
Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011Smnned_b¥.lonn_y_0ddenp for Sinimn Data ((3 9011

Scanned by Jonny Oddene for Sintran Data © 2011

DOMINO andNUCLEUS
Soflware Guide

ND—820026.I EN

8nnnnnd bv JonnyMW.— ___

Scanned by Jonny Oddene for Sintran Data © 2011

77w information in this manual is subject to change without notice.
Norsk Data A.S assumes no responsibilityfor any errors that may appear in this manual) or
fbr the use or reliability ofits software on equipment that is notfitmished or supported by
Norsk Data AS.

Copyright © 1988 by Norsk Data AS Version I September 1988

Send all documentation requests to:
Nors/e Data AS
Graphic Centre
P. O. Box 25 — Bogerud
N—0621 Oslo 6
NOR WA Y

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

(iii)

Preface

The manual

The reader

The Products

Prerequisite
knowledge

This manual describes DOMINO and NUCLEUS. Most of
the modules are documented in separate chapters.

This manual is intended for maintenance personell
and system developers.

The OS-kit consists of several software modules to
be used for running and developing system software
on the DOMINO IO-controllers. DOMINO is only
available on ND-SOOO computers with MF-Bus memory
(former MPM-5), whereas NUCLEUS is also available
on ND-BOO-ll with OCTOBUS. The DOMINO controllers
are based on the Motorola MC-68020
microprocessors.

The OS-kit consists of:

o DOMINOS

o DOMINO Monitor and a "gateway" to OCTOBUS
(BOPCOM Server).

0 DOMINO Debugger (slightly modified Symbolic
Debugger)

o DOMINO OPCOM (firmware)

0 NUCLEUS

o NUCLEUS Monitor

The user should be familiar with general program
development on ND computers. It is not necessary
to know much about the Motorola assembly language
as most of the programs can be written in PLANC.

Scanned bv Jonnv qenp for Sin’rran Data (<3 9n11

Scanned by Jonny Oddene for Sintran Data © 2011

(iV)

The following objects are important for program
development under DOMINO/NUCLEUS:

o SINTRAN RT-programs and ND-5000 applications

0 PLANC programming language

0 ND-SOO Linkage Loader

Related MPM—5 Technical Description ND—810004
manuals DOMINO Standard Hardware ND—814001

SINTRAN III Commands Reference Manual ND—860128
SINTRAN III Real Time Guide ND-860l33
SINTRAN III Monitor Calls Guide ND-860228
PLANC Reference Manual ND-860117
Symbolic Debugger User Guide ND-860158
LED User Guide ND—860266
ND-500 Loader/Monitor ND-860136
Linkage Loader User Guide & Reference ND-860182

Manuals for the MC68xxx microprocessors
(published by Motorola Inc)

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Table of contents

l\>

NNNN

NNNNNN

NNNN

\DOCD

\l\l\l\1

O'\O\O'\U'IJ:UO

NNN

NNNH

.10

LIONH

Introduction 1

DOMINU Operation 9

DOMINO Overview 9
Configuration . . 11
Automatic configuration 11
Manual configuration 15

Image files . . 16
Use of LEDs on DOMINO controllers 17
DOMINO selftests . 19
DOMINO reset. Algorithm 20
PROMAN SERVER. Algorithm 21
Booting of DOMINO. Algorithm 22

Event reporting and event log 23
How to operate the event log file 25
How to investigate the Event Log 26
How to use the event log . 27

PROMAN Service port 28
PMA--Monitor 28
Commands in PMA——Monitor 29

LIST-CONFIGURATION 29
REBOOT-DOMINO 32
RECOVER-DOMINO 32
TERMINATE-DOMINO 33
LOAD-DOMINO 33

Interface to configuration data and boot functions 34
LIST CONFIGURATION 34
BootStatus 36
REBOOT 36
RECOVER 37
TERMINATE 38

.__________SQaflnflQJnLJQnDMJQQQEDQJQLSHflfiflILEflaID2011

Scanned by Jonny Oddene for Sintran Data © 2011

UJUJUJUJUJWUJUJ

WWWUOUOWUJUJUU

mmwwwwwwwwwww

WWWWWWWW

W

Dkt-D'JZ‘EJZ'J:

UJUOUJUOWUJUJUJUJ

\lmU'I-DUJNH

R>RJR:R:R:R)R:R:nnm)naioro

H
H
H
H
H
H
H
H

\JOHfl-PUJKJH

{DODNONU'l-z'wmld

03‘10\w1J:Curo;A

(vi)

DOMINO Monitor

Miscellaneous commands
EXIT
HELP
SET-ABORT-BATCH-ON-ERROR
CC . .
COMPUTE . . .
NEW-USER-CONTEXT
OUTPUT-FILE

Communication commands
OPEN-PATH
CHANGE—PATH . .
TEST-COMMUNICATION
USE-MAILBOX . . .
LIST—MAILBOX-PARAMETERS
TRANSPARENT-MODE
SET—BREAK-CHARACTER
LIST-BREAK-CHARACTER
SET-DOPCOM-PARAMETERS
LIST-DOPCOM—PARAMETERS
SET-MICE-PARAMETERS
LIST-MICE—PARAMETERS

Execution commands
SOFT—RESET
HARD—RESET
STOP—TARGET
PLACE-DOMAIN
DOWN—LOAD
GO
RUN
ATTACH-DOMAIN

Macro commands
DEFINE-MACRO
EXECUTE-MACRO
RESUME-MACRO
ERASE—MACRO
DUMP-MACRO
LIST-MACRO—NAME
LIST—MACRO—BODY

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

J}-

wJUOUJUJUJUJ

LUUOUJ

wwwwwwwwwwwwwwww

NNNNNNNN

O‘\O\O'\

U1U'IU'IWU1U'IU1U1U‘IU‘IU1U1U'IU'IWU'I

NO‘xU'l-C‘UONH

U1U1U'IU1U1U1U‘IU'I

U"

UJUJUJUUUJUJNH U'I-D'UJNH

\DCXDNONUTJI'UUNH

NH

(vii)

Debugging commands
DEBUGGER
BREAK . . .
TEMPORARY—BREAK
STEP
RESET-BREAKS
RESET-LAST—BREAK
DEBUG-STATUS .
SET-SPECIFIC-ACCESS
MAIN-FORMAT
EXTRA-FORMAT
LOOK-AT-PROGRAM
LOOK—AT-STACK
LOOK-AT-RELATIVE
LOOK-AT-REGISTER
LOOK—AT subcommands

DOMINOS process monitoring
PROCESS-STATUS
LIST—TIME-QUEUE

DOMINO controller commands
SET-PROTECTION
USE-PROTECTION
LIST—PROTECTION
USE-CACHE . . .
TARGET-IDENTIFICATION
TARGET—STATUS
SCOPE—LOOP

Applications in DOMINO

Getting started

DOMINOS
DOMINOS configuration
DOMINOS Services
Process Management
Create service
Modify service
Begin service
End service
Abort service

Scanned by Jonny Oddene for Sintran Data © 2011

101
. 101

105
. 105
. 117
. 120
. 121
. 124
. 126
. 128
. 129

Scanned by Jonny Oddene for Sintran Data © 2011

U1U'1U1U1WU'1U'1U1U‘IU1U'I

UlUl

U1U1U'1

UTUTUT

U1U1U'1U1U1U1

\J'IU'IU'IU'I

bammmbmm§mm

<4

HKOOJNQUT-D‘WNH

U'1U1U1 (1)030)

O\O\O'\

0‘

UUNI-I'

34:34:34:

UJUJUJLAJ

U'l-IZ'UJNH

O\C\O’\

U'IU'IU'I

\D®\10\

NH

.11

.12

.13

(viii)

Kill service
WhoAmI service
ProsNo service
PrName service

The Event System
SetEv service
ReadEv service
WaitEv service
SelWaitEv service
UniWaitEv service

Time Scheduled Events
InterEv service
InterDel service

Buffer Management
GetBuffer service
RelBuffer service

Exported system data
Fatal service

DOMINOS for advanced programmers
The MC68K in supervisor mode
Disable and enable interrupts
Access rights in supervisor mode
PLANC compiler . .
Special rules for interrupt handlers
Special rules for trap handlers
Rules for UDS and PME
Implementing exception handlers
PIRCreateDriver Service
UDSE scheduling primitives

UFindPD UDSE-primitive
UBlocPr UDSE-primitive
UdeBlocPr UDSE—primitive

Implementing UDS
Implementing PME
System processes

NUCLEUS Overview

NUCLEUS library files
Including NUCLEUS in an application . . .
Communication Concepts

Scanned by Jonny Oddene for Sintran Data © 2011

. 131
- 133
. 134
- 135

. 136
- 137
. 138
. 138
. 142
. 142

. 144

. 144

. 145

. 146

. 148

. 149

. 149

. 150

. 151

. 152

. 154

. 155
- 157
. 162
. 163
. 165
. 165
. 166
. 167
. 167
. 168
. 168
. 169
. 170
. 171

173
- 175
- 175
. 177

Scanned by Jonny Oddene for Sintran Data © 2011

O\O\O'\O\ \lO\U‘lJ='

\J~J

~J~J~J~J~J~J~J~J~J\J\J\J\J~J

~J\J~J

«q

\OKDKOOKDKDKO

\0

\IO\U'I

DWNH

4:4:

UJWWWWWUJKNWUJWWWUO

NNP

\OOO‘lChU'I-R'kNNI—‘H

(ix)

Protection in NUCLEUS
Configuration of NUCLEUS
NUCLEUS in ND- 100 . .
NUCLEUS in DOMINO Controller

NUCLEUS library

Summary of NUCLEUS calls
Parameters in NUCLEUS calls
NUCLEUS status codes

NUCLEUS Call Interface
Create port
Delayed abort for NUCLEUS
Create port name
Open port
Open return port
Delete port name
Create message .
Read or write a message
Send message
Receive message
Get Info .
Close port, message or sendreference
Get Version

Brief introduction to tables in NUCLEUS kernel
NUCLEUS call sequence - an example

PLANC Programming example

Error handling in NUCLEUS

NUCLEUS start up (system booting)
NUCLEUS fatal errors . .
NUCLEUS nonfatal errors
Power failure handling .
Verifications tests during start up
NUCLEUS verification program
Debugging and tracing of NUCLEUS

Scanned by Jonny Oddene for Sintran Data © 2011

- 179
. 181
. 182
. 182

183
. 183
. 185
. 186

. 189

. 189

. 191

. 192

. 194

. 195

. 197
198

. 200

. 202

. 20M

. 205

. 207

. 209

. 210

. 213

219

227
. 227
. 227
. 229
. 229
. 230
. 23o
- 233

Scanned by Jonny Oddene for Sintran Data © 2011

10 NUCLEUS Monitor 235
10.1 Installation of NUCLEUS Monitor 235
10.2 The command system 236
10.3 NUCLEUS monitor commands 237
10.3.1 NUCLEUS monitor - common commands 237

Exit . 237
Main-format 237
Get-port-name 238
Help . 238
List-messages 238
List-names 239
List-ports 239
Verify 240

10.3.2 NUCLEUS Monitor - high--level commands 240
Advanced--mode 240
Close . 240
Create—message 241
Create—name 241
Create—port 241
Fill--data-buffer 242
Open-port 242
Print—data-buffer 242
Receive——message 243
Read-message 243
Send——message 243
Write--message 243

10.3.3 NUCLEUS Monitor - low- level commands 244
Connect- file 244
Display—descriptor 244
Display-kicklist 244
Display—masterblock 245
Display—messages 246
Display-port 246
Dump-kernel 246
Extra-formats 247
Force-display 247
Get—Nucleus—memory 247
List-trace 248
List—quota 248
Look-at . 248
Set—trace 248

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

(xi)

Table of appendices

Appendix A: Image files

Appendix B: DOMINO selftests

Appendix C: Error and status codes

Index

Scanned by Jonny Oddene for Sintran Data © 2011

2A9

251

261

273

Scanned by Jonny Oddene for Sintran Data © 2011

(xii)

List of figures

1. DOMINO hardware components 3
2. DOMINO SW components 4
3. DOMINO Overview 9
4. DOMINO controllers in the MF-bus crate . 15
5. Event reporting 24
6. SERVER path to DOMINO controller H7
7. ASYL path to DOMINO controller . . 49
8. SERVER path using MAILBOX 51
9. PLANC-~MC ordinary stack frame 83
10. PLANC— MC native stack frame 85
11. Structure of a DOMINOS configuration program . . 107
12. DOMINOS configuration. USER ADDRESS PART 109
13. DOMINOS configuration. EXTENSION PART . . . 111
14. DOMINOS configuration. PROCESS PART 111
15. DOMINOS configuration. ROUTINE LIST 111
16. DOMINOS configuration. LOAD LIST . . 112
17. DOMINOS configuration. INSERT 112
18. DOMINOS configuration. SKIP 113
19. Round—robin scheduling . . 121
20. DOMINOS relative memory layout . 147
21. DOMINO memory protection 155
22. Processes communicating via NUCLEUS . 173
23. Tables in NUCLEUS kernel 210
24. Record layout for a message in descriptor table 210
25. Record layout for a homeport in descriptor table 211
26. Record layout for a sendref in descriptor table . 212
27. Message buffer layout in bufferarea . 212
28. Creating ports and names in NUCLEUS . 213
29. Create message and open port 214
30. Write a message into the message buffer . 215
31. Send a message . . 215
32. Receive a message 216
33. Read a message 216
34. Pointers in descriptor table 217
35. Error in NUCLEUS . 228
36. NUCLEUS verification program . . . 230
37. NUCLEUS verification program — screen picture . 231
38. Image file header versus image area . 250

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

(xiii)

List of tables

\DCXJNChU'l-C'UJNH

DOMINO module names .
PIOC— compatible memory protection .
Memory protection not allowed .
DOMINOS error codes . .
Function numbers and names in NUCLEUS calls . .
NUCLEUS status/error codes.
NUCLEUS calls and error/status codes.
PROMA N(Processor Manager) error codes.
DOMINOS, DOMINO Operating System errors .
DOMINO Services (Hw—LlB/OPCOM) error code
DOMINO Services (BOPCOM) error codes
NUCLEUS operation error/status codes

Scanned by Jonny Oddene for Sintran Data © 2011

14

96
119

. 185

. 187

. 188

. 263

. 265

. 266

. 267

. 272

Scanned by Jonny Oddene for Sintran Data © 2011

(xiv)

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 1 Introduction

DOMINO

Hardware

OCTOBUS

MFbus

The basic idea of DOMINO is to have a range of
powerful IO-controllers able to support the IO-
needs for the ND-SOOO CPUs. DOMINO introduces new
hardware and software architecture for this
purpose. DOMINO contains a standard environment
for DOMINO IO—controllers, which make development
easier for new applications.

The manual deals with DOMINO, as seen from a
software point of View. Only a short overview is
given of the hardware architecture. (See the
manual "DOMINO Standard Hardware" (ND—814001)).

The DOMINO controllers are connected to the common
MFbus (Multi Function) memory. Each controller is
able to transfer data to and from this memory
(Direct Memory Access), which is the main data
path. The MFbus, and all CPUs attached. support
semaphore cycles to allow for process
synchronizing. The MFbus has 32-bits data and
address buses.

The OCTOBUS is a serial bus intended for sending
short messages. It is mainly used for process
synchronization. During initialization it passes
configuration parameters. The DOMINO Monitor uses
it as a communication path through the BOPCOM
server.

The MFbus Controller initializes the DOMINO
controllers at power—up. OCTOBUS parameters and
address space for the DOMINO controller in the
MFbus memory are set. The very first time, this
must be done by ND System Integration staff or ND
service/support staff running the MFbus Controller
Maintenance program.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

DOMINO
controller

Local
memory

Memory
protection

Timers

Debugging
tools

Breakpoint

Trace
connectors

RS232 part

Chapter 1 Introduction

The DOMINO controller supports dedicated IO-
processes (applications) to run within a common
environment. Device-dependent hardware and
software are added for each DOMINO-based
development project.

A Controller can have from 1/2 to 8 MB of local
memory. There is a parity bit for each byte in the
32-bit word.

Memory protection is needed in the software
architecture where many tasks run concurrently.
The protection system in hardware supports such
needs. A bus error is generated if attempting to
refer an address with wrong privileges.

The MFP (Multi Function Peripheral) has four
timers. One of them is used for generating clock
interrupts. The MFP has also the USART for the
terminal interface.

Some parts of the controller are present to ease
developing and maintenance.

A breakpoint can be defined for each memory
location. This ensures fast program execution even
when running with a debugger, as checking for
breakpoints is handled by hardware. Local CPU
processing power is not used for breakpoints.

The bus signals are available on trace connectors.
A logic analyzer can be attached to the target via
these.

An R8232 C terminal interface allows for attaching
a terminal directly to the controller.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 1

DOMINOS and
DOMINO
monitor

Introduction 3

inside host
computer

OCTOBUS controller / MFbus adapter

MC-68020 Case (device)
dependent hardware

local RAM (storage media.
OPCOM PROM terminals or data
device PROM communication)
memory protect
USART / timers

trace interface

[4

Terminal and Device interface

Operator MICE / logic
terminal analyzer to device

Figure 1. DOMINO hardware components

The dedicated applications handling I/O inside the
DOMINO controller are run under the control of
DOMINOS. DOMINOS is an operating system kernel
common to all DOMINO controllers. Several
applications may run concurrently as separate
processes.

The DOMINO Monitor is an ordinary SINTRAN user—
program, which is used for down—loading and
debugging of applications in the DOMINO
controllers.

Both stand—alone applications and applications
controlled by DOMINOS can be run. DOMINOS and its
application processes are loaded at the same time
into one domain. Code (for new processes) cannot
be added to the DOMINO controller while it is
running.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

4 Chapter 1 Introduction

USER

ND—SOO

L
DOMINO Monitor

Super kernel

XMSG

BOPCOM server
(RT—program) Ring 2

___T ____________J

OCTOBUS

DOMINO

DOMINO OPCOM

Figure 2. DOMINO SW components

DOMINO The DOMINO Monitor communicates with the PROM—
communication based OPCOM module in the controller (OPCOM means

DOMINO OPerator COMmunication). It contains inter-
rupt drivers for OCTOBUS and its local terminal
interface. There is also code for performing
hardware-related tests and code for execution of
the commands via the DOMINO Monitor.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 1

Mailbox

Introduction 5

Several commands for debugging and maintenance are
available in the DOMINO Monitor. OPCOM is mainly
invisible for the programmer.

Debugging may continue even after an application
has crashed. as the firmware code remains intact.
The DOMINO Monitor contains hardware—related
debugging commands, while the integrated DOMINO
Debugger operates on source level.

The DOMINO Monitor may communicate with DOMINO
OPCOM in three different ways:

0 ASYL - ASYnchronous Line (terminal interface).
Communication from terminal line on ND-lOO to
terminal line on DOMINO.

o SERVER - BOPCOM server. This is by far the
most used way of communication. Both ND-lOO
and the DOMINO controller need an OCTOBUS
station.

0 MICE - Micro-In-Circuit Emulator replacing the
MC68xxx processor. This is mainly used for
debugging during hardware development of the
controller.

A mailbox may be used in addition to terminal line
and the server. The mailbox consists of a fixed
part of physical MFbus memory(MPM). It must be
accessible from both the DOMINO Monitor and the
DOMINO controller. The data transfer becomes
faster when using mailbox instead of serial
transmission (terminal line and OCTOBUS).

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

NUCLEUS

NUCLEUS
use

NUCLEUS
Kernel

NUCLEUS
library

NUCLEUS
monitor

Chapter 1 Introduction

NUCLEUS is a library for fast message passing.

NUCLEUS is intended to be used only for all Norsk
Data System applications requiring fast and
reliable message passing between processes within
one computer. The processes may for instance be
one server with several clients. NUCLEUS cannot be
used for communication between computers.

All processes communicating via NUCLEUS have to be
within the same computer. By computer is meant one
or several main CPUs and DOMINO controllers with
access to the same physical memory and OCTOBUS.

NUCLEUS data structure reside in shared memory
(MPM), operated upon by specific rules. Parts of
physical memory are reserved for the data
structure used by NUCLEUS.

The services provided by NUCLEUS are independent
of the CPU and operating system where the process
is running.

The NUCLEUS Monitor is a tool for inspection of
tables and queues in NUCLEUS kernel.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 1 Introduction

Communication
Concepts

Port

Message

Communication between processes in NUCLEUS is
based on ports and messages. Their descriptions
reside in physical memory shared between the CPUS.
(The NUCLEUS kernel)

A port is an address (reference). where you can
contact others, and vice versa. Ports may have a
name. A port contains among other things an
identification of the port owner and a pointer to
received messages. Messages can be linked to a
port. where they are queued in the same sequence
as they arrive.

A message is a physical buffer, which is sent
(linked) between ports. A message consists of a
physical buffer for data and a header containing
for example a buffer descriptor and link to other
messages.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 2 DOMINO Operation

2.1 DOMINO Overview

Event log Event Error device Domino 3m“;ASCII log config.

Us.
------E]

a BBB
PROMAN server:

Even? msg. Processor
gateway Manager

MFbus ' A MF—bus
contr. '

Octobus

Domino

Opcom

DominOS Nucleus

3 ~~~~~~~~~ 'Appl.‘ Nucleus lib

Figure 3. DOMINO Overview

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

10

PROMAN

PROMAN
error
codes

Chapter 2 DOMINO Operation

The Processor Management server (PROMAN) is a
system server running on ND-lOO. (See also page
21). The server is started immediately after
system start and is responsible for:

0 Automatic booting of DOMINO—controllers at
restart/power up

When the system is running, the server provides
the following services:

0 Reboot DOMINO with default software on request

0 Reboot DOMINO with given software on request

0 Give DOMINO configuration data on request

0 Terminate DOMINO-controllers on request

0 Power-fail handling of DOMINO—controllers

Requests to PROMAN are sent by NUCLEUS. These
requests are described in the section "Interface
to configuration data and boot functions".

Error codes returned from PROMAN, are found in
Appendix C. See page 261-263.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 2 DOMINO Operation 11

2.2 Configuration

Configuration in this context, is information
given to the system about the kind of hardware
(DOMINO controllers) that has been installed, and
about the software that can be run on it.

The DOMINO hardware consists of cards that fits
into the MF-bus crate. They are recognised by the
MF—bus controller. It is possible to attach a
console to the MF-bus controller for configuration
and maintenance purposes. The hardware part of the
configuration is described in the manual "MPM-S
Technical Description" (ND-810004.01).

A minor change is made to the configuration
procedure to allow for software configuration.
This is the normal way of telling the system which
software to run on the controllers. This method is
described under "automatic configuration". The
other way, done by means of a configuration file,
is described under "manual configuration".

2.2.1 Automatic configuration

This is the normal way that the operating system
is told which software to place onto the
controllers.

The software for a controller is contained in an
image file. See page 16.

As a general rule, a DOMINO—controller is
downloaded with a predefined image according to
Module Number. This is a hardwired number on each
card fetched by the MF—bus controller,
(module/model number). See table on page 14.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

12 Chapter 2 DOMINO Operation

However, as there will be a need for different
software to execute in several DOMINOS of the same
type in the same system, changes have been made in
the configuration procedure of the MF—bus
controller. (MF—bus controller software version
E00 or later, contained in 4 EPROMS, is
prerequisite for DOMINO Operation).

This procedure is used during system integration
to suit the customers needs. The configuration may
also be changed by qualified service personal on—
site by means of the MF-bus controller console.
The software configuration is placed by the MF—bus
software into the EEPROM in the back-wiring of the
MF—bus.

An additional parameter may be entered during the
normal hardware configuration of a DOMINO card on
the MF-bus controller console.(the parameter is
asked for, but is not mandatory). It is called
"Basic Software Identification", and consists of a
string of up to four characters. specifying the
image to be downloaded.

An additional question is asked:

Basic Software Module identifier (4 characters):

All alphanumeric characters are permitted. More
than 4 Characters are ignored, missing characters
are assumed blank. Default value is all blank
(SPACE or NUL). The four byte string is saved
among with the hardware parameters in the
backwiring—EEPROM.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 2 DOMINO Operation 13

The image name is then constructed as follows:

(product id) - (hardware id) - (basic software id) : IMAG

(product id)

(hardware id)

(basic
software id)

Examples

Standard part to identify product relationship,
the product here being the Processor Manager-
server, PROMAN, which has the product prefix PMA

Identifier for h/w module number (4 chars). This
identifier is looked up by the PROMAN program as a
function of the hardware module number, see table
1 on page 14.

Software type identifier (max 4 chars). Necessary
when more than one type of product runs on
processors with the same module number. Examples
are TCP/IP, COSMOS and SIBAS-communication, all
running on Ethernet—III. This field is NOT
intended to take care of version control.

If Basic Software Identifier is omitted, the image
file name will be:

(product id)-(harware id>:imag

PMA—GRAPfllAG % default image name for
graphical controller.

PMA—ETH3—TCPI:IMAG % for communication TCP/IP
PMA—ETH3—COSM:IMAG % for communication COSMOS
PMA-ETH3—SIBRlAG X for SIBAS
PMA-SCSI-BDIO:IMAG % for BDIO etc.

I I I I I I
Standard part for images

—— Defined at configuration
(Basic Software Id)

——. Given by Module Number
(see table)

Standard part, prefix
for PROMAN = PMA

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

14 Chapter 2 DOMINO Operation

User-area The PMA-files are stored on the user-area of user
UTILITY.

Module Number Hardware—id Type of module

SB VMEI VME-bus interface
20B IP13 IPI level III controller
218 SCSI SMDE controller (SCSI)
22B ETH3 Ethernet III
238 FPSS FPS—5000 controller
248 TERM Terminal controller
258 GRAP Graphic controller
268 MFCC Multi function comms

controller
278 VMEC VME-bus controller
BOB DMAC MF-DMA controller

Table 1. DOMINO module names

DOMINO modules, not mentioned in the table above,
with Module Number in the range 5 to 76(octal),
will get their hardware identifier as shown in the
table below:

Module Number Hardware-id

6B 006B
7B 007B

75B 075B
76B 0768

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 2 DOMINO Operation 15

2.2.2 Manual configuration

It is possible to override the automatic
configuration by using a configuration file.

Configuration The file must be named PMA-CONFIG:SYMB and placed
file under user SYSTEM. Configuration is not intended

to be done this way under normal circumstances,
but is for testing, debugging and exception cases.

An example of a configuration file is shown below:

12 (UTILITY)PMA-ETH3—TEST
13 (SYSTEM)TEST-DOMINO

[—————— Image file name to be downloaded.
Default user is RT, and default file
type is :IMAG.
OCTOBUS Station number to DOMINO
controller (MUST be octal).

OCTOBUS Station number
(=Configured number)

20

Terminal
(For con- MF-bus
figuration ' ' l ' l 1 '
purposes) Controller 1 2 3

Slot number ——]
(Physical no. in crate)

Figure 3. DOMINO controllers in the MF—bus crate.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

16 Chapter 2 DOMINO Operation

2.3 Image files

Image file
description

More
information

Image files are used because they occupy less
space on the disk, and are faster to place than
domains.

An image—file is the program and data to be placed
into a DOMINO-controller, called Basic Software
Module.

The file has a one—page header containing
execution start address, bitmap and other
information describing the image both in size and
layout. (see figure in Appendix A,on page 250).

The rest of the file. from page one onward, is the
initial content of the DOMINO's memory. Address
zero in DOMINO physical memory corresponds to the
start of page one on the image-file.

The image area is very often scattered, thus the
file is likely to contain "holes".

The image is created by the tool "PMA—CRE-IMAGE".
It takes a standard MC68xxx domain and converts it
into an image file (:IMAG).

In Appendix A, page 249-250, you will find a more
thorough description of the image file.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 2 DOMINO Operation 17

2.4 Use of LEDs on DOMINO controllers

Each DOMINO controller has at least three LED
(light emitting diode) in three different colors:

Yellow The yellow LED is by hardware connected to the
MC68K processor such that it indicates whether it
is running or idle (waiting inside the STOP
instruction).

Green This LED indicates from release C of DOMINO OPCOM
and DOMINOS, whether the application is running or
not. It is lit just before the first process is
started by DOMINOS and switched off when the
application terminates or aborts or when DOMINO
aborts. Possible user defined process management
extension callable on process begin, are executed
before the LED is switched on.

Red The red LED is used to indicate error situations.
There exists several situations when a DOMINO
controller is unable to communicate via OCTOBUS.
In such a situation. the controller will hang. The
red LED is used to display at least some
information about the reason of the fault.
Different flashing patterns are used. and are
interpreted as described below:

The LED is off all the time:
Everything seems to be OK.

—The LED is on an the time:
This means that the selftest
after reset has found some
fault.The controller may used
if the hardware can be avoided.
(For instance the protection
system).

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

18 Chapter 2 DOMINO Operation

I.I.I.I.I.I.I.I.I.I.I.I.I.I.l.l. Fast regular flashing: epoch
receives a NAK when suspecting
an ACK. ON-time = OFF—time z
0.55ec. Timing for the follow-
ing patterns are corresponding
to this.

I I I I I I I I Regular flashing long OFF/
short ON: Something unusuable
received from OCTOBUS.

I... J: LL u Two short ON/one long OFF:
Error returned when connecting
to OMD.

m Jui Three short ON/one long OFF:
MPROTSET returns error when
initially setting up memory
protection.

-.I.I.-.I.I.-.I.I.-.I.l. One log 0N/two short on:
The host switch stack is empty;
nobody to send to.

J.I.I.-I.I.I.— Three short ON/one log 0N:
OCTOBUS driver interface called
with invalid function code.

.|.|.u.—.u.u.— Four short 0N/one log on:
OCTOBUS driver returns error
when connecting to emergency
message 177B or 176B.

.I.I.I.I.I.I._ Seven short ell/one long on:
The path to be used is unknown
in OPCOM.

— Regular very slow flashing:
Error returned from OCTOBUS
driver when sending.

[nu-mRegular flashing long ow
short OFF: Overflow on the
host switch stack.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 2 DOMINO Operation 19

2.5 DOMINO selftests

More
information

After power up. MCL and before booting, all DOMINO
controllers perform a set of selftests to verify
the hardware. These selftests are divided into two
main groups:

— Preboot tests
— Postboot tests

The preboot tests runs in EPROM. and verifies all
necessary hardware to be able to boot and run in
DRAM (DOMINO Local Memory). The postboot tests
consists of two parts:

- Standard postboot tests
- Device dependant postboot tests

The 'Standard postboot tests' is executed on all
DOMINO controllers and test all the standard
hardware parts such as MFP, interrupt system,
protect system, BADAP, OBCON, etc. The 'Device
dependant postboot tests' are tests specific for
each type of DOMINO controllers, and tests all the
special hardware functions of the different
controllers.

All standard tests (Preboot tests and Standard
postboot tests) is located in the DOMINO OPCOM
promI while the device tests are located in the
device prom.

In Appendix B you will find a detailed description
of the selftests. I.e.:

0 Test numbers
0 Selftest reporting to test connector
0 How to use a TDF
0 Exception handling in selftests
0 Description and names of preboot and postboot

tests

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

20 Chapter 2 DOMINO Operation

2.6D0M1No reset. Algorithm

RESET

NON-Destroying (See previous section)
(applies to memory)

so—called
"preboot test"

Enter "WAITCONT" state
Wait for

DOMINO OPCOM-command

WAITCONT: see page 98
No

post boot tests (See previous section)

Initialize
controller HW and
OPCOM structures

Enter
"aborted" state

Wait for DOMINO
OPCOM command

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 2 DOMINO Operation 21

2.6.1 PROMAN SERVER. Algorithm

Check for right configuration (ND-5000)
Setup ERS-log file
Setup lamu-buffers
Initialize time—queue
Initialize internal data structures
Initialize octobus and nucleus communication
Start threads for BBS-gateway and service interface
Get configuration..

— find all MF-bus controllers (one for each card-crate)
DO FOR each MF—bus—controller

— get crate—configuration (investigate-bank)
— DO FOR each DOMINO-Controller in crate
- get and save config data (list-configuration)
- ENDDO
— ENDDO
— get configuration from config-file (pma—config)
— redefine configuration for those found on file

Start boot-thread for each DOMINO—Controller

DO WHILE FOREVER
get head of time queue
wait for event
IF event = timeout THEN

find tread associated with timeout event occurred
start tread

ELSE % Communication receive event
IF powerfail-event THEN

handle powerfail
ELSE

DO WHILE something received
case receive type
incase OCTOBUS

find thread associated with station number
incase NUCLEUS—Service-port

find service thread
Incase NUCLEUS—ERS-gateway—port

find ers-gateway thread
ELSE

report unexpected event
ENDCASE
IF legal thread THEN

collect event information
start thread associated with receive event

ENDIF

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

22 Chapter 2 DOMINO Operation

2.6.2 Booting of DOMINO. Algorithm

Perform hard reset of DOMINO
Open image file
Get and save boot time
Perform echotest (EchoTest)
Get DOMINO-ident (IdentY), report selftest status
Perform stop (Stop)
D0

Get block from image
WHILE blocks left in image

Fix block in buffer
Set mailbox pointer in DOMINO (SetP)
Download block from buffer to DOMINO local memory (BxDoLd)
Unfix block in buffer

ENDDO
CLOSE image file
Get image execution start address
put start address in DOMINO's program counter (RegMod)
Start DOMINO (Go-0n)
Report DOMINO started
DO

Start watchdog timer and wait
Perform watchdog check

ENDDO

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 2 DOMINO Operation 23

2.7 Event reporting and event log

ERS-reports from the DOMINO operations software
are logged on a ring-file on the system disk.
These reports have three different origins:

0 Reports from the Processor Manager itself.

0 Reports sent from OPCOM in DOMINO (sent via
OCTOBUS to PROMAN). These reports are normally
fatal-errors from low-level functions in
DOMINO such as bus-error and unexpected traps
and interrupts.

0 Reports from application software running in
the DOMINO (sent via NUCLEUS to PROMAN, using
the "PMAreport" call.)

The ring-file buffer always contains the last ERS-
messages sent by the system. and may be recalled
with the "PMA-DUMP-LOG" program.

Applications in DOMINO may report standard ERS
events to the Watchdog in Sintran (ERS3WD). This
is done by using the routine "PMAreport" included
in DOMINO Programmers Kit. (ND number: 250297).

