NORD-500 ASSEMBLER
Reference Manual

NORSK DATA AS

NORD-500 ASSEMBLER
Reference Manual

NOTICE

The information in this document is subject to change without notice. Norsk
Data A.S assumes no responsibility for any errors that may appear in this docu-
ment. Norsk Data A.S assumes no responsibility for the use or reliability of its
software on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. it may not
be photocopied, reproduced or transiated without the prior consent of Norsk
Data A.S.

Copyright @ 1979 by Norsk Data A.S.

ND-60.113.02

PRINTING RECORD

Printing Notes

06/79 ORIGINAL PRINTING

05/80 SECOND EDITION — Replaces Original Printing

NORD-500 ASSEMBLER Reference Manual
Publication No. ND-60.113.02

e
a
4
P-4
L J
[4
®
4
4
e

338888, NORSK DATA AS

)0 ¢ see P 0. Box4, Lindeberg gard
200000 Oslo 10, Norway

-4
L 4
®
L J
e

Manuals can be updhted in two ways, new versions aki revisions. New versions
consist of a complet new manual which replaces the gld manual. New versions
incorporate all revisiohs since the previous version. Reyisions consist of one or
more single pages to b& merged into the manual by thtx user, each revised page
being listed on the ne .printing record sent out wnth the revision. The old
printing record should be rdéplaced by the new one. §

New versions and revisions are announced in the ND Bull%tm and can be ordered

as described below.)

4’

The reader's comments forry at the back of this manual can be used both to
report errors in the manuabland to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms, together with all types of inquiry and requests for documentation
should be sent to the local ND office or (in Norway) to:

Documentation Department
Norsk Data A.S

P.O. Box 4, Lindeberg gard
Oslo 10

ND-60.113.02

PREFACE

The Reader:

We assume that you are a programmer who has a general knowledge of
Assembilers. You may be an inexperienced or experienced assembler programmer.
The structure of this manual will, we hope, benefit all.

The Manual:

In this manual we begin by briefly orienting you with the NORD-500 Assembler
and its environment. The NORD-500 Assembler runs under the SINTRAN Ili
operating system. We have also written two simple assembly programs and
commented on them so that you can feel more comfortable with the NORD-500
Assembler. Apart from this, the manual is organized as a reference manual.

Related Manuals:

You must have the NORD-500 CPU Reference Manual for the complete definition
of instructions and addressing modes.

The Product:

This manual describes the NORD-500 Assembler language, version 1.

ND-60.113.02

Section:

— o — —
rwho-

NENFSIRNSESTSIIRS
WN =

wN =

NONN

P W www
0
N =

241
242
243
244

N
o

it
o
N

— ek) d b b =) b b

NRNRNNNNNNNN
(5, K N6 K6 WMo e W e e e)
L omuO T Wl

N
o
N\

NNNNN
oo oo
SIS
D WN =

vii

TABLE OF CONTENTS

+ + +
Page
INTRODUCTION i i 1-—1
NORD-500 ASSEMBLER ENVIRONMENT 1-2
DEFINITION OF ASSEMBLERS 1-3
EXAMPLE 1 — MODULEEXAMPLE 1—4
EXAMPLE2 — MODULEHANOI 1-5
THE ASSEMBLY LANGUAGE 2—1
SOURCE PROGRAM FORMAT 2-2
BASIC ELEMENTS .. . e 2-3
INSTRUCTIONS .. e e 2-5
LabDEIS . ot 2—-5
Instruction Codeso it e 2—-6
Operand Specifiers i 2—7
DirectOperandsvuimrenanneen.s 2-7
General Operands i 2—8
EXPRESSIONS ...t e 2—N
Operators and Operand Data Types 2—1
INtrNSIC CONSTANTS &+ . v v vt e e e e e e i 2—-13
INtANSIC FUNCHONS . . oot i e e i 2—14
EXpression Syntaxccoreaeenieoann. 2-16
DIRECTIVES .. ittt e i e 2-17
Declaration and Definition Directives 2—18
MODULE and ENDMODULE 2—-18
IMPORT-PandIMPORT-D ot 218
EXPORT ot e 2—-19
MAIN o 2—-19
LIB vttt e 2-19
ALIAS e e e 2—-20
ROUTINE and ENDROUTINE 2—-20
STACKand ENDSTACK 2—-21
RECORDandENDRECORDot 2—-23
EQUaNdSEQU i e 2—-24
Data Allocation Directivesot 2-—-25
BLOCK .ot e 2—-25
DATAGNdPROG e 2-25
DESC ottt e 2-26
ARRAY and STRING i 2—-26
ARRAYDATA and STRINGDATA 2-27

ND-60.113.02

viii

Section: Page:
2.5.3 Location Counter Control Directives 2-27
2.5.3.1 ORG-PandORG-D 2--27
2532 . BOUND-PandBOUND-D 2-28
254 Miscellaneous Directives 2—28
2.6 COMMANDS ... 229
2.6.1 Listing Control Commands 2-29
2.6.1.1 $LISTand $NOLIST oo, 2—-29
2.6.1.2 $TITLE ... 2—29
2.6.1.3 $EJECTand FormFeed 2-30
2.6.2 Conditional Assembly Commands 2-31
2.6.2.1 $IF, $ELSIF, $ELSE, and $ENDIF 2-31
2.6.3 Source File Library Commands 2—32
2.6.3.1 $INCLUDEand $SECTION 2-32
2.6.4 Macro Definitionsand Macro Calls 2—-33
2.6.4.1 $MACRO ... 2-33
2.6.4.2 $ENDMACRO ... 2-33
2.6.4.3 $EXITMACRO ... i 2-34
26.4.4 MacroCalls 2—35
2645 MacroNesting 2—-36
2.6.4.6 Special Forms; #NARG, ""LABEL", and "MNO"2-37
2.6.5 Miscellaneous Commands 2--38
2.6.5.1 $PACKand $ALIGN 2--38
2.6.5.2 SEOF . 2-38
3 ASSEMBLER OPERATING PROCEDURE .3—1
3.1 HELP o 3-2
3.2 EXIT o 3-2
3.3 LINES .o 3-2
3.4 ASSEMBLE ...t 3-2
35 LIST, NO-LIST ... 3-2
3.6 PRINT-MACRO i 3-4
3.7 TABLE-SIZES 3—4
4 ASSEMBLY LISTING FORMAT 41
4.1 PAGEHEADINGo 41
4.2 PROGRAMULISTING 42
4.3 SYMBOLTABLE ... oo 4.3
4.4 CROSS-REFERENCETABLE 4-3

ND-60.113.02

Appendix:

Page
SUMMARY OF DIRECTIVES A—1
SUMMARY OF COMMANDS B—1
RESERVED SYMBOLS Cc—1
INTRINSIC CONSTANT AND FUNCTION

SUMMARY .. i D—1
MODULE EXAMPLE LISTING E—1
ADDRESS CODES it F—1
ADDRESSCODETABLE G—1
INSTRUCTION LIST ... i H-1
INSTRUCTION CODE TABLE I—1

INDEX

ND-60.113.02

INTRODUCTION

The NORD-500 Computer System consists of the NORD-500 CPU, the NORD-100
CPU and a shared memory. The NORD-500 Assembler is a two pass Cross
assembler which runs under the SINTRAN Ui operating system on the NORD-100
CPU, and produces relocatable code for the NORD-500 CPU (refer to Figure 1.1).
The object code produced is in standard NORD Relocatable Format (NRF), which
may be loaded by the NORD-500 loader. In addition to binary code, an assembly
listing is produced. This listing consists of the NORD-500 source code. You also
have the option of listing the produced code in octal format. The symbol table is
printed after the listing. A cross reference table may be generated and printed at
the end of the listing. '

The same version of this assembler will run on both 32-bit and 48-bit floating point
NORD-100 Central Processing Units.

ND-60.113.02

1.1

THE NORD-500 ASSEMBLER ENVIRONMENT UNDER SINTRAN I

NORD-100

SOURCE

CODE (:SYMB)
NORD-500
ASSEMBLER

o

RELOCATABLE
OBJECT CODE
NORD-100/NORD-500 {:NRF)
NORD-500
LOADER
GENERATED NONRELOCATABLE
CODE CODE/EXECUTION CODE
:PSEG
NORD-500 :DSEG and
LINK
PROGRAM
Figure 1.1.

ND-60.113.02

1.2

DEFINITION OF ASSEMBLERS

During execution of a program, the instruction sequence is represented inside the
computer by binary instructions. However, the programmer specifies instructions
symbolically. The conversion from a symbolic representation of a program to its
binary representation inside the computer can itself be performed by a computer
program. This is referred to as the assembly process, and the program which
performs the conversion is called an assembler.

An assembler is a program that accepts a program written in assembly language as
input and produces its machine language equivalent. Each instruction word in an
assembly language program is translated to only one instruction in machine
language.

Thus, we can think of an assembler as a function, the domain of which is the set
of all legal assembly language instructions, and the range of which is the
corresponding set of machine language instructions. Operation of the assembler A
on a symbolic assembly language program S produces a machine language
program M, i.e., M = A (S).

Symbolic Machine language
program$S — Assembler A | = program M

Figure 1.2: The Operation of an Assembler
On the following three pages are two simple examples using the NORD-500

Assembler. The output listing from gxample 1 is found in Appendix E. Please note
that the percent sign (%) indicates comments.

ND-60.113.02

1.3

14

EXAMPLE 1 — MODULE EXAMPLE

I!D I: INSTRUCTION CODE, D: DIRECTIVE, % COMMENT
X MODULE EXAMPLE % NAME OF MODULE
X MAIN START % SPECIFIES MAIN ENTRY POINT
X ROUTINE LNG
)
% COMPUTE: PAR3 = SQRT(PAR1##2 , PAR2##2)
%
X | DSTK: STACK FIXED % START OF STACK DEFINITION
X | APAR1: W BLOCK 1 % ADDRESS OF 1. PARAMETER
X | APAR2: W BLOCK 1 $ e M el 2, o m
X | APAR3: W BLOCK 1 $ w3, - Mmoo
X ENDSTACK
%
X LNG: ENTF DSTK $ ENTER SUBROUTINE WITH
% FIXED DATA AREA BEGINNING
% AT 'DSTK'.
X F1 := IND(B.APAR1) % LOAD 1. PARAMETER
X F1 # F1 % SQUARE
X F2 := IND(B.APAR2) % LOAD 2. PARAMETER
X F2 MULAD F2,F1 % SQUARE AND ADD
X F2 SQRT F2 % TAKE SQUAREROQT
X F2 =: IND(B.APAR3) % STORE IN 3. PARAMETER
X RET % RETURN
X ENDROUTINE
% :
% MAIN PROGRAM
%
X | STX STACK FIXED % START OF STACK DEFINITION
X | A: F DATA 3.0 % DEFINE A AS 3.0
X | BB: F DATA 4.0 % DEFINE BB AS 4.0
Xic: F BLOCK 1 % DECLARE SPACE FOR
% ONE REAL VARIABLE.
X ENDSTACK
%
% INITIATE STACK AREA WITH MAIN PROGRAM STACK
% FRAME BEGINNING AT 'STK', LENGTH #SCLC, AND
% TOTAL STACK DEMAND OF 100.
% #SCLC IS AN INTRINSIC FUNCTION GIVING THE
% SIZE OF THE STACK FRAME IN THE LAST PRECEEDING
% DEFINITION.
%
X START: INIT STK,#SCLC,100
%
% CALL ROUTINE WITH 3 LOCAL PARAMETERS A, BB
% AND C.
%
X CALL LNG,3,B.A,B.BB,B.C
%
g "RETURN" FROM MAIN PROGRAM, I.E. STOP.
%
X RET
X ENDMODULE

ND-60.113.02

1.4

EXAMPLE 2 — MODULE HANOI

NORD-500 ASSEMBLER 2.5 WEDNESDAY 26 MARCH 1980 1430:20 PAGE 1

MODULE HANOI.

A WA R =B w4 2% WA A WA VR B R WQ WA R W W R W W W

FROM:
Via:
TO:
NM1:

MOVEV:

MREST:

MODULE HANOI
MAIN BEG

PROGRAM TO SOLVE THE PROBLEM OF THE TOWERS OF HANOI.

ONE PEG CONTAINS A STACK OF DISKS WITH DECREASING DIAMETERS,
SUCH THAT THE LARGEST DISK IS AT THE BOTTOM AND THE SMALLEST
AT THE TOP. THE OBJECTIVE IS TO MOVE THIS PILE TO ANOTHER
PEG, OBSERVING THE CONSTRAINTS THAT ONLY ONE DISK AT A

TIME IS TO BE MOVED, AND NO LARGER DISK MAY BE ON TOP OF A
SMALLER ONE.

A THIRD PEG IS USED AS AN INTERMEDIATE STORAGE.

THE RESULT OF THE PROGRAM IS A SEQUENCE OF RECORDS IN MEMORY.
EACH RECORD IS CONCERNED WITH THE MOVEMENT OF ONE DISK. IT
CONSISTS OF THE DISK NUMBER (1 BEING THE TOPMOST), THE PEG
FROM WHICH IT IS MOVED, AND THE DESTINATION PEG.

RECORD % START OF RECORD DEFINITION
W BLOCK 1
W BLOCK 1
W BLOCK 1
ENDRECORD

ROUTINE TO DO THE MOVEMENT OF THE DISKS.

ROUTINE MOVEV

STACK

W BLOCK 1 $ 1. PARAMETER (CALL BY VALUE)

W BLOCK 1 L S R—

W BLOCK 1 § 3. ememMemee

W BLOCK 1 4 B, —cmmeMamee

W BLOCK 1 4 LOCAL VARIABLE

ENDSTACK

ENTS #SCLC 4 ENTER STACK SUBROUTINE. STACKDEMAND
¢ IS GIVEN BY #SCLC, THE SIZE OF THE
4 PRECEEDING STACK FRAME DECLARATION.

Wi := B.N; W DECR W1 % DECREMENT DISK NO. BY ONE AND

Wi =: B.NM1 4 STORE IN LOCAL VARIABLE 'NM1'.

IF> GO MREST 4 MORE THAN ONE DISK TO MOVE ?

