NORD-10
FORTRAN SYSTEM
Reference Manual

NORSK DATA AS

5\ [s < ———

TlDataRB |

‘ Grev Turegatan 60, 11438 STOCKHOLM Tel. 08 -23 51 80 (

NORD-10
FORTRAN SYSTEM
Reference Manual

REVISION RECORD

Revision Notes

02/77 Original Printing

NORD-10 FORTRAN System — Reference Manual
Publication No. 60.074.01

NORSK DATA A.S.

[[444
04 200

Lorenveien 57, Postboks 163 @kern, Uslo 5, Norway

B06

2006
®
ey
L34

PREFACE

+ o+ 4

+

This FORTRAN Reference Manual is written for programmers using the
NORD-10 FORTRAN System.

This manual assumes a basic knowledge of the FORTRAN language. How-
ever, extensive use of examples throughout this manual shculd be of help

to clarify some of the difficulties.

This manual contains the information required to produce and run a
FORTRAN job.

ND-60.074.01

TABLE OF CONTENTS

+ o+ o+
Section: Page:
1 INTRODUCTION 1-1
2 ELEMENTS CF NORD-10 FORTRAN 2—1
2.1 Constants -
2.1.1 Integer -
2.1.2 Double Integer -
2.1.3 Real -1
2.1.4 Double Precision Real

2.1.5 Complex
2.1.6 Logical
2.1.7 Octal
2.1.8 Character
2.1.9 Hollerith

b

|

|
B WWWRNRN = - -

2.2 Variables

2.2.1 Simple Variables
2.2.2 Subscripted Variables
2.2.3 Arrays

L

I

MN!I\DMF\JT\J
[e eI RN RN S 2 BES 2 N

2.2.3.1 Array Structure —
2.2.3.2 Array Notation -
2.3 Character Type 2-9
2.3.1 Character Substrings 2-9
2.3.2 Substring Names 2-9
2.4 Statements 2—-10
2.5 Program Units 2—11
2.6 Order of Statements and Lines 2--12
3 EXPRESSIONS AND REPLACEMENT STATEMENTS 3—1
3.1 Arithmetic Expressions 3-1
3.1.1 Elements 3-1
3.1.2 Rules for Forming Expressions 3-2
3.1.3 Order of Evaluation 3-2

ND-60.074.01

Section:

3.2
3.3
3.3.1
3.3.2

3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.2.1

4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

5.1
5.2
5.2.1
5.2.2
5.2.3
5.2.4

5.3
5.3.1
5.3.2

5.4

5.4.1
5.4.2
5.4.3

Mixed Mode Arithmetic Expressions
Character Expressions

Character Primaries

Character Expressions

Arithmetic Replacement Statement
Mixed Mode Replacement Statement
Character Assignment Statement
Logical Expressions

Relational Expressions

Character Relational Expressions
Logical Replacement Statement

TYPE DECLARATIONS AND STORAGE
ALLOCATIONS

TYPE Statement
DIMENSION Statement
Adjustable Dimensions

COMMON Statement

Common Blocks

EQUIVALENCE Statement
Equivalence of Character Entities
DATA Statement

Character Constants in Data Statements
BLOCK DATA Statement

IMPLICIT Statement

PARAMETER Statement

CONTROL STATEMENTS

Statement ldentifiers

GO TO Statements
Unconditional GO TO Statement
ASSIGN Statement

Assigned GO TO Statement
Computed GO TO Statement

IF Statements
Arithmetic IF Statement
Logical IF Statement

DO Statements

DO Loop Execution
DO Nests

DO Loop Transfer

ND-60.074.01

1
|

Jﬁil&-b
(G2]

!

bl
oy

I

!

!

|
W~ OO WO

SO DLHDDH DD DL D
-—A._.A——A-—.A.!.A.»A—-—A\!

7
—

|

TRTTTY
BHWwWwWw N

O'll!ﬂtﬂ
o1 o1 Ol

- 00 O O

Section:

5.5
5.6
5.7
5.8

6.1
6.2
6.2.1
6.2.2
6.2.3

6.3
6.3.1
6.3.2

6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.9.1
7.9.2
7.9.3
7.9.4
7.9.5
7.9.6
7.9.7
798
7.99
7.2.10

vi

CONTINUE Statement
PAUSE Statement
STOP Statement

END Statement

PROGRAMS, FUNCTIONS AND SUBPROGRAMS

Main Programs and Subprograms

Parameters

Formal Parameters

Actual Parameters

Length of Character Formal and Actual Arguments

FUNCTION Subprograms
Function Reference
Function Parameters

Statement Functions

Library Functions
EXTERNAL Statement
SUBROUTINE Subprograms
CALL Statements

ENTRY Statements

Program Arrangement
RETURN and END Statements
Real-Time Priority Notation

I/0 AND FILE-UTILITIES IN NORD-10 FORTRAN

I/0 Statements

Implied DO Loop

Free Format 1/O Statements

The OPEN Statement

The CLOSE Statement

REWIND Statement

BACKSPACE Statement
ENDFILE Statement

Additional File Utility Subprograms
Read (random) Part of a File
Write (random) Part of a File

Set Block Size of a File

Set Byte Pointer of a File

Set Block Pointer of a File

Read Byte Pointer of a File

Read Maximum Bytes of a File
Set Maximum Bytes of a File
Read (sequential) Bytes from a File
Write (sequential) Bytes to a File

ND-60.074.01

Section:

8.1

8.1.1
8.1.2
8.1.3

8.2
8.2.1
8.2.2
8.2.3
8.2.3.1
8.2.3.2
8.2.3.3
8.2.3.4
8.2.3.5
8.2.3.5.1

8.2.3.6
8.2.3.7
8.2.3.8
8.2.3.9
8.2.3.10
8.2.3.11

8.2.3.12

8.2.3.13
8.2.3.14

8.2.4
8.2.5
8.2.6

8.3
8.4
8.4.1
8.4.2

8.5

9.1
9.2
9.3
9.4
9.5

vii

FORMAT SPECIFICATIONS

Introduction

Formatted Input/Qutput

Binary Input/Output

“Free’ Format Input/Standard Format Output

Formatted Input/Output

FORMAT Statement

Record

F10O-Conversion Specifications

F Format (Fixed Decimal Point)

E Format (Normalized with Exponent)

D Format (Normalized with Exponent)

| or J Format {Integer or Double Integer)
A Format {Alphanumeric)

Character Data Formatting

H Format (Hollerith)

oo Text ... For ... Text..."'
X Format (Skip)

T Format (Tab)

Z or O Format (Octal)

L Format {Logical)

/ Specification (Record Separator)
Scale Factor

Parenthesized Format Specification

Numeric Input Strings
FORMAT and List Interfacing
Field Termination by Comma

Binary Input/Output

Standard Format {nput/Qutput
"“Free” Format Input
Standard Format Output

Format Control
COMPILER USER’'S GUIDE

Cross Reference Map Option

The Program Map Option

The Conditional Compiling Option
The Library Mode Option

The Re-entrant Mode Option

ND-60.074.01

Page:

T
—

!

[eelRee ool e0)
o1 I
N = e e

|

|

|
= OO~ WWW

I
o

!

(X)CDCOCO(?OCX)OOCOCD@

@ o
i
oo

8—11
8—12
8—-12
8—14
8—14
8—-16
8—-17

8—18
8-19
821

8-22
8-23
8-23
8-24

825

Section:

9.6 DO-Loop Optimization

9.7 Statement Execution Profile Analysis

9.8 The Debugging Option

9.8.1 The Compilation and Load Procedures
9.8.2 Syntax of the Command

9.8.2.1 Syntax of the Arguments

9.8.2.2 Statement Specifications

9.8.2.3 Specifying FORTRAN Variable Names
9.8.3 The Availabie Commands

9.8.4 Examination of Variable Values

10 NORD-10 RELOCATING LOADER USER’'S GUIDE
10.1 How to Load and Execute a BRF-Program
10.2 Load-Address Control Commands

10.3 Commands Affecting the Symbol-Table
10.4 Saving and Dumping of Binary Programs
10.5 Auxiliary Memory Examination Commands
10.6 Memory-Image Loading

10.7 Overlay Segmentation of FORTRAN Programs
10.8 Common Blocks

10.9 The OPEN Command

10.10 Loader Command Summary

Appendixes:

A Coding Procedures

B Statements of NORD-10 FORTRAN

C Library Functions of NORD-10 FORTRAN
C.1 Intrinsic Functions

C.2 Bit Operations in FORTRAN

C.2.1 Logical Operations

C.2.2 Integer Variable Logical Shift

C.23 Single Bit Operations

C.3 SINTRAN 111 Monitor Calls

C4 System Routines of NORD-10 FORTRAN
D NORD-10 Word Structure

viii

ND-60.074.01

Page:

9—-10
9-11
9-11
9-11
9-11
9-—-12
9-12

10-2
10-3
10-4
10—-6
107
10-8
10-9
10-12
10-13
10-14

C'ﬂ >
!

|

!

OO?OOO
~NO OO -

!

R
©o @

w)
IR

Appendixes:

E Mixed NORD-10 FORTRAN and MAC/NPL/BASIC
Routines

E.1 Parameter- and File-Access in Assembly Subprograms

E.2 Access of Common Variables

E.3 Functions in Assembly

E.4 tExample of a MAC Subprogram Structure

E.5 Calling a FORTRAN Subprogram from Assembly

E.6 Calling Sequence of Single Argument FORTRAN
Library Routines

E.7 Directly Called Assembly Subprograms

E.8 Mixing NORD-10 FORTRAN/BASIC

F System Diagnostics

F.1 Compiler Error Messages

F.2 The Loader Error Messages

F.3 Run-time Error Diagnostics

G NORD-10 FORTRAN for 32 Bit Reals

H ASCIi Character Set

Example of Running a FORTRAN Job on the
NORD-10 FORTRAN System

ND-60.074.01

Page:

1 INTRODUCTION

The NORD-10 FORTRAN System provides a convenient language for
expressing mathematical and scientific problems in a familiar notation.

A set of FORTRAN statements, presented as a source program to the
FORTRAN compiler, produces an object program that contains the machine
language instructions for solving a problem. Compilation is carried out
sequentially, from one subprogram to the next; each subprogram is in-
dependently compiled. Once a program is compiled, and if no errors

are detected by the compiler, a program may be repeatedly loaded by

the loader and executed on the NORD-10 computer with varying sets

of data.

— The NORD-10 FORTRAN compiler is a two pass system developed on

the basis of the NORD STANDARD FORTRAN compiler. It is improved
and extended in various ways and reflects the recent trends in the FORTRAN
language development. Especially emphasized is the type CHARACTER
features, the IMPLICIT-, PARAMETER-, ENTRY-, OPEN- and CLOSE-
statements.

ND-60.074.01

2 ELEMENTS OF NORD-10 FORTRAN
2.1 CONSTANTS

Nine basic types of constants are used in the NORD-10 FORTRAN:
Integer, Double Integer, Real, Double Precision Real, Complex, Logical,
Octal, Hollerith and Character. The type of a constant is determined by
its form. The computer word structure for each type is given in Appendix
D.

2.1.1 Integer

«««««« An integer constant consists of up to five decimal digits in the range of
2% <n<2™1 an integer constant occupies one storage

location.
Example:
63 3241 896
247 27963 —4343
2.1.2 Double Integer

A double integer constant consists of up to 10 digits in the range of
_231=_2147483648 < n < 2147483647=231—1. A double integer
constant occupies two consecutive storage locations.

Examples:

—-444444 999000000

2.1.3 Real

Real constants are represented by a string of up to nine digits. A real
constant may be expressed with a decimal point or with a fraction and
an exponent representing a power of ten. The forms of real constants
are:

.nk .nEtxs n. n.Exs
n.n n.nkt+s .n

n is the base; s is the exponent to the base 10. The plus sign may be
omitted for a positive s. The range of s is O through 99.

ND-60.074.01

2.1.4

2-2

A real constant occupies three consecutive main storage locations.

m

xamples:

|

3.1415768 —-314. .013469
.31416E1 3.14E06 —-31.415E-1
~-0.31415E+01

Refer to Appendix G.

Double Precision Real
Double precision constants may be expressed by 1 to 23 significant decimal
digits. Their forms are similar to real constants, but a D corresponds to

E in the exponent part. The range is also equivalent to that of reals. A
double precision constant occupies six consecutive main storage locations.

Examples:

0.0D0 —1340.D3 3.1415926535D+1
+8.5D-2 4D04

Refer to Appendix G.

Complex

Complex constants are represented by pairs of real constants separated
by a comma and enclosed in parentheses.

R1 represents the real part of the complex number, and R2 the imaginary
part. Either constant may be preceded by a — sign.

Diagnostics occur when the pair of numbers consist of integer constants,
including (0, 0).

A complex constant occupies six main storage locations.

ND-60.074.01

Examples:

NORD-10 FORTRAN Representation: Complex Numbers:
{1., 3.80) 1. + 3.80i

(8.1, 16.2) , 8.1 + 16.2i
(—=11.09, 1.2E-3) -11.09 + 0.0012i
{1., 0. 1

(0., —1.) —i

Refer to Appendix G.

2.1.6 Logical
Logical constants are represented by one of the following notations:

.TRUE.
.FALSE.

A logical constant occupies one main storage location; the system represents
.TRUE. by 1 and .FALSE. by 0.

2.1.7 Octal

An octal constant is denoted by one to eleven octal digits postfixed by
the letter B. Depending on its magnitude, an octal constant is treated
as single or double integer.

Example:

1234568 —-7B 17777777778

2.1.8 Character

A character constant has the form of an apostrophe followed by a non-
empty string of characters followed by an apostrophe. The string may
consist of up to 80 characters. The delimiting apostrophes are not part
of the datum represented by the constant. An apostrophe within the
datum string is represented by two consecutive apostrophes. In a charac-
ter constant, blanks embedded between the delimiting apostrophes are
significant.

ND-60.074.01

219

The length of a character constant is the number of characters between

the delimiting apostrophes, except that each pair of consecutive apostrophes
counts as a single character. The delimiting apostrophes are not counted.
The length of a character constant must be greater than zero. (See Appendix
D.)

Examples:

‘A ‘ABCDEFGHIJKLM’ V2,34

Hollerith

A Hollerith constant is a string of alphanumeric characters of the form
nHf; n is an unsigned decimal integer less than 81 representing the length
of the field f. Spaces are significant in the field f. When n is not a mul-
tiple of 2, the last computer word is left-justified with ASCI! space filling
the remainder of the word. Hollerith constants may not be used within
expressions.

A Hollerith constant may also be enclosed within quotes omitting the nH.

Example:
2 HOK 3 HSUM 4 HDATA
2H,/A 6 HEXAMPL 12 HCOMPLEX , . DATA
2 HAGB 6 HNORD-1 “"HOLLERITH"
1 H1

ND-60.074.01

2.2

2.2.1

2.2.2

2-5

VARIABLES

Variable names are alphanumeric identifiers that represent specific storage
locations.

Simple Variables

The type of the variable may be defined in a TYPE declaration (Chapter
4). Otherwise, the type is determined by the first letter of the variable
name. The initial characters I, J, K, L, M and N indicate integer variables.
Other initial letters indicate real variables.

A simple variable represents a single quantity; a subscripted variable
represents either an array or one element within an array. ‘A symbolic
name consists of one to seven alphanumeric characters, the first of which
must be alphabetic.

Examples of simple integer variables:

N LIN 112
K2P11 NODE JTEST

Examples of simple real variables:

VECT B2306 OLE SIXSIX
PET26 A1B ATE

- Subscripted Variables

A subscripted variable is represented by an alphanumeric identifier followed
by a one, two, three or four dimensional subscript enclosed in parentheses.
If the subscript has more than four dimensions, a diagnostic is issued. The
identifier is the name of the array; subscripts may be constants, variables,

or expressions with integer values. A non-integer value will cause a compiler
diagnostic.

A subscripted variable references a single element in an array, the subscript
describes the relative location of the element within the array.

Subscript Forms

A subscript dimension may have the form of any integer expression. Mixed
mode or real expressions are not allowed.

ND-60.074.01

2.2.3

2.2.3.1

Examples:

Legal: [Hegal:

ARRAY(10 * NUM + 5, 20) ARRAY(10. * NUM + 2, 20.)
A(l(J)) A(A(2.))

B{l +2,J+3, K+ 4) BIX+2,Y+3.,Z2+4)
C(IABS(J})) C(ABS(X))

Arrays

An array is a block of successive memory locations for storage of variables.
In certain contexts, the entire array may be referred to by the array name
without subscripts. Each element of an array is referenced separately by
the array name plus the subscript notation. Arrays may have one, two,
three or four dimensions.

The array name and the dimensions of the array must be declared at the
beginning of the program in a DIMENSION, COMMON or a type state-
ment. The type of an array is determined by the array name of the type
declaration. The number of dimensions in an array subscript indicates
the dimension of the array; the magnitude of each dimension indicates
the maximum value that the subscript may take. Program execution
errors may result if subscripts are larger than the dimensions initially
declared for the array.

The amount of memory allocated to an array depends on the array type
and dimensions.

The compiler does not necessarily assign sequential storage to two or more
arrays.

Array Structure

Elements of arrays are stored by columns in ascending order of storage
location. The ordering of elements in an array follows the rule that the
first subscript varies most rapidly and the last subscript varies least rapidly.
In the array declared as A(3, 3, 3):

ND-60.074.01

A111 A121 A3

Az11 A1 A3

Az11 Azzr Aszzg

A1z A2 A3

Az12 A2 Al3zp

Az12 Az A3z3zp

A113 A123 A33

N Az13 A223 A233

| A313 A323 Az33

the planes are stored in order, starting with the first, as follows

A111 - L A121 - 14+9, A133 > L+72,
A211 - L+3 A221 - L+12 A233 - L+75,
A311 - L+6 A321 - L+16 A333 - L+78,

since one element in A occupies 3 locations.

The location of an array element with respect tc the first element is a

function of the maximum array dimensions and the type of the array.

Given DIMENSION A (L, M, N) the location of A(i, j, k) with respect

to the first element of the array A, is given by:
A+[i—T+L{j—-1T+M(k-1)] *E

The quantity in brackets is the subscript expression. It must be a positive

integer value. E is the element length in terms of the number of com-

puter words needed for each element of the array.

For real arrays, E = 3; for integer arrays E = 1.

ND-60.074.01

2.2.3.2

Array Notation

A subscript describing an array notation cannot have more dimensions

than are specified for the array; thus, the elements of the one-dimensional
array A(ID1) may not be referred to as A(l, J, K, L), A(l, J, K) or A(l, J).
A diagnostic will be given if this is attempted. However, any two-, three-,

or four-dimensional array may always be referred as if it were a one-dimensional.

The array name without a subscript references the entire array when it
is used in an 1/0 list, a specification statement other than DIMENSION,
or as a parameter of a function or subroutine subprogram.

ND-60.074.01

2.3

2.3.1

2.3.2

2-9

CHARACTER TYPE

A character datum is a string of characters. The string may consist of
any characters. The blank character is valid and significant in a charac-
ter datum. The /ength of a character datum is the number of characters
in the string. A character datum unit has one 8 bits byte in a storage
sequence for each character in the string.

Each character in the string has a character position that is numbered
consequtively 1, 2, 3, etc. The number indicates the sequential position

of a character in the string, beginning at the left and proceeding to the
right.

Character Substrings
A character substring is a contiguous portion of a character datum. A

character substring is identified by a substring name and may be assigned
values and referenced. A substring name is local to a program unit.

Substring Names

The forms of a substring name are:

vileql : [eg])

alslsl..)([eq]: [eg])
where:

v is a character variable name

a (s [,s] ...) is a character array element name

eq and eo are each an integer expression and are called substring
expressions

The value of g1 specifies the left-most character position and the value
of g5 specifies the right-most character position of the substring. For
example, A(2:4) specifies characters in positions two through four of
the character variable A, and B(4,3)(1:6) specifies characters in positions
one through six of the character array element B(4,3).

The values of g1 and gp must be such that:
1< g1 Sep<le

where len is the length of the character variable or array element.

ND-60.074.01

2.4

STATEMENTS

Statements are the basic functional units of the FORTRAN language.
An executable statement performs a calculation or directs control of
the program; a non-executable statement provides the compiler with
information regarding variable structure, array aliocation, storage sharing
requirements. Assignment, control, and input/output statements are
executable. The non-executable statements are specification statements,
and the DATA, FORMAT, PROGRAM, FUNCTION and SUBROUTINE
statements.

A statement consists of an initial line which may be followed by any
number of continuation lines. The characters of a statement are written,
one per column, in columns 7 through 72. Continuation lines are marked
by a character other than blank or zero in column 6. No more than

one statement may be written on a line.

A unique label may be assigned to any statement. A statement label is
a numeric string in the range 1 to 32767; leading zeros are ignored. Thus,
0012 is equivalent to 12 or 012 when used as a statement label. The

label may be placed anywhere in the label field. Trailing spaces are ignored.

Thus, ,,,, 12,12 ,, wopand ., 12 all refer to the same label,

ND-60.074.01

2.5

PROGRAM UNITS

A NORD-10 FORTRAN program consists of one main program and,

optionally, one or more subprograms. The term program unit refers to
either the main program or a subprogram.

A main program is a set of statements and comments forming a self-contained
computing procedure; it must contain at least one executable statement.

A PROGRAM statement may be used as the first statement of a main

program, but is not necessary. A main program may not contain a FUNCTION
or a SUBROUTINE statement.

7

A subprogram is also a set of statements and comments. A procedure
subprogram contains at least one executable statement and is headed by
either a FUNCTION or SUBROUTINE statement.

ND-60.074.01

2.6

2—-12

ORDER OF STATEMENTS AND LINES

A PROGRAM statement may appear only as the first statement of a main
program. The first statement of a subprogram must be either a FUNCTION,
SUBROUTINE or BLOCK DATA statement.

Within a program unit that permits the statements:

1. FORMAT statements may appear anywhere

2. all specification statements must precede all DATA statements, state-
ment function statements and executable statements

3. all statement function statements must precede all executable state-
ments

4. DATA statements may appear anywhere after the specification state-
ments

Within the specification statements of a program unit, IMPLICIT statements
must precede all other specification statements except PARAMETER state-
ments. A PARAMETER statement must precede all other statements
containing the symbolic names of constants that appear in that PARAMETER
statement.

The last line of a program unit must be an END statement.

ND-60.074.01

3 EXPRESSIONS AND REPLACEMENT STATEMENTS

3.1 ARITHMETIC EXPRESSIONS
An arithmetic expression is a constant, variable (simple or subscripted),
an evaluated function, or any combination of these separated by arith-

metic operators, commas, or parentheses to form a meaningful mathe-
matical expression.

Arithmetic Operators:

+ addition - subtraction * multiplication
/ division ** exponentiation
3.1.1 Elements

The elements of arithmetic expressions are formed as follows:

A primary is an arithmetic expression in parentheses, a constant (positive
or zero), variable, array element, or function reference.

(A+B) (—A*B) ((A**B)—(A*B))
124 12.4E-2 0
X All, J) SIN(V)

A factor is a primary, or a primary**a primary:

(A+B) (A+B)**X [**2
A term is a factor, a term/factor, or a term™term:

A**B (A**B)/X ((A**B)/X)*SIN(V)
A signed term is immediately preceded by a plus or minus:

—A**B -X —(—A*B)

A simple arithmetic expression is a term, or two simple arithmetic ex-
pressions separated by plus or minus:

(A+B)+X X/2.314 Y/SIN(X)-A**B

An arithmetic expression is a simple arithmetic expression, or a signed
term plus or minus a simple arithmetic expression:

—X/Y [**2+K —~A**B-X/Y

ND-60.074.01

Rules for Forming Expressions

Two arithmetic operators may not be adjacent to each other; X + — Y is
an illegal expression. The subtraction operator may not be used as a sign
of negation. —X implies 0—X and must be enclosed in parentheses when
preceded by another operator: X + (—Y) is a legal expression.

Parentheses may be used to indicate grouping as in ordinary mathematical
notation, but they may not be used to indicate multiplication: (X} (Y)
does not imply (X) * {Y); nor does juxtaposition imply multiplication:
XY does not imply X * Y.

Any primary may be raised to a power that is a positive or negative integer
primary, but only a positive real primary can be raised to a real power.
Real and integer quantities may be mixed in the same expression.

A negative primary may not be raised to a power that is a real number:
(—15.0)**2.5 is illegal. A primary with a zero value may not be raised
to a power value of zero. An element may not be evaluated if its value
is not mathematically defined. Diagnostics are given under run-time.

Order of Evaluation

When the hierarchy of operations in an expression is not completely spec-

ified by parentheses, the operations are performed in the following order:
¥* exponentiation performed first

division

multiplication } performed next

+ addition

— subtraction A} performed last

Within a sequence of consecutive multiplications and/or divisions, or ad-
ditions and/or subtractions, when the order is not explicitly indicated by
parentheses, expressions are evaluated from left to right.

Whenever ambiguity is possible in the evaluation of an expression, paren-

theses should be used. The ambiguous expression A**B**C can be clarified
as (A**B)**C or A**(B**C) only by parentheses.

ND-60.074.01

Examples:

Valid Expressions: Invalid Expressions:

A*{-B) A¥*—B
—B+C

A—B+C

A—(B+C)

—{A+B)**C evaluated as —((A+B)**C)
—(A+B)

J*¥*|

AX*|

ND-60.074.01

3.2

MIXED MODE ARITHMETIC EXPRESSIONS

Arithmetic expressions can contain mixed types of constants and variables.

Mixed mode arithmetic is accomplished through the special library con-
version subroutines (Appendix C.4).

The order of dominance of the operand types within an expression is
complex-double precision-real-double integer-integer.

In mixed mode arithmetic, the mode used to evaluate any portion of an
expression is determined by the dominant type so far encountered within
the expression, and the normal hierarchy of arithmetic operations; integer
mode will be used when an integer type is first encountered and will be
converted to real mode when a real type is encountered.

