ND TPS
— User’'s Guide

ND-60.111.03

NORSK DATA AS

ND TPS
User’'s Guide

ND-60.111.03

NOTICE

The information in this document is subject to change without notice. Norsk
Data A.S assumes no responsibility for any errors that may appear in this docu-
ment. Norsk Data A.S assumes no responsibility for the use or reliability of its
software on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. It may not
be photocopied, reproduced or translated without the prior consent of Norsk
Data A.S.

Copyright @ 1982 by Norsk Data A.S.

PRINTING RECORD

Printing Notes

05/79 VERSION 01
11/81 VERSIONOQ2
01/82 RevisionA

The following pages have been revised:

vi, vii, viii, ix, x,

1-11,1-12,3-7,3-8,6-9,7-5,7-6, 7—-7,7-9, 8-10,8-11,8-17

C-2,C-4,G-1,2,3,4,5,6,7,8,9°

The foilowing pages have been added:

3-8a, 3—8b, 8—18

12/82 VERSION 03

ND TPS User’s Guide
Publ. No. ND-60.111.03

o0 0000000
o §3 i:::‘::::. NORSK DATA A.S
44 P.O. Box 4, Lindeberg gard

ese
oo eesccce Oslo 10, Norway

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one or
more single pages to be merged into the manual by the user, each revised page
being listed on the new printing record sent out with the revision. The old
printing record should be replaced by the new one.

New versions and revisions are announced in the ND Bulletin and can be ordered
as described below.

The reader's comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms, together with all types of inquiry and requests for documentation
should be sent to the local ND office or {in Norway) to:

Documentation Department
Norsk Data A.S

P.0. Box 4, Lindeberg gard
Oslo 10

PREFACE

THE PRODUCT

This manual describes the ND Transaction Processing System ND TPS, version D

ND TPS ND-10101 D

ND TPS is a general transaction processing system that initiates and controls
transactions between various input/output devices and application programs.

TPS provides facilities for handling terminals, data communications, data bases,
etc.

ND TPS systems are tailored for individual user configurations, specified when
ordering ND TPS. However, all systems contain the basic TPS modules.

Special systems may contain such additional features as:

ND-500 TPS System Modules ND-10342
Input/output Modules - ND-10105 to ND-10108
Muiti - CPU Systems

Non-standard System Generation

Parameters

THE READER

ND TPS User's Guide is written for programmers who write application
programs to be run under ND TPS. These programs can be written in FORTRAN,
COBOL, PLANC, NPL and MAC.

System designers who design application systems to be run under TPS will also
find the material in this manual of interest.

ND-60.111.03

vi

PREREQUISITE KNOWLEDGE

Chapter 1 of this manual is an introduction to ND TPS and should give the
necessary background in TPS to go on to the following chapters. A more detailed
description may be found in

ND TPS General Description, ND-60.105

In addition, the reader should also be familiar with the SINTRAN IlI operating
system, the SIBAS data base system and the screen handling systems. General
descriptions of these systems are found in:

Introduction to SINTRAN lil, ND-60.125

SIBAS Hl User's Manual, Chapter 1, ND-60.127

The NORD Screen Handling System, chapter 1, ND-60.088
FOCUS Screen Handling System, chapter 1, ND-60.137

THE MANUAL

ND TPS User's Guide can be divided into three parts. Chapter 1 is an
introduction which should be read first if the reader is not aiready familiar with
ND TPS. The main body of the manual consists of chapters 2—8. These chapters
may be read independently of each other and in any order; each chapter treats
one topic in a tutorial manner and should be read sequentially. Finally, the
appendices, especially appendix H, TSR call formats, are reference material.

The manual covers all aspects of TPS of interest to the application programmer,
both special TPS features, such as session communication, and the interface to
other systems used by TPS application programs, such as SINTRAN, SIBAS,
FOCUS, NSHS, FORTRAN, COBOL, PLANC, NPL and MAC. The manual,
however, does not go into the details of these other systems and the reader is
referred to the manuals for the individual systems for these details.

ND-60.111.03

vii

RELATED MANUALS

The following manuals describe the systems of greatest interest to the TPS
application programmer:

SINTRAN I Timesharing Guide, ND-60.132
SINTRAN [l Reference Manual, ND-60.128
SINTRAN ll Real-Time Guide, ND-60.133
NORD Screen Handling System, ND-60.088
FOCUS Screen Handling System, ND-60.137
NORD FORTRAN Reference Manual, ND-60.145
NORD COBOL Reference Manual, ND-60.144
NORD-PL User’'s Guide, ND-60.047

MAC User's Guide, ND-60.096

SIBAS 1l User's Manual, ND-60.127

Symbolic Debugger - User’s Guide, ND-60.158

For ND-500:
ND-500 LOADER/MONITOR, ND-60.136
Other manuals describing ND TPS are:

ND TPS General Description, ND-60.105
ND TPS System Supervisor’'s Guide, ND-30.006

ND-60.111.03

Section:

1.1
1.2

1.21

1.2.11
1.2.1.2
1.2.1.3
1.2.14
1.215

1.2.2

T 1.2.24

1.2.2.2
1.2.23
1224
1.2.25
1.2.26

1.2.3
1.2.4

1.3

1.31
1.3.2
1.33
1.3.4
1.3.5
1.4

1.41

1.4.2
1.43

2.1
2.2

2.21

2.2.1.1

ix

TABLE OF CONTENTS

+ + +
{
Page
INTRODUCTION oottt trereessreeccesiensasnseeessnetisets s es e s e erssnesansseas 1—1
WHhat iS ND TPS? ittt rees s cseasts e e s sranar s rs s s smaneeas 11
The Structure 0f TPS ..o rrecrrcrrereessin s eerrreni s es e 1-2
Transaction Control.......coooviruievirrreeeeereeceinieieire e reeeeraanenes 1—4
Transaction Control Modules SR 14
Transaction Processing Taskscc..ccoviiiimiiiiiiinniiineininenanns 1—4
Transaction Service ROUtines.........ccoceveemenciiiiiininniiinniiieanen. 1—5
Application Programsccccccevviiviieniiniincinecceensseceessnnees 1—6
Special Applications.....cceecrriiieiiiiiiiiiiie e 1—7
Handling Input/OutpUt ..ot 1—9
Standard DeviCasooviveiiiiireieieeieertrerr et 19
Special TPS Devices - Input/Qutput Modules................... 1-—-10
The NSHS Screen Handling System.........ccccccevrvvinnniniinennn. 1—11
The FOCUS Screen Handling Systemccccciveniiininiinnnnn. 1—11
The SIBAS Data Base Management System................ e V=11
Checkpoint and Restart......ccccocccvviiiiinnniniineiiccccnininnnnnienn: 1—12
Operator CommuniCationcccveveiriiiirieiniineennineee e eeeeas 1—13
Message Routing and QUEUINGceccmiiiiiiiirecieeecnie e 1-13
Controlling TransSactions ...c..coococimiiieiieiiriree e 1—14
Type 1: Permanent Terminal Transactionscccceeeeiieen. 1—14
Type 2: Short Terminal Transactions.........ccccooeeeiieiicinninen, 118
Type 3: Short Local Terminal Transactions........c..coocceiveniciine 1—18
Type 4: Concurrent TransactionS.........cooeviooiiiiiieeeen e 1—19
Type 5: Future and Periodic Transactions.........ccccceiiiiienen, 1—19
Processing a Transactionccccoviiiiiimieiieecvnciniiie e 1-20
Starting the Transaction ..., 1—20.
Processing the Transactionccccvvuirrireiceiiiiniiecnniieceeee 1—22
Terminating the Transaction......c..cccccviviiiiii e 1-22
ADMINISTRATING TASKS ...ooiiiiiieriiecerccmreee s eecrreree e e s csmnteas s s snans 2—1
Tasks, Transactions and Applications.....c..ccoovviiiiiiiiimnninnnnnans 2—1
Starting Tasks and Switching Applications.........covvvmveiiinnniinen. 24
Immediate Task ACHVAtIONevreeiiierieiiieiniieiniercirecneanans 2--5
TACTV - The Activate Concurrent Task TSRccccennnee 2—-5

ND-60.111.03

\ Section: Page:
222 Future and Periodic Task Activation.........ccuuueceeeierirennrececniennnnn 2—-7
2221 TASET — The Set Execution Time TSR.....ccccccciveeeeeerevneenens 27
2222 TINTV — The Set Interval TSR ..ccoiericcirreirrverccreceveeeneeeeee 2—-9
2223 TDCNT — The Disconnect Application TSR......cccceevvveerenen. 2—-10
223 Switching to Another Application ..o, 2—11
2.2.3.1 TSWAP-—The Switch Application Program TSR 211
224 The SIGNON and SELECT Special Applications....................... 2—12
23 Terminating Transactions......c..covvviiiiiiiiiiiiiesrennerreenanee 2—-13
2.31 Normal Terminationcoooviveeuvivireierneireeniiiersrereseearsnnsesenens 2-13
2.3.1.1 TSTOP - The STOP Transaction TSRccoivviveevieiiinenreeaaenee 2-13
2.3.1.2 TTERM - The Terminate Task TSRioiiiiiiiiiiriiiriee s 214
2.3.1.3 The SIGNQOFF Special Applicationc.ooovvvvveiiieiniiiinnieenne 2—14
23.14 TSTST - The Set Termination Strategy TSR.....cevviivvvienennn. 215
2315 TSCST - The Set Close Strategy TSR.....ccovvcciircceceeaee 2—16
2.3.2 Abnormal Terminationccceeeereeueeriereseiereseeeesseesessessesnnas 2—17
2.3.2.1 The ABEND Special Applicationcccccceeureeciicciiiciennnncenan. 2—17
23.2.2 TSAST - The Set Abend Strategy TSR....ccccoieeieecveeiaeinnne 2—-17
2.3.23 Hlegal Monitor Calls ...c..eveiviericieireeeecreciiiiee e eeeeereee e e 2—18
2.3.2.4 THMI@OUL e iiece e ree e te et e b eeereeeaaenneees 2—18
3 INPUT/QUTPUT PROCESSING. ...ttt eeeneeae e 3—1
3.1 SIBAS Under TPS oo mreeeeeeeen 3-—1
3.1.1 Data Definition and Manipulation ... 3—1
3.1.2 The SIBAS Interface ROULINE ..o.coeeiiviciiiieii e 3—2
3.1.3 Opening and Closing the Data Base.........cccccoviiinnnenieeens 3-3
3.14 Using More Than One Data Base...........cccccceviviiiiiiiiniiinnnnnennns 3-3
315 SIBAS in ND-500 Multi-CPU TPSiiiiiiirereeccrrecee e 35~
3.1.6 Restricted SIBAS Calls ..ccovviiiiieecerieeeiresereecrerecmereee s eeecceeee 3—6
3.2 NSHS and FOCUS Under TPS.. ..o cerirereeeneseereneneeeeeens 3-8
3.21 Handling Display Terminalsccocooiiiiiiiiiiiiiiieiicnnenene 3-8
322 The NSHS System . ceeerevaee e 3-8
3.2.21 Defining and Using Pictures..........cccoovniiiiciiiinninnnniiinnennnn. 3-8
3222 Q ©Q%Q° and ReStart..........ccccvueerereenreeeeerrerereecesseeeeeenees 3—9

ND-60.111.03

Xi

Section: Page:
3.23 FOCUS Level 1. oiieeirceirerer e cee e e sentte s s s sasansssae e 3—11
3.2.3.1 Defining and Using FOrmscccconninniimmmninniineecceeeec, 3—11
3.23.2 Local or Remote Asynchronous Terminalsccccceevnenen. 3—12
3.233 Synchronous/Buffered Terminals Using FOCUS 3—-13
3.234 ND-100 — ND-500 incompatibilities in FOCUS 3—13
33 Special TPS DeVICES ..ocoeeeeirreeecreiiiiie ettt vtna s e s s nena s 3—-14
3.3.1 Session Request from a Deviceccccceciiiiiiiiniiniecininnnnnn, 3—15
3.3.2 TSOPN — The Open - Session TSR ... 3-—-17
3.3.3 Session Request from an Applicationococcviniiiiiicnnnncnnens 3—19
3.34 TSCLO — The Close Session TSR ...ioiviiiiiiiiiiiiccciceeee 3—22
3.35 TSEST — The Session Status TSRccoeierieeeeeseeeeecereenee 3—-23
3.36 TSMSG — The Send-Message TSRccooiiiiiiiiiciiiicininninenes 3—24
3.3.9 TRMSG — The Read Message TSR......ccccccniiiiiniiiniiiniciiiinnnnns 3-25
338 TPASZ — The Set Packet Size TSRcccccciiiiiiivrinniniiinnn 326
3.3.9 2 111 7 1 o SO O OO T UPPT RPN 326
3.3.10 Available Input/Qutput Modulesocooiiiiiiiiiiieciiicciinnans 327
3.3.10.1 X2BLAPB ettt e e eeerre e s et e e e e e sanee e e s s aaaar e 3—-27
3.3.10.2 IBM-w3270~CU it eeneeeserssvessee s s s sssnnins 3-32
3.3.10.3 IBM—3270—HOST ..o emseree e ene s ees e 3-34
3.3.104 ISO—1745—HOST ...cccceeere e re e sre s ererne s 3—-35
34 Standard Davices and Filescccccoiiiiiiiiiiciniininrceeee 3—-36
3.4.1 . Allocating Standard Devices and Filescccoovmiiieriiiinnnes 3—-36
3.4.2 Unavailable Devices and Filescc.cociiiiiiiiiiiiiiiiiiens 3-37
343 Accessing Standard Devices and Filesc.coovvciiiiiiiiiiinnnn.. 3-39
344 RESTAMT .ooieriiiiieieieeeeieeee e e e et eeieeeeeseasaennan e aaraneseaeaenaenmnas e aniass 340
4 OTHER TPS AND SINTRAN FACILITIES ..o e 4-—1
4.1 Message Handling ..ot 4-—2
4.1.1 TWMSG and CWMSG - The Write Message to

0perator TSR ..ttt 4-3
41.2 TBRDC - The Broadcast Message TSRcccccccvviiiiniiiinninnes 44
413 TTEXT - The Send Text Message TSRcccovnmimiienimnninneeennns 4-—-5
4.1.4 ' TGBRD and CGBRD - The Get Broadcasted Message TSR ...4—6
415 Monitor Calls {ERMSG,QERMS,ERMON)cccciviiiniiienne 4-7
42 Clock ROULINGS .oooviueiiiiiiiieeeiiin e cerer et ererava e s ene e rananeas 4—9
43 The HOLD Monitor Call et e 4—9
4.4 Semaphores and Internal Devicescooeeeeirieieiciiiiiiiiniiiinnannan, 4—10

ND-60.111.03

Section:

5.1
5.2

5.2.1
5.2.2
523
5.2.3.1
5.23.2
5.2.3.3
524
5.2.41
5.3

5.3.1
5.3.2

5.3.2.1
5322

6.1
6.1.1
8.1.2
8.1.3
6.2

6.2.1
6.2.2

6.2.2.1

6.2.3
6.2.4

6.3
6.4

Xii

Page:
CHECKPOINT —RESTART ..ooiiiiiceieeenetreesvrereeeeer e serccesesossasassnanaes 51
Protecting the Databasecccveveivmnnninnrineninniieeeecinene, 5—1
Preventive Facilitiescccccccrieieiiiiiiieinicnicconnnenn s 5—-3
BACKUPD eeiiiiiiieieeiireeerees et eresesessreeeeeesserssnanesssssranssnnssessesnenes 5—-3
Data Base LOGQing ..ccccoveceveiiiriiiimiiiiiniiireticeceen e 5—4
Synchronised Checkpointsccocveeieeivininninriiiiennerinsiiieieneenn, 5—b
TTSYN - The Allow-Synchronised Checkpoint TSR 5—5
THSYN - The Hold Synchronised Checkpoint TSR 5—6
- TCHCK - The Take Synchronised Checkpoint TSR 5—6
Transaction Checkpointscocoeeiviiiirerierirecceneeeeecnaenannees 5—7
TTRAN - The Take Transaction Checkpoint TSR 5—8
Restart FACilitiesu.ooviiiiiiiiiieer e vecnnee s eneae e 5--10
Rollback and ReCOVeryccoveiiiiiiiciiiiiiicciinncennnssanneeenneenanes 5—10
Restarting TPS ..ttt re e s e 5—13
The RESTART Special AppCtionm.ewwerereereee 5—15
TSRST - The Set Restart Strategy TSR ...ccoocvvniiiiriiiiiinnns 5—16
SPECIAL APPLICATIONS oot ce st et rsvestaenen e e —1
SIGNON and SELECT ettt e e e e saanrranees 6—3
SEGN ON et e e et e et eae e e s e e eaes 6—3
L 210 o0 LU USSR SR SRR PP URR 64
The Access Control System ... 6—6
SIGNOFF, ABEND and RESTART ..o criniieiceeaenas 6—7
SIGNOFF Lt reerree st ene s s s an e e e e 6—7
ABEND ettt s an e 6—8
The Abend Error Messagecccccviiiiiiiniveiiiineeeceneeninns 6—9
RESTART oottt rttr e e e s s ser e s e e neareeesse s easrnnes 6—10
Summary of Termination, Abend and Restart Strategies 6—13
TPOPEN and TPCLOSE .t renines e aene 6—14
CHECKPOINT, ROLLBACK and RECOVERcccccccmirvvinininnninenen, 6—14

ND-60.111.03

Section:
7

7.1
7.1.1
7.1.2
7.1.3
7.1.4
7.2
7.3
7.3.1
7.3.2
7.3.3

7.4

7.4.1
7.4.2

75
7.5.1
7.5.2
75.3
754
7.6
7.7
7.7
772
7.7.3
7.8

7.8.1

8.1
8.2

xiii

Page
SPECIAL CONSIDERATIONS ..o e e e 71
Data Areas in the ND100 ... 7—1
The Variable Data Area in the ND100ccccccciniiiniiiccinnienn. 7-3
The Task Common Data Area in the ND100ooeeeeirnnenc. 73
The Local Data Area in the ND100 et saesaeen 7—-5
The Size of the Data Area in the ND100cooiiiiiiiiiiiiiinnees 7—17
Data areas in the NDBO0 ...t 78
Language Dependent Considerationsccoovvniniinnniinnnnens 7—9
FORTRAN/PLANC in ND100oooiiiiiiiriieiireceneicenreeecnneereennas 7—10
COBOL In NDTOO .oiiiiiiiireeeececiieereceee s deeenrae s mere e ee s e 7—1
MACNPL et ree e enrre s e amae e e ae e s e s aaeeeens 7—11
Program StrUCTUI® ...ooviviiiiiiieiee ettt e eeeeercenee e e s e e s anens 712
Application Names and Numbersccccccoviiiiiiiiiiianiniecnnniinn. 7—12
SUDFOULINGS ...ceeeiieeeieeccreereeritnccrreseetreerennvesesseesasanencesomerssssen 7—13
EFfICIBNCY .eueeinriiiiiiiiiieecer s e resrers s e cs e s roota s e es e e e e e csssasasans 715
ND500 Efficiency et raas 7—15
Taking Checkpointsocooooiiiiriivceeerererecrceer e 7—16
Opening and Closing the Data Basecccccccceiveviiiicnnniniicnnen. 7—16
The WOrking Set ..o e e cree i 7—17
Real Time Versus Background......c.cccccceveciiiiiimiiiineiiinieiiinniniiieninen 7—18
Pictures for NSHS in NDTOO ..o 7—19
Defining Private Pictures for NSHS ..., 7—19
Producing Public Pictures for NSHS ... 7-21
Loading Public Pictures for NSHS ... 7-22
Pictures for FOCUS ...oniieerteer e e eee e ctete e e e e s e e e s seeeseanne 723
Public pictures for FOCUS ... 723
COMPILING AND LOADING PROGRAMS ... 8—1
Testing of ND500 applicationscccccciiiriiiiiiiiniiiiiiiiiicciininnncnniens 8—1
Background Testing of ND100 applicationsccccccevvviiiinninnnnne 82

ND-60.111.03

Xiv

Section: Page:
8.2.1 The TPS Background SyStemccccccociriiicirnvcemmremmmneenreeanenen 8—2
8.2.2 Available Facilities in the TPS Background System 8—3
8.2.3 The Load-Common and Save-Common Routines 8—4
8.24 Running the Background Systemccccccovviiiiiniiminncininieeenacinns 8—5
8.2.5 Testing in Background Modecccccoovivimmmmmiiiniiinniiinieinnenennns 8—6
8.2.6 Compile and Load Examplescc.cccoeviiiiiiiiiiiiiiininireiiene 8—8
8.3 Real Time Programscccceeeeeeernmietrncesssiineseecssssissiesssesnsnsnssnes 8—10
8.3.1 The Loading Procedureccccccervveceenceeeniiiiiiiiineniceccnsnnnennes 8—M
8.3.2 Programs and Files Requiredcccccovcveivviiiiininininiiiiienennn. 8—16
8.3.3 Compile and Load Example ereetureneeaserrereanennenns 8—17
Appendix: 4 Page:
A APPLICATION NUMBERS FOR SPECIAL APPLICATIONS A—1
B SAMPLE PROGRAMS ...ooiiiiiierecrmrereessieieeite e eerecssneeseeesssanssnass B= 1
Cc ERROR MESSAGESeeeieiieeicrriereeecereseene s eeassaaes s s e essssssnananeas C—1
D TPS SEGMENT STRUCTURE IN ND100cooiiiiiinniiiiiiiinininccecesennns D—1
E MONITOR CALLS AND LIBRARY CALLScoociiiiiiiiiniiineireecae E—1
F SCREEN—HANDLING CALLS it eiviseseee s F—1
G SIBAS CALLS ot aa e e G—1
H TSR CALL FORMAT S ettt e H—1
! TSR CALLS—FUNCTIONAL LIST oot J—1
J TPS ON ND-500 ..ottt e e et ee et rae e e e eanara e e e s s aans J—1
K GLO S S A RY et e et e e ettt e s e e s s enn K—1
INDEX

ND-60.111.03

XV

NOTATIONS

TSR Calls

The detailed formats of these calls, with complete parameter descriptions are
given in appendix H. Chapters 2—5 discuss the calls and their use in a tutorial
manner but do not contain detailed parameter descriptions. On the other hand,
examples of the use of these TSRs are given in greater detail in chapters 2—5
than in appendix H. In both places the call formats and the examples are given
first in FORTRAN and then in COBOL.