CALL MOVED,0 4 NO, MOVE THIS DISK AND RETURN.

RET
% YES, MOVE 'NM1' DISKS FROM PEG 'FROM'
¢ VIA PEG 'TO' TO PEG 'VIA'.

CALL MOVEV,H,IND(B.NM1),IND(B.FROM),IND(B.TO),IND(B.VIA)
CALL MOVED,O ¢ MOVE ONE DISK FROM 'FROM' TO 'TO'.

¢ MOVE THE 'NM1' DISKS FROM 'VIA'
¢ VIA 'FROM' TO PEG 'TO'.

CALL MOVEV,Y4,IND(B.NM1),IND(B.VIA),IND(B.FROM),IND(B.TO)
RET

ND-60.113.02

16

NORD-500 ASSEMBLER 2.5 WEDNESDAY 26 .MARCH 1980 1430:23 PAGE 2
MODULE HANOI.

#
% RECCRD THE MOVEMENT "OF ONE DISK. R4 CONTAINS A POINTER
% TC THE RECORD. #RCLC GIVES THE RECORD SIZE OF THE LAST
4 RECORD DEFINITION.

%

M

OVED: ENTD % ENTER "DIRECT" SUBROUTINE.
W4 + #RCLC % INCREMENT RECORD POINTER.

W MOVE B.N,W4.NO; W MOVE B.FROM,W4.FR; W MOVE B.TO,W4.TR

RETD % RETURN FROM "DIRECT" SUBROUTINE.
ENDROUTINE

)

% MAIN PROGRAM AND DATA INITIALIZATION.

%

STKSIZ: EQU 2000 % TOTAL (MAX) STACK DEMAND.

MSTK: STACK FIXED
NN: W DATA 3
NFROM: W DATA 1
NVIA: W DATA 2
NTO: W DATA 3
ENDSTACK

NUMBER OF DISKS.
SOURCE PEG NO.
TEMPORARY PEG NO.
DESTINATION PEG NO.

B0 B0 BR WA

INITIALIZE MAIN PROGRAM WITH LOCAL DATA AREA BEGINNING AT
'MSTK', STACKDEMAND IN MAIN PROGRAM IS #SCLC, AND TOTAL
STACKDEMAND 'STKSIZ'. THE RECORD AREA IS LOCATED AFTER THE
STACK AREA.

00 ¥ 2R 22 2 WA R

EG: INIT MSTK,#SCLC,STKSIZ
W4 := ADDR(MSTK); W4 + STKSIZ-#RCLC

CALL SUBROUTINE TO DO THE MOVING. THE FOUR PARAMETERS ARE
PASSED WITH "CALL BY VALUE" TYPE TRANSFER.

B B8 w2 R

CALL MOVEV,4,IND(B.NN),IND(B.NFROM),IND(B.NVIA),IND(B.NTO)
RET 4 "RETURN" FROM MAIN PROG., I.E. STOP.

ENDMODULE

ND-60.113.02

NORD-500 ASSEMBLER 2.5 WEDNESDAY 26 MARCH 1980 1430:25 PAGE 3
SYMBOL TABLE

GLOBAL SYMBOLS

BEG W PM 00000000105
FR W A 00000000004
MOVEV W P 00000000000
MSTK W D 00000000000
NFROM W A 00000000030
NN W A 00000000024
NO W A 00000000000
NTO W A 00000000040
NVIA W A 00000000034
STKSIZ W A 00000003720
TR W A 00000000010
NORD-500 ASSEMBLER 2.5 WEDNESDAY 26 MARCH 1980 1430:25 PAGE 4

NO ERRORS DETECTED

ND-60.113.02

THE ASSEMBLY LANGUAGE

In order to describe the syntax of the assembly language, we will use a meta
language (i.e., a language to describe another language). The rules of this meta
language are as follows:

_ A meta variable is a sequence of letters, digits, and hyphens.

— A terminal symbol is represented as a string of characters enclosed within
single or double quotes.

- Alternatives are separated by a slash /.

_ Optional items are surrounded by brackets [].

_ Parentheses { } can be used to group together constructs.

— Adollar sign $ before a construct means repetition.

— A decimal number immediately preceding/following a dollar sign $ speci-

fies the minimum/maximum number of occurrences of the repeated
construct.

Some basic constructs that are used in this manual are defined below:
— letter = "A"/ "B/ /YT

— digit = 0"/ "1/ .../ 8" "9,
_ decimal number = 1$ digit;

ND-60.113.02

2-2

SOURCE PROGRAM FORMAT

— The ASCl character set is used to represent source programs.

— All characters in the interval of 0-37B are ignored, except for form feed
(14B), carriage return (15B), and end-of-file (27B). '

— Lower case letters are converted to upper case.

— A percent sign (%), not occurring inside a string constant, means that the
rest of the line is a comment.

— Biank lines are treated as comment lines.

— An ampersand &, not occurring inside a string constant, means that the
current statement continues on the next line. You may only have blanks and
comments after the ampersand on the current line. Ampersands may occur
between basic elements, but not within them.

— A statement is terminated by a semicolon {;) or carriage return.

— Empty statements are permitted.

There are three types of ""orders’’ (statements) you may give to the assembler:
Instructions {for exampie, W ADD2 OP1, OP2)

Instructions are translated into machine language instructions for placement
in the user’'s program memory.

Directives (for example, MODULE)

Directives specify attributes of the generated NRF {such as naming the main
entry point), allocate data storage, and preset constant data.

Commands (for example, $L1ST)
Commands control the processing of the program text through conditional

assembly, macro definition, listing options, and selection of program
statements for assembly.

ND-60.113.02

2.2

BASIC ELEMENTS

The basic elements which make up a source program are: identifiers, string
constants, integer constants, real constants, and file names.

IDENTIFIER

An identifier may consist of letters, digits, number signs (#) and underscores
(_). The first character must be a letter, question mark (?) or number sign.
Two underscore characters may not be placed side by side. The underscore
character is significant in the identifier. If an identifier starts with a question
mark it is called invisible and is never listed in the symbol table dump. This
feature is intended for use with generated symbols in macro calls. An
identifier may be of any length, but only the first 16 characters are
significant. The word ""symbo,”’ is synonymous with identifier. For a list of
reserved symbols refer to Appendix C.

STRING CONSTANT

A string constant consists of a sequence of characters enclosed with single
quotes. If a single quote is to be included in the string it must be written
twice. The maximum length of a string constant is 80 characters.

INTEGER CONSTANT

An integer constant may be one of four forms: binary, octal, decimal, and
hexadecimal. It consists of a sequence of digits, followed by a radix
specifier, optionally followed by an exponent. The default radix is decimal.
The radix specifiers are; X = binary, B = octal, D = decimal (default), and
H = hexadecimal. The exponent is always interpreted as a decimal number.
As an example: 15B3 is the same as 15000B or 1AH2. In order to avoid
conflicts with identifiers, a hexadecimal constant must always start with a
decimal digit (i.e., the constant FF;g must be written @FFH). An integer
constant is represented internally as a 32-bit 2's complement number.

REAL CONSTANT

A real constant must contain a decimal point which must not be the first
character. An exponent may be specified, preceded by the letter E. A real
constant is represented internally in the NORD-500 double precision floating
point format (sign bit, 9-bit exponent, 54 { + 1}-bit mantissa).

ND-60.113.02

FILE NAME

A file name is a string of any characters. It is terminated by a space, comma,
or carriage-return. No syntax check of file names is performed by the
assembler. File names are used only in commands.

SYNTAX OF BASIC ELEMENTS:

identitier =
id-pairt-1 =
id-part-2 =

break-character =

string-constant =

integer-constant =

binary-constant =

octal-constant =

decimal-constant =

hex-constant =
binary-digit =
octal-digit =
hex-digit =

exponent =

real-constant =

file-name =

id-part-1 $ (break-character id-part-2);
letter/ "#°/ "'?";

letter/ digit/ ""#'';

et g

$ (<any character except ' >/ " '’ ")

rororr,
'

binary-constant/ octal-constant/ decimal-constant/
hex-constant;

1$ binary-digit X" [exponent];

1$ octal-digit "'B”" [exponent];

1$ digit [’D" [exponent]];

digit $ hex-digit ""H'* [exponent];
0"/,

L AN L AN - B A

digit/ "A""/ "B/ "C"/ "D/ "E"/
decimal-number;

1$ digit ".” $ digit ["E” ["+"/ "-"] exponent]

’

1$ <any character except comma or space >;

ND-60.113.02

2.3

2.3.1

INSTRUCTIONS

This section describes the assembly format for NORD-500 instruction codes and
operand specifiers. Please refer to the NORD-500 CPU Reference Manual for a
complete description of instruction codes (octal value and assembly notation),
addressing modes, address codes and operand specifiers. Refer also to
Appendixes F, G, H and |. The assembly format for an instruction is:

[label] instruction code [operand specifiers].

Each part is described in the following sections.

Labels

A label is a definition of a symbol’s address. The optional label consists of an
identifier followed by a colon. An instruction may have more than one label. Labels
are also allowed on empty statements (i.e., the label is immediately followed by
end-of-line or semicolon). Labels on instruction lines are assigned the current value
of the program location counter. (See Section 2.5 on DIRECTIVES, STACK and
RECORD.)

ND-60.113.02

2.3.2

2-6

Instruction Codes

The instruction code name is the main part of the instruction code. The instruction
code name is a string of characters identifying the operation to be performed. The
instruction code names are not reserved symbols in the assembler. |f the
instruction code name does not end with a special character (=, :, +, —, *,
or /)it must be terminated by at least one space.

Many instruction codes start with a data type specifier. These are:

Bl Bit

BY Byte (8 bits)

H Half-word {16 bits)

w Word (32-bit integer)

F Single precision real (32-bit floating point)
D Double precision real (64-bit floating point)

If the instruction uses one of the integer or floating point accumulators as a
destination and/or source operand, the register number is specified following the
data type specifier (e.g., W1 for integer accumulator one).

Spaces are allowed following the data type specifier and the register number. For
the IF and GO operations, spaces are allowed before and after ‘cond’. The
following are examples of legal operation codes:

BY 1 COMP BY 1COMP
BY1 COMP BY1COMP
W SuB2 WSUuUB2
IF=GO IF = GO

ND-60.113.02

2.3.3

2.3.3.1

2-7

Operand Specifiers

The instruction code is followed by a list of zero or more operand specifiers,
separated by commas. Operand specifiers are divided into two main categories:
direct operands and general operands. Direct operands are operands found in the
bytes immediately following the instruction code or the previous operand specifier.
General operands are operands accessed via an address code.

Direct Operands

A direct operand is an absolute addresses of program or data; or a displacement,
which applies to program addresses only.

Direct Absolute Addressing

A direct absolute addressing operand is always assembled as a 32-bit word.
Examples of direct absolute addressing operands are the address in CALL (but not
CALLG) and the address of the stack in ENTM. The former is a program address,
the latter a data address.

Displacement Addressing

Displacements are used in the LOOP and GO instructions to address the destin-
ation. A displacement is stored as a word, half-word, or byte depending upon its
magnitude. To force the displacement to be stored in a particular format, the
following length specifiers can be used:

:B Store operand as a byte (8 bits)
:H Store operand as a half-word (16 bits)
:W Store operand as a word (32 bits)

‘B and :H are legal for all GO and LOOP instructions while :W is tegal only for GO
{(not for IF cond GO).

If the assembler is unable to select the correct storage format for a displacement,
B is selected. If this is not large enough, an error diagnostic results in pass two
and the programmer is responsible for adding the correct length specifier. Example
of legal GO instructions are:

GO LABX GO LABX:B
GO LABX:W IF = GO LABZ:H

ND-60.113.02

2.3.3.2

General Operands

The general operand is the most common operand type. It is used when accessing
constants, registers, and data memory. The NORD-500 has 10 different addressing
modes and 2 operand specifier prefixes.

In most cases the assembler selects the optimal storage format for constants and
displacements in general operands. If, however, you want to force the storage
format to a particular length, the following data part fength specifiers are available:

S Short (6 bits)

‘B Byte (8 bits)

:H Half-word (16 bits)

‘W Word (32 bits)

:F Single precision real (32-bit floating point)
:D Double precision real (64-bit floating point)

Note that no type conversion of values is performed at assembly time. This means
that an integer constant cannot be converted to a real constant by appending any
of the :F or :D maodifiers and vice versa.

The addressing modes and address codes are described in more detail in the
"NORD-500 CPU Reference Manual”. Otherwise, refer to Appendix F and G. All
possible addressing modes, followed by a short description, are listed here. The
following notation is used:

constant Integer or real constant

disp Displacement {absolute value)

dlabel A data label

plabel A program label

ADDR(label) An assembler notation for converting the value of a label to
a constant.

Rn Register number

BI1 Bi2 BI3 Bi4 Bin

BY1 BY2 BY3 BY4 BYn

H1 H2 H3 H4 Hn

W1 w2 W3 w4 Wn

F1 F2 F3 F4 Fn

D1 D2 D3 D4 Dn

R1 R2 R3 R4 Rn

ND-60.113.02

Local Addressing

B.disp Assembler selected format
B.disp:S Forced short displacement
B.disp:B Forced byte displacement
B.disp:H Forced half-word displacement
B.disp:W Forced word displacement

Local, Post Indexed Addressing

B.disp(Wn) Assembier selected displacement format
B.disp:B(Wn) Forced byte displacement

B.disp:H(Wn) Forced half-word displacement
B.disp:W(Whn) Forced word displacement

Local Indirect Addressing

IND (B.disp) Assembler selected displacement format
IND (B.disp:B) Forced byte displacement

IND (B.disp:H) Forced half-word displacement

IND (B.disp:W) Forced word displacement

Local Indirect, Post Indexed Addressing

IND (B.disp) (Wn) Assembler selected displacement format
IND (B.disp:B) (Wn) Forced byte displacement

IND (B.disp:H) (Wn) Forced half-word displacement

IND (B.disp:W) (Wn) Forced word displacement

Record Addressing

R.disp Assembler selected displacement format
R.disp:S Forced short displacement

R.disp:B _ Forced byte displacement

R.disp:H Forced half-word displacement
R.disp:W Forced word displacement

Pre-Indexed Addressing

Rn.disp Assembler selected displacement format
Rn.disp:B Forced byte displacement

Rn.disp:H Forced half-word displacement
Rn.disp:W Forced word displacement

ND-60.113.02

Absolute Addressing

dlabel
dlabel:W

Absolute address (always 4 bytes)
Absolute address (always 4 bytes)

Absolute, Post Indexed Addressing

dlabel (Wn)
dlabel:W(Wn)

Constant Operand

constant
constant :S
constant :B
constant :H
constant :\W
constant :F
constant :D
ADDR (diabel)
ADDR (diabel) :W
ADDR {(piabel)

ADDR (plabel) :W

Register Addressing

Rn

Absolute address (always 4 bytes)
Absolute address (always 4 bytes)

Assembiler selected constant format
Forced short constant

Forced byte constant

Forced half-word constant

Forced word constant

Forced real constant

Forced double real constant

The address of a data memory location
The address of a data memory location
The address of a program memory iocation
The address of a program memory location

Register as operand
Bin, BYn, Hn, Wn, Fn, and Dn.

