ND-100 Hardware Maintenance ND-830008.3 EN

ND-100 Hardware
 Maintenance ND-830008.3 EN

The information in this manual is subject to change without notice.
Norsk Data A.S assumes no responsibility for any errors that may appear in this manual, or for the use or reliability of its software on equipment that is not fumished or supported by Norsk Data A.S.

Copyright 1990 by Norsk Data A.S

The reader	This manual has been prepared for the Norsk Data Service Department field-service
engineers and technical personnel directly	
involved in maintaining the ND-100 computer	
system.	

1
Preventive maintenance 13
General 13
Routine maintenance tasks 14
Error symptoms and troubleshooting procedures 16
4.1 General 16
4.2 Some advice before starting 18
4.3 Error messages from SINTRAN III 19
4.3.1 Summary of runtime error messages 21
4.3.2 The runtime errors explained in detail 24
4.4 SINTRAN III stopped or hanging 34
4.4 .1 ND-100 stopped or hang-up on level different from 14 37
4.4 .2 ND-100 stopped or hanging on level 14 40
4.5 Impossible to load test programs from floppy disk 42
4.5.1 The unit-select light 45
4.6 No response from memory 49
4.7 ND-100 will not respond at all 50
4.8 No response from certain terminals 52
j Test programs 54
5.1 Loading of test programs 54
5.2 Which test program to use? 56
5.2.1 Instruction 59
5.2.2 Cache 62
5.2.3 Paging 63
5.2.4 Memory 65
5.2.5 Configuration 67
5.2.6 Terminal-async 72
5.2.7 Disc-tema 74
5.2.8 LP-test-1878 7
5.2.9 ND-100 CPU selftest 8.
5.2.10 Microprogram memory check 82
5.2.11 HDLC-Megalink 84
5.2.12 Universal-DMA 87
5.2.13 Magtape 92
5.2.14 Floppy-streamer 95
5.2.15 Power-fail 98
5.2.16 The printer test program 101
Different printer information 102
Characteristics of the different printers 102
The fonts, pitches, etc. 105
5.2.17 Synchronous modem test program 109
5.2.18 PIOC-ETHERNET 111
5.2.19 Graphic-term 113
5.2.20 Colour-term (TCTI) 117
Program commands 117
5.2.21 Stand-alone utility programs 120
The file system investigator 120
DIR-backup 12^{7}
MCOPY-TANB $12 ;$
6 How to change a subunit in ND-100/CX 133
6.1 Removing the cabinet panels 133
6.2 Changing a card 134
6.3 Changing a main power supply 136
6.4 Changing a power control panel 150
6.5 Changing a floppy drive 153
6.6 Changing a streamer 154
6.7 Changing the fans 1557How to change a subunit in ND-100 Compact158
7.1 Removing the cabinet panels 158
7.2 Replacing the power supply 159
7.3 Replacing a floppy drive 16^{\prime}
7.4 Replacing a streamer 162
7.5 Changing a disk drive 164
7.6 Changing the fans 165
8 Switches, Displays and indicators on the ND-100 cards 167
8.1 CPU module (3002) 168
8.2 10 MB disk controller (3004) 170
8.3 Dynamic RAM (3005) 171
8.4 Pertec magnetic tape controller (3006) 173
8.5 Euroline adapter (3008) 174
8.6 Local I-0 bus (3009) 175
8.7 Floppy and 4-terminals interface (3010) 176
8.8 Memory management (3012) 180
8.9 8-Terminal interface (3013) 181
8.10 HDLC + autoload (3015) 184
8.11 ECC disk controller (3018 and 3019) 187
8.12 STC magtape controller (3020) 189
8.13 ND-500 interface (3022) 190
8.14 Megalink interface (3023) 192
8.15 N10 bus adapter (3024) 196
8.16 GPIB controller (3026) 198
8.17 Floppy disk controller for DMA (3027) 199
8.18 Bus expander (3028) 201
8.19 Universal DMA controller (3029) 204
$8.20 \quad \mathrm{~N} 100$ bus controller (3031) 206
8.21 Memory port - MPM-4 (3032) 211
8.22 CPU module (3033) 214
$8.23 \quad 256 \mathrm{~K}$ memory module (3034) 216
$8.24 \quad 64 \mathrm{~K}$ memory module (3036) 218
8.25 (" disk controller (3038) 220
8.26 ND-100 bus controller (3039) 221
8.27 5.25" disk controller (3041) 227
$8.28 \quad 2 \mathrm{MB}$ memory module (3042) 228
8.2915 MHZ ECC disk controller (3043 and 3044) 230
8.30 ND-110 CPU module (3090/3095) 232
8.31 PIOC interface (3101) 233
8.32 Ethernet master (3102) 235
8.33 Memory management ii (3104) 237
8.34 8-telex interface (3105) 238
8.35 Floppy and streamer interface (3106) 241
8.36 8-terminal interface (3107) 243
8.37 Expanded PIOC Interface (3108) 246
8.38 8-terminal interface with buffer (3111) 250
8.39 Plotter - printer DMA interface (3114) 253
8.40 ND-120/CX CPU board 255
Switches 256
STRAP FIELDS 258
On-Board Indicators 263
Test points 264
Appendix A: HARDWARE STATUS FOR VARIOUS DEVICES 265
Index 273

1. The ND-100/CX Cabinet 2
2. External Bus Structure w/MPM-4 3
3. External Bus Structure w/ MPM-5 4
4. The MPM-4 Card Crate 5
5. The MPM-5 Card Crate 6
6. AC Distribution in the ND-100 Cabinet 7
7. DC Distribution in the ND-100 Cabinet 8
8. $A C$ and $D C$ Distribution for Floppy and Streamer Drive 9
9. The ND-100 Compact Cabinet 10
10. The ND-100 Satellite Cabinet 11
11. SINTRAN Enters Different Error Conditions 17
12. PES and PEA Layout 29
13. Test Programs for the Different Cards 57
14. Test Programs for the Different Devices 58
15. Removing the ND-100/CX Cabinet Panel 13
16. Changing a Card 134
17. Input Power Cables 137
18. Input Power and Control Wires 138
19. Loosening the Power Control Panel 139
20. Removing a power supply from the Frame 141
21. Adjustment of the Power Supply 143
22. Approximate Adjustment of the Standby Power Supply 145
23. Fine Adjustment of the Standby Power Supply 147
24. Replacing the Battery in the Standby Power Supply 148
25. Changing the Power Control Panel 151
26. Changing a Floppy Drive 153
27. Changing a Streamer 154
28. Removing the Card-Crate Fans 156
29. Removing the Top Fans 157
30. Removing the ND-100 Compact Cabinet Panel 158
31. Replacing the Power Supply in ND-100 COMPACT 159
32. Replacing a Floppy Drive (I) 160
33. Replacing a Floppy Drive (II) 161
34. Replacing a Streamer (I) 16
35. Replacing a Streamer (II) 163
36. Replacing a Disk Drive 164
37. Removing a Fan (I) 165
38. Removing a Fan (II) 166
39. Summary of ND-100 card 167
40. CPU Module (3002) 168
41. 10 Mb Disk Controller (3004) 170
42. Dynamic RAM (3005) 171
43. Pertec Magnetic Tape Controller (3006) 173
44. Euroline Adapter (3008) 174
45. Local I/O Bus (3009) 175
46. Floppy and 4 -Terminals Interface (3010) 176
47. Memory Management (3012) 180
48. 8-Terminal Interface (3013) 181
49. HDLC Controller (3015) 184
50. SMD Controller (3018) 187
51. SMD Data (3019) 188
52. STC Magtape Controller (3020) 189
53. ND-500 Interface (3022) 190
54. Megalink Interface (3023) 192
55. N10 Bus Adapter (3024) 196
56. GPIB Controller (3026) 198
57. Floppy Disk Controller for DMA (3027) 199
58. Bus Expander (BEX) (3028) 201
59. Universal DMA Controller (3029) 204
60. ND-100 Bus Controller (3031) 206
61. Memory Port - MPM4 (3032) 211
62. CPU Module (3033) 214
63. 256 K Memory Module (3034) 216
64. 64 K Memory Module (3036) 218
65. 8" Disk Controller (3038) 220
66. ND-100 Bus Controller (3039) 221
67. 5.25" Disk Controller (3041) 227
68. 2 MB Memory Module (3042) 228
69. SMD Controller (3043) 230
70. SMD Data (3044) 231
71. ND-110 CPU Module (3090/3095) 232
72. PIOC (3101) 233
73. Ethernet Master (3102) 235
74. Memory Management II (3104) 237
75. 8-Telex Interface (3105) 238
76. Floppy and Streamer Interface (3106) 241
77. 8-Terminal Interface (3107) 243
78. Expanded PIOC (3108) 246
79. 8-Terminal Interface with Buffer (3111) 250
80. Plotter - Printer DMA Interface (3114) 253
81. ND-120/CX CPU 255
82. Hardware Configuration (ND-120/CX) 258
83. Format of the A-Register after a VERSN Instruction 260
84. Test Procedures Used for Different IIC Values 41
85. TSPEED 53
86. ALD on the CPU Module (3002) 169
87. Baud Rate on the CPU (3002) 169
88. Lower-Limit Switch-Setting on the Dynamic RAM (3005) 172
89. Terminal Group on the Floppy and 4-Terminal Interface (3010) 177
90. Baud Rate on the Floppy and 4-Terminal Interface (3010) 178
91. Device Numbers on the 8-Terminal Interface (3013) 182
92. Baud Rate on the 8-Terminal Interface (3013) 183
93. Baud Rate on the HDLC Controller (3015) 184
94. Autoload Device Number on the HDLC Controller (3015) 185
95. Device Number on the HDLC Controller (3015) 185
96. Function Switches on the HDLC Controller (3015) 186
97. Device Numbers on the ND-500 Interface (3022) 191
98. Baud Rate on the Megalink Interface (3023) 19
99. Autoload Device Number on the Megalink Interface (3023) 19j
100. Device Register on the Megalink Interface (3023) 194
101. The Source Oscillator Switch on the Megalink Interface (3023) 194
102. The Autoload Function Selector on the 3023 Card 195
103. Busy Enable/Disable Switch on the Megalink Interface (3023) 195
104. External BUS Number Selection on the Bus Adapter (3024) 196
105. Device Number Selection on the GPIB Controller (3026) 198
106. BEX Number Setting on the Bus Expander (BEX) (3028) 203
107. Device Numbers on the Universal DMA (3029) 205
108. Device Numbers on the ND-100 Bus Controller (3031) 207
109. The Limit Displays on the ND-100 Bus Controller (3031) 208
110. Interleave on the ND-100 Bus Controller (3031) 209
111. Interleave on the Memory Port - MPM4 (3032) 212
112. ALD on the CPU Module (3033) 215
113. Baud Rate on the CPU Module (3033) 215
114. Memory Address Range on the 256 K Memory Module (3034) 217
115. Memory Address Range on the 64 K Memory Module (3036) 219
116. Device-Register Address Range on the 8" Disk Controller (3038) 220
117. External Device Number Switch on the ND-100 BUSC (3039) 22
118. The Limit Displays on the ND-100 Bus Controller (3039) 224
119. Interleave on the ND-100 Bus Controller (3039) 225
120. Device-Register Address Range on the 5.25" Disk Controller (3041) 227
121. Memory Address Range on the 2 MB Memory Module (3042) 229
122. The Switch Setting on the PIOC Interface (3101) 233
123. Thumbwheel Setting on the PIOC Interface (3101) 234
124. Thumbwheel Setting on the Ethernet Master (3102) 236
125. Normal Address Range Setting on the 8-Telex Interface (3105) 239
126. Extended Address Range on the 8 -Telex Interface (3105) 239
127. Baud Rate Selection on the 8-Telex Interface (3105) 240
128. Error Code Display on the Floppy Streamer Interface (3106) 242
129. Normal Address Range on the 8-Terminal Interface (3107) 244
130. Extended Address Range on the 8- Terminal Interface (3107) 244
131. Baud Rate on the 8-Terminal Interface (3107) 245
132. Switch Setting on the Expanded PIOC (3108) 247
133. Bank-Number Selection on the Expanded PIOC Interface (3108) 248
134. Normal Address Range on the 8-terminal Interface with buffer (3111) 251
135. Extended Address Range on the 8-terminal Interface with buffer (3111) 251
136. Baud Rate on the 8-Terminal Interface with Buffer (3111) 252
137. PCB-Function Selector on the Printer/Plotter Interface (3114) 253
138. Device Number Selection on the 3114 Card 254
139. ALD Switch Settings on ND-120/CX 257
140. Baud Rate Switch Settings 257
141. ECO Level Strap Field 259
142. Jumper Settings for Internal Test Points 261
143. Memory Size Indicator 264

Chapter 1 Technical description and physical layout

This section provides an overview of the ND-100 computer range:

- ND-100/CX Computer
- External bus structure
- ND-100 and MPM-4
- ND-100 and MPM-5
- ND-100 power distribution
- ND-100 COMPACT
- ND-100 SATELLITE

Norsk Data ND-30.008.3 EN

This cabinet may contain one or two 22 -position card crates. The power supplies are located at the top of the cabinet.

The main card crate, located inside the front of the cabinet, may contain up to 21 cards, including the CPU. The card crate inside the back of the rack may contain input/output, multiport memory, etc.

Figure 1. The ND-100/CX Cabinet

Norsk Data ND-30.008.3 EN

External Bus Structure

The figures in this section show the busses between ND-100, ND-500 and the multiport memory.

Figure 2. External Bus Structure w/MPM-4

Norsk Data ND-30.008.3 EN

Figure 3. External Bus Structure w/ MPM-5

```
MD-1OO and MPM-4
```


$\begin{aligned} & \text { Pos. } \\ & 1-7 \end{aligned}$	Pos. 8	Pos. 9	$\begin{aligned} & \text { Pos. } \\ & 10 \end{aligned}$	$\begin{aligned} & \text { Pos. } \\ & 11-12 \end{aligned}$	$\begin{aligned} & \text { Pos. } \\ & 13 \end{aligned}$	$\begin{aligned} & \text { Pos. } \\ & 14 \end{aligned}$	$\begin{aligned} & \text { Pos. } \\ & 15 \end{aligned}$	Pos. $16-22$
RAM	Port ND-500 Instr.	Port ND-500 Data	Busc 0		Busc 1	Port ND-500 Data	Port ND-500 Instr.	$\begin{aligned} & 128 \mathrm{~KB} \\ & \text { RAM } \end{aligned}$
Print number 3034	Print number 3032	Print number 3032	Print number 3031		Print number 3031	Print number 3032	Print number 3032	Print number 3034

Figure 4. The MPM-4 Card Crate

MD- 100 and MPM-5

The following figure shows the MPM-5 card crate:

Figure 5. The MPM-5 Card Crate
MSB= Most Significant Bit LSB $=$ Least Significant Bit

VD-100 AC and DC power distribution

This section shows the internal AC and DC distribution in the ND-100 Cabinet.

Figure 6. AC Distribution in the ND-100 Cabinet

Figure 7. DC Distribution in the ND-100 Cabinet

Figure 8. $A C$ and DC Distribution for Floppy and Streamer Drive

This cabinet contains one 12 -position card crate. The power supply is located directly in front of the card crate.

Figure 9. The ND-100 Compact Cabinet

This cabinet contains one 7-position card crate. The power supply is located directly in front of the card crate.

Figure 10. The ND-100 Satellite Cabinet

Chapter 2 Module substitution precautions

- Stop the disk and turn the power OFF before removing the disk controller cards.
- Stop the disk before removing or replacing a module in order to prevent loss of data stored on the customer's disk.
- Press the MASTER CLEAR button on the operator panel when removing or replacing a module.
- Ensure that the new module is on the correct ECO level, and that the switch settings are correct.
- If you have installed a new module after an error condition has been corrected/has occurred and the fault seems to have disappeared, you should try to install the old module again to see if you get the same error condition.

Chapter 3 Preventive maintenance

3.1 General

While the ND-100 Satellite/Compact can be installed in offices etc., the ND-100/CX must be installed in a data center.

The following environmental and procedural considerations within a data center are essential for the efficient and reliable operation of the ND-100:

TEMPERATURE

HUMIDITY

DUST

The temperature should be maintained at 22 degrees centigrade ± 4 degrees.

A temperature gradient of 2 degrees centigrade per hour should not be exceeded.

The relative humidity should be maintained at $55 \% \pm 10 \%$.

The site should be kept clean and dustfree. The air pressure in the computer room should be higher than the air pressure outside the room. Special demands are made on the airconditioning unit's filter if the air includes corrosive gases, salts, conductive mineral particles or other unusual dust particles.

One way of reducing downtime associated with unexpected system failure is to provide preventive maintenance services. During preventive maintenance scheduled visits, the field-service engineer should:

- Check the system to identify possible problem areas.
- Talk with the system supervisor and operators.
- Read through related documentation carefully.

The minimum maintenance to be done by the ND Service Department should include:
QUARTERLY

- Asking the system supervisor to stop the system.
- Observing that all the fans function properly.
- Cleaning the air filters.
- Checking the operator panel functions.
- Performing other preventive maintenance as described in vendor manuals for disks, magtapes, printers, floppies, streamers, etc.
- Activating the system and ensuring that everything is running properly.

ANNUALLY:

- Changing the air filter for the disk units and performing other preventive maintenance as described in the disk manual.
- Checking the power-supply output.
- Clean the computer. If necessary, cleaning the boards with a vacuum cleaner.
- Performing other preventive maintenance as described in vendor manuals for magtapes, printers, floppies, streamers etc.
- Activating the system and ensuring that everything is running properly.

Chapter 4 Error symptoms and troubleshooting procedures
4. 1 General

This chapter outlines the error situations that occur when SINTRAN enters different error conditions, such as reporting errors, stops, hanging, etc.

In each of these error situations, a step-bystep troubleshooting procedure to correct the error or identify the failure is outlined. It is not possible to cover all situations and cases, but the intention is to put you on the right track.

The flow chart on the next page gives you references to the different sections within this chapter.

This flow-chart refers to the proper actions to be take when SINTRAN enters different error conditions.

Figure 11. SINTRAN Enters Different Error Conditions

- Ask the System Supervisor for error messages or other information related to the error condition.
- Check whích SINTRAN version is used.
- Check if the latest patch file is used.
- Check configuration and ECO-level.
NOTE-
To stop the system, contact your
System Supervisor.

Error situations are usually detected through error messages from SINTRAN. These are classified as NON FATAL ERRORS and the error message will appear on the users terminal or on the error message terminal (usually the console terminal). These messages are listed together with suggested operator actions for the different messages in:

SINTRAN III System Supervisor, ND.30.003.

At runtime, errors may be detected by the system and written on the users terminal or on the console. Most of the errors will cause the current RT program to be aborted. The following error message will be displayed:

HH.MM.SS. ERROR NN IN RR AT LL; TTTT $X X Y Y$

If the error occurs in a background program, the error message will be written on the corresponding terminal. For RT programs, the error message will be written on the console.

The parameters have the following meaning:

HH.MM.SS:
Time when the error message was printed.
HH hours
MM minutes
SS seconds

NN:
Error number. For further explanation, refer to the list on page 21.

RR:
The RT program name or an octal address corresponding to an RT-program name.

LL:
Octal address where the error occurred.

TTTT Explanatory text.

XX, YY:

EXAMPLE:

Numbers carrying additional information about the error. One or both numbers can be omitted.
06.43.32 ERROR 14 in BAKO3 AT 114721 OUTSIDE SEGMENT BOUNDS

In the case of a transfer error, an additional message, TRANSF, will be given.

The following runtime messages may occur.

The error messages that could be caused by hardware defects are printed in bold text, and will be explained in detail in section 4.3.2.

Note that some error codes are unused.

ERROR CODE	PROGRAM MEANING	XX	YY	ABORTED
00	Illegal monitor call			Yes
01	Bad RT program address			Yes
02	Wrong priority in PRIOR			Yes
03	Bad memory page	Page no.		
04	Internal interrupt on direct task level	Level	Bit no.	
06	Batch input error	Error no.		Yes
07	Batch output error	Error no.		
08	Batch system error	Error no.	L reg.	Yes
09	Illegal parameter in CLOCK			Yes
10	Illegal parameter in ABSET			Yes
11	Illegal parameter in UPDAT			Yes
12	Illegal time parameters			Yes
13	Page fault for non DEMAND	Page no.		Yes
14	Outside segment bounds	Page no.		Yes
15	Illegal segment number	Segment no.		Yes
16	Segment not loaded	Segment no.		Yes

$\begin{aligned} & \text { ERROR } \\ & \text { CODE } \end{aligned}$	PROGRAM MEANING	XX	YY	ABORTED
17	Fixing demand	Segment no.		Yes
18	Too many fixed pages	Segment no.		Yes
19	Too big segment	Segment no.		Yes
20	Disk transfer error	Hardware device no.	Unit	No (yes if segm. transfer)
21	Disk transfer error	Last 16 bits of sector address	Hardw. status	No
22	False interrupt	Level	Id. code	No
23	Device error	Hardware device no.	Hardw. status	No
25	Already fixed	Segment no.		Yes
26	Device time out	Hardware device no.		No
27	Illegal parameter in CONCT			Yes
28	Space not available	Segment no.		Yes
29	MON 64 and MON 65	Error no.	$\begin{aligned} & \text { (See NORD } \\ & \text { File Sys } \\ & \text { ND- } 60.12 \end{aligned}$	Yes)
30	Divide by zero			Yes
31	Permit violation			Yes
32	Ring violation			Yes
33	HDLC driver, fatal error			Yes
34	Illegal instruction			Yes
35	Reentrant-FTN stack error			Yes
36	Privileged instruction			Yes
37	IOX error	Address	Level	No
38	Memory parity error	PEA register	PES reg.	Yes
39	Memory out of range	PEA register	PES reg.	Yes
40	Power fail			No

ERROR CODE	PROGRAM MEANING	XX	YY	ABORTED
41	Illegal error in ERMON			Yes
42	Overlapping segments	Segments		Yes
44	Corrected memory error	PEA register	PES reg.	No
45	Not demand segments			Yes
46	XMSG fatal error, internal error, or inconsistency	XMSG error code	Physical address	Yes
47	XMSG user error	Calling level		Yes
48	False BEX interrupt			
49	Remote power-fail interrupt			
$\begin{aligned} & 50- \\ & 69 \end{aligned}$	User-defined error (MON 142)	Error no.	Suberror no.	No
70	BEX parity error			
71	False MPM4 interrupt	Busc no.	Hardw. STATUS	No
72	MPM4 power-fail interrupt	Busc no.		No
73	MPM4 memory out-of-range	Busc no.	Lower limit	No
74	MPM4 memory error	Local PES	Local PEA	No
75	MPM4 parity error	Busc no.	Lower limit	No
76	MPM4 write parity error	Busc no.	Port code	No
90	Fortran runtime error	Error no.		No
91	Fortran I/O error	Error no.		No
100	Fortran library error			

Norsk Data ND-30.008.3 EN

```
.3.2 The runtime errors explained in detail
```

03 BAD MEMORY PAGE 〈PAGE NO.〉

11 ILLEGAL PARAMETER IN UPDAT

?

-

EXPLANATION:

Occurs when the power has been turned OFF, or the CPU has been pulled out of the card crate.

PROCEDURE:
The clock must be updated.

13 PAGE FAULT FOR NON DEMAND

14 OUTSIDE SEGMENT BOUNDS

EXPLANATION:
An RT-program on a non-demand type segment is attempting to use an address outside the segment bounds.

Non-demand segment: Segments where all pages have to be present in memory before start up. This is probably a user error.

PROCEDURE:

Run tests:
MEMORY
PAGING
PARITY CHECK ON DISK/FILSYS
CPU TESTS
(see chapter 5)

EXPLANATION:
An RT-program on a demand segment tried to use an address outside the segment bounds.

- If the error message is from user RTprogram:
-Check the software
- If the error message is from system RTprogram:
-Check the hardware

PROCEDURE:
Run tests:
MEMORY
PAGING
PARITY CHECK ON DISK/FILSYS
CPU TESTS
(see chapter 5)

```
20 DISK TRANSFER ERROR
<HARDWARE DEVICE NO.> <UNIT>
21 DISK TRANSFER ERROR
<DISK ADDRESS> <STATUS>
```


EXPLANATION:

Error messages 20 and 21 will normally appear together and indicate a mass storage transfer error.

Sometimes, however, only a special error message TRANSF! is printed. This message is printed out when a transfer error occurs during a swapping operation on the disk.

This hardware error is probably due to a disk error, a disk controller error or a memory error.

PROCEDURE:
Run test:
DISC-TEMA
(see chapter 5)

22 FALSE INTERRUPT 〈LEVEL〉
EXPLANATION:

Levels $10,11,12$ or 13 were activated, but the IDENT instruction could not find a correct ident code for an input or output device.

The problem could be noise, or a hardware error.

The interrupt levels:

10
output devices
11 mass-storage devices
12 input devices
13
real-time clock, HDLC

PROCEDURE:

Run CONFIGURATION-INVESTIGATOR to check the state of the different device interfaces. (See chapter 5 for more information.)

23 DEVICE ERROR <DEVICE NO.〉 <STATUS>

31 PERMIT VIOLATION

EXPLANATION:

All devices are run in test mode at start-up time. DEVICE ERROR will be printed if an error is found in the status word of the device.

The STATUS is the status word for the actual device, giving a more precise description of the error. See the status-word description for the specified device.

The cause could be that at START-UP time:

- The device is connected to a RS-232 interface, but not switched on, or it is not on line.

PROCEDURE:

Turn on the device and restart the system to see if the error message occurs again.

If it does, then:

- Run CONFIGURATION-INVESTIGATOR.
- Test the device reporting errors (see chapter 5 for additional information).

See the Service Handbook for ND-100 device numbers, ident codes and logical device numbers.

LANATION:
The RT-program attempted to access a page with an illegal reference type. This is probably a programming error. Each individual segment may be protected against:

- read access
- write access
- instruction fetch access

32 RING VIOLATION

34 ILLEGAL INSTRUCTION

37 IOX ERROR 〈ADDRESS〉

PROCEDURE:

Run tests:
PAGING
CPU-TESTS
MEMORY
(see chapter 5)

EXPLANATION:
The RT-program attempted to execute an instruction or to access data on another page with a higher ring status. This is probably a programming error.

PROCEDURE:
Run tests:
PAGING
CPU TESTS
MEMORY
(see chapter 5)

EXPLANATION:
The program attempted to execute an instruction which was not implemented.