ROUTINE VOID, VOID
(INTEGERZ, & SEC (Standard Error Code)

BYTES POINTER) & EventData(User parameter part
: PMAreport & of standard event report)

The routine will provide the interface to NUCLEUS,
and send the report to the ERS-gateway server
(part of PROMAN), which in turn will send the
message to the Watchdog.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

24 Chapter 2 DOMINO Operation

| Inspect
ERS—msg
L—

PMA-ERS-BUFFERzDATA

ERROR PMA-dump-log
device program

S3WatchDog Ring file

PROMAN ND-lOO

F _____ 1
Event msg

| gateway |
server

1“ I

OCTOBUS

DOMINO
controller

OPCOM

N
U DOMINOS
C
L ___________

E r_ 1 PIRfatal
U
S ERS DOMINO

LIB application
"PMAreport" software

Figure 4. Event reporting

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 2 DOMINO Operation 25

2.7.1 How to operate the event log file

The operation of the event log file (ring—file) is
fully automatic. The PROMAN server will create it
if it does not exist. The file may be deleted to
empty the contents, or it may be recreated with
new size to suit. Default size is 5 pages, which
is enough to store a few hundred ERS—reports. The
file must be at least two pages in size, and it
must be contiguous. The file resides under user
SYSTEM with the name PMA-ERS—BUFFER:DATA.

NOTE !
The file must not be deleted or tampered with
when the PROMAN server is active. If you wish
to change the size or delete it, please do this
before the server is started, or immediately
before restarting the system. If the server is
unable to log to the ring file, a message
will report this to the system error console.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

26 Chapter 2 DOMINO Operation

2.7.2 How to investigate the Event Log

To investigate the Event Log, simply use the
program PMA-DUMP-LOG:PROG supplied in the DOMINO
Maintenance Kit (ND no. 211322). Start the program
under user SYSTEM and give a file name on which to
dump the like this:

PROCEDURE:

@PMA—DUMP-LOG % call the program

Output file: "MY—LOG” % give dump file name

Bye!
@PED MY—LOGzSYMB % investigate the file in an editor

OR:

@PMA-DUMP-LOG "MY-LOG"

Bye!
@PED MY-LOG

The format dumped on the file "MY-LOG" is the same
as the Watchdog server (ERS3WD) presents on the
error device.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 2 DOMINO Operation 27

2.7.3 How to use the event log

The PMAreport-routine is supplied as a :NRF file.
The routine must be imported into a module where
it is used as follows:

IMPORT (ROUTINE VOID,VOID(INTEGER2,BYTES POINTER): PMAreport)

The file "PMA—ERS:NRF" must be included in the
load session.

For details about ERS in general, see SINTRAN III
Release information, L-version. (ND-860230)

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

28 Chapter 2 DOMINO Operation

2.8 PBOMAN Service port

The server will have a NUCLEUS service port
(system port) accepting requests from other system
servers.

Port name The name of the port is PMAservicePort.

Several requests may be sent to the server using
NUCLEUS messages. The server will acknowledge
requests. Some requests may return data. The user
is responsible for providing a large enough
message for return of data.

NOTE I
Acknowledgements and return data will always be
sent back to the request-message's home port.

2.9 PMA-Monitor

The PMA—Monitor provides an interactive command
interface to the service port functions in the
Processor Manager (PROMAN). The monitor is
supplied in DOMINO Maitenance Kit (ND-211311), as
a :PROG file (PMA-MONITORsOG).

The monitor is started by means of the command:

@PMA-MONITORJ

The PMA-Monitor promts with PMA: whenever it is
ready to accept a command.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 2 DOMINO Operation 29

2.9.1 Commands in PMA-Monitor

The following commands are direct implementations
of the service port's corresponding functions. The
messages "Request acknowledged" and "Request not
acknowledged“ are printed as a consequece of ACK
or NAK from the Processor Manager.

See also the section "Interface to configuration
data and boot functions". Page 34-38.

LIST-CONFIGURATION

Purpose Display statistics for all the Domino controllers
in a system, eg:

PMA: LIST-CONFIGURATIONJ
SLOT 11 : Crate id 3 Octobus station 133 ---> SCSI CONTROLLER

Module 218 Model OB Print A Eco B
Image file: "(UTILITY)PMA-SCSI—BDIO"
Boot status: Domino started
Boot time: 1988-08-28 21:09:22

SLOT 10 : Crate id 3 Octobus station 128 ———> ETHERNET III
CONTROLLER

Module 22B Model 0B Print D Eco D
Image file: "(UTILITY)PMA-ETH3—TCPI"
Boot status: Domino started
Boot time: 1988—08—28 21:09:22

PMA:

The output from the LIST—CONFIGURATION command is
explained on the following pages.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

30

SLOT

Crate id

OCTOBUS
station

Module

Chapter 2 DOMINO Operation

In this example, Two DOMINO controllers are
present in the system.

lllllllll llllllmlmll

MF-bus Crate

lllllll llLllllJlllJll

ISlot 1 jL Slot 26
Slot 10 Slot 11

Description of output from the LIST-CONFIGURATION
command:

The slot location in a card crate where the DOMINO
is installed.

DOMINO controllers reside in a card crate (card
bank). Crate id is an unique identifier of the
card crate's position. If your system has just one
MF-bus crate, you may ignore this parameter. If
there are more than one MF-bus bank, it is useful
to know that the Crate id is actually the station
number of the MF—bus controller in the Crate/Bank
in question.

The OCTOBUS station number to the DOMINO
controller.

Hardware Module Number tell what kind of card
(type of DOMINO in this context) that is present
in the slot. This is the origin for determining
the hardware identifier in the image name, (see
section about Automatic configuration, page 11).

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 2

Model

Print/Eco

Image file

Boot status

Boot time

DOMINO Operation 31

Hardware model number.

Engineering Change Order level is an official code
for the status of hardware modifications performed
on the card.

The image file name Currently used (Basic Software
Module). Normally this file name is the default
one, or from the configuration file (PMA—CONFIG).
It may also be the image name given in a RECOVER
or LOAD command.

Tells the status of a DOMINO controller as the
Processor Manager (PROMAN) sees it. These states
may be one of the following:

STATE MEANING

Undefined state No operation yet performed
Booting Initial booting in progress
Rebooting Rebooting in progress
Domino started Program in Domino controller

started
Error received Fatal error occurred in DOMINO
from Opcom

Booting aborted Booting, rebooting or load
aborted due to error in load

Terminated Domino controller terminated due
to request

Image placed Image place performed

The time and date when the last boot, reboot or
load started.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

32

REBOOT-DOMINO

Chapter 2 DOMINO Operation

Purpose

Parameter

RECOVER-DOMINO

Reloads and starts the controller using the
default image, or the one given in the
configuration file (PMA—CONFIG:SYMB).

(station number)= OCTOBUS station number to DOMINO
controller (default octal)

The request is acnowledged if the station number
is known by the system ie. the controller is
configurated.

Purpose

Parameters

Reloads and starts the controller using the given
image.

(station number): OCTOBUS station number to DOMINO
controller (default octal)

(image file) = Name of image file, default file-
type is :IMAG, default user is RT

The request is acknowledged if the station number
is known by the system ie. the controller is
configurated. The syntax of the filename and the
presence of the file is not checked at this point.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 2 DOMINO Operation 33

TERMINATE-DOMINO

Purpose

Parameters

LOAD-DOMIND

To stop the DOMINO controller.

(station number)= OCTOBUS station number to DOMINO
controller (default octal)

The following functions are performed, in listed
sequence:

1. 0pcom stop
2. Nucleus close on behalf of controller, (relea-

ses all Nucleus resources held by controller).
3. Hard reset (selftests starts)

Purpose

Parameters

Reloads and starts the given controller using the
given image. (Same as RECOVER—DOMINO command,
except that the final GO command is not issued).

(station number>= OCTOBUS station number to DOMINO
controller (default octal)

(image file) = Name of image file, default file—
type is :IMAG, default user is RT

The image will be placed ready to run in the
controller. Boot status in LIST-CONFIGURATION
(page 31) will take value Image placed when the
function has been performed.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

34 Chapter 2 DOMINO Operation

2.10 Interface to configuration data and boot functions

See also the PMA—MONITOR on page 28.A type—
definition may be found on the file:

PMA-SERVICE-COMzDEFS

The command specifications are given below:

LIST CONFIGURATION

Request TYPE tConfigRequest = RECORD PACK
BYTE: PMcommand X = 1 for config request

ENDRECORD

1
Size: 1 byte

Response TYPE tConfigEntry = RECORD PACK
BYTE: BankIndex, SlotIndex X range = 2..7

and 1..26
(see MF-bus controller
documentation)
OCTOBUS station number
(see below)
Module‘s ECO-level

% (0 if undefined)

INTEGERZ: ModuleModel

INTEGERZ: OctStation
INTEGERZ: BootStatus
INTEGERZ: CEecoLevel NRNRRR

BYTES: ImFileN(O:61) % Image file name
INTEGER2 ARRAY : BootTime(O:6) %Time of last boot

ENDRECORD

TYPE tConfigResponse = RECORD PACK
BYTE: PMCRmessack, NoOfDOMINOes
tConfigEntry ARRAY: ConfigEntry(O:15)

ENDRECORD

_ ,, Scanned by Jonny Oddene for Siniran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 2 DOMINO Operation 35

[O=ack / 377B=nakri

messack NoOf (0..16)

Bank (2..7) Slot (1..26)
Bit 10:5 Module no.

Module/Model Bit 4 (always 1)
Bit 3:0 Model no.

R OCTO STATION
E
P Bootstatus
E
A ECO-LEVEL
T . // .
E IMAGE FILE NAME (62 bytes)
D I

II/
|_

BTU ——
1
6 Second B

O
T Minute 0
I T
M Hour
E T
S Day I

M
Month E

Year ——

Size: 2 + NoOfDOMINOes * 86 bytes

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

36 Chapter 2 DOMINO Operation

BootStatus

Bootstatus is a enumeration value telling the
status of a controller, these are:

0 = mndef Found in configuration, no
action yet performed

1 = mooting Initial booting in progress
2 = mebooting Reboot in progress due to

request
3 = pmStarted Controller has been started

after boot/reboot
4 = mrror An error has been received from

Opcom after start
5 = pmAborted Boot or reboot aborted due to

error
6 = merminated Controller has been terminated

due to request

REBOOT

Request TYPE tReBootRequest = RECORD PACK
BYTE: PMcommand % = 2 for reboot request
INTEGERZ: ReBootStation

ENDRECORD

2

Reboot station number

Size: 3 bytes

The parameter is the OCTOBUS station number of the
DOMINO card you wish to reboot.

Response TYPE tReBootResponse = RECORD PACK
BYTE: PMRBRmessack ENDRECORD

messack ————{ O=ack / 377B=nak

Size: 1 byte

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 2 DOMINO Operation 37

NOTE I An acknowledgement here means that the controller
is found in the configuration. and that a reboot
is in progress. It is not an acknowledgement that
a reboot has performed satisfactorily. One way
confirming this is by polling the list-
configuration function and watching the
"BootStatus" field. A better way is to put this in
the design on a higher level by sending
acknowledgement from the DOMINO software when it
wakes up in the controller.

RECOVER

Request TYPE tRecRequest = RECORD PACK
BYTE: PMcommand % = 3 for recover request
INTEGERZ: RecStation
BYTES: ReclmageName(0:61)

ENDRECORD

3

Recover station number
I II/ I

Image file name (62 bytes)
| | // |

Size: 65 bytes

Response TYPE tRecResponse = RECORD PACK
BYTE: PMRECmessack ENDRECORD

messack ————{ O=ack / 377B=nak

Size: 1 byte

NOTE I See note for Reboot.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

38 Chapter 2 DOMINO Operation

TERMINATE

Request TYPE tTermRequest = RECORD PACK
BYTE: PMcommand % = 4 for terminate request
INTEGERZ: TERMstation

ENDRECORD

4

Terminate station number
Size: 3

bytes

Response TYPE tReTermResponse = RECORD PACK
BYTE: PMTERMmessack

ENDRECORD

messack ————{ 0=ack / 377B=nak

Size: 1 byte

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

39

Chapter 3 DUMINO Monitor

This chapter describes the commands in the DOMINO
Monitor. The purpose of the DOMINO Monitor is to
debug and maintain DOMINO IO-controllers. The
program supervises the DOMINO controller through
the OPCOM module inside the target. or via an
inter-circuit emulator (MICE-II).

The descriptions of the commands are grouped into
sections according to function.

Starting The DOMINO Monitor is a program that can be run in
the ND-BOO/SOOO computers. It can be started as
follows:

@ND—500—MONITOR DOMINO-MONITORJ

DOMINO-MONITOR Version C of: (Month Day), (Year)

DM: HELPJ
Command: //

DM: EXITJ
DOMINO—MONITOR session terminated at:

Entered: (Month Day), (Year). Time: <Ho:Min>

nnnnnnnn

(Month Day), (Year). Time

Prompt The DOMINO Monitor prompts with DM: whenever it is
ready to accept a command.

Notation When describing the commands available in the
DOMINO Monitor. the following rules apply:

0 All parameter names are enclosed in <)
brackets.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

140

Command
entering

ESCape

Radix

Chapter 3 DOMINO Monitor

0 If a parameter that is asked for has a default
value, the default value is enclosed within
slashes //

o The names of optional parameters are enclosed
in () brackets.

o If more than one value must be specified, the
right bracket is followed by three dots, as in
(Parameters)...

All commands, domains and file names may be
abbreviated as long as they are unambiguous. The
abbreviation rules are as for SINTRAN. The full
range of SINTRAN editing characters is available.

The DOMINO Monitor will prompt for missing default
parameters.

A Command and parameter collection can be aborted
by pressing ESCape. The user returns to the
command level in the Monitor. Command execution
may also be interrupted in this way. Special NOTIS
keys generating ESCape characters are therefore
also harmless to the program.

If the first character of a command line is 6, the
rest of the line is taken to be a SINTRAN command.
The command is checked before being sent to
SINTRAN. This safeguards against starting another
program unintentionally and thus causing automatic
termination of the Monitor.

The character & means that the input line is
continued on the next line.

Numeric arguments may be given in octal, decimal
or hexadecimal format. The default radix is octal,
but it may be changed by use of the MAIN-FORMAT
command. A trailing B (octal) D (decimal) or H
(hexadecimal) may override the current format
except if it is hexadecimal. Hexadecimal numbers
must start with a digit.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 3 DOMINO Monitor Q1

3.1 Miscellaneous commands

This command group is general in the sense that it
is not related to any function of the DOMINO
controller. Some of these commands affect the
program environment.

3.1.1 EXIT

Purpose Terminates the execution of the DOMINO Monitor.
Note that EXIT cannot be used within a macro. This
command is used for releasing reserved resources
(for example the DOMINO controller). All
breakpoints — if any — are released, and if
possible the control is given back to the
Processor Manager.

3.1.2 HELP

HELP (Command)

Purpose All commands matching <Command> will be written
together with their parameters to the output file.

Command Any command abbreviation, ambiguous or
nonambiguous. Default is all commands.

Parameters Note that HELP may also be used for some
parameters to obtain a list of legal choices.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

42 Chapter 3 DOMINO Monitor

3.1.3 SET-ABORT-BATCH-ON-ERROR

Purpose

ON/OFF

3.1.1» CC

SET-ABORT-BATCH-ON-ERROR (ON/OFF: /ON/ >

When the DOMINO Monitor is invoked from a batch
job, it usually does not make sense to continue
after an error has occurred. The Monitor
therefore. by default, aborts the batch job in
error situations. This command is used for
changing this condition. Non—critical sequences in
a batch Job can ignore the error conditions by
using this command.

ON: the batch job should be aborted after any
error.
OFF: only the current command should be ignored
after error. Error messages are still output to
the batch output file. This is similar to
interactive execution mode.

Purpose

CC <any text string)

This command is for writing comments in a batch or
mode job. It does not affect the DOMINO Monitor.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 3 DOMINO Monitor 43

3.1.5 COMPUTE

COMPUTE (Expression /0/ >

Purpose Evaluate and display the value of a simple
arithmetic expression. The result is displayed in
octal, decimal and hexadecimal format. Negative
numbers are shown as two's complement for the
octal and hexadecimal format.

Operations available are addition (lowest
priority), subtraction, multiplication and
division (highest priority). Parentheses may be
used to force parts of the expression to be
evaluated out of the normal priority sequence.
There are no practical limitations to the number
of nesting levels allowed. Unary plus and minus,
real numbers and exponents are not implemented.

Example

DM: COMPUTE 1+2—3*4/(5+6—7*8D/9D)J
13 1 1H

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

44 Chapter 3 DOMINO Monitor

3.1.6 NEW—USER-CONTEXT

Purpose

User

Changes the current SINTRAN user-area without
losing any context within the DOMINO Monitor. This
is particularly useful for getting necessary
access to files on several user-areas. The command
is for security reasons restricted to users who
originally have been logged in as user SYSTEM.

The name of the new SINTRAN user-area.

Example

DM: NEW-USER-CONTEXT DOMAINS-500d
Now entered as user: DOMAINS-500

3.1.7 OUTPUT-FILE

Purpose

File name

OUTPUT-FILE (File name) /TERMINAL/ >

This command is used for directing the information
stream from the DOMINO Monitor to a file.
Initially this information appears on the user's
terminal. Commands, parameter prompts and error
messages will continue to appear on the terminal
after switching. The (File name> is used as output
file until EXIT or a new OUTPUT-FILE command is
given.

The name of the file where output is desired. A
new file can be created by giving the name within
double quotes ("). Default file type is :SYMB.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 3 DOMINO Monitor 45

3.2 Communication commands

These commands are related to establishing
communication with the target, and for inspecting
and altering parameters describing communication
behaviour.

The DOMINO Monitor has to access the DOMINO
controller via communication media. This can be
achieved in three ways:

0 Through a terminal line to an inter-circuit
emulator (MICE-II). The logical name for this
path is MICE.

0 Through a terminal line to the OPCOM module
running inside the controller (ASYnchronous
Line). The logical name for this path is ASYL.

0 Through BOPCOM SERVER to the OPCOM module. The
logical name for this path is SERVER.

The terminal lines are treated as files, so they
must be defined as peripheral files in SINTRAN.
The path which is used for performing commands at
the moment is displayed within parentheses when
the DOMINO Monitor prompts for a command. This
path is called the current path.

A command may be prefixed with a path-name inside
parentheses. The path given will then be used for
this command, but the current path is restored
after the command is performed.

Example

DM(SERVER): (ASYL)LOOK-AT-STACKJ %command performed on ASYL
DM(SERVER): LIST-MICE—PARAMETERSJ%affects only DOMINO-MONITOR

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

H6 Chapter 3 DOMINO Monitor

3.2.1 OPEN-PATH

OPEN-PATH <Path name /SERVER/ >,<station number)

Purpose It opens the path associated with (Path name), and
an attempt will be made to connect to the target.
This command must be given before any
communication between a target and the DOMINO
Monitor can start. Information about whether this
has succeeded or not is displayed. The opened path
is used as the current path for subsequent
communication with the target.

At the most one path of each type can be opened at
the same time. This is to permit several
communication media to reach the same target
without losing any opened path.

Path name The logical name of the path. If the (Path name)
is MICE or ASYL this takes place via the
peripheral file. If the (Path name) is SERVER, it
takes place via the Bopcom server to the given
station number.

Station Station number associated with the given path.
number

Example

DM: OPEN-PATH SERVER 3OJ
Connected to MC68020 based controller Xconnection established
DM(SERVER): %Bopcom server is

Xnow current path

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 3 DOMINO Monitor 47

The figure below illustrates the path from DOMINO
monitor to DOMINO controller using the BOPCOM
server. Path name is SERVER.

DOMINO
monitor

XMSG

Bopéom
server

RT-program
in ND—lOO.

OCTOBUS

DOMINO
controller

DOMINO
OPCOM

L
DOMINOS

DofilNo
"application"

SW

Device

Figure 5. SERVER path to DOMINO controller

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

H8 Chapter 3 DOMINO Monitor

3.2.2 CHANGE-PATH

CHANGE-PATH <Path name /SERVER/ >

Purpose This command requires that the parameter
(Path name) is open. The path will from now on be
used as the current path, and <Path name) will
appear between parentheses in the prompting text.

Path name The name of an already opened path.

Example

DM: OPEN—PATH SERVER 244
Connected to MC68020 based controller %connection established
DM(SERVER): OPEN-PATH ASYL ASYL-DISCJ %Opening another path
Connected to MC68020 based controller XASYL becomes current

- Xpath
DM(ASYL): CHANGE-PATH SERVERJ % Switch back to SERVER path
DM(SERVER):

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 3 DOMINO Monitor 49

The figure below illustrates the path from DOMINO
monitor to DOMINO controller using the
ASYnchronous Line. Path name is ASYL.

DOMINO
monitor

ASYL (R8232)

F__'_l
DOMINO
controller

J,
DOPCOM

DOMlNOS

DOMINO
"APPLICATION"

SW

\
Device

Figure 6. ASYL path to DOMINO controller

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

50 Chapter 3 DOMINO Monitor

3.2.3 TEST-COMMUNICATION

Purpose

Number of
times

TEST-COMMUNICATION <Number of times /1/ >

Tests communication between the DOMINO Monitor and
the target via the
standard path. The test is performed by writing
and reading several
bit patterns. The communication cannot be tested
via MICE.

The number of times to run the communication test.

If there are no errors during the tests. two
communication parameters
are reported:

0 Elapsed time used on sending 100 bytes 100
times.

0 Communication overhead, measured as the time
used for sending 0 bytes 100 times.

If an error occurs during transmission, the
following is reported:

0 Bits lost, and in which direction.

0 Whether data received is different from data
expected or not.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 3 DOMINO Monitor 51

DOMINO
monitor

XMSG

BOPéOM RT-program
server in ND-lOO.

MFbus MFbus

contr ——o $ ——0 OCTOBUS

Multiport DOMINO
Memory controller

N
OPCOM

MAIL MAIL MAIL
-BOX -BOX -BOX ,

N—l N N+1 DOMINOS

— DOMINo
"APPLICATION"

SW

Device

Figure 7. SERVER path using MAILBOX

Transgarent-mode (see page 53) must be used to
give input to an application running inside target
(OPCOM or MICE—II).

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

52 Chapter 3 DOMINO Monitor

3.2.4 USE-MAILBOX

USE—MAILBOX (ON/OFF: /OFF/ >

Purpose A mailbox can be used in addition to the terminal
line or Bopcom server paths to speed—up
communication. It resides in physical memory and
has installation-dependent characteristics.

This command turns the use of the mailbox OFF or
ON for communication in subsequent commands.
Communication between DOMINO Monitor and DOMINO
controller is tested if the use of it is turned
ON. The mailbox definition remains even if the use
of the mailbox is turned OFF.

NOTE! The reset commands will turn off the use of the
mailbox as the DOMINO controller loses information
about where the mailbox is after this command is
given.

3.2.5 LIST-MAILBOX-PARAMETERS

Purpose List the parameters defining the mailbox.

Example

DM(SERVER): USE-MAILBOX ONJ
DM(SERVER): LIST-MAILBOX—PARAMETERSJ
Use-Mailbox : 0N
ND—lOO page number for MF page zero : 14008
MF page number for mailbox : 400B

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 3 DOMINO Monitor 53

3.2.6 TRANSPARENT-MODE

TRANSPARENT—MODE (<Path name>)

Purpose This command connects the user directly to the
target. If the standard path is ASYL or SERVER,
this is the OPCOM module. If the path is MICE,
this is the MICE-II command processor.

All characters typed by the user go directly to
the target, and the DOMINO Monitor only registers
the transfer. The same applies to data sent from
the target to the user. This command is terminated
by typing the break character. Default value for
the break character is e (ASCII 100B), but it may
be changed with the SET-BREAK-CHARACTER command.

Transparent mode must be used for giving input to
an application running inside the target.

Path name If the optional parameter is not given, the
current path is used. It has to be given if it is
impossible to open a path to the target.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

54 Chapter 3 DOMINO Monitor

3.2.7 SET-BREAK-CHARACTER

SET-BREAK-CHARACTER (Break character /1OOB/ >

Purpose Change the character that terminates the
transparent communication mode initiated by the
TRANSPARENT-MODE command.

Break The ASCII value of the break character. Select a
character value not used by the application running inside

the target.

Control characters can be used as long as they are
not used by the application. This is because the
SINTRAN line-editing characters do not apply when
the DOMINO Monitor is in transparent mode.

3.2.8 LIST-BREAK-CHARACTER

LIST-BREAK-CHARACTER

Purpose This command displays the break character that
terminates the TRANSPARENT-MODE command.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 3 DOMINO Monitor 55

3.2.9 SET-DOPCOM-PARAMETERS

Purpose

SCH-TO

Succ'

IniHold*

DLoad#

Genera1#

Several parameters concerning the communication
between DOMINO Monitor and the target may be
changed using this command. The unit of measure
for time parameters is BTU. One Basic Time Unit is
20 ms.

SOH timeout. The maximum time to wait for
receiving the Start Of Header message from the
DOMINO controller after a function has been asked
for.

Successive timeout. The maximum time to wait for
reading the next data unit within a message.

Initial hold. Not used in the present version of
the DOMINO Monitor.

Download retries. The number of unsuccessful
retries to make before aborting when downloading a
domain to the DOMINO controller.

General retries. The number of retries to make
after a communication error (e.g. the DOMINO
Monitor gives an unexpected answer, or a message
has been destroyed during transmission).

3.2.10 LIST-DOPCOM-PARAMETERS

Purpose List the parameters that determine the
communication behaviour between the DOMINO Monitor
and the DOPCOM module. They are displayed in the
same order as they appear in the SET-DOPCOM--
PARAMETERS command.

8051aeQin’rran Data (<3 9011

Scanned by Jonny Oddene for Sintran Data © 2011

56 Chapter 3 DOMINO Monitor

3.2.11 SET-MICE-PARAMETERS

Purpose

Clear“

Men“

Reg“

IStep*

Step*

Type“

DLd”

DLd#

EscDel

Several parameters concerning the communication
between DOMINO Monitor and the MICE-II may be
changed by using this command. The unit of measure
for time parameters are either ms or BTU (1 BTU =
20 ms). Several parameters are needed for this
communication, as the DOMINO Monitor requests
functions on MICE by simulating operator input
directly to the MICE command processor.

Clear timeout. The maximum time (ms) available for
clearing the MICE output buffer.

Memory timeout. The maximum time (ms) to wait
after requesting a memory location a break point
change from MICE, or after giving the G0 command.

Register timeout. The maximum time (BTUs) to wait
after requesting a register from MICE.

IStep timeout. The maximum time (BTUs) to wait
after requesting the single—step execution mode
from MICE.

Step timeout. The maximum time (BTUs) to wait for
data about a single step.

Type timeout. The maximum time (BTUs) to wait when
opening a path to MICE and requesting target
identification.

Download timeout. The maximum time (BTUS) to spend
on downloading a domain for emulation in MICE. The
timeout value includes all successive retries.

Download retries. How many retries to make after
an unsuccessful download of a domain to the DOMINO
controller.

ESCape delay. The time to wait (BTUs) between
receiving the results of a requested function and
sending ESCape to acknowledge MICE.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 3 DOMINO Monitor 57

3.2.12 LlST-MICE-PARAMETERS

Purpose

3.3 Execution

List the parameters that determine the
communication behaviour between DOMINO Monitor and
MICE-II.

commands

The commands in this category are used for
loading, starting and stopping execution of an
application.

3.3.1 SOFT-RESET

Purpose This command will perform a software reset on the
target. The target enters aborted state. The reset
is performed by sending a specific command to the
target, which means that the effect of this
command depends on whether the target is running
and able to receive the SOFT-RESET command or not.
This command is only available when using ASYL or
SERVER as the current path.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

58 Chapter 3 DOMINO Monitor

3.3.2 HARD-RESET

Purpose

NOTE!

HARD-RESET

This command performs a hardware reset on the
target. The target state becomes aborted. Both the
processor and the device hardware on the target
will be put into an initial state. This command is
particularly useful after a software crash in the
controller. This command is only available when
using MICE or SERVER as path.

Even if OPEN-PATH to a controller does not work,
it is possible to send a HARD-RESET to that
controller. After HARD-RESET, the user should wait
until the selftest has terminated (5-15 seconds
depending on memory, SCSI and controller type).

3.3.3 STOP-TARGET

Purpose The execution of the current application stops.
and the target state becomes stopped.

If the application, for example goes into an
endless loop. and is outputting something on the
terminal. user commands will still be received by
the DOMINO Monitor. Only echo from what the user
types, and output from the Monitor may disappear
between the application output. In this case both
the DOMINO Monitor and the application may be
temporarily stopped by XON/XOFF. CTRL+S halts the
program, while CTRL+Q resumes execution.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 3 DOMINO Monitor 59

3.3.A PLACE-DOMAIN

Purpose

Domain

PLACE—DOMAIN (Domain)

The domain is placed in the target's memory and
made ready for execution. The program counter is
set to the start address of the domain. The target
state must be stopped or aborted before this
command is given.

Name of the domain. It may be preceded by a
SINTRAN user-area in parantheses. COSMOS Remote
File Access is also supported. so the complete
domain specification becomes:
System(Remote-user(Password)).(User)Domain
Both old and new domain format are supported.

Example

DM(SERVER): SOFT-RESETJ
DM(SERVER): STOP-TARGETJ
DM(SERVER): PLACE MY-APPLICATIONJ

Placing (PACK-ONE:DOMINO-USER)MY-APPLICATION:DSEG
1042000B is current address.
243306B bytes transmitted.

Placing (PACK-ONE:DOMINO-USER)MY-APPLICATION:PSEG
410000B is current address.

10Q20B bytes transmitted.

Z The application is now ready to be started

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

60 Chapter 3 DOMINO Monitor

3.3.5 DOWN-LOAD

DOWN—LOAD (File to download)

Purpose Down-load a file from the SINTRAN file system into
the controller.

File to The file must contain Motorola S—record format.
download S7, S8. or S9 records will modify the PC—register

according to the given start address when the RUN
command is used.

The Object Converter can be used for making S-
records from :NRF format. It can save some time
during down-loading, as program variables with no
initial values (for example stacks, heaps) are not
loaded. On the other hand, S-records are in ASCII
format which must be converted into binary format
during loading. Debug information is not supported
by the Object Converter.

Example

% use Object Converter to make Motorola format of domain

DM(SERVER): SOFT-RESETJ
DM(SERVER): STOP-TARGETJ
DM(SERVER): DOWN-LOAD MY-APPLICATIONzMOBJJ

300 is the current record number
Downloading finished. 318 records transmitted.

% The application is now ready to be started by RUN command

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 3 DOMINO Monitor 61

3.3.6 GO

GO (<Address))

Purpose Start execution of a program from (Address).

Address The (Address) is loaded into the PC-register and
execution started. If no (Address) is given,
execution starts from current value of the PC-
register.

Example

% Assumes that domain in Motorola format is loaded. Its S8
Z record is 8804020204F3 giving start address 020204H.

DM(SERVER): GO OZOZOHHJ

3.3.7 RUN

Purpose The current domain in the target is started at its
start address (main entry). This command requires
that a domain has already been loaded by use of
either PLACE-DOMAIN or the DOWN-LOAD command.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

62 Chapter 3 DOMINO Monitor

3.3 8 ATTACH-DOMAIN

Purpose

Domain

ATTACH-DOMAIN (Domain)

This command is used when a domain is already
placed in the target's memory and has been aborted
during execution. The command allows investigation
of the aborted domain.

The name of a domain in the specified description
file. The (Domain) may be prefixed with COSMOS RFA
notation:
System(Remote-user(Password)).(User)Domain

3.4 Macro commands

Macros provide a convenient mechanism for
executing the same set of commands repeatedly. As
macros may have parameters, they can be regarded
as user-defined commands. -

Macros are particularly useful for programs
requiring certain initialization commands to be
given before execution starts, or for executing a
set of debug commands.

Each user may in fact build his own set of macros
from:

o DOMINO Monitor commands

o SINTRAN commands

0 other macros

Macros may be saved permanently in files, or they
may just be temporary, vanishing when the DOMINO
Monitor is left.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 3 DOMINO Monitor 63

3.h.1 DEFINE-MACRO

Purpose

Macro name

Macro body

Parameters

DEFINE-MACRO <Macro name)
(Macro body) END-MACRO

Compose a new macro from the basic commands or
other macros.

Macros defined by this command are temporary.
.Permanent macros may be prepared by an editor on a
file. The DOMINO Monitor expects file type :MACR.
The number of temporary macros that may be defined
are only limited by internal storage (heap)
reserved for macros.

The name of the new macro. It can consist of any
number of visible characters except space or
comma.

Every line following the DEFINE-MACRO command is
taken as the macro body until the END-MACRO is
encountered. It must be written on the beginning
of a new line. It can be abbreviated to just E.
The macro contents will not be checked before
execution.

It is possible to define formal parameters within
the macro body. They are replaced by actual
parameters when the macro is called. A parameter
is defined by

PARAMETER (Parameter name) (Default value)
(Prompting text)

PARAMETER is a keyword that cannot be abbreviated
or used for other purposes. If spaces or commas
are part of any of the parameter's parameters.
they must be enclosed in single quotes ('). Quotes
are permitted but not required otherwise.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

64

Default
value

Prompting
text

Parameter
scope

Chapter 3 DOMINO Monitor

The first actual parameter supplied in the macro
call line replaces all occurrences of the
(Parameter name) used in the first PARAMETER
definition. The second actual parameter replaces
(Parameter name) used in the next PARAMETER
definition, and so on. Excessive parameters are
ignored.

If the actual parameter is empty, the default
value is used when expanding the macro. Parameters
without default are replaced with an empty string
when not specified.

When a macro is executed. all parameters are
prompted for. That means successive parameters
cannot be specified on the same line.

Parameter declarations are legal anywhere in the
macro body. This means that parameters can be
declared after some macro statements. The scope of
the declaration is from the declaration point to
the end of the macro (provided that it is not
redeclared).

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 3 DOMINO Monitor 65

3.A.2 EXECUTE-MACRO

Purpose

Macro name

Parameters

EXECUTE-MACRO <Macro name), (<Parameters> ...)

The macro with the specified name is processed.
Formal parameters are substituted with actual
parameters.

The name of an existing (temporary or permanent)
macro.

Actual parameters to replace the formal parameters
in the macro. Each parameter must be specified on
a separate line. The parameter may contain any
character except space or comma.

The words EXECUTE-MACRO can often be left out. The
search strategy used for looking up a command or
macro is as follows:

0 search through list of DOMINO Monitor
commands. If a match is found, the
corresponding command is processed.

0 search through list of temporary macros. If
any matching macro is found. it is processed.

0 test for permanent macro. If a file matches
the specified string (default file type
:MACR), it is taken to be a permanent macro
and processed. The file system will ensure
that, if a file with the specified name is not
found under the current user. user SYSTEM's
default directory is searched.

o If not yet found, it is assumed not to exist.

Scannemnnmddanp fnr Qin’rrsm Data (<3 9m 1

Scanned by Jonny Oddene for Sintran Data © 2011

66 Chapter 3 DOMINO Monitor

Note that the extension (directoryzuser) cannot be
put in front of a file name specification, as it
is taken to be a path specification. Consequently
a macro must either reside on the current user—
area or on user SYSTEM. File type extension may be
used to overrule the default :MACR.

Temporary macros may be defined within permanent
macros. Such temporary macros will be erased when
the processing of the permanent macro is finished.
This feature may only be used if the macro is
prepared by an editor.

