
NORD-10 BASIC
Compiler

Reference Manual

NORSK DATA A.S

NORD-1O BASIC
Compiler

Reference Manual

REVISION RECORD

RGViSlOH N O t e S

08/76 Oriqinal Printing
09/77 Revision A. The following pages have been revised: vi, 2—9, 2—11, 2—27, 4—19,

4—25,7—10,A—8, A-~~10, A—12, A—13, A—14, 8—1, 8—2, 8—3, 8—14,
8—17, C—13, D—1, D—6.
The following pages have been added: 4—53, 4—54, 4—55, 4—56: 4—57 84
C~~14

03/79 Revision B
The following pages have been revised: 2—27, 4—53, 4—54, 4—55, 4—56, 4—57,
/—10, A—12, 8—1, C—14,D—2, D—6.

01/80 Revision C
The following pages have been revised: 14, 1—6, 2:2:2—3, 2—6, 2—7, 2—42. 2—31
3—1,3—5,3—7,4«—1,4—2,4—3,4—4,4—5,4—7.4—8.4—9 4—11 4—14 4—17,
4—20, 4—21 , 4—26, 4—30, 4—31 , 4—32, 4—36, 4—39, 4—41 , 4—44, 4—46, 4—50,
4—51, 4—53, 4—54, 5—1, 5—6, 5—10, 5—11, 5—13, 5—14, 5—16, 7—3, 7—8, 7—9,
7- ~10, 7—11,7—12, 7—13, 7—14, A—1,A—6, A—8, A—10, A—16, A—18, 8—1,
8—5, 8—6, 8—7, 8—8, 8—12, 8—13, 8—14, 8—15, 8—16, 8—19, 8—20, C—l, (3—5,
0—11, 0—12, D—2, D—5. and added paqe A—10a.
Most of these paqes contain corrections of spellinq and lanauaae errors Changes of
technical significance are marked by a vertical line in the margin.
Appendix A.3 has been removed. Refer to the manual “SINTRAN lll User‘s Guide” for

File Svstem Error Messaaes

NORD-lO BASlC — Compiler Reference Manual
ND-60.071.01

A/S NORSK DATA~11].E.K’l‘l'l()'NlKl{
lir‘n‘cnvcicn 57, Oslo 5 — TIL: 21 73 Tl

P R E FAC E

The product

This manual describes the January 1981 version of the BASIC compiler for NDWIOO
and NORD~IO computers.

l0034B —— 32 bit floating point hardware
100248 ~ 48 bit floating point hardware

The system consists of the software products

2059D ~— BASIC compiler for 32 bit floating point

2060D — Run time library for 32 bit floating point

OF

ZOOOE ~ BASIC compiler for 48 bit floating point

2001 E — Run time library for 48 bit floating point

The reader

This manual is written for anybody who will use the BASIC language for programming
and for those who need a user level description of the ND BASIC compiler.

Prerequisite knowledge

No previous experience with either the BASIC language, other programming or computer
hardware is expected. A minimum of knowledge of the Sintran III operating system is
required in order to log in on the NORD—lO/ND-IOO system.

The manual

The manual is intended to be read sequentially, and is well suited as a guide to programming
in general, using BASIC as a tool. It explains BASIC features and interactive use of the BASIC
system in sufficient detail for self study, and contains a complete description of all commands,
statements and functions available.

Related documentation:

Sintran III Introduction (ND—60.125)

ND-60.07I.Oi
Revision D

vii

TABLE OF CONTENTS

+ + +

Section:

1 INTRODUCTION

1.1 What is a Computer?
1.2 What is a Program?
1.3 What is BASIC?
1-4 What is ND BASIC?

1.4.1 The Language
1.4.2 Special RealTime Facilities
1.4.3 Program Development
1.4.4 The Compiler

1.5 The Manual

1.5.1 Conventions Used in This Manual

2 A BASIC PRIMER

2.1 An Example
2.2 Expressions

2.2.1 Numbers
2.2.2 Variables
2.2.3 Relational Operators

2.3 Loops
2.4 Arrays or Matrices
2.5 Use of the System
2.6 Errors and Debugging

2.6.1 Use of Flags

2.7 Summary of Elementary BASIC Statements

2.7.1 LET
2.7.2 READ and DATA
2.7.3 PRINT
2.7.4 GOTO
2.7.5 lF-THEN- or IF-GOTO

ND—60.071.01
Revision D

Page:

I
d

a
—

4
‘

l
bo

om
—

x
A

d
d

—
s

I
I .b

l
I

on
e.

»

Section:

2.7.6
2.7.7
2.7.8
2.7.9
2.7.10
2.7.11
2.7.12
2.7.13

3.1

3.2

3.2.1

3.3

3.3.1
3.3.2
3.3.3
3.3.4

3.4

4.2

4.2.1
4.2.2
4.2.3
4.2.4

viii

FOR and NEXT
DIM
STOP
END
ON<GOTO
REM and Remarks
RESET
INPUT

INTERACTIVE USE OF THE BASIC SYSTEM

Entering the BASIC System

Compiling a BASIC Program
Editing a BASIC Program
Naming of Programs

Saving and Retrieving BASIC Programs

The SAVE Command

Executing Your Program

The RUN Command
Terminating Execution
Immediate Mode Execution
Setting Break Points

Leaving the BASIC System

MORE ABOUT BASIC

Elements of BASIC

Constants
Variables
Type Declaration Statements

Arithmetic Expressions

Arithmetic Symbols or Operators
Elements
Rules for Forming Expressions
Order of Evaluation

ND~60.071.01

Page:

2—26
2~27
2—28
2~28
2~28
2~29
2~3O
2—30

Section:

4.3

4.3.1
4.3.2

4.4

4.4.1

4.5

4.5.1

4.6

4.6.1
4.6.2
4.6.3
4.6.4
4.6.5
4.6.6
4.6.7

4.7

4.7.1
4.7.2
4.7.3
4.7.4
4.7.5
4.7.6
4.7.7
4.7.8

4.8

4.8.1
4.8.2

4.9

4.9.1
4.9.2

ix

Mixed Mode Arithmetic Expressions

More About LET
Mixed Mode and LET Statements

Arrays

Array Structure

Functions

Function Ciassification

Representations of Strings

Assigning Values to Strings and String Comparisons
Reiaxation of Requirement for Quotation Marks
More About RESET
String Arrays
An Operator for Combining Strings
String Expressions
Functions Regarding Strings

Formatting Output

Exclamation Marks in PRINT Lists
Commas in PRINT Lists
Empty PRINT Statements
Packed PRINT Lists
Printing Formats for Numbers and Strings
The TAB Function
The MARGIN Statement
The PRINT USING Statement

Input Controi

The LINPUT Statement
The MAT INPUT Statement

Program Organization Statements

The Apostrophe Convention
More About REM

ND-60.071.01
Revision D

4—18
4~19
4—20
4—20
4~21
4~21
4—21

4—24
4—24
4—25
4~26
4—26
4—28
4—28
4w29

4—36
4—36

Section:

4.10

4.10.1
4.10.2
4.10.3

4.11

4.11.1
4.11.2
4.11.3

4.12
4.13
4.14

4.14.1
4.14.2
4.14.3
4.14.4

4.14.5
4.14.6
4.14.7
4.14.8

5.1

5.2

5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7

5.3

5.3.1
5.3.2
5.3.3

Internal Subroutines

The GOSUB and RETURN Statements
The ON -« GOSUB Statement
The IF — GOSUB Statement

Internal Functions

One Line DEF Statement
Multiple Line DEF Statements
Strings and Function Definitions

Relational Expressions
Logical Expressions
Other Useful Statements

Multiple Statement Line
The REPEAT Statement and the @ Variable
More About IF
The ON ERROR GOTO Statement and the ERR
Variable
The @ Statement
RANDOM and RND
The COMMON Statement
The Chain Statement

FILES IN BASIC

Introduction

The Connect Device Identifier
The OPEN and CLOSE Statements

Sequential Files

Reading a Sequential File from a Program
Writing a Sequential File from a Program
The Use of the Terminal Itselfas a File
Other Input/Output Statements
Margins on Sequential Files
The IF END Statement
Simulating Sequential Files

Random Access Files and Virtual Arrays

Opening a Random Access File
Declaring Virtual Arrays (Virtual DIM Statement)
Virtual String Arrays

N D~60.071.01
Revision D

4—44
4—45
4—46

4~47
4—48
4~50

4—50
4——50
4—50

4—51
4—52
4—52
Iii—~53
4—56

5—13
5—14
5—14

Section:

5.3.4

6

6.1
6.2
6.3
6.4
6.5
6.6

6.6.1

6.6.2

6.6.3
6.6.4

6.7

6.7.1
6.7.2

6.8
6.9

7.1
7.2
7.3

7.3.1
7.3.2

7.4

7.4.1
7.4.2

7.5

7.5.1

7.6
7.7
7.8

xi

Using a Random Access File from a Program

ARRAY MANIPULATIONS

Introduction
MAT Initialization Statements
Changing Dimensions Using MAT Statements
Arithmetic Operations
Functions
Input and Output Operations

The MAT READ, MAT PRINT and MAT PRINT
USING Statements
The MAT INPUT and MAT LINPUT Statements
and the NUM Function
The MAT WRITE Statement
MAT Statements and Files

Examples Using MAT Statements

MAT Arithmetic
Inverting a Matrix

Simulating an N-Dimensional Array
The Row Zero and Column Zero

PROGRAMS, FUNCTIONS AND SUBPROGRAMS

Program Units
Main Program
Parameters

Formal Parameters
Actual Parameters

Function Su bprogram

The EXTERNAL Statement and Function Reference
Function Parameters

Subroutine Subprograms

The CALL Statement

Compilation and Execution with Subprograms
Main Program and Subprogram Linkage
Real Time (RT) Program Statement

ND-60.071.01

Section:

xii

7.9 Stand Alone Execution
7.10 Mixing BASIC With Other Languages

7.10.1 BASIC Strings as Parameters
7102 Twmsommnams
7.10.3 Types of Functions

7.11 Mixed BASIC and Assembly Routines

7.11.1 Parameter Access in Subprograms
741.2 Funcfionsin Asyynbw
7.11.3 Example of a Subprogram Structure
7.11.4 Calling a BASlC Subprogram from Assembly

APPENDICES

APPENDIX A

SUMMARY OF ERROR MESSAGES

A.1 Compiler Error Messages
A.2 Run-Time System Error Messages

APPENDIX B

SUMMARY OF ELEMENTS

B.1 Statements
8.2 Commands
8.3 Functions

APPENDIX C

MISCELLANEOUS INFORMATION

01 Roundoff Errors
02 Changing Dimensions
03 Line Edit Control Characters
04 ASCII Character Set
05 NORD Word Structure

APPENDIX D

INDEX

ND-60.071.01

ReVision C

Page:

7—11
7—12

7—12
7—13
7—13

7—14

7—14
7—14
7—14
7—15

1.1

INTRODUCTION

WHA T IS A COMPUTER?

A computer is a very simple and at the same time a very complex machine.
On the one hand, it merely follows elementary instructions to carry out

such simple tasks as adding two numbers or determining if a given number
is negative. These simple tasks also include “looking“ at the next character
in a string of alphabetic characters and other non-numeric activities.

On the other hand, a modern electronic digital computer must be surrounded
by a number of storage devices and input—output mechanisms which supply
it with tasks to perform, store the results of its computations, and present

these results in a convenient form for evaluation or future use. A computer
performs its work so fast that these peripheral devices are needed to cor-
relate the many tasks the computer is capable of performing.

ND-60.071.01

1.2

1—2

WHAT IS A PROGRAM?

As noted above, a computer merely carries out simple instructions, albeit
at very high speeds. lt works so quickly that human beings cannot be
directly involved in making more than a small fraction of the decisions
that arise in carrying out a complicated task, so that almost all situations
must be contemplated in advance. Also, in most cases, the bulk of the
data upon which the calculations are made must be accurately prepared
in advance and entered into the computer so that the calculations may
proceed at full speed without having to wait for more data. Thus, a set
of instructions for performing a task and the relevant data must be pre-
pared in advance and supplied to the computer. The set of instructions
for carrying out a task is called a program. One can think of a program
as being a recipe for coming up with the solution to a problem, given the
data.

Any mistakes in a program render it just about useless. As with recipes
for baking cakes, program errors are of two types. First, one can have
errors of form or grammar. These would include misspellings and punc-
tuation. Second, one can have substantive errors even though the form is
correct. In the case of recipes for baking cakes, misspelling and typographical
errors are examples of errors of form; some of these may make the recipe
unreadable. An example of a substantive error would be a direction to use
baking soda instead of baking powder.

Since a computer has much less intelligence or common sense than a human
being, programs for it must adhere strictly to rulesof form or grammar.
These rules are particularly complicated for the language that the physical
equipment of the computer is constructed to obey. This language is called
machine language, and its difficult nature has led computer specialists to
invent other more easily used languages that can be converted or translated
to machine language.

ND-60.071.01

1.3 WHAT IS BASIC?

One such language which is easy to learn and to use is BASIC. BASIC was
first developed in 1963/64 at Dartmouth College and has since then been
revised several times. An advantage ot BASH; is that its rules of form and
grammar are quite simple and easy to learn. it is the purpose of this manual
to present the language BASIC and to show how it is used to solve simple
problems and deal with many situations common in computing. More com—
plicated problems can be solved by combining the simpler steps shown here.

ND-60.07l.01

1.4

1.4.1

1.4.2

1.4.3

WHAT IS ND BASIC?

The Language

ND BASlC is a simple, powerful, high-level programming language
that facilitates problemsolving for scientific, business and educational
applications run on NlOO and NORD—lO computers. Among the
many programming languages currently in use, the rules and grammar
of BASlC must be considered the easiest to learn and use. BASlC
permits the user to solve mathematical problems directly from a key-
board printer or an alphanumeric display terminal. BASlS is
particularly well suited for timesharing applications since the compiler
is reentrant. This permits multiple users to simultaneously call upon
and utilize the same compiler.

The ND BASlC language contains a large number of statement types
and functions with special features including matrix operation,
alphanumeric information handling, program control and storage facilities
and program editing, as well as documentation and debugging aids.
Several statements designed expressly to perform matrix computations
are incorporated in the operation set. The NOR D~1O BASlC has string, real—,
integer—, and double integer variable types. Variable names may consist
of up to 7 letters and digits.

Spec/a/ Rea/~ Time Facilities

ND BASlC contains the facilities for linking to external subroutines,
including FORTRAN and MAC assembly language libraries, thus

making it easy to develop real—time application programs in the BASlC
language. This facility makes it possible to use the SINTRAN lll real~
time capabilities as well as other common processors for control systems.

Program Development

ND BASIC provides program control of storage facilities that
save programs or data on mass storage devices, and later retrieve them
for execution. Program editing permits adding or deleting statement
lines from on-line terminals, including possibilities for correcting
individual characters of a line, using the same editing facilities as in
SlNTRAN Ill command input. Programs may be combined from several
source units, requesting a partial or complete hard~copy listing and re—
numbering statement lines.

ND-60.07l.01
Revision D

1.4.4 The Compiler

The ND BASIC compiler may be used in three different modes:

—— Interactive incremental compiler.
— Binary relocatable format (BRFl-compiler.
— Direct execution of statements and expressions.

In the interactive mode lines typed by the user, or read from an existing
source file, are compiled into machine-instructions and loaded directly
to the user’s virtual memory.

When typing the RUN command, the compiled program is executed at the
highest possible speed, much faster than traditional interpreters. Source
lines are kept on a system-scratch-file for later retrieval. Independently
compiled subroutines or library files may be linked, using the integrated
relocating loader when necessary.

In compile-mode lines are read from existing source files and compiled
into binary relocatable format (BRFl—files, compatible with FORTRAN
or MAC assembly language subroutines. The BRF file may be loaded for
execution by the integrated relocating loader, or by a freestanding loader
normally used with FORTRAN/MAC programs.

In immediate mode lines typed without line number are regarded as ex-
pressions being compiled into machine instructions, and executed directly. Most
statements may be used, with a few exceptions as the FOR/NEXT
statements. The terminal may then function as an advanced calculator.

In all modes extensive error messages are given, making it easy to correct
erroneous statements.

ND-60.07I.OI
Revision D

1.5

1.5.1

1~6

THE MANUAL

This manual describes the language in steps so that understanding of
material presumes a knowledge of material in previous chapters.

Conventions Used /n This Manual

Some documentation conventions are used in this manual to clarify
examples of BASlC syntax. BASlC statements or commands are often
described in general terms using the following conventions:

Some

A statement number is assumed when a statement is
described.

Items in capital letters are reserved BASIC words belonging
to the vocabulary of the BASlC language. (RUN, EDlT,
lF, LET, STEP.)

Items in small letters enclosed in < > are essential elements of
the statement or command being described. l<statement>,
<variable>, <expression>l

Text enclosed in l] is optional.

terms which may seem confusing are explained below:

Terminal is any device having a two—way communication with
the computer.

The user types on the keyboard and BASlC prints on the
terminal.

Capital letters marked with a C like Acor QC indicate the
respective key on the keyboard plus the CTRL key.

ND-60.071.01
Revision C

2.1

A BASIC PRIMER

AN EXAMPLE

The following example is a'complete BASlC program for solving a

system of two simultaneous linear equations in two variables:

ax+by=c
dx+ey=f

and then solving two different systems, each differing from this system

only in the constants c and f.

You should be able to solve this system, if 39 — bd is not equal to O,

to find that:

=ce—bf and :af~cd

ae~bd ae—bdX

if ae —— bd = 0, there is either no solution or there are infinitely many,

but there is no unique solution, lf you are rusty at solving such systems,

take our word for it that this is correct. At the moment, we want you

to understand the BASlC program for solving the system.

Study this example carefully —- in most cases the purpose of each line

in the program is self-evident - and then read the commentary and

explanation.

10 READ A, B, D, E
15 LET G = A *E—BaeD
2O lF G = 0 THEN 65
30 READ C, F
37 LET X = (C*E—B*F)/G
42 LET Y = (A*F~C*D)/G

55 PRlNT X, Y
60 GO TO 30
65 PRINT “NO UNlOUE SOLUTlON“

70 DATA 1, 2, 4
80 DATA 2, ~7, 5
85 DATA 1, 3, 4, —7
90 END

We immediately observe several things about this sample program.

First, we see that the program uses only capital letters, since the

terminal has only capital letters.

ND—60.071.01

A second observation is that each line of the program begins with a
number. These numbers are called line numbers and serve to identify
the lines, each of which is called a statement. Thus a program is
made up of statements, most of which are instructions to the com-
puter. Line numbers also serve to specify the order in which the state-
ments are to be performed by the computer. This means that you may
type your program in any order. Before the program is run, the com-
puter sorts out and edits the program, putting the statements into the
order specified by their line numbers. This editing process facilitates
the correcting and changing of programs, as we shall explain later.

A third observation is that each statement starts, after its line number,
with an English word. This word denotes the type of the statement.
There are several types of statements in BASIC; some of them are
discussed in this chapter.

A fourth observation, not at all obvious from the program, is that
Spaces have no significance in BASlC, except in messages enclosed in
quotation marks which are to be printed out, as in line number 65 on
the previous page. Thus, spaces may be used, or not used, to ”pretty
up“ a program and make it more readable. Statement 10 could have
been typed as 10READ A, B, D, E and statement 15 as 15LET G=
A*E——B*D.

With this preface, let us go through the example step by step. The
first statement, 10, is a READ statement. it must be accompanied by
one or more DATA statements. When the computer encounters a
READ statement while executing your program, it will cause the
variables listed after the READ to be given values according to the
next available numbers in the DATA statements. In the example we
read A in statement 10 and assign the value 1 to it from statement 70
and similarly with B and 2, and with D and 4. At this point, we
have exhausted the available data in statement 70, but there is more
in statement 80, and we pick up‘ from it the number 2 to be assigned
to E.

We next go to statement 15, which is a LET statement, and first en-
counter an expression to be evaluated. (The asterisk ”*" is obviously
used to denote multiplication.) in this statement we direct the com-
puter to compute the value of AE —— BD, and to call the results G.
In general, a LET statement directs the computer to set a variable
equal to the expression on the right side of the equal sign. We know
that if G is equal to zero, the system has no unique solution. There-
fore, we next ask, in line 20, if G is equal to zero. if the computer
discovers a ”yes” answer to the question, it is directed to go to line
65 where it prints "NO UNIQUE SOLUTlON“. From this point it
would go to the next statement. But lines 70, 80 and 85 give it no
instructions, since DATA statements are not ”executed" and it thenI
goes to line 90 which teils it to ”END” the program.

ND-60.071 .01
Revision C

If the answer to the question ”is G equal to zero?" is “no”, as it is

in this example, the computer goes on to the next statement, in this

case 30. (Thus an lF~THEN tells the computer where to go if the

”lF“ condition is met, but to go on to the next statement if it is not

met.) The computer is now directed to read the next two entries

from the DATA statements, -—7 and 5, (both are in statement 80)

and to assign them to C and F respectively. The computer is now

ready to solve the system

x+2y=—7
4x+2y =5

ln statements 37 and 42 we direct the computer to compute the
value of X and Y according to expressions provided. Note that
we must use oarentheses to indicate that CE — BF is divided by (3;
without parentheses, only 8 F would be divided by G and the com-

puter would let X = CE ~— BF/G.

The computer is told to print the two values computed, that of X
and that of Y, in line 55. Having done this, it moves on to line 60
where it is directed back to line 30. If there are additional numbers
in the DATA statements, as there are here in 85, the computer is

told in line 30 to take the next one and assign it to C, and the one

after that to F. Thus, the computer is now ready to solve the
system:

x+2y=1
4x+2y=3

As before, it finds the solution in 37 and 42 and prints them out
in line 55, and then is directed in 60 to go back to 30.

In line 30 the computer reads two more values, 4 and ~7, which it
finds in line 85. It then proceeds to solve the system:

x+2y=4
4x+2y=—-7

and to print out the solutions. it is directed back again to 30, but
there are no more pairs of numbers available for C and F in the
DATA statement. The computer then informs you that it is out of
data, printing a message on your terminal.

Run time errors are errors detected during execution of a program
whereas errors detected during compilation of a program are called
compile time errors. A complete error list is given in Appendix A.

N D-60.071.01
Revision C

For a moment, let us look at the importance of the various state-
ments. For example, what would have happened if we had omitted
line 55? The answer is simple; the computer would have solved the
three systems and then told us when it was out of data. However,
since it was not asked to tell us (PRiNT) its answers, it would not
do it, and the solutions would be the computer’s secret. What would
have happened if we had left out line 20? In this problem just solved
nothing would have happened. But, if G were equal to zero, we would
have set the computer the impossible task of dividing by zero, and it
would tell us so, printing a warning on your terminal. if we had left
out statement 60, the computer would have solved the first system,
printed out the values of X and Y, and then gone to line 65 where
it would be directed to print “NO UNlQUE SOLUTION”. it would
do this and then stop.

One very natural question arises from the seemingly arbitrary numbering
of the statements: Why this selection of line numbers? The answer is
that the particular choice of line numbers is arbitrary, as long as the
statements are numbered in the order we want the machine to follow
in executing the program. We could have numbered the statements
1, 2, 3, 4, 13, although we do not recommend this numbering.
We would normally number the statements 10, 20, 30, 130. We
put the numbers a certain distance apart so that we can later insert
additional statements if we find that we forgot them when we originally
wrote the program. Thus, if we find that we have left out two state-
ments between those numbered 40 and 50, we can give- them any two
numbers between 40 and 50 — say 44 and 46; and in the editing and
sorting process, the computer will put them in their proper place.

Another question arises from the seemingly arbitrary placing of the data
elements in the DATA statements: Why were they placed as they
were in the sample program? Here again the choice is arbitrary and we
need only to put the numbers in the order that we want them read
(the first for A, the second for B, the third for D, the fourth for E,
the fifth for C, the sixth for F, the seventh for next C, etc.). in place
of the three statements numbered 70, 80 and 85, we could have put:

75 DATA 1, 2, 4, 2, ~7, 5, 1, 3, 4, ——7

or we could have written, perhaps more naturally:

7O DATA 1, 2, 4, 2
75 DATA ——7, 5
80 DATA 1, 3
85 DATA 4, ~7

to indicate that the coefficients appear in the first data statement and
the various pairs of right-hand constants appear in the subsequent
statements.

ND—60.071.01

The program and the resulting run is shown beiow exactIy as it
appears on the terminaI:

I O
I 5
20
30
37
42
55
60
65
70
80
85
90

READ A, B, D, E
LET G=A*E-—B*D
IF G=0 THEN 65
READ C, F
LET X=(C*E—B*FI/G
LET Y=(A*F-—C*DI/G
PRINT X, Y
GO TO 30
PRINT ”NO UNIQUE SOLUTION"
DATA 1, 2, 4
DATA 2, ——7, 5
DATA 1, 3, 4, ~7
END '

RUN

4 —5.5
6.66667 E—OI 1.66667 E—OI

—3.66667 3.83333

BASIC RUN ERROR 406 IN LINE 30

After typing the program, we type RUN foIIowed by a carriage
return. Up to this point the computer stores the program and checks
the form of the statements. This process is caIIed compiling. It is
the RUN command which directs the computer to execute your pro
gram. The message out~of—data error code here may be ignored.
However, in some cases it indicates an error in the program.

ND- 60071.01

2.2 EXPHESS/0N8

The computer can perform a great many operations; it can add, subtract,
multiply, divide, extract square roots, raise a nui‘nber to a power and find
the sine of a number (on an angle measured in radians), etc. We will now
learn how to tell the computer to perform these various operations and
to perform them in the order that we want them done.

The computer performs its primary function (that of computation) by
evaluating formulas which are supplied in a program. These expressions
are very similar to those used in standard mathematical calculation, with
the exception that all BASIC expressions must be written on a single line.
Five arithmetic operations can be used to write an expression, and these
are listed in the following table.

SVmbol Example Meaning

+ A + B Addition (add B to A)
— A — B Subtraction (subtract 8 from A)
* A * B Multiplication (multiply B by A)
/ A / B Division (divide A by B)
’i or ** X t 2 Raise to the power (find X 2)

We must be careful with parentheses to make sure that we group together
those things which we want together. We must also understand the order
in which the computer does its work. For example, if we type A + B * C t D
the computer will first raise C to the power D, multiply this result by B and
then add A to the resulting product. This is the same convention as is usual
for A + BCD. If this is not the order intended, then we must use parentheses
to indicate a different order. For example, if it is the product of B and C
that we want raised to the power D, we must write A + (8*CltD; or, if
we want to multiply A+ B by C to the power D, we write (A + B)*CtD.
We could even add A to B, multiply their sum by C, and raise the product
to the power D by writing ((A + B)*C)tD. The order of priorities is sum-«-
marized in the following rules:

I

_ The expression inside parentheses is computed before
the parenthesized quantity is used in further com—
putations.

_ In the absence of parentheses in an expression in-
volving addition, multiplication and the raising of a
number to the power, the computer first raises the
number to the power, then performs the multiplica~
tion, and the addition comes last. Division has the
same priority as multiplication, and subtraction the
same as addition.

NDu60.071.0i
Revision D

— In the absence of parentheses in an expression invol—
ving operations of the same priority, the operations are
performed from left to right.

The rules are illustrated in the previous example. The rules also tell us that
the computer faced with A — B — C, will (as usual) subtract 8 from A and
then C from their difference; faced with A/B/C, it will divide A by B and
that quotient by C. Given ATBTC, the computer will raise the number A to
the power 8 and take the resulting number and raise it to the power C. if
there is any question in your mind about the priority, put in more paren—
theses to eliminate possible ambiguities.

ln addition to these five arithmetic operations, the computer can evalute
several mathematical functions. These functions are given special English
names, for instance:

Functions lnterpretation

ATN (X) Find the arctangent of X
EXP (X) Find ex
SQR (X) Find the square root of X (J X)

In place of X, we may substitute any expression or any number in paren—
thesis following any of these formulas. For example, we may aks the com—
puter to find J4 + X3 by writing SQR (4 + X13), or the arctangent of
3x — 2eX + 8 writing ATN (3*x — 2 * EXP (X) + 8).

If sitting at the terminal, you need the value of (5/6)17 and you can write
the two~line program:

10 PRINT (5/6) f 17
20 END

and the computer will find the decimal form of this number and print it
out in less time than it took to type the program.

Other functions are also available in BASIC, but these are reserved for
explanation later (Section 8.3).

ND60.071.01
Revison C

2.2.1

2.2.2

2.2.3

Numbers

A number may be positive or negative and it may contain up to approxi-
mately nine significant digits. For example, all of the following are num~
bers in BASlC22 «3, 675, 1234567, w765432l and 13.83.4’l 56. The follow—
ing are not numbers in BASlC214/3 and if 7,. We may sir the computer
to find the decimal expression 14/3 and J 7, and to do something with
the resulting number, but we may not include either in a list of DATA.
We gain further flexibility by use of the letter E, which stands for “times ten
to the power“. Thus, we may write 00123456789E 2 or i23456789E ~ H
or 1234.56789E m 6. We may write ten million as 'l E7 (or it? t 7} and l965
as 1.965E3 (or 1.965E +3). We do not write E7 as a number, but must write
1E7 to indicate that it is 1 that is multiplied by lO7-

Variables

A variable in BASlC is denoted by any letter, or a letter followed by up
to six digits and/or letters. Thus, the computer will interpret E7 as a variable
along with A, X, N5, 10 and 01. A variable in BASlC stands for a number,

usually one that is not known to the programmer at the time the program
was written. Variables are given or assigned values by LET READ or INPUT
statements. The value so assigned will not change until the next time a
LET, READ or INPUT statement is encountered with a value for that vari—

able. However, all variables are set to a zero before a RUN command. Thus,
it is not necessary to assign a value to a variable before using the variable
in a computation.

Re/at/ona/ Operators

Seven other mathematical symbols are provided for in BASlC, symbols
of relation, and these are used in IF — THEN statements where it is neces-
sary to compare values. An example of the use of these symbols was
given in the sample program in Section 2.l.

Any of the following seven relations may be used:

Symbol Example Meaning

= A = B ls equal to (A is equal to B)
< A < B ls less than (A is less than B)
< = or = < A < = B ls less than or equal to (A is

less than or equal to B)

> A > B ls greater than (A is greater
than B)

> = or = > A > = B is greater than or equal to (A
is greater than or equal to B)

< > or >< A < > B ls not equal to (A is not equal
to B)

= = A = = B is approximately equal to

ND—60.07l.01
Revision D

The term ”approximately equal to” means that the two quantities differ

by a very small amount and may be regarded as identical for any practical

purpose. More specifically, == B is true if:

lA—Bl<C ’ llA+B/2)l

C is a system constant which equals 5E—7 for 48 bit reals and 5E—-5 for 32
bit reals (see Appendix C).

Generally, approximately equal quantities appear equal when they are

printed.

ND-60.071,01
Revision D

2.3 LOOPS

We are frequently interested in writing a program in which one or more
portions are performed not just once but 1 number of times, perhaps with
slight changes each time. in order to write the simplest program, the one in
which this portion to be repeated is written just once, we use the program—
ming device known as a loop.

The programs which use loops can, perhaps, be best illustrated and explained
by two programs for the simple task of printing out a table of the first 100
positive integer numbers together with the square root of each. Without a
loop, our program would be 101 lines long and read:

10 PRINT 1, 80R (1)
2O PRlNT 2, SQR (2)
30 PRlNT 3, SQR (3)

990 PRlNT 99, SQR (99)
1000 PRlNT 100, SQR (100)
1010 END

With the following program, using one type of loop, we can obtain the
same table with far fewer lines of instruction, 5 instead of 101:

10 LET X =1
20 PRlNT X, SQR (X)
30 LET X = X +1
40 lF X <= 100 THEN 20
50 END

Statement 10 gives the value of 1 to X and “initializes" the loop. ln line
20 both 1 and its square root are printed. Then, in line 30, X is increased
by 1 to 2. Line 40 asks whether X is less than or equal to 100; an affir-
mative answer directs the computer back to line 20. Here it prints 2 and
J2, and goes to 30. Again X is increased by 1, this time to 3, and at 40
it goes back to 20. This process is repeated, line 20 (print 3 and J3),
line 30 (X = 4), line 40 (since 4 < 100 go back to line 20), etc. — until
the loop has been traversed 100 times. Then after it has printed 100 and
its square root, X becomes 101. The computer now receives a negative an—
swer to the question in line 40 (X is greater than 100, not less than or equal
to it), does not return to 20, but moves on to line 50, and ends the program.
All loops contain four characteristics, initialization (line 10), the body
(line 20), modification (line 30), and an exit test (line 40). Because loops
are so important and because loops of the type just illustrated arise so often,
BASIC provides two statements to specify a loop even more simple. They
are FOR and NEXT statements, and their use is illustrated in the program:

ND-60.071.01

10 FOR X: 1 T0100
20 PRINT X, SOR IX)
30 NEXT X
50 END

In line 10, X is set equal to 1, and a test is set up, like that of line 40.
Line 30 carries out two tasks: X is increased by 1 and the test is carried
out to determine whether to go back to 20 or to go on. Thus, lines 10 and
30 take the place of lines 10, 30 and 40 in the previous program —— and
they are easier to use.

Note that the value of X is increased by 1 each time we go through the
loop. If we wanted a different increase, we would specify it by writing:

10 FOR X =1 TO1OOSTEP 5

and the computer would assign 1 to X on the first time through the loop
6 to X on the second time through, 11 on the third time, and 96 on the
last time. Another step of 5 whould take X beyond 100, so the program
would proceed to the end after printing 96 and its square root. Step size
must be positive, unless it is aW.

In the absence of a STEP clause, a step size of +1 is assumed.

IVlore complicated FOR statements are allowed. The initial value, the final
value, and the step size may all be expressions of any complexity. For
example, if N and Z have been specified earlier in the program we could
write:

FOR X=N+7*ZTO(Z—N)/38TEP(N-—4*Z)/10

The loop continues as long as the control variable is algebraically less than
or equal to the final value.

If the initial value is greater than the final value, then the body of the
loop will not be performed at all, but the computer will immediately
pass to the statement following the NEXT. For example, the following
program for adding up the first n integer numbers will give the correct
result 0 when n is O.

10 READ N
20 LETS=O
30 FOR K =1 TO N
40 LETS=S+ K
50 NEXT K
60 PRINTS
70 GO TO 10
90 DATA 3, 10, 0
99 END

N D-60.071.01
Revision D

It is often useful to have loops within loops. These are called nested loops
and can be expressed with FOR and NEXT statements. However, they must
actually be nested and must not cross, as the 'l'ollowmg skeleton examples
illustrate:

AI lo wed BJE,QM£QQ,_

{W FOR X l~~~~~~ FOR X
E EwFOR Y i FOR Y

L~——NEXTY EFORZ
E——-~—~NEXT X l IEWNEXT Z

I FOR vv
Not Allowed l E ‘wNEXT W

E I ~NEXT Y
EWFOR X l E‘FOR z

“l"FOR Y ENEXT Z
LNEXT X LW NEXT X

..... NEXT Y

Note that BASIC does not check for overlap of control variables in nested loops.