PROCEDURE:
Check the version of the microprogram. It is NOT possible to run "extended" software on a machine without the microprogram for a "commercial extended"(CE) ND-100.

EXPLANATION:
This could mean no answer (BDRY) from an interface, or that an IDENT instruction is executed without an interrupt waiting. This could be either a hardware error on the interface or a software error, for example a user trying to access a nonexistent interface.

PROCEDURE:
Run CONFIGURATION-INVESTIGATOR to check the state of the different device interfaces (see chapter 5).

38 MEMORY PARITY 〈PEA〉 〈PES〉
EXPLANATION：

A memory parity error has occurred．It is probably a hardware error．

PROCEDURE：
Locate the failing memory module by the information found in：
－PEA，parity error address register
－PES，parity error status register
By using the contents of PES and PEA，a 24－bit address can be built in the following way：

PEA：
15

0

LOWER 16 BITS OF PHYSICAL ADDRESS

PES：
15
0

Figure 12．PES and PEA Layout
You can find the 24 －bit address from bits $0-15$ in PEA and bits $0-7$ in PES．

This 24 －bit address will enable you to find the failing module：

2 Mb modules：
1．module 0 － 3777777
2．module 4000000 － 7777777
3．module $10000000-13777777$
4．module 14000000 － 17777777

256 Kw modules：

1．module	$0-777777$
2．module	$1000000-1777777$
3．module	$2000000-2777777$
4．module	$3000000-3777777$

Norsk Data ND－30．008．3 EN

64 KW modules:

1. module	$0-177777$
2. module	$200000-377777$
3. module	$400000-577777$
4. module	$600000-777777$

39 MEMORY OUT-OF-RANGE〈PEA〉 <PES>

EXPLANATION:
An attempt to access a nonexistent memory location has occurred.

PROCEDURE: Check if bit 14 in PES is set. If this bit is set, it means that DMA was active when MEMORY PARITY ERROR/MEMORY OUT-OF-RANGE occurred.

Run tests:
MEMORY
PAGING
INSTRUCTION
CACHE
(see chapter 5)

40 POWER FAILURE
EXPLANATION:
The message will be given when SINTRAN automatically restarts after a power failure or @STOP-SYSTEM command.

EXAMPLE:
14.21.32 ERROR 40 in 23327 at 110330: POWER FAILURE

PROCEDURE:
If there is no automatic restart:

- Check that the key on the operators's panel is in the locked position.
- Check if the battery is switched ON.

Run the POWER-FAILURE TEST PROGRAM (see chapter 5 for additional information).

44 CORRECTED MEMORY ERROR 〈PEA〉〈PES＞

48 FALSE BEX INTERRUPT

49 REMOTE POWER－FAIL INTERRUPT

70 BEX PARITY ERROR

71 FALSE MPM4 INTERRUPT
BUSC NO．〈nnn〉

EXPLANATION：

A single data bit in a word read from memory has been corrected by the ECC network on the memory modules．

PROCEDURE：
Run tests：
MEMORY
（see chapter 5）

EXPLANATION：
Interrupt from the bus extender（BEX），but no error status is set．It is probably an error on the BEX card，or in the second card crate．

PROCEDURE：
Run test：
CONFIGURATION
（see chapter 5）

EXPLANATION：
Interrupt from the bus extender（BEX），which has a special switch set．

PROCEDURE：
Run test：
CONFIGURATION
（see chapter 5）

EXPLANATION：
A bus extender parity error has occurred． Probably a hardware error．

PROCEDURE：

Run test：
CONFIGURATION
（see chapter 5）

EXPLANATION：

A false interrupt from one of the memory banks in the MPM4．

```
PROCEDURE:
Run test:
    MEMORY
    (see chapter 5)
```

72 MPM4 POWER-FAIL INTERRUPT
BUSC NO. 〈nnn〉

EXPLANATION：

A false interrupt from one of the memory banks in the MPM4．

PROCEDURE：

Run test：
MEMORY
（see chapter 5）

73 MPM4 MEMORY OUT OF RANGE BUSC NO．〈nnn〉

EXPLANATION：

An attempt to address a nonexistent memory location in MPM4 has occurred．

PROCEDURE：

Run test：
PAGING
MEMORY
（see chapter 5）

74 MPM4 MEMORY ERROR
LOCAL PES 〈nnn〉
EXPLANATION：
Local MPM4 error．This error will be followed by errors 73 or 75 ．

PROCEDURE：

Run test：
MEMORY
（see chapter 5）

75 MPM4 PARITY ERROR BUSC NO．〈nnn〉

EXPLANATION：

An MPM4 parity error has occurred．It is probably a hardware error．

PROCEDURE：
Run test：
MEMORY
（see chapter 5）

76 MPM4 WRITE PARITY ERROR BUSC NO．〈nnn〉

EXPLANATION：

A port discovered a parity error in MPM4． PROCEDURE：

Run test：
MEMORY
（see chapter 5）

Norsk Data ND－30．008．3 EN

```
4 SINTRAN III stopped or hanging
```

If the machine has gone into a stop or a hang-up situation, the following should always be noted before pressing the buttons STOP or MCL:

1. Is the machine in a stop or in a hang-up situation?

The machine has stopped if the OPCOM lamp on the computer's panel is lit and the RUN lamp is not lit.

If this is not the case, but there is no response from the machine, you have a hang-up situation.
2. Are paging and interrupt turned on or off? Look at the computer's panel.
3. What interrupt levels are active? Look at the computer's panel.
4. Try to find out what was running on the machine when the error occurred.
5. Note the latest commands given on the terminal.
6. Follow the troubleshooting procedures, which start on the next page.

TROUBLESHOOTING PROCEDURE:

Norsk Data ND-30.008.3 EN

Norsk Data ND-30.008.3 EN

```
4.4.1 ND-100 stopped or hang-up on level different from 14
```

TROUBLESHOOTING PROCEDURE:

```
ND-100 stopped or in hang
up on level different
from level }1
```

Special procedures for certain levels.

When you follow the procedure from Section 4.4 make a visual check of the following:

- The disk
- If the ready light is OFF, or if any fault indicators are $O N$, check the disk.
- The power supply
- Check the power supply indicators.
- Check the error indicators on the edge of the different cards. See Appendix A.

Note the latest commands given on all terminals.

Do a MEMTOF dump:

- Insert the diskette with MEMTOF in floppy unit 0
- Press the MCL button
- Type 1560\&
(From SINTRAN III Ver.K: Type 15!)
- Change to a formatted diskette when this is asked for. The MEMTOF program will dump the memory contents onto the diskette.
- Turn the diskette together with the written information gathered during this procedure to software service for analysis.

Continued on page 39

Norsk Data ND-30.008.3 EN

C Active level=1	Normally a hang-up situation. A RT-program was running. PROCEDURE: - If in a stop condition: Press the MCL- and LOAD-buttons.
	- If in a hang-up condition: Press the STOP-button. Have a look in memory locations 7 or 10 (should be equal). Add 1 to the content found in this location. This gives you the address of the RT-program's status word. Give the I/O wait bit the value " 1 " , set the Priority bit="0", and type ! to continue.
Active level=3	A hang-up or a stop condition normally caused by: - Overwriting in the start of SINTRAN III resident part PROCEDURE: 1. Do a MEMTOF dump (see page 37) 2.Test memory by running the test program MEMORY 3.Test the page tables by running the test programs PAGING and INSTRUCTION 4.Press the MCL- and LOAD-buttons.
Active level=5-9	A stop or a hang-up situation normally caused by special user software (RT-programs) PROCEDURE: Press the MCL- and LOAD-buttons.
Active level=10-13	A stop or a hang-up situation caused by the I/O system (an I/O device causes the problem). PROCEDURE: 1.The contents of the B-register on the active level give you the address of the data field on the peripheral that caused the trouble. Use this address to find the device from the SINTRAN III Listing Part II. 2.Run a test program to test the particular device. 3.Press the MCL- and LOAD-buttons.

From page 38


```
4.4.2 ND-100 stopped or hanging on level 14
```

Level 14 is connected to the internal interrupt system. SINTRAN III will read the IIC-(internal interrupt code) in case of a level-14 interrupt.

When the IIC is read, the contents of this register are cleared. The contents of the IIC are found in the following way:

Print the contents of the B-register on level 14:

16 B/ xxxx

If running SINTRAN III version K, you must type:

7E〈CR〉
By subtracting 200 (octal) from the contents of the B-register, the address of these different parameters is found:
xxxxx - 200 / FAILING ADDRESS (PERR)
and in the following addresses (press the carriage return-key):

PREVIOUS LEVEL (ACTL)
INTERNAL-INTERRUPT CODE (IIC)
PARITY-ERROR STATUS (PES)
PARITY-ERROR ADDRESS (PEA)
Names in brackets are the names used by SINTRAN III.

```
NOTE
    The values of PEA and PES are only valid
    if the IIC is equal to to 10 or
    11 (octal).
```

The following table shows the procedure to be followed for the different values of the IIC.

IIC VALUE:	DURE (run the following tests):
1 Monitor call	CPU
2 Memory protect violation	CPU and Paging
3 Page fault	CPU, Paging, Memory and Cache
4 Illegal instruction	CPU
5 Zero indicator set 6 Privileged instruction 7 IOX error No reply from addressed interface module	CPU
	CPU
	CONFIGURATION INVESTIGATOR
10 Memory parity error 11 Memory out-of-range 12 Power fail	Memory
	Memory
	Power-fail
	CHECK:
	- Key in the LOCKED position? - Power-supply backup battery OK?

Table 1. Test Procedures Used for Different IIC Values

It is also important to check if bit 14 in PES is set. If this bit is set, it indicates that DMA was active when MEMORY PARITY ERROR/MEMORY OUT OF RANGE occurred.

Error symptom:

FLOPPY DISK WILL NOT LOAD

Verify whether the terminal is on-line.

Check the other console parameters such as:

- speed
- parity
- terminal type

Try to load by typing:
1560\&
on the console.

TRY ANOTHER DISKETTE.
The diskette should be inserted with the
Go to section labels on the opposite side of the opening switch, labels out, and on UNIT 0.

ND-100 WILL NOT
RESPOND AT ALL.
Clean the read/write head with cleaning fluid.

CHECK IF:

- The floppy power switch is ON
- The door on the floppy is properly closed
- Pull out the diskette and verify whether the - Old floppy types only! floppy drive is rotating.

A
Continued on page 43

FROM THE PREVIOUS PAGE:

A

Check that the Memory will accept the floppy data:

- Run the microprogrammed Memory test program
\#B/ZZZZZZ $000000<C R$ 〉
(Lower address to be tested) \#X/YYYYYY 177777 <CR> (Upper address to be tested)

Type"O\#" to test within the first 128 Kb area. Type"1\#" to test within the next 128 Kb area. etc.

Continued on page 44


```
4.5.1 The unit-select light
```

The light emitting diode positioned in the opening switch of the floppy drive is lit when:

- The unit is selected
- The head is loaded
- The unit is ready for reading

No "click" sound (old floppy types only):

No light:

Floppy monitor does not start:

If the diode is not lit, this may indicate that the unit is not properly selected. This could be caused by:

- Error in the microprogram that reads from unit 0 .
- Malfunction in the I/O system jamming the
signals initiated by the microprogram

Malfunction in the I / O system jamming
signals initiated by the microprogram

- Error in the formatter (on old floppy types only)
- Error in the unit

A "click" sound is heard from the head-loadsolenoid when the head is loaded. If the light emitting diode is lit, but there is no "click" sound, there may be something wrong with the floppy drive.

If the LED is lit, but the floppy monitor has not started, the reason could be:

- Error in the formatter
- Error in the unit
- Memory error
- CPU error
- Defective diskette

Memory and CPU errors indicate that the instructions read from the floppy disk have not been correctly executed.

Watch out for the following error symptoms:

1. The unit-select light is $O N$, but there is no monitor.
2. The unit-select light is OFF.

The troubleshooting procedures for these error symptoms are found on page 47 and 48.

The unit-select light is $O N$, but there is no monitor:

The error symptoms:

- Test programs will not load from floppy disk. - The unit-select light is ON, but there is no monitor.
- Insert a diskette and try a LOAD, followed by an MCL.
- Examine the memory to see if anything has been read from the diskette.

The addresses should contain the following values:

ADDRESSES:	VALUES:
0	1633
1	3516
2	165562
3	130447
4	170460
5	165563
6	44062
.	.

- Did the addresses contain these values?

YES	

Check in this order:

- The error codedisplay on the controller
- + 12V
- Floppy controller
- Formatter card *
- CPU
- Remaining I/O
* On old floppy drives only.

The unit light is OFF:

The error symptoms:

- The programs will not load from the floppy disk - The unit light is OFF

Check in this order:

- The floppy interface
- The floppy drive See chapter 6 for replacement of the floppy drive/floppy drive power
- The DC voltage on the floppy drive
- +12 V DC for the controller

Error symptoms:

- OPCOM is working, but no response from memory.

Run the microprogrammed memory test program. See page 43.


```
4.7 #D-100 will not respond at all
```


Error symtom:

- The ND-100 does not respond at all

Is the console on-line?

- Turn the console on-line.
- Correct the speed setting for the console.
- If still no response on MCL, try a LOAD by setting the ALD to 1560 and press tho LOAD button on the operator panel.
Watch the unit light on the floppy.

If no response:

- Replace the CPU
- Swap or disconnect the operator's panel.
- Try another terminal as console. NOTE: Remember correct speed.

Norsk Data ND-30.008.3 EN

A

POSSIBLE ERRORS:

- Check if powersense is $O N$.
- Check the power supply and the power-supply indicators.
- Possible CPU error. Change the CPU card.
- Remove the cards, one after the other, starting from the right of the rack, so that just the CPU is left.
Check the MCL signal on the ND-100 bus.
This may be active for some reason.
Note that the MCL signal is on until the CPU has passed the selftest, and will be turned off at the end of the selftest.

POSSIBLE ERRORS:

- Probably problems with the input from the console to the CPU.
- Check the cables from the console.
- Change the CPU.
- Change the displaypanel.
- If more then one rack in the system, disable the second rack by removing the Bus Master, the MPM driver or the BEX.
- Remove the cards, one after the other, starting from the right of the rack, so that just the CPU is left.

```
8 Jo response from certain terminals
```

ERROR SYMPTOM：
The terminal does not respond．

Try to press the RETURN and ESCAPE－keys and see if the terminal responds．

If not，check the following：
－The speed of the terminal，set by software（TSPEED），and the terminal type（CTTYP）．
－The terminal itself，or the cables．
－The terminal interface．

The procedure below shows how to check the TSPEED and the CTTYP：
NOTE：You have to stop the system during this procedure（3）． Ask the System Supervisor．

1．Enter as user SYSTEM．
2．＠SINTRAN－SERVICE－PROGRAM〈CR〉
＊CHANGE－DATAFIELD〈CR〉
LOG．UNIT NO．：XX〈CR＞\quad \％Terminal number（Octal）
INPUT OR OUTPUT？INPUT＜CR＞
MEMORY？YES〈CR〉
IMAGE？YES〈CR〉
SAVE－AREA？YES〈CR〉
MEMORY IMAGE SAVE－AREA
TSPEED／XXX XXX XXX YYY＜CR＞NOTE：Use data from table 2
CTTYP／XXX XXX XXX YYY＜CR＞NOTE：Use data from Appendix B in SINTRAN III Commands Reference Manual， （ND－60．128）．
＊EXIT＜CR＞
3．Ask the System Supervisor to stop the system．
4．Now the system can be restarted．

While using this procedure, the following should be considered:

Location TSPEED in the terminal's input datafield must be set according to the table below. The initial value of TSPEED is 177777 (-1).
NOTE-
If setting the speed (by software) for
any terminal connected to a 3010 -card
or 3013 -card, you must set the speed for
the other three terminals in the same
terminal group as well.
An 8-terminal interface is regarded as
two groups of four.

The speed will not be changed before SINTRAN III is started or restarted (i.e. Stop-system followed by MASTER CLEAR and Restart (20!)).

TSPEED should be changed in SINTRAN III RESIDENT, THE IMAGE AREA, and the SAVEAREA.

Baud rate	TSPEED
50	42
75	63
110	377
134.5	104
150	356
200	125
300	335
600	146
1200	273
1800	252
2400	167
4800	231
9600	210
19200	0

Table 2. TSPEED

Ciapter 5 Test programs

This section gives a short description of the most important test programs for ND-100 and ND-110.
5.1 Loading of test programs

The test programs may be run stand-alone or under SINTRAN.

All test program monitor commands can be executed stand alone:

DATCL
DEFINE-MACRO
DELETE-MACRO
DUMP-PRINTER-BUFFER
EXIT
EXPLAIN-COMMAND
HELP
LIST-MACROS
LIST-FILES
LOAD-PROGRAM
MODE
MONITOR-HELP
OPCOM
PRINT-NOTE
PROGRAM-STATUS
PROGRAM-HELP
SET-TERMINAL-TYPE
SET-PRINTER-MODE
SET-PRINTER-DEVICE-NUMBER or SET-PRINTER-FILE
SET-CONSOLE-DEVICE NUMBER
TERMINAL-MODE
UPDAT

Some of these monitor commands may also be executed when the test program is loaded under SINTRAN, but not all. You will find details about monitor commands and other valuable information in the manual:

ND-100/ND-110 Test Program Description (ND30.005 EN) .

Examples of complete loading of a test program are shown below．

Example：Stand－Alone
1．Insert the diskette containing the test programs in the floppy disk drive，unit 0 ．

2．Press MASTER CLEAR．Terminal 1 responds by printing：＂\＃＂．

3．Type 1560\＆on terminal 1．The terminal responds by printing：

TPE Monitor，ND－100／ND－110－Version：XXX－Year－Month－Day
The command HELP gives you the full list of available commands

TPE＞

```
4. Type LOAD DISC-TEMA (or another
    test program).
TPE>LOAD DISC-TEMA <CR>
    DISC-TEMA - Version: XXX - Year-Month-Day
DISC NAME:
```

Example：Loading under SINTRAN
Some test programs may be run under SINTRAN．

When running under SINTRAN，the autoload function is also available．You must give the test program file name on the same line as the TPE－MONITOR program name：
＠TPE－MON CACHE＜CR〉

To start under SINTRAN as an RT program，you give the command：
＠RT TPEMON 〈CR〉
In this case，the program starts on the system console，device number 1.

If you want to use another terminal，the background program TPE－RT－MON must be activated from user SYSTEM or preferably from user RT on that terminal：
＠TPE－RT－MON＜CR＞
Norsk Data ND－30．008．3 EN

Be aware that user RT must have at least two pages, one of which must be free. If user SYSTEM is entered, it must have directory and write access to user RT.
 The restart address is 20 .

j, ? Which test program to use?

In this section you will find a table which table recommends the tests you should use to test the different parts of the computer system, including the peripherals.

In section 5.3 you will find a short description of each test, followed by an example showing you how to run the test.

CARDS

PRINT	NAME	RECOMMENDED TEST	SEE PAGE
3002	N100 CPU	INSTRUCTION	59
3003	MPM LINE DRIVER	MEMORY	65
3005	DYNAMIC RAM	MEMORY	65
3006	PERTEC MAGTAPE CONTROLLER	MAGTAPE	92
3012	MEMORY MAN W/CACHE	PAGING, CACHE	63, 62
3013	8-TERMINAL INTERFACE	TERMINAL-ASYNC	72
3015	HDLC	HDLC-MEGALINK	84
3018	SMD CONTROL	DISC-TEMA	74
3019	SmD Data	DISC-TEMA	74
3023	MEGALINK	HDLC-MEGALINK	84
3027	FLOPPY DISK CONTROLLER	FLOPPY-STREAM	95
3029	UNIVERSAL DMA FOR ND-100	UNIVERSAL-DMA	87
3030	ND-100 BUS MASTER	MEMORY, CONFIGURATION	65, 67
3031	ND-100 BUS CONTROLLER	MEMORY, CONFIGURATION	65, 67
3032	MPM4 PORT	MEMORY	65
3033	ND-100 CPU	INSTRUCTION	59
3034	256 K MEMORY	MEMORY	65
3036	64K RAM	MEMORY	65
3038	8" DISK CONTROLLER	DISC-TEMA	74
3041	ST-506 DISK CONTROLLER	DISC-TEMA	74
3042	2MB MEMORY	MEMORY	65
3043	15 MHZ SMD CONTROL	DISC-TEMA	74
3044	15 MHZ SMD DATA	DISC-TEMA	74
3090	ND-110/CX CPU	InSTRUCTION	59
3095	ND-110/CX CPU	- CACHE	62
3102	ND-120 CPU	PAGING	63
3101	PIOC	PIOC-ETHERNET	111
3104	MEMORY MANAGEMENT II W/CACHE	PAGING, CACHE	63, 62
3105	8-TELEX INTERFACE	TERMINAL-ASYNC	72
3106	FLOPPY AND STREAMER CONTR	FLOPPY-STREAM	95
3107	8-TERMINAL INTERFACE	TERMINAL-ASYNC	72
3109	MPM LINE DRIVER	MEMORY	65
3110	CTI (COLOUR-TERM INTERFACE)	TCTI (NEW)	117
3111	8-TERMINAL INTERFACE W/ BUFFER	TERMINAL-ASYNC	72
3112	8"-5 1/4" FLOPPY \& STREAMER	FLOPPY-STREAM	95

Figure 13. Test Programs for the Different Cards

DEVICES

NAME	RECOMMENDED TEST	SEE PAGE
CDC FINCH DISK DRIVE	DISC-TEMA	74
CDC CMD DISK DRIVE	DISC-TEMA	74
CDC MMD DISK DRIVE	DISC-TEMA	74
CDC SMD DISK DRIVE	DISC-TEMA	74
CDC RSD DISK DRIVE	DISC-TEMA	74
CDC FSD DISK DRIVE	DISC-TEMA	74
FUJITSU DISK DRIVE	DISC-TEMA	74
MICROPOLIS DISK DRIVE	DISC-TEMA	74
CIPER	MAGTAPE	92
PERTEC	MAGTAPE	92
ARCHIVE STREAMER	FLOPPY-STREAM	95
TANDBERG STREAMER	FLOPPY-STREAM	95
TANDBERG TDV 2115	TERMINAL-ASYNC	72
TANDBERG TDV 2215	TERMINAL-ASYNC	72
FACIT 4420	TERMINAL-ASYNC	72
CDC 938X	LP-TEST-1878	77
DATAPRINTER 1210	LP-TEST-1878	77
EPSON MX80	TERMINAL-ASYNC	72
PHILIPS GP 300 L	TERMINAL-ASYNC	72
TERMINETTE 340	LP-TEST-1878	77
TEXAS 825	TERMINAL-ASYNC	72
DIABLO 1640/50	TERMINAL-ASYNC	72
TALLY 1612	LP-TEST-1878	77
DATAPRODUCTS DP-55	TERMINAL-ASYNC	72
GENICOM 3024	TERMINA-ASYNC	72
PHILIPS ELPH0-20	TERMINAL-ASYNC	72

Figure 14. Test Programs for the Different Devices

This is a verification program for the ND-100, ND-100/CE, ND-100/CX, ND-110/CX and the ND-120/CX instruction set. It runs as a stand alone test program under control of the TPE-monitor. None of the tests are executable under SINTRAN.

TIME REQUIRED:
CPU dependent.

Procedure:

Insert the diskette containing the test programs.
\#1560 \&
TPE monitor, ND-100 / ND-110 - Version: XXX - Year-Month-Day.
The command HELP gives you the full ltst of available commands.

TPE $>$ LOAD INSTRUCTION-B<CR>
INSTRUCTION VERIFY - Version: XXX - Year-Month-Day
The command HELP gives you the full list of available commands TPE>

```
CPU type.........: ND-110 or ND-110/CX
Floating format...: 32 bits
Memory Management.: MMS-2 included on CPU card
Cache.............: Yes
ALD register......: 21540B
CPU cycle.........: Fast
```

TPE>RUN <CR>
$==$ RUNNING TESTS ON LEVEL $1==$
$===$ ARGUMENT INSTRUCTIONS
=== MEMORY REFERENCE INSTRUCTIONS
=== SEQUENCING INSTRUCTIONS
=== REGISTER INSTRUCTIONS
$===$ BIT INSTRUCTIONS
$===$ SHIFT INSTRUCTIONS
$==32$ BITS FLOATING INSTRUCTIONS
=== PRIVILEGED INSTRUCTIONS
$===$ BYTE INSTRUCTIONS
=== PHYSICAL MEMORY INSTRUCTIONS
$===$ BINARY CODED DECIMAL INSTRUCTIONS
=== CX INSTRUCTIONS
$===$ STACK INSTRUCTIONS
$===$ SEGMENT INSTRUCTIONS
=== INTERNAL INTERRUPTS

- continued -

```
procedure - continued - :
=== RUNNING TESTS ON LEVEL 2 ===
=== RUNNING TESTS ON LEVEL 3 ===
=== RUNNING TESTS ON LEVEL 4 ===
=== RUNNING TESTS ON LEVEL 5 ===
=== RUNNING TESTS ON LEVEL 6 ===
=== RUNNING TESTS ON LEVEL 7 ===
=== RUNNING TESTS ON LEVEL 8 ===
=== RUNNING TESTS ON LEVEL 9 ===
=== THE TESTS ARE NOW LOOPING ===
```

```
At this point press the
ESCAPE key in order to
stop the test.
```

<ESC>
$==$ escape $==$ TPE>

There are three test programs for the Cache:

- CACHE-100
- CACHE-110
- CACHE-120

These three test programs run in stand-alone mode only.

Procedure

This example shows the use of CACHE-110.

```
Insert the diskette containing the test programs.
```

\#1560 \&
TPE Monitor, ND-100 / ND-110 - Version: XXX - Year-Month-Day
The command HELP gives you the full list of available commands
$T P E>L O A D$ CACHE-110<CR>
CACHE-110 - Version: XXX - Year-Month-Day
This is a ND-110/CX CPU.
$T P E>R U N<C R>$
Initialize memory : >>>>>>>>>>>>>>>>>>>>>1nitialized
Total amount of initialized memory: 1720B / 976D pages.
Test number(s) (1 to 8 dec$): \leq C R>A l l-t e s t s \leq C R\rangle$
Run mode: Single pass. Abort after 10 errors.
Test started. Time: 1987.03.24 17:56:48

1. Control Store verification (Upper 2K)

- End of test -

2. Basic functions

- End of test -

3. Inhibit limits

- End of test -

4. Enable/Inhibit pages

- End of test -

5. Cache "Used bit memory" test

- End of test -

6. Cache "Data memory" test - End of test -
7. Cache "Page number memory" test - End of test -
8. Cache efficiency

- End of test -

Test finished. Time: 1987.03.24 18:09:32
TPE >
j.2.3 Paging

This test program is designed to test the paging and memory management system functions on the ND-100/ND-110 computer systems. It runs on all ND-100/ND-110 types and with both MMS 1 and MMS 2 in stand-alone mode only.