The following table indicates how the mode is determined from the pos-
sible combinations of variables.

+— %/ Integer Double Real Double Complex
Integer Precision

Integer Integer Double Real Double Complex
Integer Precision

Double Double Double Real Double Complex
Integer Integer Integer Precision

Real Real Real Real Double Complex
Precision

Double Double Double Double | Double Complex
Precision Precision Precision Precision| Precision

Complex || Complex | Complex | Complex] Complex Complex

Examples:

1. Given A, B type real; |, J type integer. The mode of evaluating
the expression (A*B—I+J) will be real because the dominant oper-
and is type real. It is evaluated:

A* B~ Ry real
Convert | to real
Ri—1->Ro real

Convert J to real

Ro+J -~ R3 real
ND-60.074.01

The use of parentheses can change the evaluation. A, B, |, J are
defined as above. (A*B-—(l—J)} is evaluated:

A* B~ Ry real

—J-> Ry integer

Convert Ry to real

R1 — Ry~ R real

The order of the elements in an expression can change the evaluation.
A, B, |, J are defined as above. The expression (J—I+A+B) is evaluated:
J—1-> Ry integer

Convert R4 to real

R1+A~> Ry real

R2 + B~ R3 real

Rules:

1.

The order of dominance of the standard operand types within an
expression from highest to lowest is:

COMPLEX

DOUBLE PRECISION
REAL

DOUBLE INTEGER
INTEGER

The mode of an evaluated arithmetic expression is referred to by
the name of the dominant operand type.

ND-60.074.01

3.

In expressions of the form A**B the following rules apply:

B may be negative when the form is A**(—B).

For the standard types the mode/type relationships are:

Type B
Double | Double |
Integer Integer Rea Precision Complex
Integer Integer | Double | Real
integer
Double Double | Double | Real
Integer Integer | Integer
Real Real Real Real
Double Double
Precision Precision
Complex Complex

The empty squares denote illegal expressions.

ND-60.074.01

Mode of A**B

3.3 CHARACTER EXPRESSIONS

A character expression is used to express a character string. Evaluation
of a character expression produces a result of type character.

The simplest form of a character expression is a character constant, sym-
bolic name of a character constant, character variable reference, character
array element reference, character substring reference or character function
reference. More complicated character expressions may be formed by using
one or more character operands together with character operators and
parentheses.

The character operator is:

// Concatenation

A character concatenation expression is formed by:

Xq /1 Xg

where

X1 denotes the operand to the left of the operator

X9 denotes the operand to the right of the operator

The result of a concatenation operation is a character string whose value
is the value of X4 concatenated on the right with the value of X5 and
whose length is the sum of the lengths of X and X,. For example, the
value of ‘AB’ // ‘CDE’ is the string ABCDE.

A character expression and the operands of a character expression must

identify values of type character only. The operands for a concatenation
operation must have a specified constant length.

3.3.1 Character Primaries
The character primaries are:

Character constant

Symbolic name of a character constant
Character variable reference

Character array element reference

Character substring reference

Character function reference

Character expression enclosed in parentheses

Noohkwh =

ND-60.074.01

3.3.2

3-8

Character Expressions
The forms of a character expression are:

1. Character primary
2. Character expression // character primary

Thus, a character expression is a sequence of one or more character primaries
separated by the concatenation operator. Form 2 indicates that in a charac-
ter expression containing two or more concatenation operators, the primaries
are combined from left to right to establish the interpretation of the expres-
sion. For example, the formation rules specify that the interpretation

of the character expression

‘AB" // ‘CD' // 'EF’

is the same as the interpretation of the character expression

("AB" // ‘'CD') // 'EF’

Note that parentheses have no effect upon the value of a character expres-

sion. Thus, the value of the character expression in this example is the
same as that of the constant ‘ABCDEF".

ND-60.074.01

3-9

3.4 ARITHMETIC REPLACEMENT STATEMENT

The general form of the arithmetic replacement statement is

e is an arithmetic expression

v is any variable name, simple or subscripted written without a
sign

= means that v is replaced by the value of the expression e, with
conversion for mode if necessary

Examples:
REST =X+Y*A
SUM = X + SIN{X)

ARG(ILJ) =X +2,* Y (I + 1)
PER(1) =52+ X**Y

ND-60.074.01

3.5

3-10

MIXED MODE REPLACEMENT STATEMENT

Although the type of an evaluated expression is determined by the type
of the dominant operand, this does not restrict the types that the iden-

tifier v may assume.
Arithmetic Replacement Statement

v =e

v is an identifier, e is the evaluated arithmetic expression.

Rules for Assignment for e to v.

vV type e type Assignment

Integer Integer Assign

Integer Double integer Convert double integer to
integer and assign

Integer Real Fix and assign

Integer Double precision | Double precision fix and assign

Integer Complex Fix real part and assign

Double integer |Integer Convert integer to double inte-

Double integer
Double integer
Double integer
Double integer
Real
Real
Real
Real

Real
Double precision

Double precision
Double precision

Double precision
Double precision

Complex
Complex

Complex
Complex

Complex

Double integer
Real
Double precision

Complex
Integer
Double integer
Real

Double precision

Complex
integer

Double integer
Real

Double precision
Complex

Integer
Double integer

Real
Double precision

Complex

ger and assign

Assign

Fix to double integer and assign
Double precision fix to double
integer and assign

Fix real part to double integer
and assign

Float and assign

Float and assign

Assign

Double precision evaluate and
real assign

Assign, real part of e

Double precision float and
assign

Double precision float and
assign

Real evaluate, Double precision
assign

Assign

Real part evaluate, Double
precision assign

Float (e) - real part, 0 > imag-
inary part

Float (e) ~ real part, 0 ~ imag-
inary part

e - real part, O — imaginary part

Real converted e ~ real part,
0 - imaginary part
Assign

ND-60.074.01

Examples:

1. A =1+ Jis evaluated as:
[+J - Rq integer
Convert R4 to real

Store R1 in A

2. I =J+ A is evaluated as:
Convert J to real
J+A-> Ry real
Convert R4 to integer

Store RT in |

ND-60.074.01

3.6

3—-12

CHARACTER ASSIGNMENT STATEMENT

The form of a character assignment statement is:
V=¢g

where

v is the name of a character variable, character array element or
character substring

e is a character expression

Execution of a character assignment statement causes the evaluation of

the expression e and the assignment and definition of v with the value

of e. None of the character positions being defined in v may be refer-
enced in e. All of the character positions referenced in e must be defined.
v and e may have different lengths. If the length of v is greater than the
length of g, the effect is as though e were extended to the right with blank
characters until it is the same length as v and then assigned. If the length
of v is less than the length of g, the effect is as though e were truncated
from the right until it is the same length as v and then assigned.

If v is a substring, only the character positions specified are defined. The

definition status of character positions not specified by the substring is
unchanged.

Examples:

CHAR = 'ABC’ // 'DEF’
X{1){1:J+1) = CHAR(2:3)

ND-60.074.01

3.7

3—-13

LOGICAL EXPRESSIONS
A logical expression has the general form

01 op020p03....
The forms 0; are logical variables or relational expressions; and op is either
the logical operator .AND. indicating conjunction or .OR. indicating dis-
junction.
The logical operator .NOT. indicating negation appears in the form

.NOT. 0

The value of a logical expression is either true or false. Logical expres-
sions are generally used in logical IF statements. (See Section 5.3.)

Rules:

1. The hierarchy of logical operations is:

First NQCT.
then AND.
then .OR.

2. A logical variable or a relational expression is, in itself, a logical ex-
pression. If Lq and L, are logical expressions, then

NOT. L4
L1 .AND. Ly
Ly -OR. Ly

are logical expressions. |f L is a logical expression, then (L) and
({L)) are logical expressions.

3. If Ly and Lo are logical expressions and op is .AND. or .OR. then
L1 op op Ly is always illegal.

4. The logical operator .NOT. may appear in combination with .AND.
or .OR. only as follows:

.AND. .NOT.

.OR. .NOT.

.AND. ((NOT. ..)
.OR. ((NOT. .. .)

ND-60.074.01

3—-14

.NOT. may appear with itself only in the form
NOT.(.NOT.(.NOT.
Other combinations will cause compiler diagnostics.
5. If Lq and Ly are logical expressions, the logical operators are defined
as follows:
.NOT.L4 is false only if Lq is true
L., AND. Ly is true only if L4 and Lo are both true

L1 .OR. Ly is false only if L4 and Lo are both false

Examples of logical expressions:;

Valid Expressions: llegal Expressions:
A.OR.B A.NOT..OR.B
A.AND.B A.OR..NOT..NOT.B
A.OR.B.AND.C.OR.D X.GT.B.AND.C

.NOT.A.AND.B.AND.C
.NOT.(A.AND.B)
X.GT.Y.AND.A
A.AND..NOT.B

A, B, C and D are logical variables, X and Y are real.

ND-60.074.01

3-15

RELATIONAL EXPRESSIONS
A relational expression has the form:
dq ¢p qo

where gq and g5 are arithmetic expressions; op is an operator belonging
to the following set:

Operator: Meaning:

EQ. Equal to

NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to
LT, Less than

LE. Less than or equal to

A relation is true if qq and go satisfy the relation specified by op.

A relation is false if g1 and qp do not satisfy the relation specified by op.

Rules:

1. Use a relational operator between two arithmetic expressions:

41 op 4

2. It is not permissible to use the form

41 0P g 0P 43

instead separate two relational expressions with a logical operator
AND. or .OR. in any of the forms

.AND.
q, opq, A dy0p 4,

.OR.
q1 op q2 q3 op q4

3. The evaluation of a relation of the form aq op a9 is from left to
right.
The relations q, op a_, q. op (g.), {(g.) op g

and (q_) op (q,)
are equivalent. 21 2 1 1 2

2

ND-60.074.01

3-16

Examples:

A.GT.5.2
RX—-X(5)*A.LT.Y
B—-C.EQ..5
X(1).GE.X{1—1)
I.LE.10

ND-60.074.01

3.9

CHARACTER RELATIONAL EXPRESSIONS

The form of a character relational expression is
eq relopey

where
eq and gy are character expressions
relop is a relational operator

A character relational expression is interpreted as the logical value true
if the values of the operands satisfy the relation specified by the oper-
ator. A character relational expression is interpreted as the logical value
false if the values of the operands do not satisfy the relation specified
by the operator.

The character expression g1 is considered to be less than gy if the ASCII
value of g4 precedes the ASCII value of g9 in the collating sequence; €1

is greater than ey if the ASCII value of eq follows the ASCII value of gy in
the collecting sequence. If the operands are of unequal length, the shorter
operand is considered as if it were extended on the right with blanks to
the length of the longer operand.

Example:

CHARACTER A * 3
IF ((A.EQ."YES').OR.(A.EQ.'NO")) GOTO 10

ND-60.074.01

3.10

LOGICAL REPLACEMENT STATEMENT

The general form of a logical replacement statement is

E=1L

where E is a variable of type logical and L may be a logical or relational
expression, or any of the logical values .TRUE. or .FALSE.

Examples:

LOGICAL L1, L2, L3, L4

L1 =_.TRUE.

L2 = .FALSE.

L3 = L1.0R.L2

L4 = LT.AND..NOT.L3
L1 = X.GE.Y

L2 =L1.0R.Y.EQ.2

Note: It is illegal to assign a logical or relational expression to an arith-
metic varaible, or to assign an arithmetic expression to a logical

variable.

ND-60.074.01

3-18

TYPE DECLARATIONS AND STORAGE ALLOCATIONS

Statements of this kind are also called declarative statements. Declarative
statements are non-executable statements that:

assign word structure to variables {(TYPE),
reserve storage for arrays and single variables (DIMENSION, COMMON),
designate shared storage (COMMON, EQUIVALENCE), and

assign initial values to variables (DATA).

ND-60.074.01

4.1

TYPE STATEMENT

The TYPE statement provides the compiler with information about the
structure of variable or function identifiers. It overrides or confirms the
type implied by the first character of the identifier and it may provide
dimension information. The TYPE statement has the following form:

tV‘I....,Vn

tis INTEGER, DOUBLE INTEGER, REAL, COMPLEX, DOUBLE PREC-

ISION, LOGICAL or CHARACTER, and the v; are variable name, array
name, function name or array declarator.

Example:
INTEGER A, X11, 11, HEP, D36F (1 word/element)
DOUBLE
INTEGER IDOUBL, DWORD (10) (2 words/element)
REAL INTER, ITEST, K25, ALFA (3 words/element)
DOUBLE
PRECISION DP (6 words/element)
COMPLEX C1 (6 words/element)
LOGICAL L1, L2, X, Y(5) (1 word/element)

CHARACTER CHAR * 3, B(5)*2

Rules:

1. The TYPE declaration is non-executable and must precede the first
executable statement in a given program.

2. If an identifier is declared in two or more TYPE declarations a com-
piler diagnostic will occur.

3. An identifier not declared in a TYPE statement will be an integer
if the first letter of the identifier is I, J, K, L, M or N; for any other
letter it will be real.

4. An array identifier in the list designates the entire array.

ND-60.074.01

The form of a CHARACTER type-statement is:
CHARACTER [*len [,]] nam [, nam] . ..
where

pam is one of the forms:

v [*len]

a [(d)] [*len]

v is a variable name or a function name

a is an array name

a (d) is an array declaration

len is the length {number of characters) of a character variable,

character array element or character function, and is called the
length specification. len is an unsigned, non-zero, integer con-
stant.

A length_len immediately following the word CHARACTER is the length
specification for each entity in the statement not having its own length
specification. A length specification immediately following an entity is
the length specification for only that entity. Note that for an array, the
length specified is for each array element. If a length is not specified for
an entity, its length is one.

An entity declared in a CHARACTER statement must have a length specif-
ication that is an integer constant expression. Formal parameters should
be specified with maximum length, although during execution they assume
the length of the associated actual argument.

The length specified for a character function in the program unit that
references the function must be an integer constant expression and must
agree with the length specified in the program unit that specifies the fun-
ction.

ND-60.074.01

4.2

DIMENSION STATEMENT

Storage may be reserved for arrays with non-executable statements, DIMEN-

SION, COMMON and type.
DIMENSION vq (iq), ..., v, (i)

Each v(i) is an array declarator. vj are the array names; (i;) are subscripts
containing 1, 2, 3 or 4 integer constant subscript dimensions separated by
commas. The number of dimensions indicates the dimensions of the array.
The magnitude of the value given for each dimension indicates the maxi-
mum value that the dimension may take in any subsequent reference.
From information in a DIMENSION statement, the compiler determines
the number of computer words to reserve for the array named in the state-
ment.

In the following statement, the number of elements in the array is 125;
the array has three dimensions and its elements are real numbers.

DIMENSION SPACE (5, b, 5)

REAL SPACE

The value of a subscript dimension may never be less than 1.

The number of computer words reserved for the array, SPACE, is 375.
This is three times the number of elements in the array because the type
of the array is REAL, and in the NORD-10 computer, a real number uses

three computer words or 48 bits.

An integer uses one computer word, 16 bits. Therefore, in the following
example the number of computer words reserved for the array ISP is 125.

Examples:

DIMENSION ISP (5, 5, 5)

DIMENSION A(30),122(10, 2), AB(6, 20)
DIMENSION H (5, 5)

COMPLEX H

The number of elements in H is 25. Six words are used to form a complex
element; therefore, the number of memory locations reserved for H is 150.

ND-60.074.01

4.2.1

Adjustable Dimensions

In a subprogram {see Chapter 6), a formal argument may be declared to
be an array in a type or DIMENSION statement. The corresponding ac-
tuai argument is an array name. The dimensions of the formal argument
may be transmitted as arguments, or they may be constants of the sub-
program. For example:

SUBROUTINE SUB (A, 1)

DIMENSION A (1,5,b)

The number and values of the dimensions need not be the same in both
the calling and the called routines. Storage for the array is not allocated
in the subprogram and the dimension information is used only to compute

addresses. The product of the maximum dimensions of the formal argument
must not exceed the main storage assigned to the actual argument.

ND-60.074.01

4.3

COMMON STATEMENT

A program may be divided into independently compiled subprograms that
use the same data. The COMMON statement reserves storage areas —
blank or labeled — that can be referenced by more than one subprogram.

COMMON/xq/aq . . /Xn/an

x; are alphanumeric identifiers, and each a; is a list composed of simple
variable identifiers and array identifiers, subscripted or non-subscripted.

A list a; may not contain formal parameters. |f a non-subscripted array
name appears, the dimensions must be defined by a DIMENSION state-
ment in that program unit. Arrays may be dimensioned in the COMMON
statement by a subscript string following the array identifier. If an array
is dimensioned in both a COMMON statement and a DIMENSION state-
ment, a compiler diagnostic results.

An identifier x; may be a name of one to seven alphanumeric characters
or blank. ‘A non-blank name identifies the storage as labeled common;
a blank name identifies blank common. If the name is blank, the first
two slashes may be omitted. Only one name may be assigned to labeled
common, but the name may be specified more than once.

All labeled common storage areas are assigned together in the order of

appearance regardless of the number of identifiers; all blank common stor-

age areas are assigned together in the order of appearance.

Examples:

COMMON A, B, C

COMMON // A, B, C, D

COMMON /BLOK/ A, B(10)/BLOK2/ C(10), D{10, 10)
COMMON /ABC/ D(15), ABC, PER, 11(50)

ND-60.074.01

4.4

COMMON BLOCKS

The COMMON statement provides the programmer with a means of reserving
blocks of storage areas that can be referenced by more than one subprogram.
The statement reserves both blank and labeled blocks.

IT a subprogram does not use all of the locations reserved in a common
block, unused variables may be necessary in the COMMON statement to
ensure proper corregspondence of common areas:

Main program: COMMON/SUM/A,B,C
Subprogram: COMMON/SUM/E,F,G

In the above example, only the variables E and G are used in the subprogram.
The unused variable F is necessary to space over the area reserved by B.

Rules:

1. COMMON is non-executable and must precede the first executable
statement in the program. Any number of COMMON statements
may appear in a program unit.

2. labeled common block identifiers are used only for block identifi-
cation within the compiler; they may be used elsewhere in the program
as other kinds of identifiers.

3. An identifier in one common block may not appear in another com-
mon block. If it does, the identifier is doubly defined and an error
message will result.

4. The order of the arrays in a common block is determined by the
COMMON statement.

5. At the beginning of program execution, the contents of the common
block are undefined unless specified by a DATA statement.

The length of a common block in computer words is determined from the
number and type of the list identifiers. In the following statement, the
length of the common block A is 26 computer words. The origin of the
common block is Q(1), (Q and R are real, NR is integer).

ND-60.074.01

Examples:

1. Labeled Common:

COMMON/A/Q(4), R(4), NR(2)

origin Each real variable requires three

computer words

+12

+24

T 0

223V DITOOO0D

2. Blank Common:

COMMON A, B(2), K
COMMON N(2), M(2)

origin
+3

+6

+9
+10
+11
+12
+13

(1
(2)

L2222 ARARW0Wp

3. Rearrangement of Common:

Main program:
COMMON /EX/ TEMP(20)

The labeled common, EX, occupies 60 storage locations.

ND-60.074.01

Subprogram:
COMMON /EX/ B(10), 1{10), J(20)

The labeled common occupies the same 60 storage locations as in the
main program. However, 30 locations are used by the real array B,
10 locations are used by the integer array | and 20 locations are used
by the integer array J.

4.5

4-10

EQUIVALENCE STATEMENT

The EQUIVALENCE statement permits storage to be shared by two or
more variables. 1t does not equate these variables mathematically.

EQUIVALENCE (kq), ..., (k)

Each k; is an equivalence group of two or more variables or array elements
separated by commas: a&q, a9, . . ., a,- If an element a; has a subscript,
the subscript must contain only constants. No formal parameters may ap-
pear in an EQUIVALENCE statement. Every element a; in one equivalence
group is assigned the same storage. |f a real number is assigned the same
storage as an integer, only the first word of the real number is shared with
the one-word integer.

The first elements of arrays may be aligned by equivalencing the array
names; elements of integer, logical, real, and complex arrays may be aligned
by equivalencing subscripted variables (the subscripts must be integer con-
stants). Array lengths need not be equal.

Example:

If two arrays, not in common, are equivalenced
DIMENSION A(3), B{(2), C(4)

INTEGER A,B,C

EQUIVALENCE (A(3), C{2))

storage locations are assigned as follows:

L A1)
L+1 A(2) c(n
L+2 A(3) C(2)
L+3 C(3)
L+4 Cl(4)
M B(1)
M+1 B(2)

However, if two arrays, one of them in common, are equivalenced

DIMENSION C(4)

INTEGER A,B,C

COMMON A(3), B(2)
EQUIVALENCE (B(2), C(2))

ND-60.074.01

4-11

storage locations are assigned as follows:

L

L+1
L+2
L+3
L+4
L+5
L+6

The

EQUIVALENCE statement does not rearrange common, but arrays

may be defined as equivalent so that the length of a common block is
changed. The origin of the common block may not be changed by an
EQUIVALENCE statement.

Rules:

1.

EQUIVALENCE is non-executable and must precede the first execu-
table statement in the program or subprogram.

The EQUIVALENCE statement must follow after DIMENSION or
COMMON.

No more than one element in an EQUIVALENCE set may belong
to COMMON.

An identifier used as a formal parameter cannot also be used in an
EQUIVALENCE statement.

EQUIVALENCE cannot rearrange COMMON, however, arrays may
be equivalent so that they change the length of the common block.

An identifier may appear more than once in an EQUIVALENCE
statement.

An identifier in a COMMON statement used in an EQUIVALENCE
set is the base identifier for the EQUIVALENCE statement. When
none in the set belongs to COMMON, the identifier with the lowest
address becomes the base identifier. All other elements in the set
are referenced to the base identifier.

ND-60.074.01

Example:
Align elements of two arrays:

DIMENSION A(10,5), 1(150)
EQUIVALENCE (A1)

5 READ (N,100) A

10 READ (N,110) |

The EQUIVALENCE statement assigns the first element of array A and
array | to the same storage location. The READ statement 5 stores array
A in consecutive locations. Before statement 10 is executed all operations
using A should be completed as the values of array | will be read into the
storage locations previously occupied by A.

It should be noted that (1), I{2), and |(3) are stored into the three con-
secutive locations making up A(1).

Example;
EQUIVALENCE (A,B), (C,D), (E,F), (A,F), (B,D)

This statement will be interpreted as, and identical to, the following state-
ment:

EQUIVALENCE (A, B, C, D, E, F)

ND-60.074.01

4.6

4-13

EQUIVALENCE OF CHARACTER ENTITIES

An entity of type character should be equivalenced only with other entities
of type character. The lengths of the equivalenced entities are not required
to be the same.

An EQUIVALENCE statement spiecifies that the storage sequences of the
character entities in an equivalence group have the same first character
storage unit. Any adjacent characters in the associated entities may also
have the same character storage unit and thus may also be associated. In
the example:

CHARACTER A*4, B*4, C(2)*3
EQUIVALENCE (A, C(1)), (B, C(2))

the association of A, B and C can be graphically illustrated as:

0110210304 |05]06]|07]

ND-60.074.01

4.7

4-14

DATA STATEMENT

The DATA statement assigns constant values to variables or arrays in the
source program. |t may be used by itself or with a DIMENSION state-
ment.

DATA kq/dq/, . .., ky/dy/

ki are lists containing the names of variables or array elements; and d; are
corresponding lists of constants (signed or unsigned).

Multiple entries in a list are separated by commas. There must be a one-to-one
correspondence between the elements of a list k; and a list d;. This cor-
respondence establishes the initial values of the elements of the list ki'

When an element of a list k; is an array element, the subscript must contain
only integer constants. An element of a list k; may not appear as a formal
parameter.

Examples:

DIMENSION GRADE (8)

REAL GRADE

INTEGER |

DATA GRADE(1), GRADE(2), GRADE(3), GRADE(4), GRADE(5),
1 GRADE(6) /60., 65., 70., 75., 80., 85. /, /1 /

Some elements of the array GRADE are set to the initial values specified

in the associated list: GRADE(1) is to contain the initial value 60., GRADE(2)
the initial value 65., and so forth. In the same statement the integer variable

I is set to the initial value 1.

Repetition factor:

DIMENSION A(10)
DATA A/1.0, 9% 2.0/

The value 2.0 will be put into nine consecutive elements.

DIMENSION A(10)
DATA A/1., 2, 5., 2.5, 05, 3., 10., 20, 10., 1.0/

COMPLEX CX
DATA CX/(1.0, 2.0)/

LOGICAL L1(2)
DATA L1/.TRUE., .FALSE./

DIMENSION OUT(2)
DATA OUT/6HTHIS |, 6HS ,__TRUE/

ND-60.074.01

4.8

4-15

CHARACTER CONSTANTS IN DATA STATEMENTS

An entity in the list k; that corresponds to a character constant must be

of type character. If the length of the character entity in the list ki is
greater than the length of its corresponding character constant, the addstlonal
rightmost characters in the entity are initialized with blank characters.

If the length of the character entity in the list k; is less than the length

of its corresponding character constant, the addit;onal rightmost charac-

ters in the constant are ignored. Note that initialization of a character
entity causes definition of all the characters in that entity, and that each
character constant initializes exactly one variable, array element, or substring.

ND-60.074.01

4.9

4-16

BLOCK DATA STATEMENT
This is of the form:
BLOCK DATA

and may only appear as the first statement of a block data subprogram.
Such subprograms are used to enter initial values inio elements of blank
and labeled common blocks. Only type statements, EQUIVALEMNCE,
DATA, DIMENSION, and COMMON statements are permitted in a block
data subprogram.

If an entity of a given common block is being given an initial value in such
a subprogram, a complete set of specification statements for the entire
block must be included, even though some of the elements of the block
do not appear in DATA statements.

