

ND TPS
User’'s Guide

ND-60.111.04

NOTICE

The information in this document is subje
A.S assumes no responsibility for any er
Norsk Data A.S assumes no responsibilit
on equipment that is not furnished or sup

The information described in this docum
be photocopied, reproduced or transiat

Data AS. :

Copyright @ 1983 by Norsk Data A.S

2ct to change without notice. Norsk Data

rors that may appear in this document.

y for the use or reliability of its software

ported by Norsk Data A.S.

ent is protected by copyright. It may not
ed without the prior consent of Norsk

iii

PRINTING RECORD

Printing Notes
05/79 VERSION 01
11/81 VERSIONO2
01/82 RevisionA

The following pages have been revised:

vi, vii, viii, ix, x,

1-11,1-12,3-7,3-8, 6-9, 7-5, 7—6, 7~7,7-9, 8—10, 8—11, 8—17

C-2,C-4,G-1,2,3,4,5,6,7,8,9 ‘

‘| "The following pages have been added: °

3—8a, 3-8b, 818 |
12/82 VERSION 03 i
01/84 VERSION 04 !

ND TPS User’s Guide
Publ. No. ND—60.111.04

Jan. 1984

0000000
33323333, NORSK DATA A
coscsosss P.O.Box4, Lindeberg

Oslo 10, Norway

.S
gard

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one or
more single pages to be merged into the manual by the user, each revised page
being listed on the new printing record sent out with the revision. The old
printing record should be replaced by the new one.

New versions and revisions are announced in the ND Bulletin and can be ordered
as described beiow.

o The reader’s cormments form. at the back of this manual can be used both to

report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welc ome. '

These forms, together with all types of inquiry and requests for documentatior
should be sent to the local ND office or (in Norway) to:

Documentation Department
Norsk Data A.S

P.O. Box 4, Lindeberg gard
Oslo 10

PREFACE

THE PRODUCT

This .manual describes the ND °
E and ND. TPS-1i, version A:

ND TPS
ND TPS-H

N
N

ND TPS is a general transactic
transactions between various
TPS provides facilities for hand
etc.

ND TPS systems are tailored f
ordering ND TPS. However, all ¢

Special systems may contain su
ND - 500 TPS System Mo
Input/Output Modules

Multi - CPU Systems
Non-Standard System Ge

THE READER

ND TPS User's Guide is written

Transaction Processing. Systems ND. TPS, version . T

D-10101E
D-10542A

on processing system that initiates and controls

input/output devices and application programs.
'Iing terminals, data communications, data bases,

or individual user configurations, specified when
systems contain the basic TPS modules:
ch additional features as:

ND - 10543
ND-10105 to ND-10108

dules

neration Parameters

for programmers who write application programs

to be run under ND TPS. These programs can be written in COBOL, FORTRAN,

PLANC, NPL and MAC.

System designers who design :
find the material in this manual

application systerns to be run under TPS will also
of interest.

ND-60.111.04

vi

PREREQUISITE KNOWLEDGE

Chapter -1 of this manual is an introduction to ND TPS and should give the
necessary background in TPS to go on to the following chapters. A more detailed
description may be found in

ND TPS General Description, ND-60.105

In addition, the reader.should also. be familiar with the SINTRAN. I} aperating .. .1 . +. . &

system, the SIBAS data base system and the screen handling systems. General -
descriptions of these systems are foupd in:

Introduction to SINTRAN 11, ND-60.125

SIBAS Il User’s Manual, Chapter 1, ND-60.127

The NORD Screen Handling System, chapter 1, ND-60.088
FOCUS Screen Handling System, chapter 1, ND-60.137

THE MANUAL

ND TPS User's Guide can be divided into three parts. Chapter 1 is an
introduction which should be read first if the reader is not already familiar with
ND TPS. The main body of the manual consists of chapters 2—8. These chapters
may be read independently of each other and in any order; each chapter treats
one topic in a tutorial manner and should be read sequentially. Finally, the
appendices, especially appendix H, TSR call formats, are reference material.

The manual covers all aspects of TPS of interest to the application programmer,
both special TPS features, such as session communication, and the interface to
other systems used by TPS application programs, such as SINTRAN, SIBAS,
FOCUS, NSHS, FORTRAN, COBOL, PLANC, NPL and MAC. The manual,
however, does not go into the details of these other systems and the reader is
referred to the manuals for the individual systems for these details.

ND TPS User's Guide is a complete user’'s guide for programming ND TPS,
version E. It also applies to ND TPS-II, but special features for this system are
described in the ND TPS Il User's Guide. ND TPS-Il programmers should read
this manual first,

ND-60.111.04

vii

RELATED MANUALS:

Other manuals describing ND TPS are:

ND TPS General Description, ND-60.105
ND TPS System Supervisor's Guide, ND-30.006

Manuals describing the special features of ND TPS-1i are:
ND TPS-Il User’s Guide, ND-60.195
ND TPS-ll Operator's. Guide, ND-30.030

The following manuals describe the systems of greatest interest to the TPS
application programmer:

SINTRAN Hll Timesharing Guide, ND-60.132
SINTRAN Ill Reference Manual, ND-60.128
SINTRAN IIl Real-Time Guide, ND-60.133
NORD Screen Handling System, ND-60.088
FOCUS Screen Handling System, ND-60.137
NORD FORTRAN Reference Manual, ND-60.145
NORD COBOL Reference Manual, ND-60.144
NORD-PL User's Guide, ND-60.047

MAC User's Guide, ND-60.096

SIBAS Il User's Manuali, ND-60.127

Symbolic Debugger - User's Guide, ND-60.158

For ND-500:

ND-500 LOADER/MONITOR, ND-60.136

CHANGES FROM THE PREVIOUS VERSION

The main changes are the use of a new version of SIBAS and a new version of
COBOL with additional [/O facilities (ACCEPT, DISPLAY and sequentiai 1/0).

ND-60.111.04

viii

NOTATION

TSR Calls

The detailed formats of these calls,
given in appendix H. Chapters 2—5
manner but do not contain detailed
examples of the use of these TSRs ¢
than-in appendix H. In both places th

first in COBOL and then in FORTRAN.

Examples

As for the TSR examples mentioned a
and then in FORTRAN. Comments a

with complete parameter descriptions are
discuss the calls and their use in a tutorial
barameter descriptions. On the other hand,
are given in greater detail in chapters 2—5

bove, all examples are given first in COBOL
re included in some of the examples and

these are written on the same line as program statements to save space,

although this may not be allowed b

y the compiler. FORTRAN parameters are

given sometimes as variables, sometimes as literals where this is allowed.

In the examples of conversational
program is underlined.

Symbols
ESC indicates the escape key on a te

indicates carriage return, line feed
indicates a parameter. Optional parameters or parameters with default

<>
values are indicated in the sam

nteraction with a program, input to the

rminal

e way, but the default value is given under

“rules”. If one of several alternative values is to be given, this is also

indicated under "rules”

ND-60.111.04

e.call.-formats and. the examples. are- given:

Section:

1.1
1.2

1.2.1

1.2.1.1
1.2.1.2
1.2.1.3
1.2.14
1.2.15

1.2.2

1.2.2.1
1.2.2.2
1223
1.2.2.4
1.225
1.2.2.6

1.2.3
1.24

1.3

1.3.1
1.3.2
1.3.3
134
1.3.5
14

1.41

1.4.2
1.4.3

2.1
2.2

2.2.1

2211

ix
TABLE OF CONTENTS
+ + +
Page
INTRODUCTION ...t 1—1
What is ND TPS? Lo 1—1
The Structure of TPS ..o 1—2
k - Transaction Control.c ... 1—4
Transaction Control Modulescoovovevevoooo 1—4
Transaction Processing Tasksoo.ooevoevoooooeo 1—4
Transaction Service ROUtineS.........c...ooveveevevoooooo 1—5
Application Programsccooveevovvooo 1—6
Special Applicationsoooveeeeeeoeeo 1—7
Handling Input/OUtpUL......oveeeeeieeeeeeeeo 1—9
Standard DeviCescocooveeeeeeeeeeoeeeeeoo 1—-9
Special TPS Devices - Input/Output Modules.................. 1—10
The NSHS Screen Handling System...........oooovoovioi 1—1
The FOCUS Screen Handling Systemcoooovovvo.. 1—11
The SIBAS Data Base Management System.................... 1—11
Checkpoint and Restart...........cocoooovooii 1—12
Operator COMMUNICAtIONo.oueeeeeeenoeeooooooo 1—13
Message Routing and QUeUINGc.oooeveeveeeeoeooo 1—13
Transaction TYPES ...c.ovueiueereeeeieeeeeeeeeeeee e 1—14
Type 1: Permanent Terminal Transactionso.ooovovenono.. 1—14
Type 2: Short Terminal TransactionS...........o..oooovooooooo 1—18
Type 3: Short Local Terminal Transactions...........ooooeoeoevononnn 118
Type 4: Concurrent TranSactionS...........veweveeooeoeooooeoo 1—13
Type 5: Future and Periodic Transactionsooewovoon.. 1—19
Controlling @ TranSactionoueuemeeeeoeeeemoeoooooooo 120
Starting the Transactiono.ooeoeeoeoooooeeoooo 1-20
Processing the Transactionc.ococooveevoieeooooeoo 1—22
Terminating the Transaction............ocooeevoveeoooooo 1-22
ADMINISTRATING TASKS ..ot 2—-1
Tasks, Transactions and AppliCations.............ooeoovvooeoooo 2—1
Starting Tasks and Switching Applications................ooooooooo . 2—4
Immediate Task ACtVAtIONcvoueeeeomeeeeeeooeoo 2—-4
TACTV - The Activate Concurrent Task TSR eo..oovoooo 2—-4
ND-60.111.04

Section:
222

2221
2222
2223

223
Prrey
224
23
2.3.1

23.11
2.3.1.2
2.3.1.3
2314
2315

232

2.3.21
23.2.2
2323
2.3.24

3.1

3.1.1
3.1.2
313
3.14
3.1.5
3.1.6

3.2

3.2.1
3.2.2
3.2.21
3.2.2.2

Future and Periodic Task A

TASET — The Set Execution Time TSR
TINTV — The Set interval TSR
TDCNT — The Disconnect Application TSR
Switching to Another Application

TSWAP—The Switch Application Program TSR ..

The SIGNON and SELECT'S

Terminating Transactions

Normal Termination

TSTOP - The STOP Transaction TSR
TTERM - The Terminata Task TSR
The SIGNOFF Special Application
TSTST - The Set Termination Strategy TSR

TSCST - The Set Close
Abnormal Termination

The ABEND Special Ap
TSAST - The Set Abend
IHegal Monitor Calls
Timeout........oceecuevennnnn,

INPUT/QUTPUT PROCESSING.......
SIBAS Under TPS

Data Definition and Manipul
The SIBAS Interface Routin

Opening and Closing the Data Base

Using More Than One Data
SIBAS in ND-500 Multi-CPU
Restricted SIBAS Cails

NSHS and FOCUS Under TPS..

Handling Display Terminais.
The NSHS System
Defining and Using Pictu
Q °Q°Q° and Restart......

ctivation

Strategy TSR...ccooveeeeeeeeereen,

ND-60.111.04

Section:

3.23

3.2.31
3.2.3.2
3.2.33
3.2.34

3.3

331
3.3.2
333
3.34
3.35
3.36
3.3.7
3.3.8
3.3.9
3.3.10

3.3.101
3.3.10.2
3.3.10.3
3.3.104

3.4

3.4.1
342
343
344

4.1.2
4.1.3
414
4.15

4.2
43
4.4

A

ND-60.111.04

xi
Page
FOCUS Level 1. e 3—10
Defining and Using FOrmMSccooooiviiiiieeeeeee e 3—10
Local or Remote Asynchronous Terminals 3—11
Synchronous/Buffered Terminals Using FOCUS................ 3—12
ND-100 — ND-500 incompatibilities in FOCUS ... 3—12
Special TPS D@VICES .ovoieieeeeeeeeee oo 3—13
" Session Request FrOM @ DEVICE oo 314
TSOPN — The Open - Session TSR .oeeeeeoeeeeeeeeee 3—16
Session Request from an Applicationc.oovveeveeeeeeveeeeo, 3—18
TSCLO- — The Close Session TSR ..o 320
TSEST — The Session Status TSR ...ooovviveeeoeeeeeeeeee 3—21
TSMSG — The Send-Message TSR .ooooeeveeeeovereieeeo 3-22
TRMSG — The Read Message TSR.....ccocoveveeiveeeeeeee, 3—23
TPASZ — The Set Packet Size TSRocoooveveeeeeeeeeee 324
RESTAT .o, 324
Available Input/Qutput Modulescccovevemmmvoeeeea, 3—25
X2BLAPB ..o 3—-25
IBM—3270--CU Lot 3—30
IBM—3270—HOST oo 3—32
ISO—1745—HOST oo, 3-33
Standard Devices and Filesc.ocoooovviveeoeoeoeeeeeeeeeee 3-34
Allocating Standard Devices and Filescccccvveeveneennn.., 3—-34
Unavailable Devices and Filesocooeveeeveeeeeeeeeeeron, 3—35
Accessing Standard Devices and Filescoocoeeoveeveereeve. 3—36
RESTArt ..o 3-38
OTHER TPS AND SINTRAN FACILITIESoootoeeeeeeoeeeeee e 4—1
Message Handlingcocoooeeoiiieoiiriiiiieeeeeeeeeeeeeeeeee e 42
TWMSG and CWMSG - The Write Message to
OPErator TSR oo ee e 4-—-3
TBRDC - The Broadcast Message TSRcocoeveveveevevenenn. 4—4
TTEXT - The Send Text Message TSRc.ocoeveueereeeeinnnn. 4-—5
TGBRD and CGBRD - The Get Broadcasted Message TSR ...4—8
Monitor Calls (ERMSG,QERMS,ERMON)ocooooveveeneenn. 4.7
Clock ROULINES ...oouiueniietiicteetceeee e e 4—-9
The HOLD Monitor Call.......c.oouiuieeeeeeeeeeeeeeeeeeeeeeee e 4-—39
Semaphores and Internal DeViCescoooeeeeeeveeeeeeeeeeeeeen 410

Section:

5.1
5.2

5.2.1

522

52.3
5.2.3.1
5232
5.2.3.3
5.2.4
5.2.4.1

5.3

5.3.1
5.3.2

5.3.2.1
5.3.2.2

6.1
6.1.1
6.1.2
6.1.3
6.2

6.2.1
6.2.2

6.2.2.1

6.2.3
6.2.4

6.3
6.4

Xii

CHECKPOINT—RESTART

Protecting the Database
Preventive Facilities

Backupcooiiviieieeeian,
Data Base Logging...........c...
Synchronised Checkpoints

TTSYN - The Altowaywchronised Checkpoint TSR 5;‘-5
"THSYN < The Hold Synchronised Checkpoint TSR 5—6
TCHCK - The Take Synchronised Checkpoint TSR 56
Transaction Checkpointsco.cocoooovemeviooeoooo 5--7
TTRAN - The Take Transaction Checkpoint TSR 5--8
Restart Facilitiesc.ooowiuiuiieeeeeeeeeeeoo 5--10
Rollback and RECOVEryc.coeevmemoeeemeeooooo 5--10
Restarting TPS ... 5-12
The RESTART Special Application ..o 5—-14
TSRST - The Set Restart Strategy TSR .o.oovovvoooooeoo, 5--16
SPECIAL APPLICATIONSooveiteeeeeeeeeeeeeeeeeeeeoeeeo 61
SIGNON and SELECT .oooouiiiieeceeee oo 6—3
SIGNON oo 6-~3
SELECT oot 6—4
The Access Control SyStemcocoovooveeoooooo 66
SIGNOFF, ABEND and RESTART o.eveeeeeeeeeeeeeeoeoeoeooeoooeo 6—7
SIGNOFF ...t 6—7
ABEND ..ottt 6—8
The Abend Error Message eereerteree i ar e —————————— 69
RESTART ...t 6—10
Summary of Termination, Abend and Restart Strategies 613
TPOPEN and TPCLOSEocouiuimiriceceeeeeeeeeeeeeeeeeeeeooeeeeoeooeeen 6—14
CHECKPOINT, ROLLBACK and RECOVER ..o 6—14

ND-60.111.04

Section:

7.1
7.1.1
7.1.2
7.1.3
714
7.2
7.3
7.3.1
7.3.2
7.3.3
7.4

7.41
7.4.2

75
7.5.1
752
753
154
1.6
7.7
7.71
772
7.7.3
7.3

7.8.1

8.1
8.2

. COMPILING AND LOADING PROGRAMS

xiii

SPECIAL CONSIDERATIONS

Data Areas in the ND-100

The Variable Data Area in the ND-100

The Local Data Area in the ND-100

Data areas in the ND-500

Language Dependent Considerationscccccceeeieeveereerevinnnnnnnnnn.

FORTRAN/PLANC in ND-100
COBOL in ND-100 ...
MAC—NPL

Program Structure

Application Names and Numbers
Subroutines

Efficiency .occoooevvivinninnn.

ND-500 Efficiency ...

The Working Set

Real Time Versus Background...........ccccooiiiiiiiiininiiieieceeeeeeee

Pictures for NSHS in ND=100 oo

Defining Private Pictures for NSHS
Producing Public Pictures for NSHS ...,
Loading Public Pictures for NSHS
Pictures for FOCUS ...

Public pictures for FOCUS

Testing of ND-500 applicationsccceeee...

Background Testing of ND-100 applications

ND-60.111.04

The Task Common Data Area in the ND-100

The Size of the Data Area in the ND-100

Taking Checkpoints ...
Opening and Closing the Data Basec.iveceeveiiereceniicenan.

Section:

8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6

8.3_ :

8.3.1

8.3.2
8.3:3

Appendix:

A

B

The TPS Background Syst
Available Facilities in the
The Load-Common and S
Running the Background
Testing in Background Mo
Compile and Load Examp

... Real Time Programs.
The Loading Procedure ...

Programs and Files Requir
Compile and Load Examp

APPLICATION NUMBERS FOR S

SAMPLE PROGRAMS

ERROR MESSAGES

TPS SEGMENT STRUCTURE IN

MONITOR CALLS AND LIBRARY

SCREEN—HANDLING CALLS ...

SIBAS CALLS

TSR CALLS—FUNCTIONAL LIST
TPS ON ND-500

GLOSSARY ...ccoevens

INDEX

xiv

ND-6

TPS Background System 8—-3
ave-Common Routines 8—4
SYStEM oo 8-—-5

A8 L 8-—6

0.111.04

1.1

~ ND TPS is a transaction proces

information arrives and to retrie

INTRODUCTION

WHAT IS ND TPS?

1-1

sing system for the ND family of computers. A

transaction processing system may be defined as a computerised on-line system
that allows the user to process data and update a data base as soon as

e the information as soon as he needs it.

The user will normally have a terminal available that is online to the data base.
He will enter the transaction input on the terminal, the system will start the

processing program (application

program), the program will access the data base

and send the user a response within seconds.

A transaction may be an inquiry

which only reads the data, formats it and sends

it to the terminal (/nquiry transaction). The transaction may update the data
base, perhaps after a conversational interaction between the program and the
user (up-date transaction). The transaction may gather in data interactively and

store it in a temporary file for
may also generate a relatively
generation).

later batch updating (data entry). A transaction
large amount of output to a printer (report

Most transactions are characterised by a fairly small amount of input and output,

conversational interaction, short

duration and fast response times, aithough none

of these characteristics are absolute.

To accomplish this, a transaction processing system must provide facilities for
handling the following main tasks:

— starting, controlling and terminating transactions

— communicating with term

inals and other 1/0 devices belonging to the

external environment, including routing messages to the correct

destinations

— accessing the data base, in

A short description of the stru
follows.

cluding reading it and updating it

cture of TPS and how it handles these tasks

ND-60.111.04

1.2

- (See-figure. 1.1}~ - -

THE STRUCTURE OF TPS

The main tasks of TPS are, as mentioned above, controlling transaction
start/termination, controlling the external environment and accessing the data
base. In addition, provision must be made for starting, stopping and controlling

the TPS system itself. Also, facilities

must be available for simple and efficient

communication between modules of TPS. The TPS system is therefore composed

of the foilowing types of modules:

- transaction control and service routines

— input/output modules

— SIBAS data base control routines (separate subsystem)

— NSHS or FOCUS screen handling system (separate subsystem)

- operator communication

— Mmessage queuing and routing routines

The application programs themselves are mainly user-written, but TPS includes a

number of

— special application programs

to carry out user-oriented system fun
program abnormal-end, etc.

TPS exists as a basic modules plus
consist of the transaction control an
system, the NSHS or FOCUS screen
the message queuing and routing ro
system applications. In the standard
single CPU.

ctions, such as terminal operator sign-on,

a number of options. The basic modules
d service routines, the SIBAS data base
handling system, operator communication,
utines and a standard set of special and
version of TPS, all of these are run in a

TPS options include multi-CPU systems, using both ND-100s and ND-500s,

several transaction control modules

and input/output modules for special

devices, networks and distributed processing.

ND-60.111.04

-

Sv8Is
1ddv
101 1BDIUNWIIOD
101818d0
HSlt
1dl Butinos
1
ddv wol pue -
101U02 buinanb w
joloesues abessa H
™ sainpows b4
_ wndmo/indui fa)
- / /ancul z
Tddv /
\ SNJo04
: / SHSN

Figure 1.1: TPS Modules

1.2.1

1.2.1.1

1.2.1.2

1-4

Transaction Control

Transaction Control Modules

Transaction control is handled by one or more transaction control modules

(TCMs). The TCM supervises the a

Transaction Processing Tasks

.

pplication programs belonging to it and

controls system functions such as. start, stap and ‘checkpointf

Each TCM has a number of transaction processing tasks (TPTs). (See Figure 1.2)
The TPTs are a set of identical programs belonging to pools, one pool for each

TCM. Each TPT is one unit with a
started, TCM may allocate a free TPT
the TPT and when the transaction is f
may be permanently allocated to term
a row.

The TPT has several functions:

— to start the application program

TPT unit number. When a transaction is
to the transaction from the pool and start
nished, TCM may free the TPT. Some TPTs
inals and can process many transactions in

used by the transaction

— o terminate the application program when it is done and either switch to a

new application program or term

— to provide the application pr
programs are reentrant and thus

inate the transaction

ogram with data areas (all application
may not be written into)

— to provide checkpoint/restart facilities for the application program in case

of system failure

TPT

trans 1 Appl 1

TCM

TPT
free

TPT

Appl 2
trans 2

TSRs

TPT
trans 3 Appi 3

o s e oo

TPT
free

Figure 1.2: Transaction Control

4

ND-§

30.111.04

1.2.1.3

1-5

Transaction Service Routines

The transaction service routines
to assist the application pr
administrating task control, communicating with /O devices and sending
messages. These routines allow the programmer to concentrate on the
applica-tions as such, without having to be concerned with the complex details

of a real-time environment. The
between application programs a

TSRs may be arranged in groups as follows:

1

Figure 1.3: Using a TSR

Administrative services.

Switch control to another

application.

Activate concurrent application.

Stop transaction.
Set termination/abend/rest

Set operator/application timeout.

Session services.

Read message.

Send message.
Open/ciose session.
Checkpoint control.

Take checkpoint.
Allow/prevent checkpaoint.
Critical sequences.

Message services.

Write message on operato
Broadcast message to term

Special Application TSRs.
Restart
Read status

Read configuration informa
Operator functions

1OM

r console.
ninals.

tion

TPT/TSR

WRITE MESSAGE
ON TERMINAL

routines represent a clean and logical interface
nd-ND TPS (See Figure 1.3). - . :

art strategy/close strategy.
Set execution time/interval.

(TSRs) are a set of routines supplied with TPS
ogrammer in performing functions

such as

APPLICATION

-SEND MESSAGE
1 TOICM RETURN

CALL TSMSG
(SEND MESSAGE
TSR)

ND-60.111.04

1.2.1.4

Application Programs

The application programs do the actual processing of the transactions. They are
mainly user-written, with the exception of a number of special applications
supplied with the TPS system. They may be written in COBOL, FORTRAN, PLANC
{a system oriented high level language), NPL (a ND-100 machine oriented
medium level language) or MAC (assembly language) and they may use most of
the facilities available to these languages.

Application programs are reentrant and may be used by several transactions.
simultaneously without having more than one copy. To achieve this, the ND-FTN
and ND100-FORTRAN compilars must be set in reentrant mode when compiling,.
and. the ND100-COBOL. compiler must be set in- TPS mode when compiling; No.
special commands have to be given to the ND500-compilers.

The TPTs are aiso mainly reentrant, with only a smail non-reentrant part for each
TPT plus the data areas. Thus, there may be many TPTs without taking more than
a minimum of space.

The maximum size of application programs and data areas in the ND-100 are

user-dependent configuration param
programs and 5K words for data. The

to 134 megabytes of program and data.

Application programs in ND-100 may

eters. Typical sizes are 24K words for
corresponding limits for the ND-500 are up

be tested as timesharing programs under

SINTRAN before being run under TPS. A special set of routines is available to
simulate a real-time TPS environment. SIBAS can be accessed by both TPS,
timesharing and batch programs at the same time. In the ND-500, the application

programs may be tested by running
ordinary TPS-run. {See Chapter 8.1.)

the ND Symbolic Debugger «livey in an

ND-60.111.04

1.2.1.5

SPECIAL APPLICATIONS

Certain functions of the TPS sy
TPS but are carried out as appl
other application, under the con

A complete set of special appli

users will find that their needs

1-7

stem are not handled by the internal modules of
ications. They are started and terminated as any
trol of a TPT.

cation programs is supplied with TPS and many
are fully satisfied by these standard versions.

Other users will- modify the standard versions; while. some users may wish to

write their own versions.

The main purpose of the following special applications is communication with
SIBAS. They are called by only one TPT (a special TPS system TPT) when the

system uses them (See Figure 1

— TPOPEN, called when TPS
data base for general use.

4

is initially started. This application may open the
It may aiso start up transactions and broadcast a

start message to terminals controlled by IOMs.

— TPCLOSE, called when TP
may close the data base.

— CHECKPOINT, called wh

S is closed or abnormaily ended. The application

en a synchronised checkpoint is taken. The

application calls the SIBAS checkpoint routine.

—_ ROLLBACK, called when a
be rolled back to a synchr
SIBAS rollback routine.

system failure has occurred and the system is to
onised checkpoint. The application supervises the

- RECOVER, called when a system failure has occurred to restore the system
to its state at the latest transaction checkpoints. The application supervises

the SIBAS recover routine

Additional special applications, activated for each individual TPT, are:

— SIGNON, called to check
to reserve the terminal

— SELECT, called to determ
control.

the terminal operator’'s status and password and

ine which processing application is to be given

— TPMON, called when an ND-500 application is started. Thereafter TPMON

administrates the ND-500

Appendix J.

process. Further description can be found in

e SIGNQOFF, called when a transaction terminates.

ND-60.111.04

1-8

— ABEND, called when a transaction terminates abnormally due to an error
situation in the program itself or an error return from a system routine.

e RESTART, called after a rollback or recovery has been performed. The
application is called by each active TPT for the purpose of restarting the
TPT's application at the correct point.

TPOPEN > called at initialization

TPCLOSE called at close

CHECKPOINT called at checkpoint

1T

—-—-——C—ROLL BACK) cailed at rollback
Systern
TPT ———-—(RECOVER) called at recovery
"'————< SIGNON) called when transaction started
to check operator status
—-————-(SELECT) called after SIGNON to
determine user appl.
———(APPL (1)) (2)) (3)) {4) user appls.
4 TN
\ TPMON jAPPL (5)} administrates applications
——— - in ND—-500.
"“—'“’_—(SIGNOFF) called when transaction ended
User
TPT ABEND) called when transaction abnormally ended
l TPT
[TPT .__.C RESTART) called at system restart

Figure 1.4: Special App/icatior;é

ND-60.111.04

1.2.2

1.2.2.1

. Most terminal types can be han

1-9

Handling Input/Output T

TPS has facilities for handling i
devices and from data bases.

The data bases are controlle
system.

nput/output from many types of terminals and /0

d through the SIBAS data base management

dled through the screen handling system. - .

Other /O devices can be divided into two main types:

— standard devices allocated to and controlled by a particular application

program. Examples are st
and non-SIBAS files.

— special TPS devices tha
applications. Examples are

Standard Devices

andard SINTRAN terminals, printers, card readers

t are allocated to TPS modules, not individual
2 networks and synchronous terminals.

These devices are controlled by

application programs directly through SINTRAN.

Devices belonging to this group are generally available to all users of the
computer system, also non-TPS users. They may include printers, spooling files,
card readers, magnetic tapes, disk files etc. They are allocated to an application
program when the program requests them and released by the program when it
no longer needs them. The application program will access the devices through

the standard routines available
CLOSE, READ, WRITE, etc.

in the language it is written in, such as OPEN,

ND-60.111.04

1-10

1.2.2.2 Special TPS Devices - Input/Output Modules

Devices in this group are controlled by special programs called Input/Output
Modules (I0Ms). There is one I0M for each type of device, although each ICM
may control many devices. Each device is one unit with a device unit number.

Input/output modules are used to contro!l devices that cannot be controlled
directly by an application program. This may be because their control is too
difficult. for the application program,. - for example. non- -standard dewces or . -
"devuces with comphcated commumcatlon protocols. However the main use for
IOMs is in connection with networks and other types of muitiplexed = .
connectlons ' - : S

i

A network does not belong to any one application program but may have many
terminals connected to many application programs (See Figure 1.5). The
connection between the terminal and the application program is not direct, but
goes through modems, concentrators, etc. Another type of network connection
may be the connection between two TPS systems at different processing sites
(See Figure 1.6). Application programs at one site may communicate over the
network with application programs at the other site.

An application program communicates with these devices through the
transaction service routines provided by TPS. A session is established between
the device and the application program and the application program can then
send messages to and receive messages from its session partner by calling these
routines. Sessions may also be established between two application programs,
either at the same processing site or across an external network.

Sessions may be broken and new sessions established. A transaction is only
allowed to have one session at a time but it may possess several local devices,
including local terminals, at the same time.

term 1
appi 1

Concenrrator

P

oM appl 2
Moder ° e

Figure 1.5: A Terminal Network

terminal

data base
!
appl 1 IOM1 made IoM2 appi 2
2

Figure 1.6: Accessing a Remote Database

ND-60.111.04

1.2.2.3

1.2.2.4

1.2.2.5

1-1

The NSHS Screen Handling System

Terminals can be controlled by
handling system, NSHS, which
reading input, field definition, ct

application programs through the NORD screen
contains routines for formatting output pictures,
rsor control, etc.

Terminals controlled by NSHS may be standard terminals or they may be special

devices controlled by input/o
however, does .not have to kna
same NSHS calls are used for a

The FOCUS Screen Hand

utput modules. The applications programmer,
w which group a terminal belongs. ta since the
| types of terminals.

ling System

The Focus Screen Handling System can be used to control asynchronous as well

as synchronous terminals. The
several Front End CPU’s resid

processing part can be distributed to one or
ing in one TPS system. The communication is

transparent to the user programs (See Section 3.2)

The SIBAS Data Base Mz:

SIBAS is a DBMS that provi
CODASYL committee for a da
available to FORTRAN, PLANC,

SIBAS allows direct and fast a
file organisation and access, s
concurrent or exclusive acces
backup and restart to
unauthorised access.

insure

anagement System

des most of the capabilities specified by the
ta base facility in COBOL. Similar facilities are
NPL and MAC programmers.

ccess to all data. It provides several methods of
eparation of physical and logical organisation,
s and data independence. It has facilities for
data integrity and privacy locks to prevent

The data base is defined and created using the SIBAS data definition/redefinition

language DRL. This is done inde

pendently of TPS,

The data base is accessed from application programs using the SIBAS data

manipulation language DML. Th

e DML used by a program running under TPS is,

with a few exceptions, the same as for a program running in a different
environment, such as timesharing or batch.

It is, in fact, possible to ac
timesharing and batch program
common SIBAS interface unde
user will be unaware of TPS ¢

cess the same SIBAS data base from TPS,
s at the same time. All SIBAS calls will go to a
r the control of TPS. The timesharing or batch
ontrol over the data base unless a TPS restart

should happen to change its contents.

N

D-60.111.04

1.2.2.6

1-1

Checkpoint and Restart

An on-line transaction processing s

ystem should have adequate facilities for

protection of the data base. If a system failure occurs in a batch system, a

backup copy of the data base can be

mounted and the whole job run once more

without too much inconvenience or waste of time. If a failure occurs in an online

transaction system, reentering and reprocessing the transactions may be very
inconvenient, time-consuming or even impossible.

Facilities should be available to assure the integrity of the data base, to minimise

the amount of data lost and to restart the system automatically at a well-defined

point.

TPS makes use of the extensive chec
mainly transparent to both the use
controlling them. Synchronised che
automatically according to the load

kpoint/restart facilities of SIBAS. These are
r and the application program, TPS itself
ckpoints of the whole system are taken
on the system. In addition, the application

program can take individual transaction checkpoints.

f a system failure occurs, the latest transaction checkpoint can be used to
restore the system to its status at or near the point of failure (recovery). If the

data base is incorrect at this point,
restore the system to a previous stat

synchronised checkpoints can be used to
e (rollback). (See Figure 1.7} In both cases,

those transactions which were active can be restarted automatically at the

correct point.

How often checkpoints are taken and what types of backup/restart facilities are

used are system parameters controlled by the user.

advantages of assuring the protect
overhead needed to accomplish this.

He must weigh the
on of data in the data base against the

SYNC SYNC

CHECKPOINT CHEGKPOINT]

/5 /f\ -{__ POF
-/ o/

POR
(POINT OF RESTART) (

Figure 1.7A: Rollback without Recove

rotlback

ory
SYNC SYNC TRANS |
CHECKPOINT CHECKPQOINT CHECKPOINTS | /

/:\ & O . 2 /3 . 4 © P POF
o/ " N

Figure 1.7B: Rollback with Recovery

< recovery

ND-60.111.04

(POINT OF FAILURE)

1.2.3 Operator Communication

A special terminal, the operator terminal, is used for starting, stopping and
controlling the TPS system. A set of commands is available for interaction with
the whole system (system directives) and for interaction with individual modules.

The system directive commands sonsist of the basic command functions used in

connection with system start, stop, pause, checkpoint and rollback/recovery:..
" These -commands serve vital functions in connection with normai processing and
in case of hardware or software malfunctioning.

Other commands are available for such tasks as starting and stopping. individuai
TPS modules, starting and aborting transactions, changing system parameters,
and broadcasting messages.

System messages, both error and informative, will be written on the operator
terminal. Application programs may also send messages to this terminal. In a
muiti-CPU system, those CPUs that do not have an operator terminal will have a
log-writer terminal for special error messages.

1.2.4 Message Routing and Queuing

Communication between the indiv dual TPS modules is done by messages using
a buffer pool and queuing system controlled by the main dispatcher (MD). If the
modules are spread across more than one ND100-CPU, there is one MD for each
ND100-CPU and they will send messages to the correct CPUs. TPS may thus
make use of multiprocessing facilities in a single system.

Every TPS module has a queue for messages to that module. When a message is
sent, it goes first to the main dispatcher. MD will put the message in the queue
for that module and it will then start the module. The module will read its queue
and process the message there. When it is done, it will usually read the queue
again in case any messages have arrived in the meantime.

Routines are also available for putting messages that have been received into a
waiting queue if they are not to be processed immediately. They can be read
from the waiting queue later and processed.

Application programs do not have to concern themseives with these queues.
They are controlled by the application program’s TPT.

ND

60.111.04

Acer e

1.3

1.3.1

1-14

TRANSACTION TYPES

There are two main ways of setting up a transaction, depending on whether the
connection between the terminal and TPS is permanent or only lasts as long as a

single transaction.

Type 1: Permanent Terminal Transactions

Permanently connected terminals are
faster response time, because the

the simplest to handle and usually give
overhead in setting up the connection

between the terminal and TPS is avoided. In addition, TPS provides some special
applications (SIGNON and SELECT) designed mainly for permanently connected

terminals.

SIGNON helps the terminal user to sig

n on to the system by writing a picture on

the terminal asking for the user’s name and password. A typical SIGNON picture
is shown in figure 1.8. When the user has written his name and password,
SIGNON will check them, and if they are accepted, control wiill be given to

SELECT.

/ ND TPS ON LINE AT 18

TTITTTTT PPPPPPP
TITTr T PPPPRPPP
T PP pp
T PPPPPPPP
T PPPPPPR
TT PP
a3 PP
™ PP
T PP

PLEASE ENTER YOUR NAME:

N

.45 ON MARCH 1, 1983

$5885SS
$8888Sss
SS
$S8SSSS
$85588S
SS
SS

$SSSSSSSS
$8558SS

PASSWORD:

AN

Figure 1.8: A SIGNON Picture

ND-6

0.111.04

SELECT will help the user to start the transaction program (application) he wants
by writing a menu picture on the terminal, as shown in figure 1.9A. The user just
has to select the item he wants and enter its number. The application will then
be started.

It is also possible to have sub-menus, i.e. one menu choice will give a new menu,
as shown in figure 1.9B. It is possible to have as many sub-levels of menus as
desired. The user can also go from a sub-menu back to the master-menu, back
to SIGNON, or even into SINTRAN as a timesharing user.

ND TPS MASTER MENU

1 ACCOUNTING

2 PAYROLL

3 INVOICE

4 INVENTORY

5 TEXT PRO CESSING
6 sTopP

ENTRY CHOICE:

\

Figure 1.9A: A Master Menu

/ N

ND TPS ACCOUNTING

1 BOOKEEPING
"2 ACCOUNTS RECEIVABLE
3 GENERAL LEDGER

4 REGISTER UPDATE

5 REPORTS

6 MASTER MENU

7 sTOP

ENTRY CHOICE:

Figure 1.98: A fub-Menu

1 1+

ND-60.111.04

1-16

However, sooner or later a user app
carry out his transaction, probably in
data base.

When he is done, control will be give
The main task of this application is t
this case a "‘never-ending’’ transactic
case by giving control to SIGNON.

- The terminal is now ready to accept a
is not necessary to go through the
have given controi directly to SELECT.

In both cases, the terminal will not
Processing Task (TPT} in TPS cont
terminal. There is a permanent conn
There is a never-ending succession
(SIGNON, SELECT, user applicati
application, etc.)

This is illustrated in figure 1.10, Type 1.

ND-6

on,

lication will be started. The user will then
volving interaction with both terminal and

n to another special application, SIGNOFF.

o find out what type of transaction it is, in
on, and to terminate it accordingly, in this

new user and start a new transaction. If it

SIGNON procedure again, SIGNOFF could

be released from TPS, i.e. the Transaction
rolling this terminal will not release the

ection between the terminal and the TPT.
of applications running on this terminal
SIGNOFF, SIGNON, SELECT, user

0.111.04

1-17

Q<

——— SIGNON end trans. SIGNON trans 2
SELECT (SIGNQFF) SELECT

TYPEL . o o ‘ o @

trans 1

start trans. process

TYPE 2

-
>
_ feka

start trans. |— get term.

IOCess end trans. free

O

TYPE 3

E
T <

et AN, 1 trans T

SINE

trans,

==

Figure 1.10: Types of TPS Transactions

—

trans. 2

ND-60.111.04

1.3.2

1.3.3

1-18

Type 2:

The other main way of setting up a
TPS whenever a transaction is to be ¢

Short Terminal Transactions

transaction is by connecting a terminal to
arried out on the terminal and releasing the

terminal when the transaction is done. This frees the terminal for other use and,
possibly even more importantly, also frees the Transaction Processing Task (TPT)

in TPS for use with another terminal.

This_ methodjshogl.d be- used if there are many:terminals- that are not in_constant - L

use. They may then share a limited
disadvantage is that there is more ove

The procedure would be as follows:

number of TPTs among themselves. The
rhead in starting up the transaction.

A terminal connected to a network is inactive. The user presses a special

function key that causes a message

to be sent over the network to TPS. TPS

allocates @ TPT to the terminal and the TPT starts an application program that

can converse with the terminal. A d
application program, and the data b

alogue follows between the user and the
ase is read and updated. When the user

indicates to the application program that he is done, the application terminates

and both the terminal and the TPT are

freed.

Type 3: Short Local Terminal Transactions

A terminal is connected locally to the computer and can be used for both TPS
processing and other processing. The terminal can be brought into the TPS
system by issuing a command at the TPS operator console, a special terminal

devoted to operational control of TPS.
program indicated in the command
terminates, both the TPT and the term

ND-60

A TPT will be allocated and the application
started. When the application program
nal will be freed.