At start-up the program will do the following:

- Find CPU and MMS configuration.
- If MMS type 2 is found, the microprogram is checked to find whether or not it is updated to read the extended PCR and PSG bits. If not, these bits will not be checked through this test.

```
NOTE
If the program is restarted (at address 20), it will NOT go through the steps mentioned above.
```


Procedure:

Insert the diskette containing the test programs.
\#1560 \&
TPE Monitor, ND-100 / ND-110 - Version: XXX - Year-Month-Day
The command HELP gives you the full list of available commands
TPE>LO PAGING<CR>

PAGING - Version: XXX - Year-Month-Day
CPU type..........: ND-110 or ND-110/CX
Floating format...: 32 bits
Memory Management. : MMS-2 included on CPU card
Cache.............: Yes
ALD register......: $21540 B$
$T P E>R U N<C R>$
Test number(s) (1 to 11 dec$): \leq C R>A l l-t e s t s \leq C R\rangle$
Run mode: Single pass. Abort after 10 errors.
Test started. Time: 1987.03.24 18:02:38

1. PAGETABLE AREA as MEMORY (Address and data bits) - End of test -
2. PAGING CONTROL REGISTERS on all levels - End of test -
3. PGU/WIP bits for all PITS and ENTRIES - End of test -
4. ALTERNATIVE PIT usage on all levels

- End of test -

5. RING VIOLATION interrupt on all levels

- End of test -

6. PAGE FAULT intermupt
7. READ PROTECT VIOLATION intermupt

- End of test -

8. WRITE PROTECT VIOLATION intermupt

- End of test -

9. FETCH PROTECT VIOLATION intermupt

- End of test -

10. PRIVILEGED INSTRUCTION interrupt

- End of test -

11. PHYSICAL ADDRESS generation

- End of test -

Test finished. Time: 1987.03.24 18:10:24
TPE $>$
3.2.4 Memory

This test program will test memory modules on the the ND-100 computer systems. It includes the test program monitor and library. The program permits testing of systems with:

- non-correcting local memory
- error-correcting local memory
- PIOC and Ethernet memory
- Big Multiport Memory (BMPM)
- Multiport 4 Memory (MPM4)
- Multiport 5 Memory (MPM5)

A service program is included, which, among other things, can print the contents of the multiport error \log and scan the "port status". These things might be useful to know:

- Extended addressing will always be set.
- The first 64 Kw of memory are mapped onto page table 0 .
- Memory is tested in blocks of 8 kb (10.000 oct. words).

The 64 Kw of memory currently under test is mapped onto page table 1 and is accessed by enabling Alternative Page Table usage (setting bit 0 of the status word), and then turning on and off the paging system according to needs.

Procedure:

```
Insert the diskette containing the test programs.
```

\#1560 \&

TPE Monitor, ND-100 / ND-110 - Version: XXX - Year-Month-Day
The command HELP gives you the full list of available commands TPE>Load MEMORY <CR>

MEMORY - Version: XXX - Year-Month-day
THIS IS A NORD-100 WITH xxxxk WORDS (16-BIT) MEMORY (DEC.)
$x x \rightsquigarrow x$ is the decimal number of kilowords seen from ND-100.
$T P E>R U N<C R>$
AREA TESTED: 0.5-xx.xx
READ TEST ON PROGRAM PART $\quad===$ END OF TEST $===$
ADDRESSES IN ADDRESSES $\quad \approx=$ END OF TEST $==$
WRITE/READ TEST (7 PATTERNS) $===$ END OF TEST $===$
RAPIDLY CHANGING ADDRESS BITS $===$ END OF TEST $===$
PARITY ERROR DETECTION $\quad==$ END OF TEST $==$
WALK TEST (34 PATTERNS) $\quad==$ END OF TEST $==$
$==$ THE TESTS ARE NOW LOOPING $==$
$=E S C A P E=$

TPE $>$
5.2 .5 Configuration

This is the basic test program for testing the I / O system. The program is more a utility program than a hardware-test program. It checks the hardware configuration of an NDcomputer installation and gives a lot of information.

Note that by comparing the DEVICE NUMBER LIST to a list known to show all devices in a your configuration, you may identify and replace devices not answering or answering incorrectly.

The INTERRUPT PRIORITY LIST may identify misplaced devices (CCAs), as the highest priority within an interrupt level is given to the device located nearest to the ND-100 $C P U-C C A$. If two devices on level 12 change place physically (slot position), they will also change place in the INTERRUPT-PRIORITY LIST.

Procedure:

Insert the diskette containing the test programs.
\#1560 \&
TPE monitor, ND-100 / ND-110 - Version: $x x x$ - year-month-day.
The command HELP gives you the full list of available commands.
$T P E>L O A D C O N F I<C R>$
CONFIGURATION - Version: XXX - Year-Month-Day
TPE $>R U N<C R>$

$$
H A R D W A R E \quad C O N F I G U R A T I O N
$$

CPU type..........: ND-110 or $N D-110 / C X$
Floating format...: 32 bits
Memory Management.: MMS-2 included on CPU card
Cache.............: Yes
ALD register......: $21540 B$
Total memory size.: 2 Mbytes
procedure - continued - :

Hardware device name		$\begin{aligned} & \text { first } \\ & \text { dev no } \end{aligned}$	$\begin{aligned} & \text { last } \\ & \text { dev no } \end{aligned}$	$\begin{gathered} i d \\ \text { lev10 } \end{gathered}$	$\begin{array}{ll} e n t & c \\ \text { lev11 } & l_{\epsilon} \end{array}$	$\begin{array}{cc} c o d e s \\ \text { lev12 } \end{array}$		$\begin{gathered} \text { log. } \\ \text { dev no } \end{gathered}$
Real time clock	1	10	13				1	
Real time clock	2	14	17				2	407
External intermupt	2	20	23				6	412
External intermupt	1	24	27				7	
Real time clock	3	50	53				4	734
Real time clock	4	54	57				3	737
ND-500	1	60	77			16		
Terminal interface	1	300	307	$==$ Ident	code not	t checked	$=$	1
Terminal interface	5	340	347	44		44		44
Terminal interface	6	350	357	45		45		45
Terminal interface	7	360	367	46		46		46
Terminal interface	8	370	377	47		47		47
Versatec	1	600	607		4			22
ND-500	3	660	677			36		
ND-500	4	760	777					
Digital reg. output	2	1004	1007	26				401
ND-500	2	1060	1077			116		
Terminal interface	9	1300	1307	50		50		60
Terminal interface	10	1310	1317	51		51		61
Terminal interface	11	1320	1327	52		52		62
Terminal interface	12	1330	1337	53		53		63
Terminal interface	13	1340	1347	54		54		64
Terminal interface	14	1350	1357	55		55		65
Terminal interface	15	1360	1367	56		56		66
Terminal interface	16	1370	1377	57		57		67
ND-100 ECC disc contr.	1	1540	1547		17			1100
Floppy disc DMA	1	1560	1567		21			1145
ECCR		100115	100115					
Busc	1	100200	100203				20	
Busc	2	100204	100207				21	
ND-100 universal DMA	1	140050	140057		140010			
ND-100 universal DMA	2	140060	140067		140011			
ND-100 universal DMA	3	140070	140077		140012			
ND-100 universal DMA	4	140100	140107		140013			
ND-100 universal DMA	5	140110	140117		140014			
ND-100 universal DMA	6	140120	140127		140015			
ND-100 universal DMA	7	140130	140137		140016			

```
procedure - continued - :
```

ident	hardware device name		level (dec.)
1	real time clock	1	13
7	external interrupt	1	13
6	external intermupt	2	13
20	busc	1	13
21	busc	2	13
3	real time clock	4	13
4	real time clock	3	13
2	real time clock	2	13
16	ND-500	1	12
116	ND-500	2	12
36	ND-500	3	12
114	ND-500	4	12
44	terminal interface	5	12
45	terminal interface	6	12
46	terminal interface	7	12
47	terminal interface	8	12
50	terminal interface	9	12
51	terminal interface	10	12
52	terminal interface	11	12
53	terminal interface	12	12
54	terminal interface	13	12
55	terminal interface	14	12
56	terminal interface	15	12
57	terminal interface	16	12
140010	ND-100 universal DMA	1	11
17	ND-100 ECC disc contr.	1	11
4	versatec	1	11
21	floppy disc DMA	1	11
140013	ND-100 universal DMA	4	11
140012	ND-100 universal DMA	3	11
140011	ND-100 universal DMA	2	11
140014	ND-100 universal DMA	5	11
140015	ND-100 universal DMA	6	11
140016	ND-100 universal DMA	7	11

| procedure - continued - : | | | |
| :---: | :--- | :--- | :--- | :--- |
| 44 | terminal interface | 5 | 10 |
| 45 | terminal interface | 6 | 10 |
| 46 | terminal interface | 7 | 10 |
| 47 | terminal interface | 8 | 10 |
| 50 | terminal interface | 9 | 10 |
| 51 | terminal interface | 10 | 10 |
| 52 | terminal interface | 11 | 10 |
| 53 | terminal interface | 12 | 10 |
| 54 | terminal interface | 13 | 10 |
| 55 | terminal interface | 14 | 10 |
| 56 | terminal interface | 15 | 10 |
| 57 | terminal interface | 16 | 10 |
| 26 | dig.reg. 2 output | 2 | 10 |

```
=== END OF INVESTIGATION ===
=== NO ERRORS DETECTED ===
```

$$
M E M O R Y \quad M A P
$$


```
! Bank no ! 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 !
l==========!=======!========!========!========!======== !========!======== !======== !
! OOOB ! Local! Local ! Local ! Local ! Local! Local ! Local ! Local !
!---------!-------!-------!-------!-------!-------!-------!------------------
! 010B ! Local !
!---------!-------!-------!!-------!-------!------------------------------------
```

Total memory size.: 2 Mbytes
TPE>

```
5.2.6 Terninal-async
```

The program tests asynchronous devices and executes some tests to check terminal devices both on input and output.

In all tests, the program will continuously check:

- the status word
- the parity
- the interrupt
- the ident codes

Procedure:

```
Insert the diskette containing the test programs.
```

\#1560 \&
TPE monitor, ND-100 / ND-110 - Version: XXX - Year-Month-Day.
The command HELP gives you the full list of available commands.
$T P E>L O A D$ TERM-A <CR>
TREMINAL-ASYNC - Version: XXX - Year-Month-Day
TPE>LIST-TERMINAL-DEVICES <CR>

$!$	Terminal Devices Present					
$!$	300 !	340 B!	350-B!	360-B!	370-B!	1300 B!
$!$	1310-B!	1320-B!	1330-B!	!	$!$	$!$

- Means probably no terminal connected
B Means buffered type interface

```
                                    - continued -
```

```
procedure - continued - :
```

TPE $>$ INTERFACE-TEST <CR>
No lines pr. card : $8\langle C R\rangle$
First device number <oct): $\overline{340<C R>}$
Maintenance mode (YES or NO): YES <CR>
Speed : All-speeds <CR>
Testing Device No.: $340 \quad 350 \quad 360 \quad 370 \quad 1300 \quad 1310 \quad 1320 \quad 1330$
Tests are looping.
At this point press the
ESCAPE key in order to
stop the test.
$==E S C A P E==$
TPE>
COMMENT

You may also test the display by the command DISPLAY-TEST. This will fill the screen with 5 different test-patterns.

The keyboard may be tested by the command KEYBOARD-TEST. You will be asked to press the different keys on the keyboard to check that they work correctly.

This program is a general tool for use on disks and disk-controllers. It has a set of commands which enable you to format, dump contents, change single words or check parity on disks.

It is also capable of copying, comparing, verifying and matching the contents of two disks.

At the start of the program, some tests are run. During execution of the commands the disk status is read. If any errors occur, they are reported. This is a useful test in itself.

Procedure:

Insert the diskette containing the test programs.
\#1560 \&
TPE monitor, ND-100 / ND-110 - Version: XXX - Year-Month-Day. The command HELP gives you the full list of available commands.

```
TPE>LOAD DISC-TEMA <CR>
```

 DISC-TEMA - Version: XXX - Year-Month-Day
 The command HELP gives you the full list of available commands
DISC NAME:DISC-75-MB-1 <CR>
Data way to disc system 1 tested.
Memory address register on disc system 1 tested.
Memory buffers initialized.
$T P E>M a t c h<C R>$
FROM DISC-75MB-1
Unit (0-3 Oct.) : $0<C R\rangle$
TO DISC-75MB-1
Unit (0-3 Oct.): $\underline{0<C R>}$
TPE>Parity-check <CR>
DISC-75MB-1
Unit (0-1 Oct.): $\underline{0<C R>}$
$T P E>C$ Zear-device <CR>
DISC-75MB-1
Unit (0-1 Oct.) : $0<C R\rangle$
TPE $>$ Function $\langle C R\rangle$
DISC-75MB-1
- continued -
procedure - continued - :
On this disk type FUNCTION will destroy data in the last cylinder in the spare track buffer pool. Most new disks have an area reserved for the FUNCTION TEST. The data pool and the flaw-table are not affected by the function test.

DISC-TEMA will give a warning ONLY when data may be lost.
Do you still want to continue (Yes/No): Yes <CR>
Specify from 1 to 4 unit numbers, terminated by <CR>. Separate the numbers with a space or a comma (,). The units specified must be turned $O N$ and ready. The units NOT specified must be turned $O F F$, or nonexistent.
UNIT(S) (0-3 Dec.): $0123<C R>$
TPE>
3.2.8 LP-test-1878

The objective of this test program is to perform various tests on the line printers and/or their interface(s). Most of the tests are visual. All tests are stopped by pressing the ESCAPE-key on the console.

Initial action:
After loading, the program asks for the printer device number. The number is checked to see if it is a likely number for printers, and that it exists. If not, it will ask again.

The commands:

- Column-test
- Format-test
- Interface-test
- Set-parameters
- Run-test-pattern
- Stress-busy-test

Procedure:

Insert the diskette containing the test programs.
\#1560\&
TPE monitor, ND-100 / ND-110 - Version: XXX - Year-Month-Day.
The command HELP gives you the full list of available commands.
$T P E>L O A D$ LP-TEST <CR>
LP-TEST - Version: XXX - Year-Month-Day

TPE $>$ RUN-TEST-PAT <CR>
Device no. (oct):

COMMENT
Specify the line printer's device number.
This command runs 5 different test-patterns, and each pattern starts with a form-feed and the pattern number.

TPE>COLUMN <CR>

CHARACTER: <CR> E <CR>
COLUMN (FROM,<TO>) (1-132 DEC.) : 40,50<CR>

The printer will do a form-feed, and then write lines with the letter E from column 40 to column 50. Press the ESCAPE key to terminate the test.

```
procedure - continued - :
```

$T P E>F O R M A T<C R>$
CHANNEL: $5\langle C R\rangle$

The printer does a form-feed and skips to Channel 5 (a position) and prints:
********* THIS IS TOP OF FORM ******** THIS IS CHANNEL 5

CHANNEL:

ESC
$==$ escape $==$
$T P E>$ INTERFACE <CR>
INTERFACE: CDC <CR>
CDC-LP-INTERF.-1047
ILLEGAL CHARACTER TESTED.
INTERFACE TESTED WITH ALL CHAR. TEST IS LOOPING.

ESC
$==E S C A P E=$
$T P E>S T R E S S<C R>$

COMMENT

The printer does a form-feed, and then prints the numbers 0-9, one number on each line.

TPE>

The ND-100 CPU self test tests the basic functions of the ND-100 CPU. Functions that require response from other CCAs are not tested (i.e., memory access, paging and cache use). The program will give a pass/fail response, but no error information.

The program is in a Read Only Memory (ROM) on the ND-100 CPU-CCA and is started when the power is switched ON and when the MCL (MASTER CLEAR) button is depressed and released. Testing is done in ten steps. If an error occurs, the test will loop on the step where the error was detected.

To indicate successful completion of a test, the command sign, \#, will appear on the console and MOPC (Micro program Operators Communication) will accept commands. A green LED on the ND-100 CPU also indicates a successfully completed CPU selftest.

TIME REQUIRED:
2 seconds.

Procedure:

Press the STOP and MCL buttons on the ND-100 operator panel. Wait 2 seconds. System response on console terminal:\#

Norsk Data ND-30.008.3 EN

The program will write and read back several test patterns to/from any memory accessible from the ND-100. The patterns are: all Os, all 1s, walking 1 , walking 0 and address-inaddress. The program will stop when an error occurs, and error information becomes available.

The program is situated in the ROM on the ND-100 CCA. The area to be tested must be specified by its 128 Kb area number (0 through 53), and by the minimum and maximum octal addresses to be tested within this 128 Kb area. The program may then be started by typing "\#".

When successfully completed, another "\#" is printed. If the program stops as the result of an error, a "?" is printed, and error information can be found in the registers as follows:

- T/failing bits
- P/failing address
- D/pattern read
- L/pattern written
- B/start address within 128 Kb area
- X/stop address within 128 Kb area

TIME REQUIRED:

10 seconds per 128 Kb memory bank.

Procedure:

Press STOP and MCL on ND-100 operator panel. Type the underlined characters on the console terminal as the computer responds with the nonunderlined characters. After entering the first area No. and \# in the last line in the procedure, you will have to wait about 10 seconds.

\#B/zz2zz2 000000<CR>
\#X/yyyyyy $177777<\mathrm{CR}>$
\#

> B/ Start address within the 128 Kb area, z is any previous content of B-register.
> X/ Stop address within the 128 Kb area, y is any previous content of X-register. $0 \quad 128 \mathrm{~Kb}$ address area Number.

This program is a verification and debugging program for HDLC and Megalink interfaces. The program is a stand-alone version and contains three separate tests and a number of commands to specify parameters when changing default values.

When the program starts, it determines how much memory is available (up to 512 K words), and whether there are any responding disk controllers. If there are, the program enters the disk-controller ident code into a table.

The commands listed below will be sufficient to verify the hardware in the interface:
(How tests are to be run)
(Basic tests)
(Finds the transmission speed)
(Runs data in specified mode)

[^0]PROCEDURE:

Insert the diskette containing the test programs.
\#1560 \&

TPE monitor, ND-100 / ND-110 - Version: XXX - Year-Month-Day.
The command HELP gives you the full list of available commands.
$T P E>L O A D H D L C<C R>$
HDLC-MEGALINK - Version: XXX - Year-Month-Day
Default HDLC device number: 1640

TPE>Specify-test-configuration $\langle C R\rangle$
HDLC device no. (oct.): $1640<C R>$
Maintenance mode (yes/no): yes $\langle C R>$

```
All tests should be run in maintenance mode
first. While not in matntenance mode, the
tests must be mun with a dummy plug
installed in the plug panel.
```

TPE> loop-test <CR>

A status report is written every time you press the space-key on the terminal:							
	Frames	O/U mun	CRC-err	Data-err	Abort	Astat	Lstat
HDLC out	773	0	0	0	0	5405	5405
HDLC in	772	0	0	0	0	7410	3410

ESC
$==$ Escape $=$
procedure - continued - :
$T P E>$ Find-speed $<C R>$

Clock rate: 983.04 Kbits/s (+-2\%)
$T P E>$ Run $\langle C R>$
PIO/DMA-test or both: both <CR>
PIO-test
DMA-test

```
Wait for approximately 1 minute
```

Tests are now looping
ESC
== Escape ==
$>$

STOP
$M C L$
\#

Norsk Data ND-30.008.3 EN

The Universal-DMA program will test a Universal-DMA interface and its memory channel.

The most important commands are:

- INITIALIZE: This command is used to specify some test parameters used by the other tests.
- DMA-CHANNEL-TEST: This command is used to test the memory channel.
- SINGLE-VERIFICATION: This command is used when testing just one interface. The test requires the following special test equipment:

1995 AA Universal DMA Test Card (No. 324455)

- DOUBLE-VERIFICATION: This command is used for a complete test of two cards and their memory channels. The test requires the following special test equipment:

Test cable 32542902 Rev. B (test no 1) Test cable 32543302 Rev . B (test no 2)

The other commands are used for debugging or initializing.

Procedure:

1. DOUBLE-VERIFICATION:

Insert the diskette containing the test programs. Install two test cables.
\#1560\&
TPE monitor, ND-100 / ND-110 - Version: XXX - Year-Month-Day.
The command HELP gives you the full list of available commands.
$T P E>L O A D$ UNIVERSAL-DMA <CR>
UNIVERSAL-DMA - Version: XXX - Year-Month-Day
$T P E>I N I T<C R>$
Initialize
Single test (yes/no): $N<C R>$
First device number: (oct.): $140050<C R>$
Second device number: (oct.): $140060<C R\rangle$
Do you want to move the buffer area (yes/no): \underline{Y}
Minimum address of buffers is 064000
Start address of First buffer area seen from CPU (oct.): 1000000<CR>
Corresponding address in the First Universal-DMA channel (oct.): 1000000<CR>
Start address of Second buffer area seen from CPU (oct.): 1004000<CR>
Corresponding address in the Second Universal-DMA channel (oct.): 1004000<CR>

- continued -

```
procedure - continued - :
>DOUBLE-VER <CR>
Double-verification
Do you want to reset data array before mun (yes/no): Y<CR>
Do you want test to loop (yes/no): N<CR>
Do you want messages written on terminal (yes/no): Y<CR>
Do you want continuous output mode (yes/no): Y<CR>
Do you want to look for errors in DMA data array (yes/no): Y<CR>
Option tests: 4<CR>
All options
    Option No 1 completed 000000 000001 times.
    Option No 2 completed 000000 000001 times.
    Option No 3 completed 000000 000001 times.
```

2. DMA-CHANNEL:

Insert the diskette containing the test programs.
\#1560 \&
TPE monttor, ND-100 / ND-110 - Version: XXX - Year-Month-Day. The command HELP gives you the full list of available commands.

TPE>LOAD UNIVERSAL-DMA <CR>
UNIVERSAL-DMA - Version: XXX - Year-Month-Day
$T P E>I N I T<C R>$
Initialize
Single test (yes/no): Y<CR>
First device number: (oct.): $140050<C R>$
Do you want to move the buffer area (yes/no): \underline{Y}
Minimum address of buffers is 064000
Start address of First buffer area seen from CPU (oct.): 1000000<CR>
Corresponding address in the First Universal-DMA channel (oct.): $1000000<C R>$

- continued -

Norsk Data ND-30.008.3 EN

```
procedure - continued - :
>D-C<CR>
DMA-channer-test
Do you want test to loop (yes/no): N<CR>
Do you want to loop on error (yes/no): N<CR>
Addresses tested by cpu (yes/no): Y<CR>
32-bit data channer (16 bit=no) (yes/no): N<CR>
Set start address of test array (oct.): 1000000<CR>
Set length of test array (oct.): 177777<CR>
    End of test 1
    End of test 2
Do you want to loop (yes/no): ESC
== escape ==
```

3. SINGLE-VERIFICATION MODE:

Insert the diskette containing the test programs. Install test cable.
\#1560\&
TPE monitor, ND-100 / ND-110 - Version: XXX - Year-Month-Day.
The command HELP gives you the full list of available commands.
$T P E>L O A D$ UNIVERSAL-DMA <CR>
UNIVERSAL-DMA - Version: XXX - Year-Month-Day
The command HELP gives you a list of the commands
$>$ INIT<CR>
Initialize
Single test (yes/no): $Y<C R>$
First device number: (oct.) : $140050<C R>$
Do you want to move the buffer area (yes/no): \underline{Y}
Minimum address of buffers is 064000
Start address of First buffer area seen from CPU (oct.): 1000000<CR>
Corresponding address in the First Universal-DMA channel (oct.): 1000000<CR>

- continued -

Norsk Data ND-30.008.3 EN

```
procedure - continued - :
>SI<CR>
Single-verification
Do you want to reset data array before run (yes/no): \underline{Y}
Do you want test to loop (yes/no): N
Do you want messages written on terminal (yes/no): \underline{Y}
Do you want contimuous output mode (yes/no): \underline{Y}
Option tests: 7<CR>
all-tests
    Option No. 1 Completed 000000 000001 Times
    Option No. 2 Completed 000000 000001 Times
    Option No. 3. Completed 000000 000001 Times
        Option No. 4 Completed 000000 000001 Times
        Option No. 5 Completed 000000 000001 Times
        Option No. 6 Completed 000000 000001 Times
>
STOP
MCL
#
```

This program is a stand-alone test program for Cipher/Pertec controllers (ND-557), and also the different functions on the magtape drives.

If you want to run the function tests on the magtape unit, you have to turn it ON-1ine before running the test.

If you do some hardware changes (switches, cables etc.) after a test run, it is possible to restart the test program by pressing the MASTER CLEAR button and typing:
$20!$
If you must change memory or memory switch setting, you have to re-load the test program.

Procedure:

Insert the diskette containing the test programs.
\#1560 \&
TPE monitor, ND-100 / ND-110 - Version: XXX - Year-Month-Day.
The command HELP gives you the full list of available commands.

TPE $>$ LOAD MAGTAPE <CR>
MAGTAPE - Version: XXX - Year-Month-Day

Magtape controller 1 is present

TPE>Set-parameters <CR>
Loop mode........(Yes or No): No <CR>
Density 3200 BPI (Yes or No): Yes <CR $>$
$T P E>R U N<C R>$
RUN
Headings printed before each test (Yes/No): $Y\langle C R\rangle$
No. of muns before unload (Dec.): $1\langle C R\rangle$
Which density? $0=1600 B P I, 1=3200$ BPI (0-1 Oct.) : $1<C R>$
=> Memory address register
$=\Rightarrow$ Control register
==> Modus register
$==>$ Wordcounter
$==>$ Reading data on DMA in testmode
==> Unit ready for test

- Cipher tape unit O ready -

```
procedure - continued - :
*** WARNING : ECO level on the ND100 controller is "N" or lower.
                                    Remote density select and extended error status will be
                                    ignored.
==> File protect ring test
==> Load point test
==> Overflow in read test
==> Write consecutive test
==> Write, read, data, and status tests
==> Write consec., read, read consec., and read threshold test
==> Backspace test
==> EOF test
=>> Intermupt test
TPE>EXIT<CR>
```

j.2.14 Floppy-streamer

This test program can test the following cards:

- 3027 Floppy-Disk Controller
- 3106 Floppy and Streamer
- 3112 Floppy and Streamer $8^{\prime \prime}$ \& 5.25".