Example of a block data subprogram:

BLOCK DATA

DIMENSION ARR(5)

INTEGER AA(10)

COMMON /BLOC1/ARR,/BLOC2/AA
DATA ARR/5*1.0/,AA(1)/1/

END

ND-60.074.01

4-17

IMPLICIT STATEMENT

An IMPLICIT statement is used to change or confirm the default implicit
integer and real typing.

The form of an IMPLICIT statement is:
IMPLICITtyp(al,al ...) L typlalal...)]...
where

typ is one of INTEGER, DOUBLE INTEGER, REAL, DOUBLE PRECISION
COMPLEX, LOGICAL, or CHARACTER [*len]

!

jieb]

is either a single letter or a range of single letters in alphabetical order.
A range is denoted by the first and last letter of the range separated
by a minus. Writing a range of letters a; — ap has the same effect

as writing a list of the single letters aq through a,, inclusive.

-’

len is the length of the character entities and is an integer constant. If
len is not specified, the length is one.

An IMPLICIT statement specifies a type for all variables, arrays, and functions
(except intrinsic functions) that begin with any letter that appears in the
specification, either as a single letter or included in a range of letters. IMPLICIT
statements do not change the type of any intrinsic functions. An IMPLICIT
statement applies only to the program unit that contains it.

Type specification by an IMPLICIT statement may be overridden or con-
firmed for any particular variable, array, or function name by the appear-
ance of that name in a type-statement. An explicit type specification in

a FUNCTION statement overrides an IMPLICIT statement for the name

of that function subprogram. Note that the length is also overridden when
a particular name appears in a CHARACTER or CHARACTER FUNCTION
statement.

Within the specification statements of a program unit, IMPLICIT statements
must precede all other specification statements except PARAMETER state-
ments. A program unit may contain any number of IMPLICIT statements.

The same letter must not appear as a single letter, or be included in a

range of letters, more than once in all of the IMPLICIT statements in a
program unit.

Examples:

IMPLICIT REAL (A—H, 0-2), INTEGER (I—N)
IMPLICIT CHARACTER*10(C), LOGICAL(L)

Note that the first example expresses the default FORTRAN type con-
versions.

ND-60.074.01

4.1

4-18

PARAMETER STATEMENT
A PA.RAMETER statement is used to give a constant a symbolic name.
The form of a PARAMETER statement is:
PARAMETERp=c¢c [, p=cl...
where

p is a symbolic name

¢ is either:
1. a single constant
2. an expression of integer constants and previously named

integer PARAMETER-constants. In such expressions only
the operators +, —, * and / are permitted

Each symbolic name p is the name of a constant and becomes defined
to the value of the constant ¢ that appears to the right of the equals.
Once such a symbolic name is defined, that name may appear in that
program unit in any subsequent statement as a primary. “The symbolic
name of a constant must not be part of a FORMAT statement or format
specification.

A symbolic name in a PARAMETER statement may identify only the
corresponding constant in that program unit. Such.a name may appear .
in subsequent ¢-expressions in PARAMETER statements within the same
program unit.

The symbolic name of a constant assumes the type implied by the form
of its corresponding constant. The initial letter of the symbolic name
has no effect on its type. The symbolic name of a character constant
assumes the length of the character constant.

Examples:

PARAMETER Pl = 3.1415, ALTER = 40, N = 3*120
PARAMETER VALUE = ALTER/10+N

ND-60.074.01

CONTROL STATEMENTS

Program execution normally proceeds from statement to statement as they
appear in the program. Control statements can be used to alter this sequence
or cause a number of iterations of a program section. Control may be trans-
ferred to an executable statement only; a transfer to a non-executable state-
ment will result in a program error which is usually recognized during com-
pilation. With the DO statement, a predetermined sequence of instructions
can be repeated any number of times by stepping a simple integer variable
after each iteration.

ND-60.074.01

5.1

STATEMENT IDENTIFIERS

Statements are identified by unsigned numbers, 1 to 32767, which can be
referred to from other sections of the program. An identifier may occupy
any of the first five columns of the coding form; blanks are squeezed out

and leading zeros are ignored, 1,01,001,0001 are identical. Such an iden-

tifying number is called a statement label.

ND-60.074.01

5.2

5.2.1

5.2.3

GO TO STATEMENTS

GO TO statements provide transfer of control.

Unconditional GO TO Starement
GO TO k

This statement causes an unconditional transfer to the statement labeled
k.

ASSIGN Statement
This statement has the form
ASSIGN k TO i

where k is a transfer label and | is an integer variable name. This statement
is used in conjunction with assigned GO TO statements using the same
integer variable.

Once mentioned in an ASSIGN statement, the integer variable should not
be referred to in any statement other than an assigned GO TO statement.
This applies until it has been redefined, since its content is an octal address
after the execution of the ASSIGN statement.

Assigned GO TO Statement
The assigned GO TO statement has the form
GO TO i,(k'l, k2, P ,kn)

where i is an integer switch variable. Prior to the execution of an assigned
GO TO statement, the variable i must have been given a label value by an
ASSIGN statement. At run-time, this label value is checked against the
parenthesized list of labels. Then, if the actual label value coincides with
any one of the list, a transfer is performed to the statement identified by
this label. Otherwise, a run-time error message will result, and the control
is transferred to the statement of label k1. A maximum of 125 labels may
be specified.

ND-60.074.01

54

Example:

ASSIGN 1 TO K

10 GO TO K,{(1, 2, 3)

1T ASSIGN 2TOK
GO TO 10

2 K=20 e
OUTPUT (1) K

5.2.4 Computed GO TO Statement
GO TO (kq, . .. k),
The k; are statement labels; i is an integer variable or expression.
Execution of this statement causes a branch to the statement identified
by k;, where i is the value of the integer variable at the time of execution.

If i is'less than 1 or greater than n, an error message will result and con-
trol returns to label kq. A maximum of 125 labels may be specified.

Exampie:

INTEGER A, B, C

i

A=1
C=1

]

GO TO (10, 20, 30), C

10 A=A+2
GO TO (11, 21, 31}, A Control is transferred to the statement
labeled 31

ND-60.074.01

5.3 IF STATEMENTS

Conditional transfer of control is provided by the arithmetic IF statement
and the logical IF statement.

5.3.1 Arithmetic |F Statement
The arithmetic |F statement has three branches.
‘‘‘‘ IF (e) kq, ko, kg
e is an arithmetic expression and k; are statement labels. This statement

tests the evaluated quantity e and jumps to one of the labels k; according
to the value of e.

e <0 jump to kj

e=0 jump to ko

e>0 jump to kg
Examples:;

IF (A*B—C*SIN(X))} 10, 10, 20
IF (1) 5,6, 7
IF (A/B**2) 3,86, 7

5.3.2 Logical IF Statement
IF (L) s
L is a logical or relational expression and s is a statement. If L is true

(non-zero), the statement s is executed. If L is false (zero), continue in
sequence to the statement following the logical IF.

Example:
IF (L) GO TO 10 (L is logical)
IF (A.AND.B) X = SIN{Y}/P
IF (X.GE.2)) X = 2.
IF (Y.GT.5.0R.Y.LT.-5.) GO TO 100

ND-60.074.01

5.4

5.4.1

DO STATEMENTS

The DO statement makes it possible to repeat a set of statements and to
change the value of an integer, double integer, real or double precision
variable during the repetition.

DOni=m1,m2, ms
DOni mq, My

il

The DO loop begins with the DO statement and ends with the statement
numbered n; i is the simple variable used as an index; m; are the indexing
parameters. myq is the initial value assigned to i; mo is the final value as-
signed to i. Each must be either a constant, a variable or an expression.
m3 is the increment added to i after each DO loop is executed. If mg

is omitted, it is assumed to have the value 1. my and my may be negative
and mg must be greater than zero.

The statement fabel n which terminates the DO loop must be the number
of an executable statement in the same program unit as the DO statement
and must follow it. n may not be the label of any of the following:

GO TO statement
Arithmetic IF
RETURN

STOP

PAUSE

DO statement

DO Loop Execution

The DO statement, the statement labeled n, and any intermediate state-
ments constitute a DO loop which consists of the following steps:

i is set to its initial value mq and the DO loop is executed.
At the end of the DO loop i is increased by mg3 (or 1), and
the value of i is compared with mo. If i is less than or
equal to moy, the DO loop is executed. If i is greater than
mo, control passes to the statement immediately following n,
and the DO loop is terminated.

Note that the DO loop is always executed at least once, even if my exceeds
mo on the initial entry. The following chart shows a DO loop.

ND-60.074.01

(START >

*

Execute statements in loop
including statement n

No

DO satisfied

ND-60.074.01

5.4.2

DO Nests

A DO loop containing another DO loop is called a DO nest. The last
statement of a nested DO loop must either be the same as the last state-
ment of the outer DO loap or occur before it. If Dq. Dy, oot Dm re-
present DO statements, where the subscripts indicate that D¢ appears
before Do appears before D3, and nq, ng, . ., Ny, represent the corres-
ponding limits of the D;, then n,, must appear before np, _1 ... Ny
must appear before nq.

— D,

— n,

DO loops may be nested to the depth of ten at most.

Examples:

DO loops may be nested in common with other DO loops.

A) B) (03]
— D, — Dy — D4
D3
L
no
D
n3 3
L n2
[~ Dy -3 np =Ny =n3
- n1
n,
o,

ND-60.074.01

A) DO11=1,10,2 C) DO51=1,5
DO5J=110
DO2J=1,5 DO5K=J, 15

DO3K=28 5 CONTINUE
3 CONTINUE
2 CONTINUE

DO4L=1,3
4 CONTINUE

1 CONTINUE

B) DO100L =2 LIMIT
DO 10 I =1,10
10 CONTINUE
DO 20 K =K1, K2
20 CONT!NUE

100 CONTINUE
ND-60.074.01

5.4.3

5-10

DO Loop Transfer

In a DO nest, a transfer may be made from one DO loop into a DO loop
that contains it; and a transfer out of a DO nest is permissible.

The special case is transferring out of a nested DO loop and then transferring
back to the nest. In a DO nest, if the range of i includes the range of j and
a transfer out of the range of j occurs, then a transfer into the range of i

or j is permissible.

In the following diagram, EXT represents a portion of the program outside
of the DO nest.

in

A

If two or more DO loops terminate at the same statement and a transfer
is made to the terminal statement outside the inner DO loop, the inner
DO should have its own terminal statement.

Warning: The compiler does not check for jumps from an external place

to somewhere within the loop. If this is done, the result will
depend on the last defined value of i.

ND-60.074.01

5—-11

5.5 CONTINUE STATEMENT
CONTINUE
This statement is most frequently used as the last statement of a DO loop to
provide a loop termination when a GO TO of IF would normally be the last
statement of the loop. |f CONTINUE is used elsewhere in the source

program, it acts as a do-nothing instruction and control passes to the next
sequential program statement.

ND-60.074.01

5.6

PAUSE STATEMENT

PAUSE

PAUSE n

n is a positive integer or character constant/variable. When either statement
is encountered, execution of the object program halts with PAUSE n or
PAUSE output on the terminal. By pressing the carriage return button,

program execution is continued with the statement immediately following
PAUSE.

ND-60.074.01

5-13

5.7 STOP STATEMENT
STOP

STOP n

n is a positive integer or character constant/variable. When either statement
is encountered, execution of the object program terminates. The program
exits to the operating system. STOP or STOP n is output on the terminal.

ND-60.074.01

5.8

5-14

END STATEMENT

END

END marks the physical end of a program unit. It is executable in the
sense that it will effect return from a subprogram in the absence of a

RETURN.

The END statement of a main program will return the control to the
operating system.

ND-60.074.01

PROGRAMS, FUNCTIONS AND SUBPROGRAMS
A FORTRAN program consists of a main program with or without sub-

programs. The main program and subprograms communicate with each
other through parameters and common variables.

ND-60.074.01

6.1

6—2

MAIN PROGRAMS AND SUBPROGRAMS
A main program may be written with or without references to subprograms.

The PROGRAM statement may be used as the first statement of the main
program.

PROGRAM name

name is an alphanumeric identifier from one to seven characters; the first
must be alphabetic. This statement is optional.

A main program may refer to both subroutines and functions which are

compiled independently of the main program. A calling program is a
main program or subprogram that refers to subroutines and functions.

ND-60.074.01

6.2 PARAMETERS

Main programs, subprograms and functions use parameters as one means
of communication. The parameters appearing in a subroutine call or a
function reference are actual parameters. The corresponding parameters
appearing with the subroutine or function name in the definition are
formal parameters. Actual and formal parameters must agree in order,
type and number. A maximum of 63 parameters is permitted.

6.2.1 Formal Parameters
The following are permissible forms for formal parameters:

array name

simple variable

function subprogram name
subroutine subprogram name

Since formal parameters are local to the subprogram containing them,
they may be the same as names appearing outside the program unit.

No element of a formal parameter list may appear in a COMMON, EQUIV-
ALENCE, or DATA statement within the subprogram. When a formal
parameter represents an array, it should be declared in a DIMENSION
statement within the subprogram.

Example:

SUBROUTINE PER(A, |, X)
FUNCTION OLE(X)

A, I and X are formal parameters

6.2.2 Actual Parameters
The following are permissible forms for actual parameters:

constant

simple or subscripted variable
arithmetic expression

array name

function subprogram name
subroutine subprogram name

When an actual parameter is a subroutine or function name, that name
must also appear in an EXTERNAL statement in the calling program.

ND-60.074.01

6.2.3

Example:

CALL PER (B, K, Y)

B, K and Y are actual parameters.

Length of Character Formal and Actual Arguments

If a formal argument is of type character, the associated actual argument
must be of type character and the length of the formal argument must
be less than or equal to the length of the actual argument. If the length
of a formal argument of type character is less than the length of an as-
sociated actual argument, the left-most characters of the actual argument
are associated with the formal argument.

If a formal argument of type character is an array name, the restriction
on length is for the entire array and not for each array element.

ND-60.074.01

6.3

6-5

FUNCTION SUBPROGRAMS

A function subprogram is a computational procedure which returns a single
value associated with the function name. The mode of the function is
determined by its name in the same way as a variable identifier.

The first statement of a function subprogram must have the following
form:

FUNCTION F (aq, ..., a,)

F is the symbolic name of the function. The name of the function F

must also appear as a variable name in the defining subprogram. The

value of this variable at the time of execution of any RETURN state-

ment in this subprogram is called the value of the function. a; are the
formal parameters.

The function subprogram may contain any statement except SUBROUTINE,
another FUNCTION statement, or any statement that directly or indirectly
references the function being defined *.

Besides the FUNCTION F (aq, ag, ..., an) statement where mode is deter-
mined by the first character, the following FUNCTION statements are

accepted as alternate forms:

INTEGER FUNCTION

F{ ap)
REAL FUNCTION F (ag, ag, . .., ay)
DOUBLE PRECISION FUNCTION F (aj, ay, . . ., a)
COMPLEX FUNCTION F(aq, ag, ..., a)
LOGICAL FUNCTION F(ag, 8 ..., ag)

F is the function name, and a; are formal parameters. The type FUNCTION
statement declares the type of the result returned by the function. Double
integer and character functions may be declared by mentioning the function

name in a type-statement list.

Example:

FUNCTION XSQ(A)

XSQ = A*A
RETURN
END

* In reentrant mode, recursive calls are permitted.

ND-60.074.01

6.3.1 Function Reference

F(a1,...,an)
F identifies the function being referenced. It is the same as the name in
the FUNCTION statement. a; are the actual parameters.

A function reference may appear any place in an expression where an
operand may be used. The evaluated function will have a single value
associated with the function name. When a function reference is encoun-
tered in an expression, control is transferred to the function indicated.
When a RETURN or END statement in the function subprogram is en-
countered, control is returned to the statement containing the function,
with the function reference replaced by the value of the function.

Example:

X = A+B*XSQ(D)

6.3.2 Function Parameters

The formal parameters of a function subprogram may not appear in either

a COMMON, DATA or EQUIVALENCE statement in the function sub-
program. When a function reference is executed, actual parameters are
associated with all appearances of the corresponding formal parameters

in executable statements and statement functions in the defining subprogram.
If a formal parameter appears in a statement redefining its value, the cor-
responding actual parameter must be a simple or subscripted variable or

an array name. If an actual parameter is an arithmetic expression, it is
evaluated and its value is associated with the corresponding formal para-
meter.

If a formal parameter is an array name, the corresponding actual parameter
must be an array. A formal parameter used as a format specification in

a formatted READ or WRITE statement must be an array or of type
character.

If an actual parameter is a function or subroutine name, the corresponding
formal parameter must be used as a function or subroutine reference.

A function must have at least one, and not more than 63 parameters.

ND-60.074.01

Examples:

1. Function Subprogram

FUNCTION GREAT (A, B)

IF (A-B) 1, 1, 2
1 GREAT = A-B
RETURN
2 GREAT=A+8B
END

Calling Program Reference:

Z(i, J) = F1 + F2 — GREAT (C-D, 3.*1J)

2. Function Subprogram

FUNCTION SYCHE (A, B, X)
CALL X

SYCHE = A/B*2.* (A-B)
END

Calling Program Reference:

EXTERNAL EROS

R =S — SYCHE (TLIM, ULIM, EROS)

In the function subprogram, TLIM, ULIM replaces A, B. The CALL
X is a call to a subroutine named EROS. EROS appears in an
EXTERNAL statement so that the compiler recognizes it as a sub-
routine name rather than a variable identifier.

3. Function Subprogram

FUNCTION AL{W, X, Y, 2)
CALL W(X, Y, 2)

AL = Z2**4

RETURN

END

ND-60.074.01

Calling Program Reference

EXTERNAL SUM

G = AL(SUM, E, V, H)

In the function subprogram the name of the subroutine (SUM) and
its parameters (E, V, H) replace W and X, Y, Z. SUM appears in
the EXTERNAL statement so that the compiler will treat it as a
subroutine name rather than a variable identifier.

ND-60.074.01

6.4

6—9

STATEMENT FUNCTIONS

Statement function definitions must precede the first executable statement
of the program or subprogram and must follow any specification statements.
The name of a statement function must not appear in an EXTERNAL
statement, nor as a variable name or an array name in the same program or
subprogram. A statement function applies only to the program or sub-
program containing the definition; it is defined by a statement of the form:

f(a1,a2,...,a

f is the statement function name, & is any expression. aj are variable names
which are dummy arguments indicating type, number, and order of arguments;
they may be the same as variable names of the same type appearing else-
where in the program unit. n may not exceed 63. f and e must be both
logical or both non-logical. Statement functions of type character are not
permitted.

Examples:
1. LOGICALC, P, EQV
EQV(C, P) = (C.AND.P).OR.{.NOT.C.AND..NQOT.P)

2. COMPLEX D
D(A, B) = (3.2, 0.9) * EXP(A) * SIN (B) + (2.0, 1.) * EXP(A) * COS(B)

3. GROS(R, HRS, OTHER) = R*HRS + R*.5*OTHER

ND-60.074.01

6.5

6—10

LIBRARY FUNCTIONS

Function subprograms that are used frequently have been written and
stored in a reference library and are available to the programmer through
the compiler.

A list of these functions is found in Appendix C. When a reference ap-
pears in the source program, the compiler identifies it as a library func-

tion and generates a calling sequence within the object program.

Example:

X = SIN(A) + ALOG(B)

ND-60.074.01

6.6

6—11

EXTERNAL STATEMENT

When the actual parameter list of a given function or subroutine reference
contains a function or subroutine name, that name must be declared in an
EXTERNAL statement. lts form is:

EXTERNAL nameq, nameo, names,

name; is a function or subroutine name used as a parameter.

The EXTERNAL statement must precede the first executable statement in

any program in which it appears. When it is used, EXTERNAL always
appears in the calling program. (See examples in Section 6.3.2.)

ND-60.074.01

6.7

SUBROUTINE SUBPROGRAMS

A subroutine is a computational procedure which may return none, one
or more values. No value or type is associated with the name of a sub-

routine. The first statement of a subroutine subprogram must be one of
the following:

SUBROUTINE s
SUBROUTINE s (aT, ceesap)

s is an alphanumeric identifier; a; are formal parameters and may be variable

names, array names, or subprogram names.

The name of the subroutine must not appear in any other statement in
the subprogram. The names of the formal parameters a; may not appear
in a COMMON, EQUIVALENCE or DATA statement in the subprogram.
The parameters may be defined or redefined within the subprogram so
that they may effectively return results.

The subroutine must be referenced by a CALL statement.

Rules:

1. The name of the subroutine may not appear in any declarative state-
ment (TYPE, DIMENSION)} in the subroutine.

2. The name of the subroutine must never appear within the subroutine
as an identifier in a replacement statement, in an input/output list

or as callee name in a CALL statement. *

3. No element of a formal parameter list may appear in a COMMON,
EQUIVALENCE, or DATA statement within the subroutine.

4. When a formal parameter represents an array, it should be declared
in a DIMENSION statement within the subroutine.

b. The SUBROUTINE statement may have from 0 to 63 formal
parameters.

* In reentrant mode, recursive calls are permitted.

ND-60.074.01

6.8

CALL STATEMENTS

The executable statement in the calling program to refer to a subroutine
is one of the forms:

CALL S

CALL S (a1, ce.ap)

S is the name of the subroutine being called and a; are actual parameters.
The name may not appear in any specification statement in the calling
program except in EXTERNAL statement. A subroutine may also be
referenced by the appearance of its name in an EXTERNAL statement.

The CALL statement transfers control to the subroutine. When a RETURN
or END statement is encountered in the subroutine, control is returned

to the next executable statement following the CALL in the calling pro-
gram. If the CALL statement is the last statement in a DO loop, looping
continues until the loop is satisfied.

Examples:

1. Subroutine Subprogram

SUBROUTINE TEST (X, Y, 2Z)
Z=2%*X+X/Y
END

Calling Program References

CALL TEST (X(1), Y(I), A)

CALL TEST (A, B, C)

CALL TEST (X{I) + H, Y{(1) + 2., W)

2. Subroutine Subprogram (Matrix Multiply)

SUBROUTINE MATM
COMMON/BLK1/X(20, 20), Y(20, 20), Z(20, 20)
DO 101=1,20
DO 10J=1,20
Z{l, J} = 0.0
DO10K=1,20
10 Z(1, J) = z(1, J) + X{I, K} *Y(K, J)
RETURN
END

ND-60.074.01

Calling Program References

COMMON/BLK1/A(20, 20), B{20, 20}, C(20, 20)

CALL MATM

3. Subroutine Subprogram

SUBROUTINE HTARIY, 2)
COMMON/1/X(100)
Z=0.0
DO51=1, 100
5 Z=2Z+X{l)
CALLY
RETURN
END

Calling Program Reference

COMMON/1/A(100)
EXTERNAL PRNT

CALL HTAR (PRNT, SUM)

4. Subroutine Subprogram

SUBROUTINE PIP (A, B, C)
A=B**C

END

Calling Program_Reference

CALL PIP {V{1), X, 3) parameters must agree in number

ND-60.074.01

6.9

ENTRY STATEMENT

An ENTRY statement permits a procedure reference to begin with a
particular executable statement within the function or subroutine sub-
program in which the ENTRY statement appears. Optionally, a sub-
program may have one or more ENTRY statements.

An ENTRY statement is of the form:

ENTRY S (a1, ag, ... a
ENTRY S

n)

where

1. Sis the symbolic name of the subroutine or function entry point
to be defined.

2. The a’s are the formal arguments, each either a variable name, an
array name or an external procedure name. A formal argument
corresponds to an actual argument in a CALL statement or in a
function reference.

3. The ENTRY statement allows entry into a subprogram (either a
SUBROUTINE or FUNCTION) at a place other than that defined
by the SUBROUTINE or FUNCTION statement.

4. Entry is made at the first executable statement following the
ENTRY statement.

b. A subprogram may contain any number of ENTRY points defined
by ENTRY statements.

6. Appearance of an ENTRY statement in a subprogram does not
preclude the rule that statement functions in subprograms must

precede the first executable statement of the subprogram.

7. ENTRY statements are non-executable and do not affect the execu-
tion flow of a subprogram.

8. An ENTRY statement may not appear in a main program.
9. A subprogram may not reference itself through an ENTRY point.

10. An ENTRY statement cannot appear in the range of a DO or
EXTENDED RANGE of a DO.

ND-60.074.01

11.

12.

13.

14.

The formal arguments in the ENTRY statement need not agree

in order, type or number with the formal arguments in the
SUBROUTINE or FUNCTION statement or any other ENTRY
statement in the subprogram. However, the arguments for each
CALL or function reference must agree in order, type and number
with the formal arguments in the SUBROUTINE, FUNCTION or
ENTRY statement that it references.

Entry into a subprogram via an ENTRY statement sets up the
association of formal arguments with actual arguments in the same
manner as entry via SUBROUTINE or FUNCTION statement.

The function and entry names are not required to be of the same
type unless the type is character, but the variable whose name is
used to reference the function subprogram must be in a defined
state when a RETURN or END statement is executed in that pro-
gram unit.

Names of formal arguments which appear in argument lists may not
be used in executable statements unless they have previously
physically appeared in the formal list of a SUBROUTINE,
FUNCTION or ENTRY statement.

A function entry name may appear in a type-statement. If the
function entry name is of type character, the fength specified must
agree with the length specified for the name of the function sub-
program and the length specification is restricted to the forms per-
mitted in the FUNCTION statement.

Note: No other formal parameters than those associated with the
referenced entry must be accessed during that particular call.