111.04

1.3.4

1.3.5

Type 4: Concurrent T

A transaction that is active can
new TPT will be allocated and the
the mother task to the daughter
— if it needs one, it must set up

Type 5: Future and P

A transaction that is active can

1-19

ransactions

start another transaction to run concurrently. A
2 new application started. Data can be sent from
task. The daughter task will not have a terminal
the connection itself.

eriodic Transactions

start another transaction at some time in the

future, either at a given absolute time or periodically. When the time comes, the

transaction will be started as

for Type 4. The TPS operator can also use

commands to start a single or periodic application at a specified time. TPS need

only be informed once of a
periodically at the correct times.

periodic application. It will then be started

ND-60.111.04

1.4

1.41

1-20

CONTROLLING A TRANSACTION

This section describes in some detail the steps involved in processing a typical
transaction using the standard version of TPS. It follows the transaction
sequentially through the TPS system from its initiation by the user until it is
terminated.

The transaction described is a transaction of Type 1, a permanently-connected

. terminal. transaction.. A cennection is. established between a terminal and-a TPT " ..

when SIGNON is first started by TPOPEN (See Figure 1.11). SIGNON checks the

terminal operator’s status and SELECT calls the correct user application. A
conversation is carried on between the user and the application program and the.
data base is read and updated. When the user has no more input and has
received all output, he indicates that the transaction is done. The application

program will terminate and the SIGNOFF application will give control back to

SIGNON to wait for the next transaction.

Starting the Transaction

The TPS system has been started initially and is in normal running state.

TPOPEN has started a number of transactions using the activate-task TSR. The
first application to be given control is the SIGNON special application.

The terminal in our example is a standard terminal controiled by the NSHS or
FOCUSscreen handling system. The first time SIGNON is started, it will reserve
the terminal. After that it will call NSHS or FOCUS routines to display a picture
asking the user to enter his name, and then wait for an answer in the NSHS or
FOCUS input routine.

To start the transaction, the user will enter his name on the terminal and press
the return key. SIGNON will be started up with the reply in the input data area. It
will check the user’s identification and perhaps whether that user is allowed to
use that particular terminal. SIGNON may then ask for a password, again using
NSHS or FOCUS routines. When this has been checked, SIGNON will display the

user-subsystem name and wait for 3
SELECT. SELECT will display the use
enter the number of the entry he
sub-menu, going back to SIGNON or
latter, the transaction has been starte

n answer. This will result in a switch to
r's master menu and wait for the user to
wants. This may result in displaying a
switching to a user application. If it is the
d.

ND-60.111.04

TCM

Fird
free
T

Figure 1.11: A Typical Transact

:_Q Switeh to

TPCPEN (
Activate
F=== SIGNON

N\ siGNON

Aead user

™ SELECT

Raad user

b 3WHLCHY 10

Terminai ¢

Terminate

: SIGNOFF

SIGNON |

1-21

APPYL

TPTH

(TPT2) - .

Reserve terminal
display SIGNON picture
wait.for answer

name password

SELECT
TPT2)
Display menu

wait for answer

agoication name,

t

N\USER APPL (TPT2)

Terminai dialogue

SIBAS dialogue

jialogue

(TPT2)

TPT2)

on

ND-60.111.04

NSHS/SIBAS

1.4.2

1.4.3

Processing the Transaction

Normaily, one may regard the transac

tion processing as one or more sequences

each consisting of a dialogue between the application program and the user,
with some activity on the data base as the resuit of most dialogues.

The transaction may start by asking f
type. When the user has answered

or some information, for example anaction
register a new customer), a dialogue can

telephone number, account number, etc.), the data base will be updated and the

user notified {the customer has been
a new dialogue.

The data base is accessed through

registered). The transaction may then start

normal SIBAS éalls in the application

program. All of the common SIBAS data manipulation calls are available to TPS

programs, such as OPEN DATA BASE

CLOSE DATA BASE, FIND, GET, MODIFY,

STORE, ERASE, REMEMBER, FORGET, etc. It is possible to access records from

outside the data base (out-of-the-b

ue access) in several ways, to conduct

searches and to access records via their relationships to other records (relative

accesses).

The transaction may be an inquiry transaction, an update transaction, data entry,

report generation or any combinatio
session with an |/O device or applicati
reserving them and communicating di
future tasks or switch to another appli

Terminating the Transact

The transaction will be terminated

n of these. It may use TSRs to create a
on program. It may access local devices by
rectly with them. It may start concurrent or
cation, again using TSR routines.

on

when the logical end of the program is

reached, when the user indicates that there is no more processing to be done,

etc. When the transaction terminates
SIGNOFF will end by switching to the

the SIGNOFF application will be activated.
SIGNON application.

ND-60.111.04

- follow, requesting the. user to enter the details of the transaction {name, address,.

2.1

2-1

ADMINISTRATING TASKS

TASKS, TRANSACTIONS AND APPLICATIONS

A task in TPS can be defined as the processing done by a Transaction Processing
Task (TPT) from the time it is allocated by the Transaction Control Module (TCM)
untii it is freed again. The number of concurrent tasks at any time is thus the

" same-as.the number of allocated. TPTs.

A task may be either a short task that only lasts for one transaction or it may be
a long task that handles many transactions in a row. {but only one at a time).
(See Figure 2.1).

A long task will return to the SIGNON or SELECT application between
transactions, instead of completely terminating by releasing the terminal and the
TPT. This saves the overhead of allocating a TPT every time a new transaction is
started and assures that a TPT is available for that terminal. This method should
be used mainly for terminals that are in more or less constant use, since the
terminal will be permanently connected to that one TPT as long as the task lasts.

A transaction can then be defined as the processing done either from the time a
TPT is aliocated until it is freed for a short task, or from the time control is given
to the user application until return to SIGNON or SELECT for a long task.

An application program is a user written program linked to and started by the
TPT. The application program will run under the control of the TPT and do the
actual transaction processing. When it is done processing, it can either switch to
a new application or terminate.

A task may thus consist of the sequential processing of one or many transactions
and a transaction may consist of one or more application programs.

ND-60.111.04

2-2

Allocate TPT

APPL. 1

TRANS . APPL .2 -

SIGNOFF -
free TPT

W) /
T
4avavavy

Figure 2.1 Short and Long Tasks

ND-60.111.04

2-3

Task administration includes starting tasks, terminating tasks and transactions,
and switching application programs. (See Figure 2.2.) Task adminstration can be
done by application programs and by other TPS components, such as
input/output modules and the system operator. This chapter will only discuss the
task adminstration that can be done by application programs.

TACTV | . ACTIVATE A CONCURRENT TASK

SET THE EXECUTION TIME FOR A
TA SE T FUTURE TASK

SET THE EXECUTION INTERVAL FOR
T/NTV A PERIODIC TASK

DISCONNECT THE EXECUTION

TDCNT TIME/INTERVAL

TSWAP g\;v(t)TC;::ALo ANOTHER APPLICATION
TSTORP TERMINATE THE TRANSACTION
TTERM TERMINATE THE TASK COMPLETELY
TSTST SET THE TERMINATION STRATEGY

TSCST SET THE CLOSE STRATEGY

TSAST SET THE ABEND STRATEGY

Figure 2.2: Task Administration TSRs

ND-60.111.04

2.2

2.2.1

2.2.11

2-4

STARTING TASKS AND SWITCHING APPLICATIONS

Tasks may be started in several ways:

— a session request from an IOM
3.3.1)

to a TCM will start a new task (See Section

— a session request from an application program to a TCM, requesting a
- sessian. with another. application program, will start a. new. task.. This is.. .

done with the TSOPN TSR and

— the operator can start a task usi

is described in section 3.3.3.

ng the activate application command.

— the special appiication program TPOPEN can start tasks when the TPS
system is initially started (See Section 6.3)

— an application program can start both concurrent, future and periodic tasks

Thus an application program is allowed to start both concurrent and future tasks

and to set the execution interval for
out through TSRs.

Immediate Task Activation

TACTV - The Activate Concur

periodic tasks. These functions are carried

rent Task TSR

An application program may activate a new task on the same TCM to run

concurrently with itself. A new TPT v
given application program started. Up
the activated task. The activated task
task common data area(See Section

CALL 'TACTV' USING <application
CALL TACTV (<appilication number

If no TPT is available, an error code
availability of a TPT is determined by
the new application.

vill be allocated if one is available and the
to 2000 bytes of data can be transferred to
will receive the data in the beginning of the
7.1.2).

number> <record> <size> <status>.
>, <record>, <size>, <status>)

is returned in the status parameter. The
the number of free TPTs and the priority of

The old task and the new one will run independently and have no common data

area. If they want to communicate, o
of the TACTV TSR, since a sessio
Another way of communicating is thro

ND-60

ne way is to use the TSOPN TSR instead
n will then be established between them.
ugh internal devices {See Section 4.4).

111.04

2-5

Example - COBOL
PROGRAM 1

LINKAGE SECTION.
01 PRIVATE IMPORT COMMON.
02 1ITERM COMP OCCURS 128,
02 TIPRIV COMP QCCURS 2000.
02 DATA-REC COMP OCCURS 20. data record to be sent to
. program 2

MOVE 52 TO APPL-NR. activate program 2 (appl 52),
send 40 bytes of data to it
CALL “TACTV’ USING APPL-NR DATA-REC CU40 STATUS~CODE. o
IF STATUS-CODE < O GO TO ERROR~-ROUTINE. check return status

PROGRAM 2 (APPLICATION 52)

LINKAGE SECTION.
01 PRIVATE IMPORT COMMON.
02 1ITERM COMP OCCURS 128.
02 FILLER REDEFINES ITERM. data from program 1 put at
03 PROG1-DATA COMP OCCURS 20. beginning of common area
03 FILLER PIC X(216).
02 DATA-REC COMP OCCURS 20. define data area

MOVE PROG1-DATA TO DATA-REC. move data to right area

EXAMPLE 2.1 TACTV - COBOL

Example - FORTRAN

PROGRAM 1
COMMON/PRIVATE/ITERM(128),IPRIV(2000)
DIMENSION IREC(20) data record to be sent to
. program 2

CALL TACTV(52,IREC,40,ISTAT) activate program 2 (appl 52),
send 40 bytes of data to it
IF (ISTAT.LT.0) GO TO error routine check return status

PROGRAM 2 (APPLICATION 52)

COMMON/PRIVATE/ITERM(128),IPRIV(5)

DIMENSION IDATA(20) define data area
DO 10 I=1,20 move data from beginning of
10 IDATA(I)=ITERM(I) common area to right area

ND-60.111.0¢"

2.2.2

2.2.21

2-6

Future and Periodic Task

The following timing functions are ava

~—

Activation\

e

ilable to application programs

— set the absolute execution time for starting an application
— set the interval for a periodic application
— remove (disconnect) both absolute and periodic timing for an application

Up to 16 applications can be in the t

me queue and up to 16 in the interval list.

Only 1 absolute start time can be given for an application.

Timing information is stored on the

disk when synchronized checkpoints are

taken and is therefore restored at rollback.

TASET -— The Set Execution Time TSR

An application program may activate a task, on the same TCM or a different one,

to be started at a specified absolute
specified.

time. Two parameter values may also be

CALL 'TASET’ USING <module> <application number> < parameter 1>
<parameter 2> <time> <status>.

CALL TASET (<module>, <applicat
<parameter 2>, {time>, <staty

When the specified time (second, m
reached, a new TPT will be allocated
program will be started. The two p
number and type) will be placed in the
If the specified time has aiready been
task will be started immediately.

If no TPT is available when the task
written on the TPS operator console.

The time resolution is 5 seconds.

on number>, <parameter 1>,
s>)

ninute, hour, day, month, year}) has been

on the specified TCM and the application
arameter values (for example a terminal
beginning of the task common data area.

reached when the TSR is issued, the new

is to be started, an error message will be

ND-60.111.04

Example - COBOL

MOVE
MOVE
MOVE
MOVE
MOVE
CALL "TASET” USING

IF STATUS-CODE NOT

Example - FORTRAN

DIMENSION ITIME(6)

ITIME(1)=0
ITIME(2)=0
ITIME(3)=10
ITIME(4)=31
ITIME(5)=12
ITIME(6)=1980
CALL TASET(32,8,46,
IF (ISTAT.NE.O) GO

N

‘0° TO ABS-TIME
“10” TO ABS-TIM
“31° TO ABS-TIM
“12° TO ABS-TIM
“1980° TO ABS-T
T
A

2-7

(1) ABS-TIME(2).
E(3).
E(L).
E(5).
IME(6).
CM-0 APPL-8 TERM-NR TERM-TYPE
BS-TIME STATUS-CODE.

0 GO TO ERR-ROUTINE.

start appl 8 on TCMO
at absolute time 10am on
December 31, 1980

start appl 8 on TCMO

at absolute time 10am
on December 31, 1980
with parameters 46 and 4

y ITIME, ISTAT)

i}
TO error routine

ND-60.111.04

2.2.2.2

TINTV — The Set Interval TSR

An application program can set the execution interval for an application. The

next time the application is activated, it

CALL 'TINTV' USING <module> <ap
< parameter 2> <interval> < sta3

will become periodic.

plication number> <parameter 1>
tus>.

CALLTINTV (<module>, <application-number>, <parameter.1>, -

<parameter 2>, <interval>, <st

atus>)

The TINTV TSR will not itself start periodic execution of the specified application
program. This must be done by some other means (see section 2.2). Once it has
been started, however, it will continue periodically at the specified time intervals.

The next interval will start at each time

of activation.

A periodic application can have only one execution interval. If it already has an
interval, the new interval will replace the old one.

An application can set its own interval

but if it is not already periodic, the next

execution must be started by some other means.

The execution interval is specified as
months and years are not well-defin
specified in days.

The time resolution is 5 seconds.

Example - COBOL

MOVE “0° TO INTERVAL(1) I
MOVE °“30° TO INTERVAL(2).
MOVE “1° TO INTERVAL(3).

seconds, minutes, hours and days. Since
ed time spans, long intervals must be

NTERVAL(H4),
set execution interval to
1 hour and 30 minutes

CALL ‘TINTV® USING TCMO APPL-5 ZERO ZERO
INTERVAL STATUS-CODE.

IF STATUS-CODE NOT =-0 GO
CALL °TACTV’ USING APPL-5
IF STATUS-CODE NOT = 0 GO

Example - FORTRAN
DIMENSION INTVL(Y4)
INTVL(1)=0
INTVL(2)=30

INTVL(3)=1
INTVL(4)=0

TO ERR-ROUT-1.
ZERO ZERO STATUS-CODE.
TO ERR-ROUT-2.

gset execution interval to
1 hour and 30 minutes for
appl 5 on TCMO (no
parameters)

CALL TINTV(32,5,0,0,INTVL,ISTAT)
IF (ISTAT.NE.O) GO TO error routine 1

CALL TACTV(5,0,0,ISTAT)

start it (no data)

IF (ISTAT.NE.O) GO TN error routine 2

ND-6

0.111.04

2223

TDCNT — The Disconnect Application TSR

An application can be removed (disconnected) from the time queue and the

interval table.
CALL 'TDCNT" USING <module

CALL TDCNT { <module>, <ap

> < application number> <status>.

plication number>, <status>)

The application will be immediately removed from both time gqueue and interval

table with this TSR.

Examples

CALL °TDCNT” USING TCMO APPL-5 STATUS-CODE.

CALL TDCNT(32,5,ISTAT

A

~

disconnect appl 5 on TCMO

ND-60.111.04

2.2.3

2.2.31

Switching to Another Application

TSWAP - The Switch Applica

The processing of a transaction may
programs, one at a time. When one
program instead of terminating.

The TSWAP TSR is used to switch t

CALL - 'TSWAP

tion Program TSR

involve the activation of several application
program is done, it may switch to another

0 another application program.

USING. <application number> <status>.

CALL TSWAP (<application number>, <status>)

If the old application had a terminal
the same terminal or session partne
with this partner.

or a session, the new application will have
r and may continue to exchange messages

The new program will have access to the data area of the old program if it is
defined as belonging to the task common data area. COBOL programs must
contain a section of PRIVATE IMPORT COMMON in all applications which may

be executed within one task. In
COMMON/PRIVATE/area.

MOVE 25 TO NEXT-APPL.

a FORTRAN program, this will be the

CALL “TSWAP® USING NEXT-APPL STATUS-CODE.
Error routine (will not return here if 0K)

CALL TSWAP(25,ISTAT)

switch to appl 25

Error routine (will not return here if OK)

Example 2.3:

The new program can be written in the same language as the previous one or in

any other of the available languages.

When both COBOL and FORTRAN
task, the data areas shouid be arran
responsibility to make the two maps

programs are to be executed in the same
ged as in Figure 2.3 It is the programmer’s
identical and avoid destruction of common

data at run time. For a more detailed description of common areas see Chapter

7.

ND-8

0.111.04

2.2.4

2--11

FORTRAN

Common area for
all applications

TASK

COBOL

Common area for
all applications

(Linkage section.
COMMON Private import common.)
AREA
Runtime stack Individual section
APPLICATION of working storage

for each application
LOCAL
AREA

Figure 2.3: Application Data Area

The SIGNON and SELECT Special Applications

SIGNON and SELECT are speciz
versions of the special applic
mentioned here because they ma

The main function of SIGNON is
password. The standard version
FOCUS if necessary.

The function of SELECT is to a
When the user has answered, tt
user application program.

al applications supplied with TPS. The standard
ations are discussed in chapter 6. They are
y play an important role in task administration.

to check the identity of the user and ask for a
also reserves the terminal and initiates NSHS or

sk the user to select the application to be run.
e SELECT application will switch to the desired

ND-60.111.04

2.3

2.3.1

2.3.11

2-12

TERMINATING TRANSAC

‘When an application program is done

program using the TSWAP TSR /(¢
transaction. If the transaction is te
abnormaily.

Normal Termination

TIONS

2, it can either switch to a new application
>ee Section 2.2.2) or it can terminate the
rminated, this can be done normally or

Normal termination of a transaction can be caused by:

— reaching the logical end of
statement)

— using the TSTOP TSR with a st

the program (the STOP RUN or END

op code of 0 or using the TTERM TSR

— the LEAVE monitor call (CALL LEAVE)

TSTOP - The Stop Transaction TSR

The TSTOP TSR may be used to ter
stop code of 0 or abnormally with any
be used to give a formatted error mes

Normal termination will activate Sl
activate ABEND.

The application should have perform
base, session partner, devices, etc.

CALL 'TSTOP* USING <stop code
CALL TSTOP (<stop code>)

Examples
CALL °“TSTOP’ USING ZERO.

SCODE=3
CALL TST{OP (SCODE)

)

minate a transaction either normally with a
other stop code. A negative stop code can
sage from NSHS (—1} or SIBAS {—2).

GNOFF, while abnormal termination will

ed appropriate housekeeping on the data

>.

"
Q

stop code

"
a3

stop code

ND-60.111.04

2.3.1.2

2.3.1.3

TTERM — The Terminate

It is also possible to terminate

2-13

Task TSR

a task directly instead of by going to SIGNOFF.

The termination will be a complete termination and the TPT will be freed.

CALL 'TTERM’ USING <checkpoint>.

CALL TTERM (<checkpoint>)

_ A transaction checkpoint is normally taken when a task is completely. terminated:; -

(see TTRAN). However, this can be prevented by using TTERM with the

checkpoint parameter set to 1.
checkpoint, but it could create a

This saves the overhead of taking a transaction
problem if recovery is done on the TPS system.

The application program should close the data base, close a session, release

resources, etc., before using the

Examples

TTERM TSR.

CALL °“TTERM” USING ZERO.

CALL TTERM(O0)

The SIGNOFF Special Ap

When a transaction terminates
given control to carry out the
terminating a transaction, the
termination (freeing the termin
new application, usually SIGNO!

plication

5 normally, the SIGNOFF special application is
actual termination. There are several ways of
2 main choice being between complete task
al and the TPT), and continuing the task with a
N or SELECT.

ND-60.111.04

2-14

2314 TSTST - The Set Termination Strategy TSR

SIGNOQFF uses the termination strategy for the task to determine which course to
follow. When the task is originally started, the termination strategy is set to 1,
which usually indicates complete termination. The TSTST TSR can then be used
to change the strategy to any other value, the meaning of each value depending
on the way it is interpreted by SIGNOFF.

CALL "TSTST' USING : <term. strategy > <term. appl.>. ..
CALL TSTST (<term. strategy>, <term. appl.>)

' Examples
MOVE 20 TO TERM-APPL. user termination application
CALL °TSTST® USING FOUR TERM--APPL.
CALL TSTST(1) complete termination, TPT
released

In addition to setting the termination strategy, the TSTST TSR can be used to
indicate a user-written termination application. The standard termination
strategies are described under the SIGNOFF application in chapter 6.

ND-60.111.04

2.3.1.5

TSCST — The Set Close Strategy TSR

When the CLOSE-TPS operator command is given, a controlled stop sequence
will be initiated. Normally, active tasks (TPTs} will continue until they are
terminated, but no new TPTs may be allocated. When all TPTs have been freed,
the user system will be stopped.

However, since long tasks do not free their TPTs between transactions, a close
sequence will never be completed in systems with this type of task. To avoid
this, it is possible to indicate that a task is to be terminated immediately and
completely. if- a close command is given. This is- done by setting the ciose:
strategy to immediate termination with the TSCST TSR.

On the other hand, to prevent a transaction from being terminated in the middle
of processing, the close strategy can be set to normal termination while the
actual processing is being done. Then, when that transaction is complete, the
close strategy may be set back to immediate termination. This will also cause the
task to be terminated if a close command has already been given.

The close strategy can be- set in both user applications and special applications.
For example, SIGNOFF may set it to immediate termination, and the last thing
SELECT may do before starting a user application is to set it to normal
termination. But it may also be left to the application programmer to control this.

CALL 'TSCST' USING <close strategy >.
CALL TSCST { <close strategy>)

The value of <close strategy> is either 0 {normal termination) or 1 (immediate
termination). If it is 1, TSCST will also check if a close command has already
been given and terminate the task if it has.

The close strategy is normally set to 1 in the beginning of SIGNON and changed
to 0 before swapping to the SELECT application.

Examples

CALL ' TSCST" USING ONE.
CALL TSCST(1)

ND-60.111.04

2-16

2.3.2 Abnormal Termination

Abnormal termination of a transaction can be caused by:
— the COBOL or FORTRAN runtime system

- the TPS system
— the TPS opergtor'

=~ . the application- program. itseif by using the. TSTOP TSR with a ndn'-ze'rvt_)_" L
" stop code. -

2.3.2.1 The ABEND Special Application

When a transaction is terminated abnormally, the ABEND special application will
be called before termination to write an error message, take a dump or do some
other special processing. When the ABEND application is done, it will usually
switch to SIGNOFF to terminate as for normal termination.

2.3.2.2 TSAST - The Set Abend Strategy TSR

ABEND uses the abend strategy for the task to determine what action to take in
connection with abnormal termination. The default value is 1 when the task is
started. The TSAST TSR can be used to change the strategy to another value,
the meaning of each value depending on the way it is interpreted by ABEND.

CALL 'TSAST' USING <abend strategy> <abend appl.>.
CALL TSAST (<abend strategy>, <abend appl.>)

Examples
CALL “TSAST’ USING THREE. dump the data area on the printer
IABAPP=12 user abend application

CALL TSAST(4,IABAPP)

In addition to setting the abend strategy, the TSAST TSR can be used to
indicate a user-written abend application. The standard abend strategies are
described under the ABEND special application in chapter 6.

ND-60.111.04

2.3.23

2.3.2.4

lllegal Monitor Calis

The monitor call routines allowe
FORTRAN program calls an ille
abnormally ended with the error

If an illegal routine is called fro
executed and no error message
advised not to use routines not
or cause unpredictabie resulits.

2-17

d in TPS are listed in appendix E. If a COBOL or
2gal monitor call routine, the program will be
‘illegal use of TSRs'.

m a MAC or NPL program, the routine will be
written. However, the programmer is strongly
on the list, since they may hang the TPS system
In addition, PLANC, MAC and NPL programs

shouid not ‘use- the MON. instruction directly,” but call the corresponding’
FORTRAN monitor call subroutine.

Timeout

When an application is loaded, a maximum time between TSR calls is set. If the

application runs longer than the

given time, it will be abnormally ended with the

error ‘timeout’. The timeout depends on the application priority, a low priority
giving a long timeout. Setting the maximum time to 0 will allow the application
to run for an indefinite time. The application timeout can be turned on and off

with the TTONS and TTOFF TSRs.

There is also an operator timeout. This is useful if, for example, the terminal has
been turned off or the operator does not answer for some other reason. The
operator timeout time can be changed with the TSOPT TSR.

A timeout is also used when restarting the system after roilback or recovery. If

communication with the termina
is not certain that the terminal

| is involved during restart (See Section 6.2.3),it
operator is still there or that the terminal is stiil

turned on. If no answer is received within a specified time, the application is

abnormally ended.

ND-60.111.04

2-18

ND-60.111.04

3.1

3.1.1

31

INPUT/OUTPUT PROCESSING

This chapter describes how to handle input and output processing under TPS.

The data base is controlled by the SIBAS data base management system through

standard SIBAS calls. Using SIBAS in TPS application programs is discussed in
section 3.1.

Display terminals will usually be controlled through the NORD Screen Handling
System, NSHS or FOCUS. This system can be used for most types of display

“terminals, connected both locally:-and through input/output. modules. NSHS and =~ -

FOCUS are discussed in section. 3.2.. - | o

Other input/output devices are of two types. The first type is special TPS devices
controlled by Input/Qutput Modules (IOMs) and accessed by the application
program through special Transaction Service Routines (TSRs). These are
described in section 3.3.

Finally, TPS application programs may also use standard devices and files
available to all users of the local computer system, also non-TPS users. These
devices and files are controlled directly by the application program using
standard input/output statements and SINTRAN monitor calls. Standard device
handling is discusssed in section 3.4.

SIBAS UNDER TPS

Data Definition and Manipulation

The data base in a TPS system is controlled by the SIBAS data base
management system. The data base is defined and created using the SIBAS data
definition/redefinition language DRL. This is done independently of TPS, in
background (timesharing or batch) mode.

The data base is accessed from application programs using the SIBAS data
manipulation language DML. A TPS application program uses the same SIBAS
calls to access the data base as a program running in a different environment
such as timesharing or batch. These calls are described in detail in the SIBAS
User's Manual and a summary of SIBAS DML statements is found in appendix G.
This section-only discusses special considerations which should be taken when
using SIBAS under TPS.

ND-60.111.04

3-2

3.1.2 The SIBAS Interface Routine
When an application program calls a SIBAS routine, the cail can not go directly
to SIBAS, but will go to the SIBAS interface routine (DML simulator). (See
Figure 3.1) This routine functions as a communication interface between the
user and SIBAS, sending calls from one to the other via MON SIBAS, which is a
special SIBAS communication monitor call in SINTRAN 11,
This interface routine makes: it possible to access the same SIBAS data base
from TPS programs, other RT programs and ba(_:kground;(tim_esharing and batch) T
“programs at.the same time. The interface is divided into a user-side and a SIBAS "~ [- L
side, and all SIBAS cails. will go from. the individual user. interfaces to. the -
common SIBAS interface and back again.: R :
The ability to access a TPS data base from background programs can be an aid
to program testing. The programmer must however be aware that no checkpoints
are taken of background programs and a TPS rollback or recovery operation may
cause the data base and the background program to be inconsistent.Normally
programs testing in background will have their own test version of the data base.
SiI8
Oata
base
TPS PS commune- | SI8 !
RT DML cation data
prograns simulator butter segmant
Si8
SFG
backyrouiul | backyround f?]EBE.NT sia
B ogiams UML
simulatos OPEN
si8
SiB2 SET
Othes RT communi- SiB 2
RT oML cation data -
Programs sunulator butter segment
Data
base
2
Figure 3.1: SIBAS User Interface
ND-60.111.04

3.1.3

Opening and Closing

The data base is opened and

SCLDB calls. Opening the data b
other program has it open at th
the caller to be registered as a

3-3

the Data Base

closed using the normal SOPDB, SRRLM and
ase will cause it to be “physically’” opened if no
e moment, otherwise opening it will just cause
user. Since the former involves more overhead

than the latter, it may be most convenient for the TPOPEN special application to
open the data base physically and to leave it open until the TPCLOSE application

closes it physically. Application
without causing unnecessary ov

Another factor to be considered
transaction checkpoint is taken

programs can then open and close it as needed
erhead.

in opening and closing the data base is that a
every time the data base is opened or closed.

This overhead can also be avoided if the data base is only opened once for each
user, for example the first time SIGNON is cailed. This of course is only possible

for long tasks, since the ‘user’ is

the TPT and this must not change. On the other

hand, taking a transaction or synchronised checkpoint involves more overhead if
the data base is open. If an application program has a long phase with no data
base accesses (reading input from the terminal, for example), it may be best to

close the data base and open it
taken often (See Figure 3.2).

For a detailed discussion of chec

Using More Than One

Application programs are allowe

again afterwards, if transaction checkpoints are

kpoint and restart see chapter 5.

Data Base

d to use more than one data base, but if they do

and the checkpoint/restart facility is used, an application program must only have
one data base opened at a time. (See Figure 3.3)If this rule is not followed, a

restart could cause problems, si
in current use (the one given in
inconsistent, but may not be c¢i
These problems are avoided if

nce checkpoints are only taken of the data base
SETDV). The other data base may not only be
osed properly at rollback or opened at restart.
only one data base is open at a time for each

application program (different application programs may, however, have different

data bases open at the same tim

e).

ND-60.111.04

3-4

Start

w Nrite term picture

Read input from term
take trans checkpoint

e T ——

CALL SETDV (1) i
"CALL SOPDB (data base 1} ~

Open database
Get record

--.____..._»
CALL SCLDB (data base 1)

2

Update record CALL SETDV (2)
CALL SOPDB (data base 2)

mO!’E\>
uDdaty

CALL SCLDB (data base 2}
Close data base

N

processing?

Terminate

Figure 3.2 Database Open-Close Figure 3.3 Using more than one Database

ND-60.111.04

3.1.6

3-5

SIBAS in ND-500 Muliti-CPU TPS

In ND-800 multi-CPU TPS, SIBAS process(es) may run in both the ND-100 and
the ND-500. Applications running in either CPU may call any SIBAS-process, the
SIBAS device number identifies the SIBAS-process, e.g. SIBAS-number 0 may
run in the ND-100 and SIBAS No. 1 and No. 2 in the ND-500. Apart from the
SIBAS device number, there are no other differences in calling SIBAS on another
machine from the application’s point of view. Note that when calling SIBAS on
another machine than where the application is running (E.g. ND-100 -~ ND-500),

~ you get a substantiai increase in system overhead. ‘Consqlt the SIBAS User's.
‘Manual: {ND-60:127). for further: information on: overhead. and on how to .call.

SIB-DML from applications running on. the ND-500.

Restricted SIBAS Calls

Certain SIBAS functions are not controlled by user application programs, but by
special applications called by TPS when these functions are required, (See
Section 6.4). These functions are synchronised checkpoint, rollback and recovery
and they are controlled by the CHECKPOINT, ROLLBACK and RECOVER special
applications respectively.

Since checkpoint/rollback/recovery affects the whole TPS system, SIBAS
routines for these functions must not be called by user application programs.
This holds also for logging routines such as initiating the log files and turning the
routine log on and off during recovery.

The special applictions aiso control the state SIBAS is in at any time and routines

that change the state must therefore not be called from user application
programs.

Other SIBAS routines which shou!d be used with care are BSEQU and ESEQU
since these are used in a special way by TPS.

The reason for this is that when recovery is done, SIBAS will reprocess ail cails
from the last synchronized checkpoint to the end of the last critical sequence. At
the same time, TPS will restore transactions to the last transaction checkpoint. If
the transactions are to continue, these two points must be the same. To achieve
this, the transaction checkpoint routine makes use of BSEQU and ESEQU.
However, if recovery with automatic transaction restart is not used, user
application programs may call TBSEQ and TESEQ. (See Appendix H.) This is ailso
valid if transaction checkpoints are not used.

The restricted SIBAS calls are shown in figure 3.4.

ND-60.111.04

Checkboint/rolIback/recovery

GCHPO
SCHPO

Logging
INLOG

Status

START
STOPS

Miscellaneous

RESIB
RELSI
SABOR

Figure 3.4: Restricted SIBAS Calls

3-6

SCROLL
SREPR

ONLOG

SRUN
SPAUS
SRECO

CHCOM
SiBIO
STRLG

ND-60

.111.04

SICON

OFLOG

SFINI
STREP
SPASS

RBLAN
SBLAN
ZTRB

3.2

3.2.1

3.2.2

3.2.21

NSHS AND FOCUS U

NDER TPS

Handling Display Terminals

Display terminals can be contro

Hled through the NORD Screen Handling System

(NSHS) or the FOCUS Screen Handling System. It is of course possible to write

in section 3.4), but NSHS or FQO

. 'to-and read from display terminals’ using: the standard [/0 facilities (as discussed -~ v i oE el

CUS provide more advanced facilities for screen

handling. In the ND500, only FOCUS ought to be used, or you will get a great

amount of system overhead.

The NSHS System

NSHS provides facilities for picture definition with leading texts and data fields,

various fieid types, input ‘con
for standard terminals and

(See Figure 3.5). The NSHS ca
type has its own version of NS}
described under loading applica

Defining and Using Pictur

trol,
some

cursor control etc. NSHS can be used

terminals controlled by /0 modules
lls are the same for both types. However, each
1S and the correct version must be used. This is
tions.

es

Pictures are defined using the NORD screen definition system. This is a
background program which is run as a SINTRAN timesharing program or a batch
job, not as a TPS program. Defining pictures is discussed in section 7.7.

After a picture has been defined, it can be used by a TPS application program
via calls to the NORD screen library system. These calls are listed in appendix F.

For a complete discussion of th

e screen definition system and the screen library

system, see the NORD Screen Handling System Manual.

ND-60.111.04

3.2.2.2

- fallure. - L0 N

3-8

Q¢QcfQCf and Restart

Control Q (pressing the control and t

he Q keys simultaneously) 3 times in a row

has a special function in screen handling. It will clear the screen and write out
the latest picture and any input to the latest RFLDS call. If input from one picture
is read with several RFLDS calls, input to previous RFLDS calls is not shown,
since it has already been sent to the application program.

This Q%Q°Q° function is used normally to restore a picture if, for example, the

terminal is turned off by mistake or

if the picture disappears because of power

Q®QCQC is used by TPS in connection with system restart (See Section 5.3.2),
in order to restore the screen picture, which may have been lost when the

system was down, and to position th

e cursor correctly. The terminal operator is

instructed by the RESTART application to press Q°Q°Q°. When he does so, the
latest picture and any input to the latest RFLDS will be restored. Input to

previous RFLDS, however, which has

already been processed by the application

program, will not be restored. This may cause some confusion for the terminal
operator as to what has been registered, even though the cursor will be
positioned properly. One way to avoid this situation is to read all input from one
picture with a single RFLDS call if this can be fitted to the program logic.

ND-60.111.04

APPY,

CALLWRPTD

NSHS

Write picture

\

\

LOCAL TERMINALS

Figu)g 3.5.A: NSHS for Local and Spec

onscreen <+ |

3-9

picture
files

~fal Terminals

ND-60.111.04

APPL

CALLWRPTD

NSHS

Send picture
in internai
message format

Message { routing

Route
picture to IOM

IOM

Write picture
on screen

NETWORK TERMINALS

3.2.3

3.2.3.1

"¢ Not.yet implemerited..

3-10

FOCUS Level 1

FOCUS Level 1 is a high level screen h

andling system that can be used to control

focal or remote asynchronous terminals or synchronous (buffered) terminals

using ISO 1745 or 3270° as line pro
system are the same for locally conn

cedure. The calls to the screen handling
ected terminals and for remote terminals.

The communication is carried out by the TPS system which establishes a session

between the application’s TPT and
"FCINITE” with specific parameters.

Defining and Using Forms

the remote FOCUS process, and calls

The definition of forms (pictures) is done using the FOCUS-DEFINE system. This
is a background program which is run as a SINTRAN timesharing program, not

as a TPS-program. Defining pictures is

discussed in Chapter 7.8.

After a picture is defined, it can be used by a TPS application program via calls

to the FOCUS library system. These ca
description of the FOCUS screen +
Handling System manual.

lls are listed in Appendix F. For a complete
andling system, see the FOCUS Screen

ND-60.111.04

3-1

3.2.3.2 Local or Remote Asynchronous Terminals

If the load of the system becomes too big, the processing part of the screen
handling can be distributed to one or several Front End CPUs (See Below).

cPu

A

Applications
+ FOCUS

APM

i

{
Applications \ \7! FE
+Communication N {

Library/Call Interface N
Processing

Part of FOCUS

Figure 3.58: FOCUS on One or Several CPUs

Those terminals that are to be used on a FE CPU are defined in the user
configuration (See chapter 4.2.1.6 in the TPS System Supervisor's Guide).

For each terminal the logical device number, terminal type and CPU-number is
defined. This information is sent to the FE CPU by the SIGNON special
application when establishing a session between the local application and the
remote CPU process.

ND-60.111.04

3.2.3.3

3.2.34

- use.. . , o

3-12

Synchronous/Buffered Terminals Using FOCUS

A special version of FOCUS is developed for buffered terminals using

1/0-modules.

The calls to FOCUS are the same, but some more calls are added to enable use
of the special features of these terminals, such as set high/low intensity and
lock/unlock fields. The FOCUS calls operating on just one field are not relevant
for these terminal types. The forms must be compiled by a post processor before:

ND-100 — ND-500 Incompatibi

ities in FOCUS

Application program using FOCUS in the ND-500 cannot switch (using the

TSWAP TSR-routine) to a new applica

tion in ND-100 and continue to use FOCUS

with the FOCUS-initiation set by the previous application in ND-500 and vice
versa. The new application must then call ‘FCINITE' as the first call to FOCUS.
The FOCUS internal data format is different in the ND-100 and the ND-500 due to
the difference in word-length of the two machines.

ND-60

111.04

3.3

3-13

SPECIAL TPS DEVICES

Special TPS devices are devices that are controlied by |/O modules (I0Ms). The

main use for IOMs is in connect
they may also be used for any
the application.

The IOM does the actual read

internal TPS message format a
message routing. system. Data f

on with networks and distributed processing, but
other devices that are not controlled directly by

ng and writing on the device according to the

. protocol required by the device. After being read, data is transformed to. the

nd sent to the application program via the TPS
rom the application program to the device is sent

to the 10M in the internal protocol and written on the device by the IOM in the

device format.

All handling of special message

protocols, formatting, unformatting and errors is

done by the IOM. The application program uses a set of simple calls to
communicate with devices belonging to this group (See Figure 3.6). Note that

some terminals controiled by
program through NSHS calls. U

In addition to the TSR routines
TSRs can be used to broadcas
IOM. These TSRs are described

Input/output modules are not a
of different types of devices t
IOMs have been written for

acquired as TPS options.

{OMs may be accessed from the application
sing NSHS is discussed in section 3.2.

described in this chapter, the TBRDC and TTEXT
t a message to one or all units controlied by an
in chapter 4.

part of the default TPS system, since the number
hey can handle is practically unlimited. Several
the most common devices and these can be

TSOPN

Open a session with device or application program

TSCLO

Close the session

TSEST

Read session status information

TSMSG

Send a message to the session partner

TRMSG

Read a message from the session partner

Figure 3.6:

Communication TSRs for Special TPS Devices

ND-60.111.04

3.3.1

3-14

Session Request from a [

The connection between a special T
called a session. In order to establist
from one of them.

A session request from a device will
starting of a transaction. The steps in

'~ —. the device sends a special mess

Jevice

PS device and an application program is
this connection, a session requestis sent

result in the allocation of a TPT and the
accomplishing this are {See Figure 3.7A):

age to the IOM requéstihg a session

— the IOM sends a session request to the TCM with the application name and
the logical device unit as parameters =~ R

— the TCM allocates a free TPT to
on to the TPT

— the TPT registers the logical

the session and sends the session request

unit as session partner, sends a session

response back to the IOM and starts the application program

— the IOM registers the session response and connects the address of the

TPT with the device unit

As long as the session lasts, the IOM

will send messages from that device to the

correct TPT and the TPT will send messages from the application program to the

device via the |IOM. The device a

nd the application program are session

partners. The application program communicates with its session partner through
the read-message and send-message TSR routines, the device communicates

through the IOM. The communication

mode is half-duplex.

Note that up to 2000 bytes of data may be sent with the session request. When
the application program is started, this data will be placed at the beginning of
the task common data area. (See section 7.1 for a discussion of data areas.)

ND-60.111.04

3-15

TPT 1 APPL. 1
: oM
\ A UNIT 2
™ UNIT 1 -rpm1
\ TPT 2 APP] 2
uniT2 | TR P
\J UNIT 3
UNIT3 | TPT2
; TPT 3 ‘ APPL. 3
\J UNIT 1

Figure 3.7A: Device-Application

TPT 1 APPL 1
TPT 3
TPT 2 APPL. 2
—_— e e L luNiT
TPT3 APPL. 3
TOT 1
TPT 4 APPL. 4
—_—— e |UNIT 2

Figure 3.7B: Application-Application

ND-60.111.04

3.3.2

. €ALL 'TSOPN’. USING <module>

3-16

TSOPN — The Open - Session TSR

An application pragram is only allowed to have one session partner at a time. If
it has no session partner, it may establish a session. This session may be to a
device controlled by an IOM, but it does not have to be; it could be to another

application program. It could also be
another TPS system (see below).