In addition, the floppy drive/streamer itself is tested.

Normally a ND-100 has one floppy controller and one floppy drive. That means that you have to load the test program from the unit which you want to test.

If the loading and starting of the test program work properly, it means that the controller and the unit work 0.K for both read- and bootstrap operations.

If it is impossible to load the test program, you can use TELEFIX to load the program into the ND-100.

Procedure:

Insert the diskette containing the test programs.
\#1560 \&
TPE monitor, $N D-100 / N D-110$ - Version: XXX - Year-Month-Day.
The command HELP gives you the full list of available commands.
$T P E>L O A D \quad F L O P P Y-S T R E A<C R>$
FLOPPY-STREAM - Version: XXX - Year-Month-Day
Found device number : 1560, 3112 Floppy streamer DMA 8" \& 5.25"
TPE>Select-device <CR>
Device name......: ?
Correct answers are:
FLOPPY-DISC-1
STREAMER-TAPE-1
Device name........: Floppy-disc-1 <CR>
Unit (0 to 3 Dec): $\overline{01\langle C R\rangle}$
Controller....: 3112 Floppy-streamer DMA 8" \& 5.25"
Micro program : G
Insert scratch Floppy Diskette and type any character.
TPE>

- continued -

Norsk Data ND-30.008.3 EN

```
procedure - continued - :
```

COMMENT
Giving the command FUNCTION brings you into a new command list for functional tests. You can either mun these functional tests one by one, or all in sequence by giving the command:
func>RUN <CR>
func $>$ RUN $<C R>$
$\begin{array}{lll}==> & \text { ACTIVATE-SELFTEST } & <== \\ ==>\text { IOX-DATAWAY-TEST } & <== \\ =>\text { DMA-DATAWAY-TEST } & <== \\ =\Rightarrow \text { Z8O-RAM-TEST } & <== \\ =\Rightarrow \text { DISPLAY-TEST } & <== \\ =\Rightarrow \text { TEST-FORMATS } & <== \\ \Rightarrow \text { WEAR-TEST } & <== \\ =\Rightarrow \text { OVERWRITE } & <== \\ =\Rightarrow \text { ARM-TEST } & <== \\ ==\text { PROVOKE-ERRORS } & <==\end{array}$

FUNC>Exit <CR>
$T P E>$ format <CR>
Format number... (0-17 Oct.): $17\langle C R\rangle$
Physical address on floppy
Surface (0 to 1 dec): $0\langle C R\rangle$
Track (0 to 76 dec): $0\langle C R\rangle$
Track amount (1 to 154 dec): 154 <CR>

TPE>copy-floppy <CR>
From unit (0-3 Dec.) : $0<C R\rangle$
To unit (0-3 Dec.) :01 <CR>
TPE>check-floppy <CR>
Physical address on floppy
Surface (0 to 1 dec): $0\langle C R\rangle$
Track (0 to 76 dec): $0<C R\rangle$
Sector (1 to 8 dec): $1\langle C R\rangle$
Sector amount (1 to 1232 dec): $1232<C R>$
TPE>

```
j.2.1j Power-fail
```

This section describes the POWER-FAIL test program.

The program POWER-FAIL is designed to test the power failure and restart detection on ND-100/ND-500 computer systems, seen from ND100. It also verifies that the main memory content is not corrupted during the time the power is OFF. It runs on all ND-100/ND-500 types, only in stand-alone mode. The program run under the TPE-MONITOR.

Procedure:

Insert the diskette containing the test programs.
\#1560 \&
TPE monitor, ND-100 / ND-110 - Version: XXX - Year-Month-Day.
The command HELP gives you the full list of available commands.
$T P E>L O A D$ POWER-FAIL<CR>
POWER-FAIL - Verston: XXX - Year-Month-Day

There is only one program command in this test program:

RUN
Before running this command, you must take the following precautions:

- Turn the disks OFF, or activate the Write protection.
- Set the panel-key in the locked position.
- Set the ALD (upper thumbwheel switch on the CPU to 12.

Now you can give the RUN command.

The program will initialize

- Memory with patterns.

You will see the initialization progress on the console.

- Bus Expanders and Bus Controllers. The initialized devices will be reported on the console.

The following message will be displayed:
-WAITING FOR POWER FAIL-I am now waiting for a power failure
-Will you please turn me off !

Turn the power OFF

Turn the power ON
Now you must turn the power OFF. Use the main AC switches, or just pull out the mains AC plug.

If you just want to test the power fail mechanism, you can turn the power ON again after 3 seconds. If you want to test the STANDBY power capacity you must wait up to the time guaranteed by ND before you switch the power $0 N$ again.

Now you can turn the power ON. If everything is working normal, TPE will respond with the following message:
$==T P E 42 \Rightarrow$ 휴* POWER FAIL
The POWER-FAIL test program will be restarted

- NOTE

If you do not get this message, but a new TPE from the floppy, it means that something is wrong with the standby power.

POWER-FAIL will tell you which device the power fail was detected by:

POWER FAIL OCCURRED- <Source of the power fail>

The source could be: ND-100 CPU
A BUS Expander
A BUS Controller

The memory is checked:
-MEMORY VERIFICATION - Checking memory for valid contents. This may take some time.

If errors occur, they will be reported like this:
*** ERROR
MEMORY CONTENT IS WRONG. Address Expected Found
.......

This test program has been made to reflect changes in printers in the last few years.

It is divided into different test routines, not all of which are appropriate for all printers.

The routines are designed to give an indication of the state of the mechanics of the printers, assuming that the controlling software is correct.

```
NOTE
    Some tests - in particular diagonal-
    lines, circles and cross-hatch, can take
    some time to run.
```

The test routines cover such operations as:

- horizontal and vertical positioning of the print-head
- horizontal tabulation
- print attributes (bold, italics, underline etc.)
- font/character sizes
- selection of feeder/sorter bin
- printing of graphics

The graphic tests serve two purposes: Give an indication of whether the paper feed or print-head positioner needs adjustment. Test the individual needles of dot-matrix printers.

In addition to the 'general' routines, there are also a few that can only be run on specific printers, e.g. the big-letters test, which prints big letters with the block graphics characters on a Mannesmann-Tally MT6xx printer.

Since some of the tests use only one character font/size etc, it is sensible to allow the user to be able to change some of the default settings. This can be done with the SET-PARAMETER command.

There is also a 'run' routine which executes all the most important tests on the specified printer type. Test routines that tend to use lots of paper are omitted.

Different printer information

Philips GPXXX

Genicom 3024

Printers must be prepared for the tests, as described below:

The only assumption for this printer type is that the initial default paper feed mechanism is sheet feeder 1, therefore the operator must insert paper into this feeder. Alternatively, the operator can change the default feeder (by the SET-PARAMETER command) prior to running any test, but after selecting the device.

For this type of printer, the operator must manually set the form length and select the US-ASCII character set, both by the printers front-panel switches.

Mannesmann-Tally MT6XX

E1pho-20
This type of printer does not require any direct operator action prior to starting the program.

This printer requires no special preparation.

For this printer type, the operator must ensure that the line spacing is set to 6 lpi (lines per inch). Operation at 8 lpi is possible, but in this case the operator must specify $3 / 4$ of the actual form length when selecting the printer.

Characteristics of the different printers

Philips GPXXX

PRINT-STYLES

The three highest font numbers specify downloadable (soft) fonts. If these fonts have not been loaded, the printer will use the default font 1 (draft/data). Also, not all typefaces can be printed in all pitches. In cases where the required combination does not

Norsk Data ND-30.008.3 EN

Genicom 3024

Mannesmann-tally MT6XX
exist, the printer defaults to the largest defined character size for the selected font.

ATTRIBUTES

In this test, the printer may state that it is printing 'bold' letters while it is actually delivering underlined print. This is because the bold-printing capability is an upgrade to the original microprogram. Some (early) printers will not have this capability, and default to underlined printing instead.

TABULATORS

The Genicom actually has tabulator operations, but it requires that all tabulator stops are set at the same time. This does not quite suit the way the testroutine is written, so the test program defines the Genicom as having no tabulator operations.

ROUTINES DOING GRAPHICS DUNP
When doing a graphics dump, the Genicom 'forgets' where the top of form is, which means that there is no relation between the side breaks in the output text and on the continuous forms. The printer also stops completely at times, which can only be remedied by pressing 'Online' twice.

NEEDLE-TEST

The Genicom printer uses only seven out of nine needles for graphic dumps, so the needle test does not test all the needles. For this reason, the needle test should be seen in conjunction with the attribute test, so that the operator can infer the state of the lowest two needles from descenders and underline printing.

PRINT-STYLES

Only font 1 (data/draft) can be printed in 15 cpi. When the other fonts are selected, choosing 15 cpi selects font 1.

NEEDLE-TEST

The MT6XX printer is of the impact dot-matrix type, but it has the print needles arranged horizontally. This means that the print needles cannot be tested in the same way as for printers with vertically arranged needles. Instead of printing one graphics line with each needle, the MT6XX prints an all-black rectangle, where bad needles can be

Canon LBP-8 A1

E1pho-20

Fujitsu M3023D
identified by areas that are of a lighter shade than the rest.

PRINT-STYL.ES

In the same way as some of the other printers, the Canon cannot print all fonts in all character sizes. When an invalid (undefined) combination is selected, the printer tries to find something reasonably close to the given specification.

ATTRIBUTES

The phenomenon mentioned above also stretches to the attribute test, since the printer has separate fonts for some of the attributes (bold and light printing) instead of generating the required characters from the 'standard' font. Because of this, selecting certain attributes could easily make the printer select some other font or character size, or even ignore the attribute selection altogether, if the printer's memory contains no character set with this attribute. This is the reason that a 'standard' Canon printer will state that it is printing with the 'light printing' attribute, when it clearly is not.

FEEDER-TEST

The Canon printer has two feeding methods, automatic and manual. These are nominated feeder 1 and feeder 2 , respectively, by the program. Automatic feed can be selected at any time, but hand feeding requires that the printer must be set offline first. For this reason, the operator must stand by the printer during this test, pressing 'Error Skip' followed by 'Online' every time the printer's display starts flashing '02' (for feeder 2 - manual feed). Then the operator must feed sheets into the printer until the 'Auxiliary feed' lamp goes out.

No eccentric behaviour has so far been found with this printer.

No eccentric behaviour has so far been found with this printer.

The fonts, pitches, etc.

PITCHES

Philips GPXXX:	$\begin{aligned} & 1 . \\ & 2 . \\ & 3 . \\ & 4 . \\ & 5 . \\ & 6 . \\ & 7 . \end{aligned}$	```10 CPI 12 CPI 1 5 \mathrm { CPI } Proportional, fixed space pitch Proportional, space pitch determined by character generator 14.4 CPI 18 CPI```
Genicom 3024:	$\begin{aligned} & 1 . \\ & 2 . \\ & 3 . \end{aligned}$	10 CPI 12 CPI 17 CPI
Mannesmann-Tally MT6xX:	$\begin{aligned} & 1 . \\ & 2 . \end{aligned}$	$\begin{aligned} & 10 \mathrm{CPI} \\ & 15 \mathrm{CPI} \end{aligned}$
Canon LBP-8 A1:	$\begin{aligned} & 1 . \\ & 2 . \\ & 3 . \\ & 4 . \end{aligned}$	10 CPI 12 CPI 15 CPI 6 CPI
Elpho-20:	$\begin{aligned} & 1 . \\ & 2 . \\ & 3 . \\ & 4 . \\ & 5 . \end{aligned}$	```1 0 \text { CPI} 12 CPI 1 5 \text { CPI} Proportional, fixed space pitch Proportional, space pitch determined by character generator```
Fujitsu M3023D:	1.	12 CPI

FEEDERS

Philips GPXX:	1.	Sheet feeder 1 Sheet feeder 2
Genicom 3024:	1.	Tractor feed

Procedure:

Insert the diskette containing the test programs.
\#1560\&
TPE monitor, ND-100 / ND-110 - Version: XXX - Year-Month-Day.
The command HELP gives you the full list of available commands.
TPE>Load PRINT <CR>
PRINTER - Version: XXX - Year-Month-Day

TPE>
The following program commands can be used:
SELECT-DEVICE
SET-PARAMETER
SELECT-TEST-PATTERNS
PRINT-TEST-PATTERNS
COLUMN-TEST
PRINT-STYLES
ATTRIBUTES
TABULATOR-TEST
HORISONTAL-POSITIONING
VERTICAL-POSITIONING
NEEDLE-TEST
BIDIRECTIONAL-PRINTING-TEST
CIRCLES
CROSS-HATCH
FEEDER-TEST
SORTER-TEST
SEND-FORM-FEEDBIG-LETTERS
DIAGONAL-LINES
INTERFACE-TEST
RUN

This section describes the Synchronous Modem test program.

This program tests the communication line between two machines with synchronous modem buffer interface (1050 card) and runs some basic tests on the 1050 card in test mode. The communication test can operate both in half duplex or full duplex mode.

If you press "carriage return" during communication, the test will tell how many blocks have been received and the number of cycle redundancy code (CRC) errors detected.

There are three ways to run this test:

- Communication test between two interfaces/machines
- Communication test in maintenance mode
- Maintenance mode

The command SELECT-DEVICE must be run to select the device you want to test. If there is only one device present, this device will be chosen automatically.

The device you specify must be identical to the DEVICE NO. set by the select function in position 15E on the 1050 buffer card.

The select function in position 1E selects the IDENT CODE for the buffer card. This select function must correspond to the device number switch. If no correspondence here, error messages will be displayed.

This program contains the three commands:
RUN
SELECT-DEVICE
SET-PARAMETERS

PROCEDURE:

Insert the diskette containing the test programs.
\#1560 \&
TPE monitor, ND-100 / ND-110 - Version: XXX - Year-Month-Day.
The command HELP gives you the full list of available commands.
$T P E>L O A D$ SYNCH-MODEM <CR>
SYNCH-MODEM - Version: XXX - Year-Month-Day

TPE>SELECT-DEVICE<CR>
Sync modem number 2 is selected with device number 110B

TPE>SET-PARAMETERS <CR>
Maintenance mode.. (YES or NO): Yes <CR>
$T P E>R U N<C R>$

Undermun test	$===$ End of test $===$
Overrun test	$===$ End of test $===$
Input status bit test	$===$ End of test $===$
Receiver reset test with input	
sync register $=26 \& 62$	$==$ End of test $===$

SELECT-DEVICE
The command SELECT-DEVICE must be run to select the device you want to test. If there is only one device present, this device will be chosen automatically. The device you specify must be identical to the DEVICE NO. set by the select function in position 15 E on the 1050 buffer card.
j.2.18 pioc-ephernet

The purpose of this test program, is to test PIOC and ETHERNET controllers, STAND ALONE.

Test 1 to 11 check basic functionality of the selected PIOC/ETHERNET.

Test 20 to 27 test the PIOC/ETHERNET memory as viewed from ND-100 and from MC68000.

Test 40 tests the lines with test-plugs installed.
-NOTE
From version BOO of the test program, test 40 will be run without test plug (default). If you then want to run the test WITH test plug, this must be specified with the command SET-PARAMETERS.

It is advisable to run tests 1-11 before the other tests. This will ensure a proper initializing of the PIOC.

Procedure:

Insert the diskette containing the test programs.
\#1560 \&
TPE monitor, ND-100 / ND-110 - Version: XXX - Year-Month-Day.

The command HELP gives you the full list of available commands.

```
TPE>LOAD PIOC-ET<CR>
    PIOC-ETHERNET - Version: XXX - Year-Month-Day
                            - continued -
```

```
procedure - contimued - :
```

TPE>List-present-devices <CR>

$T P E>$ Run $\langle C R>$

PIOC 1
Test number(s) (1 to 40 dec): $1: 27<C R\rangle$
Run mode: Single pass. Abort after 10 errors.
Test started. Time: 1987.04.05 13:28:02

Test finished. Time: 1987.04.05 13:31:43
j.2.19 Graphic-tern

Teminal types:
This section describes the GRAPHIC-TERM test program.

This product is made to test and verify the TDV 2200 S terminals equipped with the graphic option. Each command checks one or more of the graphic functions.

When a command is typed, the program responds with a short command description and waits until the 〈CR〉 button is pressed. After the button is pressed, the specified test is carried out.

The program waits for a new <CR> before the screen is erased and a new command can be given. In the command "RUN-ALL-TESTS" there is no prompting for <CR>. The program will wait for 5 seconds (default) before the next test/description is displayed. It is possible to change this delay in SET-PARAMETERS, and other RUN facilities.

This version supports the following terminals:

ND-324 (NOTIS) and ND-325 (Net)
ND-246, ND-285, ND-320 and ND-322
w/graphic option

Procedure:

Insert the diskette containing the test programs.
\#1560\&

GRAPHIC-TERM is started from the TPE-MONITOR by the command:

TPE>Load GRAPH-TERM <CR>
GRAPHIC-TERM - Version: XXX - Year-Month-Day
TPE>

SELECT-DEVICE
Select the terminal to be tested by specifying the terminal's logical device number.

SET-PARAMETERS
Sets different modes and change program parameters such as delay between tests, loop mode, how many times, abort mode, abort after how many errors and full or normal error printout selection.

RUN-ALL-TESTS
Executes all commands in sequence. There is no prompting for $\langle C R\rangle$. Instead, a delay (default 5 seconds) is inserted between each description/test. If loop-mode is set, RUN-ALL-TESTS will be repeated until the ESC-key is pressed or max-loops is reached.

CLEAR-SCREEN
Clearing screen, both graphics and alphanumerics. The graphic memory is cleared, the terminal memory is cleared, the writing mode is set to dot on, the line type is set to solid, character size is set to $1 x$.

CLEAR-GRAPHIC
Erases the graphic display without affecting the terminal in TDMODE.

GRAPHIC-VIDEO
Disables/Enables graphic video plane.
MOVE-CURSOR
Moves the cursor in different directions. Testing space right, space down, space left, space up and carriage return.

RECTANGLE-FILL
Fills screen by rectangle filling in VMODE. Direct scaling is disabled (Tektronix 4010 scaling), and fill pattern set number zero (default) is defined. Two coordinates equal to the screen are defined in VMODE, before the rectangle fill function is carried out.

CHESS-BOARD
Draws chess-board pattern on whole screen. Different coordinates are defined in VMODE to check rectangle filling. Rectangle fill is carried out in current rectangle-fill modes (see RECTANGLE-FILL).

COORDINATES

Draws lines in horizontal direction. Direct scaling is disabled (Tektronix 4010 scaling). Lines are drawn from left to right to check coordinate addressability in VMODE.

LINES

Draws lines of different styles to check the set-line-type function. First line is selfdefined as 15 dots, 5 space, 1 dot, 5 space. The rest of the lines are standards, long dashed, short dashed, dot dashed, dotted and solid.

FONTS

Writes text with down-loaded fonts, fonts are read from a font file "GRAPHIC-FONTS:FONT". Direct scaling is enabled (Tandberg scaling). Font 7 is selected and down-load is initialized. Texts are written in normal and italic character types, in upper and lower case.

FLASHING-CROSSHAIR

The crosshair cursor is positioned in the center of the screen and flashing crosshair is enabled.

PLOT-POINTS-LINES

Uses PPMODE and IPMODE to plot points and lines in different directions.

GRAPHIC-MEMORY
Graphic memory transfer test. A sequence of bits is transferred to graphic memory, and read back into the host. These bits are transferred as a compressed bitmap. The Block Transfer Load address set, Compressed bit map data transfer to/from graphic functions are tested.

POLYGONS

Draw polygons with different fill patterns. Tektronix scaling is entered, and fillpattern one, two and three, are selected for the polygons. The printout tests polygon definition mode.

COPY-WINDOW
Copies data between two windows on the screen. Tektronix scaling is entered, and fill-pattern two is selected. A filled polygon is drawn on the screen and two windows are defined. Data is copied between these windows. Fill pattern selection, define window and copy function are tested.

Norsk Data ND-30.008.3 EN

Scanned by Jonny Oddene for Sintran Data © 2011

CIRCLES
Draws circles with different fill-patterns. Tektronix scaling is entered, and fillpatterns from 0-10 are selected. Circles are defined in draw-circle function.

ARCS
Draws arcs with different fill patterns. Tektronix scaling is entered, and fillpatterns from 0-10 are selected. Clipped arcs are drawn at different angles.

INKING
Enables "INKING" in graphic input mode. Vectors connect each point where the cursor moves.

GRAPHIC-HARDCOPY
Executes a graphic memory dump to an Epson MX100. It can drive an Epson MX80 / FX80 or RX80, but only with rotated plot.

5.2.20 Colour-term (TCTI)

This program is based on the earlier TNCT program, which tested the NCT (NORD Colour Terminal). The tests are almost equal to those in the old program, TNCT.

The Colour-term program is also able to test the newer CTI (Colour Terminal Interface).

Starting and Initial Action

- Under SINTRAN.

The program will ask for file name for the colour terminal.

- Stand alone.

If only one CTI device is present, the program will automatically select this one. If several or no CTI interfaces are present, you will be asked for hardware device number instead. This is specified as in the command SELECT-DEVICE.

Program commands

FUNCTION-TEST

This test checks the control-functions on the colour terminal, and is therefore an important initial test. The test is selfexplanatory.

BUFFER-TEST
Symbols will be displayed as magnified symbols, made of a collection of the symbol itself.
32 symbols are displayed in one picture, the next 32 will be displayed each time any key is pressed until all 256 are shown.
If loopmode, pictures are shown continuously.
COMMUNICATION-TEST
This is a very useful test to run if communication is suspected for errors. These four tests are executed sequentially:
-TEST 1 : TEST IF UNEXPECTED INPUT(S)
-TEST 2 : TEST IF RESPONSE ON ENQUIRY (005)
-TEST 3 : TEST VALUE OF RESPONSE
-TEST 4 : TEST LINE/INTERFACE QUALITY

Norsk Data ND-30.008.3 EN

TEST 4 transmits blocks of 256 bytes to the colour terminal，and then the result of ENQUIRY is tested．

Normally 40 blocks are transmitted before the result printout．If loopmode，the test will go on until you press the 〈CR〉 key on the keyboard．Then the results will be printed． If you want a result printout without breaking the test，type any other key．

TRIM－PATTERN
Writes a square－pattern for geometry adjustment．

SCALE－VERIFICATION＜colour＞
This test is useful for trimming／adjustments of the monitor and the colour generator output．It displays a scale that should indicate the linearity on the DACs of the colour generator．

KEYBOARD－TEST
A picture of the NCT／CTI keyboard is drawn at the colour terminal．Touching an active key will alter the corresponding mark，and the detected key code is shown．

It is possible by this test to perform a verification of all active keys on the NCT／CTI keyboard without knowledge about the expected value of the codes．An active key means a key giving a code directly．

Example：
－Active keys：A，B，C，ESC etc．
－Non－active keys：SHIFT，CTRL etc．
Note that some codes may come from two keys （double－marked）！

COPY－CHARACTER－TO－CTI 〈from keyboard＞
This function simply generate codes to the colour－terminal．The code may be given either from console keyboard or from colour－terminal keyboard

COPY－VALUE－TO－CTI
This function will simply generate codes to the colour－terminal．The code must be given as octal values from the console keyboard．If loopmode，the code will be repeated until any console key is typed．

SET-COLOUR-TERMINAL-TYPE <type>
Select the colour terminal type. Two types are available: NCT and CTI.

SET-PARAMETERS 〈loopmode>
This command will allow you to set / reset loopmode.

When loopmode is set, some of the tests will run until you stop them. The tests affected by the mode-setting are:

COMMUNICATION-TEST
BUFFER-TEST
COPY-VALUE-TO-COLOUR-TERMINAL
For further information, take a look at the explanation of the actual test.

SELECT-DEVICE <device no / file name> When running under SINTRAN, a peripherial file must be specified. When running stand alone, the hardware device no. must be specified.

LIST-PRESENT-CTI-DEVICES
The hardware CTI device numbers present in the machine will be listed.

5.2.21 Stand-alone utility programs

This section describes these stand-alone utility programs:

- FILE SYSTEM INVESTIGATOR
- DIR-BACKUP
- MCOPY-TANB

The programs are found on the floppy
"SINTRAN Utility Programs" - ND-210628.

