
ND TPS
v User's Guide

ND-60.111.03

NORSK DATA A.S

ND TPS
User's Guide

ND-60.111.03

NOTICE

The information in this document is subject to change without notice. Norsk
Data A.S assumes no responsibility for any errors that may appear in this docu-
ment. Norsk Data A.S assumes no responsibility for the use or reliability of its
software on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. It may not
be photocopied, reproduced or translated without the prior consent of Norsk
Data A.S.

Copyright © 1982 by Norsk Data A.S.

PRINTING RECORD
nting Notes

/79 VERSION 01
1/81 VERSlONOZ
1/82 RevisionA

The following pages have been revised:

vi, vii, viii, ix, x,
1-11,1—12, 3—7, 3—8, 6—9, 7—5, 7—6, 7-7, 7—9, 8-10, 8—1 1, 8—17
0—2, 0—4, 6-1, 2, 3, 4, 5, 6, 7, 8, 9‘
The following pages have been added:

3—83, 3—81), 8—18
VERSION 03

ND TPS User’s Guide
Publ. No. ND-60.111.03

noon.:::'::::: NORSK DATA A.S
”u PO. Box 4, Lindeberg gérd

::: cocoon. 03") 10' NON/3V

-

.0
0

..
.

A
-
-

v
v'

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one or
more single pages to be merged into the manual by the user, each revised page
being listed on the new printing record sent out with the revision. The-old
printing record should be replaced by the new one.

New versions and revisions are announced in the ND Bulletin and can be ordered
as described below.

The reader's comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms, together with all types of inquiry and requests for documentation
should be sent to the local ND office or (in Norway) to:

Documentation Department
Norsk Data A.S
P.O. Box 4, Lindeberg gard
Oslo 10

PREFACE

THE PRODUCT

This manual describes the ND Transaction Processing System ND TPS, version D

ND TPS ND-10101 D

ND TPS is a general transaction processing system that initiates and controls
transactions between various input/output devices and application programs.
TPS provides facilities for handling terminals, data communications, data bases,
etc.

ND TPS systems are tailored for individual user configurations, specified when
ordering ND TPS. However, all systems contain the basic TPS modules.

Special systems may contain such additional features as:

ND-SOO TPS System Modules ND-10342
input/output Modules \‘ ND-10105 to ND—10108
Multi - CPU Systems
Non-standard System Generation
Parameters

THE READER

ND TPS User’s Guide is written for programmers who write application
programs to be run under ND TPS, These programs can be written in FORTRAN,
COBOL, PLANC, NFL and MAC.

System designers who design application systems to be run under TPS will also
find the material in this manual of interest.

ND—60.111.03

vi

PREREQUISITE KNOWLEDGE

Chapter 1 of this manual is an introduction to ND TPS and should give the
necessary background in TPS to go on to the following chapters. A more detailed
description may be found in

ND TPS General Description, ND-60.105

in addition, the reader should also be familiar with the SINTRAN Ill operating
system, the SIBAS data base system and the screen handling systems. General
descriptions of these systems are found in:

introduction to SINTRAN lil, ND-60.125
SIBAS ll User’s Manual, Chapter 1, ND-60.127
The NORD Screen Handling System, chapter 1, ND-60.088
FOCUS Screen Handling System, chapter 1, ND-60.137

THE MANUAL

ND TPS User’s Guide can be divided into three parts. Chapter 1 is an
introduction which should be read first if the reader is not already familiar with
ND TPS. The main body of the manual consists of chapters 2~8. These chapters
may be read independently of each other and in any order; each chapter treats
one topic in a tutorial manner and should be read sequentially. Finally, the
appendices, especiaily appendix H, TSR call formats, are reference material.

The manual covers all aspects of TPS of interest to the application programmer,
both special TPS features, such as session communication, and the interface to
other systems used by TPS application programs, such as SlNTRAN, SlBAS,
FOCUS, NSHS, FORTRAN, COBOL, PLANC. NFL and MAC. The manual,
however, does not go into the details of these other systems and the reader is
referred to the manuals for the individual systems for these details.

ND-60.1ll.03

vii

RELATED MANUALS

The following manuals describe the systems of greatest interest to the TPS
application programmer:

SlNTRAN lll Timesharing Guide, ND—60.132
SlNTRAN lll Reference Manual, ND-60.128
SlNTRAN lll Real—Time Guide, ND-60.133
NORD Screen Handling System, ND-60.088
FOCUS Screen Handling System, ND-60.137
NORD FORTRAN Reference Manual, ND-60.l45
NORD COBOL Reference Manual, ND-60.144
NORD-PL User’s, Guide, ND-60.047
MAC User's Guide, ND-60.096
SIBAS ll User’s Manual, ND-60.127
Symbolic Debugger - User’s Guide, ND~60.158

For ND—SOO:

ND-SOO LOADER/MONITOR, ND-60.136

Other manuals describing ND TPS are:

ND TPS General Description, ND-60.105
ND TPS System Supervisor’s Guide, ND-30.006

ND-60.111.03

Section:

1.1
1.2

1.2.1

1.2.1.1
1.2.1.2
1.2.1.3
1.2.1.4
1.2.1.5

1.2.2

' 1.2.2.1
1.2.2.2
1.2.2.3
1.2.2.4
1.2.2.5
1.2.2.6

1.2.3
1.2.4

1.3

1.3.1
1.3.2
1.3.3
1.3.4
1.3.5

1.4

1.4.1
1.4.2
1.4.3

2.1
2.2

2.2.1

2.2.1.1

ix

TABLE OF CONTENTS
+ + +

l

Page:

INTRODUCTION .. 1——1

What is ND TPS? ... 1~1
The Structure of TPS ... 1—2

Transaction Control ... 1—4

Transaction Control Modules 1-——4
Transaction Processing Tasks ... 1 —4
Transaction Service Routines .. 1—-5
Application Programs .. 1—6
Special Applications .. 1-—-7

Handling Input/Output .. 1—9

Standard Devices .. 1——9
Special TPS Devices - input/Output Modules 1—10
The NSHS Screen Handling System................................... 1—11
The FOCUS Screen Handling System 1—11
The SIBAS Data Base Management System................'...... 1 --11
Checkpoint and Restart ... 1 -12

Operator Communication 1 ——13
Message Routing and Queuing .. 1-13

Controlling Transactions .. l -14

Type 1: Permanent Terminal Transactions 1—14
Type 2: Short Terminal Transactions .. 1 —-18
Type 3: Short Local Terminal Transactions 1—18
Type 4: Concurrent Transactions .. 1—19
Type 5: Future and Periodic Transactions 1—19

Processing a Transaction 1 —-20

Starting the Transaction ... 1 _2o,
Processing the Transaction .. 1 -—22
Terminating the Transaction ... 1 —22

ADMINISTRATING TASKS .. 2—1

Tasks, Transactions and Applications .. 2—1
Starting Tasks and Switching Applications2-4

Immediate Task Activation ...2-—-5

TACTV - The Activate Concurrent Task TSR 2—5

ND-60.111.03

1 Section:

2.2.2

2.2.2.1
2.2.2.2
2.2.2.3

2.2.3

2.2.3.1

2.2.4

2.3

2.3.1

2.3.1.1
2.3.1.2
2.3.1.3
2.3.1.4
2.3.1.5

2.3.2

2.3.2.1
2.3.2.2
2.3.2.3
2.3.2.4

3.1

3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6

3.2

3.2.1
3.2.2
3.2.2.1
3.2.2.2

Page:

Future and Periodic Task Activation ... 2—7

TASET -- The Set Execution Time TSR 2—7
TINTV -— The Set Interval TSR ... 2—9
TDCNT -- The Disconnect Application TSR 2—10

Switching to Another Application ..2—11

TSWAP—The Switch Application Program TSR 2—11

The SIGNON and SELECT Special Applications 2—12

Terminating Transactions ...2—13

Normal Termination .. 2—13

TSTOP - The STOP Transaction TSR2—13
TTERM - The Terminate Task TSR2—14
The SIGNOFF Special Application 2—14
TSTST - The Set Termination Strategy TSR 2—15
TSCST - The Set Close Strategy TSR2—16

Abnormal Termination ..2—17

The ABEND Special Application ... 2—17
TSAST - The Set Abend Strategy TSR 2—17
Illegal Monitor Calls .. 2—18
Timeout .. 2—18

INPUT/OUTPUT PROCESSlNG .. 3—1

SlBAS Under TPS .. 3—1

Data Definition and Manipulation .. 3—1
The SlBAS Interface Routine ... 3—2
Opening and Closing the Data Base .. 3—3
Using More Than One Data Base ... 3—3
SlBAS in ND-500 Multi-CPU TPS ... 3——5 "
Restricted SlBAS Calls ... 3-—-6

NSHS and FOCUS Under Tr'S ... 3—8

Handling Display Terminals .. 3—8
The NSHS System .. 3—8

Defining and Using Pictures .. 3—8
0 °O°Q° and Restart ... 3—9

ND-60.111.03

Section:

3.2.3
3.2.3.1
3.2.3.2
3.2.3.3
3.2.3.4

3.3

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7
3.3.8
3.3.9
3.3.10

3.3.10.1
3.3.10.2
3.3.10.3
3.3.10.4

3.4

3.4.1
3.4.2
3.4.3
3.4.4

4.1.2
4.1.3
4.1.4
4.1.5

4.2
4.3
4.4

xi

Page:

FOCUS Level 1 ..3-11
Defining and Using Forms .. 3—11
Local or Remote Asynchronous Terminals 3—12
Synchronous/Buffered Terminals Using‘ FOCUS 3—13
ND-100 —- ND-500 incompatibilities in FOCUS 3—13

Special TPS Devices ..3—14

Session Request from a Device .. 3-15
TSOPN -- The Open - Session TSR 3-17
Session Request from an Application 3—19
TSCLO —- The Close Session TSR .. 3—22
TSEST — The Session Status TSR ... 3—23
TSMSG ——- The Send-Message TSR 3—24
TRMSG —- The Read Message TSR ... 3—25
TPASZ —- The Set Packet Size TSR .. 3—26
Restart ... 3—26
Available input/Output Modules ... 3—27

X25LAPB ...3—27
lBM—3270—CU ..3—32
lBM—3270—HOST ... 3—34
lSO—1745—HOST .. ~..4..................3—35

Standard Devices and Files _. ... 3—36

Allocating Standard Devices and Files 3—36
Unavailable Devices and Files ... 3—37
Accessing Standard Devices and Files 3—39
Restart ... 3—-—40

OTHER TPS AND SlNTRAN FACILITIES ... 4—1

Message Handling .. 4—2

TWMSG and CWMSG - The Write Message to
Operator TSR ...4—3
TBRDC - The Broadcast Message TSR4-4
Tl’EXT - The Send Text Message TSR4-5
TGBRD and CGBRD — The Get Broadcasted Message TSR ...4—6
Monitor Calls (ERMSG,OERMS,ERMON)4—7

Clock Routines ... 4—9
The HOLD Monitor Call .. 4—9
Semaphores and Internal Devices .. 4—10

ND-60.111.03

Section:

5.1
5.2

5.2.1
5.2.2
5.2.3

5.2.3.1
5.2.3.2
5.2.3.3

5.2.4

5.2.4.1

5.3

5.3.1
5.3.2

5.3.2.1
5.3.2.2

6.1

6.1.1
6.1.2
6.1.3

6.2

6.2.1
6.2.2

6.2.2.1

6.2.3
6.2.4

6.3
6.4

xii

Page:

CHECKPOlNT—RESTART ... 5-1

Protecting the Database ... 5—1
Preventive Facilities .. 5—3

Backup ... 5—3
Data Base Logging ...5—4
Synchronised Checkpoints ..5—5

'lTSYN - The Allow-Synchronised Checkpoint TSR 5—5
THSYN — The Hold Synchronised Checkpoint TSR 5—6

' TCHCK - The Take Synchronised Checkpoint TSR 5—6

Transaction Checkpoints ... 5—7

TTRAN - The Take Transaction Checkpoint TSR 5-8

Restart Facilities .. 5—10

Rollback and Recovery ..5—10
Restarting TPS ... 5—13

The RESTART Special Application 5—15
TSRST - The Set Restart Strategy TSR 5—16

SPEClAL APPLICATIONS ... 6—1

SlGNON and SELECT ... 6—3

SIGNON ... 6—3
SELECT .. 6—«4
The Access Control System .. 6—6

SIGNOFF, ABEND and RESTART ... 6—7

SlGNOFF ..6-7
ABEND ... 6—8

The Abend Error Message ... 6—9

RESTART ..6—10
Summary of Termination, Abend and Restart Strategies 6—13

TPOPEN and TPCLOSE ... 6-14
CHECKPOlNT, ROLLBACK and RECOVER6-14

ND-60.111.03

Section:

7

7.1

7.1.1
7.1.2
7.1.3
7.1.4

7.2

7.3

7.3.1
7.3.2
7.3.3

7.4

7.4.1
7.4.2

7.5

7.5.1
7.5.2
7.5.3
7.5.4

7.6

7.7

7.7.1
7.7.2
7.7.3

7.8

7.8.1

8.1
8.2

xiii

Page:

SPECIAL CONSIDERATIONS ... 7-—1

Data Areas in the NDIOO ... 7—1

The Variable Data Area in the ND100 7—3
The Task Common Data Area in the NDIOO 7—3
The Local Data Area in the N0100‘........................ 7—5
The Size of the Data Area in the ND100 7—7

Data areas in the N0500 .. 7—-8

Language Dependent Considerations ... 7—9

FORTRAN/PLANC in ND100 .. 7—10
COBOL in ND100 7—11
MAC—~NPL ...7--11

Program Structure .. 7—12

Application Names and Numbers ... 7—12
Subroutines ..7—13

Efficiency ... 7—15

NDSOO Efficiency, ... 7 —15
Taking Checkpoints ... 7—16
Opening and Closing the Data Base 7—16
The Working Set .. 7—17

Real Time Versus Background ... 7-18

Pictures for NSHS in NDIOO ... 7—~19

Defining Private Pictures for NSHS .. 7—19
Producing Public Pictures for NSHS 7-21
Loading Public Pictures for NSHS .. 7—22

Pictures for FOCUS ... 7—23

Public pictures for FOCUS .. 7——23

COMPILING AND LOADING PROGRAMS ... 8—1

Testing of NDSOO applications .. 8—1
Background Testing of NDlOO applications 8—2

ND-60.111.03

xiv

Section: Page:

8.2.1 The TPS Background System .. 8—2
8.2.2 Available Facilities in the TPS Background System 8—3
8.2.3 The Load-Common and Save-Common Routines 8—4
8.2.4 Running the Background System .. 8—5
8.2.5 Testing in Background Mode .. 8—6
8.2.6 Compile and Load Examples ... 8—8

8.3 Real Time Programs .. 8-—10

8.3.1 The Loading Procedure .. 8—11
8.3.2 Programs and Files Required .. 8—16
8.3.3 Compile and Load Example '. 8—17

Appendix: . Page:

A APPLICATION NUMBERS FOR SPECIAL APPLICATIONS A——1

B SAMPLE PROGRAMS B-I

C ERROR MESSAGES ... C—I

D TPS SEGMENT STRUCTURE IN NDIOO ... D—-1

E MONITOR CALLS AND LIBRARY CALLS .. E—I

F SCREEN—HANDLING CALLS .. F-—I

G SIBAS CALLS ... 6—1

H TSR CALL FORMATS ... H—I

I TSR CALLS—~FUNCTIONAL LIST ... I—-1

J TPS ON ND-SOO .. J—I

K GLOSSARY ... K—I

INDEX

ND-60.111.03

XV

NOTATIONS

TSR Calls

The detailed formats of these calls, with complete parameter descriptions are
given in appendix H. Chapters 2—5 discuss the calls and their use in a tutorial
manner but do not contain detailed parameter descriptions. On the other hand,
examples of the use of these TSRs are given in greater detail in chapters 2—5
than in appendix H. In both places the call formats and the examples are given
first in FORTRAN and then in COBOL.

Examples

As for the TSR examples mentioned above, all examples are given first in
FORTRAN and then in COBOL. Comments are included in some of the examples
and these are written on the same line as program statements to save space,
although this may not be allowed by the compiler. FORTRAN parameters are
given sometimes as variables, sometimes as literals where this is allowed.

in the examples of conversational interaction with a program, input to the
program is underlined.

Symbols
ESC indicates the escape key on a terminal

indicates carriage return, line feed
<> indicates a parameter. Optional parameters or parameters with default

values are indicated in the same way, but the default value is given under
”rules”. if one of several alternative values is to be given, this is also
indicated under "rules".

ND-60.lll.03

1.1

INTRODUCTION

WHAT IS ND TPS?

ND TPS is a transaction processing system for the NORD family of computers. A
transaction processing system may be defined as a computerised on-line system
that allows the user to process data and update a data base as soon as
information arrives and to retrieve the information as soon as he needs it.

The user will normally have a terminal available that is online to the data base.
He will enter the transaction input on the terminal, the system will start the
processing program (application program), the program will access the data base
and send the user a response within seconds.

A transaction may be an inquiry which only reads the data, formats it and sends
it to the terminal (inquiry transaction). The transaction may update the data
base, perhaps after a conversational interaction between the program and the
user (up-date transaction). The transaction may gather in data interactively and
store it in a temporary file for later batch updating (data entry). A transaction
may also generate a relatively large amount of output to a printer (report
generation).

Most transactions are characterised by a fairly small amount of input and output,
conversational interaction, short duration and fast response times, although none
of these characteristics are absolute.

To accomplish this, a transaction processing system must provide facilities for

handling the following main tasks:

~ starting, controlling and terminating transactions

—- communicating with terminals and other l/O devices belonging to the
external environment, including routing messages to the correct
desfinauons

—- accessing the data base, including reading it and updating it

A short description of the structure of TPS and how it handles these tasks
follows.

ND-60.111.03

1.2 THE STRUCTURE OF TPS

The main tasks of TPS are, as mentioned above, controlling transaction

start/termination, controlling the external environment and accessing the data
base. in addition, provision must be made for starting, stopping and controlling
the TPS system itself. Also, facilities must be available for simple and efficient
communication between modules of TPS. The TPS system is therefore composed
of the following types of modules:
(See figure 7.7)

— transaction control and service routines

—- SlBAS data base control routines (separate subsystem)

—- NSHS or FOCUS screen handling system (separate subsystem)

—— input/output modules

-

operator communication

—— message queuing and routing routines

The application programs themselves are mainly user-written, but TPS includes a
number of

-— special application programs

to carry out userooriented system functions, such as terminal operator sign-on,

program abnormal-end, etc.

TPS exists as a basic modules plus a number of options. The basic modules
consist of the transaction control and service routines, the SlBAS data base
system, the NSHS or FOCUS screen handling system, operator communication,
the message queuing and rOuting routines and a standard set of special
applications. in the default version of TPS, all of these are run in a single CPU.

TPS options include multi-CF’U systems, using both ND-lOOs and ND-SOOS,
several transaction control modules and input/output modules for special
devices, networks and distributed processing.

ND—60.l 11.03

.Em<

m<m_m

.Em
<

mmh
ha:

55...
.2

5
8

:2
88:

a:

.m
x

9
:5

395
@

5302:
$

8
8

,:

.2
«

8
:5

8
.2

8
5

5
2

°

3
:5

9
:

mDUOm

\m
Im

Z

3
3

2
3

):..5

_

Figure 7. 7: TPS Modules

ND-60.111‘03

1.2.1

1.2.1.1

1.2.1.2

1—4

Transaction Control

Transaction Control Modules

Transaction control is handled by one or more transaction control modules
(TCMs). The TCM supervises the application programs belonging to it and
controls system functions such as start, stop and checkpoint.

Transaction Processing Tasks

Each TCM has a number of transaction processing tasks (TPTs). (See Figure 7.2)
The TPTs are a set of identical programs belonging to pools, one pool for each
TCM. Each TPT is one unit with a TPT unit number. When a transaction is
started, TCM may allocate a free TPT to the transaction from the pool and start
the TPT and when the transaction is finished, TCM may free the TPT. Some TPTs
may be permanently allocated to terminals and can process many transactions in
a row.

The TPT has several functions:

—— to start the application program used by the transaction

—— to terminate the application program when it is done and either switch to a
new application program or terminate the transaction

—— to provide the application program with data areas (all application
programs are reentrant and thus may not be written into)

—— to provide checkpoint/restart facilities for the application program in case

of system failure

TPT
trans 1 Appl 1

TCM

TPT
free

——._‘—i

TPT App! 2
trans 2

TPT .
trans 3 Appl 3

TSRs

TPTl.---

free
Figure 1.2: Transaction Control

ND-60.1ll.03

1.2.1.3 Transaction Service Routines

The transaction service routines (TSRS) are a set of routines supplied with TPS
to assist the application programmer in performing functions such as
administrating task control, communicating with l/O devices and sending
messages. These routines allow the programmer to concentrate on the
applica-tions as such, without having to be concerned with the complex details
of a real-time environment. The routines represent a clean and logical interface
between application programs and ND TPS (See Figure 7.3).

TSRs may be arranged in groups as follows:

1 Administrative services.

Switch control to another application.
Activate concurrent application.
Stop transaction.
Set termination/abend/restart Strategy/close strategy
Set execution time/interval

2 Session services.

Read message.
Send message.
Open/close session.

3 Checkpoint control.

Take checkpoint.
Allow/prevent checkpoint.

4 Message services.

Write message on operator console.

Broadcast message to terminals.

5 Special Application TSRS.

Restart
Read status
Read configuration information
Operator functions

IOM TPT/TSR APPLICATION

WRITE MESSAGE SEND MESSAGE ,‘___ CALL TSMSG
<———ON TERMINAL TQlM RETURN , (SEND MESSAGE

TSRl

Figure 7.3: Using a TSR

ND-60.ill.03

1.2.1.4 Application Programs

The application programs do the actual processing of the transactions. They are

mainly user—written, with the exception of a number of special applications

supplied with the TPS system. They may be written in FORTRAN, COBOL, PLANC

(a system oriented high level language), NFL (3 ND‘100 machine oriented
medium level language) or MAC (assembly language) and they may use most of

the facilities available to these languages.

Application programs are reentrant and may be used by several transactions

simultaneously without having more than one copy. To achieve this, the

ND100-FORTRAN compiler must be set in reentrant mode when compiling, and

the NDiOO-COBOL compiler must be set in separate code-data mode when

compiling. No special commands have to be given to the NDSOO-compilers.

The TPTs are also mainly reentrant, with only a small non-reentrant part for each

TPT plus the data areas. Thus, there may be many TPTs without taking more than

a minimum of space.

The maximum size of application programs and data areas in the ND-lOO are

user-dependent configuration parameters. Typical sizes are 24K words for

programs and 5K words for data. The corresponding limits for the ND-500 are up

to 134 megabytes of program and data.

Application programs in ND-lOO may be tested as timesharing programs under

‘ SlNTRAN before being run under TPS. A special set of routines is available to

simulate a real—time TPS environment. SIBAS can be accessed by both TPS,

timesharing and batch programs at the same time. in the ND-SOO, the application

programs may be tested by running the ND Symbolic Debugger «live» in an

ordinary TPS-run. (See Chapter 8.l.)

MID-60.11103

1.2.1.5 SPECIAL APPLICATIONS

Certain functions of the TPS system are not handled by the internal modules of
TPS but are carried out as applications. They are started and terminated as any
other application, under the control of a TPT.

The main reason is that application programs are easy to write, modify and load.
Users can easily tailor these programs to their own needs. Functions that are
common to many users, but where the detailed processing may vary from user to‘
user, such as signon, transaction abend and restart, are carried out by special
applications. Also, special system functions such as checkpoint, rollback and
recovery are controlled by these applications.

A complete set of special application programs is supplied with TPS and many
users will find that their needs are fully satisfied by these standard versions.
Other users will modify the standard versions, while some users may wish to
write their own versions.

The main purpose of the following special applications is communication with
SlBAS. They are called by only one TPT (a special TPS system TPT) when the
system uses them (See Figure 7.4)

-- TPOPEN, called when TPS is initially started. This application may open the
data base for general use. It may also start up transactions and broadcast a
start message to terminals controlled by lOMs.

—— TPCLOSE, called when TPS is closed or abnormally ended. The application
may close the data base.

— CHECKPOINT, called when a synchronised checkpoint is taken. The
application calls the SlBAS checkpoint routine.

-— ROLLBACK, called when a system failure has occurred and the system is to
be rolled back to a synchronised checkpoint. The application supervises the
SlBAS rollback routine.

- RECOVER, called when a system failure has occurred to restore the system
to its state at the latest transaction checkpoints. The application supervises
the SIBAS recover routine.

Additional special applications, activated for each individual TPT, are:

—- SIGNON, called to check the terminal operator's status and password and
to reserve the terminal

——— SELECT, called to determine which processing application is to be given
control. I

ND-60.lll.03

1-8

—~ TPMON, called when an ND-500 application is started. Thereafter TPMON
administrates the ND-SOO process. Further description can be found in
Appendix J. '

— SIGNOFF, called when a transaction terminates.

—— ABEND, called when a transaction terminates abnormally due to an error
situation in the program itself or an error return from a system routine.

— RESTART, called after a rollback or recovery has been performed. The
application is called by each active TPT for the purpose of restarting the
TPT's application at the correct point.

4 v i
TPOPEN called at initializationi
TPCLOSE - called at close

CHECKPOlNT called at checkpointii
ROLLBACK calledat rollback

Sym Recoven called at recoveryTPT _ii

SIGNON called when transaction started
to duck operator status

called afta' SIGNON to
determine user appl.

—-—-<APPL(1) > (2) > (3) y (4))umappls

----..‘

«ml-(5,) mung!”-......4 appliatiominNDém

SIGNOFF ullad when transaiovi ended

SELECT ii

ABEND called when attraction abnormlly untied

RESTART called at system rear!

m

Figure 7.4: Special Applications

ND-60.1li.03

1.2.2

1.2.2.1

Handling Input/Output

TPS has facilities for handling input/output from many types of terminals and HG
devices and from data bases.

The data bases are controlled through the SlBAS data base management
system.

Most terminal types can be handled through the screen handling system.

Other l/O devices can be divided into two main types:

-—— standard devices allocated to and controlled by a particular application
program. Examples are standard SlNTRAN terminals, printers, card readers
and non-SIBAS files.

-- special TPS devices that are allocated to TPS modules, not individual
applications. Examples are networks and synchronous terminals.

Standard Devices

These devices are controlled by application programs directly through SINTRAN.
Devices belonging to this group are generally available to all users of the
computer system, also non—TPS users. They may include printers, spooling files,
card readers, magnetic tapes, disk files etc. They are allocated to an application
program when the program requests them and released by the program when it
no longer needs them. The application program will access the devices thr0ugh
the standard routines available in the language it is written in, such as OPEN,
CLOSE, READ, WRITE, etc.

ND-60.111.03

1.2.2.2

1~10

Special TPS Devices - Input/Output Modules

Devices in this group are controlled by special programs called Input/Output
Modules (lOMs). There is one lOM for each type of device, although each lOM
may control many devices. Each device is one unit with a device unit number.

input/output modules are used to control devices that cannot be controlled
directly by an application program. This may be because their control is too
difficult for the application program, for example non-standard devices or
devices with complicated communication protocols. However, the main use for
lOMs is in connection with networks and other types of multiplexed
connections.

A network does not belong to any one application program but may have many
terminals connected to many application programs (See Figure 7.5}. The
connection between the terminal and the application‘program is not direct, but
goes through modems, concentrators, etc. Another type of network connection
may be the connection between two TPS systems at different processing sites
{See Figure 7.5). Application programs at one site may communicate over the
network with application programs at the other site.

An application program communicates with these devices through the
transaction service routines provided by TPS. A session is established between
the device and the application program and the application program can then
send messages to and receive messages from its session partner by calling these
routines. Sessions may also be established betWeen two application programs,
either at the same processing site or across an external network. -

Sessions may be broken and new sessions established. A transaction is only
allowed to have one session at a time but it may possess several local devices,
including local terminals, at the same time.

Concentrator ,

/\/-\ soul 1 _

[OM appl 2
Mode

\ appl 3

Figure 7.5: A Terminal Network

data base

aDpl l lOMl ® @. IOMZ appl 2

Figure 7.6: Accessing a Remote Database
ND-60.111.03

1.2.2.3

1.2.2.4

l.2.2.5

1—11

The NSHS Screen Handling System

Terminals can be controlled by application programs through the NORD screen
handling system, NSHS, which contains routines for formatting output pictures,
reading input, field definition, cursor control, etc.

Terminals controlled by NSHS may be standard terminals or they may be special
devices controlled by input/output modules. The applications programmer,
however, does not have to know which group a terminal belongs to since the
same NSHS calls are used for all types of terminals. '

The FOCUS Screen Handling System

The Focus Screen Handling System can be used to control asynchronous as well
as synchronous terminals. The processing part can be distributed to one or
several Front End CPU’s residing in one TPS system. The communication is
transparent to the user programs (See Section 3.2)

The SlBAS Data Base Management System

SlBAS is a DBMS that provides most of the capabilities specified by the
CODASYL committee for a data base facility in COBOL. Similar facilities are-
available to FORTRAN, PLANO NFL and MAC programmers.

SlBAS allows direct and fast access to all data. it provides several methods of
file organisation and access, separation of physical and logical organisation,

concurrent or exclusive access and data independence. it has facilities for

backup and restart to insure data integrity and privacy locks to prevent
unauthorised access.

The data base is defined and created using the SlBAS data definition/redefinition
language DRL. This is done independently of TPS.

The data base is accessed from application programs using the SlBAS data
manipulation language DML. The DML used by a program running under TPS is,
with a few exceptions, the same as for a program running in a different
environment, such as timesharing or batch.

it is, in fact, possible to access the same SlBAS data base from TPS.
timesharing and batch programs at the same time. All SlBAS calls will go to a
common SlBAS interface under the control of TPS. The timesharing or batch
user will be unaware of TPS control over the data base unless a TPS restart
should happen to change its contents.

ND—60.lll.03

1—12

1.2.2.6 Checkpoint and Restart

An on-Iine transaction processing system should have adequate facilities for
protection of the data base. If a system failure occurs in a batch system, a
backup copy of the data base can be mounted and the whole job run once more
without too much inconvenience or waste of time. lf a failure occurs in an online
transaction system, reentering and reprocessing the transactions may be very
inconvenient, time—consuming or even impossible.

Facilities should be available to assure the integrity of the data base, to minimise
the amount of data lost and to restart the system automatically at a well-defined
point.

TPS makes use of the extensive checkpoint/restart facilities of SlBAS. These are
mainly transparent to both the user' and the application program, TPS itself
controlling them. Synchronised checkpoints of the whole system are taken
automatically according to the load on the system. In addition, the application
program can take individual transaction checkpoints.

lf a System failure occurs, the latest transaction checkpoint can be used to
restore the system to its status at or near the point of failure (recovery). If the
data base is incorrect at this point, synchronised checkpoints can be used to
restore the system to a previous state (rollback). (See Figure 7.7) in both cases,
those transactions which were active can be restarted automatically at the
correct point.

How often checkpoints are taken and what types of backup/restart facilities are
used are system parameters controlled by the user. He must weigh the
advantages of assuring the protection of data in the data base against the
overhead needed to accomplish this.

SYNC SYNC I
CHECKPOIN T Ci—lEf‘i’POlNT ‘7
0 f3 1 / POF
v V \ iPOlNT OF FAlLURE)

rollback
POR

(POlNT OF RESTART)

Figure 7.7A: Rollback without Recovery

SYNC SYNC TRANS
CHECKPOINT CHECKPOlNT CHECKPOINTS l/

G s -. . POP

recovery
FOR

Figure 1.73: Rollback with Recovery

ND—60.ill.03

1.2.3

1.2.4

1—13

Operator Communication

A special terminal, the operator terminal, is used for starting, stopping and
controlling the TPS system. A set of commands is available for interaction with
the whole system (system directives) and for interaction with individual modules.

The system directive commands consist of the basic command functions used in
connection with system start, stop, pause, checkpoint and rollback/recovery.
These commands serve vital functions in connection with normal processing and
in case of hardware or software malfunctioning.

Other commands are available for such tasks as starting and stopping individual
TPS modules, starting and aborting transactions, changing system parameters,
and broadcasting messages.

System messages, both error and informative, will be written on the operator
terminal. Application programs may also send messages to this terminal. in a
multi-CPU system, those CPUs that do not have an operator terminal will have a
log-writer terminal for special error messages.

Message Routing and Queuing

Communication between the individual TPS modules is done by messages using
a buffer pool and queuing system controlled by the main dispatcher (MD). If the
modules are spread across more than one NDlOO-CPU, there is one MD for each
NDlOO-CPU and they will send messages to the correct CPUs. TPS may thus
make use of multiprocessing facilities in a single system.

Every TPS module has a queue for messages to that module. When a message is
sent, it goes first to the main dispatcher. MD will put the message in the queue
for that module and it will then start the module. The module will read its queue

and process the message there. When it is done, it will usually read the queue
again in case any messages have arrived in the meantime.

Routines are also available for putting messages that have been received into a
waiting queue if they are not to be processed immediately. They can be read
from the waiting queue later and processed.

Application programs do not have to concern themselves with these queues.
They are controlled by the application program’s TPT.

ND-60.lll.03

1.3

1.3.1

1—14

CONTROLLING TRANSACTIONS

There are two main ways of setting up a transaction, depending on whether the
connection between the terminal and TPS is permanent or only lasts as long as a
single transaction.

Type 1: Permanent Terminal Transactions

Permanently connected terminals are the simplest to handle and usually give
faster response time, because the overhead in setting up the connection
between the terminal and TPS is avoided. in addition, TPSprovides some special
applications (SlGNON and SELECT) designed mainly for permanently connected
terminals.

SIGNON helps the terminal user to Sign on to the system by writing a picture on
the terminal asking for the user’s name and password. A typical SlGNON picture
is shown in figure 1.8. When the user has written his name and password,
SlGNON will check them, and if they are accepted, control will be given to
SELECT. .

/ ND TPS ON LlNE AT 15.45 ON MARCH 1.1982

Trrr'r'rrr 9999999
TT‘i'l‘T‘T‘TT 99999999

T7 99 99
17' 99999999
T'l' 9999999
T'l‘ 99
T'l' 99
TT 99
TT 99

PLEASE ENTER YOUR NAME:

3383333
5383333333

$335838
$558388

33
83

58888538
5538533

PASSWORD:

\
Figure 7.8: A SIGNON Picture

ND—60.111.03

\

1-15

SELECT will help the user to start the transaction program (application) he wants
by writing a menu picture on the terminal, as shown in figure 1.9A. The user just
has to select the item he wants and enter its number. The application will then
be started.

It is also possible to have sub-menus, i.e. one menu choice will give a new menu,

as shown in figure 1.98. It is possible to have as many sub-levels of menus as
desired. The user can also go from a sub-menu back to the master—menu, back
to SIGNON, or even into SINTRAN as a timesharing user./

5

6

ND’TPS MASTER MENU

ACCOUNTING

PAYROLL

INVOlCE

INVENTORY

TEXT PRO CESSING

STOP

ENTRY CHOICE: .

Figure 7,914: A Master Menu

\

/

\

NO' TPS ACCOUNTING

BOOKEEPING

ACCOUNTS RECEIVABLE

GENERAL LEDGEFI I

REGISTER UPDATE

REPORTS

MASTER MENU

STOP

ENTRY CHOICE:

Figure 7.98: A Sub-Menu
ND-60.III.O3

/

1—16

However, sooner or later a user application will be started. The user will then
carry out his transaction, probably involving interaction with both terminal and
data base. ‘

When he is done, control will be given to another special application, SlGNOFF.
The main task of this application is to find out what type of transaction it is, in
this case a ”never-ending” transaction, and to terminate it accordingly, in this
case by giving control to SlGNON.

The terminal is now ready to accept a new user and start a new transaction. If it
is not necessary to go through the SlGNON procedure again, SlGNOFF could
have given control directly to SELECT.

in both cases, the terminal will not be released from TPS, i.e. the Transaction
Processing Task (TPT) in TPS controlling this terminal will not release the
terminal. There is a permanent connection between the terminal and the TPTI
There is a never-ending succession of applications running on this terminal
(SlGNON, SELECT, user application, SlGNOFF, SlGNON, SELECT, user
application, etc.).

This is illustrated in figure 1.10, Type 1.

ND-60.111.03

1—17

<3<2 QQ
——-- SIGNON and trans. , SIGNON ___...SELECT ”a” ‘ (sxemom SELECT ”“5 2

‘i i I

start trans. mas and‘3 (5133:"5‘ F F) fr”

mm E9

start trans. _ get term. and trans. free(SIGNOFF)

TYPE 3

Q
trans. 1

<3

S)
9

trans. 1

9
TYPE 4

Figure I. 70:

EB
trans. 2

Types of TPS Transactions

9
ND-60.111.03

trans. 2

1.3.2

1.3.3

1—18

Type 2: Short Terminal Transactions

The other main way of setting up a transaction is by connecting a terminal to
TPS whenever a transaction is to be carried out on the terminal and releasing the
terminal when the transaction is done. This frees the terminal for other use and,
possibly even more importantly, also frees the Transaction Processing Task (TPT)
in TPS for use with another terminal.

This method should be used if there are many terminals that are not in constant
use. They may then‘share a limited number of TPTs among themselves. The
disadvantage is that there is more overhead in starting up the transaction.

The procedure would be as follows:

A terminal connected to a network is inactive. The user presses a special
function key that causes a message to be sent over the network to TPS. TPS
allocates a TPT to the terminal and the TPT starts an application program that
can converse with the terminal. A dialogue follows between the user and the
application program, and the data base is read and updated. When the user
indicates to the application program that he is done, the application terminates
and both the terminal and the TPT are freed.

Type 3: Short Local Terminal Transactions

A terminal is connected locally to the computer and can be used for both TPS
processing and other processing. The terminal can be brought into the TPS
system by issuing a command at the TPS operator console, a special terminal
devoted to operational control of TPS. A TPT will be allocated and the application

program indicated in the command started. When the application program

terminates, both the TPT and the terminal will be freed.

