
NORD PL
User’s Guide

REVISION RECORD
Revision . Notes

09 Total revision su n all ous versions
10/76 Total revision, superseding all previous versions

Rev on A. The followin have been revised: 2-4 3—1 3—2 3-3 3—15
— -1 d

Index to E and revised vi.

NORD PL - User’s Guide
Publ. No. ND-60.047.03

NORSK DATA A.S.
0.. .0...
0.. O...u. on 00000;; Lorenveien 57, Postboks 163 0kern, Oslo 5, Norway

PREFACE

This manual is recommended as a necessary documentation to any program-
mer/system analyst intending to Obtain information about the NORD
Programming Language (NORD PL). It contains the definition of the
language. (The NORD PL compiler itself, however, is described in the
manual NORD PL Program Documentation.)

'

According to the many examples and the consistent demonstration of
the MAC Assembly Language equivalents of the different NORD PL state-
ments, thismanual is very well adapted to a self-study. it will also re-
present the main contents of the course U808 — NORD Programming
Language arranged by the Educational Department of A/S Norsk
Data-Elektronikk.

The operating system SINTRAN Ill of the NORD-‘lO computer family is
written in NORD PL. This manual should, therefore, be given a closer
consideration by any person wanting to become a system analyst or to
attend the courses U804 - SlNTRAN Ill and U805 - SINTRAN lll
Workshop.

lt is also recommended that the reader of this manual should have attended
the course U801 — MAC Assembly Language or at least have obtained some
knowledge about MAC and especially about its addressing structure.

Finally, one important advice to the NORD PL programmer should be
given: NORD FL is not a problem oriented high level language like
FORTRAN or COBOL. / t is a machine oriented medium level language
introduced to simplify the assemb/v coding, i.e., in any statement written
the programmer should call attention to the influence on the register
contents!

N D-60.047.03

Section:

2.1
2.1.1'
2.1.1.1
2.1.1.2

2.1.2
2.1.2.1
2.1.2.2
2.1.2.3

2.2
2.3
2.4

3.1
3.1.1
3.1.2
3.1.2.1
3.1.2.2

—I—Ic—l—-\ 0301-9-00

TABLE OF CONTENTS

+++

INTRODUCTION

Machine Oriented Languages
Properties of the NORD PL
Formalism 'for Syntactic Description
Environments

THE STRUCTURE OF NORD PL

Basic Elements
ldentifiers
Reserved Identifiers
Registers

Constants
Numbers
Character and String Constants
Symbolic Constants

Operators and Delimiters

Data Structure
Data Expressions
Statement Structures

THE STATEMENTS OF NORD PL

Declaration Statements
Data Declarations
Addressing Mode Specifications
Base Variables
Disp Variables

Symbolic Constants
Label Declarations
Subroutine Declarations
Program Structure

ND-60.047.03

3—11

3—12
3-13

Section:

3.2
3.2.1
3.2.1.1
3.2.1.2
3.2.1.3
3.2.1.4

3.2.2
3.2.3
3.2.4
3.2.5
3.2.5.1
3.2.5.2
3.2.5.3
3.2.5.4
3.2.5.5
3.2.5.6

4

5

5.1
5.2

6

6.1
6.2

7

7.1
7.2
7.3

8

8.1
8.2
8.3
8.4
8.5
8.5.1
8.5.2

Executable Statements
Operators
Arithmetical Operations
Shift Operations
Logical Operations
The MIN and GOSW Operators-

Double Quotation Marks
Reference of Elements of any Array
X-Relative Addressing
Control Statements
Unconditional Branch Statements
Subroutine Calls
Subroutine Exits
Conditional Branch Statements
Unconditional Loop Control
Conditional Loop Control

REAL TIME PROGRAMS

_REENTRANT SUBROUTINES

Subroutines Callable from More RT Programs
Recursive Subroutines

COMMON DATA AREAS

Definition of a Common Area
Access of a Common Area

ADDITIONAL FEATURES

Commands
Conditional Compiling
ln-Line Assembly Coding

USING THE COMPILER

Preparing NORD PL Programs
Compiling NORD PL Programs
Assembling and Executing NORD PL Programs
NORD PL Listing with Octal Addresses
Diagnostic Messages
Diagnostic Messages from the Compiler
Diagnostic Messages from the Assembler

ND-60.047.03

Page:

3—14
3—14
3—16
3—18
3—18
3—19

3—20’
3—21
3—23
3—25
3-25
3—25
3-27
3—27
3—30
3-—32

Section:

A.1
A.2

vi

APPENDIXES

OPERATORS AND RESERVED SYMBOLS

Non-Alphanumeric Elements
Reserved Symbols

PROGRAMMER'S CHECK LIST

MODEL 33 ASR/KSR TELETYPE CODE (ASCIII
IN BINARY FORM

DEFINITION OF SOME MAC COMMANDS

ALPHABETICAL. INDEX OF THE MANUAL

N D-60.047.03
Revision A

Page:

1.1

1—1

INTRODUCTION

Computer programming languages are divided into three classes: assembly
languages, machine oriented languages and problem oriented languages.
This manual defines the machine oriented language NORD Programming
Language (abbreviation: NORD PL) running on the NORD-l and NORD-lO
computers.

MACH/NE ORIENTED LANGUAGES

A machine oriented language is a medium level language standing between
the problem oriented languages (high level languages) and assembly code.
The syntax resembles that of ALGOL. However, the use is intended to be
like that of an assembler, because all facilities of the computer can be
reached:

1. The complete assembler instruction set with all addressing modes.

2. All registers.

3. All available memory location.

Comparing a machine oriented language to assembly code:

1. It is easier to write programs and the error checking can be more
extensive.

2. The programs will be more readable for others.

Comparing a machine oriented language to high level language:

1. A PL language will give more optimal object code, about the same
as for assembly code.

2- The programmer is not dependent on fixed calling sequences or data
structures.

'

One of the main applications of machine oriented languages is system
programming (operating systems, compilers), where efficiency as well
as readability is needed.

N D-60.047.03

1.2 PROPERTIES OF THE NORD PL

The NORD Programming Language is a language suitable for expressing
a large class of computer system processes like operating systems, com-
pilers and data networks. For instance, the SINTRAN lll operating sys-
tem, the FORTRAN compiler and even the NORD PL compiler itself is
written in NORD PL.

Generally, it is recommended as an effective tool in the solution of al-
most any programming problem normally expressed in the MAC assem-
bly language.

The NORD PL is designed for the NORD-1 and NORD-10 computers.
The object output is MAC assembler source code. Therefore, including
of assembly code sequences is very easy. All the debug facilities of MAC
are immediately available, including symbolic references to labels and
variables.

The statement set includes:

1. Declaration statements, with type specifications and data presetting.

2. Arithmetical statements, consisting of arithmetical/logical expressions
and assignments. Constant expressions are also included. These will
be evaluated at compile time.

3. Control statements, including:

GO unconditional branching
lF conditional branching
FOR loop control
WHILE conditional loop control
CALL subroutine call

Input/Output statements are not available in the NORD Programming Lan-
guage itself. Thus, I/O operations should be performed by means of MAC
monitor calls introduced to the NORD PL program as normal assembler
statements starting with an asterisk (*). (See Sections 2.4 and 4.3.)
Additionally, the NORD PL compiler is supplied with a useful set of
commands, which may be inserted at any point of a program. These com-
mands inform the compiler about how to interpret the syntax of a pro-
gram, where to out the object program, etc. They are described in Sections
4.1, 4.2 and 4.3.

The compiler also includes conditional compiling (see Section 4.2).

N D-60.047.03

1.3 FORMAL/SM FOR SYNTACTIC DESCRIPTION

The syntax of the NORD Programming Language will be described with
the aid of a metalinguistic formalism similar to the one used in the defin-
ition of COBOL.

The brackets { } show that one of the alternative statement parts given
inside of these brackets should be chosen. A selection is obligatory.

The brackets [] show that the statement part given inside of these brac-
kets is optional.

Terms enclosed in the brackets < > are meant to be self-explanatory
and represent metalinguistic variables whose values are sequences of
characters.

These three bracket types are not used in NORD PL itself.

The three dots . . . denote that repetitions of the last statement part are
allowed.

Any mark in a formula which is not a metalinguistic variable, the three
dots or one of these brackets, denote itself.

N D—60.047.03

1.4

1—4

ENVIRONMENTS

The compiler needs about 6.5K of memory plus main symbol table (5
locations per symbol). The text is compiled in one pass.

The compiler can be run either as a freestanding system, under the T83
or under the SINTRAN Ill operating systems.

N D-60.047.03

2.1

2.1.1

2.1.1.1

2.1.1.2

THE STRUCTURE OF NORD PL_

BASIC ELEMENTS
-

NORD PL is built up from the following basic elements: identifiers, num-
bers, character and string constants, operators, delimiters and reserved
symbols.

Identifiers

An identifier is a string of digits and letters, the first 5 characters only
being significant. The rest will be regarded as a comment. At least one
of the 5 first characters must be a letter (not necessarily the very first).
An identifier may be used as the name of a variable, a label or a sym-
bolic constant. ‘

Example:

NEW, LOOP, INT2, 1A, 450 SLC, J2, 1976 SALARY

RESERVED IDENTIFIERS

Some identifiers are reserved for special use, as operators, statement sym-
bols or register names. Some special characters are also used. A complete
list is found in Appendix A.2. Refer also to Section 2.1.1.2.

REGISTERS

The registers have fixed names:

Program counter
Index register
T register
Accumulator
D register
Link register
Base register
Double accumulator »
Floating accumulator
One bit accumulator
One bit floating point overflow
One bit dynamic overflow
One bit static overflow
One bit carry
One bit multishift link .
Zero registerOgOOONfiglbmr'CJZD—lxv

U
U

NIB-60.94703

2.1.2

2.1.2.1

2.1.2.2

If the number 0 is found in an executable expression, it will be regarded
as the zero register, not as a constant.

Constants

There are four different types of constants: numbers or numerical con-
stants, symbolic constants, character constants and strings.

NUMBERS

Numbers (also called numerical constants or constants) are either integers
or floating point numbers. The compiler operates either in decimal mode
or in octal mode. ln decimal mode, the compiler will normally regard
a string of digits as a decimal integer. If the string is immediately preceded
by a &, it will be an octal integer. in octal mode the digit string will be
octal in any case. Decimal/octal mode is set by commands (see Section
7.1). initially, the compiler is in octal mode.

Floating point numbers have the same syntax as MAC floating point,
except that the sign # is used instead of E; besides the number must al-
ways start with a digit.

Example:

0.3 # —33

CHARACTER AND STRlNG CONSTANTS

Character constants have the same syntax as in MAC. # # A puts the 7
bits ASCll equivalent of A right adjusted in a word, and # AB packs the
characters A and B into one word. The string has also the same syntax
as in MAC, i.e., it must be surrounded by simple quotation marks. The last
quotation mark will be regarded as a part of the string.

Example:

’ABCD‘ will be packed as:

A B
C D
I

K
F
9

¢
b;
1'

N D-60.047.03

2.1.2.3

2.1.3

2—3

SYMBOLIC CONSTANTS

Identifiers may be declared as symbolic constants to represent certain
numerical or character values. Symbolic constants do not occupy any
memory space at run—time. See also Section 3.1.3.

Operators and Delimiters

Operators consiSt of letters or of special characters. Delimiters are special
characters with a particular significance. A complete list is found in Ap-
pendix A. '

N D-60.047.03

2.2

2—4

DA TA STRUCTURE

Three data types are available.

1. Integers (16 bits)
2. Double (32 bits)
3. Triple (48 bits)

In addition, the data type Real may be used. This type is equivalent to
Triple if 48 bits floating point format is used and equivalent to Double
if 32 bits floating point format is used.

These types can be used either as single variables or arrays. Pointers to
the actual variables and to arrays may also be declared.

All data must be declared before they can be used. However, the actual
location can be delayed, allowing, for instance, a data table to be placed
after the code using it.

Data locations or variables may get more than one identifier attached to
it. (See the last part of Section 3.1.1.)

The addressing mode is defined by the context of the declaration.

Data locations may be initialized at compile time. Data may also be
allocated at compile time without getting any identifier attached to it.
(See Section 3.1.1.)

ND-60.047.03
Revision A

2.3

2—5

DA TA EXPRESSIONS

A data expression is evaluated at compile time. The operands consist of
constants and identifiers. If labels or variables are used, their address values
will be used. The operators are:

+ Add
— Subtract
~1- Multiply
\ Byte separation (equivalent to "*4008 + "l

The expression is evaluated strictly from left to right and all the arith-
metic operators have the same priority. If a label or a reference of a
variable occurs, only + and - are allowed for the rest of the
expression.

Example:

NORD PL MAC equivalents:

1 + 2*10 30
1\1 401
A \ # # B (equivalent to # AB) # AB
5 + 2 + LABl - VA‘R2 7 + LABl — VAR2

Data expressions may appear in:

1. Declaration statements as initializations
2. Call statements as parameters
3. Executable statements as operands, surrounded by quotes ("l

lndiced variables, i.e., array identifiers or array pointer identifiers followed
by an index, included in paranthesis, may not appear in data expressions.
An indexed variable, must be represented by the identifier combined with
the operators + and — and proper constants. (See the last example in
Section 3.2.3.)

N D-60.047.03

2.4

2—6

STA TEMENT STRUCTURES

A' statement is normally terminated by a semicolon or a carriage return.
Using the command @lCR, it is possible to set the compiler in "ignore-
carriage return" mode, so that the carriage return will be ignored. Then,
a statement can consist of several lines.

There is no use of parenthesis structure.

Example:

(The following might very well be a part of a NPL subroutinez)

A:=B=:X:=:D-—T+P*VAR SHZ 4 SH “—2" SHR 10 SHL 1 /\ 377 VD
XOR T BONE 3 BZERO 17

which is equivalent to:

COPY SB DA; COPY SA DX; SWAP SA DD; RSUB ST DA; RADD SP
DA; MPY VAR; SHA ZlN 4; SHA SHR 2; SHA ROT10;_SHA UN 1;
AND (377; RORA SD DA; REXO ST DA; BSET ONE 30 DA;
‘BSET ZRO 170 DA

A comment begins with the percent sign (%). Then the rest of the line
will be ignored.