Examples

As for the TSR examples mentioned above, all examples are given first in
FORTRAN and then in COBOL. Comments are included in some of the examples
and these are written on the same line as program statements to save space,
although this may not be allowed by the compiler. FORTRAN parameters are
given sometimes as variables, sometimes as literals where this is allowed.

In the examples of conversational interaction with a program, input to the
program is underiined.

Symbols

ESC indicates the escape key on a terminal
indicates carriage return, line feed

< > indicates a parameter. Optional parameters or parameters with default
values are indicated in the same way, but the default value is given under
“rules”. If one of several alternative values is to be given, this is also
indicated under “rules”.

ND-60.111.03

1.1

INTRODUCTION

WHAT IS ND TPS?

ND TPS is a transaction processing system for the NORD family of computers. A
transaction processing system may be defined as a computerised on-line system
that allows the user to process data and update a data base as soon as
information arrives and to retrieve the information as soon as he needs it.

The user will normally have a terminal available that is online to the data base.
He will enter the transaction input on the terminal, the system will start the
processing program (application program), the program will access the data base
and send the user a response within seconds.

A transaction may be an inquiry which only reads the data, formats it and sends
it to the terminal (/nquiry transaction). The transaction may update the data
base, perhaps after a conversational interaction between the program and the
user (up-date transaction). The transaction may gather in data interactively and
store it in a temporary file for later batch updating (data entry). A transaction
may also generate a relatively large amount of output to a printer (report
generation).

Most transactions are characterised by a fairly small amount of input and output,
conversational interaction, short duration and fast response times, although none

of these characteristics are absolute.

To accomplish this, a transaction processing system must provide facilities for
handling the following main tasks:

— starting, controiling and terminating transactions
— communicating with terminals and other 1/O devices belonging to the
external environment, including routing messages to the correct

destinations

— accessing the data base, including reading it and updating it

A short description of the structure of TPS and how it handles these tasks
follows.

ND-60.111.03

1.2

THE STRUCTURE OF TPS

The main tasks of TPS are, as mentioned above, controlling transaction
start/termination, controlling the external environment and accessing the data
base. In addition, provision must be made for starting, stopping and controiling
the TPS system itself. Also, facilities must be available for simple and efficient
communication between modules of TPS. The TPS system is therefore composed
of the following types of modules:

(See figure 1.1)

— transaction control and service routines

— SIBAS data base control routines (separate suybsystem)

— NSHS or FOCUS screen handling system (separate subsystem)

— input/output modules

_ operator communvication

— message queuing and routing routines

The application programs themselves are mainly user-written, but TPS includes a
number of

— special application programs

tQ0 carry out user-oriented system functions, such as terminal operator sign-on,
program abnormal-end, etc.

TPS exists as a basic modules pius a number of options. The basic moduies
consist of the transaction controi and service routines, the SIBAS data base
system, the NSHS or FOCUS screen handling system, operator communication,
the message queuing and routing routines and a standard set of special
applications. In the default version of TPS, all of these are run in a singie CPU.

TPS options include multi-CPU systems, using both ND-100s and ND-500s,

several transaction control modules and input/output modules for special
devices, networks and distributed processing.

ND-60.111.03

1ddV

SvdIs

1ddv

HS1
1d1

WoL
jonuod
h1o11085UeR

TddV

Burthoy

pue
fuinant
abessaw

501 1ED{UNUILLI0D
101e59do

sajnpow

SNJ04
/ SHSN

mdino/induy

/,

Figure 1.1: TPS Modules

ND-60.111.03

1.2.1

1.2.11

1.2.1.2

1-4

Transaction Control

Transaction Control Modules

Transaction control is handled by one or more transaction control modules
(TCMs). The TCM supervises the application programs belonging to it and
controls system functions such as start, stop and checkpoint.

Transaction Processing Tasks

Each TCM has a number of transaction processing tasks (TPTs). (See Figure 1.2)
The TPTs are a set of identical programs belonging to pools, one pool for each
TCM. Each TPT is one unit with a TPT unit number. When a transaction is
started, TCM may allocate a free TPT to the transaction from the pool and start
the TPT and when the transaction is finished, TCM may free the TPT. Some TPTs

may be permanently allocated to terminals and can process many transactions in
a row.

The TPT has several functions:
— to start the application program used by the transaction

- to terminate the application program when it is done and either switch to a
new application program or terminate the transaction

— to provide the application program with data areas (all application
programs are reentrant and thus may not be written into)

— to provide checkpoint/restart facilities for the application program in case
of system failure

TPT

trans 1 Appl 1

TCM

TPT
free

R -

TPT

Appl 2
trans 2

TPT .
trans 3 Appl 3

TSRs

TPT

e e

free

Figure 1.2: Transaction Control
ND-60.111.03

1.2.13

Transaction Service Routines

The transaction service routines (TSRs) are a set of routines supplied with TPS
to assist the application programmer in performing functions such as
administrating task control, communicating with 1/0 devices and sending
messages. These routines allow the programmer to concentrate on the
applica-tions as such, without having to be concerned with the complex details
of a real-time environment. The routines represent a clean and logical interface
between application programs and ND TPS (See Figure 1.3).

TSRs may be arranged in groups as follows:
1 Administrative services.
Switch control to another application.
Activate concurrent application.
Stop transaction.
Set termination/abend/restart strategy/close strategy
Set execution time/interval
2 Session services.
Read message.
Send message.
Open/close session.

3 Checkpoint control.

Take checkpoint.
Allow/prevent checkpoint.

4 Message services.

Write message on operator console.
Broadcast message to terminals.

5 Special Appiication TSRs.

Restart

Read status

Read configuration information
Operator functions

|oM TPT/TSR APPLICATION
WRITE MESSAGE SEND MESSAGE |g— | CALL TSMSG
—
ON TERMINAL TO I0M RETURN »| (SEND MESSAGE
TSR)

Figure 1.3: Using a TSR

ND-60.111.03

1.21.4

Application Programs

The application programs do the actual processing of the transactions. They are
mainly user-written, with the exception of a number of special applications
supplied with the TPS system. They may be written in FORTRAN, COBOL, PLANC
(a system oriented high level language), NPL (a ND-100 machine oriented
medium level language) or MAC (assembly language) and they may use most of
the facilities available to these languages.

Application programs are reentrant and may be used by several transactions
simultaneously without having more than one copy. To achieve this, the
ND100-FORTRAN compiler must be set in reentrant mode when compiling, and
the ND100-COBOL compiler must be set in separate code-data mode when
compiling. No special commands have to be given to the ND500-compilers.

The TPTs are also mainly reentrant, with only a small non-reentrant part for each
TPT plus the data areas. Thus, there may be many TPTs without taking more than
a minimum of space.

The maximum size of application programs and data areas in the ND-100 are
user-dependent configuration parameters. Typical sizes are 24K words for
programs and 5K words for data. The corresponding limits for the ND-500 are up
to 134 megabytes of program and data.

Application programs in ND-100 may be tested as timesharing programs under

. SINTRAN before being run under TPS. A special set of routines is available to

simulate a real-time TPS environment. SIBAS can be accessed by both TPS,
timesharing and batch programs at the same time. In the ND-500, the application
programs may be tested by running the ND Symbolic Debugger «live» in an
ordinary TPS-run. (See Chapter 8.1.)

ND-60.111.03

1.2.15

SPECIAL APPLICATIONS

Certain functions of the TPS system are not handled by the internal modules of
TPS but are carried out as applications. They are started and terminated as any
other application, under the control of a TPT.

The main reason is that application programs are easy to write, modify and load.
Users can easily tailor these programs to their own needs. Functions that are
common to many users, but where the detailed processing may vary from user to’
user, such as signon, transaction abend and restart, are carried out by special
applications. Also, special system functions such as checkpoint, roliback and
recovery are controlled by these applications.

A complete set of special application programs is supplied with TPS and mvany
users will find that their needs are fully satisfied by these standard versions.
Other users will modify the standard versions, while some users may wish to
write their own versions.

The main purpose of the following special applications is communication with
SIBAS. They are called by only one TPT (a special TPS system TPT) when the
system uses them (See Figure 1.4)

— TPOPEN, called when TPS is initially started. This application may open the
data base for general use. it may also start up transactions and broadcast a
start message to terminals controlled by I0Ms.

— TPCLOSE, called when TPS is closed or abnormally ended. The application
may close the data base.

— CHECKPOINT, called when a synchronised checkpoint is taken. The
application calls the SIBAS checkpoint routine.

- ROLLBACK, cailed when a system failure has occurred and the system is to
be rolled back to a synchronised checkpoint. The application supervises the
SIBAS roilback routine.

— RECOVER, called when a system failure has occurred to restore the system
to its state at the latest transaction checkpoints. The application supervises
the SIBAS recover routine.

Additional special applications, activated for each individual TPT, are:

— SIGNON, called to check the terminal operator's status and password and
to reserve the terminal

— SELECT, called to determine which processing application is to be given
control. ‘

ND-60.111.03

1-8

— TPMON, called when an ND-500 application is started. Thereafter TPMON
administrates the ND-500 process. Further description can be found in
Appendix J. ’

— SIGNOFF, called when a transaction terminates.

— ABEND, called when a transaction terminates abnormalily due to an error
situation in the program itself or an error return from a system routine.

— RESTART, called after a rollback or recovery has been performed. The
application is called by each active TPT for the purpose of restarting the
TPT’s application at the correct point.

§
i
f

TPOPEN called at initialization

i

TPCLOSE - cailed at close

CHECKPOINT called at checkpoint

il

ROLLBACK called.at rollback

System RECOVER called at recovery
TPT ;

i

SIGNON called when transaction started
to check operator status

called after SIGNON to
determine user appi.

————-{APPL(I)) 2}) (3) {4)umapp&
-,

_“(TPMON APPL(S),' administrate
w-s applications in ND-600

SIGNOFF called when transaction ended

SELECT

it

ABEND calied when transaction abnormally ended

RESTART called at system restart

i);

Figure 1.4: Special Applications

ND-60.111.03

1.2.2

1.2.2.1

Handling Input/Output

TPS has facilities for handling input/output from many types of terminals and 1/0
devices and from data bases.

The data bases are controlled through the SIBAS data base management
system.

Most terminal types can be handled through the screen handling system.
Other 1/0 devices can be divided into two main types:

— standard devices allocated to and controlled by a particular application
program. Examples are standard SINTRAN terminals, printers, card readers
and non-SIBAS files.

— special TPS devices that are allocated to TPS modules, not individual
applications. Examples are networks and synchronous terminals.

Standard Devices

These devices are controlled by application programs directly through SINTRAN.
Devices belonging to this group are generally available to all users of the
computer system, also non-TPS users. They may include printers, spooling files,
card readers, magnetic tapes, disk files etc. They are allocated to an application
program when the program requests them and released by the program when it
no longer needs them. The application program will access the devices through
the standard routines available in the language it is written in, such as OPEN,
CLOSE, READ, WRITE, etc.

ND-60.111.03

1.2.2.2

1-10

Special TPS Devides - Input/Output Modules

Devices in this group are controlled by special programs called /nput/Output
Modules (I0Ms). There is one IOM for each type of device, although each |1OM
may control many devices. Each device is one unit with a device unit number.

Input/output modules are used to control devices that cannot be controlled
directly by an application program. This may be because their control is too
difficult for the application program, for exampie non-standard devices or
devices with complicated communication protocols. However, the main use for
IOMs is in connection with networks and other types of muitiplexed
connections.

A network does not belong to any one application program but may have many
terminals connected to many application programs (See Figure 1.5). The
connection between the terminal and the application program is not direct, but
goes through modems, concentrators, etc. Another type of network connection
may be the connection between two TPS systems at different processing sites
(See Figure 1.6). Application pragrams at one site may communicate over the
network with application programs at the other site.

An application program communicates with these devices through the
transaction service routines provided by TPS. A session is established between
the device and the application program and the application program can then
send messages to and receive messages from its session partner by calling these
routines. Sessions may also be established between two application programs,
either at the same processing site or across an external network. :

Sessions may be broken and new sessions established. A transaction is only
allowed to have one session at a time but it may possess several local devices,
including local terminals, at the same time.

/\/_\ aopi 1

Concentrator .

1OM aopi 2

Mode

/

appi 3

Figure 1.5: A Terminal Network

data base

appi 1 1oM1 @ @ 10M2 appl 2

Figure 1.6: Accessing a Remote Database
ND-60.111.03

1.2.23

1.2.24

1.2.25

1-11

The NSHS Screen Handling System

Terminals can be controlled by application programs through the NORD screen
handling system, NSHS, which contains routines for formatting output pictures,
reading input, field definition, cursor control, etc.

Terminals controlled by NSHS may be standard terminals or they may be special
devices controlled by input/output modules. The applications programmer,
however, does not have to know which group a terminal belongs to since the
same NSHS calls are used for all types of terminals. '

The FOCUS Screen Handling System

The Focus Screen Handling System can be used to control asynchronous as well
as synchronous terminals. The processing part can be distributed to one or
several Front End CPU’s residing in one TPS system. The communication is
transparent to the user programs (See Section 3.2)

The SIBAS Data Base Management System

SIBAS is a DBMS that provides most of the capabilities specified by the
CODASYL committee for a data base facility in COBOL. Similar facilities are-
available to FORTRAN, PLANC, NPL and MAC programmers.

SIBAS ailows direct and fast access to ail data. it provides several methods of
file organisation and access, separation of physical and logical organisation,
concurrent or exclusive access and data independence. it has facilities for
backup and restart to insure data integrity and privacy locks to prevent
unauthorised access.

The data base is defined and created using the SIBAS data definition/redefinition
language DRL. This is done independently of TPS.

The data base is accessed from application programs using the SIBAS data
manipulation language DML. The DML used by a program running under TPS is,
with a few exceptions, the same as for a program running in a different
environment, such as timesharing or batch.

It is, in fact, possible to access the same SIBAS data base from TPS,
timesharing and batch programs at the same time. All SIBAS calls wili go to a
common SIBAS interface under the control of TPS. The timesharing or batch
user will be unaware of TPS control over the data base unless a TPS restart
should happen to change its contents.

ND-60.111.03

1-12

1.2.2.6 Checkpoint and Restart

An on-line transaction processing system should have adequate facilities for
protection of the data base. If a system failure occurs in a batch system, a
backup copy of the data base can be mounted and the whole job run once more
without too much inconvenience or waste of time. If a failure occurs in an online
transaction system, reentering and reprocessing the transactions may be very
inconvenient, time-consuming or even impossible.

Facilities should be available to assure the integrity of the data base, to minimise
the amount of data lost and to restart the system automaticaily at a well-defined
point.

TPS makes use of the extensive checkpoint/restart facilities of SIBAS. These are
mainly transparent to both the user and the application program, TPS itself
controlling them. Synchronised checkpoints of the whole system are taken
automatically according to the load on the system. In addition, the application
program can take individual transaction checkpocints.

If a system failure occurs, the latest transaction checkpoint can be used to
restore the system to its status at or near the point of failure (recovery). If the
data base is incorrect at this point, synchronised checkpoints can be used to
restore the system to a previous state (rollback). (See Figure 1.7) In both cases,
those transactions which were active can be restarted automatically at the
correct point.

How often checkpoints are taken and what types of backup/restart facilities are
used are system parameters controlled by the user. He must weigh the
advantages of assuring the protection of data in the data base against the
overhead needed to accomplish this.

SYNG SYNC |
CHECKPOINT CHECKPOINT i

N N ! / POF
AN S

N {(POINT OF FAI.LURE)

roliback

POR
(POINT QF RESTART)

Figure 1.7A: Rollback without Recovery

SYNC SYNC TRANS
CHECKPQINT CHECKPOINT CHECKPOINTS l/

s POF

recovery

PCR
Figure 1.7B: Rollback with Recovery

ND-60.111.03

1.2.3

1.24

1-13

Operator Communication

A special terminal, the operator terminal, is used for starting, stopping and
controlling the TPS system. A set of commands is available for interaction with
the whole system (system directives) and for interaction with individual modules.

The system directive commands consist of the basic command functions used in
connection with system start, stop, pause, checkpoint and roliback/recovery.
These commands serve vital functions in connection with normal processing and
in case of hardware or software maifunctioning.

Other commands are available for such tasks as starting and stopping individual
TPS modules, starting and aborting transactions, changing system parameters,
and broadcasting messages.

System messages, both error and informative, will be written on the operator
terminal. Application programs may also send messages to this terminal. In a
multi-CPU system, those CPUs that do not have an operator terminai will have a
log-writer terminal for special error messages.

Message Routing and Queuing

Communication between the individual TPS modules is done by messages using
a buffer pool and queuing system controlled by the main dispatcher (MD). If the
modules are spread across more than one ND100-CPU, there is one MD for each
ND100-CPU and they wiil send messages to the correct CPUs. TPS may thus
make use of muitiprocessing facilities in a single system.

Every TPS module has a queue for messages to that moduie. When a message is
sent, it goes first to the main dispatcher. MD will put the message in the queue
for that module and it will then start the module. The module will read its queue
and process the message there. When it is done, it will usually read the queue
again in case any messages have arrived in the meantime.

Routines are also available for putting messages that have been received into a
waiting queue if they are not to be processed immediately. They can be read

from the waiting queue later and processed.

Application programs do not have to concern themselves with these queues.
They are controlled by the application program’s TPT.

ND-60.111.03

1.3

1.31

1-14

CONTROLLING TRANSACTIONS

There are two main ways of setting up a transaction, depending on whether the
connection between the terminal and TPS is permanent or only lasts as long as a
single transaction.

Type 1: Permanent Terminal Transactions

Permanently connected terminals are the simplest to handle and usually give
faster response time, because the overhead in setting up the connection
between the terminal and TPS is avoided. In addition, TPS .provides some special
applications (SIGNON and SELECT) designed mainly for permanently connected
terminals.

SIGNON helps the terminal user to sign on to the system by writing a picture on
the terminal asking for the user’s name and password. A typical SIGNON picture
is shown in figure 1.8. When the user has written his name and password,
SIGNON will check them, and if they are accepted, control will be given to
SELECT. '

/ ND TPS ON LINE AT 15.45 ON MARCH 1, 1882 \

TTTTTTTT popEpRE $SSSSSS

IARRERERS Pppopooo 33835353
™ pp po 35
T pPepeeoa 3355ssS
™ PPEEEED SSSSSSS
I po 35
) PP ss
i PP SSSSSSSS
IR PP 3S3SsSS

PLEASE ENTER YOUR NAME:

PASSWORD:

N /

Figure 1.8: A SIGNON Picture

ND-60.111.03

1-15

SELECT will help the user to start the transaction program (application) he wants
by writing a menu picture on the terminal, as shown in figure 1.9A. The user just.
has to select the item he wants and enter its number. The application will then
be started.

It is also possible to have sub-menus, i.e. one menu choice will give a new menu,
as shown in figure 1.9B. It is possible to have as many sub-leveis of menus as
desired. The user can also go from a sub-menu back to the master-menu, back

to SIGNON, or even into SINTRAN as a timesharing user.

Ve

5

8

ND TPS MASTER MENU

ACCOUNTING
PAYROLL

INVQICE
INVENTQORY

TEXT PRO CESSING

STCP

ENTRY CHOICE: .

\

Figure 1.9A: A Master Vlenu

s

N\

NO- TPS ACCCUNTING

300KEEPING
ACCOUNTS RECEIVABLE
GENERAL LEDGER |
REGISTER UPDATE
REPORTS

MASTER MENU

sToP

ENTRY CHOICE:

/

Figure 1.9B: A Sub-Menu

ND-60.111.03

1-16

However, sooner or later a user application will be started. The user will then

carry out his transaction, probably involving interaction with both terminal and
data base. '

When he is done, control will be given to another special application, SIGNOFF.
The main task of this application is to find out what type of transaction it is, in
this case a ""never-ending’’ transaction, and to terminate it accordingly, in this
case by giving control to SIGNCON.

The terminal is now ready to acceptv a new user and start a new transaction. If it
is not necessary to go through the SIGNON procedure again, SIGNOFF could
have given controi directly to SELECT.

In both cases, the terminal will not be released from TPS, i.e. the Transaction
Processing Task (TPT) in TPS controlling this terminal will not release the
terminal. There is a permanent connection between the terminal and the TPT.
There is a never-ending succession of applications running on this terminal
(SIGNON, SELECT, user application, SIGNOFF, SIGNON, SELECT, user
application, etc.).

This is illustrated in figure 1.10, Type 1.

ND-60.111.03

1-17

QDD

—— SIGNON end trans. SIGNON
SELECT trans 1 (SIGNOFF) SELECT rans 2

0

TYPE 1

S
D D <

start trans.

A
28 | _
-
{

get term. process end tran
|
9
‘Q
j

STt trans, b < fres
(SIGNQFF)
TYPE 3
l
e 17ANS, 1 transg. 1 R
trans. 2 trans. 2 sl

Figure 1.10: Types of TPS Transactions

ND-60.111.03

1.3.2

1.3.3

1-18

Type 2: Short Terminal Transactions

The other main way of setting up a transaction is by connecting a terminal to
TPS whenever a transaction is to be carried out on the terminal and releasing the
terminal when the transaction is done. This frees the terminal for other use and,

possibly even more importantly, also frees the Transaction Processing Task (TPT)
in TPS for use with another terminal.

This method should be used if there are many terminalis that are not in constant
use. They may then share a limited number of TPTs among themseives. The
disadvantage is that there is more overhead in starting up the transaction.

The procedure would be as follows:

A terminal connected to a network is inactive. The user presses a special
function key that causes a message to be sent over the network to TPS. TPS
allocates a TPT to the terminal and the TPT starts an application program that
can converse with the terminal. A dialogue follows between the user and the
application program, and the data base is read and updated. When the user
indicates to the application program that he is done, the application terminates
and both the terminal and the TPT are freed.

Type 3: Short Local Terminal Transactions

A terminal is connected locally to the computer and can be used for both TPS
grocessing and other processing. The terminal can be brought into the TPS
svstem Dy issuing a command at the TPS operator console, a special terminal
devoted to operational control of TPS. A TPT will be allocated and the apoplication
program indicated in the command started. When the application program
terminates, noth the TPT and the terminal will be freed.