A session is established from an appl

<more> <status>.
CALL TSOPN (<module>, <sub-a
| <status>) '

Within a single TPS system, the sub
the session partner, either a device o
identification of the module contro!
application program.

Example of TSOPN to applicat

MOVE 2 TO MOD-ADD-TYPE.
MOVE 4 TO MOD-ADD-SIZE.
MOVE °TCM2° TO MOD-NAME.
MOVE 1 TO APPL-ADD.TYPE.
MOVE 2 TO APPL-ADD-SIZE.
MOVE 22 TO APPL-NUMBER.
MOVE 2000 TO REC-LENGTH.
MOVE 1 TO MORE.
CALL “TSOPN’ USING MODUL
REC-L
IF STATUS-CODE NOT = O G

Example of TSOPN to applicat

DIMENSION IMOD(4),TAPPL(
CHARACTER TCM*4
EQUIVALENCE (TCM,IMOD(3)

IMOD(1)=2

IMOD(2) =4

TCM= “TCM1”~

TAPPL(1)=1

TAPPL(2)=2

IAPPL(3)=16

CALL TSOPN(IMOD,IAPPL,O,

> to a device or an application program in

cation program with the TS_OPN "TSR.

< sub-address> = <record> <size>

ddress>, <record>, <size>, <more>,

-address parameter is the identification of
r an application program. The module is the
ing the unit, an IOM if device, a TCM if

ion program - COBOL

addr type is char string
length = 4 bytes
module is ‘TCM2~
sub-addr is appl nr
length = 2 bytes
unit is appl nr 22
2000 bytes of data
and more to follow
open the session

E APPLICATION DATA-REC

ENGTH MORE STATUS-CODE.

0 TO ERR-ROUTINE. check return status

ion program - FORTRAN
3)
)

addr type is char string

length = U4 bytes

module is “TCM1~

sub-addr is appl nr

length = 2 bytes (1 word)

unit is appl nr 16
0,0,ISTAT) open the session

IF (ISTAT.NE.O) GO TO error routine check return status

ND-60.111.04

3-17

Example of TSOPN tc device - COBOL

MOVE 2 TO MOD-ADD-TYPE. addr type is a character string
MOVE 4 TO MOD-ADD-SIZE. length=4 bytes

MOVE “SX25° TO MOD-NAME. module is X.25 I/0 module

MOVE 3 TO SUB-ADD-TYPE. sub-addr is in native mode for SX25
MOVE 12 TO SUB-ADD-SIZE. length=12 bytes

MOVE X25-NUMBER TO SUB-ADD-NAME. unit is X.25 number
o open. the session S A
~ CALL °TSOPN” USING MODULE SUB-ADDR ZERO ZERO ZERO STATUS-CODE. T
IF. STATUS-CODE NOT = O GO TO ERR-ROUTINE. check return status . - .. °

Example of TSOPN to device - FORTRAN

DIMENSION IMOD(3),IUNIT(3)
CHARACTER IREC*80

IMOD(1)=1 addr type is the TPS module nr
IMOD(2)=2 length=2 bytes (1 word)
IMOD(3)=22B TPS module nr of IBM3270 emulator
IUNIT(1)=1 sub-addr is the unit nr
IUNIT(2)=2 length=2 bytes (1 word)
TIUNIT(3)=20 unit is channel nr 20

open the session and send 80 bytes
CALL TSOPN(IMOD,IUNIT,IREC,80,0 s ISTAT) of data

IF (ISTAT.NE.O) GO TO error routine check return status

If the session is with a device or application program in another TPS system, the
moduie parameter will be an 1OM controlling intersystem communication. Further
addressing is IOM dependent and will be contained in the sub-address and/or
data record.

ND-60.111.04

3.3.3

3-18

Session Request from an Application

A session request to a device in the same TPS system will cause the device (if it
is free} to be allocated to the application program in the same type of session as
described above. The session is set up as follows (See Figure 3.7A):

— the application program calls TSOPN with the |OM and the device unit as

parameters

-~ the TSOPN TSR sends a session ll”équeis’t to the 'OM

— the IOM registers the TPT as se
a session response to the TPT

— the TPT registers the unit as se

program
The device and the application progra
An application program can also es
program. The second application wil

follows (Sge Figure 3.7B):

— the first application program (t
the new application number as

—_ the TSOPN TSR sends a sessic
— the TCM allocates a free TPT (T

— TPTC registers TPTA as session
and starts its application progra

— TPTA registers TPTC as sessi
program.

ssion partner for that device unit and sends

ssion partner and returns to the application

m can now communicate as above.

tablish a session with another application
be started and the session established as
ask TPTA} calls TSOPN with the TCM and
parameters

on request to the TCM

PTC) and sends the session request on to it

partner, sends a session response to TPTA
m

on partner and returns to its application

The two application programs run concurrently and communicate through the
send-message and read-message TSRs. They should be synchronised by using

the 'more’ parameter.

Sessions with programs and devices
way by the application program, t

in other systems are requested in the same
hrough the TSOPN TSR, but it may be

necessary to specify some addressing information in the data record.

ND

60.111.04

TSOPN for a session in another 1

Example

DIMENSION IMOD(3),IU
CHARACTER TCMX*l4

3-19

TPS system may look like this:

NIT(3),IBUF(7)

EQUIVALENCE (TCMX,IBUF(3))

IMOD(1)=1

IMOD(2)=1

IMOD(3)=17 intersystem IOM = X.25
TUNIT(1)=1

IUNIT(2)=1

IUNIT(3)=2 channel 2

IBUF(1)=1 additional addr info in IBUF
IBUF(2)=20000B TCMO

IBUF(3)=12 appl 12

CALL TSOPN(IMOD,IUNIT,IBUF,6,0,IST)

IF (IST.NE.O) GO TO

ERROR

For detailed information on establishing sessions, see the description of the

particular IOM being used.

Figure 3.8A shows a session be
computer system. Figure 3.8B s

TPS systems.
IOM

tween a TPS application program and another
hows one between application programs in two

TPTA APPL.

TPS Chan.B

TPTA Chan.8

_<>

Figure 3.8A: Application-Compu

S I i W N e i W W N W W A

B N o N W Wl P P Vo U, W

Chan,
s

ANOTHER COMPUTER
ter
10M1 TPTA APPL1
—end

10M2

$§

TPTH APPL2

TPS

‘JI Chan.C]

TPTB] 1 Chan '('t

Figure 3.88: Appiication-Applica

SESSIONS BETWEEN TWO TPS

N

tion
SYSTEMS

\D-60.111.04

3.34

3-20

TSCLO - The Close Session TSR

A session may be broken by either of the session partners by sending a
session-finished message to the partner. This is done by the application program

with the close-session TSR.

CALL 'TSCLO" USING <status >.
CALL TSCLO { <status >)

-Examples

CALL °TSCLO” USING STATUS-CODE. , o
IF STATUS-CODE NOT = 0 GO TO SESSION-NOT-CLOSED

CALL TSCLO(ISTAT)

IF (ISTAT.NE.Q) GO TO session-not-closed

This will cause the following to happen:

— a finish-session message will be

sent to the IOM or TCM

— the IOM will free the device and send a session-finished message to the

TPT
or

— the TCM will send a session-finished message to the other TPT (but it will

not be freed)

- the TPT will return to the application program

Note that sessions will be automati
completely and the TPT is freed (but
or return to SIGNON or SELECT).

cally broken when transactions terminate
not when they switch application programs

ND-60.111.04

3-21

3.3.5 TSEST - The Session Status TSR

If the application program does notw if it has a session if it has reason to believe
that a session may have been broken, or if it wants information anout the current
session, the read-session-status TSR can be used. The TSR is used mainly by the

RESTART special application, but is also available to user application programs
(See Figure 3.9).

. CALL ‘'TSEST USING <record>.
~ CALL TSEST { <record>]

Examples
CALL “TSEST USING SESSION-INFO-REC.

DIMENSION IREC(20)
CALL TSEST(IREC)

1 Session state

2 Current direction

3 No. of input messages

4 Time for latest input
message {year, month, day,
hour, minute, second, BTU)

11 No. of output messages

12 | Time for latest output
message

19| Session partner-module

20 | Session partner-unit Figure 3.9: Session Information

ND-60.111.04

3.3.6

TSMSG - The Send-Mess

When an application program wants
prepare an array/record in working s
send-message TSR:

CALL 'TSMSG’ USING <record > <
CALL TSMSG { <record > , <size >

Example -~ COBOL

MOVE ’MESSAGE TO SESSION PA!

MOVE 26 TO MESSAGE-SIZE.

MOVE O TO MORE.

CALL "TSMSG” USING MESSAGE-T
MESSAGE-SIZE M(

IF STATUS-CODE NOT = 0 GO TC

Example - FORTRAN

DIMENSION ITEXT(1000)
CHARACTER CTEXT®*2000
EQUIVALENCE (ITEXT(1),CTEXT)

CTEXT= "MESSAGE TO SESSION PA
CALL TSMSG(ITEXT,26 ,0,ISTAT)
IF (ISTAT.NE.O) GO TO error

The message will be copied from wo
the session partner in the form of a
immediately to the application progra
session partner.

N

age TSR

to send data to the session partner, it will
torage and send it to the partner with the

size > <more > <status>.
, <more > , <status >)

RTNER” TO MESSAGE-TEXT.

[EXT
JRE STATUS CODE.
) ERR-ROUTINE.

to follow

message defined as array

\RTNER *

routine check return status

rking storage to a buffer area and sent to
data message. The TSR will then return
m without waiting for an answer from the

Note that there is a flag, the ‘more’ flag, that can be used to indicate whether
the application program intends to send more data before expecting an answer.
The session partner can then test this flag when the data is read with the read

message TSR. If a message in one di

rection is to be followed by another in the

same direction, the more bit is set. For the last message, the more bit will be
cleared. In the case of read-message, this means that if the bit is set the
application program should cail read-message again to get the next mnessage

before an answer is sent. In the case

of send-message, the application prograrn

will set the bit if a new message is going to be sent before waiting for an

answer.

ND-60.111.04 -

send message (26 bytes), no more

check return status

message defined as character string

send message(26 bytes),no more to follow

3.3.7

'Example - COBOL

TRMSG - The Read Me

When the application program wa
will call the read-message TSR:

3-23

ssage TSR

nts to receive data from the session partner, it

CALL 'TRMSG’ USING <record > <size > <more > <status>.

CALL TRMSG { <record > , <siz

MOVE 100 TO MESSAGE-SIZE.

CALL °TRMSG” USING

MESSAGE~TEXT MES
IF STATUS-CODE NOT =
IF MORE = 0 GO TO LAS

Example - FORTRAN

DIMENSION ITEXT(50)
CHARACTER CTEXT#*100
EQUIVALENCE (ITEXT(1)

ISIZE=100

CALL TRMSG(ITEXT,ISIZ
IF (ISTAT.NE.O) GO TO
IF (MORE.EQ.0) GO TO

e >, <more > , <status >)

max length 100 bytes

read message

SAGE-3SIZE MORE STATUS-CODE. : -
0 GO TO ERR-ROUTINE. check return status
T-INPUT-MSG. check for more input

message area defined as array
message area defined as

s CTEXT) character string

max length 100 bytes
E,MORE,ISTAT) read message

error routine check return status
last input message check for more input

When this TSR is called, the TPT will see if any message has come from the
session partner. If it has, it will copy the message to the record area in working

storage and return to the application program. If none has come yet, the TPT will
wait until a message arrives.

ND-60.111.04

3.3.8

3.3.9

. The packet size set with. this TSR w

3-24

TPASZ — The Set Packet

Session partners exchange messages

Size TSR

which in turn are divided into packets by

TPS. This TSR sets the size of the packets.

CALL 'TPASZ USING <packet size>

<status>.

CALL TPASZ (< packet size >, <status>)

I"only be used for this: transaction: If the . -

transaction does not set the packet size, the default size at system generation

will be used.

The maximum packet size allowed is 2047.

Examples

CALL °TPASZ” USING PACKET-SIZE STATUS-CODE

CALL TPASZ(2000,ISTAT)

Restart

If a system failure occurs, the system can be restarted again with rollback or
recovery (See Chapter 5). After a system restart, some sessions may be intact
while others may be broken. Sessions between two application ‘programs in the

same system will probably be intact,

since the application programs have both

been restarted at their checkpoints. IOMs, however, do not take checkpoints and
therefore cannot be rolled back. In addition they may have been reloaded and
lost all session information, or connections may have been broken externally if

the system was down for any length q

f time.

The RESTART application may try to restore broken sessions for transactions
with restart at checkpoint (see section 5.3.2.2) and it should break sessions for
other types of transactions. The special TSR TSEST (read-session-status) is

available for this. It can also use TSQ
therefore be intact when the applica
restart.

PN to create a new session. Sessions may
tion program regains control after system

The function of checking and restoring broken sessions in the RESTART

application must be programmed by 1
only restores connections with SIBAS

ND-6

he user. The standard version of RESTART
and NSHS.

30.111.04

3.3.10

3.3.10.1

“— IBM3270:CU for emulating

Available Input/Outpu

The input/output modules that ar

3-25

t Modules

e available at present are

- ISO1745 for communicating with terminals using the 1SO-1745 protocol

(STANSAAB Alfaskop 3500
—_ X25LAPB for communicatin

terminals)
g with other systems using the X.25 protocol

— IBM3270-HOST for communicating with terminals on a control unit using

the 1BM-3270 protocol, i.e.

some other equipment, i.e.
A brief description of how to pro

more detail in the TPS System S

X25LAPB

The X25LAPB module can be use

the NORD CPU communicates with the 3270s
an IBM 3270 Control Unit communicating with
the NORD CPU /s a 3270

gram them is given here. They are discussed in '
ipervisor's Guide.

d for communication between two or more TPS

systems or between a TPS system and another TP monitor using the X.25
communications protocol. For example, it could be used for communication

between a NORD machine with
illustrates two possible X.25 conf

TPS and a CENSOR 932 machine. Figure 3.10
gurations.

The communication protocol consists of 4 levels. Levels 1 and 2 correspond to

the two lowest levels of X.25. Le

vel 3 is a subset of X.25/3. Level 4 corresponds

to the TPS level. It is here that sessions are established, user data is transmitted,

and sessions are terminated.

ND-60.111.04

3-26

:

4
HDLC HDLC
INTERFACE LEVEL T INTERFACE
HDLC HDLC
DRIVER LEVEL 1 DRIVER
LEVEL 2|
PACKET LEVEL 23
LEVEL
COMPUTER A COMPUTER B
Computer - Computer
Computer C
> T zZ T
= <
o o =2 03
29 SN s O
<8 T S 3
m > =
B o
m

Figure 3.10: X.25 Communication

Computer

ND-60.

111.04

~ Public Network

3-27

The usual TSR routines are used to communicate with a remote partner

— TSOPN Open a session
— TSCLO Close a session
— TSMSG Send a message
— TRMSG Read a message

When calling TSOPN, the number of the communication channel must be
specified. If the specified channel is already in use, the call will return an error
status of —3, unit temporarily not available. Usually in a 2-system cbnﬁguration
one system will use even numbers in TSOPN, the other one odd numbers.

In addition, the TSOPN call must specify the session partner, i.e. the TCM
number and application number. This is given at the beginning of the data record
sent with the TSOPN call. User data can also be sent with TSOPN, but the size is
limited to the packet size that can be sent over the line (usually 128 or 256 bytes).

The application that is started up must reply with a data message (sent with
TSMSG). This message may be empty (dummy reply).

ND-60.111.04

Example

1. The Application Setting v

SO0

aaa

aaon oMo Ne]

@]

o NeoNe]

. IMODL(1)=t1 - .
- IMODL(2)=1

’ Identify channel number

3-28

PROGRAM APOXX,YY

Identify ¥X.25 I/0 module
IMODL(3)=17

IUNIT(1)=1
IUNIT(2)=1
TIUNIT(3)=2

Identify session partner
TARR(1) =1
IARR(2)=20000B
IARR(3)=12

Open the session

1p the Connection

TPS module number

channel number

TCMO
appl number

CALL TSOPN(IMODL,IUNIT,IARR,6,0,ISTAT)

Read reply from partner
CALL TRMSG(.eeevoaseaa)
Dialogue

CALL TRMSG/TSMSG

Close the session

CALL TSCLO

END

ND-60

.111.04

2. The Started Applicati

oo Ne]

PROGRAM APOZZ,XX

3

Send reply message

CALL TSMSG(.euvuuso.)

-Dialogue

CALL TRMSG/TSMSG

END

N

3-29

ND-60.111.04

3.3.10.2

3-3(

IBM—3270—CU

The 1BM—3270—CU module emulat
machine with TPS and the IBM—327(
machine and look like terminals using

[BM—3270—CU was developed as p
form it is not a completely general |

~satisfies the. requirements for th
‘simplifications and special features. su

— ASCH/EBCDIC conversion:
. All messages to the IBM mact

before being sent and all messa
ASCIl. As a consequence of

es an |BM—3270 Control Unit. A NORD
—CU module can be connected to an I1BM
the IBM 3270 communication protocol.

art of the Nortrygd project. In its present
oroduct, but a communication module that

e Nortrygd project. It -contains. both-

ch asr

vine are converted from ASCII to. EBCDIC.. -

ges received are converted from EBCDIC to

this, it is impossible to send or receive

messages containing IBM buffer control orders such as SBA, SF, EUA,

etc., because they are followed by addresses that should not be converted.
— Generation of "ENTER"' and "cursor address’”:

The present version of IBM3270—CU will only send the type of message

resulting from pressing the ENTER key. Pressing function keys cannot be

simulated, nor can different curs

— System and operator messages:
These messages from the IBM
console.

— Messages from unused channels:

Messages received on channels
— Long messages from TPS to IBN
IBM—3270—CU can send mes
received from TPS as one pa

or addresses.
machine are routed to the TPS operator’s

]
not “in session’’ are ignored
A:
sages of any length to IBM if they are
cket, but messages that are divided into

several packets cannot be sent as one message

— Session request from IBM:

This is not possible — the NORD machine must initiate the session

Application programs communicate with the IBM machine with the usual session

TSR routines.

— TSOPN Open a session
— TSCLO Close a session
— TSMSG Send a message
- TRMSG Read a message

The TSOPN call specifies the module
1). In addition, the first data message

ND-60.

number (18) and the unit number (always
must be sent in TSOPN.

11.04

3-31

IBM-—3270—CU can receive messages of any length from IBM and send them on
to TPS modules divided into several packets if necessary. However, it is not
possible to receive several packets from TPS modules and put them together

There is no individual tfmeout {

into one message to be sent to

IBM.

Messages received from IBM will be sent to the session partner only if the first

u’u

character is . All other mes
routed to the TPS operator’s co

the IBM machine stops sendin
“"COMMUNICATION DEAD" w
time, this will happen 35 sec
received from IBM. Upon recei
the message "COMMUNICATIO

A session request (TSOPN) giv
session response.

Example

IMOD(1)=1
IMOD(2) =1
IMOD(3)=18
TUNIT(1)=1
TUNIT(2)=1
TUNIT(3)=1

The first message t

aan

ILEN=number of byte

sages are considered system messages and are

nsole.

or a session, but a timeout for the whole line. If
g. all sessions will be broken and the message

ritten on the operator's console. At the present)

onds after the last poll or message has been
pt of the first poll after the line has been down,
N RUNNING" will be written on the console.

en when the line is down will result in a negative

o IBM is put into IMESS

s in IMESS

CALL TSOPEN(IMOD,IUNIT,IMESS,ILEN,O0,ISTAT)

IF (ISTAT.NE.O)THEN

°

CALL TRMSG(IMESS,IL

C Dialogue with TSMSG
CALL TSMSG/TRMSG
C Done, close session

CALL TSCLO(ISTAT)

°

END

error

EN, IMORE, ISTAT)

/TRMSG

ND-60.111.04

3.3.10.3

3-32

IBM—3270—HOST

The IBM—3270—HOST module acts as a host machine to IBM—3270 terminals.
A NORD machine with TPS and this |/O module can be connected, through
synchronous modem lines, with terminals using the IBM 3270 line procedure. The
NORD machine will look like an IBM host machine to these terminals.

This module was originally made in order to use Alfaskop System 41 terminais,

.,but it can, aIso be used wnth other equnpment usmg the same Ime procedure

The IBM—-327O HOST module uses EBCDIC characters, but can use ASCII
characters instead if modifications are made to SINTRAN I},

Communication between an application program and a terminal is done through

the session TSR routines TSMSG/TRMSG.

A session will usually be set up by the terminal operator. This is done by
pressing SEND with a blank screen.. A session will be set up between the
terminal and a transaction processing task (TPT) belonging to TCMO, and the
SIGNON application will be started. This must be a special non-NSHS version.

If the screen is not blank when SEND is pressed, it will be blanked and SEND
must be pressed again.

if another TCM than TCMO is wanted, a special version of |BM—3270-—HOST
must be used.

An application program can also set up a session. This is done with TSOPN,
specifying the IBM—3270—HOST module number (16) and the logical unit
number of the terminal.

After the session has been set up, data can be sent and received with TSMSG
and TRMSG. Note that every time the terminal user presses SEND, a message
will be sent to the application program and the keyboard will be locked until the

. application program sends a message back to the terminal.

Output to the printer should be sent with the TTEXT routine. It is not possible to
have a session with a printer.

The NSHS screen handling system cannot be used.

ND-60.111.04

3.3.10.4

ISO—1745—~HOST

3-33

The ISO—1745—HOST module acts as a host machine to ISO—1745 (STANSAAB
Alfascope 3500) terminals. A NORD machine with TPS and this 1/0 module can
be connected, through synchronous modem lines, with terminals using the

1SO—1745 line procedure. The N

ORD machine will be a host to these terminals.

Communication between an application program and a terminal is done through

system.

A session will usually be set

. the: session. TSR rou’tines;TSMSG_/TRMS_G'qr: with' the. NSHS, screen handling:

up by the terminal operator. This is done by

pressing - SEND with a blank screen. A session will be set up between the
terminal and a transaction processing task (TPT) belonging to TCMO, and the
SIGNON application will be started. If NSHS is not used, a special non—NSHS

version of SIGNON must be use

If the screen is not biank when
must be pressed again.

.

SEND is pressed, it will be blanked and SEND

The standard TPS version of NSHS simulates INBT/OUTBT, but uses the buffer

pool system if the terminal type

the session request comes from

If another TCM than TCMQO is
must be used.

is equal to 6. It will be set automatically to 6 if
the 1/0 module {i.e. the termiinal).

wanted, a special version of ISO—1745—-HOST

An application program can also set up a session. This is done with TSOPN,

specifying the 1S0—17456—HOC
number of the terminal.

After the session has been set
and TRMSG. Note that every ti
will be sent to the application p
application program sends a me

Output to the printer should be
have a session with a printer.

It is possible to send broadcast
not necessary then.

ST module number (i16) and the logical unit

up, data can be sent and received with TSMSG
me the terminal user presses SEND, a message
rogram and the keyboard will be locked until the
ssage back to the terminal.

sent with the TTEXT routine. It is not possible to

s to terminals using TBRDC/TTEXT. A session is

ND-60.111.04

3.4

3.4.1

. of.-the SINTRAN 1/0- monitor-call.
" “programs. COBOL programs may alsc

- _recommended in COBOL.

3-34

STANDARD DEVICES AN

Standard input/output devices, such a

D FILES

s card readers, magnetic tapes, paper tape

readers and punchs, spooling files and other files using the SINTRAN file system
(not SIBAS files), are controlled using the standard I/O statements available in

the programming languages used.

In addition, FORTRAN, PLANC, MAC

of them {most notably the OPEN mon

and NPL programs may call many (not all)

subroutines available to RT . (real-time} . - e
use these monitor call routines; but some

itor call) cannot be called directly because

of incompatible character string parameters. Monitor call 1/O is therefore not

This section discusses the most common I/O facilities available to TPS
application programs. Appendix E contains a complete list of all monitor call

routines available. For a detailed desc
11} Reference Manual.

ription of these routines, see the SINTRAN

Allocating Standard Devices and Files

Since TPS application programs are r

files cannot be allocated ahead of time as for batch jobs. When a program needs-

a device or file, it acquires it through
(reserve) monitor call.

OPEN must be used for files, since th

un in a real-time environment, devices and

either the OPEN statement or the RESRV

is call contains file oriented parameters. In

FORTRAN, PLANC, NPL and MAC programs, RESRV will normally be used for
devices since this is faster and device oriented. However, RESRV requires the
SINTRAN device number as a parameter, and this may be unknown. If the device
has been defined as a peripheral file (See SINTRAN Users’s, Guide, Periferal
Devices), OPEN can be used with the name of the peripheral file as file name.

All devices and files in COBOL programs are allocated in the standard COBOL
manner, with file definition (FD) entries, SELECT entries, and OPEN statements.

Note that a feature called “direct f
running in the ND-500: access mode
high disk transfer speeds between dis
overhead. Further information may ¢t
manuali, ND-60.136.

file transfer’” is available for applications
D or DC (8 or 9). This feature allows very
sk and memory with a minimum of system
e found in the ND-500 - lLoader/Monitor

ND-60.111.04

L

3-35

3.4.2 Unavailable Devices and Files

Provision should be made in the application program for unavailable devices and
files. An unavailable device or file will cause an error return from OPEN or
RESRV. This can be tested in FORTRAN or PLANC by examining the system
integer variable ERRCODE or a function value like ISTAT. Any non-zero value
indicates an error, while —1 in ISTAT indicates that a device cannot be reserved
(RESRV does not set ERRCODE) and the decimal values 69, 77, 78, 98, 107 and
110" indicate that a file. is unavailable for OPEN. (See FORTRAN Ref. Man,
Run-time Errors). S I B . ' o

COBOL programs can test for errors through the FILE STATUS entry of the
SELECT statement and the USE sentence. The file status word will be. set to ‘30’
(permanent error) if the file is unavailable. If the USE sentence is not included in

the program, the program will be abnormally terminated when a file or device is
unavailable.

RESRV has a wait/no-wait option. If the no-wait option is used and the device is
not available, the RESRV routine will return to the program immediately with —1
in ISTAT. However, the program can choose instead to wait until it is available.
CPEN has no such option; return will always be immediate. A wait loop using the
HOLD routine may be programmed to wait until the device is available.

Example of OPEN -~ COBOL

INPUT-OUTPUT SECTION.

FILE-CONTROL. select the tape-~reader
SELECT IN-FILE ASSIGN "TAPE-READER"™ STATUS IS FSTAT.

FILE SECTION.
FD IN-FILE.
01 IN-DATA PIC X(100).

PROCEDURE DIVISION.
DECLARATIVES.
I-0-ERR SECTION.
USE AFTER ERROR PROCEDURE ON IN-FILE.
T-R-ERROR. tape-reader error
IF FSTAT NOT = “30° file unavailable?
no, something else wrong, stop
CALL °‘TSTOP” USING ABEND-CODE-1.
CALL ‘HOLD® USING TEN TWO. yes, wait 10 seconds
GO TO T-R-OPEN. and try again
END DECLARATIVES.

.

OPEN~T-R.
OPEN INPUT IN-FILE. open the tape-reader file

ND-60.111.04

3-36

Example of OPEN - FORTRAN

10

20

OPEN(FILE= "MYFILE:DATA

“,UNI

IF (ERRCODE.EQ.69 OR ERRCODE
*OR ERRCODE.EQ.98 OR ERRCODE.
CALL HOLD(10,2)

GO TO 10 -

“ELSE o ‘

CALL OERMS(ERRCODE)
ENDIF

Example of RESRV - FORTRAN

10

20

30

INTEGER RESRV,INCH

CHARACTER TEXT1%#100,TEXT2%¥100

ISTAT=RESRV(2,0,1)

IF (ISTAT.NE.O) GO TO 30
CALL TWMSG(TEXT1)
ICHAR=INCH(2)

IF (ERRCODE.NE.O) GO TO error routine

CALL TWMSG(TEXT2)
ISTAT=RESRV(2.0.0)
IF (ISTAT.EQ.0) GO TO 20

CALL TSTOP(ICODE)

ND-60.1

open the file
T=IFILNR, ACCESS= WX ,ERR=20)
file opened - continue

file not opened - test ERRCODE
.EQ.77 OR ERRCODE.EQ.78
£Q.109 CR ERRCODE.EQ.110) THEN
file unavailable, wait 10 seconds
- and try again- : S
else something else wrong
stop with QERMS error message

reserve device nr 2 (tape-reader)

check the status

OK, tell operator to put tape in reader
read a byte

check ERRCODE

device not reserved, tell operator
reserve again with wait flag

check again

still not reserved, something else wrong
stop with TPS error message

11.04

3.4.3

Accessing Standard D

There are various ways of access
can be divided into 2 main types:

—_ standard 1/0O statements

- special SINTRAN monitor calls

3-37

evices and Files

ing devices and files, (See figure 3.11), but they

FORTRAN standard I/O statements are READ and WRITE for formatted and
binary I/0, and INPUT and QUTPUT for free format 1/0. These statements can be

used after both OPEN and RESRV.

COBOL standard {/O statements are READ, WRITE and REWRITE. ACCEPT,
DISPLAY and EXHIBIT may be used for terminal 1/0.

SINTRAN monitor call 1/0O can be used in FORTRAN, NPL and MAC programs.
The most common monitor calls are INCH and QUTCH for character 1/0 and
RFILE and WFILE for block I/Q. INSTR is not allowed under TPS (but QUTST is).
Monitor call 1/0 can be used after both OPEN and RESRV. Note that calling the
ordinary SINTRAN Il I/O monitor calls from the ND-500, gives a substantial
amount of system overhead {ND-100 CPU-load). Some speciai /0 monitor calls,
DV INST (MON 503) and DV QUTS (MON 504), from ND-500 applications should

be used.

Application programs must remember to close files before terminating since this

is not done automaticaily as for b

A complete list of monitor calls
appendix E. For a detailed descr
monitor calls, see the SINTRAN |

ackground programs.

available to application programs is found in
ption of the functions and parameters of these
i User's Guide.

The syntax of standard 1/0 statements for FORTRAN and COBOL is found in the
respective programmer’s reference manuals.

ND-60.111.04

3.4.4

3-38

LANGUAGE TYPE ALLOCATE RELEASE ACCESS
FORTRAN FILES, OPEN CLOSE STAND. /O,
PERIF. FILES MON. CALLS
DEVICES CALL CALL STAND. 1/O,
RESRV RELES MON. CALLS
coBOL FILES, OPEN CLOSE STANDARD
DEVICES 110

Figure 3.11: Local Input/Qutput

Restart

It must be pointed out that rollback and recovery facilities are not available for
files controlled directly by the application program. [f a system restart occurs,
the contents of such files will be unpredictable. In addition, files and devices
acquired by an application program may or may not have been lost, depending
on such factors as whether SINTRAN has been restarted, whether the application
program has been reloaded, and whether files have been closed by the operator.

The RESTART application can attempt to restore resources, but even if this is
possible, problems can arise. if a sequential file is lost and allocated again,
processing will start over from the beginning, and the application programi
should therefore probably be restarted at the beginning. If printer spooling is
used, the application can continue from the middle, but output before and after
the break may go to separate spooling files. These things shouid be taken into
consideration when writing application programs, modifying the RESTART
application and deciding which restart strategy to use (See Chapter 5).

ND-60.111.04

4-1

OTHER TPS AND SINTRAN FACILITIES

Several other TPS and SINTRAN facilities are available to TPS application
programs in addition to those described in chapters 2, 3 and 5. These may be
grouped as follows:

- message handling
— . clock rou'_c_ines

— hold monitor call

- semaphores

— internal devices

These facilities are invoked either through TSR calls or SINTRAN monitor calls.
The TSR routines are described in detail in this chapter and appendix H. For a
detailed discussion of the monitor calls, see the SINTRAN User’s Guide.

With the exception of some TSRs most of the material in this chapter describes
general SINTRAN facilities. This material is included in order to make it easier for
the TPS programmer to design application programs, knowing exactly which
SINTRAN facilities are available.

Z

D-60.111.04

4.1

MESSAGE HANDLING

The message handling facilities of TPS
the operator console and broadcast
application programs.

In addition, the SINTRAN routines for

error device can be used.

Figure 4.1):

-~

5 include routines for writing messages on
ng messages to a group of devices or

writing error messages on the SINTRAN

"The TSRs and monitor calls for message handling can be grouped as follows(Seg- < < b

— TWMSG and CWMSG (write message to TPS operator)

— TBRDC and TTEXT(broadcast message to one or several units)

— TGBRD and CGBRD (get broadcasted message)

— ERMSG and QERMS (write standard SINTRAN error message and continue

or terminate)

— ERMON (write special ERMON m

essage and continue)

TWMSG (FTN) Write a message to TPS operator
CWMSG (COB/PLANC)

TBRDC Broadcast a message to one or
TTEXT several units

TGERD (FTN) Get a broadcasted message
CGBRD (COB/PLANC)

ERMSG (FTN/PLANC)

Write a standard SINTRAN message,
return to application program

QERMS (FTN/PLANC)

Write a standard SINTRAN message,
terminate the program

ERMCN
(FTN/PLANC and COB)

Write the special ERMON message,
return to application program

Figure 4.1: System Messages

ND-60.111.04

4.1.1

4-3

TWMSG and CWMSG - The Write Message to

Operator TSR

The write-message-to-operator
terminal. The message will be
TPS. This TSR has a special

incompatible character string formats.

CALL TWMSG

Examples

MOVE "MESSAGE TO OPE

' CALL: CWMSG USING ‘<text:string>."
(<text-string>)

CALL °CWMSG® USING MESSAGE-TEXT.

CHARACTER MTEXT¥*256

MTEXT= "MESSAGE TO OPERATOR” "~

CALL TWMSG(MTEXT)

EXAMPLE 4.1 TWMSG/CWMSG

The text must be terminated by an °

characters.

NC

)-60.111.04

RATOR'" TO MESSAGE-TEXT.

{apostrophe) and may not

TSR will write a text string on the operator’s
supplied with time, date and source identity by
COBOL and PLANC version, CWMSG, due to

exceed 255

4-4

TBRDC - The Broadcast Message TSR

A message can be broadcast from an application program to all terminals, all
active terminals, or a single terminal connected to an IOM. It can also be sent to
all active TPTs controlled by a TCM. :

CALL 'TBRDC' USING <module> <sub-address> <text> <units> <status>.
CALL TBRDC [<module>, <sub-address>, <text>, <units>, <status>)

Example‘- COBOL

MOVE 1 TO MOD-ADD-TYPE.
MOVE 2 TO MOD-ADD-SIZE.
MOVE 16 TO MOD-NAME. module is the STANSAAB IOM
MOVE 1 TO UNIT-ADD-TYPE.
MOVE 2 TO UNIT-ADD-SIZE.

MOVE 1 TO UNIT-NUME. unit is VDU number 1
MOVE "MESSAGE TO STANSAAB-TERMINAL-O1°" TO MESSAGE-TEXT.
CALL “TBRDC® USING broadeast to 1 terminal only

MODULE UNIT MESSAGE-TEXT TWO STATUS-CODE.
IF STATUS-CODE NOT = 0 GO TO PARM-ERROR. check return status

Example - FORTRAN

DIMENSION MOD(5),ITEXT(36) array definitions

CHARACTER MNAME®6,CTEXT#*72 character string definitions
EQUIVALENCE (MOD(3),MNAME),(ITEXT(1),CTEXT)

MOD(1)=2

MOD(2)=5

MNAME=32 module is TCMO

CTEXT= MESSAGE TO ALL ACTIVE TPTS "~
CALL TBRDC(MOD,0,ITEXT,1,ISTAT) broadcast the message to all TPTs
IF (ISTAT.NE.O) GO TO error routine check return status

The text must be terminated by an ' (apostrophe) and may not exceed 72
characters.

Messages broadcast to IOM terminals will be written on the broadcast line
(usually the bottom line).

Messages sent to TPTs can be read by the application program with the TGBRD
TSR (get broadcasted message).

ND-60.111.04

CALL TTEXT (<module>, <sut

TTEXT — The Send Te

4-5

xt Message TSR

The send text message TSR is very similar to the broadcast message TSR except

that the message can only be s

ent to a single unit and the message length in

bytes is given as a parameter instead of being indicated by an apostrophe in the

text itself.

CALL 'TTEXT USING <module> <sub-address> <text> <length>

<status>.

-address>, <text>, <length>, <status>]

No screen positioning is performed by the IOM so the message will be written
where the cursor happens to be positioned.

Messages sent to TPTs can be read by the application program with the TGBRD

TSR.

ND-60.111.04

414

4-¢

TGBRD and CGBRD - Th
TSR

.

This TSR can be used to see if a message has arrived. If it has, it will be put in

the text area indicated. The messag

e can have come from another application

program using broadcast-message (TBRDC) or it can have come from the TPS

operator using the BROADCAST com

mand or the MESSAGE-TO-UNIT command.

If the application: program wants. ta write' the message on a display tefm'inall T

using NSHS, the WMSGE or CWMS
the FCZMSGE routine may be called.

character string formats.

GE routine may be called. If using FOCUS,

" This TSR has a-special COBOL and PLANC version; CGBRD, due to incompatible

CALL 'CGBRD’ USING <text-string> <status>.
CALL TGBRD { <text-string>, <status>)

Examples

CALL "CGBRD” USING MESSAGE-TEXT STATUS~CODE. get message

IF STATUS-CODE = O

CALL ‘CWMSGE’ USING MESSAGE-TEXT. display it on screen

CHARACTER BCTEXT#*72

CALL TGBRD(BCTEXT,ISTAT

message area defined as
character string
) get message

IF (ISTAT.EQ.O0)CALL WMSGE(BCTEXT) display it on screen

The text may not exceed 72 characters. It will be terminated by an apostrophe.

This TSR should be called fairly often in systems that make use of the broadcast

facility, since this is the only way t

he message will be detected. There is no

automatic presentation of messages broadcast to TPT-controlled terminals (in
contrast to IOM-controlled terminals, where the IOM will see to it that the

message is sent out to the terminals),

Another reason for checking often is

that if a new broadcast message arrives, it

will overwrite the old message. There is just one message buffer area and no
queuing system. Therefore it is important that the message be sent to the

terminai before it is overwritten.

ND-60.111.04

e Get Broadcasted Message

415

4-7

Monitor Calls (ERMSG, QERMS, ERMON)

SINTRAN error message monitor calls can also be used by TPS application
programs. If a SINTRAN routine detects an error, it will put the error number in
the ERRCODE variable {or a function value like ISTAT); if no error, the variable
will contain 0. This can be tested and if it is non-zero, the appropriate error
message can be written on the SINTRAN error device by the ERMSG or the
QERMS monitor call. ERMSG will write the error message and return to the

- application . program, -QERMS will .write the message and terminate-.the. .

transaction.

The ERMSG and QERMS monitar calls can also be used in- connection with
standard FORTRAN /O, since these 1/Q routines also set the ERRCODE variable.
Standard COBOL I/0O, however, does not have this facility. Instead, the standard
error facilities, the FILE STATUS entry of the SELECT statement and the USE
sentence, can be used to process error conditions (See Example 3.8). ERMSG
and QERMS cannot be used here because the SINTRAN error number is not
availabie to COBOL programs.

Examples
WRITE(5,10,ERR=100) standard I/0 statement
. no error, continue main routine
100 CALL ERMSG(ERRCODE) error, call ERMSG
. continue error routine
ICHAR=INCH(IFILNR) monitor call I/0
IF (ERRCODE.NE.O) CALL QERMS(ERRCODE) if error, call QERMS, stop
. else continue

ND-60.111.04

4-8

A special user error message can be written on the SINTRAN error device using
the ERMON monitor call. An error number in the range 50-69 must be given (in
ASCII code), together with a suberror number of any value (integer). The error
message will be printed as follows:

hh.mm.ss ERROR nn IN rr AT Il USER ERRCOR SUBERROR:ss

where

(hh.mm.ss . . time when the message is printed - . . .
nn <error number>
e T"PTvidentivﬁcation
I address of error in application program
ss <suberror number>

ERMON can be cailed from both FORTRAN and COBOL programs.

Example - COBOL

01 ERROR-NR PIC XX
01 SUB-ERROR-NR COMP PIC 999.

IF DATE = 0 GO TO BAD-DATE. check for bad date

°

BAD-DATE.
MOVE “62°TO ERROR-NR.
MOVE 3 TO SUB-ERROR-NR.

CALL “ERMON” USING ERROR-NR SUB-ERROR-NR. call ERMON
. continue

Example - FORTRAN

IF (DATE.EQ.0) GO TO 100 check for bad date
100 CALL ERMON(2H62,3) bad date, call ERMON
° continue

In both cases a message of the following type will be written on the
SINTRAN error device:

11.50.03 ERROR 62 IN TPTS5 AT 5320 3:USER ERROR

ND-60.111.04

4.2

4.3

* call, specifying the new. minute

CLOCK ROUTINES

COBOL programs can use the
the calender and clock.

