routine name)
[((formal par>[,(f0rmal par>3...)]

(routine type specifier>::= (type identifier) (routine type)

(routine name)::= (identifier)

(formal par>::= (identifier)

(postponed routine declaration)::=
(routine type specifier>:(routine name)?

[,(routine name)?...]

(routine body>::= [(local declaration)]...(action sequence)

(local declaration>::= (declaration statement I
(routine declaration)
(type specification statement)

(routine call>::= (routine name>[(parameter list>3

(parameter list)::= (identifier) 1
(expression)[,(expression>]...)

(data declaration statement>zz=

(simple type declaration statement) ‘
(array type declaration statement)
(record type declaration statement)
(set type declaration statement)

(subroutine call) (routine call)

(function call) (routine call)

H(store—into subroutine call):- (routine call)

(storeninto function call):: H (routine call)

ND—60.117.04 Revision A

268 PLANC Reference Manual
BNF Syntax Description of PLANC

(main program)::=
(main program heading) (main program body) ENDROUTINE

(main program heading)::= PROGRAM : (identifier)

(main program body>::=
[(local declaration>]...(action sequence)

(basic module>::=
(module header) (basic module body) ENDMODULE

(module header)::=
MODULE (identifier)[(header statement)]

(header statement>zz= (import statement)
(export statement)
(type specification statement)
(constant statement)

(import statement)::=
IMPORT [SYSTEM] [COMMON] (import unit) [.(import unit>]...

(export statement>::=
EXPORT [SYSTEM] [COMMON] (identifier) [,(identifier)]...

(type specifier statement)::=
(simple type specification statement)
(composite type specification statement)

(basic module body>::= [(declaration unit>]...

(declaration unit>zz= (data declarati n statement)]
‘ (main program) i

(routine declaration)

(compound module>::=
(module header) (compound module body) ENDMODULE

(compound module body>::= (module)...

(module)::= (compound module) (basic module)

ND-60.117.04 Revision A

PLANC Reference Manual 289

LE_E_E_N_D.LX.___G

ELANCJMBLEMENIAIIQLRESIRICIIDNS

NDvGU.117.U&

290 PLANC Reference Manual

PLANC Reference Manual 291
PLANC Implementation Restrictions

This appendix describes various restrictions which may cause users
difficulties. Some may appear in the text of the manual, but apply to
more than one part of it, so they are listed here to make it easier to
find them.

1)

2)

3)

4)

5)

6)

7)

8)

9)

A statement containing either a MACRO call, an INLINE routine
call or a SINCLUDE command, may be terminated by a semicolon,
no other statements may follow the semicolon.

The IND standard routine cannot have as a parameter a pointer
which qualifies a routine with an in—value.

If the ADDR standard routine has a parameter which is a
routine data—element, this parameter must not be enclosed in
parentheses.

If the ADDR standard routine has as a parameter, a routine
with an outvalue, the outcome of the ADDR routine invocation
will be the address of the routine, not the out—value of the
routine.

Within a routine, the MININDEX, MAXINDEX and IN standard
routines cannot have as an actual parameter. any of the
routine's formal parameters, if the routine has been declared
with the STANDARD modifier. Note that the compiler does not
detect this condition or give any error message.

The UN OVERFLUW statement does not detect overflow conditions
for unsigned integer data—elements.

It is illegal to EXPORT a family of routines, with the
routine name identifier the same as the name ot a PLANC
predefined standard routine or operator, see section art for
the use of a family of routines.

The following TYPE declaration is illegal, but the compiler
does not give any error message:

TYPE A=RECORD

ENDRECORD
TYPE B=A Z illegal TYPE declaration.

If a family of routines is declared, it is not adequate to
have formal parameters with an identical data type and
different access modifiers, the formal parameters must have
distinct data types. For example

ROUTINE VOID,VOED(INTEGER): RUT?
ROUTINE VOID,VOID(INTEGER WRITE): RUT?