The file system investigator

The File System Investigator can be used to check that there are no serious errors in the file system. The check takes only 5 minutes on a 75 Mbyte disk. The following Disk-types can be used:

DISC-38MB-1	DISC-21MB-2	DISC-2-225MB-1-F
DISC-38MB-2	DISC-14MB-1	DISC-2-225MB-2-F
DISC-75MB-1	DISC-14MB-2	DISC-450MB-1-F
DISC-75MB-2	FLOPPY-DISC-1	DISC-450MB-2-F
DISC-288MB-1-R	FLOPPY-DISC-1	DISC-225MB-1-R
DISC-288MB-2-R	DISC-45MB-1	DISC-225MB-2-R
DISC-30MB-1	DISC-45MB-2	DISC-16MB-1
DISC-60MB-1	DISC-23MB-1	DISC-16MB-2
DISC-90MB-1	DISC-23MB-2	DISC-74MB-1
DISC-30MB-2	DISC-4-70MB-1-R	DISC-74MB-2
DISC-60MB-2	DISC-4-70MB-2-R	DISC-28MB-1
DISC-90MB-2	DISC-7OMB-1	DISC-28MB-2
DISC-10MB-1	DISC-70MB-2	DISC-288MB-1-E
DISC-10MB-2	DISC-2-70MB-1-F	DISC-288MB-2-E
DISC-33MB-1	DISC-2-70MB-2-F	DISC-4-70MB-1-E
DISC-33MB-2	DISC-140MB-1-F	DISC-4-70MB-2-E
DISC-66MB-1	DISC-140MB-2-F	DISC-6-70MB-1-N
DISC-66MB-2	DISC-4-70MB-1-F	DISC-6-70MB-2-N
DISC-3-75MB-1	DISC-4-7OMB-2-F	DISC-2-225MB-1-N
DISC-3-75MB-2	DISC-288MB-1-F	DISC-2-225MB-2-N
DISC-2-75MB-1	DISC-288MB-2-F	DISC-45OMB-1-N
DISC-2-75MB-2	DISC-6-70MB-1-F	DISC-450MB-2-N
DISC-21MB-1	DISC-6-7OMB-2-F	

The Procedure：

Example：
－Put the floppy disk with the stand－alone program in the floppy disk unit 0 ．
－Type 1560\＆on the console to load the floppy disk monitor，and an asterisk（＊） appears on the screen．
－Start the FILE SYSTEM INVESTIGATOR as shown in the following example：
＊Load Filesys＜CR＞

DEVICE NAME：Disc－75MB－1 〈CR＞
UNIT： 0 〈CR〉
Information about the available commands can be obtained by typing：
＞Help＜CR〉
Execute the three following commands for checking of the consistency of the directory：
$>$ Dump－directory－entry 〈CR〉 －•
＞List－users 〈CR〉
－．
＞Page－list＜CR＞
－．

E

Errors will be listed，and the output will describe the type of error and where it is located．

This listing may be directed to a line printer by using this command：
＞Set－printer－device－number 〈CR〉

DEVICE NO．： 430 〈CR＞
＞

```
-NOTE
    Information about different variables
    used in the program, such as the DEVICE
    NUMBER, can be obtained by using the
    command:
    >Program-status <CR>
```

Serious error messages are:

- Page conflict (See SINTRAN III System Supervisor, ND-30.003, section 10.4.3)
- Serious error in bit file (See SINTRAN III System Supervisor, ND-30.003, section 10.4.3)

You can correct these errors by:

- @Test-directory 〈CR〉
- corrects bit-file errors.
- @Regenerate-dir <CR>
- corrects error in object/user/directory entry or bit-file.
W A R N I N G-

Do not use the commands TEST and
REGENERATE if you get the error
messages
PAGE-CONFLICT

or OUTSIDE-DEVICE-LIMITS
Corrections of these errors must be done
by using the command CHANGE in
DISK-TEMA. This requires knowledge about
the internal structure of the
filesystem.

This program can be used for backup of all of the Winchester disks. Each streamer cartridge can store 45 Mb of data, so you need more than one cartridge for the backup if the disk is large (e.g. 74 Mb).

After the backup, the first part of the tape will contain information about:

- the backup date
- which disk unit the backup was copied from
- the number of pages
- CPU-information and the version of the backup system.

The following disks can be used:
DISC-14MB-1
DISC-14MB-2
DISC-16MB-1
DISC-16MB-2
DISC-21MB-1
DISC-21MB-2
DISC-23MB-1
DISC-23MB-2
DISC-28MB-1
DISC-28MB-2
DISC-45MB-1
DISC-45MB-2
DISC-74MB-1
DISC-74MB-2

COPYING FROM A DISK TO A
Insert the floppy disk containing the backup program into FLOPPY-DISC-1, UNIT 0 and load the program:

```
#1560& <CR>
* Dir-backup <CR>
```


DIR-BACKUP - Version : CO1 - OCTOBER 16, 1985

The command HELP gives you a list of the commands
Now you must insert the cartridge into the streamer drive.

> NOTE
> Remember that each backup requires one cartridge, except 74 Mb disks which need two cartridges. You are asked to change streamer Cartridge when needed.

> If you wish to change the default values of the program, you should first execute the MODE command as shown below:

Example (default values):
>Mode <CR>

This command is for backup from Winchester disk（ST506）to streamer．

```
>Backup <CR>
TO
STREAMER system (1-2 Oct.) 1 <CR>
Unit................(0-3 Oct.) 0 <CR>
```

FROM
DISC-NAME. : Disc-45MB-1 〈CR〉
COMMENT
If you want a list of the disk types,
you may just write Help 〈CR〉 here.
Unit.....................(0-3 Oct.) 0 <CR>
$==$ hh:mm:ss Initialize disc and streamer ==
COMMENT
Takes 3-4 minutes.
$==$ hh:mm:ss Copy from disc to streamer ==
Takes $10-12$ minutes.

Current Page：xxxxxx

```
    COMMEN T
Current page (Oct.) being copied.
The program will inform you when the
copying is finished, and the compare
procedure will start:
```

$==$	hh：mm：ss	End of volume
$==$	$=$	
$=$	$h h: m m: s s$	Compare disc and streamer
$=$	$==$	
	hh：mm：ss	End of volume

Ready with next streamer tape（Yes／No）：Y〈CR〉
$==$ hh:mm:ss Initialize disc and streamer ==
>

If the COMPARE AFTER COPY function in the MODE command is selected，the backup of a 45 Mb disk takes about 20 minutes．

If the backup was not successful，an error message will be written on the terminal．

Norsk Data ND－30．008．3 EN

This command is for restoring the backup from
streamer to disk.

```
>Recover 〈CR>
RECOVER
TO
DISC-NAME. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :DiSc-45MB-1 <CR>
DISC-45MB-1
Unit...........(0-3 Oct.) 0 <CR>
FROM
STREAMER system (1-2 Oct.): 1 <CR>
Unit...........(0-3 Oct.) 0 <CR>
== hh:mm:ss Initialize disc and streamer ==
==BAC08=> This backup is recorded day/month-year hh:mm
========>> From DISC-xxMB-x Unit O System TEST
========> This tape is number : 1, Starting at page number : 000000
========> Backup done with DIR-BACKUP-C01
== hh:mm:ss Copy TO DISC from streamer ==
== hh:mm:ss End of volume ==
== hh:mm:ss Compare disc and streamer ==
== hh:mm:ss End of volume ==
```

DISC－75MB－1
DISC－75MB－2
DISC－288MB－1－R
DISC－288MB－2－R
DISC－38MB－1
DISC－38MB－2
DISC－30MB－1
DIS－60MB－1
DISC－90MB－1
DISC－30MB－2
DISC－60MB－2
DISC－90MB－2
DISC－2－75MB－1
DISC－2－75MB－2
DISC－3－75MB－1
DISC－3－75MB－2
DISC－10MB－1
DISC－10MB－2
DIC－33MB－1
DISC－33MB－2
DISC－66MB－1
DISC－66MB－2

MCOPY－TANB is a program for copying between disks and magnetic tapes．This program copies directories on disk to and from these magtape drives：
－Cipher
－Tandberg
－Pertec
－STC
The following disks can be used：

DISC－14MB－1	DISC－2－225MB－1－F
DISC－14MB－2	DISC－2－225MB－2－F
DISC－21MB－1	DISC－450MB－1－F
DISC－21MB－2	DISC－450MB－2－F
DISC－45MB－1	DISC－225MB－1－R
DISC－45MB－2	DISC－225MB－2－R
DISC－23MB－1	DISC－74MB－1
DISC－23MB－2	DISC－74MB－2
DISC－4－70MB－1－R	DISC－28MB－1
DISC－4－70MB－1－R	DISC－28MB－2
DISC－70MB－1	DISC－288MB－1－E
DISC－70MB－2	DISC－288MB－2－E
DISC－2－70MB－1－F	DISC－4－70MB－1－E
DISC－2－70MB－2－F	DISC－4－70MB－2－E
DISC－140MB－1－F	DISC－6－7OMB－1－N
DISC－140MB－2－F	DISC－6－70MB－2－N
DISC－4－70MB－1－F	DISC－2－225MB－1－N
DISC－4－70MB－2－F	DISC－2－225MB－2－N
DISC－288MB－1－F	DISC－45OMB－1－N
DISC－288MB－2－F	DISC－450MB－2－N
DISC－6－70MB－1－F	
DISC－6－70MB－2－F	

NOTE
A backup on mag－tape must be copied back to the same type of disk that it was copied from．

Example of using MCOPY：
\＃MACL 〈CR〉
\＃\＃1560\＆
＊Load MCOPY 〈CR〉
MAG TAPE－DISK COPY，HUT 1649POD．ISSUED：
AUG 20， 1986
THE COMMAND HELP GIVES YOU A LIST OF THE COMMANDS
＞LIST－SPECIAL－COMMANDS＜CR＞

COPY－TO－MAG－TAPE
COPY－FROM－MAG－TAPE
COMPARE－DISK－TAPE
SINTRAN－BLOCK－SIZE
SET－MAG－TAPE－DEVICE－NUMBER
1600－BPI
SYSTEM－COPY
AUTOMATIC－COMPARE
SET－DISK－TYPE
CHANGE－MEMORY－BUFFER－ADDRESS
Backup produced on mag－tape by BACKUP－SYSTEM with the command DEVICE－COPY，can be read back by MCOPY using the command COPY－FROM－ MAG－TAPE．

COPY／COMPARE
Three of these commands are used to copy or compare：

COPY－TO－MAG－TAPE
COPY－FROM－MAG－TAPE
COMPARE－DISK－TAPE
These commands have a set of parameters：
－The disk type，if not specified before
DISK NAME：Disc－75MB－1 〈CR〉
－If you use one of the following disk types：
$38 / 75 / 288 / 30 / 60 / 90 \mathrm{Mb}$
you will be asked whether you want the old or new directory size：

DIRECTORIES CREATED BY SINTRAN VERSION E OR LATER ARE A FEW PAGES SMALLER THAN THOSE CREATED BY VERSIONS A，B，C，D．DO YOU WANT THE NEW SIZE （VERSION E OR LATER）OR THE OLD SIZE（VERSION D OR EARLIER）？
PLEASE ANSWER OLD OR NEW ：new 〈CR〉
－The unit number：
DISK UNIT／DECIMAL，（0－3）： 0 〈CR〉
－If your disk is one with multiple directories on the same unit，for example $10 \mathrm{Mb}, 30 / 60 / 90 \mathrm{Mb}, 2-75 \mathrm{Mb}, 3-75 \mathrm{Mb}$ ，you will be asked one of the following

Norsk Data ND－30．008．3 EN

Starting the COPY／COMPARE：

Changing Disk Type and Mag－tape Device Number
questions，depending on whether the system copy is turned on or off．If the system copy is on，you get the prompt：

REMOVABLE OR FIXED ：Fixed 〈CR＞ SUBUNIT（DECIMAL，0－2）： 1 〈CR〉

The first prompt refers to the directory that is to be copied．It can be either REMOVABLE or FIXED for 10 Mb and 30／60／90 Mb．

The second prompt asks for the subunit and applies to disks with more than one subunit（for example $60 / 90 \mathrm{Mb}, 2-75 \mathrm{Mb}$ ， $3-75 \mathrm{Mb}$ ）．
－Next question is about the magnetic tape unit：

MAG－TAPE UNIT（DECIMAL，0－3）： 2 〈CR〉
－If the system copy is turned off，and your disk type is one with multiple directories on the same unit，the program asks for the file number on the tape：

MAG－TAPE FILE NUMBER（DEC．0－99）： 2 〈CR〉

If you have copied several directories to one tape by giving file number，it makes it easier to select one specific directory later if you want to copy it back to a disk．

Remember that the first file number on the mag－tape is file number 0 ．

When you have answered all the prompts，the program asks you：

OK？

If you answer YES，the COPY／COMPARE operation will start．

The commands are：
－SET－MAG－TAPE－DEVICE－NUMBER
－SET－DISK－TYPE

When a COPY／COMPARE command is given，the program checks if the disk type has already

Changing Modes of the Program

Example：

AUTOMATIC COMPARE：
been specified，for example in connection with an earlier COPY／COMPARE operation．

If this is the case，the program will continue to use this disk type until it is changed by using the command：
＞Set－disk－type＜CR＞
DISK NAME ：Disk－2－75MB－1 〈CR〉
When the program is started，it assumes that the mag－tape drive is connected to mag－tape controller 1，device number 520 octal．This may be changed by giving the command：
＞Set－mag－tape－device－number 〈CR＞ MAG－TAPE DEV．No（OCTAL，520－530）：530＜CR＞

Mag－tape drives connected to mag－tape controller 2 have device number 530 octal．

The commands are：
－SYSTEM－COPY
－AUTOMATIC－COMPARE
－1600－BPI
－SINTRAN－BLOCK－SIZE

These commands are used to turn ON／OFF （set／reset）special features of the program． The relevant feature（mode）is either turned off or on，depending on what state it was in previously．When such a command is given，the program will answer whether the relevant feature is turned on or off．
＞System－copy 〈CR〉
SYSTEM COPY TURNED ON

When the program is started，automatic compare is turned on．This means that after each copy operation，the program will automatically do a compare．When copying directories occupying multiple reels of tape （for example a 75 Mb directory on 1600 BPI ）， the program will compare each reel of tape after it has been copied．You thus avoid the trouble of having to mount each reel of tape twice．

SYSTEM COPY

SETTING THE BPI MODE:
With disk types having multiple directories on the same unit, it is possible to copy/compare multiple directories by using the command SYSTEM-COPY.

This mode is initially turned off. It can be turned on by giving the command:
>System-copy <CR>
SYSTEM COPY TURNED ON

The STC mag-tape drive may record data on magnetic tapes in either the 1600 BPI or the 6250 BPI mode. The mode is initially set in 6250 BPI, but this may be changed by giving the command:
>1600-BPI <CR>
1600 BPI TURNED ON
Recording the data in 1600 BPI mode makes it possible to read the tape on the Pertec magtape drive.

If you have a Cipher mag-tape drive, recording may be done in a 3200 BPI 1600 BPI mode. The mode however must be set manually by the user.

SETTING SINTRAN BLOCK SIZE:

Example:

The record size on tape is usually set at more than 1 K (1024) 16 bit words. This enables a more efficient use of the tape. The command SINTRAN-BLOCK-SIZE can however be used to set the record size on tapes to exactly one page each. The purpose of this command is to enable the user to copy from tape to disk while SINTRAN is running. The SINTRAN command COPY-DEVICE is used for such copying.

SINTRAN block size is initially turned off.
$-\mathrm{NOTE}$
It is not possible to recover directories that occupy more than one reel of tape when using the SINTRAN command COPY-DEVICE. Note also that setting record size to one page leads to inefficient utilization of the tape. In addition, it also makes the copy/compare operation slower. The command SINTRAN-BLOCK-SIZE should therefore only be used if necessary.
>Sintran-Block-Size <CR>
SINTRAN BLOCK SIZE TURNED ON

Chapter 6 How to change a subunit in $N D-100 / \mathrm{CX}$

This chapter describes how to replace some of the subunits in ND-100/CX, and the necessary adjustments that have to be made after replacement.
ó. 1 Renoving the cabinet panels

1. SIDE PANELS:
2. FRONT PANEL:
3. REAR PANEL:

Turn the three screws (A) on the top of the side panels $1 / 2$ turn counterclockwise and lift the panels away.

Loosen the two screws and release the lock (B) on the top of the front-panel and pull the panel off. On new cabinets the lock may be replaced by a screw.

Loosen the three screws (C) on the top of the rear panel and lift the panel away.

Figure 15. Removing the ND-100/CX Cabinet Panels

1. Stop the ND-100 computer containing the card to be changed.
2. Remove the panel on the cabinet (front or back) to access the card crate (See section 6.1.)

Figure 16. Changing a Card

Norsk Data ND-30.008.3 EN

Scanned by Jonny Oddene for Sintran Data © 2011

```
A R N I N
There is always a risk that static electricity may DAMAGE the cards.
Use the grounded handcuffs located above the operator panel (at the front of the cabinet) when you change cards.
```

3. Remove the card-crate cover by unscrewing the three special fasteners (A) with one turn counterclockwise.
4. Remove the card gently from the card crate by opening the card extractors (B), and pulling the card gently out.
5. Check that the switch setting on the new card corresponds with the one on the card to be replaced.
6. Push the new card carefully into the card crate, using the guiding rails. Close the card extractors (B) so that they fit into the front rails on the card crate.
7. Switch the ND-100 computer on.
8. Replace the panel.
-NOTE
If you want to TEST the new card, see chapter 5, Test Programs.
9. 3 Changing a main power supply

PREPARING FOR REPLACEMENT:
(1) Stop the ND-100 computer.
(2) Remove the cabinet panels. See section 6.1 .
(3) Turn the main switch as well as the battery switch OFF in the cabinet.
W A R N I N G-
The equipment operates from 220 V AC main
power supply. This can cause DEATH
ON CONTACT.

CHANGING SMPS1, SMPS2, or SMPS3:
(4) Disconnect the main power cables (A) and the round control cable (B) from the plug panel below the power-control panel.

This plug panel is accessible from the back of the cabinet in the ND-100.

Figure 17. Input Power Cables

Norsk Data ND-30.008.3 EN

Scanned by Jonny Oddene for Sintran Data © 2011
(5) Disconnect the three main wires (C) from the power supply. Also disconnect the two special cables on SPMS2 marked: "BATTERY ON/OFF" and "BATTERY DISCHARGE".

Figure 18. Input Power and Control Wires
(6) For SMPS1 only:

> Loosen the two special fasteners (D) holding the power control panel fastened to the cabinet ($1 / 2$ turn counterclockwise), then tilt the powercontrol panel forward out.

Figure 19. Loosening the Power Control Panel

(7) Disconnect the power-output cables (E) from the power supply (see fig. 20)

(8) Disconnect the ground wire at the rear of the power-supply mounting frame by:

- loosening the two screws (F) holding the power-supply rails fastened to the power-supply mounting bracket.
- pulling the power-supply rails 10 cm to 20 cm forward to gain easy access to the ground wire.
- unscrewing the screw (G) holding the ground wire (2 wires if SMPS4 is present).
(9) Pull the power-supply assembly out of the cabinet until it stops.

CAUTION

Make sure that no cables or wires are pinched between the power supply mounting frame and the rails.
(10) Remove the power-supply by:

- pulling out the control flat cable (See figure 18).
- unscrewing 4 screws from the underside of the mounting frame.

REAR VIEW OF MOUNTING fRAME

Figure 20. Removing a Power Supply from the Frame
(11) Installation of the new power supply is performed by following steps 4 to 10 in reverse order, doing the opposite of each one.

Norsk Data ND-30.008.3 EN

Scanned by Jonny Oddene for Sintran Data © 2011

ADJUSTMENT OF THE MAIN POWER SUPPLY:

This adjustment is performed with the powersupply output connected to the card crate. The card crate should have all of its cards present to provide sufficient load for the power supply.
(1) Install an extension card in the card crate, together with a voltmeter.

The extension card is equipped with test points for all power voltages.
(2) Connect the power cables to the power supply, and measure the voltage at the extension card. It should be 5V DC (+ $50-100 \mathrm{mV}$).
(3) If necessary, adjust the output voltage.
(4) Let the power supply stand, with the power cables and the card crate connected, for $1 / 2$ hour to 1 hour, or until it reaches operating temperature.
(5) Check the voltage again. It should have the same value as obtained in step (2).

Figure 21. Adjustment of the Power Supply
(1) Connect the power cables and load to the 5 V and 12 V outputs on the power supply.

Use a headlight of type $12 \mathrm{~V} / 55 \mathrm{~W}$ for the 5 V output (this gives 2 A load, maximum is 25A).

Use a headlight of type $24 \mathrm{~V} / 55 \mathrm{~W}$ for the 12 V output (this gives 1.15A load, maximum is 4A)
(2) Measure the voltages at the power supply outputs. They should be 5V (+ 0.25 V) and $12 \mathrm{~V}(+0.6 \mathrm{~V})$.

It is only possible to adjust only the 12 V of the Philips PE-1759 standby supply from an external potentiometer, all the other types have this adjustment located inside.
(3) If necessary, adjust the 5 V output (and 12V, if Philips PE-1759). The voltages are adjustable $+10 \%$.
(4) Check the standby operation (battery) by:

- connecting outputs "1" and "2" in TB 102 with a strap.
- pulling out the main plug.

The output voltages should still be present, and within the specifications stated in step (2).

Figure 22. Approximate Adjustment of the Standby Power Supply

```
CAUTION
    If the standby supply fails in standby
    mode, the standby battery and charging
    current must be examined immediately.
    Data will be lost during a power failure
    if the standby battery is not
    operational.
```

This adjustment is performed with the power-supply output connected to the card crate. The card crate should have all its cards present to provide sufficient load for the power supply.
(1) Install an extension card in the card crate, together with a voltmeter.

The extension card is equipped with test points for all power voltages.
(2) Connect power cables to the power supply, and measure the 5V-STBY voltage at the extension card. It should be 5V DC (+ $50-100 \mathrm{mV})$.
(3) If necessary, adjust the 5V-STBYoutput voltage.
(4) Let the power supply stand with the power cables and the card crate connected, a $1 / 2$ hour to 1 hour, or until it reaches operational temperature.
(5) Control the voltage again. It should have the same value as that obtained in step (2), alternatively step (3).

Figure 23. Fine Adjustment of the Standby Power Supply

REPLACING THE BATTERY IN THE STANDBY POWER SUPPLY:
(1) Remove the top cover from the standby power supply by unscrewing the 4 screws (A).
(2) Remove the battery from the power supply by:

- unscrewing the 4 screws (B) on the outside of the box.
- taking out the bracket and the battery from the inside of the box.
- disconnecting the two wires from the battery.

Figure 24. Replacing the Battery in the Standby Power Supply
(3) Installing the new battery is performed by following steps (1) and (2) in reverse order.
-NOTE
The battery is of the NiCad (quick charge) type with 4AH capacity.

The charging current from the standby supply into the battery is 300 mA .

The maximum recommended charging current is 1.3A.

The charging time for an empty battery should be about $\mathrm{T}=5 / \mathrm{I}$ hours, I in Ampere.

The voltage of a fully charged, unloaded battery is 27 V .

```
6.4 Changing a power control panel
```

(1) Stop the ND-100 computer containing the control panel to be changed.
(2) Remove the rear panel of the ND-100 cabinet to access the control panel.
(3) Turn the power cables and battery switch OFF in the cabinet.

```
W A R N I N
The equipment operates from 220V AC
power supply. This can cause DEATH ON
CONTACT.
```

(4) Disconnect the cables from the plug panel located under the power control panel by:

- pulling out the flat cable connectors (A) and the main power cables (B).
- twisting the 2 round cable connectors (C) about a $1 / 2$ turn counterclockwise, then pulling them out.
- unscrewing the sockets belonging to the two round cables.
(5) Unlock the two special fasteners (D) by turning them about a $1 / 2$ turn counterclockwise.
(6) Tilt the control panel forward (E).
(7) Unscrew the 2 screws (F) holding the power-control panel into the power supply mounting frame, then pull the panel out of the cabinet.

FRONT VIEW OF POWER CONTROL•PANEL

REAR SIDE OF POWER CONTROL PANEL

Figure 25. Changing the Power Control Panel
(8) Before installation, check the switch setting (G) on the new power control panel.

The switches are located at the rear of the power control panel.

```
-NOTE-
The following description of the switch
setting is based on the Philips PE-1018
power-control panel.
If instead you have the EMI EMP }32
power control panel, the terms "ON" and
"OFF" in the tables should be
substituted with "CLOSED" and "OPEN",
respectively.
```

These are the correct switch-settings for the power-control panel in ND-100:

	SMPS1	SMPS2	SMPS3	SMPS4
+12 V	ON	OFF	ON	ON
+5 V	OFF	OFF	ON	ON
Power Fail	OFF	OFF	ON	ON
Over Temperature	OFF	OFF	ON	ON

(9) Fasten the new control panel into the cabinet by screwing in two screws.

NOTE
Make sure that the power-control panel can be tilted forward freely, without being obstructed by the handle on the left side of the power-supply mounting frame.
(10) Fasten the new powercontrol panel, and reconnect the cables to the plug panel (see steps (4) and (5)).
(11) Switch the ND-100 computer $O N$.
(12) Replace the cabinet panels.

1. Turn the power $O F F$ and remove the cabinet panels (see section 6.1).
2. Disconnect the flat cable, the ground cable, and the power cable from the back of the floppy drive.
3. Unscrew the four screws (A) holding the floppy housing and pull the housing out.
4. Disassemble the floppy housing and replace the floppy. See figure 26).
5. Installation of the new floppy is performed by following steps 1 to 4 in reverse order, doing the opposite of each one.
6. If you want to test the new floppy-unit you can use the test program FLOPPY-STREAMER.

Figure 26. Changing a Floppy Drive

1. Turn the power OFF and remove the panels (see section 6.1).
2. Disconnect the flat cable, the ground cable and the power cable from the back of the streamer.
3. Unscrew the four screws (B) holding the streamer housing, and pull the housing out.
4. Disassemble the streamer housing and replace the streamer (see fig. 27
5. Install the new streamer by following steps 1 to 4 in reverse order, doing the opposite of each one.
6. If you want to test the new streamer, you can use the test program FLOPPY-STREAMER.

Figure 27. Changing a Streamer

1. Turn the power OFF and remove the cabinet panels (see section 6.1).
2. Disconnect the power cable from the back of the fan assembly. Hold under the fan assembly with one hand and unfasten the four screws holding it (see fig. 28).

Note that the cables on the back of the card crate must be bent in the opposite direction in order to get access to the two screws.
3. Lift the fan assembly carefully out.
4. Replace the defective fan and mount the fan assembly into the cabinet again

Turn the power $O N$ and check that the new fan is working.
5. Replace the cabinet panel.

Figure 28. Removing the Card-Crate Fans

Norsk Data ND-30.008.3 EN

Scanned by Jonny Oddene for Sintran Data © 2011

1. Turn the power OFF. Unscrew the four screws (A) holding the fan-assembly cover.
2. Remove the defective fan by unscrewing the four screws (B) and disconnecting the power wires.
3. Put in the new fan, and mount the fan assembly into the cabinet again.
4. Turn the power $O N$, and check that the new fan is working.

Figure 29. Removing the Top Fans

Chapter 7 How to change a subunit in ND-100 Compact

```
7.1 Removing the cabinet panels
```

1. SIDE PANELS:
2. FRONT PANEL:
3. BACK PANEL:
4. THE TOP PANEL:

Turn the two screws (A) on the top of the side panels a $1 / 2$ turn counterclockwise and remove the panels.

Turn the two screws (B) on both sides of the front-panel 2 turns counterclockwise, and pull the panels off.

Turn the four screws (C) on the back panel a $1 / 2$ turn counterclockwise and remove the panel.

Turn the two screws (D) on both sides of the top panel 2 turns counterclockwise, and lift the panel off.

