Error Correction Control (ECC) Disk Controller

NORSK DATA A.S

Error Correction Control (ECC) Disk Controller

ERROR CORRECTION CONTROL (ECC) DISK CONTROLLER Publication No. ND-11.013.01

NORSK DATA A.S
Postboks 4. Lindeberg gärd Oslo 10. Norway

COMMENTS, ERROR REPORTS AND REQUESTS

The reader's comment form at the back of this manual invites the reader's evaluation of the manual. Both general and detailed comments are welcome.

The software system field report form issued by Norsk Data may be used to report errors in documentation.

These forms, together with all other types of inquiry and requests for documentation should be addressed to:

Documentation Department
Norsk Data A.S.
Postboks 4, Lindeberg gård
Oslo 10, Norway

TABLE OF CONTENTS

$+\quad+\quad+$

Section:		Page:
1	ECC DISK CONTROLLER - GENERAL DESCRIPTON	1-1
2	ADDRESSING CONCEPT	2-1
2.1	Defining the Unit Number	2-2
2.1.1	Unit Selection	2-3
2.2	Addressing on Disk Pack	2-3
2.2.1	Surface (Head Selection)	2-4
2.2.2	Cylinder Selection	2-5
2.2.3	Sector Selection	2-5
3	SECTOR FORMAT	3-1
3.1	The Phases	3-1
3.2	The Clock Counter	3-2
4	THE INTERFACE SIGNALS	4-1
4.1	Signal Explanation	4-2
4.1.1	Bus Bit Usage	4-3
4.1.1.1	Tag Timing	4-4
4.1.2	The Remaining A Cable Lines	4-5
4.1.3	The B Cable Lines	4-6
5	ERROR CORRECTION CODE	5-1
5.1	General About ECC	5-1
5.1.1	Features of the ECC Polynomial	5-2
5.2	Data Error (Status Bit 9)	5-3
5.3	Analyzing the Data Error (Status Bit 9)	5-3
5.3.1	Run ECC Operation - M8	5-4
5.4	The Reliability of Error Correction Control (ECC)	5-6
5.4 .1	The Parity Tree	5-6
5.4 .2	Checking the Parity Tree	5-7
5.4 .3	A Complete Check of the Detection and Correction Capability of the ECC	5-8

Section:		Page:
6	CONTROLLER FUNCTIONS ILLUSTRATED BY TIMING DIAGRAMS	6-1
7	INTERRUPT GENERATION AND HANDLING	7-1
7.1	Error Interrupts	7-1
7.2	End of Operation Interrupt	7-1
7.2.1	Normal End of Operation (BCOMPL)	7-2
7.2.2	Forced Clear (CLEAR)	7-2
7.2.3	Abnormal End of Operation (BRBUSY)	7-3
8	DEBUGGING GUIDE	8-1
8.1	Check the Operation of the IOX Instructons	8-1
8.2	Check Data Channel	8-2
8.3	Checking the Operation of the Disk Controller (Test Mode)	8-3
8.3.1	ECC Test Loop	8-4
8.4	Connecting a Disk Drive	8-5
9	LOGIC BOARDS - SHORT DESCRIPTION	9-1
9.1	1013 - Device Registers (POS 32)	9-1
9.2	1134 - ECC Control (POS 31)	9-1
9.3	1092 - Bufferred DMA (POS 30)	9-2
9.4	1133 - ECC Polynomials (POS 29)	9-5
9.5	1135 - SMD Timing (POS 28)	9-5
9.6	1077 - SMD Control (POS 27)	9-6
9.7	1078 - SMD Receive (POS 26)	9-6
9.8	1154 - SMD Transmit (POS 25)	9-7
9.9	1156 - Unit Control (POS 24)	9-8
9.10	1155 - Bus Control	9-9

Appendix:

A
LOGIC DIAGRAMS
A-1

B
CONTROLLER PCB LAYOUT
B-1

C SIGNAL DEFINITION LIST $\mathrm{C}-1$

D 1155 - PCB SWITCHES AND JUMPERS D-1

E SMD SECTOR SWITCH SETTING E-1

F
PCB POWER REQUIREMENT

ND-11.013.01

Appen		Page:
G	TRACK/SECTOR FORMAT	G-1
H	ECC DISK CONTROLLER BACKWIRING	H-1
1	CONNECTOR LISTS	I-1
J	A THEORETICAL INTRODUCTION TO ERROR CORRECTING CODES (ECC)	J-1
J. 1	Introduction	J-1
J. 2	Linear, Cyclic Codes for Burst Error Correction	J-2
J. 3	Specific Polynomials	J-7
J. 4	Correction and Detection Capabilities	J-11
J. 5	Summary	J-18
K	TEST PROGRAMS	$K-1$
K. 1	PASCAN Test Program - 2226	K-1
K. 2	SUPER-RAND Test Program - 2222	K-2
K. 3	ECC Test Program - 2224	K-2
K. 4	BIGFUNC Test Program - 1824	K-3
L	SINTRAN III - SMD DISK DRIVER ROUTINE	L-1
M	DISK SPECIFICATIONS	M-1
N	ECC DISK CONTROLLER PROGRAMMING SPECIFICATIONS	N-1
N. 1	Disk Device Register Address	N-1
N. 2	Disk Format	N-2
N.2.1	Disk Address	N-2
N. 3	Control Word	N-2
N.3.1	Control Word Content	N-2
N.3.2	Select Unit	$\mathrm{N}-3$
N.3.3	Marginal Recovery Cycle	N-3
N.3.4	Device Operation	$\mathrm{N}-3$
N. 4	Read Seek Condition	$\mathrm{N}-5$
N. 5	Read Status	N-6
N. 6	ECC Count Register (ECR)	N-6
N. 7	ECC Pattern Register (EPR)	$\mathrm{N}-6$
N. 8	ECC Control	N-7

The ND558 ECC disk controller can handle from 1 to 4 disk units. The disk units can be ND574 (288 Mbytes disk unit), ND572 (75 Mbytes disk unit) or ND576 (37 Mbytes disk unit).

Any mixture of the above units can also be connected to the same controller.
ECC (Error Correction Control) is standard. ECC implies, for this controller, that all error bursts of up to 11 bits are detected and corrected.

All error bursts of up to 34 bits are detected but not corrected.
The controller converts the DMA data flow (data to/from memory) to a serial bit stream (to/from the selected unit).

A 64 word FIFO (temporary storage) located in the controller allows the data path band width to be exceeded for short intervals. Data flow for read and write is illustrated in Figures 1.1 and 1.2 respectively.

The ECC disk controller is located in the I/O system (Input/Output system) and occupies 9 to $12 \mathrm{I} / \mathrm{O}$ card slots which correspond to 1 to 4 units connected (respectively). Refer also to Appendix B.

For details regarding the disk units refer to Appendix M.

ND-11.013.01

Figure 1.1: Write Data

Figure 1.2: Read Data

2 ADDRESSING CONCEPT

Figure 2.1 shows the controller/units interconnection. As already mentioned, a disk system may consist of from 1 to 4 units connected to the same controller.

As illustrated in Figure 2.1, each unit is connected to the controller via two cables. The A cable is daisy-chained through all units and terminated at the end. Only one unit (the selected unit) can communicate with the controller at the same time. There is one B cable for each unit.

Figure 2.1: Controller/Units Interconnection

2.1 DEFINING THE UNIT NUMBER

On the front panel of the unit, a numbered unit select plug defines the unit number. (Each unit is shipped with a plastic bag containing 16 unit select plugs.) On the corresponding "1156 SMD UNIT CONTROL" card (connected via the B cable) in the controller, the unit define switches must be set to the corresponding value (location 9D). Refer to Figure 2.2 for switch setting.

It is imporatnt that the setting of unit number on the unit (plastic plug) and the controller (corresponding 1156 card) are equal.

Example: Illustration shows unit 0 setting on the 1156 board.

unit define table

Figure 2.2: Unit Number Definition

ND-11.013.01

2-3

2.1.1 Unit Selection

Bits 7-9 in the control word specifies the unit number that the CPU wants to access. The binary value for the unit number is transmitted on the A cable, on the unit select lines, and compared with the select plugs. The unit in which the unit codes match will be selected.

2.2 ADDRESSING ON DISK PACK

Once the unit is selected, a specified block of data on a disk pack can be pointed out by the block address. The block address is held by two registers in the interface; block address register I and block address register II. (Refer to Programming Specifications, Appendix N.)

The block address is logically divided into 3 fields:

- the surface (head) selection
- the track selection
- the sector selection

Figure 2.3 illustrates the block address format.

CWR bit $15=1$
CWR bit $15=0$

Figure 2.3: Block Address Format

ND-11.013.01
Revision A

2.2.1 Surface (Head Selection)

- The 288 Mbytes disk has 19 ($0-18$) recording surfaces (heads) and one prerecorded servo surface.
- The 38/75 Mbytes disk has 5 (0-4) recording surfaces (heads) and one prerecorded servo surface.

The servo head is always selected and always reading. The information from the serwo surface serves a number of purposes in the unit. Figure 2.4 shows a 38/75 Mbytes disk pack and a 288 Mbytes disk pack.

Figure 2.4: 38/75 and 288 Mbytes Disk Packs.

ND-11.013.01
Revision A

2.2.2 Cylinder Selection

When control word bit 2 is activated, the content of block address register il (cylinder number) is tranferred to the servo system in the selected unit. Logic in the unit will calculate the difference between the current cylinder and the new one. The difference and direction will command the servo to seek to the new cylinder.

- The 38 Mbytes disk has 411 cylinders
- The 75/288 Mlbytes disk has 823 cylinders.

Refer also to Figure 2.5.

Figure 2.5: Tracks and Selectors

2.2.3 Sector Selection

The number of sectors accepted by the controller is 18 and applies for $38 / 75$ and 288 Mbytes disk units.

The sector number is held by the lower byte of block address register I (refer to Figure 2.3).

On 1156 (SMD unit control) when the sector counter (syncronized to the sectors on the disk pack) matches the sector part of the block address, a read/write operation can take place.

NOTE! On the unit the sector number is defined by switches. Refer to Appendix E for details.

3
 SECTOR FORMAT

As previously stated, the disk pack is divided into 18 sectors. Each sector is again divided into subfields referred to as phases. Appendix G gives a summary of the phases, etc.

3.1 THEPHASES

On the 1135 (SMD Timing) board, a bit counter and a phase generator are located. A sector is divided into 8 phases.

Phase 1:
This phase consists of 2320 's ending with 81 's. The purpose of this phase is:

- to compensate for sidewise mechanical skew between the read/write heads with respect to the servo head.
- to compensate for read circuits set up time.
- to allow the data/clock separation circuits phase lock oscillator to syncronize and lock.

