
ND TPS
User's Guide

ND-60.111.04

Us
ND TPS
er's Guide

ND~60J1L04

NOTICE

The information in this document is subje
A.S assumes no responsibiiity for any at
Norsk Data A.S assumes no responsibilit
on equipment that is not furnished or sup

The information described in this docum
be photocopied, reproduced or translat
DataAtS». 1.,

Copyright © 1983 by Norsk Data A.S

act to change without notice. Norsk Data
rors that may appear in this document.
y for the use or reliability of its software
ported by Norsk Data A.S.

ant is protected by copyright. It may not
ed without the prior consent of Norsk

iii

PRINTING RECORD
Printing Notes
05/79 VERSION 01
11/81 VERSIONOZ
01/82 RevisionA

The following pages have been revised:
vi, vii, viii, ix, x,

1—1 I, 1—12, 3—7, 3—8, 6-9, 7—5, 7-5, 7~7, 7—9, 8—10, 8—1 I, 8—17
C—2, (2.4, (3—1.2, 3, 4, 5, 6, 7, 8,9 ' ‘

' The foiiowing‘ pages have been addedi?’
3—8a, 3-8b, 8—48 4 I

12/82 VERSION 03 fl
01/84 VERSION 04 I

ND TPS User’s Guide
Pubi. No. ND—60.111.04
Jan. 1984

0......5:::::::. NORSK DATA A
“u“:‘g PO. Box 4, Lindeberg

Oslo 10, Norway

.8
gérd

Manuals can be updated in two ways new versions and revisions. New versionsconsist of a complete new manual which replaces the old manual. New versionsincorporate all revisions since the previous version. Revisions consist of one ormore single pages to be merged into the manual by the user, each revised pagebeing listed on the new printing record sent out with the revision. The oldprinting record should be replaced by the new one.

New versions and revisions are annourced in the ND Bulletin and can be orderedas described below.

" . Thel‘reader’s-Scomments form at'thei-‘back of this manual can be used. both to;report errors in the manual and to give an evaluation of the manual. Bothdetailed and general comments are welc ome. '

These forms, together with all types cf inquiry and requests for documentationshould be sent to the local ND office or (in Norway) to:

Documentation Department
Norsk Data A.S
P.O. Box 4, Lindeberg gard
Oslo 10

PREFACE

THE PRODUCT

This .manual describes the ND ’
E and ND. TPS-ll; version A: '

ND TPS
ND TPS-ll

N
N

ND TPS is a general transactii
transactions between various
TPS provides facilities for hand
etc.

ND TPS systems are tailored f
ordering ND TPS. However, all 5

Special systems may contain su

ND - 500 TPS System Mo
input/Output Modules
Multi — CPU Systems
Non-Standard System Ge

THE READER

ND TPS User’s Guide is written

Transaction Processing. Systems ND TPS,,versio,n .

040101 E'
D~10542A

3n processing system that initiates and controls
input/output devices and application programs.
ling terminals, data communications, data bases,

or individual user configurations, specified when
.ystems contain the basic TPS modules:

ch additional features as:

ND « 10543
ND—10105 to ND—10108

jules

neration Parameters

for programmers who write application programs
to be run under ND TPS. These programs can be written in COBOL, FORTRAN,
PLANC, NFL and MAC.

System designers who design i
find the material in this manual

application systems to be run under TPS will also
of interest.

ND-60.111.04

vi

PREREQUISITE KNOWLEDGE

Chapterrl of this manual is an introduction to ND TPS and should give the
necessary background in TPS to go on to the following chapters. A more detailed
description may be found in

ND TPS General Description, NED-60.105

ln.addition,.the readerrshould also, be families with the SlNTRAN-illl operating . 171;: '- .
system, the SlBAS data baSe system and the screen handling systems. General *
descriptions of these systems are found in:

Introduction to SlNTRAN lll, ND~60.125
SlBAS ll User's Manual, Chapter 1, ND-60.127
The NORD Screen Handling System, chapter 1, NDa60.088
FOCUS Screen Handling System, chapter 1, ND—60.l37

THE MANUAL

ND TPS User’s Guide can be divided into three parts. Chapter 1 is an
introduction which should be read first if the reader is not already familiar with
ND TPS. The main body of the manual consists of chapters 2—8. These chapters
may be read independently of each other and in any order; each chapter treats
one topic in a tutorial manner and should be read sequentially. Finally, the
appendices, especially appendix H, TSR call formats, are reference material.

The manual covers all aspects of TPS of interest to the application programmer,
both special TPS features, such as session communication, and the interface to
other systems used by TPS application programs, such as SlNTRAN, SlBAS,
FOCUS, NSHS, FORTRAN, COBOL, PLANC, NFL and MAC. The manual,
however, does not go into the details of these other systems and the reader is
referred to the manuals for the individual systems for these details.

ND TPS User’s Guide is a complete user’s guide for programming ND TPS,
version E. lt also applies to ND TPS-ll, but special features for this system are
described in the ND TPS ll User’s Guide. ND TPS~|l programmers should read
this manual first.

ND~60.111.04

RELATED MANUALS

Other manuals describing ND TF

ND TPS General Descriptic
ND TPS System Supervise

Manuals describing the special 1‘

ND ‘l'PS-ll User's Guide, N
ND TPS-ll Operator’sGuid

The following manuals describ
application programmer:

SlNTRAN lll Timesharing C
SINTRAN lll Reference ME
SlNTRAN lll Real-Time Gu

vii

S are:

m, ND-60.105
r's Guide, ND-30.006

eatures of ND TPS-ll are:

0-60.195
e, ND—30.030

e the systems of greatest interest to the TPS

Suide, ND-60.132
nual, ND-60.128
ide, ND-60.133

NORD Screen Handling System, ND—60.088
FOCUS Screen Handling System, ND-60.137
NORD FORTRAN Reference Manual, ND-60.i45
NORD COBOL Reference Manual, ND-60.l44
NORD—PL User's Guide, ND~60.047
MAC User’s Guide, ND-BO‘
SlBAS ll User's Manual, N
Symbolic Debugger - User

For ND~500:

ND-SOO LOADER/MONITO

CHANGES FROM THE

The main changes are the use
COBOL with additional l/O facili

096
D—60.l27
's Guide, ND~60.158

Fl, ND—60.136

E PREVIOUS VERSEON

3f a new version of SIBAS and a new version of
ties (ACCEPT, DISPLAY and sequential l/O).

ND-60.lll.04

viii

NOTATION

TSR Cal/s

The detailed formats of these calls,
given in appendix H. Chapters 2—5
manner but do not contain detailed ;
examples of the use of these TSRs a
thanyvin‘ appendix'H, Inboth places tr

Examples

with complete parameter descriptions are
iiscuss the calls and their use in a tutorial
)arameter descriptions. On the other hand,
are given in greater detail in chapters 2—~5

As for the TSR examples mentioned a
and then in FORTRAN. Comments a

bove, all examples are given first in COBOL
re included in some of the examples and

these are written on the same line as program statements to save space,
although this may not be allowed b y the compiler. FORTRAN parameters are
given sometimes as variables, sometimes as literals where this is allowed.

In the examples of conversational
program is underlined.

Symbols
ESC indicates the escape key on a te

nteraction with a program, input to the

rminal
indicates carriage return, line feed

< >
values are indicated in the sam

indicates a parameter. Optional parameters or parameters with default
a way, but the default value is given under

”rules". lf one of several alternative values is to be given, this is also
indicated under ”rules”.

ND—6[1111.04

‘ e. callaformats andfthe , examplesarei givenf
first- inNCO'BOL and then in FORTRAN. * -

Section:

1.1
1.2

1.2.11

1.2.1.1
1.2.1.2
1.2.1.3
1.2.1.4
1.2.1.5

1.2.2

1.2.2.1
1.2.2.2
1.2.2.3
1.2.2.4
1.2.2.5
1.2.2.6

1.2.3
1.2.4

1.3

1.3.1
1.3.2
1.3.3
1.3.4
1.3.5

1.4

1.4.1
1.4.2
1.4.3

2.1
2.2

2.2.1

2.2.1.1

ix

TABLE OF CONTENTS

+ + +

Page

INTRODUCTION ... 1——1

What is ND TPS? .. 1—1
The Structure of TPS .. 1—2

2 Transaction Controls. '.......14—4 2

Transaction Control Modules .. 1—44'
Transaction Processing Tasks ... 1—-4
Transaction Service Routines .. 1 -—5
Application Progre ms .. 1 —-6
Special Applications .. 1—7

Handling input/Output .. 1——9

Standard Devices .. 1—9
Special TPS Devices

- lnput/Output Modules 1—10
The NSHS Screen Handling System l-—11
The FOCUS Screen Handling System 1—11
The SlBAS Data Base Management System 1—11
Checkpoint and Restart ... 1—12

Operator Communication ... 1—13
Message Routing and Queuing .. 1—13

Transaction Types .. 1 —14

Type 1: Permanent Terminal Transactions 1—14
Type 2: Short Terminal Transactions .. 1—18
Type 3: Short Local Terminal Transactions 1—-—18
Type 4: Concurrent Transactions .. 1 ~19
Type 5: Future and Periodic Transactions 1-19

Controlling a Transaction ... 1—20

Starting the Transaction ... 1-20
Processing the Transaction .. 1 ——22
Terminating the Transaction ... 1 -—22

ADMINISTRATING TASKS... ..2—1

Tasks, Transactions and Applications ..2—1
Starting Tasks and Switching Applications2—4

Immediate Task Activation ... 2—-4

TACW - The Activate Concurrent Task TSR 2—4

NE>-60.111.04

Section:

2.2.2

2.2.2.1
2.2.2.2
2.2.2.3

2.2.3

' 2.2.331"

2.2.4

2.3
2.3.1

2.3.1.1
2.3.1.2
2.3.1.3
2.3.1.4
2.3.1.5

2.3.2 ‘

2.3.2.1
2.3.2.2
2.3.2.3
2.3.2.4

3.1

3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6

3.2

3.2.1
3.2.2
3.2.2.1
3.2.2.2

X

Page:

Future and Periodic Task Activation ...2~6

TASET -—— The Set Execution Time TSFl 2—-6
TlNTV ~ The Set Interval TSR ... 2—«8
TDCNT —- The Disconnect Application TSR 2—9

Switching to Another Application ..2—-10

TSWAP—The Switch Application Program Tsn 2410
TheSlGNON and SELECT'Special Applications2-11"

Terminating Transactions ..2—~12

Normal Termination ...2—12

TSTOP ~ The STOP Transaction TSR 2—-12
TTERM — The Terminate Task TSR 2«-13
The SlGNOFF Special Application 2—~13
TSTST - The Set Termination Strategy TSR 2—«14
TSCST - The Set Close Strategy TSR 2-~15

Abnormal Termination ..2-—-16

The ABEND Special Ap alication ... 2—16
TSAST - The Set Abenc Strategy TSR 2—16
illegal Monitor Calls ...2—17
Timeout ... 2—-—17

lNPUT/OUTPUT PROCESSING ...3--1

SlBAS Under TPS ... 3—1

Data Definition and Manilation .. 3—1
The SlBAS interface Routire ... 3—-2
Opening and Closing the Data Base .. 3~3
Using More Than One Data Base ... 3—3
SlBAS in ND-SOO Multi-CPU TPS ... 3—5
Restricted SlBAS Calls .. 3—5

NSHS and FOCUS Under TPS. .. 3-—-7

Handling Display Terminals ..3~7
The NSHS System ..3-7

Defining and Using Pictures ..3—7
a °o°o° and Restart ... 3-—8

NDu60.11‘l.04

Section:

3.2.3
3.2.3.1
3.2.3.2
3.2.3.3
3.2.3.4

3.3

3.3.1 ‘
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7
3.3.8
3.3.9
3.3.10

3.3.10.1
3.3.10.2
3.3.10.3
3.3.10.4

3.4

3.4.1
3.4.2
3.4.3
3.4.4

4.1.2
4.1.3
4.1.4
4.1.5

4.2
4.3
4.4

xi

Page:

FOCUS Level 1_ .. 3—10
Defining and Using Forms .. 13—10
Local or Remote Asynchronous Terminals 3—11
Synchronous/Buttered Terminals Using FOCUS 3—12
ND-100 -— ND—500 incompatibilities in FOCUS 3—12

Special TPS Devices ... 3—13

'ISession Request from a DeviceA 3—14
TSOPN —-— The Open — Session TSR 3-—16
Session Request from an Application 3—18
TSCLO- —- The Close Session TSR .. 3-—-20
TSEST —-— The Sessi)n Status TSR ... 3———21
TSMSG — The Send-Message TSR 3-22
TRMSG - The Reac Message TSR ... 3—23
TPASZ ~—- The Set Packet Size TSR .. 3—24
Restart .. 3—24
Available lnput/Output Modules ... 3—25

XZSLAPB .. 3—25
lBM—3270—-—CU ... 3—30
lBM—3270—HOST ... 3—32
ISO—1745—HOST .. 3—33

Standard Devices and Files .. 3—34

Allocating Standard Devices and Files 3—34
Unavailable Devices and Files ... 3—35
Accessing Standard Devices and Files 3—36
Restart ... 3—38

OTHER TPS AND SlNTRAN FAClLlTIES ... 4—1

Message Handling ... ,..... 4—-—2

TWMSG and CWMSG - The Write Message to
Operator TSR ... 4—3
TBRDC - The Broadcast Message TSR 4—4
TTEXT - The Send Text Message TSR 4—5
TGBRD and CGBRD - The Get Broadcasted Message TSR ...4—-6
Monitor Calls (ERMSG,QERMS,ERMON) 4—7

Clock Routines ... 4—9
The HOLD Monitor Call ... 4—9
Semaphores and internal Devices .. 4~—10

ND‘60.111.04

Section:

5.1
5.2

5.2.1
5.2.2. ; . .
5.2.3"

5.2.3.1
5.2.3.2 ~
5.2.3.3

5.2.4

5.2.4.1

5.3

5.3.1
5.3.2

5.3.2.1
5.3.2.2

6.1

6.1.1
6.1.2
6.1.3

6.2

6.2.1
6.2.2

6.2.2.1

6.2.3
6.2.4

6.3
6.4

xii

CH ECKPOINT—RESTART

Protecting the Database
Preventive Facilities

Backup
‘Data. Base Log’ging-...........
Synchronised; Checkpoints ‘

TI'SYN
- The Allowywchronised Checkpoint TSR 56—75

'THSYN.-' The HoIdSynchronised Checkpoint TSR 5-—6' "
TCHCK — The Take Synchronised Checkpoint TSR 5-——6

Transaction Checkpoints .. 5—7

TTRAN — The Take Transaction Checkpoint TSR 5-—8

Restart Facilities ..5—40

Rollback and Recovery .. 5-—10
Restarting TPS ... _. 5——12

The RESTART Special Application5-44
TSRST — The Set Restart Strategy TSR 5—46

SPECIAL APPLICATIONS .. 6~~1

SIGNON and SELECT ..6-3

SIGNON .. 6—«3
SELECT ... 6—-4
The Access Control System .. 6-»6

SIGNOFF, ABEND and RESTART ... 6—7

SIGNOFF ... 6—«7
ABEND ... 6—8

The Abend Error Message '. .. 6-~9

RESTART ...6-310
Summary of Termination, Abend and Restart Strategies 6-»13

TPOPEN and TPCLOSE ...6-14
CHECKPOINT, ROLLBACK and RECOVER 6—14

ND—GD. 111.04

Section:

7.1

7.1.1
7.1.2
7.1.3
7.1.4 ‘_

7.2

7.3

7.3.1
7.3.2
7.3.3

7.4

7.4.1
7.4.2

7.5

7.5.1
7.5.2
7.5.3
7.5.4

7.6

7.7

7.7.1
7.7.2
7.7.3

7.8

7.8.1

8.1
8.2

xiii

Page

SPECiAL CONSIDERATIONS ... 7—-1

Data Areas in the ND-100 .. 7—1

The Variable Data Area in the ND—lOO 7—3
The Task Common Data Area in the ND-lOO 7—3
The Local Data Area in the ND-iOO .. 7-5
The Size of the Data Area in the'ND-100 ,...‘.;_....‘..7——7

Data areas in the ND-SOD ... 7—8

Language Dependent Cc nsiderations ... 7—9

FORTRAN/PLANO in ND-lOO ... 7—10
COBOL in ND—lOO .. 7—11
MAC——NPL .. 7—11

Program Structure ... 7—12

Application Names and Numbers ... 7--12
Subroutines .. 7———12

Efficiency .. 7—15

ND—SOO Efficiency ... 7—15
Taking Checkpoints ... 7--16
Opening and Closing the Data Base 7—16
The Working Set .. 7—17

Real Time Versus Background ... 7—18

Pictures for NSHS in ND—100 ... 7—19

Defining Private PictJres for NSHS .. 7—19
Producing Public Pictures for NSHS 7—21
Loading Public Pictures for NSHS .. 7—-—22

Pictures for FOCUS ... 7-23

Public pictures for FOCUS .. 7—23

. COMPiLlNG AND LOADING PROGRAMS ... 8—1

Testing of ND-SOO applications ... 8—1
Background Testing of ND-lOO applications 8—2

\iD-60.111.04

Section:

8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6

8.3 :

8.3.1
8.3.2

‘ 8.3:3‘

Appendix:

A

B

xiv

Page

The TPS Background System .. 84—2
Available Facilities in the TPS Background System 8—3
The Load—Common and Save-Common Routines 8—4
Running the Background System ..8-5
Testing in Background Mode .. 8--—6
Compile and Load Examp es ... 8-8

. Real Time .Programs:..........._ _ _..'..‘.......;.~8;'-10

The Loading Procedure .. 8~—11
Programs and Files Required .. 8-16
Cdmpile and Load EXamo e L.‘i.....'.83-—I7'

Page:

APPLICATION NUMBERS FOR SPECIAL APPLICATIONSA—I

SAMPLE PROGRAMS ... B—I

ERROR MESSAGES .. C—I

TPS SEGMENT STRUCTURE IN \ID-IOO ... D—I

MONITOR CALLS AND LIBRARY CALLS .. E—I

SCREEN—HANDLING CALLS ..F-I

SIBAS CALLS .. G—«I

TSR CALL FORMATS .. H—‘I

TSR CALLS—FUNCTIONAL LIST ... |—-1

TPS ON ND-500 ...J-—-I

GLOSSARY .. K-—1

INDEX

ND-E0.III.04

1.1

1-1

INTRODUCTION

WHAT IS ND TPS?

_ ND TPS is atransaction processing system: for the ND- family of computers. A"
transaction processing system may be'defined as a computerised on-line system
that allows the user to process data and update a data base as soon as
information arrives and to retrie e the information as soon as he needs it.

The user will normally have a terminal available that is online to the data base.
He will enter the transaction itput on the terminal, the system will start the
processing program (application program), the program will access the data base
and send the user a response within seconds.

A transaction may be an inquiry which only reads the data, formats it and sends
it to the terminal (inquiry transaction). The transaction may update the data
base, perhaps after a conversational interaction between the program and the
user (up-date transaction). The transaction may gather in data interactively and
store it in a temporary file for later batch updating (data entry). A transaction
may also generate a relatively large amount of output to a printer (report
generation).

Most transactions are characterised by a fairly small amount of input and output,
conversational interaction, short duration and fast response times, although none
of these characteristics are absolute.

To accomplish this, a transaction processing system must provide facilities for
handling the following main tasks:

—- starting, controlling and terminating transactions

-— communicating with terminals and other l/O devices belonging to the
external environment, including routing messages to the correct
destinations

-— accessing the data base, ircluding reading it and updating it

A short description of the strLcture of TPS and how it handles these tasks
follows.

ND-60.111.04

1.2

' ‘(See-sfigu'resl..7/--‘ >‘ ' .‘ ' '

THE STRUCTURE OF TPS

The main tasks of TPS are, as ‘nentioned above, controlling transaction
start/termination, controlling the external environment and accessing the data
base. In addition, provision must be nade for starting, stopping and controlling
the TPS system itself. Also, facilities must be available for simple and efficient
communication between modules of TPS. The TPS system is therefore composed
of the following types of modules:

—-— transaction control and service routines

-— input/output modules

—— SlBAS data base control routines (separate subsystem)

-— NSHS or FOCUS screen handling system (separate subsystem)

— operator communication

— message queuing and routing routines

The application programs themselves are mainly user-written, but TPS includes a
number of

—— special application programs

to carry out user—oriented system fun
program abnormal-end, etc.

TPS exists as a basic modules plus
consist of the transaction control an
system, the NSHS or FOCUS screen
the message queuing and routing ro
system applications. in the standard
single CPU.

ctions, such as terminal operator sign-on,

a number of options. The basic modules
d. service routines, the SlBAS data base
handling system, operator communication,
utines and a standard set of special and
version of TPS, all of these are run in a

TPS options include multi-CPU systems, using both ND—lOOs and ND-SOOS,
several transaction control modules and input/output modules for special
devices, networks and distributed processing.

ND—60.1ll.04

3

m
<m

.m

ENE/x
co:m

o_::E
E

oo
5

8
a

mwh
1?:

9.239
4%

?
2n:

new
4

.9
2

5
0

9
:2

5
3

m
.2

8
8

5
;

mmmmmmE
H

3
.

3
:6

9
:

w
L.

S
a

u
zctza

fi
D.N

4%
?

1

\
wDUOm

,
\mzmz

Figure I. I: TPS Modules

1.2.1

1.2.1.1

1.2.1.2

1-4

Transaction Control

Transaction Control Modules

Transaction control is handled by me or more transact/on control modules
(TCMs). The TCM supervises the 5

Transaction Processing Tasks
v

pplication programs belonging to it and
controls system functions. such as, sta testcp and checkpoint

Each TCM has a number of transaction processing tasks (TPTs). {See Figure 7.2)
The TPTs are a set of identical programs belonging to pools, one pool for each
TCM. Each TPT is one unit with a
started, TCM may allocate a free TPT
the TPT and when the transaction is f
may be permanently allocated to term
a row.

The TPT has several functions:

—— to start the application program

TPT unit number. When a transaction is
to the transaction from the pool and start
nished, TCM may free the TPT. Some TPTs
inals and can process many transactions in

used by the transaction

—— to terminate the application program when it is done and either switch to a
new application program or terrr

—- to provide the application pr
programs are reentrant and thus

inate the transaction

ogram with data areas (all application
may not be written into)

—— to provide checkpoint/restart facilities for the application program in case
of system failure

TPT
trans 1 Appl 1

TCM

TPT
free

TPT Appl 2
trans 2

TSRS

TPT
trans 3 A991 3

nous—3‘1 TPT
free

Figure 1.2: Transaction Control

GNDE50111.04

1.2.1.3

1-5

Transaction Service Routines

The transaction service routines
to assist the application pr
administrating task control, communicating with l/O devices and sending
messages. These routines allow the programmer to concentrate on the
applica—tions as such, without having to be concerned with the complex details
of a real-time environment. The

. between application programs a 1dNDTPSfSee Figure 7.3). _

TSRs may be arranged in groups as follows:

1

Figure 7.3: Using a T5}?

Administrative services;

Switch control to another application.
Activate concurrent application.
Stop transaction.
Set termination/abend/res1art strategy/close strategy.
Set execution time/interva .
Set operator/application timeout.

Session services.

Read message.
Send message.
Open/close session.

Checkpoint control.

Take checkpoint.
Allow/prevent checkpoint.
Critical sequences.

Message services.

Write message on operato
Broadcast message to tern

Special Application TSRs.

Restart
Read status
Read configuration inform:
Operator functions

iOM

r console.
winals.

tion

TPT/TS R

WRITE MESSAGE
ON TERMINAL

routines represent a clean and logical interface

(TSRs) are a set of routines supplied with TPS
agrammer in performing functions such as

APPLICATION

SEND MESSAGE ‘____
‘-‘ TOIOM RETURN

CALL TSMSG
(SEND MESSAGE
TSR)

BID-60.11134

1.2.1.4 Applicati‘o r‘i‘Programs

The application programs do the actual processing of the transactions. They are
mainly user-written, with the exception of a number of special applications
supplied with the TPS system. They may be written in COBOL, FORTRAN, PLANC
(a system oriented high level language), NFL (a NDJOO machine oriented
medium level language) or MAC (assembly language) and they may use most of
the facilities available to these languages.

Application programs are reentrant and may be used by several transactions.
simultaneously without having more than one copy. To achieve this, the ND—FTN
and NDiOO-FORTRAN compilers must be set. in reentrant mode when compiling,
andthe NDlOOsCOBOLV compiler must be set in'TPS mode when compiling; No,
special commands have to be given to the NDSOO-compilers.

The TPTs are also mainly reentrant, with only a small non-reentrant part for each
TPT plus the data areas. Thus, there may be many TF’Ts without taking more than
a minimum of space.

The maximum size of application pr
user-dependent configuration pararreters. Typical
programs and 5K words for data. The
to 134 megabytes of program and dat

Application programs in ND—lOO may
SlNTRAN before being run under TP

agrams and data areas in the ND-100 are
sizes are 24K words for

corresponding limits for the ND—500 are up
a.

be tested as timesharing programs under
8. A special set of routines is available to

simulate a real-time TPS environment. SlBAS can be accessed by both TPS,
timesharing and batch programs at th6 same time. in the ND—SOO, the application
programs may be tested by running the ND Symbolic Debugger «live» in an
ordinary TPS-run. (See Chapter 8.1.)

ND—60.111.04

1.2.1.5 SPECIAL APPLICATlONS

Certain functions of the TPS sy
TPS but are carried out as appl
other application, under the con

A complete set of special appli
users will find that their needs

1—7

stem are not handled by the internal modules of
ications. They are started and terminated as any
trol of a TPT.

cation programs is supplied with TPS and many
are fully satisfied by these standard versions.

Other users Wili> modify the. stzmdard-versionsfwhile sOme ’users'm'ay‘lviIishto
write their own versions.

The main purpose of the following special applications is communication with
SlBAS. They are called by only one TPT (a special TPS system TPT) when the
system uses them (See Figure 7

-— TPOPEN, called when TPS
data base for general use.

4)

is initially started. This application may open the
lt may also start up transactions and broadcast a

start message to terminals controlled by lOMs.

-— TPCLOSE, called when TP
may close the data base.

—— CHECKPOINT, called wh

S is closed or abnormally ended. The application

en a synchronised checkpoint is taken. The
application calls the SlBAS checkpoint routine.

—— ROLLBACK, called when a
be rolled back to a synchr
SIBAS rollback routine.

system failure has occurred and the system is to
anised checkpoint. The application supervises the

—~ RECOVER, called when a system failure has occurred to restore the system
to its state at the latest transaction checkpoints. The application supervises
the SlBAS recover routine

Additional special applications, activated for each individual TPT, are:

—- SlGNON, called to check
to reserve the terminal

- SELECT, called to determ
control.

the terminal operator's status and password and

ine which processing application is to be given

— TPMON, called when an ND—SOO application is started. Thereafter TPMON
administrates the ND-SOO
Appendix J.

process. Further description can be found in

——- SlGNOFF, called when a transaction terminates.

ND-60.111.04

1~8

ABEND, called when a transact
situation in the program itself or

RESTART, called after a rollba

on terminates abnormally due to an error
an error return from a system routine.

ck or recovery has been performed. The
application is called by each active TPT for the purpose of restarting the
TPT's application at the correct

TPOF

i
CHECK

ROLL

System
TPT

SELE

Hi
TPCLOSE

RECOVER

SlGhOwi
th

point.

EN called at initialization

called at close

POINT called at checkpoint

filled at rollback@U
mlled at recovery

called when transaction started
to check operator status

U
H _{ called after SlGNON to

determine user appl.

APPLi

TP Ht

ABE

TPT
‘TPT & S .4

Figure 1.4: Special Applications

J U

SIGNDFF

’_ —. V \J (2))

\\
APPL l5); administrates applications
--- --’ in ND-SOO.

(3)) (4) user appls.

ON

mlied when transaction ended

ND ’ called when transaction abnormally ended

ART called at system restart

ND-6U.1‘il.04

1.2.2

1.2.2.1

' ,Mostterminal types can be han

1‘9

Handling Input/Output “

TPS has facilities for handling i
devices and from data bases.

The data bases are controile
system.

1put/output from many types of terminals and 1/0

d through the SlBAS data base management

died through therscreen handlings‘ystem.“ ,

Other l/O devices can be divided into two main types:

—— standard devices allocated to and controlled by a particular application
program. Examples are st
and non-SlBAS files.

—— special TPS devices tha
applications. Examples are

Standard Devices

andard SlNTRAN terminals, printers, card readers

t are allocated to TPS modules, not individual
3 networks and synchronous terminals.

These devices are controlled by application programs directly through SINTRAN.
Devices belonging to this group are generally available to all users of the
computer system, also non-TPS users. They may include printers, spooling files,
card readers, magnetic tapes, disk files etc. They are allocated to an application
program when the program requests them and released by the program when it
no longer needs them. The application program will access the devices through
the standard routines available
CLOSE, READ, WRlTE, etc.

in the language it is written in, such as OPEN,

ND-60.111.04

1—10

1.2.2.2 Special TPS Devices — Input/Output Modules

Devices in this group are controlled by special programs called Input/Output
Modules (lOMs). There is one lOM for each type of device, although each lOM
may control many devices. Each device is one unit with a device unit number.

input/output modules are used to control devices that cannot be controlled
directly by an application program This may be because their control is too
difficult for the application program, for example. non-standard device's_-. or '

”devices with complicated communication protocols However, the main use for
lOMs is in connection with neMor/rs and other types of {multiplexed l.-
connections ' " - " 3 " 7

4

A network does not belong to anyone application program but may have many
terminals connected to many application programs {See Figure 7.5). The
connection between the terminal and the application program is not direct, but
goes through modems, concentrators, etc. Another type of network connection
may be the connection between two TPS systems at different processing sites
{See Figure 7.6). Application programs at one site may communicate over the
network with application programs at the other site.

An application program communicates with these devices through the
transaction service routines provided by TPS. A session is established between
the device and the application prog‘am and the application program can then
send messages to and receive messages from its session partner by calling these
routines. Sessions may also be estaolished between two application programs,
either at the same processing site or across an external network.

Sessions may be broken and new sessions established. A transaction is only
allowed to have one session at a time but it may possess several local devices,
including local terminals, at the same time.

term i
appl l

Canoe trator /
I M a l 2Mode ‘ O on

Figure 7.5: A Terminal Network

terminal

data base

1
aopl 1 IOM1 mode lOMZ 3c 2

2

Figure 7.6: Accessing a Remote Database
Norseman,

1.2.2.3

1.2.2.4

1.2.2.5

1-11

The NSHS Screen Handling System

Terminals can be controlled by
handling system, NSHS, which
reading input, field definition, Cl.

application programs through the NORD screen
contains routines for formatting output pictures,
rsor control, etc.

Terminals controlled by NSHS may be standard terminals or they may be special
devices controlled by input/o
however, doesnot have to knc
same NSHS calls are used for a

The FOCUS Screen Hand

utput modules. The applications programmer,
w which. group aterminal belongsto'since' the ‘
l types of terminals.

ling System

The Focus Screen Handling System can be used to control asynchronous as well
as synchronous terminals. The
several Front End CPU’s resid

processing part can be distributed to one or
ing in one TPS system. The communication is

transparent to the user programs (See Section 3.2}

The SlBAS Data Base M2

SlBAS is a DBMS that provi
CODASYL committee for a da
available to FORTRAN, PLANC,

SlBAS allows direct and fast a
file organisation and access, 5
concurrent or exclusive acces
backup and restart to
unauthorised access.

insure

inagement System

des most of the capabilities specified by the
ta base facility in COBOL. Similar facilities are
\lPL and MAC programmers.

mess to all data. It provides several methods of
eparation of physical and logical organisation,

3 and data independence. It has facilities for
data integrity and privacy locks to prevent

The data base is defined and created using the SlBAS data definition/redefinition
language DRL. This is done independently of TPS.

The data base is accessed from application programs using the SlBAS data
manipulation language DML. Th e DML used by a program running under TPS is,
with a few exceptions, the same as for a program running in a different
environment, such as timesharing or batch.

it is, in fact, possible to ac
timesharing and batch program
common SlBAS interface unde
user will be unaware of TPS c

cess the same SlBAS data base from TPS,
s at the same time. All SlBAS calls will go to a
r the control of TPS. The timesharing or batch
ontrol over the data base unless a TPS restart

should happen to change its contents.
N D-60.l l 1.04

1-12

1.2.2.5 Checkpoint and Restart

An on—line transaction processing system should have adequate facilities for
protection of the data base. If a system failure occurs in a batch system, a
backup copy of the data base can be mounted and the whole job run once more
without too much inconvenience or waste of time. If a failure occurs in an on/ine
transaction system, reentering and reprocessing the transactions may be very
inconvenient, time-consuming or even impossible.

Facilities should be available to assure the integrity of the data base, to minimise
the amount of data lost and to restart the system automatically at awell-defined
point. '

TPS makes use of the extensive checkpoint/restart facilities of SlBAS. These are
mainly transparent to both the user and the application program, TPS itself
controlling them. Synchronised checkpoints of the whole system are taken
automatically according to the load on the system. in addition, the application
program can take individual transact/on checkpoints.

if a system failure occurs, the latest transaction checkpoint can be used to
restore the system to its status at 0' near the point of failure (recovery). if the
data base is incorrect at this point, synchronised checkpoints can be used to
restore the system to a previous state (rollback). (See Figure 7.7) In both cases,
those transactions which were active can be restarted automatically at the
correct point.

How often checkpoints are taken and what types of backup/restart facilities are
used are system parameters controlled by the user. He must weigh the
advantages of assuring the protect on of data in the data base against the
overhead needed to accomplish this.

SYNC SYNC
CH CKPOlNT CHE: KPOlNT IKS /f\ -L POF
W \J (POINT or FAILURE)) \

rollbackPOR
(POINT OF RESTART) C

Figure 7.7A: Rollback without Recovery

SYNC svrxc TRANS ICHECKPOINT CHECKPOINT CHECKPOINTS 1//"\ A L f- ‘ A___POF
\C/ ' ' ' ' \I/ ' ' \

C recovery

Figure 7.78: Rollback with Recovery

NIB-60.11104

1.2.3 Operator Communication

A special terminal, the operator terminal, is used for starting, stopping andcontrolling the TPS system. A set of commands is available for interaction withthe whole system (system directhes) and for interaction with individual modules.

The system directive commands :onsist of the basic command functions used inconnection with system start, stop, pause, checkpoint and rollback/recovery;*These-commandsserve*vital'functions in connection with normal processing and 'in case of hardware or software rt alfunctioning.

Other commands are available for such tasks as starting and stopping. individualTPS modules, starting and abort ng transactions, changing system parameters,and broadcasting messages.

System messages, both error and informative, will be written on the operatorterminal. Application programs rray also send messages to this terminal. in amulti-CPU system, those CPUs that do not have an operator terminal will have alog-writer terminal for special error messages.

1.2.4 Message Routing and Queuing

Communication between the indiv dual TPS modules is done by messages usinga buffer pool and queuing system controlled by the main dispatcher (MD). if themodules are spread across more than one NDiOO-CPU, there is one MD for eachNDlOO-CPU and they will send messages to the correct CPUs. TPS may thusmake use of multiprocessing facilit es in a single system.

Every TPS module has a queue for messages to that module. When a message issent, it goes first to the main dispatcher. MD will put the message in the queuefor that module and it will then start the module. The module will read its queueand process the message there. \A hen it is done, it will usually read the queueagain in case any messages have arrived in the meantime.

Routines are also available for putting messages that have been received into awaiting queue if they are not to be processed immediately. They can be readfrom the waiting queue later and processed.

Application programs do not have to concern themselves with these queues.They are controlled by the applicati an program’s TPT.

ND 60.111.04

.
nv

-V
m

“

1.3

1.3.1

1-14

TRANSACTION TYPES

There are two main ways of setting up a transaction, depending on whether the
connection between the terminal and TPS is permanent or only lasts as long as a
single transaction.

Type 1: Permanent Terminal Transactions

Permanently Connected terminals are the simplest to handle and usually give
faster response time, because the overhead in setting up the connection
between the terminal and TPS is avoided. In addition, TPS provides some special
applications (SIGNON and SELECT) designed mainly for permanently connected
terminals.

SIGNON helps the terminal user to sign on to the system by writing a picture on
the terminal asking for the user’s name and password. A typical SIGNON picture
is shown in figure 1.8. When the user has written his name and password,
SiGNON will check them, and if they are accepted, control will be given to
SELECT.

/ ND TPS ON LINE AT 15.45 ON MARCH 1, 1983 \

T‘r‘rrrrrr PPPPPPP sssssssTrrrrrrr PPPPPPPP ssssssssTT PP PP ssTr PPPPPPPP sssssssTT PPPPPPP sssssssTr PP ssTr P? 55‘r'r PP ssssssssT'r PP sssssss

PLEASE ENTER YOUR NAME:

PASSWORD:

\ /
Figure 7.8: A S/GNON Picture

ND~60.111.04

SELECT will help the user to start the transaction program (application) he Wants
by writing a menu picture on the terminal, as shownlin figure 1.9A. The user just
has to select the item he wants and enter its number. The application will then
be started.

it is also possible to have sub-menus, i.e. one menu choice will give a new menu,
as shown in figure 1.98. it is possible to have as many sub-levels of menus as
desired. The user can also go f'om a submenu back to the mastenmenu, back
to SlGNON, or even into SlNTRAN as a timesharing user.

ND TPS MASTER MENU

1 ACCOUNTlNG

2 PAVROLL

3 lNVOlCE

4 lNVENTORY

5 TEXT PRO CESSING

6 STOP

ENTRY CHOICE:

\
Figure 7.9A: A Master Menu

/ \
ND TPS ACCOUNTlNG

l aOOKEEPlNG
'2 ACCOUNTS RECElVABLE

3 GENERAL LEDGER
4 REGISTER UPDATE
5 REPORTS

6 MASTER MENU
7 STOP

ENTRY CHOICE:

Figure 7.98: A fab-Menu

‘1 l

ND-60.11‘l.04

1—16

However, sooner or later a user app
carry out his transaction, probably in
data base.

When he is done, control will be give
The main task of this application is t
this case a ”never~ending" transactic
case by giving control to SlGNON.

. Thelterminal is now: ready to accept a
is not necessary to go through the
have given control directly to SELECT.

In both cases, the- terminal will not
Processing Task (TF’T) in TPS cont
terminal. There is a permanent conn
There is a never-ending succession
(SlGNON, SELECT, user applicati
application, etc.)

This is illustrated in figure 1.10, Type 1.

ND-6

3n,

lication will be started. The user will then
volving interaction with both terminal and

n to another special application, SlGNOFF.
3 find out what type of transaction it is, in
)n, and to terminate it accordingly, in this

newuser‘and start a new transaction.;lf it’ ‘
SIGNON procedure again, SlGNOFF could;

De released from TPS, is. the Transaction
rolling this terminal will not release the
action between the terminal and the TF’T.
of applications running on this terminal

SlGNOFF, SlGNON, SELECT, user

0.111.041

1—17

QC <19
————1 SIGNON and trans. SIGNON trans 2

SELECT (SKGNOFF) SELECTtrans 1

+ Q < <3
sun trans. process

TYPE 2 E

3
B

@ QQ c

E9
trans.

start trans. _.. get term. moses and trans. free
(SIGNOFF)

TYPE 3 E I

—---—» trans. 1 trans. 1 _.__....

2 trans. 2Q 69
Figure 7.70: Types of TPS Transactions

ND-60.111.04

1.3.2

1.3.3

1-18

Type 2:

The other main way of setting up a
TPS whenever a transaction is to be 0

Short Terminal Transactions

transaction is by connecting a terminal to
arried out on the terminal and releasing the

terminal when the transaction is done. This frees the terminal for other use and,
possibly even more importantly, also frees the Transaction Processing Task (TPT)
in TPS for use with another terminal.

