
N D-60.047.03

NORD PL

User’s Guide

NorsktaDa

NORD PL

User’s Guide

N D-60.047.03

NOTICE

The information in this document is subject to change without notice Norsk Data
AS assumes no responsibility for any errors that may appear in this document.
Norsk Data AS assumes no responsibility for the use or reliability of its software
on equipment that is not furnished or supported by Norsk Data AS.

The information described in this document is protected by copyright. it may not
be photocopied, reproduced or translated without the prior consent of Norsk
Data AS.

Copyright ® 1984 by Norsk Data AS

This manual is in loose leaf form for ease ol updating Old pages may be
removed and new pages easily inserted it the manual is revised

Hie loose legil lorm also allows you to place the manual in {l ring hinder (A)
lor greater protection and convenience ol use Ring binders With 4 rings
corresponding to the holes in the manual may be ordered in two widths, 30
mm and 40 mm. Use the order form below.

The manual may also be placed in a plastic cover (Bl This cover is more
suitable for manuals of less than lOO pages than for large manuals. Plastic
covers may also be ordered belowt

j
55:, :5
EB ‘fisa

A. Ring Binder B: Plastic Cover

Please send your order to the local ND office or (in Norway) to:

Norsk Data A.S
Graphic Center
PO. Box 25, Bogerud
062i Oslo 6, Norway

oribERroRM”
l would like to order

s Ring Binders, 30 mm, at nkr 20, per binder

...... Ring Binders, 40 mm, at nkr 25,‘ per binder

...... Plastic Covers at nkr 10,— per cover

Name ..

Company ...

Address

REVISION RECORD
Revision Notes

09/75 Total revision, superseding all previous versions
10/76 Total revision, superseding all previous versions
07/77 Revision A. The following pages have been revised: 2—4, 3—1, 3—2, 3—3, 3—15,

3—17, 3—18, 3—19, 3—22, 3—27, 3—~28, 7—2, A—l, A-3, and
chenged Index to Appendix E, and revised page vi.w_

NORD PL ~— User’s Guide
Publ. No. ND-60.047.03

..0 .0. 0......0... .0. .0...... Norsk Data A.S.0... 0.. 9....0...0......60 ..000.00.... 0..
0.. Graphic Center

no. 00000 oooeoooo: 90. BOX 25. BOQBFUd0.. O... 0...... 0621 Oslo 6, Norway

Manuals can be updated in two ways, new versions and revisions, New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one
or more single pages to be merged into the manual by the user, each revised
page being listed on the new printing record sent out with the revision. The
old printing record should be replaced by the new one.

New versions and revisions are announced in the Customer Support information
(CSl) and can be ordered as described below‘

The reader’s comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms and comments should be sent to:

Documentation Department
Norsk Data A.S
PO. Box 25, Bogerud
0621 Oslo 6, Norway

Requests for documentation should be sent to the local ND office or (in Norway)
to:

Graphic Center
Norsk Data A.S
PO. Box 25, Bogerud
062l Oslo 6, Norway

PREFACE

This manual is recommended as a necessary documentation to any program
mer/system analyst intending to obtain information about the NORD
Programming Language (NORD PL). lt contains the definition of the
language. (The NORD PL compiler itself, however, is described in the
manual NORD PL Program Documentation.)

According to the many examples and the consistent demonstration of
the MAC Assembly Language equivalents of the different NORD PL state-
ments, this manual is very well adapted to a self—study. lt will also re“
present the main contents of the course U808 —~ NORD Programming
Language arranged by the Educational Department of A/8 Norsk
Data-Elektronikk.

The operating system SlNTRAN ll! of the NORD-lO computer family is
written in NORD PL. This manual should, therefore, be given a closer
consideration by any person wanting to become a system analyst or to
attend the courses U804 ~ SlNTRAN Ill and U805 ~ SlNTRAN lll
Workshop.

It is also recommended that the reader of this manual should have attended
the course U801 — MAC Assembly Language or at least have obtained some
knowledge about MAC and eSpecially about its addressing structure.

Finally, one important advice to the NORD PL programmer should be
given: IVORD PL is not a problem oriented high level language like
FORTRAN or COBOL. It is a machine oriented medium level language
introduced to simplify the assemb/V coding, i.e., in any statement written
the programmer should call attention to the influence on the register
contents!

N 060047.03

vii

TABLE OF CONTENTS

+ + +

Section:

1 INTRODUCTION

1.1 Machine Oriented Languages
1.2 Properties of the NORD PL
1.3 Formalism for Syntactic Description
1.4 Environments

2 THE STRUCTURE OF NORD FL

2.1 Basic Elements
2.1.1 identifiers
2.1.1.1 Reserved identifiers
2.1.1.2 Registers

2.1.2 Constants
2.1.2.1 Numbers
2.1.2.2 Character and String Constants
2.1.2.3 Symbolic Constants

2.1.3 Operators and Delimiters

2.2 Data Structure
2.3 Data Expressions
2.4 Statement Structures

3 THE STATEMENTS OF NORD PL

3.1 Declaration Statements
3.1.1 Data Declarations
3.1.2 Addressing Mode Specifications
3.1.2.1 Base Variables
3.1.2.2 Disp Variables

3.1.3 Symbolic Constants
3.1.4 Label Declarations
3.1.5 Subroutine Declarations
3.1.6 Program Structure

N D—60.047.03

Section:

3.2
3.2.1
3.2.1.1
3.2.1.2
3.2.1.3
3.2.1.4

3.2.2
3.2.3
3.2.4
3.2.5
3.2.5.1
3.2.5.2
3.2.5.3
3.2.5.4
3.2.5.5
3.2.5.6

5.1
5.2

6.1
6.2

7.1
7.2
7.3

8.1
8.2
8.3
8.4
8.5
8.5.1
8.5.2

viii

Executable Statements
Operators
Arithmetical Operations
Shift Operations
Logical Operations
The MIN and GOSW Operators

Double Quotation Marks
Reference of Elements of any Array
X-Relative Addressing
Control Statements
Unconditional Branch Statements
Subroutine Calls
Subroutine Exits
Conditional Branch Statements
Unconditional Loop Control
Conditional Loop Control

REAL TIME PROGRAMS

REENTRANT SUBROUTINES

Subroutines Callable from More RT Programs
Recursive Subroutines

COMMON DATA AREAS

Definition of a Common Area
Access of a Common Area

ADDITIONAL FEATURES

Commands
Conditional Compiling
In-Line Assembly Coding

USING THE COMP! LER

Preparing NORD PL Programs
Compiling NORD PL Programs
Assembling and Executing NORD PL Programs
NORD PL Listing with Octal Addresses
Diagnostic Messages
Diagnostic Messages from the Compiler
Diagnostic Messages from the Assembler

N D—60.047.03

Page:

3—14
3—14
3—16
3—18
3—18
3—-19

3—20
3—21
3—23
3—25
3~25
3—25
3—27
3—27
3~30
3—32

0
0

0
0

0
0

3
0

0
0

0
0

0
0

a
m

m
o

o
m

w
—

x

Section:

A.1
A.2

APPENDIXES

OPERATORS AND RESERVED SYMBOLS

Non—Alphanumeric EIements
Reserved Symbols

PROGRAMMER'S CHECK LIST

MODEL 33 ASR/KSR TELETYPE CODE (ASCII)
IN BINARY FORM

DEFINITION OF SOME MAC COMMANDS

ALPHABETICAL INDEX OF THE MANUAL

ND~60.047.03
Revision A

Page .'

1.1

lNTRODUCTlON

Computer programming languages are divided into three classes: assembly
languages, machine oriented languages and problem oriented languages.
This manual defines the machine oriented language NORD Programming
Language (abbreviation: NORD PL) running on the NORD~l and NORD—10
computers.

MACH/NE ORIENTED LANGUAGES

A machine oriented language is a medium level language standing between
the problem oriented languages (high level languages) and assembly code.
The syntax resembles that of ALGOL. However, the use is intended to be
like that of an assembler, because all facilities of the computer can be
reached:

1. The complete assembler instruction set with all addressing modes.

2. All registers.

3. All available memory location.

Comparing a machine oriented language to assembly code:

1. It is easier to write programs and the error checking can be more
extensive.

2. The programs will be more readable for others.

Comparing a machine oriented language to high level language:

1. A PL language will give more optimal object code, about the same
as for assembly code.

2- The programmer is not dependent on fixed calling sequences or data
structures.

One of the main applications of machine oriented languages is system
programming (operating systems, compilers), where efficiency as well
as readability is needed.

N 060047.03

1.2 PROPERTIES OF THE NORD FL

The NORD Programming Language is a language suitable for expressing
a large class of computer system processes like operating systems, com-
pilers and data networks. For instance, the SlNTRAN lll operating sys—
tem, the FORTRAN compiler and even the NORD PL compiler itself is
written in NORD PL.

Generally, it is recommended as an effective tool in the solution of al—
most any programming problem normally expressed in the MAC assem—
bly language.

The NORD PL is designed for the NORDJT and NORD-lO computers.
The object output is MAC assembler source code. Therefore, including
of assembly code sequences is very easy. All the debug facilities of MAC
are immediately available, including symbolic references to labels and
variables.

The statement set includes:

1. Declaration statements, with type specifications and data presetting.

2. Arithmetical statements, consisting of arithmetical/logical expressions
and assignments. Constant expressions are also included. These will
be evaluated at compile time.

3. Control statements, including:

GO unconditional branching
lF conditional branching
FOR loop control
WHlLE conditional loop control
CALL subroutine call

input/Output statements are not available in the NORD Programming Lan-
guage itself. Thus, i/O operations should be performed by means of MAC
monitor calls «a to the NORD PL program as normal assembler
statements starting with an asterisk (*). (See Sections 2.4% and 4.3.)
Additionally, the NOiilD Pl, compiler is supplied with a useful set of
commands, which may be inserted at any point of a program. These com—
mands inform the compiler about how to interpret the syntax of a pro-
gram, where to put the object program, etc. They are described in Sections
4.1, 4.2 and 4.3.

The compiler also includes conditional compiling (see Section 4.2).

ND-60.047.03

1.3

1—3

FORMAL/SM FOR SYNTACT/C DESCRIPTION

The syntax of the NORD Programming Language will be described with
the aid of a metalinguistic formalism similar to the one used in the defin—
ition of COBOL.

The brackets {} show that one of the alternative statement parts given
inside of these brackets should be chosen. A selection is obligatory.

The brackets [] show that the statement part given inside of these brac-
kets is optional.

Terms enclosed in the brackets < > are meant to be self-explanatory
and represent metalinguistic variables whose values are sequences of
characters.

These three bracket types are not used in NORD PL itself.

The three dots . . . denote that repetitions of the last statement part are
allowed.

Any mark in a formula which is not a metalinguistic variable, the three
dots or one of these brackets, denote itself.

ND-60.047.03

1.4 ENVIRONMENTS

The compiler needs about 6.5K of memory plus main symbol table (5
locations per symbol). The text is compiled in one pass.

The compiler can be run either as a freestanding system, under the T88
or under the SINTRAN ill operating systems.

ND—60.047.03

2.1

2.1.1

2.1.1.1

2.1.1.2

THE STRUCTURE OF NORD PL

BASIC ELEMENTS

NORD PL is built up from the following basic elements: identifiers, num—
bers, character and string constants, operators, delimiters and reserved
symbols.

Identifiers

An identifier is a string of digits and letters, the first 5 characters onlybeing significant. The rest will be regarded as a comment. At least one
of the 5 first characters must be a letter (not necessarily the very first).
An identifier may be used as the name of a variable, a label or a sym-bolic constant.

Example:

NEW, LOOP, lNT2, 1A, 450 SLC, J2, 1976 SALARY

RESERVED lDENTlFlERS

Some identifiers are reserved for Special use, as operators, statement sym—
bols or register names. Some Special characters are also used. A completelist is found in Appendix A2. Refer also to Section 2.1.1.2.

REGISTERS

The registers have fixed names:

Program counter
lndex register
T register
Accumulator
D register
Link register
Base register

AD Double accumulator
TAD Floating accumulator

One bit accumulator
One bit floating point overflow
One bit dynamic overflow
One bit static overflow
One bit carry
One bit multishift link
Zero register

w
ro

>
~

l>
<

T
J

o
g

o
o

o
N

x

N 0-60.04 7 .03

2.1.2

2.1.2.1

2.1.2.2

it the number 0 is found in an executable expression, it will be regarded
as the zero register, not as a constant.

Cons tan is

There are four different types of constants: numbers or numerical con-
stants, symbolic constants, character constants and strings.

NUMBERS

Numbers (also called numerical constants or constants) are either integers
or floating point numbers. The compiler operates either in decima/ mode
or in octa/ mode. in decimal mode, the compiler will normally regard
a string of digits as a decimal integer. it the string is immediately preceded
by a &, it will be an octal integer. in octal mode the digit string will be
octal in any case. Decimal/octal mode is set by commands (see Section
7.1). Initially, the compiler is in octal mode.

Floating point numbers have the same syntax as MAC floating point,
except that the sign # is used instead of E; besides the number must al—
ways start with a digit.

Example:

0.3 # ~33

CHARACTER AND STRlNG CONSTANTS

Character constants have the same syntax as in lVlAC. # # A puts the 7
bits ASCll equivalent of A right adjusted in a word, and # AB packs the
characters A and B into one word. The string has also the same syntax
as in MAC, i.e., it must be surrounded by simple quotation marks. The last
quotation mark will be regarded as a part of the string.

Example:

’ABCD’ will be packed as:

“T— ”T
C D
l

ND‘60.047.03

2.1.2.3 SYMBOLlC CONSTANTS

Identifiers may be declared as symbolic constants to represent certain
numerical or character values. Symbolic constants do not occupy any
memory space at run-time. See also Section 3.1.3.

2.1.3 Operators and De/imiters

Operators consiSt of letters or of special characters. Delimiters are Special
characters with a particular significance. A complete list is found in Apn
pendix A.

N D-80.047.03

2.2

2—4

DA TA STRUCTURE

Three data types are available.

1. integers (16 bits)
2. Double (32 bits)
3. Triple (48 bits)

In addition, the data type Real may be used. This type is equivalent to
Triple if 48 bits floating point format is used and equivalent to Double
if 32 bits floating point format is used.

These types can be used either as single variables or arrays. Pointers to
the actual variables and to arrays may also be declared.

All data must be declared before they can be used. However, the actual
location can be delayed, allowing, for instance, a data table to be placed
after the code using it.

Data locations or variables may get more than one identifier attached to
it. (See the last part of Section 3.1 .i .)

The addressing mode is defined by the context of the declaration.