This phase is written during the formatting process.

Phase 2:

During formatting the block address is written onto the disk pack. Refer to Figure 2.3 for format.

Phase 3:

The block address written onto the disk in phase 2 during formatting is at the same time generating a 56 bit error correction code (ECC) which is written onto the disk in phase 3 during formatting. For more details regarding the ECC code, see Chapter 5 and Appendix J.

Phase 4:

This phase is identifical to phase 1. The purpose is to resyncronize the phase lock oscillator in the data/clock separation circuits.

Phase 4 is first written during the formatting process, but will be rewritten for each normal write operation on the sector in question.

Phase 5:

Phase 5 represents the data capasity for the sector and is equal to 51216 bit words ($1 / 2 \mathrm{~K}$ words). This data is taken from memory over a DMA channel during a write operation and reverse for a read operation.

Phase 6:

When the data is written onto the disk in phase 6 an error correction code (ECC) is generated. This code will then be written onto the disk in phase 6. Refer to Chapter 5 and Appendix J for further details.

Phase 7:

This phase consists of 81 's indicating end of sector.
Phase 8:
This phase consists of 0 's and the purpose is to compensate for sidewise mechanical skew between the read/write heads with respect to the servo head.
3.2 THE CLOCK COUNTER

The clock counter is also located on the 1135 (SMD timing) board. The clock counter, working as an input to the phase generator which again resets the clock counter at termination of each phase.

The clock pulses, which are counted, derive either from the write clock, read clock or an internal clock oscillator used in test mode.

The circuits which perform the clock selection are located on the 1078 (SMD receiver) module.

4 THE INTERFACE SIGNALS

For the following discussion refer to Appendix B and Figure 2.1.
In this chapter, the signals between the unit and the controller will be listed and explained. As depicted in Figure 2.1, the signals are transferred over two cables, the A and B cables.

In order to exchange signals between the controller and a unit over the A cable, the unit must be selected. Refer to Chapter 2.

On the B cable, however, the signal exchange takes place without unit selection.
Figure 4.1 lists the interface signals on the A and B cables and the corresponding cards in the controller.

* One 1156 and one B cable per unit, max imum 4.

Figure 4.1: The Interface Lines
ND-11.013.01
4.1 SIGNAL EXPLANATION

This section is divided into 3 parts:

- bus bit usage
- the remaining A cable lines
- the B cable lines

4.1.1 BUS BIT USAGE

The bus bits 0-9 are used for 3 purposes defined by the tag 1, tag 2 or tag 3 line.

1. Tag 1 line activated.

Refer to Figure 2.3. The cylinder address taken from the lower part of block address register II is transferred over the bus bits and strobed into the cylinder address register in the selected unit.
2. Tag 2 line activated.

Refer to Figure 2.3. The head select bits taken from the upper byte of block address register I is transferred over the bus bits and strobed into the head select register in the selected unit.
3. Tag 3 line activated.

When tag 3 is activated, the various functions as given in the table below is sent from the controller to the selected unit.

Bus Bits: Function:

0

1

2

3

4

9

8 Data Strobe Late. Enables the data/clock separator (phased locked oscillator - PLO) to strobe the data at a time later than optimum.
Write Gate. Enable write drivers.
Read Gate. Enable the read circuits and data/clock separator circuits in the drive.

Servo Offset Plus. Offsets the actuator (heads) from the center of a track position towards the spindie.

Servo Offset Minus. Offsets the actuator (heads) from the center of a track position away from the spindle.

Fault Clear. Pulse sent to the drive to clear the fault summary latch.

Address Mark Enable (not used).
Return to Zero Seek (RTZ). Pulse sent to drive causing the actuator to seek back to track zero.

Data Strobe Early. Enable the data/clock separator (phased locked oscillator - PLO) to strobe the data at a time earlier than optimum.

Not used.

4.1.1.1 Tag Timing

On the 1154 (SMD transmitter) the tag timing generator is located. For every function that should be performed on the disk tag 1, 2 and 3 will be issued in the listed sequence.

For more details refer to Figure 4.2.

Figure 4.2: Tag Timing

4.1.2 The Remaining A Cable Lines

Open Cable Detect
Inhibits unit selection and any unwanted command such as Write Gate when " A " cable is disconnected or controller power is lost.

Unit Select lines $2_{0}-2_{3}$
Used to select the drive. The binary code on these lines must match the code of the drive logical address plug for the drive to be selected. These lines are used in conjunction with the unit select tag (refer to Unit Selection).

Unit Select Tag
Starts unit select sequence (refer to discussion on Unit Selection) and is used in conjunction with Unit Select lines $2_{0}-2_{3}$.

Fault
Indicates that one or more of these faults exist: DC power fault, head select fault, write fault, write or read while off cylinder, and Write Gate during a read operation (refer to Fault and Error Detection).

Seek Error

Indicates that the unit was unable to complete a move within 500 ms , or that carriage has moved to a position outside the recording field. A seek error interrupt also occurs if an address greater than track 822 (410) has been selected. Refer to Seek Functions for more information.

On Cylinder
Indicates drive has positioned the heads over a track (refer to Seek Functions).

Unit Ready
Indicates that drive is selected, up to speed, heads are loaded and no fault exists.

4.1.3 The B Cable Lines

Write Data

Carries NRZ data to be recorded on disk pack.

Write Clock

Synchronized to NRZ Write Data, it is a return of the Servo Clock. This signal is transmitted continuously.

Servo Clock

9.677 MHz clock signals derived from servo track dibits (refer to Machine Clock).

Read Data

Carries NRZ data recovered from disk pack (refer to discussions on Read/Write functions).

Read Clock

Clock signals derived from NRZ read data (refer to discussion on Read/Write functions).

Seek End

Seek End is a combination of ON CYL or SEEK ERROR indicating that a seek operation has terminated. If an address greater than 822 (410 on BJ4A1) cylinders has been selected there will be no change in Seek End status (refer to Seek Functions).

Unit Selected
Indicates that the drive is selected. This line must be active before drive will respond to any commands from the controller.

Index
Occurs once per revolution of disk pack and its leading edge is considered leading edge of sector zero.

Sector
Derived from servo surface of disk pack, this signal can occur any number of times per revolution of the disk pack. The number of sector pulses occurring depends on setting of switches on the card in position A06 in logic chassis. Refer to Appendix E for Switch Setting.

5 ERROR CORRECTION CODE

For the following discussion refer to "Track/Sector Format", Appendix G and Chapter 3 where the sector phases are briefly explained.

The theoretical discussion of "Error Correcting Codes" (ECC) is given in Appendix J. From that discussion it is found that a 56 bit "Error Correcting Code" is decided on for use in the ECC disk controller.

5.1 GENERAL ABOUT ECC

For this discussion, refer to Figures 1.1 and 1.2. The ECC polynomial register is a shift register with several inputs, several feedbacks and one output. It is the main clock in the controller (read, write or test clock) that perform the shifts. At the same time as the address is shifted out to the disk in phase 2 during formatting, the address appears at the input of the ECC polynomial. The feedback circuits are enabled and at the end of phase 2, a 56 bit polynomial is generated.

In phase 3, the input and feedback is blocked and the content will be shifted out onto the disk.

The exact same sequence takes place during a normal write operation in phase 5 and 6, respectively. The difference, however, is the length of phase 2 and 5.

During the read operation, both address and the ECC code read from disk are shifted into the ECC polynomial register. The feedback circuits are enabled during phase 2 and 3. If the address and the ECC code now read are the same as previously written, the content of the ECC polynomial register shall be equal to zero at the end of phase 3.

The same thing takes place when reading in phase 5 and 6.

5.1.1 Features of the ECC Polynomial

Errors that occur to the data on the disk, often caused by bad spots, show up as error bursts. The length of the error burst is normally a few bits long.

The burst length is defined as the number of bits from the first to the last failing bit. If, for example, the first and the last bits on a sector are wrong, we regard this as one error burst of 8192 bits in length. Thus, only one error burst is possible per sector.

It is desirable that we are able to detect and correct error burst as long as possible.

As already mentioned, the ECC polynomial is generated in a 56 bit special purpose shift register according to the formula:

$$
\begin{aligned}
& \mathrm{G}(\mathrm{X}) \\
& =X_{56}+X_{55}+X_{49}+X_{45}+X_{41}+X_{39}+X_{38}+X_{37}+X_{36}+X_{31}+X_{22}+X_{19} \\
& \quad+X_{17}+X_{26}+X_{15}+X_{14}+X_{12}+X_{11}+X_{9}+X_{5}+X+1
\end{aligned}
$$

The ECC polynomial is logically divided into two parts, one LO and one HI portion as indicated in Figure 5.1. With this polynomial it is possible with 100% reliability, to detect error burst of up to 34 bits and to correct error burst of up to 11 bits. As the length of error bursts exceeds 34 bits, the chance of detecting them reduces slightly. (Additional information in Appendix J.)

It is to be noticed that the polynomial is not generated in the same fashion during read and write. During read a fixed multiplier is inserted so that the period of the polynomial is equal to the length of PH5 + PH6 $=8192+56=8248$. Therefore, where running the ECC operation (M8), explained later, the shift count directly represents the displacement of the error burst. Refer to Figure 5.2.

The period of the polynomial can be found by inserting a bit pattern then close the input and enable the feedbacks, and apply shift pulses until the original bit patterns appear again. The number of shift pulses is then the period of the polynomial.

Figure 5.1: ECC Polynomial - LOIHI

If the address/data read in phase $2 / 5$ is not identical to the data previously written, the ECC polynomial will be nonzero at the beginning of phase $4 / 7$. This is interpreted as Data Error and status bit 9 sets. If interrupt is enabled, an interrupt is generated to the CPU. The ECC polynomial circuits and zero detector are located on 1133 (ECC polynomials).

It is, however, of great importance to know whether the Data Error (status bit 9) means bad address (PH2) or bad data (PH5). If Data Error (status 9) is detected on the address (PH 2), bit 15 of the Read Seek Condition register will also set. Refer to Programming Specifications, Appendix N.

5.3 ANAL YZING THE DATA ERROR (STATUS BIT 9)

The status bit 9 will cause an interrupt and the system will initiate an M8 operation. (This operation is new for this controller.) After termination of the M8, the driver checks if the error has occurred in the sector address or in the data. If bit 15 in Read Seek Condition Register (SCR) is set, the controller shows that the error has occurred in phase 2, sector address. The driver decides that this is a non-correctable error. On the other hand, if SCR bit 15 is not set, the error is in the data field and the ECC polynomial has to be analyzed.