This methodshould be used if there are many terminals, thatare not inconstant -' '1 "
use. They may then share a limited
disadvantage is that there is more ove

The procedure would beas follows:

number of TPTs among themselves. The
rhead in starting up the transaction.

A terminal connected to a network is inactive. The user presses a special
function key that causes a message to be sent over the network to TPS. TPS
allocates a TPT to the terminal and the TPT starts an application program that
can converse with the terminal. A d
application program, and the data b

alogue follows between the user and the
ass is read and updated. When the user

indicates to the application program 1hat he is done, the application terminates
and both the terminal and the TPT are freed.

Type 3: Short Local Terminal Transactions

A terminal is connected locally to the computer and can be used for both TPS
processing and other processing. The terminal can be brought into the TPS
system by issuing a command at the TPS operator conso/e, a special terminal
devoted to operational control of TPS.
program indicated in the command
terminates, both the TPT and the term

ND-60

A TPT will be allocated and the application
started. When the application program

nal will be freed.

111.04

1.3.4

13.5

Type 4: Concurrent T

A transaction that is active can
new TPT will be allocated and the
the mother task to the daughter
— if it needs one, it must set up

Type 5: Future and P

A transaction that is active can

1-19

ransactions

start another transaction to run concurrently. A
a new application started. Data can be sent from
task. The daughter task will not have a terminal
the connection itself.

eriodic Transactions

start another transaction at some time in the
future, either at a given absolute time or periodically. When the time comes, the
transaction will be started as for Type 4. The TPS operator can also use
commands to start a single or periodic application at a specified time. TPS need
only be informed once of a
periodically at the correct times.

periodic application. It will then be started

ND-60.111.04

1.4

1.4.1

1 ~20

CONTRO LLI NG A TRANSACTION

This section describes in some detail the steps involved in processing a typical
transaction using the standard version of TPS. it follows the transaction
sequentially through the TPS system from its initiation by the user until it is
terminated.

The transaction described is a transaction of Type 1, a permanently-connected
terminaltransaction- A‘ connection'iS-Lestablish'ed' betWee'n‘ a terminal and 'a-ITF’TAR‘.
when SlGNON is first started by TPOPEN (See Figure 7.71). SlGNON checks the
terminal operator's status and SELECT calls the correct user application. A-
conversation is carried on between the user and the application program and the." '
data base is read and updatedhen the user has no more input and has"
received all output, he indicates that the transaction is done. The application
program will terminate and the SlGNOFF application will give control back to
SlGNON to wait for the next transaction.

Starting the Transaction

The TPS system has been started initially and is in normal running state.

TPOPEN has started a number of tra tsactions using the activate—task TSR. The
first application to be given control is the SlGNON special application.

The terminal in our example is a statdard terminal controlled by the NSHS or
FOCUSscreen handling system. The frst time SIGNON is started, it will reserve
the terminal. After that it will call NS -lS or FOCUS routines to display a picture
asking the user to enter his name, and then wait for an answer in the NSHS or
FOCUS input routine.

To start the transaction, the user will enter his name on the terminal and press
the return key. SlGNON will be startec up with the reply in the input data area. It
will check the user’s identification and perhaps whether that user is allowed to
use that particular terminal. SlGNON may then ask for a password, again using
NSHS or FOCUS routines. When this has been checked, SlGNON will display the
user-subsystem name and wait for a
SELECT. SELECT will display the use
enter the number of the entry he
sub-menu, going back to SIGNON or
latter, the transaction has been starte

n answer. This will result in a switch to
r's master menu and wait for the user to
wants. This may result in displaying a
switching to a user application, If it is the
d.

ND-60.111.04

TC M

Find
free
“’7'

Figure 7.77: A Typical Transact

:_ Swntch to

TPCPEN l
Actwala

"'"’ SlGNON

\SIGNON
R eserve

walrfor

Flead user

\ SELECT

Read user

_ swuch to

SIBAS dia

Tennmal c

Terminate

: SIGNOFF

SIGNON l

1-21

APPL

TPTH

Tm)" -

terminal
display SlG NON picture

answer

name , passwo rd

SELECT

TPTZ)

Display menu
wait for answer

aooucatlo l3 name.

I

\uszn AM. (TF1?)
Terminal lialogue

loqua

lialoguc

lTPTZl

TPT‘Zl

on

ND-60.1H.04

NSHS/‘SIBAS

1.4.2

1.4.3

Processing the Transactiom

Normally, one may regard the transac tion processing as one or more sequences
each consisting of a dialogue between the application program and the user,
with some activity on the data base as the result of most dialogues.

The transaction may start by asking f
type. When the user has answered (

3r some information, for example anaction
register a new customer), a dialogue can

telephone number, account number,-etc.), the data base will be updated and the
user notified (the customer has been
a new dialogue.

The data base is accessed througl‘

registered). The transaction may then start

normal SlBAS calls in the application
program. All of the common SlBAS data manipulation calls are" available to TPS
programs, such as OPEN DATA BASE CLOSE DATA BASE, FIND, GET, MODIFY,
STORE, ERASE, REMEMBER, FORGET, etc. it is possible to access records from
outside the data base (out—of‘the~b ue access) in several ways, to conduct
searches and to access records via their relationships to other records (relative
accesses).

The transaction may be an inquiry transaction, an update transaction, data entry,
report generation or any combinatio
session with an l/O device or applicati
reserving them and communicating di
future tasks or switch to another appli

Terminating the Transact

The transaction will be terminated

1 of these. It may use TSRs to create a
on program. It may access local devices by
rectly with them. It may start concurrent or
cation, again using TSR routines.

on

when the logicai end of the program is
reached, when the user indicates that there is no more processing to be done,
etc. When the transaction terminates
SIGNOFF will end by switching to the

the SIGNOFF application will be activated.
SlGNON application.

ND-6CI.1H.04

- follow, r'equesting-theiJserr to enter the detailsgof‘ the tranSaction (name,.addres‘s‘,j ‘ '

2.1

2-1

ADMINISTRATING TASKS

TASKS. TRANSACTIONS AND APPLICATIONS

A task in TPS can be defined as the processing done by a Transaction Processing
Task (TPT) from the time it is allocated by the Transaction Control Module (TCM)
until it is freed again. The number of concurrent tasks at any time is thus the

‘ same as. the number of allocated TPTs

A task may be either a short task that only lasts for one transaction or it may be
a long task that handles, many. transactions in a row. (but only one at a time).
{See Figure 2. 7j.

A long task will return to the SIGNON or SELECT application between
transactions, instead of completely terminating by releasing the terminal and the
TPT. This saves the overhead of allocating a TPT every time a new transaction is
started and assures that a TPT is available for that terminal. This method should
be used mainly for terminals that are in more or less constant use, since the
terminal will be permanently connected to that one TPT as long as the task lasts.

A transaction can then be defined as the processing done either from the time a
TPT is allocated until it is freed for a short task, or from the time control is given
to the user application until return to SIGNON or SELECT for a long task.

An application program is a user written program linked to and started by the
TPT. The application program will run under the control of the TPT and do the
actual transaction processing. When it is done processing, it can either switch to
a new application or terminate.

A task may thus consist of the sequential processing of one or many transactions
and a transaction may consist of one or more application programs.

ND—60.l l 1 .04

2«2

Allocate TPT

APPL. 1

TFANS. '»-APPk:Z~

aGNOFF-
free TPT

W‘ /
WW /

mm

Figure 2.] Short and Long Tasks

NED-60.11104

2—3

Task administration includes starting tasks, terminating tasks and transactions,
and switching application programs. (See Figure 2.2.) Task adminstration can be
done by application programs and by other TPS components, such as
input/output modules and the st stem operator. This chapter will only discuss the
task adminstration that can be done by application programs.

TACTV ACTIVATEACONCURRENT TASK

SET THE EXECUTION TIME FOR A
TA SE T FUTL RE TASK

SET THE EXECUTION INTERVAL FOR
TINTV A PERIODIC TASK

D ISCONNECT THE EXECUTION
TDCNT TIME/INTERVAL

7-5 WAP mafia? ANOTHER APPLICATION

T5 TOP TERMINATE THE TRANSACTION

T TERM TERMINATE THE TASK COMPLETELY

T5 T5 7’ SET THE TERMINATION STRATEGY

TSC 5 T SET THE CLOSE STRATEGY

TSAST SET THE ABEND STRATEGY

Figure 2.2: Task Administration TSRs

ND-60.I 11.04

2.2

2.2.1

2.2.1.1

2-4

STARTING TASKS AND SiWiTCHING APPLICATIONS

Tasks may be started in several ways:

—— a session request from an lOM
3.3. I)

to a TCM will start a new task {See Section

— a session request from an application program to a TCM, requesting a
4 session. withanother application program,,will start a. new. task-Thisis, i

done With the TSOPN TSR and

—— the operator can start a task usi

is described in section 3.3.3.

19 the activate application command.

—— the special application program TPOPEN can start tasks when the TPS '
system is initially started {See Section 6.3}

—— an application program can start both concurrent, future and periodic tasks

Thus an application program is allowed to start both concurrent and future tasks
and to set the execution interval for
out through TSRs.

Immediate Task Activation

TACTV ~ The Activate Concur

periodic tasks. These functions are carried

rent Task TSR

An application program may activate a new task on the same TCM to run
concurrently with itself. A new TPT v
given application program started. Up
the activated task. The activated task
task common data area(See Section

CALL 'TACTV' USING <application
CALL TACTV(<application number

If no TPT is avaiiable, an error code
availability of a TPT is determined by
the new application.

will be allocated if one is available and the
to 2000 bytes of data can be transferred to

will receive the data in the beginning of the
7. 7.2).

number> <record> <size> <status>.
>, <record>, <size>, <status>)

is returned in the status parameter. The
the number of free TPTs and the priority of

The old task and the new one will run independently and have no common data
area. lf they want to communicate, o
of the TACTV TSFi, since a sessio
Another way of communicating is thrc

ND-60

ne way is to use the TSOPN TSR instead
n will then be established "between them.
ugh internal devices (See Section 4.4).

111.04

25

Example - COBOL

PROGRAM 1

LINKAGE SECTION.
01 PRIVATE IMPORT COMMON.

02 ITERM COMP CCCURS 128.
02 IPRIV COMP CCCURS 2000.
02 DATA-REC COPP OCCURS 20. data record to be sent to

. program 2

MOVE 52 TO APPL-NR. activate program 2 (appl 52),
send HO bytes of data to it

CALL 'TACTV' USING APPL~NR DATA-REC CHO STATUS—CODE. . ,
IF STATUS—CODE < 0 GO TO ERROR-ROUTINE. check return status

PROGRAM 2 (APPLICATION 52)

LINKAGE SECTION.
01 PRIVATE IMPORT COMMON.

02 ITERM COMP OCCURS 128.
02 FILLER REDEFINES ITERM. data from program 1 put at

03 PROGW-DATA COMP OCCURS 20. beginning of common area
03 FILLER PIC X(216).

02 DATA—REC COMP OCCURS 20. define data area

MOVE PROGT-DATA TO DATA-REC. move data to right area

EXAMPLE 2.1 TACTV - COBOL

Example - FORTRAN

PROGRAM 1

COMMON/PRIVATE/ITERM(128),IPRIV(ZOOO)
DIMENSION IREC(20) data record to be sent to

. program 2

CALL TACTV(52,IREC,AO,ISTAT) activate program 2 (appl 52),
send HO bytes of data to it

IF (ISTAT.LT.O) GO TO error routine check return status

PROGRAM 2 (APPLICATION 52)

COMMON/PRIVATE/ITERM(128),IPRIV(5)
DIMENSION IDATA(20) define data area

DO 10 I:1,20 move data from beginning of
10 IDATA(I)=ITERM(I) common area to right area

AID—60.11106

2.2.2

2.2.2.1

2-6

Future and Periodic Task

The following timing functions are ava

\

Activation\
~N.‘ w...

ilable to application programs

~—- set the absolute execution time for starting an application
— set the interval for a periodic application
~ remove (disconnect) both absol He and periodic timing for an application

Up to 16 applications can be in the t me queue and up to 16 in the interval list.
Only 1 absolute start time can be given for an application.

Timing information is stored on the disk when synchronized checkpoints are
taken and is therefore restored at rollback.

TASET -- The Set Execution Time TSR

An application program may activate a task, on the same TCM or a different one,
to be started at a specified absolute
specified.

time. Two parameter values may also be

CALL ’TASET' USlNG <module> <application number> <parameter l >
<parameter 2> <time> <status>.

CALL TASET (<module>, <app|icat
<parameter2>, (time>, <statu

When the specified time (second, n
reached, a new TPT will be allocated
program will be started. The two p
number and type.) will be placed in the

if the specified time has already been
task will be started immediately.

If no TPT is available when the task
written on the TPS operator console.

The time resolution is 5 seconds.

on number>, <parameter l>,
s>)

tinute, hour, day, month, year) has been
on the specified TCM and the application
arameter values (for example a terminal
beginning of the task common data area.

reached when the TSR is issued, the new

is to be started, an error message will be

ND—60.111.04

Example - COBOL

MOVE
MOVE
MOVE
MOVE
MOVE
CALL 'TASET' USING

IF STATUSoCODE NOT

Example - FORTRAN

DIMENSION ITIME(6)

ITIME(1):O
ITIME(2)=O
ITIME(3)=10
ITIME(U)=31
ITIME(5)=12
ITIME(6)=1980
CALL TASET(32,8,H ,6 u
IF (ISTAT.NE.O) GO T

If

’0’ TO ABS-TIME
’10’ TO ABS—TINE(3).
’31' TO ABS~TIN
’12’ TO ABS—TIN
’1980’ TO ABS—T

T
A

27

(1) ABS-TIME(2). start appl 8 on TCMO
at absolute time 10am on

E(U). December 31, 1980
E(5).
IME(6).
CM-O APPL-B TERM—NR TERM-TYPE
BS-TIME STATUS—CODE.

0 GO TO ERRoROUTINE.

start appl 8 on TCMO
at absolute time 10am
on December 31, 1980
with parameters M6 and u

,ITIME,ISTAT)
0 error routine

VD-60.111.04

2.2J12 TINTV —— The Set Interval TSR

An application program can set the execution interval for an application. The
next time the application is activated, it

CALL 'TlNTV’ USING <module> <ap
<parameter2> <interval> <sta

will become periodic.

plication number> <parameter 1 >
tus>.

CALLTlNT-V.(<module_>, <application-number), ~<parameter1>,
<parameter2>, <interval>, <31 atus>)

The TINTV TSR will not itself start periodic execution of the specified application
program. This muSt'be done by some other means (see section 2.2). Once it has
been started, however, it will continue Deriodically at the specified time intervals.
The next interval will start at each time of activation.

A periodic application can have only one execution interval. if it already has an
interval, the new interval will replace the old one.

An application can set its own interval but if it is not already periodic, the next
execution must be started by some other means.

The execution interval is specified as
months and years are not well—defin
specified in days.

The time resolution is 5 seconds.

Example « COBOL

MOVE '0' TO INTERVAL(1) I
MOVE '30' TO INTERVAL(2).
MOVE '1' TO INTERVAL(3).

seconds, minutes, hours and days. Since
ed time spans, long intervals must be

'NTERVAL(M).
set execution interval to
1 hour and 30 minutes

CALL ’TINTV’ USING TCMO APPL-S ZERO ZERO
INTERVAL STATUS—CODE.

IF STATUS-CODE NOT ::- 0 GO
CALL ’TACTV' USING APPL-5
IF STATUS-CODE NOT 3 0 GO

Example « FORTRAN

DIMENSION INTVM ll)

INTVM 11:0
INTVM 2) =30
INTVL(3)=1
INTVLUl)=O

TO ERR—ROUT—J.
ZERO ZERO STATUS-CODE.
TO ERR-ROUT-Z.

set execution interval to
1 hour and 30 minutes for
appl 5 on TCMO (no
parameters)

CALL TINTV(32,S,0,0,INTVL,ISTAT)
IF (ISTAT.NE90) GO TO error routine 1
CALL TACTV(5,o,o,ISTAT) start it (no data)
IF (ISTAT.NEOO) GO TO error routine 2

ND-6 1111.04

2.2.2.3 TDCNT —- The Disconnect Application TSR

An application can be removed (disconnected) from the time queue and the
interval table.

CALL ’TDCNT' USING <module> <application number> <status>.

CALL TDCNT (<module>, <application number>, <status>)

The application will be immediately removed from both time queue and interval I
table with this TSR.

Examples

CALL 'TDCNT’ USING TCMO APPL-S STATUS-CODE.

CALL TDCNT(32 , 5 , ISTAT V disconnect appl 5 on TCMO

ND-60.111.04

2.2.3

2_2.3.l

Switching to Another Application

TSWAF’ - The Switch Applica

The processing of a transaction may
programs, one at a time. When one
program instead of terminating.

The TSWAP TSR is used to switch t

CALL - ’TSWAP‘

tion Program TSR

involve the activation of several application
program is done, it may switch to another

3 another application program.

USlNG, <app|ication number> <status>.
CALL TSWAP(<application number>, <status>)

If the old application had a terminal
the same terminal or session partne
with this partner.

or a session, the new application will have
P and may continue to exchange messages

The new program will have access to the data area of the old program if it is
defined as belonging to the task common data area. COBOL programs must
contain a section of PRlVATE lMPORT COMMON in all applications which may
be executed within one task. In
COMMON/PRIVATE/area.

MOVE 25 TO NEXT—APPL.

a FORTRAN program, this will be the

CALL ’TSWAP’ USING NEXT-APPL STATUS-CODE.
Error routine (will not return here if 0K)

CALL TSWAP (25 , ISTAT) switch to appl 25
Error routine (will not return here if OK)

Example 2.3:

The new program can be written in the same language as the previous one or in
any other of the available languages.

When both COBOL and FORTRAN
task, the data areas should be arran
responsibility to make the two maps

)rograms are to be executed in the same
ged as in Figure 2.3 It is the programmer’s
identical and avoid destruction of common

data at run time. For a more detailed description of common areas see Chapter
7.

ND-6 0,111.04

2.2.4

2—41

FORTRAN

Common area for
all applications TAS K

COBOL

Common area for
all applications
(Linkage section.

COMMON Private import common.)
AREA

Runtime stack Individual section
APPLICATION of working storage

for each applimtion
LOCAL

AREA

Figure 2.3: Application Data Area

The SlGNON and SELECT Special Applications

SlGNON and SELECT are speci‘
versions of the special applic
mentioned here because they me

The main function of SlGNON is
password. The standard version
FOCUS if necessary.

The function of SELECT is to a
When the user has answered, tr
user application program.

3! applications supplied with TPS. The standard
ations are discussed in chapter 6. They are
y play an important role in task administration.

to check the identity of the user and ask for a
also reserves the terminal and initiates NSHS or

5k the user to select the application to be run.
1e SELECT application will switch to the desired

ND-60.ili.04

2.3

2.3.l

2.3.1.1

2-12

TERMINATING TRANSAC

"When an application program is done
program using the TSWAP TSR {é
transaction. if the transaction is te
abnormally.

Normal Termination

,TIONS

a, it can either switch to a new application
§ee Section 2.2.2) or it can terminate the
rminated, this can be done normally or

Normal termination of a transaction can be caused by:

- reaching the logical end of
statement)

—— using the TSTOP TSR with a st

the program (the STOP RUN or END

op code of 0 or using the TTERM TSR

— the LEAVE monitor call (CALL LEAVE)

TSTOP ~ The Stop Transaction TSR

The TSTOP TSR may be used to ter
stop code of 0 or abnormally with any
be used to give a formatted error mes

Normal termination will activate Sl
activate ABEND.

The application should have perform
base, session partner, devices, etc.

CALL 'TSTOP’ USlNG <stop code
CALL TSTOP(<stop code>)

Examples

CALL ’TSTOP" USING ZERO.

SCODE: 3
CALL TSTOP (SCDDE)

‘1

"ninate a transaction either normally with a
other stop code. A negative stop code can
sage from NSHS («1) or SIBAS (—2).

GNOFF, while abnormal termination will

ed appropriate housekeeping on the data

> .

ll 0stop code

I! tostop code

ND-60.111.04

2.3.1.2

2.3.1.3

'lTERM —- The Terminate

it is also possible to terminate

2-13

Task TSR

a task directly instead of by going to SlGNOFF.
The termination will be a complete termination and the TPT will be freed.

CALL ’TTERM' USING <checkpoint>.
CALL TI'ERM (< checkpoint>)

. A transaction checkpoint is normally taken when a- task is completely. terminated} ' 1
(see TTRAN). However, this can be prevented by using Tl'ERM with the L
checkpoint parameter set to 1.
checkpoint, but it could create a

This saves the overhead of taking a transaction
problem if recovery is done on the TPS system.

The application program should close the data base, close a session, release
resources, etc., before using the

Examples

TTERM TSR.

CALL 'T'I‘ERM' USING ZERO.

CALL TTERM(O)

The SIGNOFF Special Application

When a transaction terminates normally, the SlGNOFF special application is
given control to carry out the actual termination. There are several ways of
terminating a transaction, the main choice being between complete task
termination (freeing the terminal and the TPT), and continuing the task with a
new application, usually SIGNON or SELECT.

ND~60.111.04

2—14

2.3.1 .4 TSTST - The Set Termination Strategy TSR

SlGNOFF uses the termination strategyfor the task to determine which course to
follow. When the task is originally started, the termination strategy is set to 1,
which usually indicates complete terrrination. The TSTST TSR can then be used
to change the strategy to any other value, the meaning of each value depending
on the way it is interpreted by SlGNOFF.

CALL 'TSTST’ USING i<termz strategy? <term; appl.>; -;.
CALL TSTST (<term. strategy>, <:term. appl.>)

i Exampies

MOVE 20 TO TERM-APPL. user termination application
CALL ’TSTST’ USING FOUR TERMuAPPL.

CALL TSTST(1) complete termination, TPT
released

In addition to setting the termination strategy, the TSTST TSR can be used to
indicate a user-written terminatior application. The standard termination
strategies are described under the SlSNOFF application in chapter 6.

ND«60.111.04

2.3.1.5 TSCST —- The Set Close Strategy TSR

When the CLOSE-TPS operator command is given, a controlled stop sequence
will be initiated. Normally, active tasks (TPTs) will continue until they are
terminated, but no new TPTs may be allocated. When all TPTs have been freed,
the user system will be stopped.

However, since long tasks do not free their TPTs between transactions,a close
sequence will never be completed in ‘systems with this'type of task. To avoid
this, it is possible to indicate that a task is to be terminated immediately and
completely if a close command is given. This is done by setting the close'
strategy to immediate termination with the TSCST TSR.

On the other hand, to prevent a transaction from being terminated in the middle
of processing, the close strategy can be set to normal termination while the
actual processing is being done. Then, when that transaction is complete, the
close strategy may be set back to immediate termination. This will also cause the
task to be terminated‘if a close command has already been given.

The close strategy can beset in both user applications and special applications.
For example, SIGNOFF may set it to immediate termination, and the last thing
SELECT may do before starting a user application is to set it to normal
termination. But it may also be left to the application programmer to control this.

CALL 'TSCST’ USING <close strategy>.
CALL TSCST (<close strategy>)

The value of <close strategy>‘is either 0 (normal termination) or 1 (immediate
termination). If it is l, TSCST will also check if a close command has already
been given and terminate the task if it has.

The close strategy is normally set to l in the beginning of SIGNON and changed
to 0 before swapping to the SELECT application.

Examples

CALL ’ TSCST' USING ONE.

CALL TSCSTH)

Nil-60.11134

2.3.2.1

2.3.2.2

' 4a,. the application- program. itself

245

Abnormal Termination

Abnormal termination of a transactio

— the COBOL or FORTRAN runtirr

-—— the TPS system

—- the TPS operator

‘ stop code.

1 can be caused by:

we system

bylusing-thenTSTOP TSR‘ with-a hen-zero." "

The ABEND Special Application

When a transaction is terminated ab
be called before termination to write
other special processing. When the
switch to SlGNOFF to terminate as f

tormally, the ABEND special application will
an error message, take a dump or do some
ABEND application is done, it will usually

or normal termination.

TSAST - The Set Abend Strategy TSR

ABEND uses the abend strategy for the task to determine what action to take in
connection with abnormal termination. The default value is 1 when the task is
started. The TSAST TSR can be used to change the strategy to another value,
the meaning of each value depending on the way it is interpreted by ABEND.

CALL ’TSAST' USING <abend strategy> <abend appl.>.
CALL TSAST (<abend strategy>,

Examples

CALL 'TSAST' USING THREE.

IABAPP=12
CALL TSASTC 1i , IABAPP)

<abend appl.>)

dump the data area on the printers

user abend application

in addition to setting the abend strategy, the TSAST TSR can be used to
indicate a user-«written abend application. The standard abend strategies are
described under the ABEND special a aplication in chapter 6.

ND-60.111.04

2.3.2.3

2.3.2.4

Illegal Monitor Calls

The monitor call routines allowe
FORTRAN program calls an ille
abnormally ended with the error

If an illegal routine is called frc
executed and no error message
advised not to use routines not
or cause unpredictable results.

2-17

d in TPS are listed in appendix E. If a COBOL or
agal monitor call routine, the program will be
’illegal use of TSRs’.

m a MAC or NPL program, the routine will be
written. However, the programmer is strongly

on the list, since they may hang the TPS system
In addition, PLANC, MAC and NFL programs

should not use? the MON. instruction directly, but call the corresponding
FORTRAN monitor call subroutine.

Timeout

When an application is loaded, a maximum time between TSR calls is set. lf the
application runs longer than the given time, it will be abnormally ended with the
error ’timeout'. The timeout depends on the application priority, a low priority
giving a long timeout. Setting the maximum time to 0 will allow the application
to run for an indefinite time. The application timeout can be turned on and off
with the 'lTONS and TTOFF TSRs.

There is also an operator timeout. This is useful if, for example, the terminal has
been turned off or the operator does not answer for some other reason. The
operator timeout time can be changed with the TSOPT TSR.

A timeout is also used when restarting the system after rollback or recovery. if
communication with the termina
is not certain that the terminal

I is involved during restart (See Section 6.2.3),it
aperator is still there or that the terminal is still

turned on. if no answer is received within a specified time, the application is
abnormally ended.

\lD-60.1 11.04

2-18

ND~60.111.04

3.1

3.1.1

3—1

INPUT/OUTPUT PROCESSING

This chapter describes how to handle input and output processing under TPS.

The data base is controlled by the SlBAS data base management system through
standard SlBAS calls. Using SIBAS in TPS application programs is discussed in
section 3.1.

Display terminals will usually be controlled through the NORD Screen Handling
System, NSHS or FOCUS. This system can be used for most types of display

' terminals, connected'both locally-and through input/output. modules; NSHS and _, ' '1 i
FOCUS are discussed in section. 3-2: , , , ‘

Other input/output devices are 01' two types. The first type is special TPS devices
controlled by lnput/Output Mocules (lOMs) and accessed by the application
program through special Transaction Service Routines (TSRs). These are
described in section 3.3.

Finally, TPS application prograns may also use standard devices and files
available to all users of the local computer system, also non-TPS users. These
devices and files are controlled directly by the application program using
standard input/output statements and SlNTRAN monitor calls. Standard device
handling is discusssed in section 3.4.

SIBAS UNDER TPS

Data Definition and Manipulation

The data base in a TPS system is controlled by the SIBAS data base
management system. The data base is defined and created using the SIBAS data
definition/redefinition language DRL. This is done independently of TPS, in
background (timesharing or batch) mode.

The data base is accessed from application programs using the SiBAS data
manipulation language DML. A TPS application program uses the same SIBAS
calls to access the data base a; a program running in a different environment
such as timesharing or batch. These calls are described in detail in the SlBAS
User's Manual and a summary of SIBAS DML statements is found in appendix (5.
This section-only discusses special considerations which should be taken when
using SlBAS under TPS.

ND-60.111.04

3—2

3.1.2 The SIlBAS Interface Routine

When an application program calls a SIBAS routine, the call can not go directly
to SlBAS, but will go to the SIBAS interface routine (DML simulator). {See
Figure 3.1) This routine functions as a communication interface between the
user and SlBAS, sending calls from one to the other via MON SlBAS, which is a
special SIBAS communication monitO' call in SlNTRAN lll.

This interface routine makes it possible to access the same SIBAS data base'
from TPS programs, other RT programs and backgroundltimesharing and batch). _ _ _ ‘ _ ~

'programs‘atfithesame time. Thelinterfaceiisdivided into a'usersideand a SIBAS’“ “ ' ‘ ‘ I " ' A
side, and all SlBAS calls. will go from-.the- individual user. interfaces to- the
common SlBAS interface. and back again; * ' ' '

The ability to access a TPS data base from background programs can be an aid
to program testing. The programmer must however be aware that no checkpoints
are taken of background programs and a TPS rollback or recovery operation may
cause the data base and the background program to be inconsistent.Normally
programs testing in background will h ave their own test version of the data base.

5131 '
Data
base

TPS TPS commum- sue ‘
RT DML canon data
programs Simulator butler semen:

SlB

src

background background :‘EBE'NT SIB
programs UML

simulator OPEN

SlB
SlB? SET

0mm RT communr Sl82
RT DML canon data

-

programs simulator butler sequent
Data
base
2

Figure 3. I: S/BAS User Interface

ND-60 111.04

3.1.3 Opening and Closing t

The data base is opened and
SCLDB calls. Opening the data [2
other program has it open at th
the caller to be registered as a

3-3

the‘Data Base

closed using the normal SOPDB, SRRLM and
ase will cause it to be ”physically” opened if no
e moment, otherwise opening it will just cause
user. Since the former involves more overhead

than the latter, it may be most convenient for the TPOF’EN special application to
open the data base physically and to leave it open until the TPCLOSE application
closes it physically. Application
without causing unnecessary ov

Another factor to be considered
transaction checkpoint is taken

arograms can then open and close it as needed
erhead.

in opening and closing the data base is that at
every time the data base is opened or closed.

This overhead can also be avoided if the data base is only opened once for each
user, for example the first time SlGNON is called. This of course is only possible
for long tasks, since the 'user’ is the TPT and this must not change. On the other
hand, taking a transaction or synchronised checkpoint involves more overhead if
the data base is open. if an application program has a iong phase with no data
base accesses (reading input from the terminal, for example), it may be best to
close the data base and open it
taken often (See Figure 3.2).

For a detailed discussion of chec

Using More Than One

Application programs are allowe

again afterwards, if transaction checkpoints are

kpoint and restart see chapter 5.

Data Base

:1 to use more than one data base, but if they do
and the checkpoint/restart facility is used, an application program must only have
one data base opened at a time. {See Figure 3.3)lf this rule is not followed, a
restart could cause problems, si
in current use (the one given in
inconsistent, but may not be cl
These problems are avoided if

we checkpoints are only taken of the data base
SETDV). The other data base may not only be

osed properly at rollback or opened at restart.
only one data base is open at a time for each

application program (different application programs may, however, have different
data bases open at the same time).

VD-60.111.04

3.4

Start

Write term picture--———-—-—-—-—-———..

—-—————.._..’.

Open database
Get record

m...

Update record

more
updating

Close data base

more
processing?

Terminate

Figure 3.2 Database Open-Close

ND-60

Read input from term
take trans checkpomt

111.04

CALL SETDV (T) _.
CALL SOPDB (data base 1)

CALL SCLDB (data base 1)

§
CALL SETDV (2)
CALL SOPDB (data base 2)

CALL SCLDB (data base 2)

Figure 3.3 Using more than one Database

3.1.6

3—~5

SIBAS in ND-500 Mult —CPU TPS

ln ND-SOO multi-CPU TPS, SIBAS process(es) may run in both the ND-lOO and
the ND-SOO. Applications running in either CPU may call any SlBAS-process, the
SlBAS device number identifies the SlBAS-process, e.g. SlBAS-number 0 may
run in the ND-lOO and SIBAS No. 1 and No. 2 in the ND—SOO. Apart from the
SlBAS device number, there are no other differences in calling SlBAS on another
machine from the application’s point of' view. Note that when calling SIBAS on
another machine thanvwhere the application is running (E.g. ND-lOO + ND—SOO),

, you get a substantial increase n system overhead. Consult the, SIBAS User’s- ,
Manual: (ND-602121): for further. information an: overhead. and: on 'h‘OW' to call. '
SlB—DML from applications running on. the ND~500.

Restricted SIBAS Calls

Certain SIBAS functions are not controlled by user application programs, but by
special applications called by TPS when these functions are required, (See
Section 6.4). These functions are synchronised checkpoint, rollback and recovery
and they are controlled by the CHECKPOINT, ROLLBACK and RECOVER special
applications respectively.

Since checkpoint/rollback/recovery affects the whole TPS system, SIBAS
routines for these functions must not be called by user application programs.
This holds also for logging routines such as initiating the log files and turning the
routine log on and off during recovery.

The special applictions also control the state SlBAS is in at any time and routines
that change the state must therefore not be called from user application
programs.

Other SlBAS routines which should be used with care are BSEQU and ESEQU
since these are used in a special way by TF8.

The reason for this is that when recovery is done, SlBAS will reprocess all calls
from the last synchronized checkpoint to the end of the last critical sequence. At
the same time, TPS will restore transactions to the last transaction checkpoint. If
the transactions are to continue, these two points must be the same. To achieve
this, the transaction checkpoint routine makes use of BSEQU and ESEQU.
However, if recovery with automatic transaction restart is not used, user
application programs may call TBSEQ and TESEQ (See Appendix H.) This is also
valid if transaction checkpoints are not used.

The restricted SlBAS calls are stown in figure 3.4.

ND~60.111.04

Checkboint/rol[back/recovery

GCHPO
SCHPO

Logging

INLOG

Status

START
STOPS

Misceilaneous

RESIB
RELSI
SABOR

Figure 3.4: Restricted S/BAS Cal/s

3-6

SCROLL
SREPR

ONLOG

SRUN
SPAUS
SRECO

CHCOM
SMHO
STRLG

ND-GO .111.04

SECON

,OFLOG‘

SFINI
STREP
SPASS

RBLAN
SBLAN
ZTRB

3.2

3.2.1

3.2.2

3.2.2.1

NSHS AND FOCUS U NDER TPS

Handling Display Terminals

Display terminals can be contro lled through the'NORD Screen Handling System
(NSHS) or the FOCUS Screen Handling System. it is of course possible to write

in section 3.4), but NSHS Or FO
‘ I 'to-and read from display terminals" usingthe standard- l/O facilities (as discussed 3- '5’

CUS provide more advanced facilities for screen
handling. In the. NDSOO, only FDCUS ought to be used, or you will get a great
amount of system overhead.

The NSHS System

NSHS provides facilities for picture definition with leading texts and data fields,
various field types, input ‘con
for standard terminals and
{See Figure 3.5). The NSHS ca
type has its own version of NSl
described under loading applica

Defining and Using Pictur

trol,
some

cursor control etc. NSHS can be used
terminals controlled by l/O modules

lls are the same for both types. However, each
is and the correct version must be used. This is
trons.

es

Pictures are defined using the NORD screen definition system. This is a
background program which is run as a SlNTRAN timesharing program or a batch
job, not as a TPS program. Defining pictures is discussed in section 7.7.

After a picture has been defined, it can be used by a TPS application program
via calls to the NORD screen library system. These calls are listed in appendix F.
For a complete discussion of th 9 screen definition system and the screen library
system, see the NORD Screen l-andling System Manual.

ND-60.1 i l .04

32.2.2

3 failure}: '1'. ,.

3-8

QCQCO.c and Restart

Control 0 (pressing the control and 1 he 0 keys simultaneously) 3 times in a row
has a special function in screen handling. It will clear the screen and write out
the latest picture and any input to the latest RFLDS call. If input from one picture
is read with several RFLDS calls, input to previous RFLDS calls is not shown,
since it has already been sent to the application program.

This QCQcQ-C function is used normally to restore a picture if, for example, the
terminal is turned off by mistake or if the picture disappears because of power

QCQCQC is used by TPS in connection with system restart {See Section 5.3.2),
in order to restore the screen picture, which may have been lost when the
system was down, and to position H" e cursor correctly. The terminal operator is
instructed by the RESTART application to press QCQCQC. When he does so, the
latest picture and any input to the latest RFLDS will be restored. Input to
previous RFLDS, however, which has already been processed by the application
program, will not be restored. This may cause some confusion for the terminal
operator as to what has been registered, even though the cursor will be
positioned properly. One way to avoid this situation is to read all input from one
picture with a single RFLDS call if this can be fitted to the program logic.

ND-60.111.04

3-9

APPL
APP

CALL WRPTD CALI. WRPTD

NSHS NSHS

Write picture Send picture
onscreen ‘——'—‘ picture in internai

files message format

Message routing

‘I Route
‘ picture to 10M

iOM
LOCAL TE RM INALS

Write picture
OI"! screen

Figu); 3.5.A: NSHS for Local and Special Terminals NETWORK TERMINALS

ND—GO.111.04

3.2.3

3.2.3.1

‘- ‘. 9‘. Natyér implemented. - .

3-10

FOCUS Level 1

FOCUS Level 1 is a high level screen I" andling system that can be used to control
local or remote asynchronous terminals or synchronous (buffered) terminals
using lSO 1745 or 3270' as line pro
system are the same for locally conn

cedure. The calls to the screen handling
ected terminals and for remote terminals.

The communication is carried out by the TPS system which establishes a session
between the application’s TPT and
”‘FClNlTE” with specific parameters.

Defining and Using Forms

the remote FOCUS process, and calls

The definition of forms (pictures) is done using the FOCUS—DEFINE system. This
is a background program which is rm as a SlNTRAN timesharing program, not
as a TPS—program. Defining pictures is discussed in Chapter 7.8.

After a picture is defined, it can be used by a TPS application program via calls
to the FOCUS library system. These ca
description of the FOCUS screen i
Handling System manual.

lls are listed in Appendix F. For a complete
andling system, see the FOCUS Screen

ND-60.111.04

3-11

3.2.3.2 Local or Remote Asynchronous Terminals

If the load of the system becomes too big, the processing part of the screen
handling can be distributed to one or several Front End CPUs (See Below).

CPU at
Applications
+ FOCUS

APM

+Communication \
Library /Call interface \

Processing
Part of FOCUS

l
l

Applications \ j!

l
l

Figure 3.53: FOCUS on One or Several CPUs

Those terminals that are to be used on 3 FE CPU are defined in the user
configuration {See chapter 4.2. 7.9 in the TPS System Supervisor’s Guide).

For each terminal the logical device number, terminal type and CPU-number is
defined. This information is sent to the FE CPU by the SlGNON special
application when establishing a session between the local application and the
remote CPU process.

ND—60.111.04

3.2.3.3

3.2.3.4

- use.- . - 4 ,, '

3-12

Synchronous/Buffered Terminals Using FOCUS

A special version of FOCUS is developed for buffered terminals using
l/O-modules.

The calls to FOCUS are the same, but some more calls are added to enable use
of the special features of these terrrinals, such as set high/low intensity and
lock/unlock fields. The FOCUS calls operating on just one field are not relevant
for these terminal types. The forms mL- st be compiled by a'post processor before

ND—100 — ND‘SOO lncompatibi ities in FOCUS

Application program using FOCUS in the ND-SOO cannot switch (using the
TSWAP TSR-routine) to a new applica tion in ND-lOO and continue to use FOCUS
with the FOCUS-initiation set by the previous application in ND‘SOO and vice
versa. The new application must then call 'FClNlTE’ as the first call to FOCUS.
The FOCUS internal data format is different in the NDJOO and the ND—SOO due to
the difference in word—length of the two machines.

ND-GO 111.04

3.3 SPECIAL TPS DEVIC

3-13

ES

Special TPS devices are devices that are controlled by I/O modules (lOMs). The
main use for lOMs is in connect
they may also be used for any
the application.

The lOM does the actual read

on with networks and distributed processing, but
other devices that are not controlled directly by

ng and writing on the device according to the
V protocol required by the device. After being read,.data is transformed tovthe

internal TPS message format a
message routing, system. Data f

nd sent to the application program via the TPS
‘om the application program to the device is sent

to the lOM in the internal protocol and written on the device by the lOM in the
device format.