ND-60.111.03

1.3.4

1.3.5

1-19

Type 4: Concurrent Transactions

A transaction that is active can start another transaction to run concurrently. A
new TPT will be allocated and the new application started. Data can be sent from
the mother task to the dauéhter task. The daughter task will not have a terminal
— if it needs one, it must set up the connection itself.

Type 5: Future and Periodic Transactions

A transaction that is active can start another transaction at some time in the
future, either at a given absolute time or periodically. When the time comes, the
transaction will be started as for Type 4. The TPS operator can also use
commands to start a single or periodic application at a specified time. TPS need
only be informed once of a periodic application. It will then be started
periodically at the correct times.

ND-60.111.03

1.4

1.41

1-20

PROCESSING A TRANSACTION

This section describes in some detail the steps involved in processing a typical
transaction using the standard version of TPS. It follows the transaction

sequentially through the TPS system from its initiation by the user until it is
terminated.

The transaction described is a transaction of Type 1, a permanently-connected
terminal transaction. A connection is established between a terminal and a TPT
when SIGNON is first started by TPOPEN (See Figure 1.11). SIGNON checks the
terminal operator's status and SELECT calls the correct user application. A
conversation is carried on between the user and the application program and the
data base is read and ‘updated. When the user has no more input and has
received all output, he indicates that the transaction is done. The application
program will terminate and the SIGNOFF application will give control back to
SIGNON to wait for the next transaction.

Starting the Transaction

The TPS system has been started initially and is in normal running state.

TPOPEN has started a number of transactions using the activate-task TSR. The
first application to be given control is the SIGNON special application.

The terminai in our example is a standard terminal controlled by the NSHS or
FOCUS screen handling system. The first time SIGNON is started, it will reserve
the terminal. After that it will call NSHS or FOCUS routines to display a picture
asking the user to enter his name, and then wait for an answer in the NSHS or
FCCUS input routine.

To start the transaction, the user will enter his name on the terminal and press
the return key. SIGNON will be started up with the reply in the input data area. it
will check the user's identification and perhaps whether that user is allowed to
use that particular terminal. SIGNON may then ask for a password, again using
NSHS or FOCUS routines. When this has been checked, SIGNON will switch to
SELECT, using the switch-application TSR. SELECT will display the user’s master
menu and wait for the user to enter the number of the entry he wants. This may
result in displaying a sub-menu, going back to SIGNON or switching to a user
application. If it is the latter, the transaction has been started.

ND-60.111.03

1-21

TCM TSR APPL FOCUS/ NSHS/SIBAS

TPQPEN (TPTY)
Activate

/_/"'" SIGNON
__\

™\ SIGNON (TPT2) -

Reserve terminali
display SIGNON picture
wait for answer

frae
TPT

Read user name password /

ey, Swiitch to SELECT
N SELECT (TPT2)

Display menu —
wait for answer

Read user
apolication name,
e $WITCTY 2O i

N\\USEZR APPL (TPT2)
Terminai giaiogue

SIBAS diaiogus

Tarrminai dialoque

Tarminate
i .

SIGNQFF (TPTR)

SIGNCON (TPT2)

| _

Figure 1.11: A Typical Transaction

ND-60.111.03

1.4.2

1.4.3

1-22

Processing the Transaction

Normally, one may envisage the transaction processing in one or more
sequences each consisting of a dialogue between the appiication program and
the user, with some activity on the data base as the result of most dialogues.

The transaction may start by asking for some information, for example anaction
type. When the user has answered (register a new customer), a dialogue can
follow, prompting the user to enter the details of the transaction (name, address,
telephone number, account number, etc.), the data base will be updated and the
user notified (the customer has been registered). The transaction may then start
a new dialogue.

The data base is accessed through normal SIBAS calls in the application
program. All of the common SIBAS data manipulation calls are available to TPS
programs, such as OPEN DATA BASE, CLOSE DATA BASE, FIND, GET, MODIFY,
STORE, ERASE, REMEMBER, FORGET, etc. It is possible to access records from
outside the data base (out-of-the-blue access) in several ways, to conduct
searches and to access records via their relationships to other records (relative
accesses).

The transaction may be an inquiry transaction, an update transaction, data entry,
report generation or any combination of these. It may use TSRs to create a
session with an 1/0O device or application program. It may access local devices by
reserving them and communicating directly with them. It may start concurrent or
future tasks or switch to another application, again using TSR routines.

Terminating the Transaction

The transaction will be terminated when the logical end of the program is
reached, when the user indicates that there is no more processing to be done,
etc. When the transaction terminates, the SIGNQFF application will be activated.
SIGNOFF may gather some statistics or do other processing and wiil end by
switching to the SIGNON application.

ND-60.111.03

2.1

ADMINISTRATING TASKS

TASKS, TRANSACTIONS AND APPLICATIONS

A task in TPS can be defined as the processing done by a Transaction Processing
Task (TPT) from the time it is allocated by the Transaction Control Module {TCM)
until it is freed again. The number of concurrent tasks at any time is thus the
same as the number of allocated TPTs.

A task-may be either a short task that only lasts for one transaction or it may be

a long task that handles many transactions in a row (but only one at a time)}.
(See Figure 2.1}.

A long task will return to the SIGNON or SELECT application between
transactions, instead of completely terminating by releasing the terminal and the
TPT. This saves the overhead of allocating a TPT every time a new transaction is
started and assures that a TPT is available for that terminal. This method should
be used mainly for terminals that are in more or less constant use, since the
terminal will be permanently connected to that one TPT as long as the task lasts.

A transaction can then be defined as the processing done either from the time a
TPT is allocated untii it is freed for a short task, or from the time control is given
to the user application until return to SIGNON or SELECT for a long task.

An application program is a user written program linked to and started by the
TPT. The application program will run under the control of the TPT and do the
actual transaction processing. When it is done processing, it can either switch to
a new application or terminate.

A task may thus consist of the sequential processing of one or many transactions
and a transaction may consist of one or more application grograms.

ND-60.111.03

TRANS

W

TRANS

s

TRANS

Wi

TRANS

2192V VaUe

Figure 2.1 Short and Long Tasks

ND-60.111.03

Allocate TPT

© APPL. 1

APPL .2

SIGNOFF -
free TPT

).

SELECT

APPL. 1

APPL. 2

APPL. 3

SIGNOFF

R

Task administration includes starting tasks, terminating tasks and transactions,
and switching application programs. (See Figure 2.2.) Task adminstration can be
done by application programs and by other TPS components, such as
input/output modules and the system operator. This chapter will only discuss the
task adminstration that can be done by application programs.

TACTV ACTIVATE A CONCURRENT TASK
SET THE EXECUTION TIME FOR A
TASET FUTURE TASK
EXECUTION INTERVAL FOR
TINTV | SEme

A PERIODIC TASK

DISCONNECT THE EXECUTION

TDCNT TIME/INTERVAL

TS WAP :‘ggg:ALo ANQTHER APPLICATION '
TSTOR TERMINATE THE TRANSACTION

TTERM TEAMINATE THE TASK COMPLETELY
TSTST SET THE TERMINATION STaATEGY

TSC ST SET THE CLOSE STRATEGY

TSAST SET THE ABEND STRATEG

Figure 2.2: Task Administration TSRs

ND-60.111.03

2.2

24

STARTING TASKS AND SWITCHING APPLICATIONS

Tasks may be started in several ways:

— a session request from an IOM to a TCM will start a new task (See Section
331)

— a session request from an application program to a TCM, requesting a
session with another application program, will start a new task. This is
done with the TSOPN TSR and is described in section 3.3.3.

— the operator can start a task using the activate application command.

— the special application program TPOPEN can start tasks when the TPS
system is initially started (See Section 6.3)

— an application program can start both concurrent, future and periodic tasks

Thus an application program is allowed to start both concurrent and future tasks
and to set the execution interval for periodic tasks. These functions are carried
out through TSRs.

ND-60.111.03

2.2.1

2211

Immediate Task Activation

TACTV - The Activate Conchrrent Task TSR

An application program may activate a new task on the same TCM to run
concurrently with itself. A new TPT will be allocated if one is available and the
given application program started. Up to 2000 bytes of data can be transferred to
the activated task. The activated task will receive the data in the beginning of the
task common data area(See Section 7.1.2).

CALL TACTV (<application number>, <record >, <size>, <status>)
CALL 'TACTV' USING <application number> <record> <size> <status>.

If no TPT is available, an error code is returned in the status parameter. The
availability of a TPT is determined by the number of free TPTs and the priority of
the new application.

The oid task and the new one will run independently and have no common data
area. If they want to communicate, one way is to use the TSOPN TSR instead
of the TACTV TSR, since a session will then be established between them.
Another way of communicating is through internal devices (See Section 4.4).

Example - FORTRAN

PROGRAM 1

COMMON/PRIVATE/ITERM(128),IPRIV(2000)

DIMENSION IREC(20) data record to be sent to
. program 2
CALL TACTYV(52,IREC,40,ISTAT) activate program 2 (appl 52),

send U0 bytes of data to it

IF (ISTAT.LT.0) GO TO error routine check return status

.

PROGRAM 2 (APPLICATION 52)

COMMON/PRIVATE/ITERM(128),IPRIV(S)

DIMENSION IDATA(20) define data area
DO 10 I=1,20 move data from beginning of
10 IDATA(I)=ITERM(I) common area to right area

ND-60.111.03

Example - COBOL
PROGRAM 1

WORKING-STORAGE SECTION.
01 NSHS-AREA.
02 ITERM COMP OCCURS 128.
02 IPRIV COMP OCCURS 2000.
01 DATA-REC COMP OCCURS 20. data record to be sent to
. program. 2

MOVE 52 TO APPL-NR. activate program 2 (appl 52),
send 40 bytes of data to it

CALL °TACTV® USING APPL-NR DATA-REC CUO STATUS-CODE.

IF STATUS-CODE < 0 GO TO ERROR-ROUTINE. check return status

PROGRAM 2 (APPLICATION 52)

WORKING-STORAGE SECTION.
01 NSHS-AREA.
02 ITERM COMP OCCURS 128.
02 FILLER REDEFINES ITERM. data from program 1 put at

03 PROG1-DATA COMP OCCURS 20. beginning of common area
03 FILLER PIC X(216).

01 DATA-REC COMP OCCURS 20. define data area

MOVE PROG1-DATA TO DATA-REC. move data to right area

ND-60.111.03

2.2.2

2.2.2.1

Future and Periodic Task Activation

The following timing functions are available to application programs

— set the absolute execution time for starting an application
— set the interval for a periodic application
— remove (disconnect) both absolute and periodic timing for an application

Up to 16 applications can be in the time queue and up to 16 in the interval list.
Only 1 absolute start time can be given for an application.

Timing information is stored on the disk when synchronized checkpoints are
taken and is therefore restored at rollback.

TASET — The Set Execution Time TSR

An application program may activate a task, on the same TCM or a different one,
to be started at a specified absolute time. Two parameter values may also be
specified. ’

CALL TASET (<module>, <application number>, <parameter 1>,
< parameter 2>, <time>, <status>)

CALL 'TASET" USING <module>, <application number>, <parameter 1>,
<parameter 2> <time>, <status>.

When the specified time {second, minute, hour, day, month, year) has been
reached, a new TPT will be allocated on the specified TCM and the application
program wiil be started. The two parameter vaiues (for exampie a terminal

number and type) will be placed in the beginning of the task common data area.

If the specified time has already been reached when the TSR is issued, the new
task will be started immediately.

if no TPT is available when the task is to be started, an error message will be
written on the TPS operator console.

The time resolution is 5 seconds.

ND-60.111.03

2-8

Example - FORTRAN i

DIMENSION ITIME(6)

ITIME(1)=0 start appl 8 on TCMO
ITIME(2)=0 at absolute time 10am
ITIME(3)=10 on December 31, 1980
ITIME(4)=31 with parameters 46 and 4
ITIME(5)=12)

ITIME(6)=1980
CALL TASET(32,8,46,4,ITIME,ISTAT)
IF (ISTAT.NE.O) GO TO error routine

Example - COBOL

MOVE ‘0’ TO ABS-TIME(1) ABS-TIME(2). start appl 8 on TCMO

MOVE “10° TO ABS-TIME(3). at absolute time 10am on

MOVE “31° TO ABS-TIME(H#). December 31, 1980

MOVE ‘127 TO ABS-TIME(S).

MOVE “1980° TO ABS-TIME(6).

CALL °‘TASET’ USING TCM-0 APPL-8 TERM-NR TERM-TYPE
ABS~-TIME STATUS-CODE.

IF STATUS-CODE NOT = 0 GO TO ERR-ROUTINE.

ND-60.111.03

2.2.2.2 TINTV — The Set Interval TSR

An application program can set the execution interval for an application. The
next time the application is activated, it will become periodic.

CALL TINTV (<module>, <application number>, <parameter 1>, <parameter
2>, <interval>, <status>)

CALL 'TINTV' USING <module>, <application number>, <parameter 1>,
< parameter 2>, <interval>, <status>.

The TINTV TSR will not itself start periodic execution of the specified apblication
program. This must be done by some other means (see section 2.2). Once it has
been started, however, it will continue periodically at the specified time intervals.
The next interval will start at each time of activation.

A periodic application can have only one execution interval. If it already has an
interval, the new interval will replace the old one.

An application can set its own interval, but if it is not already periodic, the next
execution must be started by some other means.

The execution interval is specified as seconds, minutes, hours and days. Since
months and years are not well-defined time spans, long intervals must be
specified in days.

The time resolution is 5 seconds.

Example - FORTRAN

DIMENSION INTVL(H4)

INTVL(1)=0 set eaxecution interval to
INTYL(2)=30 1 hour and 30 minutes for
INTVL(3) =1 appl 5 on TCMO (no
INTYL(4)=0 parameters)

CALL TINTV(32,5,0,0,INTVL,ISTAT)

IF (ISTAT.NE.O) GO TO error routine 1

CALL TACTV(5,0,0,ISTAT) start it (no data)
IF (ISTAT.NE.Q) GO TO error routine 2

Example - COBOL

MOVE “0° TO INTERVAL(1) INTERVAL(H4).
MOVE “30° TO INTERVAL(2). set execution interval to
MOVE “1° TO INTERVAL(3). 1 hour and 30 minutes
CALL ‘TINTV® USING TCMO APPL-5 ZERO ZERO
INTERVAL STATUS-CODE.
IF STATUS-CODE NOT = 0 GO TO ERR-ROUT-1.
CALL “TACTV ® USING APPL-5 ZERO ZERO STATUS-CODE.
IF STATUS-CODE NOT = 0 GO TO ERR-ROUT-Z2.

ND-60.111.03

2223

2-10

TDCNT — The Disconnect Application TSR

An application can be removed (disconnected) from the time queue and the
interval table.

CALL TDCNT (<module>, <application number>, <status>)

CALL ‘'TDCNT' USING <module>, <application number>, <status>.

The application will be immediately removed from both time queue and interval
table with this TSR.

Examples

CALL TDCNT(32,5,ISTAT) disconnect appl 5 on TCMO

CALL °‘TDCNT” USING TCMO APPL-5 STATUS~CODE.

ND-60.111.03

223

2.2.3.1

2-11

Switching to Another Application

TSWAP - The Switch Application Program TSR

The processing of a transaction may involve the activation of several application
programs, one at a time. When one program is done, it may switch to another
program instead of terminating.

The TSWAP TSR is used to switch to another application program.

Examples

CALL TSWAP(25,ISTAT) switch to appl 25
Error routine (will not return here if OK)

MOVE 25 TO NEXT-APPL.
CALL “TSWAP USING NEXT-APPL STATUS-CODE.
Error routine (will not return here if 0K)

If the old application had a terminal or a session, the new application will have
the same terminal or session partner and may continue to exchange messages
with this partner.

The new program will have access to the data area of the old program if it is
defined as belonging to the task common data area. In a FORTRAN program, this
will be the COMMON/PRIVATE/area. COBOL programs must contain a section of
working storage which is identical in all applications which may be executed
within one task.

The new program can be written in the same ifanguage as the previous one or in
any other of the available languages.

When both COBOL and FORTRAN programs are to be executed in the same
task, the data areas should be arranged as in Figure 2.3 It is the programmer’s
responsibility to make the two maps identical and avoid destruction of common

data at run time. For a more detailed description of common areas see Chapter
7.

ND-60.111.03

2.2.4

2-12

FORTRAN cos8oL
Common area for Identical section
all applications of working storage
f il appiication
TASK oratiapp
COMMON
AREA
Runtime stack ‘ Individual section
APPLICATION | of working storage
for each application
LOCAL ‘
AREA

Figure 2.3: Application Data. Area

The SIGNON and SELECT Special Applications

SIGNON and SELECT are special applications supplied with TPS. The standard
versions of the special applications are discussed in chapter 5. They are
mentioned here because they may play an important role in task administration.

The main function of SIGNON is to check the identity of the user and perhaps
ask for a password. The standard version also reserves the terminal and initiates
NSHS or FOCUS if necessary. If the user has been accepted, SIGNON ends by
switching to SELECT.

The function of SELECT is to ask the user to select the application to be run.
When the user has answered, the SELECT application will switch to the desired
user application program.

ND-60.111.03

2.3

2.3.1

2.3.1.1

2-13

TERMINATING TRANSACTIONS

When an application program is done, it can either switch to a new application
program using the TSWAP TSR (See Section 2.2.2) or it can terminate the
transaction. If the transaction is terminated, this can be done normally or
abnormally.

Normal Termination

Normal termination of a transaction can be caused by:

— reaching the logical end of the program (the END or STOP RUN
’ statement)

— using the TSTOP TSR with a stop code of 0 or using the TTERM TSR

— the LEAVE monitor call (CALL LEAVE)

TSTOP - The Stop Transaction TSR

The TSTOP TSR may be used to terminate a transaction either normally with a
stop code of 0 or abnormally with any other stop code. A negative stop code can
be used to give a formatted error message from NSHS (—1) or SIBAS (—2).

Norma!l termination will activate SIGNOFF, while abnormal termination will
activate ABEND.

The application should have performed appropriate housekeeping on the data
base, session partner, devices, etc.

CALL TSTOP { <stop code>)
CALL 'TSTOP’ USING <stop code>.

Examples
SCODE=3
CALL TSTOP(SCODE) stop code = 3
CALL “TSTOP USING ZERO. stop code = 0

ND-60.111.03

2.3.1.2

2.3.13

2-14

TTERM — The Terminate Task TSR

It is also possible to terminate a task directly instead of by going to SIGNOFF.
The termination will be a complete termination and the TPT will be freed.

CALL TTERM (<checkpoint>)
CALL 'TTERM’ USING <checkpoint>.

A transaction checkpoint is normally taken when a task is completely terminated
(see TTRAN). However, this can be prevented by using TTERM with the
checkpoint parameter set to 1. This saves the overhead of taking a transaction
checkpoint, but it could create a problem if recovery is done on the TPS system.

The application program should close the data base, close a session, release
resources, etc., before using the TTERM TSR.

Examples
CALL TTERM(O0)

CALL “TTERM’ USING ZERO.

The SIGNOFF Special Application

When a transaction terminates normally, the SIGNOFF special appiication is
given control to carry out the actual termination. There are several ways of
terminating a transaction, the main choice being between complete task
termination (freeing the terminal and the TPT), and continuing the task with a
new application, usually SIGNON or SELECT.

ND-60.111.03

2-15

2314 TSTST - The Set Termination Strategy TSR

SIGNOFF uses the termination strategy for the task to determine which course to
follow. When the task is originally started, the termination strategy is set to 1,
which usually indicates complete termination. The TSTST TSR can then be used
to change the strategy to any other value, the meaning of each value depending
on the way it is interpreted by SIGNOFF.

CALL TSTST (<term. strategy>, <term. appl.>)
CALL 'TSTST' USING <term. strategy>, <term. appl.>.

Examples
CALL TSTST(1) complete termination, TPT
released
MOVE 20 TO TERM-APPL. user termination application

CALL “TSTST® USING FOUR TERM-APPL.
In addition to setting the termination strategy, the TSTST TSR can be used to

indicate a user-written termination application. The standard termination
strategies are described under the SIGNOFF application in chapter 6.

ND-60.111.03

2.3.15

2-16

TSCST — The Set Close Strategy TSR

When the CLOSE-TPS operator command is given, a controlled stop sequence
will be initiated. Normally, active tasks (TPTs) will continue until they - are
terminated, but no new TPTs may be allocated. When all TPTs have been freed,
TPS will be stopped.

However, since long tasks do not free their TPTs between transactions, a close
sequence will never be completed in systems with this type of task. To avoid
this, it is possible to indicate that a task is to be terminated immediately and
completely if a close command is given. This is done by setting the close
strategy to immediate termination with the TSCST TSR.

On the other hand, to prevent a transaction from being terminated in the middle
of processing, the close strategy can be set to normal termination while the
actual processing is being done. Then, when that transaction is complete, the
close strategy may be set back to immediate termination. This will also cause the
task to be terminated if a close command has already been given.

The close strategy can be set in both user applications and special applications.
For example, SIGNOFF may set it to immediate termination, and the last thing
SELECT may do before starting a user application is to set it to normal
termination. But it may also be left to the application programmer to control this.

CALL TSCST (<close strategy>)
CALL 'TSCST" USING <close strategy>.

The value of <close strategy > is either 0 (normal termination) or 1 (immediate
termination). If it is 1, TSCST will also check if a close command has already

been given and terminate the task if it has.

The close strategy is normally set to 1 in the beginning of SINON and changed to
0 before swapping to the SELECT application.

Examples
CALL TSCST(1)

CALL “TSCST” USING ONE.

ND-60.111.03

2-17

2.3.2 Abnormal Termination

Abnormal termination of a transaction can be caused by:
— the FORTRAN or COBOL runtime system

— the TPS system

— the TPS operator

— the application program itself by using the TSTOP TSR with a non-zero
stop code.

2.3.2.1 The ABEND Special Application

When a transaction is terminated abnormally, the ABEND special application will
be called before termination to write an error message, take a dump or do some
other special processing. When the ABEND application is done, it will usually
switch to SIGNOFF to terminate as for normal termination.