ND»60.071.01
Revision C

2—13

2.4 ARRA YS OR MA TRICES

in addition to the ordinary variables used by BASIC there are variables

which can be used to designate the elements of an array. These are used

where we might ordinarily use a subscript, for example, the coefficients

of a polynomial (a0, a1, a2 l or the elements of a matrix

(B i' -). The variables which we use in BASIC are called the name of the

array, followed by the subscriptls) in parenthesis. Thus, we might write

A(0), A(1), Ai2), etc., for the coefficients of the polynomial and B11,1),

B(1,2), etc., for the elements of the matrix. In this manual you will also

find the words dimension or index for subscript and indexed variable

for subscripted variable.

We can enter the array AiO), A(1), A(2), A(‘lO) into a program

very simply by the lines:

10 FOR I =OTO 10
20 READ A (l)
30 NEXTI
40 DATA 2, 3, —5, 2,2, 4, ——9, 123, 4, ~4, 17

We need no special instruction to the computer if no subscript greater

than 10 occurs. However, if we want larger subscripts, we must use a DlM

statement to indicate to the BASIC system that it has to save extra space

for the array. When in doubt, indicate a larger dimension than you expect

to use. For example, if we want a list of 15 numbers entered, we might

write:

10 DIM A (25)
20 READ N
30 FOR 1 = 1 TO N
40 READ A (i)
50 NEXTI
60 DATA 15
70 DATA 2, 3, 5, 7,11,13,17,19, 23, 29, 31, 37, 41, 43, 47

Statements 20 and 60 could have been eliminated by writing 30 as FOR l = 1

TO 15, but the form as typed would allow for the lenghtening of the ar-

ray by changing only statement 60, as long as it did not exceed 25.

We would enter a 3 x 5 array into a program by writing:

1OFOR|=1TO3
20 FOR J = 1 To 5
30 READ B (l, J)
40 NEXT J
50 NEXT l
60 DATA 2, 3, —5, —9, 2

g 70 DATA 1, —7, 3, 4, —2
80 DATA 3, —3, 5, 7, 8

ND—60.071.01

2—44

Here again, we may enter an array with no dimension statement, and it
will handle all the entries from B(0,0) to B(10,lO). If you try to enter an
array with a subscript greater than 10, without a DIM statement, you will
get an error message telling you that you have a subscript error. This is
easily rectified by entering the line:

5 DIM (20, 30)

if, for instance, we need a 20 by 30 matrix.

The form of the subscript is quite flexible, and you might have the array
element B(I, K) or O(A(3,7), B—C).

Shown below is a list and run of a problem which uses both a singly and
a doubly su bscripted array. The program computes the total sales of each
of five salesmen, all of whom were selling the same three products. The
array P gives the price/item of the three products and the array A tells
how many items of each product each man sold. You can see from the
program that product number 1 sells for $1.25 per item, number 2 for
$4.30 per item, and number 3 for $2.50 per item: and also that salesman
number I sold 40 items of the first product, 10 of the second, and 35 of
the third, and so on. The program reads in the sales array in lines 40 —— 80,
using data in lines 910 ~— 930. The same program could be used again,
modifying only line 900 if the price changes, and only lines 910 —— 930 to
enter the sales in another month.

This sample program did not need a dimension statement, since the com-
puter automatically saves enough space to allow all subscripts to run from
O to 10. A DIM statement is normally used to save more space. However,
in a long program, requiring many small arrays, DIM may be used to save
less space for arrays, in order to leave more for the program.

Since the DIM statement is used to save space for arrays, the DIM state-
ment must be executed before the space is being used. Normally the DIM
statements will be placed near the beginning of the program.

10FORI=1T03
20 READ PH)
30 NEXT I
40 FOR I = 1 TO 3
50 FOR J = 1 TO 5
60 READ A (l, J)
70 NEXT J
80 NEXT |
90 FOR J = 1 TO 5

100 LET S = 0
llOFORl=1T03
120 LET S = S + Pill * A (l, J)
130 NEXT l
140 PRINT “TOTAL SALES FOR SALESMAN"; J; "$";S

ND-60.07l .01

2—15

150 NEXT J
900 DATA 1.25, 4.30, 2.50
910 DATA 40, 20, 37, 29, 42
920 DATA 10, 16, 3, 21, 8
930 DATA 35, 47, 29, 16, 33
999 END

RUN
TOTAL SALES FOR SALESMAN 1 $180.5
TOTAL SALES FOR SALESMAN 2 $211.3
TOTAL SALES FOR SALESMAN 3 $131.65
TOTAL SALES FOR SALESMAN 4 $166.55
TOTAL SALES FOR SALESMAN 5 $169.4

READY

ND-60.071.01

2.5

2—16

USE OF THE SYSTEM

Commands to the computer, unlike statements or instructions in a program
have no line number. These commands are typed at the start of a new line
on the terminal and are followed by a carriage return. They give the com—
puter information on manipulating programs you are creating or have pre—
viously written. You may type a command any time you could type a 'num-
bered line in a program.

Execution of a program is started by the command RUN, and you can ob-
tain a listing in its current form of your program by typing the command
LlST. if you wish to save it for later use, type SAVE. To recover a program
previously saved, type OLD and then the program name. The result will be
just as if you had typed in a new program and saved it.

Now that we know something about writing a program in BASlC, how do
we set about using a terminal to type in our program and then have the
computer solve our problem?

First, ascertain that the BASIC system is present. if no, the system is loaded
as explained in Section 3.1. When the computer types READY you should
begin to type your program. Make sure that each line begins with a line
number which contains no non—digit characters. Be sure to press the carriage
return key at the completion of each line, Spaces may be inserted at any
point in the line, including before the line numbers.

If, in the process of typing a statement, you make a typing error and notice
it immediately, you can correct it by pressing AC. (Press the key marked
CTRL and type A). This will delete the preceding character and you can then
type in the correct character. Pressing this key a number of times, for example n,
will erase from this line the n last characters. To delete all of the present
line, press QC. Programs or data may be annotated by typing the remark
and then deleting the line (as far as the system is concerned) with QC.
BASlC prints "<—” to show that a line has been deleted, and ”T" to show
that a character has been deleted.

When a line is finished, you press the carriage return key. Then the statement
is analyzed by the computer and if any syntax error is found, an error
message is printed.

After typing your complete program, you type RUN, press the carriage
return key and hope. if the program is one which the computer can run,
it will then run it and print out any results for which you have asked in
your PRlNT statements. This does not mean that your program is correct,
but that it has no errors of the type known as ”grammatical errors”. If it
had errors of this type, the computer would have printed an error message
as soon as the error was detected during the typing of the program. Errors
detected :after RUN are structural (loop nesting, matching GOSUB and
RETURN) or arithmetical errors. (A complete error 'list is given in Appendix
A together with the interpretation of each.

N D-60.071.01

2—17

The last line is always stored in the computer, and you can correct it,
even if it resulted in an error message by using the line exit control char~
acters. Any program statement may also be corrected in the same way
by typing the EDlT command followed by the statement number. If you
want to eliminate the statement on line 110 from your program, you may
do this by typing the command DELETE 110. It is also possible to type 110
followed by carriage return. Now, line 110 is still a part of the program,
but the effect of the statement is removed. If you want to insert a state—
ment between those on lines 60 and 70, you can do this by giving it a
line number between 60 and 70.

If it is obvious to you that you are getting the wrong answers to your
problem, even while the computer is running, press the key marked ESC
and the control is given to the Operating System. The command CON-
TlNUE will restart BASlC with your program intact and you can start to
make your corrections. if you are in serious trouble, type the command
CLEAR. The word READY, whenever printed, tells you that BASlC is
ready to accept commands or statements from your terminal.

A sample use of the system is shown below:

10 FOR N =1 TO 7
20 PRINT N, SQR(N)
30 NEXT N
50 END

RUN
1 1
2 1.41421
3 1.73205
4 2
5 2.23607
6 2.44949
7 2.64575
READY

ND—60.071.01

2.6 ERRORS AND DEBUGG/IVG

lt may occasionally happen that the first run of new problem will be free
of errors and give the correct answers, but it is much more likely that
errors will be present and will have to be corre 2”were are of two
types: errors of form (or syntax errors) which , he running of the
program, and logical errors in the program which cause the computer to
produce wrong answers or no answers at all.

Errors of form will cause error messages to be printed tonical errors are
often much harder to uncover, particularly when the ":ri gives ans»
wers which seem to be nearly correct. in either case, after the errors are
discovered, they can be corrected by changing lines, by inserting new lines
or by deleting lines from the program. As indicated in the last section, a
line is changed by typing it correctly with the same line number; a line is
inserted by typing it with a line number between those two existing lines;
and a line is deleted by typing DELETE and the actual line number. Notice
that you can insert a line only if the original line numbers are not con—
secutive integers. For this reason, most programmers will start out using
line numbers that are multiples of five or ten, but that is a matter of
choice.

These corrections can be made at any time — whenever you notice them -
either before or after a run. Since the computer sorts lines out and arranges
them in order, a line may be retyped out of sequence. Simply retype the
offending line with its original line number.

As with most problems in computing, we can best illustrate the process of
finding the errors (or “bugs”) in a program and correcting (or “debugging")
it by an example. Let us consider the problem of finding that value of X
between 0 and 3 for which the sine of X is a maximum and ask the machine
to print out this value of X and the value of its sine. If you have studied
trigonometry you know that 7r/2 is the correct value; but we shall use the
computer to test successive values of X from 0 to 3, first using intervals of
.1, then .01, and finally of .001. Thus, we shall ask the computer to find the
sine of O, of .i, .2, .3, 2.8, 2.9 and of 3, and to determine which
of these 3i values is the largest. lt will do it by testing Sll\l(0) and SlN(.1)
to see which is larger and calling the largest of these two numbers M. Then
it will pick the larger of M and SW (.2) and call it M. This number will be
checked against SlN (.3) and so on down the line. Each time a larger value
of M is found, the value of X is ”remembered" in X0. When it finishes,
M will have been assigned to the largest value. lt will then repeat the search,
this time checking the 301 numbers 0, .01, .02, .03, 2.98, 2.99,
and 3, finding the sine of each and checking to see which has the largest
sine. At the end of each of these three searches, we want the computer
to print three numbers: the value X0 which has the largest sine, the sine
of that number, and the interval of search.

ND-60.07l .01
Revision D

2—19

Before going to the terminal, we write a program, let us assume that it is

the following:

10 READ D
20 LET X0 = 0
30FORX=O OSSTEPD
40 IF SIN IX)< = M THEN 100
50 LET X0 = X
60 LET M = SIN (X0)
70 PRINT X0, X, D
80 NEXT X0
90 GO TO 20

100 DATA . l, .01, .001

_______ 110 END

We shall list the entire sequence on the terminal and make explanatory

comments.

NEW MAXSIN

Io REAI= D
***ERROR IN LINE IO NOT RECOGNIZED
IO READ D
20 LET x0 = o
30 FOR x = 0
40 IF SINEI I
50 LET xo = x
60LETM=SIN I x)
70 PRINT XO,X,D
so NEXT 2Ixo

. 90 GOTO 20
’ 100 DATA .I,.oI, .001

no END
RUN
"LINE 80" IMPROPERLY NESTED FOR LOOPS

TET038 PD
X I<=MTHEN100

A message indicates that READ was mistyped in line 10, so we retype

it, this time correctly.

Notice the use of AC (types up arrow) to erase a character in line 40, which

should have started IF SIN (X) etc., and in line 80.

Upon checking we see that the variable in the FOR and NEXT are different,

so we correct statement 80. In looking over the program, we also notice that

the IF — THEN statement in 40 directed the computer to a DATA state-

ment and not to line 80 where it should go.

ND-60.07I.0‘l

'80 {NEXT X
40 IF ‘S‘IN '(X)'< = M THEN 80
.R-UN
0.1 0.1 0.1
0.2 0.2 0.1
0.3 0.3 0.1
USER BREAK AT 110334
@CONT
READY

M has never been assigned an initial value and is assumed to be zero. We
decide to give it a value less than the maximum value of the sine, say -1.

20 LET M1 -1
RUN
0 0 0.1
0.1 0.1 0.1
0.2 0.2 0.1
USER BREAK AT 110334
@CONT
READY

This is incorrect. We are having every value of X0,X and the interval size
printed, so we direct the machine tc cease operations by depressing the
ESC-key even while it is running. Notice that the ESC does not print, but
the word USER BREAK is printed.

We fix this by moving the PRINT statement outside the loop. We also
realize that we want M printed and not X.

DELETE 70
85 PRINT X0, M, D
RUN
1.6 9.99574E-01 0.1
1.6 9.99574E—01 0.1
USER BREAK AT 110334
@CONT
READY

Of course, line 90 sent us back to line 20 to repeat the operation and
not back to line 10 to pick up a new value of D. We also decide to put
in headings for our columns by a PRINT statement.

90 GOTO 10
5 PRINT "X VALUE“, “SIN", ”RESOLUTION
***ERROR IN LINE 5 ILL. STRING TERMINATION

ND-60.071.01

2—21

There is an error on our PRINT statement, no right quotation mark for the
third item.

Retype line 5 by typing H“ and supply the missing quotation mark.

5 PRINT "X VALUE", "SIN”, ”RESOLUTION”
RUN
X VALUE SIN RESOLUTION
1.6 9.99574E-01 0.1
1.57 1 0.01
1.571 1 0.001
BASIC RUN ERROR 406 W LINE 10
READY

Exactly the desired results. Of the 31 numbers (0, .1, .2, .3, 2.8,
2.9, 3) it is 1.6 which has the largest sine, namely .999574. Similarly for
finer subdivisions.

Having changed so many parts of the program, we ask for a list of the cor-
rected program. Listing the corrected program, from time to time, is an
important part of debugging. Using LISTH will list the program name as
a header, including the date and time:

LISTH

MAXSIN 15 JULY 1976 09.31.59
5 PRINT "X VALUE“, “SIN", “RESOLUTION“
10 READ D
20 LET M = -1
30 FOR X= OTOBSTEP D
40 IF SlNl < = M THEN 80
50 LET X0 = X
60 LET M = SlNl
80 NEXT X
85 PRINT X0, M, D
90 GO T010
100 DATA .1, .01, .001
110 END

SAVE ”MAXSIN“

The program is saved for later use by writing it on the file MAXSIN. A
file name enclosed in double quotes means that a new file with the given
file name should be created.

In solving this problem, there is a common device which we did not use,
namely the insertion of a PRINT statement when we wonder if the machine
is computing what we think we asked it to compute. For example, if we
wondered about M, we could have inserted 65 PRINT M and we would have
seen the values.

ND-60.071.01

2.6.1

2~22

With more difficult problems we can use the STOP statement, 58 STOP.

However, it is more convenient to use the BREAK debugging option which
allows to set a break point at the beginning of any statement by typing
BREAK followed by the actual statement number. A breakpoint halts the
execution and returns control to the terminal. All legal statements execut—
ing in immediate mode (statement without statement number) may now
help us to examine and change the variable values it necessary.

it is also possible to change the program. if wanted, set a new breakpoint
before going on with the command CONTINUE.

Use of Flags

The technique of ending a program by having it run out of data is very
simple and efficient. However, it does not yield an attractive printout and
prevents taking any action after the program discovers that it has run out
of data. The MAXSlN program above terminates with a run error message
telling it is out of data in line 10.

Now that we have the lF-THEN statement, we can agree that a O signifies
the end of the data. In reading the data, when we reach the 0, we will know
that all computations have been done and we can now terminate the execu—
tion. The number 0 is used as a piece of data having special meaning and is
called a flag. Actually, we can agree to any number as the data-ending
flag, but we chose 0 because a step size of 0 never occurs.

ln the lVlAXSlN example we should make the following corrections:

15 lF D = 0 THEN 110
100 DATA .1, .01, .001, 0

ND-60.071.01

2.7

2.7.1

2.7.2

SUMMARY OF ELEMENTARY BASIC STATEMENTS

In this section we shall give a short and concise description of each of the
types of BASIC statements discussed earlier in this chapter and add some
to our list.

LET

LET <variable> = <expression>

This statement is not a statement of algebraic equality, but rather a com-
mand to the computer to perform certain computations and to assign
the answer to a certain variable.

Examples:

100 LET X = X +1
259 LET W7 = (W - X4?3)*(X - A/(A ~ Bii-l7

HEAD and DA TA

READ <list of variables>
DATA <list of numbers>

We use a READ statement to assign to the listed variables values obtained
from a DATA statement. Neither statement is used without one of the
other type. A READ statement causes the variables listed in it to be given,
in order, the next available numbers in the collection of DATA statements.
Before the program is run, the computer takes all DATA statements in the
order in which they appear and create a large data block. Each time a READ
statement is encountered anywhere in the program, the data block supplies the
next available number or numbers. If the data block runs out of data, with a
READ statement still asking for more, it is assumed that the program is done
and we get an out—of-data error code. '

Since we have to read in data before we can work with it, READ state—
ments normally occur near the beginning of a program. The location of
DATA statements is arbitrary as long as they occur in the correct order.
A common practice is to collect all DATA statements and place them
just before the END statement.

Examples:

150 READ X, Y, 2, X1, Y2, 09
330 DATA 4, 2, 1.7
340 DATA 6.734E—3, 474.321, 3.14159265

ND-60.071.01

2—24

234 READ B (K)
263 DATA 2, 3, 5, 7, 9,11,10, 8, 6, 4

10 READ R (I, J)
440 DATA -3, 5, -9, 2.37, 2.9876, —437.234E-5
450 DATA 2.765, 5.5576, 2.3789E2

Remember that only numbers are put in a DATA statement and that
15/7 and 73 are expressions not numbers.

2.7.3 PRINT

PRINT <Iist of expressions>

The PRINT statement has a number of different uses and is discussed in

more detail in Section 4.7. The common uses are: ‘

1. To print out the result of some computations

2. To print out verbatim a message included in the program

3. A combination of the two

4. To skip a line

We have seen examples of only the first three in our sample programs. Each
type is slightly different in form, but all begin with PRINT after the line
number.

Examples of type 1:

100 PRINT X, SQR (X)
135 PRINT X, Y, 2, B * 8-4 * A * C, EXPIA—~B)

The first will print X and then a few Spaces to the right of that number
its square root. The second will print five different numbers:

x, Y, z, 82 ~4AC, and eA—B

The computer will compute the two expressions and print them for you.
It can print up to five numbers per line in this format.

Wives;

100 PRINT "NO UNIQUE SOLUTION“
430 PRINT ”X VALUE”, "SINE”, ”RESOLUTION"

'NzD-'60.‘071.01

2.7.4

2.7.5

Both have been encountered in the sample programs. The first prints that
simple statement, the second prints the three labels with spaces between
them. The labels in 430 automatically line up with the three numbers
called for in a PRINT statement (as long as the labels do not exceed 14
characters) as seen in MAXSIN.

Examples of type 3- ;

150 PRINT ”THE VALUE OF X IS"; X
30 PRINT "THE SQUARE ROOT OF“; X; “IS"; SORlX)

If the first has computed the value of X to be 3, it will print out: THE
VALUE OF X IS 3 . lfthe Second has computed the value of X to be
625, it will print out: THE SQUARE ROOT OF 625 lS 25. The semi-
colon delimiter will be discussed later.

E.xamplgs gf type 4:

250 PRINT

The computer will advance the paper one line when it encounters this
command.

GOTO

GOTO <line number>

There are times in a program when you do not want all statements executed
in the program. An example of this occurs in the lVlAXSlN problem where the
computer has computed X0, M, and D and printed them out in line 85. We
did not want the program to go to the END statement yet, but to go through
the same process for a different value of D. Therefore, we directed the com—
puter to go back to line 10 with a GOTO statement. (It is possible to go to
a non-executable statement, control then passes to the sequential executable

statement.)

Example:

150 GO TO 75

IF-THEN- or lF-GOTO

IF <expression> <relation> <expression> GOTO <line number>

There are times when we are interested in jumping the normal sequence
of statements, if a certain relationship holds. For this we use an IF — THEN
statement, sometimes called a conditional GO TO statement. Such a state-
ment occurred at line 40 of MAXSIN.

ND-60.071.01

2.7.6

flatmates;

40 IF SlN (X) <= M THEN 80 or
40 IF SlN (X) <= M GO TO 80

201FG=0THEN 650r
201FG=OGOT065

The first asks if the sine of X is less than or equal to M, and directs the
computer to skip to line 80 if it is. The second asks if G is equal to O,
and directs the computer to skip to line 65 if it is. in each case, if the
answer to the question is no, the computer will go to the next line of
the program.

FOR and NEXT

FOR <variab|e> = <expression> TO <expression> [STEP
<expression>]

NEXT <variable>

We have already encountered the FOR and NEXT statements in our loops,
and have seen that they go together, one at the entrance to the loop and
one at the exit, directing the computer back to the entrance again.

Any simple (not subscripted) variable may be used as the FOR variable.
Most commonly, the expressions will be integers, and the STEP omitted.
ln the latter case, a step size of one is assumed. The accompanying NEXT
statement is simple in form, but the variable must be precisely the same
as that following FOR in the FOR statement.

Examples:

30FORX=OTOBSTEPD
80 NEXT X

120 FOR X4 = (17 + COS(Z))/3 TO 3*SOR(10) STEP 1/4
235 NEXT X4
456 FOR J = -3 TO 12 STEP 2

Notice that the step size may be an expression: (1/4), or a positive
number(2). In the example with lines 120 and 235, the successive values
of X4 will be .25 apart, in increasing order. In the last example, on
successive trips through the loop, J will take on values «3, -1, 1, 3, 5,
7, 9 and 11.

Note that variables implied in final or step size expression plus the
control variable itself can be changed in the body of the loop. Thus
the loop control may be affected during execution.

ND-60.071.01

2.7.7

2—27

If you write 50 FOR X = 2 TO -2, the body of the loop will not be performed

and the computer will proceed to the statement immediately following the

corresponding NEXT statement.

Negative STEP elements permit running through a sequence of values

”backwards.“ For instance:

320 FOR X = 10 TO 0 STEP —3 'Must be a negative constant’

will cause X to run through the values 10, 7, 4 and 1.

DIM

DIM <variable name (dimensionls)),. . . .>

As we have seen BASIC needs no information concerning the array size
if the subscriptls) run fromO to 10. (The default size is then automatically

set up by BASIC.) In those circumstances when a one—dimensional array

has more than 11 entries, or when a two—dimensional array has more than

11 rows or 11 columns, we specify the needed size of the array in a DIM

statement.

20 DIM Al20), 8(2, 15), 0(4), Dl10)

The array named A has entries numbered from 0 through 20, B has rows
numbered 0 through 2 and columns numbered 0 through 15, C has five
entries numbered 0 through 4, and D has entries numbered from 0 through

10. Note that C is dimensioned smaller than default to save space in the
computer. D could have been left out since the dimension is equal to the

default. Here is some rules concerning the use of DIM and subscripted
variables:

1. DIM statements may appear anywhere in a program. All array
elements are set to zero after a DIM statement is executed. String
elements are empty.

2. The same name denoting a variable and an array will lead to
conflicts.

3. The dimension(s) of an array may be any legal expression. This
means that arrays can be re—dimensioned during run time if the
DIM statement is executed in a loop, for instance. It is even
possible to re-dimension a one-dimensional array to be two-dimensional
or vice versa.

4. A two-dimensional array can be accessed with one dimension.

5. If the evaluated expression describing the subscript(sl is not an
integer value, it will be truncated to the nearest integer. Note

that the evaluation is truncation, not rounding.

6. The total index is limited to 65535 (a 16 bit data word).

N D60.071.01
Revision B

2.7.8

2.7.9

2.7.10

2—28

STOP

A STOP statement may be entered anywhere in a program. With STOP,
execution is halted and control is passed to the terminal.

Example:

25 STOP

END

Every program must have an END statement and it must be the statement
with the highest line number in the program. When the computer reaches
the END statement the execution of the program stops.

Example:

999 END

ON-GOTO

ON <expression> GOTO <list of line numbers>

Using an IF —— THEN statement provides only a two-way branch in a pro-
gram. A decision between only two alternatives can be made.» More branches
can be achieved by using multiple lF ~— THEN statements. However, a
single statement, ON —— GOTO, allows a manyway branch.

For example, the following lines in a longer program:

90 READ X
100 IF X 1 THEN 500
110 IF X 2 THEN 600
120 IF X = 3 THEN 700
130 DATA 3

ll

could be replaced by these three lines:

90 READ X
100 ON X GO TO 500, 600, 700
130 DATA 3

Example:

100 ON X GO TO 500, 600, 700

ND-60.071.01

2.7.11

2-29

If X is equal to i, the computer takes its next instruction from line 500,

if X is 2, control passes to 600, and so on. If the vaIue of X is not an

integer, its integer part is used. If the value of X is less than one or greater

than the number of line numbers listed, an error messages is given. There may

be any number of line numbers listed in the instruction as long as the entire

instruction fits on a single line.

REM and Remarks

REM <text>

REM provides a means for inserting explanatory remarks in a program. The

system completely ignores the remainder of that line, allowing the program-

mer to follow the REM with directions for using the program, with identifi-

cations of the parts of a long program, or with anything else that he wants.

Although what follows REM is ignored, its line number may be used in 3

IF —— THEN, GO T0, or ON — GO TO statement.

Explanatory remarks may be located following a statement on a line, by

using the character ’. Anything on theriine following ’ will be treated as an

expianatory remark. For example, the statement

250 LET Y =1 ' INITIALIZE Y TO ONE

includes the remark INITIALIZE Y TO ONE without affecting the running

of the program.

In line 130 the line number is followed by an apostrophe and the rest of

the line is left blank. Such blank lines are used to increase the readability

of the program listing.

Example:

100 REM INSERT DATA IN LINES 900 - 998. THE FIRST

110 REM NUMBER IS N, THE NUMBER OF POINTS. THEN

120 REM THE DATA POINTS THEMSELVES ARE ENTERED

130’

200 IF N ><0 GOTO 500

500 REM N WAS UNEOUAL ZERO

ND—60.07’I .01

2.7.12

2.7.13

RESET

Sometimes it is necessary to use the data in a program more than once.
The RESET statement permits reading the data as many additional times
as it is used. Whenever RESET is encountered in a program, the system
resets the data block pointer to the first number. A subsequent statement
will then start reading the data all over again. A word of warning — if
the desired data is preceded by code numbers or parameters, superfluous
READ statements should be used to pass over these numbers. For example,
the following program portion reads the data, restores the data block to
its original state, and reads the data again. Note the use of line 570 to “pass
over" the value of N which is already known.

100 READ N
110 FOR l=1 TON
120 READ X

200 N EXT l

560 RESET
570 READ X
580FORl=1 TON
590 READ X

INPUT

lNPUT <list of variables>

There are times when it is desirable to have data entered during the run
of a program. This is particularly true when one person writes the program
and enters it into memory, and other persons are to supply the data. This
may be done by an INPUT statement which acts as a READ statement
but does not draw numbers from a DATA statement. if, for example, you
want the user to supply values for X and Y into a program, you will type

40 lNPUT X, Y

before the first statement which is to use either of these numbers. When
it encounters this statement, the system will print a question mark. The
user types two numbers, separated by a comma, presses the return key
and the system goes on with the rest' of the program.

A single carriage return means that the line is empty. If there are more
numbers or strings in the line than were requested, the excess is ignored.
If there are not the same number of items as there are variables in the
lNPUT list, a new question mark is printed indicating that the program
needs more data.

ND-60.07‘l.01

2-—-31

Frequently an INPUT statement is combined with a PRINT statement to
make sure that the user knows which values to put in. You might type

20 PRINT “WHAT ARE YOUR VALUES OF X, Y, AND 2”;
30 INPUT X Y, Z
40 END
RUN

and the system will print

WHAT ARE YOUR VALUES 0F X, Y, AND Z?

Without the semicolon at the end of line 20, the question mark would have
been printed on the next line.

Data entered via an INPUT statement are not saved with the program. Further-
more, it may take a long time to enter a large amount of data using INPUT.
Therefore, INPUT should be used only when small amounts of data are to
be entered, or when it is necessary to enter data during the running of the
program such as with a game-playing program.

Input from the terminal also allows the user to insert messages to be printed
between the variables to be input. Such strings must always be constants
enclosed in quotes.

The statement:

10 INPUT ”X‘=”, x, ”Y=“, Y, "2:", 2

will execute like this: or this: or this:

X=ZI X=?1,2 X=?i,2,3

Y = .72 Z = ?3
Z = .73

NED-60071.01
Revision C

3.1

3.1.1

lNTERACTlVE USE OF THE BASIC SYSTEM

ENTERING THE BASIC SYSTEM

The BASIC system may be entered from the operating system
SlNTRAN ill by typing

@BASIC

Then the BASlC system starts by identifying itself followed by the word
READY. This word, whenever printed, tells you that BASIC is ready to
accept a command or a statement typed from your terminal.

Compiling a BASIC Program

When you start, the system is initialized to accept your program
lines typed directly from the terminal. However, it your program resides
on a mass storage file you may initiate the compilation process by giving
the command:

OLD <file name>

As soon as all the program lines on the specified file has been compiled,
the number of compiled lines along with the number of diagnostics given
will be printed on your terminal. If no diagnostics are given the compiler
has accepted all the statements to be syntactically and semantically correct
and you may try to start the execution of it (see below).

Editing a BASIC Program

lf compiler diagnostics have occurred these must be corrected before the
program can be executed. The BASIC system provides commands to list,
delete, change and renumber the program lines.

A line may be changed simply by typing a new line with identical line
number. Then the new line will replace the old one.

A line may also be changed by first typing

EDlT <line number>

and then applying the line edit control characters to produce a modified line.
The control characters are described in Appendix C.3.

ND-60.07l.Ol
Revision D

Example:

10 LET A =,l
M“ERROR IN LINE TO“, ”S‘r“i\l”i”A>< ERROR“
ED 10

Now if ZC followed by = is typed this will result in the printout:

lO LET A =

Then if a SC is typed in order to remove the comma, DC will copy the
rest of the old line to the new one.

A line may be listed on terminal by typing

LIST <Iine number>

Now this line may be modified without using the EDIT command. More
than one line may be specified, each line number separated by comma.
The word LIST by itself will cause the listing of the entire program.

LIST followed by two line numbers separated by a dash (-I will list the
lines between and including the specified ones.

A line is removed from the program by typing

DELETE <Iine number>

More than one line may be specified, separated by commas. Two line num-
bers separated by a dash I—) will delete the lines between and including
the lines specified.

The RENUIVIBER command is used to change statement line numbers and
the references to these lines. Line numbers in comments are not changed.

A program is renumbered by typing

RENUMBER <new initial line number> [<increment>]

First parameter indicates the new initial line number and the second (if
any) indicates the increment in the line numbers of two successive state-
ments. If no parameters are specified the first statement number will be
100 and the increment will be 10.

ND-60.071 .01

Examples:

BEN 10, 2
RENU 1000
RENUlVl

Naming of Programs

Program names are used as a header with listings and runs if the commands
RUNH or LlSTH are used (H = header).

The program name should start with a letter and have no more than 32
characters. Quotes, spaces and other non-printable characters should not
be used.

If you use OLD, the file name is used as program name.

You may set a program name by typing the command NEW followed by
the new program name.

NEW SQUARES

will set SQUARES as the current program name.

NEW without any name will just initialize the system.

ND-60.071.01

3.2

3.2.1

SA VING AND RETRIEV/NG BASIC PROGRAMS

When you are working on a program and want to continue later, you should
save the program by using the SAVE command with the appropriate mass
storage file name. A hard copy is produced using Teletype or line printer,
a tape may be punched using paper punch, etc.

A saved program is entered later using OLD (or COMPILE) followed by
the appropriate file name.

The SA VE Command

SAVE <file name>

The SAVE command will save a BASIC program. The appropriate names
for the SAVE command are as follows:

TERMINAL designates the user terminal
F—P designates the fast punch
L—P designates the line printer

With other file names the system expects that you want the program saved
on a mass storage file.

SAVE SQUARE

will save the current program on the mass memory file named SQUARE.
If you have no file with such a name, the file must be created. To do this
you should enclose the file name in quotes.

SAVE “SQUARE"

will create the file SQUARE and save the current program onto this file.

Program names may be used as file names, with the exception of the names
of the standard peripherals. Further information on file naming is found in
the documentation of the NORD-lO File System.

ND-60.071.01

3.3

3.3.1

3.3.2

3.3.3

EXECUT/NG YOUR PROGRAM

When you think your program or part of it, is finished, you can try to run
it using the command RUN or RUNH.

Before execution starts, the system will reset variable values and check the
program. If no errors are found, program execution is started. Execution
will continue until either STOP or an END statement is found or until fatal
error condition occurs. Then execution is terminated, and control is passed
to the BASIC command processor.

If 3 STOP statement is encountered, program execution is halted and you
may then examine and change your program. Execution is continued by
giving the command CONTINUE.

The RUN Command

This command is used to initiate execution. You may type RUNH which
means the computer should start by printing the program name as identi-
fication. Execution starts with the first line.

Before program execution is started, the system will reset variables and
check the program for mismatching FOR — NEXT, errors with multiline
DEF FN functions, etc.

String identifiers are regarded as empty.

Terminating Execution

Program execution is continued until an END statement is reached, an
error is found or you break execution by typing the break character (ESC).

Possibly your program will produce erroneous results or it may be executing
some endless loops. You can then force execution to be terminated by dep-
ressing the ESC-key.

When you press the ESC push button the SINTRAN Ill command processor
is entered and you may restart BASIC by typing CONTINUE. Restarting after
an ESC will usually be successful, but may fail under some circumstances.

Immediate Mode Execution

Most statements permitted in the NORD BASIC System may be used without
line numbers preceding them. In this form they are treated as immediate
commands and executed directly rather than being appended to a program.

ND-60.07I.O1
Revision C

Thus typing

PRINT 0.5, SIN (0.5)

will result in the output

0.5 4.79426E~I01

Immediate mode is especially powerful while debugging programs by printing
the values of certain identifies and/or assigning to them new values. Also,
some small loops may be executed directly in immediate mode with the
aid of a multiple statement line (Sections 4.14.1 and 4.14.2).

Example 1:

An infinite loop printing the square root of a specified argument:

REPEAT@: INPUT X: PRINT SQR (X)
2’16
4
?

etc.

Note: This program can be terminated only by depressing the ESC—key.

Example 2:

Printing a table of 2X while X ranges from 1 to 10.

REPEAT 10: PRINT "2**";@,2**@
2**1 2
2**2 4
2**3 8
2**4 16
2**5 32
2**6 64
2**7 128
2**8 256
2**9 512
2**10 1024

READY

Certain statements have no meaning when presented in immediate mode,
thus the following ones are not permitted:

ND-60.071.01

3.3.4

3-7

DEF FNEND
DATA READ
FOR NEXT
PROGRAM SUBROUTINE FUNCTION
ON ERROR RETURN END

Upon these statement types the system will react with the message:

ILL. IN IMMEDIATE MODE

Setting Break Points

The common debugging method of BASIC programs is to Insert STOP
statement at certain places (traps). If any of these STOPS are executed
the variable values may tell the programmer why the program has come
into this state.

Nevertheless, insertions and removals of STOP statements may in some
cases represent a cumbersome way of debugging.

NORD-iO BASIC offers an option of setting break points at a specified state—
ment. When a break point is reached the execution will halt and the control
is transferred to the BASIC command processor.

This break is performed before the specified statement is executed. In
this state a new break may be specified and the execution continues by
using the CONTINUE command. The use of break points combined with
immediate mode provides a powerful and simple debugging aid. A break
point is reset when it is executed.

