ND Screen
Handling System

ND-60.088.03

Norsk Data

ND Screen
Handling System

ND-60.088.03

i

NOTICE

The information in this document is subject to change without notice. Norsk
Data A.S assumes no resporsibility for any errors that may appear in this docu-
ment. Norsk Data A.S assurnes no responsibility for the use or reliability of its
software on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. It may not

be photocopied, reproduced or transiated without the prior consent of Norsk
Data A.S.

Copyright (C) 1982 by Norsk Data AS.

i

PRINTING RECORD

Printing Notes

01/78 ORIGINAL PRINTING %
04/79 Second Printin g — replaces original printing |
08/82 VERSION 3

ND SCREEN HANDLING SYSTEM
Publication No. ND-60.088.03

[3.4 003 se0000e

*000 063 0009000

0000 000 000000000
ol [3-od

4 ®
0008000088 000 e
480600000
(344 0069 ©8000000
cee 0609 oo0eoee

NORSK DATA A.S

P.O.Box4, l.indeberg gard
Osio 10, Norway

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one or
more single pages to be merged into the manual by the user, each revised page
being listed on the new printing record sent out with the revision. The oid
printing record should be replaced by the new one.

New versions and revisions are announced in the ND Bulletin and can be ordered
as described beiow.

The reader's comrnents form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments ara welcome.

These forms, together with all types of inquiry and requests for documentation
should be sent to the local ND) office or (in Norway) to:

Documentation Department
Norsk Data A.S

P.O. Box 4, Lindeberg gard
Osic 10

PREFACE

THE PRODUCT

This manual describes version 03 of the ND Screen Handling System (NSHS).
This is registered in the ND Software Library as part of ND-numbers
10013F,G/10053F. NSHS is delivered on two diskettes containing following files

Diskette 1: |
(ND—10013I-PART1:FLOPPY‘USEB)SCREEN—DEF-2¥55!:BPUN:1]

(ND-100131-PART1:FLOPPY-USER)SCREEN-LIB-2154K:BRF:1 K
(ND-100131-PART1:FLOPPY-USER)SCREEN-RTL-2156K:BRF:1 K

Diskette 2: |
(ND-10013I-PART2:FLOPPY-USER)SCREEN-COP-2446A:8PUN :1
(ND-100131-PART2:FLOPPY-USER)SCREEN-UCO-24478:SYMB:1 B
(ND-100131-PART2:FLOPPY-USER)SCREEN-DEM-2181C:SYMB 1

Diskette 3:
(ND-100131-PART1:FLOPPY-USER)SCREEN-1BANK-A:BRF
(ND-10013I-PART1:FLOPPY-USER)SCREEN-2BANK-A:BRF
(ND-10013I-PART1:FLOPPY-USER)SCREEN-1REEN-A:BRF

Diskette 1 contains the main functions, diskett 2 is used for additional service
programs.

ND-60.088.03

THE READER

This manual should be of interest to anybody supervising data processing under
NSHS and particularly programmers writing application programs using NSHS.
The first chapter, Introduction to NSHS, provides introductory information for
anybody wanting a brief description of the system and how it works.

Prerequisite knowledge: Ample experience of Fortran or Cobol is required as
application programs are written in one of these languages. Some knowledge of
data representation is also required. Cobol programmers must know some
Fortran as the subroutine for user control, UCONT, can only be written in Fortran.

Examples of application programs and UCONT are given in the User Guide
Section.

The manuéls

NORD-10/100 FORTRAN System Reference Manual ND-60.074
NORD COBOL Reference Manual ND-60.144

deal with programming Fortran or Cobol on ND computers: they outdate previous
manuals on this subject.

THE MANUAL

This manual has been thoroughly revised to coincide with the release of the new
NSHS in 1982. The contents have been rearranged and new chapters added. The
first chapter is an introduction which in being simply should be comprehensible
to all potential users. Then follow three main chapters, Defining the Pictures,
Application Programming and a User Guide. The User Guide is a new section
containing examples, practical hints for programmers and outlines of special
procedures.

The first part of NSHS (creating pictures) is also used by the Data Entry System,
ND-60.101.

ND-60.088.03

vii

TABLE OF CONTENTS

+ 4+ 4
Section: Page:
1 "INTRODUCTION TO NSHS — THE CONCEPT OF
THE SYSTEM oo 1—1
General Terms......ocooeevioee e e 1—3
1.2 Picture FIl@S. ..o 1—3
2 THE SCREEN DEFINITION SYSTEM (Screen-Def)............... 2—1
2.1 GENEIAl..ceiiiiiiiieee e 2—1
2.2 Picture CoOmmMands........ooooi oo 2—3
2.2.1 Define-Picture-Sizeccoooovveoiiioe o 2-3
2.2.2 Create-PiCtureoooooiiieoe oo 2—4
2.2.3 Compile-File oo 24
2.2.4 Describe-Picture ... 2—-4
2.25 Describe-File . .o e 2—-4
228 Dump-Picture-Filecccooomememiiiiooeee 2—5
2.2.7 Modify-PiCtureooooooiiiiieeeeeeeeeeee e 2-5
2.2.8 Delete-Picture ... 2-—-5
2.29 Scratch-Picture-Filecccoooimmemiiiee e 2—6
2.2.10 Rescue-Picture e 2—86
2.2.11 Close-Files ...t 2—6
2.3 General Commands ..o 27
2.3.1 eI e 27
232 Set-Terminal-Type ..o 2—-7
2.3.3 Set-Dispiay-Mode ..o 2--7
2.34 Exit ... e e 27
2.4 Data Entry COMmMands.........ccooooooeo oo 2--8
2.4.1 Set-Must-Read ... 2—8
2.4.2 Reset-Must-Read ... 28
2.4.3 Set-Verify oo 2—-8
244 Reset-Verify ... 2—8
2.5 Picture Creation and Modification............................... 2—9
2.5.1 Editing Facilities ... 2—3
252 Creating Pictures ... 2—11
253 Definition of Display Modescoiii . 2—11
2.5.4 Definition of Fields .._........ccoooiii 2—12

ND-60.088.03

Section:

2541
2542
2543
2544
2545

255

2551
2552
2553
2554
2555
25586
2557
2.55.8
25589
2.5.5.10
2.5.5.11
2.55.12

258

257

3.1
3.2
3.3

3.3.1
3.3.2
3.33
3.34
3.35
3.3.6
3.3.7
3.3.8
3.39
3.3.10
3.3.1

viii

Storage Codeocooviiiiiiiioiieeee e
Edit Codes ..o,

Default Value
Legal Values
illegal Vaiues
Legal Rangeccccoooiiiiiiiiiiiie e
lllegal Rangecooooiiiiiiiii e
Add Field

System Defined Program Control
User Defined Program Control
Combined Control

UCONT Routine for Automatic Transfer of
Field-Values from one Picture to Another
Termination of Picture Editing

The Initial Contents of the Cornmon Areas.....................
ITERM(1) = SINTRAN Device Number
ITERM(2) = Terminal Type/Picture Displacement ...
ITERM(3) = Cobol Flag/Escape Character
ITERM{4) = Read Strateqyoccooevveirvoieoeen.
ITERM(5) = PAD Character/Program Mode
ITERM(B) = Cursor Position e
ITERM(7) = Error Code ...
ITERM(8) = Break and Echo Strategy
ITERM(8) = Status-Option Word
ITERM(10) = Length of Private Picture Area
ITERM{TT—128) oo

ND-60.088.03

Section: Page:
3.4 The Private Picture Areacccoovoioioio 3—12
3.5 Public PiCturescoooooiomee 3—13
3.6 Program Calls and Parameters_._ . 3—14
3.6.1 General ..o 3—14
3.6.2 Available Calls ... 3—14
3.6.3 The Parameters in NSHS Calls ... 3—18
3.6.3.1 FORTRAN Programs ..o 3—15
3.6.3.2 COBOL Programscoooovoeioeoe oo 3—18
3.6.3.3 Standard Parameter Names...............cooovvoo . 3—16
3.6.3.4 Picture-File-Name.................o.oooii 3—16
3.6.3.5 Number-of-Pictures..................oooeii 3—16
3.6.3.6 Picture-Name-String ... 3—17
3.6.3.7 Picture-Number-Array ... 3—17
3.6.3.8 Picture-Numbersoooooeii oo 3—17
3.6.3.9 Field Indicator Array.........ccoooooeeomoooo 3—18
3.6.3.10 Field Numbers ..o 3—18
3.68.3.11 Field Number Arrayc.oooooviivmoioee 3—18
3.6.3.12 Number of Fields............ocoooovriiio o 3—18
3.6.3.13 ReCord ..o 3-—19
3.6.3.14 Data Element Index Array ..o 3—19
3.6.3.15 Status ... e s 3—19
3.6.3.16 Standard Parameter Names...............oooooooeo 3—20
364 The Subroutine Callsoccooevoivioi 3—21
3.6.4.1 GTPIC {Get PICtUre).....ooooeeeoe oo 3—21
3.6.4.2 GTFDN (Get Field Numbers)............................... 321
3.6.4.3 RFLDS {Read Fields)ccoeevmevooo 3—22
3.644 CLSCR (Clear Screen).........ccooveveieo 327
3.6.45 CFLDS (Clear FieldS)ccoooeeoeoonooooo 3—27
3.6.46 CLBUF {Clear Buffer) 327
3.6.47 WRPTD {Write Picture to Display)...............oo...... 3—-28
3.6.4.8 WFLDS {Write Fields to VDU ..., 3—28
3.6.4.9 WRPTF {Write Picture to File)...........c..ccooo . 3—289
3.6.4.10 WMSGE (Write Message).......................oi . 3—29
3.6.4.11 CLMSG (Clear Message)c.....ooi . 3—29
3.6.4.12 ZREAD/RREAD. ZLOCK/RLOCK,

ZMUST/RMUST o 3—30
3.6.4.13 ZVERI/RVERI, ZMALL/RMALL ... 3—30
3.6.4.14 RMPIC (Remove Picture) ... 3—230
3.6.4.15 ZBELL (Ring Bell} ..o 3—31

ND-60.088.03

Section: Page:
4 THE TERMINAL OPERATOR’S JOB — USING

THE SCREEN PICTURES ..o 41
4.1 General ..o 4-—1
42 Getting Startedo.oooiiiiiiii e 4-2
43 If Something Goes Wrong...........c.oooeeeevioe 4-3
4.4 Terminating the Job...............oooivioee 4-3
45 BAItING .o 4—4
4.6 Automatic Picture Recovery Within Read-Fields 4-—-5
5 NSHS SUPERVISOR SECTION ..o 5—1
5.1 GeNeral.........cocooiiiiii e 5—-1
5.2 The Material ..o 5—1
5.3 Implementing NSHS on the Computer ... 53
6 USER GUIDE SECTION ..oooiieiioeeeieee oo 6—1
6.1 INTrodUCHioN ..o 6—1
6.2 Creating Picture FlleS..............occooomeeoooeoooo 6-—2
6.3 Extending the File Sizeocoooomiiii 6—2
6.4 Creating @ Pictureocooooooiviioeeeeeeee 6—4
6.4.1 The Relation between Storage . Code, Edit Code

and Record Format...........oooooioiooos o 6—4

6.4.2 Example 1 e 6—5
6.4.3 EXamDle 2 oo 6-—7
6.5 Terminating a PiCturecooooeoi o 6—13
6.8 Modifying @ PICture...............ooooo oo 6—13
6.7 Application Programming e 6—17
6.7.1 INtroduCtion ... 617
6.7.2 ITERM, IPRIV and IPUBL...........cooooie 6—18
6.7.3 Basic Calls ... 5—20
6.7.4 Bit and Byte Manipulation.............................._ 6—21
6.7.4.1 Cobol Flag/Escape Character = ITERM(3)........... §—21
6.7.4.2 Pad Character/Program Mode = ITERM(5) 5—23
6.7.4.3 Extracting Bytes from Words ... 8—24
6.7.5 Program Examples ... 6—25
6.7.5.1 Data Discipline in Using NSHS ... 6—25
6.7.5.2 Program Exampie 1: YSFPER/ (F) ... 6—2
6.7.5.3 Program Exampie 2: ZSFPER (F) ..o, 5—36
6.7.5.4 Program Exampie 3: YSCPER (C) o 539
6.7.5.5 Program Example 4: ZSCPER (C) ..o, 6—45

ND-60.088.03

Section:

6.7.6

6.7.6.1

6.7.7

6.8

6.8.1

65.8.2
Appendix:
A

B

xi

Page

User Controlocooooeiiiiiii oo, 6-—46
Description of the User Control SPER-CONT

(UCONT) e 6—47

System User Control {Screen-Ucont)cc..cc........ 6—51

Compiling, Loading and Running Programs.................... 6—54

Compiling, Loading and Running a Fortran Program 6—54
Compiling, Loading and Running a Cobol Program .6—56

EDIT CODES AND FORMATS ..o A—1
CONTROL CHARACTER HANDLINGoooviieee B—1
ERROR MESSAGES AND CODESooioeeieeeeee C—1
SYSTEM CONTROL ..ottt D—1
TROUBLE SHOOTING ..ot E—1
USER CONTROL AND LOW-LEVEL ROUTINES,

AN EXAMPLE e F—1

THE STATUS/OPTION WORD ITERM(9) AND SYSTEM

DESCRIPTION OF ITERM(11) — ITERM(128) oo G—1
NSL AND COBOL..oiiiiiiiii e H—1
SINTRAN FEATURES ... I—1
PUBLIC PICTURES ..o J—1
THE SCREEN-COPY-FUNCTION ..o K—1

ND-60.088.03

1-1

1 INTRODUCTION TO NSHS—THE CONCEPT OF THE
SYSTEM

NSHS consists of two rnain parts, the PICTURES and the PROGRAMS.. It is used
to enter data via a terminal to record files or a database, or to display data
records from files or a database on the terminal screen.

THE PICTURE

This is the basic element and should be created first. It consists of leading text
which is always the same for the same picture, followed by datafieids.

,,,,, ; " The user can design a picture to fit his particular requirements. Eg. it may be
practical to have a picture resembling the source document. Data entered at the
terminal will automaticaily appear on the screen in the right position, easily
identified by the operator.)

e —

PER-CX : for person register
BDATE :03.08.14
BNO 116340

PERSON NAME: FRILSETH EDVIN

PERSON AD DR et
SEX :

HOUR'SPAY & v

DEPARTMENT & i,

RESERVED D e

** X picture with User controi on fields 3, 5and 6 ***

N\ /

Figure 1.1 shows a picture for registration of person records, where the first
three fields have been filled in and the others left empty. The datafields are
indicated by dots. In this case there is only one datafield on each line, but the
-number of datafields on a line is not restricted to one.

ND-60.088.03

Automatic data commt condmm can be defined when a picture is created. If
unacceptable data are entered, they are rejected, the terminal gives an audible
signal and an error message on the iaat hnc of tha screen. The operator can then
continue with correct data.

A number of standard control conditions can be specified for each datafield on
the screen. Howaever the user may want a more sophisticated data check, for
instance on relations between different datafields. This is called user control and
requires the writing of a special program. Usaer control is called from the picture
when a datafield with control number = 3 is encountered. It is possible to have
one picture without control and ancther with, or even to have several pictures
apparently the same but with different control on the datafields.

THE PROGRAMS

The whole process is directed by the application programs. The program calls
the right picture to the screen and transfers data to a record file or database. It
shouid perform the main processing tasks but ieave data checking to the system
or user control. In this way all processing can be carried out by one application
program and one user control program.

Several standard calls can be used in the programs. One call, GTPIC, is of
special importance and always appears early in the program. It gives the picture
filename and picture name, and then the system has all the necessary
information concerning the picture and datafields. In a series of calls, parameters
generated from one cail are by default used as input parameters to another call.
This technique is demonstrated in the User Guide section, which gives practical
examples demonstrating the procedure from start to finish ie. running the
program. There are aiso exampies of bit/byte manipuiation, details of those fieid
definitions which have proved difficult in the past and details of points where the
procedures for Cobol and Fortran programs are different.

One of the more sophisticated features of NSHS is that at runtime pictures can
be used as PRIVATE or PUBLIC. In most cases private use is satisfactory, but if .
many users are accessing the same picture at the same time, the system works
more efficiently with public pictures, because of the reentrant features of the
SINTRAN operating system.

We hope this introduction has explained the basic idea of what NSHS is and
how it can be used, and that it will help you as you read on. We wish you
success in your further studies!

ND-60.088.03

1.1

1.2

1-3

GENERAL TERMS

Every software system has its own vocabulary of frequently used words and
phrases. The most important in the NSHS are as foliows:

Leading text

This provides information or explanation of a picture. it is defined when a picture
is created, is a permanent part of the picture and cannot be modified by an
application program at runtime.

Field

A position in a picture reserved for data input/output, defined when a picture is
created. Fields can be used to display output from a user’s program, or to
display characters read in from the keyboard, or both.

Field Characteristics

These are defined in Screen-Def and include how a field is handled, its maximum
length in characters, its format, its edit and control parameters.

Picture

The combination of Ieading texts and fields, defined in Screen-Def. A picture has
an 8 character {max.) name which must be unique within one picture file or
within any set of pictures used simuitaneously in one application. A picture
cannot contain more than 255 fields.

PICTURE FILES

Once a picture is defined it is called the source picture .and is stored in a
contiguous SINTRAN file with the default filetype designation :PICT. Up to 48
pictures identified by their individual picture names can be stored on this file.
Before a picture is used by an application program, it must be compiled into a
runtime format. A compiled picture, called the object picture, is stored on
another contiguous SINTRAN file with default filetype designation (:OBJ). This
file may also contain up to 49 pictures. The NORD File System manual contains a
more detailed discussion of file handling.

ND-60.088.03

2.1

THE SCREEN DEFINITION SYSTEM (Screen-Def)

GENERAL
The interactive utility program for creating and manipulating pictures is activated
by the SINTRAN command

@SCREEN-DEFINITION

This is the name the program was given when it was loaded and can be
abbreviated if this does not produce an ambiguous name.

A heading page appears and you are asked

Terminal type?*

The different possibilities are dispiayed on the screen and you answer with the
integer number corresponding to your terminai. READY appears on completion of
all operator commands. Typing a space or carriage return sets the program in
command-receiving mode. A command can be entered when

SPM*

{Screen Picture Maintenance) appears on the screen.

Available commands are listed beiow and described on the following pages. All
commands can be abbreviated.

‘If the terminal type is known to SINTRAN, this information will be used by
NSHS and the start procedure will be omitted.

ND-60.088.03

AVAILABLE COMMANDS

Picture commands

Generai commands

Data Entry commands

DEFINE-PICTURE-SIZE
CREATE-PICTURE
COMPILE-FILE

DESCRIBE-PICTURE
DESCRIBE-FILE
DUMP-PICTURE-FILE

 MODIFY-PICTURE

DELETE-PICTURE
SCRATCH-PICTURE-FILE

RESCUE-PICTURE

CLCSE-FILES

HELP
SET-TERMINAL-TYPE
SET-DISPLAY-MODE
EXIT

SET-MUST-READ
RESET-MUST-READ

- SET-VERIFY

RESET-VERIFY

ND-60.088.02

2.2

2.2.1

PICTURE COMMANDS

if no files have been opened before a picture is entered, the system will ask for
source and object files. Both file name and type must be given. If the files which
have been opened are not source/object files, you will be asked if you wish to
continue. If you give Y and carriage return, these files will then be defined as

source/object files.Typing any other character will result in a return to command
input mode.

NQTE: Both the source and object picture files must be contiguous. Otherwise
an error message appears on the terminal and control is returned to command
input mode (see 1.2).

DEFINE-PICTURE-SIZE

This command specifies the number of lines (between 1 and 31) on the display
and the number of characters (between 1 and 127) per line.

A picture can have a maximum of 31 lines each containing 127 characters. But
most dispiay terminals have only 24 lines with 80 characters. {(The Tandberg TDV
2100 has 25 lines with a maximum line length of 80 characters.) Pictures with
more than 24 lines can be written to display terminals but the additional lines will
not be shown immediately. (NSHS never uses column 80 of a VDU and the last

line on a VDU is used for system purposes, so default picture size is 23 lines of
78 characters.)

if the number of lines in the picture exceeds the line-capacity of the terminal, the
picture is automatically divided into two pages. The second page is automatically
displayed when the cursor is moved beyond the first page. If it is moved back
the pages are switched back again.

If the line contains more than 79 characters, the line is split into two lines.
Pictures defined with more than 79 characters per line can oniy be used in the
WRITE-PICTURE-TO-FILE (WPRTF) command.

{

ND-60.088.03

2.2.2

2.2.3

224

2.2.5

2—4

CREATE-PICTURE

This command clears and formats the display and sets the cursor in the home
position (top left). A picture can then be defined by entering leading texts,
headings and field descriptions. Leading texts, preceded by display mode
characters, or positioning spaces are entered directly. Fields are defined by
pressing control/E. Editing facilities are described later in the manual.

When a picture is completed, type control/W and it wiil be stored and compiled.
If you do not want to keep the picture, type control/F.

COMPILE-FILE

This command compiles pictures in the source file and writes them to the object
file. Old object pictures are repiaced or new pictures added. This command is
not normaily necessary as pictures are compiled automatically on termination of
CREATE-PICTURE and MODIFY-PICTURE commands. It is useful if the object
picture file is destroyed by accident. A single modified picture must be compiled
using MODIFY-PICTURE, immediately followed by control/W.

DESCRIBE-PICTURE

This command generates a description of a picture containing the picture layout,
object picture size, number and description of defined fields. This is written to a
user selected file.

DESCRIBE-FILE

This command is equivalent to DESCRIBE-PICTURE, except that ail the pictures
in the source file are described.

ND-60.088.03

2.2.6

2.2.7

2.2.8

2-5

DUMP-PICTURE-FILE

This command writes to a specified list file the number of blocks on a picture
file, a table showing which blocks are occupied and the names of the pictures
actually stored on the file.

Then the following text is displayed
NR OF BLOCKS ON FILE: 40 [F NOT OK GIVE NEW NR, ELSE0: 20

NEW NR refers to the number of blocks to be listed, starting from 0. In this case
the first 24 blocks will be listed because 2010 is converted to 24s.

Complete information for source and object file is given separately.

MODIFY-PICTURE

After this command you are asked for the name of the picture to be modified. f
found, this picture will be displayed on the screen and the cursor returned to the
home position. The picture can be modified using the same editing and control
facilities as in CREATE-PICTURE.

DELETE-PICTURE

This command can be used to display the names of pictures on the picture files
and tc delete these pictures.

Names of pictures on the source picture file are dispiaved first with the question
which picture is to be deieted. Give the name of the picture to be deleted or CR
if no deletion is required.

Names of pictures on the object picture file are then displayed with the question
which picture is to be deleted. Give the name of the picture, or CR to return to
SPM*.

It is possible to use pictures which only- exist on the object file, but some
commands, eg.SPM°DESCR-PIC, SPM*MODIFY-PIC, cannot be used. Pictures
missing from the object file can be easily reestablished by the command
SPM*MODIFY-PIC (single picture) or SPM*COMPILE-FILE {whole file}.

ND-60.088.03

2.2.9

2.2.10

2.2.11

SCRATCH-PICTURE-FILE

This command destroys source and object picture files. Source file, object file, or
both, can be scratched. The system asks for confirmation of the initial decision.

RESCUE-PICTURE

When a source picture has been created or modified and control/W pressed, if
the source file is fuil the picture data remains in core. This command writes the
picture back to the original source file, or if desired to another source file.

The procedure is as follows:

Give the command

SPM*CLOSE-FILES.

Try to expand the files with the SINTRAN command:
SPM*@EXP-FILE _ _ _ _
If this does not succeed, new files must be created:
SPM*@CREATE-FILE NAME:PICT N
@PM* @ CREATE-FILE NAME:OBJ,N
where the number of SINTRAN pages is subtituded for N.

Now give the command:

SPM*RESCUE-PICTURE

CLOSE-FILES

This command cioses the source and object files.

ND-60.088.03

2.3

2.3.1

2.3.2

2.3.3

2.3.4

GENERAL COMMANDS

HELP

A list of all available commands is written on the terminal.

SET-TERMINAL-TYPE

Available terminal types are listed on the screen and vou answer with the integer
number corresponding to your terminal. This command is automatically issued at
the beginning of the Screen Definition System, but if the terminal type is known
to SINTRAN it will be used by NSHS and this procedure omitted.

SET-DISPLAY-MODE

Most terminails require a position on the VDU for representing the control-code
for blink/inverse video/underiine and so forth. Therefore, default display mode is
set to 1 which indicates that before and after each field a position is reserved for
display control-code. The controi code for Normal is automatically defined after
each field. When defining a leading text in a speciai display mode, a position on
the VDU is reserved.

Another possibility is:

0 . Particularly used for terminals whnere the dispiay-code does not require a
VDU position. {(No position is reserved for the display on the VDU).

2 : Leading text can be defined with special display, and a position wiil be
reserved for the display-code. For fieids. no position for SET-DISPLAY is
reserved, and fields can only be used with normai display. in this mode
fields can be ‘packed’ (no spaces between fieids).

EXIT

This command stops the picture definition module and returns control to the
operating system.

ND-60.088.03

2.4

2.4

242

243

2.4.4

2-8

DATA ENTRY COMMANDS

The following commands are used in connection with the Data Entry system.
They are used to set/reset the MUST-READ or VERIFY features on specified
fields. When a picture is modified the commands must be repeated for each

- field.

These commands have no effect on pictures directed by application programs.

SET-MUST-READ

It is possible to have MUST-READ on individual fields. If this command is given
you must indicate whether a field is to be a mandatory read.

RESET-MUST-READ

This command reverses the action taken in SET-MUST-READ.

SET-VERIFY

It is possible to have individual verification of fields. If this command is given you
must indicate for each field whether it is to be verified.

RESET-VERIFY

This command reverses the action taken in SET-VERIFY.

ND-60.088.03

2.5

2.5.1

PICTURE CREATION AND MODIFICATION

Editing Facilities

The editing facilities used in picture creation and modification operate on one
line at a time, allowing characters to be copied from the line above, from the old
line or input through the keyboard. The following control characters are used:

Control/A: («) remove previous character or field
Control/C: {~} copy one character from old line
Controi/D: (1) copy remainder of old line from current position up to

and including the iast character
Control/P: copy one character from previous line

Control/Q: delete characters on this line and return cursor to position
one on the same line

Control/R: (n copy previous line up to and including last character

Line editing is normally terminated by carriage return (CR). When in a line, « is
equivalent to Controi/A, - 0 Control/C. Beyond position one, t is equivalent to
Control/R and |, to Controi/D. but the arrows also terminate the line. '

If Control/A,C.P,- or - are typed when a line is being edited, a field is handied as
one character. £g. Control/A immediately after a 10 character field replaces the
10 characters by spaces and moves the cursor back 10 places. When a line has
been edited CR shouid be used to move the cursor %o the first position of the
next line. The cursor can then be moved by t, } or . CR always deletes all
characters on the line to the right of and inciuding the cursor position.

Control/J: insert one line above the current line: this and all lines
below are pushed down one line and the last line is lost.

Control/G: remove the current line; all lines below are raised by one
line and the last line becomes an empty line.
These functions only work when the cursor is at the beginning of a line. They are

IRREVERSIBLE.

The previous field, or any field already defined on the line to the left of the
cursor can be repeated on the same line by typing <. (See Fig. 2.1}

ND-60.088.03

2-10

ey

LINE ABOVE

pc 7 ~ OLD LINE

| CURRENT LINE

v
AC (=)
\— _ J
‘\/ 4
OC

JC = INSERT NEW LINE
GC = REMOVE CURRENT LINE
X = COPY PREVIOUS FIELD

WHEN CURSOR IN COLUMN 1.

i
|

'7 MOVE CURSCOR

\

Figur 2.1: Editing Characters

ND-60.088.03

25.2

253

2-11

Creating Pictures

When the initial procedure described in Section 2.1 is completed, the command
sign SPM* appears at the top left of the screen.

To create a new picture use
SPM®DEF-PIC-SIZ to limit picture size to part of the screen: if this is not
used the whole screen is defined by default.

or directly
SPM*CRE-PIC
if the whoie screen can be used.

After the command press CR and further questions are asked or advice given.
The screen is cleared and the cursor piaced in the home position.

The picture can now be edited by moving the cursor {(by pressing the arrow keys)
to the position where the leading text, which may be the heading, is required.
Text printed on the keyboard and displayed is automaticaily taken as leading text.
Controi/U underlines the text. {Control/N terminates underlining.) Any editing
character takes up one position, so it is recommended to start text or datafields
in position two so that columns can be lined up.

The first datafield after the leading text is defined by positioning the cursor
where the field should start and pressing Control/E. The cursor is moved to the
last screen line and questions asked about storage, edit, fill and sign suppress
codes, thus defining the field. (See Section 2.6.4.) When the last question is
answered the cursor moves back onto the screen and new leading texts or fields
can be defined.

Details of editing are given beiow and you are aiso refered to the User Guide
section.

Definition of Display Modes

If the VDU terminai permits, leading texts can be dispiayed with blink, low
intensity etc. The definition of Display Mode is independent of terminal type and
is achieved by typing one of the following controi characters:

Control/B Blink

Control/L Low intensity
Control/N Normal
Control/O Invisibie
Control/U Underline
Control/V Inverse video

A display mode is terminated by giving Normal, giving a different dispiay mode
character, by terminating the line or by defining a field.

ND-60.088.03

254

2.5.41

Definition of Fields

When a source picture is being created or modified, typing control/E indicates
that a field is to be defined. The system then asks:

Question Possible Answer
Storage code 1-5

Edit code 0-9, A-S

Fill code 0-1

Sign suppress code 0-1

Number of significant characters in the field actual number of characters

If the answers are acceptable the edited fieid is filled with 9, A or X depending
on the ediy code. The system then asks

Field control functions 0-10

These codes and control functions are explained in the following sections.

@t

Storage Code

Storage code defines the internal representation of characters read in.
Storage code:

Single integer (maximum 5 digits-32768 < value < 32767).

Double integer {maximum 10 digits-2 147 483 848 <vaiue<2 147 483 847).
Byte (maximum 79 characters).

FORTRAN IV. Each 16 bit word contains a 4 digit integer corresponding to
4 decimat digits. Maximum 77 digits.

5. Binary coded decimal. Each 16 bit word represents 4 decimal digits, each
digit a binary value. Maximum 79 digits.

LN -

.Hints:

For fields to be used by the Data Entry Compiler use 3.

Numeric fields to be used by Cobol application programs use 1, 2 and 3 oniy.
All fields to be used by Data Entry 2 should be 3.

te that there is no ‘real’ (‘floating’) option.

The User Guide section contains a further expianation of storage codes.

ND-60.088.03

2.5.4.2

Edit Codes

Edit codes define how fields are presented on the video screen. The formats can
be changed within certain limits to suit the needs of the user. {See Appendix A.)

Numeric fields 1

EDIT CODE 0-9.

For numeric fields with a decimal point. The number given indicates the number
of digits to the right of the decimal point. The integer part of the numeric is
separated by dots into groups of three digits eg. 2.345.678,1234

Permitted input characters:

digits 0-9
comma (,)
full stop {.)
minus (-)

The minus sign can be typed before or after the number. Fuil stop and comma
can be used for decimal point, but the decimal point displayed on the screen is
(.). The grouping separator is (.). This can be changed by patching. (See
Appendix A.)

Numeric fields 2
The codes and their effects are as follows:

A digits right justified, no editing characters

B edited as Norwegian bank account number
{eg. 8360.21.06325)

C edited with dots between each two digits, used for ciock and

date (eg. 10.02.81)

digits left justified, no editing characters

n

Permitted input characters:
0-9 and minus {—)

ND-60.088.03

2.5.4.3

2-14

String fields

String fields must have storage code 3 (byte). The codes and their effects are as
follows:
K numeric string; left justified
alphabetic string; left justified
M alphnumeric string; left justified

-

N numeric string; with edit characters
aiphabetic string; with edit characters
alphanumeric string; with edit characters

T O

Q numeric string; right justified
alphabetic string; right justified
S alphanumeric string; right justified

o)

When fields are defined the field positions are filled by:
9 for numeric fields or strings
A for aiphabetic strings
X for alphanumeric strings

and with editing characters and positioning appropriate to the given code.

Fill Code

Fill code defines how unused character positions are filled on the VDU.

Fill code:
0 spaces
1 zeros

This code affects the screen and also the record layout for left justified fields.
{See Appendix A.} Cobol records require leading positions to be filled with 0: this
is achieved automatically by the Cobol setting in ITERM 3. {See Section 3.3.3.)

ND-60.088.03

2-15

2544 Sign Suppress Code

If values contained by a digit field are always positive, the sign position to the
right of the field can be discarded.

Sign suppress code:

0 field has sign position
1 field has no sign position

2545 Number of Significant Characters

This is the maximum number of digits that can be typed into a field:; editing
characters must be taken into account.

255 Field Control Functions

The controi functions must be defined when the picture is created. They apply to
the check-record function and to the reading of fields. If more than one control
function is required for a field. combined control (10) must be given initially.

Control code:

no controi

default value

legal values

ilegal values

legal range

illegai range

add field/accumuiation field

equivalent fieid

system defined control algorithm

user defined control algorithm
0 combined control

= (0D W0~ G AW - O

ND-60.088.03

2.5.5.1

2.56.5.2

2.56.5.3

2554

2-16

Default Value

Control code ==

This is defined when a picture is created. If the operator gives a terminating
character (eg. CR) without any other character, the field is given the defauit
value.

Legal Values

Control code =

The number of legal values and the. values themseives are defined when a
picture is created. The values read into the field are checked against those in the
legal values table. If no match is found, 2 message is given and the cursor
repositioned at the start of the field.

lllegal Values

Control code ==

The number of illegai values and the values themselves are defined when a
picture is created. Values are only accepted if they differ from those in the iltegal
values table.

Legal Range

Control code ==

The legal range is defined when a picture is created. Vaiues are oniy accepted if
they are within or equal to the given limits.

ND-60.088.03

2555

2556

25.5.7

lllegal Range

Control code = 5

The illegal range is defined when a picture is created. Values are only accepted if
they are outside the given range.

Add Field

Controfl code = §

The value read into this field is added to another field, the accumulation field. An
add-field may also be an accumulation fieid, but in this case values cannot be
read into the field. {See the following section.)

Accumulation Field

Controf code = 6

Values read into other specified fields are accumuiated in this field; values
cannot be read in directly. The start value of an accumulation field is zero, or the
value represented by its carresponding data element when the read-fields call is
entered (if the field read bit is set).

Accumulation fields cannot be read by a RFLDS [read-fields) call, but they can
be written into by a WFLDS {write fields) cail. They accept vaiues from other
accumulation fieids. The values of ordinary add fields are added to the
accumuiation field as they are entered and the new value of the accumulation
field is displayed. The vaiue of one accumulation fieid is not added to another
accumulation field until the RFLDS call is terminated.

Any combination of field types is allowed provided there are sufficient significant
digits in the accumulation fieid. I the number of digits entered or accumulated is
too great (overflow) the field is filled with asterisks (*).

ND-60.088.03

2.5.5.8

2558

[4

Defining Add and Accumulation Fields

The last guestion when defining fields concerns control. Add and accumulation
fields are defined by control code = 6. The procedure is carried out in two steps:

1. 'Field number of accumulating field Give the number of the field where
or 0 if none:’ this field is accumulated. The first
data field has the number 1 etc. If
the current field is a receiving field

only, answer 0.

2. 'Number of fieids to be accumulated Give the number of previously
or 0 if none:’ defined fields that are being
accumulated in the current field. If
the field is an add-field only, answer

0.

If a number of fields are to be accumulated you are asked which fields:

(Next) accumulated field number Give the first field number and the
question is repeated for each
add-field being accumulated.

Logical errors are detected when the picture is compiled. The User Guide section
contains a further explanation and practical examples.

Equivalent Fields

Control code == 7

If fields in the same picture hold the same data, the data need only be entered in
the first field if this code is used.

Eg. in a picture where fields 1, 3, 4 and 6 are identicai, field ! is defined followed
by code 7.
You are asked:
number of equivaient fields : 4
{next) equivalent field number : 1
The second question is repeated three times and the answers 3, 4 and 6 given.

Equivalent fields must have the same storage code.
The User Guide section has an example of how to define equivalent fields.

ND-60.088.03

2.5.5.10

2.5.5.11

System Definéd Program Control

Control code = 8

Algorithm control functions in general use such as checking bank account or
person numbers can be incorporated into the picture handling system. They are
explained in Appendix D.

User Defined Program Control

CONTROL CODE = 9

In this case the user can specify his own control algorithms. For example two or
more datafields can be compared and processing continue depending on the
result of this operation.

Calls for control are made from the picture and nowhere else. The same picture
with different controls on the various fieids can be obtained by redefining the
picture with different names.

User control is written as a Fortran subroutine with the standard name UCONT
and the following parameters:

UCONT {(user-controi-number, picture-number, field-information-array,
number-of-fields, field-number-array, data-record, data-element-index-array,
index-to-this-field-number, field-read-oit-array, status)

When a picture is created and User controi defined on some field, you are asked
to give a User control number. This numper is used as the first parameter in
UCONT and the first statement in the User control program s therefore
frequently a GOTO (branching) to the right part of the program.

The User Control-Number must be a number between 1 and 256. How to use the
UCONT-routine, see Section 6.7.6 and Appendix F. '

You cannot have more than one UCONT, thus ail User control must be put into
this subroutine. All kinds of control should be put into the UCONT, and it is then
possible to run an application with one Main program and one User control. The
standard name for the User controi is Subroujtine UCONT(
may be chosen by the user.

.....) but the file name

ND-60.088.03

2-20

The User control is activated from the program call RFLDS (read-fields). The last
parameter both in UCONT and the program calls is the STATUS. In UCONT the
Status parameter (often abbreviated IST) is used by the programmer to direct
the reaction by RFLDS.

If IST=0 On return from UCONT, the check is performed OK
and we skip to the next field.

If IST=—1 on return,it means taht the chec was not
satisfactory. Usually some error report is
programmed to the bottom line of the screen, and
the cursor will be positioned at the beginning
of the field. The operator may then try with new
data.

If some formal error occurs during execution of UCONT, this is reflected by the
status parameter inthe call RFLDS chcks the field twice: before the field is read
into (IST=—1) and after (IST= +1)

Note that a dummy routine called UCONT is defined in the Screen Library (NSL)

always giving status= +1. The user defined UCONT should therefore be loaded
before NSL.

For the writing of UCONT severai useful subroutined are at disposal. See
appendix F,

Examples of UCONT in connection with pictures and application programs are
given in the User Guide Section.

ND-60.088.03

2.5.5.12

2-21

Combined Control

CONTROL CODE = 10

This enables checking of field values based on combinations of individual control
functions. Combinations are formed by establishing logical AND, OR, AND/OR
relationships between the individual functions or groups of functions.

The control functions are divided into four groups:
1. Default Value

2. Legai-lllegal Vaiue
Legai-illegal Range
System Defined Control

3. Add Fields

4. User Control Algorithm

This sequence must be followed when using combined control. Eg. Group 4, User
Control Algorithm, must be defined after Group 3, Add Fields. The groups are
linked by AND. Within a group functions can be combined in any order. Within
Group 2 functions should be combined with AND or OR, not both.

Example:

To define a two digit fieid with the foilowing control criteria:

1. Values between 10 and 20 not accepted
2. Three digit numbers not accepted
3. Negative yalues not accepted

Input value X must be such that
0<X<10
20<X<100
{Legal range 0—10).0OR.(Legal range 20—99)

The Combined Control function does impose a few limitations:
¢ a maximum of 40 functions may be combined
for User Control Algorithm
Equivalent fields
Defauit fields (values)
only one control of each type may be defined
no Accumulation fieids may be defined
User Control function must always be defined last

An example using Combined Control is given in the User Guide section.

ND-60.088.03

2.5.6

UCONT Routine for Automatic Transfer of Field-values from one
Picture to Another

This routine can also be used by the data entry system.

Using this routine means that when a value in a field is repeated in several
consecutive records the value only has to be entered once.

The routine is called when the first record in the sequence is entered. The
operator locks the fields that do not require changing. The UCONT routine is
activated through the last field in a picture. (The only function of this field is to
activate the UCONT routine.)
FUNCTIONAL DESCRIPTION

Define the picture:

The last field in the picture is defined as a control-field with the specifications:

Sterage code 3
Edit code L
Number of characters 1
Control number 9
User control number 1

Use of the routine when entering data:

Enter data to the picture: when the controi-field is reached enter L to activate
Screen-UCONT. Anything but L means do not activate UCONT.

When screen-UCONT is activated the cursor is placed in the first fieid in the
picture. The following commands are then availabie:

cursor-right unlock fieid, jump to next

L lock field, jump to next; locked fields will appear in low
intensity if the terminai has this feature

cursor-left move the cursor back one fieid

cursor-up move the cursor back to, control-field: the question
FUNCTION FIELD TO BE LOCKED? {Y or N} is asked

Y lock controi-field; it must be unlocked by the appiication
program if it is to be accessed later. {In Data-entry it is

unlocked when leaving the APPEND command.)

N control-field remains unlocked; UCONT can be activated
for each record entered

ND-60.088.03

2-23

The user must compile the screen-UCONT routine. If the Screen-RT-library is to
be used, the UCONT routine must be compiled in reentrant mode.

If the user has his own control routines, they must be incorporated in the UCONT
routine above.

SUBROUTINE UCCNT(IC,IPN,IFINFO,N,FNA,REC,DEIA,INDEX, IREDBITS, IST)

C
C THE ROUTINE IS USED FCR AUTCMATIC TRANSFERE CF FIELD VALUES
C FRCM CNE RECORD TO THE NEXT IN 4 LCOP-3EQUENCE
c WHERE INPUT-RECORDS ARE READ FRCM THE SAME PICTURE.
o
c WHERE:
C IcC : THE USER CONTROL NUMBER
C IPN : THE PICTURE WUMBER
C IFINFO : FIELD DIFCRMATTICN ARRAY
C N : NUMBER CF FIZLZS
c TNA : FIZLD NUMBER ARRAY
c REC : RECCRD
c CEIA : CATA ZIZMENT INDEX ARRAY
c INDEX : INDEX 70 THIS FIELD NUMBER
o IREDBITS: BIT ARRAY WITH 3IT SET IF FIELD READ
c IST : AETURN 35TATUS
INTEGER FNA(1),3EC(:),DEIA(i), IREDBITS(1,,IFINFO(1)
INTEGER IFINFU(22),PINCH
ASSEMBLY GFINF,MCURS, PINCH,POUTC, IPNUM
C ;% INPUT-STATUS IS ~1 3EFORE ANY VALUE IS
C ;% GIVEN TO THE FIELD. NO ACTION IS TAKEN.
F {I3T .ZQ. -1 3010 3¢
TADDR = IPNU ’\1('““1
10 ZACT = DEZA{INZEYX
IDATA = ?"C(:;;Cff

CR WORE GENERAL:

(4 m o= Py RN
GOTC (1,2,3,4,..... ,253. 0

N Py

aQ o

g o
2. ‘
p)

e
nen
mon

255 CuNT’"“IUE

(SO RO NG NONO NGNS YOO o N oY)

c ;% REST CF THE CCDE IS ACTIVATED ONLY IF
c ;% USER-CONTRCL NUMBER IS 1.

IDATA = ISHFT(IDATA,-3).AND. 773
C ;% IDATA = INPUT VALUE IN FIZLD.
C ;% T11B = "IV tiug =

IF (IDATA .EQ. ‘11B) GOTO 70

IF (IDATA .EQ. 114B) GCTC 30
o ;% POR ALL CTHER VALUES, JUST 2ETURN.

TO 80

30 CALL WMSGE('TYPE L IF LOCK REQUIRED,IF NOT,USE:CURSCR RIGEAT,F 7y
-ISHED, USE CURSOR HCME*')

ND-60.088.03

QOO [R P!

(@]

OO0

[¢ XY

aa an

a0

a

40

45

2-24

J=0
;% LOOP FOR TREATING ZACH FIELD. THE LCOP INDEX J IS
;% CALCULATED FROM INPUT VALUES.
Jd =d +1
IF (J LE. Q) J
IF (J .GT. N) GO'I’O 70
,% HERE J IS BETWEN 1-AND NUMBER CF FIELDS.

;% GET INFORMATION ABOUT FIELD, PLACE CURSCR
;® AT BEGINNING CF FIELD, READ ONE CHARACTER.
IFN = FNA(J)

CALL GFINF(IFINFU,IFN,IADDR)
CALL MCURS(IFINFU(11),IFINFU(12))}
ICHAR = PINCH(1)
) © ;% CHARACTZR READ TC ICHAR.
F (ICHAR .EQ. 11B) THEN
,% CURSOR RIGHT: RESET SVENTUALLY
,p LCCK ON FIELD, WRITE FIELD WITH
;» NCRMAL DISPLAY, GO TO NEXT #IZLD.
CALL RLCCK(IPN,',J,7NA,IST)
CALL WFLDS(0,IPN ,1,T‘IA(J/,rtE ,CEIA(J),IST)
G070 U0
ELSETF (ITHAR .ZQ. '14B) THEN
L: WRITE FIZLD WITH LCOW INTENSITY,

CALL WFLDS(3,IPNM, ~,"’\IA(
CALL ZLCCK{(IPM,1,J,7MA,IS
GCT0 4Q

r3,

ZLSETF (ICHAR .

[}

Q. 34B) THEN
;5 CURSOR UP FCR FINISH.
&TC 70
ELSETF (ICHAR .EQ. 1CB) T¢
;% CURSOR [EFT FOR STEP BACX TO
;% PREVICUS FIZLD.

2
UOU“~

JO;O '“:)
“NDTF
;% SERE ¥ TLECAL INPUT GIVEN, B3ELL CN TERMIVAL,
;%4 30 TC NEW INPUT
Call, ZBELL
G070 <0
CCN'IT.NUE

FINISH SEQUENCE: WRITZ MESSAGE 70 LAST LINE OF TERMINAL,
% PLACZ CURSCR ON "V’NC'I'.'.L‘N FZELD, READ CNE CHARACTESR.

s

)
)

CALL WMSGE ('"FUNCTICN FIELD TC 3E LOCKED ? (Y OR W)#')
CALL MCURS(IFINFC(11),IFINFC(12))
ICHAR = PINCH(1)
;% CHARACTER READ TC ICHAR.
IF (ICHAR .EZQ. 13:8) THEN -
i T FOR 755, ICHC CHARACTER,
;3 LOCK SUNCTICN FIZLD.

CALL POUTC(1,131B)
CALL ZLOCK(IPN,!,INDEX,FNA,IST
ELSETF (ICHAR .ZEQ. 1OB) THEN
;% CURSCR LEFT: GO TC PREVICUS FIZLD.
J=dJd -2

ND-60.088.03

2.5.7

225

GOTO 45
ELSETF (ICHAR .EQ. 116B) THEN
;% N FCR NO: ECHC CHARACTER, RETURN

(@]

CALL POUTC(1,116B)
ELSE
C ;% ILLEGAL INPUT, TRY AGAIN.
@TO 70
ENDIF

80 IST =0
RETURN

30 IST = -1
RETURN
END

Termination of Picture Editing

Created pictures must be given a name. A modified picture can be written back
to the originai picture it came from, to another picture (replacing the old one) or
to a new picture. Control/W typed at the beginning of a line indicates that the
user is satisfied with the screen picture and wishes to store it. After control/W is
typed, the picture is automatically compiled to the object file; a list file is
requested and any compilation errors are written on the list file.

if a modified picture becomes to large for its current file, an error message is
given. The RESCUE-PICTURE command can be used to save the picture.

Control/F indicates that the current screen picture is not to be stored. It
produces abort at any ume when outside the fieid definition.

The various error messages are shown in Appendix C.

ND-80.088.03

2-26

3.1

APPLICATION PROGRAMS IN NSHS

Using the ND Screen Library System (NSL).

GENERAL

As explained in the Introduction, data processing in the Screen Handling System
is directed by application programs. These are preferably written in Fortran or
Cobol, but any language which can calil Fortran subroutines can be used.

In the programs the use of pictures and manipuiation of datafields is carried out
by calls to the NSHS iibrary. The programs look slightly different in Fortran and
Cobol. Eg. the call GTPIC (Get-Picture) is as follows:
Fortran: CALL GTPIC{PFNS NOP,PNAS PNA,IST)
Cobol: CALL GTPICC
USING PIC-FI-NAM NO-OF-PIC PIC-NAM-STR
-PIC-NO-ARR STATUS

Note that the name of the Cobol subroutine has got an extra C.

STATUS is the ilast parameter in ail calls and the value should be checked
immediately. So all calls are followed by an IF-statement. (If the value equals 0
the cail was carried out satisfactorily.

Like all other programs, ‘he NSHS-programs can be run in background, reentrant
or as RT {real-time} programs. Remember %o use the corresponding library. The

reader not familiar with these terms is referred to the relevant SINTRAN
manuals.

ND-60.088.03

3.2

USE OF PICTURES

PICTURE BUFFERS

Each application program using the screen handling facilities must define three
data areas of fixed format:

1. the terminal array. This is normalily named ITERM and contains information
about the type of VDU being used.

2. the private picture buffer. This is normalily named IPRIV and contains the
object pictures currently being used by a specific application program. The
terminal array and private picture buffer are contained in a Fortran labelled
common area cailed PRIVATE.

3. the public picture buffer. This is normally named IPUBL and contains
current object pictures. It is contained in a Fortran labelled common area
called PUBLIC. It has the same layout as the private buffer, but can be
accessed by several programs. Setting a flag in the ITERM data area
enables the praogram to switch between the two picture buffers.

See Fig. 3.1.

ND-60.088.03

|
|
|
|
|
l
|
|
|
|
|
|
|
M

——— i — ——— — —— — ——

ATH L

- s — —— ——. —— — — — — —— ————

I

e

WH3aL!

8 ININD3S
8 WYHDOUd NOILY DI TddV

18Nndi
e NNEN B ER

2118Nd NOWWOO

$3INIsIG §O IBGWNU KB
AlHdI Jo yibuay
043z

N\« ATHdI 40 HIONTT
(JHOM NOILdO
ADILVHIS OHII-NYIUE
009 HOYY I

NOIIISOd HOSHND
JAOW WYHO0Hd
ADILVHLS aV3IY
"HYHD 34v0S3/1080D
IdAL TYNIWEI)
f{..02u2>uaz<mhza

R -3

ATHA

|
!

WH3IL!

JLVYATHd NOWWOO

[T

v INFWND3S
v WYHOOHd NOILYDITddY

o —" ——— —— — s, . s i, i b e tirts iy i o it s

ND-60.088.03

Figure 3.1: Picture Buffers Used in NSHS.

3—4

By a subroutine call (GTPIC) the application program can request specific
pictures from the object file to be loaded into the picture buffer. See Fig. 3.2.

number
of
pictures
\
J
sicture : picture
: TP
name S number
l string array
Y
picture
file Object ___GTPIC 3 picture
name picture buffer
file

Figure 3.2: GTPIC Subroutine - loads picture buffer and picture number array

ND-60.088.03

3-5

FIELD ACCESS

All fields in a picture are given absolute field indexes in ascending order starting
from line 1, position 1 and ending at the last position of the last line.

Before an application program can access a field it must create an array of field
indexes or indicators, called the Field Indicator Array. This is passed to a NSL
subroutine which converts the absolute indicators to field numbers which are
placed in the Field Number Array; it is in this form that the field numbers are
stored in the application program. See Fig.3.3.

i
Programmaer i
‘Mimates i
Simid indicator Arrav

i H H ! ﬁ
i ! : ; : | ! FIELDS START
i , % | 43 s 73 a2 | 3@ | INTHESE POSITIONS
FIELD INCICATOR ARRAY . NQ QF FIELD
| IND = 6
—_—
L aTFON |
subroutine I /
[
,//
/
/
)4
R —— 2 B 4 3 3
FIELD NUMBER AARAY
| R
Dit no r 18 4 13 i 3 7 9y
1 1l unewo © START NO OF THIS FIELD'S
H E i \ ! .
E L= 0" FORTHISFIELD | ENTRY (N SIELD P0S TABLE
! i | i |
FIELD NUMBER
1
i
!
L. Must-Resd Bit © | = Mancatory Jea

;
i Q = Not Manaawv
i

* = Fad Locxea

J = Not Locxea

Read-3it o' = Sisid Has 3een Reaq
J = Fisid Has Not 3een Reaq

Figure 3.3: GTFDN Subroutine - transforms absolute screen positions to field
numbers

ND-60.088.03

3—6

The Field Number Array may then be used as a parameter in calls for input or
output of data to or from the terminal, (See Figure 3.4.) The Field Number Array
need not specify all fields in the picture. When reading data from the terminal,
the application program can specify how many fields are to be read and at which

field reading is to begin.

/R FLDS
WFLDS

| WRPTF

\\\?LBUF

number

of fieicds

number of
fieid
indicators

Data — .
Field
element P)
number
index <
erm—————— array
array

DATA RECORD PICTURE

[T——————
_FIELD |

o t———

-
Data Element

Figure 3.4: References to tables in NSHS calls

Field
indicator

array

By creating several Field Number Arrays for the same picture, the application
program can use the same picture in a variety of ways. The same resuit is

facility at runtime.

ND-60.088.03

~ obtained by using a single field number array together with the locking/unlocking

DATA ACCESS

In NSL each picture corresponds to a data record, which is an integer array.
Each field in the picture corresponds to a data element in the record. A Data
Element Index Array is used when writing to or reading from the record. This
array can be created by the application program so that its entries correspond
directly to the entries in the Field Number Array, or if the first data element entry
is given a value of zero NSL generates a default Data Element Index Array (see
Figure 3.5).

Data Record

field 1 \
field 2 B
fieid 3 : s o

|

|

|

|

{

]
field 4

Figure 3.5: Data Element Index Array

In the Fortran program, or the data biock written for Cobol programs, the private
and public buffers are qefined as follows:

COMMON/PRIVATE/ITERM {128), IPRIV {1920)
COMMON/PUBLIC/NROOTSEG, IPUBL (2047)

The lengths 1920 and 2047 are exampie vaiues only. IPRIV and iPUBL lengths
shouid be chosen so that the iabeiled common biocks are exact multiples of
1024. IPRIV must be definea to at least 30 words even if it is not used. Similarly,
IPUBL must be defined to at least 5 words. For Cobol applications a Fortran
datablock must be defined.

Common areas must start at the same location for ail programs or segments.
The private area can vary from a minimum of 12830 words {(no private pictures)
to whatever size is required. The public area is normally the same size for all
applications, as it is on a shared segment. '

ND-860.088.03

3.3

3.3.1

THE INITIAL CONTENTS OF THE COMMON AREAS

In the ND computer system a word is a datafield consisting of 16 bits numbered
from 0 to 15. A hit is the basic element and has the vaiue 0 or 1 ; this is binary
notation. A bit with the value 1 is describad as set, a bit with the value 0 is
described as not set. Three bits can be grouped together and represented by an
octal digit, which has a value between 0 and 7.

The first 128 words of the private area are called the terminal buffer and must be
initiated correctly. The contents are as follows:

Word Contents

1 SINTRAN device number for this terminal
2 Terminal type and picture displacement
3 Cobol flag/escape character
4 Read strategy
5 PAD character/program mode
6 Cursor position
7 Error code
8 Break and echo strategy
9 Option word
10 Length of private picture area

The remaining 118 words are used as a scratch area by NSL.

The length of the private picture area (word 10) should be set to 0 if no private
pictures are to be used; IPRIV itself must be at least 30 words long.

A word sometimes oniy contamns one piece of information. Eg. ITERM (4)
contains read strategy. in other cases a word contains more than one piece of
information. Eg. ITERM (2) contains terminal type and picture displacement. In
order to set the bits in a word the word is given a decimal or octal value equal
to the bmary value of the word. When the system encounters this octal or
decimal value it unpacks it and sets the appropriate bits so that the word
conveys the desired information.

More details of the datafields mentioned above are given in the foilowmg
sections.

ITERM(1) = SINTRAN Device Number

The SINTRAN logical device number is given in Appendix C of the SINTRAN
Reference Manual, ND-60.128. For application programs in background
{(programs started by a public user) the device number should be 1.

ND-60.088.03

3.3.2

3.3.3

3-9

ITERM(2) = Terminal Type/Picture Displacement

Information about the type of terminal is necessary to ensure the particular
terminal handies NSHS in the correct way. If the terminal type is known to
SINTRAN the bit can be set automatically by cail to a subroutine.

NSL maintains tables for each terminal type.

15 14-8 7-3 2-0
L] l |]

Roil Character displacement Line displacement Terminal type

Picture displacement consists of character displacement {(bits 8-14) which refers
to the column number where the picture starts, and line displacement (bits 3-7)
which refers to the line number where the picture starts. By giving this
information the user can place the picture anywhere on the screen. This is of
most importance when picture size is limited by the command DEF-PIC-SIZE and
there are several pictures on the screen simultaneously.

Bit 15 is reserved by NSHS for setting page or roil mode operation.

The User Guide section has examples of how bits are set and how the vaiue of a
word is calculated.

ITERM(3) = Cobol Fiag/Escape Character

Pressing the escape key interrupts execution of a read-fields call and returns to
the main program. Control/G is frequently used for escape with the value 7.

For a Cobol program bit 15 equals 1. Some details of processing are different for -
Cobaol programs.

ND-60.088.03

3.3.4

3.35

3.3.6

3.3.7

ITERM(4) = Read Strategy

(1] Fields must be individually terminated. Return is given by typing

coritroi/S or one of the letters T,U,V.W,X,Y).

1 Fields must be individually terminated. Automatic return after
reading or bypassing the last field, or leaving the first field using 1
or +,

2 Fieids automatically terminated. Return as 0.

3 Fields automatically terminated. Return automatic, as 1.

4.7 As 0-3, but reedited fields are written out with biink.

8-11 As 0-3, but reedited fields are written out underlined.

12-15 As 0-3, but reedited fieilds are written out in low intensity.

16-19 As 0-3, but reedited fields are written out in inverse video.

20-23 As 0-3, but reedited fields are written out invisible.

The last two groups refer to TDV 2100 terminals.

ITERM(5) = PAD Character/Program Mode
The right byte of this word contains the Program Mode character; it is 0 for
private pictures, 1 for public pictures.

The left byte of the word contains the PAD character, used to fill the unused
byte in a data element of storage type byte. This can be set by the user.

ITERM(6) = Cursor Position

This datafield is used internally by NSHS. It keeps track of the position of the
cursor. It is initiated and updated by the system. Line number is found in the left
byte, column number in the right byte.

ITERM(7) = Error Code

This is set to zero by the system when a subroutine is called: if an error is
detected, an appropriate error code is inserted. See Appendix C.

ND-60.088.03

3.3.8

3.3.8

3.3.10

3.3.11

3-11

ITERM(8) = Break and Echo Strategy

This decides how and when characters typed in on a RFLDS call are to be

handled and echoed.

There are two strategies:

0 break on every character and immediate echo

1 the special break and echo strategy designed for NSL, which uses a feature in
the SINTRAN [l] teletype routine. When a break occurs, or when a control or

incorrect character is typed, the driver echoes several characters which are
legal for the field {up to the maximum ailowed for the field).

More detailed information is given in Appendix |.

ITERM(9) = Status-Option Word

This is used as a global flag in the NSHS system. Each bit has a special
meaning.

Status/option-word has frequently been changed with new versions of the

NSHS-system. The user shouid check the “Program Description”’ sheets for the

actual version of the system. For most appiications the option-word can be set to
zero.

A more compiete description is given in Appendix G.

ITERM(10) = Length of Private Picture Area

This value should correspond to the length defined for IPRIV in the Common
block. In the example in Section 3.2, 1920 words have been allocated to IPRIV
and in this case ITERM(10) = 1920.

ITERM (11—128)

These elements must be set to zero before the first NSHS-subroutine is calied.

ND-60.088.03

3-12

3.4 THE PRIVATE PICTURE AREA

The array IPRIV is initiated as follows:
Word - Contents

0 - zero
length of IPRIV; this must be equal to ITERM(10)

maximurn number of picture descriptions which are to be read to IPRIV
0 - zero {used for number of pictures already in IPRIV)
0 - zero (used for number of words still available for new pictures)

S I S R

ND-60.088.03

3.5

PUBLIC PICTURES

The PUBLIC picture array (IPUBL) can be initiated and used in the same way as
the PRIVATE picture area. It is designed to be on a reentrant, or read-only
segment and is normally preloaded.

The use of public pictures requires more knowledge of SINTRAN and the
RT-Loader than could be expected of most public users. The use of reentrant and
RT applications is not described in this manual, but an overviuw is given in
Appendix J.

The arrangement most suitable for a particular application can be chosen. Eg.
many terminals, few pictures, use the public area; many terminals, many
pictures, a few used often, put commoniy used pictures in the public area and
read others to the private area when needed.

ND-60.088.03

3.6 PROGRAM CALLS AND PARAMETERS

3.6.1 General -

This chapter describes the parameters and call statements which activate the
Fortran subroutines used in NSHS programming. Some subroutines have
different entry points and parameters when they are called from a Cobol

program.
3.6.2 Available Calls

GTPIC: get pictures; reads a number of pictures into the picture buffer
and translates picture names to picture numbers which are then
used to refer to pictures.

GTPICC: Cobol entry point

GTFDN: get field numbers; translates a list of field indexes/indicators to
field numbers which are then used to refer to the fields.

RFLDS: read fields; reads a number of fields.

CLSCR: clear screen; ciears all or part of the VDU screen.

CFLDS: clear fields; clears a number of fields on the VDU, writing full
stops for each possibie character position.

CLBUF: clear buffer: all nonlocked byte fields are filled with spaces,
others with zero (binary).

WRPTD: write picture to display; writes a picture to the VDU. All /O
fields are blanked out.

WFLDS: write fields; writes fieids to the VDU.

WRPTF: write picture to file; writes a picture with leading texts and
fields to a file.

WMSGE: write message; writes a given text on the last line of the
screen.

WMSGEC: Cobol entry point.

CLMSG: clear message; clears a message from the screen.

ZREAD: set read; sets bit 15 of the given field numbers to 1.

RREAD: remove read; sets bit 15 of the given field numbers to 0.

ZLOCK: set lock; sets bit 14 of the given field numbers to 1.

RLOCK: remove lock; sets bit 14 of the given field numbers to 0.

ZMUST: set must read; sets bit 13 of the given field numbers to 1.

RMUST: remove must read; sets bit 13 of the given field numbers to 0.

ND-60.088.03

3.6.3

3.6.3.1

ZVERI: set verify on all fields described; the picture sets the lock bit on
all fields which are not to be verified.

RVERI: reset verify.

ZMALL: set must all; sets must on all fields described.

RMPIC: remove picture(s); removes one or more picture descriptions

from the private picture area.

ZBELL: rings the bell on the terminal.

The parameters and subroutines are explained in detail in the following sections.

THE PARAMETERS IN NSHS CALLS

The parameters are singie integers, integer arrays or character strings and are
defined accordingly in the application program. The way parameters are defined
is different in Fortran and Cobol programs.

FORTRAN PROGRAMS

Single integers are automatically assigned if the first letter of the parameter
name is | (or J,K,L,M,N). Integer arrays are defined in the program head and do
not need prefix ietters. Character strings are defined in the program head with a
number of bytes.

An integer takes one computer word {16 bits) and one character is equivalent to
one byte. Two bytes make one word. Character strings should be defined with an
even number of bytes.

Data values can be preset in the heading by data statements (background

programs) or in the body of the program by replacement statements (reentrant
or RT programs).

Parameter names can be used in the subroutines, or the actual value can be set.
Parameter names are often abbreviated to a few characters. A name may contain
7 significant characters.

ND-60.088.03

3.6.3.2

3.6.3.3

3.6.3.4

3.6.3.5

3-16

COBOL PROGRAMS

All parameters must be defined in the working storage section of the application
program. Integers are identified by the COMPUTATIONAL (or COMP) clause. All
other parameters are defined by the PIC clause on the appropriate level.

In Cobol there is no restriction on the length of parameter name and no need for
prefix letters. The parameter name must not coincide with any of the Cobol
reserved words.

In the subroutine calls only formal names can be used and the values must be
set by the VALUE clause in WORKING-STORAGE-SECTION (background
programs) or by assignment in the body of the program (reentrant or RT
programs). Integer constants are preferably given a name corresponding to the
value they hold eq. W-1 holds the value 1, W-2 holds the value 2, etc.

STANDARD PARAMETER NAMES

Use of ‘standard’ names for parameters makes programs easier to read and
errors easier to see. A list of 'standard’ names used in this manual is given at the
end of this section.

PICTURE-FILE-NAME

This is given in the normal way with name and type. It must be specified as a
character string when input from Fortran. From Cobol it must be an
alphanumeric variabie in DISPLAY format defined on the 01 or 77 levels.

The file must be contiguous and preferably tvpe :0BJ.

NUMBER-OF-PICTURES

The maximum number of pictures that can be called from an appiication program
is 8 so this number will be in the range 1 to 8. The picture names are defined in
the picture-name-string.

ND-60.088.03

3.6.3.6

3.6.3.7

3.6.3.8

PICTURE-NAME-STRING

This string specifies the names of pictures to be used. Each picture name must
fill 8 characters;‘names containing less than 8 lettars must be padded out with
spaces. It must be specified as a character string when mput from Fortran. From

Eobol it must be an alphanumeric variable in DISPLAY format defined on the 01
ar 77 levels.

PICTURE-NUMBER-ARRAY

This is an integer array containing the picture numbers provided by the system.
Each picture number identifies a particular picture.

The number of words defined for the array shouid be at least twice the number
of pictures used in the application.

PICTURE-NUMBERS

Each picture number refers to a particular picture. The numbers are generated by
the cail GTPIC and stored in the picture-number-array. The order is given by the
picture-name-string; the first picture is 1 etc.

ND-60.088.03

3.6.3.9

3.6.3.10

3.6.3.11

3.6.3.12

FIELD INDICATOR ARRAY

This array defines the fields within a picture. The fields in the array are only
those that will be used.

Field indicators can be:

Line number * 256 all the fields on a line

Line number * 256 + position a single field on the specified line
1 - 255 absolute field number

0 all the fields in a picture

The field indicators in an array must be given so that fields are referred to in
ascending order of field number.

The number of words reserved for this array shouid be equal to the maximum
number of fieids in one picture. Fields that have been defined as identical are
counted as different fields.

FIELD NUMBERS

These numbers are iranslations of the fisld indicator array for a particular

_picture. They are supplied by the system and used as identifiers when fields are

being read or written to. Field numbers contain information as to whether the
field is locked, whether it has been read after a read command and whether
input to the field is mandatory. A field number “ills 1 word.

FIELD NUMBER ARRAY

This array of field numbers is generated from a field indicator array.

NUMBER OF FIELDS

This is an integer variable indicating the number of fields in the field number
array.

ND-60.088.03

3.6.3.13

3.6.3.14

3.6.3.15

3-19

RECORD

This is a data buffer corresponding to the fields on the screen. It receives data
from the screen on reading or transmits data to the screen on writing.

The record is defined in the application program as an integer array. Its size
should be the sum of the sizes of each datafield.

DATA ELEMENT INDEX ARRAY

This array contains the indexes to the first word of each data element in the
record array. The indexes must be in one to one correspondance with the field
numbers in the field number array.

If the first index in a data aslement index array is zero, the system automatically
generates a data slement index array with data items placed in the record in an
order corresponding to the fieid number array. Indexes must be positive integers,
greater than zero and less than or equal to the value in INDMX which is set to
2048; this can be changed by patching if necessary.

Output to the record can be edited in any desired order by means of the data
element index array. See Section 3.2 and Figure 3.5.

STATUS

This is the last parameter in ail calls and indicates if the call was carried out
successfully or not.

STATUS = 0 no errors detected

= N where N is a positive or negative integer, error
detected.

in the case of an error a more specific error indication is placed in the datafield
ITERM(7). All calls should be checked immediately on Status, the contents of
Status and ITERM(7) written out and the program terminated.

In the case of RFLDS the Status can also be used for input {see section 3.6.4.3).
See Appendix C for further information.

ND-60.088.03

3.6.3.16

3-20

STANDARD PARAMETER NAMES

Formal name

*PICTURE-FILE-NAME
*NUMBER-OF-PICTURES
*PICTURE-NAME-STRING
*PICTURE-NUMBER-ARRAY
*PICTURE-NUMBER

NUMBER-OF-FIELD-INDICATORS
*FIELD-INDICATOR-ARRAY

FIELD-INDICATOR
“FIELD-NUMBER-ARRAY
*FIELD-NUMBER
"NUMBER-OF-FIELDS

*RECORD

‘DATA-ELEMENT-INDEX-ARRAY
NUMBER-QF-FIELDS-READ
TERMINATING-CHARACTER

WRITE-CODE

READ-CODE

CLEAR-CODE
FILE-NUMBER
USER-CONTROL-NUMBER
FLAG

READ-NUMBER-QF-FIELDS
LOCK-NUMBER-OF-FIELDS
MUST-NUMBER-OF-FIELDS

START-INDEX
INDEX-TO-FIELD
FIRST-LINE
LAST-LINE i
START-OR-END-POSITION
FIELD-INFORMATION-ARRAY
TEXT

*STATUS

Parameters markad with * occur in more

Data type

character string
integer
character string
integer array
integer :

integer
integer array
integer
integer array
integer
integer

integer array
integer array
integer
integer

integer
integer
integer
integer
integer
integer

integer
integer
integer

integer

integer

integer

integer

integer

integer array
charac:er string
integer

Fortran
name

PFNS
NOP
PNAS
PNA
IPN

NFi
FIA
IFIND
FNA
FNO
NOF

REC
DEIA
NOFR
ITERCHA
or ITERM

IWCOD
IRCOD
ICLCOD
IFi
IUSCCD
IFLAG

RNOF
LNCF
MNCF

ISTIX
INDEX
IFL
ILL

- |SEP

FINFO
TXT
IST

Cobol
name

PIC-FI-NAM
NO-OF-PIC
PIC-NAM-STR
PIC-NO-AR
PIC-NG

NO-FI-IND
FI-IND-AR
FI-IND
FI-NO-AR
FI-NO
NQ-OF-Fi

SCR-REC
DAT-EL-IX-AR
NO-FI-RE
TER-CHA

W-CCODE
R-CCDE
CL-CODE
FI-NO

FLAG

READ-NO
LOCK-NO
MUST-NO

ST-iX

FI-Li

LA-L]
ST-EN-PO
SCR-TEXT
STATUS

than one call and are explained in

section 3.6.3. Parameters which are only used in one call are explained in
connection with that call in section 3.6.4.

A few of the parameters are used in Fortran subroutines and have no

corresponding Cobol names.

ND-60.088.03

3.6.4

3.6.4.1

3.6.4.2

3-21

The Subroutine Calls

Parameters in italics show where the resuit of the operation is stored.
Parameters occuring in more than one call are explained in section 3.6.3, others
in connection with the call where they occur.

GTPIC (Get picture). Cobol call name: GTPICC

CALL GTPIC (picture-file-name, number-of-pictures, picture-name-string,
picture-number-array, status)

This subroutine reads pictures into the current picture buffer addressed by
ITERM(5) and provides picture numbers which can then be used to refer to the

pictures in other subroutine calls. Nothing is written on the display.

This is usuaily the first NSHS-call in an application program.

GTFDN (Get Field Numbers)
CALL GTFDN (picture-number, number-of-field-indicators, field-indicator-array,
field-number-arrav, number-of-fields. status)

This call transiates a field indicator array into a fieid number array which is then
used to refer to fieids in other subroutine calls.

Field indicators within the array may be:

0 all fields in a picture; number-of-fieid
indicators must then be 1

line number * 256 all fields on a line

line number * 256 + position an individual fieid on the specified line

1-255 absolute field number ie. an individual field.

GTFDN checks that given field indicators are acceptable and then generates the
corresponding field number array.

This is usually the second NSHS-¢all in an application program.

ND-60.088.03

3.6.4.3

3-22

RFLDS (Read Fields)

CALL RFLDS (read-code, picture-number, number-of-fields, field-number-array,
record, data-element-index-array, number-of-fields-read, terminating-character,
status)

See also 4.5 about editing and Appendix G about Status/options.

The main purpose of this subroutine call is to read fields from the keyboard to
the VDU screen and to convert the. characters read to their respective data
element value which is then placed in the record. RFLDS has five functions,
indicated by the vaiue of the input parameter read-code.

read-code meaning

0 normal read

1 control read (verify)
2 check record

3 read password(s)

4 change record

In addition to controlling input to an individual field RFLDS also:
* determines whether a value read in is acceptable according to the
defined control functions

executes accumulation and ecquivalent control functions and writes
the new values to the appropriate field

manages tabbing functions

provides comprehensive editing functions.

ensures that fields with the read-must bit set cannot be bypassed
without receiving a vaiue

ensures that locked fields are bypassed.

-

When a field is to be read, RFLDS piaces the cursor in the first position of the
field on the screen. If the characters typed are iegal for the field type they
appear on the screen. The terminal gives an audibie signal if illegai characters
are typed or if you attempt to type more than the field has space for. (See
section 3.3.4, Read Strategy.) When reading a password, no characters appear
on the screen and no indication of illegal characters is given.

For all calls the last parameter Status is a receiving field. For RFLDS however,
Status can also be used to indicate at which field reading is to start. Eg. if Status
is set = 4, the cursor will be positioned at the beginning of fieid 4.

Input to a field is terminated automatically when the last character is accepted
(depending on the read strategy) or explicitly by typing a terminating character
(CR or a user defined character). After termination, characters read in can be
rewritten to the field in their reedited form and/or with a display mode other than
normal, depending on the terminat type.

ND-60.088.03

3-23

In NSHS the use of 'writing’ and ‘reading’ may be confusing for the operator.
The transactions are seen from the record buffer:

new values received by the record from the terminal or program means
reading
values already in the buffer transmitted to the screen means writing.

TERMINATING CHARACTER

The terminating character indicates how the read call is terminated and has one
of the following values:

—1 user defined escape character
0 CR (terminating last field)
1 user defined fieid terminating character (terminating last field)

7-14 control/L, or controi/S-Y
>389 terminated by a user control function

For read strategy = 1, see (3,3,4), terminating a field with the arrow keys will
give the following values for the terminating character:

Arrow Value
(--- 2
ceny 3

} 4
t 5

Cursor controi characters and control/L or S-Y only terminate reading when the
cursor is outside a field. If one of these control characters collides with a cursor
control character (controi/Y or Z on VISTA,- controi/X on TDV 2100) this
invalidates their function as a terminating character.

Depending on the current break strategy, control/V may be a special character in
SINTRAN. This means that in practice the following can be used as terminating
characters for a RFLDS call:

TDV 2000 control/L,S, T, UW. XY

VISTA control/L,S, 7. U W
TDV 2100 control/L.,S,7,UW.Y

ND-60.088.03

NORMAL READ (Read-code = 0)
Copy Field |

If you wish to correct a record which has been read in previously, it is written to
the screen using WRPTD and WFLDS, or WRPTF. Fields which will not be
changed are locked, those which will be edited are set read. The Read-bit in the
appropriate field numbers is set to 1 before RFLDS is called; when the field is
read old value characters are made available for editing/copying. Characters can
be copied from identical fisids immaediately above the one being read (see
section 5.2).

When reading in a new record you can tab back to a field already typed in and
edit/copy its old characters.

Setting the Read-bit (to 1)

This occurs when a fieid is given a value. Flead bits set on entry to RFLDS (to
indicate old vaiues) will be set to zero on exit from RFLDS if no value has been
read into the field.

Empty Data-Elements/Fisids

For numeric fields with byte storage code, an empty data element {containing all
spaces) is different from a data element containing one zero + spaces.

" An empty value can be forced into a field/data element during RFLDS by typing
controi/Q. followed by controi/J. The corresponding data element receives the
empty value via the clear-buffer function and is then written out. For byte
storage codes the data element is filled with spaces; for non-byte storage codes
the result is the same as typing in a zero.

Typing controi/Q, control/J gives the field a value and in a normal RFLDS call
will be set-read. In a controi-read it will be checked against the oid data element

value and if different but to be accepted, it will also be set-read.

Control

If user control is defined for a field, the control may be carried out before or

after the field has been read depending on how the status in the control function
is set.

The example on user control in the User Guide section demonstrates how a field
can be accessed before and after reading.

Number-of Fields-Read

This is the number of fieids to which characters have been typed and a new
value accepted. Typing the same value again is equivalent to a new value.

ND-60.088.03

3-25

CONTROL READ (Read-cocle = 1)

With this code, values read in are compared with values already in the record;

comparison occurs as characters are typed and at the termination of individual
field reading.

If a typed character does riot match the old character string an audible warning
is given and the cursor will not move. The next character is accepted provided it
is legal for the field. If the character is a digit in a numeric field but still different
from the original an audible signal is given and the oid value displayed on the
last line of the screen. A warning is given for subsequent characters which do
not match, but future characters are accepted. ‘ s
If values are different at field termination an audible warning is given and the
cursor repositioned at the beginning of the field. The old value is displayed on
the screen line. The new value is accepted if - is pressed, old value if tis
pressed, or the field can be retyped. | gives a check if rest of the record is
empty. The cursor stops on the first not-empty field if it exists, else RFLDS

terminates.

Editing

The editing characters controi/A or - are legal. Control/Q resets everything as it
was when typing began.

Number of Fields Read

For a RFLDS call with code 1 this is equal to the number of fields which have
recieved a new value. On entry ail fieids not locked automatically receive old
values and Must-read is set for all fields.

Control Read {Verifyj versus Normai Read (Original)

Record verifying operations at the keyboard are identical to those used when
entering a record via a normal RFLDS call. Eg.:

Normal Read Controi Read
bypass using - bypass using -
illegal if value in old field:
- has same function as before if different value given.
control/Q,J control/Q,d giving empty field.
Accepted if old field was empty; in this case - has the
same function. Otherwise, the field is blanked out and the

old vaiue written on the last line.

CR always accepted as zero value if old value was 0 {ie.
accepted as if 0 + CR had been typed).

LF bypass to first field on next line.

ND-60.088.03

326

CURSOR DOWN terminates a field and checks if the rest of the record is
empty. The cursor stops on the first not-empty field if this
exists, eise RFLDS terminates.

If old and new values are different after termination and the old value was an
empty byte field the message ‘"field was empty’’ is written on the last line.

Termination of Control Read, Verify

Using the verify function a predetermined crder from top to bottom and left to
right of the picture must be followed.

Control read can be terminated by control/Q twice followed by control/S; but
there is no way of knowing which fieids after the last one corrected have been
verified.

In Data Entry, like all other commands Verify can be terminated by control/G (the
escape character), but the current record is then unaffected.

CHECK RECORD (Read-code = 2)

Using this code, control functions defined for a record can be used on other
records with the same format but which were originated mdependently of a
normal RFLDS call. It does not affect the VDU screen.

Check record is executed when read-fields is called. On return, the read bit is set
to 1 in all correct uniocked fieids (ie. they are negative). The must-read bit is set
to 1 in all incorrect uniocked fields. :

If control functions are not defined for an unlocked field, no status bit is set.
Number-of-fieids-read is the number of data items controiled and found correct.
If any items are incorrect, status on return from read-fields is 2 and ITERM 7 is
40.

READ PASSWORD(S) (Read-code = 3)

RFLDS is executed normally but none of the characters typed appear on the
screen. The cursor moves from field to field, but no audible warning is given for
incorrect characters. If the fieid has had controi functions defined, they are

axecuted. Control of passwords in an application program should take place
externally to read-fields.

CHANGE RECORD (Read-code = 4)

When values are read to datafields in a picture (and record), the read-bits are set
(=1} for these fields. If the record is called back for changing and you forget to
reset the read-bits, it will be possibie to pass ‘must’ fields. Using change record
avoids this problem as it resets the read-bits automatically.

For relation between storage-code, edit-code, fill-code and record contents, see
6.4.1 and Appendix A.

ND-60.088.03

3.6.44

3.6.45

3.6.4.6

3-27

CLSCR (Clear Screen)

CALL CLSCR (clear-code, first-line, last-line, start-or-end-position, status)
This routine call clears all or part of the VDU screen.

Possible values for clear-code are:

0 clear whole screen

1 clear whole lines

2 clear from and inciuding start position to end of lines

3 clear from and including position ! to and including end position.

Lines to be deleted are indicated by giving the numbers of the first and last lines.
If oniy part of the dine is to be deieted the clear-code is set to 2 or 3: the
start-or-end position accordingly clears the first or last part of the line.

If different parts of lines, or a number of singie lines are to be deleted, the cal
must be repeated.

CFLDS (Clear Fields)

CALL CFLDS (picture-number, number-of-fields, field-number-array, status)

This subroutine call clears a given number of fields in a picture {ie. puts dots in
all character positions). Locked fieids are not cleared.

The data record is not affected.

CLBUF (Clear Buffer)

CALL CLBUF ({picture-number, number-of-fields, fieid-number-array, record,
data-element-index-array, status)

This subroutine call zeroes out data elements in the record. For storage code 3,

the data element is filled with spaces, for other storage codes it is filled with
binary zeroes. Read-bits for all non-locked fields are set to zero.

ND-60.088.03

3.6.4.7

3.6.4.8

3-28

WRPTD (Write Picture to Display)

CALL WRPTD (picture-number, status)

This subroutine writes a picture on the display showing all leading texts but with
all fields blanked out and dots in each character position.

Only one picture is written out per call, but it is possible to have any number of
pictures visible on the screen at one time provided they do not overlap.

WFLDS (Write Fields to VDU)

CALL WFLDS (write-code, picture-number, nurmber-of-fields, field-number-array,
record, data-element-index-array, status)

This subroutine call writes a specified number of fields to the VDU. Write-code is
an input parameter which selects the display mode. It can have the values:

normal
blink
underline
low intensity
inverse video
invisible

-1 as 1-5 but with beli

Cr O WM - O

These codes have no effect if the particular display mode is not available on the
type of terminai being used.

Only unfocked fields are written if status on input has the normal value=0. If
status (0 on input to WFLDS, only /ocked fields are written.

Single or double integer storage code data elernents which are defined with sign
suppress and have negative values, or have been given values containing more
decimal digits than the field allows (overflow) will be written out with asterisks
instead of digits. '

Byte storage code data elements containing bytes with values less than 040 octal
will be replaced by asterisks; inconsistent data elements for storage codes 4 and
5 will also be represented by asterisks.

ND-60.088.03

3.6.4.9

3.6.4.10

3.6.4.11

3-29

WRPTF (Write Picture to File)

CALL WRPTF (file-number, flag, write-code, picture-number, number-of-fields,
field-number-array, record, data-element-index-array, status)

This subroutine writes a picture with leading texts and fields (except locked

fields) to a file. The file can be the display, so that WRPTF can be used as
WRPTD with field values.

The parameter flag is used to distinguish between normal sequential media and
the VDU screen and can have the values:

1 do not write display mode characters, use space and line feed.
0 write display mode characters.

The parameter write-code can have values 0 - 5 corresponding to the first 6
values of the same parameter in WFLDS. The file number must be recognised by
an OPEN statement in the application program. f COBOL, use cail to OPENFC,
see Appendix H-and program examples.

WMSGE (Write Message) Cobol call name: WMSGEC

CALL WMSGE (Text)

This subroutine writes a message on the Iast line of the VDU screen.

Text must be a variabie containing up to 79 characters terminated with an
apostrophe or . All non-printable characters will be repiaced by *. Text must be
a character string when called from Fortran and an alphanumeric variabie in
DISPLAY format defined at the 01 or 77 levels when called from Coboal.

CLMSG (Clear Message)

Clears message on screen and corresponds to WMSGE. No parameters.

ND-60.088.03

3.6.4.12

3.6.4.13

3.6.4.14

3-30

ZREAD/RREAD, ZLOCK/RLOCK, ZMUST/RMUST
CALL ZXXXX or RXXXX (picture-number, number-of-fields, start-index,
field-number-array, status)

These subroutine calls set {to 1) or reset {to () the three status bits in a field
number. See fig. 3-3.

On entry to a RFLDS call, the read bit indicates whether or not there is a value
for the field in the record (1 or 0) and on return from a RFLDS call it indicates
whether or not a value has been read to the record (1 or 0). Even if the read bit

is 1 on entry to RFLDS it will be 0 on return if no new value has been read in.

The lock bit is usaed to lock a field; it cannot then be written from or read into
and is treated as a leading text. Locked fields will not appear if WRPTF is used.

The must bit is usad to set a field so that once entered, the field must be given a
value. CR only (giving zero value) is not accepted. A space or 0 must be typed.

(This bit has meaning only for RFLDS.)

Start-index indicates which field number in the field number array you are
starting at.

ZVERI/RVERI, ZMALL/RMALL
CALL ZXXXX or RXXXX {picture-number, number-of-fieids, field-number-array, .
status)

These calls act on the relevant bits as described in Section 3.6.4.12. They work
only for those fields defined with must or verify during picture definition. {See
Section 2.4.)

RMPIC (Remove Picture)

CALL RMPIC {number-of-pictures, picture-number-arrav, status)

This subroutine call removes pictures from the private picture buffer. If the
number of pictures is zero, the private buffer will be cleared.

ND-60.088.03

3-31

3.6.4.15 ZBELL (Ring Bell)

CALL ZBELL

Gives an audible signai on the terminal. No parameters.

ND-60.088.03

4.1

THE TERMINAL OPERATOR’'S JOB
— USING THE SCREEN PICTURES

GENERAL

NSHS provides highly automated data processing and reduces the number of
errors by releasing the operator from complicated tasks. If the programs

controlling the processing are well organized and error free, very few mistakes
wiil occur.

NSHS has several different options, but the operator’'s job is usually to enter

data to a picture on the terminal screen. The picture often resembles the actual

source document. As data are entered at the keyboard the picture fields are
filled.

If unacceptable data are entered. the terminal gives an audible signal and the
data are rejected. An error message can be programmed to appear on the
bottom line of the screen. The cursor is placed at the beginning of the fieid and
you can continue with acceptable data. It is necessary to have a picture
description at hand to show which data are acceptable in different fields.

During editing, the toois deveioped for screen handling are used. These are
explained in Section 4.5. They will be learnt by practice — try them out for
yourself on a terminall

Fields may be designated must-fieids, meaning that a value must be given to that
field. For a numeric field this can be CR, giving the value 0.

Fields may be locked-fieids, meaning that it is not possible to give a value and
the field is jumped over by the cursor. Any attempt to violate these rules
produces an audibie signal from the terminai.

The cursor always indicates where you are on the screen and is moved by the
arrows on the keyboard.

When all fields in the picture are completed the fields are cleared and the cursor

repositioned at the start of the first field. The data are transfered to a file or
database according to the application program.

ND-60.088.03

4.2

GETTING STARTED

Assume you are going to enter data for a person register. The job is called
REGISTER-PERSONS, or abbreviated to REG-PER. The steps below explain what
to do, starting with switching on the terminai and entering the system.

1. Switch on power to the terminal; press the line key. Some of the lights on
the keyboard light up and the cursor appears at the top left of the screen
(home position).

2. Press the escape key. After a few moments the following text appears:
ENTER: i-b CR Answer with your user name, abbreviated (which

must be in the main directory) followed by CR.

PASSWORD: CR Give your password if you have one, otherwise just
CR.

K3 @REG-PER CR At the SINTRAN sign write the name of the job and
press CR.

The job is now started. Depending on the particular job you may get questions to
answer or a picture directly on the screen.

ND-60.088.03

4.3

4.4

IF SOMETHING GOES WRONG

1. Nothing happens when escape is pressed.
You may be off-line. Press ‘line’ and ‘escape’ again.
If you are off-line you can still write characters on the screen; if this is not
possible the terminal is not connected or the computer is down.

2. The error message NO SUCH USER is given when you enter your user
name.
You may have misspelled your name. Try again. If the response is the
same, contact the system supervisor.

3. ENTER appears again when you type in your password.
The wrong password was given. Start from the beginning again. If you
have no password press CR. If you have forgotten your password see the
system supervisor.

4. You may be asked questions about PROJECT NO. etc. Answer with CR
uniess you have other instructions.

When @ appears you can give any SINTRAN command available to public users.
Program names with the type :PROG can be used like commands.

Commands must follow immediately after the @ sign. "Noise’’ on the line may
move the cursor a few positions and any command given will then be rejected.
Just repeat the command.

TERMINATING THE JC8

With the cursor in the first fieid press control/G, the usuai escape command in
NSHS. The SINTRAN sign appears. Proceed with a new iob name and CR. or
finish work at the terminal by typing LOG and pressing CR.

ND-60.088.03

4.5

4-4

EDITING

Editing of fields follows the same strategy as picture definition, except that
editing is oriented towards fields, not lines. Only identical fields lying directly
above can be copied, using control/P or R and 1. Editing characters are not
copied.

The following control characters are used in editing:

control/A delete previous character

control/B X copy identical field above up to and including X

control/C copy one character from old value

control/D copy old value to end of field without terminating the
field

control/E insert characters until the next control/E is typed

control/F at the beginning of a field, write out version number

control/G muitipunch; hexadecimai code for character given on last
line

control/N X copy field above up to X

controi/O X copy old characters in this field up to but not including X

control/P copy one character from identical field above

control/Q delete all characters in this field

control/R copy identicai field above and terminate field; legal oniy
with cursor in first position of field

control/Z X copy old characters in this field up to and including X

ontrol/K X as control/Z X (for Vista and Infoton 200 only)

controi/Q , .

controi/J:} gives field a zero value

control/Q . _ _

controi/A} bianks out other fields in the picture/record

line feed go to first field on next line that has fields.

When inside a field the cursor control characters can be used as foilows:

- equivalent to control/C

{ equivalent to controi/D but terminates the field.
In verify mode, check if the rest of the fields are empty.
The cursor will stop in the first position in the first
non-empty field or eise terminate the record.

- equivalent to control/A

equivalent to controi/R

Insert mode is initiated or terminated by control/E. It is not visibly indicated. but
every character typed is echoed audibly. Removal of inserted characters using
control/A or - produces an audible signal even after leaving insert moae.

Muitipunch enables the user to insert any character value (0-377B) in the data
element for a string field. The value for the character is represented on the
screen as a star. Multipunch characters with values greater than 337B or which
represent characters illegal for the field type cannot be copied via control/C,D
etc., they must be entered again.

ND-60.088.03

46

NUMERIC FIELDS

If numeric fields have a sign position, the sign can be given as either the first or
the last input character.

It is allowed to give leading zeroes.

Decimal fields (edit-code 0-9) can be terminated with either CR or SPACE. If field
is terminated with CR, the decimal point will be placed after the last typed digit.
The positions behind the decimal point is filled with zeroes. When space
terminates the field, the last typed digit will be placed in the last significant
position behind the decimal point. if the decimal point is typed, the fieid will be
edited according to typing.

AUTOMATIC PICTURE RECOVERY WITHIN READ-FIELDS

The screen picture may disappear for various reasons eg. static electricity, noise,
power failure at the terminal, accidental switching off etc.

The automatic recovery system clears the screen, writes the picture displaying

filled and set read fields and positions the cursor at the start of the.current fieid.
It is called by pressing control/Q three times.

ND-60.088.03

5.1

5.2

NSHS SUPERVISOR SECTION

GENERAL

The supervisor has responsibility for carrying out certain tasks for all users. One
of these tasks is to implement new software such as NSHS.

Three kinds of users are defined in the ND computer system; PUBLIC, RT and
SYSTEM. Users logged in under their own user name are PUBLIC users. To make
software accessibie to ail users it is ioaded into the SYSTEM user area, which is
administered by the supervisor and protected frorm unauthorized use by a
password. ‘

The supervisor must have a considerable knowledge of SINTRAN. In addition to
implementing NSHS, the supervisor prepares public pictures and loads segments

on the seg-file. The following sections explain the supervisor tasks connected
with NSHS.

THE MATERIAL

The NSHS system is deiivered on three diskettes accompanied by loading
instruction sheets. These sheets must be available to the supervisor as they
contain information necessary for correct implementation. Details vary from one
version to another — do not use ioading instructions for an old version!

Diskette no. 1 contains the main modules of :he NSHS system, the picture
definition and libraries. No. 2 contains additional service orograms, and no 3 the
libraries for the 1- and 2 BANK-system. The diskettes are accompanied by file
descriptions. Figure 5.2 shows a description for the current version and figure 5.3
shows a loading instruction sheet. Versions are indicated by the last letter of the
filename (eg. SCREEN-DEF is version H). Fiies should be implemented with their
fuil names; this makes it easier to check the version iater. Modules are updated
to add new features or remove errors; it is part of the supervisor's job to look for
these new versions.

ND-60.088.03

Diskette 1:

(ND-10013! -PART1:FLOPPY-USER)SCREEN-DEF-2155{:BPUN:1
(ND-10013I-PART1:FLOPPY-USER)SCREEN-LIB-2154K:BRF;1
{ND-10013I-PART1:FLOPPY-USER)SCREEN-RTL-2156K:BRF;1

Diskette 2:

(ND-100131-PART2:FLOPPY-USER)SCREEN-COP-2446A:BPUN;1
{ND-100131 -PART2:FLOPPY-USER)SCREEN-UCQ-24478:SYMB ;1
(ND-10013i-PART2:FLOPPY-USER)SCREEN-DEM-2181C:SYMB;1

Diskette 3:

(ND-10013{-PART1.FLOPPY-USER)SCREEN-1BANK-A:BRF
{ND-10013I-PART1:FLOPPY-USER)SCREEN-2BANK-A:BRF
(ND-100131-PART1:FLOPPY-USER)SCREEN-1REEN-A:BRF

The file type gives important information about how the file is used. The table
below shows examples of file types and how they are handled.

File Type Sintran Command
:SYMB @COPY-FILE
:BRF @COPY-FILE
:BPUN @ PLACE-BIN
@pumMP
or

@DUMP-REENT

:PROG @COPY-FILE

Use

This is a source file which can be edited by
the user for his own special purpose. it
must be compiied before use and gives a
:BRF-file and if dumped a :PROG-file.

This is a compiled program ready o be
loaded by the user. Libraries are usuaily of
this type.

Stand-alone programs for loading by the
user. The first alternative gives a
‘PROG-fite and can be found by the
@LIST-FILE command. Dump-reentrant
puts the program on a segment and is
found by @LIST-REENT. In both cases the
program is started by giving the program
name as a command in SINTRAN.

Programs in executable format in the file
system. They are started by giving the
name like a command in SINTRAN.

Table 5.1 File types on the diskettes and how they are handled.

ND-60.088.03

53

IMPLEMENTING NSHS ON THE COMPUTER

If there is enough space for user SYSTEM on the main disk it is convenient to
piace the files from the diskett on the disk. Before the files can be copied the
diskett must be entered so it is known to the system. The procedure for diskette

1 is given below; it is the same for diskette 2 and 3 except for the different
directory name.

Place the diskett in the floppy siot.

@ENTER-DIR CR The SINTRAN command to enter the
diskette.
DIRECTORY NAME: n-1-p CR This abbreviation is sufficient.
DEVICE NAME: f-g-1 CR The abbreviation for floppy-disk-1,
. a standard name.
UNITNO: 0 CR This is the leftmost unit of the floppy

station. If there is more than one slot,
they are numbered 0,1,2... from the left.

There may be obstacles to this procedure, eg. the floppy station may already be
occupied.

@LIST-DIR CR shows if this diskette is entered: if it is not entered it can be
removed.

When the NSHS diskette s successfully entered
@LIST-FILES(n-1-0:f-uj,.,, CR disolays all files on the diskette.

It is possible to copy ail these files o the disk in one operation by means of the
backup-system { @backup CR}. However, copying one file at a time is described
here.

@COPY-FILE CR The SINTRAN command for copying
files.

DESTINATION

FILE:”screen-def-215851:boun’” CR The file name oetweem quotes because

the file is peing created: the name is
given in full,

SOURCE-FILE:(n-1-p:f-u)s-def:bp CR This name can be abbreviated provided

this does not oroduce ambiguity.

If no error message is given and @is displayed, proceed with the next file.

ND-60.088.03

54

When all relevant files are copied, the :BPUN-files are dumped following the
procedure described on the loading instruction sheet. The PLACE and DUMP
commands mentioned in Table 5.1 are used:

@PLACE-BIN scr-def:bpun CR
@DUMP “screen-def-21551,0,0 CR

Parameters can be given immediately after the command. Start and restart
addresses are 0 for both :BPUN-files in this case. :SYMB-files can be edited if

desired and compiled to produce the ‘BRF-version. This is described in the
relevant manuals.

ND-60.088.03

6.1

USER GUIDE SECTION

INTRODUCTION

Use of NSHS involves the following stages:

Creating the picture files (contiguous).

Creating pictures with the desired field control and eventually user control.
Writing application programs for different tasks, using the pictures.
Writing User Control programs if specified in anv picture.

Hw -

The practical procedure is slightly different for Fortran and Cobol programs; the
two are dealt with separately here.

Section §. outlines the complete procedure from picture to program, highlighting
problems. Supporting information is given in the appendices.

The application programs are written in parallel in Fortran and Cobol. User
Control must be written in Fortran.

The sections which follow give examoples of an application program and a User
Control program using speciai features. Details which may seem difficult for the
user, such as defining add/accumulation fields, defining equivalent fields and
combined controi, are exolained.

A guide to bit/byte mampuiation ang how to pack and unpack words, and a

number of technical details are aiso given in the foillowing sections. See for ex.
6.7.4.

ND-60.088.03

6.2

6.3

CREATING PICTURE FILES

If several users require access to NSHS software the picture files and application
files should be placed on user SYSTEM. The whole procedure is a job for the
system supervisor. User SYSTEM should not be used for developing software;
the job should be carried out in a public user area and the final tested package
copied to user SYSTEM.

A user named NSHS, with 1000 pages, is created for development work.

One source file named PIC-FILE:PIC and one obiject file named PIC-FILE:OBJ are
needed. For the purposes of this illustration they have 10 pages each.

When determining file size it heips to estimate the size of the pictures. Usually
the exact layout and final number of pictures will not be known in advance.
Picture volume depends mainly on the number of fields and amount of control
used and may vary greatly. The source picture takes about 25% more space than
the object picture. A rough estimate is 2 blocks of 266 words = 1/2K words. for
each picture.

The maximum number of pictures on a picture file is 49 and the space required
for the source file in this case would be 25 pages.

The commands used to create the picture files mentioned above are:
@CREATE-FILE pic-file:pic,10 CR

and

@ CREATE-FILE pic-file:oby, 10 CR

EXTENDING THE FILE SIZE

it is no problem o extend the file size if the original estimate was too smail. A
new file of the desired size is created and the old file copied to it. Two files
cannot have the same name; following the renaming procedure as shown below
and in Figure 6.1 it is possible to keep the old filename.

If the file is filled whilst a picture is being created, the picture can be saved by
the command RESCE-PICTURE.

The commands for extending the picture file are given below along witn
parameters and comments. Assume that the original source and object files,
PIC-FILE:PICT and PICT-FILE:OBJ, were created with 5 pages each and are being
extended to 10 pages.

ND-60.088.03

SPM*CLOSE-FILES CR

SPM* @ CREATE-FILE new-file:pict,10 CR

SPM* @ CREATE-FILE new-file:obj,10 CR
SPM*@COPY-FILE new-file:pict,pict-file:pict CR

SPM*®@COPY-FILE new-file:obj,pict-file:obj CR
SPM°RESCUE-PICTURE

SPM*DEL-PIC CR

SPM*DUMP-PICT CR

SPM*DESC-PICT CR

or

@DATA-ENTRY-EDITOR CR

@DEL-FILE pict -fil:pict CR

@DEL-FILE pict-file:obj CR

@RENAME-FILE new-file:pict,pict-file:pict CR

D RENAME-FILE new-file:oby,pict-file:obj CR

picture file

exhausted

create new copy old ‘files
R e
files to new fiies

;

Figure 6.1: The procedure of extending a picture file.

ND-60.088.03

check new elete old
files” files

Picture file exhausted during
picture creation. Close the
files.

The new files are created
with 10

pages each.

Instead of copying the
object file,

the source file can be
compiled

using SPM°comp-file in

Scr-Def.
Check that the pictures were
copied

correctly by using the
Scr-Def
commands, or using Data
Entry if
available.

The old names are kept for
the .
new files, the old ones must
be deleted or renamed.
Check the new files first!

The new extended files are
now

established with the correct
names.

.

rename

files

6.4

6.4.1

6—4

CREATING A PICTURE

The Relation between Storage Code, Fdit Code and Record
Format

When we start creating a picture, we are asked questions about storage and edit
code. These codes affect the record format, as explained in the following.

In NSHS there are 5 different storage types (1-5). They are integer,
double-integer, byte, Fortran 15 and BCD. We also distinguish between numeric
fields and character string fields. Whether or not a field is numeric, .also depends
on the Edit code. The codes 0-9 and A-J can only be used for numeric fields,
while K-S give string fields which may be numeric, alphabetic or alphanumeric.

THE STORAGE CODES INTEGER, DOUBLE INTEGER, FORTRAN 15 AND BCD

These codes can only be used for numeric fields. For these fields, the value
displayed on the screen directly reflects the contents of the data element.

STORAGE CODE BYTE (= 3)
The byte fields may be numeric or string type.

Numeric byte fieids have their value right justified in the data element, and the
leading bytes filled with the ASCIl value for spaces {40 oct). If the Cobol flag is
set (see ITERM(3), section 3.3.3 and 6.7.4.1), the leading 'blanks’ wiil be set to 0
(60 oct).

The Edit code plus the Fiil code determine how the field is displayed on the
screen, and the ‘numeric’ how it is stored in the data element. For numeric bytes
we distinguish between ‘blank’ and 'zero’ i=0). If the vaiue is zero, the ieast
significant digit (= no 0) is 0. The other bits wiil be J or blanks, depending on
the Cobol flag. If the field does not contain any defined value, all the bits are
blanks.

String byte fields are handled in a different way. The fieids that are left justified
on the screen, are also left justified in the data element [Edit codes K, L, M, N, O
and P}, and correspondingiy for the right justified fields {Edit codes Q, R and S
Unused positions are filled with the defined ‘pad’ character which is aiso inserted
in the data element.)

See also Appendix A.

ND-60.088.03

6.4.2

Example 1

Creating the picture PER-CX (fig. 1.1)

The examples have been chosen to demonstrate a reasonable number of typical
NSHS features rather than to reflect cases in real life. This example describes
the creation of PER-CX shown in Figure 1.1 in the introduction.

Sections 2.1 and 2.5.2 describe the first part of the procedure, but the commands
are repeated here for the sake of completeness. Commands and parameters in
Scr-Def must be in CAPITALS.

@SCR-DEF CR

SPM*® CRE-PIC CR

GIVE SOURCE PICTURE FILE NAME AND TYPE: P-F:P CR
NOT A PICTURE FILE. IFITISTO.BE SO TYPEY: Y CR

GIVE OBJECT PICTURE FILE NAME AND TYPE: P-F.0 CR
NOT A PICTURE FILE. IFITISTO BESO TYPEY: Y CR

Answer with abbreviated names for PIC-FILE:PIC and FIC-FILE:QBJ. The message
NOT A PICTURE FILE is given the first time the file is used.

if you have forgotten to create the files you must raturn to SINTRAN and do
that. Press the break key. See Section 6.2 Creating Picture Files.

The screen is now cleared; line numbers are displayed along the left border, dots
in columns 10, 20 etc. and :nformation appears on the bottom jine {24) about
number of lines (23) and number of characters per line {79). If the dots are
incorrectly distributed you probabiv gave a wrong terminai number.

To escape from the definition mode and return o Scr-Def oress control/F. This
means that the picture will not be saved. if you want to save it use control/W
and see Section 6.5.

The cursor is placed at the top left of the screen. Press CR 0 move down one
line. Start with underiining leading text ie. PER-CX, by pressing controi/U

followed by the text; terminate underlining with control/N.

Underlining steals one screen position. Any text below which is not undertined
must start in column 2 if it is to line up.

Space forward a few positions and type the text “for person register’”’ in jower
case letters.

ND-60.088.03

if you don't succeed in getting lower case letters on the terminal, check if any
CAPS switch ot key is set.(On Tandberg VDU 2115 the switch is at the top right
of the keyboard, en VDU 2218 the CAPS key is to the left.) :

in SINTRAN capital letters can be reset by the command

@TERM-MODE n,,,CR

To proceed, press CR twice and advance one space to start in column 2. Write
the text “"BDATE:”. This is the point where you define a datafield.

Press control/E. The cursor jumps to the bottom line and questions are asked
about storage, edit, fill and sign suppress codes, the number of significant
characters and control type. See Section 2.2.2 and the following sections.

Avoid typing errors. Take your time and carefuily watch the cursor position and
question or information displayed. In some cases the cursor jumps betwaen the
current fieild and bottom line.

If you make a mistake whilst editing a field, continue to terminate the field. Then
reposition the cursor and redefine the fieid.

When fieid definition is terminated, the fieid is filled with 9 if a numeric field, X if
alphanumeric, A if aiphabetic and with editing characters according to the code
used. The cursor is placed immediately after the field defined and you can
proceed to the next leading text or datafield.

After studying section 2.5.4, the questions for defining datafields should cause no
problems. Questions connected with fieid control may be more difficult,

especially those concerned with controi no. 6, 7 and 10.

Table 6.1 shows the parameters used for creation of PER-CX.

ND-60.088.03

6.4.3

Example 2

This example describes creation of the picture in Figure 6.2 called INV for
invoice. This picture has several datafields on the same line and this line is
repeated four times. On the last line TOTAL is added. Lower down the screen
there is some information about picture name and filename.

Several pictures may resembie one another or be identical except for defined
controls, so it is important to have some identifying text in the picture itself.

The first part of the procedure is the same as Example 1. Continue with
control/U, the leading text INVOICE and control/N. It is practical to plage field
headings after defining the datafields because you can see where to place them,
so reserve a few lines for headings and define the first datafield, which is a
numeric with 5 digits.

Parameters for this picture are given in table 6.2. Choice of parameters may be
governed by practicai considerations or sometimes simply by personal
preference. In this case the fieid NO is defined as a single integer. The maximum
value must be defined because an integer can hold a maximum of 32766. (This
would not be necessary if the fieid had been defined as a double integer.)

Hyphens (-} are not accepted in alphabetic fields.

When the first line of datafieids is defined it is copied to the next one by
pressing CR to come up to the beginning of the next line, followed by controi/R.
The whole line is copied including the parameter definitions. Repeat this process
until the line is repeated four times, then define the field for TOTAL separately.

Each record comprises 26 data fieids where the SUM fields are no. 5,10, 15, 20,
25 and the last fieid, TOTAL, is 26. The accumulation option is used, adding the
sum fields together and piacing the resuit in TOTAL. All fieids concerned with
accumulation must be defined with control = 6. {See Sections 2.5.5.6 to 2.5.5.8.)

ND-60.088.03

Table 6.1
Picture name: PER-CX

Codes Bdate
storage code

edit code

fill code

sign suppress code
no of sign. characters
control type

Lo N N e

Parameters for the control types are given below:

text on the screen

CONTROL TYPE

SYSTEM CONTROL NUMBER
(1-255)
DATE CHECK NUMBER (1-6)

CONTROL TYPE

NQO OF COMBINED CONTROLS
(from 2-40)

CONTROL TYPE

NO OF LEGAL VALUES

FIRST VALUE

TYPE ANY CHARACTER THEN
GIVE NEXT LEGAL VALUE

.OR./.AND.NEXT CONTROL
{1 OR 0)

CONTROL TYPE

USER CONTROL NUMBER
(1-155)

6—8

Bno

w

parameters

BDATE
8

(&)}

Parameters for picture PER-CX.

Person Person Sex Hourly Dept
name address pay
3 3 3 1 3
L M L 2 L
(0) (0) (0) 0 (0)
- - - 1 -
26 30 1 5 6
9 0 10 10 2
comments
datafield

system control, see 2.5.5

this corresponds to day, month,
year; see appendix D

date must be before today;

if a more specific check is
required, User Control must be
used in addition

datafield
controis 2 and 9 are used here

legal values to be defined

two values are legal

cursor jumps o the datafield to
receive the value; M for male is
given

M disappears and the fieid

* receives the new value F for

femaie
both controis, .AND.

User Control

the other two fields in the
picture, person name and
hourly pay, were given 1 and 2

ND-60.088.03

datafield

CONTROL TYPE

NO OF COMBINED CONTROLS
(FROM 2 TO 40)

CONTROL TYPE

LOWEST LEGAL VALUE

TYPE ANY CHARACTER THEN
GIVE HIGHEST LEGAL VALUE

datafieid
CONTROL TYPE

NO OF LEGAL VALUES

FIRST VALUE

TYPE ANY CHARACTER THEN
GIVE NEXT LEGAL VALUE

datafieid
CONTROL TYPE

DEFAULT VALUE

Hourly Pay
10

4
10.00

'sp’
250.00

sp’
ENG
‘sp’
FIN
'sp’
STO
'sp’
TRA

RESERVE

e

controls 4 and 9 will be used

legal range

the cursor is back in the field to
receive a value; 10 CR is
acceptable

the maximum value; the cursor
is positioned after the field.

The procedure now is as
described for SEX, except User
controi no = 2.

the procedure is like that for
SEX

abbreviation for accounting
engineering

financial

store

transport

it no

default value inserted

other value is given
the field s
alphanumeric

defined as

Picture design is now compieted. The picture must obe written o the picture file
to be stored. This is explained in Section 8.5.

To redefine a datafield or change a leading text, move the cursor to the correct
place on the screen using the arrow keys. Take care with CR: evervything on a
line behind the cursor is deleted when CR is pressed.

ND-60.088.03

Table 6.2 Parameters for picture INV

Picture name: INV

Codes No Text Amount Un-pr Sum Total

store code 1 3 2 2 2 2

edit code A M 2 2 2 2

fill code 0 - 0 0 0 0

sign suppress 1 - 0 1 0 0

sig. characters 5 13 6 7 8 9

control type 3 0 4 4 6 6

no of illegal values 1

iltlegal value 0

lowest legal value 1 1.00

highest legal value 32760 10000.00

accumulated field no

or 0 if none 26 0

no of fields to

be accumulated

or 0 if none 0 5

accumulated field 5

number 10
15
20
25

Parameters requested under the different control numbers are also given here.
How the picture is saved {stored} in the picture file is explained in the next
section.

ND-60.088.03

INVOICE

NO

99999 XXXXXXXXXXXXX 9.999,99- 99.999,99
99999 XXXXXXXXXXXXX 9.999,99- 99.999,99
99999 XXXXXXXXXXXXX 9.999,99- 99.999,99
99999 XXXXXXXXXXXXX 9.999,99- 99.999,99
99999 XAXXXXXXXXXXX 9.999,99- 99.999,99

TEXT

6—-11

AMOUNT

UN.PR SUM

picture name: INV %#»

999.999,99~
999.999,99-
999.999,99~
999.999,99-
969.999,99-

TOTAL

9.999.999,99~-

LINES, 79 CHARACTERS PER LINE, AND DISPLAY MODE 1

%% picture file: PIC~FILE
no user control
PICTURE HAS 23
FIELD®*LINE®*COL.* ST.CO#FILL%
1 6 % 2 % INT # *
2 65 ®* 3 » BYTE # *
3 * 5 B D20 ® D TINT® ®
4 ® 5 % 32 & D, INT® #
5 * 5 ® 4L % D INTH *
6 *7 ® 2 % INT *# »
7 * 7 * 3 % BYTE # »
8 * 7 * 22 % D,_INTH #
9 * 7 ® 32 % D _INTH* #
10 * 7 % L4 % D INTH #
11 *3 # 2 % TNT # *
12 38 # 3 #% 3yTRH @ *
13 * 3 #* 20 %) INTH *
14 * 3 #* 32 2 5 TNTH *
15 * 3 * Ly % p TNTH *
16 £ 9 * 2% TNT ¥ *
17 g #* 3 % 3vTp *
18 * g # 20 % D INTH *
19 * 9 * 32 % D INTH *
20 * g * 44 ® n TNT® *
21 *10 * 2 ® TNT # *
22 %10 ®* 8 % pyTRE # #
23 10 * 22 % o INT® 2
24 #10 * 32 # D _INTH #
25 #10 % 44 * D INT® *
26 #10 * 58 % D, INTH *

EDIT CODE

DIGIT - R.ADJUST®
STRING - ALPNUM-L*®*

DEC.PNT=-,2 *
DEC.PNT-,2 *
DEC.PNT-,2 *

DIGIT - R.ADJUST®
STRING - ALPNUM-L*

DEC.PNT-,2 »
DEC.PNT-,2 *
DEC.PNT-,2 *

DIGIT - R.ADJUST®
STRING - ALPNUM-L*®*

DEC.PNT-,2 *
DEC.PNT=,2 *
DEC.PNT-,2 *

DIGIT - R.ADJUST*
STRING - ALPNUM-L*

DEC.PNT-,2 *
DEC.PNT-,2 *
DEC.PNT=,2 %

DIGIT - R.ADJUST*
STRING - ALPNUM-L*

DEC.PNT-,2 #
DEC.PNT-,2 *
DEC.PNT-,2 *
DEC.PNT-,2 *

Figure 6—2a: Picture description for INV.

ND-60.088.03

wi

n W

LI N I R AR R B I I I I B I B I B B B R I R

=
SNOW U010 WMo~ OOWUITO~ oW Uy o3 awu

€O w

* ok Xk kK ok o ok ok ok H ok ok W W % Ak W o N M kW Kk

*SIGN*NUMB#*CONTROL

FEFOEWO FORFWO ENMNEWO &E0 FWO &=

= O

Oy M

FIELD #*

WA W M o K M W R W M ok M o ol R W N e

6—-12

CONTROL INFORMATION:

LEGAL RANGE
ILLEGAL VALUE
LEGAL RANGE
ACCUMULATING
LEGAL RANGE
ILLEGAL VALUE
LEGAL RANGE
ACCUMULATING
LEGAL RANGE
ILLEGAL VALUE
LEGAL RANGE
ACCUMULATING
LEGAL RANGE
ILLEGAL VALUE
LEGAL RANGE
ACCUMULATING
LEGAL RANGE
ILLEGAL VALUE
LEGAL RANGE
ACCUMULATING
ACCUMULATING

RANGE:
VALUE:
RANGE:
:ACCUMULATED IN

SAME
SAME
SAME
SAME
SAME
SAME
SAME
SAME
SAME
SAME
SAME
SAME
SAME
SAME
SAME
SAME

Figure 6—25: Picture description for INV jcont. .

ND-60.088.03

AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
A3

1<32760
0,00

1,00<10.000,00

FIELD NO: 26
FIELD NUMBER:
FIELD NUMBER:
FIELD NUMBER:
FIELD NUMBER:
FIELD NUMBER:
FIELD NUMBER:
FIELD NUMBER:
FIELD NUMBER:
FIELD NUMBER:
FIELD NUMBER:
FIELD NUMBER:
FIELD NUMBER:
FIELD NUMBER:
FIELD NUMBER:
FIELD NUMBER:
FIELD NUMBER:

ACCUMULATES:
ACCUMULATED:
ACCUMULATED:
ACCUMULATED:
ACCUMULATED:
ACGUMULATED:

1
3
y

]

5
1
3
4
5
1
3
b
5
1
3
4
5
5

5
10
15
20
25

FIELDS.

6.5

6.6

TERMINATING A PICTURE

If you are satisfied with the picture and want to store it on the picture file, in this
case PIC-FILE, press control/W.

You are then asked the following questions (the operator’s input is in italion)

PICTURE NAME: PER -CX cr

SOURCE PICTURE PER-CX STORED
SOURCE PICTURE LENGTH 425 WORDS
LIST FILE: cr

OBJECT PICTURE PER-CX STORED
OBJECT PICTURE LENGTH 330 WORDS

This is the normai output when the compilation is successful. If the compiler
detects an error, the message CBJECT PICTURE.. .NOT STORED appears on the
screen. In this case LIST FILE should be L-P (line-printer) or the standard name
of some device giving a hard copy for the error report.

If you do not want to store the picture, press controi/F to return to Scr-Def.

MODIFYING A PICTURE

it may De necessary 10 change layout following some change to the source
document, or to change leading text or redefine a field in the picture. Any
change affecting leading text: or record layout changes has no further
consequences. Changes to datafields affect the corresponding record files and
application programs using that oicture may have to be revised. The NSHS
supervisor must have full control of pictures and application ‘programs.
Modifications shouid be carried out before being implemented on user SYSTEM.

Figure 6.3 shows the procedure for oicture modification. Enter Scr-Def and give
the command

SPM®* MODIFY-PICTURE

Questions are asked about source and object picture file, inciuding type.
Abbreviations can be used.

ND-60.088.03

614

You are then asked about picture name which cannot be abbreviated: the
maximum number of characters for the name is 8.

If an error is detected, a message appears on the screen. The error may resuit
from a typing mistake or reveal something more serious. Eg.:

File not continuous A continuous file is required for picture files.
This error occurs when files are copied from
diskette to disk without creating the receiving
file in advance. See Sections 1.2 and 6.2.

No such filename Probably due to misspelling. Check the
filename by @ LIST-FILE.
No source picture called.... Probably due to misspeliing. Remember

picture names must not be abbreviated. This
error may occur when no datafieids are
defined in the picture. Use SPM* DEL-PIC to
list existing pictures on the file.

No object picture called.... An error was detected during compilation and
the picture was never stored in object form;
or the picture has been deieted from the
object file. Use SPM* DEL-PIC to check.

When the file and picture names are accepted, the picture is displayed with the
cursor at the top left of the screen. Use the arrow keys to move the cursor and
take care with CR because everything behind the cursor will be erased.

When modifying a picture, the same editing functions are used as when creating
a picture. When modification is compiete, press control/W. You are asked “'ls
destination to be different from source?’ [Y for Yes). If the modified picture is to
keep the same name, answer N and the rest of the procedure takes place
automaticatly. Press CR for LIST-FILE to get a report on the screen: normaily this
is only a few words. !f the picture nas many “elds or there are severai errors,
repeat the sequence and give L-P or another device ‘o give a hard copy to study.

ft is often convenient to create a new picture {with a new name) by modifying a
similar old picture. Eg. PER-C and PER-CX were created using PER and
redefining the fields which differ by User Control.

An element of security is built into the modification aorocedure. E£g. if a new
picture is desired, it is not accepted if the name already 2xists. Similarly if vou

intend to use an oid picture, an error message s given if that picture is not
found.

ND-60.088.03

if file name is known already

this juinp is execuied

6-15

@ SCR-DEF
-—
SPM ¥ MOD-PIC
1
- —] = ——— - —— ————
T l
GIVE SOURCE PICTURE | ,
FILE NAME AND TYPE: 1 Pogp F
! — - Error messages i
GIVE OBJECT PICTURE | » see the text |
FILE NAME AND TYPE: | P-FO
T ———
z : P !
GIVE PICTURE NAME: [PER | e o | Srror messages |
| i see the text |
;l‘ ““““““““““ -
|
medifications i
PICTURE | g ! carried out, }
CTRL/W 1
l
I
- N IS DESTINATION TO BE |
DIFFERENT FROM SQURCE !
1
v (Y FOR YES)? : |
t !
|
/ !
| NEWPICTURE| N —gwGiVE PICTURS | | NO SOURCE PICTURE
’ ; NAME: | PER—C lwj CALLED PER-C. TYPE

Y

FORYES)? + v 1
{ ;o

| A CHAR 7O CONTINUE }

must not be Y
!

an old picture

B T e —

;

— ot —

n

PICTURE ALREADY |

m————

STYPE ANY CHAR

P

OBJECT PICTURE
STORED, L =

GIVE NEW | o
PICTURE NAMEL: PER-CX(™ T|EXIST
- T -

SOURCE PICTURE............
STORED, L = oo,
LIST FILE :

!

READY

(flashing)

CR can be used instead of

N for ail questions.

Figure 6—3: Flow Diagram for the Command SPM* MOD-PIC
ND-60.088.03

@d—e—e
TERMTYPE| 3
g-7
st
& append
'CR’ meaning | s Y10S ERROR
WORK FiLE seratcn file) i 1618
Der wor i ;
j |
! |
H i
i H
i i
PICTURE 2 !
]
n |
! REALLY ?
M
‘ {'CR" = no | PICTURE | pic—tile : pic
APPLICATION | amplication) [T % FILE |
It oo — ;
name : appl }
| PICTURE | PER
i NAME |

PICTURE ;

Figure 6—4: Calling a picture in Data Entry

ND-60.088.03

6.7

6.7.1.

APPLICATION PROGRAMMING

Introduction

Application programs are generally used to handle data entered by and displayed
on terminals (VDUs).

The basic element is the picture which must exist on a picture file. The creation
of pictures is described in sections 2.5 and 6.4.

Application programs using NSHS contain several subroutine calls with para-
meters. The programming language may be Fortran or Cobol or any language
that can call a Fortran subroutine. These subroutines are found in the NSHS Ii-
brary.

In the heading of the program it is aiso necessary to define Common areas and
data arrays containing spectal data values.

In Cobol programs this is accomplished by socalled Data blocks, which are
loaded together with the main program. This is explained under the Coboi
program examples.

fn ND’'s Cobol, octal numbers are not accepted, and must be converted and
represented on decimal form.

ND-60.088.03

6.7.2.

ITERM IPRIV and IPUBL

As. mentioned, special data areas must be defined in the program heading. For
convenience, following ‘standard’ names are used.

The commaon lay-out is:

COMMON/PRIVATE/ITERM(128), IPRIV(1920)
COMMON/PUBLIC/IPUBL (6)

OATA ITERM/1,5, 78,3, 200008,0,0,0,0, 1920, 118°0/
DATA IPRIV/Q, 1920,8,0,0,1915%0/

The figure in the () is the number of words allocated for the arrays in this
example. For the sake of space economy, the surn should be an integer number
of Sintran pages. Here 128+ 1920 = 2048 words equal 2 pages.

If only Privat pictures are used, the min value of IPUBL shouid be 6 (as used
here}. A rough estimate for IPRIV = sum of object pictures used + 100. This
number + 128 for ITERM is rounded up to make an integer number of Sintran
pages, as mentioned above.

If only Public pictures are used, the min value of IPRIV should be 30. The same
rule applies to |PUBL as used for IPRIV above.

The data values for ITERM and IPRIV above are determined partly by system and
external devices, partly by the programmer’s preference.

ND-60.088.03

The data fields are described in section 3.3—3.4 but are repeated here for
convenience:

DATA ITERM
ITERM (1) Logical device no.

{ 2) Terminal type./Picture Displacement
{ 3) Cobol Flag/Defined escape character.
{ 4) Read strategy.
{ B) Pad char/Program mode.
{ 8) Cursor positiéon.
{ 7) Error code.
{ 8} Break/Echo strategy.
{ 9) Status/Option word.

(10} Length of IPRIV.

DATA PRIV
IPRIV. {1} Fixed vaiuve = 0.
(2} Length of IPRIV {= ITERM(10)).

{3} Max number of picture descriptions
{max =8).

{4} Picture number actuailv in use.
Initially = 0.

{8) Reserved. initiation vaiue = 0.

The rest of the arrays not holding any initial value is used as buifer area by
NSHS, and must be set to 0. Numbers followed by ‘B’ are interpreted as octal
numbers. A few of the data are described more in detaii in section 6.4,

ND-60.088.03

6.7.3.

6—20

Basic Calls

All application programs using NSHS must start with the important calls GTPIC
(Get picture) and GTFDN (Get field numbers). The first call introduces the names

of the pictures to be used and is usually carried out only once during program
execution.

The second call transforms information about the fields in the picture to an
accessible form and is repeated for each picture to be used. See fig. 6-12.

The ‘heart’ of NSHS is the call RFLDS (Read fields) which is used for entering
new data, verifying old data, checking old records on data files etc. Apart from
these basic calls are several cails for different purposes.

See the list of available calls, section 3.6.2.

The calls comprise a list of parameters. The first ones are input parameters, the
others (in italian typing) receive the result of the call. An important point here is
that the programmer does not have to give vaiues to all input parameters. The
NSHS system itself will pick the necessary information, if available, and set
values for the input parameters.

In the following, the calls for GTPIC, GTFDN and RFLDS with parameters are
shown. The transport of information from one call to another is indicated by
arrows. The abbreviated Fortran ‘standard’ names. have been used. The full na-
mes of the data fields are found in the table section 3.6.3.15.

CALL GTPIC{PFNS,NOP,PNAS, PNA IST) one call for all pictures!

f

CALL GTFDN(PNA L NFILFIA(1), FNA NOF.IST) one call for each picture.

\

CALL RFLDS(IRCOD,PNA(J),NOF,FNA, REC, DEIA,NOFR.ITERM.IST}

For example, the picture-number-array PNA which is a receiving field in the first
call, gives input to the next cail. The value of J is set in the program, and often
IPN is used instead: |PN=PNA(J).

When an application program is planned, it is wise to make a flow- chart for the
program steps and an extract of the calls as demonstrated for program YSFPER
section 6.7.5.2 and fig.6-13.

it is important to notice here that output parameters from one call is used as
default input parameters to the next one. But at the same time the programmer
has full control and may change the parameter values if required. Thus the num-
ber of fields NOF, which is initally 0, is obtained from the call GTFDN counting
the number of fields in the picture. This number is later taken as input to the call
RFLDS, if something else is not required. See the calls in the text above.

ND-60.088.03

6.7.4.

6.7.4.1.

621

Bit and Byte Manipulation

One computer word consists of 2 bytes a 8 bits. Each bit can hold the value 0 or
1. In some cases the value of a word is built up by independant byte values. in
Fortran it is also possible to work with commands on bits and bytes, and this
technique is frequently applied in the User control grograms. In the following
both cases are demonstrated.

Cobol Flag/Escape Character = ITERM(3)

See section 3.3.3. In this case the left byte is used for the Cobol flag, the right
for the Escape character vaiue.

Cobol flag: By setting bit no 15 to 1, the Cobol flag is set, and the
processing will follow the special rules for Cobol programs.

Escape char: The bits no O, 1 and 2 of the right byte are used for the
Escape character. Any character the keyboard can be used,
but Control/G is frequently used because it is standard in the
Data Entry system. The control key means subtracting 1008
from the ASCII key value. {Octal numbers)

Example 1. Fortran program: bit no 15 = Q.
fig.6-5 Escape char: Control/G
G = 1078 {ASC!l octal value)
Controf = -i008B
Contr/G = 78 = 111 bipary

The oinary values are shown in fig. 5—5.
The value of the word ITERM(3) = 78.

Example 2. Cobol program: bit no 15 = 1.
fig.6-6 Escape char: Control/ @
@ = 100B {ASCIl octal value)
Control = -100B
Contr/@ = (00B

_ The binary values are shown in fig. 6—8.
The value of ITERM(3} = 1000008B.

ND-60.088.03

6-22

%L"'bst sign.bit
I 1 word = 2 bytes

. |

IR R

S

*
0= not Cobol proa Esc character
1=

Cobol program

00000000

- .

000 O_O 111 binary value

R e T I T P e gl

0 Q 0 0 C 7 octal value

Figure 6—5: Example 1 for ITERM(3)

..1L0000000
000000C00 binary value

R e e W — B e

1 0 0 0 Q 0

octal value

Figure 6—6: Example 2 for ITERM(3)

ND-60.088.03

6.7.4.2. Pad Character/Program Mode = ITERM(5)
See section 3.3.5. The left byte is used for Pad character, the right byte for
Program mode.

Pad character: Any character will do. In most cases 'SP’ or 0 is used.

Program mode: If Private picture: Progr mode = 0.
If Public picture : Progr mode = 1.

Example 3. Pad character: 'SP = 40B (ASCH octal value)
fig.6-7 = 100 000 binary
Program mode: Private picture
BitnoQ = 0.

The binary representation is shown in fig. 6—7.
The value of ITERM(5) = 200008B.

Example 4. Pad character: 0 = 60B (ASCII octal value)
fig.6-8 = 110 000 binary
Program mode: Public picture
Bitno 0 = 1.

The oinary representation is shown in fig 6-8.
The value of ITERMI(5} = 30001B.

* Pad character *
* ASCIT-value * Drogr Tede *
. «.001000009
32000QC0Q0 0 binary value
e st T st gt ottt st g remmp? it

T
{
i
{
i

0 2 8 0 0 2 octal value

Figure 6—7. Example 3 far ITERM(5)

..00110000
00 080001} 2inary values

0 3 0 0 0 1 octal value

Figure 6—8: Example 4 for ITERM(5)

ND-60.088.03

6.7.4.3.

Extracting Bytes from Words

Words are built up by bits where each bit has a special meaning. It is also so-
metimes necessary to ‘expiode’ a word to find the value of a bit or a byte.

The values wanted can easily be found by using the operator .AND. in a Fortran
statement together with a3 number N consisting of 0 in the vaste positions, 1 in
the positions to be extracted.

Example 5: In NSHS the position of the cursor on the screen is found in
the word ITERM(B). The row no is put in the left byte, the co- -
lumn no in the right byte. For a special position of the cursor
we want to extract the row and column.

ITERM(6) = ISHFT(23,8) + 13 = 13415B where 23 (27B) is the row no,
13 (15B} the column number.

ISHFT (N.8) means that the number N is moved 8 pos. to the left: thus being pia-
ced in the left byte of the word.

By setting the bits of the left byte to 0, and the bits of the right to 1, which me-
ans the value 377B, and using this with .AND., the column no is extracted. See
fig. 6-9.The compiete statements are:

IP = ITERM(6)
ICOL=IP.AND.377B ;
IROW = ISHFT(IP,-8)

00010111 278
00001 1t 0 158
6 00090 00O0O0 0
[S A H R 3778

0 00 0O0O0OTO
0000 1t 1 0 1 - 15B

Figure 6—9,10: Extracting row and column number from curser position 134158.
The technique of handling bits and bytes in programs is frequently used in

writing the User control programs. For further information see the Fortran
manuals.

ND-80.088.03

6.7.5.

6.7.5.1

6-25

Program Examples

In the following, examples are given on simple background programs using
PRIVAT pictures. This will do in most cases. RT programs, and programs using
PUBLIC pictures will not be considered here. The programs are made as simple
as possible to show the NSHS features and are given both in Fortran and Cobol.

Some information is given throughout the programs by comment lines.
Additional information is given in the text.

All programs have been tested running on the computer ND-100.

Data Discipline in Using NSHS

When NSHS is used in programming, perhaps in connection with data bases, a
lot of data elements {like files,programs and pictures) are involved. To avoid
confusion, it is then necessary to practice a good ‘data discipline”.

Because the picture is the basic element in NSHS, it is wise to refer all names of
files and programs to the picture name. The picture name should in turn as good
as possible refiect the function of the picture.

It is also recommended 10 use the standard names for functions and parameters.
See section 3.6.3.15. !t will then be much more easy to maintain programs, avoid
errors, and for ND to give assistance if problems occur.

For example, if the picture PER ifor PERson register) is used, the program is
called SFPER:SYMB where SF nere means Screen-Fortran. !f no ambiguity is
possible, the prefix letters are skipped. If the picture PER is used for several
programs, they must oe distinguished by an additional ietter. L for loading, R for
reading etc.

The output file, the person register file, should simpiy be cailed PER:DATA,

independant of program language or purpose of orocessing. See the example in
fig. 6-11. '

ND-60.088.03

6.7.5.2

626

picture

PICTURE FILE
PIC—-FILE. OBJ PER PER-C PER-CX

PROGRAM _ OQUTPUT TO FILE
YSFPER ™ termina PER.DATA >

‘T

DATA INPUT
from
terminai

Figure 6—11: Interaction between inout, picture, program and output

Program Example 1: YSFPER/ (F)

This is a Fortran program for entering person data to the file PER:DATA by
means of the picture PER residing on the picture file PIC-FILE:OBJ.

There are altogether three pictures named 'PER’ on the picture file, PER, PER-C,
PER-CX. These pictures are identical except for the User control. Picture PER has
1o user control, while PER-C and PER-CX have control on different combinations
of fields. The standard controis defined ‘for each field under NSHS are identical
for the three pictures.

The picture description for PER is shown in table 5—3.

The description consists of three parts: First the picture as it appears on the
screen, then information about the fields in sequential order where the control
numbers are found far to the right. From this it can be seen that no User control
has been defined {=9), but the field BDATE has got a system check {=28). Finally
some more information is given as to the field controi. For exampie, the field
SEX has two legal values: M (male) or F (female). See section 2.5.4 to check the
information in the picture description.

N

It is evident that all available system controls should be used before any user
control is applied.

The data are placed on the file PER:DATA. It may be created in advance, or du-
ring runtime by the Opening procedure in the program.’

ND-60.088.03

627

DESCRIPTION OF THE PROGRAM

The principle steps of the program are shown in fig.6—13. The terminal type is
set in the program equal to 3 corresponding to Tandberg terminals. It might have
been given interactively in the same way as for the PICTURE FILE NAME and
TYPE and the PICTURE NAME STRING as shown in the source program below.

. The numbers in the flow-chart correspond to the labels in the source program.
The program is like any other FORTRAN program except for the calls to NSHS,
referring to the screen-handling library,called SCREEN-L|B.

The simple task of this program is to receive datz entered to the terminal,
transmit them to a disk fiie in the form of records, and write selected data from
the record to the line-printer. The disc- file is opened with the WA-option
(write-append); the new records will then be added to those aiready on the file.

PER for person register

BDATE : 99.99.99
3NO T 99999

PERSON NAME: ARARAAAAAAAAAAAAAAAAAAAAAA
PERSON ADDR: XXXXXXXXXXXXXXXAXXXAXAXXXXXXXX
SEX A

HQURS " PAY: 999,99

DEPARTMENT: AAAAAA

RESERVED: XXXXXXXXXXXX

488 Dicture file PIC-FILE tee

$#4% No user control res

PICTURE HAS 23 LINES, 79 CHARACTERS PSR LINE, AND DISPLAY MODE 1

FIELD * LINE ® COL. * ST.CO # 7ILL ¢ IDIT CODE * SIGN * NUMB * CONTR
1 ¢ 4 ¢ 11 zyTE ¢ * DIGIT - CLOCK * * o ¢ 8
2 hd S ¢ 11 & 3YTE @ * STRING - NUM.-LEFT # . 5 ¢ Q
3 * T ¢ 16 # ByTE # # STRING - ALPHA.-L . s 26 @ a
4 ¢ g * 16 * 3YTE # * STRING - ALPNUM-L hd * 30 "¢ g
B $ 11 ¢ 15 & 3yTE ® * STRING - ALPHA.-L @ * 1 e 2
) 12 ¢ 1€ 3 IjyT 8 * DEC.PNT-,2 ' . s ¢ 4
7 $ 13 ¢ 15 & 3BYTE ¢ * STRING - ALPHA.-L . * 5 ¢ 2
8 * 1S % 13 & BYTE # * STRING =~ ALPNUM-L . * 12 ¢ i

FIELD # CONTROL INFORMATION:

1 SYST. DEFINED DATE(D,M,Y) LT
5 & LEGAL VALUE YALUE:
P
H
5 ¢ LEGAL RANGE RANGE: 10,00<250,00
7 LEGAL VALUE VALUE:
acc
ENG
FIN
$T0
' TRA
8 ¢ DEFAULT VALUE: wes

Table 6-3: Picture description for PER

ND-60.088.03

6-—-28

The five first NSHS calls are almost standard in all NSHS programs. Here all data
tables necessary to handle data on the screen are set up. If several pictures are
used from a program, ail the picture names should be given continously in the
PICTURE NAME STRING, where each name shouid occupy 8 positions.

For example, if the names PER, ORDER, INVOICE are used, the picture name
string should be:

PER.....ORDER...INVOICE.

where each dot here represents one space. In the picture number array, PNA(1)
will be PER, PNA(2) is ORDER etc.

Usually it is possible to pass a field on the screen without giving any data, i.e
just giving 'CR’. The data fieid wiil then be 2 blank or 0 depending on the data
type. However, a ‘'must’ directiv may be given to prevent skippingof data. This is
accomplished by means of the call ZMUST. Here ‘must’ is described for the na-
me fields, no 3 and 4. It is of course not necessary to prescribe ‘must’ on fields
where only certain legal values are accepted. For ex. the field SEX will only ac-
cept either ‘M’ or 'F’.

"Clear fields’ is used to ctear the fields on the screen for old input, which is the
normal procedure. Of course the /eading text is not affected.

Data entered to the terminal will be placed in theArecord buffer, which is the REC
parameter in the calls. And the data in REC will remain unchanged as long as
they are not cleared or overwritten by new data. This also means that if fields are
passed without giving any input, the old data remain intact, and can be used to-
gether with the new input for the new record.

This feature can be utilised when the same data appear in the same field in
several consecutive records, as demonstrated in program ZSFPER.

Usually however, old values are cleared.

We then have the call RREAD {corresponding 1o ZREAD). See section 3.6.4.12. It
is used because of the ZMUST cail. See aiso fig 8-12. Each field in the picture is
identified by a 16 bits word, where the bits 13. 14 and 15 are reserved for
‘MUST’, "LOCK’ and 'READ’. In this program the fieids 3 and 4 are set 'musted’.
Let us see how this works:

ND-60.088.03

Programmer
initiates

Field Indicator Array

6—-29

1
26 P
i
|

31

£ 73 32 39

—
]
;
i
!
i
|
i

FIELD INDICATCOR ARRAY

1

v

L

i

e et

- ——

aT-0ON

| subroutine

fields start
in this pos!

no of fields = 6

bit no

{ :
I i’ 2 : 3 4 5 5
» |
FIELD NUMBER ARRAY

5 |
‘Y 15 14 13 12 1 word = 16 bits 8 7 OY’
{ 7 i T]
! i ! ! _ ;
PR L v SYSTEM FIELD iDENTIFIER |
| ? . i line ro for this fieid ; |
| | j

i

1

i

1

t
!

i
i
!

FIELD NUMBER

Must-Reaa 3it

b Lock-8it

Read-8it

start no of this

field's entry in
field pos tabie.

© = Mandatory leaq
3 = Not Mandatory

1]

~ielg Locked
J = Not Lockea

4
'

i

Fieid Has Seen Read
Q = Fieid Has Not 3een Seaq

Figure 6—12: GTFDN subroutine transforms absoiute screen positions to fieid
numbers.

ND-60.088.03

When we enter a value to a field, the Read-bit is set = 1. When a field is pas-
sed without giving any value, the Read-bit is set to 0. At the beginning, ail bits
are 0. Because of ZMUST on fields 3 and 4, the Read-bits are checked for these
fields, and it will not be possibie to proceed without giving values to the fields.

However, next time (next record) the Read-bits are set, and it is now possible to
skip fields 3 and 4 in spite of the ‘'must’ requirement. The read-bit is reset , and
for the next record we have to enter data again. The procedure is repeated, me-
aning that it is possible to skip the fields 3 and 4 in every second record! We the-
refore have to rernove the Readbits pertaining to the previous record, and this is
for convenience done here for ail the fields, not only for fieids 3 and 4.

The Read-fieids call is the ‘heart’ of the NSHS system. When new data are read
into the system, the parameter IRCODE=0. The Read- fieids call may however
be used for several other purposes, and the Reader is invited to exercise the ot-
he_r 4 features described in section 3.6.4.3.

ND-60:088.03

631

PROG-NAME
10 screen

)

Set TEAM~TYPE
= |TERM (2)

20 |

Read PICTURE FILE NAME

and TYPE from terminal

0
Read PICTURE

NAME STRING
fram terminai

JPEN L-P
Nrite neading
‘o listing :
| 2PEN
_‘—""‘"f Disk—-File
| PERDATA
35 h 50 50
CLEAR-SCREEN GET-PICTURE IPN = PNA (1) GET FIELD Write picture
{CLSCR) o IGTPIC) = NFIND = 1 — NUMBERS to display
FlA (1) =Q (GTFDN) (WRPTD)
40 g f
IRCOD =0
NOMUST = 2
NSTART = 3
35 z
; IREAD L CLEAR-BUFSER| | CLZAR-FIELDS | ZMUST
: et ey jomemnd .
i ‘ail fiewds) . record} i CFLDS) ;’ i {fields 3, 4)
70
| READ—FIELDS
; data from .
terminaf ‘
75 78 ’
Nrite new Cod Add new .
Stop read recordsto | recordsto L
Line—Printer | | Jisc~file
i i
Y } 30
Write term.
message 10
terminai

Figure 6—13: Flow-chart for program YSFPER

ND-60.088.03

6-32

The registration of data can be terminated by giving the terminating function
defined in ITERM(3) from the key-board. Frequently CTRL/G is used giving the
value 7. The terminating character ITERM will then become -1 and is used for
checking in the program. Read-fields treats every field twice, both before and
after data are read. This is demonstrated in the User control (see section 6.7.6)

The termination of reading data is preferably done by giving the terrninating
function when the cursor is in the first field of the picture. It is possible to 'bre-

ak’ in any field, but the contents of the record aiready read-in, will then be lost.

THE SOURCE PROGRAM YSFPER

The program is in certain respects abbreviated. See following section on -

‘Checking status and error reports’.

The source program YSFPER. See comments in the text.

The source program YSFPER. See comments in the text.

NORD 10/100 FORTRAN COMPILER FTN-2090H
14 PROGRAM YSFPER

2% ¢ FOR DATA INPUT TO PERSON-RECORDS USING PICTURE
3* ¢ PER : NO USER CONTROL.
4x ¢ PER-C :USER CONTROL ON FIELDS PERSNAME AND HSALARY.
g* c PER-CX: .. un .. SEX AND HSALARY.
*
T* C ZMUST IS DEFINED FOR FIELDS PERSNAME AND PERSADDR
8% ¢ (FIELDS 3 AND 4).
9% ¢ PICTURE FILZ: PIC-FILZ:0BJ
10%
11# COMMON/PRIVATE/ITERM(128),IPRIV(1920)
12% COMMON/PUBLIC/IPUBL(6)
13# INTEGER PNA(15),FIA(50),7NA(50)
14 INTEGER REC(50),DEIA(50),FILNO
15% CHARACTER PFNS#*16,PNAS*16,0UTFIL*16
16% CHARACTER STR1#11,STR2#57,STR3%18
17% CHARACTER BDATE®6,BNO#5,PERSNAME*26, PERSADDR*30
184 - ,SEX*1,DEPARTM#6 ,PRES*12
19% EQUIVALENCE(REC(1),STR1), (REC{7),3TR2), (REC(36),ISAL)
20% - » (REC(37),STR3) '
21% EQUIVALENCE(REC(1),B3DATE), (REC(4),BNO), (REC(7), PERSNAME)
20% - s (REG(20) ,PERSADDR), (REC(37),DEPARTM)
23
2u# DATA ITERM/1,5,78,3,200008,0,0,3,0,1920,118%0,
25% DATA IPRIV/0,1920,8,0,0,1915%0,
26% DATA FILNO/99/,0UTFIL/'PER:DATA'/
27%
284
29% WRITE(1,#%)'PROGRAM YSFPER FOR INPUT TO PERSON REGISTER'
30%

' ND-60.088.03

31% ¢ #%*% TANDBERG TERMINAL IS ASSUMED HERE ##¥

32% ITERM(2)=3

33*

34* C #%* PICTURE FILE AND PICTURE ARE GIVEN FROM TERMINAL ##%
35% WRITE(1,20)

36*% 20 FORMAT(/,'$GIVE PICTURE FILE NAME AND TYPE: ')
37* READ(1,*)PFNS

38% WRITE(1,30)

39% 30 FORMAT(/,'$GIVE PICTURE NAME: ')

4o* READ(1, *)PNAS

LAk

ug* ¢ ##* OPEN LINE-PRINTER AND OUTPUT FILE FOR PRINT ###
43 OPEN(5,FILE='L~P',STATUS='0OLD' ,ACCESS='W")

Lu» WRITE(5,*)' PERSON REGISTER - NEW RECORDS'

45* OPEN(FILNO,FILE=OUTFIL,STATUS="'UNKNOWN'

Le* - ,ACCESS="'WA' ,RECL=45)

U=

ug* ¢ #%% START BY CLEARING THE SCREEN! ###

49% 35 CALL CL3CR(0,41,23,1,IST)

50%

51* C #2** THE TWO FIRST 'IMPORTANT' CALLS:

52% C GTPIC AND GTFDN %##%

53* 40 CALL GTPIC(PFNS,1,PNAS,PNA,IST)

Sua

55% J=1

So#* IPN=PNA(J)

57% NFIND=1

58% FIA(1)=0

59* 50 CALL GTFDN(IPN,NFIND,FIA(1),7NA,NOF,IST)

60% '

51% ¢ ##%* WRITE THE PICTURE TO THE SCREEN! *##%

62* 60 CALL WRPTD(IPN,IST)

63*

64* ¢ ##% TWO FIZLDS ARE SET 'MUSTED'! ##%

o5%* IRCOD=C

66# NCMUST=2

67* NSTART=3

638% CALL ZMUST(IPN,NCMUST,NSTART,FNA,IST)

69*

70* C *** FIELDS ARE CLEARED BEFCRE ENTERING NEW DATA #%%
7T1%* 85 CALL CFLDS(IPN,NCF,FNA,IST)

T72%

T3*% C *#% THE RECORD BUFFER IS CLEARED BETWEEN INPUTS ###
Tu® CALL CLBUF(IPN,NOF,FNA,REC,DEIA,IST)

T75%

T76* C #%%* THE READ-BITS ARE REMOVED FOR ALL FIELDS #*##
TT* CALL RREAD(IPN,NOF,ISTART,FNA4,IST)

T8%

79* C #*% THE CALL FOR ENTERING DATA BY THE TERMINAL #**#
80* 70 CALL RFLDS(IRCOD,IPN,NOF,FNA,REC

81% - ,DEIA,NOFR,ITERCHA,IST)

8o%.

83* ¢ ##% CTRL/G AT TERMINAL MEANS ITERCHA=-11 #%#%

8ux IF(ITERCHA.EQ.~1)GO TO 80

85#

ND-60.C88.03

86#
g7*
38
8g#*
90%
91%
g2%
93*
gux
95*
96*
97*
Q8%

P

75

76

80

%#%%# WRITE SELECTED FIELDS TO LINE-PRINTER ###
WRITE(5,75)BDATE,BNO, PERSNAME,PERSADDR,DEPARTM
FORMAT(1H ,A6,X,A5,2X,A26,X,A30,X,4A6)
SAL=ISAL/100

#%% YRITE STRING FIELDS TO DISK FILE ##%
WRITE(FILNO,76)STR1,STR2,SAL,STR3
FORMAT(A11,A57,F6.2,A18)

GO TO 65

CALL WMSGE('PROGRAM YSFPER FOR PERSCN REG.TERMINATED')
CALL ZBELL

STOP

END

CHECKING STATUS AND ERROR REPORTS

In order not to overload the program example and to emphasize the most
important points, the status checking after each call which is a ‘must’ in normal
programs, is omitted. The error procedure for taking care of errors in opening
and closing files etc, which should be handled separately, is aiso left out. To
make the exampie complete, the elements mentioned are given below:

#%#% STANDARD ZRRCR CHECX ZIFTER ESACH CALL ###

IF(IST.NE.OQ)THEN

CAL
g

A
o)

ZNDIF

ZRROR(
3ce

a.{..,‘ o iR

AAAAA y Lo

here "XXXXX’ should be exchanged by the actual cail name!

ND-60.088.03

6—35

#*% ZRRORS IN I-O PROCEDURES ###

800 CALL WMSGE("SUBROUTINE CALL IN ERROR’)
GO TO 850
810 CALL WMSGE("ERROR IN OPEN L~P")
GO TO 850
820 CALL WMSGE(“ERROR IN OPEN OQUTFIL’)
GO TO 850
830 CALL WMSGE("ERROR IN WRITE TO L-?°)
GO TO 850
840 CALL WMSGE(“ERRCR IN WRITE TO QUTFIL’)
GO TO 850
. 850 CALL WMSGE("PROCESSING TERMINATED)
CALL ZBELL

#*% ZRRCR PROCZDURE FOR SUBROUTINE CALLS #a#

SUBROUTINE ZRROR(ZTXT,IST)
CHARACTER ESTHT®*S
COMMCN/PRIVATZ/ITEAM(10)

WRITE(1,90C)ETXT,IST,ITERM(T)

900 FORMAT(5X,A5," 1IsT= ",I5,” ITERM(7)= °,IS5)
IST=0
RETURN
IND

REC i 4

ind

i

1 1
. L

- - D S . 4 . SN T 1 - - - o " A o S i e D T S " S > o

BDATE BNO PERSNAME PERSADDR SEY ISAL DEPARTM 2RES

bytes: 6 3 25 30 1 2 2 12
words: 2 3 13 15 1 1 2 5
STR1 STR2 ~SAL 37R3
X e G p ST—— Ko e X

Figure 6—14: Lay-out for record PER. All fields are character strings except ISAL
which is integer. Fields with odd no of bytes are rounded up to hold full words.

ND-60.088.03

636

6.7.5.3. Program Example 2: ZSFPER (F)

We have already mentioned that the data record buffer with the parameter name
REC remains unchanged until it is erased or overwritten by new data. If a few
fields hold the same contents in several consecutive records, we can utilize this
feature for copying the fields from one record to the next one, and thus don't
have to enter the same data again and again. In order to make this work, we
have to consider a few of the available commands (calls).

DESCRIPTION OF THE PROGRAM

i

14

IRCOD =0

IWCOD =4

NOMUST = 2

NSTART =3

ISTART = |

RREAD~-FIELDS 70 CLEAR-FIELDS 55 ZMUST
data from - (CFLDS) (fields 3, 4)
terminal l)
Write new |
recortis 1o |
Line—?Printer | !
A 7 ' ~'
/0 ' ‘
| Add new “ f
racords to i :
Disc~file | 5
NFLDS , L
write fieids || b
back to terminai | | IREAC -
X] -
invideo mode | | ait fields) :
oo

Figure 6—15: Flow-chart for the last part of program ZSFPER.

The principle steps of the program are shown in fig 8-15. The first part of the
program is identical to YSFPER which is explained above, and we start at the
setting of parameters before the ZMUST-call. The new parameter here is IWCOD
corresponding to the call WFLDS.

As before the fields no 3 and 4 are 'musted’. Conseqguently, the call RREAD is

used in the loop. The reasons for this is explained in connection with the
program YSFPER above.

ND-60.088.03

The fields are initially cleared {outside the loop), and RFLDS is cailed upon to
enter data at the terminal. When the last field in the picture is completed or 'CR’
is given, the parameter ITER=0, and the program proceeds with the next step
which here is a check on ITER. If we want to terminate reading, CTRL/G is done,
giving ITER the value -1. In this program it might be convenient to stop after
completing each record to see if it's OK. This can be done by the statement

IF(ITER.EQ.0) PAUSE

The program will then halt untill ‘CR’ is given once more. It is also possible by
choosing special control keys to conduct the further processing. For example

CTRL/L makes ITERCHA =7
CTRL/S . ITERCHA =8 atc. See section 3.6.4.3.

The contents of the record is now written out to L-P and disc file, and then the
record is written back to the terminal in inverse video display mode, because
'WCOD =4 (See section 3.5.4.8) :

We can now copy oid values over to the new record simpiy by using the down
arrow key, except for the fields no 3 and 4 which are ‘musted’, and for which
input must be given. Of course input may be given to any desired field. Because
the old values are displayed in inverse video mode and the new input is in nor-
mal mode, it is easy to see which fields have been copied, and which ones that
have got new input.)

In this case it is of course no reason to clear the fields between each record,
because data are written back to the screen fields.

The comments given for program YSFPER as to status- checking and error
reports, apply here as well,

That part of the source program ZSFPER which corresponds to the flow-chart fig.
6-15 is given below.

The last part of the program ZSFPER corresponding to flow-chart fig. 6-15. The
first part is identical to YSFPER.

ND-60.088.03

61%
62%
63*
6 us
65%
66%
67%
688
69*
70%
T1%
72%
73
U8
75%
76%
774
78%
79%
3o*
31
32%
33
gl
85*
863
874
88*
89+
90%
91
3o
33
e
95%
96%
97*
98*
99*

NORD

75

76

[@]

(@}

80

| . #%% YRITE PICTURE TO THE SCREEN! #%3.
CALL WRPTD(IPN,IST)

#8% TWO FIELDS ARE SET 'MUSTED"| ###
IRCOD=0
IWCOD=4
NOMUST=2
NSTART=3
ISTART=1
CALL ZMUST(IPN,NOMUST,NSTART,FNA,IST)

###% FTELDS ARE CLEARED 3EFORE ENTERING NEW DATA »i#
CALL CFLDS(IPN,NOF,FNA,IST)

#*# THE CALL FOR ENTERING DATA BY THE TERMINAL #%#
CALL RFLDS(IRCOD,IPN,NOF,FNA,REC
,DEIA,NOFR,ITERCHA,IST)

#%#% CTRL/G AT TERMINAL MEANS ITERCHA=-1! #%%
IF(ITERCHA.EQ.-1)GO TO 80

WRITE(S,75)BDATE,BNO, PERSNAME , PERSADDR, DEPARTM
FORMAT(1H ,A6,X,A5,2X,A26,X,430,X,A6)
SAL=ISAL/100

WRITE(FILNO,76)STR1,STR2,SAL,STR?
FORMAT(A11,A57,F6.2,A18)

*** WRITE THE DATA BACK ON SCREEN IN VIDEQ! #*##
CALL WFLDS(IWCOD,IPN,NOF,FNA,REC,DEIA,IST)

#%#% RESET READ-BITS TO Q | #*##
CALL RREAD(IPN,NOF,ISTART,FNA,IST)
GO 70 70

CALL WMSGE("PRCGRAM ZSFPER FOR PERSON REGISTER TERMINATED)
CALL ZBELL

STCP

END

10/100 FORTRAN COMPILER FTN-20GCH TIME 13.45 DATE 12.01.1982

Note: Copying fields from record to record can now be achieved Dy the special
System user control. It works in a different way. See section 5.7.7.

ND-60.088.03

6.7.5.4 Program Example 3: YSCPER (C)

This is a COBOL program doing exactly the same as the Fortran program in
example 1, and the comments given for that program also apply here. Comments
are also given in the source program itself. The principle steps of the program is
shown in fig. 6—13. The label numbers correspond to the Fortran program and -
are not valid here.

The common area in Fortran programs which are used for communicating data
between programs and subroutines does not exist in Cobol. in ND systems, the
common area is written in the form of a data block and compiled with the
Fortran compiler. This data block is then loaded before the Cobol program and
together with the libraries before dumping. This latter part of the procedure is
described in section 6.8.

Because the data block is the first necessary step in the program procedure, we

start by giving it here. The data biock corresponds diractly to the data defined in
the common section in the Fortran program:

NORD 10/100 FORTRAN CCMPILER FTN-2090H

1% BLOCK DATA

2% COMMON/PRIVATE/ITERM(128), IPRIV(1920)

3% COMMON/PUBLIC/IPUBL(6) A

4 DATA ITERM/1,3,1000078,3,200008,0,0,0,0,1920,118%Q/
5% DATA IPRIV/G,1920,8,0,0,1915%0/

6% IND :

By means of this procedure, a3 common area is reserved, and the data are given
initial values. However. these vaiues zan be changed by using the function {call)
COSCR1 as demonstrated in the Coboi program YSCPER below. The letters SC
here mean Screen-Cobol. in Cobol. numbers must always be given on decimal
form in the value clause. For exampie. the vaiue 200008 {octal) corresponds to
8192 (decimal).

ND-60.088.03

®

In the same way as for the Fortran program, thae Cobol program YSCPER has be-
en stripped for error chacking and error procedures. However, examples of these
parts arer given after the source program.

NORD-10/100 COBOL COMPILER - 10176 A
SOURCE FILE: YSCPER

1 IDENTIFICATICON DIVISION.
2
3 PROGRAM-ID.
4 YSCPER.
5 AUTHOR.
6 J F BOHMER OCT 1979,REV DEC 1981 FOR NSHS-MANUAL.
7
8 * NSHS-PROGRAM FOR DATA INPUT TO PERSON REGISTER USING PICTURE:
9 * PER NQ USER CONTRCL
‘10 PER-C WITH USER CONTROL ON FIELDS PERSNAME AND HSALARY
i * PER-CX .o .o .o SEX AND HSALARY.
12
13 * ZMUST IS DEFINED FOR FIELDS PERSNAME AND PERSADDR
1L S (FIELDS NO 3 AND 4). PICTURE FILE IS PIC-FILE:OBJ.
15

16 ENVIRONMENT DIVISICN.

17 CONFIGURATION SECTION.

18 SOURCE-COMPUTER ND100.
19 - OBJECT-COMPUTER ND100.
20 INPUT-QUTPUT SECTION.

21 FILE-CONTRCL.

22 SELECT OQUTFIL ASSIGN FILNAMI.
23 SELECT TEXTOUT ASSIGN FILNAM2.
24

25 I-0-CONTROL.
25 DATA DIVISION.
27 FILE SECTION.

28

29

30 FD TIXTOUT

31 LABEL RECORD OMITTED.

32 01 TEXTLINE PIC 2(1C0O).
33

34 01 PERSLINE.

35 02 OBDATE PIC 9(h).
36 02 OBNO PIC 9(5).
37 02 FILLER PIC X(2).
38 02 OPERSNAME PIC A(25).
39 02 FILLER PIC X.

40 02 OPERSADDR PIC X(30).
41 02 FILLER PIC X.
42 02 ODEPARTM . PIC A(6).
43 ~

ND-60.088.03

6—41

4y a1 ERR-LINE.

45 02 ETEXT1 PIC A(9).
46 02 EFUNC PIC X(10).
47 02 ETEXT2 PIC X(T).
48 02 ESTAT PIC 9(u).
49 02 ETEXT3 PIC X(9).
50 02 ENUMB PIC 9(4),
51 02 ETEXTY PIC X(11).
52 02 ECURS PIC 9(4),
53
54 FD QUTFI
55 RECORDING MODE IS T.
56 01 OUTREC.
57 02 OSTR1 PIC X(70).
58 02 OHSALARY PIC 9(5).
59 02 FILLER PIC Z.
60 02 0STR3 PIC X(18).
51
62 WORKING~STORAGE SECTICN.
63 7T PIC-FI-NAM PIC X(20).
6l 77 PIC-NAM-STR PIC X(8).
65 77 FILNAM? PIC X(8) VALUE °PER:DATA’.
66 77 FILNAM2 PIC XZ(8) VALUE ‘L-P".
&7 77 DEVICE PIC 9.
68 77 NO-QF-PIC oMP VALUE 1.
69 77 NO=-QF-FI COMP VALUE 0.
70 77 FI-NO COMP VALUE 1.
T1. 77 PIC-NO COMP VALUE 1.
72 77 FI-IND COMP VALUE 0.
73 77 R-CCDE CCMP VALUE 0.
T4 77 STAT CCMP VALUE O.
75 77 T-2T COMP VALUE 10.
76 77 CL-CODE CoMP VALUE 0.
7 77 FI-LI coMP TALUE 1.
7 77 LA-LI ZOMP VALUE 23.
;;;;; 79 77 3T-IX COMP YALUE 1.
8o 77 NO=-FI-RE COMP VALUE 0.
81 77 TER-CHA CoMP VALUE Q.
32 77 CL-FI CCMP JALUE =-1.
83 77 ITERMS coMp JALUE 0.
84 77 ITERM7 CoMP TALUE 0.
85 77 MUST-NO CoMP JALUE 2.
86 77 ST-IND CCMP JALUE 3
87 ¢
88 77 MESS:H PIC X{24) VALUE
89 "START PROGRAM FOR PERSON 3IEGISTER'.
30 77 MESS2 PIC %(36) VALUE
91 ' ‘GIVE TERMINAL TYPE=0,1,3,4,5 OR 6: .
92 77 MESS3 PIC X(322) VALUE
93 "GIVE PICTURE FILZ NAME AND TYPE:
gy 77 MESS4 PIC X(26) VALUE
85 . “GIVE PICTURE NAME STRING: .
g6 - 7T MESSS PIC X(26) VALUE
97 "PROGRAM YSCPER TERMINATED " ".
98 77 TXT1 PIC X(L40) VALUE
99 ‘*#% NEW RECORDS TO PERSON REGISTER ###°

ND-60.088.03

6—42

100 01 PIC-NO-AR PIC X(16).

101 01 FI-IND-AR PIC X(52).

102 01 FI-NO-AR PIC X(52).

103 01 DAT-EL-IX-AR PIC X(52) VALUE LOW-VALUE.
104

105 01 TERM-ARR.

106 02 TERM-VAL coMp OCCURS 8.
107

108 01 T-A.

109 02 TV1 comp VALUE 1.
110 02 TV2 COMP 7ALUE 3.
11 02 TV3 CoMP VALUE -32761.
112 02 V4 coMP VALUE 3.
113 02 TVS COMP VALUE 8192.
114 02 TV6 coMp VALUE 0.
115 02 TV7 coMp VALUE 0.
116 02 T8 coMp VALUE 8.
117 # -~32761 ZQUALS 1000073, 8192 IS 200008 (OCTAL).
118

19 01 'ERM=-STR REDEFINES T-A.

120 02 T-S PIC X(50).

121

122

123 01 STR-REC PIC X(90).

124 .

125 01 REC REDEFINES STR-REC.

126 02 BDATE PIC 9(5).

127 02 BNO PIC 9(5).

128 02 FILLER PIC X.

129 02 PERSNAME PIC a(26).

130 02 PERSADDR PIC 2(30).

131 02 SEX 2IC A(1).

132 02 FILLEI °IC A

133 02 4SALARY PIC 9(4) COMP.

134 02 DEPARTM °IC X(5).

135 .02 PRESERV PIC 1(12).

136

137 01 S-REC REDEFINZS STR-REC.

138 02 STR1 PIC X(70).

139 02 S-HSAL 2IC 3(4) comp,

140 02 STR3 PIC X(18).

141 PROCEDURE DIVISION.
142 MAIN~PROGRAM SECTICN.
143 P-START.

BRIV DISPLAY MESS1.

145

146 DISPLAY MESS3.

147 ACCEPT PIC-FI-NAM.

148

149 DISPLAY MESS4.

150 ACCEPT PIC-NAM-STR.

151

152 OPEN QUTPUT TEXTOUT QUTFI
153 MOVE TXT1 TO TEXTLINE.
154 WRITE TEXTLINE AFTER PAGE.

ND-60.088.03

6—43

155
156 MOVE T-A TO TERM-ARR.
157
158 # WITH COSCR1 VALUES FOR ITERM ARE SET FROM THE
159 * PROGRAM INSTEAD OF USING VALUES FRCM DATA BLOCK.
160 CALL °“COSCR1‘ USING TERM-ARR.
161
162 CALL “CLSCR’® USING CL-CODE FI-LI LA-LI ST-IX STAT.
163
164 CALL “GTPICC® USING
165 PIC~-FI-NAM NO-QF-PIC PIC-NAM-STR PIC-NC-AR STAT.
166
167 CALL ’GTFDN’ USING
168 PIC-NC-AR FI-NO FI-IND FI-NO-AR NO-OF-FI STAT.
169
170 CALL 'WRPTD’ USING PIC-NO STAT.
171 f
172 CALL “IMUST” USING PIC-NO MUST-NO ST-IND FI-NO-AR STAT.
173
174 NEW-REC.
175 CALL “CFLDS” USING
176 PIC-NO NO-OF-FI FI-NO-AR STAT.
177
178 CALL °CLBUF® USING .
179 PIC-NO NO-OF-FI FI-NO-AR
180 : STR-REC DAT-EL-IX-AR STAT.
181
182 CALL "RREAD’ USING PIC-NO NO-OF-FI FI-NO FI-NO-AR STAT.
183
184 CALL “RFLDS’ USING
185 : R-CODE PIC-NO NO-OF-FI FI-NO-4R
186 STR-REC DAT-EL-IX-AR NO-FI-RE TER-CHA STAT.
187
188 IFf TER-CHA = -1 GO 7O FTV.
189
190 % WRITE 3DATE,3NO,PSRSNAME,PSRSADDR,DEPARTM TO L-P:
191 MOVE SPACE TC PZRSLINE.
192 MOVE B3DATE TC OBDATE.
193 MOVE 3NO TO CBNO.
194 MOVE PERSNAME TC CPEZRSNAME.
195 MOVE PSRSADDR TO CPERSADDR.
196 MOVE DEPARTM TO CDEPARTM.
197 WRITE PERSLINE AFTEZR 1.
198
199 # WRITE RECORD 7O DISC-FILE:
200 INSPECT S-HSAL REPLACING LEADING SPACE 3Y ‘0°.
201 MOVE SPACE TO OUTREC.)
202 MOVE STR1 TO OSTR1.
203 MOVE S-HSAL TO OHSALARY.
204 MOVE STR3 TC OSTR3.
205 WRITE QUTREC.
206 -
207 GO TO NEW-REC.
208
209 FIN.

ND-60.088.03

644

210 CLOSE TEXTOUT QUTFIL.

21

212 CALL "WMSGEC® USING MESSS.
213 CALL °“ZBELL".

214 STOP RUN.

The experienced Cobol programmer will probably find no particular difficulties in
this program.

Observe that a few of the NSHS function names (not all) have got an extra 'C’ at
the end, for example 'GTPICC’, "WMSGEC’ (in Fortran: ‘GTPIC’, "WMSGE’ etc.).
For all parameters standard names have been used. See section 3.6.3.15.

All error-checking and error reports have peen skipped in this program, but may
look as shown below.

The following check should be carried out after each call. The "XXXXX' should be
exchanged by the actual call name.

IF STAT NOT = O

MOVE “XXXXX" TO E-FUNC
PERFORM ERR-REP

GO TO FIN.

If errors occur in run-time. the parameters ITERM(6) and ITERM(7) are updated
with curser position and error code number and can be called by the standard
function 'ERRORC’. The error-rep section is usually placed at the end of the
program.

fOR ERROR STATE.

CALL "ERRORC” USING ITZRM7 ITZEME.
MOVE STAT TO E-STAT.

MOVE ITERM7 TO E-NUMB.

MOVE ITERM6 TO E-CURS.

MOVE E-TEXT TO ERR-LINE.

WRITE ERR-LINE AFTER 2.

DISPLAY E-TEXT.

ND-80.088.03

645

6.7.5.5. Program Example 4: ZSCPER (C)

This COBOL program corresponds to the Fortran program explained in example
2. The first part of the program is identical to the preceeding YSCPER, and only
the last part is handled here. The principle steps are shown in fig. 6-15 by flow-
chart. Most of the comments given for example 2 are valid here.

The last part of the program ZSCPER corresponding to flow-chart fig.6—15. The
first part is identical to YSCPER.

171 CALL "WRPTD' USING 2IC-NC 3TaT.

172

173 CALL "ZMUST’ USING PIC-NC MUST-NO ST-IND FI-NO=-AR STAT.
174

17 CALL "CFLIS T SING

p . o
174 PIC-NQ NC-CF-FI FI-NO~AR STAT.
1 vy
v
173
hede! .
+ 2 AT M - L Y e
160 CaLL RFLIS™ 5sSING
181 3-CCDE 2IC-N0 NQ-CF-FT FI-NO-AR

- seoey I oAl am

182 SCR-REC ZAT-EL-I{~AR NO=FI~RE TZR-CHEA STAT.
183
184 ¥ TZR<CEA = <7 S0 7O TIN.

1868 * WRITE BDATE,BNO,PTRSNAME,PERSADDR,DEPARTM TO L-2:
187 MOVE SPACZ TO PERSLINE.

188 MOVE BDATE TO CBDATE.

189 MOVE ZNQ TC CBNO.

190 MOVE PSRSNAME TO CPIRSNAME.

191 MCVZ PTASADDR TO OPSRSADDR

132 MOUT DEPARTM TC CDEPAATM.

193 WRITT PTRSLINE AFTER

154

195 # WAITE 2ECCRD IT 2ISC-FILI:

L TNSPICT 3-HSAL 2TPLACING LIADING SPACT 3Y (I
157 MOV 3PACI T2 IUTREC

198 MOVE STR! TO ISTR:

199 MOVE S-HSAL T0 THSALARY

200 MOVE STRZ 70 OSTR2.

201 ¥RITE QUTREC,

202

203 Call 'WFLIS' ISIN

204 W=CODE 2IC-HC NO=CF-FI FI-NO-AR
205 SCR-REC CAT-EL-IX-AR STAT.

208

207 CALL "RREAD USING 2IC-NQ NC-CF-FI FI-NC TI-NC-aR 3TAT.

209 GO 70 NEW-REC.

211 FIN.

212 CLOSE TEXTCUT CUTFIL.

214 CALL "WMSGEC®™ USING MESSS.
215 CALL "ZBELL".

216 STOP RUN.

Another COBOL example is given in Appendix H.

ND-60.088.03

6.7.6.

646

User Control

When a picture is created by means of the SCREEN-DEF program, it is possible
to check the contents of the data entered to the fields in different ways. This
control is a standard system control inherent in the NSHS system and identified
by the edit codes 1—10. See section 2.5.5.

Of course, the standard controls should be used if possibie. However, if a very
special check is to be carried out, or the value of data fieids are. being compared,
for example, this can be done by a User control. The edit code is then set to 9,
and a special user control number is given to that field.

The User control is written as a Fortran subroutine where the first parameter is
the user control number.

All controls, even the User control. are initiated from the picture. It is then
possible to create a number of pictures which are identical except with respect
to the User control. On the picture file PIC-FILE we have three different pictures
PER, PER-C and PER-CX which are identical except in respect to User control.
PER has no control, while the others have User controls on different fields. See
the picture descriptions table 6-3, 6-4 and 6-5.

The standard name of the User control subroutine is

UCONT(IUSCOD.........)

with parameters in the paranthesis. The first parameter is -the user control
number, and one of the first statements in the subroutine will normaily be a jump
to the right spot based on IUSCOD (branching].

There can only be one UCONT, and ail the User controls must be placed in this
subroutine. Ucont is compiiea by the Fortran compiler compatible with the
Screen-Library to be used.

The Fortran compiler FTN corresponds to the files SCREEN -LIB or SCREEN-RTL;
the compiler cailed FORTRAN is used in connection with SCREEN-1BANK,
SCREEN-2 BANK and SCREEN-1REEN. Observe that the file name for UCONT
may be any legal name, preferably some name connected to the picture.

User control programs often require manipulation of data on bit and byte level
and a very good knowiedge both to Fortran and NSHS. !t is no beginners’ task!
For the purpose of User control, a few standard subroutines have been written. A
description of these subroutines are given in Appendix F.

In order to demonstrate a few features of User control and how it works, a

subroutine with the file name SPER-CONT is written and listed below. But first a
brief description of the tasks of the program is given.

ND-60.088.03

6.7.6.1

6—47

Description of the User Control SPER-CONT (UCONT)

The picture PER has no call to UCONT and is not relevant here. If the picture

wanted is given interactively from the terminal, one main program and one user
subroutine will do.

PICTURE PER-C

1)

2)

When Read-fieids (RFLDS) is called in the program, the fields are checked
twice, before and after data are entered. By proper setting of the Status
parameter for field no 3 (PERSNAME) we demonstrate this by writing a
message to the screen both before and after data are entered in the field.
The messages are accompanied by a ‘beep’ on the terminal (ZBELL).

The next controi is initiated on fieid no 6 (HOURS' PAY) named HSAL in
the program. The age of the person is found based on BDATE, field no 2,
and the persons’ salary compared to his age. If a disagreement is found, an
error message is displayed and the input is not accepted.

PICTURE PER-CX

1)

The first check here is identical with the previous one for picture PER-C,
checking salaries against age. Consequently the user control number must
be the same in both cases =2.

Here a check is carried out on the field SEX. If the data entered is ‘M’, the
foilowing fields are set ‘musted’, else (if F) the following fields are

" skipped. It appears a iittle tricky 10 find the character because it is placed

left oriented in the fieid.

Source program SPER-CONT (User control subroutine.

ND-60.088.03

NORD 10/100 FORTRAN COMPILER FTN-2090H

1
o%
3'
it}
Sl
§*
7’
8
9*

104

118

12#

138

143

15%

16%

17%

189

19%

20%

214

22%

23%

2u»

25%

26%

27*

28%

29*

30%

318

32%

33

34

35%

36%

37%

38

39%

4o#

4%

42%

43

Bys

45

46%

y7s

48%

4g*

50%

51%

5%

53%

(@] QOO0 [e®]

[N P!

SUBRQUTINE UCONT(IUSCOD,IPN,FINFO,NOF,FNA,REC

+DEIA,INDEX,REDBITS,IST)
#*% PILE NAME FOR UCONT IS SPER-CONT

INTEGER FINFO(1),FNA(1),REC(1),DEIA(1),REDBITS(1)
INTEGER IREC(50),TIMARR(7),DATO(3)

INTEGER ISHFT

REAL HSAL

CHARACTER SCH™M1

EQUIVALENCE(IREC(36),ILONN)

#i#% USER CONTROL IS CALLED FROM THE PICTURES PER-C AND
#i#% PER-CX AS FOLLOWS. PICTURE PER USES NO CONTROL.
#4#% PICTURE FILE: PIC-FILE:QBJ.

#4#* PICTURE PER-C FOR CONTROL 142
*4% PICTURE PER-CX FOR CONTROL 2+3

%% 1_BEFORE READING IN DATA TO PERSNAME,A MESSAGE
i IS WRITTEN TO THE SCREEN,AND AFTER TERMINATING

balidd THE FIELD ANOTHER MESSAGE IS DISPLAYED (LINE 24).

\ ,
*4% 2.AGE OF PERSON (IAGE) IS CALCULATED BY COMPARING
*##% BDATE REC(1)-(3) WITH THE DATE TO-DAY.

#ir e INPUT TO FIELD HSALARY IS CHECKED AGAINST:
iR TAGE<18 10.<=HSAL<25,

R TAGE>=67 25 .<=HSAL<S0.

e 18<=TAGE<8T 25.<=HSAL<=250.

*irR IF CHECX NOT CK, EZRROR REPORT ON SCR LINE 24.

B3 3 IF SEX= "M FCLLCWING 3 FIS

LDS ARE SET MUSTED
i ZLSE THE SAME FIEZLDS ARE LCC

XED.

#3% GO TO ACTUAL CONTRCL:
GO TO(10,50,30)IUSCOD

##% START CONTRCL 1.
IF(IST.EQ.-1)THEN
CALL WMSGE(“READ FIELD PERSNAME")
CALL ZBELL
GO TO 300
ELSE
CALL WMSGE(‘FIELD PERSNAME READ’)
CALL ZBELL
GO TO 100
ENDIF

##% START CONTROL 2.

#4#% IF NOTHING READ TO FIZLD,RETURN:
IF(IST.EQ.-1)GO TO 300

ND-60.088.03

55%
S56%
5T7%
58%
59*
0%
1%
62*
63%
Bux
65%
go#
67%
532
.69*
TO%
7%
72%
3%
Tux
T5*
'76*
TT%
78%
T9%
80%

81% .

82
g3#
gy
35%
36%
37%
38%
gg#*
90%
91
92%
93*
94
95%
96%
97%
98%
99*
100%
101%
102%
103#%
104%
105%
106%
107%

-~ ()

OO0 0
(@

649

DO FOR X=1,50
IREC(X)=REC(K)

ENDDO
READ(IREC,60)(DATO(I),I=1,3)
FORMAT(3I2)

##% COMPUTE IYEAR,IMON AND IDAY.

CALL CLOCK(TIMARR)
IYEAR=TIMARR(7)-1900-~DATO(3)
IMON=TIMARR(5)-DATO(2)
IDAY=TIMARR(5)-DATO(1)
IF(INON GT.0)GO TC 70
IF(IMCN.LT.C)THEN
IYEAR=IYEAR~1

GO TO 70

INDIF

IF(IDAY.CE.Q)GC TO 70
IYEAR=IYEZAR-:

BDATE IN REC(1)=-(3)

*%% CHECK HSALARY AGAINST IYEAR

HSAL=FLCAT{ILCONN/10Q0)
L:(I EAR.LT.18)THEN

F((ESAL. u‘..o> OR.(HSAL.GE.25))THEN
VALL WMSCE("FOR AGE<18 10<=HSAL<25 ")

CALL ZIBELL

GO TO 300

ENDIF

GO TO 100
ENDIF
IF(IYEAR.GE.67)THEN

IF({4SAL.LT.25).0R.(HSAL.GE.S0)) THEN
CALL WMSGE('FOR AGE>=67 25<=HSAL<S50 ")

CALL Z3ELL

3C TC 30

INDIF

32 TO 20
INDIT

IF({d8aAL.LT.2
CALL WMSGE
CALL ZBELL
GO TC 300

ZNDIF

GO TQ 100

*%% START CONTROL 3.

S CR.{HSAL.GT.250))THEN
("18=<AGE<ST 25<=HSAL<=250")

%% IF NOTHING READ TO FIZLD,RETURN

- IF(IST.EQ.-1)GC TO 300

®#*%* CHECX IF "M" OR 'F’(IN LZFT BYTE OF WORD 35)
¥#% NOW RIGHT BYTE IS ERASED AND

#%% [ZFT 3YTE MOVED TO THE R

i kb a

ICHAR=REC(DEIA(INDEX)).AND. T7T40CB
1CHAR=ISHFT(ICHAR,=3)
SCH=CHAR(ICHAR)

NOMUST=3

NOLOCK=3

NSTART=6

ND-60.088.03

e~y

IGHT.

4 % .2
-3 £ QO
A (O
N N e K
(@]

-

d wd b

L]

2w N
]

JIPEEY
Y
]

JUNY T T S 3
[U S Y
1 Ohvan
oM R WM W
-2 ()

—

L]

v O

»
o

kb A
[ASINAV T AU I AU TN AV BN AU AN IS
L

&: W h) -2 OW o -

a
(s 4
O

N
O un
L IR

—3

##¥ SESET MUST AND LOCK.
CALL PMUSTIIPN,NOMUST,NSTART,FN&,I37
CALL RLICK(IPN,NOMUST,NSTART,FNA,IST)
CF(SCE.EQ. M7 THEEN
CALL ZMUST(IPN,NOMUST,NSTART,FNA,IST)

=™ Qm
TSR

CALL ZLOCK{IPN,NCLOCK,NSTART,TNA,IST)

ZNDIF

FRE ~UTCOT O

ot b -t Ay 'y

mm_
——— -
AETURN

*#% SKIP TC NEXT FIZLD.
I3T=0
RETURN

*% 3
- -

PR

AETURN
IND

ND-60.088.03

6.7.7

6-51

COMMENTS TO THE SUBROQUTINE

Control 1: At the arrival to field no 3, no data has been entered, giving
status=-1, which is the same as for ‘check wrong’. The jumps to
the labels 100, 200 and 300 are due to 'programming style’. The po-
int here is to show that each field is checked twice during a Re-
ad-fields call, which is clearly demonstrated.

Controf 2: This control contains first the call clock{.....) which puts the
computer’s time into the array TIMARR. The foilowing algorithme
extracts the age of the person which is used to compare salary
against age.

Control 3: By means of REC{DEIA(INDEX)) we get the address to the element
SEX without having to count words in the record. From fig.6-14 we
see that SEX is found in REC(35), but that information is here
obtained from the system. The fieid occupies only one byte, which
in this case is the left one, because the field contains only one
character. This means that we have to erase the right byte (con-

taining a pad character) by means of the .AND. option {see sec-
tion 6.7.4),

Next step is to move the left byte to the right position by
ISHFT(...) and finally get the data on string form by means of
CHAR(....).

All Fortran features used nere are found in the ND manuals for example
NORD-10/100 FORTRAN System Reference manual,. ND-6.074.03

System User Controi (Screen-Ucont)

The program examples (2} and {4) above demonstrated how programs can be
written to copy certain fields from one record to another, if they hold the same
data.

Almost the same effect is achieved by the System User Controi called Screen-
Ucont. It is on symb-form and may thus be edited before compiling. The copying
effect is obtained by entering data to the fields, and then tocking the fields to be
copied. Locked fields are jumped over and treated iike leading text.

The process is activated by means of an extra final field, defined with one
character and User control no=1. The following text is taken from ND's program
description SCREEN-UCONT.

The reader may compare the program examples (2) or (4) above with the
Screen-Ucont procedure. They work completely different!

ND-60.088.03

652

PER-C

BDATE :
BNO

99.99.99
: 99999

PERSON NAME: AAAAAAAAAAAA

PERSON ADDR: kXXXXXXXXXXX
SEX A

HOURS® PAY: 999,99
DEPARTMENT: AAAAAA

RESERVED: CLRIXXAXLXXK

A_TTI D
Ll

#2% Pioture file PT
**% (Jser control on fields

lal>1

PICTURE HAS 23 LINES, 79 CH

FIELD*LINE®*COL*ST.CO*FILL*

1 % U4 % 11%pYyTE * *

2 % 5 % 11%#gYTE # *

3 % 7 % 16¥BYTE * *

4 ® g % {463gYTE # *

5 % 11 R |SERYTE # *

6 * 2 % (5RINT ¥ *

T * 13 % |o#RYTT 4 *

8 * 15 ®* 13#3YTE 4 *
FIELD * CONTROL INFORMA

1 * SYST. DEFINED

3 * USER DEFINED

5 * LEGAL VALUE

0 * USER DEFINED

7 * LEGAL VALUE

8 * DEFAULT

for person register

AAAAAAAAAAAAAA

$.0.0.9.0.9.9.0.9.9.9.0.9.0.0.9.9:0.4

*%%
3 and 6 **#

ARACTERS PER LINE, AND DISPLAY MODE 1
EDIT CODE #SIGN*NUMB#*CONTROL
DIGIT - CLOCK * t 5 3 8
STRING - NUM.-LEFT * * 5 % 0
STRING - ALPHA.-L * * 26 % 9
STRING - ALPNUM-L *# * 30 # 0
STRING - ALPHA.-L *# * 1% 2
JEC.PNT-,2 * L 9
STRING - ALPHA.-L # ¥ 5o 2
STRING - ALPNUM-L * * 12 % 1

TIC
DATE(D,M, 7] LT
USZR CONT. XNC: 1
JALUE:
M
q
bl
USEZR CONT. MNO: 2
TJALUZ
ACC
ENG
FIN
e
i
TRA
VALUE: ®%#

Table 6-4: Picture description for PER-C.

ND-60

- > D > D T WD D s T D A D T T S < TS U D I D e

.088.03

PER-CY for person register
BDATE : 99.99.99
3N0 ¢ 99999
PERSCON NAME: AAAAAAAAAAAAAAAAAAAAAAAAAA
PERSCON ADDR: Kl o
SEX T A
HCURS ™ 2AY: 366,39
DEPARTMENT: AAAAAA
RESERVED: ooy
¥3%* Dioture file PICLFILE 143
*¥% User control cn Tislis 3 ang o %
2ZCTURZ HAS 23 LINES, 79 CHEARACTEIAS PSR LINE, AND DISPLAY MODE ¢
FIZLORLIMNERCILEST, o7 % IoIT ICClE *SICN*NUMB#*CCONTRCOL
1 P4 0% 11ERVTT R * DIGIT - CLCCK * ¥ 5 2 3
2 * 3 % 11#QYTE # ¥ STRAING « NUM,.-LZFT # g5 % o
3 ¥ 7 % 14#3YTT @ * STRING - ALPHA.-L * # 265 # Q
4 9 % 5#3YTD @ * 3TRING - ALPNUM-L % * 30 % o)
5 * 11 * 1SEQYTT 4 ¥ 3TRINC - ALPHA.-L 2 & 1 % 19
3 * 12 % jcRTNT 4 * ZEC.PNT.,2 * 2 3 % 3
7 * 12 % jSERyTT ot ¥ STEING - AL2YA.-L ® 5 % 2
8 ¥ 19 ® (3#RVTT @ ¥} OSTAING - AL2NUM-L # 12 % 3
FIZLD # SONTRCL ITNECEMATION:
1 # SYST. DZEFTNED SATEZ(D,4, 7 LT
3 TCMB. CTNTR. ##2aa GSSING 2 CONTRACL FUNCTICNS ##%xx
5 LICAL VALUE JALlZ:
!
R . A D
5 * USER ZEFINED C3ZR CTNT. NC: 3
thad IND CF ZTMBINED CINTRECL *EEER
] bd USEZR DEFINED JSER CONT. NC: 2
7 * - LEGAL VALUE VALUE:
.
:l.\.av
NG
Rpee)
3T¢C
TRA
8 * DEFAULT JALUE: #2#
Table 6-5: Picture description for PER-CX.

ND-60.088.03

6.8

6.8.1

COMPILING, LOADING AND RUNNING PROGRAMS

The procedure of compiling, loading and executing programs is no special NSHS
task and might be omitted here.

However, in connection with NSHS a few details must be observed, as explained
in the following.

The source program in the form of text strings must be compiled to obtain the
object program which can be used by the computer.

A program may be either a RT-program, a reentrant program or a back-ground
program. The type of program depends both on the program source and how it
is used in the computer environment.

The program exarnples above are all simple back-ground programs, and the
procedures for cornpiling etc. demonstrated below are valid for this kind of pro-
grams.

Compiling, Loading and Running a Fortran Program

COMPILING

In connection with NSHS, two different versions of the Fortran compiler, can be
used. See note in (6.7.6).The version name can be seen by the compiling out-
print for the program exampie peiow.

The compiling sequence:

ftn

NORD 10/100 FORTRAN COMPILER FTN-2090 H
Scomp ysfper, 1-p, * ysfper”

100 LINES COMPILED. OCTAL SIZE=1467
CPUTIME USED IS 4.0 SEC.

Sex

@

The text in lower case is keyed by the operator, the text in capital letters is the
response from the compiler. Cn the ‘comp’ line we have the name. of the source
file, the list file and the object file. If the object file already exists, the quotation
marks are omitted. After the compiling we have the two files YSFPER:SYMB and
YSFPER:BRF. The latter is used in the loading procedure which is the next step.

ND-60.088.03

655

LOADING AND RUNNING THE PROGRAM

The Nord Relocating Loader {NRL) is used for all background programs, both
Fortran and Cobol.

The sequence is:

nrl

RELOCATING LOADER LDR-1935H

"size 600

*load ysfper

*x-load sper-cont {must be loaded before scr-lib)

*load scr-lib

*load ftnlib

FREE 110273-173600
*dump “ ysfper ~
‘run or ‘ex

The command “‘size is given to avoid 'table loader overflow’. The program and
libraries may be loaded one by one like here, or by one command {line).

The files loaded are the object file, the user control subroutine, the NSHS library
and the Fortran library in the given order. The available space at the start of the
loading is 0 - 1777778 equal to 64k words. The programs successively occupy
space, the common area from the.top, the programs from the base. The availab-
le space for processing is here the interval 110273 to 173600 octal.

If the program has been successfully ioaded, it may be dumped as shown. We
then get the program on the form YSFPER:PROG, and it is then possible to call
the program simply oy keving ®YSFPER. After ioading, the program may be
executed by the command “run, or we return to Sintran Dy ‘ex.

ND-60.088.03

6.8.2

656

Compiling, Loading and Running a Cobol Program

The principles of these procedures are the same as for the Fortran programs.
However, in this case a few more details must be considered, as shown in the
following.

COMPILING

Both oid and new compilers may be used. If an old compiler is used, the FD
clause for defining symbolic files (disk files), for ex in the program example (3),
YSCPER, line 55: 'RECORDING MODE IS T. must be replaced by 'BLOCK
CONTAINS 0 RECORDS.’

The sequence is:

Cobol
NORD-10/100 COBOL COMPILER - 10178A
‘comp yscper, 1-p, " yscper’'’

“** NO ERROR MESSAGES "**
‘ex

Letters in lower case are keyed by the operator, capital letters are the response
from the compiler. On the ‘comp’ line we have the source file, the list file and
the object file. If the object file already exists, the quotation marks are omitted.
After the compiling, we have the two files YSCPER:SYMB and YSCPER:BRF, the
latter is the object file used for loading, which is the next step.

LOADING AND RUNNING THE PROGRAM

The first file to be loaded is the Data block for allocating the common area (see
section 6.7.5.4 for program ex.3).

The loading sequence is:

2nrl

RELOCATING LOADER LDR-1935H
*size 600

*load sper-block

*load yscper

*x-load sper-cont {Must be loaded before screen-1lib)
*load scr-1ib

*load ftnlib

*load cob-1ib

FREE 126370-173600

*dump "’ yscper’

-

‘run or ‘ex
®

The command ‘size’ is given to prevent ‘loader table overflow’.

ND-60.088.03

6—-57

The files in the loading sequence are:

sper-block The data block ailocating the common area (written and
compiled with Fortran).

yscper The main cobol program.

sper-cont The user control program (Fortran).

scr-lib The screen library for NSHS.

ftnlib The oid Fortran library.

cob-lib The new Cobol library (The old one was called ‘runcob’ and

may be used. See comments above).

E 'SGR—L!B)
3 | {SPER-BLOCK)
29 | }
=3 ! !
+ - : 177777
IR
| | .i ------- ~-=| 173771
i ‘ e =] 173800
=
™ 3 | free for
- 3 { processing
- Z 126370
L 20B-LiB
.......... 117047
f =TNLIB
f e ——————— 102566
" SCR-LB |
3 ;
3 |
3 : |
= e I 9216807
. SPER~CONT
| = ——————— 130506
§ /SCPER *
| m— e - ©c22127
| SPER-8LOCK
e J — ‘ Q

Figure 6—16: The space occupied in the virtual memory by programs and com-
mon.

The free space is 173600-126370=452108 words.
The figure is not in scale.

ND-60.088.03

If the loading is successful, the message FREE..... is displayed. if some library. or
data block is forgotten, the message ENTRIES UNDEFINED ... is displayed,
giving the names of the missing routines. Sometimes we want a listing of the
subroutines and their start points, and then use the command *entries-defined.

In the loading procedure above, ail the programs are loaded separately one by
one. It is then easy to see from the message FREE.... how much space is oc-
cupied by each program. However, ail the programs may be loaded by one com-
mand (line). The virtual user space which is 64k words is in this case partly oc-
cupied by programs and common as shown in fig.6-18.

When the programs have been successfully loaded, they may be ‘dumped’ as
shown. The program may then later be initiated from Sintran by @ YSCPER.

Obs that all-input to the NSHS programs must be given with capital letters. For
example, if the program YSCPER is called, we are asked about 'file name and
type:' The answer then may be 'PIC-FIL:0BJ’ (or abbreviated P-F:0). If not, the
terminal will probably be 'hanging’ or an arror message issued.

ND-60.088.03

APPENDIX A

EDIT CODES AND FORMATS

When defining a field, the user may specify an editing option. NSHS contains a
table of 29 standard formats, stored in the labelled cornmon area with the name
FORMAT. A format consists of a series of words in the area FORMAT. When
these words are read in ascending order (i.e., IFORMAT (N), IFORMAT (N + 1),
IFORMAT { N + 2) ..) they describe the format of the characters to be printed
from AIGHT - LEFT. The contents of these words are interpreted as follows:

Value: Meaning:

1 Print the sign (if any}, space or —

2 Print next character

3 Print thousands separator for decimal fields

4 Print decimai position for decimai fields

> 31 Print the ASCIl character represented by value. That is, a format
character.

<0 Loop in the format

An example will illustrate how it works. Consider edit code 2. (See Section

2.5.4.2]. This edit code will print a negative 10 significant digit number as follows:
12.345.678,90 —

and the format string for this is:
12,242,223 —4,

3 and 4 are the codes for the thousands separator character and the decimal
position character, respectively.

The two characters to be used for formatting decimal fields are stored in the 41st
word of a labelled common area called PICDEF. The word normally contains the
ASCIl code for {, .). In England this should be patched to (.]

;-

Suppose, for example, you wished to print a character string read into a bvte
field as follows:

gsccceeccey /eccee

ND-60.088.03

Hare, C represents a character read in and the °® and/represent format
characters. The format string for this wouid be:

45,2,2,2,2,47,472,2,452.2, -5
The correct position in the format array is determined by the edit code, and a

pointer array callec FPOINT. This pointer array contains one word for each edit
code. Each word contains:

Left byte: 0 or terminating character for this edit code

Right byte: index to start of format string in FORMAT

You may change the contents of both FPOINT and FORMAT, but be aware of the
following restrictions.

1. Edit code 0 - 3 must have at least one format character.

2 Format characters cannot be defined to appear left-most in a field (include
them in the leading text!).

3. The contents of FPOINT and FORMAT MUST BE IDENTICAL when defining
pictures and using the same pictures.

4 FORMAT should not be greater than 256 words.

Both FPOINT and FORMAT for the standard NSHS system are shown below.
*19BEG;)3ENT FPOIN

% FPQOINT is the-format pointers array with one word for sach edit code.
% The contents of 2ach word are as follows:

% Left byte: terminating character for fields with this edit code [no parity bit
set), or zero

% Right byte: index to start of format string in FORMAT array

ND-60.088.03

SUBR FPOINT
@ICR
FPOINT:; INTEGER ARRAY PPPP: =
01200\ 22,0 \ 24,0\ 26,0 \ 30,0 \ 32,0 \ 34,0 \ 36,
.0\ 40,0\ 74,0 \ 42,0\ 45,0 \ 60,0\ 42,0 \ 42,0 \ 42,
0\ 42,0\ 42,0\ 42,0\ 42,0\ 65,0 \ 65,0 \ 65,0 \ 67,
0\ 67,0\ 67,0\ 65,0\ 650 \ 65) ; @CR
RBUS
*)9END
COMMON /FORMAT/ IFORMAT(80)
DATA IFORMAT/
-2,22,2,2,2,2,2,2,4.2,22.3.-4, '
-1,-8,1,-11,1,-14,1,-17,1,-20,1,-23,1,-26,1.-29.1,-32,
-1,2,-1,2,2.2,2,2,568.2,2,568,2.-1,1.2,2,568,-3,
-2,-1,2,2,2,578,-4,1,-50,19*0/

Symboalic versions of the above are supplied as part of the NSH system.

ND-60.088.03

A4

*
Changes from the previous version of NSHS (ND.10013H)
Left justified fields are handled different from the previous version of NSHS.
a. Fields of type integer, Doubie integer, Fortran 15 and BCD with edit code F,
G, H, 1 or J and fill code =1, i.e. filled with 0, now hold the same value as

displayed on the screen.

An example:

Input Value on Old data New data
the screen element element
fer 1000 0001 1000

b. Fields of type Byte with edit code F, fill code 0, i.e. unused positions filled
with blanks, are now right justified in the data element with leading unused
positions filled with blanks. Before, these fieids were left justified in the da-
ta element, with the unused pasisions to the right filled with blanks.

Two examples:

Input Value on Old data New data
the screen element element
Ter bbb 1bbb bbb1
Oler 1 soee bbb1 (not allowed
before)
c. Fields of type Byte with edit codes F, and fill code 1, i.e. unused positions

filled with 0, are now rignt justified in the data element with leading unused
positions filled with bdlanks. it i3 now permitted to key leading zeroes in
such fields. Leading zerces can be considered as unused positions.

A few examples:

Input Value on Old data New data
the screen element aiement
Ter 1000 1000 0001
Oter 0100 suee b100 [not allowed
before)

ND-60.088.03

A-b

Table for byte fieids with data efements

EDIT o FILL=0 : FILL= 1 . LEGAL o INPUT . COMMENT
CODE © (SPACE) : (ZERO) . CHAR : EX :

"** NUMERIC FIELOS °°°

0-3 : bbb89.00 : 00.099,00 : "0-9" . '+-,.' : 9900 (Edit code 2 used
bbb8800 hbb83800 there. If sign is
:defined one + or -
:1s allowed

A, © bbb89800 0008800 . " 0-9° - : 9900 (If sign is defined,
:one - or - is
callowed.

3 © bb1.21200 © 2.01.21200: "0-8 7 a- 121200 :If sign is defined,

bb121200 . 2b121200 . ;one + or - 1s

callowed. Field here
:1s defined with
:8 characters.

c ©12.72.00 ¢ 0.12.12.00: " 0-9°, e : 121200 :If sign is defined,
Jone + or -
:is allowed.
F. : 9Sbbbbb : 0990000 0 10-9, " e . 099 : If sign is defined,
© btbbb89 . 5990000 : : ione + or - is
:allowed.

“** STRING FIELDS ~**°

K : (09%9bbbb 3980000 C2-37 ' —--7 1 099 :Any combination of
: 088bbbb 2990000 " space’ : . the legal char
callowed.
L . AAbbb . ot all. CTA-ZT L Ta-zn 0 AA
: space’
b} : 08Abbbb : not all. © all orintable: 09A
. (9Abbbb . characters
N - 0/98b/bbb : 3/980/000 - "2-3 . -~ . 099 “Any comb. of legal
: 099bbbb 2920000 ' space’ : :char is allowed.
0 : b/AAA/bbD : not all. CCA-ZT Ta-z', o BAAA
: BAAABRDL © ' space’
P : A/-+-/Cbb : not all. : all printable: A-=-C
: A-+-Cbb " . characters
a D bb-+22,7 Q0-+22,7 : T0-8, ==, . .a22.7 JAnv como of legal
: bb-+22,7 . 00-+22.7 . ' space’ : ‘characters alloweaq.
R . bbbABCD ¢ not all. : ‘A-Z','a-z’' : ABCD
. bbbABCO : . ' space’
S . b09-AXz © not all. . all printable:
: 0b09-AXz . characters

ND-60.088.03

A—6

APPENDIX B

CONTROL CHARACTER HANDLING

NSHS is designed for asynchronus ASCI| oriented video terminals with cursor
control. Differences between terminal types occur at the control character level,
i.e. characters with octal values between 1 and 37 inclusive.

fn NSHS a "standard” control character set similar to the TDV 2000 controi cha-
racter set is used. For each terminal type, control characters must be transiated
to the NSHS set on input, and from the NSHS set on output.

The internal control character set is defined below: (I) indicates that the
character value going into NSHS defines the function: (O) indicates the character
value sent out by NSHS initiates the function.

1 Control A Delete previous character (1)

2 Controi B {X) Defines blink display mode {NSD). Copies identical
fieid above up to and including X (1) {NSL)

3 Controi C Copy one character from old line/field)

4 Control D Copy all characters from old line/field without
terminating (1)

5 Control E Define field (NSD), insert characters in field (NSL)
M

6 Control F Abort picture creation/editing (1) (NSD).

7 Control G Remove one line (NSD) (1), bell, i.e., audio signal
10}

10 Control H Cursor left {{/0), ~ or delete previous character if in

a fieid or line (1)

" Controi | Cursor rignt, - . {i/Q) or copy oid character if in
field or tine (I}
12 Control J insert one line (NSD) {I), skip to first field on next

line in NSL and zero or blank out field if immediate-
ly after Control Q. (NSL]

13 Controi K Cursor down, | , (I/0Q), er copy all characters oid
line or field and terminate (i)

v

14 Control L Oefines iow intensity dispiay mode (1)
15 Controi M (CR) Field and line terminator (1)
16 Control N (X) Defines normal display mode (NSD) (l). Copies

identical field above up to but not including X {NSL)
() o
ND-60.088.03

20

21

22.

23

24

25

26

27

30

31

32

33

34

36

36

37

Control O (X)

Control P

Control Q

Control R

Control S
Control T
Control U

Control V

Control W

Control X
Control Y
Control Z (X)

Control A&

Control @

Control A

Defines invisibie {"off’") display mode. Copies old
field up to but not including X (NSL) (1)

Copies one character or field from previous line
(NSD), or one character from identicai field above
(NSL) (1). Cursor addressing character (O}, sets
terminal in cursor address mode

Deletes line or field (l), if given 3 times recreates
picture.

Copies previous line (NSD) or identical field above
(NSL) up to and including the last character without
terminating (). Represents normal display mode

internally in NSHS (0Q)

Represents: blink display mode internatly in NSHS
{0}

Represents low intensity display mode internally in
NSHS (O}

Defines underline display mode (NSD). Represents
undertine display mode internaily in NSHS (Q)

Defines inverse video display mode (NSD)} ().
Represents inverse video display mode internally in
NSHS (0O)

Represents invisible display mode internally in
NSHS (0O}, used to terminate picture editing {i) in
NSD.

Not used

Srase screen (Q)

Copy oid field up to and inciuding X (1)

Erase line [for output use oniy! This is ESCAPE!] (0)

Cursor up, !, {I/0) or copy ail characters above line
(NSD), or identical fieid (NSL} and terminate (l)

Home, X (I/0), and when in a line, copy pre-
vious field (NSD) (1)

Alternative to Control W for terminating picture
editing {1).

Clear whole line (0), (NSL).

NSHS can accommodate up to 8 different types of terminais simuitaneously.
New VDU types can also be implemented. If you intend to use new VDU types
you should contact your local ND support organisation for advice in this matter.

ND-60.088.03

APPENDIX C

ERROR MESSAGES AND CODES

The following error messages can occur in the NORD Screen Handling system:

—_ ""no such picture”

— “"no pictures defined on file”

— "file not successfully opened!’’

- “error in reading first block of file”

— “error in writing first block of file”

— error in closing scratched fiie’”

—_ “first biock of file damaged”’

— "block size on file in error”

— “error in writing bilock pack to file”

— "array not big enough for picture’’

— “nicture name tabie on file full”

— “entry number greater than number of pictures (internal errorl)”
— “error in reading block from file”

—_ "first biock of picture is not first block in chain”
- 'not enough blocks available on file”

These error messages are written out with some tracing information:

< ["pOSSib‘e file system arror text“}
“error position identifiers are: 39999. 99999 source/object file”’
“error message’’ >

The tracing information can oe particuiarly helpfui in locating a bug in NSD.
In the NORD Screen Librarv system. error messages are printed on the last line
of the terminal and only during the execution of an RFLDS call. These messages

are in English and can be changed through editing Dy your local ND support
organisation.

For all subroutine cails the return status parameter “!1ST' can have the vaiues:

0: call successfully executed
1: unknown picture name or number
—N: field number/indicator or picture number/name data-element-index

number N is in error

2: other errors

ND-60.088.03

For other errors and at times for 1 or —N, an additional error code is placed in
ITERM(7). These error codes are as follows:

Value: Meaning

1 terminal common 'array in error

2 illegal picture number

3 no picture with this number in buffer

4 first field indicator is zero, but number of field indicators is not 1
5 number of field indicators < 0 or > 255

6 line number in a field indicator is too large

7 no fields defined on this line

8 no fields defined on this picture

9 not so mény fields on line

10 field number is zero

1 absolute field number > number of fields in picture
12 field numbers in wrong order -

13 picture buffer fuii??

14 t00 many pictures requested, or buffer full

15 numper of pictures in error

16 picture buffer damaged

17 too many field numbers given

18+100"EN error in reading or opening picture file, here EN is the NORD file
system error number. For exampie 66 18 is file system error 66
(decimal), 102 octal

19 no pictures defined on this picture file

20 not enough space in buffer for this picture
21 data element index array in error

22 picture file block damaged -

ND-60.088.03

23

24

25

26

27

28

29

30

32

33

35

50

picture description must not start at address zero
parameter 'code” in error

number of field numbers < or=0

all fields locked on an RFLDS or WFLDS call

line number in error

pasition number in error

area mode does not ailow reading/removal of pictures (IPUBL(1)
or IPRIV(1) 7 0)

no pictures in private buffer
incorrect program mode

no such picture file

user controi iilegal

Error in input monitor call, Sintran error in [TERM(127)

area mode in error

ND-60.088.03

c—4

APPENDIX D

SYSTEM CONTROL

System control is called from pictures when field control no = 8.

There are 6 system controf functions implemented:

G B W N

(s3]

Person Number

Post Office Account Number - modus 10

Post Office/Bank Account Number - modus 11
Date (Year, month, day}

Date (Day, month, year)

Date (Month, day, year)

Person Number

Person Number must consist of 11 digits following the standard:

98 98 a8 999 99

where the digit groups mean:

-~ day of birth

manth of birth

vear of birth

individual digits ilast digit indicates sex|
control digits

Post Office Account - Modus 10

The Post Office Account Number consists of uo to 20 digits where the last
digit is the controi digit.

Post Office/Bank Account - Modus 11

The Post Office Account Number consists of up to 20 digits where the last
digit is the control digit. The Bank Account Number must consist of 1]
digits where the last digit is the control digit.

Note that the vector digits of points |, 2 and 3 foilow the Norwegran
standard.

right to left. This means that the last digit should be muitiplied oy 2; the
one before by 3, etc. You may replace the existing digits in modus 11 by in-
cluding your own weight digits. To define your own weight digits, a routine
of one common block must be declared and loaded after the NSL.

ND-60.088.03

45,6

The layout of the routine must be as follows:

BLLOCK DATA

COMMON/PICDEF/IUSVEC (10)

DATA IUSVEC/10038, 20058, 30078, 10038, 20058, 30078,
10038, 20058, 30078, 110038/

END

Note that the weight digits are stored in octal with two digits in each word,
and are therefore best declared octally.

Example:

If you wish to have the following weight digits 1.2,3,4,5,6,7,1,2,3... in your
system checik on modus 11,
the "PICDEF" common will be:

BLOCK DATA

COMMON/PICDEF/IUSVEC {10)

DATA IUSVEC/4028, 14048, 24068, 34018, 10038, 20058, 30078,
4028, 14048, 24068/

END

Date

if the year is within the range 1900 - 1999, the last two digits are sufficient,
otherwise, all four digits (i.e., 1876} must be used.

Six additional date controi numbers are used for the date system controi to
check the legality of the date inpur:

i = date must equai today ii.e., aqual 0 what SINTRAN Il believes the

date to be)
2 = date must be equal to or after todav
3 = date must be after today
4 = date must be before or equal to today
5 = date must be before today
6 = no check of date

ND-60.088.03

APPENDIX E

TROUBLE SHOOTING

1.

If the pictures came out incorrectly on the VDU screen:
a) Have you set the correct terminal type and the required picture
displacement? Check ITERM(2).

b) If TDV 2000, is it in page or roll mode and if so, have you set bit 15 of
the terminal type?

c) Have vou set break strategy to 9?7 If not, do you have a SINTRAN 1l
system with a version date later than 19777

d) If INFOTON 200, is the terminai in Page Mode?

Otherwise

Have you checked the status value returned by all the subroutine calis? If

this status is not @, have you checked the vaiue of the error code in
ITERM(7)?

A common error code s 3618, which means that the user calling GTPIC
does not have a read and common access to the picture file.

Ancther common arror is 5616: Picture buffer damaged. Probably too little
space has been allocated for one of the buffer {integer) arrays.

Have you set up the terminal buffer, the private buffer and the public buf-
fer correctly?

If your program has inexpiicable or mysterious errors. are you explicitly
using any of the “internal’” routines in the NSL? If so, are these '‘assem-

biy” routines and have vou deciared them as such in all subroutines which
use them?

Both for Fortran and Cobol programs, there are very efficient tools for de-

bugging. When the compiier is called. the first command should be ‘DE-
BUG".

ND-60.088.03

For example for a Fortran program:

@FTN
SDEBUG

and similarly for a Cobol program. The debugging procedures are descri-
bed in the manuals.

ND-60.088.03

APPENDIX F

USER CONTROL AND LOW-LEVEL ROUTINES
AN EXAMPLE.

r

Description of the UCONT routine:

SUBROUTINE UCONT(IUSCOD,IPN,IFINFO,NOF,FNA,REC,DEIA,
INDEX,RBITS,{ST)

c IUSCOD : THE USER CONTROL NUMBER.

C 1PN : THE PICTURE NUMBER (Same as in the RFLDS call).
C IFINFQ : FIELD INFORMATION ARRAY.

C NOF . NUMBER OF FIELDS (Same as in the RFLDS call).
C FNA _© FIELD NUMBER ARRAY (Same as in the RFLDS call).
C REC : RECORD (Same as in the RFLDS call).
c DEIA . DATA ELEMENT INDEX ARRAY (Same as in the AFLDS cali).
c INDEX : INDEX TO THIS FIELD NUMBER.

o RBITS © BIT ARRAY WITH BIT SET IF FIELD READ.

c IST . INPUT/RETURN STATUS.

INTEGER FNA(1),REC(1),DEIA(1),RBITS(1),IFINFO(1)
e | .
When the system encounters a fieid that has been assigned Field Control
Function 9 (user defined controi algorithm], the subroutine UCONT is called auto-
matically by RFLDS both before the fieid is entered and after a value has been
given. When UCONT is activated, its status parameter IST on input indicates if
we enter or leave the fieid.

IST = —1: The field is going o be read after return from UCONT.
IST = 1: The field is read, and the fieid vaiue is stored
in the RECORD.

On return IST should have the folloWing values:

IST = —1: Read the same fieid.

IST = 0: Write the field contents found in the record to the screen,
continue to the next fieid to be read.

IST = 1: Just continue to the next field to be read. The field contents
is not written to the screen.

IST > 99: RFLDS terminates with terminating character = -1 and re-

turns status equal IST. No further action is taken with the
field contents.

IST < —1: Same as if -1 is given

IST =<1,99>: Same as if 1 is given.

ND-60.088.03

On return from UCONT, RFLDS checks the error code in ITERM(7), and if this is
not 0, RFLDS will terminate.

With the parameter INDEX, the UCONT routine can decide which field is the next
to be read by RFLDS. On input the parameter contains the index to the current
field. On return, index to next field to be read can be given. If the index is outsi-
de the range of fields (not in the area <1,number of fields>), the first field in
the picture is read. This works only if the status IST on return is 0 or 1.

How to load the UCONT routine:

In the Screen Library there is a default UCONT routine which only returns a pro-
per status value. Any user-written UCONT must therefore be loaded before the
Screen-Library, and the user must make sure that his routine really is loaded. On
using the NORD-RELOCATING- LOADER he can use the command X-LOAD. The
loading sequence for a Fortran program wiil then be:

@NRL

LCAD APPLICATION
X-1.OAD UCONT

LOAD SCREEN-LIBRARY
LCAD FTNLIB

DUMP PROGRAM

EXIT

ND-60.088.03

AN EXAMPLE OF AN UCONT ROUTINE:

Program listing:

NORD=1U/thu=100 FORTRAN COMAPILER FTHN=-2U0Y01l

1= SUBRAOUTINE UCONTC(IUSCOD,IMN,IFINFO,NOF, FliA L,REC
2= LOETA,INOEX,RBITS,IST
3= ThE ROUTINE IS USED FOR AUTAMATIC TRANSFER OF FIZLD VALJES
Lx (FRUM OnNE RECOQRD TU THE NHEXT IN A LOCr=SEuubnCE
S« ¢ wHEKES [HPUuT=RECORDS ARKE READ FROM THE SAMI PICTURE.
ox C
7x C WHERE
4%
3= C IUSCND : THE JUSER CONTROL NUMBER
19= ¢ IPN : THE PICTURE NUMEER
11= ¢ IFINFO ¢ FIELD INFORMATION ARRAY
12« ¢ NOF : HAUMBER QOF FIELDS
13~ ¢ FivA : FIELD NUMBER ARRAY
Tax REC : RECCRD
1S5= ¢ 2E8IA 1 JATA ESLEMENT INDEX ARRAY
Tex C INVEX INDEX TO THIS FIELD NUMBER
17= ¢ RBITS : 3IT ARRAY WITH BIT SET IF FIELD READ
18> ¢ IST : RETURN STATUS
19«
20 =
1= INTZGER FRACTD LRECCTI) L DEIACTI) ,RBITS(CTY,IFINFOCT)
22+* INTESER L[FINFU(C22),”7 INCH
23 ASSEMYLY GFINF,MCURS,FPINCH,POUTC,IPNUM
24 * .
25= *xx INPUT=-STATUS IS =71 BEFORE ANY VALUE IS
26 ¢ *wx 3IVEN TO THE FIELD. NO ACTIUN IS TAKEN.
27= IF (IST .EQ. =1) GOTO 9u o
23 %
29 IADDR = IPHUMIIPN)
I3+ 10 LACT DELA(INDEX D
31w IDATA = RECUIALT)
32+«
I3 IrF
RYAEY (o= c-coc=sssooss oo sss-Sssssssomm=m=
3I5= ¢ OR =
J6x ¢ G0 =
37% C 2o =
33~ C C =
39> ¢ CONTIN =
&40% ¢ *x CONTROL 2; G070 RETURN =
41% (=
42* =
43x ¢ =
44= CS55 CONTINUE =
45% ¢ ** CONTROL 255; GOTO RETURN =
LbHr (Z=ccscrsconmorssosscossos-osssssmssssooos
47=
43x ¢ . **%x REST OF THE CO0O0& IS ACTIVATED JNLY °F
49« #xw JSER-CONTROL NUMBER IS 1.
50O« IDATA = ISHFTCIDATA,=-9),AND.177H
51« ¢ wkx [DATA = INPUT VALUE IN FIELD.
52+« ¢ wxw 11TF8 = I 17148 = L
§53= IF (IDATA .EQ. 11313) GGTO 70

ND-60.088.03

24 IF (luATA .eG. 11483 GuTY ad

55+ C =®r FOR ALL OTHER VALUES, JUST RETJKN,

S0 GJTu su

57w

28w SU CALL «HSGE(*TYPE L IF LOCK REWGUIRED,IF NOT,USE:CURSOR RIGHT,IF FIN
Sy ~1SHED, USE CUKSOR HOME=*')

60w _

61 % J=u

82*= ¢ ** LOOP FQR TREATIKG EACH FIELD. THE LOOr INDEX J IS
53= ¢ #» CALCULATED FROM INPUT VALUES.

ob* 4O J = 4 + 1

&5 IF (J LE. 0U) 3 = 1

bo* IF (J .GT.) GOTU 70

o7* C w»xv AERE J IS JETWEN 1 AND NUMBER OF FIELDS.
63= C **w GET INFORMATION AS0UT FIELD, rLACE CURSIR
a9* C **% AT GEGINNING OF FIELD, READ ONE CHARACTER.
70% 45 IFN = FNAC(J)

71 CALL GFINFCIFINFUL,IFN,IADLR)

72* CALL MCURSCIFINFUCTIIILIFINFUCTIZ D

73= 30 ICHAR = #INCHC(1)
Thx *»x CHARACTER READ TO ICHAR.
7S5# IF (ICHAR LE2G. 118) THEN

(g

76= C w#% (URSOR RIGHT: RESET EVENTUALLY

77= ¢ *ex [QCK ON FIELD, WRITE FIELD WITH
/3= »ew NURMAL DISPLAY, G50 TO NEXT FIELD.
7 3= CALL RUDCK(IPN, 1 ,J,FNA,LST) .
30> CALL wFLUS(I,IPN,T,FNACG), REC,DEIACI),IST)
81 GOTO &0 , .

32 ELSEIF (ICHAR .EGQ. 1143) THEN

g3x ¢ wex L: WRITE FIELD WSITH LOW INTENSITY,
84 (*wx [QCK FIELD3, GO TO NEXT FIELD.

35

3o% CALL “FLOSC3,IPN,T,FNACY), REC,DELACI),ISTD
37> CALL ZLOCK(IPN,1,J,FNA,IST)

33= GOTQ 408

EEA

20+ ELSEIF (ICHAR .EQ. 348) THEN

1= ¢ *xx CURSOR UP FOR FINISH.

2= GATO 70

33« ELSEIF (ICHAR ,2G. 10B) THEN

Vex (*ex CURSOR LEFT FOR STEP BACKX TO

?5= C *ex PREVIOUS FIELD.

Yox d = J - 2 ‘
F7 GATO 40

GO = ENDIT

9> **x HERE IF ILLEGAL INPUT GIVEN, 3ELL ON TERMINAL.
Tdd= € *#x 30 TO NEW INPUT.

101 = CALL IBELL
102« GOTO0 350
103

104= 70 CONTINUE
105+ ¢ ** FINISH SEQUENCE: WRITE MESSAGE TO LAST LINE OF TERMINAL.

106x ¢ **x PLACE CURSOR ON FUNCTION FIELD, READ ONE CHARACTER.,
137+

108~ CALL WMSGEC'FUNCTION FIELD TO BE LOCKED 7 (Y OR N)=?)
109~ CALL MCURSCIFINFOCTID,IFINFO(CI2)
110 ICHAR = PINCH(T1)

ND-60.088.03

110 =
1i2x
115>
114=
IRDR
Tlox
117 =
113=
IRE2
12u=
121 =
122
12o*
124=
125=
120
127 =
12% =
129%
13U=
131=
132>
133=
134=

135

[}

(@]

80

90

CaLL

nx w Ak

A
£
L= Y

=x% Y FOR YES,

LR B 1

CHARACTER REAU TO ICHAR.

1318

L 0CK

POUTCCT, 13

ELSEIF (ICHAR

X ke
PO I %]
—4
[o
el
=

)
CALL ZTLOCK(IPN,1,INvEX,
= TH

) THEWN
ECH
FUNCTION

F!
LEG. 1Us) EN
**x CURSOR LEFT: &
- 2
@3
ICHAR .EQ., 171583) THE
x N FOR MNO: ZCHO
POUTC(1,1703)
~ex [LLEGAL INPUT,
73

ND-50.088.03

0
FIZLD,

N

CH4ARACTER,

TRY AGAIN.

THAKACTEX,

RETURHN

©

F—6

Description of low-level routines which can be called from an

application program or a UCONT-routine

Available routines:

ICHEK © get index to picture description, check field-number-array,
check/generate data-element-index-array.

GFINF :get all system information about a field.

MCURS . place the curser on given position on the screen.

PINCH . read a character from the terminal.

POUTC : write a character to the terminal.

SBYTE . store a byte to an array.

LBYTE . load a byte from an array.

ITBIT © testif a bitin an array is set or not.

1ZBIT : zero a bit in an array.

ISBIT : set a bitin an array to one.

For the routines ICHEK, GFINF, MCURS, PINCH and POUTC the common-area
PRIVATE must be defined and correctly initialized as defined earlier in the ma-

nual.

Description of the routine:

ICHEK:

Call sequence:
IST = ICHEK(code,picture-number, field-number-array,data-

Parameters:

element-index-array,picture-core-index)

code = 0; returns core address to picture description in picture-

core-index, checks field-number-array. if any
errors.error codes are found in IST and ITERM(7).

code > < J; same as if code = 0 and in addition:

data-element-index-array(1) = 0; generates the values
in data-element-index-array.
data-eiement-index-array(1) > <0: check if the values
in data-element-index-array is in the range of ! to
2048.

IF no errors found, IST = 0 on return.

GFINF:

Call sequence:
ASSEMBLY GFINF
INTEGER ARRAY field-information-array(23)

IST = !CHEK(code,picture-number,ﬁeid-number-array,data-

glement-index-array,picture-core-index)

IF (1ST .NE. 0) GOTO ERROR

CALL GFINF(field-information-array, field-number, picture-core-index)

ND-60.088.03

MCURS:
call sequence:
ASSEMBLY MCURS

CALL MCURS (line-number,position-on-line) .
line-number: from 1 to number of lines on this terminal type.
position-on-line: from 1 to no. of positions on line.

If the user tries to position the cursor outside the defind area, the cursor is
placed in home-position.

PINCH:
Call sequence:
INTEGER PINCH
ASSEMBLY PINCH

input-character = PINCH(device-number)
Not printabie characters are transiated to vaiues as given in appendix B.

POQUTC:
Call sequence:
ASSEMBLY POUTC

CALL POUTC{device-number,character-value)

Only printable characters must be written to the terminal with this routi-
ne. The characters are buffered in groups of 8 before they are sent to
the output device with monitor call MON 22,

If the user wants an uncompleted buffer to be transmitted, he must call
POUTC with character-value = zero. Output strategy may be changed to
use MON 2 and no buffering by using the status/option facillity, see ap-
pendix-G.

SBYTE:
Call sequence:
ASSEMBLY SBYTE

CALL SBYTE(array,ayte-number . byvte-vaiue!
The bytes in “array” is numbered from 1 0 N. The rightmost byte in
"byte-vaiue” is stored.

LBYTE:

Call sequence:
ASSEMBLY LBYTE

byte-value = LBYTE(array,byte-number)
The bytes in “array’’ ist numbered from 1 to N.

ND-60.088.03

ITBIT IZBIT ISBIT are used for bit operations on an integer array.
The bits in the array are numbered:

ARRAY({1): 16,14,13,12,11,10,09,08,07.06,05,04,03,02,01,00

ARRAY(2): 31,30,29,28,27,26,25,24,23,22,21,20,19,18,17.16

AFRRAY(3): 47,46,45
=) (o

.......................................

Call sequence:
ASSEMBLY ITBIT, i1ZBIT, ISBIT

CALL IZBIT(array,bit-number)
CALL ISBIT(array,bit-number)

bit-value = ITBIT(array,bit-number)

Bit-value gets the value 0 or 1.

ND-60.088.03

Description of data returned in field-information-array-

{01}, Number of characters read to field.
(02); Fill code 40B (space) or 60B (zero).
{03}; Sign code: —1 = > no sign defined.
55B = > field is negative.
0 = > field has positive value.
40B = > field has positive value.
{04); Edit code: 1 - 9, edit code 1-3
10, edit code 0

11-28, edit code A-S
; Number of significant characters. Not inciuding edit characters.
; Number of positions that field occupies in picture.
; Storage code according to defined storage 1 - 5.
; Logical device number for terminal. ’
; Code for termination of input to fieid:

—4 CTR(Q) CTR(A)

—2 CTR{Q} CTR(Q) CTR(Q)

-1 ESCAPE AS DEFINED IN ITERM{(3)

0 CR. CTR(Q) CTR(J} (puts empty value to field), CTR(R)

{copies value of identical field above)
USER DEFINED FIELD TERMINATOR
CURSOR LEFT
CURSOR RIGHT
CURSOR DOWN
CURSOCR UP
HOME
CTRIL;
CTRI(S)

5S35
Lxesdaa

Q
@w

— ek .
— O W w3 U W -

oo
a0
34 -
e e
a3

N»A
J w
=9
i)

(

{11); line number of field.
(12); column number of field.

(13); field-number of identical field above if any.

(14); 1 if control read, else 0.

(15); no dispiay flag, if 1 then display modes are dropped.
(18); lenght of data element in words.

(17); control type, 0 if none.

(18); number of words of control information.

(19); address of control information.

(20); code for internal escape character as defined in ITERM(3)
(21); read strategy as in [TERM(4)

(22); break strategy as in ITERM(8)

(23)

ND-60.088.03

F-10

APPENDIX - G

THE STATUS/OPTION WORD ITERM(9) AND SYSTEM
DESCRIPTION OF ITERM(11) - ITERM(128)

STATUS/CPTION WORD ITERM(9):

Experience shows that the contents of this word is changed with new releases of
NSHS. It is therefore important to study the Program Description sheets and the
Revision log for the latest release.

The meaning of each bit in the word is:

BITO

BIT 1

BIT 2

BIT 3

BIT 4

BIT5

BIT6

If bit is set. it is possibie to force illegal values to fields defined with
control. When an iilegai vaiue is given, an error message is written on
the message line and the cursor is set to the first position of the
field. Giving "CURSOR-RIGHT" then forces the illegal value into the
field.

This bit is for internal use in RFLDS.

If the bit is set before a call to RFLDS, RFLDS clears the message li-
ne and sets the bit to zero before any fields are read. If bit is zero on
input to RFLDS, no action is taken.

If the bit is set, output:strategy as defined in the next three bits.4, 5,
and 8. is chosen. The next three bits are tested in succession and
output strategy is determined by the first bit different from zero. If bit
3 is zero. the momitor cail MON 22 is used and NSHS buffers 8 char-
acters before thev are transmitted.

If bit 2 and this it is set to 1, MON 2 {outbyte) is used.

if bit 3 and this bit is set to ! and bit 4 is zero, all output from
NSHS is written 0 a buffer in memory. The address of the buf-
fer must be defined in ITERMI{30) and the size of the buffer {in
bytes) in ITERM(33). ITERMI(32) hoids the number of bytes writ-
ten to the buffer and must be set to zero before any writing
starts. When the buffer is full,.an assembiy routine QERR is cail-
ed. On input to this routine the A-register = —' and the T-re-
gister contains a return address to NSHS. The routine is ax-
plained later in this appendix.

fbit3 == bit6 = 1and bitd = bit5 = 0, MON 162 {outstring)

is used. The output is buffered with 182 characters before
transmission.

ND-60.088.03

BIT7

BIT 8

BITS

BIT 10

BIT 11

BIT 12

BIT 13

BIT 14

BIT 15

If bit is set, "home™ given in first position of a field, will terminate
RFLDS. The terminating code on return will be 100. Status and
ITERM(7) is set to zero.

If bit is set, the UCONT-routine will automatically be cailed for all
fields. The User-controi-number is set to 1000. Defined User-con-
trol-nurnbers are supressed.

If bit is set, the user can decide which lines of a picture are to be
written by WRPTD/WRPTF. Iterm(126) must be set to the first line,
lterm(127)'to the number of foilowing lines to be written. (term(126)
and Iterm{127) are set to zero after each Write. {f unreasonable va-
lues are given, the whole picture is written.

If bit is set, error in input monitor cail will terminate RFLDS, but not
abort the program. Error code Iterm(7) is set to 35, and the error
code from the monitor call is found in ITERM(127).

If the bit is set, it is possible to terminate input to a field with
CTRL/L-Y which are then used as function keys. The terminating code
is transferred to UCONT in IFINFO (9} and UCONT takes appropriate
action, resets the control value and returns.

If bit is set to one, fields with "Must-read’’ and default value defined
can be passed by giving only CR. The default value is put to the fieid
and the cursor continues to the next field to be read.

Bit set gives speciai processing of fields with old contents and the re-
ad-bit set. !f the operator gives CR in the first position of these fields,
RFLDS will answer with bell to the terminai. If the field really should
have zero value, the operator must type CR a second time. If bit 15 is
zero, CR gives the fieid zero value the first time it is typed.

If the bit is one, the effect of CR and SPACE are interchanged as ter-
minating character for decimal fields (edit code 0 - 9).

Bit set, WRPTD writes spaces in field positions instead of dots.The
status option continues in ITERM(125):

If bit 0 is set, WRPTD and WRPTF writes arrow rights
instead of spaces. Bits 1-15 are not used.

ND-60.088.03

System description of the ITERM array:

ND-60.088.03

LN S R R T

ES

L 5

D Ak K kK K K N N A H A K m o kK kA

[ot raalal"3

-
%
%

E I

EE S T T B 3

L I R S

WA A Ak

7 RRERRRRNRRAARHE T T 2 0 % (] 2 5) #AREFRAXRHEARERARGESHR
7: *

3 * Tuew DESCRTBED IN NSHS MANUAL I
3 £ 7 I
2006 1 *1I DEVICE NUMBER I
% 001 2 * 1 PICTURE DISPLACEMENT/TERMINAL TYPE z
3002 3 #*1I ESCAPE I
3003 4 # 71 3ETURN STRATEGY T
3 0C4 %5 ¥ I PROCRAM “cur. z
3005 5 * I CUASCR 20SITION z
5006 T %I ZRRCE IODE -
3307 3 #: :ru{ 3TRATEGY -
2010 9 %I STATUS/OPTION 714G -
3411 10 * I 3RITATE LIaGTs z
3 — %

3012 10 % SLIREG PTNCH/POUTC - LAEG

2 013 12 % SLZRES CMCURS - LEEG

AR «3L3IRES ITBYT/UTIVT - L3EG

7015 4 # W.a NUTC - CTHARACTER

3016 15 # JDVREG H0UTT - JEV.NO.

4017 16 #* SAREG TIBYT/UTBYT SAVE A-REG

3020 17 % STREG DBYT/UTBYT 3AVE T-REG

33227 18 % SCREG NBYT/UTRYT 3AVE D-REG

1022 19 % 3IXREG DIBYT/UTBYT SAVE {-AEG

3023 26 % SWCREG UTRYT IOUNTER

o024 zv % 384 3 3YTES CUTST A DNFORMATICN

3325 22 % 38D 3 3YTES OUTST D NFORMATION

%026 23 # 38L ES O L;r L INFORMATICN

3027 2u # 38% ES CUTET X INFORMATION

3330 25 4 337 SAVED L TNFORMATICN

3 331 25 % 3dzm CURSOR ADDRESS TCR DMCURS

G332 7 % 2333 ;.«.;c WEEN CALLING DMCURS TRCM 20
G333 8 # 3347 70 28R, LIST TOR CUTST.

5 034 zg 33%R O SEVICE NUMBER

238 0 ¢ 3361 77 MEMCRY ALDRESS CF 3UFFER
%0336 31 0+ 3573 TR TS NC. OF CHARACTERS

4037 12+ 33%% T, IF TEARACTERS

70480 23+ 23¢R 3ED OF IMCUT/34CTT

3547w # IUFFER 3TART

3 . *

3, *

10172 123 # FEER IND

3173 124 # TNDEY 7O CURRBENT TTELD N ?FLDS

7174 125 # STATT SONTTNUATION OF ITEIMIG

3 # ZIT 3@ = WRPTD/WRPTT WEITES SACKED
3 # SPACES S TOURSCRS 3IZHT

A * > ¢ C= SPACES ARE '5::

7175 126 # USED CF WRPTD/F FCR STAAT MR. JF LIMES ™ 3%

3 * WRITTEN

3176 127 # VR, CF LINES TC 3E WRITTD

A id DR

A * CCNTAINS THE =RRCRCIDE TRCM SINBT MCM ~

4 * I3 CLEARD BEFCR CALL 0 PINBT

% *

T 177 128 # STELL CUTPUT CHARACTIER CCUNTER

3; *

{{, *******************&*%*************************%********
3

3 STATUS/CPTICN FLAG:

P4

o

3IT

s

BIT

0] IGNCRE CCONTACL

1 INTZERNAL STANSAAB FLAG

2 = INTERNAL MESSAGE FLAC

BI 3 = SPECIAL QUTPUT STRATEGY (MCN 22 IS CEFAULT)
i
5
3

un

—m
Ll

H

3IT = USE MCN 2; QUTBIT
BIT WRITE TO MEMCRY BUFFER
3IT USE MCN 162; CUTSTRING

]

i

"

3IT 7 = "HOME" TERMINATES AFLDS WITH TZRM-CHAR = 1CO.
IT 10 'OCONT' I3 ALWAYZS CALLZD TCR ALL FIZLDS.'UCMR' = 1C0C
3IT 11 = USED WHEN WRPTD/F I3 7O WRITZ CNLY PCRTICNS CF 2ICTURE
ITERM(125) = START LINE
ITERM(127) = NOC. CF LINES
3IT 11, ITERM(126) AND ITERM(127) ARE RESET AFTER CALL

3IT 2 = 3ET IF¥ EZRRCR FRCM MCN 7 SHALL TEEMINATE RFLDS.
3IT 13 = 3IT SET, CTR/L-Y TETAMINATES INPUT TO FIZLD. TERMINATING

CCDE IS TRANSFERED 70 UCCNT IN IFDNFO(9).
3IT i4 = 3IT 3ET, CR IN FIRST POSITICN CF FIELD WITH MUST-READ
GIVES TIELD DEFAULT VALUE AND RFLDS CONTINUES
70 NEXT FIELD.
3IT 5 = 31T SET, MAKES IT 2IFFICULY TC ZERC FIZLD WITH CR.
3IT 16 = DESIMAL-FIZLD TLAG. 3; CR RIGHT JUSTIFY #IZLD
S? JUSTIFY TOVARDS CIMMA
T CSPCSITE.
3IT 7 = 3IT 3ET, 3PACE I3 WRITTEN I TIZLIS I STEAD OF oCrs

WHEN WRPTD IS USED.

i

il

317 0C = BIT SET. WRPTD/WRZPTF USE CORSOR RIGHTS N STEAD CF
SPACES
- 7 NCT SED

Lok 'oWalt ol 0l ol il ol o) o ol ol oM od oM BN ol GY 3X a¥ Bl M oN oH BU ol ol [R o 2 BU BU X BA ol

ND-60.088.03

Description of the routine QERR:

Global symbois defined in Screen-libraries:
DISP 176;
INTEGER INERR;
PSID;
INTEGER NUNIT: =2, TUNIT: =2;
INTEGER ARRAY M104: = (NUNIT, TUNIT);
The routine definition:
*J9BEG;)9ENT QERR }9LIB QERR J9EXT QUIT
SUBR QERR

INTEGER ARRAY TTNUM(0}; *TNN =0:)9FABS TNN; “J9ADS PRIVATE TNN

INTEGER POINTER ITERM =TTNUM

QERR: L=:D:T=:L % LandT are return-addresses. Return to T if
% the output is to be repeted, to L if the
% execution is to continue. A contains the error
% code from a monitor cail or -1 if memory output
% puffer is full.
IFA = 161 THEN
% A=161 means no answer from remote
% computer, wait two seconds and
% try again.
Ar="M104": *“MON 104
=XIT
ELSE
IF T:="ITERM" STATO BIT 12 THEN % Put error code in
% ITERM(127) and
_ % ‘et RFLDS
% terminate.

A= "ITERM" INERR

L=0D
EXIT
ELSE 5 write sintran error to terminal,
%, go back to sintran.
* MON 84
CALL QuiT
Fi
Fi
RBUS
*JSEND
*J9BEG
*JSENT QUIT
*1SLIB QUIT
SUBR QuUIT
QUIT: *"MON 0
EXIT
RBUS
*)J9END

ND-60.088.03

H-1

APPENDIX H

NSL AND COBOL

COMMON AREAS

if an application program is written in COBOL, a FORTRAN BLOCK DATA su-
broutine must be loaded before NSL and normaily after the COBOL program.

The BLOCK DATA subroutine dimensions and initiates the NSL Private and Public
common areas.

Example:

BLOCK DATA
COMMON/PRIVATE/ITERM(128),IPRIV(1920)
COMMON/PUBLIC/IPUBL(B)

DATA ITERM/1,3,1000078.0,0,0.0.0.0,1920,118°0/
OATA IPRIV/0,1820,3,0,0,1915"0/

END

The length and contents of IPRIV and the contents of the first 10 words of
ITERM, are used here soleiy as an example. The contents of ITERM and IPRIV
can be changed from a COBOL program by calling the subroutine COSCR1.

SUBROUTINE COSCR1(IARR)

C PARAMETERS:

C INTEGER ARRAY 'ARR(8),

C IARR(1) = DEVICE NR. FOR TERMINAL

C IARR(2) = TERMINAL TYPE AND PICTURE DISPLACEMENT
C IARR(3) = ESCAPE CHARACTER

C IARR(4) = READ STRATEGY

C IARR(5) = PROGRAM MODE

C IARR(6) = BREAK AND SCHO STRATEGY

C IARR(7) = OPTION WORD

C IARR(8) = MAX NR OF PICTURES

INTEGER !ARR(1)
COMMON/PRIVATE/ITERM(128),IPRIV(30)
COMMON/PUBLIC/IPUBL(6)
ITERM(1) = IARR(1)
ITERM(2) = |ARR(2)
ITERM(3) = IARR(3)
ITERM(4) = IARR(4)
ITERM(5) = IARR(5)
ITERM(8) = IARR(6)
ITERM(9) = IARR(7)
IPRIV(3) = IARR(8)

RETURN

END

Note: Only relevant data can be changed. ITERM(6), ITERM(7), ITERM(10),
IPRIV(1), IPRIV(2), IPRIV(4) and IPRIV(5) can not be changed with COSCR1.

ND-60.088.03

Values for ITERM(6) and ITERM(7) are returned from the subroutine ERRORC.

SUBROUTINE ERRORC(ITERM7,ITERMS)
COMMON/PRIVATE/ITERM(128)
C ITERM7: NSL ERROR CODE ITERM(7)
c ITERM6: CURSOR POSITION ITERM(5)

ITERM7 = ITERM(7)
ITERM6 = ITERM(6)
RETURN

END

ND-60.088.03

COBOL—FORTRAN INTERFACE

In COBOL there is no data type that corresponds to the FORTRAN data type
“CHARACTER". Consequently, new entry points to some of the FORTRAN su-
broutines have been designed especially to overcome this language incompata-
bility. These routines can be distinguished by their suffix, the letter C (ERRORC,
OPENFC, CLOSEC, GTPICC, WMSGEC).

A file is opened in a COBOL program by using the normal OPEN INPUT/QUTPUT
procedures. For special purposes we may also cali the subroutine QPENFC:

SUBROUTINE OPENFC(IPNAS,IACC,IFTNR,IST)
INTEGER IPNAS(1),IFNAM(20)

CHARACTER NAME"40

CHARACTER ACS®2

EQUIVALENCE (IFNAM(1),NAME)

iPNAS: FILE NAME STRING.
IACC : ACCESS
0 = SEQUENTIAL WRITE
1 = SEQUENTIAL WRITE APPEND.
IFTNR: FORTRAN FILE NUMBER.
IST : RETURN STATUS
0 =0K.
—1 = ERROR IN PARAMETER IACC.
OTHER = FORTRAN ERRCODE.

OO0O000000O0

IF IACC.NE.O.AND IACC.NE.1) GOTO 91
ACS ='W’
IF IACC EQ. 1) ACS = "WA'

DO 101 =1.20

10 IFNAM(1} = IPNASI1)
OPEN (IFTNR.FILE =NAME,ACCESS = ACS,
STATUS = 'UNKNOWN’ ERR =92)
IST = 0
GOTO 999

91 IST = —1
GOTO 999

92 IST = ERRCODE

999 RETURN
END

ND-60.088.03

H—4

The closing procedure corresponding to OPENFC, is CLOSEC:

SUBROUTINE CLOSEC(IFTNR)

c IFTNR: FORTRAN FILE NUMBER.

c —1 = CLOSE ALL OPENED FILES.
CLOSE (IFTNR)
RETURN
END

The COBOL interface routines for WMSGE and GTPIC. Observe that the Cobol
string variables for picture-names, picture-file-name and message-string must
have exactly the same length as corresponding character-variables in the inter-
face routines.

SUBROUTINE WMSGEC(ISTR)
INTEGER ISTR(1),IKAR(41)
CHARACTER [CHAR®80
EQUIVALENCE (IKAR(1),ICHAR)
DO 10 I=141

10 IKAR(1) = ISIR(1)
CALL WMSGE(ICHAR)
RETURN
END

SUBROUTINE GTPICC(IPEN,NOPC INAM,IPNA IST)
INTEGER IPFN(1),INAM(1),IPNA(1)

DIMENSION MPFINA(21),MPINA(65)

CHARACTER iFIL*40,NAME®128

EQUIVALENCE (MFINA(1),IFIL),(MPINA(1),NAME)
00 10 J=1.21

10 MFINA(J) = IPFN(J)
DO 20 J=155
20 MPINA(J) = INAM(J)
CALL GTPIC{IFILLNOPC NAME.IPNA IST)
RETURN
END

ND-60.088.03

Unused Byte Positions

Cobol programmers should note that unlike COBOL where a field is byte-
oriented, NSL is word-oriented. In other words, in NSL, fields can contain unused
bytes. This situation will occur for example with Storage Code 3, if the number of
significant characters in addition to a possible sign renders an uneven number of
bytes. When programming in COBOL therefore, it is wise to define byte fields
such that they use an even number of positions. The unused position is filled
with the pad character.

Leading Bytes in Numeric Fields

In NSL, numeric fields stored as bytes wiil aiways have the unused leading
positions filled with spaces (ASCH Code 408). Cobol uses zeroes (ASCIHl Code

60B). Therefore in some instances it may be necessary to convert COBOL to NSL
on entry and NSL back to COBOL on exit.

A conversion routine has been designed to accomplish this. On entry to NSL, to
subroutines using a record as a parameter, leading zeroes in numeric fields are
converted to spaces and conversely on exit, leading spaces are converted to ze-
roes. This routine on entry aiso converts a trailing + sign to space and on exit a
trailing space to a + sign.

To activate this conversion function you must set the Cobol flag, bit 15, in
ITERM(3). This is accomplished by setting IARR(3) to —32768 plus the escape

character, before calling COSCRL. See section 6.7.4.1.

Note that in NSHS because the sign byte is aiways trailing, COBOL numeric
variables shouid be defined with 'SIGN TRAILING SEPARATE' clause.

ND-60.088.03

Program example 5: COB-EX1 (C)

This Cobol program demonstrates a few of the most important calls in NSHS. A
picture, INV is called, and the operator may write data to the fieids. The escape
character (which is used to get out of the input mode) is here CTRL/@ which gi-
ves the numeric value 0 for the right byte of ITERM(3). See section 6.8.4.1. The
correspanding value for the whole word is -32768 as used in the program for
ITERM(3).

In a Cobol program, numerics must be represented by formal parameters. The
values are set by the VALUE clause in the working storage section or in the pro-
cedure division. If special numeric values are used frequently in the program, the
corresponding parameters are named accordingly, thus W-0 for 0, W-1 for 1 etc.
See for example the cail 'WRPTF’ on line 94. The disadvantage is, that it is not
possibie to see the proper names of the parameters.

The data biock to oe loaded in front of the program is the same as used for the
other programs. The proper values are, however, set from the program by the
routine COSCR1 at the start of the program.

In this program the names of the subroutines are used to trace the processing of
the program by means of the STOP statement efter each call. We might have us-
ed the DISPLAY statement, but sometimes the processing is so fast that it is not
possible to see the text on the screen until it is overwritten by new text. The sta-
tement STOP (corresponding to PAUSE in a Fortran program) may then be used
in the program to make a temporary stap in the processing. A ‘CR’ will make the
program proceed. It is possible to give messages to the operator on the last line
of the screen by means of the cail 'WRMSGC'. In order to utilize the whole line,
the MESSAGE should be defined with 79 characters (here only 12}, and the text
should be terminated by "*'. See line 100-101 in the compiling list.

ND-60.088.03

PO R — b h ek b ed ek ed ek
- O WG R WN = O W

NN
w N

GG W G W W W W MR N NN
EERLB8E8YERLB8L88838ER

49

O~ DT W=

NORD-10/100 COBOL COMPILER - 10176 A

SOURCE FILE: COB-EX

OBJECT FiLE: COB-EX

IDENTIFICATION DIVISION.,
PROGRAM-ID.

COB-EX1.

‘The program demonstrates the most used calls in NSHS, calling
‘one of the pictures in the picture file. The processing is

‘traced by displaying the full name of the subroutine after

‘each call. The program uses the picture INV on PIC-FILE:OBJ.

DATA DIVISION.
WORKING-STORAGE SECTION.

77
77
77
77
77

N
a1
01
01
01
o1
01
01

01

77
77
77
77
77
77

77
77
77
77

TER-CHA COMP.
NO-OF-Fi COMP.
STAT COMP.
NO-FI-RE COMP.
ERR-COD COMP.
CURS-POS COMP.
W-0 COMP
W-1 comp
W-2 COMP
W-3 coMP
w-4 COMP

W-5 COMP

W-6 comp

W-7 COMP

W-3 coMP

FTNO comp

DAT-EL-iX-AR PIC X(52)

FI-NO-AR PIC X(40).

PIC-NGC-AR PIC X(16).

SCR-REC PIC X(2586).

PIC-FI-NAM PIC X(81).

PIC-NAM-STR PIC X(64).

DEVICE PIC X(8).

MESSAGE PIC X(12).

T-INITA.

03 INITA coMP

PROCEDURE DIVISION.
MAIN-PROG SECTION.
P-START.

MOVE 1
MOVE 3

MOVE 0
MOVE 8

TO INITA(Y).
TO INITA(2).

MOVE -32768 TO INITA(3).
(4)

(8).

ND-60.088.03

VALUE
VALUE
VALUE
VALUE

VALUE
VALUE

VALUE
VALUE
VALUE
VALUE 20.

@Mk LN 2O

VALUE LOW-VALUE.

QCCURS 8.

TO INITA(4) INITA(5) INITA(6) INITA(7).
TO INITA(8

50
51
52
53
54
55
56
57
58
58
60
61
62
63
64
65
66
87
68
69
70
71
72
73
74
75
76
77
78
79
80
31
82
83
84
85
86
87
88
89
80
91
92
83
94
95
96
g7
98
a9

H—8

MOVE "PIC-FILE:OBJ’ TO PIC-FI-NAM.
MOVE 'ORD INV PER " TO PIC-NAM-STR.

CALL "COSCR1" USING T-INITA.
STOP 'COSCR1 EXECUTED".

CALL 'GTPICC’ USING

PIC-FI-NAM W-3 PIC-NAM-STR PIC-NO-AR STAT.
IF STAT NOT=0 GO TO ERR-PRO.
STOP "GET-PIC OK'.

CALL 'CLSCR’ USING W-0 W-0 W-0 W-0 STAT.
IF STAT NOT=0 GO TO ERR-PRO.
STOP 'CLEAR SCREEN (1) OK'.

CALL "GTFDN’ USING W-2 W-1 W-0 FI-NO-AR
NQ-QF-FI STAT.

IF STAT NOT=0 GO TO ERR-PRO.

STOP 'GET-FIELD-NUMBERS OK'.

CALL "WRPTD’ USING W-2 STAT.
I[F STAT NOT=0 GO TO ERR-PRO.
STOP 'WRITE-PICTURE-TO-DISPLAY OK'.

CALL 'CLBUF’ USING

W-2 NO-OF-FI FI-NO-AR SCR-REC DAT-EL-IX-AR STAT.
IF STAT NOT=0 GO TO ERR-PRO.
STOP 'CLEAR-BUFFER OK'.

CALL 'RFLDS’ USING W-0 W-2 NO-CF-Fi FI-NO-AR
SCR-REC DAT-EL-iX-AR NO-FI-RE TER-CHA STAT.

IF STAT NOT=0 GO TO ERR-PRO.

STOP 'READ-FIELDS OK'.

CALL 'CLSCR’ USING W-1 W-1 W-3 W-0 STAT.
IF STAT NOT=0 GO TO ERR-PRO.
STOP 'THE SCREEN PARTLY CLEARED".

MOVE ‘P-T" TO DEVICE.

CALL "OPENFC’ USING DEVICE W-0 FTNO STAT.
IF STAT NOT=0 GO TO ERR-PRO.

STOP "OPEN-FILE-COBOL OK'.

CALL '"WRPTF" USING FTNO W-1 W-0 W-2 NO-OF-FI
FI-NO-AR SCR-REC DAT-EL-IX-AR STAT.

IF STAT NOT=0 GO TO ERR-PRO.

STOP "WRITE-PICTURE-TO FILE OK'.

CALL 'CLOSEC’ USING FTNOC.

ND-60.088.03

100 MOVE 'YOU DID IT!*" TO MESSAGE.
101 CALL "'WMSGEC’ USING MESSAGE.
102

103 GO TO FIN.

104

106 ERR-PRO.

106 CALL 'ERRORC’ USING ERR-COD CURS-PCS.
107 DISPLAY ERR-COD CURS-POS.

108

108 FiN.

110 CALL "ZBELL'

11 STOP RUN.

NO TEXT AMCUNT JNLPR Su TOTAL

1201 re2ind zars 14 2,55 2.340,84 89,732,359

100 .30 19 3,153 2.22C,290 7,508,653

1003 Std cement 53 535,30 21,35 1.087,5U

iQ36 Timger 2xe™ 7 5.133,0d 3,50 26.136,54

1005 Hails 4"dox Ty, uu 55,4u 825,0u . 42.120,22
*xxx piciure file: PI{~FILZ ZJ1cture name: [NV rwxx

N0 user ftoniral

Figure H-1: Record written out by :he command WRPTE

ND-60.088.03

H-10

APPENDIX |

SINTRAN FEATURES

Break and Echo Strategy

SINTRAN-IIl contains features which, make character input/output to NSHS mo-
re efficient. These enhancements allow you to choose between two break and
echo strategies. By setting the strategy in ITERM(8) to 1, the system upon en-
tering a field, will select a strategy table that, even though it causes the terminal
driver to echo legal characters, will not generate a bresk until the last character
(maximum for the field) has been echoed. Should an illegal character be entered,
it will not be echoed. Instead, a break will be generated and NSL will switch back
to the normal strategy, to option 0. whereby for the rest of the field break and
echo occurs on every character.

When ITERM(8) = 0, the following break and echo tables are operative:

BRKO:
ECHO:

When ITERM(8) = 1,table 3 or 4 or 5 is used, depending on the edit code of the
field being read.

BRK3: % No break on 1 0or g

BRK4: % No break on letters

BRK5: % No break on alphanumeric

ECH3: % echo 1—9

ECH4: % echo letters
ECH5: % echo alphanumeric

For further information see "SINTRAN-Ilf Reference Manual” (ND-60.128.02). The
tables are found in the SINTRAN-iisting.

ND-60.088.03

2 |

APPENDIX J

PUBLIC PICTURES

The following description requires some knowledge of Sintran and loaders. The
readers not familiar with the subject are referred to the relevant manuals and
ND’s course department.

In a multiuser environment of some size, Public pictures will probably be used in

‘paralell with Privat pictures.

There is no principle difference between Public and Privat pictures in the way
they are created. But the Public picture file is implemented in the file system in a
different way in order to utilize special Sintran features for fast and efficient
access.

Public pictures shouid be used in following cases:

1) In reentrant program systems where a few pictures are used frequently by
many background processes at the same time, for ex Menu pictures for
request systems.

2) For real-time programming where a few pictures are ofter used by many
terminals.

When Public pictures are used. both file access time and memory space are
reduced.

ND-60.088.03

J—4

APPENDIX K

It is now possibie by means of the program
SCREEN—COPY—FUNCTION

to copy pictures from one picture file to another. This program is delivered on
the NSHS-diskett named ND-100131-PART2:FLOPPY-USER.

The following text is identical to the program‘description for the product
(SUT-2446A).

LOADING/OPERATING PROCEDURE,
@PLACE-BIN <input-file>

@DUMP "SCREEN-COP-2446A:PROG", 000000, 000000

AVAILABLE COMMANDS IN SCREEN-COPY-FUNCTION:

HELP Heip function: lists the commands

EXIT Exit from subsystem

DEFINE-FILES Define and open source and destination files. Operator is
asked to give names of source and destination picture
files. Instead of a source or destination name — if the
previously defined name is to be re-used — one may

simply type "t

if destination file is not a picture file, operator is asked
whether it shall be made a picture file.

In case of an open file error. the file system error number
is given.

ND-60.088.03

MOVE PICTURES

LIST-PICTURES

DELETE-PICTURES

Move picture(s) from source to destination file.

Operator is asked to give name of source-picture and
destination-picture. :

When copy is complete, another set of source and desti-
nation picture names may be entered, and so on until an
empty source name (just CR) finishes the sequence and
returns to command level.

Possible error messages are:

On source picture names:
NO SUCH PICTURE {on source file)

Cn destination picture names:
PREVIOUSLY USED {a picture with this name is
already on dest. file)
FAILED, FILE TOO SMALL
TOO MANY PICTURES (a picture file may have
max. 49 pictures)

List names of pictures on source and destination files.

Delete picture(s) from destination file.

_ The SCREEN-COPY-FUNCTION is not a reentrant system.

ND-60.088.03

* 4k k kkxxx+ % SENDUS YOU

D i
,(29)7,

Please let us know if you
* find errors
* cannot understand information
* cannot find information
* find needless information

Do you think we could improve the manual by-rearranging the
al!!

contents? You could also tell us if you like the manu

* % % % % » + + »+ HELP YOURSELF BY HELPING US!!

Manual name:

What problems do you have? (use extra pages if nee

:i’ed)

R COMMENTS!!! % % % % % % % % % %

Are you frustrated because of unclear information
in this manual? Do you have trouble finding
things? Why don’t you join the Reader’s Club and
send us ‘a note? You will receive a membership
card - and an answer to your comments.

/'
ok ok ok ok ok ok ok ok

Manual number:

Do you have suggestions for improving this manuai?

Your name: Date:
Company: Position:
Address:

What are you using this manual for?

Send to: Norsk Data A.S.
Documentation Department
P.O. Box 4, Lindeberg Gard

Oslo 10, Norway

~ Norsk Data’s answer will be found on reverse side

\

Answer from Norsk Data

Answered by

Norsk Data A.S.
Documentation Depa
P.O. Box 4, Lindeber
Oslo 10, Norway

rement

g Gard

Date

Systems that put people first

NORSK DATA A.S JERIKOVN. 20 P.O. BOX 4 LINDEBERG GARD OSLO 10 NORWAY
TEL.: 02 - 30 90 30 - TELEX: 18661