If a macro is given the name of (or a legal
abbreviation of) a DOMINO Monitor command,
EXECUTE-MACRO may not be left out.

Example

DM: DEFINE-MACRO ?J
@WHO % a simple SINTRAN command
END-MACROJ

DM: ?
===> 768 YOUNG-HACKER

Example

NEW P1

RUN

DM: DEFINE-MACRO START—DOMAINJ
PARAMETER P1,,'User name ' % Enter user-area for application

OPEN-PATH ASYL ASYL-DISC
USE-MAILBOX 0N 1100B % Use ASYL and mailbox
PARAMETER P2,,‘Domain '

PLACE-DOMAIN P2 % Place and start application

END-MACRO

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 3 DOMINO Monitor 67

3.A.3 RESUME-MACRO

Purpose If the DOMINO Monitor is not able to carry out a
statement in the body, the macro is aborted. This
command makes it possible to force the processing
of it to continue. The macro is resumed at the
statement following the one where it was
interrupted.

Example

DM: EXECUTE-MACRO UNRELIABLEJ
DM: OUTPUT—FILE LOG-FILEzSYMB

N0 SUCH FILE NAME

CURRENT MACRO ABORTED

DM: RESUME-MACROJ % ignore that log-file is missing
DM: PLACE-DOMAIN MY-APPLIC
DM: RUN

3.A.A ERASE-MACRO

ERASE-MACRO (Macro name)

Purpose The temporary macro is erased (deleted). Permanent
macros are erased by using the SINTRAN command:

@DELETE-FILE (Macro name>zMACR

Macro name The name of an existing temporary macro;

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

68 Chapter 3 DOMINO Monitor

3.h.5 DUMP-MACRO

Macro name

DUMP-MACRO (Macro name)

The named temporary macro is written to a file
with the same name as the macro. The macro becomes
permanent and can at a later time be executed by
using the macro name as a command. If the file
does not exist, it will be created. The default
type of the file is :MACR. The macro name must
therefore be an acceptable file name (any
combination of letters, digits and hyphens of
maximum 16 characters).

The name of an existing temporary macro. If it
does not exist. an empty permanent macro is
created.

3.4.6 LIST-MACRO-NAME

Purpose

Macro
names

LIST—MACRO-NAMES (Macro names)

The names of the macros with names matching the
specified name are listed on the output file. Only
temporary macros are listed. Permanent macros are
listed by the SINTRAN command:

@LIST-FILES (Macro name>zMACR,L

Macro names or abbreviations of names of the
macros to be listed. Default is all macros
defined.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 3 DOMINO Monitor 69

3.h.7 LIST-MACRO-BODY

LIST-MACRO—BODY <Macro name)

Purpose The bodies of the macros matching the specified
name are listed on the output file. Only temporary
macros may be listed. Permanent macros have to be
inspected in an editor.

Macro name Macro name of macro body to be listed.

3.5 Debugging commands

The DOMINO Monitor has several facilities for
debugging an application. The basic commands in
the DOMINO Monitor allow for hardware-oriented
debugging at the assembly level. In addition, a
special version of the Symbolic Debugger has been
made available in the DOMINO Monitor. It allows
inspection of the program by symbolic variables
and routine names as used in the source code.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

70 Chapter 3 DOMINO Monitor

3.5.1 DEBUGGER

Purpose Enter the integrated Debugger in the DOMINO
Monitor.

The commands of the Debugger are documented fully
in the manual Symbolic Debugger User Guide (ND—
860158) .

The DOMINO Debugger can only be started if a
domain has been placed in the controller with the
command PLACE-DOMAIN, and this domain is the one
to be debugged. The Debugger communicates with the
target in transparent mode. The target state must
be stopped or aborted when entering the Debugger.

In order to use symbolic names, the program must
be compiled with the DEBUG-MODE option in the
compiler turned 0N. If the DEBUG—MODE option is
OFF, the DOMINO Debugger may be used, but no
symbolic references can be made. All debugger
information is stored together with the object
code.

It is possible to exit and reenter the Debugger
without losing any context (for example for
performing other Monitor commands).

DM(ASYL): PLACE—DOMAIN MY—APPLICATIONJ

DM(ASYL): DEBUGGERJ
DOMINO Symbolic Debugger.
PLANC PROGRAM. MY_MODULE.MY_MAIN.186

% Main entry at line 186 in source program
$RUNJ

Connecting to target. Break character is: 1008

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 3

ACTIVE-
ROUTINES

ALIGN-
LISTING

BREAK

BREAK-
ADDRESS

BREAK-
RETURN

DOMINO Monitor 71

The following gives an overview of the available
commands in the DOMINO Debugger.

List current call hierarchy.

Adjust line numbers of current program to
correspond to an old listing.

Set break point at one of the items routines.
labels or source line numbers. A line number is
given relative to the start of the program. The
previous break point defined by this command (if
any) is reset.

An optional parameter is present. It allows for
specification of either <Count> or <Condition>.

(count), tells how many times program control
shall pass the breakpoint before execution halts.
The execution halts just before performing any
statements of the specified item.

(<condition>) is for giving a Boolean expression
constructed of constants, variables and the
operators (+ — < > >< * / ** =); which must
be true when the breakpoint is reached, for
execution to halt.

Set break point at program address. This commands
resets any previous breakpoint.

Break at return from current routine. Error code
is displayed. Note that program execution
continues.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

72

CLOSE—
HISTOGRAM

COMPARE-
DATA

COMPARE-
PROGRAM

CONTINUE

DISPLAY

EXIT

FIND-SCOPE

FORMATS-
DISPLAY

FORMATS-
LOOK-AT

HELP

INCLUDE-
COMMANDS

LOOK-AT-
XXXX

Chapter 3 DOMINO Monitor

Erase information accumulated in the histogram.

Compare data of running program with :DSEG file of
source program. Differences are reported.

Compare program code with :PSEG file of running
program. Differences are reported.

Resume execution of program.

Display variables in current scope.

Resume DOMINO Monitor.

Find scope corresponding to a program address.
Returns name of module, routine and line number
relative to start of routine.

Set format(s) used by DISPLAY command.

Set format(s) used by LOOK-AT commands.

List commands and parameters.

Make all permanent macros on a file available.

Inspect DATA, PROGRAM, REGISTER or STACK.
Subcommands similar to those in the DOMINO
Monitor's LOOK—AT. Use HELP within LOOK-AT to get
a list of subcommands.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 3

LOOK-AT-
LIST

MACRO

PRINT-
HISTOGRAM

RESERVE-
TERMINAL

RESET-
BREAKS

RUN

SCOPE

SET

DOMINO Monitor 73

Displays records in a single-linked list (linear
list). The data structure is identified by a
pointer to head of the list, (start), and a
pointer within the record to next, (link). The
parameter (count) gives the number of records to
be displayed. Type CR to display next record.

Erase, list or build a macro. The macro is listed
if no parameters given. It is erased if no body is
given as 2. parameter.

List the information accumulated in the histogram
on an (Output File).

Reserve an additional, free terminal. The user
communication with the Debugger switches to this
terminal. Communication with the application still
goes via the first terminal.

Reset current breakpoints.

Start program at specified program address.
Execution continues if no address is given. The
DOMINO Monitor connects to the target. The break
character must be typed to return to the
Debugger's command processor.

Switch observation scope to specified, active
module or routine. Default is the current scope.
This command does not affect the program
execution, only the set of variables that may be
inspected.

Assign value to a variable. The value may be a
constant or an expression. The variable may be
simple or composite.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

74 Chapter 3 DOMINO Monitor

SET- Define a program area to logged in the histogram.
HISTOGRAM The histogram gives the percentage of CPU time

spent on different program parts. The program area
is identified by the parameters (Start address)
and (Maximum address). The program area is divided
into (interval) equal partitions, logged
individually. The maximum is 64 intervals.

This command can be repeated several times to
cover several program fractions in the histogram.

STEP Step through the program instruction-by-
instruction. The (count) parameter must be -1. The
optional parameters ((low)) and (<high)) specify
the program area where the step mode is active. If
not given, step mode is used on the entire
program. The instruction executed is output. Each
CR typed causes execution of the next instruction.

PROGRAM- Print a map of a specified module or routine. The
MAP following is output: Program area (addresses),

entry point, stack demand, variables with type and
initial values. This is very useful when doing
assembly—related debugging. By giving this command
in a mode job, you may obtain a list to be printed
on paper.

USE- Switch the use of the histogram ON or OFF.
HISTOGRAM Information is only accumulated in the histogram

when this switch is ON. No information is erased
before CLOSE-HISTOGRAM is given.

Operators The following operators are available in most
expressions: + -Shift Addr Mod TypeOf * /
** (dot). Symbolic names cannot be

abbreviated as they have to be unique.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 3 DOMINO Monitor

Some examples

$BREAK-ADDRESS Addr((Routine name)) % same effect as BREAK

$BREAK-ADDRESS Addr((Line number)) X --—- " ----

$DISPLAY (Pointer name) % inspect pointer

$DISPLAY Ind((Pointer name)) % inspect data element
x of pointer

$DISPLAY Addr((Variable Name)) 1 address of variable

Integer : i % somewhere in source
13 =: i

$DISPLAY ADDRglz % verify I has changed
ADDR(I) = 000004000448
$COMPARE-DATA .
Low: 4000448 % segment no ' address
Low: 400044B
D 000004000448: 00B CHANGED TO 015B

$DISPLAY
MaxChar=127 NoBytes=0
Prompt= (00000532364B;0:14) Default: (Nil;0:0)%byte pointers

$SET Notes = 125 % SET using constant
$SET NoBytes = MaxChar—Z Z SET using simple variable
$SET Default = Prompt % SET using composite data

Scanned by Jonny Oddene for Sintran Data © 2011

75

Scanned by Jonny Oddene for Sintran Data © 2011

76 Chapter 3 DOMINO Monitor

$DISPLAY
MaxChar=127 NoBytes=125
Prompt= (0000053236UB;O:14) Default= (Nil;0:0)%byte pointers

$SET IndfiPrompt) = 0 % clear buffer
$SET Ind(Prompt) = 'Hello'
$DISPLAY IndfiPromgt}
IND(PROMPT)=HELLO

X Suppose you want a histogram from line 20 to 34

$DISPLAY ADDR(;9); DISPLAY ADDR(34)
ADDR(20)=0..400036B ADDR(3u)=0..u002u23
$SET-HISTOGRAM 40003§B noozuzs 1n
$USE—HISTOGRAM ON
$BREAK 35
$M
.... % CPU-time per interval
$PRINT—HISTOGRAM [_ In this example is
APPLIC.20 o..uooo36B 5.80 almost all CPU—time
APPLIC.22 0..40006OB 0.00 spent outside the
.... logged program area.
APPLIC.33 0..“002348 0.00

NOTE! LOG-LINES and LOG—CALLS and some others commands are
not available. as DOPCOM does not support multiple
breakpoints

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 3 DOMINO Monitor 77

3.5.2 BREAK

Purpose

Address

Count

Commands

BREAK (Address) (<Count) /1/) (<Commands>)...

Set breakpoint at a program address. When the
breakpoint is reached, execution terminates and
control is passed to the command processor.

It is possible to set new breakpoints as long as
DOMINO Monitor has memory space to store
information about them. The breakpoints are active
until reset by the RESET-BREAKS command.

The program address where a breakpoint is to be
set.

How many times the program control shall pass the
breakpoint before breaking. The execution stops
just prior to executing the instruction at the
breakpoint address.

DOMINO Monitor commands to be performed when the
breakpoint is reached. Default is none. Maximum 7
commands can be given. It is legal to invoke
macros.

After a breakpoint has been reached, program or
data locations or the registers may be displayed
or modified. The next instruction to be executed
is by default the instruction pointed to by the
PC-register, but this may be overridden by the GO
command or the optional (Start address) parameter
of the STEP command.

Example

DM(SERVER):BREAK 400136B 1 LOOK-AT-DATA 67716OBJ
DM(SERVER):RUNJ

% Execute until breakpoint is detected, application
% terminates or application is aborted due to error.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

78 Chapter 3 DOMINO Monitor

3.5.3 TEMPORARY—BREAK

Purpose

Address

Count

(kxmnands

3.5.4 STEP

TEMPORARY—BREAK (Address) (<Count) /1/),
(<Commands>)...

Similar to BREAK except that, when the breakpoint
is reached, the breakpoint is reset.

The program address where the breakpoint is to be
set.

The number of times the program control should
pass the breakpoint before breaking. The execution
stops just prior to executing the instruction at
the breakpoint address.

DOMINO Monitor commands to be performed when the
breakpoint is reached. Default is none. A maximum
of 7 commands can be given.

Purpose

Start
address

Count

STEP <Start address) (<Count) /1/)
(<Commands>)...

Enter single step mode. If no parameter is given,
the instruction pointed to by the program counter
is disassembled and displayed.

By typing CR, the instruction pointed to by the
PC-register is executed. CR can be repeated
several times. Typing anything else causes return
to the DOMINO Monitor's command processor.

The program address where single-step execution
should start. Default is the current value of the
program counter.

The number of times the program control should
pass the (start address) before entering single
step mode. The execution stops just prior to
executing the instruction at this address.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 3 DOMINO Monitor 79

Commands DOMINO Monitor commands to be automatically
executed in single-step mode. Default is none. A
maximum of 7 commands can be given. The commands
are executed between each step. The STEP command
must not be called again.

Example

For i In 1:100 Do 1 source program area to be stepped
$* NOP % is a wait loop

Endfor

DM(SERVER): STEPJ
4010168: MOVE.Q #1,D0 X Initial value of 1
4010208: EXT DO; EXT.L DO z Sign extend DO
401024B: MOVE.L D0,67716OB % Save current i
40103OB: NOP % Body of loop
4010328: MOVE.L 677160B,DO % Restore current 1
4010368: ADDQ.L #1,6771608 % ++ 1 (next valid 1)
4010428: CMPI.L #1448,Do
4010508: BNE.S *—208 1 Repeat if i >< 100

3.5.5 RESET-BREAKS

Purpose All breakpoints are removed by using this command.

3.5.6 RESET-LAST-BREAK

When a breakpoint is encountered during execution.
this breakpoint may be removed and the original
instruction restored by executing this command.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

80 Chapter 3 DOMINO Monitor

3.5.7 DEBUG-STATUS

Purpose List information about defined breakpoints.

3.5.8 SET-SPECIFIC-ACCESS

Purpose

ON/OFF

SET-SPECIFIC-ACCESS (ON/OFF: OFF >

Turn on or off the specific memory access mode
used during debugging. If it is OFF when the LOOK-
AT command is used. the Monitor will prefetch a
whole block of data from the DOMINO controller's
memory. This happens even when only a single
memory location is to be displayed. If it is ON,
only the unit of information (byte. halfword or
word) actually needed at the moment will be
fetched.

It is a good rule to let the switch be OFF if
several locations are to be investigated at the
same time in the same memory area, and to let it
be ON for sporadic investigation.

3.5.9 MAIN-FORMAT

Purpose

Format

MAIN-FORMAT (Format: /OCTAL/ >

Set the numeric format to be used when displaying
numbers. Octal is set as main format when the
DOMINO Monitor is entered.

OCTAL, HEXADECIMAL or DECIMAL or abbreviation of
one of these.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 3 DOMINO Monitor 81

3.5.10 EXTRA-FORMAT

EXTRA—FORMAT ((Formats))...

Purpose Sets additional, numerical format(s) to be used
when displaying numerical values.

Formats Any of the formats BYTE, HALFWORD, ASCII, OCTAL,
DECIMAL, HEXADECIMAL. The names of the formats can
be abbreviated.

If no (Formats) are given. the extra formats are
switched off.

3.5.11 LOOK-AT-PROGRAM

LOOK-AT-PROGRAM (Address /0/)

Purpose Display and modify program data. Several
subcommands are available.

Address The memory address from where inspection should
start.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

82 Chapter 3 DOMINO Monitor

3.5.12 LOOK-AT-STACK

Purpose The current local data field is displayed. This is
the memory area pointed to by the current A6-
register (used as stack pointer), and contains
routine call information, such as address to local
data field and return address to calling routine.

Several subcommands are available. The subcommands
PREVIOUS and NEXT are only related to LOOK-AT-
STACK.

Subcommand Display the previous local data field (for example
PREVIOUS the local data field of the calling routine). This

command may be repeated until reaching the local
data field of the main program, which has the
lowest stack frame.

Subcommand Display the next local data field (for example the
NEXT local data field of the procedure called by the

current one). It is only valid to do this after
PREVIOUS. It is not possible to move beyond the
data field of the routine currently being executed
(the uppermost stack frame) of the current call
hierarchy.

Stack The stack frame format for ordinary routines
format (valid from H-version of the PLANC-MC compiler) is

as follows:

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 3 DOMINO Monitor

Byte
offset

OB STP <----- A6

4B Unused

IOB SMAX ——-

148 SYST

20B ERRCODE

24B Parameters &
. local data
I

fl
free stack .

area
.—

PREV < ————— A7 (USP/SSP/MSP/ISP)

RETLINK

Figure 8. PLANC—MC ordinary stack frame

STP - Points to the first free location of the stack.
STack Pointer

Unused

SMAX -
Stack Max

SYST

ERRCODE

The stack grows both upwards and downwards.

Reserved word for future extension.

83

Points to the top of the free stack. This is the
same as the A7-register for the current stack. The
variable is needed as there may be several stacks
in use. The value of A7-register changes after
each stack initialization (Inistack).

Reserved word for PLANC runtime SYSTem.

The value of ERRCODE of current routine.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

84

Parameters

PREV

RETLINK

ErReturn

Special
routine

Chapter 3 DOMINO Monitor

Actual parameters are placed on the stack in the
same order as they are declared. A routine with
in-value or out—value is passed in another way:
Simple variables and constants not exceeding 32
bits are passed via the DO-register. All other
variables and constants as pointer to the actual
parameter are passed via the AO-register.

The previous value of the A6-register. The
previous value of A7-register is A7 - 2 words.
Both registers are restored with previous values
at routine termination.

The return address of the calling routine. If the
routine terminates normally (not ERRETURN), this
address is incremented by two (bytes) when
returning (also called skip return).

If a routine makes error return (ErReturn), a jump
is made to the PLANC runtime routine #XRET. The
address of #XRET is always in the A5-register. The
#XRET routine performs error return to the
previous level. The current stack frame is popped
on the stack. The DO—register keeps the ERRCODE
value.

The instruction following a routine call (content
of address RETLINK) holds either a subroutine call
to the local exception handler, or a new jump to
#XRET if no local handler is defined (0n
RoutineError Do ... Endon). In this way control
passes to the next higher routine in the call
hierarchy. All routines at lower call levels than
the one having the exception handler are
terminated.

The Special routine cannot have parameters. except
for the in-value and out-value. No local stack is
initiated for the routine when called. The routine
has to do this itself if any local data is to be
used.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 3 DOMINO Monitor 85

Native The Native routine is well suited for use by
routine exception handlers. It can have in-value and out-

value (which an interrupt routine usually does not
need). but no formal parameters. The local stack
is initiated when activated, allowing for local
variables. A slightly different stack frame is
used:

Byte
offset . free stack

—MB area

OB STP < ————— A6, A7

QB Unused

IOB SMAX

14B SYST

20B ERRCODE

2MB Local data

PREV 0—

RETLINK

Figure 9. PLANC-MC native stack frame

STP - STP points to 1. free location after local data
STack Pointer (PREV). The stack grows only from high to low

memory addresses. This is similar to how the CPU
uses the stack.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

86

PREV

RETLINK

Native
restrictions

Chapter 3 DOMINO Monitor

The previous value of the A6-register. The
previous value of the A7-register is STP - 2
words. Both registers are restored with previous
values on termination of the routine.

Return address to calling routine.

0 It is not possible to make an error return
from a native routine.

0 An ordinary routine can call a native routine
but not the opposite way around.

0 A native routine can call other native
routines.

o A native routine can have ordinary routines as
inner routines.

O No inner PLANC routine can be called
recursively.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 3 DOMINO Monitor 87

3.5.13 LOOK-AT-RELATIVE

Purpose

Relative to

LOOK-AT-RELATIVE (Relative to) /A6/

Start listing of contents in memory relative to
either the contents of a register or absolute
address. Both absolute and relative addresses are
displayed. Several subcommands are present.

Any register or a numeric address. Default is A6-
register (PLANC stack pointer).

3.5.14 LOOK-AT-REGISTER

Name

LOOK-AT—REGISTER (Name) /PC/

The name of one of the registers. The specified
register is displayed in current main format. If
CR is typed, the next register in the sequence is
displayed. Several subcommands are present.

The registers are: PC, DO:D7, AO:A6. USP, SR. SSP,
ISP. MSP, VBR, SFC, DFC, CACR, CAAR. The A7-
register is at any time one of the stack pointer
registers: USP (User SP), SSP (Supervisor SP), MSP
(Master SP) ISP (Interrupt SP). Only M068020 has
the registers MSP, ISP, CACR and CAAR.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

88 Chapter 3 DOMINO Monitor

3.5.15 LOOK—AT subcommands

This set of subcommands can be used to inspect
several items in succession, change displayed
format, change items to be inspected, modify
contents of registers or memory.

EXIT Return to DOMINO Monitor command processor. In
addition to the command EXIT, both a full stop (.)
or a semicolon (z) terminate the LOOK-AT
subcommands.

HELP All subcommands matching (Command) are output
together with their parameters.

PERMIT- In order to avoid unintended modification of the
DEPOSIT memory or a register, the command PERMIT-DEPOSIT

must be typed before the depositing of a new value
can take place. An exception is when the CODE
command is used.

«J Carriage return causes display of the next item
(register, instruction or memory location).

(A), (N) / Dump (N) bytes starting at address (A). (A) may
(file) +J also be a register name. If (file) is given, the

dump is written into this file.

Any of the parameters may be omitted, causing the
default values to be used. Default value for (A)
is the current address inspected, default value
for (N) is the number of bytes within the current
format, while omitting (File) will cause the
output to be written to the standard output file
(for example, terminal).

(n) ~J Modifications of memory or registers are made by
typing the new value (n) followed by CR. (n) is
deposited into the current memory address or
register inspected. The current address can be
altered by typing (A) / CR.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 3 DOMINO Monitor 89

Example

DM: LOOK—AT—REGISTER PCJ
PC: 7000003
PC: 7000008 HOOOOOB J % PC is changed

PC: NOOOOOBJ

PERMIT-DEPOSITJ

BL
X Verify change

'(string>' «J

CODE
(Instruction)

The memory can be modified by an ASCII string by
enclosing the (string) in single quotes. TWO
successive quotes are interpreted as one single
quote (for example "' becomes ').

Assemble symbolic assembler instruction and
deposit into memory. Several instructions can bev
given simultaneously by separating each with a
semicolon (;). The instruction(s) will be
assembled and stored, starting at the current
location. Program memory may also be modified
numerically by first typing BYTE, and thereafter
modifying bytes in the main format (see the MAIN-
FORMAT command on page 80).

Example

% Removing a test by patching

DM(SERVER): LOOK—AT-PROGRAM 40016OBJ
4001603: BNE.B ”-223 CODEJ
Instruction: NOPJ
#001603: NOP

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

90 Chapter 3 DOMINO Monitor

BREAK Sets a breakpoint in the current address. The
command is similar to the BREAK command.
Parameters are <Count> and <Commands>.

Example

DM(SERVER): LOOK-AT—PROGRAM 40016OBJ
4001603: NOP BREAKJ
4001603: BKPT #7 BREAK

X The original instruction is copied to the breakpoint
1 table inside OPCOM, before being replaced by the BKPT
X instruction

TEMPORARY— Sets a temporary breakpoint at a current address.
BREAK The command is similar to the TEMPORARY—BREAK

command in the DOMINO Monitor. Parameters are
(Count) and (Break).

Change When displaying memory it is possible to use BYTE,
format HALFWORD (16 bits), or WORD (32 bits) as main

display format. DISASSEMBLE can be used for
getting symbolic assembler instructions (for
example when moving into a memory area containing
instructions when using LOOK-AT—DATA).

Additional display formats may be obtained by
typing EXTRA—FORMAT followed by a list of formats.
This command is similar to the global EXTRA-FORMAT
command. except that the extra formats are only
valid within LOOK-AT.

COMPUTE Evaluates and displays the result of an arithmetic
(Expression) expression. It is displayed in all numeric

formats. The command is similar to the global
COMPUTE command.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 3 DOMINO Monitor 91

ABSOLUTE Displays an item from an absolute address.
(Address) Addresses are otherwise taken as relative

addresses.

Change In a LOOK—AT command, it is possible to change to
mode one of the other LOOK—AT commands by typing one of

the subcommands below. This is equivalent to
EXITing from LOOK-AT and typing another LOOK-AT
command. This feature saves some typing work. The
modes available are:

0 DATA (Address)

0 PROGRAM (Address)

0 REGISTER (Name)

0 STACK

O RELATIVE (To)

3.6 DOMINOS process monitoring

These commands are only relevant when running
applications under control of DOMINOS.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

92 Chapter 3 DOMINO Monitor

3.6.1 PROCESS-STATUS

Purpose

Process
name

PROCESS—STATUS (Process name)

Print status of the processes matching (Process
name) on the output file.

Any
all

The

abbreviation for a process name. Default is
processes.

information given for each process is:

Process name

Process state (DORMANT, BLOCKED, READY or
RUNNING)

Process priority

Event buffer (events set but not yet read by
the application)

Program Counter

CPU time used, measured in units of 5 ms.

If the parameter (Process name) matches exactly
the name of an active process (not DORMANT), the
process context is displayed:

Data registers D0...D7

Address registers AO...A6

User Stack Pointer USP

Status Register SR

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 3 DOMINO Monitor 93

Note that the register contents is undefined for a
DORMANT process.

If the process is scheduled after a round-robin
strategy (among processes with equal priority),
time limit is displayed. That is, how many time
units to use before being moved backwards in the
ready queue. 0 is interpreted as 2‘*32 time units
(244 days 15 hours).

If the processor is running in supervisor mode at
the moment (for example. DOMINOS service is being
executed for a process or an exception handler is
active after an interrupt), SSP (Supervisor Stack
Pointer) is displayed.

If the process is BLOCKED when waiting for
event(s) to occur, the event mask is displayed.

The READY queue of DOMINOS is displayed, showing
the processes ready to run by name in the order
they will be assigned to the CPU. The first
process is the currently executing one.

Example

DM(SERVER): PROCESS-STATUSJ

process state prio event buffer p-counter time used
PROl blocked 1 0 0 200
PR02 dormant 6 0 20 90

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

94 Chapter 3 DOMINO Monitor

3.6.2 LIST-TIME-QUEUE

Purpose

Interval

LIST-TIME—QUEUE (<Interval /1/ >)

List once or periodically all entries in the time
queue.

Time in seconds between each report.

Each entry (if valid) contains the following
information:

o The name of the process to receive the time
scheduled event(s) when the delay time
expires.

o The event(s) to be set.

0 The remaining delay time (in 5 msec units).

0 The interval time (in 5 msec units). The delay
time to be used together with periodic
scheduled events. 0 means no periodic
scheduled events.

There may be entries in the queue which are no
longer valid. since the service request has been
cancelled. In this case the word "VOID" is
displayed.

PROl

Example

DM(SERVER): LIST-TIME-QUEUEJ
process events delay interval

2 250 0

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 3 DOMINO Monitor 95

3.7 DOMINO controller commands

These commands are related to the hardware
environment in the controller.

3.7.1 SET-PROTECTION

Purpose

Address

Supervisor
mode

User mode

SET-PROTECTION (From address) (To address)
(Supervisor mode) (User mode)

The DOMINO controller has a flexible memory
protection system. The memory protection can be
changed dynamically while running programs. The
microprocessor's user and supervisor mode of
operation can be given separate access rights for
the same memory area. The command can be repeated
to protect several areas.

When the controller starts. a default protection
setting is made. This is modified if DOMINOS is
loaded and started.

The (From address) and (To address) give the
memory area to be protected. Seen from hardware
the local memory is divided into segments of 1024
bytes each which can be protected individually.

Access rights for area when the microprocessor
runs in supervisor mode.

Access rights for area when the microprocessor
runs in user mode.

The basic legal access rights are: Fetch, Read-
Write, Read-Only, No-Access. Fetch means that the
contents of the memory area can be executed as
instructions. Fetch should normally not be used
together with Read and Write. Two PIOC-compatible
modes are supported instead.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

96 Chapter 3 DOMINO Monitor

Supervisor User

Any—Access Any-Access
Read-Fetch Read-Fetch

Table 2. PIOC-compatible memory protection

There are four combinations of user and supervisor
mode that are not allowed.

Supervisor User

Fetch Read-Write
Fetch . Read—Only
Read-Write Fetch
Read-Only Fetch

Table 3. Memory protection not allowed

3.7.2 USE-PROTECTION

USE-PROTECTION (ON/OFF: /0FF/ >

Purpose Switches the entire memory protection system ON or
OFF. The memory protection is switched on during
controller initialization, and after having
started DOMINOS.

3.7.3 LIST-PROTECTION

Lists the memory-protected areas.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 3 DOMINO Monitor 97

3.7.A USE-CACHE

Purpose

USE-CACHE (ON/OFF: /OFF/ >

Switches the use of the MC68020's cache ON or OFF.
The use of the cache is switched on during
controller initialization.

3.7.5 TARGET-IDENTIFICATION

Purpose

CPU Type

PROM 1
version

PROM 2
version

RAM size

Standard
tests

Device
tests

Trace
module

Trace PROM
version

Gives mainly static information about the target
by displaying the following:

MC68000, MC680lO. MC68012 or MC68OZO.

Version and revision number of DOPCOM.

Version of optional (device-dependent) PROM.

Size of controllers local memory in bytes and
pages.

Indicates whether the self-tests have been
correctly executed or not.

Indicates whether the optional (device-dependent)
tests have been correctly executed or not.

Indicates whether trace module is present or not.

Version of the trace module if present.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

98 Chapter 3 DOMINO Monitor

3.7.6 TARGET-STATUS

Purpose

Controller
state

Cache mode

Gives information about the current state of the
target by displaying:

The current state of the application program can
be:

0 running : Application is running normally in
the controller.

0 stopped : Application is suspended or has
properly terminated.

o aborted : Application has been stopped due to
serious error.

0 Waitcount: A power drop has moved the
controller to this state. "GO" will
continue the application.

The following three states are internally used,
and should not be visible with the TARGET-STATUS
command:

0 prestep

I stepping

o PFoccured

Indicates whether the MC68020's cache is being
used or not.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 3 DOMINO Monitor 99

3.7.7 SCOPE-LOOP

Purpose

Loop type

Data type

Address 1
and 2

Pattern 1
and 2

SCOPE-LOOP (Loop type) (Data type) (Address 1)
(Address 2) ((Pattern 1) (Pattern 2))

Defines and starts a short program loop. This is
intended specifically for hardware debugging via
oscilloscope, logic analyzer or tracer. The loop
consists of two memory accesses followed by
optional compare of data.

Read. Read—Compare, Write, Write-Read, Write-Read-
Compare

Byte, halfword or word (32 bits).

The memory addresses to be accessed as defined by
Loop type

If the loop type includes write of data, Pattern 1
is written into Address 1, and similarly for the
second pair of parameters. If the loop type
includes Compare, the patterns are used as "the
data expected".

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

100

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

101

Chapter 4 Applications in DOMINO

4.1 Getting started

In this section, you find a small example of how
an application is written. loaded by the DOMINO
Configurator and run in the controller. It shows
what is required of a minimum DOMINOS
configuration with one trivial application
process. The application runs in an endless loop
and prints a message on the terminal every second.

The routine ERRCHECK in the following example is
to be imported in many of the subsequent examples
for handling the return status of DOMINO services.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

102 Chapter u Applications in DOMINO

Source code for DOMINOS—TESTzPLNC

$Include DOMI—DEFINES:DEFS
Module Common

Export ErrCheck. WaitSeconds
Routine Integer, Void : Errcheck % display error code

If @ >< PIOK Then
Output(1,'A','$Error occurred, errcode = ')
Output(1,'0',@), Output(1,'A','B')

Endif
Endroutine

PITUniWaitEV : WaitRec := (PIEvsel,(O,1),200,l,0)

Routine Integer, Void : WaitSeconds
1 block (suspend) calling process @ no. of seconds
@ * 200 =: WaitRec.PITimeOut
Addr (WaitRec) PIRUniWaitEv ErrCheck

Endroutine
Endmodule

Module PR02
Export PR02
$Include DOMI-APPL-IElPT
Import (Routine Integer, Void : WaitSeconds)
Integer Array : S (0:1023)
Program : PR02

IniStack S
Do % forever

Output(1,'A','$PR02 running')
1 WaitSeconds

Enddo
Endroutine

Endmodule

Module Auto_Start
Export Auto_Start
$Include DOMI-APPL-IE:IMPT
Import (Routine Integer, Void : ErrCheck)
Import (Program : PR02)
Integer Array : S (0:1023)
Constant Prior = 5
PITCreate : CreRec := (O,'PR02',PIABegin+Prior,Addr(PR02))
Program : Auto_Start

IniStaCk S
Output(1,'A','$Creating process PR02')
Addr (CreRec) PIRCreate =: Errcode
Errcode Errcheck

Endroutine
Endmodule

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 4 Applications in DOMINO 103

o DOMINOS expects that the process Auto_Start is
exported, and that it takes care of starting
other processes. Auto_Start is automatically
given the name PR01 by DOMINOS.

o Auto_Start runs with priority 1, which is the
lowest possible one. Each time a process is
created and ready to run ("create and go").
the queue of runnable processes is scheduled.
If the new process has priority > 1, it will
immediately gain access to the CPU. Thus.
Auto_Start does not get the chance to finish
its work first. This may be avoided by giving
Auto_Start higher priority than the processes
it is going to start.

0 The PLANC compiler automatically includes a
system call (MONO) to terminate the process at
the end of the program. Therefore, it is
usually not necessary to terminate the process
by an explicit call.

0 There must be at least one separate module for
each application process. Each process must
have a main program and its own stack.

0 The include file with imported routines must
be included in each module. The DOMINOS data
types need only be included at the outermost
level. These are PLANC restrictions.

0 Output can only be sent to the user's terminal
when the DOMINO Monitor is run, or when a
service terminal is attached to the
controller.

0 Instructions for using DOMINOS services and
for building records are given in the
remainder of this section.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

104 Chapter 4 Applications in DOMINO

Compiling DOMINOS-TESTzPLNC

@ND-fiOO-MONITORJ

*DEBUG-MODE ONJ

*EXITJ

ND—SOO MONITOR Version H00
N500: PLANC-MC68J
- MC-68020 Plano Compiler - May 15, 1987

*COMPILE DOMINOS-TEST:PLNC,,DOMINOS-TESTzNRFJ
335 Lines compiled. No diagnostics.

o It is convenient to compile the application
together with debug information, as there will
be no need for recompilation before debugging
when unexpected results occur. The debug
information does not slow down the execution
of the application. The only disadvantage is
that the :NRF and :LINK files become a little
larger.