ND-60.lll.03

1.3.4

1.3.5

1,-19

Type 4: Concurrent Transactions

A transaction that is active can start another transaction to run concurrently. A
new TPT will be allocated and the new application started. Data can be sent from
the mother task to the daughter task. The daughter task will not have a terminal
-—- if it needs one, it must set up the connection itself.

Type 5: Future and Periodic Transactions

A transaction that is active can start another transaction at some time in the
future, either at a given absolute time or periodically. When the time comes, the
transaction will be started as for Type 4. The TPS operator can also use
commands to start a single or periodic application at a specified time. TPS need
only be informed once of a periodic application. It will then be started
periodically at the correct times.

ND-60.11‘l.03

1.4

1.4.1

1 ~20

PROCESSING A TRANSACTION

This section describes in some detail the steps involved in processing a typical
transaction using the standard version of TPS. it follows the transaction
sequentially through the TPS system from its initiation by the user until it is
terminated.

The transaction described is a transaction of Type 1, a permanently-connected
terminal transaction. A connection is established between a terminal and a TPT
when SIGNON is first started by TPOPEN (See Figure 7.77). SiGNON checks the
terminal operator's status and SELECT calls the correct user application. A
conversation is carried on between the user and the application program and the
data base isread and 'updated. When the user has no more input and has
received all output, he indicates that the transaction is done. The application
program will terminate and the SIGNOFF application will give control back to
SIGNON to wait for the next transaction.

Starting the Transaction

The TPS system has been started initially and is in normal running state.

TPOPEN has started a number of transactions using the activate-task TSR. The
first application to be given control is the SIGNON special application.

The terminal in our example is a standard terminal controlled by the NSHS or

FOCUS screen handling system. The first time SIGNON is started, it will reserve
the terminal. After that it will call NSHS or FOCUS routines to display a picture
asking the user to enter his name, and then wait for an answer in the NSHS or
FOCUS input routine.

To start the transaction, the user will enter his name on the terminal and press

the return key. SIGNON will be started up with the reply in the input data area. it
will check the user’s identification and perhaps whether that user is allowed to
use that particular terminal. SIGNON may then ask for a password, again using
NSHS or FOCUS routines. When this has been checked, SIGNON will switch to
SELECT, using the switch-application TSR. SELECT will display the user’s master
menu and wait for the user to enter the number of the entry he wants. This may
result in displaying a sub-menu, going back to SIGNON or switching to a user
application. if it is the latter, the transaction has been started.

ND-60.1li.03

1—21

TCM TSR APPL FOCUS/ NSHS/SIBAS

TPOPEN (TPTY)
Aczivau

/_/"" SlGNON

_\

\SIGNON (rpm ~
fr“
TPT

Reserve terminal
display SIGNON picture
wait for answer

Road uur nan-Impasswcrd /

_... Swatch to SELECT

‘ SELECT (TPTZ)

Display menu --"'
wait for answer

find usnr
Mignon namu.

_. much to it

\usaa AFPL (fin)
Termina; aiaboquo

SIBAS dloqun

Tammi! diatoquc

Taminatn

! a

SIGNOFF (TF1?)

SIGNON (Tm)l _

Figure 7.77: A Typical Transaction

ND-60.111.03

1.4.2

1.4.3

1 ~22

ProCessing the Transaction

Normally, one may envisage the transaction processing in one or more
sequences each consisting of a dialogue between the application program and
the user, with some activity on the data base as the result of most dialogues.

The transaction may start by asking for some information, for example anaction
type. When the user has answered (register a new customer), a dialogue can
follow, prompting the user to enter the details of the transaction (name, address,
telephone number, account number, etc.), the data base will be updated and the
user notified (the customer has been registered). The transaction may then start
a new dialogue.

The data base is accessed through normal SlBAS calls in the application
program. All of the common SlBAS data manipulation calls are available to TPS
programs, such as OPEN DATA BASE, CLOSE DATA BASE, FIND, GET, MODIFY,
STORE, ERASE, REMEMBER, FORGET, etc. it is possible to access records from
outside the data base (out-of-the—blue access) in several ways, to conduct
searches and to access records via their relationships to other records (relative
accesses).

The transaction may be an inquiry transaction, an update transaction, data entry,
report generation or any combination of these. It may use TSRs to create a
session with an l/O device or application program. It may access local devices by
reserving them and communicating directly with them. It may start concurrent or
future tasks or switch to another application, again using TSR routines.

Terminating the Transaction

The transaction will be terminated when the logical end of the program is
reached, when the user indicates that there is no more processing to be done.
etc. When the transaction terminates, the SIGNOFF application will be activated.
SIGNOFF may gather some statistics or do other processing and will end by
switching to the SlGNON application.

ND-60.lli.03

2.1

ADM I N I STRATI N G TASKS

TASKS, TRANSACTIONS AND APPLICATIONS

A task in TPS can be defined as the processing done by a Transaction'Processing

Task (TPT) from the time it is allocated by the Transaction Control Module (TCM)
until it is freed again. The number of concurrent tasks at any time is thus the

same as the number of allocated TPTs.

A taskmay be either a short task that only lasts-for one transaction or it may be

a long task that handles many transactions in a row (but only one at a time).

(See Figure 2.1).

A long task will return to the SlGNON or SELECT application between

transactions, instead of completely terminating by releasing the terminal and the

TPT. This saves the overhead of allocating a TPT every time a new transaction is

started and assures that a TPT is available for that terminal. This method should

be used mainly for terminals that are in more or less constant use, since the

terminal will be permanently connected to that one TPT as long as the task lasts.

A transaction can then be defined as the processing done either from the time a

TPT is allocated until it is freed for a short task, or from the time control is given

to the user application until return to SlGNON or SELECT for a long task.

An application program is a user written program linked to and started by the

TPT. The application program will run under the control of the TPT and do the

actual transaction processing. When it is done processing, it can either switch to

a new application or terminate.

A task may thus consist of the sequential processing of one or many transactions

and a transaction may consist of one or more application programs.

ND-60.iil.03

Allocate TPT

' APPL. 1

TRANS APPL .2

SIGNOFF -
free TPT

Wm ’
WMVW

W W

Figure 2. I Short and Long Tasks

ND-60.111.03

Task administration includes starting tasks, terminating tasks and transactions,
and switching application programs. (See Figure 2.2.) Task adminstration can be
done by application programs and by other TPS components, such as
input/output modules and the system operator. This chapter will only discuss the
task adminstration that can be done by application programs.

TACTV ACTIVATE A CONCURRENT TASK

SET THE EXECUTION TIME FOR A
TASET FUTURE TASK

EXECUTION INTERVAL FORT/NTV sameA PERIODIC TASK

D ISCONNECT THE EXECUTION
TDCNT TIME/INTERVAL

T5 WAP gigglALo ANOTHER APPLICATION '

T5 TOP TERMINATE THE TRANSACTION

T TERM TERMINATE THE TASK COMPLETELY

7'5 7’5 7" SET THE TERMINATION STRATEGY

TSC S T SET THE CLOSE STRATEGY

75,457" SET THE ABEND STRATEG

Figure 2.2: Task Administration TSRs

ND—60.111.03

2.2

2‘4

STARTING TASKS AND SWITCHING APPLICATIONS

Tasks may be started in several ways:

—— a session request from an lOM to a TCM will start a new task (See Section
3.3. I)

—— a session request from an application program to a TCM, requesting a
session with another application program, will start a new task. This is
done with the TSOPN TSR and is described in section 3.3.3.

—- the operator can start a task using the activate'application command.

— the special application program TPOPEN can start tasks when the TPS
system is initially started (See Section 6.3)

— an application program can start both concurrent, future and periodic tasks

Thus an application program is allowed to start both concurrent and future tasks
and to set the execution interval for periodic tasks. These functions are carried
out through TSRs.

ND-60.111.03

2.2.1

2.2.1.1

Immediate Task Activation

TACTV - The Activate Concurrent Task TSR

An application program may activate a new task on the same TCM to run

concurrently with itself. A new TPT will be allocated if one is available and the

given application program started. Up to 2000 bytes of data can be transferred to

the activated task. The activated task ‘will receive the data in the beginning of the

task common data area(See Section 7.7.2).

CALL TACTV (< application number>, < record > , < size > , < status >)
CALL ’TACTV’ USlNG < application number> < record > < size > < status >.

if no TPT is available, an error code is returned in the status parameter. The

availability of a TPT is determined by the number of free TPTs and the priority of

the new application.

The old task and the new one will run independently and have no common data

area. If they want to communicate, one way is to use the TSOPN TSR instead

of the TACTV TSR, since a session will then be established between them.

Another way of communicating is through internal devices {See Section 4.4).

Example - FORTRAN

PROGRAM 1

COWON/PRIVATE/ITERM(128) yIPRIV< ZOOO)
DIMENSION IREC<20> data record to be sent to

. program 2

CALL TACTV(52,IREC,HO,I TAT) activate program 2 (appl 52),
send MO bytes of data to it

I? (ISTAT.LT.0) GO TO error routine check return status
a

PROGRAM 2 (APPLICATION ‘32)

COMMON/PRIVATE/ITERM(128) , IPRIV(5)
DIMENSION IDATA(20) define data area

D0 10 I=1,20 move data from beginning of
10 IDATA(I)=ITERM(I) common area to right area

ND-60.111.03

Example — COBOL

PROGRAM 1

WORKING-STORAGE SECTION.
01 NSHS-AREA.

02 ITERM COMP OCCURS 128.
02 IPRIV COMP OCCURS 2000.

01 DATA-REC COMP OCCURS 20. data record to be sent to
. program 2

MOVE 52 T0 APPL—NR. activate program 2 (appl 52),
send 40 bytes of data to it

CALL 'TACTV' USING APPL—NR DATA-REC C40 STATUS-CODE.
IF STATUS—CODE < 0 GO TO ERROR-ROUTINE. check return status

PROGRAM 2 (APPLICATION 52)

WORKING—STORAGE SECTION.
01 NSHS-AREA.

02 ITERM COMP OCCURS 128.
02 FILLER REDEFINES ITERM. data from program 1 put at

03 PROG1-DATA COMP OCCURS 20. beginning of common area
03 FILLER PIC X(216).

O1 DATA—REC COMP OCCURS 20. define data area

MOVE PROG1—DATA T0 DATA-REC. move data to right area

ND-60.111.03

2.2.2

2.2.2.1

Future and Periodic Task Activation

The following timing functions are available to application programs

—— set the absolute execution time for starting an application
-— set the interval for a periodic application
— remove (disconnect) both absolute and periodic timing for an application

Up to 16 applications can be in the time queue and up to 16 in the interval list.
Only 1 absolute start time can be given for an application.

Timing information is stored on the disk when synchronized checkpoints are
taken and is therefore restored at rollback.

TASET -— The Set Execution Time TSR

An application program may activate a task, on the same TCM or a different one,
to be started at a specified absolute time. Two parameter values may also be
specified. '

CALL TASET (<module>, <application number>, <parameter l>,
<parameter 2>, .<time>, <status>)

CALL ’TASET' USlNG <module>, <application number>, <parameter l>,
<parameter2>, <time>, <status>.

When the specified time (second, minute, hour, day, month, year) has been
reached, a new TPT will be allocated on the specified TCM and the application

program will be started. The two parameter values (for example a terminal
number and type) will be placed in the beginning of the task common data area.

If the specified time has already been reached when the TSR is issued, the new
task will be started immediately.

If no TPT is available when the task is to be started, an error message will be
written on the TPS operator console.

The time resolution is 5 seconds.

NIB-60111.03

2—8

Example - FORTRAN l

DIMENSION ITIME(6)

ITIME(1)=O start appl 8 on TCMO
ITIME(2)=0 at absolute time 10am
ITIMEC3):1O on December 31, 1980
ITIME(H):31 with parameters ”6 and fl
ITIME(5)=12 “
ITIME(6)=1980
CALL TASET(32,8,u6,u,ITIME,ISTAT)
IF (ISTAT.NE.O) GO TO error routine

Example - COBOL

MOVE '0' TO ABS-TIME(1) ABS-TIME(2). start appl 8 on TCMO
MOVE '10’ TO ABS-TIME(3). at absolute time 103m on
MOVE '31, TO ABS—TIME(4). December 31, 1980
MOVE '12' TO ABS—TIME(5).
MOVE '1980' TO ABS-TIME(6).
CALL ’TASET' USING TOM—0 APPL—8 TERM-NR TERM—TYPE

ABS-TIME STATUS-CODE.
IF STATUS—CODE NOT = 0 GO TO ERR-ROUTINE.

ND-60.111..03

2.2.2.2 TINTV — The Set Interval TSR

An application program can set the execution interval for an application. The
next time the application is activated, it will become periodic.

CALL TINTV (<module>, <app|ication number>, <parameter l>, <parameter
2>, <interva|>, <status>)

CALL ’TlNTV’ USING <module>, <application number>, <parameter l>,
<parameter2>, <interval>, <status>.

The TINTV TSR will not itself start periodic execution of the specified application
program. This must be done by some other means (see section 2.2). Once it has
been started, however, it will continue periodically at the specified time intervals.
The next interval will start at each time of activation.

A periodic application can have only one execution interval. If it already has an
interval, the new interval will replace the old one.

An application can set its own interval, but if it is not already periodic, the next
execution must be started by some other means.

The execution interval is specified as seconds, minutes, hours and days. Since
months and years are not well-defined time spans, long intervals must be
specified in days.

The time resolution is 5 seconds.

Example - FORTRAN

DIMENSION INTVL(ll)

INTVL(1)=O set execution interval to
INTVL(2)=30 1 hour and 30 minutes for
INTVL(3)=l appl 5 on TCMO (no
INTVLCQ):O parameters)
CALL. TINTV(32 , 5 , O , O , INTVL , ISTAT)
IF (ISTAT.NE.O) GO TO error routine 1
CALL TACTV(5 ,0 ,0 , ISTAT) start it (no data)
IF (ISTAT.NE.O) GO TO error routine 2

Example - COBOL

MOVE ’0' TO INTERVAL(1) INTERVAL(4).
MOVE '30' TO INTERVAL(2). set execution interval to
MOVE '1' TO INTERVAL(3). 1 hour and 30 minutes
CALL 'TINTV' USING TCMO APPL—S ZERO ZERO

INTERVAL STATUS-CODE.
IF STATUS—CODE NOT = 0 GO TO ERR-ROUT—l.
CALL 'TACTV' USING APPL—S ZERO ZERO STATUS—CODE.
IF STATUS—CODE NOT = 0 GO TO ERR—ROUT-Z.

ND-60.111.03

2.2.2.3

2—10

TDCNT — The Disconnect Application TSR

An application can be removed (disconnected) from the time queue and the
interval table.

CALL TDCNT (<module>, <application number>, <status>)

CALL ’TDCNT’ USING. <module>, <application number), <status>.

The application will be immediately removed from both time queue and interval
table with this TSR.

Examples

CALL TDCNT(32,5,ISTAT) disconnect appl 5 on TCMO

CALL 'TDCNT' USING TCMO APPL—S STATUS-CODE.

ND—60.1il.03

2.2.3

2.2.3.1

2—11

Switching to Another Application

TSWAP - The Switch Application Program TSR

The processing of a transaction may involve the activation of several application
programs, one at a time. When one program is done, it may sWitch to another
program instead of terminating.

The TSWAP TSR is used to switch to another application program.

Examples

CALL TSWAP(25,ISTAT) switch to appl 25
Error routine (will not return here if OK)

MOVE 25 TO NEXT-APPL.
CALL ’TSWAP’ USING NEXT-APPL STATUS-CODE.
Error routine (will not return here if OK)

If the old application had a terminal or a session, the new application will have
the same terminal or session partner and may continue to exchange messages
with this. partner.

The new program will have access to the data area of the old program if it is
defined as belonging to the task common data area. in a FORTRAN program, this
will be the COMMON/PRIVATE/area. COBOL programs must contain a section of
working storage which is identical in all applications which may be executed
within one task.

The new program can be written in the same language as the previous one or in

any other of the available languages

When both COBOL and FORTRAN programs are to be executed in the same
task, the data areas should be arranged as in Figure 2.3 it is the programmer’s
responsibility to make the two maps identical and avoid destruction of common
data at run time. For a more detailed description of common areas see Chapter
7.

ND-60.lll.03

2.2.4

2—1 2

FORTRAN COBOL

Common area for Identical section
all applications of working storage

f ll a iioationTASK °' 3 pp
COMMON

AREA

Runtime stack . individual section
APPLICATlON - L of working storage

for each application
LOCAL ’

AREA

Figure 2.3: Application Data Area

The SlGNON and SELECT Special Applications

SlGNON and SELECT are special applications supplied with TPS. The standard
versions of the special applications are discussed in chapter 6. They are
mentioned here because they may play an important role in task administration.

The main function of SlGNON is to check the identity of the user and perhaps
ask for a password. The standard version also reserves the terminal and initiates
NSHS or FOCUS if necessary. if the user has been accepted, SlGNON ends by
switching to SELECT.

The function of SELECT is to ask the user to select the application to be run.
When the user has answered, the SELECT application will switch to the desired
user application program.

ND-60.111.03

2.3

2.3.1

2.3.1.1

2—13

TERMINATING TRANSACTIONS

When an application program is done, it can either switch to a new application

program using the TSWAP TSR (See Section 2.2.2) or it can terminate the

transaction. If the transaction is terminated, this can be done normally or

abnormally.

Normal Termination

Normal termination of a transaction can be caused by:

— reaching the logical end of the program (the END or STOP RUN
’ statement)

-— using the TSTOP TSR with a stop code of O or using the TTERM TSR

— the LEAVE monitor call (CALL LEAVE)

TSTOP - The Stop Transaction TSR

The TSTOP TSR may be used to terminate a transaction either normally with a
stop code of 0 or abnormally with any other stop code. A negative stop code can
be used to give a formatted error message from NSHS (—1) or SlBAS («2).

Normal termination will activate SlGNOFF, while abnormal termination will

activate ABEND.

The application should have performed appropriate housekeeping on the data
base, session partner, devices, etc.

CALL TSTOP(<stop code>)
CALL 'TSTOP’ USING <stop code>.

Examples

SCODE:3
CALL TSTOP(SCODE) stop code = 3

CALL 'TSTOP' USING ZERO. stop code = 0

ND—60.111.03

2.3.1.2

2.3.1.3

2—14

TTERM — The Terminate Task TSR

it is also possible to terminate a task directly instead of by going to SlGNOFF.
The termination will be a complete termination and the TPT will be freed.

CALL Tl'ERM (<checkpoint>)
CALL "lTERM' USING <checkpoint>.

A transaction checkpoint is normally taken when a task is completely terminated
(see TTRAN). However, this can be prevented by using TTERM with the
checkpoint parameter set to 1. This saves the overhead of taking a transaction
checkpoint, but it could create a problem if recovery is done on the TPS system.

The application program should close the data base, close a session, release
resources, etc., before using the TTERM TSR.

Examples

CALL TTERM(O)

CALL 'TTERM' USING ZERO.

The SIGNOFF Special Application

When a transaction terminates normally, the SIGNOFF special application is

given control to carry out the actual termination. There are several ways of
terminating a transaction, the main choice being between complete task
termination (freeing the terminal and the TPT), and continuing the task with a
new application, usually SIGNON or SELECT.

ND-60.11 1.03

2—15

2.3.1 .4 TSTST - The Set Termination Strategy TSR

SlGNOFF uses the termination strategy for the task to determine which course to
follow. When the task is originally started, the termination strategy is set to l,
which usually indicates complete termination. The TSTST TSR can then be used
to change the strategy to any other value, the meaning of each value depending
on the way it is interpreted by SlGNOFF.

CALL TSTST (<term. strategy>, <term. appl.>)
CALL ’TSTST' USING <term. strategy>, <term. appl. >.

Examples

CALL TSTST(1) complete termination, TPT
released

MOVE 20 T0 TERM-APPL. user termination application
CALL 'TSTST' USING FOUR TERM-APPL.

In addition to setting the termination strategy, the TSTST TSR can be used to
indicate a user—written termination application. The standard termination
strategies are described under the SlGNOFF application in chapter 6..

ND-60.lll.03

2.3.1.5

2-16

TSCST -- The Set Close Strategy TSR

When the CLOSE-TPS operator command is given, a controlled stop sequence
will be initiated. Normally, active tasks (TPTs) will continue until they , are
terminated, but no new TPTs may be allocated. When all TPTs have been freed,
TPS will be stopped.

However, since long tasks do not free their TPTs between transactions, a close
sequence will never be completed in systems with this type of task. To avoid
this, it is possible to indicate that a task is to be terminated immediately and
completely if a close command is given. This is done by setting the close
strategy to immediate termination with the TSCST TSR.

On the other hand, to prevent a transaction from being terminated in the middle
of processing, the close strategy can be set to normal termination while the
actual processing is being done. Then, when that transaction is complete, the
close strategy may be set back to immediate termination. This will also cause the
task to be terminated if a close command has already been given.

The close strategy can be set in both user applications and special applications.
For example, SIGNOFF may set it to immediate termination, and the last thing
SELECT may do before starting a user application is to set it to normal
termination. But it may also be left to the application programmer to control this.

CALL TSCST (<close strategy>)
CALL 'TSCST' USlNG <close strategy>.

The value of <close strategy) is either 0 (normal termination) or 1 (immediate
termination). if it is l, TSCST will also check if a close command has already
been given and terminate the task if it has.

The close strategy is normally set to l in the beginning of SINON and changed to

0 before swapping to the SELECT application.

Examples

CALL TSCST(i)

CALL 'TSCST' USING ONE.

NDv60.lll.03

2.3.2

2.3.2.1

2.3.2.2

2—17

Abnormal Termination

Abnormal termination of a transaction can be caused by:

—— the FORTRAN or COBOL runtime system

— the TPS system

—— the TPS operator

—— the application program itself by using the TSTOP TSR with a non-zero
stop code.

The ABEND Special Application

When a transaction is terminated abnormally, the ABEND special application will

be called before termination to write an error message, take a dump or do some

otherspecial processing. When the ABEND application is done, it will usually

switch to SlGNOFF to terminate as for normal termination.

TSAST - The: Set Abend Strategy TSR

ABEND uses the abend strategy for the task to determine what action to take in
connection with abnormal termination. The default value is i when the task is
started. The TSAST TSR can be used to change the strategy to another value.
the meaning of each value depending on the way it is interpreted by ABEND.

CALL TSAST (<abend strategy>, <abend appl.>)
CALL 'TSAST’ USING <abend strategy> <abend appl.>.

Examples

IABAPP=12 user abend application
CALL TSAST(H,IABAPP)

CALL 'TSAST' USING THREE. dump the data area on the printer

in addition to setting the abend strategy, the TSAST TSFi can be used to
indicate a user-written abend application. The standard abend strategies are
described under the ABEND special application in chapter 6.

ND-60.i 11.03

2.3.2.3

2.3.2.4

2—1 8

Illegal Monitor Calls

The monitor call routines allowed in TPS are listed in appendix E. if a FORTRAN
or COBOL program calls an illegal monitor call routine, the program will be
abnormally ended with the error ’illegal use of TSRs’.

If an illegal routine is called from a MAC or NPL program, the routine will be
executed and no error message written. However, the programmer is strongly
advised not to use routines not on the list, since they may hang the TPS system
or cause unpredictable results. in addition, PLANC, MAC and NFL programs
should not use the MON instruction directly, but call the corresponding
FORTRAN monitor call subroutine. .

Timeout

When an application is loaded, a maximum time between TSR calls is set. if the
application runs longer than the given time, it will be abnormally ended with the
error ’timeout’. The timeout depends on the application priority, a low priority
giving a long timeout. Setting the maximum time to 0 will allow the application
to run for an indefinite time. The application timeout can be turned on and off
with the TTONS and Tl'OFF TSRs.

There is also an operator timeout. This is useful if, for example, the terminal has
been turned off or the operator does not answer for some other reason. The
operator timeout time can be Changed with the TSOPT TSR.

A timeout is also used when restarting the system after rollback or recovery. If

communication with the terminal is involved during restart {See Section 5.2.3),it
is not certain that the terminal operator is still there or that the terminal is still

turned on. if no answer is received within a specified time, the application is

abnormally ended.

ND-60.111.03

3.1

3.l.l

3—1

INPUT/OUTPUT PROCESSING

This chapter describes how to handle input and output processing under TPS.

The data base is controlled by the SIBAS data base management system through
standard SIBAS calls. Using SIBAS in TPS application programs is discussed in
section 3.1.

Display terminals will usually be controlled through the NORD Screen Handling
System, NSHS or FOCUS. This system can be used for most types of display
terminals, connected both locally and through input/output modules. NSHS and
FOCUS are discussed in section 3.2.

Other input/output devices are of two types. The first type is special TPS devices
controlled by Input/Output Modules (IOMs) and accessed by the application
program through special Transaction Service Routines (TSRs). These are
described in section 3.3.

Finally, TPS application programs may also use standard devices and files
available to all users of the local computer system, also non-TPS users. These
devices and files are controlled directly by the application program using
standard input/output statements and SlNTRAN monitor calls. Standard device
handling is discusssed in section 3.4. ' ‘

SIBAS UNDER TPS

Data Definition and Manipulation

The data base in a TPS system is controlled by the SIBAS data base
management system. The data base is defined and created using the SlBAS data
definition/redefinition language DRL. This is done independently of TPS, in
background (timesharing or batch) mode.

The data base is accessed from application programs using the SlBAS data
manipulation language DML. A TPS application program uses the same SIBAS
calls to access the data base as a program running in a different environment
such as timesharing or batch. These calls are described in detail in the SIBAS
User's Manual and a summary of SIBAS DML statements is found in appendix G.
This section only discusses special considerations which should be taken when
using SIBAS under TPS.

ND—60.iii.03

3.1.2 The $IBAS Interface Routine i

When an application program calls a SIBAS routine, the call can not go directly
to SIBAS, but will go to the SlBAS interface routine (DML simulator). (See
Figure 3.1). This routine functions as a communication interface between the
user and SIBAS, sending calls from one to the other via internal devices or core
common.

This interface routine makes it possible to access the same SIBAS data base
from TPS programs, other RT programs and background (timesharing and batch)
programs at the same time. The interface is divided into a user side and a SIBAS
side, and all SlBAS calls will go from the individual user interfaces to the
common SIBAS interface and back again. V,

The ability to access a TPS data base from background programs can be an aid
to program testing. The programmer must however be aware that no checkpoints
are taken of background programs and a TPS rollback or recovery operation may
cause the data base and the background program to be inconsistent.Normally
programs testing in background will have their own test version of the data base.

SlB 1
Data
base

Tas res communi- sra 1 ‘
RT OML cation data
arogrms Simuiltuf buffer sequent

1 z '
2 l / \
ibaqrounu ii aaotqrcunu , \
l aroqrams l DML \
l I i
I y Simulator \
, l \

SIB

Sta 2 ‘ ' SET

Other R7 communi- SIB 2
RT DML cation data .
Drograms simulator buffer segment

Data
base

Figure 3. I: SIBAS User Interface

ND—60.1ll.03

3.1.3

3—3

Opening and Closing the Data Base

The data base is opened and closed using the normal SOPDB, SRRLM and
SCLDB calls. Opening the data base will cause it to be "physically" opened if no
other program has it open at the moment, otherwise opening it will just cause
the caller to be registered as a user. Since the former involves more overhead
than the latter, it may be most convenient for the TPOPEN special application to
open the data base physically and to leave it open until the TPCLOSE application
closes it physically. Application programs can then open and close it as needed
without causing unnecessary overhead.

Another factor to be considered in opening and closing the data base is that a
transaction checkpoint is taken every time the data base is opened or closed.
This overhead can also be avoided if the data base is only opened once for each
user, for example the first time SlGNON is called. This of course is only possible
for long tasks, since the ’user’ is the TPT and this must not change. On the other
hand, taking a transaction or synchronised checkpoint involves more overhead if
the data base is open. if an application program has a long phase with no data
base accesses (reading input from the terminal, for example), it may be best to
close the data base and open it again afterwards, if transaction checkpoints are
taken often (See Figure 3.2).

For a detailed discussion of checkpoint and restart see chapter 5.

Using More Than One Data Base

Application programs are allowed to use more than one data base, but if they do ‘
and the checkpoint/restart facility is used, an application program must only have
one data base opened at a time. (See Figure 3.3)!1c this rule is not followed, a
restart could cause problems, since checkpoints are only taken of the data base
in current use (the one given in SETDV). The other data base may not only be
inconsistent, but may not be closed properly at rollback or opened at restart.
These problems are avoided if only one data base is open at a time for each
application program (different application programs may, however, have different
data bases open at the same time). xx

ND-60.1il.03

3—4

Start

_____________________,_ Write term picture

_______,, Read input from term
take trans checkpoint

more
input __ CALL SETDV (1)

CALL SOPDB (data base 1)

YES

no

Open database
Get record CALL SCLDB (data base 1)

E
CALL SETDV (2)

Update record CALL SOPDB (data base 2)

more
updating

CALL SCLDB (data base 2}

5C205e data base

(

yes more
processing?

Terminate

Figure 3.2 Database Open-Close Figure 3.3 Using more than one Database

ND~60.111.03

3—5

3.1.5 SIBAS in ND-500 Multi-CPU TPS

In ND-SOO multi-CPU TPS, SlBAS process(es) may run in both the ND-lOO and
the ND-SOO. Applications running in either CPU may call any SlBAS—process, the
SIBAS device number identifies the SlBAS~process, e.g. SlBAS-number 0 may
run in the ND-lOO and SIBAS No. 1 and No. 2 in the ND-500. Apart from the
SIBAS device number, there are no other differences in calling SIBAS on another
machine from the application's point of view. Note that when calling SIBAS on
another machine than where the application is running (E.g. ND-lOO —> ND-SOO),
you get a substantial increase in system overhead. Consult the SIBAS User’s
Manual (ND-60.127) for further information on overhead and on how to call
SlB~DML from applications running on the ND—SOO.“

ND-60.111.03

3-6

Restricted SIBAS Calls

Certain SIBAS functions are not controlled by user application programs, but by
special applications called by TPS when these functions are required, (See
Section 6.4). These functions are synchronised checkpoint, rollback and recovery
and they are controlled by the CHECKPOINT, ROLLBACK and RECOVER special
applications respectively.

Since checkpoint/rollback/recovery affects the whole TPS system, SlBAS
routines for these functions must not be called by user application programs.
This holds also for logging routines such as initiating the log files and turning the
routine log on and off during recovery.

The special applictions also control the state SlBAS is in at any time and routines
that change the state must therefore not be called from user application
programs. '

Other SlBAS routines which should not be called are BSEQU and ESEQU since
these are used in a special way by TPS. The THSYN (hold synchronized
checkpoint) and TTSYN (allow synchronized checkpoint) TSRs should be used
instead to indicate critical sequences.

The reason for this is that when recovery is done, SIBAS will reprocess all calls
from the last synchronized checkpoint to the end of the last critical sequence. At
the same time, TPS will restore transactions to the last transaction checkpoint. If
the transactions are to continue, these two points must be the same. To achieve
this, the transaction checkpoint routine makes use of BSEQU and ESEQU.
However, if recovery with automatic transaction restart is not used, user
application programs may call TBSEQ and TESEQ. (See Appendix H.)

The restricted SIBAS calls are shown in figure 34.

ND-60.lll.03

Checkpoint/rollback/recovery

GCHPO SCROLL SICON
SCHPO SREPR

Logging

INLOG ONLOG OFLOG

Status

START SRUN SFINI
STOPS SPAUS STREP

SRECO SPASS

MisceHaneous

RESIB CHCOM RBLAN
RELSI SIBIO SBLAN
SABOR STRLG ZTRB

Figure 3.41: Restricted S/BAS Cal/s

ND-60.111.03

3.2

3.2.1

3.2.2

3.2.2.1

3—8

NSHS AND FOCUS UNDER TPS

Handling Display Terminals

Display terminals can be controlled through the NORD Screen Handling System
(NSHS) or the FOCUS Screen Handling System. it is of course possible to write
to and read from display terminals using the standard I/O facilities (as discussed
in section 3.4), but NSHS or FOCUS provide more advanced facilities for screen
handling. In the NDSOO, only FOCUS ought to be" used, or you will get a great
amount of system overhead.

The NSHS System

NSHS provides facilities for picture definition with leading texts and data fields,
various field types, input control, cursor control etc. NSHS can be used
for standard terminals and some terminals controlled by l/O modules
(See Figure 3.5). The NSHS calls are the same for both types. However, each
type has its own version of NSHS and the correct version must be used. This is
described under loading applications.

Defining and Using Pictures

Pictures are defined using the NORD screen definition system. This is a
background program which is run as a SlNTRAN timesharing program or a batch
job, not as a TPS program. Defining pictures is discussed in section 7.7.

After a picture has been defined, it can be used by a TPS application pregram
via calls to the NORD screen library system. These calls are listed in appendix F.
For a complete discussion of the screen definition system and the screen library
system, see the NORD Screen Handling System Manual.

ND-60.111.03

3.2.2.2 QCQCQCand Restart

Control 0 (pressing the control and the (1 keys simultaneously) 3 times in a row
has a special function in screen handling. It will clear the screen and write out
the latest picture and any input to the latest RFLDS call. If input from one picture
is read with several RFLDS calls, input to previous RFLDS calls is not shown,
since it has already been sent to the application program.

This QCQCQC function is used normally to restore a picture if, for example, the
terminal is turned off by mistake or if the picture disappears because of power
failure.

0‘30c is used by TPS in connection with system restart (See Section 5.3.2),
in order to restore the screen picture, which may have been lost when the
system was down, and to position the cursor correctly. The terminal operator is
instructed by the RESTART application to press QCQCQC. When he does so, the
latest picture and any input to the latest RFLDS will be restored. lnput to
previous RFLDS, however, which has already been processed by the application
program, will not be restored. This may cause some confusion for the terminal

operator as to what has been registered, even though the cursor will be
positioned properly. One way to avoid this situation is to read all input from one
picture with a single RFLDS call if this can be fitted to the program logic.

ND—60.111.03

3—1 0

APPL
PP

CALL WRPTD CALL WRPTD

NSHS - NSHS

Write picture Send picture
on screen picture in internal

files message format

Message, routing
/

/ Route

picture to IOM

IOM

LOCAL TERMINALS
Write pieture
on screen

., NETWORK TERMINALS

Figure 3.5.A: NSHS for Local and Special Terminals

NIB-60,111.03

3.2.3

3.2.3.1

3—11

FOCUS Level 1

FOCUS Level 1 is a high level screen handling system that can be used to control
local or remote asynchronous terminals or synchronous (buffered) terminals
using lSO 1745 or 3270' as line procedure. The calls to the screen handling

system are the same for locally connected terminals and for remote terminals.
The communication is carried out by the TPS system which establishes a session

between the application’s TPT and the remote FOCUS process, and calls
"FClNlTE" with specific parameters.

' Not yet implemented.

Defining and Using Forms

The definition of forms (pictures) is done using the FOCUS—DEFINE system. This

is a background program which is run as a SINTRAN timesharing program, not

as a TPS-program. Defining pictures is discussed in Chapter 7.8.

After a picture is defined, it can be used by a TPS application program via calls

to the FOCUS library system. These calls are listed in Appendix F. For a complete
description of the FOCUS screen handling system, see the FOCUS Screen

Handling System manual. '

ND—60.lll.03

3.2.3.2

3-12

Local or Remote Asynchronous Terminals f;

If the load of the system becomes too big, the processing part of the screen
handling can be distributed to one or several Front End CPUs (See Below).

Applications
+ FOCUS

? ~ - \
\‘ ‘

Applications \\

+Communiau'cn \\
Library/Call Interface \

Processing
Pan of FOCUS

Figure 3.58: FOCUS on One or Several CPUs

Those terminals that are to be used on a FE CPU are defined in the user
configuration (See chapter 4.2. 1.6 in the TPS System Supervisor’s Guide).

For each terminal the logical device number, terminal type and CPU~number is
defined. This information is sent to the FE CPU by the SIGNON special
application when establishing a session between the local application and the
remote CPU process.

ND-60.111.03

3.2.3.3

3.2.3.4

3-13

Synchronous/Buffered Terminals Using FOCUS

A special version of FOCUS is developed for buffered terminals using

l/O-modules.

The calls to FOCUS are the same, but some more calls are added to enable use

of the special features of these terminals, such as set high/low intensity and

lock/unlock fields. The FOCUS calls operating on just one field are not relevant

for these terminal types. The forms must be compiled by a post processor before

use.

ND-100 — ND—SOO lncompatibilities in FOCUS

Application program using FOCUS in the ND-SOO cannot switch (using the

TSWAP TSR-routine) to a new application in ND-lOO and continue to use FOCUS

with the FOCUS-initiation set by the previous application in ND-500 and vice
versa. The new application must then call ’FClNlTE’ as the first call to FOCUS.

The FOCUS internal data format is different in the ND-lQO and the ND-SOO due to
the difference in word-length of the two machines.

ND-60.111.03

3.3

3—1 4

SPECIAL TPS DEVICES

Special TPS devices are devices that are controlled by l/O. modules (lOMs). The
main use for lOMs is in connection with networks and distributed processing, but
they may also be used for any other devices that are not controlled directly by
the application.

The lOM does the actual reading and writing on the device according to the
protocol required by the device. After being read, data is transformed to the
internal TPS message format and sent to the application program via the TPS
message routing system. Data from the application program to the device is sent
to the IOM'in the internal protocol and written on “the device by the lOM in the
device format.

All handling of special message protocols, formatting, unformatting and errors is
done by the lOM. The application program uses a set of simple calls to
communicate with devices belonging to this group (See Figure 3.6). Note that

, some terminals controlled by lOMs may be accessed from the application
program through NSHS calls. Using NSHS is discussed in section 3.2.

in addition to the TSR routines described in this chapter, the TBRDC and TTEXT
TSRs can be used to broadcast a message to one or all units controlled by an
IOM. These TSRs are described in chapter 4.