Data locations may be initialized at compile time. Data may also be
allocated at compile time without getting any identifier attached to it.
(See Section 3.1.1.)

N D-60.047.03
Revision A

2.3 DA TA EXPRESSIONS

A data expression is evaluated at compile time. The operands consist of
constants and identifiers. If labels or variabies are used, their address values
will be used. The operators are:

+ Add
— Subtract
a. Multiply
\ Byte separation (equivalent to “*4008 + “)

The expression is evaluated strictly from left to right and all the arith~
metic operators have the same priority. lf a label or a reference of a
variable occurs, only + and — are allowed for the rest of the
expression.

Example:

NORD PL MAC equivalents:

1 + 2*10 30
l\1 401
A \ # # B (equivalent to # AB) # AB
5+2+ LABl —-VAR2 7+ LABl ~VAR2

Data expressions may appear in:

1. Declaration statements as initializations
2. Call statements as parameters
3. Executable statements as operands, surrounded by quotes (“)

lndiced variables, i.e., array identifiers or array pointer identifiers followed
by an index, included in paranthesis, may not appear in data expressions.
An indexed variable, must be represented by the identifier combined with
the operators + and — and prOper constants. (See the last example in
Section 3.2.3.)

ND—60.047.03

2.4 STA TEMENT STRUCTURES

A statement is normally terminated by a semicolon or a carriage return.
Using the command @lCR, it is possible to set the compiler in "ignore-
carriage return“ mode, so that the carriage return will be ignored. Then,
a statement can consist of several lines.

There is no use of parenthesis structure.

Examgle:

(The following might very well be a part of 3 NFL subroutinez)

A:=B=:X:=:D—T+P*VAR SHZ 4 SH ”~—2" SHR 10 SHL i /\ 377 \/D
XOR T BONE 3 BZERO l?

which is equivalent to:

COPY SB DA; COPY SA DX; SWAP SA DD; RSUB ST DA; RADD SP
DA; MPY VAR; SHA ZIN 4; SHA SHR 2; SHA ROT 10; SHA LIN 1;
AND (377; RORA SD DA; REXO ST DA; BSET ONE 36 DA;
BSET ZRO 170 DA

A comment begins with the cement sign (%). Then the rest of the line
will be ignored.

it a statement starts with an asterisk (*), the rest of the line is regarded
as MAC assembly code. These statements are passed on to the object out
put stream without the asterisk and without any error investigation.

it a statement starts with e circled elehe (6%), it is regarded as a command
to the camoilen See Sectiens 4.1, 4.2 and 4.3,

ND-60.047.03

3.1

3.1.1

THE STATEMENTS OF NORD PL

The NORD PL statements are divided into two classes: declaration state-
ments and executable statements.

DECLA RA T/ON STA TEMENTS

Declarations serve to define certain properties of the quantities used in
the program and to associate them with identifiers (names).

There are four types of declaration statements: data declarations, sym—
bolic constant declarations, label declarations and subroutine declarations.
With two exceptions mentioned in Section 3.1.4 and 3.1.5, declaration
statements may occur everywhere in a program, the main rule being that
the corresponding variables and symbols are referenced. Accordingly, it is
a good rule to make those declarations as soon as possible, either before
the subroutine declarations or immediately after a SUBR statement.

A symbolic name may not be declared twice, unless it appears as a local
variable or a local label in different subroutines.

Data Declarations

Variables (data) should be declared to be one of the types:

INTEGER l word
DOUBLE 2 words
TRIPLE 3 words
REAL 2 or 3 words

Type declarations have the following general form:

INTEGER <identifier>
DOUBLE L_../ <identifier>z=<expression
R EAL <identifier>=<identifier> ’ ' ‘ °
TRIPLE <identifier>=?

where <expression> must follow the rules given in Section 3.3.

In addition, the two optional declaration symbols ARRAY and POINTER
may be added.

The three basic data types may be elements of a one-dimensional array.

INTEGER ARRAY (0 ~00 words)
DOUBLE ARRAY (O —-oowords)
REAL ARRAY (O —oowords)

ND—60.047.03
Revision A

3—2

The array declaration has the following general syntax:

INTEG E R ; <identifier> I,<no. of elements>l [
DOUBLE ARRAY '<identifier>:= I<list of exoressions>l ; ' ' '
REAL <identifier>=<identifier> gL
TRIPLE <identifier>=?

Pointers to the variables may be declared:

INTEGER POINTER (“I word)

IVAR

Pointer

DOUBLE POINTER (I word)
REAL POINTER I1 word)

RVAR

Pointer

INTEGER ARRAY POINTER (1 word)
DOUBLE ARRAY POINTER (Tword)
REAL ARRAY POINTER (1 word)

A rray

Array
pointer 8

ND~60.047.03
Revision A

As to be seen from the above figures, the contents of a pointer is the ad-
dress of the first word of the variable to be pointed at.

A pointer occupies one word (16 bits) regardless of which type of variable
it points at. The different pointer declarations INTEGER POINTER, DOUBLE
POINTER, etc., describe the type of the variable addressed by the pointer.

The syntax is the following:

lNTEGER <identifier> A
DOUBLE [ARRAY] POINTER <identifier>2=<e><pression>I)
REAL <identifier>=<identifier>f
TRIPLE <identifier>=7 '
(Note: Pointer arrays do not exist in NORD PL.)

The different declaration types will modify the addressing mode. After
the declaration symbols, a list of variables can follow. The variables can
be initialized, either as default zeros, or to Specified values.

Example:

MAC Equivalents:

INTEGER INTI, INT2 INTI, O
INT2, 0

INTEGER TREz=3 TRE, 3
REAL FLX FLX,O;O;O;
REAL PI:=3.I415 PI, [3.1415
DOUBLE SYM, SY2=SYIVI,83 SYIVI,O;O

SY2=SYIVI
83,0;0

INTEGER POINTER PVAR:=VAR PVAR,VAR
INTEGER ARRAY [ARR (12) IARR=*; *+12/

REAL ARRAY FXIZO), FYl30) FX=*;*+20+20+20/
FY: *;*+30+30+30/

INTEGER ARRAY TEXT2=
’STRING’ TEXT, ’STRING’

Note the different meaning of the two symbols = and := in declarations.
= is giving the left side variable the same address as the right side variable.
:= is giving the value on the right side to the left side variable.

A declared entity may be initialized by several elements, divided by a
comma, the whole list enclosed in parentheses:

ND-60.047.03
Revision A

lNTEGER ARRAY AA:=(TRE,Pl AA,TRE
+ 1, 15) Pl + 1
lNTEGER ARRAY PARLlST:z 15
(LOGNO, AREA, "100“, "15”) PARLl, LOGNO

AREA
(100
(15

Each element may be a data expression.

Data may also be initialized with no name attached to it by using the
DATA statement:

Example:

DATA (44,8Y,5)

is equivalent to the three MAC statements: 44;SY;5.

The syntax is the following:

DATA (<list of expressions>)

where <list of expressions> contains expressions following the rules in
Section 2.3 and separated by commas.

The actual allocation of data may be delayed, so that the data are placed
after the code physically. Then, the variables are declared equal to quest/0n
mark the first time and later they are declared a second time.

Example:

lNTEGER ARRAY TAELE = .
SUBR S

RBUS
lNTEGER ARRAY TABLE HUGO)

Addressing Mode Specifications

The addressing mode of a variable is dependent on the context of the
declaration statement. lf nothing else is stated, a variable declared inside
a subroutine (between a SUBR and RBUS statement) is directly P-relative
addressed. it declared outside of a subroutine, then it will be indirectly
addressed it a variable is to be B~relative, its declaration statement must
be enclosed by a BASE-ESAB pair or a DlSP—PSID pair.

NEE—50.943103

3.1.2.1

All variables have an attribute determining the addressing mode. One and
only one of the following attributes may be chosen for each variable:
Global, Local, Base or Disp.

Global: Variables declared outside of SUB R—RBUS, BASE-ESAB and
DlSP-PSlD. Global variables are indirectly P~relative addressed.
Pointers may be declared as global variables, but then only their
contents may be accessed. It is m; possible to access another
variable through a global pointer because of the resulting ”double
indirect" addressing mode.

Local: Variables declared inside of SUB R-RBUS but outside of BASE—
ESAB and DlSP-PSlD. Local variables are directly P-relative
addressed.

Base: Variables declared inside of BASE-ESAB. Base variables are
B-relative addressed. (It is also possible to make them X-relative
addressed.)

D5593 Variables declared inside of DlSP-PSID. DiSp variables are B-relative
addressed. (It is also possible to make them X-reiative addressed.)

ln addition to the addressing attributes all identifiers have scope attributes
informing about where they are defined, i.e., where they may be referred
to. In respect to the scope attribute, all identifiers are either global or local,
thus, even base and disp variables, as well as symbolic constants and labels,
may be defined to be known globally or locally.

BASE VARlABLES

If the variables are static allocated, BASE may be used, followed by a
base~field identifier (a label).

The declaration of base variables has the following general form:

BASE <base-field identifier> <data declarations> ESAB

my;

MAC equivalents:

BASE BA BA=*+200
INTEGER BVARi,BVAR2 BVAR1,0

BVAR2,0
INTEGER POlNTER PSUBz=SUB PSUB, SUB

ESAB

Base variables are normally B—relatively addressed.

ND—60.047.03

3.1.2.2

Before accessing Base variables, the user must load the Beregister with the
value of the corresponding base field identifier. This may be done as fol-
lows:

A:=”BA“ =28

The instruction to get a BASE variable may be:

A:=BVAR1 LDA BVARi —— BA,B

DISP VARIABLES

If the variables are dynamic allocated, for instance, as variables in an ele—
ment of a data structure, DlSP should be used. DISP variables may not
be initialized.

The declaration of disp variables has the following general form:

<di3placement> “ ‘ \D'SP <disp-field identifier>[=<displacement>]_} <da‘fa dec'aratlonvi’sm
The most usual way of declaring DISP variables is as follows:

w

MAC equivalents:

DISP —~ 200
lNTEGER Di, D2 Dl=—200;D2=—177
INTEGER ARRAY DARR (10) DARR=~176
INTEGER ENDA ENDA=—-166

PSlD

The following example illustrates how the disp field identifier works.

Example:

DISP DV = 10
lNTEGER NlLS, PER

PSID

This statement sequence will define NlLS=10 and PER=ll. The PSlD
statement will change the value of DV (by compile time) from 10 to 12,
thus, if one now says

DISP DV
INTEGER EVA, BERlT

PSlD

N D-60.047.03

the definitions EVA = 12 and BERlT = 13 will be made. The last PSlD
statement will change the value of DV from 12 to l4.

ln this way, it is possible to ”continue” a DlSP field later on in the pro
gram. This may be useful if one wants to put the local variables of dif»
ferent routines into one global DlSP field.

DlSP variables are normally accessed through the B-register. lt is the user’s
responsibility to set the B-register to the proper value.

Note that DlSP variables in contradiction to GLOBAL, LOCAL and BASE
variables do not reserve any locations in the memory at compile time. They
are only used as symbols in the displacement part of an address.

Emmet

MAC equivalents:

INTEGER A,B } 8 A,0lNTEGER ARRAY C(10) % B,o
BASE BA c = *

INTEGER D g * +10/
INTEGER POlNTER E } B BA = * +200ESAB 0,0

SUBR RUT E,O
REAL F E F,0;O;O;
REAL ARRAY 6(5) } :5 o 2*
DISP —200 * +17/

DOUBLE H } a H W200
lNTEGER I % l: ~l76PSlD

RUT :

RBus

ND-60.047.03

Examples of the addressing of the global, local, base and disp variables:

Global:

MUL:

Local :

MUL:

Base:

MUL:

Disp:

INTEGER Ml,M2,RES
SUBR MUL
Ml >k M2 =: RES
EXIT
RBUS

SUBR MUL
INTEGER MI,M2,RES
Ml >l< M2 =: RES
EXIT
RBUS

SUBR MUL
BASE BA

INTEGER MI,M2,RES
ESAB
”BA" =: 8
MI * M2 =: RES
EXIT
RBUS

MAC equivalents:

M’l,0
M2,0
RES,0

MUL, LDA l (Ml
MPY l (M2
STA l (RES
EXIT

IFILL

Ml,0 ,' M2,0 ; RES,0
MUL, LDA Ml

MPY M2
STA RES
EXIT

IFILL
IKILL M1 M2 RES

BA = as +200
M1,0
M20
RESO
LDA (BA
COPY SA DB
LDA M1 — BA,B
MPY M2 — BA,B
STA RES —— BA,B
EXIT

IFILL
IKILL M1

MUL,

M2 RES

The calling subroutines define the B~reglsteh

MUL:

SUBR MUL
DISP 0

INTEGER MI,M2,RES
PSID
MI * M2 =: RES
EXIT
RBUS

MI=0
M2=l
RES=2

MUL, LDA MI,B
MPY M2,B
STA RES,B
EXIT

IFILL
)KILL Ml M2 RES

For a closer study of the addressing modes, consider Table 3.1.

N nan mi '7 no

3—9
90

m
fg

.
v44

4
<04

v4
<04

m
~v4

<04
m

4<m41v4
<04

:v4:n“<
4mmm4:

X
4V4

4
“404

X
4m

4V4
4

“404
X

.m
_<m

lv4
4

H404
4X4v4uu0<h

v4
mm.4.7440n4

><m
m

<
4<m4m

v44
4

<04
v4

<04
m

4V4
<04

m
4<m4lv4

<04
:v4:un<

4mmm444
v4

4
“404

m
4V4

4
”404

m4
4<m

lv4
4

H404
4X4v4nn0<k

v4
mm4.4.Z40n4

4<mm
v44

<04
v44

<04
4

<04
v:

<04
:v4:n“<

v44
X

44
“404

v:
X

44
mm4

X
‘m

~v4
”404

X
.m

4<m
lv4

H404
4X4v4nu0<.4.