If a statement starts with an asterisk (*l, the rest of the line is regarded
as MAC assembly code. These statements are passed on to the object out-
put stream without the asterisk and without any error investigation.

if a statement starts with a circled alpha (@l, it is regarded as a command
to the compiler. See Sections 4.1. 4.2 and 4.3.

ND~60.047.03

3.1

3.1.1

THE STATEMENTS OF NORD PL

The NOR D PL statements are divided into two classes: declaration state-
ments and executable statements.

DECLARA T/ON STA TEMENTS

Declarations serve to define certain properties of the quantities used in
the program and to associate them with identifiers (names).

There are four types of declaration statements: data declarations, sym-
bolic constant declarations, label declarations and subroutine declarations.
With two exceptions mentioned in Section 3.1.4 and 3.1.5, declaration
statements may occur everywhere in a program, the main rule being that
the corresponding variables and symbols are referenced. Accordingly, it is
a good rule to make those declarations as soon as possible, either before
the subroutine declarations or immediately after a SUBR statement.

A symbolic name may not be declared twice, unless it appears as a local
variable or a local label in different subroutines.

Data Declarations

Variables (data) should be declared to be one of the types:

INTEGER 1 word
DOUBLE 2 words
TRIPLE 3 words
R EAL 2 or 3 words

Type declarations have the following general form:

INTEGER <identifier>
DOUB LE g <identifier>:=<expression . . .
REAL <identifier>=<identifier>
TRIPLE <identifier>=?

where <expression> must follow the rules given 'in Section 3.3.

In addition, the two optional declaration symbdls ARRAY and POINTER
may be added.

The three basic data types may be elements of a one-dimensional array.

INTEGER ARRAY (0 —oo words)
DOUBLE ARRAY (0 —acwords)
REAL ARRAY (0 —oowords)

N D-60.047.03
Revision A

The array declaration has the following general syntax:

INTEGER - <identifier> (<no. of elements>I
[—DOUBLE ARRAY <identifier>:é (<list of exoressions>®) ‘ "

REAL <identifier>=<identifier> J L
TRIPLE quantifier»?

Pointers to the variables may be declared:

INTEGER POINTER (1 word)

IVAR

Pointer

DOUBLE POINTER (1 word)
REAL POINTER (1 word)

RVAR

—-—--_-_————-_.

Pointer

INTEGER ARRAY POINTER (1 word)
DOUBLE ARRAY POINTER (‘IwordI
REAL ARRAY POINTER (1 word)

Array

Array
pointer .

ND-60.047.03
Revision A

As to be seen from the above figures, the contents of a pointer is the ad-
dress of the first word of the variable to be pointed at.

A pointer occupies one word (16 bits) regardless of which type of variable
it points at. The different pointer declarations INTEGER POINTER, DOUBLE
POINTER, etc., describe the type of the variable addressed by the pointer.

The syntax is the following:

REAL <identifier>=<identifier>
TRIPLE <identifier>=?
(Note: Pointer arrays do not exist in NORD PL.)

INTEGER <identifier> ‘\ (‘
DOUBLE [ARRAY] POINTER

<identifier>:=<expression>j ,1

The different declaration types will modify the addressing mode. After
the declaration symbols, a list of variables can follow. The variables can
be initialized, either as default zeros, or to specified values.

Example:

INTEGER INT1, INT2

INTEGER TRE:=3
REAL FLX
REAL Pl:=3.1415
DOUBLE SYM, SY2=SYM,SB

INTEGER POINTER PVAR:=VAR
INTEGER ARRAY [ARR (12)

REAL ARRAY FXIZO). FY(30)

INTEGER ARRAY TEXT:=
'STBING'

MAC Equivalents:

INT1, 0
INT2, 0
TRE, 3
FLX,0;0;O;
Pl, [3.1415
SYM,O;0
SY2=SYM
33,0;0

PVAR,VAR
IARR=*; *+12/

F X=* ;*+20+20+20/
FY=* ;*+30+30+30/

TEXT, ’STRING'

Note the different meaning of the two symbols = and := in declarations.
= is giving the left side variable the same address as the right side variable.
:= is giving the value on the right side to the left side variable.

A declared entity may be initialized by several elements, divided by a
comma, the whole list enclosed in parentheses:

N D—60.047.03
Revision A

3.1.2

INTEGER ARRAY AA:‘=(TRE,PI AA,TRE
+ 1, 15) Pl + 1
INTEGER ARRAY RARLlSTz= 15
(LOGNO, AREA, "100", "15") - PARLl, LOGNO

AREA
. (100

Each element may be a data expression.

Data may also be initialized with no name attached to it by using the
DATA statement: -

Example:

DATA (44,§Y,5)

is equivalent to the three MAC statements: 44;SY;5.

The syntax is the following:

DATA (<list of expressions>)

where <list of expressions> contains expressions following the rules in
Section 2.3 and separated by commas.

The actual allocation of data may be delayed, so that the data are placed
after the code physically. Then, the variables are declared equal to question
mark the first time and later they are declared a second time.

Example:

INTEGER ARRAY TABLE = ?
SUBR S

RBUS
INTEGER ARRAY TABLE (1000)

Addressing Mode Specifications

The addressing mode of a variable is dependent on the context of the
declaration statement. If nothing else is stated, a variable declared inside
a subroutine (between a SUBR and RBUS statement) is directly P-relative
addressed. lf declared outside of a subroutine, then it will be indirectly
addressed. If a variable is to be B-relative, its declaration statement must
be enclosed by a BASE-ESAB pair or a DlSP-PSlD pair.

ND-60.047.03

3.1.2.1

3—5

All variables have an attribute determining the addressing mode. One and
only one of the following attributes may be chosen for each variable:
Global, Local, Base or Disp.

Global: Variables declared outside of SUB R-RBUS, BASE-ESAB and
DlSP—PSID. Global variables are indirectly P-relative addressed.
Pointers may be declared as global variables, but then only their
contents may be accessed. It is n_ot possible to access another
variable through a global pointer because of the resulting ”double
indirect” addressing mode.

Local: Variables declared inside of SUB R-RBUS but outside of BASE-
ESAB and DlSP-PSlD. Local variables are directly P-relative
addressed.

Base: Variables declared inside of BASE-ESAB. Base variables are
B-relative addressed. (It is also possible to make them X-relative
addressed.)

DiSp: Variables declared inside of DlSP-PSID. Disp variables are B-relative
addressed. (It is also possible to make them X-relative addressed.)

in addition to the addressing attributes all identifiers have scope attributes
informing about where they are defined, i.e., where they may be referred
to. In respect to the scope attribute, all identifiers are either global or local,
thus, even base and disp variables, as well as symbolic constants and labels,
may be defined to be known globally or locally.

BASE VARIABLES

If the variables are static allocated, BASE may be used, followed by a
base-field identifier (a label).

The declaration of base variables has the following general form;

BASE <base-field identifier> <data declarations> ESAB

mm;

MAC equivalents:

BASE BA BA=*+200
INTEGER BVAR1,BVAR2 BVAR1,0

Bv_AR2,0
lNTEGER POINTER PSUB:=SUB PSUB, SUB

ESAB

Base variables are normally B-relatively addressed.

N D-60.047.03

3.1.2.2

3—6

Before accessing Base variables, the user must load the B-register with the
value of the corresponding base field identifier. This may be done as fol-
lows: -

A:=“BA" =:B

The instruction to get a BASE variable may be:

A:=BVAR1 LDA BVARI -- BA,B

DISP VARIABLES

If the variables are dynamic allocated, for instance, as variables in an ele-
ment of a data structure, DISP should be used. DISP variables may not
be initialized.

The declaration of disp variables has the following general form:

<di5placement> _DISP <disp-field identifier>[=<displacement>]} <lata declarations>PS|D

The most usual way of declaring DISP variables is as follows:

Examgle:

MAC equivalents:

DISP —- 200
INTEGER DI, DZ DI=—200;D2=—I77
INTEGER ARRAY DARR (10) DARR=—176
INTEGER ENDA ENDA=—166

PSID

The following example illustrates how the disp field identifier works.

Examgle:

DISP DV = 10
INTEGER NILS, PER

PSID

This statement sequence will define NILS=10 and PER=11. The PSID
statement will change the value of DV (by compile time) from 10 to 12,
thus, if one now says

DISP DV
INTEGER EVA, BERIT

PSID

N D-60.047.0S

the definitions EVA = 12 and BERIT = 13 will be made. The last PSlD
statement will change the value of DV from 12 to 14.

‘

In this way, it is possible to “continue” a DlSP field later on in the pro-
gram. This may be useful if one wants to put the local variables of dif—
ferent routines into one global DlSP field.

DlSP variables are normally accessed through the B-register. lt is the user’s
responsibility to set the B-register to the proper value.

Note that DlSP variables in contradiction to GLOBAL, LOCAL and BASE
variables do not reserve any locations in the memory at compile time. They
are only used as symbols in the displacement part of an address.

mug:

MAC equivalents:

INTEGER A,B
}

s A,O
INTEGER ARRAY C(10) % 3,0
BASE BA 0 =

INTEGER D a * +10/
INTEGER POINTER E } 2 BA = * +200

ESAB 0,0
SUBR RUT E,0
REAL F T, F,O;O;0;
REAL ARRAY GI5I } g G = ...
DlSP —2oo * +17/

DOUBLE H
}

5} H = —200
INTEGER I a I = —176

PSlD
RUT: :

RBUS

N D-60.047.03

3—8

Examples of the addressing of the global, local, base and‘ disp variables:

Global: - MAC equivalents:

INTEGER M1,M2,RES M1,0
SUBR MUL ‘ M2,0

MUL: M1 * M2 =: RES RES,0
EXIT MUL, LDA l (M1
RBUS MPY l (M2

STA l (RES
EXIT

)FILL

Local:

SUBR MUL
INTEGER M1,M2,RES M1,0 ; M2,0 ; RES,O

MUL: M1 a: M2 =: ,RES MUL, LDA M1
EXIT MPY M2
RBUS STA RES

EXIT
)FILL
)KILL M1 M2 RES

Base:

SUBR MUL BA = a: +200
BASE BA M1,0

INTEGER M1,M2,RES M2,B
ESAB RES,0

MUL: "BA" =2 B MUL, LDA (BA
M1 * M2 =: RES COPY SA DB I
EXIT ‘ LDA M1 — BA,B I
RBUS . MPY M2 —- BA,B

STA RES - BA,B ‘
EXIT

)FILL
IKILL M1 M2 RES

DISp:
The calling subroutines define the B-register:

SUBR MUL M1=0
DISP 0 M2=1

INTEGER M1,M2,RES RES=2
PSID MUL, LDA M1,B

MUL: M1 * M2 =: RES MPY M2,B
EXIT STA RES,B
RBUS EXIT

)FILL
)KILL M1 M2 RES

For a closer study of the addressing modes, consider Table 3.1.

N 060047.03

3—9

.F.m

$25.

v:_

<3

2

<3

m
.v.

<3

m

.<mlv_

<3

:v...uu<

.58.:

x
.v._

“.3

x
d

.v..

”.3

x
.m

~<m1v__

”.3

caving

v.

55.2

><mm<

35E

v:_

<3

v.

<3

m
J.

<3

m

.<mlv_

<3

:v_:uu<

.58.:

v._

m3

m
a.
_

<3

m

<m_

”.3

c3755

v.

5:59.

3<mm

v:

<3

v:

<3

v:

<3

v:

<3

:v_:nu<

v:
x
._

“.3

v:
x
._

”3

x
.m

u.

”.3

x
.m

~<m..v_

“.3

33755

83.

><mm<

3<mE

v:

<3

v:

<3

2363

A...,V:\...:..,.m._s<39:-

:xmw<

-

I-

v:_

m3

v.

”.3

m
.v.

“.3

m

<mlv_

L3

v75:

v.

.2?

v:_

<3

v.

<3

m
.v.

<3

m

.<mlv_

<3

:vrmn<

38.:

x
.v._

03

x5
.v._

o3

x
.m

.<mav__

o3

.x.v_uuo<

v.

EH25“.

><mm<

338

v:_

<3

v.

<3

m
.v.

<3

m

.<m|v_

<3

:v...nu<

in»...

v._

3:

m
.v._

<3

m

.<m1v__

o3

v_uun_<

v.

55.2

338

v:

<3

v:

<3

v:

<3

v:

<3

:v_:un<

v:
x
._

o3

v:
x

~_

3:

x
.m
.v.

03

x
.m

‘<m|v_

o3

Ax§n5<

55.

><mm<

338

v:

<3

v:

<3

v:

<3

v:

<3

:v_:uh<

v:_

03

v.

3:

u
.v.

o3

m_<mlv_

o3

znno<

v.

3960
.

coo:

<3

:ooor.un<

#SA
v_>

mmT
v
é

coo:

<3.

89m<

FzEmzoo

503.2%,

v

<<m

..?nu<

:flwxwmm:

v

<<m

vuu<

Hz<$zoo

585.

v:_

<3

v.

<3

m
.v.

<3

m

.<mlv_

<3

:v_:nn<

.

.

E2:

x
.v__

<3

x
.m
.v._

<3

x
.m

~<mnv__

<3

Axiun<

v.

556m

><mm<

5033

v:_

<3

v.

<3

m
.2

<3

.m

.<mTv_

<3

:v_:uu<

a8...

v._

<3

m
.v..

<3

m

.<mlv__

<3

v_uu<

v.

$5.9.

ESE.

v:

<3

v:

<3

v:

<3

v:

<3

:v_:uu<

.

v:
x
‘_

<3

v:
x

__

<3

x
d

.v.

<3

x
.m

.<m|v_

<3

.x.v_uu<

a:
v.

><mm<

5032.

v?

<3

v:

<3

v:

<3

5

<3

:v_:un<

v:_

<3

v.

<3

m
2

<3

m

.<mnv_

<3

v_u”<

v.

59:2.

.288

<03

“55

mm<m

"mun—OS—

02—wwmmoo<

N D-60.047.03

3—10

v:

(ofi

v:

<01—

:v...nn<

v:
_

ms...

v.

.22..

v.

00

A

uv:

Amman—

.
E

n:

ma...

:vfmznuoxfi.

3.2.

”5..

3.muun_<H

hz<kmzoo

4<mm

._<mO._0

4<UO._

mma

mw<m

.umzczcoQ

.—.m

2%...