A break point is specified by

BREAK <Iine number>

Example of a program execution with breaks:

10 LETA=1
20 LETA= 2
30 END

BREAK IO
RUN
BREAK IN LINE 10
PRINT A
O

ND~60.07l .01
Revision C

3—8

READY
BREAK 20
CONTINUE
BREAK IN LINE 20
PRINT A
1

READY
CONTINUE

READY
PRINT A
2

READY

,N‘DJB‘OJO71.O‘I

3.4 LEAVING THE BASIC SYSTEM

When you have finished programming and saved what programs you would
like to use later, you should type BYE. This command wiH enter the oper-
ating system. The command EXIT is equivalent to BYE.

ND—60.071.01

4.1

4.1.1

MORE ABOUT BASIC

ELEMENTS OF BASIC

Constants

Five types of constants are used in BASIC: integer, Double Integer, Real,
Octal and String. The type of a constant is determined by its form. (if the
DE FAU LT-INTEGE R command is used, see also Section 8.2.) The computer
word structure for each type is given in Appendix C.5.

integer

An integer constant consists of up to five decimal digits ended with % in
the range of —-2 5 < n < 215 ~1. An integer constant occupies one word
of main memory.

W

63% -—3241 % 896%
247% 27963% —-4343%

Double Integer

A double inte1ger constant consists of up to 10 digits ended with % in the
range of —23 = ~2147483648 < n < 2147483647 = 231 —l. A double
integer constant occupies two consecutive storage locations if it is outside
the range of an integer constant, or forced to double integer by leading zeros:

Example: ‘

~444444% 999000000% _ 0000000%

Real.

Real constants are expressed with or without a decimal point or with a
fraction and an exponent representing a power of ten. The form of real
constants are:

.nE .nEis n n.Eis
n.n n.nEis .n n

n is the base, 3 is the exponent to the base 10. The plus sign may be omit-
ted for a positive s.

A real constant occupies three (optionally two) consecutive main storage
locations.

N D 50371 .01
Revision C

4.1.2

Examples:

501436 42 104
3.1415768 «314. .013469
.31416E1 3.14E06 —31.415E-1

Octal

An octal constant is denoted by one to eleven octal digits post-fixed by
the letter B. If more than eleven digits are specified,on|y the last eleven
are significant. Octal constants are single or double integers; double if the
number does not fit into one word, or forced to by leading zeros. '

w

1234568 ~78 1777777778

Note: Octal constants may turn negative if the sign bit is set 1777778 is
equal to +18.

String

A string constant consists of any sequence of A80” characters enclosed in
quotation marks. The quotation mark may not be part of the constant since
it is used to define the beginning and the end of the string. The size of a
string constant is limited by the line length.

Examples:

"OLA“ ”. . .” ”YOU ARE MY SWEETHEART!”

A string constant occupies (n +1)/2 + 3 memory locations. n is the number
of characters in the string. '

Variables

Variable names are alphanumeric identifiers that represent specific storage
locations.

BASIC recognizes simple and subscripted variable names. Default variable
type is real unless the DE FAULT—INTEGER command is used (Section 8.2). The type of l
the variable may be defined in a type declaration statement (Section 4.1.3).
Otherwise, the type is determined by the postfixed letter(s) of the variable
name,

ND‘60.071.01
Revison C

A variable name is a single letter, or a letter followed by a digit, or a letter
followed by up to six digits and/or letters. if the name exceeds seven charac-
ters, the seven left-most characters will comprise the variable name but the
last characterls) will still determine the type of the variable. When using a
seven character variable name, the type declaration character is necessary
only in the first occurrence of the variable.

Mew

A variable name followed by one % character.

Examples:

l%, i1%, i123%, NUMBER%

Double integer

A variable name followed by two % characters.

Examples:

DB%%, DBl%%, TALLY%%

Baal

A variable name.

Examples:

A, A1, A12345, ABCDEFG

§t[i_ng

A variable name followed by one $ character.

Examples:

A$, A123$, FiELD$, NAME$

Subscripted integer

A variable name followed by one % character, followed by one or two sub-
scripts within parenthesis.

Examples:

POWER%(5), |%(X%, Y%), ll%(X, 5%)

ND-60.07i.01
Revision C

4.1.3

Su bscripted Double Inteqer

A variable name followed by two % characters, followed by one or two sub-
scripts within parenthesis.

Examples:

DB%%(5), TALLY%%(X,Y)

Subscripted Real

A variable name followed by one or two subscripts within parenthesis.

Example:

A(5), ATOM (X, Y)

Su bscripted String

A variable name followed by one $ character, followed by one or two sub-
scripts within parenthesis.

Examples:

A$(5), NAMES%(X, Y)

Type Declaration Statements

Statements of this kind are called declarative or non-executable and must
be the first statements entered in a BASIC program. Thus, the compiler
is provided with information abut the structure of variable or function
identifiers. Such declarations overrule the type implied by the identifier
name.

Integer

INTEGER <Iist of variables>

10 INTEGER I, II, |123, NUMBER

declares the four identifiers to be of integer type, i.e., one word element.

ND-60.071.01
Revison C

4—5

Double integer

DOUBLE <list of variables>

20 DOUBLE DB, DBi, TALLY

declares the three identifiers to be of double integer type, i.e., two words
per element.

Real

REAL <list of variables>
30 REAL A, B, C

declares the three identifiers to be of real type.

ND-60.071 .01
Revison C

4.2

4.2.1

4.2.2

4—6

ARI THMETIC EXPRESSIONS

String expressions will be discussed later.

BASIC will admit general arithmetic expressions in most connections where
numbers are allowed. Exceptions are: line numbers must be positive integers.
Numbers are used in data statements and with input.

An arithmetic expression is a constant, variable (simple or subscripted), an
evaluated function, or any combination of these separated by arithmetic
operators, commas or parentheses to form a meaningful mathematical ex-
pression.

Arithmetic Symbols or Operators

in the examples in this chapter, arithmetic expressions are used and examples
of the way they are evaluated by the computer are given. Five symbols repre-
senting arithmetic operations can be used in expressions. These symbols are
listed in the table below: the first four are used in the programs in this
chapter.

84mm Expression Meaning

*+ A + 8 Addition: add B to A

—~ A — B Subtraction: subtract B from A

* A * B Multiplication: multiply A by B

/ A/ 8 Division: divide A by B

** or T A T B Exponentiation: raise A to
power B (on many terminals
the symbol for exponentiation
is A.)

—~ —A Unary minus: a minus which
starts an expression or which
follows immediately after =
or (

Elements

The elements of arithmetic expressions are formed as follows:

A primary is an arithmetic expression in parenthesis, a constant (positive
or zero), variable, array element or function reference:

ND-60.071.01

4.2.3

4.2.4

(A + B) (—A * B) ((A'**B)~(A*B))
124 l2.4E~2 0%
X A(l, J) SlN(V)

A factor is a primary or a primary H a primary:

(A+ B) (A+B)**X l**2

A term is a factor, a term/factor, or a term’x‘term:

A**B (A**B)/X ((A**B)/X)*Sll\l(V)

A signed term is immediately preceded by a plus or minus:

—A**B ——X —(—A*B)

A simple arithmetic expression is a term, or two simple arithmetic expressions
separated by plus or minus:

(A + B)+X% X/2.314 Y/SlN(X)—A**B

An arithmetic expression is a simple arithmetic expression, or a signed term
plus or minus a simple arithmetic expression:

—-X/Y l**2 + K% ~A**B—X/Y

Rules for Forming Expressions

Two arithmetic operators may not be adjacent to each other, X + —Y is
an illegal expression. The subtraction operator may not be used as a sign
of negation. ——X implies O—X and must be enclosed in parentheses when
preceded by another operator: X + (~Y) is a legal expression.

Parentheses may be used to indicate grouping as in ordinary mathematical
notation but they may not be used to indicate multiplication: (X) (Y) does
not imply (X) * (Y) nor does juxtaposition imply multiplication: XY does
not imply X * Y. Real and integer quantities may be mixed in the same
expression.

Order of Evaluation

When the hierarchy of operations in an expression is not completely specified
by parentheses, the operations are performed in the following order:

ND-60.07l .01
Revision C

13—8

f or M exponentiation performed first

/ division M
‘

~X— multiplication grer'f’r.>rined next. M,

+ addition
_. subtraction _/ perrormeo last

Within a sequence of consecutive multiplications and/or divisions or
additions and/or subtractions,when the order is not . .iieitly indicated
by parentheses, expressions are evaluated from left to right.

Whenever ambiguity is possible in the evaluation of an expression, paren—
theses should be used. The ambiguous expression A‘ *B‘X’f'C can “be clarified
as (A'**8)‘**C or A**(B**C) only by parentheses.

The way an expression is written determines how the computer will evaluate it.

i. TOT 2+1

The computer evaluates this expression as 100 + l = 101. lt will
perform the exponentiation before the addition.

10 f 2/2*3

The value given for this expression is TOO / 2 * 3 = 50 * 3 = 150.
The computer performs the exponentiation first. When multi-
plication and division appear together, the left-most operation
is performed first. Thus, in this example, the division is performed
second and finally the multiplication.

5+2*3—l

The value of this expression is 5 + 6 _ i : l’l —— 1 = 10. The com-
puter performs the multiplication first. As with multiplication and
division, the positions of the + and ~—- symbols determine which
operation is performed first. Addition and subtraction are per-
formed from left to right. So, in this example, the addition is per-
formed second and the subtraction last.

32/4f2+3*3—-i

This expression uses all the available symbols for arithmetic oper—
ations and the steps by which the computer evaluates it are as
follows. First exponentiation is performed and the expression is
reduced to 32/ 16 + 3 * 3 ~ 1. Then division and multiplica~
tion are performed from left to right and the simplified formula
is 2 + 9 — 1. Finally, addition and subtraction are performed from
left to right and the value of the formula is seen to be 10.

ND-60.07i .01
Revision D

Theplacement of parentheses in an expression can alter the sequence in which
the operations are performed. Two of the preceding examples have been
rewritten to illustrate this.

1. 10ll2+1l

The computer evaluates this expression as 10 T 3 = 1000. The
expression inside the parentheses is evaluated first and then the expon-
entation is performed.

2. ((32/4)T2+3)*(3——ll

This expression will be evaluated as follows: (8 t 2 + 3) * (3 — 1)
= 67*2 = 134. The expression inside the ”innermost” parentheses is
evaluated first. Within parentheses the described sequence of per~
forming the operations applies.

Since two BASIC arithmetic operators may not be adjacent, parentheses are
needed in some expressions containing negative numbers. For example, ”X
raised to the —2 power“ should be written X T (—2), and “—3 subtracted from
2” should be written 2 — (~3).

in summary, to insure the proper interpretation of expressions you should
remember that the computer performs exponentiation first, multiplication
and division second and addition and subtraction last unless otherwise
indicated by placement of parentheses. When in doubt about how an expres-
sion will be evaluated, use parentheses.

ND-60.071.0l
Revision C

4.3

4—10

MIXED MODE ARITHMET/C EXPRESS/0N8

Arithmetic expressions can contain mixed types of constants and variables.
Mixed mode arithmetic is often accomplished through the special library
conversion subroutines which are a part of BASIC run-time system.

The order of dominance of the operand types within an expression is real-double
integer-integer.

In mixed mode arithmetic, the mode used to evaluate any portion of an
expression is determined by the dominant type so far encountered within
the expression and the normal hierarchy of arithmetic operations: integer
mode will be used when an integer type is first encountered and will be con-
verted to real mode when a real type is encountered.

The following table indicates how the mode is determined from the possible
combinations of variables.

+ —— * / lnteger Double Real
lnteger

lnteger lnteger Double Real
lnteger

Double Double Double
lnteger lnteger Integer Real

Real Real Real Real

Examples:

1. Given A, B type real: I, J type integer. The mode of evaluating
the expression (A * B — l + J) will be real because the dominant
operand is type real. It is evaluated:

A * B —> R1 real

Convert l to real

R1 —— | —> R2 real

Convert J to real

R2 + J ~> R3 real

ND¢60.071.01

Theplacement of parentheses in an expression can alter the sequence in which
the operations are performed. Two of the preceding examples have been
rewritten to illustrate this.

1. 10l(2+1)

The computer evaluates this expression as 10 t 3 = 1000. The
expression inside the parentheses is evaluated first and then the expon-
entation is performed.

2. ll32/4)l2+3)*(3—l)

This expression will be evaluated as follows: (8 t 2 + 3) * (3 — 1)
= 67*2 = 134. The expression inside the ”innermost” parentheses is
evaluated first. Within parentheses the described sequence of per-
forming the operations applies.

Since two BASIC arithmetic operators may not be adjacent, parentheses are
needed in some expressions containing negative numbers. For example, “X
raised to the —2 power" should be written X t (~2), and "—3 subtracted from
2" should be written 2 —- (—3).

in summary, to insure the proper interpretation of expressions you should
remember that the computer performs exponentiation first, multiplication
and division second and addition and subtraction last unless otherwise
indicated by placement of parentheses. When in doubt about how an expres-
sion will be evaluated, use parentheses.

ND»60.071.01
Revision C

4.3

4—40

MIXED MODE ARITHMET/C EXPRESSIONS

Arithmetic expressions can contain mixed types of constants and variables.
Mixed mode arithmetic is often accomplished through the special library
conversion subroutines which are a part of BASIC run-time system.

The order of dominance of the operand types within an expression is real—double
integer-integer.

In mixed mode arithmetic, the mode used to evaluate any portion of an
expression is determined by the dominant type so far encountered within
the expression and the normal hierarchy of arithmetic operations: integer
mode will be used when an integer type is first encountered and will be con-
verted to real mode when a real type is encountered.

The following table indicates how the mode is determined from the possible
combinations of variables.

+ — * / lnteger Double Real
lnteger

lnteger lnteger Double Real
lnteger

Double Double Double
I nteger l nteger lnteger Real

Real Real Real Real

Examples:

1. Given A, B type real: l, J type integer. The mode of evaluating
the expression (A * B — l + J) will be real because the dominant
operand is type real. lt is evaluated:

A * B —+ R1 real

Convert l to real

R1 — | —> R2 real

Convert J to real

R2 + J —> R3 real

ND-60.071.0i

Rules:

m
w

<
A

>

4—11

The use of parentheses can change the evaluation. A, B, l, J are
defined as above. (A * B —— (l — J)) is evaluated:

A * B —> R1 real

I - J —> R2 integer

Convert R2 to real

R1 -— R2 —> R3 real

The order of the elements in an expression can change the eval-
uation A, B, l, J are defined as above. The expression (J — I + A
+ B) is evaluated:

J — | —> R1 integer

Convert R1 to real

R1 + A —> R2 real

R2 + B -> R3 real

The order of dominance of the standard operand types within
an expression from highest to lowest is:

REAL
DOUBLE lNTEGER
INTEGER

The mode of an evaluated arithmetic expression is referred to
by the name of the dominant operand type.

in expressions of the form A**B the following rules apply:

B may be negative when the form is A**(——B).

For the standard types the mode/type relationships are:

TYPE B

Integer Double Real
lnteger

Integer Integer illegal Real
Mode of

Double Double Illegal 'nega! A ** B

l nteger Integer r

Real Real Illegal Real
N D—60.071.01
Revision C

4.3.1

4. 3.2

4—12

More About LET

[LET] <variable> [=<variable>] = <expression>

in the LET statement, values can be assigned to variables, as with the READ
and INPUT statements (eg., 100 LET X = 2). However, the LET statement
is also a command to the computer to perform certain computations and
to assign the answer to a certain variable (eg., 110 LET X = X + 1).

More generally, several variables may be assigned the same value by a single
LET statement. Two examples follow:

100 LETX=Y3= 1E2
110LETAlX)=X=X+l

Note that in line 110 the index is computed first, i.e., the old value of X
is used for the subscript of A. That is, after execution of line 110, AHOO)
and X are equal to 107 and N101) remains unchanged. Note also that numeric
constants may be represented in scientific notation, as well as in integer or
fractional notation, anywhere in the program.

The fact that arithmetic assignment statements appear very frequently in
programs has led to the convenience of omitting the word LET from the
LET statement. This means that we can write an assignment like this:

100 X = X + 1
110 X(l) = X(2) = Y + 3

Mixed Mode and LET Statements

The general form of the arithmetic assignment statement is

v = e

v is an identifier, e is the evaluated arithmetic expression.

Although the type of an evaluated expression is determined by the type
of the dominant operand, this does not restrict the types that the identifier
v may assume.

ND—60.071.0l

4—13

Rules for Assignment for e to v:

Iiv type: e type: Assignment:

Integer Integer Assign

Integer Double Integer Convert double integer to
integer and assign

Integer Real Fix to integer and assign

Double Integer Integer Convert integer to double
integer and assign

Double Integer Double Integer Assign

Double Integer Real Fix to double integer and
assign

Real Integer Float and assign

Real Double Integer Float and assign

Real Real Assign

Examgles: (Given A type real, I, J type integer)

l. A = | + J is evaluated as:

l+J~>R1 integer

Convert R1 to real

Store R1 in A

2. I = J + A is evaluated as:

Convert J to real

J+A~>R1 real

Convert R1 to integer

Store R1 in I

ND~60.07I .01

4.4

4.4.1

4—14

ARRA Y8

As we have seen, a subscripted variable may have one or two subscripts.
If the subscript has more than two dimensions, an error message is given.
Any two dimensional array may also be referred to as if it were a onedimensional.
Subscripts may be constants, variables or expressions of any numeric type,
however, non-integer values will delay the execution as all subscripts are
evaluated in the specified data type and then converted to integer. A subscripted
variable references a single element in an array, the subscripts describe the relative
location within the array.

An array is a block of successive memory locations. for storage of variables.
In (ertain contexts, the entire array, or sometimes element zero, may be
referred to by the array name without subscripts. Each element of an array
is referenced separately by the array name plus the subscript notation.

The type of array is determined by the array name or the type declara-
tion. The number of dimensions in an array subscript indicates the dimen-
sion of the array, the magnitude of each dimension indicates the maximum
value that the subscript may take. Program execution errors may result if
subscripts are larger than the dimensions initially declared for the array.

The amount of memory allocated to an array depends on the array type
and dimensions.

BASIC does not necessarily assign sequential storage to two or more arrays.

Array Structure

Elements of arrays are stored by columns in ascending order of storage
location. The ordering of elements in an array follows the rule that the
first subscript (row) varies most rapidly and the last subscript (column)
varies least rapidly. The integer array declared as A%(2, 2), will normally
be looked upon as a table consisting of rows (9) and columns (i), like
this:

A00 A01 A02

A10 A11 A12

A20 A21 A22

The layout in memory will be as follows.

ND-60.071.0l
Revision C

4-15

A% —> A00 . (Memory location n)

A10 n + 1

A20 n + 2

A01 n + 3

A11 ” t 4
A21 n + 5

A02 n + 6

A12 n + 7

A22 n + 8

The location of an array element with respect to the first element is a function
of the maximum array dimensions and the type of the array. Given DllVl A%
(L, M), the location of A% (l, J) with respect to the first element of array A%
is given by:

A%+[l+(J*lL+illl *E

The quantity in brackets is the subscript expression. E is the element length
in terms of the number of computer words needed for each element of the
array. In our example, where the array (A%) is of integer type E is equal to
1. For string arrays E will always be equal to 2, because such arrays, in fact,
consist of pointers to the string elements, and the length of each.

ND-60.07i.01

4.5 FUNCTIONS

With the BASIC statements previously describe/cl, programs can be written
which compute values of many of the commonly used elementary functions.
For example, the following portion of a BASIC program can be used to find
the absolute value of a number N and store it in A.

220 REM SIGNED NUMBER IN N
230 IF N < 0 THEN 260
240 LET A = N
250 GO TO 270
260 LET A = (—N)
270 REM POSITIVE NUMBER IN A

Because the need for the absolute value of a number arises so frequently
in programming, BASIC provides a simpler way of computing this function.
Certain elementary function names (such as ABS) may appear in BASIC
programs anywhere a number may appear. The function name is followed
by any arithmetic expression enclosed in parenthesis. For example, the
absolute value of a number may alternatively be calculated with the follow—
ing portion of a BASIC program:

220 REM SIGNED NUMBER IN N
230 LET A = ABS (N)
240 REM POSITIVE NUMBER IN A

BASIC computes the value of these functions accurately, it does not store
tables of elementary functions, since it can compute a value for a function
in a few thousandths of a second. If a number which cannot be evaluated
is used with a function, a message is printed on the terminal. For example,
if a program attempts to take the square root of a negative number.

Most of the function names are self-explanatory. The range of the arctangent
function ATN is from —pi/2 to +pi/2. The function INT(X) delivers the largest
integer number not greater than X, for example:

INT (~28) = ——3
INT (2.8) : 2
INT (—.OOOI) = —I

The INT function can be used to good advantage to round numbers:

100 LET A = INT (A + .5)
HO LET B = INT (100* B + .5)/IOO

Statement 100 rounds A to the nearest integer. Line 110 rounds B to the
nearest hundreth.

ND- 60.07101
Revision D

4.5.1

Function calls may be nested. The following program prints the sine of
the angle whose arctangent is T.

10 lNPUTT
20 PRINT SlN (TAN(T))
3O END

Function C/assif/cat/on

Functions in ND BASlC are divided into three main groups:

1. Mathematical functions

2. String functions

3. Miscellaneous functions

These three types of functions can be defined for a BASIC program in
several ways:

1. Built‘in library functions

Functions with restricted names; most commonly used in programs.

2. Extended library functions:

Existing functions which may be supplied by scanning a library
file.

3. User internal functions:

Any desirable function defined by the user through a DEF
statement. The name must start with FN.

4. User external fu notions:

Any desirable function introduced in a BASlC program through
an EXTERNAL statement. The function must be present in
the NORD standard object form (BRF); the source code, how
ever, may be BASlC, STANDARD FORTRAN, NPL or MAC
assembly.

When a function reference appears in a BASIC program, the compiler gener-
ates a calling sequence within the object program.

All existing functions are listed with a short description in Appendix 8.3.
The way of defining and calling user functions are described later.

ND—60.071.0i
Revision D

4.6

4.6.1

REPRESENTA T/O/VS OF STRINGS

The BASlC programs described thus tar have all dealt with numbers. ln
the statement

iOO LET A = B + 3.1415926

the sequence 3.’i435926 is a representation ot a number; the character 8
is the name of a number which can vary as the program is executed by
the computer. The character A is the name of a nu mher winch may be
Changed by the execution of that statement. Although computers are
excellent machines for performing high—speed arithmetic, some of their
most important uses are in the manipulation of entities which do not
represent numbers. A string is such an entity.

A string is a sequence of characters; these include letters, digits, blanks,
and other special characters such as those which appear on the terminal.
One way of representing a string in BASIC is to enclose it in quotation
marks. Such string constants have already been introduced in lNPUT and
PRlNT statements. For example, the string in

100 PRlNT ”NO UNIQUE SOLUTlON”

is a string constant just as the number 3.1415926 in the preceding example
is a numeric constant.

Just as BASiC has names for numbers, it also has names for strings.
A name of a simple string is formed exactly as a name for a number,
except that it includes a trailing dollar sign (‘3). The string A$ is entirely
distinct from the number A and both names can appear in the same BASlC
program.

Assigning Values t0 Strings and String Comparisons

A string variable can take on a string value through a READ statement.
The following BASlC program reads three strings and prints them.

10 READ As, as, cs
20 PRlNT cs,- as; A$
30 DATA "lNG", ”SHAR“, ”TllVlE- "
4o END

Note that the items in the DATA statement are representations of strings,
not numbers. This program prints the word TllVlESHARlNG on the
terminal. Since the quotation marks are used to delimit the strings, it is
not possible to create a string containing a quotation mark in this manner.

ND—60.07l.01

4.6.2

4-19

Strings can also be assigned values through the use of LET statements.
For example:

10 LET A$ = ”H2804”
20 LET 83 = A$
30 PRINT B$
4O END

will print the string H2804 on the terminal. It is even possible to omit
the word LET as with arithmetic assignment statements.

Another way that a string can take on a value is by having the program
request the input of a string from the terminal through an INPUT state-
ment. For example:

10 PRINT “A MIXTURE OF FUEL AND OXIDIZER WHICH“
20 PRINT “BURNS SPONTANEOUSLY IS TERMED”;
30 INPUT A$
40 IF A$ = ”HYPERGOLIC" THEN 7O
50 PRINT ”WRONG”
60 GO TO 80
70 PRINT ”RIGHT“
80 END

After printing the textual message the program will print a question mark.
Suppose the user enters the word “HYPERVENTILATED” in response.
Statement 40 is a string conditional statement. If the string A$ is the same
as the string ”HYPERGOLIC”, then statement 70 will be executed next.
Since the user did not enter ”HYPERGOLIC” he has WRONG printed
on his terminal.

Anv of therelational cperators except approximately equal (described in
Section 2.2.3) may be used in an IF —~ THEN statement to compare strings.
The relational operator ”<" is interpreted as meaning “earlier in alphabetical
order than" and the relational operators are defined appropriately. The
ordering of characters is arbitrarily defined by the ASCII code which is
explained in Appendix 04. In any string comparison the strings are assu,,imed
to be of the same length, i.e., trailing blanks are simulated.

Relaxation of Requirement for Quotation Marks

Strings which are entered in response to an INPUT statement need not be
bracketed by quotation marks as long as the items being entered do not
contain commas or do not begin with blanks.

ND—60.07I.OI
Revision D

4.6.3

4.6.4

multiple items entered in response to as:
than one variable in the input list. in additior’i, last string on a line

of input being entered in a list via a MA"? ii... a, , ement ends with an
ampersand l&), the string must be enclosed in intonation marks.

A string in a DATA statement must be enclosed in quotation marks if it

begins with a blank, a digit, a plus sign, a minus sis-w, or a decimal point,
or it it contains a comma or an apostrophe. Arnpe t, V‘ however, do not

have the special significance in DATA statements tl‘iat do in iten‘ts
being entered in response to INPUT statements. it strings are enclosed in
quotation marks, the quotation marks are not considered to be part of the
string and are ignored.

at.

More About RESET

In DATA statements, numbers and strings may be intermixed. When

a numeric variable appears in a READ staten‘ient the next number appear-

ing in the DATA statements is assigned to that numeric variable; when a
string appears in a READ statement, the next string appearing in DATA

statements is assigned to that string variable. Thus, numeric and string

data are managed independently in BASIC. A RESET statement will

reset pointers for both types of data so that subsequent READ statements

will reread the data. A RESET ’ statement will reset only the pointer for
string data.

The following program illustrates the use at RESET.

TOO READ A55, A, B$
110 PRINT “FIRST TIME“, A$, A, 833
120 DATA 1, ”ZAPPLES”, PEARS
130 RESET
140 READ C$
150 PRINT "SECOND TllVlE”, C33
160 END

Running this program produces the following input:

FIRST TIME 2 APPLES l PEARS
SECOND TIME 2 APPLES

String Arrays

BASIC can also operate on multiple strings arranged as one or two dimensional
arrays. These entities are denoted by a string identitier, followed by one or
two subscripts enclosed in parenthesis. Thus A$(3l denotes the third string
in a list of string A3 Similarly, 853(4, 5) denotes a string in the 4th row
and 5th column of a table of strings BS,

ND-60.07I .O‘l
Revision C

4.6.5

4.6.6

4.6.7

4—21

A DIM statement such as

100 DIM A$ (25)

is required if any subscript will exceed 10. lndividual entries of string ar-
rays can be assigned in LET statements as in the following example.

220 LET T$= A$ (J +1)
230 LET A$ (J +1)= A$ (J)

The individual entries of an array have no limit regarding the string length.

An Operator for Combining Strings

One operation has been defined as working specifically on strings. This
is concatenation, denoted by the ampersand (&). Concatention puts one
string directly after another, without any intervening characters.

Example:

10 READ A$, B$, C$
20 PRINT C$ 81 B$ & A$
3O DATA ”lNG”, ”SHAR“, “TlME "
4O END

Running this program causes ”TIMESHARING“ to appear on the terminal.
It is possible to use string constants in quotation marks in place of string
variables with the & operator, if desired.

50 PRINT A$ & ” ” & B$

will print A$ and B$ with a blank between them.

String Expressions

In the examples above we have seen examples of string expressions which
may consist 'of a constant, variable (simple or subscripted), an evaluated
function, or any combination of these separated by the & operator, commas
or parentheses.

Functions Regarding Strings

Like the mathematical functions, BASlC provides various functions for use
with strings. These functions allow the program to access part of a string,
determine the number of characters in a string, generate a character string
corresponding to a given number or vice versa, search for a substring withina larger string and perform other useful operations.

ND-60.071.01
Revision C

4—22

Converting numbers to strings or vice versa is, in fact, not performed by
functions at all, but handled by using the different input/output state-
ments in BASIC. This is described in Section 5.2.7, Simulating Sequential
Files.

The four most elementary functions are described below. Other existing string
functions are described in Appendix 83. User defined functions will be
described later.

The ASC Function

It is awkward to memorize the correspondence between numbers and graphics
defined by the ASC“ code. Rather than being forced to remember that A
corresponds to 65, the programmer can make use of the ASC function and
write ASC (“A").

The function will take a string as a argument and deliver a number as a
result. Only the first character of the string is used.

Example:

10 PRINT ASC ("A")

The LEN Function

The LEN function takes a string as an argument and returns the number of
characters as a result.

Example:

10 LET DIFF % = LEN (X$l —- LEN (Y$)

The CH R§ Functign

CH R$ (Z) delivers a one-character string which corresponds to the num—
eric value of the expression 2. According to ASCll code as outlined in
Section 0.4, the maximum value of Z is normally 127. However, as far
as printing graphics is concerned, characters are equivalent modulo 128;
that is, the remainder when the number is divided by 128 is used. For
example, 511 = 127 modulo 128. So CHR$<511l = CHR$(127). A single
line statement which will print a quotation mark follows:

100 PRINT CHR$ (428)

ND-fiflfl? 1 .01

4—23

The SEG$ Function

SEG$ (A33, X, Y) takes a string and two expressions as arguments and returns
a substring as a result. The substring starts at character number X in the
input string and ends at character number Y.

Emma:

50 LET NEW$ = SEG$ (A$, 3, 3) & 833

ND-60.071.01

4.7

4.7.1

4.7.2

FOR/WA TT/NG OUTPUT

When you write BASlC programs to prepare reports, graphs, tables and
other formatted (or specially arranged) output, it is important that you
will be able to control output format very closely. This section describes
statements which permit construction of neatly alégned tables, labels and
so on.

Exclamation Marks in PR/lVT Lists

The exclamation mark (i) will cause the terminal print head to move to
the next line, i.e., carriage return and line feed is printed. This will be
repeated for each exclamation mark found as in the example:

l0 PRlNT l, 1, ll, 2
20 END
RUN

Commas in PRINT Lists

The terminal line is considered to be divided into zones of l5 characters
each. The default number of zones is 5 as the standard margin (see Section
4.7.7) is set to 75. Each line begins with column zero.When multiple items
appear in a PRlNT list separated by commas, the first item is printed start-
ing at the beginning of the first zone (column 0), the second at the next
zone (column 15), etc. The comma can be considered to cause the ter-
minal print head to space up the next zone preparatory to printing. If the
last zone has just been filled, the terminal print head will move to the
first print zone of the next line. Thus, the statement

100 PRINT , , , , “COLGO”

will print the five character ”COLBO” beginning at column 60, the begin-
ning of the fifth zone.

lf a PRlNT list ends in a comma, the terminal print head simple spaces
up to the next 15 character zone and does not move to the beginning
of a new line in preparation for the next PRlNT statement unless the
last zone has been filled.

For example, the program:

100 FORl=lTOlS
llO PRlNT l,
120 NEXT l
130 END

ND—60.07l.01
Revision D

4.7.3

6 7 8 9 10
11 12 13 14 15

READY

Empty PR WT Statements

A PRINT statement which does not end in any special punctuation mark,
such as a comma, will print the information in the PRlNT list and the ter-
minal will be prepared so that further output will begin at the beginning
of the next line. Thus, an empty PRINT statement such as

100 PRINT

will simple advance the paper one line, leaving a blank line if the terminal
print head is already at the beginning of a line. It can be used to cause
the completion of a partially filled line as illustrated in the following
program.

100FORI =1TO4
11OFORJ=1TOI
120 LET Bil, J) =l
130 PRINTB (I, J),
140 NEXTJ
150 PRINT
160 NEXTl
170 END

This program will print 8(1,1) on the first line. Without line 150, the terminal
print head would then go on printing 8 (2, 1), B (2,2) on the same line.
Line 150 directs the terminal print head to start at the beginning of a new
line after printing the highest J value for a given l. Thus, items are printed
in a triangular format. Output from the preceding program follows:

1
2 2
3 3 3
4 4 4 4

READY

ND- 60.071.01
Revision D

4.7.4

4.7.5

Packed PRINT Lists

Using the comma to separate items in PRENT lists, you will find that it
is not possible to print more than five numbers or strings on one line. A
semicolon may be used to print items closely packed on a line. For exam—
ple, the program

100FORl=1T015
110 PRINT 1;
120 NEXTl
130 END

will cause the following output to be printed.

123456789101312131415

READY

To determine what will be printed using the semicolon separator, it is neces—
sary to know how strings and numbers are printed. in general, when you
use the semicolon to format output, no blanks will be output other
than those automatically output when a number is printed as described in
the following section.

Printing Formats for Numbers and Strings

This section describes the spacing of numbers and strings as they are printed
by a simple PRlNT statement.

Strings are printed just as they are, with no leading or trailing spaces. A
space is printed after the right-most digit of a number; negative numbers
are preceded by a minus sign and positive numbers are preceded by a blank.

The number of spaces which will be occupied by the decimal representation
of a number varies according to the magnitude and type (integer or non—integer)
of the number. The following discussion of how numbers are printed will help
in determining the expected printed output.

Numbers may be printed using one of three notations:

l A number printed using integer notation is printed without a
decimal point and contains from 1 to 6 digits. (For example,
twenty printed as 20 is in integer notation.)

: A number printed in fractional notation contains from 1 to 6
digits and a decimal point. Trailing (right-most) zeros are
dropped and a number less than one is printed with a zero to
the left of the decimal point. (For example, twenty printed as
20. is in fractional notation.)

ND-60.071.01
Revision C

4—27

A number printed in scientific notation has the following form.

2 E + Y or 2 E -—Y

where Z is a number greater than 1 and less than 10 printed in
fractional notation (ll) and Y is the appropriate power of 10.

Numbers are printed in one of these notations according to their mag-
nitude and type. All numbers are rounded off to six significant digits.

1. An integer whose absolute value is less than 10f6(1000 000)
is printed in integer notation (I).

An integer whose absolute value is greater than or equal to
10f6 is printed in scientific notation (lll).

A number whose absolute value is greater than or equai to .1
and less than 999999, and which is not an integer is printed
in fractional notation (ll).

A number whose absolute value is less than .1 which can be
expressed using 6 digits after trailing (right-most) zeros are dropped
is printed in fractional notation (ll).

A number whose absolute value is less than 1 which does not
satisfy the condition in (4) is printed in scientific notation (Ill).

A number whose absolute value is greater than 999999 and which
is not an integer is printed in scientific notation (lli).

By printing powers of two, the following program illustrates how numbers
failing into each of these six categories are printed.

100 FOR l = 1 TO 30 STEP 3
110 PRINT 21(—i), 1, 2“
120 NEXTI
130 END

This program yields the following printout.