, input/output modules are not a part of the default TPS system, since the number
of different types of devices they can handle is practically unlimited. Several
lOMs have been written for the most common devices and these can be
acquired as TPS options.

? . . \ . 4 y . ./ 5 OP/V Open a sesszon with devrce or application program

TSCLO Close the session

TSEST Read session status information

TSMSG Send a message to the session partner

TRMSG Read a message from the session partner

Figure 3.6: Communication TSFis for Special TPS Devices

ND-60.1il.03

3.3.1 .

3—15

Session Request from a Device

The connection between a special TPS device and an application program is
called a session. in order to establish this connection, a session requestis sent
from one of them.

A session request from a‘device will result in the allocation of a TPT and the
starting of a transaction. The steps in accomplishing this are (See Figure 3.7/4):

—— the device sends a special message to the IOM requesting a session

—— the lOM sends a session request to the TCM with the application name and
the logical device unit as parameters

—— the TCM allocates a free TPT to the session and sends the session request
on to the TPT

—— the TPT registers the logical unit as session partner, sends a session
response back to the IOM and starts the application program

—- the lOM registers the session response and connects the address of the
TPT with the device unit

As long as the session lasts, the IOM will send messages from that device to the
correct TPT and the TPT will send messages from the application program to the
device via the IOM. The device and the application program are session
partners. The application program communicates with its session partner through
the read—message and send-message TSR routines, the device communicates
through the lOM. The communication mode is half—duplex.

Note that up to 2000 bytes of data may be sent with the session request. When
the application program is started, this data wiil be placed at the beginning of
the task common data area. (See section 7.7 for a discussion of data areas.)

ND-60.lll.03

3-16

TPTI A99L.1
IOM

/ UNITZ

\ UNIT? TPT3 \ TPTZ APPL 2
UNITZ TPTI A

umn‘s
/ umra TPTZ -- _

TPT3 APPL.3

\ UNITI

Figure 3. 7A: Device-Application

TPT1 APDL‘

TPT3

TPTZ APPLZ

~.. ..__.._. _..-_ UNIT‘!

7PT3 APPLZ

‘7
TPTI".)---——-—-n

I

TPT4 V M391“;

._ .. _....._—-————- UNlTZ

Figure 3. 7B: Application-Application

SESSIONS WITH/N SAME TPS SYSTEM

ND—60.111.03

3.3.2

3~47

TSOPN —- The Open - Session TSR

An application program is only allowed to have one session partner at a time. If
it has no session partner, it may establish a session. This session may be to a
device controlled by an IOM, but it does not have to be; it could be to another

application program. it could also be to a device or an application program in
another TPS system (see below).

A session is established from an application program with the TSOPN TSR.

CALL TSOPN (<module>, <sub-address>, <record>, <size>, <more>,
<status>)
CALL 'TSOPN’ USING <module> <sub—address> <record> <size>
<more> <status>.

Within a single TPS system, the sub-address parameter is the identification of
the session partner, either a device or an application program. The module is the
identification of the module controlling the unit, an IOM if device, a TCM if
application program.

Example of TSOPN to application program - FORTRAN

DIMENSION IMOD(A),IAPPL(3)
CHARACTER TCM’H
EQUIVALENCE (TCM,IMOD(3))

IMOD(l)=2 ‘ addr type is char string
IMOD(2)=A length = u bytes
TCM: 'TCMT ' module is ’TCMl '
lAP?L(l)=1 sub-addr is appl nr
IAPPL(2):2 length = 2 bytes (1 word)
IAPPL(3):l6 unit is appl nr 16
CALL TSOPN(IMOD,IAPPL,0,0,0,ISTAT) open the session
I? (I TAT.ME.0) GO TO error routine check return status

Example of TSOPN to application program - COBOL

MOVE 2 TO MOD-ADD-TYPE. addr type is char string
MOVE A TO MOD—ADD-SIZE. length = A bytes
MOVE ’TCMZ' TO MOD—NAME. module is ’TCM2'
MOVE 1 TO APPL-ADD-TYPE. sub-addr is appl nr
MOVE 2 T0 APPL—ADD-SIZE. length = 2 bytes
MOVE 22 T0 APPL-NUMBER. unit is appl nr 22
MOVE 2000 T0 REC-LENGTH. 2000 bytes of data
MOVE 1 TO MORE. and more to follow

open the session
CALL ’TSOPN' USING MODULE APPLICATION DATA—REC

REC-LENGTH MORE STATUS-CODE.
IF STATUS—CODE NOT = 0 GO TO ERR—ROUTINE. check return status

ND-60.1ll.03

‘18

Example of TSOPN to device - FORTRAN

DIMENSION IMOD(3),IUNIT(3)
CHARACTER IREC’8O

IMOD(1):1
IMOD(2)=2
IMOD(3)=22B
IUNIT(1)=1
IUNIT(2)=2
IUNIT(3)=20

CALL TSOPN(IMOD,IUNIT,IREC,80,0,

addr type is the TPS module nr
length=2 bytes (1 word)
TPS module nr of IBM327O emulator
sub-addr is the unit nr
length=2 bytes (1 word)
unit is channel nr 20
open the session and send 80 bytes
ISTAT) of data

IF (ISTAT.NE.O) GO TO error routine check return status

Example of TSOPN to device — COBOL

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE

2 TO MOD-ADD-TYPE.
A TO MOD-ADD-SIZE.
'SX25' TO MOD-NAME.
3 TO SUB-ADD-TYPE.
12 TO SUB—ADD—SIZE.
XZS-NUMBER TO SUB-ADD-NAME.

CALL

addr type is a character string
length=u bytes
module is X.25 I/O module
sub-addr is in native mode for 3X25
1ength=12 bytes

unit is X.25 number
open the session

'TSOPN' USING MODULE SUB—ADDR ZERO ZERO ZERO STATUS-CODE.
IF STATUS-CODE NOT = 0 GO TO ERR-ROUTINE. check return status

If the session is with a device or application program in another TPS'system, the
module parameter will be an lOM controlling intersystem communication. Further

addressing S tA dependent and mu“ be contained in the sub-address and/or
data record.

ND-60.l 11.03

3.3.3

3—19

Session Request from an Application

A session request to a device in the same TPS system will cause the device (if it

is free) to be allocated to the application program in the same type of session as

described above. The session is set up as follows (See Figure 3.7A):

- the application program calls TSOPN with the IOM and the device unit as
parameters

— the TSOPN . TSR sends a session request to the lOM

-— the lOM registers the TPT as session partner for that device unit and sends

a session response to the TPT

_ ~— the TPT registers the unit as session partner and returns to the application

program

The device and the application program can now communicate as above.

An application program can also establish a session with another application

program. The second application will be started and the session established as

follows (See Figure 3. 7B).:

—— the first application program (task TPTA) calls TSOPN with the TCM and

the new application number as parameters

—- the TSOPN TSR sends a session request to the TCM

—— the TCM allocates a free TPT (TPTC) and sends the session request on to it

—— TPTC registers TPTA as session partner, sends a sessxon response to TPTA

and starts its application program

-- TPTA registers TPTC as session partner and returns to its application

program.

The two application programs run concurrently and communicate through the
send—message and read—message TSRs. .They should be synchronised by using

the ’more’ parameter.

Sessions with programs and devices in other systems are requested in the same

way by the application program, through the TSOPN TSR, but it may be
necessary to specify some addressing information in the data record.

ND-60.il 1.03

3—20

TSOPN for a session in another TPS system may look like this:

Example

DIMENSION mom 3) ,IUNIT(3) ,IBUF(7)
CHARACTER TCMX‘M
EQUIVALENCE (TCMX,IBUF(3))

IMOD(1)=1
IMOD(2)=1
IM0D(3)=17
IUNIT(1)=1
IUNIT(2):1
IUNIT(3)=2
IBUF(1)=1
IBUF(2)=ZOOOOB
IBUF(3)=12

intersystem IOM = X.25

channel 2
additional addr info in IBUF
TCMO
appl 12

CALL TSOPN(IMOD,IUNIT,IBUF,6,0,IST)
IF (IST.NE.O) GO TO ERROR

For detailed information on establishing sessions, see the description of‘ the
particular lOM being used.

Figure 3.8A shows a session between a TPS application program and another
computer system. Figure 3.88 shows one between application programs in two
TPS systems.

ND—60.lll.03

3—21

[OM TPTA APPL.

TPS ChanB TPTA ChanB

ANOTHER COMPUTER

Figure 3.8A: Applicétion-Computer

EOMI TPTA APPU

Chan.

Figure 3.88: Aop/icaflan-Application

SESSIONS BETWEEN TIA/O TPS SYSTEMS

ND-60.111.03

3.3.4

3-22

TSCLO - The Close Session TSR

A session may be broken by either of the session partners by sending a
session-finished message to the partner. This is done by the application program
with the close-session TSR.

CALL TSCLO (<status >)
CALL ’TSCLO' USING <status >.

Examples

CALL TSCLO(ISTAT)
IF (ISTAT.NE.O) GO TO session—not—closed

CALL 'TSCLO' USING STATUS-CODE.
IF STATUS-CODE NOT = 0 GO TO SESSION-NOT—CLOSED.

This will cause the following to happen:

-—- a finish-session message will be sent to the lOM or TCM
o

—- the lOM will free the device and send a session-finished message to the
TPT
or

—- the TCM will send a session—finished message to the other TPT (but it will
not be freed) ‘

— the TPT will return to the application program

Note that sessions will be automatically broken when transacrions terminate

completely and the TPT is freed (but not when they switch application programs

or return to SiGNON or SELECT).

ND-60.111.03

3.3.5

3—23

TSEST - The Session Status TSR

If the application program does notw if it has a session if it has reason to believe
that a session may have been broken, or if it wants information anout the current
session, the read-session—status TSR can be used. The TSR is used mainly by the
RESTART special application, but is also available to user application programs
(See Figure 3.9).

CALL TSEST (< record >)
CALL ’TSEST' USING <record>.

Examples

DIMENSION IREC(20)
CALL TSEST(IREC)

CALL 'TSEST' USING SESSION-INFO-REC.

1 Session state

2 Current direction

3 No. of input messages

4 Time for lam’st input
massage (year, month, day.
hour, minute. second, BTU)

l a No. of GUIDUE messages

12 5 Time for 'arest output
' message

19 Session partner-module

20 Session partner-unit

Figure 3.9: Session Information

ND-60.111.03

3.3.6

3~24

TSMSG - The Send-Message T$R

When an application program wants to send data to the session partner, it will
prepare an. array/record in working storage and send it to the partner with the
send-message TSR:

CALL TSMSG(<record > , <size > , <more > , <status >)
CALL 'TSMSG' USING <record > <size > <more > <status>.

Example - FORTRAN

DIMENSION ITEXT(lOOO) message defined as array
CHARACTER CTEXT’ZOOO message defined as character string

' EQUIVALENCE (ITEXTC 1) ,CTEXT)

CTEXT: 'MESSAGE TO SESSION PARTNER'
CALL TSMSG(ITEXT,26,0,ISTAT) send message(26 bytes),no more to follow
IF (ISTAT.NE.O) GO TO error routine check return status

Example — COBOL

MOVE 'MESSAGE TO SESSION PARTNER’ TO MESSAGE-TEXT.
MOVE 26 TO MESSAGE-SIZE. '
MOVE 0 TO MORE.
CALL 'TSMSG' USING MESSAGE-TEXT send message (26 bytes), no more

MESSAGE-SIZE MORE STATUS CODE. to follow
IF STATUS—CODE NOT = O GO TO ERR-ROUTINE. check return status

The message will be copied from working storage to a bufferarea and sent to
the session partner in the form of a data message. The TSR will then return
immediately to the application program without waiting for an answer from the

session partner.

Note that there is a flag, the 'more' flag, that can be used to indicate whether
the application program intends to send more data before expecting an answer
The session partner can then test this flag when the data is read with the read

message TSR. lf a message in one direction is to be followed by another in the
same direction, the more bit is set. For the last message, the more bit will be

cleared. in the case of read-message, this means that if the bit is set the
application program should call read-message again to get the next mnessage
before an answer is sent. In the case of send-message, the application program
will set the bit if a new message is going to be sent before waiting for an
answer.

ND-60.111.03

3.3.7

3w25

TRMSG - The Read Message TSR

When the application program wants to receive data from the session partner, it
will call the read-message TSR:

CALL TRMSG(<record > , <size > , <more > , <status >)
CALL ’TRMSG’ USlNG <record > <size > <more > <status>.

Example ~ FORTRAN

DIMENSION ITEXT(50) message area defined as array
CHARACTER CTEXT'lOO message area defined as
EQUIVALENCE (ITEXT(1),CTEXT) character string

ISIZE=100 max length 100 bytes
CALL TRMSG(ITEXT,ISIZE,MORE,ISTAT) read message
IF (ISTAT.NE.O) GO TO error routine check return status
IF (MORE.EQ.O) GO TO last input message check for more input

Example - COBOL

MOVE 100 TO MESSAGE-SIZE. max length 100 bytes
CALL 'TRMSG' USING read message

MESSAGE—TEXT MESSAGE-SIZE MORE STATUS-CODE.
IF STATUS—CODE NOT = 0 GO TO ERR—ROUTINE. check return status
IF MORE = 0 GO TO LASTAINPUT-MSG. check for more input

When this TSR is called, the TPT will see if any message has come from the
session partner 11‘ it has, it will copv the message to the record area in working
storage and return to the application program. lf none has come yet, the TPT will
wait until a message arrives.

ND—60.lll.03

3.3.8

3.3.9

3—26

TPASZ — The Set Packet Size TSR

Session partners exchange messages which in turn are divided into packets by
TPS. This TSR sets the size of the packets.

CALL TPASZ (< packet size >, < status >)
CALL ’TPASZ’ USING < packet size >, < status >.

The packet size set with this TSR will only be used for this transaction. If the
transaction does not set the packet size, the default size at system generation
will be used.

The maximum packet size allowed is 2047.

Examples

CALL TPASZ(2000,ISTAT)

CALL 'TPASZ' USING PACKET—SIZE STATUS-CODE

Restart

if a system failure occurs, the system can be restarted again with rollback or
recovery (See Chapter 5). After a system restart, some sessions may be intact
while others may be broken. Sessions between two application programs in the
same system will probably be intact, since the application programs have both
been restarted at their checkpoints. IOMs, however, do not take checkpoints and
therefore cannot be rolled back. in addition they may have been reloaded and
lost all session information, or connections may have been broken externally if

the system was down for any length of time.

The RESTART application may try to restore broken sessions for transactions
with restart at checkpoint {see section 5.3.2.2) and it should break sessions for
other types of transactions. The special TSR TSEST (read—session-status) is
available for this. It can also use TSOPN to create a new session. Sessions may
therefore be intact when the application program regains control after system
restart.

The function of checking and restoring broken sessions in the RESTART
application must be programmed by the user. The standard version of RESTART
only restores connections with SlBAS and NSHS.

ND-60.111.03

3.3.10

3.3.10.1

3—27

Available Input/Output Modules

The input/output modules that are available at present are

——- iSOi745 for communicating with terminals using the lSO-1745 protocol
(STANSAAB Alfaskop 3500 terminals) .

-- X25LAPB for communicating with other systems using the X25 protocol
— |BM3270-HOST for communicating with terminals on a control unit using

the lBM-3270 protocol, i.e. the NORD CPU communicates with the 3270s

— lBM3270~CU for emulating an 18M 3270 Control Unit communicating with
some other equipment, i.e. the NORD CPU is a 3270

A brief description of how to program them is given here. They are discussed in
more detail in the TPS System Supervisor's Guide.

X25LAPB

The X25LAPB module can be used for communication between two or more TPS
systems or between a TPS system and another TP monitor using the X.25
communications protocol. For example, it could be used for communication
between a NORD machine with TPS and a CENSOR 932 machine. Figure 3.10
illustrates two possible X.25 configurations.

The» communication protocol consists of 4 levels. Levels 1 and 2 correspond to

the two lowest levels of X25. Level 3 is a subset of X.25/3. Level 4 corresponds
to the TPS level. It is here that sessions are established, user data is transmitted,
and sessions are terminated.

ND-60.111.03

3—28

HDLC
INTERFACE

HDLC
DRIVER

COMPUTER A

LEVEL 1

LEVEL L

LEVEL 2

LEVEL 3

Computer ‘ ‘

Commuter C

Y
HDLC
INTERFACE

HDLC
DRIVER

PACKET
LEVEL

COMPUTER 3

Computer

///,
/

//

.. <- i Z ‘5

3—“ 2.5.
3’ I o {-3
2 :1
o ,, K
m

Computer - Public Network

Figure 3.10: X.25 Communication

ND-60.I‘11.03

3—29

The usual TSR routines are used to communicate with a remote partner

-— TSOPN Open a session
~ TSCLO Close a session
— TSMSG Send a message
— TRMSG Read a message

When calling TSOPN, the number of the communication channel must be

specified. If the specified channel is already in use, the call will return an error

status of «3, unit temporarily not available. Usually in a 2-system configuration

one system will use even numbers in TSOPN, the other one odd numbers.

In addition, the TSOPN call must specify the session partner, i.e. the TCM

number and application number. This is given at the beginning of the data record

sent with the TSOPN call. User data can also be sent with TSOPN, but the size is
limited to the packet size that can be sent over the line (usually 128 or 256 bytes).

The'application that is started up must reply with a data message (sent with

TSMSG). This message may be empty (dummy reply).

I ND-60.1 11.03

3—30

Example

1. The Application Setting up the Connection

PROGRAM APOXX,YY

Identify X.25 I/O module

0
0

0

IMODL(1)=1
IMODL(2)=1
IMODL(3):17 TPS module number

Identify channel number

0
0

0

IUNIT(1)=1
IUNIT(2)=1
IUNIT(3)=2 ‘ channel number

0

C Identify session partner

IARRC1)=1
IARR(2)=20000B TCMO
IARR(3)=12 . appl number

Open the session

C
O

O

CALL TSOPN(IMODL,IUNIT,IARR,6,0,ISTAT)

Read reply from partner

()
0

?
)

CALL TRMSG(...........)

Dialogue

C)
(7

C.)

CALL TRMSG/TSMSG

Close the session

C)
C)

(3

CALL TSCLO

END

ND-60.111.03

3—31

2. The Started Application

PROGRAM APOZZ,XX

C
C Send reply message
C

CALL TSMSG(.......)
C
C Dialogue
C

CALL TRMSG/TSMSG

END

ND-60.111.03

3.3.10.2

3—32

IBM—3270——CU

The IBM—3270—CU module emulates an IBM—3270 Control Unit. A NORD
machine with TPS and the lBM—3270—CU module can be connected to an IBM
machine and look like terminals using the IBM 3270 communication protocol.

lBM—3270—CU was developed as part of the Nortrygd project. In its present
form it is not a completely general product, but a communication module that
satisfies the requirements for the Nortrygd project. It contains both, g
simplifications and special features such as: '

ASCII/EBCDIC conversion:
All messages to the IBM machine are converted from ASCII to EBCDIC
before being sent and all messages received are converted from EBCDIC to
ASCII. As a consequence of this, it is impossible to send or receive
messages containing IBM buffer control orders such as SBA, SF, EUA,
etc., because they are followed by addresses that should not be converted.
Generation of ”ENTER" and "cursor address”:
The present version of IBM3270—CU will only send the type of message
resulting from pressing the ENTER key. Pressing function keys cannot be
simulated, nor can different cursor addresses.
System and operator messages:
These messages from the IBM machine are routed to the TPS operator’s
console.
Messages from unused channels:
Messages received on channels not "in session” are ignored
Long messages from TPS to IBM:
lBM-3270—CU can send messages of any length to IBM if they are
received from TPS as one packet, but messages that are divided into
several packets cannot be sent as one message
Session request from IBM:
This is not possible —— the NORD machine must initiate the session

Application programs communicate with the IBM machine with the usual session

TSR routines.

X

TSOPN Open a session
TSCLO Close a session
TSMSG Send a message
TRMSG Read a message

The TSOPN call specifies the module number (18) and the unit number (always
1). In addition, the first data message must be sent in TSOPN.

ND-60.111.03

3—33

IBM—3270—CU can receive messages of any length from IBM and send them on
to TPS modules divided into several packets if necessary. However, it is not
possible to receive several packets from TPS modules and put them together
into one message to be sent to IBM.

Messages received from IBM will be sent to the session partner only if the first
character is I" All other messages are considered system messages and are
routed to the TPS operator’s console.

There is no individual timeout for a session, but a timeout for the whole line. If

the IBM machine stops sending, all sessions will be broken and the message

"COMMUNICATION DEAD" written on the operator’s console. At the present

time, this will happen 35 seconds after the last poll or message has been

received from IBM. Upon receipt of the first poll after the line has been down,

the message "COMMUNICATION RUNNING" will be written on the console.

A session request (TSOPN) given when the line is down will result in a negative

session response.

Example

0

IMOD(1)=1
IMOD(2)=1
IMOD(3)=18
IUNIT(1)=1
IUNIT(2)=1
IUNIT(3)=I

The first message to IBM is put into IMESS'

O
O

O

ELENznumber of bytes in IMESS
CALL TSOPEN(IMOD,IUNIT,IMESS,ILEN,O,ISTAT)
IF (ISTAT.NE.O)THEN error

CALL. TRMSG(IMESS , ILEN , IMORE , ISTAT)

C
C Dialogue with TSMSG/TRMSG
C

CALL TSMSG/TRMSG
C
C Done, close session
C

CALL TSCLO(ISTAT)

END

ND-60.111.03

3.3.10.3

3—34

IBM—3270—HOST

The lBM—3270~HOST module acts as a host machine to IBM—3270 terminals.
A NORD machine with TPS and this l/O module can be connected, through
synchronous modem lines, with terminals using the lBM 3270 line procedure. The
NORD machine will look like an lBM host machine to these terminals.

This module was originally made in order to use Alfaskop System 41 terminals,
but it can also be used with other equipment using the same line procedure.

The lBM—3270L—HOST module uses EBCDIC characters, but can use ASCll
characters instead if modifications are made to SINTRAN lll.

Communication between an application program and a terminal is done through
the session TSR routines TSMSG/TRMSG.

A session will usually: be set up by the terminal operator. This is done by
pressing SEND with a blank screen. A session will be set up between the
terminal and a transaction processing task (TPT) belonging to TCMO, and the
SlGNON application will be started. This must be a special non-NSHS version.

If the screen is not blank when SEND is pressed, it will be blanked and SEND
must be pressed again.

if another TCM than TCMO is wanted, a special version of lBM——-3270-—HOST
must be used.

An application program can also set up a session. This is done with TSOPN,
specifying the lBM— 3270—— HOST module number (l6) and the logical unit
number of the terminal.

After the session has been set up, data can be sent and received with TSMSG
and TRMSG. Note that every time the terminal user presses SEND, a message
will be sent to the application program and the keyboard will be locked until the
application program sends a message back to the terminal.

output to the printer should be sent with the TTEXT routine. lt is not possible to
have a session with a printer.

The NSHS screen handling system cannot be used.

ND—60.l 11.03

3.3.10.4

3-35

LlSO—1745—HOST

The iSO—1745—HOST module acts as a host machine to lSO—1745 (STANSAAB
Alfascope 3500) terminals. A NORD machine with TPS and this l/O module can
be connected, through synchronous modem lines, with terminals using the
lSO——i745 iine procedure. The NORD machine will be a host to these terminals.

Communication between an application program and a terminal is done through
the session TSR routines TSMSG/TRMSG or with the NSHS screen handling
system.

A session will usually be set up by the terminal operator. This is done by
pressing SEND with a blank screen. A session will be set up between the
terminal and a transaction processing task (TPT) belonging to TCMO, and the
SIGNON application will be started. if NSHS is not used, a special non—NSHS
version of SlGNON must be used.

lf the screen is not blank when SEND is pressed, it will be blanked and SEND
must be pressed again.

The standard TPS version of NSHS simulates lNBT/OUTBT, but uses the buffer
pool system if the terminal type is equal to 6. It will be set automatically to 6 if
the session request comes from the l/O module (i.e. the terminal).

lf another TCM than TCMO is wanted, a special version of lSO—1745——HOST
must be used.

An application program can also set up a session. This is done with TSOPN,
specifying the lSO—i745—HOST module number (16) and the logical unit
number of the terminal.

After the sessmn has been set up. data can be sent and received with TSMSG

and TRMSG. Note that every time the terminal user presses SEND, a message
will be sent to the application program and the keyboard will be locked until the

application program sends a message back to the terminal.

Output to the printer should be sent with the TTEXT routine. it is not possible to
have a session with a printer.

It is possible to send broadcasts to terminals using TBRDC/TTEXT. A session is
not necessary then.

ND-60.1ii.03

3.4

3.4.1

3—36

STANDARD DEVICES AND FILES

Standard input/output devices, such as card readers, magnetic tapes, paper tape
readers and punchs, spooling files and other files using the SlNTRAN file system
(not SIBAS files), are controlled using the standard l/O statements available in
the programming languages used. K

in addition, FORTRAN, PLANC, MAC and NFL programs may call many (not all)
of the SINTRAN l/O monitor-call subroutines available to RT (real-time)
programs. COBOL programs may also use these monitor call routines, but some
of them (most notably the OPEN monitor call) cannot be called directly because
of incompatible character string parameters. Monitor call l/O is therefore not
recommended in COBOL.

This section discusses the most common l/O facilities available to TPS
application programs. Appendix E contains a complete list of all monitor call
routines available. For a detailed description of these routines, see the SINTRAN
lll Reference Manual.

Allocating Standard Devices and Files

Since TPS application programs are run in a real-time environment, devices and
files cannot be allocated ahead of time as for batch jobs. When a program needs
a device or file, it acquires it through either the OPEN statement or the RESRV
(reserve) monitor call.

OPEN must be used for files, since this call contains file oriented parameters. In
FORTRAN, PLANC, NFL and MAC programs, RESRV will normally be used for
devices since this is faster and device oriented. However, RESRV requires the
SlNTRAN device number as a parameter, and this may be unknown. if the device
has been defined as a peripheral file (See S/NTRAN Users’s, Guide, Per/feral
Devices), OPEN can be used with the name of the peripheral file as file name.

All devices and files in COBOL programs are allocated in the standard COBOL
manner, with file definition (FD) entries, SELECT entries, and OPEN statements.

Note that a feature called ”direct file transfer" is available for applications
running in the ND—SOO: access mode D or DC (8 or 9). This feature allows very
high disk transfer speeds between disk and memory with a minimum of system
overhead. Further information may be found in the ND-SOO - Loader/Monitor
manual, ND-60.l36.

ND-60.111.03

3—37

3.4.2 Unavailable Devices and Files

Provision should be made in the application program for unavailable devices and

files. An unavailable device or file will cause an error return from OPEN or

RESRV. This can be tested in FORTRAN or PLANC by examining the system

integer variable ERRCODE or a function value like lSTAT. Any non-zero value

indicates an error, while —1 in lSTAT indicates that a device cannot be reserved

(RESRV does not set ERRCODE) and the decimal values 69, 77, 78, 98, 107 and
110 indicate that a file is unavailable for OPEN (See FORTRAN Ref. Man,
Run-time Errors).

COBOL programs can test for errors through the FILE STATUS entry of the

SELECT statement and the USE sentence. The file status word will be set to '30’

(permanent error) if the file is unavailable. if the USE sentence is not included in
the program, the program will be abnormally terminated when a file or device is

unavailable.

RESRV has a wait/no-wait option. if the no-wait option is used and the device is

not available, the RESRV routine will return to the program immediately with —-i

in lSTAT. However, the program can choose instead to wait until it is available.

OPEN has no such option; return will always be immediate. A wait loop using the

HOLD routine may be programmed to wait until the device is available.

Example of OPEN - FORTRAN

, open the file
10 OPEN(FILE=’MYFILE:DATA ’,UNIT=IFILNR,ACCESS=’WX’,ERR=20)

. file opened — continue

file not opened - test ERRCODE
20 I (ERRCODE.EQ.69 OR SRRCODE.EQ.77 OR ERRCODE.EQ.78

*OR SRRCODE.EQ.98 OR ERRCODE.EQ.109 OR ERRCODE.EQ.110)THEN
CALL HOLDC?O,2) file unavailable, wait 10 seconds
GO TO 10 and try again

ELSE else something else wrong
CALL QERMS(ERRCODE) stop with QERMS error message

ND-60.il 1.03

3-38

Example of RESRV - FORTRAN

10

20

30

INTEGER RESRV,INCH
CHARACTER TEXT1*100,TEXT2*1OO

ISTAT=RESRV(2,0,1) reserve device nr 2 (tape-reader)
IF (ISTAT.NE.O) GO TO 30 check the status
CALL TWMSG(TEXT1) OK, tell operator to put tape in reader
ICHAR=INCH(2) read a byte
IF (ERRCODE.NE.O) GO TO error routine check ERRCODE

0

CALL TWMSG(TEXT2) device not reserved, tell operator
ISTAT=RESRV(2.0.0) reserve again with wait flag
IF (ISTAT.EQ.O) GO TO 20 cheek again

still not reserved, something else wrong
CALL TSTOP(ICODE) stop with TPS error message

Example of OPEN - COBOL

INPUT-OUTPUT SECTION.
FILE—CONTROL. select the tape-reader

SELECT IN-FILE ASSIGN "TAPE—READER" STATUS IS FSTAT.

FILE SECTION.
FD IN—FILE.

01 IN—DATA PIC X(100).

PROCEDURE DIVISION.
DECLARATIVES.
E—O-ERR SECTION. _

USE AFTER ERROR PROCEDURE ON IN-"ILE.
T-R-ERROR- tape-reader error

I? ESTAT NOT 3 '30’ file unavailable?
no, something else wrong, stop

CALL ’TSTOP’ USING ABEND-CODE—l.
CALL ’HOLD’ USING TEN TWO. yes, wait 10 seconds
GO TO T—R-OPEN. and try again

END DECLARATIVES.

OPEN-T-R.
OPEN INPUT IN-FILE. open the tape-reader file

ND-60.111.03

3.4.3

3—39 .

Accessing Standard Devices and Files

There are various ways of accessing devices and files, (See figure 3.71), but they
can be divided into 2 main types:

—— standard I/O statements

— special SINTRAN monitor calls

FORTRAN standard I/O statements are READ and WRITE for formatted and
binary I/O, and INPUT and OUTPUT for free format I/O. These statements can be
used after both OPEN and RESRV.

COBOL standard I/O statements are READ, WRITE and REWRITE. ACCEPT,
DISPLAY and EXHIBIT are only allowed in background mode during program
testing on the ND-TOO.

SINTRAN monitor call I/O can be used in FORTRAN, NFL and MAC programs.
The most common monitor calls are INCH and OUTCH for character l/O and
RFILE and WFILE for block I/O. INSTR is not allowed under TPS (but OUTST is).
Monitor call l/O can be used after both OPEN and RESRV. Note that calling the
ordinary SINTRAN III I/O monitor calls from the ND—SOO, gives a substantial

amount of system overhead (ND-100 CPU-load). Some special I/O monitor calls,
DV INST (MON 503) and DV OUTS (MON 504), from ND-500 applications should
be used.

Application programs must remember to close files before terminating since this
is not done automatically as for background programs.

A complete list of monitor calls available to application programs is found in
appendix E. For a detailed description of the functions and parameters of these
monitor caIIs, see the SINTRAN III User’s Guide.

The syntax of Standard i/O statements for FORTRAN and COBOL is found in the

respective programmer‘s reference manuals.

LANGUAGE TYPE ALLOCATE RELEASE ACCESS

FORTRAN FILES. OPEN CLOSE STAND. I/O.
PERIF. FILES MON. CALLS

DEVICES CALL CALL STAND. I/O,
RESRV RELES MON. CALLS

COBOL FILES, OPEN CLOSE STANDARD
DEVICES I/O

Figure 3. 7 7.‘ Local Input/Output

Np-‘em 11.03

3.4.4

3—40

Restart

It must be pointed out that rollback and recovery facilities are not available for
files controlled directly by the application program. If a system restart occurs,
the contents of such files will be unpredictable. In addition, files and devices
acquired by an application program may or may not have been lost, depending
on such factors as whether SlNTRAN has been restarted, whether the application
program has been reloaded, and whether files have been closed by the operator.

The RESTART application can attempt to restore resources, but even if this is
possible, problems can arise. lf a sequential file is lost and allocated again,
processing will start over from the beginning, and the application program
should therefore probably be restarted at the beginning. it printer spooling is
used, the application can continue from the middle, but output before and after
the break may go to separate spooling files. These things should be taken into
consideration when writing application programs, modifying the RESTART
application and deciding which restart strategy to use {See Chapter 5).

ND-60.1il.03

4—1

OTHER TPS AND SlNTRAN FACILITIES

Several other TPS and SlNTRAN facilities are available to TPS application
programs in addition to those described in chapters 2, 3 and 5. These may be
grouped as follows:

#— message handling

- clock routines

—- hold monitor call

— semaphores

‘ ———, internal devices

These facilities are invoked either through TSR calls or SlNTRAN monitor calls.
The TSR routines are described in detail in this chapter and appendix H. For a
detailed discussion of the monitor calls, see the SlNTRAN User's Guide.

With the exception of some TSRs most of the material in this chapter describes
general SlNTRAN facilities. This material is included in order to make it easier for
the TPS programmer to design application programs, knowing exactly which
SlNTRAN facilities are available.

NED-60111.03

4—2

MESSAGE HANDLING

The message handling facilities of TPS include routines for writing messages on
the operator console and broadcasting messages to a group of devices or
application programs. '

In addition, the SlNTRAN routines for writing error messages on the SlNTRAN
error device can be used.

The TSRs and monitor calls for message handling can be grouped as follows(See
Figure 4.1): "

— TWMSG and CWMSG (write message to TPSioperator)

—— TBRDC and TTEXT(broadcast message to one or several Units)

—— TGBRD and CGBRD (get broadcasted message)

—— ERMSG and QERMS (write standard SlNTRAN error message and continue
or terminate)

— ERMON (write special ERMON message and continue)

TWMSG (FTN)
CWMSG (COB/PLANO)

Write a message to TPS operator

Broadcast 31 message to one or
- _,_ several units

i TEA l

TGBRD (Fm)

CGBRD {COB/PLANO
Get a broadcasted message

ERMSG (FTN/PLANC) Write a standard SlNTRAN message,
return to application program

QE RMS (FTN/ PLANC) Write a standard SlNTRAN message,
terminate the program

ERMON Write the special ERMON message,
(FTN/PLANC d COB) return to application program

on

Figure 4. 7: System Messages

ND—60.l l 1.03

4.1.1

4-3

TWMSG and CWMSG - The Write Message to
Operator TSR

The write-message-to-operator TSR will write a text string on the operator's
console. The message will be supplied with time, date and source identity by
TPS. This‘TSR has a special COBOL and PLANC version, CWMSG, due to
incompatible character string formats.

CALL TWMSG (<text-string>)
CALL CWMSG USING <text-string>.

Examples

CHARACTER MTEXT’256

MTEXT='MESSAGE TO OPERATOR"’
CALL TWMSG(MTEXT)

MOVE "MESSAGE TO OPERATOR’" TO MESSAGE-TEXT.
CALL 'CWMSG' USING WSSAGE-TEXT.

The text must be terminated by an ’ (apostrophe) and may not exceed 255
characters.

ND-60.1ll.03

4—4

‘ TBRDC - The Broadcast Message TSR

A message can be broadcast-from an application program to all terminals, all

active terminals, or a single terminal connected to an lOM. It can also be sent to

all active TPTs controlled by a TCM.

CALL TBRDC (<module>, <sub-address>, <text>, <units>, <status>)
CALL’TBRDC’USING <module> <subaaddress> <text> <units> <status>

Example - FORTRAN

DIMENSION MOD(5),ITEXT(36) array definitions
CHARACTER MNAME‘6,CTEXT'72 character string definitions
EQUIVALENCE (MOD(3),MNAME),(ITEXT(1),CTEXT)

MOD(l)=2
MOD(2):5
MNAME=32 module is TCMO
CTEXT2'MESSAGE TO ALL ACTIVE TPTS"'
CALL TBRDC(MOD,O,ITEXT,1,ISTAT) broadcast the message to all TPTS
IF (ISTAT.NE.O) GO TO error routine check return status

Example - COBOL

MOVE 1 TO MOD—ADD-TYPE.'
MOVE 2 TO MOD—ADD—SIZE.
MOVE 16 TO MOD-NAME. . module is the STANSAAB IOM
MOVE 1 TO UNIT—ADD-TYPE.
MOVE 2 TO UNIT-ADD-SIZE.
MOVE l TO UNIT-NUMB. unit is VDU number 1
MOVE "MESSAGE TO STANSAAB-TERMINAL-Ol "" TO MESSAGE-TEXT.

CALL ’TBRDC’ USING broadcast to ‘1 terminal only
MODULE UNIT MESSAGE-TEXT TWO STATUS-CODE.

I? STATUS—CODE NOT : 0 GO TO FARM-ERROR. check return status

The text must be terminated by an ' (apostrophe) and may not exceed 72
characters.

Messages broadcast to lOM terminals will be written on the broadcast line
(usually the bottom line). ‘

Messages sent to TPTs can be read by the application program with the TGBRD
TSR (get broadcasted message).

ND-60.111.03

4.1.3

.4—5

TTEXT —— The Send Text Message TSR

The send text message TSR is very similar to the broadcast message TSR except
that the message can only be sent to a single unit and the message length in
bytes is given as a parameter instead of being indicated by an apostrophe in the
text itself.

CALL TTEXT (<module>, <sub-address>, <text>, <length>, <status>)
CALL 'Tl'EXT' USING <modu|e> <sub—address> <text> <length>
< status > .

No screen positioning is performed by the lOM so the message will be written
where the cursor happens to be positioned.

Messages sent to TPTs can be read by the application program with the TGBRD
TSR.