4-9

ACCEPT DATE/DAY/TIME statement to examine

In addition, the SINTRAN monitor calls for examining and changing the internal
clock are available to all application programs. The CLOCK routine will return the

current time/date to a 7 word ir
minutes, hours, day, month and

be adjusted relative to its cur
monitor calls (especially (UPDA

SINTRAN also has an interval ¢
basic time units since SINTRA
this current interval time. It is
LOAD buttons are pressed and

teger array containing basic time units, seconds,
yyear. The clock can be changed with the UPDAT
. 'hoi_lf, daY. month and Yearﬂ The clock can also
rent value using the CLAD.J call. The last two
T} should be used with care!

ock containing, in a double word, the number of
N was last started. The TIME routine will return
set to zero each time the MASTER CLEAR and
s incremented by 1 each basic time unit.

HOLD MONITOR CALL

The HOLD monitor call can be used to put an application program in a wait state
for a given time interval. However, the wait state will be terminated if the TPT is
started for any reason, i.e. the arrival of a checkpoint message. After the

message is processed, the appi

cation program will receive control as if the time

interval had expired, since the TPT does not know how much time was left. If it

is important that the wait state
the application program shoul
examining the clock before and
then be given if the interval has

is not terminated before the interval has expired,
d control the length of the expired interval by
after the hold routine is entered. A new hold can
not expired.

ND-60.111.04

4.4

SEMAPHORES AND INTERNAL DEVICES

TPS application programs may use s

emaphores and internal devices in the same

way as other RT programs. A semaphore is a binary variable which can have one

of two values, reserved or unreserve

d. It is reserved and released by the RESRV

and RELES monitor calls. Semaphores are discussed in the SINTRAN Real Time

Guide.

the other can then read from the
{program A reserves the output part

- accessed as normal 1/O devices. As

device. Devices are reserved and released
of the device, pragram B the input part) and

be accessed by either standard 1/0 statements or monitor calls. Internal devices
are described in the SINTRAN Real Time Guide.

ND-6

0.111.04

described in section 3.4, these devices can:. -

.:Internal devices ‘are used. for. the. exchange of data _between independent. ... -
programs.. One of them writes on the device as if it were an external device 'and =~ v %7

5.1

5-1

CHECKPOINT—~RESTART

PROTECTING THE DATABASE

An online transaction processing system should have adequate facilities for
protection of the data base. If a system failure occurs in a batch system, a
backup copy of the data base can be mounted and the whole job run once more

- without'too much inconvenience or waste of time. If a failure occurs. in an on-ling

transaction system, reentering and reprocessing the transactions may be very
inconvenient, time-consuming or even impossible.

Facilities should be- availabie to assure the integrity of the data base, to minimise
the amount of data lost and to restart the system automatically at a well-defined
point.

TPS makes use of the extensive checkpoint/restart facilities of SIBAS. These are
largely transparent to both the user and the application program, TPS itself
controlling them. Synchronised checkpoints of the whole system are taken
automatically according to the load on the system. In addition, the application
program can take individual transaction checkpoints.

If a system failure occurs, the latest transaction checkpoint can be used to
restore the system to its status at or near the point of failure (recovery). If the
data base is incorrect at this point, synchronised checkpoints can be used to
restore the system to a previous state (roliback). (See Figure 1.7.) In both
cases, those transactions which were active can be restarted automatically at the
correct point. Note that applications running on the ND-500 cannot be restarted
at a point inside an application, but may for example be restarted at the
beginning of the current application.

How often checkpoints are taken and what types of backup/restart facilities are
used are system parameters controiled by the user. He must weight the
advantages of assuring the protection of data in the data base and fast recovery
against the overhead needed to accomplish this.

The facilities in TPS for protect ng the data base from system failure can be
divided into two types, preventive facilities and restart actions (See Figure 5.1).

ND-60.111.04

5-2

LOGGING
DELAYED UPDATING

BEFORE-IMAGE LOG

s

rite updated records on a special update file

og records to be updated (before they are changed)

Wl
= ROUTINE LOG log calls to SIBAS routines
P
m -
> : .-f'
o :
et
- CHECKPOINTS
SYNCHRONIZED save checkpoint information for all transactxon tasks
L and for data base- . : e
TRANSACTION save checkpoint information for one transaction task
ROLLBACK restore data base and transaction tasks to
- synchronized checkpoint
foed
< RECOVERY rastore data base and transaction tasks to
*{}3 transaction checkpoint
&1
o
RESTART STRATEGY restart transactions according to transaction restart

strategy

Figure 5.1: Checkpoint/Restart Facilities

ND-60.111.04

5.2

5.2.1

CLCsE

PREVENTIVE FACILITI

5-3

ES

The preventive facilities of TPS consist of:

_— utility routines to take a backup copy of the data base

— facilities in SIBAS for upda

ting on a special update file (delayed updating),

logging old versions of data (before-image log), and logging SIBAS routine

calls (routine log)

— routines for taking checkpoints either automatically, by operator command

or by an application program

Most of these facilities are controlled by the TPS system itself or by the system
operator. The only facilities controiled to some extent by the application program

are checkpoints.

Backup

A backup copy of the data base i

s a complete copy of the files in the data base.

This can be done with a COPY—FILE command while SINTRAN is running, and
even while TPS is running if the data base itself is not being updated (for

example if delayed updating is us

it can also be done using a sta

ed).

nd-alone disk utility program. If a stand-alone

program is used, TPS should be closed (CLOSE-TPS) before SINTRAN is stopped
and the copy program loaded. After this type of copy is made, TPS will normally
be started again with INITIATE-TPS (See Figure 5.2).

TPS
closed

BACKUP

stop TPS

copy the data base

Figure 5.2: Taking Backup with (

start TPS

tility Program

D-60.111.04

5-4

5.2.2 Data Base Logging

SIBAS has three logging facilities available {See Figure 5.3):

- Delayed updating consists of the writing of all updated records on a special
update file instead of on the data base itself. The data base is only read,
not written on. This decreases considerably the chance that it will be
physically destroyed, it prevents bad data from being written before the
‘actual updating takes. place, and it gives - a simple_.checkppi_nt/rqllbagk'

“mechanism. - T T T e

— Before-image (BIM) logging can be used instead of delayed updating. With
this method, a page is logged on the befare-image area in the SIBAS
system realm before it is updated. The data base can then be rolled back
by copying all before-images out to the data base.

— The routine log is a sequential disk file containing a record of all calls to
SIBAS, in the order they were originally received. This file may be used to
update the data base from a backup copy or from a checkpoint without
having to rerun the application programs.

CALL SIBAS ROUT — BIM OR

\ INE RETURN

[L -] ° o
call SIBAS log routine log old record on |or write updated return
for updating call on routine B1IM log record on
log updated file
Figure 5.3: SIBAS Logging Facilities
ND-60.111.04

523

CHECKPOINT

5-5

Synchronised Checkpoints

Synchronised checkpoints are

checkpoints taken by all TPS and application

programs at the same time. When a synchronised checkpoint is taken, the
individual transactions will be halted when they reach a suitable point (normally

in a TSR). When all transactia

ns have stopped, data needed to restore both

application programs and system modules to the present state are recorded on

the checkpoint files* (See Figu

then activated to send a checkpoint call to SIBAS. SIBAS will- empty. buffer
areas, save necessary data, and, if version updating is used, save the version

table containing pointers to th
SIBAS has completed taking
automatical!y. The whole sequen

A\

et s, st e T pr—

o

re 5.4). The special application CHECKPOINT is

e latest version of all updated records. When
its checkpoint, processing will be restarted
ce should not take more than 10-20 seconds.

. w— — —— —— oor—

system

. freeze the .

write appl.
data areas
on file

5.2.3.1

e write TPS °
data areas
on file

write SIBAS .
data areas
on file

continue
processing

figure 5.4: Taking a Synchronized Checkpoint

* Note: It is not possible to resto

TTSYN - The Allow-Synct

It is possible that certain types
much longer than 10-20 secon
mentioned, the system is sync

re an application that runs on the ND-500.

wronised Checkpoint TSR

of transactions may cause a checkpoint to take
ds if the programmer does not prevent it. As

hronised by haiting transactions in TSRs. This

means that a transaction that does a lot of processing without calling a TSR

could go a long time before bei

ng stopped, especially since SIBAS calls do not

go through TSRs that allow synchronised checkpoints (all other /O calls do). To

prevent this situation, an applica
sequences without other TSR

TTSYN, that does nothing but
message has come.

CALL 'TTSYN'.
CALL TTSYN

In TPS systems with automatic
with long processing and data b
call TTSYN fairly often.

N

tion program with long processing and data base
calls than SIBAS calls can use a special TSR,
allow a checkpoint to be taken if a checkpoint

synchronised checkpoints, application programs
ase seauences without other 1/O or TSRs should

D-60.111.04

5.2.3.2

5.2.3.3

CCALLYTHSYN. -

5-6

THSYN - The Hold Synchronised Checkpoint TSR

In some situations it may be desirable to carry out a processing sequence

without allowing a checkpoint to be

taken in the middle of the sequence. An

example would be the updating of several related records in the data base. If this

sequence includes the use of calls to

other parts of the TPS system than SIBAS

alone, the sequence may be interrupted by a checkpoint. This can be prevented

by using the TTSYN TSR.

CALL THSYN

This will prevent the applicatiobyn‘ from

being trapped for a checkpoint uhti! the

application makes a call to either the TTSYN TSR or the TTRAN' TSR.

All other applications, however, will be trapped, so the whole TPS system will
eventually stop and wait for this application to complete its sequence. This TSR

should therefore be used with care.

TCHCK - The Take Synchronis

ed Checkpoint TSR

Synchronised checkpoints can be taken automatically by TPS when the load on
the system has reached a certain value. Each application has a checkpoint

weight, given when the application is

loaded into the TPS system and stored in

the application table. Every time an application terminates or switches to a new
application, its checkpoint weight is accumulated. When the sum has reached a
certain value, a checkpoint will be taken automatically.

The operator can also take a checkpoin

An application program is aiso abl

t with the CHECKPOINT TPS command.

e to initiate a synchronised checkpoint

sequence. This facility should be used with care since taking a synchronised

checkpoint involves a good deal of ov

erhead and may halt the system for many

seconds. Normally it is best to let TPS take automatic checkpoints based on the

activity in the entire system, but some
more suitable, for instance, to take

application systems may be such that it is
a synchronised checkpoint every time a

certain application program is run. This can be done from an application program

by using the TCHCK TSR.

CALL 'TCHCK' USING <scope>.
CALL TCHCK (<scope>)

Examples
CALL “TCHCK® USING ZERO.
CALIL, TCHCK(0Q)

"ND-60

111.04

5.24

5-7

Transaction Checkpoints

In addition to synchronised checkpoints taken by all programs in the TPS system,
application programs take individual transaction checkpoints at certain stages in
transaction processing. As for synchronised checkpoints, a transaction
checkpoint will save all data areas belonging to the transaction, enabling the
transaction to be restarted at this point if a recovery is made.® The information is
written on a special area on the checkpoint file belonging to the TPT and the
transaction checkpoint data will overwrite the. previous transaction checkpoint
data for that TPT. (See Figure 5.5). The synchronised checkpoint data will not be
affected however.

Some transaction checkpoints are taken automatically by TPS and the application
programmer does not have to take any action in connection with them. '

Controlblock TCMQ

AllTPTs trans check. TCM O

______ - (fixed) checkpoint area

TPT2)
Q‘—- ~. D i et
check X %_ Active TPTs _ ‘%

TPT 2 synch. check.
? {circular)
check X +1 Active TPTs

IPT 7 . _<
Controiblock TCM 1

% ; TCM 1
g § s checkpaoint area
% ¢

Figure 5.5: The TPS Checkpoint File

* Note: It is not possible to restore an application that runs on ND-500. However,
such an application may be restarted from the beginning.

ND-60.111.04

5.2.4.1

5-8

TTRAN - The Take Transaction Checkpoint TSR

The application program itself also can take transaction checkpoints, using the

TTRAN TSR.
CALL TTRAN
CALL 'TTRAN'".

programmer must know how they are
the recovery procedure in section 5.3.1

. Im order to. decide. when and if to. take transactian checkpoints, the application-

used. This is explained in connection with
. but in short it may be said that the latest

transaction checkpoint will be the point of restart for an application after
recovery has been. carried out. In contrast, the point of restart after a roflback.
operation will be a synchronised checkpoint.

Transaction checkpoints are taken at the following processing stages (See Figure

5.6).

— at the beginning of SIGNON (sta

ndard version)

— at the beginning of SELECT (standard version)
— when the data base is opened (SOPDB call)
— when the data base is closed (SCLDB call)

— when a task is terminated and th
— when an application program cal

When deciding how often to take ch

e TPT is freed {unless TTERM (1) is used)
Is TTRAN

eckpoints, it must be remembered that a

transaction is restarted at the latest checkpoint after rollback or recovery and any
processing done after this point will have to be repeated. Of course roliback or

recovery are usually only done in the

case of system failure and this should not

happen often. As in the case of other preventive facilities, the advantages of

taking checkpoints often must be weig

hed against the costs.

Applications running in the ND-500 may have up to 134 megabytes of local data,

and this data will not be saved w
task-common and the TPT system dat
running on the ND-500 cannot be rest

hen TTRAN ‘is called. Only the data in
a is.saved. This implies that an application
arted at a point inside the application, but

may be restarted for exampie at the beginning of the application.

ND-60.111.04

:

SIGNON TTRAN (———)

TSWAP (SELECT)

4

SELECT TTRAN (=——)
Display menu, read answer

TSWAP (APnnn)

i

APnnn TTRAN (———)
Write picture to screen
Read fields
More ? ves

Lno

Open data base
Read data base
Update data base
Close data base

no

Finished ?

‘ yes

Terminate

:

SIGNOFF TTRAN (—~—)

TSWAP {SIGNON)

Figure 5.6: Transaction Checkpoints -

ND-60.111.04

5.3

5.3.1

5-10

RESTART FACILITIES

When a serious error is detected, three steps must be taken:

— the cause of the error should be determined and the error corrected

— any damage to the data base should be repaired

— the system should be started again with as little inconvenience to the users .

" as possible’

Rollback and Recovery

Two procedures are available for repairing the data base after a serious error,

rollback and recovery.

Rollback will restore the whole sys

tem to its state at the last synchronised

checkpoint. The ROLLBACK special application will supervise the SIBAS roli-back
procedure, causing it to execute the rollback in one of two ways (See Figure

57A)

— using the update file or before-image (BIM) log to roll the data base back
to the checkpoint from the point-of-failure

- using the routine log to update the data base to the checkpoint from the

backup copy

In addition, all programs will restore
their state corresponds to that of t

their data areas at the checkpoint so that
he data base. The point-of-restart after a

rollback will be at the latest valid synchronised checkpoint (unless a recovery is

given immediately afterwards).

Recovery, under the supervision of the RECOVER special application, will restore
the data base to its state at the latest transaction checkpoints for the various
transactions (See Figure 1.7B). A roilback to the last synchronised checkpoint will

first be performed, using one of the
will then be used to update the
checkpoint (See Figure 5.78). Progr
transaction checkpoints.

methods described above. The routine log
data base to the individual transaction
ams will then restore themselves to their

The point-of-restart after recovery will thus be the latest transaction checkpoint
for each active transaction (See Figure 5.8). There is one exception to this rule. If

no transaction checkpoint has b
check-point, the transaction will be

pen taken since the last synchronised
restored to the synchronised checkpoint.

Point-of-restart is summarised in figure 5.9.

ND-60.

111.04

5-11

~

1. Update file, BIM log P(J)F
- |
9 | ROUTINE log .*
BACKUP SYNC CHECK
Figure 5.7A: Rollback
POF
: Update file, BIM log |
! ROUTINE log t
2. | ROUTINE log | ROUTINE log ’{
I l
BACKUP SYNC CHECK

Figure 5.7B: Recovery

CHECKPOINT
{automatic)

HECKPOINT
{operator)

TRANS CHECK

point-of-failure
{POF)

ROLLBACK
or RECOVER

o freeze the system.

» write data areas on file
« take data base checkpoint

« continue processing SIBAS
old varsion

of database

AESTART

[I

SIBAS
iM log or CALL log

+ freaza the s¥stesh if still up
M ata base

o restors datd areas at checkpoint

TPS RELLBACK TPSYRECOVER

Figure 5.8: Rollback and Recovery

ND-60.111.04

o CONtinue
processing

5.3.2

5-12

Restarting TPS

After rollback or recovery, the TPS system may be restarted either automatically
or using the CONTINUE command. Transaction processing will continue as far as

possible as though there had been no

break.

To what extent this can be done depends mainly on the state of the connections
between the application programs and the external environment. Both the data

_base and.the: application programs

How-ever, terminals and local device
have been broken, depending on such

s may have been lost and sessions may
things as whether SINTRAN, NSHS or 1/0

madules have. been reloaded, files have been closed, terminal- operators.have
broken connections, etc. After rollback, there is the additional problem that
external connections at the synchronised checkpoint- were probably different

from those at the point of failure.

Another important consideration at r

estart is that some transactions may not

want to be restarted at the checkpoint. There are several ways of restarting

transactions and each must be resta
strategy. This is done by the RESTART

ND-60

rted according to the appropriate restart
special application.

111.04

have_been. restored to theu: state- at. the L e
approprlate checkpoint and are ready to continue processing from there: T i

5-13

SYNC. POINT-OF
CHECKPOINT ~FAILURE
p=d n fae]
< Q a
o d x Q. |
. wn Q Q
[}—‘] 1]
lalh ——— % { —
\
\
A \ oz
g. S g : N L
a . o - o)
O 0N Q \ .
w |l n \}...
(b) : . 3
/
/
a z /
/
x
5 2z =
) e =/
{c) I 1
! !
////
///
fen] [an]
Q Q ///
e S -
9] (R ///
(d} | } -
N
\\
=z N z
< \ o
: |5 ~_E
- e N
(e} | Ny
i l\
N
AN
AN
2 = S N
> N
= 2 2 N
- - - N
(f) ; ; \\xl
ROLLBACK RECOVERY
POINT-OF— POINT-OF ~
RESTART RESTART

Figure 5.9: Point of Restart

* Note: It is not possible to rest
ND-500, but the application ma
remember this when setting the

art an application in the middle that runs on the
be restarted from the beginning. You have to
restart strategy.

ND-60.111.04

5.3.2.1

The RESTART Special Application

The RESTART application is the first application to be called when the system is

restarted after rollback or recovery. It is called for each active transaction by the
TPT for that transaction.

When RESTART is activated, the data base will have been reopened by SIBAS
for that transaction if it was open at checkpoint. Terminals controlled by NSHS

- will 'be- autematically reacquired by NSHS the first time. they are used On the '

other hand, the standard version of the RESTART program will not open files or
reserve local devices. Likewise, broken sessions may not be reestablished.
However, users can modify RESTART to do these things. The (TSEST) and
restore-session {FRSES} TSRs are available to. assist users. in this. Modifying the

RESTART and other special application programs is discussed in the TPS System
Supervisor’'s Guide.

When modifying this application, remember that applications running in the
ND-500 cannot be restarted at a point inside the application (the TSR-call TRSTO
is not allowed).

The task of the RESTART special application is to determine how the transaction
is to be restarted, to restore or break external connections and restart (or
terminate) the appropriate application program. RESTART will have available the
necessary information to do one or more of the following:

— restart the transaction or terminate it

— reestablish the connection with the terminal operator. If no answer is
received (timeout), the ABEND application is activated

— ask the operator to choose which restart strategy is to be used

— give the operator information to enable him to resume operation at the
correct point.

ND-60.111.04

53.2.2

- CALL TSRST (<restart strate

5-15

TSRST - The Set Restart Strategy TSR

RESTART uses the restart strategy for the task to determine if and how to restart
a transaction. The restart strategy is given the default value 2 when the task is

started and the TSRST TSR
meaning of each value dependin

CALL 'TSRST' USING <restart

can be used to change it to another value, the
g on the way it is interpreted by RESTART.

strategy> <restart application>.

gy >, <ressart application > }.

In addition to setting the restart strategy, the TSRST TSR can be used to
change the restart application. The default value for this is the first application

activated. The standard restart
application in chapter 6.

Examples

strategies are described under the RESTART .

CALL °TSRST’ USING TWO RE-APPL.

CALL TSRST(1)

ln summary, TPS is designed
checkpoints and restart with the
their own restart routines and m

so that users can exert full control over both

TTRAN, TTSYN and TSRST calls. They can write

odify the RESTART special application. They can

decide how often to take synchronised checkpoints and what type of logging,

rollback and recovery to use.

However, they can usually ign
defaults supplied with TPS and s

ore all these things, using only the standard

till have a system that functions weil.

ND-60.111.04

ND-60.111.04

. gathering transaction-statistics)

SPECIAL APPLI

NCRD TPS is delivered with
programs are used to carry
administration of TPS users, a
systems and individual program
security control. These functio
applications. The SIGNOFF,
transaction administration at

addition, the system special

ROLLBACK and RECOVERY, ar
SIBAS control. With the excep
application programmer and ar
See TPS System Supervisor's G

The special applications are w

ICATIONS

a set of standard "'special applications’’. These
out such user dependent functions as the

uthorising and limiting user access to application

s, automatic administration of menu pictures and

ns are carried out by the SIGNON and SELECT

ABEND and RESTART applications control
transaction termination (with the possibility.‘ofk

abnormal end and restart after system failure. . -

applications, TPOPEN, TPCLOSE, CHECKPOINT,
e used to administer system functions, especially
tion of TPOPEN, they are of less interest to the
e therefore not discussed in detail in this manual.
uide for more information about them.

ritten in FORTRAN and/or COBOL (SIGNON and

SELECT can be obtained in both languages). Some or all can run in either the
ND100 or the ND500 CPU. (RESTART cannot run in ND500 if it calls the

TSR-routine TRSTO.) Emphasis
structure so that users can easi

The relation between the speci
in figure 6.1. This figure shows
be changed by the user so t
standard version of SIGNOFF,
sequences for the different s
strategy, restart strategy) and ¢
(See Section 6.2.4).

The special applications are d
follows:

SIGNON and SELECT
SIGNOFF, ABEND and RE
TPOPEN and TPCLOSE

CHECKPOINT, ROLLBACK

Again it must be emphasized th
standard versions of the special

In addition to the above mentio
a special non-modifiable app

running on the ND-500. Further

For a description of the spec

ND-TPS-II User's Guide ND$0.1

has been put on comments and an easy to follow
ly change the programs to suit their own needs.

al applications and user applications is illustrated
the standard use of these applications. They may
hat the illustration no longer applies. Also, the
ABEND and RESTART have different processing
trategies they use (termination strategy, abend
{0 not necessarily foliow the illustrated sequence

escribed below in functionally related groups as

START

and RECOVER

at the following descriptions are only valid for the
applications.

ned user modifiable special applications, there is
lication, TPMON, which monitors applications

description can be found in Appendix J.

ial applications used in TPS-ll see the manual
g5.

ND-60.111.04

21NN} WANSAG

dois walsAg
4

anaav
\ \
ENTCLEITIN N & 440N9IS [—-+ — ~|-»] 3507041
N NOILVYD w

wiodx90y7 LNIOdMDIHD 14v1S3IYy 1 1ddV | s
iy wasAg)
© - ¥a)
\\ w <

- ¥3sn \ S

. 41 m

MOove1ioy } « 103735 NONDIS e +—| N3dodi $

- Q

Q

{ <

- NOWJL 3

1d1 NJLSAS S1dl ¥3ISN 1d1 WHISAS m

- [.

| 5

aunyey uels ©

w9isAg walsAg 5

’ R

w

6.1

6.1.1

SIGNON AND SELECT

SIGNON

The main function of SIGNON
password. It is normally the first

is to check the terminal user's name and
application to be called when a task is started.

The program will reserve the terminal the first time it is called and will then write

the SIGNON" picture: on the terminal. The cursor will be positioned at the input

field for the user name.

When a name is entered, SIGNON will look for the name in the user table. The

name may be abbreviated in the

usual SINTRAN manner. If the name is found,

the next question is for the password.

The password is then checked,

and it is either accepted or the cursor moved

back to the name field. Figure 6.2 shows a sample SIGNON picture.

If name and password are accepted, SIGNON will use the user's "EXIT-TYPE" to
carry out one of the following actions:

. = Switch to SELECT to present the user’s master menu

— Switch directly to a user application

— Exit from TPS (release the terminal for SINTRAN background use). This
action is usually defined for a special user, for example the user SINTRAN.
This action is carried out by releasing the terminal and going into a wait
loop. Every 10 seconds SIGNON will try to reserve the terminal again, so

that when the SINTRAN b

ackground user is done (logs off), the terminal

will again be brought into the TPS system.

/ ND TPS ON LINE AT 1545 ON MARCH 1, 1983 \

PLEASE ENTER YOUR NAME: ..

TITTITTT PPEPPPP $5S5SSS

Ty PPPPRPPP $555555S
knl 4 PP SS
T PPPPPPPP SS5555S
™ PPPPRPP SSSSSSS
T pp S5
T PP sS
i PP 55555558
i PP 5555555

PASSWORD:

N

Figure 6.2: A SIGNON PFicture

ND-60.111.04

64

SELECT

The main function of SELECT is to

control the menu choices for starting user

transactions. When SELECT is started, it will usually send the user’'s master

menu given in the user’s entry in the
directly from a user application inst

user-tab. However, if SELECT was activated
ead of from SIGNON, the menu presented

will be the last master-type menu used before the application was started.

asked to choose one of them (See Fi
An entry, when chosen, is handled in
— Switch to a user application

—_ Present a new menu

- Present the user’'s master menu

~ Log off as present user and swi

- ‘The menu- picture wilt normally show several numbered- entries, and the user is . .- .1 . 40

gure 6.3).

one of four ways:

tch to SIGNON

The way in which each entry is handled and additional information such as

application number {(if the first way

and menu number (if the second way) is

given in the menu table, TPS-MENUTAB. Each menu is described here, giving the
different entries and the type of handling for each entry.

These possibilities provide a large amount of freedom in defining menus. Figure

6.3A shows a sample master menu
("STOP’). Figure 6.3B shows one of

with several sub-menu entries plus log off
the sub-menus with entries for application

programs, new sub-menus, the master menu or logging off.

ND-6

0.111.04

6-5

5

6

ENTRY CHOICE:

NO TPS MASTER MENU

ACCOUNTING
PAYROLL
INVOICE
INVENTORY

TEXT PRO CESSING

STOP

Figure 6.3A: A Master Menu

/

AN

EMTRY CHOICE:

ND TPS ACCOUNTING

800KEEPING

ACCOUNTS RECEIVA

GENERAL LEDGER

REGISTER UPDATE

REPORTS

MASTER MENU

sTOP

BLE

Figure 6.38: A Sub-Menu

ND-60.111.04

6.1.3

.. =— . A user has only.access-to. his

The Access Control Syst

Access control in the standard versic
ways:

em

ons of SIGNON and SELECT is done in three

— A user may have a password which must be given when the user enters his
name - this controls total access to TPS

be chosen through the master

— Every menu entry can have a
code greater than or equal to t

this controls menu entry access

SIGNON and SELECT use three table

—_ the user table, TPS-USERTAB

— the menu table, TPS-MENUTAR

_ the defauit table, TPS-DEFAULT

menu - thus controis menu access

security code and onily those users with a

s to control user access to TPS:

Defining these tables is usually a task for the TPS system supervisor and is

described in the TPS System Su

pervisor's Guide. In addition the system

supervisor shouid use NSHS or FOCUS to define:

— the SIGNON picture for control

of user name and password

— pictures for the various menus defined in the menu table

The access control system in the standard versions of SIGNON and SELECT is
designed to provide a large amount of freedom in defining the control for a

particular TPS system. The amount

of information contained in the tabies will

depend on the degree of control needed, from the simple use of defauits to the

detailed use of passwords, restricted

menu choices and security codes.

Access to different subsystems may also vary greatly. Access to an invoicing

system, for example, may be quite
more restricted.

For a description of the Access Control System in ND TPS-Ii,

ND-TPS-II User's Guide, ND-60.195.

ND-6

general, while the payroll system may be

see the manual

0.111.04

master menu and-the.sub- -menus which can' R

ne-menu entry code may choose that entry ..

6.2

6.2.1

+— " "reaching the logical end

SIGNOFF

6-7

~ SIGNOFF, ABEND AND RESTART

The SIGNOFF application is given control when a transaction terminates

normally, i.e. when one of the fol

statement)

- the LEAVE monitor call

lowing occurs:

of ‘the program (the END or STOP RUN' .- i . 530

— using the TSTOP TSR with a stop code of 0

The function of SIGNQFF is to terminate the transaction in the way indicated by

the termination strategy for that
taken by the standard version of

task. The termination strategies and the actions
SIGNOFF are:

1 — Terminate the task completely (release the terminal if it has one, break a
session if there is one, take a transaction checkpoint and free the TPT)

2 — Switch to the SIGNON application, using TSWAP (no devices or other

resources freed)

3 — Switch to the SELECT application

4 — Switch to the user-defined

The termination strategy and th

termination application

e user termination application are obtained by

SIGNOFF with a special TSR, TSTAT (read the status of the current task).

When a task is originally started, the termination strategy is set to 1, complete
termination. The TSTST TSR (set termination strategy) can be used to change it
and to define a user termination application. The standard version of SIGNON
changes the strategy to 2, switch to SIGNON: the standard version of SELECT

does not change it.

If a user termination application

is used, it must not itself terminate “‘normally”

unless it has changed the termination strategy, since this would result in an

endless loop. It may, for example

NL

. terminate by switching to SIGNON.

)-60.111.04

6.2.2

ABEND

The ABEND application is given

control when a transaction terminates

abnormally, i.e. when one of the following occurs:

— a serious error is detected by
system

— @ serious error is detected by th
— the TPS operator terminates the
— the application program uses th

A serious error is any error which pre
timeout, an /O error without an

the COBOL, PLANC or FORTRAN runtime

e.T,PS, system L
transaction
e TSTOP TSR with a non-zero stop code

vents the program from continuing, such as
error handling routine, switching to an

application program that has not been loaded, a 'fatal formatting system error’,

etc.

When ABEND is activated, it will start by sending the “abend error message’’ to

the TPS operator conscle {see below
carry out the action indicated by the
by switching to SIGNOFF to terminat

for the format of this message). It will then
abend strategy for the task and it will finish
e the transaction. The abend strategies and

the corresponding actions taken by th
1 — No more action - just switch to

2 — Send the abend error message

e standard version of ABEND are:
SIGNOFF

to the terminal operator (if the transaction

has a terminal), switch to SIGNOFF

3 — Dump the data areas for the TPT on the line printer, switch to SIGNOFF

4 — Switch to the user abend application

5 — Halt TPS

The abend strategy and the user abend application are obtained by ABEND using
a special TSR, TABST (read the abend status of the current task).

When a task is originally started, the

abend strategy is set to 1, send the abend

error message to the TPS operator console and switch to SIGNOFF. The TSAST

TSR (set abend strategy) can be use
application.

d to change it and to define a user abend

It is important that the user abend application is thoroughly tested before being

used, since an abend in that applicatio
It should terminate in the normal wa
SIGNOFF will be activated when it is d

ND-60

n would probably result in an endless loop.
y { STOP RUN, END, TSTOP(0)) so that
one.

.111.04

6.2.2.1

The Abend Error Messag

W

The error message sent by the standard ABEND application is as follows:

TPS
APPL. NO. aaa ABENDED BY RUNTIME SYSTEM
APPLICATION
INADDRyyy = TPTNO.tt .
DUE TO reason (text) if abended by TPS
reason (code) if abended by appl. or RUNTIME SYSTEM
CLOSED
DATA BASE ACTIVITY: {ReAD
UPDATE
Codes:
aaa TPS application no. (0-255)
tt TPT no. 1-63
yyy _atest link register

reason (text)
or reason (code)

If abended by TPS, one of the following texts:
0-=Abended by operator

1=Application cannot be activated
2=lllegal use of TSRs

3=_Subroutine not loaded

4= Application Timeout

5=Internal TPS error

6= Operator Timeout

7= Attempt to restore ND-500 application
8= Error from ND-500 monitor

If abended by application:
Stop code given in TSTOP or error
message from NSHS or SIBAS

f abended by runtime system
SINTRAN error code

ND-60.111.04

6.2.3

6-10

RESTART

The RESTART application is given control when a transaction is to be restarted
after a system rollback or recovery operation. It is started for each TPT and has
the function of examining the restart strategy for the task and carrying out the
appropriate restart action.

The restart strategies and the corresponding actions taken by the standard

- version of RESTART can be divided into 2 types, terminal operator. Gontrolled. and: -~ 5. <% n. e

automatic: Transactions. involving interaction with a terminal should normally use
the terminal controlled restart strategy, since the operator will be better informed
of the situation and have control of it to some extent.

The standard restart strategies (Seé Figure 6.4} are:

I — Automatic Restart at Checkpoint. Go directly back to the application
program active at checkpoint and continue processing at the next
statement after the checkpoint was taken. This strategy cannot be used for
transactions running on the ND-500. A special TSR, TRSTO (restore
application status and restart), is used by the RESTART application to do
this. It is described in the TPS System Supervisor’'s Guide.

2 — Start the Application in a User-Specifiad Restart Application. The RESTART
program will not return to the active application program but switch to the
user restart application program set by the TSRST TSR. This program may
be SIGNON, SELECT, the active application program (which will then be
restarted from the beginning) or any other user application program. For
example, if several application programs are run sequentially (using
TSWAP) they can be restarted from the beginning of the first one or any of
the others, or a special user-restart application may be started. User restart
application will have access to the common data area of the transaction
and the data will have the values they had at checkpoint.

3 — Terminate the Transaction. RESTART will switch to SIGNOFF.

4 — Terminal Operator Controlled Restart. This strategy can only be used by
application programs with terminals controlled by NSHS/FOCUS. RESTART
acquires the terminal and sends a message informing the operator of the
restart condition and asking him to choose the restart action which suits
him best (See Figure 6.5). As the figure shows, the operator can choose
between:
a — Restarting at checkpoint (not allowed for ND-500)
b -~ Terminating the transactior
¢ — Switching to SELECT to choose from the user’s master menu

The operator controlled strategy includes a timeout, and if no answer is received
before the timeout expires, the ABEND application is started.

ND-60.111.04

6-11

The default value of the restart strategy when a task is started is 2, start the
application in user restart application, and user restart application is the first
application that has been started (normally SIGNON). The restart strategy and
the restart application can be changed with the TSRST TSR.

The value of the restart strategy and the user restart application are obtained by
RESTART using a special TSR, TRRST (read the restart status of the current
task).

When a task is originally started the restart strategy is set to 2, switch to the-
‘user restart appﬁcatidn, and' the user restart application is the first appﬁcatioﬁ
that is activated. This will normally be SIGNON. The TSRST TSR (set restart
strategy) can be used to change the strategy and the restart application.

USER APPL. RESTART APPL. OTHER APPL.
Checkpoint Restart at
taken checkpoint
i

|

|

v
Point of Restore to
faiture 4 checkpoint

RESTART AT CHECKPOINT (NOT POSSIBLE FOR APPL. IN ND 500)

Restart at Start
Checkpaoint RAPPL w RAPPL
taken (restart appl.) 3t beginning
J [
|
i
Point of Restore to
failure checkpoint
-RESTART AT RAPPL
Checkpoint Start
taken Terminate > SIGNOFF
i
A H
1
y \4
Point ot Restore to
failure checkpoint

TERMINATE
Figure 6.4: Standard Restart Strategies

ND-60.111.04

N

6-1:

WE'RE SORRY....

THAT THE SYSTEM TOOK A BREAK WHEN THIS TERMINAL WAS OPERATED
BY user name

ANYHOW, IT IS NOW RESTARTED AT THE STATE FOUND AT

PLEASE SELECT ONE OF THE FOLLOWING ACTIONS!
1. CONTINUE AT CHECKPOINT (PRESS CONTROL QQQ TO RESTORE PICTURE)
2. TERMINATE THE TRANSACTION

3. RETURN TO THE MASTER MENU

Figure 6.5: Terminal Operator Controlled Restart

ND-60.111.04

6.2.4

6-13

Summary of Termination, Abend and Restart Strategies

Figure 6.6 shows the relationship between the various special applications, user
applications and the strategies employed by SIGNOFF, ABEND and RESTART.

The numbered paths on th
corresponding strategy numbe
standard default strategies are
control in the TPS system apart

of the others. This is not nec
either special or user. The de

e figure show the flow of control for the
rs. The dark paths show the control flow if the
used. The dashed lines show the normal flow of
from the strategies described.

Note that the user restart application is placed as.a separate application from all

essarily the case, as it may be any application,
fault value for it is, in fact, SIGNON (however,

drawing a dark path from RESTART to SIGNON to show this default would have

made the figure toa messyl!).

t may also be the application that was: active at -

checkpoint, the difference between strategies 1 (restart at checkpoint) and 2

(switch to restart application) b

eing that strategy 1 would start the application in

the middle, after checkpoint, while strategy 3 would start it at the beginning.

SIGNON | —— e e e > SELECT oo /Li§§SICATION
Y —_
~
~ /
™~
~ /
N
~ /
N
N //
AN
\ //
USER USER USER
ABEND TERM // RESTART
/ A
\ /
\\ /
N 2 4 3/ 4 1.4 9
AN
AN
~

123 M 3,4

ABEND - SIGNOFF S I RESTART

Figure 6.6: The Terminate, Abe

h

EXIT FROM
TPS

nd and Restart Strategies

ND-60.111.04

6.3

6.4

6-1

TPOPEN AND TPCLOSE

The TPOPEN and TPCLOSE special

applications are system applications called

when TPS is initially started up and when TPS is closed down. A system special

application is one that is only called
and that performs processing that
single task.

TPOPEN has several functions. It se

operator. It opens the data base for a special system user in order to take -
" checkpoints and control rollback and

by one TPT for each TCM, the system TPT,
affects the whole TPS system, not only a

nds a 'good morning’ message to the TPS

' recovery. The efficiency of the TPS system

is also increased if the data base is always open for at least one user, since

opening it for other users will then

also go through the terminal configuration table, TPS-TERMTAB, and start up'a.:- . -,

task for each terminal in the table, u
activate the SIGNON application. TP

go faster (See Section 3.2.3). TPOPEN will

sing the TACTV TSR to acquire a TPT and
S-TERMTAB is defined in the same way as

TPS-USERTAB, TPS-MENUTAB and TPS-DEFAULT (See Section 6. 1.3). Defining
these tables is described in the TPS System Supervisor's Guide.

TPCLOSE is activated when a CLO
transactions have been completed.

SE-TPS command has been given and all
After CLOSE-TPS has been given, no new

transactions may be started. SIGNOFF controis this by checking for a close
situation when a transaction terminatesand causing complete transaction

termination with release of the term
termination strategy. When all T
application will be activated. It will a

inal and the TPT, regardiess of the normal
PTs have been released, the TPCLOSE
so be activated if an ABEND-TPS command

is given, but in this case the activation is immediate without waiting for

transactions to terminate. TPCLOSE
night’ message to the TPS operator.

CHECKPOINT, ROLLBAC

The CHECKPOINT, ROLLBACK and

will close the data base and send a ‘good

K AND RECOVER

RECOVER special applications are also

system applications called by the system TPT to perform functions affecting the

whole TPS system.

They are activated when the corresponding commands are given either by the
operator, a system module {(a TCM for example} or an application using an

operator-command TSR (these are r
is to supervise the SIBAS actions ri

estricted to special applications). Their task
eeded to carry out the required functions,

either by calling SIBAS directly (GCHPO, SROLL, SREPR, etc.) or by instructing

the TPS operator in carrying out the

unctions manually. Checkpoint, roilback and

recovery are discussed in detail in chapter 5.

ND-80.

111.04

7

7.1

7-1

SPECIAL CONSIDERATIONS

This chapter describes various
when writing programs to be

special considerations which should be taken
run under TPS. It includes data area definition,

language dependent limitations and requirements, program structure and

efficiency.

DATA AREAS IN THvE

into and thus may not contain

ND-—100

. Application programs. must be reentrant. This. means that they cannot be written.

ny variable data. The data area for an application

program is placed instead on the non-reentrant part of the TPT for that
transaction. This is done automaticaily by TPS and demands no special action on
the part of the application programmer. There is, however, a restriction on the
size of the data area, discussed in section 7.1.4, and some rules must be

followed when defining the data.

Since data areas belong to the

TPT and not to the application program itself, no

variable data may be initialised before execution. This is a general rule for
reentrant programs. Note that the data area will not be cleared either but contain

arbitrary values.