All handling of special message protocols, formatting, unformatting and errors is
done by the lOM. The application program uses a set of simple calls to
communicate with devices belcnging to this group {See Figure 3.6). Note that
some terminals controlled by
program through NSHS calls. U

in addition to the TSR routines
TSRs can be used to broadcas
lOM. These TSRs are described

input/output modules are not a
of different types of devices t
lOMs have been written for
acquired as TPS options.

lOMs may be accessed from the application
sing NSHS is discussed in section 3.2.

described in this chapter, the TBRDC and TTEXT
t a message to one or all units controlled by an
in chapter 4.

part of the default TPS system, since the number
hey can handle is practically unlimited. Several
the most common devices and these can be

7-5 OPN Open a session with device or application program

TSCLO Close the sess

TSES 7— Read session 5tatus information

T5M56 Send a message to the session partner

TEA/I56 Read a message from the session partner

Figure 3.6: Communication TSFis for Special TPS Devices

ND-60.l11,04

3.3.1

3-1:

Session Request from a E

The connection between a special T
called a session. ln order to establist
from one of them.

A session request from a device will
starting of a transaction. The steps in

' g —. ”the device sends a special mess

levice

PS device and an application program is
this connection, a session requestis sent

result in the allocation of a TPT and the
accomplishing this are (See Figure 37A):

age to the lOM requesting a session _

— the lOM sends a session request to the TCM with the application name and ,
the logical device unit as parameters , ‘ g '

— the TCM allocates a- free TPT to
on to the TPT

-— the TPT registers the logical

the session and sends the session request

mit as session partner, sends a session
response back to the lOM and starts the application program

——- the lOM registers the session response and connects the address of the
TPT with the device unit

As long as the session lasts, the lOM will send messages from that device to the
correct TPT and the TPT will send messages from the application program to the
device via the IOM. The device a nd the application program are session
partners. The application program communicates with its session partner through
the read-message and send~message TSR routines, the device communicates
through the IOM. The communication mode is half-duplex.

Note that up to 2000 bytes of data may be sent with the session request. When
the application program is started, this data will be placed at the beginning of
the task common data area. (See sect'on 7.7 for a discussion of data areas.)

ND-60.1H.04

3-15

TPT1 APPL.1
' [OM

\ / UNITZ
\ UNIT1 TPT31

\ TPTZ APPL 2
UNITZ “PTI /

\j UNIT3
UNIT3 TPTZ

_ TPT3 ‘ APP,L,.‘3

\ UNITI

Figure 3. 7A: Device-Application

T?“ APPL 1

TPT3

TPTZ APPL.2

__.....__..._d_.. UNIT1

TPT3 APPL.3

m1

TPT4 APPL.4

-— -— —----—-—--—-—— UNH 2

Figure 3.78: App/icatiomApp/ication

ND-60.H1.04

3.3.2

.; CALL; "TSOPN? USING <modUle>

3-16

TSOPN —- The Open - Session TSR

An application program is only allowed to have one session partner at a time. If
it has no session partner, it may establish a session. This session may be to a
device controlled by an lOM, but it does not have to be; it could be to another
application program. It could also be to a device or an application program in
another TPS system (see below).

A session is established from an appl

< more> <status >.

cation programvvvith the TSOPN ISR.

<< sub—address*>\ < record > ' <size >

CALLVTSOPNVl <module>, <sub—address>, <rec0rd>', <size>, <more>,
< status >)

Within a single TPS system, the sut
the session partner, either a device 0
identification of the module control
application program.

Example of TSOPN to applicat

MOVE 2 T0 MOD-ADD-TYPE.
MOVE U TO MOD—ADD~SIZE.
MOVE 'TCMZ' T0 MOD-NAME.
MOVE 1 T0 APPL-ADDmTYPE.
MOVE 2 T0 APPL-ADD—SIZE.
MOVE 22 T0 APPL—NUMBER.
MOVE 2000 T0 REC—LENGTH.
MOVE 1 T0 MOREe

CALL 'TSOPN' USING MODUL
REC—L

IF STATUS-CODE NOT = 0 0

Example of TSOPN to applicat

DIMENSION IMODCH),IAPPL(
CHARACTER TCM’H
EQUIVALENCE (TCM,IMOD(3)

IMOD(1)=2
IMOD(2):H
TCMs'TCMl’
IAPPL(1)=1
IAPPL(2)=2
IAPPL(3)=16
CALL TSOPN(IMOD,IAPPL,0,

-address parameter is the identification of
r an application program. The module is the
ing the unit, an lOM if device, a TCM if

ion program — COBOL

addr type is char string
length = u bytes
module is 'TCM2'
sub—addr is appl nr
length = 2 bytes
unit is appl nr 22
2000 bytes of data
and more to follow
open the session

E APPLICATION DATA-REC
ENGTH MORE STATUS-CODE.
0 T0 ERR—ROUTINE. check return status

ion program - FORTRAN

3)

)

addr type is char string
length = u bytes
module is ’TCMl”
sub—addr is appl nr
length = 2 bytes (1 word)
unit is appl nr 16

0,0,ISTAT) open the session
IF (ISTAT.NE.0) GO TO error routine check return status

ND-6l).111.04

3-17

Example of TSOPN to device - COBOL

MOVE 2 TO MOD-ADD—TYPE. addr type is a character string
MOVE U TO MOD-ADD—SIZE. length:u bytes
MOVE ’SXZS’ TO MOD—NAME. module is X.25 I/O module
MOVE 3 TO SUB-ADD-TYPE. sub-addr is in native mode for 3X25
MOVE 12 TO SUB-ADD-SIZE. length:12 bytes
MOVE XZS-NUMBER TO SUB—ADD-NAME. unit is X.25 number

, . open the session 4 , . ,. .2,»' CALL' 'TSOPN’ USING MODULE SUB-ADD}? ZERO ZERO ZERO STATUSx-CODE-" ' '
IF. STATUS—CODE NOT = 0 GO- TO ERR-—ROUTINE. check return status,

Example of TSOPN to device - FORTRAN

DIMENSION IMOD(3) , IUNIT(3)
CHARACTER IREC*8O

IMOD(1)=1 addr type is the TPS module nr
IMOD(2)=2 length=2 bytes (1 word)
IMOD(3)=22B TPS module nr of IBM327O emulator
IUNIT(1)=1 sub-addr is the unit nr
IUNIT(2)=2 length=2 bytes (1 word)
IUNIT(3)=20 unit is channel nr 20

open the session and send 80 bytes
CALL TSOPN(IMOD, IUNII‘, IREC , 80 , O , ISTAT) of data
IF (ISTAT.NE.O) GO TO error routine check return status

if the session is with a device or application program in another TPS system, the
module parameter will be an IOM controlling intersystem communication. Further
addressing is lOM dependent ard will be contained in the sub-address and/or
data record.

ND-60.111.04

3.3.3

3-18

Session Request from an Application

A session request to a device in the same TPS system will cause the device (if it
is free) to be allocated to the application program in the same type of session as
described above. The session is set up as follows (See Figure 3.7/1):

~ the application program calls TSOPN with the lOM and the device unit as
parameters

' 4 ' I theT‘SOP’N TSR sends a sessiain request to the 'OM

—- the lOM registers the TPT as $6
a session response to the TPT

— the TPT registers the unit as se
program

The device and the application progra

An application program can also as
program. The second application wil
follows (See Figure 3.78):

— the first application program (1
the new application number as

—— the TSOPN TSR sends a sessic

— the TCM allocates a free TPT (T

—— TPTC registers TPTA as session
and starts its application progra

—— TPTA registers TPTC as sessi
program.

ssion partner for that device unit and sends

ssion partner and returns to the application

m can now communicate as above.

tablish a session with another application
be started and the session established as

ask TPTA) calls TSOPN with the TCM and
parameters

in request to the TCM

PTC) and sends the session request on to it

partner, sends a session response to TPTA
m

on partner and returns to its application

The two application programs run concurrently and communicate through the
send-message and read-message TSRs. They should be synchronised by using
the 'more’ parameter.

Sessions with programs and devices
way by the application program, t

'n other systems are requested in the same
hrough the TSOPN TSR, but it may be

necessary to specify some addressing information in the data record.

ND 50.111.04

TSOPN for a session in another ‘

Example

DIMENSION IMOD(3) , IU
CHARACTER TCMX’W

3-19

l'PS system may look like this:

NIT(3) ,IBUF(7)

EQUIVALENCE (TCMX,IBUF(3))

IMOD(1)=T
IMOD<2>=1
IMOD(3)=17 intersystem IOM = X.25
IUNIT(1)=1
IUNIT(2)=i
IUNIT(3)=2 channel 2
IBUF(1)=1 additional addr info in IBUF
IBUF(2):20000B TCMO
IBUF(3)=12 appl 12
CALL TSOPN(IMOD,IUNIT,IBUF,6,0,IST)
IF (IST.NE.O) GO TO ERROR

For detailed information on establishing sessions, see the description of the
particular lOM being used.

Figure 3.8A shows a session be
computer system. Figure 3.88 s
TPS systems.

IOM

tween a TPS application program and another
wows one between application programs in two

TPTA APP L.

T‘PS Chan.B TPTA Chan.8
_<>

Figure 3.8A: Application~Compu

Wm

WM

Chan.

T135

ANOTHER :OMPUTER

ter

IOMl TPTA AP9L1

“-7“: was
lOMZ

l
TPTB APPLZ

TPS ‘Jl Chamcl TPTB I 1 Chan .9:

Figure 3.88: App/ication-App/ica

SESSIONS BETWEEN TWO TPS

h

tion

8 Y3TEMS

iDfiOJiL04

3.3.4

3—20

TSCLO - The Close Session TSR

A session may be broken by either of the session partners by sending a
session-finished message to the partner. This is done by the application program
with the close-session TSR.

CALL 'TSCLO’ USlNG <status >.
CALL TSCLO (<status >)

* Examples-

CALL 'TSCLO' USING STATUS-CODE. V . »
IF STATUS—CODE NOT = 0 GO TO SESSION-NOT—CLOSED

CALL TSCLO(ISTAT)
IF (ISTAT.NE.O) GO TO session-not-closed

This will cause the following to happen:

—— a finish—session message will be sent to the lOM or TCM

— the lOM will free the device and send a session-finished message to the
TPT
or

— the TCM will send a session-finished message to the other TF’T (but it will
not be freed)

.— the TPT will return to the application program

Note that sessions will be automati
completely and the TF'T is freed (but
or return to SIGNON or SELECT).

sally broken when transactions terminate
~lot when they switch application programs

ND«60.‘lll.04

3-21

3.3.5 TSEST - The Session Status TSR '

If the application program does r otw if it has a session if it has reason to believe
that a session may have been braken, or if it wants information anout the current
session, the read-session-status TSR can be used. The TSR is used mainly by the
RESTART special application, but is also available to user application programs
(See Figure 3.9).

_ , CALL 'TSEST'IUSlNG <record>.
' CALL TSEST('<record>)

Examples

CALL ’TSEST’ USING EESSION—INFO-REC.

DIMENSION IREC(20)
CALL TSEST(IREC)

1 Session state

2 Current direction

3 No. of input messages

4 Time for latest input
message (year, month, day,
hour, minute, second, BTU)

11 No. of output messages

12 Time for latest output
message

19 Session partner-module

20 Session partner-unit Figure 3.9: Session Information

\JD—GOJ 1 1.04

3.3.6 TSMSG - The Send-Mess

When an application program wants
prepare an array/record in working 5
send-message TSR:

CALL ’TSMSG' USING <record > <
CALL TSMSG (<record > , <size >

Example —- COBOL

MOVE"MESSAGE T0 SESSION PA!
MOVE 26 TO MESSAGE-SIZE.
MOVE 0 TO MORE.
CALL 'TSMSG' USING MESSAGE—1

MESSAGE-SIZE MC
IF STATUS—CODE NOT : 0 G0 TC

Example - FORTRAN

DIMENSION ITEXT(1000)
CHARACTER CTEXT*2000
EQUIVALENCE (ITEXT(1) , CTEXT)

CTEXT: 'MESSAGE TO SESSION PA
CALL TSMSG(ITEXT, 26 , 0 , ISTAT)
IF (ISTAT.NE.O) GO TO error

The message will be copied from we
the session partner in the form of a
immediately to the application progra
session partner.

Iv

age-"TS R

to send data to the session partner, it will
torage and send it to the partner with the

size > <more > <status>.
, <more > , <status >)

iTNER' TO MESSAGE-TEXT; '

‘EXT
)RE STATUS CODE.
) ERR-ROUTINE.

to follow

message defined as array

iRTNER '

routine check return status

rking storage to a buffer area and sent to
data message. The TSR will then return

m without waiting for an answer from the

Note that there is a flag, the ’more’ flag, that can be used to indicate whether
the application program intends to send more data before expecting an answer.
The session partner can then test this flag when the data is read with the read
message TSR. if a message in one di rection is to be followed by another in the
same direction, the more bit is set. For the last message, the more bit will be
cleared. ln the case of readvmessage, this means that if the bit is set the
application program should call read-message again to get the next mnessage
before an answer is sent. in the case of send~message, the application program
will set the bit if a new message is. going to be sent before waiting for an
answer.

RID-60.11104 -

send message (26 bytes), no more

check return status

message defined as character string

send message(26 bytes),no more to follow

3.3.7

‘Example‘énCOBOL

TRMSG - The Read Me

When the application program we
will call the read-message TSR:

3-23

ssage TSR

nts to receive data from the session partner, it

CALL 'TRMSG' USlNG <record > <size > <more > <status>.
CALL TRMSG(<record > , <siz

MOVE 100 TO MESSAGE-SIZE;
CALL 'TRMSG’ USING

MESSAGE-TEXT MES
IF STATUS-CODE NOT :
IF MORE : 0 GO TO LAS

Example - FORTRAN

DIMENSION ITEXTC 50)
CHARACTER CTEXT*1OO
EQUIVALENCE (ITEXT(1)

ISIZE=lOO
CALL TRMSG(ITEXT,ISIZ
IF (ISTAT.NE.O) GO TO
IF (MORE.EQ.O) GO TO

e > , <more > , <status >)

max length 100 bytes
read message

SAGE-SIZE» MORE STATUS—CODE . ' _
0 GO TO ERR-ROUTINE. check return status
T-INPUT—MSG. check for more input

message area defined as array
message area defined as

,CTEXT) character string

max length 100 bytes
E,MORE,ISTAT) read message
error routine check return status

last input message check for more input

When this TSR is called, the TP‘lF will see if any message has come from the
session partner. If it has, it will copy the message to the record area in working
storage and return to the application program. if none has come yet, the TPT will
wait until a message arrives.

NED-60,111.04

3.3.8

3.3.9

. Thepacket size/set with. this TSR w

3-24

TPASZ —— The Set Packet

Session partners exchange messages

Size TSR

which in turn are divided into packets by
TPS. This TSR sets the size of the packets.

CALL 'TPASZ' USlNG <packet size> < status >.

CALL TPASZ (< packet size >, <status >)

"only, be‘used .for this: transaction. lithe? .. ~
transaction does not set the packet size, the default size at system generation"
will be'used.

Themaximum packet size allowed $2047..

Examples

CALL ’TPASZ' USING PACKET-SIZE STATUS—CODE

CALL TPASZ(2000 , ISTA'I')

Restart

If a system failure occurs, the system can be restarted again with rollback or
recovery (See Chapter 5). After a system restart, some sessions may be intact
while others may be broken. Sessions between two application 'programs in the
same system will probably be intact, since the application programs have both
been restarted at their checkpoints. lOMs, however, do not take checkpoints and
therefore cannot be rolled back. In addition they may have been reloaded and
lost all session information, or connections may have been broken externally if
the system was down for any length 0f time.

The RESTART application may try to restore broken sessions for transactions
with restart at checkpoint {see section 5.3.2.2) and it should break sessions for
other types of transactions. The special TSR TSEST (read-session-status) is
available for this. It can also use TSC
therefore be intact when the applica
restart.

PM to create a new session. Sessions may
tion program regains control after system

The function of checking and restoring broken sessions in the RESTART
application must be programmed by 1
only restores connections with SlBAS

ND—E

he user. The standard version of RESTART
and NSHS.

0111.04

3.3.10

3.3.10.1

~‘ -— ' ‘lBM3270éCU for emulating

Available lnput/Outpu

The input/output modules that ar

3-25

t Modules

8 available at present are

— l801745 for communicating with terminals using the ISO-1745 protocol
(STANSAAB Alfaskop 3500

-— X25LAPB for communicatin
terminals)
g with other systems using the X.25 protocol

— lBM3270-HOST for communicating with terminals on a control unit using
the l8_M-3270 protocol, i.e.

some other equipment, i.e.

A brief description of how to prcgram them is given here. They are discussed in i
more detail in the TPS System 8

X25LAPB

the NORD CPU, communicates with the 3270s .
an lBM 3270' Control unit communicating’with
the NORD CPU is a 3270

Jpervisor’s Guide.

The X25LAPB module can be used for communication between two or more TPS
systems or between a TPS sy stem and another TP monitor using the X.25
communications protocol. For example, it could be used for communication
between a NORD machine with
illustrates two possible X.25 com‘

The communication protocol cor
the two lowest levels of X25. Le
to the TPS level. it is here that s
and sessions are terminated.

TPS and a CENSOR 932 machine. Figure 3.10
gurations.

isists of 4 levels. Levels 1 and 2 correspond to
vel 3 is a subset of X.25/3. Level 4 corresponds
assions are established, user data is transmitted,

NED-60.111134

3—26

I Y
HDLC HDLC
INTERFACE LEVEL] INTERFACE

HDLC HDLC
DRIVER LEVEL 1' DRIVER

LEVEL 2_

PACKET LEVEL 3
LEVEL

COMPUTER A COMPUTER B

Computer - Computer

Computer C

"' :1: Z 1-:2
U :1: "I S E g3'3 3 o E C
< a .n g o
m > K

1" (3
IT!

Figure 3. 70: X25 Communication

Computer

ND—SO. 111.04

— Puic Network

3-27

The usual TSR routines are used to communicate with a remote partner

— TSOPN Open a session
— TSCLO Close a session
- TSMSG Send a message
— TRMSG Read a message

When calling TSOPN, the nu Tiber of the communication channel must be
specified; if the: specified channel isalready in- use, the call will return an error
status of 4-3; unit temporarily rot available. Usually in a 2~System configuration
one system will use even numbers in TSOPN, the other one odd numbers.

in addition, the TSOPN call must specify the, session partner, Le. the TCM
number and application number This is given at the beginning of the data record
sent with the TSOPN call. User data can also be sent with TSOPN, but the size is
limited to the packet size that can be sent over the line (usually 128 or 256 bytes).

The application that is started up must reply with a data message (sent with
TSMSG). This message may be empty (dummy reply).

ND—60.l l l .04

Example

1. The Application Setting L

‘0
0
0

0
0

0
D

O
C

)
G

O
O

0
C

O
O

V.VIMODL(1):1_¢_,,
' IMODL(2)=1

, Identify channel number

3-28

PROGRAM APOXX,YY

Identify X.25 I/O module

IMODL(3)=17

IUNITC1)=1
IUNIT(2)=1
IUNIT(3)=2

Identify session partner

IARR(1)=1
IARR(2):ZOOOOB
IARR(3)=12

Open the session

1p the Connection

TPS module.number

channel number

TCMO
appl number

CALL TSOPN(IMODL,IUNIT,IARR,6,0,ISTAT)

Read reply from partner

CALL TRMSG(...........)

Dialogue

CALL TRMSG/TSMSG

Close the session

CALL TSCLO

END

ND-GO.11L04

2. The Started Applicati

C
O

O
PROGRAM APOZZ , XX
0

Send reply message

CALL TSMSG(.......)

.Dialoguev

CALL TRMSG/TSMSG

END

h

3-29

JD—60.111.04

3.3.10.2

3-3C

IBM—3270-—CU

The IBM—3270~CU module emulat
machine with TPS and the IBM-327C
machine and look like terminals using

lBM—3270~—-CU was developed as p
form it is not a completely general I
satisfies the. requirements for tr
'simplifications'and special. features su

-— ASCII/EBCDIC conversion:
'All [messages to the IBM macl
before being sent and all messa
ASCII. As a consequence of

es an IBM—3270 Control Unit. A NORD
——CU module can be connected to an IBM
the IBM 3270 communication protocol.

art of the Nortrygd project. In its present
)roduct, but a communication module that
e ‘Nortrygd project; It. .ycontains- , both , , _
Ch 33:“

iine are} converted from ASCII to. EBCDIC.»
ges received are converted from EBCDIC'to' '
this, it is impossible to send or receive

messages containing IBM buffer control orders such as SBA, SF, EUA,
etc., because they are followed by addresses that should not be converted.

- Generation of "ENTER" and ”cursor address”:
The present version of IBM3270—CU will only send the type of message
resulting from pressing the ENTER key. Pressing function keys cannot be
simulated, nor can different curs

- System and operator messages:
These messages from the IBM
console.

—— Messages from unused channel":
Messages received on channels

-— Long messages from TPS to IBI\.
IBM—3270-CU can send mes
received from TPS as one pa

or addresses.

machine are routed to the TPS operator’s

3

not ”in session" are ignored
ll:
sages of any length to IBM if they are
cket, but messages that are divided into

several packets cannot be sent as one message
—- Session request from IBM:

This is not possible — the N080 machine must initiate the session

Application programs communicate with the IBM machine with the usual session
TSR routines.

—— TSOPN Open a session
— TSCLO Close a session
—— TSMSG Send a message
—- TRMSG Read a message

The TSOPN call specifies the module
1). In addition, the first data message

ND-GO.

number (18) and the unit number (always
must be sent in TSOPN.

11.04

3-31

IBM—~3270—CU can receive messages of any length from IBM and send them on
to TPS modules divided into several packets if necessary. However, it is not
possible to receive several pa :kets from TPS modules and put them together

There is no individual timeout i

into one message to be sent to iBM.

Messages received from IBM will be sent to the session partner only if the first
”i“character is . All other mes

routed to the TPS operator’s co

the IBM machine stops sendir
”COMMUNICATION DEAD” w
time,'this will happen 35' sec
received from IBM. Upon race:
the message "COMMUNICATIC

A session request (TSOPN) giv
session response.

Example

momma
IMOD(2):1
IMOD(3)=18
IUNIT(1)=1
IUNIT(2)=1
IUNIT(3)=1

The first message t

0
0
0

ILEN=number of byte

sages are considered system messages and are
nsole.

or a session, but a timeout for the whole line. If
g, all sessions will be broken and the message
ritten on the operator’s console. At the present .
onds after the last poll or message has been
pt of the first poll after the line has been down,
N RUNNING" will be written on the console.

3n when the line is down will result in a negative

0 IBM is put into IMESS

3 in IMESS
CALL TSOPEN(IMOD , IUNIT, IMESS , ILEN, O , ISTAT)
IF (ISTAT. NE. 0)THEN
0

CALL TRMSG(IMESS , IL

C Dialogue with TSMSG

CALL TSMSG/TRMSG

C Done, close session

CALL TSCLO(ISTAT)
9

END

error

3N , IMORE , ISTAT)

/TRMS G

ND-60.l‘i 1.04

3.3.10.3

3-32

IBM—3270— HOST

The lBM—3270-HOST module acts as a host machine to HEM—3270 terminals.
A NORD machine with TPS and this I/O module can be connected, through
synchronous modem lines, with terminals using the IBM 3270 line procedure. The
NORD machine will look like an IBM lost machine to these terminals.

This module was originally made in)rder to use Alfaskop System 41 terminals,
.‘but it can also be used with other equipment using the same line procedure

The IBM—~3270— HOST module uses EBCDIC characters, but can use ASCll
characters instead if modifications are made to SlNTRAN lll.

CommuniCation between an} application program and a terminal is done through I
the session TSR routines TSMSG/TRMSG.

A session will usually be set up by the terminal operator. This is done by
pressing SEND with a blank screen. A session will be set up between the
terminal and a transaction processing task (TPT) belonging to TCMO, and the
SlGNON application will be started. This must be a special non-NSHS version.

If the screen is not blank when SEND is pressed, it will be blanked and SEND
must be pressed again.

if another TCM than TCMO is wanted, a special version of lBM-3270-HOST
must be used.

An application program can also set up a session. This is done with TSOPN,
specifying the lBM—3270—HOST module number (16) and the logical unit
number of the terminal.

After the session has been set up, data can be sent and received with TSMSG
and TRMSG. Note that every time the terminal user presses SEND, a message
will be sent to the application program and the keyboard will be locked until the

. application program sends a message back to the terminal.

Output to the printer should be sent with the TTEXT routine. it is not possible to
have a session with a printer.

The NSHS screen handling system cannot be used.

ND-63.111.04

3.3.10.4 lSO—1745—HOST

3—33

The lSO—l745—HOST module acts as a host machine to ISO—1745 (STANSAAB
Alfascope 3500) terminals. A NORD machine with TPS and this 1/0 module can
be connected, through synchrOnous modem lines, with terminals using the
ISO—1745 line procedure. The N 0RD machine will be a host to these terminals.

Communication between an application program and a terminal is done through

system;

A session will usually be set

. the-sessiona-ZTSB routines;TSM$G_/TRMSGor: with therNSHS‘screen: handling-

up by the terminal operator. This is done by
pressing‘SEND with a blank screen. A session will be set up between the
terminal and a transaction processing task (TPT) belonging to TCMO, and the
SlGNON application will be started. If NSHS is not used, a special non—NSHS
version of SlGNON must be use

If the screen is not blank when
must be pressed again.

1.

SEND is pressed, it will be blanked and SEND

The standard TPS version of NSHS simulates INBT/OUTBT, but uses the buffer
pool system if the terminal type
the session request comes from

If another TCM than TCMO is
must be used.

is equal to 6. it will be set automatically to 6 if
the l/O module (Le. the terminal).

wanted, a special version of lSO—l745—HOST

An application program can also set up a session. This is done with TSOPN,
specifying the lSO—l745—HO
number of the terminal.

After the session has been set
and TRMSG. Note that every ti
will be sent to the application p
application program sends a me

Output to the printer should be
have a session with a printer.

lt is possible to send broadcast
not necessary then.

ST module number (16) and the logical unit

up, data can be sent and received with TSMSG
me the terminal user presses SEND, a message
rogram and the keyboard will be locked until the
ssage back to the terminal.

sent with the TTEXT routine. It is not possible to

s to terminals using TBRDC/TTEXT. A session is

ND-60.111.04

3.4

3.4.1

of, the;.SlNTRAN V92 monitor-mall.
' "‘programSXCOBOL programs may alsc

, recommended, in COBOL-

3-34

STANDARD DEVICES AN

Standard input/output devices, such a

D FILES

3 card readers, magnetic tapes, paper tape
readers and punchs, spooling files anj other files using the SlNTRAN file system
(not SlBAS files), are controlled using the standard l/O statements available in
the programming languages used.

In addition, FORTRAN, PLANC, MAC

of them (most notably the OPEN mor

and NFL programs may call many (not all)
subroutines availabie: to RT; (real—time) 5.; -‘ "
use these menitor call routines; but-some”

itor call) cannot be called directly because
of incompatible character string parameters. Monitor call l/O is therefore not

This section discusses the most common l/O facilities available to TPS
application programs. Appendix E' contains a complete list of all monitor call
routines available. For a detailed desc
||l Reference Manual.

ription of these routines, see the SlNTRAN

Allocating Standard Devices and Files

Since TPS application programs are r
files cannot be allocated ahead of time as for batch jobs. When a program needs-
a device or file, it acquires it through
(reserve) monitor call.

OPEN must be used for files, since th

un in a real-time environment, devices and

either the OPEN statement or the RESRV

is call contains file oriented parameters. in
FORTRAN, PLANC, NFL and MAC programs, RESRV will normally be used for
devices since this is faster and device oriented. However, RESRV requires the
SlNTRAN device number as a parameter, and this may be unknown. if the device
has been defined as a peripheral file {See S/NTHAN Users’s, Guide, Periferal
Devices), OPEN can be used with the name of the peripheral file as file name.

All devices and files in COBOL programs are allocated in the standard COBOL
manner, with file definition (FD) entries, SELECT entries, and OPEN statements.

Note that a feature called "direct 1
running in the ND-SOO: access mode
high disk transfer speeds between dis
overhead. Further information may l:
manual, NIB—60.136.

:ile transfer" is available for applications
D or DC (8 or 9). This feature allows very
5k and memory with a minimum of system
)6 found in the ND-SOO - Loader/Monitor

ND--60.‘i 'l ‘i .04

-. '4

3-35

3.4.2 Unavailable Devices and Files

Provision should be made in the application program for unavailable devices and
files. An unavailable device or file will cause an error return from OPEN or
RESRV. This can be tested in FORTRAN or PLANC by examining the system
integer variable ERRCODE or a function value like lSTAT. Any non-zero value
indicates an error, while «4 in ISTAT indicates that a device cannot be reserved
(RESRV does not set ERRCODE and the decimal values 69, 77, 78, 98, 107 and
1110' indicate “that a. file.‘ is unavailable, for. OPEN.‘ (See FORTRAN Ref. Man.
Run-tirne Errors); ' ' L ' I ii I i ' h ' A; ‘

COBOL programs can test for errors through the FlLE STATUS entry of the
SELECT statement and the USE sentence. The file status word will beset to '30'
(permanent error) if the file is unavailable if the USE sentence is not included in
the program, the program will be abnormally terminated when a file or device is
unavailable.

RESRV has a wait/no-wait option. If the no-wait option is used and the device is
not available, the RESRV routine will return to the program immediately with -—1
in ISTAT. However, the prograrr can choose instead to wait until it is available.
OPEN has no such option; returr will always be immediate. A wait loop using the
HOLD routine may be programrr ed to wait until the device is available.

Example of OPEN - COBOL

INPUT-OUTPUT SECTION .
FILE-CONTROL. select the tape—reader

SELECT IN-FILE ASSIGN "TAPE-READER" STATUS IS FSTA'I‘u

FILE SECTION.
FD IN-FILE.

01 IN-DATA PIC X(100)..

PROCEDURE DIVISIONQ
DECLARATIVES.
I-O—ERR SECTION.

USE AFTER ERROR PROCEDURE ON IN~FILE.
T-RaERROR. tape-reader error

IF FSTAT NOT = ’30’ file unavailable?
no, something else wrong, stop

CALL ’TSTOP’ USING ABEND-CODE—l.
CALL 'HOLD' USING TEN TWO. yes, wait 10 seconds
GO TO T-R-OPEN. and try again

END DECLARATIVES.

O

OPEN—T-R.
OPEN INPUT IN—FILE. open the tape-reader file

ND-60.l 11.04

3-36

Example of OPEN - FORTRAN

1O

20

OPEN(FILE='MYFILE:DATA ',UNI

IF (ERRCODE.EQ.69 OR ERRCODE
*OR ERRCODE.EQ.98 OR ERRCODE.

CALL HOLD(10,2)
GO To 10 ;

ELSE ' ' - ‘
CALL OERMS<ERRCODE)

ENDIF

Example of RESRV - FORTRAN

10

20

3O

INTEGER RESRV,INCH
CHARACTER TEXT1*100,TEXT2*100

ISTAT:RESRV(2,0,1)
IF (ISTAT.NE.O) GO TO 30
CALL TWMSG(TEXT1)
ICHAR:INCH(2)
IF (ERRCODE.NE.O) GO TO error routine

CALL TWMSG(TEXT2)
ISTAT=RESRV(2.0.0)
IF (ISTAT.EQ.O) GO TO 20

CALL TSTOP(ICODE)

ND-60.1

open the file
I=IFILNR,ACCESS=’WX’,ERR=20)

file opened - continue

file not opened ~ test ERRCODE
.EQ.77 OR ERRCODE.EQ.78
EQ.109 OR ERRCODE.EQ.110) THEN

file unavailable, wait 10 seconds
-‘ and try again- - a , -

"else something else wEong
stop with QERMS error message

reserve device nr 2 (tape-reader)
check the status
OK, tell operator to put tape in reader
read a byte

check ERRCODE

device not reserved, tell operator
reserve again with wait flag
check again
still not reserved, something else wrong
stop with TPS error message

1134

3.4.3 Accessing ‘S't'a'ndaird D

There are various ways of access
can be divided into 2 main types:

—— standard I/O statements

-— special SINTRAN monitor calls

3-37

evices and Files

ing devices and files, (See figure 3.17), but they

FORTRAN standard i/o statements are READ and WRITE for formatted-and
binary l/O, and INPUT and OUTPJT for free format l/O. These statements can be
used after both OPEN and RESR .

COBOL standard l/O statements are READ, WRITE and REWRITE. ACCEPT,
DISPLAY and EXHIBIT may be used for terminal l/O.

SINTRAN monitor call I/O can be used in FORTRAN, NFL and MAC programs.
The most common monitor calls are INCH and OUTCH for character I/O and
RFILE and WFILE for block l/O. INSTR is not allowed under TPS (but OUTST is).
Monitor call I/O can be used after both OPEN and RESRV. Note that calling the
ordinary SINTRAN III I/O monitor calls from the ND—SOO, gives a substantial
amount of system overhead (ND-100 CPU-load). Some special I/O monitor calls,
DV INST (MON 503) and DV OUTS (MON 504), from ND—SOO applications should
be used.

Application programs must reme
is not done automatically as for b

A complete list of monitor calls
appendix E. For a detailed descr
monitor calls, see the SINTRAN I

The syntax of standard I/O state:
respective programmer’s referent

mber to close files before terminating since this
ackground programs.

available to application programs is found in
ption of the functions and parameters of these
I User’s Guide.

hents for FORTRAN and COBOL is found in the
:e manuals.

h D—GO.111.04

3.4.4

3-38

LANGUAGE TYPE ALLOCATE RELEASE ACCESS

FORTRAN FILES, OPEN CLOSE STAND. l/O,
PERIF. FILES MON. CALLS

DEVICES CALL CALL STAND. l/O,
RESRV RELES MON. CALLS

COBOL ' FILES, OPESN CLOSE STANDARD
DEVICES l/O

Figure 3. 17 : Local Input/Output

Restart

It must be pointed out that rollback and recovery facilities are not available for
files controlled directly by the application program. If a system restart occurs,
the contents of such fiies will be unpredictable. In addition, files and devices
acquired by an application program may or may not have been lost, depending
on such factors as whether SINTRAN has been restarted, whether the application
program has been reloaded, and whether files have been closed by the operator.

The RESTART application can attempt to restore resources, but even if this is
possible, problems can arise. if a sequential file is lost and allocated again,
processing will start over from the beginning, and the application program
should therefore probably be restarted at the beginning. If printer spooiing is
used, the application can continue from the middle, but output before and after
the break may go to separate spooling files. These things should be taken into
consideration when writing application programs, modifying the RESTART
application and deciding which restart strategy to use (See Chapter 5).

ND-BO.‘EII.04

4-1

OTHER TPS AND SINTRAN FACILITIES

Several other TPS and SlNTFl \N facilities are available to TPS application
programs in addition to those described in chapters 2, 3 and 5. These may be
grouped as follows:

~ message handling

.— clock routines

-— hold monitor call

. -—- semaphores

—— internal devices

These facilities are invoked either through TSR calls or SINTRAN monitor calls.
The TSR routines are described in detail in this chapter and appendix H. For a
detailed discussion of the monitor calls, see the SlNTRAN User’s Guide.

With the exception of some TSRs most of the material in this chapter describes
general SINTRAN facilities. This material is included in order to make it easier for
the TPS programmer to design application programs, knowing exactly which
SINTRAN facilities are available.

2 0-60.11 1.04

4.1-- MESSAGE HANDLING

The message handling facilities of TPS
the operator console and broadcast
application programs.

In addition, the SINTRAN routines fO'
error device can be used.

Figure 4. I):

‘3 include routines for writing messages on
ng messages to a group of devices or

writing error messages on the SlNTRAN

”The l’Sl’ahd monitor calls fo'r'm'eSSage handling can’be (grouped(asV'follow‘sfSeel :r, 509-7 ’ ' " “

f TWMSG and CWMSG (write message to TPS operator)

—— TBRDC and TTEXT(broadcast message to one or several units)

—— TGBRD and CGBRD (get broadcasted message)

—- ERMSG and QERMS (write standard SlNTRAN error message and continue
or terminate)

-— ERMON (write special ERMON rr essage and continue)

TWMSG (FTN) Write a message to TPS operator
CWMSG (CO B/PLANC)

TBRDC Broadcast a message to one orTTEXT several units

TGBRD (FT-N) Get a broadcasted message
CGBRD (COB/PLANC)

ERMSG (FTN/ PLANC) Write a standard SlNTRAN message,
return to application program

QE RMS (FTN/ PLANC)
Write a standard SlNTRAN message,
terminate the program

ERMON

(FTN/ PLANC and C08)
Write the special ERMON message,
return to application program

Figure 4.7: System Messages

ND-60.111.04

4.1.1

43

TWMSG and CWMSG - The Write Message to
Operator TSR

The write-message-to-operator
terminal. The message will be
TPS. This TSR has a special
incompatible character string formats.

Examples

TSR will write a text string on the operator’s
supplied with time, date and source identity by
COBOL and PLANC version, CWMSG, due to

'i ETCALL: 'CWMSG usmG .*’<:text¥string'>.'
CALL TWMSG (<text-string>)

MOVE "MESSAGE TO OPERATOR'" TO MESSAGE-TEXT.
CALL 'CWMSG' USING MESSAGE—TEXT.

CHARACTER MTEXT’256

MTEXT: 'MESSAGE TO OP
CALL TWMSG (MTEXT)

EXAMPLE 14 . 1 T

ERATOR ' ’ ’

WMSG/CWMSG

The text must be terminated by an ’ (apostrophe) and may not exceed 255
characters.

NE)—60.111.04

4~4

TBRDC - The Broadcast Message TSR

A message can be broadcast from 3
active terminals, or a single terminal (1
all active 'TPTs controlled by a TCM.

n application program to all terminals, all
onnected to an lOM. It can also be sent to

CALL 'TBRDC’USING <module> <SJb—address> <text> <units> <status>u

Example - COBOL

MOVE 1 TO MOD-ADDuTYPE.
MOVE 2 TO MOD—ADD-SIZE.
MOVE 16 TO MOD-NAME.
MOVE 1 TO UNIT—ADDuTYPE.
MOVE 2 TO UNIT-ADDuSIZE.
MOVE 1 TO UNIT-NUMBo
MOVE "MESSAGE TO STANSAA
CALL 'TBRDC' USING

MODULE UNIT MESSAG
IF STATUS—CODE NOT = O G

Example - FORTRAN

DIMENSION MOD(5) , ITEXT(3
CHARACTER MNAME*6 , CTEXT*
EOUIVALENCE (MOD(3) ,MNAM

MOD(1)=2
MOD(2)=5
MNAME:32
CTEXTz'MESSAGE TO ALL AC
CALL TBRDC(MOD, o , ITEXT, 1
IF {ISTAT.NE.O) GO TO er

The text must be terminated by an
characters.

CALL TBRDC (<module>, <sub~address>, <text>, <units>, <status>)

module is the STANSAAB IOM

unit is VDU number 1
B-TERMINAL—Oi’" TO MESSAGEuTEXT.

broadcast to 1 terminal only
E-TEXT TWO STATUS-CODE.
0 TO FARM-ERROR. check return status

6) array definitions
72 character string definitions
E),(ITEXT(1),CTEXT)

module is TCMO
TIVE TPTS”’
,ISTAT) broadcast the message to all TPTs
ror routine check return status

' (apostrophe) and may not exceed 7.2

Messages broadcast to lOM terminals will be written on the broadcast line
(usually the bottom line).

Messages sent to TPTs can be read b
TSR (get broadcasted message).

NIB-60

,1 the application program with the TGBRD

111.04

L CALL TTLEXTV (‘< meagre >, ' '<"s'u£

TTEXT — The Send Te

4-5

xt Message TSR

The send text message TSR is very similar to the broadcast message TSR except
that the message can only be 5 ant to a single unit and the message length in
bytes is given as a parameter instead of being indicated by an apostrophe in the
text itself.