5.3.1 Run ECC Operation, Error is Correctable

The M8 operation is initiated to analyze the data error. This operation starts in phase 4 or phase 7. This is a shift operation where the input to the ECC polynomial is closed but the feedbacks are open. The controller clock (CL) is used as shift clock.

An ECC Count Register (ECR) keeps track of the number of shifts while the zero detector circuits look at the HI portion of the ECC polynomial.

When the HI portion is equal to zero, the operation is terminated and interrupt is generated. The content of ECR will point at the last error bit in the data and the content of the LO portion represents the error bits. (LO content is the exclusive OR representation of the actual and expected data.)

5-4

5.3.2 The Error is not Correctable

The number of shifts is for the data field maximum $8192+56(E C C)=8248$.
If the number of shifts reaches this value without HI-protion equal zero, the error burst is more than 11 bits long. The error is then not correctable, RSC bit 13 is equal zero and interrupt is generated.

5.3.3 The Error is in the Error Correction Code

If the M8 operation is terminated with an ECR (ECC Count Register) value between 8203 and 8248 (max. count), the data error has occurred in the ECC itself. The data correction is then not required.

Figure 5.2: Error Detection / Data Correction

5.3.4 Data Correction (Figure 5.2)

The data read in phase 5 is stored as one block in memory. The Error Pattern Register (EPR) holds the LO-portion of the polynomial and the Error Count Register (ECR) points at the rightmost position of the error burst. With this information the driver routine can easily perform the data correction using an exclusive OR function.

The ECC gives a good reliability for the data stored on the disk. It is therefore of importance to be sure of proper operation of the hardware circuits involved.

5.4.1 The Parity Tree

For the following discussion refer to Figure 5.3.
At the same time as data is shifted into the ECC polynomial shift regsiter, the 1 's will toggle a flip-flop at the input. Experience shows that the number of ones in the ECC polynomial, including the state of the toggle flip-flop, is always an even number. This is true during the entire shift operation of the ECC register.

A parity tree is therefore employed to monitor the operation of the ECC polynomial. If the ECC polynomial is malfunctioning, status bit 7 (ECC parity error) will set. Bit 14 of the Read Seek Condition will also set to report this error.

5.4.2 Checking the Parity Tree

Refer to Figure 5.3.
It is also possible to check the parity tree for proper operations. This is done by forcing a 1 into 7 of the 8 parity generators. If all the 7 parity generators are functioning properly, status bit 7 and Read Seek Condition bit 14 will be set. However, if an even number of parity generators are not functioning it will not be detected by this test. The test bit is set by the ECC control register bit 1 .

The parity circuits constantly check theECC polynomial circuits for proper operations. The TST bit checks the parity threes for proper operation.

Figure 5.3: ECC Polynomial Check Circlits

5.4.3 A Complete Check of the Detection and Correction Capability of the ECC

This check is performed by using the ECC control register bit 2, the "long" bit. (Refer to Figure 5.4.)

When performing a read operation (MO) with the "long" bit set, phase 5 will be extended with 64 bits so that PH 5 long $=\mathrm{PH} 5+\mathrm{PH} 6+\mathrm{PH} 7$. It is thus possible to read PH5 + PH6 + PH7 as data and store it in memory. Under program control it is now possible to introduce a known failure to the data. Then a write operation is performed with the long bit set. The data with the introduced error but correct ECC is written onto the disk. Then a normal read operation is performed. During this operation Data Error should be reported through status register bit 9. An M8 operation can then be initiated and at completion the Read Seek Condition register bit 13 (ECC correctable) will indicate if the error is correctable or not. The ECC Count Register (ECR) will hold the displacement of the error (refer to Figure 5.2) and the ECC Pattern Register (EPR) will hoid the ERROR.

This operation gives a complete check of the data paths and the disk controller.
Finally, the ECC polynomial must be cleared by a ECC control bit 0 (reset ECC).

Figure 5.4: Read/Write Long

CONTROLLER FUNCTIONS ILLUSTRATED BY TIMING DIAGRAMS

In this chapter, a few timing diagrams are presented. Each line is labeled with the board number on which they are generated or used.

The timing diagrams do not describe the complete functions, but might be helpful when studying the logic diagrams.

The following diagrams appear:
Figure 6.1: Control Timing
Figure 6.2: Read Sync Byte
Figure 6.3: Read Address
Figure 6.4: Read Data
Figure 6.5: Write Sync Byte and Address
Figure 6.6: Write Data
Figure 6.7: Compare Mode
Figure 6.8: Tag Timing
Figure 6.9: Read from Disk
Figure 6.10: Write to Disk

Figure 6.1: Control Timing

Figure 6.2: Read Sync Byte

Figure 6.3: Read Address

Figure 6.4: Read Data

Figure 6.5: Write Sync Byte and Address

Figure 6.6: Write Data
ND-11.013.01

Figure 6.7: Compare Mode

Figure 6.8: Tag Timing

Figure 6.9: Read from Disk (Write to Core) 1085

$\mathcal{t}=\underset{\substack{\text { approx. } 15 \mu \mathrm{~s}(\text { max. } 30 \mu \mathrm{~s}) \\ \text { through FIFO }}}{\longrightarrow}$
Figure 6. 10: Write to Disk (Read from Core) 1095

INTERRUPT GENERATION AND HANDLING

For the following discussion refer to Programming Specifications in Appendix N.
The ECC disk controller is wired to interrupt level 11. The various sources for interrupt will be discussed here.

The interrupt sources can be divided into two groups: (Refer to Figure 7.1.)

- Error interrupts
- End of operation interrupts

Error interrupt is enabled by control word bit 1 and End of Operation interrupt is enabled by control word bit 0 .

7.1 ERROR INTERRUPTS

Error interrupt will occur when status bit 4 is forced on. Status bit 4 is inclusive OR of status bits $5,6,7,8,9,10,11,12$ and 13 .

7.2 END OF OPERATION INTERRUPT

End of operation interrupt is generated when the BUSY latch is reset. The Busy latch will be reset in one of the following three ways:

- normal end of specified operation (BCOMPL)
- forced clear (CLEAR)
- abnormal end of operation (BRBUSY)

7.2.1 Normal End of Operation (BCOMPL)

There are five different ways of generating Normal End of Operation (BCOMPL). Refer to 1077 (SMD Control) gate 17A.

1. Word counter has reached zero during a read or write operation $\left(M_{0}, M_{1}\right.$, M_{2}, M_{3})
(PH8•RA $\cdot \mathrm{WCZ}$)
2. On cylinder is reached upon an initiate seek command
(M4 • ON Cyl)
3. Completion of formatting one track.
(WF WCZ $\cdot \mathrm{SEC}$)
4. On cylinder on track 0 is reached upon completing a Return to Zero command.
(RTZ • ON CYI)
5. Seek completion search positive
(M6 • SEEKC)

7.2.2 Forced Clear (CLEAR)

There are two ways of forcing the busy latch to reset state and thus generate an interrupt.

1. Master clear from the front panel of the CPU (MC).
2. Programmed master clear, i.e., control word bit 4 (device clear) (MDB4 CW)

7.2.3 Abnormal End of Operation (BRBUSY)

This condition corresponds to status bit 12 (refer to 1078 - SMD receiver - gate 18D).

There are five conditions that can set status bit 12 and thus interrupt.

1. Loss of Ready (SB13) condition from the selected unit during an operation.
2. Address mismatch (SB8) occurs when not formatting.
3. Fault line (SB7) from the selected unit is activated during an operation.
4. Illegal load (SB5) while controller is Busy.
5. Time out (SB6).

Figure 7.1: Interrupt Generation

8 DEBUGGING GUIDE

The normal procedure for checking out the ECC disk controller should be:

1. Check the operation of the IOX instructions.
2. Check data channel by writing and reading a register in the disk controller.
3. Check the operation of the disk controller by running the controller in test mode.
4. Connect a disk drive to the controller and run test programs.

8.1 CHECK THE OPERATION OF THE IOX INSTRUCTIONS

Refer to Programming Specifications, Appendix N.
A check should be made that all the controller registers can be accessed.
Note: Control word register bit 15 selects the two banks of registers.

8.2 CHECK DATA CHANNEL

The data channel can be checked by writing and reading the same register in the controller, and then compare the result. The Core Address register is a register that can be accessed during read and write.

The following program loop will also test the core address register.

TRA OPR	150002	\%	Read the panel switches
IOX LCA	165541	\%	and transfer the content to core address register
SAA 0	170400	\%	Reset A register
10X RCA	165540	\%	Read core address register
COPY SA DX	146157	\%	Copy the value to X register
JMP * -5	124373	\%	Repeat loop

While running the loop, a comparison can be made between the switch setting and the result in the X register.

The following test loop will also test the block address register I .

SAA 10	170410	\% Set bit 3 in A register \% Set controller in test mode
IOX CWR	165545	\% Read panel switches and TRA OPR
	150002	transfer the contents
IOX BARI	165543	\% to block address register I
SAA 0	170400	\% Read A register \% and copy address register the contents to X
IOXRBARI	165546	register COPY SA DX
	146157	\% Repeat loop
JMP * -7	124371	

Block address register II and the data channel will also be tested by the following test loop:

ND-11.013.01

CHECKING THE OPERATION OF THE DISK CONTROLLER (Test Mode)

In test mode the basic parts of the disk controller operate in the same way during a normal disk transfer but the disk controller is independent of the disk unit.

Test mode is entered by specifying bit 3 in the control word (CWR 3).
The block address register I must be set to 125252 and block register II must be set to 1252 prior to a transfer in test mode.

Note: Parity error will always occur during operations in test mode.
When reading in test mode a number of words are transferred from a test data pattern generator to memory. The number of words to be transferred is specified by loading the word counter register.

The memory start address is given by loading the core address register.
After reading in test mode (control word register $=000014$) the correct status should be 041030 where the active bits mean:

- ON cylinder
- data error
- inclusive or of errors
- operation finished

The contents of the memory buffer after transfer is complete should be:
First location: 125252
Second location: 052525
Third location: 125252
etc.

The easiest way of checking data transfer from memory to the disk controller is by use of compare mode while the controller is in test mode.

The data buffer which was built up during read a read in test mode, will be used as output data under compare mode. The control word register is set to 014014 , to execute a compare test in test mode.

The block address registers should be set as for a normal read in test mode, the result in the status register should also be the same.

The following loop will read data in test mode and store the data in memory, starting at address CA. The number of words to be transferred is given by WC. The loop also checks for proper operation of the core address register. If the operation is incorrect, the loop will be stopped by a wait instruction. The A register will hold the number of words not transferred.

