NORD-10 BASIC
AN Compiler
Reference Manual

NORSK DATA AS

NORD-10 BASIC
Compiler
Reference Manual

REVISION RECORD

Revision Notes
08/76 Original Printing
09/77 Revision A. The following pages have been revised: vi, 2—-9,2—-11,2-27,4—-19,
4-25,7-10, A-8, A--10, A—12, A-13, A--14, B—1, B—2, B—3, B—14,
B—-17,C-13, D—1, D--6.
The following pages have been added: 4-53,4-54,4-55 4-56.4-57 &
C-14
03/79 Revision B
The following pages have been revised: 2—27, 4-53, 4—54, 4-55, 4—56, 4—57,
7—=10,A=12,B—-T1,C-14,D-2,D-6.
01/80 Revision C

The following pages have been revised: 1-4, 1—6, 2—2. 2-3. 2-6,2-7. 2—12. 231

3-1,3-5,3-7,4--1,4-2,4-3,4-4,4-5,4-7,4-8,4-9,4-11,4-14. 417,

4--20,4-21,4--26,4-30,4-31,4-32,4-36,4-39,4-41,4-44,4-46, 450,

4-b51,4-53,4-54,5-1,5-6,5-10,5-11,5-13,5-14,5-16, 7-3,7-8, 7-9,

7--10,7-11,7-12,7-13,7-14, A—1, A—6, A—8, A—10, A--16, A—18, B—1,

B-5,B-6,B-7,B-8,B-12,B-13,B—14,B—15,B—-16,B—-19,B-20,C~1,C-5,

C—-11,C~12,Db-2,D-b, and added page A—10a,

Most of these pages contain corrections of spelling and language erraors. Changes of
technical significance are marked by a vertical line in the margin.

Appendix A.3 has been removed. Refer to the manual "SINTRAN 111 User’s Guide’’ for

File System Error Messages

NORD-10 BASIC — Compiler Reference Manual

ND-60.071.01

A/S NORSK DATA-ELEKIRONIKK
f.orenveion 57, Oslo 5 - TUL: 21 73 7!

PREFACE
The product

This manual describes the January 1981 version of the BASIC compiler for ND—100
and NORD-—10 computers.

10034B — 32 bit floating point hardware
100248 — 48 bit floating point hardware

The system consists of the software products

2059D — BASIC compiler for 32 bit floating point
2060D — Run time library for 32 bit floating point

or

2000E — BASIC compiler for 48 bit floating point
2001E — Run time library for 48 bit floating point

The reader

This manual is written for anybody who will use the BASIC language for programming
and for those who need a user level description of the ND BASIC compiler.

Prerequisite knowledge
No previous experience with either the BASIC language, other programming or computer

hardware is expected. A minimum of knowledge of the Sintran |1 operating system is
required in order to log in on the NORD—10/ND—100 system.

The manual
The manual is intended to be read sequentially, and is well suited as a guide to programming
in general, using BASIC as a tool. It explains BASIC features and interactive use of the BASIC

system in sufficient detail for self study, and contains a complete description of all commands,
statements and functions available.

Related documentation:

Sintran I Introduction (ND—60.125)

ND-60.071.01
Revision D

Vit

TABLE OF CONTENTS

+ o+ 4+
Section:

1 INTRODUCTION

1.1 What is a Computer?

1.2 What is a Program?

1.3 What is BASIC?

1.4 What is ND BASIC?

1.4.1 The Language

1.4.2 Special Real-Time Facilities
1.4.3 Program Development
1.4.4 The Compiler

1.5 The Manual

1.5.1 Conventions Used in This Manual
2 A BASIC PRIMER

2.1 An Example

2.2 Expressions

2.2.1 Numbers

2.2.2 Variables

2.2.3 Relational Operators

2.3 Loops

2.4 Arrays or Matrices

2.5 Use of the System

2.6 Errors and Debugging

2.6.1 Use of Flags

2.7 Summary of Elementary BASIC Statements
2.7.1 LET

2.7.2 READ and DATA

2.7.3 PRINT

2.7.4 GOTO

2.7.5 IF-THEN- or IF-GOTO

ND-60.071.01
Revision D

Page:

— - - e
I
AWN —

- - —
b
S

!

|
o b b

Section:

2.7.6
2.7.7
2.7.8
2.7.9
2.7.10
2.7.11
2.7.12
2.7.13

3.1

3.2

3.2.1
3.3

3.3.1
3.3.2
3.3.3
3.3.4

3.4

4.2

4.2.1
4.2.2
4.2.3
4.2.4

viii

FOR and NEXT
DIM

STOP

END

ON-GOTO

REM and Remarks
RESET

INPUT

INTERACTIVE USE OF THE BASIC SYSTEM

Entering the BASIC System

Compiling a BASIC Program
Editing a BASIC Program
Naming of Programs

Saving and Retrieving BASIC Programs

The SAVE Command
Executing Your Program
The RUN Command
Terminating Execution
Immediate Mode Execution
Setting Break Points

Leaving the BASIC System
MORE ABOUT BASIC
Elements of BASIC
Constants

Variables

Type Declaration Statements
Arithmetic Expressions
Arithmetic Symbols or Operators
Elements

Rules for Forming Expressions
Order of Evaluation

ND-60.071.01

Page:

2-26
2-27
2-28
2-28
2—-28
229
2-30
2-30

31

Section:

4.3

4.3.1
4.3.2

4.4

4.4.1

4.5

4.5.1

4.6

4.6.1
4.6.2
4.6.3
4.6.4
4.6.5
4.6.6
4.6.7

4.7

4.7.1
4.7.2
4.7.3
4.7.4
4.7.5
4.7.6
4.7.7
4.7.8

4.8

4.8.1
4.8.2

4.9

4.9.1
4.9.2

ix

Mixed Mode Arithmetic Expressions

More About LET
Mixed Mode and LET Statements

Arrays

Array Structure
Functions

Function Classification
Representations of Strings

Assigning Values to Strings and String Comparisons
Relaxation of Requirement for Quotation Marks
More About RESET

String Arrays

An Qperator for Combining Strings

String Expressions

Functions Regarding Strings

Formatting Output

Exclamation Marks in PRINT Lists
Commas in PRINT Lists

Empty PRINT Statements

Packed PRINT Lists

Printing Formats for Numbers and Strings
The TAB Function

The MARGIN Statement

The PRINT USING Statement

Input Control

The LINPUT Statement
The MAT INPUT Statement

Program Organization Statements

The Apostrophe Convention
More About REM

ND-60.071.01

Revision D

4—18
4-19
4-20
4-20
4--21
4-21
4-21

4-24
4-24
4-25
4-26
4-26
4-28
4-28
4-29

4-36
4-36

Section:

4.10

4.10.1
4.10.2
4.10.3

4.11

4.11.1
4.11.2
4.11.3

4.12
4.13
4.14

4.14.1
4.14.2
4.14.3
4.14.4

4.14.5
4.14.6
4.14.7
4.14.8

5.1

5.2

5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7

5.3
5.3.1

5.3.2
5.3.3

internal Subroutines

The GOSUB and RETURN Statements
The ON — GOSUB Statement
The |F — GOSUB Statement

Internal Functions

One Line DEF Statement
Multiple Line DEF Statements
Strings and Function Definitions

Relational Expressions
Logical Expressions
Other Useful Statements

Multiple Statement Line

The REPEAT Statement and the @ Variable
More About IF

The ON ERROR GOTO Statement and the ERR
Variable

The @ Statement

RANDOM and RND

The COMMON Statement

The Chain Statement

FILES IN BASIC
introduction

The Connect Device ldentifier
The OPEN and CLOSE Statements

Sequential Files

Reading a Sequential File from a Program
Writing a Sequential File from a Program
The Use of the Terminal Itself as a File
Other Input/Output Statements

Margins on Sequential Files

The IF END Statement

Simulating Sequential Files

Random Access Files and Virtual Arrays

Opening a Random Access File
Declaring Virtual Arrays (Virtual DIM Statement)
Virtual String Arrays

ND-60.071.01

Revision D

4—-44
445
4—46

447
448
4-50

4-50
4-50
4-50

4-51
4-52
4-52
4-53
4-56

5-13
5—-14
5-14

Section:

5.3.4

6

6.1
6.2
6.3
6.4
6.5
6.6

6.6.1

6.6.2

6.6.3
6.6.4

6.7

6.7.1
6.7.2

6.8
6.9

7.1
7.2
7.3

7.3.1
7.3.2

7.4

7.4.1
7.4.2

7.5
7.5.1
7.6

7.7
7.8

Xi

Using a Random Access File from a Program
ARRAY MANIPULATIONS

introduction

MAT Initialization Statements

Changing Dimensions Using MAT Statements
Arithmetic Operations

Functions

Input and Output Operations

The MAT READ, MAT PRINT and MAT PRINT
USING Statements

The MAT INPUT and MAT LINPUT Statements
and the NUM Function

The MAT WRITE Statement

MAT Statements and Files

Examples Using MAT Statements

MAT Arithmetic
Inverting a Matrix

Simulating an N-Dimensional Array
The Row Zero and Column Zero

PROGRAMS, FUNCTIONS AND SUBPROGRAMS
Program Units
Main Program

Parameters

Formal Parameters
Actual Parameters

Function Subprogram

The EXTERNAL Statement and Function Reference
Function Parameters

Subroutine Subprograms
The CALL Statement
Compilation and Execution with Subprograms

Main Program and Subprogram Linkage
Real Time (RT) Program Statement

ND-60.071.01

Section:

Xii

7.9 Stand Alone Execution
7.10 Mixing BASIC With Other Languages
7.10.1 BASIC Strings as Parameters
7.10.2 Types of Parameters
7.10.3 Types of Functions
7.1 Mixed BASIC and Assembly Routines
7.11.1 Parameter Access in Subprograms
7.11.2 Functions in Assembly
7.11.3 Example of a Subprogram Structure
7.11.4 Calling a BASIC Subprogram from Assembly
APPENDICES
APPENDIX A

SUMMARY OF ERROR MESSAGES
Al Compiler Error Messages
A2 Run-Time System Error Messages
APPENDIX B

SUMMARY OF ELEMENTS
B.1 Statements
B.2 Commands
B.3 Functions
APPENDIX C

MISCELLANEOUS INFORMATION
C1 Roundoff Errors
Cc.2 Changing Dimensions
C.3 Line Edit Control Characters
C.4 ASCII Character Set
C.hb NORD Word Structure
APPENDIX D

INDEX

ND-60.071.01

Revision C

Page:

7—11
7-12

7-12
7-13
7-13

7-14

7-14
7—14
714
715

1.1

INTRODUCTION
WHAT IS A COMPUTER?

A computer is a very simple and at the same time a very complex machine.
On the one hand, it merely follows elementary instructions to carry out
such simple tasks as adding two numbers or determining if a given number
is negative. These simple tasks also include “looking” at the next character
in a string of alphabetic characters and other non-numeric activities.

On the other hand, a modern electronic digital computer must be surrounded
by a number of storage devices and input-output mechanisms which supply
it with tasks to perform, store the results of its computations, and present
these results in a convenient form for evaluation or future use. A computer
performs its work so fast that these peripheral devices are needed to cor-
relate the many tasks the computer is capable of performing.

ND-60.071.01

1.2

1-2

WHAT IS A PROGRAM?

As noted above, a computer merely carries out simple instructions, albeit
at very high speeds. It works so quickly that human beings cannot be
directly involved in making more than a small fraction of the decisions
that arise in carrying out a complicated task, so that almost all situations
must be contemplated in advance. Also, in most cases, the bulk of the
data upon which the calculations are made must be accurately prepared
in advance and entered into the computer so that the calculations may
proceed at full speed without having to wait for more data. Thus, a set
of instructions for performing a task and the relevant data must be pre-
pared in advance and supplied to the computer. The set of instructions
for carrying out a task is called a program. One can think of a program
as being a recipe for coming up with the solution to a problem, given the
data.

Any mistakes in a program render it just about useless. As with recipes

for baking cakes, program errors are of two types. First, one can have

errors of form or grammar. These would include misspellings and punc-
tuation. Second, one can have substantive errors even though the form is
correct. In the case of recipes for baking cakes, misspelling and typographical
errors are examples of errors of form; some of these may make the recipe
unreadable. An example of a substantive error would be a direction to use
baking soda instead of baking powder.

Since a computer has much less intelligence or common sense than a human
being, programs for it must adhere strictly to rules of form or grammar.
These rules are particularly complicated for the language that the physical
equipment of the computer is constructed to obey. This language is called
machine language, and its difficult nature has led computer specialists to
invent other more easily used languages that can be converted or translated
to machine language.

ND-60.071.01

1.3

WHAT IS BASIC?

One such language which is easy to learn and to use is BASIC. BASIC was
first developed in 1963/64 at Dartmouth College and has since then been
revised several times. An advantage ot BASIC is that its rules of form and
grammar are quite simple and easy to learn. It is the purpose of this manual
to present the language BASIC and to show how it is used to solve simple
problems and deal with many situations common in computing. More com-
plicated problems can be solved by combining the simpler steps shown here.

ND-60.071.01

1.4

1.4.1

1.4.2

1.4.3

WHAT IS ND BASIC?

The Language

ND BASIC is a simple, powerful, high-level programming language
that facilitates problemsolving for scientific, business and educational
applications run on ND—100 and NORD—10 computers. Among the
many programming languages currently in use, the rules and grammar
of BASIC must be considered the easiest to learn and use. BASIC
permits the user to solve mathematical problems directly from a key-
board printer or an alphanumeric display terminal. BASIC is
particularly well suited for timesharing applications since the compiler
is re-entrant. This permits multiple users to simultaneously call upon
and utilize the same compiler,

The ND BASIC language contains a large number of statement types

and functions with special features including matrix operation,

alphanumeric information handling, program control and storage facilities
and program editing, as well as documentation and debugging aids.

Several statements designed expressly to perform matrix computations

are incorporated in the operation set. The NORD-10 BASIC has string-, real-,
integer-, and double integer variable types. Variable names may consist

of up to 7 letters and digits.

Special Real-Time Facilities

ND BASIC contains the facilities for linking to external subroutines,
including FORTRAN and MAC assembly language libraries, thus

making it easy to develop real-time application programs in the BASIC
language. This facility makes it possible to use the SINTRAN i1 real-
time capabilities as well as other common processors for control systems.

Program Development

ND BASIC provides program control of storage facilities iihat

save programs or data on mass storage devices, and later retrieve them
for execution. Program editing permits adding or deleting statement
lines from on-line terminals, including possibilities for correcting
individual characters of a line, using the same editing facilities as in
SINTRAN [l command input. Programs may be combined from several
source units, requesting a partial or complete hard-copy listing and re-
numbering statement lines.

ND-60.071.01
Revision D

1.4.4 The Compiler

The ND BASIC compiler may be used in three different modes:

- interactive incremental compiler.
- Binary relocatable format (BRF)-compiler.
- Direct execution of statements and expressions.

In the interactive modeg lines typed by theuser, or read from an existing
source file, are compiled into machine-instructions and loaded directly
to the user’s virtual memory.

When typing the RUN command, the compiled program is executed at the
highest possible speed, much faster than traditional interpreters. Source
lines are kept on a system-scratch-file for later retrieval. Independently
compiled subroutines or library files may be linked, using the integrated
relocating loader when necessary.

In compile-mode lines are read from existing source files and compiled
into binary relocatable format (BRF)-files, compatible with FORTRAN
or MAC assembly language subroutines. The BRF file may be loaded for
execution by the integrated relocating loadzr, or by a freestanding loader
normally used with FORTRAN/MAC programs.

In immediate mode lines typed without line number are regarded as ex-
pressions being compiled into machine instructions, and executed directly. Most
statements may be used, with a few exceptions as the FOR/NEXT

statements. The terminal may then function as an advanced calculator.

In all modes extensive error messages are given, making it easy to correct
erroneous statements.

ND-60.071.01

Revision D

1.5

1.6.1

1—-6

THE MANUAL

This manual describes the language in steps so that understanding of
material presumes a knowledge of material in previous chapters.

Conventions Used In This Manual

Some

documentation conventions are used in this manual to clarify

examples of BASIC syntax. BASIC statements or commands are often
described in general terms using the following conventions:

Some

A statement number is assumed when a statement is
described.

ltems in capital letters are reserved BASIC words belonging

to the vocabulary of the BASIC language. (RUN, EDIT,

IF, LET, STEP.)

Items in small letters enclosed in < > are essential elements of
the statement or command being described. (<statement>,
<variable>, <expression>)

Text enclosed in [] is optional.

terms which may seem confusing are explained below:

Terminal is any device having a two-way communication with
the computer.

The user types on the keyboardand BASIC prints on the
terminal.

Capital letters marked with a © like ACor Q° indicate the
respective key on the keyboard plus the CTRL key.

ND-60.071.01
Revision C

2.1

A BASIC PRIMER
AN EXAMPLE

The following example is a'comp!ete BASIC program for solving a
system of two simultaneous linear equations in two variables:

ax + by = ¢
dx +ey=f

and then solving two different systems, each differing from this system
only in the constants ¢ and f.

You should be able to solve this system, if ae — bd is not equal to O,
to find that:

- ce — bf and . af — ¢cd
ae — bd ae — bd

X

If ae — bd = 0, there is either no solution or there are infinitely many,
but there is no unique solution, If you are rusty at solving such systems,
take our word for it that this is correct. At the moment, we want you
to understand the BASIC program for solving the system.

Study this example carefully — in most cases the purpose of each line
in the program is self-evident — and then read the commentary and
explanation.

10 READ A, B, D, E

156 LET G = A «E-B»D
20 IF G =0 THEN 65

30 READC, F

37 LET X = (C+E-B+F)/G
42 LET Y = (AxF—C«D)/G
56 PRINT X, Y

60 GO TO 30

65 PRINT “NO UNIQUE SOLUTION"
70 DATA 1,2, 4

80 DATA 2, -7.5

85 DATA 1, 3, 4, -7

90 END

We immediately observe several things about this sample program.

First, we see that the program uses only capital letters, since the
terminal has only capital letters.

ND-60.071.01

A second observation is that each line of the program begins with a
number. These numbers are called /ine numbers and serve to identify
the lines, each of which is called a statement. Thus a program is

made up of statements, most of which are instructions to the com-
puter. Line numbers also serve to specify the order in which the state-
ments are to be performed by the computer. This means that you may
type your program in any order. Before the program is run, the com-
puter sorts out and edits the program, putting the statements into the
order specified by their line numbers. This editing process facilitates
the correcting and changing of programs, as we shall explain later.

A third observation is that each statement starts, after its line number,
with an English word. This word denotes the type of the statement.
There are several types of statements in BASIC; some of them are
discussed in this chapter.

A fourth observation, not at all obvious from the program, is that

spaces have no significance in BASIC, except in messages enclosed in
quotation marks which are to be printed out, as in line number 65 on
the previous page. Thus, spaces may be used, or not used, to “‘pretty
up’ a program and make it more readable. Statement 10 could have
been typed as TOREAD A, B, D, E and statement 15 as 15LET G=
A*E—B*D.

With this preface, let us go through the example step by step. The
first statement, 10, is a READ statement. It must be accompanied by
one or more DATA statements. When the computer encounters a
READ statement while executing your program, it will cause the
variables listed after the READ to be given values according to the
next available numbers in the DATA statements. In the example we
read A in statement 10 and assign the value 1 to it from statement 70
and similarly with B and 2, and with D and 4. At this point, we
have exhausted the available data in statement 70, but there is more
in statement 80, and we pick up from it the number 2 to be assigned
to E.

We next go to statement 15, which is a LET statement, and first en-
counter an expression to be evaluated. (The asterisk ““*** is obviously
used to denote multiplication.) In this statement we direct the com-
puter to compute the value of AE — BD, and to call the results G.
In general a LET statement directs the computer to set a variable
equal to the expression on the right side of the equal sign. We know
that if G is equal to zero, the system has no unique solution. There-
fore, we next ask, in line 20, if G is equal to zero. If the computer
discovers a “yes’ answer to the question, it is directed to go to line
65 where it prints “NO UNIQUE SOLUTION". From this point it
would go to the next statement. But lines 70, 80 and 85 give it no
instructions, since DATA statements are not “executed”, and it then

’

goes to line 90 which teils it to “END"* the program.

ND-60.071.01
Revision C

If the answer to the question “Is G equal to zero?’ is “no’’, as it is
in this example, the computer goes on to the next statement, in this
case 30. (Thus an IF=THEN tells the computer where to go if the
“|E" condition is met, but to go on to the next statement if it is not
met.) The computer is now directed to read the next two entries
from the DATA statements, —7 and 5, (both are in statement 80)

and to assign them to C and F respectively. The computer is now
ready to solve the system

x + 2y = =7
4x + 2y = b

In statements 37 and 42 we direct the computer to compute the
value of X and Y according to expressions provided. Note that
we must use varentheses tc indicate that CE — BF is divided by G;
without parentheses, only B F *would be divided by G and the com-
puter would let X = CE — BF/G.

The computer is told to print the two values computed, that of X
and that of Y, in line 55. Having done this, it moves on to line 60
where it is directed back to line 30. If there are additional numbers
in the DATA statements, as there are here in 85, the computer is
told in line 30 to take the next one and assign it to C, and the one
after that to F. Thus, the computer is now ready to solve the
system:

x + 2y =1
4x + 2y = 3

As before, it finds the solution in 37 and 42 and prints them out
in line 55, and then is directed in 60 to go back to 30.

In line 30 the computer reads two more values, 4 and —7, which it
finds in line 85. It then proceeds to solve the system:

x+2y =4
4x + 2y =-7

and to print out the solutions. It is directed back again to 30, but
there are no more pairs of numbers available for C and F in the
DATA statement. The computer then informs you that it is out of
data, printing a message on your terminal.

Run time errors are errors detected during execution of a program
whereas errors detected during compilation of a program are called
compile time errors. A complete error list is given in Appendix A.

ND-60.071.01
Revision C

For a moment, let us look at the importance of the various state-
ments. For example, what would have happened if we had omitted
line 55? The answer is simple; the computer would have solved the
three systems and then told us when it was out of data. However,
since it was not asked to tell us (PRINT) its answers, it would not

do it, and the solutions would be the computer’s secret. What would
have happened if we had left out line 207 In this problem just solved
nothing would have happened. But, if G were equal to zero, we would
have set the computer the impossible task of dividing by zero, and it
would tell us so, printing a warning on your terminal. If we had left
out statement 60, the computer would have solved the first system,
printed out the values of X and Y, and then gone to line 65 where

it would be directed to print “NO UNIQUE SOLUTION". It would
do this and then stop.

One very natural question arises from the seemingly arbitrary numbering
of the statements: Why this selection of line numbers? The answer is
that the particular choice of line numbers is arbitrary, as long as the
statements are numbered in the order we want the machine to follow
in executing the program. We could have numbered the statements

1, 2, 3, 4, ... 13, although we do not recommend this numbering.
We would normally number the statements 10, 20, 30, 130. We
put the numbers a certain distance apart so that we can later insert
additional statements if we find that we forgot them when we originally
wrote the program. Thus, if we find that we have left out two state-
ments between those numbered 40 and 50, we can give them any two
numbers between 40 and 50 — say 44 and 46; and in the editing and
sorting process, the computer will put them in their proper place.

Another question arises from the seemingly arbitrary placing of the data
elements in the DATA statements: Why were they placed as they

were in the sample program? Here again the choice is arbitrary and we
need only to put the numbers in the order that we want them read
(the first for A, the second for B, the third for D, the fourth for E,
the fifth for C, the sixth for F, the seventh for next C, etc.). In place
of the three statements numbered 70, 80 and 85, we could have put:

75 DATA 1,2 4,2, -7,51, 3, 4, -7

or we could have written, perhaps more naturally:
70 DATA 1, 2, 4, 2
75 DATA -7, 5

80 DATA 1,3
85 DATA 4, -7

to indicate that the coefficients appear in the first data statement and

the various pairs of right-hand constants appear in the subsequent
statements.

ND-60.071.01

The program and the resulting run is shown below exactly as it
appears on the terminal:

10
15
20
30
37
42
55
60
65
70
80
85
90

READ A, B, D, E
LET G=A"E-B™D

IF G=0 THEN 65
READ C, F

LET X=(C*E-B*F)/G
LET Y=(A"F-C*"D)/G
PRINT X, Y

GO TO 30

PRINT “NO UNIQUE SOLUTION"
DATA 1, 2, 4

DATA 2, -7, 5
DATA 1, 3, 4, -7
END ~

RUN

4

—-5.5

6.66667E—01 1.66667E-01
—3.66667 3.83333

BASIC RUN ERROR 406 iN LINE 30

After typing the program, we type RUN followed by a carriage
return. Up to this point the computer stores the program and checks
the form of the statements. This process is cailled compiling. 1t is
the RUN command which directs the computer to execute your pro-
gram. The message out-of-data error code here may be ignored.
However, in some cases it indicates an error in the program.

ND- 60.071.01

2.2

EXPRESSIONS

The computer can perform a great many operations; it can add, subtract,
multiply, divide, extract square roots, raise a number 10 a power and find
the sine of a number {on an angle measured in radians), etc.. We will now
learn how to tell the computer to perform these various aperations and
to perform them in the order that we want them done.

The computer performs its primary function (that of computation) by
evaluating formulas which are supplied in a program. These expressions
are very similar to those used in standard mathematical calculation, with
the exception that all BASIC expressions must be written on a single line.
Five arithmetic operations can be used to write an expression, and these
are listed in the following table.

Symbol Example Meaning

+ A+ B Addition {add B to A)

— A—B Subtraction (subtract B from A)
* A*B Multiplication {multiply B by A)
/ A/B Division (divide A by B)

T oor ** X1t2 Raise to the power (find X 2)

We must be careful with parentheses to make sure that we group together
those things which we want together. We must also understand the order

in which the computer does its work. For example, if we type A+ B *C 1t D
the computer will first raise C to the power D, multiply this result by B and
then add A to the resulting product. This is the same convention as is usual
for A +BCD. [f this is not the order intended, then we must use parentheses
to indicate a different order. For example, if it is the product of B and C
that we want raised to the power D, we must write A + (B*C)1D; or, if

we want to multiply A+ B by C to the power D, we write (A + B)*C1D.
We could even add A to B, multiply their sum by C, and raise the product
to the pewer D by writing ((A + B)*C)*4D. The order of priorities is sum--
marized in the foliowing rules:

’

- The expression inside parentheses is computed before

the parenthesized quantity is used in further com-
putations.

_ In the absence of parentheses in an expression in-

volving addition, multiplication and the raising of a
number to the power, the computer first raises the
number to the power, then performs the multiplica-
tion, and the addition comes last. Division has the
same priority as multiplication, and subtraction the
same as addition.

ND-60.071.01

Revision D

- In the absence of parentheses in an expression invol-
ving operations of the same priority, the operations are
performed from left to right.

The rules are illustrated in the previous example. The rules also tell us that
the computer faced with A — B — C, will {(as usual) subtract B from A and
then C from their difference; faced with A/B/C, it will divide A by B and
that quotient by C. Given A1B1C, the computer will raise the number A to
the power B and take the resulting number and raise it to the power C. If
there is any question in your mind about the priority, put in more paren-
theses to eliminate possible ambiguities.

In addition to these five arithmetic operations, the computer can evalute
several mathematical functions. These functions are given special English
names, for instance:

Functions Interpretation

ATN (X) Find the arctangent of X

EXP (X) Find eX

SQR (X) Find the square root of X (v X)

In place of X, we may substitute any expression or any number in paren-
thesis following any of these formulas. For example, we may aks the com-
puter to find v 4 + x3 by writing SQR (4 + Xt3), or the arctangent of
3X — 2eX + 8 writing ATN (3*X — 2 * EXP (X) + 8).

If sitting at the terminal, you need the value of (5/6)17 and you can write
the two-line program:

10 PRINT (5/6) t 17
20 END

and the computer will find the decimal form of this number and print it
out in less time than it took to type the program.

Other functions are also availabie in BASIC, but these are reserved for
explanation later (Section B.3).

ND-60.071.01
Revison C

2.2.1

2.2.2

2.2.3

Numbers

A number may be positive or negative and it may contain up to approxi-
mately nine significant digits. For example, all of the following are num-
bers ir BASIC:2 —3, 675, 1234567, —7654321 and 483.4156. The follow-
ing are not numbers in BASIC:14/3 and v 7,. We may ask the computer

to find the decimal expression 14/3 and v 7, and to do something with

the resulting number, but we may not include either in a list of DATA.

We gain further flexibility by use of the letter E, which stands for ""times ten
to the power”. Thus, we may write 00123456789k - 2 or 123456789k — 11
or 1234 56789F — 6. We may write ten million as 1E7 {or 1E + 7} and 196b
as 1.965E3 {or 1.965E +3). We do not write E7 as a nurber, but must write
1E7 to indicate that it is 1 that is multiplied by 107-

Variables

A variable in BASIC is denoted by any letter, or a letter followed by up

to six digits and/or letters. Thus, the computer will interpret E7 as a variable
along with A, X, N5, 10 and O1. A variable in BASIC stands for a number,
usually one that is not known to the programmer at the time the program
was written. Variables are given or assigned values by LET READ or INPUT
statements. The value so assigned will not change until the next time a

LET, READ or INPUT statement is encountered with a value for that vari-
able. However, all variables are set to a zero before a RUN command. Thus,
it is not necessary to assign a value to a variable before using the variable

in a computation.

Relational Operators

Seven other mathematical symbols are provided for in BASIC, symbols

of relation, and these are used in [F — THEN statements where it is neces-
sary to compare values. An example of the use of these symbols was

given in the sample program in Section 2.1.

Any of the following seven relations may be used:

Symbol Example Meaning

= A=B Is equal to (A is equal to B)

< A<B Is less than (A is less than B)

<=or=< A<=B Is less than or equal to (A is
less than or equal to B)

> A>B Is greater than (A is greater
than B)

>=o0r=2> A>=8B Is greater than or equal to (A
is greater than or equal to B)

<> or >< A<>B fs not equal to (A is not equal
to B)

= = A==8B Is approximately equal to

ND-60.071.01

Revision D

The term "‘approximately equal 1o’ means that the two quantities differ
by a very small amount and may be regarded as identical for any practical
purpose. More specifically, A== B is true if:

A-B|<C " {A+B/2)]

C is a system constant which equals 5E—7 for 48 bit reals and 5E -5 for 32
bit reals (see Appendix C).

G‘enerally, approximately equal quantities appear equal when they are
printed.

ND-60.071.01
Revision D

2.3

LOOPS

We are frequently interested in writing a program in which one or more
portions are performed not just once but a number of times, perhaps with
slight changes each time. In order to write the sirnplest program, the one in
which this portion ta be repeated is written just once, we use the program-
ming device known as a foop.

The programs which use loops can, perhaps, be best illustrated and explained
by two programs for the simple task of printing out a table of the first 100
positive integer numbers together with the square root of each. Without a
loop, our program would be 101 fines long and read:

10 PRINT 1, SQR (1)

20 PRINT 2, SQR (2)

30 PRINT 3, SQR (3)

990 PRINT 99, SQR (99}
1000 PRINT 100, SQR (100)
1010 END

With the following program, using one type of loop, we can obtain the
same table with far fewer lines of instruction, b instead of 101:

10 LET X =1

20 PRINT X, SQR (X)

30 LET X =X +1

40 IF X < =100 THEN 20
50 END

Statement 10 gives the value of 1 to X and “initializes” the loop. In line

20 both 1 and its square root are printed. Then, in line 30, X is increased
by 1 to 2. Line 40 asks whether X is less than or equal to 100; an affir-
mative answer directs the computer back to line 20. Here it prints 2 and

J 2, and goes to 30. Again X is increased by 1, this time to 3, and at 40

it goes back to 20. This process is repeated, line 20 (print 3 and v 3),

line 30 {X = 4), line 40 (since 4 < 100 go back to line 20}, etc. — until

the loop has been traversed 100 times. Then after it has printed 100 and

its square root, X becomes 101. The computer now receives a negative an-
swer to the question in line 40 (X is greater than 100, not less than or equal
to it), does not return to 20, but moves on to line 50, and ends the program.
All loops contain four characteristics, initialization (line 10), the body

(line 20}, modification (line 30), and an exit test (line 40). Because loops
are so important and because loops of the type just iliustrated arise so often,
BASIC provides two statements to specify a loop even more simple. They
are FOR and NEXT statements, and their use is illustrated in the program:

ND-60.071.01

10 FOR X =1TO 100
20 PRINT X, SQR (X)
30 NEXT X

50 END

In fine 10, X is set equal to 1, and a test is set up, like that of line 40.
Line 30 carries out two tasks: X is increased by 1 and the test is carried
out to determine whether to go back to 20 or to go on. Thus, lines 10 and
30 take the place of lines 10, 30 and 40 in the previous program — and
they are easier to use.

Note that the value of X is increased by 1 each time we go through the
loop. If we wanted a different increase, we would specify it by writing:

10 FORX =1TO100STEP 5

and the computer would assign 1 to X on the first time through the loop
6 to X on the second time through, 11 on the third time, and 96 on the
last time. Another step of 5 whould take X beyond 100, so the program
would proceed to the end after printing 96 and its square root. Step size
must be positive, unless it is a negative constant.

In the absence of a STEP clause, a step size of +1 is assumed.

More complicated FOR statements are allowed. The initial value, the final
value, and the step size may all be expressions of any complexity. For
example, if N and Z have been specified earlier in the program we could
write:

FORX=N+7*2ZTO(Z—-N)/3STEP (N —-4* 2) /10

The loop continues as long as the control variable is algebraically /ess than
or equal to the final value.

If the initial value is greater than the final value, then the body of the
loop will not be performed at all, but the computer will immediately
pass to the statement following the NEXT. For example, the following
program for adding up the first n integer numbers will give the correct
result O when n is O,

10 READ N
20LETS=0

30 FOR K=1TON
40 LETS=5+K
50 NEXT K

60 PRINT S

70 GO TO 10

90 DATA 3,10, 0
99 END

ND-60.071.01
Revision D

It is often useful to have loops within loops. These are called nested loops
and can be expressed with FOR and NEXT statements. However, they must
actually be nested and must not cross, as the following skeleton examples

illustrate:

Allowed Allowed

—— FOR X ~— FOR X

~ —FORY — FOR Y

L L —NEXT Y ~FORZ
——— NEXT X LNEXT Z

~FOR W
Not Allowed CLNEXT W
LoNEXT Y

—FOR X “FOR Z
—T—FOR Y LNEXT Z
L_NEXT X _NEXT X

MMMMM NEXT Y

Note that BASIC does not check for overlap of control variables in nested loops.

ND-60.071.01
Revision C

2-13

2.4 ARRAYS OR MATRICES

In addition to the ordinary variables used by BASIC there are variables
which can be used to designate the elements of an array. These are used
where we might ordinarily use a subscript, for example, the coefficients
of a polynomial {ag, aj,ap) or the elements of a matrix
(B). The variables which we use in BASIC are called the name of the
array, followed by the subscript(s) in parenthesis. Thus, we might write
A(0), A(1), A(2), etc., for the coefficients of the polynomial and B(1,1),
B(1,2), etc., for the elements of the matrix. In this manual you will also
find the words dimension or index for subscript and indexed variable
for subscripted variable.

We can enter the array A(0), A(1), A(2), A(10) into a program
very simply by the lines:

10 FOR 1 =070 10

20 READ A (i)

30 NEXT |

40 DATA 2, 3, =5, 2,2, 4, -9, 123, 4, -4, 17

We need no special instruction to the computer if no subscript greater
than 10 occurs. However, if we want larger subscripts, we must use a DIM
statement to indicate to the BASIC system that it has to save extra space
for the array. When in doubt, indicate a larger dimension than you expect
to use. For example, if we want a list of 15 numbers entered, we might
write:

10 DIM A (25)

20 READ N

30FORI=1TON

40 READ A (1)

50 NEXT |

60 DATA 156

70 DATA 2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47

Statements 20 and 60 could have been eliminated by writing 30 as FOR | =1
TO 15, but the form as typed would allow for the lenghtening of the ar-
ray by changing only statement 60,as long as it did not exceed 25.

We would enter a 3 x 5 array into a program by writing:

10 FOR 1=1T0 3

20 FORJ=1TO5

30 READ B (I, J)

40 NEXT J

50 NEXT |

60 DATA 2, 3, =5, -9, 2
4 70 DATA 1, -7, 3, 4, =2
""" 80 DATA 3, -3, 5,7, 8

ND-60.071.01

2-14

Here again, we may enter an array with no dimension statement, and it
will handle all the entries from B(0,0) to B(10,10). If you try to enter an
array with a subscript greater than 10, without a DIM statement, you will
get an error message telling you that you have a subscript error. This is
easily rectified by entering the line:

5 DIM (20, 30)
if, for instance, we need a 20 by 30 matrix.

The form of the subscript is quite flexible, and you might have the array
element B(l, K) or Q(A(3,7), B—C).

Shown below is a list and run of a problem which uses both a singly and
a doubly subscripted array. The program computes the total sales of each
of five salesmen, all of whom were selling the same three products. The
array P gives the price/item of the three products and the array A tells
how many items of each product each man sold. You can see from the
program that product number 1 sells for $1.25 per item, number 2 for
$4.30 per item, and number 3 for $2.50 per item® and also that salesman
number 1 sold 40 items of the first product, 10 of the second, and 35 of
the third, and so on. The program reads in the sales array in lines 40 — 80,
using data in lines 910 — 930. The same program could be used again,
modifying only line 900 if the price changes, and only lines 910 — 930 to
enter the sales in another month.

This sample program did not need a dimension statement, since the com-

puter automatically saves enough space to allow all subscripts to run from
0 to 10. A DIM statement is normally used to save more space. However,
in a long program, requiring many small arrays, DIM may be used to save
less space for arrays, in order to leave more for the program.

Since the DIM statement is used to save space for arrays, the DIM state-
ment must be executed before the space is being used. Normally the DIM
statements will be placed near the beginning of the program.

10 FOR I =1T0O 3

20 READ P(1)

30 NEXT |

40 FOR 1 =1 TO 3
50 FOR J =1 T0 5
60 READ A (1, J)

70 NEXT J

80 NEXT |

90 FOR J=1TO 5
100 LET S =0

110 FOR I =1 TO 3

120 LETS=S+P{l) * A (l, J)

130 NEXT 1|

140 PRINT “TOTAL SALES FOR SALESMAN"; J; "$":5

ND-60.071.01

2-15

160 NEXT J

900 DATA 1.25, 4.30, 2.50
910 DATA 40, 20, 37, 29, 42
920 DATA 10, 16, 3, 21, 8
930 DATA 35, 47, 29, 16, 33
999 END

RUN

TOTAL SALES FOR SALESMAN 1 $180.5
TOTAL SALES FOR SALESMAN 2 $211.3
TOTAL SALES FOR SALESMAN 3 $131.65
TOTAL SALES FOR SALESMAN 4 $166.55
TOTAL SALES FOR SALESMAN 5 $169.4

READY

ND-60.071.01

2.5

2-16

USE OF THE SYSTEM

Commands to the computer, unlike statements or instructions in a program
have no line number. These commands are typed at the start of a new line
on the terminal and are followed by a carriage return. They give the com-
puter information on manipulating programs you are creating or have pre-
viously written. You may type a command any time you could type a num-
bered line in a program.

Execution of a program is started by the command RUN, and you can ob-
tain a listing in its current form of your program by typing the command
LIST. If you wish to save it for later use, type SAVE. To recover a program
previously saved, type OLD and then the program name. The result will be
just as if you had typed in a new program and saved it.

Now that we know something about writing a program in BASIC, how do
we set about using a terminal to type in our program and then have the
computer solve our problem?

First, ascertain that the BASIC system is present. If no, the system is loaded
as explained in Section 3.1. When the computer types READY you should
begin to type your program. Make sure that each line begins with a line
number which contains no non-digit characters. Be sure to press the carriage
return key at the completion of each line, Spaces may be inserted at any
point in the line, including before the line numbers.

If, in the process of typing a statement, you make a typing error and notice
it immediately, you can correct it by pressing AC. (Press the key marked
CTRL and type A). This will delete the preceding character and you can then

type in the correct character. Pressing this key a number of times, for example n,

will erase from this line the n last characters. To delete all of the present
line, press aC. Programs or data may be annotated by typing the remark
and then deleting the line (as far as the system is concerned) with aC.
BASIC prints <" to show that a line has been deleted, and ““+" to show
that a character has been deleted.

When a line is finished, you press the carriage return key. Then the statement
is analyzed by the computer and if any syntax error is found, an error
message is printed.

After typing your complete program, you type RUN, press the carriage
return key and hope. If the program is one which the computer can run,

it will then run it and print out any results for which you have asked in
your PRINT statements. This does not mean that your program is correct,
but that it has no errors of the type known as ““grammatical errors’. If it
had errars of this type, the computer would have printed an error message
as soon as the error was detected during the typing of the program. Errors
detected after RUN are structural (loop nesting, matching GOSUB and
RETURN) or arithmetical errors. A complete error list is given in Appendix
A together with the interpretation of each.

‘ND-60.071.01

2-17

The last line is always stored in the computer, and you can correct it,

even if it resulted in an error message by using the line exit control char-
acters. Any program statement may also be corrected in the same way

by typing the EDIT command followed by the statement number. If you
want to eliminate the statement on line 110 from your program, you may
do this by typing the command DELETE 110. i1 is also possible to type 110
followed by carriage return. Now, line 110 is still a part of the program,

but the effect of the statement is removed. If you want to insert a state-
ment between those on lines 60 and 70, you can do this by giving it a

line number between 60 and 70.

If it is obvious to you that you are getting the wrong answers to your
problem, even while the computer is running, press the key marked ESC
and the control is given to the Operating System. The command CON-
TINUE will restart BASIC with your program intact and you can start to
make your corrections. If you are in serious trouble, type the command
CLEAR. The word READY, whenever printed, tells you that BASIC is
ready to accept commands or statements from your terminal.

A sample use of the system is shown below:

10 FORN=1TO7
20 PRINT N, SQR(N)

30 NEXT N

50 END

RUN

1 1

2 1.41421
3 1.73205
4 2

5 2.23607
6 2.44949
7 2.64575
READY

ND-60.071.01

2.6

ERRORS AND DEBUGGING

It may occasionally happen that the first run of new problem will be free
of errors and give the correct answers, but it is much more likely that
errors will be present and will have to be corre Errors are of two
types: errors of form {or syntax errors) which ‘hie running of the
program, and logical errors in the program which cause the computer to
produce wrong answers or no answers at all.

Errors of form will cause error messages to be printed. Logical errors are
often much harder to uncover, particularly when the arn gives ans-
wers which seem to be nearly correct. In either case, after the errors are
discovered, they can be corrected by changing lines, by inserting new lines
or by deleting lines from the program. As indicated in the last section, a
line is changed by typing it correctly with the same line number; a line is
inserted by typing it with a line number between those two existing lines;
and a line is deleted by typing DELETE and the actual line number. Notice
that you can insert a line only if the original line numbers are not con-
secutive integers. For this reason, most programmers will start out using
line numbers that are multiples of five or ten, but that is a matter ot
choice.

These corrections can be made at any time - whenever you notice them -
either before or after a run. Since the computer sorts lines out and arranges
them in order, a line may be retyped out of sequence. Simply retype the
offending line with its original line number.

As with most problems in computing, we can best illustrate the process of
finding the errors (or “bugs”) in a program and correcting {or ““debugging’’)
it by an example. Let us consider the problem of finding that value of X
between 0 and 3 for which the sine of X is a maximum and ask the machine
to print out this value of X and the value of its sine. If you have studied
trigonometry you know that #/2 is the correct value; but we shall use the
computer to test successive values of X from O to 3, first using intervals of
.1, then .01, and finally of .001. Thus, we shall ask the computer to find the
sine of 0, of .1, .2, .3, 2.8, 2.9 and of 3, and to determine which
of these 31 values is the largest. It will do it by testing SIN(O) and SIN{.1)
to see which is larger and calling the largest of these two numbers M. Then
it will pick the larger of M and SIN (.2) and call it M. This number will be
checked against SIN (.3} and so on down the line. Each time a larger value
of M is found, the value of X is “remembered” in X0, When it finishes,

M will have been assigned to the largest value. It will then repeat the search,
this time checking the 301 numbers 0, .01, .02, .03, 2.98, 2.99,
and 3, finding the sine of each and checking to see which has the largest
sine. At the end of each of these three searches, we want the computer

to print three numbers: the value X0 which has the largest sine, the sine

of that number, and the interval of search.

ND-60.071.01

Revision D

2-19

Before going to the terminal, we write a program, let us assume that it is
the following:

10 READ D

20 LET X0 =0

30 FOR X = 0 TO 3 STEP D
40 IF SIN (X)< = M THEN 100
50 LET X0 = X

60 LET M = SIN (X0)
70 PRINT X0, X, D
80 NEXT XO
90 GO TO 20
100 DATA . 1, .01, .001
,,,,,,, 110 END
We shall list the entire sequence on the terminal and make explanatory
comments.

NEW MAXSIN

10 REAF D
***ERROR IN LINE 10 NOT RECOGNIZED
10 READ D
20 LET X0 =0
30 FOR X =0
40 IF SINEt
50 LET X0 = X
60 LET M = SIN (X)
70 PRINT XO0,X,D
80 NEXT Z1X0

90 GOTO 20

- 100 DATA .1,.01, .001
110 END
RUN :
“LINE 80" IMPROPERLY NESTED FOR LOOPS

TE

TO 3 STEP D
X 1< =M THEN 100

A message indicates that READ was mistyped in line 10, so we retype
it, this time correctly.

Notice the use of AC (types up arrow) to erase a character in line 40, which
should have started IF SIN (X) etc., and in line 80.

Upon checking we see that the variable in the FOR and NEXT are different,
so we correct statement 80. In looking over the program, we also notice that

the |F - THEN statement in 40 directed the computer to a DATA state-
ment and not to line 80 where it should go.

ND-60.071.01

80 NEXT X

40 1F SIN (X)<=M THEN 80
RUN

0.1 0.1 0.1
0.2 0.2 0.1
0.3 0.3 0.1
USER BREAK AT 110334
@CONT

READY

M has never been assigned an initial value and is assumed to be zero. We
decide to give it a value less than the maximum value of the sine, say -1.

20 LET M= -1

RUN

0 0 0.1
0.1 0.1 0.1
0.2 0.2 0.1
USER BREAK AT 110334
@CONT

READY

This is incorrect. We are having every value of X0,X and the interval size
printed, so we direct the machine tc cease operations by depressing the

ESC-key even while it is running. Notice that the ESC does not print, but
the word USER BREAK is printed.

We fix this by moving the PRINT statement outside the loop. We also
realize that we want M printed and not X.

DELETE 70

85 PRINT X0, M, D

RUN

1.6 9.99574E-01 0.1
1.6 9.99574E-01 0.1
USER BREAK AT 110334

@CONT

READY

Of course, line 90 sent us back to line 20 to repeat the operation and
not back to line 10 to pick up a new value of D. We also decide to put
in headings for our columns by a PRINT statement.

90 GOTO 10
5 PRINT "X VALUE”, “SIN”, “RESOLUTION
***ERROR IN LINE 5 ILL. STRING TERMINATION

ND-60.071.01

2-21

There is an error on our PRINT statement, no right quotation mark for the
third item.

Retype line 5 by typing H“ and supply the missing quotation mark.

5 PRINT “X VALUE", “SIN”, “RESOLUTION"

RUN
X VALUE SIN RESOLUTION
1.6 9.99574E-01 0.1
1.57 1 0.01
1.571 1 0.001
BASIC RUN ERROR 406 IN LINE 10
READY
Exactly the desired results. Of the 31 numbers (0, .1, .2, .3, 2.8,

2.9, 3) it is 1.6 which has the largest sine, namely .999574. Similarly for
finer subdivisions.

Having changed so many parts of the program, we ask for a list of the cor-
rected program. Listing the corrected program, from time to time, is an
important part of debugging. Using LISTH will list the program name as

a header, including the date and time:

LISTH

MAXSIN 15 JULY 1976 09.31.59

5 PRINT “X VALUE”, “SIN”, “RESOLUTION"
10 READ D

20 LETM = -1

30 FOR X=0TO 3 STEP D

40 IF SIN(X) <=M THEN 80

50 LET X0 = X

60 LET M = SIN(X)

80 NEXT X

85 PRINT X0, M, D
90 GO TO 10

100 DATA .1, .01, .001
110 END

SAVE “"MAXSIN"

The program is saved for later use by writing it on the file MAXSIN. A
file name enclosed in double quotes means that a new file with the given
file name should be created.

in solving this problem, there is a common device which we did not use,
namely the insertion of a PRINT statement when we wonder if the machine
is computing what we think we asked it to compute. For example, if we
wondered about M, we could have inserted 65 PRINT M and we would have
seen the values.

ND-60.071.01

2.6.1

2-22

With more difficult problems we can use the STOP statement, 58 STOP.

However, it is more convenient to use the BREAK debugging option which
allows to set a break point at the beginning of any statement by typing
BREAK followed by the actual statement number. A breakpoint halts the
execution and returns control to the terminal. All legal statements execut-
ing in immediate mode (statement without statement number) may now
help us to examine and change the variable values if necessary.

It is also possible to change the program. If wanted, set a new breakpoint
before going on with the command CONTINUE.

Use of Flags

The technique of ending a program by having it run out of data is very
simple and efficient. However, it does not yield an attractive printout and
prevents taking any action after the program discovers that it has run out
of data. The MAXSIN program above terminates with a run error message
telling it is out of data in line 10.

Now that we have the IFFTHEN statement, we can agree that a O signifies
the end of the data. In reading the data, when we reach the 0, we will know
that all computations have been done and we can now terminate the execu-
tion. The number O is used as a piece of data having special meaning and is
called a flag. Actually, we can agree to any number as the data-ending

flag, but we chose O because a step size of 0 never occurs.

In the MAXSIN example we should make the following corrections:

15 IF D = 0 THEN 110
100 DATA .1, .01, .001, O

ND-60.071.01

2.7

2.7.1

2.7.2

SUMMARY OF ELEMENTARY BASIC STATEMENTS

In this section we shall give a short and concise description of each of the
types of BASIC statements discussed earlier in this chapter and add some
to our list.

LET
LET <variable> = <expression>

This statement is not a statement of algebraic equality, but rather a com-
mand to the computer to perform certain computations and to assign
the answer to a certain variable.

Examples:

100 LET X =X + 1
259 LET W7 = (W - X413)*(X - A/(A - B)})-17

READ and DATA

READ <list of variables>
DATA <list of numbers>

We use a READ statement to assign to the listed variables values obtained
from a DATA statement. Neither statement is used without one of the

other type. A READ statement causes the variables listed in it to be given,

in order, the next available numbers in the collection of DATA statements.
Before the program is run, the computer takes all DATA statements in the
order in which they appear and create a large data block. Each time a READ
statement is encountered anywhere in the program, the data block supplies the
next available number or numbers. If the data block runs out of data, with a
READ statement still asking for more, it is assumed that the program is done
and we get an out-of-data error code. '

Since we have to read in data before we can work with it, READ state-
ments normally occur near the beginning of a program. The location of
DATA statements is arbitrary as long as they occur in the correct order.
A common practice is to collect all DATA statements and place them
just before the END statement.

Examples:
150 READ X, Y, Z, X1, Y2, Q9

330 DATA 4, 2, 1.7
340 DATA 6.734E-3, -174.321, 3.14159265

ND-60.071.01

2.7.3

2—24

234 READ B (K)
263 DATA 2, 3, 5, 7,9, 11, 10, 8, 6, 4

10 READ R (1, J)

440 DATA -3, 5, -9, 2.37, 2.9876, -437.234E-5

450 DATA 2.765, 5.56576, 2.3789E2
Remember that only numbers are put in a DATA statement and that
15/7 and v 3 are expressions not numbers.
PRINT

PRINT <list of expressions>

The PRINT statement has a number of different uses and is discussed in
more detail in Section 4.7. The common uses are: ‘

1. To print out the result of some computations

2. To print out verbatim a message included in the program
3. A combination of the two

4, To skip a line

We have seen examples of only the first three in our sample programs. Each
type is slightly different in form, but all begin with PRINT after the line
number.

Examples of type 1:

100 PRINT X, SQR (X)
135 PRINT X, Y, Z, B * B—4 * A * C, EXP(A-B)

The first will print X and then a few spaces to the right of that number
its square root. The second will print five different numbers:

X, Y, Z, B2 —4AC, and e~ B

The computer will compute the two expressions and print them for you.
It can print up to five numbers per line in this format.

Examples of type 2:

100 PRINT “NO UNIQUE SOLUTION"
430 PRINT “X VALUE", “SINE”, “RESOLUTION"

ND-60.071.01

2.7.4

2.17.5

Both have been encountered in the sample programs. The first prints that
simple statement, the second prints the three labels with spaces between
them. The labels in 430 automatically line up with the three numbers
called for in a PRINT statement (as long as the labels do not exceed 14
characters) as seen in MAXSIN.

Examples of type 3:

150 PRINT “THE VALUE OF X IS"; X
30 PRINT “THE SQUARE ROOT OF"; X; “IS”; SQR(X)

If the first has computed the value of X to be 3, it will print out: THE
VALUE OF X IS 3. If the Second has computed the value of X to be
625, it will print out: THE SQUARE ROOT OF 625 IS 25. The semi-
colon delimiter will be discussed later.

Examples of tvpe 4:

250 PRINT

The computer will advance the paper one line when it encounters this
command.

GOTO
GOTO <line number>

There are times in a program when you do not want all statements executed
in the program. An example of this occurs in the MAXSIN problem where the
computer has computed X0, M, and D and printed them out in line 85. We
did not want the program to go to the END statement yet, but to go through
the same process for a different value of D. Therefore, we directed the com-
puter to go back to line 10 with a GOTO statement. (It is possible to go to

a non-executable statement, control then passes to the sequential executable
statement.)

Example:

160 GO TO 75

IF-THEN- or IF-GOTO

IF <expression> <relation> <expression> GOTO <line number>
There are times when we are interested in jumping the normal sequence
of statements, if a certain relationship holds. For this we use an IF — THEN

statement, sometimes called a conditional GO TO statement. Such a state-
ment occurred at line 40 of MAXSIN.

ND-60.071.01

Examples:

40 IF SIN (X) <=M THEN 80 or
40 IF SIN (X) <=M GO TO 80

20 IF G =0 THEN 65 or
20lFG=0GO TO 65

The first asks if the sine of X is less than or equal to M, and directs the
computer to skip to line 80 if it is. The second asks if G is equal to O,
and directs the computer to skip to line 65 if it is. In each case, if the
answer to the question is no, the computer will go to the next line of
the program.

2.7.6 FOR and NEXT

FOR <variable> = <expression> TO <expression> [STEP
<expression>]
NEXT <variable>

We have already encountered the FOR and NEXT statements in our loops,
and have seen that they go together, one at the entrance to the loop and
one at the exit, directing the computer back to the entrance again.

Any simple (not subscripted) variable may be used as the FOR variable.
Most commonly, the expressions will be integers, and the STEP omitted.
In the latter case, a step size of one is assumed. The accompanying NEXT
statement is simple in form, but the variable must be precisely the same
as that following FOR in the FOR statement.

Examples:
30 FOR X = 0 TO 3 STEP D
80 NEXT X
120 FOR X4 = (17 + COS(Z)}/3 TO 3*SQR(10) STEP 1/4
235 NEXT X4

456 FOR J = -3 TO 12 STEP 2

Notice that the step size may be an expression: (1/4), or a positive
number(2). In the example with lines 120 and 235, the successive values
of X4 will be .25 apart, in increasing order. In the last example, on
successive trips through the loop, J will take on values -3, -1, 1, 3, b5,
7, 9 and 11,

Note that variables implied in final or step size expression plus the
control variable itself can be changed in the body of the loop. Thus
the loop control may be affected during execution.

ND-60.071.01

2-27

If you write 50 FOR X =2 TO -2, the body of the loop will not be performed
and the computer will proceed to the statement immediately following the
corresponding NEXT statement.

Negative STEP elements permit running through a sequence of values
“backwards.” For instance:

320 FOR X =10 TO 0 STEP —3 ‘Must be a negative constant’

will cause X to run through the values 10, 7, 4 and 1.

2.7.7 DIM
DIM <variable name (dimension(s)),. .. .>

As we have seen BASIC needs no information concerning the array size

if the subscript(s) run fromO to 10. (The default size is then automatically
set up by BASIC.) In those circumstances when a one-dimensional array
has more than 11 entries, or when a two-dimensional array has more than
11 rows or 11 columns, we specify the needed size of the array in a DIM
statement.

20 DIM A(20), B(2, 15), C(4), D(10)

The array named A has entries numbered from O through 20, B has rows
numbered O through 2 and columns numbered O through 15, C has five
entries numbered O through 4, and D has entries numbered from O through
10. Note that C is dimensioned smaller than default to save space in the
computer. D could have been left out since the dimension is equal to the
default. Here is some rules concerning the use of DIM and subscripted
variables:

1. DIM statements may appear anywhere in a program. All array
elements are set to zero after a DIM statement is executed. String
elements are empty.

2 The same name denoting a variable and an array will lead to
conflicts.
3. The dimension(s) of an array may be any legal expression. This

means that arrays can be re-dimensioned during run time if the

DIM statement is executed in a loop, for instance. It is even

possible to re-dimension a one-dimensional array to be two-dimensional
or vice versa.

4. A two-dimensional array can be accessed with one dimension.

b. If the evaluated expression describing the subscript(s) is not an
integer value, it will be truncated to the nearest integer. Note
that the evaluation is truncation, not rounding.

6. The total index is limited to 65535 (a 16 bit data word).

ND-60.071.01
Revision B

2.7.8

2.7.9

2.7.10

2-28

STOP

A STOP statement may be entered anywhere in a program. With STOP,
execution is halted and control is passed to the terminal.

Example:

25 STOP

END

Every program must have an END statement and it must be the statement
with the highest line number in the program. When the computer reaches
the END statement the execution of the program stops.

Example:

999 END

ON-GOTO
ON <expression> GOTO <list of line numbers>

Using an IF — THEN statement provides only a two-way branch in a pro-
gram. A decision between only two alternatives can be made.- More branches
can be achieved by using multiple IF — THEN statements. However, a
single statement, ON — GOTO, allows a manyway branch.

For example, the following lines in a longer program:

90 READ X
100 IF X = 1 THEN 500
110 IF X = 2 THEN 600
120 IF X = 3 THEN 700
130 DATA 3

it

Ii

could be replaced by these three lines:
g0 READ X

100 ON X GO TO 500, 600, 700
130 DATA 3

Example:

100 ON X GO TO 500, 600, 700

ND-60.071.01

2.7.11

2-29

If X is equal to 1, the computer takes its next instruction from line 500,

if X is 2, control passes to 600, and so on. if the value of X is not an

integer, its integer part is used. If the value of X is less than one or greater
than the number of line numbers listed, an error messages is given. There may
be any number of line numbers listed in the instruction as long as the entire
instruction fits on a single line.

REM and Remarks
REM <text>

REM provides a means for inserting explanatory remarks in a program. The
system completely ignores the remainder of that line, allowing the program-
mer to follow the REM with directions for using the program, with identifi-
cations of the parts of a long program, or with anything else that he wants.
Although what follows REM is ignored, its line number may be used in a
IF — THEN, GO TO, or ON — GO TO statement.

Explanatory remarks may be located following a statement on a line, by
using the character ‘. Anything on the:line following ‘ will be treated as an
explanatory remark. For example, the statement

250 LET Y =1 INITIALIZE Y TO ONE

includes the remark INITIALIZE Y TO ONE without affecting the running
of the program.

In line 130 the line number is followed by an apostrophe and the rest of

the line is left blank. Such blank lines are used to increase the readability
of the program listing.

Example:
100 REM INSERT DATA IN LINES 900 - 998. THE FIRST
110 REM NUMBER IS N, THE NUMBER OF POINTS. THEN
120 REM THE DATA POINTS THEMSELVES ARE ENTERED
130

200 IF N > < 0 GOTO 500

500 REM N WAS UNEQUAL ZERO

ND-60.071.01

2.7.12

2.7.13

RESET

Sometimes it is necessary to use the data in a program more than once.

The RESET statement permits reading the data as many additional times

as it is used. Whenever RESET is encountered in a program, the system
resets the data block pointer to the first number. A subsequent statement
will then start reading the data all over again. A word of warning — if

the desired data is preceded by code numbers or parameters, superfluous
READ statements should be used to pass over these numbers. For example,
the following program portion reads the data, restores the data block to

its original state, and reads the data again. Note the use of line 570 to “pass
over” the value of N which is already known.

100 READ N
T"MOFORI=1TON
120 READ X

200 NEXT |

560 RESET

570 READ X

580 FORI=1 TON
590 READ X

INPUT
INPUT <list of variables>

There are times when it is desirable to have data entered during the run

of a program. This is particularly true when one person writes the program
and enters it into memory, and other persons are to supply the data. This
may be done by an INPUT statement which acts as a READ statement
but does not draw numbers from a DATA statement. If, for example, you
want the user to supply values for X and Y into a program, you will type

40 INPUT X, Y

before the first statement which is to use either of these numbers. When
it encounters this statement, the system will print a question mark. The
user types two numbers, separated by a comma, presses the return key
and the system goes on with the rest of the program.

A single carriage return means that the line is empty. If there are more
numbers or strings in the line than were requested, the excess is ignored.
If there are not the same number of items as there are variables in the

INPUT list, a new question mark is printed indicating that the program
needs more data.

ND-60.071.01

2--31

Frequently an INPUT statement is combined with a PRINT statement to
make sure that the user knows which values to put in. You might type

20 PRINT “WHAT ARE YOUR VALUES OF X, Y, AND Z“;
30 INPUT X Y, Z

40 END

RUN

and the system will print
WHAT ARE YOUR VALUES OF X, Y, AND Z?

Without the semicolon at the end of line 20, the guestion mark would have
been printed on the next line.

Data entered via ar INPUT statement are not saved with the program. Further-
more, it may take a long time to enter a large amount of data using INPUT.
Therefore, INPUT should be used only when small amounts of data are to

be entered, or when it is necessary to enter data during the running of the
program such as with a game-playing program.

Input from the terminal also allows the user to insert messages to be printed
between the variables to be input. Such strings must always be constants
enclosed in quotes.

The statement:

10 INPUT “X&", X, “Y=",Y, "Z=",Z

will execute like this: or this: or this:
X =121 X=11,2 X=212 3
Y =72 Z=123
Z=73
ND-60.071.01

Revision C

3.1

3.1.1

INTERACTIVE USE OF THE BASIC SYSTEM
ENTERING THE BASIC SYSTEM

The BASIC system may be entered from the operating system
SINTRAN 111 by typing

@BASIC

Then the BASIC system starts by identifying itself followed by the word
READY. This word, whenever printed, tells you that BASIC is ready to
accept a command or a statement typed from your terminal.

Compiling a BASIC Program

When you start, the system is initialized to accept your program

lines typed directly from the terminal. However, if your program resides
on a mass storage file you may initiate the compilation process by giving
the command:

OLD <file name>

As soon as all the program lines on the specified file has been compiled,
the number of compiled lines along with the number of diagnostics given
will be printed on your terminal. If no diagnostics are given the compiler
has accepted all the statements to be syntactically and semantically correct
and you may try to start the execution of it (see below).

Editing a BASIC Program
If compiler diagnostics have occurred these must be corrected before the
program can be executed. The BASIC system provides commands to list,

delete, change and renumber the program lines.

A line may be changed simply by typing a new line with identical line
number. Then the new line will replace the old one.

A line may also be changed by first typing
EDIT <line number>

and then applying the line edit control characters to produce a modified line.
The control characters are described in Appendix C.3.

ND-60.071.01

Revision D

Example:
10 LET A =,1
***ERROR IN LINE 10", "SYNTAX ERROR™
ED 10

Now if Z° followed by = is typed this will result in the printout:
10 LET A =

Then if a S€ is typed in order to remove the comma, D will copy the
rest of the old line to the new one.

A line may be listed on terminal by typing

LIST <line number>
Now this line may be modified without using the EDIT command. More
than one line may be specified, each line number separated by comma.

The word LIST by itself will cause the listing of the entire program.

LIST followed by two line numbers separated by a dash {-) will list the
lines between and including the specified ones.

A line is removed from the program by typing

DELETE <line number>
More than one line may be specified, separated by commas. Two line num-
bers separated by a dash (-} will delete the lines between and including

the lines specified.

The RENUMBER command is used to change statement line numbers and
the references to these lines. Line numbers in comments are not changed.

A program is renumbered by typing

RENUMBER <new initial line number> [<increment>]
First parameter indicates the new initial line number and the second (if
any) indicates the increment in the line numbers of two successive state-

ments. If no parameters are specified the first statement number will be
100 and the increment will be 10.

ND-60.071.01

Examples:
REN 10, 2
RENU 1000
RENUM

Naming of Programs

Program names are used as a header with listings and runs if the commands
RUNH or LISTH are used (H = header).

The program name should start with a letter and have no more than 32
characters. Quotes, spaces and other non-printable characters should not
be used.

If you use OL.D, the file name is used as program name.

You may set a program name by typing the command NEW followed by
the new program name.

NEW SQUARES
will set SQUARES as the current program name.

NEW without any name will just initialize the system.

ND-60.071.01

3.2

3.2.1

SAVING AND RETRIEVING BASIC PROGRAMS

When you are working on a program and want to continue later, you should

save the program by using the SAVE command with the appropriate mass
storage file name. A hard copy is produced using Teletype or line printer,
a tape may be punched using paper punch, etc.

A saved program is entered later using OLD {or COMPILE) followed by
the appropriate file name.
The SAVE Command

SAVE <file name>

The SAVE command will save a BASIC program. The appropriate names
for the SAVE command are as follows:

TERMINAL designates the user terminal
F—P designates the fast punch
L—P designates the line printer

With other file names the system expects that you want the program saved
on a mass storage file.

SAVE SQUARE
will save the current program on the mass memory file named SQUARE.
If you have no file with such a name, the file must be created. To do this
you should enclose the file name in quotes.

SAVE “"SQUARE"”
will create the file SQUARE and save the current program onto this file.
Program names may be used as file names, with the exception of the names

of the standard peripherals. Further information on file naming is found in
the documentation of the NORD-10 File System.

ND-60.071.01

3.3

3.3.1

3.3.2

3.33

EXECUTING YOUR PROGRAM

When you think your program or part of it, is finished, you cantry to run
it using the command RUN or RUNH.

Before execution starts, the system will reset variable values and check the
program. If no errors are found, program execution is started. Execution
will continue until either STOP or an END statement is found or until fatal
error condition occurs. Then execution is terminated, and control is passed
to the BASIC command processor.

If a STOP statement is encountered, program execution is halted and you
may then examine and change yourprogram. Execution is continued by
giving the command CONTINUE.

The RUN Command

This command is used to initiate execution. You may type RUNH which
means the computer should start by printing the program name as identi-
fication. Execution starts with the first line.

Before program execution is started, the system will reset variables and
check the program for mismatching FOR — NEXT, errors with multiline
DEF FN functions, etc.

String identifiers are regarded as empty.

Terminating Execution

Program execution is continued until an END statement is reached, an
error is found or you break execution by typing the break character (ESC).

Possibly your program will produce erroneous results or it may be executing
some endless loops. You can then force execution to be terminated by dep-
ressing the ESC-key.

When you press the ESC push button the SINTRAN Il command processor

is entered and you may restart BASIC by typing CONTINUE. Restarting after
an ESC will usually be successful, but may fail under some circumstances.

Immediate Mode Execution
Most statements permitted in the NORD BASIC System may be used without

line numbers preceding them. In this form they are treated as immediate
commands and executed directly rather than being appended to a program.

ND-60.071.01
Revision C

Thus typing
PRINT 0.5, SIN (0.5)
will result in the output
0.5 4.79426E+01
Immediate mode is especially powerful while debugging programs by printing
the values of certain identifies and/or assigning to them new values. Also,

some small loops may be executed directly in immediate mode with the
aid of a multiple statement line (Sections 4.14.1 and 4.14.2).

Example 1:
An infinite loop printing the square root of a specified argument:
REPEAT®@: INPUT X: PRINT SQR (X)

216

4
?

etc.
Note: This program can be terminated cnly by depressing the ESC-key.

Example 2:

Printing a table of 2X while X ranges from 1 to 10.

REPEAT 10: PRINT “2**",@,2**@

2**1 2
2%*2 4
2**3 8
2**4 16
2**b 32
2**6 64
2**7 128
2**8 256
2%*9 512
2**10 1024
READY

Certain statements have no meaning when presented in immediate mode,
thus the following ones are not permitted:

ND-60.071.01

3.3.4

3-7

DEF FNEND

DATA READ

FOR NEXT

PROGRAM SUBROUTINE FUNCTION
ON ERROR RETURN END

Upon these statement types the system will react with the message:

ILL. IN IMMEDIATE MODE

Setting Break Points

The common debugaing method of BASIC proarams is to insert STOP
statement at certain places {traps). If any of these STOPs are executed

the variable values may tell the programmer why the program has come
into this state.

Nevertheless, insertions and removals of STOP statements may in some
cases represent a cumbersome way of debugging.

NORD-10 BASIC offers an option of setting break points at a specified state-
ment. When a break point is reached the execution will halt and the control
is transferred to the BASIC command processor.

This break is performed before the specified statement is executed. In
this state a new break may be specified and the execution continues by
using the CONTINUE command. The use of break points combined with
immediate mode provides a powerful and simple debugging aid. A break
point is reset when it is executed.

A break point is specified by
BREAK <line number>
Example of a program execution with breaks:

10 LET A =1
20 LET A=2
30 END

BREAK 10

RUN

BREAK IN LINE 10
PRINT A

0

ND-60.071.01
Revision C

3-8

READY

BREAK 20
CONTINUE

BREAK IN LINE 20
PRINT A

1

READY
CONTINUE

READY
PRINT A
2

READY

ND-60.071.01

3.4 LEAVING THE BASIC SYSTEM

When you have finished programming and saved what programs you would
like to use later, you should type BYE. This command will enter the oper-
ating system. The command EXIT is equivalent to BYE.

ND-60.071.01

4.1

4.1.1

MORE ABOUT BASIC
ELEMENTS OF BASIC
Constants

Five types of constants are used in BASIC: Integer, Double Integer, Real,
Octal and String. The type of a constant is determined by its form. (1f the
DEFAULT-INTEGER command is used, see also Section B.2.) The computer
word structure for each type is given in Appendix C.b.

Integer

An integer constant consists of up to five decimal digits ended with % in
the range of ~215 < n <215 1, An integer constant occupies one word
of main memory.

Examples:

63% —3241% 896%
247% 27963% —4343%

Double Integer

A double inte1ger constant consists of up to 10 digits ended with % in the
range of —231 = ~2147483648 < n < 2147483647 = 231 _1. A double
integer constant occupies two consecutive storage locations if it is outside
the range of an integer constant, or forced to double integer by leading zeros:

Example: ‘
—444444% 999000000% 0000000%
Real.

Real constants are expressed with or without a decimal point or with a

fraction and an exponent representing a power of ten. The form of real
constants are:

.nE .NnExs n n.Exs
n.n n.nkts .n n

n is the base, s is the exponent to the base 10. The plus sign may be omit-
ted for a positive s.

A real constant occupies three (optionally two) consecutive main storage
locations.

ND-60.071.01
Revision C

4.1.2

Examples:
501436 42 104
3.1415768 -314. .013469
31416E1 3.14E06 —31.415E-1
Octal

An octal constant is denoted by one to eleven octal digits post-fixed by
the letter B. If more than eleven digits are specified, only the last eleven
are significant. Octal constants are single or double integers; double if the

number does not fit into one word, or forced to by leading zeros. l
Examples:
1234568 -7B 1777777778

Note: Octal constants may turn negative if the sign bit is set. 1777778 is
equal to ~1B.

String

A string constant consists of any sequence of ASCI| characters enclosed in
quotation marks. The quotation mark may not be part of the constant since
it is used to define the beginning and the end of the string. The size of a
string constant is limited by the line length.

Examples:

“OLA"™ "..." "YOU ARE MY SWEETHEART!"

A string constant occupies (n + 1)/2 +3 memory locations. n is the number
of characters in the string. '

Variables

Variable names are alphanumeric identifiers that represent specific storage
locations.

BASIC recognizes simple and subscripted variable names. Default variable
type is real unless the DEFAULT-INTEGER command is used (Section B.2). The type of '
the variable may be defined in a type declaration statement (Section 4.1.3).

Otherwise, the type is determined by the postfixed letter(s) of the variable
name,

ND-60.071.01
Revison C

A variable name is a single letter, or a letter followed by a digit, or a letter
followed by up to six digits and/or letters. If the name exceeds seven charac-
ters, the seven left-most characters will comprise the variable name but the
last character(s) will still determine the type of the variable. When using a
seven character variable name, the type declaration character is necessary
only in the first occurrence of the variable.

Integer.
A variable name followed by one % character.
Examples:

1%, 11%, 1123%, NUMBER%
Double Integer
A variable name followed by two % characters.
Examples:

DB%%, DB1%%, TALLY%%
Real
A variable name.
Examples:

A, A1, A12345, ABCDEFG
String
A variable name followed by one $ character.
Examples:

A$, A123$, FIELDS, NAMES

Subscripted Integer

A variable name followed by one % character, followed by one or two sub-
scripts within parenthesis.

Examples:

POWER%(5), 1%(X%, Y%), 11%(X, 5%)

ND-60.071.01
Revision C

4.1.3

Subscripted Double [nteger

A variable name followed by two % characters, followed by one or two sub-

scripts within parenthesis.
Examples:
DB%%(5), TALLY%%(X,Y)

Subscripted Real

A variable name followed by one or two subscripts within parenthesis.

Example:

A(5), ATOM (X, Y)

Subscripted String

A variable name followed by one $ character, followed by one or two sub-
scripts within parenthesis.

Examples:

AS$(5), NAMES%(X, Y)

Type Declaration Statements

Statements of this kind are called declarative or non-executable and must
be the first statements entered in a BASIC program. Thus, the compiler
is provided with information abut the structure of variable or function
identifiers. Such declarations overrule the type implied by the identifier
name.

Integer
INTEGER <list of variables>

10 INTEGER I, 11, 1123, NUMBER

declares the four identifiers to be of integer type, i.e., one word element.

ND-60.071.01
Revison C

4-5

Double Integer

DOUBLE <ist of variables>
20 DOUBLE DB, DB1, TALLY
declares the three identifiers to be of double integer type, i.e., two words

per element.

Real

REAL <list of variables>
30 REAL A,B,C

declares the three identifiers to be of real type.

ND-60.071.01
Revison C

4.2

4.2.1

4.2.2

4-6

ARITHMETIC EXPRESSIONS
String expressions will be discussed later.

BASIC will admit general arithmetic expressions in most connections where
numbers are allowed. Exceptions are: line numbers must be positive integers.
Numbers are used in data statements and with input.

An arithmetic expression is a constant, variable (simple or subscripted), an
evaluated function, or any combination of these separated by arithmetic
operators, commas or parentheses to form a meaningful mathematical ex-
pression.

Arithmetic Symbols or Operators

In the examples in this chapter, arithmetic expressions are used and examples
of the way they are evaluated by the computer are given. Five symbols repre-
senting arithmetic operations can be used in expressions. These symbols are
listed in the table below: the first four are used in the programs in this

chapter.

Symbol Expression Meaning

+ A+B Addition: add B to A

— A-—B Subtraction: subtract B from A

* A*B Multiplication: multiply A by B

/ A/B Division: divide A by B

** or ¢ AtB Exponentiation: raise A to
power B (on many terminals
the symbol for exponentiation
is A.)

— —A Unary minus: a minus which
starts an expression or which
follows immediately after =
or {

Elements

The elements of arithmetic expressions are formed as follows:

A primary is an arithmetic expression in parenthesis, a constant (positive
or zero), variable, array element or function reference:

ND-60.071.01

4.2.3

4,2.4

(A + B) (=A * B) ((A**B)—(A*B))
124 12.4E~-2 0%
X All, J) SIN(V)

A factor is a primary or a primary ** a primary:
(A + B) (A +B)**X [**2
A term is a factor, a term/factor, or a term*term:
A**B (A**B)/X ((A**B)/X)*SIN{V)
A signed term is immediately preceded by a plus or minus:
—A**B —X —(—A*B)

A simple arithmetic expression is a term, or two simple arithmetic expressions
separated by plus or minus:

(A + B)+X% X/2.314 Y/SIN(X)-A**B

An arithmetic expression is a simple arithmetic expression, or a signed term
pius or minus a simple arithmetic expression:

-X/Y [**2 + K% —A**B-X/Y

Rules for Forming Expressions

Two arithmetic operators may not be adjacent to each other, X + =Y is
an illegal expression. The subtraction operator may not be used as a sign

of negation. —X implies 0—X and must be enclosed in parentheses when
preceded by another operator: X + (—Y) is a legal expression.

Parentheses may be used to indicate grouping as in ordinary mathematical
notation but they may not be used to indicate multiplication: (X) (Y) does
not imply (X) * (Y) nor does juxtaposition imply multiplication: XY does
not imply X * Y. Real and integer guantities may be mixed in the same
expression.

Order of Evaluation

When the hierarchy of operations in an expression is not completely specified
by parentheses, the operations are performed in the following order:

ND-60.071.01
Revision C

4-8

T or ** exponentiation performed first
/ division - ‘
% multiplication performed next
! _J
+ addition

. subtraction _/ periormed last

Within a sequence of consecutive multiplications and/or divisions or

additions and/or subtractions, when the order is not «

shicitly indicated

by parentheses, expressions are evaluated from left to right.

Whenever ambiguity is possible in the evaluation of an expression, paren-
theses should be used. The ambiguous expression A* *B**C can “be clarified
as (A**B)**C or A**(B**C) only by parentheses.

The way an expression is written determines how the computer will evaluate it.

1.

10 1 2+1

The computer evaluates this expression as 100 + 1 = 101. it will
perform the exponentiation before the addition.

10 t 2/2*%3

The value given for this expressionis 100/ 2 * 3=50 * 3 = 150.
The computer performs the exponentiation first. When multi-
plication and division appear together, the left-most operation

is performed first. Thus, in this example, the division is performed
second and finally the multiplication.

5+2*3 -1

The value of this expression is 5+ 6 — 1 =11 — 1= 10. The com-
puter performs the multiplication first. As with multiplication and
division, the positions of the + and — symbols determine which
operation is performed first. Addition and subtraction are per-
formed from left to right. So, in this example, the addition is per-
formed second and the subtraction last.

32/442+3%3~1

This expression uses all the available symbols for arithmetic oper-
ations and the steps by which the computer evaluates it are as
follows. First exponentiation is performed and the expression is
reduced to 32/ 16 + 3 * 3 — 1. Then division and multiplica-
tion are performed from left to right and the simplified formula
is 2+ 9 — 1. Finally, addition and subtraction are performed from
left to right and the value of the formula is se2n to be 10.

ND-60.071.01
Revision D

The placement of parentheses in an expression can alter the sequence in which
the operations are performed. Two of the preceding examples have been
rewritten to illustrate this.

1. 101 (2+1)

The computer evaluates this expression as 10 + 3 = 1000. The
expression inside the parentheses is evaluated first and then the expon-
entation is performed.

2 ((32/4) +2+3)*(3-1)

This expression will be evaluated as follows: (8 t+ 2+ 3) * (3 — 1)
=67*%2 = 134. The expression inside the ““innermost” parentheses is
evaluated first. Within parentheses the described sequence of per-
forming the operations applies.

Since two BASIC arithmetic operators may not be adjacent, parentheses are
needed in some expressions containing negative numbers. For example, X
raised to the —2 power”' should be written X t {~2), and ‘‘—3 subtracted from
2’ should be written 2 — (—3).

In summary, to insure the proper interpretation of expressions you should
remember that the computer performs exponentiation first, multiplication
and division second and addition and subtraction last unless otherwise
indicated by placement of parentheses. When in doubt about how an expres-
sion will be evaluated, use parentheses.

ND-60.071.01
Revision C

4.3

4-10

MIXED MODE ARITHMETIC EXPRESSIONS

Arithmetic expressions can contain mixed types of constants and variables.
Mixed mode arithmetic is often accomplished through the special library
conversion subroutines which are a part of BASIC run-time system.

The order of dominance of the operand types within an expression is real-double
integer-integer.

In mixed mode arithmetic, the mode used to evaluate any portion of an
expression is determined by the dominant type so far encountered within
the expression and the normal hierarchy of arithmetic operations: integer
mode will be used when an integer type is first encountered and will be con-
verted to real mode when a real type is encountered.

The following table indicates how the mode is determined from the possible
combinations of variables.

- %/ Integer Double Real
Integer
Integer Integer Double Real
Integer
Double Double Double
Integer Integer Integer Real
Real Real Real Real
Examples:
1. Given A, B type real: |, J type integer. The mode of evaluating
the expression (A * B — | + J) will be real because the dominant

operand is type real. It is evaluated:
A * B~ Ry real

Convert | to real

R — 1> Ry real

Convert J to real

R2 +J - R3 real

ND-60.071.01

The placement of parentheses in an expression can alter the sequence in which
the operations are performed. Two of the preceding examples have been
rewritten to illustrate this.

1. 101 (2+1)

The computer evaluates this expression as 10 + 3 = 1000. The
expression inside the parentheses is evaluated first and then the expon-
entation is performed.

2. ((32/4)+2+3)*(3-1)

This expression will be evaluated as follows: (81 2+ 3) * (3 — 1)
=67*2 = 134. The expression inside the “innermost’’ parentheses is
evaluated first. Within parentheses the described sequence of per-
forming the operations applies.

Since two BASIC arithmetic operators may not be adjacent, parentheses are
needed in some expressions containing negative numbers. For example, "*X
raised to the —2 power"’ should be written X t {—2), and *—3 subtracted from
2’ should be written 2 — (-3).

In summary, to insure the proper interpretation of expressions you should
remember that the computer performs exponentiation first, multiplication
and division second and addition and subtraction last unless otherwise
indicated by placement of parentheses. When in doubt about how an expres-
sion will be evaluated, use parentheses.

ND-60.071.01
Revision C

4.3

4-10

MIXED MODE ARITHMETIC EXPRESSIONS

Arithmetic expressions can contain mixed types of constants and variables.
Mixed mode arithmetic is often accomplished through the special library
conversion subroutines which are a part of BASIC run-time system.

The order of dominance of the operand types within an expression is real-double
integer-integer.

In mixed mode arithmetic, the mode used to evaluate any portion of an
expression is determined by the dominant type so far encountered within
the expression and the normal hierarchy of arithmetic operations: integer
mode will be used when an integer type is first encountered and will be con-
verted to real mode when a real type is encountered.

The following table indicates how the mode is determined from the possible
combinations of variables.

- — %/ Integer Double Real
Integer
Integer Integer Double Real
Integer
Double Double Double
Integer Integer Integer Real
Real Real Real Real
Examples:
1. Given A, B type real: |, J type integer. The mode of evaluating
the expression {A * B — | + J) will be real because the dominant

operand is type real. It is evaluated:
A* B~ Ry real

Convert | to real

Rt — 1> Ry real

Convert J to real

R2 +J- R3 real

ND-60.071.01

4-11

2. The use of parentheses can change the evaluation. A, B, 1, J are
defined as above. (A * B — (I — J)) is evaluated:

A* B - Ry real
I—=J= Ry integer
Convert R, to real
R1 — Ry~ R3 real
3. The order of the elements in an expression can change the eval-
uation A, B, |, J are defined as above. The expression (J — | + A
+ B) is evaluated:
J—1-> Ry integer
Convert Ry to real
Ry +A~> Ry real

R2 + B - R3 real

Rules:
1. The order of dominance of the standard operand types within
an expression from highest to lowest is:
REAL
DOUBLE INTEGER
INTEGER
2. The mode of an evaluated arithmetic expression is referred to
by the name of the dominant operand type.
3. In expressions of the form A**B the following rules apply:
B may be negative when the form is A**(—B).
For the standard types the mode/type relationships are:
TYPE B
Integer Double Real
Integer
T i
Y |Integer Integer fllegal Real
,,,,,,,,, P Mode of
Double Double
E illegal tliegal *
Integer Integer g r g > AT B
A
Real Real IHlegal Real _
ND-60.071.01

Revision C

4.3.1

4.3.2

4-12

More About LET
[LET] <variable> [=<variable>] = <expression>

In the LET statement, values can be assigned to variables, as with the READ
and INPUT statements (eg., 100 LET X = 2). However, the LET statement
is also a command to the computer to perform certain computations and

to assign the answer to a certain variable {eg., 110 LET X = X + 1).

More generally, several variables may be assigned the same value by a single
LET statement. Two examples follow:

100 LET X =Y3 = 1E2
110 LET A(X) = X=X+ 1

Note that in line 110 the index is computed first, i.e., the old value of X
is used for the subscript of A. That is, after execution of line 110, A{100)

and X are equal to 107 and A(101) remains unchanged. Note also that numeric

constants may be represented in scientific notation, as well as in integer or
fractional notation, anywhere in the program.

The fact that arithmetic assignment statements appear very frequently in
programs has led to the convenience of omitting the word LET from the
LET statement. This means that we can write an assignment like this:
100 X = X +1
110 X(1) = X(2) =Y +3
Mixed Mode and LET Statements
The general form of the arithmetic assignment statement is
v=e
v is an identifier, e is the evaluated arithmetic expression.
Although the type of an evaluated expression is determined by the type

of the dominant operand, this does not restrict the types that the identifier
v may assume.

ND-60.071.01

4-13

Rules for Assignment for e to v:

rv type: e type: Assignment:

Integer Integer Assign

Integer Double Integer Convert double integer to
integer and assign

Integer Real Fix to integer and assign

Double Integer Integer Convert integer to double
integer and assign

Double Integer Double Integer Assign

Double Integer Real Fix to double integer and
assign

Réal integer Float and assign

Real Double Integer Float and assign

Real Real Assign

Examples: (Given A type real, I, J type integer)

1. A =1+ J is evaluated as:

| +J > Ry

integer

Convert R1 to real

Store R1 in A

2. | =J+ A is evaluated as:

Convert J to real

J+ A~ R1

real

Convert Rq to integer

Store R1 inl

ND-60.071.01

4-14

4.4 ARRAYS

As we have seen, a subscripted variable may have one or two subscripts.

If the subscript has more than two dimensions, an error message is given.

Any two dimensional array may also be referred to as if it were a one-dimensional.
Subscripts may be constants, variables or expressions of any numeric type,
however, non-integer values will delay the execution as all subscripts are
evaluated in the specified data type and then converted to integer. A subscripted
variable references a single element in an array, the subscripts describe the relative
location within the array.

An array is a block of successive memory locations: for storage of variables.
In certain contexts, the entire array, or sometimes element zero, mav be
referred to by the array name without subscripts. Each element of an array
is referenced separately by the array name plus the subscript notation.

The type of array is determined by the array name or the type declara-
tion. The number of dimensions in an array subscript indicates the dimen-
sion of the array, the magnitude of each dimension indicatesthe maximum
value that the subscript may take. Program execution errors may result if
subscripts are larger than the dimensions initially declared for the array.

The amount of memory allocated to an array depends on the array type
and dimensions.

BASIC does not necessarily assign sequential storage to two or more arrays.

4.4.1 Array Structure

Elements of arrays are stored by columns in ascending order of storage
location. The ordering of elements in an array follows the rule that the
first subscript (row) varies most rapidly and the fast subscript (column)
varies least rapidly. The integer array declared as A%(2, 2), will normally
be looked upon as a table consisting of rows (-} and columns ({), like

this:
Aoo Ap1 Ap2
A10 A11 A12
A0 A1 A2

The layout i memory will be as follows.

ND-60.071.01
Revision C

4-15

A% -] Apo | (Memory location n)
A10 n+1
Aon n+2
Ag1 n+3
A1 n+d
Agq n+b
Ag2 n+6
A1o n+7
Aoo n+8

The location of an array element with respect to the first element is a function
of the maximum array dimensions and the type of the array. Given DIM A%
(L, M), the location of A% (i, J) with respect to the first element of array A%
is given by:

A%+ [I+J*(L+1)] *E

The quantity in brackets is the subscript expression. E is the element length
in terms of the number of computer words needed for each element of the
array. In our example, where the array (A%) is of integer type E is equal to
1. For string arrays E will always be equal to 2, because such arrays, in fact,
consist of pointers to the string elements, and the length of each.

ND-60.071.01

4.5

FUNCTIONS

With the BASIC statements previously described, programs can be written
which compute values of many of the commonly used elementary functions.
For example, the following portion of a BASIC program can be used to find
the absolute value of a number N and store it in A.

220
230
240
250
260
270

REM SIGNED NUMBER IN N
IF N <O THEN 260

LET A=N
GO TO 270
LET A = (—N)

REM POSITIVE NUMBER IN A

Because the need for the absolute value of a number arises so frequently

in programming, BASIC provides a simpler way of computing this function.
Certain elementary function names (such as ABS) may appear in BASIC
programs anywhere a number may appear. The function name is followed
by any arithmetic expression enclosed in parenthesis. For example, the
absolute value of a number may alternatively be calculated with the follow-
ing portion of a BASIC program:

220
230
240

REM SIGNED NUMBER IN N
LET A = ABS (N)
REM POSITIVE NUMBER IN A

BASIC computes the value of these functions accurately, it does not store
tables of elementary functions, since it can compute a value for a function
in a few thousandths of a second. If a number which cannot be evaluated

is used with a function, a message is printed on the terminal. For example,
if a program attempts to take the square root of a negative number.

Most of the function names are self-explanatory. The range of the arctangent
function ATN is from —pi/2 to +pi/2. The function INT(X) delivers the largest

integer number not greater than X, for example:

INT (-2.8) = -3
INT (2.8) = 2
INT (—.0001) = —1

The INT function can be used to good advantage to round numbers:

100 LET A = INT (A + .5)
110 LET B = INT (100 * B + .5)/100

Statement 100 rounds A to the nearest integer. Line 110 rounds B to the

nearest hundreth.

ND- 60.071.01

Revision D

4.5.1

Function calls may be nested. The following program prints the sine of
the angle whose arctangent is T.

10 INPUT T

20 PRINT SIN (TAN(T))
30 END

Function Classification

Functions in ND BASIC are divided into three main groups:

1. Mathematical functions
2. String functions
3. Miscellaneous functions

These three types of functions can be defined for a BASIC program in
several ways:

1. Built-in library functions
Functions with restricted names; most commonly used in programs.
2. Extended library functions:

Existing functions which may be supplied by scanning a library
file.

3. User internal functions:

Any desirable function defined by the user through a DEF
statement. The name must start with FN.

4, User external functions:

Any desirable function introduced in a BASIC program through
an EXTERNAL statement. The function must be present in
the NORD standard object form (BRF); the source code, how-
ever, may be BASIC, STANDARD FORTRAN, NPL or MAC
assembly.

When a function reference appears in a BASIC program, the compiler gener-
ates a calling sequence within the object program.

All existing functions are listed with a short description in Appendix B.3.
T he way of defining and calling user functions are described later.

ND-60.071.01

Revision D

4.6

4.6.1

REPRESENTATIONS OF STRINGS

The BASIC programs described thus far have all dealt with numbers. In
the statement

100 LET A =B + 3.1415926

the sequence 3.1415926 is a representation of a number; the character B
is the name of a number which can vary as the program is executed by
the computer. The character A is the name of a number which may be
changed by the execution of that statement. Although computers are
excellent machines for performing high-speed arithmetic, some of their
most important uses are in the manipulation of entities which do not
represent numbers. A string is such an entity.

A string is a sequence of characters; these include letters, digits, blanks,
and other special characters such as those which appear on the terminal.
One way of representing a string in BASIC is to enclose it in quotation
marks. Such string constants have already been introduced in INPUT and
PRINT statements. For example, the string in

100 PRINT “NO UNIQUE SOLUTION"

is a string constant just as the number 3.1415926 in the preceding example
is a numeric constant.

Just as BASIC has names for numbers, it also has names for strings.

A name of a simple string is formed exactly as a name for a number,
except that it includes a trailing dollar sign {$). The string A$ is entirely
distinct from the number A and both names can appear in the same BASIC
program.

Assigning Values to Strings and String Comparisons

A string variable can take on a string value through a READ statement.
The following BASIC program reads three strings and prints them.

10 READ AS$, B$, C$

20 PRINT C$; B$; AS

30 DATA “ING”, “SHAR", “TIME. *
40 END

Note that the items in the DATA statement are representations of strings,
not numbers. This program prints the word TIMESHARING on the
terminal. Since the quotation marks are used to delimit the strings, it is
not possible to create a string containing a quotation mark in this manner.

ND-60.071.01

4.6.2

4-19

Strings can also be assigned values through the use of LET statements.
For example:

10 LET A$ = "H2S04"
20 LET B$ = A$

30 PRINT BS

40 END

will print the string H2S04 on the terminal. It is even possible to omit
the word LET as with arithmetic assignment statements.

Another way that a string can take on a value is by having the program
request the input of a string from the terminal through an INPUT state-
ment. For example:

10 PRINT “A MIXTURE OF FUEL AND OXIDIZER WHICH"
20 PRINT “BURNS SPONTANEQUSLY IS TERMED";

30 INPUT AS

40 IF A$ = “"HYPERGOLIC” THEN 70

50 PRINT “WRONG"”

60 GO TO 80

70 PRINT “RIGHT"

80 END

After printing the textual message the program will print a question mark.
Suppose the user enters the word “HYPERVENTILATED" in response.
Statement 40 is a string conditional statement. If the string A$ is the same
as the string “HYPERGOLIC", then statement 70 will be executed next.
Since the user did not enter “HYPERGOLIC" he has WRONG printed

on his terminal.

Any of the relational c¢perators except approximately equal (described in
Section 2.2.3) may be used in an |F — THEN statement to compare strings.

The relational operator <’ is interpreted as meaning “‘earlier in alphabetical
order than” and the relational operators are defined appropriately. The
ordering of characters is arbitrarily defined by the ASCIl code which is
explained in Appendix C.4. In any strina comnarison the strinas are agsimad
to be of the same length, i.e., trailing blanks are simulated.

Relaxation of Requirement for Quotation Marks

Strings which are entered in response to an INPUT statement need not be
bracketed by quotation marks as long as the items being entered do not
contain commas or do not begin with blanks.

ND-60.071.01
Revision D

4.6.3

4.6.4

multiple items entered in response to arn
than one variable in the input list. in addition, last string on a line
of input being entered in a list via a MAT INPUT statement ends with an
ampersand (&), the string must be enclosed i1 guotation marks.

A string in a DATA statement must be enclosed in auotation marks if it
begins with a blank, a digit, a plus sign, a minus sign, or a decimal point,
or if it contains a comma or an apostrophe. Ampersands, however, do not
have the special significance in DATA statements that they do in items
being entered in response to INPUT statements. If strings are enclosed in
quotation marks, the quotation marks are not considered to be part of the
string and are ignored.

il

More About RESET

In DATA statements, numbers and strings may be intermixed. When

a numeric variable appears in a READ statement the next number appear-
ing in the DATA statements is assigned to that numeric variable; when a
string appears in a READ statement, the next string appearing in DATA
statements is assigned to that string variable. Thus, numeric and string
data are managed independently in BASIC. A RESET statement will
reset pointers for both types of data so that subsequent READ statements
will reread the data. A RESET * statement will reset only the pointer for
string data.

The following program illustrates the use of RESET.

100 READ AS, A, B$

110 PRINT “FIRST TIME", A$, A, BS
120 DATA 1, “2APPLES”, PEARS
130 RESET

140 READ C$

150 PRINT ““SECOND TIME", C$

160 END

Running this program produces the following input:

FIRST TIME 2 APPLES 1 PEARS
SECOND TIME 2 APPLES

String Arrays

BASIC can also operate on multiple strings arranged as one or two dimensional
arrays. These entities are denoted by a string identifier, followed by one or
two subscripts enclosed in parenthesis. Thus A$(3) denotes the third string

in a list of string AS. Similarly, B$(4, 5) denotes a string in the 4th row

and 5th column of a table of strings B$.

ND-60.071.01
Revision C

4-21

A DIM statement such as
100 DIM A$ (25)

is required if any subscript will exceed 10. Individual entries of string ar-
rays can be assigned in LET statements as in the following example.

220 LET T$=A$ (U + 1)
230 LET A$ (U + 1) = A$ (J)

The individual entries of an array have no limit regarding the string length.

4.6.5 An Operator for Combining Strings

One operation has been defined as working specifically on strings. This
is concatenation, denoted by the ampersand (&). Concatention puts one
string directly after another, without any intervening characters.

Example:

10 READ AS, BS, C$

20 PRINT C$ & B$ & A$

30 DATA “ING", “SHAR”, “TIME *
40 END

Running this program causes “TIMESHARING* to appear on the terminal.
It is possible to use string constants in quotation marks in place of string
variables with the & operator, if desired.

50 PRINT A$ & " " & B$

will print A$ and B$ with a blank between them.

4.6.6 String Expressions

In the examples above we have seen examples of string expressions which
may consist of a constant, variable (simple or subscripted), an evaluated
function, or any combination of these separated by the & operator, commas
or parentheses.

4.6.7 Functions Regarding Strings

Like the mathematical functions, BASIC provides various functions for use
with strings. These functions allow the program to access part of a string,
determine the number of characters in a string, generate a character string
corresponding to a given number or vice versa, search for a substring within
a larger string and perform other useful operations.

ND-60.071.01
Revision C

4-22

Converting numbers to strings or vice versa is, in fact, not performed by
functions at all, but handled by using the different input/output state-
ments in BASIC. This is described in Section 5.2.7, Simulating Sequential
Files.

The four most elementary functions are described below. Other existing string

functions are described in Appendix B.3. User defined functions will be
described later.

The ASC Function

It is awkward to memorize the correspondence between numbers and graphics

defined by the ASCII code. Rather than being forced to remember that A
corresponds to 65, the programmer can make use of the ASC function and
write ASC (“A").

The function will take a string as a argument and deliver a number as a
result. Only the first character of the string is used.

Example:

10 PRINT ASC (“A”)

The LEN Function

The LEN function takes a string as an argument and returns the number of
characters as a result.

Example:

10 LET DIFF % = LEN (X$) — LEN (Y$)

The CHR$ Function

CHR$ (2) delivers a one-character string which corresponds to the num-
eric value of the expression Z. According to ASCII code as outlined in
Section C.4, the maximum value of Z is normally 127. However, as far
as printing graphics is concerned, characters are equivalent modulo 128;
that is, the remainder when the number is divided by 128 is used. For
example, 511 = 127 modulo 128. So CHR$(511) = CHR$(127). A single
line statement which will print a quotation mark follows:

100 PRINT CHR$ (42B)

ND-60.071.01

4-23

The SEGS$ Function

SEGS (A$, X, Y) takes a string and two expressions as arguments and returns
a substring as a result. The substring starts at character number X in the
input string and ends at character number V.

Example:

50 LET NEWS = SEG$ (A$, 3, 3) & BS

ND-60.071.01

4.7

4.7.1

4.7.2

FORMATTING OQUTPUT

When you write BASIC programs to prepare reports, graphs, tables and
other formatted (or specially arranged) cutput, it is important that you
will be able to control output format very closely. This section describes
statements which permit construction of neatly aligned tables, labels and
50 on.

Exclamation Marks in PRINT Lists

The exclamation mark (1) will cause the terminal print head to move to
the next line, i.e., carriage return and line feed is printed. This will be
repeated for each exclamation mark found as in the example:

TO PRINT !, 1, 11, 2
20 END
RUN

Commas in PRINT Lists

The terminal line is considered to be divided into zones of 15 characters
each. The default number of zones is 5 as the standard margin (see Section
4.7.7) is set to 75. Each line begins with column zero.When multiple items
appear in a PRINT list separated by commas, the first item is printed start-
ing at the beginning of the first zone (column 0), the second at the next
zone (column 15), etc. The comma can be considered to cause the ter-
minal print head to space up the next zone preparatory to printing. If the
last zone has just been filled, the terminal print head will move to the

first print zone of the next line. Thus, the statement

100 PRINT , , ,, “COL6G0O"

will print the five character “COL60" beginning at column 60, the begin-
ning of the fifth zone.

If a PRINT list ends in a comma, the terminal print head simple spaces
up to the next 15 character zone and does not move to the beginning
of a new line in preparation for the next PRINT statement unless the
fast zone has been filled.

For example, the program:

100 FOR1=1TO 15

110 PRINT I,
120 NEXT |
130 END
ND-60.071.01

Revision D

4.7.3

6 7 8 9 10
11 12 13 14 15

READY

Empty PRINT Statements

A PRINT statement which does not end in any special punctuation mark,
such as a comma, will print the information in the PRINT list and the ter-
minal will be prepared so that further output will begin at the beginning
of the next line. Thus, an empty PRINT statement such as

100 PRINT

will simple advance the paper one line, leaving a blank line if the terminal
print head is already at the beginning of a line. It can be used to cause
the completion of a partially filled line as illustrated in the following
program.

100 FORI =1T0 4
110 FORJ=1TO |
120 LET B(l, J) = |

130 PRINT B (I, J),

140 NEXT J

150 PRINT

160 NEXT |

170 END

This program will print B(1,1) on the first line. Without line 150, the terminal
print head would then go on printing B (2, 1), B (2,2) on the same line.

Line 150 directs the terminal print head to start at the beginning of a new
line after printing the highest J value for a given I. Thus, items are printed

in a triangular format. Output from the preceding program follows:

1

2 2

3 3 3

4 4 4 4
READY

ND- 60.071.01

Revision D

4.7.4

4.7.5

Packed PRINT Lists

Using the comma to separate items in PRINT lists, you will find that it

is not possible to print more than five numbers or strings on one line. A
semicolon may be used to print items closely packed on a line. For exam-
ple, the program

100 FOR I =1 TO 15
110 PRINT |;

120 NEXT |

130 END

will cause the following output to be printed.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

READY

To determine what will be printed using the semicolon separator, it is neces-
sary to know how strings and numbers are printed. In general, when you
use the semicolon to format output, no blanks will be output other

than those automatically output when a number is printed as described in
the following section.

Printing Formats for Numbers and Strings

This section describes the spacing of numbers and strings as they are printed
by a simple PRINT statement.

Strings are printed just as they are, with no leading or trailing spaces. A
space is printed after the right-most digit of a number; negative numbers
are preceded by a minus sign and positive numbers are preceded by a blank.

The number of spaces which will be occupied by the decimal representation

of a number varies according to the magnitude and type {integer or non-integer)
of the number. The following discussion of how numbers are printed will help
in determining the expected printed output.

Numbers may be printed using one of three notations:

! A number printed using /nteger notation is printed without a
decimal point and contains from 1 to 6 digits. (For example,
twenty printed as 20 is in integer notation.)

! A number printed in fractional notation contains from 1 to 6
digits and a decimal point. Trailing {right-most} zeros are
dropped and a number less than one is printed with a zero to
the left of the decimal point. {(For example, twenty printed as
20. is in fractional notation.)

ND-60.071.01
Revision C

4-27

Il A number printed in scientific notation has the following form.
ZE+Y or ZE-Y

where Z is a number greater than 1 and less than 10 printed in
fractional notation (11} and Y is the appropriate power of 10.

Numbers are printed in one of these notations according to their mag-
nitude and type. All numbers are rounded off to six significant digits.

1. An integer whose absolute value is less than 1016(1000 000)
is printed in integer notation (I).

2 An integer whose absolute value is greater than or equal to
1016 is printed in scientific notation (i11).

3. A number whose absolute value is greater than or equal to .1
and less than 999998, and which is not an integer is printed
in fractional notation (l1).

4, A number whose absolute value is less than .1 which can be
expressed using 6 digits after trailing (right-most} zeros are dropped
is printed in fractional notation (11).

5. A number whose absolute value is less than T which does not
satisfy the condition in (4) is printed in scientific notation (111).

6. A number whose absolute value is greater than 999999 and which
is not an integer is printed in scientific notation (I11).

= By printing powers of two, the following program illustrates how numbers
falling into each of these six categories are printed.

100 FOR I =1 TO 30 STEP 3
110 PRINT 2t(—f), I, 211
120 NEXT |

130 END

This program vields the following printout.

0.5 1 2
0.0625 4 16
7.8125E-03 7 128
0.76562E-04 10 1024
1.2207E-04 13 8192
1.52588E-056 16 65536
1.90735E-06 19 524288
2.38419E-07 22 4.1943E + 06
- 2.98023E-08 25 3.35544E + 07
3.72529E-09 28 2.68435E + 08
READY

ND-60.071.01

4.7.6

4.7.7

4-28

The TAB Function

In addition to the previously described standard means of controlling print-
ing formats, it is possible to set up non-standard columns and to print mat-
erial in special forms. The TAB functon is one way of producing such
specialized output.

It the first column in which information can be printed on the terminal is

labeled column 0O, then the comma can be thought of as performing a tabula-

tion to the next tab stop; these stops are set at columns 15, 30, 45 and
60. There is a way to tab to any desired column using the TAB function.
The TAB function can appear only in a PRINT list. It does not cause any-
thing to be printed but it simply positions the terminal print head to begin
printing in the column denoted by the argument of the TAB function. For
example:

100 PRINT X; TAB (12); Y; TAB (27); Z

will cause the X value to be printed starting in column 0, the Y value in
column 12 and the Z value in column 27.

The TAB function may contain any expression as its argument. The value
of the expression is computed and the integer part is taken. This number is
treated modulo the current margin setting to obtain a column number.

The terminal print head then spaces to this position: in the event that it
has already passed this position the TAB is ignored.

The MARGIN Statement
MARGIN <expression>

The MARGIN statement sets the maximum number of characters which

may be printed on a line. The margin is initially set to 75. If the output
string is so long that there is not enough room even on a complete single
line, as much as will fit will be printed on that line; the rest of the output
string will be continued on the next line, and the process will be repeated as
many times as necessary to print the entire string. Even if a line is partially
filled when a MARGIN statement is executed, the statement will change the
margin for the rest of the line.

The program MARGIN is illustrative:

10 A$ = “MARGIN"

20 FOR | =1 TO LEN (A$) STEP 2
30 MARGIN I

40 PRINT AS$

50 NEXT |

100 END

ND-60.071.01

4-29

The output is:

Z2T0O0Pr=2

MAR
GIN

MARGI
N

READY

4.7.8 The PRINT USING Statement
[PRINT] USING <string>, <list>

In addition to the standard formats defined above, it is possible to define
your own formats and use them. This feature allows you to print numbers in
columns so that decimal points line up and to produce tables easily.

Instead of employing
100 PRINT A, B, C$

you can modify the PRINT statement to
100 PRINT USING X$, A, B, C$

Here, X$ contains a “picture’’ of the line to be printed. Spaces where the
values of the variables are to be inserted are marked by special conventions.
Literal labels may also be part of the picture string. If desired, a string con-
stant may be used in place of X$, and constant information may be printed
in place of variables.

A sample use of the PRINT USING statement follows:

100 LET A =20

110 LET B=15

120 LET C$ = “CDE”

130 LET X$="A IS —#,B IS —#, AND THE STRING C IS < ##"
140 PRINT USING X$, A, B, C$

150 END

ND-60.071.0t

4-30

When this program is run,
A 15 20, B IS 15, AND THE STRING C IS CDE
appears on the terminal.
There are 8 special characters for defining PRINT USING fields or
areas where variables are to be printed. These 8 characters are: #, —, +, 1
.+ $, <and >. The number sign, “#" reserves a place for one character

in a field, but it cannot be used at the beginning of a field.

The effect of these characters is summarized in the following chart: -

Sign Valid In Effect
— Numeric fields only Start field; print floating minus for

negative numbers *.

+ Numeric fields only Start field; print floating plus or
minus as appropriate *.

. Numeric fields Mark decimal place

$ Numeric fields only Start field; print floating dollar
sign: must be followed by + or —,

1 Numeric fields only Specify exponent field: must be

in group of 5.
< String fields only Start field; print string left-justified.
> String field only Start field; print string right-justified.
Any field Place holder.

* These characters may be immediately preceded by ““$".

A numeric field, an area in which a number is to be printed, begins with
either "~ or “+". If +" is used, a plus or minus sign will be printed

just before the left-most digit of the number, depending on whether it is
positive or negative. If “—*" is used, there will be a sign only before a neg-
ative number. A "—" alone can be used to specify a one character numeric-
field; a non-negative number less than 10 may be printed using such a
format. Additional places in a numeric field can be specified by repeating
“#' as many times as desired.

ND-60.071.01
Revison C

4-31

Numbers are rounded and truneated before they are printed. They are printed
right-justified in the field, so that the integr digits line up on successive
lines. A sample program NUMBERST1 is:

100 PRINT USING ““LINE 100 - ###", 200.34
110 PRINT USING “LINE 110 - ###", 20.03
120 PRINT USING “LINE 120 - ###", 2.00
130 END

Output from a run of NUMBERS1 follows:

LINE 100 200
LINE 110 20
LINE 120 2

If a number has too many digits to be printed in the field given, asterisks
are supplied instead. So with the format “— #*, the number 200" appears
as ““**" on the terminal when the statement is executed: the field " — #"
could be used to print numbers in the range -10 < X < 100. If a field has
more places than there are significant digits allowed in BASIC, guestion
marks are supplied for the digits which might be misleading. In an eleven
space field, a number input as “1111111111" is printed as “1111111112",

I numbers are not to be printed as integers, a period is used to mark the
location of the decimal point in the numeric field. (A . is interpreted as a
character to be printed literally if it is not in a numeric field.) If the number
“20.356" is printed with the format “— ##.##" two decimal places are

given, the number is rounded and truncated accordingly and the result is
printed as “"20.38". Again, the number is right-justified in the field so that

the decimal points line up on successive lines. For numbers in the range

-1 < X < +1, a leading zero is provided. As an example, consider the program
NIUMBERS?2 as follows:

100 PRINT USING “LINE 100 - #4# . ##, 20.356
110 PRINT USING “LINE 110 - ## .## ', 2.0356
120 PRINT USING “LINE 120 - ## . ##"”, 20356
130 PRINT USING “LINE 130 - ##. ##", -05

A run of NUMBERS? produces the following output:

LINE 100 20.36
LINE 110 2.04
LINE 120 0.20
LINE 130 xR

To print a number with an exponent, put a group of five up-arrows

(the symbol for exponentiation) into the format string ; the count of 5
is mandatory. If 2,356 is printed with the format “— # . # 11111,
“2.4 E + 00" appears. With the * format, one space is reserved for a
possible sign and the number begins with the next space. The exponent
is adjusted to compensate for any shifting which occurs. With a field “‘—
FHHE . #1117, the number 2.356 appears as *235.60 E — 02", and
the number 20.356 is printed ‘“203.56 E—01"".

ND-60.071.01
Revision C

4-32

The following program NUMBERS3 exemplifies these conventions:

100 PRINT USING “LINE 100 —## . ##11111, 203.56
110 PRINT USING “LINE 110 —## . ##t1111, 20.356
120 PRINT USING "“LINE 120 —## . ##11111, 2.0356
130 PRINT USING “LINE 130 —## . ##11114, .20356
140 END

Running this program gives the following output:

LINE 100 20.36 E + 01
LINE 110 20.36 E + 00
LINE 120 20.36 E — 01
LINE 130 20.36 E — 02

An exception to the rule that a numeric field must begin with a “+* or
"~ is the option of preceding these two characters by a “’$". The use
of a dollar sign forces the printing of a dollar sign just before the first
digit or sign of the number.

It is possible to have literal information, including commas, in a format

field. In particular, it is possible to include blanks to group digits conveniently.

With the format string "—##, ### . ##’, “99999" will be printed as
799,999.00". Since a field must begin with — + $ < or >, it is possible -
to interrupt it with literal information. This literal information must not
include any of the special characters, except that a period in a non-numeric
field is printed literally.

The field for printing a string must begin with either < or >. These characters
are valid only in string fileds, just as +, —, t. and $ are valid only in num-
eric fields. A < causes the string to be printed left-justified in the field
specified. If necessary, the field is filled with blanks or the string truncated
from the right. As with numeric fields, ‘“#'’ serves to hold a place for
printing. Left-justification of strings is shown in the following example;
program STRINGS1:

100 PRINT USING “LINE 100 < ##", “AB"
110 PRINT USING “LINE 110 < ##", "ABC"
120 PRINT USING “LINE 120 < ##", “ABCD"
130 END

Running this program gives:
LINE 100 AB

LINE 110 ABC
LINE 120 ABC

ND-60.071.01
Revision C

4-33

A > sign causes the string to be printed right-justified in the field specified.
If necessary, the string is preceded by enough blanks to fill the field or is
truncated from the left. Altering the last program to STRINGS2:

100 PRINT USING ““LINE 100 > ##", “AB"
110 PRINT USING “LINE 110 > ##”, “ABC"
120 PRINT USING “LINE 120 > ##", “ABCD"

130 END

we get
LINE 100 AB
LINE 110 ABC
LINE 120 BCD

Again, literal information can be included within the field; with "“<#X##",
the string ““ABCD" is printed as “ABXCD".

Note that it is not possible to specify any of the special characters # — +

1 $ < or > as msterial to be printed literally. If these special characters

are to appear in the output, they can be specified as constants to be printed
in separate fields. To print a “+", the following statement suffices.

900 PRINT USING <", "+

The items to be printed according to the defined format must be separated
by commas and a comma must separate the USING string from the variables.
The order of numeric and string variables to be printed must match the order
of the types in the format string. For example:

900 PRINT USING "—# . ## < ###", "ABCD", 23.4

causes an error message and termination of the execution because the field
types in the format string do not match the types of information to be
printed. A string cannot be printed with a numeric field nor can a number
be printed with a string field.

If there are fewer variables in the list of a PRINT USING statement than
there are fields specified in the format string, the extra fields are not used.
On the other hand, if there are more variables than fields, the format string
is used again, starting on a new line. If the information to be printed will
not fit on a single line, the part of the format not used on the first line

is counted on the second line, and so on until all the items in the list are
printed.

ND- 60.071.01

4-34

Ending a PRINT USING statement with a semicolon causes suppression

of the carriage return and line feed characters after all items in the list

have been printed as described in Section 4.7.4 for the simple PRINT
statement. Using this option, you may complete a partially filled line with
subsequent PRINT or PRINT USING statements. You may not end a PRINT
USING statement with a comma as you can a simple PRINT statement.

BANKUSING is a program which illustrates that output can be arranged in
columns so that the decimal points line up noermally. Additionally, a dollar
sign «can ‘be printed immediately before each amount.

100 PRINT “ITEM”, “ AMOUNT", “ BALANCE"

105 PRINT

MOLETC=0

120 LET D=0

130 REM C COUNTS THE NUMBER OF CHECKS

135 REM D COUNTS THE NUMBER OF DEPOSITS
140 READ B

141 REM

142 REM SET UP FORMAT STRINGS IN F$ AND G$
143 LET F$= "<##a##### S—H### . ## S | #HH
144 LET GS$= "<Hi##### S—H#H### | HH
145 REM

146 REM A SPECIAL FORMAT IS NEEDED FOR THE
147 REM OPENING AND CLOSING BALANCES, WHICH
148 REM HAVE NO TRANSACTIONS

149 REM

150 PRINT USING G$, “OPENING”, B

160 REM .

170 READ T

180 IF T = 0 THEN 400

190 IF T < 0 THEN 300

200 REM

210 REM HERE FOR A DEPOSIT

20LETD=D+1

230 LETB=B+T

240 PRINT USING F$, “DEPOSIT”, T, B

250 GOTO.170

260 REM

300 REM HERE FOR A CHECK

BI0LETC=C+ 1

3200 LETB=B+T

330 PRINT PRINT USING F$, “CHECK"”, —T, B

340 IF B>=0THEN 170

350 LETB=B — 1

360 PRINT USING F$, “OVERDRAFT”, 1, B

370 GO TO 170

380 REM

400 REM HERE FOR CLOSING

ND-60.071.01

4-35

410 LETS=.03* D +.06 * C + .60

420 LETB=B - S

430 PRINT USING F$, “SERVICE”, S, B

440 PRINT USING G$, “CLOSING”, B

470 REM

500 DATA 100.00

510 DATA —23.75, —10.40, 50.00, —7.25, —42.50

520 DATA —45.67, —22.95, 40.00, —50.33, 66.75, 0.00
999 END

A run of this program, BANKUSING, is below:

ITEM AMOUNT BALANCE
,,, OPENING $100.00
CHECK $23.75 $+76.25
CHECK $10.40 $+65.85
DEPOSIT $50.00 $+115.85
CHECK $7.25 $+108.60
CHECK $42.50 $+66.10
CHECK $45.67 $+20.43
CHECK $22.95 $—2.52
OVERDRAFT $1.00 $—-3.52
DEPOSIT $40.00 $+36.48
CHECK $50.33 $—-13.85
OVERDRAFT $1.00 $—14.85
DEPOSIT $66.75 $+51.90
SERVICE $1.11 $+50.79
CLOSING $50.79

ND-60.071.01

4.8

4.8.1

4.8.2

4-36

INPUT CONTROL

There are some occasions when a user wishes to override the normal

BASIC input conventions. For example, commas are usually used to sep-
arate a fixed number of entries on a line. The following statements allow
somewhat greater flexibility.

The LINPUT Statement
LINPUT <list of string variables>

If a program calls for data to be entered from the terminal using an INPUT
statement and the data consists of strings containing such characters as
guotation marks, leading blanks, ampersands, or commas, then the data
used in the BASIC computation may not be the ones desired, for BASIC
normally treats such characters in special ways. The LINPUT {remember

it as a “line-input’’) statement provides for entering of an arbitrary sequence

of characters into a single string. The characters typed may consist of any
ASCII characters, other than a carriage return, which terminates the string;
the carriage return character is not included in the string. An example of
a LINPUT statement appears in the following program, which counts the
number of commas in the input string.

10 LINPUT AS$

20 FOR 1 =1 TO LEN (AS$)

30 IF SEG$ (AS$, I, 1) =" THEN N=N + 1

40 NEXT |

50 PRINT “THERE ARE"; N; “COMMAS IN THIS LINE.”
60 END

A run of the program follows.

?A,B,C,,D,E
THERE ARE 5 COMMAS IN THIS LINE.

READY

More than one variable may follow the word LINPUT if the variable names
are separated by commas. A new ? appears for each variable in the list. It
is also possible to insert strings to be printed between the variables to be
input as with the INPUT statement. See Section 2.7.13.

The MAT INPUT Statement
MAT INPUT <list of arrays>

The MAT INPUT statement allows the user to enter data when the program
does not know how much data will be input. This feature circumvents
cumbersome programs such as the fo'low ng which is designed to perform
the simplest task of adding up a few numbers typed «: from the terminal.

ND-60.071 01
Revision C

4-37

100 LETT=0

105 INPUT N
TMOLETT=T+N

120 IF N <> 0 THEN 105

130 PRINT “THE TOTAL IS, T
140 END

To use such an awkward program, you must type one number and one
carriage return in response to each question mark which is printed by

the INPUT statement. When a zero is entered, the program assumes that all
the numbers have been entered and the total is printed. Besides being time-
consuming, intermediate zeros cannot be entered.

The following program using the MAT INPUT statement is much more
convenient to use and performs the same function as the previous pro-
gram.

100 DIM A (100)

106 LETT=0

110 MAT INPUT A

120 FOR 1 =1 TO NUM

130 LET T =T + A (l)

140 NEXT |

150 PRINT “THE TOTAL IS, T
160 END

After a question mark has been printed in response to the MAT INPUT
statement in line 110, the user may type any number of numbers separated
by commas. When the input line is terminated with a carriage return, the
first number entered is in A (1), the second is in A {2), and so on. The
number of numbers entered is made available by the function NUM. This

- function has no arguments and will deliver the number of entries until a new
MAT INPUT statement is executed.

Zero, one or any number of entries may appear on a line, the only limit being
the size of the line. If one wishes to enter more numbers than can be

typed on one ling, it is possible to continue typing on additional lines.

If the last number on a line is followed by an ampersand (&) with no pre-
ceding comma and then by a carriage return, BASIC will accept the input
typed so far and then expect data continued on the following line.

The MAT INPUT statement may also be used to enter strings into a one
dimensional array. Rules for enclosing the strings in quotation marks are
the same as given in Section 4.6.2, for the INPUT statement with this
addition: the last string entered on a line in response to a MAT INPUT
statement must be enclosed in quotation marks if its last character is an
ampersand (&).

ND-60.071.01

4-38

The rules for entering data into a two-dimensional array are somewhat dif-
ferent. See Section 6.6.2 for more information on the MAT INPUT state-
ment.

ND- 60.071.01

4.9 PROGRAM ORGANIZATION STATEMENTS

When larger BASIC programs are written, they should not be looked upon

as a simple series of statements. They should be organized into units
analogous to blocks or sections or paragraphs, so that overall action of

the program can be managed in terms of “building blocks’ of statements.
Once these blocks of statements are written and checked, they can be

utilized by a programmer who knows only the function they perform, without
his having to bother with individual, detailed statements.

BASIC is a language which is designed to be understandable both by machines
and by human beings. A program must be understandable to a human being
if he is to be able to verify its correctness, improve the technique, change
the theoretical basis of the technique, or explain its value to others. Also,
when programs are being developed, they do something — not necessarily
what is finally desired; all programs do something, even if it is stopping
immediately. It must be possible to determine how a program does what

it does, even when it is incorrect. English-language comments {(or other
natural-language comments) can be incorporated intt the body of the text
of a BASIC program in order to improve its readability and to aid in its
interpretation. These comments do not interfere with the operation of the
BASIC program.

4.9.1 The Apostrophe Convention

A comment may appear on the same line as a BASIC statement if the
comment follows the statement and is separated from it by an apostrophe.
This is especially useful for explaining the intent of a single BASIC state-
ment when the importance of that statement is not necessarily clear from
the BASIC statement alone. A comment may appear on a line by itself if
“““ it is preceded by an apostrophe as shown in the following program segment.

100 IF ABS (X) <=1 THEN 130 ‘PREVENT NEG SQ ROOT IN 130

110 PRINT “ABS (X) IS GREATER THAN 1 IN LINE 100".

115 ‘AVOID LINE 130 WITH A GO TO STATEMENT

120 GO TO 140

13D LET Y=S8SQR (1 — X * X)

140 LET Z2=2Z2-Y

4.9.2 More About REM

As was pointed out in Section 2.7.11, if the first three characters following
the line number of a BASIC statement are REM, then any remarks whatsoever
may follow on that line. REM statements may be used to convey the function
of a block of statements in a program. Knowing the purpose of the BASIC
program (or the purpose of each part of it) facilities checking each of the
BASIC statements to verify that the program is correct. Well written REM

statements greatly increase the value of a BASIC program to other users by
making the intent of the programmer known, i.e., what the program as a

unit is supposed to do and how different parts of the program work toward
this end.

ND-60.071.01
Revision C

4-40

Since REM statements have line numbers, they can be referred to in GO
TO statements or other statements which cause a transfer of control such as
the ON — GO TO and IF —THEN statements. It is especially appealing to
transfer to a REM statement which describes the purpose of a following
block of code. The example in Section 4.10.1 illustrates how apostrophe
and REM are used to improve the readability of programs.

ND-60.071.01

4.10

4.10.1

4-41

INTERNAL SUBROUTINES

In BASIC programs, it often happens that similar calculations must be

carried out at several places in the computation. We denote a related

group of BASIC statements required to carry out such a calculation as

a subroutine. It would be tedious and wasteful to have to copy the state-

ments of the subroutine at every place in the entire BASIC program that

such a calculation was to be performed. The GOSUB statement provides

a way to transfer control to a subroutine. Control returns to the state-

ment following the GOSUB when a RETURN statement is reached in

the subroutine. Alternatively, the ON—GOSUB statement allows branching

to one of several subroutines and the I[F — GOSUB statement allows a
conditional subroutine jump. Since an internal subroutine “block’’ has no definable
start, it is the user’s responsibility that it is entered through GOSUB statements exclusively.

The GOSUB and RETURN Statements

GOSUB <dine number>
RETURN

The GOSUB and RETURN statements are illustrated in the following ex-
ample where the subroutine in lines 300-410 calculates the greatest common
divisor of two numbers X and Y. The program uses this subroutine to
calculate the greatest common divisor of three numbers A, B and C, relying
on the fact that GCD(A, B, C) = GCD{(GCD(A, B),C).

110 PRINT “A", “B", “C", “GCD"
120 READ A, B, C

130LET X =A

140 LET Y =8B

150 GOSUB 300

160 LET X =G

170 LET Y =C

180 GOSUB 300

190 PRINT A, B, C, G

200 GO TO 120

210 DATA 60, 90, 120

220 DATA 38456, 64872, 98765
230 DATA 32, 384, 72

250 °

300 REM SUBROUTINE TO CALCULATE GCD
305 LET Q= INT(X/Y)
BI0LETR=X-Q*Y

320 IF R -= 0 THEN 400

330 LET X =Y

340 LET Y=R

350 GO TO 300

400 LETG=Y

410 RETURN ‘TO LINE 160 OR 190
420 END

ND-60.071.01
Revision C

4.10.2

4-42

When the program is run, X and Y are set equal to.A and B. Line 150 con-
tains a GOSUB to line 300. This is the beginning of a calculaton which
sets G equal to the greatest common divisor of X and Y. Line 410 is the
RETURN statement which returns to 160, the line following the GOSUB.
Subsequently, X and Y are given the values of G and C in order to GOSUB
to the GCD subroutine once more. Upon return to 190, the line after the
second GOSUB, the answers are printed and the process recycles. In oper-
ation, the statement

180 GOSUB 300

records information about the location of the GOSUB before transferring
control to line 300. This is done in such a way that a statement like

410 RETURN

uses the information stored by the GOSUB statement to return control

to the statement directly following the GOSUB. Consequently, a subroutine
may have many RETURN statements in it, but the first one which is actual-
ly encountered causes control to be returned to the main part of the pro-
gram.

A GOSUB may be executed inside a subroutine to call still another sub-
routine. in this nested subroutine arrangement, the first RETURN statement
to be executed returns control one level to the statement following the
most recently executed GOSUB. The next RETURN statement returns
control to the statement following the previously executed GOSUB and

so on.

The ON — GOSUB Statement
ON <expression> GOSUB <list of line numbers>

The ON — GOSUB statement provides a way of transferring control to
one of several subroutines. The statement

100 ON X—1 GOSUB 700, 800, 900

will cause execution of the subroutine beginning in line 700 if the value
of X—1is 1, execution of the subroutine beginning in line 800 if the
value of X—1is 2, and execution of the subroutine beginning in line 900
if the value of X~—1 is 3.

The expression “X—1" could have been any arithmetic expression, includ-
ing a simple variable. The value of this expression must not be less than

1 and not greater than the number of line numbers listed; if so an error
message is given. If the value is not an integer, it will be truncated to an
integer. When a RETURN statement is encountered, control is returned
to the statement following the ON — GOSUB statement.

ND- 60.071.01

4.10.3 The IF — GOSUB Statement
IF <expression> <relation> <expression> GOSUB <line number>

The IF — GOSURB statement provides a way of transferring control to a
subroutine if some specified condition is met. The statement

100 IF A$ = “MARRIED” GOSUB 900
will transfer control to line 900 if the condition is true.
The condition may be of either a numeric or a string type.

When a RETURN statement is encountered, control is returned to the state-
ment following the IF — GOSUB statement.

ND-60.071.01

4.1

4.11.1

4-44

INTERNAL FUNCTIONS

BASIC has a number of built-in functions, such as SIN, LOG, SQR, etc.
If the user requires an extension to this set of functions, he has the possibility
of writing a definition for a new function in BASIC using a DEF statement.

Naming such functions follows the rules of defining variables in BASIC,

but the first two letters of the name must be FN. The postfixed letter(s)

of the variable name will determine the type of the function; i.e., FNTEXT$
will return a string data element.

Internal functions as opposed to internal subroutines may have arguments
as described below. The number and type of arguments must correspond
in the definition and the call; if not,a run-time error message is given.

One Line DEF Statement

Sometimes a function definition can be written in a single BASIC statement .
Suppose an arcsine function is required.

100 DEF FNA(X) = ATN(X/SQR(1 — X * X))
110 PRINT FNA (.707)
120 END

Line 100 defines the new arcsine function. In the definition of FNA(X),
the variable X is not related to any variable of the same name elsewhere
in the program. The DEF statement simply defines the function and
does not cause any calculation to be carried out; the variable X is called
a dummy argument. The appearance of FNA in some other place in the
BASIC program (this is known as the place where the function is called)
causes the calculation denoted in the DEF statement to be executed. When
the function is called, the value of the argument of the function (.707)
in the above example is substituted for the dummy argument throughout
the definition of the function. Arguments i the definition and the call
are often called formal parameters, respectively actual parameters.

DEF statements may appear anywhere in a program and may define func-
tions of more than one variable. For example:

100 LET D1 = FNR (201.83, 199.01)

110 PRINT D1

120 DEF FNR(X, Y) =SQR (X * X + Y * Y)
130 END :

When a function of more than one variable is defined, the list of dummy
arguments is separated by commas.

ND-60.071.01
Revison C

4.11.2

4-45

DEF statements may involve both dummy arguments and variables which
have the same meaning as elsewhere in the program. In the following
example

100 DEF FNX (X, Y} = X * COS(T) + Y * SIN(T)
110 DEF FNY (X, Y} =+ X * SIN (T) + Y * COS(T)
120 LET T = 1.7 'ANGLE IN RADIANS

130 INPUT A, B

140 PRINT “ROTATED”, FNX(A, B), FNY(A, B)
160 GO TO 130

160 END

the DEF statements involve both the dummy variables X and Y whose
values depend on the arguments of the function and a variable T which

has the same value as it does elsewhere in the BASIC program. If a variable
in a DEF statement is to have its current value in the program when the

function is called, it is not included in the list of dummy arguments.
It is often called a global variable.

Multiple Line DEF Statements

The use of the DEF statement described above is limited to those functions
which can be defined in a single BASIC arithmetic statement. Many func-
tions cannot be computed using a single BASIC arithmetic expression,
particularly those which require IF — THEN statements. The following
example demonstrates the format of multiple line DEF statements and
their use for a function which returns the larger of two numbers.

10 DEF FNM (X, Y)

20 LET FNM = X

30 IF Y <= X THEN 50

40 LET FNM = Y

50 FNEND

55

60 PRINT FNM (5,4), FNM (-5, —4)
70 PRINT FNM(1, FNM(2, FNM(3,0)}}
80 END

The definition of the function extends from line 10 to line 50.

The absence of the equal sign in line 10 indicates that this is a multiple

line DEF; the end of the DEF is indicated by the FNEND statement. The
value which the function delivers must be stored in the variable having

the same name as the function (in this case, FNM) when control reaches the
FNEND statement. As illustrated in line 70, function calls may be nested.
The preceding program prints the numbers 5, —4, and 3.

ND-60.071.01

446

As with the single line function definition, variables appearing in parenthesis

after the function name in a multiple line definition are called dummy argu-
ments, and values are substituted for these arguments when the function is

called. Variables not listed in the DEF statement will use their current value.
There must not be a transfer from inside a multiple line DEF to outside,

nor vice versa. Function definitions may not be nested. Naming conventions

are the same as for single line definitions. Multiple line function definitions

may be placed anywhere in a program because such blocks of code are not executed,
unless they are called.

If a value is not stored as in line 40 above, for the function when control
reaches the FNEND statement, a value of zero is returned when the function
is called. Any variable assignments made to variables other than the dummy
arguments of the function within the scope of a multiple line definition
affect the values of variables of the same name appearing elsewhere in the
program.

4.11.3 Strings and Function Definitions

The function definitions described thus far delivered numbers as results
and take numbers as arguments. A function may be defined which takes
strings as arguments.

Example:

100 DEF FNN (A$, B$) = ABS(LEN{(AS$) — LEN(B$))

110 INPUT Q1$, Q2%

120 PRINT “STRING LENGTHS DIFFER BY*; FNN(Q 13, Q2$)
130 GO TO 110

140 END

The following function inserts string B$ after the n‘th letter of string A$
and delivers a string as the value of FNI$.

100 DEF FNI$ (A$, B$, N)

110 LET C1$ = SEGS$ (AS, 1, N)

120 LET C2$ = SEG$ (A$, N + 1, LEN(AS))
130 LET FNI$ = C1$ &B$ & C2%

140 FNEND

150 °

160 PRINT FNIS$ ("XXXZz2z", “YYY", 3)
170 END

When run, this program prints the string “XXXYYYZzzz".

ND-60.071.01
Revison C

4-47

412 RELATIONAL EXPRESSIONS
A relational expression has the form:
dq op Q9

where qq and g are arithmetic or string expressions; op is an operator
belonging to the following set:

Operator: Meaning:

= Equal to

<> > < Not equal to

> Greater than
>=o0r=> Greater than or 2qual to
< Less than

=<or<= Less than or equal to

== Approximately equal to {not strings!)
A relation is true if ¢ and qgo satisfy the relation specified by op.

A relation is false if g1 and g do not satisfy the relation specified by op.

Rules:
1. Use a relational operator between two expressions:
dq op gy
2. It is not permissible to use the form :
Ggq 0P g9 0p q3
Instead separate two relational expressions with a logical operator
.AND. or .OR. in any of the form:
gq op go -AND. g3 op q4
a1 op g9 .OR. qz op g4
3. The evaluation of a relation of the form qq op gy is from left

to right.

The relations qq op qp, g1 op (g2}, (g1) op gy and (qq) -
op (qy) are equivalent.

Examples:

A> 52
RX—X(5)*A < Y
B-C=.5

X(1) >=X(1—1)

| <= 10

A$ <= B$ ND-60.071.01

4-48

LOGICAL EXPRESSIONS

A logical expression has the general form:

01 op 05 op 03

The forms 04 are relational expressions; and op is either the logical operator
-AND. indicating conjunction or .OR. indicating disjunction.

The logical operator .NOT. indicating negation appears in the form:

.NOT. 0,

The value of a logical expression is either true of false. Logical expressions
are used in IF statements.

Rules:

1.

The hierarchy of logical operations is:

First .NOT.
Then AND.
Then .OR.

If L1 and L2 are logical expressions, then:

.NOT.L,
Ly -AND. L,
Ly -OR. Ly

are logical expressions. If L is a logical expression, then (L) and
({L)) are logical expressions.

If L1 and L are logical expressions and op is .AND. or .OR. then
L1 op op Ly is always illegal.

The logical operator .NOT. may appear in combination with .AND.

or .OR. only as follows:

AND..NOT.

.OR..NOT.

.AND.(.NOT....)

.OR.{.NOT....)

.NOT. may appear with itself only in the form:
.NOT.(.NOT.(.NOT.

Other combinations will cause compiler diagnostics.

ND-60.071.01

4-49

5. If Ly and Lo are logical expressions, the logical operators are
defined as follows:

.NOT.L4 is false only if Lq is true
L1 .AND.Ly is true only if L4 and Lo are both true
L .OR.L2 is false only if L1 and L, are both false

Examples of Lodgical expressions:

Valid Expressions: lllegal Expressions:
A<2.0R.B=0 A <2 .NOT.OR.B=20
A<2.AND.B=0 X +5 .NOT. <Y

A<2.0R.B=0.AND.C=1

.NOT. A<2.AND.B=0

.NOT. (A <2 .0R. B =0)

X>Y .AND.NOT. X > Y + 2

A$ = “MARRIED"” .AND. B$ = “WOMAN"
A$><B$.0R. YO

ND-60.071.01

4.14

4.14.1

4.14.2

4.14.3

4-50

OTHER USEFUL STATEMENTS
Multiple Statement Line

More than one statement can appear on a single line if each statement
{except the last) is terminated with a colon {:). Thus, only the first state-
ment can have a line number. An error diagnostic is given if a statement
cannot appear in a multiple statement line. Statements which logically
belong to each other may now be grouped on one line. Multiple statement
lines are legal in immediate mode as well.

The REPEAT Statement and the @ Variable
REPEAT <expression> [STEP <expression>] :<statement>: . . .<statement>

REPEAT makes it possible to construct a loop of a single line using the
multiple statement feature. The REPEAT statement first assigns one to the
system variable @ which is later incremented by one if STEP is omitted.
The following statements on the line will be repeated while the value of @
(real) is less or equal to the maximum specified. The example below will
change the fifth row of a two-dimensional array:

10 REPEAT MAX : INPUT ARRAY (5, @)

It is, of course, always possible to exchange a KEPEAT with a FOR-NEXT
loop construction as follows:

10 FOR I = 1 TO MAX
20 INPUT ARRAY (5, 1)
30 NEXT |

More About IF

As previously mentioned, |F branches to a line number following THEN,
GOTO, or GOSUB if the relational expression turns out to be true. Having
described relational and logical expressions as well as multiple statement
lines, it is time to introduce a more advanced use of IF:

IF <logical expression> THEN <statement> : . . .<statement>

Dependent upon the logical expression being true or false, the program will
execute the statement(s) following THEN or skip to the next line.

Example:

MWIFX=YTHENN=N+1
20 IF X <Y .AND. A$ = “YES" THEN PRINT “OK" : N =N + 1
30 IF .NOT. A$ > B$. OR. A% < B% THEN GOSUB 500 : GOTO 100

ND-60.071.01
Revison

4.14.4

The ON ERROR GOTO Statement and the ERR Variable
ON ERROR GOTO <line number>>

In Appendix A, a complete list of run-time error messages is given. The occur-
rance of errors marked FATAL will normally cause termination of program
execution, while non-fatal errors will continue after some action has been
taken. A negative argument to the square root function, for example, results
in printing a message and continuing with the result set to zero. However,

an input/output error such as encountering end of file is fatal.

Some applications may require continued execution of a program after

any errors occur. In these situations, you can execute an ON ERROR

GOTO statement within your program. This statement tells BASIC that a

user subroutine exists, beginning at the specified line number which will
analyze any error encountered in the program and possibly attempt to
recover from the error. Note that the GOTO action is not taken when
executing ON ERROR GOTO, but if an error occurs later on, execution

is interrupted and the user written subroutine is started at the line number
indicated without printing any message. ON ERROR GOTO must be executed
prior to any executable statement with which the error handling routine deals.

A system variable, ERR, is available and can be tested according to the error
codes given in Appendix A. Thus, the error handling routine can determine
precisely what error occurred and decide what action is to be taken. It is
possible to switch to different error handling routines by executing several
ON ERROR GOTOs.

Often, it is desirable to let the system handle errors in portions of a pro-

gram. The actual error routine can be disabled by executing ON ERROR
GOTO 0. The occurrence of zero, which cannot be a line number, causes
the system to treat errors as if ON ERROR GOTO had never been executed.

Example:

10 PRINT 1/0

20 ON ERROR GOTO 100

30PRINT 1/0

40 STOP

100 PRINT “DECIMAL ERROR CODE=";ERR
110 PRINT “OCTAL ERROR CODE=",0C$(ERR)
120 ON ERROR GOTO O

130 PRINT 1/0

200 END

RUN

BASIC RUN ERROR 273 IN LINE 10
0

DECIMAL ERROR CODE =187
OCTAL ERROR CODE = 00000000273

BASIC RUN ERROR 273 IN LINE 120
0

READY
ND-60.071.01

Revision D

4145

4.14.6

4-52

The @ Statement
@ <operating system command>-

This statement provides a means to execute SINTRAN [Commands in
the program sequence or in immediate mode. The command may be of
any type, such as deleting a file, reading the clock or even logging out!

Note that error conditions will return control tc the Operating System.
{Restart with CONTINUE.)

Example:

10 @TIME-USED

20 REPEAT 50000: N =N + @
30 @TIME-USED

40 PRINT I,N,!

50 @LOG

60 END

RUN

TIME USED IS 1 SECS OUT OF 41 SECS
TIME USED iS5 SECS OUT OF 48 SECS
1.25002E+09

15.13.58 26 APRIL 1976

——EXIT——

RANDOM and RND

The RANDOM statement can be used in conjunction with the random
number function to induce variance. It augments the function RND by
causing it to produce different sets of random numbers. For example,

if this is the first instruction in the program using random numbers,
then repeated program execution will generally produce different results.
When this instruction is omitted, the “‘standard list”” of random numbers
is obtained.

It is suggested that a simulation model should be debugged without
RANDOM, so that you always obtain the same random numbers for test
runs. After your program is debugged, you may insert

1 RANDOM

before execution.

ND- 60.071.01

Revision D

4.14.7

4-53

The COMMON Statement

COMMON [/[<block>]/] <variable> [{[<subscript string>])]
[=<length>] ,

A program may be divided into independently compiled subprograms
that use the same data. The COMMON statement reserves storage areas
blank or labelled which can be referenced by more than one subprogram
written in BASIC, FORTRAN, NPL or MAC assembly.

The common data structure is static which means that size of arrays and
strings is fixed as opposed to local arrays and strings in BASIC. A string
array consists of ASCII characters rather than string descriptors; for the
rest array layout corresponds to that described in Section 4.4.

<block> is an alphanumeric identifier defining the name of the common
block. <variable> is a simple variable or array identifier, subscripted or
non-subscripted. The identifier may be previously defined in a type
declaration statement. '

The list may not contain formal parameters. Arrays must be dimensioned
in the common statement by a <subscript string> following the array
identifier. If an array is dimensioned in both a common statement and a
dimensioned statement, a compiler diagnostic results. The subscript(s)
must be constant{s). |f the subscript string is empty, this array will be
equivalent to the next element in the list. The optional <length> is a
constant defining the length of string variables. The length may be any
even number in the range 2 - 256. Default length is 16.

A block identifier may be a name of one to seven alphanumeric characters
or blank. A non-blank name identifies the storage as labelled common; a
blank name identifies blank common. If the name is blank, the first two
slashes may be omitted. Only one name may be assigned to labelled
common, but the name may be specified more than once.

All common storage areas are assigned together in the order of appearance
regardless of the line number.

Examples:

10 COMMON A, B, C

20 COMMON //X, Y, Z,Q

30 COMMON/BLOCK/F, G(10), X$=4

40 COMMON/BLOCK2/NAMES$(4,4)=10%, AGE(4%)

ND-60.071.01
Revision C

4-54

Common Blocks:

The COMMON statement provides the programmer a means of reserving
blocks of storage areas that can be referenced by more than one subpro-
gram, the statement reserves both blank and labelled blocks.

If a subprogram does not use all of the locations reserved in a common

block, unused variables may be necessary in the COMMON statement to
ensure proper correspondence of common areas:

Main Program: 10 COMMON/SUM/A, B, C
Subprogram: 10 COMMON/SUM/E, F, G

In the above example, only the variables E and G are used in the subpro-
gram. The unused variable F is necessary to space over the area reserved
by B.

Rules:

1. COMMON is non-executable and must precede the first executaple
statement in the proaram. Any number of COMMON statements may
appear in a program unit.

2. labelled common block identifiers are used only for block identifica-
tion within the compiler; they may be used elsewhere in the program
as other kinds of identifiers.

3. Anidentifier in one common block may not appear in another
common block. If it does, the identifier is doubly defined and an
error message will result.

4. The order of the arrays in a common block is determined by the
COMMON statement. No array bound checking is performed.

5. At the beginning of program execution, the contents of the common
blocks are undefined. Common variables are assigned values through
the LET, INPUT and DATA statements.

6. Common arrays in mat input/output or mat arithmetic statements
are not allowed.

7. Common strings are left justified with trailing spaces if necessary.
8. No bound checking when accessing common arrays. |
The length of a common block in :computer words is determined from the

number and type of the list identifiers. In the following statement, the

length of the common block A is 26 computer words. The origin of the
common block is Q(0).

ND-60.071.01
Revision C

4-55

Examples:

Labelled Common

10 INTEGER NR
20 COMMON/A/ Q(3), R{3), NR(1)

ORIGIN Q (0) Each real variable requires
Q (1) three computer words.
Q (2)
Q (3)
+12 R {0)
R (1)
R (2)
R (3)
+24 NR (0)
NR (1)

Blank Common

10 INTEGER K, N, M, DUMMY
20 COMMON DUMMY(), A, B(1), K
30 COMMON N(1), M(1), A$(1)=6%

ORIGIN A /DUMMY {0)
+3 B (0)
+6 1

+9

+10
+11
+12
+13
+14
+17

ASClI string
6 characters = 3 words

PrE=222 AW

$
$

Note that element K may be accessed by DUMMY (9) because no
array bound checking is performed.

Rearrangement of Common

Main Program: 10 COMMON/EX/TEMP(19)
The labelled common, EX, occupies 60 storage locations.

Subprogram: 10 INTEGER, J
20 COMMON/EX/B(9), 1{9), J(19)

ND-60.071.01
Revision B

4.14.8

The labelled common occupies the same 60 storage locations as in the
main program. However, 30 locations are used by the real array B, 10
locations are used by the integer | and 20 locations are used by the
integer array J.

The CHAIN Statement
CHAIN <(string expression>

An elementary, but successful, method of dividing a lengthy basic pro-
gram into manageable segments is to run several programs successfully

by typing the necessary OLD/LOAD and RUN commands. In this mode of
operation, the user determines the program to be executed next simply by

typing the proper name after the OLD/LOAD command.

An automatic way of running another program is to use a CHAIN statement.
The word CHAIN is followed by < string expression> forming the fil2

name of the next program. Chained program units must be previously
compiled to BRF. The CHAIN statement is the last statement executed in
each program segment other than the last segment.

CHAIN implies automatic loading (LOAD) and starting (RUN) of a program.

In fact, the statement will act as a command because it may execute in
immediate mode. The string expression may optionally contain several
file names (or numbers) separated by commas or spaces. The syntax
corresponds to that of the LOAD command.

Chaining to precompiled (BRF) program units is considerably more
efficient than chaining to BASIC source which would require compilation

upon each call.

When a CHAIN statement is encountered the running of the current pro-
gram is terminated and execution of the designated program begins.

This procedure requires the BASIC compiler in memory; thus, an error
message will appear if the loading is done by another BRF loader.

Values of local variables in one program are not passed unchanged to a
subsequent program, but are always set to zero at the beginning of each
program execution, unless the variables are declared in a COMMON statement
(see Section 4.14.7). When using common variables for parameters,

the data remains in the main high speed memory of the computer.

ND-60.071.01
Revision B

4-57

Communication between chained programs may, of course, be performed
by means of files, but this involves a physical transfer of data to/from
an external storage device.

A program is usually segmented by using subprograms rather than by

chaining if the user wishes to preserve variable values between segments

or if phases in a program re-occur. The chaining technique is sometimes neces-

sary when the subprogram technique fails to reduce the program enough so that

it will execute in the computer memory allotted. When a program uses subpro-
grams, space required is determined by the main program and the largest sub-
program. When the chaining technique is used, only enough memory for the success-
ful run of the largest program is required. However, each call to a subprogram different
from the last one called requires a physical transfer from an external

storage device. This entails a considerable amount of time, and applica-

tions will only be practically successful if they call for new subprograms

a limited number of times.

The following program gives the user the option of playing one of three
games. The number input by the user corresponds to the location in A$
which contains a string consisting of the corresponding game. In line 150,
a chain is made to the program having this file name:

100 REPEAT 3: READ A$(@)

110 DATA BONDESJAKK, LUNAR-LANDER, POKER

120 PRINT “TYPE 1 TO PLAY BONDESJAKK, 2 TOPLAY"
130 PRINT “LUNAR-LANDER, AND 3 TO PLAY POKER."
140 INPUT |

150 CHAIN A$(1)

200 END

ND-60.071.01
Revision B

5 FILES IN BASIC
5.1 INTRODUCTION

Files are the retrievable units in which information is stored. All the pro-
grams discussed so far in this manual are examples of files. Files are classified
according to how the information is accessed.

Sequential files are accessed one character after the other. In Chapter 3,
the saving and retrieval of program files are explained. These files are sequen-
tial files.

Data in random access files are accessed using an address. | data is used

in random manner, retrieval using an address is normally much faster than
sequential searching. In BASIC random files are used to hold data arrays

too big for the memory available but still manipulated using BASIC programs.

BASIC utilizes the NORD File system through a set of different monitor calls.

The File System is designed to manipulate files on disks, drums, magnetic
tapes, cassette tapes or standard peripherals. A file means a collection of
records or blocks, ordered randomly or sequentially.

Each file in the system is named with a character string and has one owner,
which has to be defined as a user of the file system. Each user may have
several other users as friends. The file system provides individual protection
of files. with separate protection modes for the owner, the owner’s friends

and the public’s access of the file.

The user of the file system may treat files on mass storage devices or standard
peripherals in a uniform manner.

The NORD File System is described in detail in the documentation:

SINTRAN [l Timesharing/Batch Guide (ND—60.132)
SINTRAN 11l Reference Manual (ND-—60.128)

51.1 The Connect Device ldentifier

When accessing a file through any BASIC input/output statement, a so-called
connect device identifier is used, rather than the file name. The file name is
only referenced once, in the OPEN statement which is described below. |t

is also possible to access a sequential file if the file is opened by a direct

file system command. In this case, the connect device identifier must cor-
respond to the file system logical device number. Later we shall see that the

connect device identifier may be a.string, thus simulating sequential input/output
devices.

ND-60.071.01

Revision D

The connect device identifier may foliow any legal statement having con-
nection with input/output operations ard has the general form:

<expression> :
The colon delimiter may be exchanged with the comma delimiter
in input/output statements (INPUT, PRINT, etc.j.
5.1.2 The OPEN and CLOSE Statements
The OPEN statement is used both to associate a number with a file in the

file system and to describe how the file should be used. Such a description
is valid until the CLOSE statement is used or the file is closed by the system.

OPEN

OPEN # <expression> : FOR <access mode> <file name>

The first expression is the connect device and may be any nurneric expres-
sion. The access mode must be one of the words listed below:

INPUT Sequential read access
OUTPUT Sequential write access
APPEND Sequential write append
RANDOM Random read/write access

The file name may be anystring expression. The OPEN statement assigns
a file to a number, thereafter all references to the file are made through
the number. There may be up to 10 open files with a program. The con-
nect numbers may be of any range and need not be assigned sequentially.
The open statement must, of course, be executed before any access to the
file is made.

A successful OPEN statement demands an entry in the file table where
connect number and access information is stored.

CLOSE
CLOSE # <expression> :

The expression indicates the connect number and has the same value as
the expression in the OPEN statement.

The CLOSE statement is used when you are finished using a file. The state-
ment will set the file ready to be opened again and leave an empty entry in
the file table.

ND- 60.071.01

All files should be closed before the end of program execution. This is
very important when using random access files because the CLOSE state-
ment causes output of the last block.

Examples:
10 INPUT “FILENUMBER", UNIT, “FILENAME", UNIT$
20 OPEN # UNIT: FOR INPUT UNITS

100 PRINT # UNIT, A, B, C, D, E

190 CLOSE # UNIT :
200 END

ND-60.071.01

5.2

b.2.1

SEQUENTIAL FILES

In this chapter, storing and loading of data on files is discussed. The ways

of entering data into a program using the READ and DATA statements

or the user terminal (INPUT statement} are both inefficiant when the amount
of data increases beyond a few items.

Using files, there is almost no limit to the number of items the program
can process in one run. There are limits on the length of a program to be
compiled and these limits include the DATA statements. Another advantage
is that since the program file is never modified (as it would have to be if
DATA statements were used), there is no chance of the program itself
being inadvertently changed during the typing of a new data set.

Reading a Sequential File from a Program

Throughout the next few sections of this chapter, several versions of the
same fundamental program will illustrate the use of the statements related
to sequential files. This program computes an average grade for each of
several students in a group.

The first version of this program, AVERAGET, uses data stored in a sequen-
tial file called GRADES.

A listing of AVERAGET follows:

100 REM PROGRAM NAME — AVERAGE!
110"
120 REM THIS PROGRAM COMPUTES AVERAGE GRADES FOR

130 REM A SET OF STUDENTS. EACH STUDENT IS ASSUMED
140 REM TO HAVE THE SAME NUMBER OF INDIVIDUAL
150 REM GRADES TO BE AVERAGED. THE DATA IS IN A
160 REM SEQUENTIAL FILE CALLED "GRADES".

170 REM THE FIRST LINE CONTAINS S, THE NUMBER OF
180 REM STUDENTS, AND G, THE NUMBER OF GRADES PER
190 REM STUDENT. THE REST OF THE FILE CONSISTS OF
200 REM S SETS OF (G + 1) LINES. THE FIRST LINE IN A SET
210 REM CONTAINS THE NAME OF A STUDENT, AND THE
220 REM FOLLOWING G LINES IN THE SET EACH CONTAIN
230 REM ONE OF THE STUDENT'S GRADES.

240

250 OPEN # 1: FOR INPUT “"GRADES”

260 PRINT “"NAME”, "AVERAGE"

270 PRINT

280 INPUT # 1 : S,G

220 FOR 1 =1TOS

ND-60.071.01

Revision D

300 LETA=0

310 INPUT # 1 : NS
320 FORJ=1T0G
330 INPUT # 1 : X
340 LET A=A+ X
350 NEXT J

360 LET A = A/G
320 PRINT N$,A
380 NEXT |

390 CLOSE # 1 :
400 END

In AVERAGE1 only one file, GRADES, is used. The OPEN # statement

assigning the file GRADES to file number 1 is in line 250. Thereafter, the
file GRADES is referred to as file # 1 in lines 280, 310, 330, and 390 of
the program.

The INPUT # statement differs from the simple INPUT statement only

by the inclusion of the number sign, a file number and a colon. Any list

of variables that is legitimate in a simple INPUT statement is also legitimate
in an INPUT # statement. See Section 2.7.13.

Now, let us briefly run through the whole program before going on to
consider the construction of the data file GRADES. Lines 100 - 230 are
remarks describing the program, its limitations and instructions for using it.
The OPEN statement has already been described. Lines 260 and 270 print
a heading for the output. Line 280 requests the input of two numbers, S
and G, from file # 1, the file GRADES. S is the number of students and

G is the number of grades per student. A loop indexed by | begins in line
290 and continues through line 380. The program ends after this loop has
been executed S times, once for each individual whose grades are to be
averaged.

Within this loop, line 300 initializes A, the variable used to store the sum

of the grades for an individual. Line 310 requests the input of a string from
file # 1, GRADES. This string is the name of the next individual

whose grades are to be averaged. Another loop begins in line320 and ends

in 350. This loop is executed G times, once for each grade. Within the loop
indexed by J, line 330 inputs a grade, X, from GRADES and line 340 adds
this grade to A, the sum of the grades so far. When this loop has been executed
G times, line 360 divides the sum of the grades, A, by the number of grades,
G, to get the average grade which is stored in A. Line 370 prints the name
of the individual, N$, and his average, A. Then the loop indexed by 1 is
executed for the next individual, until all averages have been computed

and printed.

ND-60.071.01

Now let us consider the data file. The format used in constructing a sequential
file to be read by a program is deterinined by the way in which the INPUT
statements are set up in the program. INPUT # statements,

like simple INPUT statements, contain lists of variables to receive values.
Whereas a simple INPUT statement reguests the user of the program to
supply these values at run time, the INPUT # statement reguests the

values from files, and, of course, no question mark is printed on the terminal.
ft considers the contents of the next line in the file (beginning with the

first line in the file), as a response to its request. If there are more numbers

or strings in the line than were requested, the excess is ignored. If there are
not, the next line in the file is interrogated in an atter 1o find more
numbers or strings. If the items on the line interrogated do not correspond

in type to the variables in the input list, an error message is printed.

it

The first INPUT # statement in AVERAGE requests two numbers,

S and G. These numbers may either be on the same line in the data file

or on two different lines. The rest of the numbers and strings in GRADES
must be written one per line since they will be read by INPUT #
statements requesting one number at a time. If they were erroneously writ-
ten more than one per line, all but the first number on each line would be
ignored, the computer would look for values beyond the end of the file and
the program run would terminate. The file GRADES must not have line
numbers — just the data requested by the INPUT # statements in

the program. The following is a listing of the file GRADES as written for
use with AVERAGET. Note that when more than one item is listed on

the same line, the items are separated by commas, as in the first line of
GRADES.

3,4

GERALD FRIEND
78

86

61

90

PHILIP CLOUGH
66

87

88

91

ADA SHAW

56

77

81

85

This file could be created by using the PED editor.

{For information about PED consult the PED User’s Guide (ND—60.124)).

ND-60.071.01
Revision D

The following is a run of AVERAGET1 using the data in the file GRADES:

AVERAGE1
NAME AVERAGE

GERALD FRIEND 78.75
PHILIP CLOUGH 83

ADA SHAW 74.75
READY
5.2.2 Writing a Sequential File from a Program

In this section, we will consider how to alter the program AVERAGE1
so that it writes its output into a sequential file instead of printing it on
the terminal. Using a file in this manner allows the user to obtain mul-
tiple copies of the output without re-running the program. In addition,

if there is a lot of output, it is often more convenient and possibly faster
to direct the output to a file and then list the file than to print the
output directly on the terminal.

Two changes need to be made in AVERAGET; first, another OPEN
statement must be added to assign the output file to a file number; and
second, the simple PRINT statements must be changed to PRINT #
statements. The following program, AVERAGE?Z, incorporates these
changes. The output is printed in a sequential file called AVERAGES.

210 REM PROGRAM NAME — AVERAGE?Z
220°

230 REM THIS PROGRAM IS LIKE AVERAGET EXCEPT THAT
240 REM THE OUTPUT IS PRINTED IN A SEQUENTIAL
250 REM FILE CALLED "AVERAGES".
270

290 OPEN # 1: FOR INPUT “GRADES"”

300 OPEN # 2: FOR OUTPUT "AVERAGES"”
310 PRINT # 2: "NAME”, "AVERAGE"

320 PRINT # 2:

330 INPUT # 1:5,G

340 FOR1=1TOS

350 LET A =0

360 INPUT # 1:N$

3700 FORJ=1TO G

380 INPUT # 1:X

390 LET A=A+ X

400 NEXT J

410 LET A = A/G

420 PRINT # 2:N§,A

430 NEXT |

440 CLOSE # 1.

450 CLOSE # 2:

460 END
ND-60.071.01

5.2.3

The input file GRADES is assigned to file # 1 and the output file AVERAGES
is assigned to file # 2.

When the program is run, line 300 will set the file AVERAGES ready to
receive output. Any information in the file will be destroyed and you
should do as follows if you want to save the information:

1. Enter the editor PED (see above)
2. Read the file
3. Save the file using a new name

ft is still easier to use the SINTRAN [l Operating System command:
COPY.

After the program AVERAGE 2 has been run, you can list the file
AVERAGES using COPY or the PED editor. The following printout
results:

NAME AVERAGE

GERALD FRIEND 78.75
PHILIP CLOUGH 83
ADA SHAW 74.75

Note that the output of AVERAGE?Z and that of AVERAGE1 is identical;
the only programming difference is that the first program prints i‘s output
to a file and AVERAGE1 prints output directly on the terminal. The for-
mat of the output in AVERAGES is the same as that of the output printed
on the terminal when AVERAGE1 is run.

The Use of the Terminal Iltself as a File

Suppose now that we wanted to rewrite AVERAGE2Z2 so that the use of
files for input and output was optional. We could write separate sections
in the program to deal with each option and then to branch to the ap-
propriate section. However, there is an easier way. Both the INPUT

and the PRINT # statements interpret a reference to file number

0 as a reference to the terminal itself and in this case work exactly like
the simple INPUT and PRINT statements.

The following program, AVERAGES, is a revision of AVERAGE2 in which
the user may decide whether or not he wishes to use files. In addition he
may choose the names of the data and output files if he wants tc use files.

ND-60.071.01

Revision D

100 REM PROGRAM NAME — AVERAGE3

110"

120 REM THIS PROGRAM IS LIKE AVERAGE2 EXCEPT

130 REM THAT THERE ARE OPTIONS FOR READING

140 REM DATA FROM A FILE AND PRINTING THE OUTPUT

1560 REM INTO A FILE.DATA CAN BE IN A SEQUENTIAL

160 REM FILE OR CAN BE TYPED IN AT RUN TIME. IF THE

170 REM DATA ARE IN A FILE, THE FORMAT IS THE SAME

180 REM AS THAT OF “GRADES” USED IN AVERAGE1 AND

190 REM AVERAGE2. IF THE DATA ARE TO BE TYPED

200 REM IN AT RUN TIME, THEY MUST BE ENTERED

210 REM ACCORDING TO THE SAME FORMAT THEY WOULD

220 REM HAVE WERE THEY IN A FILE.IF OQUTPUT IS

230 REM TO GO TO A FILE, THE FILE SHOULD BE SAVED

240 REM BEFORE THE PROGRAM iS RUN.

250

270 LET F1=F2=0

280 PRINT “ARE DATA IN A FILE — ANSWER NO OR GIVE
FILE NAME";

290 INPUT AS

300 IF A$ = “NO” THEN 330

310 OPEN # 1 : FOR INPUT A$

320 LET F1 =1

330 PRINT “SHOULD OUTPUT GO TO A FILE — ANSWER NO
OR GIVE"

340 PRINT “FILE NAME";

350 INPUT AS

360 IF A$ = “NO” THEN 390

370 OPEN # 2: FOR OUTPUT A$

380 LET F2=2

390 PRINT # F2:

400 PRINT # F2: "NAME"”, “AVERAGE"

410 INPUT # F1: S, G

420 PRINT # F2:

430 FOR 1 =1T0OS

440 LETA=0

450 INPUT # F1 : N$

460 FORJ=1TO G

470 INPUT # F1 : X

480 LET A=A+ X

490 NEXT J

500 LET A = A/G

510 PRINT # F2 : N§,A

520 NEXT |

530 END

ND-60.071.01

Revision D

The following is a sample run of AVERAGE3 using the option to input the
data at run time. This listing shows clearly the correspondence between the
simple INPUT statement and the INPUT # statement.

AVERAGE 3

ARE DATA IN A FILE — ANSWER NO OR GIVE FILE NAME?NO

SHOULD OUTPUT GO TO A FILE — ANSWER NO OR GIVE

FILE NAME? AVERAGES

? 3,4

? GERALD FRIEND

> 78 _
? 86

? 61

? Q0

2 PHILIP CLOUGH |
? 66

? 87

? 88

2 91

? ADA SHAW

? 56

277

? 81

? 85

READY
Note that AVERAGE3 will execute as in the example above supplying
the file name, TERMINAL, in the first question.
5.2.4 Other Input/Output Statements
The LINPUT # statement is used to read strings which might contain
such special characters as quotation marks, leading blanks, ampersands,
and commas from sequential files. The format of this statement is:

100 LINPUT # <expression>> : <ist of string variables>

Rules governing the use of the LINPUT statement apply to the LINPUT
statement.

ND-60.071.01
Revison C

5.2.5

5.2.6

As we have seen, the INPUT statement requires a comma or carriage return
as delimiter for the data being entered into a BASIC program. Because the
PRINT statement, in its turn, does not supply the necessary commas, BASIC
will not be able to read its own output. This fact has lead to the implemen-
tation of the WRITE statement whose purpose is to produce a list readable

by a matching INPUT statement. Thus, commas are automatically inserted
between the items output. This feature, however, is meaningless when not
using files. The format of the statement is:

10 WRITE # <expression> : <list of variables>

There are also five MAT statements which may be used with sequential
files: MAT PRINT #, MAT WRITE #, MAT PRINT USING #, MAT
INPUT #, and MAT LINPUT #. These statements ere discussed in Chapter
6.

Margins on Sequential Files

MARGIN # <expression> : <expression>

MARGIN # N : M sets a margin of M on file # N just as the
simple MARGIN statement sets a margin on lines output to the terminal.

The margin for sequential files may be changed at any time. MARGIN #0: M
has the same effect as MARGIN M. The interpretation of the margin

setting is the same as the simple MARGIN statement. See Section 4.7.7
for details.

The IF END Statement
IF END # <expression> THEN <line number>

This statement is similar to ON ERROR GOTO, but has effect only when
end of file conditions occur. It must be executed after the OPEN state-
ment and before any INPUT statement reading the actual file. The IF END
statement itself is, in fact, no conditional statement at all. When executed
the line number is stored in the file table telling BASIC to start the user
written error routine if end of the actual file is detected.

The error handling routine can be disabled by executing IF END . . THEN 0.
IF END has the highest priority used together with ON ERROR GOTO.

Example: (next page)

ND-60.071.01
Revision D

5.2.7

10 OPEN # T: FOR INPUT "XXXX"
20 OPEN # 2: FOR INPUT "YYYY"”
30 IF END #1 THEN 1000

40 IF END # 2 THEN 2000

50 INPUT # 1,X: INPUT # 2,Y : GOTO 50
60 STOP

1000 REM HERE IF END # 1

1010 IFEND # 1 THENO

1020 INPUT # 2,X : GOTO 1020
1030 STOP

2000 REM HERE IF END # 2
2010 IF END # 2 THENO

2020 INPUT # 1,X : GOTO 2020
3000 END

RUN

BASIC RUN ERROR 3 IN LINE 2020
END OF FILE

READY

Simulating Sequential Files

BASIC allows al/ input/output statements to communicate with internal

strings rather than sequential files. This means that it is possible to convert
the numeric value of any expression to an ASCI!| string or vice versa, according
to the rules of the respective input/output statements. Previously we have

seen the connect device identifier having numeric values. You will obtain

the effects described above if the connect device identifier is given a string
value. The general form is:

1. < input statement> # <string expression> : <list of variables>
2. < output statement> # <string variable> : <list of expressions>
The string denoting the connect device identifier is now a BASIC string
which is used directly and not the name of a sequential file. The OPEN,
CLOSE and MARGIN statements have, of course, no meaning in such

constructions. Note that output terminates if the stardard margin (75) is
exceeded.

If you want to use the numeric value of the substring in AS starting in
position X, and anding in position Y, just type the statement:

10 INPUT # SEGS (A$, X, Y): VALUE

On the other hand, if you want to generate a string of the value of A
using a special format described in A$, type the statement:

10 PRINT USING # FORMATS : AS, A

ND-60.071.01

Revision D

5.3

5.3.1

5—-13

RANDOM ACCESS FILES AND VIRTUAL ARRAYS

The major use of random access files is to hold big amounts of data
which should be accessed in a random manner. The data will normally
be loaded from a sequential file using a BASIC program, or be generated
by a program.

Random files are used to hold numbers and strings. The data is manipu-
lated internally in BASIC and accordingly the internal format is used.
Numbers are represented in the standard floating point or integer formats
and strings are saved in ASCI| code two characters to a word.

The addressing mode of arrays is used to address the individual items in
a random access file and when an array is assigned to a random access
file, the associated indexed variable may be used the same way as for
standard arrays. Such arrays are called virtual arrays or matrices.

The array format is used to access data because the PRINT and INPUT
statements deal only with the next sequential data element. A sequential
file, then, is limited in its applications and depends on a strictly sequential
treatment. With virtual arrays, the user can reference any element of one
or more matrices within the file, independent of where in the file that
element resides. This random access of data allows the user (non-
sequential) referencing of the data for use in BASIC. The virtual arrays
are read into memory automatically by the system.

Data stored in virtual arrays remain, even after the terminal is logged out.
The data can be retrieved later by accessing that file from BASIC or
other program systems. It is illegal to use MAT statements with virtual
arrays. Note also that there is no bound checking when accessing arrays.

Opening a Random Access File

Before any virtual array access is made, the random file must be

opened, associating the file name with a connect device identifier.

The identifier must always have a numeric value in the range 0-127 (which ‘
is also used in the virtual DIM statement). The access mode is RAN DOM allowing
read as well as write random access. It is very important to close

random files, because the CLOSE statement causes output of the last

block.

Example!

100 OPEN # 50: FOR RANDOM “MYFIL"
900 CLOSE # 50:

ND-60.071.01
Revision C

5.3.2 Declaring Virtual Arrays (Virtual DIM Statement)

The BASIC program has to be informed that a particular array is
not to be stored in the memory, but on a random file. This is
declared in a special form of the DIM statement:

DIM # <expression>:<list>

The expression denotes the connect device identifier which is the

same referred to in the OPEN statement. The list must appear as

it would in a standard DIM statement. (See Section 2.7.7.)

Subscripted variables of any type can be virtual array elements,. -
More than one array can be specified within one random file.

Remember that future references should always dimension the arrays
to the same size. There are no restrictions on the array size, because
the subscripts are converted to and computed in double integer format.

20 DIM # 3:A(100,100),A$(100%,100%),1%(2000%),DB1%%(1000)

The above statement indicates that the file associated with # 3 contains
10201 real numbers addressed by:

A(0,0),A(1,0),A(2,0)...,A(100,0),A(0,1),....etc.

Then follow 10201 strings. The maximum number of characters in
each is 16, because no size is given. The strings are addressed by:

A$(0,0),A$(1,0)..., A$(100,0),A$(0,1),....etc.

Thereafter follow 2001 integer numbers and 1001 double integer numbers.

5.3.3 Virtual String Arrays

Standard strings are of variable length, from 0 to 32767 characters.

Virtual string array elements are of fixed length, from 2 to 512 characters
which is the maximum length. If no length is specified, a default length

of 16 characters is assumed. The fixed length can be changed by the
program, but a syntax error will be printed if you don’t follow this

rule: (length +1)/2 must be a multiple of 512. The total space is l
always reserved for each element, but an element

need not use the maximum length, The maximum length is optionally
specified in the virtual DIM statement and must always be a constant.

10 DIM # 5: A$(10000) = 1,8$(100,100),C$(100) = 32%

ND-60.071.01
Revision C

5-15

The statement above reserves space on the file associated with # 5

for:
AS: 10001 strings of maximum 2 characters each
BS$: 10201 strings of maximum 16 characters each
C$: 101 strings of maximum 32 characters each.
.34 Using a Random Access File From a Program

Our example from sequential files which computes the average grade

for each of several students in a group is now used again in a new
version. — Suppose we want to print out the average grade for a
given student, i.e. the student name is the key for further computations.
It is obvious that we could solve the problem by using sequential files,
but we soon realize that using arrays are much more convenient and
faster. Suppose also that the number of students has increased so

that the totat amount of data is too big to be held in arrays in
memory.

Before running the program the file must be initialized. The array
NAMESS is filled with the student names, and the two dimensional
array GRADES is filled with the corresponding grades. The following
program, AVERAGE4, is used to scan the data base and perform the
necessary computations and printouts:

100 REM PROGRAM NAME - AVERAGE4

110 '

120 R{M THIS PROGRAM COMPUTES AVERAGE GRADES FOR A GIVEN STUDENT.
130 REM THE NAMES AND GRADES ARE STORED IN A RANDOM ACCESS FILE
140 REM CALLED STUDENT-FILE.

150 REM THE NAMES ARE FOUND IN THE ARRAY NAMESS.

160 REM THE GRADES ARE FOUND IN THE ARRAY GRADES.

170 REM THE INDEX BY WHICH THE NAME IS STORED IS THE STUDENT

180 REM NUMBER. THIS NUMBER INDICATES WHERE IN THE ARRAY

190 REM GRADES TO FIND THE GRADES.

200 REM

210 OPEN # 1* FOR RANDOM “STUDENT-F:DATA"

220 DM # 1: NAMES$(1000)=32%, GRADES(4,1000%)

230 PRINT U : LINPUT “STUDENT NAME”, STUD$

240 IF STUD$ = “FINISHED" GOTO 320

250 PRINT ! : AVER=0

260 REPEAT 1000: {F NAMES$(@)=STUD$ THEN 1%=@ : GOTO 280

270 PRINT “NO SUCH STUDENT” : GOTO 230

280 REPEAT 4: AVER=AVER+GRADES(®,!%)

290 AVER=AVER/4

ND-60.071.01

5-16

300 PRINT “NO.“;1% NAMESS$(1%), “AVERAGE':AVER
310 GOTO 230

320 CLOSE #1:

330 END

Let us ao through the program and make some observations before

starting the execution. The first executable statement is located in

line 210 opening the file really named: STUDENT-FILE. We see that
file names may be abbreviated until ambiguity arises. The word DATA
following the colon is the file type, and has to be specified unless

the file is of type SYMB, which is the default type in OPEN state-
ments. — The next statement declares the names and sizes of the
virtual arrays. Space is reserved for a maximum of 32 characters for
each string element in NAMES$. GRADES is a real array.

Note that the indexes (subscripts, dimensions) may be of any type.

In line 230 we find a multiple statement line, first two blank lines

are given, and then the program will ask for the student name. This

is an example showing the convenience of printing messages in an

input statement. LINPUT is used to avoid typing of “. The next
statement will close the file and stop execution if the student name,
FINISHED is typed. Line 250 gives a blank line and initializes AVER l
for computation of the average.

The REPEAT statement in line 260 initializes a loop of maximum
1000 to find the given student in the data base. |f found, the @
variable (real) indicates the student number which is assigned to the
integer 1% before going on to line 280. If not found @ takes the

value 1001, a message is printed in line 270 and a new student
name is asked for. — In line 280 we now realize the importance
of storing the previous value of @, because this variable is assigned
to 1 in the following REPEAT statement.

The grades are found in the 1%th column and are added by fetting
the row (@) run from one to four. It is important to notice that
arrays are stored by columns when working with virtual arrays!

In this example we obtain the effect of accessing four sequentual
elements. Line 290 divides the sum of the grades by the number of
grades, and line 300 prints the result. The unconditional GOTO
statement in line 310 jumps back to ask for a new student name.

ND-60.071.01
Revision C

5-17

The following is a run of AVERAGE4:
STUDENT NAME?ADA SHAW

NO. 876 ADA SHAW AVERAGE 74.75

STUDENT NAME?GERALD FRIENT

NO SUCH STUDENT

STUDENT NAME?GERALD FRIEND

NO. 54 GERALD FRIEND AVERAGE 78.75

STUDENT NAME?PHILIP CLOUGH

NO. 318 PHILIP CLOUGH AVERAGE 83

STUDENT NAME?PER PEDERSEN

NO SUCH STUDENT

STUDENT NAME?FINISHED

READY

ND-60.071.01

6.1

ARRAY MANIPULATIONS
INTRODUCTION

Up to this point in the manual a singly subscripted variable (a variable
having only one subscript) has denoted a one-dimensional array and a
doubly subscripted variable (a variable having two subscripts) has de-
noted a two-dimensional array. In this chapter it is appropriate to retfer
to vectors and matrices since we are describing them in a mathematical
context.

Vectors and matrices are both arrays. That is, an array is denoted by
a variable having one or more subscripts; a matrix is an array having
two subscripts.

A string array is an array whose entries are strings.

BASIC provides MAT statements which are designed to allow the pro-
grammer to work with arrays in a simple and straightforward manner.
Although arrays have a row number 0 and a column number O in
BASIC (Sections 2.4 and 4.4), the MAT statements generally ignore
them. Virtual arrays cannot be used with MAT statements. Double
integer arrays are allowed only with MAT input/output statements.
The type of the arrays involved in a MAT arithmetic operation must
always correspond, i.e. mixed mode is not permitted.

ND-60.071.01

6.2

MAT INITIALIZATION STATEMENTS

There are three MAT statements which facilitate the procedure of
assigning values to individual array entries.

100 MAT A% = ZER

This statement assigns a value of zero to each entry of the integer
array A%.

110 MAT A = CON
This statement assigns a value of one to each entry of the array A.
120 MAT A = IDN
This statement sets the matrix A equal to the identity matrix. For
this statement to be valid A must be a square matrix: A must be
doubly subscripted and have its number of rows equal to its number

of columns. A may not be a vector.

All three of these MAT statements do not affect row O or column O
of the arrays on which they operate.

ND-60.071.01

6.3

CHANGING DIMENSIONS USING MAT STATEMENTS

As described in Sections 2.4 and 4.4 the DIM statement is used to
dimension (i.e., to reserve space in the computer for) subscripted
variables. Space for entries in row 0 and column O of an array is
a part of the total space reserved. For example the statement

100 DIM A(7), B(11,5)

results in 8 spaces being reserved for A with room for entries 0
through 7. (11+1}*(5+1) = 72 spaces are reserved for B with room
for entries in rows 0 through 11 and columns O through 5. If
subscripted variables are used in a program but do not appear in

a DIM statement, BASIC implicitly saves 11 spaces for a vector
and 121 spaces for a matrix {a maximum of 10 for each subscript).

It is possible to change the dimensions of the arrays used in some
MAT statements by specifying the desired dimensions in the state-
ments themselves. The initialization statements allow this flexibility.
The statements

100 DIM A(8)
110 MAT A = ZER(5)

will reserve nine spaces for the vector A in line 100 and A will be
redimensioned (that is, the space reserved for A in the computer will
change) to a vector having 6 entries (entries O through 5) in line 110
with A(1) through A(5) set equal to zero. A reference to A(6) after
line 110 will cause an error message to be output and the program
run will terminate.

Redimensioning variables in the MAT statements may cause dimensions
which exceed the space previously reserved for the arrays. In the
previous example we may retype line 110 to read

110 MAT A = ZER(15)

Matrices may also be redimensioned in the MAT... CON statement.

100 DIM M(8,2)
110 MAT M = CON(5,3)

Twenty-seven spaces are stored for M in line 100 and line 110 requires

6%4 = 24 spaces for the redimensioning of M. Again, the space
required for redimensioning may exceed the spaces reserved.

ND-60.071.01

Matrices may be redimensioned by using the MAT ... IDN statement
and the desired number of rows and columns is included in parentheses
as in the preceding examples.

100 DIM A(8,5)
110 MAT A = IDN(6,6)
120 END

Here the matrix A is dimensioned to be 6 by 5 and in line 110 it is
set equal to the 6 by 6 identity matrix.

A vector may be redimensioned to a matrix or vice versa.
As with subscripts, dimensions designated in MAT statements do not
have to be integers! any arithmetic expression may be used, and if the

value of the expression is not a whole number, its integer part is used.

Redimensioning of arrays may occur in other MAT statements. This
feature will be noted as the remaining MAT statements are discussed.

ND-60.071.01

6.4

ARITHMETIC OPERATIONS

110 MAT C = A+B
120 MAT C = A-B

The first statement causes the array C to be the sum of the two arrays
A and B. In the second statement C is the result of subtracting array
B from array A. A and B may be vectors or matrices as long as they
both have the same dimensions.

The array C is redimensioned if not matching A or B.
100 MAT A =B

This statement sets each entry of the array A equal to the corresponding
entry of B. A is redimensioned if not matching B.

130 MAT C = A*B

This statement puts the product of arrays A and B into array C, which
is redimensioned if not matching. If A and B are matrices {that is, they
heve two subscripts), the number of columns in A must be equal to the
number of rows in B. C will have the same number of rows as A and the
same number of columns as B; thus, if A is an M by N matrix and B is

an N by P matrix, then C will be a M by P matrix.

Vectors may be used in matrix multiplication. If a vector A is multi-
plied with a matrix B in a statement MAT C = A*B, then A must have
the same number of entries as B has rows. The product is a vector
with the same number of entries as B has columns; thus, if A is a vector
with N elements and B is a matrix with N rows and P columns, then C
will be a vector with P elements. If A is a matrix and B is a vector,
they can again be multiplied together in the statement MAT C = A*B.
This time, the vector B must have the same number of elements as the
matrix A has columns; C will be a vector with the same number of
elements as A has rows. Thus, if A has M rows and N columns and B
has N columns, the resulting vector C will have M elements.

If two vectors are multiplied together to produce what is somtimes

called the dot or inner product, the result will be a single number. The

two vectors being multiplied must have the same number of elements.
Thus, in the statement MAT C = A*B, if A and B are vectors, they must
have the same number of entries. The product will now be put into
C{1) or C(1,1), but no redimensioning will take place.

t

ND-60.071.01

While the statements

100 MAT A
110 MAT A

A+B
A-B

are allowed, the statement
120 MAT A = A*B

will result in an error message. When adding or subtracting two arrays,
any entry of the array is only used once so that the answer may be
stored immediately in the array. If entries of the matrix being operated
on during a multiplication are replaced, components needed to complete
the matrix multiplication are destroyed.

The following matrix multiplication is valid, provided A is a square
matrix.

100 MAT C = A*A

Performing more than one arithmetic operation in a single MAT state-
ment is illegal. Thus, to evaluate the expression A+B—C two MAT
statements are required. One way of evaluating the expression follows.
We assume all dimensions are correct.

100 MAT D = A+B
110 MAT E = D-C

In general these MAT statements ignore row 0 and column O of the
arrays on which they operate.

ND-60.071.01

6.5

FUNCTIONS
The transpose of a matrix may be found using the following statement:
100 MAT C = TRN(A)

This statement sets matrix C equal to the transposed version of A.
If A has N rows and P columns, C will be redimensioned to have P
rows and N cofumns if necessary. The statement

110 MAT A = TRN(A)

is illegal.

The statement (called scalar multiplication)
100 MAT C = (K)*A

causes each entry of array A to be multiplied by the value of K to
form the corresponding entry of the array C which is redimensioned

to be the same size as A if necessary. K may be any constant, variable
name or arithmetic expression and must be enclosed in parentheses.
The statement

100 MAT A = (K)}*A
is legal.
The statement

100 MAT C = INV (A)

sets matrix C equal to the inverse of matrix A. A must be a square
matrix, and C is redimensioned to be the same size as A if necessary.
Matrix inversion can involve arrays of real type only.

The function DET is available after an inversion is performed, and it

is the value of the determinant of the matrix whose inverse was computed.
It is important to point out that even though a matrix whose determinant
is zero has no inverse, trying to compute the inverse of such a matrix

in the above MAT statement will not cause the program run to stop or
cause the output of any kind of error message. In this case DET is set
equal to zero and the resulting “inverse’ matrix is obviously not correct.
It is up to the user to check the value of DET to determine whether

or not the matrix has an inverse.

ND-60.071.01

Since DET is not available until after the inverse is found, if the

value of the determinant of a matrix is desired the inverse of the matrix
must be computed first.

The following statement is legal:

100 MAT A = INV (A)

All three of these functions may change the values stored in row 0 and
column O of the arrays involved. When inversion takes place, row O and

column O of the inverse matrix are used to store intermediate calculations.

ND-60.071.01

6.6

6.6.1

6—9

INPUT AND OUTPUT OPERATIONS
The MAT READ, MAT PRINT and MAT PRINT USING Statements

There are MAT statements that cause entire arrays to be input or
output. The program MATRIX

100 DIM M(3,5)

110 MAT READ M

120 DATA 1,2,3,4,5,6,7,8,9
130 DATA 10, 11, 12, 13, 14, 15
140 END

will cause fifteen numbers to be read into the matrix M by rows.
That is, the first row of M is read in, then the second and finally the
third. Row 0 and column O are not affected. If the following line is
added to MATRIX

135 MAT PRINT M
and line 110 is retyped as

110 MAT READ M(2,6)

the program will yield the following output when it is run:

MATRIX

1 2 3 4 5
6

7 8 9 10 11
12

READY

M is redimensioned in line 110 to be a two by six matrix. Twelve
numbers are read into M. Line 135 causes M to be printed in matrix
format: the entries of each row are spaced five to a line and each
row begins on a new line. Row O and column 0 are not printed, and
a blank line is output before the first row of the matrix is printed.
If line 135 of MATRIX is changed to read

135 MAT PRINT M;

the following output is produced when MATRIX is run:

ND-60.071.01

6-10

MATRIX

1 2 3 4 5 6
7 8 9 10 11 12
READY

The semicolon after the matrix name causes M to be printed with the
entries of each row closely packed on a line.

The MAT READ and MAT PRINT statements may be used with
vectors as well as with matrices. The format of the statements is that
described for matrices. The program VECTOR

100 DIM V(3)

105 MAT V = CON
110 MAT PRINT V
120 END

will cause V to be printed as a column of numbers:

VECTOR
1

1

1

READY

If line 110 of VECTOR is changed to read
110 MAT PRINT V,

the entries of vector V are spaced five numbers to a line in row format
as follows:

VECTOR
1 1 1
READY

If a semicolon replaces the comma in the new line 110, V is printed
in row format with the entries of V closely packed.

More than one array name may appear in a single MAT READ or MAT
PRINT statement. In the MAT PRINT statement commas and semi-
colons are used both to delimit the names and to control the format

in which the arrays are printed. For example, in the statement

100 MAT PRINT V, M;

ND-60.071.01

6.6.2

6—11

If V is a vector and M is a matrix, the entries of V are printed in
rows with five entries per row. M is printed as a matrix with the
entries of each row closely packed.

Only array names without parantheses are legal in a MAT PRINT state-
ment. The following statements are illegal:

100 MAT PRINT M(2,3)
110 MAT PRINT TRN(A)

Vectors as well as matrices may be output in the MAT PRINT USING
statement. Comma is the only legal delimiter of the format string and
the array names in the list. The elements of the array(s} are printed
according to the format string as with the PRINT USING statement.
The format is used again starting on a new line if there are more
elements than fields. If there are several arrays in the list, a blank line
is left between them, and the format string is used from the beginning.
The shorthand MAT USING may be used,

Examplé:

10 MAT A=CON(2,2)

20 MAT USING “+### AND —# ## 111117 A
30 END

RUN

+1 AND 1.00 E+00
+1 AND 1.00 E+00

READY

The MAT INPUT and MAT LINPUT Statements and the NUM Function

The input is taken from the terminal as with normal INPUT or LINPUT
statements, and a question mark is printed when the program is ready
to accept the input.

(f MAT INPUT goes to a vector, the excess data are ignored when
trying to enter more data than the vector can hold. If less data are
entered, the elements not affected remain unchanged. The function
NUM is available after the execution, and returns the number of data
which were input.

If MAT INPUT goes to a matrix, the data is entered by row. A variable
number of data may not be input; -enough data must be entered to fill
entirely the matrix as it has been dimensioned in MAT INPUT or previously.
The excess data is ignored as with vectors, and the number of data is
available in the function NUM.

ND-60.071.01
Revision D

If you want to input more numbers than can be typed on one line,

it is possible to continue typing on additional lines. {f the last item on
a line is followed by an ampersand (&) with no preceding comma and
then by a carriage return, BASIC will accept the input typed so far,
and then expect data continued on the following line. The last string
on a line must be enclosed in quotation marks if its last character is
an ampersand (&).

The following program will call for the input of 24 numbers.

100 DIM M({2,12)
110 MAT INPUT M

Changing line 110 the program will call for the input of maximum 50
numbers.

110 MAT INPUT M(50)

String vectors and matrices may also be used in the MAT INPUT
statement, and NUM is updated.

The LINPUT statement is described in Section 4.8.1; the MAT LINPUT
statement allows more than one line of information (possibly containing
commas, leading blanks, etc.) to be input in response to a single state-

ment.

A variable amount of input is not allowed, and a question mark is
printed for each element.

Common to MAT INPUT and MAT LINPUT is:
- Row 0 and column O are ignored.

— Several arrays may appear in the list.

— Arrays may be explicitly redimensioned.

— 1¥ not, the current dimension(s) will determine the
maximum number of elements to be input.

- Insertion of messages in the list is not allowed as
with INPUT and LINPUT.

ND-60.071.01

Examples:

100 DIM V(5), A(3}, M(3,4)
110 MAT INPUT V, A(2), M(2,3)
120 PRINT “NUM="";NUM
130 MAT PRINT V;A;M;
140 END
RUN
?1,2&
3
71,2
21,2,3,4
74,56
NUM= 6

1 2 3 0 0

1 2
1 2 3
4 4 5

10 MAT LINPUT A$(4)
20 PRINT “NUM=":NUM
30 MAT PRINT A$
vvvvv 40 END
= RUN
?FIRST
?SECOND, (NEXT EMPTY)
?
?FOURTH
NUM= 4
FIRST
SECOND, (NEXT EMPTY)

FOURTH

ND-60.071.01
Revision D

6.6.3 The VIAT WRITE Statement

As described in Section 5.2.4 the WRITE statement nroduces an out-
put readable by a matching INPUT statement. The MAT WRITE state-
ment outputs the elements of a vector separated by commas on a single
line. The rows of a matrix are output on separate lines, thus readable
by a matching MAT INPUT statement. It is very important, however,
that the number of characters output on one line does not exceed the
margin. This will be dependent on the number of columns and the
range of each element. In fact, this restriction is due to the size of
the input buffer rather than the current margin.

6.6.4 MAT Statements and Files

Any MAT statement performing input or output operations on the
terminal may be used with sequential files as well. The formats of
the statements are:

10 MAT INPUT # <N>!<ist of arrays>

20 MAT LINPUT # <N>:<ist of string arrays>
30 MAT PRINT
40 MAT USING
50 MAT WRITE

S

<N>:<ist of arrays>
<N>:<list of arrays>
<N>:<list of arrays>

i

4

where <{N> is the connect device identifier; i.e., the number of the

file being read or written, or the string which simulates a sequential
file.

For a complete discussion of files see Chapter 5.

ND-60.071.01

Revision D

6.7

6.7.1

6—-15

EXAMPLES USING MAT STATEMENTS

The following two examples illustrate some of the MAT statements
discussed in this chapter.

MAT Arithmetic

100 READ N,P

110 MAT READ A(N,N)

120 MAT B = CON(N,N)

130 MAT C = A+B

140 PRINT “SUM OF A AND MATRIX OF 1S 18"
150 MAT PRINT C

160 PRINT

170 PRINT “INPUT"; N*P; “VALUES FOR MATRIX B";
180 MAT INPUT B(N,P)

190 MAT C = A*B

200 PRINT

210 PRINT “PRODUCT OF A AND B IS”

220 MAT PRINT C;

230 MAT D = TRN (C)

240 PRINT

250 PRINT “TRANSPOSE OF THIS PRODUCT IS”
260 MAT PRINT D

270 DATA 2,3

280 DATA 1,234

290 END

Since the matrices used in this example do not appear in a DIM
statement, BASIC implicitly dimensions them to be ten by ten and
reserves 121 spaces for each matrix. Line 110 dimensions A to be

2 by 2, while it reads values for the entries of A from the DATA
statement in line 280. Line 120 dimensions B to be 2 by 2 and sets
all entries of B equal to 1. Line 130 adds A and B and stores the
result in C. C is redimensioned to be a 2 by 2 matrix as is shown
when it is printed in line 150. Line 180 requests the user to input
enough values to fill a 2 by 3 matrix and B takes on these new
dimensions. Line 190 sets C equal to the product of A and B and

C is redimensioned to be 2 by 3. C is printed in closely packed
format in line 220. Matrix D becomes the transpose of C in line
230 and D is redimensioned to 3 by 2. D is printed in regular format
in line 260.

A run- of this example follows:

ND-60.071.01

6.7.2

Inverting a Ma

The second ex

the form
1 1/2 1/3
1/2 1/3 1/4
1/N 1/(N+1) 1/(N+2)
A listing of the program follows:
100 REM TH
110 DIM A(20,20), 1{20,20), B(20,20)
120 DIM C(20,20), D{20,20)
130 READ N
140 MAT A = CON{(N,N)
150 FOR I =1TO N
160 FORJ=1TO N
170 LET A{J) = 1/{1+J—-1)
180 NEXT J
190 NEXT |

EXAMPLE1
SUM

2

4

INPL

?18, 6, —10

PRODUCT OF A AND B IS

38
78

11
21

616

3
5

-13
—19

OF A AND MATRIX OF 1'S IS

T 6 VALUES FOR MATRIX B? 2, -1, 7

TRANSPOSE OF THIS PRODUCT IS

38
11
-13

READY

trix

78
21
-19

ND-60.071.01

ample inverts an N by N Hilbert matrix which has

1/N
1/{N+1)

1/(2N-1)

IS PROGRAM INVERTS AN N BY N HILBERT MATRIX

6—17

200 MAT B = INV(A)

210 PRINT “INV(A) ="

220 MAT PRINT B;

230 PRINT

240 PRINT “DETERMINANT OF A =";DET
260 MAT | = IDN (N,N)

270 MAT C = A”"B

280 MAT D = I-C

290 FOR 1 =1TON

300 FORJ=1TO N

310 IF X>=ABS(D(1,J)) THEN 330

320 LET X = ABS(D{!,J})

330 NEXT J

340 NEXT |

350 PRINT

360 PRINT “LARGEST ABSOLUTE DIFFERENCE =*; X
370 DATA 4

380 END

The double loop in lines 150 - 190 sets up the Hilbert matrix A

after the correct dimensions have been set up in line 140. A single
instruction results in the computation of the inverse (line 200) and

one more instruction prints it out in closely packed format (line 220).
The value of the determinant of A is available after the inversion and is
printed in line 240. | is set equal to the identity matrix having N rows
and N columns in line 260. Lines 270 through 340 find the largest
absolute difference between an entry of the product matrix A*B and
the corresponding entry of the identity matrix. This value is printed

in line 360 and is a measure of the accuracy of the inverse since the
product of a matrix and its inverse is the identity matrix.

The following run uses a value of 4 for N.

>

HILMAT

INV(A)=
16 ~120 . 240 —140
-120 1200 —2700 1680
240 —2700 6480 —4200
—140 1680 —4200 2800

DETERMINANT OF A = 1.65344 E —07
LARGEST ABSOLUTE DIFFERENCE = 1.66893 E —06
READY

ND-60.071.01

6—18

While this example shows how several MAT statements are used, it
also points out that the accuracy of the matrices generated by using
MAT statements depends on the structure of the matrices and on the
fact that the computer stores any number to only a limited number of
significant digits. These two factors combine in this example when N
is greater than or equal to 7 to cause severe roundoff errors which in
turn cause a highly inaccurate inverse to be returned. When N = 7,

a value for the absolute difference described previously is greater than
one and continues to grow as N increases.

ND-60.071.01

6.8

6—19

SIMULATING AN N—DIMENSIONAL ARRAY

Although arrays having more than two dimensions are not allowed in
BASIC, the method outlined in the following program can be used to
simulate an array having any number of dimensions. It makes use of
the fact that defined functions may have any number of arguments, and
a one to one correspondence is set up between the entries of the array
and the entries of a vector. Formatting techniques cause the entries

of the vector to be printed in a format reflecting the dimensions of

the array.

This example simulates an array having three dimensions; it can easily
be rewritten to accomodate four or more dimensions.

100 DIM V(1000)
110 MAT READ D(3)
120 DEF FNA(IJ K)
130 FOR | = O D(1
140 FOR J = 1 T D(2
150 FOR K =1 TO D(
160 LET V(FNA(l,J,K}) =
170 PRINT V(FNA(LJ,
180 NEXT K

190 PRINT

200 NEXT J

210 PRINT

230 NEXT |

240 DATA 2,34

250 END

(I=1)*D(2)+(J—-1))*D(3)+K

+2*J+K12
K)),

When the program is run, the vector is printed as two 3 by 4 matrices.

3—ARRAY

4 7 12 19
6 9 14 21
8 11 16 23
5 8 13 20
7 10 15 22
9 12 17 24
DONE

ND-60.071.01

6.9

THE ROW ZERO AND COLUMN ZERO

The zeroth row and column of a matrix can be used to store information,
provided that no MAT operation is intended to affect it. In very large
programs which do not use the MAT operations, this fact can be used

to good advantage. An array must be dimensioned to be 200 by 10

to store 2000 items of information if the zeroth row and column are

not used; BASIC sets aside 2211 places for that array. |f the zeroth
row and column were used, the dimensions could be set to be 199 by Y,
and only 2000 places would be reserved, The program would be smaller
and might be able to run in the space allotted when without this
redimensioning the program would occupy too much storage to run.

ND-60.071.01

7.1

PROGRAMS, FUNCTIONS AND SUBPROGRAMS

PROGRAM UNITS

The words function, subroutine or subprogram within this chapter refer
to external functions or subroutines as opposed to internal functions
or subroutines (FNA(X), GOSUB 10).

A NORD BASIC program consists of one main program and, optionally,
one or more subprograms. The term program unit refers to either the
main program or a subprogram.

A main program is a set of statements and comments forming a self-
contained computing procedure; it must contain at least one executable
statement. A PROGRAM statement may be used as the first statement
of a main program, but is not necessary. A main program may not
contain a FUNCTION, or a SUBROUTINE statement.

A subprogram is also a set of statements and comments, but is headed
by either a FUNCTION or SUBROUTINE statement.

All program units must be terminated by an END statement. The

main program and subprograms communicate with each other through
parameters, virtual arrays, or sequential files.

ND-60.071.01

7.2

MAIN PROGRAM

A main program may be written with or without references to sub-
programs.

The PROGRAM statement may be used as the first statement of the
main program, and has the following format:

PROGRAM <name>

name is an alphanumeric identifier from one to six characters; the
first must be alphabetic. This name must not be mixed up with the
leader printed with RUNH and LISTH. The statement is optional.

A main program may refer to both subroutines and functions which
are compiled independently of the, main program. A calling program

is @ main program or subprogram that refers to stbroutines and
functions.

ND-60.071.01

7.3

7.3.1

7.3.2

PARAMETERS

Main programs, subprograms, and functions use parameters as one
means of communication. The parameters appearing in a siibroutine
call or a function reference are actual parameters. The corresponding
parameters appearing with the subroutine or function name in the
definition are formal parameters. Actual and formal parameters must
agree in order, type and number.

Formal Parameters
The following are permissible forms for formal parameters:

array name

simple variable

Since formal parameters are local to the subprogram containing them,
they may be the same as names appearing outside the program unit.

No element of a formal parameter list may appear in an EXTERNAL
or CALL statement within the subprogram. When a formal parameter
represents an array, it should be declared in a DIM statement within
the subprogram.

Example:

10 SUBROUTINE PER(A,I,X)
10 FUNCTION OLE(X)

A, | and X are formal parameters.

Actual Parameters
The following are permissible forms for actual parameters:

constant

simple variable or matrix element
arithmetic expression

array name

program hame

When an actual parameter is a program name, that name must also appear
in an EXTERNAL statement (especially meant for RT applications).

ND-60.071.01
Revison C

7.4

7.4.1

FUNCTION SUBPROGRAM

A function subprogram is a computational procedure which returns a
single value associated with the function name. The type of the
function is determined by its name in the same way as a variable
identifier.

The first statement of a function subprogram must have the following
form:

FUNCTION <name>(<formal parameter list>>)
The name of the function must also appear as a variable name in the
defining subprogram. The value of this variable at the time of exe-
cution of the END statement in this subprogram is called the value of
the function.

The function subprogram may contain any statement except SUBROUTINE
another FUNCTION statement, or any statement that directly or indirectly
references the function being defined. Recursive calls are not permitted.

’

Integer/double integer functions may be declared by mentioning the
function name in a type declaration statement.

The EXTERNAL Statement and Function Reference

If an external function is to be referenced its name must be declared
in an EXTERNAL statement:

EXTERNAL <name 1>,<name 2>,....
where name 1, name 2.... are the referenced function names. The
EXTERNAL statement must be entered into the BASIC compiler before
the function references.
A function is referenced by

<name>(<actual parameter list>)

where name identifies the function being referenced. It is the same as
the name in the FUNCTION statement.

ND-60.071.01

7.4.2

A function reference may appear any place in an expression where
an operand may be used. The evaluated function will have a single
value associated with the function name. When a function reference
is encountered in an expression, control is transferred to the function
indicated. When the END statement in the function subprogram is
encountered, control is returned to the statement containing the
function, with the function reference replaced by the value of the
function.

Example:

10 EXTERNAL XS8Q
20 X = A+ B * XSQ(D)

Function Parameters

When a function reference is executed, actual parameters are associated
with all appearances of the corresponding formal parameters in executable
statements in the defining subprogram. If a formal parameter appears in
a statement redefining its value, the corresponding actual parameter must
be a simple variable or a matrix element. If an actual parameter is an arith-
metic expression, it is evaluated and its value is associated with the cor-
responding formal parameter.

If a formal parameter is a matrix name, the corresponding actual parameter
must be a matrix.

A function need not have any parameters, but maximum 63 are permitted.

ND-60.071.01

7.5

7.5.1

SUBROUTINE SUBPROGRAMS

A subroutine is a computational procedure which may return none,
one, or more values. No value or type is associated with the name
of a'subroutine. The first statement of a subroutine subprogram must
be the following:

SUBROUTINE <name>[(<formal parameter list>)]

where name is an alphanumeric identifier as in the PROGRAM state-
ment. The formal parameters may be variable names, array names,
or subprogram names.

The name of the subroutine must not appear in any other statement

in the subprogram. The parameters may be defined or redefined within
the subprogram so that they may effectively return results. The same
rules apply to the parameters as for function subprograms.

No value is associated with the name of the subroutine, and the sub-
routine must be referenced by a CALL statement.

The CALL Statement

The executable statement in the calling program to refer to a sub-
routine is the form:

CALL <name>[(<actual parameter list>)]
The name may not appear in any specification statement in the calling
program except in EXTERNAL statement. A subroutine may also be
referenced by the appearance of its name in an EXTERNAL statement.
The CALL statement transfers control to the subroutine. When the
END statement is encountered in the subroutine, control is returned

to the next executable statement following the CALL in the calling
program.

Examples:
1) Subroutine Subprogram

10 SUBROUTINE PIP(A,B,C)
20 A = B**C

100 END

ND-60.071.01

2) Calling Program Reference

30 CALL PIP{V(1),X,3)
40 REM PARAMETERS MUST AGREE IN NUMBER AND TYPE

ND-60.071.01

20

7.6

COMPILATION AND EXECUTION WITH SUBPROGRAMS

Within the BASIC system only one of the present program units may
exist as an incremental unit. Such a unit has the following characteristics:

— The statements may be changed.
— Its identifiers may be examined and changed.

— The run-time error messages reference the line number
where the error occurred.

— Break-points may be set.

All other units may be regarded as static blocks where changes must be
made by editing and compiling into the binary relocatable format
(BRF).

The transformation into BRF format is obtained by using the command
COMPILE <source-file>[<list-file><BRF object-file>]
which starts a compilation of the program unit(s) in the source file.

If the first parameter is present only, this command acts like OLD
except for two deviations:

- The new program is appended to any old one with no
system initiation.

— File-name will not be taken as the program name.

If the second parameter is present, a listing of the program will be
obtained on the list-file/device specified.

When the third parameter is missing, this indicates that the compilation
is done incrementally which is the normal use of the system. However,
if the third parameter is present, the compiler will translate the source-
file program unit(s) into BRF format which is written on the file/
device specified. Default file type is :BRF. Such source-files should
be terminated with an EOF statement:

<line number> EOF

ND-60.071.01
Revision C

1.7

MAIN PROGRAM AND SUBPROGRAM LINKAGE

Subprogram units that are referenced in the main program must be
entered into the system by the command

LOAD <BRF object-file>
One or more object-files may be specified delimited by spaces.

When a load is completed the current load address and the memory
upper bound is printed on your terminal in the format

FREE: <current location>—<upper bound>

Now a list of the loaded units and their memory addresses may be
obtained by typing

ENTRIES-DEFINED [<file-name>>]
Any referenced but still undefined entry may be examined by
ENTRIES-UNDEFINED [<file-name>]

When all referenced entry-points (units) are present you may start
your program, else you get a message which tells you the undefined
entries.

Subprograms on BRF object files may have been created from NORD
STANDARD FORTRAN, NORD BASIC, NORD PL or MAC assembly.

Sometimes you may want to debug a subroutine or function unit in
incremental mode. Then the main program must be converted into
BRF format and loaded into the system rather than compiled in the
usual way. An example will illustrate this.

Suppose your program system consists of the main program (on file
MAIN) referencing two external functions F1 (on file F1) and F2
(on file F2). Something is going wrong in F1 and you want to con-
trol the execution of it in incremental mode by breaking through it.
This system configuration is generated in the following way:

COM MAIN, 0, "MAIN "
COM F2, 0, "F2"

OLD F1

LOAD MAIN

ND-60.071.01
Revision C

7.8

7-10

REAL TIME (RT) PROGRAM STATEMENT

By using the RT program statement you can generate an RT
description for your program. This program may be executed in the
same way as all other RT programs written in assembly code (see
the SINTRAN 111 User’s Guide for further information). The RT
statement has the following format:

PROGRAM <prog.name>,<priority>

The <prog.name> may be any acceptable BASIC name. It will be
referred to in the loader tables and must be defined only once.
The <priority> specifies the priority of the RT program and may
be any unsigned integer between 1 and 255. An example might be:

'

PROGRAM PER, 5%

Here PER will be defined to a real-time program with a priority of 5.

The <priority> may be omitted. Then the <priority> will be set to
one, and a warning message will be printed when the program is loaded
by the Real Time Loader.

ND-60.071.01
Revision C

7.9

STAND ALONE EXECUTION

Previously we have seen that any program unit written in BASIC can

be compiled to machine instructions in BRF format. Such a program
unit is not dependent on being loaded and executed with the total
BASIC system in memory. Other subsystems exist which are able to
perform the loading and linking procedure:

— SINTRAN Il Real Time Loader
— NORD—10/ND—100 Relocating loader

These are described in the respective manuals.

A BASIC Library and Run-time System is available for stand alone
execution purposes. This system should be loaded after the BASIC
program units, hence, only the run-time routines required (called for)
are loaded into memory.

ND-60.071.01

Revision <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>