N D-60.047.03

3.1.3

3—11

Symbolic Constants

ldentifiers may be defined to be symbolic constants, using the SYMBOL
declaration statement, which has the general format: '

<identifier>
}£{]SYMBO '- <identifier>=<expression> ' .

where <expression> may be a number within the interval [—2008, + 1778],
a character constant, a symbolic constant already defined, or another data
expression following the rules described in Section 2.3.

An <identifier> listed in a SYMBOL declaration statement will adopt the
value evaluated in the corresponding <expression>. An <expression> is
evaluated at compile time.

If an <expression> is not given for the first <identifier> in the list, the
value zero is assigned to it. Other <identifier>s without a corresponding
<expression> will represent a value 1 greater than the preceding value.

mm:

MAC equivalents: .

SYMBOL L200=200, L200=200
L210= L200+10 L210= L200+10

A SYMBOL declaration does not allocate any memory space. it is not
possible to change the value of a symbolic constant during run.time.

Examplg

MAC equivalents:

SYMBOL SO, 81, 32, S3

mmmm (OM—‘0

ll

(JON—IO

l SYMBOL CHA = # # A, CHB, CHC CHA = # # A
CHB = CHA +1
CHC = CHB +1

ND-60.047.03

3.1.4

3.1.5

3—12

Label Declarations

A label is an identifier (see Section 2.1.1) used as a name of a location
in the memory containing an executable statement. A label declaration
has the general form:

<label>: [<executable statement>l

Label declarations may only occur inside of subroutines.

There are two types of labels; entry points and local labels.

Entry points are global and may be referenced from outside of the sub-
routine where they are declared. Entry points have to appear in a SUBR
statement and may only be declared once in the same program.

Local labels will be killed at the end of the subroutine in which they are
declared and may, thus, only be referred to from inside that subroutine.
An identifier may be declared as a local label in more than one subroutine
without confusion, but only once within one actual subroutine.

Labels may be referenced in GO, GOSW and CALL statements.

Subroutine Declarations

A subroutine statement starts with the symbol SUBR, followed by a list
of entry points. The entry points will be global labels. Other labels and
variables declared after the subroutine heading will be killed at the end
of the subroutine. The end is marked by the symbol RBUS.

The RBUS statement provides the two MAC assembler commands)FlLL
and)KILL.

Example:

SUBR ENT1, ENT2

ENl

ENT2:

EXlT
RBUS

N D—60.047.03

3.1.6

3—13

It is the programmer’s responsibility to provide a return jump from the
subroutine (using EXIT, EXITA or GO).

Example: (Saving of ~the link register in subroutines).

SUBR RUT
INTEGER POINTER RETUR

RUT: A:=L=:"RETUR" COPY SL DA
: STA RETUR

GO RETUR JMP I RETUR
RBUS

There is only one level of subroutine declarations, i.e., a subroutine cannot
_be declared inside of another subroutine.

It is, however, possible to call subroutines from another subroutine and
in this manner to construct a nesting of subroutine calls up to -any level
wanted. (See also Section 3.2.5.2.)

Program Structure

Since the NORD-I/IO computers have direct addressing areas of 256 words,
the programs will usually be divided into small subroutines. Therefore,
NORD PL has a subroutine feature, where labels and variables defined out-
side the subroutine are global.

There is only one level of subroutine declarations; it is not possible to
declare a subroutine within another subroutine.

Example:

Global data . Subroutine I Subroutine 2

I I l I I l

l I ' I ' I
T I T T

Local Sub- Local Sub-
data routine data routine

code code

N D-60.047.03

3.2

3.2.1

3-14

EXECUTABLE STA TEMENTS

Executable statements are divided into arithmetical statements and control
statements.

An executable statement can only appear within a subroutine. This means
that any NORD PL program should contain at least one subroutine. The
entry point of this “main" subroutine is then considered the starting point
of the program.

In general an executable statement specifies a series of operations between
the primary operand, which is a register, and different secondary operands,
which can be registers, variables or constants. If the expression starts with
a register, this register will be the primary operand throughout the expres-
snon. '

Example:

NORD PL MAC equivalents:

A+V1+55=:V2 ADD V1
AAA 55
STA V2

X+5=:L—10 AAX 5
COPY SX DL
AAAX —10

In the first example above the A register is the primary operand, the
identifiers V1, V2 and the numerical constant 55 are secondary operands.
In the second example the X register is the primary operand, the L register
and the numerical constants 5 and 10 are secondary operands.

The operations are executed strictly from left to right, with no implicit
priority.

Operators

Arithmetical:

:= Load
Store
Swap
Subtract
Add
Multiply
Divide (reals only)*+‘

N D-60.047.03

Shift:

SHZ
SH
SHR
SHL

Logical:

/\
\/
XOR

I

BONE
BZERO

Special Unary:

3—15

Shift with zero end input
arithmetical shift
rotational shift
shift with link end input (bits shifted into the register
are taken from the M bit in the status register, bits
shifted out are fed to M. This corresponds to an extended
17 bits rotational shift.)

And
Or
Exclusive or
One’s complement
Two's complement
Set bit to one
Set bit to zero

MIN Memory increment (MIN instruction)
GOSW Switch

Example:

NORD PL MAC equivalents:

A+4 GOSW L1, L2 AAA 4
RADD SA DP
JMP L1
JMP L2

TSHZ—2 SHT ZIN SHR 2

A NORD PL statement (or expression) may not start with any operator
except for the MIN and GOSW operators.

An expression may also start with a constant, a symbolic constant or a
variable. Then the A, AD or TAD register will be the primary operand,
if the variable is an integer, double or triple. The first operation is then
assumed to be a load.

ND—60.047.03
Revision A

3.2.1.1

3—16

Example:

If IX, IY and lZ are integers, then the expression: IX + W = :lZ is equivalent
to A:=lX + W = :IZ.

NORD PL MAC equivalents:

|X+ w= :IZ
‘

LDA IX
ADD lY
STA IZ

IX SHR 2 LDA IX
SHA nor 2

The NORD Programming Language is to be considered as a convenient
simplification of the MAC assembler language. Therefore, generally the
same rules which in MAC apply to the use of registers and to all the
operations mentioned in this section, also constitute severe restrictions
in NORD PL.

Two operators may normally not appear next to another without an oper-
and inbetvveen them. For exceptions, see Sections 3.2.1.1 and 3.2.1.3.

ARITHMETlCAL OPERATIONS

The arithmetical operations have the general form:

[<primary operand>] <operator> <secondary operand>

The <primary operand> may be omitted when it is given by a previous
operation in the same statement.

The := (load) operator may have as its <primary operand> any register
mentioned in Section 2.1.1.2 except for the zero register. When the
<primary operand> is a 1 bit register only the constants 1, ”“0, ”1",
or a symbolic constant which is set equal to 1, or the same symbolic con-
stant in quotes are allowed as <secondary operand>.

When the <primary operand> is the A, B, T or X register, the <secondary
operand> may be a constant or a symbolic constant (see Section 3.1.3)
or a quoted expression. The B register only accepts values within the range
of —200, +177.

The =:(store) operator may have as its <primary operand> any register
mentioned in Section 2.1.1.2, except for the 1 bit registers.

N D-60.047.03

3—17

The loading/storing of a 16 bit register into/from any other 16 bit register
is legal and will be compiled into a COPY instruction.

An integer variable may only be loaded/stored from/into a memory loca-
tion declared as integer into/from the A register.

A double variable may only be loaded/stored from/into a memory loca-
tion declared as double (or real if 32 bits floating point is used) into/from
the AD register.

A triple variable may only be loaded/stored from/into a memory location
declared as triple (or read if 48 bits floating point is used) into/from the
TAD register.

The :=: (swap) operator may only have 16 bit registers as <primary
operand> and <secondary operand>.

The + (add) and - (subtract) operations may only be used on integer and
triple (real) variables if 48 bits floating point format is used, and only on
integer and double (real) variables if 32 bits floating point format is used.
When the D, L or P register is the <primary operand>, the <secondary
operand> should be a register. When the B, T or X register is the
<primary operand>, the <secondary operand> should be a register, a
constant or a symbolic constant or a quoted expression with a value
with the interval —200, +177.

'

it is necessary to distinguish between the different interpretations of the
character —. Primarily, this character is interpreted as the subtrack oper-
ator, which is normally compiled into a SUB instruction. (may also
become an AAA, AAT, AAX or a RSUB instruction.) But the character
— also denotes the negative sign of a numerical or symbolic constant.
This case represents an exception in which the character — is allowed
to appear directly after a := operator (e.g. A:=—5).

The third interpretation of the character — is explained in Section 3.2.1.3.

The character + may only be used as the sign of a constant, of a symbolic
constant or of a variable when it appears inside of quotes (e.g. T SH “+2“,
see Section 3.2.2). Otherwise, it is always interpreted as the add operator
which is normally compiled into the ADD instruction. (May also become
an AAA, AAT, AAX or RADD instruction.)

A * (multiply) operation may only be performed on constants, symbolic
constants, integer and real variables. The multiply operation does not
apply to registers: it is compiled into the MPY or FMU instructions. The
RMPY instruction is only available as a MAC statement starting with an
asterisk.

N D-60.047.03
Revision A

3.2.1.2

3.2.1.3

3—1 8

A / (divide) operation only applies to real variables. It is compiled into
the FDV instruction. The RDlV instruction is only available as a MAC
statement starting with an asterisk.

SHIFT OPE RATIONS

The shift operations have the general form:

[<primary operand>] <operator> <number of shifts>

<primary operand> is restricted to the A, D, T and AD registers and may
be omitted when the register to be shifted is given by some previous oper-
ation in the same statement (see examples in Section 3.2.1).

<number of shifts> may be a constant, a symbolic constant or a quoted
expression. A positive value will give left shifts, a negative value will give
shifts to the right.

LOGICAL OPERATIONS

The logical operations / \ (and),\/ (or) and XOR (exclusive or) have the
general form:

[<primary operand>] <operator> <secondary operand>

The <primary operand> may be any 16 bit register and may be omitted
if it is given by some previous operation in the same statement. <secon-
dary operand> may be any 16 bit register. These operations are then
compiled into the RAND, RORA and REXO instructions.

If the A register is the <primary operand>, the /\ and \/ operators may
also have a constant, a symbolic constant, a quoted expression or an
integer variable as the <secondary operand>. They are then compiled
into the AND and ORA instruction.

The -, (one's complement) and the -— (two’s complement) operators have
the general form:

[<primary operand>] <operand>

The operators are unary, i.e., they only have one operand that always is a
register. This <primary operand> may be omitted when it is given by
some previous operation in the same statement. These operators may
proceed or succeed other operators.

N D-60.047.03
Revision A

3.2.1.4

3—19

Example:

NORD PL .. MAC equivalents:

A— COPY DA SA CM1
A—+T COPY DA SA CM2

RADD ST DA

A—12——,:=——5 AAA —12
COPY DA SA CM2
COPY DA SA CM1
SAA 177773

The BONE (set bit) and BZERO (clear bit) operations have the general
form:

[<primary operand>] <operator> <bit' number>

The <primary operand) may be any 16 bit register and may be omitted
when it is given by some previous operation in the same statement. <bit
number> may be a constant, a symbolic constant or a quoted expression.

THE MIN AND GOSW OPERATORS

The MIN operator has the general form:

MIN <integer'variable>

and is compiled into the MIN instruction. The <integer variable> may be
any variable declared as integer. The MIN operator increases the value of
the <integer variable> by 1. If the result is zero, the next instruction is
skipped, otherwise, it is executed. -

The GOSW operator has the general form:

[<primary operand>] GOSW <Iist of labels>

The <primary operand) maybe any 16 bit register and may be omitted.

If a <primary operand> is not given by a previous operation in the same
statement, the A register is considered as default register. <Iist of labels>
is the names of any number of labels separated by commas.

The operation is compiled into a RADD instruction with the primary
operand as source register and the P register as destination register, fol-
lowed by a number of JMP instructions corresponding to the labels given
in the list.

ND-60.047.03
Revision A

3.2.2

3—20

Example:

NORD PL

MlN lVAR

GOSW L1, L2, L3

X GOSW L1, L2

GOSW FAR L1, FAR L2

Double Quotation Marks

MAC equivalents:

MIN IVAR

RADD SA DP
JMP L1
JMP L2
JMP L3

RADD SX DP
JMP L1
JMP L2

RADD SA DP
JMP | (L1
JMP l (L2

if a variable is included in quotes ("), it is said to be referenced . Then,
it is accessed one level less indirect than otherwise. This means that a
referenced pointer will be accessed as a variable, and a referenced variable

whether it is referenced or not.
- or label will give the address value. A constant will have the same meaning

Inside the quotes even whole data expressions can be placed (see Section
2.3). Then all variables will be represented with their address values (even
the pointers). Quoted expressions are evaluated at compile time.

Example:

NORD PL

INTEGER TRE:=3
lNTEGER POINTER PP:=TRE
A:="3"
A:=3
A:="TRE"
A:=TRE
A:="PP"
A:=PP

N D-60.047.03

MAC equivalents:

SAA 3
SAA 3
LDA (TRE
LDA TRE
LDA PP
LDA l PP

3.2.3

3—21

mm

Let PNT1 be an integer pointer and V1 an integer variable.

NORD PL MAC equivalents:

PNT1 LDA I PNT1
"PNT1" LDA PNT1
"PNT1+0" LDA lPNT1+0
V1 LDA V1
“V1" LDA (V1
"PNT1-VHS“ . LDA (PNT1—V1+5

_The number 0 will be referred to as the zero register. If a constant with
value zero is wanted, it should be surrounded by quotes (").

Example:

NORD PL MAC equivalents:

0=:T COPY DT
0=:VAR STZ VAR
“O"=:VAR SAA 0; STA VAR
A BONE “0" BSET ONE 0 DA
A SH'Z 2 + 5 . SHA ZlN 2

AAA 5
A SHZ "2 + 5" SHA ZlN 7

Reference of Elements of any Array

Elements of an array are referred to by the name of therarray, followed by
a left parenthesis followed by an expression followed by a right paranthesis:

AR RAYNAM E <(expression)>

The <expression> may consist of the name of a 16 bit register, an integer
variable, an integer pointer, a symbolic constant, a numerical constant
or a quoted expression. No operators (+, —, * or /) are allowed inside the
parenthesis except when the expression is surrounded by double quotation
marks. A constant should, therefore, be positive or zero without sign, but
the value referred to by an integer variable, an integer pointer or a symbol
might as well be negative.