Start,	LDA BSEL	044032	\%	Select register	
	IOX CWR	165545	\%	bank 1.	
	LDA BAR \\|	044031	\%	Load block	
	IOX BAR II	165543	\%	address register II.	
	SAA 0	170400	\%	Select register	
	IOX CWR	165545	\%	bank 0 .	
	LDA BARI	044026	\%	Load block	
	IOX BARI	165543	\%	address register I.	
	LDA LCA	044025	\%	Load core address	
	1OXLCA	165541	\%	register with start address	
	LDA WC	044024	\%	Load word count register	
	IOXWC	165547	\%	with no. of words to be transferred	
	LDA CWR	044023	\%	Load control word	
	IOX CWR	165545	\%	and start transfer	
	SAX - 100	171700	\%	Delay,	
	JNC * 0	132400	\%	(increment X and jump if negative)	
	IOX STS	165544	\%	Read status	
	BSKP ONE 30DA	175235	\%	Check if transfer is finished	
	JMP * - 4	124374	\%	If no, loop again	
	COPY SA DD	146151	\%	Copy status to D register	
	IOX RCA	165540	\%	Read core address register	
	SUB LCA	064010	\%	Subtract initial value of core address register	
	SUB WC	064010	\%	Subtract no. of words to be transferred	
	$J A Z * 2$	131002	\%	Jump if A register is 0 . (normal condition)	
	WAIT	151000	\%	Stop here if check is not OK	
	JMP START	124347	\%	Do the program over again	
	BSEL,	100000	\%	Block select constant	
	BARII,	001252	\%	Block address register II	
	BARI,	125252	\%	Block address register I	
	LCA,	001000	\%	Core address register	
	WC,	001000	\%	Word count register	
	CRW,	000014	\%	Control word register	

8.4 CONNECTING A DISK DRIVE

When the controller runs without problems in test mode, a unit can be connected. The initial start up procedure is given in the maintenance manual following the disk. The disk pack to be used must be formatted which should be done on another machine.

The test programs to be used to check out the complete disk system is described in Appendix K.

9 LOGIC BOARDS - SHORT DESCRIPTION

9.11013 - DEVICE REGISTERS (POS 32)

This module contains:
$-\quad$ status registers, bits 4-15(6C, 6B)

- drivers for reading status, bits 4-15(8C, 8B)
- block address register (14A, 14B, 12C)
$-\quad$ decoding of device operation, M0-M15 (2A, 2C, 4A, 4B, 4C)
- decoder for device registers (16A)
- drivers for reading block address register (12A, 10B, 16C)
$9.21134-E C C$ CONTROL (POS 31)

This module contains:

- Block address register, the cylinder portion of the address (16A, 14C, 13B)
- Block address serialization circuit for address compare when address field of the sector is read ($8 \mathrm{~B}, 9 \mathrm{~A}, 10 \mathrm{~B}, 9 \mathrm{C}$)
- IOX Instruction decodes (3A, 1B, 5A, etc.)
- Parts of ECC control register, bits 14, 15(19A)
- Parts of ECC pattern register, bits 11, 12, 13, 14(19B)
- Drivers for reading the cylinder portion of the block address register (19A, 12C, 11A)
9.31092 - BUFFERRED DMA (POS 30)

Note 1:
This module is downwards compatable with the 1014 module. The difference i a 64 word FIFO (buffer) installed in the 1092 versus a 1 word buffer in the 1014. This enables the total data throughput in the memory and/or I/O system to exceed the upper limit for short periods.

Note 2:

Refer also to the manual "NORD-10/S Input/Output System" (ND-06.012), Section 7.3 for a description of this module.

This module contains:

- Input data selector for FIFO (12D, 14D, 16D, 18D)
- $\quad 16$ words data buffer (FIFO) (12E, 14E, 16E, 18E)
$-\quad$ Shift register input selector (4A, 6A, 8A, 10A)
- Shift register (serial to paralle, parallel to serial data conversion) (4B, 6B, 8B, 10B)
- Data bus driver (12A, 14A, 16A, 18A)
- Word counter (keeps track of the number of words to/from the disk) (12B, 14B, 16B, 18B)
- Request counter (keeps track of the number of words to/from memory) (12C, 14C, 16C, 18C)
- Generation of status bit 11, DMA channel error, overrun/ underrun (2D)
- Control circuits

Figure 9.1: 1092 - Read Data Block Diagram

Figure 9.2: 1092 - Write Data Block Diagram
9.41133 - ECC POL YNOMIALS (POS 29)

This module contains:

- ECC polynomial (14E, 14D, 14B, 12B, 12D, 12E, 9E, 9D, 9B, 7B, 7D, 7E, 5C, 5D)
- Error displacement counter (19F, 19B, 7A, SA)
- Polynomial parity check (14F, 16B, 12F, 9F, 5B, 7F, 5F, 16F, 1C)
- Polynomial zero's detector (14, 12C, 9C, 7C, 5E)
- Bus interface buffers (9A, 19A, 16A, 14A, 12A)

$9.51135-S M D$ TIMING (POS 28)

This module contains:

- Phase bit counter (4D, 1D, 1E, 4E)
$-\quad$ Phase generator (1C, 4C, 4A, 17E)
- Miscellaneous circuits for counter decodes and controls (10C, 16C, etc.)

Note: This module is a substitute for the old 1076 module, but is NOT compatible. Circuits (13A, 16A, 19A) are used to generate inputs for the 1133 module.

$9.61077-S M D$ CONTROL (POS 27)

This module contains:

- Circuits for generating the following control signals used on the 1092 board.

SHTE - shift enable
PL - parallel load DCS - data channel strobe
IRQ - initiate request
WRITE CORE - read disk
DWC - decrement word counter
SL - shift clock
(19C, 11C, 15C, 2D, etc.)

- Synchronous character detection (end of PH1 or PH4 during read) (4B)
- Generation of normal end of operation, COMPL (17A)
- Read Gate (13C)
- Write Gate (6B)
- Time out detection (generation of status bit 6) (8C)
- Read clock enable (17B)
- Format switch and format switch on indicator (edge of board)
- Detection of missing read clock (SB7) (2D)
- Detection illegal register load (SB5) (15B, 6D)

9.71078 - SMD RECEIVE (POS 26)

This module contains:

- Block address (PH2) compare network (5B, 5C, 8C, 5D)
- Cable A receivers (15A, 15B)
- Cable A transmitters (18A, 18B, 18C)
- OR for errors (generation of status bit 4) (15C)
- Selector for clock, data and sector (test mode) (5A)
- Test mode clock oscillator (8D)
- Test mode sector oscillator (2B, 2D)
-- Driver for Read Seek Condition (12A, 12B)
- Control word bits 7-10 (unit selection and marginal recovery) (12C)

ND-11.013.01

9.81154 - SMD TRANSMIT (POS 25)

Note 1:

This module incorporates the identical functions of the 1079 module, but with the additional capability of selecting more heads to the disk drive.

Note 2:
This module is downwards compatible with the 1079 module, i.e., this module can be used in the old controllers.

Note 3:
The block address serialization circuit (8 B and 11 B) is not used by the ECC controller).

Note 4:
The block address inputs (DA X and $A X$) represent different address bits for old and ECC controller due to different formats.

This module contains:

- Block address serialization circuit (8A, 11B) (not used by the ECC controller)
- Tag timing generator (4B, 5E, 2B, 8C, 2C, 2D, 4D, etc.)
- Bus transmitters (17D, 17B, 17C, 15D, 15C)
- Control transmitters (15B, 13B)
- Marginal recovery circuit (6D, 8D, etc.)
- Internal bus drivers (13C, 11C, 11D)
- Additional head selection (15E)

9.9
 1156 - UNIT CONTROL (POS 24)

Note 1:
This module is downwards compatible with the 1080 module, i.e., this module can be used in the old controllers.

The logical function of 1156 is the same as the function of the 1080 module with exception of the sector count and the compare circuits.

For 18 sector operation (the ECC controller) the sector counter (10C) is extended by one bit (15A) which makes the circuit count module 18 rather than 16 . The extra bit compare is also fed into the sector compare circuit (10B).

When the 1156 is used as a replacement of the 1080 in the old controller, the counter and compare circuits are working on module 16.

For the ECC controller the signals CARRY $_{0}$ and the $18 \mathrm{~S}_{0}$ are connected via the backwiring, for the old controller these signals are not connected.

This module contains:

- \quad B cable receivers (18C, 16B, 16D, 18D)
- Write clock transmitter (18C)
- Sector counter (10C, 15A)
- Sector compare (10B, 9A, 4D)
- Sector part of block address register (8B)
- Unit compare (8C)
- Unit decoder (4B)
- Detection of missing servo clock (14C)

$9.10 \quad 1155$ - BUS CONTROL

Note 1:
This module is downwards compatible with the 1022 module, i.e., 1155 can be used as a replacement for the 1022 in the old controllers.

The logical function of the 1155 module is the same as the 1022. In addition, the 1155 has circuits (15B and 11A). These circuits are added due to the redefinition of the IOX instructions and the separation into two distinct banks of instruction selected by bit 15 of the control word.

If bit 15 of the control word is zero, circuit $(8 A)$ is activated to present status information when decoded.

When bit 15 of the control word is one, circuit (8A) is never activated. Refer to the Programming Specifications, Appendix N.