2.3.2.2 TSAST - The Set Abend Strategy TSR

ABEND uses the abend strategy for the task to determine what action to take in
connection with abnormal termination. The default value is 1 when the task is
started. The TSAST TSR can be used to change the strategy to another vaiue,
the meaning of each vaiue depending on the way it is interpreted by ABEND.

CALL TSAST (<abend strategy>, <abend appl.>)
CALL 'TSAST' USING <abend strategy> <abend appl.>.

Examples

IABAPP=12 user abend application

CALL TSAST(4,IABAPP)

CALL “TSAST USING THREE. dump the data area on the printer
in addition to setting the abend strategy, the TSAST TSR can be used to

indicate a user-written abend application. The standard abend strategies are
described under the ABEND special application in chapter 6.

ND-60.111.03

2.3.23

2324

2--18

lllegal Monitor Calls

The monitor call routines allowed in TPS are listed in appendix E. If a FORTRAN
or COBOL program calls an illegal monitor call routine, the program will be
abnormaily ended with the error ‘illegal use of TSRs'.

If an illegal routine is called from a MAC or NPL program, the routine will be
executed and no error message written. However, the programmer is strongly
advised not to use routines not on the list, since they may hang the TPS system
or cause unpredictable results. In addition, PLANC, MAC and NPL programs
should not use the MON instruction directly, but call the corresponding
FORTRAN monitor call subroutine. :

Timeout

When an application is loaded, a maximum time between TSR calls is set. If the
application runs longer than the given time, it will be abnormally ended with the
error ‘timeout’. The timeout depends on the application priority, a low priority
giving a long timeout. Setting the maximum time to 0 will allow the application
to run for an indefinite time. The application timeout can be turned on and off
with the TTONS and TTOFF TSRs.

There is also an operator timeout. This is useful if, for example, the terminal has
been turned off or the operator does not answer for some other reason. The
operator timeout time can be changed with the TSOPT TSR.

A timeout is also used when restarting the system after roliback or recovery. If
communication with the terminal is involved during restart (See Section §.2.3),it
is not certain that the terminal operator is still there or that the terminal is stiil
turned on. If no answer is received within a specified time, the application is
abnormaily ended.

ND-60.111.03

3.1

3.1

3-1

INPUT/OUTPUT PROCESSING

This chapter describes how to handle input and output processing under TPS.

The data base is controlled by the SIBAS data base management system through
standard SIBAS calls. Using SIBAS in TPS application programs is discussed in
section 3.1.

Display terminals will usually be controlled through the NORD Screen Handling
System, NSHS or FOCUS. This system can be used for most types of display
terminals, connected both locally and through input/output modules. NSHS and
FOCUS are discussed in section 3.2.

Other input/output devices are of two types. The first type is special TPS devices
controlled by Input/Output Modules (IOMs) and accessed by the application
program through special Transaction Service Routines (TSRs). These are
described in section 3.3.

Finally, TPS application programs may aiso use standard devices and files
available to all users of the local computer system, aiso non-TPS users. These
devices and files are controlled directly by the application program using
standard input/output statements and SINTRAN monitor cails. Standard device
handling is discusssed in section 3.4. ' '

SIBAS UNDER TPS

Data Definition and Manipuliation

The data base in a TPS system is controlled oy the SIBAS data base
management system. The data base is defined and created using the SIBAS data
definition/redefinition language DRL. This is done independently of TPS, in
background (timesharing or batch) mode.

The data base is accessed from application programs using the SIBAS data
manipulation language DML. A TPS application program uses the same SIBAS
calls to access the data base as a program running in a different environment
such as timesharing or batch. These calls are described in detail in the SIBAS
User’'s Manual and a summary of SIBAS DML statements is found in appendix G.
This section only discusses special considerations which should be taken when
using SIBAS under TPS.

ND-60.111.03

3.1.2

The $IBAS Interface Routine |

When an application program calls a SIBAS routine, the call can not go directly
to SIBAS, but will go to the SIBAS interface routine (DML simulator). (See
Figure 3.1). This routine functions as a communication interface between the

user and SIBAS, sending calls from one to the other via internal devices or core
common.

This interface routine makes it possible to access the same SIBAS data base
from TPS programs, other RT programs and background (timesharing and batch)
programs at the same time. The interface is divided into a user side and a SIBAS
side, and all SIBAS calls wiil go from the individual user interfaces to the
common SIBAS interface and back again. ”

The ability to access a TPS data base from background programs can be an aid
to program testing. The programmer must however be aware that no checkpoints
are taken of background programs and a TPS rollback or recovery operation may
cause the data base and the background program to be inconsistent.Normaily
programs testing in background will have their own test version of the data base.

Sig 1

TPS
RT
programs

Data
bass

TPS
oML
simulator

communi-
cation
hu fer

SiB 1
data
seqment

|
|
|
|
i
5
L

Jackgrouna
arograms

sacxgrouna |

GML
simuiatar

Qther
|7
programs

RT
oML
simulator

Sig2

communi-
cation
buffer

518 2
data
segmaent

Data

Figure 3.1: SIBAS User Interface

base

ND-60.111.03

3.1.3

3-3

Opening and Closing the Data Base

The data base is opened and closed using the normal SOPDB, SRRLM and
SCLDB calls. Opening the data base will cause it to be ""physically’”” opened if no
other program has it open at the moment, otherwise opening it will just cause
the caller to be registered as a user. Since the former involves more overhead
than the latter, it may be most convenient for the TPOPEN special application to
open the data base physically and to leave it open until the TPCLOSE application
closes it physically. Application programs can then open and close it as needed
without causing unnecessary overhead.

Another factor to be considered in opening and closing the data base is that a
transaction checkpoint is taken every time the data base is opened or closed.
This overhead can also be avoided if the data base is only opened once for each
user, for example the first time SIGNON is called. This of course is only possibie
for long tasks, since the ‘user’ is the TPT and this must not change. On the other
hand, taking a transaction or synchronised checkpoint involves more overhead if
the data base is open. If an application program has a long phase with no data
base accesses (reading input from the terminal, for example), it may be best to
close the data base and open it again afterwards, if transaction checkpoints are
taken often (See Figure 3.2).

For a detailed discussion of checkpoint and restart see chapter 5.

Using More Than One Data Base

Application programs are allowed to use more than one data base, but if they do
and the checkpoint/restart facility is used, an application program must only have
one data base opened at a time. [(See Figure 3.3)If this rule is not followed, a
restart could cause problems, since checkpoints are only taken of the data base
in current use (the one given in SETDV). The other data base may not only be
inconsistent, but may not be closed properly at rollback or opened at restart.
These problems are avoided if only one data base is open at a time for each
application program (different application programs may, however, have different
data bases open at the same time). “

ND-60.111.03

34

Start

o Write term picture

g [18ad input from term
take trans checkpoint

more
input ~ CALL SETDV (1)
CALL SOPDB (data base 1)

yes

no

Open database
Get record CALL SCLDB (data base 1)

3

CALLSETDV (2)
Update record CALL SOPDB (data base 2)

mare
updating

no CALL SCLDB8 (data base 2)

2

Cliose data basa

yes A

processing?

Terminate

Figure 3.2 Database Open-Close Figure 3.3 Using more than one Database

ND-60.111.03

3-5

3.1.5 SIBAS in ND-500 Multi-CPU TPS

In ND-500 muiti-CPU TPS, SIBAS process(es) may run in both the ND-100 and
the ND-500. Applications running in either CPU may call any SIBAS-process, the
SIBAS device number identifies the SIBAS-process, e.g. SIBAS-number 0 may
run in the ND-100 and SIBAS No. 1 and No. 2 in the ND-500. Apart from the
SIBAS device number, there are no other differences in calling SIBAS on another
machine from the application’s point of view. Note that when calling SIBAS on
another machine than where the application is running (E.g. ND-100 - ND-500),
you get a substantial increase in system overhead. Consuit the SIBAS User's
Manual (ND-60.127) for further information on overhead and on how to call
SIB-DML from applications running on the ND-500.

ND-60.111.03

3-6

Restricted SIBAS Calls

Certain SIBAS functions are not controlled by user application programs, but by
special applications called by TPS when these functions are required, (See
Section 6.4). These functions are synchronised checkpoint, rollback and recovery
and they are controlled by the CHECKPOINT, ROLLBACK and RECOVER special
applications respectively.

Since checkpoint/roliback/recovery affects the whole TPS system, SIBAS
routines for these functions must not be called by user application programs.
This holds also for logging routines such as initiating the log files and turning the
routine log on and off during recovery.

The special applictions also control the state SIBAS is in at any time and routines
that change the state must therefore not be called from user application
programs. ’

Other SIBAS routines which should not be called are BSEQU and ESEQU since
these are used in a special way by TPS. The THSYN (hold synchronized
checkpoint) and TTSYN (allow synchronized checkpoint} TSRs should be used
instead to indicate critical sequences.

The reason for this is that when recovery is done, SIBAS will reprocess all calls
from the last synchronized checkpoint to the end of the last critical sequence. At
the same time, TPS will restore transactions to the last transaction checkpoint. If
the transactions are to continue, these two points must be the same. To achieve
this, the transaction checkpoint routine makes use of BSEQU and ESEQU.
However, if recovery with automatic transaction restart is not used, user
application programs may call TBSEQ and TESEQ. (See Appendix H.)

The restricted SIBAS cails are shown in figure 3.4.

ND-60.111.03

Checkpoint/rollback/recovery

GCHPO SCROLL SICON
SCHPO SREPR
Logging
INLOG ONLOG OFLOG
Status
START SRUN SFINI
STOPS SPAUS STREP
SRECO SPASS
Miscellaneous
RESIB CHCOM RBLAN
RELSI SIBIO SBLAN
SABOR STRLG ZTRB

Figure 3.4: Restricted SIBAS Calls

ND-60.111.03

3.2

3.2.1

3.2.2

3.2.2.7

3-8

NSHS AND FOCUS UNDER TPS

Handling Display Terminals

Display terminals can be controlled through the NORD Screen Handling System
(NSHS) or the FOCUS Screen Handling System. It is of course possible to write
to and read from display terminals using the standard /O facilities (as discussed
in section 3.4), but NSHS or FOCUS provide more advanced facilities for screen
handling. In the ND500, only FOCUS ought to be used, or you will get a great
amount of system overhead.

The NSHS System

NSHS provides facilities for picture definition with leading texts and data fields,
various field types, input control, cursor control etc. NSHS can be used
for standard terminals and some terminals controlled by /O modules
(See Figure 3.5). The NSHS calls are the same for both types. However, each
type has its own version of NSHS and the correct version must be used. This is
described under loading applications.

Defining and Using Pictures

Pictures are defined using the NORD screen definition system. This is a
background program which is run as a SINTRAN timesharing program or a batch
job, not as a TPS program. Defining pictures is discussed in section 7.7.

After a picture has been defined, it can be used by a TPS application program
via calls to the NORD screen library system. These calls are listed in appendix F.
For a complete discussion of the screen definition system and the screen library
system, see the NORD Screen Handling System Manual.

ND-60.111.03

3.2.2.2

Q¢QfQCand Restart

Control Q (pressing the control and the Q keys simultaneously) 3 times in a row
has a special function in screen handling. It will clear the screen and write out
the latest picture and any input to the fatest RFLDS call. If input from one picture
is read with several RFLDS calls, input to previous RFLDS calls is not shown,
since it has already been sent to the application program.

This Q€Q°Q° function is used normally to restore a picture if, for example, the
terminal is turned off by mistake or if the picture disappears because of power
failure.

Q°QcaC is used by TPS in connection with system restart (See Section 5.3.2),
in order to restore the screen picture, which may have been lost when the
system was down, and to position the cursor correctly. The terminal operator is
instructed by the RESTART application to press Q°Q°QC. When he does so, the
latest picture and any input to the latest RFLDS will be restored. Input to
previous RFLDS, however, which has already been processed by the application
program, will not be restored. This may cause some confusion for the terminai
operator as to what has been registered, even though the cursor will be
positioned properly. One way to avoid this situation is to read. all input from one
picture with a single RFLDS call if this can be fitted to the program logic.

ND-60.111.03

3-10

APPL
APPL [[
CALLWRPTD CALL WRPTD
NSHS . NSHS
Write picture Send picture
onscreen picture == ininternal
files message format

Message.| routing

\

Route
picture to IOM

\

oM

LCCAL TERMINALS
Write oicture

on screen

) NETWORK TERMINALS
Figure 3.5.A: NSHS for Local and Special Terminals

ND-60.111.03

3.2.3

3.2.3.1

3-11

FOCUS Level 1

FOCUS Level 1 is a high level screen handling system that can be used to control
local or remote asynchronous terminals or synchronous (buffered) terminals
using 1SO 1745 or 3270" as line procedure. The calls to the screen handling
system are the same for locally connected terminals and for remote terminals.
The communication is carried out by the TPS system which establishes a session
between the application’s TPT and the remote FOCUS process, and calls
“FCINITE"” with specific parameters.

* Not yet implemented.

Defining and Using Forms

The definition of forms (pictures) is done using the FOCUS-DEFINE system. This
is a background program which is run as a SINTRAN timesharing program, not
as a TPS-program. Defining pictures is discussed in Chapter 7.8.

After a picture is defined, it can be used by a TPS application program via calls
to the FOCUS library system. These calls are listed in Appendix F. For a complete
description of the FOCUS screen handling system, see the FOCUS Screen
Handling System manual. '

ND-60.111.03

3.2.3.2

3-12

Local or Remote Asynchronous Terminals i

If the load of the system becomes too big, the processing part of the screen
handling can be distributed to one or several Front End CPUs (See Below).

Agpptications
+FOCUS
R~
— —~ -
Applications \\
+Communication \\
Library/Call irmerface eeanwa.

Processing
Part of FOCUS

Figure 3.58: FOCUS on One or Several CPUs

Those terminals that are to be used on a FE CPU are defined in the user
configuration (See chapter 4.2.1.6 in the TPS System Supervisor's Guide).

For each terminal the logical device number, terminal type and CPU-number is
defined. This information is sent to the FE CPU by the SIGNON special
application when establishing a session between the local application and the
remote CPJ process.

ND-60.111.03

3.2.33

3.234

3-13

Synchronous/Buffered Terminals Using FOCUS

A special version of FOCUS is developed for buffered terminals using
1/0-modules.

The calls to FOCUS are the same, but some more calls are added to enable use
of the special features of these terminals, such as set high/low intensity and
lock/unlock fields. The FOCUS calls operating on just one field are not relevant
for these terminal types. The forms must be compiled by a post processor before
use.

ND-100 — ND-500 Incompatibilities in FOCUS

Application program using FOCUS in the ND-500 cannot switch (using the
TSWAP TSR-routine) to a new application in ND-100 and continue to use FOCUS
with the FOCUS-initiation set by the previous application in ND-500 and vice
versa. The new application must then call ‘FCINITE" as the first call to FOCUS.
The FOCUS internal data format is different in the ND-100 and the ND-500 due to
the difference in word-length of the two machines.

ND-60.111.03

3.3

3-14

SPECIAL TPS DEVICES

Special TPS devices are devices that are controiled by /0. modules (IOMs). The
main use for IOMs is in connection with networks and distributed processing, but
they may also be used for any other devices that are not controiled directly by
the application.

The IOM does the actual reading and writing on the device according to the
protocol requiréd by the device. After being read, data is transformed to the
internal TPS message format and sent to the application program via the TPS
message routing system. Data from the application program to the device is sent
to the IOM in the internal protocol and written on the device by the IOM in the
device format.

All handling of special message protocols, formatting, unformatting and errors is
done by the 1OM. The application program uses a set of simple calls to
communicate with devices belonging to this group (See Figure 3.6). Note that

~ some terminals controlled by IOMs may be accessed from the application

program through NSHS calls. Using NSHS is discussed in section 3.2.

In addition to the TSR routines described in this chapter, the TBRDC and TTEXT
TSRs can be used to broadcast a message to one or all units controlled by an
10M. These TSRs are described in chapter 4.

- Input/output modules are not a part of the default TPS system, since the number

of different types of devices they can handle is practically unlimited. Several
IOMs have been written for the most common devices and these can be
acquired as TPS options.

? . . N . . ; . .
/ 5 OP/V Open a session with device or application program

7SCLO

Close the session

TSEST

Read session status information

TSMS56

Send a message to the session partner

TRMSG

Read a message from the session partner

Figure 3.6: Communication TSRs for Special TPS Devices

ND-60.111.03

33.1,

3-15

Session Request from a Device

The connection between a special TPS device and an application program is
called a session. In order to establish this connection, a session requestis sent
from one of them.

A session request from a device will result in the allocation of a TPT and the
starting of a transaction. The steps in accomplishing this are (See Figure 3.7A):

— the device sends a special message to the IOM requesting a session

— the |IOM sends a session request to the TCM with the application name and
the logical device unit as parameters

— the TCM allocates a free TPT to the session and sends the session request
on to the TPT

— the TPT registers the logical unit as session partner, sends a session
response back to the IOM and starts the application program

— the IOM registers the session response and connects the address of the
TPT with the device unit

As long as the session lasts, the IOM will send messages from that device to the
correct TPT and the TPT will send messages from the application program to the
device via the IOM. The device and the application program are session
partners. The apolication program communicates with its session partner through
the read-message and send-message TSR routines, the device communicates
through the IOM. The communication mode is haif-duplex.

Note that up to 2000 bytes of data may be sent with the session request. When

the application program is started, this data wiil be placed at the beginning of
the task common data area. {See section 7.1 for a discussion of data areas.)

ND-60.111.03

3-16

TPT 1 APPL.]
1OM
/ UNIT 2
N uNiT1 | TPT3
\ TPT2 APOI 2
unitz | TPT1 7
UNIT 3
A UNIT3 | TPT2 = _
T3 APPL. 3
\ UNIT 1

Figure 3.7A: Device-Application

TPT AZO(
TPT3
TPT 2 APPL. 2
—— e e e e e e | SNET T
TPT 3 APOI 2
]
TOT 1 eemsems——
t
TPT4 , APOI 1
s e conrin e v e | NI T 2

Figure 3.78: Application-Application

SESSIONS WITHIN SAME TPS SYSTEM

ND-60.111.03

3-17

3.3.2 TSOPN — The Open - Session TSR

An application program is only allowed to have one session partner at a time. If
it has no session partner, it may establish a session. This session may be to a
device controlled by an IOM, but it does not have to be; it could be to another
application program. It could also be to a device or an application program in
another TPS system (see below).

A session is established fram an application program with the TSOPN TSR.

CALL TSOPN (<module>, <sub-address>, <record>, <size>, <more>,
< status>)

CALL 'TSOPN’ USING <module> <sub-address> <record> <size>
<more> <status>.

Within a single TPS system, the sub-address parameter is the identification of
the session partner, either a device or an application program. The module is the
identification of the module controiling the unit, an IOM if device, a TCM if
application program.

Example of TSOPN to application program - FORTRAN

DIMENSION IMOD(4),IAPPL(3)
CHARACTER TCM%*4
EQUIVALENCE (TCM,IMOD(3))

IMOD(1)=2 ‘ addr type is char string
IMOD(2)=4 length = U4 bytes

TCM= "TCM1° module is ‘TCM1°
IAPPL(1)=1 sub-~addr is appl nr
IAPPL(2)=2 length = 2 bytes (1 word)
IAPPL(3)=16 unit is appl nr 16

CALL TSOPN(IMOD,IAPPL,0,0,0,ISTAT) open the session
I7 (ISTAT.NE.O) GO TO error routine check return status

Example of TSOPN to application program - COBOL

MOVE 2 TO MOD-ADD-TYPE. addr type is char string
MOVE 4 TO MOD-ADD-SIZE. length = U4 bytes

MOVE °‘TCM2° TO MOD-NAME. module is ‘TCM2°

MOVE 1 TO APPL-ADD-TYPE. sub-addr is appl nr
MOVE 2 TO APPL-ADD-SIZE. length = 2 bytes

MOVE 22 TO APPL-NUMBER. unit is appl nr 22

MOVE 2000 TO REC-LENGTH. 2000 bytes of data

MOVE 1 TO MORE. and more to follow

open the session
CALL ‘TSOPN’ USING MODULE APPLICATION DATA-~REC
REC-LENGTH MORE STATUS-CODE.
IF STATUS-CODE NOT = 0 GO TO ERR-ROUTINE. check return status

ND-60.111.03

-18

Example of TSOPN to device - FORTRAN

DIMENSION IMOD(3),IUNIT(3)
CHARACTER IREC*80

IMOD(1)=1
IMOD(2)=2
IMOD(3)=22B
IUNIT(1)=1
IUNIT(2)=2
TUNIT(3)=20

CALL TSOPN(IMOD,IUNIT,IREC,80,0,

addr type is the TPS module nr
length=2 bytes (1 word)

TPS module nr of IBM3270 emulator
sub-addr is the unit nr

length=2 bytes (1 word)

unit is channel nr 20

open the session and send 80 bytes
ISTAT) of data

IF (ISTAT.NE.O) GO TO error routine check return status

Example of TSOPN to device - COBOL

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE

2 TO MOD-ADD-TYPE.
4 TO MOD-ADD-SIZE.
‘SX25° TO MOD-NAME.
3 TO SUB-ADD-TYPE.
12 TO SUB-ADD-SIZE.
X25-NUMBER TO SUB-ADD-NAME.

CALL

addr type is a character string
length=U4 bytes
module is X.25 I/Q module
sub-addr is in native mode for SXZ5
length=12 bytes

unit is X.25 number
open the session

‘TSOPN” USING MODULE SUB-ADDR ZERO ZERO ZERO STATUS-CODE.

IF STATUS-CODE NOT = 0 GO TO ERR-ROUTINE. check return status

If the session is with a device or application program in another TPS system, the
module parameter will be an 1OM contralling intersystem communication. Further
addressing is {OM dependent and will be contained in the sub-address and/or

data record.

