
NEW); if?

AS SMAMM

NORSK DATA AS

0.. 0.. 0......
O... CO. 00......

1.0... .0. 0.0.0....
000...... CO. 0..
00.0.0... .0. CC.
.0. .0... 000......
0.. O... 00......
.0. .0. 0......

EQQEEQEEnfifi
a , Asmmbém

REVISION RECORD
Revision Notes

7/76 1
1/79 Revision A:

The £0110 s have been corrected: 2-13 2-14 3—2 A—3
A—5 C—1 and the whole A ndix E.

Publ. No. ND-60. 075. 01
July 1976

NORSK DATA A.S.
0001!

01“!"
0..

FINN}.

0919909.. IOIIII

IO.

=6

3

=63

- o
-3 Lorenveien 57, Postboks 163 Okem, Oslo 5, Norway

a;

1

N

N N

NM MN

.1"hi}.

HHH

l—A

“PP.”

w

[ONION-[0

N

0300000300

90

GIMKCJONH

CO

NEON

N

Hz—IHH

H

145-m

t“?

Sections:

N

1...:

y_:

TA BLE OF CONTENTS

—-ooOoo——

GEN-ERA L INFORMATION

Introduction

Language Characte ristic 5

Definition
Symbols used
Type s of Statements

Language Environment

LA N GUA GE STATE ME NTS

Machine oriented Statements

Symbolic Formats and Object Translations
Memory Reference Instructions
Register Operations
Argument Instructions

Process oriented Statements

Symbolic Format
Available Directive Instructions

Definition of Data

General. Constant
Floating Point Constant
String Constant
Address Constant
Formatted Data

Macro Extensions

Defining a Macro,
Calling a Macro

ND’GO. 075. 01

[\3

l

I

I

I

'13

N

H

H

1—.

[ONION

5‘0

1

W
N

035.0

I

tpiolatxlamw rial-Ai—wowco000

N

N)

l

1

H

I»:

H

H

2*13

59> Sections:

0303

CO

0060

02

NH

USING THE LANGUAGE

How to write a' Program

Source Program Format

How to Prepare for Assembly

A ssembly Output
The Assembly Listing
Diagnostic Messages

AD.pendioggz

HUOW>

SUMMARY 01? INSTRUCTIONS

SUMMARY OF PSEUDO ODCODES

SAMPLE LISTING

BRF IN NORD—BO ASSEMBLER

NORD~5/NORD~50 LOADER

OPCODES AND THEIR VALUES IN THE THREE
ASSEMBLY MODES

——ooOoo——

ND-GO. 075. 01

1.1

1.2

1.2.1

1-1

GENERA L INFORMATION

ln'troduc tion

The NORD—SO assembler is a tw0~pass assembler. On the first
pass all macroes are expanded and labels are regognized and stored
in the label table together with their values. Certain pseudo opcodes
that may change the assembly address will also be serviced.

During the second pass all maerocs are expanded, the actual assembly
of instructions is performed, all pseudo opcodes that will effect the
assembly address are checked, assembler commands are acted upon
and all output is done.

The NORD—50 instruction repetoire is described in the NORD—SO
Reference Manual.

Language Characteristics

Definition

The NORD—BO will execute a program stored in its memory. Each
memory location will contain information that will direct the operation
of the central, processing unit or data used or generated during the
execution of the stored program.

To set up the computer to perform a particular task the programmer
may figure out the particular bit pattern required and insert it into
the memory. For a program of any appreciable size this becomes a.
tedious task prone to introducing errors.

To aid the programmer in setting up his NOPD—SO, the current assembly
program has been made available. The assembler allows the pro~
grammer to use easily remembered acronyms for the different tasks
that the computer may perform. Locations and registers that are used
may be given symbolic names. When this symbolic program is pro--
cessed by the assembler program, the appropriate numerical values
will be obtained and substituted for the symbolic program, and a binary
program is obtained. Writing his program on a symbolic form will
ease the programmers work, and the resulting program is readily
modified. ‘

This assembler is implemented as a two—pass assembler. Thus the
source program has to be processed twice. The assembler contains
tables for labels, macro prototype definitions, opcodes and pseudo‘ opcodes. During the first pass the following takes place: All labels
are picked up and saved in the label table together with their values.
Each record is checked to see if it contains a pseudo opcode. If
certain pseudo opcodes like ORG and BESS are detected, the current
assembler address is updated. If the EQU pseudo opcode is used
to define a label, all labels in the argument must have been defined
in a previous record. A

ND—GO. 075. ()1

a

1.2.2

1-2

Each pass is terminated by the END pseudo 0pcode and the source
file is terminated by the EOF pseudo opcode. If labels are de—
fined as global labels (GLO) or external references (EXT), the
appropriate flag bits are set in the label table.

Each record is checked to see if it contains a macro call, as all
macroes have to be expanded during pass one.

During the second, pass the following takes place: Each record is
checked to see if it contains a pseudo opcode. If not, opcodes are
checked for. If no legal. opcode is found, a check is made to see if
the record contains a macro call. Due to this search sequence of
the tables, a mnemonic appearing in the opcode or pseudo opcode
tables must not be used as a macro name. If a macro call was
detected, a switch is set to "a macro to be expanded” and call
sequence parameters are saved. If a pseudo opcodc is detected,
similar action as in pass one is taken. If an opcode is detected, its
numeric value is obtained from the 0] code table, arguments are
evaluated and the numeric instruction is assembled.

If requested, a listing and binary data are output to the assigned files.

Symbols used

An argument may contain a constant, a symbolic label. or an
arithmetic combination or" any number of these. Several. spec'al
characters are used to identify constants and arithmetic operations.
Special. characters are used to specify constants as follows.

Octal number. A number preceded b 7 an apostroph (‘) will be
treated as an octal number by the assembler.

Decimal number. Any number not preceded by a special character
will be treated as a decimal number.

ASCIIcharacter. A character preceded by a 1:: will be treated as
its 7 bits ASCII value.

The format of labels has been described in Section 3.1il. The
values of all labels have been determined and saved in the label
table during pass one. When the assembler is evaluating an argu—
ment, it will obtain the value of labels from the label table.
Constants will be evaluated by the appropriate subroutines. The
values thus obtained may be combined by using the following arith-
metic operators (4-), (—), (*) or (/). By using these operators
integer arithmetic may be performed as follows:

Addition: A (+) sign will add what is on the left of the
(+) sign to the first entry to the right of the
(+) sign.

Subtraction: The entry to the right of the (~) sign will be
subtracted from what is on the left of the (~)
sign.

NDmGO. 075. ()1

'1 -3

Multiplication: A (*) Sign will multiply what is on the left
of the (it) Sign by the first entry to the right
of the (*) sign.

Division: A (/) Sign will divide what is on the left of
the (/) sign by the first entry to the right of
the (/) Sign.

Unary (+) and (—) are allowed.

It should be noted that the address arithmetic works from left to
right. This is illustrated in the following examples:

* :20>1 4
+ 4 = 10

2 « 3
2 ’1‘ 3

Now constants and labels may be used in an argument when the
above rules for address arithmetic are observed. The following
gives examples of how to use the address arithmetic.

LABEL + 5
‘10 * LABT + AB
LABEL * 2/3 + 5
etc.

The fact that the integer arithmetic works from left to right may
often be used to great advantage. If it should be desired to perform
address arithmetic requiring parenthesis are as in F = (A * B)-l-(C ’1‘ D)
this may be done as follows:

E EQU c D
F EQU A i B-i-E

Current location. The (*) sign will be interpreted as current lo—
cation when it is the first entry in an argument
and when immediately followed by (—+--), (—), (’1‘)
or (/).

Literals. A literal is specified by using the (=) sign. Each
time a literal is specified in a memory reference
instruction, a new location containing the constant
is generated. This constant is specified as if
using the GCN pseudo 0pcode (see Section 2.3).
The address field of the memory reference
instruction will refer to this new lo tation.