The compiler can not distinguish between the two declarations
and will give a compile error message.

ND—60.117.04 Revision A

292 p PLANC Reference Manual
PLANC IMPLEMENTATION RESTRICTIONS

11) ON ROUTINEERROR does not work correctly in routines declared
as INLINE.

12) A routine name declared in predeclaration, must not appear
later, as the identifier, in a PROGRAM statement. The
compiler does not detect this or give an error message.

13) The SSEPARATE—DATA and SDEBUG—MODE commands must be used
outside the outermost module level.

14) If assembler code refers to a routine, then if the routine
referred to is not on the same scape level, the reference
will not be compiled correctly. In particular, beware of
reference to a nested routine.

15) The Break Function of the Symbolic Debugger must be used with
care. If a Break upon routine entry is specified, then the
in—value which will be used within the routine will not be
displayed correctly by the Debugger, although as execution
continues the correct value will be used in the routine. The
same result may be achieved with a Break on the first
executable statement of the routine and then the in—value may
be displayed correctly by the Debugger.

A similar difficulty occurs in specifying a Break‘return
within a routine, where the out—value of the routine may not
be displayed by the Debugger, since it has not yet been
stored. The out value can only be correctly displayed by the
Debugger after execution of the statement which invokes the
routine has been completed.

If any of the conditional execution constructs such as ELSE.
INCASE, EXITFOR and EXITWHILE are followed, on the same line,
by executable source code, the Deblgger Break function will
only stop at the code which ends just prior to the
conditional construct, not the code following it.

16) If a data-element has been declared with WRITE access only, a
statement which tries to fetch a value from such a data~
element will not generate an error message during compilation
but the results are unpredictable.

17) It is legitimate in an invocation of a user written routine.
which is declared with an out-value, not to store the out-
value. The compiler will not give any warning or error
messages.

18) If a POINTER for a data type. whica has not yet been defined,
is declared then space will be allocated as if the POINTER
data—element is for any of the simple data types, ie. usually
one word.

For example

Z n.b. the TYPE norec has not yet been defined
norec pointer: bp Z allocates one word only

ND—60.117.04

PLANC Reference Manual 293
PLANC IMPLEMENTATION RESTRICTIONS

)9)

22)

23)

24)

25)

If SENDIF is used as a parameter in a macro call, then it
must be terminated by at least one space.

On the ND-IUO, if a routine is declared with a formal
parameter which is REAL8 and with WRITE or READ WRITE access
modified, and a routine invocation contains a REALA actual
parameter. the compiler automatically carries out a
conversion. However a value which should be stored into the
actual parameter will not be correctly stored.

If a componeat of a RECORD PACKED or an ARRAY PACKED data—
element is a different size from an addressable element, or
not aligned with an addressable element of the same size.
then use of the ADDR standard routine to write values into
the component data-element may overwrite adjacent memory
areas.

Beware that parameters of routines declared as STANDARD or
REFERENCE transfer values by passing laddresses. ie.
implicitly usiag the ADDR standard routine, so the above
difficulties may arise.

If ARRAY—INDEX—CHECK is switched on‘ and a subarray is used
with bounds outside those declared for the original array.
the compiler does not give any warning. Further. during
execution the :hecking of array element accesses will be
carried out incorrectly after reference to such a subarray,
which has bounds outside those of the original array.

There are a number of difficulties in invoking inner nested
routines

i) Inner routines, ie. other than the outermost level,
may not invoke themselves recursively.

ii) An inner level routine which is predeclared. or
invoked by the IND standard routine. will not be
executed correctly. ‘

iii) If an invocation of an inner level routine is to
have as an actual parameter another inner level
routine, then the actual parameter will be
transferred correctly only if it is the First
parameter in the parameter list.

iv) Inner routines which are declared as STANDARD or
REFERENCE. will not be executed correctly.

ADDR(ADDR(an ARRAY data~element)) will not work correctly.
The correct result may be achieved by using two statements
with an explicitly declared ARRAY POINTER data—element.