DOMINOS has also been compiled together with
debug information, so all code in the DOMINO
controller (except OPCOM) can be referred to
by symbols in the Symbolic Debugger.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

105

Chapter 5 DOMINOS

DOMINOS is an operating system common to all the
DOMINO controllers. The functions offered by
DOMINOS are described in this chapter.

DOMINOS is backwards compatible with PIOCOS on
source level from the programmer's point of view,
except for a new naming convention used in include
files. DOMINOS is not an updated PIOCOS but a
completely new implementation, incorporating a
similar architecture but more efficient algorithms
and tools.

5.1 DOMINOS configuration

Configuration
language
syntax

From version BOO of DOMINOS the DOMI-GENERATOR is
replaced by the so called Configurator. Both
programs implement a similar solution: Depending
on user defined input a mode file is produced and
started. The input is now no longer the answer to
a lot of questions but the configurator resembles
a compiler which compiles a small "high—level
programming language" into a mode file.

The diagrams show the current syntax version of
the language. Words in lower case are reserved
keywords. upper case refers to a different syntax
diagram and <....) refers to user selectable file
names, routine names and so on. Note the use of
strings!

The diagram on page 107 shows the overall
structure of a configuration program. It starts
always with the definition of the target hardware.
For the time being only two device types are
possible: VENUSGLUE or MPMSTDDOMINO (= MPM based
STandarD DOMINO).

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

106 Chapter 5 DOMINOS

The next statement is optional and allows to
specify a string which — executed as a SINTRAN
command (the "@" must not be included into the
string) - activates the linkage-loader to be used.
If this statement is used. the programmer has to
be aware that one of the next versions of the
configurator will assume the use of the new ND—
LINKER. A change in the configuration program will
in this case become necessary.

The DOMAIN statement is NOT optional, however the
WITH part can be omitted with the result that the
same name is used for domain and segment. SINTRAN
filename syntax can be used for both domain and
segment.

THE PLACE statement defines-the base address of
DOMINOS, default is 4000008. which is the start of
the area reserved by the OPCOM module for
applications.

With the optional BUFFER statement the system
buffer pool of DOMINOS can be increased by the
amount of (value). No decrement is possible.

If the default name of the :NRF file containing
DOMINOS can not be used for example because a
SINTRAN user area will be included, the SYSTEM
statement must be used.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 5 DOMINOS 107

configuration for (controller type)

linker is '(linkage-loader)‘

—]

domain is (domain) with (segment)

(def. 4000008)
— place at (address)

—]

— buffer + (value)(def. 0)
El

~ system LOAD LIST

-—1

- USER ADDRESS PART

— EXTENSION PART

—]

PROCESS PART ——

I
endconfig

Figure 10. Structure of a DOMINOS configuration program

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

108

USER ADDRESS

Chapter 5 DOMINOS

The User address part is a complex and optional
statement which starts with the reserved word
USERADDR. Here specific user entries/addresses can
be specified. Each of the currently three
entry/address specifications is optional.

0 The first - starting with the reserved word
ENTRY allows to specify a different user entry.
By default the user entry is a PLANC PROGRAM :
AUTO_START . (This possibility is new in the
configurator, no predecessor in the GENERATOR.)

o The second specification - starting with "DATA
AT" allows to specify where the user data
should be located. Using this is necessary if
user program and data overlaps or if the user
wants to save memory space.

0 The last specification allows to change the
address range where processes (in M068K user
mode) have read/write access (in addition to
the user memory data area) on the MC68K bus if
at least one of the processes is created with
the "system" bit set. (refer PIRCreate service
in DOMINOS). The default is the range reserved
for the device part on DOMINO controllers.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 5 DOMINOS 109

useraddr

Egg? ifiWs‘fiXfiW _|

v .
< —l—lmsp‘memm (defid‘7’68885oom

L——{_Eg_J——
<addrgss>

——
(def- 77 777773)

I endaddr I

Figure 11. DOMINOS configuration. USER ADDRESS PART

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

110

EXTENSION

Libraries
must be
loaded twice

Chapter 5 DOMINOS

The optional complex EXTENSION statement,
specifies in the LOAD LIST all files which contain
user defined system extensions (UDSE). (Even files
which contain exception handlers must be included
into this list, although the exception handlers
are not specified here but at runtime with the
service PIRCREATE.)

Four branches inside the EXTENSION statement allow
to specify up to eight (2 x 4) process mangement
extensions (PME) in the BEGIN/END ACTION branches,
and up to eight user defined services (UDS) in the
CALL branch.

The EXTENSION statement must be closed with
ENDEXT. (Code and data of UDSE is now located in
DOMINO memory. that it can be called/accessed in
supervisor mode as well as user mode. The result
is that it is no longer necessary to have two
copies of the same part in memory, one in the UDSE
area and one in the process area.

Libraries MUST be loaded with the UDSE first, and
then once again with the processes. In the second
load only those modules which are accessed by
processes, and not by UDSE are placed in memory.
To drop loading the library first with UDSE will
not result in undefined references BUT IN MEMORY
PROTECTION VIOLATION when the UDSE calls the
library routines which then reside in process
memory!) For a detailed description of user
defined system extensions read the section DOMINOS
FOR ADVANCED PROGRAMMERS on page 151

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 5 DOMINOS 111

—| extension I—LLOAD LIST
]—|

action

ROUTINE LIST

Figure 12. DOMINOS configuration. EXTENSION PART

PROCESS PART The PROCESS statement contains for the time being
only a LOAD LIST specifying all files which
contain process code. Concerning libraries refer
to the EXTENSION statement above. The PROCESS
statement is NOT optional.

process LOAD LIST

l
endproc

Figure 13. DOMINOS configuration. PROCESS PART

is (routine name)

|_|
l’_|

Figure 14. DOMINOS configuration. ROUTINE LIST

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

112

LOAD LIST

Chapter 5 DOMINOS

Each file name in the LOAD LIST command is
converted to one load command for the linkage
loader. Between the load commands the user can
insert anything he wants by using the INSERT
command.

on (file name)

INSERT

Figure 15. DOMINOS configuration. LOAD LIST

INSERT The optional INSERT statement is used in
connection with LOAD LIST and the SKIP T0
statement (refer below). Its purpose is to enable
the user to include special commands into the
generated mode file to tailor it to his own needs.
Each string in the INSERT statement is placed on a
new line in the mode file.

NOTE! The use of INSERT statements can result in incompati-
bility when larger changes in the generated mode file
structure are introduced with a new version of the
configurator.

L insert '(any string)‘

Figure 16. DOMINOS configuration. INSERT

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 5

SKIP

DOMINOS

The following diagram illustrates the SKIP
S tatement .

skip to linker

domain

place

buffer

system

useraddr

extension

process

endconfig INSERT

Figure 17. DOMINOS configuration. SKIP

The SKIP statement can be inserted into the

113

configuration program such that its label (one of
the keywords LINKER...ENDCONFIG, see diagram)
appears before the statement which starts with the
same keyword appears. The effect is that the
compiler generates the mode file up to that
statement (unless there is a non—default statement
in between). This becomes important together with
the use of the INSERT:

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

114 Chapter 5 DOMINOS

An example

CONFIGURATION FOR VENUSGLUE

DOMAIN IS "DOMINOS-C"

SKIP TO BUFFER
INSERT 'cc inserted before the buffer increase'

PROCESS ON DOMI-TEST-PROG, PLANC-MC ENDPROC
ENDCONFIG

The result is that the string 'cc' is
inserted into the mode file just in front of the
statement which defines the system buffer pool
size. The buffer statement itself (BUFFER +
(buffer increment value>) need not to be used.
Without the SKIP the string would be inserted in
front of the commands compiled from the PLACE
statement.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 5 DOMINOS 115

Another example

CONFIGURATION FOR MPMStomino
SKIP TO DOMAIN

INSERT 'abort-batch-on-error off'

ENDCONFIG

RESERVED WORD

LINKER

DOMAIN

PLACE

BUFFER

SYSTEM

USERADDR

EXTENSION

PROCESS

ENDCONFIG

Without SKIP the string would be inserted before
the linkage-loader is called.

The following table shows where the strings are
inserted when using one of the reserved words in
the SKIP TO statement:

WHERE STRINGS ARE INSERTED

before the linkage loader is called (remember "@"
inside the strings!)

before the domain is opened. can for example be
used to release and delete the domain first

before the data load address for DOMINOS is set

before the program load address for DOMINOS is set

before the DOMINOS file(s) are loaded

before the segment is closed after having loaded
DOMINOS

after the segment is opened again and the user/UDSE
data load address is established

before process files are loaded

before the segment is closed and END-DOMAIN is
executed

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

116

The compiler

Chapter 5 DOMINOS

The configuration compiler is a subsystem for the
ND-lOO with only a few commands. Besides the
standard commands HELP. EXIT and so on, the
following are available:

0 CONFIGURE command with parameter "source-file"
(default : terminal), "mode output file"
(default : terminal) and "list file" (default
: no listing). Using the default values and
calling the compiler inside a mode file seems
the best solution. If a separate source file
is used the file type :DCNF is assumed.

0 Two other commands LIST-KEY-WORDS and LIST-
CONTROLLER—TYPES display the reserved keywords
and the possible controller types
respectively.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 5 DOMINOS 117

5.2 I)0MINOS Servi(:es

Naming
convention

Call
interface

Symbolic names in ND-products shall follow a
convention to reduce the risk of conflicts with
user-defined names. The prefix PI is reserved for
DOMINOS. This has led to incompatibility with
PIOCOS as for instance RealTime has become
PIRealTime and U10K PIOK.

DOMINOS has an exported routine for each service,
including the user—defined services. The user has
to import these routines by including the file
DOMI-APPL-IE-C:IMPT into his source files, and
optionally DOMI-UDSE-IE-CzIMPT for UDS. Type
declarations are in the file DOMI-DEFINES:DEFS.
The imported routines generally appear as follows:

Import (Routine (option) PIPservice. IntegerZ : PIRservice)

option is a PLANC routine modifier (e.g. SPECIAL
or NATIVE). The user need not worry about it as
long as the routine is not called with assembler
code. The option is subject to change from one
DOMINOS version to another.

service is the name of the service (e.g. SetEv).

The invalue is a pointer to the parameter record
unique for each service. It has the same name as
the routine, except for the prefix PIP (PI
Pointer), while PIR means PI Routine. There is
also a corresponding record type called PIT (PI
Type).

The outvalue is status from the service. There are
predeclared constants for the different errors
that can occur in the file DOMI-DEFINES.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

118 Chapter 5 DOMINOS

Trapping of errors from the DOMINOS services using
PLANC 0n Routineerror is not possible. If nothing
else is mentioned, all out parameters in the
record are undefined in case an error code is
returned.

The appropriate call can be done as follows:

Addr <ParameterRecord> (RoutineName) =: ReturnStatus

NOTE! Most CPU registers (D0:D7, AO:A4) may be overwritten
after the call. This is especially important in user
userwritten interrupt handlers where all registers
need to be saved. The PIOC compatible TRAP #2 se-
quence, where the registers are saved, can be used
in interrupt handlers, or even better, the interrupt
handler itself can save all registers on entry and
restore them on exit.

The old TRAP #2 sequence of calling services in
DOMINOS will remain available in the foreseeable
future. It is however slower than the new way of
invoking services. Only the registers D0 and SR
are changed when returning from DOMINOS.

Completely new functions compared to PIOCOS have
generally an additional parameter called PISubFunc
(type Integer2). If nothing else is mentioned,
this must be initialized to 1 (to eliminate the
risk of "automatic initialization" by the compiler
or loader). This parameter allows future extension
of the function. For most of the functions already
known from PIOCOS, some of the bits of the
parameter PIProcess are reserved for this purpose
(besides Create, WhoAmI and ProsNo, as PIProcess
contains an out-value in these functions).

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 5

Error
codes

DOMINOS

Constant Octal value

PITermination 6000B
PIILCAL 6001B
PIRANGE 60023
PICONTX 60033
PISupModeCall 60048
PIintErr 6005B
PIDomFatal 60063
PIUserFatal 6007B
PINOEXIST 60113
PIEXIST 60123
PIILPRI 60133
PIILSTATE 60143
PINOPROS 60153
PINOFREE 60163
PIEVNOEX 60213
PIILVEC 60223
PINOBUF 60413
PIINCONSIST 60423
PIILADDR 60433
PINoRout 6051B

Table 4. DOMINOS error codes

The DOMINO Operating System errors are found in
Appendix C on page 264-265.

The DOMINO Services (HW-LIB/OPCOM) error codes,
are found in Appendix C on page 266.

The DOMINO Services (BOPCOM) error codes, are
found in Appendix C on page 267.

Scanned by Jonny Oddene for Sintran Data © 2011

119

Scanned by Jonny Oddene for Sintran Data © 2011

120 Chapter 5 DOMINOS

5.3 Process Management

Dormant

Blocked

Ready

Running

Processes are application programs which can run
virtually in parallel under DOMINOS process
management. Each process is in one of the
following states:

Dormant means that the process exists but is
completely passive.

Blocked means that the process is in wait state.
For the time being, only "waiting for event" is a
possible reason. User-defined services may create
more reasons.

The process is in the ready queue because it is
ready to execute. The process is not executing
because there are other process(es) with higher or
equal priority in the queue.

That process in the set of ready processes which
has the highest priority, and thus is the current
executing one.

All processes which are ready for execution are
linked to the ready queue in the order of their
priority, highest priority at the head of the
queue. The scheduler always selects process at the
head of the queue, sets its state to running and
executes it.

Each process has a time limit. This is the maximum
CPU time it can use before being moved backwards
in the ready queue. The value of the limit is
determined during creation of the process and can
be changed with the Modify service. Default
(maximum) is 244 days 15 hours. The time limit is
restored each time a process becomes running.

If a process stays in the running state when the
time limit expires, it is moved behind the last
process in the ready queue with the same priority.
This is partial round-robin scheduling.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 5 DOMINOS 121

NOTE! The basic time unit in DOMINOS is 5 msec.

process A
prior 20
running

process B Process C Process D
———~ prior 20 ———» prior 20 ——~ prior 17

ready ready ready

When time limit of A expires, A is moved after C
and B becomes running. D keeps its relative position.

I

Figure 18. Round-robin scheduling

5.3.1 Create service

Explanation Create a process. This means in particular:

0 Memory space for the process description is
allocated from the system buffer pool.

The process description is initialized
according to default values and parameters
given by the service.

A new entry is allocated in the process table
and given to the process description.

The time limit is set to maximum (244 days. 15
hours).

If the "create and go" option is selected, the
process is set into the ready state, otherwise
it becomes dormant.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

122 Chapter 5 DOMINOS

PITCreate record
IN OUT

PIProcess ——# IntegerZ

Bytes ——a PIName (0:3)

Integer2 ——4 PITypePrio

Program Pointer -—» PIStartAddr

PIProcess The process number is returned. Most process-
related functions need the value as input. The
number of processes that may be created is mainly
limited by buffer space in DOMINOS.

PIName User-chosen process name of four characters. If a
shorter name is used, fill up with spaces. It must
not be in use by another process.

PITypePrio PITypePrio contains in fact several parameters:

0 The PIFullAcc bit defines whether the process
has write access to the device-dependent IO-
space of memory or not. If set, the process is
allowed to do so, and if not, only user data
is accessible. However, the memory protection
is global for all processes. If one process
has access to the IO-space. the IO-space
cannot be protected. Thus this option should
not be used unless it is absolutely necessary!

If the "create and go" bit is set to one
(PIABegin), the process is started, otherwise
the service Begin has to be called explicitly.

Bits 0:7 contain the process priority within
the range 1:255. A process with priority 0 is
illegal, while 255 is reserved for future
extension.

0 All other bits must be zero in order not to
conflict with future extensions of the create
service.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 5 DOMINOS 123

PIStartAddr Points to the first instruction to be executed by
this process after it has been started.

Example of starting a process

$Include DOMI-DEFINES:DEFS

Module Common
Export ErrCheck, WaitSeconds
X as in previous example

Endmodule

Module PROZ
Export PROZ
X as in previous example

Endmodule

Module Auto_Start
Export Auto_Start
$Include DOMI-APPL-IE:IMPT
Import (Routine Integer, Void : ErrCheck)
Import (Program : PR02)
Integer Array : S (0:1023)
Constant Prior = 13

PITCreate : CreRec := (O,'PR02',PIABegin+Prior,Addr(PROZ))
Program : Auto_Start

IniStack S
Output(1,'A','$Auto_Start is creating PROZ')
Addr (CreRec) PIRCreate ErrCheck

Endroutine
Endmodule

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

12n Chapter 5 DOMINOS

5.3.2 Modify service

Explanation The Modify service can change the parameters of a
process. The parameter record is a variant record
of PITCreate. The process number is IN parameter
and specifies the process to be changed.

All parameters supplied in the Create service can
be modified. The process name, memory access and
priority affect the process immediately, while
start address will be used when the next Begin
service is called for the process.

If the new process priority is equal to the old
one, and the process being modified is actually
the running one, the process state is affected.
The process is moved in the ready queue behind all
processes with same priority.

The extra parameter PITimeLimit is used to give an
individual time limit to the process for round-
robin scheduling. That is the maximum number of
CPU time units to have exclusive access to the
CPU. The parameter is interpreted as a 32-bit
unsigned integer. Zero means in fact the maximum
time limit, which is used when the process is
created.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 5 DOMINOS

PITModify record of PITCreate

IN OUT
IntegerZ ——~ PIProcess

Bytes ———o PIName (0:3)

IntegerZ ——~ PITypePrio

Program Pointer ——» PIStartAddr

Integeru —. PITimeLimit

Example of a process which changes its priority

Module PR02
Export ModRec % used by Auto_Start when creating process
$Include DOMI-APPL-IElPT
Import (Routine Integer. Void : ErrCheck)
Integer Array : S (0:1023)
Program : PROZ? Z predeclaration
PITModify : ModRec := (0, 'PROZ'. 0, Addr(PR02). 0)
Program : PROZ

IniStack S
Output(1,'A','$PR02 running with unknown priority')
0utput(1,'A'.'$I will now set it to 10')
10 =: ModRec.PITypePrio
Addr (ModRec) PIRModify ErrCheck

Endroutine
Endmodule

Module Auto_Start
Export Auto_Start
Import (PITModify : ModRec)
% code as for previous example. except using ModRec

Endmodule

Scanned by Jonny Oddene for Sintran Data © 2011

125

Scanned by Jonny Oddene for Sintran Data © 2011

126

5.3.3 Begin service

Chapter 5 DOMINOS

Explanation Set a process to the ready state. This means in
particular that the scheduler can take care of it,
and start execution of it (set it into the running
state) as soon as there is no other process ready
with higher priority. The start address is the one
given when the process was created if it has not
been modified in the meantime. See also the
services END and ABORT.

IN
Integer2 —o

PITBegin record

PIProcess
OUT

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 5 DOMINOS 127

Example of creating and starting a process by two services

Module PR02
Export PR02
% code as before

Endmodule

Module Auto_Start
Export Auto_Start
$Include DOMI-APPL-IElPT
Import (Routine Integer. Void : ErrCheck)
Import (Program : PROZ)
Integer Array : S (0:1023)
Constant Prior = 13
PITCreate : CreRec :
PITBegin : BegRec :
Program : Auto_Start

IniStack S
0utput(1.'A','$Creating PR02 without starting it')
Addr (CreRec) PIRCreate ErrCheck
Output(1,'A','$Starting PROZ')

(o. 'PROZ', Prior. Addr(PR02))
(0)

CreRec.PIProcess =: BegRec.PIProcess
Addr (BegRec) PIRBegin

Endroutine
Endmodule

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

128 Chapter 5 DOMINOS

5.3.4 End service

The process executing this call is taken from the
running to the dormant state. Only a new BEGIN
service (issued by a different process) can start
it again. All entries in the timer queue
concerning the dormant process are removed. The
pointer being the in-value to this service is
dummy. so NIL should be used.

Example of a process which stops itself

Module PROZ

Endmodule

Endmodule

$Include DOMI-APPL-IE:IMPT
Import (Routine Integer, Void : ErrCheck)
Export PROZ
Integer Array : S (0:1023)
Program :

IniStack S
0utput(1,'A','$PR02 running')
0utput(1,'A','$I will now make myself dormant')
Nil PIREnd ErrCheck % Usually never reached 1!

Endroutine

PROZ

Module Auto_Start
Export Auto_Start
% code as before

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 5 DOMINOS

5.3.5 Abort service

129

This service has the same effect as END, but the
process to be made dormant is specified in the
parameter reCOrd.

IN
IntegerZ —o

PITAbort record

PIProcess
OUT

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

130 Chapter 5 DOMINOS

Example of starting and stopping a process several times

Module PROZ

Integer Array : S (0:1023)
Program : PR02

IniStack S
Do X infinite loop

1 WaitSeconds
Output(1,'A','$PR02 running')

Enddo
Endroutine

Endmodule

Module Auto_Start

Integer Array : S (0:1023)
Constant Prior = 6
PITCreate : CreRec := (0, 'PR02'. Prior, Addr(PR02))
PITAbort : AboRec := (O)
PITBegin : BegRec := (0)
Program : Auto_Start
IniStack S
0utput(1,'A‘,'$Creating process PROZ')
Addr (CreRec) PIRCreate ErrCheck
CreRec.PIProcess =: AboRec.PIProcess =: BegRec.PIProcess

Do
Output(1,'A','$Starting process PROZ')
Addr (BegRec) PIRBegin ErrCheck
5 WaitSeconds
0utput(1,'A'.'$Stopping process PROZ')
Addr (AboRec) PIRAbort ErrCheck
3 WaitSeconds

Enddo
Endroutine

Endmodule

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 5 DOMINOS 131

5.3.6 Kill service

The process given in the parameter record is made
dormant. The process description is returned to
the buffer pool and its entry in the process table
is cleared. The process no longer exists (i.e. its
process number becomes undefined).

PITKill record
IN OUT

Integer2 ——4 PIProcess

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

132 Chapter 5 DOMINOS

Example of creating and deleting a proceSs several times

Module PROZ

Integer Array : S (0:1023)
Program : PROZ

IniStack S
Do While True

X infinite loop
1 WaitSeconds
0utput(1,'A','$PR02 running')

Enddo
Endroutine

Endmodule

Module Auto_Start

Integer Array : S (0:1023)
Constant Prior = 2
PITCreate : CreRec :=(0,'PR02',PIABegin+Prior,Addr(PROZ))
PITKill : KilRec := (0)
Program : Auto_Start

IniStack S
Do

0utput(1,'A'.'$Creating process PROZ')
Addr (CreRec) PIRCreate ErrCheck
7 WaitSeconds
Output(1,'A'.'$Deleting process PROZ')
CreRec.PIProcess =: KilRec.PIProcess
Addr (KilRec) PIRKill ErrCheck
4 WaitSeconds

Enddo
Endroutine

Endmodule

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 5 DOMINOS 133

5.3.7 WhoAmI service

Obtain the process number of the.calling process.
The process number is needed as parameter in
several services.

PITWhoAmI record
IN OUT

PIProcess ——» IntegerZ

Example of a process calculating its process number

Module PR02

Integer Array : S (0:1023)
PITWhoAmI : WhoRec := (0)
Program : PROZ

IniStack S
0utput(1,'A'.'$PR02 running with process number ')
Addr (WhoRec) PIRWhoAmI ErrCheck
Output(1.'I'.WhoRec.PIProcess)

Endroutine
Endmodule

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

134

5.3.8 ProsNo service

Chapter 5 DOMINOS

Obtain number of a process with a given name.‘

PITProsNo record
IN

PIProcess

Bytes ——~ PIName(0:3)

OUT
——4 IntegerZ

Another example of how to get the process number

Module PR02

Program : PR02
IniStack S

Endroutine
Endmodule

Integer Array : S (0:1023)
PITProsNo : ProRec := (O.'PR02')

X I know my name, but not my process number
Addr (ProRec) PIRProsNo ErrCheck
Output(1,'A','$PR02 running with process number ')
Output(1,'I',ProRec.PIProcess)

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 5 DOMINOS

5.3.9 PrName service

135

Obtain name of a process with a given process
number.

PITPrName record
IN OUT

Integer2 ——~ PIProcess

PIName(0:3) -—~ Bytes

Example of getting the process name

Module PROZ

Integer Array : S (0:1023)
PITPrName : PrNRec : (O.' ')
PITWhoAmI : WhoRec : (0)
Program : PR02

IniStack S ,
Z I neither know my process number nor name
Addr (WhoRec) PIRWhoAmI ErrCheck
% I still do not know my name
WhoRec.PIProcess =: PrNRec.PIProcess
Addr (PrNRec) PIRPrName ErrCheck
0utput(1,'A','$')
0utput(1,'A',PrNRec.PIName)

II

II

0utput(1,'A',' running with process number ')
0utput(1,'I',PrNRec.PIProcess)

Endroutine
Endmodule

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

136 Chapter 5 DOMINOS

5.) The Event System

Event
system

The event system is used for synchronization
purposes between processes (two way
synchronization), and between interrupt handlers
and processes (one way synchronization). It is a
very general concept which may used for solving a
broad range of problems regarding the signalling
part of interprocess communication.

Driver to process (one way) Process to process(both ways)

Interrupt
Ack event

event Server — Client
Driver ———» Process process ~———— process

Req event

Event Each process has an event buffer containing the
buffer current events set for it. The buffer is an

integer variable where each bit corresponds to a
discrete event.

Event The communicating processes must agree in advance
agreement upon which events (bits) to use and upon their

semantic values. Events are normally used in
combination with additional information exchanged
between the processes (e.g. a message residing in
a mailbox). The event just says that 'something
has occurred', but not what or which process
caused it.

A process can set events for any other process
(including itself) as long as it knows it's
process number. Events can only be sent to
processes in the same DOMINO controller. NUCLEUS
must be used if communication with remote
processes is needed. NUCLEUS uses events 30 and 31
(decimal bit number).

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 5 DOMINOS 137

5.1;.18etEv service

Set event(s) for a process. The events given by
PIEvents are added (ORed) to the event buffer of
the receiving process. There is no event queuing
in case some of the events already are set for it.
An event may only be sent to one process at a time
(no broadcast possibility).

This can lead to events being lost (overwritten)
in the receiver's event buffer if the receiving
process is slow compared to the senders. Careful
design of an event protocol between the
communicating processes removes the problem.

PITSetEv record
IN OUT

IntegerZ ——~ PIProcess

Integer4 ——~ PIEvent

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

138 Chapter 5 DOMINOS

5.A.2 ReadEv service

The events currently set for the process are
returned in the variable PICurrEvents. The process
will return immediately (never enter blocked
state) even if there are no events. The returned
events are cleared in the process' event buffer.

PITReadEv record
IN '

OUT
PICurrEvents ——a Integer 4

5.h.3 WaitEv service

The process will wait for events given by the
variable PIWaitEvents. The process continues when
any of these events are set (one or more). All
events set are then returned in the variable
PICurrEvents. and the event buffer of the process
is cleared.

If the events to wait for are equal to zero. the
process will never return. If there are already
events in the buffer which match PIWaitEvents when
WaitEv is called, the process continues
immediately.

PITWaitEv record
IN OUT

PICurrEvents -—~ Integer 4

Integerh ——4 PIWaitEvents

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 5 DOMINOS 139

Example of signalling ('kicking') a process

MODULE MASTER XThis example is only relevant when loss of
EXPORT MASTER %events is acceptable, or there is a certain

%maximum delay before the receiver reacts.
PITProsNo : ProRec := (0,'SLAV')

PROGRAM : MAST % Master process (kicking slave)
PITSetEv : SetEvRec
INTEGER : KickCount

Z wait for creation of SLAVE process
ProRec.PIProcess =: SetEvRec.PIProcess % ProRec of slave
l =: SetEvRec.PIEvent; O =: KickCount % Bit/Event 0 set

DO
++ KickCount
Output(1,'A','$MAST : Kicking SLAV for ')
Output(1,'I',KickCount)
Output(1,‘A','th time')
Addr(SetEvRec) PIRSetEv % kick partner
1 WaitSeconds % ensure slave gets

ENDDO % time to react
ENDROUTINE
ENDMODULE

MODULE SLAVE
EXPORT SLAVE

PROGRAM : EVE2
PITWaitEv : WaitEvRec
INTEGER : KickedCount

O =: KickedCount
1 return when any event occurs
—1 =: WaitEvRec.PIWaitEvents % return when any event
D0

Addr(WaitEvRec) PIRWaitEv
++ KickedCount
Output(1,'A','$EVE2 : I have been kicked for ')
Output(1,'I',KickedCount); Output(1,'A','th time')

ENDDO
ENDROUTINE
ENDMODULE

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

11m Chapter 5 DOMINOS

Example of signalling events with positive feedback

MODULE MASTER % The kicking process waits for acknowledge
EXPORT MASTER X from the slave in this example. If the

X slave dies, the master is stuck!

TYPE EventKind = ENUMERATION (None.KiCk,Ack)
PITProsNo : ProRec := (O,'EVE2')
PITSetEv : SetEvRec

PROGRAM : MASTER
PITWaitEv : WaitEvRec
PITSetEv : SetEvRec
INTEGER : KickCount

ProRec.PIProcess =: SetEvRec.PIProcess
Kick CONVERT INTEGER =1 SetEvRec.PIEvent % prepare kick
0 =: KickCount; —1 =: WaitEvRec.PIWaitEvents

D0
++ KickCount
Output(1,'A'.‘$MAST : Kicking SLAV for ')
Output(1,'I',KickCount); Output(1.'A','th time')
Addr(SetEvRec) PIRSetEv ErrCheck % kick slave
Addr(WaitEvRec) PIRWaitEv ErrCheck % wait acknowledge
CASE (WaitEvRec.PICurrEvents CONVERT EventKInd)
INCASE Ack

Output(1,'A','$MAST : Ack')
ELSE % protocol violation
ENDCASE

ENDDO
ENDROUTINE
ENDMODULE

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 5 DOMINOS 1N1

MODULE SLAVE
EXPORT SLAVE
TYPE EventKind = ENUMERATION (None.Kick.Ack)

PROGRAM : SLAVE
PITSetEv : SetEvRec
PITWaitEv : WaitEvRec
INTEGER : KickedCount

ProRec.PIProcess =: SetEvRec.PIProcess
0 =: KickedCount; -1 =: WaitEvRec.PIWaitEventS

D0 % forever
Addr(WaitEvRec) PIRWaitEv ErrCheck % wait acknowledge
CASE (WaitEvRec.PICurrEvents CONVERT EventKInd)
INCASE Kick

++ KickedCount
Output(1,'A'.'$SLAV : I have been kicked for ')
Output(1,'I',KickedCount); 0utput(1,'A'.'th time')
Ack CONVERT INTEGER =: SetEvRec.PIEvent
Addr(SetEvRec) PIRSetEv ErrCheck

INCASE Ack
Output(1,'A','$SLAV : Ack')

ELSE % protocol violation
ENDCASE

ENDDO
ENDROUTINE
ENDMODULE

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

142 Chapter 5 DOMINOS

5.14.1: SelWaitEv service

This service does basically the same as
WaitEvents. The difference being that only those
events the process is waiting for are cleared in
the event buffer. PICurrEvents contains however
all events at return (selective wait).

Integer“ —. PlWaitEvents

PITScaitEv record
IN OUT

PICurrEvents ——a Integer 4

5.h.5 UniWaitEv service

PIEvSel

PIEvComp

PITimeOut

The UniwaitEv (universal) service provides all the
functions that are possible with SelWaitEv and
WaitEv, nnd some additional.

The parameter PISubFunc parameter may contain the
sum of any of the constants PIEvSel and PIEvComp.

Only those events the process is waiting for
(WaitEvcnts parameter of PITWaitEv) are returned
in the variable PICurrEvents and cleared in the
event buffer.

The process is continued only when all the events
given by WaitEvents parameter have occurred.

If the PITimeOut parameter is different from zero,
this indicates the time to wait (basic time units)
before giving the process timeout. The event(s)
given by PITimeEvent are returned in this case. A
bit should normally be reserved for signalling
timeout. Otherwise it will not be possible to
distinguish timeout from other events as no more

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 5 DOMINOS 143

distinguish timeout from other events as no more
context accompanies it. If any of the WaitEvents
occur before timeout, the process returns and the
timeout is cancelled.

PITUniWaitEv record
IN OUT

Integer2 ——~ PISubFunc

PIWaitEV

PICurrEvents —u——~ Integerh
Integer“ ——' PIWaitEvents

Integerfl ——4 PITimeout

Integerll _. PITimeEvent

Integer“ PIReserved = 0 (future extension)

Example of halting a process for a given time

PITUniWaitEv : WaitUniRec := (PIEvsel.(0,1),200,l,O)

ROUTINE INTEGER, VOID : WaitSeconds
1 =: WaitUniRec.PIWaitEv.PIWaitEvents % wait for timeout
@ * 200 =: WaitUniRec.PITimeOut % set timeout event
Addr (WaitUniRec) PIRUniWaitEv ErrCheck % wait

ENDROUTINE

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

144 Chapter 5 DOMINOS

5.5 Time Scheduled Events

Timer queue

PIOCOS

5.5.1 InterEv

DOMINOS uses a timer queue in order to provide
time-scheduled events. Each entry in the queue
gives information about the process requesting the
service. and when it wants it.

The clock process in PIOCOS is replaced by a more
sophisticated clock driver in DOMINOS. The length
of the timer queue is only limited by the size of
the system buffer pool.

service

Pflkfley

PIInterval

PIModifier

PIClSec

PIClRel

This service provides time related events at
regular intervals.

After a number of time units, given by PIDelay,
the events in the PIEvent parameter are set. The
value 0 (zero) is invalid.

If PIInterval is different from zero. it gives the
delay interval before the events are set again.
The events are set repeatedly until the service is
cancelled by the InterDel service.

PlModiFier may contain the sum of any of the
constants PlClSecond and PIClRelative.

The parameters PIInterval and PIDelay are by
default tnken to be given in basic time units.
This censtant changes the time unit to seconds.

By default, the delay before setting the events
are scheduled absolute to the DOMINOS system
clock. This constant causes the event to be
scheduled relative to the time when this service
is called. The DOMIHUS clock is exported in the
parameter PIRealTime into the application program.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 5 DOMINOS 145

PITInterEv record
IN OUT

PITSetEV

IntegerZ — PIProcess

Integer” ——————» PIEvent

Integer4 ——a PIInterval

Integerh ——~ PIDelay

Integer2 ——4 PIModifier

5.5.21nterDel service

Each requested InterEv service can be cancelled
with this call. The parameter PIEvent cancels
services according to the following rule:

0 If the PIEvent is equal to zero, all time
services belonging to PIProcesses are
cancelled.

o If PIEvent >< 0 then all time services
matching both the PIEvent and the PIProcess
parameter are cancelled.