N D-6 0.047.03

3—22

Example:

Let ARR be an array, IVAR an integer, IPOINT an integer pointer and
SYMB a symbolic constant. The following statements are now legal:

ARR (A)
ARR (X)
ARR (IVAR)
ARR (IPOINT)
ARR (SYMB)
ARR (5)
ARR ("2+2—SYMB")
ARR (“lVAR”)

The X-register is always used to keep the value of the index, i.e. the ex-
pression inside the parenthesis is evaluated and loaded to the X-register.

There is no control whether the value of the index given is ranging out-
side of the declared number of elements in the array.

If the array is declared as TRIPLE ARRAY or DOUBLE ARRAY 3 or 2
words respectively are loaded starting with the 16 bit word referred to
by the index. The programmer is himself responsible for making the
index point to a proper location:

Example:

If me first element of the array declared as TRIPLE ARRA Y ARR (7000)
is wanted, a correct reference is ARR {0). The second element could be
referred to by ARR (3), the third by ARR (6) and the fourth by ARR' (17).

Elements of an array may also be accessed through an array pointer. Con-
sider the following example:

TRIPLE ARRAY RA1 (5)
TRIPLE ARRAY POINTER RAP1:=RA1, RAP2
"RA1 + 3" =: “RAP2"
TAD1=RAP1 (0) + RA 1 (3) =: RAP2 (11)

The two first elements of the triple array RA1 will be added together and
stored into the last (fifth) element. The last statement in the above exam-
ple is equivalent to RA1 (0) + RA1 (3) =2RA1 (14)

Note that when referring to an array through an array pointer, the ap-
propriate index of the array pointed at must be included in parenthesis
and succeed the array pointer identifier. The syntax in this case is just
the same as when using the array identifier itself.

N D-60.047.03
Revusion A

3.2.4

3—23

X- Relative A ddressing

Variables declared in a DISP- or BASE-field (and only those) can be forced
to be X-relatively addressed instead of B-relatively addressed. Then, the variable
must be preceded by an X value denotation and a period (.l.

Example:
-

NORD PL MAC equivalents:

INTEGER START START, 0
DlSP 5 ' DD = 5
INTEGER DD, ELl, VAL EL1= 6
PSID ' VAL = 7
X.DD LDA DD,X

START.DD LDX START
LDA DD,X

START.EL1.VAL LDX START
, LDX EL1,X

LDA VAL,X

This access method is useful for addressing data structures. Starting at
the first period, the value represented by the identifier preceding the
period is loaded to the X register. Values represented by identifiers be-
tween two periods are successively loaded into the X-register, using X-
relative addressing. The value represented by the last identifier is then loaded
into the primary register using X-relative addressing. There is no limit for
the number of periods in one such expression.

Integer pointers may only occur before the first period. Other pointers
are not allowed unless they are "quoted". Indexed variables, i.e., arrays
or array pointers succeeded by an index included in paranthesis may not

_ appear in an expression using X-relative addressing.

Double and real variables may only appear after the last period.

Register names may only occur before the first period. Quoted expres-
sions are legal.

Examples:

Consider the following list of data elements each containing the five in-
tegers NEXT, PRIOR, D1, 02 and 03.

N D-60.047.03

3—24

.— ._... 5/ 0 NEXT
”"0“" I—"o'"" :3"""""TL:""" PRIOR"""""""""""""""""""" D1

DZ
03

NORD pL MAC equivalents:
% SUBROUTINE FINDING THE
% WORD D1 IN THE ELEMENT
% POINTED AT BY THE
% A-REGISTER
% DI IS RETURNED IN THE
% T-REGISTER
DISP 0

INTEGER NEXT,PRIOR;DI,DZ,D3
NEXT=O ; PRIOR =1 ;

PSID D1=2 ; D2=3 ; D3=4 ;
SUBR RUT1

RUT1: T:=A.D1 RUT1, COPY SA DX
EXIT LDT D1,X
RBUS EXIT

% SUBROUTINE FINDING D3 IN THE NEXT ELEMENT
'SUBR RUT2

RUT2: T:=A.NEXT.D3 RUT2, COPY SA DX
EXIT LDX NEXT ,X
RBUS LDT 03, x

EXIT

%SUBROUTINE FINDING 03 IN TWO
% ELEMENTS IN FRONT OF THE ELEMENT
% POINTED AT BY THE A-REGISTER:
SUBR RUT3

RUT3: T:=A.PRIOR.PRIOR.DS RUT3, COPY SA DX“ EXIT LDX PRIOR,X
RBUS LDX PRIOR,X

LDT D3,X
EXIT

°/o SUBROUTINE FINDING DZ IN THE
% LAST ELEMENT OF THE LIST. THE

‘ % A-REGISTER IS INITIALLY POINTING
% TO A CASUAL ELEMENT.
SUBR RUT4 .

RUT4: IF A.NEXT > <0 GO RUT4
T:=X.D2
EXIT
RBUS

N D-60.047.03

3.2.5

3.2.5.1

3.2.5.2

3—25

Con trol Statements

The control statements include unconditional and conditional branching,
unconditional and conditional loop control and subroutine calls.

UNCON DlTlONAL BRANCH STATEMENTS

The G0 statement. is used for unconditional branching. It consists of the
symbol GO followed by a label or a pointer.

Examples:

MAC equivalents:

INTEGER POINTER RET:=RETX RET, RETX
LL: GO RET LL, JMP l RET

GO LL JMP LL
'

GO ENTX % EXTERNAL JMP l (ENTX
% ENTRY POINT

lf a subroutine is long, it can be useful to force a jump to be indirect, as
not to exceed the displacement range. This can be done by placing the
symbol FAR after GO.

Example:

MAC equivalents:

GO FAR LL
‘

JMP l (LL

See also the GOSW operator in Sections 3.2.1 and 3.2.1.4.

SUBROUTlNE CALLS

The simplest form of a subroutine call is the symbol CALL followed by
a subroutine entry point, a pointer or a local label. lf it is not yet defined,
it is assumed to be an entry point of a succeeding subroutine. The para-
meters can be transferred by the registers.

The simple CALL statement can also be followed by a parameter list,
being equivalent to the data list of the DATA statement. The compiler
lays out the parameter addresses after the subroutine jump.

ND-60.047.03

Eganmga

INTEGER POINTER PNTR:=SUBO
CALL SUBI
CALL PNTR
CALL SUBZ (V1, SX2, WM)

3—26

MAC equivalents:

PNTR, SUBO
JPL | (SUBI
JPL I PNTR
JPL I (SUBZ
VI
SX2
WM

Parameters may also be transmitted, for instance, through a global base
pointer:

NO RD PL

BASE BA
INTEGER POINTER GP
ESAB

SUBR MAIN
INTEGER PAR1,PAR2
MAIN: “BA" = :B

[IPAR1H=:IIGPII

CALL RUT

IIPAR211=:IIGPH

CALL RUT

RBUS
RUTSUBR RUT

GP+3*4=£P
exrr
RBUS

N D-60.047.03

MAIN,

IFILL
IKILL

RUT,

MAC equivaIents:

BA = * +200
GP,0

PAR1,0; PAR2,0
LDA (BA
COPY SA DB

LDA (PARI
STA GP—BA,B
JPL I (RUT

LDA (PAR2
STA GP-BA,B
JPL | (RUT

PARI, PAR2

LDA l GP—BA,B
AAA 3
MPY (4
STA I GP—BA,B
EXIT

3.2.5.3

3.2.5.4

3—27

SUBROUTINE EXITS

Return from subroutines can be performed by EXIT (which is compiled
to EXIT) or EXITA (which is compiled to EXIT AD1). If these means
for subroutine return are used, the programmer should insure that the L
register contents have not be destroyed, for instance, by a subroutine call
within the subroutine. When parameters are given in the CALL statement
he should also insure that the L register is correspondingly increased
before an EXIT statement is given.

I

CONDITIONAL BRANCH STATEMENTS

The IF statement has the general form:

IF <conditions> THEN <statements> [ELSE <statements>] Fl

The ELSE part may be omitted.

Between IF and THEN there may be several conditions delimited by the
OR and AND symbols. The conditions are evaluated from left to right.
If a condition followed by AND or THEN is not true, the statements
after THEN are bypassed. If a condition followed by OR or THEN is
true, the statements after THEN are executed. Otherwise, more con-
ditions will be tested.

There are two types of conditions: relations and bit tests.

A relation consists of two executable expressions with a relational opera-
tor between them:

> G reater
< Less
= Equal

= Greater or Equal
= Less or Equal

> < Not Equal
>> Absolute greater
<< Absolute less Not on
>>= Absolute greater or equal NORD-I
<<= Absolute less or equal

Example:

lF A<VAR OR VAR2>=VAR3 AND X> <A, THEN GO RET ELSE
A=:B Fl

ND-60.047.03
Revision A

3-28

If the first element of the first expression in a relation is a painter, a
variable or a constant, the A, AD or TAD register is considered as the
primary register:

If the first element of the second expression in a relation is an integer
pointer, an integer variable or a constant, the T register is considered
as the primary register. This means that the relation:

IF VAFi1=VAR2 THEN is equivalent to

lF A:=VAR1=T:=VAR2 THEN

both VAR1 and VAR2 should be integers or integer pointers.

In a relation, the two expressions are, normally, evaluated and loaded into
the A and T register before the actual comparison is made according to
the given relation. The exception is when the second expression is equal
to zero, i.e., in this case, the T register is not used (example below).

An expression may be empty. If it is, the present value of the A or T
register will be used.

lF > THEN is equivalent to
IF A> THEN...

This means that a construction like this is possible.

IF VAR1=4 OR=6 OR=7 THEN... which is equivalent to
IF A:=VAR1=4 OR A=5 OR A=7 THEN...

If the first expression is of type real, the second must be equal to zero
because, in this case, the TAD register is used for the first expression.

it is also possible to compareabsolute values,_ by a subtraction and carry
test. Then, the two relational operators may be. used:

<< Absolute less
>>= Absolute greater or equal

In these two cases, one of the expressions should be equal to zero if a
carry test is wanted. On NORD-1, this is the only way to compare absol-
ute values.

Examples:

NORD PL MAQ equivalents:

IF VAR—D<VAR2 THEN... LDA VAR
RSUB SD DA
LDT VAR2
SKP IF DA LST ST
JMP BYPAS

ND-60.047.03
Revision A

3-29

NORD PL MAC equivalents:

lFA+10=0THEN_... '
AAA 10

- JAF BYPAS

IF A - LLIM > > = 0 THEN _ SUB LLlM
'* BSKP ONE SSC

JMP BYPAS .~
(NORDJ version)

The purpose of the last example is to examine whether the absolute value
of A is greater than or equal to the absolute value of LLlM or not!

A condition may be a bit test.

If the bit to be tested is one of the single bit registers, then the test is
performed to check whether this bit is equal to 1. The condition may be
inverted by placing the symbol NBIT after the register specification.

Examples:

NORD PL MAC equivalents:

IF K THEN.... BSKP ONE SSK
JMP BYPAS

IF M NBIT THEN.... BSKP ZRO SSM
JMP BYPAS

A bit in the general registers can also be specified. An expression deter-
mines the register. Then one of the symbols BlT or NBIT selects 1 or O
as true. At last a constant determines the hit number.

Example:

MAC equivalents:

IF T BIT 7 THEN.... BSKP ONE 70 DT
JMP BYPAS

IF NBIT 1 THEN BSKP ZRO1O DA
JMP BYPAS

The construction THEN GO <label> Fl may be abbreviated to GO <label>.

For instance,

lF A<0 GO ERR

is equivalent to lF A<O THEN GO ERR Fl

MAC equivalent: JAN ERR.

ND-60.047.03

3.2.5.5

3-30

UNCONDITIONAL LOOP CONTROL

The FOR statement is used for iterative purposes. Between FOR and DO
are the iteration specifications. Between DO and OD are the statements

- to be executed.

The general version has the form:

FOR <contro| expression) [[STEP<step count)] TO <limit expression)]
DO <statements> OD

lf'the <control expression) explicitly specifies a primary register, this
register will be used as control register for the loop counting. l.e., the
programmer must himself save the contents of that register at the begin-
ning of the loop if he wants to use it for other purposes, and then load it
again at the end of the loop.

If the <control expression) starts with a constant, the A register will be
taken as primary register for the expression and used as control register
for the loop counting.

If the <control expression) starts with an integer variable, the A register
will be taken as primary register for the execution of this expression, but
the integer variable will be used as control variable for the loop counting.
l.e., the A register may be used 'for other purposes within the loop. Note,
however, that the A register is loaded again with the contents of the in-
teger variable and increased by the step count at the end of the loop so
that the “user contents" are lost from one loop execution to another.

The <step count) is a constant defining the step size. STEP <step count)
may be omitted, then assuming 1 as a default step.

If the <limit expression) does not specify a primary register, the T register
will be the primary register. In any case, if a <limit expression) is specified
it will always be evaluated again and compared to the control value BEFORE
each execution. If the limit is exceeded, there will be no more executions.

Example:

FOR X2=VAR STEP 3 TO 50 DO A + ARRlX) OD

MAC equivalent:

LDX VAR %SET INITIAL VALUE
NEXT, SAT 50

SKP IF DT GRE SX %TEST LIMIT
JMP BYPAS
ADD I IARR,X ‘
AAX 3 %STEP CONTROL VAR
JMP NEXT

N D-60.047.03

3-31

54m:

MAC equivalents:

FOR J TO T DO CALL lNCR OD LDA J
NEXT, SKP IF DT GRE SA

JMP BYPAS
JPL l (lNCR
LDA J
AAA 1
STA J
JMP NEXT

BYPAS,

The statement part

STEP <step count> TO <limit ex~pression>

may only be omitted in two special cases. In both cases the loop test
is exceptionally placed at the en of he lo :

1. A single variable between FOR and DO:

Example:

MAC equivalents:

FOR VAR DO.......... OD NEXT,

MIN VAR
JMP NEXT

This means that if the control variable contains a negative number
before entering FOR, this will be the number of executions. The
loop will in this case be executed at least once.

An X-expression between FOR and DO:

Example:

MAC equivalents:

FOR X:=—5 DO........ OD SAX —5'%5 EXECUTIONS‘ NEXT,

JNC NEXT

The loop will, in this case, be executed at least once.