CALL 'TTEXT' USlNG <module> <sub—address> <text> <length>
< status > ,

~address>, L<‘text>, <len'gth>,v'<status>)v '

No screen positioning is performed byrthe lOM so the message will be written,
where the cursor happens to be positioned.

Messages sent to TPTs can be read by the application program with the TGBRD
TSR.

ND-60.111.04

4.1.4 TGBRD and CGBRD - Th
TSR

This TSR can be used to see if a me
the text area indicated. The messag
program using broadcast-message (
operator using the BROADCAST corr

__

~ssage has arrived. If it has, it will be put in
e can have come from another application
TBRDC) or it can have come from the TPS
mand or the MESSAGE<TO—UNIT command.

It the application: program‘wants. toWrite‘ the message one display terminal " ‘ i
using NSHS, the WMSGE'or CWME
the FCZMSGE routine may be called.

character string formats.

GE- routine may be called. if using FOCUS,

‘ This TSFl has a-special COBOL and PLANC version,- CGBRD, due to incompatible

CALL ’CGBFlD’ USING <text-strin;> <status>.
CALL TGBRD (<text-string>, <status>)

Examples

CALL 'CGBRD' USING MESSAGE-nTEXT STATUS-CODE. get message
IF STATUS—CODE = 0

CALL 'CWMSGE’

CHARACTER BCTEXT’72

CALL TGBRD(BCTEXT , ISTAT

USING MESSAGE-TEXT. display it on screen

message area defined as
character string

) get message
IF (ISTAT.EQ.0)CALL WMSGE(BCTEXT) display it on screen

The text may not exceed 72 characte's. it will be terminated by an apostrophe.

This TSFi should be called fairly often in systems that make use of the broadcast
facility, since this is the only way the message will be detected. There is no
automatic presentation of messages broadcast to TPT-controlled terminals (in
contrast to lOM—controlled terminals, where the lOM will see to it that the
message is sent out to the terminals).

Another reason for checking often is that if a new broadcast message arrives, it
will overwrite the old message. There is just one message buffer area and no
queuing system. Therefore it is im
terminal before it is overwritten.

portant that the message be sent to the

ND—60.111.04

e Get Broadcasted Message

4.1.5

4-7

Monitor Calls (ERMSG, QERMS, ERMON)

SINTRAN error message monitar calls can also be used by TPS application
programs. If a SINTRAN routine detects an error, it will put the error number in
the ERRCODE variable (or a function value like lSTAT); if no error, the variable
will contain 0. This can be tested and if it is non-zero, the appropriate error
message can be written on the SlNTRAN error device by the ERMSG or the
OERMS monitor call. ERMSG will write the error message and return to the

' appllivcatipnnprogram, ‘QERMS will, write the message. and terminatezthe, ,_
transaction.

The ERMSG and QERMS monitor calls can also be used in- connection with
standard FORTRAN l/O, since these l/O. routines also set the ERRCODE variable.
Standard COBOL l/O, however, ices not have this facility. lnstead, the standard
error facilities, the, FILE STATUES entry of the SELECT statement and the USE
sentence, can be used to process error conditions (See Example 3.8). ERMSG
and QERMS cannot be used here because the SINTRAN error number is not
available to COBOL programs.

Examples

WRITE(5,10,ERR:TOO) standard I/O statement
. no error, continue main routine

100 CALL ERMSGlERRCODE) error, call ERMSG
. continue error routine

ICHAR=INCH(IFILNR) monitor call I/O
IF (ERRCODE.NE.O) CALL QERMS(ERRCODE) if error, call QERMS, stop

. else continue

ND-60.111.04

4-8

A special user error message can be
the ERMON monitor call. An error n
ASCll code), together with a suberr
message will be printed as follows:

hh.mm.ss ERROR nn lN rr AT ll USEF

where

ihh-mm-ss ' , merrier the fries:
nn < error number>

rr lP‘lfidentification

ll address of error in 2

ss <suberror number:

ERMON can be called from both FOR

Example — COBOL

01 ERROR-NR PIC XX
01 SUB—ERROR-NR COD

IF DATE = 0 GO TO B!
e

BAD-DATE.
MOVE '62 'TO ERROR-NI
MOVE 3 TO SUB-ERROR-
CALL 'ERMON’ USING E

Example - FORTRAN

IF (DATE.EQ.O) GO TC
0

100 CALL ERMOM 2362 , 3)

In both cases a message of t
SINTRAN error device:

11.50.03 ERROR 62 IN T'PTS A'J

ND-6

written on the SINTRAN error device using
umber in the range 50~69 must be given (in
or number of any value (integer). The error

ERROR SUBERRORrss

,age is printed» . _ ,

application program

TRAN and COBOL programs.

4? PIC 999.

lD-DATE. check for bad date

L
-NR.
ERRORnNR SUB—ERROR-NR.

continue
call ERMON

) 100 check for bad date

bad date, call ERMON
continue

,he following type will be written on the

‘ 5320 32USER ERROR

0.111.04

4.2

4.3

‘ call, specifying the new. minute

CLOCK ROUTINES

COBOL programs can use the
the calender and clock.

In addition, the SlNTRAN moni

4-9

ACCEPT DATE/DAY/TIME statement to examine

tor calls for examining and changing the internal
clock are available to all application programs. The CLOCK routine will return the
current time/date to a 7 word ir
minutes, hours,.day,month and

be adjusted relative to its cur
monitor calls (especially (UPDA

SINTRAN also has an interval 0
basic time units since SINTRA
this current interval time. lt is
LOAD buttons are pressed and

teger array containing basic time units, seconds,
,year._T_he clock can be changed with the UPDAT
, hour, day. monthr‘and Year. Thetclocki can also
rent value using the CLADJ call. The last two
T) should be used with care!

ock containing, in a double word, the number of
\l was last started. The TlME routine will return
set to zero each time the MASTER CLEAR and
s incremented by 1 each basic time unit.

HOLD MONITOR CALL

The HOLD monitor call can be used to put an application program in a wait state
for a given time interval. However, the wait state will be terminated if the TPT is
started for any reason, i.e. the arrival of a checkpoint message. After the
message is processed, the appl cation program will receive control as if the time
interval had expired, since the TPT does not know how much time was left. lf it
is important that the wait state
the application program shoul
examining the clock before and
then be given if the interval has

is not terminated before the interval has expired,
:1 control the length of the: expired interval by
after the hold routine is entered. A new hold can
not expired.

l\D-60.l‘ll.04

4.4

4—10

SEMAPHORES AND INTERNAL DEVICES

TPS appiication programs may use 3emaphores and internal devices in the same
way as other RT programs A semaphore is a binary variable which can have one
of two values, reserved or unreserve :l. lt is reserved and released by the RESRV
and RELES monitor calls. Semaphores are discussed in the SlNTRAN Real Time
Guide.

the other can then read from the
(program A reserves the output part

. accessed as normal l/O devices" As

device. Devices are reserved and released
at the device, program 8 the input partland

be accessed by either standard l/O statements or monitor calls. lnternal devices
are described in the SlNTRAN Real T me Guide.

ND—B0.111.04

described in section 34, these devices: can; -

.;.lnterna_t devices {are used for, theuexchange of data between. independent'..}};y-J1:
prbgram:s.~0n'e of them writes on the device as if‘it- were an external deviCe-‘énd ' ' i ‘ ' ‘ ' ”

5.1

5-1

CHECKPOIMT— RESTART

PROTECTING THE DATABAS E

An online transaction processing system should have adequate facilities for
protection of the data base. if a system failure occurs in a batch system, a
backup copy of the data base can be mounted and the whole job run once more

' withoutjtoomuch inconvenience or Waste ofi'time. If a failure occurs-.in' an tan-line ‘
transaction system, reentering and reprocessing the transactions may be very
inconvenient, time-consuming or even impossible.

Facilities should be available to assure the integrity of the data base, to minimise
the amount of data lost and to restart the system automatically at a well-defined
point.

TPS makes use of the extensive checkpoint/restart facilities of SlBAS. These are
largely transparent to both the user and the application program, TPS itself
controlling them. Synchronised checkpoints of the whole system are taken
automatically according to the load on the system. In addition, the application
program can take individual transact/on checkpoints.

If a system failure occurs, the latest transaction checkpoint can be used to
restore the system to its status at or near the point of failure (recovery). if the
data base is incorrect at this point, synchronised checkpoints can be used to
restore the system to a previcus state (rollback). (See Figure 7.7.) In both
cases, those transactions which were active can be restarted automatically at the
correct point. Note that applications running on the ND-500 cannot be restarted
at a point inside an application, but may for example be restarted at the
beginning of the current application.

How often checkpoints are taker and what types of backup/restart facilities are
used are system parameters controlled by the user. He must weight the
advantages of assuring the protection of data in the data base and fast recovery
against the overhead needed to accomplish this.

The facilities in TPS for protect ng the data base from system failure can be
divided into two types, preventive facilities and restart actions {See Figure 5. 7).

NED-60.11 1.04

5-2

LOGGING
DELAYED UPDATiNG

BEFORE—iMAGE LOG

S rite updated records on a speciai update file

cg records to be updated (before they are changed)LLJ

E ROUTiNE LOG icg caiis to SiBAs routines
2
Lu _ ..> '

.s”Lu ': 'cc
°' CHECKF‘OiNTS

SYNCHRONIZED save checkpoint information for all transaction tasks
.1 - , ,. and for data- base - - 4- ,

TRANSACTION save checkpoint information for one transaction task

ROLLBACK restore data base and transaction tasks to
}_ synchronized checkpoint
c:
< RECOVERY restore data base and transaction tasks to
ES transaction checkpoint
LL!
a:

RESTART STRATEGY restart transactions according to transaction restart
st rategy

Figure 5. 7: Checkpoint/Restart Fae/lites

ND~60111.04

5.2

5.2.1

CLOSE

PREVENTIVE FACILITI

5-3

ES

The preventive facilities of TPS consist of:

-— utility routines to take a backup copy of the data base

—— facilities in SIBAS for updating on a special update file (delayed updating),
logging old versions of data (before-image log), and logging SlBAS routine
calls (routinelog)

——- routines for taking checkpoints either automatically, by operator command
or by an application program

Most of these facilities are cont oiled by the TPS system itself or by the system
operator. The only facilities controlled to some extent by the application program
are checkpoints.

Backup

A backup copy of the data base i s a complete copy of the files in the data base.
This can be done with a COPY-«FILE command while SlNTFlAN is running, and
even while TPS is running if the data base itself is not being updated (for
example if delayed updating is us

lt can also be done using a St;

ed).

nd-alone disk utility program. lf a stand—alone
program is used, TPS should be :losed (CLOSE-TF8) before SlNTRAN is stopped
and the copy program loaded. After this type of copy is made, TPS will normally
be started again with lNITlATE-TPS (See Figure 5.2).

TPS
closed BACKUP

stop TPS copy the data base

Figure 5.2: Taking Backup with L

start TPS

ti/iry Program

D-60.111.04

5-4

5.2.2 Data Base Logging

SIBAS has three logging facilities ava lable (See Figure 5.3):

—— Delayed updating consists of the writing of all updated records on a special
update file instead of on the data base itself. The data base is only read,
not written on. This decreases considerably the chance that it will be
physically destroyed, it prevents bad data from being written before the

actual updating takesplace, and it givesia simple.checkpoint/rollback
‘mechanism.-' " " 1" " ' ' ‘ ...

-— Before-image (BiM) logging. can be used instead of delayed updating. With
this method, a page is. loggedvon the before-image area in the SIBAS
system realm before it is updated. The data base can then be rolled back
by copying all before-images out to the data base.

—- The routine log is a sequential disk file containing a record of all calls to
SIBAS, in the order they were criginally received. This file may be used to
update the data base from a backup copy or from a checkpoint without
having to rerun the application programs.

CALL SIBAS ROUT- BlM OR
\ lNE RETURN

I) I O O I
call SlBAS log routine log)id record on or write updated return
for updating call on routine 81M log record on

'09 updated file

Figure 5.3: S/BAS Logging Facilities

14060111134

5-5

5.2.3 Synchronised Checkpoints

Synchronised checkpoints are checkpoints taken by all TPS and application
programs at the same time. When a synchronised checkpoint is taken, the
individual transactions will be halted when they reach a suitable point (normally
in a TSR). When all transacticns have stopped, data needed to restore both
application programs and system modules to the present state are recorded on
the checkpoint files” (See Figure 5.4). The special application CHECKPOlNT is

then activated to send. a checkpoint call to SlBAS.’ SlBAS will-emptybuffer
areas,'save necessary. data, and, if version updating is. Used, save the version,
tab/e containing pointers to th
SlBAS has completed taking
automatically. The whole sequer

__..—_ __.-.—_-—_......._.

e latest version of all updated records. When
its checkpoint, processing will be restarted

ce should. not take more than 10-20 seconds.

system
- freeze the o write appl.

data areas
on tile

5.2.3.1

0 write TPS 0

data areas
on file

write SlBAS 0
data areas
on file

continue
processing

Figure 5.4: Taking a Synchronized Checkpoint

' Note: lt is not possible to resto

TTSYN - The Allow-Sync?

It is possible that certain types
much longer than 10-20 secon
mentioned, the system is sync

re an application that runs on the ND-SOO.

ironised Checkpoint TSR

of transactions may cause a checkpoint to take
ds if the programmer does not prevent it. As
hronised by halting transactions in TSRs. This

means that a transaction that does a lot of processing without calling a TSR
could go a long time before bei ng stopped, especially since SlBAS calls do not
go through TSRs that allow synchronised checkpoints (all other l/O calls do). To
prevent this situation, an applica
sequences without other TSR
TTSYN, that does nothing but
message has come.

CALL 'TI'SYN’.
CALL TTSYN

ln TPS systems with automatic
with long processing and data b
call TTSYN fairly often.

tion program with long processing and data base
:alls than SlBAS calls can use a special TSR,
allow a checkpoint to be taken if a checkpoint

synchronised checkpoints, application programs
ase seauences without other l/O or TSRs should

N D-60.111.04

5.2.3.2

5.2.3.3

, ‘CALLJ"THSYN',_ -'

5-6

THSYN - The Hold Synchronised Checkpoint TSR

In some situations it may be desirable to carry out a processing sequence
without allowing a checkpoint to be taken in the middle of the sequence. An
example would be the updating of several related records in the data base. If this
sequence includes the use of calls to other parts of the TPS system than SlBAS
alone, the sequence may be interrupted by a checkpoint. This can be prevented
by using the TTSYN TSR.

CALL THSYN

This will prevent the application frorr being trapped for a checkpoint until the
application makes a call to either the TTSYN TSR Or the Tl'RAN‘ TSR,

All other applications, however, will be trapped, so the whole TPS system will
eventually stop and wait for this application to complete its sequence. This TSR
should therefore be used with care.

TCHCK - The Take Synchronised Checkpoint TSR

Synchronised checkpoints can be taken automatically by TPS when the load on
the system has reached a certain value. Each application has a checkpoint
weight, given when the application is loaded into the TPS system and stored in
the application table. Every time an application terminates or switches to a new
application, its checkpoint weight is accumulated. When the sum has reached a
certain value, a checkpoint will be taken automatically.

The operator can also take a checkpoir

An application program is also abl

t with the CHECKPOINT TPS command.

3 to initiate a synchronised checkpoint
sequence. This facility should be used with care since taking a synchronised
checkpoint involves a good deal of overhead and may halt the system for many
seconds. Normally it is best to let TPS take automatic checkpoints based on the
activity in the entire system, but some
more suitable, for instance, to take

application systems may be such that it is
a synchronised checkpoint every time a

certain application program is run. This can be done from an application program
by using the TCHCK TSR.

CALL ’TCHCK' USING <scope>.
CALL TCHCK(<scope>)

Examples

CALL ’TCHCK’ USING ZERO.

CALL TCHCK(O)

' ND-GO 111.04

5.2.4

57

Transaction Checkpoints

in addition to synchronised checkpoints taken by all programs in the TPS system,
application programs take individual transaction checkpoints at certain stages in
transaction processing. As for synchronised checkpoints, a transaction
checkpoint will save all data areas belonging to the transaction, enabling the
transaction to be restarted at th 5 point if a recovery is made.’ The information is
written on a special area on tl’e checkpoint file belonging to the TPT and the
transaction checkpoint data» wi | overwritethe previous trainsactionhcheckpoint
data for that TPT‘ {See} Figure 5 5);,The synchronised checkpoint data will not be
affected however.

Some transaction checkpoints are taken automatically by TPS and the application ‘
programmer does not have to; take any actidn in connection with them. '

check X

check X +1

Controlblock '"CMO

trans check.

A (fixed)
TCM O

checkpoint area

TPT 3
h.--—-n—-——

%_ Active TPTs _ .3

<

Amive TPTs

TPT 7

synch. check.

? (circular)

.......~<
Controiblock TCM l

TCM i

? checkpoint area

Figure 5.5: The TPS Checkpoint File

' Note: It is not possible to rest are an application that runs on ND~500. However,
such an application may be restarted from the beginning.

ND-60.111.04

5.2.4.1

5-8

TTRAN ~ The\'l:al2eTransaction Checkpoint TSR

The application program itself also can take transaction checkpoints, using the
TTRAN TSR.

CALL Tl'RAN
CALL ’TTRAN’.

programmer must know how they are
the recovery procedure in section 5.3.1

,_ g' in orderlto. decidewhen and if: to. take [transaction checkpointsnthe, application.
used. This is explained in connection With
, but in short it may be said that the latest

transaction checkpoint will be the point of restart for an application after _
recovery has been carried out. in contrast, the point of restartafter- a, .ro/lback.
operation will be a synchronised checkpoint.

Transaction checkpoints are taken at the following processing stages (See Figure
5. a).

—- at the beginning of SIGNON (sta 1dard version)
— at the beginning of SELECT (standard version)
-—— when the data base is opened (SOPDB call)
-— when the data base is closed (SCLDB call)
—- when a task is terminated and th
-— when an application program cal

When deciding how often to take ch

e TPT is freed (unless TTERM (1) is used)
ls 'lTRAN

eckpoints, it ,must be remembered that a
transaction is restarted at the latest checkpoint after rollback or recovery and any
processing done after this point will have to be repeated. Of course rollback or
recovery are usually only done in the case of system failure and this should not
happen often. As in the case of other preventive facilities, the advantages of
taking checkpoints often must be weig hed against the costs.

Applications running in the ND-SOO may have up to 134 megabytes of local data,
and this data will not be saved w
task-common and the TPT system dat
running on the ND-SOO cannot be rest

hen TTRAN 'is called. Only the data in
a issaved. This implies that an application
arted at a point inside the application, but

may be restarted for example at the beginning of the application.

ND~60.111.04

i
SIGNON TTRAN (——-)

TSW AP (SE LECT)

‘

SELECT TI'RAN (._..)
Display menu, read answer

TSWAP (APnnn)

i
APnnn TTRAN (---)

Write picture to screen
Read fields
More ? yes

LNG

Open data base
Read data base
Update data base
Close data base

n0

Finished ?
‘ yes

Term nate

i
SIGNOFFTTRAN (——-—-)

TSWAF (SIGNON)

Figure 5.6: Transaction Checkpoints '“

NIB-60111.04

5.3

5.3.1

5—10

RESTART FACILITIES

When a serious error is detected, three steps must be taken:

—-— the cause of the error should be determined and the error corrected

—- any damage to the data base should be repaired

—— the system should be started again with as little inconvenience to‘theusers, .
'1 as: possible "

Rollback and Recovery

Two procedures are available for repairing the data base after a serious error,
rollback and recovery.

Rollback will restore the whole sys :em to its state at the last synchronised
checkpoint. The ROLLBACK special application will supervise the SIBAS roll~back
procedure, causing it to execute the rollback in one of two ways (See Figure
5. 7A):

—— using the update file or before-image (BIM) log to roll the data base back
to the checkpoint from the point-of—failure

- using the routine log to update the data base to the checkpoint from the
backup copy

In addition, all programs will restore
their state corresponds to that of t

their data areas at the checkpoint so that
we data base. The point—of-restart after a

rollback will be at the latest valid syr chronised checkpoint (unless a recovery is
given immediately afterwards).

Recovery, under the supervision of the RECOVER special application, will restore
the data base to its state at the latest transaction checkpoints for the various
transactions (See Figure 7.73). A rollback to the last synchronised checkpoint will
first be performed, using one of the
will then be used to update the
checkpoint (See Figure 5.78). Progr
transaction checkpoints.

methods described above. The routine log
data base to the individual transaction

ams will then restore themselves to their

The point-of—restart after recovery will thus be the latest transaction checkpoint
for each active transaction (See Figure 5.8). There is one exception to this rule. if
no transaction checkpoint has b
check-point, the transaction will be

sen taken since the last synchronised
restored to the synchronised checkpoint.

Point—of-restart is summarised in figure 5.9.

ND«60. 111.04

5~11

\

1. Update file, BIM log P3}:F l
2 I ROUTINE log .+

BACKUP SYNC CHECK

Figure 5. 7A: Ro/Iback

POF1 Update file, BIM log I

ROUTINE log t

2. I ROUTINE log ; ROUTINE log 4
I l

BACKUP SYNC CHECK TRANS CHECK

Figure 5.78: Recovery

CHECKPOINT ”“0223?HECKPOINT (automatic)
(operator) ROLLBACK

or RECOVER

, frocza the system.

- wrim data areas on file
. take data base checkpoint

o frauzatho st ifstillup

yd: mums

o rmoruda areas at chedtpoint. wminue processing SIBAS
old version
of database

TPS R LLBACK TP RECOVER

RESTAHT

F—
'—

\

SIBAS

IM log or CALL log

, continue
ptocesnng

Figure 5.8: Rollback and Recovery

MID-60.11134

5.3.2

5-12

Restarting TPS

After rollback or recovery, the TPS system may be restarted either automatically
or using the CONTINUE command. Transaction processing will continue as far as
possible as though there had been no break.

To what extent this can be done depends mainly on the state of the connections
between the application programs and the external environment. Both the data

., base and the- application programs

How--ever, terminals and local device
have been broken, depending on such

3 may have been lost and sessions may
things as whether SlNTRAN, NSHS or 1/0

moduleshave. been reloaded,- files have been closed, terminalwoperators»have
broken connections, etc. After rollback, there is the additional problem that
external connections at the synchronised checkpointwere probably different
from those at the point of failure.

Another important consideration at r astart is that some transactions may not
want to be restarted at the checkpoint. There are several ways of restarting
transactions and each must be resta
strategy. This is done by the RESTART

ND-»60

rted according to the appropriate restart
special application.

.111.04

have been- restored to their state at the _ ' ~ . I,
appropriate checkpoint and are ready to continue processing from there] ' ' " " '

5—13

SYNC. POINT—OF
CHECKPOINT —FAiLURE

Z 33 :0
< Q Q
a: I CL .4
l— in O oF” i‘“ U) {D

(a) ‘“‘ i i f A
\
\

. \ 2
g. _ ,i g v .\ <5;a. . V i: .J a: ,O <13 o \ i— .U) i—‘ (n \i—

(b) i , 1
/

/
3 E /

/Q:33 .w E/in r— p/
(C) 1 l‘ I

////

///in CD
0 C3 ///a 5‘ e /’
m U) i—-' ///

(d) i i //

\

\\z \ 3
< \ m
(I: O:- \ i~
i“ 3/) ,—
i— i- \

(e) i \l
i I\

\
\
\~2- 2' a \ E>’ \

E fl :93 \ ifi— i— i- \ i-
(f) i : \vl

FOLLBACK RECOVERY
POINT-OF— POINT—OF-
RESTART RESTART

Figure 5. 9: Point of Restart

' Note: It is not possible to rest
ND-SOO, but the application ma
remember this when setting the

art an application in the middle that runs on the
be restarted from the beginning. You have to

restart strategy.

hD—60.111.04

5.3.2.1 The RESTART Special Application

The RESTART application is the first application to be called when the system is
restarted after rollback or recovery. it is called for each active transaction by the
TPT for that transaction.

When RESTART is activated, the data base will have been reopened by SlBAS
for that transaction if it was open at checkpoint Terminals controlled by NSl-lS

I a, will be automatically reacquired by NSHS the first time. they are used On the j::'_. .. J '
other hand, the Standard version of the RESTART program will not open files or I
reserve local devices Likewise, broken sessions may not be reestablished.
However, users can modify RESTART' to do these things. ,The (TSEST) and
restoreésession‘ (TRSES) TSRs are- available to, assist users in this. Modifying the ‘ >
RESTART and other special application programs is discussed in the TPS System
Supervisor’s Guide.

When modifying this application, remember that applications running in the
ND-500 cannot be restarted at a point inside the application (the TSR-call TRSTO
is not allowed).

The task of the RESTART special application is to determine how the transaction
is to be restarted, to restore or break external connections and restart (or
terminate) the appropriate application program. RESTART will have available the
necessary information to do one or more of the following:

—— restart the transaction or terminate it

— reestablish the connection with the terminal operator. if no answer is
received (timeout), the ABEND application is activated

— ask the operator to choose which restart strategy is to be used

— give the operator information to enable him to resume operation at the
correct point.

ND«6(l.i l l .04

5.3.2.2

. . CALL .TSRST' ..(<restart strate

5-15

TSRST - The Set Restart Strategy TSR

RESTART uses the restart strategy for the task to determine if and how to restart
a transaction. The restart strategy is given the default value 2 when the task is
started and the TSRST TSR
meaning of each value dependir

CALL 'TSRST’ USING < restart

:an be used to change it to another value, the
g on the way it is interpreted by RESTART.

strategy > < restart application >.
gy >.:,' <ressart application} ~,):

In addition to setting the restart strategy, the TSRST TSR can be used to
change the restart application. The default value for this is the first application
activated. The standard. restart
application in chapter 6.

Examples

strategies are described under the RESTAR-T-

CALL 'TSRST' USING TWO RE-APPL.

CALL TSRST(1)

In summary, TPS is designed
checkpoints and restart with the
their own restart routines and m

so that users can exert full control over both
TTRAN, TTSYN and TSRST calls. They can write
odify the RESTART special application. They can

decide how often to take synchronised checkpoints and what type of logging,
rollback and recovery to use.

However, they can usually ign
defaults supplied with TPS and s

ore all these things, using only the standard
till have a system that functions well.

[40-60.111.04

ND~60.111.04

'- '. gathering tranSaction-statistics)

SPECIAL APPLl

NORD TPS is delivered with
programs are used to carry
administration of TPS users, a
systems and individual prograrr
security control. These functio
applications. The SlGNOFF,
transaction administration at

addition, the system special
ROLLBACK and RECOVERY, ar
SlBAS control. With the excep
application programmer and 'ar
See TPS System Supervisor's G

The special applications are w

lCATIONS

a set of standard "special applications". These
out such user dependent functions as the

Jthorising and limiting user access to application
3, automatic administration of menu pictures and
ns are carried out by the SIGNON and SELECT

ABEND and RESTART applications control
transaction termination (with the possibility-of

abnormai end and restart after system failure-in / ' ’
applications, TPOPEN, TPCLOSE, CHECKPOlNT,
e used to administer system functions, especially
tion of TPOPEN, they are of less interest to the
3 therefore not discussed in detail in' this manUal;
uide for more information about them.

ritten in FORTRAN and/or COBOL (SIGNON and
SELECT can be obtained in both languages). Some or all can run in either the
N0100 or the NDSOO CPU. (RESTART cannot run in NDSOO if it calls the
TSR-routine TRSTO.) Emphasis
structure so that users can easi

The relation between the speci
in figure 6.1. This figure shows
be changed by the user so t
standard version of SIGNOFF,
sequences for the different 5
strategy, restart strategy) and (
(See Section 6.2.4).

The special applications are d
follows:

SIGNON and SELECT

SIGNOFF, ABEND and RE

TPOPEN and TPCLOSE

CH ECKPOINT, RO LLBACK

Again it must be emphasized th
standard versions of the special

in addition to the above mentio
a special non-modifiable app
running on the ND—SOO. Further

For a description of the ac
ND-TPS-Il User’s Guide ND ‘0.1

has been put on comments and an easy to follow
ly change the programs to suit their own needs.

al applications and user applications is illustrated
the standard use of these applications. They may
hat the illustration no longer applies. Also, the
ABEND and RESTART have different processing
trategies they use (termination strategy, abend
to not necessarily follow the illustrated sequence

ascribed below in functionaily related groups as

START

and RECOVER

at the following descriptions are only valid for the
applications.

ned user modifiable special applications, there is
lication, TPMON, which monitors applications
description can be found in Appendix J.

ial applications used in TPS—ll see the manual
95.

ND—60.111.04

33:3
2.39m

no:
ESm>m

_

02mm<
<

\

550mm,
/,

.
bozoa

1‘
:V

wagon;
//

2920
m

€59.85
5.93.85

E
3
3
:

jt<
a

m
9..

521m
Rw

6
fl

.0
\
\

s
N

\.
\

mam:
<

.m
.

\
\

.
W

vac/«340m
\

1
Swim

20205
A:

--:
230”:

M
..

O.D.
_

A
,,

20.2“:
.m

r:
s:

55
in:

Em:
r:

s.
85

m
,

_
f

.
m.

33:3
:m

;
a

£526
‘

Em~m>m
W

..
m”F

61

6.1.1

SIGNON AND SELECT

SIGNON

The main function of SIGNON is to check the terminal user’s name and
password. it is normally the first application to be called when a task is started.
The program will reserve the terninal the first time it is called and will then write
thevSlGNON'picture on the terminal. The cursor 'will'be positioned at the input
field for the user name.

When a name is entered, SIGNON will look for the name in the user table. The
name may be abbreviated in the usual SlNTRAN manner. it the name is found,
the next question is for the password.

The password is then checked, and it is either accepted or the cursor moved
back to the name field. Figure 6.2 shows a sample Sl'GNON picture.

if nameand password are accepted, SIGNON will use the user’s "EXIT—TYPE" to
carry out one of the following actions:

, —— Switch to SELECT to present the user’s master menu

—— Switch directly to a user application

-- Exit from TPS (release the terminal for SlNTRAN background use). This
action is usually defined for a special user, for example the user SlNTRAN.
This action is carried out by releasing the terminal and going into a wait
loop. Every 10 seconds SIGNON will try to reserve the terminal again, so
that when the SlNTRAN background user is done (logs off), the terminal
will again be brought into the TPS system.

/ ND TPS ON LINE AT 15’45 ON MARCH 1, 1983 \

T‘Frrr'n'r 95min??? sssssssTr'r‘r‘rTrT PPPPPPPP 55555555
TT PP PF 55
"FT PPF'PPPPP 5355555
TT PPF'PPPP 5555555
TT PF 55
TT 9? 55
Tl" PP ssssssss
Tr PP sssssss

PLEASE ENTER YOUR NAME: ..

PASSWORD:

\ /
Figure 6.2: A SIGNON Picture

ND-60.111.04

64

SELECT

The main function of SELECT is to control the menu choices for starting user
transactions. When SELECT is started, it will usually send the user's master
menu given in the user's entry in the
directly from a user application inst

user—tab. However, if SELECT was activated
ead of from SlGNON, the menu presented

will be the last master-type menu used before the application was started.

asked to choose one of them (See Fi

An entry, when chosen, is handled in

—- Switch to a user application

— Present a new menu

——- Present the user's master menu

‘ The menu; picture-will normally show, several numbered- entriesand‘ the'user‘is 1:, 13- '
gUre 6. 3/.

one of four ways:

—— Log off as present user and switch to SIGNON

The way in which each entry is handled and additional information such as
application number (if the first way and menu number (if the second way) is
given in the menu table, TPS-MENUTAB. Each menu is described here, giving the
different entries and the type of handling for each entry.

These possibilities provide a large amount of freedom in defining menus. Figure
6.3A shows a sample master menu
(’STOP’). Figure 6.38 shows one of

with several sub-menu entries plus log off
the sub—menus with entries for application

programs, new sub-menus, the master menu or logging off.

ND-60.111.04

6—5

5

6

ENTRY CHOICE:

ND TPS MASTER MENU

ACCOUNTING

PAYROLL
myoucs
mvemonv
TEXT PRO cessme
STOP

Figure 5.3A: A Master Menu

/

\
Figure 6.38: A Sub—Menu

ENTRY CHOICE:

ND TPS ACCOUNTING

BOOKEEPING

ACCOUNTS RECE IVA

GENERAL LEDGER

REGISTER UPDATE

REPORTS

MASTER MENU

STOP

BLE

ND-60.111.04

6.1.3

. . ._—, . A userhas onlyaccesstohis

The Access Control Syst

Access control in the standard versic
ways:

em

ms of SlGNON and SELECT is done in three

—- A user may have a password which must be given when the user enters his
name ~ this controls total access to TPS

be chosen'through the master

—— Every menu entry can have a'
code greater than or- equal to t
this controls menu entry access

SlGNON and SELECT use three table

—— the user table, TPS-USERTAB

— the menu table, TPS—MENUTAB

—— the default table, TPS-DEFAULT

nenu - this Controls menu access

security code and only those users with a

s to control user access to TPS:

Defining these tables is usually a task for the TPS system supervisor and is
described in the TPS System Su servisor's Guide. In addition the system
supervisor should use NSHS or FOCUS to define:

—— the SlGNON picture for control of user name and password

—- pictures for the various menus defined in the menu table

The access control system in the standard versions of SlGNON and SELECT is
designed to provide a large amount of freedom in defining the control for a
particular TPS system. The amount of information contained in the tables will
depend on the degree of control needed, from the simple use of defaults to the
detailed use of passwords, restricted menu choices and security codes.

Access to different subsystems may also vary greatly. Access to an invoicing
system, for example, may be quite
more restricted.

For a description of the Access Control System in ND TPS—ll,
ND~TPS-ll User's Guide, ND-60.195.

ND«6

general, while the payroll system may be

see the manual

0.111.04

master. menu and- the sub—menus which can - - ’f

1e-menu entry code may choose that entry . * '

6.2

6.2.1

., ,— _' ~ reaching the logical (end

SIGNOFF

6—7

\SIGNOFF, ABEND AND RESTART

The SlGNOFF application is given control when a transaction terminates
normally, i.e. when one of the fol

statement)

— the LEAVE monitor call

lowing occurs:

‘of'the program (the END - or" STOP 1 " nuN: 1'3: '

—— using the TSTOP TSR witha stop code of O

The function of SIGNOFF is to terminate the transaction in the way indicated by
the termination strategy for that
taken by the standard version of

task. The termination strategies and the actions
SlGNOFF are:

1 — Terminate the task completely (release the terminal if it has one, break a
session if there is one, take a transaction checkpoint and free the TPT)

2 ~— Switch to the SIGNON application, using TSWAP (no devices or other
resources freed)

3 — Switch to the SELECT application

4 —- Switch to the user-defined

The termination strategy and tr

termination application

8 user termination application are obtained by
SlGNOFF with a special TSR, TSTAT (read the status of the current task).

When a task is originally started, the termination strategy is set to 1, complete
termination. The TSTST TSR (set termination strategy) can be used to change it
and to define a user termination application. The standard version of SIGNON
changes the strategy to 2, switch to SlGNON; the standard version of SELECT
does not change it.

if a user termination application is used, it must not itself terminate ”normally"
unless it has changed the termination strategy, since this would result in an
endless loop. it may, for example

NE

, terminate by switching to SlGNON.

)—60.111.04

6.2.2 ABEND

The ABEND application is given control when a transaction terminates
abnormally, i.e. when one of the following occurs:

—— a serious error is detected by
system

.“ aserious error is detected by th

——- the TPS operator terminates the

—— g the application program uses ,th

A serious error is any error which pre
timeout, an l/O error without an

the COBOL, PLANC or FORTRAN runtime

eTPS, system .. . ,

transaction

e .TSTOP TSR with a non—zero stop code

vents the program from continuing, such as
error handling routine, switching to an

application program that has not been loaded, a ’fatal formatting system error',
etc.

When ABEND is activated, it will start by sending the ”abend error message” to
the TPS operator console (see below
carry out the action indicated by the
by switching to SlGNOFF to terminat

for the format of this message). it will then
abend strategy for the task and it will finish
e the transaction. The abend strategies and

the corresponding actions taken by th e standard version of ABEND are:

1 - No more action — just switch to SlGNOFF

2 -—- Send the abend error message to the terminal operator (if the transaction
has a terminal), switch to SlGNOFF

3 —— Dump the data areas for the TPT on the line printer, switch to SlGNOFF

4 —- Switch to the user abend application

5 —- Halt TPS

The abend strategy and the user abend application are obtained by ABEND using
a special TSR, TABST (read the abend status of the current task).

When a task is originally started, the abend strategy is set to i, send the abend
error message to the TPS operator console and switch to SlGNOFF. The TSAST
TSR (set abend strategy) can be used to change it and to define a user abend
application.

it is important that the user abend application is thoroughly tested before being
used, since an abend in that application would probably result in an endless loop.
It should terminate in the normal way (STOP RUN, END, TSTOP(0)) so that
SlGNOFF will be activated when it is done.

ND-60.111.04

6.2.2.1 The Abend Error Messag (D

The error message sent by the standard ABEND application is as follows:

TPS
APPL. NO. aaa ABENDED BY RUNTIME SYSTEM

APPLICATION

[N AD‘DR yyyr (.TPT NO. tt .

DUE TO reason (text) if abended by TPS
reason (code) if abended by appl. or RUNTlME SYSTEM

CLOSED
DATA BASE ACTIVITY: READ

UPDATE

Codes:

aaa TPS application no. (0—255)

tt TPT no. 1-63

yyy -atest link register

reason (text)
or reason (code)

if abended by TPS, one of the following texts:
O=Abended by operator
1 =Application cannot be activated
22lllegal use of TSRs
3=Subroutine not loaded
42Application Timeout
5=lnternal TPS error
6 == Operator Timeout
7=Attempt to restore ND-SOO application
8= Error from ND-500 monitor

lf abended by application:
Stop code given in TSTOP or error
message from NSHS or SIBAS

f abended by runtime system
SlNTRAN error code

ND-60.1 11.04

6.2.3

6-10

RESTART

The RESTART application is given control when a transaction is to be restarted
after a system rollback or recovery operation. It is started for each TPT and has
the function of examining the resta't strategy for the task and carrying out the
appropriate restart action.

The restart strategies and the corresponding actions taken by the standard
, g versioflngof RESTART canbe‘divided into_2>types, terminal operator c'ontrolledand-i.‘ .; :j- :11:

automatic: TransaCtions- involving interaction with a terminal should-normally use
the terminal controlled restart strateQY, since the operator will be better informed
of the situation and have control of it to some extent.

The standard restart strategies (See Figure 6.4) are:

l —— Automatic Restart at Checkpoint. Go directly back to the application
program active at checkpoint and continue processing at the next
statement after the checkpoint was taken. This strategy cannot be used for
transactions running on the ND«500. A special TSR, TRSTO (restore
application status and restart), is used by the RESTART application to do
this. it is described in the TPS System Supervisor’s Guide.

2 —- Start the Application in a User-Specified Restart Application. The RESTART
program will not return to the active application program but switch to the
user restart application program set by the TSRST TSR. This program may
be SlGNON, SELECT, the active application program (which will then be
restarted from the beginning) or any other user application program. For
example, it several application programs are run sequentially (using
TSWAP) they can be restarted from the beginning of the first one or any of
the others, or a special user—restart application may be started. User restart
application will have access to the common data area of the transaction
and the data will have the values they had at checkpoint.

3
- Terminate the Transaction. RESTART will switch to SIGNOFF.

4 — Terminal Operator Controlled Restart. This strategy can only be used by
application programs with terminals controlled by NSHS/FOCUS. RESTART
acquires the terminal and sends a message informing the operator of the
restart condition and asking him to choose the restart action which suits
him best (See Figure 6.5). As the figure shows, the operator can choose
between:
a _ Restarting at checkpoint (not allowed for ND-SOO)
b m Terminating the transactior
c —- Switching to SELECT to choose from the user’s master menu

The operator controlled strategy includes a timeout, and if no answer is received
before the timeout expires, the ABEND application is started.