ND-60.111.03

3.3.3

3-19

Session Request from an Application

A session request to a device in the same TPS system will cause the device (if it
is free) to be allocated to the application program in the same type of session as
described above. The session is set up as follows (See Figure 3.7A):

— the application program calls TSOPN with the IOM and the device unit as
parameters

— the TSOPN TSR sends a session request to the IOM

— the IOM registers the TPT as session partner for that device unit and sends
a session response to the TPT

~— the TPT registers the unit as session partner and returns to the application

program

The device and the application program can now communicate as above.
An application program can also establish a session with another application
program. The second application will be started and the session established as

follows (See Figure 3.7B):

— the first application program (task TPTA) calls TSOPN with the TCM and
the new application number as parameters

— the TSOPN TSR sends a session request to the TCM
— the TCM allocates a free TPT {TPTC) and sends the session request on to it

— TPTC registers TPTA as session partner, sends a session response o TPTA
and starts its application program

— TPTA registers TPTC as session partner and returns to its application
program.

The two application programs run concurrently and communicate through the
send-message and read-message TSRs. They should be synchronised by using
the ‘more’ parameter.

Sessions with programs and devices in other systems are requested in the same

way by the application program, through the TSOPN TSR, but it may be
necessary to specify some addressing information in the data record.

ND-60.111.03

3-20

TSOPN for a session in another TPS system may look like this:

Example

DIMENSION IMOD(3),IUNIT(3),IBUF(T7)
CHARACTER TCMX*Y4
EQUIVALENCE (TCMX,IBUF(3))

IMOD(1)=1
IMOD(2)=1
IMOD(3)=17
TUNIT(1)=1
IUNIT(2)=1
IUNIT(3)=2
IBUF(1)=1

IBUF(2)=20000B

IBUF(3)=12

intersystem IOM = X.25

channel 2

additional addr info in IBUF
TCMO

appl 12

CALL TSOPN(IMOD,IUNIT,IBUF,6,0,IST)
IF (IST.NE.O) GO TO ERROR

For detailed information on establishing sessions, see the description of the
particular IOM being used.

Figure 3.8A shows a session between a TPS application program and another
computer system. Figure 3.8B shows one between application programs in two

TPS systems.

ND-60.111.03

3-21

IOM TPTA APPL.,

TPS ChanBi TPTA Chan.8

ANOTHER COMPUTER

Figure 3.8A: Applicétian-Computer

1OM1 TPTA APP LY

Chan.

Figure 3.88: Application-Application

SESSIONS BETWEEN TWO TPS SYSTEMS

ND-60.111.03

3.3.4

3-22

TSCLO - The Close Session TSR

A session may be broken by either of the session partners by sending a
session-finished message to the partner. This is done by the application program
with the close-session TSR.

CALL TSCLO (<status >)
CALL 'TSCLO’ USING <status >.

Examples

CALL TSCLO(ISTAT)
IF (ISTAT.NE.O) GO TO session-not-closed

CALL °‘TSCLO” USING STATUS-CODE.
IF STATUS-CODE NOT = 0 GO TO SESSION-NOT-CLOSED.

This will cause the following to happen:

— a finish-session message will be sent to the IOM or TCM

.

— the IOM will free the device and send a session-finished message to the
TPT

or

— the TCM will send a session-finished message to the other TPT (but it will
not be freed) ‘

— the TPT will return to the application program

Note that sessions will be automatically broken when transactions terminate
compietely and the TPT is freed [but not when they switch application programs
or return to SIGNON or SELECT).

ND-60.111.03

3.3.5

3-23

TSEST - The Session Status TSR

If the application program does notw if it has a session if it has reason to believe
that a session may have been broken, or if it wants information anout the current
session, the read-session-status TSR can be used. The TSR is used mainly by the

RESTART special application, but is also available to user application programs
(See Figure 3.9).

CALL TSEST (<record>)
CALL 'TSEST' USING <record>.

Examples

DIMENSION IREC(20)
CALL TSEST(IREC)

CALL °‘TSEST® USING SESSION-INFO-REC.

1 Session state

2 Current direction

3 No. of input messages

4 Time for latest input
rmessage (year, month, day,
hour, minuts, second, 8TU)

11 No. of outhut messagaes

121 Time for 'atest sutput
;| massaga

19| Session partner-module

20| Session partner-unit

Figure 3.9: Session Information

ND-60.111.03

3-24

3.3.6 TSMSG - The Send-Message TSR

When an application program wants to send data to the session partner, it will
prepare an. array/record in working storage and send it to the partner with the
send-message TSR:

CALL TSMSG { <record > , <size > , <more > , <status >)
CALL 'TSMSG’ USING <record > <size > <more > <status>.

Example - FORTRAN

DIMENSION ITEXT(1000) message defined as array

- CHARACTER CTEXT*2000 message defined as character string
EQUIVALENCE (ITEXT(1),CTEXT)

CTEXT= "MESSAGE TO SESSION PARTNER’
CALL TSMSG(ITEXT,26,0,ISTAT) send message(26 bytes),no more to follow
IF (ISTAT.NE.O) GO TO error routine check return status

Example - COBOL

MOVE ‘MESSAGE TO SESSION PARTNER® TO MESSAGE-TEXT.

MOVE 26 TO MESSAGE-SIZE. ‘

MOVE 0 TO MORE.

CALL °TSMSG”® USING MESSAGE-TEXT send message (26 bytes), no more
MESSAGE-SIZE MORE STATUS CODE. to follow

IF STATUS-CODE NOT = 0 GO TO ERR~-RQOUTINE. check return status

The message will be copied from working storage to a buffer area and sent to
the session partner in the form of a data message. The TSR wiil then return
immediately to the application program without waiting for an answer from the
session partner.

Note that there is a flag, the 'more’ flag, that can be used to indicate whether
the apnpiication program intends to send more data before expecting an answer.
The session partner can then test this flag when the data is read with the read
message TSR. If a message in one direction is to be followed by another in the
same direction, the more bit is set. For the last message, the more bit will be
cleared. In the case of read-message, this means that if the bit is set the
application program should call read-message again to get the next mnessage
before an answer is sent. In the case of send-message, the application program
will set the bit if a new message is going to be sent before waiting for an
answer.

ND-60.111.03

3.3.7

3--25

TRMSG - The Read Message TSR

When the application program wants to receive data from the session partner, it
will call the read-message TSR:

CALL TRMSG { <record > , <size > , <more > , <status >)
CALL 'TRMSG’ USING <record > <size > <more > <status>.

Example - FORTRAN

DIMENSION ITEXT(50) message area defined as array
CHARACTER CTEXT#®*100 message area defined as
EQUIVALENCE (ITEXT(1),CTEXT) character string

ISIZE=100 max length 100 bytes

CALL TRMSG(ITEXT,ISIZE,MORE,ISTAT) read message

IF (ISTAT.NE.0O) GO TO error routine check return status

IF (MORE.EQ.0) GO TO last input message check for more input

Example - COBCL

MOVE 100 TO MESSAGE-SIZE. max length 100 bytes
CALL °TRMSG” USING read message
MESSAGE-TEXT MESSAGE-SIZE MORE STATUS-CODE.
IF STATUS-CODE NOT = 0 GO TO ERR-ROUTINE. check return status
IF MORE = 0 GO TO LAST~INPUT-MSG. check for more input

When this TSR is called, the TPT will see if any message has come from the
session partner. !f it has, it will copy the message to the record area in working

storage and return to the application program. If none has come vet, the TPT will
wait until a message arrives.

ND-60.111.03

3.3.8

3.3.9

326

TPASZ — The Set Packet Size TSR

Session partners exchange messages which in turn are divided into packets by
TPS. This TSR sets the size of the packets.

CALL TPASZ (< packet size>, <status>)
CALL 'TPASZ' USING < packet size>, <status>.

The packet size set with this TSR will only be used for this transaction. If the
transaction does not set the packet size, the defauit size at system generation
will be used.

The maximum packet size allowed is 2047.

Examples
CALL TPASZ(2000,ISTAT)

CALL "TPASZ USING PACKET-SIZE STATUS-CODE

Restart

If a system failure occurs, the system can be restarted again with roliback or
recovery (See Chapter 5). After a system restart, some sessions may be intact
while others may be broken. Sessions between two application programs in the
same system will probably be intact, since the application programs have both
been restarted at their checkpoints. ICMs, however, do not take checkpoints and
therefore cannot be roiled back. in addition they may have been reloaded and
lost all session information, or connections may have been broken externally if
the system was down for any length of time.

The RESTART appiication may try to restore broken sessions for transactions
with restart at checkpoint [see section 5.3.2.2) and it should break sessions for
other types of transactions. The special TSR TSEST (read-session-status) is
available for this. It can also use TSOPN to create a new session. Sessions may
therefore be intact when the application program regains control after system
restart.

The function of checking and restoring broken sessions in the RESTART

application must be programmed by the user. The standard version of RESTART
only restores connections with SIBAS and NSHS.

ND-60.111.03

3.3.10

3.3.10.1

3-27

Available Input/Output Modules

The input/output modules that are available at present are

— 1S01745 for communicating with terminals using the 1S0-1745 protocol
(STANSAAB Alfaskop 3500 terminals) .

— X25LAPB for communicating with other systems using the X.25 protocol

— IBM3270-HOST for communicating with terminals on a control unit using
the 1BM-3270 protocol, i.e. the NORD CPU communicates with the 3270s

— I1BM3270-CU for emulating an 1BM 3270 Control Unit communicating with
some other equipment, i.e. the NORD CPU /s a 3270

A brief description of how to program them is given here. They are discussed in
more detail in the TPS System Supervisor's Guide.

X25LAPB

The X25LAPB module can be used for communication between two or more TPS
systems or between a TPS system and another TP monitor using the X.25
communications protocol. For example, it could be used for communication
between a NORD machine with TPS and a CENSOR 932 machine. Figure 3.10
illustrates two possible X.25 configurations.

The communication protocol consists of 4 levels. Levels 1 and 2 correspond to
the two lowest levels of X.25. Level 3 is a subset of X.25/3. Level 4 corresponds
ro the TPS level. It is here that sessions are established, user data is transmitted,
and sessions are ferminated.

ND-60.111.03

3-28

i ,

HOLC LEVEL 1 HOLC

INTERFACE INTERFACE

HDLC HOLC
DRIVER LEVELL_ ORIVER

G

LEVEL 2
LEVEL 3 PACKET
LEVEL
COMPUTER A COMPUTER 3
Computer ~ — Computer

Comoutar C /

371dH
—

AHOMLEN

JOV4 HIALNI
311N

Comgputer — Public Network

Figure 3.10: X.25 Communication

ND-60.111.03

3-29

The usual TSR routines are used to communicate with a remote partner

— TSOPN Open a session
— TSCLO Close a session
— TSMSG Send a message
— TRMSG Read a message

When calling TSOPN, the number of the communication channel must be
specified. If the specified channel is already in use, the call will return an error
status of —3, unit temporarily not available. Usually in a 2-system configuration
one system will use even numbers in TSOPN, the other one odd numbers.

In addition, the TSOPN call must specify the session partner, i.e. the TCM
number and application number. This is given at the beginning of the data record
sent with the TSOPN cali. User data can also be sent with TSOPN, but the size is
limited to the packet size that can be sent over the line (usually 128 or 256 bytes).

The application that is started up must reply with a data message (sent with
TSMSG). This message may be empty (dummy reply).

" ND-60.111.03

3-30

Example

1. The Application Setting up the Connection

aQaaOQ (o NeNe]

(@]

< O QOO0 aaan

a0

PROGRAM APOXX,YY

Identify X.25 I/0 module

IMODL(1)=1
IMODL(2)=1
IMODL(3)=17

Identify channel number
IUNIT(1)=1

TUNIT(2)=1

TUNIT(3)=2

Identify session partner
IARR(1)=1

TARR(2)=20000B
IARR(3)=12_

Open the session

TPS module number

channel number

TCMO
appl number

CALL TSOPN(IMODL,IUNIT,IARR,6,0,ISTAT)

Read reply from partner
CALL TAMSG(.eevvernnnn)
Dialogue

CALL TRMSG/TSMSG

Close the session

CALL TSCLO

END

ND-60.111.03

3-31

2. The Started Application

PROGRAM APOZZ,XX

C
Cc Send reply message
C

CALL TSMSG(eeecoees)
C
C Dialogue
C

CALL TRMSG/TSMSG

END

ND-60.111.03

3.3.10.2

3-32

IBM—3270—CU

The IBM—3270—CU module emulates an IBM--3270 Control Unit. A NORD
machine with TPS and the IBM—3270-—CU module can be connected to an IBM
machine and look like terminals using the IBM 3270 communication protocol.

IBM—3270—CU was developed as part of the Nortrygd project. In its present
form it is not a completely general product, but a communication module that
satisfies the requirements for the Nortrygd project. It contains both
simplifications and special features such as: '

ASCII/EBCDIC conversion:

All messages to the IBM machine are converted from ASCIl to EBCDIC
before being sent and all messages received are converted from EBCDIC to
ASCIH. As a consequence of this, it is impossible to send or receive
messages containing IBM buffer control orders such as SBA, SF, EUA,
etc., because they are followed by addresses that should not be converted.
Generation of "ENTER'" and “"cursor address’”:

The present version of 1BM3270—CU will only send the type of message
resulting from pressing the ENTER key. Pressing function keys cannot be
simulated, nor can different cursor addresses.

System and operator messages:

These messages from the IBM machine are routed to the TPS operator’'s
console.

Messages from unused channels:

Messages received on channeis not "'in session’ are ignored

L.ong messages from TPS to IBM:

IBM—3270—CU can send messages of any length to |BM if they are
received from TPS as one packet, but messages that are divided into
several packets cannot be sent as one message

Session request from 1BM:

This is not possible — the NORD machine must initiate the session

Application programs communicate with the IBM machine with the usual session
TSR routines.

3

TSOPN Open a session
TSCLO Close a session
TSMSG Send a message
TRMSG Read a message

The TSOPN cali specifies the module number (18) and the unit number (always
1). In addition, the first data message must be sent in TSOPN.

ND-60.111.03

3-33

IBM—3270—CU can receive messages of any length from IBM and send them on
to TPS modules divided into several packets if necessary. However, it is not
possible to receive several packets from TPS modules and put them together
into one message to be sent to IBM.

Messages received from IBM will be sent to the session partner only if the first
character is ""I". All other messages are considered system messages and are
routed to the TPS operator’s console.

There is no individual timeout for a session, but a timeout for the whole line. If
the 1BM machine stops sending, all sessions will be broken and the message
"COMMUNICATION DEAD’ written on the operator's console. At the present
time, this will happen 35 seconds after the last poll or message has been
received from IBM. Upon receipt of the first poli after the line has been down,
the message "COMMUNICATION RUNNING" will be written on the console.

A session request (TSOPN) given when the line is down will result in a negative
session response.

Example

.

IMOD(1)=1
IMOD(2)=1
IMOD(3)=18
IUNIT(1)=1
IUNIT(2)=1
IUNIT(3)=1

The first message to IBM is put into IMESS

aan

ILEN=number of bytes in IMESS
CALL TSOPEN(IMOD,IUNIT,IMESS,ILEN,0,ISTAT)
IF (ISTAT.NE.OQ)THEN error

CALL TRMSG(IMESS,ILEN,IMORE,ISTAT)

c
C Dialogue with TSMSG/TRMSG
c
CALL TSMSG/TRMSG
c
C Done, close session
C

CALL TSCLO(ISTAT)

END

ND-60.111.03

3.3.10.3

3-34

IBM—3270—HOST

The IBM—3270—HOST module acts as a host machine to IBM—3270 terminals.
A NORD machine with TPS and this I/O module can be connected, through
synchronous modem lines, with terminals using the IBM 3270 line procedure. The
NORD machine will look like an IBM host machine to these terminals.

This module was originally made in order to use Alfaskop System 41 terminals,
but it can also be used with other equipment using the same line procedure.

The 1BM—3270~HOST module uses EBCDIC characters, but can use ASClU
characters instead if modifications are made to SINTRAN Il

Communication between an application program and a terminal is done through
the session TSR routines TSMSG/TRMSG.

A session will usually: be set up by the terminal operator. This is done by
pressing SEND with a blank screen. A session will be set up between the
terminal and a transaction processing task (TPT) belonging to TCMO, and the
SIGNON application will be started. This must be a special non-NSHS version.

If the screen is not blank when SEND is pressed, it will be blanked and SEND
must be pressed again.

If another TCM than TCMO is wanted, a special version of IBM-—3270-—~HOST
must be used.

An application program can also set up a session. This is done with TSOPN,
specifying the [BM—3270—HOST module number (16) and the logical unit
number of the terminal.

After the session has been set up, data can be sent and received with TSMSG
and TRMSG. Note that every time the terminal user presses SEND, a message
wiil be sent to the application program and the keyboard will be locked until the
appiication program sends a message dack to the terminal.

Output to the printer should be sent with the TTEXT routine. !t is not possible to
have a session with a printer.

The NSHS screen handling system cannot be used.

ND-60.111.03

3.3.10.4

3-35

1S0—1745—HOST

The 1ISO—1745—HOST module acts as a host machine to ISO—1745 (STANSAAB
Alfascope 3500) terminals. A NORD machine with TPS and this I/O module can
be connected, through synchronous modem lines, with terminals using the
ISO—1745 line procedure. The NORD machine will be a host to these terminals.

Communication between an application program and a terminal is done through
the sessiom TSR routines TSMSG/TRMSG or with the NSHS screen handling
system.

A session will usually be set up by the terminal operator. This is done by
pressing SEND with a blank screen. A session will be set up between the
terminal and a transaction processing task (TPT) belonging to TCMO, and the
SIGNON application will be started. If NSHS is not used, a special non—NSHS
version of SIGNON must be used.

If the screen is not blank when SEND is pressed, it will be blanked and SEND
must be pressed again.

The standard TPS version of NSHS simulates INBT/OUTBT, but uses the buffer
pool system if the terminal type is equal to 6. It will be set automatically to 6 if
the session request comes from the {/O module (i.e. the terminal).

If another TCM than TCMO is wanted, a special version of ISO—1745—HOST
must be used.

An application program can also set up a session. This is done with TSOPN,
specifying the 1S0—1745—HOST module number (18) and the logical unit
number of the terminal.

After the session has been set up, data can be sent and received with TSMSG
and TRMSG. Note that svery time the terminal user presses SEND, a message
will be sent to the application program and the keyboard will be locked until the
application program sends a message back to the terminal.

Qutput to the printer shouid be sent with the TTEXT routine. It is not possible to
have a session with a printer.

It is possible to send broadcasts to terminals using TBRDC/TTEXT. A session is
not necessary then.

ND-60.111.03

3.4

3.4.1

3-36

STANDARD DEVICES AND FILES

Standard input/output devices, such as card readers, magnetic tapes, paper tape
readers and punchs, spooling files and other files using the SINTRAN file system
(not SIBAS files), are controlled using the standard /O statements available in
the programming languages used. \

In addition, FORTRAN, PLANC, MAC and NPL programs may call many (not all)
of the SINTRAN 1I/0 monitor-call subroutines available to RT (real-time)
programs. COBOL programs may also use these monitor call routines, but some
of them (most notably the OPEN monitor call) cannot be called directly because
of incompatible character string parameters. Monitor call /O is therefore not
recommended in COBOL.

This section discusses the most common /O facilities available to TPS
application programs. Appendix E contains a complete list of all monitor call
routines available. For a detailed description of these routines, see the SINTRAN
11l Reference Manual.

Allocating Standard Devices and Files

Since TPS application programs are run in a real-time environment, devices and
files cannot be allocated ahead of time as for batch jobs. When a program needs

a device or file, it acquires it through either the OPEN statement or the RESRV
(reserve) monitor call.

OPEN must be used for files, since this call contains file oriented parameters. In
FORTRAN, PLANC, NPL and MAC programs, RESRV will normally be used for
devices since this is faster and device oriented. However, RESRV requires the
SINTRAN device number as a parameter, and this may be unknown. If the device
has been defined as a peripheral file (See SINTRAN Users's, Guide, Periferal
Devices), QPEN can be used with the name of the peripheral file as file name.

All devices and files in COBOL programs are allocated in the standard COBOL
manner, with file definition {FD) entries, SELECT entries, and OPEN statements.

Note that a feature called "direct file transfer”’ is availabie for applications
running in the ND-500: access mode D or DC (8 or 9). This feature allows very
high disk transfer speeds between disk and memory with a minimum of system
overhead. Further information may be found in the ND-500 - Loader/Monitor
manual, ND-60.136.

ND-60.111.03

3-37

3.4.2 Unavailable Devices and Files

Provision should be made in the application program for unavailable devices and
files. An unavailable device or file will cause an error return from OPEN or
RESRV. This can be tested in FORTRAN or PLANC by examining the system
integer variable ERRCODE or a function value like ISTAT. Any non-zero value
indicates an error, while —1 in ISTAT indicates that a device cannot be reserved
(RESRV does not set ERRCODE) and the decimal values 89, 77, 78, 98, 107 and
110 indicate that a file is unavailable for OPEN (See FORTRAN Ref. Man,
Run-time Errors).

COBOL programs can test for errors through the FILE STATUS entry of the
SELECT statement and the USE sentence. The file status word will be set to ‘30’
(permanent error) if the file is unavailable. If the USE sentence is not included in
the program, the program will be abnormally terminated when a file or device is
unavailable.

RESRV has a wait/no-wait option. If the no-wait option is used and the device is
not available, the RESRV routine will return to the program immediately with —1
in ISTAT. However, the program can choose instead to wait until it is available.
OPEN has no such option; return will always be immediate. A wait loop using the
HOLD routine may be programmed to wait until the device is available.

Example of OPEN - FORTRAN

, open the file
10 OPEN(FILE= ‘MYFILE:DATA °,UNIT=IFILNR,ACCESS="WX’,ERR=20)
. file opened - continue
file not opened - test EZRRCODE
20 IF (ERRCODE.EQ.59 OR ZRRCODE.EQ.77 OR ERRCODE.EQ.78
*CR ZRRCODE.E£Q.98 OR ZRRCODE.EQ.109 OR ERRCODE.EQ.110)THEN

CALL HCOLD(10,2)} file unavailable, wait 10 seconds
G0 TO 10 and try again

ZL3E else something else wrong
CALL QERMS(ZRRCODE) stop with QERMS error message

ND-60.111.03

3-38

Example of RESRV - FORTRAN

INTEGER RESRV,INCH
CHARACTER TEXT1%#100,TEXT2%100

10 ISTAT=RESRV(2,0,1) reserve device nr 2 (tape-reader)
IF (ISTAT.NE.QO) GO TO 30 check the status

20 CALL TWMSG(TEXT1) OK, tell operator to put tape in reader
ICHAR=INCH(2) read a byte

IF (ERRCODE.NE.O) GO TO error routine check ERRCODE

.