0.5 1 2
0.0625 4 16
7.8125503 7 128
9.76562E—04 10 1024
1.2207E-04 13 8192
1.52588E~05 16 65536
1.90735E—06 19 524288
2.38419E-07 22 4.1943E + 06
2.98023E-08 25 3.35544E + 07
3.72529E-09 28 2.68435E + 08

READY
ND-60.071.01

4.7.6

4.7.7

4—28

The TAB Function

In addition to the previously described standard means of controlling print—
ing formats, it is possible to set up non-standard columns and to print mat-
erial in special forms. The TAB functon is one way of producing such
specialized output.

If the first column in which information can be printed on the terminal is
labeled column 0, then the comma can be thought of as performing a tabula—
tion to the next tab stop; these stops are set at columns 15, 30, 45 and
60. There is a way to tab to any desired column using the TAB function.
The TAB function can appear only in a PRlNT list. it does not cause any-
thing to be printed but it simply positions the terminal print head to begin
printing in the column denoted by the argument of the TAB function. For
example:

100 PRlNT X; TAB (12); Y; TAB (27); 2

will cause the X value to be printed starting in column 0, the Y value in
column 12 and the 2 value in column 27.

The TAB function may contain any expression as its argument. The value
of the expression is computed and the integer part is taken. This number is
treated modulo the current margin setting to obtain a column number.
The terminal print head then spaces to this position; in the event that it
has already passed this position the TAB is ignored.

The MA RGIN Statement

MARGlN <expression>

The MARGIN statement sets the maximum number of characters which
may be printed on a line. The margin is initially set to 75. if the output
string is so long that there is not enough room even on a complete single
line, as much as will fit will be printed on that line; the rest of the output
string will be continued on the next line, and the process will be repeated as
many times as necessary to print the entire string. Even if a line is partially
filled when a MARGlN statement is executed, the statement will change the
margin for the rest of the line.

The program MARGlN is illustrative:

10 A$ = ”MARGlN”
20 FOR I = 1 TO LEN lA$l STEP 2
30 MARGlN l
40 PRINT NS
50 NEXT l
100 END

ND—60.071.01

4.7.8

4~29

The output is:

Z
“'
C

):
U

>
§

MAR
GIN

MARGI
N

READY

The PRINT USING Statement

[PRINT] USING <string>, <list>

In addition to the standard formats defined above, it is possible to define
your own formats and use them. This feature allows you to print numbers in
columns so that decimal points line up and to produce tables easily.

Instead of employing

TOG PRINT A, B, C$

you can modify the PRINT statement to

100 PRINT USING X33, A, 8, 033

Here, X$ contains a “picture" of the line to be printed. Spaces where the
values of the variables are to be inserted are marked by special conventions.
Literal labels may also be part of the picture string. It desired, a string con-
stant may be used in place of X$, and constant information may be printed
in place of variables.

A sample use of the PRINT USING statement follows:

100 LET A = 20
110 LET 8 =15
120 LET C33 = "CDE"
130 LET X$: “A IS —— # , B IS —— #, AND THE STRING C IS < ##”
140 PRINT USING X$, A, B, C$
150 END

ND-60.07l.0’l

Ail—30

When this program is run,

A is 20, 8 IS 15, AND THE STRING C is CDE

appears on the terminal.

There are 8 special characters for defining PRINT USlNG fields or
areas where variables are to be printed. These 8 characters are: #, ~, +, f
., S, < and >. The number sign, “#“ reserves a place for one character
in a field, but it cannot be used at the beginning of a field.

The effect of these characters is summarized in the following chart: ‘

Sign Valid ln Effect ’’’’’’

— Numeric fields only Start field; print floating minus for
negative numbers *.

+ Numeric fields only Start field; print floating plus or
minus as appropriate *.

. Numeric fields Mark decimal place

$ Numeric fields only Start field; print floating dollar
sign: must be followed by + or ~.

f Numeric fields only Specify exponent field: must be
in group of 5.

< String fields only Start field; print string left~justified.

> String field only Start field; print string right-justified.

Any field Place holder.

* These characters may be immediately preceded by “$“.

A numeric field, an area in which a number is to be printed, begins with
either "——” or “+”. if "+” is used, a plus or minus sign will be printed
just before the left-most digit of the number, depending on whether it is
positive or negative. if "—“ is used, there will be a sign only before a neg-
ative number. A “—" alone can be used to specify a one Character numeric
field; a non-negative number less than 10 may be printed using such a
format. Additional places in a numeric field can be specified by repeating
”#” as many times as desired.

ND—60.071.0l
Revison C

4.31

Numbers are rounded and truneated before they are printed. They are printed
right-justified in the field, so that the integer digits line up on successive
lines. A sample program NUMBERSl is:

100 PRINT USING ”LINE 100 - ###", 200.34
110 PRINT USING ”LINE 110 - ###“, 20.03
120 PRINT USING “LINE 120 — ###", 2.00
130 END

Output from a run of NUMBERSI follows:

LINE 100 200
LINE 110 20
LINE 120 2

If a number has too many digits to be printed in the field given, asterisks
are supplied instead. So with the format ”—— #”, the number “200" appears
as ““** on the terminal when the statement is executed: the field “ ~— #“
could be used to print numbers in the range —10 < X < 100. If a field has
more places than there are significant digits allowed in BASIC, question
marks are suppIied for the digits which might be misleading. In an eleven
space field, a number input as ”Illlillill" is printed as ”11111111 ii”,

If numbers are not to be printed as integers, a period is used to mark the
location of the decimal point in the numeric field. (A . is interpreted as a
character to be printed literally if it is not in a numeric field.) If the number
“20.356“ is printed with the format ”w ##W“ two decimal places are
given, the number is rounded and truncated accordingly and the result is
printed as "20.36“. Again, the number is right—justified in the field so that
the decimal points line up on successive lines. For numbers in the range
ml < X < +1, a leading zero is provided. As an example, consider the program
NUMBERSZ as follows:

i00 PRINT USING ”LINE i00 — ## : ##", 20.358
li0 PRINT USING “LINE IID - ## .## ", 2.0356
120 PRINT USING “LINE 120 — ##. tiff", .20356
T30 PRINT USING “LINE l30 — ##: ##", ~0.5

A run of NUMBERSZ produces the following output:

LINE 100 20.36
LINE 110 2.04
LINE 120 0.20
LINE 130 *5”

To print a number with an exponent, put a group of five upwarrows
(the symbol for exponentiation) into the format string ; the count of 5
is mandatory. If 2.356 is printed with the format “-— # . # Mitt“,
"2.4 E + 00” appears. With the t format, one space is reserved for a
possible sign and the number begins with the next space. The exponent
is adjusted to compensate for any shifting which occurs. With a field “—
###. ##T’MM“, the number 2.356 appears as ”235.60 E — 02”, and
the number 20.356 is printed “203.56 E—OI“.

ND-60.071.01
Revision C

4—32

The following program NUMBERS3 exemplifies these conventions:

100 PRINT USING "LINE 100 —## . ##MTM, 203.56
110 PRINT USING “LINE 110 —## . ##TMM, 20.356
120 PRINT USING ”LINE 120 -## . ##MTM, 2.0356
130 PRINT USING ”LINE 130 —## _ ##MMT, .20356
140 END

Running this program gives the following output:

LINE 100 20.36 E + 01
LINE 110 20.36 E + 00
LINE 120 20.36 E — Oi
LINE 130 20.36 E —— 02

An exception to the rule that a numeric field must begin with a "+“ or
”—" is the option of preceding these two characters by a ““.$ The use
of a dollar sign forces the printing of a dollar sign just before the first
digit or sign of the number.

It is possible to have literal information, including commas, in a format
field. In particular, it is possible to include blanks to group digits conveniently.
With the format string ”—##, ### . ##“, ”99999“ will be printed as
“99,999.00". Since a field must begin with — + $ < or >, it is possible -
to interrupt it with literal information. This literal information must not
include any of the special characters, except that a period in a non-numeric
field is printed literally.

The field for printing a string must begin with either < or >.. These characters
are valid only in string fileds, just as +, —, l. and $ are valid only in num-
eric fields. A < causes the string to be printed left-justified in the field
specified. If necessary, the field is filled with blanks or the string truncated
from the right. As with numeric fields, "#” serves to hold a place for
printing. Left-justification of strings is shown in the following example;
program STRINGSl:

100 PRINT USING “LINE 100 < ##", “AB”
110 PRINT USING "LINE 110 < ##”, "ABC“
120 PRINT USING ”LINE 120 < ##", "ABCD”
130 END

Running this program gives:

LINE 100 AB
LINE 110 ABC
LINE 120 ABC

ND-60.07l .01
Revision C

4—33

A > sign causes the string to be printed right-justified in the field specified.
If necessary, the string is preceded by enough blanks to fill the field or is
truncated from the left. Altering the last program to STRINGSZ:

100 PRINT USING "LINE 100 > ##“, “AB”
110 PRINT USING “LINE 110 > ##", "ABC”
120 PRINT USING "LINE 120 > ##“, "ABCD"
130 END

we get

LINE 100 AB
LINE 110 ABC
LINE 120 BCD

Again, literal information can be included within the field; with “<#X##”,
the string "ABCD" is printed as “ABXCD”.

Note that it is not possible to specify any of the special characters # — +
f $ < or > as material to be printed literally. If these special characters
are to appear in the output, they can be specified as constants to be printed
in separate fields. To print a “+”, the following statement suffices.

900 PRINT USING “<", "+“

The items to be printed according to the defined format must be separated
by commas and a comma must separate the USING string from the variables.
The order of numeric and string variables to be printed must match the order
of the types in the format string. For example:

900 PRINT USING “-—# . ## < ###”, "ABCD”, 23.4

causes an error message and termination of the execution because the field
types in the format string do not match the types of information to be
printed. A string cannot be printed with a numeric field nor can a number
be printed with a string field.

If there are fewer variabies in the list of a PRINT USING statement than
there are fields specified in the format string, the extra fields are not used.
On the other hand, if there are more variables than fields, the format string
is used again, starting on a new line. If the information to be printed will
not fit on a single line, the part of the format not used on the first line
is counted on the second line, and so on until all the items in the list are
printed.

ND- 60.071.01

4—34

Ending :a PRINT USING statement with a semicolon causes suppression
of the carriage return and line feed Characters after all items in the list
have been printed as described in Section 4.7.4 for the simple PRINT
statement. Using this option, you may complete a partially filled line with
subsequent PRINT or PRINT USING statements. You may not end a PRINT
USING statement With a comma as ‘you can a simple PRINT statement.

,BANKUSléN-G is a program which illustrates that output can be arranged in
columns so that the decimal points line up normally. Additionally, a dollar
sign can 3be printed immediately before each amount.

100 PRINT “ITEM“, ” AMOUNT”, ” BALANCE"
105 PRINT
110 LET C = 0
120 LET D = 0
130 REM C COUNTS THE NUMBER OF CHECKS
135 REM D COUNTS THE NUMBER OF DEPOSITS
I40 READ B
141 REM
I42 REM SET UP FORMAT STRINGS IN F$ AND G$
143 LET F$= “<######## $—### . ## $+#### . ##"
I44 LET G$= "<####### $-#### . ##"
I45 REM
I46 REM A SPECIAL FORMAT IS NEEDED FOR THE
147 REM OPENING AND CLOSING BALANCES, WHICH
148 REM HAVE NO TRANSACTIONS
149 REM
150 PRINT USING G33, "OPENING”, B
160 REM .
I70 READ T
ISO IF T = 0 THEN 400
190 IF T < 0 THEN 300
200 REM
210 REM HERE FOR A-DEPOSIT
220 LET D = D + I
230 LET B = B + T
240 PRINT USING F$, “DEPOSIT", T, B
250 GOTO.17O
260 REM
300 REM HERE FOR A CHECK
310 LET C = C + I
320 LET B = B + T
330 PRINT PRINT USING F$, "CHECK", ——T, B
340 IF B >= 0 THEN I70
350 LET B = B — 1
360 PRINT USING F$, "OVERDRAFT", 1, B
370 GO TO 170
380 REM
400 REM HERE FOR CLOSING

ND-60.071.01

4—35

410 LETS=.03* D+.06* C+.60
420 LET B = B — S
430 PRINT USING F33, "SERVICE", S, B
440 PRINT USING G$, "CLOSING", B
470 REM
500 DATA 100.00
510 DATA —-23.75, —10.40, 50.00, ——7.25, —42.50
520 DATA ——45.67, ~22.95, 40.00, —50.33, 66.75, 0.00
999 END

A run of this program, BANKUSING, is below:

ITEM AMOUNT BALANCE

_____ OPENING $100.00
CHECK $23.75 $+76.25
CHECK $10.40 $+65.85
DEPOSIT $50.00 $+115.85
CHECK $7.25 $+108.60
CHECK $42.50 $+66.10
CHECK $45.67 $+20.43
CHECK $22.95 $252
OVERDRAFT $1.00 $_3_52
DEPOSIT $40.00 $+36.48
CHECK $50.33 $—13.85OVERDRAFT $1.00 $4435
DEPOSIT $66.75 $51.90
SERVICE $1.11 $+50.79
CLOSING $50.79

ND-60.071.01

4.8

4.8.1

4.8.2

4—36

INPUT CONTROL

There are some occasions when a user wishes to override the normal
BASIC input conventions. For example, commas are usually used to sep-
arate a fixed number of entries on a line. The following statements allow
somewhat greater flexibility.

The LINPUT Statement

LINPUT <|ist of string variables>

If a program calls for data to be entered from the terminal using an INPUT
statement and the data consists of strings containing such characters as
quotation marks, leading blanks, ampersands, or commas, then the data
used in the BASIC computation may not be the ones desired, for BASIC
normally treats such characters in special ways. The LINPUT (remember
it as a “line-input") statement provides for entering of an arbitrary sequence
of characters into a single string. The characters typed may consist of any
ASCII characters, other than a carriage return, which terminates the string;
the carriage return character is not included in the string. An example of
a LINPUT statement appears in the following program, which counts the
number of commas in the input string.

10 LINPUT A$
20 FOR I = 1 TO LEN (A$I
30 IF SEG$ (A$, l, I) = ",“ THEN N = N +1
40 NEXT I
50 PRINT “THERE ARE"; N; ”COMMAS IN THIS LINE."
60 END

A run of the program follows.

?A,B,C,,D,E
THERE ARE 5 COMMAS IN THIS LINE.

READY

More than one variable may follow the word LINPUT ii the variable names
are separated by commas. A new .7 appears for each variable in the list. It
is also possible to insert strings to be printed between the variables to be
input as with the INPUT statement. See Section 2.7.13.

The MA T INPUTXStatement

MAT INPUT <list of arrays>

The MAT INPUT statement allows the user to enter data when the program
does not knew how much data will be input. This feature circumvents
cumbersome programs such as the follow-n9, which is designed to perform
the simplest task of adding up a few numbers typed '1‘- from the terminal.

ND~60.07I 01
Revision C

4—37

100 LETT= 0
105 INPUT N
110 LETT=T+ N
120 IF N <> 0 THEN 105
130 PRINT “THE TOTAL IS“; T
140 END

To use such an awkward program, you must type one number and one
carriage return in response to each question mark which is printed by
the INPUT statement. When a zero is entered, the program assumes that all
the numbers have been entered and the total is printed. Besides being time-
consuming, intermediate zeros cannot be entered.

The following program using the MAT INPUT statement is much more
convenient to use and performs the same function as the previous pro—
gram.

lOO DIM A (100)
105 LETT= O
110 MAT INPUTA
120 FOR l=1 TO NUM
130 LETT=T+A(I)
140 NEXTI
150 PRINT "THE TOTAL IS”; T
160 END

After a question mark has been printed in response to the MAT INPUT
statement in line 110, the user may type any number of numbers separated
by commas. When the input line is terminated with a carriage return, the
first number entered is in A (l), the second is in A (2), and so on. The
number of numbers entered is made available by the function NUM. This
function has no arguments and will deliver the number of entries until a new
MAT INPUT statement is executed.

Zero, one or any number of entries may appear on a line, the only limit being
the size of the line. If one wishes to enter more numbers than can be
typed on one line, it is possible to continue typing on additional lines.
If the last number on a line is followed by an ampersand (80 with no pre-
ceding comma and then by a carriage return, BASIC will accept the input
typed so far and then expect data continued on the following line.

The MAT INPUT statement may also be used to enter strings into a one
dimensional array. Rules for enclosing the strings in quotation marks are
the same as given in Section 4.6.2, for the INPUT statement with this
addition: the last string entered on a line in response to a MAT INPUT
statement must be enclosed in quotation marks if its last character is an
ampersand (St).

ND-60.071.01

4—38

The rules for entering data into a two-dimensional array are somewhat dif-
ferent. See Section 6.6.2 for more information on the MAT INPUT state-
ment.

ND- 60.071.01

4.9

4.9.1

4.9.2

PROGRAM ORGAN/2A TION STA TEMENTS

When larger BASIC programs are written, they should not be looked upon
as a simple series of statements. They should be organized into units
analogous to blocks or sections or paragraphs, so that overall action of
the program can be managed in terms of “building blocks" of statements.
Once these blocks of statements are written and checked, they can be
utilized by a programmer who knows only the function they perform, without
his having to bother with individual, detailed statements.

BASIC is a language which is designed to be understandable both by machines
and by human beings. A program must be understandable to a human being
if he is to be able to verify its correctness, improve the technique, change
the theoretical basis of the technique, or explain its value to others. Also,
when programs are being developed, they do something — not necessarily
what is finally desired; all programs do something, even if it is stopping
immediately. It must be possible to determine how a program does what
it does, even when it is incorrect. English-language comments (or other
natural-language comments) can be incorporated into the body of the text
of a BASIC program in order to improve its readability and to aid in its
interpretation. These comments do not interfere with the operation of the
BASIC program.

The Apostrophe Convent/on

A comment may appear on the same line as a BASIC statement if the
comment follows the statement and is separated from it by an apostrophe.
This is especially useful for explaining the intent of a single BASIC state-
ment when the importance of that statement is not necessarily clear from
the BASIC statement alone. A comment may appear on a line by itself if
it is preceded by an apostrophe as shown in the following program segment.

100 IF ABS (XI <= 1 THEN 130 ’PREVENT NEG SQ ROOT IN 130
110 PRINT “ABS (X) IS GREATER THAN 1 IN LINE 100”.
115 'AVOID LINE 130 WITH A GO TO STATEMENT
120 GO T0140
ISOLETY=SQR (1 —X* X)
140 LET Z = Z — Y

More About REM

As was pointed out in Section 2.7.11, if the first three Characters following
the line number of a BASIC statement are REM, then any remarks whatsoever
may follow on that line. REIVI statements may be used to convey the function
of a block of statements in a program. Knowing the purpose of the BASIC
program (or the purpose of each part of it) facilities checking each of the
BASIC statements to verify that the program is correct. Well written REIVI
statements greatly increase the value of a BASIC program to other users by
making the intent of the programmer known, i.e., what the program as a
unit is supposed to do and how different parts of the program work toward
this end.

ND—60.07l .01
Revision C

4—40

Since REM statements have line numbers, they can be referred to in GO
TO statements or other statements which cause a transfer of control such as
the ON —- GO TO and IF —THEN statements. It is especially appealing to
transfer to a REM statement which describes the purpose of a following
block of code. The example in Section 4.10.1 illustrates how apostrophe
and REM are used to improve the readability of programs.

ND-60.071.01

4.10

4.10.1

4—41

INTERNAL SUBROUT/NES

In BASIC programs, it often happens that similar calculations must be
carried out at several places in the computation. We denote a related
group of BASIC statements required to carry out such a calculation as
a subroutine. It would be tedious and wasteful to have to copy the state-
ments of the subroutine at every place in the entire BASIC program that
such a calculation was to be performed. The GOSUB statement provides
a way to transfer control to a subroutine. Control returns to the state-
ment following the GOSUB when a RETURN statement is reached in
the subroutine. Alternatively, the ON—GOSUB statement allows branching
to one of several subroutines and the IF — GOSUB statement allows a
conditional subroutine jump. Since an internal subroutine “block" has no definable
start, it is the user’s responsibility that it is entered through GOSUB statements exclusively.

The GOSUB and RETURN Statements

GOSUB <line number>
RETU RN

The GOSUB and RETURN statements are illustrated in the following ex-
ample where the subroutine in lines 300-410 calculates the greatest common
divisor of two numbers X and Y. The program uses this subroutine to
calculate the greatest common divisor of three numbers A, B and C, relying
on the fact that GCDlA, B, C) = GCDlGCD(A, B),C).

110 PRINT "A”, "B”, “C", “GCD”
120 READ A, B, C
130 LET X = A
140 LET Y = B
150 GOSUB 300
160 LET X = G
170 LET Y = C
180 GOSUB 300
190 PRINT A, B, C, G
200 GO TO 120
210 DATA 60, 90, 120
220 DATA 38456, 64872, 98765
230 DATA 32, 384, 72
250 '
300 REM SUBROUTINE TO CALCULATE GCD
305 LET Q = INTlX/Y)
310LETR=X—Q*Y
320 IF R -= 0 THEN 400
330 LET X = Y
340 LET Y = R
350 GO TO 300
400 LET G = Y
410 RETURN ’TO LINE 160 OR 190
420 END

ND-60.071.01
Revision C

4.10.2

4—42

When the program is run, X and Y are set equal toA and 8. Line 150 con-
tains a GOSUB to line 300. This is the beginning of a calculaton which
sets G equal to the greatest common divisor of X and Y. Line 410 is the
RETURN statement which returns to 160, the line following the GOSUB.
Subsequently, X and Y are given the values of G and C in order to GOSUB
to the GCD subroutine once more. Upon return to 190, the line after the
second GOSUB, the answers are printed and the process recycles. ln oper-
ation, the statement

180 GOSUB 300

records information about the location of the GOSUB before transferring
control to line 300. This is done in such a way that a statement like

410 RETURN

uses the information stored by the GOSUB statement to return control
to the statement directly following the GOSUB. Consequently, a subroutine
may have many RETURN statements in it, but the first one which is actual-
ly encountered causes control to be returned to the main part of the pro-
gram.

A GOSUB may be executed inside a subroutine to call still another sub-
routine. in this nested subroutine arrangement, the first RETURN statement
to be executed returns control one level to the statement following the
most recently executed GOSUB. The next RETURN statement returns
control to the statement following the previously executed GOSUB and
so on.

The UN — GOSUB Statement

ON <expression> GOSUB <list of line numbers>

The ON —— GOSUB statement provides a way of transferring control to
one of several subroutines. The statement

100 ON X—l GOSUB 700, 800, 900

will cause execution of the subroutine beginning in line 700 if the value
of X~1 is 1, execution of the subroutine beginning in line 800 if the
value of X—l is 2, and execution of the subroutine beginning in line 900
if the value of X—1 is 3.

The expression ”X——1” could have been any arithmetic expression, includ-
ing a simple variable. The value of this expression must not be less than
1 and not greater than the number of line numbers listed; if so an error
message is given. If the value is not an integer, it will be truncated to an
integer. When a RETURN statement is encountered, control is returned
to the statement following the ON —— GOSUB statement.

ND- 60.071.01

4.10.3 The IF —— GOSUB Statement

lF <expression> <relation> <expression> GOSUB <line number>

The lF —— GOSUB statement provides a way of transferring control to a
subroutine if some specified condition is met. The statement

100 IF A$ = "MARRlED" GOSUB 900

will transfer control to line 900 if the condition is true.

The condition may be of either a numeric or a string type.

When a RETURN statement is encountered, control is returned to the state-
ment following the lF — GOSUB statement.

ND-60.07l .01

4.11

4.11.1

4—44

INTERNA L FUNCTIONS

BASIC has a number of built-in functions, such as SlN, LOG, SQR, etc.
if the user requires an extension to this set of functions, he has the possibility
of writing a definition for a new function in BASIC using a DEF statement.

Naming such functions follows the rules of defining variables in BASlC,
but the first two letters of the name must be EN. The postfixed letter(s)
of the variable name will determine the type of the function; i.e., FNTEXT$
will return a string data element.

internal functions as opposed to internal subroutines may have arguments
as described below. The number and type of arguments must correspond
in the definition and the call; if not,a run-time error message is given.

One Line DEF Statement

Sometimes a function definition can be written in a single BASlC statement.
Suppose an arcsine function is required.

100 DEF FNA(X) = ATN(X/SQR(1 — X * X))
110 PRlNT FNA (.707)
120 END

Line 100 defines the new arcsine function. in the definition of FNA(X),
the variable X is not related to any variable of the same name elsewhere
in the program. The DEF statement simply defines the function and
does not cause any calculation to be carried out; the variable X is called
a dummy argument. The appearance of FNA in some other place in the
BASlC program (this is known as the place where the function is called)
causes the calculation denoted in the DEF statement to be executed. When
the function is called, the value of the argument of the function (.707)
in the above example is substituted for the dummy argument throughout
the definition of the function. Arguments i the definition and the call
are often called formal parameters, respectively actual parameters.

DEF statements may appear anywhere in a program and may define func-
tions of more than one variable. For example:

100 LET D1 = FNR (201.83, 199.01)
110 PRlNT D1
120 DEF FNR(X, Y) = SQR (X * X + Y * Y)
130 END -

When a function of more than one variable is defined, the list of dummy
arguments is separated by commas.

ND~60.071.01
Revison C

4.11.2

4—45

DEF statements may involve both dummy arguments and variables which
have the same meaning as elsewhere in the program. In the following
example

100 DEF FNX (X, Y) = X * COS(T) + Y * S|N(T)
llO DEF FNY (X, Y) = ‘3‘ X * SlN (T) + Y * COS(T)
120 LET T = 1.7 'ANGLE lN RADIANS
130 INPUT A, B
140 PRlNT “ROTATED”, FNX(A, B), FNY(A, B)
150 GO T0130
160 END

the DEF statements involve both the dummy variables X and Y whose
values depend on the arguments of the function and a variable T which
has the same value as it does elsewhere in the BASIC program. if a variable
in a DEF statement is to have its current value in the program when the
function is called, it is not included in the list of dummy arguments.-
lt is often called a global variable.

Multiple Line DEF Statements

The use of the DEF statement described above is limited to those functions
which can be defined in a single BASIC arithmetic statement. Many func‘
tions cannot be computed using a single BASIC arithmetic expression,
particularly those which require IF ~ THEN statements. The following
example demonstrates the format of multiple line DEF statements and
their use for a function which returns the larger of two numbers.

10 DEF FNlVl (X, Y)
20 LET FNM = X
30 IF Y<= XTHEN 50
4O LET FNM = Y
50 FNEND
55 '
60 PRlNT FNM (5,4), FNM (-5, ——4)
70 PRlNT FNlVl(l, FNM(2, FNlVl(3,0)))
80 END

The definition of the function extends from line 10 to line 50.

The absence of the equal sign in line 10 indicates that this is a multiple
line DEF; the end of the DEF is indicated by the FNEND statement. The
value which the function delivers must be stored in the variable having
the same name as the function (in this case, FNM) when control reaches the
FNEND statement. As illustrated in line 70, function calls may be nested.
The preceding program prints the numbers 5, —4, and 3.

ND-60.071.01

4—46

As with the single line function definition, variables appearing in parenthesis
after the function name in a multiple line definition are called dummy argu-
ments, and values are substituted for these arguments when the function is
called. Variables not listed in the DEF statement will use their current value.
There must not be a transfer from inside a multiple line DEF to outside,
nor vice versa. Function definitions may not be nested. Naming conventions
are the same as for single line definitions. Multiple line function definitions
may be placed anywhere in a program because such blocks of code are not executed,
unless they are called.

If a value is not stored as in line 40 above, for the function when control
reaches the FNEND statement, a value of zero is returned when the function
is called. Any variable assignments made to variables other than the dummy
arguments of the function within the scope of a multiple line definition
affect the values of variables of the same name appearing elsewhere in the
program.

4.11.3 Strings and Function Definitions

The function definitions described thus far delivered numbers as results
and take numbers as arguments. A function may be defined which takes
strings as arguments.

Example:

100 DEF FNN (A$, B$l = ABS(LEN(A$) — LEN(B$)>
Ho lNPUT o1$,02$
120 PRINT "STRING LENGTHS DlFFER BY“; FNN(Ql$, 02$)
130 GO TO 110
140 END

The following function inserts string 855 after the n'th letter of string A$
and delivers a string as the value of FNI$.

100 DEF FNl$ lA$, B$, N)
110 LET C1$ = SEG$ (A$, 1, N)
120 LET (32$ = SEG$ (A$, N + l, LEN(A$))
130 .LET Fe$ = C‘l$ &B$ & 02$
140 FNEND
150 ’
160 PRlNT FN|$ ("XXXZZZ", "YYY", 3)
170 END

When run, this program prints the string ”XXXYYYZZZ“.

N 0-60.071 .01
Revison C

4—47

4.12 RELA T/ONAL EXPRESSIONS

A relational expression has the form:

q1 op qg

where q} and q2 are arithmetic or string expressions; op is an operator
belonging to the following set:

Operator: Meaning:

= Equal to
< > or > < Not equal to
> Greater than
> = or = > Greater than or equal to
< Less than
= < or < = Less than or equal to
== Approximately equal to (not strings!)

A relation is true if (11 and q2 satisfy the relation specified by op.

A relation is false if q1 and q2 do not satisfy the relation specified by op.

Rules:

1. Use a relational operator between two expressions:

Q1 Op (12

it is not permissible to use the form :

Q1 Op (12 09 Q3

instead separate two relational expressions with a logical operator
.AND. or .OR. in any of the form:

q1 op q2 .AND. q3 op q4

q1 op q2 .OR. q3 op q4

The evaluation of a relation of the form q1 op q2 is from left
to right.

The relations q1 op q2, q1 0p ((12), (Q1) Op (12 and (Q1) '
op (q2) are equivalent.

Examples:

A > 5.2
RX—Xl5)*A < v
B—C = .5
x(1) >=‘xu—1)
l <= 10
A$ <= B$ ND—60.07l.01

4—48

L OG/CA L EXPRESSIONS

A logical expresSion has the general form:

01 op 02 op 03

The forms 01 are relational expressions; and op is either the logical operator
.AN D. indicating conjunction or .O R. indicating disjunction.

The logical operator .NOT. indicating negation appears in the form:

.NOT. 01
The value of a logical expression is either true or false. Logical expressions
are used in lF statements.

Rules:

1. The hierarchy of logical operations is:

First .NOT.
Then .AN D.
Then .OR.

lf L1 and L2 are logical expressions, then:

.NOT.L1
L1 .AND. L2
L1 .OR. L2
are logical expressions. lf L is a logical expression, then (L) and
((L)) are logical expressions.

if L1 and L2 are logical expressions and op is .AND. or .OR. then
L1 op op L2 is always illegal.

The logical operator .NOT. may appear in combination with .AN D.
or .OR. only as follows:

.AND..NOT.

.OR..NOT.

.AND.(.NOT....)

.OR.(.NOT....)

.NOT. may appear with itself only in the form:

.NOT.(.NOT.(.NOT.

Other combinations will cause compiler diagnostics.

ND-60.071.01

4—49

5. lf L1 and L2 are logical expressions, the logical operators are
defined as follows:

.NOT.L1 is false only if L1 is true
L1 .AND.L2 is true only if L1 and L2 are both true
L1 .OR.L2 is false only if L1 and L2 are both false

Examples of Logical expressions:

Valig Exgressiens: illegal EXQEGSSlonS:

A<2.0R.B=0 A<2.NOT..OR.B=O
A<2.AND.B=0 X+5.NOT.<Y '
A<2.0R. B=O.AND.C=1
.NOT. A < 2 .AND. B = 0
.NOT. (A < 2 .OR. B = 0)
X > Y .AND..NOT. X > Y + 2
A35 = ”MARRlED" .AND. B$ = "WOMAN"
A$><B$.OR. Y<O

ND-60.071.0l

4.14

4.14.1

4.14.2

4.14.3

4—50

OTHER USEFUL 57m TEMEN TS

Multiple Statement Line

More than one statement can appear on a single line if each statement
(except the last) is terminated with a colon (2). Thus, only the first state
ment can have a line number. An error diagnostic is given if a statement
cannot appear in a multiple statement line. Statements which logically
belong to each other may now be grouped on one line. Multiple statement
lines are legal in immediate mode as well.

The REPEA T Statement and the @ Variable

REPEAT <expression> [STEP <expression>] :<statement>: . . .<statement>

REPEAT makes it possible to construct a loop of a single line using the
multiple statement feature. The REPEAT statement first assigns one to the
system variable @ which is later incremented by one if STEP is omitted.
The following statements on the line will be repeated while the value of @
(real) is less or equal to the maximum specified. The example below will
change the fifth row of a two-dimensional array:

10 REPEAT MAX: lNPUT ARRAY (5, @)

It is, of course, always possible to exchange a REPEAT with a FUR-NEXT
loop construction as follows:

10 FOR I = 1T0 MAX
20 INPUT ARRAY (5, l)
30 NEXTI

More About IF

As previously mentioned, IF branches to a'line number following THEN,
GOTO, or GOSUB if the relational expression turns out to be true. Having
described relational and logical expressions as well as multiple statement
lines, it is time to introduce a more advanced use of lF:

lF <logical expression> THEN <statement> : . . .<statement>

Dependent upon the logical expression being true or false, the program will
execute the statementls) following THEN or skip to the next line.

gamete;

10lFX=YTHENN=N+1
20 lF X < Y .AND. A$ = l’YES” THEN PRlNT “OK" : N = N +1
30 lF .NOT. A$ > B$. OR. A% < 8% THEN GOSUB 500: GOTO 100

ND-60.071 .01
Revison Q

4.14.4 The ON ERROR GOTO Statement and the ERR Variable

ON ERROR GOTO <Iine number>

In Appendix A, a complete list of run—time error messages is given. The occur—
rance of errors marked FATAL will normally cause termination of program
execution, while non-fatal errors will continue after some action has been
taken. A negative argument to the square root function, for example, results
in printing a message and continuing with the result set to zero. However,
an input/output error such as encountering end of tile is fatal.

Some applications may require continued execution of a program after
any errors occur. In these situations, you can execute an ON ERROR
GOTO statement within your program. This statement tells BASIC that a
user subroutine exists, beginning at the specified line number which will
analyze any error encountered in the program and possibly attempt to
recover from the error. Note that the GOTO action is not taken when
executing ON ERROR GOTO, but it an error occurs later on, execution
is interrupted and the user written subroutine is started at the line number
indicated without printing any message. ON ERROR GOTO must be executed
prior to any executable statement with which the error handling routine deals.

A system variable, ERR, is available and can be tested according to the error
oodes given in Appendix A. Thus, the error handling routine can determine
precisely what error occurred and decide what action is to be taken. it is
possible to switch to different error handling routines by executing several
ON ERROR GOTOs.

Often, it is desirable to let the system handle errors in portions of a pro-
gram. The actual error routine can be disabled by executing ON ERROR
GOTO O. The occurrence of zero, which cannot be a line number, causes
the system to treat errors as if ON ERROR GOTO had never been executed.

Example:

10 PRINT i/0
20 ON ERROR GOTO 100
30 PRINT 1/0
40 STOP
100 PRINT ”DECIIVIAL ERROR CODEZ”;ERR
HO PRINT “OCTAL ERROR CODE=";OC$(ERR)
120 ON ERROR GOTOO
130 PRINT i/O
200 END
RUN

BASIC RUN ERROR 273 IN LINE 10
0
DECIIVIAL ERROR CODE :187
OCTAL ERROR CODE = 00000000273

BASIC RUN ERROR 273IN LINE 120
0

R EADY

ND—60.07I.01

Revision D

4.14.5

4.14.6

4—52

The @ Statement

@ <operating system command)

This statement provides a means to execute SlNTRAN lll Commands in
the program sequence or in immediate mode. The command may be of
any type, such as deleting a file, reading the cloek or even logging out!
Note that error conditions will return control to the Operating System.
(Restart with CONTlNUE.)