PITInterDel record
IN OUT

(PITSetEv)

Integer2 —. PIProcess

Integeru — PIEvent

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

146 Chapter 5 DOMINOS

5.6 Buffer Management

Buffer pool

PIOCOS

Memory
layout

The buffer management supplies utility functions
for administrating shared pools between the
processes. There is one pool for the user
processes and another only accessible from
supervisor mode (e.g. DOMINOS and device drivers).
The buffer management is of general purpose. The
data kept in a buffer is not interpreted by
DOMINOS. A common pool makes it possible to save
memory space. as it is no longer necessary to
allocate one buffer heap per process. A buffer in
the pool is at any time either free to be used. or
allocated to a process. The use of the pools is
allocated at load time.

The buffer management was also implemented in
PIOCOS. However, the services have been revised to
include a pool of user buffers and are now
available for the user too.

The system buffer pool is defined by the memory
gap between data and code part of DOMINOS. The
user buffer pool is defined by the global label
PIUserBuffer and the start of the memory area for
the system (supervisor) stack. This stack is
located in the last part of the local memory.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 5 DOMINOS 1H7

Address label

BufferSta

BufferEnd

PIUserBuffer

PIMemSize

Local memory

OPCOM

DOMINOS data

System buffers

DOMINOS code

PIR (service routines)

User def.sys.extensions —-UDSE

User Code

Unused memory gap

User data

User buffers

System stack

Consistency
check

Figure 19. DOMINOS relative memory layout

The data structure for the buffer management is a
double—linked list of elements. Each element keeps
information about one buffer. The elements are
ordered according to increasing memory address. If
a buffer is given to a process. a flag is set in
the corresponding list element. When DOMINOS
starts, there is one list element spanning the
whole pool. As buffers are given to processes. the
number of list elements increases (fragmentation).
The buffer list is checked for consistency.
Inconsistency during DOMINOS start, leads to a
fatal system error (DOMINOS is aborted).

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

148

5.6.1 GetBuffer service

Chapter 5 DOMINOS

Allocate a buffer to a process. If there is not
enough free buffer space. an error message is
returned.

PISubFunc This modifier indicates in which pool the buffer
resides. Use PIUsrBuff for user pool and PISysBuff
for system pool.

PIBuffAddr The address (32-bit pointer) to the start of the
buffer. Returned by DOMINOS.

PIBuffSize The size of the desired buffer in bytes.

IN
lnteger2 ——~

Integer“ —o

PITGetBuffer record

PISubFunc

PIBuffAddr

PIBuffSize

OUT

——# Integer2 Pointer

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 5 DOMINOS 149

5.6.2 RelBuffer service

Release a buffer allocated to a process. The
service checks for consistency.

PISubFunc This modifier indicates in which pool the buffer
resides. Use PIUsrBuff for user pool and PISysBuff
for system pool.

PIBuffAddr The address (32-bit pointer) to the start of the
buffer.

PITRelBuffer record
IN OUT

Integer2 ——4 PISubFunc

IntegerZ Pointer -—~ PIBuffAddr

5.7 Exported system data

Some data items are exported from DOMINOS and can
be imported to application modules. Note that all
these data items reside in a memory area which is
write-protected. All the data items can be
replaced in a later version of DOMINOS by routines
with equal names and a corresponding out value.

PIRealTime An INTEGERQ variable which is incremented by the
clock driver on each timer interrupt (every 5
msecs). It is initialized to O on DOMINO startup.

PIHostNumb The number of the host CPU as an INTEGERZ
variable. For DOMINO controllers the contents of
the variable is not currently defined.

PIControll The number of the controller in the current host
system as an INTEGERZ variable. The contents on
DOMINO is the OCTOBUS Station number of the
controller.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

150

PICPUType

Chapter 5 DOMINOS

INTEGERH variable which contains a number
describing the processor used on this controller.
The following values are defined for the MOTOROLA
processors (decimal) : 68000, 68010 and 68020.

5.7.1 Fatal service

PISubFunc

PIError

PIAORegister
&
PIDORegister

If a fatal error occurs in a user program, this
error can be reported to the host by using this
call. Note that DOMINOS is aborted. This means all
activities are stopped and the controller must be
loaded and started again!

This ultimate service can be called from interrupt
handlers too.

For future extension. Must be set to 1.

The user-defined error code to return. Extended to
be an INTEGER 4, but only the lower 16 bits are
used.

The parameters PIAOREGISTER and PIDOREGISTER are
handled such that the value of PIAORegister is put
into the AO-register and the PIDORegister into the
DO-register. Thus, these values may be inspected
by the LOOK—AT—REGISTER command in the DOMINO
Monitor. The current values of A0 and DO should
madmemsmwinmemmdmemwmmg
the call.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 5 DOMINOS

IN
IntegerZ ——4

Integer” —°

Integer“ —o

Integer” ——a

PITFatal record

PISubFunc

PIError

PIDORegister

PIAORegister

OUT

5.8 DOMINOS for advanced programmers

151

DOMINOS also offers special program environments
for user defined:

0 interrupt handlers

o trap handlers

0 services (UDS)

0 process management extensions (PME)

UDSE All these entities are hereafter referred to as
User-Defined System Extensions (UDSE).

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

152 Chapter 5 DOMINOS

5.8.1 The MC68K in supervisor mode

Execution
modes

Stack
pointers

When making UDSE code. the user must be aware that
the instructions will be executed in the so-called
supervisor mode of the MC68K. DOMINOS executes in
this mode. This is indicated by a bit in the
status register (SR) of the processor and has the
following implications compared with the user mode
used in the process environment:

0 a different machine stack is used

0 there are no restrictions on the processor
instruction set

0 different access rights apply throughout the
first 16-MByte address range

The A7-register is used as stack pointer in the
MC68K processors. The user and the supervisor mode
have separate A7-registers. Depending on the
execution mode. one of them is selected when A7 is
accessed in an instruction.

However, it is possible in supervisor mode to read
the A7—register of the user mode by using the
'MOVE from/to USP' instruction. This is necessary
to let DOMINOS switch from one process to another.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 5 DOMINOS
I

153

Privileged The privileged instructions which can be executed
instructions in supervisor mode but which lead to a trap if

tried in user mode are:

0 All instructions which may change SR :

MOVE to/from SR

ANDI to SR, also EORI. ORI

RTE

STOP

0 Coprocessor instructions cpSAVE and cESTORE

o RESET

0 MOVEC (to access special CPU registers). MOVES
(to access 'unnatural' address spaces) and
MOVE to/from USP (to access the user stack
pointer)

o The RTE instruction is always the last
instruction to be executed in an
interrupt/trap handler to resume the suspended
activity.

__Snanned_b;L.lonn.y_Qddens fnr Qin’rran Data (<3 901 1

Scanned by Jonny Oddene for Sintran Data © 2011

154 Chapter 5 DOMINOS

5.8.2 Disable and enable interrupts

The following code shows how to turn interrupts
off and on. The interrupt should normally only be
turned off for short intervals.

Code to disable all maskable interrupts

INTEGER2 : SaveSR

3* MOVE.W SR. SaveSR Z keep current value of SR
$* ORI.W #O7OOH.SR % set interrupt threshold to

....... % maximum uninterruptible code
$* MOVE.W SaveSR, SR % interrupts switched on again

The combination of these two pieces of code can
with advantage use the stack instead of the
INTEGERZ variable. The well-known rules for how to
use a stack must then be followed:

Macros to enable and disable interrupts

$MACRO solo
$* MOVE.W SR,—(A7) % save old SR on stack
3* 0RI.W #O7OOH,SR % disable all maskable interrupts

$ENDMACRO

$MACRO tutti
3* MOVE.W (A7)+,SR % restore SR

$ENDMACRO

SOLO % from now on interrupts are disabled
... % critical section with no interrupt
TUTTI % interrupts on again

Note Some interrupts can not be disabled, e.g. Power
fail.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 5

5.8.3 Ac

DOMINOS 155

cess rights in su1)ervis01‘ mode

The hardware-based access protection system in
DOMINO controllers depends on the MC68K mode of
operation. Different areas inside the first 16
MBytes of the physical address range must be used
for different purposes. Before DOMINOS is started,
the protection is setup by the OPCOM module.
Later, DOMINOS changes parts of the access map.

OPCOM only with DOMINOS
address supervisor user address‘supervisor user

I
OOOOOOH -——————————— —-- ~ T

Lread
only no access

noon - |
*

read write read only
|*1 fetch no access

1
__ - Iread write no access

20000H j
—————— - — — — — — -+

*
read write no access

*2 fetch no access

any access any access *3 fetch fetch

*A no access fetch

RAM end 5 read write read write
minus ———————————— — — —~
8 KByte

read write no access |

RAM end—r —————————— — — —-o -|-
*

read write no access *6 Iread write read write

6

1000000H———————————— — - —‘ -L

Figure 20. DOMINO memory protection

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

156 Chapter 5 DOMINOS

Notes:

* Value depends on the current OPCOM version
*1 Value depends on DOMINOS version and size of

system buffer pool. See DOMINOS configurator.
* Value depends on *2 and the current DOMINOS

vers1on
* Value depends on * and the code part of the

UDSE 3
* Value depends on (load address for user/UDSE

data). See DOMINOS configurator.
* Value depends on <sys proc extra READ/WRITE).

See DOMINOS configurator.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 5 DOMINOS 157

5.8.h PLANC compiler

Clean code &
Option 2

Exception
handler

PLANC
constraints

It is very important to use the right PLANC
compiler for MC68K and to use it correctly:

0 In version G one must use the compiler
directive OPTION 2 which forces the compiler to
use a new calling sequence, which has no data
placed in the code area (dirty code). It is
also much faster. faster. From version H this
option is switched on by default.

0 From version H it is safer to use high level
PLANC statements in SPECIAL routines: A warning
is issued when the compiler generates code in a
SPECIAL routine which assumes the existence of
a stack (usually not present!).

0 Version I should be used since the UNSIGNED
modifier is used in DOMI-DEFINES-zDEFS.

Exception handler is used as a common name for
interrupt handlers (asynchronous exception) and
trap handlers (synchronous exception). The term
'exception' means that the CPU is forced to leave
its normal execution sequence to execute some
exceptional code.

Exception handlers are activated entirely by
hardware, and they do not therefore fit into the
PLANC environment. When an ordinary PLANC routine
is called. the PLANC run—time system allocates a
stack frame for the routine. The code inside the
routine assumes that the stack is present, which
is not the case for exception handlers. There are.
however, three kinds of routines in PLANC which do
not implicitly assume the presence of a stack:

0 PROGRAM
0 NATIVE (only available in MC68K PLANC)
0 SPECIAL

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

158

Program

Chapter 5 DOMINOS

PROGRAM defines a main program which begins always
with an INISTACK statement, thus making its own
stack. It would therefore be a perfect solution
for the problem, but there are some drawbacks:

o INISTACK must be the first statement in the
routine, and the generated code destroys the
register context before it can be saved.

0 Only a static allocated stack is accepted in
the INISTACK statement (the stack cannot reside
in a heap). If interrupts on different levels
use the same handler, the same array could be
initialized twice, thus destroying
(overwriting) the stack of the exception
handler on the lower interrupt level.

0 The new stack to be created is the supervisor
stack. Changing this stack might have
consequences for the whole system.

0 A design goal for exception handlers is to make
them fast and short (few instructions). The
INISTACK and all the other necessary actions
are quite a big overhead in many of these
cases.

The conclusion is that a solution with PROGRAM is
not recommended!

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 5

native

Special

DOMINOS 159

NATIVE routines are only for MC68K PLANC. They
have an automatically included calling sequence
based only on the MC68K machine stack. Registers
are not destroyed when the routine is called.
There are however serious compatibility problems
such as that NATIVE routines must never call a
normal routine (e.g. a routine in the PLANC run-
time system). In addition to this, NATIVE routines
are unable to use ERRETURN, and, with the
exception of invalue and outvalue, have NO
parameters. NATIVE—type routines are not fully
supported. There is therefore no guarantee that
they will not be removed from the compiler at some
time in the future.

A solution with NATIVE routines can no longer be
recommended since the MC-PLANC compilers now have
better support for SPECIAL routines.

The routine option SPECIAL defines a routine with
no call—sequence. In practice this leads to
routines which:
0 have no stack frame (no parameters and local

data)
0 are rather fast

Earlier it was quite dangerous to use anything
else than pure inline assembler in such routines
since the generated code assumed that a stack
frame existed. The latest versions of the MC—PLANC
compiler issue a warning when it uses the stack
frame in a SPECIAL routine. High-level PLANC
statements in SPECIAL routines are therefore now
possible which allows the implementation of
increased complexity.

This type of routine can with advantage be used in
cases where the complexity of the handler is small
or medium.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

160

Mixed
routines

INISTACK
simulation

Chapter 5 DOMINOS

The recommended solution for complex exception
handlers is a combination of one SPECIAL routine
and normal routines.

It is quite easy to simulate an INISTACK statement
for the stack layout belonging to the "OPTION 2",
using an array dynamically allocated on the
machine stack! This is exactly what the standard
INISTACK lacks!

Assembler code for saving registers and allocate stack

PITDriver AnExceptHandler %predeclared SPECIAL routine
$* MOVEM.L DO-A5, —(A7) %save user registers

$* LINK A6,#<stack demand>%save A6 and allocate stack
$* MOVE.L A6,4B(A7) %save former A7
$* PEA 148(A7) dnerate FREE pointer
$* MOVE.L A7,A6 %is now PLANC stack pointer

The code inside the exception handler is now free
to use the address and data registers. The new
stack frame is now initialized with a size of the
absolute value of (stack demand) given in bytes.
The parameter (stack demand) must be given as a
negative argument to fit with the MC68K. The size
of the stack need only take care of the routines
called (directly or indirectly) from here. In the
current version, the value should not exceed 1
KByte. Ordinary PLANC routines (with or without
parameters) can be called. Note that the current
SPECIAL routine must still not have any local
variables!

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 5 DOMINOS 161

Having executed the routines of the exception
handler. the original context must be restored:

Assembler code for deallocating stack and restoring registers

ENDROUTINE

$* MOVE.L 108(A6),A7 % deallocate current stack
$* MOVE.L (A7)+,A6 % restore A6
$* MOVEM.L (A7)+,D0-A5 X restore user registers
3* RTE Z resume interrupted activity

% (pop machine stack)

Note that the INISTACK simulation here is
dependent on the current implementation of the
stack layout. It may therefore change in the
future!

In cases where the user can guarantee that a trap
handler is always activated when a usual PLANC
stack exists, it is possible for the trap handler
to use the PLANC stack of the interrupted
activity. DOMINOS uses this for all services which
must only be called from a process and thus have a
stack defined. It requires that the process has
some free space on the stack.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

162 Chapter 5 DOMINOS

5.8.5 Special rules for interrupt handlers

Activity
transparency

Limited
services

When an interrupt occurs, the currently executing
activity (a process or another exception handler)
is suspended, and the processor starts executing
the interrupt handler. After execution, the
interrupted activity must be reactivated. From
this activity's point of view, it must look as if
nothing has happened. This means that the
interrupt handler must not alter the context of
the interrupted activity. In practice, this
implies that all the registers used by the
interrupt handler have to be temporarily stored
away. The interrupt handler has no way of knowing
which registers are in use by the interrupted
activity. As already shown in the previous
example, this can easily be done with two MOVEM.L
assembler instructions.

Since interrupts can even suspend the execution of
a DOMINOS service, DOMINOS has to keep its data
structures protected against corruption. This
could be done by locking all data structures with
a SOLO/TUTTI sequence or by using special
structures. To avoid long interrupt-off times and
to keep the algorithms simple this has only been
done in some cases. Calling a PIR<function name)
routine or TRAP #2 sequence from an interrupt
handler directly or indirectly is therefore not
allowed, with the following exceptions:

PIRSetEvent Set an event to a process

PIRFatal Message to the outer world. that
the system is going to collapse

DOMINOS is not able to check whether or not a call
for a service is invoked by an interrupt handler.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 5 DOMINOS 163

5.8.6 Special rules for' trap handlers

Trap handler
interface

Traps in this sense are synchronous exceptions
which are generated explicitly by a process or by
any other activity by using one of the following
MC68K instructions:

0 BKPT — Break point, used by DOMINO OPCOM

o CHK — check register against bounds

o CHK2 — check register against bounds

o cpTRAPcc — trap on coprocessor condition

0 TRAP - trap unconditional

o TRAPcc - trap on condition

0 TRAPV — trap on overflow

Other synchronous exceptions like bus error,
address error, illegal instruction, privilege
violation are not covered here. DOMINOS/OPCOM
assumes that an occurrence of such a trap is not
wanted and treats it as a fatal error!

The environment for handlers of this kind of traps
is quite similar to that of interrupt handlers.
The main difference is that. since the trap is
programmed, the programmer may define an interface
between the handler and the trap-producing
activity. The programmer controls both sides of
the trap. By hiding the trap-producing activity
inside a routine (e.g. a library) this interface
need not to be known any where else. Trap
implementation in DOMINOS Show this quite clearly:

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

164

DOMINOS
monitor calls

DOMINOS
services

DOMINOS
services
callable from
trap handlers

Chapter 5 DOMINOS

The TRAP #2 instruction is reserved in DOMINOS for
"monitor calls". The defined interface in this
case is that the DO register contains the function
number and the A0 register a pointer to the
appropriate parameter record. On return from the
trap handler, the DO register contains a status
value.

It is obvious that (unlike an interrupt handler)
DOMINOS need not save and restore the DO register.
The other way of calling DOMINOS (by using the
routines PIR<function name)) is implemented in a
similar way. However, it is defined in the
specifications that no register is saved and
restored. which makes this way of calling DOMINOS
faster.

Also part of the interface is that the trap
handler expects an existing PLANC stack (exeptions
are PIRSetEvent and PIRFatal, which does not need
a PLANC stack).

Which DOMINOS process services may be called from
a trap handler depends on which environment the
handler has been called from. If it was a process
or a different trap handler (UDS and PME), any
service may be called. If, however. it was an
interrupt handler. which activated a trap handler.
only PIRSetEvent and PIRFatal may be called. This
to applies also nested trap handlers. The lowest
level is important!

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 5 DOMINOS 165

5.8.7 Rules for UDS and PME

Process Inside DOMINOS, the PLANC stack of the calling
stack process is used. Each process should therefore

keep about 1/2 KByte of extra stack space plus
that amount used by the PME (and even more if the
UDS requires more than that).

ERRETURN Use of ERRETURN inside DOMINOS is not allowed.
Owing to the memory-protection system usage, the
pg; error handler will reside in a memory area
which has no fetch permission in supervisor mode.
This results in a fatal error when ERRETURN is
executed.

5.8.8 Implementing exception handlers

Almost all integration of UDSE with DOMINOS is
done at load-time with the exception of trap and
interrupt handlers. They are linked to DOMINOS at
run-time. This is typically the responsibility of
the Auto_Start process at start-up. Exception
handlers different from UDS and PME are
implemented to preserve compatibility with PIOCOS.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

166 Chapter 5 DOMINOS

5.8.9 PIRCreateDriver Service

PIVector

PIDriverAddress

Put the address of an exception handler into the
interrupt vector.

See the MOTOROLA manuals for vector assignment.
Take also the actual DOMINO hardware
implementation into consideration (e.g. interrupt
levels). Some vectors are reserved for DOMINOS,
and an error code is returned if they are chosen
by the user. The legal ranges are: 3. 5:8. 10:28,
36:76. 78:255.

If the vector is in the range 64:79, then it is
one of the MFP (Multi Functional Peripheral,
MC68901 MFP) interrupts. In this case the
corresponding channel in the MFP is enabled.
Preparing timers (A and/or B) in the MFP is still
the responsibility of the user program before
calling PIRCreateDriver. Even during a power-fail
restart. MFP—related drivers must be reinitialized
(programming the timer(s) and calling
PIRCreateDrive).

Pointer to the exception handler declared as
ROUTINE PITDriver : <Name>.

Integer2 ——# PIVector

PITDriver POINTER ——# PIDriverAddress

PITCrDrv record
IN OUT

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 5 DOMINOS 167

5.8.10 UDSE scheduling primitives

Some internal scheduling primitives in DOMINOS are
defined in the include file DOMI-UDSE-IE:IMPT,
which is distributed together with DOMINOS. They
can only be called from an UDSE and never from a
process.

UFindPD UDSE-primitive

Most DOMINOS services refer to a process by its
process number. Internally DOMINOS refers to a
process by means of a pointer to its process
description (PD). This routine maps (converts)
from process number to a pointer to the PD. The
full content of the PD is only to be interpreted
by DOMINOS. and must not be altered by a UDS.
Eight INTEGER4 variables (UDSEIx, x 6 0:7) are
free to be used by the UDSE for storing process
related context.

@

ROUTINE SPECIAL INTEGERZ, TPrDSPtr : UFindPD

Process number to find process description to.
0 means return pointer to process description
currently running (i.e. the process calling the UDSE).
Pointer to process description TPrDs.
NIL is returned if the process does not exist.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

168 Chapter 5 DOMINOS

UBlocPr UDSE-primitive

The routine UBlocPr blocks a process. That is, it
is removed from the ready queue. The process must
be in the ready queue when this service is
requested (ready or running).

ROUTINE SPECIAL TPrDsPtr, INTEGERZ : UBlocPr

@ Pointer to process description
=: Status

UdeBlocPr UDSE-primitive

The routine UDeBlocPr de-blocks a process. That
is, it is inserted into the ready queue. The
process must be blocked or dormant when the
service is called.

ROUTINE SPECIAL TPrDSPtr, INTEGERZ : UBlocPr

@ Pointer to process description
=: Status

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 5 DOMINOS 169

5.8.11 Implementing UDS

Up to eight User—Defined Services (UDS) can be
established. They are represented in DOMINOS just
like the DOMINOS services:

ROUTINE (option) (param. record) POINTER, INTEGERZ : <name>

@ Pointer to parameter record (user defined)
=: Status (Return PIOK if call is successful)

Other services (PIRxxx) can be called from the
UDS. but services based on current process will be
done on behalf of the process calling the UDS. The
UDS must be called by calling the routine
PIR<name>. The UDS must be imported into the
source code of the user process. Also the TRAP #2
sequence is possible but not recommended. The
value UFUNCx (x 5 0:7) must then be loaded into
the DO register prior to the call.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

170 Chapter 5 DOMINOS

5.8.12 Implementing PME

Two groups of four routines can each be defined as
process management extensions (PME):

ROUTINE (option) TPrDsPtr POINTER, INTEGERZ : (name)

Pointer to process description
Status (Return PIOK if call is successful)”ta 0.

Start-up/ Each group is triggered by a process-state
Clean-up transition. The first group is called each time a

process is moved from the dormant to the
ready/running state. The PMEs for this group
typically do process start-up actions. The other
group is called each time a process state is
changed in the opposite direction
(running/ready/blocked to dormant). This group is
intended for process clean-up actions.

Error If the PME terminates (returns) with an error
return (Status >< PIOK), the remaining PMEs in the group

are aborted, and the process does not change
state.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 5 DOMINOS 171

5.8.13 System processes

System processes in DOMINOS exist for the sake of
compatibility. In PIOCOS, the memory protection
system was switched off by the scheduler as long
as a system process was active. System processes
does not execute in supervisor mode! In DOMINOS,
the memory protection system is not switched off
to keep the advantages. Instead, an extra window
with read/write access in user mode is established
in the I/O space on the MC68K bus.

NOTE A process should only be defined as a system
process (ref. PIRCreateService), if absolutely
necessary!

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

172

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

173

Chapter 6 NUCLEUS Overview

Usage

Computer

NUCLEUS is intended to be used only for all Norsk
Data System applications requiring fast and
reliable message passing between processes within
one computer. The processes may for instance be
one server with several clients. NUCLEUS cannot be
used for communication between computers.

All processes communicating via NUCLEUS must be
within the same computer. By computer is meant one
or several main CPUs and DOMINO controllers with
access to the same physical memory and OCTOBUS.

\
OCTOBUS station

contr
+

MFbus

Multiport
memory NUCLEUS

KERNEL
DATA

Figure 21. Processes communicating via NUCLEUS

Scanned by Jonny Oddene for Sintran Data © 2011

ND—5000 ND—lOO/SOO

PROCESS A PROCESS B

NUCLEUS NUCLEUS
LIBRARY LIBRARY

u—code MON MON
(5000) (100) (100)

MFbus -—c ——04* OCTOBUS

Scanned by Jonny Oddene for Sintran Data © 2011

174

NUCLEUS
Kernel

NUCLEUS
library

NUCLEUS
monitor

Communication
Concepts

Chapter 6 NUCLEUS Overview

NUCLEUS data structure reside in shared memory,
operated upon by specific rules. Parts of physical
memory are reserved for the data structure used by
NUCLEUS.

NUCLEUS has slow and fast services. Slow services
are those which not are time-critical, or are of
such a nature that they need time to be carried
out anyhow.

For ND-5000, the time-critical NUCLEUS calls
nkMove, nkSend, nkReceive and nkGetInfo are
microcoded to achieve required performance. All
other NUCLEUS calls are executed in ND-lOO.

For ND—SOO, the time-critical NUCLEUS calls are
not microcoded. These calls are executed in ND—lOO
(level 12). The NUCLEUS library in ND-500/5000
presents a standard NUCLEUS interface for
applications.

The services provided by NUCLEUS are independent
of the CPU and operating system where the process
is running.

The NUCLEUS Monitor is a tool for inspection of
tables and queues in NUCLEUS kernel.

Communication between processes in NUCLEUS is
based on ports and messages. Their descriptions
reside in physical memory shared between the CPUs.
(The NUCLEUS kernel)

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 6 NUCLEUS Overview 175

6.1 NUCLEUS library files

NK-100-
lbank-CzBRF

NK-100-
1bank-C:BRF

NK-SOOO-
CzBRF

NK-DOM-
APPL-CzNRF

NK-DOM-
OS-CzNRF

NK-DOM-
LINK-C:MODE

NK-ERRCODE-
C:DEFS

NK-LIBRARY-
CzIMPT

For manual installation of the NUCLEUS library, a
diskette containing the files listed below is
delivered. Choose the files needed and copy them
to any user area. After loading any NUCLEUS
library. a PLANC library (I-version or later) must
be loaded.

NUCLEUS library for l—bank program in ND-lOO.

NUCLEUS library for 2-bank program in ND-lOO.

NUCLEUS library for ND-SOO/SOOO.

NUCLEUS library for DOMINO Controller.

Must be loaded in DOMINO.

Example of a DOMINO load/link job.

Error and function codes "Constant" defs.

Import declarations of the library routines.

6.2 Including NUCLEUS in an application

NK-LIBRARY-
CzIMPT

All modules using NUCLEUS must include this file.
It is common to all computers. The file contains
NUCLEUS calls that can be included in a PLANC
program, i.e. a library of PLANC routine calls
using NUCLEUS.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

176 Chapter 6 NUCLEUS Overview

ND-500 The library should be loaded on a separate segment
if the application is running on a ND-500
computer. Performance will decrease if program
code and library are loaded on the same segment,
because cache(in ND-500 computers) is turned off
on the segments that libraries are loaded on.

DOMINO NUCLEUS is integrated with DOMINOS on the DOMINO
controller. Both NK-DOM-APPL-CzNRF and NK-DOM-OS-
CzNRF must be loaded to use the NUCLEUS library
inside a DOMINO controller. The mode file DOM—
LINK-CzMODE contains an example of how to make a
load/link job for applications using NUCLEUS
inside DOMINO.

Example of linking using DOMINOS Configurator

@DELETE-FILE CTEST-LOAD:OUT
@(user—area)DOMI—CONFIG
CONFIG,,"TEST-LOAD:OUT"
CONFIGURATION FOR MPStOMINO

LINKER is linker
DOMAIN is test
SYSTEM 0N (user—area)DOMI-OS:NRF
EXTENSION ON (user-area)nk-dom-os-c,(user-area)pl-mc68020
ENDEXT
PROCESS ON

test,(user-area)nk-dom-appl-c,(user-area)PLANC—MC68020
ENDPROC
INSERT 'LIST-ENT ALL'

ENDCONFIG

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 6 NUCLEUS Overview 177

6.3 Communication Concepts

Message

Port

Home port

Sender port

Send-
reference

Communication between processes in NUCLEUS is
based on messages and ports. Their descriptions
reside in physical memory shared between the CPUs
(The NUCLEUS kernel).

A message consists of a physical buffer for data
and a header containing for example a buffer
descriptor and link to other messages.

A port contains for example an identification of
the port owner and a pointer to received messages.
Messages can be linked to a port, where they are
queued in the same sequence as they arrive.

Every message has a home port. This is supplied
when a message is created. It is used as the
default port to receive a message. and is needed
when a process has to answer an arbitrary process
(e.g. clients & server).

A message may have a sender port. This is supplied
when you send the message, and is used to indicate
who sent the message. Use nkGetInfo to check for
who sent it. This is especially useful for
servers.

In order to send a message to a port, a
sendreference (to the port) must exist. The
sendreference is used by NUCLEUS for access
checking.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

178 Chapter 6 NUCLEUS Overview

Slow and fast Creation of ports and messages are slow services,
services while message passing is fast. The slow functions

are not needed as often as the fast ones, since
the same message may be reused without being
deallocated. Only the user—data need be changed
between each message passing (fast services).

Port name A port is uniquely identified by a symbolic port
name. Processes may refer to the port by the name
if they have access rights. Names cannot be
abbreviated.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 6 NUCLEUS Overview 179

6.A Protection in NUCLEUS

System
processes

Public
processes

Restricted
resources

Processes are divided into two categories: system
processes and public processes.

System processes are:

0 Processes running in the DOMINO processor.
0 RT-programs.
0 Background programs running as user System and RT

Background programs are System processes if the user
running the program originally logged in as System.

Restrictions: There are no restrictions for each
System process. Only the total amount of resources
(number of descriptors and amount of message buffer
space) is limited. The amount of resources can be
changed by means of the S3-configuration program
(See page 181).

Any process which is not a System process, is a
public process.

0 Descriptors: For each create—port, create-
message. open-port or open-return-port, a slot
in the descriptor table is reserved. The number
of descriptors for each public process is
restricted.

o Buffer space: Message buffers are allocated in a
common buffer pool. For each message a process
creates. a fixed amount (header, fragmentation),
plus the number of bytes in the create-message
call, is subtracted from the allowed quota for
the process.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

180

Naming:

Chapter 6 NUCLEUS Overview

The allowed amount of resources (number of
descriptors, buffer space) common to all public
processes can be set/changed on SINTRAN save areas
by means of SINTRAN configuration program.

A message belongs to the user that created it. If
a user creates a message, sends it away. logs out.
logs in again. and the message still exists, it
will still be on this users account. Public
processes cannot bypass the resource restrictions
by logging out and in again.

If someone tries to return a message to a home
port that does not exist any more (the user may
have logged out), the message will be deleted, and
subtracted from the users account.

0 Only system processes can create names.

0 Processes which do not have access rights to a
named port cannot open a sendreference to it.
Access rights are determined by the access
parameter in the create-port-name call.

0 Only the owner of a port can delete the port's
name.

0 The "name" is a string of 32 bytes.

0 Any combination of alphanumeric characters is
allowed as a port name. For instance "NIL" is
a legal name.

0 One port can be given several names.

0 Ports must have different names.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 6

6.5 Configu

NUCLEUS Overview

ration of NUCLEUS

Configuration
parameters

The standard NUCLEUS configuration is defined when
SINTRAN is generated. Changes in the NUCLEUS
configuration can be made by means of a new
function in the SINTRAN monitor call MON CONFIG.
The SINTRAN configuration program is updated to
handle reconfiguration of NUCLEUS.

Number of descriptors
messages.
Buffer space

number of ports and

space used for messages.
Default values in the table may have been changed.

181

NUCLEUS command parameters Default values
in S3—CONFIGURATION program for NUCLEUS

Message buffer space for 250 Kbytes ‘)
system processes in pages (125 pages)

Number of descriptors for 500 1)
all system processes

Message buffer space for 250 Kbytes 2)
all public processes in pages (125 pages)

Number of descriptors for 300 2)
all public processes

Message buffer space per 10 Kbytes
public process in pages (5 pages)

Number of descriptors per 10
public process

Trace buffer space in pages 2 Kbytes
(1 page)

See notes on next page.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

182 Chapter 6 NUCLEUS Overview

1) Assuming 1 disk DOMINO. 8 databases, 16 socket
channels.

) Assuming 2.5 Kbytes. 3 descriptors per access
library. 100 public processes.

During start-up, NUCLEUS allocates first available
memory in multiport memory.

6.6 NUCLEUS in ND-100

NUCLEUS in ND-lOO consists of code on SINTRAN page
tables MPIT, DPIT, RPIT and COMMON area. In
addition, the NUCLEUS server executes as an RT
program on SINTRAN page table SPIT. The NUCLEUS
name server executes as an RT program on user page
tables. Both servers are integrated with SINTRAN.
During start-up of SINTRAN, the servers are
started by SINTRAN itself.

6.7 NUCLEUS in DOMINO Controller

Starting NUCLEUS in DOMINO is invinsible for
applications. NUCLEUS in the DOMINO Controller is
able to handle processes with different levels of
priority.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

183

Chapter 7 NUCLEUS library

This chapter describes the routine calls available
from NUCLEUS.

7.1 Summary of NUCLEUS calls

NOTE:
In calls with only one function,
the function value must be zero.

CREATE PORT nkCrePort(function.events,=port)

function = O ; nkoDelayAbort
function = 1 ; nkelayAbort

CREATE NAME nkCreName(function.access,name,port)

OPEN PORT nkOpenPort(function.name,=sendreference)

OPEN RETURN nkOpenReturnPort(function,message,=sendreference)
PORT

function = 0 ; nkpenHomePort
function = 1 ; nkpenLastPort

DELETE NAME nkDelName(function.name.port)

CREATE nkCreMessage(function,bytes.homeport,=message)
MESSAGE '

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

184

MOVE

SEND

RECEIVE

CLOSE

GET INFO

GET INFO

Chapter 7 NUCLEUS library

nkMove(function,message.displacement,(=)data,
=bytes)

function = 0 ; nkfRead
function = 1 ; nkrite
function = 2 ; nkfInsert

nkSend(function,port.sendreference,message)

nkReceive(function,port,=message,=bytes)

nkClose(function,port or message or sendreference)

function = 0 ; Port or sendreference

function = o ; nkfRemove
only for

function = 1 , nkfReject messages

nkGetInfo(function,port or message or
sendreference.=value(bytes pointer))

function
function
function
function
function
function

nkVersion(function,

function
function
function

UI-B'WNHO -o

no

.0

no

'-

no nkize
nkength
nkomeid
nkastid
nkuffer
nkueue

(station no,=version)

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 7 NUCLEUS library 185

7.2 Parameters in NUCLEUS calls

The status from a NUCLEUS call is returned as an
outvalue. (Always INTEGER”)

The first parameter is a function number. In calls
with only one function, the function value must be
zero. Five NUCLEUS calls have more than one
function. To specify the function in a call. you
may use either the function number or a symbolic
subfunction name.

