NORD-100 SINTRAN III
SIMULA
Reference Manual

NORSK DATA AS

NORD-100 SINTRAN III
SIMULA
Reference Manual

NOTICE

The information in this document is subject to change without notice. Norsk Data
A.S assumes no responsibility for any errors that may appear in this document.
Norsk Data A.S assumes no responsibility for the use or reliability of its software
on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. It may not

be photocopied, reproduced or translated without the prior consent of Norsk Data
A.S.

Copyright (C) 1980 by Norsk Data A.S.

BPed v .

PRINTING RECORD

Printing Notes
09/77 VERSION 01
08/78 Version 02
12/80 Version 03

NORD-100 SINTRAN il SIMULA - Reference Manual

Publ. No.

ND-60.092.03

ooeo00@
:E:::::: NORSK DATA A.S
2ooeses P.O.Box4, Lindeberg gard

00000000

eoead

0008888° Oslo 10, Norway

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one or
more single pages to be merged into the manual by the user, each revised page
being listed on the new printing record sent out with the revision. The old
printing record should be replaced by the new one.

New versions and revisions are announced in the ND Bulletin and can be ordered
as described below.

The reader's comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms, together with ali types of inquiry and requests for documentation
should be sent to the local ND office or {in Norway) to:

Documentation Department
Norsk Data A.S

P.0O. Box 4, Lindeberg gard
Oslo 10

NOTICE

The information in this document is subject to change without notice.
Norsk Data A.S. assumes no responsibility for the use or relialibility

of its software on equipment that is not furnished or supported by
Norsk Data A.S.

Copyright 1980 G. P. Philippot.

A1l rights reserved. Permission to create and distribute additional

copies of this issue is granted on the condition that each copy is a
complete reproduction of the manual, including this page.

Norsk Data A.S.

Postboks 4 Lindeberg gard
0sSLO 10
Norway

The word SIMULA is a registered trade mark of the Norwegian Computing
Center.

ND-60.092.03

vi

PREFACE

THE PRODUCT

This manual describes version 4.017 of the TPH SIMULA system for the
NORD-100 computers, the October 1980 release.

The implementiation of TPH SIMULA has been performed by Mr. G. P.
philippot of TPH Data A.S. All marketing rights for the NORD-100 have
been transferred to Norsk Data A.S. in agreement with TPH Data A.S.

All questions and responses concerning the NORD-100 SIMULA language

should be directed to Norsk Data's Marketing or Custamer Support
departments.

THE READER

This manual is intended for readers who need a description of the
implementation of the SIMULA language for the NORD-100 computers.

PREREQUISITE KNOWLEDGE

A thorough knowledge of the SIMULA language is assumed, and a certain
experience with the Sintran-III operating system is required to run a
SIMULA program.

THE MANUAL

This manual 1is a reference manual describing differences between the
TPH SIMULA implementation and the SIMULA Common Base Language, the
extensions and restrictions. It also describes the use of the compiler
and the external program representation. The manual is intended to be
used as a reference text for the NORD-100 implementation, and each
chapter is independent of the others.

RELATED MANUALS

SINTRAN III TIME-SHARING/BATCH GUIDE ND-60.132
SINTRAN ITT REFERENCE MANUAL ND-60.128

ND-60.092.03

1. Introduction

1.1l. Nord-100 version

1.2. Campiler description
1.2.1. Extensions
1.2.2. Restrictions

1.3. Operating environment

2. Precampiler

2.1. Flags

2.2. Options

vii

Contents

2.3. Conditional compilation

2.4. End of file

2.5. Alternate source files

3. Source program

3.1. Delimiters
3.2. Identifiers

3.3. Constants

3.3.1. Numeric constants

3.3.2. Text constants

4, Procedures and classes

4.1. External quantities
4.2. Entrypoint quantities

4,3. Virtual procedures

ND-60.092.03

[NelResiise)

11

11
11
12
13

13

14

14
15
16

16
16

18

18
19

20

viii

5. Standard classes

5.1.
5.2.

5.3.

Input/output
SIMSET

SIMULATION

6. Standard procedures

6.1.
6.2.
6.3.
6.4.

6.5.

Quasi parallel sequencing
Arithmetic and conversion
Random draws

Editing and de-editing

Other text operations

7. Campilation and execution of programs

7.1.

7.2.

7.3.

7.4.

Elementary compile and execute procedure
Saving the binary ccde

Advanced compiler use

7.3.1. Terminal command language
7.3.2. Cawpiler option set
7.3.3. Campilation errors

Run time system

7.4.1. Debugging command language
7.4.2. Run time errors

7.4.3. Run time system options set

L3

8. References

Appendix A: Example on use

Appendix B: Summary on standard identifiers

ND-60.092.03

21

21
24

24

25

25
26
26
27

27

28

28
29
29
29
31
32
32
32

34
34

35

36

39

Appendix C:

Appendix D:

2ppendix E:

Appendix F:

Appendix G:

ix

Compiler error messages

Run time error messages

Extended language

Non—~Simula procedures

External procedure library

42

45

47

49

54

NORD-100 SINTRAN III SIMULA Reference manual 7
Introduction

1. Introduction

The SIMULA language, developed by the WNorwegian Computing Center
(NCC), has achieved great acceptance in universities and computer
teaching institutes for the exceptionally good program and data
structuring capabilities, making it especially suitable for teaching
programming techniques. The list processing and simulation
capabilities offered by the SIMSET and SIMULATION system classes make
SIMULA a programming language with capabilities far beyond those
normally found with FORTRAN, COBOL, BASIC, etc.

This implementation of the SIMULA language makes, for the first time,

these programming capabilities available within low cost minicomputer
environments.

TPH SIMJLA is an implementation of SIMULA, a general purpose language
defined in 1967. SIMIJLA is defined in "SIMULA Common Base Language"
(Ref. (1)), later referred to as the Common Base. As no attempt is to
be made in the present manual to teach SIMULA, the reader is assumed

to posess a thorough knowledge of SIMULA from the Cammon Base or other
sources, e.g. (2).

This implementation of 1977 is basically machine independent. For
practical purposes however, the manual is written for NORD-100 users.

1.1. Nord-100 version

The version described here compiles and executes programs on the
NORD-100 computer. The compiler occupies 31K words of program plus
dynamically allocated data, minimum 2K. The bprogram oonsists of
several independent phases, varying from 5 to 15K words, each
performing different compilation tasks.

The compiler executes as a reentrant subsystem under the STNTRAN
III/VS operating system, whereby many active users share common code,
Utilizing the virtual storage concept of the NORD-100 SINTRAN III/VS,
only those 1K pages that are actually necessary get allocated.

Programs can be written according to any of the DEC, IBM, or UNIVAC
hardware notations, but it is recommended that they correspond to the
standard hardware notation of 8SDG recomendation no. 4. Unless
explicitly requested, lower case letters in identifiers are considered
equivalent to upper case. The character set for use in program
execution is the ASCITI set, having rank wvalues from 0 to 127
(decimal) .

All system dependent details are related to the SINTRAN III operating
system.

ND-60.092.03

8 NORD~100 SINTRAN III SIMULA Reference manual
Introduction

Section 7.1 gives a minimum of instruction for new users who want to
run programs without reading the entire manual first.

1.2. Camnpiler description

The compiler reads programs written in SIMULA and translates them to
binary relocatable code, binary absolute code, or instructions
directly placed in memory, according to user commands. This section
gives a summary of all known extensions and restrictions. Reasons and
details are, in general, described elsewhere.

1.2.1. Extensions

an extended language called Zimula is available upon request, see
appendix B.

mxternal classes and procedures (in Simula, Fortran, or assembly code)
have been implemented. An external class may be referenced on any
block level of a subsequent compilation. A special compiler command
gpecifies which user libraries are to be searched when looking for
external quantities.

The while statement is (of course) implemented.

The hidden protected feature (see SDG recommendation no. 1, Attribute
Protection) is included syntactically, but as yet not processed
semantically. This was done to allow transfer of programs without
having to delete the protection specifications.

Compiler directives, identified by % in column one, include the
conditional compilation feature.

Tf all matches to a virtual procedure have the same number, types, and
modes of parameters, then the calls for this procedure will be just as
efficient as an ordinary procedure call.

Text variables are allowed to point to text constants. Any attempt to
modify a text constant will be detected by the run time system.

Run-time checks for array bounds, qualifications, arithmetic overflow,

and none can be switched off individually for any part of the program
as desired.

An interactive debugging system is available, allowing breakpoints and
a statement by statement execution.

ND-60.092.03

NORD-100 SINTRAN ITI SIMULA Reference manual S
Introduction

1.2.2. Restrictions

The maximum length of an identifier is 72 characters, all of which are

significant. This conforms to 85DG recommendation no. 4 on hardware
notation.

Source lines have a maximum length of 120 characters. Excess
characters are ignored, as well as non-printable characters. (The TAB

character is taken as one space.) Carriage return is the end-of-line
signal.

Texts (both variable and constant) have a maximum length of formally

32761 characters, though overall program and data size may effectively
restrict the length further.

Integer variables and constants have a range from -32768 to 32767,
inclusive. Real variables and constants can have these values: From

-1&4920 to ~1&-4920, exact zero, and from 1&-4920 to 1&4920. They have
10 significant digits.

The number of nested epressions, procedure calls, etc. in each
statement 1is restricted to 64. This number should be generous but is
easily increased upon request.

Prefixing by system classes is only allowed with SIMSET and
SIMULATION, but these prefixes can be used at any block level.

The indices to a multi-dimensional array are not checked individually.

To save time and data space, only the resulting address is checked
against the bounds.

Depending on programming style, the compiler in its present state can
only take approx. 5000 lines of source text. In some cases, however,
the user can use external compilation to split his program. The
combined program size capacity is estimated to be over 8000 lines.

An array object may occupy a maximum of 49152 words total. Allowing
for some overhead, this gives approx. 49000 integer elements, 16300
real elements, or 12000 text elements.

A block object (procedure, class etc.) may only occupy 512 words
maximum. A compiler error message is given if the maximum space is
exceeded. Note that the program code allocates temporary cells and
that these can also violate said restriction.

1.3. Operating environment

Information in this section is subject to change without notice. TPH
SIMULA under SINTRAN IIT consists of the following public files:

ND-60.092.03

10 NORD-100 SINTRAN IIT SIMULA Reference manual

Introduction
N10-SIMULA:BPUN Binary absolute file containing the campiler
(usually made reentrant under the name
SIMULA)
SIMRT3:SIM Definition of non-standard library
routines
STMERR : DATA Error messages for use by the run time
system
SIMERC: DATA Error messages for use by the compiler
SIMBASE3:SIM Definition of DIRECTFILE
SIMSET3:STM Definition of SIMSET
SIMULA3:SIM Definition of SIMULATION
SIMRAND3: STM Random drawing routines
SIMMAT: STM Mathematical library

S-LOAD-DUAL: PROG Loader for :PROG files with large
programs

All enquiries concerning Simula system results should be accompanied
by the version number printed by the campiler that was used. The
version number must include both level and the edition, e.g. 4.0ll.

For efficient use on a NORD-100, please observe that the physical
memory available for swapping must be sufficiently large to accomodate
the Simula system's working set, which can be up to 123K words
depending on program size. A computer running Sintran ITII/VS will, in
most configurations, need at least 96K words of memory.

The Sintran III/VS host system must allow 128K words of virtual memory
per user. This requires a modification to the standard system, namely,
the QCHANGE-BACKGROUND-SEGMENT-SIZE command has to be executed for
each terminal that is to be allowed use of STMJLA compiler or
programs.

ND-60.092.03

NORD-100 SINTRAN III SIMULA Reference manual 11
Precompiler

2. Precompiler

Before reaching the compiler, your source program is inspected by a
macro processor called the precompiler. All lines beginning with % are
taken as command lines to this processor - therefore, take care so as
to avoid e.g. comment lines to look like macro commands. However, a

comand line beginning with % followed by a space is ignored by the
precanpiler.

Macro commands serve two purposes: Changing compiler options from
within the source text, and controlling the cmission of specified
sections oOf the program. The latter is called conditional compilation
and is particularly useful when compiling the same source text for use
on several different installations. The Simula run time system uses
the precompiler in this way.

2.1, ¥lags

A flag has the value true or false and is identified by an identifier
that may have any 1length as long as it does not exceed the source
line. (The source line is limited to 120 characters.) The name tables
being totally separated, there is no name conflict with respect to
Simula program identifiers. A flag identifier may actually consist of
any characters, not only letters or digits. A flag not yet defined, if
referenced, gets the initial value false. There are two commands for
definition of a flag:

$SET identifier The specified flag is set to true. It may
have been defined and/or referenced before,

but the now assigned value is valid from now
on only.

$RESET identifier The specified flag is set to false. Scope as
explained above.

The use of flags is shown in section 2.3.

2.2. Options

Compiler options in this Simula system have values from -32768 to
32767, rather than the more common false or true. At any time, a
specific option is considered to be set if the value is greater than
zero, the initial value being zero. This allows selected program
sections to be enclosed by increment/decrement of options, the effect
of which can be controlled from the outside. Option assigrments are
defined in ch. 7.3.2. There are two macro commands for changing
options:

NDP-60.092.03

12 NORD-100 SINTRAN IITI SIMULA Reference manual

Precompiler
3SETOPT ccce Increment all options mentioned in cccc.
$RESOPT cccce Decrement all options mentioned in cccc.

These commands correspond exactly to the console cammands >SETOPT and
>RESOPT, described in ch. 7.3.1.

2.3. Conditional compilation

We have now arrived at the precompiler's main task: Suppression of
selected paragraphs of code, controlled by the current flag values. A
general construction for conditional compilation looks like:

$IF flag

: Sirmala source text,
3 first paragraph

%ELSE.flag

Simula source text,
: second paragraph

3

$FT flag

If the current value of flag is true, the first paragraph is compiled
and the second is skipped. If false, the second is compiled instead.
If either ocaragraph is to be empty, the corresponding $IF or %ELSE may
be omitted. Within the paragraphs, other conditional compilations may
occur as long as they do not use the same flag as the enclosing one.
Example on a branch to be executed if flag A and/or B is true:

$ELSE A

%IF B

3FT A
outtext ("This is version A or B");
outimage;

3T B

The construction may seem rather odd and intuitively illegal, but it
is based on knowledge of the one-pass operation of the precompiler,
which is governed by these simple rules in its neutral state:

- Any %FI command is ignored.

- Any $IF with a true flag is ignored.

- Any 3ELSE with a false flag is ignored.

ND-60.092.03

NORD-100 SINTRAN TII SIMULA Reference manual 13
Precompiler

- %IF with a false flag causes input skip, ignoring all lines
until $ELSE or %FI with the same flag is encountered. Note
that all references to other flags are ignored.

- BELSE with a true flag causes input skip, ignoring all lines
until %FI with the same flag is encountered.

According to this, the example works as follows: If A is true, the %IF
B is ignored and we compile the two statements. The late %FI B is
ignored. If A is false, the %ELSE A is ignored and thus the %IF B is
checked. TIf even B is false, all text up to %FI B is ignored. This
then is the only case where the statements are suppressed, for a true

B would cause %IF B to be ignored, and as stated above, the stand-
alone %FI A and %FI B do no harm.

2.4. End of file

The macro command $EOF may be used to terminate the source file. It
has the same effect as if end-of-file had been encountered. If

compiling directly from the tenninal (not recammended), %EOF is the
only way of terminating the source text.

2.5. Alternate source files

At any point in the source text, code from another file may be
inserted by the command

$COMPILE filename

subject to suppression by flags. The filename may be replaced by a
logical file number. TIf the $COMPILE is honored, a separate
precompiler is created for the inclusion, having no knowledge of or
effects on the flags of the surrounding precompiler. %COMPILE commands

may be nested to any depth, up to the operating system's limit of
simultaneocusly opened files.

ND-60.092.03

14 NORD-100 SINTRAN III SIMULA Reference manual
Source program

3. Source program

Your program is to be supplied as lines of maximum 120 printable ASCII
characters each. Though we recommend use of the standard hardware
notation as of SDG recommendation no. 4, it may follow any of the DEC,
IBM, or UNIVAC notations. This chapter describes the complete hardware
notation and gives other information closely related to this. The
general idea 1is to reserve a set of 64 words, containing begin, end,
integer, and many others, thus eliminating the need for surrounding
quotes or other means of recognition. In consequence, blanks cannot be
allowed 1in identifiers and are needed between reserved words and user
identifiers. These restrictions, according to most users, are
insignificant with respect to the valuable time saved in the typing of
programs.

According to SDG rec. no. 4, a special alternative for comments has
been allowed: ! outside of a comment, character, or text constant, is
accepted as a start of a comment, thus replacing the key word comment.

This causes no restrictions at all on source programs, since the
symbol ! would otherwise be illegal.

3.1. Delimiters

In describing delimiters, we deliberately omit those described in the
Common Base by underlined words, since they are all simply coded as
reserved words. A complete table of reserved words is given in the
next section. We also omit the delimiters used in constants only.

What remains then is a set of delimiters represented by various non-
alphabetic symbols in the Common Base. Many of these have several
alternative representations in TPH SIMULA; some of them may even be
represented by reserved words. Here is the set:

ND-60.092.03

NORD-100 SINTRAN III SIMULA Reference manual 15
Source program

Common Base TPH SIMULA with alternatives

- = eq
:*; <> ne .—:/ =
< < 1t

> > gt

< <= Jle
> >= ge
- not

~ and

v or

= imp

= eqv

((

[(/
))

]) /)
H H er S
+ A
« *

/ /

+ /

T *% N

4 r

3.2. Identifiers

An identifier begins with a letter (A-Z, a-z) and contains letters and
digits. To improve readability, it may also contain the underscore
character in any quantity. Underscores are significant. The maximum
recognizable identifier length is 72; any length exceeding this is an
error.

Letters of an identifier are internally converted to upper case unless
compiler option U has been set. Option U does not apply to reserved
words. The following identifiers are reserved (regardless of lower or
upper case) and may not be used for any purpose other than those
specified in the Cammon Base or in this manual:

ND-60.092.03

16

NORD-1.00 SINTRAN IIT SIMJLA Reference manual

Source program

ACTIVATE AFTER AND ARRAY AT

RBEFORE BEGIN BOOLEAN CHARACTER CLASS

COMMENT DELAY no HLSE END

EQ 20\ EXTERNAL FALSE FOR

GE &0 GOTO GT HINDEN

IF IMP IN INNER INSPECT

INTEGER IS LABEL LE TLONG

LT NAME NE NEW NONE

NOT NOTEXT OR OTHERWISE PRICR

PROCEDURE PROTECTED QUA REACTIVATE REAL

REF SHORT STEP SWITCH TEXT

THEN THIS 10 TRTE UNTIL

VALUE VIRTUAL WHEN WHILE

Mote the reservation of hidden and protected. They are included for
compatibility reasons, allowing transfer of programs using a

recommended extension to Simula systems. However, TPH SIMULA does not
as yet pvrocess such specifications, it merely tolerates them. There
are plans for implementation, and the users will be notified when the
feature is available.

3.3. Constants

Since they are known from Caommon Base, they are not
Instead, we will explain the notations for numeric and

and notext.
covered here.

text constants.