This module contains:

- Device select switches (11B)
- Core address select switches (7C)
- Ident code select switches (19A, 7C)
- Device equals compare circuit (7B)
- Register decoder (19B)
- Drivers for I/O data bus (BD 0-15) onto local data bus (MDB 0-15) (6A, 3B, 15C)
- Drivers for local data bus (MDB 0-15) onto I/O data bus (BD 0-15) (3A, 5B, 17C)
- Ident mechanism(1C)
- Grant mechanism (1B)
- Bit 16 and 17 of the core address register (17B)
- Driver circuit for lower 5 bits of status word (8A)
- Driver circuit for ident code (13A, 13B)
- Driver circuit for core address register selection (10C)
- Lower 4 bits of status and lower 3 bits of control word (13D, 11D)

APPENDIXA
 LOGIC DIAGRAMS

Scanned by Jonny Oddene for Sintran Data © 2010

Scanned by Jonny Oddene for Sintran Data © 2010

APPENDIX B

CONTROLLER PCB LAYOUT

Scanned by Jonny Oddene for Sintran Data © 2010

APPENDIX C

SIGNAL DEFINITION LIST

Signal	$\begin{gathered} \text { Generated } \\ \text { POS CARD } \end{gathered}$		Signal Explanation List:
A0-10	B31	1134	Block address register II (cylinder portion of block address)
$B A_{1}$	B31	1134	Serial block address to be compared with the address (PH 2) read from the disk
BCOMPL_{0}	B32	1013	Buffered COMPL signal
BC 20	B28	1135	Phase bit counter equals 4
BERROR $_{0}$	B32	1013	Buffered ERROR signal
$B^{\text {BRBUSY }}$	B32	1013	Buffered RBUSY signal
BSTART0	-	1155	Activate controller (CWR bit no. 2)
BLO-9 $0_{0,1}$	B25	1154	Bus lines to disk. The bus is multiplexing cylinder address bits, lead select bits and control bits to disk.
B150	B28	1135	Phase bit counter equals 15
B310	B28	1135	Phase bit counter equals 31
B63 ${ }_{1}$	B28	1135	Phase bit counter equals 63
B1920	B28	1135	Phase bit counter equals 192
B81910	B28	1135	Phase bit counter equals 8191.
CF_{0}	-	1155	Clear error flags. Generated by Master Clear, Device Clear or Activate Device.
CL_{0}	B26	1078	Serial bit clock. The clock derives from read clock (RC) during read, servo clock (WRC) during write or an intern oscillator in test mode.
COMPL_{0}	B27	1077	Legal completion of an operation (will reset Busy and generate interrupt if enabled)
CRCM_{0}	B31	1134	

ND-11.013.01

Signal	$\begin{array}{r} G e \\ P O S \end{array}$	ated CARD	Signal Explanation List:
Data Ready ${ }_{0}$	-	1155	DMA DATA READY to this controller. DATA READY is the termination signal for a one word transfer to/from memory. For Read (Disk to Memory) Memory has completed the store operation. For WRITE (Memory to Disk) one word is present on the information bus from memory.
DAO-15 ${ }_{1}$	B32	1013	Lower 16 bits of block address register
DCS ${ }_{0}$	B27	1077	Data channel strobe. Strobes the 16 assembled bits (during read) into the first stage of FIFO.
DEQLo	-	1155	The specified device number in an 10x instruction matches with this device number.
DEQLM ${ }_{0}$	B31	1134	Enable decoding of any register with CWR bit $15=0$ or select Control Word Register (CWR) when CWR bit $15=1$. (Refer to programming specifications.)
DEVICEREO ${ }_{0}$	B30	1092	Request to memory for a one word read or write transfer
DINPUT0	-	1155	Enables data from output stage of FIFO onto local data bus during a read transfer.
DRD ${ }_{1}$	B26	1078	Serial data from disk during normal read or from test data pattern generator during read in test mode.
DRO-2 ${ }_{1}$	-	1155	Register select bits during an lOX instruction (3 lower bits of address bus)
DWC 0	827	1077	Decrement word counter pulse. Generated for each word to be transferred to/ from disk.
$D W 7_{1}\left(\mathrm{SIF}_{1}\right)$	830	1092	Serial data from shift register during write (also referred to as SI5)
ECLOCK_{1}	B28	1135	Polynomal shift clock
EC2 ${ }_{0}$	826	1078	Enable compare of Block Address (PH2) from disk with block address shift register
EHIZ ${ }_{0}$	B29	1133	Upper (high) 45 bits of polynomial equal to zero
ELOZ_{0}	829	1133	Lower (low) 11 bits of polynomial equal to zero.

ND-11.013.01

Signal	$\begin{aligned} & \text { Gene, } \\ & P O S \end{aligned}$	rated $C A R D$	Signal Explanation List:
$E O G_{1}$			End of Gap (no source)
EQUAL ${ }_{0}$	B21-24	1156	Sector match. I.e., lower part of block address (sector number) is equal to sector counter for the selected unit.
EQUALD_{1}	B27	1077	Block address (PH 2) read from disk compares with block address shift register
ERROR ${ }_{0}$	B26	1078	Inclusive or of error indicators. Same as STS bit number 4 .
ERST0	B28	1135	Reset polynomal
E55 ${ }_{1}$	B29	1133	Serial output from polynomial
E550	B29.	1133	Serial output from polynomial
FAULT ${ }_{0,1}$	Selected	Unit	Disk fault from selected unit
FBC_{1}	828	1135	Feedback select signal for polynomial generation
HB880	B31	1134	Head select line (value $=8$) (from block address bit number 11)
HB160	B31	1134	Head select line (value $=16$) (from block address bit number 12)
HB320	B31	1134	Not used. Head select line. (value $=32$) (from block address bit number 13)
HB64 ${ }_{0}$	B31	1134	Option for CMD, MMD disk units
$\mathrm{INDEX}_{0,1}$	Wired	Unit	Start of revolution from the associated unit
$\underline{\mathrm{IRO}}{ }_{1}$	B27	1077	Initiate request. The controller request a new memory access (generate DEVICE REQUEST).
I_{1}	B28	1135	Input data to polynomial
KILL ${ }_{0}$	B28	1135	Prevent clearing of polynomial when data error is discovered
LOW0	B32	1013	Load control word register strobe
LONG 0	B31	1134	Error correction control bit number 2. Extends PH5 during read or write to be equal to PH5 and PH6 and PH7. Used for maintenance purposes only.
MARG ${ }_{1}$	B26	1078	Marginal recovery. Control word bit number 10.

Signal	$\begin{gathered} \text { Generated } \\ \text { POS } \quad \text { CARD } \end{gathered}$		Signal Explanation List:
MAXCNT	B29	1133	Error displacement counter equal to 8248 (8192 (PH5) + 56 (PH6)). Used when testing whether data error is recoverable or not.
MC ${ }_{0}$	B30	1092	Buffered MCM
MCM ${ }_{0}$	-	1155	Master clear from CPU or device clear (control word bit number 4)
MDB0-15 ${ }_{1}$	-	1155	Internal data bus in the disk controller
$M E_{0}$	B27	1077	Master enable. The control is active and on cylinder.
MIS_{0}	B32	1013	Read block address strobe. In test mode block address register is returned to the A register in the CPU.
$M S_{0}$	B27	1077	Master start pulse. A $10 \mu \mathrm{~s}$ pulse generated when controller goes active.
MSP_{1}	832	1013	Control word bit number 15 . Selects one of two "banks" of registers accessed by IOX instructions (refer to program specifications)
MO_{0}	B32	1013	Operation mode 0. Read transfer.
M 10	B32	1013	Operation mode 1. Write transfer.
$\mathrm{M} 2_{0}$	B32	1013	Operation mode 2. Read parity transfer.
$\mathrm{M3} 0$	B32	1013	Operation mode 3. Compare transfer.
$\mathrm{M} 4_{0}$	B32	1013	Operation mode 4. Initiate seek.
$\mathrm{M5} 0$	B32	1013	Operation mode 5. Write format.
M60	B32	1013	Operation mode 6. Seek complete search.
M70	B32	1013	Operation mode 7. Return to zero seek.
M80	B32	1013	Operation mode 8. Run ECC operation.
M6C ${ }_{0}$	B28	1135	ECC operation completed
	B21-24	1156	Seek complete search positive.
ONCYLL ${ }_{0}, 1$	Seleted	Unit	Unit has completed a seek operation and a read/write operation can be started.
PARERR $_{0}$	B29	1133	Hardware fault condition exists in ECC polynomial circuits. Reported in status bit number 7 and read seek condition bit number 14. (refer to program specifications).

ND-11.013.01

Signal	$\begin{aligned} & \text { Genera } \\ & \text { POS } \end{aligned}$	$\begin{aligned} & \text { ated } \\ & \text { CARD } \end{aligned}$	Signal Explanation List:
$P \mathrm{E}_{1}$	B32	1013	Not used
$\mathrm{PH} 1_{0}$	B28	1135	Sector phase 1. Refer to sector format.
$\mathrm{PH}_{2}{ }_{0}$	B28	1135	Sector phase 2. Refer to sector format.
PH_{3}	B28	1135	Sector phase 3. Refer to sector format.
$\mathrm{PH}_{4}{ }_{\text {, }}$	B28	1135	Sector phase 4. Refer to sector format.
PH 50	B28	1135	Sector phase 5. Refer to sector format.
PH60	B28	1135	Sector phase 6. Refer to sector format.
PH70	B28	1135	Sector phase 7. Refer to sector format.
PH80	B28	1135	Sector phase 8. Refer to sector format.
PH14 ${ }_{1}$	B28	1135	Sector phase 1 or 4 Refer to sector format.
PH25W ${ }_{1}$	B28	1135	Write in phase 2 or 5.
PL_{0}	B27	1077	Parallel load of shift register with data from memory during a write operation.
RBUSYo	B26	1078	Abnormal end of operation, i.e., error reset of busy FF. Same as status register bit number 12.
RC_{0}	B21-24	1156	Buffered RCL.
RCE ${ }_{0}$	B27	1077	Read clock enable. Enable read clock (RCL) from disk to be the master clock. Otherwise, the servo clock is enabled. In test mode a test clock is enabled.
RCL $\mathrm{O}_{0} 1$	Seleted	Unit	Read clock from disk.
RDD_{0}	B21-24	1156	Buffered RDDL.
$\mathrm{RDDL}_{0,1}$	Seleted	Unit	Read data from disk
READY $L_{0,1}$	Seleted	Unit	Disk unit ready, i.e., selected unit is up to speed, has the heads loaded and no faults exist.
REC ${ }_{0}$	B31	1134	Read ECC count. Refer to programming specifications.
REP ${ }_{0}$	B31	1134	Read error pattern. Refer to programming specifications.
$R \mathrm{G}_{0}$	B27	1077	Read gate. Enables the read circuitry in the selected disk unit.

Signal	Generated COS	Signal Explanation List: RMUX $_{0}$	B31

$$
C-7
$$

Signal	$\begin{aligned} & \text { Genera } \\ & P O S \end{aligned}$	rated CARD	Signal Explanation List:
SB12 ${ }^{0}$	B26	1078	Same as RBUSY. Abnormal end of operation.
$\mathrm{SB13}_{0}$	B26	1078	Disk unit not ready.
SCR12	-	-	Not used.
SCR15	B28	1135	Data error is discovered in address field (PH2).
SEC ${ }_{0}$	B26	1078	Sector clock from disk or from test oscillator in test mode.
SECTL ${ }_{0}{ }_{1}$	Seleted	Disk	Sector clock from disk.
SEEKEL $_{0,1}$	Seleted	Disk	End seek (on cylinder or seek error) from disk.
SERCL $0_{0}, 1$	Seleted	Disk	Servo (write) clock from disk.
SHTE 0	B27	1077	Enable the shift register to shift.
SI_{0}	B21-24	1156	Sector or index pulses.
SIO-70	B21-24	1156	One line for each unit, indicating which one has completed a seek.
START0	B27	1077	Buffered START ${ }_{1}$
START $_{1}$	B32	1013	Buffered BSTART0
TAG1 $L_{0,1}$	B25	1154	Cylinder address strobe to selected unit.
TAG2L $0_{0,1}$	B25	1154	Head selection strobe to selected unit.
TAG3 $L_{0,1}$	B25	1154	Control selection strobe to selected unit.
TD ${ }_{0}$	B28	1135	Test data from test data pattern generator. Used to generate read data in test mode.
TEST_{1}	B32	1013	Controller is active in test mode.
TRANSFER $_{1}$	B27	1077	Controller active in modus 0,1,2 or 3.
TSTo	B31	1134	Force parity error. ECC control word bit number 1. Refer to programming specifications.
US0-2 ${ }_{1}$	B26	1078	Unit select bits. Control bit numbers 7, 8 and 9 .
USLO-2 ${ }_{0} 1_{1}$	826	1078	Unit select bits to units.