ND-60.1li.03

4-6

TGBRD and CGBRD - The Get Broadcasted Message

TSR

This TSR can be used to see if a message has arrived. lf it has, it will be put in
the text area indicated. The message can have come from another application
program using broadcast-message (TBRDC) or it can have come from the TPS
operator using the BROADCAST command or the MESSAGE—TO—UNIT command.

if the application program wants to write the message on a display terminal

using NSHS, the WMSGE or CWMSGE routine may be called. If using FOCUS,
the FCZMSGE routine may be called.

This TSR has a special COBOL and PLANC version, CGBRD, due to incompatible

character string formats.

CALL TGBRD (<text-string>, <status>)
CALL ’CGBRD’ USING <text-string> <status>,

Examples

CHARACTER BCTEXT*72 message area defined as
. character string

CALL TGBRD(BCTEXT,ISTAT) get message
IF (ISTAT.EQ.O)CALL WMSGE(BCTEXT) display it on screen

VCALL’CGBRD' USING MESSAGE-TEXT STATUS-CODE. get: message
IF STATUS-CODE = 0

CALL ’CWMSGE' USING MESSAGE—TEXT, display it on screen

The text may not exceed 72 characters. it will be terminated by an apostrophe.

This TSR should be called fairly often in systems that make use of the broadcast

facility, since this is the only way the message will be detected. There is no

automatic presentation of messages broadcast to TPT—controlled terminals (in
contrast to IOM-controlled terminals, where the [OM will see to it that the
message is sent out to the terminals).

Another reason for checking often is that if a new broadcast message arrives, it
will overwrite the old message. There is just one message buffer area and no
queuingsystem. Therefore it is important that the message be sent to the
terminal before it is overwritten.

ND-60.111.03

4-7

Monitor Calls (ERMSG, QERMS, ERMON)

SINTRAN error message monitor calls can also be used by TPS application

programs. If a SINTRAN routine detects an error, it will put the error number in

the ERRCODE variable (or a function value like lSTAT); if no error, the variable

will contain 0. This can be tested and if it is non-zero, the appropriate error

message can be written on the SlNTRAN error device by the ERMSG or the

QERMS monitor cail. ERMSG will write the error message and return to the

application program, QERMS will write the message and terminate the

transaction.

The ERMSG and QERMS monitor calls can also be used in connection with
standard'FORTRAN I/O, since these I/O routines also set the ERRCODE variable.

Standard COBOL l/O, however, does not have this facility. instead, the Vstandard

error facilities, the HUB STATUS entry of the SELECT statement and the USE

sentence, can be used to process error conditions (See Example 3.8). ERMSG
and QERMS cannot be used here because the SlNTRAN error number is not

available to COBOL programs.

Examples

WRITE(5,10,ERR=100) standard I/O statement
. no error, continue main routine

100 CALL ERMSG(ERRCODE) error, call ERMSG
. continue error routine

ICHAR=INCH(IFILNR) monitor call I/O
IF (ERRCODE.NE.O) CALL QERMS(ERRCODE) if‘error, call QERMS, stop

. else continue

ND-60.111.03

4—8

A special user error message can be written on the SlNTRAN error device using
the ERMON monitor call. An error number in the range 50-69 must be given (in
ASCII code), together with a suberror number of any value (integer). The error
message will be printed as follows:

hh.mm.ss ERROR nn IN rr AT l| USER ERROR SUBERROR:ss

where-

hh.mm.ss time when the message is printed

nn < error number>

rr 1 TPT identification

ll address of error in application program

55 <suberror number>

ERMON can be called from both FORTRAN and COBOL programs.

Example — FORTRAN

IF (DATE.EQ.O) GO TO 100 check for bad date

100 CALL ERMON(2H62,3) bad date, call ERMON
. continue

Example ~ COBOL

Oi ERROR—NR PIC XX.
01 SUB—ERROR—NR COMP PIC 999.

IF DATE = 0 GO TO BAD-DATE. check for bad date

0

BAD-DATE.
MOVE ’62’TO ERROR-NR.
MOVE 3 TO SUB-ERROR-NR.
CALL 'ERMON' USING ERROR-NR SUB-ERROR-NR. call ERMON

. continue

In both cases a message of the following type will be written on the
SINTRAN error device:

11.50.03 ERROR 62 IN TPTS AT 5320 3:USER ERROR

ND-60.1ll.03

4.2

4.3

4—9

' CLOCK ROUTINES -

COBOL programs can use the ACCEPT DATE/DAY/TIME statement to examine

the calender and clock.

In addition, the SINTRAN monitor calls for examining and changing the internal

clock are available to all application programs. The CLOCK routine will return the

current time/date to a 7 word integer array containing basic time units, seconds,

minutes, hours, day, month and year. The clock can be changed with the UPDAT

call, specifying the new minute, hour, day, month and year. The clock can also

be adjusted relative to its current value using the CLADJ call. The last two

monitor calls (especially (UPDAT) should be used with carel

SINTRAN also has an interval clock containing, in a double word, the number of

basic time units since SlNTRAN was last started. The TlME routine will return

this current interval time. it is ‘set to zero each time the MASTER CLEAR and

LOAD buttons are pressed and is incremented by 1 each basic time unit.

HOLD MONITOR CALL

The HOLD monitor call can be used to put an application program in a wait state

for a given time interval. However, the wait state will be terminated if the TPT is

started for any reason, i.e. the arrival of a checkpoint message. After the

message is processed, the application program will receive control as if the time

interval had expired, since the TPT does not know how much time was left. lf it

is important that the wait state'is not terminated before the interval has expired,

the application program should control the length of the expired interval by

examining the clock before and after the hold routine is entered. A new hold can

then be given if the interval has not expired.

ND-60.lll.03

4.4

4-—1O

SEMAPHORES AND INTERNAL DEVICES

TPS application programs may use semaphores and internal devices in the same

way as other RT programs. A semaphore is a binary variable which can have one

ofitwo values, reserved or unreserved. it is reserved and released by the RESRV
and RELES monitor calls. Semaphores are discussed in chapter 4 of the

SINTRAN User’s Guide.

Internal devices are used for the exchange of data between independent

programs. One of them writes on the device as if it were an external device and

the other can then read from the device. Devices are reserved and released

(program A reserves the output part of the device, program B the input part) and

accessed as normal l/O devices. As described in section 3.4, these devices can

be accessed by FORTRAN programs by either standard l/O statements or

monitor calls, whereas COBOL programs must always use monitor calls. Internal

devices are described in chapter 4 of the SlNTRAN User’s Guide.

ND-60.lli.03

5.1

CHECKPOINT—RESTART

PROTECTING THE DATABASE

An online transaction processing system should have adequate facilities for
protection of the data base. If a system failure occurs in a batch system, a
backup copy of the data base can be mounted and the whole job run once more
without too much inconvenience or waste of time. If a failure occurs in an on-Iine
transaction system, reentering and reprocessing the transactions may be very
inconvenient, time-consuming or even impossible.

Facilities should be available to assure the integrity of the data base, to minimise
the amount of data lost and to restart the system automatically at a well~defined
point.

TPS makes use of the extensive checkpoint/restart facilities of SlBAS. These are
largely transparent to both the user and the application program, TPS itself
controlling them. Synchronised checkpoints of the whole system are taken
automatically according to the load on the system. ln addition, the application
program can take individual transaction checkpoints.

If a system failure occurs, the latest transaction checkpoint can be used to
restore the system to its status at or near the point of failure (recovery). If the
data base is incorrect at this point, synchronised checkpoints can be used to
restore the system to a previousstate (rollback). (See Figure 7.7.) ln both
cases, those transactions which were active can be restarted automatically at the
correct point. Note that applications running on the ND-EOO cannot be restarted
at a point inside an application, but may for example be restarted at the

beginning of the current application.

How often checkpoints are taken and what types of backup/restart facilities are
used are system parameters controlled by the user. He must weight the
advantages of assuring the protection of, data in the data base and fast recovery
against the overhead needed to accomplish this.

The facilities in TPS for protecting the data base from system failure can be
divided into two types, preventive facilities and restart actions {See Figure 5. I).

ND-60.lll.03

BACKUP copy whoie data base

LOGGING _
DELAYED UPDATING write updated records on a special update file

BEFORE—IMAGE LOG log records to be updated (before they are changed)

ROUTINE LOG log caiis to SIBAS routines
Lu

2
g CHECKPOINTS
a t SYNCHRONiZED save checkpoint information for all transaction tasks
3:. and for data base

TRANSACTiON - save checkpoint information for one transaction task

ROLLBACK restore data base and transaCtion tasks to synchro—
nised checkpoint

E RECOVERY restore data base and transaction tasks to
it. transaction checkpoint
(n
Lu

a: RESTART STRATEGY restart transactions according to transaction restart
strategy

Figure 5. 7: Checkpoint/Restart Facilities

ND-60.111.03

5.2

5.2.1

PREVENTIVE FACILITIES

The preventive ~facilities of TPS consist of:

-—- utility routines to take a backup copy of the data base

— i facilities in SIBAS for updating on a special update file ldelayed updating).
logging old versions of data (before—image log), and logging SlBAS routine
calls (routine log)

-—— routines for taking checkpoints either automatically, by operator command
or by an application program

Most of these facilities are controlled by the TPS system itself or by the system
operator. The only facilities controlled to some extent by the application program
are checkpoints. -

Backup

A backup copy of the data base is a complete copy of the files in the data base.
This can be done with a COPY-«FILE command while SlNTRAN is running, and
even while TPS is running if the data base itself is not being updated (for
example if delayed updating is used).

it' can also be done using a stand-alone disk utility program. if a stand—alone
program is used, TPS should be closed (CLOSETPS) before SlNTRAN is stopped
and the copy program loaded. After this type of copy is made, TPS will normally
be started again with lNlTlATE-TPS (See Figure 5.2)‘

TPS
closed BACKUP

stop TPS ' copy the data base ' start TPS

Figure 5.2: Taking Backup with Utility Program

ND-60.lll.03

5—4

— 5.2.2 Data Base Logging

SlBAS has three logging facilities available (See Figure 5.3):

— Delayed updating consists of the writing of all updated records on a special
update file instead of on the data base itself. The data base is only read,
not written on. This decreases considerably the chance that it will be
physically destroyed, it prevents bad data from being written before the
actual updating takes place, and it gives a simple checkpoint/rollback
mechanism. -

— Before-image (BlM) logging can be used instead of delayed updating. With
this method, a page is logged on the beforeJmage area in the SIBAS
system realm before it is updated. The data base can then be rolled back
by copying all before—images out to the data base.

— The routine log is a sequential disk file containing a record of all calls to
SlBAS, in the order they were originally received. This file may be used to
update the data base from a backup copy or from a checkpoint without
having to rerun the application programs.

CALL SlBAS
\ OR RETURN

{ A 1
[- call SiBAS Ir log romme : - log old record on Ior - write updated ‘ ‘ return
i tor updating :all on BIM log record onl
| 1Mi

Il
. routinefog §—-—-——----——-J i updated file
L__—________i ,

Figure 5.3: S/BAS Logg/ng Feel/[ties

ND-GOJH‘OS

5.5

5.2.3 Synchronised Checkpoints

Synchronised checkpoints are checkpoints taken by all TPS and application
programs at the same time. When a synchronised checkpoint is taken, the
individual transactions will be halted when they reach a suitable point (normally
in a TSR). When all transactions have stopped, data needed to restore both
application programs and system modules to the present state are recorded on
the checkpoint files" (See Figure 5.4). The special application CHECKPOlNT is
then activated to send a checkpoint call to SlBAS. SlBAS will empty buffer
areas, save necessary data, and, if version updating is used, save the version
tab/e containing pointers to the latest version of all updated records. When
SlBAS has completed taking its checkpoint, processing will be restarted
automatically. The whole sequence should not take more than 10—20 seconds.

~—.—.—_—-—.—-¢————————_

freon tho 0 write appi. -- write TPS a write SlBAS 4 0 continue

system data areas data areas data areas processing

on file on file on file

Figure 5.4: Taking a Synchronized Checkpoint

‘ Note: lt is not possible to restore an application that runs on the ND-SOO.

TTSYN ~ The Allow-Synchronised Checkpoint TSR

It is possible that certain types of transactions may cause a checkpoint to take
much longer than 10-20 seconds if the programmer does not prevent it. As
mentioned, the system is synchronised by halting transactions in TSRs. This
means that a transaction that does a lot of processing without calling a TSR
could go a long time before being stopped, especially since SlBAS calls do not
go through TSRs that allow synchronised checkpoints (all other l/O calls do). To
prevent this situation, an application program with long processing and data base
sequences without other TSR calls than SlBAS calls can use a special TSR,
Tl'SYN, that does nothing but allow a checkpoint to be taken if a checkpoint
message has come.

CALL ‘lTSYN
CALL ’TTSYN'.

ln TPS systems with automatic synchronised checkpoints, application programs
with long processing and data base sequences without other l/O or TSRs should
call TTSYN fairly often.

ND-60.l 1 1 .03

5.2.3.2 } ,

5.2.3.3

5—6

THSYN - The Hold Synchronised Checkpoint TSR

in some situations it may be desirable to carry out a processing sequence
without allowing a checkpoint to be taken in the middle of the sequence. An
example would be the updating of several related records in the data base. If this
sequence includes the use of calls to other parts of the TPS system than SlBAS
alone, the sequence may be interrupted by a checkpoint. This can be prevented
by using the TTSYN TSR.

CALL THSYN
CALL ’THSYN’.

This will prevent the application from being trapped for a checkpoint until the
application makes a call to either the Ti'SYN TSR or the TTRAN TSR.

All other applications, however, will be trapped, so the whole TPS system will
eventually stop and wait for this application to complete its sequence. This TSR
should therefore be used with care.

TCHCK - The Take Synchronised Checkpoint TSR

Synchronised checkpoints can be taken automatically by TPS when the load on
the system has reached a certain value. Each application has a checkpoint
weight, given when the application is loaded into the TPS system and stored in
the application table. Every time-an application terminates or switches to a new

application, its checkpoint weight is accumulated. When the sum has reached a

certain value. a checkpoint will be taken automatically.

The operator can also take a checkpoint with the CHECKPOINT TPS command.

An application program is also able to initiate a synchronised checkpoint

sequence. This facility should be used with care- since taking a synchronised
checkpoint involves a good deal of overhead and may halt the system for many
seconds. Normally it is best to let TPS take automatic checkpoints based on the
activity in the entire system, but some application systems may be such that it is
more suitable, for instance, to take a synchronised checkpoint every time a
certain application program is run. This can be done from an application program
by using the TCHCK TSR.

CALL TCHCK(<scope>)
CALL 'TCHCK' USING <scope>.

Examples

CALL TCHCK(O)

CALL 'TCHCK' USING ZERO.

ND-60.lli.03

5.2.4

K . q. ’

checkX j ’2 Active iPTs 2

check X + 1 Active TPTs

5—7

Transaction Checkpoints

in addition to synchronised checkpoints taken by all programs in the TPS system,
application programs take individual transaction checkpoints at certain stages in
transaction processing. As for synchronised checkpoints, a transaction .
checkpoint will save all data areas belonging to the transaction, enabling the
transaction to be restarted at this point if a recovery is made.‘ The information is
written on a special area on the checkpoint file belonging to the TPT and the
transaction checkpoint data will overwrite the previous transaction checkpoint
data for that TPT. {See Figure 5.5). The synchronised checkpoint data will not be
affected however.

Some transaction checkpoints are taken automatically by TPS and the application
programmer does not have to take any action in connection with them.

-

‘ 1 . \

Appl 3 Application

All appls 5 >data save area

..............37
Appl n .
Controlblock TCMO
TFT 1 ‘
TPT 2

—c——— _-——-———*—i

All TPTs k trans check. TCM Q

——————— —<

__ .. _. __ _. — —- —- (fixed) >checkpoint area

synch. check.

I > (circular)

TPT 7 _ _ _<

Controlblock TCMi ‘
TCM 1’
checkpoint area>

Figure 5.5: The TPS Checkpoint File

' Note: it is not possible to restore an application that runs on ND-SOO. However,
such an application may be restarted from the beginning.

ND‘60.111.03

5.2.4.1

5.8

Tl'RAN - The Take Transaction Checkpoint TSR ‘(

The application program itself also can take transaction checkpoints, using the ‘
TTRAN TSR.

CALL TTRAN
CALL 'TT'RAN’.

in order to decide when and if to take transaction checkpoints, the application
programmer must know how they are used. This is explained in connection with
the recovery procedure in section 5.3.1, but in short it may be said that the latest
transaction checkpoint will be the point of restart for an application after
recovery has been carried out. In contrast, the point of restart after a rollback
operation will be a synchronised checkpoint.

Transaction checkpoints are taken at the following processing stages {See Figure
5.6).

— at the beginning of SlGNON (standard version)
-— at the beginning of SELECT (standard version)
—— when the data base is opened (SOPDB call)
— when the data base is closed (SCLDB call)
— when a task is terminated and the TPT'is freed (unless TTERM (1) is used)
— when an application program calls TTRAN

When deciding how often to take checkpoints, it must be remembered that a
transaction is restarted at the latest checkpoint after rollback or recovery and any

processing done after this point will have to be repeated. Of course rollback or

recovery are usually only done in the case of system failure and this should not

happen often. As in the case of other preventive facilities, the advantages of
taking checkpoints often must be weighed against the costs.

Applications running in the ND-SUO may have up to 134 megabytes of local data.
and this data will not be saved when WRAN is called. Only the data in
task-common and the TPT system data is saved. This implies that an application
running on the ND-SOO cannot be restarted at a point inside the application, but
may be restarted for example at the beginning of the application.

ND-60.1ll.03

i
SIGNON TTRAN (_.._)

TSWAP (SELECT)

l
SELECT TTRAN ()

Display menu, read answer

TSWAP (APn nn)

l
APnnn TTRAN (—--—-)

Write picture to screen
Read fields
More ,7 yes

no

Open data base
Read database ‘
Update data base
Close data base

no

Finished .7

Terminate

SIGNOFFTTRAN (—--—-)

TSWAP (SIGNON)

Figure 5.6: Transaction Checkpoints

ND-60.111.03

5.3

5.3.1

5~10

RESTART FACILITIES

When a serious error is detected, three steps must be taken:

- the cause of the error should be determined and the error corrected

-—- any damage to the data base should be repaired

—— the system should be started again with as little inconvenience to the users
as possible

Rollback and Recovery

Two procedures are available for repairing the data base after a serious error,
rollback and recovery.

Rollback will restore the whole system to its state at the last synchronised
checkpoint. The ROLLBACK special application will supervise the SlBAS roll-back
procedure, causing it to execute the rollback in one of two ways (See Figure
5.7A):

—~ using the update file or before-image (BlM) log to roll the data base back
to the checkpoint from the point-of—failure

—— using the routine log to update the data base to the checkpoint from the
backup copy

in addition, all programs will restore their data areas at the checkpoint so that
their state corresponds to that of the data base. The point-of—restart after a
rollback will be at the latest valid synchronised checkpoint (unless a recovery is
given immediately afterwards).

Recovery, under the supervision of the RECOVER special application, will restore
the data base to its state at the latest transaction checkpoints for the various
transactions (See Figure 1. 7B). A rollback to the last synchronised checkpoint will
first be performed, using one of the methods described above. The routine log
will then be used to update the data base to the individual transaction
checkpoint {See Figure 5.73}. Programs will then restore themselves to their
transaction checkpoints.

ND-60.lll.03

5-11

Figure 5.78: Recovery

1 3‘ Update File, BlM log PO":

i

2. l routine log .1

l x
BACKUP SYNC CHECK

Figure 5. 7A: Rollback

POF
Update file. 81M log '

1.

. l
routine log

2 1 routine {09 g routine log)1
' 1 I s

BACKUP SYNC CHEQLM 7 TRANS CHECK 7

ND—60.111.03

5—12

The point-of—restart after recovery will thus be the latest transaction checkpoint
for each active transaction (See Figure 5.8). There is one exception to this rule. If
no transaction checkpoint has been taken since the last synchronised
check—point, the transaction will be restored to the synchronised checkpoint.
Point-of—restart is summarised in figure 5.9.

(operator)

point-of~iaiiurl
CH ECKPOINT

. health-swam.

0 write dam arm on file
. tak- dau out checkpoint

. antinu- processing

SIBAS

routine log

. (POP)
immune) ‘ ROM—BACK

\ or RECOVER

\

. frnztmc a it aillup

m- can

SIBAS o rumor-do arena: dfitd‘mint
update /
file TPSR LLSACK

818 8 SM {09

routine loa

Figure 5.8: Roi/back and Recovery

ND-60.1 1 1 .03

RESTART

/wszascovsa

5.3.2

5-13

Restarting TPS

After rollback or recovery, the TPS system may be restarted either automatically
or using the CONTINUE command. Transaction processing will continue as far as
possible as though there had been no break.

To what extent this can be done depends mainly on the state of the connections
between the application programs and the external environment. Both the data
base and the application programs' have been restored to their state at the
appropriate checkpoint and are ready to continue processing from there.
How-ever, terminals and local devices may have been lost and sessions may
have been broken, depending on such things as whether SlNTRAN, NSHS or i/O
modules have been reloaded, files have been closed, terminal operators have
broken connections, etc. After rollback, there is the additional problem that
external connections at the synchronised checkpoint were probably different
from those at the point of failure.

Another important consideration at restart is that some transactions may not
want to be restarted at the checkpoint. There are several ways of restarting
transactions and each must be restarted according to the appropriate restart
strategy. This is done by the RESTART special application.

ND-60.iii.03

5-~ 14

SYNC. POINT—OF

CHECKPOSNT —FAILURE

Z
< ‘3 3
‘= = a si: :3 a a

(a) -- ' t ' rI '\

\ '2'=3 c \ <=
3 5 a“ \ L: -
an i-' m X

(b) g . '.
/

/
a: . 2 /
a < /
a. 3 I
c m /

(c) i i
I”

I

a a ”

g 3 g I”’ t

23 Sf! F" /”

(d) , , ‘ ’i I \
\

z \\ z
< \ <
a a. \ m
i- :n \i— i- \ E

M i \-
| ’\

\
\
\

E. 2' 2 E '
i: a a \ m
f- }... i- \ t
i")— i— \

(fl 1 . u

' i
ROLLSACK RECOVERY

‘ ?OiNT-OF—- fiolNT—OFn
fiESTART HEW/ART

rz'gure 5.9: Point of Restart

‘ Note: it is not possible to restart an application in the middle that runs on the

ND—SOO. but the application may be restarted from the beginning. You have to

remember this when setting the restart strategy.

ND-60.1i1.03

5.3.2.1

5—15

The RESTART Special Application

The RESTART application is the first application to be called when the system is

restarted after rollback or recovery. It is called for each active transaction by the

TPT for that transaction.

When RESTART is activated, the data base will have been reopened by SlBAS

for that transaction if it was open at checkpoint. Terminals controlled by NSHS

will be automatically reacquired by NSHS the first time they are used. On the

other hand, the standard version of the RESTART program will not open files or

reserve local devices. Likewise, broken sessions may not be reestablished.

However, users can modify RESTART to do these things. The (TSEST) and
restore—session (TRSES) TSRs are available to assist users in this. Modifying the
RESTART and other special application programs is discussed in the TPS System

Supervisor's Guide.

When modifying this application, remember that applications running in the

ND-SOO cannot be restarted at a point inside the application (the TSR-call TRSTO

is not allowed).

The task of the RESTART special application is to determine how the transaction

is to be restarted, to restore or break external connections,and restart (or
terminate) the appropriate application program. RESTART will have available the

necessary information to do one or more of the following:

- restart the transaction or terminate it

—— reestablish the connection with the terminal operator. if no answer is

received (timeout), the ABEND application is activated

— ask the operator to choose which restart strategy is to be used

-— give the operator information to enabie him to resume operation at the

correct point.

ND-60.111.03

5.3.2.2

5-16

TSRST - The Set Restart Strategy TSR

RESTART uses the restart strategy for the task to determine if and how to restart
a transaction. The restart strategy is given the default value 2 when the task is
started and the TSRST TSR can be used to change it to another value, the
meaning of each value depending on the way it is interpreted by RESTART.

CALL TSRST (<restart strategy>, <ressart application))
CALL 'TSRST’ USING < restart strategy> < restart application>.

In addition to setting the restart strategy, the TSRST TSR can be used to
change the restart application. The default value for this is the first application
activated. The standard restart strategies are described under the RESTART
application in chapter 6.

Examples

CALL TSRST(1)

CALL 'TSRST’ USING TWO RE—APPL.

ln summary, TPS is designed so that users can exert full control over both
checkpoints and restart with the ‘lTRAN, TTSYN and TSRST calls. They can write
their own restart routines and modify the RESTART special application. They can
decide how often to take synchronised checkpoints and what type of logging,
rollback and recovery to use.

However, they can usually ignore all these things, using only the standard
defaults supplied with TPS and still have a system that functions well.

ND-60.111.03

6—1

SPECIAL APPLICATIONS

NORD TPS is delivered with a set of standard "special applications". These

programs are used to carry out such user dependent functions as the

administration of TPS users, authorising and limiting user access to application

systems and individual programs, automatic administration of menu pictures and

security control. These functions are carried out by the SlGNON and SELECT

applications. The SIGNOFF, ABEND and RESTART applications control

transaction administration at transaction termination (with the possibility of

gathering transaction statistics), abnormal and and restart after system failure. In

addition, the system special applications, TPOPEN, TPCLOSE, CHECKPOINT,

ROLLBACK and RECOVERY, are used to administer system functions, especially

SIBAS control. With the exception of TPOPEN, they are of less interest to the

application programmer and are therefore not discussed in detail in this manual.

See TPS System Supervisor's Guide for more information about them.

The special applications are written in FORTRAN and/or COBOL (SIGNON and

SELECT can be obtained in both languages). Some or all can run in either the
N0100 or the ND500 CPU. (RESTART cannot run in ND500 if it calls the

TSR-routine TRSTO.) Emphasis has been put on comments and an easy to follow

structure so that users can easily change the programs to suit their own needs.

in addition, the configuration and security routines are controlled by user-defined

tables and make extensive use of default values to simplify table definition in

those cases where it is not necessary to limit access to the system.

The relation between the special applications and user applications is illustrated
in figure 6.i. This figure shows the standard use of these applications. They may

be changed by the user so that the illustration no longer applies. Also, the
standard version of SIGNOFF, ABEND and RESTART have different processing
sequences for the different strategies they use (termination strategy, abend

strategy, restart strategy) and do not necessarily follow the illustrated sequence

{See Section 25.2.4).

The speCIai applications are described below in functionally related groups as

follows:>

-- SIGNON and SELECT

—— SlGNOFF, ABEND and RESTART

—- TPOPEN and TPCLOSE

- CHECKPOINT, ROLLBACK and RECOVER

Again it must be emphasized that the following descriptions are only valid for the
standard versions of the special applications.

In addition to the above mentioned user modifiable special applications, there is
a special non-modifiable application, TPMON, which monitors applications
running on the ND-SOO. Further description can be found in Appendix J.

ND-60.111.03

62

23:3
5

3
:6

no:
52:6

32w
n<

A
/

¢m
>OUm

¢
lililp

lv
x

”1
0

2
0

;“
I!»

.I
1

mmOaUmh

/
M

ZQ
..<U

/
/

/?
253x03...—

!
hZ.O

a_¥UwIU
h¢<bm

m
¢

V
.jln—

l‘
Eagm

\‘
\

\
\

ammfi

¥U
<Q

JJO
¢

h
d

u
m

iii
ZCZO—

m
3‘

I
II

.I
2

9
3

:3
,

ha...
2”

hm>m
«,7;

1m
m

:
bib.

2
:ym

>m

32:2
:2.

531w
8345

[Figure 6. 7: Special Applications

ND-60.111.03

6.1

6.1.1

SlGNON AND SELECT .

SlGNON

The main function of SlGNON is to check the terminal user's name and

password. lt is normally the first application to be called when a task is started.

The program will reserve the terminal the first time it'is called and will then write

the SlGNON picture on the terminal. The cursor will be positioned'at the input

field for the user name.

When a name is entered, SlGNON will look forthe name in the user table,

TPS-USERTAB. The name may be abbreviated in the usual SlNTRAN manner. If

the name is found, the next question is for the password.

The password is then checked, and it is either accepted or the cursor moved

back to the name field. Figure 6.2 shows a sample SlGNON picture.

if name and password are accepted, SlGNON will use the user's EXlT TYPE in

TPS-USERTAB to carry out one of the following actions:

—- Switch to SEkECT to present the user’s master menu

-— Switch directly to a user application

—- Exit from TPS (release the terminal for SlNTRAN background use). This
action is usually defined for a special user, for example the user SlNTRAN.

This action is carried out by releasing the terminal and going into a wait
loop. Every 2 seconds SlGNON will try to reserve the terminal again, so

that when the SlNTRAN background user is done (logs off), the- terminal

will again be brought into the TPS system.

ND 795 ON LINE AT 15.45 ON MARCHi,1982

T‘ri—T'fl‘r'r PPFPPPP . sssssss
rr'rr'r'r‘rT PPPPPPPP ssssssss

TT PP PF 35
TT PPPPPPPP sssssss
TT PPPPPPP sssssss
TT PP ' ss
Tl’ PP SS
TT PP SSSSSSSS
TT PP sssssss

PLEASE ENTER YOUR NAME: .

PASSWORD:

\ /‘
Figure 6.2: A SlGNON Picture

ND-60.111.03

612

6—4

SELECT

The main function of SELECT is to control the menu choices for starting user
transactions. When SELECT is started, it will usually send the user’s master
menu given in the user's entry in TPS-USERTAB. However, if SELECT was
activated directly from a user application instead of from SlGNON, the menu
presented will be the last master-type menu used before the application was
started.

The menu picture will normally show several numbered entries and the user is
asked to choose one of them (See Figure 6.3).

An entry, when chosen, is handled in one of four ways:

—— Switch to a user application

— Present a new menu

— Present the user's master menu

—- Log off as present user and switch to SIGNON

The way in which each entry is handled and additional information such as
application number (if the first way) and menu number (if the second way) is
given in the menu table, TPS-MENUTAB. Each menu is described here, giving the
different entries and the type of handling for each entry.

These possibilities provide a large amount of freedom in defining menus. Figure
6.3A shows a sampie master menu with several sub<menu entries pius log off
{'STOP’). Figure 6.38 shows one of the sub-menus with entries for application
programs, new sub-menus, the master menu or logging off

ND-60.111.03

6-5

NDTPS MASTER MENU

1 ACCOUNTING

2 PAYROLL

3 INVOICE

4 INVENTORY

5 TEXT PRO CESSING

6 STOP

ENTRY CHOICE:

\
Figure 6,3,4: A Master Menu

/
3 SOOKEEPiNG

ND'TPS ACCOUNTXNG

2 ACCOUNTS RECEEVABLE

3 GENERAL LEDGER

4 REGISTER UPDATE

5 REPORTS

6 MASTER MENU

7 STOP

ENTRY CHOICE:

\
Figure 6.38: A Sub—Menu

ND—60.111.03

6.1.3

6-6

The Access Control System

Access control in the standard versions of SIGNON and SELECT is done in three
ways:

— A user may have a password which must be given when the user enters his
name - this controls total access to TPS

— A user has only access to his master menu and the sub-menus which can
be chosen through the master menu - this controls menu access

—~ Every menu entry can have a security code and only those users with a
code greater than or equal to the menu entry code may choose that entry —
this controls menu entry access

SIGNON and SELECT use three tables to control user access to TPS:

—- the user table, TPS-USERTAB

-- the menu table, TPS-MENUTAB

— the default table, TPS-DEFAULT .

Defining these tables is usually aytask for the TPS system supervisor and is
described in the TPS System Supervisor’s Guide. In addition the system
supervisor should use NSHS or FOCUS to define:

- the SIGNON picture for control of user name'and password

-— pictures for the various menus defined in the menu table

The access control system in the standard versions of SlGNON and SELECT is
designed to provide a large amount of freedom in defining the control for a
particular TPS system. The amount of information contained in the tables will
depend on the degree of control needed, from the simple use of defaults to the
detailed use of passwords, restricted menu choices and security codes.

Access to different subsystems may also vary greatly. Access to an invoicing
system, for example, may be quite general, while the payroll system may be
more restricted.

ND-60.111.03

6.2

6.2.1

SIGNOFF, ABEND AND RESTART

SIGNOFF

The SIGNOFF application is given control when a transaction terminates
normally, i.e. when one of the following occurs:

—- reaching the logical end of the program (the END or STOP RUN
statement)

— using the TSTOP TSR with a stop code of 0 .

-— the LEAVE monitor call

The function of SIGNOFF is to terminate the transaction in the way indicated by
the termination strategy for that task. The termination strategies and the actions
taken by the standard version of SlGNOFF are:

l —— Terminate the task completely (release the terminal if it has one, break a
session if there is one, take a transaction checkpoint and free the TFT)

2 —- Switch to the SIGNON application, using TSWAP (no devices or other
resources freed)

3 — Switch to the SELECT application

4 -— Switch to the user-defined termination application

The termination strategy and the user termination application are obtained by
SIGNOFF with a special TSR, TSTAT (read the status of the current task).

When a task is originally started, the termination strategy is set to 1, complete
termination. The TSTST TSR (set termination strategy) can be used to change it
and to define a user termination application. The standard version of SIGNON
changes the strategy to 2, switch to SIGNON; the standard version of SELECT
does not change it.

if a user termination application is used, it must not itself terminate ”normally"
unless it has changed the termination strategy, since this would result in an
endless loop. it may, for example, terminate by switching to SlGNON.

ND~60.111.03

6.2.2

6-8

ABEND

The ABEND application is given control when a transaction terminates
abnormally, i.e. when one of the following occurs:

—— a serious error is detected by the FORTRAN, PLANC or COBOL runtime
system

— a serious error is detected by the TPS system

—- the TPS operator terminates the transaction

—- the application program uses the TSTOP TSR with a non-zero stop code

A serious error is any error which prevents the. program from continuing, such as
timeout, an l/O error without an error handling routine, switching to an
application program that has not been loaded, a 'fatal formatting system error',
etc.

When ABEND is activated, it will start by sending the ”abend error message” to
the TPS operator console (see below for the format of this message). it will then
carry out the action indicated by the abend strategy for the task and it will finish
by switching to SlGNOFF to terminate the transaction. The abend strategies and
the corresponding actions taken by the standard version of ABEND are:

l —— No more action - just switch to SlGNOFF

2 —- Send the abend error message to the terminal operator (if the transaction
has a terminal), switch to SlGNOFF

3 — Dump the data areas for the TPT on the line printer, switch to SlGNOFF

4 — Switch to the user abend application

5 - Halt TPS

The abend strategy and the user abend application are obtained by ABEND using
a special TSR, TABST (read the abend status of the current task).

When a task is originally started, the abend strategy is set to 1, send the abend
error message to the TPS operator console and switch to SlGNOFF. The TSAST
TSR (set abend strategy) can be used to change it and to define a user abend
application.

it is important that the user abend application is thoroughly tested before being
used, since an abend in that application would probably result in an endless loop.
It should terminate in the normal way (END, STOP RUN, TSTOP(O)) so that,
SlGNOFF will be activated when it is done.

No-eoii 1 ,03

6.2.2.1 The Abend Error Message (

The error message sent by the standard ABEND application is as follows:

TPS
APPL. NO. aaa ABENDED BY RUNTIME SYSTEM

APPLICATION

IN ADDR yyy TPT NO. tt

DUE TO reason (text) if abended by TPS
reason (code) if abended by'appl. or RUNTlME SYSTEM

CLOSED
DATA BASE ACTIVITY: READ

UPDATE

Codes:

aaa TPS application no. (0-255)

tt TPT no. 1-63

yyy Latest iink register

reason (text) If abended by TPS, one of the following texts:
or reason (code) O==Abended by operator

i =Application cannot be activated
2=lllegal use of TSRs
3=Subroutine not loaded
4= Application Timeout
5: Internal TPS error
6= Operator Timeout
7=Attempt to restore ND—SOO application
8:: Error from ND-500 monitor

If abended by application: ,,
Stop code given in TSTOP or error
message from NSHS or SIBAS

lf abended by runtime system
SINTRAN error code

ND—60.111.03

6.2.3

6—1 0

RESTART

The RESTART application is given control when a transaction is to be restarted
after a system rollback or recovery operation. It is started for each TPT and has
the function of examining the restart strategy for the task and carrying out the
appropriate restart action.

The restart strategies and the corresponding actions taken by the standard
version of RESTART can be divided into 2 types, terminal operator controlled and
automatic. Transactions involving interaction with a terminal should normally use
the terminal controlled restart strategy, since the operator will be better informed
of the situation and have control of it to some extent.

The standard restart strategies (See Figure 6.4) are:

l — Automatic Restart at Checkpoint. Go directly back to the application
program active at checkpoint and continue processing at the next
statement after the checkpoint was taken. This strategy cannot be used for
transactions running on the ND-SOO. A special TSR, TRSTO (restore
application status and restart), is used by the RESTART application to do
this. it is described in the TPS System Supervisor’s Guide.

2 — Start the Application in a User-Specified Restart Application. The RESTART
program will not return to the active application program but switch to the
user restart application program set by the TSRST TSR. This program may
be SlGNON, SELECT, the active applicatiOn program (which will then be
restarted from the beginning) or any other user application program. For
example, if several application programs are run sequentially (using
TSWAP) they can be restarted from the beginning of the first one or any of
the others, or a special user—restart application may be started. User restart

application will have access to the common data area of the transaction
and the data will have the values they had at checkpoint.

3 —- Terminate the Transaction. RESTART will switch to SlGNOFF.

4 —— Terminal Operator Control/ed Restart. This strategy can only be used by
application programs with terminals controlled by NSHS/FOCUS. RESTART
acquires the terminal and sends a message informing the operator of the
restart condition and asking him to choose the restart action which suits
him best (See Figure 6.5). As the figure shows, the operator can choose
between:
a — Restarting at checkpoint (not allowed for ND-SOO)
b -- Terminating the transaction
c — Switching to SELECT to choose from the user's master menu

The operator controlled strategy includes a timeout, and if no answer is received
before the timeout expires, the ABEND application is started.