4o:v4
><m

m
<

4<m44u4
v44

<04
v44

<04
4

<04
v44

<04
:v4:nu<

v44
4

“404
v4

”404
m

4V4
“404

m
<m4lv4

“404
v4u40<14.

v4
4<m4m

v44
4

<04
v4

<04
m

~v4
<04

m
.<m

lv4
<04

:vTM
H<

4334:
X

.v4
4

004
X

4m
.v4

4004
X

.m
.<m41v4

4004
4X4v4un0<

v4
m

m
FZ40n4

><m
m

<
m

4m
DO0

v44
4

<04
v4

<04
0

.v4
<04

m
~<m4lv4

<04
:v4:uu<

4mmm444
v4

4
004

m4
.v4

4
<04

m
4<m

|v4
4004

v4u40<
v4

”404.2494
M

40300
v44

<04
v44

<04
v:

<04
v44

<04
:v4:nu<

v44
X

44
004

v:
X

.4
004

X
.m

\v4
004

X
.m

4<m41v4
004

4X4v4u40<
402M

><m
m

<
m4m44400

v44
<04

v44
<04

v:
<04

v:
<04

:
:n”<

v44
4

004
v4

004
0

.v4
004

m4<m41v4
004

v4uu0<
v4

m
4m

DO0
coo:

<04
:ooopznu<

AREA
V4>

mmpl
V

v44
coo:

<04
coorun<

.4.Z<.4.m
ZOo

m
wOm

FZ4
4V

<<m
:vzun<

K
N

P
W

m
N

P
L

4V
<<w

¢n<
.4,Z<.4.m

ZOo
$0004.24

v44
4

<04
v4

<04
m

~v4
<04

m
.<m

iv4
<04

:v4:uu<
4mmm444

X
4V4

4
<04

X
.m

‘v4
4

<04
X

~m4
~<m

lv4
4

<04
4X4v4nn<

v4
m

wFZ40n4
><m

m
<

«40094.24
v44

4
<04

v4
<04

m
.v4

<04
m

.<m
lv4

<04
:v4:u”<

4mmm444
v4

4
<04

m
4V4

4
<04

m
4<m4|v4

4
<04

v4uu<
v4

mm4.4.Z40n4
$0004.24

v44
<04

v44
<04

v44
<04

v44
<04

:v4:u4<
v44

X
:4

<04
V:

X
44

<04
X

40
4V4

<04
X

4m
.<m

.lv4
<04

4X4v4nn<
40:

v4
><m

m
<

”$4094.24
V444

<04
v44

<04
v44

<04
v44

<04
:v4:u”<

v44
4

<04
v4

<04
m

4V4
<04

m
<

l4
<04

v4nn<
v4

”$0014.24

4<m
O

4O
4<UO

4
n4m40

ww<m4

Uwm4004>4
024m

m
m

m
00<

ND~60.047.03

3—10

v:
<04

v:
<04

:v*:nu<
v:

~
0.5:.

v.
as?

x
00

A
9

:1
5

5
i

.3
m:

mm:
:vfm

‘M
uD

/E
.

Saw:
m

oi.
id

le
/u

h
FZ<Fm

ZO
U

J<m
m

4<m
040

4450..
mwa

wm<m

.Um
acficoo

gum
Sam...

ND-60.047.03

3.1.3

3»—’i’i

Symbo/ic Constants

identifiers may be defined to be symbolic constants, using the SYMBOLdeclaration statement, which has the general format:

‘ <identifier>)K W].SYMBOL <idem:ifier>=<expression> .f— H
where <expression> may be a number within the interval [—2008, + 1778]
a character constant, a symbolic constant already defined, or another dataexpression following the rules described in Section 2.3.

I

An <identifier> listed in a SYMBOL declaration statement will adopt thevalue evaluated in the corresponding <expression>. An <expressi0n> isevaluated at compile time.

If an <expression> is not given for the first <identifier> in the list, thevalue zero is assigned to it. Other <identifier>s without a corresponding
<expression> will represent a value 1 greater than the preceding value.

Example:

MAC equivalents:

SYMBOL L200=20Q L200=200
L210=L200+10 L210=L200+10

A SYMBOL declaration does not allocate any memory space. It is notpossible to change the value of a symbolic constant during run-time.

Example;

MAC equivalents:

SYMBOL SO, Si, 82, 83 SO = O
81 = l
82 = 2
83 = 3

SYMBOL CHA = # # A, CHB, CHC CHA = # # A
CHB = CHA + l
CHC :1 CH8 + 1

ND—60.047.03

3—12

Label Declarations

A label is an identifier (see Section 2.1.1) used as a name of a location
in the memory containing an executable statement. A label declaration
has the general form:

<label>: [<executable statement>]

Label declarations may only occur inside of subroutines.

There are two types of labels; entry points and local labels.

Entry points are global and may be referenced from outside of the sub-
routine where they are declared. Entry points have to appear in a SUBR
statement and may only be declared once in the same program.

Local labels will be killed at the end of the subroutine in which they are
declared and may, thus, only be referred to from inside that subroutine.
An identifier may be declared as a local label in more than one subroutine
without confusion, but only once within one actual subroutine.

Labels may be referenced in GO, GOSW and CALL statements.

Subroutine Declarations

A subroutine statement starts with the symbol SUB R, followed by a list
of entry points. The entry points will be global labels. Other labels and
variables declared after the subroutine heading will be killed at the end
of the subroutine. The end is marked by the symbol RBUS.

The RBUS statement provides the two MAC assembler commands)FILL
and)Kl LL.

Example:

SUBR ENTl, ENT2

ENTl:

ENTZ:

EXlT
RBUS

ND—60.047.03

3.1.6

3—13

It is the programmer’s responsibility to provide a return jump from the
subroutine (using EXIT, EXlTA or (30).

Example: (Saving of the link register in subroutines.)

SUBR RUT
lNTEGER POINTER RETUR

RUT: A:=L=:”RETUR” COPY SL DA
: STA RETUR

GO RETUR JlVlP l RETUR
RBUS

There is only one level of subroutine declarations, Le, a subroutine cannot
be declared inside of another subroutine.

It is, however, possible to call subroutines from another subroutine and
in this manner to construct a nesting of subroutine calls up to any level
wanted. (See also Section 3.2.5.2.)

Program Structure

Since the NORD-l/lO computers have direct addressing areas of 256 words,
the programs will usually be divided into small subroutines, Therefore,
NORD PL has a subroutine feature, where labels and variables defined out-
side the subroutine are global.

There is only one level of subroutine declarations; it is not possible to
declare a subroutine within another subroutine.

E_xeme|_e:

Global data Subroutine l Subroutine 2

I l g ‘l , ll | l 7
l ‘l T l
Local Sub- Local Sub-
data routine data routine

code code

N 060,047.03

3.2

3.2.1

EXECUTA BLE STA TEMENTS

Executable statements are divided into arithmetical statements and control
statements.

An executable statement can only appear within a subroutine. This means
that any NORD PL program should contain at least one subroutine. The
entry point of this “main” subroutine is then considered the starting point
of the program.

in general an executable statement specifies a series of operations between
the primary operand, which is a register, and different secondary operands,
which can be registers, variables or constants. if the expression starts with
a register, this register will be the primary operand throughout the expres—
snon.

Example:

NORD PL lVlAC equivalents:

A+Vi+55=zV2 ADD Vi
AAA 55
STA V2

X+5=:L—1O AAX 5
COPY SX DL
AAAX —10

in the first example above the A register is the primary operand, the
identifiers V1, V2 and the numerical constant 55 are secondary operands.
In the second example the X register is the primary operand, the L register
and the numerical constants 5 and 10 are secondary operands.

The operations are executed strictly from left to right, with no implicit
priority.

Operators

Arithmetical:

2: Load
=2 Store
:=: Swap
— Subtract
+ Add
* Multiply
/ Divide (reals only)

ND-60.047.03

Shift:

SHZ
SH
SHR
SHL

Logical:

/\
\/
XOR

I

BONE
BZERO

Special Unary:

3—15

Shift with zero end input
arithmetical shift
rotational shift
shift with link end input (bits shifted into the register
are taken from the M bit in the status register, bits
shifted out are fed to M. This corresponds to an extended
17 bits rotational shift.)

And
Or
Exclusive or
One's complement
Two’s complement
Set bit to one
Set bit to zero

MlN Memory increment (MIN instruction)
GOSW Switch

Example:

NORD PL MAC equivalents:

A+4 GOSW L1, L2 AAA 4
RADD SA DP
JMP Ll
JMP L2

TSHZ—2 SHT ZlN SHR2

A NORD PL statement (or expression) may not start with any operator
except for the MIN and GOSW operators.

An expression may also start with a constant, a symbolic constant or a
variable. Then the A, A0 or TAD register W/// be the primary operand,
if the variable is an integer, double or triple. The first operation is then
assumed to be a load.

ND-60.047.03
Revision A

3.2.1.1

3—16

Example:

If IX, IY and IZ are integers, then the expression: IX + IY = :IZ is equivalent
to A:=IX + IY = :IZ.

NORD PL MAC equivalents:

IX+IY=2IZ LDA IX
ADD IY
STA IZ

IX SHR 2 LDA IX
SHA ROT 2

The NORD Programming Language is to be considered as a convenient
simplification of the MAC assembler language. Therefore, generally the
same rules which in lVIAC apply to the use of registers and to all the
operations mentioned in this section, also constitute severe restrictions
in NORD PL.

Two operators may normally not appear next to another without an open
and inbetween them. For exceptions, see Sections 3.2.1.1 and 3.2.1.3.

ARITHIVIETICAL OPERATIONS

The arithmetical operations have the general form:

I<primary operand>] <operator> <secondary operand>

The <primary operand> may be omitted when it is given by a previous
operation in the same statement.

The := (load) operator may have as its <primary operand> any register
mentioned in Section 2.1.1.2 except for the zero register. When the
<primary operand> is a 1 bit register only the constants I, ”0“, ’“,1
or a symbolic constant which is set equal to 1, or the same symbolic con
stant in quotes are allowed as <seconclary operand>.

When the <primary operand> is the A, B, T or X register, the <secondary
operand> may be a constant or a symbolic constant (see Section 3.1.3)
or a quoted expression. The B register only accepts values within the range
of —200, +177.

The =:(store) operator may have as its <primary operand> any register
mentioned in Section 2.1.1.2, except for the 1 bit registers,

ND*60.047.03

The loading/storing of a 16 bit register into/from any other 16 bit register
is legal and will be compiled into a COPY instruction.

An integer variable may only be loaded/stored from/into a memory loca—
tion declared as integer into/from the A register.

A double variable may only be loaded/stored from/into a memory loca—
tion declared as double (or real if 32 bits floating point is used) into/from
the AD register.

A triple variable may only be loaded/stored from/into a memory location
declared as triple (or read if 48 bits floating point is used) into/from the
TAD register.

The :=: (swap) operator may only have 16 bit registers as <primary
operand> and <secondary operand>.

The + (add) and —— (subtract) operations may only be used on integer and
triple (real) variables it 48 bits floating point format is used, and only on
integer and double (real) variables if 32 bits floating point format is used.
When the D, L or P register is the <primary operand>, the <secondary
operand> should be a register. When the B, T or X register is the
<primary operand>, the <secondary operand> should be a register, a
constant or a symbolic constant or a quoted expression with a value
with the interval ~200, +177.

it is necessary to distinguish between the different interpretations of the
character ~. Primarily, this character is interpreted as the subtrack oper-
ator, which is normally compiled into a SUB instruction. (may also
become an AAA, AAT, AAX or a RSUB instruction.) But the character
— also denotes the negative sign of a numerical or symbolic constant.
This case represents an exception in which the character

- is allowed
to appear directly after a := operator (e.g. A:=—5).

The third interpretation of the character ~ is explained in Section 3.2.1.3.

The character + may only be used as the sign of a constant, of a symbolic
constant or of a variable when it appears inside of quotes (9.9). T SH ”+2“,
see Section 3.2.2). Otherwise, it is always interpreted as the add operator
which is normally compiled into the ADD instruction. (May also become
an AAA, AAT, AAX or RADD instruction.)

A * (multiply) operation may only be performed on constants, symbolic
constants, integer and real variables. The multiply operation does not
apply to registers. it is compiled into the lVlPY or FlVlU instructions. The
RlVlPY instruction is only available as a MAC statement starting with an
asterisk.

ND-60.047.03
Revision A

3.2.1.2

3.2.1.3

3—48

A / (divide) operation only applies to real variables. It is compiled into
the FDV instruction. The RDIV instruction is only available as a MAC
statement starting with an asterisk.

SHIFT OPERATIONS

The shift operations have the general form:

[<primary operand>) <operator> <number of shifts>

<primary operand> is restricted to the A, D, T and AD registers and may
be omitted when the register to be shifted is given by some previous oper-
ation in the same statement (see examples in Section 3.2.1).

<number of shifts> may be a constant, a symbolic constant or a quoted
expression. A positive value will give left shifts, a negative value will give
shifts to the right.

LOGlCAL OPERATlONS

The logical operations /\ (and), \/ (or) and XOR (exclusive or) have the
general form:

[<primary operand>] <operator> <secondary operand>

The <primary operand> may be any 16 bit register and may be omitted
if it is given by some previous operation in the same statement. <secon-
dary operand> may be any 16 bit register. These operations are then
compiled into the RAND, RORA and REXO instructions.

lf the A register is the <primary operand>, the / \ and \/ operators may
also have a constant, a symbolic constant, a quoted expression or an
integer variable as the <secondary operand>. They are then compiled
into the AND and ORA instruction.

The ~, (one’s complement) and the — (two's complement) operators have
the general form:

[<primary operand>] <operand>

The operators are unary, i.e., they only have one operand that always is a
register. This <primary operand> may be omitted when it is given by
some previous operation in the same statement. These operators may
proceed or succeed other operators.

N D-60.047.03
Revision A

3.2.1.4

3—19

Example:

NORD PL MAC equivalents:

A— COPY DA SA CM1
A-+T COPY DA SA ClVl2

RADD ST DA

A—12-—,:=——5 AAA ~12
COPY DA SA CM2
COPY DA SA ClVli
SAA 177773

The BONE (set bit) and BZERO (clear bit) operations have the general
form:

[<primary operand>] <operator> <bit number>

The <primary operand> may be any 16 bit register and may be omitted
when it is given by some previous operation in the same statement. <bit
number> may be a constant, a symbolic constant or a quoted expression.

THE MIN AND GOSW OPERATORS

The MIN operator has the general form:

MIN <integer variable>

and is compiled into the MIN instruction. The <integer variable> may be
any variable declared as integer. The MIN operator increases the value of
the <integer variable> by 1. If the result is zero, the next instruction is
skipped, otherwise, it is executed.

The GOSW operator has the general form:

[<primary operand>] GOSW <Iist of labels>

The <primary operand> may be any 16 bit register and may be omitted.

If a <primary operand> is not given by a previous operation in the same
statement, the A register is considered as default register. <Iist of labels>
is the names of any number of labels separated by commas.

The operation is compiled into a RADD instruction with the primary
operand as source register and the P register as destination register, fol-
lowed by a number of JMP instructions corresponding to the labels given
in the list.