Figure 30. Removing the ND-100 Compact Cabinet Panels

Norsk Data ND-30.008.3 EN

Scanned by Jonny Oddene for Sintran Data © 2011

1. Stop the computer, turn the power OFF, and remove the left cabinet side-panel (see page 158).
2. Unscrew the four screws (A) on the front of the power supply, and use a screwdriver to lever it out of the power-supply cabinet, (see fig. 31).
3. Pull the power supply out of the power supply cabinet.
4. Install the new power supply by following steps 1 to 3 in reverse order, and doing the opposite of each one.
5. Check the voltage and adjust if necessary.
6. Replace the left cabinet side-panel.

Figure 31. Replacing the Power Supply in ND-100 COMPACT

1. Turn the power $O F F$, and remove the cabinet panels (see section 7.1).
2. Disconnect the flat cable, the ground cable and the power cable (A) from the back of the floppy drive.
3. Unscrew the four screws (B) holding the floppy housing and pull the housing out.
4. Disassemble the floppy housing and replace the floppy, (see the figure on page 161).
5. Install the new floppy by following steps 1 to 4 in reverse order, doing the opposite of each. For strapping and termination, see the Service Handbook Vol. II, chapter 5 , section 8.
6. If you want to test the new floppy unit, you can use the test program FLOPPY-STREAMER.

Figure 32. Replacing a Floppy Drive (I)

Figure 33. Replacing a Floppy Drive (II)

Norsk Data ND-30.008.3 EN

Scanned by Jonny Oddene for Sintran Data © 2011

1. Turn the power $O F F$, and remove the cabinet panels (see section 7.1).
2. Disconnect the flat cable, the ground cable and the power cable (A) from the back of the streamer.
3. Unscrew the four screws (B) holding the streamer housing and pull the housing out.
4. Disassemble the streamer housing and replace the streamer, (see the figure on page 163).
5. Install the new streamer by following steps 1 to 4 in reverse order, doing the opposite of each one.
6. If you want to test the new streamer, you can use the test program FLOPPY-STREAMER.

Figure 34. Replacing a Streamer (I)

Figure 35. Replacing a Streamer (II)

1. Turn the power OFF, and remove the left side panel.
2. Disconnect the flat cables, the ground cable, and the power cable (A) from the disk unit.
3. Unscrew the two screws holding the disk housing (B), and slide the housing out.
4. Remove the disk-unit from the housing by unscrewing the two screws (C) on each side.
5. Install the new disk-unit by following steps 1 to 4 in reverse order, doing the opposite of each one.
For strapping and termination, see the Service Handbook Vol. II, chapter 5, section 13.
6. If you want to test the new disk unit, you can use the test program DISC-TEMA.

Figure 36. Replacing a Disk Drive

Norsk Data ND-30.008.3 EN

Scanned by Jonny Oddene for Sintran Data © 2011

```
7.6 Changing the fans
```

THE CARD-CRATE FANS:

1. Turn the power OFF, and remove the back cabinet-panel (see section 7.1).
2. Unscrew the four screws (A) holding the fan, disconnect the power wire and lift the fan out.
3. Install the new fan, turn the power $O N$, and check that the new fan is working.
4. Replace the cabinet panel.

Figure 37. Removing a Fan (I)

Norsk Data ND-30.008.3 EN

1. Turn the power OFF. Unscrew the two screws (A) holding the bottom fan-assembly and slide it out.
2. Remove the defective fan by unscrewing the four screws (B) and disconnecting the power wires.
Put in the new fan and mount the fan assembly into the cabinet again.
3. Turn the power $O N$, and check that the new fan is working.

Figure 38. Removing a Fan (II)

Norsk Data ND-30.008.3 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 8 Switches, Displays and indicators on the ND-100 cards

This chapter contains information about switch-settings, LEDs, indicators and displays.

The figure below shows the symbols used in this chapter.

Figure 39. Summary of ND-100 card

Norsk Data ND-30.008.3 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Figure 40. CPU Module (3002)

Norsk Data ND-30.008.3 EN

ALD:

ALD	I 12	LOCK and Standby Power OK	LOCK and Standby Power not OK	Unlock and Load
15	0	Start in address 20	Stop	Nothing
14	1560	Start in address 20	Binary load from 1560	Binary load from 1560
13	20500	Start in address 20	Mass load from 500	Mass load from 500
12	21540	Start in address 20	Mass load from 1540	Mass load from 1540
11	400	Start in address 20	Binary load from 400	Binary load from 400
10	1600	Start in address 20	Binary load from 1600	Binary load from 1600
9		Start in address 20		
8		Start in address 20		
7	100000	Stop	Stop	Nothing
6	101560	Binary load from 1560	Binary load from 1560	Binary load from 1560
5	120500	Mass load from 500	Mass load from 500	Mass load from 500
4	121540	Mass load from 1540	Mass load from 1540	Mass load from 1540
3	100400	Binary load from 400	Binary load from 400	Binary load from 400
2	101600	Binary load from 1600	Binary load from 1600	Binary load from 1600

Table 3. ALD on the CPU Module (3002)

BAUD RATE:

Switch- setting:	Baud rate:
0	110
1	150
2	300
3	2400
4	1200
5	1800
6	4800
7	9600
8	2400
9	600
10	200
11	134.5
12	75
13	50
14	ext.
15	ext.

Table 4. Baud Rate on the CPU (3002)

Figure 41. 10 Mb Disk Controller (3004)

Norsk Data ND-30.008.3 EN

3.3 Dynamic Ram (3005)

Figure 42. Dynamic RAM (3005)

Norsk Data ND-30.008.3 EN

THE LOWER LIMIT SWITCHES:
The lower-limit switches determine the lower memory address for this memory card. This is a two-digit hex thumbwheel, giving limit addresses in increments of 16 K units, and only numbers 0-7 are used.

The upper limit for this card is automatically displayed on the upper limit display in octal representation.
-NOTE-
If the CPU is a ND-120, you must use the value displayed by the memory size indicator as lower limit on the first memory card.

EXAMPLES:

Lower-limit Sw. setting	Memory size	Upper-1imit display	Address	
0	0	32 K	0	2
0	0	64 K	0	4
0	3	32 K	0	5
0	3	64 K	0	7
3	4	64 K	4	0

Table 5. Lower-Limit Switch-Setting on the Dynamic RAM (3005)

```
8.4 Pertec magnetic tape controller (3006)
```

- Read YELLOW: Reading from the tape.
- Write YELLOW: Writing on to the tape.
- PDCLK YELLOW: A data transfer is in progress.
- Active YELLOW: Controller is active.
-TH Device number - 2: mag tape 1, dev. no.520-527, ident. no.3.
- 3: mag tape 2, dev. no.530-537, ident. no.7.
- 4-15 are not used.

IOX-address-bit-15-active will inhibit this card.

Figure 43. Pertec Magnetic Tape Controller (3006)

Dip switch
(Pos. 8D)

Switch 1=0FF:0 =< dev.no. $=<1777,0=<$ ident.no. $=<377$
Switch 1=ON : $2000=<$ dev.no $=<3777,400=<$ ident.no. $=<777$
Switch 2=0FF:Normal
Switch 2=0N :Block all interfaces on this bus
Switch 3-4 :Not used
IOX-address-bit-15-active will inhibit this card.

Figure 44. Euroline Adapter (3008)

```
8.6 Local I-0 bus (3009)
```


Figure 45. Local I/O Bus (3009)

Norsk Data ND-30.008.3 EN

Figure 46. Floppy and 4-Terminals Interface (3010)

FLOPPY-DISK SYSTEM:

```
0= floppy system no. 1
    (dev. no. 1560, IDENT = 21).
1= floppy system no. 2
    (dev. no. 1570, IDENT = 22).
```

2-15 are unused, will answer on IOX 0-7.

TERMINAL GROUP:

Switch- setting:	Terminals:	Dev. no:	Ident. :
0	$1-4$	$300-337$	$120-123$
1	$5-8$	$340-377$	$44-47$
2	$9-12$	$1300-1337$	$50-53$
3	$13-16$	$1340-1377$	$54-57$
4	$33-36$	$640-677$	$124-127$
5	$37-40$	$1100-1137$	$130-133$
6	$41-44$	$1140-1177$	$134-137$
7	$45-48$	$1400-1437$	$140-143$
8	$49-52$	$1500-1537$	$144-147$
9	$53-56$	$1640-1677$	$150-153$
10	$57-60$	$1700-1737$	$154-157$
11	$61-64$	$1740-1777$	$160-163$
12	$17-20$	$200-237$	$60-63$
13	$21-24$	$240-277$	$64-67$
14	$25-28$	$1200-1237$	$70-73$
15	$29-32$	$1240-1277$	$74-77$

Table 6. Terminal Group on the Floppy and 4-Terminal Interface (3010)

Norsk Data ND-30.008.3 EN

Switch- setting:	Baud rate:
0	110
1	150
2	300
3	2400
4	1200
5	1800
5	4800
6	9600
7	2400
8	600
9	200
10	134.5
11	75
12	50
13	unused
14	Split-speed
15	

Table 7. Baud Rate on the Floppy and 4-Terminal Interface (3010)

SELECTOR SWITCH FOR CURRENT LOOP/RS232-C:

If 2-position switch: $0=$ Current loop $1=\operatorname{RS} 232-C$

If hexadecimal switch: $0=$ Current loop $F=R S 232-C$

```
If component houses are used:
Current loop - Connection between:
pin 3 and pin 14
    " " " 13
    " 6 " " 11
    " 7 " " 10
RS232-C - Connection between:
        pin 1 and pin 15
        " 4 " " 14
        ", 6 "" " 12
        " 7 " " 9
        COMPONENT HOUSE:
Pin 16 9
Pin 1 \bullet\bullet\bullet\bullet\bullet\bullet
```

```
B.3 lemory management (3012)
```


Figure 47. Memory Management (3012)

```
8.9 8-Terminal interface (3013)
```


Figure 48. 8-Terminal Interface (3013)

Norsk Data ND-30.008.3 EN

Terminals are divided into groups of four terminals. An 8-terminal card consists of two groups, group A and group B. Each group consists of four terminals with consecutive numbers and ident codes.

Switch- setting	Terminals	Dev. no	Ident
0	$1-4$	$300-330$	$120-123$
1	$5-8$	$340-370$	$44-47$
2	$9-12$	$1300-1330$	$50-53$
3	$13-16$	$1340-1370$	$54-57$
4	$33-36$	$640-670$	$124-127$
5	$37-40$	$1100-1130$	$130-133$
6	$41-44$	$1140-1170$	$134-137$
7	$45-48$	$1400-1430$	$140-143$
8	$49-52$		
9	$53-56$	$1500-1530$	$144-147$
10	$57-60$	$1700-1730$	$150-153$
11	$61-64$	$1740-1770$	$164-157$
12	$17-20$	$200-230$	$60-63$
13	$21-24$	$240-270$	$64-67$
14	$25-28$	$1200-1230$	$70-73$
15	$29-32$	$1240-1270$	$74-77$

Table 8. Device Numbers on the 8-Terminal Interface (3013)

NOTE

If HDLC is connected, you must not use switch-setting 9 and 10 for terminals.

BAUD RATE:

Switch setting:	Baud rate:
0	110
1	150
2	300
3	2400
4	1200
5	1800
6	4800
7	9600
8	2400
9	600
10	200
11	134.5
12	75
13	50
$14-15$	Not used

Table 9. Baud Rate on the 8-Terminal Interface (3013)

Norsk Data ND-30.008.3 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Figure 49. HDLC Controller (3015)

BAUD RATE:

Switch- setting	Baud rate (K baud)
0	307
3	1.2
6	9.6
7	15.4
8	13.6
9	19.8
11	4.8
13	2.4

Table 10. Baud Rate on the HDLC Controller (3015)

AUTOLOAD DEVICE NUMBER:

Device	Thumbwheel position	Device number
Autoload 1	0 Not allowed	1600
Autoload 2	2	1604
Autoload 3	3	1610
Autoload 4	4	1614
Autoload 5	5	1620
Autoload 6	6	1624
Autoload 7	7	1630
	$8-15$	1634
	Not allowed	

Table 11. Autoload Device Number on the HDLC Controller (3015)
\square

HDLC DEVICE NUMBER:

Device	Thumbwheel position	Device number	Ident- code
HDLC 1	0	1640	140
HDLC 2	1	1660	151
HDLC 3	2	1700	152
HDLC 4	3	1720	153
HDLC 5	4	1740	154
HDLC 6	5	1760	155
		6	560
HASP 1	7	620	156
HASP 2	8	700	160
HASP 3	9	720	161
HASP 4	10	1500	162
HASP 5	11	1520	163
HASP 6			

Table 12. Device Number on the HDLC Controller (3015)

FUNCTION SWITCHES:

Switches in position 13A	Switches in position 17G	Switches in position 26G
4321	4321	4321
X X 0 0: X21	X X X O: Disable MCL	X X 0 X: Disable baud
X X 01 1: Computer link	X X O X: Disable LOAD	rate osc.
X X 1 0: V. 35	X 0 X X: Disable RML	X O X X: Disable main
X X 1 1: V.24/X. 21 bis	O X X X: Disable CLOAD	clock

Table 13. Function Switches on the HDLC Controller (3015)

```
8.11 ECC disk controller (3018 and 3019)
```

- WG - write gate
- RG - read gate
- FORM - write format
- PAR - read parity
- COMP - compare transfer
- ECC - ECC operation

All LEDs are yellow

Figure 50. SMD Controller (3018)

Norsk Data ND-30.008.3 EN

- ERR - Red LED, indicating an exclusive OR of errors
- CYL - Yellow LED, indicating ON CYLINDER
- START- Yellow LED, indicating CONTROLLER ACTIVE

TH
Device number:
0-3 are not used
4=big disk system 3, dev. no. 540-547, ident. no. 2
5=big disk system 4, dev. no. 550-557, ident. no. 6
6-7 are not used
8=big disk system 1, dev. no. 1540-1547, ident. no. 17
9=big disk system 2, dev. no. 1550-1557, ident. no. 20 $10-15$ are not used

Figure 51. SMD Data (3019)

Norsk Data ND-30.008.3 EN

```
8.12 STC magtape controller (3020)
```

- ERROR - Red LED, indicating an error.
- RFT - Green LED, indicating READY FOR TRANSFER.
- RDYS - Green LED, indicating READY status from formatter,i.e.,
- HDENS - Yellow LED, indicating high density, i.e., 6250 BPI (GCR).
- HDENS - Yellow LED, indicating high density, i.e., 6250 BPI (GCR).
- DMAIN - Yellow LED, indicating DMA input i.e., read from mag tape.
- DMAOUT- Yellow LED, indicating DMA output i.e., write to mag tape.

0-1 are not used
2=Magtape system 1, Dev. no. 520-527, Ident. No. 3.
3=Magtape system 2, Dev. no. 530-537, Ident. No. 7.
4-15 are not used

Figure 52. STC Magtape Controller (3020)

Norsk Data ND-30.008.3 EN

Figure 53. ND-500 Interface (3022)

Norsk Data ND-30.008.3 EN

Scanned by Jonny Oddene for Sintran Data © 2011

You may have a maximum number of five ND-500 computers connected to one ND-100, and each ND-500 computer requires a ND-500 interface.

If you connect three ND-500 computers to the ND-100, the first interface must have the thumbwheel set to 0 , the second interface must be set to 1 , and the third interface must be set to 2 .

| Thumbwheel
 setting | Device-
 number
 (Oct.) | Device-register
 address range
 (Oct.) | Ident.
 number |
| :---: | ---: | ---: | ---: | ---: |
| 0 | 60 | $60-77$ | 16 |
| 1 | 1060 | $1060-1077$ | 116 |
| 2 | 660 | $660-677$ | 36 |
| 3 | 760 | $760-777$ | 114 |
| 4 | 560 | $560-577$ | 76 |

Table 14. Device Numbers on the ND-500 Interface (3022)

```
NOTE
    Thumbwheel settings 5 - 15 are not
    valid.
```


Figure 54. Megalink Interface (3023)

This baud-rate selection is only relevant if the source-oscillator switches are set to "baud-rate selection" (see page 194).

Thumbwheel setting	Baud rate (Kbps)
0	307.2
3	1.2
6	9.6
7	38.4
8	153.6
9	76.8
11	19.2
13	4.8
14	2.4

Table 15. Baud Rate on the Megalink Interface (3023)

AUTOLOAD DEVICE NUMBER (TH2):

Thumbwheel setting	Autoload dev. no.	Device register address range (Oct)
0	$*$	$1600-1603$
1	1	$1604-1607$
2	2	$1610-1613$
3	3	$1614-1617$
4	4	$1620-1623$
5	5	$1624-1627$
6	6	$1630-1633$
7	7	$1634-1637$
$*$		

$*$ Not allowed.

Table 16. Autoload Device Number on the Megalink Interface (3023)

DEVICE-REGISTER-ADDRESS RANGE
AND IDENT-CODE SELECTION (TH3):

Th. wheel setting:	Megalink number:	Dev-reg- addr-range (Oct.)	Ident code: (Oct.)
0	1	$1640-1657$	150
1	2	$1660-1677$	151
2	3	$1700-1717$	152
3	4	$1720-1737$	153
4	5	$1740-1757$	154
5	6	$1760-1777$	155

Table 17. Device Register on the Megalink Interface (3023)
NOTE
Extension to more than 6 megalinks is possible on special request.

THE SOURCE-OSCILLATOR SWITCH:

$\mathrm{OFF}=0$

Switch No.								
6	5	4	3	2	1	$	l$	Function:
:---								
1	1							

X=irrelevant
$\mathrm{ON}=1$
Table 18. The Source Oscillator Switch on the Megalink Interface (3023)

THE AUTOLOAD-FUNCTION SELECTOR:

Switch 4 3 2 1
0

Table 19. The Autoload Function Selector on the 3023 Card

BUSY ENABLE/DISABLE SWITCH:

Switch No.				Function:
4	3	2	1	
X	X	0	1	Normal operation
X	X	1	0	BUSY disabled

$X=$ irrelevant
$O N=1$
$O F F=0$

Table 20. Busy Enable/Disable Switch on the Megalink Interface (3023)

```
8.1% M10 bus adapter (3024)
```


Figure 55. N10 Bus Adapter (3024)

EXTERNAL BUS NUMBER SELECTION:

Thumbwheel setting:	External bus number:
0	0
1	1
2	2
3	3
\cdot	\cdot
13	13
14	14
15	15

Table 21. External BUS Number Selection on the Bus Adapter (3024)

BLOCK SWITCH-SETTING (SW1):

CIO SWITCH SETTING (SW3):

FAST DMA SWITCH SETTING (SW4):

The switch has two positions:
0 - DISABLE: LED3 is lit. The block switch inhibits all incoming/outgoing signals to/from the external bus.

1 - ENABLE: LED3 is not lit. A MASTER CLEAR pulse is sent to the external bus when switching from disable to enable.

Bit 13 in the programmable register simulates the block switch.

The switch has two positions:
0 - LED1 is not lit. All IOX addresses (0-077777) will pass and all the ident. codes are read, (the 3008 module forced bits 8-15 in the ident codes to 0 (zero) when the switch was inactive).

1 - LED1 is lit. Customer I/O enables only IOX addresses 2000-3777 to the external bus. Bit 8 in the ident. code is set to 1. Ident code bits $9-15$ are forced to 0 (zero) .

The switch has two positions:
0 - LED2 is not lit. The ND-100 bus is kept reserved until the external bus has finished the DMA cycle (CONNECT no longer true).

1 - LED2 is lit. The ND-100 bus is released to CPU or DMA devices as soon as the necessary DMA data exchange on the ND-100 bus is finished (arrival of DRY) and while the external bus is ending its DMA cycle.

The switch must be set to 0 if the DMA bandwidth of the external bus is very critical (the bus needs every DMA cycle in periods). Otherwise, the switch should be set to 1 , which gives optimum usage of the ND-100 bus.

To be compatible with the 3008 module, the switch must be set to 0 .

```
8.16 GPIB controller (3026)
```


Figure 56. GPIB Controller (3026)

DEVICE-NUMBER SELECTION:

Thumbwheel setting:	Device/ Dev. No: (1)	Ident code: (1)	PROM addresses odd even (2) (1) (2) (1)	
1	0/140000	140000	00000	00000
2	1/140010	140001	01001	01001
3	0/141400	140140	60140	60140
4	0/141410	140141	61141	61141
5	0/141420	140142	62142	62142
6	0/141430	140143	63143	63143
7	0/141440	140144	64144	64144
8	0/141450	140145	65145	65145

(1) : Octal
(2) : Hexadecimal

Table 22. Device Number Selection on the GPIB Controller (3026)

```
8.17 Floppy disk controller for DMA (3027)
```


Figure 57. Floppy Disk Controller for DMA (3027)

ERROR CODE DISPLAY:

Display:	Meaning:
000	OK
001-004	Not used
005	CRC error
006	Sector not found
007	Track not found
010	Format not found
011	Diskette defect (impossible to format)
012	Format mismatch
013	Illegal format specified
014	Single-sided diskette inserted
015	Double-sided diskette inserted
016	Write-protected diskette
017	Deleted record
020	Drive not ready
021	Controller busy on start
022	Lost data (over or underrun)
023	Track zero not detected
024	VCO (Voltage-Controlled Oscillator) frequence out of range
025	Microprogram out of range
026	Timeout
027	Undefined error
030	Track out of range
031	RAM error
032	Compare error (during compare of data)
033	Internal DMA errors
040	ND-100 Bus-error during command fetch
041	ND-100 Bus-error during status transfer
042	ND-100 Bus-error during data transfer
043	Illegal command
044	Word count not zero
050	No bootstrap found on diskette Error during
051	Wrong bootstrap (too old flo-mon version) autoload
070	PROM checksum error
071	RAM error
072	CTC error
073	DMACTRL error
074	VCO error
075	Floppy-controller error

```
8.18 Bus expander (3028)
```


LIMIT SWITCHES:

DISPLAYS:

On each BEX connected to a crate containing memory, the limit switches are used to specify the memory area covered by the crate. These values could also be set by a program.

LOWER LIMIT: Two hex switches for the setting of lower memory boundaries for this crate.

UPPER LIMIT: Two hex switches for the setting of upper memory boundaries for this crate.

BASE : The purpose of the base register is to give a positive offset to the address presented to a card crate.

For addresses below 1 M word, lower limit is set equal to the base.

The resolution of the switches is 64 K words per step turn on the least-significant limit switch.

The displays will always show the currently used limit/base setting. Thus, corresponding display and pair of switches will be equal if none of the limit registers have been programmed to another value than set by the switches.

BEX NUMBERS SWITCH-SETTING (TH1): Eight BEX numbers are defined, and the device number thumbwheel may thus take values from $0,1, \ldots 7$.

Thumbwheel setting	Dev.No.	Int.level	Ident. Code
0^{*}	1000000	13	10
1	1000004	13	11
2	1000010	13	12
3	1000014	13	13
4	1000020	13	14
5	1000024	13	15
6	1000030	13	16
7	1000034	13	17

*BEX No. 0 is defined as MASTER BEX and should be placed in the A crate.

Table 23. BEX Number Setting on the Bus Expander (BEX) (3028)

VITAL SWITCH AND INDICATOR:

ALLOW SWITCH:
The Vital switch controls how a BEX (BEX No=>1) will report a power-fail interrupt:

ON - Power failure in the crate will be reported as a level 14 interrupt to the CPU.

OFF- Power failure in the crate will be reported as a level-13 interrupt to the CPU. The Yellow LED will be lit when the Vital switch is in the OFF position.

This function is not applicable, and the switch should always be in the ON position on all BEXs.

Figure 59. Universal DMA Controller (3029)

DEVICE NUMBERS:

TH1- setting	Device number	Ident- code
0	$140050-14057$	14010
1	$140060-14067$	14011
2	$140070-14077$	14012
3	$140100-14107$	14013
4	$140110-14117$	14014
5	$140120-14127$	14015
6	$140130-14137$	14016
7	$140140-14147$	14017
8		
9	$140150-14157$	14020
10	$140170-14167$	14021
11	$140200-14207$	14022
12	$140210-14217$	14023
13	$140220-14227$	14025
14	$140230-14237$	14026
15	$140240-14247$	14027

Table 24. Device Numbers on the Universal DMA (3029)

- Short timeout

Timeout selector

- ADOK- Address OK indicates which bank the last master-bus cycle was accessing. It is reset by start of the next master-bus memory cycle.
Extended device number switch
- Extended device number indicator

```
-TH Interleave selector
```


Figure 60. ND-100 Bus Controller (3031)

There are 32 device-numbers allocated for the ND-100 Bus Controller, but the DeviceNumber Thumbwheel has only 16 positions.

To allow for 32 Bus Controllers, we must use the extended device-number Switch. A unique device number and Ident Code correspond to each position, in accordance with table 24.

Ext. device no. switch	Thumbwheel setting	Dev. No.	Ident level 13
OFF	0	100200	20
OFF	1	100204	21
OFF	2	100210	22
OFF	3	100214	23
OFF	4	100220	24
OFF	5	100224	25
OFF	6	100230	26
OFF	7	100234	27
OFF	8	100240	30
OFF	9	100244	31
OFF	10	100250	32
OFF	11	100254	33
OFF	12	100260	34
OFF	13	100264	35
OFF	14	100270	36
OFF	15	100274	37
ON	0	100300	40
ON	1	100304	41
ON	2	100310	42
ON	3	100314	43
ON	4	100320	44
ON	5	100324	45
ON ON	6	100330 10033	46
ON	7	100334	47
ON	8	100340	50
ON	9	100344	51
ON	10	100350	52
ON	11	100354	53
ON	12	100360	54
ON	13	100364	55
ON	14	100370	56
ON	15	100374	57

Table 25. Device Numbers on the ND-100 Bus Controller (3031)

Norsk Data ND-30.008.3 EN
Scanned by Jonny Oddene for Sintran Data © 2011

The switch settings are octally displayed in three-digit displays. Each switchsetting will be shown in the corresponding display in 64 K -word increments.

The following table gives the correspondence between switch settings and display presentation.