Constant data, on the other h
written in FORTRAN/PLANC,

and, may be initialised in application programs
NPL and MAC (but not COBOL). FORTRAN

programs must define the data as belonging to a COMMON area (not the

COMMON/PRIVATE/area), initia

lise the data in a BLOCK DATA subprogram and

load the block data subprogram together with the application program. PLANC

programs may define the data a
part of the read-only segment

s global read only data in modules. It will then be
containing the application program and can be

read but not changed. This method of initialising the data must be used since the

DATA statement is not allowed
can initialise the data directly in

N

in reentrant programs. NPL and MAC programs
the programs.

D-60.111.04

Example - Constant data in FORTRAN

MAIN PROGRAM

PROGRAM APOS0O
COMMON/PRIVATE/ITERM.... task common data area in TPT

COMMON/CONST/K1,K2,C3,TABLE(10).... constant data area in program

CONSTANT DATA

BLOCK DATA. . SETRERNE T
COWON/CONST/K“ ’KZ’CB,TABLE(10) LK 2
DATA K1,k2,C3/1,2,5.642/TABLE/1.2,2.0,10.3,5%50.0,0.0,1.0/....

-

°

END
LOADING THE APPLICATION (SEE SECTION 8.2.1)

“ADD-APPL, APOS0-BRF, AP050;
AADD-UNIT,CONST-DATA-BRF;

System
part Non reentrant

Task
common
dats
ares

Local
data
ares
{stack}

System : Reentrant
routings,

TSRs

Figure 7.1: The TPT

ND-60.111.04

7.1.1

7.1.2

7-3

The Variable Data Area In The ND—100

The variable data area is located in the non-reentrant part of the TPT. It consists

of two parts, the task common
or stack (See Figure 7.1).

data area for the transaction and the local areas

The Task Common Data Area In The ND—100

The task common data area contains data that is available to all the application

programs and subroutines for a
to another using TSWAP, the

transaction. If one application. program- switches
new application program have the same task

commaon area, containing the old data.

Note: The first word of task-common should always contain the terminal device

number if the application uses a

terminal. If not, it ought to equal zero.

If the transaction uses NSHS, the first variables in the task common data area
must be the terminal buffer ITERM and the private picture area IPRIV (see the
NORD Screen Handling System). After that follow common transaction data.

If the transaction uses FOCUS, then the last 5700 {octal) wards of the task
common data area will be used by FOCUS. The first 16-bit words only are

available for common transactio

In COBOL programs, the task
SECTION.

LINKAGE SECTION
01 PRIVATE IMPORT COM

n data.

common data area is defined in the LINKAGE

MON.

02 ITERM COMP OCCURS 126.

02 IPRIV COMP OCCURS

02 REST.

The COPY statement can be us
the common area.

The task common area is defin
statement and must have the na

COMMON/PRIVATE/ITERM

Orin a PLANC-program:

1024.

ed in COBOL to assure the correct definition of

ed in a FORTRAN program with the COMMON

me PRIVATE.

128),IPRIV(1024),REST

IMPORT (COMMON)(type:PRIVATE)

This must be the only COMM
(constant data may be defined ir

ND

ON statement for variable data in the program
1 other COMMON areas as described above).

-60.111.04

The total length of the common arez

generation time. The individual trans
length up to the fixed maximum.

In order to assure that the COMMO

program for a transaction, the staterr

to the individual applicaton programs

If application programs are written
program uses the TSWAP TSR to s
in a different language special care
areas are defined in the same way in
have acccess to the common data

written in different languages. It is the

it that the data definitions match.

ND-60.

) PRIVATE is fixed for programs at system
actions may define a common area of any

N statement is correct in every application
ents can be defined separately and copied
with the INCLUDE statement.

in several languages and an application
must be taken that the task’ common data

both programs. Then the new program will
of the old program even though they are

111.04

witch to. a new application program written .

responsibility of the programmer to see-to. - .-

7.1.3

The Local Data Area |

n The ND—100

In addition to data in the task common data area, the individual application

programs can define local data
application program and is not a

In COBOL main programs the |

the task common area. For subr

fixed address in the local data a

Local data for all FORTRAN

This data will be lost when switching to a new
vailable to subroutines.

ocal working storage area will be allocated after
outines the working storage area is allocated at a

rea at load time.

PLANC programs, both main programs and

subroutines, are placed in the stack (See Figure 7.2.A). The stack is the data area

in the TPT xmmedlately following the common. area. When a FORTRAN/PLANC

main program or subroutine is
enough to contain all local data

started, it is given an area in the stack large
defined in the routine. It will have access to this

area until it is done, when the area will be freed. If the program calls a
subroutine, the subroutine will be given an area in the stack following the area
for the calling program. The stack can thus be considered a pool of storage

space allocated to individual rou
is allocated dynamically, data in
time.

MAC and NPL programs must

when interacting with the system.

tines dynamically during execution. Since space
the stack may not be initialised before execution

simulate reentrant FORTRAN/PLANC programs

The MAC and NPL programmer must follow rather strict rules in order to use the

stack and define data correctly.

The FORTRAN programmer, on the other hand,

defines data in the usual FORTRAN manner with the exception of the restriction

on the use of COMMON describ

ed above. The compiler must be set in reentrant

mode when compiling the program and the program must be loaded as

described in section 8.3.1. If
adminstration will be performed

The data area for a COBOL prog

In PLANC-programs, you must

these things are done, addressing and stack
correctly.

ram is described in figure 7.28B.

refer to a stack in the INISTACK statement in

order to satisfy the PLANC-compiler. You have to declare a global dummy-stack:
INTEGER ARRAY STCK (0:1) in your main program module and include the

statement INISTACK STCK in th
left undefined by load-time. The
is initiated.

e main program. The symbol 5STLEN should be
actual stack length will be set up when the TPT

ND-60.111.04

FIXED
LENGTH

FIXED
LENGTH

FIXED
LENGTH

Figure 7.2: Data Areas for FORTRAN

<

FORTRAN/PLANC

SYSTEM PART

“ /////////
Yo

ITERM

IPRIV

REST OF
COMMON

[/ NOT UsED /

LOCAL DATA,
MAIN PROG.

LOCAL DATA,
SUBROUTINE

LY,

/ NOT USED

A,
A

COMMON/
PRIVATE

STACK

ND-86

FIXED {
LENGTH

CoBOL

SYSTEM PART

ITERM

PRIV

FIXED
LENGTH

FIXED
LENGTHY

- RESTOF |
COMMON

" "MAIN PROG.

LOCAL DATA,
SUBROUTINE

LOCAL DATA,
SUBR (FTN)

LY,
M

NOT USED /

0.111.04

Y
B

AND COBOL Programs

LOCAL DATA, |-

FIXED
LENGTH

WORKING
STORAGE
COMMON

(LINKAGE
SECTION)

FTN
STACK

7.1.4

The Size of the Data /

The total size of the data area
language it is written in, is a
time. (See Figure 7.2 and Appe

Area In The ND—100

for an application program, regardless of the
fixed number, determined at system generation
1dix D). This size includes the non-reentrant part

of the TPT, about 2000s locations of which 1030s is used by SIBAS and 650s by

COBOL terminal 1/0.
This size will for FORTRAN prog
— non-reentrant TPT

— task common data area
© - unused.part}.-

— stack area

For COBOL programs the size w
— non-reentrant TPT

— task common data area (s
part)

— WS — local area
— COBLIB area (file I/0)

— stack area

The maximum size of working st

rams be the sum of the following:

screen handling part and transaction part and

Il be the sum of:

creen handling part, transaction part and unused

orage is also a system generation parameter. If a

COBOL program demands a work area larger than this maximum, an error

message will be written at load
be loaded.

The size of the stack will be wh

time (See Appendix CJ and the program will not

atever is left over after the rest of the areas are

allocated. If NSHS is used, it needs approximately 1.5 Kwords in the stack in
addition to the data in the common area. SIBAS also uses 0.5 Kwords. However,
since this area is freed upon return to the calling routine, NSHS and SIBAS

routines can use the same stack

area. FOCUS does not use this stack area.

ND-60.111.04

7.2

DATA AREAS IN THE ND—500

All programs running in the ND-500-CPU are reentrant, and the code and data
are always separated.

The complete data area, i.e. the local data area, the common data area and the
stack area, containing both constant and variable data, is placed in the data-part
of the segment where the application is loaded.

Note that, in contrast to the ND-100, a// data will be given their initial values

" (initiated by load-time) each time an abplication is started.

The total size of the data area for an application programr is up to 134

.mggabyteas. Note that this data area will#ncpt‘/befﬂsave_d at checkpoint. . e

In addition to the data area described above, application programs may access
the task common data area (see fig. 7.1). This area is common to all appiication
programs and subroutines in both the ND-100 and ND-500 for a transaction. If
one application program switches to another, e.g. from an ND-100-application to
an ND-500-application, the new application program has the same task common
data area, containing the old data.

Note: The first 16-bit word of task common should always contain the terminal
device number if the application uses a terminal. If not, it ought to equal zero.

In the ND-500, the task common is labelled by the common labei PRIVATE.
FORTRAN programs may access task common by the statement:

COMMON/PRIVATE/ < array >

PLANC programs may access task common by the statement:
IMPORT (COMMON)(type:PRIVATE)

COBOL programs may access task common by these statements (also applies to
COBOL subroutines):

LINKAGE SECTION.
01 PRIVATE IMPORT COMMON.
02 <array>

Note: If the transaction uses the FOCUS screen handling system, the last 5700,
words of task common will be used by FOCUS, because the FOCUS data must
be passed on (by TSWAP) to the next application of the transaction.

The total length of task common (PRIVATE) is the same as in the ND-100
(counted in bytes), and it is fixed at system generation time.

If an application in the ND-100 uses the TSWAP TSR to switch to a new
application program in the other machine, the ND-500, or the other way around,
special care must be taken that the task common data areas are defined in the
same way in both programs. Be aware that the word-length (used for exampie in
data type INTEGER) is 16 bits in the ND-100 and 32 bits in the ND-500.

- ND-60.111.04 :

&

Symboilic Debugger «livex in an

LANGUAGE DEPEND

ENT CONSIDERATIONS

There are few limitations to the full set of FORTRAN and COBOL facilities
available on NORD computers when writing programs to be run under TPS. TPS
application programs are very similar to general real-time programs using
SINTRAN, SIBAS and NSHS/FOCUS. For a discussion of real time programming,
see SINTRAN Il User's Guide, Chapters 4 and 7.

ND-500 COBOL, FORTRAN and

In addition, ail languages are

PLANC programs may be tested by using the ND
ordinary TPS-run. (Chapter 8.1.)

extended by the TSR facilities of TPS, including

session communication and checkpoint/restart.

In the ND-500, there are no restrictions on language usage, such as initialized

data, local data and common

areas, and most language features may be used

freely. Data in task-common may be accessed in the common area PRIVATE as

described in section 7.2.

The following sections discuss

the languages in ND-100 individually.

ND-60.111.04

7.3.1

7-10

FORTRAN/PLANC in ND—100

All application programs run under TPS must be reentrant. In FORTRAN this is
done by setting the compiler in reentrant mode before compiling. In addition the
compiler should be set in a state to generate allocation of 20, extra stack
locations whenever subroutines, written in MAC or NPL, that use these extra
locations are linked to the main program. This makes it possible to keep earlier
written subroutines in a lowlevel language unmodified.

The commands to obtain these things are:

FTN: REENTRANT ON
FTN: RESERVE—WORK—SPACE ON

Constant data in FORTRAN programs must be defined in a BLOCK DATA

subroutine as described in section 7.1. Constant data in PLANC-programs may be
defined by read-only global data declarations in PLANC-MODULES. Defining
variable data areas is also discussed in section 7.1.

When using FORTRAN input-output 2 words following the stack will be used for
the administration of a FORTRAN input-output statement. These two words will
not be checkpointed at runtime, and special considerations should therefore be
taken when using FORTRAN input-output from applications.

Application programs may also be run as background programs using the TPS
background system (See Section 8.2). This is mainly useful for program testing.
The debugging facility of FORTRAN/PLANC may be used in background
programs by setting the compiler in debug mode and then loading the debugging
supervisor. (part of the runtime system). Programs using the debugging facility
must not be reentrant. When programs are run as background programs they
will use background versions of the special TPS facilities available. They will also
use the background version of the FORTRAN/PLANC library, FORTRAN—1BANK.

When loading real-time programs to be run under TPS, a special TPS version of
FORTRAN-1REENT is loaded automaticaily due to the TPS load macros {See
section 8.3.1).This library is usually merged with the TSR file to one BRF file,
TPS-LIBRARY:BRF,

When calling TSR routines from PLANC, all routines, must be declared as
ROUTINE STANDARD..... in IMPORT statement. PLANC-routines should call
CGBRD and CWMSG instead of TGBRD and TWMSG, using type "BYTES” for
the parameter <text>.

ND-60.111.04

7.3.2

7.3.3

COBOL in ND—100

As for FORTRAN, COBOL prog
however is done automatically
so the programmer does not ha

No data may be initiated in real
the data area of the TPT. This
data areas in COBOL is discuss

The SORT function is not yet av

ND-100 COBOL programs may

7-11

rams running under TPS must be reentrant. This
by TPS when the application program is ioaded,
ve to do anything special.

time COBOL programs, since all data is placed in
includes both constants and variables. Defining
ed in section 7.1.

ailable under TPS.

also be tested as background programs using the

... TPS backgrq_und’sy.ste‘rn..The_finteractive de_bugging option. can then be used, - P A

Most COBOL programs running under TPS will need routines in the FORTRAN
library, since SIBAS and NSHS/FOCUS use them. When testing in background
FORTRAN—1BANK must be |oaded. When loading real-time programs, the
special TPS version of FORTRAN—1REENT is loaded automatically by the TPS
load macros (See Section 8.3.1).

" MAC—NPL

When compiling COBOL programs, the compiling mode must be
two-bank/64KW. This is because code and data must be separated while the
logical address space still should be 64KW.

The command to obtain this is:

*TPS-MODE

Most application programs under TPS will be written in FORTRAN or COBOL,
but in a few cases it may be desirable to use a lower level language. Two
languages are available for doing this, the MAC assembly language and the
NORD—PL system programming language. However, when using these

languages, some rules must be

The main rule is that they mu
interacting with the system. All

followed.

st simuiate reentrant FORTRAN programs when
interaction with the system is done through calls

- SINTRAN monitor calls, TSR calls, SIBAS calls and FOCUS or NSHS calls.

These calls must be set up as if

they came from a reentrant FORTRAN program.

ND-60.111.04

7.4

7.41

7.4.2

~~PROGRAM STRUCTURE

7-12

Application Names and N

Application programs are written as

umbers

main, real-time, reentrant programs. They

may be given any names of 1—6 alphanumeric characters, but in this manual

they are given names of the type

where XXX is the TPS application
numbers (1 to 255), while special app

APXXX

number. User applications have positive

and PLANC, the PROGRAM—ID statement in COBOL, or the JSRT statement in

MAC and NPL,

Before the program is loaded, the name must be in TPS—TABLES (See Section

8.3.1).

Subroutines

A main program in any langua
FORTRAN-compatibie subroutines. C
COBOL only. The subroutines are load
same segment”. In the ND-100-they m
program code where X is an insta
SIBAS, NSHS/FOCUS and many of
included in this length). In the ND-500
a length of up to 134 megabytes bot
have access to the task common data

Note that FOCUS uses the PRIVATE
byte 200 upwards as local data area.
using FOCUS.

ge may call reentrant FORTRAN or
OBOL subroutines may be called from
ed together with the main program on the
ay not exceed a total length of X words of
lation dependent maximum (data areas,
the FORTRAN—1REENT routines are not
main programs and subroutines may have
h for data and code. The subroutines will
area, parameters and their own local data.

common area (ND-100 and ND-500) from
This area cannot be used by applications

If several main programs use common subroutines, each segment must have its
own copy of the subroutines. It is, however, possible to have more than one
main program on a single segment (in ND-100: if there is room), and programs

may then share a common copy of s

ND-100 the sum of the lengths of a
exceed the installation dependent max

ubroutines. (See Figure 7.7). Again in the
| routines, both main and sub, must not
mum,

*See appendix D for a description of how TPS uses the SINTRAN segment

structure in ND-100.

ND-60.111.04

v ications have negative numbers (—10Q to 0) s
and special names. The name is given in the PROGRAM statement in FORTRAN =~ ©° =

o - j_.“‘: A.."..:

L] | I
| 1

|
i
¥
i
'

Public Main APnn 1 Main APnn 2 Subroutines Unused
pictures (FTN) (FTN) (FTN)
T [
L] I
' T R
L] R
Public. . Main APnn.3 o _ , Main. APnn 4.

“pictures {Co8) (cosy - {COB+ FTN)

Figure 7.7: Application Segmerts in ND-100.

A different method of making use of common routines is through the TSWAP

TSR (See Figure 7.8). An application program can switch to another one with
TSWAP. They will both have access to the task common data, but local variables
for the old routine will be lost. Also, there is no return to the old routine when
the new one is done. A “manual” return may be programmed by storing the
name of the calling program and the return point in the common area,
TSWAPing back to the calling program (at the beginning) and jumping to the
correct return point. This method can only be used in main programs.

Using main programs as common subroutines in this manner may save both
space (only one copy is necessary) and time (less swapping). In addition, in the
ND-100 the routines may be larger, since each routine may be up to X words
long. However, the method has the disadvantage of losing local variables, and it
demands a greater programming effort.

In the ND-500, where there is plenty of room, this kind of structure will not be
necessary.

ND-60.111.04

subroutines . Unused . .- .-

(P Juaufas eiep)
(2 yuaufias weshfiosd)

uinlay

Lans

1 uudy dvMSL

L8NS 11VD

(p 3uauwibias eyep)

{2 3uswbas weiboid) £ uugy

€ Uudv dvMSL

{p 1wawibas eyep)
{A juswbas weiboid) 7 uugy

¢ uudv dvmsi

(p uawbss ejep)
{x Juswbas weibord) | Uudy

Figure 7.8: Switching Application Programs

ND-60.111.04

1.5

7.5.1

EFFICIENCY

TPS is designed for a combinat
ease of use. However, no mat
manner in which application p

both efficiency and data security.

ND-500 Efficiency

the ND-100 very often.

7-15

on of short response times, data protection and
tter how carefully the system is designed, the
rograms are written does have an influence on

'.:A_ hi_gh'standard- of performance can be obtaine_d, by running. applications in the
ND-500, espesially if these appli

cations only run in the ND-500 and do not «call»

Calling the ND-100 creates a good deal of system overhead. It is therefore
important to keep the number of such calls to a minimum. This can mean the
difference between a high-performance system and one with fairly poor

performance.

Calls to the ND-100 will be made in connection with most SINTRAN-III monitor
calls (e.g. MON CLOCK, MON OUTBT), etc. and many TSR calls (e.g. TRMSG,

TSMSG).

NB! When an application on a

non-current ND500 domain is started, i.e., when

a domain is to be "“placed” in the ND-500, the ND-500 monitor will make many
disk accesses. This not only takes time, it also loads the system. It is therefore
very important that applications that belong together are loaded to the same

domain. They can, however, be

oaded on several segments in the domain.

Note that when a transaction runs an application in the ND-100, it wiil not have

reserved an ND-500 process. W

hen swapping from an ND-100 application to an

ND-500 application, a2 domain must be ""placed’ in the ND-500.

ND-60.111.04

71.5.2

753

disk accesses). (See Section 5.2.3.1)

7-16

Taking Checkpoints

Synchronised and transaction checkpoints are taken automatically, but the
programmer must decide if extra transaction checkpoints should be taken with
the TTRAN TSR (See Section 5.2.4). Taking a transaction checkpoint involves 1 -
6 disk accesses depending on the size of the data area and if the data base is

open.

The programmer must also determine if the TTSYN routine should be called to

allow synchronised checkpoints to
processing and data base sequence
Calling the TTSYN routine causes ve

Opening and Closing the

When to open and close the data t
influence on efficiency. As.mentionec
data base itself causes little overhead
open for a dummy user, but transactic
or closed and these invclve disk

be taken, for example during a long:
without any other calls than SIBAS calls.
ry littlte overhead (a few instructions, - no

Data Base

base is also a decision that may have an
1 in section 3.1.3, opening and closing the
, since it will probably always be physically .
on checkpoints are taken when it is opened
accesses. On the other hand, taking a

check-point causes more overhead when the data base is open than when it is

closed.

In general, it may be said that if a
with-out data base accesses, the d

program has long processing sequences
ata base should probably be closed and

reopened again. An example would be a long dialogue with the terminal, perhaps

involving several transaction checkpoi

ND-60

nts.

111.04

754

- memory at one time, no swappi

The Working Set

As for all computer systems

7-17

with paging, the concept of a working set is

applicable to TPS programs. Only those pages being used at the moment need

to be in main memory, the rest
that is not in main memory, it i
page to be written out. This pag
and the most efficient programs

being out on the disk. When a page is needed
s read in from the disk, perhaps causing another
je swapping process of course involves overhead
are those with little swapping.

This means that the program should be organised such that logically connected
program sequences are placed close together; this also applies to data.The

warking set is the number of p

ages needed to carry out a processing sequence

in the program. If this working set is small enough to have all the pages in main

ng wiil be done during the processing sequence.

These efficiency considerations may not be necessary in a well-dimensioned
system with a fairly low work load and good response time. On smaller systems

with high work loads, they m

ay be quite important. In any case, it may be

worthwhile to determine which application programs or parts of programs will be

used most and devote some ext

ra effort to making these routines efficient.

ND-60.111.04

7.6

- back-ground mode than under TPS.

.. 1o use TPS for data. entry, gathering

7-18

REAL TIME VERSUS BACKGROUND

Installations running TPS will usually
in background mode (timesharing or
large part of program testing of N
background mode as described in
application programs are simpler and

Certain types of interactions with

great amount of data has been gat
machine readable form, may best be

temp-orary files and using it later as

also have some need of running programs
batch) under SINTRAN (See Figure 7.9). A
D-100-applications may be carried out in

section 8.2, since loading and running
the debug option is available.

the data base may be better done in
Large updating jobs, for example, where a:
hered ahead of time, especially if it is in
run as batch jobs. Some users may prefer

nput to batch updating jobs. In some cases,

it may be an advantage to run large reports as batch jobs, perhaps after stopping

TPS to prevent the information in t

hem from being updated as the report is

being written. The checkpoint/restart facilities of SIBAS are also available to

back-ground jobs, but they must be

controlled manually (by the operator), and

the programs themselves are not checkpointed, only the data base.

Some tasks must be done in background mode before running TPS application
programs. The SIBAS data base must be created, private screen pictures must
be defined on picture files and public pictures must be defined and dumped to

load files. Creating a SIBAS data bas
and defining private pictures is descr
In addition, a special background util
pictures for NSHS and a program is
FOCUS. This is described below.

e is described in the SIBAS User's Manual
bed in the screen handling system manuals.
ty program is available for producing public
available for producing public pictures for

UPDATING THE D
DATA ENTRY]

ATA BASE AFTER
TRANSACTIONS

PRINTING LA

RGE REPORTS

TESTING PROGRAMS

CREATING THE DATA BASE

DEFINING PICTURES

Figure 7.9: Some Background Tasks

ND-80

111.04

data with on-line. transactions, .storing it in: - . ‘o 0.

1.7

7.7.1

PICTURES FOR NSHS IN ND-100

Pictures used by the Screen Handling System NSHS can be either public or .

private. Private pictures are sto
used (See Figure 7.10). Public

red in a file and read from the file when they are
pictures are stored together with the application

code on the application segment. Several pictures can be stored together with

an arbitrary number of applic
application together with NSHS
it can be referred to directly

ations on each sequence. When running those
. the picture data need not be read in at run-time.
through NSHS by specifying “public picture’” in

ITERM(5). Thus the execution is speeded up by omitting mass storage access of-

the picture-file.

Further, several applications

— less physical memory is u

—_ public picture areas are r
disk.

Defining Private Pict

Picture formats are defined
SCREEN—DEFINITION, at the
ordinary SINTRAN files of tw
definition is called the “source
Several pictures can be store
picture names.

Before the picture definitions
compiled using SCREEN—DEF
“object picture’” and stored in
contain several pictures which

Comprehensive editing facilitie
remove any part of a picture.

can share pictures or picture elements. Thus

© .. Swapping activity is essentially decreased due to the fact that: -

sed

ot written into and the pages not written back to

ures for NSHS

through use of an interactive utility program,
display terminal. Picture definitions are stored in
o different types. The output from the picture
picture’” and is stored in the source picture file.
d in the same file, identified by their individual

s are used by application programs, they are
NITION into a certain run-time format called the
the object picture file. Here also one file may
can be independently compiled.

s allow the operator to create, replace, repeat or
For a detailed description of how to create and

maintain picture definitions, see the NORD Screen Handling System, Chapter 2.

ND-60.111.04

APPL segment

7-2

APnn 1

CALL GTPIC

CALL WRPTD

- APPL segment

PUBL

{public picture area)

APnn 2

CALL WRPTD

f

Figure 7.10: Private and Public Ficture

ND-60

=

.

S

111.04

PICTURES:PIC
PICTURES:0BJ

TPT segment

ITERM

PRIV

area)

. {private picture - - |- .

PICTURES:PIC
PICTURES:OBJ
PICTURES:BIN

1.7.2

7-21

Producing Public Pictures for NSHS

Object pictures defined in the above manner may be used by TPS application
programs as private pictures. However, for the reasons mentioned above, it may

be desirable to use public picty

res instead. NORD TPS supplies a background

program, PUBLIC—PICTURE, which produces a public picture data file from

object pictures. This file can be
application segment to form the

loaded together with the application code on an
public picture area.

The user must specify the following parameters which are asked for:

— picture dump file: the ﬁEe where the picture data is to be dumped for

loading on to the segment
— number of pictures

— picture file name(s):
SCREEN—DEFINITION

the object picture file(s) produced by

— picture name(s): the name(s) of the picture(s), which are to be loaded
together in the Public Picture area.

Example

@PUBLIC-PICTURE

ISR T NS 3354545555555 54555
% NORD-TPS PUBLIC PICTURE LOADING %

Y3y eas 33533535 55585533555555 3

ENTER PICTURE DUMP FILE NAME: PUBLIC:BIN

ENTER NO. OF PICTURES: 2

ENTER PICTURE FILE N
OR “@° TO TERMINATE

ENTER PICTURE NAME (

[AME (MAX 20 CHARACTERS)
LOADING: TPS-PIC:0BJ

MAX 8 CHARACTERS)

OR ‘@ FOR NEW PICTURE FILE NAME: SIGNON

ENTER PICTURE NAME (

MAX 8 CHARACTERS)

OR @° FOR NEW PICTURE FILE NAME: MENU

PICTURES LOADED. OCTAL SIZE: 000601

STOP 0
@

ND-60.111.04

7.7.3

7-22

Loading Public Pictures for NSHS

The picture dump file, which is produced by the PUBLIC—PICTURE program, is
used as an input file when loading the applications. It comprises the picture data
to be loaded together with one or more applications on one or more segments.
The public picture area will always start in location 4 of the application segment.
It is defined with a macro statement

See Section 8.3.1 for use of this macro

of the form:

tLOAD—SEGMENT, seg-no, public-pic-file, reent seg-name, sub-macros;

‘In summary, the steps in defining and loading public pictures are these:

Use the SCREEN-—DEFINITION program to define pictures on objéct

picture files.

Use the program PUBLIC—PICTURE to produce picture dump files.

Define the picture dump files to be input files for loading. This information

is to be entered into the file
{TPS—USER) SPECIFY—LUAP:

SymB

Prepare the application programs to refer to the Public Picture area by

giving the value 1 to ITERM(5
value is to be set to 0.

. When using the Private Picture area this

Load the public pictures and applications by running the mode files

(TPS—USER) BUILD—LUAP:M

ODE

(TPS—USER) LOAD—USER-—APPL:MODE

as described in section 8.3.1.

ND-60.111.04

1.8

7.8.1

7-23

PICTURES FOR FOCUS

Forms used by the FOCUS screen handling system can be either public or
private. Private forms are stored in a file and read from the file when they are
used. Public forms are stored together with the application code on the

application segment. Several f

orms can be stored together with an arbitrary

number of applications. When running those applications together with FOCUS,

the form data need not be read

in at run-time. Thus the execution is speeded up

by omitting mass storage access of the form file.

activity is essentially- decreased

— less physical memory is used

_Further, several applications can share forms. or form elements. Thus swapping

due. to the fact that:

— public form areas are not written into and the pages not written back to

disk.

Forms are defined through use

of an interactive utility program, FOCUS-DEF, at

the display terminal. Form definitions are stored in ordinary SINTRAN files.

Several forms can be stored in
names. Comprehensive editing
repeat or remove any part of a
and maintain form definitions,
(ND-80.137).

Using private forms, the form fi
FOCUS.

Public Pictures for FC

It is desirable to use public fc

the same file, identified by their individual form
facilities allow the operator to create, replace,
form. For a detailed description of how to create
see the FOCUS screen handling system manual

e name must be declared by the call FCDECFF in

ICUS

orms in TPS, for the reasons mentioned above,

when running the system in full production. In the test phase, however, it is

easier to use private forms.

ND TPS supplies a background

program, FC-PUBLIC, which converts the form

file into a public form data file. This file can be loaded together with the

application code on an applicati

on segment to establish the public forms area.

Use the program FC-PUBLIC-100 or FC-PUBLIC-500 in order to produce a public

form data file to be loaded to t
data file is used when loading

he ND100 or ND500 respectively. The public form
applications, by inserting the file name for the

parameter ""publ-pic-file” in these macros:

ND-60.111.04

7-24

fLOAD-SEGMENT,seg-no,pubi-pic-
tLOAD-500SEGMENT,domain-name

See section 8.3.1 for use of these mad

The public area will always start in Ic
ND100, and location 0 in the ND500.

’

ile,reent-seg-name,sub-macros;
seg-name,publ-pic-file,sub-macros:

ros.

cation 4 of the application segment in the

The application programs must call FCINITE with the parameter init-array(6)=+0 in
order to use public forms. Then the FOCUS call FCDECFF must not be called. .

In the NDiOO, init-array(6) =4 (address

In the ND500, init-array(6) =segmaent-

of first location of the public form area). .

number of the public form area. Segment =7 < v

number equal to 0 (zero) must not be used. The application segment number

may be obtained by the TSR-call TAPS
In summary, the steps in defining and

use the FOCUS-DEF program to

define the public form data files
file (TPS-USER)SPECIFY-LUAP:S

prepare the application program
the appropriate value to the para

load the public forms and applic
(TPS-USER) BUILD-LUAP:M
(TPS-USER) LOAD-USER-AF
as described in chapter 8.3.1.

In the ND500, all forms used by all
gathered on only one public form file i

°PL:MODE

S5T.

loading public forms are these:

define pictures on form files.

use the FC-PUBLIC-XXX program to produce public form data files.

to be input files for loading, by editing the
YMB.

s to refer to the public form area by giving

meter init-array(6} in the call to FCINITE.

ations by running the mode files

ODE (as user TPS-USER)

(as user RT)

applications inside one domain may be

f desired. After running the FC-PUBLIC-500

program, the public form data file may be loaded to its own segment inside this

domain by issuing these commands:

®ND LINKAGE-LOADER
ND-Linkage-Loader-

NLL: SET-OOMAIN * ‘' domain-name’’

NLL: SET-SEGMENT-NUMBER segm-no

NLL: OPEN-SEGMENT ' * segment-name’ ", ,
NLL: LOW-ADDRESS 0, D

NLL: LOAD-SEGMENT public-form-data-file
NLL: END-DOMAIN

NLL: EXIT

@

ND-60.1

8-1

COMPILING AND LOADING PROGRAMS

This chapter shows how to compile and load application programs both as RT
programs in the ND-100 and the ND-500 and as background programs in the
ND-100.

TESTING OF ND-500—APPLICATIONS

When application programs are run under TPS in the ND-500, they must be
compiled by an ND-500-compiler, loaded with the LINKAGE-LOADER, and started
under the control of a TPT. Section 8.3 describes how to load the program to the
TPS-system.

During the programming and testing phase in the ND-500, it may be easier to run
them in a special Debug-mode in ND-500 under TPS, which allows you to use the

ND Symbolic Debugger. The program then ought to be compiled with
DEBUG-MODE ON.

In 500-debug-mode, the symbolic debugger is run on one terminal and the
application on another terminai.

You start a transaction in Debug-mode in the ND-500 by activating application
no. —3 from OPCOM, giving the terminal device number to be used by the
symbolic debugger as parameter 1. Parameter 2 may be zero. Note that the
debugger terminal must not be the same as the application terminal. The
application —3 {on the debug terminal), will then prompt you according to the
OPCOM-command ACTIVATE-APPLICATION.

In 500-debug-mode, you will enter the Symbolic Debugger on the debug terminal
each time a 500-application is entered, and will be free to inspect/change

locations and stop/run the application. See the ND Symbolic Debugger Manual
ND-60.158.

ND-60.111.04

8.2

8.2.T

®
N

BACKGROUND TESTING OF ND—100 APPLICATIONS

When application programs are run under TPS in the ND-100, they must be
compiled as real time (RT), reentrant programs, loaded with the RT loader, and
started under the control of a TPT. However, during the programming and testing
phase, it may be easier to run them as background (time-sharing or batch)
programs directly under SINTRAN. Loading and starting the program is simpler

and the interactive debugging options of both FORTRAN and COBOL are
available.

The TPS Background System

The TPS background system is a set of subroutines and programs running in
ND-100 that simulate a real time TPS environment. The subroutines are loaded
together with the user application programs and provide simulated TSR routines
for the application program. Background versions of the SIGNON and SELECT
special applications are also provided, plus a special program, TPS:PROG, which
is used to initiate the transaction.

The background system is started by logging in as a SINTRAN timesharing user
and giving the RECOVER TPS command. When this is done, functions covered
by TPOPEN will be carried out for the background terminal. The terminal number
is checked against the terminal configuration generated for TPS. If it is included,
NSHS initialisation is done and SIGNON/SELECT started. As under TPS
SIGNON will ask for and control the user name and password and SELECT will
control the menu choice, as described in chapter 6. Finally the user application
will be started as under TPS, with access to the task common data area.

ND-60.111.04

~- 8.2.2

Available Facilities in

8-3

the TPS Background System

The available facilities include both TSR simulation routines and other special

TPS functions, such as:
- control of name/password

— presentation of menu cho

ces

- entry to user programs as under TPS

- intialising and use ofv NSHS aécording to TPS terminal configuration .

parameters

— full use of the task common data area between independent application
programs (i.e. main programs)

— use of the interactive debugging options of FORTRAN and COBOL

Most TSR simulation routines w
but a few will carry out an action

I only consist of a return to the calling program
similar to that under TPS. These routines are:

'

— TSWAP - the new application program will be started with access to the

task common data area

— TSTOP - the transaction wi

— TWMSG - a message will
TPS operator

Il be terminated normally or abnormally

be written to the user terminal instead of the

— TACTV - if called by the TPOPEN application, the new application will be

started as for TSWAP, eise

return to calling program with no action

ND-60.111.04

8.2.3

.. CALL SCOMMQ. (<array>).

8-4

Load-Common and Save-Common Routines

When application programs are run under the TPS background system, they may

make free use of the TSWAP facil

ty to switch from one main program to

another. Since it is normally not possible to have common data areas between

independent main programs in back
made for making the task comma
programs. This is done by two
save-common (SCOMMO).

CALL LCOMMO (<array>)
CALL 'LCOMMO’ USING <array>.

ground mode, special provision must be
n data area available to all application
routines, load-common (LCOMMOQ)} and

CALL ‘'SCOMMO’ USING <array>.

Parameters:
<array> coBOL:
task
WOF
FORTRA
data
Examples

CALL °SCOMMO” USING TASK

CALL LCOMMO(ITERM)

Load-common {LCOMMO) loads the

the first variable at the beginning of the
common data area {i.e.

AKING-STORAGE)

N: the first variable in the task common

area (i.e. ITERM)

(~-COMMON-AREA.

task common area from a file on the disk

and should always be called as the first executable statement in the application
program. Save-common (SCOMMO) saves the area back on the disk and should
be called right before the program does a TSWAP to another program.

Dummy versions of the LCOMMO and SCOMMO routines are included in the

TPS library routines for real-time programs. Therefore it is not necessary to

remove these cails when the application program is done being tested and is

loaded as a real-time program.

ND-

60.111.04

8.2.4

Running the Backgro

When the debugging option is
of the loader NRL, in order to
be dumped together with the
loader after loading the progra
option should be done in the fol

- Make sure that the followi
TPS:PROG
SIGNON:PROG
SELECT:PROG

— Load applications with NR

— Dump all of memory with

8-5

und System

used, the program must be run under the control
use the debugging facilities, i.e. the loader must
program and the RUN command given to the
m. This means that testing with the debugging
lowing steps:

ng programs exist as PROG files:

the @ MEMORY and @ DUMP commands

-~ Start TPS:PROG by writing TPS on the terminal to SINTRAN

— Wait for SIGNON to send the (user-defined) screen picture and then give

your name and password

you must be in the user-table)

— Wait for the menu picture and indicate the correct choice to start your
application (the application must be in the menu table)

— If the application exists as a PROG file (i.e. has been loaded and dumped)
it will be started /n the loader

— The RUN command must now be given to the loader to start the

application in the debugger

— Debugging commands ca
the CONTINUE command

Examples of compiling, loading
are given in section 8.1.6.

n be given and the application itself started with

and running programs with the debugging option

ND-60.111.04

8.2.5

8-6

Testing in Background Mode

When application programs are tested in background mode, several facilities are
available which are not available when running them as real-time programs, such
as the possibility of initialising data areas at compile time, using the ACCEPT,
DISPLAY and EXHIBIT statements in COBOL, etc. These may be used, but it is
recommended that as few changes as possible be introduced during background

testing since converting to RT progra

However, some special consideration
mode. Among them are the following:

" the device number for the termi
-1 (this is done automatically by

ms should be as simpie as possible.

s must be taken when testing in background-

mal (in ITERM (1) if NSHS is used) must be ~

the background system). -~ = .

unitialised data areas will be cleared (but not COMMON areas)

calls to NSHS, SIBAS and SINTRAN routines allowed in background will be
executed in the usual way, but special TPS routines, such as TRMSG
(read-message) and TACTV (activate concurrent task) may be different in
background, as mentioned above. This may demand some changes to the

program

the FORTRAN compiler should

not be set to reentrant mode, whereas the

debug mode may be used. Using the debugging option is described in
chapter 13 of the FORTRAN Reference Manual.

the background versions of NSHS and the SIBAS interface module
(DML-SIMULATOR-BACKGROUND) must be loaded.

The TPS background library, the TPS user library and the FTN library

(FORTRAN—1BANK) must be

loaded with programs in all languages.

COBLIB must be loaded with COBOL programs.

if a SIBAS system is to be used that is already running (for example under

TPS), no further action needs

to be taken to use it from a background

program. However, if SIBAS is not yet running, it must be started up as an
RT program with the RT command (See appendix A, SIBAS on NORD-10,
of the SIBAS User's Guide). The data base of course must have been

defined and created. Doing this

the TPS background system car
the task common data area

is discussed in chapter 9.

1 be used to start the transaction and save

These points are summarized in Figure 8.1.

ND-80.1

11.04

Makes as few changes as possible

Uninitialised data areas are cleared

-Do not use reentrant mode .

_Debug mdd_e may be used

Load background versions of SIBAS, NSHS

Load TPS background library
TPS — USER library
FORTRAN-1BANK

Start SIBAS

Use the TPS background system
to start the transaction

Figure 8.1: Testing in Background Mode

ND-60.111.04

8.2.6

8-8

Compile and Load Examples

Examples are given here for compiling FORTRAN and COBOL programs in the
debug mode, starting the background system, loading the programs with the
relocating loader and running them. Together with the program itself is loaded
NSHS (background version) or FOCUS, the SIBAS DML simulator (background
version), the TPS background library, the TPS user library and the COBOL
runtime system. There are many possibilities in the debugging mode: setting
breakpoints, inspecting locations, tracing, stepping through the program. The
examples show running the program with the trace mode on..

Example - COBOL |
- @coBoL
#%% NORD-10 COBOL COMPILER ##%%

*DEBUG-MODE
*COMPILE AP023-SYMB,L-P,APO23-BRF

% 0 DIAGNOSTIC MESSAGE(S) #=
eNRL

- NORD-10 RELOCATING LOADER -

#1,0AD AP023-BRF
*LOAD DML-SIMULATOR-BACKGROUND
*L.OAD TPS-BACKGROUND-LIBRARY
*LOAD TPS-USER-LIBRARY
#*LOAD NSHS-BACKGROUND
#*1,0AD COBLIB

*L.OAD FORTRAN-1BANK
*DUMP AP023:PROG

*EXIT

eTPs

Wait for SIGNON picture, enter name and password.
Wait for MENU picture, enter correct choice to start appl.
The application will start in the debug monitor.