ND-60.074.01

6.10

6-—17

PROGRAM ARRANGEMENT

NORD-10 FORTRAN assumes that all statements and comments appearing
between a PROGRAM, A SUBROUTINE or FUNCTION statement or

the first statement of a main program and an END statement belong to

one program unit. A program unit must consist of at least one execut-

able statement that is actually executed. Any specification statement or
statement function definitions must precede the first executable state-

ment with specifications preceding statement function definitions. FORMAT
statement may appear anywhere in a program unit. The last executable
statement in a main program or subprogram must be one of the following:

STOP
RETURN
END

A subprogram normally contains RETURN statements that indicate the
end of logic flow within the subprogram and return control to the calling
program. In a function subprogram, control returns to the statement
containing the function reference at which time the value of the function
is made available to the calling program. In subroutine subprograms, con-
trol returns to the next executable statement following the CALL state-
ment. A STOP statement causes an exit to the operating system.

END is the final statement in a program or a subprogram. [n a subprogram,

END causes a return to the calling program and may replace a final RETURN
statement.

A typical arrangement of a set of main program and subprograms follows:
{next page)

ND-60.074.01

6-18

PROGRAM TEST

END
SUBROUTINE St

END
SUBROUTINE S2

END
FUNCTION F1 (.. .)

END
FUNCTION F2 (.. .)

END

ND-60.074.01

6.11

6-—19

RETURN AND END STATEMENTS

A subprogram normally contains one or more RETURN statements that
indicate the end of logic flow within the subprogram and return control
to the calling program. The form is:

RETURN

In function subprograms, control returns to the statement containing the
function reference. In subroutine subprograms, control returns to the
statement following the call.

The END statement marks the physical end of a program, subroutine sub-
program or function subprogram. If the RETURN statement is omitted,

END acts as a return to the calling program.

A main program must not contain a RETURN statement.

ND-60.074.01

6.12

6—-20

REAL-TIME PRIORITY NOTATION

The real-time priority is specified by:

PROGRAM <prog. name>, <priority>

The <prog. name> may be any acceptable FORTRAN name. It will be

referred to in the loader tables and must be defined only once. The

<priority> specifies the priority of the real-time program and may be

any unsigned number between 1 and 255. An example might be:
PROGRAM PER, b

Here PER will be defined to a real-time program with a priority of b.

The <priority> may be omitted. Then the <priority> will be set to
zero, and a warning message will be printed at load-time.

See the “"SINTRAN Il User’s Guide” manual for further information.

ND-60.074.01

7.1

/0 AND FILE-UTILITIES IN NORD-10 FORTRAN
1/0 STATEMENTS

Input/output statements control the transfer of data between the com-
puter memory and logical units, which can be external devices or mass
storage files.

Data can be formatted or unformatted. Formatted data is converted and
transferred according to a FORMAT string. Unformatted data is trans-
ferred in a purely binary form with no use of FORMAT strings.

Data may also be converted internally according to a FORMAT string;
i.e., from binary to formatted form or vice versa. This may be obtained
by referencing an array name or a character expression- instead of a unit
number. In this case, the formatted data is either read from or written
into the specified array.

This array should have a size to cover the maximum length of formatted
records, 136 characters {(each 8 bits).

The general form of an input statement is:

READ (<unit>, <format>, REC = <rec.>>, ERR = <errl>, END = <endl>)
<iolist>

whereas that of output is:
WRITE (<unit>, <format>, REC = <rec.>, ERR = <errl>) <iolist>
where

unit denotes a unit number which is connected to a device or a
file through the OPEN statement.

In this case, unit must be an integer constant, variable or
expression.

If.unit is an array name or a character expression the trans-
fer of formatted data is established between the array (or
character string) and the /0 list starting out with its first
byte. In this mode, REC = has no effect.

format identifies a format string. This may be one of the following:

1. A statement label of a FORMAT statement.

ND-60.074.01

rec

errl

end|

2. An array name or an expression which constitutes a for-
mat string syntactically compatible with that of a FORMAT
statement (first left and last right parenthesis included).

If the format specifier is omitted, the data transfer is performed
upon binary bit patterns with no conversion. One half-word

(8 bits} is moved at a time. Two neighbour half-words are
placed side by side in one word (first byte in bits 8-15 and
second byte in bits 0-7). The order of half-words is preserved
during the transfer.

is an integer constant, variable or expression which denotes
the record number in the file from where the data transfer
starts. The first record of a file has the number O.

The record size of the file (in 16 bits words) is specified in
an OPEN statement.

is a statement label being left the control if an 1/0 or formatting
error s detected during the transfer. 1|his statement must ap-
pear in the same program unit and must be executable. The
error code is contained in the system integer variable ERRCODE.
If the ERR = specifier is missing, the execution is terminated on
1/Q errors.

is a statement label being left the control if end-of-file is detected
during the execution of an input statement.

The statement labeled by endl must appear in the same program
unit and must be executable. If the END = specifier is missing
the execution is terminated on end-of-file detection.

The parameter unit must be the first item following the left parenthesis.
If not omitted, the format specification must be the second item.

The specifiers REC =, ERR = and END = are all optional and their sequence
is arbitrary.

The input/output list (I/0O list) may contain one or more of the following
elements separated by commas:

LN~

A variable name

An array element name

An array name

A numeric or character expression (except function calls)
An implied DO list

ND-60.074.01

An array name without subscripts in an input/output list specifies the
entire array in the order in which it is stored.

In output statements a formatted record length of maximum 136 char-
acters may be written to the specified unit. An output record length

is determined by the number and types of the 1/O list items and the
format specification. The number of characters of an input record must
not exceed 136 characters.

The number of parameters in the 1/0 list is limited to a maximum of
63. (Single array names without subscripts count as two parameters.)

Examples:

DIMENSION D (10, 10)
WRITE (5, 10) A, B, C
10 FORMAT (3F10.5)

WRITE (5, 10)((D(1, J), 1 = 1, N1), J = 1, N2)
WRITE (5, 10) D
WRITE (5, 20)

20 FORMAT (6X, 5BHABCDE)

READ (4, 10, ERR =98, END = 99) X, Y, Z
10 FORMAT (3F10.5)
98 STOP 1
99 STOP 2

DIMENSION D (10, 10)

READ (4, 11) ((D{1, J), 1 =1, N1),J =1, N2)
11 FORMAT (5E12.2)

READ (4, 11) D

The following example illustrates how to write a FORMAT string into
an array to be used later as a referenced FORMAT specification. The
example also shows how to change this FORMAT. (Refer to the next

page.)

ND-60.074.01

DIMENSION IBUFF (68)
REAL =5.0
INT =6
WRITE (IBUFF, 9000)
9000 FORMAT (‘(F10.2, 110)')
WRITE (1, IBUFF) REAL, INT
READ (IBUFF, 9100) I, J
9100 FORMAT (T3, 12, T9, 12)
I=1+1
J=J -1
WRITE (IBUFF, 9100) I, J
WRITE (1, IBUFF) REAL, INT

Result on the terminal:

l—ll‘-JL—l(.—/J—-—/L.JSOO L_/L_/L_/L_//_.;.’_JL_/L/6

ND-60.074.01

7.2 IMPLIED DO LOOP

The general form is:

(((A(1,4,K), B(1,K), v1 = mq, my, m3), vp = nq, ny, n3), ¥3 = pq, Py, P3)

where
A, B are array names
mj, ni, P; are integer expressions
If mg, N3 or p3 is omitted, it is construed as 1.
I, J, K are subscripts of A and B and must be integer variables

or constants

Y172 13 are |, Jor K yq #yg#7yg
The 1/0 list may contain five nested implied DO loops.
Example:
As an element in an input/output list, the expression
WRITE (i,n)({(A(I, J, K), I = mq, my, mg), J = nq, ny, n3), K= py, py, p3)
implies a nest of DO loops of the form:

DO10 K= P1. P2 P3

DO 10 J=nq, ny ng

DO 10 1=mq, my, mg

WRITE (i,niA(l, J, K)
ffffff 10 CONTINUE

(Be aware that the last way of writing will generate more output records,
as the WRITE generates at least one record every time it is executed!)

Examples:

To write the elements of a 3 by 3 matrix by columns:
WRITE() ((A(I, J), 1=1,3),J=1,3)

To write the elements of a 3 by 3 matrix by rows:

WRITE() ((A(l, J),J=1,3),1=1,3)

ND-60.074.01

Example:

For instance, a multi-dimensional non-subscripted list element, SPECS,
with an associated DIMENSION SPECS (8, 6, 4) statement is transmitted
as if under control of an implied DO loop:

WRITE (i, n) SPECS
is equivalent to:

WRITE (i, n) ({{SPECS(1, J, K), I = 1, 8), J =1, 6), K=1, 4)

ND-60.074.01

FREE FORMAT 1/0 STATEMENTS

These statements have syntax identical with the READ and WRITE state-
ments except for:

1. INPUT is substituted for READ
2. OUTPUT is substituted for WRITE
3. All format specifications are omitted

The execution of these statements cause the conversion of data to con-
form to the following default format specifications (see Section 8.4):

48 bit reals 32 bit reals
Logical L16 L16
Integer 116 16
Double Integer 116 116
Real £16.8 E16.6
Double Real E16.8 E16.6
Complex 2E16.8 2E16.6
Character A A

Example:
DIMENSION D (10)

INPUT (L) (D(1), I =1, 10)
OUTPUT (1) 'D=', D

ND-60.074.01

7.4

THE OPEN STATEMENT

An OPEN statement may be used to connect a file to a unit or change
certain specifiers of a file that is connected to a unit. The statement
may be applied upon both existing files and implicitly created files.

The OPEN statement has the general form:

OPEN ([UNIT=| <unit>, ERR=<errl>, FILE=<file>, STATUS=<status>,

where

unit

errl

file

status

ACCESS=<access>, RECL=<recl>)

is an integer constant, variable or expression representing a
number in the range 1-99 chosen by the user. This unit may
be referenced in the 1/0 statements. However, in reentrant
programs this unit will be assigned a value by the system. In
this case, unit must be an integer variable name. The specifier
UNIT= is optional.

is a statement label being left the control if the execution of

the OPEN statement causes an error diagnostic from the file
system, or if the unit is outside the range 1-99. The error num-
ber is contained in the system integer variable ERRCODE. The
statement labeled by errl must appear in the same program unit
as the OPEN statement and must be executable. |f ERR=<errl>
is omitted, an error condition will cause termination of the pro-
gram.

is a character expression whose value is the name of the file to
be connected to the specified unit. The FILE= specifier can-
not be omitted. Default file type is SYMB.

is a character expression whose value is OLD, NEW or UNKNOWN.

If OLD is specified, the file must exist; otherwise, an error con-
dition exists. If NEW is specified, the file must not exist.
STATUS= ‘NEW" will create a file with the name specified. If
status has the value UNKNOWN the file will be created if it
does not exist. |f STATUS=<status> is omitted the file is as-
sumed to exist.

ND-60.074.01

access is a character expression whose value is one of the following:
access: denoting:
W sequential write (WRITE statements)
R sequential read (READ statements)
WX random read or write (for RFILE/WFILE use)
RX random read (for RFILE use)
RwW sequential read or write (READ/WRITE statements)
WA sequential write append (WRITE statements)
WC random read or write common {only continuous

files)

RC random read common (only continuous files)

The access specifier cannot be omitted.

recl is an integer constant, variable or expression with a positive
value which specifies the record length in words. 1f this
specifier is omitted, the record size is assumed to be 256

words.

The rect has significance in the following cases:

1. By specifying REC= in READ/WRITE

2. The block number in RFILE/WFILE calls {byte no. =
block no. * recl«2)

The user is strongly advised to check for errors subsequently after OPEN.

ERRCODE = 0
ERRCODE # 0
Example:

No errors
Error number (see Appendix F.3)

OPEN (6, FILE= 'L—P’, ACCESS="W’, ERR = 100)
100 IF (ERRCODE.NE.O) STOP

ND-60.074.01

7.5

7-10

THE CLOSE STATEMENT

A CLOSE statement is used to terminate the connection of a particular
unit to a file and causes the SINTRAN 1}l file system to close the file.

The general form is:
CLOSE ([UNIT=] <unit>)

The specifier notation is equivalent to that of the OPEN statement. |f
UNIT= —1 all files for entered user are closed.

ND-60.074.01

7.6 REWIND STATEMENT
REWIND i
Moves the file pointer to the beginning of the logical unit number i.

When the file pointer is already at the beginning of the logical unit num-
ber i, the statement acts as a do-nothing statement.

ND-60.074.01

7.7

BACKSPACE STATEMENT

BACKSPACE i

Backspaces the pointer one logical record onthe unit number i. When the
pointer is already at the beginning of the unit number i, the statement

acts as a do-nothing statement.

Binary records cannot be backspaced if the logical unit is a file on disk
or drum.

ND-60.074.01

7.8

ENDFILE STATEMENT

ENDFILE i

Writes an end-of-file mark on the logical unit number i if this is used

as a device (MT, CASSETTE or FLOPPY-disk). Otherwise, the maximum

byte pointer (file length) will be equal to the number of read/written
bytes on the specified file.

ND-60.074.01

7.9

7.9.1

7.9.2

7.9.3

ADDITIONAL FILE UTILITY SUBPROGRAMS

Note: The user is advised to test for errors immediately after each of
these calls. If an error has occurred, the error code may be
found in the system integer variable ERRCODE.

ERRCODE=0 means no errors.

Read (random) Part of a File

CALL RFILE (<file no.>, <return flag>, <memory address>, <block
no.>, <no. of words>)

This is a subroutine to read a random record from a file. <File no.>
identifies the file. If <return flag> is zero, the program will be set in

a wait state until the transfer is finished. If <return flag> is set non-zero,
there will be return from RFILE as soon as the transfer is started, so

that the program and the transfer can proceed in parallel. The <return
flag> has effect in real-time programs only.

The parameter <memory address> determines where the record should
be placed. In FORTRAN this can be any array name. <Block no>
gives the file block number where the record starts, while <no. of words>

defines the record size. There is no inberent restriction on the record
size.

Write (random) Part of a File

CALL WFILE (<file no.>, <return flag>, <memory address>, <block
no.>, <no. of words>)

This is a subroutine to write a random record onto a file. The parameters

have the same meaning as for RFILE. If the record does not fill the last
block completely, the rest of the block will have undefined contents.

Set Block Size of a File
CALL SETBS (<file no.>, <block size>)

This call will set the block size of the specified opened file. The block
size may be any number greater than or equal to 1 (default = 256 words).

ND-60.074.01

7.9.4 Set Byte Pointer of a File
CALL SETBT (<file no.>, <byte number>)
This call will set the byte pointer of the file to the specified byte num-

ber. The first byte is denoted by 0, the second by 1, etc. The call may
be applied on files opened for RW only.

7.9.5 Set Block Pointer of a File
CALL SETBL (<file no.>, <block number>)

This call will set the byte pointer of the file to the first byte in the specified
block. The first block is denoted by 0, the second by 1, etc.

7.9.6 Read Byte Pointer of a File
CALL REABT («<file no.>, <byte number read>)

This call will return in second parameter the current byte pointer of the
specified file.

7.9.7 Read Maximum Bytes of a File
CALL RMAX (<file no.>, <max. no. of bytes>)

This call will return in second parameter the maximum bytes + 1 of the
specified file.

7.9.8 Set Maximum Bytes of a File
CALL SMAX (<file no.>, <max. bytes>)

This call will set the number of bytes of a file equal to the second para-
meter.

The number of bytes specified in SETBT, REABT, RMAX and SMAX
may either be single or double integer.

ND-60.074.01

7.9.9

7.9.10

7-16

Read (sequential) Bytes from a File
ICHAR = INCH (<file number>)

ICHAR receives an 8-bit character (16-bit if data link or word oriented
internal device) from the device buffer without any modifica-
tion, except for card reader, which is converted to ASCII. If
there are no bytes in the buffer, the program will enter a
waiting state.

Write (sequential} Bytes to a File
CALL QUTCH (<file number>, <char. value>>)
The 8 right bits of the <char. value>> (16 bits if data link) is outputed

to the buffer. [f there is no room in the buffer, the program will be in
waiting state until more room is available.

ND-60.074.01

8.1

8.1.1

FORMAT SPECIFICATIONS
INTRODUCTION

The FORTRAN FORMATTED INPUT/OUTPUT System, F10, has three
different “modes” of transmission of data between a file/external device
and computer memory.

Formatted Input/Output

This is the general FORTRAN input/output whereby the data transmis-
sion is performed under control of a FORMAT statement.

Example:

WRITE (5, 10} A, B, C, K, L, M
10 FORMAT (2E20.8, 115, F5.1,/, 2X, 2110)

where (5, 10) specifies the logical unit number 5 and FORMAT statement
number 10 and A, B, ..., M is the |/O list.

Note that the list item and the format specification should normally be
of the same type, but they can also be of different types. A list item
of integer type can be input or output under F or E specification, and
a list item of real type can be input or output under | specification.
(On input the data string is processed according to the format specifica-
tion before it is converted to the type of the list item. This feature
should, therefere, be used with caution.)

Binary Input/Output
This is also a standard FORTRAN feature. Transmission in this mode
will merely move the data from one place to another (specified by the
programmer} without conversion.
Example:

READ (2) L

where (2) specifies the logical unit number 2 and L is the 1/O list.

ND-60.074.01

8.1.

“Free” Format Input/Standard Format Output

Transmission of data in this mode includes conversion of data similar to
that of formatted 1/0. But in using this form of 1/0, the programmer

need have no concern about the FORMAT statement since the data con-

version is not under external format control.
Example:

INPUT (2) A
OUTPUT (3) A

ND-60.074.01

8.2

8.2.1

8.2.2

FORMATTED INPUT/OUTPUT

FORTRAN READ and WRITE statement of the form:

READ (i, n) L

WRITE (i, n) L
cause the generation of calls to the formatted 1/0 routine. The form
of these calls is shown in Section 8.1.1. In the above statements, i is a
logical unit number, n is a FORMAT statement number and L is the 1/O
list.

FORMAT Statement

The FORMAT statement is used to specify the conversion to be performed

on data being transmitted during formatted input/output. It is non-executable
and may be placed anywhere in the program. In general, conversion performed
during output is the reverse of that performed during input. FORMAT
statements have the form:

FORMAT (51, $9, 83, - - -, sn)
where

n=0, and s; has either a formatted specification of one of the forms
described below or a repeated group of such specifications in the form

r(sq, s, . . ., sm)
where

m > 0, r is a repeat count (described below), and s; has one of the
format specifications listed below.

Format specifications describe the kind or type of conversion to be per-
formed, specific data to be generated, and editing to be executed. Each
entity appearing in an input/output list is processed by a single format
specification.

Record

A record is a unit, composed of a number of positions or other smaller
units. A NORD record has variable length, i.e., from one LF to the next
CR. The maximum record length has 136 positions. FORMAT statements
define records. The first left parenthesis starts a new record, while the last
right parenthesis terminates it. The number of positions in each record must
not exceed the maximum numbper, but may be iess than 1t

ND-60.074.01

Note:

Example:

N

The right parenthesis of a parenthesized specification group,
not preceded by a repetition factor, causes termination of a
record.

The program:

PROGRAM T1

DIMENSION A (5)
DO1I=15

A(l) = 10.0%

DOz2J=15

WRITE (1, 3) J, (A(l), | = 1,5)
FORMAT (2X, 12, (4X, F5.1))
END

causes the following output:

10.0
20.0
30.0
40.0
50.0
10.0
20.0
30.0
40.0
50.0
10.0
20.0
30.0
40.0
50.0
10.0
20.0
30.0
40.0
50.0
10.0
20.0
30.0
40.0
50.0

ND-60.074.01

8.2.3

F10O-Conversion Specifications

rfFw.d Real number without exponent
rEw.d Real number with exponent
rDw.d Double Precision number with exponent

riw Integer or double integer
rdw Integer or double integer
rAw Alphanumeric specification
rOw Octal integer specification
rZw Octal integer specification
rlw Logical specification

Tw Tab specification

+nP Scaling factor

Editing Specifications:

rX Intra-line spacing
nHs Text

*0x Text

Lo Text

r/ New record

The letters r, w, d, n and s in the specifications above have the following
meanings:

r is an optional unsigned integer that indicates that the specification
is to be repeated r times. When r is omitted, its value is assumed
to be 1. For example, 316 is equivalent to 16, 16, 16. For X
specification, r must be defined.

w is an unsigned integer that defines the width, in characters (including
digits, decimal points, algebraic signs and blanks), of the external
representation of the data being processed.

d for F, E and D specification, is an unsigned integer that specifies
the number of fractional digits appearing in the magnitude portion

of the external field.

n is an unsigned integer that defines the number of characters
being processed.

s is a string of characters acceptable to the FORTRAN formatting
processor.

ND-60.074.01

8.2.3.1

8-6

F Format (Fixed Decimal Point)
Form: rFw.d

Real data may be processed by this form of conversion. The total width
of the field, including decimal point and sign, if any, is specified by w,
and the value of d allows for the appropriate number of digits in the
fractional portion of the field. F format specification should be used
for numbers that range from 1.0E-9 to 1.0E9 in absolute value. {1.0E-6
to 1.0E6 for 32 bit reals.)

OUTPUT

Internal value is rounded to d decimal places with an overall length of

w. The field is right-justified with as many leading blanks as necessary.
Negative values are preceded with a minus sign. Consequently, for the

specification F11.4,

273.4 is converted to 273.4000

7 is converied to 7.0000

-.003 is converted to —0.0030
—442.30416 is converted to —-4472.3042

If a value requires more positions than are allowed by the magnitude of
w, the output field is filled with asterisks. This happens if:

w<d+2+n
where

n is the number of digits to the left of the decimal point.

INPUT

Input strings may take any of the integer or real constants’ forms discussed
below in Section 8.2.4, “Numeric Input Strings”’. Each string will be of
length w with d characters in the fractional portion of the value. If a
decimal point is present in the input string, the value of d is ignored, and
the number of digits in the fractional portion of the value will be explicitly
defined by that decimal point. For the specification F10.3,

33 is converted to .033
802142 is converted to 802.142
34562 is converted to .34562
-7.001 is converted to —7.001

ND-60.074.01

8.2.3.2 E Format (Normalized with Exponent)
Form: rEw.d

Real data is processed by this form of conversion.

OUTPUT

internal values are converted to real constants of the forms,

where the length of the output field is w, and the number is scaled to have
one digit of the mantissa to the left of the decimal point, such that the
number of digits in the mantissa is d + 1. The exponent, +ee, is inter-
preted as a multiplier of the form 10+ee.

internal values are rounded to d + 1 digits, and negative values are preceded
by a minus sign. The external field is right-justified and preceded by the
appropriate number of blanks. The following are examples for the specif-

ication E15.7:
90.4450 is converted to 9.0445000E+01
—4357380156 is converted to —4.,3573902E+08
.000375 is converted to 3.7500000E-04
2 is converted to 2.0000000E-01
0.0 is converted to 0.0000000E+00

The field is counted from the right and includes the two exponent digits,
the sign, the letter E, the fractional digits, the decimal point, the most
significant digit, and the sign of the value (minus or space}. If a width
specification is of insufficient magnitude to allow expression of an en-
tire value, w < d + 7, the field will be filled with asterisks. E format
can be used for numbers that range from 1.0E—100 to 1.0E100 in ab-
solute value. (1.0E~76 to 1.0E76 for 32 bit reals.)

INPUT

The discussion in Section 8.2.4 contains a description of the form per-
missible for strings of input characters. Conversion is identical to F
format conversion. In particular, input fields for conversion in E format
need not have exponents specified.

ND-60.074.01

8.23.3

8.2.34

Examples:
Input Value Specification Converted to
—113408E2 E11.6 —11.340900
—~409385E--03 E11.2 —4.09385
8§49935E-02 E10.5 .0849935

6851 E4.0 6851.0

First, the decimal point is positioned according to the specification; then
the value of the exponent is applied to determine the actual position of
the decimal point. In the first example, —113409E2 with a specification
of E11.6 is interpreted as —.113409E02, which when evaluated (i.e.,
—.113409 * 102), becomes —11.340900,

D Format (Normalized with Exponent)

This format is equivalent to the E format. It is also used in the same
way.

I or J Format (Integer or Double Integer)
Form: riw or rdw

Integer data is processed by this form of conversion.

OUTPUT

Internal values are converted to integer constants, w giving the maximum
number of digits to be output. Negative values are preceded by a minus
sign, and the field will be right-justified and preceded by the appropriate
number of blanks. The specification 16 implies that:

273 is converted to 22273
7 is converted to it s?
—24204 is converted to —24204

If the magnitude of data requires more positions than are permitted by

the value of the width w, the field will be filled with asterisks. | format
can be used for integer numbers in the range —32768 to 32767 and double
mteger numbers in the range 31 to 2311, | format can also be used
for real numbers.

The J format will result in leading zeros instead of leading blanks.

ND-60.074.01

INPUT

External input strings must take the integer form discussed in Section 8.2.4.

8.2.35 A Format {Alphanumeric)

Form: rAw

OUTPUT

Internal binary values are converted to character strings with eight bits

per character. The more significant characters are converted first. That
is, conversion is from left to right, at the rate of two characters per word.
Note that when the magnitude of w does not provide for enough positions
to express the data value completely. the external field is shortened from
the right {least significant) portion. This is not treated as an error con-
dition. When w has a value greater than necessary, the external character
string is preceded by the appropriate number of blank characters.

For Example:
Internal Value Specification Qutput
HI A2 HI
HO A3 HO
X Al :
INPUT

Let v = 2 (integer) or v = 6 (real). (v =4 for 32 bit real.)

When the width w is larger than necessary (that is, w > v}, the list item
is filled with the right-most characters. For example, if the list item is
integer type, and the specification A10 is used, ABCDEFGHIJ is con-
verted to 1J alone. However, when the value of w is less than v, the
more significant positions of the list item are filled with w characters,
and the remainder of the positions are filled with blanks. Q, with a
specification of A1, is converted to Q. if the list item is an integer.

ND-60.074.01

8.2.3.56.1

8.2.3.6

8.2.3.7

Character Data Formatting

The Aw specification may be used with an input/output list item of type
character.