The standard routine MARKSTACK will be removed in a Future
version of the compiler, so users are advised to avoid its
use.

ND 60.117.0&

29/9

26)

27)

PLANC Reference Manual
PLANC IMPLEMENTATION RESTRICTIONS

The keyword PACK will be removed in a Future version of the
compiler, so users are advised to avoid its use.

Names used in PLANC programs in IMPORT/EXPORT statements,
will be truncated to the first ten characters normally.
However. note that NRL on the ND-100 uses only the First
seven characters, so names must be distinct from each other.
up to the seventh character to avoid problems.

ND 60.117.04

PLANC Reference Manual
Index

Index

$CALL~HIERARCHY
SCOMPILE .
SCROSS-REFERENCE
SDATE
$DEBUG-MODE
SDEFINE
SEJECT
SELSE
SELSIF
SENDIF
$ENDMACRO
SEOF
SEXIT
SHELP
SIF
$INCLUDE
$L[BRARY—MO0E
$LINE~BIAS . .
SLINKAGE—REFERENCE
SLIST
SLOAD
SMACRO .
$NO100—EXTENDED
$OPTION

ARRAY—INDEX—CHECK
SQUEEZE

$PROG—FILE
$REAL~PRECISION
$SEPARATE—DATA
access

array
modified

READ

WRITE

actual parameter

ALIAS

APPEND

arithmetic operator
array

access
data

ND-50.117.04 Revision A

295

204.
196. 204, 291.
204.
209.
208, 202.
199.
205.
201.
201.
201, 202. 293.
202. 215.
196. 197, 200.
197. 198.
197.
200—202.
200. 291.
128, 207.
205.
204.
205.
198.
202.
206.
209.
206.
206.
198.
207.
193, 206, 292.

61. 62.
4. 34, 45, 50,
127. 293.
4. 10. 45, 50,
65.
10, 45, 145,
292. 293.
10. 71, 133,
136, 141, 143.
145. 202, 203.
216, 237, 293.
293.
20, 124, 120.
128, 129, 351.
154, 180, 10?,
163-160, 207,
23?.
7, 21, 22, 87,
88, 150.
95, 97.

B1, 62.
53~56. 58, 59,
61, 62, 64, 04,
114, 181, 100,
229, 203.

296

declaration

identifier
type

ARRAY-INOEX-CHECK
SOPTION

ASSERTFALSE

assignment operator

basic module

BITS predefined
body macro
BOQLEAN

data

declaration
literal

BYTE predefined
BYTES predefined
change operator
character literal
characters special

comment
COMMON

compound module
constant

declaration
identifier

data

N0-50.117.04 Revision A

PLANC Reference Manual
Index

54, 58~80, 62.
213, 215, 216.
51, 88.
58, 280~282.
287.
206, 209, 293.
206.
20, 123. 124.
219. 286.
2, 89, 91, 92.
104, 134, 225.
2, 1k, 157, 170.
288.
46.
202, 203, 215.

27, 37, 56, 89.
102, 180, 187.
232.
37.
25, 27, 37.
46.
46.
94.
20, 22,.28, 279.
13, 20, 28, 126,
127.
9, 20, 23.
8, 20, 70, 161,
254, 288.
14, 288.
20, 21, 2A, 26.
38. 60, 81, 161,
158, 172, 200.
218, 280, 284.
288.
38.
102, 201, 284.
1—5, 10, 12, 14,
17, 21, 24,
28~29, 31.
33-51, 53-89,
91-96, 99, 100,
102, 104, 105,
111, 113, 114,
123, 125-133.
138—141,
143—146.
150-155, 157.
158, 160, 1G1.
133, 168, 170.
173—191, 199,
200, 208, 207.
209, 213—218,
223-227.
229-233, 237,
239, 255, 246.
259, 254, 255.