-~- NORD COBOL INTERACTIVE DEBUG MONITOR ——w

*TRACE-ON

[

*RUN execute the application program

L]

*EXIT
@

ND-60.111.04

8-9

Example - FORTRAN

@FORTRAN-100
ND-100 ANSI 77 FORTRAN COMPILER

FTN: DEBUG-MODE ON
FTN: COMPILE AP022-SYMB,L-P,AP022-BRF

265 STATEMENTS COMPILED
FTN: EXIT
@NRL

~ NORD-10 RELOCATING LOADER -

%L,OAD AP022-BRF S _
*LOAD DML-SIMULATOR-BACKGROUND
*,0AD TPS-BACKGROUND-LIBRARY
*LOAD NSHS-BACKGROUND

*LOAD FORTRAN-1BANK
*EXIT

@MEMORY 0 177777
@DUMP AP022 1 1
@Tps

Wait for SIGNON picture, enter name and password.

Wait for MENU picture, enter correct choice to start appl.
*RUN
&TRACE APC22,100 AP022,200

&CONTINUE execute the application program

&EXIT
@

ND-60.111.04

8.3

8-10

REAL TIME PROGRAMS

This section describes how to load application programs as RT programs to the

TPS system. When new application pr

ograms are loaded, application information

must also be entered into the application table (TPS-TABLES).

This section describes the procedures for updating the application table and for

loading applications, both new ones a
(General Purpose Macrogenerator), is

nd replacements. A special program, GPM
available to simplify the commands to the

RT loader and the Linkage Loader (for ND-500). This program should. be used to .

generate mode files for Ioéding applications, and the load procedure described in .

this manual assumes it is available.

All TPS files in this section belong to a

special user, called TPS—USER here. This user name is a system generation
parameter, and. if . another- name. is specified, the . correct user. name will’

automatically be put into the files whe

rever necessary.

When loading a program for the first time, it may be best to “test load” it
separately before loading it together with other programs. Error messages do not
always indicate which program caused the error.

ND-60.111.04

8.3.1

8-11

The Loading Procedure

The following steps should be followed when loading application programs:
(summarised in Figure 8.2):

— Make any changes necessary to the ND-100-programs to run them under
TPS instead of as background programs. Remember to declare them as RT
programs with the proper program names.

- Compile the programs - in the reentrant. mode if FORTRAN-100. The object.

program files can have any names and belong to any user. However, the
file type must be BRF for ND-100 and NRF for ND-500.

R If new application programs are to be. loaded, enter TPS—USER, fetch PED
or QED and read the file TPS-TABLES:SYMB.

Compile the program
Reentrant mode if FORTRAN- 100

Updata
TPS- TABLES:SYMB

Run
COMPILE- TABLES: MODE

Update
SPECIFY- LUAP:SYMB

Run
SUILD- LUAP: MODE

Run
LOAD- USER- APPL: MODE

Figure 8.2: RT Load Procedure

Make sure that the entries corresponding to the applications are present in
the table and that the names of the applications correspond to the indexes
in TPS-TABLES. Fill in the desired values in the application entries and
make sure that all values are filled in - empty fields are not allowed. An
entry has the following format:

ND-60.111.04

8-12

ENTRY APXXX, SAWYY, SPRZZ

the name of the application program: must be the same

checkpoint weight; "heavy”” weight causes

frequent checkpoints, light weight infrequent, allowed values

ENTRY AP(010, SAWY, SPR12

After the updated TPS-—TABLE
compiled using the mode file
places the BRF code in the file

The applications (both new one
Enter TPS-USER. Use PED or
and specify the information r
specified using these macros.

MAIN MACROS

t LOAD—SEGMENT, seg-no, pu
indicates that a ND-100 s
segment number is given ¢
to contain public pictures
segment name must be s
several reentrant segment
segment which will be
applications on this applic
of the names in the macra
TPS-CONF. Consult your T

t LOAD-—-500SEGMENT, doma
sub-macros;
indicates that an ND500-5
domain and segment spec

case, they will be createc
NRF, or it must be empt

pictures.

ND-60.1

priority within TPS, allowed values SPRO-- o
0-applications. may be considered as one .-

0-applications as another group. SPRZZ
inside the appropriate group.

APXXX =
as the program name
SAWYY = the application
SAWO - SAWI15
SPRZZ . = the application
_— SPR15. All ND10
group and ND5(
gives the priority
Example:

S file has been written back, it must be
COMPILE-TABLES:MODE. This mode file

(TPS-USER)TPS-TABLES:BRF.

s and replacements) must now be loaded.
2ED to read the file SPECIFY-LUAP:SYMB
ecessary to load the applications. It is

blic-pic-file, reent seg-name, sub-macros;
egment is to be cleared and loaded. The
and the public picture file, if the segment is
(See Section 7.7 and 7.8). The reentrant
pecified if your TPS-configuration contains
5. If so, this parameter names the reentrant
used when loading and running the
ation segment. The name must equal one
NAME-REENT-SEG in the file (TPS-USER)
PS system supervisor.

in name, segment name, public-pic-file,
egment is to be cleared and loaded. The
ified may exist or may be new. In the latter

1. The public picture file must be of type
y if the segment is not to contain public

11.04

8-13

SUB-MACROS

1 ADD—APPL file-name, prog-id;
indicates an application program that is to be lcaded on the ND-100
segment given in the last load-segment macro. The name of the BRF
file containing the application and the program name APXXX must be
given.

1 ADD-500 APPL, file name, prog-id; _ ,
~ indicates an app(ic_ation program that is to be loaded on the
- ND-500-segment given in the last load-500-segment macro. The name’

of the NRF file containing the application and the program name
APXXX must be given.

{ ADD—COB—SUBROUTINES, file-name;
indicates that user COBOL subroutines in the given file are to be

loaded on the ND100-segment. This submacro can only exist once
within a 1 LOAD—SEGMENT macro.

t ADD—UNIT, file-name;
indicates that user subroutines in the given file are to be loaded on
the ND-100 segment. These subroutines can be called by all
application programs and other subroutines on the segment. The
subroutines will be loaded regardless of whether they are called or
not.

| ADD—500UNIT, file-name;
indicates that user subroutines in the givé“n file are to be loaded on
the ND-500-segment. These subroutines can be called by all
application programs and other subroutines on the segment. The

subroutines will be loaded regardless of whether they are called or
not.

An example of the macro input to the SPECIFY-LUAP:SYMB file with 4
ND-100-applications and 2 ND-500 applications follows. One
ND-100-segment is loaded with 2 FORTRAN applications, one with 2
COBOL applications and one ND-500-segment with 1 COBOL and 1
FORTRAN application. Both use subroutines and public pictures.

ND-60.111.04

8-14

Example

“CRMOD;

@ENTER RT,,,30

@HEAD LUAP
“ICRMOD;
"%,Load 2 FORTRAN programs on segment 2053
”LOAD-SEGMENT 205, (USER-NAME) PUBLIC:BIN,,
“ADD-APPL, (USER NAME)FTN-APXXT APXX1;
“ADD-APPL, (USER-NAME) FTN-APXX2, APXX2;
ADD-UNIT (USER-NAME)FTN—SUBS‘

' %, ,’ must end each LOAD-SECMENT'
“%,Load 2 COBOL programs on segment 2063

-“LOAD-SEGMENT, 206, (USER-NAME)PUBLIC:BIN,,
“ADD-APPL, (USER-NAME)COB APYXX3,APXX3;
“ADD-APPL, (USER-NAME) COB-APXXU, APXXY;
ADD-COB-SUBROUTINES (USER-NAME)COB-SUBS'
“ADD-UNIT, (USER- NAME)FTN-SUBS~
%, Load 1 Fortran and 1 Cobol program on the 5003
“LOAD--500SEGMENT, DOM-A,SEG-1,,
“ADD-500APPL, (USER NAME)5-FTN-APXX5 APXX5:
“ADD-500UNIT, (USER-NAME)5~FTN-SUBS;
“ADD-500APPL, (USER-NAME)5-COB- APXX6 APXX6;
“ADD-500UNIT, (USER- NAME)S5-COB-SUBS;
“CRMOD;

EXIT
“%,This MODE file must be run last;

@MODE (TPS-USER)SAVE-TATAB:MODE, ,

- After the SPECIFY-LUAP:SYMB file has been updated and written back, the
BUILD—LUAP:MODE file must be run. This activates the General Purpose
Macrogenerator, GPM. GPM uses several system files and the above
macros as input and produces a new mode file,
LOAD—USER—APPL:MODE, as output. BUILD—LUAP:MODE is as follows:

@GPM

YLOAD —USER—APPL:MODE output file and 'Y answer to GPM
question)

GPM—LIBRARY system file

INIT-—-MD—ADDR system file

TPS CONF system file

GLOBAL—MACROS system file

USER—MACROS system file

SPECIFY-LUAP user file

ND-60.111.04

8-15

Finally the mode file LOAD—USER—APPL:MODE must be run under the
user RT. Before it is run, make sure that no applications on the segments
to be loaded are active if TPS is running and give the SET—UNAVAILABLE
operator command.

There is one exception to this rule. It is possible to load a new version of a
application program while the old one is active if it is done as follows:

— the new version must be loaded on a different segment

— both segments must only contain the one application
program (plus subroutines if used).

Z

D-60.111.04

8.3.2

8-16

Programs and Files Required

The loading procedure described here requires the following programs and files:

Programs:

PED or QED
RT-loader
GPM

HEAD

NDS500 LINKAGE-LOADER (If ND500-TPS)

Files:

(USER—NAME)user-progs:BRF
(USER—NAME)user-subs:BRF
(USER—NAME)public-pics:BIN
(USER-NAME)public-pics:NRF (If

(TPS—USER)TPS—TABLES:SYM
(TPS—USER)COMPILE—TABLES

ND500-TPS)

B
:MODE

(TPS—USER)SPECIFY-LUAP:SYMB
(TPS—USER)BUILD—LUAP:MODE
(TPS—USER)LOAD—USER—APPL:MODE

TPS—USER)GPM—LIBRARY:SY

MB

TPS—USER)INIT—~MD—ADDR:SYMB

GLOBAL—MACROS:SYMB

TPS—~USER)USER—MACROS:SYMB
TPS—USER)SAVE-~TATAB:MODE

()
()
(TPS—USER)TPS—CONF:SYMB
(TPS—USER)
()
()

Note that there may be several sets of

(TPS—USER)SPECIFY —LUAP:SY

(TPS—USER)BUILD —LUAP:MODE

the 3 files

MB

(TPS—USER)LOAD —USER—APPL:MODE

varying the names. Each set of 3 can be used to load a group of application

programs. In this manner, the load

files can be saved and used again if a

particular set of application programs is to be reloaded without changing the

files every time.

ND-60

111.04

8.3.3

- Example

8-17

Compile and Load Example

The complete procedure for loading the 2 FORTRAN and 2 COBOL programs in
the ND-100 and 1 FORTRAN and 1 COBOL program in the ND-500 from section
8.3.1 is given here. It is assumed that they are all new applications
(TPS—TABLES must be updated), and that the FORTRAN programs are put on
one segment and the COBOL programs on another. They both use a set of
FORTRAN subroutines and public pictures.

Compile the prbgrams
ESC

ENTER USER-NAME

.

@FORTRAN-100

ND-100 ANSI 77 FORTR

FTN: REENTRANT-MODE

AN COMPILER

ON

FTN: COMPILE FTN-APX

X1:SYMB,L-P,FTN-APXX1:BRF

NNN STATEMENTS COMPI

LED

FTN: COMPILE FTN-APXX2:SYMB,L-P,FTN-APXX2:BRF

NNN STATEMENTS COMPI

FTN: COMPILE FTN-SUB

LED

S:SYMB,L-P,FTN-SUBS:BRF

NNN STATEMENTS COMPI

FTN: EXIT
@COBOL

*%% NORD-100 COBOL C

*TPS~-MODE
*COMPILE COB-APXX3:S

LED

OMPILER #*##

YMB,L-P,COB-APX¥X3:BRF

#% 0 DIAGNOSTIC MESS

*COMPILE COB-APXXHU:S

AGE(S) #»

YMB,L-P,COB-APXXY:BRF

%% 0 DIAGNOSTIC MESS

REXIT

AGE(S) #»

ND-60.111.04

8-18

@ND-500

ND-500 MONITOR
N500: FORTRAN-500
ND-500 ANSI 77 FORTRAN COMPILER

FTN: COMPILE 5-FTN-APXX5,L-P,5-FTN-APXX5 :NRF

FTN: COMPILE 5-FTN-SUBS,L-P,5-FTN-SUBS:NRF
FTN: EXIT : ,

" .N500: COBOL-500"
ND-500 COBOL COMPILER
*COMPILE 5-COB-APXX6,L-P,5-COB-APXX6:NRF

*COMPILE 5-COB-SUBS,L-P,5-COB-SUBS :NRF
*EXIT

N500: EXIT

@Loc

Update and compile TPS-TABLES
ESC

ENTER TPS-USER

@1@ or QED

edit TPS~TABLES

list TPS-TABLES

ENTRY APOO1,SAW10,SPR10
ENTRY AP002,SAWS5,SPR2

-

ENTRY APXX1,SAW8,SPR2
ENTRY APXX2,SAW8,SPRS
ENTRY APXX3,SAWS,SPR2
ENTRY APXXY,SAW2,SPR15
ENTRY APXXS,SAWY,SPR9
ENTRY APXX6,SAWT,SPR11
YLINE

*y TPS-TABLES

*EYIT

@MODE COMPILE-TABLES :MODE L-P

ND-60.111.04

8-19

Update SPECIFY-LUAP:SYMB

@PED or QED

edit SPECIFY-LUAP:SYMB

list SPECIFY-LUAP:SYMB

“CRMOD;
@ENTER RT,,,30
: @HEAD LUAP
. "ICRMOD; -
"%, Load 2 Fortran programs on segment 205;
LOAD-SEGMENT 205, (USER-NAME)PUBLIC: ¢BIN,,
ADD-APPL (USER NAME)FTN-APXX1,APXX1;
“ADD-APPL, (USER- NAME) FTN-APXX2, APXX2;
“ADD-UNIT, (USER-NAME)FTN-SUBS-
%, “s " must end each LOAD-SEGMENT;
"%, Load 2 Cobol programs on segment 206
LOAD-SEGMENT 206, (USER-NAME) PUBLIC: :BIN,
“ADD-APPL, (USER NAME)COB APXX3, APXX3;
“ADD-APPL, (USER-NAME) COB- APXXU, APXXY
ADD-UNIT(USER—NAME)FTN-SUBS'

“%, Load 1 Fortran and 1 Cobol program on the 5003
“LOAD- 500SEGMENT, DOM~A,SEG~1,
“ADD~500APPL, (USER-NAME)S FTN -APXX5,APXX5;
“ADD-500UNIT, (USER-NAME)5~FTN-SUBS;
“ADD~500APPL, (USER-NAME)5~COB-APXX6,APXX6;
ADD-SOOUNIT (USER-NAME)5-COB-SUBS ;
‘CRMOD;
EXIT
"%, This mode file must be run last;
@MODE (TPS-USER)SAVE-TATAB:MODE, ,

write SPECIFY-LUAP:SYMB

list BUILD-LUAP:MODE

@apMm
YLOAD-USER-APPL :MODE output file
(after Y answer to GPM question)

GPM~LIBRARY gystem file

INIT-MD-ADDR ' system file

TPS~CONF system file

GLOBAL-MACROS system file

USER-MACROS system file

SPECIFY-LUAP user file

exit

ND-60.111.04

8-20

Run BUILD-LUAP

@MODE BUILD-LUAP:MODE L-P
@Log

Run LOAD~-USER-APPL
ESC

ENTER RT
@MODE (TPS-USER) LOAD~USER-APPL :MODE L-P
o @~APP-BATCH 1~ (TPS~USER) LOAD~USER=-APPL :MODE L-p. .

ND-60.111.04

.. ABEND .
© 'RSTRT =~

A-1

APPENDIX A

APPLICATION NUMBERS FOR SPECIAL
APPLICATIONS

o

SINOF
SLECT
SINON

TPMON (ND500-TPS only)

CHECK
ROLBK
~ RCOVR
TPCLO
TPOPN

' T T T O I B A
CWOWONOd W - O

ND-60.111.04

ND-60.1

11.04

B-1

APPENDIX B
SAMPLE PROGRAMS

To be inserted later

ND-60.111.04

ND-60

111.04

APPENDIX C
ERROR MESSA

1. COMPILE TIME ERRORS
Compile time error messages ¢
- program is written in, i.e.

"ND FORTRAN. Reference
-.'ND COBOL Reference Ma
ND PLANC Reference Ma
 NORD PL User's Guide
MAC User’s Guide

2. BUILDING THE LOAD FILE

When running BUILD-LUAP:M
error messages:

UNMATCHED >.
PROBABLY MACHINE ERROR.

Usually caused by a mis
errorl).

NON-DIGIT IN NUMBER.

A numeric parameter cont

UNDEFINED NAME.

Unrecognised macro-nam
of the macro names LO/
ADD-500APPL, ADD-UNIT,

There are more GPM error-me
building the load-file. However,
does not accept. The errors may

1)

Incorrect spelling of the m

2) Missing parameter in a m
the missing parameter in tt
3) Superfluous character(s) in

to the load-file. Occurs, fo

two semicolons instead of

N

C-1

GES

are described in the manual for the language the

Manual

nual

nual

JDE, the GPM program may give the following

sing semicolon in the source-file (not machine

ains non-numeric characters.

e encountered. Usually due to incorrect spelling
AD-SEGMENT, LOAD-500SEGMENT, ADD-APPL,
ADD-COB-SUBROUTINES and ADD-500UNIT.

ssages, but they are not likely to appear while
GPM may produce a load file that the RT-loader
then be of three kinds:

acro parameters.

acro cail. The string NIL is then substituted for
e load-file.

the macro file. The same characters are copied
r instance, where a macro call is terminated by
one.

D-60.111.04

3. LOAD TIME ERRORS

Error messages from the real-time loader are described in the manual

SINTRAN llIl Real Time Loader.

and messages from the ND-500 Loader are described in the manual
ND-500 Loader/Monitor

In addition, the TPS load program LOTAB may give the following error messages:
. APPL. MIS_S.ING,FCHECK.‘LOA‘D L_IS,.TING o

"~ The app!ication has not been loaded for somé reason or the program narﬁe
~declared in the program is not found in TPS-TABLES. Check the load listing -
for an error message from the RT loader.

ERROR IN OBJECT CODE

The application program being loaded does not start with the standard
FORTRAN or COBOL entry point coding

TOO LARGE WORKING STORAGE FOR COBOL APPL,

The total size of the data area (or working storage for the main program)
exceeds the fixed maximum.

ERROR IN OPENING TCF FILE

TCF file (checkpoint file) can not be opened. If already open, close it and
try again.

WRITE ERROR ON TCF FILE

Error return from file system when attempting to write on the TCF file.

APPLICATION SEGMENT SIZE EXCEEDED

The available space for application programs is exceeded.

ND-60.111.04

These error messages may also
ND500 DESCRIPTION FILE ACC

Error return from fil
file:(RT)DESCRIPTION-FIL

DOMAIN NAME NOT FOUND [N
Some error. occurred in th

LOAD—USER_-APPL:MQDE

SEGMENT NAME NOT FOUND

Some error occured in the

LOAD-USER-APPL:MODE

ND500 LINK FILE ACCESS ERRC

esystem when

C-3

appear when loading ND-500 applications:

ESS ERROR

attempting to access the

E:DESC

N DESCR. FILE

e LINKAGE-LOADER when running the mode-file:
Check the Ioad Ilstlng

N-DESCR. FILE

LINKAGE-LOADER when running the mode-file:
Check the load listing.

JR

Error return from filesystem when attempting to access the file:
seg-name:LINK. Check the load listing.

ND500-APPL.MISSING, CHECK LOAD LISTING

Same as "APPL.MISSING;

ND100-APPL. EXISTS AS RT-PR

An RT-program with

TPS-load-procedure. Use
such programs, then use
order to remove such prog

r

N

CHECK LOAD LISTING"

OGRAM (APXXX)

1ame APXXX exists. This is fatal for the
the command @LIST-RT-PROGRAM to detect
the RT-loader command DELETE-PROGRAM in
ram(s).

D-60.111.04

C-4

4. RUN TIME ERRORS
Run time error messages can come from several sources:

— The application program itself may write error messages on the user
terminal using normal output statements. It may send error messages to
the TPS operator using the write-message TSR. The contents of these error
messages are determined by the programmer.

— The application program may call ERMON to write the standard error
message on the SINTRAN error device (usually terminal 1):

hh.mm.ss. ERRORnn IN rr AT If:

USER ERROR. SUBERROR:ss .-

where

hh.mm.ss time when the message is printed

nn user error number

rr TPT identification

Il address of error in application program
ss user suberror number

— The application program may call ERMSG or QERMS after an error return
from a SINTRAN routine. A SINTRAN error message will be written on the

SINTRAN error device. These messages are described in the SINTRAN III
User’s Guide.

— The FORTRAN or COBOL runtime systems may write error messages.
FORTRAN messages will be written on the SINTRAN error device (usually
terminal 1), while COBOL messages will always be written on terminal 1.
These error messages are described in the manuals

ND FORTRAN Reference Manua
ND COBOL Reference Manual
ND-PLANC Reference Manual

ND-60.111.04

C-5

If a program is abnormally ended by TPS, the FORTRAN or COBOL run
time systems, or the program itself using TSTOP (n) where n is not equal

to 0, the following error message will be written on the TPS operator's
console.

TPS

APPL. NO. aaa ABENDED BY JRUNTIME SYSTEM
APPLICATION

IN ADDR yyy TPT NO. tt

DUE.TO reason (text) if abended by TPS

reason (code) if abended by appl. or RUNTIME SYSTEM |

NONE
DATA BASE ACTIVITY: < READ ONLY

UPDATE PERFORMED

Codes:

aaa TPS application no. {0-255)

tt TPT no. (1-63)

2% Latest link register

reason (text) If abended by TPS, one of the following texts:
or reason {code) 0=Abended by operator

1 =Application cannot be activated
2=lllegal use of TSRs

3=Subroutine not loaded

4 = Application Timeout

5=Internal TPS error

6 = Operator timeout

7=Attempt to restore ND-500 application
8= Error from ND-500 monitor

If abended by application:
Stop code given in TSTOP

If abended by runtime system
SINTRAN error code

ND-60.111.04

ND-60.111.04

APPENDIX D

TPS SEGMENT STRUCTURE IN ND-100

In the drawing, the dark line shows how the 64K address space is used when
application programs are running. The application program goes from 0 to P2,
the TPT plus user data area from P2 to P3, the reentrant segment from P3 to P1.

— reentrant segments from ¥
— TPT segments (T = 6 in ex
— special and system applica
— user application segments

— system segment (1), OPCO

Total number of segments:

The other lines show the segments used for:

to 9 (R=1in e*a'mple}

ample}

tion segments (S = 5 in example)
U = 7 in example)

M segment (3) and scratch segments (3)

7+ R+ T+ S + U(26in example)

In addition, a TPT segment is shown in more detail.

For the segment structure in TPS-Il, see also the manual, ND TPS-Il User's Guide

ND-60.195.

D-60.111.04

164 K

D-2
. System Seqment {
i Opcom Segment 1 J
. 2]
' 1
{, 3 3
. Scratch Segment 1 |
} 2]
1 3 !
\ 1 , Aopi. 1
. 10 - ' . Appl.10”
1 1
. 7 [8 . 9 Appl.7-9
| 8 | Appl. 6
. 4 | 5 , Appl. 4—3
4 ' ~
} 2 } 3 | Appl. 2-3
\ 1 1 Appl. 1
. SIGNON i
. SELECT |
* OTHER SPECIAL APPLICATIONS
. SYSTEM APPLICATIONS 1 |
¥ 1
. SYSTEM APPLICATIONS 2
M 1
TPT 6
—
TPT S
TPT 4
[T A
TPT 3
| ma——
TPT 2
‘I TPTI
| Reentrant '
seq.
Application TPT and = Reentrant RT
ol s z
- ata P3\\seg. PTcommon
< N
ad ~
7~ AN
Ve d \\
-~ ~
// \\
s Common Local N
et : S
TPT data data
- ND-60.111.04 N

APPENDIX E

MONITOR CALLS AND LIBRARY CALLS

1.MONITOR CALL ROUTINES A

NUMBER NAME

0 LEAVE
| o INCH
2 © OUTCH
3 ECHOM
4 BRKM
11 TIME
2 LASTC
42 OPEN
43 CLOSE
62 RMAX
64 ERMSG
65 QERMS
66 ISIZE
67 OSIZE
73 SMAX
74 SETBT
75 REABT

LLOWED IN TPS PROGRAMS:

NUMBER

76

77

- 104

11

12

113

117

120

122

123

124

125

134

142

162

ND-60.111.04

NAME

SETBS-

SETBL

HOLD

UPDAT

CLADJ

CcLoCK

RFILE

WFILE

RESRV

RELES

PRSRV

PRLS

RTEXT

ERMON

OuUTST

E-2

2. LIBRARY CALL ROUTINES

All standard library routines are allowed in TPS programs with the exception of
the following DOUBLE word and COMPLEX routines (these can be obtained upon
special request):

DINT CSQRT
DFLOAT CEXP
:DNmT; ",f”"¢LoG f:
BMOD csim

A'Eoﬁhﬁ "k‘Af'béésx
DMAX1 CABS
DMIN{

DSQRT
DEXP
DLOG
DLOG10
DSIN
DCOS
DATAN
DTAN2

DABS

ND-60.111.04

APPENDIX F
SCREEN—-HANL

FOCUS-CALLS
FCINITE (init FOCUS)
CALL FCINITE(initiation-ars
FCDECFF (declare form file)
v CALL FCDECFF(form-filkev-n
FCDECFN kdeclare form name)
CALL FCDECFN(form-name
FCDECRC (declare record)

CALL FCDECRC(number-of
first-occurence-number, Ia

FCEREC (edit record)
CALL FCEREC(data-record,
FCWREC (write record)
CALL FCWREC(data-record

FCEFLD (edit one field)

CALL FCEFLD(field-name,o
data-element-length,edit-m

FCWFLD (write one field)

CALL FCWFLD({field-name,
data-element-length,status

FCEDSTA (get edit status)

CALL FCEDSTA(number-of
terminating-code,status)

FCCLREC (clear data record)

CALL FCCLREC(data-recorc

V.

F-1

JLING CALLS

ayt,private-form-buffer,status)

ame,status)

2,mode, status)

-field-names, field-names,
st-occurence-number, status)

edit-mode,status)

,status)

ccurence-number,data-element,
ode,status)

occurence-number,data-element,

-fields-edited,record-status-array,

1,status)

D-60.111.04

F-2

FCCLFDS (clear fields)
ﬂCALL FCCLFDS(mode,status)
FCESFLD (set edit start field)
CALL FCESFLD(field-name,occ irence-number, status)
FCOPEN (open file)
o CALL FCOPEN(filg-name',-acqess,-code,ﬁle,-number,status) :
FCCLOSE (close file)
- .. CALL F.CCLO_SE(ﬁ!emun‘iber,stétps)’ _
FCPRDOC (print document on file)
CALL FCPRDOC(data-record, file-number,status)
FCZMSGE (send message)

CALL FCZMSGE({message,status

—

FCGMSGE (get message)
CALL FCGMSGE(leading-text,message,status)
FCCLSCR (clear rectangular area on screen)

CALL FCCLSCR(from-Iine,from-column,to-line,to~column,status)

FCWTXT (write text)

CALL FCWTXT(line,column, text,leng,status)

FCRTXT (read text)

CALL FCRTXT(line,column,text,leng,status)

ND-60.111.04

NSHS-CALLS IN ND100
GTPIC and CGTPIC (get picture)

CALL GTPIC (picture-file-
picture-number-array, statt

CALL 'CGTPIC’ USING picu
picture-name-string, pictur
RMPIC (remove picture)

CALL RMPIC (number-of-

GFTDN (get field numbers)

CALL GTFDN (picture-nun

F-3

name, number-of-pictures, picture-name-string,
is)

itre-file-name, number-of-pictures,
e-number-array, status.

pictures, picture-number-array, status)

nber, number-of-field-indicators,

field-indicator-array, field-number-array, number-of-fields, status)

WRPTD (write picture to display,

CALL WRPTD (picture-nu

mber, status)

WARPTF and CWRPTF (write-picture-to-file)

CALL WRPTF (file-number, flag, code, picture-number, number-of-fields,

field-number-array, record,

CALL 'CWRPTF' USING
number-of-fieids, field-num
status.

data-element-index-array, status)

file-name, flag, code, picture-number,
\ber-array, record, data-eiement-index-array,

WMSGE and CWMSGE (write-message)

CALL WMSGE (text)

CALL 'CWMSGE’ USING text.

WFLDS (write fields to VDU)

CALL WEFLDS (code, pictt

ire-number, number-of-fields,

field-number-array, record, data-element-index-array, status)

N

D-60.111.04

RFLDS (read fields)

CALL RFLDS (code, picture-number, number-of-fieids, field-number-array,

record, data-element-index-arra
terminating-character, status)

CFLDS (clear fields)

CALL CFLDS (picture-number, number-of-fields, field-number-array,

‘status}

. CLSCR (clear-screen)

, number-of-fields-read,

CALL CLSCR (code, first-line, last-line, start-or-end-position, status)

CLBUF (clear-buffer)

CALL CLBUF (picture-number,
record, data-element-index-array

number-of-fields, field-number-array,
, status)

ZREAD/RREAD,ZLOCK/RLOCK,ZMUST/RMUST (set/remove — XXXX)

CALL Z/R XXXX (picture-number, number-of-fields, start-index,

field-number-array, status)

ND-60.111.04

i

APPENDIX G
SIBAS CALLS
SUMMARY OF

OPEN-DATA-BASE

THE DML—-STATEMENTS

.CALL SOPDB (mode, data base name, password, status)

CLOSE-DATA-BASE

CALL SCLDB (data base

READY-REALM

CALL SRRLM
protection-modes, status)

FINISH-REALM

CALL SFRLM (no. of real

FIND-USING-KEY

CALL SFTCH (realm nam

FIND-FIRST-BETWEEN-LIMITS-

CALL SFEBL (realm nar

length)

name, status)

no.-of-reaims, realm-names, usage-modes,

ms, realm names, status)

e, key name, key value, status, key length)

USING-KEY

me, key name, low limit, high limit, status, key

FIND-LAST-BETWEEN-LIMITS-USING KEY

CALL
length)

FIND-FIRST-IN-REALM

CALL SRFIR (realm name

SFLBL (real name, key name, low limit, high limit, status, key

2, status)

ND-60.111.04

G-2

FIND-FIRST-IN-SET i

CALL SRFSM {temporary data base key, set name, status)

FIND-LAST-IN-SET

CALL SRLSM (temporary data b

- FIND-PRIOR-IN-SET

CALL SRPSM (temporary data b

FIND-NEXT-IN-SET

ase key, set name, status)

ase key, set name, status)

CALL SRNSM (temporary data base key, set name, status)

FIND-NEXT-IN-SEARCH-REGION

CALL SRNIS (temporary data ba
status)

FIND-PRIOR-IN-SEARCH-REGION

se key, temporary search region indicator

’

CALL SRPIS (temporary data base key, temporary search region indicator,

status)

FIND-SET-OWNER

CALL SRSOW (temporary data b

GET

CALL SGET (temporary data bas
status)

GETN

CALL SGETN (temporary dat
indicator, no. wanted, no. of items

GET-INDEXES

ase key, set name, status)

e key, no. of items, item list, item values,

a base key, temporary search region
, item list, item values, no. found status)

CALL SGIXN (temporary data base key, temporary search region

indicator, no. wanted, item values

no. found, status)

ND-80.111.04

MODIFY

CALL SMDFY (tempora

values, status, value length)

STORE

CALL STORE (realm na
value length)

ERASE

©* CALL SRASE (temporary

CONNECT

CALL SCONN (ternporary

CONNECT-BEFORE

G-3

ry data base key, no. of items, item list, item

me, no. of items, item list, item values, status

'

data base key, option code, status)

data base key 1, set name, status)

CALL SCONB (temporary data base key 1, temporary data base key 2, set

name, status)

CONNECT AFTER

CALL SCONA (temporan
name, status)

DISCONNECT

data base key 1, temporary data base key 2, set

CALL SDCON (temporary data base key, set name, status)

INSERT

CALL SINSR (temporary

REMOVE

CALL SREMQO (temporan

REMEMBER

data base key, key name, status)

data base key, key name, status)

CALL SREMB (temporary id, option code, status)

ND-60.111.04

FORGET

CALL SFORG (temporary id, op

LOCK

tion code, status)

CALL SLOCK (temporary data base key, option code, status)

UNLOCK.

CALL SUNLK (status)

CHANGE-PASSWORD

CALL SCHPW (new password, status)

ACCEPT

CALL SDBEC (set name, realm name 1, realm name 2, item name,

dmistatement code, dbec)

ERASE-ELEMENT

CALL SEREL (temporary data base key, no. of items, item list, status)

ACCUMULATE INTEGER,FLOATING OR DOUBLE WORD

CALL ACCID/ACCFD/ACCDD (temporary data base key, no. of items, item

list, increments, new values, stat

CHANGE-THE-SIBAS-SYSTEM

CALL SETDV (system-no.)

EXECUTE-MACRO

us)

CALL SEXMC (input, length of input, output, length of output,status)

UPDATE-DATA-BASE-IN-PLACE

CALL SUPLA (update ratio, trig

ND-80.

ger code, checkpoint id, status)

11.04

G5

SUBEG

CALL SUBEG (run-id, t-unit-type, status)

SUEND

CALL SUEND (run-id, COMIT or ROLL-BACK, status)

SET ROUTINE LOG ON/CFF

CALL ONLOG (status)
CALL OFLOG (status)

BEGIN/END SEQUENCE

CALL BSEQU (sequence-name, status)
CALL ESEQU (sequence-name, status)

FETCH/GET

CALL SFTGT (realm name, key-name, length-of-key, key-value, number of
items, items-list, item-values, status)

RESTRICTED SIBAS CALLS

CHANGING STATES

START
STOPS
SRUN

SPAUS
SRECO
SFINI

STREP
SPASS

ND-60.111.04

LOGGING

INLOG

CHECKPOINT/ROLLBACK/REPROCESS

SCHPQ/GCHPO
SROLL
SICON

- SREPR

MISCELLANEOUS

.~ RESIB/RELSt .
" SABOR
CHCOM
SIBIO
STRLG
RBLAN/SBLAN/ZTRB
SINFO

ND-8

0.111.04

H-1

APPENDIX H
TSR CALL FORMATS

A complete format description of all TSR calls in alphabetical order is given in
this appendix. Examples are given in FORTRAN and COBOL.

If called from PLANC, all routines must be declared as ROUTINE S_TANDARD
in IMPORT statement. PLANC-routines should call CGBRD and CWMSG instead
of TGBRD and TWMSG, using type “BYTES" for the parameter <text>.

Note: When called from ND-500, all parameters in TSR-calls must have a
word-iength of 32-bits. Text strings are packed 4 bytes into each word.

Also in ND500, no “"INTEGER" data element may exceed 2'5-—1 in absolute value,

due to the data-range in ND100. If this range is exceeded, TSR-calls having a
return status, will be given the value -10: INTEGER range overflow.

ND-60.111.04

H-2

CGBRD

Get a broadcasted message, if there is any for this TPT (COBOL form).

CALL 'CGBRD’ USING <text> <status>.

Exit Parameters:

- <text> L A character string where the received text is tobe .
. o - placed: The record should have a length of 72.
characters
.. <status> =0,0K.- textplaced in array .

= —1, No broadcast message has arrived.

Rules:

— CGBRD must be used for character strings without descriptor words (i.e.
COBOL and PLANC programs)

— The text may not exceed 72 characters; it will be terminated by an
apostrophe and padded with blanks

— The broadcast may have come from an application program using the
TBRDC TSR or from the TPS operator using the BROADCAST command
or the MESSAGE-TO-UNIT command

Example:

COBOL: CALL 'CGBRD’ USING MESSAGE-AREA STATUS-CODE.

PLANC: IMPORT (ROUTINE STANDARD VOID, VOID (BYTES, INTEGER WRITE) :

CGBRD)
CGBRD (TEXT, STATUS)

ND-60.111.04

CWMSG

Write a message on the operator’s console

CALL 'CWMSG" USING <text string>.

Entry Parameter:

<text string> ac

haracter string containing the text to be written:

out. -

Rules:

— CWMSG must be used fo

COBOL and PLANC progra

r character strings without descriptor words (i.e.
ms)

— The text string may contain CR and LF. It must be terminated by a ' and

may not exceed 256 bytes.

Bit 7 (parity bit) in each byte must be 0.

— The message will be supplied with time, date and source identity

Example:
COBOL: CALL 'CWMSG’ USING

PLANC: IMPORT (ROUTINE STA
CWMSG (TEXT)

MESSAGE-TEXT.

NDARD VOID, VOID (BYTES): CWMSG)

ND-60.111.04

H-4

TAAVA

Set an application available.

CALL TAAVA (<application number>, <status>)
CALL 'TAAVA' USING <application number> <status> .

Entry Parameter:
< applicatioﬁ number>- The TPS a’vpplicatioh number
Exit Paraheter:
C<status> 0 Look

= —1, illegal application number

Rules:

— TAAVA indicates the same action as the corresponding operator command
(SET-AVAILABLE)

- Callable from special applications only
Examples:

CALL TAAVA (12, ISTAT) :
CALL ‘'TAAVA' USING APPL-NO STATUS-CODE.

ND-60.111.04

TABND

H-5

Stop the TPS system immediately (abnormal end).

CALL TABND (<scope>)

CALL 'TABND’ USING <«scope>.

Entry parameter

<scope>- - =]

Ru/és:

— TABND indicates the same
(ABEND-TPS)

if global abend (all TCMs)
if local to current TCM

action as the corresponding operator command

— Callable from special applications only

— No return to the application after calling this TSR

— Only global action allowed
Examples:
CALL TABND (0)
CALL 'TABND’ USING ZERO.
N

at present

D-60.111.04

e

Lot

TABST

Read the abend status of the current

CALL TABST (<record>)

CALL 'TABST' USING <record>.

Entry Parameters:
None'

Exit Parameters:

recdrd(?)- '

record(2)
record(3)

record(4)

record(5)

record(6)

record(7)

Previous

Previous
active in

Data ba
=0, DB

Current
applicati

task.

appl. number

appl. status (Not active =0, active =1,
a TSR-call =2)

se activity for previous application (none
opened =1, DB updated =2)

TPT no (2-63 if normal processing - special
ons TPOPN, CHECK, TPCLO, ROLBK,

RCOVR will always be executed on TPT no 1).

ABEND activated by TPS (=0), previous appl. {=1)

v

or by run-time system (=2).

ABEND information:

If abended by TPS: (record(5) = 0)
0= abended by operator.

1= impossible to activate application.
2= illegal use of TSRs.

3= subr

outine not loaded.

4= application timeout.

5= internal TPS error

6= operator timeout.

7= attempt to restore 500-application
8= error from 500-monitor

If abended by an application: (record(5) = 1)

record(6
previous

If abend

)} contains the parameter reasonused by
application when calling the TSR TSTOP.

ed by run-time system: (record(5) = 2)

Standard SINTRAN error code.

ABEND —location:

Latest link register.

ND-60.111.04

H-7

record(8) . First application activated for this TPT
record(9) Termination strategy (see TSTST)
record(10) Termination application
record(11) Abend strategy (see TSAST)
record(12) Abend application
recard(13) Restart strategy (see TSRST)
record(14) .Restart application

" record (15) Close strategy (see TSCST)
record(16-30) Unused
Rules:

— Callable from ABEND only

— Words 1-3 refer to the previousapplication, not the calling application

— Words 5-7 are 0 if ABEND has not been activated

Examples

DIMENSION IREC (30)
CALL TABST (IREC)

CALL 'TABST' USING ABEND-—RECORD.

ND-60.111.04

TACTV

Activate a concurrent task.

CALL TACTV (<application number>, <record>, <size>, <status>
CALL 'TACTV' USING <application number> <record> <size>
<status>.

Entry Parameters
< application number> The TPS application number
<record > Data array/record that is to be transferred to the -
: : .~ . new, activated -task. This record is treated as- a
contiguous string of bytes. Be aware of

ND-100/ND-500 difference in word-length.

<size> Size of <record> in bytes.
Size may not exceed 2000 bytes (decimal).

Exit Pararmeters:

< status> =0, OK -task activated.
=1, Parameter error (ill. appl. no/record size too
large)
=—2, No TPT available at present. Another attempt
may be performed after an appropriate pause.
= —3, The application is unavailable

Rules:

— Up to 2000 bytes of data can be transferred from the activating to the
activated task. The data will be placed at the beginning of the task
common data area

— The new task will be given a TPT from the current TCM

— If no TPT is available, an error code is returned

Examples:

DIMENSION IDATA(5)
CALL TACTV (52,IDATA,10,ISTAT)

CALL 'TACTV' USING APPL—52 DATA—REC TEN STAT—CODE.

ND-60.111.04

TAPST

Read the status of an application.