ND-60.047.03

3.2.5.6

3—32

The loop can also start with just a single DO. Then there.will be
an unconditional jump back.

-

Example:

MAC equivalents:

DO............... OD NEXT,

JMPNEXT

In this case, there is no loop test at all and the loop must be left
by means of an IF statement or a GOSW statement somewhere within
the loop.

Example:

Two similar methods for writing loops:

FOR A STEP 2 TO T DO......... OD

is equivalent to

FORLO: |FA<=TTHEN

A+ 2
GO FORLO
Fl;

CONDITIONAL LOOP CONTROL

The WHILE statement has the general form:

<statements> WHILE <conditions>
DO <statements> WHILE <conditions> <statements> OD

WHILE <conditions> <statements>

<conditions> may be relations or bit tests and must have the same syn-
tax as in the IF statement. In a relation, the A and T registers are nor-
mally used to perform the comparison.

At least one of the two <statements> parts should be included. Each time
the WHILE <conditions> are reached they 'are evaluated. If the result is
“false" a jump to the next statement after OD is performed. If the result
is “true", the <statements> between WHILE and OD are executed and
a jump back to the beginning of the DO loop is performed.

ND-60.047.03

3—33

Example:

DO WHILE VAR1>VAR2 AND X> <0

OD

In general, the WHILE statement may be placed anywhere within a DO
loop. The code generated from a WHILE statement will always contain
a conditional jump to the statement following the nearest enclosing DO-OD.

If one, for example, wants to test at the end of the loop, one could say:

DO

WHILE VAR=D OD

More complex expressions like the following are also legal:

FOR VARI STEPZ TO VAR2 DO WHILE X> <0

N D-60.047.03

EXERCISES

1. Let l1 and I2 be integers,‘ D1 3 double and R1 and R2 reals. Find
the primary operand in each of the following expressions:

Ai=l1+|2
l2+5=z|1
X:=l1
A:=X+|2
|1=:T
D1
R1+R2=:R2

2. Let V1 and V2 be (local) integers. Find the MAC equivalents of the
following expressionszi

V2+1 =2 V1
V1 :=V2+1
vatL

3. Let l1 and l2 be integer variables. Which ones of the following state-
ments are legal?

—l1
A-l1
X-5
X—l1
A:=—l1
A:=|1—|2

N D~60.047.03

3-35

T:=l1-—l2
T:=—I2
A:=L*5
A:=5*L
A:=X*B
SHR 2
D SHR 2

Let JJ be declared as a symbol. Which ones of the following state-
ments are legal?

JJ
-JJ
+JJ
X-JJ
T—JJ
L-JJ
B—JJ
P—JJ
D+JJ

Let ll be an integer, D1 a double and R1 3 real variable. Which ones
of the following statements are legal?

A:=|1
A=:Di
A:=Fi1
AD=:I1
AD:=Dl
AD=:Rl
TAD:=l1
TAD=:Dl
TAD:=R1
T=l
T:=R1
X=:Dl
X:=Rl
AD:=Dl+l1
TAD:=R1+Di
ADz=5
TAD:=5
TAD:=3.14
3.14=:R1

N D-60.047.03

lll' L
“V“

3-36

What is the ASCII code of the characters 0, 1, 2, , 9?
Study Appendix C!

Compile the following NPL program on your NORD—IO configuration
and study the MAC output listing. Can you make the program more
simple? -

%N-PL PROGRAM READING ONE INPUT CHARACTER FROM
%THE TERMINAL AND WRITING THE NEXT ASCII CHARACTER ONTO
%THE SAME TERMINAL. THE PROGRAM TERMINATES WHEN 0 IS READ.
SUBR SUB '
INTEGER INTI, |NT2
SUB: T:=1; *MON 1; MON 65 %INPUT ONE CHARACTER

A—60=:INT1 %REDUCE ASCII CODE TO BINARY
IF A=0 THEN GO STOPP FI %LAST CHARACTER?
CALL SUBZIINTII
A:=15; T:=I; *MON 2; MON 65 %OUTPUT CARRIAGE RETURN
A:=12; *MON 2: MON 65 %OUTPUT LINE FEED
INT1+60; *MON 2; MON 65 %BINARY NUMBER TO ASCII.

%OUTPUT ONE BYTE
GO SUB

STOPP: *MON 0 %RETURN TO SINTRAN |I|
RBUS

SUBR SUBZ
INTEGER POINTER HOME
DISP 0; INTEGER DO; PSID
SUBZ: A:=L+1=:"HOME" %SAVE RETURN ADDRESS

A:=L.DO.D0+1=:X.D0 %ADD ONE TO PARAMETER
GO HOME %RETURN JUMP

RBUS

@ EOF

HINT: At least five statements may be changed!

Why is L+1=:"HOME" necessary instead of simply L=:"HOME"?

Write a NPL program which is reading 10 characters from the terminal
into an array, sorting the characters in the opposite order and writing
them out on the terminal again on the next line. The program should con-
sist of two subroutines: one input/output routine and one sorting routine.

N D-60.047.03

so

10.

11.

3—37

Given the integer number N. Consider the problem of calculating

N! = N*(N—1)‘* (N—2) 41
Write three small programs each reading the number N from the
terminal and printing out N! on the next line.

The programs should utilize

i. . the IF statement-
ii. the FOR statement
iii. the WHILE statement.

Write a program which finds and prints out all the prime numbers
smaller than 100 on the terminal.

HINT: Place all the integer numbers in an integer array of length 100.
Then starting with N=2 clear all locations in the array containing
multiples of N by writing 0 into these locations. Set N+1=:N and
repeat the process. Continue until N>\/100 (i.e., N*N>100). Print all
the numbers in the array different from 0 on the terminal.

Array initially:

1234567891011121314151617......

Array after clearing:

12305070001101300017......

Put the letters of your own name (in ASCII code) into an array
initialized by a DATA statement. Write a program which prints the
name on the terminal and then sorts all the letters into alphabetic
order. The program should also count the number of As, 85, C5,.... etc.
in your name and print the result on the terminal.

ND-60.047.03

12.

3—38

Examgle:

HABIBBOURGIBA
AABBBBGHIIORU

The name contains:

Clio—IOU?) d—l—lN—Adhw

Which of the following NO RD PL statement sequences are legal:

A)

B)

C)

D)

E)

INTEGER POINTER KP1
SUBR SU1
INTEGER KI
SU1: ”K1"=: “KP1"

INTEGER K1:=5
INTEGER POINTER KP12=KI
SUBR SU1
SU1: A: = KP1

SUBR SU1
INTEGER POINTER KP1: = K1
INTEGER KI

SUBR SU1
REAL RI
DOUBLE POINTER DP1:= RI

SUBR SU1
REAL R1
REAL POINTER RPI: = "R1"

ND-60.047.03

13.

F)

G)

H)

3—39

SUBR su1
DOUBLE D1 .
INTEGER POINTER KPI
su1: "DI“=:"KP1"

SUBR SUI
INTEGER KI: = (I, 2, 3, 4)

SUBR SUI
INTEGER KI, K2: = K1

Which of the following NORD PL statement sequences are Iegal:

A)

B)

C)

D)

BASE BA
INTEGER ARRAY IA2 (100)
ESAB
SYMBOL SI = BA

BASE BA
INTEGER ARRAY IA3 (100)
ESAB
SYMBOL SI = "BA”

BASE BA
INTEGER POINTER IPB
ESAB
SUBR SU2
INTEGER I2
SU2: “BA“ =:B

"I2” =:"IPB"
X:=IPB

SUBR SUI
BASE BA
INTEGER ARRAY IAB (100)
ESAB
DISP —200
INTEGER ARRAY IAD (100)
PSID
INTEGER ARRAY POINTER IP2=IAB
SUI: “BA" =:B

FOR X:=O TO 77 DO
IAB (X) + IP (X) =:IAD (X)

OD

N 060,047.03

14.

15.

3—40

E) SUBR SU1
DISP
INTEGER K1:=.5
PSID

Which of the following NORD PL statement sequences are legal and reasonable:

AI SUBR SU1
INTEGER ARRAY IA (100)
SU1: FOR T:=0 TO 77 DO O=:|A(T) OD

B) IF K BIT THEN K:="0" Fl

. CI IF K><M THEN K:=M Fl

D) SUBR SU1
INTEGER K1:=“0", K2:=0
INTEGER ARRAY KA (100), KB (100)
SU1: FOR K1 T0 77 DO

FOR K2 T0 K1 DO
KA (K1) + KB (K2) =:KA (KI)

OD
0=:K2

OD

E) SUBR SU1
INTEGER ARRAY KA I100)
INTEGER K1:="0"
SUI: T2=77

FOR K1 T0 T DO
WHILE KA (K1) ><O
A + 1 =:KA (XI

OD

Consider the following list structure:

NEXT NEXT
PRIOR PRIORDI D102 0203 D3

N D~60.047.03

16.

17.

3—41

Write a subroutine COUNT which counts the (original) number of elements
in the list. The subroutine should also remove the first and last elements

'

of the list.
-

Then add the integers D3 of all the elements in the list and place the sum
into the parameter SUM given in the calling statement CALL COUNT (SUM).

Then add the integers D3 and DZ in each element and place the result
into Dl of each element.

The A register is pointing to the first location of the first element in the
list in the calling moment.

Hint: Utilize a BIS? field!

Consider the two vectors VECT1 and VECT2 given in a global BASE field
as follows:

BASE CAL
INTEGER ARRAY VECT1 (0)
DATA (1, 2, 3, 4, 5)
INTEGER ARRAY VECT2 (0)
DATA (0, —1, O, —1, 0)
ESAB

Write a subroutine MULT1 which performs a vectorvvector multiplication
and places the result into the local integer RES.

Consider the matrix MAT and the vector VECT given‘in a global BASE
field as follows:

BASE CALC
lNTEGER ARRAY MAT (0)
DATA (1, 2, 3, 4, 5)
DATA (6, 7, 8, 9, 10)
DATA (11, 12, 13, 14, 15)
DATA (16, 17, 18, 19, 20)
INTEGER ARRAY VECT:= (0, —-1, 0, —1, 0)
ESAB

- Write a subroutine MULT2 which performs a matrix-vector multiplication
and places the result into the local vector RES declared as:

lNTEGER ARRAY RES (4).

Output the result on the terminal.

N D-60.047.03

3—42

18. Consider the following list structure:

NEXT
'

NEXT
D1 D1
D2 D2
D3 D3

Each element in the list contains the four integers NEXT, D1, D2 and D3.

Write a subroutine REMOV which removes all elements whose D1 = 3 from
the list.

The subroutine shall be called by the statement CALL REMOV and the
A register shall contain the starting address of the first element of the list
in the calling moment. If the A register is zero when entering REMOV,
there are no elements in the list.

At return to the calling program, the A register shall point to the first
element of the updated list structure or contain zero if all elements have
been removed.

Hint: Utilize a DlSP field.

19. Consider the following list structure:

FIRST

NEXT
D1
DZ
D3

The integer pointer FlRST is pointing to a‘ list of data elements each con-
taining the four integers NEXT, D1, D2 and D3.

Write a subroutine SORT which sorts the data elements in ascending order
by D1.

The subroutine shall be called by the statement CALL SORT (FIRST).
Fl RST is declared as an integer pointer in the calling routine and points
to the first element of the list. NEXT of the last element points to FIRST.

If FIRST contains zero, there are no elements in the list.

ND-60.047.03

3—43

20. Consider the following list structure:

N EXT N E XT
DATA DATA
K1 K1
K2 K2

INTEGER ARRAY KA (10)

The integer pointer FIRST is pointing to a list of data elements each con-
taining 4 integers NEXT, DATA, K1 and K2. NEXT contains the address
of the next element in the list, except for the last element where NEXT
points to FIRST. DATA is either zero or contains the address of a data
record starting with the integer array KA (10).

Write a subroutine SUM which adds the contents of the locations of each
arrav KA and puts the sum into K1 of the corresponding data element.

The subroutine shall be called by the statement CALL SUM (FIRST) and
FIRST is a local integer pointer in the calling program.

Hint: Utilize two DISP fields or one DISP field and an integer array pointer.
Put special attention to the B and X registers! Remember that indexed
variables may not appear in an expression using X relative addressing.

ND~60.047.03

REAL TIME PROGRAMS

Real time programs (hereafter called RT programs) written in NORD PL
must be compiled and assembled into units in binary relocationg format
in order to be loaded by the real time loader.

This implies that the program units must be surrounded by the MAC oom-
mands)QBEG and)9EN D. The starting point (first instruction to be execu-
ted) of an RT program must be immediately preceded by the MAC com-
mand)9RT.

If a program unit refers to another program unit the MAC commands
)9EXT and)9ENT must be present in the calling unit and in the 'unit
called upon respectively.

if the)9FiT command is used to declare a program unit as an RT program
(main program), the command)9ENT shall not be used for the entry
point .(starting point) defined'in the)9RT command.

After all program units the MAC command)9EOF must appear before
the NORD PL command @EOF. The)9EOF command will cause an
end-of—file mark to be written to the object file by the MAC assembler,
thus, terminating a sequence of BRF program units.

All MAC commands must, of course, be preceded by an asterisk (*).

If the programmer wants to perform monitor calls from NORD PL, he
must choose whether to establish his own library routines and insert
them into his RT programs utilizing the @LlB and @ELIB commands, or
whether he shall simply use the MAC monitor calls preceded by an as-
terisk.

How to establish RT programs in NORD PL is
clearly

demonstrated in the
example in Section 5.1. -

A list of the necessary MAC commands is found in Appendix D.

N D-60.047.03

5.1

REENTRANT SUBROUTINES

SUBROUT/NES CALLABLE FROM MORE RT PROGRAMS

NORD PL subroutines, which shall be parts of a real time program sys-
tern and be simultaneously callable from more than one RT program,
must be written in reentrant form. There are many ways to do this. in
this section, two methods will be mentioned.

1. One method is described in Section 7.3 of the manual "SINTRAN
Ill -— Users Guide (ND-60.050)". The point here is to call the sub-
routine with an array, which is local to the calling program, as para-
meter. This array should then be used as an area for all data in the
reentrant subroutine. In the reentrant subroutine this array should
find its complement in a corresponding array declared in‘ a DlSP-
field.