Function Subfunction
NUCLEUS call number name

0 nkoDelayAbort
nkCrePort

1 nkelayAbort

nR t t
0 nkpenHomePort

nkOpe e urnPor
_ 1 nkpenLastPort

0 nkize

1 nkength

2 nkomeid
nkGetInfo

3 nkastid

4 nkuffer
5 nkueue
O nkfRead

nkMove l nkrite
2 nkfInsert

0 nkfRnkClosel) emove
1 nkfReject

0 nkibrary
nkVersion 1 nkernel

2 nktation

1) Subfunction names are valid for messages only.

Table 5. Function numbers and names in NUCLEUS calls

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

186 Chapter 7 NUCLEUS library

7.2.1 NUCLEUS status codes

Error NUCLEUS operation error/status codes are found in
codes Appendix C, on page 271-272.

The following status codes may be returned after a
service. The constants denoting the status codes
are in the include file NK—ERRCODEzDEFS

Constant Octal val Meaning

nke_ERROR_BASE 101000b Base number for Nucleus errors
nke_ILLPAR 101001b Invalid parameter value
nke_ILLTYPE 101002b Wrong type used,- port, message

or send reference
nke_NOMESS 101003b Both port and message in Send

reference may not be zero
nke_ILLNO 10100ub Port, message or send reference

outside range
nke_NOTLOCAL 101005b Receive from remote port
nke_0UTSIDE 101006b Displacement outside buffer
nke_DESCARRFULL 101007b Descriptor table full
nke_BUFFULL 101010b Message buffer area full
nke_NAMEFULL 101011b Name table full
nke_NAMENOTFOUND 101012b Port name not defined
nke_NAMEUSED 101013b Port name already defined
nke_NOACCESS 10101Hb No access to given port,

message or send reference
nke_ILLNETADDRESS 101015b Net address not found
nke_ILLKERNELNO 101016b Invalid kernel number
nke_NETTABFULL 101017b Net table full
nke_PROTOCERROR 101020b Inconsistent Nucleus module

versions installed
nke_REJECTED 101021b Message rejected by receive

process

Continue on next page...

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

187Chapter 7 NUCLEUS library

Constant Octal val Explanation

nke_PORTNOTFOUND 101022b Port reference not defined in
name server

nke_LOCK 101023b Unable to lock port
nke_NOTEVENBYTE 101024b Displacement not on even byte

(only for ND-100)
nke_NOTINITIALISED 101025b Nucleus not started
nke_NAMEPORTUSED 101026b The Nameserver port is already

initialised
nke_NAMEINDEXERROR 101027b Index error in Nameserver

request
nke_INCONSISTENT 101030b Inconsistent structure

in name server
nke_TOOMANYBYTES lOlO31b Buffer provided is too small
nke_PORTCLOSED 101032b Receive port is closed.
nke_ILLFUNC 101033b Invalid Function code
nke_PROTECTED 101034b Attempt to use protected

Function
nke_ILLHARDWARE 101035b Not correct hardware

configuration
nke_FATAL 101036b Fatal error in Nucleus
nke_QTABFULL 101037b Too many concurrent Nucleus

users (quota table full)
nke_QUOTAUSED lOlOHOb No more Nucleus-resources

available for this user
nke_ILLUSER 101041b Unknown user area identifier
nke_KICKLOCK 101042b Timeout when waiting for lock

(kick-queue)
nke_DELAYTABFULL 1010u3b Unable to create more ports

using delayed abort
nke_NOTAVAILABLE lolouub NUCLEUS not available in CPU.

(not started or stopped)
nke_ILLVERSION 101045b Invalid version of NUCLEUS

library

Table 6. NUCLEUS status/error codes

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

188

nkCreMessage
nkDelName

nkOpenReturnPort
nkOpenPort

nkCreName
nkCrePort 1 1 1

Chapter

nkRece
nkSend
nkMove

7 NUCLEUS library

nkVersion
nkGetInfo

nkClose
ive

—l1
nke_BUFFULL
nke_DELAYTABFULL
nke_DESCARRFULL
nke_FATAL
nke_ILLFUNC
nke_ILLHARDWARE
nke_ILLKERNELNO
nke_ILLNETADDRESS
nke_ILLNO
nke_ILLPAR
nke_ILLTYPE
nke_ILLUSER
nke_ILLVERSION
nke_INCONSISTENT
nke_KICKLOCK
nke_LOCK
nke_NAMEFULL
nke_NAMEINDEXERROR
nke_NAMENOTFOUND
nke_NAMEPORTUSED
nke_NAMEUSED
nke_NETTABFULL
nke_NOACCESS
nke_NOMESS
nke_NOTAVAILABLE
nke_NOTEVENBYTE
nke_NOTINITIALISED
nke_NOTLOCAL
nke_OUTSIDE
nke_PORTCLOSED
nke_PORTNOTFOUND
nke_PROTECTED
nke_PROTOCERROR
nke_QTABFULL
nke_QUOTAUSED
nke_REJECTED
nke_TOOMANYBYTES

><><><>< ><><

><

><><><

><><><

><

><><><

><

Table 7. NUCLEUS calls and error/status codes

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 7

7.3 NUCLEUS Call Interface

NUCLEUS library 189

Every PLANC routine call has an outvalue, but no
invalue, i.e.:

ROUTINE VOID,INTEGERH(....

7.3.1 Create port

Purpose

Syntax

Parameter
description

Create a new port. The creating process becomes
the port owner.

nkCrePort(<function>,(events),<=port>)

(function)

(events)

<=port>

0

Abort not delayed. nkoDelayAbort
Delay abort. nkelayAbort
For further information about
nkelayAbort. see next page.

If ND-100 or ND-500: The process
will be activated when the first
message arrives at the empty port.
ND—lOO: Process is stopped by

MON 267 (TimeOut).
ND-EOO: Process is stopped by

MON 501 (StopProcess) or
MON 514 (NDBOOTimeOut).

If DOMINO: Events will be used
together with the event system
in DOMINOS.
Event bit 30 and 31 are used by
NUCLEUS itself. These bits cannot
be used by any application!
The process will not be activated.

Port number.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

190

Rules

Chapter 7 NUCLEUS library

The subfunction nkelayAbort (function=1) is yet
only available for ND-5000 System processes

PLANC routine call

ROUTINE VOID, INTEGER4 & status
(INTEGERQ. & function

INTEGERQ, & events
INTEGER4 WRITE) & port

: nkCrePort

ERROR CODES nke_DELAYTABFULL No more space in delay abort

nke_DESCARRFULL
nke_FATAL
nke_ILLFUNC
nke_ILLUSER
nke_ILLVERSION

nke_NOTINITIALlSED
nke_QUOTAUSED

%
table

% Descriptor table full
% Fatal error in NUCLEUS
Z Invalid function code
% Unknown user identifier

(fatal error)
% Invalid version of NUCLEUS

library.
1 NUCLEUS not started
% Quota exceeded for this user

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 7 NUCLEUS library 191

7.3.1.1 Delayed abort for NUCLEUS

If a port is created with the subfunction
nkelayAbort. then the process that owns the port
will be delayed aborted (hang in abortion state)
until all messages with this port defined as home
port are returned to the home port.

NOTE I This subfunction is yet only available for ND-5000
System processes.

Example In some cases DOMINO operates directly on fixed
segments of ND-SOOO processes. It is important
that the process is not aborted (and the segments
unfixed) while DOMINO carries out data transfers.
To avoid this. process abortion should be delayed
while data transfer control messages still remain.

To solve the problem of unwanted abortion of a
process. ports that are home ports for data
transfer control messages should use the
subfunction nkelayAbort when they are created.

nkCrePort(nkelayAbort.....

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

192 Chapter 7 NUCLEUS library

7.3.2 Create port name

Purpose Assign a name to a port, so that other processes
can refer to it.

Syntax nkCreName(<function),(access),<name),<port))

Parameter (function) = 0
description

(access) = 0 Only System processes have access
to this port.

1 System and public access.

(name) = Symbolic name of port.

(port) = Number of port to be assigned a name.

Rules 1. The call is allowed for System processes only.
2. Only the owner of the port is allowed to use

this call.
One port may have several names.
The "name" is a string of 32 bytes.

. Any combination of alphanumeric characters
is allowed as a port name.

. Different ports cannot have equal names.0\

U1-E'UU

__Snanned_b¥lcmmLQddane for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 7 NUCLEUS library 193

PLANO routine call

ROUTINE VOID, INTEGERQ & status
(INTEGER“, & function

INTEGERU. & access
BYTES POINTER,& name
INTEGER“) & port

: nkCreName

ERROR CODES nke_FATAL 1 Fatal error in NUCLEUS
nke_ILLFUNC X Invalid function code
nke_ILLNO X Invalid descriptor number
nke_ILLPAR X Invalid parameter value

(access type # 0 , 1)
nke_ILLTYPE % Invalid descriptor type
nke_ILLVERSION X Invalid version of NUCLEUS

library.
nke_NAMEFULL % Name table full
nke_NAMEUSED X Name already used
nke_NOTINITIALISED % NUCLEUS not started
nke_PROTECTED % Function is protected

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

194 Chapter 7 NUCLEUS library

7. 3.3 Open. port

Purpose This service will be used to get a send reference
to a named port.

Syntax nkOpenPort(<function>,(name),<=sendreference>)

Parameter (function) = 0
description

(name) = Symbolic name of port.

<=sendreference> = Sendreference number to port.

Rules 1. A public process can open a port only if access
to the port (set in nkCreName call) is allowed
both for System and public processes.

2. Processes using this call must know the name of
the port.

PLANC routine call

ROUTINE VOID, INTEGERH & status
(INTEGER“, & function

BYTES POINTER, & name
INTEGER” WRITE) & sendreference

: nkOpenPort

ERROR CODES nke_FATAL X Fatal error in NUCLEUS
nke_ILLFUNC X Invalid function code
nke_ILLNO % Invalid descriptor number
nke_ILLVERSION % Invalid version of NUCLEUS

library.
nke_NAMENOTFOUND % Name not in name table
nke_NOACCESS % Not access to port
nke_NOTINITIALISED % NUCLEUS not started

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 7 NUCLEUS library 195

7.3.1; Open return port

Purpose

Syntax

Parameter
description

Rules

Open 3 send reference to the home port or last
sender port of a message.

nkOpenReturnPort((function),<message>,
<=sendreference>)

(function) = 0 Reference to the home port
of the message.

= 1 Reference to the last port
the message was sent from.

(message) = Message number.

<=sendreference>= Send reference to home port or
last sender port.

1. Only the owner of the message is allowed to use
this call.

A "receive" on a message, implies that owner is
set. A message that is sent, but not received, has
no owner.

Scanned b¥ Jenn); ()ddenp for Sin’rran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

196 Chapter 7 NUCLEUS library

PLANC routine call

ROUTINE VOID, INTEGER” & status
(INTEGERH, & function

INTEGERh, & message
INTEGER4 WRITE) & sendreference

: nkOpenReturnPort

ERROR CODES nke_FATAL Fatal error in NUCLEUS%
nke_ILLFUNC Z Invalid function code
nke_ILLNO X Invalid descriptor number

1
%

nke_ILLTYPE Invalid descriptor type
nke_ILLVERSION Invalid version of NUCLEUS

library.
nke_NOACCESS % Not access to port
nke_NOTINITIALISED % NUCLEUS not started
nke_PORTNOTFOUND Z Port not found in name server

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 7 NUCLEUS library 197

7.3.5 Delete port name

Purpose Delete the symbolic name of a port. The port
itself is not removed.

Syntax nkDelName(<function>,(name).<port>)

Parameter (function) = 0
description

(name) = Symbolic name of the port.

(port) = Number of the corresponding port.

Rules The symbolic name of a port can only be deleted by
the owner of the port. Correspondence between port
name and port number is checked.

PLANC routine call

ROUTINE VOID, INTEGER“ & status
(INTEGERN, & function

BYTES POINTER, & name
INTEGERQ) & port

: nkDelName

ERROR CODES nke_FATAL X Fatal error in NUCLEUS
nke_ILLFUNC % Invalid function code
nke_ILLNO % Invalid descriptor number
nke_ILLTYPE X Invalid descriptor type
nke_ILLVERSION Z Invalid version of NUCLEUS

library.
nke_NAMENOTFOUND X Name not in name table
nke_NOTINITIALISED % NUCLEUS not started

“Wen?for Sin’rran Data © 9011

Scanned by Jonny Oddene for Sintran Data © 2011

198 Chapter 7 NUCLEUS library

7.3.6 Create message

Purpose

Syntax

Parameter
description

Allocate a message buffer in a contiguous area of
physical memory. It can be written into and read
from, using the fast services nkMove

The creating process owns and has exclusive access
to the message until it is sent to a port. The
access to the message is lost when it is sent to
another process.

The homeport must be a port owned by the creating
process. Zero may be supplied to indicate dummy
home port, meaning that the message will be lost
and deallocated if it is sent to the home port.

nkCreMessage(<function>,<bytes>,<homeport>.
<=message>)

(function) = 0

(bytes) = Max. number of bytes in the message.

<homeport> = Home port number.

<=message> = Message number.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 7 NUCLEUS library

PLANC routine call

199

nke_ILLVERSION Invalid version of NUCLEUS
library.

ROUTINE VOID, INTEGER“ & status
(INTEGER”, & function

INTEGERQ, & bytes
INTEGERN, & homeport
INTEGER“ WRITE) & message

: nkCreMessage

ERROR CODES nke_BUFFULL X Buffer area full
nke_DESCARRFULL X Descriptor table full
nke_FATAL % Fatal error in NUCLEUS
nke_ILLFUNC % Invalid function code
nke_ILLNO % Invalid descriptor number
nke_ILLTYPE % Invalid descriptor type
nke_ILLUSER % Unknown user identifier

X

%nke_NOACCESS
nke_NOTINITIALISED
nke_OUTSIDE
nke_QUOTAUSED

Not access to port
X NUCLEUS not started
1 Displacement outside buffer
% Quota exceeded for this user

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

200 Chapter 7 NUCLEUS library

7.3.7 Read or write a message

Purpose

Syntax

Parameter
description

Rules

Write user data into the message buffer of a
message from index (mesdispl) and upwards. The
write operation terminates either when all user
data is written, or when the message buffer
becomes full.

Read data from the message buffer. starting from
the message displacement. The reading terminates
either when the whole message has been read, or
when the user data area becomes full.

nkMove(<function>,(message),<displacement),
<(=)data>,<=bytes>)

(function) 0 =) Read message. nkfRead.
- Write message. nkrite.

2 => Insert. Same function as Write,
but the byte pointer is not set
if the message is smaller then
the old message. nkfInsert.

II

II

II

H I V

Number of the message to be
read/written.

(message)

(displacement) = Displacement within message
buffer.

<(=)data) = User data to be read/written.

<=bytes> = Number of bytes actually read/written

1. The message buffer is identical to the
declaration: Bytes : message(0:msglngth-1).

2. In the ND-100 maxindex and minindex in the byte
pointer must be in the range 0-64511. Displace-
ment must be an even number for ND-100.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 7 NUCLEUS library 201

3. "NIL" cannot be used as an empty message. An
empty message can be specified as an empty
byte string. i.e. : ADDR ' '
Bytes pointer with minindex= 0 and maxindex=-1
is also an empty message.

PLANC routine call

ROUTINE VOID, INTEGER4
(INTEGER’L

INTEGERH,
INTEGER4,
BYTES POINTER

& status
& function
& message
& displacement
& data

INTEGERD WRITE) & bytes
: nkMove

ERROR CODES nke_ILLFUNC Invalid function code
nke_ILLNO Invalid descriptor number
nke_ILLTYPE Invalid descriptor type
nke_ILLVERSION

nke_NOACCESS
nke_NOTEVENBYTE
nke_NOTINITIALISED
nke_OUTSIDE

74
%
74
76

74
74

74
74

Invalid version of NUCLEUS
library.
Not access to port
Displacement not even byte.
(Only returned for ND—lOO)
NUCLEUS not started
Displacement outside buffer

write/insert: outside max buffer.
read: outside current byte counter.

Start Byte pointer Max
1 l l

Message buffer

outside buffer for nkfRead

outside buffer for
nkrite/nkflnsert

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

202 Chapter 7 NUCLEUS library

7.3.8 Send message

Purpose

Syntax

Parameter
description

Send a message to a port, provided that the
sending process has access to the message. The
process loses its access to this message. The
message is appended at the end of the message
queue at the destination port.

If the queue at the destination port is empty,
then the message will activate the process which
created the destination port. if so specified at
create time.

nkSend(<function>,(port>,<sendref.>,<message>)

(function) 0

(port) Port number to identify who sent the
message(Last port). New sender port
is not set if the port number equals
zero.

<sendref.) Sendreference to port to receive the
message.
If sendreference = 0, the message is
sent to the home port of the message.

(message) Message number of the message to be
sent. If the message number is equal
to zero this call will not send a
message, but perform a restart of
the process of the destination port.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 7 NUCLEUS library

PLANC routine call

203

ROUTINE VOID, INTEGER” & status
(INTEGER“, & function

INTEGERQ, & port
INTEGERQ, & sendreference
INTEGER”) & message

: nkSend

ERROR CODES nke_ILLFUNC % Invalid function code.
nke_ILLNO Z Invalid descriptor number.
nke_ILLTYPE % Invalid descriptor type.
nke_ILLVERSION Z Invalid version of NUCLEUS

library.
nke_NOACCESS % Not access to port.
nke_NOMESS % No port and no message in

nke_NOTINITIALISED %
nke_PORTCLOSED 76

SEND.
NUCLEUS not started.
Receive port is closed.

Status nke_PortClosed is returned if the port to
receive the message is closed. If sendreference is
not specified (send message to home port) and the
home port is closed, then the message is
deallocated.

If status nke_PortClosed is returned and send-
reference is specified, then the sendreference
should be closed. This sendreference is no longer
valid because the port to receive the message is
closed.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

204 Chapter 7 NUCLEUS library

7.3.9 Receive message

Purpose The first message in the queue is received. If the
queue is empty, message number zero is returned.
The receiving process gets access to the message.
and may read from and write to it.

Syntax nkReceive(<function>,(port).<=message>,<=bytes>)

Parameter (function) = 0
description

(port) = Port number. Identifies the port from
which the message will be received.

<=message> Message number.

<=bytes> Number of bytes written into the
message buffer by the sending process
It is equal or less than the message
size. You can use nkGetInfo to get
the message size and who sent it.

PLANO routine call

ROUTINE VOID, INTEGER4 & status
(INTEGERfl, & function

INTEGERH, & port
INTEGER“ WRITE, & message
INTEGER4 WRITE) & bytes

: nkReceive

ERROR CODES nke_ILLFUNC X Invalid function code
nke_ILLNO X Invalid descriptor number
nke_ILLTYPE % Invalid descriptor type
nke_ILLVERSION % Invalid version of NUCLEUS

library.
nke_NOACCESS % Not access to port
nke_NOTINITIALISED % NUCLEUS not started
nke_REJECTED % Return to sender

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 7 NUCLEUS library 205

7.3.10 Get Info

Purpose

Syntax

Parameter
description

Get information on the specified message or port.

nkGetInfo(<function),<message or port or
sendreference),(=value))

(function) = O : nkize. Maximum message size.
= 1 : nkength. Used message length.
= 2 : nkomeid.

If message: Home port identifier.
If port: Port identifier.
If send reference: Destination
port identifier.

= 3 : nkastid. Identifies the last
port that sent this message.

= u : nkuffer. Buffer address of the
message in NUCLEUS kernel.

= 5 : nkueue.
0 =) port has no message.
1 => port has one or more

messages.

(function) = 0, 1, 4 , 5 returns 32 bits(4 bytes).

(function) = 2 and 3 returns 64 bits (8 bytes).
For future NUCLEUS extension. all
applications must be prepared for
returning 128 bits (16 bytes).

(function) = 0, 1, 3, 4 can be used for
messages only.

(function) = 5 can be used for ports only.
Returned as INTEGERM.

NOTE !
If (function) = 2 or 3, the identifiers
returned can only be used to compare other
identifiers returned from nkGetInfo.
Do not extract any other informatiOn.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

206

Parameter
description

Rules

(message = Mess
or port or = Port
sendreference) =

<=value> = Message,
informat

Only the process havi
port or sendreference

PLANC routine call

Chapter 7 NUCLEUS library

age number.
number.

Sendreference number.

port or sendreference
ion.

ng access to the message,
is allowed to use this call.

ROUTINE VOID,
(

I.

INTEGER” & status
INTEGER“, & function
INTEGER”, & message, port or sendreference
BYTES POINTER)& value
nkGetInfo

ERROR CODES nke_ILLFUNC
nke_ILLNO
nke_ILLTYPE
nke_ILLVERSION
nke_NOACCESS
nke_NOTINITIALISED
nke_TO0MANYBYTES

Invalid function code
Invalid descriptor number
Invalid descriptor type
Invalid version of NUCLEUS
library.
Not access to port

X NUCLEUS not started
% Too many bytes (maxindex or

minindex outside limits)

3!

RNRR

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 7 NUCLEUS library 207

7.3.11 Close port, message or sendreference

Purpose Close a port; message or sendreference.

Closing a If function (see next page) = 0 (nkfRemove), then
message the message is deallocated.

If function = 1 (nkfReject), then the message is
closed according to the following algorithm:

IF lastport in message is set and not closed THEN
IF lastport owned by invoking process THEN

deallocate message
ELSE

send message to lastport with status rejected
ENDIF

ELSE
IF homeport closed or owned by invoking process
THEN deallocate message
ELSE

send message to homeport with status rejected
ENDIF

ENDIF

Closing a port results in deletion of the port
number and all of the ports symbolic names.
If there exists messages (in queue to the port)
that the port has not yet received, the messages
will be closed according to the algorithm above
(function = 1 [nkfReject]).

Closing a send reference. The send reference is
closed.

NOTE !
When a process is aborted or a CPU in the system
is rebooted, messages are deallocated/closed as
in function=l (see next page).

Syntax nkClose(<function>,<port or message or sendref.>)

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

208 Chapter 7 NUCLEUS library

Parameter (function) = 0
description

(port = Port number to be closed. If the port
is named. all names defined with the

or call nkCreName will be removed.
message = Message number to be deallocated.

(nkfRemove)
or
sendref.) = Sendreference to be closed.

(function) = 1 [nkfReject] The message is closed
according to the algorithm for
closing a message.

nkClose(0,-1) will close all ports, sendreferences
and deallocate all messages owned by
the process.

nkClose(1,-1) will close all ports, sendreferences
and messages owned by the process.

Rules 1. A message can only be closed by the process
that currently has access to the message.

2. Port or sendreference can only be closed by
the process which owns the port/sendreference

PLANC routine call

ROUTINE VOID, INTEGER4 & status
(INTEGERll, 8. function

INTEGERH) & message or port or sendreference
: nkClose

ERROR CODES nke_FATAL 1 Fatal error in NUCLEUS
nke_ILLFUNC % Invalid function code
nke_ILLNO % Invalid descriptor number
nke_ILLVERSION % Invalid version of NUCLEUS

library.
nke_NOACCESS % Not access to port
nke_NOTINITIALISED % NUCLEUS not Started

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 7 NUCLEUS library 209

7.3.12 Get Version

Purpose

Syntax

Parameter
description

Rules

Get version of different NUCLEUS parts. May be
useful for version control.

nkVersion(<function),<station no),<=version))

ll 0 II V(function) Version of NUCLEUS library
(NUCLEUS library application
is linked to). [nkibrary]

= 1 =) Version of NUCLEUS kernel data
layout. [nkernel]

= 2 =) Version of NUCLEUS last loaded
in (station no). [nktation]

(station no) Octobus station number.

<=version> Version consisting of three
alphanumeric characters.

1. The parameter (station no) must be in range 1
to 778 and is valid only for function 2.

2. The parameter (version) is yet only returned
for Domino controllers.

Planc routine call

ROUTINE VOID , INTERGERQ 8. status
(INTERGERN, & function

INTERGERM, & station no
BYTES POINTER) & version

: nkVersion)

ERROR CODES nke_ILLFUNC % Invalid function code.
nke_ILLPAR % version string too small,

% or cluster id outside range.
nke_ILLVERSION % Invalid version of NUCLEUS

library.
nke_NOTAVAILABLE % Domino contr. not yet started.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

210 Chapter 7 NUCLEUS library

7.4 Brief introduction to tables in NUCLEUS kernel

MASTER MASTER BLOCK
BLOCK

POINTER TO DESCRIPTOR TABLE
DESCRIPTOR
TABLE

._I—
POINTER T0 HASH ARRAY

HASH HASH MASK
ARRAY

KICK
h POINTER TO KICK TABLE

TABLE
I

POINTER TO NET ADR TABLE

NET POINTER TO START OF
TABLE

I
BUFFER AREA

BUFFER POINTER TO END OF
AREA

.—J—
BUFFER AREA

Figure 23. Tables in NUCLEUS kernel

LOCK ——» Used for TSET

2 -——o TYPE= 2 => Message

HEAD OWNER ——» Owner of message. Used for access check

FREELINK ——~ Link in freelist

USER ——_. Used for quota control

LINK -—» From (receiving) port

BUFFERPOINTER ——» Pointer to buffer record

HOMEPORT -—~ Pointer to (home)port

HASHLINK -—~ Identifying messages from remote

COMSTAT ——~ Shadow message usage

OWNINDEX ——# Descriptor number

TRACECOND ——~ 0 = NO trace

Figure 24. Record layout for a message in descriptor table

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 7 NUCLEUS

HEAD

LOCK

3

OWNER

FREELINK

USER

MESS HEAD

MESS TAIL

KICKLINK

KICK HEAD

KICK DEST.

INQUEUE

KICK PROC.

EVENTS 1

EVENTS 2

OWNINDEX

PRANDOM

NETTADDRESS

OPENCOUNT

NAMED

library

1
l

211

for TSET

TYPE= 3 => Port

Owner of port. Used for access check

Link in freelist

Used for quota control

Start of message queue

End of message queue

Link kicked ports together

Points to queue head in kicktable

Index in kicktable(=OCTOBUS station no)

= 0 => NOT in kickqueue

Process to be kicked

Events to be set

More event info

Descriptor number
Identifies
this port.
(OWNID)

Magic number

To complete identifier

Number of times opened for receive

Number of names for this port

Figure 25. Record layout for a homeport in descriptor table

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

212

LOCK

4

HEAD OWNER

FREELINK

USER

DEST.PORT ID.

DESTINATIONPORT

Chapter 7 NUCLEUS library

TYPE: 4 => Sendreference

Owner of sendref. Used for access check

Link in freelist

Used for quota control

ID to receiving port

Destination pointer

Figure 26. Record layout for a sendref in descriptor table

PROTOCOL

MESSAGE STATUS

PORT ID

MESSAGE ID

HOME ID

LAST ID

SIZE

LENGTH

BUFFER(O:(-1))

NUCLEUS protocol version

Message status - e.g. rejected.

Destination port

Original message identifier

Home receive port

Last send port

Maximum number of bytes

Bytes used

Start data buffer

Figure 27. Message buffer layout in bufferarea

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 7 NUCLEUS library 213

7.4.1 NUCLEUS call sequence - an example

PROCESS A NK- NUCLEUS NK- PROCESS B
SERVER LIB kernel LIB CLIENT

nkCrePort

):::::I-
-d

E

_O

nkCrgName
—— NUCLEUS

)O— + —9 NAME nkCrePort
SERVER 2 _ a 3)

E -—o

Figure 28. Creating ports and names in NUCLEUS

1) Process A (server) creates a port (nkCrePort), and
) assigns a name to it (nkCreName).
) Process B (client) creates a port (nkCrePort).

Descriptor 1

HEAD 3 ——~ TYPE= 3 => Port
Process A ——# Owner of the port

Descriptor 2

HEAD 3 —. TYPE: 3 => Port
Process B ——~ Owner of the port

The two nkCrePort calls each reserves a descriptor in the
NUCLEUS descriptor table. Nucleus name server checks that the
name assigned to the port by Process A (nkCreName)is unique.
The port name (ownid) in descriptor 1 is updated.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

214 Chapter 7 NUCLEUS library

PROCESS A NK- NUCLEUS NK- (PROCESS B
SERVER LIB kernel LIB CLIENT

nkCreyessage
— {a ’

—o

_.__ nkOpegPortNUCLEUS ———o)
NAME ”{—.

SERVER

Message
buffer

Figure 29. Create message and open port

A) Process B (client) creates a message (nkCreMessage)
) Process B (client) opens the port created by Process A. to

get a sendreference to the port.

Descriptor 3

HEAD 2 -—» TYPE: 2 => Message
Process B ——~ Owner of the message

Descriptor 4

HEAD H ——a TYPE= 4 => Sendreference
Process B ——» Owner of the Sendreference

Another two descriptors in the NUCLEUS descriptor table are re-
served by the calls nkCreMessage and nkOpenPort. Message buffer
is allocated in buffer area. It is checked that Process B has
access to the port. The categories of processes that may open a
sendreference to the port are given by the owner of the port
(Process A), by means of the nkCreName call. The sendreference
descriptor has a pointer to receiving port #1.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 7 NUCLEUS library 215

PROCESS A NK- NUCLEUS NK- PROCESS B
SERVER LIB kernel LIB CLIENT

1 ——.—--O 6)
—- nkMove

Message
buffer

Figure 30. Write a message into the message buffer

6) The function nkrite is used, and the message is written
into the message buffer.

PROCESS A NK— NUCLEUS NK- PROCESS B
SERVER LIB kernel LIB CLIENT

-» 1
——

Message
buffer

4 __- ——o—-—o 7)
—- nkSend

Figure 31. Send a message

7) Send the message to the port owned by process A. The message
is appended at the end of port's message queue.

The sendreference is used to decide which port that is to receive
the message.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

216 Chapter 7 NUCLEUS library

PROCESS A NK- NUCLEUS NR- PROCESS B
SERVER LIB kernel LIB CLIENT

8)o—— —» 1
nkReceive

3 II
|_
Message

._ —— —— — buffer

Figure 32. Receive a message

8) The first message in the queue is received. After the
nkReceive call, the message is removed from the port's
message queue. Process A becomes the owner of the message.

PROCESS A NK— NUCLEUS NK- PROCESS B
SERVER LIB kernel LIB CLIENT

9)o— —'3__
nkMove ~—

_|
Message
buffer
j

Figure 33. Read a message
9) The function nkfRead is used, and the message is read from

the message buffer.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 7 NUCLEUS library 217

L» Descriptor 3 _* Descriptor 1
LOCK LOCK

2 message HEAD 3 Port
HEAD Process B owner Process A owner

Freelink Freelink
User User

LINK MESS HEAD —
BUFFERPOINTER MESS TAIL —————
HOMEPORT KICKLINK
HASHLINK ___1 KICK HEAD
COMSTAT KICK DEST.
3 (=Descr. #) INQUEUE
TRACECOND KICK PROC.

EVENTS 1
Descriptor 2 EVENTS 2

LOCK OWN ID
HEAD 3 Port 1 (descr. #)

Process B Owner PRANDOM
Freelink NETTADDRESS

User OPENCOUNT
MESS HEAD NAMED
MESS TAIL
KICKLINK Descriptor 4
KICK HEAD LOCK
KICK DEST. HEAD H
INQUEUE Process B
KICK PROC. Freelink
EVENTS 1 User
EVENTS 2
2 (descr. #) T — DESTINATION PORT
PRANDOM OWNID
NE’I'I‘ADDRESS i
EZMEESOUNT 1—— MESSAGE AREA

Figure 34. Pointers in descriptor table

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

218

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

219

Chapter 8 PLANC Programming example

Example 1:

HIIEEtest

This chapter gives some examples of simple
client/server cases. In real life, clients and
servers will normally be in different processes.
However, for simplicity all examples run as one
single process here.

This is a simple example where a client ”A" sends a
request to server "B" which responds.

Client "A" Server "B"

Client "A" Server "B"

$HK111E:aaxnhanxvnk-Zflnumyrwmm

HWHIRAHMY:sfimk(m9%B)
% samerckma:
_HWIEEB4: SflRafl%u¢ %;xxt mmmxx'to naxfivelmxxwge
HWEGHK: Sflknfind:%pnrtnuflxr‘u>nxehexm£a¥p
Banyan: SflSaxhef% azdnfiEraxxa fim?senEmA
1Nfl11R4: SZSatbe % sadnfibnmre fbrserwaBmm” mess % m’m1ND1EB4: sbnmxzix oflames
.mnuzm4:

smambaggh%1m£sq§ala¥¢hBrflik quamio:) % naxnyed(kua

% uxx'daUn
1ND1284: Uflaflin¢'% portlmnttm'to naxfivexmaxxge
1NDKIR4: wn%m nuflxr
INHKER4: USathef% saxkefiaenoe
INHKEB4: A numxn‘oflndes
mwaaay:

hwgfl2%BYDEk reqxrmetk29)% nxefl£d(k¢a

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

220 Chapter 8 PLANC Programming example

7%6— CHSTAT
%
mm,wm:chstat
FMMGWWIF

mm;

RR}!

Iflaflflfl: nadit
mm

m
)

rmgOJfilRecPort)
chs'tat

rflCndetDI Addr‘senErAfi Slfla¥vrt) akflnt

XIBER WWW

teRnia),2olficm
chflut
m‘m} chnat

Wim 'senErA ,U&adnfi? chant

741513 WEST

nu%xe(1,lmwssJJ,AdflrW
senkmfi',lmvuav dfififlt

IFlmnvai><1 m1 ERMHUHVWm1?
nkfirdfl),0,lfiknh2fiumam9 chant

waamm mwe 12 my
D7smmsuagfl1><11 HENlmE%Efi%;Eg¥fiF

nhfixea),sm§sfi),Adfirqxwt,sbmwaflWFabmvai><1$qxfim >< fixk.&aved\' IHHVI EEKHUHVENDH’

XSEWERRES’O‘SE
xmmmmwm
nMWxx11,ammsJ),Adhr' ammir flnmusenmmB', shnmxxv <flunat
FWXIQMIWHWIF
nkQarKO, O,(),smaxfl chant

ZMGEISRESDO‘SE
nw%reux%0, wwas,
FWWWWIWIF

nfi%xe(0,zmessJ)Adtr
EMEEF

Famvuai>< 19)(I?(raqxrse ><'ens¢n‘flnm196nwa£3') IHEVI EEHEIUHV

X 1532 DIWI‘rfl<CZa9e(QUserdref) chs'tat
rflcuxwfllumaxv
rflcuxwa),ummpn¢) chant

% SERVER DISCINNECI‘
nkDeUVane(0,Ad1r'testse1v',SlReqm't) chewt
nkmefl),Scpn¢) ch_

W(1,'A','$ — CliSav sessim finished -')

W
W
SKF

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 8

Example 2:

Client "A"

Client "A"

HIXEEtest

PLANC Programming example 221

1. Client "A" sends a request to server "B".
2. Server "B" sends the request to server "C".
3. Server "C" responds on the request from server "B".
4. Server "B" responds to client "A".
5. Server "C" respons to server "B" by means

of last port set by server "B".