If a field width w is not specified with the A descriptor, the number of

characters in the field is the length of the character input/output list item.

Let len be the length of the input/output list item. |f the specified field
width w for A input is greater than or equal to len, the right-most len
characters will be taken from the input field. If the specified field width
is less than len, the w characters will appear left-justified with len —w
trailing blanks in the internal representation.

If the specified field width w for A output is greater than len, the output
field will consist of w—len blanks followed by the len characters from
the internal representation. If the specified field width w is less than or

equal to len, the output field will consist of the left-most w characters
from the internal representation.

H Format (Hollerith)

Form: nks

OUTPUT

The n characters in the strings are transmitted to the external record.
For instance:

Specification External String
1HE E

7H ., ., VALUE s VALUE
7HKR ., 3.95 KR ,,3.95
9HX(2, 5) ., = . X{2,8) 4=,

The H format must not be used on input.

¥*

LouoText. . *or .. Text ...

This specification may be used instead of nH to output text from a for-
mat. The text between the two asterisks/apostrophes is treated like a
Hollerith field. Within the field, two consecutive asterisks/apostrophes
are counted as a single. Comma is optional after this specification.

ND-60.074.01

8-11

Example:

FORMAT (*HOLLERITH*)

8.2.3.8 X Format (Skip)
The form of the X specification is:
rX

where r must be > 1.

OUTPUT

The next r positions in the output record will be blanks. In other words,
a field of r-blanks will be created. For example, the specifications

AHWXYZ, 4X, 4HIJKL
generate the following external string:

WXYZ ., .. ., . UKL

INPUT

The next r characters from the input string are ignored (that is, they are
skipped). For example, with the specifications

F5.2, 6X, 13
and the input string

76.41IGNORE6G97
the characters

IGNORE

will not be processed.

ND-60.074.01

8.2.39

8.2.3.10

8-12

T Format {Tab)
Form: Tw

This specification causes processing to continue at the w’th character
of this input or output record.

Z or O Format (Octal)
Form: rZw or rOw

Octal input/output can be performed specifying any of the data types
— integer, double integer, or real — in the 1/O list.

As each octal digit represents three bits, and the NORD-10 word length
is sixteen bits, the following connection is used:

Integers: treated as one 16 bit word, 6 octal digits
Double Integers: treated as one 32 bit word, 11 octal digits
Reals: treated as one 48 bit word, 16 octal digits {one

32 bit word, 11 octal digits for 32 bit reals)

OUTPUT

Internal binary values are converted to character strings at a rate of three
bits per character.

Integers: If w = 6, the left-most digit is the value of the
left-most bit of the word

Double Integers: If w= 11, the left-most digit is the value of the
left-most two bits of the word

Reals: If w = 16, the three words are treated as a single
forty-eight bit word

Note that when the magnitude of w does not provide for enough positions
to express the data value completely, the most significant digits are trun-
cated. This is not treated as an error condition. When w has a value greater
than necessary, the external character string is preceded by the appropriate
number of blank characters.

ND-60.074.01

8-13

Example:
Specification Internal Value
Integers:
Z8 137420
Z5 137420
Z3 040001
Reals:
Z16 040003 100000 000000
Z11 040003 100000 000000
INPUT

Output Value

137420
37420
001

200016 0000000000
60000000000

w characters from the input record are assembled into the list item at a
rate of three bits per character.

If w < 6 for integers, w < 11 for double integers, and w < 16 for reals,
the input characters will be right-justified, and the left-most part will be
filed with zeros.

If w > 6 for integers, w> 11 for double integers, and w > 16 for reals,
the list item will be filled with the right-most characters.

Example:

Specification

Z6
Z6
Z8
Z2

216

input Value

137326
L2671
37533235
35

2000160000000002

ND-60.074.01

Internal Value

Integers:

137326
002671
133235
000035

Reals:

040003

100000 000002

8.2.3.11

8.2.3.12

8-14

L Format {Logical)

Form: rbw

This code is used only with input and output of logical variables.

If Lw is specified for output and the value of the logical list item is .TRUE.

the right-most position of the field with length w contains the letter 7. |If
the value is .FALSE., the letter F is printed, instead.

’

On input, the field width is scanned from left to right for the first oc-
currence of T or F, and the value of the corresponding logical list item
is set to .TRUE. or .FALSE., respectively. All other characters of the
external input field are ignored. In the absence of T or F in the input
field, the value will be F.

/ Specification (Record Separator)

The form of the / specification is:
r/ or /

Each slash (/) specified causes another record to be processed. In the
case of continuous specifications (i.e., //// .../ or r/), records are ig-
nored during input {since no conversion occurs between each of the slash
specifications), and blank records are generated during output operations.
The same condition can occur when a slash specification and either of
the parenthesis characters surrounding the field specifications are con-
tinuous, {i.e., r{/}). A slash preceding the final right parenthesis in a
FORMAT statement is not ignored.

OUTPUT

Whenever a slash specification is encountered, the current record being
processed is output, and another record is begun. If no conversion has
been performed when the slash is encountered, a blank record is created.

The statements

WRITE (5, 10) X, K
10 FORMAT (F5.3//113)

are processed in the following manner:

ND-60.074.01

1. A record is begun and X is converted with the specification F5.3.

2. The first slash is encountered, the record containing the external
representation of X is terminated, and ancther record is begun.

3. The second slash is encountered, the second record is terminated,
and a third record is started. Note that since no conversion occurred
between the termination of the first and second records, the second
record was blank.

4. The value of the variable K is converted with the [13 specification,
the closing right parenthesis is encountered and the third record is
terminated.

If a third item, Z, was added to the output list, as in

WRITE (5, 10} X, K, Z

the following additional steps will occur:

5. A fourth record is begun and Z is converted using the specification
F5.3.

6. The first slash is re-encountered, the fourth record is terminated
and & fifth record is begun.

7. Again, the second slash is processed, the fifth record, which is blank,
is terminated, and the sixth record is started.-

8. Since there are no more list items, the specification 113 is not pro-
cessed, a termination occurs, and the final or sixth record, which is

also blank, is output.

Note that the processing of Z in steps 5 through 8 is equivalent to pro-
cessing with the statement

10 FORMAT (F5.3, //)

since the specification 113 was not utilized.

The original FORMAT statement could also have been written as
10 FORMAT (F5.3, 2/113)

or
10 FORMAT (F5.3, 2(/), 113)

both of which would cause identical effects.

ND-60.074.01

8.2.3.13

The two statements

WRITE (5, 4) X
4 FORMAT (3/E12.4/)

cause the generation of the three blank records, followed by a record
containing the value of X (converted by the specification E12.4), fol-
lowed by another blank record.

INPUT

The effect of slash specifications during input operations is similar to
the effect for output, except that for input, records are ignored in the
cases where blank records are created during output. For example, the
statements

READ (5, 4) X
4 FORMAT (3/E12.4/)

cause three records to be bypassed, a value from the fourth record to
be converted (with the specification E12.4) and assigned to X, and a
fitth record to be bypassed. This means that, as with the last example
for output, records created with a FORMAT statement containing slash
specifications can be input by use of the identical FORMAT statement.
This is not true in FORTRAN systems that ignore a final slash.

Scale Factor

Form: +nP

This specification effects only E and F output and has no effect on input.

Output: +nP in front of:

w: no effect
Fw.d: (external value) = (internal value) - 10t
Ewd: (external value) = (internal value)

n is an arbitrary integer, n << 99. The + sign in front of n is optional.

ND-60.074.01

8—-17

The mantissa of the output is multiplied by 10 Nand +n is subtracted
from the exponent part. The +nP specification is valid for the specifi-
cation {E or F) it is placed in front of. For instance, in the format

(5P6F15.3, F10.2)

the 5P scaling factor will have effect on the six real numbers output by
the 6F15.3 specification only, and the last number output by F10.2 will
not be scaled.

Examples:

Internal Value = 3.1456789

Specification Qutput Comment
F10.3 did Ly 203146

1PF10.3 e oy 31.457

4PF10.3 L 31456.789

6PF10.3 KK KRN Too short field
—1PF10.3 Citses e 0315

—3PF10.3 s, 0.003

—4PF10.3 EHF AT R Too short field

Internal Value =3.1456789

Specification Qutput Comment
£15.3 il e o —3.146E+00

4PE156.3 o —314566.789E--04

6PE15.3 HHREHE R TR AT XTI H Too short field
—-3PE15.3 o ey —0.003E+03

—4PE15.3 TR I LIRS A Too short field

8.2.3.14 Parenthesized Format Specification
Within a FORMAT statement, any number of specifications may be repeated

by enclosing them in parentheses, preceded by an optional repeat count,
in the form shown below.

where

m > 0.

ND-60.074.01

8.2.4

8-18

For example, in processing the statement

3 FORMAT (3(A4, F5.2, 3X), 3110)

each repetitive specification is exhausted in turn, as in each singular specifica-

tion. The following are additional examples of repetitive specifications:

34 FORMAT (4X, 2(A8, 1X, 7E12.3), 14, 3(I2, 15))
1125 FORMAT (/A4, F10.7, 5(E14.4, 2/) E14.5)

Nesting of this type is permissible to a depth of five levels. The presence
of parenthesized groups within a FORMAT statement affects the manner

in which the FORMAT is rescanned if more list items are specified than
are processed the first time through the FORMAT statement. In particular,
when one or more such groups have appeared, the rescan begins with the
group whose right parenthesis was the last one encountered prior to the
final right parenthesis of the FORMAT statement.

Numeric Input Strings

A numeric input string consists of a string of digits with or without a
leading sign, decimal point, or trailing exponent. An exponent is normally
specified as

Ete

where the plus sign is optional and e is a one- or two-digit number. The
form e is also accepted (without the E), in which case the plus sign is
not optional. Thus, a variety of forms may be used to express data for
numeric input, such as

+n +n.m +n. *m
tnkte +n.mEzte +n.E+e t.mE*e
+tnte *n.mzte tn.te . mte

where the plus signs are optional except in an exponent field without an
E (as described above).

Note: The form #n is the only form accepted by an | specification.
All are accepted by E and F specifications.

The field terminates only when the width is exhausted or by a comma
or CR. The following rules apply to blanks in numeric fields with a width
specified.

1. Leading blanks are ignored, except that they are counted as part of
the field width.

ND-60.074.01

8.2.b

2. Once any non-blank character has been found, all blanks beyond
that point are treated as zeros.

For a format specification such as F10.0, all the input strings in each
of the columns below produce the value shown in the top line of the
column. The first three lines in each column are typical numeric fields,
the others are permissible but less readable.

--.004 7.5E12 0
—4E--3 & .76E+13 0.0
—.004 ' 75E11
B3R LL.J.'.J’_J4I.J~‘4 75,‘..11__/:.11._11..1 E6 0+0
L AE 750+10 OE
4 w8 o, /BE16 + —

On input, a plus sign for the exponent field following an E is optional.

FORMAT and List Interfacing

Formatted input/output operations are controlled by the FORMAT re-
quested by each READ or WRITE statement. Each time a formatted
READ or WRITE statement is executed, control is passed to the
FORMAT processor. The FORMAT processor operates in the follow-
ing manner:

1. When control is initially received, a new input record is read or
construction of a new output record is begun.

2. Subseqguent records are started only after a slash specification has
been processed (and the preceding record has been terminated),
or after the final right parenthesis of the FORMAT has been sen-
sed. Attempting to read or write more characters on a record than
are or can be physically present does not cause a new record to
begin; during output operations the extra characters are lost and
during input operations they are treated as blanks.

3. During an input operation, processing of an input record is termin-
ated whenever a slash specification or the final right parenthesis
of the FORMAT is sensed, or when the FORMAT orocessor re-
quests an item from the list and no list items remain to be pro-
cessed. Construction of an output record terminates and the
record is written on the same conditions.

ND-60.074.01

4.

Every time a conversion specification (i.e., D, F, E, |, Z or A specifi-
cation) is to be processed, the FORMAT processor requests a list
item. If one or more items remain in the list, the processor performs
the appropriate conversion and proceeds with the next field specifica-
tion. If the next specification is one that does not require a list item
(i.e., H, X or /) it is processed whether or not another list item exists.
Thus, for example, the statement

WRITE (6, 12)
12 FORMAT (/// 4HABCD)

would produce three blank records and one record containing ABCD
before reaching the final right parenthesis. When there are no more
items remaining in the list and the final right parenthesis has been
reached or a conversion specification has been found, the current
record is terminated, and control is passed to the statement following
the READ or WRITE statement that initiated the input/output oper-
ation.

When the final right parenthesis of a FORMAT statement is encountered
by the FORMAT processor, a test is made to determine if all list

items have been processed. |f the list has been exhausted, the current
record is terminated and control is passed to the statement following
the READ or WRITE statement that initiated the input/output oper-
ation. However, if another list item is present, an additional record

is begun, and the FORMAT statement is rescanned. The rescan takes
place as follows:

A) If there are no parenthesized groups of specifications within
the FORMAT statement, the entire FORMAT is rescanned.

B) However, if one or more parenthesized groups do appear, the
rescan is started with the group whose right parenthesis was
the last one encountered prior to the final right parenthesis
of the FORMAT statement. In the following example, the rescan
begins at the point indicated.

FORMAT(3X,(F7.2,A5),{X,3HABC(314,(E15.7//),A3)),E20.8,3HXYZ)

t t

rescan closing; final right

begins parenthesis parenthesis

here of internal of FORMAT
group

C) If the group at which the rescan begins has a repeat count (r)
in front of it, the previous value of the repeat count is used
again for each rescan.

Each list item to be converted is processed by one specification or
one iteration of a repeated specification.

ND-60.074.01

8.2.6

821

Field Termination by Comma
An additional feature has been introduced for input of numeric input
strings by E, F or | format specification. The numeric input string can

be terminated by a comma (,) relieving the user of the concern of editing
his data in proper columns.

Example:

READ (3, 10) K, X, Y
10 FORMAT (110,E16.8,F14.2)

The input data string can be typed as
125, 1.23E+6, 235.,
where the comma will terminate the field of the input string processed.
Warning.:
A trap is best illustrated by the following example:

READ (3, 10) I1, 12, 13
10 FORMAT (314)

If the input string is typed as follows
23, 6420, 16,

the internal values of the variables will become

1 = 23
12 = 6420
13 = 0 NB!

The explanation is that as the first comma terminates the first field, the
second comma will terminate the third field because the second number
of four digits will terminate the second field (14).

Example:
If,,, is typed in the above example, the result will become:

11 =12 =183=20

ND-60.074.01

8.3

BINARY INPUT/OUTPUT

The binary transmission mode merely transports bit-pattern from one place
to another, e.g. from external devices or mass storage files into computer
memory or the reverse.

One half-word (8 bits) is moved at a time. Two neighbour half-words
are placed side by side in one memory location. The order of the half-words
is preserved during the transfer.

ND-60.074.01

8.4

8.4.1

8-23

STANDARD FORMAT INPUT/QUTPUT

“Free” Format Input

The FIO system includes an input option that relieves the programmer
from the difficulty of input format description. The statement that causes
this option is

INPUT (m) list

where m is a logical unit number. The elements of the list determine which
type of format specification the conversion will follow. (See Section 7.3.)

Each field in the input data string is terminated either by a comma (,) or
a carriage return (CR) (see Section 8.2.6). Note that a CR should not be
preceded by a comma if the list is not exhausted, as the CR will then ter-
minate the next field and have the same effect as a comma followed by a
comma. A maximum of twenty data fields can be input in one record
(line).

Note that a comma will terminate character strings as well as numeric
data.

Example:
INPUT (3) 11,12, X
The data string can be input as:
12, 526, 1.25E—6 CR
or

12 CR LF
526, 1.25E—6 CR

Note: The conversion will always follow the rules for the default for-
mat specifications.

Example:

INPUT (3) X

Typing 3269, without a decimal point will cause the internal value to
become X = 3269.

ND-60.074.01

8.4.2 Standard Format Output
The default output specifications are listed in Section 7.3.

The output appears with four numbers on each line, if there is output
sufficient to fill a line.

This type of output is effected by the statement

OUTPUT (m) list

where m is the logical unit number.

ND-60.074.01

8-25

8.5 FORMAT CONTROL

The first character in a formatted output record is always used for format
control to direct the line printer. The table below shows the reactions of
the printer on different characters in the first position.

Character: Reaction:

Blank Simple record shift

0 Double record shift

1 New page

+ Same record as before

$ Append actual record to last one with
no LF/CR

Alt other characters in the first position act as blanks and are skipped.

Example:
WRITE (1, 100)
WRITE (1, 200)
100 FORMAT {1H., TEXTY)
200 FORMAT {/, THS, 'TEXT")
The first WRITE statement will produce the record
LF, TEXT, CR

while the last one will produce

LF, CR, TEXT

ND-60.074.01

COMPILER USER'S GUIDE

The FORTRAN compiler may be recovered from the operating system
by typing

FTN.

When the compiler has printed $ on the terminal, it is ready to accept
one of the commands which are explained below.

All commands may be abbreviated and A® and Q¢ may be applied on
the terminal input.

The main command of the compiler is
COMPILE <Csource file> <list file> <object file>
which initiates the compilation process.

The source file is your symbolic program version containing FORTRAN
statements. A listing of the program (diagnostics included) is written
on the list file, while the object program in binary relocatable format is
written onto the object file.

The files may be specified by their names or, being previously opened
(for random access), by their octal file numbers. The file names must
be delimited by at least one space or comma. The default source and
list file type is SYMB, while the object file type is BRF.

The compilation is completed when end-of-file is encountered or an EOF
statement is found.

The number of compiled statements and the number of diagnostics given
are printed on the terminal.

Example:

@FTN
$COMP MY-FILE LINE-PRIN 100

Here, the permanent open scratch file is used for object output.
If no diagnostics are given, the compiler has accepted all the statements
to be syntactically and semantically correct and the object version may

be loaded by the NORD-10 Reloating Loader. The guide for loading
and execution is found in Section 10.1.

ND-60.074.01

The control is transferred from the compiler subsystem into the operating
system by the command

EXIT.

Some auxiliary compiler commands are explained below. The available
commands are listed by the compiler by typing

HELP.

ND-60.074.01

CROSS REFERENCE MAP OPTION

The cross reference map is a dictionary of all symbol names appearing
in the program unit, with references to each symbol listed by source
line numbers. The symbol names are listed alphabetically.

The cross reference map follows the source listing of each program unit
on the list device.

The cross reference option is obtained by giving the command CROSS-
REFERENCE prior to the compilation.

Example:
@FTN
— NORD-10 FORTRAN COMPILER~
$CROS-REF
$COM FILE, TERM, 100
1% COMMON /BLOCKL/ ACLO) r R
2X COMMON /RLOCKZ/ 1102
K DOURLE FRECISION P21
4% COMFLEX cl
SR (0 = (1,091 .0)
H¥ LI = 5,80420
7% ng 100 K o= 1¢10
gx ACK)D = FLOAT KD
P% LK) I
10X 100 CONTINUE
11% E = (.0
12% no 200 K= 1910
13% R = R+ A
14x% 200 CONTINUE
15% ENI

ta e ess ses oovm 4bre eron sewe smay Swen ren 4Rk o4 Suee ves Seek SeES weas 1at ase C R U S 8 - H E !Z. E R F: N (.: F M A P aren sons as00

A 1 8 13

E 1 11 13 13

Cl 4 i

IF1 3 é

FLOAT 8

I 2 ¥

K 7 8 8 ¥4 9 12 13

16 EOF

ND-60.074.01

9.2

THE PROGRAM MAP OPTION

The program map is a table with the (relative) memory addresses of
each statement and a list of all symbols appearing in a program unit.

The properties of each symbol and its (relative) addresses are printed

as octal numbers. The symbol names are grouped into local identifiers
(local variables and array names), common identifiers (common variables
and array names) and external referenced subroutines, functions and
library routines.

The program map follows the source listing of each program unit on
the list device.

This option is obtained by giving the command

PROGRAM-MAP <ioad base>

where

<ioad base>
is the octal address where you intend to start the loading. Then
local identifiers are mapped with their correct addresses. In
reentrant mode, local identifiers are mapped with a displacement
relative to local base-field (stack value). All common identifiers
are mapped with their relative address within their common blocks.

Example:

@FTN

— NORD-10 FORTRAN COMPILER~
$PROG-MAP 20000
$COM FILE, TERM, 100

{continued on the following page)

ND-60.074.01

Example, continued

LE0

-

S

ey HADHLINT
e rdyn AN
; AthMy eE

T
-

OO W WO e

ABY LT TR0 WLOL

Y TIMEA MY
TRV TAMEA XEATTAWOD
ATV IEYA 3T18N00

vy

()

SETOS

L0008 L0008 GO0 pEooE x0T
TEOOE 0004 *0
Gt et & T+ O+ cANITT
Ty A0 W Fu

TEood L0000
t th

AN T

ANNTANGD 008 AT

2 H *xeT
Mo008 O XS T
| *TT
ANNTLHNDD 00T x0T
o o= (M T Xé

(M) L0 (M2e *8

OLsT * 00T O K

ootagrn o= TodX x9

CO*Ts0* 1Ty = 13 5

T3 KATAWOD K&

Tedil NOTSTAERMA JTENMI 3%

(O 1 SENMINTHS NOWWDD L 39

g & (omv ATHIOT NOWKOD KT

ND-60.074.01

9.3

THE CONDITIONAL COMPILING OPTION

The compiler is put into conditional compiling mode by the command
CONDITIONAL-COMPILING <list of characters>.

Then if one of the characters specified is found in the second column of
a comment statement, i.e., after C or *, the two first characters are re-

moved and the statement compiled.

A maximum of five characters may be given in the CONDITIONAL-COMPILING
command.

Example:
$COND-COM X, +
The following two comment statements will be compiled:

C+ WRITE (1,100) A, B, C
*X GO TO 20

ND-60.074.01

9.4 THE LIBRARY MODE OPTION
In certain cases it is advantageous for the user to compile a set of sub-
programs onto a file from where he wants to select a sublist of units
dependent on his program configuration.
This may be obtained by giving the command:
LIBRARY-MODE

prior to the compilation.

In this modus, each of the subprograms on the object file are headed
with a library control information.

At load time, a specified unit will be loaded if it is referenced previously
(undefined entry), else it is skipped. In other words, subprograms that
are not needed will not be loaded.

The library mode may be switched off by the command:

RESET-LIBRARY-MODE

ND-60.074.01

THE REENTRANT MODE OPTION

In this mode, set by the command

REENTRANT-MODE

the compiler generates reentrant object code.

The code may be run with the reentrant version of the FORTRAN run-time
system and is suited especially for real-time applications. This modus
deviates mainly from the standard one in the following respects:

1. Recursive calls are permitted.

2. DATA statement with focal identifiers are not permitted.

3. Local identifier values are not preset to zero, and their assigned
values are lost by each exit from a program unit.

4. All local data-areas are stacked in a continuous area starting at the

first free location address beyond the read-only code-part. The stack
area is limited by the common data-area.

ND-60.074.01

9.6

DO-LOOP OPTIMIZATION
The NORD-10 FORTRAN compiler is able to perform certain DO-loop
optimizations upon the inner or two inner loop levels. Some loop-invariant

operations are moved outside the loop if possible.

Special cases of integer multiplication (frequently appearing in index cal-
culations) may be reduced to additions (strength reduction).

The optimization feature is selected by the command:

OPTIMIZE-L.OOPS <degree>

where

<degree>> is either: O no optimization (switch off)
1 inner level optimization (default set)
2 two inner levels optimization

It is noticed that degree = 2 does not reduce the execution time significantly
from that of degree = 1.

Note: The results of the executions should, of course, be identical
regardless of the degree value.

ND-60.074.01

9.7

9-10

STATEMENT EXECUTION PROFILE ANALYSIS

A useful source of information about your executed program is a map
giving the number of times that each statement has been executed.

This is obtained by giving the command
PROFILE-MAP <output file name>
prior to the compilation.

The profile map will be dumped on the file specified when the execu-
tion has reached the END statement of the main program.

Example:

@FTN

— NORD-10 FORTRAN COMPILER —
$PROFILE-MAP TERM

$CONMP PROFIL, 1, 100

1% PROGRAM PROFILE
2% DO101=1,10

3* 10 CONTINUE

4* END

4 STATEMENTS COMPILED
CPU-TIME USED IS 0.3 SEC.
$EX

@NRL
RELOCATING LOADER

*LOAD 100 FTNLIBR

*RUN ”

1 EXEC. 1 TIME
2 EXEC. 1 TIME
3 EXEC. 10 TIMES
4 EXEC. 1 TIME

Note: The statement counters are printed module 65536.

ND-60.074.01

9.8

9.8.1

9.8.2

9.8.2.1

THE DEBUGGING OPTION

By the debugging facility, the user is able to execute his program while
tracing, stepping or breaking through it. Variables may be examined
and modified whenever wanted, like an interactive execution on assem-
bly level.

The Compilation and Load Procedures

Compilation: If the program should be executed in debugging mode,
the DEBUG-MODE command must be given before the
compilation ($DEBUG-MODE). The debug option cannot
be applied upon reentrant compiled programs.

The main program must be compiled in debug mode, but
not all of the subprogram units.

Loading: The debugging supervisor which is a part of the FORTRAN
run-time system, must be present prior to the execution.
This supervisor is called 8DBUG and occupies some 1.5K
of storage. A debug execution must be started from the
loader by the RUN command.

Syntax of the Command

When the debugging supervisor prints an & on the terminal, it is ready
to accept a command. The available commands {along with possible
arguments) must be typed on the same line as the & and terminated by
a carriage return. The command word may be abbreviated.

Space has delimiting effect, but more than one in a sequence is ignored.

Syntax of the Arguments
An argument may be:
1. A decimal number

2. One or two statement specifications
3. One or more symbolic FORTRAN variable names

ND-60.074.01

9.8.2.2

9.8.2.3

9-12

Statement Specifications
The general syntax is:
<program unit name>, <statement number> + <displacement>

However, if the referenced statement belongs to the same unit as the
next statement of execution, the unit name may be omitted.