ND—60.047.03
Revision A

3.2.2

Example:

NORD PL

MIN IVAR

GOSW L1, L2, L3

X GOSW L1, L2

GOSW FAR L1, FAR L2

Double Quotation Marks

MAC equivalents:

MIN IVAR

RADD SA DP
JMP L1
JMP L2
JlVlP L3

RADD SX DP
JMP L1
JMP L2

RADD SA DP
JMP I (L1
JMP I (L2

If a variable is included in quotes ("I, it is said to be referenced. Then,
it is accessed one level less indirect than otherwise. This means that a
referenced pointer will be accessed as a variable, and a referenced variable
or label will give the address value. A constant will have the same meaning
whether it is referenced or not.

Inside the quotes even whole data expressions can be placed (see Section
2.3). Then all variables will be represented with their address values (even
the pointers). Quoted expressions are evaluated at compile time.

Example:

NORD PL

INTEGER TRE:=3
INTEGER POINTER PP2=TRE
A:=“3”
Az=3
A:="TRE“
AI=TRE
A:=”PP“
A2=PP

ND-60.047.03

MAC equivalents:

SAA 3
SAA 3
LDA (TRE
LDA TRE
LDA PP
LDA I PP

3.2.3

3—21

Examme

Let PNTi be an integer pointer and V1 an integer variable.

NORD PL MAC equivalents:

PNTl LDA l PNT1
"PNT1” LDA PNTl
"PNTHO" LDA (PNT1+O
V1 LDA V1
"V1” LDA (Vl
“PNT1—V1+5” LDA (PNTi—V1+5

The number 0 will be referred to as the zero register. If a constant with
value zero is wanted, it should be surrounded by quotes (“).

Example:

NORD PL lVlAC equivalents:

O=:T COPY DT
0=:VAR STZ VAR
”0“=:VAR SAA 0; STA VAR
A BONE ”O“ BSET ONE 0 DA
ASHZZ+5 SHAZlN2

AAA 5
A SHZ ”2 + 5” SHA ZlN 7

Reference of Elements of any Array

Elements of an array are referred to by the name of the array, followed by
a left parenthesis followed by an expression followed by a right paranthesis:

AR RAYNAME <(expression)>

The <expression> may consist of the name of a 16 bit register, an integer
variable, an integer pointer, a symbolic constant, a numerical constant
or a quoted expression. No operators (+, —, * or /) are allowed inside the
parenthesis except when the expression is surrounded by double quotation
marks. A constant should, therefore, be positive or zero without sign, but
the value referred to by an integer variable, an integer pointer or a symbol
might as well be negative.

N D—60.047.03

3—«22

Example:

Let ARR be an array, lVAR an integer, IPOlNT an integer pointer and
SYMB a symbolic constant. The following statements are now legal:

ARR (A)
ARR (X)
ARR (lVAR)
ARR (lPOlNT)
ARR (SYMB)
ARR (5)
ARR (”2+2—SYMB”)
ARR ("lVAR")

The X-register is always used to keep the value of the index, i.e. the ex—
pression inside the parenthesis is evaluated and loaded to the X—register.

There is no control whether the value of the index given is ranging out—
side of the declared number of elements in the array.

It the array is declared as TRlPLE ARRAY or DOUBLE ARRAY 3 or 7
words respectively are ioeded starting with the 16 bit word referred to
by the index. The programmer is himself responsible for making the
index point to a proper loeation:

Example:

If the first element of the array declared as TRIPLE A RRA Y ARR { 7 000)
is wanted, a correct reference is ARR {0). The second element could be
referred to by ARR (3), the third by ARR (6) and the fourth by ARR
(7 7).

Elements of an array may also be accessed through an array pointer. Con~
sider the following example:

TRIPLE ARRAY RA’l (5)
TRlPLE ARRAY POlNTER RAPl:=RAi, RAP2
”RAi + 3" =: “RAP2”
TAD1=RAP1 (O) + RA '3 (3) =2 RAP2 (11)

The two first elements of the triple array RAi wiil be added together and
stored into the last (fifth) element. The last statement in the above exam-
ple is equivalent to RAi (0) + RAl (3) =:RAl (14)

Note that when referring to an array through an array pointer, the ap-
propriate index of the array pointed at must be included in parenthesis
and succeed the array pointer identifier. The syntax in this case is just
the same as when using the array identifier itself.

ND~60.047.03
Revision A

3—23

X— Relative A ddressing

Variables declared in a DlSP— or BASE-field (and only those) can be forced
to be X-relatively addressed instead of B-relatively addressed. Then, the variablemust be preceded by an X value denotation and a period (.).

Example:

NORD PL MAC equivalents:

INTEGER START START, O
DlSP 5 DD = 5
lNTEGER DD, ELl, VAL ELl = 6
PSID VAL = 7
X.DD LDA DD,X

START.DD LDX START
LDA DD,X

START.EL1.VAL LDX START
LDX EL1,X
LDA VAL,X

This access method is useful for addressing data structures. Starting at
the first period, the value represented by the identifier preceding the
period is loaded to the X register. Values represented by identifiers be—
tween two periods are successively loaded into the X-register, using X—
relative addressing. The value represented by the last identifier is then loaded
into the primary register using X-relative addressing. There is no limit for
the number of periods in one such expression.

Integer pointers may only occur before the first period. Other pointers
are not allowed unless they are ”quoted”. lndexed variables, i.e., arrays
or array pointers succeeded by an index included in paranthesis may not
appear in an expression using X—relative addressing.

Double and real variables may only appear after the last period.

Register names may only occur before the first period. Quoted expres—
sions are legal.

Examples:

Consider the following list of data elements each containing the five in-
tegers NEXT, PRIOR, D1, D2 and D3.

N D-60.047.03

L. 8.. Eur/W I 0 NEXT
”'0”" CAT-” ll;"""""""" Ci; “““ PRIOR
"""""""""""""""""""""""""""""" 01

D2
D3

NORD PL MAC equivalents:
% SUBROUTINE FINDING THE
% WORD DI IN THE ELEMENT
% POINTED AT BY THE
% A-REGISTER
% D1 IS RETURNED IN THE
% T~REGISTER
DISP O

INTEGER NEXT,PRIOR;D1,D2,D3
NEXT=O ; PRIOR =1;

PSID DI=2 ; D2=3 ; D3=4,'
SUBR RUTT

RUTT: T:zA.DI RUTI, COPY SA DX
EXIT LDT D1,X
RBUS EXIT

% SUBROUTINE FINDING D3 IN THE NEXT ELEMENT
SUBR RUT2

RUT2: T:=A.NEXT.D3 RUT2, COPY SA DX
EXIT LDX NEXT ,X
RBUS LDT D3, X

EXIT

%SUBROUTINE FINDING D3 IN TWO
% ELEMENTS IN FRONT OF THE ELEMENT
% POINTED AT BY THE A—REGISTER:
SUBR RUT3

RUT3: T:=A.PRIOR.PRIOR.D3 RUTS, COPY SA DX
EXIT LDX PRIOR,X
RBUS LDX PRIOR,X

LDT D3,X
EXIT

% SUBROUTINE FiNDING D2 IN THE
% LAST ELEMENT OF THE LIST. THE
% A-REGISTER IS INITIALLY POINTING
% TO A CASUAL ELEMENT.
SUBR RUT4

RUT4: IF A.NEXT > <0 GO RUT4
T:=X.D2
EXIT
RBUS

N 060.047.03

3.2.5

3.2.5.1

3.2.5.2

Con trol Sta tements

The control statements include unconditional and conditional branching,unconditional and conditional loop control and subroutine calls.

UNCONDlTlONAL BRANCH STATEMENTS

The GO statement is used for unconditional branching. lt consists of the
symbol GO followed by a label or a pointer.

Examples:

MAC equivalents:

lNTEGER POINTER RET1=RETX RET, RETX
LL: GO RET LL, JlVlP l RET

GO LL JlVlP LL

GO ENTX % EXTERNAL JlVlP l (ENTX
% ENTRY POINT

If a subroutine is long, it can be useful to force a jump to be indirect, as
not to exceed the displacement range. This can be done by placing the
symbol FAR after GO.

Example:

lVlAC equivalents:

GO FAR LL JMP l (LL

See also the GOSW operator in Sections 3.2.1 and 3.2.1.4.

SUB ROUTINE CALLS

The simplest form of a subroutine call is the symbol CALL followed bya subroutine entry point, a pointer or a local label. If it is not yet defined
it is assumed to be an entry point of a succeeding subroutine. The para-
meters can be transferred by the registers.

I

The simple CALL statement can also be followed by a parameter list,
being equivalent to the data list of the DATA statement. The compilerlays out the parameter addresses after the subroutine jump.

ND-60.047.03

Examples:

INTEGER POINTER PNTR:=SUBO
CALL SUBI
CALL PNTR
CALL SU82 (VI, 8X2, WIVI)

MAC equivalents:

PNTR, SUBO
JPL I ISUBI
JPL I PNTR
JPL I (SUB2
VI
SX2
WM

Parameters may also be transmitted, for instance, through a global base
pointer:

NORD PL

BASE BA
INTEGER POINTER GP
ESAB

SUBR MAIN
INTEGER PARI,PAR2
MAIN: “BA" = :B

”PARI”=:”GP”
CALL RUT

”PAR2”::IIGP“

CALL RUT

RBUS
RUTzSUBR RUT

GP + 3 ’"' 4 = 2GP
EXIT
RBUS

ND-60.047.03

MAIN,

IFILL
IKILL

RUT,

MAC equivalents:

BA = * +200
GP,O

PARI,O; PAR2,0
LDA IBA
COPY SA DB

LDA IPARI
STA GP—BA,B
JPL | (RUT

LDA (PAR2
STA GP»BA,B
JPL I (RUT

PARI, PAR2

LDA I GP—~~BA,B
AAA 3
MPY (4
STA l GP~BA,B
EXIT

3.2.5.3

3.2.5.4

SUBROUTINE EXITS

Return from subroutines can be performed by EXIT (which is compiled
to EXIT) or EXITA (which is compiled to EXIT ADI). If these means
for subroutine return are used, the programmer should insure that the L
register contents have not be destroyed, for instance, by a subroutine call
within the subroutine. When parameters are given in the CALL statement,
he should also insure that the L register is correspondingly increased
before an EXIT statement is given.

CONDITIONAL BRANCH STATEMENTS

The IF statement has the general form:

IF <conditions> THEN <statements> [ELSE <statements>] Fl

The ELSE part may be omitted.

Between IF and THEN there may be several conditions delimited by the
OR and AND symbols. The conditions are evaluated from left to right.
If a condition followed by AND or THEN is not true, the statements
after THEN are bypassed. If a condition followed by OR or THEN is
true, the statements after THEN are executed. Otherwise, more con-
ditions will be tested.

There are two types of conditions: relations and bit tests.

A relation consists of two executable expressions with a relational opera—
tor between them:

> Greater
< Less
= Equal
>= Greater or Equal
<= Less or Equal
> < Not Equal
>> Absolute greater
<< Absolute less Not on
>>= Absolute greater or equal NORD-l
<<= Absolute less or equal

Example:

IF A<VAR OR VAR2>=VAR3 AND X> <A, THEN GO RET ELSE
A=:B Fl

ND~60.047.03
Revision A

3~28

If the first element of the first expression in a relation is a pointer, a
variable or a constant, the A, AD or TAD register is considered as the
primary register.

If the first element of the second expression in a relation is an integer
pointer, an integer variable or a constant, the T register is considered
as the primary register. This means that the relation:

IF VARI=VAR2 THEN is equivalent to

IF A:=VAR1=T:=VAR2 THEN

both VARi and VARZ should be integers or integer pointers.

In a relation, the two expressions are, normally, evaluated and loaded into
the A and T register before the actual comparison is made according to
the given relation. The exception is when the second expression is equal
to zero, i.e., in this case, the T register is not used (example below).

An expression may be empty. If it is, the present value of the A or T
register will be used.

IF > THEN is equivalent to
IF A> THEN...

This means that a construction like this is possible.

IF VARI=4 OR=6 OR=7 THEN... which is equivalent to
IF A:=VARi=4 OR A=6 OR A=7 THEN...

If the first expression is of type real, the second must be equal to zero
because, in this case, the TAD register is used for the first expression.

It is also possible to comparelabsoiute values,,by a subtraction and carry
test. Then, the two relational operators may be used:

<< Absolute less
>>= Absolute greater or equal

In these two cases, one of the expressions should be equal to zero if a
carry test is wanted. On NORD-l , this is the only way to compare absol-
ute values.

Examples:

NORD PL MAC equivalents:

IF VAR—D<VAR2 THEN... LDA VAR
RSUB SD DA
LDT VAR2
SKP IF DA LST ST
JlVIP BYPAS

ND<60.047.03
Revision A

3—~29

NORD PL MAC equivalents:

lFA+ lO=OTHEN... AAA 10
JAF BYPAS

lFA—— LLlM>>=0THEN SUB LLlM
BSKP ONE SSC
JMP BYPAS
(NO RD-i version)

The purpose of the last example is to examine whether the absolute valueof A is greater than or equal to the absolute value of LLlM or not!

A condition may be a bit test.

If the bit to be tested is one of the single bit registers, then the test isperformed to check whether this bit is equal to i. The condition may beinverted by placing the symbol NBlT after the register specification.

Examples:

NORD PL MAC equivalents:

lF K THEN.... BSKP ONE SSK
JMP BYPAS

lF M NBlT THEN... BSKP ZRO SSM
JMP BYPAS

A bit in the general registers can also be specified. An expression deter—mines the register. Then one of the symbols BlT or NBlT selects 1 or Oas true. At last a constant determines the bit number.

Example:

MAC equivalents:

IF T BlT 7 THEN... BSKP ONE 70 DT
JMP BYPAS

lF NBlT 1 THEN BSKP ZRO 10 DA
JMP BYPAS

The construction THEN GO <label> Fl may be abbreviated to GO <label>.

For instance,

lF A<O GO ERR

is equivalent to lF A<O THEN GO ERR Fl

MAC equivalent: JAN ERR.

ND-60.047.03

3.2.5.5 UNCONDlTlONAL LOOP CONTROL

The FOR statement is used for iterative purposes. Between FOR and D0
are the iteration specifications. Between DO and OD are the statements
to be executed.

The general version has the form:

FOR <control expression> [[STEP<step count>] TO <limit expression>i
DO <statements> OD

If the <control expression> explicitly specifies a primary register, this
register will be used as control register for the loop counting. l.e., the
programmer must himself save the contents of that register at the begin—
ning of the loop if he wants to use it for other purposes, and then load it
again at the end of the loop.

lf the <control expression> starts with a constant, the A register will be
taken as primary register for the expression and used as control register
for the loop counting.

if the <control expression> starts with an integer variable, the A register
will be taken as primary register for the execution of this expression, but
the integer variable will be used as control variable for the loop counting.
l.e., the A register may be used for other purposes within the loop. Note,
however, that the A register is loaded again with the contents of the in—
teger variable and increased by the step count at the end of the loop so
that the “user contents” are lost from one loop execution to another.