PLANC Reference Manual
Index

array

BOOLEAN

enumeration

integer

modified

pointer

real

routine

set

declaration
array

BOOLEAN
CONSTANT
enumeration
integer
real
routine

set
ELSE

ND-60.117.04 Revision A

257, 267,
275, 280,
284. 287,
291—233.

297

273,
282,
288,

53—56, 58. 59.
61, 62, 64. 84,

188,

27, 37, 66, 89.

114, 181,
229, 293.

102. 180,
232.
39, 59, 1
154. 155,

187,

11,
225.

26, 35, 43. 45.
89, 92, 95. 95.
99, 100.
144, 150,
177, 184,
229, 291.

114,
174,
226,

4, 43. 45, 47,
91. 95.
3, 31, 40, 41,
63, 84, 85, 102,
105, 113,
130, 215,
226, 292,

114,
225,
293.

3, 27, 36, 43,
44, 91, 95, 96,
102, 104,
153, 178,
185, 186,
129, 130,
150, 216,
291.
75-79, 81
99, 102,
154, 217,
229.

151.
179,
207.
146.
217.

I 82:

152,
224,

54, 56~60, 82,
213, 215, 216.
37.
38.
39.
35, 43.
36, 44.
11, 42, 71,
125—127, 129,
131—134, 141.
149. 151, 154,
157. 174, 175,
177-182.
184-191, 207,
215. 216, 287,
286.
283.
20, 106, 111.
217, 292.

298

ELSIF
ENQCASE
EN$DO

ENDFOR

ENDIF
ENDMODULE

ENDON

ENDRECORD

ENDROUTINE

enumeration
data

declaration
identifier
literal

equivalence

ERRCODE

exception

EXITFOR

EXITWHKLE

exponent

expression

literal

ND~60.117.04 Revision A

PLANC Reference Manual
Index

20. 188.
20, 111. 285.
20. 112, 119.
285.
8, 28. 113, 115,
119, 285.
8. 20, 108, 285.
20, 158. 214.
288.
20, 123, 145.
216, 286.
20, 67, 70, 282.
291.
20, 126, 144.
159. 240. 287.
288.

39. 59. 111,
154, 155, 225.
39.
30, 31.
30. 39, 111.
21, 48, 69, 213.
281.
20, 144, 173,
239. 242, 243.
22, 35. 36, 43.
44. 56, 59. 65.
79, 113, 114.
122—124. 144.
145, 173, 202.
219, 232. 286.
20, 113, 115,
119, 213, 285.
292.
20, 119. 213.
285, 292.
25, 178. 179.
186, 213, 214.
227, 228.
2, 20, 25-27,
31, 34-38, 40.
43—45. 55, 56,
59. 67, 69, 76.
81. 82. 89—105.
108. 111. 113,
119. 122. 123.
130, 132—134.
136~139, 141,
144, 152, 181,
188, 201, 213.
216, 218, 225,
237, 239. 242.
243, 280-287.
26. 27. 31,
34—38, 43—45.
55, 56, 67, 76.
81. 113.

PLANC Reference Manual
Index

formal parameter

formatted
INPUT
OUTPUT

identifier
array
CONSTANT
enumeration
integer

IF nested
implied pointer
in—value routine
[NCASE

INLINE

INPUT
formatted
unformatted

INSERT

integer
data

declaration
identifier
literal

invocation macro
keyword

label

libraries
library

mark
literal

BOOLEAN

N0-60.117.04 Revision A

299

45, 71, 125~127,
133, 134, 141.
143, 146, 161,
189, 100, 202.
214, 216, 291,
293.

152, 175, 176.
154, 182, 183.

61, 84.
102, 201, 284.
30, 31.
46, 190.
6, 108.
17, 41, 87, 114.
218, 217.
20, 111, 215.
217, 292.
20, 125, 129.
145, 147, 149,
208, 214, 215.
218. 287, 291.
292.

152, 175, 176.
152, 181.
7, 21, 81. 82.
87, 88, 152.