Note: the register symbol used must be of the correct type.

For Example:

BY WCONV BY2, W4is correct, while BY WCONV W2, W4 is iliegal.

When used as an index register (pre-indexing or post-indexing) only W is legal. R1,
... R4is legal in all positions. The register names are reserved symbols.

Descriptor Addressing

DESC (operand) (Rn)

Alternative Area

ALT (operand)

The operand can be any general operand, except constant,
register, descriptor, and alternative area.

The operand can be any general operand, except alter-
native area, register, and constant.

ND-60.113.02

2.4

241

2-11

EXPRESSIONS

Expressions are made up of operators and operands. The operator conducts the
action which is to be performed upon the operands. An operand can have one of
the following data types:

{ Integer (32 bits, 2's complement number)
R Real {64 bits, NORD-500 double precision)
S String (character string, maximum 80 characters)

Operators and Operand Data Types

The available operators, in order of increasing priority, are listed below:

Operand
Priority: Operator: Data Type: Description:
1 OR | Logical or
1 XOR | Logical exclusive or
2 AND | Logical and
3 NOT | Logical negation (1’s complement)
4 < IS Less than
4 < = 1,S Less than or equal to
4 = I,R,S Equal to
4 >< I,R,S Not equal to
4 > = 1,S Greater than or equal to
4 > I,S Greater than
5 + l Addition
5 — | Subtraction
6 * 1 Multiplication
6 /] Division
6 MOD | Modulo
6 SHIFT | Shift
7 Unary + I,R Unary plus
7 Unary — I,R Unary minus

In all cases where an integer and/or real operand is required, a string constant of
length 0-4 will be converted to an integer where the characters are represented by
their internal binary value, e.g., A = 10%. A string constant of length 5-8 will be
converted to a real value in the same manner.

ND-60.113.02

In addition, an integer value can have one of the three following attributes:

A Absolute
P Program address
D Data address

No binary operator may have a program address on one side and a data address on
the other side of it. The following table shows which combinations of operands are
possible and what type the result has. Blank indicates that the combination is
illegal, while a horizontal line indicates a non-existent combination. The slash {/}
means operated on.

Operator: A/A A/P,D P,D/A P,D/P,D

>>>>> > |

P.D P.D
P.D

>

MOD
SHIFT
Unary +
Unary —

\Y
il
>>>»>>>>>rP>>>>>>rP>D>

In general, address arithmetic is allowed only for data addresses. If imported
symbols are used in an arithmetic expression, only one symbol may occur in each
expression, i.e., the difference between two imported symbois is not legal. With
program addresses, arithmetic is allowed only with the special symbols defined
above.

Note that address arithmetic, as program addresses, is permitted with the special
symbols. defined above. For example, GO LABX + 3 is illegal while GO #PCLC+3
is legal. Because almost all NORD-500 instructions have variable length it is
strongly advised not to use constructs such as #PCLC + 3.

ND-60.113.02

2.4.2 Intrinsic Constants

Intrinsic constants are constants that are pre-defined or system-supplied. The
following five intrinsic constant names may be used to refer to the locations in the
stack entry header.

PREVB 0 Saved B-register

RETA 4 Saved return address

SP 8 Stack pointer

AUX 12 System cell

NARG 16 Number of arguments supplied in call

The constant #ZEROP has a value of zero and is used as a program address.
The constant #ZEROD has a value of zero and is used as a data address.

MODULE EXTRA
SiZ. W DATA ELAB— #ZEROP

ELAB:
ENDMODULE

will place the size of the program part of the module in the data location SIZ.

ND-60.113.02

243

2-14

Intrinsic Functions

Intrinsic functions are functions that are pre-defined or system-supplied. A
function can have arguments, enclosed within parentheses and separated by
commas. This section describes the different intrinsic functions which are available
toyou.

These are the location counter symbols:

#PCLC Program location counter
#DCLC Data location counter
#SCLC Stack location counter
#RCLC Record location counter

These functions return the current value of the location counters. #SCLC is used
when processing statements between STACK and ENDSTACK, and #RCLC when
processing statements between RECORD and ENDRECORD. When used in the
operand field of an instruction, a location counter symbol represents the address
of the first byte of the instruction. When used in the operand field of an assembier
directive (see Section 2.5), it represents the address of the first byte of the current
data element. For example:

W MOVE ADDR (#PCLC}, R1

W DATA 100, #DCLC +4
W BLOCK 100

The first instruction loads the R1 register with the address of the instruction itself.
The two following instructions define a descriptor with the described array
immediately following it.

When #SCLC is used inside a STACK-ENDSTACK pair it represents the current
stack displacement. When it is used outside a STACK-ENDSTACK pair it holds
the size of the last stack block defined. This means that it can be used directly as
the "'stack demand’’ parameter in the entry point instructions. For example:

STACK
PAR1A: W BLOCK 1 % ADDRESS OF PARAMETER ONE
PAR2A: W BLOCK 1 % ADDRESS OF PARAMETER TWO
ENDSTACK
ROUTX: ENTS #SCLC % ENTER STACK

These statements define a stack block and insert the correct stack demand in the
ENTS instruction.

ND-60.113.02

#RCLC is used in a similar way for records. #SCLC is initialized to 20 at the start
of a new stack definition while #RCLC is initialized to zero at the start of a new
record definition.

#NCHR

The function #NCHR takes a string as its only argument and returns the length of
the string. The length is returned as an absolute integer value. For example:

XSTR: SEQU ‘STRING OF CHARACTERS'
BY DATA #NCHR (XSTR) ,XSTR

assembles a string preceded by its length.

#NARG

The function #NARG, which takes no arguments, returns the number of
arguments supplied in the call to the macro currently being expanded. If used
outside a macro its value is zero.

#DATE

To read the current date and time the function #DATE can be used. It is a
function of no arguments and returns the current date and time in a double word
as follows:

Bits 63-48, 16 bits, Year
Bits 47-40, 8 bits, Month
Bits 39-32, 8 bits, Day
Bits 31-24, 8 bits, Hour
Bits 23-16, 8 bits, Minute
Bits 15-8, 8 bits, Second
Bits 7-0, 8 bits, Unused

This function is useful in keeping track of different versions of a program.

#.0G2

The function #.0G2, which takes an integer value as argument, returns the
logarithm to base two of the argument. This funciton can be useful when used
with the instructions ENTB, GETB and FREEB.

ND-60.113.02

2.4.4

2-16

Expression Syntax

expression =
ifact=
Ineg=

rel =

relop =
sum=
factor=

primary =

iconstant=

ifunction =

lfact $(("OR""/ "XOR") Ifact);
ineg $("AND" Ineg);
["NOT""] rel;
sum relop sum;
SRR RS G AR ARGl > S P
factor $(("+" / " —"")factor);
primary $((”*" / "/” / "MOD’" / "SHIFT") primary);
[+) =]
o {"" expression ")’/
identifier/

string-constant/ integer-constant/ real-constant/
iconstant/ ifunction);

"PREVB’'/ "RETA"/ 'SP/ "AUX"'/ “NARG""/
"#ZEROP", "#ZEROD";

"#NARG"/

"#NCHR"” (" expression ')"’/

"#PCLC”/ "#DCLC"”/ "#SCLC"/ "#RCLC""/
"#DATE"/

"#LOG2” "'("" expression "’)"’;

ND-60.113.02

2.5

2-17

DIRECTIVES

Directives specify attributes of the generated NRF (NORD Relocatable Format),
allocate data storage, and preset constant data. See Appendix A for a summary of
directives.

This section describes all available directives. The format of a directive is similar to
that of an instruction.

[label] directive-name [operands]

or

llabel] data-type, directive-name [operands]
The label, if present, is assigned the value of the current program or data location
counter depending on which directive follows it. If a directive has several labels, all

but the last are always assigned the value of the current program location counter.

The data type specifiers used for directives are the same as those used for
instructions. The directive names are not reserved symbols.

The operands, if any, are separated by commas and have different formats for
each individual directive.

ND-60.113.02

2.5.1

2.5.1.1

25.1.2

2--18

Declaration and Definition Directives

MODULE and ENDMODULE

A NORD-500 assembly program consists of one or more modules which are
delimited by MODULE and ENDMODULE. The format is:

1

MODULE [module-name [',”" priority [*,’" language-code]]]

statements

ENDMODULE [module-name]

The module-name, which may be any legal identifier, is included in the page
heading of the assembly listing. If specified, the name in the ENDMODULE
directive must correspond to that in the matching MODULE directive. Except for
these two functions the module-name is ignored by the assembler.

If specified, the priority must be an integer constant in the range 0-255. This value
is output to the object-code as the first of the two data bytes following the BEG
control byte. The default value is zero.

The third parameter, language-code, is output as the second of the two data bytes

following the BEG control byte. It must be an integer constant in the range 0-255.
Values are: 0, assembly code; 1, FORTRAN; 2, PLANC. The default value is zero.

IMPORT-P and IMPORT-D

These two directives are used to make external data accessible within the current
module. The format is:

IMPORT-P identifier $ (",” identifier)
IMPORT-D identifier $ (”,” identifier)
An identifier which is mentioned in an IMPORT directive must not be defined in

the current module. IMPORT-P is used to import program addresses {entry points)
while IMPORT-D is used to import data addresses.

ND-60.113.02

2.5.1.3

2.5.1.4

2.5.1.5

2-19

EXPORT

This directive is used to make addresses defined in the current module accessible
to other modules. The format is:

EXPORT identifier $ ("', identifier)

An identifier that is mentioned in an EXPORT directive must be defined in the
current module. Both program addresses and data addresses can be EXPORTed.

MAIN

The MAIN directive, which has the format:
MAIN identifier
specifies the main entry point of a program. The identifier must be defined as a

program address in the current module. The identifier need not be EXPORTed.
Only one main entry point can be specified.

LIB

The LIB directive has the format:

LIB identifier $ (”,” identifier)
The current module will be loaded only if one or more of the identifiers mentioned
in a LIB directive is undefined (in the loader table). Otherwise the entire module is

skipped. Both program addresses and data addresses may be used as library
symbols.

ND-60.113.02

2.5.1.6

2.5.1.7

2-20

ALIAS

The ALIAS directive has the form:

identifier """ ALIAS string-valued-expression

This directive defines the external representation of the symbol, i.e., the string
which is output to the object stream. The use of this directive is to generate names
that are syntactically illegal in the NORD-500 assembly language but are used by
other language processors (e.g., operator names in PLANC). It can also be used to
generate names which the user of other language processors is unable to
duplicate. For example:

ROUTINE CLOSE
CLOSE: ALIAS '+ + +CLOSFE’
CLOSE: ENTD

ROUTINE and ENDROUTINE

A subroutine starts with a ROUTINE directive and ends with an ENDROUTINE
directive. The ROUTINE directive is followed by a list of entry points. The entry
points will be global labels while all other symbols defined within a ROUTINE —
ENDROUTINE pair will be local to the subroutine. A local symbol cannot have the
same name as a global symbol. The ROUTINE and ENDROUTINE directives do not
generate any code. The ROUTINE and ENDROUTINE directives may not be
nested. For an example of a subroutine refer to Appendix E.

ND-60.113.02

2-21

2.5.1.8 STACKand ENDSTACK

These directives are used to declare data in the form of a stack entry. Data
declared this way may be addressed through the B-register. A stack declaration
can have one of the two forms:

label] STACK FIXED

data aliocation directives

ENDSTACK
or
STACK

data allocation directives

ENDSTACK

The first form is used for data allocated statically in the data memory, while the
second form is used for data allocated dynamically on a stack. The first form
allows initialization of data, while the second form does not.

The optional label is assigned the address of the first byte and is used when
referring to the stack block (e.g., in the ENTM and ENTF instructions).

A label occurring inside the stack definition is assigned an absolute value
corresponding to the displacement from the start of the stack block currently being
defined. This displacement is initialized to 20, leaving 20 bytes (5 words) for the
stack header.

The first five words constitute the stack header. These words may be accessed by
the following standard names.

PREVB Saved B-register

RETA Saved return address

sP Stack pointer {next B)

AUX System cell

NARG Number of arguments supplied in call

ND-80.113.02

2-22

If FIXED is specified, these words are initialized to zero at load time.

The stack location counter (address relative to the start of the current stack block)
can be referenced as #SCLC. When referenced outside a stack definition
#SCLC holds the size of the last stack block defined, thus it can be used directly
as the ""stack demand’’ argument in, for example, ENTS.

An example of a routine using dynamicalily allocated data can be found in Example
2. The following is an example of a routine using statically allocated local variables:

ROUTINE CRLFX

CRLSS: STACK FIXED
LINENO: W DATA 1
ENDSTACK
CRLFX: ENTFN ENTF CRLSS, 0

BY COMP2 B.LINENO, 72; IF < GO CR1
CALLG NEWPAGE, 0; W SET1 B.LINENO; RET

CR1: CALLG NEWLINE, 0; W INCR B.LINENO; RET
ENDROUTINE

ND-60.113.02

2.5.1.9

2—-23

RECORD and ENDRECORD

RECORD and ENDRECORD are similar to STACK and ENDSTACK except that no
stack header is allocated. Therefore, the displacement of the first variable is zero.
Data declared with RECORD and ENDRECORD may be accessed through the
R-register. The symbol #RCLC is called the record location counter and is used in
the same way as #SCLC is used with STACK and ENDSTACK.