Consider the following example:

%
SYMBOL PRIOR = 37
*l98EG
*leEXT ADD
SUBR MAIN
lNTEGER ARRAY ARR(10)
*)9RT MAIN PRIOR
MAIN: FOR x:=o TO 7 DO 0=:ARR(X) OD

CALL SU1 (ARR)
*MON 0

RBus
HQENO
%
*)98EG
*)9ENT su1
SUBR SU1
DISP'O
INTEGER ARRAY BRR (10), lD = BRR
PSlD
su1: L.lD =:B

FOR x:=o TO 7 oo BRR (X) +1 =:BRR Ix) OD
EXITA

RBUS
OQEND
The main program MAIN will initialize the array ARR with zeros
and call subroutine SU1. This subroutine will load the address of
ARR to the B register and increase the contents Of the array with
1.

N D~60.047.03

Subroutine SUl uses no local variables, only the parameter ARR
and the registers.

Thus, this subroutine is reentrant and may be called simultaneously-
from another RT program.

A second method is to use a BASE~field (or a normal field of vari-
ables) in the calling program as data area for the reentrant subroutine.
The starting address of the BASE-field is transferred to the reentrant
subroutine through the B register and this subroutine is accessing the
BASE-field by means of corresponding DlSP variables.

Consider the example shown on page 5-3.

N 060047.03

Examplg:

% ..
SYMBOL PRIOA=30,PRIOB=35
4')QBEG
*)9EXT PLUS
SUBR MAINA
BASE BA

INTEGER A1, A2, A3
ESAB
*)9RT MAINA PRIOA
MAINA: "BA"=:B

1=:A1=:T
2=:A2=:D
"A1"=:B
CALL PLUS (1)
*MON 0

RBUS
*QEND
%
*)QBEG
*)9EXT PLUS
SUBR MAINB
INTEGER B1, 82, B3
4')9RT MAINB PRIOB
MAINB: 3=:B1=:T

4=:82=:D
“B1"=:B
CALL PLUS (0)
*MON 0

RBUS
*)9END
%
*)93EG
*)9EXT MAINB
“)QENT PLUS
SUBR PLUS
INTEGER MNB:=MAINB,PLIST:=MNB
DISP 0

INTEGER P1, P2, P3
PSID
PLUS: IF L.P1=O GO ADD

“PLIST”
*MON 100

ADD: P1+P2=1P3
EXITA

RBUS
*)9END
%
*)9EOF
@EOF

ND—60.047.03

The two RT programs MAINA and MAlNB are both calling the same re-
entrant subroutine PLUS. (The main programs and the subroutine are
compiled and assembled into three different units in binary relocating
format and loaded by the RT loader into the same Segment.)

The common subroutine PLUS makes a test on the parameter and starts
the RT program MAlNB if this parameter is not zero. It then adds two
integer. variables and stores the sum into a third integer variable. By only
considering subroutine PLUS, nothing can be said about which variables
are really accessed. This depends completely upon the setting of the B
register. '

Thus, when called from MAINA the BASE-field variables will be accessed,
when called from MAlNB the integer variables in this program will be
accessed.

The local variables MNB and PLlST in PLUS are not changed by any oper-
ations and may, therefore, be allocated inside of PLUS.

There is no space reserved for storing away register values because the
SlNTRAN lll operating system will take care of the register contents of
RT programs.

Now, take a look_ at the RT descriptions by executing the SlNTRAN Ill
commands

@LlST-RT-DESCRIPTION MAINA and
@LlST-RT-DESCRIPTION MAlNB.

Then start the first RT program by executing

@RT MAlNA.

When MAINA has called PLUS the RT program MAlNB will be started
and executed because MAlNB has a higher priority than MAINA. Thus,
we are sure that subroutine PLUS is actually performed twice “at the
same time“.

If you are quick and lucky, you might be able to see that both programs
are in the execution queue by executing the command

@LlST-EXEC-QUEUE.

When both programs have terminated, have a new look at the RT descrip-
tions and control whether the register values are correct!

N D-60.047.03

5.2

5-5

RECURS/ VE SUBROUT/NES

However, if a subroutine must be reentrant because it is recursive (calls
upon itself) or it is simultaneously called more than once in a long chain
of subroutines calling each other, and all subroutines belong to only one
RT main program or to a background program, a stack mechanism might
be recommended.

The following example demonstrates the method. The following code must
be inserted into the program system somewhere at the beginning.

%
@MAC
)MCDEF SDATA

=6
]

)MCDEF DATA $PAR
)KlLLA

=$PAR+1
]

)MCDEF ENTER
STD I (ASTCK
COPY SL DA
COPY . SB DD
SAB A
JPL I (SPUSH
]

)MCDEF LEAVE
SAA -A
JMP I (SPOP

)KILLA
]

)MCDEF ISTCK
STA I (ASTCK
LDA (STACK
STA l (CSTCK
LDA l (ASTCK

ND-60.047.03

@
%
%DISPLACEMENT WITHIN THE STACK ELEMENT
%
DISP O

INTEGER XREG, TREG, AREG, DREG, LREG, BREG
DOUBLE ADREG=AREG;LBREG=LREG
REAL TADREG=IREG

PSID
%

.

%STACK FOR TEMPORARY DATA
%
INTEGER ARRAY STACK (700), ESTCK (7)
DOUBLE ASTCK
INTEGER POINTER CSTCK:=STACK
%
%PUSH ROUTINE FOR THE MACRO ENTER
%
SUBR SPUSH
SPUSH: *STX I CSTCK

X:="CSTCK"
AD=:X.LBREG
B+X
"ESTCK"
IF A<B GO STOVFL
X:=:B
X=:"CSTCK"
AD:=ASTCK
TAD=2TADREG
X:=XREG
EXIT

STOVFLzGO STOVFL
RBUS
0/
/0

%P0P ROUTINE FOR THE MACRO LEAVE
%
SUBR SPOP
SPOP: A+"CSTCK"=:“CSTCK"

B=:X _
AD:=LBREG
A=:L; D=:B
TAD:=X.TADREG
X:=X.XREG
EXIT

RBUS

N D-60.047.03

The macro ISTCK must not necessarily be a macro. It is only written as
such for the sake of convenience. This macro initializes the stack pointer
CSTCK and must be called only once at the beginning of the main pro-
gram. -

The macros SDATA and DATA define the length of the corresponding
stack element. '

The reentrant subroutine‘is now designed in the following way. The stack
area STACK is used for storing away register contents and local data. If
only space for register contents is needed, the macro SDATA should be called
before ENTER at the beginning of the reentrant subroutine.

If space for local data is required as well, a corresponding DlSP-field start-
ing at the value 6 should be introduced before the macros DATA and
ENTER are called. The parameter of the macro DATA must be the value
of the last "word" reserved by this DlSP-field.

The macro ENTER stores away the register contents in a stack element
and updates the stack pointer. All registers retain their values except
for the B-register, which will now point to the beginning of the stack
element and act as a base for the DISP variables.

In any case, the reentrant subroutine should be terminated by a call for
the macro LEAVE, which reloads the original register contents, including
the value of the B-register, from the stack element and updates the stack
pointer.

Now, append, for instance, the following code after the above programs:

%
SUBR MAlN
MAIN: *lSTCK

3=:B=:D; T:=O=:X
CALL SUBA
*MON 0

RBUS
%
SUBR SUBA

*SDATA
SUBA: *ENTER

X+l=:XREG ,
A+1+60=:D; CALL OUTA
.A-nGO
IF A> <0 THEN CALL SUBB Fl

'##A=:D; CALL OUTA
*LEAVE

RBUS
%

N D-60.047.03

5—8

%
SUBR SUBB ‘
DISP6

INTEGER K1,K2
PSID

- *DATA K2
SUBB: *ENTER

A—2=:K1
#B=:K2
A:=40; CALL OUTB
K1+60; CALL OUTB
A—60
CALL SUBA
K2; CALL OUTB
K1+60: CALL OUTB
TREG+1=2TREG
*LEAVE

RBUS
%
SUBR OUTA,OUTB
OUTA: A:=12; T:=1; *MONZ; MON 65

A:-15; *MON2; MON 65
A:=D.

OUTB: *MON 2; MON 65
EXIT
RBUS

%
@EOF

The main program MAIN puts initial values into the registers and calls
subroutine SUBA. SUBA adds 1 to the A register and calls subroutine
SUBB if the A register is not zero. SUBB subtracts 2 and calls SUBA.
The two subroutines will now continue to call each other until the A.
register becomes zero in SUBA.

Each time they are called they push up a new element in the stack. When
one of the routines is left, the stack is popped back. The X and T registers
are increased in the stack elements each time SUBA and SUBB are called.

Just to make it easy to follow the interaction, some output statements
. are introduced.

It is left as an exercise for the reader to compile and assemble the pro-
grams. After the assembly the system may be started by the command
MAIN! to the MAC assembler. The following output is then printed on
the terminal:

N D-60.047.03

5—9

Now, give the SlNTRAN I” command @STATUS and have a look at the
register values!

NOTE: The stack principle may not be used in the demonstrated way‘ ‘

if more RT programs are using a common stack because
the code for pushing and popping in the stack is not protected
(for instance, by semaphores). The above technique will not
work if an RT program is interrupted by another with higher
priority inside of the SPUSH or SPOP routines.

Two RT programs may use a common subroutine in the demon-
strated way if they have one stack and a set of SPUSH and SPOP
routines each.

N D-60.047.03

6.1

COMMON DATA AREAS

The concept of common areas was originally defined in FORTRAN, however,
for many reaSons it may be interesting to establish a common connection
between FORTRAN, NORD PL and MAC programs.

DEFINITION OF A COMMON AREA

Under the SINTRAN lll operating system, a common area is a data area
which is accessible from more than one BRF program unit, independant
of whether this is a main program or a subprogram or whether the acces-
sing code was written in FORTRAN, NORD PL or MAC.

Common data areas may be used for communication between RT pro-
grams or for storing away data which are common to two or more RT
programs. in background mode, a common area is common to one main
program and one or more subprograms.

In NORD PL a common area is defined by the MAC statement)9ASF
which must appear within a BRF unit in order to be loaded by the RT
loader or by the background loader.

The concept of common areas should not be confused with global data
areas in NORD PL.

Example:

A common area is defined without any program units in the BRF unit:

)QBEG
CSIZE = 1000
)9ASF CLABl CSIZE
)QEND

In this case, it is mostly convenient to write the statements directly in
MAC so that the NORD PL compilation can be avoided. In the above
example, the common block with the label CLABl will allocate an area
of 10008 words.

N DB 0. 047.03

Example:

A common area is defined in a BRF unit also containing program units.

*IQBEG
SYMBOL CSIZE=1000,PRIOR=35
j’IQASF CLABZ CSIZE
%
INTEGER ARRAY IARRHOO)
%
SUBR MAIN
*IQRT MAIN PRIOR
MAIN: CALL SUBA

*MON 0
RBUS
%
SUBR SUBA
SUBA: EXIT
RBUS
%
*IQEND
*IQEOF
@EOF

The common area with the label CLABZ will allocate an area of 10008
words. The integer array IARR is a global area only aecessible from MAIN
'and SUBA.

N D-60.047.03

6—3

ACCESS OF A COMMON AREA

At the time of programming, compiling and assembly, the address of a
common area is undefined.

The MAC statement)9ADS gets hold of this address at load time and
puts it into the location where the statement is placed.

The *)9ADS statement has two symbolic arguments, the first is the name
of the common label and the second is the displacement relative to the start
of the common area.

There are, of course, many ways of utilizing this address in NORD PL.
In the example below, two methods are demonstrated. The first method
is to load the address to the B register and access the common area by
means of a DlSP-field. The second method is to put the address of a com-
mon area into an integer array pointer and access the area through this
pointer.

In the example below the values of the common area CLABI are loaded
to the A register, increased by 1 and stored to the common area CLABZ.

*IQBEG
SYMBOL CSIZI=1000
*)9ASF CLABI CSIZI
*IQEND
%
*IQBEG
SYMBOL CSI22=1OCO,PRIOR=35,DSPL=O
*I9ASF CLAB2 CSIZ2
% ‘

INTEGER CADRI
*CADRI/)9ADS CLABI DSPL
DISP 0

INTEGER ARRAY COMI (1000)
PSID
%
SUBR MAIN
INTEGER ARRAY POINTER COM2
*COMZ/)9ADS CLABZ DSPL
a’IQRT MAIN PRIOR
MAIN: CADR1=:B

T:=777
FOR X:=0 TO T DO

COMI IX)+1=:COM2(XI
OD
*MON 0

RBUS
,%
*IQEND
*IQEOF
@EOF

N D-60.047.03

7.1

ADDITIONAL FEATURES

COMMANDS

A command starts with a circled alpha (@) followed by the command
name. The command names are not reserved symbols, so that the same
symbol can be used for a command name as well as for a user variable.
After the command name parameters may follow, separated by commas.

Some of the commands are used for conditional compiling, being des-
cribed in Section 7.2. In Section 7.3 on-line assembly coding is treated.
The remaining commands are described below.

@ICR "Ignore carraige return” mode
This command is to be used if a statement should need
several lines (especially declaration statements). The car-
riage return is treated as if it were a space.

@CR "Carraige return" mode
After this command carriage return will have the same
effect as the semicolon (;), so that it will terminate the
cilrrent statement.

@EOF "End of file"
This command is used for exit from the compiler to the
operating system. The MAC command)Ll NE is output
on the object device. The command will list the number
of errors detected during the compilation of the commun-
ication device.

@CLEAR Clear the symbol table of the compiler.

@OCT All integer numbers will be treated as octal.

@DEC Integer numbers will be treated as decimal, except for
those preceded by the “&" sign.

'
@DEV <input device>, <list device>, <object output device>

This command is used for setting device numbers for the
compiler. If the list device = O, the error messages will
be printed on the output communication device, other-
wise on the list device.

2*
J».

#-
’ if;

N D-60.047.03

@MODE

@XREF

@F L032

@ F L048

7—2

xa l-

@DEV.,4,5,3
@DEV 4,0,3

lf list output and object output use the same device num-
ber, the object output will appear left adjusted and the
source program will be listed 32 columns to the right.
The source program will be preceded by “%" signs, so
that the mix can be assembled.