H-9

CALL TAPST (<application number>, <record>, <status >)
CALL 'TAPST" USING < application number> <record> <status>.

Entry Parameters:
< application-number >
Exit Parameters:

record(1)

record(2)

record(3)

record(4)

record(5)
record(6)
record(7)
record(8)

record(9)

record(10-30)

<status>

The TPS application number.

Application state:

= ND-500 application ready
ND-100 application ready
Not available.

o =N
i

i

If ND-100, application language
1 = COBOL

0 = FORTRAN/PLANC

If ND-500, 0

If ND-100, start address
If ND-500,
Left byte: ND-500 segment number
Right byte: ND-500 appl.no. in current segment.

If ND-100, application segment number
If ND-500, ND-500 domain number.

Application checkpoint weight.

Application SINTRAN priority and ND500 priority.
Current number of TPTs active on this application.
Size of maximum task common

ND100: Reentrant segment number used by this
application.

ND500: = 0

Unused

={. OK.
=—1. Parameter error (ill.application number)

ND-60.111.04

H-1

Rules:

— If the application does not exist, record(1) will be 0.

— MAC/NPL application will be given as FORTRAN because they must be

FORTRAN—compatable.

Examples:

" DIMENSION IREC{30) - |
CALL TAPST (20, IREC,ISTAT)

- 01 APPL-RECORD. o
05 RECORD COMP OCCURS 30.

CALL 'TAPST" USING 20 APPL—RECORD.

TASET

Set the absolute execution time for
time.

an application to be started at some future

CALL TASET (<module>, <application number>, <param 1>, <param

2>, <time>, <status>)

CALL 'TASET" USING <module> <application number> <param 1>
<param 2> <time> <status>.

Entry Parameters:

<module> The module number of a TCM

< application number> The TPS application number

<param 1> <param 2> Decimal integer parameters that are placed at the
beginning of the task common data area

<time> Data array containing the absolute execution time
as 6 decimal integers (second, minute, hour, day,
rmonth, year)

ND-60.111.04

Exit Parameters: .

< status > = 0, OK — execution time set

i
4

~4, No time queue element available

= -5, Parameter error

Rules:

“— Ifno TPTis available when the task is to be started, an error message will
be written on the TPS operator console

— The time resolution is.5 seconds

Examples:

DIMENSION ITIME(6)
CALL TASET (33,2,9,5, ITIME, IS

CALL 'TASET' USING TCM1
STATUS—CODE.

STAT)

APPL—2 TERM—8 TYPE—5 ABSOLUTE—TIME

ND-60.111.04

H-12

TAUNA

‘Set an application unavailable.

CALL TAUNA (<application number>, <status>)

CALL 'TAUNA' USING < application
Entry Parameter:
<application number> The TPS

Exit Parameter:

kst‘atus> =0, OK

number> <status>.

application humber

= —1, illegal application number

Rules:

- TAUNA indicates the same action as the corresponding operator command

(SET-UNAVAILABLE)

— Callable from special application

CALL TAUNA (15, ISTAT)

s only

CALL 'TAUNA’ USING APPL-FIVE STATUS-CODE.

ND-60

111.04

TBRDC

H-13

Broadcast a message to terminals connected to an |OM or TFTs controlled by a

TCM.

CALL TBRDC { <module >, <sub-address>, <text>, <units>, <status>)
CALL TBRDC' USING <module> <sub-address> <text> <units>

<status>.
Entry Parameters:

<module >

module (1)

module (2)
module (3-n)

< sub-address >

sub-address(1)

As array/record identifying the IOM or TCM module

to which the broadcast should be sent,

If module {1)=0, the IOM to which this application
is connected will receive the broadcast, otherwise
the array/record should be prepared with these
elements:

Address type. These types are allowed:

Type 1: Address is a number which identifies the
module within TPS,

Type 2: Address is a string of alphanumeric
chara-cters which identifies the module by its name.

Size of address in bytes.
Actual address of module.

The terminal or TPT to which the broadcast should
be sent.

The construction of this parameter is identical to
that of <module> , except that it identifies a unit
within the environment of a module - only
applicable if the message is to be sent to one
specific unit only.

Address type. These types are allowed:

Type 1: Address is a number which identifies the
unit within the module.

Type 2: Address is a string of alphanumeric
characters which identifies the unit by its name.

Type 3: Address is in any format
(alphanum./integer/comp./BCD) which is relevant
for the addressing of units in the given
environment. This address type is denoted as the
“native’” address type. ;

ND-60.111.04

H-14

sub-address(2) Size of address in bytes.

sub-address(3-n) Actual address of unit.
<text > An array/record with the text to be written.

The text should not exceed 72 characters, and
should be terminated by an apostrophe (’).

< units > =0, means broadcast to all units connected to this
L : : . module. . R B s
=1, means broadcast to all active units connected

to this module.
=2, means that the message should be sent to a

- specific. unit. within the ‘module, as: spécified i . -

<sub-address>.

Exit Pararneters:

<status > =0, OK - Text written as specified.
=-1, Parameter error - nothing written.

Rules:

— The message is written on the teminals on the broadcast line (usually the
bottom line)

— Messages sent to TPTs can be read by the application program with the
TGBRD/CGBRD TSR

— The message may not be more than 72 characters long and should be
terminated by a apostrophe

— All texts should be defined as arrays or Hollerith strings, not character
strings, in FORTRAN

Examples
CALL TBRDC (MODU LE.0,ITEXT,0,ISTAT)

CALL 'TBRDC' USING MODULE SUB-ADDRESS TEXT—STRING TWO
STATUS-- CODE.

ND-60.111.04

TBSEQ

Marks the beginning of a critical

CALL TBSEQ

CALL 'TBSEQ'.
Parameters
kNo.ne

»Hu/es

— This TSR should be used
used by TPS itself.

TCHCK

Take a synchronised checkpoint

CALL TCHCK { <scope>)
CALL 'TCHCK' USING < scope

Entry Parameter:

H-15

sequence according to SIBAS.

with care since the critical sequence facility is

of the TPS system.

\%

<scope> =0 if global checkpoint (all TCMs)

=1

Rules:

_ TCHCK initiates the same
{CHECKPOINT—TPS)

— Only global action allowed

Examples:
CALL TCHCK (0)

CALL 'TCHCK' USING ZERO.

if local to current TCM

action as the corresponding operator command

at present

ND-60.111.04

H-1¢

TCLOS

Close the TPS system in a controlled

CALL TCLOS { <scope>)
CALL 'TCLOS" USING <scope>.

Entry Parameter:

<scopé':> 2 - , =0 if gl
' =1iflo

" Rules:

—_ TCLOS initiates the same actio
(CLOSE—TPS)

— Callable from special applicatio

— Only global action allowed at pr

Examples:
CALL TCLOS (0)

CALL 'TCLOS’ USING ZERO.

manner {normal end).

obal close (alt TCMs)
cal to current TCM

n as the corresponding operator command

ns only

esent

ND-60.111.04

TCONF

Get the values of certain config

CALL TCONF (<record>)

uration parameters.

CALL 'TCONF" USING <record>.

Exit Parameters:

vrégoryd(T). ' ‘ Number of TPTs belonging to the éurrent TCM

record(2) Number of applications in this TPS system
-..record(3} . - - -Device number of operator console -

record(4) Application time-out in seconds

record(5) Operator time out in seconds

record(6) TCM number for this TPT

record(7-30) Unused

Rules:

— Callable from special applications only.

Examples:

DIMENSION IREC(30)
CALL TCONF (IREC)

CALL 'TCONF’ USING CONF-R

ECORD.

ND-60.111.04

H-18

TCONT

Continue normal TPS operation.

CALL TCONT { <scope>)
CALL 'TCONT USING <scope>

Entry Parameter:
<scope> =0if glob

=1 if loca
Rules:

—_ TCONT initiates the same action
(CONTINUE—TPS)

— Callable from special applications

— Only global action allowed at pres

Examples:
CALL TCONT (0)

CALL ‘TCONT’ USING ZERO.

ND-60

al continue (all TCMS) -
| to current TCM -

as the corresponding operator command

only

sent

111.04

H-19

TDCNT

Remove (disconnect) an application from the time queue and the interval table.

CALL TDCNT (<module>, <application number>, <status>).
CALL 'TDCNT" USING <module> <application number> <status>.

Entry Parameters:
<module > : The module number of a TCM

< application number> The TPS application number

Exit Parameters:

< status> = 0, OK, application disconnected
=-—5, Parameter error

Examples:
CALL TDCNT (32, 25, ISTAT)

CALL "'TDCNT' USING TCMO APPL—25 STATUS—CODE.

TESEQ

Makes the end of a critical sequence according to SIBAS.

CALL TESEQ.
CALL 'TESEQ'.

Parameters:
None.

Rules:

— This TSR should be used with care since the critical sequence facility is
used by TPS itself.

ND-60.111.04

H-20
TGBRD

Get a broadcast message, if there is any for this TPT.
CALL TGBRD (<text>, <status>)

Exit Parameters:

<text> - . A string of the type CHARACTER where the . |

received: text is to be placed. The record -should. ' P

have a length of 72 characters
<status> » =0, OK - text placed in array

=1, No broadicast message has arrived -

Rules:

— TGBRD must be used for character strings with descriptor words (i.e.
FORTRAN character strings)

— The text may not exceed 72 characters: it will be terminated by an
apostrophe and padded with blanks

— The broadcast may have come from an application program using the
TBRDC TSR or from the TPS operator using the BROADCAST command
or the MESSAGE-TO-UNIT command

— Should not be called from PLANC (use CGBRD).
Example:

CHAR BTEXT * 72
CALL TGBRD (BTEXT, ISTAT)

ND-60.111.04

THALT

Halt the TPS system temporarily.

CALL THALT { <scope>)

CALL ‘THALT' USING <scope

Entry Parameter:

<scope>

Rules:

(HALT—TPS)

Callable from special app

Examples:
CALL THALT (0)

CALL 'THALT USING ZERO.

THSYN

Do not allow a synchronised
TTSYN call

CALL THSYN
CALL 'THSYN'.

Parameters:

None

Rules:

If a checkpoint message

application program cal
however be frozen in the

Only global action allowec

i{D-60.111.04

H-21

>

0 if global halt (all TCMs)
1 if local to current TCM

THALT initiates the same action as the corresponding operator command

ications only

i at present

checkpoint to be taken until the next TTRAN or

comes, the checkpoint will not be taken until the
s TTRAN or TTSYN. Other TPS modules will
meantime.

TINTV

Set the execution interval for a

periodic application. If this application is

activated once, it will continue periodically.

CALL TINTV (<module>, <applic
<interval>, <status>).

CALL ‘TINTV' USING <module> <
" 2> <interval>. <status>

Entry Parameters:

ation number>, <param 1>, <param 2>,

application number> <param 1> <param

<module> - . _ - The module number of a TCM - BT

< application program> The TPS application number

<param 1> <param 2> Decimal integer parameters that are placed at the
beginning of the task common data area

<interval> Data array containing the execution interval as 4

decimal

Exit Pararneters:

integers (seconds, minutes, hours, days)

< status > = 0, OK — interval set

= —4, No interval table element available
= 5, Parameter error

Rules

— TINTV will not itself start peri
program. This must be done by

odic execution of the specified application
some other means.

— A new interval starts at each time of activation.

— If the application already has
will replace the old one.

— If no TPT is available when the
be written on the TPS operator

— The time resolution is 5 seconds.

an execution interval, the specified interval

task is to be started, an error message will
console.

ND-60.111.04

Examples:

DIMENSION INTVL (4)

CALL TINTV (32, 14, 0, 0, INTVIL

CALL "TINTV" USING TCMO APF

TMISC

H-23

., ISTAT)

’l.—14 ZERO ZERO INTERVAL STATUS—CODE.

Read the miscellanous TPT information.

CALL TMISC {<record>)

CALL "TMISC’ USING <record>

Exit parameters:
record (1)
record (2)
record (3)
record (4)
record (5)

record (6)

RT

Tyr

description address of cailing TPT.
e of last message

mber of TSWAP’s since TPT was allocated.

Operator timeout.

Ap

Pac

plication timeout.

cket size.

D-60.111.04

H-24

TPASZ

Set the packet size for session data.

CALL TPASZ (<packet size>, <status>).

CALL 'TPASZ’ USING < packet size>
Entry Parameter:

' ‘{pa.cket-"size'>. . A decim
' bytes

Exit Parameter:

<status > 0, OK

-1, error

Rules:

—_ Maximum permitted packet size

<status>,

= 2047

— Default packet size is specified at system generation

— The value specified with TPASZ

Examples

CALL TPASZ (512, ISTAT)

s used only for current transaction

CALL 'TPASZ’ USING SIZE—1000 STATUS—CODE.

ND-80.

111.04

at integer. containing. .the - packet size in

TR5MG

Get error message from the NI

CALL TREMG (<record >, <siz
CALL 'TREMG’ USING <recorc¢

Entry Parameter
None
Exit Parameters:

<record>" - CA
re

H-25

0-500-monitor

e>)
1> <size>

n array where the message will be placed. The ~ ~* *

cord must be able to hold a minimum of 200

characters.

<size>

n

Rules:
— Callable from special apg

= 8 (error from 500-mon
Examples:

DIMENSION IREC(100)
CALL TRSMG(IREC,ILEN)

dicates number of characters in the message.

olication ABEND only, and only by “abend cause’
tor) when abended by TPS.

CALL 'TREMG" USING TEXT-STRING LENGTH

ND-60.111.04

H-2¢

TRMSG

Read a message from session partner

CALL TRMSG
CALL

(<record > , <size

Entry Parameters

. <size >

The message is received exa
formatting or editing is performe

If no message has been sent,
message arrives

Examples:
CALL TRMSG (IREC, ISIZE, MORE,

CALL 'TRMSG’ USING MESSAGE §

ND-60

‘TRMSG’ USING <record >

>, <more > , <status >)
<size > <more > <status>.

<record >

- Size of in bytes.
Exit Parameters:

“<record > - - Data will be placed in this data area as it arrives. =~
No formatting is performed by TPS, the record is
treated as a contiguous string of bytes. Be aware of
ND-100/ND-500 differences in word-length.

<size > Indicates actual size of received message.
Maximum size is 2047 bytes. If over-flow, <size >
is unchanged.

<more > Indicates that session partner has more to send if
1, that you are free to send data if 0.

< status > =0, OK - <record > contains data.
= —1, Session broken.
=-—2, <record > too small for the message
{overflow).
= —3, Direction=output (Input not allowed).

Rules:

ctly as it was sent from the IOM. No
d

the program will wait in TRMSG until a

STAT)

IZE MORE STATUS—CODE.

.111.04

H-27

TROLS

Roll the TPS system back to the last synchronised checkpoint.

CALL TROLS { <scope>)
CALL 'TROLS’ USING <scope>.

Entry Parameter:

<scope> - . . =0 if global rollback (all TCMs)
- =1 if local to current TCM

Rules:

— TROLS initiates the same action as the corresponding operator command
{(ROLLBACK—TPS)

— Callable from special applications only
— No return to the application after calling this TSR

— Only global action allowed at present

Examples:
CALL TROLS (0)

CALL 'TROLS’ USING ZERO.

ND-60.111.04

H-28

TROLT

Roll the TPS system back to the last transaction checkpoints (racovery).

CALL TROLT { <scope>)
CALL 'TROLT" USING <scope>.

Entry Parameter:
<scope:>. o ... -=Qif global 'recovery (alt TCMs)

: : ' =1 if local to current TCM
.RU/GS;': ’

— TROLT initiates the same action as the corresponding operator command
(RECOVER—TPS)

— Callable from special applications only

— No return to the application after calling this TSR

- Only global action alllowed at present

Examples:
CALL TROLT (0)

CALL 'TROLT" USING ZERO.

ND-60.111.04

TRRST

H-29

Read the restart status of the current task.

CALL TRRST (<record>)

CALL 'TRRST" USING <record>.

Entry Parameters:
~Nonej ‘

Exit Parameters:
record(1)

record(2)

record(3)

record(4)

record(5-11)

record(12)

record{13)
record(14)
record(15)
record(16)
record(17)
record(18)

record{19-30)

" Previous appl. number (at [atest valid ch‘eCkpoint)."

Previous appl. status (not active =0, active =1,
active in a TSR-call =2)

Database activity for previous application (none =0
DB opened =1, DB updated =2)

’

Latest valid checkpoint was a synchronised one
{=0) or a transaction one (=1)

SINTRAN time array - indicating time for latest valid
checkpoint.

Current task no (2-83 if normal processing - special
applications TPOPN, CHECK, TPCLO, ROLBK,
RCOVR will always be executed on task no 1).
Restart strategy (see TSRST).

Restart application.

Termination strategy (see TSTST).

Termination application.

Ei

rst application activated for this TPT.
Close strategy (see TSCST)

Unused.

ND-60.111.04

Rules:

—

Callable from the RESTART spe

Words 1-3 refer to the previous

Examples:

~ DIMENSION IREC (30)
.-CALL" TRRST (IREC) - -

01 RESTART-RECORD.

05 RECORD COMP OCCURS 30_ ,
CALL 'TRRST" USING RESTART-RE

TRSES

Restore a broken session if possible.

CALL TRSES { <status>)
CALL 'TRSES' USING <status>.

Exit Parameters:

< status > =0, Ok -

cial application only

application, not the calling application

CORD.

session re-established.

=—1, TPS closed.

=2, M

odule closed.

= —3, Unit temporarily not available.
= —4, Unit permanently not available.
= —5, Parameter error.

= —8, Session terminated.

=—7, Not called from RESTART.

Rules:

Callable from the RESTART app

Examples:

CALL TRSES (ISTAT)
IF (ISTAT NE O) GO TO no-session

CALL 'TRSES’ USING STATUS-—CO
IF STATUS—CODE NOT= 0 GO TO N

lication only.

DE.

O-—SESSION.

ND-60.111.04

"~ None -

TRSTO

H-31

Restore the ND100 user application program and restart it at checkpoint.

CALL TRSTO
CALL 'TRSTO".

Parameters:

Rules:

— " Callable from the RESTART special application only.

— Not callable from the ND-500 (not possible to restart a ND-500-application
at a point inside the application). If it is called from an application running
in the ND500, the ABEND-application will be activated with the information

"Attempt restore ND500-ap

plication.”

D-60.111.04

TSAST

Set the abend strategy for the TPT.

CALL TSAST (<abend strategy>,

< abend application >)

CALL 'TSAST USING <abend strategy> <abend application> .

Entry Parameters:

- < abend strategy > - The abefd strategies used by the. s‘tandard‘verysion»
of the ABEND special application are:
1. switch to SIGNOFF

2. send an error message to the termmal operator e

switch to SIGNOFF

3. dump

the data area for the TPT on the printer,

switch to SIGNOFF
4. switch to < abend application >
5. Hait the TPS system

< abend application> The TPS
started if

Rules:

application number of the program to be
strategy 4

— The abend strategy determines the action taken by the ABEND special
application in a transaction abnormal end situation.

— The default value when a task is

started is 1.

— For all strategies, an error message will be sent to the TPS operator

console.

— If <abend strategy> =0, itw
=0, it will not be changed.

— No validation check of <abenc
it is an illegal application, SIGNC
Examples:

CALL TSAST(3,0)

CALL 'TSAST USING FOUR USER-A

ND-60.1

Il not be chénged; if <abend application

1 application> is performed by TSAST. If
FF will be activated instead at abend.

BEND-NO.

11.04

TSCIN

Set checkpoint interval for synct

CALL TSCIN (<times in minutes
CALL 'TSCIN’ <time in minutes

Entry Parameter:
Ch

che
cha

<time in minutes >

Examples:

CALL TSCIN (30)
CALL ‘TSCIN’ USING THIRTY.

TSCLO

Close a session.

CALL TSCLO (<status>)
CALL 'TSCLO’ USING < status

Exit Parameters:

< status > =)

==

==

wronized checkpoints.

>)
>,

eckpoint interval 0 no. synchronized
2ckpoints will be taken until the interval has been

nged.

, OK - session orderly closed
—1, Session already closed

—2, Session considered closed, but not

confirmed by partner.

Rules:

The connection between
and cannot be restored.

The session may be closec

Examples:
CALL TSCLO (ISTAT)

CALL 'TSCLO' USING STATUS
NC

the session partners will be completely broken

i by either of the session partners.

—CODE.

)-60.111.04

TSCST

Set the close strategy for the TPT.

CALL TSCST (<close strategy >)
CALL 'TSCST USING <close strategy

Entry Parameter:

>.

<close strategy> - . =0, normal termination -

=1, imm

Rules:

ediate termination

— The close strategy determines the action to be taken by TPS when a close

command is given.
— The default value when a task is

— If a close command is pending,
termination.

Examples:

CALL TSCST(0)
CALL 'TSCST' USING ZERO.

TSEQU

started is 0.

a close strategy of 1 will cause immediate

Marks the end of a critical sequence and the beginning of another critical

sequence according to SIBAS.

CALL TSEQU.
CALL 'TSEQU’.

Parameters:
None.

Rules:

— This TSR should be used with care since the critical sequence facility is

used by TPS itself.

ND-60.111.04

TSEST

H-35

Read the session status of the current task.

CALL TSEST { <record >)
CALL 'TSEST' USING <reco

Exit parameters:

record (1) Cur
: 0

=1

=2

rd >.

rent session state:

, No session active.

, Session request pending.
, Session established.

=3, Session terminate command pending.
record (2) Current direction of session (=1: inbound, =0:
out-bound)
record (3) Total no. of input messages so far in this session.
récord (4-10) Time for latest input message.
record (11) Total no. of output messages so far in this session.
record (12-18) Time for [atest output message.
record (19) Session partner, module number.
record (20) Session partner, unit number.
record (21-30) Unused
Rules:

— Used mainly by the RESTA
application programs.

Examples:

DIMENSION ISES (30)
CALL TSEST (ISES)

RT special application but also available to other

CALL 'TSEST USING SESSION—STATUS.

ND-60.111.04

H-36

TSMSG

Send a message to the session partner.

CALL TSMSG (<record > , <size > , <more > , <status >)

CALL 'TSMSG’ USING <record >

<size > <more > <status >.

Entry parameters:

‘<record-> . - Array/Record. to be transmitted to session ‘partner.
This record is treated as a contiguous string of
bytes. Be aware of ND-100/ND-500 differenc‘e‘: in

- word-length. ' : ‘ ’
<size > Size of <record> to be transmitted (in bytes).
Maximum size is 2047 bytes.
<more > Calling application should indicate whether more

data will follow (1) or not (0) in a following call.

Exit Parameters:

<status > =0, OK -
= -1, Se
=—2, Pa
=1, You
Rules:

— The message is sent exactly as
formatting or editing is performe

successful transmission.

ssion broken.

rameter error (Too large <record >)
have got a message.

prepared by the application program - no
d

— Return to the application program will be immediate without waiting for an

answer

Examples:
CALL TSMSG (ITEXT,ISIZE,1,ISTAT)

CALL 'TSMSG’ USING MESSAGE—T
STATUS—CODE.

EXT MESSAGE-—SIZE ONE

ND-60.111.04

TSOPN

H-37

Open a session with a new session partner.

CALL TSOPN (<module>, <sub-address>, <record>, <size>, <more>,

<status>)

CALL 'TSOPN’ USING <module>

<more> <status>.
- Entry Pararneters:

<module >

module (1)

module (2)
module (3-n)

<sub-address >

sub-address (1)

sub-address (2)
sub-address (3-n)

<record >

<sub-address>

<record > <size>

The 10M or TCM controlling the session partner, or
the intersystem communication 1OM if the session
partner is in another TPS system. This parameter is
an array (FORTRAN) or record (COBOL) with the fol-
lowing elements:

Address type. These types are allowed:

Type 1: Address is a number which identifies the
module within TPS

Type 2: Address is a string of alphanumeric
characters which identifies the module by its
name.*

Size of address in bytes.
Actual address of module.

The device or application program to be session
partner. The construction of this parameter is
identical to that of <module> |, except that it
identifies a unit belonging to the module.

Address type. These types are allowed:
Type 1. Address is the unit within the module.

Type 2: Address is a string of alphanumeric
characters which identifies the unit by its name.*

Size of address in bytes.
Actual address of unit.

Array/record to be transmitted to session partner.
Maximum size is 2000 bytes (may be less in some
cases, for example, with an X-25 permanent virtual
channel). This record is treated as a contiguous
string of bytes. Be aware of ND-100/ND-500 dif-
ference in word-length.

ND-60.111.04

<size> Size of record in bytes.

<more > Indicates whether more data will follow (=1) or not
(=0} in a following call.

* not yet

Exit Parameters:

implermented.

<status> - =0, OK - session established.

. <0..Not.

‘successful.

=—1, TPS closed, terminate your task as soon as

possible.

= —2, Module closed. S
- =3, Unit temporarily not available, try again.”

= -4, Unit permanetly not available.

= —05, Parameter error.

= —6, Session already established.

= -7, No TPT available

Rules:

— Only one session is allowed at a

time

— A session request for a device controlled by an IOM will result in the
allocation of the device to the requesting application program

— A session request for an application program will result in the allocation of
a TPT controlled by the given TCM - this does not have to be the current

TCM

— Up to 2000 bytes of data may be sent with TSOPN

— At present the session parner must be in the same TPS system. Sessions
between two TPS systems will be implemented later

Examples:

DIMENSION IMOD (3), IUNIT (3)

CALL TSOPN (IMOD,IUNIT,0,0,0,ISTAT)

IF (ISTAT.NE.O) GO TO error

CALL 'TSOPN’ USING MODULE SUB-ADDRESS DATA-REC
REC-SIZE MORE-BIT STATUS-CODE.

ND-60.111.04

H-39

TSOPT

Set the operator timeout for the TPT.

CALL TSOPT (<time in minutes >)
CALL 'TSOPT USING <time in minutes>.

" Entry parameter o
<time in minutes > Operator timeout time.
=0 The operator timeout is turned off.
Rules:

— The operator timeout could be changed depending on the current applicati-
on.

Examples:

CALL TSOPT (20)
CALL ‘TSOPT' USING TWENTY.

ND-60.111.04

TSRST

Set the restart strategy for the TPT.

CALL TSRST (<restart strategy>, <restart application > }
CALL ' TSRST USING <restart strategy> <restart application>.

Entry Parameters:

<restart strategy> -

The restart strategies used by the standard version

of the RESTART special application are:

1. Restart from checkpoint
2. Switch to <restart application >
3. Automatic termination ' '

4. The terminai operator chooses the restart acti-

on

<restart application>

The TPS application number of the program to be

started if strategy 2

Rules:

— The restart strategy determines the action taken by the RESTART special

application in a restart situatiton

— The default value of
default value of

— If <restart strategy>
application>
=0, it will not be changed

—_— No validation check of

<restart application>

<restart strategy> when a task is started is 2; the
<restart application>
activated (normally SIGNON)

is the first application that is

0, it will not be changed; if <restart

is performed by TSRST. If

it is an illegal application, ABEND will be activated instead of restart

Examples:
CALL TSRST(2, —1)

CALL 'TSRST USING THREE.

ND-60.111.04

TSTAT

H-41

Read the status of the current task.

CALL TSTAT (<record>)

CALL 'TSTAT’ USING <record>.

Exit Parameters:
racord(1)
record(2)
record(3)
record(4)
record(5-11)
record(12)

record(13)

record(14)
record(15)
record(16)
record(17)

record(18)

record(19)

record(20)

record(21)
record(22)
record(23)

record(24)

Current TPS state, 0= ready, 1= close requested.
Current TCM number.
Current TPT number.

First application activated on current TPT.

Time array with TPT allocation time.
Number of TSWAPs on this TPT since allocation.

Database activity (none =0, DB opened =1, DB up-
dated =2)

Number of SIBAS calls since TPT allocation.
Number of SIBAS calls since sync. checkpoint.
Number of SIBAS calls since checkpoint.

Number of SIBAS update calls since TPT allocation.

Number of SIBAS update calls since sync. checkpo-
int.

Number of SIBAS update calls since checkpoint.

Message indicator (no msg =0, msg/broadcast

arrived, =1)

Termination strategy (see TSTST)
Termination application.

Previous application activated on this TPT.

Close strategy (see TSCST)

ND-60.111.04

H-42

record(25) ND100: Not used.
ND500: Terminal device number of Symbolic
Debugger.
(Debug mode only, sise = 0.)

record(26-30) Unused.

Examples:

DIMENSION IREC(30)
CALL TSTAT(IREC)

CALL 'TSTAT” USING TASK-STATUS. -

ND-60.111.04

TSTOP

Terminate the transaction.

CALL TSTOP (<stop code>)

H-43

CALL 'TSTOP' USING < stop code >.

Entry Parameters:

‘< stop code> ={,

Normal transaction termination. This has the

same effect as STOP RUN (COBOL) -or END
(FORTRAN).

>
[ofe]¢
<(
giv

—1

. ABEND is activated and may obtain the étop

de from the TSR-routine TABST.

. ABEND is activated and a formatted printout is

en according to the stop code.

, for NSHS errors; ITERM(7) is displayed.

—2, for SIBAS errors; names of realms, items and

DB

Rules:

_— Normal termination will
application which will ca
strategy

EC codes are displayed.

result in activation of the SIGNOFF special
rry out the action indicated by the termination

— Abnormal termination will result in activation of the ABEND special
application which will carry out the action indicated by the abend strategy

— The application program

should release resources and ciose files before

calling TSTOP as this is not always done automatically

— TSTOP(0) from special applications will result in complete termination and

release of TPT

Examples:

CALL TSTOP (3)

CALL 'TSTOP' USING ABEND—CODE.

ND-60.111.04

H-44

TSTST

Set the termination strategy for the TPT.

CALL TSTST (<termination strategy>, <termination application>)
CALL ‘'TSTST USING <termination strategy> <termination application>.

Entry Parameters:

" <termination 'strategy > The termination stratégies used by the standard -
: ' version of the SIGNOFF special application are:
1. Complete termination and release of the TPT
2. Switch to SIGNON.
3. Switeh to SELECT
4. Switch to <termination application >
<termination application> The TPS application number of the program to be

started if strategy 4

Rules:

— The termination strategy determines the action taken by the SIGNOFF
special application when a transaction terminates

~~ The default value of <termination strategy> when a task is started is 1

— If <terminate strategy> =0, it will not be changed; if <terminate
application> =0, it will not be changed

- No validation check of <termination application> is performed by

TSTST. If it is an illegal application, there will be complete termination with
release of the TPT by SIGNOFF

— The <termination application> must not itself terminate "normally”’

unless it has changed the termination strategy, since this will result in an
endless loop. It may for example terminate by switching to SIGNON.

Examples:
CALL TSTST(2)

CALL 'TSTST' USING ONE ZERO.

ND-60.111.04

H-45

TSWAP

Switch to a new application program.

CALL TSWAP (<application number>, < status>)
CALL 'TSWAP' USING < application number> <status>.

Entry Parameters: .

< application number> the TPS application number

Exit Parameters:

<status > if not successful switch of application, return to the
calling application is performed with cause in
status.
—1 = illegal application number

—2 = application not available

Rules:

— The new application will be started from the beginning. It will have access
to the data in the task common data area for the transaction. Sessions will
not be broken and resources will not be released when switching
applications

Examples:

CALL TSWAP (APPL, ISTAT)

CALL 'TSWAP’ USING NEXT—APPL STATUS—CODE.

ND-60.111.04

H-46
TTERM

Terminate this task directly and completely.

CALL TTERM (<checkpoint>)
CALL "'TTERM’ USING <checkpoint:

v

Entry Parameter:

<‘chébkpoint> - =0, do not take a transaction checkpoint
=1, take a transaction checkpoint

Rules:
-~ termination is immediate and direct, i.e. SIGNOEF will not be activated
— termination is complete, i.e. the TPT will be freed

— atransaction checkpoint may be taken

Examples:
CALL TTERM(1)

CALL 'TTERM’ USING ONE.

ND-60.111.04

TTEXT

H-47

Send a text message to a terminal connected to an I0M or a TPT controlled by a

TCM.

CALL TTEXT {<module>, <sub-address> <text>, <length>, <status>)

CALL 'TTEXT' USING <module>, <sub-address> <text>, <length>,

< status >.
Entry Parameters:

<module>

module(1)

module(2)
module(3-n)

<sub-address >

sub-address(1)

An array/record identifying the IOM or TCM module
to which the broadcast should be sent.

If module (1)=0, the IOM to which this application
is connected will receive the broadcast, otherwise
the array/record should be prepared with these
elements:

Address type. These types are allowed:

Type 1: Address is a number which identifies the
module within TPS.

Type 2: Address is a string of alphanumeric
characters which identifies the module by its name.

Size of address in bytes

Actual address of module

The terminal or TPT to which the broadcast should
be sent.

The construction of this parameter is identical to
that of <module>, except that it identifies a unit
within the environment of a module - only
applicable if the message is to be sent to one
specific unit only.

Address type. These types are allowed:

Type 1: Address is a number which identifies the
unit within the module.

Type 2: Address is a string of alphanumeric
characters which identifies the unit by its name.

Type 3: Address is in any format
(alphanum./integer/comp./BCD) which is relevant
for the addressing of wunits in the given
environment. This address type is denoted as the
“native’”’ address type.

ND-60.111.04

sub-address{2)
sub-address(3-n)
<text>

<length>

Exit Pararneters:

. <status>.

Rules:

H-48

Size of address in bytes.

Actual address of unit

An array/record with the text to be written.

A decim
bytes

al integer specifying the message length in

= 0, OK — Text written as specified
= —1, Parameter error — nothing written

— The message is written on the terminals wherever the cursors happen to be

positioned

— Messages sent to TPTs can be read by the application program with the

TGBRD/CGBRD TSR

— The message may not be more than 72 characters long

— All texts should be defined as arrays or Hollerith strings, not character

strings, in FORTRAN

Examples:

CALL TTEXT (MODULE,Q,ITEXT,100,ISTAT)

CALL 'TTEXT' USING MODULE

STATUS—CODE.

ND-60.

SUB-ADDRESS TEXT—STRING LENGTH

11.04

H-49

TTOFF

Turn off application timé out for this TPT.

CALL TTOFF
CALL 'TTOFF".

Parameters:
None

Rules:

— The application time out is turned off until the TTONS TSR is cailed.

TTONS

Turn on application time out.

CALL TTONS
CALL 'TTONS".

Parameters:
None

Rules:

— Should be used to turn on the application time out after previous use of
TTOFF

— The application time out is set to the default value

ND-60.111.04

TTPST

Read the status of the specified TPT.

CALL TTPST (<TPT no>, <appl no>, <status>)
CALL ‘'TTPST' USING <TPTno> <applno> <status>.

Entry Parameter:

<TPTno> The TPT

number (1-83).
0 means ""this TPT".
Exit Parameters:
<appl no> The TPS application number of the application

activated by the TPT

< status > ={, OK

=—1, TPT number out of range

Examples:

CALL TTPST(20,APPL NO, ISTAT)

CALL 'TTPST' USING SYS-TPT APPL-NO STATUS-CODE.

TTRAN

Take a transaction checkpoint.

CALL TTRAN
CALL "TTRAN".

Parameters:
None
Rules:

- A transaction checkpoint is the

point-of-restart after a recovery operation

_— . The transaction checkpoint data will overwrite the data from the previous

transaction checkpoint
— For ND-500-applications, the lo
not be saved on the checkpoint
TPT-data will be saved.

cal data and transaction register block will
file. Only the contents of task-common and

ND-60.111.04

TTRON

Turn on the packet log function

CALL TTRON (< CPU-number>)

CALL 'TTRON’ < CPU-number>

H-51

Entry parameter

<CPU-number> - The CPU-number where the packet log will be
turned on. '
=0 in a single CPU-system.

Example:

CALL TTRON (0)

CALL "'TTRON' USING ZERO.

TTROF

Turn off the packet log function

CALL TTROF (<CPU-number>)

CALL 'TTROF" < CPU=NUMBER >

< CPU-number> The CPU-number where the packet log will be
turned off.

=

Example:

CALL TTROF (0)
CALL 'TTROF USING ZERO.

in a singel CPU-system.

D-60.111.04

H-5

TTSYN

Allow a synchronised checkpoint

CALL TTSYN
CALL "TTSYN".

Parameters:
None
Rules:

A synchronised checkpoint is th

A synchronised checkpoint wi

-
£

e point-of-restart after a rollback operation

| be taken if a checkpoint message has

arrived, else there will be an immediate return to the application program

TWMSG

Write a message on the operator’s co

CALL TWMSG (<text string>)
Entry Parameters:

<text string > a string

to be wr

Rules:

TWMSG must be used for ch
FORTRAN CHARACTER strings

The text string may contain CR
may not exceed 256 bytes. Bit 7

The message will be supplied w

Should not be called from PLAN

Example:

CHAR MTEXT * 80
CALL TWMSG (MTEXT)

ND-60.1

nsole

of the type CHARACTER containing the text
tten out

aracter strings with descriptor words (i.e.

)

and LF. It must be terminated by a and

{parity bit) in each byte must be 0.
ith time, date and source identity

C (use CWMSG)

11.04

APPENDIX I:
TSR CALLS — F

A list of all TSR calls ordered b

Name

Task adminstration TSRs

TACTV

TSWAP

TSTOP

TTERM

Set strategy TSRs

TSAST

TSTST

TSRST

TSCST

Session TSRs

TSOPN

TSCLO

TRMSG

TSMSG

TSEST

TPASZ

I-1

Function

Activate a concurrent task

Switch to another application

Terminate the transaction

Terminate the task

Set abend strategy
Set termination strategy
Set restart strategy

Set close strategy

Open session
Close session
Read message from session partner
Send message to session partner
Read session status

Set packet size

ND-60.111.04

-UNCTIONAL LIST

y function is given in this appendix.

Callable from
user application

Timing TSRs
TASET
TINTV
TDCNT
TSOPT
TTOFF

TTONS

Message TSRs

TWMSG

CWMSG

TTEXT

TBRDC

TGBRD

CGBRD

TREMG

Checkpoint/restart TSRs

TTRAN

TTSYN

THSYN

TRSES

TRSTO

TSCIN

Set execution time

Set execution interval

Disconnect execution time/interval

Set operator timeout

Turn off'applic‘ation time out

Turn on application time out

Write message to opera
Write message to opera
Write message to unit
Broadcast message
Get broadcast message

Get broadcast message

tor

tor (COBOL)

(CoBOL)

Get ND-500-monitor error message

Take a transaction checkpoint

Allow a synchronised ch
Do not allow a synchron
Restore broken session
Restart user application

Set checkpoint interval

eckpoint

ised checkpoint

ND-60.111.04

Critical sequence TSRs

TBSEQ
TESEQ

TSEQU

Status TSRs
TSTAT
TABST
TRRST
TAPST
TTPST
TMISC

TCONF

Marks beginning
Marks end of criti

Marks end and be

Read task status

Read abend statu

Read restart status

Read application
Read TPT status

Read miscellaneo

of critical sequence

cal sequence

status

us TPT information

Read configuration parameters

Operator function TSRs

TCHCK

TROLS

TROLT

TABND

TCLOS

THALT

TCONT

TAAVA

TAUNA

TTROF

TTRON

Take a synchronised checkpoint

Roll back to synchronised checkpoint

Rollback to transaction checkpoint

Stop TPS immedi

ately (abnormal end)

Close TPS (normal end)

Halt TPS tempora

rily

Continue normal TPS operation

Set application available

Set application un

Turn off packet log

Turn on packet lo

available

ND-60.111.04

ginning of critical sequence

ND-60

111.04

J-1

APPENDIX J
TPS ON ND-500

The TPS/500-system contains:

— An ordinary TPS/100-system with a 500-monitor running as a special
application (TPMON}) in the ND-100.

- Applications that may run in the ND-100 and/or in the ND-500.

— SIBAS and screen-handling that may run in either or both machines.

I

: |

ND 100 :
. l

I

I

I

l

I

|

N | 80
TPMON

o
I

ON 60

TPMON
|
' |

MON | 60

<
|
TPT

t
I
I
|
N
1
|
|
|
|

ND 500

ND 100
TPS
SCREEN-
HANDLING
SIBAS

Figure J.1.

ND-60.111.04

J-2

Each application running in the ND-500 has a corresponding
500-monitor-application, TPMON, running in the ND-100. The TPS-system in the
ND-100 sees only this 500-monitor-application. This monitor has total control of
the ND-500-process where the application is running. However, other TPS user
applications in the ND-100 or ND-500 will not see this monitor, they see the
ND-500-application only, and in the same way as any other ND-100-application.

One TPT running an ND-500-applicatian has this segment structure:

500 OOMAIN -

(- NSEG)
APPL.PROG SHARED LOCAL LINK TO ‘
(: PSEG) DATA APPL. DATA —_————— >
SEGMENT 500-LIBR.
] i
! 1
! ;
:]
ND 500 , |
t
!
ND 100 \ ,
5 :
: 1
TPMON TPT-DATA
TPMON -

APPL.SEGMENT | SEGMENT

Figure J.2

ND-60.111.04

J-3

All data transfer between the ND-100 and ND-500 is done by using the shared
segment, shown in the figure above, in order to minimize the system overhead.
The task common (i.e. COMMON/PRIVATE/) area is located inside the shared
segment area which survives when using the TSR-call TSWAP for switching to
another application in the ND-100 or ND-500. This shared segment is

contiguously fixed in memory during the whole “life’” of an application running in
the ND500.