A record definition may occur inside a stack definition and vice versa. Stack and

record definitions may not, however, be nested.

Example 1, Fixed Record:

RLOC:
RX1:
RX2:

RECORD FIXED
W DATA 1,2
DESC 10, LXX1
ENDRECORD

R:=ADDR(RLOC)
W1:=R.RX1
W2: = DESC(R.RX2)(R1)

Example 2, Symbol Table Element:

INAME:
ITYPE:

ISCOPE:

IMISC:

XLOOP:

RECORD

W BLOCK 1
W BLOCK 1
W BLOCK 1
W BLOCK 1
ENDRECORD

R:=B.ELEMENT

W COMP2 R.INAME,B.SNAME

IF = GO FOUND

W ADD2 B.ELEMENT, #RCLC

GO XLOOP

ND-60.113.02

2.5.1.10

2-24

EQU and SEQU

These directives are used to assign a value to an identifier. They have the form:

identifier "':”* EQU expression
identifier ;" SEQU string-valued-expression

For both directives the expression in the argument field must be evaluatable in
pass one.

EQU assigns the value in the argument field to the identifier in the label field. The
identifier gets the same type as the expression value.

SEQU is similar to EQU except that it always performs a string assignment, while
EQU converts a string into an integer constant before the assignment is per-

formed.

Identifiers defined with EQU or SEQU cannot be redefined.

Examples:
INT1: EQU 101B % INT1 GETS VALUE 101B
INT2: EQU ‘A’ % INT2 GETS VALUE 1018
Pi: EQU 3.1415926536 % DOUBLE PRECISION REAL
STR1: SEQU ‘A’ % STRING VALUE: A

ND-60.113.02

2.5.2

2.5.2.1

2.5.2.2

2-25

Data Allocation Directives

BLOCK

The BLOCK directive, which has the format:

[label] data-type BLOCK expression
allocates a block of data memory. The expression in the argument field specifies
the size of the block in units of the data-type. All data-types are valid. The block is
initialized to all zeros at load time.
If this directive is used in stack or record definition without the FIXED attribute, no
memory is allocated, but the #SCLC or #RCLC is updated to reflect the amount

of space needed at runtime.

The expression in the argument field must result in an absolute value and it must
be evaluatable in pass one.

DATA and PROG

These directives are used to assemble data constants in the data memory (DATA)
or the program memory (PROG). The format is:

[label | data-type DATA expression $ (", expression)
label] data-type PROG expression $ (”,” expression)

All data types are valid. However, two special cases arise: Bl DATA (or Bl PROG)
and BY DATA (or BY PROG). BY DATA is special only when an argument is a

string valued expression.

Bl DATA allocates memory in units of bytes and inserts the specified bits starting
with the most significant bit (bit 7). Unused bits are set to zero. For example:

Bl DATA1,1,0,0,1,0,0,1,1,0,1
causes the two bytes 311B and 240B to be assembled in the data memory.

When BY DATA operates on an argument which represents a string, this string is
not converted to an integer value but assembled byte for byte into the memory.

For Example:

BY DATA 'NORD-500 ASSEMBLER’
BY DATA 15B, 12B, 15B, 12B, '$’ % CR-LF, CR-LF, $

ND-60.113.02

2.5.2.3

2.5.2.4

2-26

DESC

The format of the DESC directive, which is used to allocate a two word array
descriptor, is:

[label] DESC [expression "',” expression]
The first and second expression corresponds to the first and second word of the
NORD-500 hardware array descriptor. If the expressions are omitted, two words,

which are initialized to zero at load time, are allocated in the data memory.

If this directive is used in a stack or record definition without the FIXED attribute,
the two expressions must not be specified.

When used without arguments, the DESC directive is equivalent to W BLOCK 2 or

W DATA 0, 0 but may be preferred if the allocated space is to be used for
descriptor storage.

ARRAY and STRING

These directives, which have the format:

flabel} data-type ARRAY expression
flabel] STRING expression

allocate a block of data memory immediately preceded by a descriptor. The

ARRAY directive can be described in terms of the DATA and BLOCK directives as
follows:

label] w DATA expression, #DCLC +4
data-type BLOCK expression

All data types are valid. The block is initialized to zero at load time.

The directive STRING is equivalent to BY ARRAY. This form may, however, be
preferred when used with the NORD-500 string instructions.

The expression in the argument field must evaluate to an absolute value and be
evaluatable in pass one.

ND-60.113.02

2.5.2.5

253

2.53.1

2-27

ARRAYDATA and STRINGDATA

These directives, which have the format:

[label] data-type ARRAYDATA expression $ ("",” expression)
label] STRINGDATA expression $ (", expression)

are used to assemble constants in the form of arrays into the data memory. The
data constants are assembled in the same way as for DATA. The block of
constants is, however, preceded by a descriptor with the correct length infor-
mation filled in. All data types are valid.
The directive STRINGDATA is equivalentto BY ARRAYDATA.
Example:

W ARRAYDATA 1,2,3,4,5,6

is equivalent to:

DESC 6, #DCLC +4
W DATA 1,2,3,4,5,6

Location Counter Control Directives

ORG-P and ORG-D

These directives set absolute origin in the program memory (ORG-P) or the data
memory {ORG-D). They have the form:

[label] ORG-P [expression |
[label] ORG-D [expression |

The expression in the argument field must evaluate to an absolute value. It must
be evaluatable in pass one. |f present, the label in the label field is assigned the

same value as the expression in the argument field.

If no argument is given, then relative assembly is resumed at the last relative
address before absolute mode was entered.

ND-60.113.02

2.5.3.2

2.5.4

2-28

BOUND-P and BOUND-D

The format of these directives is:

label] BOUND-P expression
llabel] BOUND-D expression

The expression in the argument field must result in an absolute value which is a
power of two. The program location counter (#PCLC) for BOUND-P, or the data
location counter { #DCLC) for BOUND-D is set to the next multiple of the value in
the argument fieid. If the location counter already has a value which is a multiple
of the value in the argument field, no action is taken.

These directives operate only on the assembly location counters. Therefore, if they
are not used together with the ORG directive, the module must be loaded starting

at a multiple of the maximum boundary size used in the module in order to ensure
correct operation.

Miscellaneous Directive

MESSAGE

The specified message will be output by the loader when the object file is loaded.
Message has the form:

MESSAGE expression

The expression in the argument field must evaluate to an absolute value and be
evaluatable in pass one.

ND-60.113.02

2.6

2.6.1

2.6.1.1

2.6.1.2

COMMANDS

A command consists of a dollar sign ($) followed by a command name. Command
names are not reserved identifiers. Command parameters have different formats
and are described for each particular command. See Appendix B for a summary of
commands.

Listing Control Commands

$LIST and $NOLIST

The listing options which can be specified interactively with the LIST and NO-LIST
commands (refer to Section 3.5) can be specified in the text of an assembly
program through the $LIST and $NOLIST commands. Refer to Section 3.5 for a
description of the argument format and each individual listing option.

$TITLE

The title command is used to define a title string which will be included in the page
headings of the assembly listing. The title is specified as a string constant
following the $ TITLE command.

For Example:

$TITLE ‘BASIC 1/0 ROUTINES’

causes the specified string to be included in the second line of the page heading,
after the module name (if any).

ND-60.113.02

2-30

2.6.1.3 $EJECT and Form Feed

A page eject in the assembly listing can be obtained in several ways:

— After a specified number of lines have been printed on the same page, the
assembler automatically performs a page eject. The page size can be speci-
fied with the LINES command (see Section 3.3).

— If a source line contains one or more form feeds (ASCIl 14B) a page eject is
issued before this line is listed. If used within a macro definition, a form feed
character causes a page eject. A page eject is not performed when the
macro is expanded.

— The command $EJECT, which has no arguments, causes a page eject to be

issued. Used within a macro definition the $EJECT command is ignored, but
the page eject is performed when the macro is expanded.

ND-60.113.02

2-31

2.6.2 Conditional Assembly Commands

2.6.2.1 $IF, $ELSIF, $ELSE and $ENDIF

Conditional assembly commands give you the possibility to conditionally include or
ignore blocks of source code in the assembly process.

The general form of a conditional block is:

$IF EXPRESSION % START OF CONDITIONAL BLOCK
$éLS|F EXPRESSION % ZERO OR MORE $ELSIF COMMANDS
$ELSE % OPTIONAL $ELSE COMMAND
$ENDIF % END OF CONDITIONAL BLOCK

The expression which is the argument of the $iF and $ELSIF command is
evaluated. If the resulting value is nonzero (TRUE), the source code between the
command and the next $ELSIF, $ELSE or $ENDIF command is assembled. If the
resulting value is zero (FALSE) the source code is ignored.

The source code included between a $|F command and its required associated
$ENDIF command is defined as a conditional block. A conditional block may
contain any number {including zero) of $ELSIF commands, but only one $ELSE
command. No $ELSIF command may appear between a $ELSE command and its
matching $ENDIF command. Only the source code following the first satisfied
condition in a conditional block is assembled.

Conditional blocks may be nested to any desired level.

ND-60.113.02

2.6.3

2.6.3.1

2-32

Source File Library Commands

$INCLUDE and $SECTION

The format of the $INCLUDE command is:
$INCLUDE file-name ["",” section-name]

where section-name is syntactically equivalent to file-name. If only the file-name is
present, the text of the specified file is included in the source text.

If the section-name is present, only the named section, located on the specified
file, is included. Sections are defined by means of the $SECTION command which
has the format:

$SECTION section-name
The text which comprises the section starts with the statement following the
$SECTION and ends with the next $SECTION or $EOF command (or at

end-of-file}). If the specified section-name does not exist on the specified file, no
text is included.

If a file containing section definitions is included as a whole (no section-name
specifiedin the $INC LUDE command), the section definitions are ignored.

ND-60.113.02

2.6.4

2.6.4.1

2.6.4.2

2-33

Macro Definitions and Macro Calls

$MACRO

The first statement of a macro definition must be a $MACRO command. The
$ MACRO command is of the form:

$MACRO macro-name ["("" [formal-parameters])"’}

where macro-name is the name of the macro. The macro-name is any legal
identifier. The name cannot be used as a label anywhere else in the program.
Macros are not local to modules but exist throughout the entire file on which they
are defined. Formal-parameters are a list of identifiers separated by commas.
These identifiers can be used elsewhere in the program without conflicts of
definition. When a formal-parameter is referenced in the macro body it must be
enclosed within double quotes (e.g., "PAR1").

$ENDMACRO

The final statement of every macro definition must be a $ENDMACRO command
of the form:

$ENDMACRO [macro-name)

where macro-name is an optional argument and is the name of the macro. being
terminated by the statement. If specified, the name in the $ENDMACRO
command must correspond to that in the matching $MACRO command. Specifi-
cation of the macro-name in the $ENDMACRO command permits the assembler
to detect missing $ENDMACRO commands or improperly nested macro
definitions.

An example of a macro definition is shown below:

$MACRO CHECK (GVX, LABX)
W1: = IND (B.GVARIDX)
W COMP2 IND (B.GVAR) (R1), "GVX"
IF>< GO "LABX"

$ENDMACRO CHECK

ND-60.113.02

2-34

2.6.4.3 $EXITMACRO

In order to implement alternate exit points from a macro (particularly nested
macros), the $EXITMACRO command is provided. $EXITMACRO terminates the
current macro as though a $ENDMACRO command was encountered.
SEXITMACRO bypasses the complication of conditional nesting and alternate
paths. For example:

$MACRO XMK (NN, AA, BB)

$IF “NN" =0 % START OF CONDITIONAL BLOCK
$EXITMACRO % EXIT DURING CONDITIONAL BLOCK
$ENDIF % END OF CONDITIONAL BLOCK
$ENDMACRO % NORMAL MACRO EXIT

In an assembly where NN = 0, the $EXITMACRO command terminates the macro
expansion.

When macros are nested, $EXITMACRO causes an exit to the next higher level.

ND-60.113.02

2644

2-35

Macro Calls

A macro must be defined prior to its first reference. A macro call may occur
anywhere an instruction, directive, or command is legal. Macro calls are of the
form:

macro-name ["'(" [actual-parameters] "')"’]
where macro-name is the name of a macro defined in a preceding $MACRO
command. The actual-parameters are a list of values, separated by commas,

which replace the formal-parameters in the macro definition.

If an actual parameter contains a separating character (e.g., comma or right
parenthesis) it can be enclosed within angle brackets (< >).

For Example:
CHECK (<IND (B.XDJ}>, XLABEL)

This call causes the general operand IND (B.XDJ) to replace all occurrences of
"GVX'" in the macro CHECK (defined above).

An exclamation mark (1} can be used as an escape character. It is used primarily to

pass an angle bracket as part of an actual parameter. To pass an exclamation mark
write !1.

ND-60.113.02

2.6.4.5

2-36

Macro Nesting

Nested macro calls, where the expansion of one macro contains one or more
macro calls, causes one set of angle brackets to be removed from an argument
with each level of nesting.

Recursive macro calls are permitted. As an example, consider the following pair of
macros which evaluate the factorial function {(as a constant value):

$MACRO FACTI(N)
XFACT("”"N",1)
$ENDMACRO FACT

$MACRO XFACT(N,HOLD)
$IF"N" =0
W DATA ""HOLD"
$ELSE
XFACT("N" — 1, <{("N"")*("HOLD")>)
$ENDIF
$ENDMACRO XFACT

Note the use of parentheses and angle brackets in the recursive call on XFACT.,
The parentheses are necessary in order to obtain the correct value because the
argument is passed as an expression, not as an evaluated value. The angle
brackets must be used because the expression contains right parenthesis. An
exclamation mark in front of each right parentheses is not sufficient because the
argument "HOLD"' contains right parentheses.

If macro definitions are nested (that is, a macro definition is entirely contained

within the definition of another macro) the inner macro is not defined as a callable
macro until the outer macro has been called and expanded.