C-8

Signal	$\begin{aligned} & \text { Gener } \\ & \text { POS } \end{aligned}$	ated CARD	Signal Explanation List:
WA ${ }_{0}$	B26	1078	Wrong address. Block address register did not match with address read from disk (PH 2) .
WCS ${ }_{0}$	B32	1013	Load the word count and the request count register with the number of words to be transferred.
WCZ ${ }_{0}$	B30	1092	Word counter equals zero. I.e., specified number of words transfer to/from disk.
$W D_{1}$	B28	1135	Write data to disk.
$W D L_{0,1}$	B21-24	1156	Write data to disk.
$W F_{0}$	B27	1077	Write format. I.e., controller in modus 5 and format switch in position.
WGo	B27	1077	Write gate. Enables the write data to be written on the disk.
WRC ${ }_{0}$	B21-24	1156	Write clock. Same as servo clock from selected disk unit.
$\mathrm{WRCL}_{0,1}$	B21-24	1156	Write clock (servo clock) sent back to the selected unit with the write data.
Write Core ${ }_{1}$	B27	1077	Controller in modus 0. l.e., read data from disk.
$18 S_{0}$	B21-24	1156	18 sectors. l.e., used to indicate that format with 18 sectors is in use (ECC controller).

APPENDIX D

1155 - PCB SWITCHES AND JUMPERS

Refer to the assembly drawing for exact locations.

1155 PC SWITCHED \& JUMPERS
(Refer to the Assembly Drawing for exact lo cations)

SIGNAL N'AMES'

$I=$ JUMPERS
$I=D \mathbb{P}$ SWITCHES

1155 Example:

$10 X=1550_{8}, 1 D=20_{8}, C A R=3$
INSTALLJUMPERS: $3,4,5,6, F, G, H$.
"CLOSE" SWITCHES: 7, 9, A, B, D, E.
ND-11.013.01

$$
\mathrm{E}-1
$$

APPENDIXE

SMD SECTOR SWITCH SETTING

The number of sectors per track is selected by toggle DIP switches on the LTV card in POS 06 in the logic chassis of the disk unit.

For the ECC format 18 sectors are used. Refer to the following table and illustration for proper switch setting.

Switch Number	Open/ Closed	Switch Value	Present Value
0	open	1	
1	closed	2	2
2	open	4	
3	closed	8	8
4	open	16	32
5	closed	32	
6	closed	64	64
7	closed	128	128
8	open	256	
9	closed	512	512
10	open	1024	
11	open	2048	
		746^{*}	

* Number of diebits per sector is $746+1=747$

ND-11.013.01

$$
F-1
$$

APPENDIX F

PCB POWER REQUIREMENT

Numbers given are nominal @ + 5VDC (+10\%)

1133	2.5 A
1134	0.75 A
1135	1.0 A
1154	0.75 A
1155	0.9 A
1156	1.0 A
1013	0.85 A
1077	0.6 A
1078	0.75 A
1092	1.6 A

	10.78 A with 1155
TOTAL $=$	9.80 A without 1155
	12.80 A with 4×1156 and without 1155

APPENDIX G

TRACK/SECTOR FORMAT

18 SECTORS (0-17) PER TRACK.
SECTORS 0-16 ARE 8964 BITS LONG, SECTOR 17 IS 8892 BITS LONG.
NO. OF
8ITS

ND-11.013.01

Scanned by Jonny Oddene for Sintran Data © 2010

APPENDIX H

ECC DISK CONTROLLER BACKWIRING

A0 1	B25: 45	B31: G74		
A1 1	B25: 46	B31: 57		
A2 1	B25: 47	B31: 72		
A3 1	B25: 48	B31: 60		
A4 1	B25: 49	B31: 70		
A5 1	B25: 50	B31: 62		
A6 1	B25: 51	B31: 68		
A7 1	B25: 52	B31: 64		
A8 1	B25: 53	B31: 66		
A9 1	B25: 04	B31: 29		
A10 1		B31: G30		NO LOAD
BA 1	B26: 41	B31: G37		
BCOMPL 0	B30: 88	B32: G88		
BCZ 0	B26: 37	B28: G37		
BERROR 0	B30: 86	B32: G86		
BRBUSY 0	B30: 90	B32: G90		
BSTART 0	B30: 92	B32: 92	1155: G92	
BOL 0	B25: G94			
B1L 0	B25: 92			
B2L 0	B25: 90			
B3L 0	B25: 88			
B4L 0	B25: 86			
B5L 0	B25: 84			
B6L 0	B25: 82			
B7L 0	B25: 80			
B8L 0	B25: 80			
B9L 0	B25: G76			
B15 0	B27: 45	B28: G45		
B31 0	B27: 40	B28: G40		
B63 1	B27: 46	B28: G46		
B192 0	B27: 42	B28: G42		
B8191 0	B27: 44	B28: G44		
B0L 1	B25: G95			
B1L 1	B25: 93			
B2L 1	B25: 91			
B3L 1	B25: 89			
B4L 1	B25: 87			
B5L 1	B25: 85			
B6L 1	B25: 83			
B7L 1	B25: 81			
B8L 1	B25: 79			
B9L 1	B25: G77			
B7 0	B27: 43			
CF 0	B30: 72	B32: 72	1155: G72	
CL 0	B23: 32	B26: G33	B27: 33	B28: 33
COMPL 0	B27: G23	B32: G22		B31: 33
CARRY 0	B24: G71	B24: 70		
CRCM 0	B28: 91	B31: G91		

DATA READY 0	B30: 62	B32: 62		
DAO 1	B24: 38	B25: 38	B31: 38	B32: T38
DA1 1	B24:39	B25: 39	B31: 39	B32: T39
DA2 1	B24: 40	B25: 40	B31: 40	B32: T40
DA3 1	B24:41	B25: 41	B31: 41	B32: T41
DA4 1	B31: 42	B32: T42	B24: 42	
DA5 1	B31: 43	B32: T43		
DA6 1	B31: 44	B32: T44		
DA7	B31: 45	B32: T45		
DA8 1	B25: 42	B31: 46	B32: T46	
DA9 1	B25: 43	B31: 47	B32: T47	
DA10 1	B25: 44	B31: 48	B32: T48	
DA11	B31: 49	B32: T49		
DA12	B31: 50	B32: T50		
DA13	B31: 51	B32: T51		
DA14	B31: 52	B32: T52		
DA15	B31: 53	B32: T53		
DCS 0	B27: G19	B30: 19		
DEQL0		BB30: 82	B31: 82	1155: G82
DEQLM 0	B31: G84	B32: 82		
DEVICE				
REQUEST 0	B30: G66	B32: 66		
DINPUT 0	B30: 64	B32: 64		1155: G64
DRD 1	B26: G18	B27: 18	B28: 19	B30: 18
DR0 1	B27: 56	B30: 76	B31: 76	B32: 76
DR1 1	B30: 78	B31: 78	B32: 78	
DR2 1	B30: 80	B31: 80	B32: 80	
DWC 0	B27: G49	B30: 48		
DW7 1	B28: 41	B30: G41		
ECLOCK 1	B28: G66	B29: 66		
EC2 0	B25: 36	B26: G38	B31: 36	
EH1Z0	B28: 29	B29: G27		
ELOZ 0	B28: 76	B29: G76		
EOG 1	B28: 38			NO SOURCE
EQUALO	B24: G52	B27: 55		
EQUALD 1	B27: G51	B26: 50		
ERROR 0	B26: G36	B32: 36		
ERST0	B28: G09	B29: 13		
E55 1	B28: 20	B29: G20		
E55 0	B29: G21			NO LOAD
FAULTL 1	B26: 85			
FAULTLO	B26: 84			
FBC 1	B28: G07	B29: 16		
GND	B26: 04			
GND	B30: 84			
H	B30: 06	B30: 07		
HB8 0	B25: 26	B31: G16		
HB16 0	B25: 27	B31: G17		
HB32 0	B31: G18			NO LOAD
HB64 0	B25: 31	B31: G19		

INDEX L 0	B24: 78			
INDEX L 1	B24: 79			
IRQ 1	B27: G29	B30: 29		
11	B28: G10	B29: 10		
KILL 0	B28: G93	B29: 92		
LCW 0	B25: 55	B26: 55	B32: G56	
LONG 0	B28: 92	B31: G92		
MARG 1	B25: 18	B26: G12		
MAXCNT 0	B28: 82	B29: G80		
MCO	B24: 54	B30: G54	B25: 54	
MCM 0	B28: 58	B30: 58	B31: 58	B32: 58
MDB0 1	B26: T60	B29: 59	B30: 59	B31,32: 59
MDB1 1	B26: T61	B29: 61	B30: 61	B31,32: 61
MDB2 1	B25: 62	B26: T62	B29: 63	B30,31,32: 63
MDB3 1	B26: T63	B29: 65	B30: 65	B31,32: 65
MDB4 1	B26: T64	B29: 67	B30: 67	B31,32: 67
MDB5 1	B26: T65	B29: 69	B30: 69	B31,32: 69
MDB6 1	B26: T66	B29: 71	B30: 71	B31,32: 71
MDB7 1	826: T67	B29: 73	B30: 73	B31,32: 73
MDB9 1	B26: T69	B29: 77	B30: 77	B31,32: 77
MDB10	B26: 170	B29:79	B30: 79	B31,32: 79
MDB11	B26: 771	B29: 81	B30: 81	B31,32: 81
MDB12 1	B29: 83	B30: 83	B31,32: 83	
MDB13 1	B28: 85	B30: 85	B31,32: 85	
MDB14 1	B29:87	B30: 87	B31,32: 87	
MDB15	B29: 89	B30: 89	B31,32: 89	
ME 0	B26: 48	B27: G48		
MIS 0	832: G35			NO LOAD
MS 0	B24: 24	B25: 25	B27: G28	B28: 28
MSP 1	B31: 09	B32: G05		
M0 0	B27: 06	B32: G06		
M1 0	B27: 07	B32: G07		
M2 0	B27: 10	B30: 05	B32: G08	
M3 0	B27: 11	B28: 11	B32: G09	
M4 0	B27: 10	B27: 12	B32: G10	
M5 0	B27: 13	B32: G11		
M6 0	B24: 12	B25: 13	B32: G12	
M7 0	B25: 12	827: 15	B32: G13	
M8 0	B28: 05	B31: G14		
M6C 0	B24: T55	B27: 57	B28: G57	
ONCYL0	B25: 34	B26: G35	B27: 35	
ONCYL 1	B27: G31	B32: 33		
OPENCL 0	B25: G68			
OPENCL 1	B25: G69			
ONCYLL0	B26: 80			
ONCYLL 1	B26: 81			