26, 35, 43, 46.
89, 92, 95, 96.
99, 100, 114,
144, 150, 174,
177, 184, 228.
229, 291.
35, 43.
46, 190.
24, 28, 31, 35,
43. 44, 92, 84,
152, 177.
202, 203, 216.
10, 20, 22, 51,
58, 61, 62.
64—66, 73, 114,
127, 131, 215,
216, 294.
3, 20, 33, 42,
107, 145, 208,
280, 284.
198, 207.
88, 124, 128.
129, 198, 207,
267.
207.

25, 27, 37.

300

character
enumeration
expression

integer

octal
real

string

logical operator
loop

macro
body
invocation
name

main program

mark library
MAXINDEX

MININDEX

modified
access

data

precision
range

module
basic

compound
nested

structure
name macro
nested

IF
module

routine

octal literal

ND-60.117.04 Revision A

PLANC Reference Manual
Index

20, 22, 28, 279.
30, 39, 111.
26, 27, 31,
34—38, 43-45.
55, 55, 67, 78.
81, 113.
24, 28, 31, 35,
43, 44. 92, 94.
152, 177.
24.
25, 27, 36, 44,
178.
19, 20, 22, 28.
55.
79, 80, 99, 101.
3. 8, 10, 17,
19, 31, 41, 107.
112—116, 119,
131, 137, 213.

202, 203, 215.
202, 203, 216.
202.
2, 14, 128, 157,
159, 240, 241.
254, 288.
207.
11, 21, 26, 82.
88, 129, 152.
291.
12, 21, 26, 62,
86, 129, 152.
291.

4, 34, 45, 60,
127, 293.
4, 43, 45, 47.
91. 95.
4, 44, 280.
4, 43, 280, 283.

2, 14, 157, 170.
288.
14, 288.
140, 147, 181,
168, 172.
168, 214.
202.

8, 108.
140, 147, 161,
168, 172.
134, 147, 170,
292.
24.

PLANC Reference Manual
Index

0N statement
operator

arithmetic
assignment

change
logical
relational

store

out~value routine
OUTPUT

formatted
unformatted

OVERFLON

parameter

actual

formal

routine
pointer

data

NU-60.117.04 Revision A

301

123.

95, 97,
2, 89, 91, 92,
104, 134, 225.
94.
79, 80, 99, 101.
27, 30, 40. 61,
54, 78, 102,
103.
61, 73, 79, 91,
92, 94, 215.
104.

154. 192, ‘183.
154. 188.
20, 35, 36, 63,
44, 123, 215,
217, 219, 210.
286, 291.
4, 10, 20, 10,
45, 51. 63, 31,
83, 84, 123,
125~129, 133,
134, 135, 13?,
139, 141—113,
145, 115, 150,
151, 153-155,
159, 161, 153,
174, 175,
177*175, 181.
182, 184—181,
195~197,
199~203,
214~217, 237,
239, 255, 25?,
263, 264,
267w276, 287.
291, 293.
10, 71, 133.
136, 141, 143,
145, 252, 203,
216, 237, 291,
293.
45, 71, 125~127,
133, 134, 141,
143, 145, 161,
189, 190, 202,
214. 216, 291,
293.
4, 136.

3, 31, 40, 41,
63, 84, 85, 102,
105, 113, 114.
130, 215, 225,
226, 292, 293.

302

implied
POINTERERROR
precision modified
predeclaration

predefined
BITS
BYTE
BYTES

program
main

structure .
random unformatted

range modified
RANGEERROR
READ access

real
data

declaration
literal

record variant
recursive . .
relational operator

REMOVE

routine
data

declaration

in-value
nested

out-value
parameter
type

ND-68.117.04 Revision A

PLANC Reference Manual
‘ Index

17, 41,
20, 123, 286.
4, 44, 280.
49, 130, 213.
215, 292.

87, 114.

46.
£6.
46.

2, 14, 126, 157.
159, 240, 241.
254, 288.
157-172.
152, 154.
188.
4, 13, 280, 283.
20, 123, 266.
k, 10, 15, 80,
65.