ND-60.113.02

2.6.4.6

2-37

Special Forms: #NARG, “LABEL" and "MNO”

If more arguments appear in the macro call than in the macro definition, the
excess arguments are ignored. If fewer arguments appear in the macro call than in
the macro definition, missing arguments are assumed to be null {consist of no
characters).

The intrinsic function #NARG (see Section 2.4.3) can be used to test for the
presence or absence of an argument

If a label is placed in the label field of a macro call, this label is not defined before
the call, but is passed as a special kind of argument. The label can be referenced
by the special formal parameter name "LABEL" which expands to the label name
followed by a colon (:). This enables the user to determine exactly where in the
macro body the label definition is to take place.

For Example:

$MACRO BES (TYPE, SIZE)
“TYPE" BLOCK "SIZE"”

“LABEL” BY BLOCK 0

$ENDMACRO BES

is one possible definition of the common macro BES (Block Ending Symbol}. A
typical call might be:

BLK1: BES (BY, 103)

To create unique symbols in @ macro expansion the special form "MNO" {macro
number) can be used. "MNO’’ expands to a five digit decimal number which is the
serial number of the current macro call. To provide several unique symbols within
the same macro "MNO’ is concatenated with different strings. If the first
character of the generated symbol is a question mark, the symbol will be invisible,
i.e., not listed in the symbol table dump. Symbols generated in this way are not
different from other symbols used in the assembler. They may be referenced
outside the macro if desired. As an example of generated symbols consider:

$MACRO GOIFWRONG
W COMP2 B.EXPECTED, B.ACTUAL
IF = GO ?A"MNO”
W MOVE B.EXPECTED, FPAR1
W MOVE B.ACTUAL, FPAR2
GO ERRFATAL:H
2A”MNO”
$ENDMACRO

The second time this macro is called the label ?A00002 is generated.

ND-60.113.02

2-38

2.6.5 Miscellaneous Commands

2.6.5.1 $PACKand $ALIGN

These commands control the packing of data allocated in the data memory.

If $ALIGN is specified, half-word data is aligned on half word boundaries (0, 2,
4, ...) and word data is aligned on word boundaries (0, 4, 8, ...). Descriptors (e.g.,
in ARRAY and ARRAYDATA) are aiso aligned on word boundaries.

If $PACK is specified, no alignment is performed.

The defauit mode is $ALIGN.

2.6.5.2 $EOF

The $EOF command signals the end of the source file or end of included file (see
$INCLUDE). The effect of this command is simulated when an end of file
indication is received from the file system.

ND-60.113.02

ASSEMBLER OPERATING PROCEDURE

To start the assembler from SINTRAN il one types the following:
@N500-ASSEMBLER Ksource><list> ... etc.] cr

NORD-500 ASSEMBLER 2.5, 19 November 1979

$

The command processor is now ready to accept commands. Whenever the
command processor expects the operator to enter a command, it outputs a dollar
sign ($). A command consists of a command name followed by zero or more
parameters. Several commands, along with all required parameters, may be
written on the same line.

The command name consists of one or more parts separated by hyphens ("'-").
Each part of the command name may be abbreviated as long as the command can
be distinguished from all other command names.

The standard editing characters are available while typing commands.

The collection of parameters is done in a standarized way as follows:

— Parameters are separated by either a comma or any number of spaces or a
combination of comma and spaces.

— Parameters may be null in which case a default value is assigned.
— When a parameter is missing (as opposed to null) it is asked for, and the
command processor expects you to supply the required parameter plus more

parameters if you wish.

— When a parameter syntax error is detected, an error message is printed and
the parameter is asked for.

— Excess parameters are ignored.

Commands can be given directly to the SINTRAN il command processor by
preceding them with an @ sign. In this case commands to the local command
processor following the SINTRAN il command are ignored.

ND-80.113.02

3.1

3.2

3.3

3.4

3.5

HEL P <command name>

The HELP command lists available commands on the terminal. Only those
commands that have <command name> as a subset are listed. 1f <command
name> is null then all available commands are listed.

EXIT

The EXIT command returns control to the SINTRAN 1Il command processor.

LINES <lines per page>

This command enables the user to specify the number of lines per page on the
assembly listing.

ASSEMBLE <source file> <list file> <object file>

This command assembles the specified <source file> with listing on <list
file> and object output to <object file>. f no list file is specified, no listing is
produced, but error messages are printed on the terminal. If no object file is
specified, no object output is produced. The default file types are: :SYMB, :LIST,
and :NRF.

LIST <list directives> ...
NO-LIST <list directives> ...

These commands are used to set/reset various internal flags which control the
format and extent of the assembly listing. A LIST command with an empty
parameter will cause the listing mode to be set to its default (initial) value. A
NO-LIST command with an empty parameter will cause all output, except error
messages, to be suppressed.

ND-60.113.02

The following are legal list directives:
HELP <command name>

Lists available list directives on the terminal. Only those list directives that
have <command name> as a subset are listed. If <command name> is nuil
then all available list directives are listed.

GLOBAL-SYMBOLS

Controals the listing of the ""giobal symbols’ part of the symbol table. Global
symbols are those symbols not defined within any ROUTINE —
ENDROUTINE pair. Defaultis LIST.

LOCAL-SYMBOLS
Controls the listing of the “local symbols” part of the symbol table. A
symbol is called local if it is defined within a ROUTINE - ENDROUTINE pair

and is not mentioned as an entry point in a ROUTINE statement. Default is
NO-LIST.

LOCATION-COUNTER

Controls the listing of the assembly location counter field. The location
counter is listed as an eleven digit octal number. Default is LIST.

GENERATED-CODE

Controls the listing of the generated binary code. The generated code will be
listed as several fields containing octal numbers. Default is NO-LIST.

MACRO-EXPANSIONS

Controls the listing of macro expansions. With this directive the macro
expansions are listed out. Default is NO-LIST.

CROSS-REFERENCE-TABLE

Controls the generation of and printing of an alphabetically sorted
cross-reference table at the end of the assembly. The cross-reference table
consists of all the user defined symbols and for each of them a list of line
numbers. The number of a line where the symbol is defined is followed by an
asterisk (*). Defaultis NO-LIST.

ND-60.113.02

3.6

3.7

34

PRINT-MACRO <macro name> <output file>

This command prints the currently defined macros on the specified output file.
Parameters are named P1, P2, etc. The default output file is the terminal and the
default file type is :SYMB. if <macro name> is null, all macros are printed.
Otherwise only the specified macro is printed.

TABLE-SIZES <size parameter>

This command enables the user to change the size of any of the tables allocated in
the assembler’s dynamic work area. If the new table size is accepted, the old size is
printed on the terminal and the assembler is initialized.

The possible size parameters are listed below.

HELP < command name>
Lists available size parameters on the terminal. Only those size parameters
that have <command name> as a subset are listed. If <command name> is
null then all available size parameters are listed.

MACRO-TABLE <macro table size>

Specifies the size of the macro table. This area is used for storing macro
bodies and for the macro/include stack.

SOURCE-LINE-BUFFER< source line buffer size>

"This command can be used to avoid the SOURCE LINE BUFFER TOO
SMALL error message.

OBJECT-CODE-BUFFER<object code buffer size>

This command can be used to avoid the OBJECT CODE BUFFER TOO
SMALL error message.

ND-60.113.02

4.1

ASSEMBLY LISTING FORMAT

The assembly listing consists of three parts for every module: the assembled
program, the symbol table of the assembly and an alphabetically sorted
cross-reference table. Every page of the listing starts with a page heading. A
description of the format follows. Appendix E contains an example of the assembly
listing format.

PAGE HEADING

The first four lines of a page constitute the page heading. Before the heading lines
are printed, the listing device is advanced to a new page. If the listing device is the
terminal, a blank line is printed instead of advancing it to the next page. The
heading consists of the following fields:

— Assembler name and version number

— Current date and time

— Page number

— The name of the module currently being assembled followed by the title
string if a title has been specified

— Two blank lines

ND-60.113.02

4.2

PROGRAM LISTING

The program listing consists of several fields on each line. If an instruction has
more than one operand specifier or if several instructions are written on the same
source line, then the generated code may require several lines on the listing. The
following description assumes that all listing options are enabled. Refer to Section
3.5 7or an explanation of the listing options.

— Source line number
This field is blank if the line was not read from the source input file.
— Current location counter

This field is blank if the operation does not change the location counter or if
the line is a binary extension line, i.e., the location counter is only printed at
the start of each instruction. The location counter is printed as an eleven
digit octal number. It is preceded by a letter specifying which of the location
counters is printed: P (Program location counter): D {Data location counter);
S (Stack location counter); R {Record location counter).

— Generated code

This field is divided into several subfields: operation code (8 or 16 bits), prefix
operand code number 1 (if ALT, 8 bits), prefix operand code number 2 (if
DESC, 8 bits), operand code (if general operand, 8 bits) and address/
displacement (all types except S). If an imported quantity is referenced, it is
printed in symbolic form plus the displacement.

— Source code

- Error messages
if one or more errors are detected in a line, the error message(s) are output
following the line in error. The error message is preceded by four asterisks
(""****") the name of the current source file, the last label encountered and
the displacement (in lines) since the last label. At the end of the entire listing

the following twao lines are printed:

— Number of errors detected during the assembly
— CPU time used.

ND-80.113.02

4.3

4.4

SYMBOL TABLE

When listing the symbol table, the title is set to "SYMBOL TABLE”. The symbols
are listed in alphabetical order. The fields are as follows:

— Symbol name (maximum 16 characters)

— Symbol type. The types are:

1 U = Undefined

2 W = Integer (Word}, D = Double real, S = String
3 A = Absolute

4 P = Program address

5 = Data address

6 M = Main entry point

7 | = Imported

8 E = Exported

9 L = Library symbol

— Symbol value. The value is given in the following formats, depending upon
the data type:

Integer: Eleven digit octal number
Real: Two eleven digit octal numbers, separated by space
String: A character string

— If the symbol has an aiternative name (an ALIAS), this name is printed
following the value.

CROSS-REFERENCE TABLE

When listing the cross-reference table the title is set to "“CROSS-REFERENCE
TABLE"”. The cross-reference table is an alphabetically sorted list of all symbols
used in the program. Each symbol is followed by a list of line numbers. The line
numbers of the lines where the symbol is defined are followed by an asterisk (*). If
a symbol name is used more than once (as local symbol), a separate list of line
numbers is given for each version of the symbol.

ND-60.113.02

APPENDIX A

SUMMARY OF DIRECTIVES

MODULE [module-name [’,” priority
[”,” COde]]]

Define start of module. The default value
for priority and code is zero.

ENDMODULE jmodule-name]

Define end of module. The name must
be the same as in the matching
MODULE.

IMPORT-P identifier-list

Import external routines

IMPORT-D identifier-list

Import external data.

EXPORT identifier-list

Export internal routines or data.

MAIN identifier

Define main entry point.

LIB identifier-list

Define library symbols.

identifier ’:"" ALIAS string

Define alternative external
tion.

representa-

ROUTINE identifier-list

Start of subroutine with local symbols.

ENDROUTINE

End of subroutine.

STACK [FIXED]

Start of stack definition.

ENDSTACK

End of stack definition.

RECORD [FIXED]

Start of record definition.

ENDRECORD

End of record definition.

data-type BLOCK size

Allocate block in data memory.

data-type DATA data element list

Allocate constant data in data memory

data-type PROG data element list

Allocate data

memory.

constant in program

DESC |imit ”’,” address]

Allocate descriptor

data-type ARRAY size

Allocate storage preceded by array desc-
riptor.

ND-60.113.02

STRING size

Same as BY ARRAY.

data-type ARRAYDATA data-element-
list

Allocate constant data preceded by array
descriptor.

STRINGDATA data-element-list

Same as BY ARRAYDATA.

ORG-P origin

Set absolute program origin.

ORG-D origin

Set absolute data origin.

BOUND-P base

Advance program location counter to
next multiple of base.

BOUND-D base

Advance data location counter to next
multipie of base.

MESSAGE

Output message string to object code

ND-60.113.02

APPENDIX B

SUMMARY OF COMMANDS

$LIST listing-options

Enable listing options.

$NOLIST listing-options

Disable listing options.

listing-options:
GLOBAL-SYMBOLS
LOCAL-SYMBOLS
LOCATION-COUNTER
GENERATED-CODE
CROSS-REFERENCE-TABLE

Global symbols in symbol table.
Local symbols in symbol table.
Location counter field.

Code fields.

Cross-reference table.

$TITLE title-string

Define title string. Also performs
page eject.

$EJECT

Page eject.

$IF expression

Conditional assembly.

$ELSIF expression

0 = FALSE, ><0 = TRUE.

$ELSE

Optional $ELSE command.

$ENDIF

End of conditional block.

$INCLUDE file-name [,”” section-name)

Include source file.

$SECTION section-name

Defina section.

$MACRO macro-name ["'("" parameters’’)”’]

Start of macro definition.

$ENDMACRO [macro-name]

End of macro defintion.

$EXITMACRO Immediate macro exit.
$PACK Pack data elements.
$ALIGN Align data elements.
$EOF End-of-file.

ND-60.113.02

APPENDIX C

RESERVED SYMBOLS

The symbols listing in this appendix are reserved symbols and may not be
redefined by the user.

B D1 ALT ADDR #DATE #ZEROP
D D2 AND DESC #DCLC #ZEROD
F D3 AUX NARG #.0G2
H D4 Bi1 RETA #NARG
R F1 BI2 #NCHR
S F2 BI3 #PCLC
w F3 Bl4 #RCLC

F4 BY1 #SCLC

H1 BY2 PREVB

H2 BY3 SHIFT

H3 BY4

H4 IND

OR MOD

R1 NOT

R2 XOR

R3

R4

SP

Wi

w2

w3

w4

ND-60.113.02

APPENDIX D
INTRINSIC CONSTANTS AND FUNCTION SUMMARY

Constant Value Description
PREVB 0 Saved B-register
RETA 4 Saved return address
SP 8 Stack pointer
AUX 12 System cell
NARG 16 Number of arguments supplied in call
#ZEROP 0 Program address zero
#ZEROD 0 Data address zero
Function Description
#PCLC Program location counter
#DCLC Data location counter
#SCLC Stack location counter
#RCLC Record location counter
#NCHR (string) Number of characters in string
#NARG Number of arguments in current macro call
#DATE Current date and time (double word)
#LOG2 (integer) Logarithm to base 2

ND-60.113.02

APPENDIXE
MODULE EXAMPLE LISTING

This appendix shows the output listing from Example 1. The following options
were enabled during the assembly.