<statement number> + <displacement>

Furthermore, if no numbered statement precedes the referenced one, the
statement number is dropped.

<program unit name> + <displacement>

A zero displacement may be omitted in the specification. All displace-
ments must be positive.

Examples:

Specification: Comment:

SUBR, 100+2 Two statements beyond that of label 100
‘ in SUBR.

10+5 Five statements beyond that of label 10

in actual unit.
PROG+2 Third statement of PROG.
PROG2,4 Statement with label 4 in PROG2.

Specifying FORTRAN Variable Names
The general syntax is:
<program unit name>, <name>>

If the variable belongs to the same unit as the next statement of execution,
the program unit name may be omitted. Arrays must be indexed with
constants as subscripts (array elements).

Examples:

OLE, A

B

SUBR, ARRAY (26)
ARR (1, 1, 1)

ND-60.074.01

9.8.3

9-13

The Available Commands

TRACE <statement specification> <statement specification>

The flow of control of the FORTRAN program may be examined through
all statements executed (TRACE <carriage return>} or through one or
more trace areas, each specified by a lower and an upper bound.

During execution a reference to each passed statement will be printed

out. These references are preceded by the word TRACE enclosed in
brackets.

Example:

&TRACE OLE,10+1 OLE,100

BREAK <statement specification>
When the specified statement is reached, the execution will halt and the

control will be transferred to the debugging supervisor. The break is
performed before the specified statement is executed.

Example:

&BREAK OLE,10+2

COND <variable name> <relational operator> <constant>

When/if specified condition is true, the control will be transferred to the
debugging superviscr.

The specified variable must be of type integer or real only.
All the FORTRAN standard relational operators, i.e., .LT., .LE., .EQ.,
.NE., .GE. and .GT. are permitted. If the specified condition causes a

break, it will be reset automatically {contrary to the BREAK command).

Examples:

&COND SUBR,A(2) .EQ. 4.5
&COND | .GT. 6

DISPLAY <variable name> <variable name> . . . etc.

In trace mode the specified variable names will be printed out followed
by a colon and their current values.

ND-60.074.01

BOUND <array name> {<index1>,, <indexn>)
The array should be specified with the greatest indices permitted. If
the array is accessed beyond this range, a message will be given and the

control will be transferred to the debugging supervisor.

Example:

&BOUND SUBR,ARR (4,4)

RESET

RESET may be used in front of the TRACE, BREAK, DISPLAY and
BOUND commands with or without arguments (no arguments of RESET
BREAK and BOUND). Its effect is to delete an earlier given argument
of the four commands listed.

Example:

&RESET BREAK

WHERE (or *)

WHERE prints a reference on the terminal to the next statement of
execution.

DEVICE <logical device number>

By this command the user may specify the output device of trace infor-
mation and display parameters.

> {Step Command)

The next statement will be executed according to the dynamic flow of
control of the program. Thus, this command decreases the speed of ex-
ecution only and the track is never lost.

CONTINUE (or C)

The execution will continue (or start) fromthe next statement.

ND-60.074.01

915

NEST
This command displays the routine nesting in the format:

&NEST
<name of present unit>
<name of caller>

<name of main program>

EXIT

Exits to the operating system.

9.8.4 Examination of Variable Values

When the supervisor prints the character &, the values of single or sub-
scripted variables may be examined and possibly modified. This may
be obtained by typing the name (cfr. Section 9.8.2.3) of it followed by
a slash:

<variable name>/

The value, which will appear on the right side of the slash, may be changed
by typing a left arrow («) along with the new value and terminating with
carriage return.

Examples:

& A / 2.30000000E+10 « 4.5
& FUNGC,I/ 10 ’
/

If an array element name is specified, the subsequent element will be
displayed automatically by typing carriage return. However, when a
dot (.) precedes the carriage return, the control is left to the supervisor.

When the upper array bound is reached the examination terminates auto-
matically.

Example:

& A1)/ 1.000()0000E+00‘2
2.00000000E+00.

& /

ND-60.074.01

10

10-1

NORD-10 RELOCATING LOADER USER’S GUIDE

Programs transformed (by an assembler or compiler) into Binary Relocatable
Format (BRF) must be read and processed by a loader in order to be
executed by the machine. Relocatable programs may be loaded anywhere
in the memory according to default system addresses or according to

load addresses specified by the user.

By the load process, the BRF-programs are transformed into an absolute
binary format and the quality of relocatability is lost.

There are three main types of loading:
1. Basic_Loading
This is the most common method of loading, whereby the program

is loaded directly into the user’s memory space.

2. Memory-Image Loading

The program is loaded onto a file where it resides in absolute binary
form.

3. Qverlay-Segment Loading

Parts of the program are loaded into the same memory area and,
when completed, they are written on different areas on a file.

The NORD-10 RELOCATING LOADER may be recovered from the
operating system by typing

NRL, .
p

When the loader has printed an asterisk (*) on the terminal it is ready
to accept commands from the user.

ND-60.074.01

10.1

10-2

HOW TO LOAD AND EXECUTE A BRF-PROGRAM

Loader input is obtained from one or more files/library-files. The loading
is initiated by the command:

*LOAD <file name> [<file name>...]

Each of the files specified will be loaded until end-of-file is detected, then
the control is transferred to the loader command processor {(types *) which
is then ready to accept another command. The bracket contents denote
optional parameters.

To obtain the entry-point addresses of the loaded program, use the command:

*ENTRIES-DEFINED [<file name>]

which will give you a printout of the entry-names along with their octal
addresses in memory. If no file/device name is specified, the printout will
appear at your terminal. Also, referenced (not defined) entry-points may be
requested by the command:

*ENTRIES-UNDEFINED [<file name>]

The octal addresses which appear on this map denote the last reference
address.

If you have loaded a FORTRAN program and some references still remain,
the FORTRAN run-time/library system-file should be loaded. If any of
these routines are necessary for the execution they will be selected by the
loader and connected with their corresponding references.

There should be no undefined entry-points remaining and your program
may be started by the command:

*RUN.

When the program has been executed, the control is transferred to the op-
erating system (@).

If you wish to leave the loader and enter the operating system you simply
write:

*EXIT.
You may re-enter the loader by using the system command:

@CONTINUE.

ND-60.074.01

10-3

10.2 LOAD-ADDRESS CONTROL COMMANDS

If you wish to load your program at an address other than the preset
values you may obtain this by typing:

*SET-LOAD-ADDRESS <octal address>
Subsequent loading will then be performed from the address specified.
Also, the absolute upper load limit may be redefined with:

*UPPER-LIMIT <octal address>

Be certain that no overlapping may occur when manipulating load-addresses.

ND-60.074.01

10.3

10-4

COMMANDS AFFECTING THE SYMBOL-TABLE

Symbolic table-entry-points may be created, renamed or deleted by the
user. An entry is created by:

*DEFINE <entry name> <octal value/address>

Symbol names may be renamed by:

*RENAME <old symbol name> <new symbol name>

and an entry is deleted by:

*KILL <symbol name>

The associated address/value of an entry-point may be examined by typing:
*VALUE <symbol>

The loader then prints the octal number on the terminal.

The associated address/value of an entry-point may be entered into a memory
location by the command:

*REFERENCE <symbol> <octal memory address>

It doesn‘t matter if the referenced entry-point is present in the table or
not, as the correct address will be filled in when the symbol value i$ defined.

If the message

LOADER TABLE OVERFLOW

is given it means that there is no more room for entries. The table-length
may be expanded through the command:

*SIZE <number of entries (octal)>

However, the old table contents are lost. This means that you must repeat
the load procedure beginning with an appropriate table length.

All table contents are removed by typing:

*RESET

However, all entries present may be protected from later removal (through
RESET) by typing:

*FIX

ND-60.074.01

10-b

The RESET will then merely remove all symbols entered after the mom-
ent when the table was fixed.

Also, the current location when fixing will later act as the lower bound
reset-address.

The user is advised not to fix the table when there are undefined refer-
ences.

Fixed entries are not listed through the commands:

ENTRIES-DEFINED and ENTRIES-UNDEFINED.

ND-60.074.01

10.4

10-6

SAVING AND DUMPING OF BINARY PROGRAMS
The loaded program may be saved in binary form in two ways:
*DUMP <destination file name>> [<start address> <restart address>]

This command saves the loaded program on the specified file. The pro-
gram may be retrieved with the RECOVER command. It then starts

in the specified start address. The restart address specifies where the
program should be started with the CONTINUE command. The dump-limits
may be set by the BOUNDARIES command. Default boundaries range
from the lowest to the highest address accessed by the loader since the

last recovery. The main entry will act as a default start and restart addresses.

*BPUN <destination file name> <start addr> <bootstrap addr>

The program area (default or specified by the BOUNDARIES command)
will be dumped binary on the destination file with an octal coded boot-
strap ahead. The main start entry of the program may be specified sym-
bolically or octally. The bootstrap address (octal number) specifies where
the bootstrap program (44g locations) will be located, if the program

is loaded into a stand-alone NORD-10. Default destination type: BPUN.
Default boundaries range from the lowest to the highest address accessed
by the loader since the last recovery.

When a dump area, other than the default addresses, is preferred it may
be specified by:

*BOUNDARIES <lower address> <upper address>.

ND-60.074.01

10-7

10.5 AUXILIARY MEMORY EXAMINATION COMMANDS
DEPOSIT <octal address> <new contents>

The new contents are put into the octal address specified. If the last para-
meter is missing the old contents are displayed and may be changed by typing
the new contents on the same line. By typing CR the next location will be
displayed automatically. Termination character is point (.).

OCTAL-DUMP <lower address> <upper address> [<file name>]

The contents of the locations between lower and upper address will be
dumped on the specified file, eight consecutive locations on each line.
If no file name is specified the contents are dumped on the terminal.

ASCH-DUMP <lower address> <upper address> [<file name>>]

The contents of the locations between lower and upper address will be
dumped on the specified file, eight consecutive locations {16 characters)
on each line. Non-visual characters appear as space. If no file name is
specified the characters are dumped on the terminal.

ND-60.074.01

10-8

10.6 MEMORY-IMAGE LOADING

Your program(s) may be loaded directly into a memory-image file
instead of into main memory.

The loader is put into this special mode by the command

*IMAGE-FILE <file name>

whereby, the file name denotes the memory-image file and has IMAG
as default type.

The IMAGE-FILE must be the first command given after the loader
recovery.

The DUMP/BPUN commands apply to memory-images as well as to
pure memory-loaded systems.

Image loaded programs may only be executed by applying the
RECOVER/PLACE-BINARY SINTRAN 11l commands.

ND-60.074.01

10.7

10-9

OVERLAY SEGMENTATION OF FORTRAN PROGRAMS

As a program may be too large to fit in the available memory space, the
programmer may decide to divide his program into several overlay-segment
modules. When the program system is generated in this way, only certain
portions (root-segment + one overlay-segment) of the executing program
need to be in memory concurrently. The various overlay-segments reside
in the same area of memory at different times, and during time of execu-
tion they are loaded automatically (in binary form) by the run-time system
when the control is transferred to one of its entry-points. The overlay
structure consists of a main program (referred to as the root-segment) and
one level of associated overlay-segments.

Root
Segment
{Resident)
“ — -
1N
Overlay N Qverlay 1
User Area Area \
\
\
\
\
\
\ Overlay 2
\
Common Area \
(Resident)
Overlay 3
Memory Random read file

Figure 10.1: The Overlay Structure

The root-segment and the common area reside in memory throughout
the entire execution, while the overlays reside on a random-read file.
This file is specified with the OVERLAY-FILE command which also acts
as an overlay-modus setting. The OVERLAY-FILE command should,
therefore, be the first directive given after recovering the loader from
the operating system. Default type of the overlay-file is OVLY.

ND-60.074.01

10-10

Example:

*OV-FI OVLAY1

Note: The scratch file 100 may be used as the overlay-file by giving
the command OV-FI 100.

The root-segment is generated by loading the main program, along with
some {user selected) frequently used function/subprograms. The root-
segment should be completed by loading the FORTRAN run-time and
library-file.

Usually, when the root-segment is completed, some undefined subprograms

are referenced. Such referenced subprograms may be grouped into overlay-

segments in various ways. In generating overlays, the programmer should
organize his program to retain the commonly used subprograms in the
root-segment and the less used routines in the overlay-segments, which
reside in memory only temporarily, one at a time. The set of subprograms
on an overlay-segment is specified by the loader-command:

*OVERLAY-ENTRY <namel> <name2>>...<nameN>

where the names refer to subprograms called from the root-segment.
When this command is given, the specified subprograms can be loaded
from one or more BRF files. It is recommended that the overlay sub-
programs be kept on a separate BRF file compiled in the fibrary mode
(see Section 9.4). In this way, the specified set of subprograms may
be selected and loaded into the overlay regardless of the compilation

sequence.

When all specified entry-points are defined and no other undefined ref-
erences occur on this overlay, the message

OVERLAY COMPLETED
is given.

When all specified entry-points are defined but other references occurred
during the load process, the message

UNDEF REFERENCES ON OVERLAY

is given. The file(s) containing these entry-points may then be loaded
in order to complete the overlay.

When an overlay is completed another one may be specified and created
according to the outline above.

ND-60.074.01

1011

An overlay system is considered to be complete if no undefined reference
occurs on the entry-map (UNDEFINED-ENTRY command). It may then
be started by the RUN command or saved by the DUMP command (to
be retrieved later).

The user should consider the following restrictions:

®

Only one level of overlays is possible, thus, a routine in the root-segment
may reference any other routines in the root-segment or overlay
subprograms, while an overlay subprogram may only reference sub-
programs in its associated overlay or in the root-segment.

The FORTRAN debugging option cannot be used in connection with
overlays.

An example of overlay generation

In the following example, the root-segment is compiled into the file ROOT:BRF
and the subprograms into LIBSUB:BRF (in library mode) in the sequence
SUBR1, SUBR2, SUBRS3, SUBR4. To generate a program system with

SUBR1, SUBR4 on overlay 1 and SUBR2, SUBR3 on overlay 2, the fol-

lowing command sequence will apply:

*OV-FI OVERLAY-SYSTEM
*LOAD ROOT FTNLIBR
*OV-ENT SUBR1 SUBR4
*LOAD LIBSUB

OVERLAY COMPLETED
*OV-ENT SUBR2 SUBR3
*LOAD LIBSUB

OVERLAY COMPLETED

ND-60.074.01

10.8

10-12

COMMON BLOCKS

The memory area in which the loader puts the program is a continuous
area from a lower address up ' to the upper bound. The program units,
therefore, normally grow upwards while the COMMON block is allocated
in the topmost part of the available space. The length of the COMMON
block is given in the object program, and the COMMON block address

is found by subtracting this length from the upper bound.

The COMMON block address must be known before the addresses refer-
encing COMMON are loaded. Therefore, the COMMON block address
which uniquely specifies the maximum COMMON block length, is defined
by the first program unit using COMMON data. This is the explanation
of the restriction that a COMMON block cannot be expanded by the
succeeding program units.

If the COMMON blocks A, B and C are declared in the object program
in this succession, the allocation of the blocks will be as in Figure 10.2.

0
Loader
Increasing
Address
C
B
v
A 177777

Figure 10.2: Multiple COMMON Blocks

ND-60.074.01

10.9

10-13

THE OPEN COMMAND
The loader OPEN command provides the user with the ability to open
a file and connect it to a chosen unit number when the OPEN state-

ment is left out of his program. This command has the form:

OPEN <file name> <decima! unit no.> <access>

where
file name is a 1-16 character(s) file/device name acceptable
by the SIN [l file system. Default file type is
SYMB.
decimal unit no. is a number in the range 1-99 chosen by the user
and which may appear in his |/O statements.
access is one of the following (refer to Section 7.4):
R sequential read
W sequential write
RW sequential read and write
RX random read
WX random read and write
WA sequential write append
RC random read with read access from
other users allowed (only continuous
files)
WC random read and write with read and

write access from cther users allowed
(only continuous files)

Note: This command may only be applied when the INBT/OUTBT routines
are loaded.

ND-60.074.01

10.10

10—-14

LOADER COMMAND SUMMARY

The loader is controlled from the terminal by the set of commands listed
below. The command words may be abbreviated and the parameters (if
any) are separated by space or comma.

ASCII-DUMP <lower address> < upper address> [<file name>]

The contents of the locations between lower and upper address will be
dumped on the specified file, eight subsequent locations (16 characters)
on each line. Non-visual characters appear as space. If no file name is
specified the characters are dumped on the terminal.

BOUNDARIES <lower address> <upper address>

This command is used to specify the dump area in connection with the
BPUN and DUMP commands.

BPUN <destination file name> <(start addr> < bootstrap addr>

The program area (default or specified by the BOUNDARIES command)
will be dumped binary on the destination file with an octal coded boot-
strap ahead. The main start entry of the program may be specified sym-
bolically or octally. The bootstrap address (octal number) specifies where
the bootstrap program (448 locations) will be located if the program is
loaded into a stand-alone NORD-10. Default destination type: BPUN.
Default boundaries range from the lowest to the highest address accessed
by the loader since last recovery.

DEFINE <symboi> <octal value>

The symbol will be entered into the loader table. Its value will be equal
to the octal number specified.

Example:

DEF EDMUN 777

DEPOSIT <octal address> <new contents>>

The new contents are put into the octal address specified. |f last para-
meter is missing the old contents are displayed and may be changed by
typing the new contents on the same line. By typing CR the next loca-
tion will be displayed automatically. Termination character is a dot {.).

ND-60.074.01

10-15

DUMP <destination file name> [<start address> <restart address>]

This command saves the loaded program on the specified file. The pro-
gram may be retrieved with the RECOVER command, and then starts

in the specified start address. The restart address specifies where the
program should be started with the CONTINUE command. The dump
limits may be set by the BOUNDARIES command. Default boundaries
range from the lowest to the highest address accessed by the loader since
fast recovery.

ENTRIES-DEFINED [<file name>>]

All symbols (defined) present in the loader table will be printed on the
terminal. In addition, the current location and the upper bound are
displaved in the following format:

FREE: <current location> — <upper bound>

Default file name is the terminal.

Example:

E-D

EDMUN = 000777

FREE: 002000—177777

ENTRIES-UNDEFINED [<file name>]

This command is similar to ENTRIES-DEFINED. However, only undefined
symbols are printed.

Default file name is the terminal.

EXIT

The control is left to the operating system.

FIX

The current contents of the loader table are fixed (will not be removed
by RESET) and the current location will later act as the lower bound
reset-address. The fixed entries do not appear in any entry list-out.

ND-60.074.01

10—-16

HELP

List the available loader commands on the terminal.

IMAGE-FILE <file name>

The BRF information will be loaded into the file specified instead of
directly into the main memory. Default file type is IMAG.

Example:

IM-FI DREAM

KILL <symbol>
If present, this symbol will be removed from the loader-table.

Example:

KILL EDMUN

LOAD <file name> [<file name>...]

The file(s) specified will be loaded until end-of-file is encountered. Default
file type is BRF.

Example:

LOAD SUB1, SUB2

OCTAL-DUMP <lower address> <upper address> [<file name>]
The contents of the locations between lower and upper address will be

dumped on the specified file, eight subsequent locations on each line.
If no file name is specified the contents are dumped on the terminal.

Example:

QCTAL-DUMP 0 3

000000: 000000 000000 000000 000000

ND-60.074.01

10--17

OVERLAY-ENTRY <entry name> [<entry name>...]

Specifies the subprograms on the next overlay. These units may be called
from the root-segment or from the actual overlay itself.

OVERLAY-FILE <file no./name>

Specifies the overlay-file and the loader is put into overlay-mode.

REFERENCE <symbol> <octal address>
1. If the symbol is not present in the loader table, a —1 will be put
into the address specified and this address will be referenced in the

table. If no octal address is specified no memory address will be
affected. It is impossible to reference an undefined symbol in 1777778.

2. If the symbol is present but already referenced (undefined) the ad-
dress specified will be linked into the reference-chain.

3. If the symbol is defined, its value will be put into the address specified.

Example:

REF UU 1001
REF UU 1002

RENAME <old symbol name> <new symbol name>

The old symbol name in the loader table will be replaced by the new one.
Defined/not defined state and value are left unchanged.

RESET

The loader variables and tables are initialized (symbols removed).

RUN

The loaded program system will be started in its main entry.

SET-LOAD-ADDRESS <octal address>

Subsequent loading will start from the address specified.

ND-60.050.07

10-18

SIZE <octal number>

If the message TABLE OVERFLOW is given, the loader table may be
expanded by this command. The octal number specifies the number

of entries in the table. Old table contents are lost. Default size is 3008
entries {(SIZE 300). By this command the loader will be reset automatic-
atly.

UPPER-LIMIT <octal address>

The load area upper limit is set to the value specified.

VALUE <symbol>

If defined, the value of the symbol specified will be printed on the ter-
minal.

Example:

VAL EDMUN
000777

X-LOAD <file name> [<file name>...]

Exclusive load. Library sequences headed with defined symbols are
skipped while all other units on the file{s) specified will be loaded until
end-of-file is encountered. Default file-type is: BRF. This command
is somewhat special and is used for system generation.

mple:

X-LOAD LIBRA

AUTOMATIC
<library file 1>

<library file n>

The specified library files will be loaded when the RUN, DUMP and
BPUN commands are used, if undefined references exist in the loader
table. The loading from the libraries terminates when all references
are defined, or when the library files are scanned twice. If this results
in the necessary definitions, the specified command will be performed,
otherwise, an error message will be written.

ND-60.074.01

10-19

USER-LIBRARY

*

The command lines are terminated by a dot {.).

Pre-automatic mode buffer is not cleared by the RESET command, thus,
the loader may be initiated and dumped for later recovery with the auto-
matic sequence intact. If the command AUTOMATIC is not used, the
pre-automatic mode buffer is initiated with the file name FTNLIBR.
The buffer may be cleared by typing:

AUTO)

ND-60.074.01

APPENDIXES

APPENDIX A

APPENDIX A
CODING PROCEDURES

Statements

FORTRAN coding forms contain 80 columns; the characters of the lan-
guage are written, one per column, in columns 7 through 72. Statements
longer than 66 columns may be carried to the next line by using a con-
tinuation designator. No more than one statement may be written on a
line. Blanks may be used freely in FORTRAN statements to improve
readability. Blanks are significant only in Hollerith fields of format specif-
ication nH,"and *. .. .*.

Statement [dentifiers

Any statement may have an identifier but only statements referred to
elsewhere in the program require identifiers. A statement identifier (also
called a statement label or statement number) is a string of from one to
five digits, 1 to 32767, in columns 1 through 5. The value of the identifier
is not significant, but it must be positive. Leading zeros are ignored; 1,

01, 001, 0001 are equivalent forms. Zero is not a statement identifier.

In any given program unit each statement identifier must be unique.

Lines

A line is a string of maximum 72 characters fromthe FORTRAN character
set. Lines may be initial, continuation, comment or end. In an initial
line, the first line of any statement, column 6 must be zero or blank.
Only an initial line may have a statement identifier in columns 1 through
5. If there is no statement identifier, columns 1 through 5 are blank. A
statement with statement number must be blank in column 6.

If a statement occupies more than one line, all subsequent lines must

have a FORTRAN character other than zero, or blank in column 6. Every
program and subprogram must be terminated by an end line indicating
that the written description of the program unit is complete.

Comments

A comment line is designated by the letter C or * in column 1, and con-
tains comment information in columns 2 through 72. Comment information
is a convenience to the programmer; it appears in the source program but

is not translated into object code. Continuation is not permitted; each

line of comments must be preceded by the C or * designator.

ND-60.074.01

Carriage Return (CR)

Carriage return is used for termination of a line. 1t may occur anywhere

on the line from column 1 to column 80. [f the source program is punched
on cards, column 81 will be CR and column 0 will be LF (line feed). Source
programs typed on paper tape must start each line with line feed and ter-
minate it with carriage return. Dummy lines and blank cards are ignored.
Any occurrence of characters not included in the FORTRAN set will result
in an error message and the rest of the statement will be skipped.

Columns 73 to 80 may be used for identification.