The default value of the restart strategy when a task is started is 2, start the
application in user restart application, and user restart application is the first
application that has been started (normally SlGNON). The restart strategy and
the restart application can be changed with the TSRST TSR.

ND-60.111.03

6-11

The value of the restart strategy and the user restart application are obtained by
RESTART using a special TSR, TRRST (read the restart status of» the current
task).

When a task is originally started the restart strategy is set to 2, switch to the
user restart, application, and the user restart application is the first application
that is activated. This will normally be SIGNON. The TSRST TSR (set restart
strategy) can be used to change the strategy and the restart application.

USER APPL. RESTART APPL. OTHER APPL.

Checkpoint Restart at
taken checkpoint

Point of Restore to
failure checkpoint

RESTART AT CHECKPOINT (NOT "‘4 NDSOO)

_ Restart at Star:
Checkpoint RAFPL RAPPL

tak'" (restart soul.) at beginning

1 l
l
l

4,. Y
i--—-‘----—7i l
g Point of ; Restore to
i . . ——-—————)i- ,
i 'aiiure i l :necxoomt

i l i
L—._____—_.—-A

RESTART AT RAPPL

Checkpoint . Start
taken 7mm“ ' SlGNOFF

l
k l

|

7

Point of Restore to
failure checkpoint

TERMlNATE

Figure 6.4: Standard Restart Strategies

ND—60.lll.03

6—12

32m
:

5
5

,;
my:

E.
2

:3
5

:
a

zo_5<m
z<E

m5
3

.2
3

:3
.m

3
5

:0
:

3
5

5
%

.
E

000
4

0
5

.2
8

mmmmm.
5

5
3

.3
5

E
2

2
:2

8
..

m
O

;O
<

02.30440”.
mz:

LO
mZO

bow;
um

wm<m4m

h<
QZDOH.

m._.<._.m
mIH

h<
km

/tw
m

>>OZ
m.

b.
.‘S

O
:>Z<

2:2.
.3:

>m

0m
h<m

m
m

o
m<>>

.2
2

2
2

w
2:...

.4n
¥<mmm

<
v50»

Emhm>m
mzh

P
3,;

:..>
:13m

m
am

?

Figure 6.5: Terminal Operator Control/ed Restart

ND—60.111.03

6.2.4

6-13

Summary of Termination, Abend and Restart Strategies

Figure 6.6 shows the relationship between the various special applications, user
applications and the strategies employed by SIGNOFF, ABEND and RESTART.
The numbered paths on the figure show the flow of control for the
corresponding strategy numbers. The dark paths show the control flow if the
standard default strategies are used. The dashed lines show the normal flow of
control in the TPS system apart from the strategies described.

Note that the user restart application is placed as a separate application from all
of the others. This is not necessarily the case, as it may be any application,
either special or user. The default value for it, is, in fact, SIGNON (however,
drawing a dark path from RESTART to SIGNON to (show this default would have
made the figure too messyl). It may also be the application that was active at
checkpoint, the difference between strategies 1 (restart at checkpoint) and 2
(switch to restart application) being that strategy 1 would start the application in
the middle, after checkpoint, while strategy 3 would start it at the beginning.

ussaVN _-_-516‘ O " APPLICATlCN
l \\

\\
\ \\

uses USER
ABEND RESTAHT

A \

\~ . I V 4\\ \\1,4 2
i

l

4 i

i. .\‘\
E 1.2.: ‘i

ABEND SlGNOFF ‘at RESTART

EXIT FROM
TPS

Figure 6.6: The Terminate, Abend and Restart Strategies

ND-60.111.03

6.3

6.4

6—14

TPOPEN AND TPCLOSE

The TPOPEN and TPCLOSE special applications are system applications called
when TPS is initially started up and when TPS is closed down. A system special
application is one that is only called by one TPT for each TCM, the system TPT,
and that performs processing that affects the whole TPS system, not only a
single task.

TPOPEN has several functions. It sends a 'good morning' message to the TPS
operator. It opens the data base for a special system user in order to take
checkpoints and control rollback and recovery. The efficiency of the TPS system
is also increased if the data base is always open for at least one user, since
opening it for other users will then go faster (See Section 3.2.3). TPOPEN will
also go through the terminal configuration table, TPS-TERMTAB, and start up a
task for each terminal in the table, using the TACTV TSR to acquire a TFT and
activate the SlGNON application. TPS-TERMTAB is defined in the same way as
TPS-USERTAB, TPS-MENUTAB and TPS—DEFAULT (See Section 6.7.3). Defining
these tables is described in the TPS System Supervisor's Guide.

TPCLOSE is activated when a CLOSEJPS command has been given and all
transactions have been completed. After CLOSE-TPS has been given, no new
transactions may be started. SlGNOFF controls this by checking for a close
situation when a transaction terminatesand causing complete transaction
termination with release of the terminal and the TPT, regardless of the normal

Itermination strategy. When all TPTs have been released, the TPCLOSE
application will be activated. It will also be activated if an ABEND-TPS command
is given, but in this case the activation is immediate without waiting for
transactions to terminate. TPCLOSE will close the data base and send a ’good
night’ message to the TPS operator.

CHECKPOINT, ROLLBACK AND RECOVER

The CHECKPOINT, ROLLBACK and RECOVER special applications are also
system applications called by the system TPT to perform functions affecting the
whole TPS system.

They are activated when the corresponding commands are given either by the
operator, a system module (a TCM for example) or an application using an
operator-command TSR (these are restricted to special applications). Their task
is to supervise the SlBAS actions needed to carry out the required functions,
either by calling SlBAS directly (GCHPO, SROLL, SREPR, etc.) or by instructing
the TPS operator in carrying out the functions manually. Checkpoint, rollback and
recovery are discussed in detail in chapter 5.

ND—60.lil.03

ESF’IE(:|1\JL (:(DFGESI[)IEF!!\1FIC)IJE§

This chapter describes various special considerations which should be taken
when writing programs to be run under TPS. It includes data area definition,
language dependent limitations and requirements, program structure and
efficiency.

DATA AREAS IN THE ND—100

Application programs must be reentrant. This means that they cannot be written
into and thus may not contain any variable data. The data area for an application
program is placed instead on the non—reentrant part of the TPT for that
transaction. This is done automatically by TPS and demands no special action on
the part of the application programmer. There is, however, a restriction on the‘
size of the data area, discussed in section 7.1.4, and some rules must be
followed when defining the data. ’

Since data areas belong to the TPT and not to the application program itself, no
variable data may be initialised before execution. This is a general rule for

reentrant programs. Note that the data area will not be cleared either but contain
arbitrary values.

Constant data, on the other hand, may be initialised in application programs
written in FORTRAN/PLANO NFL and MAC (but not COBOL). FORTRAN
programs must define the data as belonging to a COMMON area (not the
COMMON/PRIVATE/area), initialise the data in a BLOCK DATA subprogram and
load the block data subprogram together with the application program. PLANC
programs may define the data as global read only data in modules. lt'will then be
part of the read-only segment containing the application program and can be
read but not changed. This method of initialising the data must be used since the
DATA statement is not allowed in reentrant programs. NFL and MAC programs

can initialise the data directly in the programs.

Example - Constant data in FORTRAN

MAIN PROGRAM

PROGRAM APOSO _
COMMON/PRIVATE/ITERM.... task common data area in TPT

COMMON/CONST/Kl,K2,C3,TABLE(10).... constant data area in program

CONSTANT DATA

BLOCK DATA
COMMON/CONST/Kl,K2,C3,TABLE(10)....
DATA K1,K2,c3/1,2,5.6u2/TABLE/1.2,2.o,1o.3,5*50.o,o.o,1.0/....

END NDaOJiioa

LOADING THE APPLICATION (SEE SECTION 8.2.1)

'ADD-APPL ,APOSO-BRF ,APOSO;
“ADD-UNIT , CONST-DATA-BRF;

System
part

Task
common
data
area

Local
data
area
(513*)

Non reentrant

System
routines,
TS Rs

Figure 7.1: The TF7"

ND-60.111.03

Reentrant

7.1.1

7.i.2

The Variable Data Area In The ND—100

The variable data area is located in the non-reentrant part of the TPT. It consists
of two parts, the task common data area for the transaction and the local areas
or stack (See Figure 7. I). .

The Task Common Data Area In The ND—100

The task common data area contains data that is available to all the application
programs and subroutines for a transaction. If one application program switches
to another using TSWAP, the new application program have the same task
common area, containing the old data.

Note: The first word of task-common should always contain the terminal device
number if the application uses a terminal. if not, it ought to equal zero.

If the transaction uses NSHS, the first variables in the task common data area
must be the terminal buffer ITERM and the private picture area IPRIV (see the
N030 Screen Handling System). After that follow common transaction data.

lf the transaction uses FOCUS, then the task common area from word 100
upwards will be used by FOCUS. The first 100 16-bit words only are available for
common transaction data.

The task common area is defined in a FORTRAN program with the COMMON
statement and must have the name PRlVATE.

COMMON/PRlVATE/lTERMU28),lPRlV(1024),REST

Or in a PLANCsorogram:

EMPORT {COMMONHtvpezPRIVATEl

This must be the only COMMON statement for variable data in the program
(constant data may be defined in other COMMON areas as described above).

The total length of the common area PRIVATE is fixed for FORTRAN/PLANC
programs at system generation time. The individual transactions may define a
common area of any length up to the fixed maximum.

In order to assure that the COMMON statement is correct in every application
program for a transaction, the statements can be defined separately and copied
to the individual applicaton programs with the lNCLUDE statement.

ND-60.lll.03

7—4

In COBOL main programs, the task common data area is just defined as the first
part of working storage. As long as this data is defined in the same way in all
application programs for a transaction, they will all have access to it. As in
FORTRAN/PLANO, part of the common area must contain screen handling
system variables. In contrast to FORTRAN, the total length of the common area
is variable (up to a maximum value) for individual transactions, since it is just the
first part of working storage defined in the same way for several programs.

WORKING-STORAGE SECTION

01 lTERM COMP OCCURS 126.
01 lPRlV COMP OCCURS 1024.
01 REST.

The COPY statement can be used in COBOL to assure the correct definition of
the common area.

The task common data area cannot be accessed from COBOL subroutines via the
working storage section. For subroutines the working storage area is allocated at
a fixed address of the local data area at load time. However, the task common
data area may be accessed via parameters defined in the-linkage section.

If application programs are written in several languages and an application

program uses the TSWAP TSR to switch to a new application program written
in a different language, special care must be taken that the task common data
areas are defined in the same way in both programs. Then the new program will
have acccess to the common data of the old program even though they are
written in different languages. It is the responsibility of the programmer to see to
it that the data definitions match.

ND—60.111.03

7-5

The Local Data Area In The ND—lOO

in addition to data in the task common data area, the individual application
programs can define local data. This data will be lost when switching to a new
application program and is not available to subroutines.

Local data for all FORTRAN/PLANC programs, both main programs and
subroutines, are placed in the stack {See Figure 7.2.A). The stack is the data area
in the TPT immediately following the common area. When a FORTRAN/PLANC
main program or subroutine is started, it is given an area in the stack large
enough to contain all local data defined in the routine. It will have access to this
area until it is done, when the area will be freed. if the program calls a
subroutine, the subroutine will be given an area in the stack following the area
for the calling program. The stack can thus be considered a pool of storage
space allocated to individual routines dynamically during execution. Since space
is allocated dynamically, data in the stack may not be initialised before execution
time.

MAC and NFL programs must simulate reentrant FORTRAN/PLANC programs
when interacting with the system.

The MAC and NFL programmer must follow rather strict rules in order to use the
stack and define data correctly. The FORTRAN programmer, on the other hand,
defines data in the usual FORTRAN manner with the exception of the restriction
on the use of COMMON described above. The compiler must be set in reentrant
mode when compiling the program and the program must be loaded as
described in section 8.3.1. If these things are done, addressing and stack
adminstration will be performed correctly.

The data area for a COBOL program is described in figure 7.28.

in PLANOprograms, you must refer to a stack in the lNlSTACK statement in
order to satisfy the PLANC-compiler. You have to declare a global dummy-stack
ENTEGER ARRAY STCK {Ofli in your main program module and include the

statement iNlSTACK STCK in the main program. The symbol SSTLEN should be
:eft undefined by load-time. The actuai stack length will be set up when the TPT

is initiated.

ND-60.lll.03

7—6

COBOLFORTRAN /PLANC
FIXEDLENGTH SYSTEM PART SYSTEM PART

’ COMMON/
ITERM PRIVATE 'TERM
IPRIv

FIXED 'PR'V
FIXED REST OF LENGTH
LENGTH 3 COMMON REST OF

7//////// °°MM°N
% NOT %

D / STACK LOCAL DATA,, Wfl/M
\

LOCAL DATA, ”LOCAL DATA,
MAIN FROG. SUBROUTINE

LOCAL DATA,
F'XED < FIXED SUBR (FTN)LENGTH LOCAL DATA, LENGTH <

SUBROUTINE 7////////
NOT % /NOT USED 2

% USED / / /
L /////// //////// A

A B

Figure 7.3: Data Areas for FORTRAN AND COBOL, Programs

ND-60.111.03

FlXED
LENGTH

WORKING
STORAGE
COMMON

FTN
STAC K

7.1.4 The Size of the Data Area In The ND—100

The total size of the data area for an application program, regardless of the
language it is written in, is a fixed number, determined at system generation
time. (See Figure 7.2 and Appendix D). This size includes the non-reentrant part
of the TPT, about 14003 locations of which 10003 is used by SlBAS (2000::
locations if FORTRAN-100 is used).

This size will for FORTRAN programs be the sum of the following:

—- non-reentrant TPT

— task common data area (screen handling part and transaction part and
unused part)

—- stack area

For COBOL programs the size will be the sum of:

—— non-reentrant TPT

— WS - task common data area (screen handling part and transaction part)
and local area

—- COBLIB area

-— stack area

The maximum size of working storage is also a system generation parameter. lf~a
COBOL program demands a work area larger than this maximum, an error
message will be written at load time [See Appendix C) and the program will not
beloaded.

The size of the stack will be whatever is left over after the rest of the areas are
allocated. lf NSHS is used, it needs approximately 1.5 Kwords in the stack in

addition to the data in the common area. SlBAS also uses 0.5 Kwords. However,
since this area is freed upon return to the calling routine, NSHS and SlBAS
routines can use the same stack area. FOCUS does not use this stack area.

/‘\ ND‘60.111.03

7.2

7—8

DATA AREAS IN THE ND—500

All programs running in the ND-SOO-CPU are reentrant, and the code and data
are always separated. '

The complete data area, i.e. the local data area, the common data area and the
stack area, containing both constant and variable data, is placed in the data-part
of the segment where the application is loaded.

Note that, in contrast to the ND-lOO, all data will be given their initial values
(initiated by load-time) each time an application is started.

The total size of the data area for an application program is up to 134
megabytes. Note that this data area will not be saved at checkpoint.

In addition to the data area described above, application programs may access
the task common data area (see fig. 7.1). This area is common to all application
programs and subroutines in both the ND-100 and ND-SOO for a transaction. lf
one application program switches to another, eg. from an ND—lOO-application to
an ND-SOO-application, the new application program has the same task common
data area, containing the old data.

Note: The first 16-bit word of task common should always contain the terminal
device number if the application uses a terminal. lf not, it ought to equal zero.

In the ND-SOO, the task common is labelled by the common label PRIVATE.

FORTRAN programs may access task common by the statement:

COMMON/PRlVATE/<array>

PLANO programs may access task common by the statement:

lMPORT (COMMON)(type:PRlV/—\TE)

COBOL programs may access task common by these statements (also applies to
COBOL subroutines):

LlNKAGE SECTION.
01 PRIVATE IMPORT.

02 <array>.

Note: If the transaction uses the FOCUS screen handling system, only the first
200 bytes of task common will be available for the user application program. The
rest of task common is used by FOCUS, because the FOCUS data must be
passed on (by TSWAP) to the next application of the transaction.

The total length of task common (PRlVATE) is the same as in the ND—100
(counted in bytes), and it is fixed at system generation time.

if an application in the ND-lOO uses the TSWAP TSR to switch to a new'
application program in the other machine, the ND-500, or the other way around, .
special care must be taken that the task common data areas are defined in the
same way in both programs. Be aware that the word-length (used for example in
data type lNTEGER) is 16 bits in the ND-lOO and 32 bits in the ND—SOO.

ND-60.111.03

7.3

79

LANGUAGE DEPENDENT CONSIDERATIONS

There are few limitations to the full set of FORTRAN and COBOL facilities
available on NORD computers when writing programs to be run under TPS. TPS
application programs are very similar to general real-time programs using
SlNTRAN, SlBAS and NSHS/FOCUS. For a discussion of real time programming,
see SINTRAN lll User’s Guide, Chapters 4 and 7.

ND-500 COBOL, FORTRAN and PLANC programs may be tested by using the ND
Symbolic Debugger «live» in an ordinary TPS-run. (Chapter 8.1.)

In addition, all languages are extended by the TSR facilities of TPS, including
session communication and checkpoint/restart.

in the ND-SOO, there are no restrictions on language usage, such as initialized
data, local data and common areas, and most language features may be used
freely. Data in task-common may be accessed in the common area PRIVATE as
described in section 7.2. Note that FOCUS uses PRlVATE from ND—500 address
200 upwards. Note also that the COBOL statements ACCEPT, DISPLAY and
EXHlBlT cannot be used in the ND-BOO.

The following sections discuss the languages in ND—lOO individually.

ND-60.111.03

7.3.1

7—1 0

FORTRAN/PLANO in ND—T100

All application programs run under TPS must be reentrant. ln FORTRAN this is
done by setting the compiler in reentrant mode before compiling. In addition the
compiler should be set in a state to generate allocation of 208 extra stack
locations whenever subroutines, written in MAC or NPL, that use these extra
locations are linked to the main program. This makes it possible to keep earlier
written subroutines in a lowlevel language unmodified.

The commands to obtain these things are:

FTN: REENTRANT ON
FTN: RESERVE—WORK—SPACE ON

Constant data in FORTRAN programs must be defined in a BLOCK DATA
subroutine as described in section 7.1. Constant data in PLANC-programs may be
defined by read-only global data declarations in PLANC-MODULES. Defining
variable data areas is also discussed in section 7.1.

When using FORTRAN input-output 2 words following the stack will be used for
the administration of a FORTRAN input-output statement. These two words will
not be checkpointed at runtime, and special considerations should therefore be

taken when using FORTRAN input-output from applications.

Application programs may also be“ run as background programs using the TPS
background system (See Section 8.2). This is mainly useful for program testing.
The debugging facility of FORTRAN/PLANO may be used in background
programs by setting the compiler in debug mode and then loading the debugging
supervisor. (part of the runtime system). Programs using the debugging facility
must not be reentrant. When programs are run as background programs they
will use background versions of the special TPS facilities available. They will also
use the background version of the FORTRAN/PLANO library, FORTRAN—lBANK.

When loading real-time programs to be run under TPS, a special TF’S version of

FORTRAN—lREENT is loaded automatically due to the TPS load macros (See
section 8.3.7,).This library is usually merged with the TSR file to one BRF file,
TPS-LIBRARYlRF.

When calling TSR routines from PLANC, all routines, must be declared as
ROUTINE STANDARD in IMPORT statement. PLANO—routines should call
CGBRD and CWMSG instead of TGBRD and TWMSG, using type "BYTES" for
the parameter <text>.

ND-60.1ll.03

7.3.2

7.3.3

7—11

COBOL in ND—100

As for FORTRAN, COBOL programs running under TPS must be reentrant. This
however is done automatically by TPS when the application program is loaded,
so the programmer does not have to do anything special.

No data may be initiated in real time COBOL programs, since all data is placed in
the data area of the TPT. This includes both constants and variables. Defining
data areas in COBOL is discussed in section 7.1.

The SORT function is not yet available under TPS.

ND-lOO COBOL programs may also be tested as background programs using the
TPS background system. The interactive debugging option can then be used. The
ACCEPT, DlSPLAY and EXHlBlT commands can only be used in background
programs.

Most COBOL programs running under TPS will need routines in the FORTRAN
library, since SIBAS and NSHS/FOCUS use them. When testing in background
FORTRAN—lBANK must be loaded. When loading real-time programs, the
special TPS version of FORTRAN—lREENT is loaded automatically by the TPS
load macros (See Section 8.3.1).

When compiling COBOL programs, the compiling mode must be
two-bank/64KW. This is because code and data must be separated while the
logical address space still should be 64KW.

The command to obtain this is:

'SEPARATE-CODE-DATA 64K

MAC—NFL

Most application programs under TPS will be written in FORTRAN or COBOL,
but in a few cases it may be desirable to use a lower level language. Two
languages are available for doing this, the MAC assembly language and the
NORD—PL system programming language. However, when using these
languages, some rules must be followed.

The main rule is that they must simulate reentrant FORTRAN programs when
interacting with the system. All interaction with the system is done through calls
- SlNTRAN monitor calls, TSR calls, SlBAS calls and FOCUS or NSHS calls.

These calls must be set up as if they came from a reentrant FORTRAN program.

ND-60.1ll.03

7.4

7.4.1

7-12

PROGRAM STRUCTURE

Application Names and Numbers

Application programs are written as main, real-time, reentrant programs. They
may be given any names of 1—6 alphanumeric characters, but in this manual
they are given names of the type

APXXX

where XXX is the TPS application number. User applications have positive
numbers (1 to 255), while special applications have negative numbers (—10 to 0)
and special names. The name is given in the PROGRAM statement in FORTRAN
and PLANC, the PROGRAM—l0 statement in COBOL, or the)QRT statement in
MAC and NFL.

Before the program is loaded, the name must be in TPS—TABLES (See Section
8.3. 7).

ND-60.lll.03

7.4.2

l
l

ll
l -.

..
w

...

7—-13

Subroutines

A main program in any language may call reentrant FORTRAN or
FORTRAN—compatible subroutines. COBOL subroutines may be called from
COBOL only. The subroutines are loaded together with the main program on the
same segment‘. in the ND-lOO-they may not exceed a total length of X words of
program code where X is an installation dependent maximum (data areas,
SlBAS, NSHS/FOCUS and many of the FORTRAN~1REENT routines are not

included in this length). In the ND-500, main programs and subroutines may have
a length of up to 134 megabytes both for data and code. The subroutines will
have access to the task common data area, parameters and their own local data.

Note that FOCUS uses the PRIVATE common area (ND-100 and ND-SOO) from
byte 200 upwards as local data area. This area cannot be used by applications
using FOCUS. V

If several main programs use common subroutines, each segment must have its
own copy of the subroutines. It is, however, possible to have more than one
main program on a single segment (in ND-lOO: if there is room), and programs
may then share a common copy of subroutines. (See Figure 7.7). Again in the
ND-lOO the sum of the lengths of all routines, both main and sub, must not
exceed the installation dependent maximum.

“See appendix D for a description of how TPS uses the SINTRAN segment
structure-infigipo

32: l‘ I;
il l ll ._

..
..

..
_

.

—
__

-

Public Main APnn 1 Main APnn 2 Subroutines Unused
pictures (TN) (FTN) (FTN)

ll llll
El llil

Figure 7.7: Application Segments in ND—IOU.

ND-60.111.03

l
l

Public Main APnn 3 Main APnn 4 subroutines Unused
pictures (COB) (COB) lCOB‘l-FTN)

7—14

A different method of making use of common routines is through the TSWAP
TSR {See Figure 7.8). An application program can switch to another one with
TSWAP. They will both have access to the task common data, but local variables
for the old routine will be lost. Also, there is no return to the old routine when

the new one is done. A "manual” return may be programmed by storing the
name of the calling program and the return point in the common area,
TSWAPing back to the calling program (at the beginning) and jumping to the
correct return point. This method can only be used in main programs.

Using main programs as common subroutines in this manner may save both
space (only one copy is necessary) and time (less swapping). In addition, in the
ND-lOO the routines may be larger, since each routine may be up to X words

long. However, the method has the disadvantage of losing local variables, and it

demands a greater programming effort.

in the ND-SOO, where there is plenty of room, this kind of structure will not be

necessary.

APnn I ' (program segment xl
v (data segment d)

APnn 2 ' (program segment y)
(data segnmt dl

TSWAP APnn 2

APnn 3 (program segment 2) 3““ (program segnent .1)
\ (data segment d)
\ //E

>

(data segment ui

/

\A
/V

‘

v
w

v
m

/m
"~

\ TSWAP APnn 3 g

\

\
E

\ CALL sum

Return

TSWAP APnn 1

Figure 7.8: Switching Application Programs

ND-60.111.03

7.5

7.5.1

7—15

EFFICIENCY

TPS is designed for a combination of fast response times, data protection and
ease of use. However, no matter how carefully the system is designed, the
manner in which application programs are written does have an influence on
both efficiency and data security.

ND-500 EffiCiency

A high standard of performance can be obtained by running applications in the
ND-BOO, espesially if these applications only run in the ND-SOO and do not «call»
the ND-lOO very often.

Calling the ND-lOO creates a good deal of system overhead. It is therefore
important to keep the number of such calls to a minimum. This can mean the
difference between a high-performance system and one with fairly poor
performance.

Calls to the ND—lOO will be made in connection with most SlNTRAN-lll monitor
calls (e.g. MON CLOCK, MON OUTBT), etc. and many TSR calls (e.g. TRMSG,
TSMSG).

NB! When an application on a non-current N0500 domain is started, i.e., when
a domain is to be ”placed” in thekND—500, the ND-500 monitor will make many
disk accesses. This not only takes time, it also loads the system. It is therefore
very important that applications that belong together are loaded to the same
domain. They can, however, be loaded on several segments in the domain.

Note that when a transaction runs an application in the ND-lOO, it will not have

reserved an ND-SOD process. When swapping from an ND-iOO application to an
ND-SOO application, a domain'must be ”placed" in the ND-SOO.

ND-60.lll.03

0.5.2

7.5.3

7-16

Taking Checkpoints

Synchronised and transaction checkpoints are taken automatically, but the
programmer must decide if extra transaction checkpoints should be taken with
the TTRAN TSR (See Section 5.2.4). Taking a transaction checkpoint involves 1 -
6 disk accesses depending on the size of the data area and if the data base is
open.

The programmer must also determine if the TTSYN routine should be called to
allow synchronised checkpoints to be taken, for example during a long
processing and data base sequence without any other calls than SlBAS calls.
Calling the TTSYN routine causes very little overhead (a few instructions, - no

disk accesses). (See Section 5.2.3. 7)

Opening and Closing the Data Base I

When to open and close the data base is also a decision that may have an
influence on efficiency. As mentioned in section 3.1.3, opening and closing the
data base itself causes little overhead, since it will probably always be physically
open for a dummy user, but transaction checkpoints are taken when it is opened
or closed and these involve disk accesses. On the other hand, taking a
check-point causes more overhead when the data base is open than when it is
closed.

ln general, it may be said that if a program has long processing sequences
with-out data base accesses, the data base should probably be closed and
reopened again. An example would be a long dialogue with the terminal, perhaps

involving several transaction checkpoints.

ND-60.111.03

7.5.4

7—17

The Working Set

As for all computer systems with paging, the concept of a working set is

applicable to TPS programs. Only those pages being used at the moment need

. to be in main memory, the rest being out on the disk. When a page is needed

that is not in main memory, it is read in from the disk, perhaps causing another

page to be written out. This page swapping process of course involves overhead

and the most efficient programs are those with little swapping.

This means that the program should be organised such that logically connected

program sequences are placed’close together; this also applies to data.The

working set is the number of pages needed to carry out a processing sequence

in the program. If this working set is small enough to have all the pages in main

memory at one time, no swapping will be done during the processing sequence.

These efficiency considerations may not be necessary in a well-dimensioned

system with a fairly low work load and good response time. On smaller systems

with high work loads, they may be quite important. in any case, it may be

worthwhile to determine which application programs or parts of programs will be

used most and devote some extra effort to making these routines efficient.

ND-60.111.03

7.6

7—48

REAL TIME VERSUS BACKGROUND

Installations running TPS will usually also have some need of running programs

in background mode (timesharing or batch) under SINTRAN '(See Figure 7.9). A
large part of program testing of ND—lOO-applications may be carried out in

background mode as described in section 8.2, since loading and running
application programs are simpler and the debug option is available.

Certain types of interactions with the data base may be better done in

back-ground mode than under TPS. Large updating jobs, for example, where a

great amount of data has been gathered ahead of time, especially if it is in

machine readable form, may best be run as batch jobs. Some users may prefer

to use TPS for data entry, gathering data with on;line transactions, storing it in

temp—orary files and using it later as input to batch updating jobs. In some cases,

it may be an advantage to run large reports as batch jobs, perhaps after stopping

TPS to prevent the information in them from being updated as the report is

being written. The checkpoint/restart facilities of SIBAS are also available to
back-ground jobs, but they must be controlled manually (by the operator), and
the programs themselves are not checkpointed, only the data base.

Some tasks must be done in background mode before running TPS application
programs. The SlBAS data base must be created, private screen pictures must

be defined on picture files and public pictures must be defined and dumped to
load files. Creating a SIBAS data base is described in the SIBAS User's Manual
and defining private pictures is described in the screen handling system manuals.
In addition, a special background utility program is available for producing public
pictures for NSHS and a program is available for producing public pictures for

FOCUS. This is described below.

Updating the data base after

i

l
i dataentry transactions1

Printing large reports

Testing programs

Creating the data base

Defining pictures

Figure 7.9: Some Background Tasks

ND-eo.iii.03

7.7

7.7.1

7—19

PICTURES FOR NSHS IN ND-100

Pictures used by the Screen Handling System NSHS can be either public or
private. Private pictures are stored in a file and read from the file when they are
used (See Figure. 7. 70). Public pictures are stored together with the application
code on the application segment. Several pictures can be stored together with
an arbitrary number of applications on each sequence. When running those
application together with NSHS, the picture data need not be read in at run-time.
it can be referred to directly through NSHS by specifying "public picture" in
lTERM(5). Thus the execution is speeded up by omitting mass storage access of
the picture-file. ' ’

Further, several applications can share pictures or picture elements. Thus
swapping activity is essentially decreased due to the fact that:

—- less physical memory is used

-- public picture areas are not written into and the pages not written back to
disk.

Defining Private Pictures for NSHS

Picture formats are defined through use of an interactive utility program,
SCREEN—DEFINITION, at the display terminal. Picture definitions are stored in
ordinary SlNTRAN files of two different types. The output from the picture
definition is called the "source picture” and is stored in the source picture file.
Several picturescan be stored in the same file, identified by their individual
picture names.

Before the picture definitions are used by application programs. they are
compiled using SCREEN~DEFlNlTlON into a certain run«time format called the
"object picture” and stored in the object picture file. Here also one file may

contain several pictures which can be independently compiled.

Comprehensive editing facilities allow the operator to create, replace, repeat or
rem0ve any part of a picture. For a detailed description of how to create and
maintain picture definitions, see the NORD Screen Handling System, Chapter 2.

ND—60.1il.03

7-20

APPL segment PICTURES:PIC
P!CTURES:OBJ

TPT segment
APnn 1

[TERM

CALL GTP!C IPR IV

(private picture
area)

CALL WRPTD

APPL segment
P!CTURES;P!C

IPUBL PXCTU RES:OBJ

{pumic picture area) PYCTURESEIN

APnn 2

CALL WRPTD

Figure 7. 70: Private and Public Pictures

ND-60.11L03

7.7.2

7—21

Producing Public Pictures for NSHS

Object pictures defined in the above manner may be used by TPS application
programs as private pictures. However, for the reasons mentioned above, it may
be desirable to use public pictures instead. NORD TPS supplies a background
program, PUBLIC—PICTURE, which produces a public picture data file from
object pictures. This file can be loaded together with the application code on an
application segment toform the. public picture ‘area.

The user must specify the following parameters which are asked for:

—— picture dump file: the file where the picture data is to be dumped for
loading on to the segment

— number of pictures

—— picture file name(s): the object picture file(s) produced by
SCREEN—DEFINITION

—— picture name(s): the name(s) of the picture(s), which are to be loaded
together in the Public Picture area.

Example

QPUBLIC—PICTURE

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% NORD-TPS PUBLIC PICTURE LOADING %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ENTER PICTURE DUMP FILE NAME: PUBLIC:BIN

ENTER no. OF PICTURES: 2

ENTER PICTURE FILE NAME (MAX 20 CHARACTERS)
OR "9' TO TERMINATE LOADING: TPS-PIC:OBJ

ENTER PICTURE NAME (MAX 8 CHARACTERS)
0R '9' FOR NEW PICTURE FILE NAME: SIGNON

ENTER PICTURE NAME (MAX 8 CHARACTERS)
0R '9' FOR NEW PICTURE FILE NAME: MENU

PICTURES LOADED. OCTAL SIZE: 000601

STOP 0
@

NED—60.11103

7.7.3

7-—22

Loading Public Pictures for NSHS

The picture dump file, which is produced by the PUBLIC—PICTURE program, is
used as an input file when loading the applications. It comprises the picture data
to be loaded together with one or more applications on one or more segments.
The public picture area will always start in location 3 of the application segment.
it is defined with a macro statement of the form:

TLOAD—SEGMENT, seg-no, public-pic-file, reent seg-name, sub-macros;

See Section 8.3.1 for use of this macro

In summary, the steps in defining and loading public pictures are these:

—— Use the SCREEN—DEFINITION program to define pictures on object
picture files.

— Use the program PUBLlC—PICTURE to produce picture dump files.

—— Define the picture dump files to be input files for loading. This information
is to be entered into the file
(TPS——USER) SPECIFY—LUAP:SYMB

—- Prepare the application programs to refer to the Public Picture area by
giving the value 1 to ITERM(5). When using the Private Picture area this
value is to be set to 0.

— Load the public pictures and applications by running the mode files
(TPS—USER) BUILD—«LUAPzMODE
(TPS——USER) LOAD—USER—APPLzMODE
as described in section 8.3.1.

ND-60.111.03

7.8

7.8.

7—23

PICTURES FOR FOCUS

Forms used by the FOCUS screen handling system can be either public or
private. Private forms are stored in a file and read from the file when they are
used. Public forms are stored together with the application code on the
application segment. Several forms can be stored together with an arbitrary
number of applications. When running those applications together with FOCUS,
the form data need not be read in at run-time. Thus the execution is speeded up
by omitting mass storage access of the form file.

Further, several applications can share forms or form elements. Thus swapping
activity is essentially decreased due to the fact that:

— less physical memory is used

-— public form areas are not written into and the pages not written back to
disk.

Forms are defined through use of an interactive utility program, FOCUS-DEF, at
the display terminal. Form definitions are stored in ordinary SlNTRAN files.
Several forms can be stored in the same file, identified by their individual form
names. Comprehensive editing facilities allow the operator to create, replace,
repeat or remove any part of a form. For a detailed description of how to create
and maintain form definitions, see the FOCUS screen handling system manual
(ND-60.137).

Using private forms, the form file name must be declared by the call FCDECFF in
FOCUS.

Public Pictures for FOCUS

it is desirable to use public forms in TPS, for the reasons mentioned above,
when running the system in full production. In the test phase, however, it is
easier to use private forms.

ND TPS supplies a background program, FC-PUBLlC, which converts the form
file into a public form data file. This file can be loaded together with the
application code on an application segment to establish the public forms area.

Use the program FC—PUBLIC-lOO or FC-PUBLlC-SOO in order to produce a public
form data file to be loaded to the N0100 or NDSOO respectively. The public form
data file is used when loading applications, by inserting the file name for the
parameter "publ—piofile” in these macros:

ILOAD-SEGMENT,seg-no,publ-pic-file,reent-seg-name,sub—macros;
ILOAD-EOOSEGMENT,domain-name,seg—name,publ-pica‘ilesub-macros;

See section 8.3.1 for use of these macros.

ND—60.111.03

7—24

The public area will always start in location 4 of the application segment in the
NDlOO, and location 0 in the NDSOO.

The application programs must call FClNITE with the parameter init-array(6)=i=0 in
order to use public forms. Then the FOCUS call FCDECFF must not be called.

in the ND100, init-array(6)=4 (address of first location of the public form area).

in the NDSOO, init-array(6)=segment number of the public form area. Segment
number equal to 0 (zero) must not be used. The application segment number
may be obtained by the TSR-call TAPST.

in summary, the steps in defining and loading public forms are these:

——- use the FOCUS-DEF program to define pictures on form files.

—— use the FC~PUBLlC~XXX program to produce public form data files.

— define the public form data files to be input files for loading, by editing the
file (TPS-USER)SPEClFY«LUAP:SYMB.

— prepare the application programs to refer to the public form area by giving
the appropriate value to the parameter init-array(6) in the call to FClNITE.

—— load the public forms and applications by running the mode files
(TPS-USER) BUlLD-LUAP2MODE (as user TPS-USER)
(TPS—USER) LOAD-USER—APPLzMODE (as user RT)

as described in chapter 8.3.1. L

in the NDSOO, all forms used by all applications inside one domain may be

gathered on only one public form file if desired. After running the FC-PUBLlC-SOO

program, the public form data file may be loaded to its own segment inside this
domain by issuing these commands:

9ND LTNKAGE-LOADER
ND—Linkage-Loader—
NLL: SET—DOMAIN ' 'domain—name"
NLL: SET-SEGMENT-NUMBER segm-no
NLL: OPEN—SEGMENT ’ ’ segment-name' ’ ,,
NLL: LOW—ADDRESS 0, D
NLL: LOAD-SEGMENT public-form-data—file
NLL: END—DOMAIN
NLL: EXIT
@

ND-60.111.03

COMPILING AND LOADING PROGRAMS

This chapter shows how to compile and load application programs both as RT
programs in the ND-iOO and the ND-SOO and as background programs in the
ND-lOO. ‘

TESTING OF ND—SOO—APPLICATIONS

When application programs are run under TPS in the ND~500, they must be
compiled by an ND-SOO-compiler, loaded with the LlNKAGE—LOADER, and started
under the control of a TPT. Section 8.3 describes how to load the program to the
TPS-system.