LOCATION-COUNTER
GENERATED-CODE
GLOBAL-SYMBOLS
LOCAL-SYMBOLS
CROSS-REFERENCE-TABLE

ND-60.113.02

JOVIS WVYDOUd NIVW HLIM VIYY JAOVIS HLVILINI

THTVIYVA TVHY dNO

404 dIVdS HYVTIOEd

0°h SY 99 ENIJHA

0°¢ SY ¥V INIJHQ
NOILINTJIQ MIVIS 40 IHVLS

NYNLIY
YALIWNYHYd € NI HYOLS
10OYI¥YNdS IAAVL

aav 4Ny Jyvnds
HALAWYHYYd “2 avoTl
JYVAOS

YALAWVHYd “1 QVO1
W ALSAs IV

DNINNIDHd VHYV VIVQd JIXId
HIIM IANILNOYENS YIINA

1)
YILIWVYVd "L 40 SSHHAQV
NOILINTHHQ JOVIS A0 IUVIS

(Zaw2¥Vd + Zaxl¥V¥d)I¥DS = EMVd

INIOd ZHINZ NIVW SHIATIOHUdIS
JTNAON 40 dWVN

bl WR ok BWR W

Bl B wR BR Bl Wl R B Bk Wl

W Bk WR wR

%
¥

ADVISANE

I 4007d 4
0'h ViVa 4
0°¢€ YlIva 4

qQIXId AIVLS

WYHDO0Hd NIVW

INTLNOYANE

13y
cd
cd

(EYVAV d)ANT :=
24 IMDS

Ld‘2d avInK 24
(24ydy"d)dNI =: 2d
ld » 14

(LY¥dV d)aNI =: 14

ALSA JINF
A0V LSaNd

L 30079 M

L 30079 M

L 40079 M
aaxId JOVIS
+4L0dWOD
ONT UNILINOY

JYVIS NIVRW
JTdHYX S cislolele))

L 3DVd

vl B

e
gd 000000090014
*¥ 00000005001
AIS

]

]

)

teo

0€0

o

*ONT 00000000000
]

(E¥YdY
$2Hvdayv
Lidvay

22 ool

A1sda
%
1
¥

0861 HOYVW 92 XVASINQIM

Go¢
Let
02t
¥4
Go¢
1143
Go¢

00¢
G40
Gee9llL

L9E9LL
120

091
020

133

g e

9¢
13
e
£e
©£000000000 S 2¢€
0£000000000 S LE
t2000000000 S Of
0000000000 4 62
8¢
L2
9¢
6e
12000000000 d #2
t2000000000 d €2
12000000000 d 22
61000000000 d L2
21000000000 d Oc
01000000000 d 61
G0000000000 d R/l
Ll
91
<1
00000000000 4 #l
£t
cl
t£000000000 S L1
0£000000000 S Ol
t2000000000 S 6
00000000000 T 8
L
9
S
L
€
[
l

" 3TdRVXE FTNAOW
YITIWISSY 00G-QUON

ND-60.113.02

J1NAONANI
LHY

*dJOlS "d°I ‘WYYDHOHd NIVW WOHMJ uNHNLTYHu

D'd‘ad gy d‘€ ‘ONT TIVD

‘0 ANV
dd ‘V SYIALAWYHYd TY00T € HIIM ANIINOY TIVO

001 ‘07T0S#‘MIS IINI

*NOILINIJAQ
DNIQIIOFYd ISVT FAHL NI IWVHd JDOVIS HHL 40 IZIS

9HL ONIAID NOIIONNJ OISNIMINI NV SI J7T0S#
‘00l J0 ANVWHA JDOVIS TVIOL
aANY ‘D710S# HIONIT ‘.MIS: 1V HONINNIDIE AWVHA

B DR we

B BWR WR BR

:LUVIS

R PR BR BR BR W

Lot
901
<To]!
€00
00000000000

thl GLE
ono GLE
0000000000

00¢

£ot

Hee

£5000000000 d tS
€
25000000000 d 26
LS
0S
6t

11000000000 4 8h
Lt
9%
Gh
tth

0£000000000 d £t
ch
Lt
Ot
6¢
8¢
LE

ND60.113.02

E—4

t dADVd

£ Iovd

Z 3Dvd

IRAS (vl

92:0651L

92:4061

086L HOUYW 92 XVASINCEM

Eh
sth
gh shl
il
gk
8h
ge
0c
8l
gh
0861 HOMVHW 92 XVJSENCIM
00000000000 a
££000000000
0£000000000
%#2000000000
04000000000 a
0£000000000 Wd
00000000000 d
#£000000000
0£000000000
#2000000000

0861 HOUVW 92 XVAISINCIM

G2 YATAWASSY 00S-QHON

#62
4
f

*8

st

alE
sll

#0l

»6

#0¢E

QII0FLIAA SYOHYI ON

pARY
LHVLS
ON1
AlLsa
0

a4
guvay
cyvdav
LYvay
v

T19VL JONIHIIFY-SSOUD
G°2 YATIWASSY 00S-QUON

<
=EEE =

ALsd
E¥ydy
2uvdy
Lyvdy

DNT 0L V001 STIOHWXS

EETETE=EX

ALS
LYYLS
ON1
0

ad

v

S'I0GWXS TY401D

JTdVL TOdWXS

G°2 YITAWISSY 00G-TUON

ND-60.113.02

APPENDIX F
ADDRESS CODES
NAME SIZE OPERATION OCTAL LAYOUT
LOCAL) ea=(B)+d% 1dd
LOCAL :B ea=(B)+d 301 ddd
LOCAL :H ea=(B)+d 302 ddd ddd
LOCAL H') eaz(B)+d 303 ddd ddd ddd
LOCAL P.I. :B ea=(B)+d+p*(Rn) 324+y dad
LOCAL P.I. :H ea=(B)+d+p*(Rn) 330+y ddd ddd
LOCAL P.I. W ea=(B)+d+p*(Rn) 334+y ddd ddd ddd
LOCAL INDIRECT :B eaz((B)+d) 305 ddd
LOCAL INDIRECT :H ea=((B)+d) 306 ddd ddd
LOCAL INDIRECT H') ea=((B)+d) 307 ddd ddd ddd
LOCAL INDIRECT P.I :B eaz((B)+d)+p*(Rn) 344+y ddd
LOCAL INDIRECT P.I H ea=((B)+d)+p*(Rn) 350+y ddd ddd
LOCAL INDIRECT P.I. W ea=((B)+d)+p*(Rn) 354+y ddd ddd ddd
RECORD H eaz(R)+d®4 2dd
RECORD :B ea=(R)+d 311 ddd
RECORD H ea=(R)+d 312 ddd ddd
RECORD W ea=(R)+d 313 ddd ddd ddd
PRE INDEXED :B eaz(Rn)+d 364+y ddd
PRE INDEXED :H ea=(Rn)+d 370+y ddd ddd
PRE INDEXED W ea=(Rn)+d 3T4+y ddd ddd ddd
ABSOLUTE ea=a 304 aaa aaa aaa
ABSOLUTE P.I. eaza+(Rn)%p 340+y aaa aaa aaa
CONSTANT H) op=c Oce
CONSTANT :B op=¢ 315 cee
CONSTANT :H op=¢c 316 cee cece
CONSTANT W op=¢ 317 cece cee cee
CONSTANT :F op=c 317 cce cce cee
CONSTANT :D op=¢c 314 cce cce cee
cece ecee cec

REGISTER op=(Rn) 320+y
DESCRIPTOR eazA+p*(Rn) 360+y <operand>
ALTERNATIVE 310 <operand>
NOT USED 300
QO - Contents of
ea - Effective address
op - Value of operand , op=(ea)
A - Descriptor.address
a - Absolute address
e - Constant
d - Displacement
X - 0,1,2,3,‘4,5,6,7
y - 0,1,2 or 3 specifies the registers R1 to RH.
P - p= 1/8 (bit), 1 (byte), 2 (half word), 4 (word), U (float),

8 (double float) operations. Post index scaling factor.
Rh © = Used to refemence a register, n=1,2,3,4
B - Base register
R - Record register

ND-60.113.02

ddd

ddd

ddd

ddd

ddd

ddd
aaa
aaa

cee
cee
cee
cee

APPENDIX G
ADDRESS CODE TABLE

S B
LOCAL 1dd 301
LOCAL P.I. 32U+
LOCAL INDIRECT 305
LOCAL INDIRECT P.I. U444+
RECORD 2dd 311
PRE INDEXED 364+
ABSOLUTE
ABSOLUTE P.I.
CONSTANT Oce 315
REGISTER 320+

ADDRESS CODE PREFIXES:

DESCRIPTOR

ALTERNATIVE

ND-60.113.02

302
330+
306
350+
312

370+

316

303
334+
307
354+
313
374+
304
340+

317

:F :D PREFIX
317 314
360+
310

APPENDIXH

INSTRUCTION LIST

ARITHMETICAL, LOGICAL, and DATA TRANSFER INSTRUCTIONS

Instruction Code

octal assembly

value notation name

176004+ (n-1) BIn := load bit

00U+(n-1) BYIn := load byte

010+(n-1) Hn := load halfword

014+ (n=-1) Wn 1= load word

020+(n-1) . Fn := load float

024+ (n-1) Dn := load double float
176010 1z load local base

030 R:= load record base
176014+ (n=-1) BIn =: store bit

034+(n-1) BIn =: store byte

176020+ (n=-1) Hn =: store halfword

040+ (n-1) Wn =: store word

Olli+ (n-1) Fn =: store float

050+(n~-1) Dn s=: store double float
176012 B=: local base store
176011 R=: record base store
176013 BI MOVE move bit

031 BY MOVE move byte

176024 H MOVE move halfword

032 W MOVE move word

033 F MOVE move float

o054 D MOVE move double float
176030+ (n-1) BIn COMP register bit compare
060+ (n=1) " BIn COMP register byte compare
176034+ (n-1) Hn COMP register halfword compare
064+ (n=-1) Wn COMP register word compare
070+ (n=-1) Fn COMP register float compare
o744+ (n-1) Dn COMP register float compare
176025 BI COMP2 bit compare

055 BY COMP2 byte compare

176026 H COMP2 halfword compare

056 W CoMP2 word compare

057 F COMP2 float compare

100 D COoMP2 double float compare
101 BI TEST bit test against zero
102 BY TEST byte test against zero
103 H TEST halfword test against zero
104 W TEST word test against zero
105 F TEST float test against zero
106 D TEST double float test against zero

ND-60.113.02

177010+(n-1)
1770144 (n=-1)
220+(n-1)
224+ (n-1)
224+ (n-1)

177020+ (n-1)
177024+ (n=-1)
177030+ (n=-1)

230+(n=-1)
177420+ (n=-1)

177400+ (n-1)
177404+ (n=-1)
177410+ (n-1)
177414+ (n-1)
1774144+ (n=1)

176064+ (n=-1)
176070+ (n=1)
124+(n-1)
130+(n-1)
134+ (n=-1)

176074+ (n~1)
176100+(n=1)
140+(n=-1)
144+ (n=-1)
150+(n=-1)

176104+ (n-1)
176110+ (=1)
154+(n=1)
160+(n-1)
16U+ (n-1)

176114+ (n=1)
176120+ (n-1)
170+(n-1)
174+ (n=-1)
350+(n-1)

176027
176124
123

176126
176127

176130
176131
340

176133
176134

176135
176136
176137
176140

BYn
Wn
Fn
Dn
Bln
BYn
Wn
Wn
BYn
Wn
Fn
Dn
BYn
Hn
Wn
Fn
BYn
Wn
Fn
BYn
Wn
Fn
BIn

Wn
Fn

U"!tma Un:s::na

nna::na

NEG
NEG
NEG
NEG
NEG

INV
INV
INV

INV
INVC

NN NN N

H-2

byte register negate

hal fword register negate
word register negate

float register negate

double float register negate

bit invert register
byte invert register
halfword invert register

word invert register
word invert register with carry

byte absolute value
halfword absolute value
word absolute value

float absolute value

double float absolute value

byte add
halfword add
word add
floating add
double float add

byte subtract
halfword subtract
word subtract

float subtract

double float subtract

byte multiply
halfword multiply
word multiply
floating multiply
double float multiply

byte divide
halfword divide
word divide

float divide

double float divide

byte add two arguments
halfword add two arguments
word add two arguments

float add two arguments

double float add two arguments

byte subtract two arguments
halfword subtract two arguments
word subtract two arguments

float subtract two arguments

double float subtract two arguments

byte multiply two operands
hal fword multiply two operands
word multiply two operands
float multiply two operands

ND-60.113.02

176141

176142
176143
176144
176145
176146

176147
176150
176151
176152
176153

176154
176155
176156
176157
176160

176161
176162
176163
176164
176185

176166
176167
176170
176171
176172

176040+(n-1)
176044+ (n-1)
176050+ (n-1)

176054+ (n=-1)
176060+ (n-1)
176174+ (n=1)

176200+ (n-1)
177110+ (n=1)

177100+ (n-1)
177104+ (n=1)

204+ (n-1)
204+ (n=1)
204+ (n-1)
204+ (n-1)
210+(n-1)
214+ (n-1)