Example:

@DEV 4,5,5

For the T58 and SlNTRAN lll version files and devices
may be specified symbolically in the T88 notation. The
necessary closing and opening of files will be done. Num-
eric and symbolic representation may be mixed in the
same DEV command.

lf a device is not specified at all, the old one will be used.

. Examples:

@DEV T—R, 0, OBJECT FILE
@DEV [NP—FILE, L—P
@DEV INP, L—P, L- P

<input communication device>, <output communication
device>
The communication devices will be defined. Normally, they
will be equal to 1.

This command will add line numbers and a cross reference
list to the listing.

Set 32 bits floating point format.

Set 48 bits floating point format.

The compiler will automatically set the right floating point
format according to the hardware it is run on. The commands
@FLO32 and @FLO48 are therefore only necessary for
cross-compilations.

ND-60.047.03
R Evicicn A

7.2 CONDITIONA L COMP!LING

The form of conditional compiling is conceptual somewhat similar to
the “Library-mode" of the MAC assembler. This means that this facility
is especially well suited for extracting modules from a symbolic library.

A module which could be included is headed by the command

@LlB , ,

followed by a logical expression of symbols. For each symbol the com-
piler maintains an ”include" flag which is automatically set to “true" if
the symbol is undefined, and reset to “false" when the symbol is defined.
However, the programmer can also explicitly put the "include" flag on or
off using thecommands

@STLIB <symbol> _Set the ”library include" flag
@NSLlB <symbol> Reset the "library include" flag

The expression after @LIB may have the operators

/ \ And
\/ . Or
—, Not

The expression is evaluated from left to right. If the resulting “include"
value is true, the following module will be included, otherwise it will be
skipped.

The module is terminated by the command

@ELIB-

The @LIB - @ELlBs can be nested. If a module is skipped, it is skipped
until its corresponding @ELIB.

Example:

CALL SUBi

CALL SUB2

@LIB SUB1 \/ %INCLUDE THE FOLLOWlNG IF
%SUBl OR SUB2 HAS BEEN
%REFERENCED

SUBR SUB1, SUBZ

@ELIB %UP TO THIS POINT

N 060047.03

7—4

7.3 IN-L/NE ASSEMBL Y CODING

There are two ways of including assembly coding:

1. If a statement starts with an asterisk (*), the rest Of.the line will
be taken as assembly code, being copied to the object output stream.

The command

@MAC

switches the compiler to assembly mode. The test will pass unchanged
to the output stream until an alpha sign (@) is found.

Examples:

*TRA OPR
@MAC

BORA 170 DX
@

N D-60.047.03

8.1

USING THE COMPILER

PREPARING. NORD PL PROGRAMS

The compiler may be used as a separate system outputting MAC assembly
code to a file or external device.

If on line return to the compiler is wanted, the program should be ended
with the command

@DEV 1

giving the control back to the operator, who may start a new compilation.
If it is the last part to be compiled, it should instead end with the com-
mand

@EOF %EXlT FROM COMPILER

NOTE: If the @EOF command is forgotten, the last buffer contents will
not be written on the object file and the file will not be closed!

Example of program:

%START OF PROGRAM
INTEGER 31,32
SUBR SUBl
SUBl: 33=:Bl

5=:32
EXIT

RBUS
’

@DEV 1

ln case of absolute programs (not BRF), it is not necessary with any special
heading; the program can start with normal statements.

If the resulting program should be output in BRF format, the pertinent
MAC commands)QBEG,)9ENT and)9EXT should be inserted as assembly
code.

N D~60.047.03

Example:

%SUBROUT-INE TO PRINT 2 CHARACTERS
*IQBEG
*IQENT OUT2
’IQEXT OUTBT
SUBR OUT2

INTEGER WORD
INTEGER POINTER LINK

OUT2: T:=L=:“LINK"
A=:WORD SHZ -10 %LEFT BYTE
T:=5; CALL OUTBT %LINE PRINTER
WORD /\ 377;T:=5;CALL m ITRT %RIGHT BYTE
GO LINK

RBUS
*IQEND
@EOF

Note that 'when a new input file, list file, or object output file is specified
in the @DEV command, the corresponding old file will be closed.

Example:

Consider two source files, SF1 and SF2, containing some NORD PL routines.
SF1 ends with @DEV ‘l' and SF2 ends with @EOF.

The command

@DEV SF1, OBJ, OBJ

will compile the source file SF1 and place the list and object output on
the file OBJ. When the con'pilation is finished, control will return to the
communication device (terminal).

If the command @DEV SF2 is now given, the source file SF2 will be com-
piled and the list and object output will be appended to the file OBJ.

If the command @DEV SF2, OBJ, OBJ is given, the file OBJ Will be re
winded and the list and object output from SF2 will be placed from the
beginning of OBJ.

In both _cases, control will return to the operating system when the com-
pilation . of SF2 is finished.

N D-B0.047.03

8.2 COMP/LING NOHD PL PROGRAMS

Under SlNTRAN Ill and T53:

The NORD PL compiler is fetched by using the command @NORD PL.
It then writes the message NORD PL <version number>, waiting for in-
put from the terminal. Then give the @DEV command to set the approp-
riate devices.

The @DEV command has the general form:

@DEV <input file> <list file) <object file)

Note that the object program, i.e., the output from the NORD PL com-
piler is a symbolic MAC program. This object program in turn should
be the symbolic input program to a following MAC assembler run.

Example:

Suppose a symbolic NORD PL program is placed on a paper tape. A com-
pilation with a list of the program is wanted on the line printer and the
MAC object (output) program is wanted on the line printer and the MAC
object (output) program is wanted on the paper tape punch {fast punch).
This is done as follows:

@NORD PL

NORD PL 74.12.07
@DEV T—Fl, L—P, F—P

Example:

Suppose the symbolic NORD PL program is already written onto the file
NPLI with the OED processor. Before the program is executed a last check
is wanted for debugging purposes, i.e., the symbolic NOHD PL program
itself together with the MAC ob/eCt program is to be written on the ter-
minal. This is done as follows

@NORD EL

NORD PL 74.12.07
@DEV NPL1,1,1

N D-60.047.03

Example:

Suppose the symbolic NORD PL program is written onto the file NPLI
with the OED processor. A compilation is wanted with a list of the pro-
gram on the terminal and with the MAC object program on the file MA C1:

@NORD PL

NORD PL 74.12.07
@DEV NPL1,1,MAC1

If a list of the program is not wanted, write:

@DEV NPL1,,MAC1

If the file MAC7 is not created yet, write:

@DEV NPL1,1,“MAC1"

'The possibility of an interactive communication between the NFL program-
mer.and the compiler exists by utilizing the command @DEV 1,1,1.

Qample:

Suppose the NORD PL programmer wants to check out the different state-
ment types of the language. He wants to type his statements on the ter-
minal, to look at the MAC interpretation at once or lwhich might happen)
get the error messages immediately. This is done as follows:

@N’ORD PL

NORD PL 74.12.07
@DEV 1,1,1

The compiler will now react by printing a % character on the terminal
and the programmer is free to type his NOHD PL statements. After each
CR the compiler will give the corresponding MAC interpretation or error
message and print a new % character on the terminal.

As mentioned in Section 8.1, the program should be ended with the com-
mand @DEV 7,0,0 or @EOF.

N D-60.047.03

8.3 ASSEMBL/NG AND EXECUTING NORD PL PROGRAMS

As mentioned in Section 8.2, the output from the NORD PL compiler is
a symbolic MAC assembler program. This program in turn should be the
symbolic input program to afollowing MAC assembler run.

Before the MAC assembler is called the file containing the. symbolic MAC
program should normally be opened by the SINTRAN Ill command @OPEN-FILE.

Before executing the program, i.e., before leaving the MAC assembler it
is a good rule to find the absolute address of the symbolic external entry
point used as the main starting point of the program. This is for instance,
necessary when starting the execution of the program with the SINTRAN
Ill command @GOTO. The @DUMP command also requires the absolute
value of a restart address. These addresses are obtained after the assembly
by typing the symbolic name followed by a colon.

Now the program may be started either under control of the MAC assembler
or under control of SINTRAN Ill.

Execution under control of the MAC assembler:

maple:

Suppose the symbolic MAC program with the starting point START is
placed on the file MACl by the NORD PL compiler:

@OPEN MAC1, RX
FILE NUMBER IS 000101
@MAC

101$
START: 040000 START!

The $ command will start the assembler run. The assembler will answer
with carriage return and line feed when finished. The : command will
return the absolute value of the given external entry point and the l
command will start the execution of the program at the given symbolic/
absolute address.

Execution under control of SINTRAN III!

Example:

@OPEN MAC1, RX
FILE NUMBER IS 000101
@MAC

101$
START : 040000 ISTSS
@GOTO 40000

N D-60.047.03

The MAC assembler is left by typing)97'5‘8. Back in SINTRAN III the
command @GOTO .< absolute address of starting point > will start the
execution at the given absolute address.

To avoid reassembling before each execution, the object program from
the MAC assembler may be placed on a binary file. This may 'also be
done either under control of the MAC assembler or under control of
SlNTRAN Ill.

Writing the binary object program on a file under control of the MAC
assembleré

Example:

Suppose the symbolic MAC program with the symbolic starting point
FIRST is placed on the file MA C2 by the NORD PL compiler. The ob-
feet program from the MAC assembler is to be placed on the binary
file ABS 7 and later to be read and started from there.

@MAC

39ASSM MAC2,,ABS1:BlN
Fl RST:xxxxxx * :yyyyyy 40000<yyyyyy—l
lBPUN FIRST
)9TSS
@PLACE-B'INARY ABSizBlN

@G0T0 xxxxxx

Note that in this case it is not required to open the file MA C2 before
entering the MAC assembler. The command l9ASSM will Open the file
and start the assembler run. *r: 'will return the value of the MAC location
counter, i.e., the uppermost address of the object program plus one. The
.< command establishes the limits of the memory area to be written on
the binary file by the lBPUN command. In this case, the object program
should be read and started by the S/NTRAN /// commands @PLACE-
BINARY and @GOTO. These two commands may be replaced by the
@L 0A D-B/NA R Y command.

Writing the binary object program on a file under control of SINTRAN
lll: '

Example:

Suppose the symbolic MAC program with the symbolic starting point
ENTRY and the reentry starting point REENT is placed on the file
MA C3 by the NORD PL compiler. The object program from the MAC
assembler is to be dumped \to the file A883 and read and started from
there.

ND-60.047.03

8—7

@OPEN MAC3, RX
FILE NUMBER IS 000101
@MAC

101$
ENTRsxxxxq REENT'yyyyyy
)9TSS
@M EMO R Y 40000uzzzzzz—1

@DUMP ABSS:PROG
NUMBER:xxxxxx
NUMBER2yyyyyy

@RECOVER ABS3:PROG

* :222222

The SlNTRAN I” command @MEMORY establishes the limits of the '
memory area to be dumped on the file A883 with the @DUMP command.
The @RECO VER command will then read the program into core and start
the execution.

For further information of the MAC assembler commands and of the
SINTRAN Ill commands, see the manuals “Course Manual U801 MAC“,
"MAC User’s Guide” and "SINTRAN lll Users Guide".

A list of the most usual MAC commands is given in Appendix D.

N D-60.047.03

8.4

8—8

NORD PL LISTING WITH OCTAL ADDRESSES

An octal address list may be obtained on the NORD PL source program
listing by means of the)QSLPL command to the MAC assembler if the
listing and the MAC object program have been put on the same file dur-
ing the compilation.

Example:

Suppose a NORD PL source program is placed on the file INP by the
OED processor. The following sequence of commands will give a listing
of the NORD PL source program with the coral addresses corresponding
to the first statement on each line. The listing will, in this example, be
written on the line printer:

@NORD PL
NORD PL 74.12.07
@DEV lNP, MAC1, MAC1
—END OF COMPILATION
000000 ERRORS DETECTED

@MAC
)QSLPL
)9ASSM MAC1, LIN E~PRlNTER,

If BRF object code is wanted, an object file name should be specified in
the)9ASSM command.

N D-60.047.03

8—9

8.5 DIA GNOSTIC MESSA GES

8.5.1 Diagnostic Messages from the Compiler

If the compiler detects an error, it prints a diagnostic message on the list
device, preceded by some asterisks. If the list device is equal to zero, it
prints, on the communication device, the name of the last label and the
number of lines after the label, followed by the diagnostic message. Usually,
the compilation will continue, however, in a few cases, the compilation
has to stop, returning control to the operator (aborting if NORD-OPS).

Message Meaning

Error, ill. base Error in a B.ASE statement

Error, buffer full Too long statement or object instruc-
tion.

Error in command

Error in compiler The compiler is destroyed, or may be
there is a bug in the compiler.

Error, 5”- condition Error in the conditional compiling com-
mands (LIB, SLlB, STLIB or NSLIB).

Error in data expres- Illegal operand or operator in a data
sion expression.

Error in decl. Error in a declaration statement.

Error, ill. disp. Error in a DlSP statement.

Error, ill. elem. A basic element is found in a place
where it should not be.

Error in elem. An ill—formed basic element.

Error, in else/fi Bad nesting of THEN—ELSE—Fl

Error, ill else/fi/od Bad nesting of THEN—ELSE—Fl or DO—
OD

Error in expr. Error in an executable expression.

Error in for Error in 3 FOR statement.

ND‘60.047.03

8—10

Message Meaning
=======

Error in if Error in an IF statement

Error in l/O l/O error signalled by the surrounding
system.

Error, no Fl/OD Unmatched THEN/ELSE or DO at the
.end of a subroutine.

Error, no (Missing left parenthesis in a data list.

Error, ill. operation This operation is not implemented in
hardware, or non—correSponding
operands.

Error in output
'

Error message from the surrounding sy-
stem.

Error in relation Ill—formed relation in an lF or FOR
statement.

Ill. statement , The statement is illegal in this context,
or illegal element in an expression.

Error in subr. Error in a SUBR statement.

Error, table destroyed Probably overlapping of compiled/
assembled program and the compiler’s
symbol table.

Error, table full Too many symbols in the program.

Error, too c0mplex Too complex construction in an exe-
cutable expression; the backtracking
stack is filled.

Error, undefined Undefined local symbols at the end of a
subroutine.

8.5.2 Diagnostic Messages from the Assembler

Some errors can be detected at assembly time only, because the compiler
does not keep track of memory address values. Following is a list of the
most usual errors. For more information, see the manual “MAC User‘s
Guide".