Emma's:

10 @TlME—USED
20 REPEAT 50000: N = N + @
30 @TlME—USED
40 PRlNT l,N,!
50 @LOG
60 END
RUN

TIME USED i8 1 SECS OUT OF 41 SECS
TiME USED i8 5 SECS out or: 48 SECS
1.25002E+09
15.13.58 26 APRIL 1976
——EXlT——

RANDOM and RAID

The RANDOM Statement can be used in conjunction with the random
number function to induce variance. it augments the function RND by
causing it to produce different sets of random numbers. For example,
if this is the first instruction in the program using random numbers,
then repeated program execution will generally produce different results.
When this instruction is omitted, the “standard list“ of random numbers
is obtained.

it is suggested that a simulation model should be debugged without
RANDOM, so that you always obtain the same random numbers for test
runs. After your program is debugged, you may insert

1 RANDOM

before execution.

ND— 60071.01
Revision D

4.14.7

4—53

The COMMON Statemen t

COMMON [/[<block>] /l <variab|e> [([<subscript string>])]
[=<Iength>] , _ . , _

A program may be divided into independently compiled subprograms
that use the same data. The COMMON statement reserves storage areas
blank or labelled which can be referenced by more than one subprogram
written in BASIC, FORTRAN, NFL or MAC assembly.

The common data structure is static which means that size of arrays and
strings is fixed as opposed to local arrays and strings in BASIC. A string
array consists of ASCII characters rather than string descriptors; for the
rest array layout corresponds to' that described in Section 4.4.

<block> is an alphanumeric identifier defining the name of the common
block. <variable> is a simple variable or array identifier, subscripted or
non—subscripted. The identifier may be previously defined in a type
declaration statement. '

The list may not contain formal parameters. Arrays must be dimensioned
in the common statement by a <subscript string> following the array
identifier. If an array is dimensioned in both a common statement and a
dimensioned statement, a compiler diagnostic results. The subscriptls)
must be constant(s). If the subscript string is empty, this array will be
equivalent to the next element in the list. The optional <Iength> is a
constant defining the length of string variables. The length may be any
even number in the range 2 ~ 256. Default length is 16.

A block identifier may be a name of one to seven alphanumeric characters
or blank. A non-blank name identifies the storage as labelled common; a
blank name identifies blank common. If the name is blank, the first two
slashes may be omitted. Only one name may be assigned to labelled
common, but the name may be specified more than once.

All common storage areas are assigned together in the order of appearance
regardless of the line number.

Example;

10 COMMON A, B, C
20 COMMON //X, Y, Z, O
30 COMMON/BLOCK/F, GHO), X$=4
4O COMMON/B LOCK2/NAMES$(4,4)=TO%, AGE(4%)

ND60.071.0I
Revision C

4—54

Common Blocks:

The COMMON statement provides the programmer a means of reserving
blocks of storage areas that can be referenced by more than one subpro—
gram, the statement reserves both blank and labelled blocks.

if a subprogram does not use all of the locations reserved in a common
block, unused variables may be necessary in the COMMON statement to
ensure proper correspondence of common areas:

Main Program: 10 COMMON/SUM/A, B, C
Subprogram: 10 COMMON/SUM/E, F, G

ln the above example, only the variables E and G are used in the subpro—
gram. The unused variable F is necessary to space over the area reserved
by B.

Rules:

1- COMMON is nonexecutable and must precede the first executable
statement in the program. Any number of COMMON statements may
appear in a program unit.

2. Labelled common block identifiers are used only for block identifica~
tion within the compiler; they may be used elsewhere in the program
as other kinds of identifiers.

3. An identifier in one common block may not appear in another
common block. if it does, the identifier is doubly defined and an
error message will result.

4. The order of the arrays in a common block is determined by the
COMMON statement. No array bound checking is performed.

5. At the beginning of program execution, the contents of the common
blocks are undefined. Common variables are assigned values through
the LET, INPUT and DATA statements.

6. Common arrays in mat input/output or mat arithmetic statements
are not allowed.

7. Common strings are left justified with trailing spaces if necessary.

8. No bound checking when accessing common arrays. I

The length of a common block in :computer words is determined from the
number and type of the list identifiers. In the following statement, the
length of the common block A is 26 computer words. The origin of the
common block is 0(0).

ND~60.071.0l
Revision C

4—55

Examples:

Labelled Common

10 INTEGER NR
20 COMMON/A/ 0(3), RIB), NRII)

ORIGIN O (0) Each real variable requires
O (1) three computer words.
0 (2)
Q (3)

+12 R (0)
R (1)
R (2)
R (3)

+24 NR (0)
NR (1)

Blank Common

10 INTEGER K, N, M, DUMMY
20 COMMON DUMMYI), A, 8(1), K
30 COMMON NII),M(1),A$(1)=6%

ORIGIN A/DUMMYIO)
+3 B (0)
+6 1
+9
+10
+11
+12
+13
+14
+17

ASCII string
6 characters = 3 words>

>
§

§
Z

Z
K

W

$
$

Note that element K may be accessed by DUMMY (9) because no
array bound checking is performed.

Rearrangement of Common

Main Program: 10 COMMON/EX/TEMP(19)
The labelled common, EX, occupies 60 storage locations.

Subprogram: 10 INTEGER l,J
20 COMMON/EX/BIQ), l(9),J(19)

N D-60.071.01
Revision B

4.14.8

The labelled common occupies the same 60 storage locations as in the
main program. However, 30 locations are used by the real array 8, 10
locations are used by the integer I and 20 locations are used by the
integer array J.

The CHAIN Statement

CHAIN <string expression>

An elementary, but successful, method of dividing a lengthy basic pro—
gram into manageable segments is to run several programs successfully
by typing the necessary OLD/LOAD and RUN commands. In this mode of
operation, the user determines the program to be executed next simply by
typing the proper name after the OLD/LOAD command.

An automatic way of running another program is to use a CHAIN statement.
The word CHAIN is followed by < string expression> forming the file
name of the next program. Chained program units must be previously
compiled to BRF. The CHAIN statement is the last statement executed in
each program segment other than the last segment.

CHAIN implies automatic loading (LOAD) and starting (RUN) of a program.
In fact, the statement will act as a command because it may execute in
immediate mode. The string expression may optionally contain several
file names (or numbers) separated by commas or spaces. The syntax
corresponds to that of the LOAD command.

Chaining to precompiled (BRF) program units is considerably more
efficient than chaining to BASIC source which would require compilation
upon each call.

When a CHAIN statement is encountered the running of the current pro-
gram is terminated and execution of the designated program begins.
This procedure requires the BASIC compiler in memory; thus, an error
message will appear if the loading is done by another BRF loader.

Values of local variables in one program are not passed unchanged to a
subsequent program, but are always set to zero at the beginning of each
program execution, unless the variables are declared in a COMMON statement
(see Section 4.14.7). When using common variables for parameters,
the data remains in the main high speed memory of the computer.

N D—60.071.01
Revision 8

4—57

Communication between chained programs may, of course, be performed
by means of files, but this involves a physical transfer of data to/from
an external storage device.

A program is usually segmented by using subprograms rather than by
chaining if the user wishes to preserve variable values between segments
or if phases in a program reoccur. The chaining technique is sometimes neces-
sary when the subprogram technique fails to reduce the program enough so that
it will execute in the computer memory allotted. When a program uses subpro-
qrams, space required is determined by the main program and the largest sub-
program. When the chaining technique is used, only enough memory for the success-
ful run of the largest program is required. However, each call to a subprogram different
from the last one called requires a physical transfer from an external
storage device. This entails a considerable amount of time, and applica~
tions will only be practically successful if they call for new subprograms
a limited number of times.

The following program gives the user the option of playing one of three
games. The number input by the user corresponds to the location in A$
which contains a string consisting of the corresponding game. In line 150,
a chain is made to the program having this file name:

100 REPEAT 3: READ A$l@)
110 DATA BONDESJAKK, LUNAR—LANDER, POKER
120 PRINT “TYPE 1 TO PLAY BONDESJAKK, 2 TO PLAY”
130 PRINT ”LUNAR-LANDER, AND 3 TO PLAY POKER."
140 INPUT l
150 CHAIN A$lll
200 END

N060.07l .01
Revision B

5.1

5.1.1

FILES IN BASIC

/N7'Fi’ODUCT/O/V

Files are the retrievable units in which information is stored. All the pro-
grams discussed so far in this manual are examples of files. Files are classified
according to how the information is accessed.

Sequential files are accessed one character after the other. In Chapter 3,
the saving and retrieval of program files are explained, These files are sequen-
tial files.

Data in random access files are accessed using an address. If data is used
in random manner, retrieval using an address is normally much faster than
sequential searching. In BASIC random files are used to hold data arrays
too big for the memory available but still manipulated using BASIC programs.

BASIC utilizes the NORD File system through a set of different monitor calls.

The File System is designed to manipulate files on disks, drums, magnetic
tapes, cassette tapes or standard peripherals. A file means a collection of
records or blocks, ordered randomly or sequentially.

Each file in the system is named with a character string and has one owner,
which has to be defined as a user of the file system. Each user may have
several other users as friends. The file system provides individual protection
of files. with separate protection modes for the owner, the owner’s friends
and the public’s access of the file.

The user of the file system may treat files on mass storage devices or standard
peripherals in a uniform manner.

The NORD File System is described in detail in the documentation:

SINTRAN Ill Timesharing/Batch Guide (N D—60.i32l
SINTRAN lll Reference Manual (N D-60.128)

The Connect Device Identifier

When accessing a file through any BASlC input/output statement, a so—called
connect device identifier is used, rather than the file name. The file name is
only referenced once, in the OPEN statement which is described below. It
is also possible to access a sequential file if the file is opened by a direct
file system command. In this case, the connect device identifier must cor-
respond to the file system logical device number. Later we shall see that the
connect device identifier may be asstring, thus simulating sequential input/output
devices.

ND‘60.071.01
Revision D

5.1.2

The connect device identifier may ioiiow any legal statement having con-
nection with input/output operations arid has the general form:

<expression> :

The colon delimiter may be exchanged with the mmma delimiter
in input/output statements (INPUT, PRiNT, etc}.

The OPEN and CLOSE Statements

The OPEN statement is used both to associate a numbet with a file in the
file system and to describe how the file should be used Such a description
is valid until the CLOSE statement is used or the fiie is closed by the system.

OPEN

OPEN # <expression> : FOR <access mode> <ifile name>

The first expression is the connect device and may be any numeric expres—
sion. The access mode must be one of the Words listed below:

INPUT Sequential read access
OUTPUT Sequential write access
APPEND Sequential write append
RANDOM Random read/write access

The file name may be any string expression. The OPEN statement assigns
a file to a number, thereafter all references to the file are made through
the number. There may be up to 10 open files with a program. The con-
nect numbers may be of any range and need not be assigned sequentially.
The open statement must, of course, be executed before any access to the
file is made.

A successful OPEN statement demands an entry in the file table where
connect number and access information is stored.

CLOSE

CLOSE # <expression> :

The expression indicates the connect number and has the same value as
the expression in the OPEN statement.

The CLOSE statement is used when you are finished using a file. The state-
ment will set the file ready to be opened again and leave an empty entry in
the file table.

N D— 60071.01

All files should be closed before the end of program execution. This is
very important when using random access files because the CLOSE state-
ment causes output of the last bIock.

Examgles:

IO INPUT ”FILENUMBER", UNIT, "FILENAIVIE", UNIT$
20 OPEN # UNIT: FOR INPUT UNIT$

IOO PRINT # UNIT, A, B, C, D, E

190 CLOSE # UNIT:
200 END

ND-60.07I.OI

5.2

5.2.1

SEQUENTIAL FILES

In this chapter, storing and loading of data. on films is discussed. The ways
of entering data into a program using the READ a 'l DATA statements
or the user terminal (INPUT statement) are both inefficient when the amount
of data increases beyond a few items.

Using files, there is almost no limit to the number of items the program
can process in one run. There are limits on the length ot a program to be
compiled and these limits include the DATA statements. ,iéuiother advantage
is that since the program file is never modified (as it would have to be if
DATA statements were used), there is no chance of the program itself
being inadvertently Changed during the typing of a new data set.

Reading a Sequential File from a Program

Throughout the next few sections of this chapter, several versions of the
same fundamental program will illustrate the use of the statements related
to sequential files. This program computes an average grade for each of
several students in a group.

The first version of this program, AVE RAGET, uses data stored in a sequene
tial file called GRADES.

A listing of AVERAGEl follows:

100 REM PROGRAM NAME ~~~ AVERAGE’I
llO‘
T20 REM THIS PROGRAM COMPUTES AVERAGE GRADES FOR
130 REM A SET OF STUDENTS. EACH STUDENT IS ASSUMED
T40 REM TO HAVE THE SAME NUMBER OF INDIVIDUAL
TSO REM GRADES TO BE AVERAGED. THE DATA lS IN A
l60 REM SEQUENTIAL FlLE CALLED “GRADES".
T70 REM THE FIRST LINE CONTAINS 8, THE NUMBER OF
180 REM STUDENTS, AND G, THE NUMBER OF GRADES PER
190 REM STUDENT. THE REST OF THE FILE CONSISTS OF
200 REM S SETS OF (G + l) LINES. THE FIRST LINE IN A SET
210 REM CONTAINS THE NAME OF A STUDENT, AND THE
220 REM FOLLOWING G LINES IN THE SET EACH CONTAIN
230 REM ONE OF THE STUDENT’S GRADES.
240 ’
250 OPEN #1: FOR INPUT ”GRADES"
260 PRINT “NAME”, “AVERAGE”
270 PRINT
280 INPUT #l :S,G
290FORl=lTOS

ND-60.07l .01
Revision D

300 LET A = O
310 INPUT #1 1N$
320FORJ=1TOG
330 INPUT #1 : X
340 LET A : A + X
350 NEXTJ
360 LET A = A/G
320 PRINT N$,A
380 NEXT l
390 CLOSE #1 :
400 END

In AVERAGE1 only one file, GRADES, is used. The OPEN # statement
assigning the file GRADES to file number 1 is in line 250. Thereafter, the
file GRADES is referred to as file # 1 in lines 280, 310, 330, and 390 of
the program.

The INPUT # statement differs from the simple INPUT statement only
by the inclusion of the number sign, a file number and a colon. Any list
of variables that is legitimate in a simple INPUT statement is also legitimate
in an INPUT # statement. See Section 2.7.13.

Now, let us briefly run through the whole program before going on to
consider the construction of the data file GRADES. Lines 100 - 230 are
remarks describing the program, its limitations and instructions for using it.
The OPEN statement has already been described. Lines 260 and 270 print
a heading for the output. Line 280 requests the input of two numbers, 8
and G, from file # 1, the file GRADES. S is the number of students and
G is the number of grades per student. A loop indexed by l begins in line
290 and continues through line 380. The program ends after this loop has
been executed 8 times, once for each individual whose grades are to be
averaged.

Within this loop, line 300 initializes A, the variable used to store the sum
of the grades for an individual. Line 310 requests the input of a string from
file # 1, GRADES. This string is the name of the next individual
whose grades are to be averaged. Another loop begins in line320 and ends
in 350. This loop is executed G times, once for each grade. Within the loop
indexed by J, line 330 inputs a grade, X, from GRADES and line 340 adds
this grade to A, the sum of the grades so far. When this loop has been executed
G times, line 360 divides the sum of the grades, A, by the number of grades,
G, to get the average grade which is stored in A. Line 370 prints the name
of the individual, N35, and his average, A. Then the loop indexed by l is
executed for the next individual, until all averages have been computed
and printed.

ND-60.071.01

Now let us consider the data tile. ll> format used in constructing a sequential
file to be read by a program is deters", ‘itEECi by the way in which the INPUT
:3: statements are set up in the program. INPUT 2:7 "taternents,
like simple lNPUT statements, contain lists of variables to receive values.
Whereas a simple lNPUT statement requests; the as“ of the program to
supply these values at run time, the lNPUT a statement requests the
values from files, and, of course, no question mark is printed on the terminal.
It considers the contents of the next line in the the (beginning with the
first line in the file), as a response to its request. lf there are more numbers
or strings in the line than were requested, the excess is i sored. lt' there are
not, the next line in the file is interrogated in an atter to find more
numbers or strings. it the items on the line interrogated do not correspond
in type to the variables in the input list, an error message is printed.

lil

The first lNPUT # statement in AVE RAGEl requests two numbers,
S and G. These numbers may either be on the same line in the data file
or on two different lines. The rest of the numbers and strings in GRADES
must be written one per line since they will be read by lNPUT #
statements requesting one number at a time. it they were erroneously writ—
ten more than one per line, all but the first number on each line would be
ignored, the computer would look for values beyond the end of the file and
the program run would terminate. The file GRADES must not have line
numbers — just the data requested by the lNPUT it statements in
the program. The following is a listing of the file GRADES as written for
use with AVERAGEl. Note that when more than one item is listed on
the same line, the items are separated by commas, as in the first line of
GRADES.

3,4
GERALD FRIEND
78
86
61
90
PHlLlP CLOUGH
66
87
88
91
ADA SHAW
56
77
81
85

This file could be created by using the PE D editor.

(For information about PED consult the PED User’s Guide (ND—60.124ll.

ND—60.07l .01
Revision D

5.2.2

The following is a run of AVE RAGEI using the data in the file GRADES:

AVERAGEI
NAME AVERAGE

GERALD FRIEND 78.75
PHILIP CLOUGH 83
ADA SHAW 74.75

READY

Writing a Sequential File from a Program

In this section, we will consider how to alter the program AVERAGEI
so that it writes its output into a sequential file instead of printing it on
the terminal. Using a file in this manner allows the user to obtain mul—
tiple copies of the output without re-running the program. In addition,
if there is a lot of output, it is often more convenient and possibly faster
to direct the output to a file and then list the file than to print the
output directly on the terminal.

Two changes need to be made in AVERAGEI; first, another OPEN
statement must be added to assign the output file to a file number; and
second, the simple PRINT statements must be changed to PRINT #
statements. The following program, AVERAGEZ, incorporates these
changes. The output is printed in a sequential file called AVERAGES.

210 REM PROGRAM NAME -« AVERAGE2
220'
230 REM THIS PROGRAM IS LIKE AVERAGEI EXCEPT THAT
240 REM THE OUTPUT IS PRINTED IN A SEQUENTIAL
250 REM FILE CALLED “AVERAGES".
270 ’
290 OPEN #1: FOR INPUT ”GRADES”
300 OPEN # 2: FOR OUTPUT "AVERAGES"
3l0 PRINT # 2: ”NAME”, "AVERAGE”
320 PRINT # 2:
330 INPUT # I:S,G
340FORI=1TOS
350 LET A = O
360 INPUT #1:N$
37OFORJ=ITOG
380 INPUT # 1:X
390 LET A = A + X
400 NEXT J
410 LET A = A/G
420 PRINT # 2:N$,A
430 NEXT I
440 CLOSE # I:
450 CLOSE # 2:
460 END

ND-60.071.0I

5.2.3

The input file GRADES is assigned to file r; l and the output file AVERAGES
is assigned to file it 2.

When the program is run, line 300 will set the file AVERAGES ready to
receive output. Any information in the file will be destroyed and you
should do as follows if you want to save the information:

1. Enter the editor PED (see above)

2. Read the file

3. Save the file using a new name

It is still easier to use the SlNTRAN lll Operating System command:
COPY.

After the program AVERAGE 2 has been run, you can list the file
AVERAGES using COPY or the PED editor. The following printout
results:

NAME AVERAGE

GERALD FRlEND 78.75
PHlLlP CLOUGH 83
ADA SHAW 74.75

Note that the output of AVERAGE2 and that of AVERAGEl is identical;
the only programming difference is that the first program prints its output
to a file and AVERAGEl prints output directly on the terminal. The for-
mat of the output in AVERAGES is the same as that of the output printed
on the terminal when AVERAGEl is run.

The Use of the Terminal ltse/f as a File

Suppose now that we wanted to rewrite AVE RAGE2 so that the use of
files for input and output was optional. We could write separate sections
in the program to deal with each option and then to branch to the ap—
propriate section. However, there is an easier way. Both the INPUT
and the PRINT # statements interpret a reference to file number
0 as a reference to the terminal itself and in this case work exactly like
the simple lNPUT and PRlNT statements.

The following program, AVERAGEB, is a revision of AVERAGE2 in which
the user may decide whether or not he wishes to use files. ln addition he
may choose the names of the data and output files if he wants tc use files.

ND-60.07l.Ol
Revision D

100 REM PROGRAM NAME ~ AVERAGE3
110’
120 REM THIS PROGRAM IS LIKE AVERAGE2 EXCEPT
130 REM THAT THERE ARE OPTIONS FOR READING
I40 REM DATA FROM A FILE AND PRINTING THE OUTPUT
150 REM INTO A FILE.DATA CAN BE IN A SEQUENTIAL
160 REM FILE OR CAN BE TYPED IN AT RUN TIME. IF THE
170 REM DATA ARE IN A FILE, THE FORMAT IS THE SAME
180 REM AS THAT OF ”GRADES“ USED IN AVERAGE1 AND
190 REM AVERAGE2. IF THE DATA ARE TO BE TYPED
200 REM IN AT RUN TIME,THEY MUST BE ENTERED
210 REM ACCORDING TO THE SAME FORMAT THEY WOULD
220 REM HAVE WERE THEY IN A FILE.IF OUTPUT IS
230 REM TO GO TO A FILE, THE FILE SHOULD BE SAVED
240 REM BEFORE THE PROGRAM IS RUN.
250 ’
270 LET F1: F2 = O
280 PRINT ”ARE DATA IN A FILE — ANSWER NO OR GIVE

FILE NAME”;
290 INPUT A$
300 IF AS = ”NO” THEN 330
310 OPEN #1 : FOR INPUT AS
320 LET FT =1
330 PRINT ”SHOULD OUTPUT GO TO A FILE — ANSWER NO

OR GIVE"
340 PRINT "FILE NAME”;
350 INPUT AS
360 IF A$ = ”NO" THEN 390
370 OPEN # 2: FOR OUTPUT AS
380 LET F2 = 2
390 PRINT # F2:
400 PRINT # F2: ”NAME", “AVERAGE”
410 INPUT# F1: 8, G
420 PRINT # F2:
430FORI=1TOS
440 LET A = O
450 INPUT # F1 : N$
460FORJ=1TOG
470 INPUT # FI : X
480 LET A = A + X
490 NEXTJ
500 LET A = A/G
510 PRINT # F2 : N$,A
520 NEXT I
530 END

ND—60.07I .01
Revision D

The following is a sample run of AVERAGEB using the option to input the
data at run time. This listing shows clearly the correspondence between the
simple lNPUT statement and the lNPUT # statement.

AVERAGE 3

ARE DATA IN A FILE — ANSWER No OR GlVE FILE NAME?NO
SHOULD OUTPUT so To A FILE — ANSWER No OR GIVE
FILE NAME? AVERAGES
.7 3,4
?GERALD FRIEND? 78 ._......
7 86
.7 61
.780
.7 PHILIP CLOUGH yyyyy ,
.7 66
.7 ea
.7 88
.7 9i
.7ADA SHAW
.7 56
.777
.781
.785

READY

Note that AVERAGE3 will execute as in the example above supplying
the file name, TERlVllNAL, in the first question.

5.2.4 Other Input/Output Statements

The LlNPUT # Statement is used to read strings which might contain
such special characters as quotation marks, leading blanks, ampersands,
and commas from sequential files. The format of this statement is:

100 LlNPUT # <expression> : <list of string variables>

Rules governing the use of the LINPUT statement applv to the LlNPUT
statement.

ND-60.071.0l
Revison C

5.2.5

5.2.6

As we have seen, the INPUT statement requines a comma or carriage return
as delimiter for the data being entered into a BASIC program. Because the
PRINT statement, in its turn, does not supply the necessary commas, BASIC
will not be able to read its own output. This fact has lead to the implemen—
tation of the WRITE statement Whose purpose is to produce a list readable
by a matching INPUT statement. Thus, commas are automatically inserted
between the items output. This feature, however, is meaningless when not
using files. The format of the statement is:

10 WRITE # <expression> : <Iist of variables>

There are also five MAT statements which may be used with sequential
files: MAT PRINT #, MAT WRITE #, MAT PRINT USING #, MA'I
INPUT #, and MAT LINPUT #. These statements are discussed in Chapter
6.

Margins 0n Sequential Files

MARGIN # <expression> : <expression>

MARGIN # N : M sets a margin of M on file # N just as the
simple MARGIN statement sets a margin on lines output to the terminal.
The margin for sequential files may be changed at any time. MARGIN # O : M
has the same effect as MARGIN M. The interpretation of the margin
setting is the same as the simple MARGIN statement. See Section 4.7.7
for details.

The IF END Statement

IF END # <expression> THEN <Iine number>

This statement is similar to ON ERROR GOTO, but has effect only when
end of file conditions occur. It must be executed after the OPEN state-
ment and before any INPUT statement reading the actual file. The IF END
statement itself is, in fact, no conditional statement at all. When executed
the line number is stored in the file table telling BASIC to start the user
written error routine if end of the actual file is detected.

The error handling routine can be disabled by executing IF END . .THEN 0.
IF END has the highest priority used together with ON ERROR GOTO.

Example: (next page)

ND-60.071.0l
Revision D

5.2.7

10 OPEN #1: FOR INPUT "XXXX"
20 OPEN # 2: FOR INPUT ”YY
30 IF END #1 THEN 1000
40 IF END # 2 THEN 2000
50 INPUT #1,)(2 INPUT x 2,Y : (SOTO 330
60 STOP
1000 REM HERE IF END #1
1010 IF END #1 THEN 0
1020 INPUT # 2,X : GOTO 1020
1030 STOP
2000 REM HERE IF END # 2
2010 IF END it 2 THEN 0
2020 INPUT #1,X : GOTO 2020
3000 END
RUN

BASIC RUN ERROR 3 IN LINE 2020
END OF FILE

READY

Simulating Sequential Files

BASIC allows all input/output statements to communicate with internal
strings rather than sequential files. This means that it is possible to convert

the numeric value of any expression to an ASCII string or vice versa, according
to the rules of the respective input/output statements. Previously we have
seen the connect device identifier having numeric values. You will obtain
the effects described above if the connect device identifier is given a string
value. The general form is:

1.1 < input statement> # <string expressi0n> : <list of variables>

2. < output statement> # <string variable> : <list of expressions>

The string denoting the connect device identifier is now a BASIC string
which is used directly and not the name of a sequential file. The OPEN,
CLOSE and MARGIN statements have, of course, no meaning in such

constructions. Note that output terminates if the stardard margin (75) is
exceeded.

If you want to use the numeric value of the substring in A$ starting in
position X, and ending in position Y, just type the statement:

10 INPUT # SEG$ IA$, X, Y): VALUE

On the other hand, if you want to generate a string of the value of A

using a special format described in A$, type the statement:

10 PRINT USING # FORMAT?» : A$, A

ND—60.071.01
Revision D

5.3

5.3.1

5—13

RANDOM ACCESS FILES AND VIRTUAL ARRAYS

The major use of random access files is to hold big amounts of data
which should be accessed in a random manner. The data will normally
be loaded from a sequential file using a BASlC program, or be generated
by a program.

Random files are used to hold numbers and strings. The data is manipu-
lated internally in BASIC and accordingly the internal format is used.
Numbers are represented in the standard floating point or integer formats
and strings are saved in ASCII code two characters to a word.

The addressing mode of arrays is used to address the individual items in
a random access file and when an array is assigned to a random access
file, the associated indexed variable may be used the same way as for
standard arrays. Such arrays are called virtual arrays or matrices.

The array format is used to access data because the PRlNT and lNPUT
statements deal only with the next sequential data element. A sequential
file, then, is limited in its applications and depends on a strictly sequential
treatment. With virtual arrays, the user can reference any element of one
or more matrices within the file, independent of where in the file that
element resides. This random access of data allows the user (non-
sequential) referencing of the data for use in BASIC. The virtual arrays
are read into memory automatically by the system.

Data stored in virtual arrays remain, even after the terminal is logged out.
The data can be retrieved later by accessing that file from BASlC or
other program systems. lt is illegal to use MAT statements with virtual
arrays. Note also that there is no bound checking when accessing arrays.

Opening a Random Access File

Before any virtual array access is made, the random file must be
opened, associating the file name with 3 connect device identifier.
The identifier must always have a numeric value in the range 0-127 (which ‘
is also used in the virtual DIM statement). The access mode is RANDOM allowing
read as well as write random access. it is very important to close
random files, because the CLOSE statement causes output of the last
block.

Examplef

100 OPEN # 50: FOR RANDOM “MYFIL”
900 CLOSE # 50:

ND-60.07l .01
Revision C

5.3.2 Declaring Virtual Arrays (Virtual DIM Statement)

The BASIC program has to be informed that a particular array is
not to be stored in the memory, but on a random file. This is
declared in a Special form of the DIM statement:

DIM # <expression>z<list>

The expression denotes the connect device identifier which is the
same referred to in the OPEN statement. The list must appear as
it would in a standard DIM statement. (See Section 2.7.7.)
Subscripted variables of any type can be virtual array elements. """"
More than one array can be specified within one random file.

Remember that future references should always dimension the arrays
to the same size. There are no restrictions on the array size, because
the subscripts are converted to and computed in double integer format.

20 DIM # 3:A(100,100),A$(100%,100%),l%(2000%),DBl%%(1000)

The above statement indicates that the file associated with # 3 contains
10201 real numbers addressed by:

A(0,0),A(1,0),A(2,0)...,A(100,0),A(O,1),....etc.

Then follow 10201 strings. The maximum number of characters in
each is 16, because no size is given. The strings are addressed by:

A$(0,0l,A$(1,0)..., A$i100,0),A$l0,1),....etc.

Thereafter follow 2001 integer numbers and 1001 double integer numbers.

5.3.3 Virtual String Arrays

Standard strings are of variable length, from 0 to 32767 characters.
Virtual string array elements are of fixed length, from 2 to 512 characters
which is the maximum length. If no length is specified, a default length
of 16 characters is assumed. The fixed length can be changed by the
program, but a syntax error will be printed if you don't follow this
rule: (length +1)/2 must be a multiple of 512. The total space is i
always reserved for each element, but an element
need not use the maximum length, The maximum length is optionally
specified in the virtual DIM statement and must always be a constant.

10 DIM # 5: A$l10000) = 1,B$(100,100),C$(100) = 32%

ND-60.071.01
Revision C

5.3.4

5-15

The statement above reserves space on the file associated with # 5
for:

A$: 10001 strings Of maximum 2 characters each

B$: 10201 strings Of maximum 16 characters each

C$z 101 strings of maximum 32 characters each.

Using a Random Access File From a Program

Our example from sequential files which computes the average grade
for each of several students in a group is now used again in a new
version. — Suppose we want to print out the average grade for a
given student, i.e. the student name is the key for further computations.
it is obvious that we could solve the problem by using sequential files,
but we soon realize that using arrays are much more convenient and
faster. Suppose also that the number Of students has increased so
that the total amount Of data is tOO big to be held in arrays in
memory.

Before running the program the file must be initialized. The array
NAMES$ is filled with the student names, and the two dimensional
array GRADES is filled with the corresponding grades. The following
program, AVERAGE4, is used to scan the data base and perform the
necessary computations and printouts:

100 REM PROGRAM NAME -- AVERAGE4
no ’
120 REM THIS PROGRAM COMPUTES AVERAGE GRADES FOR A GIVEN STUDENT.
130 REM THE NAMES AND GRADES ARE STORED IN A RANDOM ACCESS FILE
140 REM CALLED STUDENT-FILE.
150 REM THE NAMES ARE FOUND IN THE ARRAY NAMES$.
160 REM THE GRADES ARE FOUND IN THE ARRAY GRADES.
170 REM THE INDEX BY WHICH THE NAME IS STORED IS THE STUDENT
180 REM NUMBER. THIS NUMBER INDICATES WHERE IN THE ARRAY
190 REM GRADES TO FIND THE GRADES.
200 REM
210 OPEN # 1% FOR RANDOM “STUDENT-FzDATA"
220 DIM #1: NAMES$l1000)=32%, GRADES(4,1000%)
230 PRINT 1! : LINPUT “STUDENT NAME", STUD$
240 IF STUD$ = ”FINISHED” GOTO 320
250 PRINT ! : AVER=0
260 REPEAT 1000: IF NAMES$(@)=STUD$ THEN |%=@ : GOTO 280
270 PRINT ”NO SUCH STUDENT" : GOTO 230
280 REPEAT 4: AVER=AVER+GRADES(@,I%)
290 AVER=AVER/4

ND-60.071.01

5—16

300 PRINT "NO ;l%,NAMES$lI%), "AVERAGE“;AVER
310 GOTO 230
320 CLOSE#1::
:330 END

“Let us go through the program and make some observations before
starting the execution. The first executable statement is located in
line 210 opening the file really named: STUDENT—FILE. We see that
file names may be abbreviated until ambiguity arises. The word DATA
following the colon is the file type, and has to be specified unless
the file is of type SYMB, which is the default type in OPEN state—
ments. —— The next statement declares the names and sizes of the
virtual arrays. Space is reserved for a maximum of 32 characters for
each string element in NAMES$. GRADES is a real array.

Note that the indexes (subscripts, dimensions) may be of any type.
In line 230 we find a multiple statement line, first two blank lines
are given, and then the program will ask for the student name. This
is an example showing the convenience of printing messages in an
input statement LINPUT is used to avoid typing of The next
statement will close the file and stop execution if the student name,
FlNlSHED Is typed. Line 250 gives a blank line and initializes AVER
for computation of the average.

The REPEAT statement in line 260 initializes a loop of maximum
1000 to find the given student in the data base. if found, the @
variable (real) indicates the student number which is assigned to the
integer l% before going on to line 280. if not found @ takes the
value 1001, a message is printed in line 270 and a new student
name is asked for. — In line 280 we now realize the importance
of storing the previous value of @, because this variable is assigned
to l in the following REPEAT statement.

The grades are found in the l%’th column and are added by letting
the row (@l run from one to four. it is important to notice that
arrays are stored by columns when working with virtual arrays!
In this example we obtain the effect of accessing four sequential
elements. Line 290 divides the sum of the grades by the number of
grades, and line 300 prints the result. The unconditional GOTO
statement in line 310 jumps back to ask for a new student name.

ND-60.07l .01
Revision C

5—17

The foIIowing is a run of AVERAGE4:

STUDENT NAME-.7ADA SHAW

NO. 876 ADA SHAW AVERAGE 74.75

STUDENT NAM E?GERALD FRIENT

NO SUCH STUDENT

STUDENT NAME?GERALD FRIEND

NO. 54 GERALD FRIEND AVERAGE 78.75

STUDENT NAME?PHI LIP CLOUGH

NO. 318 PHILIP CLOUGH AVERAGE 83

STUDENT NAME7PER PEDERSEN

NO SUCH STUDENT

STUDENT NAME?FINISHED

READY

ND-60.07I .01

6.1

ARRAY MANIPU LATIONS

INTRODUCTION

Up to this point in the manual a singly subscripted variable (a variable
having only one subscript) has denoted a one-dimensional array and a
doubly subscripted variable (a variable having two subscripts) has de-
noted a two-dimensional array. In this chapter It is appropriate to reter
to vectors and matrices since we are describing them in a mathematical
context.