H-4

PARERR 0	B28: 08	B29: G08		
PE	B32: G54			
PH1 0	B25: 14	B26: 14	B27: 04	B28: G12
PH2 0	B26: 20	B27: 21	B28: G14	B31: 14
PH3 0	B27: 24	B28: G27		
PH4 0	B27: 17	B28: G18		
PH5 0	B27: 20	B28: G06		
PH6 0	B28: G22			
PH7 0	B28: G24			
PH8 0	B27: 26	B28: G26		
PH14 1	B27: 14	B28: G15		
PH25W 1	B28: G25	B29: 22		
PLO	B27: G09	B30: 08		
RBUSY 0	B26: G05	B32: 04		
RC 0	B24: G20	B26: 21		
RCE 0	B26: 42	B27: G38		
RCL 0, 1	B24: 86			
RDD 0	B24: G22	B26: 23		
RDDL 0	B24: 88			
RDDL 1	B24: 89			
READYL 0	B26: 78			
READYL 1	B26: 79			
REC 0	B29: 45	B31: G55		
REP 0	B29: 55	B31: G54		
RG 0	B25: 16	B26: 16	B27: G16	B28: 16
RMUX 0	B31: G13			
RRO 0	B30: 94	B32: 94		
RSECT 0	B32: G34	B26: 34	B29: 91	
RSTE 0	B28: 04	B31: G04		
RCL1	B24: 87			
READ 1	B28: G50	B29: 50		
SB5 0	B25: 24	B26: 24	B27: G30	B32: 24
SB6 0	B26: 25	B27: G25	B32: 25	
SB7 0	B24: G26	B26: G26	B27: G27	B28: G32
SB8 0	B26: G27	B32: 27		B32: 36
SB9 0	B26: 28	B27: 36	B28: G30	B32: 28
SB10 0	B26: 29	B28: G31	B32: 29	
SB11 0	B26: 30	B30: G31	B32: 30	
SB12 0	B27: G31	B32: 31		
SB13	B26: G31	B32: 32		
SCR12	B29: 11			
SCR15	B28: G13	B29: 12		
SEC 0	B26: G40	B27: 39	B28: 39	
SECTL 0	B24: 80			
SECTL 1	B24: 81			
SEEKEL 0	B24: 84			
SEEKEL 1	B24: 85			
SEEKERL 0	B26: 82			
SEEKERL 1	B26: 83			
SERCL 0	B24: 90			
SERCL 1	B24: 91			

SHTE 0	B27: G08	B30: 09
SIO	B24: 36	B26: 39
STO 0	B24: 04	B26:06
ST1 0	B24: 18	B26: 07
ST2 0	B24: 05	B26: :8
ST3 0	B24: 19	B26: 09
ST4 0	B24: 11	B26: 10
ST5 0	B24: 13	B26: 11
ST6 0	B24: 14	B26: 13
ST7 0	B24: 15	B26: 15
START 0	B26: 44	B27: G41
STRC 1	B25: G10	B25: 11
SUSL 0	B26: G86	
SUSL 1	B26: G87	
SYNCAC 1	B27: G34	B28: 35
SLO	B27: G05	B30: 04
START 1	B27: 37	B32: G37

B25: 30

B28: G21
B26: 22
B27: G52
B31: G06
B32: G23

B26: G43
B26: G45
B26: G47

B27: 50
B32: G55
B30: G46
B28: G17

B27: G54
B27: G22
B26: 17
B28: 23
WG 0
WRC 0
WRCL 0
WRCL 1
WRITE CORE 1
B26: G46
B30: 55
B27: 47
B24: 16
B24: 94
B24: 95
B26: 54
B25: 22
B24: 17
B24: G92
B24: G93
B27: G69
B30: 68
B32: 68

18 S 0
B24: 50
B24: 51

APPENDIXI

CONNECTOR LISTS

Connector List 1013
Connection: 232
Destination: B32
Board Name: Device Register

Pin:		Signal Code Reference:	Pin:		Signal Code Reference:
00		VCC	01		VCC
02		GND	03		GND
04		RBUSY 0	05	G	MSP 1
06	G	MSP 1	07	G	M0 0
08	G	M1 0	09	G	M2 0
10	G	M3 0	11	G	M4 0
12	G	M5 0	13	G	M6 0
14	G	M7 0	15		
16			17		
18			19		
20			21		
22		COMPL 0	23	G	TEST 1
24		SB5 0	25		SB6 0
26		SB7 0	27		SB8 0
28		SB9 0	29		SB10 0
30		SB11 0	31		SB12 0
32		SB13 0	33		ONCYL 1
34	G	RSECT 0	35	G	MIS 0
36		ERROR 0	37	G	START 1
38	T	DA0 1	39	T	DA1 1
40	T	DA2 1	41	T	DA3 1
42	T	DA4 1	43	T	DA5 1
44	T	DA6 1	45	T	DA7 1
46	T	DA8 1	47	T	DA9 1
48	T	DA10 1	49	T	DA11 1
50	T	DA12 1	51	T	DA13 1
52	T	DA14 1	53	T	DA15 1
54	G	PE 1	55	G	WCS 0
56	G	LCW 0	57		
58		MCM 0	59	T	MDB0 1
60			61	T	MDB1 1
62		DATA READY 0	63	T	MDB2 1
64		DINUPUT0	65	T	MDB3 1
66		DEVICE REQ 0	67	T	MDB4 1
68		WRITE CORE 1	69	T	MDB5 1
70			71	T	MDB6 1
72		CR 0	73	T	MDB7 1
74			75	T	MDB8 1
76		DR0 1	77	T	MDB9 1
78		DP1 1	79	T	MDB10 1
80		DR2 0	81	T	MDB11 1
82		DEQLM 0	83	T	MDB12 1
84			85	T	MDR13 1
86	G	BERROR 0	87	T	MDB14 1
88	G	BCOMPLO	89	T	MD15 1
90	G	BRBUSY 0	91		
92		BSTART0	93		
94		RPQ 0	95		
96		GND	97		GND
98		GND	99		VCC

Connector List 1092
Connector: 230
Destination: B30
Board Name: DMA Register

Pin:		Signal Code Reference:	Pin:		Signal Code Reference:	
00		VCC	01		VCC	
02		GND	03		GND	
04		SLO	05		M2 0	
06		H	07		H	
08		PLO	09		SHTE 0	
10			11			
12			13			
14			15			
16			17			
18		DRD 1	19		DCS 0	
20			21			
22			23			
24			25			
26			27			
28			29		IRQ 1	
30			31	G	SB11	1
32			33			
34			35			
36			37			
38			39			
40			41	T	DW7 1	
42			43			
44			45			
46	G	WCZ 0	47			
48		DWC 0	49			
50			51			
52			53			
54	G	MC 0	55		WCS 0	
56			57			
58		MCM 0	59	T	MDB0	
60			61	T	MDB1	1
62		DATA READY 0	63	T	MDB2	1
64		DINPUT0	65	T	MDB3	1
66	G	DEVICE REQ 0	67	T	MDB4	1
68		WRITE CORE 1	69	T	MDB5	1
70			71	T	MDB6	1
72		CR 0	73	T	MDB7	1
74			75	T	MDB8	1
76		DR0 1	77	T	MDB9	1
78		DR1 1	79	T	MDB10	1
80		DR2 1	81	T	MDB11	1
82		DEQL 0	83	T	MDB12	1
84		ECC 0 (GROUND)	85	T	MDB13	1
86		BERROR 0	87	T	MDB14	
88		BCOMPL 0	89	T	MDB15	1
90		RBUSY 0	91			
92		BSTART 0	93			
94		RRQ 0	95			
96		GND	97		GND	
98		VCC	99		VCC	

ND-11.013.01

Connector List 1077
Connection: 227
Designation: B27
Board Name: SMD Control

Pin:		Signal Code Reference:	Pin:		Signal Code Reference:
00		VCC	01		VCC
02		GND	03		GND
04		PH1 0	05	G	SLO
06		M0 0	07		M1 0
08	G	SHTE 0	09	G	PLO
10		MS 0	11		M3 0
12		M4 0	13		M5 0
14		PH14 1	15		M7 0
16	G	RG 0	17		PH4 0
18		DRD 1	19	G	DCS 0
20		PH5 0	21		PH2 0
22	G	WG 0	23	G	COMPLO
24		PH3 0	25	G	SB6 0
26		PH8 0	27	W	SB7 0
28	G	MS 0	29	G	IRQ 1
30	W	SB5 0	31	G	ONCYL 1
32			33.		CL0
34	G	SYNCHC 1	35		ONCYL 0
36		SB9 0	37		START 1
38	G	RCE 0	39		SEC 0
40		B31 0	41	G	START 0
42		B192 0	43		B7 0
44		B8191 0	45		B15 0
46		B63 1	47		WCZ 0
48	G	ME 0	49	G	DWC 0
50		WA 0	51	G	EQUALD 1
52	G	TRANSFER 1	53		DEQLO
54	G	WF 0	55		EQUALO
56		DR0 1	57		MGC 0
58			59		
60			61		
62			63		
64			65		
66			67		
68			69	G	WRITE CORE 1
70			71		
72			73		
74			75		
76			77		
78			79		
80			81		
82			83		
84			85		
86			87		
88			89		
90			91.		
92			93		
94			95		
96		GND	97		VCC
98		VCC	99		VCC