The segment structure in one domain in the ND500 is shown below. There may
be several domains:

Segment-no.

1 Applications

I >
2 } -
3 | »
27 SIBAS-MESSAGE
: !
Applications
= -
Applications
t >
30 shared data segment TPS-500-libraries
1. 1 L]
4 M L 1
TPT RTCOMMON SIBAS,FOCUS,DEBUGGER,runtime-lib.
31 ND500 monitor segment
e |
0 134 Mbyte

ND-60.111.04

J-4

ND-60.111.04

APPENDIX K
GLOSSARY

abend- abnormal termination of

application- a program run unde
of a transaction

an application program due to an error situation

r the control of TPS to do the actual processing

application, special- see special épp!ication

background- a collective term fo

backup- a copy of the data bas
base if it is destroyed

r timesharing and batch

e, taken regularly and used to restore the data

batch- the processing of data that has been collected over a period of time to be

processed later in a sing
SINTRAN by using the SIN

BIM log- SIBAS before-image
changed, logged before th

le run of the application program — done in
TRAN batch processor

log, a log of SIBAS records that have been
e change is made, in order to be able to roll the

data base back to a previous state

checkpoint- the saving on a file of all data used by a program in order to later be
able to restore the program to its state when the checkpoint was taken

conversational- a program with t

devices, standard- devices with
directly through SINTRAN

devices, special- devices with w
through a TPS input/outpt

dialogue- the exchange of mess:
at a terminal, each messa
partner

DML- the SIBAS data manipula

failure, system- see system failur

DRL- the SIBAS data definition/

FOCUS - the ND screen handling

he ability to carry on a dialogue (see dialogue)

which an application program may communicate

hich an application program must communicate
ut module

1ges between an application program and a user
ge depending on the answer received from the

tion language used by an application program
e
redefinition language

system {replaces NSHS)

ND-60.111.04

input/output module- a TPS module that communicates with devices such as

networks and special terminals

externally and TPS modules internally, an

interface between the devices and application programs

interactive- a direct connection between a user and a program so that immediate
interactions are possible (see dialogue)

[OM- see input/output module

menu- a picture on a display termina

| showing the applications available to the

terminal user and allowing him to choose one of them

mode file- a symbolic file containing commands and responses to a program' »
- usually used interactively, making it possible to run the program in batch -/

mode

monitor call- a call to a routine in the SINTRAN operating system

network- a group of communication devices, such as terminals and

concentrators, connected by ¢

ommunication lines, and connected to a

computer through a modem device

NSHS- the NORD screen handling sy

OPCOM- the operator communication

stem used to control display terminais

module of TPS containing commands for

controlling TPS and routines for sending messages to the operator fromn

TPS modules

point-of-failure- the state of the TPS
system failure occurs. See syste

system and application programs when a
m failure.

point-of-restart- the state of the TPS system and application programs after a

system restart procedure has be

real time program- a program that
computing system, fast enough
event

en carried out. See system restart.

is activated by an event external to the
for the program to exert control over the

recovery- the process of restoring the data base after a system failure by rapid

updating from a checkpoint or

backup copy. The point-of-restart after

recovery is at the last transaction checkpoint

reentrant- the facility of a program to be used by several users concurrently.
Each user has his own data area, but only one copy of the program itself is

needed.
restart, system- see system restart

rollback- the process of restoring the
undoing the updating after tt

data base to its state at a checkpoint, by
1@ checkpoint. The point-of-restart after

rollback is at the last synchronized checkpoint.

ND-60.1

11.04

ROUTINE log- log of all SIBAS
base recovery

segment- an area on mass sto
programs and subroutines

SELECT application- a special
to be used and switch to

session- a connection between ,
program or a device controlled by an IOM. Communication between them

is through the TPS mess

“

> routine calls, used after system failure for data
rage of up to 64K words, containing one or more
5 to be run as a single load unit

application to determine which user application is
the application

an application program and. another application

age routing system

SIBAS- the data base management system used by TPS

SIGNOFF application- a spec

transaction terminates

SIGNON application- a speci

controiling the terminai us

SINTRAN- the NORD operatin
local and remote batch pr

special application- applicatio

perform standard functio

transaction restart after a

stack- an area (in the data part

data for a main program a

synchronised checkpoint- a ¢

programs at the same tim

system directives- a set of TPS

functions such as start, st

system failure- an error situati
normal processing. The

sial application that

is given control when a

al application used to start a transaction by
er's identity

g system, supporting real time, timesharing and
ocessing

n programs supplied with TPS and used to
ns, such as SIBAS system calls, signon and
system failure

of the TPT) for the dynamic allocation of variable
nd its subroutines
heckpoint taken by all TPS
e

and application

~

> operator commands to perform system control
op, checkpoint, rollback, recovery

on resulting in the inability of TPS to continue
data base may or may not be intact, but

transaction processing is

system restart- the process of

interrupted in both cases

starting the TPS system after a system failure,

including repairing damage to the data base, restoring the data base to a

consistent state and resta

task- the processing done by
untif it is freed again

TCM- the transaction control

TPTs

rting transaction processing

3 TPT from the time it is allocated by the TCM

[~

rodule of TPS used to control the allocation of

ND-60.111.04

' K-4

timesharing- the use of a computer b
each user in turn control over tt

done in SINTRAN through the

TPT- see transaction processing task

transaction- an interaction between or
base, usually involving a dialog

application program, resulting
response to the user

transaction checkpoint- a checkpoint

at suitable points in processing
‘transaction processing system- an
facilities needed for the immed

the data base or to retrieve info

transaction processing task- a TPS

started to control the applicatia

and an interface to TPS

transaction service routines- TPS rot

perform functions such as
adminstrating task control

TSR- see transaction service routine
unit- either a device controlled by

transaction processing task con
unit)

y several users at the same time by giving
e computer for a certain length of time —
SINTRAN background processor

e or more /O devices and an on-line data
jue between a user at a terminal and an
in some activity on the data base and a

taken by an individual application program

on-line computer system providing the
ate access to a data base either to update
rmation from it

unit allocated to a transaction when it is

n program and provide it with a data area

itines called by an application program 1o
communicating with 1/Q devices and

an input/output module (device unit) or a
trolled by a transaction control module (TPT

update file- a file that SIBAS writes updated records on instead of updating the

data base directly. The data bas

ND-60

e itself is updated at suitable intervals

111.04

-1-
INDEX
Section:

abend

CAUSES «..v.cooereeroeessanessio oo eeee e 2.3.2,6.2.2

EITOF MESSAGE ..eiiiiiii it e e 6.2.2.1

STrATEGY et 6.2.2

set abend strategy TSR (TSAST) oovoioiiioeeoeee e 2322

user abend applicationcoooveoeoovooooo o 6.2.2
ABEND speciat application..........c...oo.oveoieiee oo 23.2.1,6.2.2
abnormal termination - see abend
ACCEPT statement (COBOL)..ccouiuiiiimiiieeeeeesoeeeeees oo 343
8CCESS CONTrOl SYSTEM ..ottt 6.1.3
activate-concurrent-task TSR (TACTV) o.ooooeomomioeeeeeeeeeeoeoo 2211
ADD-APPL MECTO ..ot 8.3.1
ADD-COB-SUBROUTINES macro.................. e reteree et a e e aen e 8.3.1
ADD-UNIT MECTO .ttt 8.3.1
Alfascope 3500 terminalsc.oiviomeemieeeeeeeeeee oo 3.3.10.4
Allocating deViCeSoiiiiiiiii e 3.4.1
allow-synchronised-checkpoint TSR (TTSYN) e, 5.2.3.1
apPliCatioN PrOGraM ..ot 2.1

general desCription ..o e e 1.2.1.4

AL L B R USUSUSUSP SRS 741

MUMDBET .o e e e e e 7.4.1,App.A

PIIOTITY ottt e e ee e e, 8.3.1

special apPiCatIONS....cooieiiii e eeeee e, 1.2.15, 6
application table - see 8180 TPS-TABLESoooiovmoeeeeeereeeeeoee 8.3
asynchronous terminals (FOCUS)ccooovomiiiieeeeeeeeeeee e, 3.2.3.2
background (timesharing and batch)

PFOGIBIMIS oottt e r ettt eae e enee e e e rne e seeaneas 7.6

Y S BTN e e e e e vt aaaa e 8.2.1

HDPAIY (oo re et et 8.2.5

BESHING Lo et ee e et neen 8.2.5

USING SIBAS ..o e e et 3.1.2
DACKUP, A8 DASE ..cooiieie e ee e 5.2.1
batch - see background
before-image log (BIM log)

logging updated reCOrds.........ioiuiiuiieieeeeeeeeeeeeeeee e e 522

FEeSTOrING data DBSE ...oooeeieiiieiicticticeeeeeeeeeeeee e a e e v e 5.3.1
BLOCK DATA .ttt e s e es e eaens 7.1
BRF format

apphication program file tYPe.......ccocviiuie e eeeeeeee e 8.3.1
broadcast-message TSR (TBRDC) ...ccoooovvrieieceeeeeeeeeeeeeceeee e, 4.1.2
BROADCAST COMMENG ..ttt eeteee e ee e ees e 4.1.3
BSEQU Call {SIBAS) .t eeeeee e 3.1.6
BUILD-LUAPIMODE fill@ ..oioeeeiieiiieiiieeeeeee e eeeeeeeoreseeseeeeeeaesessssenens 8.3.1

ND-60.111.04

Section:
CGBRD (get broadcasted message TSR-COBOL).uuvveciiiiiiiinieinenn, 414
ChecKpOINt ... e 5.2.3
efficiency considerationsccooeiiiiii i 7.5.1
checkpoint, synchronised.......cocociciiiiiiin e, 5.2.3
BlIOWING ..o e 5.2.31
EAKING oo e 5233
holding (preventing).......c.ccc.c..e. serrbeet e neeere s e s bene s e et eeereeeeas 5.2.3.2
use in rollback ... e e e eereeeee 5301
checkpoint, tranSACHION .o..ooi i ee e 524
taking..oovrieeeccee, et e eeeter ke et necee e s teaaas st b e eaastnsaaeans ...5.241
L USE N FBCOVEIY. .l i, RSO SRT % BRI
checkpoint file
use at synchronised checkpointco.oooiiiireeeeeeieee e eeeeeee, 5.2.3
use at transaction checkpPoint. ...t 5.2.4
checkpoint weight
USIMQ ettt ettt cre e et eee e e e et e e teeeer e bt e seneeeseeeeaereensntasnssesnseeseseeeerens 5.2.3.3
AEFINING ..ot ee e e s e e e et e e e 8.3.1
CHECKPOINT COmMMEaNG.....coiiviiiiiiieeceeeeeee e e 5233
CHECKPOINT special appliCation.......c..coceeeeeioeeeeeecresseeeeeeerserreeeenaens 523, 64
clock
AdjUSt {CLADUJ) ..ottt ettt 4.2
examine (CLOCK and TIME)oooviiniiiiii et 4.2
update (UPDAT) ...t 4.2
close data base - see data base, closing
close-session TSR (TSCLO) c.ovieuiiriiiieicie et 3.3.4
CLOSE file STtEMENT ...ocveeiiiiiieeeeciee e eeeeen e e v e sae e e aeeaans 3.43
CLOSE Strategy . ccceeiereeiesiieeeieese ettt eeeeeeeasseersetesse et eeessssaens 2.3.15
CLOSE - TPS COMMENG ..euviiiieieeiiiiieeeeee et eecveeasesen e esesssenaneans 6.3
COBOL programs
TADUL/OULIPUL oottt eeeees s aasn e e e st ees s eesesenns 34
B Ar@ES ..oovveieeeciericeietcte ettt e st st st e et e e e et 7.1.2-7.1.3
special considerations rberrerrierer e st s e e se e e r e s e s eaaeanes 7.3.2
common area
1asK COMMON A3 @FBE ...eeeuviiiiieeieeeii e ceeeeeeereeeesaseseeeessseeeaeneas 7.1.2
initialising CoNStant data............ccceeveveeriiiiieeeieee e 7.1
compiling programs
DACKGIrOUNG ..t ee e eeer e aes 8.2
AL HHTIB L.ttt e emeeeeesaee e e enaeeeseseneeans 8.3
communication
MUIE-CPU et ssaoe et e e ae s eaeaenes 1.2
Special termMINAIScc.ceeiiiiiiiiieciie e eecosae e er e 3.3.10.3,
3.3.10.4
SYSTEIMS L.ttt et e e eeve v e s se s e ansaere e rnr e neeseeseenas 3.3.10.1,
3.3.10.2
CONCUITENT TASK. .. eiieriiiniiireieieiiecctieetieeetee e ceeseeemneessntessecssssesssneesennees 2211
CONTINUE-TPS COMMENA ...couviricricrieiitictee e eeveessate s eeseseeeeeeenenaeeas 5.3.2
CONIOL Qe ee e eea e e essabes s e s e s ae s sanaeemne s 3.2.22
CUPSOT CONTION ..oiiiiiiiiiiiiiiiit e ecccereeeerb e ae e e et eeseasesssansneessssennnereeerens 3.2.1,3.2.2
CWMSG (write message to operator TSR-COBOL)....cccevveurerennneneeee. 411
ND-60.111.04

-3.
R, Section:
data
CONSTANT. i e 7.1
VaFBDIR ..o 7.1.1
common (task common data area)c.ocooveveereerooeoo 7.1.2
10CAH oo 7.1.3
Size OF dAta @M aS..ceoveii ettt 7.1.4
data DASE ...t 3.1
general desSCriptioNc.cooiiiiiiie e 1.2.25
OPENING 1ttt 3.1.3
Closing ...t ettt en e 313
. @CCESSING....oivmiinencrerrcrrrerreninnnns ririeaanaens S e X 1
efficiency (open-close) ettt 752
data definition/redefinition language (DRL)ccooveuvvevereern, 1.2.25
dBEA BNV, o 11, 75
data manipulation language (DML).........coooooooemoemoo 3.141
SIBAS DML Statementsc.....o.eveeeeereeeeoesesooooooooooo App. G
data definition/redefinition language (DRL) e, 1.2.25
data/time routine (CLOCK)............oomvoeieeeooeoeoeoeooo 4.2
debugging option (FORTRAN and COBOL) e, 8.2.4
delayed updating (SIBAS)
UPAAting rECOTASccuiviiirmieieiees e 5.2.2
restoring data Daseoooooo.voeiveeieeeeeeeeoee 5.3.1
descriptor word
PArABMIBIBI ...ttt 7.3.3.1
STING oo 7.3.3.1
device
general desCriptionccooouiuvioueeeeeueieeeeeeeeeeeeeoo 1.2.21
SPECIAL ..t 3.3
OPENING @ SBSSION .e.eeuiieiueiieecieeeieeeeeee oo 3.3.2
S@SSION COMMUMICAtION c..vvveereeeee e 3.3.6-3.3.7
STANAANT ..o 3.4
AllOCALING ... 341
BOCESSING ..ottt e ee e e 344
disconnect- application TSR (TDCONT) oo 2223
display terminal - see screen har dling
DISPLAY statement (COBOL)oouvuveoeeeeeeoeeeeoeoeoooooooo 8.2.5
diStributed ProCESSING .. .o ovevevieiieeeeeeeee oo 1.2.2.2, 33
eFfICIENCY oo 7.5
ERMON MONItor Call.....coovuieuieceeoeceeeeeeeeee oo 415
ERMSG mMONitor Call.......co.oovovueeoeieeeeeeeeoeeeeeoeeeee 415
ERRCODE (FORTRAN)
/O @rTOr COAR ...t 34.2
BITOT MESSAGE ...eiiiiiiieie et ea et aeeeeee e e s et e e e ses e esas e 415
error messages
ABEND ME@SSBUEceeiieiuieeieeeeeeeeeeeeeeeee e 6.2.2.1
ApPliCation error MESSAGESoceeevevveeeeceeeeeeeeeeee oo 41
Error MEeSSAGE SUIMIMBIY ...ouitii et App. C

ND

-60.111.04

Section:

ESEQU call (SIBAS) et 3.1.6
execution

LM L et e e 2221

INTEIVALL .o 2222
EXHIBIT statement (COBOL) ...ooooiiviiiiiiieeeeeeeeeeee e, 8.2.5
file

AOCALING . .ceiicieieiiii it e 343

ACCESSING. oo ciiiiiii et aie et re e h e ettt e e e e eeae e 344
file status word {COBOL) :

[/Q FFOF ittt PN - S SR
~ errof messages 415
FOCUS screen handling SyStem............ccoeioueieeeeeeeeeeeeeeeeeeeeen 3.23

general desCriptionciiiiiiiiii e 1224

defiNiNg fOrMS oot ee e 3.2.31

Front @nd CPUS. oo e er e e et e 3.2.3.2
FORMS-DEFINE system (FOCUS).....coooiviiieiieeeeeeeee e 3.2.31
FORTRAN library

USIMG ettt ettt ettt e e ee et e e e e e e eeeeeneeans 7.3.1-7.3.2

BOBAING ..ot 8.25
FORTRAN programs

INPUL/OUEDUL ..ottt 3.4

oL L I 17 OO SO SRS 7.1.2-71.3

special considerationsc...oocveoiiie i 7.3.1
FUTUP® 18SK....oiiiiicicc et e 2.2.21
general purpose macro generator (GPM)...........ccoouvveemeeereeeeeeanann. 83
get broadcasted message TSR (TGBRD/CGBRD)....o...ccorervrenrnnnnne, 41.4
HOLD MONItor Call ..o e 4.3
hold synchronised checkpoint TSR (THSYN} (e, 5.2.3.2
IBM-3270-CU input/output Modulec.c.eoeeeeeeeeeeeeeeeeeoeeseeeeosa 3.3.10.2
IBM-3270-HOST input/output MOduieoo.oeeeveeeeeeeeeeeeoereeeeeen 3.3.10.3
illegal MONItOr CAHlccooriiieiic et 23.23
INCH mMONitor Callccoivueiiceeeceeee e 343
input/output module (I0M)

general desCription ..o 1.2.2.2

ABVICE CONTIOL. .ottt eveeaee e e e s e e esenens 3.3

available TOMS ... e e 3.3.10

ND-6

0.111.04

-5-
Section:

INPUT statement (FORTRAN) ..o, 3.4.3
INEEMMAL ABVICES. ..eiiiiii it e e 44
INEEINEL NI e e e, 4.2
{OM - see input/output module
[PRIV data area (NSHS) ..o, 7.1.2
1SO-1745-HOST input/output module...........oooviviiaeieeee e 3.3.10.4
ITERM data area (NSHS) ..ot 7.1.2
LCOMMO SUBFOULING. ...ooiiiiiiii et 8.2.3
LEAVE mMonitor Call. ..ot 2.31
load-common subroutine - see LCOMMO
loader . o A o o

refocating (NRL) ...t 8.2.2

real time (RT-L) ..ot 8.3.1
loading application programs

DAaCKGround ... 8.2

FEAL HIMI Lottt e e e e 8.3
LOAD-SEGMENT MECTO ..o ceiicieieee et ee s e st e e e ee e 8.3.1
LOAD-USER-APPLIMODBE fil@ oo 8.3.1
local data - see data, local
MAC assembly language programsocoeevueiivueeeeeeereeeeeeeee e 7.3.3
main despatcher (MD) .o 1.24
menus

MASTEE MEBNU ..ttt e ettt e et e e e e e e e s e e e e eeeeeeaennas 6.1.2

SUDMENU ...ttt e s e e e e 6.1.2
MESSAGE PrOtOCOIS oiiiiiriiiii ittt 3.3
MESSAGE-TO-UNIT COMMENG......coiiiieiieieiiceeeeteeeeeeeeee e 414
monitor calls

INPUL/OULDUL c.eeiitiiieieetie ettt eeeee e e e e ee s e reseseans 34

OTNB Lottt et e e e e neeeeaean 4

1L To - | OOt SRR RO P ST UPUROUTUUPRTOTSURSOTN 2323

SUMIMIAIY ottt eeccr e e e eennsseneeessetateasaeaeaasserrrrannserenaeesennanes App. E
MOFE FIAG .o e 3.3.6
MUILE CPU SYSTEMS ..ottt et es e e e e e s e eeeesenees 1.2
names

application Program MEMESiiiv e eeeeeeeeeeeeeaeeeeeeeeeeeeeeereaeeeens 7.4.1

USBT NMAMIBS. .ttt ittt b e e eeeii e s e eettnnaseeeasteaaesssnnnnesstennseeennen 6.1.1
ND-500 TPS

LA BIEAS ...iieiiiiiiiiiiii ettt s ee e st ee e e eetaeaenean 7.2

AESCIIPHON L.o.oiiiiiiiitee ettt et seaa e App. J

BT ICIBNCY e eee e 7.5.1

FO UG e e 3.2.34

SIBAS et ettt nran s 3.15

teSting apPPliCAtIONSo..iiiiiiiiiiiee e et 8.1
NEIWOTK ..ottt et ertr v ettt e e e e e s s v eesssbssssasesesessntesassrsans 1.22.2, 3.3
NPL Brograms oottt et 7.3.3
NRL (relocating [0ader)ccceeirriernrnierenenienreresssesesessen e seneseeees 824

ND-60.111.04

J
-6 -
. Section:
NSHS (see als0 PICUIe) ..c.cceioiiiiiieieiee e, 3.2
general description ..ot 1.2.2.3
screen definition SYSTeM . .. 7.7.1
SCreen librany SYSTemM . s 3.2.2
screen library call SUMMaENY......oooiiiiiii e App. F
open data base-see data base, opening
open-session TSR {TSOPN) ..ottt eeeriee e 3.3.2
OPEN file statement.........ccccvvveevveevennennn.. et e et e aeaeeanaes 3.4.1 -
aperator, terminal (USer)c.couieicereaeneieeceiiereeree e 11
IA@NHIGALION ...ov.rvveerreecnereceoseeesrie e sensssenesses oo 811 _
At T@STAM......vvoeeeeeeeeeeeeeeee e, o TR 6.2.3, 3222
e operator, System™ UL il Dl e e T T el ok
commands................ bt brah et e et et et aeataatateatanetentieeeresesseseaes 1.2.3
MMESSAGES .oiiiiiiiiiiiiiiiiiiie e cee e s iaeveesrsnsasnserersbaesenarastesnsras 1.2.3, 411
OUTCH monitor Call oot e e 3.4.3
OUTPUT statement (FORTRAN)ot 343
PACKBT SIZB ..eiviiiiiciiic ettt e e et e e s e e eeseteesseeasaensanans 3.38
DBOING -oeeiieiieieitieeesaeeeeeiteeeeeeeeeseiareeestsesaeeeeeeeaerresesatntseseneeseaseteaeaanans 754
PASSWOTA (USEI) c.euiiiiiieieniireieireiaeee ettt ceesneess st eereeeeeeeeaennaenoee 8.1.1
PErIPNEral filleS ...coociiiiieiiieieee et eees 3.4.1
PEMHOAIC TASK 1..iieiiiiiieeiie et e ee e s e e ete e ae e e e eneeennns 2222
pictures - see also NSHS
BEFIMING oottt ettt v e e e e e e e e raaaaa s 7.71
USIMQG oottt et ettt et e e s e e s e e sat e e sneeentreeenneetteensseennteesnteesreeas 3.2.2
TESTOTING Lottt ieeiae e e sereeeteeeetsr e e aetee s essseessessaeesenaneeseenneeeeenmeens 3.2.2.2
PICTUIES, DIVALE ...cviirieeeiieeie ettt e e et e e e e et e s eeaeeesesnenesseaenesesanes 7.7
EFINING (oot et e e n s a e e e e e eeaenns 7.71
PICTUrES, PUDIIC . ceiieiiieii ettt e eeece e eae s eeaseeeeeae 7.7, 7.8.1
PPOGUCING ..o eiietetteet et tie e e reeesve e b se e ses e seeamse st e saeasanesenesanene 7.7.2,7.81
JOBAING ...ttt et sss e e s et eneeeeeeneeas 7.7.3,7.8.1
PrOTILY, BPPHCAtION . ..ccceeeeee ettt eeeesetraaseeae e s eaeeeareeans 8.3.1
PIINEEE OULPUL .. ooieiiiiiiii ettt e e e eeesee s e eessessaanasanessesesssssesssnessses 3.4
PRIVATE COMMON @8 .ceiveeiiiiecteeiteceecee et seaeeesreete e s e e e aesee e 7.1.2
public pictures - see pictures, public
PUBLIC-PICTURE Drogramcc.cccveccreeeeceececeeecceeee s eeeseeeeenneeeneens 1.7.2
QOQCQC ...ttt sonen 3222
QERMS mMONIOF CAll..eeieeieieiecie ettt e e 415
RAPPL (user restart appliCation)cc.cc.eecuiuieeiuiieeeeesenieeeseesesaeacnenas 6.2.3
RFLDS Call (NSHS) .ot cteeteeeeee s seeeeen e 3.2.2, App. F
read-message TSR (TRMSG).....ccocovmmiriniiiccereeecc e cte e 3.3.7
READ statement (FORTRAN and COBOL).......ocvveereeeieeeeee e 343
rEal tMB 108AEN ..ottt st s 8.31
real tiMe Programscoceeeierierieiasreeeetesrecareseessestasssssassessssseesssssessssnes 8.3
JOAAING ..ttt e et e et e e e e e e seneeeeaeaneneans 8.3
MBIMIBS .oiiiiiiiee it eas st en e easesaaasasssassaseassasanssssesnsnssssnsnsanes 7.4.1

ND-60.111.04

RECOVER special application ...
recovery, systeM........................
reentrant programs...................

FORTRAN ..cccoeviiiriiiiee,

..
..
..
..

...
..

Srategy .uveveeeeveieeeeeieeeeeanenn,
set restart strategy' TSR (TSRST)
user restart application (RAPPL)

Section:

5.3.1, 6.4
5.3.1

7.1

7.3.1

7.3.2

343

3.41
5.3.2
3.39
344

..6.23
5332

6.2.3

RESTART special applicationccoowovoereeeeeeeeeeose oo 53.2.1,6.23
FESTOTE PICTUIE ..o iiiiiiieeie e e e 3.2.2.2
REWRITE statement {COBOL) ..ot 3.4.3
RFILE MONILOr CaIl coovoieoeeeeee oo 3.4.3
FOHDACK, SYSTEM ..eiiiiiiiiii e e 5.3.1
ROLLBACK special applicationcoccoovooovoeeeeeoeoeeeeeo 53.1, 6.4
routine log
109@ing SIBAS CallS ...oveieiitiiceieeecee e eeee e 5.2.2
restoring data base...... RSOOSR 5.3.1
RT-common (core common)
in TPS Segment StrUCTUreo..ovveeieeeieeeeeeeeeeeeves e App. D
SIBAS iNterfaceooooueiiiietieeeeeeeeeee e 31.2
save - common subroutine - see SCOMMO
SCHPO Call (SIBAS) ..ot ee e 6.4
SCLDB Call {SIBAS) oo 3.1.3
SCOMMO SUBFOULING ... 8.1.3
screen handling - see NSHS and FOCUS
SCREEN-DEFINITION Programcoco.ocoveeeeeieeeeeeeeeseeseresere e, 71.7.1
SBCUFILY COUBS ..ttt e e e e 6.1.3
SEgMENtS, SINTRAN ...t eeeeeve e et App. D
SELECT special appliCationcccovueeeeeieeeeoeeeeeeeeeeeeeeeeeeesess ..1.3.1, 2.2.4,
6.1.2
SEMAPNOIES ..ottt e e e et 44
send-message TSR (TSMSG) ..ot 3.3.6
send-text-message TSR (TTEXT) oo 413
SESSION L.l eerenae et e st eensereeeeeoenan 1.2.2.2, 33
AEFINITION .ottt eeee s e ee s e en e s ere e 3.3.1
SESSION PAMNBI ..ottt ee e eeeeeas e seeeeeereeeeeeeeeneas 3.3.1
SESSION FEQUESTiiiiiitiiiiiit ettt e e e eeeeseesses s eesesnseessennes 3.3.1, 333
$€s5i0N-5tatus TSR (TSEST).ccooiieiiccer et 335
set-abend-strategy TSR (TSAST)..ccoouioiiieeeeeeeee e 2322
set-close-strategy TSR (TSCST) .ioiericiieiiiii e 2.3.15
set-execution-time TSR (TASET) ...cc.cceerviiiniirieeeeereeeececeeerete e 2.2.21

ND-60.111.04

-8-
Section:
set-interval TSR (TINTV) Lottt 2222
set-packet-size TSR (TPASZ) ..o e 3.3.8
set-restart-strategy TSR (TSRST) coiciiirieriicerrceteeetieee e 5.3.2.2
set-termination-strategy TSR (TSTST).iioiiiiiieeccceneieeeeeeeee e, 2314
SET - UNAVAILABLE commandooooiiiiiiiieeeeeea 8.3.1
SETDV Call {SIBAS) .o ittt ae e 3.1.4
SIBAS DBMS ... et e, 3.1
general desCriptioncc.cooiivieresie e 1.2.25
data. definition/redefinition language (DRL).....ccccoevveemeoineeeen. 3.1
data manipulation language (DML) .o.coooivvveeeeeeeeeiere e, 3.11
. DML call summary ...t e R Y[REC R
" interface routing::... ..o, 0312 825
data base [0gQing . ..cccooo oottt e et 5.2.2
synchronised Checkpointcccooiiiiieee e 5.2.3
rolback and r8COVEIY......ccooiiiiiiieice e 5.3.1
SIGNOFF special applicationcccoiveiieieieeeeeeeeneeeeeese e 1.3.1,2.3.1.3,
6.2.1
SIGNON special application...........c.ovioveeeieeeeeeeeeeeeee e 1.3.1,2.24,
6.1.1
SOPDB call (SIBAS) ..ottt e 313
SPecial @PPHCALIONS ...eviiiiiiiiiceceeee e et eeree et 1.2.15,6
special TPS device - see device special
SPECIFY-LUAPISYMB il .ooovvieeieeeeieiiieee oo 8.3.1
SREPR Gall (SIBAS) ..ottt eeeeeeeee e e 6.4
SROLL Gall {SIBAS) ittt ee e e, 6.4
STACK. et ettt et et et e e aae e 7.1.3
standard device - see device, standard
STANSAAB tBrMINGAIS ..ot e ae e eeer e s e e eeneneana 3.3.10.4
starting
BASKS Lottt er et ettt ettt et eenenn 22
TPBNSACHONS ..ottt ee st e e e e e eme e e e e e 21,13
APPHCELION PrOGIEMS .. .cuviiieii et eevee e e e ee e eee e 21,223
STOP COB ...ttt e eeeveseea e s e e e seeeeeeeeeneen 23141
stop-transaction TSR (TSTOP) ..o cceestesce et 2.3.11
SUBFOULING ...ttt seee e e sra st e e eeseareeneeeees 74.2
data are@ in StACK........c.ccveimriieeeiieee et 7.1.3
10BAING .ot ear e s e e 8.3.1
switch-application-program TSR (TSWAP)c.oeveveeeiereeeeeeeen. 2.2.3.1
synchronised checkpoint - see checkpoint, synchronised
synchronised-checkpoint TSR (TCHCK).......co..oovveeeeeereeeeeeeeeeereenn, 5.2.3.3
synchronous terminals (FOCUS).....c.ccoevriuiriuimieeereneeeeesceeeee 3.23.3
TACTV (start-concurrent-task TSR)cccoeovuiuimireeceeee s 22141
TASET (set-execution-time TSR)ccoovvuieieeieeeseeeeeeereceeeeeeeenanas 2.2.21
ND-60.111.04

-9.
Section:
L= F1 S U S U OO P PP UUPUR 2.1
3 4-1 g 4121« [FUUOU ROt SRS 2.2
CONMCUITENT 1ottt eiteere et teeetiiaeseeteneaeeeauasasennntnnssssnnnessnsanan 2.2.11
FUBUIE et 2.2.21
PEIIOAIC ettt e e eee e ss e s s aeaaaaban bt aaeaaaeressnrarnes 2222
118001 18T Ed1 T« OO OO RO O UUU PRSPPI 2.3,6.2.1
task COMMON dAtA Br8a...ccoiiiieeeiiie et 7.1.2
.~ TBRDC (broadcast-message TSR} ...coooiiiiiiiriiirecereee e 4.1.2
TBSEQ (begin sequence TSR} ...t 3.1.6
TCHCK {synchronised checkpoint TSR)......cccccovrimnennciieneeniienins 5233
TCM - see transaction control module
- TDCNT (disconnect-application TSR} ..c.oroemeivriivninnnnciiinc o 2.2.2.3
EEIMINGIS oo eeeeeeeneererereseeeeseseensnssssesesnseesesnesnaeen] 1
asynchronous (in FOCUS) ..ot 3232
oY o] F- 1Y U U U TR OO UU OO URRTPUN 3.21
synchronous {in FOCUS) ...t e e 3.2.3.3
terminate-task TSR (TTERM) ..ottt 2.3.1.2
termination
BBSK et a et e e ta et e e e e eaeataaaaaenanaas 2.3.1.2
L2 = [aE-T: o2 4[] o OO ST T USROS 2.3, 6.2.1
COMPIBER ooiiiiiiiiiii e e e e reeeeretseessseesseesonsesnenann 2.3.1.1
NOTIMAL Lottt ee s e e e e e et e et e e e asseaesee et sasenaneees 2.3.1
abnormal - see also abend ..o 2.3.2
S1aC 14= 10 1y R O UUURUI RPNt 6.2.1
set termination strategy TSR (TSTST) eevvcieiicieecceeeceee e 2314
user termination applicationiccieiiieiiieiieiiereceeee e 6.2.1
TESEQ (end sequence TSR}icccviieeiieeie et eeceeeeeee e e 3.1.6
TESTING PrOGIAIMS Louiiiiiiiiiieieiriieeieieeeeee e e e eeeeeeeea e eaesasssssesasnsnsnensrsssenses 8.2
TGBRD (get broadcasted message TSR).....occcovevrievcreececeenreenee e 414
THSYN (hold synchronised checkpoint TSR)ccovrereiicicveeneeean, 5.2.3.2
time/date routine {CLOCK).....cccoivmrriiriiiee e ceceeer e e 4.2
TIME MONItOr CaIl ..ooiiiiiiiiiiie e eeeeer e ree e seaenee 4.2
timeout
APPHCAION e ——e———— et et tae s 23.2.4,6.22
OPBIALOT ... ittt ee e etetret b reesessrevertras auarsesasssasasneannssnssnsseesraeaens 2.32.4,6.22
FESPONSE A T@STAMT ..ottt e it e e rreeceesaveseerennnsenssnaraesnrenes 6.2.3
timesharing - see background
HMING TSRS (it et e ee e e s ee e e s es e sassnssanssneaanrtrsnterensees 222
TINTV (set-interval TSR} oo ceevteeessteeeseeveesesaraee e 2222
TPASZ (set-packet-5ize TSR) ..covcvvirenicineeiereeeesscereeeesnesic s sasnenas 3.38
TPCLOSE special applicationcccocccveiiiiiiiiiiireesinveessireeeseseenesenenas 6.3, 3.1.3
TPOPEN special appliCationocoooviviiiiiiiieiieeieeeeeeesonmeeeeevenieeeeeneaereees 6.3, 3.1.3
TPS:PROG background program......c.ccvveceeeeeiecevveescneereeesmnesseesesennes 8.2.1
TP S -DEFAULT et eeeere e e aeessenmnsaasaesnasssanaaeansnnes 6.1.3
TPS-MENUTAB ..ottt ceceeer e eeeiv s e sessanssassssasees e ssnneaeaanas 6.1.3
TPS-TABLES ..ottt e et a e v e ctvee s e sassnanmseeesenesssssanassensnses 8.3.1
TP S-TERMTAB .t eetereereee e e e e eesesee s ssss e s ss e ns s s nnnnnnenens 6.3
TPS-USER user name............... e eterreitiieeeieeeeeeeesetessasnsnasarerrererrrartannnennn 8.3
TPS-USERTAB ...ttt mvb e e et e e s e sannaeis 6.1.3

ND-60.111.04

-10 -
Section:
TPT- see transaction processing task
BPANSACTION ¢ttt eeeeseeees e 1.1, 2.1
STATTING oottt e e 22
TRPMUNBTING oo iee ittt ettt eseteeeaeeeeeeeereaeeeesreeeon 2.3
transaction checkpoint - see checkpoint, transaction
transaction checkpoint TSRITTRAN) ...ccoiii ittt 5.2.4.1
transaction control module {TCM) ..coiociiiiiiiiiicvceeeeeeeeeeeeee e, 1.2.11
transaction processing task (TPT)oioioiieemeereeeeeeeseeeeeeen 1.2:1.2
transaction service routing (TSR ..o 1.2.13
TSR call formatscocoveeennnnene, App. H
.. TSR Gall SUMMAFY ..o e b aasenee piasassernnsee APRe L
‘TRMSG (read-message TSR)............ .3.3.7,33.10
TSAST (set abend strategy TSR ..cooiiiiiiiiie et evens 2322
TSCLO (close-sesSion TSR oottt er e, 3.3.4,3.3.10
TSCST (set-close-strategy TSR} ..ocevreeiieriiecceeeeree e 2315
TSEST (5esSion-status TSR)....covveievireiieee et see s eeee e 335
TSMSG (send-mesage TSR)ccceoverieiiiiiiieeeeeeeeecete e 3.3.6, 3.3.10
TSOPN (0pen-sassion TSR oot cteeeetetesee e e anas 3.3.2, 3.3.10
TSR-see transaction service routine
TSRST (set restart strategy TSR} .ot es e rns 53.2.2
TSTOP (terminate-transaction TSR) ...ccocciiiiiiicccieeeee e eeevsnene 2.3.1.1
TSTST (set termination strategy TSR) ...ooooiviieeeeeteeeeeeee e 23.1.4
TSWAP (switch-application TSR) ..cccoooiiiiiiriceeeteeeecee e 2.3.1
TTERM (terminate-task TSR ..ottt e, 2312
TTEXT (send-text-message TSRcioiereieoeeeeeeeeeee e, 413
TTRAN (take transaction checkpoint TSR)cocoevemmueovereererensnnan, 5.2.4.1
TTSYN (allow synchronised checkpoint TSR)........cceeeereeeueeeeererennns 5.2.3.1
TWMSG (write-message-to-operator TSR)ccouvueeveeeeereeeeeeeeesenns 411
UNIE NUMDBET ABVICE ...ttt e ee e 1.2.2.2
T et bttt e e e e e e s ene s 1.21.2
UPDAT monitor Call....c.c.oeiimiiiiiieietee et eee e 4.2
updatefile (SIBAS).......ccooiiiiieeieecee e ee e 5.2.2
user name terminal-see SIGNON
TPS FlES ottt seene e st e e 8.3.2
user terminal-see operator,terminal
wait option (OFf RESRV) ..ot eve e 342
WFILE MIONItOr Call ..ottt aere s e n e 343
WOTKING SOT ..viiiiieieiiticetietaiei e b e e eeeee e e eresnassnessseesesssesseeensens 754
WOTKING STOTAQEcoviutiiirieeetiti e cseneneeeeeeesesseeeesaseanes 7.1.2-7.1.3
write-mesage-to-operator TSR (TWMSG/CWMSG)ccoueeeuecee. 4.11
WRITE statement (FORTRAN and COBOL)cuoueeeeeeieereeeereeenen. 343
X25LAPB input/output MOAUI.c.evirieeieeeeececeeeee e esee e 3.3.10.1
ND-60.111.04

* ke ke ok ok ke ok k% x SEND US YOUR COMMENTS!!I! e s d % % % % % % %

j

2297 ,
) fsRy
! !

Please let us know if you
* find errors
* cannot understand information
* cannot find information
* find needless information
Do you think we could improve the manual by

* 4w % % % % % « HELP YOURSELF BY HELPING US!! % % # % # % % # #

Manual name: ND TPS User’s Guide

What problems do you have? (use extra pages i

p

®

f needed)

rearranging the
- ..contents? You could also:tell us if you like the manual!l .. .

Are you frustrated because of unclear information
in this manual? Do you have trouble finding
things? Why don’t you join the Reader’s Club and
send us a note? You will receive a membership
card - and an answer to your comments.

T

Manual number: ND-60.111.04

Do you have suggestions for improving this manual?

Your name: Date:
Company: Position:
Address:

What are you using this manual for?

Send to: Norsk Data A.S.
Documentation Department
P.O. Box 4, Lindeberg Gard
Oslo 10, Norway

>

Norsk Data’s answer will be found on reverse side

Answer from Norsk Data:

Answered by: Date:

Norsk Data A.S
Documentation Department
P.O. Box 25 BOGERUD

N - 0621 OSLO 6 - Norway