3.3.1. Numeric constants

The standard forms for integer and real constants apply. Exponent sign
for the real constant is &. Some exanples of legal constants:

1 2 -1000 5.3 0.003 125&—-3 -~1&10

As already mentioned, integer variables and constants have a range
from -32768 to 32767, inclusive. Real variables and constants can have
these wvalues: From -18&4920 to -18&-4920, exact zero, and fraa 1&-4920

to 1&4920. They have 10 significant digits.

3.3.2. Text constants

Character constants are enclosed in single quotes ('). Since non-

printable characters of the source program are ignored, only the 95
printable ASCII characters are allowed. Examples:

L | |A| !(1 [Bl | ln| a1 11 tn

ND-60.092.03

NORD-100 SINTRAN IIT SIMULA Reference manual 17
Source program

The parameter range for char is 0 to 127, corresponding to the 7-bit
ASCII code set. Codes 0 to 31 are the non-printable codes (control

codes), codes 40 to 63 are " ' to '?', codes 64 to 94 are upper case
letters (and same symbols), ocodes 96 to 126 are their lower case
equivalents, code 95 is ' ', and code 127 is rubout. Character

variables are initialized to code 0 (zero). The information given
above should not be used by the programer who wants a portable

program, with the exception that all ASCII systems can be expected to
have the same code definitions.

Text constants are enclosed in double quotes (") and may contain the
same character set as character constants. A double quote within a
text constant 1is coded as two double dquotes. Two adjacent text
constants (possibly on successive lines) are automatically
concatenated into one. If more than one line is required for the
constant, use of the concatenation feature is highly recommended. Some
examples of text constants:

Source code Result
"QUOte: e QUOtQ: 111
"Part one, " "part two" Part one, part two

To allow control codes in character constants, there exists a coded
version of character constant:

In!
where n is 1, 2, or 3 digits, to be interpreted as a decimal number
and not to exceed the value 127. This is interpreted as the character
constant with ASCII code n. If n is more than 3 digits, or greater
than 127, then the !n! sequence is only taken as it is. The coded
version can be used in single character constants:

AR

would mean the ASCII code for BELL. It can also be used in text
constants:

"Abct7HI7tT7"

would mean the text Abc followed by the code for BELL three times.

ND-60.092.03

18 NORD-100 SINTRAN ITII SIMULA Reference manual
Procedures and classes

4. Procedures and classes

This chapter describes how to create and use separately compiled
modules. Creation is based on the concept "entrypoint quantities",
which means, quantities that are available outside of the defining
module. ™e <corresponding concept for referencing such quantities is
~3alled "external quantities", indicating that the quantities in
question are to be found outside of the referencing module.

At the end of the chapter, some renarks are given concerning special
features of virtual procedures.

4.1. External quantities

Primarily for the benefit of assembly coding, two different forms of
external quantity have been defined: Body substitution and complete
substitution. For the ordinary user, only the latter is relevant,
meaning that the quantity is to be completely defined in an externaily
compiled module, available at the time of compiling the referencing
module. It is the only form that adheres to the philosophy of total
safety in high level language programming.

Advanced system programmers are allowed access to the body
substitution. This is a means of having the compiler generate a
prototype for a routine, the code of which is external and usually
FORTRAN or assembly coded. No responsibility is taken for the results
or disasters caused by such routines. See appendix F for information
on FORTRAN or assembly coded routines.

COBOL~type routine calls are not supported.

One or more external quantities for complete substitution are declared
by the keyword external, followed by class or procedure (without
prefix or type), followed by a list of identifiers (separated by
camas and terminated by semicolon). Neither parameters nor body is

given. Examples:

external procedure operate;

external procedure abool,bbool,cbool;

external class system;

In addition, within a block or class, any identifier that has been
used for prefixing without ever being declared at that block or class
is implicitly declared external class. This is why SIMSET and
SIMULATION may be used without declaration, as in any other SIMULA
implementation.

ND-60.092.03

NORD-100 SINTRAN IIT SIMULA Reference manual 19
Procedures and classes

when encountering an explicit or implicit external declaration, the
campiler starts searching the libraries. These are the system
libraries (standard procedures or classes), followed by any library
that the user may have gpecified by the >I.TB command {(see ch. 7). A
library is the >BRF specified output from a separate compilation. See
sec. 4.2 for description. Upon finding the requested quantity name,
the compiler reads all necessary information about parameter list,
type or prefix, and lcocal attributes. Thus all use of the quantity can

be fully checked at compile time, just as if it had been declared
internally.

To maintain the safety of Simula, simply observe the following rule:
Whenever making a change in a library €file through an E-option
compilation, recompile all modules that reference this file, then all
modules that reference files now changed, etc., until the main program
has been recompiled. Never assume your changes are insignificant for
the calling modules. In any case, complaints where external quantities
are involved will not be investigated unless all source files are
submitted for recompilation. Remember that each new Simula release
invalidates all >BRF produced files, but will not, of course, affect
>BIN files.

4.2. Entrypoint quantities

This section describes how to create an entrypoint quantity written in
Simula. If the source file containg one or more declarations instead
of a main program block, no absolute program is produced. Instead, the
specified BRF file becomes a valid user library. The source text for
this type of compilation consists of one or more procedure or class
declarations and no statements. Each of these declarations defines an
entrypoint quantity which means the quantity, its prefix/type, and
parameter list is known to a later compilation with the appropriate
>LIB command. If a c¢lass, the local attributes are also known - and so
on to any depth of local classes. Example showing the most usual user
library definition:

class prefix: begin

integer a,b,c:

procedure p(i); integer i; begin
real d,e,f;
end;

class cl; begin
integer g,h;
procedure q; ...
end:

end;

~a

The main program prefixed by "prefix" now has access to a, b, ¢, p,
cl, and by remote accessing or inspect all attributes of cl: g, h, and
g. 1In other words, exactly and with the same compile time checking as

ND-60.092.03

20 NORD-100 SINTRAN TIT SIMILA Reference manual
Procedures and classes

if prefix were declared in the main program.

caution: Although legal, the subsequent use of an external class on a
block level other +than that of its original compilation should be
avoided. If not, the run time level changes cause about 50% increase
in execution times.

4.,3. Virtual procedures

For efficient use of virtual procedures, please note that all matches
to a virtual procedure should have compatible parameter lists. That
it, corresponding parameter positions should have the same type and
transmission mode, and of course the number of parameters has to be
equal.

Tt is legal to employ the more general call to virtuals. In the case

of non compatible lists however, the procedure call will be
substantially less efficient.

Note! If all the calls to a particular virtual procedure defined in an
external wodule are made with compatible parameter lists througnout
that module, then a subsequent compilation is not allowed to break
this consistency for the procedure in question.

ND-60.092.03

NORD-100 SINTRAN III SIMULA Reference manual 21
Standard classes

5., Standard classes

This chapter describes the implementation of standard classes, a set
consisting of I/0 classes and the SIMSET/SIMULATION classes. In the
interest of machine independence, they are written as external Simula
classes. Unfortunately, this leads to some minor restrictions which
are foreseen by the Common Base: The I/0 classes cannot be used for
prefixing. Rest assured, however, that the efficiency thus gained
justifies the sacrifice.

5.1. Input/output

The class identifier "FILE" has been made accessible to the user
program, a valuable feature for such occasions as passing file
parameters to procedures. Generation of a pure FILE object is not
practical though, since open and close will be undefined. See (1).

The procedure "open" is defined as follows:

procedure open(t); text t; begin
image:~-t;

°

end:

At the point of calling open, the file name parameter of the file
object is examined. If it is a number, then the file object is
associated with that number - interpreted as an octal logical file
number. Some file must already have been opened to this file number.

If the file name is not a number, then the Simula system will try to
open (via the SINTRAN system) a file of the given name. In this case,
the contents of the t parameter to open is inspected for the presence
of the following information items:

:tttt @Qa

If present, :tttt must start in column one and the name tttt must
consist of maximum four characters. It means that the default file
type is to be tttt instead of DATA as would be assumed otherwise.

If present, @a must either start in column one or be separated from

:tttt by exactly one space. It means that the file is to be opened for
access according to the value of the @a item:

ND-60.092.03

22 NORD--100 SINTRAN III SIMULA Reference manual
Standard classes

@W Write sequential

@R Read sequential

@WX Write/read random

@RX Read random

@RV Read/write sequential
@WA Write append

@WC Write/read random common
@RC Read random cammon

If no @Qa is present, then the file is opened for access according to
the file object's <¢lass:

infile Read sequential
outfile Write sequential
printfile Write sequential
directfile Write/read random

To indicate successful interpretation, the :tttt and Qa fields of the
t parameter to open will be space filled after use.

The procedure "close" is defined as follows:
procedure close; begin
end;

If the Simula system had to open a file when "open" was called, then
this file is now automatically closed.

The image length used for sysin and sysout is 136. If, for example, a
shorter sysout.image is wanted, the user will simply include in his
program start the statement "image:-blanks(100);" or whatever he might
want.,

The parameter NAME to a FILE may be read afterwards by the procedure
(local to class FILE)

text procedure id; 3

usually returning a copy of NAME. If, however, NAME was a file name
rather than a number, that name is only returned if the file object is
currently in the closed state. When open, a text of 8 characters
containing the system generated file number (in octal) is given. This
feature is useful if several file objects are to access the same file
number, and the 3imila system is supposed to open it as described
previously under the procedure "open".

In communicating directly with terminals, it might be desirable to
operate on a character basis. ¥or this purpose, the following
procedures exist:

NP-60.092.03

NORD-100 STNTRAN ITT STMULA Reference manual 23
Standard classes

procedure directout(c); character ¢;
character procedure directing :

~o

The procedure directout transmits c to the terminal at once. If the
terminal is in character mode, each character typed will be available
at once, and it can then be read by calling directin.

Actual files associated with infile, outfile, or printfile may be of
any type: note, however, that a directfile must be random accessible.
Concerning the alternate use of ocutfile/infile and directfile for the
same physical file, cbserve:

- On outimage to an outfile, the stripped image is written (zero
length if possible) followed by carriage return, line feed.

- On outimage to a directfile, the image is not stripped before
writing. All images on the £file will therefore have the same

length - equal to image.length at first call to open, plus
carriage return and line feed.

- On 1inimage to an infile, the mass storage image must not contain
any other characters than spaces in excess of the infile's image
length. The terminating carriage return is not included in the
count, and any leading line feed is ignored.

On inimage to a directfile, the mass storage image's length must
equal the directfile's image.length as it was at open time. The
image length uniformity is necessary because otherwise we could
not calculate the parameters for a random access positioning
based on a locate call. Following an inimage or a locate, ENDFILE
will be true if IOCATION now points into a non-existent mass
storage Dbiock. This does not mean that inimage is necessarily
allowed whenever ENDFILE is false: The chysical mass storage
blocks are usually far greater than the Simula image, so that in
general only part of an existing block may contain valid images.
You may object to this seemingly useless (but perfectly legal,
according to Common Base) definition of ENDFILE, but considering
gystem overhead, we think that fast operation is more important
for most users.

The class outfile is extended by

procedure breakoutimage; ;
having the samne effect as outimage, except that no carriage return or
line feed is given after the output. Thus having no spacing effect,

the procedure is not virtual.

T™e set of editing and de-editing procedures has been extended by
inoct, outoct, and outzint. See section 6.4.

ND-60.092.03

24 NORD-100 SINTRAN III SIMULA Reference manual
Standard classes

5.2. SIMSET
The system class SIMSET is an external class implicitly available fram
a system library. When used as a prefix, it is automatically declared
local to the block enclosing the prefixed one. In other words, it is
used according to the Common Base.

If more than one block has SIMSET declared local to it, each of these
SIMSET versons 1is at compile time considered different fram all the
others. This means you are not allowed to do assignment between
ref(link) variables of different versions, for example. However, in
situations accepted by the compiler (such as formal procedure calls),
the corresponding run time checks will accept, because there is only
one SIMSET at run time.

Conclusive remark: There is nothing special or restrictive about
SIMSET in TPH SIMULA.

5.3. STMULATION

211 information of the previous section applies to SIMULAION as well.
In a block that has SIMULATION declared (implicitly), SIMSET is
automatically declared by the same technique. The fact is relevant in
cases of many versions of SIMSET and SIMULATION, giving the effect
already mentioned.

SIMULATION uses quasi parallel sequencing. Refrain from using call,
detach, or resume to avoid oorrupting the SIMULATION mechanisms.
Another caution: Tf STMULATION is used as prefix in other blocks than
the outermost one, then expect a 50% increase in execution time. This
is due to administrative overhead in changing block levels within the
gsame class body.

ND-60.092.03

NORD-100 SINTRAN IIT SIMULA Reference manual 25
Standard orocedures

6. Standard procedures

Since this 1is no textbook, a complete list of standard procedures is
not given here. Instead, we concentrate upon useful information about
impienentation defined items. A complete list of standard procedures

and classes appears in appendix B, and the added (non-standard)
procedures are described in appendix G.

6.1. Quasi parallel sequencing

The procedures call, detach, and resume are all implemented. Since
there is presently some confusion as to the operation of detach, our
version will be defined here along with the terminology of quasi
parallel sequencing.

operating object
- object that is either the currently executing one,
or dynamically enciosing it.

attached object
- object that is operating and has a return point to
some calling object. This is true for all
procedures, and for class objects just called by
new and not yet returned.

detached object

- object ihat has no return point, but is rather a
component of the nearest encloseing quasi parallel
system and has a reactivation point when non-
operating. It may be operating or non-operating. A
prefixed block is initially (and always) detached
as seen from inside, but of course has an iLnplicit
knowledge of how to return to its envirorment.

terminated object
- object that has passed through its final end. It
can never again became operating. Any attempt to
make it operating is an error. Otherwise, the
terminated object is similar to a detached one.

The procedare "detach" is local to any class and will thus operate on
the nearest statically (textually) enclosing class or prefixed block
(possibly inspected), or in the case of X.detach, the object X. If
that object is a prefixed block, detach is a no-operation. If it is an
actachel olass, the class becomes detached and control is passed to
the return point of that class. If it is a detached class, control is
passed to the reactivation point of the nearest enclosing quasi
parallel system of the class, that is, usually after the last resume
statement of that syvstem's main program. In both cases, the point
after the detach statement becomes the reactivation point of the

ND-60.092.03

26 NORD-100 SINTRAN III SIMULA Reference manual
Standard procedures

class.

The procedure “call” has a parameter that must be a detached and non-
operating class object. It causes the object to become attached at the
point of the call statement, then passes control to the reactivation
point of the class object.

The procedure "resume" has a parameter X that must be a detached and
non-operating class object. The nearest enclosing quasi parallel
system S of that object is sought out. Then the operating component Y
of that system 1is found, and by previous definitions the resume
statement is dynamically enclosed by Y. The effect of the statement is
to swap X and Y such that Y becomes non-operating with a reactivation
point after the resume statement, and X becomes operating. Control is
passed to the reactivation point of X.

The above definitions are given for the general case of a number of
enclosing systems of any complexity. In a very simple model of only
one prefixed block (the outermost block of a program, the main
program, automatically is) and a few class objects that execute call,
detach, and resume directly and moderately in their bodies, we may
explain in other terms:

A detach has no effect in the main program, in a class object called
by new or call returns to after the new or call, in a class object
restarted by resume returns to the main program's last resume (which
may or may not be the one that started the class object).

A call on a class object also starts execution following the object's
last detach or resume, but the object itself (by detach or resume)
selects which object is next to be executed. Resume will execute the
parameter, while detach will execute the main program.

6.2. Arithmetic and conversion

Rank or isorank (a new standard procedure introduced by SDG
recommendation no. 4) converts from character to integer and may give
values from 0 to 127. Isochar (also introduced by SDG rec. no. 4)
converts the other way; its integer parameter must be of value 0 to
127. Char also converts from integer to character, but accepts any
parameter - this may be used for creating certain special character
codes. Besides, char is much more efficient than isochar.

6.3. Random draws

According to Common Base, the U parameter to random drawing procedures

is of type integer. On a 16 bit computer, this gives a random stream
of 65536 different values.

Note: The U parameter must be a simple variable of the correct type,
since it is called by name.

ND-60.092.03

NORD-100 SINTRAN IIT SIMULA Reference manual 27
Standard procedures

6.4. Editing and de-editing

The result of a getint or getfrac must be within the range for integer
(see section 3.3.1), and the result of a getreal must be within the
range for real (same section). Otherwise a run time error message is
given. On editing (put...) the field must have enough space for the
number, or else the field will be filled with asterisks, and a warning
will be printed after program termination.

The exponent given by putreal has the form "&tnnnn", i.e. four digits

are needed because of the wide exponent range of the NORD-100
hardware.

We have added a non-standard procedure "getoct” operating like getint,
except that the bage for de-editing is 8 rather than 10. Similarly,
"putoct" will edit using base 8, and will not suppress leading zeroes,
but otherwise resembles putint. The procedure "putzint" operates like
putint, but will not suppress leading zeroes. Corresponding inoct,
outoct, and outzint procedures have been added to the file classes.

6.5. Other text operations

Local to text variables, we have added a non-standard procedure "trim"
operating like strip, but removing leading blanks rather than trailing
ones.

ND-60.092.03

28 NORD-100 SINTRAN III SIMULA Reference manual
Compilation and execution of programs

7. Campilation and execution of programns

Having called the compiler by the @SIM command, the user communicates
with Simula through a set of console comnands, each solocited by the
pointed bracket ">". Special conditions concerning options, files,
etc. may then be set up prior to compilation.

If the compilation was successful, the produced code normally resides
as instructions in core. (Assuming option V was specified.} The
progran will start automatically, and the run time system prints:
Ready for Simula execution. If on line debugging was requested, the
Simula system prints an asterisk and waits for the first debugging
command. On passing through the last end, the CPU time used (and
number of garbage collections, if any) will be printed and control is
passed back to the operating system.

This chapter describes all available compiler commands, options, and
debugging commands.,

All editing facilities and file nane abbreviations of SINTRAN III are
available during typing of commands and input data to the compiler, as
well as to an executing Simula program. However, compiler commands
cannot vet be abbreviated.

7.1. FElementary compile and execute procedure

This section is a short introduction for use under the SINTRAN ITI
operating system. To prepare your source program, use OED (Quick
EDitor) and write the program text ijnto the editor. Use any
combination of DBEC, IBM, or UNIVAC hardware notation, but no line
should start with % in column one as this is used for the compiler
command facility. Save your program on a file, for example,
PROGRAM:SYMB, and exit from QED. Assuming a listing is wanted,
conversation should now proceed as follows (user's Key-in is
underlined):

@SIM

TPH SIMULA 4.017
>SETOPT VS

>LIST I~P
>COMPILE PROGRAM

Your listing should now go to the printer. Tf errors were found, re-
enter OFD and correct the PROGRAM:SYMB file.

If your program was compiled without errors, the >COMPILE command
proceeds to assemble the object code into memory. This is indicated by
the message LOADING PROGRAM. Then the program starts autamatically
with the message

ND-60.092.03

NORD-100 SINTRAN III SIMULA Reference manual. 29
Compilation and execution of programs

Ready for Simula execution
followed by any output your program might generate, or if so
programmed, you will now type your input to the Simula program. Input
goes to the program only after giving the carriage return. After
program end, the system prints used CPU time, e.qg.

CPU seconds used: 5.017
Exit Simula

and returns to the operating system.

7.2. Saving the binary code

Preparations for saving binary code are best made by using the
compiler command >PROG BINSIM (say) prior to >COMPILE PROGRAM. The
first execution can proceed as usual, while subsequent runs should be
started thus (note that the name BINSIM was chosen as an arbitrary
example of file name):

@BINSIM
As seen above, typing the file name given in the >PROG command as a
comand to the operating system, the program starts execution

directly. The file BINSIM:PROG must exist in advance, so you would
have to create it the first time.

7.3. Advanced compiler use

This section is intended for Simula experts and other skilled

programmers who only want the strictly formal definitions of commands
and options. The run time section is similar in aim.

7.3.1. Terminal command language

Currently, this set of commands is implemented:

>SETOPT cccc Increment all compiler options mentioned in cccc.
An option 1is set when its value is greater than
zero. The initial value is zero. See next section
for a list of coptions.

>RESOPT cccc Decrement all compiler options mentioned in cccc.

>RTS dddd Set to true all run time system options mentioned
in dddd. Run time system options can only have the
values true or false. See section 7.4.3 for a list
of options.

ND-60.092.03

30

>LIB

>ASM

>BRF

>BIN

>PROG

>LIST

>RUNOFF

>COMPILE

>LOAD

filename

filename

filename

filename

filename

filename

filename

filename

filename

NORD~-100 SINTRAM IIT SIMULA Reference manual
Compilation and execution of programs

The specified filename, presumably containing BRF
code fram a previous Simula compilation of an
external module, is registered as a potential
library file to be checked when searching for
external cuantities. The user may dgive any number
of >LIB commands: the most recently specified file
will be searched first.

Specifies that object code (in symbolic assembly)
be written to filename. This is mainly for testing
purposes.

Specifies that binary relocatable code be written
to filename. This is for use when compiling
external inodules, though even a main program can
be saved as BRF code (and loaded by >ILORD) .

Specifies that binary absolute code (in the
standard NORD-100 hardware format) be written to
filename. Such ccde can be executed by giving the
@PILACE filename command (remember the type :BIN)
followed by a @GO 0 command.

Specifies that binary absolute code (in the
standard Sintran @UMP format) be written to
filename. This is the recommended way of saving
the object code, Tf the program is very large, it
can only be started by @S-ILOAD-DUAL filename.
Otherwise, @filename is enocugh. The compiler will
inform you if your program is of the large kind.

Specifies that listing be written to filename. The
listing includes error messages and byte cutput,
where appropriate.

Specifies that documentation output be written to
filename. Such output is generated instead of
compilation if option M is set at >COMPILE time.

Do full compilation according to current options.
The source code is taken from filename; the
default source being the terminal. (In batch jobs,
the batch input €£ile.) The compilation stops at
end-of-file or the $%EOF macro comnand (see
precompiler chapter). If option V is specified and
no errors were detected, the ©program is
automatically executed. Note: Only one >COMPILE or
>IDAD command is allowed. After such command,
SEXIT is performed implicitly unless there is an
automatic execution instead.

Binary relocatable code from filename is loaded,
and if V option, executed, The loaded absolute
program can also go to a >BIN or >PROG specified
file.

ND-60.092.03

NORD-100 SINTRAN IIT SIMULA Reference manual 31
Compilation and execution of programs

>EXIT Return to job monitor.

Wherever "filename" 1is specified above, the file number of an opened
file may be used instead. The following default file types are used if
the compiler must open the file:

>LIB SIM
>ASM SYMB
>BREF SIM
>BIN BIN
>PROG PROG
>LIST SYMB

>RUNOFF SYMB
>COMPILE SYMB
>LOAD SIM

NOTE: The binary relocatable files have type SIM. The format is not

compatible with other software because a SIM file contains Simula
attribute information.

7.3.2. Campiler option set

The following options are implemented:

A Array bounds not to be checked at run time
D Debugging symbol tahle produced

F Flags for begin/end are abbreviated and given in left margin, or
completely removed (option FF)

G Generation of symbolic code to file specified by >ASM

I Inhibit the generation of line numbers

K Rill the compilation on the first error detected

L List all input lines, including macro commands

M Produce a RUNOFF document file, rather then compiling a program

N No checks for arithmetic multiply overflow (>RESOPT N: Check
add/subtract as well)

0 On-line debugging by interaction with run time system via
terminal

Q Remove qualification checks

R Remove none checks

ND-60.092.03

32 NORD-100 SINTRAN ITI SIMULA Reference manual
Compilation and execution of programs

S Source listing, suppressing macro commands and the lines

suppressed by such cammands (see precompiler chapter)
T Time and space requirements printed after compilation

U Upper and lower case in non-reserved words recognized as being
different

v Automatic execution (compile-and-go)
W Warning messayes suppressed

X Experimental compilation for system maintenance. Not to be used
by others.

b4 Print loader map (primarily useful for system maintenance)
A Zimula extended language, see appendix E.
In addition, there are some non-letter options which are only for

maintenance of the Simula system. They are described in the internal
technical documentation.

7.3.3. Campilation errors

Messages are given along with the source listing (syntax errors) or at
the end, identified by 1line number (semantic errors). They are
believed to be sufficiently instructive so as to make an explanation
here unnecessary. A complete list appears in appendix C.

7.4. Run time system

7.4.1. Debugging command language

In a program, or part of a program, that has been compiled with option
O set, the run time system is given control at the end of each source
statement. The line number is printed on the terminal as follows:

Iine n
*

One of the following commands may then be given:

*HELP Print a list of commands
* (carriage return only) Execute next statement
*STEP Same as above

ND-60.092.03

NORD-100 SINTRAN III SIMULA Reference manual 33
Campilation and execution of programs

*STEP n
*BREAK n
*BREAK
*G0

*GO n

*DYN n

*RESTART

*SYSIN file

*SYSOUT file

*TRACE n m

*HISTO 1 nm

*OBJECT name

*VAR name

*DRIVER a

Execute n next statements unless breakpoint is reached
Set breakpoint after first statement of line n

Remove breakpoint

Do not stop until breakpoint (if any) is reached

Same as:
*BREAK n
*GO

Print the <chain of calling or enclosing block
instances, up to a maximum of n (default 20) instances.
This command is very useful in showing where we are in
an error situation. The object addresses given can be
used as parameters to the *OBIJBCT camand.

Close all files, reset all system data, and repeat
execution of the entire user program, beginning with
the message Ready for Simula execution.

Close the current gysin, and reopen it to given
filename
Close the current gysout, and reopen it to given

filename

Set up tracing facilities registering, fram now on,
each execution of statements from line n to line m.
Compiler option O must have been set for statements to
be registered.

Stop tracing. List the results on printer, showing line
n to m as a ber graph and grouping i lines in each bar.

Default i is 1, default n, m are those of last *TRACE
command .
Dump the identified object on the terminal. The name

must identify a ref variable that is visible from where
we are (according to *DYN). Repeated dot accessing is
allowed, as well as array element access with a decimal
constant as index. *OBJECT without parameter will dump
the current object. Note: Names of variables are only
known if the module was compiled with D option.

Print the wvalue of the identified variable, visible

from where we are. Dot access and array access is
allowed just as for *OBJECT.

bump the driver at octal address a. Mostly intended for
system maintenance, this command requires a correct
driver address as given by some *OBJECT cammand.
*DRIVER without parameter will dump the current driver.

ND-60.092.03

34

*EXIT

COther

NORD-100 SINTRAN III SIMULA Reference manual
Compilation and execution of programs

Terminate the user program

commands than the ones mentioned above give:

ILLFGAL DEBUG CCMMAND

*

7.4.2

. Run time errors

In the event of a run time error, a self explanatory messade is
printed on the t{erminal. Then the debugging command processor is
entered. A carriage return, *STEP, or *GO will cause final Simula
program termination, or, if desirable, the entire program can be
repeated by *RESTART. A list of run time error messages appears in
appendix D.

7.4.3

. _Run time system options set

The following options are implemented:

N

Suppress the "Ready for Simula execution" message and the
termination messages from the run time system. Useful for writing
system software in Simula.

On-line debugging mode before program start. The run time system
will print "Pre-program conversation requested.", then Line 0 and
the usual asterisk. The user may then use any number of debugging
commands prior to starting his program with the *GO command. This
feature 1is especially useful for changing the input/ocutput files
by *SYSIN and/or *SYSOUT.

ND-60.092.03

NORD-100 SINTRAN III SIMULA Reference manual
References

8. References

(1) 0.-J. pahl, B. Myhrhaug, K. Nygaard:
COMMON BASE LANGUAGE (S—-22)
Norwegian Camputing Center

(2) G. Birtwistle et al.:
SIMULA BEGIN
Studentlitteratur

{3) SINTRAN III Users Guide (ND-60.050)
Norsk Data A.S.