N D-50.047.03

8—11

Message Meaning

RANGE EX.

POSS. F LT

(ERROR

A label or variable is used too far away
from where it was defined. It can for
example occur for GO to a label defined
earlier, or at a OD statement.

May be a label has been defined too far
after the place where it was used. It can
occur for a forward GO or in an ELSE,
Fl or OD statement, However, this mes-
sage can occur if an undefined symbol
is part of a data expression. Then it can
normally be ignored.

Too far between the filling in of literals.
The compiler outputs a)FILL command
at each RBUS statement. However, the
programmer can put *lFlLL commands
in between.

ND-60.047.03

APPENDIX A

A.1

OPERATORS AND RESERVED SYMBOLS

NON—ALPHANUMERIC ELEMENTS

Arithmetic Operators

.= Load
=: Store
.=: Swap
- Subtract
+ Add
a: Multiply
/ Divide
\ Byte separator (Data expressions only)

Logical Operators

/ \ And
\/ Or
—, One’s complement
— Two’s complement

Relational Operators

> Greater
. < Less

= Equal
>= Greater or equal
<= Less or equal
>< Not equal
>>= Absolute greater or equal
<< Absolute less
>> Absolute greater
<<= Absolute less or equal

ND-60.047.03
Revision A

Delimiters

Label definition
Statement terminator
X-addressing indicator
Array index or data list _
Referenced variable or data expression
Character constants
Comment
Octal number
String
MAC instruction
Command
Undefined location

ND—60.047.03

A.2 RESER VED SYMBOLS

Registers
A, X, T, B, L, D, P, AD, TAD
K, 2, O, O, C, M

Declarations
INTEGER, DOUBLE, REAL, TRIPLE
ARRAY, POINTER, SYMBOL, DATA
BASE, ESAB
DISP, PSID
SUBR, RBUS

Statement Symbols
GO, CALL
IF, THEN, ELSE, FI, AND, OR
FOR, STEP, TO, DO. OD, WHILE
EXIT, EXITA, FAR

Operators
XOR
BONE, BZERO
SHZ, SH, SHR, SHL
GOSW
MIN
BIT, NBIT

ND-60.047.03
Revision A

APPENDIX B

PROG RAMMER’S CHECK LIST

vi.

lnitjalize the B—register on program entry.

Provide for exit from the subroutines.

Put pr0per termination (@ DEV or @EOF) at the end of the
program. -

Check the @ICR-QCR pairs. Remember the semicolon after
@ cm _

Check the lF — Fl and DO - OD nestings.

Check that the X relative addressing is remembered on all
relevant places, e.g., that VAR is not written instead of X.VAR.

N D-60.047.03

APPENDIX C

MODEL 33 ASH/KSR TELETYPE CODE (ASCII) IN BINARY FORM

HOLE PUNCHED = MARK = 1 Most significant bit
NO HOLE PUNCHED = SPACE = 0 Least significant bit

76543 210

@ SPACE NULL/IDLE o o o o o
A 2 START OF MESSAGE o o o o 1
B ,, END OF ADDRESS 0 o o 1 o
c A! END OF MESSAGE o o o 1 1
D ‘3 END OF TRANSMISSION o o 1 o o
E vs WHO ARE YOU 0 o 1 D 1

’F & ARE YOU 0 o 1 1 o
G ' BELL o o 1 1 1
H 1 FORMAT EFFECTOR o 1 o o o
l I HORIZONTAL TAB o 1 o o 1
J :1: LINE FEED o 1 o 1 0
K + VERTICAL TAB o 1 o 1 1
L , FORM FEED o 1 1 o o
M — CARRIAGE RETURN o 1 1 o 1
N . SHIFT OUT 0 1 1 1 o
O / SHIFT IN 0 1 1 1 1
P o DCO 1 o o o o
O 1 READER ON 1 o o o 1
R 2 TAPE (AUX ON) 1 o o 1 o
s 3 READER OFF 1 o o 1 1
T A, (AUX OFF) 1 o 1 o o
u '5 ERROR 1 o 1 o 1
v e SYNCHRONOUS IDLE 1 D 1 1 o
w 7- LOGICAL END OF MEDIA 1 o 1 1 1
x 8 s o 1 1 o o 0
Y 9 S 1 1 1 o o 1
z : s 2 1 1 ' o 1 o

; S 3 1 1 O 1 1
\ < s 4 1 1 1 o o
] = s 5 1 1 1 o 1
1 > s 6 1 1 1 1 o
<— 7 s 7 1 1 1 1 1

I II II M

,_.A_,___~___§

0 0 Same
O 1 Same
1 0 Same

RUB OUTA 1 1 Same

PARITY

N D-60.047.03

APPENDIX D

DEFINITION OF SOME MAC COMMANDS

Some of the commands to the MAC assembler are also useful for the
assembling and loading of NORD PL programs. Among these commands
are the following:

)9A 08

)9ASF

)QASSM

IQBEG

<common block label> <displacement>
is used to access labelled common variables in a real time
program. Blank common is referred to through the sym-
bol 800M. The <displacement> relative to the starting
address of the common block must be separated from
the <common block label> by a blank or a plus sign.
The <displacement> must be a not relocatable identifier
declared by means of the MAC statement = or by the
NORD PL statement SYMBOL. At load time the address
of the <common block label> is added to the <displace—
ment> and put into the location where the)QADS command
appears.

<common block label> <no. of words> .
defines a common area with the name and size as specified.
<no. of words) must be a not relocatable identifier.

<source file>, <list file>, <obiect fi|e>
starts the assembly of a MAC program.

[<label>]
puts the MAC assembler into a binary relocating mode,
i.e., the object program unit will be in binary relocatable,
linkable form. The object program may now be loaded
by the NORD Relocating Loader or by the RT Loader.

(label> is the starting point and only to be specified if
the program unit represents a background main program.
Then the RUN command to the NOFlD Relocating Loader
will start the program at this address. If the object device
is a paper tape punch,)QBEG also causes 200 frames of
blank paper tape to be output.

N D-60.047.03

)9END

)9ENT

)QEOF

)9EXT

)9RT

)QSLPL

. resets MAC to produce an absolute output. This is the
complement of the)QBEG command and must terminate
each program unit starting with)QBEG. All identifiers
defined since the last)QBEG are deleted from the sym-
bol table. Identifiers referenced since the last)QBEG, but
undefined, are printed on the list device. If the object
device is a paper tape punch, 200 frames of blank tape
is output. If MAC was already in absolute assembly mode
when)9EN D was given, symbols defined since the last
)9ENT command are deleted from the symbol table.

<identifier 1> <identifier 2> . . .
declares symbols, variables and labels which may be
referred to as external identifiers from other program
units.

Thus,)9ENT is the complement of)9EXT. Delimiter is
a space.

will cause an end-of-file mark to be written to the object
file, thus, terminating a sequence of BRF program units.

<identifier 1> <identifier 2> . . .
declares identifiers to be external to the particular pro-
gram unit being assembled. Identifiers declared with this
command must appear in a)9ENT or a)QRT command
of another program unit and a suitable linking will be
made at load time.

<identifier> <priority>
declaresa program unit to be an RT program with the
name <identifier) and the specified <priority>. The
last parameter must be a not relocatable identifier.

This command must appear immediately before the
statement in the RT program where the label <identifier>
is defined.

gives an octal address list of a NORD PL source program
when given before the)9ASSM command. The listing of
the NORD PL source program and the MAC object pro-
gram must have been written onto the same file during
the conpilation.

N D-60.047.03

APPENDIX E

ALPHABETICAL INDEX OF THE MANUAL

A
AD
I9ADS
ARITHMETICAL
OPERATOR
ARRAY
ARRAY POINTER
ASCII CHARACTERS
)9ASF
)9ASSM
ATTRIBUTES
B
BASE
BASIC ELEMENTS
IQBEG
BIT
BIT TEST
BONE

See Register
See Register
62/D
3.2.1 /3.2.1 .1/A.1

3.1.1/3.2.3/3.2.4/Table 3.1
3.1.1/3.2.3/3.2.4/6.2/Table.3.1
C
6.1/6.2/D
8.3/8.4/0
3.1.2
See Register
3.1.2/3.1.2.1/Table 3.1
2.1
4/5.1/6.1/6.2
3.2.5.4
3.2.5.4/3.2.5.6
3.2.1/3.2.1.3

B-RELATIVE ADDRESSING 3.1.2/3.1.2.1/3.1.2.2
BYTE SEPARATION
BZERO
C
CALL
CHARACTER CONSTANT
@CLEAR
COMMAND
COMMENT
COMMON DATA AREA
CONSTANT
@CR
D
DATA
DATA EXPRESSION
@DEC
DECLARATION
STATEMENTS
DELIMITER
@DEV
DIAGNOSTIC MESSAGES
DISP
DISPLACEMENT
DO
DOUBLE

2.3
3.2.1/3.2.1.3
See Register
3.2.5.2
2.1.2.2
7.1
2.4/3.2/7.1
2.4
6/6.1/6.2
2.1.2
7.1
See Register
3.1.1
See Expression
7.1
3/3.1/3.1.2.1/3.1.2.2/3.1.3/3.1.4/3.1.5/A.2

2.1.3/A.1
7.2/8.1/8.2
8.5/8.5.1/8.5.2
3.1.2/3.1.2.2/TabIe 3.1
3.1.2.2
3.2.5.5/3.2.5.6
2.2/3.1 .1/TabIe 3.1

ND-60.047.03

@ELIB
ELSE
)9END
)9ENT
ENTRY POINT
@EOF

)QEOF
ERROR MESSAGES
ESAB
EXECUTAB LE
STATEMENTS

EXIT
EXITA
EXPRESSION
)9EXT
FAR
Fl
@FLO32
@FLO48
FOR
GLOBAL
GO
GOSW
@ICR
IDENTIFIER
IF
INTEGER
K
L
LABEL
@LIB
LOCAL
LOGICAL OPERATOR
M
@MAC
MAC ASSEMBLY CODE
MIN
@MODE
NBIT
@NSLIB
NUMBER
0
@OCT
OD
OPERATOR

7.2
3.2.5.4
4/5.1/6.1/6.2/D
4/5.1/D
3.1.4/3.1.5
7.1/8.1

4/5.1/6.1/6.2/D ’

See Diagnostic Messages
3.1.2.1
3/3.2/3.2.1/3.2.1.1/3.2.1.2/3.2.1.3/3.2.1.4/
3.2.5/3.2.5.1/3.2.5.2/3.2.5.3/3.2.5.4/3.2.5.5/
3.2.5.6/A.2
3.2.5.2/3.2.5.3
3.2.5.3
2.3/3.1.1/3.1.3/3.2.2
4/5.1/D
3.2.1.4/3.2.5.1
3.2.5.4
7.1
7.1
3.2.5.5
3.1.2/3.1.6/Table 3.1
1.2/3.2.5.1
3.2.1/3.2.1.4
2.4/7.1
2.1.1/3.1.1/3.1.2.1/3.1.2.2/3.1.3
3.2.5.4
2.2/3.1 .1/TabIe 3.1
See Register
See Register
2.1.1/3.1.4
7.2
3.1.2/3.1.6/TabIe 3.1
3.2.1/3.2.1.3/A.1
See Register
7.3
2.4/7.3
3.2.1/3.2.1.4
7.1
3.2.5.4
7.2
2.1.2.1
See Register
7.1
3.2.5.5/3.2.5.6
2.1.3/2.3/3.2.1/3.2.1.1/3.2.1.2/3.2.1.3/3.2.1.4/
A.1/A.2

ND-60.047.03
Revision A

p
POINTER
PSID
O
QUOTATION MARKS,
DOUBLE
QUOTATION MARKS,
SIMPLE
RBUS
REAL
REAL TIME PROGRAM
RECURSIVE SUBROUTINE
REENTRANT
SUBROUTINE
REGISTER
RELATION
RELATIONAL OPERATOR
RESERVED IDENTIFIERS
)9RT
SHIFT OPERATOR
IQSLPL
STEP
@STLIB
STRING CONSTANT
SUBR
SUBROUTINE
SYMBOL
SYMBOLIC CONSTANT
T

See Register
3.1.2/3.1.5/3.2.3/Table 3.1
3.1.2.2
See Register

3.2.2

2.1.2.2

3.1.5
3.2/4.1.1/Table 3.1
4/5.1/6.1
5.2
5.1/5.2

2.1.1.2/A.2
3.2.5.4/3.2.5.5
3.2.5.4/A.1
2.1.1.1/2.1.1.2/A.2
4/5.1/6.1/7.1/7.2/D
3.2.1/3.2.1.2/A.2
8.4/0
3.2.5.5
7.2
2.1 .2/2. 1 .2.2
3.1.5
3.1.5/3.2/3.2.5.1
3.1.3
2.1.1/2.1.2/2.1.2.3/3.1.3/3.2.3
See Register

TAD See Register
THEN 3.2.5.4
TO 3.2.5.5
VARIABLE 2.1.1
WHILE 3.2.5.6
X See Register
XOR 3.2.1/3.2.1.3
@XREF 7.1
X-RELATIVE 3.1.2/3.2.4
ADDRESSING
Z See Register
ZERO REGISTER 2.1.1.2/3.2.2

NDa60.047.03
Revision A

**********SENDUSYOURCOMMENTS!!! **********

7 7 Are you frustrated because of unclear information
.

9

o in this manual? Do you have trouble finding
. things? Why don’t you join the Reader’s Club and

3 send us a note? You will receive a membership
.

f?
7 card - and an answer to your comments.

0 0

Please let us know if you
" find errors /
‘ cannot understand information \
" cannot find information \" find needless information _

Do you think we could improve the manual by rearranging the
contents? You could also tell us if you like the manual!!

/ \
* * * 4r *1» * * * HELPYOURSELFBYHELPINGUSI! * * * w * * * * at

Manual name: NORD PL-User's Guide Manual number: ND- 60.047. 03

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual?

Your name: v Date:
Company: Position:
Address:

What are you using this manual for?

Send to: Norsk Data A.S.
Documentation Department
13.0. Box 4, Lindeberg Gard ———-)
Oslo 10, Norway

Norsk Data’s answer will be found on reverse side

Answer from Norsk Data:

Answered by: Date:

Norsk Data A.S
Documentation Department
P.O. Box 25 BOGERUD
N - 0621 OSLO 6 - Norway