To specify a literal, the (=) sign should immediately precede the
literal. The literal may contain a constant, a symbolic label or a
combination of these.

Example s:

To load 10 into register 3:

LDR 3, = 10

ND-GO. 075. ()1

fl

1. 2.3

l-4

To load register 3 with the address of ENTRY:

LDR 3, = ENTRY

Note however: No relocating of ENTRY!

The locations containing the literal constants will appear after the
first: LOR pseudo opcode. If a program contains more than one LOR,
the constants appearing after a LOR will only be those requested since
the last LOR.

lizpsaewintemets

When writing an assembly program, the programmer has the choice of
three major types of statements,

Machine oriented statements

Process oriented statements

Data definition statements

A machine oriented statement will normally occupy one location in
the object program. The contents of this location will direct the NORD~5
to perform. one specific task when the assembly program is being
executed. The task, may be specified by any of the instructions (opcodes)
listed in Appendix A. A machine oriented statement is specified by an
opcode followed by no more than five arguments depending on the
instruction,

A process oriented statement is used to give the assembler information
concerning the assembly. Pseudo opcodes may give the start of a
program (ORG), end of program (END), room for data storage (1388)
etc. It is seen that pseudo Opeodes do not generate any data that become
part of object program. But a process 0 "iented statement may determine
the load or assembly location of a machine oriented statement and its
actual assembled value. A process oriented statement is specified by
a pseudo 0pcode followed by one or more arguments. A macro call
directs the assembler to fetch one or more statements to be inserted
after the macro call.

A data definition statement is used to introduce data into the assembly
program, Examples of data are decimal constants, floating point
constants and alphanumeric data. The data defined may require one or
more locations of core storage. Data is introduced by a pseudo opcode
followed by one operand giving the data to be introduced.

The above statements are described in detail in Section 2.

ND-SO. 075. 01

my
1. 3 Language Environment

The assembler is written in the NORD—lO assembly language.
Thus, it must be executed on a NORD—IO. The assembler is
a part of the SINTRANJII Operating system. Thus, it must
initially be called through the Operating system. Once an
assembly is started, all input and output is through assigned
files.

ND—GO. 075. ()1

K‘)

2.

2.

2.

1

1.

1.

l

2

LANGUAGE STATEMENTS

Machine oriented Statements

The NORD—50 will accept the two following major types of executable
instructions ,- -

Memory Reference Statements

Register lnstructi ens.

Symbolic Formats and Object Translations

All machine instructions are written on. symbolic form by the
programmer and translated to the machine instruction format by the
assembler.

Generall I the roerammer will 5 ecif 7;. , b .

1) An operation to be performed,

2) one or more registers to be operated upon, and
3) further specification of operation.

The operation in 1’) is given as the operation code (opcode). Examples
are add and shift operations. A. sunnnary of all opcodes may be found
in Appendix A. Operations in 2) and 3) are given. as operands. There
may be from one to five operands depending on the Operation to be
performed. Operands are separated by a comma (,). The opcode is
separated from operands by one or more blanks as in the following
example:

OPC 0P1, 0132, 0P3

Memory Reference Instructions

A memory reference instruction is specified by the following general
statement:

OPC R,D,B,X,I

The opcode is given as OPC and may be any of the memory reference
opcodes given in Appendix A.

The register to be operated upon is given as R, and may be any of
the 64 registers available.

The memory location it is desired to reference is given as D.

The remaining three parameters are not necessarily required. Thus
a memory reference instruction may contain only 0130., It and D. If
one of the remaining parameters are required, any preceding parameter
has to be specified. Thus if it is desired to specify X register, a B
register must also be specified. However, if (, ,) is used, the assumed
base register is inserted for B and index register 0 for X.

ND-GO. 07 5. 01

2.1.3

If a base register is required it is specified by B. As base register
may be used any of the 15 base registers available. Each time a
memory reference instruction is specified, an assumed base register
is inserted into the machine instruction being assembled, unless a base
register has been specified by the programmer. The assumed base
register is set to zero at the start of each assembly pass and may be
changed by the BAS pseudo opcode.

If it is desired to use an index register for address modification, any
of the 15 index registers may be specified in the X position.

If it is desired to specify an indirect operation, I should be specified
as a nonwero value.

The values substituted for R, D, B, X andI may be any decimal or
octal constants, label or a valid arithmetic combination of constants
and labels. Literals may be used in the D field.

Register Operations

A register operation is specified by the following general statement:

OPC DR,SR,B

The opcode is given as CFO and may be any of the register operations
given in Appendix A.

The register to be operated upon is given as DR and may be any of
the 64 available registers.

The source register is given as SR, and may be any of the 64 available
registers. A source register is not required for the SZR and SON
0pcodes.

Parameter B will contain information depending on the opcode
according to the following table

Operation B field contents

Register I/O External register contents
Shift Shift count

Bit Bit number

Logical register Second source register
Register Second source register
Skip Second source register

ND-GO. 075. 01

2.1.4;

2.2

2.2.1

Argument Instructions

An argument instruction is specified by the following general
statement:

OPC R,A

The opeodc is given as CFO may be any of the argument instructions
specified in Appendix A.

The register to be operated upOn is given as R, and may be any of
the 64- available registers.

The argument is given as A. The size of the argument is limited to
16 bits. The argument may be a constant, label or any valid arithmetic
combination of these.

Process oriented Statements

A process oriented statement will give a specific directive instruction
to the assembler. Thus the information conveyed will be acted upon
by the assembler at assembly time and used to control the assembly
process. Process oriented statements may be used to specify that a
binary load tape is desired, the next statement should be listed on the
top of the next page, the end of the assembly has been reached, etc.

Symbolic Format
rd W“...

A. process oriented statement will be of the form:

POC A,B,C

where POC is a pseudo opeodc specifying the directive instruction.
The pseudo opeode will normally contain three alphabetic characters.
The pseudo opcode is followed by one or more arguments. Each
argument will normally be separated by a comma. An argument may
be any valid arithmetic combination.

Available Directive Instructions

Assumed _Base__l}egist_er

One or more assumed base registers may be specified as,

B/‘\S 1193.131; IJ , B

where LABEL is a label appearing in the source program and B
specifies a base register. .13 may be a numeric value, symbolic
reference or any valid arithmeticcombination of numeric values
and references which will specify any of the 15 available base
registers.

ND-—60. 075. 01

VI!

2.2.

2.2

2.2

2.3

A source program may contain several BAS pseudo opeodes associating
base registers to several entry labels.

When a memory reference instruction or address constant (AC N) is
being assembled , the evaluated address will be compared to the value
given to labels referenced by BAS pseudo opeodes, and the one giving
the smallest displacement from, the address referenced is selected.
Next the base register associated with this label is inserted into the
instruction or constant being assembled.

A maximum of 8 BAS pseudo opeodes may be specified in a program.
If more than 8 BAS pseudo ope-odes are specified, the first assumed
base reg'ster specified will be replaced by the new one, etc. Thus the
list for storing assumed base registers are of a circular nature.

Reserve Data Block

A part of memory may be reserved as

1388 A

where the parameter A gives the number‘of words to be reserved.
A may be any valid arithmetic expression giving a positive number
when evaluated by the assembler. A. negative 2888 is not valid and
will not reserve any room. The value of a 1388 will be listed in column
2 of the assembly listing. If a label is specified at the same time as
the 1388 the label. will be giving the value of the location of the first
storage word reserved by the B88.

.C.-__r

The pseudo opeode CLR will clear local labels, global labels and
macro prototype tables. This pseudo opeode should be inserted as the
first instruction in an assembly that does not require any information.
left over from a previous assembly.

ND—GO. 057.01

2.2.2.4

2.2.2.5

2.2.2.6

aeitignalAssembly
Conditional assembly may be specified by using the following pair
of pseudo opcodes

SCA A,B

ECA

The SCA pseudo opcode gives the start of the conditional assembly.
and ECA the end of the conditional assembly. If the two parameters
A and B are not equal, the source statements appearing between the
SCA and ECA statements will. be assembled. If A and B are equal,
the source statements between SCA and ECA will be listed as comments
in the object listing. The comparison between the two parameters is
arithmetic. The parameters A and B may be any valid arithmetic
expression. Conditional assemblies may be nested as

SCA A,B
: a
SCA 0,1)
I b
ECA

ECA

Depending on the parameters A,13,C and 1') sections a, c or b or
a, b, 0 may be assembled. Nesting rules are similar to FORTRAN
DO statement nesting rules.

Engaging

The end of a program unit is given by the pseudo Opeode END. The
END pseudo opcode will terminate assembly pass 1 and 2. When
END is read at the end of pass 2, all local labels will be erased.
Global labels will survive.

End of File

The end—of—file is given by the pseudo opeode EOF. The assembly
is terminated when the EOF pseudo Opeode is read.

ND—GO. 075. 01

2.2.2.7

2,2.2.8

2.2.2,?)

2.2.2.10

2-6

Emiiyaleics . '

A label may be given a specific value as in

A EQ'U B

B may be any arithmetic expression. The assembler will
evaluate B and assign this value to A. The value assigned to A
will be listed in column 2 of the assembly listing.

Externalflatware
The leader may be given information about external references by
using the EXT pseudo opcode as

EXT A,B,C

A,B,C are external labels that the current program wants to
reference. Each time a reference is made to the label A in the
program being assembled, information about this is made a part of
the binary output. This information is thus made available to the
loader which will update the locations in question as soon as
information about the label is made available to the loader.

§negify_.1:91:msiiq<i_12ata .1:16:19.8.
The FORM pseudo opcode is used to specify data fileds for for-‘-
matted data. This pseudo opcode is described under FDA’l“ in
Section 2.3.

99993939
If it is desired to repeat or generate a source statement several
times, this may be done:

GEN A

Then the next source statement will be repeated A times. A may
be any valid arithmetic statement giving a positive value when
evaluated by the assembler.

If A is zero or negative, the next source statement will. appear once.
Any opeode or pseudo 0pcode may be generated with the exception
of- a GEN pseudo opcode, a floating point constant or a string con~
stant. If a label appears on the same line as the GEN pseudo op-
code, it will be assigned the value of. the location given to the first
of the GEN'ed statements.

ND--GG. 075. 01

2. 2. 2.11

2.2.2.12

2.2.2.13

2.2.2.14

2. 2.2.15

2—7

EJQEEILQEEQLFL
Labels may be declared to be global as

GLO A,B,C

A, B and C are labels defined in the program. As many labels
as can be aeoomodated in a 80 column card image may be included
following_ the GLO pseudo 0pcode.

L39§§231-Ep_t£2:129iat
The loader may be given information: about library entry—points by
using the LIB pseudo opcode.

LIB A,B,C

A,B,C are labels defined in the program. The BR]? input to the
loader will be skipped up to an END or new LIB if at least one
of the labels are undefined. The LIB 3seudo opcode also acts as
a REF on the undefined labels.

Literal. 91:13:13
If any literals have been used in the program, one or more lo—
cations have to be generated. If a LOR pseudo opcode is inserted
immediately following the LOR pseudo opcode.

1)}"933‘311 i339}?

The name of a program may be saved as part of the object load
module by using the following pseudo opeode,

MAIN A

A is a label defined in the program. This label and the value
assigned to it will be saved in the load module.

é§_s_e_rs'2lv;_92t;i_op_s_
Assembly options are specified as:

OPT A,B,C,D,E,F,G

where

55 ll H selects no listing

'53 H H selects listing of errors only

NI)”60. 075. 01

2.2.2.16

2.2. 2.17

.C = 1 selects 'binary output

D selects file no. for source program
E selects file no. for listing of assembly

F selects file no. for binary output
I

G selects file no. for intermediate storage

Parameters A, B and C must be 0 or 1 or a symbolic expression
giving that value when evaluated. Trailing parameters may be
omitted. Thus, if it is desired to select binary output, only
parameters A,B and C have to be specified. If a file device should
not be changed, its parameter may be set equal to zero.

OPT 0,0,0,27
OPT 0,0,1,o,47

After the two above pseudo 0pcodes have been assembled, the source
program is read from file no. 27 and the assembly listing will be
saved on file no. 47. File device numbers should not be changed
during one assembly. Options should be selected as early as
possible in the assembly. '

Program Stai t~

The start address of a program is given as:

ORG A

where the parameter A gives the start location of the program. A
may be any valid arithmetic expression. If one of the parameters
in A is undefined, it will be assumed to be zero for the purpose of
computing the starting address. If the ORG pseudo opcode has been
omitted, the start address is assumed to be zero.

'

Presgsiaspirr:peilit
The loader may be given information about entry~points by using the
REF pseudo 0pcode as:

REF A,B,C

A,B,C are labels defined in the program. As many labels as can
be in a 80 column card may be included following REF pseudo
opcode. Each label and the value assigned to it will be saved as
part of the object load module. This information will be picked
up and stored by the loader which will use the information to link
programs.

ND-GO. 075.01

2. 2.2.18

2.3

2.3.2

2—9

Print Cross Reference Table

‘ If the XRE pseudo opcode is made part of a program, a cross
reference table will beprinted out at the end of the assembly.
All labels, their assigned value and all locations where the label
is referenced will be printed-"out. The labels will appear in
alphabetical order. Symbols defined inside macroes will not be
listed. Only references made subsequent to the XRE pseuso
opcodes will appear in the listing.

Definition of Data

When it is desirable to insert a constant into a given location,
this is achieved by using a pseudo opcode. This pseudo opcode
will direct the assembler to interpret its argument as a constant
to be converted and included as part of the object program. The
pseudo opcodc itself specifies the type of constant for the assembler.
The following data definition statements are available.

A general constant is specified by the following statement:

GCN A

The assembler will evaluate the operand (A) as single precision
value. The Operand may be any combination of numeric values,
labels and arithmetic operators as described in Section 1.2.2.

Floatincr Point Constant:1

A floating point constant is specified by the following statement:

FCN A SINGLE PRECISION (32 bits)

DCN A DOUBLE PRECISION (64: bits)

The assembler will evaluate the operand. (A) as a floating point
constant. The operand should be specified as in the FORTRAN
E or F format statement. The mantissa and exponent may contain
any number of characters consistent with the accuracy of the NORD—SO
floating point format.

ND~60. 075. 01

2.3.3

2.3.4;

2.3.5

String Constant

A string constant is specified by the following statement,

SCN 'STRING'

The string constant is found between the two apostrophs ('). The
string may contain any character except apostroph. The characters
in the string will be packed four to a word with the first character
in the most significant position in the data word. If only part of the
last word is required for storing characters, the unused part will be
filled with zeroes. Only the characters between the apostrophe will
be stored, not the apostrophs. The characters are stored without
parity. The maximum number of characters is only limited by the
80 character source record length.

Note that the spostrOphs (') are not stored in the string constant.

Add1795§§2332£fl£

An address constant is specified by the following statements,

ACN LABEL,B,X,I

The assembler will evaluate the operand LABEL as a single
precision value. The loader will add the program base to the
value to get an absolute address.

B,X and I specify base, index and indirect modification of the
address constant.

Thus, the address will be relocated at load time. If it is not
defined as an external, but otherwise similar to a memory'
reference instruction with the destination register omitted.