The <step count> is a constant defining the step size. STEP <step count>
may be omitted, then assuming 1 as a default step.

lf the <limit expression> does not specify a primary register, the T register
will be the primary register. In any case, if a <limit expression> is specified
it will always be evaluated again and compared to the control value BEFORE
each execution. If the limit is exceeded, there will be no more executions.

Example:

FOR X:=VAR STEP 3 TO 50 DO A + ARR(X) OD

MAC equivalent:

LDX VAR %SET lNlTlAL VALUE
NEXT, SAT 50

SKP IF DT GRE SX %TEST LllVllT
JMP BYPAS
ADD l (ARR,X
AAX 3 %STEP CONTROL VAR
JIVIP NEXT

ND-60.047.03

3—31

Example:

lVlAC equivalents:

FOR J TO T DO CALL lNCR OD LDA J
NEXT, SKP lF DT GRE SA

JMP BYPAS
JPL l (INCR
LDA J
AAA 1
STA J
JlVlP NEXT

BYPAS,

The statement part

STEP <step count> TO <limit expression>

may only be omitted in two special cases. ln both cases the loop test
is exceptionally placed at the end of the loop:

1. A single variable between FOR and DO:

Example:

lVlAC equivalents:

FOR VAR DO OD NEXT,

lVllN VAR
JlVlP NEXT

This means that if the control variable contains a negative number
before entering FOR, this will be the number of executions. The
loop will in this case be executed at least once.

An X-expression between FOR and DO:

Example:

lVlAC equivalents:

FOR X2=~5 DO OD SAX ~5 %5 EXECUTIONS
NEXT,

JNC NEXT

The loop will, in this case, be executed at least once.

ND—60.047.03

3.2.5.6

The loop can also start with just a single DO. Then there will be
an unconditional jump back.

Example:

MAC equivalents:

DO OD NEXT,

JMP NEXT

In this case, there is no loop test at all and the loop must be left
by means of an IF statement or a GOSW statement somewhere within
the loop.

Example:

Two similar methods for writing loops:

FOR A STEP 2 TO T DO.........OD

is equivalent to

FORLO: IFA<=TTHEN

A+2
GO FORLO
Fl;

CONDITIONAL LOOP CONTROL

The WHILE statement has the general form:

<5tatements> WHl LE <conditions>
DO <statements> WHILE <conditions>‘<statements> OD

WHILE <conditions> <statements>

<conditions> may be re/az‘ions or bit tests and must have the same syn-
tax as in the IF statement. In a relation, the A and T registers are nor~
mally used to perform the comparison.

At least one of the two <statements> parts should be included. Each time
the WHILE <Conditions> are reached they are evaluated. If the result is
“false” a jump to the next statement after OD is performed. If the result
is ”true“, the <statements> between WHILE and OD are executed and
a jump back to the beginning of the DO loop is performed.

N D-60.047.03

Example:

DO WHlLE VAR1>VAR2 AND X> <0

OD

In general, the WHILE statement may be placed anywhere within a DO
loop. The code generated from a WHILE statement will always contain
a conditional jump to the statement following the nearest enclosing DO—OD.

If one, for example, wants to test at the end of the loop, one could say:

DO

WHILE VAR=D OD

More complex expressions like the following are also legal:

FOR VARI STEP2 TO VARZ DO WHILE X> <0

ND—60.047.03

EXERCISES

1. Let H and I2 be integers,‘ 01 a double and R1 and R2 reals. Find
the primary operand in each of the following expressions:

Az=l 1+l2
l2+5=zl1
X:=l1
A:=X+l2
l1=:T
D1
R1+R2=zR2

2. Let V1 and V2 be (local) integers. Find the MAC equivalents of the
following expressions:

V2+1=1Vl

V1:=V2+1
V2:=:L

3. Let ll and I2 be integer variables. Which ones of the following state—
ments are legal?

T:=5
T::+5
X:=—5
A:=:l1
l1:=:8
B:=:L
l2
+l2
A+12
Az=+|2
5
+5
——5
—I1
A—l1
X—S
X-l1
A:=—l1
A:=l1~l2

ND-60.047.03

T:=ll—l2
T:=—l2
A:=L*5
A:=5*L
A:=X*B
SHR 2
D SHR 2

Let JJ be declared as a symbol. Which ones of the following state-
ments are legal?

JJ
~JJ
+JJ
X—JJ
T—JJ
L—JJ
B—JJ
P~JJ
D+JJ

Let H be an integer, D1 3 double and R1 a real variable. Which onesof the following statements are legal?

Az=ll
A=l
Az=R1
AD=:|1
ADz=Di
AD=2Rl
TADz=l1
TAD=2D1
TADz=R1
T=l
T:=Rl
X=2Dl
X:=R1
AD2=Dl+li
TAD:=R1+D1
AD2=5
TADz=5
TAD:=3.14
3.14:: Rl

ND-60.047.03

What is the ASCII code of the characters 0, I, 2, , 9?
Study Appendix C!

Compile the following NPL program on your NORD—IO configuration
and study the MAC output listing. Can you make the program more
simple?

%N-PL PROGRAM READING ONE INPUT CHARACTER FROM
%THE TERMINAL AND WRITING THE NEXT ASCII CHARACTER ONTO
%THE SAME TERMINAL. THE PROGRAM TERMINATES WHEN 0 IS READ.
SUBR SUB
INTEGER INTI, INT2
SUB: T:=I; >I<MON I; MON 65 %INPUT ONE CHARACTER

A—60=:INTI %REDUCE ASCII CODE TO BINARY
IF A=0 THEN GO STOPP Fl %LAST CHARACTER?
CALL SUBZIINTI)
Az=15; T:=I; *MON 2; MON 65 %OUTPUT CARRIAGE RETURN
A:=I2; *MON 2; MON 65 %OUTPUT LINE FEED
INTI+60; *MON 2; MON 65 %BINARY NUMBER TO ASCII.

%OUTPUT ONE BYTE
GO SUB

STOPP: * MON 0 %RETURN TO SINTRAN III
RBUS

SUBR SUBZ
INTEGER POINTER HOME
DISP 0; INTEGER DO; PSID
SUB2: A:=L+I=:"HOME" %SAVE RETURN ADDRESS

A:=L.DO.DO+I=:X.DO %ADD ONE TO PARAMETER
GO HOME %RETURN JUMP

RBUS

@ EOF

HINT: At least five statements may be changed!

Why is L+i=:”HOME” necessary instead of simply L=:"HOME"?

Write a NPL program which is reading IO characters from the terminal
into an array, sorting the characters in the opposite order and writing
them out on the terminal again on the next line. The program should con—
sist of two subroutines: one input/output routine and one sorting routine.

ND-60.047.03

5)?

10.

11.

Given the integer number N. Consider the problem of calculating

Nl= N*lN—1)*(N—2) >r1-

Write three small programs each reading the number N from theterminal and printing out N! on the next line.

The programs should utilize

i. the IF statement
ii. the FOR statement
iii. the WHILE statement.

Write a program which finds and prints out all the prime numberssmaller than 100 on the terminal.

HINT: Place all the integer numbers in an integer array of length 100.Then starting with N=2 clear all locations in the array containingmultiples of N by writing 0 into these locations. Set N+1=:N andrepeat the process. Continue until N>\/1OO (i.e., N*N>100). Print allthe numbers in the array different from O on the terminal.

Array initially:

1234567891011121314151617......

Array after clearing:

12305070001101300017......

Put the letters of your own name (in ASCII code) into an arrayinitialized by a DATA statement. Write a program which prints thename on the terminal and then sorts all the letters into alphabeticorder. The program should also count the number of As, 85, Cs,.... etc.inyour name and print the result on the terminal.

N D-60.047.03

12.

Examgle:

A)

E)

HABIBBOURGIBA
AABBBBGHIIORU

The name contains:
C

IJ
O

“I
C

)U
U

I>

d
‘g

M
—

k
—

IQ
N

Which of the following NORD PL statement sequences are legal:

INTEGER POINTER KPI
SUBR SUI
INTEGER KI
SUI: "KI”=: ”KPI”

INTEGER KI::5
INTEGER POINTER KPI:=KI
SUBR SUI
SUI: A: = KPI

SUBR SUI
INTEGER POINTER KI’I: = KI
INTEGER KI

SUBR SUI
REAL RI
DOUBLE POINTER DPI: = RI

SUBR SUI
REAL RI
REAL POINTER RPI: = ”RI”

N (1600470.?

13.

SUBR SUI
DOUBLE DI
INTEGER POINTER KPI
SUI: ”DI“=:“KPI”

SUBR SUI
INTEGER KI: = (I, 2, 3, 4)

SUBR SUI
INTEGER KI, K2: = KI

Which of the foIIowing NORD PL statement sequences are IegaI:

A)

C)

BASE BA
INTEGER ARRAY IA2 (I00)
ESAB
SYMBOL SI = BA

BASE BA
INTEGER ARRAY IA3 (100)
ESAB
SYMBOL SI = ”BA“

BASE BA
INTEGER POINTER IPB
ESAB
SUBR SU2
INTEGER I2
SU2: ”BA” =:B

"I2” =:“IPB"
X1=IPB

SUBR SUI
BASE BA
INTEGER ARRAY IAB (I00)
ESAB
DISP ~200
INTEGER ARRAY IAD (I00)
PSID
INTEGER ARRAY POINTER IP2=|AB
SUI: ”BA” =:B

FOR X:=0 TO 77 DO
IAB (X) + IP (X) =:IAD (X)

OD

N 060047.03

14.

154

3—40

SUBR SUI
DISP
INTEGER K11=5
PSID

Which of the following NORD PL statement sequences are legal and reasonable:

A) SUBR SUI
INTEGER ARRAY IA (100)
SUI: FOR T2=0 TO 77 DO O=1|AITI OD

IF K BIT THEN K:=“O” Fl

IF K > < M THEN K2=lVl Fl

SUBR SUI
INTEGER Kl:=”0”, K22=0
INTEGER ARRAY KA (100), KB (100)
SUI: FOR K1 T0 77 DO

FOR K2 T0 K1 DO
KA (Kl) + KB IK2)=:KAIK1I

OD
O=:K2

OD

SUBR SUI
INTEGER ARRAY KA (100)
INTEGER KI:=”0"
SUI: TI=77

FOR KI TO T DO
WHILE KA (KI) > <0
A +1=3KAIXI

OD

Consider the following list structure:

NEXT NEXT
PRIOR PRIOR
0‘l 01
D2 02
03 D3

N D-60.047.03

16.

17.

3—41

Write a subroutine COUNT which counts the (original) number of elements
in the list. The subroutine should also remove the first and last elements
of the list.

Then add the integers D3 of all the elements in the list and place the sum
into the parameter SUM given in the calling statement CALL COUNT (SUM).

Then add the integers D3 and D2 in each element and place the result
into D1 of each element.

The A register is pointing to the first location of the first element in the
list in the calling moment.

Hint: Utilize a DlSP field!

Consider the two vectors VECT1 and VECT2 given in a global BASE field
as follows:

BASE CAL
INTEGER ARRAY VECTl (0)
DATA (1, 2, 3, 4, 5)
lNTEGER ARRAY VECT2 (0)
DATA (O,—1,0,——1,0)
ESAB

Write a subroutine lVlULT1 which performs a vector-vector multiplication
and places the result into the local integer RES.

Consider the matrix MAT and the vector VECT given in a global BASE
field as follows:

BASE CALC
INTEGER ARRAY MAT (0)
DATA (1, 2, 3, 4, 5)
DATA (6, 7, 8, 9, 10)
DATA (11, 12, 13, 14, 15)
DATA (16, 17, 18, 19, 20)
INTEGER ARRAY VECTI= (0, —1,0, —1, O)
ESAB

Write a subroutine lVlULT2 which performs a matrix-vector multiplication
and places the result into the local vector RES declared as:

lNTEGER ARRAY RES (4).

Output the result on the terminal.

ND—60.047.03

18. Consider the following list structure:

NEXT NEXT
D1 01
D2 D2
D3 D3

Each element in the list contains the four integers NEXT, Di, D2 and D3.

Write a subroutine REMOV which removes all elements whose D1 = 3 from
the list.

The subroutine shall be called by the statement CALL REMOV and the
A register shall contain the starting address of the first element of the list
in the calling moment if the A register is zero when entering REMOV,
there are no elements in the list.

At return to the calling program, the A register shall point to the first
element of the updated list structure or contain zero if all elements have
been removed.

Hint: Utilize a DlSP field.

19. Consider the following list structure:

FlRST

NEXT
01
D2
[)3

The integer pointer FIRST is pointing to a list of data elements each con-
taining the tour integers NEXT, D1, D2 and D3.

Write a subroutine SORT which sorts the data elements in ascending order
by D1.

The subroutine shall be called by the statement CALL SORT (FlRST).
Fl RST is declared as an integer pointer in the calling routine and points
to the first element of the list. NEXT of the last element points to FlRST.

If FlRST contains zero, there are no elements in the list.

ND-60.047.03

3—43

20. Consider the following list structure:

N EXT
DATA
K1
K2

NEXT
DATA
Kl
K2

INTEGER ARRAY KA (10)

The integer pointer FIRST is pointing to a list of data elements each con—
taining 4 integers NEXT, DATA, K1 and K2. NEXT contains the address
of the next element in the list, except for the last element where NEXT
points to FIRST. DATA is either zero or contains the address of a data
record starting with the integer array KA (10).

Write a subroutine SUM which adds the contents of the locations of each
array KA and puts the sum into Kl of the corresponding data element.

The subroutine shall be called by the statement CALL SUM (FIRST) and
FIRST is a local integer pointer in the calling program.

Hint: Utilize two DISP fields or one DlSP field and an integer array pointer.
Put special attention to the B and X registers! Remember that indexed
variables may not appear in an expression using X relative addressing.

NDe60.047.03

REAL TIME PROGRAMS

Real time programs (hereafter called RT programs) written in NORD PL
must be compiled and assembled into units in binary relocationg format
in order to be loaded by the real time loader.

This implies that the program units must be surrounded by the MAC com-
mands)QBEG and)9END. The starting point (first instruction to be execu-
ted) of an RT program must be immediately preceded by the MAC com-
mand)9RT.

lt a program unit refers to another program unit the MAC commands
)9EXT and)QENT must be present in the calling unit and in the unit
called upon respectively.

If the)QRT command is used to declare a program unit as an RT program
(main program), the command)9El\lT shall not be used for the entry
point (starting point) defined'in the)QRT command.

After all program units the MAC command)9EOF must appear before
the NORD PL command @EOF. The)9EOF command will cause an
end-of—file mark to be written to the object file by the MAC assembler,
thus, terminating a sequence of BRF program units.

All MAC commands must, of course, be preceded by an asterisk (*).

if the programmer wants to perform monitor calls from NORD PL, he
must choose whether to establish his own library routines and insert
them into his RT programs utilizing the @LlB and @ELIB commands, or
whether he shall simply use the MAC monitor calls preceded by an as-
terisk.

How to establish RT programs in NORD PL is clearly demonstrated in the
example in Section 5.7.

A list of the necessary MAC commands is found in Appendix D.

ND-60.047.03

5.1

REENTRANT SUBROUTINES

SUBROUTl/VES CALLABLE FROM MORE RT PROGRAMS

NORD PL subroutines, which shall be parts of a real time program sys—
tem and be simultaneously callable from more than one RT program,
must be written in reentrant form. There are many ways to do this. in
this section, two methods will be mentioned.

1. One method is described in Section 7.3 of the manual ”SINTRAN
lll —- Users Guide (ND~60.050)“. The point here is to call the sub—
routine with an array, which is local to the calling program, as para-
meter. This array should then be used as an area for all data in the
reentrant subroutine. in the reentrant subroutine this array should
find its complement in a corresponding array declared in a DlSP-
field.

Consider the following example:

%
SYMBOLPRKN¥=37
HQBEG
*mEXTADD
SUBR IVIAIN
INTEGER ARRAY ARRilOl
HQRTMAHIPWOR
MAIN: FOR X:=O TO 7 DO O=:ARR(X) OD

CALLSUIiARR)
*MONO

RBUS
NQEND
%
HQBEG
HQENTSUi
SUBRSUI
DBPO
INTEGERARRAYBRR(Im,u3=BRR
P$D
SUI; LID=28

FORXFflTT)7DOBRR(XM+1=£RR(X)OD
EXWA

RBUS
NQEND

The main program MAIN will initialize the array ARR with zeros
and call subroutine SUl. This subroutine will load the address of
ARR to the B register and increase the contents of the array with
l.

ND-60.047.03

Subroutine SU‘l uses no local variables, only the parameter ARR
and the registers.

Thus, this subroutine is reentrant and may be called simultaneously
from another RT program.

A second method is to use a BASE-field (or a normal field of vari-
ables) in the calling program as data area for the reentrant subroutine.
The starting address of the BASE—field is transferred to the reentrant
subroutine through the B register and this subroutine is accessing the
BASE-field by means of corresponding DlSP variables.

Consider the example shown on page 5—3.

N D-60.047.03

Examgle:

%
SYMBOL PRIOA=30,PRIOB=35
*)98EG
*)9EXT PLUS
SUBR MAINA
BASE BA

INTEGER A1, A2, A3
ESAB
*)9RT MAINA PRIOA
MAINA: ”BA”=:B

1=:A1=:T
2=zA2=zD
”A1”=:B
CALL PLUS (1)
*MON 0

RBUS
*QEND
%
*)QBEG
*)9EXT PLUS
SUBR MAINB
INTEGER B1, 82, B3
*)9RT MAINB PRIOB
MAINB: 3=zBT=:T

4=:BZ=:D
”B1"=:B
CALL PLUS (0)
*MON 0

RBUS
*)9END
%
*)QBEG
*)9EXT MAINB
*)9ENT PLUS
SUBR PLUS
INTEGER MNB:=MAINB,PLIST:=MNB
DISP O

INTEGER P1, P2, P3
PSTD
PLUS: IF L.P1=O GO ADD

”PLIST“
*MON 100

ADD: P1+P2=zP3
EXITA

RBUS
*)9END
%
*)9EOF
@EOF

ND—60.047.03

The two RT programs MAINA and MAlNB are both calling the same re—
entrant subroutine PLUS. (The main programs and the subroutine are
compiled and assembled into three different units in binary relocating
format and loaded by the RT loader into the same segment.)

The common subroutine PLUS makes a test on the parameter and starts
the RT program MAINB if this parameter is not zero. lt then adds two
integer variables and stores the sum into a third integer variable. By only
considering subroutine PLUS, nothing can be said about which variables
are really accessed. This depends completely upon the setting of the B
register.

Thus, when called from lVlAlNA the BASE—field variables will be accessed,
when called from lVlAlNB the integer variables in this program will be
accessed.

The local variables lVlNB and PLIST in PLUS are not changed by any oper-
ations and may, therefore, be allocated inside of PLUS.

There is no space reserved for storing away register values because the
SINTRAN lll operating system will take care of the register contents of
RT programs.

Now, take a look at the RT descriptions by executing the SlNTRAN lll
commands

@LIST—RT-DESCRlPTlON lVlAlNA and
@LlST-RT~DESCRlPTION MAlNB.

Then start the first RT program by executing

@RT lVlAlNA.

When lVlAlNA has called PLUS the RT program MAlNB will be started
and executed because MAINB has a higher priority than lVlAlNA. Thus,
we are sure that subroutine PLUS is actually performed twice “at the
same time”.

if you are quick and lucky, you might be able to see that both programs
are in the execution queue by executing the command

@LlST-EXEC-QUEUE.

When both programs have terminated, have a new look at the RT descrip-
tions and control whether the register values are correct!

ND~60.047.03

5.2

5—5

RECURS/ VE SUBROUT/NES

However, if a subroutine must be reentrant because it is recursive (calls
upon itself) or it is simultaneously called more than once in a long chain
of subroutines calling each other, and all subroutines belong to only one
RT main program or to a background program, a stack mechanism might
be recommended.

The following example demonstrates the method. The following code must
be inserted into the program system somewhere at the beginning.

%
@MAC
)MCDEF SDATA

A=6
l

)MCDEF DATA$PAR
HGLLA

A=$PAR+1
]

)MCDEF ENTER
STD l (ASTCK
COPY SL DA
copy SB DD
SAB A
JPL l (SPUSH
]

)MCDEF LEAVE
SAA ~A
JMP | (SPOP

HOLLA
]

lMCDEF lSTCK
STA l (ASTCK
LDA STACK
STA l (CSTCK
LDA l (ASTCK

N D-60.047.03

a» 5—6

@
%
%DISPLACEMENT WITHIN THE STACK ELEMENT
%
DISP O

INTEGER XREG, TREG, AREG, DREG, LREG, BREG
DOUBLE ADREG=AREG,LBREG=LREG
REAL TADREG=TREG

PSID
%
%STACK FOR TEMPORARY DATA
%
INTEGER ARRAY STACK (700), ESTCK (7)
DOUBLE ASTCK
INTEGER POINTER CSTCK2=STACK
%
%PUSH ROUTINE FOR THE MACRO ENTER
%
SUBR SPUSH
SPUSH: *STX | CSTCK

X:=”CSTCK”
AD=:X.LBREG
B+X
"ESTCK"
IF A<B GO STOVFL
X:=:B
X=:"CSTCK"
AD2=ASTCK
TAD=2TADREG
X2=XREG
EXIT

STOVFLzGO STOVFL
RBUS
%
%POP ROUTINE FOR THE MACRO LEAVE
%
SUBR SPOP
SPOP: A+”CSTCK“=:"CSTCK”

B=2X
AD2=LBREG
A=:L; D=:B
TAD:=X.TADREG
X:=X.XREG
EXIT

RBUS

ND-60.047.03

5--7

The macro lSTCK must not necessarily be a macro. It is only written as
such for the sake of convenience. This macro initializes the stack pointer
CSTCK and must be called only once at the beginning of the main pro-
gram.

The macros SDATA and DATA define the length of the corresponding
stack element.

The reentrant subroutine is now designed in the following way. The stack
area STACK is used for storing away register contents and local data. lf
only space for register contents is needed, the macro SDATA should be called
before ENTER at the beginning of the reentrant subroutine.

If space for local data is required as well, a corresponding DlSP-field start—
ing at the value 6 should be introduced before the macros DATA and
ENTER are called. The parameter of the macro DATA must be the value
of the last “word" reserved by this DlSP-field.

The macro ENTER stores away the register contents in a stack element
and updates the stack pointer. All registers retain their values except
for the B-register, which will now point to the beginning of the stack
element and act as a base for the DlSP variables.

in any case, the reentrant subroutine should be terminated by a call for
the macro LEAVE, which reloads the original register contents, including
the value of the B-register, from the stack element and updates the stack
pointer.

Now, append, for instance, the following code after the above programs:

%
SUBR MAIN
lVlAlN: *lSTCK

3=:B=:D; T:=O=:X
CALL SUBA
*MON 0

RBUS
%
SUBR SUBA

*SDATA
SUBA: *ENTER

X+l=:XREG
A+l+60=:D; CALL OUTA
A—-~60
lF A> <0 THEN CALL SUBB Fl
##A=:D; CALL OUTA
*LEAVE

RBUS
%

N D~60.047.03

%
SUBR SUBB
DISPG

INTEGER Kl,K2
PSlD

*DATA K2
SUBB: *ENTER

A—~2=:K1
##B=:K2
A:=40; CALL OUTB
Kl+60; CALL OUTB
A—GO
CALL SUBA
K2; CALL OUTB
Kl+602 CALL OUTB
TREG+1=:TREG
*LEAVE

RBUS
%
SUBR OUTA, OUTB
OUTA: A:=12; T:=l; *MONZ; MON 65

A:—l5; *MONZ; MON 65
A:=D

OUTB: *MON 2; MON 65
EXIT
RBUS

%
@EOF

The main program MAlN puts initial values into the registers and calls
subroutine SUBA. SUBA adds 1 to the A register and calls subroutine
SUBB if the A register is not zero. SUBB subtracts 2 and calls SUBA.
The two subroutines will now continue to call each other until the A—
register becomes zero in SUBA.

Each time they are called they push up a new element in the stack. When
one of the routines is left, the stack is popped back. The X and T registers
are increased in the stack elements each time SUBA and SUBB are called.

Just to make it easy to follow the interaction, some output statements
. are introduced.

lt is left as an exercise for the reader to compile and assemble the pro—
grams. After the assembly the system may be started by the command
MAIN! to the MAC assembler. The following output is then printed on
the terminal:

ND-60.047.03

5—9

o
—

im
w

b
g

\o
-A

M
E

A8/
A80
A81
A32
A
@

Now, give the SlNTRAN Ill command @STATUS and have a look at the
register values!

NOTE: The stack principle may not be used in the demonstrated way‘ ”
it more RT programs are using a common stack becausethe code for pushing and popping in the stack is not protected
(for instance, by semaphores). The above technique will not
work if an RT program is interrupted by another with higher
priority inside of the SPUSH or SPOP routines.

Two RT programs may use a common subroutine in the demon—
strated way if they have one stack and a set of SPUSH and SPOP
routines each.

ND~60.047.03

6.1

COMMON DATA AREAS

The concept of common areas was originally defined in FORTRAN, however,
for many reasons it may be interesting to establish a common connection
between FORTRAN, NORD PL and MAC programs.

DEFINITION OF A COMMON AREA

Under the SINTRAN Ill operating system, a common area is a data area
which is accessible from more than one BRF program unit, independent
of whether this is a main program or a subprogram or whether the acces—
sing code was written in FORTRAN, NORD PL or MAC.

Common data areas may be used for communication between RT pro-
grams or for storing away data which are common to two or more RT
programs. In background mode, a common area is common to one main
program and one or more subprograms.

In NORD PL a common area is defined by the MAC statement)9ASF
which must appear within a BRF unit in order to be loaded by the RT
loader or by the background loader.

The concept of common areas should not be confused with global data
areas in NORD PL.

Example:

A common area is defined without any program units in the BRF unit:

)QBEG
CSIZE = 1000
lQASF CLABl CSlZE
)QEND

In this case, it is mostly convenient to write the statements directly in
MAC so that the NORD PL compilation can be avoided. in the above
example, the common block with the label CLABl will allocate an area
of 10008 words.

N D-BO. 047.03

Examgle:

A common area is defined in a BRF unit also containing program units.

*lgBEG
SYMBOL CSIZE=1000,PRIOR=35
*l9ASF CLAB2 CSlZE
%
lNTEGER ARRAY lARR (100)
%
SUBR MAIN
*IQRT lVlAlN PRlOR
MAHV: CALL SUBA

*MON 0
RBUS
%
SUBR SUBA
SUBA: Exrr
RBUS
%
HQEND
fleEOF
@EOF

The common area with the label CLABZ will allocate an area of 10008
words. The integer array IARR is a global area only accessible from MAIN
and SUBA.

ND-60.047.03

6.2 ACCESS OF A COMMON AREA

At the time of programming, compiling and assembly, the address of a
common area is undefined.

The MAC statement)9ADS gets hold of this address at load time and
puts it into the location where the statement is placed.

The *)9ADS statement has two symbolic arguments, the first is the name
of the common label and the second is the displacement relative to the start
of the common area.

There are, of course, many ways of utilizing this address in NORD PL.
In the example below, two methods are demonstrated. The first method
is to load the address to the B register and access the common area by
means of a DISP-field. The second method is to put the address of a com-
mon area into an integer array pointer and access the area through this
pomter.

In the example below the values of the common arZ/a CLABI are loaded
to the A register, increased by i and stored to the ommon area CLABQ.

*IQBEG
SYMBOL CSIZI=1000
*IQASF CLABI CSIZI
*IQEND
%
*IQBEG
SYMBOL CSl22=I000,PRIOR=35,DSPL=0
*IQASF CLABZ CSIZ2
%
INTEGER CADRI
*CADRI/ IQADS CLABI DSPL
DISP 0

INTEGER ARRAY COMI (1000)
PSID
%
SUBR MAIN
INTEGER ARRAY POINTER COM2
*COMZ/)9ADS CLABZ DSPL
*IQRT MAIN PRIOR
MAIN: CADRI=zB

Tz=777
FOR X:=0 TO T DO

COMI IX)+1=:COM2(XI
OD
*MON 0

RBUS
%
*IQEND
*IQEOF
@EOF

ND—60.047.03

7.1

ADDITIONAL FEATURES

COMMANDS

A command starts with a circled alpha (@l followed by the command
name. The command names are not reserved symbols, so that the same
symbol can be used for a command name as well as for a user variable.
After the command name parameters may follow, separated by commas.

Some of the commands are used for conditional compiling, being des-
cribed in Section 7.2. In Section 7.3 on~line assembly coding is treated.
The remaining commands are described below.

@ICR ”Ignore carraige return” mode
This command is to be used if a statement should need
several lines (especially declaration statements). The car—
riage return is treated as if it were a space.

@CR ”Carraige return” mode
After this command carriage return will have the same
effect as the semicolon (;l, so that it will terminate the
current statement.

@EOF ”End of file”
This command is used for exit from the compiler to the
operating system. The MAC command lLlNE is output
on the object device. The command will list the number
of errors detected during the compilation of the commun-
ication device.

@CLEAR Clear the symbol table of the compiler.

@OCT All integer numbers will be treated as octal.

@DEC lnteger numbers will be treated as decimal, except for
those preceded by the "84“ sign.

@DEV <input device>, <list device>, <object output device>
This command is used for setting device numbers for the
compiler. if the list device = O, the error messages will
be printed on the output communication device, other—
wise on the list device.

ND—60.047.03

@MODE

@XREF

@F L032

@F L048

W1

@DEV 4,5,3
@DEV 4,0,3

lf list output and object output use the same device num~
ber, the object output will appear left adjusted and the
source program will be listed 32 columns to the right.
The source program will be preceded by “%" signs, so
that the mix can be assembled.

Example:

@DEV 4,5,5

For the T88 and SlNTRAN Ill version files and devices
may be specified symbolically in the T88 notation. The
necessary closing and opening of files will be done. Num-
eric and symbolic representation may be mixed in the
same DEV command.

if a device is not specified at all, the old one will be used.

Examples:

@DEV T—R, O, OBJECT FILE
@DEV lNP—FILE, L—P
@DEV INP, L—P, L— P

<input communication device>, <output communication
device>
The communication devices will be defined. Normally, they
will be equal to 1.

This command will add line numbers and a cross reference
list to the listing.

Set 32 bits floating point format.

Set 48 bits floating point format.

The compiler will automatically set the right floating point
format according to the hardware it is run on. The commands
@F L032 and @FLO48 are therefore only necessary for
cross-compilations.

ND-60.047.03
B Eviéicn A

7.2 CONDITIONAL COMP/LING

The form of conditional compiling is conceptual somewhat similar to
the ”Library mode“ of the MAC assembler. This means that this facility
is especially well suited for extracting modules from a symbolic library.

A module which could be included is headed by the command

@LlB

followed by a logical expression of symbols. For each symbol the com-
piler maintains an "include” flag which is automatically set to ”true” if
the symbol is undefined, and reset to “false” when the symbol is defined.
However, the programmer can also explicitly put the “include” flag on or
off using the commands

@STLIB <symbol> Set the ”library include” flag
@NSLlB <symbo|> Reset the ”library include" flag

The expression after @LIB may have the operators

/\ And
\/ Or
—, Not

The expression is evaluated from left to right. lf the resulting ”include"
value is true, the following module will be included, otherwise it will be
skipped.

The module is terminated by the command

@ELlB

The @LIB - @ELlBs can be nested. If a module is skipped, it is skipped
until its corresponding @E LIB.

Example:

CALL SUBl

CALL SUBZ

@LlB SUBl \/ %INCLUDE THE FOLLOWlNG lF
%SUBl OR SUBZ HAS BEEN
%REFERENCED

SUBR SUBl, SUB2

@ELlB %UP TO THIS POINT

N 060047.03

7.3 lN-LINE ASSEMBL Y CODING

There are two ways of including assembly coding:

1. lf a statement starts with an asterisk (*l, the rest of the line will
be taken as assembly code, being copied to the object output stream.

The command

@MAC

switches the compiler to assembly mode. The test will pass unchanged
to the output stream until an alpha sign (@) is found.

Examples:

*TRA OPR
@MAC

BORA 170 DX
@

ND-60.047.03

8.1

USING THE COMPILER

PREPARING NORD PL PROGRAMS

The compiler may be used as a separate system outputting lVlAC assembly
code to a file or external device.

if on line return to the compiler is wanted, the program should be ended
with the command

@DEV 1

giving the control back to the operator, who may start a new compilation.
lf it is the last part to be compiled, it should instead end with the com—
mand

@EOF %EXlT FROM COMPlLER

NOTE: If the @EOF command is forgotten, the last buffer contents will
not be written on the object file and the file will not be closed!

Example of program:

%START OF PROGRAM
INTEGER 81,82
SUBR SUBl
SUBi: 33:281

5::82
EXlT

RBUS
@DEV 1

In case of absolute programs (not BRF), it is not necessary with any special
heading; the program can start with normal statements.

lf the resulting program should be output in BRF format, the pertinent
lVlAC commands)QBEG,)QENT and)QEXT should be inserted as assembly
code.

ND-80.047.03

Example:

%SUBROUTINE TO PRINT 2 CHARACTERS
*IQBEG
*IQENT OUT2
*IQEXT OUTBT
SUBR OUT2

INTEGER WORD
INTEGER POINTER LINK

OUT2: T:=L=:“LINK”
A=:WORD SHZ ~10 %LEFT BYTE
T:=5,‘ CALL OUTBT %L|NE PRINTER
WORD / \ 377;T:=5;C/‘.LL OI ITRT %RIGHT BYTE
GO LINK

RBUS
*IQEND
@EOF

Note that when a new input file, list file, or object output file is specified
in the @DEV command, the corresponding old file will be closed.

Example:

Consider two source files, SF1 and SF2, containing some NORD PL routines.
SFI ends with @DEV i and SF2 ends with @EOF.

The command

@DEV SFI, OBJ, OBJ

will compile the source file SF1 and place the list and object output on
the file OBJ. When the corr‘pilation is finished, control will return to the
communication device (terminal).

If the command @DEV SF2 is now given, the source file SF2 will be com—
piled and the list and object output will be appended to the file OBJ.

If the command @DEV SF2, OBJ, OBJ is given, the file OBJ Will be re-
winded and the list and object output from SF2 will be placed from the
beginning of OBJ.

In bothtcases, control will return to the operating system when the com-
pilation of SF2 is finished.

N D-60.047.03

8.2 COMP/LING NORD PL PROGRAMS

Under SINTRAN ill and T88:

The NORD PL compiler is fetched by using the command @NORD PL.
It then writes the message NORD PL <version number>, waiting for in—
put from the terminal. Then give the @DEV command to set the approp-
riate devices.

The @DEV command has the general form:

@DEV <input file> <list file> <object file>

Note that the object program, i.e., the output from the NORD PL com—
piler is a symbolic MAC program. This object program in turn should
be the symbolic input program to a following lVlAC assembler run.

Example:

Suppose a symbolic NOHD Pl. program is placed on a paper tape. A com-
pilation with a list of the program is wanted on the line printer and the
MAC object (output) program is wanted on the line printer and the MAC
object (output) program is wanted on the paper tape punch (fast punchl.
This is done as follows:

@NORD PL

NORD PL 74.12.07
@DEV T—R, L—P, F—P

Example:

Suppose the symbolic IVOHD PL program is already written onto the file
NPLl with the OED processor. Before the program is executed a last check
is wanted for debugging purposes, i. e., the symbolic NORD PL program
itself together with the MAC object program is to be written on the ter-
minal. This is done as follows

@NOR D EL

NORD PL 74.12.07
@DEV NPL1,1,1

ND~60.047.03

Example:

Suppose the symbolic NORD PL program is written onto the file NPLl
with the OED processor. A compilation is wanted with a list of the pro—
gram on the terminal and with the MAC object program on the file MAC 7:

@NOR D PL

NORD PL 74.12.07
@DEV NPL1,1,MAC1

If a list of the program is not wanted, write:

@DEV NPL1,,lVlAC1

If the file MAC 7 is not created yet, write:

@DEV NPLl,1,“l\/lAC1”

The possibility of an interactive communication between the NFL program—
mer and the compiler exists by utilizing the command @DEV 1,1,1.

Example:

Suppose the NORD PL programmer wants to check out the different state-
ment types of the language. He wants to type his statements on the ter-
minal, to look at the MAC interpretation at once 0r (which might happen)
get the error messages immediately. This is done as follows:

@NORD PL

NORD PL 74.12.07
@DEV 1,1,1

The compiler will now react by printing a % character on the terminal
and the programmer is free to type his NORD Pl. statements. After each
Cl? the compiler will give the corresponding MAC interpretation or error
message and print a new % character on the terminal.

As mentioned in Section 8. 7, the program should be ended with the com-
mand @DEV 7,0,0 or @EOF.

ND—60.047.03

8.3 ASSEMBLING AND EXECUTI/VG NORD PL PROGRAMS

As mentioned in Section 8.2, the output from the NORD PL compiler is
a symbolic MAC assembler program. This program in turn should be the
symbolic input program to a following MAC assembler run.

Before the MAC assembler is called the file containing the symbolic MAC
program should normally be opened by the SlNTRAN lll command @OPENIFILE.

Before executing the program, i.e., before leaving the MAC assembler it
is a good rule to find the absolute address of the symbolic external entry
point used as the main starting point of the program. This is for instance,
necessary when starting the execution of the program with the SlNTRAN
lll command @GOTO. The @DUMP command also requires the absolute
value of a restart address. These addresses are obtained after the assembly
by typing the symbolic name followed by a colon.

Now the program may be started either under control of the MAC assembler
or under control of SlNTRAN lll.

Execution under control of the MAC assembler:

Example:

Suppose the symbolic MAC program with the starting point START is
placed on the file MAC 7 by the N080 Pl. compiler:

@OPEN MAC1, RX
FILE NUMBER 18 000101
@MAC

101$
START: 040000 STA RT!

The $5 command will start the assembler run. The assembler will answer
with carriage return and line feed when finished. The : command will
return the absolute value of the given external entry point and the !
command will start the execution of the program at the given symbolic/
absolute address.

Execution under control of SlNTRAN lllf

Example:

@OPEN MAC1, RX
FILE NUMBER 18 000101
@MAC

101$
START : 040000)QTSS
@GOTO 40000

ND-60.047.03

The MAC assembler is left by typing l9TSS. Back in SIN TRAN III the
command @GOTO .< absolute address of starting point > will start the
execution at the given absolute address.

To avoid reassembling before each execution, the object program from
the MAC assembler may be placed on a binary file. This may also be
done either under control of the MAC assembler or under control of
SINTRAN Ill.

Writing the binary object program on a file under control of the MAC
assembler:

Examgle:

Suppose the symbolic MAC program with the symbolic starting point
FIRST is placed on the file MA C2 by the N080 PL compiler. The ob-
ject program from the MAC assembler is to be placed on the binary
file ABS 7 and later to be read and started from there.

@lVlAC

)9ASSlVI lVlAC2,,ABSl:BlN
FlRSsxxxxx *zyyyyyy 40000<yyyyyy-l
)BPUN FlRST
l9TSS
@PLACE-BlNARY ABSlzBlN

@GOTO xxxxxx

Note that in this case it is not required to open the file MA 02 before
entering the MAC assembler. The command l9ASSM Will open the file
and start the assembler run. '*.' will return the value of the MAC location
counter, i.e., the uppermost address of the object program plus one. The
.< command establishes the limits of the memory area to be written on
the binary file by the lBPUN command. In this case, the object program
should be read and started by the SllVTRAN ll/ commands @PLACE-
BINARY and @GOTO. These two commands may be replaced by the
@L OA D-BlNA R Y command.

Writing the binary object program on a file under control of SlNTRAN
lll:

Examgle:

Suppose the symbolic MAC program with the symbolic starting point
Ell/TRY and the reentry starting point BEEN T is placed on the file
MA C3 by the N030 PL compiler. The object program from the MAC
assembler is to be dumped .to the file A883 and read and started from
there.

ND-60.047.03

@OPEN MAC3, RX
FlLE NUMBER IS 000101
@MAC

101$
ENTRsxxxxq R EENT’yyyyyy
)QTSS
@lVl E MD R Y 40000uzzzzzz—1

@DUMP ABS3zPROG
NUMBEsxxxxx
NUMBER1yyyyyy

@RECOVER ABSB:PROG

*:222222

The S/NTRAN /// command @MEMORY establishes the limits of the
memory area to be dumped on the file A883 with the @DUMP command.
The @3500 VEH command will then read the program into care and start
the execution.

For further information of the MAC assembler commands and of the
SlNTRAN lll commands, see the manuals “Course Manual USOi MAC”,
”MAC User’s Guide“ and ”SINTRAN lll Users Guide”.

A list of the most usual MAC commands is given in Appendix D.

N D—60.047.03

8.4 NORD PL LISTING WITH OCTAL ADDRESSES

An octal address list may be obtained on the NORD PL source program
listing by means of the)QSLPL command to the MAC assembler if the
listing and the MAC object program have been put on the same file dur—
ing the compilation.

Example:

Suppose a NORD PL source program is placed on the file INP by the
OED processor. The following sequence of commands will give a listing
of the NORD PL source program with the octa/ addresses corresponding
to the first statement on each line. The listing will, in this examp/e, be
written on the line printer:

@NORD PL
NORD PL 74.12.07
@DEV lNP, MACl, MACl
—END OF COMPILATlON
000000 ERRORS DETECTED

@MAC
)QSLPL
)9ASSM MACl, LINE—PRINTER,

It BRF object code is wanted, an object file name should be specified in
the)9ASSM command.

ND-60.047.03

8.5 DIAGNOSTIC MESSA 658

8.5.1 Diagnostic Messages from the Compiler

lf the compiler detects an error, it prints a diagnostic message on the list
device, preceded by some asterisks. If the list device is equal to zero, it
prints, on the communication device, the name of the last label and the
number of lines after the label, followed by the diagnostic message. Usually,
the compilation will continue, however, in a few cases, the compilation
has to stop, returning control to the operator (aborting if NORD-OPS).

Message Meaning

Error, ill. base Error in a BASE statement

Error, buffer full Too long statement or object instruc—
tion.

Error in command

Error in compiler The compiler is destroyed, or may be
there is a bug in the compiler.

Error, ill. condition Error in the conditional compiling com-
mands (LIB, SLIB, STLIB or NSLlB).

Error in data expres- lllegal operand or Operator in a datasnon expression.

Error in decl. Error in a declaration statement.

Error, ill. disp. Error in a DlSP statement.

Error, ill. elem. A basic element is found in a place
where it should not be.

Error in elem. An ill—formed basic element.

Error, in else/ti Bad nesting of THEN~ELSE~Fl

Error, ill. else/fi/od Bad nesting of THEN—ELSE——Fl or DO—
OD

Error in expr. Error in an executable expression.

Error in for Error in a FOR statement.

N D-60.047.03

8-10

Message Meaning

Error in if Error in an lF statement

Error in l/O l/O error signalled by the surrounding

Error, no Fl/OD

Error, no (

Error, ill. operation

Error in output

Error in relation

lll. statement

Error in subr.

Error, table destroyed

Error, table full

Error, too complex

Error, undefined

system.

Unmatched THEN/ELSE or DO at the
end of a subroutine.

Missing left parenthesis in a data list.

This operation is not implemented in
hardware, or non~corre5ponding
operands.