30 CALL TWMSG(TEXT2) device not reserved, tell operator
ISTAT=RESRV(2.0.0) reserve again with wait flag
IF (ISTAT.EQ.0) GO TO 20 check again
still not reserved, something else wrong
CALL TSTOP(ICODE) stop with TPS error message

Example of OPEN - COBOL

INPUT-OUTPUT SECTION.
FILE-CONTROL. select the tape-reader
SELECT IN-FILE ASSIGN "TAPE-READER" STATUS IS FSTAT.

FILE SECTION.
FD IN-FILE.
01 IN-DATA PIC X(100).

PROCEDURE DIVISION.
DECLARATIVES.
I-0-ZRR SECTICN. ;
USE AFTER ZRROR PROCEDURE ON IN-FILE.
T-R~-2RROR.. tape-reader srror
IF FSTAT NOT = “30° file unavailable?
no, something else wrong, stop
CALL ’TSTOP USING ABEND-CODE-1.
CALL "HOLD® USING TEN TWO. ves, wait 10 seconds
GO TO T-R-OPEN. and try again
END DECLARATIVES.
OPEN-T-R.
OPEN INPUT IN-FILE. open the tape-reader file

ND-60.111.03

343

3-39

Accessing Standard Devices and Files

There are various ways of accessing devices and files, (See figure 3.71), but they
can be divided into 2 main types:

— standard i/0 statements

— special SINTRAN monitor calls

FORTRAN standard I/O statements are READ and WRITE for formatted and
binary 10, and INPUT and OUTPUT for free format I/0. These statements can be
used after both OPEN and RESRV.

COBOL standard 1/O statements are READ, WRITE and REWRITE. ACCEPT,
DISPLAY and EXHIBIT are only allowed in background mode during program
testing on the ND-100.

SINTRAN monitor call {/O can be used in FORTRAN, NPL and MAC programs.
The most common monitor calls are INCH and OUTCH for character 1/0 and
RFILE and WFILE for block /0. INSTR is not allowed under TPS (but QUTST is).
Monitor call 1/Q can be used after both OPEN and RESRV. Note that calling the
ordinary SINTRAN Il {/0O monitor calls from the ND-500, gives a substahtial
amount of system overhead (ND-100 CPU-load). Some special 1/O monitor calls,
DV INST (MON 503) and DV OUTS (MON 504), from ND-500 applications should
be used.

Application programs must remember to close files before terminating since this
is not done automatically as for background programs.

A complete list of monitor calls available to application programs is found in
appendix £. For a detailed description of the functions and parameters of these
monitor calls, see the SINTRAN] User’'s Guide.

The syntax of standard /O statements for FORTRAN and COBCL is found in the
respective programmer’s reference manuals.

LANGUAGE TYPE ALLOCATE RELEZASE ACCESS
FORTRAN FILES, OPEN CLOSE STAND. 1/Q,
PERIF. FILES MON. CALLS
DEVICES CALL CALL STAND. I/Q,
RESRV RELES .| MON.CALLS
cosou FILES, QPEN CLCSE STANDARD
DEVICES 1/Q

Figure 3.11: Local Input/Output
ND-60.111.03

3.44

340

Restart

It must be pointed out that rollback and recovery facilities are not available for
files controlled directly by the application program. If a system restart occurs,
the contents of such files will be unpredictable. In addition, files and devices
acquired by an application program may or may not have been lost, depending
on such factors as whether SINTRAN has been restarted, whether the application
program has been reloaded, and whether files have been closed by the operator.

The RESTART application can attempt to restore resources, but even if this is
possible, problems can arise. If a sequential file is lost and allocated again,
processing will start over from the beginning, and the application program
should therefore probably be restarted at the beginning. If printer spooling is
used, the application can continue from the middle, but output before and after
the break may go to separate spooling files. These things should be taken into
consideration when writing application programs, modifying the RESTART
application and deciding which restart strategy to use (See Chapter 5).

ND-60.111.03

4-1

OTHER TPS AND SINTRAN FACILITIES

Several other TPS and SINTRAN facilities are available to TPS application
programs in addition to those described in chapters 2, 3 and 5. These may be
grouped as follows:

- message handling

— clock routines

— hold monitor call

—_ semaphores

" — internal devices

These facilities are invoked either through TSR calls or SINTRAN monitor calls.
The TSR routines are described in detail in this chapter and appendix H. For a
detailed discussion of the monitor calls, see the SINTRAN User’'s Guide.

With the exception of some TSRs most of the material in this chapter describes
general SINTRAN facilities. This material is included in order to make it easier for

the TPS programmer to design application programs, knowing exactly which
SINTRAN facilities are available.

ND-60.111.03

4-2

MESSAGE HANDLING

The message handling facilities of TPS include routines for writing messages on
the operator console and broadcasting messages to a group of devices or
application programs. '

In addition, the SINTRAN routines for writing error messages on the SINTRAN
error device can be used.

The TSRs and monitor cails for message handling can be grouped as follows(See
Figure 4.1): ;

— TWMSG and CWMSG (write message to TPprerator)
— TBRDC and TTEXT({broadcast message to one or several units)
— TGBRD and CGBRD (get broadcasted message)

— ERMSG and QERMS (write standard SINTRAN error message and continue
or terminate)

— ERMON (write special ERMON message and continue)

TWMSG (FTN)
CWMSG (COB/PLANC)

Write a message to TPS operator

3roadcast a message 10 one or
- - several units
| T..:./\]

TGSRD (FTN)
CGBRD {CCB/PLANC)

Get a broadcasted message

ERMSG (FTN/PLANC) Write a standard SINTRAN message,

return to application program

QERMS (FTN/PLANC) Write a standard SINTRAN message,

tarminate the program

ERMON Write the special ERMON message,
(FTN/PLANC d COB) return to application program
an

Figure 4.1: System Messages

ND-60.111.03

41.1

4-3

TWMSG and CWMSG - The Write Message to
Operator TSR

The write-message-to-operator TSR will write a text string on the operator’'s
console. The message will be supplied with time, date and source identity by
TPS. This ‘TSR has a special COBOL and PLANC version, CWMSG, due to
incompatible character string formats.

CALL TWMSG (<text-string>)
CALL CWMSG USING <text-string>.

Examples
CHARACTER MTEXT*256
MTEXT= "MESSAGE TO OPERATOR" "
CALL TWMSG(MTEXT)

MOVE "MESSAGE TO OPERATOR'"™ TO MESSAGE-TEXT.
CALL “CWMSG® USING MESSAGE-TEXT.

The text must be terminated by an ' (apostrophe) and may not exceed 255
characters.

ND-60.111.03

4-4

. TBRDC - The Broadcas? Message TSR

A message can be broadcast-from an application program to all terminals, all

active terminals, or a single terminal connected to an IOM. It can also be sent to
all active TPTs controlled by a TCM.

CALL TBRDC (<module>, <sub-address>, <text>, <units>, <status>)
CALL 'TBRDC’ USING <module> <sub-address> <text> <units> <status>

Example - FORTRAN

DIMENSION MOD(5),ITEXT(36) array definitions

CHARACTER MNAME*6,CTEXT#*72 character string definitions
EQUIVALENCE (MOD(3),MNAME),(ITEXT(1),CTEXT)

MOD(1)=2

MOD(2)=5

MNAME=32 module is TCMO

CTEXT= ‘MESSAGE TO ALL ACTIVE TPTS
CALL TBRDC(MOD,0,ITEXT,1,ISTAT) broadcast the message to all TPTs
IF (ISTAT.NE.Q) GO TO error routine check return status

Example - COBOL

MOVE 1 TO MOD=-ADD-TYPE.
MOVE 2 TO MOD-ADD-SIZE.

MOVE 16 TO MOD-NAME. : module is the STANSAAB IOM
MOVE 1 TO UNIT-ADD-TYPE.

MOVE 2 TO UNIT-ADD-SIZE.

MOVE 1 TO UNIT-NUMB. unit is VDU number 1
MOVE “"MESSAGE TO STANSAAB-TERMINAL-Q1 ‘m 70 MESSAGE-TEXT.
CALL “T3RDC” USING proadcast to 1 terminal only

MODULE UNIT MESSAGE-TEXT TWO STATUS~CODE.
IF STATUS-CODE NOT = 0 GO TC PARM~-ERROR. check return status

The text must be terminated by an ' [(apostrophe) and may not exceed 72
characters.

Messages broadcast to I0OM terminals will be written on the broadcast line
(usually the bottom line). ‘

Messages sent to TPTs can be read by the application program with the TGBRD
TSR (get broadcasted message).

ND-60.111.03

413

4-5

TTEXT — The Send Text Message TSR

The send text message TSR is very similar to the broadcast message TSR except
that the message can only be sent to a single unit and the message length in

bytes is given as a parameter instead of being indicated by an apostrophe in the
text itself.

CALL TTEXT (<module>, <sub-address>, <text>, <length>, <status>)
CALL ‘TTEXT' USING <module> <sub-address> <text> <length>

<status>.

No screen positioning is performed by the IOM so the message will be written
where the cursor happens to be positioned.

Messages sent to TPTs can be read by the application program with the TGBRD
TSR.

ND-60.111.03

4-6

TGBRD and CGBRD - The Get Broadcasted Message
TSR

This TSR can be used to see if a message has arrived. If it has, it will be put in
the text area indicated. The message can have come from another application
program using broadcast-message (TBRDC) or it can have come from the TPS
operator using the BROADCAST command or the MESSAGE-TO-UNIT command.

If the application program wants to write the message on a display terminal
using NSHS, the WMSGE or CWMSGE routine may be cailed. If using FOCUS,
the FCZMSGE routine may be called.

This TSR has a special COBOL and PLANC version, CGBRD, due to incompatible
character string formats.

CALL TGBRD (<text-string>, <status>)
CALL 'CGBRD’ USING <text-string> <status>.

Examples
CHARACTER BCTEXT#*72 message area defined as
. character string
CALL TGBRD(BCTEXT,ISTAT) get message

IF (ISTAT.EQ.0)CALL WMSGE(BCTEXT) display it on screen

VCALL'CGBRD' USING MESSAGE-TEXT STATUS-CODE. get message
IF STATUS-CODE = 0
CALL "CWMSGE~ USING MESSAGE-TEXT. display it on secreen

The text may not a2xceed 72 characters. It will be terminated by an apostrophe.

This TSR shouid be called fairly often in systems that make use of the broadcast
facility, since this is the onily way the message wiill be detected. There is no
automatic presentation of messages broadcast to TPT-controiled terminals (in
contrast to |OM-controiled terminals, where the IOM will see to it that the
message is sent out to the terminals).

Another reason for checking often is that if a new broadcast message arrives, it
will overwrite the old message. There is just one message buffer area and no
queuing . system. Therefore it is important that the message be sent to the
terminal before it is overwritten.

ND-60.111.03

4-7

Monitor Calls (ERMSG, QERMS, ERMON)

SINTRAN error message monitor calls can also be used by TPS application
programs. If a SINTRAN routine detects an error, it will put the error number in
the ERRCODE variable {or a function value like ISTAT); if no error, the variable
will contain 0. This can be tested and if it is non-zero, the appropriate error
message can be written on the SINTRAN error device by the ERMSG or the
QERMS monitor call. ERMSG will write the error message and return to the
application program, QERMS will write the message and terminate the
transaction.

The ERMSG and QERMS monitor calls can also be used in connection with
standard FORTRAN 1/0, since these 1/0 routines aiso set the ERRCODE variable.
Standard COBOL /0, however, does not have thi§ facility. Instead, the standard
error facilities, the FILE STATUS entry of the SELECT statement and the USE
sentence, can be used to process error conditions (See Example 3.8). ERMSG
and QERMS cannot be used here because the SINTRAN error number is not
available to COBOL programs.

Examples
WRITE(S5,10,ERR=100) standard I/0 statement
. no error, continue main routine
100 CALL ERMSG(ERRCODE) error, call ERMSG
. continue error routine
ICHAR=INCH(IFILNR) monitor call I/0
IF (ERRCODE.NE.OQ) CALL QERMS(ERRCODE) if error, call QERMS, stop
. else continue

ND-60.111.03

4-8

A special user error message can be written on the SINTRAN error device using
the ERMON monitor call. An error number in the range 50-69 must be given (in
ASCIl code), together with a suberror number of any value (integer). The error
message will be printed as follows:

hh.mm.ss ERROR nn IN rr AT || USER ERROR SUBERROR:ss

where_

hh.mm.ss time when the message is printed

nn <error number>

r ' TPT identification

I address of error in application program
ss < suberror number>

ERMON can be called from both FORTRAN and COBOL programs.

Example - FORTRAN

IF (DATE.EQ.0) GO TO 100 check for bad date
100 CALL ERMON(2H62,3) bad date, call ERMON
. continue

Zxample - COBOL

01 ZRROR-NR PIC XX.
31 S3SUB-ERROR-NR COMP PIC 2999.

IF DATE = 0 GO TO BAD-DATE. check for bad date

.

BAD-DATE.
MOVE “62°TO ERROR-NR.
MOVE 3 TO SUB-ERROR-NR.
CALL °ERMON” USING ERROR-NR SUB-ERROR-NR. call ERMON
. continue

In both cases a message of the following type will be written on the
SINTRAN error device:

11.50.03 ERROR 62 IN TPTS AT 5320 3:USER ERROR

ND-60.111.03

4.2

4.3

4-9

- CLOCK ROUTINES -

COBOL programs can use the ACCEPT DATE/DAY/TIME statement to examine
the calender and clock.

In addition, the SINTRAN monitor calls for examining and changing the internal
clock are available to all application programs. The CLOCK routine will return the
current time/date to a 7 word integer array containing basic time units, seconds,
minutes, hours, day, month and year. The clock can be changed with the UPDAT
call, specifying the new minute, hour, day, month and year. The clock can also
be adjusted relative to its current value using the CLADJ call. The last two
monitor calls (especially (UPDAT) should be used with care!

SINTRAN also has an interval clock containing, in a double word, the number of
basic time units since SINTRAN was last started. The TIME routine will return
this current interval time. It is set to zero each time the MASTER CLEAR and
LOAD buttons are pressed and is incremented by 1 each basic time unit.

HOLD MONITOR CALL

The HOLD monitor call can be used to put an application program in a wait state
for a given time interval. However, the wait state will be terminated if the TPT is
started for any reason, i.e. the arrival of a checkpoint message. After the
message is processed, the application program will receive control as if the time
interval had expired, since the TPT does not know how much time was left. If it
is important that the wait state-is not terminated before the interval has expired,
the application program shouid control the length of the expired interval by
axamining the clock before and after the hold routine is entered. A new hoid can
then be given if the interval has not expired.

ND-60.111.03

4.4

4-10

SEMAPHORES AND INTERNAL DEVICES

TPS application programs may use semaphores and internal devices in the same
way as other RT programs. A semaphore is a binary variable which can have one
of two values, reserved or unreserved. It is reserved and released by the RESRV

and RELES monitor calls. Semaphores are discussed in chapter 4 of the
SINTRAN User's Guide.

Internal devices are used for the exchange of data between independent
programs. One of them writes on the device as if it were an external device and
the other can then read from the device. Devices are reserved and released
(program A reserves the output part of the device, program B the input part) and
accessed as normal 1/O devices. As described in section 3.4, these devices can
be accessed by FORTRAN programs by either standard 1/O statements or
monitor calls, whereas COBOL programs must always use monitor calls. Internal
devices are described in chapter 4 of the SINTRAN User’s Guide.

ND-60.111.03

5.1

CHECKPOINT—RESTART

PROTECTING THE DATABASE

An online transaction processing system should have adequate facilities for
protection of the data base. If a system failure occurs in a batch system, a
backup copy of the data base can be mounted and the whole job run once more
without too much inconvenience or waste of time. If a failure occurs in an on-line
transaction system, reentering and reprocessing the transactions may be very
inconvenient, time-consuming or even impossible.

Facilities should be available to assure the integrity of the data base, to minimise
the amount of data lost and to restart the system automatically at a well-defined
point.

TPS makes use of the extensive checkpoint/restart facilities of SIBAS. These are
largely transparent to both the user and the application program, TPS itself
controlling them. Synchronised checkpoints of the whole system are taken
automatically according to the load on the system. In addition, the application
program can take individual transaction checkpoints.

If a system failure occurs, the latest transaction checkpoint can be used to
restore the system to its status at or near the point of failure (recovery). If the
data base is incorrect at this point, synchronised checkpoints can be used to
restore the system to a previous state (rollback). (See Figure 1.7.) In both
cases, those transactions which were active can be restarted automatically at the
correct point. Note that applications running on the ND-500 cannot be restarted
at a point inside an application, but may for example be restarted at the
beginning of the current application.

How often checkpoints are taken and what types of backup/restart facilities are
used are system parameters controlled by the user. He must weight the
advantages of assuring the protection of data in the data base and fast recovery
against the overhead needed to accomplish this.

The facilities in TPS for protecting the data base from system failure can be
divided into two types, preventive facilities and restart actions (See Figure 5.1).

ND-60.111.03

BACKUP copy whole data base
LOGGING]
DELAYED UPDATING write updated records on a special update file

BEFORE—IMAGE LOG

log records to be updated (before they are changed)

ROUTINE LOG log calls to SIBAS routines
(47
2
'u% CHECKPOINTS
a ‘ SYNCHRONIZED save checkpoint information for all transaction tasks
< and for data base
TRANSACT!ON) save checkpoint infarmation for one transaction task
ROLLBACK restore data base and transaction tasks to synchro-
nised checkpoint
= RECOVERY restore data base and transaction tasks to
f.i. transaction checkpoint
[72}
W
“ | RESTART STRATEGY restart transactions according to transaction restart

strategy

Figure 5.1: Checkpoint/Restart Facilities

ND-60.111.03

5.2

5.2.1

PREVENTIVE FACILITIES

The preventive facilities of TPS consist of:
— utility routines to take a backup copy of the data base

- facilities in SIBAS for updating on a special update file (delayed updating),'
logging old versions of data (before-image log), and logging SIBAS routine
calls (routine log)

— routines for taking checkpoints either automatically, by operator command
or by an application program

Most of these facilities are controlled by the TPS system itself or by the system
aperator. The only facilities controlled to some extent by the application program
are checkpoints. :

Backup

A backup copy of the data base is a complete copy of the files in the data base.
This can be done with a COPY—FILE command while SINTRAN is running, and
even while TPS is running if the data base itself is not being updated {(for
example if delayed updating is used).

it can also be done using a stand-alone disk utility program. If a stand-alone
orogram is used, TPS should be closed (CLOSE-TPS) before SINTRAN is stopped
and the copy program loaded. After this type of copy is made, TPS will normally

pe started again with INITIATE-TPS (See Figure 5.2).

TPS
closed BACKUP

stop TPS * copy the data base ® start TPS

Figure 5.2: Taking Backup with Utility Program

ND-60.111.03

5.2,

5-4

2 Data Base Logging

SIBAS has three logging facilities available (See Figure 5.3}

CALL SIBAS

\

\

4

Delayed updating consists of the writing of all updated records on a special
update file instead of on the data base itseif. The data base is only read,
not written on. This decreases considerably the chance that it will be
physically destroyed, it prevents bad data from being written before the

actual updating takes place, and it gives a simple checkpoint/rollback
mechanism. :

Before-image {BIM) logging can be used instead of delayed updating. With
this method, a page is logged on the before-image area in the SIBAS
system realm before it is updated. The data base can then be rolled back
by copying all before-images out to the data base.

The routine log is a sequential disk file containing a record of all calls to

SIBAS, in the order they were originally received. This file may be used to
update the data base from a backup copy or from a checkpoint without
having to rerun the application programs.

/

& L

RETURN

[- call SIBAS

‘or updating

I

* log routine : + l0g ald record on lor

* write updated l .
caif on ! 3iMlog | record on
{

return

routine-iog ‘ - * updated file

Figure 5.3: SiBAS Logging Facilities

ND-60.111.03

5.2.3

5-5

Schhronised Checkpoints

Synchronised checkpoints are checkpoints taken by all TPS and application
programs at the same time. When a synchronised checkpoint is taken, the
individual transactions will be halted when they reach a suitabie point {normally
in a TSR). When ail transactions have stopped, data needed to restore both
application programs and system modules to the present state are recorded on
the checkpoint files® (See Figure 5.4). The special application CHECKPOINT is
then activated to send a checkpoint call to SIBAS. SIBAS will empty buffer
areas, save necessary data, and, if version updating is used, save the version
table containing pointers to the latest version of all updated records. When
SIBAS has completed taking its checkpoint, processing will be restarted
automatically. The whole sequence should not take more than 10-20 seconds.

CHECKXPOINT

L

write appl.
data areas

e write TPS
data areas

write SIBAS 4
data areas

e continue
processing

on file on file on file

Figure 5.4: Taking a Synchronized Checkpoint

* Note: it is not possible to restore an application that runs on the ND-500.

TTSYN - The Allow-Synchronised Checkpoint TSR

It is possible that certain types of transactions may cause a checkpoint to take
much longer than 10-20 seconds if the programmer does not prevent it. As
mentioned, the system is synchronised by halting transactions in TSRs. This
means that a transaction that does a lot of processing without calling a TSR
could go a long time before being stopped, especially since SIBAS calls do not
go through TSRs that allow synchronised checkpoints (all other 1/0 calls do). To
prevent this situation, an application program with long processing and data base
sequences without other TSR calls than SIBAS calls can use a special TSR,
TTSYN, that does nothing but allow a checkpoint to be taken if a checkpoint
message has come.

CALL TTSYN
CALL 'TTSYN".

In TPS systems with automatic synchronised checkpoints, application programs
with long processing and data base sequences without other I/O or TSRs should
call TTSYN fairly often.

ND-60.111.03

5.2.3.2

5.2.3.3

56

THSYN - The Hold Synchronised Checkpoint TSR

In some situations it may be desirable to carry out a processing sequence
without allowing a checkpoint to be taken in the middie of the sequence. An
example would be the updating of several related records in the data base. If this
sequence includes the use of calls to other parts of the TPS system than SIBAS
alone, the sequence may be interrupted by a checkpoint. This can be prevented
by using the TTSYN TSR.

CALL THSYN
CALL 'THSYN'".

This will prevent the application from being trapped for a checkpoint until the
application makes a call to either the TTSYN TSR or the TTRAN TSR.

All other applications, however, will be trapped, so the whole TPS system will
eventually stop and wait for this application to complete its sequence. This TSR
shouid therefore be used with care.

TCHCK - The Take Synchronised Checkpoint TSR

Synchronised checkpoints can be taken automatically by TPS when the load on
the system has reached a certain value. Each application has a checkpoint
weight, given when the application is loaded into the TPS system and stored in
the application table. Every time an application terminates or switches to a new
application, its checkpoint weight is accumulated. When the sum has reached a
certain value, a checkpoint wiil be taken automatically.

The operator can also take a checkpoint with the CHECKPOINT TPS command.

An application oprogram is also able to initiate a synchronised checkpoint
sequence. This facility should be used with care- since taking a synchronised
checkpoint involves a good deal of overhead and may halt the system for many
seconds. Normally it is best to let TPS take automatic checkpoints based on the
activity in the entire system, but some application systems may be such that it is
more suitable, for instance, to take a synchronised checkpoint every time a
certain application program is run. This can be done from an application program
by using the TCHCK TSR.

CALL TCHCK{ <scope>)
CALL 'TCHCK' USING <scope>.

Examples
CALL TCHCK(0Q)

CALL °TCHCK® USING ZERO.

ND-60.111.03

524

3 3 e {
check X j 5 Active TPTs 2

check X +1 Active TPTs

5-7

. Transaction Checkpoints

In addition to synchronised checkpoints taken by all programs in the TPS system,
application programs take individual transaction checkpoints at certain stages in
transaction processing. As for synchronised checkpoints, a transaction .
checkpoint will save all data areas belonging to the transaction, enabling the
transaction to be restarted at this point if a recovery is made.* The information is
written on a special area on the checkpoint file belonging to the TPT and the
transaction checkpoint data will overwrite the previous transaction checkpoint
data for that TPT. (See Figure 5.5). The synchronised checkpoint data will not be
affected however.

Some transaction checkpoints are taken automatically by TPS and the application
programmer does not have to take any action in connection with them.

- - T N

Apol 3 Application
All appls 2 >'data save areg

S

Appin
Controlblock TCMO
TPT 1 h

TPT 2

b o ce, A e e vt

All TPTs > trans check. TCMO

O R N — {fixed) >‘ checkpoint area

synch. check.
' ? {circutar)

TPT 7 _ _<
Controlblock TCM 1]

TCM T
checkpoint area

5

2

Figure 5.5: The TPS Checkpoint File

«VMW
hd

* Note: It is not possible to restore an application that runs on ND-500. However,
such an application may be restarted from the beginning.

ND-60.111.03

5.2.4.1

5-8

TTRAN - The Take Transaction Checkpoint TSR i

The application program itself also can take transaction checkpoints, using the
TTRAN TSR.

CALL TTRAN
CALL 'TTRAN'.

In order to decide when and if to take transaction checkpoints, the application
programmer must know how they are used. This is explained in connection with
the recovery procedure in section 5.3.1, but in short it may be said that the latest
transaction checkpoint will be the point of restart for an application after
recovery has been carried out. In contrast, the point of restart after a rollback
operation will be a synchronised checkpoint.

Transaction checkpoints are taken at the following processing stages (See Figure
5.6).

— at the beginning of SIGNON (standard version)

— at the beginning of SELECT (standard version)

— when the data base is opened (SOPDB call)

— when the data base is closed (SCLDB call)

— when a task is terminated and the TPT is freed (uniess TTERM (1) |s used)
— when an application program calls TTRAN

When deciding how often to take checkpoints, it must be remembered that a
transaction is restarted at the latest checkpoint after roilback or recovery and any
processing done after this point will have to be repeated. Of course reollback or
recovery are usually only done in the case of system failure and this should not
happen often. As in the case of other preventive facilities, the advantages of
taking checkpoints often must be weighed against the costs.

Appilications running in the ND-500 may have ap to 134 megabvtes of iocal data.
and this data will not be saved when TTRAN is called. Onily the data in
task-common and the TPT system data is saved. This implies that an application
running on the ND-500 cannot be restarted at a point /nside the application, but
may be restarted for example at the beginning of the application.

ND-60.111.03

;

SIGNON TTRAN (———)

TSWAP (SELECT)

l

SELECT TTRAN ()
Display menu, read answer

TSWAP (APnnn)

l

APnnn TTRAN (—=——)
Write picture to screen
Read fields
More ? yes

no

Open data base
Read data base
Update data base
Close data base
no

Finished ?

Terminate

|

SIGNOFFTTRAN (———)

TSWAP (SIGNON)

Figure 6.6: Transaction Checkpoints

ND-60.111.03

5.3

5.3.1

5--10

RESTART FACILITIES

When a serious error is detected, three steps must be taken:
— the cause of the error should be determined and the error corrected
— any damage to the data base should be repaired

— the system should be started again with as little inconvenience to the users
as possible

Rollback and Recovery

Two procedures are available for repairing the data base after a serious error,
rollback and recovery.

Rollback will restore the whole system to its state at the last synchronised
checkpoint. The ROLLBACK special application will supervise the SIBAS roll-back

procedure, causing it to execute the rollback in one of two ways (See Figure
5.7A).

— using the update file or before-image {BIM) log to roll the data base back
to the checkpoint from the point-of-failure

— using the routine log to update the data base to the checkpoint from the-
backup copy

In addition, all programs will restore their data areas at the checkpoint so that
their state corresponds to that of the data base. The point-of-restart after a
roliback will be at the latest valid synchronised checkpoint (unless a recovery is
given immediately afterwards).

Recovery, under the supervision of the RECOVER special application, will restore
the data base to its state at the latest transaction checkpoints for the various
transactions (See Figure 1.7B). A rollback to the last synchronised checkpoint will
first be pe}formed, using one of the methods described above. The routine log
will then be used to update the data base to the individual transaction

checkpoint (See Figure 5.7B). Programs will then restore themseives to their
transaction checkpoints.

ND-60.111.03

5-11

Figure 5.78: Recovery

1 }4 Update file, BIM lag PO|F
i
2. | routine log ;l
| |
8ACKUP SYNC CHECK
Figure 5.7A: Rollback
POF
Uodata file, 8!M log |
1.
=
routine log
P ; routine log | routine log)l
T i |
BAcKkup SYNC CHECK TRANSCHECK

ND-60.111.03

5-12

The point-of-restart after recovery will thus be the latest transaction checkpoint
for each active transaction (See Figure 5.8). There is one exception to this rule. If
no transaction checkpoint has been taken since the last synchronised

check-point, the transaction will be restored to the synchronised checkpoint.
Point-of-restart is summarised in figure 5.9.

point-of-failure

CHECXPOINT {POF)
ECKPOINT {automatic} ~ ROLLSACK
{operatar)
ar RECOVER
h —_
. {reezs the systam. o freeze the systeyn if stiil up
* write data areas on file the bass
« tak e data Dase checkpaint
. COntinue grocessing SiBAS o restore data areas at chieckpoint
update //
file TPS RFLL3ACK TPYRECOVER

SIBAS 3IM log /

RESTART

N

SigAsS

/T;;;;—l:g

routine log

. ConTnue
rocassincg

Figure 5.8: Rollback and Recovery

ND-60.111.03

53.2

5-13

Restarting TPS

After rollback or recovery, the TPS system may be restarted either automatically
or using the CONTINUE command. Transaction processing will continue as far as
possible as though there had been no break.

To what extent this can be done depends mainly on the state of the connections
between the application programs and the external environment. Both the data
base and the application programs® have been restored to their state at the
appropriate checkpoint and are ready to continue processing from there.
How-ever, terminals and local devices may have been lost and sessions may
have been broken, depending on such things as whether SINTRAN, NSHS or I/0
modules have been reloaded, files have been closed, terminal operators have
broken connections, etc. After rollback, there is the additional probiem that
external connections at the synchronised checkpoint were probably different
from those at the point of failure.

Another important consideration at restart is that some transactions may not
want to be restarted at the checkpoint. There are several ways of restarting
transactions and each must be restarted according to the appropriate restart
strategy. This is done by the RESTART special application.

ND-60.111.03

5- 14

SYNC. POINT-OF
CHECKXPOINT -FAILURE
2
< 3 S
= gl & 3
= al g 3
{a) - : t ~
) '\
\ 2
2 2 \ <
& & 3 B
a -t @ X
(o) ; + -
/
/
o L < /
g = </
a a ay
(c} . :
/”
-
Q -] /’
g 3 g ’/” .
a3 SJJ! ot /,’
=] : : e
? T Py
~
= AN
Z N Z
= @ N o
b= @ ~
- 2 N E
(e] Sy
g AN
\
N
2 A 2
+ = .
g s 5 5
= 7! & AN
= = - =
n 1 - N,
‘ ' |
ROLL3ACK AECOVERY
' POINT—0F~ AOINT=OF—
AESTART AESTART

Figure 5.9: Point of Restart
* Note: It'is not possible to restart an application in the middle that runs on the

ND-500, but the application may be restarted from the beginning. You have to
remember this when setting the restart strategy.

ND-60.111.03

'5.3.2.1

5-—-15

The RESTART Special Application

The RESTART application is the first application to be called when the system is
restarted after rollback or recovery. It is called for each active transaction by the
TPT for that transaction.

When RESTART is activated, the data base will have been reopened by SIBAS
for that transaction if it was open at checkpoint. Terminals controlled by NSHS
will be automatically reacquired by NSHS the first time they are used. On the
other hand, the standard version of the RESTART program will not open files or
reserve local devices. Likewise, broken sessions may not be reestablished.
However, users can modify RESTART to do these things. The (TSEST) and
restore-session (TRSES) TSRs are available to assist users in this. Modifying the
RESTART and other special application programs is discussed in the TPS System
Supervisor's Guide.

When modifying this application, remember that applications running in the
ND-500 cannot be restarted at a point inside the application (the TSR-call TRSTO
is not allowed).

The task of the RESTART special application is to determine how the transaction
is to be restarted, to restore or break external connectionsgand restart (or
terminate) the appropriate application program. RESTART will have available the
necessary information to do one or more of the following:

—_ restart the transaction or terminate it

- reestablish the connection with the terminal operator. If no answer is
received (timeout), the ABEND application is activated

- ask the operator to choose which restart strategy is to be used

— give the ooperator information to enabie him to resume operation at the
correct goint.

ND-60.111.03

5.3.2.2

5-16

TSRST - The Set Restart Strategy TSR

RESTART uses the restart strategy for the task to determine if and how to restart
a transaction. The restart strategy is given the default value 2 when the task is
started and the TSRST TSR can be used to change it to another value, the

meaning of each value depending on the way it is interpreted by RESTART.

CALL TSRST |{ <restart strategy>, <ressart application>)

CALL ‘'TSRST' USING <restart strategy> <restart application>.

in addition to setting the restart strategy, the TSRST TSR can be used to
change the restart application. The default value for this is the first application
activated. The standard restart strategies are described under the RESTART
application in chapter 6.

Examples
CALL TSRST(1)

CALL "TSRST USING TWO RE-APPL.

In summary, TPS is designed so that users can exert full control over both
checkpoints and restart with the TTRAN, TTSYN and TSRST calls. They can write
their own restart routines and modify the RESTART special application. They can

decide how often to take synchronised checkpoints and what type of logging,
rollback and recovery to use.

However, they can usually ignore all these things, using only the standard
defaults supplied with TPS and still have a system that functions well.

ND-60.111.03

61

SPECIAL APPLICATIONS

NORD TPS is delivered with a set of standard 'special applications’. These
programs are used to carry out such user dependent functions as the
administration of TPS users, authorising and limiting user access to application
systems and individual programs, automatic administration of menu pictures and
security control. These functions are carried out by the SIGNON and SELECT
applications. The SIGNOFF, ABEND and RESTART applications control
transaction administration at transaction termination (with the possibility of
gathering transaction statistics), abnormal end and restart after system failure. In
addition, the system special applications, TPOPEN, TPCLOSE, CHECKPOINT,
ROLLBACK and RECOVERY, are used to administer system functions, especially
SIBAS control. With the exception of TPOPEN, they are of less interest to the
application programmer and are therefore not discussed in detail in this manual.
See TPS System Supervisor's Guide for more information about them.

The special applications are written in FORTRAN and/or COBOL (SIGNOI\] and
SELECT can be obtained in both languages). Some or all can run in either the
ND100 or the NDB00 CPU. (RESTART cannot run in ND50O if it calls the
TSR-routine TRSTO.) Emphasis has been put on comments and an easy to follow
structure so that users can easily change the programs to suit their own needs.
In addition, the configuration and security routines are controlled by user-defined
tables and make extensive use of default values to simplify table definition in
those cases where it is not necessary to limit access to the system.

The relation between the special applications and user applications is illustrated
in figure 6.1. This figure shows the standard use of these applications. They may
be changed by the user so that the illustration no longer applies. Also, the
standard version of SIGNOFF, ABEND and RESTART have different processing
sequences for the different strategies they use (termination strategy, abend

strategy, restart strategy) and do not necessarily follow the illustrated seqguence
{See Section 5.2.4).

The special applications are described below in functionally related groups as
follows: -

— SIGNON and SELECT

— SIGNOQFF, ABEND and RESTART

— TPOPEN and TPCLOSE

— CHECKPOINT, ROLLBACK and RECOVER

Again it must be emphasized that the following descriptions are only valid for the
standard versions of the special applications.

in addition to the above mentioned user modifiable special applications, there is
a special non-modifiable application, TPMON, which monitors applications

running on the ND-500. Further description can be found in Appendix J.

ND-60.111.03

6 -2

amnyng winisAg

dois wartAg

aNInY
Y /
H3IA0D3Y -] AJONNMS |-+ — »{ 3501041
~ gNOILYD
~
~
~a
wnodxpayn ol LNIOINIIHD 14visay »| 11ddV
wasAg
*
\\ r
|~ yisn A
MIVAT1I0Y 1931358 -, ;ZCZO_m f4-1— — +~] N3d40OdL
141 WILSAS $1d4) HISN Ldt WRISAS
aInjin) ums
wnsAg wathg

'Figure 6.1:

Special Applications

ND-60.111.03

6.1

6.1.1

SIGNON AND SELECT .

SIGNON

The main function of SIGNON is to check the terminal user's name and
password. It is normally the first application to be called when a task is started.
The program will reserve the terminal the first time it is called and will then write
the SIGNON picture on the terminal. The cursor will be positioned at the input
field for the user name.

When a name is entered, SIGNON wiil look for the name in the user table,
TPS-USERTAB. The name may be abbreviated in the usual SINTRAN manner. If
the name is found, the next question is for the password.

The password is then checked, and it is either accepted or the cursor moved
back to the name field. Figure 6.2 shows a sample SIGNON picture.

If name and password are accepted, SIGNON will use the user’é EXIT TYPE in
TPS-USERTAB to carry out one of the following actions:

— Switch to SEkECT to present the user’s master menu
— Switch directly to a user application

— Exit from TPS (release the terminal for SINTRAN background use). This
action is usually defined for a special user, for example the user SINTRAN.
This action is carried out by releasing the terminal and going into a wait
loop. Every 2 seconds SIGNON will try to reserve the terminal again, so
that when the SINTRAN background user is done (logs off), the terminal
will again be brought into the TPS system.

ND TPS ON LINE AT 15,45 ON MARCH 1, 1982

TTTTTTTT pepPEPR ; SSSSSSS

TTTT7TTT PPPPPRPP SS3SSSSS
T e PP s3
TT PPPRPPPPP $SSSSSS
TT PPPPPPP SSSSSSS
T PP ’ ss
T PP ss
Tr pp S8SSSSSS
T PP $SSSSSS

PLEASE ENTER YOUR NAME:.

PASSWOROD:

N\ /

Figure 6.2: A SIGNON Picture

ND-60.111.03

6.1.2

6-4

SELECT

The main function of SELECT is to control the menu choices for starting user
transactions. When SELECT is started, it will usually send the user's master
menu given in the user's entry in TPS-USERTAB. However, if SELECT was
activated directly from a user application instead of from SIGNON, the menu
presented will be the last master-type menu used before the application was
started.

The menu picture will normally show several numbered entries and the user is
asked to choose one of them (See Figure 6.3).

An entry, when chosen, is handled in one of four ways:
— Switch to a user application

— Present a new menu

— Present the user’'s master menu

- Log off as present user and switch to SIGNON

The way in which each entry is handled and additional information such as
application number (if the first way) and menu number (if the second way) is
given in the menu table, TPS-MENUTAB. Each menu is described here, giving the
different entries and the type of handling for each entry.

These possibilities provide a large amount of freedom in defining menus. Figure
5.3A shows a sampie master menu with several sub-menu entries pius log off
["'STOP"). Figure 5.3B shows one of the sub-menus with entries for application
orograms, new sub-menus, the master menu or logging off.

ND-60.111.03

6-5

NDTPS MASTER MENU

1 ACCOUNTING

2 PAYROLL

3 INVOICE

4 INVENTORY

5 TEXT PRO CESSING

8 sToP

ENTRY CHQICE:

AN

Figure 6.3A: A Master Menu

/

! 3C0OKEEPING

NO TPS ACCOUNTING

2 ACCOUNTS RECZIVABLE
3 GENERAL LZDGER

4 REGISTER UPDATE

5 AEPORTS

3 MASTER MENU

7 sTOP

ENTRY CHOICE:

.

Figure 6.3B: A Sub-Menu

ND-60.111.03

6.1.3

6—6

The Access Control System
Access control in the standard versions of SIGNON and SELECT is done in three
ways:

— A user may have a password which must be given when the user enters his
name - this controls total access to TPS

— A user has only access to his master menu and the sub-menus which can
be chosen through the master menu - this controls menu access

— Every menu entry can have a security code and only those users with a

code greater than or equal to the menu entry code may choose that entry -
this controls menu entry access

SIGNON and SELECT use three tables to control user access to TPS:
— the user table, TPS-USERTAB
— the menu table, TPS-MENUTAB

— the default table, TPS-DEFAULT -

Defining these tables is usually a task for the TPS system supervisor and is
described in the TPS System Supervisor's Guide. In addition the system
supervisor should use NSHS or FOCUS to define:

— the SIGNQON picture for control of user name and password

—_ nictures for the various menus defined in the menu table

The access control system in the standard versions of SIGNON and SELECT is
designed to provide a large amount of freedom in defining the controf for a
particuiar TPS system. The amount of information contained in the tables will
depend on the degree of control needed, from the simple use of defaults to the
detailed use of passwords, restricted menu choices and security codes.

Access to different subsystems may also vary greatly. Access to an invoicing

system, for example, may be quite general, while the payroll system may be
more restricted.

ND-60.111.03

6.2

6.2.1

SIGNOFF, ABEND AND RESTART

SIGNOFF

The SIGNOFF application is given control when a transaction terminates
normally, i.e. when one of the following occurs:

-— reaching the logical end of the program (the END or STOP RUN
statement)

— using the TSTOP TSR with a stop code of 0 -

— the LEAVE monitor call

The function of SIGNOFF is to terminate the transaction in the way indicated by
the termination strategy for that task. The termination strategies and the actions
taken by the standard version of SIGNOFF are:

1 —~ Terminate the task completely (release the terminai if it has one, break a
session if there is one, take a transaction checkpoint and free the TPT)

2 — Switch to the SIGNON appiication, using TSWAP (no devices or other
resources freed)

3 — Switch to the SELECT application

4 — Switch to the user-defined termination application

The termination strategy and the user termination application are obtained by
SIGNOFF with a special TSR. TSTAT (read the status of the current task).

When a task is originally started, the termination strategy is set to 1, complete
termination. The TSTST TSR (set termination strategy) can be used to change it
and to define a user termination application. The standard version of SIGNON

changes the strategy to 2, switch to SIGNON; the standard version of SELECT
does not change it.

If a user termination application is usead, it must not itself terminate "'normally”

unless it has changed the termination strategy, since this would result in an
endless loop. It may, for example, terminate by switching to SIGNON.

ND-60.111.03

6.2.2

6-8

ABEND

The ABEND application is given control when a transaction terminates
abnormally, i.e. when one of the following occurs:

— a serious error is detected by the FORTRAN, PLANC or COBOL runtime
system

—_ a serious error is detected by the TPS system
— the TPS operator terminates the transaction

— the application program uses the TSTOP TSR with a non-zero stop code

A serious error is any error which prevents the. program from continuing, such as
timeout, an 1/0O error without an error handling routine, switching to an
application program that has not been loaded, a ‘fatal formatting system error’,
etc.

When ABEND is activated, it will start by sending the “abend error message’’ to
the TPS operator console (see below for the format of this message). it will then
carry out the action indicated by the abend strategy for the task and it will finish
by switching to SIGNOFF to terminate the transaction. The abend strategies and
the corresponding actions taken by the standard version of ABEND are:

1 — No more action - just switch to SIGNOFF

2 — Send the abend error message to the terminal operator (if the transaction
has a terminal), switch to SIGNOFF

3 — Dump the data areas for the TPT on the line printer, switch to SIGNOFF
4 — Switch to the user abend application
5 — Halt TPS

The abend strategy and the user abend application are obtained by ABEND using
a special TSR, TABST (read the abend status of the current task).

When a task is originally started, the abend strategy is set to 1, send the abend
error message tc the TPS operator console and switch to SIGNOFF. The TSAST

TSR (set abend strategy) can be used to change it and to define a user abend
application.

It is important that the user abend application is thoroughly tested before being
used, since an abend in that application would probably result in an endless loop.
It should terminate in the normal way (END, STOP RUN, TSTOP(0}) so that .
SIGNOFF will be activated when it is done.