Vectors and matrices are both arrays. That is, an array is denoted by
a variable having one or more subscripts; a matrix is an array having
two subscripts.

A string array is an array whose entries are strings.

BASIC provides MAT statements which are designed to allow the pro-
grammer to work with arrays in a simple and straightforward manner.
Although arrays have a row number 0 and a column number 0 in
BASIC (Sections 2.4 and 4.4), the MAT statements generally ignore
them. Virtual arrays cannot be used with MAT statements. Double
integer arrays are allowed only with MAT input/output statements.
The type of the arrays involved in a MAT arithmetic operation must
always correspond, i.e. mixed mode is not permitted.

ND-60.07i.01

6.2 MA T /N/ 77A L/ZA T/ON STA TEMEN TS

There are three MAT statements which facilitate the procedure of
assigning values to individual array entries.

100 MAT A% = ZER

This statement assigns a value of zero to each entry of the integer
array A%.

110 MAT A = CON

This statement assigns a value of one to each entry of the array A.

120 MAT A = lDN

This statement sets the matrix A equal to the identity matrix. For
this statement to be valid A must be a square matrix: A must be
doubly subscripted and have its number of rows equal to its number
of columns. A may not be a vector.

All three of these MAT statements do not affect row 0 or column 0
of the arrays on which they operate.

N D—60.0711.D;1

6.3 CHANGING DIMENSIONS USING MAT STA TEMENTS

As described in Sections 2.4 and 4.4 the DIM statement is used to
dimension lie, to reserve space in the computer for) subscripted
variables. Space for entries in row 0 and column 0 of an array is
a part of the total space reserved. For example the statement

100 DIM AI7), B(11,5)

results in 8 spaces being reserved for A with room for entries 0
through 7. (Il+1)*(5+l) = 72 spaces are reserved for B with room
for entries in rows 0 through 11 and columns 0 through 5. If
subscripted variables are used in a program but do not appear in
a DIM statement, BASIC implicitly saves ‘li spaces for a vector
and 121 spaces for a matrix (a maximum of 10 for each subscript).

It is possible to change the dimensions of the arrays used in some
MAT statements by specifying the desired dimensions in the state—
ments themselves. The initialization statements allow this flexibility.
The statements

100 DIM NS)
110 MAT A = ZERIS)

will reserve nine spaces for the vector A in line 100 and A will be
redimensioned (that is, the space reserved for A in the computer will
change) to a vector having 6 entries (entries 0 through 5) in iine 110
with All) through AIS) set equal to zero. A reference to A(6) after
line 110 will cause an error message to be output and the program
run will terminate.

Redimensioning variables in the MAT statements may cause dimensions
which exceed the space previously reserved for the arrays. In the
previous example we may retype line 110 to read

ITO MAT A = ZERIIS)

Matrices may also be redimensioned in the MAT... CON statement.

100 DIM lVll8,2)
110 MAT M = CONI5,3)

Twenty-seven spaces are stored for M in line 100 and line 110 requires
6*4 = 24 spaces for the redimensioning of M. Again, the space
required for redimensioning may exceed the spaces reserved.

KID-60.07101

Matrices may be redimensioned by using the MAT lDN statement
and the desired number of rows and columns is included in parentheses
as in the preceding examples.

100 DlM Al6,5)
110 MAT A = lDNl6,6)
120 END

Here the matrix A is dimensioned to be 6 by 5 and in line 110 it is
set equal to the 6 by 6 identity matrix.

A vector may be redimensioned to a matrix or vice versa.

As with subscripts, dimensions designated in MAT statements do not
have to be integers‘. any arithmetic expression may be used, and if the
value of the expression is not a whole number, its integer part is used.

Redimensioning of arrays may occur in other MAT statements. This
feature will be noted as the remaining MAT statements are discussed.

ND—60.07l.01

6.4 A RI THMET/C OPERA TIONS

110 MAT C = A+B
120 MAT C = A—B

The first statement causes the array C to be the sum of the two arrays
A and B. In the second statement C is the result of subtracting array
B from array A. A and B may be vectors or matrices as long as they
both have the same dimensions.

The array C is red/'mensioned if not matching A or B.

100 MAT A = B

This statement sets each entry of the array A equal to the corresponding
entry of B. A is redimensioned if not matching B.

130 MAT C = A*B

This statement puts the product of arrays A and B into array C, which
is red/mensioned if not matching. lf A and B are matrices (that is, they
have two subscripts), the number of columns in A must be equal to the
number of rows in B. C will have the same number of rows as A and the
same number of columns as B; thus, if A is an M by N matrix and B is
an N by P matrix, then C will be a M by P matrix.

Vectors may be used in matrix multiplication. lf a vector A is multi-
plied with a matrix B in a statement MAT C = A*B, then A must have
the same number of entries as B has rows. The product is a vector
with the same number of entries as B has columns; thus, it A is a vector
with N elements and B is a matrix with N rows and P columns, then C
will be a vector with P elements. lf A is a matrix and B is a vector,
they can again be multiplied together in the statement MAT C = A*B,
This time, the vector B must have the same number of elements as the
matrix A has columns; C will be a vector with the same number of
elements as A has rows. Thus, if A has M rows and N columns and B
has N columns, the resulting vector C will have M elements.

it two vectors are multiplied together to produce what is somtimes
called the dot or inner product, the result will be a single number. The
two vectors being multiplied must have the same number of elements.
Thus, in the statement MAT C = A*B, if A and B are vectors, they must
have the same number of entries. The product will now be put into
OH) or C(l,1), but no redimensioning will take place.

I

ND—60.071.01

While the statements

100 MAT A
110 MAT A

A+B
A——B

are allowed, the statement

120 MAT A = A*B

will result in an error message. When adding or subtracting two arrays,
any entry of the array is only used once so that the answer may be
stored immediately in the array. It entries of the matrix being operated
on during a multiplication are replaced, components needed to complete
the matrix multiplication are destroyed.

The following matrix multiplication is valid, provided A is a square
matrix.

100 MAT C = A*A

Performing more than one arithmetic operation in a single MAT state-
ment is illegal. Thus, to evaluate the expression A+B—C two MAT
statements are required. One way of evaluating the expression follows.
We assume all dimensions are correct.

100 MAT D = A+B
110 MAT E = D—C

ln general these MAT statements ignore row 0 and column 0 of the
arrays on which they operate.

ND—60.071.01

6.5 FUNCTIONS

The transpose of a matrix may be found using the following statement:

100 MAT C = TRN(A)

This statement sets matrix C equal to the transposed version of A.
if A has N rows and P columns, C will be redimensioned to have P
rows and N columns if necessary. The statement

110 MAT A = TRNiAl

is illegal.

The statement (called scalar multiplication)

100 MAT C = (Kl*A

causes each entry of array A to be multiplied by the value of K to
form the corresponding entry of the array C which is redimens/oned
to be the same size as A it necessary. K may be any constant, variable
name or arithmetic expression and must be enclosed in parentheses.
The statement

100 MAT A = (Kl*A

is legal.

The statement

100 MAT C = lNV (Al

sets matrix C equal to the inverse of matrix A. A must be a square
matrix, and C is red/mensioned to be the same size as A if necessary.
Matrix inversion can involve arrays of real type only.

The function DET is available after an inversion is performed, and it
is the value of the determinant of the matrix whose inverse was computed.
It is important to point out that even though a matrix whose determinant
is zero has no inverse, trying to compute the inverse of such a matrix
in the above MAT statement will not cause the program run to stop or
cause the output of any kind of error message. In this case DET is set
equal to zero and the resulting "inverse” matrix is obviously not correct.
It is up to the user to check the value of BET to determine whether
or not the matrix has an inverse.

ND—60.07l.01

Since DET is not available until after the inverse is found, if the
value of the determinant of a matrix is desired the inverse of the matrix
must be computed first.

The following statement is legal:

100 MAT A = INV (A)

All three of these functions may change the values stored in row 0 and
column 0 of the arrays involved. When inversion takes place, row 0 and
column 0 of the inverse matrix are used to store intermediate calculations.

ND—60.07l.01

6.6

6.6.1

6—9

INPUT AND OUTPUT OPERA T/ONS

The MAT READ, MAT PRINT and MAT PRINT USING Statements

There are MAT statements that cause entire arrays to be input or
output. The program MATRIX

100 DIM IVI(3,5I
110 MAT READ M
120 DATA 1, 2, 3, 4, 5, 6, 7, 8, 9
130 DATA IO, 11, 12, 13, I4, 15
I40 END

will cause fifteen numbers to be read into the matrix M by rows.
That is, the first row of M is read in, then the second and finally the
third. Row 0 and column 0 are not affected. If the following line is
added to MATRIX

135 MAT PRINT M

and line 110 is retyped as

110 MAT READ MI2,6)

the program will yield the following output when it is run:

MATRIX
1 2 3 4 5
6

7 8 9 . IO 11
12

READY

M is redimensioned in line 110 to be a two by six matrix. Twelve
numbers are read into M. Line 135 causes M to be printed in matrix
format: the entries of each row are spaced five to a line and each
row begins on a new line. Row 0 and column 0 are not printed, and
a blank line is output before the first row of the matrix is printed.

If line 135 of MATRIX is changed to read

135 MAT PRINT M;

the following output is produced when MATRIX is run:

ND-60.071.0l

6—10

MATRIX
1 2 3 4 5 6
7 8 9 1D 11 12
READY

The semicolon after the matrix name causes M to be printed with the
entries of each row closely packed on a line.

The MAT READ and MAT PRINT statements may be used with
vectors as well as with matrices. The format of the statements is that
described for matrices. The program VECTOR

100 DIM V(3)
105 MAT V = CON
110 MAT PRINT V
120 END

will cause V to be printed as a column of numbers:

VECTOR
1

1

1

READY

if line 110 of VECTOR is changed to read

110 MAT PRINT V,

the entries of vector V are spaced five numbers to a line in row format
as follows:

VECTOR
1 1 1
READY

If a semicolon replaces the comma in the new line 110, V is printed
in row format with the entries of V closely packed.

More than one array name may appear in a single MAT READ or MAT
PRINT statement. In the MAT PRINT statement commas and semi-_
colons are used both to delimit the names and to control the format
in which the arrays are printed. For example, in the statement

100 MAT PRINT V, M;

ND—60.071.01

6.6.2

6-11

If V is a vector and M is a matrix, the entries of V are printed in
rows with five entries per row. M is printed as a matrix with the
entries of each row closely packed.

Only array names without parantheses are legal in a MAT PRINT state—
ment. The following statements are illegal:

100 MAT PRINT IVII2,3I
110 MAT PRINT TRNlA)

Vectors as well as matrices may be output in the MAT PRINT USING
statement. Comma is the only legal delimiter of the format string and
the array names in the list. The elements of the array(sI are printed
according to the format string as with the PRINT USING statement.
The format is used again starting on a new line if there are more
elements than fields. If there are several arrays in the list, a blank line
is left between them, and the format string is used from the beginning.
The shorthand MAT USING may be used,

Example:

10 MAT A = CONl2,2)
20 MAT USING “+### AND —#.## ittti'”,A
30 END
RUN

+1 AND 100 E+OO
+1 AND 1.00 E+00

READY

The MAT INPUT and MAT LINPUT Statements and the NUM Function

The input is taken from the terminal as with normal INPUT or LINPUT
statements, and a question mark is printed when the program is ready
to accept the input.

If MAT INPUT goes to a vector, the excess data are ignored when
trying to enter more data than the vector can hold. If less data are
entered, the elements not affected remain unchanged. The function
NUM is available after the execution, and returns the number of data
which were input.

If MAT INPUT goes to a matrix, the data is entered by row. A variable
number of data may not be input; enough data must be entered to fill
entirely the matrix as it has been dimensioned in MAT lNPUT or previously.
The excess data is ignored as with vectors, and the number of data is
available in the function NUM.

ND-60.07i.01
Revision D

If you want to input more numbers than can be typed on one line,

it is possible to continue typing on additional lines. If the last item on

a line is followed by an ampersand (84) with no preceding comma and
then by a carriage return, BASIC will accept the input typed so far,

and then expect data continued on the following line, The last string
on a line must be enclosed in quotation marks if its last character is

an ampersand (8i).

The following program wiII call for the input of 24- i’iumbers.

I00 DIM M(2,I2I

IIO MAT INPUT M

Changing line 110 the program will call for the input of maximum 50

numbers.

IIO MAT INPUT MISO)

String vectors and matrices may also be used in the MAT INPUT
statement, and NUM is updated.

The LINPUT statement is described in Section 4.8.1; the MAT LINPUT
statement allows more than one line of information (possibly containing
commas, leading blanks, etc.) to be input in response to a single state
ment.

A variable amount of input is not allowed, and a question mark is
printed for each element.

Common to MAT INPUT and MAT LINPUT is:

— Row 0 and column 0 are ignored.

~— SeveraI arrays may appear in the list.

—- Arrays may be explicitly redimensioned.

— If not, the current dimensionIs) will determine the
maximum number of elements to be input.

~ Insertion of messages in the list is not allowed as
with INPUT and LINPUT.

ND-60.07I.01

Examgles:

IOO DIM VIS), A(3), MI3,4)
HO MAT INPUT V, A(2), M(2,3)
120 PRINT ”NUM=”;NUM
130 MAT PRINT V;A;M;
I40 END
RUN
71,2&
3
?I,2
?1,2,3,4
?4,5,6
NUM= 6

I 2 3 0 O

I 2

I 2 3
4 4 5

10 MATIJNPUTA$MI
m)PmNT“NUM=%NUM
BOIWATPRINTA$

VVVVV 40 END
% RUN

?FIRST
?SECOND,(NEXT EMPTY)
7

?FOURTH
NUM=4
HRST
SECONQINEXTEMPTYI

FOURTH

ND—60.07I .01
Revision D

6.6.3

6.6.4

The MAT WR/TE Statement

As described in Section 5.2.4 the WRITE statement produces an out-
put readable by a matching INPUT statement. The MAT WRITE state
ment outputs the elements of a vector separated ny commas on a single
line. The rows of a matrix are output on sepam lines, thus readable
by a matching MAT INPUT statement. It is very important, however,
that the number of characters output on one line does not exceed the
margin. This will be dependent on the number o’r columns and the
range of each element. In fact, this restriction is due to the size of

the input buffer rather than the current margin.

it}

MAT Statements and Fi/es

Any MAT statement performing input or output operations on the
terminal may be used with sequential files as well. The formats of
the statements are:

IO MAT INPUT .475 <N>f<list of arrays>
20 MAT LINPUT # <N>z<list of string arrays>
30 MAT PRINT

40 MAT USING

50 MAT WRITE

331
1: <I\I>:<list of arrays>

<N>2<Iist of arrays>

<l\l>:<list of arrays>

43.,
411“

where <I\l> is the connect device identifier; ie, the number of the
file being read or written, or the string which simulates a sequential
file.

For a complete discussion of files see Chapter 5.

ND—60.07I .OI
Revision D

6.7

6.7.1

6—15

EXAMPLES USING MAT STATEMENTS

The following two examples illustrate some of the MAT statements
discussed in this chapter.

MA T Arithmetic

100 READ N,P
110 MAT READ AIN,NI
120 MAT B = CONIN,NI
I30 MAT C = A+B
140 PRINT “SUM OF A AND MATRIX OF I'S IS”
150 MAT PRINT C
I60 PRINT
170 PRINT ”INPUT"; N*P; “VALUES FOR MATRIX B";
180 MAT INPUT BIN,PI
190 MAT C = A*B
200 PRINT
210 PRINT “PRODUCT OF A AND B IS”
220 MAT PRINT C;
230 MAT D = TRN (CI
240 PRINT
250 PRINT ”TRANSPOSE OF THIS PRODUCT IS"
260 MAT PRINT D
270 DATA 2,3
280 DATA 1,2,3,4
290 END

Since the matrices used in this example do not appear in a DIM
statement, BASIC implicitly dimensions them to be ten by ten and
reserves 121 spaces for each matrix. Line 110 dimensions A to be
2 by 2, while it reads values for the entries of A from the DATA
statement in line 280. Line 120 dimensions B to be 2 by 2 and sets
all entries of B equal to “I. Line 130 adds A and B and stores the
result in C. C is redimensioned to be a 2 by 2 matrix as is shown
when it is printed in line 150. Line 180 requests the user to input
enough values to fill a 2 by 3 matrix and B takes on these new
dimensions. Line 190 sets C equal to the product of A and B and
C is redimensioned to be 2 by 3. C is printed in closely packed
format in line 220. Matrix D becomes the transpose of C in line
230 and D is redimensioned to 3 by 2. D is printed in regular format
in line 260.

A run of this example follows:

ND-60.07l .01

6.7.2 Inverting a Ma

The second ex

EXA

SUM

INPL
?18,

6—16

MPLE1

OF A AND MATRIX OF 1'8 IS

3
5

T 6 VALUES FOR MATRIX B? 2, —1, 7
6, ~10

PRODUCT OF A AND B IS

38
78

11 ~13
21 —19

TRANSPOSE OF THIS PRODUCT IS

38 78
11 21

—13 ~19

READY

trix

ample inverts an N by N Hilbert matrix which has
the form

1 1/2 1/3 1/N
1/2 1/3 1/4 1/(N+1I

1/N 1/(N+1I 1/IN+2) 1/(2N——1)

A Iisting of the program follows:

100 REM THIS PROGRAM INVERTS AN N BY N HILBERT MATRIX
110 DIM A(20,20), II20,20), B(20,20)
120 DIM CI23,20), B(20,20)
130 READ N
140 MAT A == CONIN,NI
1.50 FOR I = 1 TO N
160 FOR J = 1 TO N
170 LET AII,J) = 1/(I+J~1)
180 NEXT J
190 NEXT I

ND-60.071.01

6—17

200 MAT B = INVIA)
210 PRINT "INVIAI ="
220 MAT PRINT 8;
230 PRINT
240 PRINT “DETERMINANT OF A =”,'DET
260 MAT I = IDN (N,N)
270 MAT C = A*B
280 MAT D = I—C
290 FOR I = I TO N
300 FOR J = 1 TO N
310 IF X>=ABS(D(I,JI) THEN 330
320 LET X = ABSIDII,J)I
330 NEXT J
340 NEXT l
350 PRINT
360 PRINT “LARGEST ABSOLUTE DIFFERENCE =“; X
370 DATA 4
380 END

The double loop in lines 150 - 190 sets up the Hilbert matrix A
after the correct dimensions have been set up in line I40. A single
instruction results in the computation of the inverse (line 200) and
one more instruction prints it out in closely packed format (line 220).
The value of the determinant of A is available after the inversion and is
printed in line 240. I is set equal to the identity matrix having N rows
and N columns in line 260. Lines 270 through 340 find the largest
absolute difference between an entry of the product matrix A*B and
the corresponding entry of the identity matrix. This value is printed
in line 360 and is a measure of the accuracy of the inverse since the
product of a matrix and its inverse is the identity matrix.

The following run uses a value of 4 for N.
o-

HI LMAT
lNVlAI=

16 ~120 : 240 ~14O
—120 I 200 ~27OO 1680

240 —2700 6480 ~4200
—140 1680 —4200 2800

DETERMINANT OF A = 1.65344 E —07

LARGEST ABSOLUTE DIFFERENCE = 1.66893 E —06
READY

ND-60.07I.OI

6—18

While this example shows how several MAT statements are used, it
also points out that the accuracy of the matrices generated by using
MAT statements depends on the structure of the matrices and on the
fact that the computer stores any number to only a limited number of
significant digits. These two factors combine in this example when N
is greater than or equal to 7 to cause severe roundoff errors which in
turn cause a highly inaccurate inverse to be returned. When N = 7,
a value for the absolute difference described previously is greater than
one and continues to grow as N increases.

ND-60.071 .01

6.8

6-19

SlMULAT/NG AN N—D/MENS/ONAL ARRAY

Although arrays having more than two dimensions are not allowed in
BASIC, the method outlined in the following program can be used to
simulate an array having any number of dimensions. It makes use of
the fact that defined functions may have any number of arguments, and
a one to one correspondence is set up between the entries of the array
and the entries of a vector. Formatting techniques cause the entries
of the vector to be printed in a format reflecting the dimensions of
the array.

This example simulates an array having three dimensions; it can easily
be rewritten to accomodate four or more dimensions.

100 DIM VIIOOO)
110 MAT READ D(3)
120 DEF FNA(I,J,OK):
130 FOR I: OD(1
140 FOR J — 1 TO D(2
150 FOR K — 1 TO D(
160 LET V(FNA(l,J, Ki):
170 PRINT V(FNA(Il,,J
180 NEXT K
190 PRINT
200 NEXT J
210 PRINT
230 NEXT I
240 DATA 2,3,4
250 END

(l—1)*D(2)+(J~1II*D(3)+K(
l
I

3)
H2 J+KT2

KI),

When the program is run, the vector is printed as two 3 by 4 matrices.

3—ARRAY

4 7 12 19
6 9 14 21
8 11 16 23

5 8 13 20
7 1O 15 22
9 12 17 24

DONE

ND-60.071.01

6.9 THE ROW ZERO AND COLUMN ZERO

The zeroth row and column of a matrix can be used to store information,
provided that no lVlAT operation is intended to affect it. ln very large
programs which do not use the MAT operations, this fact can be used
to good advantage. An array must be dimensioned to be 200 by 10
to store 2000 items of information if the zeroth row and column are
not used; BASlC sets aside 2211 places for that array. It the zeroth
row and column were used, the dimensions could be set to be 199 by 9,
and only 2000 places would be reserved, The program would be smaller
and might be able to run in the space allotted when without this
redimensioning the program would occupy too much storage to run.

ND-60.071.01

7.1

PROGRAMS, FUNCTIONS AND SUBPROGRAMS

PROGRAM UNITS

The words function, subroutine or subprogram within this chapter refer
to externa/ functions or subroutines as opposed to internal functions
or subroutines (FNA(X), GOSUB 10).

A NORD BASIC program consists of one main program and, optionally,
one or more subprograms. The term program unit refers to either the
main program or a subprogram.

A main program is a set of statements and comments forming a self-
contained computing procedure; it must contain at least one executable
statement. A PROGRAM statement may be used as the first statement
of a main program, but is not necessary. A main program may not
contain a FUNCTION, or a SUBROUTlNE statement.

A subprogram is also a set of statements and comments, but is headed
by either a FUNCTION or SUBROUTINE statement.

All program units must be terminated by an END statement. The
main program and subprograms communicate with each other through
parameters, virtual arrays, or sequential files.

ND—60.07‘l .O‘l

7.2 MAIN PROGRAM

A main program may be written with or without references to sub—
programs.

The PROGRAM statement may be used as the first statement of the
main program, and has the following format:

PROG RAM <name>

name is an alphanumeric identifier from one to six characters; the
first must be alphabetic. This name must not be mixed up with the
leader printed with RUNH and LlSTH. The statement is optional.

A main program may refer to both subroutines and functions which
are compiled independently of the‘ main program. A calling program
is a main program or subprogram that refers to srbroutines and
functions.

N 060071 .01

7.3

7.3.1

7.3.2

PARAMETERS

lVlain programs, subprograms, and functions use parameters as one
means of communication. The parameters appearing in a subroutine
call or a function reference are actual parameters. The corresponding
parameters appearing with the subroutine or function name in the
definition are formal parameters. Actual and formal parameters must
agree in order, type and number.

Formal Parameters

The following are permissible forms for formal parameters:

array name
simple variable

Since formal parameters are local to the subprogram containing them,
they may be the same as names appearing outside the program unit.

No element of a formal parameter list may appear in an EXTERNAL
or CALL statement within the subprogram. When a formal parameter

represents an array, it should be declared in a DllVl statement within

the su bprogram.

Example:

10 SUBROUTINE PER(A,l,X)

10 FUNCTlON OLElX)

A, l and X are formal parameters.

Actual Parameters

The following are permissible forms for actual parameters:

constant
simple variable or matrix element

arithmetic expression

array name
program name

When an actual parameter is a program name, that name must also appear
in an EXTERNAL statement (especially meant for RT applications).

ND—60.07l .01
Revison C

7.4

7.4.1

FUNCTION SUBPROGHAM

A function subprogram is a computational procedure which returns a
single value associated with the function name. The type of the
function is determined by its name in the same way as a variable
identifier.

The first statement of a function subprogram must have the following
form:

FUNCTlON <name>l<formal parameter list>)‘

The name of the function must also appear as a variable name in the
defining subprogram. The value of this variable at the time of exe—
cution of the END statement in this subprogram is called the value of
the function.

The function subprogram may contain any statement except SUBROUTINE
another FUNCTION statement, or any statement that directly or indirectly
references the function being defined. Recursive calls are not permitted.

I

Integer/double integer functions may be declared by mentioning the
function name in a type declaration statement.

The EXTERNAL Statement and Function Reference

If an external function is to be referenced its name must be declared
in an EXTERNAL statement:

EXTERNAL <name l>,<name 2>,. . ..

where name 1, name 2..., are the referenced function names. The
EXTERNAL statement must be entered into the BASIC compiler before
the function references.

A function is referenced by

<name>(<actual parameter |ist>l

where name identifies the function being referenced. It is the same as
the name in the FUNCTlON statement.

ND-60.07l .01

7.4.2

A function reference may appear any place in an expression where
an operand may be used. The evaluated function will have a single
value associated with the function name. When a function reference
is encountered in an expression, control is transferred to the function
indicated. When the END statement in the function subprogram is
encountered, control is returned to the statement containing the
function, with the function reference replaced by the value of the
function.

Example:

10 EXTERNAL XSQ
20X=A+B* XSQ(D)

Function Parameters

When a function reference is executed, actual parameters are associated
with all appearances of the corresponding formal parameters in executable
statements in the defining subprogram. if a formal parameter appears in
a statement redefining its value, the corresponding actual parameter must
be a simple variable or a matrix element. if an actual parameter is an arith-
metic expression, it is evaluated and its value is associated with the cor—
responding formal parameter.

lf a formal parameter is a matrix name, the corresponding actual parameter
must be a matrix.

A function need not have any parameters, but maximum 63 are permitted.

ND-60.071.01

7.5

7.5.1

SUBROUT/NE SUBPHOGRAMS

A subroutine is a computational procedure which may return none,
one, or more values. No value or type is associated with the name
0f a'subroutine. The first statement of a subroutine subprogram must
be the following:

SUBROUTINE <name>[(<formal parameter |ist>ll

where name is an alphanumeric identifier as in the PROGRAM state
ment. The formal parameters may be variable names, array names,
or subprogram names.

The name of the subroutine must not appear in any other statement
in the subprogram. The parameters may be defined or redefined within
the subprogram so that they may effectively return results. The same
rules apply to the parameters as for function subprograms.

No value is associated with the name of the subroutine, and the sub-
routine must be referenced by a CALL statement.

The CA L L Sta tement

The executable statement in the calling program to refer to a sub-
routine is the form:

CALL <name>[(<actual parameter list>)]

The name may not appear in any specification statement in the calling
program except in EXTERNAL statement. A subroutine may also be
referenced by the appearance of its name in an EXTERNAL statement.

The CALL statement transfers control to the subroutine. When the
END statement is encountered in the subroutine, control is returned
to the next executable statement following the CALL in the calling
program.

Exam pl es:

1) Subrou tine Subprogram

10 SUBROUTINE PlPlA,B,C)
20 A = B**C

100 END

ND-60.07i.01

2) Calling Program Reference

30 CALL PIP(V{1),X,3)
4O REM PARAMETERS MUST AGREE IN NUMBER AND TYPE

N D-60.071.01

20

7.6 COMP/LAT/ON AND EXECUTION WITH SUBPROGHAMS

Within the BASIC system only one of the present program units may
exist as an incremental unit. Such a unit has the following characteristics:

— The statements may be changed.

— lts identifiers may be examined and changed.

—— The run-time error messages reference the line number
where the error occurred.

—- Break-points may be set.

All other units may be regarded as static blocks where changes must be
made by editing and compiling into the binary relocatable format
(BRF).

The transformation into BRF format is obtained by using the command

COMPILE <source-file>[<list—file><BRF object—fi|e>]

which starts a compilation of the program unit(s) in the source file.

If the first parameter is present only, this command acts like OLD
except for two deviations:

— The new program is appended to any old one with no
system initiation.

— File—name will not be taken as the program name.

If the second parameter is present, a listing of the program will be
obtained on the list-file/device specified.

When the third parameter is missing, this indicates that the compilation
is done incrementally which is the normal use of the system. However,
if the third parameter is present, the compiler will translate the source-
file program unit(s) into BRF format which is written on the file/
device specified. Default file type is :BRF. Such source-files should
be terminated with an EOF statement:

<line number> EOF

ND-60.07l .01
Revision C

7.7 MAIN PROGRAM AND SUBPROGRAM LINKAGE

Subprogram units that are referenced in the main program must be
entered into the system by the command

LOAD <BRF object-file>

One or more object—files may be Specified delimited by spaces.

When a load is completed the current load address and the memory
upper bound is printed on your terminal in the format

FREE: <current location>-<upper bound>

Now a list of the loaded units and their memory addresses may be
obtained by typing

ENTRIES—DEFINED [<file-name>]

Any referenced but still undefined entry may be examined by

ENTRlES-UNDEFINED [<file~name>]

When all referenced entry-points (units) are present you may start"
your program, else you get a message which tells you the undefined
entries.

Subprograms on BRF object files may have been created from NOR D
STANDARD FORTRAN, NORD BASIC, NORD PL or MAC assembly.

Sometimes you may want to debug a subroutine or function unit in
incremental mode. Then the main program must be converted into
BRF format and loaded into the system rather than compiled in the
usual way. An example will illustrate this.

Suppose your program system consists of the main program (on file
MAIN) referencing two external functions F1 (on file Fl) and F2
(on file F2). Something is going wrong in F1 and you want to con-
trol the execution of it in incremental mode by breaking through it.
This system configuration is generated in the following way:

COlVl lVlAlN, 0, ”MAlN“
COlVl F2, 0, "F2”
OLD F1
LOAD MAlN

ND-60.071.0l
Revision C

7.8

7—10

REAL TIME {RT} PROGRAM STATEMENT

By using the RT program statement you can generate an RT
description for your program. This program may be executed in the
same way as all other RT programs written in assembly code (see
the SlNTRAN lll User’s Guide for further information). The RT
statement has the following format:

PROG RAM <prog.name>,<priority>

The <prog.name> may be any acceptable BASlC name. it will be
referred to in the loader tables and must be defined only once.
The <priority> specifies the priority of the RT program and may
be any unsigned integer between 1 and 255. An example might be:

1

PROGRAM PER, 5%

Here PER will be defined to a real-time program with a priority of 5.

The <priority> may be omitted. Then the <priority> will be set to
one, and a warning message will be printed when the program is loaded
by the Real Time Loader.

N D6007 l .01
Revision C

7.9 STAND ALONE EXECUTION

Previously we have seen that any program unit written in BASlC can
be compiled to machine instructions in BRF format. Such a program
unit is not dependent on being loaded and executed with the total
BASIC system in memory. Other subsystems exist which are able to
perform the loading and linking procedure:

—~ SINTRAN lll Real Time Loader

— NORD—lO/ND—lOO Relocating loader

These are described in the respective manuals.

A BASIC Library and Run-time System is available for stand alone
execution purposes. This system should be loaded after the BASIC
program units, hence, only the run-time routines required (called for)
are loaded into memory.

ND—60.07l.01
Revision D

7.10

7.10.1

Mixing BAS/C With Other Languages

BASIC/FORTRAN/NPL/IVIAC program units, i..e,, programs, sub-
routines or functions may be mixed in an arbitrary combination. -
Within the BASIC system at most one BASIC pr 1 unit can be
executed in incremental mode, else all the units mast a compiled
to BRF format and linked together by the BASIC builtin loader
or by another loader subsystem. The main program may be created
in either of the languages mentioned above.

BAS/ C Strings as Parameters

When using a BASIC string as parameter, generaliy the address of the
two word string-descriptor is transferred to callee. The descripton
contains the string address (1. word) and string length in bytes (2. word).
The string is packed two by two characters in a word.

If, however, a BASIC string appears as parameter to a FORTRAN sub~
program, it must be preceded by a dummy plus sign (+). As an
effect of this the string address instead of the descriptor address is
transferred to callee. This restriction is necessary as the string concept
of BASIC is lacking in FORTRAN.

Assignment to string parameters in non-BASIC subprograms will often fail.
Such variables should be declared in the COMMON storage area.

Example:

10 CALL SUBRHA$I ’BASIC/BASIC
20 CALL SUBR1i+A$l BASIC/FORTRAN

On the other hand, a FORTRAN Hollerith string may be associated

with a BASIC formal parameter by applying a certain function upon
it like:

STRING(<hoIIerith string>,<number of characters>)

Example:

10 CALL SUBR2(”ABC”) BASIC/BASIC

C FORTRAN/BASIC

CALL SUBR2<STR|NGl3HABQ 3))

ND-B0.07I .01
Revision C

7.10.2

7.10.3

7—13

Types of Parameters

Be sure that actual and formal parameters correspond in type as
well as in number. Integers in FORTRAN ought to be integers in
BASIC, i.e. postfixed by % or declared in an INTEGER statement.
Note that apparent Integers as 2 or 100 in BASIC are treated as
reals while 1% and 200% are equivalent to FORTRAN integers.
It is also the user’s responsibility to give parameter arrays the correct
dimensions in the DIMENSION respectively DIM statements. (String
arrays make no sense as parameters to FORTRAN.)

Types of Functions

It is also important that function identifiers (names) agree in type.
These identifiers are type-declared like ordinary variables.

Example:

10 EXTERNAL FUN
20 A = FUN(ll

100 END

10 FUNCTION FUNlll
20 INTEGER FUN
30 FUN = |
40 END

Here, the function FUN will be treated as type real in the call while
the function itself returns an integer value. This will cause the value
of A to be unpredictable. Type of identifiers can be examined by
the lDENTIFlERS—USED command.

ND-60.071.01
Revison C

7.11

7.11.1

7.11.2

7.11.3

MIXED BASIC AND ASSEMBLY ROUTINES

The NORD BASIC Run-time System has been designed to allow an
extensive use of mixed BASIC/ASSEMBLY systems. No special
heading format of the assembly routines is necessary, but there exist
some restrictions upon the use of the B register.

When calling assembly subroutines/functions from BASIC, the value of
the B register on leaving the subprogram must not differ from the
entering value. (System value.) Moreover, no locations in the B field
(B T2998 through B +1778) must be changed by the subprogram.
The L register holds the return address.

Parameter Access in Subprograms

When entering any assembly subprogram, the A register points to ‘a
string of the actual parameter addresses (if any).