181,

3, 27, 36, 43.
41, 91, 95, 96.
102, 104. 151.
153, 178, 179.
185, 186, 207.
36, 44.
25, 27, 36,
178.
6, 70, 71.
129, 147, 203.
27, 30, 40, 41.
64, 78, 102.
103.
7, 21,
87, 88.

1.1.,

81, 82,
154.

129.
150.
291.
11, 42,
125-127.
131—134,
149, 151,
157, 174,
177—182.
1Bk~191.
215, 216.
288.
216,
134,
292.
104.
A, 136.
2, 83,
287.

130,
215,

146,
217,

71,
129.
141,

154,
175,

207,
287,

217.
147, 170,

146, 281,

PLANC Reference Manual
index

ROUTINEERROR

scope

set
data

declaration
type

special characters

specification TYPE

SQUEEZE
SOPTION

STACKERROR

statement 0N
store operator

string literal

structure
module
program

subarray
type

array

routine

set

specification

NU—68.117.04 Revision A

383

28, 123, 124,
144, 173, 219.
240. 269, 288.
292.
15. 42. 107.
149, 172, 215.
292.

75-79, 81, 82.
99, 102, 152.
154. 217I 224,
229.
283.7
77, 288—283.
287.
13, 20, 28. 126,
127.
4, 5, 21, 47,
51, 58. 85, 87.
88, 70. 72, 77.
83, 146. 149.
157, 158, 168,
172, 200, 213.
214, 217.
280—283. 287,
288.
206, 209, 217.
206.
20, 123, 219,
286.
123.
61, 73, 79, 91,
92, 94, 215.
19. 20. 22. 23.
55.

158. 214.
157~172.
11, 59, 63, 293.

58. 280~282,
287.
2. 83, 145, 281,
287.
77, 288~283.
287.
4, 5, 21. 47,
51. 58. 65,1TL
68, 70. 72, 77.
83, 146, 149,
157. 158, 188,
172, 200, ZHL
214, 217,
280-283. 287.
288.

304

unformattad
INPUT
OUTPUT
random .

variant record
VOID

wRITE access

ND-60.117.04 Revisinn A

PLANC Reference Manual
Index

152. 181.
154. 188.
152, 154. 181,
188.
6, 70. 71.
3, 10, 20, 33.
42, 127‘ 131.
144, 280, 284.
10, 45, 145.
292, 293.

9: v: * * * * * at at * SENDUSYOURCOMMENTS!!! * 9c * v: *1» * at: sir *

; in this manual? Do you have trouble finding
\ ,/ I

. O (3 ? things? Why don’t you join the Reader’s Club and
I

0

7 {2 send us a note? You will receive a membership

I

; Are you frustrated because of unclear information

card — and an answer to your comments.

Please let us know if you A /
* find errors “‘
* cannot understand information \ / \ _
* cannot find information 0 Ol \
" find needless information

Do you think we could improve the manual by rearranging the ' k.)
contents? You could also tell us if you like: the manual! ! / _/ \

* * * ‘k a: * 9: * * HELPYOURSELFBYHELPINGUSI! * * * we * * zk at: *

Manual nameSlNTRAN ||l Reference Manual Manual number: AID-60.112804

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual?

Your name: Date:
Company: Position: __________~_
Address:

What are you using this manual for?

.\
Send to: Norsk Data A.S. \

Documentation Department :3;\
13.0. Box 4, Lindeberg; Gard “a.“ C7 -———--+
Oslo 10, Norway

Norsk Data’s answer will be found on reverse side

Answer from Norsk Data

Answered by _ Date

Norsk Data AS.

Documentation Department

PO. Box 4, Lindeberg Gérd

Oslo)0, Norway

Systems that put people first

NORSK DATA A.S JERIKOVN. 20 PO. BOX 4 LINDEBERG GARD OSLO 10 NORWAY
TEL.: 02 - 30 90 30 - TELEX: 18661