ND-60.111.03

6.2.2.1 The Abend Error Message |

The error message sent by the standard ABEND application is as follows:

TPS
APPL. NO. aaa ABENDED BY JRUNTIME SYSTEM
APPLICATION
IN ADDR vyyy TPT NO. tt
DUE TO reason (text) if abended by TPS
reason (code) if abended by appl. or RUNTIME SYSTEM
CLOSED
DATA BASE ACTIVITY: SREAD
UPDATE
Codes:
aaa TPS application no. {0-255)
tt TPT no. 1-63
vy Latest link register
reason (text) If abended by TPS, ane of the following texts:
or reason (code) 0= Abended by operator

1 = Application cannot be activated
2=lllegal use of TSRs

3=Subroutine not loaded

4= Application Timeout

5=Internal TPS error

6 = Operator Timeout

7= Attempt to restore-ND-500 application
8= Error from ND-500 monitor

If abended by application:)
Stop code given in TSTOP or error
message from NSHS or SIBAS

If abended by runtime system
SINTRAN error code

ND-60.111.03

6.2.3

610

RESTART

The RESTART application is given control when a transaction is to be restarted
after a system roilback or recovery operation. It is started for each TPT and has
the function of examining the restart strategy for the task and carrying out the
appropriate restart action.

The restart strategies and the corresponding actions taken by the standard
version of RESTART can be divided into 2 types, terminal operator controiled and
automatic. Transactions involving interaction with a terminal should normally use
the terminal controlled restart strategy, since the operator will be better informed
of the situation and have control of it to some extent.

The standard restart strategies (See Figure 6.4) are:

1 — Automatic Restart at Checkpoint. Go directly back to the application
program active at checkpoint and continue processing at the next
statement after the checkpoint was taken. This strategy cannot be used for
transactions running on the ND-500. A special TSR, TRSTO (restore
application status and restart), is used by the RESTART application to do
this. it is described in the TPS System Supervisor's Guide.

2 — Start the Application in a User-Specified Restart Application. The RESTART
program will not return to the active application program but switch to the
user restart application program set by the TSRST TSR. This program may
be SIGNON, SELECT, the active application program (which will then be
restarted from the beginning) or any other user application program. For
gxample, if several application programs are run sequentially {using
TSWAP) they can be restarted from the beginning of the first one or any of
the others, or a special user-restart application may be started. User restart
application will have access to the common data area of the transaction
and the data wiil have the values they had at checkpoint.

3 — Terminate the Transaction. RESTART will switch to SIGNQOFF.

4 — Terminal Operator Controlled Restart. This strategy can only be used by
application programs with terminals controlled by NSHS/FOCUS. RESTART
acquires the terminal and sends a message informing the operator of the
restart condition and asking him to choose the restart action which suits
him best (See Figure 6.5). As the figure shows, the operator can choose
between:

a — Restarting at checkpoint (not allowed for ND-500)
b — Terminating the transaction
¢ — Switching to SELECT to choose from the user’'s master menu

The operator controlled strategy includes a timeout, and if no answer is received
before the timeout expires, the ABEND application is started.

The default value of the restart strategy when a task is started is 2, start the
application in user restart application, and user restart application is the first
application that has been started (normally SIGNON). The restart strategy and
the restart application can be changed with the TSRST TSR.

ND-60.111.03

6-11

The value of the restart strategy and the user restar!t application are obtained by
RESTART using a special TSR, TRRST (read the restart status of‘ the current
task).

When a task is originally started the restart strategy is set to 2, switch to the
user restart application, and the user restart application is the first application
that is activated. This will normally be SIGNON. The TSRST TSR (set restart
strategy) can be used to change the strategy and the restart application.

USER APPL. RESTART APPL. QTHER APPL.
Checkpoint Restart at
taken checkpoint
3

|

I

A 4
Point of Rastors to
failure checkpoint
RESTART AT CHECKPOINT {NOT {N NDS500)

) Restart at Start
Checkpoint RAPPL RAPPL
taken {restart appi.) at beginning

‘ I
|
|

- Y
(re——— i ———
| |
I 2gint ot ¢ Rastore 0
Vo e ok .
! ‘aliure i | Iheckpoint
i H i
e ———————
RESTART AT RAPPL
Checkpoint . Start
taken Terminate SIGNOFF
i
k 1
!
1 4
Point of Restore to
failure checkpoint
TERMINATE

Figure 6.4: Standard Restart Strategies

ND-60.111.03

6-12

ANIW HILSYIN IHL OL NHNLIY 'E
NOILOVSNVYHL GHL JLVNINHIL 7
(3HNLOId FHOLSIH OL DDO TOHINOD SSIH) LNIONIIHD LV INNILNOD i

iISNOILOV DNIMOTT04 IHL 40 INO LD37135 3SYId

1V ANNO4 3LVIS IHL LV LYY ISIY MON SI LI MOHANY

awrett 1asn A g
031VHIdO SYM TYNIWHIL SIHL NIHM HVIYE vV NOOL WILSAS FHL LVHL

TTAHHOS 3H.IM

Figure 6.5: Terminal Operator Controlled Restart

ND-60.111.03

6—-13

6.2.4 Summary of Termination, Abend and Restart Strategies

Figure 6.6 shows the relationship between the various special applications, user
applications and the strategies employed by SIGNOFF, ABEND and RESTART.
The numbered paths on the figure show the flow of control for the
corresponding strategy numbers. The dark paths show the controi flow if the
standard default strategies are used. The dashed lines show the normal flow of
control in the TPS system apart from the strategies described.

Note that the user restart application is placed as a separate application from all
of the others. This is not necessarily the case, as it may be any application,
either special or user. The default value for it is, in fact, SIGNON (however,
drawing a dark path from RESTART to SIGNON to show this default would have
made the figure too messy!). It may also be the application that was active at
checkpoint, the difference between strategies 1 {restart at checkpoint) and 2
(switch to restart application) being that strategy 1 would start the application in
the middle, after checkpoint, while strategy 3 would start it at the beginning.

o e USER
NON SELEC
SiGNO e APPLICATICN
N
\
USER USER USER
ABEND TEAM RESTART
T X
| | / \
| | \ \ 1 2
4 4 4 4
| \ N
i i U
- { \\‘ﬁ‘ : \ \
1.2.3 : 3.4
ABEND - SIGNQFF et AESTAAT
1
EXIT FROM

TPS

Figure 6.6: The Terminate, Abend and Restart Strategies’

ND-60.111.03

6.3

6.4

6-14

TPOPEN AND TPCLOSE

The TPOPEN and TPCLOSE special applications are system applications called
when TPS is initially started up and when TPS is closed down. A system special
application is one that is only called by one TPT for each TCM, the system TPT,
and that performs processing that affects the whole TPS system, not only a
single task.

TPOPEN has several functions. It sends a ‘good morning’ message to the TPS
operator. |t opens the data base for a special system user in order to take
checkpoints and control rollback and recovery. The efficiency of the TPS system
is also increased if the data base is always open for at least one user, since
opening it for other users will then go faster (See Section 3.2.3). TPOPEN will
also go through the terminal configuration table, TPS-TERMTAB, and start up a
task for each terminal in the table, using the TACTV TSR to acquire a TPT and
activate the SIGNON application. TPS-TERMTAB is defined in the same way as
TPS-USERTAB, TPS-MENUTAB and TPS-DEFAULT (See Section 6.1.3). Defining
these tables is described in the TPS System Supervisor's Guide.

TPCLOSE is activated when a CLOSE-TPS command has been given and all
transactions have been complieted. After CLOSE-TPS has been given, no new
transactions may be started. SIGNOFF controls this by checking for a close
situation when a transaction terminatesand causing complete transaction
termination with release of the terminal and the TPT, regardliess of the normal

" termination strategy. When all TPTs have been released, the TPCLOSE

application will be activated. It will also be activated if an ABEND-TPS command
is given, but in this case the activation is immediate without waiting for
transactions to terminate. TPCLOSE will close the data base and send a ‘good
night’ message to the TPS operator.

CHECKPOINT, ROLLBACK AND RECOVER

The CHECKPOINT, ROLLBACK and RECOQOVER special applications are also

system applications called by the system TPT to perform functions affecting the
whole TPS system.

They are activated when the corresponding commands are given either by the
operator, a system module (a TCM for example) or an application using an
operator-command TSR (these are restricted to special applications). Their task
is to supervise the SIBAS actions needed to carry out the required functions,
either by calling SIBAS directly (GCHPO, SROLL, SREPR, etc.) or by instructing
the TPS operator in carrying out the functions manually. Checkpoint, roilback and
recovery are discussed in detail in chapter 5.

ND-60.111.03

SPECIAL CONSIDERATIONS

This chapter describes various special considerations which should be taken
when writing programs to be run under TPS. It includes data area definition,

language dependent limitations and requirements, program structure and
efficiency.

DATA AREAS IN THE ND-—-100

Application programs must be reentrant. This means that they cannot be written
into and thus may not contain any variable data. The data area for an application
program is placed instead on the non-reentrant part of the TPT for that
transaction. This is done automatically by TPS and demands no special action on
the part of the application programmer. There is, however, a restriction on the -
size of the data area, discussed in section 7.1.4, and some rules must be
followed when defining the data. ’

Since data areas belong to the TPT and not to the application program itself, no
variable data may be initialised before execution. This is a generai rule for

reentrant programs. Note that the data area will not be cleared either but contain
arbitrary values.

Constant data, on the other hand, may be initialised in application programs
written in FORTRAN/PLANC, NPL and MAC (but not COBOL). FORTRAN
programs must define the data as belonging to a COMMON area (not the
COMMON/PRIVATE/area), initialise the data in a BLOCK DATA subprogram and
load the block data subprogram together with the application program. PLANC
programs may define the data as g/obal read only data in modules. It-will then be
part of the read-only segment containing the application program and can be
read but not changed. This method of initialising the data must be used since the
DATA statement is not ailowed in reentrant programs. NPL and MAC programs
can initialise the data directly in the programs.

Example - Constant data in FORTRAN

MAIN PROGRAM

PROGRAM APO5S0 ;
COMMON/PRIVATE/ITERM.... task common data area in TPT

COMMON/CONST/K1,K2,C3,TABLE(10).... constant data area in program

CONSTANT DATA

BLOCK DATA
COMMON /CONST/K1,K2,C3,TABLE(10)....
DATA X1,K2,C3/1,2,5.642/TABLE/1.2,2.0,10.3,5%50.0,0.0,1.0/....

END ND-60.111.03

LOADING THE APPLICATION (SEE SECTION 8.2.1)

“ADD-APPL,APO50-BRF,AP050;
“ADD-UNIT,CONST-DATA-BRF;

System
part

Task
commaon
data
area

Local
data
area
{stack)

Non reentrant

Figure 7.1:

System
routines,
TSRs

The TPT

ND-60.111.03

Reentrant

7.11

71.2

The Variable Data Area In The ND—100

The variable data area is located in the non-reentrant part of the TPT. It consists
of two parts, the task common data area for the transaction and the local areas
or stack (See Figure 7.1). N

The Task Common Data Area In The ND—100

The task common data area contains data that is available to all the application
programs and subroutines for a transaction. If one application program switches
to another using TSWAP, the new application program have the same task
common area, cantaining the old data.

Note: The first word of task-common should always contain the terminal device
number if the application uses a terminal. If not, it ought to equal zero.

If the transaction uses NSHS, the first variables in the task common data area
must be the terminal buffer ITERM and the private picture area IPRIV (see the
NORD Screen Handling System). After that follow common transaction data.

if the transaction uses FOCUS, then the task common area from word 100

upwards will be used by FOCUS. The first 100 16-bit words only are available for
common transaction data.

The task common area is defined in a FORTRAN program with the COMMON
statement and must have the name PRIVATE.

COMMON/PRIVATE/ITERM(128),IPRIV(1024),REST
Orin a PLANC-program:
IMPORT {COMMON)(tvpe:PRIVATE!}

This must be the only COMMON statement for variable data in the program
{constant data may be defined in other COMMON areas as described above).

The total length of the common area PRIVATE is fixed for FORTRAN/PLANC
programs at system generation time. The individual transactions may define a
common area of any length up to the fixed maximum.

In order to assure that the COMMON statement is correct in every application

program for a transaction, the statements can be defined separately and copied
to the individual applicaton programs with the INCLUDE statement.

ND-60.111.03

74

In COBOL main programs, the task common data area is just defined as the first
part of working storage. As long as this data is defined in the same way in all
application programs for a transaction, they will all have access to it. As in
FORTRAN/PLANC, part of the common area must contain screen handling
system variables. In contrast toc FORTRAN, the total length of the common area
is variable (up to a maximum value) for individual transactions, since it is just the
first part of working storage defined in the same way for several programs.

WORKING-STORAGE SECTION
01 ITERM COMP OCCURS 126.

01 PRIV COMP OCCURS 1024.
01 REST.

The COPY statement can be used in COBOL to assure the correct definition of
the common area.

The task common data area cannot be accessed from COBOL subroutines via the
working storage section. For subroutines the working storage area is allocated at
a fixed address of the local data area at load time. However, the task common
data area may be accessed via parameters defined in the linkage section.

If application programs are written in several languages and an application
program uses the TSWAP TSR to switch to a new application program written
in a different language, special care must be taken that the task common data
areas are defined in the same way in both programs. Then the new program will
have acccess to the common data of the old program even though they are
written in different languages. It is the responsibility of the programmer to see to
it that the data definitions match.

ND-60.111.03

7-5

The Local Data Area In The ND—100

In addition to data in the task common data area, the individual application
programs can define local data. This data will be lost when switching to a new
application program and is not available to subroutines.

Local data for all FORTRAN/PLANC programs, both main programs and
subroutines, are placed in the stack (See Figure 7.2.A). The stack is the data area
in the TPT immediately following the common area. When a FORTRAN/PLANC
main program or subroutine is started, it is given an area in the stack large
enough to contain all local data defined in the routine. It will have access to this
area until it is done, when the area will be freed. If the program calls a
subroutine, the subroutine will be given an area in the stack following the area
for the calling program. The stack can thus be considered a pool of storage
space allocated to individual routines dynamically during execution. Since space

is allocated dynamically, data in the stack may not be initialised before execution
time.

MAC and NPL programs must simulate reentrant FORTRAN/PLANC programs
when interacting with the system.

The MAC and NPL programmer must foliow rather strict rules in order to use the
stack and define data correctly. The FORTRAN programmer, on the other hand,
defines data in the usual FORTRAN manner with the exception of the restriction
on the use of COMMON described above. The compiler must be set in reentrant
mode when compiling the program and the program must be loaded as
described in section 8.3.1. If these things are done, addressing and stack
adminstration will be performed correctly.

The data area for a COBOL orogram is described in figure 7.2B.

in PLANC-programs, vou must refer to a stack in the INISTACK statement in
order to satisfv the PLANC-compiler. You have to declare a global dummy-stack
INTEGER ARRAY STCK {0:') in vour main program module and include the
statement INISTACK STCK in the main program. The symboi 5STLEN shouid be
eft undefined by lcad-time. The actuai stack iength will be set up when the TPT
is initiated.

ND-60.111.03

7-6

coBOL

FORTRAN /PLANC
FIXED
LENGTH | | SYSTEMPART SYSTEM PART
(COMMON/
ITERM deth ITERM
IPRIV
FIXED IPRIV
FIXED REST OF LENGTH
LENGTH | | comMmon REST OF
L, comon
% NOT %
D /
STACK LOCAL DATA,
(i
\,
LOCAL DATA, LOCAL DATA,
MAIN PROG. SUBROQUTINE
LOCAL DATA,
FIXED FIXED SUBR (FTN)
LENGTH LOCAL DATA, LENGTH <
SUBROUTINE 7////////
% USED / 7, /
R YR,
A B
Figure 7.2: Data Areas ror FORTRAN AND COBOL Programs

ND-60.111.03

FIXED
LENGTH
WORKING

STORAGE
COMMON

FTN
STACK

7.1.4

The Size of the Data Area In The ND—100

The total size of the data area for an application program, regardless of the
language it is written in, is a fixed number, determined at system generation
time. (See Figure 7.2 and Appendix D). This size includes the non-reentrant part
of the TPT, about 1400s locations of which 1000s is used by SIBAS (2000s
locations if FORTRAN-100 is used).

This size will for FORTRAN programs be the sum of the following:
— non-reentrant TPT

— task common data area (screen handling part and transaction part and
unused part)

— stack area

For COBOL programs the size will be the sum of:

— non-reentrant TPT

— WS - task common data area (screen handling part and transaction part)
and local area

_ COBLIB area

—-— stack area

The maximum size of working storage is also a system generation parameter. If a
COBOL program demands a work area larger than this maximum, an error
message will be written at load time /See Appendix C} and the program will not
be loaded.

The size of the stack will be whatever is left over after the rest of the areas are
allocated. |f NSHS is used, it needs approximately 1.5 Kwords in the stack in
addition to the data in the common area. SIBAS also uses 0.5 Kwords. However,
since this area is freed upon return to the calling routine, NSHS and SIBAS
routines can use the same stack area. FOCUS does not use this stack area.

7

\ ND-60.111.03

7.2

7-8

DATA AREAS IN THE ND—500

All programs running in the ND-500-CPU are reentrant, and the code and data
are always separated. '

The complete data area, i.e. the local data area, the common data area and the
stack area, containing both constant and variable data, is placed in the data-part
of the segment where the application is loaded.

Note that, in contrast to the ND-100, a// data will be given their initial values
(initiated by load-time) each time an application is started.

The total size of the data area for an application program is up to 134
megabytes. Note that this data area will not be saved at checkpoint.

In addition to the data area described above, application programs may access
the task common data area (see fig. 7.1). This area is common to all application
programs and subroutines in both the ND-100 and ND-500 for a transaction. If
one application program switches to another, e.g. from an ND-100-application to
an ND-500-application, the new application program has the same task common
data area, containing the old data.

Note: The first 16-bit word of task common should always contain the terminai
device number if the application uses a terminal. If not, it ought to equal zero.

In the ND-500, the task common is labelled by the common label PRIVATE.
FORTRAN programs may access task common by the statement:
COMMON/PRIVATE/ < array >
PLANC programs may access task common by the statement:
IMPORT (COMMON)(type:PRIVATE)

COBOL programs may access task common by these statements (aiso applies to
COBOL subroutines):

LINKAGE SECTION.
01 PRIVATE IMPORT.
02 <array>.

Note: If the transaction uses the FOCUS screen handling system, oniy the first
200 bytes of task common will be available for the user application program. The
rest of task common is used by FOCUS, because the FOCUS data must be
passed on {by TSWAP) to the next application of the transaction.

The total length of task common (PRIVATE) is the same as in the ND-100
{counted in bytes), and it is fixed at system generation time.

{f an application in the ND-100 uses the TSWAP TSR to switch to a new”

application program in the other machine, the ND-500, or the other way around, '

special care must be taken that the task common data areas are defined in the

same way in both programs. Be aware that the word-length (used for example in

data type INTEGER) is 16 bits in the ND-100 and 32 bits in the ND-500.
ND-60.111.03

7.3

79

LANGUAGE DEPENDENT CONSIDERATIONS

There are few limitations to the full set of FORTRAN and COBOL facilities
available on NORD computers when writing programs to be run under TPS. TPS
application programs are very similar to general real-time programs using
SINTRAN, SIBAS and NSHS/FOCUS. For a discussion of real time programming,
see SINTRAN Il User’'s Guide, Chapters 4 and 7.

ND-500 COBOL, FORTRAN and PLANC programs may be tested by using the ND
Symbolic Debugger «live» in an ordinary TPS-run. (Chapter 8.1.)

in addition, all languages are extended by the TSR facilities of TPS, including
session communication and checkpoint/restart.

In the ND-500, there are no restrictions on language usage, such as initialized
data, local data and common areas, and most language features may be used
freely. Data in task-common may be accessed in the common area PRIVATE as
described in section 7.2. Note that FOCUS uses PRIVATE from ND-500 address
200 upwards. Note also that the COBOL statements ACCEPT, DISPLAY and
EXHIBIT cannot be used in the ND-500.

The following sections discuss the languages in ND-100 individually.

ND-60.111.03

7.3.1

7-10

FORTRAN/PLANC in ND—100

All application programs run under TPS must be reentrant. In FORTRAN this is
done by setting the compiler in reentrant mode before compiling. In addition the
compiler should be set in a state to generate allocation of 20, extra stack
locations whenever subroutines, written in MAC or NPL, that use these extra
locations are linked to the main program. This makes it possible to keep earlier
written subroutines in a lowlevel fanguage unmodified.

The commands to obtain these things are:

FTN: REENTRANT ON
FTN: RESERVE—WORK-—SPACE ON

Constant data in FORTRAN programs must be defined in a BLOCK DATA
subroutine as described in section 7.1. Constant data in PLANC-programs may be
defined by read-only global data declarations in PLANC-MODULES. Defining
variable data areas is also discussed in section 7.1.

When using FORTRAN input-output 2 words fellowing the stack will be used for
the administration of a FORTRAN input-output statement. These two words will
not be checkpointed at runtime, and special considerations shouid therefore be
taken when using FORTRAN input-output from applications.

Application programs may also be run as background programs using the TPS
background system (See Section 8.2). This is mainly useful for program testing.
The debugging facility of FORTRAN/PLANC may be used in background
programs by setting the compiler in debug mode and then loading the debugging
supervisor. {part of the runtime system). Programs using the debugging facility
must not be reentrant. When programs are run as background programs they
wiil use background versions of the special TPS facilities available. They wiil also
use the background version of the FORTRAN/PLANC library, FORTRAN—1BANK.

When loading real-time programs to be run under TPS, a special TPS version of
FORTRAN-1REENT is loaded automatically due to the TPS load macros (See
section 8.3.1).This library is usually merged with the TSR file to one 3BRF file,
TPS-LIBRARY:BRF.

When calling TSR routines from PLANC, all routines, must be declared as
ROUTINE STANDARD..... in IMPORT statement. PLANC-routines shouid call
CGBRD and CWMSG instead of TGBRD and TWMSG, using type "BYTES" for
the parameter <text>.

ND-60.111.03

713.2

7.3.3

7-11

COBOL in ND-—-100

As for FORTRAN, COBOL programs running under TPS must be reentrant. This
however is done automaticaily by TPS when the application program is loaded,
so the programmer does not have to do anything special.

No data may be initiated in real time COBOL programs, since ail data is placed in
the data area of the TPT. This includes both constants and variables. Defining
data areas in COBOL is discussed in section 7.1.

The SORT function is not yet available under TPS.

ND-100 COBOL programs may also be tested as background programs using the
TPS background system. The interactive debugging option can then be used. The
ACCEPT, DISPLAY and EXHIBIT commands can only be used in background
programs.

Most COBOL programs running under TPS will need routines in the FORTRAN
library, since SIBAS and NS<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>