Server "B"

Server "B" Server "C"

Server "B" Server "C"

Server "B"

SDKLUIEaaxmwneqhdrlflafiflmm

INHKERAHWMY:’sumk ak99%v

%
senaardauEflRecP %Dflflflflfl: ort pamznudxn‘tozeaaxe1m§§age

1NDZIH4: SZRafllnw % rt nudxx'to naxfivexnaxige
1NDZIR4: SflUsmkydRe % saxkefenxme fimrSenknA u>Uber
INDIEB4: SESathe saxhxfienaxe flmrSenmmA
1NDiEB4: % saxkefiaxxne fimrSenmmB
1Nflfllin:

sma§;%%
numfim

INDKIR4: oflmflrs
:

BYDER %(W3&7;)% naxnyed(kfia

1 user data:
UR %1NDK184: afl%n¢ portxnmbertn naxfivetmfifigge

1ifl£££fl4:m% message number
HWEGHH: (Eknte %:§ndnfiename
1NDKIR4: bnztd

nggfr<fi'hw€§DEHEER4: umess meaxge earfih
Brnfik reqsehk2&)% naxflxed<kfia

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

222 Chapter 8 PLANC Programming example

%z- CHSTAT
RR}!75mmwm .- chstat

FMMGWWIF
W

1W:testit
INLSIWXstack

WW'WWHW diserv: ')
may'3’,mm)

m

X ServenA establish meetim

W?0,2,31Recport)
chs'ta't

fiCrdVane 0,1,Adiz- 'SewerA',SlRecPort) chstat

X SexvexB E‘SI‘AHISi
MCrePoz'tm,

2,32RecPort)
chstat

WWW, 1,Ad1r 'Ser‘verB' ,SZRecPort) ChS'tat

XiEER[BERESIAHIQiWI'IO‘J'IUSeI‘veI‘A

Wort(0,2,mecPOZ't
chem

,,UR50 ort,umess) dzstat
,Adh' 'ServerA ,USerdref) chsta‘t

7: 1553 mm m SewerA
rm(1,mess,0,m 'ask ServerA',bmved) chstat
IFbrvved X 11 m 1 WWW
fl<Serd(0,Zh'eq't,USer11?ef,l/7‘Iess) distat

Z Savem READ REIJESI‘
nkReceive(0,SZRecPaz't,wness,S‘IessLergth) chstat
WWW(1,W&93,SIUWW chstat

1F

ram(0,wess,0,mquest,
shroued)chstat

115'lsbra2a1x (R'questx'flSewerA WIWEDIF

ZSetvESI‘AHlO-ICIMIECI‘IGJ ’IOServerB
Wm(0,Adir "ServerB ,SlSerdref) chstat

éASSeI‘verAmREIJESI'IOSeIwI‘B.
Serwr‘ASEIISI'ISO/NRECEIVERRI

W(1,,wess,0Adb'askSexvetB',
moved chrtat

11791933 ><11 Mlumvmm
W0, eqm't,SISerzfl?ef,wness) chstat

Magma?“eceve umess,
FMwsIagthxllMl1Wmm

W(O,wzess,0,kflrquest,sbnoua1117l Cuestx'askSewerB' MIWHDIF

WWII)XSeIKIeI'BESI'ABLIS‘I ServerA
XCPE‘IASENDREFAI‘SETORRTSETALASTMINM.
WW(1,Wess,SZSenflef) chstat

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 8 PLANO Programming example 223

ZSetverBRESPO‘SESewerA

W(I,wness,0,kflr"armerfmn8ewe18,sbm2ad)
chs’tat

FWX IQMIHMIMHWIF
W0,0,S.2SeniRef,unes9) data.“

grid? i (OHSIRecPoz't d’lstateceue W933,

wtlgm
1mm

H7(sbrn39dx19)a?mquastx'axsuerfzun8ewe18')m1flmmvmfl'

74 SewerA Rm [BER
n1d’10ve(1,wws,0,

Adir' answer f‘mn SewerA',sbraJa1) chstat
117m X 191mm WWW
W0,0,31Usn9enfl?ef,wness) chs'tat

5m (0,,URecPoz'teceiue mess,

mnggxlgmzm
IWQfiIF

mm, om
1F(sbra)ed><19)m quaetxmarmaerfrmSewerA')m1mmmVEw1F

76 [SEEDDIsrmNEcr
ricZose(0,USerdref)
MWdOJImess)
riclosem, WecPoz't)

7. SexverAD

Mlosem,SlUszSerdnef)
nkCZosem, SlSa’dre)
nkDeZNanem, A111" ' ,SlRecPoz't)
M10640,SlRecPoz't)

acmw
rweZNmaemAdiz-smgflmfi ,SZRecPoz-t)
raczasem, S’ZRecPort)
W(1,'A','$ - Emple nunber 2 finished -')

mm
W
SEF

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

22“

Example 3:

HIZEEtcst

Chapter 8 PLANC Programming example

In this example. client "A" sends a request to
server "B", and server "B" reads the message.
Client "A" does not want a response from server "B".
This is obtained by setting dump as home port when
client "A" creates the message.

Client "A" Server "B"

—.

SDKLUHE(uaahaamkHZflnxmy:fimm
Dummy : stack (0:9999)
X serwn‘data:
1ND1284: SlRafl%n¢'%1xmtlnnbertn maxfiyexmisage
1NDKIE4:

Sflknfimdi%znrtnumertnznxfiiwameafige1ND%ER4: WJ’X saxkefénmrn lfiaenExA
DWEHflH:

S$knhef1£§mdnfibrmx2
forSenEmB

1mm} Wmofbytes
Eflflfik

.
qaxt?gggh%1nxebmdlckma

%1££r<kma:
1NDZER4: URafllnw Xxxmtxnmter unreamxexmisage

INHKEH4:
mm} branixzmnberofbytes
.nnuzm4: %m§s&mlkngm
InQES: Ivspwme(l23)% naxnyed(kua

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 8 PLANC Programming example 225

74CHSTAT %
mm,mm:dstat

1F9><0 MEWMF
m

‘1‘!“

m:testit
mm

Gaunt 'nfiflamueemo intfliszv: ')
aqwjfg’mmmw

r

xmmmmmm

riCIQPoz't(O,2,SlRecPort)
cl'Ls'uIt

flédme(0,1,Adfi9 'SavedX' ,Sflknflnw) chflut

%IEERESI‘AH..IG{(INI\1ECI‘IO‘I'IDServerA. MPCRI'ISSET

rMhfl0,0,Wmflmwmw and

Wmm wgwfimmenezue wmfimmammmXxuimw1’
nkfivea)wum%$J)Adfirqwstshuwafl

ZIEER DWI
rfiChmefl),U&7dnfi7
rflcumea),w%nfln¢)

%ServerA Dm. MEEEACERE‘JEIVEDWILLBEIE‘ALLKL‘A’IE).flcwwm,
fldbflWne((),Ad£"EbnfimA' ,Sfl%nfln¢)
rflcumefl)(3flknfln¢)
W(1,'A','$ - Emplemnber3 finisfed -')

MINE
WEE
fiKF

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

226

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

227

Chapter 9 Error handling in NUCLEUS

9.1 NUCLEUS start up (system booting)

During start up of NUCLEUS in a DOMINO controller,
NUCLEUS checks that:

o the correct version is installed, and that

o the controller address of NUCLEUS kernel is
correct.

If a failure occurs during start up, an error
message is sent to the Processor Manager, which
writes an error message on the error device.

9.2 NUCLEUS fatal errors

When a fatal error occurs in NUCLEUS it is most
likely that some memory conflict has occurred
(NUCLEUS kernel area is overwritten by a DMA, system
processes in the DOMINO controller etc..).

The error status identifying the cause of the error
is sent to the Processor Manager server in ND-lOO by
means of an Octobus multibyte message and then
written on the error device.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

228 Chapter 9 Error handling in NUCLEUS

ERROR Inspect—log
device

SSWatchDog Ring file

J
ND-lOO

PROMAN
(PROcessor MANager)

———fi———————————‘———

MFbus_ MFbus

contr o OCTOBUS

MultiPort DOMINO
Memory controller

N
OPCOM

T
NUCLEUS
KERNEL DOMINOS NUCLEUS

DATA

ERS DOMINO
LIB application

NUCLEUS software

Figure 35. Error in NUCLEUS

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 9 Error handling in NUCLEUS 229

9.3 NUCLEUS nonfatal errors

A nonfatal error will not corrupt the NUCLEUS kernel
area. An octobus multibyte message is sent to PROMAN
(Processor Manager) , and then written on the error
device.

9.4 Power failure handling

When a power fail occurs it is presumed that all
CPUs are affected simultaneously. Multiple power
sources and failures are not taken care of.

NUCLEUS may have set a Lock in the NUCLEUS kernel
when a power failure occured. If not all CPUs are
restarted at same time, it may cause a failure in
NUCLEUS. NUCLEUS waits for a certain time to set a
lock. If NUCLEUS is not able to set a lock. an error
status will be returned. In the case of power
failure this is very likely to occur.

Handling of power failure in NUCLEUS:

A global flag is set in NUCLEUS masterblock to
indicate a powerfail at power-down. If a CPU is
waiting for a lock. this flag is checked to see if
the timeout has to be increased. When a CPU is
recovered, this flag is reset and normal lock
timeout is used.

The new lock routine in NUCLEUS is updated to give
timeout. If power failures have occurred, the
timeout limits are increased.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

230 Chapter 9 Error handling in NUCLEUS

9.5 Verifications tests during start up

NUCLEUS checks if the NUCLEUS version number in each
CPU is correct. In case of a version mismatch, an
error message is sent to error device.

9.6 NUCLEUS verification program

Background pro- NKS-VERIFY ———» NKS-LOGFILE:LOGS
gram in ND-lOO

The NUCLEUS verification program is delivered with
the OS-kit, and runs as a background program in ND-
100. The program is easy to use for debugging
purposes. For each server. i.e. ND-100. ND-500 and
DOMINO. separate programs (running as RT-programs)
must be loaded. Please consult the PD-sheet. Log
status from the servers are displayed on the screen,
and saved on the log file NKS-LOGFILE:LOGS if any
errors occur.

i

NUCLEUS NUCLEUS NUCLEUS

ND-100 ND-SOO DOMINO Contr.

NKSlOO:PROG NKSSOO:DOM NKSDOMINO:IMAG
Verify func. Verify func. Verify func.
Verify error Verify error Verify error
Verify comm. Verify comm. Verify comm.
Stress fast Stress fast Stress fast
Stress slow Stress slow Stress slow

NUCLEUS NUCLEUS

Figure 36. NUCLEUS verification program

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 9 Error handling in NUCLEUS 231

To start the program give the command:

@(UTILITYIEKS-VERIFYJ

The screen picture shown below will now appear. An
error message is displayed on the status line if you
try to start logging from a server which is not
loaded/started.

Press a toggle: I
F1 F2 F3 F4 F5 F6 HELP EXIT

ND100 ND5000 DOMINO Trace Run test Stop test Info Leave

new 2

Status line

Figure 37. NUCLEUS verification program
- screen picture

Messages are written in the message area when an
error occurs. or when a test-module (see next page)
is loaded/started/terminated.

HELP Press the HELP-key. and you will get information
facilities about:

0 How to load,start and run tests,
0 toggle status, and
o the NUCLEUS verification system.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

232

DOMINO
station

Test
modules

Function
keys

Chapter 9 Error handling in NUCLEUS

If you start verification in DOMINO (press the F3-
key), the cursor will move. and you are asked to
give the number of the DOMINO controller for which
you want verification to be started.

NOTE I ——————————-—————-——
[—bOMINO station is rebooted

As the drawing on page 230 indicates, each server
program consists of five modules:

U1

I-‘UJNH

and NkCrePort

. Verify function.

. Verify error handling.

. Verify communication.

. Stress the fast services. i.e. NkMove. NkSend
and NkReceive. .

. Stress the slow services. i.e. NkCreMessage

NOTE I
[—Stress modules are not implemented in C version

NOTIS terminal non-NOTIS terminal

F1
F2
F3
F4
F5
HELP
EXIT

CTRL+D twice
CTRL+L
FUNC CTRL+U
FUNC +
FUNC Y
FUNC ?
FUNC #

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 9 Error handling in NUCLEUS 233

Simultanious Simultanious verification in ND—lOO, ND—SOO and
verification DOMINO is allowed. Verification can only be

performed in one DOMINO at the time.

If you start verification in more then one server,
you should not start tracing (F4) before you have
inspected the log file. When you have found which
server that produced the error message (the name of
the server on the screen will blink), adopt the
following course of action:

1. @(UTILITY)NKS-VERIFYJ (start verification)

2. Press the toggle(Function-key) that corresponds
to the server which produced the error message.
If you start verification in DOMINO, you will
also have to give the DOMINO station number.

. Press the FM—key, in order to enable trace.
4. Press the FS-key, in order to run the test.
U0

9.7 Debugging and tracing of NUCLEUS

NkCreMessage, NkSend, nkReceive and NkClose calls
may be logged. Trace may be selected for one or more
messages in NUCLEUS monitor. (See SET-TRACE on page
2H8 and LIST—TRACE on page 248lThe trace element is
put in a ring buffer in NUCLEUS kernel, and may be
investigated by the NUCLEUS monitor.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

234

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

235

Chapter 10 NUCLEUS Monitor

General The NUCLEUS Monitor is a tool for

o inspection of tables and queues in NUCLEUS kernel
0 interactive use of NUCLEUS calls.

A typical use is to LIST ports or messages. More
detailed information may be obtained by various
DISPLAY commands. The data structures may be shown
explicit by the LOOK-AT command. The monitor is also
able to invoke NUCLEUS with the different functions
like CREATE-PORT, CREATE-MESSAGE, SEND-MESSAGE...

The monitor has a HELP command that shows the
possible commands and appropriate parameters. The
LOOK—AT command has a HELP command as well.

10.1 Installation of NUCLEUS Monitor

The monitor is named NK—MONITOR, and recides on a
floppy with directory DOMINO-KIT-C-E, and user—name
FLOPPY-USER. Enter the floppy, and use Linkage-
Loader to install the monitor.

There is an absolute correspondence between the NK-
MONITOR and the current version of NUCLEUS. So this
monitor will only work with the C version of
NUCLEUS.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

236 Chapter 10 NUCLEUS Monitor

10.2 The command system

Promt:

Notation:

NOTE I
In commands with default values for descriptors (i.e port,
sendreference or message), the current descriptor is default
If the default is not used, the given descriptor value also
becomes the current descriptor.

To start NUCLEUS Monitor, give the command:

END-500 NK-MONITORJ

The NUCLEUS monitor prompts with nkm: whenever it is
ready to accept a command. You may now use the
commands on the high-level. If the commands you need
are on the low—level(advanced mode), give the
command:

nkmzADVANCED—MODEJ

The monitor prompt changes to nkm(adv):

When describing the commands available in the
NUCLEUS monitor, the following rules apply:

All parameter names are enclosed in <> brackets.

If a parameter that is asked for has a default
value, the default value is enclosed between slashes
//-

Command
entering

Radix:

The names of optional parameters, that are not asked
if not given, are enclosed in square brackets. []

AS in SINTRAN.

Numeric arguments may be given in octal. decimal or
hexadecimal. The default radix is octal. but may be
changed by the Main-format command. A trailing B
(octal) or D (decimal) overrides the format.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 10 NUCLEUS Monitor 237

10.3 NUCLEUS monitor commands

The description of the commands are divided into
three parts:

0 Commands common to high-level and low-level.

o Commands available on high-level only.

0 Commands available on low-level only (advanced
mode).

10.3.1 NUCLEUS monitor — common commands

Exit

High-level: Terminate execution of the NUCLEUS
monitor.

Low-level : Return to high—level.

Main-format (format)

Define the main format for numbers displayed by the
other commands. The format does not affect the
numbers displayed by the Look-at command. See the
Extra-format command.

Parameter: The wanted format. H, 0 and D is
available. Only one may be used at the time.

H - Hexadecimal
O — Octal
D — Decimal

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

238 Chapter 10 NUCLEUS Monitor

Get-port—name (portnumber)

Displays all the port names defined for port number
(parameter).

Parameter: port number.

Format:

Port number: 4B Name AAAA

Help (command)

Displays available commands with their parameters on
current level. Command names may be abbreviated as
in SINTRAN.

List-messages

Lists the messages with their message (descriptor)
indices. owner ID and home ports.

Format:

Message: Owner: Homeport:
73 1002750313 6B

118 100275041B 10B

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 10 NUCLEUS Monitor 239

List-names

Displays all the port names defined in the name
server, with their corresponding port number, random
number and netaddress.

Format:

Port Random : NetAdr Port Name
118 7B : HOB AAAA
IOB 6B : NOB NKMTDRIVER

7B 5B : NOB NKMTSERVER
6B NB : HOB PMAersGateWay
5B 3B : MOB PMAservicePort
4B 2B : MOB PMAhomePort
3B 2B : NOB serviceport

One port may have more than one name. but two ports
cannot share a name. If a server terminates, the
port names will still be present in the nameserver
unless they are deleted by the termination process.
or by NUCLEUS.

It may look as if a port has more than one name,
especially if a process fail to terminate properly.
In most cases, this is not true, as the random
number part of the port number is different.

List-ports

Lists the ports with their port (descriptor)number,
owner ID, number of messages and number of home
messages.

Format:

Port number: Owner: Messages: Home messages
1B 100062542B OB OB
2B 10006257OB OB OB

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

240 Chapter 10 NUCLEUS Monitor

Verify

This command performes a consistency check of the
data structure. Inconsistencies are reported.

10.3.2 NUCLEUS Monitor - high-level commands

The commands described in this section, are
available on this level only. Commands described in
the previous section are also available.

Advanced-mode

Gives the user acccess to the low-level commands.
See the next section, starting on page 244.

Close (descriptor)

Close a port,sendreference or message defined by
(parameter).

Parameter: Descriptor number(index).

No default value.,

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 10 NUCLEUS Monitor 241

Create-message (size>(homeport)

Creates a message of size (parameter 1) with
homeport (parameter 2). The message number of the
message is returned. The message becomes the current
message.

Parameter 1: size of message
Parameter 2: homeport for the given message.

Create—name <name><port>

Creates port name (parameter 1) on port
(parameter 2).

Parameter 1: Port name.
Parameter 2: Port number. /current port/

NOTE I
In commands with default values for port number, the current
port number is always the default port number. If the de-
fault is not used, the given port number becomes the current
port number. This also applies for message and sendreference

Create-port

Creates a port. A port number is returned, and the
port becomes the current port.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

242 Chapter 10 NUCLEUS Monitor

Fill-data-buffer (string)

Fill the buffer with the string (parameter). The
string, given as parameter, is moved to the buffer
area in the monitor. The buffer area may written
into the NUCLEUS area, and sent to a destination
port by the Write-message and Send-message command.

Parameter: any string.

Note: The command is meaningless in the BOO version
of the monitor, as the Write-message command also
fills data into the buffer.

Open-port (port name)

Open the port with name (portname).
A sendreference number is returned, and can be used
to send to <portname>.
The sendreference number returned. becomes current
sendreference.

Print-data-buffer

Displays the content of the send/receive buffer in
the monitor. The content is displayed in both octal
and ascii format.

Example:

Data buffer content:
OB : OB OB 748 3758 1028 102B 1028 1028 (..<.BBBB)

108 : 1028 1028 1028 1028 1028 1028 1028 1028 (BBBBBBBB)
208 : 1028 1028 1028 1028 1028 1028 1028 1028 (88888888)

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 10 NUCLEUS Monitor 243

Receive-message <port no.)

Receive message from <portno.). Parameter: port
number /current port/.

Read-message (message)<displacement)

Read message from <messagenumber> to data buffer,
start from position (displacement)

Parameter 1: message number /current message/.
Parameter 2: displacement in message buffer /0/.

The received dat will be displayed. and may be
redisplayed with the PRINT-BUFFER-command.

Send-message (port no.>(message no.)

Send (message number) to <port number)

Parameter 1: port number to send message to /?/.
Parameter 2: message number to send /curr message/.

Write-message (message no><disp1acement><text>

Write (messagenumber) to data buffer, start in
position (displacement)

Parameter 1: message number /current message/.
Parameter 2: displacement in message buffer /0/
Parameter 3: any string of text.

Scanflfldflbflflfldflflfl? for Sin’rran Data © 7011

Scanned by Jonny Oddene for Sintran Data © 2011

244 Chapter 10 NUCLEUS Monitor

10.3.3 NUCLEUS Monitor - low-level commands

The commands described in this section, are
available on low-level only. Commands described in
the section "NUCLEUS Monitor — common commands" are
also available. See page 237.

Connect-file (file name)

Parameter: File—name. Default file type is :DUMP.

The connect-file command is intended to be used to
investigate a dump of NUCLEUS kernel. Most low-level
commands can be used (display/list commands).

The dump file can be made by means of the DUMP—
KERNEL command. You may also use the stand-alone
program MEMTOF, and dump the memory to a diskette.

Display-descriptor (descriptor index)

Descriptor may be port. sendreference or message.
Parameter: descriptor index(number).

Display-kicklist (OCTOBUS station no.)

Display the kicklist for Octobus station (parameter
1).

Parameter: Octobus station number.

The kicklist is a list of receive ports. Processes
owning ports in the kicklist, will be activated.

Example:

Port Mb
Port 7b

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 10 NUCLEUS Monitor 245

Display-masterblock

Displays the masterblock for NUCLEUS. The index
limits for the descriptor array, hash array, kick
table and net table is displayed. Of these, only the
descriptor array and kick table have meaning, as
NUCLEUS communication is not implemented.

nkm:ADVANCED-MODEJ
nkm(adv):DISPLAY-MASTERBLOCKJ

Masterblock address: 200000040008
Version: 1038
Protocoll: 28
Descriptor array: 200000042448 (OB 777B)
Hash array: 200001042448 (OB 3778)
Hash mask 377B
Kick table: 200001062448 (08 773)
Net table: 200001076448 (08 118)
Trace buffer: 200001077648 (OB 377B)
Trace pointer: OB
Quota table: 200001177648 (OB 618)
Quota hash array: 200001222448 (08 377B)
Quota hash mask: 377B
Quota free link header: 200001222148
Free link header 200000060448
Buffer area start: 200001242448
Buffer area end: 200026242408
Local net address: 408
Power fail 1: OB
Power fail 2: 08
Current random number: 4728
Trace condition: GE
General area lock: 08
Hash lock: 08
Trace lock: OB
Allowed public descript.: 3008
Allowed public buffer: 1240000B
Used public descriptors: 08
Used public buffer: 08
Message free list: 08
Number of free messages: 08

nkm(adv):

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

246 Chapter 10 NUCLEUS Monitor

Display-messages (message)

Lists data related to message (message)

Parameter: message number /current message/ .

Display-port (portnumber)

Lists data related to port <portnumber>.
Parameter: port number /current port/.

Example: nkm(Adv): DISPLAY—PORTJ
Portnumber: lag

Owner : 1004110138
Octobus station : 1B
Process to be kicked : 100411013B
Event set : 1B
Open count : lB
Decriptor address : 200004451443

Dump—kernel (file name)

Dump the NUCLEUS kernel to (file name). Parameter:
File name. See also the related command CONNECT—FILE
on page 244.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 10 NUCLEUS Monitor 247

Extra-formats (format)

Define extra-formats for the Look-at command.
Parameter: extra format string. HDOA or any
combination of them may be used.

H - Hexadecimal
D - Decimal
0 - Octal
A - Ascii

Force-display (descriptor index)(type>

Display the (descriptor index), as if it where of
the type (type). Parameter 1: Descriptor index
(number). Parameter 2: Descriptor type.

Legal values for descriptor type:

0 = unused
1 = used
2 = message
3 = port
4 = sendreference

Get-Nucleus-memory

This command is for special use, intended for
internal debugging only.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

248 Chapter 10 NUCLEUS Monitor

List-trace (number)

List-quota

The last (number) trace elements are listed.

Parameter : <number>=0 =) List all trace elements.
<number>=i => List the i (i=1.2,..,n)

last trace elements.

Look-at

Lists all users in the quota table.

This command is similar to the look-at-data command
in the symbolic debugger.

Set-trace (message)(on/off)

Set trace for <message> number (off/on).

Parameter 1: Number of message to be traced.
<message>=0 => All new messages are
traced.

Parameter 2: 0=Off.
1=0n.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

2M9

Appelldix A Image files

Groups
blocks and
bytes

An image is divided into groups, each of 256 blocks.
Each group has a bitmap showing the blocks used. A
block has 2048 bytes. An image may have eight
groups. A group describes a continuous memory area
of 512 K bytes. Each group may have a group number
from O to 255, giving a potential address span of
128 M bytes.

An image may be scattered in the full address space.
But, as only eight groups are allowed, all blocks in
the image must be within the eight. even if not all
blocks are used in all groups. The place address in
DOMINO memory for a block is derived directly from
the group and block number:

PLACE ADDRESS = GROUPNUMBER*219 + BLOCKNUMBER*211

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

250 Appendix A Image files

IMAGE FILE HEADER
PAGE #0

TotalBlocks (blocks in all groups)

TotalGroups (u in this case)

StartAddress (for execution)

ImageMap(O:7)
Group index ——» 0 1 2 3 4 5 6 7

Group number —» A0 A1 A2 A3
219 219 219 219 ‘ ' ' "

IMAGE AREA
PAGE #1

A0 —O 0—]

(addr) 1
........ 1
........

g
A1 _." Q‘

........ I 1

..
%max rou

...... sizeg= p
l........

219
bytes 1

A2 .5
M

1
h- hole in

g.. grOUP
O 1

A3 ——:'
M A

g

one group's bitmap

1
(actually 256 bits)

..IIIIII 1
O

..... = program code/initialized data
The group numbers need not be in increasing order as in this
example.

Figure 38. Image file header versus image area

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Appendix A Image files 251

Appendix B DOMINO selftests

Test numbers All tests has a test number which must be reported
at the start of the test, and when errors are found.
The following reservation of test numbers is done.

Test no. Test type.

1 - 2F Preboot tests.
30 - 7F Standard postboot tests
80 — EF Device dependant tests
F0 - FF Reserved

NOTE!
All device dependant tests must
start with test number 80 (hex)

Selftest All selftests reports to the test connector
reporting (Address: FF8104) when starting. This reporting is
to test done to make it easy to trace the selftests on a
connector logic analyzer or tracer. The selftest report to the

test connector consists of two parts. The first byte
is the test number and the second byte is an error
number. A zero in the 'error byte' means that this
is the start of the test (no error).

Example The following would be a typical display on a tracer
storing all cycles to the test connector.

Address Data Meaning
FF8104 0100 Start of selftest no. 1
FF8104 0200 Start of selftest no. 2
FF8104 0300 Start of selftest no. 3
FF8104 0301 Error no. 1 found in selftest no 3

When an error is found in a selftest, the test and
error number is written to the test connector, and
an error message is written to the current path
(asyl or OCTOBUS).

Scanned ha; .lonm; ()ddenp fnr Qin’rmn Data ((3 9011

Scanned by Jonny Oddene for Sintran Data © 2011

252

Example

How to use
a TDF

Appendix B DOMINO selftests

The error message is on the following form:

SELFTEST ERROR NO : (test and error no.) (Text
explaining what kind of error.)

SELFTEST ERROR NO : 101
Wrong checksum in DOMINO EPROM

All selftests (except preboot) follows the defined
layout using TDF's. A short description of all the
elements in the TDF record is given below.

TYPE tdf = RECORD
INTEGER4 : Tdey % Must be OkKey
BYTES : Name(0 : 9)
tdf POINTER : NextTdf
INTEGERN : RunsToGo, RepFreq. MabErr
Testn POINTER : TestPtr
RespRtn POINTER : Restr
Data POINTER : InParams
Data POINTER : OutParams
INTEGER4 : TqrrCode % 0=Ok, >< 0 Error
INTEGER4 : DoneRuns. NbErrors
ENUMERATION(TstIdle. TstRunning, TstAborted, TstErrReport, &

INTEGERZ
ENDRECORD

TstMneport) &
: State
: Sparel

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Appendix B DOMINO selftests 253

Tdey
This should always be OkKey. where OkKey is defined as:
CONSTANT OkKey = 124210u30u08 % Ascii 'TDF '

Name(0:9)
This is the name of your test. (Choose a good one)
Ex. 'PROT-TEST '

NextTdf
Pointer to next TDF. This will usually be NIL for selftests.

RunsTbGo
Number of times the test should be run. This should always be
1 for selftests.

RepFreq
Report frequenzy. Should always be 0 for selftest, because only
errors should be reported.

MabErr
Maximum number of errors allowed before test is terminated.
Will usually be 1 for selftests.

TestPtr
Pointer to your testroutine.
Ex. ADDR ProtectTest
ProtectTest is the name of the routine containing your test.

Restr
Pointer to a response routine. This routine will be called when
you are doing a TRAP£6 or TRAP£7. The routine should contain all
error output from your test.
Ex. ADDR ProtecttResp
ProtecttResp is the name of a routine that outputs error
messages from your test.

InParams
Pointer to a record containing parameters from NDITS to be used
by the test. Will very often be NIL for selftests.

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

254 Appendix B DOMINO selftests

OutParams
Pointer to a record containing parameters from the test to NDITS.
Will very often be NIL for selftests.

TqrrCode
TEXU error code. Must be set to O for selftests.

DoneRuns
Number of times the test is actually run.
Must be set to O for selftests.

NbErrors
Number of errors found so far for this test.
Must be set to 0 for selftests.

State
State will be one of the following:
TstIdle, TstRunning, TstAborted, TstErrReport, TstMneport
Must be set to TstIdle for selftests.

Following is an example of a TDF array used by the
postboot tests.

tdf ARRAY : SelfTests(ProtTest : 2):=(&
(OkKey, 'PROT-TEST ', NIL, 1, O, 1, Addr ProtectTest,
Addr ProtecttResp, ProttIn, ProttOut, 0, 0, O, TstIdle, O).
(OkKey, ‘p-Test ', NIL, 1, 0, 1, Addr pTest,
Addr pTstResp, NIL, pTst0ut, O, O, 0, TstIdle, 0))

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Appendix B DOMINO selftests 255

Exception Unexpected exceptions in selftests are reported with
handling in the following error numbers. The error numbers are
selftests reported to the test connector, and a message is

written to asyl/OCTOBUS.

FCH Parity error occured.
xxFDH Exception occured in test xx
xxFEH Int. 7 occured in test xx
xxFFH Bus error occured in test xx

Preboot
tests
Test Name Test No/ Description

Err. No

Promtest 100B Start of prom checksum test.
-- 101 Wrong checksum in DOMINO prom.

- Something wrong with the prom?
- Collision with other devices on

the data bus?
- Address lines connected together?

-- 102 Wrong checksum in the device prom.
- Something wrong with the prom?

MCR test 2OOH Start of Master Control Register test.
—- 201 MCR not zero after reset.

- Bad register package?
- Problems with data bus?
- Problems with addressdecoding of MCR?

-- 202 MCR readback error. Read data not equal
to written data.
- Bad register package?
- Problems with write strobe to MCR?

Buserrortest 300B Start of buserror test.
-- 301 DSACK instead of BERR.

A bus error was forced, but instead the
cycle was terminated with a DSACK.
— Problem in address decoding?

-— 302 Local timeout bit not set
- Problems with the BerrInt7 register?

(INT7 PAL)
— Problems with the address decoding

of the same register?

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Appendix B DOMINO selftests

Test No/ Description
Err. No

WarmCold
AddrInAddr

Sizetest

ParityErr

ParityNet

600H

601
602
603
60k
605
606
607
608
609
7OOH
701

8OOH
804

805

806

807

Start checking for warm or cold start.
Start of memory test.
Error found in RAM
- Problems with timing against DRAM?

Missing RAS, CAS RW etc.
- Problems with data or address bus?
- Problems with one of the memory

packages?
Start of byte selection test.
All combinations of byte, word. long,
read and write is tested.
- Problems with the RW pal that

generates write Strobes to the DRAM?
- Problems with timing against DRAM?

Missing RAS, CAS RW etc.
Write Byte, Read Byte err.
Write Byte, Read Word err.
Write Byte, Read Long err.
Write Word, Read Byte err.
Write Word, Read Word err.
Write Word, Read Long err.
Write Long, Read Byte err.
Write Long, Read Word err.
Write Long, Read Long err.
Start of parity test.
Unexpected Parity Error
A parity error occured immediately after
enabling the parity system.
- Problems somewhere in the parity

network.
Start of parity check for each byte.
No interrupt from byte 0
- Problems in parity network for byte 0?
No interrupt from byte 1
- Problems in parity network for byte 1?
No interrupt from byte 2
- Problems in parity network for byte 2?
No interrupt from byte 3
- Problems in parity network for byte 3?

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Appendix B

Test Name

DOMINO selftests 257

Test No/ Description
Err. No

ParityAddr

ParityData

Booting
ParitySwitch

AOOH
A01
BOOH
COOH
C01
C02

C03

4-8 MB memtest D00

Uart/TimD

PrebootOK

001
E00
E01
E02
E03
E04
E05
E06
E07
E08
E09
EOA
EOB
EOC
EOD

2FO0H

Parity error bit not set 0
- Problems with the BERRINT7 register.
Parity error bit not set 1
— Problems with the BERRINT7 register.
Parity error bit not set 2
- Problems with the BERRINT7 register.
Parity error bit not set 3
— Problems with the BERRINT7 register.
start
- Error in parity RAM

or in address bits?
start
— Error in parity gen/check

Boot and switch RAM mode?
start
No switch no interrupt
No switch interrupt
- Problems in the MCR clear logic?
Switch no interrupt
- Problems in the interrupt system?
start
Error found in RAM
start
TimerC/D CtrlReg. ReadBackErr
TimerD DataReg. ReadBackError
Usart CtrlReg. ReadBackError
Rx Status Reg. ReadBackError
Tx Status Reg. ReadBackError
Usart Data Reg. ReadBackError
Rx StatReg does't stabelize
Tx StatReg does't stabelize
Usart Data Reg timeout
Illegal value in rsr
Illegal value in tsr
Too many/few Rx interrupts
Too many/few Tx interrupts
Preboot test OK

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

258

Postboot tests

Prot test 3000H
30yy

MFP test 3100H
3101

3102

3103

3104

3105

Appendix B DOMINO selftests

Start of protect test.
The error code yy has the following
meaning from the protect test.

bit no. in yy
76543210

‘L—— Protect mode bit 81
Protect mode bit 82
Protect mode bit U1
Protect mode bit U2
See DOMINO HW desc. for more de-
tails about the prot. mode bits.
FCO for the cycle that failed
FCl for the cycle that failed
FC2 for the cycle that failed
See MC68OZO User's manual for
more details about the
function codes.
Rw for the cycle that failed
0=Write, 1=Read

Start of MFP (MC68901) test.
Interrupts pending before they are enabled.
- Error in the MFP?
No interrupt pending after they are enabled.
- Error in the MFP?
Processor was not interrupted.
— Error in the MFP?
— Error in the interrupt system?
Timer error.
- Error in the MFP?
Too many interrupts.
- Error in the MFP?