ND-60.074.01

APPENDIX B

APPENDIX B

STATEMENTS OF NORD-10 FORTRAN

Statement form: N/E: Page:
ASSIGN E 5-3
BACKSPACE i E 7-12
BLOCK DATA N 4--16
CALL s E 6—13
CALL slaq, . . ., a,) E 6-13
CHARACTER [*len,] vy, .. ., v, N 4-3
CLOSE (u) E 7—10
COMMON/xq/ay. . ./x,/a, N 4-6
COMPLEX vy, . . ., v, N 4-2
CONTINUE E 5-11
DATA kq/dq/, .. ., kp/dy/ N 4--14
DIMENSION vy (i), ..., v, (i) N 4-4
DOni= mq, Moy E b—6
DO ni=myq, my, mg E 5-6
DOUBLE INTEGER vy, .. ., Vh N 4-2
DOUBLE PRECISION Vire oV N 4-2
END E 5-14
ENDFILE i E 7—13
EQUIVALENCE (k1), o k) N 4-10
EXTERNAL vy, . . ., v, N 611

N = non-executable; E = executable

ND-60.074.01

Statement form: N/E: Page:
FORMAT (51, $9, 83+« + sn) N 8-3
t FUNCTION f (aq, . . ., a,) N 6-5

t may be any of the following:

INTEGER

REAL

DOUBLE PRECISION

COMPLEX

LOGICAL
GO TO k (unconditional

GO TO) E 5—3
GO TO i, (kq, ko, . . ., kp) (assigned GO TO) E 5-3
GO TO (kq, .. ., Kp), i {computed GO
TO) E 54

IF (e)kq, ko, kg (arithmetic |F) E 5-5
IF (L) s {logical IF) E 5-5
IMPLICIT typ (vq, ..., vp) . .. N 4-17
INTEGER vy, . . ., v, N 4-2
INPUT (i) L (standard format) E 7-7
LOGICAL vq, . . . vy, N 4-2
OPEN (<specifiers>) E 7-8
OUTPUT (i) L (standard format) E 7-7
PARAMETER py =cq, . . ., Py = C, N 4-18
PAUSE E 5—-12
PAUSE n E 5-12
PROGRAM name N 62
READ (i, n) L {formatted) E 71

N = non-executable; E = executable

ND-60.074.01

Statement form: N/E: Page:
READ (i, n) (formatted) E 7-1
READ (i) L (binary) E 8—1
READ (i) (binary) E 8—1
REAL vy, . . ., v, N 4-2
RETURN E 617
REWIND i E 7—-11
STOP E 513
STOP n E 5-13
SUBROUTINE s N 612
SUBROUTINE s (aq, . . ., a,) N 612
v=e (arithmetical

replacement) E 3-9
WRITE (i, n) L (formatted) E 71
WRITE (i, n) (formatted) E 71
WRITE (i) L (binary) E 71

N = non-executable; E = executable

ND-60.074.01

APPENDIX C

APPENDIX C

C.1

LIBRARY FUNCTIONS OF NORD-10 FORTRAN

INTRINSIC FUNCTIONS

— T Number of T i
Function: Definition: . ype o
Arguments: Name: Argument: Function:

Type Conversion

Conversion| to Integer 1 INT Real Integer
int (a) IFIX Real Integer
See Note 1 IDINT Double Integer
Conversion 1 FLOAT Integer Real
to Real SNGL Double Real
See Note 2 REAL Complex Real
Conversion 1 DFLOAT] integer Double
to Double DBLE Real Double
Conversion
to Complex 2 CMPLX Real Complex
See Note 3

Truncation]| int {(a) 1 AINT Real Real
See Note 1

Nearest int {a +.5} if

Whole a»o 1 ANINT Real Real

Number int (a — .B) if
2o

Nearest int (a+ .5) if a

Integer >0 1 NINT Real Integer
int {a — .B) if
a0

Absolute lal 1 IABS Integer Integer

Value ABS Real Real

DABS Double Double

(a_r2+ g_iz) 1,2 CABS Complex Real

ND-60.074.01

f f
Function: Definition: Number o Name: Type o -
Arguments] Argument: Function:
Remainder. aq—int (§1/§2) 2 MOD Integer Integer
ing "ay AMOD Real Real
DMOD Double Double
Transfer of lay lifag) 0 2 ISIGN integer Integer
Sign —laqlifay(0 SIGN Real Real
DSIGN Double Double
Positive aj—apitapya, 2 IDIM Integer Integer
Difference | 0if 3,4 ay DIM Real Real
' DDIM Double Double
Choosing max (2_31, ap,) >2 MAXO Integer Integer
Largest AMAX1 Real Real
Value
AMAXO | Integer Real
MAX1 Real integer
Choosing min {a EDI Z2 MINO Integer Integer
Smallest I AMINT | Real Real
Value
AMINO Integer Real
MINT Real Integer
Length Length of 1 LEN Character Integer
Character Entity
Imaginary ai 1 AIMAG Complex Real
Part of
Complex
Argument
Conjugate of | {ar, — ai 1 CONJG | Complex Complex
a Complex
Argument
Square (@) 1/2 1 SORT | Real Real
Root DSQRT Double Double
CSQRT Complex Complex

ND-60.074.01

Function: Definition: Numiber of Name: Type of .
Arguments: Argument: Function:
Exponential | e**a 1 EXP Real Real
DEXP Double Double
CEXP Complex Complex
Natural log,(a) 1 ALOG Real Real
Logarithn: DLOG Double Double
CLOG Complex Complex
Common logygla) 1 ALOG10 | Real Real
Logarithm DLOG10 | Double Double
Logarithm log 5 (a) 1 ALOG2 Real Real
with base 2
Sine sin (a) 1 SIN Real Real
DSIN Double Double
CSIN Complex Complex
Cosine cos {(a) 1 Cos Real Real
DCOS Double Double
CCOS Complex Conplex
Arctangent | arctan (a) 1 ATAN Real Real
DATAN | Double Double
arctan (a4/ ap) 2 ATAN2 | Real Real
DTAN2 Double Double
Hyperbolic | sinh (a) 1 SINH Real Real
Sine
Hyperbolic | cosh (a) 1 COSH Real Real
Cosine
Hyperbolic | tanh (a) 1 TANH Real Real
Tangent

ND-60.074.01

Notes for table in Section C.1.

1. For a of type real or double precision, there are two cases: if lal <1,
int(a) = 0; if lal = 1, int(a) is the integer whose magnitude is the
largest integer that does not exceed the magnitude of a and whose
sign is the same as the sign of a.

Example:
int{(—3.7) = =3
For a of type real, IFIX{a) is the same as INT{a).
2. For a of type double precision, REAL(a) is as much precision of the

significant part of a as a real datum can contain. For a of type com-
plex, REAL(a) is the real part of a.

3. CMPLX(a) is the complex value whose real part is a and whose imag-
inary part is zero.
4. All angles are expressed in radians.

For reference, here are the definitions of some of the complex functions
in terms of separate operations on their real and imaginary parts:

CABS(a + bi) =v a2 + b2
CEXP(a + bi) = e®cos b+ isinb) 7

CLOG(a + bi) = % log(a? + b2) + i tan ~'b/a

b, b b_ b
CSIN(a + bi) =&-* e~ sina+i-e—2"—e—— cos a

b, b b_ b
ccos<a+bi)=£—g—e—cosa-ie — € sina

ND-60.074.01

Restrictions of Argument Range and Results

Restrictions on the range of arguments and results for intrinsic functions
are as follows:

1.

Remaindering: The result for MOD, AMOD and DMOD is undefined
when the value of the second argument is zero.

Transfer of Sign: If the value of the first argument of ISIGN, SIGN
or DSIGN is zero, the result is zero, which is neither positive nor
negative.

Square Root: The value of the argument of SQRT and DSQRT
must be greater than or equal to zero. The result of CSQRT is the
principal value with the real part greater than or equal to zero.
When the real part of the result is zero, the imaginary part is greater
than or equal to zero.

Logarithms: The value of the argument of ALOG, DLOG, ALOGT
and DLOG1T must be greater than zero. The value of the argument
of CLOG must not be (0., 0.). The range of the imaginary part of
the result of CLOG is: —n < imaginary part < 7.

Sine and Cosine: The absolute value of the argument of SIN, DSIN,
COS and DCOS is not restricted to be less than 2.

Arctangent: The range of the result for ATAN and DATAN is:
—1/2 < result <m/2. If the value of the first argument of ATAN?

or DTANZ2 is zero or positive, the result is zero or positive respect-
ively. If the value of the first argument is negative, the result is
negative. The value of both arguments must not be zero. The range
of the result for ATAN2 and DTAN2 is: —a<C result <.

ND-60.074.01

C.2 BIT OPERATIONS IN FORTRAN

C.21 Logical QOperations
The logical operations are implemented as single/double integer functions
in FORTRAN. In the following, m and n are constants, single/double
integer variables or array elements. Operations are performed on a full
word bit by bit.

Inclusive or

{OR {m, n)

Logical Product

IAND {m, n} T

Logical Complement

NOT (m)

Exclusive or

IEOR (m, n)

C.2.2 Integer Variable Logical Shift

The logical shift is implemented as a single/double integer function in o
FORTRAN. A right or left shift can be specified. Zeros are propagated

following the shifted value and the variables sign is not extended or pre-

served.

ISHFT {(m, n)
where

m is a single/double integer variable or element of an array to be shifted.

n is a single/double integer variable, constant or array element specifying
the number of positions to be shifted and the direction.

n<o0 Shift right

n=0 No shift
n>0 Shift left

ND-60.074.01

C.23

The absolute value of n, Inl, should not exceed 15 for single and 31 for
double integer. If it does, the number of shifts will be modulo 32.

Single Bit Operations

There are two subroutines to set and clear a specified bit in a single/double
integer variable and a single/double integer function to extract the value

of a specified bit.

In the following

m s a single/double integer variable or array element of which a specified
bit is to be operated upon.

n is a single/double integer variable, constant or array element specifying
the bit number. For single integer and n > 15, n modulo 16 is used.

For double integer and n > 31, n modulo 32 is used.

Bits in a computer word are numbered from 0 — 15 or 0 — 31 from
right to left.

Extract Bit
IBIT {m, n)

The function value is O or —~1 depending on bit n of m is 0 or 1.

Set Bit
CALL STBIT (m, n)

Bit n of m is set to a one.

Clear Bit
CALL CLBIT (m, n)

Bit n of m is set to a zero.

ND-60.074.01

Cc3

SINTRAN 11l MONITOR CALLS

There are several monitor call functions included in the FORTRAN run-time
system.

The user is advised to consult his SINTRAN Il User’s Guide to get an up-to-date
description of these.

ND-60.074.01

C.4

SYSTEM ROUTINES OF NORD-10 FORTRAN

System Routine:

8AXA
8AXI
8BCSP
8CAD
8CAS
8CAX
8CDV
8CLOS
8CMU
8CNCT
8CONC
8CONV
8CSB
8CXI
8DAD
8DBUG
8DDV
8DFRQ
8DIV
8DIX
8DIXI
8DMU
8DSB
8DXI
8ENDF
8ENTR
8ERR
8FIO
8F1X
8FREQ
8IAD
8IDI
8IDR
81DV
8IMU
81SB
8IXi
8LEAV
8LIB
80OPEN
80VTB
8PAUS

Task Performed:

Real exponentiation with real exponent
Real exponentiation with integer exponent
Run-time BACKSPACE processing
Complex addition

Character type assignment

Character array element access

Complex division

Run-time CLOSE processing

Complex multiplication
Logical unit connect table

Character string concatenation

File connect unit conversion

Complex subtraction

Complex exponentiation with integer exponent
Double pr. real addition

Debug option run-time routine

Double pr. real division

Profile option map dumper

Integer division

Double integer exponentiation

Double integer exponentiation with integer exponent
Double pr. real multiplication

Double pr. real subtraction

Double pr. real exponentiation with integer exponent
Run-time ENDFILE processing
Subprogram call entry
Run-time error message routine

Fortran formatting system

Real to integer conversion

Profile map statement counter

Double integer addition

Double integer to single integer conversion
Double integer to real conversion

Double integer division

Double integer multiplication

Double integer subtraction

Integer exponentiation

Main and subprogram return

General library entry

Run-time OPEN processing

Overlay segment table pointer

Run-time PAUSE processing

ND-60.074.01

System Routine: Task Performed:

8RID Real to double integer conversion
8RLDN Address containing the error message logical unit
8RTEN Main program entry of 8ENTR
8RUTB Overlay routine table pointer
8RWND Run-time REWIND processing
8SEG Character segment operation
8S5UB Character string subtraction
8STOP Run-time STOP processing

iINBT One byte input routine

OUTBT One byte output routine

ND-60.074.01

APPENDIX D

APPENDIX D

NORD-10 WORD STRUCTURE

Instruction Word

Op. code IX ll , B Displacement

15 11 10 9 8 7 0

One instruction word always occupies one location, 16 bits of the computer memory.
The operation code occupies the five most significant bits (11 - 15) and

specifies one of 32 instructions.

For memory reference instructions, bits O - 10 are used to specify the ad-

dress of the instruction. The instructions which do not have an address,

use these bits to further specifications. Bits 8, 9 and 10, called B | and

,X are used to control the address computation,

The displacement is an 8 bit signed number ranging from -128 to +127,

using two’s complement for negative numbers and sign extension to pro-
duce a 16 bit number.

Data Word

Three basic types of data words exists:

1. Single length numbers
A 16 bit number which occupies one memory location. Representation
of negative numbers are in two’s complement. Range as integers:
—32768 < x < 32767.

2. Double length numbers

A 32 bit number which occupies two consecutive locations in memory,
and where negative numbers also are in two's complement.

n n+1
Most significant Least significant
31 A 16 15 D 0

ND-60.074.01

A double word is always referred to by the address of its most sig-
nificant part. Normally, a double word is transferred to the regis-
ters so that the most significant part is contained in the A register
and the least significant in the D register. Range as integers:

—2 147 483 648 << x < 2 147 483 647.

Floating point numbers

The data format of floating point words is 32 bits mantissa magnitude,
one bit for the sign of the number and 15 bits for a signed exponent.

The mantissa is always normalized, 0.5 < mantissa < 1; for all non-zero
numbers bit 31 equals one. The exponent base is 2. The exponent

is biased with 214, i.e., 400008 is added to the actual exponent, so
that a standarized floating zero contains zero in all 48 bits.

In the computer memory one floating point data word occupies three
16 bit locations, which are addressed by the address of the exponent
part.

n exponent and sign
n+1 most significant part of mantissa
n+2 least significant part of mantissa

In CPU registers, bits 0 — 15 of the mantissa are in the D register, bits
16 - 31 in the A register, and bits 32 - 47, exponent and sign, in the
T register. These three registers together are defined as the floating

accumulator.

- n n+1 n+2
— | Exponent Man | —tissa
47 T 32 31 A 16 156 D

The accuracy is 32 bits ar approximately 9 decimal digits, any ihteger
up to 2°4—1 has an exact floating point representation. The range is:

2—16384 . 05 < Ixi < 216383 . 1 5 x=0
or

1074931 4 | < 104931

Examples (octal format):

T A D
0: 0 0 0
+1: 040001 100000 O
-1: 140001 100000 O

ND-60.074.01

Any other data word format than those three described here may be programmed.
These three data word formats have corresponding instructions which make

these formats easy and natural to use. It is also rather easy to program data
word formats using one bit data word (logical variables) and 8 bit data word
(character byte).

In FORTRAN, three additional data words are used:
4. Double precision numbers

The data format of double precision words is 80 bits mantissa mag-
nitude, one bit for the sign of the number and 15 bits for the signed
exponent. The mantissa is always normalized, 0.5 < mantissa < 1,
and for all non-zero numbers bit 79 equals one. The exponent base
is 2, the exponent is biased with 274, so that a standarized double
precision zero contains zero in all 96 bits.

In the computer memory one double precision data word occupies six
16 bit locations, which are addressed by the address of the exponent

part.

n exponent and sign

n+1 most significant part of mantissa
n-+ 2 mantissa

n+3 mantissa

n+4 mantissa

n+5 least significant part of mantissa

The accuracy is 80 bits or approximately 23 decimal digits, any integer
up to 2%%—1 has an exact double precision representation.

The range is the same as for floating point numbers.

5. Complex numbers

The data format of a complex number is two subsequent floating
point words.

In the computer memory, one complex number occupies six 16 bit locations
which are addressed by the address of the exponent part of the real

part.

n exponent and sign of real part

n-+1 most significant part of mantissa of real part
n+2 least significant part of mantissa of real part

n+3 exponent and sign of imaginary part
n+4 most significant part of mantissa of imaginary part
n+5 least significant part of mantissa of imaginary part

ND-60.074.01

Character strings

The data format of strings consists of a two word object which con-
tains a pointer to the memory location of the string and the number
of characters in the string. Bit 15 of the second word indicates odd
{right) 1th byte. The string itse!f consists of the ASCI! values packed
two by two into one word. The words are stored in consecutive order.

The parity bit {bit 7) is always set to zero.

n n+1
Pointer 0 |1 [Number of Characters
15 015 14
& 1.byte 2.byte nn
3.byte 4. byte nn + 1

nn + 2
nn +3

15 0

ND-60.074.01

APPENDIX E

APPENDIX E
MIXED NORD-10 FORTRAN AND MAC/NPL/BASIC ROUTINES

The NORD-10 FORTRAN Run-time System has been designed to allow
an extensive use of mixed FORTRAN and assembly systems. No special
heading format of the assembly routines is necessary, but there exist
some restrictions upon the user of the B register.

Calling assembly subroutines/functions from FORTRAN, the value of
the B register by leaving the subprogram must not differ from the enter-
ing value (system value). The scratch locations B-220 to B-201 may be
used by the subprogram.

ND-60.074.01

E.1

PARAMETER- AND FILE-ACCESS IN ASSEMBLY SUBPROGRAMS

When entering any assembly subprogram, the A register points to a sequence
of the actual parameter addresses (if any).

The number of the actual arguments is contained in the T register.

Files opened from the loader with the OPEN command, or from a FORTRAN
routine with the OPEN statement, can be accessed through a MON instruction
if the file connect unit conversion routine, 8CONV, is called prior to the

MON call.

Example:

JOEXT

LDT
JPL

MON
MON

8CONV

UNIT
(BCONV

1
65

% USER SPECIFIED FILE NO.

% CONVERT FROM USER SPECIFIED
% TO INTERNAL FILE NO.

% READ ONE BYTE

% ERROR RETURN

% NORMAL RETURN

I the file is accessed through the FORTRAN system INBT/OUTBT routines,

the 8CONV call must be omitted.

Example:

JOEXT

LDT
JPL
MON

INBT

UNIT
(INBT
65

% USER SPECIFIED FILE NO.
% READ ONE BYTE

% ERROR RETURN

% NORMAL RETURN

ND-60.074.01

E.2

ACCESS OF COMMON VVARIABLES

JOADS

This MAC command is used to generate addresses of LABELED COMMON
variables of a FORTRAN program. Two symbols separated by blank or
plus sign have to follow the command.

For example:

PER,)9ADS LABEL DISP % PER WILL CONTAIN THE ADDRESS
% OF LABEL + THE VALUE OF DISP

The first symbol must correspond to a COMMON label declared in the
FORTRAN program. A blank COMMON is accessed by using the sym-
bol BLANK. The second symbol is a displacement to the COMMON label,
and must have been previously declared as fixed absolute (DISP=). At
load time, the address of the COMMON label is added to the displacement.

ND-60.074.01

E.3

FUNCTIONS IN ASSEMBLY

A function must always return with a value, and this must be contained
in the central registers.

Logical functions - Logical value (0 or 1) in the A register.

Integer functions - Value in the A register.

Double integer functions - Value in the A—D registers.

Real functions - Value in the T-A-D registers. (A-D for 32 bit real)
Character functions - Character descriptor in the A-D registers.

Double precision and - These are special cases where the least

complex functions significant mantissa words or the imag-

inary part of the function value must

be placed in locations B register —172,
—171 and —170 (extended accumulator
of the calling program). As usual, the
most significant or real part must be
contained in the T-A-D registers (or A-D).

The final instruction sequence of a complex function should therefore be:

LDF IMAGPART

STF —-172,B % B MUST CONTAIN THE SYSTEM VALUE
LDF REALPART

EXIT

ND-60.074.01

E.4

EXAMPLE OF A MAC SUBPROGRAM STRUCTURE

JOBEG
JOENT SUBR

SUBR, SWAP SA DB

STA SAVB % SAVES B REGISTER

LDF I .,B % ACCESS OF 1.PARAMETER

LDF I N—1,B % ACCESS OF N'TH PARAMETER

LDA SAVB
COPY SA DB

EXIT % RETURNS TO FORTRAN

SAVB, 0
JOEND

The locations determined by (B) —220 to (B) —201 are free to use. (B value

by entering the subprogram.)

Same example in NORD-PL version:

*)9BEG
*)9ENT SUBPL

SUBR SUBPL

DISP O

REAL ARRAY POINTER PARI
PSID

INTEGER SAVB

TAD:=PARI (0)

TAD:=PARI (X)
SAVB=:B
EXIT

RBUS

*J9END

% FOR ACCESS OF REAL PARAMETERS ONLY
% HIDES VALUE OF B REGISTER

% SAVES B REGISTER

% ACCESS OF 1'TH PARAMETER

% ACCESS OF X + 1'TH PARAMETER

% RESTORES B
% RETURNS TO FORTRAN

ND-60.074.01

Eb

CALLING A FORTRAN SUBPROGRAM FROM ASSEMBLY
The calling sequence is explained through the following example:

J9BEG
JOEXT BENTR SUBR

JPL I (8ENTR % 8ENTR IS A RUNTIME TRANSITION
% ROUTINE
SUBR % FORTRAN SUBROUTINE NAME
N % NUMBER OF PARAMETERS
PARAM1 % ADDRESS OF 1. PARAMETER
PARAMN % ADDRESS OF N'TH PARAMETER

- % RETURN, FUNCTION VALUE iF ANY
- % IN ACCUMULATOR

JFILL

JOEND

Note: This calling sequence also applies to assembly callees when the
overlay system is used.

ND-60.074.01

E.6

CALLING SEQUENCE OF SINGLE ARGUMENT FORTRAN LIBRARY
ROUTINES

When the jump to any of these routines is performed, the user should
be aware that the locations B — 220g through B — 201g are affected to
changes from the library (scratch area).

Example:
JOEXT 8LIB SIN
LDF ARG % PICKS UP ARGUMENT
LDX (SIN % ADDRESS OF ACTUAL FUNCTION
JPL [, *+1
8LIB % SPECIAL LIBRARY ENTRY

The calling sequence of multiple argument library routines coincides with
that of ordinary subprograms in assembly.

ND-60.074.01

E.7

DIRECTLY CALLED ASSEMBLY SUBPROGRAMS

The standard general way of calling assembly subprograms from NORD-10
FORTRAN involves a significant overhead in the runtime transition routines
S8ENTR—8LEAV.

The NORD-10 FORTRAN offers a special feature to remove this overhead
totally. However, there exists some restrictions upon the parameters to be
used.

ENTRY AND RETURN

— If the B register is to be used withinthe routine, its entering value
must be saved and restored before the return.

- No special heading is necessary.
— Return address is according to L + 1 by entry.

Thus, if L is not used within the subprogram, EXIT AD1 will return
properly.

— Directly called subprograms may be used as functions or as subroutines.

TRANSFER OF PARAMETERS
— Only integer parameters or array names may occur in direct calls.
~ They are limited to maximum 4.
— The parameters values are transferred in the registers:
1st parameter value in T register
2nd parameter value in A register
3rd parameter value in D register

4th parameter value in X register.

— If array names occur as parameter {without index) the start address
of the array is transferred.

Note: Unlike ordinary subprograms, directly called routines cannot alter
any of the single variable parameters (call by value).

Directly called subprograms are declared through the ASSEMBLY statement.

This statement is syntactic identical to the EXTERNAL statement.

ND-60.074.01

Example;

ASSEMBLY DIREC

CALL DIREC (IPAR1, IPAR2, IPAR3, IPAR4)
This will result in the compiled code:

LDT IPART
LDA IPAR3
COPY SA DD
LDA IPAR2
LDX IPAR4
JPL T * 41
B DIREC

ND-60.074.01

E.8

MIXING NORD-10 FORTRAN/BASIC

Any mixture of NORD-10 FORTRAN/BASIC is allowed with the following
restrictions:

1. Type character is not allowed as actual parameters in calls to BASIC
subprograms (due to garbage collection in BASIC). Calls to FORTRAN
subprograms where the actual parameter is a BASIC string and the
corresponding formal parameter’is of type character are allowed.

2. The data types of the actual/formal parameters must be in agreement.

3. Generally, both the FORTRAN and the BASIC runtime systems must

be loaded.

ND-60.074.01

APPENDIX F

APPENDIX F

F.1

SYSTEM DIAGNOSTICS

COMPILER ERROR MESSAGES

The compiler error diagnostics follows the source listing of each routine
or, if no listing is specified, they appear on the terminal. A maximum
of 40 diagnostics per routine may be printed.

The general format of the compilation error diagnostics are

**FTN ERR IN LINE N OF <name> “<ref.>"" <message>

where N is the line number, <name>> the routine name, <ref.> a reference
to a FORTRAN item and <message> is one of the following printouts:

?

The command is illegal.

AMBIGUQUS

The command is abbreviated too much.

UNRECOGNIZED STATEMENT

The referenced line is not recognized as a legal FORTRAN statement.

LABEL EXPECTED

The referenced item appears in a relationship where a statement label
is expected.

SYNTAX ERROR

The referenced item appears in a relationship where it is syntactically
or semantically incorrect.

MISPLACED STATEMENT

The referenced line does not appear in the required order of statements
(see Section 2.6). ’

ND-60.074.01

SUBSCRIPT DECL ERROR

The referenced item is not legal in the dimensioning declaration.

MAX SUBSCRIPTS EXCEEDED

The referenced array is declared with more subscripts than permitted.

SUBSCRIPT DATATYPE ERROR

The referenced item is not of integer datatype.

INCORRECT NUMBER OF SUBSCRIPTS

The referenced array is accessed with number of subscripts deviated from
its declaration.

PREVIOUSLY USED

The referenced label is assigned to more than one statement in the program
unit.

ILL. REFERENCED

The referenced label either belongs to a FORMAT statement or a transfer
label is used as FORMAT specifier.

REFERS TO ITSELF

The statement may cause a transfer to itself.

MAX DO—LOOP NESTING

DO loops are nested deeper than 10 levels.

ILL. DO—-LOOP TERMINATION

The referenced statement is not permitted as an end-of-do statement.

ND-60.074.01

END-OF-DO LABEL PREVIOUSLY DEFINED

Self evident diagnostic.

ILL. REFERENCE OF FORMAT STATEMENT

A format statement appears as an end-of-do label.

DOES NOT REFER TO FORMAT

The referenced label does not precede a FORMAT statement (transfer
fabel).

IMPROPERLY NESTED DO—-LOQPS

Self evident diagnostic.

RE-DIMENSIONED

The referenced array was previously declared.

ILL. CONDITIONAL STATEMENT

DO statements and logical |F statements cannot be used as conditional
statements of logical |F clause.

TWO COMMONS IN ONE EQUIV-BLOCK

Two common identifiers appear in one or two merged equivalence blocks.
The referenced line number does not make sense in this diagnostic.