Formatted Data

It is possible to insert data into selected parts of a word by using
the FORM and FDAT pseudo opcodes. The FORM pseudo opcode
will divide a word into as many as 64 subfields. The FDAT pseudo
opcode will be used to insert data according to the specification

given by the last FORM pseudo opcode. The FORM pseudo opcode
may be used as in

FORM A,B,C

where only three fields are specified. Their lengths are A,B and
C respectively. We may select actual numbers for the field lengths

FORM 10, 10, 11, 7

where the word is divided into four fields.

ND*60. 075. 01

2.4

2.4.1

‘
2—11

The following FDAT will specify data according to the format
given by the last FORM,

FDAT R+10, LABEL * 3, 7, '10

When the assembler is evaluating the data given by a FDAT
pseudo opcode, it will go through the following steps.

The data that is to go into each field is evaluated separately as
a 32 bit constant. The absolute value of the constant is checked
to see if it will fit in its filed. This may result in an error
condition (operand flag).

Macro Extensions

In its simplest form. a macro is an abbreviation for a sequence cf
instructions.

Often a sequence of instructions is to be repeated several times.
It is then desirable to form abbreviations, for example we would
like to "attach" a name to the sequence of instructions and use the
name wherever we want the instruction sequence to occur. We
attach the name to the sequence by means of a macro prototype
definition.

Defining a Macro

A macro is defined as a macro prototype. This macro may then
later be inserted into the program sequence one or more times by
using a macro call. The macro prototype may contain any form of
coding. It may contain executable instructions, assembler directive
statements, macro calls and data definitions. This is subject to a
few exceptions that will be listed below. It is noted that a prototype
should not contain another prototype definition.

The prototype is stored in a separate table during the assembly. Thus
the programmer should attempt to write the prototype as compact as
possible in order to conserve storage space. Thus labels should be
kept short and comments avoided.

The start of a macro prototype definition is specified by the MACH
pseudo opcode, and the end of the definition by the EMAC pseudo
opcode. There should be a label associated with the MACR pseudo
opcode. This label. specifies the name of the prototype. The macro
name is given as one to five alphanumeric characters. A macro name
should not be the same as one of the opcodes or pseudo opcodes found
in Appendix A 0g 13.

ND~60. 075. 01

$37
The MACR pseudo opcode may. have one or more parameters. Theseparameters specify which labels the prototype should fetch from. thecall sequence. There are no label or argument associated with theEMAC pseudo opco'de. Three types of labels may be referenced insidea macro prototype;

Labels defined external to the prototype except internal
labels of another prototype.
Labels internal to the macro prototype.
Labels given as a parameter in the macro call sequence.
If a label is referenced in the prototype and the same label
appears as a MACR parameter, this label will be treated
as a call sequence parameter. When the macro is called,
the parameter in the corresponding location in the call
sequence will be substituted for the label.
This is illustrated in the following example,

ARNA MACR BAKER
LDR 5 , ABLE
MPY 5 , SBAKER
STR 5 , CHARLY
RTJ 0 , 0 , 3

CHARLY GCN 0

EMAC

This macro prototype defines a macro called ARNA.
The external label ABLE is referenced. When the macro
is called, one parameter will be expected in the call sequence.
This parameter will be substituted for BAKER. The internal
label CHARLY is defined. Although the macro may be called
several times , the internal label will. not become multiply
defined.

Regular labels may also be defined in a macro prototype.
This would however, defy the purpose of the macro as the
macro may be called only once. But it would be appropriate
to define an entire program as a macro prototype. This
prototype and a single call to it would then be read during
pass one of an assembly. During the second pass only the
macro call should be read. This way the source would be
read only once. The macro prototype must appear in the
source before it is being called the first time. The prototype
is saved during pass one. If the prototype is read during
pass two, it will be treated as a comment.

ND~60. 075. 01

2.4.2

2-13

When defining a macro prototype the programmer should be
aware of the following:

1) A macro may contain a call to itself or a call to a
second macro that will call the first macro. This
recursivity is limited to a level of 10.

2) A macro prototype should not be placed within another
macro prototype.

3) A macro is global.

4) A prototype should not contain the GEN pseudo opcode.

5) A maximum of 100 internal labels may be defined in
any prototype.

6) The maximum number of prototypes that may be de—
fined is 100. This is an assembly parameter that may
be changed by reassembly.

7) A macro name should not be an opcode or pseudo
opcode.

8) All prototypes should be defined before any label is
defined.

Calling a Macro

A previously defined macro prototype may be called by using a
macro call. This will cause the macro to be inserted after the
macro call. The macro specified in Section 24.1 may be called
as:

ARNA DOG 0-

Here the macro is called by placing the macro name (ARNA) in
the opcode field; This particular macro requires one parameter in
the call sequence (DOG). The above macro call will produce the
following coding to be inserted immediately after the macro call:

LDR 5,ABLE

MPY 5,DOG
STR 5, CHARLY
RTJ 0,0,3
CHARLY GCN 0

It may be noted that the parameter DOG has been inserted into
the MPY instruction.

ND—GO. 075. 01
Rev. A

2-14

If the macro call contains too many parameters, the extra para—
meters will be ignored. If the macro call contains too few
parameters, blanks will be substituted for the parameter.

No program should make more than 1156 macro calls.

ND—GO. 075. 01
Rev. A

3.1

3.1.1

3.1.1.1

3.1.1.2

USING THE LANGUAGE

How to write a Program

This section will contain information required by the programmer
when he is going to write his program.

Source Program Format

The assembler is record oriented. Thus one record will be read
into a buffer at a time for processing. The source will be read from
a disc file or any other input device supported by the I/O system
being used. .

The source program may consist of machine oriented statements,
directive statements to the assembler etc. One such statement will
be contained in each record.

A record contains as many as 80 characters. The record is divided
into four different fields,

1) The label field
2) The opcode field

3) The operand field

4) The comments field

A semi—free record is utilized. The record format is the same as the
record format for the NORD—lO assembly language. ‘

The label field starts in column one.

The opcode field is to the right of the label field
(at least one space ahead of it).

The operand field is to the right of the opcode field
(at least one Space ahead of it).
The comments field is to the right of the operand
field (at least two spaces ahead of it).

The Label Field

The label, if any, will have from one to six alphanumeric characters.
The first character must be alphabetic and appears in column 1. The
first space or non-alphanumeric character found after column 1
indicated the end of the label. The period character (.) is treated
like a digit.

Thagnggglieiield
In this field may appear any of the opcodes or pseudo opcodes found
in Appendix A and B and macro names.

ND~60. 075. 01.

3.1.1.3

3.1.1.4:

Ih§_Qn§I:§ec_i_F_i_e_1_<i_
Arguments in the operand are left justified within its field. No space
are allowed between arguments. The first space found indicates the
end of the operand.

The Comments Field

When an (*) is found in column one the whole record is treated as a
comment. If a comment is to appear on the same line as a statement
to be assembled, it may be placed after the last operand. Then there
should be at least one space separating the comment and the operand.
It is suggested that comments start in column thirty—one. Avblank
record is ignored.

Examples showing the format used are shown in Appendix C.

The result of the assembly is listed in three major octal fields where
the third field is broken down into several subfields. Field 1 contains
the address against which the source statement is assembled.

Field 2 contains the result of the assembly. Only information that
will actually be loaded into core during execution will appear in this
field. All information in this field will appear in a binary load module.
The field will never contain assembler or loader information.

'

The complete instruction in field 2 has been broken down and appears
in the remaining subfields. This will make it easier for the programmer .
to determine which registers have been used, what locations have been
referenced etc. Three different formats may be found depending on
whether the assembled instruction is a memory reference, register or
argument instruction. The contents of the different columns are
summarized in the following table.