176205
110
11
112
113
114

o

cmsmg U"JI:EE U"li::l’-‘z

U'ﬂtﬂ:g

U":ll::ﬂa

BIn
Wn

Wn
Wn

Wn
Wn

BIn
BYn

Wn
Fn
Dn

BI

]
(<] I:-'-EE

MUL2

DIV2
DIV2
DIV2
DIV2
DIV2

ADD3
ADD3
ADD3
ADD3
ADD3

SUB3
SUB3
SUB3
SUB3
SUB3

MUL3
MUL3
MUL3
MUL3
MUL3

DIV3
DIV3
DIV3
DIV3
DIV3

MULY
MUL 4

DIVH
DIVY
DIV4

UMUL
UDIvV

ADDC
SUBC

CLR
CLR

CLR
CLR

STZ
ST2
STZ
STZ
STZ
STZ

double float multiply two operands

byte divide two arguments
halfword divide two arguments
word divide two arguments

float divide two arguments

double float divide two arguments

byte add three arguments
halfword add three arguments
word add three arguments

float add three arguments

double float add three arguments

byte sutract three operands

halfword subtract three operands
word subtract three operands

float subtract three operands

double float subtract three operands

byte multiply three arguments
halfword multiply three arguments
word multiply three arguments

float multiply three arguments

double float multiply three arguments

byte divide three arguments
halfword divide three arguments
word divide three arguments

float divide three arguments

double float divide three arguments

byte multiply with overflow
halfword multiply with overflow
word multiply with overflow

byte divide with remainder
halfword divide with remainder
word divide with remainder

word unsigned multiplication
word unsigned divide

word add with carry
word subtract with carry

bit register clear

byte register clear
halfword register clear
word register clear

float register clear

double float register clear

bit store zero

byte store zero
halfword store zero
word store zero

float store zero

double float store zero

ND-60.113.02

H-4

176206 BI SET bit set to one

176207 BY SET1 byte set to one

176210 H SET1 halfword set to one
115 W SET1 word set to one

107 F SET1 float set to one
176211 D SETt double float set to one
176212 BY INCR byte increment

116 H INCR halfword increment

117 W INCR word increment

120 F INCR float increment

176213 D INCR double float increment
176214 BY DECR byte decrement

176215 H DECR halfword decrement

121 w DECR word decrement

176216 F DECR float decrement

176217 D DECR double float decrement
176714+ (n~-1) BIn AND bit and register
176220+(n=-1) BYn AND byte and register
176224+ (n=-1) Hn AND halfword and register
344+ (n-1) Wn AND word and register

176770+ (n=-1) BIn OR
176230+ (n-1) Bfn OR
176234+ (n-1) Hn OR
240+ (n-=1) Wn OR

bit or register
byte or register
halfword or register
word or register

176774+ (n=-1) BIn - XOR
176240+ (n-1) BYn XOR
176244+ (n-1) -Hn XOR

bit exclusive or register
byte exclusive or register
halfword exclusive or register

2U44(n-1) Wn XOR word exclusive or register
176250 BY SHL byte shift logical

176251 H SHL halfword shift logical
176252 W SHL word shift logical

176253 BY SHA byte shift arithmetical
176254 H SHA halfword shift arithmetical
176255 W SHA word shift arithmetical
176256 BY SHR byte shift rotational
176257 H SHR halfword shift rotational
176260 W SHR word shift rotational
176264+ (n=-1) BYn GETBI byte get bit

176270+ (n-1) Hn GETBI halfword get bit

176720+ (n=1) Wn GETBI word get bit

176724+ (n=1) BYn PUTBIL byte put bit

176730+ (n=-1) Hn PUTBI halfword put bit

176734+ (n=-1) Wn PUTBI word put bit

177175 BY CLEBI byte clear bit

177176 H CLEBI halfword clear bit

177177 W CLEBI word clear bit

177200 BY SETBI byte set bit

177201 H SETBI halfword set bit

ND-60.113.02

177202

176740+(n-1)
176744+ (n=-1)
176750+ (n-1)

176754+ (n=-1)
176760+ (n-1)
176764+ (n=-1)

176300+(n-1)
176304+(n-1)

176310+ (n-1)
176314+(n-1)
176320+ (n-1)

1763244+ (n-1)
176330+ (n-1)

176275
176276
176277
122

176334
176335

176340+ (n-1)
176344+ (n-1)

177130+ (n-1)
177134+ (n-1)

177140+ (n=-1)
177144+ (n-1)

177150+ (n-1)
177154+ (n-1)

176350+ (n=-1)
176354+ (n=1)
250+ (n-1)

176360+ (n=-1)
176364+ (n-1)

176370+(n-1)
176374+ (n-1)
176400+(n-1)
176404+ (n-1)
176410+ (n-1)

176414+ (n-1)
176420+ (n-1)
254+ (n-1)

176424+ (n=-1)
176430+ (n-1)

BIn
Hn
Wn
BYn

Wn

FR
=]

=
=]

cmEmgE g3

g3

Fn
Dn

Dn

Bin

Wn

Dn

BIn

Wn

BYn

Wn

BYn

SETBI

GETBF
GETBF
GETBF

PUTBF
PUTBF
PUTBF

AXI
AXI

IXI
IXI
IXI

SQRT
SQRT

SWAP
SWAP
SWAP
SWAP
SWAP
SWAP

POLY
POLY

REM

INT
INT

INTR

INTR

MULAD
MULAD
MULAD
MULAD
MULAD

,PSUM
PSUM
PSUM
PSUM
PSUM

LIND
LIND
LIND

CIND
CIND

word set bit

byte get bit field
halfword get bit field
word get bit field

byte put bit field
halfword put bit field
word put bit field

register float argument to the <I>'th power
register double float argument to the <I>'th
power

register byte I to the <J>'th power
register halfword I to the <J>'th power
register word I to the <J>'th power

register float square root
register double float square root

bit swap

byte swap
halfword swap
word swap

float swap

double float swap

floating polynomial
double float polynomial

float divide with remainder
double float divide with remainder

float integer part
double float integer part

float integer part

with rounding

double float integer part
with rounding

byte multiply and add
halfword multiply and add
word multiply and add

float multiply and add

double float multiply and add

byte add and multiply
halfword add and multiply
word add and multiply

float add and multiply

double float add and multiply

byte load index
hal fword load index
word load index

byte calculate index
halfword calculate index

ND-60.113.02

260+ (n-1) Wn CIND

CONTROL INSTRUCTIONS

Instruction Codes

octal assembly
value notation
300 GO:B
301 GO:H
302 GO:W
264 JUMPG

Instruction Codes

octal assembly
value notation
IF=GO
IF Z GO
304 IF=GO:B
305 IF=G0O:H
IF><GO
IF -2 GO
306 IF><GO:B
307 IF><GO:H
IF>GO
310 IF>GO:B
311 IF>GO:H
IF<GO
IF S GO
312 IF<GO:B
313 IF<GO:H
IF>=G0
IF =S GO
314 IF>=G0:B
315 IF>=GO:H
IF<=G0
316 IF<=GO:B
317 IF<=GO:H
IF K GO
320 IF K GO:B
321 IF K GO:H
IF -K GO
322 IF -K GO:B
323 IF -K GO:
IF>>GO
324 IF>>G0:B
325 IF>>GO:H
IF>>=G0

word calculate index

Jump byte
jump halfword
Jump word
Jump general

condition name

=1 equal
(alt. assembly notation)
byte displacement
hal fword displacement

Z

0 unequal
(alt. assembly notation)
byte displacement
halfword displacement

S=0 and Z=0 greater signed

S=1 less signed
(alt. assembly notation)

S=0 greater or equal signed
(alt. assembly notation)

S=1 or =1 less or equal signed

K=1 flag

K

0 not flag
C=1 and Z=0 greater magnitude

c

"
—

greater or equal magnitude

ND-60.113.02

326
327

330
3N

332
333

176173
176544

176545
176204

IF C GO (alt. assembly notation)

IF>>=G0:B

IF>>=GO:H

IF<LGO C=0 less magnitude

IF -C GO (alt. assembly notation)

IF<<GO:B

IF<<GO:H

IF<<=G0 C=0 or Z=1 less or equal magnitude

IF<<=G0:B

IF<<=GO:H

IF ST GO specified bit in status
register set

IF ST GO:B

IF ST GO:H

IF -ST GO specified bit in status
register not set

IF -ST GO:B

IF -ST GO:H

Instruction Codes

octal
value

176336
176436
176337
176437
277

341

176434
176441
176435
176442

176443
176450
176444
176451
176445
176452
176446
176453
176447
176454

176455
176462
176456
176463
176457
176464
17646C

assembly
notation

BY LOOPI:B
BY LOOPI:H
LOOPI:B
LOOPI:H
LOOPI:B
LOOPI:H
LOOPI:B
LOOPI:H
LOOPI:B
LOOPI:H

UOUmmE x

LOOPD:B
LOOPD :H
LOOPD:B
LOOPD :H
LOOPD:B
LOOPD:H
LOOPD ‘B
LOOPD :H
LOOPD :B
LOOPD :H

UUW"J‘:EEEQ

LOOP:B
LOOP:H
LOOP:

LOOP :

LOOP :B
LOOP :H
LOOP:B

"Jtﬁﬂ::ﬂga

name

byte loop increment

byte loop increment
halfword loop increment
halfword loop increment
word loop increment

word loop increment

float loop increment

float loop increment

double float loop increment
double float loop increment

byte loop decrement
byte loop decrement
halfword loop decrement
halfword loop decrement
word loop decrement
word loop decrement
float loop decrement
float loop decrement
double float decrement
double float decrement

byte loop general step
byte loop general step
hal fword loop general step
halfword loop general step
word loop general step
word loop general step
float loop general step

ND-60.113.02

176465 F LOOP:H
176461 D LOOP:B
176466 D LOOP:H
303 CALL

265 CALLG

334 INIT

337 ENTM

234 ENTD

270 ENTS

335 ENTF

272 ENTSN

336 ENTFN

274 ENTT

275 ENTB

200 RET

201 RETK

202 RETD

203 RETT

235 IF K RET
177034 RETB
177035 RETBK

SPECIAL INSTRUCTIONS

Instruction Codes

octal assembly
value notation
177000 SOLO
177001 TUTTI
176471 SETE
176472 CLTE
176500 Wn STIFZ
176504 BI BYCONV
176505 ’ BI HCONV
176506 BI WCONV
176507 BI FCONV
176510 BI DCONV
176511 BY BICONV
176512 BY HCONV
176513 BY WCONV
176514 BY FCONV
176515 BY DCONV
176516 H BICONV
176517 H BYCONV
176520 H WCONV
176521 H FCONV
176522 H DCONV

H-8

float loop general step
double float loop general step
double float loop general step

call subroutine absolute
call subroutine general

initialize stack

enter module

enter subroutine directly

enter stack subroutine

enter subroutine

enter max argument stack subroutine
enter max argument subroutine

enter trap handler

enter buddy subroutine

clear flag return from subroutine
set flag return from subroutine
return from direct subroutine
trap handler return

if flag set subroutine return
buddy subroutine return

set flag buddy subroutine return

name

disable process switch
enable process switch

set bit in local trap enable register
clear bit in local trap enable register
compare and store if zero

bit to byte convert

bit to halfword convert

bit to word convert

bit to float convert

bit to double float convert

byte to bit convert

byte to halfword convert
byte to word convert

byte to float convert

byte to double float convert

halfword to bit convert

halfword to byte convert
halfword to word convert
halfword to float convert
halfword to double float convert

ND-60.113.02

176523
176524
176525
176526
176527

176530
176531
176532
176533
176534

176535
176536
176537
176540
176541

177160
177161
177162
177163
177164
177165

177203
177204

177040+(n=-1)
177044+ (n=-1)
177050+ (n-1)
176474+ (n~1)
176474+ (n=-1)
177054+ (n=1)

176125
176132
176261
276
276
176262

176263
176274
176467
176543
176543
176470

002
003

Lo RGO B B EEXEX

= Dovooo

Bln
BYn

Wn
Fn

b"’)’:ﬂ:aa

U"II:EEE

BP

BICONV
BYCONV
HCONV
FCONV
DCONV

BICONV
BYCONV
HCONV
WCONV
DCONV

BICONV
BY CONV
HCONV
WCONV
FCONV

BY CONR
BYCONR
HCONR
HCONR
WCONR

WCONR

FCONR

FCONR

LADDR
LADDR
LADDR
LADDR
LADDR
LADDR

RLADDR
RLADDR
RLADDR
RLADDR
RLADDR
RLADDR

BLADDR
BLADDR
BLADDR
BLADDR
BLADDR
BLADDR

word to bit convert

word to byte convert

word to halfword convert
word to float convert

word to double float convert

float to bit convert

float to byte convert

float to halfword convert
float to word convert

float to double float convert

double float to bit convert
double float to byte convert
double float to halfword convert
double float to word convert
double float to float convert

float to byte convert

with rounding

double float to byte convert
with rounding

float to halfword convert
with rounding

double float to halfword convert
with rounding

float to word convert

with rounding

double float to word convert
with rounding

word to float convert

with rounding

double float to float convert
with rounding

bit load address

byte load address
halfword load address
word load address

float load address

double float load address

bit load address record

byte load address record
halfword load address record
word load address record

float load address record

double float load address record

bit load address local

byte load address local
halfword load address local
word load address local

float load address local

double float load address local

break point instruction
no operation

ND-60.113.02

177002
177003

177114+ (n-1)
176666

275

177034
177035

SETK
CLRK

Wn GETB
FREEB
ENTB
RETB
RETBK

H-10

set f
clear

get b
free

enter
buddy
buddy

REGISTER COMMUNICATION INSTRUCTIONS

Instruction Codes
assembly
notation

octal
value

176473
176667
176670
176671
176673
176674
176675
176712

176700
176701
176702
176703
176705
176706
176707
176710
176711
176713
176542

177060+(n-1)
17706H+(n-1;
177070+ (n-1)
177074+ (n=-1)

176440
177170
177171
177172
177173

SHAYERSY

BN = —a 00 oo I

[9
[1]