	MOST						6	7	8	9	A	B	C	D	E	F
LEAST																
0	000	020	040	060	100	120	140	160	200	220	240	260	300	320	340	360
1	00	021	041	061	101	121	141	161	201	221	241	261	301	321	341	361
2	002	022	042	062	102	122	142	162	202	222	242	262	302	322	342	362
3	00	023	043	063	103	123	143	163	203	223	243	263	303	323	343	363
4	004	024	044	064	104	124	144	164	204	224	244	264	304	324	344	364
5	005	025	045	065	105	125	145	165	205	225	245	265	305	325	345	365
6	006	026	046	066	106	126	146	166	206	226	246	266	306	326	346	366
7	007	027	047	067	107	127	147	167	207	227	247	267	307	327	347	367
8	01	030	050	070	110	130	150	170	210	230	250	270	310	330	350	370
9	01	031	051	071	111	131	151	171	211	231	251	271	311	331	351	371
A	01	032	052	072	112	132	152	172	212	232	252	272	312	332	352	372
B	01	033	053	073	113	133	153	173	213	233	253	273	313	333	353	373
C	01	034	054	074	114	134	154	174	214	234	254	274	314	334	354	374
D	01	035	055	075	115	135	155	175	215	235	255	275	315	335	355	375
E	01	036	056	076	116	136	156	176	216	236	256	276	316	336	356	376
F	01	037	057	077	117	137	157	177	217	237	257	277	317	337	357	377

Table 26. The Limit Displays on the ND-100 Bus Controller (3031)

Thumbwheel setting	Interleave	Vital	Delay
0	None	Yes	No
1	2-way	Yes	No
2	4-way	Yes	No
3	8-way	Yes	No
4			
4	None	No	No
5	2-way	No	No
6	4-way	No	No
7	8-way	No	No
8			
9	None	Yes	Yes
10	2-way	Yes	Yes
11	8-way	Yes	Yes
12		Yes	Yes
13	None	No	Yes
14	2-way	No	Yes
15	4-way	No	Yes
	8-way	No	Yes

Table 27. Interleave on the ND-100 Bus Controller (3031)

VITAL: If Vital=YES, a locally detected PFI (Power-Fail Interrupt) will be sent to the Master ND-100 (the CPU is detecting this as a regular power -fail interrupt).

If Vital=NO, the PFI will result in a level-13 interrupt, which will be sent to the Master ND-100.

DELAY: If the bus controlled by the Bus Controller contains MPM-4 Ports only, the delay is not necessary.

It is only necessary if the Bus contains regular DMA devices.

Norsk Data ND-30.008.3 EN

Scanned by Jonny Oddene for Sintran Data © 2011

TIMEOUT SELECTOR:

LIMIT SWITCHES:

The timeout selector is used to select two different timeouts:

- short timeout (2 mS)
or
- long timeout (8 mS)

A BUSC controlling a memory bank should have a short timeout.

A BUSC controlling an I / O bus should have a long timeout.

The timeout indicator will be lit if short timeout is selected.

The address area for a bus controller is decided by the setting of lower and upper address limit. The limit-address increments are 64 K units.

LOWER LIMIT: Two hex switches for setting of lower-memory boundaries.

UPPER LIMIT: Two hex switches for setting of upper-memory boundaries.

BASE : Two hex switches for setting the base.

```
3.21 Memory port - MPM-4 (3032)
```

- GRANT : This YELLOW LED is lit when this port has been allocated a memory cycle.
- ADOK : This YELLOW LED indicates address OK. This port has received a request on the connected channel; is lit until the next request on the channel.
- REFRESH TIMEOUT: This LED has two different colors:
- GREEN: Normal situation.
- RED : Indicating refresh timeout. (Reset by MCL from master CPU).

-TH Interleave selector

Figure 61. Memory Port - MPM4 (3032)

The address area for a PORT is decided by the setting of lower and upper-address limits. The limit-address increments are 64 K units.

LOWER LIMIT: Two hex switches for setting of lower memory boundaries.

UPPER LIMIT: Two hex switches for the setting of upper memory boundaries.

BASE : Two hex switches for setting the base.

INTERLEAVE:

Thumbwheel setting	Interleave	Speed- up	Write parity
0	None	No	No
1	2-way	No	No
2	4-way	No	No
3	8-way	No	No
4	None	Yes	No
5	2-way	Yes	No
6	4-way	Yes	No
7	8-way	Yes	No
8	None	No	Yes
9	2-way	No	Yes
10	4-way	No	Yes
11	8-way	No	Yes
12	None	Yes	Yes
13	2-way	Yes	Yes
14	4-way	Yes	Yes
15	8-way	Yes	Yes

Table 28. Interleave on the Memory Port - MPM4 (3032)

SPEEDUP:
Speedup=0: Address not ready prior to the request.

Speedup=1: Address ready 50 nS prior to the request.

WRITE PARITY:
Might be set to YES when the source generates ODD byte parity when writing into memory.

This thumbwheel uses 8 positions ($0-7$), and is used in connection with the interleaveselector thumbwheel.

The least significant bits of the channel address are used to select the bank, and this thumbwheel selects these bits like this:

2-ways interleave:

- Bit 0 of the channel address selects one of two banks.

4-ways interleave:

- Bits 0 and 1 of the channel address select one of four banks.

8-ways interleave:

- Bits 0,1 and 2 of the channel address select one of eight banks.

```
8.22 CPV module (3033)
```


Figure 62. CPU Module (3033)

Norsk Data ND-30.008.3 EN

ALD THUMBWHEEL:

ALD	I 12	LOCK and Standby Power OK	LOCK and Standby Power not OK	UNLOCK and Load
15	0	Start in address 20	Stop 14	1560
Start in address 20	Binary load from 1560	Nothing		
13	20500	Start in address 20	Mass load from 500	Mas load from 1560 load from 500
12	21540	Start in address 20	Mass load from 1540	Mass load from 1540
11	400	Start in address 20	Binary load from 400	Binary load from 400
10	1600	Start in address 20	Binary load from 1600	Binary load from 1600
9		Start in address 20		
8		Start in address 20	Stop	
7	100000	Stop	Nothing	
6	101560	Binary load from 1560	Binary load from 1560	Binary load from 1560
5	120500	Mass load from 500	Mass load from 500	Mass load from 500
4	121540	Mass load from 1540	Mass load from 1540	Mass load from 1540
3	100400	Binary load from 400	Binary load from 400	Binary load from 400
2	101600	Binary load from 1600	Binary load from 1600	Binary load from 1600

Table 29. ALD on the CPU Module (3033)

BAUD RATE:

Switch- setting:	Baud rate:
0	110
1	150
2	300
3	2400
4	1200
5	1800
6	4800
7	9600
8	2400
9	600
10	200
11	134.5
12	75
13	50
14	ext.
15	ext.

Table 30. Baud Rate on the CPU Module (3033)

```
8.23 256 K memory module (3034)
```

Upper-limit
display

- TH2 Memory address range

TH3

- T6:192-256 KW
- T5:128-192 KW
- T4: 64-128 KW

Memory access

- T3: 0-64 KW
- T2: Error Red: Error-detected indicator, cleared by toggling the ENAB/DISAB switch.
- T1: Disable

Red: Error-correction disabled (disabled by switch or program).

Enable/Disable switch

These four yellow LEDs are indicating
access into the different memory
blocks (64 K blocks) of this card.

Figure 63. 256 K Memory Module (3034)

```
If the CPU is a ND-120, you must use the value displayed by the MEMORY SIZE INDICATOR as lower limit on the first memory card.
```

Thumbwheel setting (octal) TH3 TH2 TH1	Upper-limit display (octal)	Memory addr. range in KW lower-upper
$0 \quad 0 \quad 0-3$	020	0-256
$0 \quad 0 \quad 4-7$	024	64-320
$0 \quad 10-3$	030	128-384
$\begin{array}{lll}0 & 1 & 4-7\end{array}$	034	192-448
$0 \quad 2 \quad 0-3$	040	256-512
$\begin{array}{lll}0 & 2 & 4-7\end{array}$	044	320-576
$0 \quad 3 \quad 0-3$	050	384-640
- .	-	-
$i \begin{array}{lcc}i & 0 & 0 \\ 0 & 0\end{array}$	120	1024-1280
$1004-7$	124	1088-1344
$1100-3$	130	1152-1408
- - -	-	.
$\begin{array}{lll}7 & \dot{7} & 4-7\end{array}$	720	6784-7040
7 - 7		6784-7040

Table 31. Memory Address Range on the 256 K Memory Module (3034)

SETTING THE ENABLE/DISABLE SWITCH: Switch in position 0 (DISAB):

- Disables the ERROR CORRECTION .
- Clears the ERROR-DETECTED indicator.

Switch in position 1 (ENAB):

- Enables the ERROR CORRECTION.

```
8.24 64 K memory module (3036)
```


Figure 64. 64 K Memory Module (3036)

MEMORY-ADDRESS-RANGE SETTING
AND UPPER-LIMIT DISPLAY:

```
-NOTE
If the CPU is a ND-120, you must use the value displayed by the MEMORY SIZE INDICATOR as lower limit on the first memory card.
```

$\begin{aligned} & \text { Thumbwheel } \\ & \text { setting } \\ & \text { (octal) } \\ & \text { TH2 TH1 } \end{aligned}$	Upper-Iimit display (octal)	Memory addr. range in KW lower-upper
00	04	0- 64
01	05	16-80
02	06	32-96
-	.	
10	14	128-192
11	15	144-208
-		
$7 \quad 3$	77	944-1008

Table 32. Memory Address Range on the 64 K Memory Module (3036)

SETTING THE ENABLE/DISABLE SWITCH: Switch in position 0 (DISAB):

- Disables the ERROR-CORRECTION,
- Clears the ERROR-DETECTED indicator.

Switch in position 1 (ENAB):

- Enables the ERROR CORRECTION.

```
8.2j 8" disk controller (3038)
```


Figure 65. 8" Disk Controller (3038)
DEVICE-REGISTER ADDRESS RANGE:

Thumbwheel setting	Device-register address range	Ident Code (Octal)	Device name
0	$500-507$	1	Disk system 1
1	$510-517$	5	Disk system 2

Table 33. Device-Register Address Range on the $8^{\prime \prime}$ Disk Controller (3038)

```
8.26 ND-100 bus controller (3039)
```

Short timeout
$-\square$ Timeout selector

- ADOK- Address OK indicates which bank the last master-bus cycle was accessing. It is reset by start of the next master-bus
 memory cycle. Extended device-number switch
- Extended device-number indicator (BUSC 17-32)
$-\sqrt{\mathrm{TH}}$ Interleave selector
-TH Device number selector

Base setting display

Upper-limit display

Lower-limit display

Figure 66. ND-100 Bus Controller (3039)

LIMIT SWITCHES:

DEVICE NUMBERS:

The address area for a bus controller is decided by the setting of lower and upper address limit. The limit-address increments are 64 K units.

LOWER LIMIT: Two hex switches for the setting of lower-memory boundaries.

UPPER LIMIT: Two hex switches for the setting of upper-memory boundaries.

BASE : Two hex switches for setting the base.

There are 32 device numbers allocated for the ND-100 Bus Controller, but the DeviceNumber Thumbwheel has only 16 positions.

To allow for 32 bus controllers, we must use the Extended Device-Number Switch. A unique device number and ident code correspond to each position, in accordance with the table on page 223.

External devicenumber switch	Thumbwhee1 setting	Device number	Ident code
OFF	0	100200-100203	20
OFF	1	100204-100207	21
OFF	2	100210-100213	22
OFF	3	100214-100217	23
OFF	4	100220-100223	24
OFF	5	100224-100227	25
OFF	6	100230-100233	26
OFF	7	100234-100237	27
OFF	8	100240-100243	30
OFF	9	100244-100247	31
OFF	10	100250-100253	32
OFF	11	100254-100257	33
OFF	12	100260-100263	34
OFF	13	100264-100267	35
OFF	14	100270-100273	36
OFF	15	100274-100277	37
ON	0	100300-100303	40
ON	1	100304-100307	41
ON	2	100310-100313	42
ON	3	100314-100317	43
ON	4	100320-100323	44
ON	5	100324-100327	45
ON	6	100330-100333	46
ON	7	100334-100337	47
ON	8	100340-100343	50
ON	9	100344-100347	51
ON	10	100350-100353	52
ON	11	100354-100357	53
ON	12	100360-100363	54
ON	13	100364-100367	55
ON	14	100370-100373	56
ON	15	100374-100377	57

Table 34. External Device Number Switch on the ND-100 BUSC (3039)

The switch settings are octally displayed in three-digit displays. Each switch-setting will be shown in the corresponding display in 64 K -word increments.

The following table gives the correspondence between switch settings and display presentation.

	$\begin{gathered} \text { MOST } \\ 0 \end{gathered}$		2	3	4	5	6	7	8	9	A	B	C	D	E	F
LEAST																
0	000	020	040	060	100	120	140	160	200	220	240	260	300	320	340	360
1	001	021	041	061	101	121	141	161	201	221	241	261	301	321	341	361
2	002	022	042	062	102	122	142	162	202	222	242	262	302	322	342	362
3	003	023	043	063	103	123	143	163	203	223	243	263	303	323	343	363
4	004	024	044	064	104	124	144	164	204	224	244	264	304	324	344	364
5	005	025	045	065	105	125	145	165	205	225	245	265	305	325	345	365
6	006	026	046	066	106	126	146	166	206	226	246	266	306	326	346	366
7	007	027	047	067	107	127	147	167	207	227	247	267	307	327	347	367
8	010	030	050	070	110	130	150	170	210	230	250	270	310	330	350	370
9	011	031	051	071	111	131	151	171	211	231	251	271	311	331	351	371
A	012	032	052	072	112	132	152	172	212	232	252	272	312	332	352	372
B	013	033	053	073	113	133	153	173	213	233	253	273	313	333	353	373
C	014	034	054	074	114	134	154	174	214	234	254	274	314	334	354	374
D	015	035	055	075	115	135	155	175	215	235	255	275	315	335	355	375
E	016	036	056	076	116	136	156	176	216	236	256	276	316	336	356	376
F	017	037	057	077	117	137	157	177	217	237	257	277	317	337	357	377

Table 35. The Limit Displays on the ND-100 Bus Controller (3039)

INTERLEAVE:

Thumbwheel setting	Interleave	Vital	Delay
0	None	Yes	No
1	2-way	Yes	No
2	4-way	Yes	No
3	8-way	Yes	No
4	None	No	No
5	2-way	No	No
6	4-way	No	No
7	8-way	No	No
8	None	Yes	Yes
9	2-way	Yes	Yes
10	4-way	Yes	Yes
11	8-way	Yes	Yes
12	None	No	Yes
13	2-way	No	Yes
14	4-way	No	Yes
15	8-way	No	Yes

Table 36. Interleave on the ND-100 Bus Controller (3039)

VITAL:

DELAY:

If Vital=YES, a locally detected PFI (PowerFail Interrupt) will be sent to the Master ND-100 (the CPU detecting this is a regular power fail interrupt).

If Vital=NO, the PFI will result in a level-13 interrupt which will be sent to the Master ND-100.

If the bus controlled by the bus Controller contains MPM-4 Ports only, the delay is not necessary.

It is only necessary if the bus contains regular DMA-devices.

The timeout selector is used to select two different timeouts:

- short timeout (2 mS)
or
- long timeout (8 mS).

A BUSC controlling a memory bank should have a short timeout.

A BUSC controlling an I / O bus should have a long timeout.

The timeout indicator will be lit if short timeout is selected.

```
8.27j.25" disk control1er (3041)
```

- LED 7 VCO lock
- LED 1 READ
- LED 2 WRITE
- LED 3 PARITY
- LED 4 COMPARE
- LED 5 ACTIVE
- LED 6 ERROR

RED LED, Voltage Control Oscillator OK.

Yellow LED, indicating read transfer.
Yellow LED, indicating write transfer.
Yellow LED, indicating read parity.
Yellow LED, indicating compare transfer.
Yellow LED, indicating START or ACTIVE, set by control word bit 2 (ACTIVATE).
Red LED, indicating different error conditions like timeout, address mismatch etc.
-TH Device number

Figure 67. 5.25" Disk Controller (3041)
DEVICE-REGISTER ADDRESS RANGE:

Thumbwheel setting	Device-register address range	Ident Code (Octal)	Device name
0	$500-507$	1	Disk system 1
1	$510-517$	5	Disk system 2

Table 37. Device-Register Address Range on the 5.25" Disk Controller (3041)

```
8.28 2 MB memory module (3042)
```


Figure 68. 2 MB Memory Module (3042)

LOWER-LIMIT SWITCH SETTING AND UPPER-LIMIT DISPLAY:

```
NOTE
    If the CPU is a ND-120, you must use the
    value displayed by the MEMORY SIZE
    INDICATOR as lower limit on the first
    memory card.
```

Thumbwheel setting (octal) TH2 TH1 TH3			Upper limit display	Memory addr. range in KW lower-upper
0	0	0	100	0- 1024
0	2	0	120	256-1280
0	4	0	140	512-1536
0	6	0	160	768-1792
1	0	0	200	1024-2048
1	2	0	220	1280- 2304
1	4	0	240	1536-2560
1	6	0	260	1792- 2816
2	0	0	300	2048-3072
3	0	0	400	3072- 4096
4	0	0	500	4096-5120
5	0	0	600	5120-6144
6	0	0	700	6144-7168

Table 38. Memory Address Range on the 2 MB Memory Module (3042)

SETTING THE ENABLE/DISABLE SWITCH: Switch in position 0 (DISAB):

- Disables the ERROR-CORRECTION.
- Clears the ERROR-DETECTED indicator.

Switch in position 1 (ENAB):

- Enables the ERROR CORRECTION.
- LED1 WG - write gate, lit when the disk head writes.
- LED2 RG - read gate, lit when the disk head reads.
- LED3 FORM - write format, lit when the controller formats.
- LED4 PAR - read parity, lit when the controller checks parity.
- LED5 COMP - compare transfer, lit when the controller compares data after a read/write.
- LED6 ECC
- ECC operation, lit when the controller performs error-correction calculation.

Unit No.: $3 \quad 210$

Switch for cable-type setting in pos. 7E

Figure 69. SMD Controller (3043)

CABLE TYPE SWITCH-SETTING (POS.7E): The switch-setting concerns B-cables only (B-cables are the cables going directly from the computer to the disk unit).

The daisy-chain cable may be flat or round.
Switch 7E consists of four switches, one for each disk unit (units 0-3).

The switch must be OFF when the B-cable is round, and $O N$ when the $B-c a b l e$ is flat.

- LED3 ERR - Red LED, indicating an exclusive OR of errors
- LED2 CYL - Yellow LED, indicating ON CYLINDER
- LED1 START- Yellow LED, indicating CONTROLLER ACTIVE
-TH Device number:
$0-3$ are not used
4=big disk system 3, dev. no. 540-547, ident. no. 2
5=big disk system 4, dev. no. 550-557, ident. no. 6
6-7 are not used
$8=$ big disk system 1 , dev. no. 1540-1547, ident. no. 17
9=big disk system 2, dev. no. 1550-1557, ident. no. 20 $10-15$ are not used

Figure 70. SMD Data (3044)

```
8.30 ND-110 CPU module (3090/3095)
```

NOTE-L
The ALD and Baud-Rate switches have
changed places compared to the former
ND-100 CPU card.

Device:		Comments:
	Potentiometer	Must not be justified, decides speed of self-test.
$-\mathrm{TH}$	ALD thumbwheel	Same settings as for former ND-100.
$-\mathrm{TH}$	Baud-rate thumbwheel	Same settings as for former ND-100.
-	Green LED	Lit: Self-test is working
\bullet	Red LED	Lit: Self-test is not working
-	Red LED	Lit: Cache is OFF Unlit: Cache is ON
	Cache ON/OFF switch	Position UP: Cache OFF Position DOWN: Cache ON (also indicated by LED)

Figure 71. ND-110 CPU Module (3090/3095)

```
8.31 PIOC interface (3101)
```


Figure 72. PIOC (3101)

THE PIOC-NUMBER SETTING:

PIOC number	Device number (Octal)	Ident code (Octal)
0	$140020-140023$	140002
1	$140024-140027$	140003
2	$140030-140033$	140004
3	$140034-140037$	140005
4	$140040-140043$	140006
5	$140044-140047$	140007
$6-15$	Not used	Not used

Table 39. The Switch Setting on the PIOC Interface (3101)

```
NOTE
If the CPU is a ND-120, the CPU-board contains 2,4 or 6 Mb memory. This must be considered when selecting the address range for the PIOC.
```

Thumbwheel $7 \mathrm{~J} \quad 9 \mathrm{~J}$	$\begin{aligned} & 128 \text {-Kbyte } \\ & \text { bank no. } \end{aligned}$	PIOC address space (bytes)
00	0	0-64K
01	1	$64-128 \mathrm{~K}$
0	2	128-172K
- -	-	- .
$0 \quad 15$	15	960-1024K
10	16	1024-1088K
- -	.	- •

Table 40. Thumbwheel Setting on the PIOC Interface (3101)

The lowest address in PIOC seen from the ND-100 is set/found by using the following formula:

LOWEST ADDRESS: (MS setting*2048K) + (LS setting*128K)

EXAMPLE: MS is set to 3 , LS is set to 4
LOWEST ADDRESS: $\left(3^{*} 2048 \mathrm{~K}\right)+\left(4^{*} 128 \mathrm{~K}\right)=6656 \mathrm{~K}$

THE LED INDICATORS:

LED 3: (Yellow) is lit when a memory cycle is performed in the PIOC memory either by the MC68000, by ND-100, or by internal PIOCDMA transfer.

LED 1: (Red) is lit when the RESET signal is given to the MC68000, and after pushing the ND-100 MCL button.

The LED is NOT lit when MC68000 executes the programs.

LED 2: (Red) is lit when the HALT (stop) is given to MC68000, and after pushing the ND-100 MCL button.

The LED is NOT lit when the MC68000 executes programs.

Norsk Data ND-30.008.3 EN

```
8.32 Ethernet master (3102)
```


Figure 73. Ethernet Master (3102)

> NOTE--
> If the CPU is a ND-120, the CPU-board contains 2,4 or 6 Mb memory. This must be considered when selecting the address range for the ETHERNET MASTER.

The two hexadecimal thumbwheels in position 7 J (most significant) and 9 J (least significant) select which bank number the ETHERNET MASTER occupies in the ND-100 address range. Each step on the thumbwheel has the value of 128 Kbytes (64 Kwords).

$\begin{array}{\|l\|l\|} \hline \text { Thumbwheel } \\ 7 \mathrm{~J} & 9 \mathrm{~J} \end{array}$	$\begin{aligned} & 128 \text {-Kbyte } \\ & \text { bank no. } \end{aligned}$	ADDRESS space (bytes)	Physical page no. (octal)
0	0	0-128K	0-77
$0 \quad 1$	1	128-256K	100-177
$0 \quad 2$	2	256-384K	200-277
03	3	384-512K	300-377
$0 \quad 4$	4	512-640K	400-477
$0 \quad 5$	5	640-768K	500-577
06	6	768-896K	600-677
$0 \quad 7$	7	896-1024K	700-777
8	8	1024-1152K	1000-1077
$0 \quad 9$	9	1152-1280K	1100-1177
10	10	1280-1408K	1200-1277
- .	-	- .	- .
\cdots	-	-	
15			
15	15	1920-2048K	1700-1777
0	16	2048-2176K	2000-2077
- -		- .	- -
\cdots.	.	$\cdots \quad$.	\cdots

Table 41. Thumbwheel Setting on the Ethernet Master (3102)

```
8.33 Menory management ii (3104)
```


Figure 74. Memory Management II (3104)

EXTENDED ADDRESS SELECTION:
These thumbwheels (TH1 and TH3) have only two valid positions:

> 0 - normal address range
> 1 - extended address range

Extended address means terminals 65 to 128. These terminals are reached only by using the ND-100 instruction, IOXT.

TERMINAL GROUP SELECTION (TH2, TH4): Normal address range selected (terminals 1-64).

Switch- setting:	Terminals:	Device number:	Group:
0	$1-4$	$300-337$	0
1	$5-8$	$340-377$	1
2	$9-12$	$1300-1337$	2
3	$13-16$	$1340-1377$	3
4	$33-36$	$640-677$	4
5	$37-40$	$1100-1137$	5
6	$41-44$	$1140-1177$	6
7	$45-48$	$1400-1437$	7
8	$49-52$	$1500-1537$	8
9	$53-56$	$1640-1677$	9
10	$57-60$	$1700-1737$	10
11	$61-64$	$1740-1777$	11
12	$17-20$	$200-237$	12
13	$21-24$	$240-177$	13
14	$25-28$	$1200-1237$	14
15	$29-32$	$1240-1277$	15

Table 42. Normal Address Range Setting on the 8-Telex Interface (3105)

Extended address range selected (terminals 65-128).

Switch- Setting:	Terminals	Dev. no:	Group
0	$65-68$	$140400-140437$	0
1	$69-72$	$140440-140477$	1
2	$73-76$	$14000-140537$	2
3	$77-80$	$140540-140577$	3
4	$81-84$	$140600-140637$	4
5	$85-88$	$140640-140677$	5
6	$89-92$	$14000-140737$	6
7	$93-96$	$140740-140777$	7
8	$97-100$	$141000-141037$	8
9	$101-104$	$141040-141077$	9
10	$105-108$	$141100-141137$	10
11	$109-112$	$141140-141177$	11
12	$113-116$	$141200-141237$	12
13	$117-120$	$141240-141277$	13
14	$121-124$	$141300-141337$	14
15	$125-128$	$141340-141377$	15

Table 43. Extended Address Range on the 8-Telex Interface (3105)

Switch- setting:	Baud rate:
0	110
1	150
2	300
3	2400
4	1200
5	1800
6	4800
7	9600
8	2400
9	600
10	200
11	134.5
12	75
13	50
14	100
15	100

Table 44. Baud Rate Selection on the 8-Telex Interface (3105)

```
8.35 Floppy and streaner interface (3106)
```


Figure 76. Floppy and Streamer Interface (3106)

ERROR CODE DISPLAY:

Display:	Meaning:
000	OK
001-004	Not used
005	CRC error
006	Sector not found
007	Track not found
010	Format not found
011	Diskette defect (impossible to format)
012	Format mismatch
013	Illegal format specified
014	Single-sided diskette inserted
015	Double-sided diskette inserted
016	Write-protected diskette
017	Deleted record
020	Drive not ready
022	Lost data (over or underrun)
023	Track zero not detected
024	VCO (Voltage-Controlled Oscillator) frequence out of range
026	Microprogram out of range Timeout
027	Undefined error
030	Track out of range
031	Not used
032 033	Compare error (during compare of data) Internal DMA errors
034-037	Not used
040	ND-Bus-error command fetch
041	ND-100 Bus-error status transfer
043	N-100 Bus-error data transfer
044	Word count not zero
045	Illegal completion (count. transfer)
046	Address register error
047	Not used
050	No bootstrap found on diskette Error during
$\begin{gathered} 051 \\ 052=057 \end{gathered}$	Wrong bootstrap (too old flo-mon version) autoload Not used
060	Streamer-handshake error
061	Streamer-status transfer error
062	Bad cartridge
063	No cartridge installed
064	End of tape, cartridge full Streamer errors
065	Streamer-drive error
066	Unidentified exception
067	Illegal command to streamer
070	PROM-checksum error
071	RAM error
072	CTC error
073	DMACTRL error Self-test error
075	Floppy-controller error
076 077	Streamer-Data register error
077	ND-100 register error

Table 45. Error Code Display on the Floppy Streamer Interface (3106)

```
8.36 8-terminal interface (3107)
```


Figure 77. 8-Terminal Interface (3107)

EXTENDED ADDRESS SELECTION:
These thumbwheels (TH 1 and TH 3) have only two valid positions:

0 - normal address range
1 - extended address range
Extended address means terminals 65 to 128. These terminals are reached only by using the ND-100 instruction, IOXT.