Field , 3 4 5 6 7 8 9

Memory Contents , I X B OP R D
Reference Bit No. 31 30—27 26—23 22—18 17—12 11—0
Register Contents " 0 R mix 0 DR SRA SRB

' Bit N0. 31 30—27 26—23 22—18 17—12 11—6 6—0

Argument Contents I AFC ASF , 0 R ARG

Bit No. 31 30-29 17-16 22—18 28—23 15-0

When a memory reference instruction has been assembled, the letters
X or C may appear between fields 7 and 8. This indicates that an
external label (X) or a label defined to be in the common area (C) has
been referenced in the instruction. If both an external and a common
label have been referenced, the letter D will appear. ‘

ND-60. 075.01
Rev. A

3.2

If the source statement is a-pseudo 0pcode like ORG, BSS, EQU
or GEN, the value of the argument will appear in column 3.

If the source statement is an address constant I, X, B and the
displacement will appear in sub—columns 3 through 6.

How to Prepare for Assembly

When the programmer is ready to assemble his program, the
source 'dcck' should contain the following:

1) ORG pseudo opcode giving the start of the program.

2) CLR pseudo opcode to clear tables if this assembly
does not require information from any previous
assembly.

3) The source program.

4) END pseudo opcode giving the end of the program. units.

5) EOF pseudo 0pcode giving the end of the source file.

The source program should appear in the sequence indicated above.

The assembly may be recovered from the SINTRAN III command
processor by typing:

@NSGASSM

The assembler will initially run into a command processor which
is ready when it types a 7%. In this mode a set of commands
terminated by carriage return is accepted:

ASSM (source file>, (list file> , <object file>

Assembly is started with the specified file combination and con.—
tinues until an EOF pseudo op.code is found in the input, or by the
symbolic file names. If zero is used as list and/or object file no.
listing and/or object output is given. When list file is zero, the
XRE pseudo opcode is suprcssed, source lines with errors. however,
are listed on. the Teletype. Default file types and access modes:

source file: SYMB RX

list file: SYMB WX

object file: BRF 5 WX

ND-GO. 075. ()1

SCRATCH <file>

Use <file> as scratch file between pass 1 and 2.

Default file: 100
Default file type: DATA
Access mode: WX

EX or SUNTRAN)
Return to the SINTRAN III command processor.

N—5

Set NORD~5 mode. The assembler acts as a NORD—S
assembler.

N—SX

NORD—S programs will be assembled to run on a
NORD—SO.

N—50

Set NORD-SO mode. The assembler acts as a NORD—SO
assembler.

For the value of the affected opcodes in the three assembly modes,
see Appendix F. Also the pseudo opcodes FCN and DCN are
affected by the assembly mode.

Note: The binary programs delivered on paper tape from ND
is in the N—50 mode. If N~~5 mode is wanted as default
the mode should be changed before the SINTRAN III
command DUMP is given.

ND-60. 075. 01

3.3

3.3.1

3.3.2

3.3.2.1

Assembly Output

The Assembly Listing

When the appropriate options are selected, the assembler will give
an assembly listing. This listing contains the result of the assembly,
information on assembly errors and a. listing of the source.

An example of an assembly is given in Appendix C. Columns 1
through 4.0 contain several fields of octal information giving the
result of the assembly. Starting in column 45 the source program
is listed. Error flags will appear between the assembly result and
the source listing.

If any assembly errors occurred during the assembly, error flags
will appear right justified in columns 41 through 43. If a system error
occurred, the appropriate message will be listed starting in column 1.
The different error codes are explained in Section 3.3.2.

Starting in column 45 the source program is listed. The following
assembler commands will not appear in the listing, HLT, NOLS and
LIST.

Diagnostic Messges

When the assembler detects an error, a message to that effect will
appear in the assembly listing. Errors may be introduced due to
programmer errors or due to limitations imposed by the assembler.

Programmerlitters
When the programmer has made an error, one or more error flags
will appear as described in 3.3.1. The sample in Appendix C should
also be consulted as it shows the error flags as used for the different
instructions. The different error flags are,

Operand error

Illegal base register
Illegal destination register

Illegal 0pcode
Mi>bdbdo Illegal index register
M Label multiple defined

U Label undefined

Q Possible error

When one of these errors except M and Q has been detected, a halt
(STOP) instruction is substituted as the result of the assembly.

ND-60. 07 5. 01

3-6

When one of the limitations of the assembler has been exceeded,
a system error will result. Then a message will appear in the
assembly listing. '

System errors are as follows:

1)
2)
3)
4)
5)
6)

Label table f'ull.

Macro prototype table full.

.-Too many macroes expanded.

Cross reference table full.

Too many recursive macroes called.
Too many macro prototypes stored.

System errors are not recoverable and the assembly will be
terminated.

ND-GO. 075. ()1

APPENDIX A

SUMMA RY OF INSTRUCTIONS

Memory Reference Instructions

Mnem 0133.9:

RTJ
EXC
MIN
CRG

'

CRL
CRE
CRD
JRP
JRN
JRZ
JRF
JPM
JNM
JZM
JFM
ADD
SUB
AND
LDR
ADM
XMR
STR
MPY
DIV
LDD
FTD
FAD
FADD

Action;

Return jump

Remote execute

Memory increment

Skip if (R) 2 (Eu)

Skip if (R) .4 (Ea)

Skip if (R) = (Ea)

Skip if (R) aé (Ea)
Jump if (R) 2 0

Jump if (R) z. 0
Jump if (R)
Jump if (R) 75 0
Modify (R) and jump if (R) 3 0
Modify (R) and jump if (R) z. 0
Modify (R) and jump if (R)

Modify (R) and jump if (R) 74 0
Add (Ea) to (R)
Subtract (Ea) from (R)

Logical AND between (Ea) and (R)

Load (R) with (Ea)

Add (R) to (Ea)

Exchange (Ea) and (R)

Store (R) in (Ea)

Multiply (R) by (Ea)
Divide (R) by (Ea)

Load (FD) with (Ea, Ea + 1)

Store (FD) in (Ea, Ea + 1)

Add (Ea) to (F)

Add (Ea, Ea + 1) to (FD)

ll 0

H O

ND~60. 075. 01

A.2

A.2.1

Mnemonic:

FSB

FSBD

FMU

FMUD

FDV

FDVD

Action:

Subtract (Ea) from (F)

Subtract (Ea, Ea + 1) from (FD)

Multiply (r) by (Ea)
I

Multiply (FD) by (Ea, Ea + 1)
Divide (F) by (Ea)

Divide (FD) by (Ea, Ea + 1)

Inter Register Operations

Shift Instructions

Mnemonic:

SLR
SRR
SLA
SRA
SLL
SRL
SLRD
SRRD
SLAD
SRAD
SLLD

SRLD

A ction:

Left rotational shift

Right rotational shift

Left arithmetical shift

Right arithmetical shift
Left logical shift
Right logical shift
Left rotational double register shift
Right rotational double register shift
Left arithmetical double register shift
Right arithmetical double register shift
Left logical double register shift
Right logical. double register shift

ND*60. 075. 01

.2.2

.2.3

Miscellaneous Operations

Mnemonic:

BST

BCM

BCL

BS Z

BSO

FIX

FIR

FIXD

FIRD

FLO

FLOD

RIN

ROUT

A rithmetic Operations

Afiyangngz

RAD
RSB
RNHJ
a
RAF
RSF
RMF
RDF
RAFD
RSFD
RMFD
RDFD
RAS
RAA
RASA
RSS
RSA
RSSA

Action:

Bit set

Bit complement

Bit clear

Bit skip on zero

Bit skip on one

Convert floating to integer
Convert floating to rounded integer
Convert double precision floating to integer
Convert double precision floating to rounded
integer

Convert integer to floating

Convert integer to double precision floating
Register input

Register output

Action:

Register add

Register subtract
Register multiply

Register divide

Floating register add
Floating register subtract

Floating register multiply

Floating register divide
Double precision floating register add
Double precision floating register subtract
Double precision floating register multiply
Double precision floating register divide