2

BBERAES
N =N - =

as e% es se o8 o

nam

load
load
load
load
load
load
load
- load

store
store
store
store
store
store
store
store
store
store
store

load

doubl
load

doubl
store
doubl
store
doubl

byte
halfw
word
float

lag
flag

uddy
buddy
buddy subroutine
subroutine return
subroutine error return

link register

upper limit register

lower limit register

first status register

first local trap enable register
second local trap enable register
top of stack register

trap handler register

link register

upper limit register

lower limit register

first status register

first local trap enable register
second local trap enable register
first system trap enable register
second system trap enable register
top of stack register

trap handler register

program counter

most significant part of
e float register

least significant part of
e float register

most significant part of
e float register

least significant part of
e float register

block move
ord block move
block move
block move

double float block move

ND-60.113.02

STRING INSTRUCTIONS

Instruction Codes

octal
value

176546
176547
176550
176551
176552
176553

176562
176563

176564
176565

176566
176567
176570
176571
176572
176573

176574+ (n-1)
176600+ (n-1)
176604+ (n-1)
176610+ (n~1)
176614+ (n-1)
176620+ (n-1)

176624+ (n-1)
176630+ (n-1)
176634+ (n-1)
176640+ (n-1)
1766444+ (n=-1)
176650+ (n-1)

176654
176655

176676
176677
176656

176657
176660

176661
176662
176663

176664
176665

ass
not

Bl

U'ﬂﬁﬂ:g

BE HA

cmtmaa

Bln
Bn
Hn
Wn

22 27

|

28 3ER u3

embly
ation

SMOVE
SMOVE
SMOVE
SMOVE
SMOVE
SMOVE

SMVWH
SMVUN

SMVTR
SMVTU

SMOVN
SMOVN
SMOVN
SMOVN
SMOVN
SMOVN

SFILL
SFILL
SFILL
SFILL
SFILL
SFILL

SFILLN
SFILLN
SFILLN
SFILLN
SFILLN
SFILLN

SCOMP
SCOTR

Scora
SCOPT
SSKIP

SLOCA
SLOCA

SSCAN
SSPAN
SMATCH

SSPAR
SCHPAR

name

bit string move

byte string move
halfword string move
word string move

float string move

double float string move

byte move string while
byte move string until

move translated string
move string translated until

string move n bits

string move n bytes

string move n halfwords
string move n words

string move n floats

string move n double floats

bit string fill

byte string fill
halfword string fill
word string fill

float string fill

double float string fill

fill n bits
fill n bytes
£111 n halfwords
n words
n floats
n

double floats

string
string
string
string
string
string

fill
i1l
f£ill

string
string

compare
compare translated

string compare with pad
string compare translated
with pad

skip elements

string locate bit
string locate byte

string scan
string span
string match

set parity in string
check parity in string

ND-60.113.02

APPENDIX |
INSTRUCTION CODE TABLE

ND-60.113.02

-2

BI BY H W F D

tn := 176004 004 010 014 020 024

R := 030

B := 176010

tn =: 176014 034 176020 040 ouy 050

R =: 176011

B =: 176012

t MOVE 176013 031 176024 032 033 054

tn COMP 176030 060 176034 064 070 074

t COMP2 176025 055 176026 056 057 100

t TEST 101 102 103 104 105 106

tn NEG 177010 177014 220 224 224

tn INV 177020 177024 177030 230

tn INVC 177420

tn ABS 17TH00 177404 1TTHI0 1TTHIE 1TTHIA
tn + 176064 176070 124 130 134

tn - 176074 176100 140 144 150

tn # 176104 176110 154 160 164

tn / 176114 176120 170 174 350

t ADD2 176027 176124 123 176126 176127
t SUB2 176130 176131 340 176133 176134
t MUL2 176135 176136 176137 176140 176141
t DIV2 176142 176143 176144 176145 176146
t ADD3 176147 176150 176151 176152 176153
t SUB3 176154 176155 176156 176157 176160
t MUL3 176161 176162 176163 176164 176165
t DIV3 176166 176167 176170 176171 176172
tn MULY4 176040 176044 176050

tn DIVY 176054 176060 176174

tn UMUL 176200

tn UDIV 177110

tn ADDC 177100

tn SUBC 177104

tn CLR- 204 204 204 204 210 214

t STZ -176205 110 11 112 113 114

t SET1 176206 176207 176210 115 101 176211
t INCR 176212 116 117 120 176213
t DECR 176214 176215 121 176216 176217
tn AND 176714 176220 176224 344

tn OR 176770 176230 176234 240

tn XOR 176774 176240 176244 244

t SHL 176250 176251 176252

t SHA 176253 176254 176255

t SHR 176256 176257 176260

tn GETBI 176264 176270 176720

tn PUTBI 176724 176730 176734

t CLEBI 177175 177176 177177

t SETBI 177200 177201 177202

tn GETBF 176740 1767HL 176750

tn PUTBF 176754 176760 176764 -

tn AXI 176300 176304
tn IXI 176310 176314 176320

tn SQRT 176324 176330
t SWAP 176275 176276 176277 122 176334 176335
tn POLY 176340 176344
tn REM 177130 177134
tn INT 177140 17718
tn INTR 177150 177154
tn MULAD 176350 176354 250 176360 176364
tn PSUM 176370 176374 176400 176404 176410
tn LIND 176414 176420 254

tn CIND 176424 176430 260

:B GO 300

:H GO 301

ND-60.113.02

BI BY H W F D
W G 302
JUMPG 264
:B IF = GO 304
:H IF =z GO 305
:B_IF >< GO 306
:H IF >< GO 307
:B IF > GO 310
:H IF > GO 311
:B IF < GO 312
:H IF < GO 313
:B IF >= GO 314
tH IF >= GO 315
:B IF <= GO 316
:H IF <= GO 317
:B IF K GO 320
:H IF K GO 321
:B IF -X GO 322
:H IF -K GO 323
:B IF > GO 324
:H IF >> GO 325
:B IF >>= G0 326
:H IF >»= GO 327
:B IF << GO 330
+H IF << GO 33
:B IF <<= GO 332
:H IF <<= GO 333
+B IF ST GO 176173
:H IF ST GO 176544
:B IF -ST GO 176545
:H IF -ST G0 176204
:B t LOOPI 176336 176337 277 176434 176435
:H t LOOPI 176436 176437 341 176441 176442
:B t LOOPD 176443 176444 176L445 176446 176447
:H t LOOPD 176450 176451 176452 176453 176454
:B _t LOOP 176455 176456 176457 176460 176461
:H t LOOP 176462 176463 176464 176465 176466
CALL 303
CALLG 265
INIT 334
ENTM 337
ENTD 234
ENTS 270
ENTF 335
ENTSN 272
ENTFN 336
ENTT 274
ENTB 275
RET 200
RETK 201
RETB 177034
RETBK 177035
RETD 202
RETT 203
IF K RET 235
SOLO 177000
TUTTI 177001
SETE 176471
CLTE 176472
tn STIFZ 176500
t _BICONV 176511 176516 176523 176530 176535
t BYCONV 176504 176517 176524 176531 176536
t ' HCONV 176505 176512 176525 176532 176537
£ WCONV 176506 176513 176520 176533 176540

ND-60.113.02

-4

BI BY H W F D
t FCONV 176507 176514 176521 176526 176541
t DCONV 176510 176515 176522 176527 176534
t BYCONR 177160 177161
t HCONR 177162 177163
t__ WCONR 177164 177165
t FCONR 177203 177204
tn LADDR 177040 177044 177050 176474 176474 177054
t RLADDR 176125 176132 176261 276 276 176262
t BLADDR 176263 176274 176467 176543 176543 176470
BP 002 -
NOOP 003
illeg.1 000
illeg.2 001
SETK 177002
CLRK 177003
Wn GETB 177114
FREEB 176666
L = 176473
HL := 176667
LL := 176670
ST1:= 176671
TE1:= 176673
TE2:= 176674
TOS: = 176675
THA: = 176712
L = 176700
HL = 176701
LL = 176702
ST1= 176703
TE 1= 176705
TE2= 176706
SE1= 176707
SE2= 176710
TOS= 176711
THA= 176713
P = 176542
An = 177060
En := 177064
An =: 177070
En =: 177074
t BMOVE 176440 177170 177171 177172 177173
t SMOVE 176546 176547 176550 176551 176552 176553
t SMVWH 176562
t SMVUN 176563
t SMVTR 176564
t SMVTU 176565
t SMOVN 176566 176567 176570 176571 176572 176573
tn SFILL 176574 176600 176604 176610 176614 176620
tn SFILLN 176624 176630 176634 176640 176644 176650
t __SCOMP 176654
t SCOTR 176655
t SCOPA 176676
t SCOPT 176677
t SSKIP 176656
t SLOCA 176657 176660
t SSCAN 176661
t SSPAN 176662
t SMATCH 176663
t SSPAR 176664
£ SCHPAR 176665
n exten 374

ND-60.113.02

INDEX

absolute
actual parameters
address arithmetic
address codes
addressing modes
absolute
absolute post-indexed
ADDR
alternative area
constant operand
descriptor
local
local indirect
local indirect p.i.
local post-indexed
pre-indexed
record
register
ALIAS
$ALIGN
alternatives
ampersand
angle brackets < >
ASCIH
ASSEMBLE
assembiler
assembler operating procedure
command name
command processor
parameters
start assembler
standard editing characters
assembly notation
assembly listing format
AUX
ARRAY
ARRAY DATA

basic elements
syntax of
blank lines
BLOCK
BOUND-D
BOUND-P

Page:

2—-12
2—-35
2—12
2-5
2—-5,2-8
2—-10
2—10
2—-10
2—-10
2—-10

N
ol
O —
o

f |
= © ©®©©
o

!
N
o
o

|
w

I

WW=WNDMNNMNMNNMNMNMNMNDNNNNMNNONDNONDN
| |
w N =
g =g
N
|
W
o]

2-5,F—1
3-3,3-4,4-1
2—13,2—16,2—21, D—1
226

2-27

ND-60.113.02

Page:
colon 2—-37
commands 2-2,2-29
conditional assembly 2-31
listing control 2—29,2-30
miscellaneous 2-38
summary of B—1
conditional block 2—-31
constant 2-8
CPU time 4-2
CROSS REFERENCE TABLE 3-3,4-3
current location counter 42
DATA 2—-25
data address 2-7,2-12,2—-18
#DATE 2—-15,2—-16,D—1
data packing 2-38
data part length specifier 2-8
data type specifier 2—-26,2—-17
#DCLC 2—14,0—-1,2-16,2—-28
DESC 226
direct absolute addressing 27
direct operand 2—7
direct name 2--17
directives 2—-2,2-17
data allocation 2—25
declaration and definition 2—18
location counter control 2-27
summary of A—1
disp 2—-8
displacement addressing 2-7
diabel 2-8
dollar sign 2—1,3-1
$EJECT 2-30
$ELSE 2—31
$ELSEIF 2-31
empty statements 2-2
$ENDIF 2-31
$ENDMACRO 2-33
$EOF 2-38
EQU 224
error messages 42
exclamation mark 2-35
EXIT 3-2
$EXITMACRO 2-34
EXPORT 2—19
expression syntax 2—16
expressions 2—11
external data access 2—18

ND-60.113.02

file name
form feed
formal parameters

general operands
generated code
generated symbols
global symbols

HELP

identifier

$iF

IMPORT-D
$INCLUDE
instructions
instruction code
integer constant
intrinsic constants
intrinsic functions

LABEL

labels

LIB

LINES

$LIST

LIST

<list file>

local symbols
location counter
location counter symbols
#LOG2

lower case letters
$MACRO

macro calls

macro definitions
macro expansions
macro nesting
MACRO-TABLE
MAIN

MESSAGE

meta language

meta variable

MNO

MODULE, ENDMODULE
MODULE EXAMPLE
MODULE HANOI
module name

|
- W W NN

a H

,2—16,D—1

SRR
2o8C8AEN

|
N
©

{
- Ol H = WD = -
o] [o <IN}

ND-60.113.02

NARG
#NARG
#NCHR
$NOLIST
NORD-500 CPU
:NRF

OBJECT-CODE-BUFFER
<objzct file>
operand data type
integer
real
string
operand specifier
operator
optional item
ORG-D
ORG-P

$PACK

page heading
parenthesis
#PCLC
percent sign
plabel

PREVB

PRINT MACRO
PROG

program address
program listing

#RCLC

real constant

RECORD, ENDRECORD
RECORD FIXED

register number

repeated construct

RETA

ROUTINE, ENDROUTINE

#SCLC
$SECTION
section-name
SEQU
SINTRAN I
source code
<source file>

Page:

2—13,2—-16,2—-21,D-1
2-15,2-16,2—-37, D1
2—15,2—-16,D-1
2—29,3-2

1—1

1-1,1-2,2-17

238

4—1

2—1
2-14,2—16,2—28,D—1
2-2

2-8
2—13,2--16,D-1
3-4

2-25
2—-7,2-12,2-18
4-2

2—14,2—-15,2—-16,2-21,
D—-1

2-3,2-4

2—-23

2-23

2-8

21
2—13,2—-16,2—-21,D-1
2-20

2—14,2—-15,2—16,2—22,D—1

2-32
2-32
2-24
1—1,3-1
42

3-2

ND-60.113.02

source program format

source-line-buffer
source line number
SP

stack block

stack demand

STACK, ENDSTACK

stack entry header
STACK FIXED
STRING
STRINGDATA
string constant
subroutine
:SYMB

symbol address
SYMBOL TABLE
symbols, reserved

TABLE SIZES
terminal symbol
$TITLE

#ZEROD
#ZEROP

Page:

N BN

2—
3—
4—
2

2—14

2—14
2—-14,2-21
2—-13
2-21,2-22
2—26

2-27
2-3,2—-4
2—-20
1—1,3-2,3—-4
2-5

4-3

Cc—1

3—4
21
2-29

2—-13,2-16,D—1
2—-13,2-16,D—-1

ND-60.113.02

13,2—16,2—-21,D-1

2800 o00

822889 298 NORSK DATA A.S
:::o::::: P.0O. Box 4, Lindeberg gard
000 0000 Oslo 10, Norway

' 111 000

COMMENT AND EVALUATION SHEET

NORD-500 ASSEMBLER Reference Manual ND-60.113.02
MAY 1980

In order for this manual to develop to the point where it best suits your
needs, we must have your comments, corrections, suggestions for
additions, etc. Please write down your comments on this preaddressed
form and mail it. Please be specific wherever possible.

— we make bits for the future

NORSK DATA A.S BOX 4 LINDEBERG GARD OSLO 10 NORWAY PHONE: 30 90 30 TELEX: 18661