Continue on next page...

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Appendix B

EEPROM test

Counter test

BADAP test

DOMINO selftests 259

3200
3201

3202

3203

3204

3300
3301

3302

3303
3400
3401

Start of EEPROM check.
Not valid EEPROM testpattern.
— No EEPROM?
— EEPROM not initialized?
- Problems in reading from EEPROM?
Not valid EEPROM version.
— EEPROM not initialized correct?
- Problems in reading from EEPROM?
Write access to write protected area.
— Problem in decoding of write strobe

to EEPROM?
Timeout. Busy signal from EEPROM constantly
active.
— Problems with EEPROM?
Start of 32 bit counter test.
16 bit counter is not running.
- Error in the counter?
32 bit counter is not running.
— Error in the counter?
- No master selected on OCTOBUS?
Protect trap when read from user mode.
Start of BADAP register test.
Readback error from BADAP register.
- Error in BADAP?
— Error in data path to BADAP?

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

260

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

261

Appendix C Error and status codes

PROMAN (Processor Manager) error codes

Octal val Meaning Type

10508 Processor Manager - PROMAN

1050008 Too large configuration ERROR
1050018 Program error, empty time queue ERROR
1050028 Unrecognised event ignored WARN.
1050038 Message from unrecognised Octobus WARN.

station ignored
1050048 Image file is empty, booting aborted ERROR

Controller at station..: I20
105005B Unrecognised event in Domino WARN.

boot-session ignored
Controller at station..: I20

1050068 Program error. invalid dummy-session state ERROR
1050078 Program error.invalid DOMINO-session state ERROR
1050078 Program error,invalid DOMINO—session state ERROR

Controller at station..: 120
1050108 Program error, invalid ERS-session state ERROR
1050118 Program error, invalid Service-session ERROR

state
1050128 Unrecognised dummy-session event ignored WARN.
1050138 Unrecognised Domino—session event ignored WARN.

Controller at station..: I20
1050148 Unrecognised ERS-session event ignored WARN.
1050158 Unrecognised Service—session event ignored WARN.
1050168 Error in Nucleus initialisation FATAL
1050178 Error in Octobus initialisation FATAL
1050208 Error in Nucleus receive WARN.
1050218 Error in Octobus receive WARN.
1050228 Error in Nucleus transmit WARN.
1050238 Error in Octobus transmit WARN.

Continue on next page...

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

262 Appendix C Error and status

PROHAN (Processor Manager) error codes

Octal val Meaning Type

105024B Controller does not respond, echo-test ERROR
failed
Controller at station..: 120
Opcom NAK-error code("O" means timeout)120

1050258 Unable to get identity from controller ERROR
Controller at station..: I20
Opcom NAK—error code("O" means timeout)120

1050268 Unable to stop controller ERROR
Controller at station..: 120
Opcom NAK-error code("O" means timeout)120

1050278 Unable to set mailbox for controller ERROR
Controller at station..: I20
Opcom NAK—error code("O" means timeout)120 -

1050308 Unable to download block to controller ERROR
Controller at station..: 120
Opcom NAK-error code("O" means timeout)120

1050318 Unable to set start address in controller ERROR
Controller at station..: I20
Opcom NAK-error code("O" means timeout)120

1050328 Unable to start program in controller ERROR
Controller at station..: 120
Opcom NAK-error code("O" means timeout)120

1050338 OPCOM selftest failed ERROR
Controller at station..: I20

1050348 Invalid service request command WARN.
1050358 No Domino controllers found in system WARN.
1050368 Unable to log events to ring buffer file WARN.
1050378 This ND-lOO is not master in system FATAL
1050408 Error when opening image file ERROR

Controller at station : I20
Image file name : 6QA

Continue on next page....

Scanned by Jonny Oddene for Sintran Data © 2011

codes

Scanned by Jonny Oddene for Sintran Data © 2011

Appendix C Error and status codes

Octal val Meaning Type

1050418 Server started , INFO
Version: 64A

1050428 DOMINO controller booting started INFO
Controller at station........: IZO
Crate ID (MFB contr station).: 12D
MFB Slot.....: IZD
Image file name: 64A

1050438 DOMINO controller rebooting started INFO
Controller at station: IZO
Crate ID (MFB contr station).: I2D
MFB Slot.....................: 12D
Image file name: 64A

1050448 DOMINO controller started INFO
Controller at station........: I20
Crate ID (MFB contr station).: I2D
MFB Slot : 12D
Image file name............ : 64A

1050458 DOMINO controller selftest status INFO
Controller at station : I20
Crate ID (MFB contr station).: I2D
MFB Slot : I2D
CPU type : I4D
Standard part version..: 34A
- Selftests failed.....: 64A
Device part version....: 34A
- Selftests failed.....: 64A

1050468 Server stopped INFO
1050478 Domino controllers restarted after INFO

powerfail
Number restarted.......: I2D
Number rebooted: IZD

1050508 Too small HRS—buffer fil, must at least be WARN.
two pages long

1050518 Domino controller has been terminated on INFO
request
Controller at station..: 120

Table 8. PROMAN (Processor Manager) error codes

Scanned by Jonny Oddene for Sintran Data © 2011

263

Scanned by Jonny Oddene for Sintran Data © 2011

264 Appendix C Error and status codes

DOMINOS error codes

Constant Octal value

PITermination 6000B
PIILCAL 60013
PIRANGE 60023
PICONTX 6003B
PISupModeCall 6004B
PIintErr 60058
PIDomFatal 6006B
PIUserFatal 6007B
PINOEXIST 6011B
PIEXIST 6012B
PIILPRI 6013B
PIILSTATE 60148
PINOPROS 6015B
PINOFREE 6016B
PIEVNOEX 6021B
PIILVEC 60228
PINOBUF 6041B.
PIINCONSIST 60428
PIILADDR 6043B
PINoRout 6051B

DOMINOS, DOMINO Operating System errors

Octal Meaning TYPE

6GB Domino Operating System

6000B Application in DOMINO controller terminated INFO
Octobus station IZO
Crate Id (MFB contr. station) IlD
MFB slot 11D

60013 Requested service not implemented ERROR
6002B Parameter value to service out of range ERROR
60038 Request comes in wrong context ERROR
6004B Service called in supervisor mode FATAL
6005B Dominos program error, please contact ERROR

ND—service

Continue on next page...

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Appendix C Error and status codes

Octal Meaning TYPE

6006B Unable to start Dominos FATAL
Octobus station. I20
Crate Id (MFB contr. station) IlD
MFB slot. IlD
Exception number............. IZunused
Address where occurred IQH
Dominos error................ SEC

60078 Error reported by PIRFatal FATAL
Octobus station.............. 120
Crate Id (MFB contr. station) IlD
MFB slot..................... IlD
Exception number............. IZunused
Address where occurred 148
Application error SEC

Process management

60118 Process does not exist ERROR
6012B Process already exists ERROR
6013B Invalid priority in PIRCREATE or PIRMODIFY ERROR
601MB Requested operation impossible in ERROR

this process state .
60158 Invalid process name ERROR
60168 No free entry for new process ERROR

Event system/timing/miscellaneous

6021B Event not found ERROR
60228 Invalid vector address, (outside 2..255 ERROR

or reserved)

Buffer manager

60418 Buffer space exeeded ERROR
60428 Inconsistency in Buffer data structure ERROR
60u3B Invalid Buffer address ERROR

Powerfail/power return handling

60518 Power fail/Power return handler not found ERROR

Table 9. DOMINOS, DOMINO Operating System errors

Scanned by Jonny Oddene for Sintran Data © 2011

265

Scanned by Jonny Oddene for Sintran Data © 2011

266 Appendix C Error and status codes

DOMINO Services (HW-LIB/OPCOM) error codes

Octal Meaning TYPE

HW dependant library

62018 HW-Lib: Low—limit greater than high-limit in ERROR
protection setting

6202B Hw—Lib: Attempt to prohibit R/W-access to ERROR
master control register

6203B HW-Lib: Attempt to read protection outside ERROR
protected area

62048 HW—Lib: Address does not match protection ERROR
segment

OPCOM

62408 Domino OPCOM: Invalid service request ERROR
6241B Domino OPCOM: Exception occurred for which FATAL

no handler exists
Octobus station 120
Crate Id (MFB contr. station). 11D
MFB slot IlD
Exception number 12H
Address where occurred........ 14H

IUUnused

Table 10. DOMINO Services (HW-LIB/OPCOM) error codes

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Appendix C Error and status codes

DOMINO Services (BOPCOM) error codes

Octal Meaning TYPE

BOPCOM

626GB BOPCOM : Server started INFO
?? IZUnused
7? IZUnused
Version 34A

62618 BOPCOM: Path opened to controller INFO
Octobus station 120
Message device I20

62628 BOPCOM: Path released INFO
Octobus station 120
Message device 120

62718 BOPCOM: Too many Octobus errors FATAL
62728 BOPCOM: Too many Superkernel errors FATAL
6273B BOPCOM: Unable to open own superports FATAL

(XMSG not started?)
?? I2Unused
?? IZUnused
?? IZOunused
?? IlZunused
?? IZunused
External error SEC

6274B BOPCOM: XMSG bufferspace exceeded FATAL

Table 11. DOMINO Services (BOPCOM) error codes

Scanned by Jonny Oddene for Sintran Data © 2011

267

Scanned by Jonny Oddene for Sintran Data © 2011

268 Appendix C Error and status codes

NUCLEUS error codes

Constant Octal val Meaning

nke_ERROR_BASE 101000b Base number for Nucleus errors
nke_ILLPAR 101001b Invalid parameter value
nke_ILLTYPE 101002b Wrong type used,- port. message

or send reference
nke_NOMESS 101003b Both port and message in Send

reference may not be zero
nke_ILLNO 101004b Port, message or send reference

outside range
nke_NOTLOCAL 101005b Receive from remote port
nke_OUTSIDE 101006b Displacement outside buffer
nke_DESCARRFULL lOlOO7b Descriptor table full
nke_BUFFULL 101010b Message buffer area full
nke_NAMEFULL 101011b Name table full
nke_NAMENOTFOUND 101012b Port name not defined
nke_NAMEUSED 101013b Port name already defined
nke_NOACCESS 101014b No access to given port,

message or send reference
nke_ILLNETADDRESS 101015b Net address not found
nke_ILLKERNELNO 101016b Invalid kernel number
nke_NETTABFULL 101017b Net table full
nke_PROTOCERROR 101020b Inconsistent Nucleus module

versions installed
nke_REJECTED 101021b Message rejected by receive

process
nke_PORTNOTFOUND 101022b Port reference not defined in

name server
nke_LOCK 101023b Unable to lock port
nke_NOTEVENBYTE 101024b Displacement not on even byte

(only for ND—lOO)

Continue on next page...

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

269Appendix C Error and status codes

NUCLEUS error codes

Constant Octal val Explanation

nke_NOTINITIALISED 101025b Nucleus not started
nke_NAMEPORTUSED 101026b The Nameserver port is already

initialised
nke_NAMEINDEXERROR 101027b Index error in Nameserver

request
nke_INCONSISTENT 101030b Inconsistent structure

in name server
nke_TOOMANYBYTES 101031b Buffer provided is too small
nke_PORTCLOSED 101032b Receive port is closed.
nke_ILLFUNC 101033b Invalid Function code
nke_PROTECTED 101034b Attempt to use protected

Function
nke_ILLHARDWARE 101035b Not correct hardware

configuration
nke_FATAL 101036b Fatal error in Nucleus
nke_QTABFULL 101037b Too many concurrent Nucleus

users (quota table full)
nke_QUOTAUSED 101040b No more Nucleus resources

available for this user
nke_ILLUSER 101041b Unknown user area identifier
nke_KICKLOCK 101042b Timeout when waiting for lock

(kick-queue)
nke_DELAYTABFULL 101043b Unable to create more ports

using delayed abort
nke_NOTAVAILABLE 101044b NUCLEUS not available in CPU.

(not started or stopped)
nke_ILLVERSION 101045b Invalid version of NUCLEUS

library

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

270 Appendix C Error and status codes

NUCLEUS calls and error codes

nkCreMessage
nkDelName

nkOpenReturnPort

nkCreName
nkCrePort 1

nkOpenPort

11
nkRece
nkSend
nkMove

nkVersion
nkGetInfo

nkClose
ive

11
nke_BUFFULL
nke_DELAYTABFULL
nke_DESCARRFULL
nke_FATAL
nke_ILLFUNC
nke_ILLHARDWARE
nke_ILLKERNELNO
nke_ILLNETADDRESS
nke_ILLNO
nke_ILLPAR
nke_ILLTYPE
nke_ILLUSER
nke_ILLVERSION
nke_INCONSISTENT
nke_KICKLOCK
nke_LOCK
nke_NAMEFULL
nke_NAMEINDEXERROR
nke_NAMENOTFOUND
nke_NAMEPORTUSED
nke_NAMEUSED
nke_NETTABFULL
nke_NOACCESS
nke_NOMESS
nke_NOTAVAILABLE
nke_NOTEVENBYTE
nke_NOTINITIALISED
nke_NOTLOCAL
nke_OUTSIDE
nke_PORTCLOSED
nke_PORTNOTFOUND
nke_PROTECTED
nke_PROTOCERROR
nke_QTABFULL
nke_QUOTAUSED
nke_REJECTED
nke_TOOMANYBYTES

><><><>< ><><

><

><><><

><><><

><

><><><

><

><><

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Appendix C

NUCLEUS operation error/status codes

Error and status codes

Version....: 34A
Cluster Id (ND-100 Octobus station no.
Zeropage for multiport memory.........
Page start address of kernel within
multiport memory....
Nucleus kernel size in pages
Message buffer space for all
system processes in pages...
Number of descriptors for all
system processes in pages....
Message buffer space for all
public processes in pages.....
Number of descriptors for all
public processes......
Message buffer per public process
in pages................
Number of descriptors per public
process.................
Trace buffer space in pages....

Iuo
I40

Iuo
140

140

IMO

IMO

1110

1140

IMO
I40

Octal Meaning TYPE

1011b Nucleus Operation

101100b Nucleus Name server started INFO
Version....: 34A
Size of name table..: IMO

101101b Nucleus server started INFO

Continue on next page....

Scanned by Jonny Oddene for Sintran Data © 2011

271

Scanned by Jonny Oddene for Sintran Data © 2011

272 Appendix C Error and status codes

Octal Meaning TYPE

1011b Nucleus Operation

101102b Unable to start server FATAL
Nucleus error SEC
Sintran error SEC

101103b Name server stopped FATAL
Nucleus error SEC

101104b Unable to reserve mailbox , FATAL
101105b Unable to get Cpu type FATAL
101106b Unable to get Nucleus configuration

from Sintran FATAL
101107b Unable to get start address of multiport FATAL
101110b Unable to find own Octobus station FATAL
101111b Unable to fix memory for Nucleus FATAL
101112b Unable to initialise Nucleus kernel FATAL
101113b Unable to initialise Sintran part of

Nucleus FATAL
101114b Unable to connect to Octobus FATAL
101115b Inconsistent data structure FATAL

Detected at address IMO
Called from IHO

101116b Timeout when waiting for lock FATAL
Called from 140
Address of lock I40

101117b Nucleus may not be restarted, please
restart system FATAL

101120b Unable to find Nucleus kernel FATAL

Table 12. NUCLEUS operation error/status codes

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

273

Index

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

274 Index

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Index

A6--register, DOMINO Monitor .
abbreviating parameter, DOMINO Monitor
abort job, DOMINO-MONITOR .
abort service, DOMINOS
abort, NUCLEUS . .
ACTIVE-ROUTINES, DOMINO Monitor .
actual macro parameter, DOMINO Monitor
actual parameter, DOMINO Monitor
Address registers .
Advanced-mode, NUCLEUS Monitor . .
ALIGN-LISTING command DOMINO Monitor .
ASYL, DOMINO Monitor . .
ASYNCHRONOUS-LINK. DOMINO Monitor .
ATTACH-DOMAIN command, DOMINO Monitor .
Automatic configuration, DOMINO .

Basic Software Module .
begin service, DOMINOS
blocked state, DOMINOS
Boot functions, DOMINO
Booting of DOMINO. Algorithm
Bopcom server . . .
BOPCOM SERVER, DOMINO Monitor .
break character, DOMINO Monitor .
BREAK command, DOMINO Monitor . .
BREAK-ADDRESS command, DOMINO Monitor .
breakpoint, DOMINO Monitor
BREAK-RETURN command, DOMINO Monitor
buffer management .
buffer pool .

calculate, DOMINO Monitor .
Calls, summary
CC command DOMINO-MONITOR . .
CHANGE-PATH command, DOMINO Monitor .
clock, DOMINOS
close message, NUCLEUS
close port, NUCLEUS .
close sendreference NUCLEUS
Close, NUCLEUS Monitor
CLOSE-HISTOGRAM command, DOMINO Monitor .
command search strategy, DOMINO Monitor .
comment, DOMINO-MONITOR .

275

. 82

. 40

. 42

. 129

. 191

. 71

. 63

. 65

. 92

. 240

. 71

. us

. 62

. 11

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

276

COMPARE-DATA command, DOMINO Monitor
COMPARE-PROGRAM command, DOMINO Monitor .
COMPUTE command, DOMINO Monitor .
Configuration data. DOMINO
Connect-file, NUCLEUS Monitor .
CONTINUE command, DOMINO Monitor
create message, NUCLEUS .
create port name, NUCLEUS .
create port, NUCLEUS
create service, DOMINOS .
Create-message, NUCLEUS Monitor .
Create-name, NUCLEUS Monitor
Create-port, NUCLEUS Monitor
current path, DOMINO Monitor

Data registers .
DEBUGGER command, DOMINO Monitor
debugging, DOMINO Monitor .
DEBUG-STATUS command DOMINO Monitor
default macro parameter, DOMINO Monitor .
default parameter, DOMINO Monitor .
DEFINE-MACRO command, DOMINO Monitor
Delayed abort, NUCLEUS
delete macro, DOMINO Monitor
delete port name, NUCLEUS .
descriptor . .
descriptor table
descriptor type = 2 .
descriptor type = 3 .
descriptor type = 4.
DISPLAY command, DOMINO Monitor .
Display-descriptor, NUCLEUS monitor .
Display-kicklist, Nucleus monitor .
Display-master-block, Nucleus monitor .
Display-messages, NUCLEUS Monitor .
Display-port, NUCLEUS Monitor .
DOMINO modules
DOMINO Monitor .
DOMINO reset. Algorithm .
DOMINO selftests .
DOMINOS commands, DOMINO Monitor
DOMINOS configuration .
dormant state, DOMINOS . .
DOWN-LOAD command, DOMINO Monitor .
dump macro, DOMINO Monitor
Dump-kernel, NUCLEUS monitor

Index

. 72

. 72

. 43

. 34

. 244

. 72

. 198

. 192

. 189

. 121

. 241

. 241

. 241

. 45, 46

.92

.70

. 69

. 80

. 64

. 40

. 63

. 191-

. 67

. 197

. 179, 181

. 210

. 210

. 211

. 212

. 72

. 244

. 244

. 245

. 246

. 246

. 14

. 39

. 20

. 19

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Index 277

DUMP-MACRO command, DOMINO Monitor 68

editing line, DOMINO Monitor 40
end service, DOMINOS 128
END-MACRO keyword, DOMINO Monitor 63
ERASE—MACRO command 67
ERS3WD . 23
HRS-gateway server 23
ESCape, DOMINO Monitor 40
event buffer 136
event log . 23
event log file 25
event reporting 23
event system 136
EXECUTE-MACRO command, DOMINO Monitor 65
EXIT command, DOMINO Monitor 41, 72
Exit. NUCLEUS Monitor 237
exported system data, DOMINOS 149
EXTRA-FORMAT command, DOMINO Monitor 81
Extra—formats, Nucleus monitor 247

fatal service, DOMINOS 150
Fill-buffer, NUCLEUS Monitor 242
FIND-SCOPE command, DOMINO Monitor 72
Force--display, NUCLEUS monitor 247
formal macro parameter, DOMINO Monitor 63
formal parameter DOMINO Monitor 65
FORMATS—DISPLAY command, DOMINO Monitor 72
FORMATS—LOOK-AT command, DOMINO Monitor 72
function codes, NUCLEUS 183
function names. NUCLEUS 183

Get Version, NUCLEUS 209
getbuffer service. DOMINOS 148
Get-NUCLEUS-memory, NUCLEUS monitor 247
Get—port-name, NUCLEUS Monitor 238
GO command, DOMINO Monitor 61

HARD—RESET command, DOMINO Monitor 58
HELP command, DOMINO Monitor 41, 72
Help, NUCLEUS Monitor 238
home port, NUCLEUS 177

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

278

Image file description
Image file, DOMINO .
INCLUDE-COMMANDS command, DOMINO Monitor .
info message, NUCLEUS .
info port, NUCLEUS .
interdel service, DOMINOS .
InterEv service, DOMINOS
interrupt handlers, DOMINOS .
interrupt handling, DOMINOS .

kill service, DOMINOS .

LEDs on DOMINO controllers
line editing, DOMINO Monitor
LIST-BREAK-CHARACTER command DOMINO Monitor
List—configuration, PMA--Monitor .
LIST——DOPCOM-PARAMETERS command, DOMINO. Monitor
LIST-MACRO-BODY command DOMINO Monitor .
LIST-MACRO-NAMES command. DOMINO Monitor
LIST-MAILBOX-PARAMETERS command DOMINO Monitor .
List-messages, NUCLEUS Monitor .
LIST-MICE-PARAMETERS command, DOMINO Monitor
List-names, NUCLEUS Monitor .
List——ports, NUCLEUS Monitor . .
LIST-PROTECTION command, DOMINO Monitor .
List--quota, NUCLEUS Monitor . .
LIST--TIMEQUEUE command, DOMINO Monitor .
List—-trace, NUCLEUS Monitor
Load-DOMINO, PMA—Monitor
Lock in NUCLEUS . . .
LOOK-AT command, DOMINO Monitor .
LOOK-AT commands, DOMINO Monitor
Look--at, NUCLEUS Monitor .
LOOK-AT-LIST command, DOMINO Monitor .
LOOK—AT—PROGRAM command, DOMINO Monitor .
LOOK-AT—REGISTER command, DOMINO Monitor
LOOK-AT-RELATIVE command, DOMINO Monitor .
LOOK-AT-STACK command, DOMINO Monitor .

macro body, DOMINO Monitor
MACRO command, DOMINO Monitor .
macro name, DOMINO Monitor
macro, DOMINO Monitor .

Scanned by Jonny Oddene for Sintran Data © 2011

. 249

. 16

. 72

. 205

. 205

. 145

. 144

. 162

. 154

. 131

.63

.73

.63

.62

Index

Scanned by Jonny Oddene for Sintran Data © 2011

Index

MAIN-FORMAT command, DOMINO Monitor .
Main-Format. NUCLEUS Monitor
Master block, NUCLEUS .
Masterblock NUCLEUS
memory protection .
memory protection, DOMINOS
Message record layout NUCLEUS
message, NUCLEUS . .
MICE, DOMINO Monitor
MICE-II, DOMINO Monitor .
modify service, DOMINOS .
Module Number .
multiple parameter, DOMINO Monitor

naming convention, DOMINOS
NEW-USER-CONTEXT command DOMINO Monitor
NEXT command, DOMINO Monitor
nkClose, NUCLEUS
nkCreMessage, NUCLEUS .
nkCrePort, NUCLEUS
nkCrePortName, NUCLEUS
nkDelName. NUCLEUS
nkGetInfo, NUCLEUS
nkMove, NUCLEUS .
nkOpenPort, NUCLEUS . .
nkOpenReturnPort. NUCLEUS .
nkReceive, NUCLEUS
nkSend, NUCLEUS .
NKS—logfilezlogs
nkVersion .
NUCLEUS

calls, summary
servers . .

NUCLEUS Kernel, Tables
NUCLEUS library .
NUCLEUS monitor .

open port, NUCLEUS
open return port, NUCLEUS . . .
OPEN——PATH command, DOMINO Monitor . .
Open-port, NUCLEUS Monitor . . .
optional parameter, DOMINO Monitor . .
OUTPUT-FILE command, DOMINO Monitor .

. 8o

. 237

. 210

. 245

I 155
. 210. 177. 45,
I 121;
. 11,
. no

. 117

. 82

. 207

. 198

. 189

. 192
- 197
. 205
. 200
. 194
- 195
. 2014
. 202
. 230
. 209

. 183

. 182

. 210

. 17h
- 235

. 194
- 195

I 242
. 40
. 44

Scanned by Jonny Oddene for Sintran Data © 2011

56

13. 14

279

Scanned by Jonny Oddene for Sintran Data © 2011

I
280

parameter abbreviation, DOMINO Monitor
parameter default, DOMINO Monitor .
parameter multiple, DOMINO Monitor
parameter optional, DOMINO Monitor
Parameters .
path prefix, DOMINO Monitor .
path, DOMINO Monitor .
peripheral file, DOMINO Monitor .
permanent macro, DOMINO Monitor .
PIRfatal
PIRSetevent . .
PLACE-DOMAIN command, DOMINO Monitor
PLANC constraints, DOMINOS
PMA-CONFIG
PMA-dump—log
PMA—ERS-BUFFER
PMA-Monitor .
PMA—report
PMAreport routine .
PMAreport—call
PME, DOMINOS . .
Pointers in Master block, NUCLEUS .
port name, NUCLEUS .
Port record layout, NUCLEUS .
port, NUCLEUS . .
Power failure NUCLEUS .
PREVIOUS command, DOMINO Monitor
Print-data—buffer, Nucleus monitor
PRINT-HISTOGRAM command, DOMINO Monitor .
privilegded instructions, DOMINOS .
prname service, DOMINOS .
process management, DOMINOS .
process states, DOMINOS . .
PROCESS-STATUS command DOMINO Monitor
PROGRAM- MAP command, DOMINO Monitor .
PROMAN .
PROMAN SERVER. Algorithm
PROMAN Service port .
prompt, DOMINO Monitor
prosno service, DOMINOS .

radix specifier, DOMINO Monitor .
read message, NUCLEUS .
ReadEv service, DOMINOS . .
Read-message, NUCLEUS Monitor .

. L10

. no

. no

. 1+0

. 185

. £45

. 45, 46

. 45. 46

. 63

. 2h,

. 162,

. 59

. 157
° 150

. 23, 24, 26

. 21;,

. 28

. 24

. 23

. 23

. 151,

. 21o

. 178

. 211

. 177

. 229

. 82

. 242

. 73

. 153

. 135

. 120

. 120

. 92

. 71+

. 23

. 21

. 28

. 39

. 134

.40

. 200

. 138

. 243

Scanned by Jonny Oddene for Sintran Data © 2011

162,
164

21,

25

165

Index

164

31. 32

Scanned by Jonny Oddene for Sintran Data © 2011

Index

ready state, DOMINOS
Reboot-DOMINO, PMA-Monitor
receive message, NUCLEUS
Receive—message, NUCLEUS Monitor
Record layout, message
Record layout, port
Record layout, sendreference
Recover-DOMINO, PMA—Monitor
Register names. DOMINO Monitor
relative addresses. DOMINO Monitor .
relbuffer service DOMINOS
RESERVE-TERMINAL command DOMINO Monitor . . .
RESET—BREAKS cOmmand, DOMINO Monitor
RESET-BREAKS commands, DOMINO Monitor
RESET-LAST-BREAK command, DOMINO Monitor
RESUME-MACRO command, DOMINO Monitor
ring file
round robin scheduling, DOMINOS
RUN command, DOMINO Monitor
running state, DOMINOS

save macro, DOMINO Monitor
SCOPE command. DOMINO Monitor
SCOPE-LOOP command, DOMINO Monitor
selftest
selftest, DOMINO
SelWaitEv service, DOMINOS
send message, NUCLEUS .
sender port, NUCLEUS
sendereference, NUCLEUS
Send-messages, NUCLEUS Monitor
Sendreference record layout, NUCLEUS
SERVER, DOMINO Monitor . . .
services, DOMINOS
SET command, DOMINO Monitor .
SET-ABORT-BATCH-ON- ERROR command DOMINO-MONITOR .
SET--BREAK--CHARACTER command, DOMINO Monitor . .
SET-DOPCOM-PARAMETERS command, DOMINO Monitor .
SetEv service, DOMINOS . .
SET-HISTOGRAM command, DOMINO Monitor . .
SET-MICE—PARAMETERS command, DOMINO Monitor .
SET-PROTECTION command, DOMINO Monitor .
SET-SPECIFIC-ACCESS command, DOMINO Monitor .
Set-trace, NUCLEUS Monitor .
single stepping, DOMINO Monitor .
SINTRAN command, DOMINO Monitor .

. 120

Scanned by Jonny Oddene for Sintran Data © 2011

73

281

Scanned by Jonny Oddene for Sintran Data © 2011

282 Index

SOFT-RESET command, DOMINO Monitor 57
SR 92
stack frame. DOMINO Monitor 82
stack registers, DOMINOS 152
stack. DOMINO Monitor 82
STEP command DOMINO Monitor 74, 78
STOP-TARGET command, DOMINO Monitor 58
subfunction names, NUCLEUS 185
supervisor mode, DOMINOS 152
system clock, DOMINOS 144

Tables in NUCLEUS Kernel 210
TARGET- IDENTIFICATION command, DOMINO Monitor . . 97
TARGET—STATUS command, DOMINO Monitor 98
temporary macro, DOMINO Monitor 63. 67
TEMPORARY-BREAK command, DOMINO Monitor 78
terminate job, DOMINO-MONITOR 42
Terminate-DOMINO, PMA-Monitor 33
TEST-COMMUNICATION, DOMINO Monitor 50
tracing of NUCLEUS 233
TRANSPARENT-MODE command, DOMINO Monitor 53
trap handlers, DOMINOS 163

ublocpr UDS, DOMINOS 168
udeblocpr UDS, DOMINOS 168
UDS, DOMINOS 151, 165
UDSE, DOMINOS 151
ufindpd UDS, DOMINOS 167
UniWaitEv service, DOMINOS 1H2
USE-CACHE command. DOMINO Monitor 97
USE—HISTOGRAM command, DOMINO Monitor 74
USE-MAILBOX command, DOMINO Monitor 52
USE-PROTECTION command, DOMINO Monitor 96
user mode, DOMINOS 152
USP . 92

Verification program, NUCLEUS 230
Verification test, NUCLEUS 230
Verify hardware, DOMINO 19
Verify, NUCLEUS Monitor 240
version control, NUCLEUS 209

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Index 283

WaitEv service. DOMINOS 138
whoami service, DOMINOS 133
write message, NUCLEUS 200
Write-message, NUCLEUS Monitor 243

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Manual Name:

Which version of the product are you using?

What problems do you have? (use extra pages if needed)

SEND US YOUR COMMENTS!

Are you frustrated because of unclear information in our
manuals? Do you have trauble finding things?

Please let us know if you:
— find errors
— cannot understand information
— cannot find information
— find needless information.

Do you think we could improve our manuals by rearranging
the contents? You could also tell us if you like the manual,

Send to:
Norsk Data AS
Documentation Department
PO. Box 25 BOGERUD
N -0621 OSLO 6 - Norway

NOTE!

This form is primarily for documentation errors. Software
and system errors should be reported on Customer System
Reports.

Manual number:

Do you have suggestions for improving this manual?

Your name: Data:

Company: Position:

AddreSs:

What are you using this manual for?

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

	img001
	img002
	img003
	img004
	img005
	img006
	img007
	img008
	img009
	img010
	img011
	img012
	img013
	img014
	img015
	img016
	img017
	img018
	img019
	img020
	img021
	img022
	img023
	img024
	img025
	img026
	img027
	img028
	img029
	img030
	img031
	img032
	img033
	img034
	img035
	img036
	img037
	img038
	img039
	img040
	img041
	img042
	img043
	img044
	img045
	img046
	img047
	img048
	img049
	img050
	img051
	img052
	img053
	img054
	img055
	img056
	img057
	img058
	img059
	img060
	img061
	img062
	img063
	img064
	img065
	img066
	img067
	img068
	img069
	img070
	img071
	img072
	img073
	img074
	img075
	img076
	img077
	img078
	img079
	img080
	img081
	img082
	img083
	img084
	img085
	img086
	img087
	img088
	img089
	img090
	img091
	img092
	img093
	img094
	img095
	img096
	img097
	img098
	img099
	img100
	img101
	img102
	img103
	img104
	img105
	img106
	img107
	img108
	img109
	img110
	img111
	img112
	img113
	img114
	img115
	img116
	img117
	img118
	img119
	img120
	img121
	img122
	img123
	img124
	img125
	img126
	img127
	img128
	img129
	img130
	img131
	img132
	img133
	img134
	img135
	img136
	img137
	img138
	img139
	img140
	img141
	img142
	img143
	img144
	img145
	img146
	img147
	img148
	img149
	img150
	img151
	img152
	img153
	img154
	img155
	img156
	img157
	img158
	img159
	img160
	img161
	img162
	img163
	img164
	img165
	img166
	img167
	img168
	img169
	img170
	img171
	img172
	img173
	img174
	img175
	img176
	img177
	img178
	img179
	img180
	img181
	img182
	img183
	img184
	img185
	img186
	img187
	img188
	img189
	img190
	img191
	img192
	img193
	img194
	img195
	img196
	img197
	img198
	img199
	img200
	img201
	img202
	img203
	img204
	img205
	img206
	img207
	img208
	img209
	img210
	img211
	img212
	img213
	img214
	img215
	img216
	img217
	img218
	img219
	img220
	img221
	img222
	img223
	img224
	img225
	img226
	img227
	img228
	img229
	img230
	img231
	img232
	img233
	img234
	img235
	img236
	img237
	img238
	img239
	img240
	img241
	img242
	img243
	img244
	img245
	img246
	img247
	img248
	img249
	img250
	img251
	img252
	img253
	img254
	img255
	img256
	img257
	img258
	img259
	img260
	img261
	img262
	img263
	img264
	img265
	img266
	img267
	img268
	img269
	img270
	img271
	img272
	img273
	img274
	img275
	img276
	img277
	img278
	img279
	img280
	img281
	img282
	img283
	img284
	img285
	img286
	img287
	img288
	img289
	img290
	img291
	img292
	img293
	img294
	img295
	img296
	img297
	img298
	img299
	img300
	img301
	img302
	img303
	img304