Error message from the surrounding sy-
stem.

lll—formed relation in an IF or FOR
statement.

The statement is illegal in this context,
or illegal element in an expression.

Error in a SUBR statement.

Probably overlapping of compiled/
assembled program and the compiler’s
symbol table.

Too many symbols in the program.

Too complex construction in an exe—
cutable expression; the backtracking
stack is filled.

Undefined local symbols at the end of a
subroutine.

8.5.2 Diagnostic Messages from the Assembler

Some errors can be detected at assembly time only, because the compiler
does not keep track of memory address values. Following is a list of the
most usual errors. For more information, see the manual "MAC User’s
Guide”.

N D-60.047.03

8-41

Message Meaning

RANGE EX, A label or variable is used too far away
from where it was defined. It can for
example occur for GO to a label defined
earlier, or at a OD statement.

POSS.FLT May be a label has been defined too far
after the place where it was used. it can
occur for a forward GO or in an ELSE,
Fl or OD statement, However, this mes-
sage can occur if an undefined symbol
is part of a data expression. Then it can
normally be ignored.

(ERROR Too far between the filling in of literals.
The compiler outputs a)FlLL command
at each RBUS statement. However, the
programmer can put *)FlLL commands
in between.

ND—80.047.03

APPENDIX A

A1

OPERATORS AND RESERVED SYMBOLS

NON—ALPHANUMEH/C ELEMENTS

Arithmetic Opera tors

Load
Store
Swap
Subtract
Add
Multiply
Divide
Byte separator (Data expressions only)

Logical Operators

/\
\/

I

And

Or
One’s complement
Two’s complement

Relational Operators

Greater
Less
Equal
Greater or equal
Less or equal
Not equal
Absolute greater or equal
Absolute less
Absolute greater
Absolute less or equal

N969.047.03
Ravlslon A

Delimiters

Label definition
Statement terminator
X-addressing indicator
Array index or data list
Referenced variable or data expression
Character constants
Comment

Octal number
String
MAC instruction
Command
Undefined location

N D—60.047.0S

A.2 RESER VED SYMBOLS

Registers
A, X, T B L
K, 2, O, O, C, M

Declarations
INTEGER, DOUBLE, REAL, TRIPLE
ARRAY, POINTER, SYMBOL, DATA
BASE, ESAB
DISP, PSID
SUBR, RBUS

Statement Symbols
GO, CALL
IF, THEN, ELSE, Fl, AND, OR
FOR, STEP, TO, DO, OD, WHILE
EXIT, EXITA, FAR

Operators
XOR
BONE, BZERO
SHZ, SH, SHR, SHL
GOSW
MIN
BIT, NBIT

ND-60.047.03
Revision A

APPENDIX B

PROGRAMMER’S CHECK LIST

vi.

Initialize the B—register on program entry.

Provide for exit from the subroutines.

Put prOper termination (@ DEV or @EOF) at the end of theprogram.

Check the @ICR —@CR pairs. Remember the semicolon after@ CR!

Check the lF ~ FI and DO — OD nestings.

Check that the X relative addressing is remembered on all
relevant places, e.g., that VAR is not written instead of X.VAR.

N D—60.047.03

APPENDIX C

MODEL 33 ASR/KSR TELETYPE CODE (ASCII) IN BINARY FORM

HOLE PUNCHED = MARK = 1 Most significant bit
NO HOLE PUNCHED = SPACE = 0 LLeast significant bit

76543 210

@ SPACE NULL/IDLE 0 0 O 0 0
A I START OF MESSAGE 0 0 O O 1
B ,, END OF ADDRESS 0 0 0 1 0
C # END OF MESSAGE O O 0 1 1
D $ END OF TRANSMISSION O 0 1 0 0
E 00 WHO ARE YOU 0 O 1 O 1
F & ARE YOU 0 0 1 1 0
G ’ BELL 0 O 1 1 1
H (FORMAT EFFECTOR O I O O 0
I) HORIZONTAL TAB 0 1 O O 1
J $ LINE FEED O 1 O 1 0
K 'I- VERTICAL TAB O 1 O 1 1
L FORM FEED O 1 1 0 O
M _, CARRIAGE RETURN O 1 1 O 1
N . SHIFT OUT 01 1 1 0
O / SHIFT IN 0 1 1 1 1
P O DCO 1 O 0 O O
O 1 READER ON 1 0 O O 1
R 2 TAPE (AUX ON) 1 O O 1 O
S 3 READER OFF 1 0 0 1 1
T 4 (AUX OFF) 1 0 1 0 O
U 5 ERROR 1 O 1 O 1
V 6 SYNCHRONOUS IDLE 1 O 1 1 O
W 7 LOGICAL END OF MEDIA 1 O 1 1 1
X 8 S 0 1 1 O 0 0
Y 9 S 1 1 1 O O 1
Z : S 2 1 1 O 1 O
I S 3 1 1 O 1 1
\ < S 4 1 1 1 0 O
I = S 5 1 1 1 O 1
1‘ > S 6 1 1 1 1 0
“w ? S 7 1 1 1 1 1

I I, Ii WW

WW

0 0 Same
0 1 Same

a 1 0 Same
RUB OUT‘é‘ 1 1 Same

PARITY

N D—60.047.03

APPENDIX D

DEFINITION OF SOME MAC COMMANDS

Some of the commands to the MAC assembler are also useful for the
assembling and loading of NORD PL programs. Among these commands
are the following:

I9ADS

)9ASF

IQASSM

)QBEG

<common block label> <displacement>
is used to access labelled common variables in a real time
program. Blank common is referred to through the sym»
bol 8COM. The <displacement> relative to the starting
address of the common block must be separated from
the <common block label> by a blank or a plus sign.
The <disp|acement> must be a not relocatable identifier
declared by means of the MAC statement = or by the
NORD PL statement SYMBOL. At load time the address
of the <common block label> is added to the <displace~
ment> and put into the location where the)9ADS command
appears.

<common block label> <no. of words>
defines a common area with the name and size as specified.
<n0. of words> must be a not relocatable identifier.

<source file>, <list fi|e>, <0bject file>
starts the assembly of a MAC program.

[<label>]
puts the MAC assembler into a binary relocating mode,
i.e., the object program unit will be in binary relocatable,
linkable form. The object program may now be loaded
by the NORD Relocating Loader or by the RT Loader.

<label> is the starting point and only to be specified it
the program unit represents a background main program.
Then the RUN command to the NORD Relocating Loader
will start the program at this address. If the object device
is a paper tape punch,)QBEG also causes 200 frames of
blank paper tape to be output.

N 060047.03

)QEND

)QENT

)QEOF

)QEXT

)9 RT

)QSLPL

resets MAC to produce an absolute output. This is the
complement of the)QBEG command and must terminate
each program unit starting with)QBEG. All identifiers
defined since the last)QBEG are deleted from the sym-
bol table. identifiers referenced since the last)QBEG, but
undefined, are printed on the list device. If the object
device is a paper tape punch, 200 frames of blank tape
is output. lf MAC was already in absolute assembly mode
when)QEND was given, symbols defined since the last
)QENT command are deleted from the symbol table.

<identifier 1> <identifier 2> . . .
declares symbols, variables and labels which may be
referred to as external identifiers from other program
units.

Thus,)QENT is the complement of)9EXT. Delimiter is
a space.

will cause an end-of'file mark to be written to the object
file, thus, terminating a sequence of BRF program units.

<identifier l> <identifier 2> . . .
declares identifiers to be external to the particular pro-
gram unit being assembled. identifiers declared with this
command must appear in a)9ENT or a)9RT command
of another program unit and a suitable linking will be
made at load time.

<identifier> <priority>
declares a program unit to be an RT program with the
name <identifier> and the specified <priority>. The
last parameter must be a not relocatable identifier.

This command must appear immediately before the
statement in the RT program where the label <identifier>
is defined.

gives an octal address list of a NORD PL source program
when given before the)9ASSM command. The listing of
the NORD PL source program and the MAC object pro—
gram must have been written onto the same file during
the conpilation.

ND-60.047.03

APPENDIX E

ALPHABETICAL INDEX OF THE MANUAL

A
AD
)QADS
ARITHMETICAL
OPERATOR
ARRAY
ARRAY POINTER
ASCII CHARACTERS
)QASF
)BASSM
ATTRIBUTES
B
BASE
BASIC ELEMENTS
)QBEG
BIT
BIT TEST
BONE

See Register
See Register
6.2/D
3.2.1/3.2.1.1/A.1

3.1.1/3.2.3/3.2.4/Tab1e 3.1
3.1.1/3.2.3/3.2.4/6.2/Tabie 3.1
C
6.1/6.2/D
8.3/8.4/13
3.1.2
See Register
3.1.2/3.1.2.1/Table 3.1
2.1
4/5.1/6.1/6.2
3.2.5.4
3.2.5.4/3.2.5.6
3.2.1/3.2.1.3

B-RELATIVE ADDRESSING 3.1.2/3.1.2.1/3.1.2.2
BYTE SEPARATION
BZERO
C
CALL
CHARACTE R CONSTANT
@CLEAR
COMMAND
COMMENT
COMMON DATA AR EA
CONSTANT
@CR
D
DATA
DATA EXPRESSION
@DEC
DECLARATION
STATEMENTS
DELIMITER
@DEV
DIAGNOSTIC MESSAGES
DISP
DISPLACEMENT
DO
DOUBLE

2.3
3.2.1/3.2.1.3
See Register
3.2.5.2
2.1.2.2
7.1
2.4/3.2/7.1
2.4
8/61/62
2.1.2
7.1
See Register
3.1.1
See Expression
7.1
3/3.1/3.1.2.1/3.1.2.2/3.1.3/3.1.4/3.1.5/A.2

2.1 .3/A.1
7.2/8.1 /8.2
8.5/8.5.1/8.5.2
3.1.2/3.1.2.2/TabIe 3.1
3.1.2.2
3.2.5.5/3.2.5.6
2.2/3.1.1/Table 3.1

N D—60.047.03

@ELIB
ELSE
I9END
IQENT
ENTRY POINT
@EOF

IQEOF
E R ROR MESSAGES
ESAB
EXECUTAB LE
STATEMENTS

EXH
EXTTA
EXPRESEON
IQEXT
FAR
H
@FL032
@FLO48
FOR
GLOBAL
GO
GOSW
@HCR
IDENTHHER
IF
INTEGER
K
L
LABEL
@Lm
LOCAL
IIXMCALOPERATOR
M
@MAC
MACASSBMBLYCODE
MIN
@MODE
NWT
@NSUB
NUMBER
0
@OCT
OD
OPERATOR

7.2
3.2.5.4
4/51/61/62/D
4/51/D
314/316
7.1/8.1

4/5.1/6.1/6.2/D
See Diagnostic Messages
3121
3/3.2/3.2.1/3.2.1.1/3.2.1.2/3.2.1.3/3.2.1.4/
3.2.5/3.2.5.1/3.2.5.2/3.2.5.3/3.2.5.4/3.2.5.5/
3256N¥2
3252fl1253
3253
2.3/3.1.1/3.1.3/3.2.2
4/5.1/D
3217V32E1
3254
71
71
3255
31.2/3.1.6/Table 3.1
Lfla251
321/3214
24H1
2.1.1/3.1.1/3.1.2.1/3.1.2.2/3.1.3
3254
2.2/311/Tabie 31
See Register
See Register
211/314
72
31.2/3.1.6/Tabie 3.1
3.2.1/3.21.3/A1
See Register
73
2%”73
321/3214
71
3264
72
2121
See Register
71
3255fl1256
2.1.3/2.3/3.2.1/3.2.1.1/3.2.1.2/3.2.1.3/3.2.1.4/
A1/A2

ND6004703
RekMiA

P
POINTER
PSID
O
QUOTATION MARKS,
DOUBLE
QUOTATION MARKS,
SIMPLE

RBUS
REAL
REAL TIME PROGRAM
RECURSIVE SUBROUTINE
REENTRANT
SUBROUTINE
REGISTER
RELATION
RELATIONAL OPERATOR
RESERVED IDENTIFIERS
)9RT
SHIFT OPERATOR
IQSLPL
STEP
@STLIB
STRING CONSTANT
SUBR
SUBROUTINE
SYMBOL
SYMBOLIC CONSTANTT

See Register
3.1.2/3.1.5/3.2.3/Tabie 3.1
3.1.2.2
See Register

3.2.2

2.1.2.2

3.1.5
3.2/4.1.1/Table 3.1
4/5.1/6.1
5.2
5.1/5.2

2.1.1.2/A.2
3.2.5.4/3.2.5.5
3.2.5.4/A.1
2.1.1.1/2.1.1.2/A.2
4/5.1/6.1/7.1/7.2/D
3.2.1/3.2.1.2/A.2
8.4/D
3.2.5.5
7.2
2.1 .2/2. 1 .2.2
3.1.5
3.1 .5/3.2/3.2.5.1
3.1.3
2.1 .1/2.1.2/2.1.2.3/3.1.3/3.2.3
See Register

TAD See Register
THEN 3.2.5.4
TO 3.2.5.5
VARIABLE 2.1.1
WHILE 3.2.5.6
X See Register
XOR 3.2.1/3.2.1.3
@XREF 7.1
X-RELATIVE 3.1.2/3.2.4
ADDRESSING
Z See Register
ZERO REGISTER 2.1.1.2/3.2.2

ND-60.047.03
Revision A

************** SEND US YOUR COMMENTS!!! **************

Are you frustrated because of unclear information in
this manual? Do you have trouble finding things?
Why don't you join the Reader's Club and send us a
note? You will receive a membership card — and
an answer to your comments.

Please let us know if you
" find errors
" cannot understand information
“ cannot find information
" find needless information

Do you think we could improve the manual by
rearranging the contents? You could also tell
us if you like the manual!

HHHHHH HELP YOURSELF BY HELPING US!! HHHHH“

Manual name: NORD PL User Guide Manual number: ND—60.047.03

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual .7

Your name: Date'

Company: Position'

Address:

What are you using this manual for ?

NOTE! Send to:
This form is primarily for Norsk Data A.S _____.,documentation errors. Software and Documentation Department
system errors should be reported on PO. Box 25, Bogerud Norsk Data's answer will be found
Customer System Reports. 0621 Oslo 6, Norway on reverse side

Answer from Norsk Data

Answered by Date

Norsk Data A.S
Documentation Department
PO. Box 25, Bogerud
0621 Oslofi, Non/vay

Systems that put people first

NORSK DATA A.S OLAF HELSETS VEI 5 PO. BOX 25 BOGERUD 0621 OSLO 6 NORWAY
TEL.: 02 - 29 54 00 - TELEX: 18284 NDN