Register add set carry
Register add add carry
Register add add and set carry
Register subtract set carry
Register subtract add carry
Register subtract add and set carry

ND-GO. 075. 0.1
Rev. A

.2.4 Test and Skip

Mnemonic:

SGR

ASG

SLE

ASL

SEQ

ASE

SUE

ASU

SGF

ASGF

SLF

ASLF

SEF

ASEF

SUF

ASUF

SGD

AGFD

SLD

ALFD

SED

AEFD

SUD

AUFD

Action:

Subtract registers and skip if result >0
Add registers and.skip if
Subtract registers and ski
Add registers and skip if
Subtract registers and ski
Add registers and skip if

result a O

p if result < 0
result < 0

p if result =' 0
result = 0

Subtract registers and skip if result 75 0
Add registers and skip if
Subtract floating registers
if result a 0
Add floating registers and
Subtract floating registers
if result < 0
Add floating registers and
Subtract floating registers
if result = 0
Add floating registers and
Subtract floating registers
if result # 0
Add floating registers and
Subtract double precision
Add double precision and

Subtract double precision
Add double precision and
Subtract double precision
Add double precision and
Subtract double precision
Add double precision and

ND—BO. 075. 01

result ¢ 0
and skip

skip if result a O
and skip

skip if result < 0

and skip

skip if result # 0
and skip

skip if result # 0
and skip if result)0
skip if result 2 0
and skip if result 4 0
skip if result 4 0
and skip if result = 0
skip if result = 0

and skip if result 75 0
skip if result 75 0

A.2.5

A.2.6

Logical Operations

Mnemonic:

RND

RNDA

RNDB

RXO

RXOA

RXOB

ROR
RORA
RORB
szn
RNAB
ROAB
RXAB

Argument Instructions

Aflamgng
XORA
ANDA

ORA

SETA

SE CA

ADDA

ADCA

DDP

DDN

DDZ

DDF

DSP

DSN

DSZ

DSF

Action:

Register AND
Register AND, use complement of (SRA)
Register AND, use complement of (SRB)
Register exclusive OR
Register exclusive OR, use complement
of (SRA)

Register exclusive OR, use complement
or (SRB)

Register OR :
Register OR, use coinplement of (SRA)
Register OR, use complement of (SRB)
Set all zeroes

Register AND, use complement of SBA and SRB
Register OR, use complement of SBA and SRB
Register exclusive OR, use complement of
SBA and SRB

Action:

Exclusive or
And

Or
Set register

Set register to complement
Add
Add complement

Skip if (DR) 2 ARG
Skip if (DR) < ARG
Skip if (DR) = ARG

Skip if (DR) 75 ARG
Skip if (DR) 2 ~ARG
3km fi(DR)<—ARG
Skip if (DR) = —ARG
Skip if (DR) 75 ~ARG

ND-60. 075. 01
Rev. A

APPENDIX 13

SUMMARY OF PSEUDO OPCODES

BAS LABEL, B

The parameter B specifies a base register associated
with LABEL to be used in memory reference instructions
if a base register has not been specified.

BSS A
The parameter specifies the number of locations that

is to be reserved.

CLR
Clear label tables.

COM
Start assembling into common area.

ECA
End of conditional assembly. Regular assembly is
resumed after a previous SCA.

END
Program end. Will terminate pass one and two and
erase local labels after end of pass two.

EOF End—of file. Will terminate the assembly.

EMAC
End of macro prototype definition.

EQU A
The label is given the value specified by the argument.

EXT A,B,C.... .
The parameters give the name of labels that are
external to the current program.

FORM A,B,C. . ..
The parameters specify fields for later use by FDAT.

GEN A
The contents of the next source statement are repeated
the number of times given by-the parameter.

GLO A,B,C. . ..
The parameters give the name of labels that are to be
declared as global labels.

ND-GO. 0‘75. 01

HLT
The assembly is temporarily stopped.

LIB
Defines a library entry—point.

LIST

If listing of assembly is specified, listing will be
resumed (see NOLS).

LOR

All literals requested after the last LOR will be
defined following LOR.

MAIN A

The parameter gives the name of the program being
assembled.

MACR A,B,C. . ..

Start macro prototype definition. The label gives the
name of the macro. The parameters give call sequence
parameters.

NOLS

The assembly will not be listed (see LIST).

OPT A,B,C,D,E.F.G
The three first parameters give the desired assembly
options (no listing, list error only, binary output if = 1).
The four last parameters give the FDN of the files used.

ORG A
The selected program counter is set to the value given
by the parameter.

PRG

Start assembling into the program areas.

REF A,B,C. 2..

The parameters give the names of program labels that
are required as external reference points.

'SCA A,B
Start conditional assembly. If. the two parameters are
equal, the following source statements will not be
assembled (see ECA). ”

ND-GO. 075. 01

XRE
Save data for a cross reference table to be "printed
at the END pseudo opcode.

The following pseudo opcodes are used to specify data:

FDAT A,B,C. .. Formatted data (see FORM)

GCN A General constant

FCN E or F Floating point constant

DCN E or F Double precision constant

SCN ‘STRING' String constant

ACN LABEL,B,X,I Address constant

ND-GO. 075. 01

APPENDIX C

SAMPLE LISTING

00620 00027000642 0 00
00621 00027000643 0 00
00622 24100000000 1 01
00623 00001000637 0 00
MONS
00624 00023010643 =30 00
00625 00023020642 0 00
00626 14000010102 0 14
00627 00020010642 0 00
00630 24040600001 1 01
00631 00023030644 0 00
00632 16040000103 0 16
00633 00001000635 0 00
00634 00000000000 0 00
00635 00027010643 0 00
00636 07042010001 0 07
00637 24100400001 1 01
00640 00027020642 0 00
00641 00001040624 0 00
00642 00000000000
00643 00000000000
00644

00645 00000000000

00646 00000000000

HANS 000643 000621
MONS 000624 000624
NILS 000637 000623
OLE 000642 000620
TALL 000644 000631
TRULS 000000 000645

(3—1

0000000620
00 27 00 0642
00 27 00 0643
00 00 02 000000
00 01 00 0637

00 23 01 0643
00 23 02 0642
00 00 01 01 02
00 20 01 0642
03 00 01000001
00 23 03 0644
01 00 00 01 03
00 01 00 0635
00 00 00 000000
00 27 01 0643
01 02 01 0001
02 00 02 000001
00 27 02 0642
00 01 04 0624

0000000001

0000000002

000624 000635
000641

000625 000627

000646

000640

ND—60. 075. 01
Rev. A

MONS

NILS

OLE
HANS
TALL
EXT

GCN

OPT 0,0,1,4,1,3,
CLR .

SAMPLE LISTING' XRE
ORG 400
STR 0,0‘LE
STR 0, HANS
SETA 2,0
RTJ 0,NILS
REF MONS
LDR 1, HANS
LDR 2,0LE
RAD 1, 1,2
ADD 1, OLE
ADCA 1, 1
LDR 3, TALL
SGR o, 1, 3
RTJ 0, 4+2
STOP 0
STR 1, HANS
EXC 1, 1, 1, 7
ADDA 2, 1
STR 2,0LE
RTJ 4, MONS
GCN 0
GCN 0
B85 1
TRULS
GEN 2
TRULS
TRULSGCN

END

APPENDIX D ’ ‘

BRF IN NORD- 5,0 ASSEMBLER

General

H-Group means two consecutive frames.
W-Group means four consecutive frames (one N—50 word).
S—Group means eight consecutive frames and are used for

symbols only.