ND-60.092.03

35

36 NORD—-100 SINTRAN III SIMULA Reference manual.
Appendix A: Example on use

Appendix A: Example on use

The following batch job creates a short Simula program, tries to
compile it, then goes back to the editor to correct it, and finally
succeeds in compiling and executing the program. The program just adds
three numbers from the job stream and prints the result. This use of
batch job is a bit artificial of course, since we have to know in
advance that the first compilation will fail. It is, however, believed
to demonstrate quite well how a typical terminal session could proceed
for a novice user. The batch job file looks like this (<L> means
control-L, <ESC> means escape):

@ENTER TPH,,,60

@CC USE EDITOR TO 'TYPE IN 'ME FILE:

@QED

I

BEGIN
CUTINT (ININTHININT+ININ, 10) ¢
END;

<I>

W"ADD3"

F

@CC TRY TO COMPILE IT
@sm

SETOPT SV

COMPILE ADD3

@CC OORRECT THE ERROR BY USING EDITOR
@QED

RADD3

S/ININT,/ININ,/

Wk

F

@CC SECOND ATTEMPT TO OOMPILE AND RUN THE PROGRAM
@sIM

SETOET SV

COMPILE ADD3

5 50 500

@Cc OK, LoG aur
<ESC><ESC>

ND-60.092.03

NORD-100 SINTRAN III SIMULA Reference manual 37
Appendix A: Example on use

Running it on the computer, we get the following printout from the
whole job:

@CC USE EDITOR TO TYPE IN THE FILE:
@QED

QED 4.2

*1

INS >BEGIN

NS > OUTINT (ININT+ININT4ININ,10) ;
INS > END;

INS >*

*W"'ADD3"

26 WORDS WRITTEN
*F

@CC TRY TO COMPILE IT
@sIM

TPH SIMULA 4.011
>SETOPT SV

>COMPILE ADD3

TPH SIMULA (SINTRAN III) LEVEL 4 ED Oll

00001 BEGIN
00002 OUTINT (ININTH+ININT4ININ,10) ;
00003 END;

**% LINE 00002 ERROR: MISSING DECLARATION OF ININ *#*
ERROR MESSAGES GIVEN: 00001
@&3XC CORRECT THE ERROR BY USING EDITOR

@QED
QED 4.2

*RADD3
26 WORDS READ
*S/ININT, /ININ, /

ND-60.092.03

38 NORD-100 SINTRAN ITTI SIMULA Reference manual

1 SUBSTITUTION
i

27 WORDS WRITTEN
*F

Appendix A: FExample on use

@CC SECOND ATTEMPT TO COMPILE AND RUN THE PROGRAM

@S

TPH SIMULA 4.011
>SETOPT SV
>COMPILE ADD3

TPH SIMULA (SINTRAN III) LEVEL 4 ED Ol1

00001 BRGIN
00002 OUTINT (ININT+ININ{+ININT,10) ;
00003 EFND;

LOADING PROGRAM
Ready for Simula execution
5 50 500

555

CPU seconds used: 0.040
Exit Simula

@cC 0K, LOG QUT

ND-60.092.03

NORD-100 SINTRAN III STMULA Reference manual 39
Appendix B: Summary on standard identifiers

Appendix B: Summary on standard identifiers

All standard procedures and classes are listed, sorted alphabetically
on their nanes. Those that are not part of the Common Base (or
recommended extensions) are marked by an asterisk in the "Extra"
column. Note: SIMSET and SIMULATION and their attributes have not been
included in the list, since they are fairly well concentrated in their
Cammon Base definitions. Types have been abbreviated: integer to int,
Boolean to Bool, character to char. Note that this Simula system also
contains certain library procedures that have to be declared external
prior to use. These are described in appendix G.

0

Type Name Local to Parameters Extra

real abs real

real arctan real

text blanks int
breakoutimage outfile *
call ref (any class)

char char int
close file

text copy text

real cos real

real cosh real
detach

Bool digit ¢har

file class directfile

char directin directfile *

char directin infile *
directout directfile char *
directout outfile char *

int discrete real array,int

Bool draw real,int
eject printfile int

Bool endfile directfile

Bool endfile infile

real entier real

real erlang real,real,int

real exp real

class file text

char getchar text

int getfrac text

int getint text

int getoct text *

real getreal text

int histd real array,int
histo real array,real array,

real,real

ND-60.092.03

real

int

text
int

Bool
Bool
real
real

file class

class

id

inchar
inchar
incommand

infile
infrac
infrac
inimage
inimage
inint
inint
inoct
incct
inreal
inreal
inrest
intext
intext
lastitem
lastitem
length
length
letter
line
linear

linesperpage
In
locate
Jocation
main
mod
more
more
negexp
normal
open
outchar
outchar
outfile
outfix
outfix
outfrac
outfrac
outimage
outimage
outint
outint
outoct
outoct
outreal
outreal
outtext
outtext

NORD-100 SINTRAN III SIMULA Reference manual
Summary on standard identifiers

Appendix B:

file
directfile
infile
infile

directfile
infile
directfile
infile
directfile
infile
directfile
infile
directfile
infile
infile
directfile
infile
directfile
infile
file

text

orintfile

printfile

directfile
directfile
text
file
text

file
directfile
outfile

directfile
outfile
directfile
outfile
directfile
outfile
directfile
outfile
directfile
outfile
directfile
ocutfile
directfile
outfile

text array,int,
ref (outfile) ,text

ing
int

char

real array,real array,

int
TnE
real
int

int,int

real,int
real,real,int

text

real,int,int
real, Int, Int
int, int, int
int, ink, int

int, int

int, int
int,int
real,int,int
real,int,int
text

text

ND-60.092.03

NORD-100 SINTRAN III SIMULA Reference manual
Appendix B: Summary on standard identifiers

int poisson
int pos
int pos
outfile class printfile
putchar
putfix
putfrac
putint
putoct
putreal
putzint
int randint
int rank
- resume
setpos
setpos
int sign
real sin
real sinh
spacing
real sart
text strip
text sub

ref (infile) sysin
ref (printfile) sysout
text trim

real uniform

printfile

text
text

text

real,int

char

real, int
int,int

int

int

Eﬁéiriﬂi

int
int,int,int
char =
ref {any class)

3

real,real,int

ND-60.092.03

41

42 NORD-100 SINTRAN III SIMULA Reference manual
Appendix C: Compiler error messages

Appendix C: Campiler error messages

In the texts shown below, "..." indicates that some identifier is
inserted in the message when printed. The following messages can be
given at compile time:

INCORRECT PROGRAM START

GARBAGE AFTER LAST END IGNORED
MISSING STATEMENT AFTER OTHERWISE
MISSING FOR ELEMENT

MISSING WHILE FEXPRESSION

:— WITH STEP NOT ALLOWED

MISSING STEP EXPRESSION

MISSING UNTIL

MISSING UNTIL EXPRESSION

IF EXPRESSION MISSING

USELESS ELSE

MISSING THEr

INSPECT EXPRESSION MISSING
MISSING DO/WHEN

MISSING LABEL

MISSING FOR VARIABLE

DOUBLE DECLARATION OF ...
UNKNOWN CUALIFICATION: ...
TLLEGAT, QUALIFICATION: ...
UNKNCWN OR CIRCULAR PREFIX: ...
WRONG TYPE, I EXPECTED TO SEE ...
MISSING DECLARATION OF ...
MISSING SPECIFICATION OF ...
MISSING PROCEDURE/ARRAY IDENTIFIER
THIS IS NOT PROCEDURE OR ARRAY IDENTIFIER: ...
THIS IS NOT CLASS IDENTIFIER: ...
UNIMPLEMENTED FEATURE USED

NOT REFERENCE BEFORE DCT

NO ATTRIBUTE CALLED ...

RON--TIME REGISTER SHORTAGE
CANNOT EVALUATE ...

MISSING FOR ASSTGNMENT

MISSING DO

TLLEGAL GOTO

WRONG NUMBER CF PARAMETERS TO ...
UNDEFINED OPERATION

ILLEGAL USE OF QUA

MISSING LEITERAL EXPRESSION
ILLFEGAT, EXPRESSION FOR LITERAL
NO EXPRESSION AFTER ASSIGNMENT
MISSING THEN ~ EXPRESSION
MISSING ELSE -~ EXPRESSION

ND-60.092.03

NORD-100 SINTRAN IIT SIMULA Reference manual
Appendix C: Campiler error messages

MISSING OFERAND

EXTRA (

MISSING)

MISSING CLASS TD

MISSING REMOTE 1D

MISSING PARBMETER :

SERIOUS SYNTAX ERROR - REST OF STATEMENT IGNORED
GARBAGE IN VIRTUAL LIST

MISSING IDENTIFIER

TYPE ON SWITCH/LABEL SPECIFICATION

ILLEGAL VIRTUAL SPECTIFICATION

DOUBLE MCODE SPECIFICATION FOR

DOUBLE TYPE SPECIFICATION FOR

SPECIFICATION ILLEGAL FOR CLASS

SPECIFICATION FOR NON-EXISTENT PARBMETER ...
GARBAGE IN PARAMETER SPECIFICATION

MISSING COLOW AFTER VIRTUBRL

NO VIRTUAL SPECIFICATIONS GIVEN

GARBAGE AFTER BODY

MISSING ARRAY BOUND

MISSING BOUND DELIMITER

MISSING RIGHT BRACKET

GARBAGE AFTER DECLARATION

INCOMPATIBLE TYPES IN EXPRESSION, ASSIGNMENT, OR PARAMETER
INCONSISTENT PARAMETER LISTS TO VIRTUAL PROCEDURE
MISSING EXPRESSION IN ACTIVATE STATEMENT

WRONG NUMBER OF SUBSCRIPTS TO ARRAY ...
(INTERNAL, WARNING CNLY) LEFT OVER TEMPORARY ...
MISSING := AFTER SWITCH

MISSING TO
MISSING KEY WORD: PROCEDURE/CLASS
TLLEGAL THIS

LARGE INTEGER CONSTANT CONVERTED TO REAL

NO SPACE IN BLOCK OBJECT FOR THE VARIABLE ...

NO SPACE IN BLOCK OBJECT FOR ALL THE TEMPORARIES THAT ARE NEEDED
THIS IDENTIFIER IS UNACCESSIBLE IN QUICK PROCEDURE: ...

ILLEGAL ASSIGNMENT TO PROCEDURE IDENTIFIER ...

PROGRAM WAS TOO LARGE FOR COMPILER STORAGE -~ OOMPILATION ABORTED
ILLEGAL SYNTAX FOR VARIABLE

I DO NOT KNOW OF ANY IN-LINE PROCEDURE ...

CONSTANT DATA ARFEA WAS TOO LARGE TO BE LOADED

PROGRAM AREA WAS TO0 LARGE TO BE LOADED

TEXT VALUE CONSTANT NOT ALLOWED IN == RELATION

ILLEGAL USE OF ARRAY IDENTIFIER ...

TLLEGAL ASSIGNMENT TO EXPRESSION OR PROCEDURE

TLLEGAL REDECLARATION OF PREFIX TO EXTERNAL CLASS

STANDARD PROCEDURE IDENTIFIER IS NOT ALLOWED AS ACTUAL PARAMETER
MISSING SEMICCLON BEFORE INNER

LIBRARY FILE DID NOT CONFORM TO SIMULA BINARY FORMAT

EXTERNAL CLASS/PROCEDURE DOES NOT APPEAR AS SUCH ON THE LIBRARY FILE

LIBRARY FILE CONTAINS EXTRA DEFINITION OF ...

NO LIBRARY FILE DEFINES ...

UNKNOWN LANGUAGE IN EXTERNAL DECLARATION
MISSING TYPE AFTER SHORT OR LONG

ATTEMPTED DOT ACCESS ON CLASS WITH LOCAL CLASSES

ND-60.092.03

43

44 NORD-100 SINTRAN III SIMULA Reference manual
Appendix C: Compiler error messages

TOO MANY PARAMETERS 10 ...

THIS PROGRAM HAS EXTRA BEGIN OR MISSING END

TOO ILONG IDENTIFTIER

EXTERNATL MODULE HAD CCMPILATION ERRORS

EXTERNAL MODULE COMPILED WITH OBSOLETE SIMULA RELEASE
SHORT/LONG HAS NO FFFECT IN THIS IMPLEMENTATION
PROGRAM AND DATA AREAS TOO LARGE FOR BPUN FORMAT
SYMBOL TABLE TOO LARGE - TRY SMALLER >DATA PARAMETER

Some of these messages may be obsolete, thus impossible to evoke,

There are a few warning messages included in the list; the message is
then accompanied by "WARNING:" rather than "ERROR:".

ND-60.092.03

NORD-100 SINTRAN IIT SIMULA Reference manual
Appendix D: Run time error messages

Appendix D: Run time error messages

The following messages can be given at run time:

Illegal parameter to IN

Illegal parameter to EXP

Illegal parameter to SORT

Illegal parameter to ARCTAN

Illegal parameter to SIN or COS

Illegal parameter to SINH or COSH

Illegal operands to **

No numeric item found in text

Tllegal number syntax

Illegal parameter to editing or de~editing routine

Ref before dot or qua was equal to none

Left side of text assigrment has too short text object
No match to virtual attribute in this class

Parameter to CALL or RESUME was terminated

Parameter to CALL or RESUME was already operating

Too large array declared (max. is 49152 machine words)
You have exchanged lower and upper bounds in array declaration
Illegal goto from detached object or to inspected object
Array index out of range

Object in reference assignment or qua was of wrong class
Too small field for editing

Wrong number of parameters to formal or virtual procedure
Actual parameter to formal or virtual prccedure is of wrong kind
Actual parameter to formal or virtual prccedure is of wrong type
Sorry, we just ran out of memory space for your data
Wrong number of actual dimensions in array parameter
MORE is false in GETCHAR

MORE is false in PUTCHAR

SUB parameter(s) out of range

No numeric item found in text

File not closed at calling OPEN

Requested file is busy or non—existent

File already closed at calling CLOSE

File not open at calling SAVE

File not cpen at INIMAGE

ENDFILE is true at INIMAGE

Image of infile is too short

Lastitem is true at ININT

Lastitem is true at INFRAC

Lastitem is true at INREAL

File not copen at OUTIMAGE

File not open at IOCHTE

Wrong physical directfile image length

Too large directfile image

ND~-60.092.03

45

46 NORD-100 SINTRAN ITI SIMULA Reference manual
Appendix D: Run time error messages

File not open at EJECT

Zero parameter to LOCATE

Attempt to passivate last process

Evtime called for idle process

Reactivate caused passivation of last process
DRUM ALAS

Parameter to BLANKS was negative or greater than 8186
Result of real to integer conversion was too large
Unimplemented feature used - please report

Run time system error detected - please report
Detach called for non-operating class object
ERLANG parameter(s) zero or negative

HISTO: First array must be longer than second array
Wrong parameters to LINFAR

Error in FORTRAN subroutine or function

I1llegal parameter to isochar

Arithmetic operation caused overflow

Parameter to CALL or RESUME was none

Attempted assigmment to constant or expression
Unsuccessful input/output request

Attempt to activate terminated process

ND-60.092.03

NORD-100 SINTRAN III SIMULA Reference manual 47
Appendix E: Extended language

Appendix E: Extended language

When option 7 is set, certain extra features are available. For this
purpose, the set of reserved words is extended by:

ENTRYPOINT INLINE LITERAL QUICK XOR

It is strongly emphasized that the "Zimula" language is only available
under the TPH SIMULA compiler. Thus, any program using this language
is not portable. The extra features of Zimula are described in the
following paragraphs.

Literal declaration

The set of legal declarations is extended by <literal declaration>,
defined thus:

<literal declaration>s:= literal <literal list>;

<literal list>::= <literal item>/
<literal item>,<literal list>
<literal item>::= <identifier>=<expression>

Each <literal item> has the following semantics: The <expression> may
be of any type, but it must contain constants only. The <identifier>
becames a symbolic constant. It has the usual scope of normal
identifiers, with one important restriction: It is only referenceable
after its definition, i.e. in textually succeeding source code.
According to this, one may e.g. define a set of symbolic codes thus:

literal atype=1,btype=atype+l,ctype=btype+1,dtype=ctype+l;

The main Jjustification for literals is the advantage in code
efficiency over the only other method of generating symbolic
constants: Declaration and initialization of variables. The
improvement in readability is of course also of scme value.

The xor operator

The =xor is a logical operator between Boolean expressions. Tts result

is the exclusive or of the operands, i.e. true if and only if they are
different.

Quick procedures

The quick procedure is a procedure which is callable 12 times faster
than the ordinary one. To achieve this, certain restrictions apply:

ND-60.092.03

48 NORD-100 SINTRAN III SIMULA Reference manual
Appendix E: Extended language

The procedure object is limited in size to 32 words, the parameters
are limited to 3 words (one real, or 3 integer/ Boolean/ character/
ref/ array), no name parameters are allowed, and the quick procedure
body may only access variables local to the surrounding block.
Inspection is not allowed, and one may not call non-quick procedures.

The quick procedure is declared by preceding an ordinary procedure
declaration by the keyword quick.

Inline procedures

The inline procedure is only for run time system use. See internal
documentation.

Entrypoint procedures

When 7 option 1is set, E option is necessary to signal a separate
compilation. In this case, the keyword entrypoint must precede any
declaration that is to be known outside of the module. If specifying
both entrypoint and quick for the same procedure, entrypoint must
precede quick.

ND-60.092.03

NORD-100 SINTRAN 11T SIMULA Reference marual 49
Appendix F: Non-Simula procedures

Appendix F: Non-Simula orocedures

This section describes non-Simula procedures. Such procedures are
called at the user's own risk. Especially those coded in assemnbly code
should only be created by experienced system Drogrammers.

Fortran coded procedures

To use a Fortran subroutine or function as a procedure in Simula, let
the Fortran compiler compile the Fortran module in reentrant mode (to
make it compatible with Simula data allocation), then specify the
resulting BRF file in a >LIB command to the Simula compiler. In the
calling Simula program, the Fortran procedures are declared thus
(those with type are functions, others are subroutines):

external Fortran integer procedure ifunc,jfuncs
external Fortran real procedure r:
external Fortran procedure psubr,gsubr;

Due to incompatibilities in storage allocation, the Fortran procedures
must not use READ, WRITE, or FORMAT statements. If the user should
discover other restrictions, we would be happy to receive an error
report.

Assembly coded procedures

An external assembly coded routine with fixed parameter list is
declared with all parameters and a body without statements. The source
lanquage is specified as "library". Exampless:

external library procedure extricks:

external library Boolean procedure comp(a,b):
character a,b;;

external library class help; begin
integer alfa,beta;
end;

Thus the syntax differs from a normal class or procedure by the
leading "external library” only.

An assembly coded quantity must conform to the Simula BRF format (as
produced by the Simula compiler itself) and apear in a >LIB command.
Users are strongly discouraged from attempting to produce such files.

ND-60.092.03

50 NORD-100 SINTRAN III SIMULA Reference manual
Appendix F: Non-Simula procedures

The assembly code for the body is subject to the following rules:

-~ It is headed by a label equal to the procedure or class
name.,

- It is terminated by a JPL I (EXIT& instruction. Note that
this makes it hard to prcduce by means of the MAC assembler.

- It must not disturb the B register, which points to the
procedure or class object.

- Its return, parameter, and local variable cells are found
starting at address RT*BODY (see later definition) relative
to the B register. For example, the standard procedure
"rank™ could have the following assembly code:

RANK, IDA RT*BODY+1,B
STA RT*BODY , B
JPL T (EXIT&
)FILL

For proper automatic inclusion at compilation time, the assembly body
must reside on a BRFP formatted file with the necessary external
reference and entrypoint definition specifications. The file must be
mentioned in a >LIB command prior to >COMPILE (see ch. 7).

We will now give the necessary technical information on the run—time
data structures. The user is warned that all definitions are subject
to change without notice. According to good programming practice, you
should always reference given displacements by symbols, never by
numbers. Cells that are irrelevant to users have been left blank, thus
avoiding unnecessary conplicated diagrams.

An object of a block, procedure or class has this format:

RT*PROT= 1 address of prototype

RT*BODY= 2

data section

The data section contains parameters in order of parameter list
appearance, followed by local variables in order of declaration. A
parameter by name always occupies one word. For other parameters and
local variables, we have the following space requirements:

array of any type: 1 word

ND-60.092.03

NORD-100 SINTRAN III SIMULA Reference manual 51
Appendix F: WNon-Simula procedures

single variable:

ref 1 word
integer 1 word
Boolean 1 word
character 1 word
real 3 words
text 4 words

The text reference is formatted as

TX*VAL= O pointer to text cbject
TX*POS= 1 byte address of pos
TX*START= 2 byte address of 1
TX*STOP= 3 byte address of length+l

Since TPH SIMULA always packs character and Boolean arrays, the text
object does not need to have a special format. It is simply stored as
a character array. The byte addresses TX*POS, TX*START, TX*STOP are
all given in bytes relative to the word address kept in TX*VAL.

An array object has the following format, where n = total number of
bytes if character or Boolean, total number of words otherwise:

RT*ABASE= 0 bias
RT*NODIM= 1 m = number of dimensions
RT*NOWO= 2 n

RT*ABODY= 3

RT*ABODY-+Hn—1

data section

n-1 (if words) |..ceoovcoe coeccbcccssscbecesensana

It will be seen fram the above that the data section of a one-
dimensional array starts at RT*ABODY. The data section contains
variables as described for block objects. The elements are laid out by
ascending indices, the last index being incremented first.

ND-60.092.03

52 NORD-100 SINTRAN ITII SIMULA Reference manual
Appendix F: Non-Simula procedures

To get the effective displacement within the array object, the bias is
added to the product of index and element size (if multidimensional,
things get more complicated). In this way you may calculate the lower
bound (for m=1l) as: (RT*ABODY-bias)/elementsize.

Finally, we give the format of a prototype:

RT*NOPAR= 0 number of parameters
RT*SI7E= 2 total length of objects
RT*PREFPIX= 4 address cf prefix prototype
RT*PDATA= 7
data descriptors
0

The prefix address is zero if the prototype is not prefixed. Each data

descriptor is confined to one or two non-zero words, formatted as
follows:

Bit no.: 15 13 11 9 0

type :kind:mode:relative address

9 0000000000000 600000000008 0000G6O0O0OCOL

The second cell is present if and only if type is ref. Although some
of this information is irrelevant to users, the full set of codes is
listed below.

ND-60.092.03

NORD-100 SINTRAN TII SIMULA Reference manual 53
Appendix F: Non-Simula procedures

Type: 0 Boolean Kind: 0 simple variable
1 character 1 array
2 integer 2 procedure
3 real 3 class
4 ref Mode: 0 local variable
5 text 1 parameter by value
6 {untyped) 2 parameter by reference
7 label 3 parameter by name

Again, if you insist on using any of these codes, you are in for
trouble unless you give them symbolic names. Good lucki

ND-60.092.03

54 NORD-100 SINTRAN III SIMULA Reference manual
Appendix G: External procedure library

Appendix G: External procedure library

The TPH SIMULA run time system oontains a number of non standard
library routines. To use any of these routines, simply declare it as
an external procedure. The following sections describe their
functions. Fach procedure is described by its Simula definition,
followed by a short explanation.

Operating system interface

Procedures mentioned in this section are all extensions made for
communication with the operating system. They should not be used if
portability is to be retained, though conditional compilation (ch. 2)
may solve that problem. Knowledge of the operating system is assumed
when necessary.

procedure Sintran(t); text t; ;

The text ¢t must contain a legal command to the operating system. The
leading @ must not be present. All parameters must be given, to avoid
Sintran's asking for more. NOTE: If the command is wrong, there is no
way of receiving an error status. Presently, Sintran in that case will
require an extra blank line to be typed in from the terminal. Thus,
the programmer should make sure commands are always correct.

real procedure timeused; cvees

Gives, in seconds, CPU time used by this program up to now.

text procedure date; 3

Returns a new text object of 8 characters, formatted yy-mm-dd where yy
is the current year modulo 100, mm is current month, and dd is current
date.

integer procedure clock; 3

Returns an integer that, if edited as 4 decimal digits, gives hhmm
where hh is current hour and mm is current minute.

procedure timewait(r); real r; 3

Suspends execution of the program until r seconds of wall clock time
have passged.

ND-60.092.03

NORD-100 SINTRAN ITI SIMULA Reference manual 55
Appendix G: External procedure library

integer procedure getfile(t,a);
text t: integer as ceoos e

The parameter t is the name of a supposedly existing file. The
parameter a is the access mode as defined in (3). The default type of
the file is DATA. If the file is available for opening, the procedure
opens it and returns the logical unit number (see operating system's
manual), which is always positive. If not available, a negative error
code is returned.

integer procedure getexfile(t,type,a);
text t,type; integer &: .ooeo ¢

Same as getfile, but the default type is given in "type", which must
contain ' as its last character.

procedure relfile(n); integer n; .c... ;
A close request on lcgical unit n is made to the operating system.

For example, a file called SEMAPHORE:FLAG can be waited for, opened,
and later closed:

integer i;
for i:=getexfile ("SEMAPHORE","FIAG'",4) while i<0 do
timewait(l):

o

(critical program section)

LI YY

relfile(i):
This ensures that several jobs in the system may run the same program,
even though the critical program section should not be executed by
more than one job at any point of time.

Arithmetic routines

This section describes some special manipulatons upon simple
variables. Most of them are machine dependent and should not be used
for portable programs.

character procedure upper(c); character ¢; :

If ¢ is one of the lower case letters or special characters, upper
will return the upper case equivalent. Otherwise ¢ itself is returned.

ND-60.092.03

56 NORD-100 SINTRAN IIT SIMULA Reference manual
Appendix G: External procedure library

Boolean procedure checkset(i,mask);
integer i,mask; ;

Returns true if the logical AND between the two parameters is non-
Zero.

integer procedure bitset(i,n);

Bitset returns the value of i after setting bit no. n. Bits are

numbered from right to left, starting on zero. There are 16 bits in
the NORD-100 integer.

integer procedure shift(i,n);

integer i,n; csoes ;

Shift returns the value of i as shifted to the right, zero filling, n
places.

integer procedure iand(a,b);
integer a,b; «.... ;

Tand is the result of a logical AND between a and b.

 name quot,rem;
integer quot,rem,i,j,div;

An integer division between i*j and div is made. The result goes to
quot, the remainder to rem.

integer procedure ralb{a); array a; secees ;

Ralb returns the lower bound of the one-dimensional real array a.

integer procedure raub{a); array a; cecese 3

Raub returns the upper bound of the one-dimensional real array a.

integer procedure caub(a);
character array as ceeee

1

Caub returns the upper bound of the one-dimensional character array a.

ND-60.092.03

NORD-100 SINTRAN III SIMULA Reference manual 57
Appendix G: External procedure library

real procedure arctan2(a,b); real a,b; ccc.. ;

Same as arctan(a/b), but returning the angle in correct quadrant.

text procedure tricktext(a,b,c,d);
integer a,b,c,d; ... ;

The user is not advised to call this routine. It will build up a text
reference from the four given parameters, formatted as shown in app.
F, but if such a reference would exist for some time with a wrong
address, the garbage collector would feel very bad about it.

real procedure trickreal(a,b,c);
integer a,b,C; coaes ¢

Trickreal builds up a real variable from the three given parameters.

It 1is not very interesting for a user, and one should indeed avoid
creating a non—normalized real variable - this would give very strange
results.

Run time system interface

The run time system maintains a list of 15 options, each identified by
a letter. The range is A to O. They can only assume Boolean values.
Three procedures are available for checking or changing these options
during execution:

Boolean procedure rtopt(c);
character C: .eoos ¢

The value of the option identified by c is returned.

procedure rton(c); character ¢; ;

The option ¢ is set to true.

procedure rtoff(c); character C; c..e. ;

The option ¢ is set to false.

In certain very special cases, it might be desirable to force a
garbage collection to occur, triggered by the user program. Note: In
most cases, use of this feature would only make things worse! The
mechanism for this is:

procedure colleCt; coees ¢

ND-60.092.03

NORD~100 SINTRAN IIT SIMULA Reference manual

58
Appendix G: External procedure library

Other utilities

integer procedure tablook (A,n,t);
text array A;
integer n;
text t;

°
eoeco 0

The array A, which should have elements from 1 to n, contains a table

of command names (for example). Tablook will try to find a match for t
in this table, returning the index of the match. The parameter t may

be abbreviated as long as it is not ambiguous. If ambiguity exists, -1
will be returned. If no match could be found at all, 0 is returned.

ND--60.092.03

99060000
00e00eesd
(1111111

[311
9066006000
20850000
92000029

NORSK DATA A.S

P.0. Box 4, Lindeberg gard
Oslo 10, Norway

COMMENT AND EVALUATION SHEET

ND-60.092.03

Nord-100 Sintran OI Simula
Reference Manual

In order for this manual to develop to the point where it best suits your
needs, we must have your comments, corrections, suggestions for
additions, etc. Please write down your comments on this preaddressed
form and mail it. Please be specific wherever possible.

--

--

--

— we make bits for the future

NORSK DATA A.S BOX 4 LINDEBERG.GARD OSLO 10 NORWAY PHONE: 30 90 30 TELEX: 18661