Functions in Assembly

A function must always return with a value, and this must be contained
in the central registers.

fl

integer functions : Value in the A register
Double functions : Value in the A—D registers
Real functions : Value in the T—A—D registers
String functions : String descriptor in A~D registers

Example of a Subprogram Structure

)QBEG
)QENT SUBR

SUBR, SWAP SA DB
STA SAVB % SAVES B REGlSTER

LDF l 0,8 % ACCESS OF 1. PARAMETER

ND—60.071.01
Revision C

7.11.4

LDF I N-1,B % ACCESS OF N’TH PARAMETER

LDA SAVB
COPY SA DB
EXIT % RETURNS TO BASIC

SAVB,O
)QEND

Calling a BASIC Subprogram from Assemb/y

The calling sequence is epained through the foIIowing example:

IQBEG
I9EXT 8ENTR SUBR

JPL I (8ENTR

SUBR
N

PARAMI

PARAMN

)FI LL
)9END

% 8ENTR IS A RUN TIME TRANSITION
% ROUTINE
% BASIC SUBROUTINE NAME
% NUMBER OF PARAMETERS
% ADDRESS OF 1. PARAMETER

% ADDRESS OF N’TH PARAMETER
% RETURN, FUNCTION VALUE IF ANY
% IN RESPECTIVE REGISTERIS)

ND-60.071.01

APPENDIX A

A.‘I

SUMMARY OF ERROR MESSAGES

Since it is beyond all expectations that everyone will always write
perfect BASIC programs, the language has been provided with a set
of informative error messages. These are divided into two main types:
messages from the compiler and messages from the run-time system.
Generally, the compiler errors arise from incorrect format in a state-
ment or incorrect reference to variables. The messages from the
run-time system, which arise during execution, are more varied.

COMP/LER ERROR MESS/I GES

These messages are self~explanatory as far as it is possible. In the '
list below they are supplied with some information and examples.

NOT RECOGNIZED
Statement or command not recognized.
10 XXX
*** ERROR IN LINE 10 NOT RECOGNIZED

ILL. STATEMENT AFTER lF —— THEN
The following statements listed are illegal after IF — THEN:

DATA, DIM, DIM#, EXTERNAL, FNEND, FOR, NEXT,
FUNCTION, IF, DEFFN, PROGRAM, END, SUBROUTINE

IO IF I=O THEN FNEND
*** ERROR IN LINE 10 ILL. STATEMENT AFTER lF—THEN

SYNTAX ERROR
An identifier or delimiter appears in a relationship where it
does not make sense to the compiler. The illegal item is
referenced in quotation marks.

10 A=A++A
ERROR IN LINE 10 “+“ SYNTAX ERROR

20 FOR 2=l TO 10
*** ERROR IN LINE 20 “CONSTANT” SYNTAX ERROR

ND—60.071.01
Revison C

MAX T‘WO SU‘BSCRIPTS PERMITTED

A matrix declaration reference appears with more than
two subscripts.

10 B=MAT(I,J,L)
*** ERROR IN LINE 10 "MAT“ MAX TWO SUBSCRIPTS

PERMITTED

(MISSING

A matrix declaration must be folIowed by a dimensioning
parenthesis.

I

10 DIM MAT,
*** ERROR IN LINE IO ",” I MISSING

END MISSING
The END statement must be the last statement of a
program unit. If not present, the program wilI not execute.

LINE NUMBER MISSING

May occur during execution in incremental mode if the
statement referred to in an ON ERROR GOTO is removed.

NOT STRING TYPE

The identifier involved must be string type.

PRINT USING A,B
“A” NOT STRING TYPE

MIXED DATATYPES

The left and right side of an operator do not match in type.

IF A=A$ THEN 20
“A“ MIXED DATATYPES

ND-60.071.01

ILL. STRING TERMINATION

A string is not terminated with quotation mark.

A$=“ABC
ILL. STRING TERMINATION

TOO MANY NEW VARIABLES SINCE LAST RUN

This message may occur in Immediate mode when a lot
of new identifiers are introduced. Try a (dummy) run of
the program. (A program may consist of an END state—
ment only.)

ILL. TYPE INDATA-STATEMENT

Expressions are not permitted in DATA statements.

10 DATA 10, 10+20
*** ERROR IN LINE 10 ”EXPRESSION" ILL.TYPE IN

DATA~STATEMENT

MAX FOR—LOOP NESTI NG

These may be nested to maximum depth of 16.

FOR—LOOPS WITHOUT NEXT—MATCH

A FOR statement occurs while the corresponding NEXT
statement is missing.

10 FOR l=1 TO 50
20 END
RUN
"LINE 20” FOR—LOOPS WITHOUT NEXT—MATCH

NEXT—~STIVI. WITHOUT FOR-MATCH

A NEXT statement occurs while the corresponding FOR
statement is missing.

10 NEXT A
20 END
RUN
”LINE 10“ NEXT—STM, WITHOUT FOR—~MATCH

ND-60.07l.01

IIVlPROPERLY NESTED FOR—LOOPS

FOR—NEXT statements must match in a way outlined in
Section 2.3.

10 FORI=1TOIO
20 FORJ=1TOIO
30 NEXTI
40 NEXTI
50 END
RUN _
’WJNEBO“IMPROPERUYNESTHDFOR—LOOPS

NOT LOGICAL EXPR IN IF

The expression within IF and THEN must have a logical
value resulting from arithmetic relations.

IF A+I THEN 20
”A" NOT LOGICAL EXPR IN IF

TH EN/GOTO/GOSUB NOT FOUND

One of these BASIC language words does not appear in
a statement where it is expected to be found. (IF, IF END,
ON).

ON X PRINT 5
THEN/GOTO/GOSUB NOT FOUND

GOTO/GOSUB/THEN — NOT FOLLOWED BY LINE NUMBER

A line number is expected to appear in this relationship.

GOTO X+Y
”X” GOTO/GOSUB/THEN —— NOT FOLLOWED BY LINE
NUMBER

RECURSIVE CALL

Recursive call in basic subprograms is not permitted.

IO FUNCTION FUNIII
20 X=FUNIII
*** ERROR IN LINE 2O ”FUN” RECURSIVE CALL

ND~60.07I.OI

ILL. CHARACTER

A nonstandard character occurs in this line.

LET X=!
ILL. CHARACTER

LINE <ddd> MISSING

The referenced line is missing and must be added to
the program in order to run it.

GOTO 50
“LINE 50” MISSING

ILL. EXPR IN ON

Something is wrong with the expression in an ON
statement.

10 ON A$ GOTO 10,20
*** ERROR IN LINE IO ILL. EXPR IN ON

TO MISSING

The word TO must be present In a FOR statement.
The word STEP, however, is optional.

10 FOR X=I
*** ERROR IN LINE 10 TO MISSING

NESTED IF STATEMENTS

An IF statement cannot appear as a conditional state—
ment of another IF.

STRING NOT PERMITTED

The referenced string identifier/constant is not permitted
in this relationship.

10 DIM ARRAY IA$,IOO)
*** ERROR IN LINE IO “A$" STRING NOT PERMITTED

ND‘60.07I .OI

OPERATION UPON ILL. DATATYPE

The referenced operand does not make sense in this
application.

LET A=B+STRING$
”A” OPERATION UPON ILL. DATATYPE

INCORRECT NUMBER OF ARGUMENTS

The referenced library function is attempted to be
called with incorrect number of arguments.

PRINT SINIA,I%)
“SIN” INCORRECT NUMBER OF ARGUMENTS

INCORRECT ARGUMENT TYPE

The referenced function is attempted to be called
With incorrect argument type.

PRINT SINIA$I
"A$” INCORRECT ARGUMENT TYPE

LOGICAL MIXED WITH NONLOGICAL

A logical expression is involved as one of the operands
in an operation while the other one is not.

LET ALFA=BETA<DELTA
"ALFA" LOGICAL MIXED WITH NONLOGICAL

UNBALANCED PARENTHESIS

The number of left and right parentheses on a line
deviate from each other, or they are improperly nested.

IO LET lNTX=OUOT+IVARI/(I~SINIVARII)
*H ERROR IN LINE 10 UNBALANCED PARENTHESIS

ND—60.07I .01
Revision C

STRING ASSIGNMENT ERROR

A string cannot be assigned to a numeric variable and a
numeric expression cannot be assigned to a string
variable.

20 LET STRING$=ALFA
*** ERROR IN LINE 20 ”STRINGS“ STRING ASSIGMENT ERROR

MATRIX NOT DIMENSIONED

May occur In immediate mode. The referenced matrix
must be declared in a DIM statement.

MATPRINT X
”X" MATRIX NOT DIMENSIONED

MISSING SUBSCRIPT

The referenced matrix identifier must have subscripfis) in
this relationship.

10 DIM ARRAYIZOOI
20 LET X=ARRAY
*** ERROR IN LINE 20 ”X" MISSING SUBSCRIPT

DEF~FNEND MATCH ERROR

Improper sequencing of DEF and FNEND statements.

10 FNEND
100 END

RUN
“LINE IO" DEF-FNEND MATCH ERROR

MATRIX/VARIABLE NAME CONFLICT

An identifier cannot be used as single variable somewhere
and matrix elsewhere.

IO A=2O
20 DIM AIZO)
*** ERROR IN LINE 20 "A” MATRIX/VARIABLE NAME

CONFLICT

ND-60.071.01

22

LINE NUMBER USED PREVIOUSLY

May occur while compiling into BRF format. Then
two lines with identical numbers are not permitted.

COM I,0,0BJECT
IO REM THIS IS A PROGRAM
IO REM....
*** ERROR IN LINE IO "LINE I0” LINE NUMBER USED

PREVIOUSLY

MISPLACED STATEMENT

PROGRAM, SUB ROUTINE, FUNCTION, type declaration and other
nonexecutable statements ought to be the first entered to the compiler
(lowest line no.). Try the RECOMPILE command or change the line
number(s).

IO I%=l77777B
5 SUBROUTINE OLA
”*ERROR IN LINE 5 MISPLACED STATEMENT

TOO MANY OPERAN DS

Operand stack overflow. Try to split the statement in two.

OPERATOR STACK OVERFLOW

Try to split the statement in two.

VIRTUAL MATRIX NOT PERMITTED
%

The referenced matrix identifier is not permitted in this
relationship.

10 DIM #l: ARRAYIIIOOO,IOOO)
20 MAT INPUT ARRAYI
“I“ ERROR IN LINE 20 ”ARRAYI“ VIRTUAL MATRIX

NOT PERMITTED

COMMON IDENTIFIER NOT PERMITTED

Due to limitations in usage of COMMON variables.

ND—60.07l .01
Revision C

NEEDS CORRECTION

The referenced statement must be corrected (or deleted)
in order to run the program.

10 PRINX A,B
*** ERROR IN LINE 10 NOT RECOGNIZED
20 EMD
*** ERROR IN LINE 20 NOT RECOGNIZED
RUN
”LINE IO“ NEEDS CORRECTION
”LINE 20" NEEDS CORRECTION
LIST
10 PRINX A,B
20 EMD

NOT IN STOP

The CONTINUE command may be applied in the following
states only:

A STOP statement has been reached.
At a break-point

FATAL COMPILER SYSTEM ERROR <ddd>

A fatal error during compilation has occurred due to
hardware or software errors. The octal number, <ddd>,
indicates an address in the compiling system.

BRF-CHECKSUM ERROR

The BRF file contents are damaged due to hardware or
software errors occurring when it was written or read.

COMMON BLOCK EXPANDED

The length of an already defined common block is declared
larger in a subsequently loaded program.

DOUBLY DEFINED

The symbol being defined (either by loading a file or by
the DEFINE command) has already been assigned a value.

N D-60.071 .01

A—‘10

I'LL BRF-CONTROL NO

Non-interpretive information has appeared on the BRF tile
due to hardware or software errors.

lNSUFFlCI ENT PROGRAM

Error diagnostics have occurred during the compilation
process.

ENTR Y-TAB LE OVERF LOW

The entry-symbol table iSvfilled. Try the TAB LE-SlZFS
command.

NO PROGRAM

The user is trying to start a program with no main module.

AMBlGUOUS

The last command word is abbreviated until an ambiguity
has occurred.

.7 Something is wrong with the command argumentls).

COMPl LER TABLE OVERFLOW

The compiler main table has overflowed. Try the TABLE—SlZES
command.

MlSSlNG ENTRY

When trying to start a program with undefined entries, the
entries are printed preceding this message.

AT UPPER LlMlT

The current load address has reached the absolute upper limit
or the beginning of the common area.

ND-60.07l .01
Revision C

A——1 0a

LiNE NUMBER OVERFLOW

1‘} line number or line number > 32767 in RENUMBER. The
program is intact and no renumbering took place.

MAXIMUM LINE LENGTH EXCEEDED

1. RENUMBER expands line beyond limit '(125 characters).
The renumbering of the program was executed, but the
referenced line was truncated and marked erroneous.

or

2. Too long source line on input. The line w as skipped.

ND-60.071.01
Revision C

A.2 RUN—TIME SYSTEM ERROR MESSAGES

Runtime error messages are printed as seliexplanatory text. Example:

BASIC RUN ERROR IN LINE 10: PARITY ERROR ON INPUT

When executing ”stand alone” the message may be printed as an octal
number, and the line number is replaced with the octal address of the
statement. Numbers in the range 0—377 are equivalent to the error codes
returned from the FILE SYSTEM monitor calls. All numbers from 400 and
upwards are BASIC run~time error codes which are explained below. Fl LE
SYSTEM errors are always printed with explanatory text in addition to the
error code. The ON E RROR GO TO statement will omit printing of run»time
error messages, but the error code is still available in the function ERR. In
incremental mode errors are always printed with explanatory text. In
B RF—compiler mode the user may prevent text strings being loaded (from
BASLIBR) if the symbol 7ERRP is set to zero by the DEFINE command
prior to loading. If text strings are not loaded, a saving of approx. 1K of
memory is achieved.

Error Code Non-
Octal Decimal fatal (x) Interpretation

401 257 System error in l/O system
402 258 Format parameter not string
403 259 Illegal delimiter
404 260 Empty string
405 261 Illegal item type
406 262 Out of data
407 263 Not used
410 264 Format error

411 265 System error in l/O system
412 266 x Integer overflow on input

Argument set to largest integer

413 267 Not used
414 268 Input buffer overflow
415 269 Not used
416 270 x Parity error on input.

The character is skipped.

417 271 Bad character on input
420 272 String input error
421 273 Not used
422 274 x Real overflow on input

Argument set to largest real (1E99)

ND-60.071.01
Revision D

Error Code Non-
Octal Decimal fatal (x) lnternretation

423 275 x Real undert‘low on input
Argument set to zerti;

424 276 x Real underflow on output
Argument set to zero

425 277 x Real overflow on output
Argument set to largest real (£99)

426 278 Not used

440 288 Empty or too long string
441 289 Illegal connect device number
442 290 Connect device number used before
443 291 Open—file table tilled
444 292 No such connect device number
445 293 Zero or negative margin
446 294 Not used

460 304 x Overflow in integer exponentiation
Result set to largest integer (32767)

461 305 x Overflow in real-integer exponentiation
Result set to largest real (1E99)

462 306 x Base less than zero in real exponentiation
Result set to zero

463 307 x Overflow in real exponentiation
Result set to largest real (1E99)

464 308 x Argument negative in SQR
Result set to zero

465 309 x Argument overflow in SIN
Result set to zero

466 310 x Argument overflow in COS
Result set to zero

467 311 x Overflow in EXP
Result set to largest real (1E99)

470 312 x Argument zero or negative in LOG/LOG10
Result set to ~‘l E99

471 313 x Argument error in CAX
Argument set to zero

N060.071.01
Revision 8

Error Code Non-
Octal Decimal fatal (x) interpretation

472 314 x Argument overflow in TAN
Result set to zero

473 315 x Overflow in division
Result set to zero

474 316 x Zero base or negative exponent in
,,,,,, double integer exponentation.

Result set to largest integer.

475 317 x Argument error in ASl, ACO. Result
set to zero.

476 318 Not used

500 320 Double integer in MAT arithmetic
statement.

501 321 Dimension unmatch right of = in
MAT + or m

502 322 Not used
503 323 System error in MAT * or ll\lV
504 324 Not used
505 325 Dimension unmatch right of = in

MAT*
506 326 Dimension error in MAT TRN or

lDN
507 327 MAT A = TRN(A) not allowed
510 328 Both arrays must be square in

MAT WV
511 329 Both arrays must be two—dimensional

in MAT WV
512 330 Both arrays must be real in MAT lNV
513 331 Not used
514 332 Dimension out of range
515 333 _ Argument error in SEG$
516 334 MAT A = A*A not allowed
517 335 Argument error in MATCH
520 336 Argument error in CNT
521 337 Argument error in lNS$
522 338 Argument error in REP$
523 339 Argument error in MAXl or MlNl
524 340 Not used

ND—60.071.01
Revision A

A—14

Error Code Non“
Octal Decimal fatal (x) interpretation

550 360 GOSUB stack filled

551 361 GOSUB stack empty

552 362 Number of parameters not matching
in ”FN functions”

553 363 Parameter unmatcb in “FN functions”

554 364 “FN stack“ tilled

555 365 ”FN stack” en’ioty

556 366 Statement removed or missing in
GOTO/GOSUB

557 367 Statement removed or missing in
“FN functions“

560 368 Garbage collection error

561 369 Garbage collection error, out of memory space

562 370 Garbage collection error

563 371 Garbage collection error

564 372 Argument out of range in ON GOTO/
GOSUB

565 373 Too many subprograms

566 374 Chaining requires BASlC Compiler

567 375 x Over/underflovv in real addition

570 376 x Over/underflow in real subtraction

571 377 x Over/underflow in real multiplication

572 378 x Overflow in real to integer conversion

N D—60.071.01
Revision D

APPENDIX 8

SUMMARY OF ELEMENTS

This chapter contains lists and short descriptions of the main elements
with which the NORD—lO BASIC language is built.

B.1 STA TEMENTS

The part of the statement in capital letters must appear as it is
written, i.e. no abbreviation is allowed. The part of the statement

enclosed in < > is supplied by the programmer.

CALL <name>(<parameter list>l

CALL transfers control to an external subprogram written in
BASIC/FORTRAN/NPL/MAC. This is a call by reference,
i.e. the actual parameter addresses are passed to the sub-
program.

CLOSE # <expression>:

The expression denotes a connect device number which is
associated with a file in an OPEN statement. The file is
closed.

CHAlN <string expression>

Automatic loading and starting of the BRF program unitls)
indicated by the file namels).

COMMON [/[<Block>] /] <variable>[(l<3ubscript string>])] [=<length>] , _ . , . .

A program may be divided into independently compiled sub~

programs that use the same data. The common statement reserves

storage areas (blank or labelled) that can be referenced by more
than one subprogram written in BASIC, FORTRAN, NFL or MAC
assembly.

ND-60.071 .01
Revision C

DATA <data |ist>

DATA statements supply one or more numbers or strings
to be assigned to variables through a READ statement in a
program. Individual items in the data list are separated by
commas; strings containing special characters such as commas,
ampersands, leading blanks, apostrophes, and strings which
beginwith a digit, +, or ~ must be enclosed in quotation
marks.

DE F <fu nction definition>

By using this statement, the user may define his own
functions. When DEF is followed simply by the function
name and the dummy arguments enclosed in parentheses,
this statement marks the beginning of a multiple line
function definition.

DIM <variable name I dimensionlsl l, ...>

This statement reserves space for arrays used by a program.
BASIC implicitly reserves room for entries zero through l0
(11 spaces total), or entries in columns and rows zero
through 10 (121 spaces total).

DIM # <expression>z<list>

The expression denotes the connect device number which is
associated with a random access file in an OPEN statement.
The list must appear as it would in a standard DIM state-
ment except that a maximum string length may be supplied.

DOUBLE <list of variables>

The variables separated by commas are declared to be of
double integer type. This is a non-executable statement
which should be specified prior to any executable statement.

END

This statement marks the end of a BASIC program. It must
be present and must be the statement with the largest line
number in the program. END specifies the return point of
subprograms.

ND<60.071.01
Revision A

EOF

Marks the termination of compiling several program units to
BRF.

EXTERNAL <list of functions>

FNEND

External functions must be declared in an EXTERNAL
statement before the function references. Non-executable
statement.

The FNEND statement marks the end of a multiple line
function definition.

FOR <running variable> = <A> TO [STEP <C>]
where A is the FROM element

8 is the TO element
C is the STEP element

This statement marks the beginning of a FOR—NEXT loop
and is always used in conjunction with a NEXT statement.
The running variable must be a nonsubscripted numeric
variable. The FROM, TO, and STEP elements may be any
arithmetic expression and they need not be integers. The
statements between the FOR and NEXT statements will be
executed repeatedly subject to these conditions: the first
time through the loop, the running variable wiil have the
value specified by the FROM element, and its value will
change with each pass through the loop in increments
specified by the STEP element; this looping process will
continue until the value of the running variable exceeds
the TO element. The STEP element is assumed to be one
unless otherwise Specified.

FUNCTION <name>(<parameter list>l

Declares a FUNCTION subprogram unit. The type of the
function is determined by its name which again determines
the value of the function being returned in the execution
of the END statement. The parameter list contains the
formal parameters.

ND-60.07l .01
Revision A

GOSUB <|ine number>

This statement causes the computer to execute a block of
statements in the program called a subroutine; the line
number given should be the line number of the first state-
ment in the subroutine. RETURN ends the subroutine.

GO TO <|ine number>

A GO TO statement causes the computer to. take as its new
instruction the statement specified by the line number given.

GOTO
lF <logical expression> GOSUB <|ine number> or

THEN

IF <logical expression> THEN <statement>2 <statement>

Dependent on the logical expression being true or false
the program will take the action following THEN/GOTO/
GOSUB or skip to the next line.

IF END # <expression> THEN <|ine number>

The line number is stored in the file table entry of the
file associated with the expression. Later, if end of that
file is encountered, BASIC will start the user written sub-
routine at the sp03ified line number.

INPUT [#<connect device identifier>:] <list>

Requests the input of an amount of data from the terminal,
a sequential file or a string. if there are more data on a
line than the lNPUT statement calls for, the excess data are
ignored. If there are insufficient data on the line, the program
looks for more data on the next line. A ? is printed for
each line entered from the terminal.

INTEGER <list of variables>

The variables separated by commas are declared to be of
integer type. Non~executable statement.

ND—60.071.01

LET <A> = [... = <Z>l

A, B, are numeric or string variables and Z is an arith—
metic expression or string expression. The LET instruction
assigns the value of the expression to the
variables specified. All items must be either string or
numeric.

LINPUT [<connect device identifier>:] <list>

MARGlN

MAT

This statement requests the input of a number of strings
equal to the number of string variables in the list. Special
characters such as commas, quotation marks, leading blanks
etc., may be part of the strings entered, A new question
mark appears on the terminal for each name in the list.
Input may also come from a sequential file or a string.

[<connect device identifier>zl <expression>

Sets the maximum number of characters on one line which
may be printed on the terminal or a sequential file.

This sequence of characters designates the statement as one
designed to perform operations on whole arrays. The MAT
statements are described in a separate portion later in this
section.

7

NEXT <numeric variable name>

The NEXT statement is always used in conjunction with a
FOR statement and marks the end of the loop designated by
this pair of statements. The variable name must be exactly
the name designated for the running variable in the corresponding
FOR statement.

ND—60.07l .01
Revision C

. GOTO . .ON <expressnon> GOSUB <list of line numbers>

That is what is sometimes called a switch and transfers
control to the first line number if the value of the arithmetic
expression is one, to the second line number if the value is
two, and so on.

GOSUB transfers control to the subroutine beginning with
the first line number if the value of the arithmetic expression
is one, to the second line number if the value of the ex-
pression is two, and so on, When a RETURN statement is
encountered in the subroutine, control passes to the statement
following the ON—GOSUB statement.

ON ERROR GOTO <line number>

No GOTO action is taken when exemiting this statement.
However, if an error occurs later on, the user written error
routine is started at the line number indicated without printing
any message.

OPEN #<expression>: FOR '<access mode><file name>

The expression denotes the connect device which is associated
with the file name. Access mode describes how the file is
going to be used later. OPEN is valid until the corresponding
CLOSE statement or until execution is interrupted by the
ESC character.

PRINT [#<connect device identitier>:l <list>

The PRINT instruction causes all constants and the current
values of all variables or expressions in the PRINT list to
be printed on the terminal, sequential file or string.

Appropriate delimiters separate the individual items in the
PRINT list. A comma causes the terminal type head to space
to the. next fifth of the line before continuing the printout;
a semicolon causes items to be printed in closely packed
format.

ND-60.071.0l
Revision C

[PRINT] USING[#<connect device identifier>:] <string expression>,<list>

The items in the list are printed according to the format speci-
fied in the USING string. PRINT USING may output to the
terminal a sequential file or a string.

PR 06 RAM <name>[,<priority>]

May be used as the first statement of the main program, but
is optional. The name may be any alphanumeric identifier
from one to six characters. Priority is valid for real-time pro—

grams only.

RANDOM

Causes the function RND to supply a random number when
it is called.

READ <list>

A READ statement causes the next available number in a
DATA statement to be assigned to the first numeric variable
in the READ list and the next available string in a DATA
statement to be assigned to the first string variable in the READ
list and so on until all variables in the READ list have been
assigned values.

REAL <list of variables>

The variables separated by commas are declared to be of real type.

Nonexecutable statement.

R EM <any characters>

If the first three characters following the line number of a
BASIC statement are REM then any remarks may follow on
that line. BASIC ignores this statement.

REPEAT <expression> [STEP<expression>] :<statement>...<statement>

The value of the @ variable is set to one which is later
incremented by one if STEP is omitted. The following
statements on the same line will be repeated until @ exceeds
the first expression which specifies the maximum.

ND-60.071.01
Revision C

RESET [* or 35}

Resets the pointers for string and numeric data in 3 DATA
statement. RESET* resets the pointer for numeric data
while RESET$ resets the pointer for string data only.

RETURN

When encountered in a subroutine, this statement returns con;
trol to the statement following the calling GOSUB statement.
It is emphasized that this statement must not be confused with the
identical FORTRAN statement.

STOP

Halts the program execution.

SUBROUTINE <name> [(<parameter Iist>)]

Must be the first statement of a SUBROUTINE subprogram.
Name is an alphanumeric identifier. The parameter list is
optional.

WRITE [#<connect device identifier>:] <list>

The expressions in' the list separated by commas are output
to the terminal, sequential file or string. The elements are
separated by commas. ~ This line is readable by a matching
INPUT statement.

MAT STATEMENTS

In the following a description of each MAT statement available
in NORD—IO BASIC is given. These statements operate on entire
ment which is enclosed in the symbols < > is included when
that IVIAT statement is used with a file. N represents a connect
device identifier denoting a file or even a string when simulating
sequential files.

ND-60.07I.Ol
Revision C

MAT C = A+B

This statement adds arrays A and B and stores the result

in C.

MAT C = A—B

This statement subtracts array B from array A ans stores
the result in C.

MAT C = A*B

This statement causes array C to be set up as the product

of A and B.

MAT A = (K)*B

Each entry in B is multiplied by the value of K to form
the corresponding entry of array A. K is any arithmetic
expression and must be enclosed in parentheses.

MAT A = CON

This statement sets all entries in array A to one.

MAT A = lDN

This statement sets A equal to the identity matrix.

MAT A = lNV (B)

Matrix A becomes the inverse of matrix B.

MAT A = TRN (8)

Matrix A becomes the transpose of B.

ND-60.07‘l .01

8—1 0

MAT A = ZER

All entries in array A are set to zero;

MATA=B

Each entry in A is set equal to the corresponding entry
in array 8.

MAT lNPUT <#N:> A, B, C

A variable amount of data may be input for each singly
subscripted array in the ‘Iist. If input is from the terminal,
a new question mark appears for each array in the list.
If a file is used, it must be sequential, and the data must
be in the same format used if they were input from the
terminal. The arrays are filled by rows.

MAT LlNPUT <#N:> A$, B$, C$

This statement inputs strings possibly containing commas,
ampersands, or other special characters. it reads one line
for each entry in the arrays listed. A variable amount of
input is not allowed. A new question mark appears on the
terminal for each entry of each array.

MAT PRINT <#l\lt> A, B; C

This statement prints the arrays A and C in regular matrix
format and B in closely packed format

MAT [PRINT] USlNG <#l\l:> X$, A, B

The arrays A and B are printed according to the format
Specified in the string X$. Each new row of a doubly
subscripted array is put at the beginning of a new line.

ND—60.071.01

25

8—11

MAT READ A, B, C

This statement reads data from DATA statements in the
program into the arrays A, B and C. The arrays may be
string arrays and information is stored by rows.

MAT WRlTE <#N:> A, B

Array layout as with MAT PRINT, except that the elements
always are closely packed and separated with commas.
Thus, arrays output to sequential files should be input by
matching MAT INPUT statements.

ND-60.071.01

8.2 COMMA NDS

Commands as opposed to statements may be abbreviated until
ambiguity occurs. The complete command words are listed here.
Command parameters may generally not be abbreviated unless the
parameter is a file name. The HELP command gives a list of all the
available commands.

BREAK <line number>

When the specified statement is reached, the execution will
halt and the control will be transferred to the 'BASlC pro-
cessor. The break is performed before the specified state-
ment is executed.

In this state a new break may be specified and the execution
continues by using the CONTINUE command. The use of
breaks combined with immediate mode provides a powerful
and simple debugging aid.

BYE

The control is transferred from the BASIC subsystem to the
operating system and any files opened are closed.

CLC <number>

Special for system debugging purposes only.

CLEAR

Clears the user’s area in memory and resets the system to
its initial state. However, system parameters which are especially
affected by commands will not be reset (lGNORE-MATRlX-CHECK,
TABLESIZES, etc).

COMPlLE <Source fi|e>[<list file><BRF object file>l

Starts compilationof the program which resides on the
source file. if the second parameter is present a listing of
the program is obtained on the list file/device specified,
error messages as well.

ND»60.071.01
Revision C

If the third parameter is present the compiler will trans;
late the source program into BRF format which is
written on the file/device specified. Normally the third
parameter is left out indicating incremental operating
modus.

ln incremental mode the compiled program will be
appended to the statements already present (it any).

CONTINUE

The execution of the current program will continue following
a STOP statement or a break state.

DEFAULT-lNTEGER

All variables will become type INTEGER if not explicitly declared
as another type. All constants not including a decimal point or
exponent are compiled into single or double integers.

DEFAULT-REAL

lnitial modus.

DEFINE <symbo|><octal value>

The symbol will be entered into the external-entry—table,
its value will be equal to the octal number specified.

DELETE <line number> or <line number—line number>

Remove one or more lines from the current program. Following
the word DELETE the user types the line number of the single
line to be deleted or two line numbers separated by a dash (—l
indicating the first and last line of the section of code to be removed.
if the dash is included and the second argument is omitted, the last
line of the program is assumed. Several single lines or line sections
can be indicated by separating the line numbers, or line number pairs,
with a comma. Note that deletion of lines does not remove belonging
variables or referenced entry points.

DEPOSIT <octal address>

The old contents of the octal address specified (octally and
symbolically) are displayed and may be changed by typing
the new contents on the same line. By typing carriage return the
next location will be displayed automatically. Termination
character is point i.) followed by carriage return.

NDn60i07l.Ol
Revision D

8—14

EDIT <|ine number>

This command copies the actual line to old line preparing
a modification of the line. The line edit control characters
may now be applied.

ENTRl ESDEFlNED [<file name>l

All symbols (defined) present in the external‘entry—table
will be printed on the terminal. In addition the current
location and the upper bound are displayed in the following
format:

FREE: <current location> ~ <upper bound>

Default file name is the terminal.

ENTRI ES-UNDEFlNED [<file name>l

EXlT

FlX

This command is much alike ENTRIESDEFINED, but only
undefined symbols are printed.

Default file name is the terminal.

Same as BYE.

The current contents of the externalaentry-table are fixed
(will not be removed by CLEAR) and the current location
will later act as the lower bound reset-address. The fixed
entries do not appear in any entry list—out.

lDENTlFlERS-USED [<file name>l

All identifiers used in the current program will be listed on
the terminal. Also some type information is given.
Default file name is the terminal.

ND»60.071.01
Revison C

lGNORE—MATRIX-CHECK

Normally, if a matrix is accessed beyond its range (greatest
index permitted) a message will be printed. This command
removes this checking. Note that a matrix check introduces
much overhead as code is generated to compute and check
the index(es) for any array access. Should be used for
debugging purposes only. Note that this command does not
concern COMMON and virtual arrays.

LIBRARY

In this mode subroutines and functions are compiled into
Iibrary-subprograms. Such subprograms are loaded only if
they are referenced from another routine, else they are
skipped.

[<line number>] or <line number-line number>]

Produces a listing at the user terminal of the current
program, or one or more lines of that program. The word
LIST by itselic will cause the listing of the entire user program.
LIST followed by one line number will list that line; and
LIST followed by two line numbers separated by a dash (—I
will list the lines between and including the lines indicated.
If the dash is included and the second argument is omitted,
the last line of the program is assumed. Several single lines
or line sections can be indicated by separating the line numbers,
or line number pairs, with a comma.

LISTH [<line number> or <line number-line number>]

Same as LIST, but also prints a header containing the
program name and current date.

LOAD <fi|e name>l<file name>...l

The filels) specified will be loaded until EOF (control byte
23) is encountered. The filels) must be BRF object fileIs).

N EW [<program name>]

The BASIC system is initialized and the user may type a
new program from his terminal. The command may be
followed by a program name (see LISTH and RUNH).

N 060,071.01
Revision D

NEXT-LlNE

The next line after the last one listed will be printed
on the terminal.

N TOO—REALw-OVE RFLOW‘CHECK

Turns on/ott this check in the compiled code. Overflow as
well as underflow is detected in real arithmetic operations
in the ND~lOO, and an error message is printed (non—fatal). This
option is initially turned off.

OBLIST """ "

Special command for system debugging purposes only.

OLD <file name>

The BASIC system is initiated and the program on the
file specified will be read and compiled.

RECOMPl LE

The source program is recompiled from its internal
scratch tile representation. The statements are compiled
in ascending order: thus, this command may be the only
way to get rid of MISPLACED STATEMENT error
messages.

Also the code which belongs to removed or edited state‘
ments will disappear.

RENUMBER [<new initial line number> <increment>l

Changes the statement line numbers and the references to " """"'
these line numbers. First parameter indicates the new
initial line number, and the second (if any) indicates the
increment in the line numbers of two successive state
ments. if no parameters are specified the first statement
number will be 100 and the increment will be 10.

RUN

Starts execution of the current program.

RUNH

Same as RUN, but also prints a header containing the
program name and current date.

AID/60.07101
Revision D

B—17

SAVE <fi|e name>

The current program will be saved (symbolic version)
on the file specified.

SET-LOAD—ADDRESS <octal address>

Subsequent loading will start from the address specified.

TABLE-SIZES <octal number>i<octal number>

if one of the error messages ENTRY-TABLE OVERFLOW or
COMPILER TABLE OVERFLOW occurs, it is possible to change
the size(s) by this command. The first argument gives the num-
ber of entries in the ENTRY table. The second gives the num-
ber of locations in the COMPILER table. Initial values are 200
and 10000. This command implies a CLEAR.

UPPER- LIMIT <octal address>

The user load area upper limit is set to the value specified.

X-LOAD <file name> [<file name>...]

Exclusive load. Library sequences headed with defined
symbols are skipped while all other units on the file
specified will be ioaded until EOF (control byte 23) is
encountered. Default file type is: BRF. This command
is somewhat special and is used for system generation.

ND-60.07l.01
Revision A

8.3

8—18

FUNCTIONS

Some functions are already described in the text of this manual.
Here is given a complete list with short descriptions of all available
BASIC functions. The functions are divided into three groups:
Mathematicale, String- and Miscellaneous functions. Functions
belonging to the Extended Library (not built-in, but available on
a file) are given a special mark.

The variables used in the examples indicate the type of function
and parameter(s) which are optimal regarding execution time and
memory space. However, integer, double integer and real may
replace each other.