Now to the different: control numbers:

Feed

Octal value : 0

Comparison with
NORD—lO BRF : FEED
Consists of : <FEED>

Explanation : Ignored

Increase LOC Counter

Octal value : 1
Comparison with
NORD—lO BRF : AFL

Consists of : < AFL > < H—GROUP>

Explanation : H1 + (CLC) -—) (CLC) NB! No zero fill
H1 may be negative

Load one N—50 Word

Ocatal value : 2

Comparison with
NORD—lO BR]? : LF

Consists of z < LF > <W—GROUP >
Explanation : - If 'add flag' is OFF (see below), then

W1->((CLC)), (CLC) +1—~)(CLC)

~ If 'add flag' is ‘ON, then
-

w1 + ((CLC)) —9((CLC)), (CLC) +1» (CLC)
and 'add flag' is turned OFF.

ND-60. 075. ()1

EXT

Octal value

Comparison with
NORD— 1 0 BRF

Consists of

Explanation

C omment

RE F

Octal value

Comparison with
NORD— 1 0 BER

Consists of

Explanation

REF

: <REF>< S-GROUP >

-. If SYMBOL is not defined, then add SYMBOL
to UNDEFINED symbol table with a notifi—
cation that it is used in 100. (CLC).

— If SYMBOL i_s_defined, then
w if ‘add flag” is OFF, then value

(SYMBOL) —>((CLC)) and ’add flag'
is turned ON;

~ if 'add flag‘ is ON, then value
(SYMBOL)+((CLC)) ~> ((CLC))

The expression

OLE+5

where OLE is an external symbol is
output as

<REF> < S-GROUP > <LF> <W~GROUP >
Here the S~GROUP contains the symbol OLE
and the W-GROUP contains the value 5.

ENTR

: <ENTR> < S—GROUP > <H-GROUP >

SYMBOL is entered into DEFINED SYMBOLS
TABLE with a value equal to

H1+(PB)

The UNDEFINED SYMBOL TABLE is then
scanned, and for each occurrence of SYMBOL
in this table, the following steps are performed:

- value of SYMBOL is added into location
referenced;

~ the entry is erased from the US. T.

ND-GO. 075. 01

D.10

LIB

Octal value

Comparison with
NORD— 1 O BRF

Consists of

Explanation

C omment

END

Octal value

Comparison with
NORD—lO BR]?

Consists of

Explanation

C omment

LIBR + ENTR

: <LIBR> <S-'GROUP> <H—GROUP >
: Identical with ENTR

LIBR denotes the entry point of a library
routine. ,It also acts as a REF on undefined symbols.

END

:<END>

(CLC)—>(PB); end of loading
No checksum is provided!

Set Location Counter

Octal value

Comparison with
NORD-lO BRF

Consists of

Explanation

C 0mm ent

7

SFL

: < SFL><W-GROUP >

: W19 (CLC)

Not produced by the assembler, but
implemented to ease the production of
memory dumps.

Load a Sequence of N—50 Words

Octal value

Comparison with
NORD—iO BRF

Consists of

Explanation

C omment

: Wi—e»((CLC)), (CLC)-ki—MCLC)

10

LNF

: <LNF> <H—GROUP>L<W—GROUP> --- <W—GROUP>/
V

Numbered by H-Group!

i=1,....,H.

See SFL above!

ND—GO. 075. 01

D.11 Load‘one N~50 Word~and relocate it

Octal value : 11
Comparison with .
NORD-IO BRF : LR

Consists of : <LR> <W—GROUP>

Explanation : As for LF, except W14-(Program Base) —>((CLC))

ND—60. 075. 01

APPENDIX E

LOADER COMMAND SUMMARY

The loader is controlled from the terminal or batch input file by the set ofcommands listed below. The command words may be abbreviated and theparameters (if any) are separated by space or comma.

AUTOMATIC
<file name l>
(file name 2>

<file name n >

The automatically scanned library file names are defined. Separate the filenames by CR and end the definition of the AUTOMATIC buffer by a period.The files in the AUTOMATIC buffer are scanned for undefined entries whenthe EXIT or LIBRARY commands are issued.

Default: NSC-LIB.
Default type: BRFS.

BREAK-CONDITIONS <BP> <BQ> <CONDITIONS>

Sets the program limit registers, BP and BO, and the break conditions to beused when the program is run. (The break conditions may also be changedin the NORD-SO Monitor.) Co-nditions may be:

stop on any reference in BP 2 BO
stop on data reference BP 2 BO
stop on store reference in BP 2 BO
stop on fetch reference in BP 2 80
Stop on overflow
stop on underflow
stop on parity error in memory'UCOT'UDU>

Default is: SP.

CC <comment>

Comment line.

DEBUG

The old contents of the memory-image file should be preserved for examin-ation.

DEFINE <symbo|> <octa| value>

The symbol will be entered into the loader table. Its value will be equal to theoctal number specified.

ND—60. 075. 01
Rev. A

DEFINE-COM MON <symbol> <octal value> <octa| size>

The common label will be entered into the loader table.

DEFINE-FIO <file name>

Define the name for the NORD-SO Formatted Input/Output and Run-time
System (FIO). The file is automatically loaded from load address 0 when the
first LOAD or LIBRARY command is issued.

Default: N50~FIO.
Default type: BRFS.

ENTRIES-DEFINED [<file name>]
All symbols (defined) present in the loader table will be printed on the
terminal. In addition, the current location and the upper bound are
displayed in the following format:

FREE: <current Iocation> —- <upper bound>

Default file name is the terminal.

ENTRlES-UNDEFINED [<file name>]

This command is similar to ENTRIES-DEFINED. However, only undefined
symbols are printed.

Default file name is the terminal.

EXIT

The control is left to the operating system and the loading is terminated. The
program and status information is saved on the memory image file.

FORMAT <format>

Set out formats to be used in the PRINT and LOOK—AT commands.
Formats may be 0, D, F, S, l, A, B, T or any combination of these
characters.

0 octal
D decimal
F floating point (64 bits)
S floating point (32 bits)
I instructions (disassembled)
A ASCIl I4 ASCII characters per word)
8 Binary
T NORD-lOformat (2x 16 bits octal)

HELP

List the available loader commands on the terminal.

ND-60. 075. 01
Rev. A

‘3

KlLL <symbol>

If present, the symbol will be removed from the loader table.

LlBRARY

Scan the files in the AUTOMATIC file name buffer for undefined entries. lf
the LIBRARY command is issued before any LOAD command the file
defined by the DEFlNE-FIO command is loaded.

LlST—MEMORY (output file)

List the contents of the NORD-SO Loader Memory Configuration Table as
set up by the SET-MEMORY command.

LOAD (file name> [<file name> . . .]

The filelsl specified will be loaded until end-of—file is encountered. Default
file type is BRFS.

When the first LOAD command is issued also the file defined in the
DEFINE-Flo command is loaded.

LOCAL‘COMMON

Common areas defined after this command is issued will be local to the
overlay.

[LOOK-AT] <address or register>

Enter the "look-at mode” to examine or change NORO-SO Memory lmage
File contents. The command may be omitted and just the address or register
to be examined given.

OVER LAY-ENTRY <entry name> [<entry name> ...]

Specifies the subprograms on the next overlay. These units may be called
from the root segment or from the actual overlay itself.

OVER LAY-FILE (file no./name>f

Specifies the overlay—file and the loader is put into overlay— mode.

PRlNT <low address> (high address> [<file>]

The contents of the address or register interval are printed on the specified
file. Output formats are specified by the last FORMAT command.

REFERENCE <symbol> <octal address>

If the symbol is not defined, a reference to the symbol in the address
specified will be linked to the undefined symbols list. When the symbol is
defined, the value of the symbol will be added to.the previous contents of
the address.

ND—60. 075.01
Rev. A

RENAME <old symbol name> <new symbol name>

The old symbol name in the loader table will be replaced by the new one.
Defined/undefined state and value are left unchanged.

RESET

The loader variables and tables are initialized (symbols removed).