During the programming and testing phase in the ND-SOO, it may be easier to run
them in a special Debug—mode in ND-SOO under TPS, which allows you to use the
ND Symbolic Debugger. The program then ought to be compiled with
DEBUG-MODE ON.

In BOO-debug-mode, the symbolic debugger is run on one terminal and the
application on another terminal.

You start a transaction in Debug-mode in the ND-500 by activating application
no. -—3 from OPCOM, giving the terminal device number to be used by the
symbolic debugger as parameter *1. Parameter 2 may be zero. Note that the
debugger terminal must not be the same as the application terminal. The
application -3 (on the debug terminal), will then prompt you according to the
OPCOM-command ACTIVATE-APPLICATION.

in EGO-debug—mode, you will enter the Symbolic Debugger on the debug terminal
each time a SOD-application is entered, and will be free to inspect/Change

locations and stop/run the application. See the ND Symbolic Debugger Manual
ND-60.158.

ND-60.111.03

8.2

8.2.1

BACKGROUND TESTING OF ND—100 APPLICATIONS

When application programs are run under TPS in the ND-100, they must be
compiled as real time (RT), reentrant programs, loaded with the RT loader, and
started under the control of a TPT. However, during the programming and testing
phase, it may be easier to run them as background (time-sharing or batch)
programs directly under SINTRAN. Loading and starting the program is simpler
and the interactive debugging options of both FORTRAN and COBOL are
available.

The TPS Background System

The TPS background system is a set of subroutines and programs running in
ND~100 that simulate a real time TPS environment. The subroutines are loaded
together with the user application programs and provide simulated TSR routines
for the application program. Background versions of the SIGNON and SELECT
special applications are also provided, plus a special program, TPS:PROG, which
is used to initiate the transaction.

The background system is started by logging in as a SlNTRAN timesharing user
and giving the RECOVER TPS command. When this is done, functions covered
by TPOPEN will be carried out for the background terminal. The terminal number
is checked against the terminal configuration generated for TPS. if it is included,
NSHS initialisation is done and SIGNON/SELECT started. As under TPS

SIGNON will ask for and control the user name and password and SELECT will
control the menu choice, as described in chapter 6. Finally the user application
will be started as under TPS, with access to the task common data area.

ND-60.lll.03

8.2.2 Available Facilities in the TPS Background System

The available facilities include both TSR simulation routines and other special
TPS functions, such as:

control of name/password

' presentation of menu choices

entry to user programs as under TPS

' intialising and use of NSHS according to TPS terminal configuration
parameters

full use of the task common data area between independent application
programs (i.e. main programs)

use of the interactive debugging options of FORTRAN and COBOL

Most TSR simulation routines will only consist of a return to the calling program,
but a few will carry out an action similar to that under TPS. These routines are:

' TSWAP - the new application program will be started with access to the
task common data area

TSTOP - the transaction will be terminated normally or abnormally

TWMSG - a message will be written to the user terminal instead of the
TPS operator

TACTV - if called by the TPOPEN application. the new application will be
started as for TSWAP, else return to calling program with no action

ND—60.111.03

8.2.3

8—4

Load-Common and Save-Common Routines

When application programs are run under the TPS background system, they may
make free‘use of the TSWAP facility to switch from one main program to
another. Since it is normally not possible to have common data areas between
independent main programs in background made, special provision must be
made for making the task common data area available to all application
programs. This is done by two routines, load—common (LCOMMO) and
save-common (SCOMMO).

CALL LCOMMO (<array>)
CALL ’LCOMMO' USING <array>.

‘CALL SCOMMO '(<array>)
CALL 'SCOMMO’ USING <‘array>,.

Parameters:

<array> COBOL: the first variable at the beginning of the

task common data area (Le.
WORKlNG—STORAGE)

FORTRAN: the first variable in the task common

data area (i.e. lTERM)

Examples

CALL LCOMMO(ITERM)

CALL 'SCOMMO' USING TASK—COMMON—AREA.

Load«common {LCOMMO) loads the task common area from a file on the disk
and should always be called as the first executable statement in the application
program. Save-common (SCOMMO) saves the area back on the disk and should
be called right before the program does a TSWAP to another program.

Dummy versions of the LCOMMO and SCOMMO routines are included in the
TPS library routines for real-time programs. Therefore it is not necessary to
remove these calls when the application program is done being tested and is
loaded as a real-time program.

ND~60.111.03

8.2.4

8—5

Running the Background System

When the debugging option is used, the program must be run under the control
of the loader NRL, in order to use the debugging facilities, i.e. the loader must
be dumped together with the program and the RUN command given to the
loader after loading the program. This means that testing with the debugging
option should be done in the following steps:

—— Make sure that the following programs exist as PROG files:

TPS:PROG
SIGNON:PROG
SELECTzPROG

- Load applications with NRL

-— Dump all of memory with the @MEMORY and @DUMP commands

—— Start TPS:PROG by writing TPS on the terminal to SINTRAN

~— Wait for SIGNON to send the (user-defined) screen picture and then give
your name and password (you must be in the user-table)

-— ~ Wait for the menu picture and indicate the correct choice to start your
application (the application must be in the menu table)

-— lf the application exists as a FROG file (i.e. has been loaded and dumped)
it will be started in the loader

—~ The RUN command must now be given to the loader to start the
application in the debugger

—— Debugging commands can be given and the application itseif started with
the CONTlNUE command

Examples of compiling, loading and running programs with the debugging option
are given in section 8.1.6.

ND-60.Hi.03

8.2.5

8—6

Testing in Background Mode

When application programs are tested in background mode, several facilities are
available which are not available when running them as real-time programs, such
as the possibility of initialising data areas at compile time, using the ACCEPT,
DlSPLAY and EXHIBIT statements in COBOL, etc. These may be used, but it is
recommended that as few changes as possible be introduced during background
testing since converting to RT programs should be as simple as possible.

However, some special considerations must be taken when testingin background
mode. Among them are the following:

— the device number for the terminal (in lTERM (1) if NSHS is used) must be
i (this is done automatically by the background system).

——- unitialised data areas will be cleared (but not COMMON areas)

-— calls to NSHS, SlBAS and SlNTRAN routines allowed in background will be
executed in the usual way, but special TPS routines, such as TRMSG
(read~message) and TACTV (activate concurrent task) may be different in
background, as mentioned above. This may demand some changes to the
program

—— the FORTRAN compiler should not be set to reentrant mode, whereas the
debug mode may be used. Using the debugging option is described in
chapter 13 of the FORTRAN Reference Manual.

—- the background versions of NSHS and the SIBAS interface module
(DML-SlMULATOR-BACKGROUND) must be loaded.

—- The TPS background library, the TPS user library and the FTN library
(FORTRAN—iBANK) must be loaded with programs in all languages.
COBLIB must be loaded with COBOL programs.

— ‘if a SlBAS system is to be used that is already running (for example under
TPS), no further action needs to be taken to use it from a background
program. However, if SlBAS is not yet running, it must be started up as an
RT program with the RT command (See appendix A, S/BAS on NOFiD—70,
of the S/BAS User’s Guide). The data base of course must have been
defined and created. Doing this is discussed in chapter 9.

— the TPS background system can be used to start the transaction and save
the task common data area

These points are summarized in Figure 8.1.

ND-60.1li.03

Makes as few changes as possible

Uninitialised data areas are cleared

Do not use reentrant mode

Debug mode may be used

Load background versions of SIBAS, NSHS

Load TPS background library
TPS -— USER library
FORTRAN—lBANK

Start SIBAS

Use the TPS background System
to start the transaction

Figure 8. 7: Testing I'n Background Mode

‘\ ND—60.111.03

8—8

8.2.6 Compile and Load Examples

Examples are given here for compiling FORTRAN and COBOL programs in the
debug mode, starting the background system, loading the programs with the
relocating loader and running them. Together with the program itself is loaded
NSHS (background version) or FOCUS, the SIBAS DML simulator (background
version), the TPS background library, the TPS user library and the COBOL
runtime system. There are many possibilities in the debugging mode: setting
breakpoints, inspecting locations, tracing, stepping through the program. The
examples show running the program with the trace mode on.

Example - FORTRAN

@FORTRAN—TOO
ND-100 ANSI 77 FORTRAN COMPILER

FTN: DEBUG-MODE ON
FTN: COMPILE APOZZ—SYMB,L-P,AP022-BRF

265 STATEMENTS COMPILED
E‘TN: EXIT
@NRL

- NORD-1O RELOCATING LOADER —

“LOAD APOZZ-BRF
*LOAD DML—SIMULATOR-BACKGROUND
*LOAD TPS-BACKGROUND-LIBRARY
*LOAD NSHS-BACKGROUND
*LOAD FORTRAN-TBANK
*EXIT
@MEMORY 0 1777?7
@DUMP AP022 i l
@TPS

Wait for SIGNON picture, enter name and password.
Wait for MENU picture, enter correct choice to start appl.

*RUN
&TRACE AP022,100 AP022,ZOO

&CONTINUE execute the application program

&EXIT
@

ND-60.111.03

Example — COBOL

éCOBOL

*** NORD-lo COBOL COMPILER ***

*DEBUG-MODE
*COMPILE APOZB-SYMB,L—P,AP023-BRF

'* o DIAGNOSTIC MESSAGE(S) **

eNRL

- NORD-1O RELOCATING LOADER -

*LOAD AP023-BRF
*LOAD DML—SIMULATOR-BACKGROUND
*LOAD TPS-BACKGROUND-LIBRARY-
*LOAD TPS-USER—LIBRARY
*LOAD NSHS-BACKGROUND
*LOAD COBLIB
*LOAD FORTRAN-1BANK
*DUMP AP023:PROG

Wait for SIGNON picture, enter name and password.
Wait for MENU picture, enter correct choice to start appl.
The application will start in the debug monitor.

-—— NORD COBOL INTERACTIVE DEBUG MONITOR -—-

*TRACE—ON

*RUN execute the application program

ND-60.111.03

8.3

8-10

REAL TIME PROGRAMS

This section describes how to load application programs as RT programs to the
TPS system. When new application programs are loaded, application information
must also be entered into the application table (TPS~TABLES).

This section describes the procedures for updating the application table and for
loading applications, both new ones and replacements. A special program, GPM
(General Purpose Macrogenerator), is available to simplify the commands to the
RT loader and the Linkage Loader (for ND-SOO). This program should be used to
generate mode files for loading applications, and the load procedure described in
this manual assumes it is available. All TPS files in this section belong to a
special user, called TPS—USER here. This user name is a system generation
parameter, and if another name is specified, the correct user name will
automatically be put into the files wherever necessary.

When loading a program for the first time, it» may be best to "test load” it
separately before loading it together with other programs. Error messages do not
always indicate which program caused the error.

ND—60.lll.03

8—11

8.3.1 The Loading Procedure

The following steps should be followed when loading application programs:
(summarised in Figure 8.2):

— Make any changes necessary to the ND-lOO-programs to run them under
TPS instead of as background programs. Remember to declare them as RT
programs with the proper program names.

—- Compile the programs - in the reentrant mode if FORTRAN-100. The object
program files can have any names and belong to any user. However, the

‘file type must be BRF for ND-100 and NRF for ND—500.

— If new application programs are to be loaded, enter TPS—USER, fetch FED
or QED and read the file TPS-TABLES:SYMB.

Compile the program
Reentrant mode if FORTRAN-100

Update
TPS-TABLESfSYM B

Run
COMPl LE.TABLES:MODE

Update
SPECIFY‘LUAPSYMB

g Run
" 3UlLD-LUAPMODE

Run
LOAD‘USER «APPL: MODE

Figure 8.2: RT Load Procedure

ND-60.111.03

8-12

Make sure that the entries corresponding to the applications are present in
the table and that the names of the applications correspond to the indexes
in TPS—TABLES. Fill in the desired values in the application entries and
make sure that all values are filled in - empty fields are not allowed. An
entry has the following format:

ENTRY APXXX, SAWYY, SPRZZ

APXXX = the name of the application program: must be the same
as the program name

SAWYY = the application checkpoint weight; "heavy" weight causes
frequent checkpoints, light weight infrequent, allowed values
SAWO - SAWiS '

SPRZZ = the application priority within TPS, allowed values SPRO -
SPR15. All NDiOO-applications may be considered as one
group and NDSOO-applications as another group. SPRZZ
gives the priority inside the appropriate group.

Example:

ENTRY APOlO, SAWS, SPR12

After the updated TPS—TABLES file has been written back, it must be
compiled using the mode file COMPILE-TABLE82MODE. This mode file
places the BRF code in the file (TPS—USER)TPS-TABLES:BRF.

The applications (both new ones and replacements) must now be loaded.
Enter TPS—USER. Use PED or QED to'read the file SPECIFY-LUAP:SYMB
and specify the information necessary to load the applications. it is
specified using these macros.

MAlN MACROS

5‘ LOAD—SEGMENT, seg-no, public-pic-file, reent seg-name, sub~macros;
indicates that a ND-iOO segment is to be cleared and loaded. The
segment number is given and the public picture file, if the segment is
to contain public pictures {See Section 7.7 and 7.8} The reentrant.
segment name must be specified if your TPS-configuration contains
several reentrant segments. if so, this parameter names the reentrant
segment which will be used when loading and running the
applications on this application segment. The name must equal one
of the names in the macro NAME-REENT-SEG in the file (TPS-USER)
TPS-CONF. Consult your TPS system supervisor.

ND-60.1 i i .03

8—13

7 LOAD—~5008EGMENT, domain name, segment name, public-pic—file,
sub-macros;

indicates that an NDSOD—segment is to be cleared and loaded. The
domain and segment specified may exist or may be new. In the latter
case, they will be created. The public picture file must be of type
NRF, or it must be empty if the segment is not to contain public
pictures.

SUB-MACROS

T ADD—APPL,file-name, prog-id;
indicates an application program that is to be loaded on the ND-lOO
segment given in the last load-segment macro. The name of the BRF
file containing the application and the program name APXXX must be
given.

T ADD—500 APPL, file name, prog-id;
indicates an application program that is to be loaded on the
ND-500~segment given in the last load-500‘segment macro. The name
of the NRF file containing the application and the program name
APXXX must be given.

T ADD—COB—SUBROUTINES, file-name;
indicates that user COBOL subroutines in the given file are to be
loaded on the NDlOO-segment. This submacro can only exist once
within a l LOAD-SEGMENT macro.

? ADO—UNlT, File-name;
indicates that user subroutines in the given file are to be loaded on
the ND-lOO segment. These subroutines can be called by all
application programs and other subroutines on the segment. The

subroutines will be loaded regardless of whether they are called or
not.

i ADD—SOOUNIT, file-name; .
indicates that user subroutines in the given file are to be loaded on
the ND-SOO-segment. These subroutines can be called by all
application programs and other subroutines on the segment. The
subroutines will be loaded regardless of whether they are called or
not.

An example of the macro input to the SPECIFY-LUAP28YMB file with 4
ND-lOO-applicatlons and 2 ND-SOO applications follows. One
ND—lOO-segment is loaded with 2 FORTRAN applications, one with 2
COBOL applications and one ND—SOO—segment with 1 COBOL and i
FORTRAN application. Both use subroutines and public pictures.

ND-60.111.03

8—14

Example

‘CRMOD;
@ENTER RT,7’30
@HEAD LUAP
“ICRMOD;

i‘%,Load 2 FORTRAN programs on segment 205;
“LOAD-SEGMENT,205,(USER-NAME)PUBLIC:BIN,,
“ADD-APPL,(USER—NAME)FTN-APXX1,APXXl;
‘ADD—APPL,(USER-NAME)FTN—APXX2,APXX2;
“ADD—UNIT,(USER-NAME)FTN-SUBS;
9

“%,Load 2 COBOL programs on segment 206;
‘LOAD-SEGMENT,206,(USER~NAME)PUBLIC:BIN,,
”ADD-APPL,(USER-NAME)COB-APXX3,APXX3;
”ADD-APPL,(USER-NAME)COB&APXXH,APXXH;
“ADD-COB-SUBROUTINES,(USER—NAME)COB—SUBS;
“ADDgUNIT,(USER—NAME)FTN-SUBS;
9

“%, Load 1 Fortran and 1 Cobol program on the 500;
~LOAD-5OOSEGMENT,DOM—A,SEG-l,,
'ADD—EOOAPPL,(USER—VAME)5~FTN-APXX5,APXXS;
”ADD-BOOUNIT,(USER—NAME)5-FTN-SUBS;
‘ADD-SOOAPPL,(USER—NAME)5-COB—APXX6,APXX6;
“ADD-SOOUNIT,(USER-NAME)5-COB-SUBS;
,

‘CRMOD;
EXIT
“%,This MODE file must be run last;
@MODE (TPS—USER)SAVE-TATABzMODE,,

After the SPECIFY-LUAP‘SYMB file has been updated and written back, the

BUILD—LUAPtMODE file must be run. This activates the General Purpose

Macrogenerator. GPM. GPM uses several system files and the above
macros as input and produces a new mode file,

LOAD—USER—-APPL;MODE, as output. BUlLD—LUAPzMODE is as follows:

71> GPM
YLOAD—USER—APPLzMODE output file and "Y” answer to GPM

question)
GPM—LlBRARY system file
lNlT—MD——ADDR system file
TPS CONF system file
GLOBAL—MACROS system file
USER—MALHOS system file
SPECIFY-LUAP user file

ND-60.111.03

8—15

Finally the mode file LOAD—USER——APPL:MODE must be run under the
user RT. Before it is run, make sure that no applications on the segments
to be loaded are active if TPS is running and give the SET—UNAVAILABLE
operator command.

There is one exception to this rule. It is possible to load a new version of 3
application program while the old one is active if it is done as follows:

—— the new version must be loaded on a different segment

—- both segments must only contain the one application
program (plus subroutines if used).

ND-60.111.03

8—16

8.3.2 Programs and Files Required

The loading procedure described here requires the following programs and files:

Programs:

PED or QED
RT~loader
GPM
HEAD
NDSOO LlNKAGE-LOADER (If NDSOO-TPS)

Files:

(USER-NAME)user-progs:BRF
(USER—NAME)user-subs:BRF
(USER——NAME)pub|ic—pics:BlN
(USER-NAME)public-pics:NRF (if NDSOO-TPS)

{TPS—USER)TPS -—TABLES:SYMB
(TPS—USER)COMPlLE—TABLES:MODE

(TPS—USER)SPEClFY—LUAP:SYMB
(TPS—USER)BUlLD——LUAP:MODE
(TPS-—-USER)LOAD-USER~APPL:MODE

(TPS—-—USER)GPM~—LlBRARY:SYMB
(TPS—USER)INlT—MD-—ADDR:SYMB
(TPS—USER)TPS—-CONF:SYMB
(TPS—USERlGLOBAL—MACROS:SYMB
(TPS~—USER)USER-—MACROS:SYMB
{TPS—USER)SAVE—TATAB:MODE

Note that there may be several sets of the 3 files

(TPS——USER)SPECIFY——LUAP:SYMB
(TPS—USER)BUILD—~LUAP:MODE
(TPS——USER)LOAD—-USER—-APPL;MODE

varying the names. Each set of 3 can be used to load a group of application
programs. in this manner, the load files can be saved and used again if a
particular set of application programs is to be reloaded without changing the
files every time.

ND—60.111.03

8.3.3

8~17

Compile and Load Example

The complete procedure for loading the 2 FORTRAN and 2 COBOL programs in

the ND—lOO and 1 FORTRAN and l COBOL program in the ND-SOO from section

8.3.1 is given here. It is assumed that they are all new applications

(TPS—TABLES must be updated), and that the FORTRAN programs are put on
one segment and the COBOL programs on another. They both use a set of
FORTRAN subroutines and public pictures.

Example

Compile the programs

ESC

ENTER USER—NAME

@FORTRAN-‘lOO

ND-TOO ANSI 77 FORTRAN COMPILER

FTN: REENTRANT-MODE ON
FTN : COMPILE FTN—APXX1:SYMB , L—P ,FTN-APXXl : BRF

NNN STATEMENTS COMPILED

FTN : COMPILE FTN-APXXZ: SYMB ,L-P ,FTN-APXX2zBRF

NNN STATEMENTS COMPILED

FTN: COMPILE FTN—SUBS:SYMB.L-P .FTN-SUBS:BRF

NNN STATEMENTS COMPILED

an}. 7‘77”?'. A.- . “A“...

75. COBOL

{*‘3’ NORD-lOO COBOL COMPILER ***

*SEPARATE-CODE—DATA SllKW
*COMPILE COB—APXX3 : SYMB , L-P , COB-APXX3 : BRF

** o DIAGNOSTIC MESSAGE(S) **

*COMPILE COB-APXX4:SYMB,L—P,COB-APXXM:BRF

** 0 DIAGNOSTIC MESSAGE(S) **

*EXIT

ND-60.11l.03

8-18

@EE—EEE
ND-SOO MONITOR

N500: FORTRAN-500

ND-SOO ANSI 77 FORTRAN COMPILER

FTN: COMPILE S—FTN-APXX5,L-P,5—FTN—APXX5:NRF
FTN: COMPILE S-FTN—SUBS,L-P,S-FTN—SUBS:NRF
FTN: EXIT

N500: COBOL-500

ND—SOO COBOL COMPILER

*COMPILE S-COB—APXX6,L-P,5-COB—APXX6:NRF
*COMPILE S-COB—SUBS,L-P,S—COB-SUBS:NRF
”EXIT

N500: EXIT

@LOG

Update and compile TPS—TABLES

ESC

ENTER TPs-UéER

@PVD or QED

edit TPS—TABLES

list TPS—TABLES

ENTRY APOOT,SAW10,SPR1O
ENTRY AP002,SAW5,SPR2

ENTRY APXX1,SAW8,SPR2
ENTRY APXX2,SAW8,SPR5
ENTRY APXX3,SAW5,SPR2
ENTRY APXX4,3Aw2,SPR15
ENTRY APXX5,SAWM,SPR9
ENTRY APXX6,SAW7,SPR11
)LINE

1*w TPS-TABLES
*EXIT T
@MODE COMPILE-TABLES:MODE L—P

ND-60.111.03

8—19

Update SPECIFY-LUAP25YMB

@PED or QED

edit SPECIFY-LUAP:SYMB

list SPECIFY—LUAP:SYMB

”CRMOD;
@ENTER RT,,’3O
@HEAD LUAP
“ICRMOD;
“%, Load 2 Fortran programs on segment 205;
"LOAD-SEGMENT,205,(USER-NAME)PUBLIC:BIN,,
‘ADD-APPL,(USER-NAME)FTN-APXX1,APXX1;
‘ADD-APPL,(USER-NAME)FTN—APXX2,APXXZ;
“ADD-UNIT,(USER-NAME)FTN—SUBS;
9

“%, Load 2 Cobol programs on segment 206;
‘LOAD-SEGMENT,206,(USER—NAME)PUBLIC:BIN,,
‘ADD-APPL,(USER-NAME)COB—APXX3,APXX3;
“ADD—APPL,(USER—NAME)COB-APXXH,APXXH;
“ADD—UNIT(USER—NAME)FTN—SUBS;
9

‘%, Load 1 Fortran and 1 Cobol program on the 500;
“LOAD-SOOSEGMENT,DOM—A,SEG-1,,
“ADD-SOOAPPL,(USER-NAME)5—FTN-APXX5,APXX5;
‘ADD-SOOUNIT,(USER—NAME)5-FTN-SUBS;
“ADD-SOOAPPL,(USER-NAME)5-COB-APXX6,APXX6;
‘ADD-SOOUNIT,(USER-NAME)5-COB-SUBS;
,

“CRMOD;
7‘71"“
Lon-4.}.

‘z, This mode file must be run last;
@MODE (TPS-USER)SAVE-TATABzMODE,,

write SPECIFY-LUAP:SYMB

list BUILD—LUAPzMODE

@GPM
YLOAD—USER-APPL:MODE output file

(after Y answer to GPM question)
GPM-LIBRARY system file
INIT-MD-ADDR system file
TPS-CONF system file
GLOBAL—MACROS system file
USER-MACROS system file
SPECIFY-LUAP user file

exit

ND-60.111.03

8~20

Run BUILD-LUAP

@MODE BUILD-LUAP:MODE L-P
@LOG

Run LOAD-USER-APPL
ESC
ENTER g3
@MODE (TPS-USER)LOAD-USER-APPL:MODE L-P

OP
@APP—BATCH 1 (TPS-USER)LOAD-USER—APPL:MODE L-P

ND-60.111.03

APPENDIX A

APPLICATION NUMBERS FOR SPECIAL
APPLICATIONS

SINOF o
SLECT ~ 1
SINON — 2
TPMON —— 3 (NDSOO-TPS only)
ABEND — 4
RSTRT - 5
CHECK — e
ROLBK _ 7
RCOVR — 8
TPCLO _ 9
TPOPN —1o

ND-60.111.03

APPENDIX B

SAMPLE PROGRAMS

To be inserted later

ND-60.111.03

APPENDIX C

ERROR MESSAGES

l. COMPlLE TIME ERRORS

Compile time error messages are described in the manual for the language the
program is written in, Le.

ND FORTRAN Reference Manual
ND COBOL Reference Manual
ND PLANC Reference Manual
NORD PL User's Guide
MAC User’s Guide

2. BUILDING THE LOAD FILE

When running BUlLD—LUAPtMODE, the GPM program may give the following
error messages:

UNMATCHED >.
PROBABLY MACHlNE ERROR.

Usually caused by a missing semicolon in the source-file (not machine
errorl).

NON—DIGIT EN NUMBER.

A numeric oarameter contains non-numeric characters.

UNDEFINED NAME.

Unrecognised macro‘name encountered. Usually due to incorrect spelling

of the macro names LOAD-SEGMENT, LOAD—SOOSEGMENT, ADD-APPL,
ADD-SOOAPPL, ADD-UNlT, ADD-COB~SUBROUTINES and ADD-SOOUNIT.

There are more GPM error-messages, but they are not likely to appear while
building the load-file. However, GPM may produce a load file that the RT~loader
does not accept. The errors may then be of three kinds:

1) Incorrect spelling of the macro parameters.

2) Missing parameter in a macro call. The string NIL is then substituted for
the missing parameter in the load-file.

3) Superfluous character(s) in the macro file. The same characters are copied
to the load-file. Occurs, for instance, where a macro call is terminated by

two semicolons instead of one.

ND—60.111.03

3. LOAD TIME ERRORS

Error messages from the real-time loader are described in the manual

SINTRAN Ill Real Time Loader.

and messages from the ND—SOO Loader are described in the manual
ND—SOO Loader/Monitor

In addition, the TPS load program LOTAB may give the following error messages:

APPL. MISSING, CHECK LOAD LISTING

The application has not been loaded for some reason or the program name
declared in the program is not found in TPS-TABLES. Check the load listing
for an error message from the RT loader.

ERROR lN OBJECT CODE

The application program being loaded does not start with the standard
FORTRAN or COBOL entry point coding

TOO LARGE WORKING STORAGE FOR COBOL APPL.

The total size of the data area (or working storage for the main program)
exceeds the fixed maximum.

ERROR lN OPENING TCF FILE

TCF file {checkpoint file) can not be opened. It already open, close it and

31/ again.

WRITE ERROR ON TCF FILE

Error return from file system when attempting to write on the TCF file.

APPLICATION SEGMENT SIZE EXCEEDED

The available space for application programs is exceeded.

ND-60.11 i .03

These error messages may also appear when loading ND—SOO appiications:

NDSOO DESCRIPTION FILE ACCESS ERROR

Error return from filesystem when attempting to access the
file:(RT)DESCRIPTION-FILEzDESC

DOMAIN NAME NOT FOUND IN DESCR. FILE

Some error occurred in the LINKAGE-LOADER when running the mode-fiie:
LOAD-USER-APPLzMODE. Check the load listing.

SEGMENT NAME NOT FOUND IN DESCR. FILE

Some error occured in the LINKAGELOADER when running the mode-file:
LOAD-USER-APPLzMODE. Check the ioad listing.

NDSOO LINK FILE ACCESS ERROR

Error return from filesystem when attempting to access the file:
seg-namezLINK. Check the load listing.

NDSOO—APPL.MISSING, CHECK LOAD LISTING

Same as "APPLMISSING, CHECK LOAD LISTING"

ND‘IOO-APPL. EXISTS AS RT-PROGRAM {APXXX)

An RT-program with name APXXX exists. This is fatal for the
TPS—ioad—procedure. Use the command @LiST—RT‘PROGRAM to detect
such programs, then use the RT-Ioader command DELETE-PROGRAM in
order to remove such program(s).

ND-60.111.03

C—-4

4. RUN TIME ERRORS

Run time error messages can come from several sources:

-— The application program itself may write error messages on the user
terminal using normal output statements. It may send error messages to
the TPS operator using the write-message TSR. The contents of these error
messages are determined by the programmer.

— The application program may call ERMON to write the standard error
message on the SINTRAN error device (usually terminal 1):

hh.mm.ss ERROR nn lN rr AT ll;

USER ERROR. SUBERROss

where -

hh.mm.ss time when the message is printed

nn user error number

rr TPT identification

ll address of error in application program

55 user suberror number

-— The application program may call ERMSG or QERMS after an error return
from a SINTRAN routine. A SINTRAN error message will be written on the
SINTRAN error device. These messages are'described in the SlNTRAN lll
User’s Guide.

-— The FORTRAN or COBOL runtime systems may write error messages.
FORTRAN messages will be written on the SlNTRAN error device (usually
terminal 1), while COBOL messages will always be written on terminal 1.
These error messages are described in the manuals

ND FORTRAN Reference Manual
ND COBOL Reference Manual
ND-PLANC Reference Manual

ND-60.l 1 i .03

If a program is abnormally ended by TPS, the FORTRAN or COBOL run
time systems, or the program itself using TSTOP (n) where n is not equal
to 0, the following error message will be written on the TPS operator's
console.

APPL. NO. aaa

lN ADDR yyy

DUE TO

TPS
ABENDED BY RUNTlME SYSTEM

APPLICATION

TPT NO. tt

reason (text) if abended by TPS
reason (code) if abended by appl. or RUNTIME SYSTEM

NONE
DATA BASE ACTIVITY: READ ONLY

Codes:

aaa

t‘t

YVY

reason (text)
or reason (code)

UPDATE PERFORMED

TPS application no. (0—255)

TPT no. (1-63)

Latest link register

if abended by TPS, one of‘the following texts:
O=Abended by operator
1 =Application cannot be activated
2=ll|egal use of TSRs
3=Subroutine not loaded
4=Application Timeout
5=lnternal TPS error
6= Operator timeout
7=Attempt to restore ND-SOO application
8:: Error from ND—SOO monitor

If abended by application:
Stop code given in TSTOP

If abended by runtime system
SlNTRAN error code

ND—60.1l1.03

C-6

APPENDIX D

TPS SEGMENT STRUCTURE IN ND-1OO

In the drawing, the dark line shows how the 64K address space is used when
application programs are running. The application program goes from 0 to P2,
the TPT plus user data area from P2 to P3, the reentrant segment from P3 to P1.

The other lines show the segments used for:

— reentrant segments from 1 to 9 (R=1 in example)

-— TPT segments (T = 6 in example)

—- special and test application segments (8 = 5 in example)

—— user application segments (U = 7 in example)

~ system segment (1), OPCOM segment (1) and scratch segments (2)

Total number of segments:

4+ R +T+ S + U(23inexamp|e)

In addition, a TPT segment is shown in more detail.

ND-60.1l l .03

System Segment .

' Opcom Segment

Scratch Segment 1

Scratch Segnent 2
r

I/O Module l

. n , Appl. 11
I I

1 1O , Appl. 10
I I

, 7 I 3 , 9 ,Appl.7-—9

I 6 I AppL 6

' 4 a 5 1 Appl.4—5
I 5 1

; 2 s 3 3 Aopi 2—3

I I | Appl. 1

, SIGNON 1

SELECT !

r OTHER SPECIAL APPLICATxomé
}---—--—-—-—§
1 TEST APPLICATKONS1 1
I 1

TEST APPLICATIONS 2
’r-—--—-—-—---—-———-§

TPT S Y
}-———-—-1

TPTS
}-—-—-————-—J

TPT 4
I-—————--4

TPT 3
1-—-—-—-———-4

9732...;
F..IEI.J__4

! Reentrant '

seg.
O} Apphcatlon I: TILTt and kfieentrant % RT '64 K .

/ / P2 3 a P3 \\seg. common

’ \
// \

/ \
// \\

/ x
// \\

1” : Common % Loml \£

TPT data data

ND-60.111.03

APPENDIX E

MONITOR CALLS IAND LIBRARY CALLS

1.MONlTOR CALL ROUTINES ALLOWED IN TPS PROGRAMS:

NUMBER

56

67

73

74

75

NAME

LEAVE

INCH

OUTCH

ECHOM

BRKM

flME

LASTC

OPEN

CLOSE

RMAX

ERMSG

QERMS

{SEE

OSEE

SMAX

SEBT

REABT

NUMBER

76

75

104

1n

H2

H3

117

120

122

325

134

142

162

ND-60.111.03

NAME

SETBS

SETBL

HOLD

UPDAT

CLADJ

CLOCK

RHLE

VVHLE

RESRV

RELES

PRSRV

PRLS

RTEXT

ERMON

OUTST

2. LIBRARY CALL ROUTINES

All standard library routines are allowed in TPS programs with the exception of
the following DOUBLE word and COMPLEX routines (these can be obtained upon
special request):

DlNT CSQRT

DFLOAT CEXP

DNlNT CLOG '
DMOD CSlN

DDlM CCOS

DMAXl CABS

DMHM

DSQRT

DEXP

DLOG

DLOGlO

DEN

DCOS

DATAN

DTANZ

DABS

ND-60.111.03

APPENDIX F

SCREEN—HANDLING CALLS

FOCUS-CALLS

FC/NITE (init FOCUS)

CALL FCINITE(initiation—arrayt,private-form-buffer,status)

FCDECFF {declare form file)

CALL FCDECFF(form-fi|e~name,status)

FCDECFN (declare form name)

CALL FCDECFN(form-name,mode,status)

FCDECRC {declare record)

CALL FCDECRC(number-of—field—names,field-names,
first-occurence-number, last-occurence—number,status)

FCEREC (edit record)

CALL FCEREC(data-record,edit-mode,status)

FCWREC ("write record)

CALL FCWREC(data-record,status)

FCEFLD fed/t one field)

CALL FCEFLD(field-name.occurence-number,data-e|emént,
data-elemenwength,edit-mode,status)

FCWFLD (write one field)

CALL FCWFLD(field-name,occurence-number,data—element,
data-element-length,status)

FCEDSTA (get edit status)

CALL FCEDSTA(number-of-fields-edited,record-status—array,
terminating-code,status)

FCCLREC (clear data record)

CALL FCCLREC(data-record,status)

ND-60.111.03

FCCLFDS (clear fields)

CALL FCCLFDS(mode,status)

FCESFLD (set edit start fie/d)

CALL FCESFLD(field-name,occurence-number,status)

FCOPEN (open file)

CALL FCOPEN(file-name,access—code,file-number,status)

FCCLOSE (close file)

CALL FCCLOSE(file—number,status)

FCPRDOC (print document on file)

CALL FCPRDOC(data-record,fiIe-number,status)

FCZMSGE (send message)

CALL FCZMSGE(message,status)

FCGMSGE (get message)

CALL FCGMSGE(leading~text,message,status)

FCCLSCR (clear rectangular area on screen)

CALL FCCLSCR(from-iine,from—coiumn,to-|ine,to-column,status)

FCWTXT (write text)

CALL FCWTXT(line,cqmn.text,leng,status)

FCFr‘TXT [read text}

CALL FCRTXT(line,column,text,leng,status)

ND—60.111.03

NSHS—CALLS IN ND100

GTPIC and CGTP/C (get picture)

CALL GTPIC (picture-fiIe-name, number-of-pictures, picture-name-string,
picture—number-array, status)

CALL 'CGTPIC’ USING picutre-file—name, number-of-pictures,
picture~name-string, picture-number‘array, status.

RMPIC (remove picture)

CALL RMPIC (number—ofv-pictures, picture-number—array, status)

GFI'DN (get fie/d numbers)

CALL GTFDN (picture-number, number—of-field-indicators,
field-indicator—array, field-number—array, number-of-fiefds, status)

WRPTD (write picture to display)

CALL WRPTD (picturemumber, status)

WRPTF and CWRPTF {write~picture-to~fi/e)

CALL WRPTF (file—number, flag, code, picture-number, number—of—fields,
fieid~number-array, record, data-eiement-index-array, status)

CALL 'CWRPTF' USING fite—name, flag, code, oicturemumber,
number-(Df-fields, flew—numbenarrav, record, dataeiement-index—array,
status.

WMSGE and CWMSGE [write-message)

CALL WMSGE (text)

CALL ’CWMSGE' USING text.

WFLDS (write fields to VDU)

CALL WFLDS (code, picture—number, number-of—fields,

field-number-array, record, data-element-index-array, status)

ND—60.111.03

F-4

RFLDS (read fields)

CALL RFLDS (code, picture-number, number-of-fields, field-number-array,
record, data-e|ement-index-array, number—of—fields-read,

terminating-character, status)

CFLDS (clear fields)

CALL CFLDS (picture—number, number‘of-fields, field-number~array,

status)

CLSCR {clear-screen}

CALL CLSCR (code, first-line, last-line, start-or-end-position, status)

CLBUF {clear-buffer)

CALL CLBUF (picture-number, number-of—fields, field-number-array,
record, data—eiement-index-array, status)

ZREAD/RREAD,ZLOCK/RLOCICZMUST/HMUST (set/remove —- XXXX)

CALL Z/R XXXX (picture-number, number-of-fields, start-index,

fie)d-number-array, status) L

APPENDIX G -

SIBAS CALLS

SUMMARY OF THE DML—STATEMENTS

OPEN—DA TA-BASE

CALL SOPDB (mode, data base name, password, status)

CLOSE-DATA-BASE

CALL SCLDB (data base name, status)

HEAD Y-REALM

CALL SRRLM (no.-of-realms, realm-names, usage-modes,
protection-modes, status)

FINISH-REALM

CALL SFRLM (no. of realms-realm names, status)

F.’ND—US//VG-KEY

CALL SFTCH (realm name, key name, key value, status. key length)

F/ND-F/RST—BEW/EEN-L/ll/I/TS—US/NG-KEY

CALL SFEBL (realm name, key name, low limit, high limit, status, key
length)

FIND-LAST—BETWEEN-L/M/TS-US/NG KEY

CALL SFLBL (real name, key name, low limit, high limit, status, key
length)

F/ND-FIRST—lN-REALM

CALL SRFlR (realm name, status)

ND—60.i11.03

FIND—FIRST—lN—SET

CALL SRFSM (temporary data base key, set name, status)

FlND-LAST-lN-SET

CALL SRLSM (temporary data base key, set name, status)

FIND—PRIOR-lN-SET

CALL SRPSM (temporary data base key, set (name, status)

FIND—NEXT—lN—SET

CALL SRNSM (temporary data base key, set name, status)

FIND-NEXTJN—SEARCH—REGION

CALL SRNIS (temporary data base key, temporary search region indicator,

status)

FIND—PRIOR-lN-SEARCH-REGION

CALL SRPlS (temporary data base key, temporary search region indicator,

status)

FIND-SET— O WNER

CALL SRSOW (temporary data base key, set name, status)

GET

CALL SGET (temporary data base key, no. of items, item list, item values,

status)

GETN

CALL SGETN (temporary data base key, temporary search region
indicator, no. wanted, no. of items, item list, item values, no. found status)

GET‘INDEXES

CALL SGlXN (temporary data base key, temporary search region

indicator, no. wanted, item values, no. found, status)

ND-60.111.03

G—3

MODIFY

CALL SMDFY (temporary data base key, no. of items, item list, item
values, status, value length)

STORE

CALL STORE (realm name, no. of items, item list, item values, status,
value length)

ERASE

CALL SRASE (temporary data base'key, option code, status)

CONNECT

CALL SCONN (temporary data base key 1, set name, status)

CONNECT-BEFORE

CALL SCONB (temporary data base key 1, temporary data base key 2, set
name, status) .

CONNECT AFTER

CALL SCGNA {temporary data base key 1, temporary data base key 2, set

name, status)

D/SCONNECT

CALL SDCON (temporary data base key, set name, status)

INSERT

CALL SINSR (temporary data base key, key name, status)

REMOVE

CALL SREMO (temporary data base key, key name, status)

REMEMBER

CALL SREMB (temporary id, option code, status)

ND-60.111.03

G—-4

FORGET

CALL SFORG (temporary id, option code, status)

LOCK

CALL SLOCK (temporary data base key, option code, status)

UNLOCK

CALL SUNLK (status)

CHANGE-PASSWORD

CALL SCHPW (new password, status)

ACCEPT

CALL SDBEC (set name, realm name 1, realm name 2, item name,
dmlstatement code, dbec)

ERASE-ELEMENT

CALL SEREL (temporary data base key, no. of items, item list, status)

ACCUMULATE INTEGERFLOATING 0/? DOUBLE WORD

CALL ACClD/ACCFD/ACCDD (temporary data base key, no. of items, item

list, increrfients, new values, status)

CHANGE-THE-S/BAS-SYSTEM

CALL SETDV (system-no.)

EXECUTE-MACRO

CALL SEXMC (input, length of input, output, length of output,status)

UPDA TE-DA TA-BA SE-IN—PLA CE

CALL SUPLA (update ratio, trigger code, checkpoint id, status)

ND—60.111.03

RESTRICTED SIBAS CALLS

CHANGING STA TES

START
STOPS
SRUN
SPAUS
SRECO
SHNI
STREP
SPASS

LOGGING

lNLOG
OFLOG/ONLOG
BSEQU/ESEQU

CHECKPO/NT/ROLLBACK/HEPROCESS

SCHPO/GCHPO
SROLL
SICON
SREPR

MISCELLANEOUS

RESlB/RELSI
SABOR
CHCOM
SIBIO
STRLG
RBLAN/SBLAN/ZTRB

ND-60.111.03

G—6

APPENDIX H l
TSR CALL FORMATS

A complete format description [of all TSR calls in alphabetical order is given in
this appendix. Examples are given in FORTRAN and COBOL.

If called from PLANC, all routines must be declared as ROUTINE STANDARD
in lMPORT statement. PLANO-routines should call CGBRD and CWMSG instead
of TGBRD and TWMSG, using type ”BYTES" for the parameter <text>.

Note: When called from ND—SOO, all parameters in TSR—calls must have a
word—length of 32-bits. Text strings are packed 4 bytes into each word.

Also in NDSOO, no "lNTEGER" data element may exceed 2‘5—1 in absolute value,
due to the data-range in NDlOO. if this range is exceeded, TSR—calls having a
return status, will be given the value 40: lNTEGER range overflow.

ND—60.111.03

CGBRD

Get a broadcasted message, if there is any for this TPT (COBOL form).

CALL 'CGBRD' USING <text> <status>.

Exit Parameters:

<text> A character string where the received text is to be
placed. The record should have a length of 72
characters

<status> =0, OK — text placed in array
=—-—1, No broadcast message has arrived.

Rules:

— CGBRD must be used for character strings without descriptor words (Le.
COBOL and PLANC programs)

— The text may not exceed 72 characters; it will be terminated by an
apostrophe and padded with blanks

— The broadcast may have come from an application program using the
TBRDC TSR or from the TPS operator using the BROADCAST command
or the MESSAGE-TO-UNIT command

Example:

COBOL: CALL ‘CGBRD’ USlNG MESSAGE-AREA STATUSCODE,

PLANC: lMPORT (ROUTlNE STANDARD VOlD, VOiD {BYTES lNTEGER WRITE):
CGBRD)

CGBRD (TEXT, STATUS)

ND—60.111.03

CWMSG

Write a message on the operator’s console

CALL ’CWMSG' USING <text string).

Entry Parameter:

<text string> a character string containing the text to be written
out.

Rules:

— CWMSG must be used for character strings without descriptor words (Le.
COBOL and PLANC programs)

— The text string may contain CR and LF. It must be terminated by a ’ and
may not exceed 256 bytes. Bit 7 (parity bit) in each byte must be 0.

—-— The message will be supplied with time, date and source identity

Example:

COBOL: CALL 'CWMSG’ USING MESSAGE-TEXT.

PLANC: IMPORT (ROUTINE STANDARD VOID, VOID (BYTES): CWMSG)
CVVMSG (TEXT)

ND-60.111.03

H-4

TAAVA

Set an application available.

CALL TAAVA (<application number>, <status>‘)
CALL ’TAAVA' USING <application number> <status>.

Entry Parameter:

<application number> The TPS application number

Exit Parameter:

<status> =0, OK
=—-1, illegal application number

Rules:

TAAVA indicates the same action as the corresponding operator command
(SET-AVAILABLE)

— Callable from special applications only

Examples:

CALL TAAVA (12, ISTAT)
CALL 'TAAVA’ USlNG APPL-NO STATUS-CODE.

ND~60.111.03

TABND

Stop the TPS system immediately (abnormal end).

CALL TABND(<scope>)
CALL 'TABND' USlNG <scope>.

Entry parameter

<scope> =0 if global abend (all TCMs)
=1 if local to current TCM

Rules:

-— TABND indicates the same action as the corresponding operator command
(ABEND—TPS)

-— Callable from special applications only

—— No return to the application after calling this TSR

-— Only global action allowed at present

Examples:

CALL TABND (0)
CALL 'TABND’ USlNG ZERO.

ND—60.1ll.03

H—G

ITABST

Read the abend status of the current task.

CALL TABST (<record>)
CALL ’TABST' USING <record>.

Entry Parameters:

None

Exit Parameters:

record(i) Previous appl. number

record(2) Previous appl. status (Not active =0, active =1,
active in a TSR-call =2)

record(3) Data base activity for previous application (none
=0, DB opened =1, DB updated =2)

record(4) Current TPT no (2-63 if normal processing - special
applications TPOPN, CHECK, TPCLO, ROLBK,
RCOVR will always be executed on TPT no 1).

record(5) ABEND activated by TPS (=0), previous appl. (=1),
or by run—time system (=2).

recordl6) ABEND information:
lf abended by TPS: (record(S) = O)
O: abended by operator.

1: impossible to activate application.

2: illegal use of TSRS.
3= subroutine not loaded.
4: application timeout.
5= internal TPS error
6= operator timeout. .

7: attempt to restore SOD-application
8= error from SOD-monitor

lf abended by an application: (record(5) = 1)
record(G) contains the parameter reasonused by
previous application when calling the TSR TSTOP.

If abended by run-time system: (record(5) = 2)
Standard SINTRAN error code.

record(7) ABEND—location:

ND-60.111.03

Latest link register.

record(8) First application activated for this TPT

record(9) Termination strategy (see TSTST)

record(10) Termination application

record(1l) Abend strategy (see TSAST)

record(12) Abend application

record(13) Restart strategy (see TSRST)

record(14) Restart application

record (15) Close strategy (see TSCST)

record(16-30) Unused

Rules:

—- Callable from ABEND only

— Words 1-3 refer to the prev/ousapplication, not the calling application

-— Words 5-7 are 0 if ABEND has not been activated

Examples

DIMENSlON lREC (30)
CALL TABST {IRECl

CALL 'TABST’ USlNG ABEND—RECORD.

ND-60.111.03

H—8

TACTV

Activate a concurrent task.

CALL TACTV (< application number>, < record >, < size >, < status >
g CALL ’TACTV’ USING <application number> <record> <size>

< status > .

Entry Parameters

<application number> The TPS application number

<record> Data array/record that is to be transferred to the
new, activated task. This record is treated as a
contiguous string of bytes. Be aware of
ND—lOO/ND-BOO difference in word-length.

<size> Size of <record> in bytes.
Size may not exceed 2000 bytes (decimal).

Exit Parameters:

<status> =0, OK ~task activated.
=—-1, Parameter error (ill. appl. no/record size too
large)
=-—2, ‘No TPT available at present. Another attempt
may be performed after an appropriate pause.
==——3, The application is unavailable

Ru/es:

— Up to 2000 bytes of data can be transferred from the activating to the

activated task. The data will be placed at the beginning of the task
common data area

-—- The new task will be given a TPT from the current TCM

—- If no TPT is available, an error code is returned

Examp/es:

DIMENSION lDATA(5) '
CALL TACTV (52,IDATA,10,ISTAT)

CALL'TACTV'USlNG APPL—SZ DATA—REC TEN STAT—COPE.

NIB-60.11103

TAPST
.v

Read the status of an application.

CALL TAPST(<application number>, <record>,<status>)
CALL 'TAPST' USlNG <app|ication number> <record> <status>.

Entry Parameters:

<app|ication number> The TPS application number.

Exit Parameters:

record(i) Application state:
2 = ND-500 application ready

—— ND-iOO application readyl

0 = Not available.

record(2) If ND—iOO, application language
1 = COBOL
O = FORTRAN/PLANO
lf ND-500, 0

record(3) lf ND—lOO, start address
If ND-SOO.

Left byte: ND-500 segment number
Right byte: ND-SOO appl.no. in current segment.

recordl4) lf ND-lOO, application segment number
if ND—SOO. ND-SOO domain number.

recordlfii Application checkpoint weight.

record(6l Application SINTRAN priority and NDSOO priority.

record(7) Current number of TPTs active on this application.

record(8) Size of maximum task common

record(9) NDlOO: Reentrant segment number used by this
application.
NDSOO: = 0

record(10-30) Unused

<status> =0. OK.
=—-l. Parameter error (ill.application number)

ND-60.111.03

H—10

Rules:

-— If the application does not exist, record(l) will be .0.

~ MAC/NFL application will be given as FORTRAN because they must be
FORTRAN-compatable.

Examples:

DlMENSlON |REC(30)
CALL TAPST (20, IRECJSTAT)

01 APPL-RECORD.
05 RECORD COMP OCCURS 30.

CALL 'TAPST' USING 20 APPL—RECORD.

ND—60.111.03

H—11

TASET

Set the absolute execution time for an application to be started at some future
time.

CALL TASET (<modu|e>, <application number>, <param1>, <param
2>, <time>, <status>)

CALL ’TASET' USING <modu|e> <app|ication number> <param i>
<param2> <time> <status>.

Entry Parameters:

<modu|e> The module number of a TCM

<application number> The TPS application number

<param 1> <param 2> Decimal integer parameters that are placed at the
beginning of the task common data area

<time> Data array containing the absolute execution time
as 6 decimal integers (second, minute, hour, day,
month, year)

Exit Parameters:

<status> = 0, OK —— execution time set
= ——4, No time queue element available
= ——5. Parameter error

Ru/es:

—— If no TPT is available when the task is to be started, an error message will
be written on the TPS operator console

-- The time resolution is 5 seconds

Examples:

DIMENSION lTlME(6)
CALL TASET (33,2,9,5, lTIME, lSTAT)

CALL 'TASET' USING TCMl APPL—Z TERM—9 TYPE—5 ABSOLUTE—TIME
STATUS—CODE.

ND-60.111.03

H-12

TAUNA

Set an application unavailable.

CALL TAUNA (<application number>, <status>)
CALL ’TAUNA' USING <application number> <status>.

Entry Parameter:

<application number> The TPS application number

Exit Parameter:

<status> =0, OK
=—-1, illegal application number

Rules:

-— TAUNA indicates the same action as the corresponding operator command
(SET—UNAVAILABLE)

-—- Callable from special applications only

CALL TAUNA (15,lSTAT)
CALL ’TAUNA' USING APPL-FlVE STATUS-CODE.

ND-60.111.03

TBRDC

H—13

Broadcast a message to terminals connected to an IOM or TPTs controlled by a
TCM.

CALL TBRDC (<module >, <sub-address>, <text>, <units>, <status>)
CALL TBRDC' USING <module> <sub-address> <text> <units>

< status > .

Entry Parameters:

<module >

module (1)

module (2)

module (3m)

<sub—address>

sub-address“)

As array/record identifying the lOM or TCM module
to which the broadcast should be sent.
if module (1)=0, the IOM to which this application
is connected will receive the broadcast, otherwise
the array/record should be prepared with these
elements:

Address type. These types are allowed:

Type 1: Address is a number which identifies the
module within TPS.

Type 2: Address, is a string of alphanumeric
chara-cters which identifies the module by its name.

Size of address in bytes.

Actual address of module.

The terminal or TPT to which the broadcast should
be sent.
The construction of this parameter is identical to

that of <module> , except that it identifies a unit
within the environment of a module ~ only

applicable if the message is to be sent to one

specific unit only.

Address type. These types are allowed:

Type 1: Address is a number which identifies the
unit within the module.

‘Type 2: Address is a string of alphanumeric
characters which identifies the unit by its name.

Type 3: Address is in any format
(alphanum./integer/comp./BCD) which is relevant
for the addressing of units in the given
environment. This address type is denoted as the
”native" address type.

ND~60.111.03

H-14

sub—address(2) Size of address in bytes.

sub-address(3-n) Actual address of unit.

<text > An array/record with the text to be written.
The text should not exceed 72 characters, and
should be terminated by an apostrophe (’).

<units> =0, means broadcast to all units connected to this
module.
=1, means broadcast to all active units connected
to this module.
=2, means that the message should be sent to a
specific unit within the module, as specified in
< sub-address >.

Exit Parameters:

<status > =0, OK ~ Text written as specified.
=4, Parameter error — nothing written.

Rules:

— The message is written on the teminals on the broadcast line (usually the
bottom line)

—— Messages sent to TPTs can be read by the application program with the
TGBRD/CGBRD TSR

—— The message may not be more than 72 characters long and should be
terminated bv a apostrophe

—— All texts should be defined as arrays or Hollerith strings, not character
strings, in FORTRAN

Examples

CALL TBRDC (MODULE,O,lTEXT,O,lSTAT)

CALL ’TBRDC’ USING MODULE SUB—ADDRESS TEXT—STRING TWO
STATUS~ CODE.

ND-60.1H.03

H—15

TBSE0.

Marks the beginning of a critical sequence according to SIBAS.

CALL TBSEQ

V ACALL 'TBSEO'.

Parameters

None

Rules

This TSR should be used with care since the critical sequence facility is

used by TPS itself.

TCHCK

Take a synchronised checkpoint of the TPS system.

CALL TCHCK(<scope>)
CALL ’TCHCK' USING <scope>.

En try Parameter:

<scope >, =0 if global checkpoint lail TCMs')
:1 if local to current TCM

Rules:

TCHCK initiates the same action as the corresponding operator command

(CHECKPOINT—TPS)

—- Only global action allowed at present

Examples:

CALL TCHCK (0)

CALL 'TCHCK' USING ZERO.

ND-60.111.03

H-16. .

TCLOS

Close-the TPS system in a controlled manner (normal end).

CALL TCLOS(<scope>)
CALL ’TCLOS’ USlNG <scope>.

Entry Parameter:

<scope> =0 if global close (all TCMs)
=1 if local to current TCM

Rules:

— TCLOS initiates the same action as the corresponding operator command
(CLOSE—TF8)

—— Callable from special applications only

— Only global action allowed at present

Examples:

CALL TCLOS (0)

CALL ’TCLOS' USlNG ZERO.

NDo60.111.03

H—17

TCONF i

Get the values of certain configuration parameters.

CALL TCONF (<record>)
CALL 'TCONF' USING <record>.

Exit Parameters:

record(1) Number of TPTs belonging to the current TCM

record(2) Number of applications in this TPS system

record(3) Device number of operator console

record(4) Application time-out in seconds

record(5) Operator time out in seconds

record(6) TCM number for this TPT

record(7—30) Unused

Rules:

-—— Callable from special applications only.

Examples:

DilVlENSlON lREC(30l
CALL TCONF {lREC}

CALL 'TCONF' USING CONF-RECORD.

ND-60.111.03

H—18

TCONT

Continue normal TPS operation.

CALL TCONT(<scope>)
CALL 'TCONT’ USING <scope>

Entry Parameter:

<scope> :0 if global continue (all TCMs)
=1 if local to current TCM

Rules:

-— TCONT initiates the same action as the corresponding operator command
(CONTlNUE—TPS)

- Callable from special applications only

— Only global action allowed at present

Examples:

CALL TCONT (0)

CALL 'TCONT’ USING ZERO.

ND-60.lll.03

H-19

TDCNT

Remove (disconnect) an application from the time queue and the interval table.

CALL TDCNT(<module>, <application number>, <status>).
CALL ’TDCNT' USING <module> <app|ication number> <status>.

Entry Parameters:

<module> ‘ The module number of a TCM

<application number> The TPS application number

Exit Parameters:

<status> = 0, OK, application disconnected
= ——5, Parameter error

Examples:

CALL TDCNT (32, 25, ISTAT)

CALL 'TDCNT' USlNG TCMO APPL-—25 STATUS—CODE.

TESEQ

Makes the end of a critical sequence according to SlBAS.

CALL TESEQ.
CALL ’TESEQ'.

Parameters:

None.

Rules:

—— This TSR should be used with care since the critical sequence facility is
used by TPS itself.

ND—60.111.03

H--20

TGBRD

Get a broadcast message, if there is any for this TPT.

CALL _TGBRD(<text>, <status>)

Exit Parameters:

<text> A string of the type CHARACTER where the
received text is to be placed. The record should
have a length of 72 characters

<status> =0, OK - text placed in array
=-—-1, No broadcast message has arrived

Rules:

— TGBRD must be used for character strings with descriptor words (Le.
FORTRAN character strings)

- The text may not exceed 72 characters; it will be terminated by an
apostrophe and padded with blanks

—— The broadcast may have come from an application program using the
TBRDC TSR or from the TPS operator using the BROADCAST command
or the MESSAGE—TO-UNIT command

—— Should not be called from PLANC (use CGBRD).

Examp/e:

CHAR BTEXT ‘ 72
CALL TGBRD {BTEXTJSTATl

ND-60.111.03

H-21

THALT

Halt the TPS system temporarily.

CALL THALT(<scope>)
CALL 'THALT' USING <scope>.

Entry Parameter:

<scope> =0 if global halt (all TCMs}
=1 if local to current TCM -

Rules:

— THALT initiates the same action as the corresponding operator command
(HALT——TPS)

- Callable from special applications only

— Only global action allowed at present

Examples:

CALL THALT (0)

CALL 'THALT' USING ZERO.

THSYN

Do not allow a synchronised checkpoint to be taken until the next Tl‘RAN or
TTSYN call

CALL TH SYN
CALL 'THSYN'.

Parameters:

None

Rules:

—— If a checkpoint message comes, the checkpoint will not be taken until the
application program calls TTRAN or TTSYN. Other TPS modules will
however be frozen in the meantime.

ND-60.111.03

H—22

TINTV

Set the execution interval for a periodic application. if this application is

activated once, it will continue periodically.

CALL TlNTV (<module>, <application number>, <param l>, <param 2>, I

<interval>, <status>).

CALL ’TlNTV’ USING <modu|e> <application number> <param 1> <param

2> <interval> ‘<status>. ‘

Entry Parameters:

<module> The module number of a TCM

<application program> The TPS application number

<param l> <param 2> Decimal integer parameters that are placed at the
beginning ofthe task common data area

<interval> Data array containing the execution interval as 4
decimal integers (seconds, minutes, hours, days)

Exit Parameters:

<status> = 0, OK —— interval set
i = ——-4, No interval table element available

= ——5, Parameter error

—- TlNTV will not itself start periodic execution of the specified application

program. This must be done by some other means.

—- A new interval starts at each time of activation.

—— If the application already has an execution interval, the specified interval

will replace the old one.

-— If no TPT is available when the task is to be started, an error message will

be written on the TPS operator console.

——— The time resolution is 5 seconds.

Examples:

DlMENSlON lNTVL (4)
CALL TlNTV (32, 14, 0,0, lNTVL, lSTAT)

CALL 'TlNTV' USING TCMO APPL—14 ZERO ZERO INTERVAL STATUS—CODE.

ND-60.111.03

H--23

TMISC

Read the miscellanous TPT information.

CALL TMISC (<record>)
CALL ’TMISC' USiNG <record>

Exit parameters:

record (1) RT description address of calling TPT.

record (2) Type of last message.

record (3) Number of TSWAP's since TPT was allocated.

record (4) u Operator timeout.

record (5) Application timeout.

record (6) Packet size.

‘ ND-60.111.03

H—24

TPASZ

Set the packet size for session data.

CALL TPASZ (<packet size>, <status>).
CALL 'TPASZ’ USING <packet size>‘ <status>.

Entry Parameter:

<packet size> A decimal integer containing the packet size in
bytes

Exit Parameter:

<status> 0, OK
-—-1, error

Rules:

-— Maximum permitted packet size = 2047

—— Default packet size is specified at system generation

— The value specified with TPASZ is used only for current transaction

Examples

CALL TPASZ (512, lSTAT)

CALL ’TPASZ' USlNG SIZE—1000 STATUS—CODE.

. ND-60.111.03

H ~25

THSMG

Get error message from the ND-SOO—monitor

CALL TRSMG (< record > , < size >)
CALL ’TRSMG’ USING <record> <size>

Entry Parameter

None

Exit Parameters:

<record> An array where the message will be placed. The
record must be able to hold a minimum of 200
characters.

<size> Indicates number of characters in the message.

Rules:

-— Callable from special application ABEND only, and only by ”abend cause"
= 8 (error from BOO-monitor) when abended by TPS.

Examples:

DIMENSION ”250000)
CALL TRSMG(lR‘EC,lLEN)

CALL 'TRSMG' USlNG TEXT-STRlNG LENGTH

ND—60.111.03

TRMSG

H—26

Read a message from session partner.

CALL TRMSG (<record > , <size > , <more > , <status >)
CALL 'TRMSG' USlNG <record > <size > <more > <status>.

Entry Parameters

<size >

Exit Parameters:

< record >

< size >

< more >

< status >

Rules:

Size of <record > in bytes.

Data will be placed in this data area as it arrives.
No formatting is performed by TPS, the record is
treated as a contiguous string of bytes. Be aware of
ND-lOO/ND-SOO differences in word-length.

indicates actual size of received message.
Maximum size is 2047 bytes. if over-flow, <size >
is unchanged.

indicates that session partner has more to send if
1, that you are free to send data if 0.

=0, OK - <record > contains data.
=—1, Session broken.
=—2, <record > too small for the message
(overflow).
=—-3, Direction=output (input not allowed).

—- The message is, received exactly as it was sent from the IOM. No
formatting or editing is performed

— if no message has been sent, the program will wait in TRMSG until a
message arrives

Examples:

CALL TRMSG (lREC, lSlZE, MORE, ISTAT)

CALL 'TRMSG’ USING MESSAGE SIZE MORE STATUS—~CODE.

ND-60.111.03

H —27

TROLS

Roll the TFS system back to the last synchronised checkpoint.

CALL TROLS(<scope>)
CALL 'TROLS' USING <scope>.

Entry Parameter:

<scope> =0 if global rollback (all TCMs)
=1 if local to current TCM

Rules:

-—- TROLS initiates the same action as the corresponding operator command
(ROLLBACK—TPS)

— Callable from special applications only

— No return to the application after calling this TSR

—— Only global action allowed at present

Examples:

CALL TROLS (0)

CALL 'TROLS' USING ZERO.

ND-60.111‘03

H —-28

TROITT -

Roll the TPS system back to the last transaction checkpoints (recovery).

-CALL TROLT (<scope>)
CALL 'TROLT’ USlNG <scope>.

Entry Parameter:

<scope> =0 if global recovery (all TCMs)
=1 if local to current TCM

Rules:

—- TROLT initiates the same action as the corresponding operator command
(RECOVER—TPS)

— Callable from special applications only

—— No return to the application after calling this TSR

— Only global action alllowed at present

Examples:

CALL TRO LT (0)

CALL 'TROLT' USlNG ZERO.

ND-60.111.03

TRRST

H ~29

Read the restart status of the current task.

CALL TRRST(<record>)
CALL ’TRRST' USlNG <record>.

Entry Parameters:

None

Exit Parameters:

record(1)

record(2)

record(3l

record(4)

record(5—1l)

record(12l

recordil3l

recordlld)

record(15)

record(16)

record(17)

record(18)

record(19~30)

Rules:

Previous appl. number (at latest valid checkpoint).

Previous appl. status (not active =0, active =1,
active in a TSR-call =2)

Database activity for previous application (none =0,
DB opened =l, DB updated =2)

Latest valid checkpoint was a synchronised one
(=0) or a transaction one (=1)

SINTRAN time array - indicating time for latest valid
checkpoint.

Current task no (2-63 if normal processing - special
applications TPOPN, CHECK, TPCLO, ROLBK,
RCOVR will always be executed on task no ’1).

Restart strategy [see TSRST}.

Restart application.

Termination strategy {see TSTST)

Termination application.

First application activated for this TPT.

Close strategy (see TSCST)

Unused.

—— Callable from the RESTART special application only

— Words 1—3 refer to the previous application, not the calling application

ND—60.111.03

H-30

Examples:

DlMENSION (REC (30)
CALL TRRST (IREC)

01 RESTART—RECORD.
05 RECORD COMP OCCURS 30.

CALL ’TRRST’ USING RESTART—RECORD.

ND-60.111.03

H—31

TRSES

Restore a broken session if possible.

CALL TRSES(<status>)
CALL ’TRSES' USING <status>.

Exit Parameters:

<status> =0, 0k - session re-established.
2—1, TPS closed.
a—2, Module closed.
== ——3, Unit temporarily not available.
=—4, Unit permanently not available.
=2 —5, Parameter error.
= —6, Session terminated.
= --7, Not called from RESTART.

Rules:

—-— Callable from the RESTART application only.

Examples:

CALL TRSES (lSTAT)
IF (lSTAT NE 0) GO TO no-session

CALL 'TRSES' USING STATUS—CODE.
IF STATUS~CODE NOT: 0 GO TO NO—SESSION.

ND—60.11l.03

H -32

TRSTO

Restore the NDlOO user application program and restart it at checkpoint.

CALL TR STO
CALL 'TR STO'.

Parameters:

None

Rules:

— Callable from the RESTART special application only.
— Not callable from the ND-SOO (not possible to restart a ND-SOosapplication

at a point inside the application). If it is called from an application running
in the NDSOO, the ABEND-application will be activated with the information
"Attempt restore NDSOO-application."

ND-60.111.03

H —33

, TSAST

Set the abend strategy for the TPT.

CALL TSAST (<abend strategy>, <abend application>)
CALL 'TSAST' USING <abend strategy> <abend application>.

Entry Parameters:

<abend strategy> ' The abend strategies used by the standard version
of the ABEND special application are:
i. switch to SIGNOFF
2. send an error message to the terminal operator,

switch to SlGNOFF
3. dump the data area for the TPT on the printer,

switch. to SlGNOFF
4. switch to<abend application>
5. Halt the TPS system

<abend application> The TPS application number of the program to be

started if strategy 4

Rules:

-—- The abend strategy determines the action taken by the ABEND special
application in a transaction abnormal end situation.

_— The default value when a task is started is l.

.— For all strategies, an error message will be sent to the TPS operator
console.

-— if <abend strategy> =0, it will not be changed: if <abend application

> =0, it will not be changed.

— No validation check of <abend application> is performed by TSAST. If
it is an illegal application, SIGNOFF will be activated instead at abend.

Examples:

CALL TSAST(3,0)

CALL ’TSAST' USING FOUR USER-ABEND-NO.

ND-60.lll.03

H —-34

TSCIN

A Set checkpoint interval for synchronized checkpoints.

CALL TSCIN (<time in minutes>)
CALL ’TSClN’ <time in minutes>.

Entry Parameter:

<time in minutes> Checkpoint interval =0 no synchronized
checkpoints will be taken until the interval has been
changed.

Examples:

CALL TSCIN (30)
CALL 'TSClN' USlNG THIRTY.

TSCLO

Close a session.

CALL TSCLO(<status> l
CALL ’TSCLO’ USING <status>.

Exit Parameters:

<status> :0, OK - session orderly closed
2 —1, Session already closed
= «2, Sessmn considered Closed, but not
confirmed by partner.

Ru/es:

- The connection between the session partners will be completely broken
and cannot be restored.

—- The session may be closed by either of the session partners.

Examples:

CALL TSCLO (ISTAT)

CALL 'TSCLO’ USING STATUS—CODE.

ND-60.111.03

H -35

TSCST

Set the close strategy for the TPT.

CALL TSCST (<close strategy>)
CALL 'TSCST’ USING <close strategy>.

Entry Parameter:

<close strategy> =0, normal termination
=1, immediate termination

Rules:

——- The close strategy. determines the action to be taken by TPS when a close
command is given.

— The default value when a task is started is 0.

—- If a close command is pending, a close strategy of 1 will cause immediate
termination.

Examp/es:

CALL TSCSTiO)
CALL 'TSCST’ USlNG ZERO.

TSEQU

Marks the end of a critical sequence and the beginning of another critical
sequence according to SlBAS.

CALL TSEQU.
CALL 'TSEQU’.

Parameters:

None.

Rules:

—— This TSR should be used with care since the critical sequence facility is
used by TPS itself.

ND-60.111.03

H-36

TSEST

Read the session status of the current task.

CALL TSEST (<record >)
CALL 'TSEST’ USING <record >.

Exit parameters:

record (1) Current session state:
=0, No session active.
=1, Session request pending.
=2, Session established.
=3, Session terminate command pending.

record (2) Current direction of session (=1: inbound, =0:
out-bound)

record (3) Total no. of input messages so far in this session.

record (4-10) Time for latest input message.

record (11) Total no. of output messages so far in this session.

record (12—18) ‘ Time for latest output message.

record (191 Session partner, module number.

record {20) Session partner, unit number.

record {21-30) Unused

Hu/es:

— Used mainly by the BESTART special application but also available to other
application programs.

Examples:

DIMENSiON iSES (30)
CALL TSESTUSES)

CALL 'TSEST' USING SESSION—STATUS.

ND-60.111.03

H-37

TSMSG

Send a message to the session partner.

CALL TSMSG (<record > , {size > , <more > , <status >)
CALL 'TSMSG' USING <record > <size > <more > <status >.

Entry parameters:

<record > ' Array/Record to be transmitted to session partner.
This record is treated as a contiguous string of
bytes. Be aware of *ND-lOO/ND-SOO difference in
word-length.

<size > Size of <record> to be transmitted (in bytes). ‘,
Maximum size is 2047 bytes.

<more > Calling application should indicate whether more
data will follow (1) or not (0) in a following call.

Exit Parameters:

<status > =0, OK - successful transmission.
=—-1, Session broken.
= —2, Parameter error (Too large <record >)
=1, You have got a message.

Rules;

—— The message is sent exactly as prepared by the application program - no
formatting or editing is performed

__ Return to the application program will be immediate without waiting for an
answer

Examples:

CALL TSMSG (lTEXT,lSlZE,1,lSTAT)

CALL 'TSMSG’ USING MESSAGE—TEXT MESSAGE-SIZE ONE
STATUS—CODE.

ND’60.111.03

TSOPN

H -—38

Open a session with a new session partner.

CALL TSOPN (<module>, <sub-address>, <record>, <size>, <more>,
< status > _)
CALL 'TSOPN' USING <module> <sub-address> <record> <size>

< more > < status >.

Entry Parameters:

<module >

module (1)

module (2)

module (S-nl

<sub-address>

sub-address (l)

sub-address (2)

sub-address (3-n)

< record >

The IOM or TCM controlling the session partner, or
the intersystem communication lOM if the session
partner is in another TPS system. This parameter is
an array (FORTRAN) or record (COBOL) with the fol-
lowing elements:

Address type. These types are allowed:

Type 1: Address is a number which identifies the
module within TPS

Type 2: Address is a string of alphanumeric
characters which identifies the . module by its
name.” '

Size of address in bytes.

Actual address of module.

The device or application program to be session

partner. The construction of this parameter is
identical to that of <module> , except that it
identifies a unit belonging to the module.

Address type. These types are allowed:

Type 1: Address is the unit within the module.

Type 2: Address is a string of alphanumeric
characters which identifies the unit by its name.“

Size of address in bytes.

Actual address of unit.

Array/record to be transmitted to session partner.
Maximum size is 2000 bytes (may be less in some
cases, for example, with an X-25 permanent virtual
channel). This record is treated as a contiguous
string of bytes. Be aware of ND-lOO/ND-500 differ-
ence in word—length.

ND—60.111.03

<size> Size of record in bytes.

<more> Indicates whether more data will follow (=1) or not
(=0) in a following call.

‘ not yet implemented.

\

Exit Parameters:

<status> =0, OK — session established.
' <0, Not successful.

=—-1, TPS closed, terminate your task as soon as
possible. .
= —2, Module closed.
=—3, Unit temporarily not available, try again.
=-—-4, Unit permanetly not available.
= —-5, Parameter error.
‘== —-—6, Session already established.
= —7, No TPT available

Rules:

—— Only one session is allowed at a time

-— A session request for a device controlled by an lOM will result ’in the
allocation of the device to the requesting application program

—- A session request for an application program will result in the allocation of
a TPT controlled by the given TCM — this does not have to be the current
TCM

- Uo to 2000 bytes of data may be sent with TSOPN

— At present the session parner must be in the same TPS system. Sessions

between two TPS systems will be implemented later

Examples:

DIMENSION IMOD (3), lUNlT (3)
CALL TSOPN (lMOD,lUNlT,0,0,0,lSTAT)
IF (ISTAT.NE.0) GO TO error

CALL ’TSOPN' USING MODULE SUB-ADDRESS DATA-REC
REC—SIZE MORE—BIT STATUS-CODE.

ND-60.111.03

H—40

TSOPT

Set the operator timeout for the TPT.

CALL TSOPT (<time in minutes>)
CALL ’TSOPT' USING <time in minutes>.

Entry parameter:

<time in minutes> Operator timeout time.
=0 The operator timeout is turned off.

Rules:

—— The operator timeout could be changed depending on the current

application.

Examples:

CALL TSOPT (20)
CALL 'TSOPT' USING TWENTY.

ND-60.111.03

H—41

TSRST

Set the restart strategy for the TPT.

CALL TSRST (<restart strategy>, <restart application>)
CALL ' TSRST' USING < restart strategy> <restart application>.

Entry Parameters:

<restart strategy> The restart strategies used by the standard version
of the RESTART special application are:
1. Restart from checkpoint
2. Switch to <restart application>
3. Automatic termination
4. The terminal operator chooses the restart ac-
tion

<restart application> The TPS application number of the program to be
started if strategy 2

Rules:

—- The restart strategy determines the action taken by the RESTART special
application in a restart situatiton

— The default value of <restart strategy> when a task is started is 2; the
default value of <restart application> is the first application that is
activated (normally SlGNON)

— if <restart strategy> =0. it will not be changed; if <restart
application>
=0. it will not be changed

— No validation check of <restart application> is performed by TSRST. if

it is an illegal application, ABEND will be activated instead of restart

Examp/es:

CALL TSRSTlZ, —.1)

CALL ’TSRST' USING THREE.

ND—60.111.03

TSTAT

H—42

Read the status of the current task.

CALL TSTAT (<record>)
CALL ’TSTAT’ USlNG <record>.

Exit Parameters:

record(1)

record(2)

record(3)

record(4)

record(5-11)

record(12)

record(13)

record(14)

record(iS)

record(‘i 6)

recordll 7i

recordl18i

record(i 9)

record(20)

- record(21)

record(22)

record(23)

record(24)

Current TPS state, 0:: ready; 1 = close requested.

Current TCM number..

Current TPT number.

First application activated on current TPT.

Time array with TPT allocation time.

Number of TSWAPs on this TPT since allocation.

Database activity (none =0, DB opened =1, DB up-
dated :2)

Number of SIBAS calls since TPT allocation.

Number of SlBAS calls since sync. checkpoint.

Number of SlBAS calls since checkpoint.

Number of SlBAS update calls since TPT allocation.

Number of SIBAS update calls since sync. check-

point. ‘

Number of SIBAS update calls since checkpoint.

Message indicator (no msg =0, msg/broadcast
arrived, =1) '

Termination strategy (see TSTST)

Termination application.

Previous application activated on this TPT.

Close strategy (see TSCST)

ND-60.111.03

1-1—43

record(25) NDlOO: Not used.
NDSOO: Terminal device number of Symbolic
Debuggen
(Debug mode only, else = 0.)

record(26-30) Unused.

Examples:

DlMENSlON lREC(30)
CALL TSTAT(IREC)

CALL 'TSTAT' USING TASK-STATUS.

ND-60.111.03

H—44

TSTOP

Terminate the transaction.

CALL. TSTOPi <stop‘code>)
CALL 'TSTOP’ USING <stop code >.

Entry Parameters:

-’<stop code>. =:0, Normal transaction'termination. This has the
‘ ' same effect as STOP RUN (COBOL) _or END

(FORTRAN).' ' ,

">0; ABEND is activated and may obtain the stop
. code from the TSR—routine TABST.

<0, ABEND is activated and a formatted printout is
given according to the stop code.

—i, for NSHS errors; ITERM(7) is displayed.

—2, for SlBAS errors; names of realms, items and
DBEC codes are displayed.

Rules:

-- Normal termination will result in activation of the SlGNOFF special
application which will carry out the action indicated by the termination
strategy

— Abnormal termination will result in activation of the ABEND special
application which will carry out the action indicatedby the abend strategy

— The application program should release resources and close files before

calling TSTOP as this is not always done automatically

—-— TSTOP(O) from special applications will result in complete termination and
release of TPT ‘

Examples:

CALL TSTOP (3)

CALL 'TSTOP' USlNG ABEND—CODE.

ND-60.111.03

H-45

‘ TSTST

Set the termination strategy for the TPT. .

CALL TSTST (<termination strategy>, <termination application>)
CALL 'TSTST' USING <termination strategy> <termination application>.

Entry Parameters:

<termination strategy> The termination strategies used by the standard
version of the SlGNOFF special application are:
1. Complete termination and release of the TPT "
2 Switch to SIGNON
3. Switch to SELECT
4 Switch to <termination application>

<termination application'> The TPS application number of the program to be
started if strategy 4

Rules:

— The termination strategy determines the action taken by [the SIGNOFF
special application when a transaction terminates

-— The default value of <termination strategy> when a task is started is i

-- If <terminate strategy> =0, it will not be changed; if <terminate
application> =0, it will notbe changed,

—- No validation check of <termination application> is performed by
TSTST. if it is an illegal application, there will be complete termination with
release of the TPT by SIGNOFF

— The <termination application> must not itself terminate "normally"
unless it has changed the termination strategy, since this will result in an
endless loop. it may for example terminate by switching to SIGNON.

Examples:

CA Ll_. TSTST(2)

CALL 'TSTST’ USING ONE ZERO.

ND-60.111.03

TSWAP

H—46

Switch to a new application program.

CALL TSWAP(<application number>, <status>)
CALL ’TSWAP' USING <application number> <status>.

Entry Parameters."

< application number >

Exit Parameters:

< status >

Rules:

the TPS application number

if not successful switch of application, return to the
calling application is performed with cause in
status. W

——i = illegal application number
«2 = application not available

—. The new application will be started from the beginning. lt will have access‘
to the data in the task common data area for the transaction. Sessions will
not be broken and
applications

Examples:

resources will not be released when switching

CALL TSWAP (APPL, lSTAT)

CALL 'TSWAP' USlNG NEXT—APPL STATUS—~CODE.

ND—60.111.03

H -47

TTERM

Terminate this task directly and completely.

CALL TTERM (<checkpoint>)
CALL "lTERM’ USING <checkpoint>.

Entry Parameter:

<checkpoint> ==O, do not take a transaction checkpoint
=1, take a transaction checkpoint

Rules:

-— termination is immediate and direct, i.e. SIGNOFF will not be activated

—— termination is compiete, i.e. the TPT will be freed

— a transaction checkpoint may be taken

Examples:

CALL TTER MU)

CALL 'TTERM’ USiNG ONE.

ND—60.111.03

1TEXT

H—48

Send a text message to a terminal connected to an IOM or a TPT controlled by a
TCM.

CALL TTEXT(<moduie>, <sub—address> <text>, <iength>, <status>)

CALL "ITEXT' USING <module>, <sub—address> <text>, <|ength>,

< status > .

Entry Parameters:

< modu|e>

module(i)

modulelZ)

modulel3-n)

<sub-address>

sub—address(1)

An array/record identifying the lOM or TCM module
to which the broadcast should be sent.
lf module (1)=0, the lOM to which this application
is connected will receive the broadcast, otherwise
the array/record should be prepared with these
elements:

Address type. These types are allowed:

Type 1: Address is a number which identifies the
module within TPS.

Type 2: Address is a string of alphanumeric
characters which identifies the module by its name.

Size of address in bytes

Actual address of module-

The terminal or TPT to which the broadcast should
be sent.
The construction of this parameter is identical to

that of <module>, except that it identifies a unit

within the environment of a module « only
applicable if the message is to be sent to one

specific unit only.

Address type. These types are allowed:

Type 1: Address is a number which identifies the
unit within the module.

Type 2: Address is a string of alphanumeric
characters which identifies the unit by its name.

Type 3: Address is in any format
(a|phanum./integer/comp./BCD) which is relevant
for the addressing of units in the given
environment. This address type is denoted as the
"native" address type.

ND-60.111.03

sub—address(2)

sub—address(3-n)

<text>

<length >'

Exit Parameters:

< status >

Fr’u/es:

H49

Size of address in bytes.

Actual address of unit

An array/record with the text to be written.

A decimal integer specifying the message length in
bytes

= 0, OK — Text written as specified
=,—1, Parameter error - nothing written

~— The message is written on the terminals wherever the cursors happen to be

positioned

—— Messages sent to TPTs can be read by the application program with the
TGBRD/CGBRD TSR

—- The message may not be more than 72 characters long

—— All texts should be defined as arrays or Hollerith strings, not character
strings, in FORTRAN

Examples:

CALL TTEXT<MODULE,O.‘TEXT,100,lSTAT)

CALL 'TTEXT' USING MODULE SUB-ADDRESS TEXT—STRING LENGTH
STATUS—CODE.

ND-60.111.03

H—50

TTOFF l

Turn off application time out for this TPT.

CALL 'lTOFF
CALL ’TTOFF'.

Parameters:

None

Rules:

—— The application time out is turned off until the TTONS TSR is called.

TTONS

Turn on application time out.

CALL TTONS
CALL 'TTONS'.

Parameters:

None

Rules:

—~ Should be used to turn on the application time out after previous use of

TTOFF ”

— The application time out is set to the default value

ND-60.111.03

H—51

TTPST

Read the status of the specified TPT.

CALL TTPST (<TPT no>, <appl no>, <status>)
CALL ’TTPST' USING <TPT no> <appl no> <status>.

Entry Parameter:

<TPT no> The TPT number (1-63).
0 means "this TPT".

Exit Parameters:

<applno> The TPS application number of the application
activated, by the TPT

<status> =0, OK
= —1,TPT number out of range

Examples:

CALL TTPST(20,APPL NO, ISTAT)

CALL 'TTPST' USING SYS-TPT A‘PPL-NO STATUS-CODE.

ND-60.111.03

H-52

TTRAN

Take a transaction checkpoint.

CALL TTRAN
CALL ’TTRAN'.

Parameters:

None

Rules:

— A transaction checkpoint is the point-of-restart after a recovery operation

—- The transaction checkpoint data will overwrite the data from the previous
transaction checkpoint

—- For ND-SOO-applications, the local data and transaction register block will
not be saved on the checkpoint file. Only the contents of task-common and
TPT-data will be saved.

ND-60.111.03

H -—53

TTRON

Turn on the packet log function.

CALL TTRON (<CPU—number>)
CALL 'TI'RON' <CPU-number>

Entry parameter

<CPU-number> The CPU-number where the paCket log will be
turned on. ' - ' '
=0 in a single CPU—system.

Example:

CALL TTRON'(0)
CALL ’TTRON' USING ZERO.

TTROF

Turn off the packet log function.

CALL TTROF (<CPU—number>)
CALL’TTROF' <CPU=NUMBER>

<CPU-number> The CPU-number where the packet iog will be
turned off;
=0 in a singei CPU—system.

Example:

CALL TTRCF (0)
CALL ’TTROF USING ZERO.

ND-60.111.03

H —54

TTSYN

Allow a synchronised checkpoint

CALL TTSYN
CALL 'TTSYN’.

Parameters:

None

Rules:

-— A synchronised checkpoint is the point-of-restart after a rollback operation

— A synchronised checkpoint will be taken if a checkpoint message has
arrived, else there will be an immediate return to the application program

TWMSG

Write a message on the operator’s console

CALL TWMSG (<text string>)

Entry Parameters:

<~text string> a string of the type CHARACTER containing the text
to be written out

Rules:

~— TWMSG must be used for character strings with descriptor words (i.e.
FORTRAN CHARACTER strings)

— The text string may contain CR and LF. It must be terminated by a ' and
may not exceed 256 bytes. Bit 7 (parity bit) in each byte must be 0.

~—— The message will be supplied with time, date and source identity

—— Should not be called from PLANC (use CWMSG)

Example:

CHAR MTEXT ' 80
CALL TWMSG (MTEXT)

ND~60.111.03

I—1

APPENDIX I:

TSR CALLS - FUNCTIONAL LIST

A list of all TSR cails ordered by function is given in this appendix.

Name Function

Task adminstration TSRs

TACTV

TSWAP

TSTO P

TTERM

Activate a concurrent task

Switch to another application

Terminate the transaction

Terminate the task

Set strategy TSRs

TSAST

TSTST

Session TSRS

TSOPN

TSCLO

TRMSG

TSMSG

TS EST

TPASZ

Set abend strategy

Set termination strategy

Set restart strategy

Set ciose strategy

Open session

Ciose session

Read message from session partner

Send message to session partner

Read session status

Set packet size

ND-60.111.03

Caliable from
user application

Timing TSRs

TASET

TlNW

TDCNT

TSOF'T

TTOFF

TTONS

Set execution time

Set execution interval

Disconnect execution time/interval

Set operator timeout

Turn off application time out

Turn on application time out

Message TSRs

T\NMSG

CWMSG

Tl'EXT

TBRDC

TGBRD

CGBRD

TRSMG

Write message to operator

Write message to operator (COBOL)

Write message to unit

Broadcast message

Get broadcast message

Get broadcast message (COBOL)

Get ND-SOD-monitor error message

Checkpoint/restart TSRs

TTRAN

TTSYN

TH SYN

TRSES

TR STO

TSCIN

Take a transaction checkpoint

Allow a synchronised checkpoint

Do not allow a synchronised checkpoint

Restore broken session

Restart user application

Set checkpoint interval

ND‘60.111.03

Critical sequence TSRs

TBSEO.

TESEQ

TSEQU

Status TSRs

TSTAT

TABST

TRRST

TAPST

TTPST

TMlSC

TCONF

Marks beginning of critical sequence

Marks and of critical sequence

Marks end and beginning of critical sequence

Read task status

Read abend status

Read restart status

Read application status

Read TPT status

Read miscellaneous TPT information

Read configuration parameters

Operator function TSRs

TCHCK

TROLS

TABND

TCLOS

THALT

TCO NT

TAAVA

TAUNA

TTROF

TTRON

Take a synchronised checkpoint

Roll back to synchronised checkpoint

Rollback to transaction checkpoint

Stop TPS immediately (abnormal and)

Close TPS (normal end)

Halt TPS temporarily

Continue normal TPS operation

Set application available

Set application unavailable

Turn off packet log

Turn on packet log

ND—60.111.03

I—4

APPENDIX J

TPS ON ND—SOO

The TPS/SOO-system contains:

—— An ordinary TPS/100-system with a SOD-monitor running as a speciaI
application (TPMON) in the ND-IOO.

—- Applications that may run in the ND-IOO and/or in the ND-SOO.

-— SIBAS and screen-handling that may run in either or both machines.

ND100 NDSOO

I
I
I
I
I
I
I
I
I
I
I

ON 60<~—————-——-———>I
I
I

ON 60

ND 100
TPS
SCREEN-

HANDLING
SIBAS

TPMON

TPT

Figure J. 7.

ND-60.1H.03

[Each application running in the ND-500 has a corresponding
SOO-monitDr-application, TPMON, running in the ND-lOO. The TPS—sysrem in the
ND—lOO sees only this 500—monitor—application. This monitor has total control of
the ND—SOO-process where the application is running. However, other TPS user
applications in the ND-lOO or ND-SOO will not see this monitor, they see the
ND~500-application only, and in the same way as any other ND-lOO-application.

One TPT running an ND-500—application has this segment structure:

500 DOMAlN (.05 G)
APPLPROG SHARED LOCAL LINK TO
(:PSEG) DATA APPL. DATA ————— 9 ,

SEGMENT 500-LIBR. '. . //
I I
I I
' 1

ND 500 1 3
I

ND 100 I I
i i
: I

TPMON TPT-DATA-TPMON : APPL. SEGMENT SEGMENT

figure J. 2

ND-60.11‘l.03

All data transfer between lthe ND—lOO and ND-SOO is done by using the shared
segment, shown in the figure above, in order to minimize the system overhead.
The task common (i.e. COMMON/PRIVATE/) area is located inside the shared
segment area which survives when using the TSR-call TSWAP for switching to
another application in the ND-lOO or ND-SOO. This shared segment is
contiguously fixed in memory during the whole "life" of an application running in
the NDSOO.

The segment structure in one domain in the NDSOO is shown below. There may
be several domains:

Segment—no.

Appliations1 }.__————-———-a

3 i—————.————9
I

I
I

I
I

l
I
l

I
I
l

w , Sims—MESSAGE A.
«.1 ;

Applications

I Applications

3O , shared data segment , TPS—-500-—libraries
r TPT ‘ RTCOMMON J SlBAS,FOCUS,DEBUGGER, runtime~lib.

31 I NDSOO monitor segment 1
r I

134 Mbyte

ND-60.111.03

J—4

APPENDIX K

GLOSSARY

abend- abnormal termination of an application program due to an error situation

application- a program run under the control of TPS to do the actual processing
of a transaction

application, special- see special application

background— a collective term for timesharing and batch

backup- a copy of the data base, taken regularly and used to restore the data
base if it is destroyed

batch- the processing of data that has been collected over a period of time to be
processed later in a single run of the application program -— done in
SlNTRAN by using the SlNTRAN batch processor

BIM log— SlBAS before-image log, a log of SlBAS records that have been
changed, logged before the change is made, in order to be able to roll the
data base back to a previous state

checkpoint- the saving on a file of all data used by a program in order to later be
able to restore the program to its state when the checkpoint was taken

conversational- a program with the ability to carry on a dialogue (see dialogue)

devices, standard- devices with which an application program may communicate
directly through SlNTRAN

devices, special— devices with which an application program must communicate
through a TPS input/output module

dialogue— the exchange of messages between an application program and a user
at a terminal, each message depending on the answer received from the
partner

DML- the SIBAS data manipulation language used by an application program

failure, system— see system failure

DRL- the SlBAS data definition/redefinition language

FOCUS - the ND screen handling system (replaces NSHS)

input/output module- a TPS module that communicates with devices such as
networks and special terminals externally and TPS modules internally, an
interface between the devices and application programs

ND-60.111.03

interactive- a direct connection between a user and a program so that immediate
' interactions are possible (see dialogue)

lOM- see input/output module

menu- a picture on a display terminal showing the applications available to the
terminal user and allowing him to choose one of them

mode file- a symbolic file containing commands and responses to a program
usually used interactively, making it possible to run the program in batch
mode

monitor call- a call to a routine in the SlNTRAN operating system

network— a group of communication devices, such as terminals and
concentrators, connected by communication lines, and connected to a
computer through a modem device

NSHS- the NORD screen handling system used to control display terminals

OPCOM— the operator communication module of TPS containing commands for
controlling TPS and routines for sending messages to the operator from
TPS modules

point-of—failure- the state of the TPS system and application programs when a
system failure occurs. See system failure.

point—of-restart- the state of the TPS system and application programs after a
system restart procedure has been carried out. See system restart.

real time program- a program that is activated by an event external to the

computing system, fast enough for the program to exert control over the
event

recovery— the process of restoring the data base after a system failure by rapid

updating from a Checkpoint or backup copy. The point-of-restart after
recovery is at the last transaction checkpoint

reentrant- the facility of a program to be used by several users concurrently.
Each user has his own data area, but only one copy of the program itself is
needed.

restart, System- see system restart

rollback— the process of restoring the data base to its state at a checkpoint, by
undoing the updating after the checkpoint. The point-of—restart after
rollback is at the last synchronized checkpoint.

ROUTINE log- log of all SlBAS routine calls, used after System failure for data
base recovery ‘

ND—60.111.03

segment- an area on mass storage of up to 64K words, containing one or more
programs and subroutines to be run as a single load unit

SELECT application- a special application to determine which user application is
to be used and switch to the application

session- a connection between an application program and another application
program or a device controlled by an lOM. Communication between them
is through the TPS message routing system

SlBlAS— the data base management system used by TPS

SIGNOFF application- a special application that is given control when a
transaction terminates

SlGNON application- a special application used to start a transaction by
controlling the terminal user's identity

SINTRAN- the NORD operating system, supporting real time, timesharing and
local and remote batch processing

special application- application programs supplied with TPS and used to
perform standard functions, such as SIBAS system calls, signon and
transaction restart after a system failure

stack- an area (in the data part of the TPT) for the dynamic allocation of variable
data for a main program and its subroutines

synchronised checkpoint- a checkpoint taken by all TPS and application
programs at the same time

system directives- a set of TPS operator commands to perform system control
functions such as start, stop, checkpoint, rollback, recovery

system failure- an error situation resulting in the inability of TPS to continue
normal processing. The data base may or may not be intact, but
transaction processing is interrupted in both cases

system restart- the process of starting the TPS system after a system failure,
including repairing damage to the data base, restoring the data base to a
consistent state and restarting transaction processing

task- the processing done by a TPT from the time it is allocated by the TCM
until it is freed again

TCM~ the transaction control module of TPS used to centrol the allocation of
TPTs

timesharing- the use of a computer by several users at the same time by giving
each user in turn control over the computer for a certain length of time -—
done in SlNTRAN through the SlNTRAN background processor

ND-60.111.03

K-4

TPT- see transaction processing task

transaction- an interaction between one or more l/O devices and an on-Iine data
base, usually involving a dialogue between a user at a terminal and an
application program, resulting in some activity on the data base and a
response to the user

transaction checkpoint- a checkpoint taken by an individual application program
at suitable points in processing

transaction processing system- an on-line computer system providing the
facilities needed for the immediate access to a data base either to update
the data base or to retrieve information from it

transaction processing task- a TPS unit allocated to a transaction when it is
started to control the application program and provide it with a data area
and an interface to TPS

transaction service routines- TPS routines called by an application program to
perform functions such as communicating with l/O devices and
adminstrating task control

TSR- see transaction servibe routine

unit- either a device controlled by an input/output module (device unit) or a
transaction processing task controlled by a transaction control module (TPT
unit)

update file- a file that SlBAS writes updated records on instead of updating the

data base directly. The data base itself is updated at suitable intervals

ND-60.111.03

INDEX

Section:

abend
causes ..2.3.2, 6.2.2
error message ..6.2.2.1
strategy .. 6.2.2
set abend strategy TSR (TSAST) ..2.3.2.2
user abend application .. 6.2.2

ABEND special application ..2.3.2.1, 6.2.2
abnormal termination - see abend .
ACCEPT statement (COBOL) ... 3.4.3
access control system ...6.1.3
activate-concurrent-task TSR (TACW) ...2.2.1.1
ADD-APPL macro .. 8.3.1
ADD-COB—SUBROUTINES macro ... 8.3.1
ADD-UNIT macro ..8.3.1
Alfascope 3500 terminals .. 3.3.10.4
allocating devices .. 3.4.1
allow-synchronised-checkpoint TSR (TTSYN) 5.2.3.1
application program~...2.1

general description ... 1.2.1.4
name7.4.1
number ...7.4.1,App.A
priority ..8.3.1
special applications......................... ... 1.2.1.5, 6

application table - see also TPS-TABLES ... 8.3
asynchronous terminals (FOCUS) ... 3.2.3.2'

background (timesharing and batch)
programs .. 7.6
system .. 8.2.1
library ... 8.2.5
testing .. 8.2.5
using SlBAS .. 3.1.2

backup, data base ... 5.2.1
batch - see background
before-image log (BlM log)

logging updated records .. 5.2.2
restoring data base 5.3.1

BLOCK DATA ... 7.1
BRF format

application program file type ... 8.3.1
broadcast-message TSR (TBRDC) ... 4.1.2
BROADCAST command ..4.1.3
BSEQU call (SlBAS) .. 3.1.6
BUlLD~LUAPzMODE file ... 8.3.1

CGBRD (get broadcasted message TSR—COBOL) 4.1.4
checkpoint ... 5.2.3 ‘

efficiency considerations ... 7.5.1

ND-60.111.03

Section:

checkpoint, synchronised ..5.2.3
allowing .. 5.2.3.1
taking ..5.2.3.3
holding (preventing) ...5.2.3.2
use in rollback 5.3.1 y‘___

checkpoint, transaction ... 5.2.4
taking. ..5.2.4.1
use in recovery ...5.3.1

checkpoint file ‘
use at synchronised checkpoint .. 5.2.3
use at transaction checkpoint.. 5.2.4

checkpoint weight .
using ... 5.2.3.3
defining .. 8.3.1

CHECKPOINT command .. 5.2.3.3
CHECKPOlNT special application .. 5.2.3, 6.4
clock

adiust (CLADJ) ... 4.2
examine (CLOCK and TlME) .. 4.2
update (UPDAT) ... 42

close data base - see data base, closing
close-session TSR (TSCLO) ..3.3.4
CLOSE file statement .. 3.4.3
CLOSE Strategy ...2.3.1.5
CLOSE — TPS command .. 6.3
COBOL programs _

input/output .. 3.4
data areas 7.1.2—7.1.3
special considerations ... 7.3.2

common area

task common data area ... 7.1.2
initialising constant data .. 7.1

compiling programs
background ... 3.2
real time ... 8.3

communication
multi-CPU ... 1.2
special terminals .. 3.3.10.3,

3.3.10.4
systems .. 3.3.10.1, ‘

3.3.10.2
concurrent task .. 2.2.1.1
CONTINUE~TPS command ... 5.3.2
control 0 ..3.2.2.2
cursor control ..3.2.1 ,3.2.2
CWMSG (write message to operator TSR—COBOL) 4.1.1

ND~60.111.03

Section:

data
constant..7.1
variable ...7.1.1
common (task common data area) ... 7.1.2
local ..7.1.3
size of data areas ... 7.1.4

data base ...3.1
general description .. 1.2.2.5
opening ..3.1.3
closing ..3.1.3
accessing ..3.1.1,
efficiency (open—close)7.5.2

data definition/redefinition language (DRL) 1.2.2.5
data entry ... 1.1, 7.5
data manipulation language (DML) ...3.1.1

SlBAS DML statements ...App. G
data definition/redefinition language (DRL) 1.2.2.5
data/time routine (CLOCK) ..4.2
debugging option (FORTRAN and COBOL) .. 8.2.4
delayed updating (SlBAS)

updating records .. 5.2.2
restoring data base ..5.3.1

descriptor word
parameter ...7.3.3.1
string .. 7.3.3.1

device
general description L.. 1.2.2.1
special .. 3.3

opening a session ... 3.3.2
session communication.. 33.6-33.7

standard ... 3.4
allocating .. 3.4.1
accessing .. 3.4.4

disconnect- application TSR (TDCNT) .. 2.2.2.3
display terminal - see screen handling
DISPLAY statement (COBOL) ... 8.2.5
distributed processing ... 1.2.2.2, 3.3

efficiency ... 7.5
ERMON monitor call .. 4.1.5
ERMSG monitor call .. 4.1.5
ERRCODE (FORTRAN)

l/O error code .. 3.4.2
error message ..4.1.5

error messages
ABEND message .. 6.2.2.1
application error messages ... 4.1
error message summary ..App. C

ESEOU call (SIBAS) .. 3.1.6
execution

time ..2.2.2.1
interval ..2.2.2.2

EXHlBIT statement (COBOL) ... 8.2.5

ND-60.111.03

Section:

file
allocating ..3.4.3
accessing ..3.4.4

file status word (COBOL)
l/O error ... 3.4.2
error messages ..4.1.5

FOCUS screen handling system.. 3.2.3
general description .. 1.2.2.4
defining forms ..3.2.3.1
front end CPUs...3.2.3.2

FORMS-DEFINE system (FOCUS) ... 3.2.3.1
FORTRAN library

using .. '.7.3.1-7.3.2
loading ..8.2.5

FORTRAN programs
input/output3.4
data areas .. 7.1.2—7.1.3
special considerations ... 7.3.1

future task ..2.2.2.1

general purpose macro generator (GPM) ... 8.3
get broadcasted message TSR (TGBRD/CGBRD) 4.1.4

HOLD monitor call .. 4.3
hold synchronised checkpoint TSR (THSYN) 5.2.3.2

lBM-3270-CU input/output module.- ... 3.3.10.2
lBM-3270-HOST input/output module .. 3.3.10.3
illegal monitor call ..2.3.2.3
lNCH monitor call ... 3.4.3
input/output module (IOM)

general description .. 1.2.2.2
device control ... 3.3
available IOMs ... 3.3.10

INPUT statement (FORTRAN) ... 3.4.3
internal devices .. 4.4
internal time ...4.2
IOM — see input/output module
lPRlV data area (NSHS) .. 7.1.2
lSO-1745-HOST input/output module ...3.3.10.4
ITERM data area (NSHS) .. 7.1.2

LCOMMO subroutine... 8.2.3
LEAVE monitor call .. 2.3.1
load-common subroutine - see LCOMMO
loader

relocating (NRL) ... 8.2.2
real time (RT-L) .. 8.3.1

loading application programs
background ..8.2
real time ... 8.3

NDo60.111.03

Section:

LOAD-SEGMENT macro ..8.3.1
LOAD-USER-APPLzMODE file ...8.3.1
local data - see data, local

MAC assembly language programs .. 7.3.3

main despatcher (MD) .. 1.2.4
menus

master menu ..6.1.2
submenu ...6.1.2

message protocols .. 3.3
MESSAGE-TO-UNIT command ..4.1.4
monitor calls '

input/output ...3.4
other ...4
illegal ..2.3.2.3
summary...App. E

more flag 3.3.6
multi CPU systems .. 1.2

names
application program names ... 7.4.1

user names ...6.1.1
ND-SOO TPS

data areas ..7.2
description ...App. J
efficiency .. 7.5.1
FOCUS ... 3.2.3.4
SIBAS ... 3.1 5
testing applications .. 8.1

network 1.2.2.2, 3.3
NPL programs .. 7.3.3
NRL {relocating loader) ... 8.2.4

NSHS (see also picture) .. 3.2
general description .. 1.2.2.3
screen definition system .. 7.7.1
screen library system ... 3.2.2
screen library call summary ...App. F

open data base-see data base, opening
open~session TSR (TSOPN) .. 3.3.2
OPEN file statement ..3.4.1
operator, terminal (user) ... 1.1

identification .. 6.1.1
at restart ... 6.2.3, 3.2.2.2

operator, system
commands .. 1.2.3
messages ... 1.2.3, 4.1.1

OUTCH monitor call .. 3.4.3
OUTPUT statement (FORTRAN) .. 3.4.3

ND-60.111.03

Section:

packet size ...3.3.8
paging ..7.5.4
password (user) ...6.1.1
peripheral files ...3.4.1
periodic task ..2.2.2.2
pictures - see also NSHS

defining ...7.7.1
using ...3.2.2
restoring ...3.2.2.2

pictures, private ...7.7
defining ..7.7.1

pictures, publicy... 7.7, 7.8.1
producing ... 7.7.2, 7.8.1
loading ..7.7.3, 7.8.1

priority, application .. 8.3.1
printer output ... 3.4
PRIVATE common area ... 7.1.2
public pictures ~ see. pictures, public
PUBLIC-PICTURE program .. 7.7.2

o°o°o° ...3.2.2.2
QERMS monitor call ..4.1.5

RAPPL (user restart application) ... 6.2.3
RFLDS call (NSHS) .. 3.2.2, App. F
read-message TSR (TRMSG) .. 3.3.7
READ statement (FORTRAN and COBOL) .. 3.4.3
real time loader ... 8.3.1
reai time programs .. 8.3

loading .. 8.3
names ... 714.1

RECOVER special application ... 5.3.1, 6.4
recovery, system .. 5.3.1
reentrant programs .. 7.1

FORTRAN ... 7.3.1
COBOL ... 7.3.2

RELES device monitor call .. 3.4.3
RESRV device monitor call ... 3.4.1
restart, system ...5.3.2

sessions at restart .. 3.3.9
files at restart ...3.4.4
strategy ..6.2.3
set restart strategy TSR (TSRST) .. 5.3.2.2
user restart application (RAPPL) ... 6.2.3

RESTART special application .. 5.3.2.1, 6.2.3
restore picture ... 3.2.2.2
REWRITE statement (COBOL) .. 3.4.3 .
RFILE monitor call ...3.4.3
rollback, system ... 5.3.1
ROLLBACK special application ... 5.3.1, 6.4

ND-60.111.03

Section:
routine log

logging SlBAS calls ...5.2.2
restoring data base .. 5.3.1

RT—common (core common)
in TPS segment structure ..App. D
SlBAS interface' ...3.1.2

save - common subroutine ~ see SCOMMO
SCHPO call (SlBAS) .. 6.4
SCLDB call (SlBAS) .. 3.1.3
SCOMMO subroutine ..8.1.3
screen handling — see NSHS and FOCUS ‘
SCREEN-DEFINITION program ...7.7.1
security codes .. 6.1.3
segments, SlNTRAN ..App. D
SELECT special application ... 1.3.1, 2.2.4,

6.1.2
semaphores ... 4.4

send-message TSR (TSMSG) ... 3.3.6
send—text—message TSR (TTEXT) .. 4.1.3
session ... 1.2.2.2, 3.3

definition ..3.3.1
session partner... 3.3.1
session request ..3.3.1, 3.3.3

session-status TSR (TSEST) .. 3.3.5
set-abend-strategy TSR (TSAST) »... 2.3.2.2
set—close-strategy TSR (TSCST) ... 2.3.1.5
set-execution-time TSR (TASET) .. 2.2.2.1
set—interval TSR (TlNTV) ... 2.2.2.2
set-packet-size TSR (TPASZ) I.......................... 3.3.8
set‘restart-strategy TSR (TSRST) ... 5.3.2.2
set—termination-strategy TSR (TSTST) .. 2.3.1.4»
SET - UNAVAlLABLE command ... 8.3.1
SETDV cali {SlBASl‘ 3 .14
SlBAS DBMS 3.1

general description .. 1.2.2.5
data definition/redefinition language (DRL) 3.1.1
data manipulation language (DML) ... 3.1.1
DML call summary ..App. G _
interface routine ...3.1.2, 8.2.5
data base logging .. 5.2.2
synchronised checkpoint ...5.2.3
rollback and recovery ...5.3.1

SIGNOFF special application .. 1.3.1, 2.3.1.3,
6.2.1

SlGNON special application .. 1.3.1, 2.2.4,
' 6.1.1

SOPDB call (SlBAS) .. 3.1.3
special applications ... 1.2.1.5, 6
special TPS device - see device special
SPECIFY—LUAP28YMB file ... 8.3.1

ND-60.111.03

.. 8 _.

Section:

SREPR call (SlBAS) ... 6.4
SROLL call (SlBAS) ...6.4
stack... 7.1.3
standard device - see device, standard
STANSAAB terminals g..3.3.10.4
starting

tasks ...2.2
transactions ..2.1, 1.3
application programs ...2.1, 2.2.3

stop code ...2.3.1.1
stop-transaction TSR (TSTOP) ...2.3.1.1
subroutine7.4.2

data area in stack... 7.1.3
loading ..8.3.1

switch-application-program TSR (TSWAP)2.2.3.1
synchronised checkpoint - see checkpoint, synchronised
synchronised-checkpoint TSR (TCHCK) ... 5.2.3.3
synchronous terminals (FOCUS) ... 3.2.3.3

TACTV (start~concurrent-task TSR) ... 2.2.1.1
TASET (set-execution-time TSR) ...2.2.2.1
task ..2.1

starting-..‘.2.2
concurrent ...2.2.1.1
future ..2.2.2.1
periodic ...2.2.2.2

terminating ... 2.3, 6.2.1
task common data area ... 7.1.2
TBRDC (broadcast-message TSR) ... 4.1.2
TCHCK (synchronised checkpoint TSR) .. 5.2.3.3
TCM ~ see transaction control module-
TDCNT (disconnect-application TSR) 2223
terminals .. 1.1

asynchronous (in FOCUS} .. 3.2.3.2
display .. 3.2.1
synchronous (in FOCUS) .. 3.2.3.3

terminate—task TSR (TTERM) .. 2.3.1.2
termination

task ...2.3.1.2 ,
transaction ... 2.3, 6.2.1
complete2.3.1.1
normal ..2.3.1
abnormal - see also abend .. 2.3.2
strategy ..6.2.1
set termination strategy TSR (TSTST) .. 2.3.1.4
user termination application ... 6.2.1

testing programs ; ... 8.2
TGBRD (get broadcasted message TSR) ..4.1.4
THSYN (hold synchronised checkpoint TSR) 5.2.3.2
time/date routine (CLOCK) ..4.2

ND-60.111.03

Section:

TIME monitor call ...4.2
timeout

application'...2.3.2.4, 6.2.2
operator ..2.3.2.4, 6.2.2
response at restart ...6.2.3

timesharing — see background
timing TSRs ...2.2.2
TINTV (set—interval TSR) ...2.2.2.2
TPASZ (setvpacket-size TSR) ..3.3.8
TPCLOSE special application ... 6.3, 3.1.3
TPOPEN special application6.3, 3.1.3
TPS:PROG background program ... 8.2.1
TPS-DEFAULT ...6.1.3
TPS-MENUTAB ..6.1.3
TPS-TABLES .. 8.3.1
TPS—TERMTAB ...6.3
TPS-USER user name .. 8.3
TPS-USERTAB ... 6.1.3
TPT- see transaction processing task
transaction ... 1.1, 2.1

starting ...2.2
terminating ...2.3

transaction checkpoint — see checkpoint, transaction
transaction checkpoint TSR(TTRAN) .. 5.2.4.1
transaction control module (TCM) .. 1.2.1.1
transaction processing task (TPT).... ... 1.2.1.2
transaction service routine (TSR) .. 1.2.1.3

TSR call formats ...App. H
TSR call summary .. App. l

TRMSG (read-message TSR) .. 3.3.7, 3.3.10
TSAST (set abend strategy TSR) .. 2.3.2.2
TSCLO (close-session TSR) .. 3.3.4, 3.3.10
TSCST (set—close-strategy TSR) ... 2.3.1.5
TSEST (session—status TSR) .. 3.3.5
TSMSG (send—mesage TSR) ... 3.3.6, 3.3.10
TSOPN (open-session TSR) .. 3.3.2, 3.3.10
TSR-see transaction service routine
TSRST (set restart strategy TSR) .. 5.3.2.2
TSTOP (terminate-transaction TSR) ..2.3.1.1
TSTST (set termination strategy TSR) .. 2.3.1.4
TSWAP (switch-application TSR) ... 2.3.1
TTERM (terminate-task TSR) ..2.3.1.2

ND-60.111.03

-19-

Section:

TTEXT (send-text-message TSR) ..4.1.3
Ti'RAN (take transaction checkpoint TSR) ... 5.2.4.1
TTSYN (allow synchronised checkpoint TSR) 5.2.3.1
TWMSG (write-message-to-operator TSR)4.1.1

unit number device .. 1.2.2.2
TPT ... 1.2.1.2
UPDAT monitor call ...4.2
updatefile (SIBAS) ...5.2.2
user name terminal-see SIGNON
TPS files ...8.3.2
user terminal-see operator,terminai '

wait option (of RESRV) ... 3.4.2
WFILE monitor call .. 3.4.3
working set .. 7.5.4
working storage ...7.1 .2-7.1.3
write-mesage-to-operator TSR (TWMSG/CWMSG) 4.1.1
WRlTE statement (FORTRAN and COBOL) .. 3.4.3

X25LAPB input/output module .. 3.3.10.1

ND«60.111.03

trta*******SENDUSYOURCOMMENTS!!! *i*********

r 7 . 7 Are you frustrated because of nuclear information

‘ 9 . in this manual? Do you have trouble finding
things? Why don’t you join the Reader’s Club and

n * send us a note? You will receive a membership
(7 7 card - and an answer to your comments.

I 0

Please let us know if you
“ find errors \ /
“' cannot understand information '
" cannot find information , N
* find needless information ‘

Do you think we could improve the manual by rearranging the
contents? You could also tell us if you like the manual!! / '\

********weHELPYOURSELFBYHELPINGUSH *********’

Manual name: . Manual number:

What problems do you have? (use extra pages if needed)

Do you have-suggestions for improving this manual?

Your name: Date:

Company: Position:
Address:

What are you using this manual for?

Send to: Norsk Data A.S.
Documentation Department
PO. Box 4, Lindeberg Gard -————-’
Oslo 10, Norway

Norsk Data’s answer will be found on reverse side

Answer from Norsk Data

Answered by Date

Norsk Data A.S.

Documentation Department

PO. Box 4, Lindeberg Gard

Oslo 10, Norway

The Competitive EurOpean Computer Company

NORSK DATA A.Sy JERIKOVN.‘20 PO. BOX 4 LINDEBERG GARD OSLO 1O NORWAY
TEL: 02 — 30 90 30 - TELEX: 18661