TERMINAL GROUP SELECTION (TH2, TH4): Normal address range selected (terminals 1-64).

Switch- setting:	Terminals:	Device register address range:	Group:
0	$1-4$	$300-337$	0
1	$5-8$	$340-377$	1
2	$9-12$	$1300-1337$	2
3	$13-16$	$1340-1377$	3
4	$33-36$	$640-677$	4
5	$37-40$	$1100-1137$	5
6	$41-44$	$1140-1177$	6
7	$45-48$	$1400-1437$	7
8	$49-52$	$1500-1537$	8
9	$53-56$	$1640-1677$	9
10	$57-60$	$1700-1737$	10
11	$61-64$	$1740-1777$	11
12	$17-20$	$200-237$	12
13	$21-24$	$240-277$	13
14	$25-28$	$1200-1237$	14
15	$29-32$	$1240-1277$	15

Table 46. Normal Address Range on the 8- Terminal Interface (3107)

Extended address range selected (terminals 65-128) .

Switch- setting:	Terminals:	Device register address range:	Group
0	$65-68$	$140400-140437$	0
1	$69-72$	$140440-140477$	1
2	$73-76$	$140500-140537$	2
3	$77-80$	$140540-140577$	3
4	$81-84$	$140600-140637$	4
5	$85-88$	$140640-140677$	5
6	$89-92$	$140700-140737$	6
7	$93-96$	$140740-140777$	7
8	$97-100$	$141000-141037$	8
9	$101-104$	$141040-141077$	9
10	$105-108$	$141100-141137$	10
11	$109-112$	$141140-141177$	11
12	$113-116$	$141200-141237$	12
13	$117-120$	$141240-141277$	13
14	$121-124$	$141300-141337$	14
15	$125-128$	$141340-141377$	15

Table 47. Extended Address Range on the 8- Terminal Interface (3107)

BAUD-RATE SELECTION:

Switch- setting:	Baud rate:
0	110
1	150
2	300
3	2400
4	1200
5	1800
6	4800
7	9600
8	2400
9	600
10	200
11	134.5
12	75
13	50
14	100
15	100

Table 48. Baud Rate on the 8-Terminal Interface (3107)

The new PIOC print, number 3108, is called PIOC-EXPANDED. The added function is X21 Clear Detection in hardware for lines 0 and 1.

The print is produced in two versions:

- PIOC/64 (64 Kbit memory chips)
- PIOC/256 (256 Kbit memory chips)

Figure 78. Expanded PIOC (3108)

THE PIOC-NUMBER SETTING (12J):

PIOC number	Device number (Octal)	Ident code (Octal)
0	140020	140002
1	140024	140003
2	140030	140004
3	140034	140005
4	140040	140006
5	140044	140007
$6-15$	Not used	Not used

Table 49. Switch Setting on the Expanded PIOC (3108)

BANK NUMBER SELECTION ON PIOC/64 (9J, 7J):
The bank number is found by using the formula:

BANK NUMBER= $(M S$ setting*16) + LS setting
EXAMPLE: MS is set to 3, LS is set to 4 BANK $\operatorname{MUMBER}=\left(3^{*} 16\right)+4=52$

BANK NUMBER SELECTION ON PIOC/256: On PIOC/256, the thumbwheel in position 7 J is used to select megaword number as on the PIOC/64. The lower two bits of the thumbwheel in position 9 J are used differently from the PIOC/64.

When the thumbwheel in position 9 J is set to an odd number, only the lower half of the PIOC/256's local RAM can be reached from the ND-100 CPU or from the DMA devices. The upper 256 K bytes in PIOC/256 will be private. The lowest bank number in PIOC/256 seen from the $N D-100$ bus is a multiple of two.

When the thumbwheel (9J) is set to an even number, the lower two bank-number bits from the ND-100 backplane are ignored. This means that the lowest bank-number in PIOC/256 is a multiple of four.

Least-sign. thumbwhee1 setting (9J)	K words	ND-100 hex address	ND-100 octal address
0	$0-256$	$0-3 F F F F$	$0-777777$
2	$0-256$	$0-3 F F F F$	$0-777777$
4	$256-512$	$40000-7 \mathrm{FFFF}$	$1000000-1777777$
6	$256-512$	$40000-7 \mathrm{FFFF}$	$1000000-1777777$
8	$512-768$	$80000-\mathrm{BFFFF}$	$2000000-2777777$
10	$512-768$	$80000-\mathrm{BFFFF}$	$2000000-2777777$
12	$768-1024$	C0000-FFFFF	$3000000-3777777$
14	$768-1024$	C0000-FFFFF	$3000000-3777777$
1	$0-128$	$0-1 F F F F$	
3	$128-256$	$20000-3 F F F F$	$400000-7777777$
5	$256-384$	$40000-5 F F F F$	$1000000-1377777$
7	$384-512$	$60000-7 F F F F$	$1400000-1777777$
9	$512-640$	$80000-9 F F F F$	$2000000-2377777$
11	$640-768$	A0000-BFFFF	$2400000-2777777$
13	$768-896$	C0000-DFFFF	$3000000-3377777$
15	$896-1024$	E0000-FFFFF	$3400000-3777777$

Table 50. Bank-Number Selection on the Expanded PIOC Interface (3108)

LOWEST ADDRESS SELECTION:
The lowest address in PIOC seen from the ND-100 is set/found by using the following formula:

LOWEST ADDRESS: (MS setting*2048K) + (LS setting* 128 K)

EXAMPLE: MS is set to 3 , LS is set to 4
LOWEST ADDRESS: $\left(83^{*} 2048 \mathrm{~K}\right)+\left(4^{*} 128 \mathrm{~K}\right)=6656 \mathrm{~K}$

LED 3: (Yellow) is lit when a memory cycle is performed in the PIOC memory either by the MC68000, by ND-100 or by internal PIOC-DMA transfer.

LED 1: (Red) is lit when the RESET signal is given to the MC68000, and after pushing the ND-100 MCL button.

The LED is not lit when MC68000 executes the programs.

LED 2: (Red) is lit when the HALT (stop) is given to MC68000, and after pushing the ND-100 MCL button.

The LED is not lit when the MC68000 executes programs.

```
8.38 8-terminal interface with buffer (3111)
```


Figure 79. 8-Terminal Interface with Buffer (3111)

EXTENDED ADDRESS SELECTION:

These thumbwheels (TH1 and TH3) have only two valid positions:

0 - normal address range
1 - extended address range
Extended address means terminals 65 to 128. These terminals are reached only by using the ND-100 instruction, IOXT.

TERMINAL GROUP SELECTION (TH2,TH4):
Normal address range selected, TH1 and TH3 is set to 0 (terminals 1-64).

TH1/TH3 setting $:$	TH2/TH4 setting:	Terminals:	Dev. no.:	Group:
0	0	$1-4$	$300-337$	0
0	1	$5-8$	$340-377$	1
0	2	$9-12$	$1300-1337$	2
0	3	$13-16$	$1340-1377$	3
0	4	$33-36$	$640-677$	4
0	5	$37-40$	$1100-1137$	5
0	6	$41-44$	$1140-1177$	6
0	7	$45-48$	$1400-1437$	7
0	8	$49-52$	$1500-1537$	8
0	9	$53-56$	$1640-1677$	9
0	10	$57-60$	$1700-1737$	10
0	11	$61-64$	$1740-1777$	11
0	12	$17-20$	$200-237$	12
0	13	$21-24$	$240-277$	13
0	14	$25-28$	$1200-1237$	14
0	15	$29-32$	$1240-1277$	15

Table 51. Normal Address Range on the 8-terminal Interface with buffer (3111)
Extended address range selected, TH1 and TH3 is set to 1 (terminals 65-128).

TH1/TH3 setting:	TH2/TH4 setting $:$	Terminals:	Dev. no.:	Group
1	0	$65-68$	$140400-140437$	0
1	1	$69-72$	$140440-140477$	1
1	2	$73-76$	$140500-140537$	2
1	3	$77-80$	$140540-140577$	3
1	4	$81-84$	$140600-140637$	4
1	5	$85-88$	$140640-140677$	5
1	6	$89-92$	$140700-140737$	6
1	7	$93-96$	$140740-140777$	7
1	8	$97-100$	$141000-141037$	8
1	9	$101-104$	$141040-141077$	9
1	10	$105-108$	$141100-141137$	10
1	11	$109-112$	$141140-141177$	11
1	12	$113-116$	$141200-141237$	12
1	13	$117-120$	$141240-141277$	13
1	14	$121-124$	$141300-141337$	14
1	15	$125-128$	$141340-141377$	15

Table 52. Extended Address Range on the 8-terminal Interface with buffer (3111)

BAUD-RATE SELECTION (TH5, TH6):

Switch- setting:	Baud rate:
0	110
1	150
2	300
3	2400
4	1200
5	1800
6	4800
7	9600
8	2400
9	600
10	200
11	134.5
12	
13	75
14	100
15	19200

Table 53. Baud Rate on the 8-Terminal Interface with Buffer (3111)

CURRENT LOOP/RS232 SELECTION:
There are eight switches for the selection of current loop or RS232, one for each terminal. Each terminal has two positions:

0 - current loop
1 - RS232-C

```
8.39 Plotter - printer DMA interface (3114)
```


Figure 80. Plotter - Printer DMA Interface (3114)

PCB-FUNCTION SELECTION (13A):

Switch:				Function:
4	3	2	1	
On	X	X	On	Versatec, A-connector, TTL
On X	X	Off	Printer, A-connector, TTL	
Off X	X	On	Versatec, B-connector, V80	

Table 54. PCBFunction Selector on the Printer/Plotter Interface (3114)

DEVICE-NUMBER SELECTION:

Thumbwheel setting	Device-reg. addr. range (octal)	Ident code (octal)	Device name
0	$142170-142177$	140230	Printer/plotter no.1
1	$142200-142207$	140231	Printer/plotter no.2
2	$142210-142217$	140232	Printer/plotter no.3
3	$142220-142227$	140233	Printer/plotter no.4 (old)
4	$600-607$	4	Printer/plotter no.1 (old)
5	$1600-1607$	14	Printer/plotter no.2 (old)
$6-15$	Not used		

Table 55. Device Number Selection on the 3114 Card

```
8.40 ND-120/CX CPU board
```


Figure 81. ND-120/CX CPU

CACHE ON: Normal position= down.
With this switch in its normal position (down), cache memory is enabled. Moving it up will illuminate LED1 and disable the cache.

SW2

SW3

SW4

MEMORY OFF: Normal position= down.
With this switch in the down position, the on-board memory is enabled and starts from address 0 .

Should this switch be moved upwards, any onboard memory will be turned off. In this case, all system memory must be on the ND100 Bus and the 3-digit memory size indicator (see below) will read "000".

MASTER CLEAR: Normal position= central.
This switch may be depressed to give a hardware master clear to the CPU

PARITY DISABLE: Normal position= down.;
This switch allows parity checking of onboard memory to be disabled. In the down position, parity checking is enabled; in the up position, parity checking is disabled, indicated by LED5 being illuminated.

SW4 may also be used to clear a latched parity error indication on LED4, by toggling it from down to up and back to down again.

TH1 ALD select

ALD	I 12	LOCK and Standby Power OK	LOCK and Standby Power not OK	Unlock and Load
15	0	Start in address 20	Stop	Nothing
14	1560	Start in address 20	Binary load from 1560	Binary load from 1560
13	20500	Start in address 20	Mass load from 500	Mass load from 500
12	21540	Start in address 20	Mass load from 1540	Mass load from 1540
11	400	Start in address 20	Binary load from 400	Binary load from 400
10	1600	Start in address 20	Binary load from 1600	Binary load from 1600
9		Start in address 20		
8	100000	Start in address 20	Stop	
7	101560	Binary load from 1560	Stop	
6	120500	Mass load from 500	Mass load from 500	Nothing
5	12050	Mass load from 500		
4	121540	Mass load from 1540	Mass load from 1540	Mass load from 1540
3	100400	Binary load from 400	Binary load from 400	Binary load from 400
2	101600	Binary load from 1600	Binary load from 1600	Binary load from 1600

Table 56. ALD Switch Settings on ND-120/CX

TH2 Baud Rate select

Switch position	Baud rate	Switch position	Baud rate
0	110	8	2400
1	150	9	600
2	300	10	200
3	2400	11	134.5
4	1200	12	75
5	1800	13	50
6	4800	14	extern
7	9600	15	extern

Table 57. Baud Rate Switch Settings

TRACE DATA SELECT: Normal= No link.

This is a three-way strap which selects any one of three sources for the data bus gated on to the B connector (for the tracer).

The straps posts are arranged as shown below:
-(18)
LBD
(17) $\cdot C D \quad(1)$

IDB
(16)

Using a standard 0.1" jumper, one of these straps can be connected to give the required option:

Link Enabled to B Connector data bus

IDB Internal Data Bus

CD Cache Data Bus

LBD Local Bus Data for multiplexed address/data to ND-100 bus and local memory

STR2-STR9
STR 23456789
: : : : : : :

Figure 82. Hardware Configuration (ND-120/CX)

In the following tables,

- = STRAP
$0=$ NO STRAP

PRINT NO: STR 3 4:

- $0=3202$ (ND-120)

Other combinations of straps $3 \&$ 4 are reserved.

ECO LEVEL:

Table 58. ECO Level Strap Field

The Print No. and ECO Level can be read into the A register by the VERSN instruction:

Figure 83. Format of the A-Register after a VERSN Instruction

CGA Test Mux: Normal= No straps
. .139
.. 144 STR
. .153
There are a number of nodes within the CGA gate array which are brought out to test points on the PCB, to allow monitoring of events internal to the gate array. Three jumpers, STR13, STR14 and STR15 determine the signals which will appear on test points TP2 - TP6 according to the following table (- = link IN, blank = no link):

STR				TP			
15	14	13	2	3	4	5	6
			0	TVEC3	TVEC2	TVEC1	TVEC0
		\bullet	DEEP	SC6	SC5	SC4	SC3
	\bullet		RESTR	CFETCH	OOD	DZD	LCZ-
	\bullet	\bullet	1	T-	P-	COND	UP-
\bullet			CRY	SGR	F15	ZF	OVF
\bullet		\bullet	1	XFETCH-	WP-	PTM	MI
\bullet	\bullet		DSTOP-	WRITE-	CBRK-	IND-	VACC-
\bullet	\bullet	\bullet	1	VEX	LDIRV	CSMREQ	1

Note: Signals suffixed with a "-" are active low, following the convention used on ND-120 logic diagrams

Table 59. Jumper Settings for Internal Test Points

Second Crystal Select: Normal = No strap
Insertion of a link in this field causes the main CPU clock frequency to be based on the crystal oscillator inserted in PCB position X1, rather than the normal X4. Console baud rates are not affected by this strap as they are determined by the crystal oscillator at X4 which must always be 39.3216 MHz

On-Board Indicators

LED1	Cache Off indicator (Red)
	Used in conjunction with SW1. When lit, this indicates that cache is switched off.
LED2	Self-Test Fail indicator (Red)
	If this indicator remains on after a master clear or power up, it shows that self-test has failed and that the CPU board is in need of attention.
LED3	Self-Test passed indicator (Green)
	This indicator should illuminate on completion of the self-test following a master clear or power-up. If not, the CPU board is in need of attention.
LED4	Parity Error (Red)
	As on a normal ND-100 memory card, this LED will illuminate whenever a parity error is flagged by, in this case, the on-board memory. Once lit, the LED will remain lit until extinguished under software control or by toggling the parity disable switch SW4.
LED5	Parity Disable (Red)
	This LED has a similar function to that on a normal ND-100 memory card in that it shows whether or not on-board parity checking is enabled. When lit, it indicates that on-board parity checking is disabled. Operation is controlled via SW4 or by software.
LED6	CPU Grant Indicator (Green)
	This LED flashes whenever the CPU gains access to the on-board memory.
LED7	BUS Grant Indicator (Yellow)
	This LED flashes whenever a device on the ND100 Bus gains access to the on-board memory.

Norsk Data ND-30.008.3 EN

Memory Size Indicator
This is a bank of three 7-segment LED displays.

Its 3-digit indicator shows the thumbwheel setting that should be used on the next memory card on the ND-100 Bus, according to the following table:

Amount of on-board memory	Indicator reading
memory off (SW2)	000
2M Bytes	100
4M Bytes	200
6M Bytes	300

Table 60. Memory Size Indicator

Test points

TP2 - TP6

INTRQ from the CGA gate array.
The signals present on these test points vary according to the settings on STR13, STR14 and STR15. See the description on page 261.

This is the status word returned by @DEVICEFUNCTION <peripheral file name> FUNCTIONS: READ-STATUS FUNCTIONS: READ-LAST-STATUS and by MAGTP (MON 144) function codes 20 and 24. The specified condition is true if the bit is set in the status word.

CONTENTS:
Status word for Tandberg, Pertec, STC magnetic tape units 266
Status word for Hewlett-Packard magnetic tape units 267
Status word for Versatec line printer/plotter 268
Status word for old (PIO) floppy disk 268
Status word for new (DMA) floppy disk 269
Status word for ECC disk controllers 270
Status word for big disks 33/66 MB 270
Status word for small disk 10 MB 271
Status word for 45 MB Micropolis and 21 MB Finch disks 271

```
Status word for Tandberg, Pertec and STC magnetic tape units
bit 0: tape on line
    1: write enable ring present
    2: tape standing on load point
    3: CRC error/fatal error
    4: set if any of bits 5, 6, 7, 8, 9, 11 or 12 are set
    5: control or modus word error; trying to write on protected
        tape, trying to reverse tape at load point, tape unit not
        on-line etc.; action is inhibited
    6: bad data block; an error is detected
    7: end of file is detected
    8: the search character is detected
    9: end of tape is detected; resetting this bit depends on the
        model. Tandberg, STC: the bit remains set if carrying out a
        function after EOT Pertec: the bit is cleared if carrying out
        a function after EOT
    10: word counter is not zero
    11: DMA error
    12: overflow (in read)
    13: tape busy or formatter busy
    14: LRC error/software error
    15: interrupt when formatter is ready
```

Status word for Hewlett-Packard magnetic tape units
bit 0: ready interrupt enabled (cleared by the interrupt)
1: error interrupt enabled (cleared by the interrupt)
2: device active
3: device ready for transfer
4: set if any of bits $6,9,10,11$ or 12 are set or if a reverse command is given with tape at load point
5: write enable ring present
6: LRC error
7: EOF detected
8: load point (the unit remains in this state also after the first forward command after load point is detected)

9: EOT detected
10: parity error
11: DMA error
12: overflow in read
13: density select: $1=800 \mathrm{BPI}$
14: magnetic tape unit ready (selected, online and not rewinding)
15: bit 15 is loaded by the previous control word.

```
Status word for Versatec line printer/plotter
bit 0: ready for transfer, interrupt enabled
    1: error interrupt enabled
    2: device active
    3: device ready for transfer
    4: set if bit 6 or 7 is set
    5: not used
    6: no paper
    7: plotter not on-line
    8: not used
    9: not used
    10: not used
    11: not used
    12: not used
    13: plotter ready
    14: not used
    15: not used
Status word for old (PIO) floppy disk
bit 0: interrupt enabled
    1: not used
    2: device busy
    3: device ready for transfer
    4: set if any of bits 5, 8, 11, 12 or 14 are set
    5: deleted record detected
    6: read/write completed
    7: seek completed
    8: drive not ready
    9: write protected
    10: not used
    11: address mismatch
    12: CRC error
    13: not used
    14: data overrun
    15: must be 0 for this type of floppy disk
```

```
Status word for new (DMA) floppy disk
bit 0: RFT-interrupt enabled
    1: not used
    2: device active
    3: device ready for transfer
    4: or of errors
    5: deleted record
    6: retry on controller
    7:
    8: not used
    9-14: error code from controller (see below)
    15: should be 1 for this type of floppy disk
```

Status word 1, bit 9-14 (error codes):
oct.
no. description
00 ok
05 CRC-error
06 sector not found
07 track not found
10 format not found
11 diskette defect (impossible to format)
12 format mismatch
13 illegal format
14 single-sided diskette inserted
15 double-sided diskette inserted
16 write-protected diskette
17 deleted record
20 drive not ready
21 . controller busy on start
22 lost data (over- or underrun)
23 track zero not detected
$24 \quad V C O-f r e q u e n c e ~ o u t ~ o f ~ r a n g e ~$
25 microprogram out of range
26 timeout
27 undefined error
30 track out of range
31 RAM error
32 compare error
33 internal DMA-error
40 ND-100 bus error during command fetch
41 ND-100 bus error during status transfer
42 ND-100 bus error during data transfer
43 illegal command
44 wordcount not zero
50 no bootstrap found on diskette
51 wrong bootstrap (too old version of floppy-monitor)
70 prom checksum error (selftest error)
71 RAM error (selftest error)
72 CTC error (selftest error)
73 DMActrl error
DMActrl error (selftest error)
VCO error (selftest error)
floppy control error (selftest error)

```
Status word for ECC disk controllers
bit 0: controller not active, interrupt enabled
    1: error interrupt enabled
    2: controller active
    3: controller finished with a device operation
    4: inclusive or of errors (Bit 5 - 13)
    5: illegal load, that is, load while status bit 2 is true, or
        load of block address while the unit is not on cylinder
    6: time out
    7: hardware error (disk fault + missing read clocks + missing
        servo clocks)
        address mismatch
        parity error
    10: compare error
    11: DMA channel error
    12: abnormal completion
    13: disk unit not ready
    14: on cylinder
    15: extended cylinder address
Status word for big disks 33/66 MB
bit 0: controller not active
    1: error interrupt enabled
    2: controller active
    3: finished with device operation
    4: inclusive OR of errors (5-13)
    5: write protect violation
    6: time out
    7: hardware error
    8: address mismatch
    9: parity error
    10: compare error
    11: DMA channel error
    12: abnormal completion
    13: disk unit not ready
    14: on cylinder
    15: extended cylinder-address
```

```
Status word for small disk 10 MB
bit 0: ready for transfer, interrupt enabled
    1: error interrupt enabled
    2: device active
    3: device ready for transfer
    4: inclusive OR of errors (bit 5-11)
    5: write protect violation
    6: time out
    7: hardware error
    8: address mismatch
    9: parity error
    10: compare error
    11: DMA channel error
    12: transfer complete
    13: transfer on
    14: on cylinder
    15: loaded by previous control-word
Status word for 45 MB Micropolis and 21 MB Finch disks
bit 0: controller not active interrupt enabled
    1: error interrupt enabled
    2: controller active
    3: controller finished with a device operation
    4: inclusive or of errors (bits 5-11)
    5: Finch: O (not used),
        micropolis: trying to read or write while performing rtz.
    6: timeout
    7: disk fault or missing clocks
    8: address mismatch
    9: CRC error
    10: compare error
    11: FIFO over/under-run or DMA channel error
    12: Finch: Serious error (or of status bits 6, 7 and 8).
        Micropolis: Track 0.
    13: Finch: Read or write gate active. Micropolis: Always 1.
    14: on cylinder
    15: 0, used to distinguish from 10 Mb controller
```

@SINTRAN-SERVICE 52
ACTL 40
Adjustment of Power Supply 143
B connector strap field selects signals for 258
BAD MEMORY PAGE 24
Baud rate switch 257
B-cables 230
BEX PARITY ERROR 31
Cache-on switch 256
Changing the power control panel 151
configuration strap field 258
CORRECTED MEMORY ERROR 31
CRC 109
CTTYP 52
DEVICE ERROR 27
Disconnecting power cables 137
DISK TRANSFER ERROR 26
ETHERNET controllers 111
FALSE BEX INTERRUPT 31
FALSE INTERRUPT 26
FALSE MPM4 INTERRUPT 31
Fine Adjustment of Standby Power 147
hang situation 34
IIC 40
ILLEGAL INSTRUCTION 28
ILLEGAL PARAMETER IN UPDAT 24
IOX ERROR 28
IPMODE 115
Loosening the Power Control Panel 139
Master-clear switch 256
MEMORY OUT OF RANGE 30
MEMORY PARITY 29
Memory-on switch 256
MEMTOF 37
Micro program OPerators Communication (MOPC) 80
MPM-4 Card Crate 5
MPM4 MEMORY ERROR 32
MPM4 MEMORY OUT OF RANGE 32
MPM 4 PARITY ERROR 33
MPM4 POWER-FAIL INTERRUPT 32
MPM4 WRITE PARITY ERROR 33
NON FATAL ERRORS 19
On-board memory 256
OUTSIDE SEGMENT BOUNDS 25
PAGE FAULT FOR NON DEMAND 25
Parity-disable switch 256
PEA 29, 40
PERMIT VIOLATION 27
PES 29, 40
PIOC 111
POWER FAILURE 30
PPMODE 115
Read Only Memory (ROM) 80
REMOTE POWER-FAIL INTERRUPT 31
Removing a Power Supply from the Frame 141
Replacing the standby battery 148
Reset switch 256
RING VIOLATION 28
run time messages 21
stop situation 34
Strap field
hardware configuration 258
STR1 STR17STR2-STR9258
Switch
baud rate selector 257
cache on 256
Master clear 256
memory on 256
parity disable 256
test program monitor commands 54
Test programs for ND-100 54
The MPM-5 Card Crate 6
transfer error 20
TSPEED 52
\bigcirc
Γ

Scanned by Jonny Oddene for Sintran Data © 2011

[^0]: All tests should be run in maintenance mode first. While not in maintenance mode, the tests must be run with a dummy plug installed in the plug panel.