RESET-LIST-MODE

No list of the 8 RF input will be given.

RT-COMMON-DEFINE

All RT-COMMON labels defined by the RT-LOADER (refer also to the
manual ”SINTRAN Ill RT Loader” — ND-60.051l will be defined as
common labels in the loader Symbol Table Labels defined to odd addresses
in the NORD-IO SINTRAN III RT—COMMON will be listed and ignored. The
addresses are transformed from NORD—lO addresses according to the
information given in the NORD-SO LOAD ER Memory Configuration Table.

The RT-COMMONDEFINE command should be used before the program
units referring to the RT-COMMON area are loaded.

When this command has been used, information about the size and address
of RT-COMMON is put on the Memory Image File. This information is
checked by the NORD-50 MONITOR before the program is allowed to run
on the NORD-SO.

RT-PROGRAM-DEFINE

Define RT-PROGRAM names. The command should be used after the
program units referring to the RT program names are loaded.

Only RT program names which are undefined symbols to the NORD-SO
LOADER are defined by the command.

SEGMENT-COMMON-DEFINE <segment no.)

All Segment-Common Labels defined by the RT-LOADER on the segment
specified will be defined as common labels in the Loader Symbol Table.
Labels defined to odd addresses in the NORD-IO SINTRAN III
Segment-Common will be listed and ignored. The addresses are
transformed from NORD-50 addresses according to the information given in
the NORD—SO LOADER Memory Configuration Table.

The SEGMENT-COMMON-DEFINE command should be used before the
program units referring to the Segment-Common are loaded.

When this command has been used, information about the contents of the
Loader Memory Configuration Table (Chapter 2) is put on the Memory
Image File. The NORD-m MONITOR will then run the program with the
memory configuration defined by the contents of the Memory Image File
ignoring the default memory configuration for the actual installation as
defined by the SET-MEMORY command in the NORD—SO MONITOR.

ND-60. 075. 01
Rev. A

SET-LlST-MODE <file>

A listing of the BRF input will be given on the file specified when program
modules are being loaded.

SET- LOAD-ADDR ES 8 <address>

Subsequent loading will start from the address specified.

SET—MEMORY (segment no.> <size> <type>

Define the NORD-SO Loader Memory Configuration Table (Chapter 2). j

STATU 8

Status information for the program is displayed.

UP PER-LIMIT <octa| address>

The load area upper limit is set to the value specified.

VA LU E <symbol>

If defined, the value of the symbol specified will be printed on the terminal.

Example:

VAL EDMUN
000777

X— LOAD <file name> [<file name> ...}

Exclusive load. Library sequences headed with defined symbols are skipped
while all other units on the filels) specified will be loaded until end-of—file is
encountered. Default file type is BRFS. This command is somewhat special ,and is used for system generation.

Example:

X-LOAD LIBRA

QUIT

Return to SINTRAN lll without ending the loading.

ND—60. 075. 01
Rev. A

17

APPENDDC F

OPCODES AND THIJR VALUES
BdCHDES

FAD 0
:FADO 0

F513 0
F580 0

'FMU o
FHUD 0
FDV 0
FDVD 0
FLU 0.0
FLOD 0.0
FIX 0.0

‘FIXD 0.0
'FIR 0,0
‘FIRD 0.0

RAF 0.0.0
, RAFD 0.0.0
fRSF. 0.0.0

. RSFD 0.0.0
RMF, 090.0
RHFDV 0.0.0
RDF 0.0.0
ROFD 0.0.0
SGF 0.0.0
550 0.0.0
SLF 0.0.0

'SLD. 0.0.0
55F 0.0.0
SEO 0.0.0
SUF 0.0.0
SUD. 0.0.0
ASGF .0.0.0
AGFD 0.0.0
ASLF 0.0.0‘

'ALFD 0.0.0
ASEF 0.0.0
AEFD. 0.0.0
ASUF 0.0.0
AUFD 0.0.0
HSGF 0.0.0
MGFD 0.0.0

. MSLF 0,0,0
. MLFD 0.0.0

MSEF 0.0.0
HEFD- 0.0.0
HSUF 0.0.0
“UFO. 0.0.0

' DSGF 0.0.0
DGFD 0.090
DSLF 0.0.0
DLFO 0.0.0
05E? 0.0.0
DEFD 0.0.0
DSUF 0.090
OUFD 0.0.0

'F—l

N~5
00034000000
00034000000
00035000000
00035000000
00036000000
00036000000
00037000000
00037000000
11100000000
11100000000
10000000000
10000000000
10400000000
10400000000
15000000000
15000000000
15040000000
15040000000
15100000000
15100000000
15140000000
15140000000
17000000000
17040000000
17240000000
17240000000
17440000000
17440000000
17640000000
17660000000
17000000000
17000000000
17200000000
17200000000
17000000000
17400000000
17600000000
17600000000
17100000000
17100000000
17300000000
17300000000
17500000000‘
17500000000
17700000000
17700000000
17140000000
17140000000
17340000000
17340000000
17540000000
17560000000
17700000000
17740000000

N~55X
00034200000
00034200000
00035200000
00035200000
00036200000
00030200000
00037200000
00037200000
11100200000
11100200000
10000002000
10000002000
10400002000
10400002000
15000202020
15000202020
15040202020
15040202020
15100202020
15100202020
15140202020
15140202020
17040202020
17040202020
17240202020
17240202020
17440202020
17440202020
17640202020
17640202020
17000202020
17000202020
17200202020
17200202020
17400202020
17400202020
17600202020
17000202020
17100202020
17100202020
17300202020
17300202020
17500202020
17500202020
17700202020
17700202020
17140202020
17140202020
17340202020
17340202020
17540202020
17540202020
17740202020

.17740202020

NI)"60.075.01

IN THE THREE ASSERIBLY

N—SO
00034000000
00034200000
00035000000
00035200000
00036000000
00036200000
00037000000
00037200000
11100000000
11100200000
10000000000
10000002000
10000000000
10400002000
15000000000
15000202020
15040000000
15040202020
15100000000
15100202020
15140000000
15140202020
17040000000
17040202020
17240000000
17240202020
17440000000
17440202020
17600000000
17640202020
17000000000
17000202020»
17200000000
17200202020
17400000000
17400202020
17600000000
17600202020
17100000000
17100202020
17300000000
17300202020

‘17500000000
17500202020
17700000000
17700202020

‘17140000000
17140702020
17340000000
17340202020
17540000000
17549202020
17740000000
17700203020

if)

‘

SLRD 090.0
SRRD 0,090
SLAD 0v0!0
SRAD 00090
SLLD 0.090
SRLD 09090

'
FCN 1.0
DCN 1.0

03000000000
03200000000
03500000000
03300000000
03540000000
03340000000

loooaooooan
oooaobooooo
20006000000
09000000000

03A00202000
03200202000
03500202000
03300202000
03540202000
03340202000

10020000000
00000000000
10020000000
00000000000

ND-"GO. 075. 01

03300202000_
03200202000
03500202000
033002n2000
03540202000
03340202000

goozooooooo
10020000000
ooooooooooog

$¢§2§$€5®®
EMMQQ

NORSK DATA A.S.
Lorenvn 57 — Postboks 163, @kern
OSLO 1

CQMMENT AME? EVALUATEWH SHEE?

ND-GO. 075.01 ‘ N0RD~50 ASSEMBLER

In order for this manual to deveIOp to the point where it best suits
your needs, we must have your comments, corrections, suggestions
for additions, etc. Please write down your comments on this pre~
addressed form and post it. Please be specific wherever possible.

FRQM:

— we make bits for the future

NORSK DATA A.S LQRENVEIEN 57 OSLO 5 NORWAY PHONE: 2173 71 TELEX: 18284

‘L?

1

mpg,

173

@f(,'

ll;