Mathematical Functions

Extended
Library Function Explanation

Y=ABSlX) returns the absolute value of X
Y=ATN(X) returns the arctangent of X in radians
Y=COS(X) returns the cosine of X in radians

Y=EXP(X) returns the value of eTX, where e=2.71828182
Y=SlNlX) returns the sine of X in radians
Y=SQRlX) returns the square root of X
Y=TAN(X) returns the tangent of X in radians

Y= LOGlX) returns the natural logarithm of X, log eX'

Y= LOGiOlX) returns the common logarithm of X, log1 0X

Y=Pl has a constant value of 314159265

Y=SGN(X) returns +1 if X>0, 0 if X=O and ~i if X<O
Y=lNTlX) returns the largest integer not greater than X

Y=ASI(X) returns the arcsine of X in radians
Y=ACOlX) returns the arccosine of X in radians
Y=DEGlX) returns the value of X radians in degrees
Y=RDN(X) returns the value of X degrees in radians

X=CAX(R,A) returns cartesian X-coordinate of the polar
representation, eadius), A (angle in radians).

Y=CAYlR,A) returns cartesian Y~coordinate of the polar
do.do.

ND—60.071.01

Extended
Library Function Explanation

x A=POA(X,Y) returns polar angle of the cartesian
coordinates X and Y

x R=POR(X,Y) returns polar radius of the cartesian
coordinates X and Y

x Y=FlX(X) returns the truncated value of X;
SGNiXV’lNTiABSiXH

x Y=FRA(X) returns the fractional part of X

x Y=MAXI(A,B,C...) returns the greatest value

x Y=M|l\ll(A,B,C...) returns the smallest value

String Functions

Extended
Library Function Explanation

l%=ASC(A$) returns the ASCll value of the first
character in A?)

l%=LEN(A$l returns the number of characters (bytes)
in A$

A$=SEG$ returns a substring of B$ starting in
(B$,F%,L%) position F% and ending in position L%

A$=CHR$(X) returns a one character string (ASCII)
corresponding to the value of X

A$=OC$(l.%%) returns an eleven character digit string
'''''' corresponding to the value of l%% (octal)

x N%=CNT(A$,B$) returns the number of times the string
B$ occurs in A$

x X$=lNS$iA$, returns a string where the contents of
B$,l%) the string B$ is inserted into the string

A$ at the character position l%.

x N%=MATCH(A$, searches the strinn A52 for the. occurrence
B$,l%) of the string 8:3, starting at the l%‘th

character, The returned value is 0
if no occurrence found,
or the position of the first character
that match.

ND-B0.071.01
Revision C

26

Extended
Library Function Explanation

x X3=REP$<A$, returns a string where the string A$ is
B$, I%) replaced with the content of the string

B$, starting from the l%‘th position
of the string A$.

X X$=SPAC$ (l%i returns a string of spaces, l% characters

Miscellaneous Functions

Extended
Library Function

long

Explanation

TABlX)

N%=MARll%)

N%=POS(l%)

MAT Y=TRN(X) returns the transpose of the matrix X

MAT Y=(V)*X scalar multiplication of each element
in matrix X

MAT Y=lNVlX) returns the inverse of matrix X

Y=DET returns the determinant of the last
lNV(X) function evaluation.

Y=NUM returns the number of data input in
an array by the last MAT lNPUT staterrent.

Y=RND returns a random number between
0 and 1.

Y=ERR returns the last error code if an ON
ERROR GOTO statement occurs in
the program.

N D‘60.07l .01

PRINT statements only! Moves print
head to position X in the current print
record.

returns the last MARGlN setting of
connect device no. l%.

returns the current print position of
connect device no. l%.

Revision D

APPENDIX C

C.1

MISCELLANEOUS INFORMATION:

ROUNDOFF ERRORS

The smallest number BASIC can handle is approximately 1*10t—4931
and the largest number is 1*10t+4931, but input and output are
restricted to be within the following limits: 1*10T—100< lxl<1*10t100.

BASIC stores numbers correctly to approximately nine significant digits
and generally prints numbers to six significant digits.

The values of the expressions in the FOR or REPEAT statements need
not be integers. However, the user must be cautioned that using a
non-integer step size may result in roundoff errors. These errors occur
because the computer can only store about nine significant digits for
each number it computes. The cumulative effect of these roundoff
errors over a loop executed many times may be significant:

100 FOR X = 0 TO 200 STEP 0.001
110 LET Y = Y+1
120 REM Y COUNTS THE NUMBER OF TIMES
130 REM THE LOOP IS EXECUTED
140 NEXT X
150 PRINT X,Y
160 END

This program gave the following output when it was run:

200 199998

R EADY

Note that Y, which counts the number of times the loop is performed,
is not 200001, the expected value, but 199998; the loop has been
executed three times less than might be expected. Consequently,
calculations involving the running variable or depending on the number
of times the loop was performed would be in error because of roundoff
errors.

Thus, in general, use integer step sizes and integer FROM and TO
elements to avoid roundoff errors. If you want to step over a series
of non-integer values, appropriate operations may be performed on the
running variable within the loop to achieve this result. For instance,
in the example above X may be made to range from 1 to 200 in steps
of .001 using the following technique:

ND~60.071.0I
Revision D

100 FOR 1 = 0 TO 200000
110 LET X 3/1000
120 LET Y ;» YH
130 NEXT I
140 PRINT X,Y
150 END

This program prints a value of 200 for X and 200001 for Y. These
values are the expected ones, and no roundoff error has occurred.

ND—60.071.01

C.2 CHANGING DIMENS/ONS

The DlM statement is used to dimension (reserve initial space for)
subscripted variables. Thus, the same DlM may be executed in a
loop with variablels) indicating the dimensionls), or the same array
may be referenced in separate DIM statements with different dimen-
srons.

Subscripts may be enclosed in parentheses following some MAT
statements as follows [lone or two dimensions may be specified
for all but the lDN function, where two identical values are
required).

Functions Statements

MAT A = CON (N,M) MAT lNPUT A (N,M)
MAT A = lDN (N,l\l) MAT LINPUT A (N,M)
MAT A = ZER (N, M) MAT READ A (N,M)

The array A takes on the dimensions specified in the statement.

Redimens/oning is implicit in the MAT statements which perform
matrix arithmetic and matrix functions. That is, in the statement
MAT C = A+B, C takes on the dimensions of A and B if unequal.

Note that redimensioning (even reservation of less space) is very
time~consuming as it involves release of old space and reservation
of new space which is always zeroed.

ND-60.071.0l

C.3 LINE EDIT CONTROL CHARACTERS

The Line Edit control characters available in BASlC are listed below,
and on the following pages they are given a short description. (The
characters are the same as in SlNTRAN lll command inputs)

Function

Tab

Line Terminate

Escape Character
take Q literally

Backspace

Copy

Skip

Reprint

Re—Edit

one character
one word
one line

one character
to tab stop
to end of line
up to §_
through Q
rest of line (terminate)
rest of line (no printing)

one character
up to _C_I_
through Q

fast
ahgned

lVlode Change
insert/replace
terminate

ND-60.07l.01
Revision D

Charactg

1C

MC ice)

c

Tab

lc Causes space to the next tab stop. Rings the bell
and takes no further action if there are no more tab
stops on the line. The tab stops are: 8, 14, 30, 40,
50, 60, 70, 80.

Line Terminate

MC Control M, which is really carriage return, serves to
terminate an edit and delimit lines of text. Auto-
matically supplies a line feed when MC is typed.

Escape Character

VCC Causes the character Q to be appended literally to the
text being collected and disables any other function Q
might have. C may be any character.

Baa/(Space Characters

The following control characters delete one or more characters
from the end of a line being typed in. All but QC may be
iterated. Rings the bell if empty.

AC Prints T and deletes the preceding character. AC does
not affect the status of the old line.

WC Prints \ and deletes the preceding "word”. |.e., all
preceding blanks are deleted, and all non-blank characters
up to the next preceding blank.

QC Prints <~ followed by a carriage return line feed, and
deletes the line currently being typed in.

ND~60.071.01
Revison C

Copy Characters

The following characters copy one or more characters from the old
line onto the end of the new line. Rings the bell (except in DC and
FC) if the old line contains no more characters or if the character
to be copied to does not exist in the old line.

CC Copies the next character of the old line onto the new
line and prints out the character copied.

UC Copies characters from the old line onto the new line
up to the next tab stop and prints out the characters
copied.

HC Copies the rest of the old line onto the new line,
printing out characters copied. Editing may now continue.

09;; Copies the old line up to, but not including, the next
occurrence of the character Q, printing out characters
copjed.

ZCQ Copies the old line up through the next occurrence of the
character Q in the old line, printing out characters copied.

DC Copies the rest of the old line onto the new, printing out
the characters copied. The edit is also terminated. Dc
is equivalent to HCMC.

FC Copies the rest of the old line onto the new line
Without printing it. The edit is also terminated.

Skip Characters

The following control characters cause one or more characters from
the old line to be skipped. The new line is not affected. Prints
% for each character skipped. Rings the bell if there are no more
characters in the old line or if (in PC and XC) the character to be
skipped to does not exist in the rest of the old line.

SC Skips the next character of the old line.

PCQ Skips up to, but not including the next occurrence of
the character Q in the old line. (PC is the analogue of 0C).

ND~60.071.01

XCQ Skips up through the next occurrence of the character
Q in the old line. (XC is the analogue of 20.)

Reprint Characters

The following control characters do not affect the state of the edit
lie, the contents of the old line and new line). They merely per-
mit the user to recover in case he has become confused about the

state of the edit. Editing may thereafter continue normally.

RC Prints line feed and then the rest of the old line. On the
next line is printed out the new line produced so far.

TC Prints out the state of the edit as in RC: except that
the rest of the old line is properly aligned with the
new line.

The ReEdiz‘ Character

YC Copies, without printing, the rest of the old line onto
the new line and then gives a carriage return line feed.
Now the resulting line may be edited.

Mode Characters

EC Changes the mode from replace to insert, and prints <,
or from insert to replace, and prints >. The mode is
replace at the beginning of each line. In replace mode
characters typed by the user replace those of the old

one-for-one. In insert mode characters typed by the

user are appended to the new line without affecting the
old line. Skips and copies work as before.

LC Acts exactly like carriage return or lVlC. In other words,
LC serves to terminate text input.

ND—60.07l .01

27

C.4 ASCII CHARACTER SET

Octal Decimal ASC
Graphic Value Value Abbreviation Comments

0 O NU L Null
1 1 SOH Start of heading
2 2 STX Start of text
3 3 ETX End of text
4 4 EOT End of transmission
5 5 ENG Enquiry
6 6 ACK Acknowledge
7 .7 BEL Bell

10 8 BS Backspace ~~~~~~~~ ,
11 9 HT Horizontal tabulation
12 10 LF Line feed
13 11 VT Vertical tabulation
14 12 FF Form feed
15 13 CR Carriage return
16 14 SO Shift out
17 15 Sl Shift in
20 16 DLE Data link escape
21 17 DC1 Device control 1
22 18 DC2 Device control 2
23 19 DC3 Device control 3
24 20 DC4 Device control 4
25 21 NAK Negative acknowledge
26 22 SYN Synchronous idle
27 23 ETB End of transmission block
30 24 CAN Cancel
31 25 EM End of medium
32 26 SUB Substitute
33 27 ESC Escape
34 28 F8 File separator
35 29 GS Group separator
36 30 RS Record separator
37 31 US Unit separator
40 32 SP Space

! 41 33 l Exclamation point
“ 42 34 “ Quotation marks
43 35 # Number sign
$ 44 36 $ Dollar sign
% 45 37 % Percent sign
& 46 38 & Ampersand
’ 47 39 ’ Apostrophe
(50 40 (Opening parenthesis

ND-60.071.01

Octal Decimal ASC
Graphic Value Value Abbreviation Comments

) 51 41) Closing parenthesis
* 52 42 ‘1' Asterisk
+ 53 43 + Plus
, 54 44 , Comma
— 55 45

- vhen (Minus)
. 56 46 . Period (Decimal)
/ 57 47 / Slant
0 60 48 0 Zero
1 61 49 1 One
2 62 50 2 Two
3 63 51 3 Three
4 64 52 4 Four
5 65 53 5 Five
6 66 54 6 Six
7 67 55 7 Seven
8 7O 56 8 Eight
9 71 57 9 Nine
: 72 58 : Colon
; 73 59 ; Semi—colon
< 74 60 < Less than
= 75 61 = Equals
> 76 62 > Greater than
? 77 63 .7 Question mark
@ 100 64 @ Commercial at
A 101 65 A Uppercase A
B 102 66 B Uppercase B
C 103 67 C Uppercase C
D 104 68 D Uppercase D
E 105 69 E Uppercase E
F 106 70 F Uppercase F
G 107 71 G Uppercase G
H 110 72 H Uppercase H
l 111 73 l Uppercase l
J 112 74 J Uppercase J
K 113 75 K Uppercase K
L 114 76 L Uppercase L
M 115 77 M Uppercase M
N 116 78 N Uppercase N
O 1 17 79 O Uppercase O
P 120 80 P Uppercase P
Q 121 81 Q Uppercase Q
R 122 82 R Uppercase R
S 123 83 S Uppercase S

ND-60.071.01

Octal Decimal ABC
Graphic Value Value Abbrevéa’rion Comments:

T 124 84 T Uecercase T
U 125 85 U Uppercase U
V 126 86 V Upper/«sea V
W 127 87 W Uppercase W
X 130 88 X Uppercase X
Y 131 89 Y Uppercase Y
Z 132 90 Z Uccercase Z'
l 133 91 [Opening bracket
\ 134 92 \ Reversing slant
1 135 93] Closing bracket
/\ 136 94 /\ Circumflex, up-arrow
, or +- 137 95 __,UND,BKR Underscore, back arrow ,,,,,,
‘ 140 96 ‘, GRA Grave accent

a 141 97 a, LCA Lowercase a
b 142 98 b, LCB Lowercase b
c 143 99 c, LCC Lowercase c
d 144 100 d, LCD Lowercase d
e 145 101 e, LCE Lowercase e
f 146 102 f, LCF Lowercase f
g 147 103 g, LCG Lowercase g
h 150 104 h, LCH Lowercase h
i 151 105 i, LCl Lowercase i
j 152 106 j, LCJ Lowercase j
k 153 107 k, LCK Lowercase k
l 154 108 l, LCL Lowercase l
m 155 109 m, LClVl Lowercase m
n 156 110 n, LCN Lowercase n
o 157 111 0, LCD Lowercase o
p 160 112 p, LCP Lowercase p
q 161 113 q, LCQ Lowercase g
r 162 114 r, LCR Lowercase r
s 163 115 s, LCS Lowercase s
t 164 116 ‘1, LOT Lowercase t
u 165 117 u, LCU Lowercase u
v 166 118 v, LCV Lowercase v
W 167 119 W, LCW Lowercase W
x 170 120 x, LCX Lowercase x
y 171 121 y, LCY Lowercase y
z 172 122 z, LCZ Lowercase 2
£ 173 123 g , LBR Opening (left) brace
l 174 124 |, VLN Vertical line
3 175 125 :1 , RBR Closing (right) brace
~ 176 126 ~, TlL Tilde

177 127 DEL Delete, rubout

ND-60.071.01
Revision D

C.5

C—11

NORD WORD STRUCTURE

Instruction Word

Op.code X l B , Displacement

15 11 10 9 8 7 0

One instruction word always occupies one location, 16 bits, of main
memory. The operation code occupies the five most significant bits
(11 — 15), and specifies one of 32 instructions.

For memory reference instructions bits 0 —— 10 are used to specify
the address of the instruction. The instructions which do not have
an address use the bits for further specification. Bits 8,9 and 10,
called ,8 l and ,X are used to control the address computation.

The displacement is an 8 bit signed number ranging from ~128 to
+127, using two’s complement for negative numbers and sign extension
to produce a 16 bit number.

Data Ward

Three basic types of data words exist:

a) Single length numbers:

A 16 bit number which occupies one memory location.
Representation of negative numbers are in two’s comple-
ment. Range as integers: —32768 < x < 32767.

b) Double length numbers:

A 32 bit number which occupies two consecutive locations
in memory, and where negative numbers also are in two’s
complement.

n n+1

lVlost sign. least sign.

31 A 16 15 D O

A double word is always referred to by the address of its
most significant part. Normally a double word is trans-
ferred to the registers so that the most significant part is
contained in the A register and the least significant in the
D register. Range as integers: —2 147 483 648 < x <
2 147 483 647.

ND-60.071.01
Revision C

C—12

Floating point numbers (48 bits):

The data format of floating point words is 32 bits man-
tissa magnitude, one bit for the sign of the number and
15 bits for a signed exponent.

The mantissa is always normalized, 0.5 < mantissa < 1;
for all non-zero numbers bit 31 equals one. The exponent
base is 2. The exponent is biased with 214, Le, 400008
is added to the actual exponent, so that a standardized
floating zero contains zero in all 48 bits.

In memory one floating point data word occupies three
16 bit locations, which are addressed by the address
of the exponent part.

n exponent and sign
n+1 most significant part of mantissa
n+2 least significant part of mantissa

ln CPU registers bits 0 — 15 of the mantissa are in the D
register, bits 16 — 31 in the A register, and bits 32 — 47,
exponent and sign, in the T register. These three registers
together are defined as the floating accumulator.

n n+1 n+2

i Exponent Mane tissa

47 T 32 31 A 16 15 D 0

The accuracy is 32 bits or approximately 10 decimal digits,
any integer up to 2 has an exact floating point represen—
tation. The range is:

245384 * 0.5 g lxl <216383 * 1 or x = 0
01”

10‘4931 < lxl <104931

Examples (octal format):

T A D

0: 0 0 0
+1 : 040001 100000 0
—1: 140001 100000 0

ND-60.071.01
Revision C

C-—13

Any other data word format than those four described here may be
programmed. These four data word formats have corresponding
instructions which make these formats easy and naturai to use. it is
also rather easy to program data word formats using one bit data word
and 8 bit data word because the NORD has instructions giving direct
access to single bits and 8 bit bytes.

BASIC has two additional data word formats:

cl) Character strings:

The data format of strings consists of a two word object
which contains a pointer to the direct memory location of
the string and the number of characters in the string. The
string itself consists of the ASCll values packed two by two
into one word. The words are stored in consecutive order.
The parity bit (bit 7) is always set to zero. The string is
preceded by one word indicating the number of connections
to the string.

n n+1

_ Pointer Number of characters l

15 O 15 0

Connect count nn —l

l.byte 2. byte nn

3.byte 4.byte nn+l

nn+2

\\ nn+3

15 0

ND-60.07l.01
Revision A

As the NORD-1O may be supplied with a microprogram which
operates on 32 bit real numbers, a special version is available for
users who stick to this format.

The library and run—time systems have separate versions for the
48 and 32 bit real arithmetic.

The use of the two versions are identical but the user should
consider the small precision (6 - 7 digits) of 32 bit reals. Especi‘
ally in mixed mode arithmetic because double integers have
greater precision!

The data format of floating point words is 22 +1 bits
mantissa magnitude, one bit for the sign of the number
and 9 bits for a signed exponent.

The mantissa is always normalized, 0.5 < mantissa < 1.
The exponent base is 2. The exponent is biased with 28,
i.e., 4008 is added to the actual exponent, so that a
standarized floating zero contains zero in all 32 bits.

ln the computer memory one floating point data word
occupies two 16 bit locations, which are addressed by the
address of the exponent part.

n exponent, sign bit and most significant part of
mantissa

n +1 least significant part of mantissa

ln CPU registers, bit 0 - 15 of the mantissa are in the D
register, bit 16 - 31, the most significant part of the
mantissa, exponent and sign, in the A register. These
two registers together are defined as the floating accumu-
lator.

Word 1 (A) Word 2 (D)

15 14 6 5 O 15 O

i <— Exponent ~*—-———Normalized lVlantissa ___._______.
Sign

The accuracy is 23 bits or 6-7 decimal digits, any integer
up to 2 —1 has an exact floating point representation.

Note: The one extra bit in the mantissa is the most signif-
icant, and is set to one if not all bits in the expon-
ent is zero. It is removed in the result.

The range of a floating point number is approximately
-—1076 through 4 107

N D-60.071.01
Revision B

28

APPENDIX D

INDEX

.AND.

.NOT.
90R.

@ STATEMENY
a VARIABLE
ABS
ACCESS MODE OF FILES
ACCURACY
ACO
ACTUAL PARAMETERS
AMPERSANOtS)
APOSTROPHEt')
ARGUMENTS
ARITHMETIC EXPRESSIONS
ARITHMETIC OPERATORS
ARRAY ELEMENT
ARRAYS
Asc
ASCII
ASI
ASSEMBLY
ASSIGN(MENT)
ATN
BACK ARROW
BINARY RELOCAIABLE FORMAT
BREAK
BREAK—POINT
BRF
BUGS
BUIUTFIN LIBRARY FUNCTIONL
BYE
CALL
CALLING PROGRAM
CASSETTL TAPE
CAX
CAY
CHAIN
CHRS
CLC
CLEAR
CLOSE
CNY
COLOc)
COLUMN
COMMA IN PRINT LISTS
COMMANDS
COMMON
coMPILE
COMPILEH
COMPUTER
CONCATENATION

ND-60.071.01
Revision A

4*47FF
4-47FF
4-47FF
4-52
4-5fl
4'16,3918,
5‘2
C-12
8918
4’44,7-3FF
49201492114W3716'12

4-39
4~44
4!6
2*6’4q6
2914,4“14,5P14

2~15,2~27,4«14;4-2W,5P13'6“)
4-22pBul9
4'22(C'8

8918
t‘4'7‘14

4-12'4-1394018¢4?19
2-7.8918
2’16'CF5

1'5,7'8
7~22,5~7,B~12
2*22,3'7,7'8
la5,7‘8,7-9
2-18
4-17,B-18
3-9'8-12

7'3’7'6lfi‘1
792,776

5'1
8’18
8'18
456,,9‘1
4!22,B!19
8-12
2-17.6-12
5'2’5':JIB‘1
8-!9
4-5fl,b-2,395
4-14,o-2FF,5.2O
4924,6910
2.16,4952,B'12

4‘5J’n”1
3-5,3-1,7-a.7a1:,8~12
1’4pi‘5'A‘1

1'1
4=21

CONNECT DEVICE IDENTIFIER
CONSTANTS
CONTINUE IN BASIC
CONTINUE IN SINTRAN
CONTROL CHARACTERS
CONVERT NUMBER TD STRINC
CONVERT STRING TO NUMBER
COPY
COS
DATA
DEBUGGING
DEF
DEFAULT ARRAYS
DEFAULT PRINTING FORMAT
DEFAULTJNTEGER
DEFAULTREAL
DEFINE
DEG
DELETE
DEPOSIT
DET
DETERNINANT
DEVICE
DIAGNOSTICS
DIM
DIMENSIONS
DISC
DOLLAR SIGNISJ
DOUBLE
DOUBLE INTEGER
DRUM
DUMMY ARGUMENT
EDIT
EDITING
END
END OF FILE
ENTRIES-DEFINED
ENTRIES-UNDEFINED
EUF
ERR
ERRORS
ESCAPE
EXCLANATIDN MARK(£)
EXIT
EXP
EXPONENT
EXPRESSIONS
EXTENDED LIBRARY FUNCTIONS
EXTERNAL
EXTERNAL FUNCTIONS
EXTERNAL SUROUTINES
FILE

III

IND-60.071401
RBVBKNTC

5¢1FF,5~13
4‘114V1914'18
2-22,B~13
2-17,)ab
1'61C'4
4-22.5MIQ
4'22p5912
5-8
8'18
22,223,420,69,BQ
2’18'2922

4*17,4~44,Bn2
2‘27
4*2b
44,42,843
8-13
8-15
Balfi
2a17,3-2,Bw13
8'13
697,6*8,6-lp-2@
6-7I638:6*16
1‘6,591
3-1
2’15'2'14'2'27'5’14'B'2

2-13,2~27,4a14,6-19
5-1
4—1.4-3,4-18,4»3D,4-34
495,892
1~4,4w1FF,5914
5”!
4-44.4945
2wl7y3~lpBJ4
1'4pz‘213'1
2.2a,7-1,7-5,7-6.8-2
5’11
799,8!14
7-9,B'14
7-8,B-3
4‘51’A*11'B'20
2'3,2‘16,2‘18,4F51'A’1FFpCWl
2.17,2-2O,3.5
4-24
5'9'8-14
?-17,B-18
4*3M,4-31

2-2.296,
4-17,B¥18
4»17,7—3,/—4.7-b,N-3
4'17,7*1,7*4
1‘4’7'1

?~21,3*4,5'1FF,6-14

EXIT
EXP
EXPONENT
EXPRESSIONS
EXTENDED LIBRARY FUNCTIONS
EXTERNAL
EXTERNAL FUNCTIONS
EXTERNAL SUBROUTINES
FILE
FILE SYSTEM
FIX COMMAND
FIX FUNCTION
FLAGS
FNEND
FOR
FORMAL PARAMETERS
FORTRAN
FRA
FRACTIONAL NOTATION
FUNCTION CLASSIFICATION
FUNCTION REFERENCE
FUNCTION STATEMENT
FUNCTIONS
GLOBAL VARIABLES
GOSUB
GOTO
HOLLERITH
IDENTIFIERS
IDENTIFIERS-USED
IDENTITY MATRIX
IF
IFEND
IGNORE-MATRIX-CHECK
IMMEDIATE MODE
INCREMENTAL MODE
INCREMENTAL UNIT
INDEXED VARIABLE
INDEXES
INPUT
INPUT CONTROL
INS 55
INT
INTEGER
INTEGER NOTATION
INTEGER STATEMENT
INTERACTIVE
INTERNAL FUNCTIONS
INTERNAL SUBROUTINES
INV
INVERSION OF MATRICES

ND-G0.071.0I
Revision D

3-9, 3-14
2-I7, 8—18
430,431
2—2,2-6
4—17, 8-18
4-17,7—3,7—4,7-6,B-3
4-17,7—I,7—4
I-4,7~I
2~21,3—4,5-1FF,6-14
3-4,5-I,A—II,A—15
8-14
B49
2-22
445,446, B-3
2—10,2—II,2-26,B-3,C-I
4-44,7—3FF
I-4,1—5,4—17,7-9,7-12,7-13
8—19
4-26
4—17
747—5
7-1 ,7—3,7-4, 8—3
2-7,4—16,4-44,6-7,7—1 FEB-18
4—45
4—41 FF, 8—4
2-25, 8—4
7—12
4~2,7—2,7-6,7~8,7-13
7—13, 3—14
6-2,6—17
2-3,2—25,4-19,4—43,4-50,B-4
541,84
3—15
I—5,3-5,4-52,A-1 I
1-5,7-9,7—12,A—11
7-8
243,543
343,227
2—30,4-20,5-5FF,B-4
4-36,6-9
3—19
4—16, 8-18
1—4,4-1 FF
4%
4—4,7—13,B-4
1.534
447,444
4.41
6—7,6-8,6-16,B—20
67,68,646

LEN
LET
LIBRARY
LIBRARY COMMAND
LINE EDIT CONTROL CHARACTERS
LINE NUMBER
LINPUT
LIST
LISTH
LOAD
LOADER
LOG
LOGIO
LOGICAL EXPRESSIONS
LOGICAL OPERATORS
LOOPS
MAC
MACHINE LANGUAGE
MAGNETIC TAPE
MAIN PROGRAM
MAR
MARGIN
MASS STORAGE
MAT
MAT ARITHMETIC STATEMENTS
MAT INPUT
MAT LINPUT
MAT PRINT
MAT PRINTUSING
MAT READ
MAT USING
MAT WRITE
MAT-CON
MAT—IDN
MATJNV
MAT—TRN
MAT-ZER
MATCH
MATHEMATICAL FUNCTIONS
MATRICES
MATRIX
MAXI
MINI
MISCELLANEOUS FUNCTIONS
MIXED LANGUAGES
MIXED MODE
MULTIPLE LINE DEF
MULTIPLE STATEMENT LINE
NESTED CALLS
NESTED LOOPS
NEW
NEXT
NEXT—LINE

ND—60.07I.OI

422,819
2-2,2-23,4-12,4-19,8-5
7-11
8-15
2-17,3-1,C-4
227-8
4385-1085
2-15,3-2,8-15
2-21 ,3-3,7-2,8-15
7-98-15
7-10,7-11,7-12
8-18
8-18
4—48-4—50
4-48
2-102-284-5001
1-4,1-5,4-17,7—9,7-12
1-2
5-1
7-1,7-2
8-20
4-2851 1 , 8-5
1-4,3-1,3—4,5-1
5-11,5-13,6-1,8-5,8-8
6-5,6-6,5-14,8-8
4-36511,6-11,6-12,6-14,8-10
5-11,6-11,6-12,6-14,8-10
5-1 1 ,6—9,6-10,6-14, 8-10
5-11,6-11,8-10
89,810,811
8-1 1 514,810
511,514,811
6—2,6-3,6-4,B—9
6-2,6—3,6—4,B-9
6-7,6—8,B-9
6-789
6-2,6-3,6-4,8-10
8-19
2-7,4-17,8-18
2—13.64 FF
2-13,6~1FF
B~I9
819
417,820
7-12FF
4-10,4-12,6-1
4-45
3-6,4-50
4-17,4-42,4-45
2-12
33,845
2—10,2-11,2~26,B~5
8-16

D—S

NON—EXECUTABLE STATEMENTS
NPLINORD PL)
NUM
NUMBER SIGNI#I
NUMBERS
OBJECT CODE
OBUST
0C$
OCTAL
OLD

‘ON
ON ERROR GOTO
ONE LINE DEF
OPEN
OPERATING SYSTEM
OPERATORS
OUTPUT CONTROL
PARAMETERS
PARITY
PERCENT SIGN(%)
PERIPHERALS
PI
POA
POR
POS
PRINT
PRINT USING
PRINT ZONES
PRIORITY
PROGRAM
PROGRAM COMPILATION
PROGRAM DEBUGGING
PROGRAM DEVELOPMENT
PROGRAM EDITING
PROGRAM EXECUTION
PROGRAM LANGUAGE
PROGRAM NAMING
PROGRAM STATEMENT
PROGRAM UNITS
QUESTION MARKI?)
QUOTATION MARKI")
RANDOM »
RANDOM ACCESS FILES
RDN
RE—ENTRANT
READ
READY
REAL
REAL STATEMENT
REAL—TIME
RECOMPILE
RECORD

ND-60.071.01
Revision D

4-4
4-17,7-9,7-12
4-37,6-11,6-12,6-13,8-20
5-2,5-5
2-8,4-1FF,c-11FF
7-8,7-9
8-16
4—51,B—19
4-2,4-51,A-11,8-19
2-16,3-1,7-8,8-16
2-28,4~42,B-6
4-51,5-11,A-11,8-6
4-44
5—2,5-13,B~6
2-17,4-52,5-8
2-6,4-6,4-47,4-48
4-24,6-9
7-1FF
c-13
4-1,7-13
5-1
8-18
8-19
8-19
8-20
2-42-21,2-24,4-24FF,5-7,8-6
4-29FF,B-7
4-24
7-10
1-2,7-1FF
1-5,3-1,7-8,7-11
2-18,2—22
1-4
1-4,2-2,2-17,3-1
3-5,7-8,7-11
1-4
3-3,7-2
7-1,7-2,7-10,8-7
7-1 FF
2-30,4-36,4-37,5-6,6-12
2-2,2-21,4-18,4-19
4-52,8-7
515-13
8-18
1-4
2—2,2-23,4—20,B-7
2-16,2-17,3-1
1-4,4-1FF
4-5,B-7
1-4,7-10,7-11
8-16
5-1

REDIMENSIONENG

RELATKDNALEXPRESSKDNS
RELARONALOPERATORS
REM
REMARKS
RENUMBER
REP$
REPEAT
RESET
RESET$
RESET*
RETURN
RND

ROVV
RUN
RUNIRMESYSTEM
RUNH
SAVE
SCALARMULHPUCAWON
SCENTWKENOTAHON
SEG$
SENHCOLONUI
SEOUENRALERES
SERLOAOAOORESS
SGN
SIMULATING SEQUENTIAL FILES
SN
aNTRANnI
SOURCE
SPAC$
SOR
SOUAREMAm
STANDALONEEXECURON
STATEMENTS
STEP
STOP
STmNO
STRING EXPRESSIONS
STWNGFUNCWONS
SUBPROGRAMS
SUBROURNESTATEMENT
SUBROURNES
SUBSCRWTHDVAWABLES
SUBSCRWTS
SYNTAX
TAB
TABUESQES
TAN
TERNHNAL
THEN
TO

ND~60.071,01

2—27,6—3FF,C~3
4—47,4—50
28,4417
229,439,8-7
229,439
3-2, 816
8-20
3—64—50, 87, O1
4-20, 8—8
4-20, 8—8
4—20, 8-8
4—41 , 8-8
4.52, 8—20
4—14,6—2FF,6—20
2—16,3-5, 8-16
7—11,7—14,A—1,A—11 e-
3—3,3~5,7-2, 8—1 6
2—16,3—4, 8—17
6—7, 8—9, 8—20
4-27
4—23, B— 1 9
2—31,4—26,4~34,6-9
5-1FF,7-1
B—1 7
B~18
4-22,5-1,5-12
2-18,B-18
1~4,3—1,3—5,5—8,A-15
1-4,1-5,7-8
8-20
2—7,2—10,3~6, 8—18
6—2
7-11,A-11
2-2,7—1,B-1
241,226,460, 83
2-22,2—28, 8-8
4—2,4—3,4—18,5-14,7—12 '4‘2 1 w

4—17,4—21,4—46, B~19
7-1 FF
7~1,7-3,7—6, 8‘8
4—41,7—1
2—13,4~3,4—4,5-14
2-13,2-<27,4-3,4—4,4—14
1-6,2—16,2—18,A-1
4—28, 820
B~17
B~18
1-6
2-25/1-50, 84
241,226,843

UNARY OPERATORS
UP-ARR0w(+)
UPPER-LIMIT
USER DEFINED FUNCTIONS
USING
VARIABLES
VECTGRS
VIRTUAL ARRAYS
VIRTUAL MEMORY
WRITE
X-LOAD

ND—60.071.01

4‘6
2-16,2-19,C~5
8'17
4-44
4929,5'7
1-4,2‘8,4-_2,4'1{0

6-1FF
5F13,6'1,7-1
1-95
5’11oB—5
(3‘17

one age 999¢9:::2. :3: 32°:agggea e,‘ ./ ., ,‘ _‘ w n. ,0.0000900 was ace («/5 NxflfiflxI)Al/\—hllJ&IRCHQH&K0.0900000 coo @aa . _ .
- ,, (w0.. 0:00a ooaeoeeea Lercnvexen 3?, Oslo 5 — 11f. 2] (3 71can one esaaeaewon. 000 aaaeono

COMMENT AND EVALUATION SHEET
NORD-TO BASIC —« Compiier Reference Manual ND-60.071..01
August1976

In order for Hus xnanual to develop to the pointxvhere it best
suhs your needs. we nuufl.have your eonunents‘ eerreeUens,
suggestions [or adrhtiens. etc. Please “mite d<n n your eonlnlents
on fins pre~addressed knun and post H. Please be specific
wherever possflfle.

FROMI

— we make bits for the future

NORSK DATA A.S BOX 4 LINDEBERG GARD OSLO 10 NORWAY PHONE: 30 90 30 TELEX: 18661