ND—SO. 11.04

6-11

The default value of the restart strategy when a task is started is 2, start the
application in user restart application, and user restart application is the first
application that has been started (normally SlGNON). The restart strategy and
the restart application can be changed with the TSRST TSR.

The value of the restart strategy and the user restart application are obtained by
RESTART using a special TSR, TRRST (read the restart status of the current
task).

When a task is originally started the restart strategy is set to _2, switch to the-
'user restart application, and'the user restart application is the first application
that is activated. This will normally be SlGNON. The TSRST TSR (set restart
strategy) can be used to change the strategy and the restart application.

USER APPL. RESTART APPL. OTHER APPL

Checkpoint Restart at
taken checkpoint

[-—-—-’i
l

,V

Point 01 Restore to
failure ‘ checkpoint

RESTART AT CHECKPOlNT (NOT POSSIBLE FOR APPL. lN ND 500)

Restart at StartChedtpoint RAPPL _ RAPPL
take" (restart spot.) at beginning

I |
l
l

Point of Restore to
failure checkpoint

«RESTART AT RAPPL

Checkpoint Stan
taken “mm" 7 SlGNOFF

lA I
I

7 V

Paint of Restore to
failure cheokpount

TERMlNATE

Figure 6. 4: Standard Restart Strategies

ND-60.111.04

Iv6-12

WE'RE SORRY....

THAT THE SYSTEM TOOK A BREAK WHEN THIS TERMINAL WAS OPERATED
BY user name

ANYHOW, IT IS NOW RESTARTED AT T-IE STATE FOUND AT

PLEASE SELECT ONE OF THE FOLLOWING ACTIONSf

1. CONTINUE AT CHECKPOINT (PRESS CONTROL 000 TO RESTORE PICTURE)

2. TERMINATE THE TRANSACTION

3. RETURN TO THE MASTER MENU

Figure 6.5: Term/na/ Operator Contra led Restart

ND~60.1 11.04

6.2.4

6-13

Summary of Termination, Abend and Restart Strategies

Figure 6.6 shows the relationship between the various special applications, user
applications and the strategies; employed by SlGNOFF, ABEND and RESTART.
The numbered paths on th
corresponding strategy numbe
standard default strategies are
control in the TPS system apart

of the others. This is not n’ec
either special or user. The de

e figure Show the flow of control for the
rs. The dark paths show the control flow if the
used. The dashed lines show the normal flow of
from the strategies described.

.Notevthat the user restart application is placed as.a separate applicationfrom all
essarily the case, as it may be any application,
fault value for it is, in fact, SlGNON (however,

drawing a dark path from RESTART to SIGNON to show this default would have
made the figure too messyl). 1: may also be' the application that was active at: '
checkpoint, the difference between strategies 1 (restart at checkpoint) and 2
(switch to restart application) l: eing that strategy 1 would start the application in
the middle, after checkpoint, while strategy 3 would start it at the beginning.

USERGN N _____ SELECT5‘ O " APPLICATION
V\

\
\
\
\\

\\
\
\
\

USER USER USER
ABEND TERM // RESTART

\ / A
/\ /

4 \\ 2 4 3 / 4 1,4 2
\
\
\

1,2,3 \“ 3.4ABEND r SlGNOFF 4——————-—~ RESTART

i

EXITFROM
TPS

Figure 6.6: The Terminate, Abe

l

nd and Restart Strategies

406011104

6.3

6.4

6-1

TPOPEN AND TPCLOSE

The TPOPEN and TPCLOSE special applications are system applications called
when TPS is initially started up and when TPS is closed down. A system special
application is one that is only called
and that performs processing that
single task.

TPOPEN has several functions. it se
operatori It opens the data base for a special system user inorder to take

' checkpoints and control rollback and

by one TPT for each TCM, the system TPT,
affects the whole TPS system, not only a

nds a ’good morning’ message to the TPS

‘ recovery. The efficiency ofkthe TPS system
is also increased if the data base is always open for at least one user, since
opening it for other users will then
also go throughtthe terminal configuration tablenTPS-TERMTAB, and start up‘ a: a . ~1 .,
task for each terminal in the table, u
activate the SlGNON application. TP

go faster (See Section 3.2.3). TPOPEN will

sing the TACTV TSR to'acquire a TPT and
S-TERMTAB is defined in the same way as

TPS-USERTAB, TPS-MENUTAB and TPS-DEFAULT (See Section 6.1.3). Defining
these tables is described in the TPS System Supervisor’s Guide.

TPCLOSE is activated when a CLO
transactions have been completed.

SE-TPSS command has been given and all
After CLOSE-TPS has been given, no new

transactions may be started. SIGNOFF controls this by checking for a close
situation when a transaction terminatesand causing complete transaction
termination with release of the terrr
termination strategy. When all T
application wili be activated. it will a

inal and the TPT, regardless of the normal
PTs have been released, the TPCLOSE
so be activated if an ABEND-TPS command

is given, but in this case the activation is immediate without waiting for
transactions to terminate. TPCLOSE
night’ message to the TPS operator.

CHECKPOINT, ROLLBAC

The CHECKPOlNT, ROLLBACK and

will close the data base and send a ’good

K AND RECOVER

RECOVER special applications are also
system applications called by the system TPT to perform functions affecting the
whole TPS system.

They are activated when the corresponding commands are given either by the
operator, a system module (a TCM for example) or an application using an
operator-command TSR (these are r
is to supervise the SlBAS actions n

estricted to special applications). Their task
ceded to carry out the required functions,

either by calling SlBAS directly (GCHPO, SROLL, SREPR, etc.) or by instructing
the TPS operator in carrying out the f unctions manually. Checkpoint, rollback and
recovery are discussed in detail in chapter 5.

ND—60. {11.04

7

7.1

SPECIAL CONS

This chapter describes various
when writing programs to be
language dependent limitatio
efficiency.

DATA AREAS IN THE

> Application programs must be
into and thus may not contain a
program is placed instead 0
transaction. This is done autom
the part of the application pro
size of the data area, discus
followed when defining the data.

Since data areas belong to the

7-1

BIDERATIONS

special considerations which should be taken
run under TPS. It includes data area definition,
ns and requirements, program structure and

nip—100

ny variable data. The data area for an application
1 the non-reentrant part of the TPT for that
atically by TPS and demands no special action on
grammer. There is, however, a restriction on the
sed in section 7.1.4, and some rules must be

TPT and not to the application program itself, no
variable data may be initialised before execution. This is a general rule for
reentrant programs. Note that t
arbitrary values.

he data area will not be cleared either but contain

Constant data, on the other hand, may be initialised in application programs
written in FORTRAN/PLANO,
programs must define the da

NFL and MAC (but not COBOL). FORTRAN
ta as belonging to a COMMON area (not the

COMMON/PRIVATE/area), initialise the data in a BLOCK DATA subprogram and
load the block data subprograrn together with the application program. PLANC
programs may define the data as global read only data in modules. It will then be
part of the read-only segment containing the application program and can be
read but not changed. This method of initialising the data must be used since the
DATA statement is not allowed in reentrant programs. NFL and MAC programs
can initialise the data directly in

N

the programs.

D-60.i11.04

reentrant- Thismeans that. they cannot be written. , , .

Example - Constant data in FORTRAN

MAIN PROGRAM

PROGRAM APOSO
COMMON/PRIVATE/ITERM.... task common data area in TPT

COMMON/CONST/K1,K2,C3,TABLE(10).... constant data area in program

CONSTANT DATA

.5BLOCK-DATA._: _ . 1 . ‘
COWON/CONST/K1,K2,C3,TABLE(10) o o a 0

DATA K1,K2,C3/1,2,5.642/TABLE/1.2,2.0,1O.3,5*50.O,O.0,1.O/.5..
o

0

END

LOADING THE APPLICATION (SEE SESTION 8.2.1)

AADD—APPL,APOSO-BRF,AP050;
“ADD-UNIT,CONST—DATA-BRF;

Svmm
Dan Non nonxm!

Task
common

an:
In:

Lou!
dlu
are:
(ruck)

Svmm
TOUKIM.

TSR:

Runmnz

HyunaZI: The7PT

ND—60.111.04

7.1.1

7.1-.2‘ '

7-3

The Variable Data Area In The ND—-100

The variable data area is located in the non-reentrant part of the TPT. lt consists
of two parts, the task common
or stack {See Figure 7. I).

data area for the transaction and the local areas

I, The Task Common Data Area In The ND—I‘OO '

The task common data area contains data that is available to all the application
programs and subroutines for.- a
to another using TSWAP, the

transaction.- If one applicationvprogram“ switches
new application program have the same task

common area, containing the old data.

Note: The first word of task-common should always contain the terminal device
number if the application uses a terminal. If not, it ought to equal zero.

If the transaction uses NSHS, the first variables in the task common data area
must be the terminal buffer lTERM and the private picture area lPRlV {see the
NORD Screen Handling System}. After that follow common transaction data.

If the transaction uses FOCUS, then the last 5700 (octal) words of the task
common data area will be used by FOCUS. The first 16-bit words only are
available for common transaction data.

in COBOL programs, the task
SECTION.

LINKAGE SECTION
01 PRIVATE lMPORT CON

common data area is defined in the LINKAGE

MON.

02 lTERM COMP OCCURS 126.
02 IPRlV COMP OCCURS
02 REST.

The COPY statement can be us.
the common area.

The task common area is defir
statement and must have the na

COMMON/PRIVATE/ITERM

Or in a PLANC-program:

1 024.

ed in COBOL to assure the correct definition of

ed in a FORTRAN program with the COMMON
me PRIVATE.

128),IPRIV(1024),REST

lMPORT (COMMON)(type:PRlVATE)

This must be the only COMMON statement for variable data in the program
(constant data may be defined in other COMMON areas as described above).

ND-60.lll.04

The total length of the common arez
generation time. The individual trans
length up to the fixed maximum.

in order to assure that the COMMO
program for a transaction, the staterr
to the individual applicaton programs

if application programs are written
program uses the TSWAP TSR to s
in a different language, special care
areas are defined in the same way in
have acccess to the common data
written in differentlanguagas. It is the

i it that the data definitions match

ND-60.

l PRlVATE is fixed for programs at system
actions may define a common area of any

\i statement is correct in every application
ents can be defined separately and copied
with the lNCLUDE statement.

in several languages and an application

must be taken that the task common data
both programs. Then the new program will
of the old program even though they are

111.04

Nitch to a new application program.written. ~

responsibility of theiprogramrnerz’ to see-to}- .' ;

7.1.3 The Local Data Area I n The ND—lOO

In addition to data in the task common data area, the individual application
programs can define local data
application program and is not a

in COBOL main programs the l
the task common area. For subr
fixed address in the local data a

Local data for all FORTRAN

This data will be lost when switching to a new
vailable to subroutines.

acal working storage area will be allocated after
outines the working storage area is allocated at a
“ea at load time.

PLANC programs both main programs and
subroutines, are placed in the stack {See Figure 7.2.A) The stack is the data area
in the TPT immediately following the common area When a FORTRAN/PLANC .
main program or subroutine is
enough to contain all local data

started, it is given an area in the stack large
defined in the routine. It will have access to this

area until it is done, when the area will be freed. if the program calls a
subroutine the subroutine will be given an area in the stack following the area
for the calling program. The stack can thus be considered a pool of storage
space allocated to individual I’OL
is allocated dynamically, data in
time.

MAC and NFL programs must
when interacting with the system.

tines dynamically during execution. Since space
the stack may not be initialised before execution

simulate reentrant FORTRAN/PLANC programs

The MAC and NFL programmer "nust follow rather strict rules in order to use the
stack and define data correctly. The FORTRAN programmer, on the other hand,
defines data in the usual FORTRAN manner with the exception of the restriction
on the use of COMMON described above. The compiler must be set in reentrant
mode when compiling the program and the program must be loaded as
described in section 8.3.1, If
adminstration will be performed

The data area for a COBOL prog

In PLANC~programs, you must

these things are done, addressing and stack
correctly.

ram is described in figure 7.28.

refer to a stack in the lNlSTACK statement in
order to satisfy the PLANC—compiler. You have to declare a global dummy-stack:
lNTEGER ARRAY STCK (0:1) ir your main program module and include the
statement lNlSTACK STCK in th
left undefined by load—time. The
is initiated.

a main program. The symbol SSTLEN should be
actual stack length will be set up when the TPT

ND-60.111.04

FIXED
LENGTH

FIXED
LENGTH

FIXED
LENGTH

Figure 7.2: Data Areas for FORTRAN

<

FORTRAN/PLANO

SYSTEM PART

“ ////’/////
' ’ ////////

ITERM

IPRIV

REST OF
COMMON

/ NOT USED /

LOCAL DATA,
MAIN FROG.

LOCAL DATA,
SUBROUTINE

5/ //////¢
/ NOT USED

///////i
A

COMMON/
PRIVATE

STACK

ND~6

FIXED <
LENGTH

COBOL

SYSTEM PART

ITERM

IPRIV

FIXED
LENGTH

FIXED
LENGTH<

' REST OF _ ,
COMMON "

,_ LOCAL DATA‘MAIN FROG

LOCAL DATA,
SUB ROUTINE

LOCAL DATA,
SUBR (FTN)

////////Z
NOT USED/

0.111.04

¢////// /
B

AND COBOL Programs

FIXED
LENGTH

WORKING
STORAGE
COMMON
(LINKAGE
SECTION)

FTN
STACK

7.1.4 The Size of the Data I

The total size of the data area
language it is written in, is a
time. {See Figure 7.2 and Appe

Area In The ND—100

for an application program, regardless of the
Fixed number, determined at system generation
7d/x D). This size includes the non—reentrant part

of the TPT, about 20003 locatiors of which 10303 is used by SIBAS and 6508 by
COBOL terminal l/O.

This size will for FORTRAN prog

—-' non—reentrant TPT

- task common data area
' , unused-part-)m '

—- stack area

For COBOL programs the size w

— non-reentrant TPT

— task common data area (5
part)

—- WS —— Iocal area

-- COBLlB area (file l/O)

—- stack area

The maximum size of working st

rams be the sum of the following:

screen handling part and transaction part and

ll be the sum of:

:reen handling part, transaction part and unused

arage is also a system generation parameter. If a
COBOL program demands a work area larger than this maximum, an error
message will be written at load
beloaded.

The size of the stack will be wh

time (See Appendix C) and the program will not

atever is left over after the rest of the areas are
allocated. if NSHS is used, it reeds approximately 1.5 Kwords in the stack in
addition to the data in the common area. SlBAS also uses 0.5 Kwords. However,
since this area is freed upon return to the calling routine, NSHS and SlBAS
routines can use the same stack area. FOCUS does not use this stack area.

ND—60.111.04

7.2 DATA AREAS IN THE ND—SOO '

All programs running in the ND-SOO—CPU are reentrant, and the code and data
are always separated.

The complete data area, i.e. the local data area, the common data area and the
stack area, containing both constant and variable data, is placed in the data-part
of the segment where the application is loaded.

Note that, in contrast to the ND-lOO, all data will be given their initial values
' (initiated‘by load-time) each time an application is started.

The total size of the data area for an application program is up to 134
_.megabytes. Note thatthisdata area;will‘not/beisaved latcheckpoint. . _ ‘ ,._‘

In addition to the data area described above, application programs may access
the task common data area (see fig. 7.1). This area is common to all application
programs and subroutines in both the ND-lOO and ND—SOO for a transaction. If
one application program switches to another, e.g. from an ND-‘lOO-application to
an ND~500-application, the new application program has the same task common
data area, containing the old data.

Note: The first 16—bit word of task common should always contain the terminal
device number if the application uses a terminal. if not, it ought to equal zero.

In the ND-SOO, the task common is labelled by the common label PRIVATE.

FORTRAN programs may access task common by the statement:

COMMON/PRlVATE/ < array>

PLANC programs may access task common by the statement:

lMPORT (COMMON)(type:PRlVATE)

COBOL programs may access task common by these statements (also applies to
COBOL subroutines):

LINKAGE SECTION.
01 PRIVATE IMPORT COMMON.

02 <array>

Note: If the transaction uses the FOCUS screen handling system, the last 5700,,
words of task common will be used by FOCUS, because the FOCUS data must
be passed on (by TSWAP) to the next application of the transaction.

The total length of task common (PRIVATE) is the same as in the NDnlOO
(counted in bytes), and it is fixed at system generation time.

if an application in the ND—lOO uses the TSWAP TSR to switch to a new
application program in the other machine, the ND-SOO, or the other way around,
special care must be taken that the task common data areas are defined in the
same way in both programs. Be aware that the word~length (used for example in
data type lNTEGER) is 16 bits in the ND-iOO and 32 bits in the NDnSOO.

“ NIB-60.11104 .

Le

Symbolic Debugger «live» in an

LANGUAGE DEFEND ENT CONSIDERATEONS

There are few limitations to the full set of FORTRAN and COBOL facilities
available on NORD computers when writing programs to be run under TPS. TPS
application programs are very similar to general real-time programs using
SlNTRAN, SIBAS and NSHS/FOCUS. For a discussion of real time programming,
see SINTRAN lli User’s Guide, Chapters 4 and 7.

ND~500 COBOL, FORTRAN anc

in addition, all languages are

PLANC programs may be tested by using the ND
ordinary TPS—run. (Chapter 8.1.)

extended by the TSR facilities of TPS, including
session communication and checkpoint/restart.

In the ND-SOO, there are no restrictions. on language usage, such as initialiied V
data, local data and common areas, and most language features may be used
freely. Data in task-common may be accessed in the common area PRIVATE as
described in section 7.2.

The following sections discuss the languages in ND—iOO individuaily.

NDv60.111.04

7.3.1

7-10

FORTRAN/PLANC in ND-100

All application programs run under TPS must be reentrant. ln FORTRAN this is
done by setting the compiler in reentrant mode before compiling. In addition the
compiler should be set in a state to generate allocation of 208 extra stack
locations whenever subroutines, written in MAC or NPL, that use these extra
locations are linked to the main program. This makes it possible to keep earlier
written subroutines in a lowlevel language unmodified.

The commands to obtain these things. are:

Fl'N: REENTRANT ON
FTN: RESERVE—~WORK—SPACE ON

Constant data in FORTRAN programs must bd defined ih ‘a DLOCK DATA
subroutine as described in section 7.1. Constant data in PLANC—programs may be
defined by read~only global data declarations in PLANC-MODULES. Defining
variable data areas is also discussed in section 7.1.

When using FORTRAN input~output 2 words following the stack will be used for
the administration of a FORTRAN input-output statement. These two words will
not be checkpointed at runtime, and special considerations should therefore be
taken when using FORTRAN input-output from applications.

Application programs may also be run as background programs using the TF’S
background system {See Section 8.2). This is mainly useful for program testing.
The debugging facility of FORTRAN/PLANC may be used in background
programs by setting the compiler in debug mode and then loading the debugging
supervisor. (part of the runtime system). Programs using the debugging facility
must not be reentrant. When programs are run as background programs they
will use background versions of the special TPS facilities available. They will also
use the background version of the FORTRAN/PLANC library, FORTRAN—lBANK.

When loading real-time programs to be run under TPS, a special TPS version of
FORTRAN-lREENT is loaded automatically due to the TPS load macros (See
section 8.3.7).This library is usually ’nergecl with the TSR file to one BRF file,
TPS-LIBRARY:BRF.

When calling TSR routines from FLANC, all routines, must be declared as
ROUTlNE STANDARD in IMPORT statement. PLANC-routines should call
CGBRD and CWMSG instead of TGBRD and TWMSG, using type "BYTES" for
the parameter <text>.

ND-60.111.04

7.3.2

7.3.3

COBOL in ND—100

As for FORTRAN, COBOL prog
however is done automatically
so the programmer does not ha

No data may be initiated in real
the data area of the TPT. This
data areas in COBOL is discuss

The SORT function is not yet av

ND-lOO COBOL programs may

7-11

rams running under TPS must be reentrant. This
by TPS when the application program is loaded,
veto do anything special.

time COBOL programs, since all data is placed in
includes both constants and variables. Defining

ed in section 7.1.

ailable under TPS.

also be tested as background programs using the
.TPS backgroundsystem..The_interactive debugging option. canth‘en'yvbe used, - .,_ -_..

Most COBOL programs running under TPS will need routines in the FORTRAN
library, since SlBAS and NSHS/FOCUS use them. When testing in background
FORTRAN—lBANK must be loaded. When loading real~time programs, the
special TPS version of FORTRAN—1REENT is loaded automatically by the TPS
load macros (See Section 8.3. I).

‘ MAC—NFL

When compiling COBOL programs, the compiling mode must be
two-bank/64KW. This is because code and data must be separated while the
logical address space still should be 64KW.

The command to obtain this is:

’TPS-MODE

Most application programs under TPS will be written in FORTRAN or COBOL,
but in a few cases it may be desirable to use a lower level language. Two
languages are available for dcing this, the MAC assembly language and the
NORD~PL system programming language. However, when using these
languages, some rules must be

The main rule is that they mu
interacting with the system. All

followed.

st simulate reentrant FORTRAN programs when
interaction with the system is done through calls

- SlNTRAN monitor calls, TSR calls, SlBAS calls and FOCUS or NSHS calls.
These calls must be set up as if they came from a reentrant FORTRAN program.

ND-60.111.04

7.4

7.4.1

7.4.2

~ PROGRAM STRUCTURE

7—12

Application Names and N

Application programs are written as

umbers

main, real—time, reentrant programs. They
may be given any names of 1—6 alphanumeric characters, but in this manual
they are given names of the type

where XXX is the TPS application
numbers (‘1 to 255), while special [app

APXXX

number. User applications have positive

and PLANC, the PROGRAM-l0 statement in COBOL, or the)QRT statement in
MAC and NFL.

Before the program is loaded, the name must be in TPS—TABLES (See Section8.3. 7/.

Subroutines

A main program in any langua
FORTRAN-compatible subroutines. C
COBOL only. The subroutines are loac
same segment“. In the ND~100-they m
program code where X is an insta
SlBAS, NSHS/FOCUS and many of
included in this length). in the ND«500
a length of up to 134 megabytes bot
have access to the task common data

Note that FOCUS uses the PRIVATE
byte 200 upwards as local data area.
using FOCUS.

If several main programs use commor
own copy of the subroutines. It is, r

ge may call reentrant FORTRAN or
OBOL subroutines may be called from
ed together with the main program on the
ay not exceed a total length of X words of
lation dependent maximum (data areas,
the FORTRAN~1REENT routines are not
main programs and subroutines may have

h for data and code. The subroutines will
area, parameters and their own local data.

common area (ND-100 and ND-SOO) from
This area cannot be used by applications

subroutines, each segment must have its
owever, possible to have more than one

main program on a single segment (in ND—iOO: if there is room), and programs
may then share a common copy of s
NDJOO the sum of the lengths of a
exceed theinstallation dependent max

ubroutines. (See Figure 7.7). Again in the
l routines, both main-and sub, must not
mum.

'See appendix D for a description cf how TPS uses the SINTRAN segment
structure in ND—lOO.

ND—60.111.04

. ications have negativenumbers ('—_10 to O) y , _and special names. The name is given in the’PROGRAM statement in FORTRAN ‘
. 1-,}. :9“; ...".':

lilll | I
III

I
I
I
Ii

Public Main APnn 1 Main APnn 2 Subroutines Unused
pictures (FTN) (FTN) (FTN)

l l l II . . I | . i I Ii r | II l l I I i i I I
Public, , Main APnn3 , . . , Main. ABnn 4,

"pictures (COB) (COB) ‘ '(coa+ FTNI

Figure 7. 7: Application Segments in ND-IUO.

A different method of making use of common routines is through the TSWAP
TSR {See Figure 7.8}. An app ication program can switch to another one with
TSWAP. They will both have access to the task common data, but local variables
for the old routine will be lost Also, there is no return to the old routine when
the new one is done. A ”manual" return may be programmed by storing the
name of the calling program and the return point in the common area,
TSWAPing back to the calling program (at the beginning) and jumping to the
correct return point. This meth 3d can only be used in main programs.

Using main programs as common subroutines in this manner may save both
space (only one copy is necessary) and time (less swapping). In addition, in the
ND—IOO the routines may be larger, since each routine may be up to X words
long. However, the method has the disadvantage of losing local variables, and it
demands a greater programming effort.

in the ND-SOO, where there is plenty of room, this kind of structure will not be
necessary.

ND-60.l l l .04

subroutines, Unused , he.

2.
2
5
:3

3
533

AN
«5528

$
5

5
2

3

533.

E
m

p
::n_<

Q<>>mh

3:5
1365

at
#5538

S
at.

Am
2
5
:5

3
5
9
5
0
::

m
ccm

<

m
S

i<
m<>>ml_.

:.
EmEmmm

ENE
;

”:5
5
Q

ESm
oEv

N
:5

2

N
asm<

m
<§m

b

Au
EmEmmm

SmE
Ax

.EwEmmm
Em

aoav
p

:53

Figure 7.8: Switching Application Programs

ND-60.111.04

7.5

7.5.1

EFFICIENCY

7-15

TPS is designed for a combinat on of short response times, data protection and
ease of use. However, no matter how carefully the system is designed, the
manner in which application p
both efficiency and data security.

ND-500 Efficiency

-ograms are written does have an influence on

'.:A_ high'standard- of performance can be obtained by running, applications in the
ND-SOO, espesially if these applications only run in the ND-SOO and do not «call»
the ND-lOO very often.

Calling the ND-lOO creates a
important to keep the number

good deal of system overhead. lt is therefore
of such calls to a minimum. This can mean the

difference between a high-performance system and one with fairly poor
performance.

Calls to the ND-lOO will be made in connection with most SlNTRAN-lll monitor
calls (e.g. MON CLOCK, MON
TSMSG).

NB! When an application on a
a domain is to be ”placed” in
disk accesses. This not only tal
very important that application
domain. They can, however, be

OUTBT), etc. and many(TSFl calls (e.g. TRMSG,

non-current ND500 domain is started, i.e., when
the ND-500, the ND-500 monitor will make many
res time, it also loads the system. It is therefore
5 that belong together are loaded to the same
oaded on several segments in the domain.

Note that when a transaction runs an application in the ND-lOO, it will not have
reserved an ND—SOO process. When swapping from an ND-lOO application to an
ND«500 application, a domain must be ”placed" in the ND-SOO.

ND-60.1l 1.04

7.5.2

7.5.3

disk accesses). (See Section 5.2.3.1)

7-16

Taking Checkpoints

Synchronised and transaction checkpoints are taken automatically, but the
programmer must decide if extra transaction checkpoints should be taken with
the Tl'RAN TSR {See Section 5.2.4). Taking a transaction checkpoint involves i -
6 disk accesses depending on the size of the data area and if the data base is
open.

The programmer must also determine if the TTSYN routine should be called to
allow synchronised checkpoints to
processing and database sequence
Calling the TTSYN routine causes ve

Opening and Closing the

When to open and close the data t
influence on efficiency. Astmentionet
data base itself causes little overhead
open for a dummy user, but transactic
or closed and these involve disk

be taken, forexample during a long-
withoUt any- other calls than SlBAS calls.
ry little overhead (a few instructions, — no

Data Base

name is also a decision that may have an
i in section 3.1.3, opening and closing the
, since it will probably always be physicaliy .
3n checkpoints are taken when it is opened
accesses. On the other hand, taking a

check-point causes more overhead when the data base is open than when it is
closed.

ln general, it may be said that if a
with-out data base accesses, the d

program has long processing sequences
ata base should probably be closed and

reopened again. An example would be a long dialogue with the terminal, perhaps
involving several transaction checkpoi

ND-60

1ts.

111.04

7.5.4

. memory at one time, noswappi

The Working Set

As for all computer systems

7—17

with paging, the concept of a working set is
applicable to TPS programs. Only those pages being used at the moment need
to be in main memory, the rest
that is not in main memory, it i
page to be written out. This peg
and the most efficient programs

being out on the disk. When a page is needed
3 read in from the disk, perhaps causing another
ye swapping process of course involves overhead

are those with little swapping.

This means that the program should be organised such that logically connected
program sequences are placec close together; this also applies to data.The
working set is the number of p ages needed to carry out a processing sequence
in the program. if this working set is small enough to have all the pages in main

rig will be done during the processingsequence.

These efficiency considerations may not be necessary in a well—dimensioned
system with a fairly low work load and good response time. On smaller systems
with high work loads, they m 3y be quite important. In any case, it may be
worthwhile to determine which application programs or parts of programs will be
used most and devote some ext ra effort to making these routines efficient.

ND-60.111.04

7.6

’ back-ground mode than under TPS.

to useTRS for-V’data. entry, gathering

7—18

REAL TIME VERSUS BACKGROUND

Installations running TPS will usually
in background mode (timesharing or
large part of program testing of l\
background mode as described in
application programs are simpler and

Certain types of interactions with

great amount of data has been gat
machine readable form, may best be

temp-orary files and using it later as

also have some need of running programs
batch) under SINTRAN (See Figure 7.9). A
D-100-applications may be carried out in

section 8.2, since loading and running
the debug option is available.

the data base may be better done in
Large updating jobs, for example, where a:
hered ahead of time, especially if it is in
run as batch jobs. Some users may prefer

nput tc'batch updating jobs. In semecases,
it may be an advantage to run large reports as batch jobs, perhaps after stopping
TPS to prevent the information in t hem from being updated as the report is
being written. The checkpoint/restart facilities of SIBAS are also available to
back-ground jobs, but they must be controlled manually (by the operator), and
the programs themselves are not checkpointed, only the data base.

Some tasks must be done in background mode before running TPS application
programs. The SIBAS data base must be created, private screen pictures must
be defined on picture files and public pictures must be defined and dumped to
load files‘ Creating a SIBAS data be:
and defining private pictures is descr
In addition, a special background util
pictures for NSHS and a program is
FOCUS. This is described below.

e is described in the SIBAS User’s Manual
bed in the screen handling system manuals.
ty program is available for producing public
available for producing public pictures for

UPDATlNG THE D
DATA ENTRY '

ATA BASE AFTER
TRANSACTIONS

PRINTING LA RGE REPORTS

TESTING F ROGRAMS

CREATING THE DATA BASE

DEFINING PICTURES

Figure 7.9: Some Background Tasks

NIB-60 .111.04

datapwith err-line._transactions,;storing.iting.;_; :31. .. .5

7.7

7.7.1

PICTURES FOR NSHS IN ND-lOO

Pictures used by the Screen Handling System NSHS can be either public or ,
private. Private pictures are stc
used {See Figure 7. 70). Public

red in a file and read from the file when they are
pictures are stored together with the application

code on the application segment. Several pictures can be stored together with
an arbitrary number of applic
application together with NSHE
it can be referred to directly

ations on each sequence. When running those
, the picture data need not be read in at run-time.
through NSHS by specifying "public picture” in

lTERM(S). Thus the execution is speeded up by omitting mass storage access of
the picture-file.

Further, several applications

—— less physical memory is u

——- public picture areas are r
disk.

can share pictures or picture elements. Thus
, 1; swapping activity, is essentially decreased» due to the ,fact that: ,

sed

ot written into and the pages not written back to

Defining Private Pictures for NSHS

Picture formats are defined
SCREEN—DEFlNlTlON, at the
ordinary SlNTRAN files of tw
definition is called the "source
Several pictures can be store
picture names.

Before the picture definitions
compiled using SCREEN—DEF
"object picture” and stored ir
contain several pictures which

Comprehensive editing facilitie
remove any part of a picture.

through use of an interactive utility program,
display terminal. Picture definitions are stored in
0 different types. The output from the picture
picture” and is stored in the source picture file.

:21 in the same file, identified by their individual

; are used by application programs, they are
NlTION into a certain run-time format called the
the object picture file. Here also one file may

:an be independently compiled.

5 allow the operator to create, replace, repeat or
For a detailed description of how to create and

maintain picture definitions, see the NORD Screen Handling System, Chapter 2.

ND—60.111.04

APPL segment

7~2

APnn 1

CALL GTPIC

CALL WRPTD

.APPL segment

IF’UBL
(public picture area)

APnn 2

CALL WRPTD i
Figure 7.70: Private and Public Picture

ND-60

i
B
’5

111.04

P1CTURES:PIC
P1CTURES:OBJ

TPT segment

ITERM

IPRIV

area)
_- ' (ppiyate picture 3; 1 5

PICTURES:P1C
P1CTURES:OBJ
P1CTURES:BIN

7.7.2

7-21

Producing Public: Pictures for NSHS

Object pictures defined in the above manner may be used by TPS application
programs as private pictures. However, for the reasons mentioned above, it may
be desirable to use public piCtL res instead. NORD TPS supplies a background
program, PUBLIC—«PICTURE, which produces a public picture data file from
object pictures. This file can be
application segment to form the

loaded together with the application code on an
public picture area.

The user must specify the following parameters which are asked for:

—— picture dump file: the fife where the picture data is to be dumped for
ioading on to the segment

—— number of. pictures

—— picture fiie name(s):
SCREEN—DEFINITION

the object picture file(s) produced by

—- picture name(s): the name(s) of the picture(s), which are to be loaded
together in the Pubiic Picture area.

Example

@PUBLIC—PICTURE

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
z NORD—TPS PUBLIC PICTURE LOADING %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ENTER PICTURE DUMP FILE NAME: PUBLIC:BIN

ENTER NO. 05' PICTURES: 2

ENTER PICTURE FILE NAME (MAX 20 CHARACTERS)
OR ’@' TO TERMINATE

ENTER PICTURE NAME (

LOADING: TPS-PIC : OBJ

MAX 8 CHARACTERS)
OR '@' FOR NEW PICTURE FILE NAME: SIGNON

ENTER PICTURE NAME (
OR '@’ FOR NEW PICTU

MAX 8 CHARACTERS)
"RE FILE NAME: MENU

PICTURES LOADED. OCTAL SIZE: 000601

STOP 0
@

ND-60.1 11.04

7.7.3

7—22

Loading Public Pictures for NSHS

The picture dump file, which is produced by the PUBLIC—PlCTURE program, is
used as an input file when loading the applications. lt comprises the picture data
to be loaded together with one or more applications on one or more segments.
The public picture area will always start in location 4 of the application segment
It is defined with a macro statement of the form:

lLOAD—SEGMENT, seg-no, public—pic-file, reent sag-name, sub-macros;

See Section 8.3.1 for, use of this macro

'In summary, the steps in defining and loading public pictures are these:

— Use the SCREEN—DEFINITION program to define pictures on object
picture files.

—— Use the program PUBLIC—PICTURE to produce picture dump files.

~ Define the picture dump files to be input files for loading. This information
is to be entered into the file '
(TPS—USER) SPEClFY-LUAP:SYMB

—- Prepare the application programs to refer to the Public Picture area by
giving the value 1 to lTERM(5. When using the Private Picture area this
value is to be set to 0.

— Load the public pictures and applications by running the mode files
(TPS—USER) BUILD—LUAPzMDDE
(TPS-—USER) LOAD~USER~APPL:MODE
as described in section 8.3.1.

ND~60.111.04

7.8

7.8.1

7-23

PICTURES FOR FOCUS
Forms used by the FOCUS screen handling system can be either public or
private. Private forms are stored in a file and read from the file when they are
used. Public forms are stored together with the application code on the
application segment. Several forms can be stored together with an arbitrary
number of applications. When running those applications together with FOCUS,
the form data need not be read in at run-time. Thus the execution is speeded up
by omitting mass storage access of the form file.

activity is essentially-decreased

-, : less. physical memory is used

‘F'urther, several applications can share forms. or form elements. Thus swapping
due. to the fact that:

—- public form areas are not written into and the pages not written back to
disk.

Forms are defined through use of an interactive utility program, FOCUS-DEF, at
the display terminal. Form definitions are stored in ordinary SlNTRAN files.
Several forms can be stored in
names. Comprehensive editing
repeat or remove any part of a
and maintain form definitions,
(ND-60.137).

Using private forms, the form fi
FOCUS.

Public Pictures for FC

It is desirable to use public fc

the same file, identified by their individual form
facilities allow the operator to create, replace,

form. For a detailed description of how to create
see the FOCUS screen handling system manual

e name must be declared by the call FCDECFF in

)CUS

irms in TPS, for the reasons mentioned above,
when running the system in full production. In the test phase, however, it is
easier to use private forms.

ND TPS supplies a backgrounc program, FC-PUBLlC, which converts the form
file into a public form data file. This file can be loaded together with the
application code on an applicati on segment to establish the public forms area.

Use the program FC—PUBLlC-lOO or FC-PUBLlC-SOO in order to produce a public
form data file to be loaded to t
data file is used when loading

19 NDlOO or NDSOO respectively. The public form
applications, by inserting the file name for the

parameter ”publ-pic-file" in these macros:

MID—60.11104

7—24

TLOAD-SEGMENT,seg—no,publ-pic—
lLOAD-5008EGMENT,domain-name

See section 8.3.1 for use of these mac

The public area will always start in lc
NDlOO, and location 0 in the NDSOO.

I

ile,reent-seg—name,sub-macros;
seg-name,publ—pic-file,sub-macros;

l'OS.

cation 4 of the application segment in the

The application programs must call FClNlTE with the parameter init-array(6)¢0 in
order to use public forms. Then the FOCUS call FCDECFF must not be called, .

In the NDlOO, init-array(6)=-—~4 (address

In- the NDEOO; init—array(6) a segment‘

of first location of the- public form area). ,.

number equal to 0 (zero) must not be used. The application segment number
may be obtained by the TSR-call TAPSBT.

in summary, the steps in defining and

use the FOCUS-DEF program to

define the public form data files
file (TPS-USER)SPECIFY—LUAP:S

prepare the application program
the appropriate value to the para

load the public forms and applic
(TPS-USER) BUlLD--LUAP:M
(TPS-USER) LOAD~USER—Al

as described in chapter 8.3.1.

In the NDSOO, all forms used by all
gathered on only one public form file i

’PLzMODE

loading public forms are these:

define pictures on form files.

use the FC-PUBLlC-XXX program to produce public form data files.

to be input files for loading, by editing the
YMB.

s to refer to the public form area by giving
meter init-arrayls) in the call to FClNlTE.

ations by running the mode files
ODE (as user TPS-USER)

(as user RT)

applications inside one domain may be
f desired. After running the FC-PUBLlC-SOO

program, the public form data file may be loaded to its own segment inside this
domain by issuing these commands:

@NU LINKAGE- LOADER
ND—Linkage-Loader~
NLL: SET-DOMAIN ' ’ domain-name' '
NLL: SET»SEGMENT-NUMBER segm-no
NLL: 0PEM~SEGMENT ' ' segment—name’ ' , ,
NLL: LBW—ADDRESS 0, D
NLL: LOAD—SEGMENT public—form-data-file
NLL: END-DOMAIN
NLL: EXIT
@

NED—60.1

number of the’public‘form area. Segment '

8-1

COMPILING AND LOADING PROGRAMS
This chapter shows how to compile and load application programs both as RT
programs in the ND-iOO and the ND-SOD and as background programs in the
ND—iOO.

TESTING OF ND~500-—-APPLICATIONS

When application programs are run under TPS in the ND—SOO, they must be '
compiledby an ND~500~compilen loaded with the LlNKAGE-LOADER,,and started-
under the control of a TF’T. Section 8.3 describes how to load the program to the
TPS-system.

During the programming and testing phase in the ND—SOO, it may be easier to run
them in a special Debug~mode n ND-500 under TPS, which allows you to use the
ND Symbolic Debugger. The program then ought to be compiled with
DEBUG-MODE ON.

In SOD—debug—mode, the symbolic debugger is run on one terminal and the
application on another terminal.

You start a transaction in Debug~mode in the ND~500 by activating application
no. —3 from OPCOM, giving the terminal device number to be used by the
symbolic debugger as parameter 1. Parameter 2 may be zero. Note that the
debugger terminal must not be the same as the application terminal. The
application -—3 (on the debug terminal), will then prompt you according to the
OPCOM—command ACTIVATE-A PPLlCATlON.