ILL. EXPRESSION

Non-integer constant appears in a PARAMETER statement.

ILL. CHARACTER

A non-FORTRAN character has occurred.

ND-60.074.01

MISSING

The referenced statement label is not assigned to any statement within
the last program unit.

REDUNDANT DATA

A DATA statement contains more constants than required.

OUT OF DATA

A DATA statement contains less constants than required.

NOT INTEGER TYPE

The referenced itern is required to be of type integer.

FUNCTION PREVIOUSLY USED AS VARIABLE

The referenced identifier appears as a function reference, despite being
used previously as single variable.

HOLLERITH IN EXPRESSION

Hollerith constants may be assigned to identifiers only.

OPERATION UPON ILL. DATATYPE

The referenced operator has no defined effect upon the actual data typel(s).

INCORRECT NUMBER OF PARAMETERS

The referenced library function is called with an inccrrect number of para-
meters.

INCORRECT PARAMETER TYPE

The referenced library function is called with an incorrect parameter data type.

ND-60.074.01

ILL. ASSIGNMENT

Not character data types on each side of the =.

UNBALANCED PARENTHESIS

Self evident diagnostic.

LOCAL IDENTIFIERS IN DATA STATEMENT

This is not permitted in re-entrant compile modus.

ARRAY NOT DIMENSIONED

The referenced array is not declared by dimensions.

MISSING SUBSCRIPT(S)

The referenced array is required to be subscripted in this context.

TOO LONG CONDITIONAL STATEMENT

The conditional statement of a logical IF clause is too long.

TOO COMPLEX EXPRESSION

The operator-stack is full, try to reduce the expression by splitting it up
into two statements.

100 MANY OPERAND/PARAMETERS

The operand stack is full, it contains 63 entries.

NOT CHARACTER TYPE

The referenced item is required to be of type character.

ILL. AS STATEMENT FUNC. PARAMETER

Self explanatory.

ND-60.074.01

DATA DO NOT MATCH WITH ELEMENT

In DATA statements the identifiers and the assigned constants must be
of equal data type. The lengths of Hollerith strings must fit into the
identifier.

SUPERFLUQUS ARGUMENT

The referenced item is not needed in this context.

EQUIVALENCE BELOW COMMON

The first part of the referenced array will not be included in the com-
mon block where it is equivalenced.

The equivalence index of the array is specified with too high value.

TOO LONG CHAR. STRING

A maximum of 80 characters are permitted in Hollerith and character
strings.

TOO MANY LOCAL VARIABLES, SYSTEM LIMITATION

The three 4008 local data-field blocks (B field) are completely filled.
The user may evade this limitation by declaring some of the local variables
as common entities.

FATAL COMPILER SYSTEM ERROR

This is system error and should be reported to Norsk Data A.S.

ND-60.074.01

F.2

THE LOADER FRROR MESSAGES

AMBIGUOUS

The last command word is abbreviated until an ambiguity has occurred.

AT UPPER LIMIT

The current load address has reached the absolute upper limit or the begin-
ning of the common area.

BRF CHECKSUM ERROR

The BRF file contents are damaged due to hardware or software errors
occurring when it was written or read.

COMMON BLOCK EXPANDED

The length of an already defined common block is declared farger in a
subsequently loaded program.

DOUBLY DEFINED

The symbol being defined (either by loading a file or by the DEFINE
command) has already been assigned a value.

ILL. BRF-CONTROL NO

Non-interpretive information has appeared on the BRF file due to hard-
ware or software errors.

INSUFFICIENT PROGRAM

Error diagnostics have occurred during the compilation process.

LLOADER-TABLE OVERFLOW

The loader symbol table is filled.

ND-60.074.01

NO MAIN ENTRY

The user is trying to start a program with no main module.

NO OVERLAY-FILE SPECIFIED

The command OVERLAY-FILE should be given first.

OVERLAY ENTRY-TABLE OVERFLOW

Too many entries in the overlay-system. Table size can only be expanded
by generating a new loader version.

OVERLAY SEGMENT-TABLE OVERFLOW

Too many overlay segments. Table size can only be expanded by generat-
ing a new loader version. Default size: 16 overlays.

AUTO-BUFFER FULL

No more room for automatic commands.
ILL. FILE NO.
The specified file number in the OPEN command must be in the range

1-99.

QPEN-CONNECT TABLE MISSING

The FORTRAN run-time system/library has to be loaded prior to this
command.

UNDEFINED SYSTEM/LIBRARY ENTRIES ON ROOT-SEGM.

The FORTRAN run-time system/library must be loaded into the root-
segment.

COMMON BLOCK EXCEEDS AVAILABLE MEMORY

The specified common block is too big.

In addition to the messages listed above, some of the file system diagnostics
(1/0 errors) may appear at your terminal.

ND-60.074.01

F.3

RUN-TIME ERROR DIAGNOSTICS

The run-time error diagnostics are printed on the user terminal in the
format:

FORTRAN RUN-TIME ERROR nnnnnn AT ADDRESS aaaaaa
ERROR TEXT

where nnnnnn is the octal error number with the error text meaning.

The address location aaaaaa belongs to the compiled sequence of the
statement where the error has occurred.

If the error is serious (S) the message ***JOB ABORTED*** is given
and the control is left to the operating system.

The following list contains the error diagnostics which may occur during
an execution of a FORTRAN program.

ND-60.074.01

Error Code: Meaning (error text) (S):
Decimal Octal
0 0 NOT USED
1 1 NOT USED
2 2 BAD FILE NUMBER
3 3 END OF FILE
4 4 CARD READER ERROR (CARD READ)
5 5 DEVICE NOT RESERVED
6 6 NOT USED
7 7 CARD READER ERROR (CARD NOT READ)
8 10 NOT USED
9 11 NOT USED
10 12 END OF DEVICE (TIMEOUT)
11 13 NOT USED
12 14 NOT USED
13 15 NOT USED
14 16 NOT USED
15 17 NOT USED
16 20 NOT USED
17 21 ILLEGAL CHARACTER IN PARAMETER
18 22 NO SUCH PAGE
19 23 NOT DECIMAL NUMBER
20 24 NOT OCTAL NUMBER
21 25 YOU ARE NOT AUTHORIZED TO DO THIS
22 26 DIRECTORY NOT ENTERED
23 27 AMBIGUQOUS DIRECTORY NAME
24 30 NO SUCH DEVICE NAME
25 31 AMBIGUQUS DEVICE NAME
26 32 DIRECTORY ENTERED
27 33 NO SUCH LOGICAL UNIT
28 34 UNIT OCCUPIED
29 35 MASTER BLOCK TRANSFER ERROR
30 36 BIT FILE TRANSFER ERROR
31 37 NO MORE TRACKS AVAILABLE
32 40 DIRECTORY NOT ON SPECIFIED UNIT
33 41 FILES OPENED ON THIS DIRECTORY
34 42 MAIN DIRECTORY NOT LAST ONE RELEASED
35 43 NO MAIN DIRECTORY
36 44 TOO LONG PARAMETER
37 45 AMBIGUOUS USER NAME
38 46 NO SUCH USER NAME
39 47 NO SUCH USER NAME IN MAIN DIRECTORY
40 50 ATTENMPT TO CREATE TOO MANY USERS
41 51 USER ALREADY EXISTS
42 52 USER HAS FILES
43 53 USER IS ENTERED

ND-60.074.01

F-11

Error Code: Meaning (error text) (S):
Decimal Octal

44 b4 NOT SO MUCH SPACE UNRESERVED IN
DIRECTORY

45 515) RESERVED SPACE ALREADY USED

46 56 NO SUCH FILE NAME

47 57 AMBIGUOUS FILE NAME

43 60 WRONG PASSWORD

. , 49 61 USER ALREADY ENTERED

50 62 NO USER ENTERED

51 63 FRIEND ALREADY EXISTS

52 64 NO SUCH FRIEND

53 65 ATTEMPT TO CREATE TOO MANY FRIENDS

b4 66 ATTEMPT TO CREATE YOURSELF AS FRIEND

bhbh 67 CONTINUOQUS SPACE NOT AVAILABLE

56 70 NOT DIRECTORY ACCESS

57 71 SPACE NOT AVAILABLE TO EXPAND FILE

58 72 SPACE ALREADY ALLOCATED

59 73 NO SPACE IN DEFAULT DIRECTORIES

60 74 NO SUCH FILE VERSION

61 75 NO MORE PAGES AVAILABLE FOR THIS
USER

62 76 FILE ALREADY EXISTS

63 77 ATTEMPT TO CREATE TOO MANY FILES

64 100 OQUTSIDE DEVICE LIMITS

65 101 NO PREVIOUS VERSION

66 102 FILE NOT CONTINUOUS

67 103 FILE TYPE ALREADY DEFINED

68 104 NO SUCH ACCESS CODE

69 1056 FILE ALREADY OPENED

70 106 NOT WRITE ACCESS

71 107 ATTEMPT TO OPEN TOO MANY FILES

72 110 NOT WRITE AND APPEND ACCESS

73 111 NOT READ ACCESS

74 112 NOT READ, WRITE AND COMMON ACCESS

75 113 NOT READ AND WRITE ACCESS

76 114 NOT READ AND COMMON ACCESS

77 115 FILE RESERVED BY ANOTHER USER

78 116 FILE ALREADY OPENED FOR WRITE

79 117 NO SUCH USER INDEX

80 120 NOT APPEND ACCESS

81 121 ATTEMPT TO OPEN TOO MANY MASS
STORAGE FILES

82 122 ATTEMPT TO OPEN TOO MANY FILES

83 123 NOT OPENED FOR SEQUENTIAL WRITE

84 124 NOT OPENED FOR SEQUENTIAL READ

85 125 NOT OPENED FOR RANDOM WRITE

86 126 NOT OPENED FOR RANDOM READ

ND-60.074.01

Error Code: Meaning {error text) (S):
Decimal Octal
87 127 FILE NUMBER OUT OF RANGE
88 130 FILE NUMBER ALREADY USED
89 131 NO MORE BUFFER SPACE
90 132 NO FiLE OPENED WITH THIS NUMBER
91 133 NOT MASS STORAGE FILE
92 134 FILE USED FOR WRITE
93 1356 FILE USED FOR READ
94 136 FILE ONLY OPENED FOR SEQUENTIAL
READ OR WRITE
95 137 NO SCRATCH FILE OPENED
96 140 FILE NOT RESERVED BY YOU
97 141 TRANSFER ERROR
98 142 RESERVED BY RT PROGRAM
99 143 NO SUCH BLOCK
100 144 SOURCE AND DESTINATION EQUAL
101 145 ILLEGAL ON TAPE DEVICE
102 146 END OF TAPE
103 147 TAPE ALREADY IN USE
104 150 NOT RANDOM ACCESS ON TAPE FILES
105 151 NOT LAST FILE ON TAPE
106 152 NOT TAPE DEVICE
107 153 ILLEGAL ADDRESS REFERENCE IN
MONITOR CALL
108 154 NOT LAST RECORD ON TAPE
108 165 FILE ALREADY OPEN BY ANOTHER USER
110 156 FILE ALREADY OPEN FOR WRITE BY
ANOTHER USER
111 157 MISSING PARAMETER
112 160 TWO PAGES MUST BE LEFT UNRESERVED
113 161 NO ANSWER FROM REMOTE COMPUTER
114 162 DEVICE CANNOT BE RESERVED
115 163 OVERFLOW IN READ
116 164 DMA ERROR
117 165 BAD DATABLOCK
118 166 CONTROL/MODUS WORD ERROR
119 167 PARITY ERROR
120 170 I.RC ERROR
121 171 DEVICE ERROR (READ-LAST-STATUS TO
GET STATUS)
122 172 NO DEVICE BUFFER AVAILABLE
123 173 ILLEGAL MASS STORAGE UNIT NUMBER
124 174 ILLEGAL PARAMETER
125 175 WRITE-PROTECT VIOLATION
126 176 ERROR DETECTED BY READ AFTER WRITE
127 177 NO EOF MARK FOUND

ND-60.074.01

F-13

Error Code: Meaning (error text) (S):
Decimal Octal

128 200 CASSETTE NOT IN POSITION

129 201 ILLEGAL FUNCTION CODE

130 202 TIME OUT (NO DATABLOCK FOUND)

131 203 PAPER FAULT

132 204 DEVICE NOT READY

133 205 DEVICE ALREADY RESERVED

134 206 NOT PERIPHERAL FILE

135 207 NO SUCH QUEUE ENTRY

136 210 NOT SO MUCH SPACE LEFT

137 211 NO SPOOLING FOR THIS DEVICE

138 212 NG SUCH QUEUE

139 213 QUEUE EMPTY

140 214 QUEUE FULL

141 215 NCT LAST USED BY YOQU

142 216 NC SUCH CHANNEL NAME

143 217 NG REMOTE CONNECTION

144 220 ILLEGAL CHANNEL

145 221 CHANNEL ALREADY RESERVED ON
REMOTE COMPUTER

146 222 NC REMOTE FILE PROCESSOR

147 223 FORMATTING ERROR

148 224 INCOMPATIBLE DEVICE SIZES

149-256 225-400

NOT USED

ND-60.074.01

F--14

Error Code: Meaning (error text) (S):
Decimal Octal

257 401 FATAL FORMATTING SYSTEM ERROR (S)
This is a system error due to software or
hardware errors.

258 402 TOO LOW PARENTH. LEVEL IN FORMAT(S)
A maximum of 5 levels is permitted.

259 403 ILL. CHAR. IN FORMAT STRING (S)

260 404 INCORRECT TERMINATION OF FORMAT (S)

261 405 OUTPUT RECORD SIZE EXCEEDED
A maximum of 136 characters is permitted.

262 406 FORMAT REQUIRES GREATER INPUT
RECORD

263 407 INTEGER OVERFLOW ON INPUT
The result will be 32767

264 410 INPUT RECORD SIZE EXCEEDED
A maximum of 136 characters is permitted.

265 411 PARITY ERROR ON INPUT

266 412 BAD CHAR. ON INPUT
The input field is ignored and the result will
be zero.

267 413 REAL OVERFLOW ON INPUT
The result will be 1.0E99

268 414 REAL UNDERFLOW ON INPUT
The result will be 0.0.

269 415 NOT USED

270 416 REAL OVERFLOW ON QUTPUT

ND-60.074.01

Error Code: Meaning (error text) (S):
Decimal Octal

271 417 FORMAT SPECIFICATION DOES NOT APPLY

272 420 OVERFLOW IN EXPONENT ON INPUT

273 421 NOT USED

274 422 NOT USED

275 423 NOT USED

276 424 NCT USED

277 425 NCT USED

278 426 ERR IN COMPUTED GOTO
The control variable of a computed GOTO
statement has a negative, zero or too high
value. The first statement label of the list
will be applied.

279 427 ERR IN ASSIGNED GOTO
The assigned label does not match with any of the
specified ones.The first statement label of the list
will be applied.

280 430 OVERFLOW IN INTEGER**INTEGER
The result will be 32767.

281 431 ZERO BASE AND NEG. EXPONENT (OVER-
FLOW)
The result will be 32767 for integers and
1.0E99 for reals.

282 432 BASE LESS THAN ZERO IN REAL**REAL
The result will be 0.0.

283 433 OVERFLOW IN REAL**REAL

The result will be 1.0EQ9,

ND-60.074.01

Error Code: Meaning (error text) (S):
Decima.l Octal

284 434 NEG. ARG. IN SQRT
The result will be 0.0.

285 435 TOO LARGE ARG. IN SIN OR CSIN
The result will be 0.0.

286 436 TOO LARGE ARG. IN COS OR.CCOS
The result will be 0.0.

287 437 TOO LARGE ARG. IN EXP OR CEXP
The result will be 1.0E99.

288 440 ZERO OR NEG. ARG. IN LOGARITHM
The result will be —1.0E99.

289 441 BOTH ARGS. ZERO IN ATAN2 OR DTAN?2
The result will be 0.0.

290 442 NOT USED

291 443 INTEGER DIVISION BY ZERO

292 444 OVERFLOW IN DB. INTEGER**INTEGER

293 445 NOT USED

294 446 TOO LARGE ARG. IN SINH
The result will be 1.0E99.

295 447 TOO LARGE ARG. IN COSH
The result will be 1.0E99,

296 450 TOO LARGE ARG. IN INT

The result will be 0.

ND-60.074.01

F—17

Error Code: Meaning (error text){S):
Decimal Octal
297 451 TOO LARGE ARG. IN IDINT

The result will be 0.

298 452 TOO LARGE ARG. IN DEXP
The result will be 1.0E99.

299 453 TOO LARGE ARG. IN DSIN
The result will be 0.0.

300 454 TOO LARGE ARG. IN DCOS
The result will be 0.0.

301 455 NEG. ARG. IN DSQRT

The result will be 0.0.

ND-60.074.01

APPENDIX G

APPENDIX G
NORD-10 FORTRAN FOR 32 BIT REALS
As the NORD-10 may be supplied with a microprogram which operates
on 32 bit real numbers, a special FORTRAN version is available for users
who stick to this format.

The compiler is self-adjustable and exists in one version only.

The Library and Run-time systems have separate versions for the 48 and
32 bit real arithmetic.

The use of the two versions are identical but the user should consider the
small precision (6 - 7 digits) of 32 bit reals.

1. 32 Bit Floating Point Format

The data format of floating point words is 22 + 1 bits mantissa
magnitude, one bit for the sign of the number and 9 bits for a signed
exponent.

The mantissa is always normalized, 0.5 < mantissa <Z 1. The exponent
base is 2. The exponent is biased with 28, ie., 4008 is added to the
actual exponent, so that a standarized floating zero contains zero in

all 32 bits,

In the computer memory one floating point data word occupies two
16 bit locations, which are addressed by the address of the exponent

part.
n exponent, sign bit and most significant part of mantissa
n+1 least significant part of mantissa

In CPU registers, bits O - 15 of the mantissa are in the D register, bits 16 -
31, the most significant part of the mantissa, exponent and sign, in the A
register. These two registers together are defined as the floating accumulator.

Word 1 (A) Word 2 (D)

115 |14 6|5 0]15 0
f t—— Exponent-~——~Normalized Mantissa -

Sign

The accuracy is 23 bits or 6-7 decimal digits, any integer up to 223 4
has an exact floating point representation.

ND-60.074.01

Note: The one extra bit in the mantissa is the most significant, and is
set to one if not all bits in the exponent is zero. It is removed
in the result. '

The7r§nge of a floating point number is approximately ——1076 through
+1070,

2. 64 Bit Double Precision Format

The data format of double precision words is 54 + 1 bits mantissa
magnitude, one bit for the sign of the number and 9 bits for the
signed exponent. The mantissa is always normalized, 0.5 < mantissa
< 1. The exponent base is 2, the exponent is biased with 28, SO
that a standarized double precision zero contains zero in all 64 bits.

In the computer memory one double precision data word occupies
four 16 bit locations, which are addressed by the address of the ex-
ponent part.

n exponent, sign-bit and most significant part of mantissa
n+1 mantissa

n-+ 2 mantissa

n+ 3 least significant part of mantissa

The accuracy is 54 + 1 bits or approximately 16 decimal digits,
any integer up to 295_1 has an exact double precision representation.

The range is the same as for floating point numbers.

3. 64 Bit Complex Format

The data format of a complex number is two subsequent floating
point words.

in the computer memory, one complex number occupies four 16
bit locations which are addressed by the address of the exponent
part of the real part.

n exponent, sign-bit and most significant bits of mantissa of real
part
n+1 least significant bits of mantissa of real part

n+2 exponent, sign-bit and most significant bits of mantissa of
imaginary part
n+3 least significant bits of mantissa of imaginary part

ND-60.074.01

APPENDIX H

APPENDIX H

ASCIl CHARACTER SET

Octal Decimal ASC

Graphic: Value: _ Value: Abbreviation: Comments:
0 0 NUL Null
1 1 SOH Start of heading
2 2 STX Start of text
3 3 ETX End of text
4 4 EOT End of transmission
5 5 ENQ Enquiry
6 6 ACK Acknowledge
7 7 BEL Bell
10 8 BS Backspace
11 9 HT Horizontal tabulation
12 10 LF Line feed
13 11 VT Vertical tabulation
14 12 FF Form feed
15 13 CR Carriage return
16 14 SO Shift out
17 15 Sl Shiftin
20 16 DLE Data link escape
21 17 DC1 Device control 1
22 18 DC2 Device control 2
23 19 DC3 Device control 3
24 20 DC4 Device control 4
25 21 NAK Negative acknowledge
26 22 SYN Synchronous idle
27 23 ETB End of transmission block
30 24 CAN Cancel
31 25 EM End of medium
32 26 SUB Substitute
33 27 ESC Escape
Lorr Jode shewivaa 34 28 FS File separator
35 29 GS Group separator
T 36 30 RS Record separator
B 37 31 us Unit separator
M@z(mm,jg 40 32 SP Space
! 41 33 ! Exclamation point
" 42 34 " Quotation marks
43 35 # Number sign
$ 44 36 $ Dollar sign
% 45 37 % Percent sign
& 46 38 & Ampersand
! 47 39 ! Apostrophe
(50 40 (Opening parenthesis

ND-60.074.01

H-2

Octal Decimal ASC

Graphic: Value: Value: Abbreviation: Comments:
) 51 41) Closing parenthesis
¥ 52 42 * Asterisk
+ 53 43 + Plus
, 54 44 , Comma
— 55 45 - Hyphen {Minus)
. 56 46 . Period (Decimal)
/ 57 47 / Slant
0 60 48 0 Zero
1 61 49 1 One
2 62 50 2 Two
3 63 51 3 Three
4 64 52 4 Four
5 65 53 5 Five
6 66 54 6 Six
7 67 13 7 Seven
8 70 56 8 Eight
9 71 57 9 Nine
: 72 h8 : Colon
: 73 59 ; Semi-colon
< 74 60 < Less than
= 75 61 = Equals
> 76 62 > Greater than
? 77 63 ? Question mark
@ 100 64 @ Commercial at
A 101 656 A Uppercase A
B 102 66 B Uppercase B
C 103 67 C Uppercase C
D 104 68 D Uppercase D
E 105 69 E Uppercase E
F 106 70 F Uppercase F
G 107 71 G Uppercase G
H 110 72 H Uppercase H
I 111 73 I Uppercase |
J 112 74 J Uppercase J
K 113 75 K Uppercase K
L 114 76 L Uppercase L
M 115 77 M Uppercase M
N 116 78 N Uppercase N
0 117 79 0 Uppercase O
P 120 80 P Uppercase P
Q 121 81 Q Uppercase Q
R 122 82 R Uppercase R
S 123 83 S Uppercase S
T 124 84 T Uppercase T
U 125 85 U Uppercase U
\Y 126 86 \Y) Uppercase V

ND-60.074.01

Octal Decimal ASC
Graphic: Value: Value: Abbreviation: Comments:
w 127 87 W Uppercase W
X 130 88 X Uppercase X
Y 131 89 Y Uppercase Y
z 132 a0 Z Uppercase Z
[=A 133 91 [Opening bracket
\ - czw 134 92 \ Reversing slant
] =A 135 93] Closing bracket
Aor t 136 94 A Circumflex, up-arrow
_or< 137 95 _. UND, BKR Underscore, back arrow
' 140 96 S GRA Grave accent
a 141 97 a, LCA Lowercase a
b 142 98 b, LCB Lowercase b
c 143 99 ¢, LCC Lowercase ¢
d 144 100 d, LCD Lowercase d
e 145 101 e, LCE Lowercase e
f 146 102 f, LCF Lowercase f
g 147 103 g, LCG Lowercase g
h 150 104 h, LCH Lowercase h
i 151 105 i, LCI Lowercase i
j 162 106 j, LCJ Lowercase |
k 1563 107 k, LCK Lowercase k
] 154 108 I, LCL Lowercase |
m 155 109 m, LCM Lowercase m
n 156 110 n, LCN Lowercase n
o} 157 111 o, LCO Lowercase o
p 160 112 p, LCP Lowercase p
q 161 113 g, LCQ Lowercase g
r 162 114 r, LCR Lowercase r
s 163 115 s, LCS Lowercase s
1 164 116 t, LCT Lowercase t
u 1656 117 u, LCU Lowercase u
Y 166 118 v, LCV Lowercase v
w 167 119 w, LCW Lowercase w
X 170 120 X, LCX Lowercase x
y 171 121 y, LCY Lowercase y
z 172 122 z, LCZ Lowercase z
{4 173 123 {.,LBR Opening (left) brace
P d 174 124 [, VLN Vertical line
3 -y 175 125 3, RBR Closing (right) brace
~ 176 126 ~,TiL Tilde
oo oo 177 127 DEL Delete, rubout

& e wrn, of

ND-60.074.01

APPENDIX |

APPENDIX |

EXAMPLE OF RUNNING A FORTRAN JOB ON THE NORD-10 FORTRAN
SYSTEM

@FTN
~NORD-10 FORTRAN COMPILER-
$COMP ROOT, 1, 100

1% PROGRAM ROOT

27 READ (1, * ") X

3% WRITE (1, “(1X*SQRT (*,F10.3,*)=* F10.3)) X,SQRT(X)
4* END

4 STATEMENTS COMPILED
CPU-TIME USED IS 0.4 SEC.
$EX

@NRL

RELOCATING LOADER
*LOAD 100 FTNLIBR
FREE: 022440-177777
*RUN

16.0

SQRT(16.000) = 4.000
@

ND-60.074.01

: NORSK DATA A .S,
4 Lorenvn 57 - Postboks 163, @Qkern

OSLO 1

COMMENT AND EVALUATION SHEET

NORD-10 FORTRAN System — Reference Manual
February 1977 Publication No. ND-60.074.01

In order for this manual to develop to the point where it best suits
your needs, we must have your comments. corrections, suggestions
for additions, etc. Please write down your comments on this pre-
addressed form and post it. Please be specific wherever possible.

FROM:

