SINTRAN 1lI

Users Guide

A/S NORSK DATA-ELEKTRONIKK

@&

REVISION RECORD

Revision

Notes

01/75

Version 03

Total revision,

superceding all previous versions

01/76 Version 04

Total revision, superceding all previous versions
03/76 Version 05

Total revision, superceding all previous versions
06/76 Version 06

Total revision,

superceding all previous versions

Publication No. ND-60.050.06

June 1976

A/S NORSK DATA-ELEKTRONIKK
Lorenveien 57, Oslo 5 - TIf.: 21 73 71

PREFACE

Norsk Data Elektronikk A/S is continuously working towards improve-
ments and new extensions of the SINTRAN IIl operating system. New
versions are released 3 or 4 times a year. It is our goal to synchronize
the new editions of this manual with the new versions of the operating
system, such that all functions of a particular version of SINTRAN 1|
are described in the corresponding edition of the manual, and that all
functions mentioned in the manual are contained in the corresponding
version of the operating system.

Thus, this version of this manual is the SINTRAN 11l version of June
1976.

ND-60.050.06

Section:

2.1
2.2

2.2.1

2.2.2

2.3

2.3.1

2.4
2.5

3.1

TABLE OF CONTENTS

+ + +

INTRODUCTION

General Remarks on SINTRAN Il
User Categories

Timesharing and Batch Users
The Real-Time Users

The System Supervisor
Commands and Monitor Calls
Hardware Environments
Available Subsystems

Programming Languages
Subsystems and Utility Programs

PREPARING AND EXECUTING TIMESHARING:
JOBS

A Run Using QED, The Text Editor
A Run Using BASIC

T-he Execution of a BASIC Program from a QED
'llz';:z SAVE and GET Commands

An FTN (FORTRAN) Run

FORTRAN Compiler Commands

The Compilation of a Simple NORD-PL Program
A Run Using the MAC Assembler

TIMESHARING AND BATCH USERS
Introduction

Timesharing Users
Batch Users

ND-60.050.06

— — —
|
A DhW

— — —
I
© N,

Section:

3.2

3.2.1

3.2.1.1
3.2.1.2

3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
3.3
3.3.1
3.3.1.1
3.3.1.2
3.3.1.3
3.3.1.4
3.3.1.56
3.3.2
3.3.2.1
3.3.3

3.3.3.1
3.3.3.2

3.3.4

3.3.4.1
3.3.4.2

3.3.5

3.3.5.1
3.3.5.2

The File Management System
File Directories

Creating Users and Reserving Space
Default Directories

Creating Files (Indexed and Contiguous Files)
File Types

File Versions

File Protection and Accessing Modes
Friend’s Access

Summary of File-Name

Utility Commands

Starting and Terminating a Terminal Session
Logging-in

Logging-out

Dialed-up Terminals (Duplex, Echo)
Password

The ""Escape”-key and the "'Break’’-key
Execution of a User-program or Subsystem
The Recover Command

Creation of an Executable Program

The Dump Command
The Memory Command

Restarting Execution of a Program

The Continue Command
The Goto-User Command

Loading a Binary Program

The Load-Binary Program
The Place-Binary Command

ND-60.050.06

3—-15

3-15
3-15

3-16

3—-16
3—-16

3-17
3-17

Section:

3.3.6

3.3.6.1
3.3.6.2

3.3.7

3.3.7.1
3.3.7.2
3.3.7.3
3.3.7.4

3.3.8
3.3.9
3.3.10
3.3.11
3.3.12
3.3.13

3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.5.1
3.4.5.2
3.4.5.3
3.4.6
3.5
3.5.1

3.56.1.1
3.56.1.2

3.6.2

3.5.2.1
3.5.2.2

vi

Examination of User’s Registers and Memory
Contents

The Status Command
The Look-at Commands

Obtaining System Information

The DATCL Command

The Time-Used Command
The Who-Is-On Command
The Where-lIs-File Command

The MODE Command

The CC Command

The HELP Command

The HOLD Command

The TERMINAL-MODE Command
The IOSET Command

The Most Commonly Used File Management System
Commands

Creating and Deleting Files

File Protection and Access Modes

File Statistics and User Information

Copying Data to and from Files and Devices
Opening and Closing Files

The Open-File Command

The Connect-File Command

The Close-File Command

Reserving and Releasing Files and Peripheral Devices
File Handling from User Programs

Opening Files from a Program

Subroutines for Opening Files
Monitor Calls for Opening Files

Accessing Files

Sequential File Access
Random File Access

ND-60.050.06

Page:

3—-18

3-20

3—-20
3-20
3-20
3-21

3-21
3-23
3—-23
3-23
3-23
3-24

3-25
3-25
3—-26
3-27
3-28
3—-28
3-29
3-30
3-30
3-31
3-32
3-32

3-32
3-34

3—-35

3-35
3—36

Section:

3.6.3

3.6

3.6.1

3.6.2
3.6.3

3.7

3.7.1
3.7.2
3.7.3

3.7.3.1
3.7.3.2

3.7.4

3.7.4.1
3.7.4.2
3.7.4.3
3.7.4.4
3.7.4.5
3.7.5

3.7.5.1
3.7.5.2

3.7.6
3.7.7

3.8

3.8.1

3.8.1.1
3.8.1.2

3.8.2

vii

Closing of Files

Monitor Call Functions

Monitor Calls Available from MAC and NORD-PL

Programs

Monitor Calls also Available from FORTRAN
Monitor Calls Not Available in RT Programs
Batch Processing

Introduction

Definitions

Batch Commands for the User SYSTEM

The Batch Command
The Abort-Batch Command

Batch Commands for Public Users

The List-Batch-Process Command

The List-Batch-Queue Command

The Append-Batch Command

The Abort-Job Command

The Delete-Batch-Queue-Entry Command
Batch Commands within the Batch-Job-File

The Enter Command
The Schedule Command

Special Monitor Calls for Batch Jobs
Example of a Batch-Job-File

The Spooling System
Spooling Commands for the User SYSTEM

Start Spooling
Stop Spooling

Spooling Commands for Public Users

ND-60.050.06

Section:

3.8.2.1
3.8.2.2
3.8.2.3
3.8.24
3.8.2.56
3.8.2.6
3.8.2.7
3.8.2.8

4

4.1
4.2

4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6

4.3
4.4
4.5

4.5.1
4.5.2
4.5.3

4.6

4.6.1

4.6.2
4.6.3

5.1
5.2
5.3
5.4
5.5
5.6

viii

Append Spooling File
Delete Spooling File
List Spooling Queue
Abort Print

Restart Print

Give Spooling Pages
Take Spooling Pages
Spooling Pages Left

MORE ABOUT SINTRAN III

The Interrupt System
Memory Management System

The Users Virtual Memory Space

The Hardware Page Index Tables (PIT)
The Paging System

The Permit Protection System

The Ring Protection System

Privileged Instructions

Real-Time Processing

Program Structure — Segments

Reservation of Logical Units (Resources) From RT
Programs

Semaphores
Files and RT Programs
Internal Devices

Direct Tasks

The Implementation of a Direct Task into a SINTRAN
Il System

Calling RT Programs from Direct Tasks

Activation of Direct Tasks from Interrupts

THE USER RT

The Purpose of the User RT
The Real-Time Loader

File Handling Commands
The Look-At Command
Monitor Commands

Utility Commands

ND-60.050.06

Page:

3—66
3—66
3—-67
3—67
3—67
3—67
3—67
3-68

4-4
4-5
4-7
4-7
4-9
4-11

4-12
4-14

4-17
4-17
4-18
4-20

4-21

Section:

6.1
6.2

6.2.1
6.2.2
6.2.3
6.2.4

6.2.4.1
6.2.4.2

6.2.5

6.3

6.3.1
6.3.2
6.3.3

6.4

6.4.1
6.4.2
6.4.3
6.4.4
6.4.5

6.5

6.5.1
6.5.2

6.6
6.7
6.8

6.8.1
6.8.2
6.8.3

6.8.3.1
6.8.3.2
6.8.8.3

THE USER SYSTEM

The Purpose of the User System
Directories

Initializing a Directory

Enter, Set-Default and Release Directory
Statistics Commands

Directory Back-up

Stand-Alone Programs
On-Line Back-Up

Directory Maintenance Commands
Supervision of Other Users

Creating and Deleting other Users
Giving and Taking User Space
Password

System Utility Commands

Terminals

Stopping the Operating System

Restarting the System from Memory Image
The Look-At Command

Error Print-out Device Setting

The Accounting System

Commands
List Accounts

The Batch System
Peripheral Devices
Remote Job Entry

General Remarks
The Remote Batch Queue

Commands to Maintain the Remote Batch Queue

The Append-Remote Command
The List-Remote-Queue Command
The Delete-Remote-Queue-Entry Command

ND-60.050.06

6—-10

6—10
6—11
6—11
6—12
6—13

Section:

7.1
7.2

7.2.1

7.3

7.4
7.5

7.5.1

7.5.2

7.6

7.6.1

7.6.2
7.6.3

7.7

7.7.1
1,72
1.7.3

1:.7.3.1
1.4.3.2
7.7.3.3
7.7.3.4
1.1.3.5

7.7.3.6
Td 37
7.7.3.8
7.7.3.9
7.7.3.10
7.7.3.11
7.7.3.12
7.7.3.13

7.7.3.14

REAL TIME PROGRAMS

RT Programs Written in FORTRAN
Reentrant FORTRAN Programs

Summary of Reentrant FORTRAN Programs

Reentrant MAC/NORD-PL Subroutines Callable
From Reentrant FORTRAN Programs

RT Programs in MAC and NORD-PL
Communication Between RT Programs

Defining a COMMON Area in a MAC or NORD-PL
Program

Accessing a COMMON Area from a MAC or NORD-PL
Program

Monitor Calls Available from RT Programs Only

Subroutines for Executing Monitor Calls from
FORTRAN RT Programs

Monitor Calls Available from MAC/NORD-PL Only
The Difference Between Using Some Monitor Calls
From MAC/NORD-PL and From FORTRAN

The Real-Time Loader

General Remarks
Segment Files
RT Loader Commands

Clear an Existing Segment

Declare an RT Program Name

Define the Name of a Segment File

Define a Symbol

Delete the Name of the Non-Reentrant Routines in
the "'Reentrant’” FORTRAN Library (FTNRTLIBR)
Delete an RT Program

Delete a Symbol from the Linking Table

End a Load Operation

Exit from the RT Loader

List the Available Commands

Load a SINTRAN Il Core Only System

List the Available Free Segment Numbers

Load from the Specified Input File into the Specified
Segment

Specify the New Segment to be Built

ND-60.050.06

Page:

7-10
7-12
7-13

7-39
7-41
7-41

7-41
7-42
7—-42
7—-42

7—43
7—-43
7—-43
7-44
7—-44
7—44
7—45
7—45

Section:

71.7.3.15

7.7.3.16

7.7.3.17
7.1.3.18
77-3.19
7.7.3.20

7.4.3.21

7.71.3.22

7.7.3.23
7.7.3.24
71.7.3.25
7,1.3.26
7.7.3.27

8

8.1
8.2

8.2.1
8.2.2

8.3
8.4
8.5
8.6

9.1
9.2

9.2.1
9.2.2

9.2.2.1
9.2.2.2
9.2.2.3

Xi

Load from the Specified Input File into the Current
Load-Segment

Load Reentrant Program Systems onto a Specified
Segment

Reset the RT Loader

Allocate Common Area in Resident Core

Set the Load Address of a Segment

Command to Allocate Common Area on the Second
Segment Currently Being Built

List Names of all the Common Labels in the Linking
Table

Write the Lower and Upper Address Limits, and the
Current Load Address of a Specified Segment

List the Names of the RT Programs

List out the Undefined Symbols

List the Symbols in RTFIL

List all the Information about a Specified Segment
List the Defined Symbols in the Linking Table

SINTRAN I1I/SINTRAN 11l COMMUNICATION

Introduction
Communication Line

Commands to Initiate and Terminate Communication
The COMMUNICATION-STATUS Command

Data Transfer
Terminal Connection
Remote Load
Watch-Dog

SPECIAL PERIPHERAL DEVICES

The Device-Function Command
Magnetic Tapes and Cassette Tapes

Sequential Read and Write
The Monitor Call MAGTP

Tandberg Magnetic Tape

Status Code for Hewlett-Packard Magnetic Tape
Status Word for Cassette Tape Philips

ND-60.050.06

Page:

7—-48
7—-49
7—49
7-49

7—49
7-50

7-50
=50
7-50
7-51
7-51
7-51

8-8

8—11
8—14
8-16

Section:
9.3
9.3.1
9.3.2
9.3.3
9.4
9.4.1
9.5
9.5.1

9.6

9.6.1
9.6.2

9.6.2.1

D.1

D.2
D.2.1
D.3
D.3.1

D.3.2
D.3.3

Xii

Floppy Disk

Floppy Disk as File Directory

Floppy Disk Used as a Sequential Peripheral File
Accessing the Floppy Disk Using the Monitor Call
MAGTP (MON 144)

Versatec Plotter/Printer (DMA Interface)

Monitor Calls

SINTRAN [II/CAMAC Communication

Monitor Calls

SINTRAN 111/Graphical Output

Tektronix Display
NORDCOM Monitor Calls

The Tracker Ball Monitor Call (MON 156)

Appendix A
SINTRAN 11l Operating System - Command Summary

Appendix B
Monitor Calls

Appendix C
Logical Device Numbers Used in SINTRAN 111

Appendix D
Error Messages

SINTRAN [Il Monitor

Run Time Errors
Run Time Error Codes

SINTRAN Il File System

Error Codes Returned from Monitor Calls
SINTRAN IIl — Real Time Loader

Error Diagnostics

Error Messages
Description of the “Illegal Command” Message

ND-60.050.06

D—-11
D-12
D-14

Section:
D.4
D.4.1
D.5
D.5.1
D.5.2
D.5.3
D.6
D.6.1
D.6.2
D.6.3
D.6.4
D.6.5
D.6.6
D.7
D.7.1
D.8

D.8.1
D.8.2

D.9

D.9.1

xiii

Binary Relocating Loader
Error Messages
Standard FORTRAN

Compiler Error Messages
FORTRAN Formatting Error Messages
Arithmetical Library Error Messages

BASIC

Basic Error Messages

Compiling

Run Time

Compiler Error Messages

Run Time Error Messages
Mathematical Library Error Messages

MAC

Error Messages, Their Meaning and Action to Take

NORD-PL

Diagnostic Messages from the Compiler
Diagnostic Messages from the Assembler

Quick Editor
Error Messages

Alphabetical Index for SINTRAN 111

ND-60.050.06

INTRODUCTION

This manual is intended to give a brief description of the present
operating system, SINTRAN IlI, which in a version especially generated
and strictly suited for each particular NORD-10 configuration, is
delivered together with other standard software packages by A/S Norsk
Data-Elektronikk.

The reader of this manual will learn all the details about running
SINTRAN 1ll, how to make efficient application programs utilizing
standard hardware and software features, and will be given a general
idea of the structure of SINTRAN III.

Accordingly, this manual is recommended as the necessary documen-
tation for any person (operator or programmer) approaching the
problem of utilizing the efficient hardware and software facilities
offered by the NORD-10 computer system.

ND-60.050.06

1.1

1-2

GENERAL REMARKS ON SINTRAN 111

The NORD-10 computer system is a medium scale, general purpose
computer system which, because of the modular design, is actually a
family of computer systems.

SINTRAN 11l is a multiprogramming, multi-lingual, real-time operating
system that supervises the processing of user programs submitted to a
NORD-10 computer system. SINTRAN 11l also relieves the user from
program control, input/output and housekeeping responsibilities by
monitoring and controlling input, loading, compilation, run preparation,
execution and output of user programs.

SINTRAN 11l offers the user the most efficient facilities because it
takes full advantage of the NORD-10 computer hardware resources.
Many powerful operating system features are made possible by utilizing
the efficient hardware of the NORD-10. This, in turn, makes multi-
programming in real-time, timesharing and batch modes possible.

The system is highly modular and may be used for a wide range of
NORD-10 configurations. Modularity allows memory resident systems
of only 16K, expanding to mass storage systems including 256K main
memory, disks, drums, etc. and connections to other NORD computers,
thereby, allowing multiprocessing systems.

The philosophy behind SINTRAN 11l makes it especially suited for:

Process Control Systems
Businesss Oriented On-line Systems
- Scientific Engineering Timesharing Systems
Data Communication Systems
Data Acquisition Systems

and combinations of these processed concurrently. This, because of the
subsystems offered under SINTRAN IIl, helps to ease the user’s

implementation of applications.

Operating Modes:

SINTRAN [l allows users to run real-time, timesharing and batch
programs concurrently.

Time critical real-time processing always has higher priority than
timesharing and batch processing. The number of programs that can be
processed concurrently depends on factors such as; hardware configura-
tion, operating modes and applications involved.

ND-60.050.06

1.2

1.2.1

USER CATEGORIES

The SINTRAN 11l system may be used by a variety of people, ranging
from those who want to run BASIC programs from interactive
terminals, to those who want to control complicated equipment
through the real-time processing facilities the system offers, and those
who are responsible for the control of the computer system itself.

These different users may be categorized into three groups:

- timesharing and batch users,
- real-time users, and
system supervisors

Each group will have a different background and require different
services by the system. This manual has been separated into sections
describing functions concerning all user groups to sections with special
interest for each group.

Another type of users, often referred to as the "‘parametric users”,
perform application oriented tasks such as data-entry or data-inquiry
through real-time/timeshared terminal programs. These users will not be
discussed in this manual.

Timesharing and Batch Users

This user group will normally access the system through a terminal or
by submitting jobs for batch-processing from disk files containing the
necessary commands and data or card decks to be entered by an
operator.

Chapters 2 and 3 of this manual describe all commands and services
available together with some examples of how to run various
subsystems.

Timesharing and Batch users are known to the system by names which
must be presented at the beginning of a terminal session or as the first
command in a batch job.

The user name may be protected by a password chosen by the user to
prevent unauthorized access to the system.

The user name must be established by those responsible for the system.
Timesharing and Batch users access the system in its “‘background’
processing mode, executing programs with a lower priority than time
critical real-time programs executing in the “foreground’ processing
mode. The timesharing and batch processes are normally given process-
ing time on an equal basis in a round-robin fashion.

ND-60.050.06

1.2.2

1.2.3

During processing, the user may take advantage of the many functions
provided by the SINTRAN IIl system, including an efficient FILE
MANAGEMENT SYSTEM for saving programs or data in permanent or
removable file-directories on disk packs, magnetic tapes and cassettes.

Certain commands related to real-time processing and for use by the
system supervisors are not accessible by a timesharing/batch user, and if
given, will issue an error message. These commands are described in
Chapters 5 and 6.

The Real-Time Users

The SINTRAN Il system recognizes a special user name RT as a
privileged user capable of controlling the real-time processing programs.
This user name should also be protected by a password to prevent
unauthorized access.

Chapter 5 describes the special commands and services. Chapter 4
describes topics such as; Priority Levels, Memory Management, Program
Protection, Program Structures, Reservation of logical peripherals and
units, and Communication between RT programs. Chapter 7 gives some
examples of RT programs and how to load and activate their execution.

The user RT may also use the Timesharing and Batch facilities for
program development and testing purposes.

Certain commands related to system supervision are not accessible by
user RT and, if given, will issue an error message.

The System Supervisor

The SINTRAN 11l system recognizes the user name SYSTEM as the
user with the most privileged possibilities, capable of creating and
deleting users, creating file directories on different devices and entering
them so that other users may access files. The user name SYSTEM
should also be protected with a password.

Chapter 6 describes special commands and services, together with other
information related to this user.

The user SYSTEM may also use the Timesharing and Batch facilities for
program development and also has the user RT's capabilities.

ND-60.050.06

1.3

1-56

COMMANDS AND MONITOR CALLS

The SINTRAN 111 system provides its users with a large set of control
functions which may be activated by a command or from a program by
a Monitor Call.

A Command may be entered from a terminal or a batch job file to be

checked for validity, and cause the appropriate action to take place.
The commands consist of three groups:

Background Commands

- calling compilers, assemblers, editors, other subsystems and user
programs

creating, deleting and maintaining files
reserving and releasing peripheral devices, etc.
These commands may be used by all users.

Real-Time Commands

starting and stopping RT programs
loading new RT programs using the RT loader

reserving and releasing peripheral devices on behalf of RT
programs, etc.

These commands may only be used by the users RT and SYSTEM .

System Commands

- starting and stopping the system
creating, entering and releasing file directories
creating and deleting users
allocating resources, etc.

These commands may only be used by the user SYSTEM .

All commands are described in Chapters 3, 4, 5, and 6 and a complete
list is given in Appendix A.

A Monitor Call is a special hardware instruction allowing a user to

invoke a large set of service functions, to be executed within the
operating system on behalf of the calling program.

ND-60.050.06

1-6

Also, some hardware instructions have restricted usage within a multi-
programming, multiterminal operating system. Such instructions have a
corresponding Monitor Call function.

As Monitor Call instructions can only be activated through programs
written in MAC assembly or NORD PL languages, a set of small
subroutines is available for programs written in FORTRAN. Sections
3.5 to 3.7, 7.6 and Chapter 9 give a detailed description of all available
Monitor Call functions. A list of all Monitor Calls is given in Appendix
B.

ND-60.050.06

1.4

1-7

HARDWARE ENVIRONMENTS
The minimum hardware configuration required to run SINTRAN I is:
NORD-10 standard CPU, including 16K words of main memory
- Console terminal
Paper tape reader
The range of standard peripherals includes paper tape reader and punch,
card reader and punch, Teletypes, alphanumeric and graphic display
systems, line printers which print 60 to 1500 lines per minute, matrix
plotters/printers, cassette tape input/output, magnetic tape stations,
7-track and 9-track, fixed head drums, cartridge disks, A/D-D/A equip-
ment, facsimile transmitting interface modem interfaces and CAMAC

interface.

Optional hardware:

main memory up to 256K words, both core and solid state
memory in the same system. Multiport access.

high-speed direct memory access channel 1M word/sec. in
interleaved processing.

up to 4 mass storage controllers (independent of types) used for
system and user program storing.

no limitation in number of mass storage controllers and types for
file and data storage.

moving-head cartridge disks. Up to 4 cartridge disk units per
controller and 4.6 or 9.2 Mbytes per unit. Average access time
47.5ms, 156K word/sec. transfer rate.
moving-head disks. Up to 8 disk units per controller with a
capacity of 3M or 66M bytes per unit. 38.5ms average access
time, and 600K words/sec. transfer rate.

- fixed head drum. One drum unit per controller with capacity
from 64K to 1024K words per unit. 10.5ms average acesss time,

and 100K words/sec. transfer rate.

magnetic tapes up to 4 units per controller, 7-track, 45 ips, 200,
556 or 800 bpi, 9-track, 75 ips, 800 or 1600 bpi.

magnetic cassette tapes.

card readers 285 or 600 cards/minute. |

ND-60.050.06

NORDCOM graphic and semigraphic colour display systems.
line printers. Prints from 200 to 1100 lines per minute.

terminals. Hard copy: 10 to 120 characters per second. CRT
screen: 10 to 960 characters per second.

graphic plotters and displays.
data communication interfaces.
paper tape readers and punches.

For further information, please contact Norsk Data A.S.

ND-60.050.06

1.5

1.56.1

AVAILABLE SUBSYSTEMS

SINTRAN Il offers many programming languages, subsystems and
utility programs which are extremely efficient tools for the users of the
system.

Programming Languages

To let the user implement his applications as easily and economically as
possible, SINTRAN Ill accepts programs written in the following
languages:

STANDARD FORTRAN

follows ANSI STANDARD FORTRAN and has ISA Real-time
Extensions. The user may call subroutines written in NORD PL
and MAC from his FORTRAN program. FORTRAN programs
may be executed in all three modes of operation. FORTRAN
also has an interactive debugging facility.

NODAL

is an interpreting, higher-level, interactive language especially
suited for process control applications. NODAL may be executed
in all three modes of operation and may call subroutines in
NORD PL and MAC.

BASIC

is an interpreter following Dartmouth College 71 specification.
From his BASIC program, the user may call FORTRAN, NORD
PL and MAC subroutines. Programs written in BASIC may be
executed in timesharing and batch modes.

NORD PL

is a medium level language especially suited for system program-
ming. By using the NORD PL, the programmer will more quickly
write and debug programs, more easily modify them, and make
them more reliable and easier to read and understand than using
the traditional assembly language. SINTRAN IIl is written in
NORD PL.

MAC

is an assembly language and debugging package for the NORD
computers.

Each language translator is accessed by a unique SINTRAN Il
command.

ND-60.050.06

1.6.2

Subsystems and Utility Programs

The following subsystems and utility programs are available to a
SINTRAN Il user.

FILE MANAGEMENT SYSTEM

SINTRAN 111 offers the user of mass storage systems a general
purpose file management system for use of permanent files,
scratch files, and peripheral device files. The system provides a
flexible file security mechanism that allows the programmer to
specify the degree of security desired. The files may be accessed
in sequential or random mode.

SIBAS ¢

is a data base system where efforts are heavily placed on the
users’ possibilities of representing complex data structures and on
the separation of application programs from the data base. SIBAS
is an extensive tool for applications in business oriented on-line
systems and ADP systems. SIBAS data handling routines follow
the specification given in CODASYL DATA BASE TASK
GROUP, APRIL 71 REPORT.

RT LOADER

QED

enables the user to load RT programs in binary relocatable
format onto segments while real-time processing is running.

is an interactive program for editing text. It has extensive
facilities for inserting, deleting, and changing lines of text, a line
editing feature. Text may be read from and written onto any file.
QED is extremely efficient for on-line program development.

RUNOFF

The RUNOFF program will help the user to write reports under
SINTRAN Il by processing the raw text information held in a
computer file and provide a printed document of a quality
acceptable for publication. The control commands are few and
easy to learn.

ND-60.050.06

DDC PACKAGE

The Direct Digital Control packages running under SINTRAN Il11,
MEAS, PROCSY and PROSO give the user extensive tools for
implementing process control application in his NORD-10
computer. The packages control and process analog signals and
perform conventional PID, cascade, ratio and other regulation
functions.

NORD IDT

The NORD Intelligent Data Terminal programs allow the user to
communicate with Honeywell Bull 6000, IBM 360/370, CYBER
74 and Univac 1108/1110 machines through remote job entry
terminal simulators.

In addition, subsystems also include scientific and statistical program

libraries such as, the Scientific Subroutine Package (SSP) written in
FORTRAN.

ND-60.050.06

PREPARING AND EXECUTING TIMESHARING JOBS

This chapter gives a few examples of how to run a timesharing job
from your terminal.

The first step of a job is always to log in, the last is to log out. These
steps are described in Section 3.3.1.

The steps in between may be very simple, i.e., calling a processor of
some kind with the RECOVER command (see Section 3.3.2.1).

ND-60.050.06

2.1

A RUN USING QED, THE TEXT EDITOR

1.

2.

10.

11.

12.

Turn on the terminal. Turn on the on-line switch.
Press ""Escape’ (the ESC key).

The terminal responds with the time of day, the date, and the
word ENTER.

Type the user name, followed by cr (carriage return). You must
be known by the system as a user before you may enter.

The terminal responds by printing PASSWORD.

Type your password. !f you have none type cr. Remember that
the password will not be echoed on your terminal.

The terminal responds with OK.

If the accounting system is active the terminal will print
PROJECT-NUMBER. Answer this by typing a project number (a
decimal number), followed by cr.

The terminal prints the character @. This means that it is
expecting a command.

Type QED then cr (or RECOVER QED cr).
The terminal responds with

QED 3.4

This means that QED is ready to accept commands. (Refer to the
QED Users Guide for details.)

As a very simple QED run, we will type a few lines of text, list
them on the terminal, and write them on a file. Type A cr (this
is the append command). Type the following lines:

THIS IS MY FIRST SYMBOLIC FILE cr

I AM GOING TO PUT IT ON A DISK FILE, cr
WITH THE NAME I-MADE-IT cr

(CTRL)L

When you finish a line with cr, QED responds with If (line feed).
(CTRL)L is a control character which finishes your text. It is
typed by pressing the control key and the L key simultaneously.
It will not appear on your terminal.

ND-60.050.06

13.

14.

15,

16.

17.

18.

19.

20.

21

QED responds by printing *.

Type L1, $ cr and all your text will be printed on the terminal.
QED will finish it by printing *.

Type W”I-MADE-IT"” cr. The quotation marks tell QED that this
is a new file. If the file already exists, the quotation marks must

not be used.

QED creates the file and writes the text on the file. Later, it
prints on your terminal:

48 WORDS WRITTEN

Type F cr, and you will leave QED.

The terminal responds by typing @. You have now left QED and
have returned to the system.

Type LOG cr. This is the log-out command.

The terminal responds by typing the time of day, the date, and
- — EXIT — —.

We are now back where we started.

ND-60.050.06

2.2

A RUN USING BASIC

1. To log in, follow steps 1 to 9 in Section 2.1.
2. Type BASIC cr.

3. The terminal responds

BASIC ON LINE
NEW OR OLD — — -

:|>

Answer by typing NEW cr.
5. The terminal responds

NEW PROGRAM NAME —— —

6. Answer by typing OLA cr or another name of your choice.
7 The terminal responds
READY

8. Type on the terminal
10 PRINT “THIS IS MY FIRST BASIC JOB" cr
20 END cr
RUN cr

9. The terminal prints

THIS IS MY FIRST BASIC JOB
DONE

10. To leave BASIC, type BYE cr
11. The terminal prints
EXIT BASIC
12. Type LOG cr, as in steps 19 to 21, Section 2.1.

This is a very simple BASIC job. !f you wish to do more complicated
jobs refer to the BASIC Reference Manual.

ND-60.050.06

2.2.1

2.2.2

The Execution of a BASIC Program from a QED File

It is possible to have a BASIC program on a disk file (written by QED
— see Section 2.1). The above example should be changed as follows
(assume that the disk file is named COMPLIC):

4.

B.

Answer by typing OLD cr.

The terminal responds

OLD FILE NAME _ _

Answer by typing COMPLIC cr

The terminal responds

WAIT FOR READY _ _

The READY message is given after the file has been fetched.
Type on the terminal

RUN cr

The SAVE and GET Commands

Files may also be manipulated directly from BASIC. If you have typed
in a BASIC program, you can save it on a disk file by the SAVE
command. SAVE “file-name’ cr if it is a new file, or SAVE file name
cr if the file already exits.

A file may be fetched from the disk by the command GET:

GET <filename> cr

ND-60.050.06

2.3

AN FTN (FORTRAN) RUN

For a more detailed description of the FTN compiler and the binary
loader (BRL), refer to the appropriate manuals.

It is assumed that the following symbolic FTN program is already on a
disk file called MARY. It can be put there by QED, see Section 2.1:

10

PROGRAM MARY

WRITE (1,10)

FORMAT (*1 MARY HAS BEEN EXECUTED *)
STOP

END

EOF

Log in as described in steps 1 to 9 in Section 2.1.
Type FTN cr.
The terminal responds with

NORD FTN
$

The dollar sign means that the FTN compiler is ready to accept
commands. Type:

COM MARY, TERM, "MARY"” cr

The compiler will now compile your program, list it on the
terminal, and put the resulting BRF code (Binary Relocatable
Format) on a new file called MARY (or MARY :BRF).

If this file already exists, the quotation marks should not be used
as they are used only when starting a new file. Note that the file
MARY with your symbolic FTN program has the file type SYMB

(MARY:SYMB) so the system can distinguish between the two
MARY'’s. See Section 3.2.3 for further explanation.

In some systems, the terminal is not named TERM, but
TELETYPE. In this case, the command in step 4 above should be

COM MARY, TELE, "MARY" cr.
After compilation, the FTN compiler prints:

6 STATEMENTS COMPILED
$

on the terminal.

ND-60.050.06

2.3.1

10.

1.

12,

13.

14.

Type EX cr to leave the compiler.
The terminal responds by printing @.
Type LDR cr.

This is a command to fetch the loader (BRL, expanded by the
run-time system).

The terminal responds by printing

BINARY LOADER
L*

L* means that the loader is ready to accept commands. Type A
MARY cr

and your program will be loaded. After loading, the loader prints
L*:

If you wish you may type:

W1 cr

The loader responds by printing a table of entry points (in this
case MARY = 060000), the address of the first free location, and
the address of blank common.

Type S cr to start your program. The terminal will print

MARY HAS BEEN EXECUTED

octal address STOP O

@

You are then back in the system.

Type LOG cr as in steps 19 to 21 in Section 2.1.

FORTRAN Compiler Commands

The set of FTN compiler commands includes, among others, CLC and
DEBUG.

CLC cr, or
CLC octal number cr,

means if you list your program during compilation, every FTN state-
ment will be preceded by an octal address, starting with the number in
the CLC command. CLC cr is equivalent to CLC O cr.

ND-60.050.06

This may be very useful for debugging purposes when the program is
loaded. By looking at the entry point list from the loader (W1
command) and your compilation list, you will be able to locate every
"FTN statement in memory.

Some error messages (run-time errors) print the octal address at the
beginning of the FTN statement where the error occurred. By means of
the debugging routine DEBUG it is possible to execute the FTN
statements,one by one, to introduce breakpoints and trace functions, to
display the contents of the different variables and to change their
values by referring to their names, etc. These functions are performed
dynamically at run-time.

The debugging routine must be introduced as a reference point by the
command DEBUG at compile time and loaded by the loader with the
command A DEBUG.

This routine is most useful for FTN debugging. See the NORD

STANDARD FORTRAN REFERENCE MANUAL (ND-60.011) for
details.

ND-60.050.06

2.4

THE COMPILATION OF A SIMPLE NORD-PL PROGRAM

Suppose the following simple NORD-PL program has been written onto

the file NPL1 with the QED processor:

SUBR SORT
INTEGER 11, 12, 13, 14
INTEGER ARRAY 11(12)
SORT:A:=0; * MON 4
0=:11
11=:12
FOR I1 TO 12 DO
T=1; *MON 1; MON 65
A BZERO 7
A=: ||(|1)
oD
0=:11
10=: 12
FOR I1 TO 12 DO
11+ 1=:13
FOR I3TO 12 + 1 DO
IF nani(13) THEN
A:=11(11)
T=11013)=:11(11)
A=J1(13)
Fl
oD
oD
0=11; 11=:12
A:=15; T=1; * MON 2; MON 65
A:=12; *MON 2; MON 65
FOR 11 TO 12 DO
A=11(11)
T:=1, *MON 2; MON 65
oD
*MON 0
RBUS
@EOF

% START OF SORT

% SET BREAK MODE

% INPUT 1 ELEMENT
% CLEAR PARITY BIT

% PERFORM SORTING

% CARRIAGE RETURN
% LINE FEED
% WRITE 1 CHARACTER

% RETURN TO SINTRAN |11
% END OF SORT

The program will read 10 characters from the terminal, sort them in
descending order by the ASCII code, and write them out on the

terminal.

ND-60.050.06

2-10

The programmer now wants to compile the NPL program, get a
program listing on the terminal and write the object program on the
symbolic file MAC2. This is done as follows:

1. Log in. Do as in steps 1 to 9 i Section 2.1. The terminal prints
@,

2. Type NORD—PL cr. The terminal answers:
NORD—-PL 74.12.07.

3. Type @DEV NPL1, 1, MAC2 cr

4. The compiler now prints the symbolic NPL program on the
terminal and writes the symbolic MAC program (object program)

on the file MAC2. Error messages are printed on the terminal.

The MAC assembly program should now be assembled by the MAC
assembler and started as a MAC program.

For a complete description of the facilities offered by the NORD-PL
compiler, see the manual NORD—PL Users’ Guide.

ND-60.050.06

2-1

A RUN USING THE MAC ASSEMBLER

In the following, we will use as an example, a program (written in
MAC) that

outputs a question mark on the terminal

reads a file name from the terminal

opens the file

copies the file to the terminal

exits when it encounters the end-of-file character (027).

grwN-=

We assume this program is already on a file written by QED. The file
has the name EXAMPLE. This file should be written in an orderly and
readable manner.

Before writing the program on the file, one should use the
QED-command MTO(0) to eliminate the tab characters, as our program
EXAMPLE does not expand tab characters.

Here is the program.

TOR, SAA ##? % ASCII CODE OF ?
SAT 1 % LOGICAL UNIT NUMBER
MON 2 % OUTPUT ONE BYTE
MON 065 % ERROR MESSAGE
SAX 0 % READ FILE-NAME FROM TERMINAL
SAT 1 % OPEN FOR SEQUENTIAL READ
LDA PER % ADDRESS OF FILE TYPE
MON 050 % OPEN FILE
MON 065 % ERROR MESSAGE
STA FILIN % SAVE THE FILE NUMBER
AGAIN, LDT FILIN % READ A CHARACTER FROM
MON 1 % THE FILE
MON 065 % ERROR MESSAGE
AAA -027 % END-OF-FILE CHARACTER?
JAF *h2 % NO
MON 0 % YES. RETURN TO SINTRAN Il
AAA 027
SAT 1 % WRITE THE CHARACTER ON
MON 2 % THE TERMINAL
MON 065 % ERROR MESSAGE
JMP AGAIN % TAKE NEXT CHARACTER
PER, FTYPE
FTYPE, #SY
#MB
FILIN, O
JWRITE TOR FILIN
JLINE

ND-60.050.06

2-12

If some of the points below are not clear to you, consult your MAC
Manual.

1.

2.

10.

Log in as in Section 2.1 — steps 1 to 9.
Type MAC cr.

When MAC is ready to accept input from the terminal, it prints
cr If.

Type JCLEAR cr to clear tables, etc.
Type (WRTM cr to set MAC in write mode.
Type 040000/ to set current location counter to 040000.

MAC responds by printing the contents of location 040000 on
the terminal.

Type)9ASSM EXAMPLE cr.
MAC will now assemble the file EXAMPLE.

When assembly is finished, MAC prints
TOR:040000 FILIN:040030

This means that the instruction labelled TOR is in location
040000, and the constantly labelled FILIN is in location 040030.

Type *:

MAC responds by printing 040031. This means that current
location counter is now 040031, i.e., your program occupies
locations 040000 < 040030.

Type ?
MAC responds by printing cr If. This means that there are no
undefined symbols, i.e., the assembly seems to be correct.

If there had been undefined symbols, or labels, say LAB1, you
could type LAB1 and get the octal reference addresses. This
would show you the address of the instruction or constant that
referred LABT.

Your program may be executed if you type

TOR! or 40000! (40000 is the default start address)

But if you want to execute the program many times, you should
dump it on a disk file as follows:

ND-60.050.06

11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

2-13

Type)9TSS

The terminal responds by printing @.

Type DUMP "EXAMPLE’ 040000 040000 cr

Now your program will be dumped on a new file called
EXAMPLE:PROG, with start address 040000. The start address is
used when you apply the RECOVER command, and the restart
address is used after the program has been interrupted (or it has
terminated) and you type CONTINUE.

After the dump is finished, the terminal prints @. Type

EXAMPLE cr

and your program is fetched and entered. It will print ? on the
terminal.

You may now copy a file to the terminal. Type

EXAMPLE cr

and you will get EXAMPLE:SYMB listed on the terminal.

If you should type the file name incorrectly, you will get an
error message and return to the system (because of MON 065).
To try once more, type CONTINUE cr.

After the execution of the program, you might like to see what
the contents of FILIN (the file number of the opened file) was.
Type:

LOOK-AT CORE cr.

The terminal responds READY:

Type 040030/.

The terminal responds 101 which is an octal file number. Type @
to get back to the system.

If you would like to see the contents of your registers when
execution has finished, type

STATUS cr

and you will get a list of the register contents (A should be
zero!).

Finally, log out as in steps 19 to 21 in Section 2.1.

ND-60.050.06

3.1

3.1.1

TIMESHARING AND BATCH USERS
INTRODUCTION

This chapter is related to the user category which uses the SINTRAN
Il system for program development, testing and executing programs in
the background environment of the system.

The information in this chapter relates also to the users RT and
SYSTEM, though their special tasks are described in Chapters 5 and 6.

This chapter describes the various services the users may obtain from
the SINTRAN Il system, and is divided into sections covering the
many Commands, Monitor Calls and Utility functions the users may
activate to aquire these services.

Timesharing Users

This name has been used to cover all users who activate the
SINTRAN IlI system from an interactive terminal. This activation may
consist of: typing commands to start execution of a program (whether
it is a private program or a subsystem provided by ND), debugging the
program by inspection and change of locations within the user’s virtual
memory space, or by typing source program lines through the editor
QED for later compiling or assembling into a running program unit.

All these tasks may be executed in a multiprocessing, multi-
programming environment with many simultaneous users at their ter-
minals, even local or remote batch processing, all requiring an equal
share of the main system resource: the Central Processing Unit.

This resource is divided among the requestors so that available CPU
time, after high-priority real-time processes have been executed, is given
to each user in a short fraction of time, a time-slice, where the system
is devoted to his task. As most users are not able to fully utilize the
CPU for a complete time-slice, due to input or output of data from or
to files or peripheral devices, this time-slice may be terminated by the
system so that other users may have the CPU while the system
performs the tasks of reading or writing data to and from the program.

In this way, the system will share the CPU resource between active
terminals and other processes, and give each terminal a priority level
which may later be used when selecting the process to be activated
from those that are waiting and ready to continue their task.

The process described above is handled by the SCHEDULER part of
the SINTRAN I1l system, where terminals are assigned a priority of 60,
50, 40 or 20, (octal) within a priority scheme ranging from 377 (octal)
as highest priority to O as lowest priority.

ND-60.050.06

3.1.2

3-2

A priority of 60 is assigned to a terminal process when typing a control
character such as carriage return. The process is also given a time-slice
of 1 second, thus, securing a fast response to the interactive user. If
this is not enough, the user will receive 4 seconds more, but now on
priority 50. If his program is still running, it will then be considered to
be a CPU-bound program and put into the time-slice queue. Each
program in the time slice queue will, in turn, have a time-slice with
priority 40. The other programs waiting for time-slice will have priority
20. The size of the time slice may vary from 4 to 14 seconds,
depending on the terminal activity.

The figure below illustrates the priority scheme:

Prlority{
80 -

8
50 4

408 =+

20 ,

€PU Time

Figure 3.1: The Change in Priority for Timesharing and Batch Jobs

Batch Users

This name has been used for users executing their tasks in different
Batch Processors. The SINTRAN [Il system may have one or several
independent Batch Processor tasks, each processor having its own
priority.

A user may append Batch jobs to these processors by building
Batch-Input-Files on disk or punched cards.

A Batch-Input-File contains all necessary commands and user data, and
may contain one or more tasks. A task is, for instance, compiling a
FORTRAN program. Another task could be loading and executing the
program, etc. Tasks are activated with the same type of commands as
for the interactive terminals.

As batch jobs are processed independently of the ongoing terminal

activity for the same user, two special commands should be used to
identify the user and to terminate the Batch-Input-File.

ND-60.050.06

Batch-Input-Files on disk may be appended by the terminal user to the
Batch-Processor-Queue with the command @APPEND-BATCH, or a
deck of cards may be given to an operator.

A detailed description of the Batch-Processor and related commands is
given in Section 3.7 — Batch Processing.

Almost all commands may be executed within a Batch-Job except those

that are interactive. The commands themselves, including necessary
parameters, must be contained on a single line or card.

ND-60.050.06

3.2

3-4

THE FILE MANAGEMENT SYSTEM

This system, although it may be viewed as a separate system, is an integral
part of the SINTRAN 111, and adds powerful file management functions
normally found on large computers.

A complete description is given in the manual NORD FILE SYSTEM,
ND-60-052.

A short description of the most common commands is given in Section
3.5, and some special commands for the user SYSTEM is given in
Chapter 6.

A short introduction to some of the file concepts is given below.

A “file’ in this context means a collection of records or blocks, ordered
randomly or sequentially. The File Management System manipulates
files on disks, drums, magnetic tapes, cassette tapes or standard
peripherals. Files on disks, drums and magnetic tapes are treated in a
uniform manner. The storage unit is always 1024 words (2K bytes),
however, the user may address files with any other block size.

A file is named with a character string, and this name is used in all
commands to the file system. When a file is accessed, the file name
must be connected to a file number and this number is used in the
access routines.

Each file has one owner who has to be defined as a user in SINTRAN
I1l. The owner is normally the user who created the file. A file is
always allocated in the owner’'s area on the mass storage device
(directory). Each user may declare up to eight other users as friends
and give them privileged access possibilities to his files. Other users are
regarded as public users.

The File Management System provides individual protection of files,

with separate protection modes for the owner, owner’s friends and the
public users access of the file.

ND-60.050.06

3.2.1

3.2.1.1

3.2.1.2

3-5

File Directories

Files are collected into file directories, containing files for one or more
users. Each mass storage device maintained by the system (disks, drums
and magnetic tapes) may be used to contain a file-directory, and is
completely independent of all other devices. File-directories contained
on removable media as disk packs or magnetic tape reels may be moved
to other installations and used there.

Each device medium (pack or tape reel) to be used as a file-directory
must be created with a name and entered before it can be used by the
system. When a directory is not needed anymore, it must be released
and dismounted. The next time it is needed, it must be mounted and
entered again, etc.

The first file-directory entered (usually where SINTRAN I1l resides
together with related subsystems) is regarded as the main directory. The
main directory is the last directory that can be released, and it cannot
be released if any users are logged in.

CREATING USERS AND RESERVING SPACE

Before a user can establish files in a directory, the user name must have
been defined in that directory by the @ CREATE-USER command, and
space must have been reserved by the @ GIVE-USER-SPACE cormmand.
Such commands, which manipulate file-directories, are restricted so that
only the user SYSTEM may activate them.

Users may be created on several file-directories, but must have been
created on the residing main-directory. All information about a user’s
friends and their access privileges is kept in the main-directory, together
with the user’s declared password. Before logging in on a terminal or
starting a batch-job, the user name must have been declared in the
main-directory, but need not have space reserved on that directory.

DEFAULT DIRECTORIES

Any directory entered may be declared as a default directory by the
command @SET-DEFAULT-DIRECTORY. This means that the users
need not specifiy the directory name when creating or accessing files in
this directory. A user should not be given space in more than one
default directory. !f he has, he must still specify the directory name
as a prefix to the file name. Main directory is always default.

ND-60.050.06

3.2.2

3.2.3

Creating Files (Indexed and Contiguous Files)

A file may be created for the first time by the @CREATE-FILE
command or by, for instance, the @ OPEN-FILE or the @DUMP
commands, with the file name surrounded by quotation marks. All
subsystems and user program files may be created in the same way by
simply enclosing the name in a pair of quotation marks.

Files created by the @ CREATE-FILE command with the number of
pages greater than zero are allocated on a contiguous area on the mass
storage device and are defined as contiguous files. Such files may
only be given more pages by means of the @ EXPAND-FILE command.

Files created by the @ CREATE-FILE command, (or created in other
ways) with the number of pages equal to zero, may have their pages
scattered throughout the mass storage device and are defined as indexed
files. The size of these files may be expanded by new pages,
dynamically, as the user writes onto the file. The indexes are kept on a
separate page belonging to the file, so that an indexed file always needs
one page more than a contiguous file with the same contents. Indexed
files cannot be expanded by the @ EXPAND-FILE command.

See also Section 3.4.1.

File Types

In addition to the file name, an alphabetical file type is added to the
file name to designate the purpose of the file. This file type may be set
by the user as a 4 character extension of the file name, separated by a
colon (:). The following file types are used as default when
creating/accessing files in various subsystems:

:SYMB symbolic program file

:BRF binary binary relocatable file

:PROG absolute program in executable format
:CORE core-image file

:BIN binary absolute program

:DATA users data files

With these file types, a program may take advantage of the same name
for all different files. The various subsystems will access the proper file
as its input or output file when the file name is given. (See the example
in Section 3.2.7.) Otherwise, the user is free to introduce any other file
type when he creates a new file.

ND-60.050.06

3.24

3.2.5

File Versions

Files may also be created in one or more versions, that is, complete
copies of the file, so that the last version written is version 1, the
previous version is 2, etc. When a file is created in more than one
version, the operating system will access the one with the highest
number when opened for write (and afterwards change the version no.
to 1) and the version 1 when opened for read.

The user may also specify a certain version of the file to be accessed by
appending the version number to the file name and file type, separated
by a semicolon (;). New versions of an existing file may be established
by the command: @ CREATE-NEW-VERSION <file name> <number of
pages>, or by printing the version number within quotes by, for
instance, the command: @OPEN-FILE FILE1:DATA; “4” ,R.

The command @CREATE-FILE FILEX:3,10 will create 3 versions of
the file FILEX — each version with 10 pages.

File Protection and Accessing Modes

A file may be accessed in many different ways. The access mode of a
file is specified as a parameter to the OPEN-FILE command, and may
be a combination of the following characters:

read access

write access

random access

append

common access (write allowed for more than one user
simultaneously). Only allowed on contiguous files.

O>XsSD

Only certain combinations are legal. See Sections 3.4.5.1 and 3.5.1.1.

The access mode may be restricted, either due to physical reasons or
because the file is protected by some access modes. Legal access is
defined for the three groups of users: Owner, Friends and Public users.

The legal access to a file may be changed by the @SET-FILE-ACCESS
command for each user group, and may be a combination of the
following characters:

read permitted

write permitted

append permitted (the file may be expanded)

common access permitted

directory access permitted (the file may be created, deleted, legal
access mode changed and new versions created)

no access permitted

DO>s

2

ND-60.050.06

3.2.6

3.2.7

3-8

Default file access when a file is created is:

for PUBLIC: read permitted
for FRIENDS: read, write and append permitted
for OWNER: all

Friend's Access

To allow a group of users access to his files the owner must have
defined these users by the @ CREATE-FRIEND command. Each defined
friend may be declared with different access restrictions by the
@SET-FRIEND-ACCESS command, and may be a combination of the
following characters:

read permitted

write permitted

append permitted

common access permitted
directory access permitted, or
no access permitted.

Z00>»=x

Thus, a friend’s access to a file is defined both by his access allowed in
general (with the @SET-FRIEND-ACCESS command) and bv the friend.
access permitted to the file in question (defined with the
@SET-FILE-ACCESS command).

When accessing a file belonging to another user, the file name must be
preceded by the user’s name enclosed in parenthesis. If the file in
question does not reside on that user’s default file-directory, both the
file-directory name and user’s name must precede the file name, the
two first names are separated by a colon and enclosed in parenthesis.

Owners accessing files in other than the default directory must also let
the file-directory name precede the file name, and the directory-name
must be enclosed in parenthesis.

Default friend access when a friend is created is: read, write and
append. See also Section 3.4.2.

Summary of File-Name

A complete file name may be a construction like:
(<file-directory-name>:<owner-name>) <filename>:<type>; version
where file-directory-name, owner name, and filename may consist

of 1 to 16 characters, filetype may consist of 1 to 4
characters, and version-number range is from 1 to 256.

ND-60-050.06

Example:
(PACK-FOUR:USER-ONE) FILE —3: SYMB:1

The names and file type may be abbreviated as long as it does not
become ambiguous, and a special character, the "—", may be used to
divide the names into subparts, each of which may also be abbreviated.

3.3

3-10

UTILITY COMMANDS

When a terminal or a batch job is initiated under SINTRAN III, it is
first connected to the Command Interpreting Processor (CIP) which
reads each command line from the terminal or batch input device,
checks its validity, and performs the requested action. After a particular
command is executed, or when a user-program or a subsystem termin-
ates, the control is returned to the CIP.

In this manual, all commands shown are preceded by a @, which is the
CIP’s leading character.

During a terminal session, this @ is printed automatically to indicate
that the previous action is terminated and that SINTRAN Il is ready
for a new command. Note that this @ character should not be typed by
the user.

When submitting batch jobs, or reading commands from other devices
than the terminal, all commands must start with the @ character to
recognize them as commands.

A command is a string of characters separated into words by a comma
or a number of spaces. The first word is the command name, followed
by parameter words if necessary.

In batch jobs the command name and all parameters must be contained
on one line or card. In the terminal session missing parameters will be
requested by CIP.

Certain parameters may take a default value which will be used if the
parameter word is omitted, by giving the comma separators or by
responding with a carriage return when the parameter is asked for.

Command names and parameter words may be abbreviated by giving
sufficient characters to distinguish it from other permissible values. A
special character, the "—", is used to separate words in two or more
distinct parts. Any part may be abbreviated as long as it doesn't

become ambiguous.

Consider, as an example, the commands @LOAD-BINARY and
LIST-FILE. One way in which the first command may be typed is:

@LOAD
@LOAD-B
@L-BINARY
or

@LO-BI

ND-60.050.06

3—-11

The second command may be typed as:

@LIST-FI
@L-FIL
or

@LI-FI
etc.

However, if only L is typed, the CIP will respond with the error
message:

AMBIGUOUS
This abbreviated look-up function may also be utilized by the user
when typing names of files and devices, except when naming a file the

first time.

Any typing errors may be corrected before the command line is
terminated by the carriage return, as follows:

depressing the CONTROL key together with A deletes one
character at a time, responding with > for each, and

depressing the CONTROL key together with Q deletes the whole
line, responding with < and allowing a new line to be typed.

The editing is valid throughout the whole system whenever a type-in is
requested.

ND-60.050.06

3.3.1

3.3.1.1

3-12

Starting and Terminating a Terminal-Session
LOGGING-IN

A terminal is activated by pressing the “‘escape’’-key on the keyboard
of the terminal.

The Command Interpreting Processor types out the time and date, and
asks for the user’s identification (created for him by user SYSTEM) by
typing out

ENTER

and waits for the name, terminating with a carriage return. A protecting
password, chosen by the user himself, is asked for by typing out

PASSWORD:

and waits for the password to be typed. The password is only read by the
CIP, and not typed out clearly at the terminal, to avoid unauthorized
access to the system

When the user-name and correct password is checked, the CIP types out
OK.

If the user-name is not defined or an incorrect password is given, the
ENTER line is repeated.

A project number is asked for if the accounting system has been
initiated by the user SYSTEM. The project number is used to collect
the computer time and terminal time a session has lasted.

The CIP types out

PROJECT NUMBER:

and waits for the user to type in the project number this session should
be accounted to. When logging out, the duration of this session is typed

out.

After this log-in procedure is finished, the CIP types the @ character,
and waits for a command to be given.

ND-60.050.06

3.3.1.2

3.3.1.3

3.3.1.4

3.3.1.5

3-13

LOGGING-OUT

When the terminal-session is finished, the user should log out from the
system by giving the command

@LOGOUT.

The time and date is typed together with the time-used information if
the ACCOUNTING system is active. A finished line with

——EXIT—

shows that the terminal is inactive, and power may be turned off.

DIALED-UP TERMINALS (DUPLEX, ECHO)

For users that access the system through dialed-up telephone lines, the
log-in procedure starts when the high-pitch-tone is heard. The
“escape’-key may now be pressed. Terminals are normally connected in
full duplex mode, which means that the user can type in simulta-
neously while the system is typing out. Such type-in’s are hidden until
the system retransmits, echos, the received characters in their proper
place in the generated type-out. A certain amount of commands or
other information may, in this manner, be sent to the system without
being lost.

PASSWORD

The previously mentioned password may easily be changed by the
command

@CHANGE-PASSWORD <old-password>>, <new-password>

The old password must be correctly specified to change the password.
A password may consist of any characters (including control characters)
except carriage return.

THE "ESCAPE”"—KEY AND THE “"BREAK”—KEY

After the login is performed, the pressing of the "'escape’’-key or

"“break’-key will interrupt a command, a subsystem or a user-program
which is running, and control is returned to the CIFP.

If a user-program or subsystem was active, a message indicating where
the program was interrupted is typed out:

USER-BREAK AT P-XXXXXXg

ND-60.050.06

3.3.2

3.3.2.1

3-14

where XXXXXX is the octal program address to be executed next. All
user registers are saved and may be examined by the command
@STATUS.

The program may be restarted by supplying the @ GOTO-USER com-
mand with the address where the program was interrupted. All open
files are closed when control returns to the CIP.

Execution of a User-program or Subsystem
THE RECOVER COMMAND

This command retrieves a program file previously created by the DUMP
command, and starts execution of it.

The format is:
@RECOVER <filename>

When starting programs in the user’s own file-directory, or subsystems
under the user SYSTEM, the word RECOVER can be left out. The file
name itself becomes a recovering command.

In other words, instead of typing:

@RECOVER MAC
@RECOVER FTN
@RECOVER BASIC
@RECOVER MYPROGRAM

one may simply type:
@MVAC
@FTN
@BASIC
@MYPROG

The file type is by default :PROG. The execution begins at the start
address specified in the @ DUMP command.

The search in the file-directories will be performed as follows:
the file-directory, where the user giving the command is given
space, will be searched first. If not found, the user SYSTEM’s

file-directory is searched.

if a user name is specified in the file name, only that user’s
file-directory will be searched.

ND- 60.050.06

3.3.3

3.3.3.1

3.3.3.2

3-15

Note: PROG files should not be given the same name as a SINTRAN
Il command, because when the word RECOVER is omitted, the
searching in the file directories will be preceded by an investigation of
the command list in order to find a command with the given name.
Creation of an Executable Program

THE DUMP COMMAND

This command saves the contents of the user’s virtual memory plus the
central registers on the specified file.

The format is:

@DUMP <filename><start address><restart address>
where

<file name>

must be a disk-file, which must be specified in the RECOVER
command for later retrieval. The file type is by default :PROG.

<start address>
is the address where the program should begin execution.
<restart address>

is the address where the program should be reentered with the
@CONTINUE command.

The amount of virtual memory to be saved may be specified by the
@MEMORY command, if not, values set by the previous
@LOAD-BINARY, @PLACE-BINARY or @ RECOVER commands will
be in effect.

THE MEMORY COMMAND

This command defines the area to be saved by a DUMP cormmand.

The format is:

@MEMORY <lower-bound><upper-bound>

where the boundaries may be specified by an octal address between O

and 177777. However, the total size of the area should not exceed
177777.

ND-60.050.06

3.34

3.3.4.1

3.3.4.2

The command does not affect the virtual memory space for the user.
The current settings of the lower and upper bounds are reset by the
last @ LOAD-BINARY, @PLACE-BINARY or @RECOVER commands
used.

Restarting Execution of a Program

A program may be restarted after it has terminated or been interrupted
by the ""escape’’-key, or by the ""break’’-key.

THE CONTINUE COMMAND

This command is used to restart the execution of a program previously
started by the @ RECOVER command.

The format is:
@CONTINUE

The program is restarted in the <restart address> specified in the
@DUMP command.

THE GOTO-USER COMMAND

This command is used to start execution in the users virtual memory,
at an address specified.

The format is:
@GOTO-USER <address>

where the <address> is an octal value of the first instruction to be
executed.

The command is usually used after the program has been interrupted,
by means of the "‘escape’’-key, and when the user wants to continue
execution at the address where the interrupt occurred.

Remember that all opened files are closed when a program is termin-

ated or aborted, unless the command @SET-PERMANENT-OPEN has
been used.

ND-60.050.06

3.3.5

3.3.5.1

3.3.5.2

3-17

Loading a Binary Program
Binary program files on disk or paper tape, previously created by the

)JBPUN command in the MAC assembler, may be loaded into the user’s
virtual memory by the following commands.

THE LOAD-BINARY PROGRAM

This command reads the specified file into user’s virtual memory and
starts the execution of the program.

The address used for loading and starting is found in the program file,
written there by the)BPUN command in MAC.

The format is:
@LOAD-BINARY <filename>
While loading, a checksum is generated and compared with the

checksum-word in the program file itself. Execution will not be started
if the checksum differs.

THE PLACE-BINARY COMMAND
This command is the same as @LOAD-BINARY, except that the
program is not started. This may be done by the @GOTO-USER

command.

These two commands ‘'simulate’” the action of pressing
MASTER-CLEAR and LOAD buttons on a stand-alone NORD-10.

Programs in Binary Relocatable Format (BRF) should not be loaded by
the previous commands, but by means of one of the link-loaders:

BRL the binary relocatable loader, or

LDR the binary relocatable loader, including FORTRAN
run-time and library system, or

OVLDR The FORTRAN overlay loader.

ND-60.050.06

3-18

3.3.6 Examination of User’s Registers and Memory Contents

Two commands have been implemented by which the user may inspect
and change the contents of any memory location within the virtual
memory space, and of the user-accessible registers.

3.3.6.1 THE STATUS COMMAND
This command prints on the terminal the contents of the registers.
The format is:
@STATUS

The register contents are given as octal numbers. The type-out is as fol-

lows:

P=xxxxxX program counter

X=XXXXXX post-index register

T=xxxXXX temporary register

A=XXXXXX accumulator

D=xxXXXX double accumulator

L=xxxxxX subroutine link address register
S=XXXXXX status register

B=xxxxxx pre-index (base) register

The register contents will always reflect the user’s virtual memory, and
will not be changed when executing system commands.

3.3.6.2 THE LOOK-AT COMMANDS

This command may be used to examine and modify memory locations
and registers.

The format is:
@LOOK-AT <space-reference>
where <space-reference> may be

MEMORY meaning user’s virtual memory space. This is allowed
for all users.

SEGMENT A real-time program segment on mass storage may be
reached. A segment number must be given as an
additional parameter. This is allowed only for the
users RT and SYSTEM. A modification causes a
permanent change of the specified location on the
segment.

ND-60.050.06

3-19

RTCOMMON Locations of the common area for RT programs may
be reached. This is allowed only for the users RT
and SYSTEM. A modification takes place in the
memory and leads only to a temporary change of
the specified location. The next time SINTRAN is
loaded, the "old” values are retained.

IMAGE Locations of the memory image of the resident part
of SINTRAN Il on mass storage can be reached.
This is allowed only for the user SYSTEM. A
modification causes a permanent change of the
specified location.

RESIDENT Locations of the resident parts of the SINTRAN 1]
operating system can be reached. This is allowed
only for the user SYSTEM. A modification takes
place in the memory and leads only to a temporary
change of the specified location. The next time the
corresponding core-image is loaded to the memory,
the ""old"" values are retained.

When the <space-reference> given has been checked for legality, and
made available if mass storage segments are involved, the message
READY is typed.

To examine a location, the octal address should be typed followed by a
slash (/). The octal contents will then be printed. The contents may
now be changed by typing an octal value, followed by a carriage return.
If only a cr, without a new value, is given, the contents remain
unchanged and the contents of the next location are printed.

If an asterisk (*) is typed, the current address will be printed.

The contents of registers can be addressed in the same way, using a
single letter to specify the register. The letters are:

P, X, T,A D,L,S,B.

When a character not mentioned above is typed, the command is
terminated and control will return to normal control mode.

If locations on mass storage segments are changed, the pages will be
written out so that "patches” will be made permanent. Locations
changed in the user's virtual memory or the resident part of the
operating system are changed temporarily. They may be altered when
loading a user program or reloading the system.

This command is also mentioned in Sections 5.4 and 6.4.3.

ND-60.050.06

3—-20

3.3.7 Obtaining System Information
Certain commands may be used to obtain various information from the
system.
3.3.7.1 THE DATCL COMMAND
This command prints the current setting of clock and date.
The format is:
@DATCL
The print-out has the form:
hour.minute.second date month-name year
for instance:
09.00.01 31 JANUARY 1975.

3.3.7.2 THE TIME-USED COMMAND

This command prints the CPU time and the terminal time used since
the user ENTERED or a batch-job is started.

The format is:

@TIME-USED

The print-out has the format:

TIME-USED <n>MIN <n>SEC (CPU time)

OUT OF <n>MIN <n>SEC (terminal time)
3.3.7.3 THE WHO-IS-ON COMMAND

This command lists the terminal number and the name of the users
entered.

The format is:

@WHO-IS-ON

ND-60.050.06

3.3.7.4

3.3.8

3-21

THE WHERE-IS-FILE COMMAND
This command may be used to see if a peripheral device as line printer,
tape reader and so on is occupied by another user or free to use. It

may also be activated concerning a file in one of the directories
entered.

The format is:
@WHERE-IS-FILE <file-name>

Where <file-name> may be any name defined for a peripheral device or
for an existing file in an entered directory.

If not in use, the message “"FREE TO USE" is printed, if already
occupied the message

ALREADY RESERVED BY THE USER <user-name>
AT TERMINAL-NO <n>

is printed.

The MODE Command

This command has been implemented to allow a user to execute a set

of commands and other input responses, previously stored on a disk

file, punched on paper-tape, or comprised of a card-deck.

The format is:

@MODE <input file> <output file>

where

<input file>
is the file name or device unit from which SINTRAN Il will
now take input lines, until the end of file or another @MODE
command is detected,

<output file>

is the file name or device unit on which commands are listed
together with the command output, if any.

If the user program reads or writes data on device unit number 1 (file

name: TERMINAL), such data will be taken from the <input file> and
written on the <output file>.

ND-60.050.06

3-22

If the end of file or a command @VIODE 1,1 is reached on the <input
file>, the control will be returned to the user’s terminal.

The execution of the command file will continue running under the
user currently logged on the terminal from where the initial @ MODE
command was issued.

The execution may be interrupted by typing the "escape’-key but may
not be continued as all opened files will be closed. The last process
initiated may be continued by typing the @ CONTINUE command.

Should error condition occur within a @MODE job, the offending error
message will be written on the <output file>, and the message
BATCH JOB ABORTED will be typed on the terminal and the
execution terminated.

Within a @MODE file all commands are legal but certain restrictions
exist:

the first character of a command line must be the “@”, which
corresponds to the herald character typed by the system in front
of commands in direct mode (*).

- all command parameters must be given on the same line as the
command itself because the system cannot ask for missing
parameters.

although they are legal, some commands are not very well suited
within a @MODE file. Among these are, for example, the
@LOOK—AT command.

Note that if a @MODE command has been issued where the <input
file> is the terminal, the typed characters are not echoed on the
terminal as they are routed to the <output file>.

User’s input data may be interspersed with command lines in the same
way as if they were typed from the terminal.

Such data files may be terminated by the end-medium character (octal
27) which is treated as a normal character when reading the @ MODE
file.

(*) This applies only to SINTRAN commands. Commands to other

subsystems such as the editor or loader must not be prefixed by
that subsystem'’s leading character(s).

ND-60.050.06

3.3.9

3.3.10

3.3.11

3.3.12

3-23

The CC Command

This command does absolutely nothing and is, therefore, very useful for
making comment lines in big MODE or BATCH jobs.

The HELP Command

This command will list the names of all SINTRAN Il commands on
the terminal.

The HOLD Command

The format is:

@HOLD <time> <time unit>

<time unit> can have the values:

basic time units (normally 20 milliseconds)

seconds

minutes
hours

PN~

This will keep the terminal waiting for the number of time units
specified by <time>.
The TERMINAL-MODE Command

The user can, to some degree, decide how the system should treat the
terminal. When the command:

@TERMINAL-MODE

is given, it will ask three questions.

The first question is:

CAPITAL LETTERS?

If the user answers YES, all small letters will be converted to capital

letters. If the answer is NO, there will be no conversion. Other answers
will give no change in the mode.

ND-60.050.06

3.3.13

3-24

The second question is:
DELAY AFTER CR?

If the answer is positive some dummy characters will be printed after
each carriage return. This is necessary for some:terminals (for example
SILENT 700) if they run at 30 characters per second.

The third question is:

STOP ON FULL PAGE?

This feature is useful for fast displays. If 20 lines have been listed on
the display without any intervening input, the output will stop so that
the user may take a look at the output. The listing will continue as
soon as any break character is typed. The control/shift P can be

recommended as a continue character because it will be completely
ignored.

The IOSET Command

This command can be used to set an |/O-device in ; given state.

The format is:

IOSET <logical unit> <read/write> <program> <control>

The <logical unit> identifies a device, which must be reserved (opened)
beforehand. <read/write> means input part is O and output part is 1.

<program> must be 0. <control> has a different meaning for different
devices but generally -1 means ""reset device’”’. See also Section 3.6.2.

ND-60.050.06

3.4

3.4.1

3-25

THE MOST COMMONLY USED FILE MANAGEMENT SYSTEM
COMMANDS

As previously mentioned, the File Management System is described in a
separate manual: NORD FILE SYSTEM, ND-60.052.

In this chapter, the most commonly used file handling commands will
be described.

Creating and Deleting Files
The most important commands for creating and deleting files are:
@CREATE-FILE <file name><no of pages>
will create a contiguous file with the given number of 1K word
pages (1024 decimal words, or 2048 bytes), or an indexed file

with no pages allocated if <no of pages> given is zero.

The default file type is :DATA, and if a version number is
included in the file name, a number of copies will be created.

To allocate a file on a specific area on a disk or drum, the command
@ALLOCATE-FILE <file name><page address><no of pages>
will create a continuous file, starting from the <page number>
given. The page size is always 1K words (2K bytes) and the page
address is given as a page number from the start of the device,

which is always page O.

If more than one version is created, they are allocated after each
other with version 1 from the specified page address.

To delete a file and release the pages used, the following command is
given

@DELETE-FILE <file name>
If a version number is specified, only that version is deleted.
Otherwise, all versions of a file are deleted. The file type must

always be specified.

Contiguous files are not allowed to grow dynamically larger than the
allocated number of pages, except by the command:

@EXPAND-FILE <file name> <number of pages>

The file must be contiguous.

ND-60.050.06

3.4.2

3—26

Indexed files may expand dynamically up to the reserved free space for
the owner as the user writes onto the file.

File Protection and Access Modes
A file may be protected from unauthorized use by the command

@SET-FILE-ACCESS <file name> <public access> <friend access>
<owner access>

Separate access modes may be specified for the owner of a file,
for other users declared as friends, or all other users of the
installation.

The access modes may be a combination of:

read access,

write access,

append access,

common access permitted, and
directory access, or

no access permitted.

ZoOPsD

Directory access means that the file may be deleted, or that
access mode may be changed.

If an access string is empty, i.e., only the comma separator or a
carriage return is given, the access mode for that user group will

not be changed.

Up to 8 friends may be declared and given access mode by the
commands: -

@CREATE-FRIEND <user name>
@SET-FRIEND-ACCESS <user name><access mode>>

where <user name> must be one known to the system, and
<access mode> is described above.

Friends may be deleted by the command:

@DELETE-FRIEND <user name>

ND-60.050.06

3.4.3

3-27

File Statistics and User Information

There are several commands used to give the user certain information
about created files, reserved space, declared friends, etc.

In all, the following commands the parameter <output unit> denotes
the device or file where the information will be written. This may be
any file or peripheral unit, default unit being the user’s terminal.

The <file name> or < user name> in the following commands may be
abbreviated, and only the selected parts that match the name given will
be included in the response. If the file name is empty or only carriage
return is given, all files for the user will be selected. For <file names>
also those files of a specific file type may be selected, giving only the
name of the type preceded by a colon.

If the file-directory-name and user name is not included in the <file
name>, the default file-directory will be searched.

The commands are:
@LIST-FILES <file name><output unit>

gives a list of all files that match the <file name>, with the
file-entry-number full file name including directory and user
name, file type and version number.

@LIST-OPENED-FILES <output unit>

lists the file names and numbers of all currently opened files for
the logged in user.

@FILE-STATISTICS <file name> <output unit>

gives a list of all files that match the <file name>, and in
addition to the name also the type of file (indexed or
continuous), access modes for public users friends and the owner
date of creation of the file, number of times and last date
opened for read and for write, and size of the file both in pages
and bytes.

@LIST-FRIENDS <friend name> <output unit>
lists those users declared as friend, and the access mode, defined.
@LIST-USERS <user name> <output unit>

lists those users created on the main directory or those on a
specific directory that precedes the user name.

ND-60.050.06

3.4.4

3.4.5

3-28

@USER-STATISTICS <user name> <output unit>

lists some user information such as date created, number of pages
in use and number of pages reserved.

Copying Data to and from Files and Devices

Two commands are implemented to copy data between peripheral units
and files:

@COPY <destination> <source>

reads bytes from the <source>unit and writes on the
<destination>unit. The destination unit may be a new file to be
created by enclosing the name in double quotation marks.

@COPY-FILE <destination> <source>

reads pages of 1K words from <source file> and writes on the
<destination file>

For both commands,data is completely code-independent and the copy
operation continues until all pages have been copied froma filg or until
time-out is received from a peripheral unit.

Default file type for files is :SYMB.

Both commands may also be used to or from peripherals.
@COPY—FILE will also correctly copy files with holes.

Opening and Closing Files

Before a file or peripheral unit can be accessed for read or write, it
must have been opened for use with the intended access mode
specified.

A file is opened using its name, but is accessed with a logical unit
number.

This number is returned by the opening function, provided that the file
is available and the user is allowed to access the file. This number must
later be used in all references to the file within the program.

Files may be opened from the outside of a program using Commands,
or from the inside of a program using Monitor Call Functions.

ND-60.050.06

3.4.5.1

3-29

THE OPEN-FILE COMMAND

This command is used to make a file available for access, and returns
the logical unit number to be used for accessing the file.

The format is:

@OPEN-FILE <filename> [:<type>{; version>]] ,<access-type>

where

<file name>
could be the name of a peripheral unit, eg., LINE-PRINTER or a
user filename, which may be prefixed with file-directory-name
and user-name if necessary.

<type>

if a file with a specific type is to be opened. The default value is
SYMB.

;<version>

if a specific version number is to be opened. The default value is
1.

<access-type>

pecifies the intended access-mode, a combination of

w

R - read

W - write

X - random access

A - append

C - common access (only contiguous file)

Only the following combinations are legal:

R - sequential read

w - sequential write

RW - sequential read and write
RX - random read

WX - random read and write
WA - sequential write append

RC - random read with read and write access from other users
allowed (only contiguous files)
WC - random read and write with read and write access from other

users allowed (only contiguous files)

ND-60.050.06

3.45.2

3.4.5.3

3-30

If the user is allowed to access the file, the following message is
printed:

FILEENUMBER IS=n

where n is the logical unit number to be used when accessing the file
later.

New file names and/or number of versions may be created together
with the opening of the file by enclosing the name or number in

quotation marks.

If, for any reason, it is not possible to open the file, an explanatory
message is given.

A list of logical unit numbers is given in Appendix C.

THE CONNECT-FILE COMMAND

This command may be used to open a mass storage file with a
predefined file number. Otherwise it acts like the OPEN command.

The format is:
@CONNECT-FILE <filename> <file number> <access type>
where

<filename> and
<access type>

are like the OPEN command,
<file number>

is the logical unit number the file should be associated with. The
number must be within 101g to 177g, and not previously opened
by the user.

THE CLOSE-FILE COMMAND

The following command may be used for closing previously opened
files:

@CLOSE-FILE <file number>

The file with the specified number will be closed. If <file
number> is —2, all files for the entered user are closed. If <file
number> is —1, all files that are not permanently opened will be
closed.

ND-60.050.06

3.4.6

3-31

Reserving and Releasing Files and Peripheral Devices

To reserve a file or peripheral device for exclusive use from the current
terminal, the following command is available:

@RESERVE-FILE <file name>
where
<file name>

is the name of a peripheral device, for instance, LINE-PRINTER,
or of a directory file.

A previously reserved file or peripheral device might be released from
the terminal by the command:

@RELEASE-FILE <file name>

ND-60.050.06

3.5

3.5.1

3.5.1.1

3-32

FILE HANDLING FROM USER PROGRAMS

This section will describe different methods for allocating files, reading
and writing both sequentially and randomly, and closing files from a
user program.

"Files” in this context means any peripheral device or file kept in the
file directories either on disk, drum or magnetic tape. It does not
include the use of magnetic tapes or cassette tapes treated as freestand-
ing devices separated from the file management system, such as is
explained in Section 9.2. Sequentially accessible files may be treated
device-independently. That means that the user, during the execution of
the program, may access peripheral units and disk or magnetic tape files
similarly.

Randomly accessible files must be kept on disks or drums, due to the
physical constraints of other devices.
Opening Files from a Program
SUBROUTINES FOR OPENING FILES
For programs written in FORTRAN, a subroutine may be used to open
a file and connect it with the file code used in the READ and WRITE
statements.
The format is:
CALL OPEN (<file name>, <file code>, <access code>)
where
<file name>
may be a character string or an array name containing the name
of the file. Default file type is :DATA. The last character should
be a blank.
<file code>
is a decimal constant or an integer variable containing the

number used in READ/WRITE.
INCH, OUTCH, SETBS, RFILE, WFILE and CLOSE statements.

ND-60.050.06

3-33

<access code>

a decimal constant or an integer variable containing an access
code with the following value:

- write sequential

- read sequential

- random read or write

- random read only

- sequential read or write

- sequential write append

- random read or write common (only contiguous files)
- random read common (only contiguous files)

Nooah,~,wnNn -0

If the user is allowed to access the file, a table is maintained linking the
file code with the logical unit number provided by the file management
system.

If the file cannot be opened, an error message is given.

The user may also use the subroutine as an integer function. Thus the
value will be set to zero if the file is opened, or to the octal error
number, as described in Appendix D.

Example:

INTEGER OPEN
ISTAT = OPEN (<filename>, <file code>, <access code>)
IF (ISTAT.NE.Q) GO TO

The <filename> may be a character string of Hollerith type (e.g.,
20HMYFIL), enclosed in single apostrophes (e.g., ‘"MYFIL’) or an
array containing the name of the file. The character string should be
ended with a blank.

Example 1:

CALL OPEN ("MYFIL:DATA ’, 10,0)
WRITE (10) BINARRAY

Example 2:

INTEGER FILNAME (20), OPEN
WRITE (1,10)
10 FORMAT (/,’$GIVE NAME OF INPUT-FILE!)
READ (2,20)FILENAME
20 FORMAT (20A2)
ISTAT = OPEN (FILENAME,10,1)

READ (10,30)DATA

ND-60.050.06

3.5.1.2

3-34

MONITOR CALLS FOR OPENING FILES

For programs written in MAC assembly or NORD PL languages, a
monitor call function may be used to open a file. A description of the
monitor call functions is given in Section 3.6.

MON 50 (OPEN)

X register:
pointer to file name string. When X = 0 the file name is
read from the terminal!

A register:
pointer to default file type string

T register:
Access code:

- sequential write

- sequential read

- random read or write

- random read only

- sequential read or write

- sequential write append

- random read or write common (only contiguous
files)
7 - random read common (only contiguous files)

OO WN-—-O

Return:
A- reg: Error code

Skip return:
A-reg: File number

Example:
LDX (FNAME % POINTER TO FILE NAME
LDA (FTYPE % POINTER TO FILE TYPE
SAT 0 % ACCESS CODE WRITE
MON 50 % OPEN
JMP ERROR % RETURN:ERROR
STA FNUM % SKIPRETURN:FILE NUMBER
FNAME "REPORT-FILE’ % FILE NAME
FTYPE '‘DATA’ % FILE TYPE
FNUM, 0 % FILE NUMBER
JFILL

ND-60.050.06

3.5.2

3.6.2.1

3-35

Accessing Files

Files may be accessed with sequential or random monitor calls using
the file number returned when opening the file.

FORTRAN programs will normally access files through the FIO -
Formatted Input and Output system with the READ and WRITE

statements, but may use a set of integer functions executing similar
monitor calls.

In this section both the MAC assembly and the FORTRAN coding will
be given.

SEQUENTIAL FILE ACCESS

Reading bytes from a file is done by the monitor call.

MAC coding: INBT (MON 1)
LDT FNUM % T-REG = FILE NUMBER
MON 1 % INBT
JMP ERR % ERROR RETURN:A = ERROR
NUMBER
STA CHAR % SKIPRETURN:A = BYTE IN
BITSO-7

FORTRAN function:

ICH = INCH (<file code>)
where
ICH réceives an 8-bit character (16-bit if data link) from the

device buffer without any modification, except for card
reader which is converted to ASCII. If there are no bytes
in the buffer, the program will go into waiting state.
Negative result means error.

Writing bytes to a file is done by the monitor call.

MAC coding: OUTBT (MON 2)
LDT FNUM % T-REG = FILE NUMBER
LDA CHAR % A-REG = BYTE INBITS 0 -7
MON 2 % OUTBT
JMP ERROR % ERROR-RETURN! A = ERROR
CODE
JMP NEXT % SKIP-RETURN:NORMAL

ND-60.050.06

3.5.2.2

3—-36

FORTRAN function:
ISTAT = OUTCH (<file code>, <char.value>)

The 8 right bits of the <char.value> (16 bits if data link) is outputed
to the buffer. If there is no room in the buffer, the program will be in
waiting state until more room is available. ISTAT receives a zero-value
if OK, otherwise a negative value denotes an error condition.

RANDOM FILE ACCESS

Some monitor calls may be used to access files in a random manner,
reading or writing blocks of equal size, by specifying the block number.
Block size may be set before the first attempt to read or write. If not,
the default block size of 256 decimal words (400 octal) will apply.

All FORTRAN functions described here may also be called as sub-
routines. If an error occurs a message is displayed and the program

terminates.

The monitor calls and FORTRAN functions are:

Set Block Si
MAC coding: SETBS (MON 76)
LDA FNUM % T-REG = FILE NUMBER
LDA BSIZE % A-REG = BLOCK SIZE (WORD)
MON 76 % SETBS
JMP ERROR % ERROR RETURN:A = ERROR
NUMBER
JMP OK % SKIP RETURN:OK
FNUM, 0
BSIZE,. 20 % BLOCK SIZE 16 DECIMAL
WORDS

FORTRAN function:*

INTEGER SETBS

ISTAT = SETBS (<file code><block size>)
IF (ISTAT.NE.Q)GO TO

or

CALL SETBS (<file code>, <block size>)

ND-60.050.06

3-37

where
<block size>

is a decimal constant or an integer variable containing the
number of 16 bit words of each block.

ISTAT returns with a zero if OK, otherwise a negative value is
returned.

Read Block Random

Reads one block of specified size (default 256 decimal words) from the
file, which must have been opened with random read or read/write
access mode:

MAC coding: RPAGE (MON 7)
LDT FNUM % T-REG = FILE NUMBER
LDX (ADR % X-REG = CORE ADDRESS
LDA BLKNO % A-REG = BLOCK NUMBER
MON 7 % RPAGE
MON 65 % ERROR RETURN:A = ERROR
CODE
JMP OK % SKIP- RETURN:A =0
JFILL
FNUM, 0
ADR, 0
*+n/0 % n = BLOCK SIZE (OCTAL)
BLKNO, 0 % BLOCK NUMBER

FORTRAN function:
INTEGER RFILE
ISTAT = RFILE (<file code>, <return flag>, <memory address>,

<block no>, <no of words>)
IF (ISTAT.NE.Q) GO TO

or

CALL RFILE (<file code>, <return flag>, <memory address>, <block
no>, <no of words>)

ND-60.050.06

3—-38

where
<return flag>

must be an integer variable if = 0: The program will wait until
the transfer is finished. If #* 0: The process will continue as soon
as the transfer is started.

The monitor call WAITF (see following) can be used to check if
the transfer is finished.

<memory address>
array where the record will be read into.
<block no>

an integer variable containing the block number where reading
begins, counting from O,

<no of words>

is an integer variable containing the number of 16 bit words to
be transferred into the program. This may be less or larger than
the specified block size.

ISTAT will be set to zero if the request is OK, or to negative
value if error occurs.

The user should be aware that files are allocated in “pages” of 1K
words (1024 decimal words) and a block size which is >1024 will force

the operating system to read several pages to fullfill the request.

Write Block Random

Writes one block of specified size (default block size is 256 decimal
words) to the file, which must have been opened with random write
access mode.

MAC coding:
LDT FNUM % T-REG = FILE NUMBER
LDX (ADR % X-REG = MEMORY ADDRESS
LDA BLKNO % A-REG = BLOCK NO.
MON 10 % WPAGE
MON 65 % ERROR-RETURN:A = ERROR
CODE
JMP OK % SKIP-RETURN:A =0
JFILL
FNUM, 0
ADR, 0
*4+n/0 % n = BLOCK SIZE (OCTAL)
BLKNO, 0 % BLOCK NUMBER

ND-60.050.06

3—-39

FORTRAN function:

INTEGER WFILE
ISTAT = WFILE (<file code>, <return flag> <memory address>,
<block no>, <no of words>)

or

CALL WFILE (<file code>, <return flag>, <memory address>, <block
no>, < no of words>)

where
<return flag>

must be an integer variable. If = 0: The program will wait until
the transfer is finished. If #0: the program will continue as soon
as the transfer is started. The monitor call WAITF (see following)
can be used to check if the transfer is finished.

<memory address>
array where the record will be written from
<block no>

an integer variable containing the block number where writing
begins, counting from 0.

<no of words>

an integer variable containing the number of 16 bit words to be
transferred. This may be less than or greater than the specified
block size.

ISTAT will be set to zero if the request is OK, or to a negative
value if error occurs.

CALL WAITF (<file number>, <return flag>)

This call is used to check whether a transfer is finished or not. If
the transfer is completed, there will be immediate return. | f the
<return flag> is equal to zero and the transfer is not completed,
the calling RT program will be set in a waiting state until the
transfer is finished. |f the <return flag> is set (non-zero) and the
transfer is not finished, there will be an immediate error return
(non-zero integer function value).

ND-60.050.06

3—-40

3.5.3 Closing of Files

Opened files will automatically be closed when the program terminates,
either normally or after an error message.

The user may also close files using the following monitor calls or
FORTRAN functions.

MAC coding: CLOSE (MON 43)
LDT FNUM % T-REG = FILE NUMBER
MON 43 % CLOSE
MON 65 % ERROR RETURN:A = ERROR
CODE
JMP OK % SKIP-RETURN:A =0
FNUM, 0 % FILE NUMBER

FORTRAN function:

INTEGER CLOSE
ISTAT = CLOSE (<file code>)

or
CALL CLOSE (<file code>}
where
<file code>
is an integer variable containing the file code or —2 to close all
opened files. The value —1 will cause a closing of all files that are

not permanently opened.

ISTAT will be set to zero if OK, or to a negative value if error
occurs.

ND-60.050.06

3.6

3—-41

MONITOR CALL FUNCTIONS

A major part of the service functions provided by the SINTRAN Il
system are implemented through a special hardware instruction, the
MON instruction (octal value 153xxx), and may be activated by the
user programs. And, as some hardware instructions are not allowed to
execute within a user program, e,g,. the 10X instruction for input and
output directly to devices, such functions must be activated through
Monitor Call functions.

When executing a MON instruction within a user program, an interrupt
is generated, transferring control to a system routine on level 14. This
routine activates the required function on a lower interrupt level (5 or
3) on behalf of the calling program.

In this way, a significant amount of subroutines are available to all
users, without enlarging the program with the subroutine code.

Programs written in MAC assembly or NORD PL languages can use the
MON instructions directly while programs written in other languages
may use a set of small subroutines calling the appropriate MON
instructions. These subroutines are described Sections 3.5 and 3.6.2.

Monitor calls are activated by an octal number, ranging from -200g to
177g giving 400g (256 decimal) different functions. At the moment,
approximately 177g functions are implemented, of which an installa-
tion might define 7 of their own purpose, to be generated together
with their version of the SINTRAN IIl system.

Passing of Parameters is Done in Two Different Ways:

- through various hardware registers, normally the T, A and X
registers, of which the user must have set appropriate values,
pointers, etc. before the MON instructions are executed, and

- in the standard call format, where the A register points to a
parameter list containing the address to the value for each
parameter.

Most monitor call functions use the two following instructions as return
points, the first if errors occur, the second when the function is
performed normally.

In the case of an error return, the A register will contain an error
number. This error number may be used to obtain an explanatory
message. A list of all error numbers and messages is given in Appendix
D.

In the case of a normal return, usually noted as a skip return, the A
register will contain a zero value, or a value defined by each monitor
call.

ND-60.050.06

3-42

Examples of the calling sequences in MAC assembly:
a) using registers for parameters:

The monitor call INBT inputs a byte from a device:

SAT 1 % DEVICE-NO IN T-REG

% 1 1S FOR TERMINAL
MON 1 % INBT
JMP ERR % ERROR-RETURN:

% A-REG = ERROR-NUMBER
STA CHR % SKIP-RETURN:

% A-REG = BYTE INBITSO0 -7
b) using standard call format for parameters:
The monitor call CLOCK to obtain data and time:

LDA PARAM % A-REG POINTS TO THE
% PARAMETER LIST
MON 113 % CLOCK

PARAM, ARRAY % POINTS TO A SEVEN-WORD
% ARRAY

% BASIC UNITS

% SECONDS

% MINUTES

% HOURS

% DAY

% MONTH

% YEAR

ARRAY,

[eNeNoNoloNolNo)

Section 3.6.1 describes the monitor calls where the T, A, D and X
registers must be set before the MON instruction is executed. The
ERROR RETURN and the SKIP RETURN denote the contents of the
A register after execution.

Section 3.6.2 lists the monitor calls using the standard call format. In
this case, the parameters are described by names in the correct order.

Both sections describe only the monitor calls available from timesharing
and batch programs. With a few exceptions, denoted in the text, these
monitor calls may also be used from RT programs. (See also Section
3.6.3.)

However, many monitor calls may only be executed from RT programs.
Such monitor calls are described in Section 7.7.

ND-60.050.06

3.6.1

Monitor Calls Available from MAC and NORD-PL Programs

MON 0
<no parameters>

MON 1

T = device number

Error-return:A = error no.

Skip-return: A = byte, in
right half

MON 2

T = device number

A = byte, in right half
Error-return: A = error no.
Skip-return: A =0

MON 3

A = 0 echo all characters

A = 1 echo all but control
characters

A = 2 special MAC echo
strategy

A < 0 no echo

MON 4

A = 0 always break

A = 1 break only on
control characters

A = 2 special MAC break
strategy

A < 0 no break

MON 5

T = block no., from 0 and
up

X = core address to trans-
fer to

Error-return:A = error no.
Skip-return:A = 0

LEAVE or RTEXT

Terminates the executing program and
returns control to the operating system.
All reserved units are released and opened
files are closed. If called from an RT
program, no file will be closed.

INBT
Reads one byte from the specified device.
The byte pointer is increased by one.

OUTBT
Writes one byte to the specified device.
The byte pointer is increased by one.

ECHOM

Defines the echo mode for the user ter-
minal. Default echo mode is 1. If called
from an RT program, the T register must
contain the logical number of the ter-
minal.

BRKM

Defines break mode for characters used to
resume execution of user programs
waiting for input from the terminal.
Default break mode is 1. If called from
an RT program, the T register must
contain the logical number of the ter-
minal.

RDISK

Reads random 256 decimal word blocks
from the scratch file, logical unit 100
octal. Only to be issued by background
(timesharing) programs.

ND -60.050.06

MON 6

T = block no., from 0 and
up

X = core address to trans-
fer from

Error-return:A = error no.
Skip-return:A = 0

MON 7

T = file number

A = block number

X = core address to trans+
fer to

Error-return:A = error no.

Skip-return:A = 0

MON 10

T = file number

A = block number

X = core address to trans-
fer from

Error-return:A = error no.

Skip-return:A = 0

MON 11
AD = time in basic time
units (normally 20 milli-
seconds)

MON 13

T = device number
Error-return:A = error no.
Skip-return:A = 0

MON 14

T = device number
Error-return:A = error no.
Skip-return:A = 0

WDISK

Writes random 256 decimal word blocks
to the scratch file, logical unit 100 octal.
Only to be issued by background prog-
rams.

RPAGE
Reads random 256 decimal word blocks
from a file. Logical unit 101 - 177 octal.

WPAGE
Writes random 256 decimal word blocks
to a file. Logical unit 101 - 177 octal.

TIME
Returns current internal time.

CIBUF
Clear device input buffer.

COBUF
Clear device output buffer.

ND-60.050.06

MON 43

T = file number
Error-return:A = error no.
Skip-return:A = 0

MON 45
MON 46
MON 47

MON 50
X = points to file name
string
A = points to file type
string
T = 0 sequential read
1 sequential write
2 random read or
write
3 random read
4 sequential read or
write
5 sequential write
append
6 random read or
write common.
7 random read com-
mon
Error-return:A = error no.
Skip-return:A = 0

MON 51

MON 62

T = file number

Error-return:A = error no.

Skip-return:AD = no. of
bytes

CLOSE

Closes a previously opened file. If T = -1
all opened files for this user will be
closed. If T = 1 all opened files that are
not set permanently open are closed.
(Scratch files are not closed.)

DBRK

GBRK

SBRK

Special monitor call used by MAC assem-
bler for break points. Not to be used by
others.

OPEN (SINTRAN 111 version)

Opens a file named in a character string
pointed to by the X register, with a
default file type pointed to by the A
register. The type of file access is
specified in the T register. If a file is
found, the file number to be used in
subsequent operation is returned in the A
register. Character string for file name and
type must be terminated by a single
apostrophe (’}. If X = 0 the file name
string is read from the terminal.

DMAC BREAKP

Special monitor call used by the DMAC
assembler for setting breakpoints. Not to
be used by others.

RMAX

Reads the maximum number of bytes in a
file available for sequential read, starting
with one. This is the value of the maxim-
um byte pointer + 1.

ND-60.050.06

MON 64
A = error number

MON 65
A = error number

MON 66

T = device number
Error-return:A = error no.
Skip-return:A = no. of bytes

MON 67

T = device number
Error-return:A = error no.
Skip-return:A = no. of bytes

MON 70

ERMSG

Types an explanatory error message for a
corresponding error number contained in
the A register. The program continues.
The message is typed on the user terminal
or batch on mode output file, or if issued
from an RT program, on terminal 1.

QERMS
Same as previous command but the pro-
gram terminates. May be used directly as
the error return instruction in other mon-
itor calls.

Example:
SAT 2 % T=TAPE-READER
MON 1 % INBT

MON 65 % ERROR-MESSAGE
STA CHR % SAVE BYTE

ISIZE
Returns the number of bytes currently in
the input buffer of a device.

OSIZE
Returns the free number of bytes
currently in the output buffer of a device.

COMND, Command Monitor Call

On entry, the A register points to a
character string, which will be interpreted
as a SINTRAN Il command. This
monitor call can be used in background
programs only.

Example:
LDA (STR
MON 70

STR,'DELETE-FILE XXX:SYMB’

ND-60.050.06

MON 73

T = file number

AD = no. of bytes
Error-return:A = error no.
Skip-return:A = 0

MON 74

T = file number

AD = byte pointer
Error-return:A = error no.
Skip-return:A = 0

MON 75

T = file nunber

Error-return:A = error no.

Skip-return:AD = byte poin-
ter

MON 76

T = file no.

A = block size (in words)
Error-return:A = error no.
Skip-return:A = 0

MON 77

T = file number

AD = block pointer
Error-return:A = error no.
Skip-return:A = 0

3—47

SMAX

Sets the maximum byte pointer to point to
the last byte available for sequential read,
starting with 0.

SETBT

Sets the byte pointer of a file to the byte
which will be accessed by INCH/OUTCH
the next time, starting with O.

REABT

Reads the byte pointer of a file. The byte
pointer points to the byte to be accessed
by the next INCH/OUTCH call , starting
with 0.

SETBS
Sets block size of a file opened for ran-
dom read or write access.

SETBL
Sets the block pointer of a file.

ND- 60.050.06

3.6.2

3—-48

Monitor Calls also Available from FORTRAN

This section describes the monitor calls implemented with the standard
call format of SINTRAN Ill. These routines may, in FORTRAN, be
activated using the CALL statement or as INTEGER FUNCTIONS for
those routines that denote occurrence of error conditions with a
negative value returned through the A register.

MAC assembly programs may use the following code sequence:

LDA (PARAM % A-REG POINTS TO A PARAMETER
% LIST
MON XXX % xxx IS THE MON-CALL NUMBER
JAN ERROR % A-REG NEGATIVE DENOTES
% ERROR
JMP OK % SKIP RETURN (NORMAL)
JFILL
PARAM, PAR1 % THE PARAMETER LIST POINTS
PAR2 % TO THE VALUE OF EACH
PAR 3 % PARAMETER

Error messages may be typed at the user terminal, in the case of an RT
program error messages are typed at the terminal with logical unit
number 1, and the program is terminated.

MON 76 CALL SETBS (<file code>, <block size>)

The block size of a file is set to be accessed randomly. (See also
Section 3.5.2.2.)
MON 104 CALL HOLD (<time>, <time unit>)

The calling program will be set in waiting state for the number of
<time units> specified by <time>, <Time unit> may be

specified as:
1 basic time units (normally 20 milliseconds)
2 seconds
3 minutes
4 hours
MON 113 CALL CLOCK (<array>)

The current clock/calendar is returned to the seven word integer
<array> of the calling program. The <array> will contain: basic
units, seconds, minutes, hour, day, month and year.

ND-60.050.06

3+49

MON 114 TD = TUSED(0)

The parameter is dummy. The double precision integer function
value gives the CPU time used up until now, counted from log-in
time, in basic time units (usually 20 milliseconds).

This monitor call can be used from background (timesharing)
programs only.

MON 117 ISTAT = RFILE (<file code>, <return flag>,

MON

MON

<memory address>, <block no>, <no of words>)

This monitor call reads from a random block in a file. (See
Section 3.5.2.2.)

120 ISTAT = WFILE (<file code>, <return flag>,
<memory address>, <block no>, <no of words>)

The monitor call writes onto a random block in a file. (See
Section 3.5.2.2.)

141 <value> = IOSET (<logical unit>, <read/write>,
<program>, <control>)

Control information will be set for a logical unit. If <read/write>
equals zero, the input part is reserved for a two-way unit,
otherwise, if it equals one, it means the write part. |If <control>
equals -1, the unit will be reset. Otherwise, <control> has a
special meaning for each device type. <program> specifies a
program which the unit is supposed to be reserved by. If not,
IOSET will return a negative function value. This will also occur
if an illegal logical unit is specified. If everything is OK, a value
greater than or equal to zero will be returned.

Example:
| = 10SET (2, 0, PROG, -1)

This means: Clear and reset the tape reader which is reserved for
program PROG.

From background, only devices reserved by the background
program itself may be operated on. That means that the para-
meter <program> must be equal to zero.

ND-60.050.06

MON

MON

3-50

For card reader, the following values of the <control> parameter
means: '

-1: Clear buffer and set ASCII mode - all characters are
converted to ASCII code, and trailing blanks are ignored.

0: Set ASCII mode.

1: Set binary mode. Subsequent INBT monitor calls will
return a 12 bit column image.

For some devices, such as Process I/O and NORDCOM, the
meaning of <control> will be described elsewhere.

145 <error code> = ACM (<logical unit>, <function>,
<memory address>, <DMA address>, <word
count>)

This is the monitor call to transfer a block of words to/from an
external memory.

<logical unit> identifies the external memory. This unit must be
reserved beforehand. The available logical numbers are 734g,
735g, 736g, 737g and 740g.

<function> is the function code:

0 - Read

1 - Write

2 - Lock/Write/Unlock
3 - Clear

Example:

INTEGER FUNCTION ACM
DIMENSION IARR (100)

CALL RESERV (7348, 0, 0)
IX=ACM (7348, 1, IARR, IDMA, 100)

This monitor call is an option and can be included at system
generation time.

161 I = INSTR (<logical no>, <memory address>, <max
no >, <terminator>)

ND -60.050.06

MON

This monitor call reads a string of characters from a peripheral
device, identified by <logical no>. The monitor call will read
characters from the device and pack them into the user’s area
(starting at <memory addr>), and go on until at least one of the
following conditions is met.

1. The maximum number is reached
2. The terminator is found

3. The device buffer is empty
The function value has the following contents:

Bits 14 and 15:

0: Maximum number of characters reached without finding
the terminator.

1: Terminator found
2: Buffer emptied without finding terminator
3 Device error

In case of error, the rest of the word will contain an error
number, otherwise it will contain the number of characters read.
If -1 is returned, it means bad parameter. If the device buffer is
empty when INSTR is called, the calling program will be set into
a waiting state.

162 I = OUTST (<logical no> <memory addr>,
<number>)

The monitor call will move the characters from the user’s area to
the device buffer. If there is not enough room, the program will
be put in a waiting state.

The function value has the following contents:
Bits 14 and 15:

OK

Not used

Buffer too small; nothing is done

Device error; the rest of the word contains error number

DRSS

Function value = -1 means bad parameter.

The monitor calls INSTR and OUTST are options. They may be
included at system generation time.

ND -60.050.06

3.6.3

3-52

Monitor Calls Not Available in RT Programs

The following monitor calls cannot be used in an RT program.

Mon.Call

Name No.(octal) Description

RDISK 5 read 256 words from scratch file
(file number 100g)

WDISK 6 write 256 words on scratch file
(file number 100g)

DBRK 45 used by MAC for debugging RT
programs

GBRK 46 used by MAC for debugging RT
programs

SBRK 47 used by MAC for debugging RT
programs

TUSED 114 get CPU-time

RSIO 143 monitor call for deciding if a pro-

gram is running in batch or in time-
sharing

ND-60.050.06

3.7

3.7.1

3.7.2

3-53

BATCH PROCESSING
Introduction

In addition to the interactive timesharing communication with the
SINTRAN I11 operating system, the user may also execute jobs in batch
mode.

Batch jobs are executed independent of any terminals, under control of
a Batch Processor. A batch process must be initiated by the user
SYSTEM before any users may submit jobs to be executed under its
control. An installation may have several batch processors running
simultaneously, with different execution priority, if desired.

The users may build batch-input-files in a similar way to the @VIODE
command. A batch-input-file contains all commands and input lines
necessary to carry out the requested activities, and may be stored on a
disk file, punched on paper tape, or comprised of a card deck.

The user submits this batch-input-file for execution: by appending it to
a batch queue and by specifying the file name in the
@APPEND-BATCH command. In addition, the user gives the name of
an output file or a device unit where the command response and results
should be written. In the case of a file name, this file may later be
emptied on a line printer.

In other installations, it may be suitable to give job decks to an
operator, who will submit them for execution from the card reader.

Definitions

A batch job is an entity consisting of commands to the SINTRAN 111
system and possibly source input to subsystems or user programs called.

The first command in a batch job is always the @ ENTER command,
identifying the user. A batch job is terminated by two consequtive ESC
characters (octal 33). These two characters correspond to the
@LOGOUT command in direct mode.

The card code for ESC is multipunched 7-8-9.
A batch-input-file may contain any number of jobs and a job may use
any number of batch-input-file/batch-output-file parts. Thus, the

boundaries between jobs and batch-input-files are completely indepen-
dent of each other.

ND-60.050.06

3.7.3

3.7.3.1

3-54

A batch queue is a collection of batch-input-file/batch-output-file pairs,
held internally in SINTRAN Ill, to be executed by a batch process.
Each batch process has its own batch queue. New input/output pairs
are added to the queue by the @ APPEND-BATCH command.

A batch process is an RT program very much like the one that handles
interactive communication with the SINTRAN Ill system from ter-
minals. The task of a batch process is to execute jobs on a
batch-input-file, one at a time.

In principle, there may be an unlimited number of batch processes
running parallel to each other and other activities in the system. The
maximum number of batch processes is determined at system genera-
tion time.

The extra overhead introduced by a batch process is approximately the
same as by adding an extra terminal. A batch process is initiated by a
@BATCH command, and terminated by an @ ABORT-BATCH com-
mand. Both commands are issued only by the user SYSTEM. A batch
process will be in one of the following states:

PASSIVE - this means that the batch process has not been
started.
IDLE - this means that the batch process has entered waiting

state because the batch quewue is empty.

ACTIVE - this means that the batch process is working on a
job.

When appending a batch-input-file to a batch queue in idle state, it will
be activated. When end-of-file is reached on a batch-input-file, the batch
process fetches the next batch-input/output pair of the queue, and
continues taking input from the new batch-input-file and giving output
to the new batch-output-file. When the batch queue for this process is
empty, the process enters idle state again.

Batch Commands for the User SYSTEM

The folloning commands are only to be issued by the user SYSTEM:
THE BATCH COMMAND

This command is used to activate an unused (passive) batch process.

The format is:

@BATCH

ND-60.050.06

3.7.3.2

3.7.4

3.7.4.1

3-55

The response is:
BATCH NUMBER = n

where <n> is a decimal number used in commands to identify a
particular batch process.

If there are no unused batch processes in the system, the message

NO BATCH AVAILABLE

is given.

When a batch process is started, it immediately enters idle state because
the batch queue is empty. It will be activated by the first
@APPEND-BATCH command.

THE ABORT-BATCH COMMAND

This command will abort a batch process and release all resources
reserved. Any job running is also aborted, the batch queue is cleared
and the batch process becomes PASSIVE.

The format is

@ABORT-BATCH <n>

where <n> is the number given by the @BATCH command.

Batch Commands for Public Users

The following commands may be used by any user.

THE LIST-BATCH-PROCESS COMMAND

This command lists the status of the batch process in the system.
The format is:

@LIST-BATCH-PROCESS

Example of a @LIST-BATCH-PROCESS list for a system with three
processes defined:

1 IDLE NO USER LOGGED ON

2. ACTIVE USER <user name> LOGGED ON

ND-60.050.06

3—-56

3. PASSIVE

The command has no effect on the batch process.

3.7.4.2 THE LIST-BATCH-QUEUE COMMAND
This command lists the contents of a specific batch queue.
The format is
@LIST-BATCH-QUEUE <n>
where <n> is a batch process number.
Example of a @ LIST-BATCH-QUEUE list:
@LIST-BATCH-QUEUE 1

1 CARD READER LINE PRINTER
2 (USER NAME) BATIN LINE PRINTER

The conmand has no effect on the batch process.

3.7.4.3 THE APPEND-BATCH COMMAND

This command adds to the specified batch queue, a pair of batch
input/output file names.

The format is
@APPEND-BATCH <n> <input file> <output file>
where
<n>
is the number of a batch process
<input file>
is the name of the file where batch-job-input is to be taken
<output file>

is the name of the file used to collect input.

ND-60.050.06

3.7.4.4

3-57

If the batch process is IDLE, it will be ACTIVATED.

If the batch process is not started, the message BATCH PASSIVE is
given.

If the batch queue is full, the message BATCH QUEUE FULL is given,
and the user may try later.

NOTES:

- If the batch-input-file is owned by other than user SYSTEM, the
user-name must precede the file name.

- The batch-input-file must have read access for all users having
jobs on it, and for the user SYSTEM.

- The batch-output-file must have write append access for all users
having jobs on the corresponding batch-input-file.

THE ABORT-JOB COMMAND

This command may be used to abort an ongoing batch job. The job

will be aborted and the remaining activities in the job will be skipped.

The next batch job will be initiated.

The format is

@ABORT-JOB <batch-number>, <user name>

where

<batch number>

designates which BATCH-PROCESS this job belongs to.

<user name>
is the name of the owner of the batch job.

If the <user name> is not logged on to the batch process at the
moment an error message is given, the ongoing batch job will continue.

This command may be issued, either by user SYSTEM or the user
currently logged on the batch process.

ND-60.050.06

3.7.4.5

3.7.5

3.7.5.1

3—-58

THE DELETE-BATCH-QUEUE-ENTRY COMMAND

This command may be used to remove an entry from the batch queue,
that is, kill a job waiting for execution before it is started. If the job is
started, the ABORT-JOB command must be used.

The format is

@DELETE-BATCH-QUEUE-ENTRY <batch number>, <input part of
queue entry>, <output part of queue entry>

where
<batch number>

identifies the batch process
<input part of queue entry>

is the batch input file name given in the APPEND-BATCH
command

<output part of queue entry>

is the batch output file name given in the APPEND-BATCH
command

Exact match is required between the second and third parameter of this
command and the batch queue entry. The exact format of the batch
queue entry to be removed may be checked by the
LIST-BATCH-QUEUE command.

If the batch queue contains two equivalent entries, the first one will be
removed.

This command may be issued by the user SYSTEM and the user
owning the job to be deleted.

Batch Commands within the Batch-Job-File

Certain commands must only be given within a batch-job-file.

THE ENTER COMMAND

This command must be the first command in a batch job. It identifies
the owner of the job.

ND-60.050.06

3.7.5.2

3—-59

The format is
@ENTER <user name>, <password>,<project no>, <max time>
where
<user name>
must be a name of a legal user.
<password>
is the correct password for the user. If no password is defined,
two commas (,) must be used to separate <user name> and
<project no>. The password will not be printed on the output
listing.
<project no>
should be given as a decimal integer if the accounting system is
in use by the installation. If no project number is required, the
entry should be given as two commas separating <password> and
<max time>.
<max time>
is the maximum CPU minutes the total batch job requires, given
as a decimal integer. If the time is reached, the batch job is

aborted. Default time is 1 minute.

If the <user name> or <password>> is not valid, the batch job will be
aborted.

The ENTER command is ignored when running @ MODE. This means
that the same file can be used for @ MODE as well as batch.

THE SCHEDULE COMMAND

This command is used to reserve devices for the current batch job, thus
preventing errors from occurring if trying to use the devices already re-
served by other users.

The format is

@SCHEDULE <device no>..<device no>

ND-60.050.06

where

3—60

<device no>

is the octal value of the logical device numbers given in Appendix
C. The most common logical device numbers are:

2 Paper tape reader
3 Paper tape punch
4 Card reader
5 Line printer

If one of the specified devices is reserved by other users, the batch
process will enter waiting state until they are released.

To prevent deadlock situations, no device can be used by the batch job
before a SCHEDULE command is given. If it is, the error message

DEVICE ALREADY RESERVED

is given, and the batch job will be aborted.

Most commands are allowed during a batch job but certain restrictions

exist:

The first character of a SINTRAN command line must be the @,
which corresponds to the leading character typed by the system
in interactive mode.

All command parameters must be given on the same line as the
command name itself because the system cannot ask for the
missing parameters.

Although they are legal, some commands are not very well suited
within a batch job file. Among these are, for example, the
@LOOK-AT command.

The commands @LOGOUT and @MODE are not allowed within a
batch job.

If errors occur within a batch job, the offending error message is
written on the <batch-output-file> together with the message

BATCH JOB ABORTED

and the job will be aborted.

ND- 60.050.06

3.7.6

3.7.7

3—-61

If an error occurs in accessing the batch input or output files, an error
message will be given on the console terminal.

Special Monitor Calls for Batch Jobs

As a user program may be executed both as an interactive terminal
program and as a batch program, it might be necessary to know in
which mode the actual execution has been initiated from

A special monitor call is implemented:

MON 143 RSIO

Returned values:

A - 0 if interactive mode
= 1 if batch job
= 2 if @MODE job
T = file number of command input file
D = file number of command output file
X = user number in main directory and is achieved by the

@LIST-USERS command.
If the program uses logical device number 1 for its input and output,

the reading and writing automatically uses the batch input and output
file currently assigned.

Example of a Batch-Job-File

The following shows the contents of a batch-job-file with the following
tasks:

- a FORTRAN compilation

- loading the compiled program and some. other subroutines, and
loading system subroutines from the system library

- dumping the program for later usage

executing the program, with data from the batch-input-file

ND-60.050.06

3—-62

The batch-job-file may look like:
@ENTER USER-ONE <password>, <project no>, 2

@FTN
COM TEL,,100
PROGRAM A

END

EOF

EX

@LDR

A 100

A SUBLIB
A FTNLIBR
w1

H

@DUMP PROGA 60000 60000
@PROGA

@
Fe . E
Sc¢ Sc

ND-60.050.06

3.8

3—63

THE SPOOLING SYSTEM

A peripheral file may be created in more versions than the existing
number of corresponding peripherals. All versions of the file not
connected to a device number will be treated as spooling files.

Example:

@CREATE-FILE LINE-PRINTER;10,0
@SET-PERIPHERAL-FILE LINE-PRINTER, 5
@SET-FILE-ACCESS LINE-PRINTER WA RWA RWAD

There are now ten versions of the file LINE-PRINTER. The first
version is a peripheral file with device number 5. The remaining files
are spooling files.

Spooling files may be utilized for output spooling if the actual
SINTRAN Il system is generated with an optional spooling program
for the peripheral in question.

If the system is generated with a spooling program, output spooling
may be initiated with the command @START-SPOOLING with the
peripheral file name as parameter.

Example:

The system is generated with a spooling program for device number 5
and the file LINE-PRINTER has ten versions; nine spooling files and
one peripheral file with device number 5. Output spooling on the line
printer can then be initiated with the command

@START-SPOOLING LINE-PRINTER

When output spooling is started with the @START-SPOOLING
command, the peripheral (line-printer with device number 5 as in the
above examples) is reserved by the spooling program and cannot be
used directly.

Example:

The file LINE-PRINTER;1 is a peripheral file and spooling is initiated
on this device as in the above examples. The command

@OPEN-FILE LINE-PRINTER;1 W will give the error message

FILE ALREADY RESERVED

ND-60.050.06

3—-64

When spooling is initiated, all output to the peripheral must go to the
spooling files. When a user tries to open the peripheral he will not get
the peripheral itself but the first free spooling file of that peripheral.
When the file is closed, the file is linked to a spooling queue for the
peripheral and eventually emptied on the peripheral.

Example:

@START-SPOOLING LINE-PRINTER
@COPY-FILE LINE-PRINTER USER-FILE-ONE

The file USER-FILE-ONE is copied onto a spooling file version of the
file LINE-PRINTER. The spooling file is linked to the spooling queue
when the COPY-FILE command is finished. The file is emptied while
the user continues with other commands.

If more than one spooling file exists, then more than one user may
open the peripheral at the same time or the same user may open the
peripheral several times.

The spooling queue may be examined with the command
LIST-SPOOLING-QUEUE with parameter peripheral file name.

Example:

@COPY-FILE LINE-PRINTER FILE-ONE
@COPY-FILE LINE-PRINTER FILE-TWO
@COPY-FILE LINE-PRINTER FILE-THREE
@LIST-SPOOLING-QUEUE LINE-PRINTER
(PACK-ONE:SYSTEM) LINE-PRINTER:3, etc.

The first spooling file version (version 2 - with a copy of FILE-ONE) is
not in the queue because printing of this file has already started.

A user may also insert his own file in the spooling queue and get a
desired number of copies of the file. This is accomplished with the
command @APPEND-SPOOLING-FILE with parameters, peripheral file
name, name of the file to be appended to the spooling queue, and the
number of copies desired.

Example:

@APPEND-SPOOLING-FILE LINE-PRINTER FILE-ONE 2
@APPEND-SPOOLING-FILE LINE-PRINTER FILE-TWO 1

ND-60.050.06

3.8.1

3.8.1.1

3—65

A file may be removed from the queue with the
@DELETE-SPOOLING-FILE command. The current print-out may be
aborted or restarted with the commands @ABORT-PRINT or
@RESTART-PRINT.

The spooling program may be discontinued with the
@STOP-SPOOLING command. The spooling.output is always discon-
tinued after the end of the current print-file. The peripheral is released
and may be accessed directly. The spooling files may still be used.
These files and any user file may be inserted in the spooling queue. The
spooling program will resume with the first file in the queue when the
@START-SPOOLING command is eventually used.

The number of pages on the disk which may be used by the spooling
files are limited to 500. The spooling files are usually files in the main
directory that belong to user SYSTEM. The above mentioned limit is
used to secure that no more than 500 user SYSTEM'’s pages are used
for spooling. This limit may be changed with the following two
commands:

@GIVE-SPOOLING-PAGES and
@TAKE-SPOOLING-PAGES.

These commands will increase or decrease the limit with the number of
pages specified. The command @SPOOLING-PAGES-LEFT will return
the number of pages still available.

If the system runs out of spooling pages (either by reaching the
maximum limit of 500 or because user SYSTEM has no pages left), all
user programs currently doing output to spooling files will enter a
waiting state. The spooling program will then start printing one of the
spooling files, return the pages to the pool of free spooling pages, and
restart the waiting user programs.

Spooling Commands for the User SYSTEM

START SPOOLING

@START-SPOOLING <peripheral file name>
(Restricted)

Starts the spooling program for the specified peripheral. The peripheral
will be reserved for the spooling program and the spooling program will
print every file linked to the spooling queue for that device until the
@STOP-SPOOLING command is used.

ND-60.050.06

3.8.1.2

3.8.2

3.8.2.1

3.8.2.2

If more than one version of the file is a peripheral, the spooling
programs for all peripheral versions of the file is started. One specific
peripheral may be selected by including a version number in the file
name.

An error message will appear if the specified file name is not the name
of a peripheral or if no spooling program exists for a specified
peripheral.

STOP SPOOLING

@STOP-SPOOLING <peripheral file name>
(Restricted)

Stops the spooling program for the specified peripheral and release the
peripheral from the spooling program. Any file currently being printed
by the spooling program will be completed before the spooling program
is stopped. The spooling queue is unaffected by the command and files
may still be appended to the queue. The spooling program will resume
printing the files in the spooling queue when the @START-SPOOLING
command is used.

Spooling Commands for Public Users

APPEND SPOOLING FILE

@APPEND-SPOOLING-FILE <peripheral file name>, <file name>,
number of copies

The file specified in the second parameter is appended to the spooling
queue for the specified peripheral. The specified number of copies of
the file is printed in due time on the peripheral.

DELETE SPOOLING FILE

@DELETE-SPOOLING-FILE <peripheral file name>, <file name>

The file specified in the second parameter is removed from the spooling
queue for the specified peripheral. Only user SYSTEM and the user

which appended the file to the queue can delete the file from the
queue.

ND-60.050.06

3.8.2.3

3.8.2.4

3.8.25

3.8.2.6

3.8.2.7

3—67

LIST SPOOLING QUEUE
@LIST-SPOOLING-QUEUE <peripheral file name>

List all the entries in the spooling queue for the specified peripheral.

ABORT PRINT
@ABORT-PRINT <peripheral file name>

Aborts the current print-out on the specified peripheral and let the
spooling program continue with the next file in the queue. The
command has no effect if the spooling program for a specified
peripheral is not started or if no file is being printed. Only user
SYSTEM and the user which appended the file to the queue can abort
the printing of the file.

RESTART PRINT
@RESTART-PRINT <peripheral file name>

Restart the printing of the file currently being processed by the
spooling program. The command has no effect if the spooling program
for the specified peripheral is not started or if no file is being printed.
Only user SYSTEM and the user which appended the file to the queue
can restart the printing of the file.

GIVE SPOOLING PAGES

@GIVE-SPOOLING-PAGES <number of pages>

Only a certain number of pages of the disk can be used by the spooling
files. This number may be increased with this command. Note that the
command does not guarantee that the disk space is available. This
command is only intended to limit the number of disk pages used by
the spooling system. 500 pages are initially given to the spooling
system.

TAKE SPOOLING PAGES

@TAKE-SPOOLING-PAGES <number of pages>

This command may be used to decrease the number of pages the

spooling files may use. The number of pages to be taken must be
unused.

ND-60.050.06

3—68

3.8.2.8 SPOOLING PAGES LEFT
@SPOOLING-PAGES-LEFT

Lists the number of pages left that can be used by the spooling files.

Note that the number given is an upper limit and that the disk space
may be used by other files.

ND-60.050.06

4.1

MORE ABOUT SINTRAN IiI
THE INTERRUPT SYSTEM

The structure of SINTRAN 11l is greatly simplified by use of the
different program levels in NORD-10. By running independent tasks on
different program levels, all priority decisions are determined by
hardware. This is extremely efficient because almost no overhead takes
place due to the rapid level switching.

The NORD-10 has 16 program levels. Each of these has a complete
register set, including A, D, T, X, B, L, P, Status and Paging Control
Registers (PCR). A change of levels needs only 0.9 microseconds.

An interrupt to a special level means that the corresponding bit in the
Priority Interrupt Detect (PID) register is set by an internal or external
condition. The bits in this register may be set by hardware or software
and cleared by software. A change to a special level is only legalized if
the corresponding bit in the Priority Interrupt Enable (PIE) register has
been set by the SINTRAN Il operating system itself, by an RT
program or by a direct task (see Section 4.6).

A change to a higher level is performed by hardware when an enabled
interrupt occurs. If two or more interrupts appear simultaneously, the
one with the highest priority (level) will be executed first. Interrupts to
levels lower than the one running will activate that level, when all
higher levels have given up priority, by executing the WAIT-instruction,
which results in a drop to a lower level.

SINTRAN Il uses the levels as follows:

15 Not used

14 Internal interrupt

13 Real time clock interrupt and driver
12 Input interrupt and drivers

1 Mass storage interrupt and drivers
10 Output interrupt and drivers

9

3 Free to be used for direct tasks (See Section 4.6)
6

5 Monitor

4 Free to be used

3 RT programs, Time-sharing and Batch programs

N

) Free to be used for direct tasks
Idle loop.

Level 15 is not used.

ND-60.050.06

4-2

Level 14 is activated by monitor calls (the MON instruction) or by
internal errors detected by hardware. Possible error conditions are:
power fail, memory out of range, memory parity error, I0X time out
error, privileged instruction, Z indicator is set, illegal instruction, page
fault and memory protect violation.

Level 13 receives an interrupt each 20th millisecond. This leads to an
updating of the real-time clock.

Levels 12-10 are activated by external 1/O interrupts. The appropriate
driver routine will be started. Interrupts concerning byte/word oriented
input operations have higher priority than interrupts related to mass
storage devices with direct memory access and byte/word oriented
output operations. The reason for this is that such input operations are
not always initiated and controlled by the SINTRAN IIl operating
system itself, but may also be activated by an external process or by a
keyboard operator.

Level 5 is occupied by the SINTRAN Il monitor, which performs all
administration jobs such as: starting up, aborting and terminating user
programs, reserves and releases resources, segment and page handling,
etc.

User programs are executed on level 3.

When an interrupt to a higher level occurs, the execution starts from
the instruction pointed at by the P register of that level. A short
interrupt analysis might take place and the most necessary and time
critical functions will be performed.

Normally, levels 10-14 complete their operations by activating the
SINTRAN Il monitor on level 5, which executes some administration
jobs, i.e., loads a new RT program, changes priority of background
programs, etc., before control resumes by a user program on level 3.

Level O is occupied by the idle /loop. This is a small program which
increments the D register with 1 each time it runs through the loop. By
displaying the D register of level O on the operator’s panel, it is possible
to observe the load of the activity in the NORD-10 computer. With no
other activity in the computer, the idle loop counts up the D register
completely, approximately 40 - 50 times per minute. This may be
measured exactly by watching how many times the most significant bit
of the D register lights up during one minute. This number may be
compared with the corresponding number when there is a certain
activity in the system. The quotient may, thus, supply the user with a
rough idea of the loading of the computer under certain conditions.

ND-60.050.06

The X register on level O contains the least significant part of the
internal clock and is incremented each 20th millisecond. The T register
contains the contents of the memory location addressed by the switch
register on the operator’s panel. This might be utilized to observe the
dynamic change of certain memory locations.

Levels 9 - 6, 4 and 2 - 1 are not covered by the SINTRAN Il
operating system but are free to be used by direct tasks (see Section
4.6). Programs implemented on these levels will run completely
independant of SINTRAN Il and may not use any monitor calls, files
or other facilities supplied by the operating system.

ND-60.050.06

4.2

4.2.1

4-4

MEMORY MANAGEMENT SYSTEM

The Memory Management System includes a paging system, a permit
protection system, and a ring protection system.

In SINTRAN Il the memory management system is used for the
following purposes:

1. Dynamic memory allocation and paging. The page size is 1K
words (= 1024 words).

2. Extension of maximum physical address space from 64K words
to 256K words.

3 Extension of maximum program size (virtual address area) to
64K word independent of the physical memory size.

4, Memory protection between parts of a program, detecting
attempts to modify read-only areas or executing data.

The smallest part to be given permit protection and ring protection is a
segment. (See Section 4.4.) The protection bits of a segment are set by
the RT loader when the segment is built.

The Users Virtual Memory Space

The Timesharing and Batch users running under the SINTRAN IlII
system may have a logical (or virtual) address space for a program up
to 64K, all on one segment. This virtual address space is normally
created by one of the loaders.

The transformation of a logical (virtual) address to a physical address is
performed by the paging system by means of the hardware page index
tables. (See Section 4.2.2)

The virtual address space is like a contiguous area, but the correspon-
ding physical pages may be scattered throughout the physical memory.
When a part of the program which is not in the memory is addressed,
the SINTRAN Il system will make it available in pages of 1K. If there
is no free page in memory, the SINTRAN IIl system will make space
available by writing one of the least recently used pages back on the
intermediate store. Thus, the programs in Timesharing/Batch mode
execute in a Demand-page mode, and may utilize less physical memory
than the logical address space should require, however, the turnaround
time will be longer due to additional reading and writing of intermediate
pages. (See Section 4.4.)

ND-60.050.06

4.2.2

In addition the SINTRAN Ill system uses a 4K system segment,
sharable between all terminals and batch processes, containing the
Command Interpreting Processor and some additional routines.

The Hardware Page Index Tables (PIT)

NORD-10 has four page index tables. Each of these contain 64 16-bit
words, thus, covering the full 64K virtual address space.

Each page index table contains one entry for each logical page, thus it
maps the full 64K virtual (logical) address space into the up to 256K
physical address space. 16-bits logical addresses are transformed into
18-bits physical addresses which consist of an 8-bits physical page
number (block number) and a 10-bits displacement.

Each entry in the page index table has the following format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

wpm| rpm | fpm | wip| pgu | ring physical page number
Figure 4.1.
Bits 0-7: Physical page number.
8 bits give a maximum of 256 pages.
Bit 8: Not used.
Bits 9-10: Ring number.

These bits decide which ring the page belongs to.

Bit 11: Page used.
This bit is automatically set by hardware whenever
the page is accessed and then remains set. The bit is
cleared by program.

Bit 12: Written in page.
This bit is automatically set equal to one the first
time a write into the page occurs and then remains
set. It is cleared by program (whenever a new page is
brought from mass storage). If this bit is set, the
page is written back to mass storage before it is
replaced.

Bit 13: Fetch permitted.
FPM = 0: Locations in this page may not be
executed as instructions.
FPM = 1: Locations in this page may be executed
as instructions.

ND-60.050.06

Bit 14: RPM = 0: Locations in this page may not be read
(they may be executed).
RPM = 1: Locations in this page may be read if
the ring bits allow.

Bit 15: Write permitted.
WPM = 0: It is impossible to write into locations in
this page.

WPM = 1: Locations in this page may be written
into if the ring bits allow.

The four hardware page index tables are used like this:

Page table O: {0 SINTRAN Il | System segments 64K
memory resident part ' used by operating system

Page table 1: I 28K }
RT programs memory commor

Page table 2: lf {
Background user area

Page table 3: F |
For special applications

Figure 4.2.

This means that a background program can address a virtual area of
64K, and so can an RT program, including the memory common area.

The lower part of the page index table O and the memory common
part of page index table 1 will be initialized at system start and will
never be changed, i.e., the corresponding pages will never be swapped
out of memory (resident memory). The other entries in the page index
tables will contain entries for the segments of the currently running
program. The unused table entries will contain zero, so that trying to
use their corresponding logical address will result in error.

The Page Index Tables are placed in a bipolar memory (high speed
memory), also denoted as shadow memory because it has addresses
from 177400 to 177777 (octal) and, thus, lies in the shadow of the
normal memory area with the same addresses. (See also Section 4.2.6.)

ND-60.050.06

4.2.3 The Paging System

The transformation of a 16-bits virtual address into an 18-bits physical
address is done by hardware when the Memory Management System is
switched on. To understand this transformation, for a moment
disregard the fact that there are four page index tables, but consider
Figure 4.3.

To address any location within a 1K address space (in this case 1 page)
10 bits are required. This part of the physical address represents the
displacement within a page and occupies bits 0-9. These bits are taken
directly from bits 0-9 of the virtual address.

Now bits 10-15 of the virtual address are used as an index to choose
one of the 64 entries in the page index table. From the selected entry,
the lower 8 bits that constitute a physical page number (one of 256
pages), are transferred to bits 10-17 of the physical address.

To decide which of the four page index tables to choose, two bits in
the paging control register, of the present interrupt level, are utilized by
the paging system.

For further explanation of the paging system, see ""Course Manual
UH10 - Introduction to NORD-10 CPU".

4.2.4 The Permit Protection System

The Read, Write and Fetch Permit Protection System is implemented
by defining, in bits 13-15 in each PIT entry, how the page may be
used. In hardware, this information is compared with the instruction
being executed, i.e. if it is load (read), store (write), instruction fetch
or indirect address.

Bit 15: WPM - Write Permitted.
If an attempt is made to write into a write protected
page, an internal interrupt (memory protect
violation) to program level 14 will occur, and no
writing will take place.

Bit 14: RPM - Read permitted.
If an attempt is made to read from a read protected
page, an internal interrupt (memory protect
violation) to program level 14 will occur, and no read-
ing will take place.

Bit 13: FPM - Fetch Permitted.
If an attempt is made to execute instructions from a
fetch protected page, an internal interrupt (memory
protect violation) to program level 14 will occur, and
the execution will not be started.

ND-60.050.06

4-8

Program Level Virtual Address
PIL — 4 bits ‘Logical page number (page number) Displacement within a page
15 10 9
2 bits 4 bits
0
RING A/S]SL _‘J Page Control Registers
2 bits
bi ' ’
15
Sector leg—P-rel.
2 bits |
PIT Select PT Entry
16 bits
1774008 0
PIT O 64 words
|
PIT 1 ‘I
PIT 2
PIT 3
Protect 1 Physical page number Eal PIT —address = Logical page numbe
e ™
8 bits 8 bits
1777778 3778
17 10 9 /

One of 256 pages Displacement within a page

Physical Address
Figure 4.3: Virtual to Physical Address Translation

ND-60.050.06

4.2.5

(See also Section 4.2.2 and Figure 4.1.)

Indirect addresses may be taken both from pages which have FPM = 1
and from pages which have RPM = 1.

All combinations of WPM, RPM and FPM are permitted. However, the
combination where WPM, RPM and FPM are all zero is interpreted as
Page Not In Memory and will generate an internal interrupt with the
internal interrupt code equal to Page Fault.

The smallest user area to be given permit protection is one segment (see
Section 4.4.).

The Ring Protection System

The Memory Management System includes a Ring Protection System,
where 64K virtual address space is divided into four different classes of

programs, or rings.

Two bits in each page index table entry are used to specify which ring
the page belongs to. Refer to Figure 4.1.

The ring bits have the following meaning:
Bit 10, 9
0 ORingO:
The program may only access (read or write) locations
with ring zero. This access is controlled by the RPM, WPM,
and FPM bits. Locations outside ring O are completely
inaccessible.

0 1 Ring 1:

The program may access locations in ring 1 and ring O.
Access is controlled by the RPM, WPM, and FPM bits.

1 O Ring 2:

The program may access locations in ring 2, 1 and 0. The
access is controlled by the RPM, WPM and FPM bits.

1 1 Ring 3:

The whole address space is accessible if not protected by
the RPM, WPM and FPM bits.

ND-60.050.06

4-10

An illegal ring access will cause an internal interrupt (memory protect
violation) to program level 14, and the instruction which caused the
interrupt will not be executed.

The recommended wayv of using the ring bits is as follows:

Ring O: User Programs

Ring 1: Compilers, Assemblers
Ring 2: Operating System (Utilities, Commands)
Ring 3: Kernel of Operating Systems

Associated with the ring bits in a PIT entry are the two ring bits in the
current program level’s Paging Control Register — PCR.

Before a program can start executing, the PCR on relevant program
level is loaded by the Operating System with information as to which
PIT, Alternative PIT and Ring is to be used. The program’s PIT must
also be loaded by the Operating System prior to execution. When
execution starts, the ring bits in the PCR will be compared with the
ring bits in the PIT entry, by hardware. The two rings should always be
equal, otherwise an internal interrupt will be generated. (Except when
going from a higher to a lower ring.)

By utilizing the four-mode ring protection system, SINTRAN IlI offers
an efficient protecting system. A program which is placed on a specific
ring cannot be accessed by a program that resides on a ring of lower
priority.

This system is used to protect RT programs on a higher ring from RT
programs on a lower ring, and to protect the memory common area
from RT programs on ring 0. Ring 3 and ring 2 are used for the system
kernel and its subsystems (Operator Communication, RT Loader, File
Management, etc.), while ring 1 and ring O are used for user RT
programs. Timesharing/batch programs run on ring 0. The user pro-
grams are individually protected by the paging system. The smallest
user area to be given ring protection is one segment. (See Section 4.4.)

In addition to these protect features, the ring protection system equips
SINTRAN Il with a set of privileged instructions legal only on ring 3
and ring 2, for use by SINTRAN Ill's kernel and its subsystems, and
for RT programs which may execute some of the privileged instruc-
tions. These instructions are of the type which could be disastrous if
executed by a user’s program. For any on-line system with a large
number of potentially undebugged programs, this protection system is
extremely important. Direct tasks (see Section 4.6) will reside on ring
2.

ND-60.050.06

4.2.6

4-11

Privileged Instructions

In a multiuser-multitask system, a user is not permitted to use all
instructions in the instruction set. Some instructions may only be used
by the Operating System, and this category of instructions is called
Privileged Instructions.

Privileged Instructions:
- Input/Output instructions.

- All instructions which control the Memory Management and
Interrupt System.

- Interprogram level communication instructions.

The only instruction the user has available for user-system communi-
cation is the Monitor Call Instruction — MON. The MON instruction
may have up to 256 different parameters or calls. When the machine
executes the MON instruction it generates an internal interrupt. A list
of the monitor calls is given in Appendix B.

The privileged instructions may only be executed on rings 2 and 3, i.e.,
only by SINTRAN Il or by RT programs placed on ring 2. If programs
on ring O and 1 try to execute any privileged instruction, an internal
interrupt to level 14 will be generated, and the instruction will not be
executed.

The Page Index Tables may only be accessed (read from or written
into) by software, either by programs residing on ring 3 or by any
program while the Memory Management System is switched off. When
the Memory Management System is switched off there is no hardware
checking of the permit protection and ring protection bits and no
control of privileged instructions. In this case, the physical address is
equal to the virtual address.

ND-60.050.06

4.3

4-12

REAL-TIME PROCESSING

Real-time processing allows the user to perform time dependent and
time critical work that requires very rapid information processing.
Real-time processing is used primarily in applications where data
gathered during a physical process must be inputed and operated upon
so quickly, that the results can be used to influence the process as it
develops. Real-time processing is also used in many on-line commercial
applications where a guaranteed response time is required.

A real-time program, called RT program, generally responds to or
controls external events. Under real-time processing, there are four
principal methods of activating programs.

external interrupts
- program requests
- operator’s requests and
- time scheduling.

The programs may have a full range of executing times, frequencies and
start conditions. The system ensures that the most important RT
program will always be run first by providing 256 program priority
levels with any number of programs on each level.

The priority range is 0-255. However, an RT program with priority O
will never be executed, because a system RT program called DUMMY is
always present, running with priority 0. Time-sharing and batch jobs
run on priority levels 16, 32, 40 and 48 (20g, 40g, 50g and 60g).

Each RT program has an RT description, which contains information
about the RT program needed by the system. An RT description
occupies 20 locations and all RT descriptions are set up in a contiguous
table in resident core, the RT description table. The size of this table is
specified at system generation time. The RT loader will create the RT
description at load time of an RT program. An RT program is specified
by the address of its RT description or by the program name. There
will always be some system RT programs included in a SINTRAN II1
system, one for each terminal which may be used as a timesharing
terminal, one for each batch process and some other system RT
programs.

Because the RT programs are activated at random points of time,the.
situation might occur that two or more programs want to start at the
same time. The natural way of administrating this problem is to list the
RT descriptions of the programs to be executed in an execution queue,
where some programs are waiting while another is being processed.

ND-60.050.06

4-13

The RT descriptions in the execution queue are sorted by priority. A
program which- must be activated rapidly, should be given a high
priority, so that its RT description is placed before the others in the
execution queue. An RT program may also interrupt the present
running program when this one has a lower priority. But the real-time
monitor stores away information, so that the interrupted program may
continue afterwards.

As mentioned in this section, an RT program may be scheduled for
execution at a certain point in time. The RT descriptions of these
programs, that are waiting for activation in this manner, are listed in
the time queue. In this queue the RT descriptions are sorted by starting
time. When the activation time for an RT program occurs, its RT
description is moved from the time queue into the execution queue. An
RT description may also be entered directly into the execution queue
without passing through the time queue.

A detailed description of how to administrate RT programs is given in
Chapter 5.

A description of the real-time monitor calls available in MAC, NORD
PL and FORTRAN and a description of the commands in the RT
loader are given in Chapter 7. The RT Loader is described completely
in a separate manual.

ND-60.050.06

4.4

4-14

PROGRAM STRUCTURE — SEGMENTS

The basic program concept is the segment. A segment is a contiguous
and limited virtual address area (on mass storage). At execution time,
the segment (or part of it) is loaded to memory. A virtual address area
is an image of the memory. There may be many of these images (many
segments). The image of the memory may be greater than the physical
memory. A segment is limited to 64K because the maximal magnitude
of a virtual address space is 64K. (64K is the possible space to address
with 16 bits.) A program which has a program area of 64K and a data
area of 64K cannot be effectuated under SINTRAN IlI, but only on a
NORD-10 computer without SINTRAN III.

In physical core, a segment may be scattered because of the hardware
paging system. A segment will always consist of a multiple of entire
pages of 1K words.

A segment is specified by its number, the segment number. The
segment number range is from O to 254, but the maximum segment
number range available in a SINTRAN Il system is specified at system
generation time (when the operating system is compiled).

Each segment has a segment description containing necessary infor-
mation about the segment needed by the system. A segment description
occupies 5 locations and all segment descriptions are set up in a
contiguous table in resident core, the segment table. The segment
description is set up by the RT loader and put into the table when the
segment is built.

— A segment may consist of a set of ireentrant subroutines used by
different RT programs.

— A segment may consist of common data areas for different RT
programs.

— A program may have its code on one segment and its data on the
other.

— Several RT programs may be on the same segment.
There are two types of segments:

- Non-demand segments, all of which must be in core before the
program can be started.

— Demand-segment, only part of which is needed at a time. If a

page fault interrupt occurs, the monitor will fetch the missing
page, and the program will continue.

ND-60.050.06

4-15

Non-demand segments are normally used for real-time programs,
because of short and well-defined transfer times and fast monitor call
handling.

Demand segments are used when a segment is too big to be in core at a
time. The "users area” of all timesharing/batch jobs are demand
segments.

The segment type is determined by the programmer through the RT
loader at load time.

An RT program may,concurrently, have a maximum of two segments in
the virtual memory. These segments should not overlap. The initial
segments used by an RT program are decided when the RT program is
loaded. One or both segments may be temporarily exchanged with
other segments during the execution of the RT program, using the
monitor calls MCALL and MEXIT. Whenever an RT program is started
again, it uses its original initial segment numbers. The technique of
exchanging segments may be used for program segmenting.

The smallest user area to be given permit protection and ring protection
is one segment. This implies that all pages belonging to the same
segment have the permit protection and ring protection bits set equally.
The protection of a segment may be determined by the programmer at
load time through a special command to the RT loader.

A segment can be fixed in memory by means of a monitor call so that
it will not be swapped out until it is released again.

In addition to the segments, the RT programs may also have access to a
memory resident common data area. This area is placed on protection
ring 1, so that programs on ring O cannot access this area. The size of
the memory common area is specified at system generation time.

The SINTRAN 11 system itself uses the following segments:

Octal
Segment
Number
0 Used by the monitor
1 Used by the monitor
2 Core image
3 Operator Communication segment
4 RT Loader segment
5 Error Program segment
6 File Management segment
7 MACD segment
10 System segment, Terminal |

11 User’s segment, Terminal |
12 User’s segment, Terminal |

ND-60.050.06

4-16

There will also be one system segment and one user segment for each
additional terminal used for timesharing and for each batch process.

ND-60.050.06

4.5

4.5.1

4-17

RESERVATION OF LOGICAL UNITS (RESOURCES) FROM RT
PROGRAMS

Logical units may be:

I/0 devices
Semaphores

Internal devices

All logical units must be reserved before they may be used by an RT
program.

They are reserved as follows:

1. by the RT program itself, using Monitor Call RESRV,
2. from another RT program using Monitor Call PRSRV,
3. form a terminal by the commands RESRV and PRSRV.

All resources (I/0 devices, semaphores, internal devices, etc.) used by
an RT program must be reserved for the RT program by the monitor
calls RESRV or PRSRV, before the RT program is allowed to use the
resources. If the resource is already reserved by another RT program,
the RT program trying to reserve the resource may be set in a waiting
state until the resource will be free, or the RT program may continue
without using the actual resource. (See monitor calls RESRV, PRSRV,
Section 7.7.1.) The resources reserved by an RT program will,
normally, be released when the RT program is terminated, or the
resources may be released by the monitor calls RELES or PRLS. The
resources reserved by an RT program will not be released if the RT
program has given up control of its latest execution with the monitor
calls HOLD or RTWT.

Semaphores

A semaphore is a binary variable which can have one of two
values: reserved or unreserved.

A semaphore represents a resource that RT programs may reserve and
release. The semaphores are used when logical units or program units
are looked upon as common resources for other RT programs. The
calling RT programs utilize a semaphore by reserving and releasing it tc
prevent other RT programs from a concurrent use of the same resource.

For instance, if a reentrant RT program system contains a nonreentrant

subroutine, a semaphore may be used to prevent a concurrent execu-
tion of this nonreentrant subroutine.

ND-60.050.06

4.5.2

4-18

Semaphores may also be utilized in an RT program system to avoid a
simultaneous updating of global data (for instance memory common)
by two or more RT programs.

There is a one-to-one relationship between a semaphore and a resource
given by the designer of an RT program system.

The semaphores are free to be utilized by different RT programs
wanting to reserve resources.

A semaphore consists of 4 memory locations (words) in resident
memory, the first of which points to the next element in the
reservation queue of resources reserved by the same RT program. The
third location points to the RT description of the first waiting program,
if any. In this respect, semaphores are also utilized for creating a
waiting queue of RT programs wanting to reserve a resource already
occupied.

Semaphores have the logical number 300g - 377g, but the actual
number of semaphores available in a SINTRAN 111 system is decided at
system generation time.

Files and RT Programs

Before any use of files is permitted in RT programs, the command
RTENTER must have been executed at least once after the system is
started.

An RT program may use the files in the same way as a
time-sharing/batch program, i.e., all monitor calls concerning files are
available in RT programs, except RDISK and VDISK.

An RT program simulates the user RT to the file system, i.e., if an RT
program uses a file name in a monitor call without specifying the file
owner’s name, the file system will act in the same way as if the user
RT was logged in and specified, the same file name from a time-sharing
program.

A mass storage file opened by an RT program is open for all RT
programs in the system.

Peripheral files (line printers, tape readers, etc.) are usually used from
RT programs without using the file management system. Peripheral files
are reserved by RT programs and then operated upon, without being
opened. Mass storage files should be reserved as a logical unit.

There is a difference between the CALL OPEN statement (open file)
used in ordinary FORTRAN, where the calling program assigns a file
number to the file, and the use in reentrant FORTRAN, where the
program must utilize the file number returned from the file manage-
ment system.

ND-60.050.06

In ordinary FORTRAN, the file number given by the programmer is
not used internally, but there will be a correspondance between the
internal file number and the number given by the programmer. RT
programs wanting to use a file opened by another RT program should
use the internal numbers! which are 1008 for the first opened file,
for the second, 1028 for the next, etc. (This correspondence is
established by the FORTRAN run time system, which receives the

101g

4-19

internal file number from the file management system.)

Examples:

1.

Example 1 is to be conpiled in normal mode. The file nunber 150 is

PROGRAM COPEN, 25

DIMENSION IARRAY (512)

INTEGER OPEN, RFILE

IBLOCK =0

NWORD = 512

IERR = OPEN ('DATA REGISTER:DATA ’,150,2)
IF (IERR.NE.O) GO TO 10

IERR = RFILE (150, O, IARRAY, IBLOCK, NWORD)

PROGRAM COPEN,25

DIMENSION IARRAY (512)

INTEGER OPEN, RFILE

IBLOCK =0

NWORD = 512

IERR = OPEN ('DATA REGISTER:DATA ’,IFILE,2)
IF (IERR.NE.O) GO TO 10

IERR = RFILE (IFILE, O, IARRAY, IBLOCK, NWORD)

PROGRAM COPEN, 25

DIMENSION IARRAY (512)

INTEGER OPEN, RFILE

IBLOCK =0

NWORD = 512

IFILE = 150

IERR = OPEN ('DATA REGISTER:DATA ’,IFILE,?2)
IF (IERR.NE.O) GO TO 10

IERR = RFILE (IFILE, O, IARRAY, IBLOCK, NWORD)

given by the programmer.

Example 2 is compiled in reentrant mode. The variable IFILE will
contain the file number after the OPEN call. The file number is given

by the file system.

Caution: The command RT to the FORTRAN compiler generates
reentrant code. “RT"”, in this connection, does not mean ''Real-Time''!

Example 3 will work in both cases.

ND-60.050.06

4.5.3

4-20

Internal Devices

An internal device has two data fields, with one common ring buffer,
used for communication between RT programs. The size of the ring
buffer and the number of internal devices available in a SINTRAN 11
system is established at system generation time. The internal devices are
byte oriented, i.e., one byte at a time will be transferred to/from the
internal devices (ring buffers). Optionally, 16 bits words in each
INBT/OUTBT monitor call can be transferred.

To understand the concept of ring buffers, imagine two routines or
programs, one is writing into the buffer, the other is reading from it.
When the writing routine comes to the end, it starts from the beginning
again if the reading routine has read some characters already and, thus,
made some space available at the top of the ring buffer. The reading
routine acts in a similar way. Having reached the end, it continues
reading from the top of the buffer if there are some characters to pick

up.

This is administrated by means of two pointers, a write pointer and a
read pointer. The ring buffer is empty when the read pointer reaches
the write pointer and is full when the write pointer reaches the read
pointer. Both of these situations cause the calling RT program to enter
a waiting state. Special monitor calls (ISIZE, OSIZE) give the actual
number of bytes occupied in the ring buffer, and may then be applied
to avoid the waiting state. (See Section 3.6.1.)

The RT programs using an internal device, must reserve the device and
then use the monitor calls INBT/QUTBT to access the internal device.
From a FORTRAN program, the internal device may be accessed in the
same way as an ordinary peripheral device (Teletype, line printer, etc.),
using READ/WRITE, INPUT/OUTPUT or CALL INCH/OUTCH state-
ments. The internal devices have the device numbers 200g - 277g, but
the actual number of internal devices in a SINTRAN IIl system is
decided at system generation time.

A data field is an internal table containing information about the
corresponding device (in this case, the ring buffer). The data field is
used by the SINTRAN Il operating system for administration of the
device.

ND-60.050.06

4.6

4.6.1

4.6.2

4-21

DIRECT TASKS

A Direct Task is a routine running on one of the free interrupt levels 1,
2,4,6,7, 8, or 9. A Direct Task may be started by an RT program by
activating (by the instruction MST PID for instance) the interrupt level
where the Direct Task is placed. Otherwise, a Direct Task will run
independent of the SINTRAN 11/ System, and a Direct Task cannot use
monitor calls, files or other facilities in SINTRAN 111, I a Direct Task
is running on a higher interrupt level than the SINTRAN [l monitor
(usually level 5), the SINTRAN I1l monitor will not be restarted before
the Direct Task has terminated, by giving up the priority (by the WAIT
instruction for instance), while a Direct Task running on a lower
interrupt level than the RT programs (usually level 3) will not be active
unless there are no other activities in the system.

The Implementation of a Direct Task into a SINTRAN 111 System

First, the direct task routine must be loaded to a segment using the RT
loader. Then, the routine should be fixed in core by using the monitor
call FIX or FIXC. Finally, the ENTSG monitor call should be used to
enter a direct task or a driver routine into the operating system. (See
Section 7.7.1.) The given page index table may be different from the
page index table set by the RT loader. This means that the segment
may be reached through two page index tables, simultaneously, with
different protect settings. The ENTSG monitor call will always set read,
write and fetch permitted in the page index table.

The start address will be put into the P register of the specified
interrupt level.

A new driver routine on interrupt level 10, 11, 12, or 13 may be
entered into a SINTRAN |1l system in the same way as a Direct Task,
but datafields and entries in the logical unit number tables must be
established at system generation time, or by use of MACM before the
SINTRAN [l system is started.

Calling RT Programs from Direct Tasks

When a Direct Task wants to start an RT-program, a subroutine in
SINTRAN Il can be called:

LDA (ELEM
JPL | (RTDIR % SINTRAN Il SUBROUTINE

ELEM, RTPRG; 0; 0; 0; 0;

The A-register points to an element of 5 locations. The first is a pointer
to the RT description of the RT-program; the rest is used for working,
space for RTDIR.

ND-60.050.06

4.6.3

4-22

Since RTDIR is on page index table O, and the parameter element is
also on page index table O, this mechanism can be used directly only
from Direct Tasks on page index table 0. However, using level 14 and a
few locations on PIT O, it can be used also from other page index
tables, for example number 3.

Example:

% Code on page table 3

IOF

LDA RTDSC % POINTER TO RT-DESCRIPTION

IRW 160 DT % SET REGISTER ON LEVEL 14

LDA (ADDR1;!RW 160DA % ADDRESS TO PARAMETER EL-
EMENT

LDA (PRTDR;IRW 160 DP % ROUTINE ON PAGE TABLE ZERO

LDA (40000; MST PID % ACTIVATE LEVEL 14

ION

% SOMEWHERE ON PAGE INDEX TABLE ZERO:
% ROUTINE ON LEVEL 14:

PRTDR, COPY SA DX

STT, X % STORE INTO ELEMENT
JPL | (RTDIR % SINTRAN 111 SUBROUTINE
WAIT

JMP | (ENT14 % SINTRAN Il ROUTINE
JFILL

% PARAMETER ELEMENTS ON PAGE TABLE ZERO
% ONE FOR EACH DIRECT TASK

ADDR1, 0; 0; 0; O

ADDR2, 0; 0; 0; O
ADDR3, 0;0; 0; 0

’ ’

’ ’ ’

Activation of Direct Tasks from Interrupts

A general driver to activate direct tasks has been implemented. Each
level has a logical number with a corresponding data field. The numbers
are:

440g - level 6
4418 - level 7
442g - level 8
443g - level 9

ND-60.050.06

4-23

If, for example, level 7 should be activated by a certain CAMAC
interrupt, the monitor call ASSIG can set up the connection:

CALL ASSIG (441B, LAMX, ICRATE)
(See Chapter 3.10.)

In this case, all patching is avoided. If the direct task should be started
by a non-CAMAC interrupt, the data field pointer must be put into the
proper IDENT or EXTEND table.

The driver increments a location in the data field each time an
interrupt occurs. This can be used by the direct task to detect whether
some interrupts have come too fast to be processed by the direct task.
If the direct task wants to check this, the exit sequence can be as
follows:

DISP 4;INTEGER LEV, COUNT;PSID % in data field
*IOF
COUNT —1 = :COUNT

IF =0 THEN LEV; *MCL PID % give up level
Fl

*ION

GO START % next execution

Page index table 3 is available for direct tasks. On page index table 0
the available area starts on the first page following the core resident
section and goes up to location 67777g.

ND-60.050.06

5.1

THE USER RT
THE PURPOSE OF THE USER RT

A number of programs will normally be run as Real Time programs
(RT programs). RT programs are discussed in Chapter 7.

Examples of programs which would be implemented as RT programs
are:

programs which should be started and executed within a given
time interval

programs which should be started and executed when an external
event (interrupt) occurs

programs which should be started and executed on demand from
another RT routine

programs that should have higher (or lower) priority than
timesharing users

- etc.

These programs will affect the total SINTRAN Il system, seen by a
timesharing user:

availability of the system$ resources (CPU and peripherals will be
reduced)

the CPU time is not timesliced between RT programs. They are
run solely on a priority basis. The RT program with the highest
priority and something to do will always be running. The
response time for timesharing users may, therefore, be affected.

- as will be shown in Chapter 7, some RT programs may be
allowed to execute all NORD-10 instructions, and thereby even
stop the system

It is, therefore, clear that RT programs should be handled with some
care, and that a good knowledge of the operating system and install-
ation is required to implement such programs.

A special timesharing user, user RT, is allowed to supervise the RT
programs. This user acts like any other timesharing user to the system.
It has the same rules for logging in and out, has space for files and may
execute programs in timesharing.

ND-60.050.06

The difference, compared to other users, is the availability of an
extended command set. The extra commands give the necessary control
functions.

It is important to distinguish between user RT, who is a timesharing
user with some privileges (commands), and the RT programs which are
self-contained programs that can execute independent of timesharing
users and terminals.

The function of user RT is to load the RT programs, debug them in
real-time, supervise the execution of the programs and be responsible
for the files used by the RT programs. In the following paragraphs, all
commands are listed which are special for user RT.

ND-60.050.06

5.2

THE REAL-TIME LOADER

All RT programs must be loaded onto segments by the RT loader as
described in Section 7.6.

The loader is activated by the command

@RT-LOADER

and will answer by typing its version number.

User RT must have Write and Append access to a file named

RTFIL:DATA, owned by the user SYSTEM, in order to be able to use
the RT LOADER.

ND-60.050.06

5.3

FILE HANDLING COMMANDS

To set up RT programs as a user of files, the following command must
be given

@RTENTER

This must be done before any file can be used by RT programs, and
every time the system is restarted. However, if the command
INITIAL-COMMAND has been given before the system was last started,
the RTENTER command is not needed.

When an RT program accesses a file, user RT is simulated to the file
system. [f no owner is specified in the file name, user RT is assumed to

be the owner.

The above command has no effect on user RT’s access to the file
system as a timesharing user.

The command
@RTOPEN-FILE <filename> <open access>

works like the OPEN-FILE command, except that the file is opened for
use by RT programs, not for the logged on user.

The returned file number can be used by all RT programs for accessing
the file.

Note that files can also be opened by calls from an RT program. These
files will be accessible from all RT programs by using the returned file
number.

Example:

@RTOPEN-FILE DATAFIL1, RX
FILE NUMBER IS 100

Blocks from DATAFIL1 can now be read by all RT programs using
100g as file number.

The command

@RTCONNECT-FILE <file number> <file number> <8pen access>

acts like the previous command, except that the file number to be used
is supplied in the command. If the file number is out of range or already
used the file will not be opened.

ND-60.050.06

5-5

@RTCLOSE-FILE <file number>
will close the specified file for real-time programs.
@LIST-RTOPENED-FILES

will list all files opened for RT programs.

ND-60.050.06

5.4

THE LOOK-AT COMMAND

As seen in Section 3.3.6.2, contents of the memory, or the exact
contents of the 64K program area, may be examined and changed by
the LOOK-AT command. This command is more powerful for user RT,
the exact syntax being :

@LOOK-AT <area>

where <area>> may be:

MEMORY': the users 64K address area, exactly as for other users.
SEGMENT <number>: one of the program segments.

RTCOMMON: core common area for RT programs.

By this command locations in the loaded programs may be inspected
and changed and core common areas may be addressed. This feature is
useful for debugging and checking of state and inspecting variables in

running programs.

(This command is also mentioned in Sections 3.3.6.2 and 6.4.3.)

ND-60.050.06

5.5

5—7

MONITOR COMMANDS

When running programs in timesharing mode, user RT cannot run
programs that cannot be run by any other user. As will be shown in
Chapter 7, RT programs may use some monitor calls not available for
timesharing users. Some of these monitor calls may be given as
commands by user RT and are listed here. Only the syntax and one
example is given for each. The calls are described in more detail in
Section 7.6.

@RT <program name>

@RT KLOKK will set the program KLOKK up for immediate
execution, i.e., put the RT description into the execution queue.

@SET <program name> <time> <time unit>

@SET KLOKK, 5.3 will set KLOKK up for execution in 5
minutes. The RT description will be put into the time queue.
Five minutes later it will be moved to the execution queue.

@ABSET <prog. name> <second> <minute> <hour>

@ABSET KLOKK, 0,10,13 will set KLOKK up for execution at
1210 PM (13:10). The RT description will be put into the time
queue. At 1210 PM it will be moved to the execution queue.

@INTV <prog. name> <time> <time unit>

@INTV KLOKK 30,2 will be prepared for execution every 30
seconds. First, the RT description will be put into the time
queue. 30 seconds later it will be moved to the execution queue
and at the same time put into the time queue again for a new
execution another 30 seconds later. This will be repeated
periodically. The sequence of executions may be stopped by the
command @DSCNT.

@ABORT <prog. name>
@ABORT KLOKK will abort program KLOKK if it is running, or
in waiting state, remove it from the time queue and execution
queue, release all resources and prevent periodical execution.
@CONCT <prog. name> <logical unit>
@CONCT KLOKK, 410B. The RT description of KLOKK will be

put into the execution queue every time an interrupt occurs on
device 4108.

ND-60.050.06

@DSCNT <prog. name>

@DSCNT KLOKK. AIll connections made by CONCT are
disconnected. Interval execution is prevented. The RT description
is removed from time queue.

@PRIOR <prog. name> <priority>

@PRIOR KLOKK, 112 will set the priority of KLOKK to 112.
This is useful to decide the urgency of the program KLOKK.

@UPDAT <minutes> <hours> <day> <month> <year>
The watch and calendar will be given new values. Otherwise, they
are updated by a special clock routine in the monitor which
regards, for instance, leap years.
@UPDAT 20,10,27,6,1976 will set current date to June 27, 1976
at 10:20.

@CLADJ <time> <time unit>
The watch and calendar will be set forward if the <time> is
positive, backwards when negative.
@CLADJ 5,4 will advance the clock by 5 hours.

@F I X <segment number>
The segment will be fixed in core.
@FIX 35 will fix segment 35 to the memory, i.e., it is not
allowed to be swapped out.

@UNFIX <segment number>

The segment will not be fixed in core.
@UNFIX 35. Segment 35 may be swapped again.

@F1XC <segment number> <first physical page>

@FIXC 40,50 will fix segment 408 to a continuous area in
memory, starting at page 50g, i.e., address 120000.

@PRSRYV <logical unit> <read/write> <prog. name>

@PRSRV 9,1 KLOKK. The output part of device 11g (TTY 2) is
reserved for KLOKK.

@PRLS <logical unit> < read/write>

@PRLS 9,0. The input part of device 11g is released from the
RT program having reserved it.

ND-60.050.06

@RTOFF <prog. name>

@RTOFF KLOKK. KLOKK cannot be started until an RTON is
given.

@RTON <prog. name>

@RTON KLOKK. The status set by RTOFF is removed, KLOKK
may be started again.

@ENTSG <segment no> <page index table> <interrupt level> <start
address>

@ENTSG 42,3,9,30000B. The program on segment 42g will be

entered to run as a direct task on page index table 3, interrupt
level 9, location 030000 is the start address of the program.

ND-60.050.06

5.6

5-10

UTILITY COMMANDS

The command

@LIST-TIME-QUEUE

will list on the terminal all programs that are in the time queue.
In the same way

@LIST-EXECUTION-QUEUE

will list on the terminal all programs in the execution queue.

In the above commands, as well as in some error messages, RT
programs may be defined by an octal address instead of a symbolic
name. The address is in this case the address of the RT description for
this program. By the command

@GET-RT-NAME <octal address>

the supplied address will be translated to a symbolic name, if such a
name exists. (In addition to some internal programs in SINTRAN there
is one RT program for each terminal and batch processor. These
programs have two names.)

The command
@LIST-RT-DESCRIPTION <RT name>

will cause the information contained in the RT description of that
program to be listed on the terminal. The information will be:

- ring number
- priority
- when it was last started
length of interval when periodical
starting address
segment numbers
register contents
active/passive and
actual segments.

ND-60.050.06

5-11

The command

@LIST-SEGMENT <segment number>

will give a list of the first page number. This will include?
- length

- unit

mass storage address and
the status of the permit protection.

ND-60.050.06

6.1

THE USER SYSTEM
THE PURPOSE OF THE USER SYSTEM

In any installation used by a number of different users, some central
supervision over the installation is needed. These supervisory functions
are system start and stop, installing a version of the operating system or
a subsystem, aborting “wild”" programs, establishing new users, control-
ling the use of mass storage, etc.

In SINTRAN 11l these functions are monitored by user SYSTEM. This
user has his own password and space for files and may, like any other
timesharing users, run jobs using the same commands and monitor calls.
User SYSTEM may log in from any terminal in the installation and
may, like other users, he active from more than one terminal at the
same time.

The difference compared to the other users is that the command set for
user SYSTEM is a super-set of the commands available to other users.
The extra commands are used for supervisory functions. To obtain easy
access to the common resources (peripherals and subsystems, QED,
FORTRAN) of the installation, the user SYSTEM is normally the
owner of peripherals and system programs. The area of the user
SYSTEM is automatically searched when another user refers to
common resources (file names) not found in his own area.

Because of the powerful commands available, only a few persons using
the installation should know how to log on as SYSTEM. Those persons
should have a good knowledge of the installation and SINTRAN. In
fact, user SYSTEM has more or less the same functions as the console
operator in other computer installations.

It should be noted that when referring to the console terminal in
SINTRAN 11I, the terminal with the lowest device number (normally
Teletype 1/Display 1) is meant. This terminal is different from the
others in three respects:

1. Error messages from RT programs and SINTRAN are always
printed on Teletype 1. (Optionally, this may be altered to
another terminal.) A list of the error messages is given in
Appendix D.

2. When the computer is in STOP mode, the built in microprogram
can only be reached from this terminal.

ND-60.050.06

When the command
@SET-UNAVAILABLE

is given it is impossible to log in from terminals other than ter-
minal 1. This condition may be reset by the command

@SET-AVAILABLE

Both commands are restricted to user SYSTEM.

ND-60.050.06

6.2

6.2.1

DIRECTORIES

A complete file system may consist of one or more directories. Each
mass storage device maintained by the file management system has its
own directory, and is completely independent of all other devices.
Devices (disk packs, magnetic tapes, etc.) may be moved to other
installations and used there.

Each directory is identified by a unique name (up to 16 characters)
which is given when the directory is initialized. The name and some
other vital information (pointers to users registered on the directory,
user files, the number of reserved and used pages, etc.) is saved on the
actual device. Before the directory can be used, it must also be
"entered’. In the ENTER command, the device will be checked
whether or not a directory with the given name is mounted on the
specified unit. If it is, the directory with its files is made available for
use.

The first directory entered is defined as main directory. This directory
cannot be released if any user is logged on. All users of the file system
must be users in main directory. {f no directory name is specified in a
command the main directory is usually assumed.

Files on an entered directory may be accessed (read, written, or
created) by using the directory name as a prefix to the file name. Any
number of entered directories may be set as default directories. Default
directories are used when no name is specified in the commands for
creating and accessing files. Main directory is always default directory.
If a user has space in more than one default directory, the directory
name must be given as part of the file name. Each user is, normally,
given space in only one default directory.

Initializing a Directory

A directory is created by the command:

@CREATE-DIRECTORY <directory name>, <device name>, [<unit>],
[<fixed or removable>]

Example:

To create a directory called TAPE 1 on the magnetic tape mounted on
tape station O, (numbering starts at 0) type

@CREATE-DIRECTORY TAPE1, MAG-TAPE, O
To create a directory on the fixed cartridge on disk unit 1, type

@CREATE-DIRECTORY PACK4, DISK, 1, F

ND-60.050.06

6.2.2

Fixed or Removable is relevant for the 9.2 M bytes cartridge disks
only.

Note: If only one unit (No. 0) is installed, the unit number is neither
necessary nor legal in the command.

When the command is executed, the directory name is written on the
first page of the device. If the device is a disk or drum, it is tested for
bad spots (tracks), and a Bit File is created. The bit file has one bit for
each page on the unit. This bit is set to one if the page is occupied. On
a cartridge disk, the bit file is allocated in the middle of the disk, the
maximum length of a contiguous file is, thereby, half the total length
of the disk.

An old directory will be completely destroyed if a new directory is
created on the same device and all old files will be lost.
Enter, Set-Default and Release Directory

When a device (disk pack or magnetic tape) is mounted, it must be
activated. This is done by the command:

@ENTER-DIRECTORY <directory name>, <device name> [,<unit>]
[,<'F' or ‘R">]

Example:
To enter the magnetic tape created in the previous paragraph, one types
@ENTER-DIRECTORY TAPE1, MAG-TAPE, 0

If the specified name matches the name found on the device, the
directory is entered, otherwise an error message is given.

To set a directory as default directory one uses the command
@SET-DEFAULT-DIRECTORY <directory name>

If a directory is not a default directory, the directory name must be
given as a prefix when accessing files on this directory. This is also true
if a user has space in more than one default directory.

A directory is released by the command

@RELEASE-DIRECTORY <directory name>

A directory may only be released if no files are opened on the
directory.

ND-60.050.06

6.2.3

6.2.4

6—5

After the directory is released, it may be entered again, or another
device may be mounted on the unit.

Statistics Commands

The command

@LIST-DIRECTORIES-ENTERED <directory name> < output file>

will list the names of entered directories and where they are mounted,
e.g.

@LIST-DIRECTORIES-ENTERED P, TERMINAL

will list all directories with names beginning with P on the terminal,
while,

@LIST-DIRECTORIES-ENTERED,,LINE-PRINTER

will list all entered directories on the line printer.

The command

@DIRECTORY-STATISTICS <directory name>, <output file>

will give unit number, directory status (default, main), unreserved and
unused space on the specified output device.

These commands may, like all statistical commands, be given by any
user, but are of special interest to user SYSTEM.
Directory Back-up

In all installations, back-ups should be taken regularly to obtain
necessary security.

There are, in principle, two reasons for taking back-up:

1. All systems may fail sooner or later either in hardware or in
software.
2. User errors: A user may destroy one or more of his files by

giving wrong commands, e.g., a DELETE-FILE command with a
wrong file name, or written onto a file instead of read from it.
User SYSTEM may even give the command
CREATE-DIRECTORY instead of ENTER-DIRECTORY when a
device is mounted. If no back-up is kept, all files on the
directory would then be lost.

ND-60.050.06

6.2.4.1

6.2.4.2

There are two different ways of taking backup:

- stand alone programs, or
commands to the file management system.

STAND-ALONE PROGRAMS
Two stand-alone programs are available:

- DIMS (Disk Maintenance System) has a copy command that may
be used for copying one complete disk pack to another. The
program is delivered with a users guide.

- MCOPY is a program for copying of disks and drums to and
from magnetic tapes. (Example: MCOPY can copy a complete
disk pack to a magnetic tape and copy it back when necessary.)
The program is delivered with a users guide.

ON-LINE BACK-UP
The command

@COPY-DIRECTORY <destination directory name> <source directory
name>

copies all files in the source directory onto the destination
directory. The users and the file names will be the same in the
destination directory as in the source directory. The destination
directory should be empty when the command is given, i.e., the
directory should be created, but no users or files should exist.

@COPY-DEVICE <destination device name> <source device name>
copies all pages on the source device onto the destination device.

Applies to devices such as disks, drums and magnetic tapes.
Destination device cannot be an entered directory.

ND-60.050.06

6.2.5

Directory Maintenance Commands

A number of commands are available for maintenance of the file
management system. These are:

@RENAME-DIRECTORY <old directory name > <new direcotry
name> <device name> [<unit>] [<'F’ or ‘R”>]

@RENAME-USER <directory name>:] <old user name> <new user
name>

@TEST-DIRECTORY <directory name>
@REGENERATE-DIRECTORY <directory name>

@DUMP-DIRECTORY-ENTRY <device name> [<unit>] [<'F' or
‘R’>] <output file>

@CHANGE-DIRECTORY-ENTRY <device name> [<units>] [<'F’ or
‘R">]

@DUMP-USER ENTRY <directory name>, <user number>, <output
file>

@CHANGE-USER-ENTRY <directory name>, <user number>

@DUMP-OBJECT-ENTRY <user name>, <object number>, <output
file>

@CHANGE-OBJECT ENTRY <user name>, <object number>
@DUMP-BIT-FILE <directory name>, <block number>, <output file>
@CHANGE-BIT-FILE <directory name>, <block number>
@DUMP-PAGE <directory name>, <page address>, <output file>
@CHANGE-PAGE <directory name>, <page address>

For further description of the file management system, refer to the
manual “NORD File System” - ND-60.052.

ND-60.050.06

6.3

6.3.1

SUPERVISION OF OTHER USERS

User SYSTEM is responsible for creating and deleting all users, and for
the amount of space each of them may use on mass storage devices.
There is no master password in the system, but user SYSTEM may
clear the password for a specific user.

Creating and Deleting other Users

A new user is introduced to the system by the command
@CREATE-USER [<directory name>:] <user name>

A user must exist in all directories where he is given space. In addition,
he must also exist in main directory. If the directory name is omitted
in the above command, main directory is assumed.

When a user is created, he has no password.

Example:

Create a new user USER-ONE, assuming he will be allocated space in
directory PACK 5, which is not main directory:

@CREATE-USER USER-ONE Now he exists in main directory
@CREATE-USER PACK5:USER-ONE Now USER-ONE exists in PACK5
A user is removed from a directory by the command

@DELETE-USER [<directory name>:] <user name>

It is not allowed to delete a user who has files in the specified

directory. In this case, an error message is given but the user is not
removed.

Example:

Assume user USER-ONE has created files in directory PACK5 and is
moving to another installation, bringing with him the device PACKS5.
He may then may be deleted (if desired) in the main directory by

@DELETE-USER USER-ONE

ND-60.050.06

6.3.2

6.3.3

To use his files at another installation, PACK5 must be mounted and
entered there, and USER-ONE has to be created in that main directory

@ENTER-DIRECTORY PACKS5, DISK, 2, R (disk unit 2)
@CREATE-USER USER-ONE

Giving and Taking User Space

A user is given space by the command

@GIVE-USER-SPACE [<directory name>:] <user name>, <number of
pages>

Example:

Give user PER 100 pages (100K words) on PACKS5.
@GIVE-USER-SPACE PACKb5:PER, 100

The number of pages supplied is decimal and the user space is increased
by that number of pages. An error message is given if there are not that
many pages unreserved in the directory.

Unused pages may be taken from a user by

@TAKE-USER-SPACE [<directory name>:] <user name>, <number
of pages>

Like CREATE- and DELETE-USER, GIVE- and TAKE-USER assume
main directory if no directory is specified.
Password

The rules for user SYSTEM's password are the same as for any other
user. In addition, SYSTEM may clear any other user password by

@CLEAR-PASSWORD <user name>
This may be used when :

1. a user has forgotten his password
2. a user owning files must be deleted

After this command the person responsible for the system (or anyonel)
may log in as the specified user and delete his files.

Note: User SYSTEM must not forget his password!

ND-60.050.06

6.4

6.4.1

6—10

SYSTEM UTILITY COMMANDS

Terminals

The command

@TERMINAL-STATUS <terminal number>

will list some information about the specified terminal:

STATUS: Active, Passive (logged out), Command Mode,
User Mode

USER: The name of the user currently logged in

LAST COMMAND: The last command given from the terminal,

e.g. FTN, QED or WHO-IS-ON, etc.

The terminal number is the logical decimal device number for the
terminal. (Logical device number for teletypes/displays are 1, 9, 34, 35.
Refer to the Table of Logical Device numbers : Appendix C.) These
numbers are the same as returned by the WHO-IS-ON command. The
command may be given by all users but is of special interest to user
SYSTEM.

The command
@STOP-TERMINAL <terminal number>
will log out the specified terminal.

The message ***ABORTED BY SYSTEM*** will be printed on the
specified terminal.

This command is used if, for some reason, the user SYSTEM has to log
out the terminal or user.

When special jobs are to be performed by the user SYSTEM (i.e., to
make back-up copies of directories, to take down the operating system,
etc.) the command:

@SET-UNAVAILABLE

may be given. Now, no user may log in from other terminals than from
the one with device number 1. If they try, the message

SYSTEM UNAVAILABLE

ND-60.050.06

5.4.2

6.4.3

6—11

is issued on that terminal. Users who have already logged in may
continue their communication with the system until they log out. This
situation remains until the command

@SET-AVAILABLE

is given.

Stopping the Operating System

Sometimes the system has to be stopped, for maintenance, fatal errors,
or closing down for the night.

The command
@STOP-SYSTEM

will simulate a power-fail. All information contained in the CPU'’s
registers will be saved, whereby, the CPU will go to stop mode.

In this case, it may be restarted by pressing the MASTER CLEAR and
RESTART buttons on the operator’s panel. On restart, the logged on
users may continue in their programs, a start-up procedure is not necessary.

When the system is to be stopped for a longer period (for the night)
the disk(s) should be stopped. The procedure is:

. Log out all users (preferably)

- Press the buttons STOP and MASTER-CLEAR on the operator’s
panel
Stop the disks

Restarting the System from Memory Image

The system can be restarted from the memory image kept on mass storage
by pushing the MASTER CLEAR and LOAD buttons, provided that the
setting of the ALD register is correct. The same effect will occur by
executing the command:

@RESTART-SYSTEM
All RT programs and segments loaded by the RT loader will remain.
The files will be closed, and no directories will be entered. However,

the main directory can be entered by the command
@INITIAL-COMMAND (following) which has been executed earlier.

ND-60.050.06

6.4.4

6—12

When @RESTART-SYSTEM is used, the current physical memory (first
32K) will be saved on a segment file, if such a file has been specified.

This command is an option: it can be included at system generation
time.

@INITIAL-COMMAND <command string>

is used to specify an @ENTER-DIRECTORY command to be executed
at subsequent restarts from core image. The command string will be
saved and executed at restart time. The command RTENTER will also

be executed. Further directories can be entered in a user-written
subroutine called from the start-up sequence.

Example:

@INITIAL-COMMAND ENT-DIR P-ONE DISK-1 0 R

The LOOK-AT Command

As seen in Chapter 3, one can, with the help of the command
@LOOK-AT MEMORY

examine and modify locations in a users 64K address space.

The command is somewhat stronger for user SYSTEM. The exact
syntax is

@LOOK-AT <area>

where <area>> can be

MEMORY the current users 64K address space
RESIDENT the memory resident system (SINTRAN)
IMAGE the (memory) image kept on mass storage
SEGMENT one of the program segments

RTCOMMON memory common area for RT programs

By this command, locations in SINTRAN may be examined or changed
(patched). It is obvious that this feature should be used with care!

Remember that the file management system resides on one of the
segments; it is not resident. All RT programs loaded by the RT loader
are also found on segments and may be examined and modified.

(This command is also mentioned in Sections 3.3.6.2 and 5.4.)

ND-60.050.06

6.4.5

6—-13

Error Print-out Device Setting

Normally, the error messages from RT programs will be written on
Terminal 1. However, it is possible to route them to some other
terminal by using the command:

@SET-ERROR-DEVICE <logical number>

Example:

@SET-ERROR-DEVICE 9

which will cause the error messages to appear on Terminal 2.

ND-60.050.06

6.5

6—14

THE ACCOUNTING SYSTEM

Whenever a user logs out, a record is written onto the account file on
the disk. This file, named (SYSTEM) ACCOUNTS:DATA, consists of
blocks a length of 256 words, each block containing 16 records of 16
words. A record has the following information:

Word 0-5 user name character
7 user number binary
8 project number binary
9-10 log off time and data binary
11 console seconds binary
12 CPU seconds binary
13 terminal number binary
14-15 unused binary

Log-off time and date are packed into two words, or a 32 bit field, as
follows:

A

TIME _—

Y

@ DATE
6 4 5 5 6 6
YEAR MONTH DAY HOURS MINUTES SECONDS
31 26 22 17 12 6 0
ey ——— WORD 1 »'-——— WORD 2 —_—

Figure 6.1: Format of Record with Log Off Date and Time

The first block of the file contains the following information:

1.

Word 1 contains the number of records written in the file. This
number is increased by 1 for every log-off.

Word 2 contains the desired number of records. When this
number is reached, a message will be sent every time a user logs
off, APPROACHING END OF ACCT FILE. The accounting file
should then be listed and reset by the INIT-ACCOUNTING
command.

Word 3 contains the maximum number of records. If this number
is reached, a message will be sent every time a user logs off. END
OF ACCT FILE ENCOUNTERED. No accounting is done after
this number is reached.

ND-60.050.06

6.5.1

6—-15

The account records themselves start in the second block. The file is
updated physically for every new record. This involves reading and
writing the first block (updating the record count) and writing the
block which contains the new record.

Commands
@INIT-ACCOUNTING [<desired>] [<max>]
<desired>

desired number of accounts. By use of this parameter, the user
specifies the number of accounts he wants to the account file
before he gets the warning that the file is running full. The
parameter should be specified as a decimal number.

<max>

maximum number of accounts permitted on the file. When this
limit is reached, no more accounting will take place before the
account file is reset. Users can log off, but the request for
accounting will be ignored. <max> should be specified as a
decimal number.

This command initializes and starts the accounting system. It may only
be executed by the user SYSTEM. It writes the first block of the file
(SYSTEM) ACCOUNTS:DATA. Word 1 (record count) contains O.
Words 2 and 3 contain the desired number and maximum number as
given in the command. If O or empty, default values of 500 and 600
are used.

@START-ACCOUNTING

This command starts the accounting, but does not initialize the
accounting file. It may only be executed by user SYSTEM.

@STOP-ACCOUNTING

This command stops the accounting system. The accounting file is not
affected. It may only be executed by user SYSTEM.

ND-60.050.06

6.5.2

6—16

List Accounts

This is a program delivered by ND to sort and list the accounting file.
It is not part of SINTRAN IIl.

The logged records are sorted by project number and user, and the
total CPU and terminal time (console time) for each user and project is
computed. After the program is loaded and saved (@PLACE-BINARY
and @DUMP commands), it may be started by typing the program
name. When execution is finished, the @ NIT-ACCOUNTING command
should be given to reset the accounting file.

The following RECOVER command then activates the program:
@LIST-ACC

The program lists/dumps the current content of the accounting file.
Also, resets/initiates accounting if desired.

The program now asks for the following parameters.

OPERATOR INPUT FILE file name (default TERM)

RESET FLAG 1 if reset accounting file
ACCOUNTING FILE file name (default ACCOUNTS)
DESIRED & MAX NO OF

ACCOUNTS:

(used if reset flag, if (0,0)

then default 500, 600) no , no

DUMP-FILE file name (no default)
LIST-FILE file name (no default)

The following output is given by the program.

If dump file is given then the accounting file is copied while this
program is running.

The listing consists of 3 tables:
1. Log Offs

One line for each log off entered in the accounting file, with the
following information:

a) User Name and Number

ND-60.050.06

6—17

b) Project Numer

c) Data, log on and log off time (YEAR, MONTH, DAY,
HOUR, MIN, SEC)

d) used console and CPU times (HOURS, MIN, SEC)

Accounted users

Consists of one table for each user sorted by user number
(ascending user number).

Each table consists of:

a) User Name and Number

b) Project Number, used console and CPU sec for each of his
projects (ascending project number).

c) Total Console and CPU sec used by this user.

Accounted Projects

Contains Console and CPU secs used by each project (ascending
project number) and total time for all projects.

ND-60.050.06

6.6

6—18

THE BATCH SYSTEM

The batch system is described in Chapter 3. Two commands are special
for user SYSTEM. They are the commands to activate or abort a batch
process: @BATCH and @ABORT-BATCH.

@BATCH

This command finds an unused batch process and starts it. It then
prints BATCH NUMBER = <batch number> where <batch number> is
a decimal integer which may be used in future commands to identify
the batch process.

If there are no unused batch processes in the system, the message NO
BATCH AVAILABLE is printed.

After the batch process is started, it immediately enters waiting state as
the batch queue will initially be empty. it will automatically be
restarted when a batch input file — batch output file pair is entered
into the batch by an @APPEND-BATCH command.

@ABORT-BATCH <batch number>
This command will abort a batch process and release all resources

reserved by the batch process. Any job currently running will be
aborted immediately, and the batch queue will be cleared.

ND-60.050.06

6.7

6—19

PERIPHERAL DEVICES

Peripheral devices are supported by the file management system. User
SYSTEM is responsible for introducing them to the file system. This is
done by the command

@SET-PERIPHERAL-FILE <file name> <device number>

This command defines the specified file as a peripheral file. The device
number is an octal value. A list of device numbers is found in the
appendix.

Example:

To introduce the line printer one types

@SET-PERIPHERAL-FILE “LINE-PRINTER" 5

Legal access is specified by the command

@SET-FILE-ACCESS L-P, WA, WA, WAD

The command

@SET-TERMINAL-FILE <file name>

will specify <file name> as the name of all terminals.

Example:

After

@SET-TERMINAL-FILE “TERMINAL"

TERMINAL may be used as an output or input file name, i.e.,

@SET-FILE-ACCESS TERM, RWA, RWA, RWAD
@COPY TERMINAL, <any file>

will copy <any file> to the terminal.

ND-60.050.06

6.8

6.8.1

6—20

REMOTE JOB ENTRY

General Remarks

RJE emulators are delivered for emulating I1BM 2780, IBM 3780, iBM
HASP WORK STATION, CDC 200 USER, UNIVAC DCT 2000 and
Honeywell Bull GERTS 115. An emulator is delivered on paper tape in
BRF format. The emulators are run as RT programs, and must be
loaded by the RT loader. The start and stop of an RJE emulator is a
SYSTEM function, although user RT normally supervises RT programs.
The BRF tape should be copied to a mass storage file. This is done by
@COPY “RJEFILE : BRF” TAPE-READER

Remember that SYMB is default for COPY.

Load procedure of an RJE emulator:

@RT-LOADER

RT LOADER 75.07.01

*NEW-SEGMENT XX

NEW SEGMENT NO’ 37

*ALOAD RJEFILE

*END-LOAD

*EXIT-LOADER

@

To start the emulator one of the following commands must be given:

@RT IBM4 if IBM 2780 or 3780
@RT DCT4 if DCT 2000

@cDC4 if CDC 200 USER
@GRTS4 if GERTS 115

@RT HASP if HASP WORK STATION

The message xxx NORD xxxx RUNNING xxx is then displayed on the
RJE communication terminal (normally terminal 2, logical unit 9" see
Appendix C) xxxx is the type of emulator. One may then continue on
the RJE communication terminal according to the users guide for that
type of emulator.

ND-60.050.06

6.8.2

6.8.3

6.8.3.1

6—21

To stop an RJE terminal, one may give the command :AB on the
communication terminal of the RJE emulator, or stop it by the
SINTRAN command @ABORT given from another terminal. In this
case all RT programs concerning RJE must be aborted.

if IBM 3780:

@ABORT IBMO, @ABORT IBM1, @ABORT IBM2, @ABORT IBM3,
@ABORT IBM4.

IF DCT 2000
@ABORT DCTO,. ... @ABORT DCT4.

A similar procedure is used for other RJE emulators.

The Remote Batch Queue

In the same way as for the local batch, it is possible to queue files
containing remote batch jobs on a remote batch queue held internally
in SINTRAN III.

When the command :RB is given, the emulator will start reading input
file names from the batch queue. The :SB command will reset the
emulator to interactive mode, where input file names are given from
the communication terminal.

Commands to Maintain the Remote Batch Queue

THE APPEND-REMOTE COMMAND

This command adds a remote batch input file to the specified remote
batch queue.

The format is:
@APPEND-REMOTE <host computer> <input file>
where
<host computer>
is one of the following names:
IBM
CDC

UNIVAC
HONEYWELL-BULL

ND-60.050.06

6.8.3.2

6.8.8.3

6—22

<input file>
is the name of the file where batch-job-input is to be taken.
NOTES:

If the remote-batch input file is owned by other than users
SYSTEM or RT, the user-name must precede the file name.

The remote-batch input file must have read access for user RT.

THE LIST-REMOTE-QUEUE COMMAND
This command lists the contents of a remote batch queue.
The format is:
@LIST-REMOTE-QUEUE <host computer>
where
<host computer>
is one of the following names:
IBM
CDC
UNIVAC
HONEYWELL-BULL
Example of a @LIST-REMOTE-QUEUE list:
@LIST-REMOTE-QUEUE IBM
1 CARD-READER
2 (USER-NAME) IBMJOB
@
THE DELETE-REMOTE-QUEUE-ENTRY COMMAND
This command may be used to remove an entry from the remote batch
queue. That is, kill a job for execution before it is sent to the host
computer.

The format is:

@DELETE-REMOTE-QUEUE-ENTRY <host computer> <queue
entry>

ND-60.050.06

6—23

where
<host computer>
is one of the following names:

IBM
CDC

UNIVAC
HONEYWELL-BULL

<queue entry>

is the file name given in the @APPEND-REMOTE command.
An exact match is required between the second parameter of this
command and the remote batch queue entry. The exact format of the
remote batch queue entry to be removed may be checked by the

@LIST-REMOTE-QUEUE command.

If the remote batch queue contains two equivalent entries, the first one
will be removed.

This command may be issued by user SYSTEM and the user owning
the job file to be deleted.

ND-60.050.06

REAL TIME PROGRAMS

For a description of the theory behind the implementation of real-time
programs under SINTRAN IIl, consider Sections 4.3,4.4 and 4.5. This
chapter concerns the practical rules for programming and loading of
real-time programs. The rules for execution of RT programs are
described in Chapter 5.

ND-60.050.06

RT PROGRAMS WRITTEN IN FORTRAN

FORTRAN programs running as RT programs are written and compiled
in the same way as in timesharing/batch mode, except that priority
must be specified in the PROGRAM statement. The FORTRAN RT
programs compiled in the ordinary way, will keep their data values
from one execution to another.

Example:

Suppose the following program is written onto a symbolic file named
KLOKK with the QED editor as follows:

@QED
QED 3,4
*A
PROGRAM KLOKK, 100
IBELL = 7*256
IDEV =9
CALL RESRV (IDEV, 0, 0)
10 IA = INCH (IDEV)

IF (IA.NE.101B) GO TO 10
CALL RELES (IDEV, 0)
CALL INTV (KLOKK, 10, 2)
20 CALL RTWT
CALL RESRV (IDEV, 1, 0)
WRITE (IDEV, 100) IBELL
CALL RELES (IDEV, 1)
100 FORMAT (1X,A1)
GO TO 20
END
EOF
*W “KLOKK"
128 WORDS WRITTEN
*F

@

ND-60.050.06

For compiling and loading the following commands would be
necessary:

For compiling:
@FTN

NORD FTN

$CLC O

$REFMAP

$COM KLOKK, LINE-PRINTER, “KLOKK"
16 STATEMENTS COMPILED

$EX

@

For loading: (The RT Loader commands are described in Section
1.1.3.)

@RT-LOADER
RT-LOADER 75.07.01

*NREENTRANT-LOAD KLOKK,,
NEW SEGMENT NO 30
*END-LOAD

*EXIT-LOADER

@

The RT program KLOKK may be started with the command @RT
KLOKK, and then the KLOKK program will reserve the input part of
logical unit number 9 (usually terminal 2) and read characters from
that unit until an A is read. The input part will then be released. The
program will make itself periodical with an interval of 10 seconds and
then terminate with a call to RTWT. The KLOKK program may be
started once more with the command @RT KLOKK. It will then
reserve the output part of the terminal, give the character BELL on the
logical unit 9 and release it again every 10th second, until the KLOKK
RT program is made non-periodical by the command @ABORT
KLOKK or by the command @DSCNT KLOKK.

ND-60.050.06

7.2

REENTRANT FORTRAN PROGRAMS

The FORTRAN compiler will produce the reentrant code, so that
different RT programs may use the same subroutines when the
command $RT is used. In reentrant FORTRAN, all local data is
dynamically written into a data stack by the FORTRAN run-time
system. FORTRAN programs compiled in $RT mode must use a special
version of the FORTRAN run-time system, usually (and hereafter)
called FTNRTLIBR. In this version of the FORTRAN run-time system,
most of the routines are reentrant. The number of stack locations
needed by each subroutine is printed on the FORTRAN program listing
when using the command $REFMAP. Additionally, if the program
contains READ/WRITE or other 1/0 statements, the FORTRAN 1/0
system needs 264g stack locations.

The stack area needed by one instance of a subroutine will be released
when that instance is terminated with a RETURN/END statement. The
maximum number of stack locations needed by the subprogram is the
number of stack locations needed by one instance, multiplied by the
number of possible instances to be nested.

The beginning of the data stack will be determined when loading the
FORTRAN run-time system FTNRTLIBR and the length of the stack
must be defined later in the load procedure. Default stack size is 1K
words.

In reentrant FORTRAN, each RT program must have its own data
stack and its own set of the non-reentrant FORTRAN run-time system
routines.

If, in reentrant FORTRAN, more than one RT program is loaded to
the same segment, the entry points of the non-reentrant FORTRAN
run-time system routines, including the stack routines, must be deleted
after each loading of the FORTRAN run-time system and stack
definitions. This must be done because each RT program must have its
own version of the non-reentrant run-time routines, and it is done by
using the RT loader command DELETE-NREENTRANT. It is done
automatically after the command REENTRANT-LOAD.

Example:

Suppose the following three programs, TERMT, TERM2, and TERM3
and the subroutine SUBR are written onto four different files
correspondingly named with the QED editor:

PROGRAM TERM 1, 50

IDEV =9

CALL SUBR (IDEV)
END

EOF

ND-60.050.06

7-5

PROGRAM TERM2, 50
IDEV = 34

CALL SUBR (IDEV)
END

EOF

PROGRAM TERMS, 50
IDEV = 35

CALL SUBR (IDEV)
END

EOF

SUBROUTINE SUBR (IDEV)
CALL RESRV (IDEV, 1,0)
WRITE (IDEV, 10) IDEV
10 FORMAT (1X, ‘“THIS IS LOGICAL UNIT NO:, 13)
RETURN
END
EOF

The programs should be compiled and loaded in the usual manner.
The compiling is done as follows:
@FTN

NORD FTN

$cLco

$REFMAP

$RT

$COM TERM1, LINE-PRINTER, “TERM1*
5 STATEMENTS COMPILED

$CLC O

$COM TERM2, LINE-PRINTER, “TERM2"
5 STATEMENTS COMPILED

$CLC O

$COM TERM3, LINE-PRINTER, “TERM3"
5 STATEMENTS COMPILED

$CLC O

$COM SUBR, LINE-PRINTER, ““SUBR"

7 STATEMENTS COMPILED

$EX

@

ND-60.050.06

The loading is done as follows: (See Section 7.7.3.)
@RT-LOADER
RT-LOADER 76.03.04

*NEW-SEGMENT v

NEW SEGMENT NO:.... 30
*SET-LOAD-ADDRESS 30 20000
*REENTRANT-LOAD SUBR,,,
*END-LOAD
*REENTRANT-LOAD TERM1,30,,
NEW SEGMENT: 31

*END-LOAD
*REENTRANT-LOAD TERMZ2,30,,
NEW SEGMENT: 32

*END-LOAD
*REENTRANT-LOAD TERMS3,30,,
NEW SEGMENT: 33

*END-LOAD

*EXIT-LOADER

@

The subroutine SUBR is loaded to segment number 30 together with
the necessary FORTRAN run-time system routines, and the program
TERM1 is loaded to segment 31 together with the necessary
FORTRAN run-time system routines, including the data stack, and
segment 31 is linked to segment 30 to get hold of the subroutine
SUBR. In the same way, TERM2 is loaded to segment number 32 and
TERM3 to segment number 33. The default stack size is 1K

The RT programs, TERM1, TERM2, and TERM3 may then be started
with the @RT command. The RT program TERM1 will write a message
on logical unit number 9, the RT program TERM2 will write a
correspending message on logical unit number 31, and the RT program
TERM3 will write the message on logical unit number 35.

The three RT programs and the common subroutine SUBR may be
loaded to the same segment in the following way:

@RT-LOADER
RT-LOADER 75.07.01

*REENTRANT-LOAD SUBR,,,
NEW SEGMENT NO: 34
*REENTRANT-LOAD TERM1,,.
*REENTRANT-LOAD TERM2,,,
*REENTRANT-LOAD TERMS,,,
*END-LOAD

*EXIT-LOADER

@ ND-60.050.06

A main program itself is not reentrant, because only one instance of
the main program is executed at a time. It can only call reentrant
subprograms. However, in a reentrant program structure, both the main
program as well as the subprograms must be compiled in $RT mode.
The stack could be considered to belong to the main program, i.e., all
the reentrant subprograms will have their local variables dynamically
allocated in the same stack. Thus, if a main program calls the reentrant
subroutine A, and later calls subprogram B, then subroutine B might
occasionally get its local data placed in the same area where A formerly
had its local variables. For this reason, reentrant subprograms will

retain the values of their local data from one execution to another.

If, on the other hand, the main program calls subprogram A, which
calls subprogram B (all reentrant), then their local data will be placed
after each other in the stack. The stack length should then be specified
accordingly, in the loading procedure.

Because of the stack mechanism, recursive subprograms may be
introduced under SINTRAN Ill. Consider the following example for
calculatingN ! = N * (N - 1) * --- 2 * 1 where by definition 0 ! = 1.

Example:

PROGRAM NFAC,30
COMMON IDEV
DOUBLE INTEGER NF,FACU
IDEV = 39
CALL RESRV (IDEV,0,0)
READ (IDEV,1) N

1 FORMAT (I1)
CALL RELES (IDEV,0)
NF = FACU (N)
CALL RESRV (IDEV,1,0)
WRITE (IDEV,2) N,NF

2 FORMAT (12,*! =*,17)
CALL RELES (IDEV,1)
CALL RTEXT
END
INTEGER FUNCTION FACU (K)
COMMON IDEV
DOUBLE INTEGER FACU,KK
IF (K.EQ. 0) GO TO 10
KK = K*FACU (K-1)
CALL RESRV (IDEV,1,0)
WRITE (IDEV,3) K,KK

3 FORMAT (12, 110)
CALL RELES (IDEV,1)
FACU = KK
RETURN

ND-60.050.06

10 FACU =1
RETURN
END
EOF

Suppose that the symbolic program lies on the file NFAC.
The compiling should be done as follows:
@FTN

NORD FTN

$RT

$REFMAP

$COM NFAC, L-P, “NFAC"
30 STATEMENTS COMPILED
$EX

The loading should be done as follows:
@RT-L
RT-LOADER 76.03.24

*REENTRANT-LOAD NFAC,,,
*END-LOAD
*EXIT-LOAD

Now the program may be started by the command @RT NFAC. If the
programmer has logged in on terminal 39 he should now log out, so
that the communication with the real-time program NFAC may start.
If, for instance, 9 is given as input to the read statement in the main
program, the effect of the interesting statement KK = K * FACU (K-1)
is clearly demonstrated by the table output on the terminal. The first
instance of the integer function FACU to reserve the terminal and to
give an output is the second to the last one being called.

The local variable KK will occupy a new location in the stack for each
level being nested, and will get the different values on each level.

The COMMON variable IDEV is not placed in the stack and need not
to get its value initiated each time the integer function is called.

ND-60.050.06

7.2.1

Summary of Reentrant FORTRAN Programs

RT programs in reentrant FORTRAN will not remember their local
data values from one run to another. Only data in COMMON will be
kept from one run to the next execution.

DATA statement for local variables (not COMMON variables) is not
allowed.

DATA statement for common variables is legal.

Each RT program in reentrant FORTRAN must have its own data
stack, the length of the data stack is decided when loading the RT
program to a segment by means of the RT-LOADER.

Each RT program in reentrant FORTRAN must have its own copy of
the non-reentrant FORTRAN run-time system routines.

Reentrant FORTRAN programs/routines should only use the special
version of the FORTRAN run-time system, FTNRTLIBR.

Ordinary FORTRAN programs/routines which are not compiled in
reentrant ($RT) mode must only use the ordinary version of the
FORTRAN run-time system FTNLIBR.

All reentrant FORTRAN routines used by FORTRAN RT programs
must be compiled in $RT mode by the FORTRAN compiler. Mixed
routines, i.e., some routines compiled in the ordinary way (not $RT
mode) and some routines compiled in $RT mode, are not allowed to be
used by the same RT program.

ND-60.050.06

7-10

REENTRANT MAC/NORD-PL SUBROUTINES CALLABLE FROM
REENTRANT FORTRAN PROGRAMS

The easiest way to make a MAC/NORD-PL subroutine used by
reentrant FORTRAN, is to call the subroutine with a local array as a
parameter, and then use this array for all local data in the subroutine.
This array will be put into the stack by the FORTRAN run-time
system, i.e., each main RT program will have its own array for the
MAC/NPL subroutines local data.

Example:

PROGRAM PROGR,20
DIMENSION ICHAR (80), LOCDAT(25)

C CALL TO MAC/NPL SUBROUTINE FOR READING NCHAR
C NUMBER OF CHARACTERS FROM THE TERMINAL WITH

C THE LOGICAL UNIT NUMBER IDEV.
C THE CHARACTERS WILL BE STORED IN THE ARRAY

C ICHAR
CALL RCHAR (IDEV, NCHAR, ICHAR, LOCDAT)

EOF
% MAC SUBROUTINE TO READ CHARACTERS FROM
% A TERMINAL. COUNTS THE NUMBER OF CHARACTERS,
% AND STORES THE CHARACTERS IN THE ARRAY ICHAR.
% THIS SUBROUTINE WILL USE THE ARRAY LOCDAT AS

% ITS LOCAL VARIABLES.

)9BEG

JOENT RCHAR

SvB=0

SVL=1

COUNT = 2

RCHAR, SWAP SA DB

LDX 3, B % POINTS TO THE ARRAY LOCDAT
STA SVB, X % SAVE B REG OF THE FTN PROG
COPY SL DA
STA SVL, X % SAVE RETURN ADDRESS
STZ COUNT, X % INIT. CHAR. COUNTER

ND-60.050.06

LOOP, LDT
MON

MON
BSET
AAA
JAZ
AAA
JPL
JMP
STORE, LDT
COPY
LDX
SBYT
COPY
MIN

EXIT

OouT, LDA
STA
LDA
COPY
LDA
COPY

JFILL

J9END

)9EOF

JLINE

|

7-11

0,B

1

65

ZRO 70 DA
-15

ouT

15

STORE
LOOP

2,B

SX DD
COUNT, X

SD DX
COUNT, X

COUNT, X
1,B

SVB, X
SA DB
SVL, X
SA DP

% LOGICAL UNIT NO IN T REG.

% READ ONE CHAR

% ERROR RETURN

% MASK OUT PARITY BIT

% CHECK FOR CARRIAGE RETURN

% CHAR IS NOT CARRIAGE RETURN
% STORE CHAR IN ICHAR

% READ NEXT CHAR

% T POINTS TO ARRAY ICHAR

% SAVE X IN D

% CHARACTER COUNTER IN X

% STORE BYTE

% RESTORE X

% INCREMENT CHAR. COUNTER

% NO OF CHARACTERS READ

% STORE INTO NCHAR

% LOAD OLD CONTENTS OF B

% RELOAD B REGISTER

% RETURN ADDRESS

% RETURN TO FORTRAN PROGRAM

Note that in this example the MAC program has no local data

locations.

ND-60.050.06

7.4

7-12

RT PROGRAMS IN MAC AND NORD-PL

The)9RT command (statement) will declare a MAC/NORD-PL program
as an RT program, i.e., the)9RT command in MAC assembly code will
give the same information to the RT loader at load time as the
PROGRAM statement in FORTRAN. The)9RT command (statement)
must have two symbolic arguments, program name and program
priority.

Example:

J9BEG
PRIOR = 15
JORT MACPR PRIOR

PROGA, MON 134 % RTEXT, Terminate program

J9END
J9EOF
JLINE

In this example, the name of the RT program will be MACPR, the
priority will be PRIOR (15g) and the RT program start address
PROGA (first instruction to be executed) will be equal to the load
address, when the)9RT information is read by the RT loader.

The)9RT command must be placed directly before the statement in
which the program is to be started, and may be preceded by other
commands and instructions. The label PROGA itself is uninteresting in
this example.

The program consists of one machine instruction and will only execute
the monitor call RTEXT to terminate itself.

ND-60.050.06

1.5

COMMUNICATION BETWEEN RT PROGRAMS

There are several different ways of communication (exchanging infor-
mation) between RT programs.

1.

2,

Memory common may be used as a common data area.

RT programs residing on different segments may have a common
area on another segment as their common data area.

Several RT programs may reside on the same segment and have
their common data area on the same segment.

Internal devices may be used for communication between RT
program, i.e., the RT programs giving information may reserve
the internal device for output, and then “write”” on the internal
device. The RT program receiving information may reserve the
internal device for input, and then “read’’ the information from
the internal device.

If there is much data to exchange between RT programs and the
exchanging time is not critical, files are useful for exchanging
data.

Instead of using files, the RT programs may utilize several
segments as common data area. This is a faster way of exchang-
ing data than using ordinary files, because it will use the segment
administration instead of the file management system.

Using this method for common data area, each RT program accessing
this data area will use one segment for program and then use the other
data segments (only one at the same time) as its second segment.
Generally, all the data segments have the same size, they may be
looked upon as if each of them were a record in a file. The monitor
call MEXIT may be used to exchange data segments (records).

Example:

PROGRAM PROGR, 50
COMMON/IREC/INAM (10), 'ADR (20), IDATE (6)

C FETCH THE ACTUAL SEGMENT (RECORD) IRECNO
C
CALL MEXIT (IRECNO)

ND-60.050.06

7.5.1

1.5.2

7-14

Defining a COMMON Area in a MAC or NORD-PL Program

The)9ASF command (statement) is used to define a labelled COMMON
area in a MAC or NPL program. The)9ASF command (statement) must
have two symbolic arguments, the first is the COMMON label and the
second is the size of the COMMON area.

Example:

)9BEG

)9ENT DEFCO

CSIZE = 1000

)J9ASF CLABL CSIZE % DEFINE THE COMMON AREA
% CLABL WITH THE LENGTH

J)9END % CSIZE (= 1000g)

)9OEOF

)LINE

Accessing a COMMON Area from a MAC or NORD-PL Program

The)9ADS command (statement) is used to make the address of a
COMMON area known in a MAC/NPL program. The)9ADS command
(statement) has two symbolic arguments, the first is the COMMON
label name and the second is the displacement relative to the start of
the actual common area.

Example:

PROGRAM COMM1,20
COMMON/LABL1/IADR (100), XY
COMMON/LABL2/IADR2 (10), |
COMMON/LABL3/ADR (20), FILNR

EOF
% ASSEMBLY ROUTINE TO MOVE THE CONTENT OF THE
% ARRAY IADR2 IN THE COMMON BLOCK LABL2 TO
% THE LOCAL

% ARRAY
% ARR IN THIS SUBROUTINE.
J)9BEG
JOENT ACOMM
DISP =0
ACOMM,LDX COADR % POINTS TO START OF
LABL2 (IADR2)
COPY SX DT
AAT 12 % T POINTS TO END OF IARR2

LDA (ARR
COPY SA DB % B POINTS TO START OF ARR

ND-60.050.06

7-15

% MOVE ELEMENT FROM IARR2 IN COMMON AREA
% LAB2 TO THE ARRAY ARR

LOOP, LDA

STA
AAX

SKP
MON
AAB

JMP
COARD, 19ADS

ARR

*+ 12
JFILL
J9END
J)OEOF
JLINE

0

X % FETCH ELEMENT FROM
% |IADR2

B % STORE ELEMENT IN ARR

1 % INCREMENT ADDRESS
% POINTER TO IADR2

SX LST DT

134 % THE MOVING OF THE

% ELEMENTS IS FINISHED.
% TERMINATE PROGRAM

1 % INCREMENT ADDRESS
% POINTER TO ARR

LOOP

LABL2DISP% ADDRESS OF IADR2(1) IN
% COMMON BLOCK LABL2
% THE ARRAY NAMED ARR
% STARTS HERE

ND-60.050.06

7.6

7.6.1

7-16

MONITOR CALLS AVAILABLE FROM RT PROGRAMS ONLY

Several monitor calls may be called only by programs running as
real-time programs. Such monitor calls are described in this section.

RT programs may 3lso execute some monitor calls that are available from
timesharing and batch programs. Those monitor calls are described in
Chapter 3.

The <prog. name> parameter used in the following monitor calls
should be an RT program name. If the calling RT program itself is
wanted as the <prog. name> parameter, the parameter is set equal to 0
(zero). All RT program names used in FORTRAN programs must be
declared as external by the EXTERNAL statement. Otherwise, the RT
program names will be established as local variables in the FORTRAN
program.

Subroutines for Executing Monitor Calls from FORTRAN RT Programs
CALL RT (<prog. name>)
The RT program specified by the parameter will enter the
execution queue immediately (independent of any clock inter-

rupt).

Example:

CALL RT (PR1)

CALL SET (<prog. name>, <time>, <time unit>)

The RT program given by <prog. name> will enter the time
queue. The parameter <time unit> may have the values 1, 2, 3,

4.

1. basic time units (normally 20 milliseconds)
2. seconds

3. minutes

4, hours

Other values will give an error message and the calling program is
aborted. The parameter <time> gives the number of time units
the program has to stay in the time queue before it is transferred
to the execution queue. If the number is < 0, the RT program
will be transferred from the time queue to the execution queue
the first time the basic time unit counter in the monitor is
incremented.

ND-60.050.06

hese two parameters <time> and <time unit> are also used in
the monitor calls INTV, HOLD and CLADJ.

If the RT program is already in the time queue, it will be
removed from the queue before it is inserted again with the new
specifications.

Example:

CALL SET (RT1, 10, 2)

The RT program RT1 will be scheduled for execution in 10
seconds, reckoned from the moment SET is executed.

CALL ABSET (<prog. name>, <second>, <minute>, <hour>)

The RT program given by <prog. name> will enter the time
queue. The last three parameters give the time of day for
execution. If the time has expired at the moment ABSET is
called, the program will be scheduled the next day at the time
specified.

if the RT program is already in the time queue, it will be
removed from this queue before being inserted, according to the
present ABSET parameters.

If a time parameter has an illegal value, an error message is given
and the calling program is aborted.

If the clock is adjusted by means of a call of CLADJ while the
program is in the time queue, the execution time is modified to
fit the new clock setting.

Example:
CALL ABSET (PROG, 0, 30, 17)

The RT program PROG will be scheduled for execution at 17:30.

CALL INTV (<prog. name>, <time>, <time unit>)

The RT program given by <prog. name> will be prepared for
periodic execution. The last two parameters give the time
between each execution. However, the first execution must be
initiated by other means, for instance, by the CALL RT or
CALL SET.

ND-60.050.06

7-18

The periodic execution property set by INTV will be reset by a
call of DSCNT or ABORT (see CALL DSCNT, CALL ABORT
following), thus stopping a series of periodic executions.

The interval may be modified by another call of INTV without
an intervening DSCNT or ABORT.

If the starting of periodic RT programs are delayed because of
other RT programs with higher priority, the delays will not be
accumulated. Thus, synchronism is preserved. However, if the
start is delayed until the time for the next start, the program is
scheduled for an immediate repetition after the first execution.
Only one repetition is allowed, so that if the start is delayed with
two intervals or more, at least one execution is lost. lllegal values
of <time> and <time unit> will cause an error message and the
calling program will be aborted.

Example:

C THE PROGRAM PP IS TO RUN EACH 20 MINUTE
CALL INTV (PP,20,3)

C FIRST EXECUTION STARTS 6 MINUTES FROM NOW ON:
CALL SET (PP, 6,3)

CALL DSET (<prog. name>, <time>)

The RT program given by <prog. name> will enter the time
queue. The parameter <time> is a double precision number of
basic time units giving the time the program has to stay in the
time queue, reckoned from the moment DSET is called.

Example:

CALL DSET (RTP, TM1)

CALL DABST (<prog. name>, <time>)

The RT program given by <prog. name> will enter the time
queue. The parameter <time> is a double precision number of
basic time units giving the absolute point of time when the
program is to leave the time queue, and enter the execution
queue.

Example:

CALL DABST (RTIMP, TM2)

ND-60.050.06

7-19

CALL DINTV (<prog. name>, <time>)

The RT program given by <prog. name> will be prepared for
periodic execution. The parameter <time> is a double precision
number of basic time units giving the time between each
execution. See the description of the monitor call INTV.

Example:

CALL DINTV (RTPR, DTIM1)

CALL RTWT

The calling program will be set in a waiting mode. Its resources
will not be released. Thenext time the program is started, for
instance, by a call of RT from some other program, it will
continue with the statement after the call of RTWT.

Example:
CALL RTWT
C
C THE PROGRAM WILL START AT THIS POINT
C THE NEXT TIME IT WILL BE STARTED
C

CALL HOLD (<time>, <time unit>)

The calling program will be in a waiting state for the time given
as parameters:

<time units>:

basic units
seconds
minutes
hours

PON -

Example:

CALL HOLD (10, 2)
The calling program will wait 10 seconds before the execution

will continue in the next instruction. Resources will not be
released.

ND-60.050.06

7-20

CALL ABORT (<prog. name>)

The specified program will be aborted if it is running. If the RT
program is in time queue or execution queue, it will be removed
from those queues. All reserved resources will be released and
periodical execution set by INTV or DINTV will be reset.
Connections established by CONCT calls are not released.

Example:

CALL ABORT (PRX)

CALL CONCT (<prog. name>, <logical units>)

The RT program given by the first parameter will be connected
to an interrupt line, i.e., the program will be inserted into the
execution queue each time an interrupt signal occurs on that
logical unit.

The logical unit numbers are determined at system generation
time belonging to the 1/0O system. Several units may be
connected to one program. lllegal numbers cause the calling
program to be aborted, and an error message will be given. Only
units with a “connect’’ driver routine are legal.

Example:

CALL CONCT (CPIN, 4108B)

CALL DSCNT (<prog. name>)

Any connection established by CONCT will be removed. If the
program has been made periodical by INTV or DINTV, this will
be reset. If the program is in time queue it will be removed from
that queue. Reserved resources are not released. The execution of
the calling program continues.

Example:

CALL DSCNT (PRGA)

IP = PRIOR (<prog. name>, <priority>)

The RT program given by <prog.name> will have its priority
permanently changed. The parameter <priority> keeps the new
priority value and may range from 1 (lowest) to 255 decimal
(highest). Programs with priority zero will never be started. The
old priority will be returned as in integer function value.

ND-60.050.06

Example:

CALL PRIOR (RTPR, 30)

CALL UPDAT (<minutes>, <hours>, <days>, <months>, <years>)

The clock and calendar will get new values. The internal time
representation and time queue will not be affected. If a para-
meter is specified outside its range (e.g., minute > 60), an error
message is given, and the calling program is aborted. For <years>
a value < 1976 is illegal.

Example:
CALL UPDAT (24, 11, 24, 2, 1976)

This will set current time to February 24, 1976 at 11:24 o’clock.

CALL CLADJ (<time>, <time units>)
(Clock Adjust)

The parameter <time unit> may have the values 1, 2, 3 or 4:

basic time units
seconds

minutes

hours

Powbh =

Other values will give an error message, and the calling program
will be aborted. The parameter <time> gives the number of time
units the clock/calendar will be decremented or incremented. If
the parameter <time> is negative the clock will stand still for the
proper number of <time units>.

If there are any programs in the time queue inserted by ABSET,
these will have their start time and queue position adjusted to fit

the nextclock setting. This concerns also periodic executions, if
the first start was specified by means of ABSET.

Example:
CALL CLADJ (15, 2)

The clock/calendar will be advanced by 15 seconds.

ND-60.050.06

CALL FIX (<segment number>)

This monitor call is used to make a segment temporarily memory
resident. The segment, which must be of non-demand type, will
be brought into memory. Then it will be flagged in the segment
table, so that it will not be swapped out.

If <segment number> refers to a non-existent or demand seg-
ment, an error message will be given, and the calling program will
be aborted. Only a limited amount of physical memory may be
used for fixed segments at a time. This amount will be specified
at system generation time, or it may be changed by the user
before the SINTRAN Il operating system is started.

Example:

CALL FIX (35)

Segment number 35 will be fixed (not allowed to be swapped to
mass storage) in memory and will not be swapped out from
memory before it is unfixed again.

CALL UNFIX (<segment number>)

If the segment <segment number> has been fixed in memory by
means of the FIX monitor call, this condition will be removed,
so that the segment can be swapped back to mass storage.

Example:

CALL UNFIX (35)

Segment number 35 may be swapped onto mass storage again.

<value> = RESRV (<logical unit>, <read/write>, <return flag>)

This routine is used to reserve a logical unit. If <read/write>
equals zero, the input part is reserved for a two-way unit, or if it
equals one, it means the output part. If the unit is already
reserved, the program will be set in a waiting state if <return
flag> equals zero. If the unit is reserved and the <return flag> is
set non-zero there will be an immediate return with negative
function value. If the unit is free, there will be immediate return
with zero function value, and the logical unit will be reserved.
RESRV must be declared as INTEGER (not INTEGER
FUNCTION) when testing on the function value <value>.

ND-60.050.06

7-23

Example:

IVALUE = RESRV (5, 1, 0) or
CALL RESERV (5, 1, 0)

This means: reserve the logical unit number 5 (usually the Line
Printer) for the calling program. If the logical unit is already
reserved, the calling program will be set into a waiting state and
will not be started again before the logical unit is free to use for
the calling program.

CALL RELES (<logical unit>, <read/write>)

The reserved unit will be released if it is reserved for the calling
program. If <read/write> equals zero, the input part is reserved
for a two-way unit, or if it equals one, it means the output part.

If RELES is not called, the unit will be released when the RT
program is terminated.

Example:
CALL RELES (LUN, 0)

The logical unit number LUN will be released from the calling
program if this unit is reserved for this program.

<value> = PRSRV (<logical unit>, <read/write>, <prog. name>)

The logical unit will be reserved for the RT program specified by
the parameter <prog. name>. A two-way unit <read/write>
equal to zero means that the input part will be reserved,
otherwise, that the output part is reserved. If the unit is already
reserved, a negative function value is returned. !f not, zero is
returned and the reservation will be performed. PRSRV must be
declared as INTEGER (not INTEGER FUNCTION) when testing
the function value <value>.

Example:

'VALUE = PRSRV (LUN, 0, RTPROG)
CALL PRSRV (LUN, 0, RTPROG)

This means: if the logical unit LUN is free to use, it will be
reserved for the RT program RTPROG and the function value
PRSRV will be set to zero. If the logical unit LUN is already
reserved for another RT program, the function value PRSRV will
be negative and no reservation will be performed.

ND-60.050.06

CALL PRLS (<logical unit>, <read/write>)

This unit will be released from the program having reserved it.

Example:
CALL PRLS (5, 0)

The logical unit number 5 will be released from the RT program
having reserved it.

Note: This call should not be used for taking a terminal from
another user!

<value> = WHDEV (<ogical unit>, <read/write>)

If the logical unit is reserved for some program, the address of
the RT description of the program occupying the unit will be
returned as the function value. If the unit is free, zero will be
returned. WHDEV must be declared as INTEGER (nor INTEGER
FUNCTION) when testing on the function value <value>.

Example:
IVALUE = WHDEV (LUN, 0)

This means: the address of the RT description for the RT
program having reserved the logical unit LUN will be returned as
the function value WHDEV. If the logical unit LUN is free to
use, the function value WHDEV will be set to zero.

Note: The name of this routine was changed in January 1976.
The former name was WHERE which is also the name of a
plotting function.

CALL RTEXT

The calling RT program will be terminated and all its reserved
resources will be restarted.

Example:
CALL RTEXT

Otherwise, the following statements may be used as a return
from a FORTRAN RT program to the monitor:

END - Statement

ND-60.050.06

Control will be given to the monitor, which will release the
reserved resources of the program.

Example:

PROGRAM TCOM, 30
CALL SUBR (3)
END

CALL MEXIT (<segment no>)

MEXIT is used from FORTRAN when an RT program wants to
load a new segment instead of its second current segment. Only
the second current segment may be exchanged with the segment
number used as parameter in MEXIT call.

Example:

CALL MEXIT (37)

This means: the calling RT program will have its second current
segment exchanged with segment number 37.

CALL RTOFF (<program name>)

The starting of a program is prohibited. After this call the RT
program is put into RTOFF status and will not be allowed to be
started before the RTOFF state is removed by the RTON call
(following).

Example:
CALL RTOFF (RTPRG)

This means: the RT program RTPRG cannot be started (by RT,
SET, external interrupt, etc.) before the RTOFF state is
removed.

CALL RTON (<program name>)
RTON is used to remove the RTOFF status of an RT program,

i.e., the RT program may be started (by SET, RT, external
interrupt, etc.) and executed after a RTON call.

Example:
CALL RTON (RTPR1)

The PR program RTPR1 is now allowed to be executed.
ND-60.050.06

7—26

CALL ERRMON (<error number>, <suberror number>)
The ERRMON monitor call will write an error message on
terminal 1. The error number must be in the interval 50 - 59
while the suberror may be any integer number.
The error message will be written as follows:
aa.bb.cc ERROR nn IN rr AT Il ss: USER ERROR.

The symbols have the following meaning :

aa.bb.cc time when the error message was printed

aa hours

bb minutes

(6l seconds

nn <error number>.

rr octal address corresponding to an RT program name.

(Address of an RT description).

Il octal address (virtual address) where the error
occurred.

Ss <suberror number>.

The calling RT program will not be aborted when using
ERRMON.

Example:

CALL ERRMON (50, 100)

This means that the following error message will be printed on
terminal 1:

15.45.02 ERROR 50 IN 20762 AT 572 100: USER ERROR.

<value> = ABSTR (<logical unit no> <function code> <memory
address> <block address> <number of blocks>)

This is a monitor call for data channel transfers between physical
core and a mass storage device. The monitor call and parameters
must be in permanent core or on a fixed segment, residing on
protect ring 2 and page index table 0.

ND-60.050.06

The memory address to transfer data to/from, must be a
continuous area in physical memory. The area is not allowed to
cross a 64K memory bank boundary. <value> will be set
negative if an error has been detected in ABSTR else <value> is
set positive. ABSTR must be defined as INTEGER (not
INTEGER FUNCTION) when testing on the function value
<value>.

Parameters in the ABSTR monitor call:
<logical unit no>

the logical unit number for the actual mass storage device.
See the list in Appendix C.

<function code>

the function code parameter specifies the operation to be
performed on the mass storage device.

- read

- write

- read test

- compare

- read status

Bits O -5:

OWwWN -0

2

Bits 6 -7: Drive number

<memory address>

double precision physical memory address (not virtual) to
transfer data to/from.

<block address>

mass storage address to transfer data to/from. For magnetic
tape, this parameter holds the unit number. For cartridge
disks bit 15 = 1 means the fixed pack, bit 15 =0 means
the removable pack.

<number of blocks>

number of “"hardware blocks’ to transfer in the call. Refer
to separate manuals for information about ""hardware block”’
size (on disk: sector, on magnetic tape: record). For mag-
netic tape, this parameter contains the record size (number
of words). For read operations, the value will be changed
to actual record size if the record is less than specified.

ND-60.050.06

Example:
IX = ABSTR (502B, 0, MEMO, 20000B, 3)

This means: read 6008 words from disk unit O to the physical
memory address MEMO (MEMO must be double precision). The
data will be read from sector address 200008-

Note: In a previous version, an additional parameter was used to
keep the unit number.

CALL ENTSG (<segment no>, <page index table no>, <interrupt
level>, <start address>)

This is a monitor call to enter a Direct Task or a driver routine
into a SINTRAN |1l system. Parameters in the ENTSG monitor
call are:

<segment no>

the segment number where the Direct Task or driver
routine is loaded into.

<page index table no>
specifies which page index table the routine wiil use.
<interrupt level>

specifies on which interrupt level the routine will run. If it
is a driver routine on level 10, 11, 12 or 13, to enter into
the system one of the free interrupt levels must be
specified instead of the actual level, i.e., interrupt level 10,
11, 12 or 13 are not allowed to be used as the parameter
<interrupt level>.

<start address>

logical start address, entry point of the Direct Task
routine.

Example:
CALL ENTSG (36, 3, 6, 50000B)

This means: the Direct Task routine loaded into segment number
36 will be entered into the system. This Direct Task will use page
index table number 3 and it will run on interrupt level 6. The
start address of the routine is 50000g.

ND-60.050.06

7-29

CALL FIXC (<segment number>, <first physical page>)

This monitor call is used to make a segment memory resident,
similar to the FIX monitor call. The difference is that when
using FIXC, the segment will be placed in a contiguous area of
physical memory. The parameter <first physical page> deter-
mines where it is to be placed in physical memory.

Example:

CALL FIXC (77, 48)

The segment number 77 will be fixed in memory (not allowed to
be swapped to mass storage), and it will be placed from address
140000g in physical memory.

7.6.2 Monitor Calls Available from MAC/NORD-PL Only

For an extensive list of the correspondance between the monitor call
names and number, see Appendix B.

MCALL (MON 132)

This monitor call is used when a subroutine on a different
segment is wanted.

The T register contains a pointer to a data element of two
locations, holding the address of the subroutine. The first
location holds the address, and the second holds the new segment
numbers, one in each half-word. The word containing the two
bytes ACTSEG1 and ACTSEG2, in the RT description will
receive the new segment numbers. If a segment number is zero,
only the other segment is wanted. This may be utilized to inform
the operating system, explicitly, that the segment which is now
replaced by a zero, may be swapped out completely. If that
segment is of non-demand type, the corresponding memory space
will be released for other programs. If a segment number is 277g,
the corresponding segment will be the same as in the calling
program.

A call of MCALL will cause the new segments to be fetched and
the subroutine will be started. The L register will then hold the
return address and the T register contains the segment numbers
of the calling program. Return from the subroutine will be
performed by the monitor call MEXIT (see following).

ND-60.050.06

7.6.3

MEXIT (used together with MCALL) (MON 133)
This monitor call will cause a return from the subroutine.
The T and L registers must have the same values as they had

after the corresponding MCALL. Then the old segments will be
used and the calling program will be resumed.

Example:

LDT PARLI % T POINTS TO DATA ELEMENT

MON 132 % MCALL

. % RETURN HERE AFTER MEXIT
PARLI, SUBR % START ADDRESS AFTER MCALL

10030 % GET IN SEGMENT NO 20g & 30g
SUBR, STT SAVT % ENTRY POINT AFTER MCALL

COPY SL DT % SAVE T AND L REGISTERS

STT SAVL

LDA SAVL

COPY SA DL % L AND T REGISTERS HAVE THE

% SAVE VALUE

LDT SAVT % AS AFTER MCALL

MON 133 % MEXIT

SAVT, 0

SAVL, 0

The Difference Between Using Some Monitor Calls From
MAC/NORD-PL and From FORTRAN

ABSTR

The only difference between using the monitor call ABSTR from
MAC/NPL and from FORTRAN, is that in MAC/NORD- PL, the
logical unit number for the mass storage device shall not be in
the parameter list, but in the T register, otherwise, the parameter
list is the same.

Example:
LDT LOGNO % LOGICAL UNIT
% NO INT
LDA (PARAM % A POINTS TO
% PARAMETER LIST
MON 131 % ABSTR
JAN ERROR % ERROR IFA O

ND-60.050.06

PARAM, (1 % FUNCTION CODE WRITE
MEMO % PHYSICAL MEMORY ADDRESS
(20000 % MASS STORAGE ADDRESS
(1 % ONE HARDWARE BLOCK

LOGNO, 502

JFILL

MEMO, * + 200/ % ONE DISK SECTOR

%
% THE ADDRESS OF MEMO MUST BE EVEN !
%

This means: write 1 block on disk unit 0. The data will be
transferred from the buffer IARR to sector address 20000g on
disk. In this example, it is assumed that the program resides in
resident core, otherwise the core address (buffer address) should
have been altered from the logical address IARR to the actual
(corresponding) physical memory address.

ERRMON

The ERRMON monitor call used in MAC/NORD-PL should have
the error number in the A-register and the suberror number in
the T-register. The error number (in A-register) must be in ASCII
code, maximum 2 digits.

Example:
LDA ERNO % ERROR NUMBER
% (DCTAL)
SAT 5 % SUBERROR NUMBER
MON 142 % ERRMON
ERNO, #56 % 56 IN ASCHII CODE

This causes the following error message to be printed on terminal
1:

13.20.30 ERROR 56 IN 17641 AT 1 5: USER ERROR.

ND-60.050.06

MEXIT

The MEXIT monitor call may be used to exchange segments in
an RT program, ie., to substitute one of the two current

segments of the RT program.

Example:
LDT SEGNO
JPL CHSEG
CHSEG, MON 133

SEGNO, 177436

% NEW CURRENT

% SEGMENT NUMBER
% CONTINUE HERE

% AFTER MEXIT

% L POINTS TO

% RETURN ADDRESS
% MEXIT

% THE NEW CURRENT
% SEGMENT NUMBERS,
% 1 SEGMENT NUMBER
% IN EACH HALF-WORD

This means that the calling RT program will keep its first current
segment in the memory and load segment number 36 as its

second segment number.

The other monitor calls must have the same arguments whether they

are used from FORTRAN or from

MAC/NORD-PL. In the following

the examples, demonstrated in Section 7.6.1, will be placed into a MAC
context. The coresponding FORTRAN calls will also be presented.

CALL RT (PR1)
LDA (PLIST
MON 100
PLIST, (PR1

CALL SET (RT 1, 10, 2)

LDA (PLIST

MON 101
PLIST (RT 1

(12

(2

ND-60.050.06

% A POINTS TO
% PARAMETER LIST
% RT

% RT PROGRAM PR1

% A POINTS TO
% PARAMETER LIST
% SET

% RT PROGRAM RT1
% 10 SECONDS (12g)
% TIME UNIT

% SECOND

CALL ABSET (PROG, 0, 30, 17)

LDA (PLIST % A POINTS TO
% PARAMETER LIST

MON 102 % ABSET
PLIST (PROG % RT PROGRAM PROG
% SET ASSEMBLER IN DECIMAL MODE
)DEC

(0 % SECOND

(30 % MINUTE

(17 % HOUR

% RESET ASSEMBLER TO OCTAL MODE

JOCT
CALL INTV (PP, 20, 3)
LDA (PAR % A POINTS TO
% PARAMETER LIST
MON 103 % INTV
PAR, (PP % RT PROGRAM PP
(24 % 20 TIME UNITS
% (SECOND)
(3 % TIME UNIT,
% SECOND
CALL DINTV (RTPR, DTEM1)
LDA (PARL % A POINTS TO
% PARAMETER LIST
MON 130 % DINTV
PARL, (RTPR % RT PROGRAM RTPR
DTEM1
DTiM1, O % DOUBLE WORD,
763 % THE INTERVAL

% FOR RT PROGRAM
% RTPR WILL BE 763g
% BASIC TIME UNITS

ivnD-60.050.06

CALL RTWT

MON 135 % RTWT
% CONTINUE NEXT
% EXECUTION HERE

CALL HOLD (10, 2)

LDA (PAR % A POINTS TO
% PARAMETER LIST
MON 104 % HOLD
PAR, (12 % NO OF TIME
% UNITS, 10
(2 % TIME UNITS,
% SECOND
CALL ABORT (PRX)
LDA (PLIST % A POINTS TO
% PARAMETER LIST
MON 105 % ABORT
PLIST, (PRX % ABORT RT

% PROGRAM PRX

CALL CONCT (CPIN, 4008B)

LDA (PLIST % A POINTS TO
% PARAMETER LIST
MON 106 % CONCT
PLIST, (CPIN % RT PROGRAM CPIN
(400 % INTERRUPT LINE 400 OCTAL
CALL DSCNT (PRGA)
LDA (PAR % A POINTS TO
% PARAMETER LIST
MON 107 / DSCNT
PAR, (PRGA % DISCONNECT RT

% PROGRAM PRGA FROM
% ALL INTERRUPT

% LINES; AND RESET

% PERIODICALLY

% EXECUTIONS

ND-60.050.06

CALL PRIOR (RTPR, 30)

LDA (PLIST % A POINTS TO
% PARAMETER LIST
MON 100 % PRIOR
PLIST, (RTPR % RT PROGRAM RTPR
(36 % PRIORITY, 30
CALL UPDAT (24, 11, 24, 2, 1976
LDA (PAR % A POINTS TO
% PARAMETER LIST
MON 111 % UPDAT

% SET ASSEMBLER IN DECIMAL MODE

)DEC
PAR, (24 % MINUTE
(11 % HOUR
(24 % DAY
(2 % MONTH
(1976 % YEAR
% RESET ASSEMBLER TO OCTAL MODE
)OCT
CALL CLADJ (15, 2)
LDA (PARL % A POINTS TO
% PARAMETER LIST
MON 112 % CLADJ
PAR, (17 % NO OF TIME
% UNITS (15
(2 % TIME UNIT,
% SECOND
CALL FIX (35)
LDA (PARL % A POINTS TO
% PARAMETER LIST
MON 115 % FIX
PARL, (43 % SEGMENT NO 35

ND-60.050.06

CALL UNFIX (35)

LDA (PARLI
MON 116
PARLI, (43

IX = RESERV (5, 0, 0)
LDA (PAR

MON 122

PAR, -(5
(0
(0

CALL RELES (LUN, 0)
LDA (PAR

MON 123

PAR, LUN,
(0

LUN, 5,

!X = PRSRV (LUN, 0, RTPRO)
LDA (PARAM

MON 124

PARAM, LUN

(0
(RTPRO
LUN, 6

ND-60.050.06

% A POINTS TO
% PARAMETER LIST
% UNFIX

% UNFIX
% SEGMENT NO 35

% A POINTS TO
% PARAMETER LIST
% RESRV

% LOGICAL UNIT NO
% READ/WRITE FLAG
% RETURN FLAG

% A POINTS TO
% PARAMETER LIST
% RELES

% LOGICAL UNIT
% NO. LUN (5)

% READ/WRITE
% FLAG

% A POINTS TO
% PARAMETER LIST
/ PRSRV

% LOGICAL UNIT

% NO (LUN = 6)

% READ/WRITE FLAG
% RT PROGRAM RTPRO

CALL PRLS (5, 0)

LDA (PARAM % A POINTS TO
% PARAMETER LIST
MON 125 % PRLS
PARAM, (5 % LOGICAL UNIT NO
(0 % READ/WRITE FLAG
IX = WHDEV (LUN, 0
LDA (PARL % A POINTS TO
% PARAMETER LIST
MON 140 % WHDEV
PARL, LUN % LOGICAL UNIT
% NO (LUN = 6)
(0 % READ/WRITE FLAG
LUN,
CALL RTEXT
MON 134 % RTEXT
CALL RTOFF (RTPRG
LDA (PARLI % A POINTS TO
% PARAMETER LIST
MON 137 % RTOFF
PARLI, (RTPR1 % RT PROGRAM
% RTPR1
CALL ENTSG (36, 3, 6, 50000B)
LDA (PARLI % A POINTS TO
% PARAMETER LIST
MON 157 % ENTSG
PARLI, (44 % SEGMENT NO 36
(3 % PAGE INDEX
% TABLE 3
(6 % INTERRUPT
% LEVEL 6
(50000 % START ADDRESS,
% 50000g

ND-60.050.06

CALL FIXC (77, 48)

LDA (PARLI

MON 160
PARLI, (115

(60

CALL DSET (RTP, TMR1)
LDA (PARLI

MON 126

PARLI, (RTP
TMR1

TMR1, O
500

CALL DABST (RTIMP, TMP2)
LDA (PARLI

MON 127

PARLI, (RTIMP

(TMP2
T™MP2, 1

174001

ND-60.050.06

% A POINTS TO
% PARAMETER LIST
% FIXC

% SEGMENT NO 77
% PHYSICAL
% PAGE NO.

% A POINTS TO
% PARAMETER LIST
% DSET

% RT PROGRAM RTP

% DOUBLE WORD,
% NUMBER OF

% BASIC TIME

% UNITS

% A POINTS TO
% PARAMETER LIST
% DABST

% RT PROGRAM
% RTIMP

% DOUBLE WORD,

% THE TIME IN

% BASIC TIME

% UNITS’ THE RT

% PROGRAM RTIMP
% WILL BE STARTED

7.7

7.7.1

THE REAL-TIME LOADER

A more complete description of the RT loader is given in the manual
“RT Loader, ND-60.051".

The RT loader may only be called by the users RT and SYSTEM. Only
one user at a time may communicate with the RT loader.

General Remarks

The RT loader’s main function is to load program units in binary
relocatable format (BRF) while the system is running. The functions of
the RT loader may be summarized as follows:

relocate the program unit so that the code conforms to the
specific locations in virtual memory.

link the program units together by means of a linking table
(LTBL) containing symbolic names of entry points.

maintain a symbolic file (RTFIL) on mass storage containing the
names of all real-time programs, entry points and COMMON
areas known to the system.

allocate RT descriptions in the RT description table.

build segments. Only two new segments may be built at the same
time but new segments may be linked to another already existing
segment, if there is no virtual overlap between segments “linked"’
together.

allocate segment descriptions in the segment table.

print out information from the linking table and the RTFIL.

execute “editing” functions on the linking table, the RTFIL and
the RT description table.

allocate data storage in resident memory and on the segments.

allocate mass storage space for the segments.

The RT loader is called for execution by the command @RT-LOADER.

The first time the RT loader is executed, after having been installed,
the linking table and the RTFIL are initialized.

ND-60.050.06

The normal way of operating the RT loader is to specify commands in
a conversational mode at a terminal. However, commands may also be
read from a file by using the @MIODE command. Whenever a program
unit is to be loaded, the proper segments must be specified beforehand,
except for the NREENTRANT-LOAD and REENTRANT-LOAD
commands.

The RT loader maintains two tables containing symbolic informaton. In
order to make efficient use of the loader, the operator should be
familiar with their purpose and contents.

The LINKING TABLE (LTBL) contains:

- all symbolic information of the segments currently being built
and all symbolic information of resident memory (common
memory).

The RTFIL TABLE contains:

- all symbolic informaton of resident memory and of all existing
segments which have been built by the RT loader.

ON RESET-LOADER and END-LOAD commands, the LTBL is cleared
and new contents are fetched from the RTFIL. After such a command,
the entry points in resident memory, including the RT program names,
are found in the LTBL.Wheneveran existing segment is specified in a
“load’’ command, all entry points on this segment are fetched from the
RTFIL, thus, making them available during load time.

A summarization of the different types of symbols in the linking table
(LTBL) follows:

- entry points in resident memory (always in LTBL).
entry points and references on the segments currently being built.
- memory resident COMMON area labels (always in LTBL).
segment resident COMMON area labels.
RT program names (always in LTBL).
Each time the loading of new segments is finished, the symbolic
information in LTBL is transferred to the RTFIL (on END-LOAD

command). Therefore, all symbols known to the system are stored on
this file.

ND-60.050.06

7.7.2

1.7.3

7.7.3.1

7-41

During load time, a scratch file is used as temporary storage for the
code. Information about data areas (COMMON) and their initial values
is kept in LTBL until the END-LOAD command is given. Then the
COMMON areas are allocated and initialized. Thereafter, the actual
segment file is searched for a sufficiently great free area and the
segment(s) on the scratch file is copied to the segment file.

The RT loader maintains a bit map of the segment files.

Segment Files

The segment files are contiguous areas on mass storage (disk or drum)
where all segments in the SINTRAN Il system reside. The swapping of
pages will be performed between the area of a segment in a segment
file and physical memory at run-time immediately before the code on
the segments is to be executed.

The segment files may be defined on any disk or drum file directory in
a SINTRAN Il system.

The segment files are defined by the operator command
@ALLOCATE-FILE and the RT loader command *DEFINE-
SEGMENT-FILE.

RT Loader Commands
CLEAR AN EXISTING SEGMENT
*CLEAR-SEGMENT <segment no>

The segment <segment no> will be cleared, i.e., the space on the
segment file occupied by the segment <segment no> will be released
and the segment number <segment no> will be free again. The segment
cannot be one of the segments initially present in the SINTRAN 111
system. The segment will not be cleared if it is one of the segments of
an existing RT program, if the segment is currently being used by an
RT program, or if it has been fixed using the FIX or FIXC command.

The parameter <segment no> is given the value of zero, which is
equivalent to memory common, and the question “CLEARING
MEMORY COMMON?” will be printed. If the answer Y, for yes, if
given the memory common pointers will be reset to their initial values,
and all memory common labels will be deleted from the linking table
and the RTFIL.

When clearing a segment, all symbols defined on this segment will be
deleted from RTFIL and the linking table.

ND-60.050.06

1.7.3.2

1.1.3.3

7.7.34

7—-42

DECLARE AN RT PROGRAM NAME
*DECLARE-PROGRAM <rt program name>

The symbol <rt program name> will be defined as the name of an RT
program and an entry in the RT description table will be allocated.
This command is necessary when loading RT programs which have
other RT programs as “externals”, and these “external RT programs”’
are not yet defined or declared.

DEFINE THE NAME OF A SEGMENT FILE

*DEFINE-SEGMENT-FILE <segment file name> <segment file no>

Define the segment file number <segment file no>. The parameter
<segment file name> will be the name of the segment file. If the
segment file number <segment file no> is already defined, then this
segment file’s name and the question REDEFINE SEGMENT FILE?
will be printed. The answer Y, for yes, will result in the segment file's
name being changed to <segment file name>.

Before using the DEFINE-SEGMENT-FILE command, the specified
segment file must have been defined with the ALLOCATE-FILE
command and the mass storage address of the segment file must have
been defined with the ALLOCATE-FILE command and the mass
storage address of the segment file must have been inserted in the
“BLST" array in the SINTRAN Il system.

Example:

*DEFINE-SEGMENT- FILE

SEGMENT FILE NAME: FIXED-PACK:SYSTEM) —
SEG-FIL1:DATA

SEGMENT FILE NO.:_1_

DEFINE A SYMBOL
*DEFINE-SYMBOL <symbol> <value> [<segment no>]

Define the symbol <symbol> on the segment <segment no> and give
it the value <Xvalue>. The parameter <segment no> must be an existing
segment or one of the segments currently being built. The default value
of the parameter <segment no> is the current “load segment’, the
segment last loaded into the current load operation.

ND-60.050.06

7.7.3.5

7.7.3.6

7.7.3.7

Example:

*NEW-SEGMENT,.,,

NEW SEGMENT NO: 31
*DEFINE-SYMBOL

SYMBOL NAME: SYMB!
VALUE: 0

SEGMENT NO: 31
*DEFINE-SYMBOL SYMB2 1 31

*

DELETE THE NAME OF THE NON- REENTRANT ROUTINES IN
THE “REENTRANT” FORTRAN LIBRARY (FTNRTLIBR)

*DELETE-NON- REENTRANT

The names of the non-reentrant routines in the reentrant FORTRAN
library will be deleted. This command is useful when building a
reentrant system with more than one RT program on the same
segment. After each RT program is loaded: define the end of the stack,
delete the names of the non-reentrant routines, set the new load
address (equals end of stack plus one), load the next RT program, etc.

The names of the non-reentrant routines in the “reentrant’ FORTRAN
library are:

8DXI, DEXP, DLOG, DLOG10, DSIN, DCOS, DSORT, DATAN,
DTAN2, DMOD, 8DIV, 8STAC, STPNT, STBEG, STEND,
8RTEN, 8ENTR, 8STKI.
DELETE AN RT PROGRAM
*DELETE-PROGRAM <rt program name>
The RT program named <rt program name> will be deleted from
RTFIL and from the linking table, and the RT programs entry in the
RT description table will be free again. If the RT program <rt program
name> is active, the DELETE-PROGRAM command is illegal.
DELETE A SYMBOL FROM THE LINKING TABLE
*DELETE-SYMBOL <symbol>

The symbol names <symbol> will be deleted from the linking table.
The symbol <symbol> must not be a common label or an RT program.

ND-60.050.06

7.7.3.8

7.7.39

7.7.3.10

END A LOAD OPERATION
*END-LOAD

The END-LOAD command must terminate all load operations. This
command will close the segments currently being built. The segments
will be moved from the scratch file to the segment file and the RTFIL.
The linking table, the segment table and the RT description table will
be updated. The RTFIL table will be written to the file RTFIL during
the END- LOAD command. If there are undefined symbols in the
linking table when an END-LOAD command is typed, the question
NEGLECTING REFERENCES? will be printed. If the answer is Y, for
yes, then the END-LOAD command will continue. Otherwise, the
END- LOAD command is terminated and the load operation may
continue.

If the command NREENTRANT-LOAD was the last ““load’ command,
then the file RTNLIBR will automatically be scanned in the
END-LOAD command if there are undefined symbols in the linking
table.

Example:

*NREENTRANT-LOAD 200-USER,,
NEW SEGMENT NO: 33
*END-LOAD

EXIT FROM THE RT LOADER

*EXIT-LOADER

This command will update the file RTFIL and then leave the RT ioader
and give control to the SINTRAN Il command processor.

LIST THE AVAILABLE COMMANDS

*HELP [<output file>]

This command will list all the RT loader’s commands on the <output
file>. The output will be in alphabetical order.

If the terminal is used as <output file>, the output is divided into
three parts. For each part, the RT loader will give the question NEXT
COMMANDS?. If the answer is Y, for yes, then the next part is listed,
otherwise the command is terminated. The terminal is the default value
of the <output file> parameter.

ND-60.050.06

7.7.3.11

7.7.312

7—45

LOAD A SINTRAN Il MEMORY ONLY SYSTEM
*|MAGE-LOAD <image file> <output file> [<bootstrap start addr>]

This command will set the RT loader in “image load” mode, i.e.,
'oading will be to a file instead of to a segment.

The parameter <image file> is the name of the file where the
SINTRAN IIl C system is resident in binary format. <output file> is
the name of the file where the completed SINTRAN Il C system will
be dumped by the END-LOAD command. The parameter <bootstrap
start addr> is the address of the bootstrap, i.e., the address where the
bootstrap will be placed in memory when the SINTRAN Il C system is
loaded and started. The default value of <bootstrap start addr> is the
value of the load address when the load operation is terminated.

The “image load” mode is reset by the END-LOAD and the
RESET-LOADER command.

Example:

*IMAGE-LOAD

IMAGE FILE: CORE-SINTRAN:SYMB
OUTPUT FILE: TAPE-PUNCH
BOOTSTRAP START ADDRESS:
*SET-LOAD-ADDRESS 26000
*NREENTRANT-LOAD 200-USER
*END-LOAD

LIST THE AVAILABLE FREE SEGMENT NUMBERS
*LIST-FREE-SEGMENTS <output file>

The unused segment numbers in the system will be listed on the
<output file>. Default value of <output file> is the terminal.

ND-60.050.06

7.7.3.13

7.7.3.14

LOAD FROM THE SPECIFIED INPUT FILE INTO THE SPECIFIED
SEGMENT

*LOAD [<input file>] [<load-segment>] [<Jink-segment>]

Load BRF code from the file <input file> into the segment
<load-segment>. The <load-segment> must have been specified in a
NEW-SEGMENT command before it may be used in the LOAD
command. The <link-segment> must be an existing segment, or one of
the two segments currently being built. Line-segment means that all
symbols defined on the link-segment will be available in the load
operation. There must be no virtual address overlap between the
load-segment and the link-segment. If no <input file> parameter is
specified the last input file specified will be used. If no <load-segment>
is specified, the last segment used as load-segment or the last segment
specified in a NEW-SEGMENT command will be used. Default value of
the parameter <link-segment> is the second segment currently being
built, or no link-segment if no “second” segment is specified. The
parameter <Jink-segment> may be given the value zero to avoid linking
to another segment in a load operation.

Example:

*NEW-SEMGENT, .

NEW SEGMENT NO: 34
*LOAD

INPUT FILE:_TW2
LOAD-SEGMENT NO.: 34
LINKING-SEGMENT NO.:
*LOAD WAITF,,

*LOAD FTNLIBR,
*END-LOAD

*

SPECIFY THE NEW SEGMENT TO BE BUILT

*NEW-SEGMENT [<segment no>] [<ring>] [<demand/
non-demand>] [<permit protection bits>]

Allocates a segment number to use the current load operation. The
<segment no> must be an available free segment number and the
default value is the first free segment number. The parameter
<demand/non-demand> specifies whether the segment will be a
demand segment or a non-demand segment. The default type is
non-demand. Legal values for the parameter <demand/non-demand>
are the characters ND for non-demand and DM for demand. The
parameter <permit protection bits> specifies whether the segment is to
be fetch permitted, read permitted, or write permitted. Legal values for
this parameter are F for fetch, R for read, and W for write permitted,
or a combination of these three characters. Default value is RFW.

ND-60.050.06

7.7.3.15

A maximum of two segments may be specified by the NEW-SEGMENT
command in the same load operation.

Example:

*NEW-SEGMENT
SEGMENT NO: 40
RING: 2

SEGMENT TYPE: DM_
PROTECTION BITS: RF.
*NEW-SEGMENT
SEGMENT NO:

RING:

SEGMENT TYPE:
PROTECTION BITS:
NEW SEGMENT NO: 35

In the first NEW-SEGMENT command in the example, the segment
number 40 is specified to be a demand segment on protect ring 2 and
only read and fetch permitted. In the second NEW-SEGMENT
command only default parameters are used and the result is that the
first free segment, number 35, is allocated. This segment is
non-demand. It resides on protection ring O and it is read, write and
fetch permitted.

LOAD FROM THE SPECIFIED INPUT FILE INTO THE CURRENT
LOAD-SEGMENT

*NREENTRANT-LOAD [<input file>] [<link-segment>]

Load BRF code from the file <input file> into the current load
segment, which is the last segment loaded into the current load
operation or the last segment specified in a NEW-SEGMENT command.
If no current load segment exists, the first free segment number will be
allocated and used as the current load segment. If a new segment is
allocated, it will be a non-demand segment residing on protection ring 0
and it will be read, write and fetch permitted. The link segment
<link-segment> must be one of the two segments currently being built
or an already existing segment, or <link-segment> can equal zero
meaning that no linking is desired. The defauit value of the parameter
<link-segment> is the last segment used as link segment or the
“second” segment currently being built. The default value of the
parameter <input file> is the last file used as <input file>.

The file FTNLIBR, containing the FORTRAN run-time system, will be
scanned (loaded from) in the END-LOAD command if there are
undefined symbols and the last load command was the
NREENTRANT-LOAD command.

ND-60.050.06

7.7.3.16

7—-48

Example:

*NREENTRANT-LOAD

INPUT FILE: TW2
LINKING-SEGMENT NO.:

NEW SEGMENT NO: 35
*NREENTRANT-LOAD WAITF,,
*END-LOAD

*

LOAD REENTRANT PROGRAM SYSTEMS ONTO A SPECIFIED
SEGMENT

*REENTRANT-LOAD [<input file>] [<line-segment>] [<stack
length>]

Load BRF code into the current load segment from the file <input
file>. The current load segment is the last segment loaded into the
current load operation, or the last segment specified in a
NEW-SEGMENT command. If no current load segment exists, then the
first free segment number will be allocated as the current load segment.
This segment will be a non-demand segment, residing on protection ring
0, and will be read, write and fetch permitted.

The <link-segment> may refer to one of the segments currently being
built, an already existing segment or have the value zero if no linking is
desired. The default value of the parameter <link-segment> is the last
segment used as link segment in the current load operation. The last
file used as <input file> is default value of the parameter <input file>.

After each REENTRANT-LOAD command the file FTNRTLIBR,
containing the “reentrant” FORTRAN run-time system, is scanned if
the symbol STEND (end of stack) is undefined. Then the symbol
STEND is defined and the names of the non-reentrant routines are
deleted from the linking table. The symbol STEND will receive a value
equal to the load address after the file FTNRTLIBR is scanned plus the
value of the parameter <stack length>. The load address of the
segment will be set equal to STEND plus one. 1K words is the default
value of the parameter <stack length>.

This command is useful when building a system consisting ot reentrant
FORTRAN programs on the same segment. The BRF code of the
various RT programs should be placed on different files and one then
uses a single REENTRANT-LOAD command for each RT program.

ND-60.050.06

7.7.3.17

7.7.3.18

7.7.3.19

7.7.3.20

Example:

*REENTRANT- LOAD
INPUT FILE: REENT-TW2
LINKING-SEGMENT NO:
STACK LENGTH: 400
NEW SEGMENT NO: 40
*END-LOAD

*

RESET THE RT LOADER
*RESET-LOADER

This command will reset the RT loader to its initial state, which is the
state after the last EXIT-LOADER, END-LOAD or RESET-LOADER

command.

ALLOCATE COMMON AREA IN RESIDENT CORE
*SET-CORE-COMMON <common label>

The common area labelled <common label> will be allocated in
resident memory. This command must be used before the common area
<common label> is loaded.

SET THE LOAD ADDRESS OF A SEGMENT
*SET-LOAD-ADDRESS <segment no> <load address>

Set the current load address of the segment <segment no> to the value
<Joad address> The segment <segment no> must be one of the
segments currently being loaded in, or segment number can have the
value zero meaning memory common. When memory common is
specified, the question CHANGING LOAD ADDRESS OF MEMORY
COMMON? is printed, and this must be answered with Y, for yes,
before any changing memory common load address can occur.

COMMAND TO ALLOCATE COMMON AREA ON THE SECOND
SEGMENT CURRENTLY BEING BUILT

*SEG-SEGMENT-COMMON <common label>

The common area labelled <common label> will be allocated on the
segment specified in the second NEW-SEGMENT command in a load
operation. This command must be used before the common label
<common label> is defined.

ND-60.050.06

7.7.3.21

71.7.3.22

71.7.3.23

7.7.3.24

LIST NAMES OF ALL THE COMMON LABELS IN THE LINKING
TABLE

*WRITE-COMMON-LABELS <output file>
List the names, addresses and the segment numbers of all the common

labels defined or declared in the linking table, on the file <output
file>. The terminal is the default value of the parameter <output file>.

WRITE THE LOWER AND UPPER ADDRESS LIMITS, AND THE
CURRENT LOAD ADDRESS OF A SPECIFIED SEGMENT
*WRITE-LOAD-ADDRESS <segment number>

Write the lowest virtual address, the highest virtual address and the
current load address of the specified segment <segment no>. This
segment must be one of the segments currently being built. When the
value zero is given for the parameter <segment no>, the addresses of
memory common are listed.

LIST THE NAMES OF THE RT PROGRAMS

*WRITE-PROGRAMS [<output file>]

List the names of all the RT programs defined and declared on the file
<output file>.

Each of the RT programs’s two segment numbers and the address of
each RT program’s RT description will also be listed. Declared RT
programs will not have segment numbers, so question marks will be
written instead of segment numbers.

The default value of the parameter <output file> is the terminal.

LIST OUT THE UNDEFINED SYMBOLS
*WRITE-REFERENCES [<output file>]

All undefined symbols in the linking table will be listed on the <output
file>. The terminal is the default value of the parameter <output file>.

ND-60.050.06

7.7.3.25

7.7.3.26

71.7.3.27

LIST THE SYMBOLS IN RTFIL
*WRITE-RTFIL [<segment no>] [<output file>]

List all the symbols with the segment number <segment no> on the
file <output file>. If no <segment no> is specified, all the symbols in
RTFIL will be listed. The terminal is the default value of the parameter
<output file>.

LIST ALL THE INFORMATION ABOUT A SPECIFIED SEGMENT
*WRITE-SEGMENTS [<segment no>] [<output file>]

List all information about the specified segment <segment no>. The
information listed is the segment number, the segment’s lower and
higher virtual addresses, the mass storage address (in pages) relative to
the start of the segment file, the segment file number, the page index
table number, on which protection ring the segments reside and the
memory protection type (demand/non-demand).

If no parameter <segment no> is specified, then all segments are listed
out. When the value zero is given for the parameter <segment no> the
address limits of the memory common area are listed. The terminal is
the default value of the parameter <output file>.

LIST THE DEFINED SYMBOLS IN THE LINKING TABLE
*WRITE-SYMBOLS <output file>

List the names, the segments and the values of all defined symbols in

the linking table, on the file <output file>. The terminal is the default
value of the parameter <output file>.

ND-60.050.06

8.1

SINTRAN I111/SINTRAN 111l COMMUNICATION
INTRODUCTION

The SINTRAN I1I/SINTRAN Il communication system is an optional
part of the SINTRAN IIl 1/0 system for communication between two
(or more) SINTRAN 1l systems. The two systems may be SINTRAN
I11/10 or SINTRAN 111/12 systems. The communication serves the
following purposes:

a) Data transfer between two user programs, one in each
SINTRAN 1Il system. This connection will, from the user
program’s point of view, look like an internal device connection
between two user programs in the same SINTRAN [II system.

b) Remote terminal communication. This means that a user on a
terminal connected to one of the SINTRAN Ill systems may run
the operator communication system and background system on
the remote SINTRAN 11l system.

c) Remote load. The remote SINTRAN Il computer may be loaded
from the other SINTRAN I1I system. Only main memory will be
loaded.

d) Watch-dog connection.

The communication is essentially the same, regardless of the conmuni-
cation line used. The line must fulfill the following requirements:

a) Logical full duplex connection. At least half duplex hardware is
required.
b) Binary transparent transmission facilities on byte level.

c) Sufficient capacity for the actual load.

ND-60.050.06

8.2 COMMUNICATION LINE

The communication line will be divided in up to thirty-two logical lines
each way, hereafter called channels. The channels will be numbered
from zero to thirty-one. If more than thirty-two channels are needed,
two communication lines must be available.

T Channel 0
——— Channel 1
— Channel 2

32 channels

| —
/'/ \'L\

- / Channel 0
32 channels —a / Channel 1
— - y Channe| 2

Figure 8.1: One Communication Line

Each channel is provided with a buffer on each side. A buffer is
scheduled for transmission either when the buffer is full or when a
break character is inserted in the buffer. When a buffer is scheduled for
sending, the corresponding channel may be supplied with a new buffer
from a buffer pool.

Channel Transmission
n buffer Queue

Data from source 3 Transmission Line
. -

]

From buffer pool To buffer pool

Figure 8.2.

ND-60.050.06

On the receiving side, the opposite action is performed. Buffers are
received and queued for the various destinations.

Receive buffer Channel n buffers

S e N .

| '

From buffer pool To buffer pool

—®> Data for destination

Figure 8.3.

Acknowledgement for correctly received buffers are transmitted
together with the data buffers in the opposite direction. Up to four
buffers may be transmitted without receiving acknowledgement. This is
done by dividing the buffers into four groups. For each group, the
buffer is not discarded until acknowledgement for this group is
received. The buffers for sending are always directed to the four groups
in an eyelie manner to ensure correct sequence. On the receiving side,
they are distributed in the same cyclic manner.

_— — 0 0 T
To channel buffer
Transmission\
Queue ¢;
1 1 — —|— —
— ——
X 2 2
\ ® . A,
3 3

Transmission group Receive group

Figure 8.4.

ND-60.050.06

When a buffer is transmitted it is preceded by a buffer header and
followed by a cyclic check sum. The transmission buffers have the
following format :

BIT 7 6 5 4 32 1 0

GS IS GR IR STS

CONTROL CHANNEL

NUMBER OF DATA BYTES IN BUFFER

DATA

CYCLIC CHECK SUM

Figure 8.5: Format of a Transmission Buffer

The fields in the buffer header have the following meaning:
GS - Group number for this buffer

IS - Sequence number for GS

GR - Group number for the status information in STS
IR - Sequence number for GR

STS -Status information for buffer transmitted in the opposite

direction.

1 - not acknowledged
2 - acknowledge

3 - wait acknowledge

ND-60.050.06

The control field may have the following values::

0 - data transfer

1 - define break strategy

2 - define echo strategy

3 - request for input

4 - turn off request for input

5 - system configuration message (used for initialization)

Depending on the type of connection used, this format may be framed
by syne, start of text, end of text, etc.

A buffer in a transmission group is not discarded until acknowledge-
ment for this group (with correct sequence number) is received. If not
acknowledged is received, or time-out, the buffer is retransmitted.

Each channel is assigned a logical device number on each side and may
be reserved, released and accessed exactly like any other device in
SINTRAN IIl. The logical device number on the sending side does not
have to be the same as the one on the receiving end. Refer to Figure
8.6.

| l
| Channel 0 l
Number 600 + | Number 640
| Channel 1 l
Number 601 % | Number 641
I
| |
I I
| |
| Channel 31
Number 637 l : Number 677
Figure 8.6.

ND-60.050.06

8.2.1

8.2.2

Commands to Initiate and Terminate Communication
@START-COMMUNICATION <line number>
Parameters:

<line number> may be omitted if there is only one possible remote
connection.

Function:

Initiate communication on a communication line. A configuration table
containing the correspondence between channel numbers and logical
device numbers is sent to the remote computer. If the remote computer
answers with its own configuration table within 12 seconds, the
message COMMUNICATION ESTABLISHED is printed. if no answer is
received, the message NO REPLY is printed and control is returned to
the operators communication. However, the system continues to
retransmit the configuration table until a @STOP-COMMUNICATION
command is given. Thus, there may be an arbitrary time delay between
the START-COMMUNICATION commands on the two computers.

This command may only be executed by user SYSTEM.
@STOP-COMMUNICATION <line number>

Parameters:

<line number> may be omitted if there is only one possible remote
connection.

Function:
Terminate communication on a communication line.

This command may only be executed by user SYSTEM.

The COMMUNICATION-STATUS Command
The format is:

@COMMUNICATION-STATUS <line printer>
Parameters:

<line number> may be omitted if there is only one possible remote
connection.

ND-60.050.06

Function:

The following information on the communication line will be listed on
the terminal.

- the logical device numbers of the implemented channels on both
sides of the line

- the number of unacknowledged messages sent
the number of unacknowledged messages received
the number of messages received out of sequence

COMMUNICATION RUNNING or COMMUNICATION DEAD.
(This command does not affect the communication.)

ND-60.050.06

8.3

DATA TRANSFER

Some of the channels may be used for data transfers between two user
programs. Such a channel is used in the following way:

1.

The channel must be reserved by the user programs. Each
program receives the corresponding logical device number on its
side of the connection.

The receiving program asks for input (by the monitor call INBT)
and is set in waiting state until a buffer is received on this
channel.

The sending program sends output (by the monitor call OUTBT)
and is set in waiting state when one of the following conditions
occurs:

- a break character is sent
- the buffer pool is “almost” full
- a wait acknowledge is received on this channel.

The sending program is restarted again when a request for input
is received on this channel. A request for input is sent from the
receiving side when a break character is encountered on input,
and the receiving program asks for more input. A wait acknow-
ledge is sent if the input queue for a channel exceeds a
predefined (system generation parameter) number of buffers. This
is done to prevent one channel from occupying the whole buffer
pool if the receiving program reads data at a lower rate than the
sending program sends data. A wait acknowledge simulates a
break character at the end of the last transmitted buffer on this
channel.

The break strategy may be defined by the receiving program. The
strategy is transmitted to the sending system as a special buffer
with control = 1. If a negative break strategy is defined, no
characters will be break characters and all transmission buffers
will have the maximum length, except the last one which is sent
when the sending program executes a CLOSE-FILE or IOSET on
the channel. Note that the break strategy should be set to break
as little as possible to utilize the transmission line and reduce
system overhead.

ND-60.050.06

The following standard SINTRAN monitor calls may be used on a
communication channel:

INBT Input a byte

OUTBT Output a byte

CIBUF Clear input buffer

COBUF Clear output buffer

IOSET On input: equivalent to CIBUF
On output: equivalent to COBUF

BRKM Set break strategy

ECHOM Set echo strategy. This monitor call will only have
effect if the program on the other side is a remote
terminal processor.

If the channel is defined to the file system as a peripheral file by the
@SET-PERIPHERAL-FILE command, the monitor calls OPEN-FILE
and CLOSE-FILE may also be used.

It should be seen from the description above that the channels on a
communication line may be used as independent byte oriented
peripheral devices.

Example of assembly program to receive data from a communication
channel with device number 600:

LDA (REPAR
MON 122 % Reserve channel
LDT (600
MON 13 % Clear input buffer
JMP ERROR % Error exit
SAA -1 .
MON 4 % Set break strategy
LOOP, LDT (600
MON 1 % Input a byte
JMP ERROR % Error exit
% Process the byte read
. % and test if finished
JMP LOOP
REPAR’ (600
(0
(0
JFILL

It is always recommended to use the Clear input buffer monitor call in
the initializing sequence, in case the program last using the channel
terminated abnormally.

ND-60.050.06

8-10

Example of FORTRAN program to write a record to a communication
channel:

I =RESERYV (6008B, 1, 0)
I =10SET (6008B, 1, 0, -1)

WRITE (6008B, 10)......
10 FORMAT (..........)

In addition to the standard monitor calls mentioned above there is a
special I/0 monitor call, WRQI, for use on communication channels.

MON 163
Input parameter:
T-reg. = channel number
Exit:
Skip return if okay. No skip return if error, error code in A-reg.
Function:

The monitor call will place the calling program into waiting state until
a request for input message is received from the remote computer.

This monitor call is useful in interactive communication programs,

when one does not want to start the local echoing of terminal input
before the receiving program asks for input.

ND-60.050.06

8.4

8-11

TERMINAL CONNECTION

Some of the channels may be connected to a remote processor. These
channels will be used for communication from a terminal user in one
SINTRAN 11l system to the operator’s communication and background
system in the other SINTRAN [system.

I |
I |
|

| |
~ I
~ . _|Channel 0 Operator
Remote I‘Z-ari . . communi-
emote ;
Processor|channel 1 loterface Cat':n andd
//—1—'1— —{— backgroun
_ - system
: =

Figure 8.7.

A terminal user may be connected to the Remote processor by typing
REMOTE n on this terminal. The number n is only used if he may be
connected to more than one remote SINTRAN I1I system. The Remote
processor will select one channel to the remote system and connect the
terminal to his channel. If no channels are available, there will be no
connection.

After connection, the user may use the remote system exactly as if he
was connected to the local system, with one exception. The ‘‘Rub-out’’
character will bring him back to the local system, where he may
disconnect the remote connection by typing LOCAL. However, the
combination ‘““Shift, control L “Rub-out’” will be mapped to
“Rub-out’ and transmitted to the remote system.

ND-60.050.06

8-12

Example:
. tocal processing

@REMOTE

CHANNEL NUMBERS’ LOCAL -1600 REMOTE -600
“FSC"

17.10.15 1 JANUARY 1975

ENTER OLE

PASSWORD’

OK

R@

. Remote processing

R@LOGOUT

17.15.10 1 JANUARY 1975
-EXIT-

“Rub-out”

@

. Local processing

The R@ (instead of a single @) indicates that one is working on the
remote computer.

If the user after a “’Rub-out” types REMOTE, he will be connected to
the same channel as before. He will then be in the same state (on the
remote computer) as before he typed “‘Rub-out” and may continue
giving input to the remote system. If the remote system gives output to
the remote terminal while this is in local mode, this output will appear
on the terminal when the REMOTE command is retyped.

In this way, it is possible to go back and forth between the remote and
the local system, and do processing at both computers at the same
time. For example, while a compilation is going on the remote
computer one may use the editor on the local system. The channel is
reserved for the remote terminal connection until a @LOCAL command
is given.

ND-60.050.06

8-13

Summary of commands

@REMOTE <line number>
Parameters:

<line number> may be omitted if there is only one possible remote
connection.

Function:

If no remote connection exists for this terminal (no REMOTE
command has been given since the last LOCAL command) a free
channel is found and the terminal is connected to the background
processor of the remote computer. If a remote connection already
exists the terminal is connected to this channel. In this case, the
REMOTE command is the inverse of the ‘'Rub-out’ character.

““Rub-out”:

This single character returns control to the local command processor, so
that terminal input again is considered as local commands. To send a
“Rub-out” to the remote computer, press the Shift, Control and L
buttons, and then the ““Rub-out’’ character.

@LOCAL

Parameters:

None.

Function:

Disconnect remote connection. After this command the communication

channel used by the remote connection is released and may be used for
other purposes.

ND-60.050.06

8.5

8-14

REMOTE LOAD

Remote load must be initialized by a bootstrap in the microprocessor’s
load format. The bootstrap is transmitted without buffer headers. The
bootstrap program is loaded in the remote computer. When the
program is started, it will accept buffers with load data.

Loading of core in a remote computer from a local computer is done in
the following way:

The bootstrap program must reside (in the local system) on a
system file called (SYSTEM REMOTE-BOOTSTRAP:BPUN in the
MAC assemblers) BPUN format. This will usually be done at
system generation time.

- Push the master clear button on the remote computer and type

<octal number> and on the consol terminal. <octal number> is
the hardware device number of the communication line. If the
ALD register is set to the right value, only the master clear and
load buttons have to be pushed.

- Give the command

@REMOTE-LOAD <load-file>, <bootstrap address>, <line
number> on the local computer.

The <load-file> must contain the program to be loaded in the
MAC assembler’s BPUN format. Default file type is BPUN.

The <bootstrap address> specifies where to place the bootstrap
program in the remote computer. The bootstrap will occupy
approximately 400g words from the bootstrap address given.

It is the users responsibility to avoid overlapping the bootstrap
and the program to be loaded.

<Line number> may be omitted if there is only one possible
remote connection.

The REMOTE-LOAD command may only be executed whent the
communication system is stopped on that line.

Example:
@REMOTE-LOAD TAPE-READER, 37400, 1

ND-60.050.06

8-15

A binary tape, placed in the Tape Reader on the local system will be
loaded into the remote system connected to line number 1. The
bootstrap will occupy the memory area 37400-37777 in the remote

computer.

ND-60.050.06

8.6

8—-16

WATCH-DOG

A watch-dog connection may be obtained by running an RT-program in
both computers, sending and receiving some dummy message to/from
the other computer. If the other computer does not answer within a
predefined time interval, some recovery action may be taken.

ND-60.050.06

SPECIAL PERIPHERAL DEVICES

In this chapter the application of some special peripheral devices by
means of SINTRAN Il commands and monitor calls, will be described.

ND-60.050.06

9.1

THE DEVICE-FUNCTION COMMAND

The command @DEVICE-FUNCTION may be used to perform
operations on magnetic tapes, cassette tapes, versatec printer/plotter
and floppy disk. The @DEVICE-FUNCTION command has the follow-
ing format:

@DEVICE-FUNCTION <file name> <function name> (<optional
parameter1>) (<optional parameter 2>>)

where
<file name>

is the name of the device unit, specified in the command
@SET-PERIPHERAL-FILE

<function name>
is the name of the operation to perform on the device.

<optional parameter1>
<optional parameter2>

These two parameters are used to specify more information
needed by some operations.

Explanation of the functions:

The functions READ-RECORD and WRITE-RECORD will transfer a
specified amount of data from/to the specified address in the user area
(background segment) to/from the specified device unit.

The function UNLOCK-AND-STOP means that the cassette tape will
stop and the read/write head will be removed from the tape. The
cassette may then be removed from the cassette driver.

The function LOCK-CASSETTE means that the read/write head of the
cassette drive will be moved onto the cassette tape, ready for read/write
the cassette tape. The cassette tape cannot be removed from the
cassette drive when the cassette is in lock position.

The function READ-STATUS will read the status register of the
specified device unit by means of an IOX instruction. The function
READ-LAST-STATUS will return the status from the last operation on
the device without extending any 10X instructions. (The status is saved
by the driver.)

ND-60.050.06

ou ou saA saA Ll peojun
aoueApe 01
spJo2al
saA ou saA saA JO "ON o] SpJ1023Yy -90UeAPY/
aoeds
joeq O}
spJ02al
saA ou saA saA }JO "ON Gl SpJ02ay-aoedg-yoeg
911UM 0}
sdeb-asela
ou ou saA saA JO "ON) deon)-asea3-a114\\
0 "ippe
J0o 1ujod
saA ou saA saA peo| O el puimay
9114M
01 syJew
saA ou saA saA 403 J0 ‘'ON Zl 403-914M
Jano ssed
03 sdJew
sahA ou saA saA 403 jo ‘oN Ll 4(03-01-8s19A3Y
Jano0 ssed
01 syJew
sah ou saA saA 403 J0 ON ol 4(03-01-90uUeAPY/
ou ou saA ou L ade| -aseuy
ou ou saA ou 9 9119558D-3007]
ou ou saA ou G doig-pue-3yo0jun
eale
911JM 0} SJ3sn Ul Ja}
SpJOM JO -4nq elep JO
saA saA saA saA ‘ou |e1oQ ippe |e10Q l pio2ay-a1ldp\
eale
peas 01 si4asn ul Jaj
SpJOM JO -jnq elep JO
soA ou saA saA ‘ou |B190 *ippe |e190 0 p102ay-peay
sig Addoj4 :osjesiap :ade) 8113ss8e) :ade| "Bejy iz 1918Wwesed 1| Jalawieled :(|e100) apo) :awep
U0 Pamo||yy U0 pPamoj|y UO pamo||yy UO pamo||y jeuoindp jeuondQ uoloun4 uoloun4

Table 9.1.

ND-60.050.06

saA ou ou ou 87 Addo|4-1ew.so
(6
uol1193s 99s)
saA ou ou ou ‘ou lew.o4 oV 1ewio4-Addo|4-18g
anib
0} spaay}
ou saA ou ou wJioy Jo ‘ON Z< paa4-w.io4-3AI5)
ou saA ou ou LE apo|\-o1ydeln)-18g
ou saA ou ou 0£ ©9poN-ouswnueyd|y-18g
saA saA saA saA Ve snielg-1seT]-pesy
(L°Z'¢’6 uonoss
aas) anjeA
ou ou ou ou/saA Alued/AvisuaQ €z AMed-pue-Alisua(g-109|8g
ou saA saA saA 1z aoIna(-1es|)
saA saA saA soA 0cC sniejg-peay
siq Addoj4 :o@jesiap :ade] 81esse) :ade | ‘Beyy :g Jelswlesed | Jeldweled :(|e100) 3po)d :aweN
UO Pamo||y UO Pamo||y Uo Pamoj|y UO pPamoj|y jeuonndQ jeuonndQ uo11oun4 uol3oun4

Table 9.1, concluded.

ND-60.050.06

9.2

9.2.1

MAGNETIC TAPES AND CASSETTE TAPES

This section describes the usage of magnetic tape and cassette tape, as
freestanding devices independent of the File Management System.

Magnetic tape and cassette tape units may be declared as peripheral units
at the system initialization, similar to other peripheral units as paper tape
reader, line printer, etc. This must be done by the user SYSTEM with the
@SET-PERIPHERAL-FILE command.

The logical device numbers for magnetic tapes and cassette tapes are:

Logical Device Logical Device
Device Unit No. __ No. (octal) No. (decimal)
Mag. tape controller 1 0 40 32
Mag. tape controller 1 1 41 33
Mag. tape controller 1 2 25 21
Mag. tape controller 1 3 33 27
Mag. tape controller 2 0 32 26
Mag. tape controller 2 1 34 28
Cassette tape cont. 1 0 20 16
Cassette tape cont. 1 1 21 17

Sequential Read and Write

Reading or writing data is accomplished using the standard SINTRAN
11 Input/Output system, with the INBT/OUTBT monitor call
functions.

Data is normally divided into records of 1K words (2048 bytes) for
magnetic tape, or 256 words (512 bytes) for cassette tape, but shorter
records may be read and written too.

When writing on a tape unit with the OUTBT monitor call, the last
record will be transferred to the unit when the file is closed, but no
EOF mark is written. This record may be shorter than other records.

To write an EOF mark on the tape unit, the command
@DEVICE-FUNCTION should be used. See Section 9.1.

The name of a tape unit may be given in an @ OPEN-FILE command or
other file name requests from user programs or subsystems.

ND-60.050.06

9—-6

9.2.2 The Monitor Call MAGTP

This monitor call may be used to access a magnetic tape or cassette
tape from a user program, to read, write or position the tape unit to a
file or record.

To prevent other users from accessing the device unit when the MAGTP is
used, the user may open the actual device unit (peripheral file) with the
@OPEN-FILE command and close it with the @ CLOSE-FILE command
to allow other users access to the device unit. When the MAGTP
monitor call is used from an RT program, the RT program may reserve
the device unit, making it unaccessable for other users and RT
programs, and releases it later.

The calling sequence in FORTRAN is:

ISTAT = MAGTP (<function code> <memory address>, <logical
device number>, <max words>, <words read>)

where ISTAT receives a function value.

The calling sequence in MAC assembly is:

LDA (PLIST % POINTER TO PARAMETER
LIST
MON 144 % MAGTP
JAF ERROR % ERROR OCCURRED
PLIST, FUNC % FUNCTION CODE
MEMAD % MEMORY ADDRESS
UNIT % LOGICAL DEVICE NUMBER
MAXWD % MAX WORDS TO READ/WRITE
READW % ACTUAL WORDS READ

The A register receives a function value.

If the returned function value is zero, then the MAGTP call is executed
without errors. If the function value is unequal to zero, then an error
occurred in the MAGTP call. The error message may be written out by
the monitor calls MON 64 and MON 64.

If the <function code> is 20g or 24g (read status or read last status)
the hardware status word is returned as the function value.

The various parameters are:
<function code>

specifies function to be performed according to the table on the
following page.

ND-60.050.06

9.2.2.1

<memory address>

designates a record area
<logical device number>

logical device number of the desired device unit.
<max words>

maximum number of words to read or write
<words read>

actual number of words read

The function codes are the same as in Table 9.1.

For function code 5 to 24g the parameters <memory address>, <max
word> and <read word> are dummy parameters but must be specified
in the CALL statement. v

TANDBERG MAGNETIC TAPE

Using Tandberg 7 tracks magnetic tape, the density and parity
may be set by program as follows:

ISTAT = MAGTP (<function code> <Imemory address>,
<logical device number>, <vaiue>, <words read>)

<function code>= 23g set density and parity:

<value>= 0: 800 BPI, odd parity
<value>= 1: 556 BPI, odd parity
<value>= 2: 200 BPI, odd parity
<value>= 4: 800 BPI, even parity
<value>= 5: 556 BPI, even parity
<value>= 6: 200 BPI, even parity

The <memory address> and <words read> parameters are dummy for
<function code> = 23g.

If density/parity is set by the monitor call MAGTP, this density/parity

will be used until it is changed again with the monitor call MAGTP.
Default value of density/parity is VALUE = 0.

ND-60.050.06

If an error occurs when <function code>> is not 208 or 248 the returned
function value will be as follows:

Bit O: Tape on line

Bit 1: Write enable ring present

Bit 2: Tape standing on load point

Bit 3: CRC error/fatal error

Bit 4: LRC error/soft error

Bit b: Control or modus word error. Trying to write on protected
tape, reversing tape at load point, tape unit not on line, etc.
Action inhibited.

Bit 6: Bad data block. An error detected.

Bit 7: End of file detected.

Bit 8: The search character is detected

Bit 9: End of tape detected.

Bit 10: Word counter not zero

Bit 11: DMA error

Bit 12: Overflow (in read)

Bit 13: Tape busy or formatter busy

Bit 14: Formatter busy

Bit 15: Interrupt when formatter ready.

By <function code> 20g and 24g the returned status code will be:

Bit O: Ready interrupt enabled (cleared by the interrupt)
Bit 1: Error interrupt enabled (cleared by the interrupt)
Bit 2: Device active

Bit 3: Device ready for transfer

Bit 4: Error inclusive or of bits 5, 6, 7, 8, 9, 11 and 12.

Bits 5-15: As indicated in the table above.

9.2,2.2 STATUS CODE FOR HEWLETT-PACKARD MAGNETIC TAPE

A register - Bit position set to 1:

Bit O: Ready interrupt enabled (cleared by the interrupt)

Bit 1: Error interrupt enabled (cleared by the interrupt)

Bit 2: Device active

Bit 3: Device ready for transfer

Bit 4: Inclusive or of error bits (6, 9, 10, 11 and 12) or if a

reverse command is tried when the unit is at load point.

Bit b: Write enable ring present

ND-60.050.06

9.2.2.3

Bit

Bit

Bit

Bit

Bit 10:

Bit 11:

Bit 12:

Bit 13:

Bit 14:

Bit 15:

9:

LRC error
EOF detected

Load point (this status remains also after the first forward
command after load point is detected)

EOT detected

Parity error

DMA error

Overflow in read

Density select 1 = 800 BPI, 0 = 556 or 200 BP!I

Magnetic tape unit ready (selected, on line and not rewind-
ing)

Bit 15 loaded by previous contrel word

STATUS WORD FOR CASSETTE TAPE PHILIPS

A register - Bit position set to 1:

Bit O:

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit 10:

Bit 11:

1:
2:

9:

Ready for transfer, interrupt enabled

Error interrupt enabled

Device active

Device ready for transfer

Inclusive OR of errors, subflags O, 1, 4, 5
Write enable

Cassette side (A=1,B=0

Bit clock

Read fail

Sync fail

Not used

Not used

ND-60.050.06

Bit 12:

Bit 13:

Bit 14:

Bit 15:

9-10

Drive Fail
Write Protect Violation
Beginning or end of tape

Not used

ND-60.050.06

9.3

9.3.1

FLOPPY DISK

The SINTRAN Il system can handle a maximum of two floppy disk
controllers with three drives (units) on each controller.

Before a diskette can be used, it must be formatted using the
@DEVICE-FUNCTION command.

Floppy Disk as File Directory

A diskette may be used as a file directory. Due to the relatively small
storage capacity, 154K words, it is recommended that there is only one
user on each diskette. The sequence of commands to make a file
directory on a diskette is:

1.

2

Insert a formatted diskette in a free floppy disk drive.

Log in as user SYSTEM on a terminal and give the following
commands:

@CREATE-DIRECTORY
@ENTER-DIRECTORY

@CREATE-USER

@GIVE-USER-SPACE (maximum 148 pages)

Log out and log in again using your own user name. The diskette
may now be used as a file directory.

When the user has finished his work with the diskette, type the
command:

@RELEASE-DIRECTORY
and remove the diskette from the Floppy disk before logging out.

The next time the diskette is to be used, the command sequence
will be:

1. Insert the diskette into a free floppy disk drive and log in
using your own user name.

2. Type the command @ENTER-DIRECTORY and the
diskette may be used as a file directory.

ND-60.050.06

9.3.2

9.3.3

9-12

3. When the user has completed the work with the diskette,
type the command

@RELEASE-DIRECTORY

and remove the diskette from the floppy disk unit.

Floppy Disk Used as a Sequential Peripheral File

The floppy disk units may be used as sequential peripheral files such as
paper tape reader, paper tape punch, magnetic tapes, etc. The different
floppy disk units (drives) must then be given a name using the
command:

@SET-PERIPHERAL-FILE

The logical device numbers of the floppy disks are as follows:

Device: Unit No.: Log. dev.(octal): Log. dev.(decimal):
Floppy disk contr. 1 0 1000 512
Floppy disk contr. 1 1 1001 513
Floppy disk contr. 1 2 1002 514
Floppy disk contr. 2 0 1003 515
Floppy disk contr. 2 1 1004 516
Floppy disk contr. 2 2 1005 517

Reading or writing data is accomplished using the monitor calls
INBT/OUTBT from MAC/NORD-PL, and the READ/WRITE,
INPUT/OUTPUT or INCH/OUTCH statements from FORTRAN.

When using the monitor call OUTBT to write onto the floppy disk, the
last record (block) will be transferred to the unit when the file is
closed, but no EOF mark will be written. The last record (block) will
be filled with zeros. To write an EOF mark on the diskette, the
command @DEVICE-FUNCTION should be used.

Accessing the Floppy Disk Using the Monitor Call MAGTP (MON 144)

The monitor call MAGTP may be used to position (set the disk
address) the diskette and to transfer data to/from the diskette.

The available functions of the monitor call MAGTP are the same as
listed in Table 9.1.

ND-60.050.06

9-13

A description of some of the available functions:

Function Code:
(octal)

12

13

15

16

40

41

Name:

Write EOF mark.

Write a block in a special format to make the block
as an EOF mark. The disk address is incremented by
one.

Rewind.
The disk address is set to zero.

Backspace one record.
The disk address is decremented by one.

Advance one record.
The disk address is incremented by one.

Set disk format.

The available formats are:

Format 0: 256 words per sector.
8 sectors per track.

Format 1: 128 words per sector.
15 sectors per track.

Format 2: 64 words per sector.
26 sectors per track.

(The standard format used by Norsk Data A.S. is
format 0.)

Format the diskette.
All data on the diskette is overwritten and the
diskette is formatted (new addresses are written).

The status word of the floppy disk has the following format:

Bit No.:

AL wWN-=0

Bit Position Set to 1:

Interrupt enabled

Not used

Device busy

Device ready for transfer
Inclusive OR of errors
Deleted record detected

ND-60.050.06

Bit No.:

—
O ©Woo~NOD®

1
12
13
14
15

9-14

Bit Position Set to 1:

Read/write completed
Seek completed

Drive not ready

Write protect

Not used

Address mismatch
CRC error

Not used

Data overrun

Not used

ND-60.050.06

9.4

9.4.1

VERSATEC PLOTTER/PRINTER (DMA INTERFACE)

The Versatec may be used in the same way as other line printers, using
the monitor call OUTBT for printing from MAC/NORD-PL and the
statements WRITE, OUTPUT and OUTCH from FORTRAN. The last
characters outputted will be transferred to the Versatec when the file is
closed.

The logical device number for Versatec plotter/printer is:

Device Name: Log. dev. (octal): Loa. dev. (decimal):
Versatec controller 1 22 18
Versatec controller 2 23 19

The Versatec has two modes, print mode and graphic mode. When the
Versatec file is closed, it is always set in print mode.

Monitor Calls

The monitor call MAGTP (MON 144) may be used to access the
Versatec.

To prevent other users from accessing the Versatec unit when the call
MAGTP is used, the background user may open the Versatec unit for
sequential write with the @OPEN-FILE command, or the OPEN
monitor call and later close it to allow other users to access the
Versatec unit again.

From a real-time program, the monitor calls RESRV and RELES on
the Versatec output 1/O datafield, will establish the same effect as
OPEN-FILE/CLOSE-FILE in timesharing/batch.

Calling Sequence:

FORTRAN: ISTAT = MAGTP (<function code>, <memory
address>, <logical device no>, <max words>,
<words read>)

Assembly: LDA (PARLIST
MON 144
JAF ERR
PARLIST,
FUNC
MEMAD
UNIT
MAXWORDS
WORDSREAD

ND-60.050.06

Return:

Parameters:

A register (IERR) = 0, no error

A register (IERR) # 0, means error. Error code in A
register (IERR). The error message may be written
out by using the monitor calls MON 64 or MON 65.

<function code>: Legal values:

1 write one record
208 read status
218 clear versatec
244 read last status
30g set print mode
31g set graphic mode
32g give form feed

<memory address>Users buffer area

<log.device no> Logical device number of the specific versatec.

<max words> Number of words to transfer

<words read> Dummy

Versatec Status Word:

Bit No.:

—_—
VWNOOOGOPAWN-—=0O

=5
N

14-15

Ready for transfer, interrupt enabled
Error interrupt enabled

Device active

Device ready for transfer

Inclusive or of errors (bits 6 and 7)
Not used

No paper

Plotter not on line

Plotter ready

Not used, some bits may be set to one when the status
register is read

ND-60.050.06

9.5

9.5.1

9-17

SINTRAN 111/CAMAC COMMUNICATION

The CAMAC system is a general purpose modular electronic instrument-
ation, standard for data handling, intended for applications requiring
numerous and fast transfers of information (data, control) between
various instruments and the computer. A CAMAC system contains one
or more crates (CAMAC chassis) and each crate is separated into 24
stations where various kinds of CAMAC modules may be placed. For
further documentation refer to the CAMAC-CC/NORD-10 Manual
(ND-12.007).

SINTRAN 111 is able to handle 16 crates. Each crate may handle 16
grated LAM interrupts (1-16), plus one RT interrupt on level 13 which
is identified and assigned as LAM Number O.

By means of the monitor call (CONCT), different RT programs may be
connected to different LAM interrupts on levels 10, 11, 12 and 13.

Monitor Calls

The following seven monitor calls have been implemented in SINTRAN
Il in connection with CAMAC (MON 146-154).

MON 146 INIT
CALL INIT (<flag>, <crate no>, <level>)
Initialized a crate for the appropriate level, i.e., clears data
away and masks and writes COST (enables RT, ERROR
and L for actual level).
Return: <flag> = 0, OK
<flag> = 24, NOT OK
MON 147 CAMAC

CALL CAMAC (<value>, <flag>, <crate no>, <station>,
<sub address>, <function>)

Operates the CAMAC (executes NAF). If <function> is
clear, the contents of COST are returned in <value>.

If <function> is read, data is returned in <value>.

For clear and read functions <flag> must be = 0 on entry.

ND-60.050.06

MON 150

MON 151

MON 152

9-18

If <function> is write, data must be in <value> and
<flag> must be > 0 before the call.

Return: <flag> = 0, OK
<flag> = 24, NOT OK

If bit 15 in <crate no> is set equal to one, <value> is
treated as integer instead of floating.

GL
CALL GL (<value>, flag>, <crate no>)

Reads graded LAM status. The status is returned in
<value>.

If <crate no> = 1 on the entry, the last IDENT code is
returned as an integer in <value>.

Return: <flag>= 0, OK
<flag>= 24, NOT OK
LMASK
CALL LMASK <value>, <flag>, <crate no>)
Reads and writes MASK.
If <flag>=>0, the mask is read and returned in <value>.
If <flag> < O, the contents of <value> are written to the
mask.
Return: <flag> = 0, OK
<flag> = 24, NOT OK
CONTR
CALL CONTR(<value>, <flag>, crate no>)
Reads and writes COST (control/status register)
If <flag> > 0, the COST is read and returned in <value>.

If <flag> < 0, the contents of <value> are written to
COST.

ND-60.050.06

MON 153

MON 154

Return: <flag> = 0, OK
<flag> = 24, NOT OK

IOXN CALL IOXN (<value>, <flag>, <device no>)
Issues direct 10X commands.

If <flag> >0, an output transfer is executed and the
information is returned in <value>.

If <flag> < 0, an output transfer is executed and the
output information must be in <value> before the call.

Return: <flag> = 0, OK
<flag>= 24, NOT OK

ASSIG
CALL ASSIG (<logical no>, <grated LAM>, <crate no>)

Assigns a graded LAM in CAMAC ident table to logic
number in logic number table.

Note that LAM O (<grated LAM> = 0) is used for high
priority interrupts on level 13.

The calls CAMAC, 6L, LMASK and CONTR handle their
<value> parameters as an integer if bit 15 in the <crate
no> parameter is set, otherwise, <value> is treated as a
real number.

Note, for use with MAC, Standard FORTRAN parameter
communication is applied.

ND-60.050.06

9.6

9-20

SINTRAN 111/GRAPHICAL OUTPUT

The monitor call MON 155 has been implemented in SINTRAN Il in
connection with graphic output. At the moment, the following devices
are using this monitor call.

1. Graphic NORDCOM systems

2. Pen plotters

3. Tektronix display

The parameters are as follows:

CALL GRAPHIC (<x>, <y>, <n>, <dvn>, <func>)

where

<x> and <y>

are the floating point coordinates to the new point, relative to
the current reference point.

<n>

is one of five integer codes described in the manual NORD PLOT
PACKAGE for the graphic NORDCOM and pen plotter systems.

<dvn>
is the logical device number.
<func>
is a code to select one of three routines:
<func> =1 GO PLOT
<func> = 2 GO PLOTS
(routine to establish reference point and/or

clear a NORDCOM screen)

<func> =3 GO NEwWP
(routine to select one pen or one screen)

For further documentation see the manual NORD PLOT
PACKAGE (ND-60.058).

ND-60.050.06

9.6.1

Tektronix Display

For Tektronix display, the same monitor call can be used, but with
different values for <func>.

<value> = PLOTT (<x>, <y>, <z>, <dvn>, <func>)

There are 14 functions, most of them giving <value> = 0 if device
ready else device status, error value or function value.

<value> = 100 if function number of of range
' 20 if device not present
= 21 if device not reserved

0: Normal <x>, <y>, <z>
<x> = horizontal deflection (0 - 4095)
<y> = vertical deflection (0 - 4095)
<z> = intensity deflection (0 - 7)
Origin in lower left corner
Negative <x>, <y>, or <z> means, use old
value.

<func>

Error values:

101 = <x> > 4095
102 = <y> > 4095
103 =<z>>7

<func> =1: Read <z> intensity register
<value >= <z> register (old value)

<func> =2: Read status register
<value> = STATUS register

<func> = 3: Reset device
DEVICE CONTROL register = 1

<func> = 4. Erase
The display is cleared

<func> = b: Make hard copy

<func> =6, 7: Set/reset non-store mode

<func> 8, 9: Set/reset D mode (not used)

<func> 10, 11: Set/reset cursor mode

12, 13: Set/reset view mode

<func>

<dvn> is logical device number of Tektronix display (19 at
present).

ND-60.050.06

9.6.2

9.6.2.1

Note: The user himself is responsible for taking care of returned status
error and eventual re-try.

After normal <x>, <y>, <z> output, the device is always ready.
However, the functions “‘erase’” and ““make hard copy’’ take time.

NORDCOM Monitor Calls

THE TRACKER BALL MONITOR CALL (MON 156)

The tracker ball monitor call is used with four different function codes:

1.

CALL TRACB (<value>, <function> [1] <, <tractor ball dvn>,
<screen no>, <wait flag>)

<value> = double word where the X and Y values
are placed after read from the screen

<value> = -1 if nothing has been read

yet.
<value> = -2 if anything wrong with the
call.
<function> = 1 means read values from the screen
<tr.ball dvn> = logical device number of the tracker ball
<screen no> = determines which screen to be read from
(1, 2, 3, or 4)
<wait flag> = wait flag = 0): if nothing had been read

(read button not pushed)

- 1 is returned to <value>.

wait flag = 1): the monitor call is in
wait status until the read button is
pushed. Then the X and Y values are
returned to <value>.

CALL TRACB (<value>, <function [2], <tractor ball dvn>,
<SM 1 dvn>, <SM 2 dvn>)

This monitor call is used once after restart of the SINTRAN ||
system to connect the actual selector modules to the actual
tracker ball.

<value> = double word.

<value> = -2 if anything is wrong with
the monitor call

ND-690.050.06

<function>

<tr.ball dvn>

<tr.ball dvn>

<SM 2 dvn>

3. CALL TRACB

2 means connect SM1 and SM2 to the
tracker ball

same as for function 1.

logical device number of selector module
number 1 to be connected to the tracker
ball

logical device number of selector module
number 2 to be connected to the
tracker ball.

(<value>, <function [3], <tr.ball dvn>, <SM 3

dvn>, <SM 4 dvn>)

Same as the previous function except that selector module 3 and
4 are now connected. SM parameter = 0 if no such selector
module in the system.

CALL TRACB (<value>, <function [4], <tr.ball dvn>, 0, 0)

This function is used to clear and enable the tracker ball.
Interrupts are detected before this call is made.

INT,

PAR1,
VALU1,
PAR2,
VALU2,
PARS,
VALUS,

JFILL
JLINE

LDA (PAR 1
MON 156
LDA (PAR 2
MON 156
LDA (PAR 3
MON 156
MON 0
VALU1; (2;(724; (714; (742
0;0

VALUZ2; (3; (724; (770; (0
0;0

VALUS; (4; (724; (0; (O

0;0

Note: The three selector modules in this example are on three

different ACM.

For information about the NORDCOM System Software see the
manual, A Description of the NORDCOM System.

ND-60.050.06

APPENDICES

APPENDIX A

APPENDIX A — SINTRAN 11l OPERATING SYSTEM — COMMAND SUMMARY

piomssed
vLee piomssed s, sasn ayy abueyy alnand PIO ‘piomssed MaN | QHOMSSVd-IONVHD
abed payyioads abueyy N3 LSAS swep “iI@ 39Vd-IONVHD
AHLIN3
A1njus 103[qo paiyioads abuey) INJLSAS |'ON 108[qQ ‘awep tasn -103ra0-39NVvHO
4/4 AH1INI
A1012311p 0 s1uajuod 8buey) INILSAS ‘Hun ‘swep 801A8Q tAHOLOIHIA-IDONVHD
0019 8|14 11q palyioads abuey) INJLSAS | "ON >o0|g ‘sweN IQ 3714-119-3DNVHD
(sqof yoreq uj asn Joy) JUBWIWOY al1and 20
99 °‘eLe ssad0.d yoleq el 14 HOL1Vv4
3ry 1o} qol ywgng J178Nd | awepN 38|14 ‘saandwo) J10N3H-ANIddV

s9|l} 3|4 1ndinQ
EvLe 1ndino pue induj yoleq pusddy alland ‘8|14 "du| “oN yoleg HO1V8-AN3ddV
"Ippy abed ‘sabed NOISH3A
UOISIBA mBU 81ed0||e pue 81eal) alnand 40 "ON ‘awep ‘sji4 “M3IN-ILVIO0T1TV

sabed jo "opN
L'G°€ 3|l} 91eJ0||e pue a1es.] J1718Nd |4ppY abed ‘awen ‘aji4 371714-3LVO011V
G'S Aep jo awii 1e wesboud) Y 1e1g 14 | “4H “ulp “-08g ‘awep 13savy
vy 'Le qol yaleq poqy 14 18sn “"ON yoleg g0r-L408v
9'9'€c’LE ssad0.d ydieq 1i0qy 1Y JsquinN yoleg HO1lvE-1408v
g'G weiboid | Yy dorg 14 aweN 1408V
:401deyn o1 Jsjey :uoijduoseq 140ys :Ag pasn SJ191oWelEy ‘puewiwo)

ND-60.050.06

1°¢9 Alyus Aioyoauip e ajeai) IN3LSAS 301A8(Q ‘BweN “JIg | AHOLO3H10-31V3HD
8|4

V'qe 32iA8p 1o 9|1} Adog al1and 824nog ‘s|i4 "uiseQ 37114-Ad0D
A10108.1p uOllRUIISEP 0} awepN Aio10841Q 924N0S

Z'v'z’9 | Adordalip a0inos ayy ut sajy ||e Ado) IW3LSAS | ‘sweN Aio10a41q "158Q Ad010341a-AdOD
801A8p UOI1BUIISSP 01 ao1na(Qg

AL AL 901A8p 82unos wouy sebed |je Adon W3 LSAS 801nog ‘“*Asg "1seQ 321A3A-Ad0OD
9l

v'Ge 8d1Aap 1o 3|1} Adog a11dnd 821nog ‘8jl4 "uisag AdOD

L'Y'EE weJboid punoibxoeq 1ieisay alnand INNILNOD
Jaqwinu a1} 3pOJ\ SS820y

A A uanlb ybnouyy ssedde Joy 9)1} uadQ alnand "ON ®|i4 "aweN 9|4 3714-L93INNOD

aul]

G'G 1dnuaiul 01 wedboud |y 198UU0) 14 aulT ‘awep 129NOD

SN1V1S

aul| 404 smels 1817 alndand aun ‘NOILVIINNINOD

9|1} pauado as0|) alnand ‘ON @Jld 3714-3S010

plomssed s, Jasn 8yl Jes|) INJLSAS aWweN J8s A4OMSSVd-4v310

gs %000 |eudaiul 1snipy 14 nun ‘swiy ravio

AY1IN3

Anyus Jssn paiyioads abuey) W3 1SAS "ON J8sn ‘sweN "diq -43SN-3ONVHD

:491dey) o1 Jajay :uondioseq 1404s :Ag pasn :sJg19wWeled :puewiwo)

ND-60.050.06

8|l4 1nd1nQ

390|q spJom g| 3uo jo dwnp |e1Q INILSAS | 'ON >o0|g ‘awepN iig 3714-119-dANd
L'ecs wedsboud punouboeq aneg 2119nd 1Je1say ‘14e1g ‘o4 dnNa
g'G weiboud |y 198UU03sIQ 14 aweN 1NOSd
Buibbngap waisAs 10} Ja|quuassy 14 JVIAQ
9|4 SOILSILV1S
€C9 AJ1010811p Paialud Jo $D11SIIEIS 3517 a11dand ndinQ ‘swep i@ -Ad010341d
A1019811p paijioads wod) Jasn 8188 INTLSAS | awep Jasn ‘aweN “4id 43sN-31313a
‘ananb AH1IN3I-IN3IN0O
yoleq ajowaus ul Aijua ue 81318Q 20179Nd | 8wep 3|14 ‘4e1ndwo) -310N34-313130
"pualiy pajeasd Ajsnoinaud e a3eje(Q a11and swe puali4 aN3id4-313130a
1'G’E A1012341p wouy 3|14 e 81818 a114and awlen 3|4 3114-3137130
3|i4 nding ‘8|14 Ad1LN3I-IN3INO
ananb ydleq ay1 ul Asus ue 818j8(a11gand induj ““oN yoleg -HO1Vvg-313713a
|eulwial
L'LEE 9yl U0 81ep pue awill 1ualind julid al114and 101vd
sabed
18snN Mau e a1eal) NI LSAS 40 "oN ‘aweN 4@ 43SN-31v3HO
sl sabed NOISH3IA
B JO SUOISISA 810W JO dUO 81831) 7179nd JO "o| ‘awep 3|4 -M3IN-ILVYIHD
AR puali} 8uo s1esi)d ao11and sweN pualif aN31d4-31v3HO
9l sobed
L'g’¢ € }O SUOISI3A 3i0W 10 3UO0 31eal) al11and J0 "ON ‘awepN 9|4 3714-31LVv3HO
1191dey) o1 Jajay :uondosaqg 140ysg :Ag pasn :sJa18Weled :puewIWIO)

ND-60.050.06

A-4

awleu 0]

9'G uondiiossp 1Y JO ssappe 14aAu0) 14 $saIppy |e100 JNVN-14-139
eale 18414
G'G Asowaw snonbiluod ul juswbas X14 14 ‘Jaquinp juawbag X4
g'S Atowsw ul juawbas X114 14 Jaquinp juawbag X4
auo
uaAlb ayl yolew 1eyl saweu Yiim
€a¢ 3|1} JO SON1s11e1S pue SaWleu 1si7 2179Nnd |21l4 1nding ‘awen 9l SOI1SI1V1S-311d
sabed jo sabed
Jaquinu paiy1oads yum 914 puedxy aland 0 "ON ‘sweN 3ji4 A714-ANVdX3
*>se1 10811p ssUppy 14e1g ‘|aneT]
G'G e se unJ ||Im juswbas uo weiboud 14| "u; ‘1d “oN Iuawbag DSIN3I
(AR waisAs o1ul AJo1dauip Jelu3 INJLSAS 8d1A8(Q ‘awen “JIQ | AHOLO3HIQ-H3LNT
"Jasn ayl ul
Boj |j1m puewwod ay: ‘sqol yoleq
104 ‘sqol apow se unJ ag ued sa|l}
L'G L€ Udleq 1eyl os ‘puewwod Awwng alnand d31N3
314 1ndinQ
Anpue Jasn jo dwnp |e10Q NI LSAS "ON Jasn ‘aweN I | AHLN3I-H3ISN-dNNQG
9|14 1ndinQ
abed 3| suc jo dwnp |e10Q INILSAS | PPV abeq ‘swenN iQ 39Vvd-dANad
9|14 1ndinQ “oN AdLIN3
Anua 199(qo jo dwnp [e1Q INJLSAS 102[qQ ‘awen Jasn -103rao-diAnd
9|14 1ndinG ‘d/4 AHL1N3
Anua Aj010811p jo dwnp €100 INJLSAS ‘Hun ‘swep 8d1neg | -AHOLO3IHIA-dNNG
:191dey) o1 J9jey :uondiiosaq 140Yysg :Ag pasn :sJa19wWeled :puewWIWIO)

ND-60.050.06

9'G

€C9

A >

L'v'LE

c'S'9

G'g

199

cvee

ananb uo11nN23axa 1s17

paJalua $3110199J1p JO SaWeu 1si7

ananb ysleq ul s1UaUOD 1SI]

ssa004d yoieq 11

3|1} JUNOJJE W04} S3|gel € 1817

$19}4NQ 1e3|0 ‘ad1Nap 1350y
|eaipotsad wesboud |y axep
Buizuncooe 1iels pue azjjeniu|
1Jels WwolsAs 1e palndaxe

8q 01 ‘AHOLO3HIA-HILNS

‘a|dwexa 40} ‘puUBWIWOD B 185

awn
awios 4o} 1lem weuboud 8yl 187

spuewwod buiisixa ||e 1si7

weiboud punoibxoeq ueig

A1010841p Ul 8deds Jasn aAID)

a11dnd

alndand

a11dnd

alndand

alnand

alnand
14

INJLSAS

N3 1SAS

a114and
a114and

alnand

INILSAS

94
1ndinQ ‘awep Qg

JaquinN yoleg

1ndinQ

11817 ‘ydwing “xepy
“a1sa@ “'14o9y ‘bej4
‘a4 rduj -1adQ ‘1ndu

|013u07) ‘awepN
wesbolqd ‘M/8 ‘Hun

Hun ‘swlj ‘swep

"Xe|\ ‘padisag

puewwo)

uun ‘oWl

$S3IPPY 12190

sabed JO "ON
‘awe Jasn ‘swepN "4iQ

aN3ano
‘NOILNO3IX3-1SI1

d3d3LIN3
-S31401034140-1S11

aN3IN0-HOLVE-1SI1

SS3004d

HOLVE-1SI1

1INNOJJV-1SI1

13S0l
ALNI

ONILNNODJV-LINI

ANVININOD-TVILINI

anoH
d13H

43SN-0109

30VdS-43sSN-3AIO

:u91dey) o1 Jsjay

:uonduosag 1oys

:Ag pasn

.Slalaweled

‘puewIWO)

ND-60.050.06

7'G suol1ed0| (sbueyd pue) aujwex3y J179nd aouaJlajay soedg 1V-510071
|BUIWIB] 8se8|al pue Jasn 1noBo 2119nd 1N0D01
29ce UOI108UUOD 910WaJ 128UU0ISI(2119nd VY001
L'G°EE 1euLioy NNdg(34eis pue peor aliand aweN 9|4 AHVNIG-AvVOT
aweu paljloads ay3 yolew 1eyl 8|14 1nding
€4 S8Weu Yiim siesn |je JO saweu 1si7 J178Nd |‘awep Jasn ‘aweN “i1g SH3ISN-1SI71
9'G ananb awi 3s17 aliand AN3IN0-3INWIL-LSIT
9'G 1uawbas 1noge uollEWIOUI 1517 alnand JaquinN 1uswbag AININD3IS-1SIN
sweiboud =RIE
14 Aq pauado sa|i} pue Jaquinu 1si7 alnand 8|1} 1ndinQ -3IN3d0LH-1SIT
NOILdI42S3d
9'G luawbas 1noge uollEWIOU] 1817 alnand sweN 1Y -14-1SI17
iN3aNo
ananb qol ajowsa. "1s1Q alnand Ja1ndwo) -310WN3Y-1LSIT
sal}
pauado Jo saweu pue siaquinu 3si7 alnand 8|!d 1nd1nQ | $3714-G3INIJO-LSIT
awieu pually palyloads yolew eyl a4
€G¢ S9WeU YlIm spuslly JO sawleu 3si Jl7and | inding ‘aweN puati4 SAN3IH4-1SI7
94
€a°¢ 3|1} JO saweu 1817 allgand inding ‘awep 914 SERIE R
:191deyn o1 Jsjay :uonduiosaq 14cyg :Ag pasn :sJ818Weled ‘puewiwo)

ND-60.050.06

¥'8 [40ss8d0.d 810Wal 0 |euIWIa] 108Uu0) 2179nd Jaquinp aulT J10N3Y

[BUIULISY W04 31UN palyioads aseajay o17and swen ad1A8Q 3714-3Sv313y

AHO10341a

2'z9 panowas aq Aew Aso19a41p ay | NI LSAS aweN Aioloaug -3SVv3134

LINN-30IA3Q-IAH3ISIY LINN

AqQ panJasal 1un 8dinsp aseajey o17and HUn ‘sweN 8dMe@ | -30I1A3Q-3SVY3I13Y

AH01034Ia

AJoroauip paiyloads d1esauabay NI 1SAS awe AioyoaliQg -31VH3INIODIY

L'zee weJboud punoibyoeq 1ie1g a17and awenN aji4 43IA023Y

G'G weiboid 1Y 10} 1uN antasay 1Y dweN ‘M/Y ‘1un AdSHd

‘GG WeJboid 1y wouy 11un aseajoy 14 M/ “‘Nun ‘6o S74d

g'g wesboud 1y jo Ayiond 1ag 14 Aldolg ‘awepn 1y HOl4d

z’a8ee 1eW.O) NNdg(peoT o174and awen aj14 AHVYNIE-30V1d

L'L'be §$9908 paly1oads Joy 3|14 uadQ o174and $$900y ‘awep 8|14 3714-N3dO

uonedIUNWWOd 0G-GHON o174nd 0S-A4ON

gee 80IA3p O/ pueWWOD abueyy o17and indinQ ‘induj 3aow
punog

zeee eale dwnp auyag J179Nnd | Jeddr ‘punog samon] AHOWIW

Sp402ay jo NOILONNA

€8¢ Buiipuey adey onaubep a174and "ON ‘Hun ‘uonouny -3dVL-OVIN

t191dey) o1 Jayay :uonduosaq 140yg :Ag pasn :sis1aweleq ‘puewwo)

ND-60.050.06

G'g weboid 1Y Moy 14 aweN 1Y NOLlH
g'gq wesboud | Y 1qIyu| 14 aweN 14 44014
lapeo| 1Y 1Jeis pue peo’] 14 43AvOo1-14d
€g 1Y Jasn Jqug 14 431N31d
swelsboid 1Y Aq 3pOJ\ SS920Y
€S $5900€ 10} Jaquinu yim ajiy usdQ 14 “ON 8|l ‘awen 3| 3714-L03INNOJ1H
€9 sweiboid 1 Y Jo} 3|14 8SOID 14 JequinpN 3|4 3714-3S07101H4
g'q wesboid 1Y 1els 14 aweN 1Y 14
,,peO7,, pue Jea|Q-IdIse|\ , sale|nuWlis NI LSAS INILSAS-LHV1S3d
LINN
asn |e1oads 10} 1UN BDIA3P BAIASEY alnand Hun ‘swen a8dneQ 30IA3A-3IAH3S3Y
|eUIWIB) 40} JUN paly1dads anJesay a1nand aweN 38dlAeQd 3714-3AH3S3d
awepN Map ‘sweN
pay10ads Ul Jasn jo aweu abueyd W3 LSAS Jas plO ‘awenN "4 43SN-3INVN3H
adA | map ‘aweN 3|4
3|1} e Jo adAy Jo sweu ay1 sbueyd al1and MaN ‘aweN 3|14 PIO 3714-3INVN3H
"/4 ‘Mun ‘awen
adIna(g ‘sweN "4Ig Ad01034d1d
a01Aap palyioads uo AJo10a.1p sweusy INTLSAS MmaN ‘swen 1d PIO -JNVN3YH
"ON dulT ‘ssalppy
g8 densiooq Aq peo| a1owal azijeniu| al1and desjsjoog ‘a|i4 peoT avo1-310N3H
:191deyn 01 498y :uondiiosa@ 140ys :Ag pasn :s1a19Weled ‘puBWIWO)

ND-60.050.U6

A—-9

(AR pusLly JO 3pow ssadde 185 alnand §$900Y ‘sWeN puali4 | SS3JIV-ANIIY4-13S
$5800Y/ J3UM(Q
's$800y puali4 ‘ss8d0y
(AR S8pow ssadoe 3|l 18g alnand dllgnd ‘swep 3|14 SS300Vv-3114-13S
awod pinoys sabessaw Jo.la siaym
$821A3p 8Y3 40 Jaquinu |edlbo| 188 N3LSAS ‘ON @d1A8Q | 3IJIAIA-HOHYI-13S
AH010341d
zz9 1nejap se A103103J1p paiyioads 188 INILSAS awep A1010a11Q -17Nv430-13S
Jaquinu
81Aq payy1oads 03 usjulod 81Aq 185 alnand "ON @1Ag "ON 3|14 | HYILNIOd-ILAEG-13S
3l
pauado palj1oads 4o 8zis 300|q 195 alnand 9ZIg >20|g “oN 9| 3Z1S-0019-13S
290|q ul 81Aq 1s114 03 1ulod 81Aq 188 a11and "ON 2018 “oN @l!d | H3LNI0d-¥20719-13S
ul
1’9 | buibbo| 1oy a|qejiene si jeuwial yoeg WN3LSAS 3719VI1IVAVY-13S
GG awil uanlb e ul wesboud |y 1eIg 1Y | uun ‘awi) ‘swep 1Yy 13
3|14 Yo1eJos se ajiy paiy1vads uadQ o17and $s900Yy ‘BN 3|14 HOLVHOS
(A A sqol yaleq 1oy sadIAap aAIasaY alnand 4squinN 3d1A8Qg 37NA3IHIOS
AJ1019a41p uoOIlRUIISEP O] 921A3(]
A10108.1p 821n0s ay) uj sajly ||e Ado) INILSAS | 982unog ‘sdine@ 1580 | AHOLOIHIA-IAVS
€'G | sweiboud |y Aq ssadoe Joy 3|1y uadQ 14 $5800Y/ ‘awep 3|l 3714-N34d0LY
:1e1dey) o1 Jajey :uondiosag moys :Ag pasn 'sialoweleq :puewWWOn

ND-60.050.06

A-10

L'v'9 [BUIWIBY SIY} UO UOIIBWIOLUL JUlid a17and "ON Wia] | SNLVISIVYNIANYIL
|euiw sl
ay1 jo spow Bupjiom ay3 aulaQg o11and ON/SOA JAOW-TVYNINY3IL
Aaoroau1p
paijioads ul sabed pasnun axej INFLSAS | Jesn‘aweN‘A1010841Q | JIVHS-HIASN-IMVL
L'v'9 [eulw.a) 8sea|as pue Jasn 1nobo INTLSAS "ON |eulwJa] IVNINYI1-dOLS
zv9 [ley Jamod a1e|NWIS W3 LSAS N3 LSAS -dO1S
NOILVOINNNINOD
1'¢'8 UOI1BJIUNWIWOD B}eUIWId | INFLSAS "ON 8ulT -d0L1S
1'G'9 waisAs Buizunosoe doig INILSAS ONILNNOJJOV-dOLS
1'9°€’e sanjeA Ja3sibas 1s17 2179nd SNLV1S
Jaquinu NOILVOINNWNNOD
1'2’'8 aul| B UO UOI1RJIUNWWOI 31eNiu| 14 "ON 8ul] -14V1S
1'G'9 walsAs Buizunosde ayy 1Je1g INILSAS ONILNNOJOW-LHY 1S
1’9 a|qejiene si | |eulwsal AjuQ INILSAS 379V1IVAVYNN-13S
ERIE
[BUIWIB) 4O Bweu dulyaQg INJLSAS awep a|i4 “IVYNINY3IL-13S
L-3]14-8s0|Q® AqQ paso|d a3aN3do
10u J| ‘pauado Ajpusuew.ad si 314 217and "ON @li4 -ININVINH3Id-L3S
3714
a21nap |esaydiiad jo aweu aulyaq INILSAS | 'ON @21naQg ‘aweN 3|14 -1VH3HdI143d-13S
:ae1dey) o1 J3j8Yy :uondiosaq 1404s :Ag pasn :sJalaweued ‘puewiwio)

ND-60.050.06

A-11

€LEE (waisAs ayy ojul pabbo| sey oym alnand NO-SI-OHM
v'Lee {PanJasal 10 dauy |esaydiiad s a11and awep [esaydisag 3714-SI-3HIHM
aweu
paijioads ayl yolew eyl seweu Yiim 3|14 1ndinQ ‘awep
€g¢e §43sn ||e JO SJI3S13B1S pue sauWleu 1s17 alnand Jasn ‘sweN ‘M@ SOILSILV1S-43sn
1ea A ‘yiuol
€4 lepuajed pue 3202 alepdn 14 ‘Aeq@ “UnoH Uiy lvadn
GG paddems aq 03 1uswbas e MO||y 2119nd 1uswbag X 14NN
CEEE pasn swi 1ulid alndand asasn-3nNiL
$301|4u00 abed Joj Al010841p 159 | INTLSAS sweN AJoyoaiiQg AHOLO34Ia-1S31
:181deyn 01 9oy :uondiiosaq 1404sg :Ag pasn :sJ918Weled :puewWO)

ND-60.050.06

APPENDIX B

APPENDIX B

Monitor Calls

Monitor Call: Command: Refer to Chapter:
0 RTEXT 3.6.1
1 INBT 3.4.2.1, 3.6.1
2 OUTBT 3.4.2.1, 3.6.1
3 ECHOM 3.6.1
4 BRKM 3.6.1
5 RDISK 3.6.1
6 WDISK 3.6.1
7 RPAGE 3.4.2.2, 3.6.1
10 WPAGE 3.4.2.2, 3.6.1
11 TIME 3.6.1
12 NOT USED
13 CIBUF 3.6.1
14 COBUF 3.6.1
15—42 NOT USED
43 CLOSE 3.4.3, 3.6.1
44 NOT USED
45 DBRK 3.6.1
46 DBRK 3.6.1
47 SBRK 3.6.1
50 OPEN 3.4.1.3, 4.3.6.1
51 DMAC BREAKPOINT 3.6.1
52—61 NOT USED
62 RMAX 3.6.1
63 NOT USED

ND-60.050.06

Monitor Call:| Command: Refer to Chapter:
64 ERMSG 3.6.1

65 QERMS 3.6.1

66 ISIZE 3.6.1

67 0SIZE 3.6.1

70 CMND 362

71-72 NOT USED

73 SMAX 3.6.1

74 SETBY 3.6.1

75 REABT 3.6.1

76 SBSIZ 3.4.2.2, 3.6.1
77 SETBC 3.6.1

100 RT 3.68.2, 7.1.1
101 SET 3.6.2, 7.7.1
102 ABSET 3.6.2, 7.7.1
103 INTV 3.6.2, 7.7.1
104 HOLD 36.2, 71.7.1
105 ABORT 3.6.2, 7.7.1
106 CONCT 36.2., 7.7.1
107 DSCNT 3.6.2, 7.7.1
110 PRIOR 36.2, 7.1,
11 UPDAT 3.6.2, 7.7.1
112 CLADJ 3.6.2, 7.7.1
113 CLOCK 3.6.2

114 TUSED 3.6.2

115 FIX 3.6.2, 7.7.1
116 UNFIX 3.6.2, 7.7.1
117 RFILE 3.4.2.2, 3.6.2

ND-60.050.06

Monitor Cali: Command: Refer to Chapter:
120 WFILE 3.4.2.2.
121 WAITF 3.4.2.2

122 RESRV 7.7.1

123 RELES 7.7.1

124 PRSRV 7.7.1

125 PRLS 7.7.1

126 DSET PN

127 DABST 7.7.1

130 DINTV 7.7.1

131 ABSTR 7.71, 7.7.2
132 MCALL 7.7.2

133 MEXIT 7.7.1, 7.7.2
134 RTEXT 7.7.1

135 RTWT 7:1.1

136 RTON 7.7.1

137 RTOFF 7.7.1

140 WHDEV 7.7.1

141 IOSET 3.6.2

142 ERRMON 7.7.1, 7.7.2
143 RSIO 3.7.6

144 MAGTP 3.8.2

145 ACM 3.6.2

146 INIT 3.10.1

147 CAMAC 3.10.1

150 GL 3.10.1

151 LMASK 3.10.1

ND-60.050.06

v

Aonitor Call: Command: Refer to Chapter:
152 CONTR 3.10.1
153 IOXN 3.10.1
154 ASSIG 3.10.1
155 PLOTT 3.11, 3.119
156 TRACB 9.6.2.1
157 ENTSG 7.7.1
160 FIXC 1.7:1
161 INSTR 3.6.2
162 OUTST 3.6.2
163 WRAQI 8.3
164 WSEG 3.6.2
165 DIW
166 DOLW
167 NOT USED
170 uso
171 uUS1
172 uUs2
173 uS3
174 us4
175 uS5
176 usé6
177 us7

ND-60.050.06

APPENDIX C

APPENDIX C

LOGICAL DEVICE NUMBERS USED IN SINTRAN 111

Octal Logical Decimal Logical .
Device No.: Device No.: Device Name:
077 56-63 Character devices

100-177 64-127 Mass Storage Files

200-277 128-191 Internal devices

300-377 192-255 Semaphores

400-477 256-319 Process Control Devices/Connect Devices

500-577 320-383 System Devices

600-677 384-447 SINTRAN III/SINTRAN 11l communica-
tion devices

700-777 NORDCOM devices

1000-1077 Extension of character devices

1100-1177 System devices

1200-1277 Not used

1300-1377 Not used

ND-60.050.06

Octal Logical Decimal Logical .

Device No.: Device No.: Device Name:

0 0 Dummy Device (not used)
1 1 Teletype/Display 1

2 2 Tape reader 1

3 3 Tape punch 1

4 4 Card reader 1

5 5 Line printer 1

6 6 Synchronous Modem 1
7 7 Asynchronous Modem 1
10 8 Plotter 1

1" 9 Teletype/Display 2

12 10 Tape Reader 2

13 11 Tape punch 2

14 12 Card reader 2

15 13 Line Printer 2

16 14 Synchronous Modem 2
17 15 Asynchronous Modem 2
20 16 Cassette drive 1

21 17 Cassette drive 2

22 18 Versatec Printer/Plotter 1
23 19 Versatec Printer/Plotter 2
24 20 Tektronix Display

25 21 Magnetic Tape 2 unit 2
26 22 Synchronous Modem 5
27 23 Synchronous Modem 6
30 24 Synchronous Modem 3

ND-60.050.06

Octal Logical Decimal Logical .

Device No.: Device No.: Device Name:

31 25 Synchronous Modem 4
32 26 Magnetic Tape 2 unit O
33 27 Magnetic Tape 2 unit 3
34 28 Magnetic Tape 2 unit 1
35 28 Line Printer 3

36 30 CDC Link

37 31 Teletype link

40 32 Magnetic Tape 1 unit O
41 33 Magnetic Tape 1 unit 1
42-47 34-39 Teletype/Display 3-8

50 40 Card punch 1

51 41 Card punch 2

52-57 42-47 Asynchronous Modem 3-8
60-67 48-55 Teletype/Display 9-16

Logical Device Numbers 400 - 477

400-437
440
441
442
443

450-461

CAMAC interrupts or special process interface
Direct task level 6
Direct task level 7
Direct task level 8
Direct task level 9

CONNECT device

ND-60.050.06

Logical Device Numbers 500-577

500
501
502
503
504
505
506
507
510
511
512
513

514

516
517
520
521
522
523
524
525

526

527

530

Internal Device for error-message RT-program
Semaphore for segment transfer
Disk 1 Datafield

RT-loader semaphore

General lock for file system
User-file-buffer lock
Object-file-buffer lock
RT-open-file-table lock

Device buffer 1 lock (disk 1)

Disk 1, unit 0, R-bit-file-buffer lock
Disk 1, unit O, F-bit-file-buffer lock
Disk 1, unit 0, R-directory lock
Disk 1, unit O, F-directory lock

DF1, file-transfer lock for disk 1, drum 1, drum 2, disk 2,
hig disk

DF2, open-file monitor call from RT-program datafield
RTFIL semaphore

Device buffer 2 lock (big disk)

Get device buffer lock

Disk 1, unit 2, R-directory lock

Disk 1, unit 1, F-directory lock

Disk 1, unit 1, R-bit-file-buffer lock

Disk 1, unit 1, F-bit-file-buffer lock

DF3, file-transfer lock for magnetic tape 1 unit 0, Magnetic
tape 1 unit 1

Schedule semaphore

Accounting semaphore

ND-60.050.06

531
532
533
534
535
536
537
540
541
542
543
544
545
546
547
550
551
552
553
554
555
556
557
560
561
562

563

DF 6 CDC link monitor call datafield
Batch process 1

Batch process 1

Batch process 2

Batch process 2

Batch process 3

Batch process 3

Internal Device Remote Batch IBM
Internal Device Remote Batch UNIVAC
Internal Device Remote Batch Honeywell Bull
Internal Device Remote Batch CDC
Drum 2, Datafield

Drum 2, bit-file-buffer lock

Drum 2, directory lock

Drum 2, device buffer lock

Drum 1, Datafield

Drum 1, bit-file-buffer lock

Drum 1, directory lock

Drum 1, device buffer lock

Disk 1, unit 3, R-bit-file-buffer lock
Disk 1, unit 3, F-bit-file-buffer lock
Disk 1, unit 3, R-directory lock

Disk 1, unit 3, F-directory lock
Magnetic tape 1, Datafield

Magnetic tape 1, unit T, directory lock
Magnetic tape 2, unit O, directory lock

Magnetic tape 2, unit 0, device buffer

ND-60.050.06

564
565
566
567
570
571
572
573
574
575
576

577

Magnetic tape 1, unit 1, device buffer lock
Magnetic tape 1, unit 2, directory lock
Magnetic tape 1, unit 2, device buffer lock
CDFIE - CD link datafield

Disk 1, unit 2, R-directory lock

Disk 1, unit 2, F-diréctory lock

Disk 1, unit 2, R-bit-file-buffer lock

Disk 1, unit 2, F-bit-file-buffer lock

DF4, monitor call datafield for cassette
Cassette datafield

DF5, monitor call datafield for Versatec

Versatec datafield

Logical Device Numbers 1100-1127

1100
1101
1102
1103
1104
1105
1106
1107
1110
1111
1112
1113

1114

Big-disk datafield

Big-disk, unit 0, directory lock
Big-disk, unit 0, bit-file-buffer lock
NORD-50 datafield

Disk 2 datafield

Disk 2, unit 0, R-directory lock

Disk 2, unit 0, F-directory lock

Disk 2, unit 0, R-bit-file-buffer lock
Disk 2, unit 0, F-bit-file-buffer lock
Magnetic tape 2 datafield

Magnetic tape 2, unit 0, Directory lock
Magnetic tape 2, unit 0, device buffer lock

Magnetic tape 2, unit 1, directory lock

ND-60.050.06

1115
1116
1117
1120
1121
1122
1123
1124
1125
1126
1127
1130
1131
1132
1133

1134

DR7, monitor call datafield for magnetic tape 2
Big disk, unit 1, directory lock

Big disk, unit 1, bit-file-buffer lock
Big disk, unit 2, directory lock

Big disk, unit 2, bit-file-buffer lock
Big disk, unit 3, directory lock

Big disk, unit 3, bit-file-buffer lock
VE2FI - Versatec controller 2

DF8 - monitor controller 2

Magnetic tape 2, unit 3, directory lock
Disk 2, unit 1, R directory lock

Disk 2, unit 1, F directory lock

Disk 2, unit 1, R bit-file lock

Disk 2, unit 1, F bit-file lock

Disk 2 device buffer lock

ND-60.050.06

APPENDIX D

APPENDIX D — ERROR MESSAGES

Error messages issued by system programs are not always self-
explanatory. As they do not follow any standard format, at the
moment, it is not always easy to find an explanation of their meaning.
We have, therefore, collected all error messages from the most common-
ly used systems. These include SINTRAN [Il monitor, SINTRAN III
file management system, SINTRAN Il RT loader, BRL (binary relocat-
ing loader), standard FORTRAN, BASIC, MAC, NORD PL, and QED.
The file management system list is especially important since all 1/0
ERROR codes from systems under SINTRAN III refer to this list.

ND is presently engaged in the task of defining standard user interfaces,
including error messages, and we plan to implement these in the not
too distant future. In the meantime, we hope these pages may be
helpful.

ND-60.050.06

D.1

D.1.1

SINTRAN /Il MONITOR
Run Time Errors

At run time, errors may be detected by the system. Most of the errors
will cause the current RT program to be aborted and the error message:

aa.bb.cc ERROR nn IN rr AT Il ; tttt
XX Yy

will be printed.

If the error occurs in a background program, the error message will be
written on the corresponding terminal. For RT-programs, the error
message will come to the error message terminal (usually Terminal 1).

The parameters have the following meaning:

aa.bb.cc - Time when the error message was printed.
aa - hours
bb - minutes
cc - seconds
nn - Error number. For further explanation, refer

to the list on the following page.

rr - Octal address corresponding to an RT program
name.

Il - Octal address where the error occurred.

tttt - Explaining text.

XX,YY - Numbers carrying additional information about
the error. One or both numbers can be omit-
ted. For further explanation refer to the list

on the following page.

Example: @01.43.32 ERROR 14 IN 16105 AT 114721;
OUTSIDE SEGMENT BOUNDS

In case of a segment transfer error, an additional message TRANSF!
will be given.

ND-60.050.06

D.1.2

Run Time Error Codes

Error . Program
Code | Meaning XX Yy Aborted
00 Illegal monitor call yes
01 Bad RT program address yes
02 Wrong priority in PRIOR yes
03 Bad memory page page no.
04 Ring protect yes
05 Memory protect yes
06 Batch input error error no. yes
07 Batch output error error no. yes
08 Batch system error error no L-register yes
09 Illegal parameter in CLOCK yes
10 Illegal parameter in ABSET yes
1 lllegal parameter in UPDAT yes
12 Illegal time parameters yes
13 Page fault for non-demand yes
14 Outside segment bounds yes
15 Bad segments in MCALL/MEXIT yes
16 Bad segment in FIX/UNFIX yes
19 Too byte segment yes
20 Disk/drum transfer error Hardware unit no
device no. (abotted
if segment
transfer)
21 Disk/drum transfer error disk address| hardware no
status
22 False interrupt level no

ND-60.050.06

Efror . Program
Code | Meaning XX yy Aborted
23 Device error hardware hardware no
device no. status
24 Internal interrupt bit no. yes
26 Mass storage time-out no
27 Error in CONCT yes
28 FORTRAN 1/0 error File error no. yes
29 MON 64 and MON 65 Error no. (See NORD | vyes
File System)
30 Divide by zero yes
31 Permit violation yes
32 Ring violation yes
33 Illegal instruction yes
35 RT-FORTRAN stack error yes
36 Privileged instruction yes
37 10X error Address Level no
38 Memory Parity PEA-reqg. PES-reg yes
39 Memory out of range PEA-reg. PES-reg. yes
40 Power fail no

ND-60.050.06

D.2 SINTRAN 11l FILE SYSTEM

D.2.1 Error Codes Returned from Monitor Calls

Error Code | Meaning

000 Not used

001 Not used

002 Bad File Number

003 End of File

004 Card Reader Error (Card Read)
005 Device Not Reserved

006 Not Used

007 Card Reader Error (Card not read)
010 Not used

011 Not used

012 End of Device (Time-Qut)

013 Not used

014 Not used

015 Not used

016 Not used

017 Not used

020 Not used

021 lllegal character in parameter
022 No such page

023 Not decimal number

024 Not octal number

025 You are not authorized to do this
026 Directory not entered

027 Ambiguous directory name
030 No such device name

ND-60.050.06

Error Code | Meaning

031 Ambiguous device name

032 Directory entered

033 No such logical unit

034 Unit occupied

035 Master block transfer error

036 Bit file transfer error

037 No more tracks available

040 Directory not on specified unit

041 Files opened on this directory

042 Main directory not last one released
043 No main directory

044 Too long parameter

045 Ambiguous user name

046 No such user name

047 No such user name in main directory
050 Attempt to create too many users
051 User already exists

062 User has files

053 User is entered

054 Not so much space unreserved in directory
055 Reserved space already used

056 No such file name

057 Ambiguous file name

060 Wrong password

061 User already entered

062 No user entered

063 Friend already exists

ND-60.050.06

Error Code

| Meaning

064
065
066
067
070
071
072
073
074
075
076
077
100
101
102
103
104
105
106
107
110
111
112
113
114
115

116

No such friend

Attempt to create too many friends
Attempt to create yourself as friend
Continuous space not available

Not directory access

Space not available to expand file
Space already allocated

No space in défault directories

No such file version

No more pages available for this user
File already exists

Attempt to create too many files
outside device limits

No previous version

File not continuous

File type already defined

No such access code

File already opened

Not write access

Attempt to open too many files
Not write and append access

Not read access

Not read, write and common access
Not read and write access

Not read and common access

File reserved by another user

File already opened for write by you
ND-60.050.06

Error Code | Meaning

117 No such user index

120 Not append Access

121 Attempt to open too many mass storage files
122 Attempt to open too many files
123 Not opened for sequential write
124 Not opened for sequential read
125 Not opened for random write

126 Not opened for random read

127 File number out of range

130 File number already used

131 No more buffer space

132 No file opened with this number
133 Not mass storage file

134 File used for write

135 File used for read

136 File only opened for sequential read or write
137 No scratch file opened

140 File not reserved by you

141 Transfer error

142 File already reserved

143 No such block

144 Source and destination equal

145 Illegal on Tape device

146 End of tape

147 Device unit reserved for special use

ND-60.050.06

Error Code | Meaning

150 Not random access on tape files

151 Not last file on tape

152 Not tape device

153 Illegal address reference in monitor call
154 Source empty

155 File already open by another user

156 File already open for write by another user
157 Missing parameter

160 Two pages must be left unreserved

161 No answer from remote computer

162 Device cannot be reserved

163 Overflow in read

164 DMA error

165 Bad Datablock

166 CONTROL/MODUS word error

167 Parity error

170 LRC error

171 Device error (read-last-status to get status)
172 No device buffer available

173 Illegal mass storage unit number

174 Illegal parameter

175 Write-protect violation

176 Error detected by read after write

177 No EOF mark found

200 Cassette not in position

ND-60.050.06

D-10

Error Code |Meaning

201 Illegal function code

202 Time out (no datablock found)
203 Paper fault

204 Device not ready

ND-60.050.06

D.3

D.3.1

D-11

SINTRAN Il — REAL TIME LOADER

Error Diagnostics

The RT loader divides the errors into the following three groups:

1.

Syntax errors. Example: ILLEGAL PARAMETER TYPE. The
given parameter is not the correct type (parameter types: octal
number, file name, symbols). No restrictions in use of the RT
loader after these errors.

Serious errors. Example: SE-ILLEGAL BRF CONTROL BYTE
which means that a wrong BRF control byte is found in the BRF
input stream. The loading operation may be started before the
RESET—LOADER—command is used. All serious error-messages
will be preceded by the characters "SE—"".

Fatal errors. |f there is something seriously wrong in the
RT loader's tables or in one of the system tables (which the RT
loaders uses) or some serious errors occur in a critical sequence
(for example, updating the segment link), the error message
FATAL RT—LOADER ERROR and the content of the registers
will be printed. These errors should be reported to Norsk
Data-Elektronikk.

ND-60.050.06

D.3.2

Error Messages

Error Message

D-12

| Explanation

INTERNAL RT LOADER
ERROR

TABLE FILLED

RTFIL FILLED

RT DESCRIPTION TABLE
FILLED

ILLEGAL CONTROL
BYTE

ILLEGAL VIRTUAL
ADDRESS

ZERO-RELATIVE AD
ADDRESS

LOADING AREA FILLED

PRIORITY ERROR
CHECKSUM ERROR
SOURCE LANGUAGE
ERROR

DOUBLE DEFINkKTION

DATA ERROR

COMMON ERROR
UNDEFINED DATA
SEGMENT NOT AVAIL.

RS COMMAND MUST BE
USED

SEGMENT OVERLAP

NO ROOM ON SEGMENT
FILE

Error in the internal loader stack is detected.

No more space available in the linking table.

The control byte in the BRF input stream is
illegal.

The virtual address is outside the prespecified
limitations.

The program unit is relocated relative to ad-
dress zero. Too old version of the compiler/
assembler is used.

The virtual address area for one of the segments
is full.

The program priority is outside the legal area.
Wrong checksum on a BRF program unit.
The compiler has detected source language

error and produced INHB byte to prevent
execution of the program.

Attempted initialization of unknown COMMON
area.

COMMON area expanded.
Reference to unknown COMMON area.
The referenced segment not available.

Use the RS command before further loading
is allowed.

Virtual address overlap between segments has
just been loaded.

ND-60.050.06

D-13

Error Message | Explanation

NO PRIORITY SPECIFIED PRIOR-byte after MAIN-byte missing.
IN < PRCGRAM NAME> Default priority inserted.

NEGLECTING REFEREN- Undefined references exist.
CES?

ILLEGAL COMMAND

ND-60.050.06

D.3.3

D-14

Description of the “lllegal Command’ Message

Command

| Bescription

AS
CcL/cs
CR
DD

DE

DP

DV

EP

ER
ES

EQ

LA
MD
NS
RF

RT

Command unknown.

Command illegal because of earlier error conditions (utilize
the RS command).

Illegal segment number.

No correspondance with earlier definition of the label.
Illegal segment number.

Segment area number illegal (0 <DD'<3).

Specified entry point unknown. Specified entry point is an
RT orogram name.

Specified RT program unknown. Specified name is not clas-
sified as RT program.

Illegal device number.

Symbol specified is not an RT program name. Segment
specified not existing. Overlap between the two segments
specified.

lllegal Address. Double definition of symbol.

Illegal address.

Illegal segment number. Double definition of symbol. No
address specified. Address specified equal to unknown symbol.

Illegal segment number. lllegal address.

Illegal device specification.

[llegal segment number. lllegal protection ring (0 < RING <?2)
Symbol already defined.

Symbol already defined.

ND-60.050.06

D-15

D.4 BINARY RELOCATING LOADER

D.4.1 Error Messages

The loader error messages have the format ERR Ldd where dd is a two-digit
error number as explained below.

Error Code | Meaning

01 Common expanded

02 Double defined entry point

03 Checksum error

04 Erroneous program

05 Illegal control number

06 Overlap

07 No start address

08 Symbol table full

09 Undefined symbols

10 Undefined common or global block
11 Defined label (system error)

12 Illegal character in octal number

ND-60.050.06

D.5

D.5.1

D.5.2

STANDARD FORTRAN

Compiler Error Messages

The error message will be written on either the line printer or the Teletype,
depending on which is specified as the listing device. If the user has requested
a listing of the program, error messages will be printed on the line follow-
ing the erroneous line and, in certain cases, on the next line thereafter. The
error messages are self-explanatory and are printed in the following format:

***ERROR IN <subprogram unit name> <label> + <displacement>
<error text>

where label denotes last statement number or O if none are encountered
yet. Displacement denotes the number of statements beyond the labeled
one in which the error occurred.

FORTRAN Formatting Error Messages

Error . Type of Error
Code | Meaning E/l
71 Illegal character in format F

72 Parantheses nested deeper than 5 I

73 Attempt to fetch character beyond format F
74 Attempt to store character beyond format F
75

76 Argument error unidentified type specification F

(system error)

77
78
79
80 Output record exceeds 136 characters I
81 Format requires a greater input record I
82 Input record exceeds 136 characters I

83 Wrong parity in input field |

84 Bad character in input field I

ND-60.050.06

D.5.3

Error . Type of Error
Code | Meaning F/1

85 Integer overflow |

86 Real overflow on input I

87 Real underflow on input |

88 Real overflow on output I

89 System. error F

90 Too bit input record F

F = Fatal, | = Informative

Arithmetical Library Error Messages

The error message is Written as a combination of letters, for instance:
ddddd RUN ERR CH
This means that COSH erred in the neighbourhoodof core address ddddd.
IN RT FORTRAN the error looks like
RUN ERR CH rrrrr
Here, rrrer means the name of the RT program.

Error

Code | Meaning

|

AA Error in 8AXA
8AXA was called with negative base. Result set to zero.
Al Error in 8AXI
Base equal to zero and exponent negative. Result set to 1.0E99.
AT Error in ATAN2
Both arguments equal to 0.0. Result set to 0.0.
CH Error in COSH

Argument greater than 214, Result set to 1.0E99.

ND-60.050.06

D-18

Error)
Code | Meaning
CO Error in COS

DI

EX

GO

LN

SH

SI

SQ

Argument greater than 214, Result set to 0.0.
Error in 8DIV

Second argument equal to O.
Result set to + 32767, depending on sign of first argument.

Error in EXP.

Argument greater than 214, in2. Result set to 1.0E99.

Argument error in a computed or assigned GO TO statement.
Program returns to first label in the list.

Error in 8IXI.

Overflow in result. Result set to 32767.

Error in ALOG, ALOG1, ALOG2.

Argument less or equal to 0. Result set to -1.0E99.

Error in SINH

Argument greater than 214, Result set to SIGN (X) - 1.0E99.
Error in SIN

Argument greater than 214, Result set to zero.

Error in SQRT

Argument less than zero. Result set to zero.

ND-60.050.06

D.6

D.6.1

D.6.2

D.6.3

D.6.4

BASIC

Basic Error Ilessages

The message you may encounter when writing or running a BASIC pro-
gram are listed here. These error messages may originate in different parts
of the system. In system without mass memory, error messages are nor-
mally given as error codes.

Compiling

When you are writing statements the compiler will check for syntax er-
rors. These error messages are denoted with error codes CE followed by
an error number to be looked up in Compiler Error Messages. The sys-
tem will now check the input character. If this is a question mark, the
erroneous line will be printed with the errors marked.

Run Time

When executing programs the BASIC system may print error messages
like: RE 3 IN LINE s. The error number may be looked up in Run
Time Error Messages.

The arithmetic functions SIN, COS, LOG, etc. have a special error for-
mat documented in Mathematical Library Error Messages.

Compiler Error Messages

Error .
Code Meaning

l

CE1 lllegal character in this context.

CE2 Minor arithmetic error, progably operator missing.
CE3 Something wrong with parentheses.

CE4 No line number or illegal line number.

CE7 Expected variable not found.

CE8 Expected number not found.

CE9 lllegal word in this context.

CE10 Only string variables legal in this context.

CE11 = used illegally or omitted.
ND-60.050.06

Error
Code

N-20

lMeaning

CE12
CE13
CE14
CE15
CE16
CE17
CE18
CE19
CE20
CE21
CE22
CE23
CE26
CE30
CE31
CE32
CE33
CE39
CE40
CE41
CE42
CE43
CE44
CE45

CE46

CEB5

|

"omitted or used illegally.

Illegal string format.

Mixed mode string — arithmetic.

No relational operator found in IF statement.
Word (GO TO, GOSUB, TO, THEN) expected, not found
No value for variable with FOR, LET

!llegal FOR looping variable.

Illegal use of CHR$ or SEGS.

Array must have an index in this context.
Array index not legal in this context.

No end of array subscript found.

lllegal array index format.

Program name too long.

Illegal use of files.

{llegal file terminator

FN-function used recursively.

Illegal format for FN-function.

CON legal only in execution code.

Array previously defined two-dimensional.
Array previously defined one-dimensional.
Only numeric arrays legal in this context.
Only two-dimensional arrays legal in this context.
Array dimensions not matching.

Illegal operator in MAT statement.

MAT multiply does not allow same array on both sides of assignment
operator.

Print Using must start with string.
ND-6C.050.06

D.6.5

Run Time Error Messages

Error
Code

Meaning

RE1 J Out of numeric data for READ statement.

RE2

RE3

REbS

REG

RES8

RE9

RE10
RE11
RE12
RE13
RE14
RE15
RE16
RE17
RE18
RE20
RE21
RE22
RE23
RE25
RE26
RE27
RE28

RE29

Out of string data for READ statement.
END not last statement.

Dividion by zero tried, overflow.

Undefined string variable used.

GOSUB nested too deeply, table full.

No return address with RETURN statement.
FOR — NEXT nested too deeply.

More NEXT than FOR.

More FOR than NEXT.

FOR—NEXT illegally nested, variables do not match.
FOR—NEXT loop illegally nested.
Increment 0 with FOR statement.

DEF FN and FNEND illegally nested.
Number of input data incorrect.

Input data terminated illegally.

Negative index illegal.

Index too big, overflow.

Array dimensions not matching.

Only square matrics with MAT IDN and MAT INV.
Illegal file number.

Illegal file name, file used illegally.

Program tried to read EOF.

ETB (end-of-file mark) read.

Tried to read/write sequentially in random file.

ND-60.050.06

Error .
Code ! Meaning

RE30 System out of core.

RE31 Too many core tables used, table full, use the command TABLE.
RE32 Input buffer overflow.

RE33 Core table full, probably too many errors in the program.

RE34 lllegal FN-name.

RE35 Statement reached illegally, only legal within multiple line DEF FN.
RE36 lllegal number of arguments in FN-function.

RE37 Undefined FN-function called.

RE39 Command CON used illegally.

RE40 Zero or negative margin illegal.

RE41 No margin with random file.

RE44 lllegal string size.

RE46 String too long.

RE47 MAT is used with disk arrays.

RE60 Print using not allowed with disk strings.

RE61 Print using format error.

ND-60.050.06

D.6.6

Mathematical Library Error Messages

Error Messages Function Error condition:
RUN ERR AA i) For At Bif A=0and B <0.
Result: At B =0.
For A t B if B logpA =2 1t 14.
Result: A+ B=1-E+ 99
EXPONENT () For A+ B if A< 0 and B not
ROUNDED integer. _
Result: At B = 1/A t ABS(INT(B)).
RUN ERR Al) For A 1 B if B loggA > 2 1 14.
Result: A1t B = 1E + 99.
RUN ERR CO coS If argument > 216 radians.
RUN ERR SI SIN Result set equal to O.
RUN ERR EX EXP For EXP(x) if x/In2 >216.
Result: set equal to 1-E99.
RUN ERR LN LOG Argument (x) less or equal to zero.
Result is set equal to 1.E99.
RUN ER SQ SQR Argument < 0.
Result is set to O.

ND-60.050.06

D.7

D.7.1

MAC

Error Messages, Their Meaning and Action to Take

(ERROR

Literal dumped too far from referencing instruction. Insert a JFILL
command in the source program within the relative addressing range of
the instruction. Reassemble.

JFILL MISSING

Insert a)JFILL command before the)9END of the source program.
Reassemble.

DOUBLE DEF

The symbol indicated has already been defined. This is not necessarily
an error. The value of the symbols latest definition is used.

ENT DEFINED BEFORE
A symbol given in a)9ENT command was previously defined. Reassem-
ble deleting either the symbol’s previous definition (probably before the
JOBEG command) or its inclusion in the)J9ENT command.
EXT DEFINED
A symbol given in a)9EXT command was previously defined. Reassem-
ble deleting either the symbol’s previous definition or its inclusion in
the)9EXT command..
EXT IN ADDRESS ARITHMETIC
An arithmetic expression included an external symbol. For example:
J9BEG
JOEXT PER

LDA | (PER +1 % ILLEGAL
Correct in the source program and reassemble.

EXT KILLED

An external symbol was included in a)KILL command. For example:

J9BEG
JOEXT PER
)KILL PER % ILLEGAL

Delete symbol from)KILL command in source program and re-
assemble.

ND- 60.050.06

bD-25

FABS NOT FOUND

A symbol included in a)9FABS command was not previously defined.
Define the symbol and continue assembly from the)9FABS command.
(Symbols included in the)9FABS, 9ASF,)9AGL,)9RT, and)9LC

commands must also be previously defined.)
IC

An illegal character was found in the object stream. The character is
ignored.

IL ADR

An attempt was made to assemble or jump (via the ! command) into
MAC itself. If the latter, try again with a legal address. If the former,
correct the program and reassemble.

IL EXPRESSION

MAC has encountered an expression having double relocation or direct
access to an external symbol. For example:

)OBEG

JOEXT PER

A,)

B, ?

B-A % LEGAL

B+A % ILLEGAL
LDA PER % ILLEGAL
LDA | (PER % LEGAL

Correct the source program and reassemble.
IL INST

Something is illegal about an instruction. Correct source program and
reassemble.

IL MNE

An attempt was made to redefine one of MAC's built-in symbols. The
attempted definition is ignored.

IL USE OF)ENT OR JEXT

A)9ENT or)9EXT was used somewhere other than before the first
instruction or constant after a JOBEG. Fix the source program and
reassemble.

IL USE OF COMMAND

Illegal use of a command. For example:

JKILL 5

Fix the source program and reassemble.
ND-60.050.06

MACRO ERR NO 900001

An attempt was made to redefine a macro. The macro definition is
ignored.

MACRO ERR NO 0@QQ(02
The macro tables overflowed. The macro definition is ignored.

MACRO ERR NO @000@3
MACRO ERR NO 000Q004

Both these error messages indicate the use of a symbol preceded by a $
within a macro body but not declared in the macro’s formal parameter
list. The macro definition is ignored.

MISSING PARAMETER

A macro call has insufficient parameters. The call is ignored.

OPTION IS MISSING

An option was “called” which was not included in MAC. Either, do
not attempt to use the option or construct a version of MAC including
the option. Reassemble.

POSS. FLT

There was possibly, a fault in assembly into the indicated location.
Examine the location and correct if necessary.

RANGE EX.

An attempt was made to reference a location outside the addressing
range of the referencing instruction. Fix the source program and
reassemble.

TABL FULL

One of MAC's tables overflowed.

UDEF ENTRY

Add the appropriate)9ENT command to the source program and
reassemble.

WHAT?

lllegal use of the)Jcommand. Give the correct command on-line and
continue assembly.

ND-60.050.06

D-27

<SYMBOL>=

A space preceded the = in the attempted definition of the symbol. Give
the correct definition on-line and continue assembly.

ND-60.050.06

D.8

D.8.1

NORD-PL

Diagnostic Messages from the Compiler

If the compiler detects an error, it prints a diagnostic message on the list
device, preceded by some asterisks. If the list device is equal to zero, it
prints instead on the communication device, the name of the last label and
the number of lines after the label, followed by the diagnostic message.
Usually the compilation will continue: however, in a few cases the com-
pilation has to stop, returning control to the operator.

Message

[Meaning

Error, ill. base
Error, buffer full
Error in command

Error in compiler

Error, ill. condition

Error in data expression

Error in decl.
Error, ill. disp.

Error, ill. elem.

Error in elem.
Error, in else/fi
Error, ill. else/fi/od
Error in expr.
Error in for

Error in if

Error in 1/0

Error, no FI/OD

Error in a BASE statement

Too long statement or object instruction

The compiler is destroyed, or maybe there
is a bug in the compiler

Error in the conditional compiling commands
(LIB, SLIB, STLIB or NSLIB)

Illegal operand or operator in a data expres-
sion

Error in a declaration statement
Error in a DISP statement

A basic element is found in a place where
it should not be

An ill-formed basic element

Bad nesting of THEN-ELSE-FI

Bad nesting of THEN-ELSE-FI or DO-OD
Error in an executable expression

Error in a FOR statement

Error in an |F statement

I/O error signalled by the surrounding system

Unmatched THEN/ELSE or DO at the end
of a subroutine

ND-60.050.06

Message

D-29

| Meaning

Error, no (

Error, ill. operation

Error in output

Error in relation

I1l. statement

Error in subr.

Error, table destroyed

Error, table full

Error, too complex

Error, undefined

Missing left parenthesis in a data list

This operation is not implemented in hard-
ware, or non-corresponding operands.

Error message from the surrounding system.

Ill-formed relation in an |F or FOR state-
ment

The statement is illegal in this context, or
illegal in an expression

Error in a SUBR statement

Probably overlapping of compiled/assembled
program and the compiler’s symbol table.

Too many symbols in the program

Too complex construction in an executable
expression; the backtracking stack is filled.

Undefined local symbols at the end of a sub-
routine.

ND-60.050.06

D.8.2 Diagnostic Messages from the Assembler

Some errors can be detected at assembly time only, because the compiler
does not keep track of memory address values. Below is a list of the most
usual errors. For more information, see the manual "’MAC User's Guide”’.

Message | Meaning

RANGE EX. A label or variable is used too far away from
where it was defined. It can for example, oc-
cur for GO to a label defined earlier, or at an
OD statement.

POS FLT Perhaps a label has been defined too far af-
ter the place where it was used. It can occur
for a forward GO or in an ELSE, Fl or OD
statement. However, this message can occur
if underfined symbol is part of a data expres-
sion. Then it can normally be ignored.-

(ERROR Too far between the filling in of literals. The
compiler outputs a JFILL command at each
RBUS statement. However, the programmer
can put *)FILL commands inbetween.

ND-60.050.06

D.9

D.9.1

QUICK EDITOR

Error Messages

While using QED, the user may encounter certain warning messages which
indicate conditions that the user may not be aware of.

Following is a list of these messages and a description of what they mean.

Error Message

| Meaning

STACK OVERFLOW
STACK UNDERFLOW

BUFFER 3/4 FULL

PARITY ERROR AT
LINE n

NO MORE BUFFER
SPACE

TRANSFER ERROR n

FATA ERROR AT n

I/0 ERROR n

These should never happen. If they do, then
something is wrong with QED.

Indicates that the text buffer is nearly full.
No more READ’s accepted. This happens
only when using a non-mass storage QED.

Indicates that, during a READ operation,
a character with wrong parity was read at
line n. The bad character is replaced with
a?.

No more space for the text buffer. Current
operation aborted.

Transfer of a page to or from mass storage
failed. The error word is n. Current oper-
ation is aborted.

A situation exists which QED thinks is im-
possible or which it does not know how
to handle. This error happens when the
user tries to use lines longer than 128
characters. The location where the error
occurred is n.

A sequential 1/0 error has occurred. The er-
ror code is n. The current operation is
aborted.

ND-60.050.06

INDEX

ﬁ%#**#%*&#%**#####**%**%###*%#*%*%%%&%#***%##%%*%%%*####%%*Q*%%%*%**%%*

ALPHABETHTICAL

I NDE X OF THE MANUAL

SINTRAN III = USER'S GUIDE ND=-60.050.06 .

##%***#%%*#*&##**####***#*4#%%#%#*##****#%**%%****#*#%%******###***%**%

ABORT

ABORT-BATCH
ABORT=J08
ABORT=PRINT

ABSET

ABSTR

ACCOUNTING SYSTEM
ACM

ALLOCATE-FILE
APPEND-BATCH
APPEND-REMOTE
APPEND=-SPOOL ING=FILE
ASSIG

BASIC

BATCH

BATCH INPUT FILE
BATCH JOB

BATCH OUTPUT FILE
BATCH PROCESS (OR)

BATCH QUEUE
BATCH USERS

BINARY RELOCATING [OADER

BLOCK POINTER
BREAK KEY

BRKM

BYTE POINTER
CAMAC

CASSETTE TAPE
CcC
CHANGE=-BIT=FILE

CHANGE-DIRECTORY=-ENTRY

CHANGE=-OBJECT=ENTRY
CHANGE=-PAGE
CHANGE-PASSWORD
CHANGE-USER=ENTRY
CIBUF

CLADJ
CLEAR=PASSWORD
CLOCK

CLOSE

CLOSE~-FILE

COBUF

COMMAND

COMMAND INTERPRETING

PROCESSOR,CIP

5¢5/6e8/7e1/7e601/7.6.3
3e7e¢2/3e74362/646
3eTeb4eb

3.8/3.8.2.4
Se5/7e6e1/766,:3
Tebel/Te6,3

2e01/645

3.662

3e4e1/7.6,.2

3.1

8
8
5
5
7/3e7e2/3e7e301/6.6
1¢2/3¢701/3e762/36704e3/3eTe4e5/6.6
1e2/3e3/3.7.1
Tel1/3e7e2/3¢70443/3e7e445/646
1¢2/36¢7e1/3¢702/3¢74301/3¢7e3e2/3e7ebs1/
Te4e2/3eTele5/646

Te2/3e7e4e3

2e¢1/3e1e2/3e766404/347.5.1
3/3e3e5.2/36747

6

02/9e26243

3e3/3e3elel/3e30145/442.1

ND-60.050.06

COMMUNICATION LINE 8
COMMUNTCATION=STATUS 8
COMMON DATA AREA 4
COMND 3
CONCT 5
3
3
3

J4ate/T
/346.3
6e1/Te603
CONNECT-FILE

CONTIGOUS FILE

CONTINUE

CONTR 9
CONTROL CHARACTER 3
CONTROL KEY

COPY |

COPY=-DEVICE
COPY-DIRECTORY

COPY-FILE
CREATE-DIRECTORY
CREATE-FILE

CREATE=-FRIEND
CREATE=-NEW=VERSION
CREATE=-USER

DABST

DATA FIELD

DATCL

DBRK

DDC PACKAGE

DEFAULT DIRECTORY
DELETE=-BATCH-QUEUE-ENTRY
DELETE-FILE

DELETE=-FRIEND
DELETE=-REMOTE =QUEUF =ENTRY
DELETE-SPOOLING=FILE
DELETE-USER

DEMAND PAGE MODE

DEMAND SEGMENT
DEVICE=-FUNCTION

DIALED=-UP TERMINALS

DINTV

DISK MAINTENANCE SYSTEM
DIRECTORY

5/3e401/304¢561/36561e1/3:50102

/3.2
L] 3.3.401/3.3.8

— W N
N °

e © © © © © © o o o
— W PPN NVN
e © © ®© & o o o

——wW N U~ =N

Wwwowodrrww

/663e1/663.2/9:361
.6.3

-~ -

L] ® L] L] L] [] L] L] e o L] L] L] ® L] L] L] L] L] L] [] L] L] L] L] ® ® L]

O‘\IU\O#\-L\O‘LAO‘LJUL‘JM'—'UM-PNJU
NN W &

02e1e2/30247/3e34241/642/602.1/60242
0204/60Celbe2/6e2:e5/604341/643:2/9e301

DIRECTORY=STATISTICS
DIRECT TASK

DMAC BREAKP

DSCNT

DSET

DUMP

DUMP=-BIT=-FILE
DUMP=-DIRECTORY=ENTRY
DUMP=0BJECT=ENTRY
DUMP-USER=-ENTRY
DUPLEX

F.CHO

ECHOM

\ooooo-\

.1/7‘6.1/7.6.3
/7.6.3
03e2e1/3e343.1/3e30441/36767

NV —=MNMN
N e \e

3/8,.1
3/3.3.8
8.3

WwwoooroNN~NNWHFOOW

1
7
1
3
5
S
S
S
1
1
1

CWwWwmnN NN

/

ND-60.050.06

ECHO STRATEGY

ENTER 2e1/3e3¢1e1/3e7062/3e7e¢5e1/3e747

ENTEQ-DIRECTOPY 6.2.2/602.4/603.1/90301

ENTSG 5¢5/7e6el/T7e643

ERMSG 3.6,61

ERRMON Tebel/7:6,3

FRROR MESSAGES D

ESCAPE KEY 2el/3¢30141/3.3.1.5

EXECUTION QUEUE 4¢3/5¢5/5.6/7.7

EXPAND=FILE 3e2e2/304,1

FILE 3.2

FILE DIRECTORY SEE DIRECTORY

FILE MANAGEMENT SYSTEM 1e5e2/3e2/3e4/3.5

FILE NAME 362/362.7

FILE NUMBER 3e2/3¢405.1/344,5.3

FILE-STATISTICS 30463

FILE TYPE 3¢203/362.7

FILE VERSION 3el2e4/3e2.7

FIX 5e¢5/7e6e1/7:e6.3

FIXC 5¢5/7e601/7e663

FLOPPY DISK 9¢1/9¢3/9:301/9¢3.2/9.3.3

FORTRAN«FTN 1.5.1/2.3/2.3.1/3.3.2.1/3.5.1.1/3.5.2/3.5.2
3.5.2.2/3.5.3/3.6.2/3.7.7/7.1/7.2/8.3/9.3.2

FORTRAN OVERLAY LOADER 3¢3:5.2

FRIEND 362/3e2e5/342¢6/364,2

GBRK 3e601/3.6.3

GET-RT=-NAME 5.6

GIVE-SPOOLING-PAGES 3.8/3.8.2.,06

GIVE-USER=SPACE 3¢2¢1e1/64342/9.3.1

GL 9.5.1

GOTO=-USER 3e3e462/343.5.2

GRAPHIC 9.6

HARDWARE ENVIRONMENTS let

HELP 3.3.10

HEWLETT-PACKARD MAGN.TAPE 9.262.2

HOLD 3¢3611/3e6e2/7¢6e1/7e643

INRT 36502e1/30601/44503/R.43/943,2

INCH 3¢5e2e1/4.5.3/9.3,2

INDEXED FILE 3e2e2/304,1

INIT 9.5.1

INITIAL=-COMMAND 6643

INSTR 3.662

INTERNAL DEVICE 4e¢5/4.5.3

INTERRUPT LEVFL 4.1

INTERRUPT SYSTEM 4.1

INTV S5e¢5/7e66l/7:6,3

ITOXN 9.5.1

IOSET 3.6.2/8.3

IS1ZE 3¢601/4.5,.3

LOR SEE BINARY RELOCATING LOADER

LEAVE 3¢601

ND-60.050.06

LIST-ACCOUNTING 6
LIST-BATCH-PROCESS 3
LIST-BATCH-QUEUE 3
LIST-DIRECTORIES-ENTERED 6
LIST-EXEC=-QUEUE
LIST-FILES
LIST=FRIENDS
LIST-OPENED-FILES
LIST-REMOTE-QUEUE
LIST-RT-DESCRIPTION
LIST-RTOPENED-FILES
LIST-SEGMENT
LIST-SPOOLING=-QUEUE
LIST-TIME=-QUEUE
LIST=-USERS

LMASK

LOAD-BINARY

LOCAL

LOGICAL UNIT

W &N
e o
N =

wwww
N

o o o
W= W

0e1/3:0343:2/363e5e1/363.5.2

LOGGING IN PROCEDURE
LOGOUT

LOOK=AT

MAC

MAGNETIC TAPE

MAGT

MAIN DIRECTORY
MASTER CLEAR

MCALL

MCOPY

MEMORY

MEMORY MANAGEMENT SYSTEM
MEXIT

/

NW—UNHPwWwnNnFsFoD0WIHrDEHEEHFRINVNNINU

NwWhNhPFPODWLWODWUTIWLWULUTUNO WW WO
Ne NN\

/

r—-U'l

/

O\UONNUNU
L L]

NN \Ne
L]
SO
L]

ol
.1/3
2e3

U'\U*ur-
°

/

u{\)su—-

2
.1.
3

3
/4
/16027

o2
/3.
«3e

2el
1

/3eT7e5e3/8e4

3¢8/3e7e563/5e4/60444
Cel/T7e¢3/7e4/Te5e1/765e2/706.2

/9436379041
/662

3.2
2.6
76
3.7

/374573

3
6

MODE

MONITOR CALL e5e1e2/3¢9¢201/30542e2/3e543/3.6/3:641/
/3e6e3/3e7e6/7e7/7e8/8¢3/9:2/9:242/
0179¢3e3/9¢4¢1/9e5461/946/9e6e1/9:607

«1/B

.0......0.0.....
o—-mmmum»—-bubmm—-‘mo»au»-un
@ L]

U'IO"I'\JO*(.J(AJO“\NUNO‘L\NN

e e © o o o o o o o

NODAL

NON=DEMAND SFGMENT
NORDCOM

NORD IDT

NORD PL

/9¢64201

/2e4/3e6/3¢601/T7e3/Te4/Te5e1/7e52/
/7643
1/3.5¢162/36601
/3e2e4/3e2¢5/3e4e561/3e4e502/96242
/66443
/46543
1/73e5e2e1/3e6e1/4.543/843/9¢3.2/9.4
1/3e5e2e1/46563/9e3:2/9:4

OPEN

OPEN=FILE

OPERATOR'S PANEL
0SIZE

ouTsT

OUTCH

OUTST

OWNER (OF A FILE)
OWNER (OF A BATCH J0B)
PAGING CONTROL REGISTER
PAGE INDEX TABLE
PAGING SYSTEM

6/3e2e7/36442
1

PP P ULULWWWWWORAWWN=—O0PF~ 00w W~NPFPWORNO WO O

NN~ NN PV U E

® © © © e © o © ®© e e o o ©°© o o o
\o\o\o.ooon-oooo

2
2
1
2
le
2
2
1
le
1.
2
3
4
4
2
4

e e o o

ND-60.050.06

PARAMETER

PASSWORD

PERMIT PROTECTION SYSTEM
PHILLIPS MAGNETIC TAPE
PHYSICAL ADDRESS
PLACE-BINARY

PLOTT

PRIOR

PRIORITY INTERRUPT DETECT
PRIORITY INTERRUPT ENABLE
PRIVILEGED INSTRUCTION
PRLS

PROJECT NUMBER

PRSRV

PUBLIC USER

QED/QUICK EDITOR

QERMS

QUOTES

RDISK

REABT

REAL=-TIME USERS
RECOVER

RECURSIVE SURPROGRAMS
REENTRANT SUBPROGRAMS
REGENERATE-DIRECTORY
RELEASE-DIRECTORY
RELEASE-FILE

RELES

REMOTE

REMOTE=-LOAD

REMOTE PROCESSOR
RENAME-DIRECTORY
RENAME=-F ILE

RENAME -USER
RESERVE=FILE

RESRV

RESTART (BUTTON)
RESTART=PRINT
RESTART=SYSTEM

RING BUFFER

RING PROTECTION SYSTEM
RFILE

RMA X

RPAGE

RSIO

RT

RTCLOSE=-FILE
RTCONNECT=FILE

RT DESCRIPTION

RT DESCRIPTION TABLE
RTENTER

RTEXT

RT-LOADER

RTOFF

3.1
2ot
3

.1/3.3.3.2/3.3.5.2

Ne o o o N\ N\

N WWwhN EWw

.6.1/7.6.3

e5/4.246
/_,.6.1/7‘6.~3
1/3.3.1.1
¢5/5¢5/7.641/7e6.3
e2/3e245

3
1
2
2
2
3
6
5
1
2
2
5

/7463/4e4/4.5/5/7

Wr—WWWWwe—wpvunsFspPpuiowdHroFnvw
e o © o o o o

AT ONWOON
® o © o6 o © © o o
NeEOEIENNNYN

6625

3.4466
4,5/T7e1/7e2/T7e6e1/Tebe3
6.4.2

3.8/3¢84245

1/764/7e6e1/T7e643
2/5e2/668/1e1/TeT
7.6.1/7.6.3

NM—=wUsHFPFuinnnwwww & &
© © ¢ © © © © © © © © o © o o
UUuocWwwwwwuiounoul

N e o

ND-60.050.06

el1/3e¢3e1e4/643.3

1/3e363e1/3e3e3:2/3e304,1

RTON

RTOPEN-FILE

RTWT

RUB 0OUT

RUNOFF

SBRK

SCHEDULE

SEGMENT

SEGMENT DESCRIPTION
SEGMENT NUMBER
SEGMENT TABLE
SEMAPHORE

SET

SETBS

SETBL

SETBT

SET-AVAILABLE
SET-DEFAULT=-DIRECTORY
SET-ERROR=-DEVICE
SET=FILE-ACCESS

565/76661
5
7
8
1
3
3
4
4
4
4
4
5
3
3
3
6
3
6
3
SET-FRIEND=-ACCESS 3
3
6
6
4
1
3
3
7
6
6
8
3
2
6
6
8
3
6
6
S

el/7e603

Ne o o
Ny
e e N\
Y IEAVINON]

®

o

°

w

02/Te7.3

4.5.1
Tebel/Te663
e2/3e641/3.6.2

\-o‘o\ooo\\

SET-PERIPHERAL=-FILE
SET-TERMINAL-FILE
SET-UNAVAILABLE
SHADOW MEMORY

SIBAS

SMAX
SPOOLING=-PAGES-LEFT
STACK MECHANISM
STAND ALONE PROGRAM
START~ACCOUNTING
START-COMMUNICATION
START=SPOOLING
STATUS

STOP (BUTTON)
STOP=ACCOUNTING
STOP-COMMUNICATION
STOP-SPOOLING
STOP=SYSTEM
STOP-TERMINAL
SYSTEM EE USER SYSTEM
SYSTEM SUPERVISOR SEE USER SYSTEM
TAKE=SPOOLING=-PAGES 3.8/3e86267
TAKE-USER=SPACE
TANDBERG MAGNETIC TAPE
TASK

TERMINAL -MODE
TERMINAL=-STATUS
TEST-DIRECTORY

TIME

TIME QUEUE

TIME SHARING JOBS

TIME SHARING USERS
TIME SLICE

Ne o o N\
WMo
[]
&
L]
—

°
@

Y-

®
(S

® o
w @@
o o
— ot
e o
U -
NN
w W
® o
w @
o o
O =
e o
LA Y)

'8.101/3.8.1.2

SOV SFUVDODNDUINNNOOININN=NTTNNSNV~OCO0ONUUESSESEPRPNOOONPOOWLWWUN

e e o @ o N\ N\Ne° ¢ o
—NW =N WW——5

W—NPWErTPWWO DR

ND-60.050.06

TIME SLICE QUEUE
TIME-USED

TRACB

TUSED

UNFIX

UPDAT

USER CATEGORIES
USER RT

USER SYSTEM
USER-STATISTICS
VERSATEC
VIRTUAL ADDRESS
VIRTUAL MEMORY
WAITF

WATCH DOG

WDISK

WFILE

WHDEV
WHERE=IS=FILE
WHO=-IS-ON

WPAGE

06.3
.1/7.6.3
.1/7.6'3

N\Ne e o o
N NN N -
e © o o
>N Wr—N

NN

3e3elel/3e36261/6/641
e4/9:441

/44201

e o e N\ e o o

NWWOoWwWwN
o o
N

owo
e o o
wo w
°
n

WWWw~NWWoWWHFoCWr—r——TUNNWODWW
e N\ e

gwwouooonnwN—= PNV W

e e o o o o
NN NN -~
e e o N\ o
MNDWHENMN W
e o
o ¥
o o
Pt ot

NN\

ND-60.050.06

A/S NORSK DATA-ELEKTRONIKK
Lo¢renveien 57, Oslo 5 - TIf. 21 73 71

COMMENT AND EVALUATION SHEET

SINTRAN Il Users Guide
June 1976

In order for this manual to develop to the point where it best
suits your needs. we must have your comments, corrections,
suggestions for additions, etc. Please write down your comments
on this pre-addressed form and post it. Please be specific
wherever possible.

FROM:

- we want bits of the future

A/S NORSK DATA-ELEKTRONIKK L@RENVEIEN 57 OSLO 5 NORWAY PHONE: 217371 TELEX: 18284