In BOO-debug-mode, you will enter the Symbolic Debugger on the debug terminal
each time a BOO-application is entered, and will be free to inspect/change
locations and stop/run the app ication. See the ND Symbolic Debugger Manual
ND~60.158.

ND—60.lll.04

8.2

8.2.1’

‘3” k)

BACKGROUND TESTING OF ND—IOO APPLICATIONS

When application programs are rur under TPS in the ND-lOO, they must be
compiled as real time (RT), reentrant programs, loaded with the RT loader, and
started under the control of a TPT. However, during the programming and testing
phase, it may be easier to run them as background (time-sharing or batch)
programs directly under SlNTRAN. Loading and starting the program is simpler
and the interactive debugging options of both FORTRAN and COBOL are
available.

The TP‘S‘ Background System '
The TPS background system is a set of subroutines and programs running in
ND—lOO that simulate a real time TPS environment. The subroutines are loaded
together with the user application programs and provide simulated TSR routines
for the application program. Background versions of the SIGNON and SELECT
special applications are also provided, plus a special program, TPS:PROG, which
is used to initiate the transaction.

The background system is started by logging in as a SlNTRAN timesharing user
and giving the RECOVER TPS command. When this is done, functions covered
by TPOPEN will be carried out for the background terminal. The terminal number
is checked against the terminal configuration generated for TPS. If it is included,
NSHS initialisation is done and SlGNON/SELECT started. As under TPS
SIGNON will ask for and control the user name and password and SELECT will
control the menu choice, as described in chapter 6. Finally the user application
will be started as under TPS, with access to the task common data area.

NIB-60.11104

, 8‘22 Available Facilities in

8-3

the TPS Background System

The available facilities include both TSR simulation routines and other special
TPS functions, such as:

—— control of name/password

— presentation of menu cho ces

—— entry to user programs as under TPS

—- intialising and use of NSHS according to TPS terminal configuration .
parameters

—— full use of the task common data area between independent application
programs (i.e. main programs)

—- use of the interactive debugging options of FORTRAN and COBOL

Most TSR simulation routines w
but a few will carry out an actior

ll only consist of a return to the calling program
similar to that under TPS. These routines are:

r

—- TSWAP - the new application program will be started with access to the
task common data area

-— TSTOP - the transaction wi

—- TWMSG - a message will
TPS operator

ll be terminated normally or abnormally

be written to the user terminal instead of the

——- TACW - if called by the TPOPEN application, the new application will be
started as for TSWAP, else return to calling program with no action

ND-60.111.04

8.2.3

84

Load-Common and Save—

When application programs are run u
make free use of the TSWAP facil
another. Since it is normally not pos

Common Routines

1der the TPS background system, they may
ty to switch from one main program to
sible to have common data areas between

independent main programs in background mode, special provision must be
made for making the task common data area available to all application
programs. This is done by two
save—common (SCOMMO).

CALL LCOMMO (<array>)
CALL 'LCOMMO' USING <array>.

CALL SCOMMO., (<array>)..

routines, load-common (LCOMMO) and

CALL 'SCOMMO’ USlNG <array>. ' 1

Parameters.“

<array> COBOL: the first variable at the beginning of the
task common data area (Le.
WORKING-STORAGE)

FORTRAV: the first variable in the task common
data area (Le. ITERM)

Examples

CALL ’SCOMMO’ USING TASF

CALL LCOMMO(ITERM)

Load-common (LCOMMO) loads the

I—COMMON—AREA .

task common area from a file on the disk
and should always be called as the first executable statement in the application
program. Save-common (SCOMMO) saves the area back on the disk and should
be called right before the program does a TSWAP to another program.

Dummy versions of the LCOMMO and SCOMMO routines are included in the
TPS library routines for real—time programs. Therefore it is not necessary to
remove these calls when the application program is done being tested and is
loaded as a real-time program.

ND- 60.111.04

8.2.4 Running the Backgro

When the debugging option is
of the loader NRL, in order to
be dumped together with the
loader after loading the progra
option should be done in the fol

—- Make sure that the followi

TPS:PROG
SIGNON2PROG
SELECT:PROG

9— ‘ Load applications with NR

—- Dump all of memory with

8-5

und System

mad, the program must be run under the control
use the debugging facilities, i.e. the loader must
program and the RUN command given to the
m. This means that testing with the debugging
lowing steps:

ng programs exist as PROG files:

the @MEMORY and @DUMP commands

- Start TPS:PROG by writing TPS on the terminal to SlNTRAN

— Wait for SlGNON to senc the (user-defined) screen picture and then give
your name and password you must be in the user-table)

— Wait for the menu picture and indicate the correct choice to start your
application (the application must be in the menu table)

-— if the application exists as a FROG file (Le. has been loaded and dumped)
it will be started in the loader

— The RUN command must now be given to the loader to start the
application in the debugger

—- Debugging commands ca
the CONTINUE command

Examples of compiling, loading
are given in section 8.1.6.

"l be given and the application itself started with

and running programs with the debugging option

ND-60.l 1 l .04

8.2.5

8—6

Testing in Background Mode

When application programs are tested in background mode, several facilities are
available which are not available when running them as real-time programs, such
as the possibility of initialising data areas at compile time, using the ACCEPT,
DISPLAY and EXHIBIT statements in COBOL, etc. These may be used, but it is
recommended that as few changes as possible be introduced during background
testing since converting to RT progra

However, some special consideration
mode. Among them are the following:

’ the device number for the termi
,1 (this isdone automatically-by-

ms should be as simple as possible.

s must be taken when testing in background ,’_ '

nal (in ITERM (1) if NSHS is used) must be ’
the backgroundsystem)- ,1 ~

unitialised data areas will be cleared (but not COMMON areas)

calls to NSHS, SIBAS and SIN'IRAN routines allowed in background will be
executed in the usual way, but special TPS routines, such as TRMSG
(read-message) and TACTV (activate concurrent task) may be different in
background, as mentioned above. This may demand some changes to the
program

the FORTRAN compiler should not be set to reentrant mode, whereas the
debug mode may be used. Using the debugging option is described in
chapter 13 of the FORTRAN Reference Manual.

the background versions of NSHS and the SIBAS interface module
(DMb8lMULATOR—BACKGROUND) must be loaded.

The TPS background library, the TPS user library and the PIN library
(FORTRAN-l BANK) must be loaded with programs in all languages.
COBLIB must be loaded with COBOL programs.

if a SIBAS system is to be used that is already running (for example under
TPS), no further action needs to be taken to use it from a background
program. However, if SIBAS is not yet running, it must be started up as an
RT program with the RT command (See appendix A, S/BAS on NORD—IO,
of the SIBAS User’s Guide). The data base of course must have been
defined and created. Doing this

the TPS background system car
the task common data area

is discussed in chapter 9.

I be used to start the transaction and save

These points are summarized in Figure 8.1.

MID—60.1 11.04

Makes as few Chang es as possible

Uninitialised data are as are cleared

_. Dvovzlnotuse reentrant mode

I'D‘ebog mode may be used-

Load background versions of SIBAS, NSHS

Load TPS backgroun
TPS -— USER

d library
ibrary

FORTRAN-1 BANK

Start SIBAS

Use the TPS background system
to start the transaction

Figure 8. 7: Testing in Baa/qground Mode

\lD—60.111.04

8.2.6

8-8

Compile and Load Examples

Examples are given here for compiling FORTRAN and COBOL programs in the
debug mode, starting the background system, loading the programs with the
relocating loader and running them. Together with the program itself is loaded
NSHS (background version) or FOCUS, the SlBAS DML simulator (background
version), the TPS background library, the TPS user library and the COBOL
runtime system. There are many pcssibilities in the debugging mode: setting
breakpoints, inspecting locations, tracing, stepping through the program. The
examples show running the program with the trace mode on. _ -

Example
- COBOL ,

‘ @COBOL

*** NORD—iO COBOL COMPILER ***
*ggsuc—MODE
*COMPILE APOZS-SYMB,L-P,APO23-BRF
** O DIAGNOSTIC MESSAGEKS) **

@m.
- NORD—lO RELOCATING LOADER -

*LOAD APOZB-BRF
*LOAD DML-SIMULATOR—BACKGROUND
*LOAD TPS-BACKGROUND~LIBRARY
*LOAD TPS-USER-LIBRARY
*LOAD NSHsuBACKGROUND
*LOAD COBLIB
”LOAD FORTRAN-1BANK
*DUMP AP023:PROG
*EXIT
@LPs.

Wait for SIGNON picture, enter name and password.
Wait for MENU picture, enter correct choice to start appl.o
The application will start in the debug monitor.

-—- NORD COBOL INTERACTIVE DEBUG MONITOR ---

*gggcs-on
Io

“RUN execute the application program
a

*EXIT
@

ND-60.111.04

8—9

Example - FORTRAN

@FORTRAN-TOO
ND-1OO ANSI 77 FORTRAN COMPILER

FTN: DEBUG-MODE ON
FTN: COMPILE APOZZ-SYMB,L-P,AP022—BRF

265 STATEMENTS COMPILED
FTN: EXIT

“@NRL.

- NORD—TO RELOCATING LOADER -

*LOAD APOZZ—BRF , ,_- . w
*LOAD DML-SIMULATOE-BACKGROUND
*LOAD TPS-BACKGROUND-LIBRARY
*LOAD NSHS-BACKGROUND
*LOAD FORTRAN~1BANK
*EXIT
@MEMORY 0 177777
@DUMP AP022 1 1
@2118.

Wait for SIGNON picture, enter name and password.
Wait for MENU picture, enter correct choice to start appl.

”RUN
&T§KCE AP022,1OO AP022,200

&CONTINUE execute the application program

&EXIT
@

ND—60.111.04

8.3

8-10

REAL TIME PROGRAMS

This section describes how to load application programs as RT programs to the
TPS system. When new application programs are loaded, application information
must also be entered into the application table (TPS-TABLES).

This section describes the procedures for updating the application table and for
loading applications, both new ones a
(General Purpose Macrogenerator), is

nd replacements. A special program, GPM
available to simplify the commands to the

RT loader and the Linkage Loaderifor ND-SOO). This program should. be used to ,
generate mode files for loading applications, and the load procedure described in i
this manual assumes it is available. All TPS files in this section belong to a
special user, called TPS—-—U‘SER here. This user name is a system generation
parameter, and- if another name: is specified. the. correct user name will'
automatically be put into the files whe ”ever necessary.

When loading a program for the first time, it may be best to ”test load" it
separately before loading it together with other programs. Error messages do not
always indicate which program caused the error.

ND-60.111.04

8.3.l

8-11

The Loading Procedure

The following steps should be followed when loading application programs:
(summarised in Figure 8.2):

——- Make any changes necessary to the ND-lOO-programs to run them under
TPS instead of as background programs. Remember to declare them as RT
programs with the proper program names.

., - Compile the programs - in the reentrantmode if FORTRAN-100. The, object.
program files can have any names‘and belong to any user. However, the
file type must be BRF for ND—lOO and NRF for ND~500.

.~, If new application programs are to be. loaded. enter TPS-USER, fetch PED
or QED and read the file TPS-TABLES:SYMB.

Compile the program
Reentrant mode if FORTRAN- lOO

Update
TPS- TAB LES: SYMB

Run
COMPlLE- TABLES: MODE

Update
SPECXFY- LUAP: SYMB

Run
BUILD~,LUAP:MODE

Run
LOAD- UEER- APPL: MODE

Figure 8.2: RT Load Procedure

Make sure that the entries corresponding to the applications are present in
the table and that the names of the applications correspond to the indexes
in TPS-TABLES. Fill in the desired values in the application entries and
make sure that all values are filled in - empty fields are not allowed. An
entry has the following format:

ND-60.1l1.04

8-12

ENTRY APXXX, SAWYY, SPRZZ

the name of the application program: must be the same

checkpoint weight; ”heavy" weight causes
frequent checkpoints, light weight infrequent, allowed values

ENTRY APOiO, SAWS, SPRlZ

After the updated TPS-TABLE
compiled using the mode file
places the BRF code in the file

The applications (both new one
Enter TPS-USER. Use PED or
and specify the information r
specified using these macros.

MAIN MACROS

l LOAD—SEGMENT, sag—no, pu
indicates that a ND—lOO 5
segment number is given <
to contain public pictures
segment name must be 3
several reentrant segment
segment which will be
applications on this applic
of the names in the macro
TPS—CONF. Consult your T

l LOAD—~5008EGMENT, doma
sub-macros;

indicates that an NDEOO-s
domain and segment spec
case, they will be createc
NRF, or it must be empt
pictures.

ND-60.l

priority within TPS,’ allowed valuesSPRO-w, '
01applications.may_be considered. as one .-
O-applicatio‘ns as another group. SPRZZ
inside the appropriate group.

APXXX =
as the program name

SAWYY = the application

SAWO ~ SAWiS

SPRZZ 1 = the application
- . SPRlS, All. N010

group and NDSC
gives the priority

Example:

8 file has been written back, it must be
COMPlLE-TABLES:MODE. This mode file

(TPS—USER)TPS-TABLES:BRF.

s and replacements) must now be loaded.
EU to read the file SPEClFY-LUAP28YMB
ecessary to load the applications. lt is

blic-pic-file, reent sag-name, sub-macros;
egment is to be cleared and loaded. The
and the public picture file, if the segment is

(See Section 77 and 7.8). The reentrant
pacified if your TPS-configuration contains
;. lf so, this parameter names the reentrant

used when loading and running the
ation segment. The name must equal one
NAME—REENT‘SEG in the file (TPS-USER)

PS system supervisor.

in name, segment name, public-pic-file,

egment is to be cleared and loaded. The
ified may exist or may be new. ln the latter
i. The public picture file must be of type
y if the segment is not to contain public

11.04

8-13

SUB-MACROS

l ADD~APPL,file-name, prog-id;
indicates an application program that is to be loaded on the ND—lOO
segment given in the last load—segment macro. The name of the BRF
file containing the application and the program name APXXX must be
given.

1 ADD-500 APPL, file name, prog-‘d; _ ,
. indicates an application program that is to be loaded on the

' ND-SOO-segment given'in the last load-SOO—segment- macro. The name
of the NRF file containing the application and the program name
APXXX must be given.

lADD~COB—SUBROUTINES, fi|e~name;
indicates that user COBOL subroutines in the given file are to be
loaded on the NDlOO-segment. This submacro can only exist once
within a T LOAD—SEGMENT macro.

l ADDmUNlT, file~name;
indicates that user subroutines in the given file are to be loaded on
the ND—lOO segment. These subroutines can be called by all
application programs and other subroutines on the segment. The
subroutines will be loaded regardless of whether they are called or
not.

l ADDr—SOQUNIT, file-name:
indicates that user subroutines in the give} file-are tobe loaded on
the ND—500~segment. These subroutines can be called by all
application programs and other subroutines on the segment. The
subroutines will be loaded regardless of whether they are called or
not.

An example of the macro input to the SPEClFY-LUAP28YMB file with 4
ND~lOO-applications and 2 ND-500 applications follows. One
ND-lOO-segment is loaded with 2 FORTRAN applications, one with 2
COBOL applications and one ND-SOO-segment with l COBOL and l
FORTRAN application. Both use subroutines and public pictures.

ND~60.111.04

8-14

Example

“CRMOD;
@ENTER RT,,,30
@HEAD LUAP
‘ICRMDD;
‘%,Load 2 FORTRAN programs on segment 205;
:LOAD—SEGMENT, 205, (USER-NAME)PUBLIC: BIN,,

ADD-APPL, (USER NAME)FTN-APXX1, APXX1;
ADD—APPL, (USER NAME)FTN~APXX2, APXXZ;
ADD—UNIT, (USER—NAME)FTN—sUBs;

' Z1%, ;' must end each LOAD-SEGMENT;
%, Load 2 COBOL programs on segment 206;

~ LOAD-SEGMENT, 206, (USER-NAME)PUBLIC: BIN,,
ADD-APPL, (USER—NAME)COB-APXXB ,APXXB;
ADD-APPL, (USER-NAME)COB—APXXM, APXXH;
ADD-COB-SUBROUTINES, (USER-NAME)COB—SUBS;
ADDwUNIT, (USER-NAME)FTN-SUBS;

:%, Load 1 Fortran and 1 Cobol program on the 500;
LOAD~SOOSEGMENT, DOM—A, SEG—1 ,,
ADD-SOOAPPL, (USER-NAME)5-FTN-APXX5, APXXS;
ADD-SOOUNIT, (USER—NAME)5-FTN—SUBS;
ADD~SOOAPPL, (USER—NAME)5-COB—APXX6, APXX6;
ADD-SOOUNIT, (USER—NAME)5—COB—SUBS;

“CRMDD;
EXIT

%, This MODE file must be run last;
@MODE (TPS-USER)SAVE-TATAB:MODE,,

- After the SPECIFY—LUAP:SYMB file has been updated and written back, the
BUILDwLUAPrMODE file must be run. This activates the Generai Purpose
Macrogenerator, GPM. GPM uses several system files and the above
macros as input and produces a new mode file,
LOAD—USER—APPLzMODE, as output. BUiLD—LUAPzMODE is as follows:

@GPM
YLOAD—USER—APPLzMODE output file and "Y" answer to GPM

question)
GPM—LIBRARY system file
lNiT—MD—ADDR system file
TPS CONF system file
GLOBAL—~MACROS system file
USER—MACROS system file
SPECIFY-LUAP user file

ND~60111.04

8'15

Finally the mode file LOAD—USER——APPL:MODE must be run under the
user RT. Before it is run, make sure that no applications on the segments
to be loaded are active if TPS is running and give the SET~UNAVAlLABLE
operator command.

There is one exception to this rule lt is possible to load a new version of 8
application program while the old one is active if it is done as follows:

~ the new version must be loaded on a different segment

—- both segments must only contain the one application
program (ls subroutines if used).

2 D-60.l11.04

8.3.2

8—16

Programs and Files Required

The loading procedure described here

Programs:

PED or QED
RT-loader
GPM
HEAD
NDEOO LlNKAGE-LOADER (if NDSOO-TPS)

Files:

(USER—NAME)user4progs:BRF
(USER—NAME)user-subs:BRF
(USER——NAME)public-pics:BlN

requires the following programs and files:

(USER-NAME)public-pics:NRF (If NDSOO-TPS)

(TPS—US ER)TPS——TAB LES:SYM B
(TPS—USER)COMPILE~TABLE82MODE

(TPS—USER)SPECIFY-LUAP:SYMB
(TPS-—USER)BUILDuLUAPzMODE
(TPS—USER)LOAD——USER——-APPL:MODE

TPS—USER GPM~LlBRARY28Y MB
TPS—USER lNlT—MD-ADDR:SYMB

(l
l)
(TPS—USER)TPS—-CONF:SYMB
(TPS—USER)GLOBAL—MACRO.
(TPS-—USER)USER—~MACRQS:S
(TPS—USER)SAVE——TATAB:MO

Note that there may be several sets of

3:3YMB
YMB
DE

the 3 files

(TPS—USER)SPECIFY—LUAP:S\ MB
(TPS—USER)BU|LD—LUAP:MODE
(TPS—USER)LOAD-—USER——-AP

varying the names. Each set of 3 ca
programs. in this manner, the load
particular set of application program
files every time.

ND-GO

3L:MODE

n be used to load a group of application
files can be saved and used again if a

s is to be reloaded without changing the

111.04

8.3.3

, Example

8-17

Compile and Load Example

The complete procedure for loading the 2 FORTRAN and 2 COBOL programs in
the ND—lOO and l FORTRAN and l COBOL program in the NIB-500 from section
8.3.1 is given here. lt is assumed that they are all new applications
(TPS—TABLES must be updated), and that the FORTRAN programs are put on
one segment and the COBOL programs on another. They both use a set of
FORTRAN subroutines and public pictures

Compile the programs

ES‘C

ENTER USER-NAME
o

@FORTRAN- 1 OO

ND-‘lOO ANSI 77 FORTE

FTN: REENTRANT-MODE
FTN: COMPILE FTN—APX

NNN STATEMENTS COMPI

AN COMPILER

ON
X1:SYMB ,L—P ,FTN—APXXl :BRF

LED

FTN: COMPILE FTN-APXXZ:SYMB,L—P,FTN-APXX22‘BRF

NNN STATEMENTS COMPI

FTN: COMPILE FTN-SUB

NNN STATEMENTS COMPI

FTN: EXIT
@COBOL

*** NORD-TOO COBOL C

*TPS—MODE
*COMPILE COB—APXX3 : S

*“ O DIAGNOSTIC MESS

*COMPILE COB-APXXMS

** O DIAGNOSTIC MESS

*EXIT

LED

S :SYMB ,L-P ,FTN-SUBS : BRF

LED

OMPILER 9”“

YMB,L—P,COB-APXX3:BRF

AGE(S) **

YMB,L-P,COB—APXXD:BRF

AGE (S) **

ND-60.111.04

8-18

@EE-égg
ND-SOO MONITOR

N500: FORTRAN-500

ND—SOO ANSI 77 FORTRAN COMPILER

FTN: COMPILE 5-FTN-APXX5,L-P,S-FTN—APXX5:NRF
FTN: COMPILE 5-FTN-SUBS,L-P,S-FTN—SUBS:NRF
FTN: EXIT ' ,

‘JNSOO;ICOBOL-500’

ND-SOO COBOL COMPILER

*COMPILE 5—COB—APXX6,LaP,5-COB-APXX6:NRF
*COMPILE 5-COB-SUBS,L-P,S-COB-SUBS:NRF
*EXIT

N500: EXIT

@LOG

Update and compile TPS-TABLEIS

ESC

ENTER TPS—USER

@1132 or QED

edit TPS-TABLES

list TPS-TABLES

ENTRY APOO1,SAW10,SPR1O
ENTRY AP002,SAW5,SPR2

o

ENTRY APXX1,SAW8,SPR2
ENTRY APXX2,SAW8,SPRS
ENTRY APXX3,SAw5,SPR2
ENTRY APxxu,SAw2,SPR15
ENTRY APxxs,SAwu,spR9
ENTRY APXX6,SAW7,SPR11
)LINE
*w TPS-TABLES
*EXIT
@MODE COMPILE-TABLES:MOEE L—P

ND-60.1 1 1.04

Update SPECIFY-LUAP:SYMB

@PED or QED

edit SPECIFY—LU!

list SPECIFY—LUA

‘CRMDD;
@ENTER RT,,,3O

- @HEAD LUAP
' ICRMOD;7

%, Load 2 Fortran p
LOAD—SEGMENT, 205, (L
ADD-APPL, (USER—NAME
ADD-APPL, (USER-NAME
ADD-UNIT, (USER-NAME

%, ’;' must end eac
%, Load 2 Cobol pro
LOAD-SEGMENT, 206, (U
ADD-APPL, (USER—NAME
ADD-APPL, (USER—NAME
ADD-UNIT(USER~NAME)

:%, Load 1 Fortran a

8—19

lP:SYMB

P:SYMB

rograms on segment 205;
SER-NAME)PUBLIC: BIN,,
)FTN—APXX1, APXX1;
)FTN-APXXZ, APXXZ;
)FTN-SUBS;

h LOAD-SEGMENT;
grams on segment 206;
SER-NAME)PUBLIC: BIN,
)COB—APXX3, APXXB;
)COB-APXXH, APxxu-
FTN-SUBS;

nd 1 Cobol program on the 500;
LOAD—SOOSEGMENT, DOM—A, SEC—1,
ADD-SOOAPPL, (USER-N
ADD-SOOUNIT, (USER-N
ADD-SOOAPPL, (USER-N
ADD-SOOUNIT, (USER—N

“CRMDD;
EXIT

AME)5—FTN--APXX5,APXX5;
AME)S~FTN—SUBS;
AME)5~COB-APXX6,APXX6;
AME)5—COB—SUBS;

%, This mode file must be run last;
@MODE (TPS USER)SAVE

write SPECIFY—LU

list BUILD-LUAPfl

@GPM
YLOAD-USER—APPLzMODE

GPM-LIBRARY
INIT—MD-ADDR
TPS-CONF
GLOBAL-MACROS
USER-MACROS
SPECIFY—LUAP

exit

—TATAB: MODE,,

AP:SYMB

WODE

file
Y answer to GPM question)
file
file
file

output
(after
system
system
system
system file
system file
user file

lD—60.111.04

8—21)

Run BUILD-LUAP

@MODE BUILD-LUAP:MODE L-P
@LOG

Run LOAD-USER—APPL
ESC

ENTER 32
'@MODE (TPS-USER)LOAD-USER-APPL:MODE L—P_

' 1. @APP-BATCH ,15 (TPS'FUSER)LOAD¥USER5APPL :MODE‘ L-P‘, I ' 1 a: f M '

ND-60111.04

, ABEND . ,A fRSTRT ' "'

A-1

APPENDIX A

APPLICATION NUMBERS FOR SPECIAL
APPLICATIONS. VI

SINOF
SLECT
SINON

. TPMON (NDSOO—TPS only)

CHECK
ROLBK

’ RCOVR
TPCLO
TPOPN I

I
l

I
I

I
I

I
l

I
o
c
o
o
o
x
n
m

m
y
$
w

m
~

o
‘

ND~60.111.04

ND-60.1 11.04

B—1

APPENDIX B

SAMPLE FROG RAMS

To be inserted later

(VD-60.11134

ND~60 111.04

APPENDIX C

ERROR MESSA

1. COMPILE TIME ERRORS

Compile time error messages (
. program is written in, i.e.

' ND FORTRAN-Reference
l. ND COBOL Reference Ma

ND PLANC‘Reference Ma
' NORD PL User's Guide

MAC User’s Guide

2. BUILDlNG THE LOAD FILE

When running BUILD—LUAP:M
error messages:

UNMATCHED >.
PROBABLY MACHINE ERROR.

Usually caused by a mis
errorl).

NON—DIGIT IN NUMBER‘

A numeric parameter cont

UNDEFINED NAME.

Unrecognised macro-nam
of the macro names LO;
ADD-SOOAPPL, ADD—UNIT,

There are more GPM error-me
building the load-file. However,
does not accept. The errors may

1) Incorrect spelling of the m

2) Missing parameter in a m
the missing parameter in ti

3) Superfluous character(s) ir
to the load-file. Occurs, fc
two semicolons instead of

N

C-1

tGES

are described in the manual for the language the

Manual
nual '
nual' _

DDE, the GPM program may give the following

sing semicolon in the source«file (not machine

ains non-numeric characters.

3 encountered. Usually due to incorrect spelling
5tD—SEGMENT, LOAD~5008EGMENT, ADD—APPL,
ADD-COB-SUBROUTINES and ADD-SOOUNIT.

ssages, but they are not likely to appear while
GPM may produce a load file that the RT-loader
then be of three kinds:

BCI'O parameters.

acro call. The string NIL is then substituted for
1e load—file.

the macro file. The same characters are copied
r instance, where a macro call is terminated by
ORS.

060,111.04

3. LOAD TIME ERRORS

Error messages from the real~time lo

SINTRAN Ill Real Time Loade

ader are described in the manual

r.

and messages from the ND-SOO Loader are described in the manual
ND-SOO Loader/Monitor

In addition, the TPS load program LOTAB may give the following error messages:

, APPL MISSING/CHECKLO‘A‘D LISTING _ .

' ' The application has not been loaded for some reason or the program name
declared in the-,program‘is not
for an error message from the

ERROR IN OBJECT CODE

found; in-TPS-TABLES.- Check the load listing .
RTloaden

The application program being loaded does not start with the standard
FORTRAN or COBOL entry point coding

TOO LARGE WORKING STORAGE FOR COBOL APPL.

The total size of the data area
exceeds the fixed maximum.

ERROR IN OPENING TCF FILE

TCF file (checkpoint file) can n
try again.

WRITE ERROR ON TCF FILE

Error return from file system wh

APPLICATION SEGMENT SIZE EXCEE

The available space for applicat

ND-60.

(or working storage for the main program)

at be opened. If already open, close it and

en attempting to write on the TCF file.

DED

on programs is exceeded.

111.04

These error messages may also

NDSOO DESCRIPTION FILE ACC

Error return from fil
file:(RT)DESCRIPTlON-FIL

DOMAIN NAME NOT FOUND II‘

Some error occurred in th
LOAD-USEFl-APF’LzMODE

SEGMENT‘NAME NOT FOUND

Some error occured in the
LOAD-USER-APPLzMODE

NDSOO LINK FILE ACCESS ERRC

esystem when

C-3

appear when loading ND-SOO applications:

ESS ERROR

attempting to access the
EzDESC

I DESCR. FILE

e LINKAGE LOADER when running the mode—file:
Check the load listing.

N DESCR. FILE

LlNKAGE-LOADER when running the mode-file:
Check the load listing.

)R

Error return from filesystem when attempting to access the file:
seg—name:LINK. Check the load listing.

ND500-APPL.MISSING, CHECK LOAD LISTING

Same as "APPLMISSING,

NDIOO-APPL. EXISTS AS RT-PR

An RT-program with
TPS-Ioad-procedure. Use
such programs, then use
order to remove such prog

r

N

CHECK LOAD LISTING"

OGRAM (APXXX)

lame APXXX exists. This is fatal for the
the command @LIST-RT—PROGRAM to detect
the RT-Ioader command DELETE—PROGRAM in
ram(s).

D-60.111.04

0—4

4; RUN'TlME ERRORS

Run time error messages can come f'om several sources:

——- The application program itself may write error messages on the user
terminal using normal output Statements. It may send error messages to
the TPS operator using the write—message TSR. The contents of these error
messages are determined by the programmer.

—— The application program may call ERMON to write the standard error
message on, the SlNTRAN error device (usually terminal 1):

hhlm‘mss-E‘RROR‘nn N r} AT ll ’

USER ERROR. SUBERRORiss _

where

hhimmss time when the message is printed

nn user error number

rr TPT identification

ll address of error in application program

ss user suberror number

— The application program may call ERMSG or OERMS after an error return
from a SlNTRAN routine. A SINTRAN error message will be written on the
SINTRAN error device. These messages are described in the SINTRAN |||
User’s Guide.

— The FORTRAN or COBOL runtime systems may write error messages.
FORTRAN messages will be written on the SlNTRAN error device (usually
terminal 1), while COBOL messages will always be written on terminal 1.
These error messages are described in the manuals

ND FORTRAN Reference Manuz
ND COBOL Reference Manual
ND—PLANC Reference Manual

ND-Sll‘lllflll

if a program is abnorm
time systems, or the prc
to O, the following erro
console.

APPL. NO. aaa ABEND

lN_ADDR yyy TPT NC.

DUETO reason
reason

DATA BASE ACTIVITY: .

Codes:

aaa

t‘t

YYY

reason (text)
or reason (code)

C—5

ally ended by TPS, the FORTRAN or COBOL run
gram itself using TSTOP (n) where n is not equal

r message will be written on the TPS operator’s

TPS
ED BY RUNTIME SYSTEM

APPLlCATlON

tt

(text) if abended by TPS .
(code) if abended by appl. or RUNTlME SYSTEM

NONE
READ ONLY
UPDATE PERFORMED

TPS application no. (0—255)

TPT no. (1-63)

Latest link register

lf abended by TPS, one of the following texts:
0=Abended by operator
1 =Application cannot be activated
2=l|lega| use of TSRs
3 = Subroutine not loaded
4=Application Timeout
5=lnternal TPS error
6 = Operator timeout
7=Attempt to restore ND-500 application
8= Error from ND—SOO monitor

If abended by application:
Stop code given in TSTOP

If abended by runtime system
SlNTRAN error code

D-60.1H.04

ND-60.111.04

~~ Waumusmmwnu.

APPENDIX D

TPS SEGMENT STRUCTURE IN ND-1OO

In the drawing, the dark line sl'ows how the 64K address space is used when
application programs are running. The application program goes from O to P2,
the TPT plus user data area from P2 to P3, the reentrant segment from P3 to Pit

-— reentrant'segments from t

— TPT segments (T = 6 in ex

— special and system applica

—- user application segments

—- system segment (1), OPCO

Total number of segments:

The other iines show the segmer ts used for:

to 9 (Rzi in example)

ample)

tion segments (8 = 5 in example)

U = 7 in example)

M segment (3) and scratch segments (3)

7 + R + T + S + U (26in example)

in addition, a TPT segment is shc wn in more detail.

For the segment structure in TPS—ll, see also the manual, ND TPS-ll User’s Guide
ND-60.195.

0—60.11104

{64 K

0-2

I System Segment 1
' I
I Oocom Segment 1 J

r) l

I 5 I
' 1

2 3 a
I Scratch Segment 1 I

E 2 JI
: 3 4

. H I Arum. 1
l I g I ,

I 10 ' ' 1 Appl..10'
I t

. 7 I 8 I 9 IIAcp’L 7~9

I 6 I Appl. 6

I 4 I 5 I Appl. 4—5
I u 1

I 2 I 3 n AppL2—3

| 1 I Appl. 1

. SIGNON I

SELECT I

OTHER SPEC!AL APPLICATIONSI___......._.____I
I SYSTEM APPLICATIONS 1 I

SYSTEM APPLICATIONS 2
fi-—-—-——-——-———1

TPTSl————-———4
TPTS

TPT4I——--—-—-4

T‘PT3
l————-—-—-———J

T'PTZ

‘I TPT1 I

I Reentrant I

seq.
0‘ Application I TPT’ andI Reentrant 1 RT"

' /1 1\ II / data P3 \\589. PIcemrnon

// \
/ \

/ \
/ / \\

/ \
// \\:’/ 1 Common I Local \I

TPT data data

' ND-60.111.04 "'

lkl’F’EEhl[)l)(I§E

MONITOR CALLS AND LIBRARY CALLS

1.MONITOR CALL ROUTINES A

NUMBER NAME

. o, . LEAVE

L 1 I 1 INCH

2' «' ' cqH

3 ECHOM
4 BRKM

11 'HME

26 LASTC

42 OPEN

43 CLOSE

62 RMAX

64 ERMSG

65 QERMS

66 152E

e7 0317,13

73 SMAX

74 SETBT

75 REABT

LLOWED [N TPS PROGRAMS:

NUMBER

76

77

' 104

111

112

113

117

120

122

123

124

125

134

142

162

VD—60.111.04

NAME

SETBS-

SETBL

HOLD

UPDAT

CLADJ

CLOCK

RFILE

WFILE

RESRV

RELES

PRSRV

PR LS

RTEXT

ERMON

OUTST

E-2

2‘. LIBRARY CALL ROUTINES

All standard library routines are allowed in TPS programs with the exception of
the following DOUBLE word and COMPLEX routines (these can be obtained upon
special request):

DINT CSQRT
DFLOAT CEXP

Iowmrqlu”.f"*¢LoaLf'
IDMOD‘. ’ ’CQN

A'oonhfi ""“"¢56s”

DMAXl CABS
DNHNl

DSQRT

DEXP

DLOG

DLOGlO

DaN

DCOS

DATAN

DTAN2

DABS

NIB-60.11104

APPENDIX F

SCREEN—HAN!

FOCUS-CALLS

FC/N/TE (init FOCUS)

CALL FCIINITEUnitiation-arr

FCDECFF (declare form file).

V CALL FCDECFFUorm—filg-n

FCDECFN kdeclare form name)

CALL FCDECFN(form~nam<

FCDECRC (declare record)

CALL FCD ECRC(number—oi
first—occurence-number, Ia

FCEHEC (edit record)

CALL FCEREC(data-record,

FCWREC (write record)

CALL FCWREC(data-recorc

FCEFLD (edit one field)

CALL FCEFLD(field-name,o
data-element-length,edit—rr

FCWFLD (write one field)

CALL FCWFLD(field~name,
data-element-length,status

FCEDSTA {get edit status}

CALL FCEDSTA(number-of
terminating—code,status)

FCCLREC (clear data record)

CALL FCCLREC(data-recor<

2

F-1

D LIN G CALLS

ayt,private-form~buf‘fer,status)

ame,status)

a,mode,status)

-field—names,field-names,
st-occurence-number,status)

edit-mode,status)

,status)

ccurence-number,data-element,
ode,status)

accurence-number,data-element,

fields-edited,record-status-array,

Lstatus)

D—60.111.04

F-Z

FCCLFDS (clear fields)

HCALL FCCLFDS(mode,status)

FCESFLD {set edit start fie/d)

CALL FCESFLD(field~name,occ Jrence-number,status)

FCOPEN {open file)

. CALL FCOPEN(file-nameaacgesswcode,fileynumber,status) _

FCCLCSE (dose file)

- [CALL FCCLQSE(file~nun§ber,statps) :. v

FCPRDOC (print document on file)

CALL FCPRDOC(data-record,file-number,status)

FCZMSGE {send message)

CALL FCZMSGE(message,status V

FCGMSGE (get message)

CALL FCGMSGE(leading-text,message,status)

FCCLSCR (clear rectangular area on screen)

CALL FCCLSCR(from-line,from-column,to—line,to-column,status)

FCWDO” (write text)

CALL FCWT)(T(line,column,text,leng,status)

FCR7XT {read text)

CALL FCRTXT(|ine,column,text,Iang,status)

ND-60111.04

NSHS-CALLS IN MD100

GTP/C and CGTP/C (get picture)

CALL GTP!C (picture-file-
picture—number—array, statL

CALL ’CGTPIC' USING piCL
picturemame-string, pictur

RMPIC (remdvé pictura)

CALL RMPIC (number-of-

GFI'DN (get fie/d numbers)

CALL GTFDN (picture-nur

F-3

name, number-of-pictures, picture-name—string,
IS)

:tre-fiIe-name, number-of-pictures,
e-number-array, status.

pictures, picture-number-array, status)

nber, number-of—field-indicators,
field-indicator-array, field-r umber-array, number—of—fieids, status)

WHPTD (write picture to display

CALL WRPTD (picture-nu mber, status)

WRPTF and CWRPTF {write-picture—to~fi/e)

CALL WRPTF (file-number, flag, code, picture—number, number-of-fieids,
field-number-array, record,

CALL 'CWRPTF' USING
number-of—fields, field-nun
status.

data-e)ement-index—array, status)

file-name, flag, code, picture-number,
1ber-array, record, data-element-index-array,

WMSGE and CWMSGE (write-message)

CALL WMSGE (text)

CALL 'CWMSGE’ USING text.

WFLDS {write fields to v0U)

CALL WFLDS (code, pictL1re~number, number-of—fields,
field-number-array, record, data-element-index-array, status)

N 160.1 11.04

RFLDS {read fields)

CALL RFLDS (code, picture-nu nber, number-of-fields, field-number-array,
record, data-element-index-arra
terminating—character, status)

CFLDS {clear fie/d5)

, number-of-fieids—read,

CALL CFLD’S (picture-number, number-of—fields, field-number-array,
Status)"

’ CLSCR (clear-screen) ,

CALL CLSCR (code, first—line, last-line, start-or-end-position, status)

CLBUF (clear-buffer)

CALL CLBUF (picture-number, wumber-of-fields, fieid-number-array,
record, data-elementJndex-array , status)

ZREAD/HHEADZLOCK/RLOC/(ZMUST/RMUST (set/remove - XXXX)

CALL Z/R XXXX (picture-number, number-of‘fields, start—index,
field—number-array, status)

ND-60.1 11.04

'-,.;

APPENDIX (3

SIBAS CALLS

SUMMARY OF

OPEN-DA TA-BASE

THE DML—STATEMENTS

lCALL SOPDB (mode, data base name, password, status) '

CLOSE-DA TA—BASE‘.

CALL SCLDB (data base

READY-REALM

CALL 8 R R LM
protection-modes, status)

FINISH-REALM

CALL SFRLM (no. of real

F/ND-US/NG-KEY

CALL SFTCH (realm nam

F/ND-F/HST-BETWEEN—L/M/TS-

CALL SFEBL (realm nai
length)

name, status)

no.-of-realms, realm-names, usage—modes,

ms, realm names, status)

8, key name, key value, status, key length)

USING—KEY

T18, key name, low limit, high limit, status, key

F/ND-LAST—BETWEEN—LIMITS-US/NG KEY

CALL
length)

FIND-FlRST—lN-REALM

CALL SRFIR (realm name

SFLBL (real name, key name, low limit, high limit, status, key

a, status)

ND-60.111.04

G-z'

FIND~F/RST-IN-SET \ . ,

CALL SRFSM (temporary data Jase key, set name, status)

FIND‘LAST—lN-SET

CALL SRLSM (temporary data b

. FlND-FR/ORalN-SET

CALL SRPSM (temporary data b

F/ND-NEXT-IN-SET

ase key, set name, status)

ase key, set name, status)

CALL SRNSM (temporary data base key, set name, status)

FIND—NEXT—IN-SEARCH—REGION

CALL SRNIS (temporary data be
status)

FlND-PR/OR-lN—SEARCH—REG/ON

se key, temporary search region indicator,

CALL SRPlS (temporary data base key, temporary search region indicator,
status)

FlND-SET-OWNER

CALL SRSOW (temporary data b

GET

CALL SGET (temporary data has
status)

GETN

CALL SGETN (temporary dat
indicator, no. wanted, no. of items

GET-INDEXES

ase key, set name, status)

e key, no. of items, item list, item values,

a base key, temporary search region
, item list, item values, no. found status)

CALL SGIXN (temporary data base key, temporary search region
indicator, no. wanted, item values no. found, status)

ND-60.111.04

MOD/FY

CALL SMDFY (tempora
values, status, value lengt

STORE

CALL STORE (realm na
value length)

ERASE

CALL SRASE (temporary

CONNECT

CALL SCONN (temporan

CONNECT-BEFORE

n)

G~3

ry data base key, no. of items, item list, item

me, no. of items, item list, item values, status I

data base key, option code, status)

data base key 1, set name, status)

CALL SCONB (temporary data base key 1, temporary data base key 2, set
name, status)

CONNECTAFTER

CALL SCONA (temporan
name, status)

D/SCONNECT

data base key 1, temporary data base key 2, set

CALL SDCON (temporary data base key, set name, status)

INSERT

CALL SINSR (temporary

REMOVE

CALL SREMO ,(ternporan

REMEMBER

CALL SREMB (temporary

data base key, key name, status)

data base key, key name, status)

id, option code, status)

D-60.111.04

FORGET

CALL SFORG (temporary id, op

LOCK

tion code, status)

CALL SLOCK (temporary data ease key, option code, status)

- UNLOCK

CALL SUNLK (status)

CHANGE—PASSWORD

CALL SCHPW (new password, status)

ACCEPT

CALL SDBEC (set name, realm name i, realm name 2, item name,
dmlstatement code, dbec)

EHASE—ELEMENT

CALL SEREL (temporary data base key, no. of items, item list, status)

ACCUMULA TE INTEGERFLOA TING 0f? DOUBLE WORD

CALL ACClD/ACCFD/ACCDD (temporary data base key, no. of items, item
list, increments, new values, stat

CHANGE— THE-S/BAS-SYSTEM

CALL SETDV (system-no.)

EXECUTE-MACRO

us)

CALL SEXMC (input, length of input, output, length of output,status)

UPDA TE-DA TA—BA SE—lN-PLA CE

CALL SUPLA (update ratio, trig

ND-BO.

ger code, checkpoint id, status)

11.04

G-5

SUBEG

CALL SUBEG (run—id, t-unit-type, status)

SUEND

CALL SUEND (run~id, COMIT or ROLL-BACK, status)

SET ROUTINE LOG ON/OFF

CALL ONLOG (status)
CALL OFLOG (status)

BEGIN/END SEQUENCE

CALL BSEQU (sequence-name, status)
CALL ESEQU (sequence- wame, status)

FETCH/GET

CALL SFTGT (realm name, key—name, length—of-key, key-value, number of
items, items-list, item-values, status)

RESTRICTED S | BAS CALLS

CHANGING STA TES

START
STOPS
SRUN
SPAUS
SRECO
SHNI
STREP
SPASS

ND—60.111.04

LOGGING

INLOG

CHECKPO/NT/ROLLBA CK/FI’EPROCESS

SCHPO/GCHPO
SROLL
SICON

‘ SREPR

MISCELLANEOUS '

. ifflESULB/RELIS} ‘ _
"SABOR " ‘

CHCOM
sumo
STRLG
RBLAN/SBLAN/ZTRB
SINFO

ND~E 0.111.04

H-1

APPENDIX H

TSR CALL FORMATS

A complete format description of all TSR calls in alphabetical order is given in
this appendix. Examples are given in FORTRAN and COBOL.

If called from PLANC, all routines must be declared as ROUTINE STANDARD
in IMPORT statement; PLANC~rcutines should call CGBRD and CWMSG instead V.
of TGBRD and 'lWMSG, using type "BYTES" for the parameter <text>.

Note: When called from ND-SOO, all parameters in TSR-calls must have a
word—length of 32—bits. Text. strings are packed 4 bytes into each word.

Also in NDSOO, no "INTEGER" data element may exceed 215-1 in absolute value,
due to the data—range in NDlOD. lf this range is exceeded, TSR‘calls having a
return status, will be given the value -lO: INTEGER range overflow.

ND-60.111.04

H-2

(ICSIBFiEJ

Get a broadcasted message, if there is any for this TPT (COBOL form).

CALL'CGBRD’ USING <text> <status>.

Exit Parameters:

‘ <text> _ l. ,7 V A Character string where the received text is to be _-
' ’ " ' H ‘ ' . placed: The, record shouldhave a length-pf “72,.

characters

. . <status>5H . qLOKl-tegtzplacedinatray , ,
=——l, N: broadcast message has arrived ii 1

Rules:

— CGBRD must be used for character strings without descriptor words (i.e.
COBOL and PLANC programs)

~ The text may not exceed 72 characters; it will be terminated by an
apostrophe and padded with blanks

-— The broadcast may have come from an application program using the
TBRDC TSR or from the TPS operator using the BROADCAST command
or the MESSAGE—TO-UNIT command

Example:

COBOL: CALL 'CGBRD’ USING MESSAGE/AREA STATUSuCODE.

PLANC: IMPORT (ROUTINE STANDARD VOID, VOID (BYTES, INTEGER WRITE) :CGBRD)
CGBRD(TEXT,STATUS)

ND~60.1H.04

CWMSG

Write a message on the operator’s console

CALL 'CWMSG’ USlNG <text string>.

En try Parameter:

<text string> a c haracter string containing the text to be written-
out. ~

Rules:

—— CWMSG must be used to
COBOL and PLANC progra

r character strings without descriptor words (i.e.
ms)

—- The text string may contain CR and LF. lt must be terminated by a ’ and
may not exceed 256 bytes. Bit 7 (parity bit) in each byte must be O.

—— The message will be supplied with time, date and source identity

Example:

COBOL: CALL 'CWMSG’ USING

PLANC: lMPORT (ROUTINE STA
CWMSG (TEXT)

MESSAGE-TEXT.

NDARD VOID, VOID (BYTES): CWMSG)

MID-60.11104

H-4

TAAVA

Set an application available.

CALL TAAVA (<application numbe
CALL 'TAAVA' USING <application

Entry Parameter:

7< application number>~ The TPS

Exit Parameter:

Ii<staitus>y ' ' ' =0; OK "

3r>, <status>)
number> <status>.

application number '

2-4, illagal application number

Rules:

—— TAAVA indicates the same actic
(SET-AVAILABLE)

-- Cailable from special application

Examples:

CALL TAAVA (12, lSTAT)

n as the corresponding operator command

3 only

CALL ’TAAVA’ USING APPL-NO STATUS—CODE.

ND-60 111.04

TABND

H—5

Stop the TPS system immediate y (abnormal end).

CALL TABND (<scope>)
CALL ’TABND' USlNG <scope>.

Entry parameter

<scope>w =0

Ru/es:

-— TABND indicates the same
(ABEND-—TPS)

if global abend (all TCMs)
if local to current TCM

action as the corresponding operator command

—-— Callable from special applications only

- No return to the application after calling this TSR

— Only global action allowed

Examples:

CALL TABND (0)
CALL ’TABND’ USlNG ZERO.

N

at present

D-60.111.04

7,“ , .aj

TABST'

Read the abend status of the current

CALL TABST(<record>)
CALL ’TABST’ USlNG <record>.

Entry Parameters:

None‘

Exit Parameters:

record(l) I

record(2)

record(3)

record(4)

record(S)

record(6)

record(7)

Previous

Previous
acfivein

Data ba
=0, DB

Current
applicati

task.

appl.'number M J

appl. status (Not active =0, active =1,
3 TSR-call -2)

56 activity for previous application (none
opened =1, DB updated =2)

TPT no (2-63 if normal processing - special
ans TPOPN, CHECK, TPCLO, ROLBK,

RCOVR will always be executed on TPT no i).

ABEND activated by TPS (=0), previous appl. (=1) r

or by run-time system (=2).

ABEND information:
If abended by TPS: (record(5) = O)
0= abended by operator.
1 = impossible to activate application.
2= illegal use of TSRs.
3= subroutine not loaded.
4= application timeout.
5= internal TPS error
62: operator timeout.
7= attempt to restore SOD—application
8= error from SOC—monitor

if abended by an application: (record(fi) = l)
record(6
previous

If abend

) contains the parameter reasonused by
application when calling the TSR TSTOP.

ed by run-time system: (record(S) = 2)
Standard SlNTRAN error code.

AB END— location:

Latest link register.

ND-60.111.04

H-7

record(8) , First application activated for this TPT

record(9) Termination strategy (see TSTST)

record(10) Termination application

record(1l) At end strategy (see TSAST)

record(l2) Al: end application

record(13) , Re start strategy (see TSRST)

record(14) 'Restart application

‘ ‘ reCOrdl’TS) ‘ ’ Cl 3S9 strategy (see TSCST)

record(16~30) Ur used

Rules:

-— Callable from ABEND only

—— Words 1-3 refer to the previousapplication, not the calling application

—- Words 5-7 are 0 if ABEND has not been activated

Examp/es

DIMENSION [REC (30)
CALL TABST (IREC)

CALL ’TABST' USING ABEND———RECORD.

ND-60.l l l .04

TACTV

Activate a concurrent task.

CALL TACTV(<application number
CALL 'TACTV’ USlNG <applicat
<status >.

Entry Parameters

{application number} The TPS

>, <record>, <size>, <status>
on number> <record> <size>

application nUmber

<record> Data array/record that is to be transferred to the ..
- * ' ' - new,“ activated task, This record-is treated as: a?” '

contiguo 15 string of bytes. Be aware of
ND~100/ND-500 difference in word-length.

<size> Size of <record> in bytes.
Size may not exceed 2000 bytes (decimal).

Exit Parameters:

<status> =0, OK ~task activated.
=——l, Parameter error (ill. appl. no/record size too
large)
=~2, Nc TPT available at present. Another attempt
may be performed after an appropriate pause.
==-—-3, The application is unavailable

Rules:

Up to 2000 bytes of data can
activated task. The data will
common data area

The new task will be given a TPT

If no TPT is available, an error co

Examples:

DlMENSlON |DATA(5)
CALL TACTV (52,!DATA,10,lSTAT)

CALL ’TACTV' USING APPL~52 DA'

ND—BO

be transferred from the activating to the
De placed at the beginning of the task

from the current TCM

de is returned

l'A—-REC TEN STAT—"CODE.

111.04

TAPST

Read the status of an applicatic n.

H-9

CALL TAPST(<application number>, <record>,<status>)
CALL ’TAPST' USlNG <app|ication number> <record> <status>.

Entry Parameters:

< applicationnumber>

Exit Parameters:

record(l)

record(2)

record(3)

record(4)

record(S)

record(6)

record(7)

record(8)

record(9)

record(10-30)

< status >

The TPS application number.

Application state:
== ND-SOO application ready

ND-lOO application ready
Not available.O

—
‘N

il
ii

if \lD-lOO, application language
1 = COBOL
O = FORTRAN/PLANO
if ND~500, 0

If \lD-lOO, start address
If \lD-SOO,

Left byte: ND-SOO segment number
Right byte: ND-SOO appl.no. in current segment.

if ND-lOO, application segment number
if ND-SOO, ND-SOO domain number.

Application checkpoint weight.

Application SlNTRAN priority and NDSOO priority.

Current number of TPTs active on this application.

Size of maximum task common

NDlOO: Reentrant segment number used by this
application.
NDSOO: = O

Unused

=0. OK.
=——1. Parameter error (ill.application number)

ND-60.111.04

H-i

Ru/es:

— If the application does not exist, record(1) will be 0.

—— MAC/NFL application will be given as FORTRAN because they must be
FORTRAN—compatable.

Examples:

L DIMENSION lREC(30) » ‘
CALL TAPST (20, lREC,lSTAT)

. oi APPL~RECORD‘. . . ,
’ " 05' RECORD COMP occUns 30.
CALL'TAPST’USlNG 20 APPL—RECORD,

TASET

Set the absolute execution time for
time.

an application to be started at some future

CALL TASET (<module>, <apolication number>, <param l>, <param
2>, <time>, <status>)

CALL ’TASET' USING <module> <application number> <param l>
<param 2> <time> <status.>.

Entry Parameters:

<module> The module number of a TCM

<application number> The TPS application number

<param 1> <param 2> Decimal integer parameters that are placed at the
beginning of the task common data area

<time> Data ariay containing the absolute execution time
as 6 decimal integers (second, minute, hour, day,
month, ear)

NIB—60.11104

Exit Parameters: _. ..

<status> = 0, OK — execution time set

II I-4, No time queue element available
= ——5, Parameter error

Rules:

-‘ — if ’no TPT is available wh‘enthe task is to be started, an error'message'will‘ I
be written on the TPS operator console

—— The time resolution is!) sesondsv

Examples:

DlMENSlON ITIME(6)
CALL TASET (33,2,95, ITIME, lE

CALL ’TASET’ USING TCMl
STATUS—CODE.

STAT)

APPL—Z TERM—9 TYPE—5 ABSOLUTE—TlME

ND~60.111.04

H42

TAUNA

'Set an application unavailable.

CALL TAUNA (<application numb3r>, <status>)
CALL 'TAUNA' USING <application

Entry Parameter:

<application number$ ""The'TPS

Exit Parameter:

{st‘atus> #0, OK

number> < status >.

applioation number 1

3-1, illegal application number

Rules:

—- TAUNA indicates the same action as the corresponding operator command
(SET-UNAVAILABLE)

—— Callable from special application

CALL TAUNA (15,lSTAT)

s only

CALL 'TAUNA' USING APPL-FIVE STATUS-CODE.

ND-GO .111.04

TBRDC

H-13

Broadcast a message to terminals connected to an lOM or TFTs controlled by a
TCM.

CALL TBRDC (<module >, <sub-address>, <text>, <units>, <status>)
CALL TBRDC’ USING <module> <sub—address> <text> <units>
< Status > .

_ Entry Parameters:

<module >

module (1)

module (2)

module (3-n)

< sub—address >

sub~address(1)

As array/record identifying the lOM or TCM module
to which the broadcast should be sent.
if 'modUle man, the lOM to which this application
is connected will receive the broadcast, otherwise
the array/record should be prepared with these
elements:

Address type. These types are allowed:

Type 1: Address is a number which identifies the
module within TPS.

Type 2: Address is a string of alphanumeric
chara-cters which identifies the module by its name.

Size of address in bytes.

Actual address of module.

The terminal or TPT to which the broadcast should
be sent.
The construction of this parameter is identical to
that of <module> , except that it identifies a unit
within the environment of a module — only
applicable if the message is to be sent to one
specific unit only.

Address type. These types are allowed:

Type 1: Address is a number which identifies the
unit within the module.

Type 2: Address is a string of alphanumeric
characters which identifies the unit by its name.

Type 3: Address is in any format
(alphanum./integer/comp./BCD) which is relevant
for the addressing of units in the given
environment. This address type is denoted as the
”native" address type. ‘

ND—60.111.04

H-14

sub-addresl) Size of address in bytes.

sub-address(3—n) Actual address of unit.

<text > An array/record with the text to be written.
The text should not exceed 72 characters, and
should be terminated by an apostrophe (’).

<units> =0, means broadcast to all units connected to this
‘ ' ' ' .module.. _ ' : ' '~ "

=1, means broadcast to all'active units connected
to this module.
=2, means that the message should be sent to a

specific. unit. within the module, as: specified'in“ ’ ‘
<sub-address>.

Exit Parameters:

<status > =0, OK — Text written as specified.
==-1, Parameter error - nothing written.

Rules:

-— The message is written on the eminals on the broadcast line (usually the
bottom line)

— Messages sent to TPTs can be read by the application program with the
TGBRD/CGBRD TSR

— The message may not be more than 72 characters long and should be
terminated by a apostrophe

- All texts should be defined as arrays or Hollerith strings, not character
strings, in FORTRAN

Examples

CALL TB RDC (MO DU LE,0,lTEXT,0,lSTAT)

CALL ’TBRDC' USING MODULE SUB-ADDRESS TEXT~STRlNG TWO
STATUS- CODE.

ND—60.111.04

TBSEO.

Marks the beginning of a critical

CALL TBSEQ

CALL ’TBSEQ’.

Parameters

None

Rules

— This TSR should be used
used by TPS itself.

TCHCK

Take a synchronised checkpoint

CALL TCHCK(<scope>)
CALL ’TCHCK’ USlNG <scope

Entry Parameter:

H-15

sequence according to SlBAS.

with care since the critical sequence facility is

of the TPS system.

V

<scope> =0 if global checkpoint (all TCMs)
=1

Rules:

— TCHCK initiates the same
(CHECKPOINT—TPS)

— Only global action allowed

Examples:

CALL TCHCK (0)

CALL 'TCHCK' USING ZERO.

if local to current TCM

action as the corresponding operator command

at present

ND-60.l11.04

TCLOS

Close the TPS system in a controlled

CALL TCLOS(<scope>)
CALL ’TCLOS' USING <scope>.

Entry Parameter:

<scooe':> - - , m0 if 9!
=1 iflo

Hales: " “

manner (normal end).

Jbal closelall TCMs)
:al to current TCM

-— TCLOS initiates the same action as the corresponding operator command
(CLOSE—TF8)

—— Callable from special applicatio 13 only

— Only global action allowed at present

Examples:

CALL TCLOS (0)

CALL 'TCLOS' USING ZERO.

ND-GUJYLM

TCONF

Get the values of certain config

CALL TCONF (<record>)

iration parameters.

CALL ’TCONF' USING <record>.

Exit Parameters:

record“). ' _ Numberof TPTs belonging to the current ,TCM

record(2) Number of applications in this TPS system

» ..record(3} . ~ - r , Device number of operator console

record(4) Application time-out in seconds

record(5) Operator time out in seconds

record(6) TCM number for this TPT

record(7-30) Unused

Rules:

-— Callable from special appl'cations only.

Examp/es:

DlMENSlON lREC(30)
CALL TCONF (IREC)

CALL ’TCONF' USING CONF-R ECORD.

ND-60.111.04

H-18

TCONT

Continue normal TPS operation.

CALL TCONT(<scope>)
CALL ’TCONT’ USING <scope>

Entry Parameter:

<scopé> . , ' =0 if glob
=1 if loca

Hales: A.

~— TCONT initiates the same action
(CONTINUE—TF8)

—- Callable from special applications

—— Only global action allowed at pres

Examples:

CALL TCONT (0)

CALL ’TCONT' USING ZERO.

NDaBO

al continue (all'TCM'S) ‘
l to current TCM -

as the corresponding operator command

only

;ent

111.04

TDCNT

Remove (disconnect) an applicat

CALL TDCNT(<module>, <a
CALL 'TDCNT' USING <modul

En try Parameters:

H—19

ion from the time queue and the interval table.

pplication number>, <status>).
e> <application number> <status>.

<module> - The module number of a TCM

<application number> The TPS application number

Exit Parameters:

< status > =.-- 0, OK, application disconnected
= -—5, Parameter error

Examples:

CALL TDCNT (32, 25, lSTAT)

CALL ’TDCNT' USING TCMO AF

TESEO.

PL—ZS STATUS—CODE.

Makes the end of a critical sequence according to SlBAS.

CALL TESEQ.
CALL 'TESEQ’.

Parameters:

None.

Rules:

-— This TSR should be used
used by TPS itself.

ND-60.111.04

with care since the critical sequence facility is

H~20

TG BRD

Get a broadcast message, if there is any for this TPT.

CALL TGBRD(<text>, <status>)

Exit Parameters:

<text> V . _ A string ,of‘the type CHARACTER where the

received text is to be piacedwTheVrecord -sh_buld_..a ' h
have a length of 72 characters

<status> ' » :0, OK‘ text placed in array
' =x ~1, No broadcast’message has arriyed ' - '

Rules:

—- TGBRD must be used for character strings with descriptor words (i.e.
FORTRAN character strings)

—— The text may not exceed 72 characters; it will be terminated by an
apostrophe and padded with blanks

~ The broadcast may have come from an application program using the
TBRDC TSR or from the TPS operator using the BROADCAST command
or the MESSAGE-TO-UNIT command

— Should not be called from PLANC (use CGBRD).

Example:

CHAR BTEXT'72
CALL TGBRD (BTEXT, lSTAT)

ND~60.111.04

THALT

Halt the TPS system temporaril .

CALL THALT(<scope>)
CALL ’THALT’ USING <scope

Entry Parameter:

< scope > .

Ru'les-r'

(HALT—TPS)

Callable from special app

Examples:

CALL THALT (0)

CALL 'THALT' USlNG ZERO.

THSYN

Do not allow a synchronised
TTSYN call

CALL THSYN
CALL ’THSYN’.

Parameters:

None

Rules:

If a checkpoint message
application program cal
however be frozen in the

Only global action allowec

lD-60.111.04

H~21

> .

3 if gldbal halt (all TCMs)
1 if local to current TCM

THALT initiates the same action as the corresponding operator command

ications only

i at present

checkpoint to be taken until the next Tl'RAN or

comes, the checkpoint will not be taken until the
s Tl'RAN or TTSYN. Other TPS modules will
meantime.

TlN'll'V

Set the execution interval for a periodic application. If this application is
activated once, it will continue periodically.

CALL TINTV (<module>, <applic
<interval>, <status>).

CALL 'TINTV' USING <module> <
' 2> <interval>. <status>.

Entry Parameters:

ation number>, <param l>, <param 2:>,

application number> <param l> <param

V~<'module>i* .' 7 , Themoclule number ofa TCM ‘ " i "

<application program> The TPS application number

<param l> <param 2> Decimal integer parameters that are placed at the
beginning of the task common data area

<interval> Data array containing the execution interval as 4
decimal

Exit Parameters:

integers (seconds, minutes, hours, days)

<status> = 0, OK — interval set
= ——4, No interval table element available
a ——5, Parameter error

Rules

—— TlNTV will not itself start peri
program. This must be done by

odic execution of the specified application
some other means.

—— A new interval starts at each tirr e of activation.

— if the application already has
will replace the old one.

—— If no TPT is available when the
be written on the TPS operator

— The time resolution is 5 seconds.

an execution interval, the specified interval

task is to be started, an error message will
:onsole.

ND~63.111.04

Examples:

DIMENSION INTVL (4)
CALL TiNTV (32, i4, 0, 0, WW!

CALL 'TINTV' USING TCMO APE

TMISC

H~23

”ISTAT)

3L—14 ZERO ZERO INTERVAL STATUS—CODE.

Read the miscellanous TPT information.

CALL TMISC (< record>)
CALL ’TMISC' USING <record>

Exit parameters:

record (1)

record (2)

record (3)

record (4)

record (5)

record (6)

RT

Ty:

description address of calling TPT.

)e of last message

mber of TSWAP’s since TPT was allocated.

Operator timeout.

Ap

Pai

plication timeout.

:ket size.

D-60.1H.04

H-24

TPASZ

Set the packet size for session data.

CALL TF’ASZ (< packet size>, < status >).
CALL 'TPASZ' USING <packet size>

Entry Parameter:

' ‘kpacket:size'>v, I, ,, ‘. A.:»decim
' bytes

Exit Parameter:

<status> 0, OK
«~1, error

Rules:

—— Maximum permitted packet size

< status > .

= 2047

—— Default packet size is specified at system generation

— The value specified with TPASZ

Examples

CALL TF’ASZ (512, iSTAT)

3 used only for current transaction

CALL 'TPASZ' USING SIZE—1000 STATUS—CODE.

ND-BD. 111.04

a} integerfcontainingthe ‘ packetv‘sizev inf ' ' "

TRSMG

Get error message from the NE

CALL TRSMG (<record>,<siz
CALL ’TRSMG' USING <recor<

Entry Parameter

None

Exit Parameters:

<record >*' ‘ " A
re

H-ZS

3—500-monitor

e>)
i> <size>

”'a'fay‘Whe'e "’9' message wm be placed. The ‘ "
cord must be able to hold a minimum of 200

characters.

< size > n

Ru/es:

-—- Callabte from special ap;
= 8 (error from BOO-men

Examples:

DIMENSION IRECUOO)
CALL TRSMGURECJLEN)

dicates number of characters in the message.

)Iication ABEND only, and oniy by "abend cause"
tor) when abended by TPS.

CALL 'TRSMG' USING TEXT—STRING LENGTH

ND-60.111.04

H-Zl

1FFRIVHES(3

Read a message from session partner

CALL TR MSG
CALL

(<record > , <size

Entry Parameters

, <size. >_

The message is received exa
formatting or editing is performs

if no message has been sent,
message arrives

Examples:

CALL TRMSG (IREC, lSlZE, MORE,

CALL'TRMSG' USING MESSAGE S

ND«60

’TRMSG' USING <record>
> , <more > , <status >)
<size > <more > <status>.

'< record >‘ Size of . in bytes.

Exit Parameters:

:~"‘&r‘ecord‘ >7" ' ' h I "Data Will be placed in this data'area as it arrives. ‘V I ‘ ‘
No formatting is performed by TPS, the record is
treated as a contiguous string of bytes. Be aware of
ND—lOO/ND—SOO differences in word-length.

<size > indicates actual size of received message.
Maximum size is 2047 bytes. if over-flow, <size >
is unchanged.

<more > Indicates that session partner has more to send if
i, that you are free to send data if 0.

<status > =0, OK — <record > contains data.
=—1, Session broken.
==-—2, <record > too small for the message
(overflow).
== ~3, Direction=output (input not allowed).

Flu/es:

ctly as it was sent from the IOM. No
C!

the program will wait in TRMSG until a

STAT)

lZE MORE STATUS-«CODE.

.111.04

TROLS

Roll the TPS system back to the

CALL TROLS(<scope>)
CALL 'TROLS' USlNG <scope

Entry Parameter:

H-27

last synchronised checkpoint.

<scope>>= ' i. z :0 if global-rollback (allvTCMs)
'1 =1 if local to current TCM

Rules."

—— TROLS initiates the same action as the corresponding operator command
(ROLLBACK—TPS)

— Callable from special app ications only

—— No return to the applicatian after calling this TSR

— Only global action allowej at present

Examples:

CALL TROLS (0)

CALL ’TROLS’ USING ZERO.

ND-60.111.04

TROLT

Roll the TPS system back to the last transaction checkpoints (recovery).

CALL TROLT (<scope>)
CALL 'TROLT’ USING <scope>.

Entry Parameter:

<scope>_ _ . V 7 . waif global recovery (all TCMs)-
’ ’ ' =1 if lecal to current TCM V '

. Hill/95f: '

—— TROLT initiates the same actio
(RECOVER—TF3)

n as the corresponding operator command

—— Callable from special applications only

—- No return to the application after calling this TSR

-- Only global action alllowed at present

Examples:

CALL TROLT (0)

CALL ’TROLT' USlNG ZERO.

ND-60.1 11.04

H-29

TRRST

Read the restart status of the c irrent task.

CALL TRRST(<record>)
CALL ’TRRST’ USING <record>.

Entry Parameters:

None- .

Exit Parameters:

record(T) ” *' Previous appl; number (at latest valid cheCkpoint).

record(2) Previous appl. status (not active =0, active =1,
active in a TSR-call =2)

record(3) Database activity for previous application (none =0
DB opened =1, DB updated =2)

I

record(4) Latest valid checkpoint was a synchronised one
(=0) or a transaction one (=1)

record(S-ll) SlNTRAN time array ~ indicating time for latest valid
checkpoint.

record(12) Current task no (2-63 if normal processing - special
applications TPOPN, CHECK, TPCLO, ROLBK,
RCOVR will always be executed on task no 1).

record(13) Restart strategy {see TSRST).

record(14) Restart application.

record(15) Termination strategy (see TSTST).

record(16) Termination application.

record(17) First application activated for this TPT.

record(18) Close strategy (see TSCST)

record(19-30) Unused.

IND-60.11104

Rules: \

—- Callable from the RESTART special application only

— Words 1-3 refer to the previous application, not the calling application

Examples:

- DlMENSlDN mac (30)
“CALL" TRRSTUREC) - ».

01 RESTART-RECORD. .
y y 05 Reconocompoccuas 30, , .
' ' CALL ’TRRST" USI’NG' R‘EsrARnREroRD:

TRSES

Restore a broken session if possible.

CALL TRSES(<status>)
CALL 'TRSES' USING <status>.

Exit Parameters:

<status> =20, Ok - session re-established.
a —-l, TPS closed.
=-2, Module closed.
== -—3, Unit temporarily not available.
3—4, Unit permanently not available.
a -—5, Parameter error.
==-6, Session terminated.
2—7, Not called from RESTART.

Ru/es:

—- Callable from the RESTART application only.

Examples:

CALL TRSES (ISTAT)
lF (lSTAT NE 0) GO TO no-session

CALL ’TRSES' USlNG STATUSHCODE.
lF STATUS—CODE NOT-:3 0 GO TO hO~SESSlON.

NED—60111.04

'_None- ~

TRSTO

H-31

Restore the NDlOO user applicat on program and restart it at checkpoint.

CALL TR STO
CALL 'TRSTO'.

Parameters:

Rules:

'44 Callable from. the RESTART special application only.
—-— Not callable from the ND-SOO (not possible to restart a ND—EOO-application

at a point inside the application). If it is called from an application running
in the NDSOO, the ABEND-application will be activated with the information
"Attempt restore NDSOO—application."

D-60.1‘ll.04

TSAST

Set the abend strategy for the TPT.

CALL TSAST (<abend strategy>, < abend application >)
CALL ’TSAST' USlNG <abend strategy> <abend application>.

Entry Parameters:

. <abendstrategy> ' 7 The aberd strategies; used by the',3tandard_version>
of the ABEND special application are:
1. switch to SIGNOFF

12,. send an error message to the terminal operator 4 .
switch to SIGNOFF

3. dump the data area for the TPT on the printer,
switch to SlGNOFF

4. switch to < abend application >
5. Halt the TPS system

<abend application> The TPS
started if

Rules:

application number of the program to be
strategy 4

— The abend strategy determines the action taken by the ABEND special
application in a transaction abnormal and situation.

— The default value when a task is started is 1.

—- For all strategies, an error message will be sent to the TPS operator
console‘

— If <abend strategy> =0, it w
:20, it will not be changed.

—— No validation check of <aben<
it is an illegal application, SlGNC

Examples:

CALL TSAST(3,0)

CALL ’TSAST' USlNG FOUR USERwA

ND—60.1

ll not be changed; if <abend application

1 appiication> is performed by TSAST. if
FF will be activated instead at abend.

BEND~NO.

11.04

TSCIN

Set checkpoint interval for syncr

CALL TSCIN (<times in minutes
CALL ’TSClN' <time in minutes

En try Parameter:

Ch
ChE
ChE

V< time in minutes>

Examples:

CALL TSCIN (30)
CALL ’TSClN' USING THlRTY.

TSCLO

Close a session.

CALL TSCLO(<status>)
CALL ’TSCLO’ usmc <status

Exit Parameters:

< status > =2 C
=

z—

ironized checkpoints.

>)
>.

ackpoint interval 0 no. synchronized.-
eckpoints will be taken until the interval has been
nged.

, OK - session orderly Closed
—1, Session already closed
—2, Session considered closed, but not

confirmed by partner.

Rules:

The connection between
and cannot be restored.

The session may be closec

Examples:

CALL TS CLO (lSTAT)

CALL ’TSCLO' USlNG STATUS
N":

the session partners will be completely broken

1 by either of the session partners.

——CODE.
{450.1 11 .04

TSCST

Set the close strategy for the TPT.

CALL TSCST (<clcse strategy>)
CALL ’TSCST’ USING <close strategy>.

Entry Parameter:

<.close'str'ategy>' ' - i=0, normal terminatibn -‘
=1, immediate termination

Rules:

-—« The close strategy determines the action to be taken by TPS when a close
command is given.

-— The default value when a task is started is 0.

— If a close command is pending, a close strategy of 1 will cause immediate
termination.

Examples:

CALL TSCST(0)
CALL ’TSCST' USlNG ZERO.

TSEQU

Marks the end of a critical sequence and the beginning of another critical
sequence according to SIBAS.

CALL TSEQU.
CALL ’TS EQU’.

Parameters:

None.

Rules:

—-- This TSR should be used with care since the critical sequence facility is
used by TPS itself.

ND-60.iil.04

TSEST

H-35

Read the session status of the current task.

CALL TSEST (<record >)
CALL ’TSEST’ USING <reco

Exit parameters:

record (1) Cur. =0

=1
=2

rd >.

rent session state:
, No session active.
, SesSion' request pending.
, Session established.

=3, Session terminate command pending.

record (2) Current direction of session (=1: inbound, =0:
out-bound)

record (3) Total no. of input messages so far in this session.

record (4-10) Tune for latest input message.

record (ll) Total no. of output messages so far in this session.

record (12-18) Tirre for latest output message.

record (19) Session partner, module number.

record (20) Session partner, unit number.

record (21~30) Unused

Rules:

—— Used mainly by the RESTA
application programs.

Examples:

DIMENSlON lSES (30)
CALL TSEST (ISES)

RT special application but also available to other

CALL 'TSEST' USING SESSION—STATUS.

NE~60.111.04

H-36

TSMSG

Send a message to the session partner.

CALL TSMSG (<record > , <size > , <more > , <status >)
CALL 'TSMSG' USING <record > <size > <more > <status >.

Entry parameters:

'»"<record‘-> " -. , Array/Record. to be transmitted tosésSion partner.
This record is treated as a contiguous string of
bytes. Be aware of ND—lOO/ND-SOO difference, in , _

1 word-length. f _ ' ' ' ‘ ’

<size > Size of <record> to be transmitted (in bytes).
Maximurr size is 2047 bytes.

<more > Calling application should indicate whether more
data will follow (1) or not (0) in a following call.

Exit Parameters:

<status > mo, OK -
= -—1, Se
= ~2, Pa
=1, You

Rules:

— The message is sent exactly as
formatting or editing is performs

successful transmission.
ssion broken.
rameter error (Too large <record >)
wave got a message.

prepared by the application program - no
d

— Return to the application program will be immediate without waiting for an
answer

Examples:

CALL TSMSG (ITEXT,lSlZE,1,ISTAT)

CALL ’TSMSG' USING MESSAGE—T
STATUS—~-CODE.

EXT MESSAGE-«SIZE ONE

ND»60.111.04$

TSOPN

H-37

Open a session with a new session partner.

CALL TSOPN (<module>, <:sub-address>, <record>, <size>, <more>,
< status >)
CALL 'TSOPN' USlNG <module>
< more > < status >.

- Entry Parameters:

<module >

module (1)

module (2)

module (3-n)

<sub-address>

sub~address (1)

sub-address (2)

sub-address (3-n)

< record >

<sub-address> <record> <size>

The IOM or TCM controlling the session partner, or
the intersystem communication lOM if the session
partner is in another TPS system. This’parameter is M
an array (FORTRAN) or record (COBOL) with the fol—
lowing elements:

Address type. These types are allowed:

Type 1: Address is a number which identifies the
module within TPS

Type 2: Address is a string of alphanumeric
characters which identifies the module by its
name.’

Size of address in bytes.

Actual address of module.

The device or application program to be session
partner. The construction of this parameter is
identical to that of <modu|e> , except that it
identifies a unit belonging to the module.

Address type. These types are allowed:

Type 1: Address is the unit within the module.

Type 2: Address is a string of alphanumeric
characters which identifies the unit by its name.’

Size of address in bytes.

Actual address of unit.

Array/record to be transmitted to session partner.
Maximum size is 2000 bytes (may be less in some
cases, for example, with an X-25 permanent virtual
channel). This record is treated as a contiguous
string of bytes. Be aware of ND-lOO/ND-SOO dif-
ference in word—length.

ND-60.111.04

H-38

<size> Size of record in bytes.

<more> Indicates whether more data will follow (=1) or not
(=0) in a following call.

' not yet implemented.

Exit Parameters:

<status> v =0, OK — session established.
A ‘ ~ ' . <0;,Notfsuccessful. . ,

=-—l, TPS closed, terminate your task as soon as
possible.
res—2, Module closed. , ‘

. 4—: —-—3,' Unity'temporarily not available, try again}?
2 ~4, Unit permanetly not available.
= —-5, Parameter error.
a: «6, Session already established.
m—7, No TPT available

Rules:

— Only one session is allowed at a time

- A session request for a device controlled by an lOM will result in the
allocation of the device to the requesting application program

-— A session request for an application program will result in the allocation of
a TPT controlled by the given TCM - this does not have to be the current
TCM

—-— Up to 2000 bytes of data may be sent with TSOPN

— At present the session parner must be in the same TPS system. Sessions
between two TPS systems will be implemented later

Examples:

DlMENSlON IMOD (3), |UNlT(3)
CALL TSOPN (lMOD,lUNlT,0,0,0,|STAT)
lF (lSTAT.NE.0) GO TO error

CALL ’TSOPN' USING MODULE SUB-ADDRESS DATAAREC
REC-SIZE MOREvBlT STATUS-CODE.

ND—60.i 11.04

H-39

TSOPT

Set the operator timeout for the TPT.

CALL TSOPT (<time in minutes>)
CALL 'TSOPT' USING <time in minutes>.

Entry parameter: _ .

<time in minutes> Operator timeout time.
=0 The operator timeout is turned off.

Rules:

— The operator timeout could be changed depending on the current applicati-
on.

Examples:

CALL TSOPT (20)
CALL ’TSOPT' USING TWENTY.

IND-60,111.04

TSRST

Set the restart strategy for the TPT.

CALL TSRST (<restart strategy), <restart application>)
CALL’ TSRST’ USlNG <restart strategy> <restart application>.

Entry Parameters:

< restart strategy> - 'The' restart strategies used’ by the standard version ‘ ’
of the RESTART special application are:
1. Rest
2. , Swit

art from checkpoint
ch to <restart application)

3. Automatic'termination
4. The terminal operator chooses the restart acti—
on

< restart application > The TPS application number of the program to be
started if strategy 2

Rules:

— The restart strategy determines the action taken by the RESTART special
application in a restart situatiton

—-— The default value of
default value of

—— If <restart strategy>
application >
=0, it will not be changed

— No validation check of < restart application >

<restart strategy> when a task is started is 2; the
<restart application>

activated (normally SIGNON)
is the first application that is

0, it will not be changed; if <restart

is performed by TSRST. if
it is an illegal application, ABEND will be activated instead of restart

Examples:

CALL TSFlST(2, —-1)

CALL ’TSRST' USiNG THREE.

ND—60.l 11.04

TSTAT

H-41

Read the status of the current task.

CALL TSTAT (<record>)
CALL 'TSTATi USING <record>.

Exit Parameters:

r‘ecord(1)

record(2)

record(3)

record(4)

record(5-11)

record(12)

record(13)

record(14)

recordi15)

record(16)

record(17)

record(18)

record(19)

record(20)

record(21)

record(22)

record(23)

record(24)

CU'rent TPS state, 0- ready, 1 == close requested.

Cu 'rent TCM number.

Cu 'rent TPT number.

First application activated on current TPT.

Time array with TPT allocation time.

Number of TSWAPs on this TPT since allocation.

Database activity (none =0, DB opened =1, DB up-
dated =2)

Number of SlBAS calls since TPT allocation.

Number of SlBAS calls since sync. checkpoint.

Number of SlBAS calls since checkpoint.

Number of SlBAS update calls since TPT allocation.

Number of SIBAS update calls since sync. checkpo—
int.

Number of SlBAS update calls since checkpoint.

Message indicator (no msg =0, msg/broadcast

arrived, =1)

Termination strategy (see TSTST)

Termination application.

Previous application activated on this TPT.

Close strategy (see TSCST)

ND-60.111.04

record(25)

record(26-30)

Examples:

DIMENSlON IREC(30)
CALL TSTATUREC)

H-42

NDTOO: Not used.
NDSOO: Terminal device number of Symbolic
Debugger.
(Debug mode only, else a O.)

Unused.

CALL ’TSTAT’ USlNG TASK~STATUS '

ND-60.1l1.04

TSTO P

Terminate the transaction.

CALL TSTOP(<stop code>)

H~43

CALL 'TSTOP' USING <stop code >.

Entry Parameters:

‘<stop codeS‘ =C, Normal transaction termination. This has the
same effect as STOP RUN (COBOL) or END
(FORTRAN).

>C
coc

<C
giv

——i

, ABEND is activated and may obtain the stop
is from the TSR-routine TABST.

, ABEND is activated and a formatted printout is
en according to the stop code.

, for NSHS errors; lTERM(7) is displayed.

—-2, for SlBAS errors; names of realms, items and
DB

Rules:

—— Normal termination will
application which will ca
strategy

EC codes are displayed

result in activation of the SlGNOFF special
'ry out the action indicated by the termination

— Abnormal termination wrli result in activation of the ABEND special
application which will carry out the action indicated by the abend strategy

-— The application program should release resources and close files before
calling TSTOP as this is not always done automatically

—— TSTOP(O) from special applications will result in complete termination and
release of TPT

Examp/es:

CALL TSTO P (3)

CALL ’TSTOP’ USING ABEND—-CODE.

ND-60.111.04

H—44

TSTST

Set the termination strategy for the TPT.

CALL TSTST (<termination strategy>, <termination application>)
CALL ’TSTST' USlNG <termination strategy> <termination application>.

En try Parameters:

' <termination 'strategy >, The termination strategies used by the standard '
* ' version of the SlGNOFF special. application are:

1. Corr plete termination and release of the TPT
2. Switch to SlGNON,
3. ‘ Switch'to SELECT"
4. Switch to <termination application>

<termination application> The TPS application number of the program to be
started iii strategy 4

Rules:

—- The termination strategy determines the action taken by the SIGNOFF
special application when a transaction terminates

— The default value of <termina1ion strategy> when a task is started is 1

—— If <terminate strategy> =0, it will not be changed; if <termina'te
application> =0, it will not be changed

—— No validation check of <termination application> is performed by
TSTST. If it is an illegal applicat'on, there will be complete termination with
release of the TPT by SlGNOFF

—- The <termination application> must not itself terminate "normally”
unless it has changed the term nation strategy, since this will result in an
endless loop. it may for example terminate by switching to SIGNON.

Examples:

CALL TSTST(2)

CALL 'TSTST' USING ONE ZERO.

ND-60.111.04

H-45

TSWAP

Switch to a new application program.

CALL TSWAP(<application number>, <status>)
CALL ’TSWAP’ USlNG <application number> <status>r

Entry Parameters:

<application number>! the TPS application number

Exit Parameters:

<status> if rot successful switch of application, return to the
calling application is performed with cause in
stems.

—1 = illegal application number
—i. = application not available

Rules:

—— The new application will be started from the beginning. lt will have access
to the data in the task common data area for the transaction. Sessions will
not be broken and resources will not be released when switching
applications

Examples:

CALL TSWAP (APPL, ISTAT)

CALL 'TSWAP' USlNG NEXT—APPL STATUS—CODE.

NED-60.11104

H-46

TTER M

Terminate this task directly and completely.

CALL TTERM (<checkpoint>)
CALL ’TTERM’ USING <checkpoint: V

Entry Parameter:

<cheCkpoint> " V =O,, do not‘ take a transaction checkpoint '
=1», take a transaction checkpoint

Rules:

—-— termination is immediate and direct, i.e. SIGNOFF will not be activated

———u termination is complete, la. the TPT will be freed

— a transaction checkpoint may be taken

Examples:

CALL TTER M(l)

CALL ’TTERM' USING ONE.

NIB-60.11104

TI'EXT

H—47

Send a text message to a term nal connected to an lOM or a TPT controlled by a
TCM.

CALL TTEXT(<module>, <sub-address> <text>, <|ength>, <status>)

CALL 'TTEXT’ USING <module>, <sub-address> <text>, <length>,
< status > .

Entry Parameters:

< module>

module(1)

module(2)

module(3-n)

<sub-address>

sub-address(1)

An array/record identifying the lOM or TCM module
to which the broadcast should be sent.
lf module (l)=0, the lOM to which this application
is connected will receive the broadcast, otherwise
the array/record should be prepared with these
elements:

Address type. These types are allowed:

Type 1: Address is a number which identifies the
module within TPS.

Type 2: Address is a string of alphanumeric
characters which identifies the module by its name.

Size of address in bytes

Actual address of module

The terminal or TF’T to which the broadcast should
be sent.
The construction of this parameter is identical to
that of <module>, except that it identifies a unit
within the environment of a module - only
applicable if the message is to be sent to one
specific unit only.

Address type. These types are allowed:

Type 1: Address is a number which identifies the
unit within the module.

Type 2: Address is a string of alphanumeric
characters which identifies the unit by its name.

Type 3: Address is in any format
(alphanum./integer/comp./BCD) which is relevant
for the addressing of units in the given
environment. This address type is denoted as the
"native" address type.

ND-60.111.04

sub—address(2)

sub-address(3-n)

<text>

<iength >-

Ex/t Parameters:

, . < status,>.

Rules:

H—48

Size of a :ldress in bytes.

Actual address of unit

An array/record with the text to be written.

A decim
bytes

al integer specifying the message length in

:7 0, OK —— Text written as specified
=——-1, Parameter error ——- nothing written

— The message is written on the terminals wherever the cursors happen to be
positioned

—— Messages sent to TPTs can be read by the application program with the
TGBRD/CGBRD TSR

—— The message may not be more than 72 characters long

— All texts should be defined as arrays or Hollerith strings, not character
strings, in FORTRAN

Examples:

CALL TTEXT (M O DU LE,0,lTEXT, l 00,153TAT)

CALL 'TTEXT' USiNG MODULE
STATUS—CODE.

ND-BO.

SUB-ADDRESS TEXT—STRlNG LENGTH

11.04

H—49

TTOFF

Turn off application time out for this TPT.

CALL “ITO FF
CALL 'Tl'OFF'.

Parameters:

None

Hu/es:

—-> The application time out is turned off until the Tl’ONS TSR is called.

TTONS

Turn on application time out.

CALL WONS
CALL 'Tl‘ONS'.

Parameters:

None

Rules:

—- Should be used to turn on the application time out after previous use of
TTOFF

-— The application time out is set to the default value

ND-60.111.04

TTPST

Read the status of the specified TPT.

CALL TTPST (<TPT no>, <appl 10>, <status>)
CALL ’Tl'PST' USING <TPTho> <applno> <status>.

Entry Parameter:

<TPT no>-y :_ - The TPT number (1-63).
0 means "this TPT".

Exit Parameters: a

<appl no) The TPS application number of the application
activated by the TPT

<status> :0, OK
=-1, TPT number out of range

Examples:

CALL TTPST(20,APPL NO, lSTAT)

CALL 'Tl’PST' USlNG SYS-TPT APPL‘NO STATUS—CODE.

TTRAN

Take a transaction checkpoint.

CALL TTRAN
CALL ’TTRAN’.

Parameters:

None

Rules:

-' A transaction checkpoint is the point-of—restart after a recovery operation

7—” ._ Thetransaction checkpoint data will overwrite the data from the previous
transaction checkpoint

—— For ND-SOO-applications, the lc
not be saved on the checkpoint
TPT-data will be saved.

cal data and transaction register block will
file. Only the contents of task-common and

NIB-60.1 11.04

TTRON

Turn on the packet log function

CALL TT'RON (< CPU-number>)
CALL ’TTRON’ < CPU-number>

H-51

Entry parameter

<CPU-nuymber> I ' The CPU—number where the packet Iog Will be
turned on. '
§ 3 in a single CPU‘system.

Example:

CALL TTRON (0)
CALL 'TTRON’ USING ZERO.

I l ROF

Turn off the packet log function

CALLTTROF (<CPU-number>)
CALL’TTROF’ <CPU2NUMBER>

<CPU-number> The CPU-number where the packet log will be
turned off.
=C

Example:

CALL WROF (0)
CALL 'TTROF USlNG ZERO.

in a singel CPU—system.

D-60.111.04

H-S

1TSYN

Allow a synchronised checkpoint

CALL TTSYN
CALL 'TTSYN’.

Parameters:

None

Rules:

A synchronised checkpoint is th

A synchronised checkpoint wi

v
I

e point-of-restart after a rollback operation

I be taken if a checkpoint message has
arrived, else there will be an immediate return to the application program

TWMSG

Write a message on the operator's co

CALL TWMSG (<text string>)

Entry Parameters:

<text string > a string
to be wr

Rules:

TWMSG must be used for ch
FORTRAN CHARACTER strings

The text string may contain CFl
may not exceed 256 bytes. Bit 7

The message will be supplied w

Should not be called from PLAh

Example:

CHAR MTEXT'BO
CALL TWMSG(MTEXT)

ND-60.1

nsole

of the type CHARACTER containing the text
tten out

aracter strings with descriptor words (i.e.
)

and LF. it must be terminated by a and
(parity bit) in each byte must be 0.

'th time, date and source identity

C (use CWMSG)

11.04

APPENDIX I:

TSR CALLS - F

A list of all TSR calls ordered b

Name Function

Task adminstration TSRs

l-1

TACTV Activate a concurrent task

TSWAP Switch to another application

TSTO P Terminate the tr

TTERM Terminate the ta

Set strategy TSRs

ansaction

sk

TSAST Set abend strategy

TSTST Set termination strategy

TSRST Set restart strategy

TSCST Set close strategy

Session TSRs

TSOPN Open session

TSCLO Close session

TRMSG Read message from session partner

TSMSG Send message to session partner

TSEST Read session status

TPASZ Set packet size

NED—60111.04

=UNCTIONAL LIST

y function is given in this appendix.

Callable from
user application

Timing TSRS

TASET

TINTV

TDCNT

TSOPT

TTOFF

TTONS

Message TSRS

TWMSG

CWMSG

TTEXT

TBRDC

TGBRD

CGBRD

TRSMG

Checkpoint/restart TSRs

TTRAN

TTSYN

THSYN

TRSES

TRSTO

TSCIN

Set execution time

Set execution interval

Disconnect execution time/interval

Set operator timeout

Turn off'application time out

Turn on application time out

Write message to opera

Write message to opera

Write message to unit

Broadcast message

Get broadcast message

Get broadcast message

tor

toMCOBOU

(coeou

Get ND-SOO-monitor error message

Take a transaction checkpoint

Allow a synchronised cl”

Do not allow a synchror

Restore broken session

Restart user application

Set checkpoint interval

ND~60.11 .

eckpoint

ised checkpoint

Critical sequence TSRs

TBSEQ

TESEQ

TSEQU

Status TSRs

TSTAT

TABST

TR RST

TAPST

TTPST

TM l SC

TCONF

Marks beginning

Marks end of criti

of critical sequence

calsequence

Marks end and beginning of critical sequence

Read task status

Read abend statu

Read restart status

Read application

Read TPT status

Read miscellaneo

status

us TPT information

Read configuration parameters

Operator function TSRs

TCHCK

TROLS

TROLT

TABND

TCLOS

THALT

TCO NT

TAAVA

TAUNA

TTROF

Ti'RON

Take a synchronised checkpoint

Roll back to synchronised checkpoint

Rollback to transaction checkpoint

Stop TPS immedi ately (abnormal and)

Close TF'S (normal end)

Halt TPS temperariiy

Continue normal TPS operation

Set application available

Set application ur

Turn off packet log

Turn on packet lo

available

ND-60.1ll.04

ND-GO 111.04

J-1

APPENDIX J

TPS ON ND-—500

The TPS/SOO-system contains:

-— An ordinary TPS/100~system with a BOO—monitor running as a special
application (TPMON) in the ND-iOO.

—— 1 Applications that may run in the ND—100 and/or in the ND—SOO.

— SIBAS and screen-handiirg that may run in either or both machines.

ND 100

l
- l

l
i

. i

i
l
i
i
iN 50TPMON

‘ i
i

ON 60
TPMON

i
' I

MON i 60
<——-—————-+i

TPTi
i
i
I

. i
i
l
I
i
i

ND 500

ND 100
TPS
SCREEN-

HANDLING
SIBAS

Figure J. I.

ND-60.111.04

J-2

Each application running in the ND—SOO has a corresponding
SOD-monitor-application, TPMON, running in the NDJOO. The TPS-system in the
ND-lOO sees only this BOO-monitor-application. This monitor has total control of
the ND-500-process where the application is running. However, other TPS user
applications in the ND-TOO or ND-SCO will not see this monitor, they see the
ND—SOO-application only, and in the same way as any other ND-iOO-application.

One TPT running an ND-SOO-application has this segment structure:

SOC-DOMAIN; '(' D EG)

APPLPROG SHARED LOCAL LINK TO ‘

lzPSEG) DATA APPL. DATA —- -- -— -— -- -_
SEGMENT SOD-LIBR.

I l
l I
l l
: l

ND 500 , :
I

lND 100 1 ,
: :
; l

TPMON TPT-DATA
TPMON : APPL. SEGMENT SEGMENT

Figure J.2

ND-60111.04

J~3

All data transfer between the V040!) and ND-500 is done by using the shared
segment, shown in the figure above, in order to minimize the system overhead.
The task common (i.e. COMMON/PRIVATE/) area is located inside the shared
segment area which survives when using the TSR-call TSWAP for switching to
another application in the ND-lOO or ND-SOO. This shared segment is
contiguously fixed in memory during the whole "life" of an application running in
the NDSOO.

The segment structure in one iomain in the NDSOO is shown below. There may
be several domains:

Segment—no.

1 Applications
! D

2 g p

3 l D

27 SlBAS-MESSAGE
l l

Applications

F >

Applications

5 D

30 shared data segment TPS-SOO-libraries
L l I II ' I I
TPT RTCOMMON SlBAS,FOCUS,DEBUGGER,runtime-lib.

31 NDSOO monitor segment
l l

0 134 Mbyte

ND-60.111.04

J-4

ND-SO 111.04

APPENDIX K

GLOSSARY

abend~ abnormal termination of

application- a program run unde
of a transaction

an application program due to an error situation

r the control of TPS to do the actual processing

application, special— see special application

background- a collective term to r timesharing and batch

backup- a copy of the data base, taken regularly and used to restore the data
base if it is destroyed

batch- the processing of data that has been collected over a period of time to be
processed later in a sing
SlNTRAN by using the S|l\

BlM log- SIBAS before-image
changed, logged before th

le run of the application program — done in
TRAN batch processor

log, a log of SlBAS records that have been
3 change is made, in order to be able to roll the

data base back to a previous state

checkpoint- the saving on a file of all data used by a program in order to later be
able to restore the program to its state when the checkpoint was taken

conversational- a program with t

devices, standard— devices with
directly through SlNTRAN

devices, special— devices with w

he ability to carry on a dialogue (see dialogue)

which an application program may communicate

hich an application program must communicate
through a TPS input/output module

dialogue— the exchange of messages between an application program and a user
at a terminal, each messa
partner

DML- the SlBAS data manipula

failure, system~ see system failur

DRL- the SlBAS data definition/

FOCUS - the ND screen handling

99 depending on the answer received from the

tion language used by an application program

e

redefinition language

system (replaces NSHS)

“0—60.11104

K—2

input/output module- a TPS module that communicates with devices such as
networks and special terminals externally and TPS modules internally, an
interface between the devices and application programs

interactive— a direct connection between a user and a program so that immediate
interactions are possible (see dialogue)

IOM- see input/output module

menu- a picture on a display terminal showing the applications available to the
terminal user and allowing him to choose one of them

mode file- a symbolic file containing commands and responses to a program‘ >
usually used interactively, making it possible to run the program in batch: . '
mode ‘

monitor call— a call to a routine in the SINTRAN operating system

network- a group of communication devices, such as terminals and
concentrators, connected by communication lines, and connected to a
computer through a modem device

NSHS- the NORD screen handling sy

OPCOM— the operator communication

stem used to control display terminals

module of TPS containing commands for
controlling TPS and routines for sending messages to the operator from
TPS modules

point-of-failure~ the state of the TFS
system failure occurs. See syste

system and application programs when a
’11 failure.

point-of—restart- the state of the TPS system and application programs after a
system restart procedure has be

real time program- a program that
computing system, fast enough
event

an carried out. See system restart.

is activated by an event external to the
for the program to exert control over the

recovery- the process of restoring the data base after a system failure by rapid
updating from a checkpoint 0' backup copy. The point-of-restart after
recovery is at the last transaction checkpoint

reentrant-— the facility of a program to be used by several users concurrently.
Each user has his own data area, but only one copy of the program itself is
needed.

restart, system- see system restart

rollback— the process of restoring the
undoing the updating after tl'

data base to its state at a checkpoint, by
ie checkpoint. The point-of~restart after

rollback is at the last synchronized checkpoint.

NDv60i‘l 11.04

ROUTINE log- log of all SlBAE
base recovery

segment- an area on mass sto
programs and subroutines

SELECT application— a special
to be used and switch to

session- a connection between V
program or a device controlled by an IOM. Communication between them '
is through the TPS mess

.3 routine calls, used after system failure for data

rage of up to 64K words, containing one or more
; to be run as a single load unit

application to determine which user application is
the application

an application program and another application

age routing system

SlBAS— the data base management» system used by TPS

SIGNOFF application- a spec
transaction terminates

SlGNON application- a speci
controlling the terminal us

SlNTRAN- the NORD operatir
local and remote batch pr

special application- applicatio
perform standard functic
transaction restart after a

stack— an area (in the data part
data for a main program a

synchronised checkpoint— a c
programs at the same tim

system directives— a set of TPE
functions such as start, st

system failure an error situati
normal processing. The

:ial application that is given control when 8

al application used to start a transaction by
er’s identity

9 system, supporting real time, timesharing and
ocessing

n programs supplied with TPS and used to
ns, such as SlBAS system calls, signon and
system failure

of the TPT) for the dynamic allocation of variable
nd its subroutines

heckpoint taken by all TPS
e

and application

\> operator commands to perform system control
so, checkpoint, rollback, recovery

on resulting in the inability of TPS to continue
data base may or may not be intact, but

transaction processing is

system restart- the process of

interrupted in both cases

starting the TPS system after a system failure,
including repairing damage to the data base, restoring the data base to a
consistent state and resta

task- the processing done by
until it is freed again

TCM- the transaction control rr
TPTs

rting transaction processing

a TPT from the time it is allocated by the TCMC

iodule of TPS used to control the allocation of

ND-60.111.04

~K-4

timesharing‘ the use of a computer h
each user in turn control over tl
done in SINTRAN through the

TPT- see transaction processing task

transaction- an interaction between or
base, usually involving a dialoc
application program, resulting
response to the user

transaction checkpoint- a checkpoint
at suitable points in processing

"transaction processing. system? an
facilities needed for the immed
the data base or to retrieve info

transaction processing task- a TPS
started to control the applicatio
and an interface to TPS

transaction service routines- TPS rm
perform functions such as
adminstrating task control

TSR- see transaction service routine

unit- either a device controlled by
transaction processing task con
unit)

y several users at the same time by giving
1e computer for a certain length of time --
SlNTRAN background processor

e or more i/O devices and an on-line data
;ue between a user at a terminal and an
in some activity on the data base and a

taken by an individual application program

onlline computer system providing ' the
ate access to a data base either to update
'mation from it

unit allocated to a transaction when it is
n program and provide it with a data area

itines called by an application program to
communicating with 1/0 devices and

an input/output module (device unit) or a
trolled by a transaction control module (TPT

update file- a file that SlBAS writes updated records on instead of updating the
data base directly. The data has

ND-GO

e itself is updated at suitable intervals

111.04

- 1 -

IN D EX

Section:

abend
causes ... 2.3.2, 6.2.2
error message ... 6.2.2.1
strategy ... 6.2.2
set abend strategy TSR (TSAST) .. 2.3.2.2
user abend application '.. 6.2.2

ABEND special application ... 2.3.2.1, 6.2.2
abnormal termination - see abend
ACCEP’l~ statement (COBOL)....:.. 3.4.3
access control system .. 6.1.3
activate-concurrent-task TSR (TACTV) ... 2.2.1.1
ADD-APPL macro ... 8.3.1
ADD-COB-SUBROUTINES macr) 1.................................... 8.3.1
ADD-UNIT macro ... 8.3.1
Alfascope 3500 terminals ... 3.3.10.4
allocating devices ... 3.4.1
allowcsynchronised-checkpoint TSR (TTSYN) 5.2.3.1
application program ... 2.1

general description .. 1.2.1.4
name' ... 7.4.1
number .. 7.4.1,App.A
priority ... 8.3.1
special applications ... 1.2.1.5, 6

application table - see also TPS-TABLES ... 8.3
asynchronous terminals (FOCUS ... 3.2.3.2

background (timesharing and batch)
programs ... 7.6
system ... 8.2.1
library .. 8.2.5
testing ... 8.2.5
using SIBAS ... 3.1.2

backup, data base .. 5.2.1
batch - see background
before-image log (BlM log)

logging updated records ... 5.2.2
restoring data base ... 5.3.1

BLOCK DATA .. 7.1
BRF format '

application program file type. .. 8.3.1
broadcast-message TSR (TBRDC) ... 4.1.2
BROADCAST command ...4.1.3
BSEQU call (SlBAS) , .. 3.1.6
BUILD-LUAP2MODE file .. 8.3.1

ND-60.111.04

Section:

CGBRD (get broadcasted message TESR-COBOL) 4.1.4
checkpoint .. 5.2.3

efficiency considerations .. 7.5.1
checkpoint, synchronised .. 5.2.3

allowing .. 5.2.3.1
taking .. 5.2.3.3
holding (preventing)..................._......................................; 5.2.3.2
use in. rollback...........................; ; ‘..........5.3.1

checkpoint, transaction ... 5.2.4
taking ..._....5.2.4.1 _ , ,-y

' ~ ' usemrecovery531 ‘ * " 3?"?
checkpoint file

use at synchronised checkpoint ... 5.2.3
use at transaction checkpoint... 5.2.4

checkpoint weight
usmg ... 5.2.3.3
defining .. 8.3.1

CHECKPOINT command .. 5.2.3.3
CHECKPOINT special application .. 5.2.3, 6.4
clock

adjust (CLADJ) ... 4.2
examine (CLOCK and TiME) .. 4.2
update (UPDAT) ...4.2

close data base - see data base, clos ng
close-session TSR (TSCLO) .. 3.3.4
CLOSE file statement .. 3.4.3
CLOSE Strategy ...2.3.1.5
CLOSE ~ TPS command ... 6.3
COBOL programs

input/output .. 3.4
data areas .. 7.1.2-7.1.3
special considerations 7.3.2

common area .
task common data area ... 7.1.2
initialising constant data .. 7.1

compiling programs
background ... 8.2
real time ...8.3

communication
multi-CPU ... 1.2
special terminals .. 3.3.10.3,

3.3.10.4
systems .. 3.3.10.1,

3.3.10.2
concurrent task ..2.2.1.1
CONTINUE-TPS command ... 5.3.2
control (1 .. 3.2.2.2
cursor control ..3.2.1.322
CWMSG (write message to operator TSR—COBOL) 4.1.1

Nib-60.11104

- 3
-

.2, a. Section:

data
constant... 7.1
variable .. 7.1.1
common (task common data area) ... 7.1.2
local ... 7.1.3
size of data areas .. 7.1.4

data base .. 3.1
general description ... 1.2.2.5
opening ... 3.1.3
closing .. '... 3.1.3

, accessing...m...........,..311 »- .
efficiency (open-close)' 7.5.2

data definition/redefinition language (DRL) 1.2.2.5
data entry ... 1.1, 7.5
data manipulation language (DML) ... 3.1.1

SIBAS DML statements ...App. G
data definition/redefinition language (DRL) 1.2.2.5
data/time routine (CLOCK) .. 4.2
debugging option (FORTRAN and COBOL) .. 8.2.4
delayed updating (SlBAS)

updating records .. 5.2.2
restoring data base .. 5.3.1

descriptor word
parameter ... 7.3.3.1
string .. 7.3.3.1

device
general description ... 1.2.2.1
special ... 3.3

opening a session ..3.3.2
session communication ...3.36—3.37

standard .. 3.4
allocating ... 3.4.1
accessing ...3.4.4

disconnect- application TSR (TDCNT) .. 2.2.2.3
display terminal - see screen har diing
DlSPLAY statement (COBOL) .. 8.2.5
distributed processing .. 1.2.2.2, 33

efficiency .. 7.5
ERMON monitor call .. 4.1.5
ERMSG monitor call .. 4.1.5
ERRCODE (FORTRAN)

l/O error code .. 3.4.2
error message ..4.1.5

error messages
ABEND message .. 6.2.2.1
application error messages ...4.1
error message summary ..App. C

ND-60.111.04

- 4 .

Section:

ESEQU call (SIBAS) .. 3.1.6
execution

time ..2.2.2.1
interval ..2.2.2.2

EXHlBlT statement (COBOL) ... 8.2.5

file
allocating‘ <............................. ‘..................., 343
accessing ..'....3.4.4

file status word (COBOL) . -
I/O error,..__.........._....,......_.....-..3.4.2, . -
é‘rrdr'r‘ries'séges..;. " ‘ ' " ' ' ‘ ‘ ' -' ' ‘ "4.115

FOCUS screen handling system .. 3.2.3
general description .. 1.2.2.4
defining forms .. 3.2.3.1
front end CPUs ... 3.2.3.2

FORMS-DEFlNE system (FOCUS) ... 3.2.3.1
FORTRAN library

using ... 7.3.1-7.3.2
loading .. 8.2.5

FORTRAN programs
input/output ..3.4
data areas .. 7.1.2-7.1.3
special considerations ... 7.3.1

future task.. 2.2.2.1

general purpose macro generator (GPM) ... 8.3
get broadcasted message TSBfilTGBRO/CGBRD)...7.7.‘.._._._...;................. 4.1.4

HOLD monitor call .. 4.3
hold synchronised checkpoint TSR (THSYN) 5.2.3.2

lBM-3270-CU input/output module ... 3.3.10.2
lBM—3270—HOST input/output module ..3.3.10.3
illegal monitor call ..2.3.2.3
lNCH monitor call ... 3.4.3
input/output module (lOM)

general description .. 1.2.2.2
device control ... 3.3
available lOMs ...3.3.10

ND-63.111.04

- 5 _

Sect/on:

lNPUT statement (FORTRAN) 3.4.3
internal devices ...4.4
internal time .. 4.2
IOM - see input/output module
IPRlV data area (NSHS) ... 7.1.2
lSO—1745—HOST input/output module ... 3.3.10.4
ITERM data area (NSHS) ... 7.1.2

LCOMMO subroutine .. 8.2.3
LEAVE monitor call ... 2.3.1
load-common subroutine - see LCOMMO
loader ' . . , . ' . '

relocating (NRL) .. 8.2.2
real time (RT-l.) ... 8.3.1

loading application programs
background ... 8.2
real time .. 8.3

LOAD-SEGMENT macro ... 8.3.1
LOAD-USER-APPLzMODE file.. .. 8.3.1
local data - see data, local

MAC assembly language programs .. 7.3.3
main despatcher (MD) ... 1.2.4
menus

master menu ... 6.1.2
submenu .. 8.1.2

message protocols ... 3.3
MESSAGE-TO~UN1T command .. 4.1.4
monitor calls

input/output .. 3 4
other .. 4
illegal ...2.3.2.3
summary ..App. E

more flag .. 3.3.6
multi CPU systems ... 1.2

names
application program names.. .. 7.4.1
user names .. 6.1.1

ND-500 TPS
data areas ... 7.2
description ..App. J
efficiency ... 7.5.1
FOCUS .. 3.2.3.4
SlBAS .. 3.1.5
testing applications ... 8.1

network ... 1.2.2.2, 3.3
NPL programs ... 7.3.3
NRL (relocating loader) ... 8.2.4

NIB-60.11104

ND—60.1

. Section;

NSHS (see also picture) .. 3.2
general description .. 1.2.2.3
screen definition system .. 7.7.1
screen library system ... 3.2.2
screen library call summary ...App. F

open data base—see data base, opening
open-session TSR (TSOPN) .. 3.3.2
OPEN file statement ‘. ... 3.4.1. _
operator,'terminal (user) 11

identification..................................... 511 _ ,.
at restart 6.2.3, 3.2.2.2, ' "

‘ operator,_; system“ ij ‘- . ‘. I‘ Z , ff” .1 . ' .7.“ " I‘ ‘*
commands 1.2.3
messages ... 1.2.3, 4.1.1

OUTCH monitor call .. 3.4.3
OUTPUT statement (FORTRAN) .. 3.4.3

packet size ... 3.3.8
paging .. 7.5.4
password (user) ... 6.1.1
peripheral files ... 3.4.1
periodic task ..2.2.2.2
pictures - see also NSHS

defining .. 7.71
using ... 3.2.2
restoring ... 3.2.2.2

pictures, private ... 7.7
defining .. 7.7.1

pictures, public .. 7.7, 7.8.1
producing ... 7.7.2, 7.8.1
loading ..7.7.3, 7.8.1

priority, application .. 8.3.1
printer output ... 3.4
PRIVATE common area ... 7.1.2
public pictures - see pictures, public
PUBLlC—PlCTURE program .. 7.7.2

o°o°o° ...3.2.2.2
QERMS monitor call .. 4.1.5

RAPPL (user restart application) ... 6.2.3
RFLDS call (NSHS) ..3.2.2, App. F
read-message TSR (TRMSG) .. 3.3.7
READ statement (FORTRAN and COBOL) .. 3.4.3
real time loader .. 8.3.1
real time programs ... 8.3

loading ... 8.3
names .. 7.4.1

Section:

RECOVER special application .. 5.3.1, 6.4
recovery, system. .. 5.3.1
reentrant programs .. 7.1

FORTRAN ... 7.3.1
COBOL ... 7.3.2

RELES device monitor call .. 3.4.3

RESRV device monitor call .. 3.4.1
restart, system ... 5.3.2

sessions at restart .. 3.3.9
files at restart .. 3.4.4
strategy 6.2.3 _
set'restart strategy'TSR (TSRST) ‘-- 5.3.2.2
user restart application (RAPPL) ... 6.2.3

RESTART special application .. 5.3.2.1, 6.2.3
restore picture ... 3.2.2.2
REWRITE statement (COBOL) .. 3.4.3
RFlLE monitor call ...3.4.3
rollback, system ... 5.3.1
ROLLBACK special application ... 5.3.1, 6.4
routine log

logging SIBAS calls ... 5.2.2
restoring data base 5.3.1

RT-common (core common)
in TPS segment structure .. App. D
SlBAS interface ... 3.1.2

save - common subroutine - see SCOMMO
SCHPO call (SlBAS) .. 6.4
SCLDB call (SIBAS) .. 3.1.3
SCOMMO subroutine .. 8.1.3
screen handling - see NSHS and FOCUS
SCREEN-DEFlNITlON program ... 7.7.1
security codes .. 6.1.3
segments, SlNTRAN ..App. D
SELECT special application ...-..1.3.1, 2.2.4,

6.1.2
semaphores ...4.4
send-message TSR (TSMSG) .. 3.3.6
send-text-message TSR (Tl’EXT) .. 4.1.3
session ... 1.2.2.2, 3.3

definition ..3.3.1
session partner... 3.3.1
session request .. 3.3.1, 3.3.3

session-status TSR (TSEST) .. 3.3.5
set-abend-strategy TSR (TSAST) .. 2.3.2.2
set-close-strategy TSR (TSCST) ... 2.3.1.5
set-execution—time TSR (TASET) ..2.2.2.1

ND-60.111.04

- 8 ..

Section:

set-interval TSR (TlNTV) .. 2.2.2.2
set-packet-size TSR (TPASZ) .. 3.3.8
set-restart-strategy TSR (TSRST) 5.3.2.2
set—termination-strategy TSR (TSTST) .. 2.3.1.4 _
SET - UNAVAILABLE command .. 8.3.1
SETDV call (SIBAS) ... 3.1.4

SlBAS DBMS ... 3.1
general description .. 1.2.2.5
data.definition/redefinition language (DRL)3.1.1
data manipulation language (DML) ... 3.1.1

_ DML call summary......_........._...App..G , ,
"interface routine;r;..'.; 'L..........'.... 3.1.2,~ 8.2.5 '
data base logging .. 5.2.2
synchronised checkpoint ... 5.2.3
rollback and recovery ... 5.3.1

SlGNOFF special application .. 1.3.1, 2.3.1.3,
6.2.1

SlGNON special application .. 1.3.1, 2.2.4,
6.1.1

SOPDB call (SlBAS) .. 3.1.3
special applications ... 1.2.1.5, 6
special TPS device - see device special
SPEClFY~LUAP28YMB file ... 8.3.1
SREPR call (SlBAS) ... 6.4
SROLL call (SlBAS) ... 6.4
stack ... 7.1.3
standard device - see device, standard
STANSAAB terminals .. 3.3.10.4
starting

tasks ...2.2
transactions ..2.1, 1.3
application programs ... 2.1, 2.2.3

stop code ...2.3.1.1
stop—transaction TSR (TSTOP) .. 2.3.1.1
subroutine .. 7.4.2

data area in stack.. ... 7.1.3
loading .. 8.3.1

switch-application-program TSR (TSWAP) .. 2.2.3.1
synchronised checkpoint - see checkpoint, synchronised
synchronised-checkpoint TSR (TCHCK) .. 5.2.3.3
synchronous terminals (FOCUS) ... 3.2.3.3

TACTV (start-concurrentotask TSR) ... 2.2.1.1
TASET (set—execution-time TSR) ... 2.2.2.1

ND-60.111.04

- 9
-

Section:

task .. 2.1
starting ... 2.2

concurrent ..2.2.1.1
future .. 2.2.2.1
periodic ... 2.2.2.2

terminating ... 2.3, 6.21
task common data area ... 7.1.2

A TBRDC (broadcast-message TSR) .. 4.1.2
TBSEQ (begin sequence TSR) 3.1.6
TCHCK (synchronised checkpoht TSR) .. 5.2.3.3
TCM - see transaction control module

.- .. TDCNT(disconnect-application TSR)..’.-.............r...~.-......................22.2.3 - -
terminalsi 1.1

asynchronous (in FOCUS) ... 3.2.3.2
display ... 3.2.1
synchronous (in FOCUS) .. 3.2.3.3

terminate-task TSR (TTERM) .. 2.3.1.2
termination

task...............~... 2.3.1.2
transaction .. 2.3, 6.2.1
complete ...2.3.1.1
normal ...2.3.1
abnormal - see also abend .. 2.3.2
strategy ... 6.2.1
set termination strategy TSR (TSTST) .. 2.3.1.4
user termination application .. 6.2.1

TESEQ (end sequence TSR) ... 3.1.6
testing programs .. 8.2
TGBRD (get broadcasted message TSR) .. 4.1.4
THSYN (hold synchronised checkpoint TSR) 5.2.3.2
time/date routine (CLOCK) ... 4.2
TlME monitor call .. 4.2
timeout

application ...2.3.2.4, 6.2.2
operator ...2.3.2.4, 6.2.2
response at restart .. 6.2.3

timesharing - see background
timing TSRs .. 2.2.2
TINTV (set-interval TSR) .. 2.2.2.2
TPASZ (set-packet-size TSR) .. 3.3.8
TPCLOSE special application 6.3, 3.1.3
TPOPEN special application .. 6.3, 3.1.3
TPS:PROG background program ... 8.2.1
TPS-DEFAULT ... 6.1.3
TPS-MENUTAB ..6.1.3
TPS-TABLES ..8.3.1
TPS-TERMTAB ...6.3
TPS~USER user name............... 8.3
TPS-USERTAB ... 6.1.3

ND-60.111.04

writeomesage-to-operator TSR (TWM
WRITE statement (FORTRAN and CO

X25LAPB input/output module

5- 1o -

Sect/on:

TPT- see transaction processing task
transaction .. 1.1, 2.1

starting .. 2.2
terminating .. 2.3

transaction checkpoint - see checkpoint, transaction
transaction checkpoint TSR(TTRAN) . .. 5.2.4.1
transaction control module (TCM) ... 1.2.1.1
transaction processing task (TPT) .. 1.2.112
transaction service routine (TSR) ..1.2.1.3

TSR call formats ..App. H
T58 call‘summary....._......,........ . ,..........",.....,......._.._..,......App.~ l. I, . _

'T'RMSG (read-message TSR)1.3.3.7, 313.10
TSAST (set abend strategy TSR) ... 2.3.2.2
TSCLO (close-session TSR) ... 3.3.4, 3.3.10
TSCST (set-close—strategy TSR) .. 2.3.1.5
TSEST (session—status TSR) ... 3.3.5
TSMSG (send-mesage TSR) .. 3.3.6, 3.3.10
TSOPN (open-session TSR) ... 3.3.2, 3.3.10
TSR—see transaction service routine
TSRST (set restart strategy TSR) ... 5.3.2.2
TSTOP (terminate—transaction TSR) . .. 2.3.1.1
TSTST (set termination strategy TSR) .. 2.3.1.4
TSWAP (switch-application TSR) .. 2.3.1
TT'ERM (terminate-task TSR) ... 2.3.1.2
TTEXT (send-text-message TSR) ... 4.1.3
TTRAN (take transaction checkpoint TSR) ... 5.2.4.1
TTSYN (allow synchronised checkpoint TSR) 5.2.3.1
TWMSG (write-message-tovoperator TSR) 4.1.1

unit number device ... 1.2.2.2
TPT .. 1.2.1.2
UPDAT monitor call .. 4.2
updatefile (SlBAS) .. 5.2.2
user name terminal-see SIGNON
TPS files .. 8.3.2
user terminal—see operator,terminal

wait option (of RESRV) .. 3.4.2
WFlLE monitor call ... 3.4.3
working set ... 7.5.4
working storage .. 7.1.2-7.1.3

sc/cwmso)4.1.1
BOL) .. 3.4.3

.. 3.3.10.1

ND—60.111.04

**********SENDUSYlOURCOMMENTS!!! ****** ****

I) F Are you frustrated because of unclear information
6

}. in this manual? Do you have trouble finding
? things? Why don’t you join the Reader’s Club and

r. . send us a note? You will receive a membership
" f) ‘ card-and an answer to your comments.

I I

Please let us know if you
* find errors ‘ ‘\
" cannot understand information ‘
" cannot find information
" find needless information

Do you think we could improve the manual by lrearranging the
V (contents? You could alsoztellus if you like the manually. . I .'

* * 1b * * :9 1k * * HELPYOURSELFBYHELPINGUSl! * * * 9e * 1r * 9: a

Manual name: ND TPS User's Guide ‘ Manual number: ND-60.1 11.04

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual?

Your name: , Date:
Company: ‘ Position:
Address:

What are you using this manual for?

Send to: Norsk Data A.S.
Documentation Department
PO. Box 4, Lindeberg Gard —-——>
Oslo 10, Norway

Norsk Data’s answer will be found on reverse side

Answer from Norsk Data: 4

Answered by: 1 Date:

Norsk Data A.S
Documentation Department
PO. Box 25 BOGER D
N - 0621 OSLO 6 - No‘ way

“a