ND-11.013.01

Connector List 1078
Connector: 226
Designation: B26
Board Name: SMD Receiver

Pin:		Signal Code Reference:	Pin:		Signal Code Reference:
00		VCC	01		VCC
02		GND	03		GND
04		GND	05	G	RBUSY 0
06		ST0 0	07		ST1 0
08		ST2 0	09		ST3 0
10		ST4 0	11		ST5 0
12	G	MARG 1	13		ST6 0
14		PH1 0	15		ST7 0
16		RG 0	17		WRC 0
18	G	DRD 1	19		TD 0
20		PH2 0	21		RC 0
22		TEST 1	23		ROD 0
24		SB5 0	25		SB6 0
26	W	SB7 0	27	G	SB8 0
28		SB9 0	29		SB10 0
30		SB11 0	31	G	SB12 0
32	G	SB13 0	33	G	CLO
34		RSECTO	35	G	ONCYL 0
36	G	ERROR 0	37		BC2 0
38	G	EC2 0	39		SIO
40	G	SEC 0	41		BA 1
42		BCE 0	43	G	USO 1
44		START 0	45	G	US1 1
46	G	WA 0	47	G	US2 1
48		ME 0	49		
50		EQUALD 1	51		
52			53		
54		WF 0	55		LCW 0
56		GND	57		GND
58		-5V	59		-5V
60	T	MDB0 1	61	T	MDB1 1
62	T	MDB2 1	63	T	MDB3 1
64	T	MDB4 1	65	T	MDB5 1
66	T	MDB6 1	67	T	MDB7 1
68	T	MDB8 1	69	T	MDB9 1
70	T	MDB10 1	71	T	MDB11 1
72			73		
74			75		
76			77		
78		READYL 0	79		READYL 1
80		ONCYLL 0	81		ONCYLL 1
82		SEEKERL 0	83		SEEKERL 1
84		FAULTLO	85		FAULTL 1
86	G	SUSL0	87	G	SUSL 1
88	G	US3L 0	89	G	US3L 1
90	G	US2L0	91	G	US2L 1
92	G	US1L0	93	G	US1L1
94	G	USOLO	95	G	USOL 1
96		GND	97		GND
98		VCC	99		VCC

Connector List 1133
Connector: 229
Designation: B29
Board Name: ECC Polynoms

Connector List 1134
Connector: 231
Destination: B31
Board Name: ECC Control

Pin:		Signal Code Reference:	Pin:		Signal Code Reference:
00		VCC	01		VCC
02		GND	03		GND
04	G	RSTE 0	05		
06	T	TST 0	07		
08			09		MSP 1
10			11		
12			13	G	RMUX 0
14		PH1 1	15		$\mathrm{N}-\mathrm{U}$
16	G	HB8 0	17	G	HB16 0
18	G	HB32 0	19	G	HB64 0
20			21		
22			23		
24			25		
26			27		
28			29	G	A9 1
30	G	A10 1	31		
32			33		CLO
34			35		
36		EC2 0	37	G	BA 1
38		DA0 1	39		DA1 1
40		DA2 1	41		DA3 1
42		DA4 1	43		DA5 1
44		DA6 1	45		DA7 1
46		DA8 1	47		DA9 1
48		DA10 1	49		DA11 1
50		DA12 1	51		DA13 1
52		DA14 1	53		DA15 1
54	G	REP 0	55	G	REC 0
56			57	G	A1 1
58		MCM 0	59	T	MDB0 1
60	G		61	T	MDB1 1
62	G	A5 1	63	T	MDB2 1
64	G	A7 1	65	T	MDB3 1
66	G	A8 1	67	T	MDB4 1
68	G	A6 1	69	T	MDB5 1
70	G	A4 1	71	T	MDB6 1
72	G	A2 1	73	T	MDB7 1
74	G	A0 1	75	T	MDB8 1
76		DR0 1	77	T	MDB9 1
78		DR1 1	79	T	MDB10 1
80		DR2 1	81	T	MDB11 1
82		DEQL 0	83	T	MDB12 1
84	G	DEQLM 0	85	T	MDB13 1
86			87	T	MDB14 1
88			89	T	MDB15 1
90			91	G	CRCM 0
92	G	LONG 0	93		
94			95		
96		GND	97		GND
98		VCC	99		VCC

Connector List 1135
Connector: 228
Destination: B28
Board Name: SMD Terminal

Pin:		Signal Code Reference:	Pin:		Signal Code Reference:
00		VCC	01		VCC
02		GND	03		GND
04		RSTE 0	05		M8 0
06	G	PH5 0	07	G	FBC1 1
08		PARERR 0	09	G	ERST 0
10	G	11	11		M3 0
12	G	PH1 0	13	G	SCR15 0
14	G	PH2 0	15	G	PH14 1
16		RG 0	17	G	WD 1
18	G	PH4 0	19		DRD 1
20		E55 1	21	G	TD 0
22	G	PH6 0	23		
24	G	PH7 0	25	G	PH25W 1
26	G	PH8 0	27	G	PH3 0
28		MS 0	29		EHIZ 0
30	G	SB9 0	31	G	SB10 0
32	W	SB7 0	33		CLO
34			35		SYNCHC 1
36			37	G	BC2 0
38		EOG 1	39		SEC 0
40	G	B31 0	41		DW67 1
42	G	B192 0	43		
44	G	B8191 0	45	G	B15 0
46	G	B63 1	47		
48			49		
50	G	READ 1	51		
52		*	53		
54		\%	55		
56			57	G	MC6 0
58		MCM 0	59		
60			61		
62			63		
64			65		
66	G	ECLOCK 1	67		
68			69		
70			71		
72			73		
74			75		
76		ELOZO	77		
78			79		
80			81		
82		MAXCNT 0	83		
84			85		
86			87		
88			89		
90			91		CRCM 0
92		LONG 0	93	G	KILL 0
94			95		
96		GND	97		GND
98		VCC	99		VCC

ND-11.013.01

Connector List 1154
Connector: 225
Designation: B25
Board Name: SMD Transmitter

Pin:		Signal Code Reference:	Pin:		Signal Code Reference:
00		VCC	01		VCC
02		GND	03		GND
04		A9 1	05		
06			07		
08			09		
10	G	STRC 1	11		STRC 1
12		M7 0	13		M6 0
14		PH1 0	15		
16		RG 0	17		
18		MARG 1	19		
20		TEST 1	21		
22		WG 0	23		
24	W	SB5 0	25		M5 0
26		HB8 0	27		HB16 0
28			29		
30		START0	31		HB64 0
32		CLO	33		
34		ONCYL 0	35		
36		EC2 0	37	G	BA 1
38		DA 01	39		DA 11
40		DA2 1	41		DA3 1
42		DA8 1	43		DA9 1
44		DA10 1	45		A0 1
46		A1 1	47		A2 1
48		A3 1	49		A4 1
50		A5 1	51		A6 1
52		A7 1	53		A8 1
54		MCO	55		LCW 0
56		GND	57		GND
58		-5V	59		$-5 \mathrm{~V}$
60			61		
62		MDB2 1	63		
64			65		
66			67		
68	G	OPENCL 0	69	G	OPENCL 1
70	G	TAG3L 0	71	G	TAG3L 1
72	G	TAG2L0	73	G	TAG2L 1
74	G	TAG1L0	75	G	TAG1L 1
76	G	B9L 0	77	G	B9L 1
78	G	B8L 0	79	G	B8L 1
80	G	B7L 0	81	G	B7L 1
82	G	B6L 0	83	G	B6L 1
84	G	B5L 0	85	G	B5L 1
86	G	B4L 0	87	G	B4L 1
88	G	B3L 0	89	G	B3L 1
90	G	B2L 0	91	G	B2L 1
92	G	B1L0	93	G	B1L 1
94	G	B0L 0	95	G	BOL 1
96		GND	97		GND
98		VCC	99		VCC

ND-11.013.01

Connector List 1156
Connector: 224
Designation: B24
Board Name: Unit Controller 1

Pin:		Signal Code Reference:	Pin:		Signal Code Reference:
00		VCC	01		VCC
02		GND	03		GND
04	T	STO 0	05	T	ST2 0
06			07		
08			09		
10		M4 0	11	T	ST4 0
12		M6 0	13	T	ST4 0
14	T	ST6 0	15	T	ST7 0
16		WD 1	17	W	WRC 0
18	T	ST1 0	19	T	SDT3 0
20	W	RCO	21		
22	W	RDD 0	23		
24		MS 0	25		
26	W	SB7 0	27		
28			29		
30			31		
32			33		
34			35		
36	W	SI 0	37		
38		DA0 1	39		DA1 1
40		DA2 1	41		DA3 1
42			43		
44			45		USO 1
46			47		US1 1
48			49		US2 1
50		18 S 0	51		18 S 0
52	W	EQUAL0	53		TRANSFER 1
54		MC 0	55	T	M6C 0
56		GND	57		GND
58		-5V	59		$-5 \mathrm{~V}$
60			61		
62			63		
64			65		
66			67		
68			69		
70		CARRY 0	71		CARRY 1
72			73		
74			75		
76			77		
78		INDEXL0	79		INDEXL 1
80		SECTLO	81		SECTL 1
82		USL0	83		USL 1
84		SEEKEL 0	85		SEEKEL 1
86		RCL 0	87		RCL 1
88		RDDL 0	89		RDDL 1
90		SERCL 0	91		SERCL 1
92	G	WRCLO	93	G	WRCL 1
94	G	WDL 0	95	G	WDL 1
96		GND	97		GND
98		VCC	99		VCC

APPENDIX J

A THEORETICAL INTRODUCTION TO ERROR CORRECTING CODES (ECC)

J. 1 INTRODUCTION

Some introductory concepts regarding polynomial structures and vector representation in binary algebra.
$A(x)=C_{n} \cdot x^{n-1}+\ldots+C_{i} \cdot x^{i}+\ldots+C_{1} \cdot x^{1}+C^{0} \cdot x^{0}$
where C_{j} are constants in modulo x arithmetic (i.e., $0 \leqslant C_{i}<x$) and x is the base. If $x=2$ then $C=0$ or 1 .

As an example:

$$
A(x)=5 x_{3}+x+3 \text { base } 10(x=10)
$$

then this $A(x)$ is actually a number

$$
=5 \cdot(10)_{3}+(10)_{1}+3(10)_{0}=5013_{10}
$$

Another Example:

$$
\begin{aligned}
& A(x)=x^{5}+x^{1}+x+1 \text { base } 2(x=2) \\
& =A(x)=2^{5}+2^{1}+2+1=32+4+2+1=39_{10} \\
& \text { or }=100111^{2}
\end{aligned}
$$

In binary arithmetic, it is very convenient to represent numbers as vectors, for example:
110101^{2}
becomes

$$
\begin{aligned}
& 1 \cdot x^{0}+0 \cdot x^{1}+1 \cdot x^{2}+0 \cdot x^{3}+1 \cdot x^{4}+1 \cdot x^{5} \\
& =x^{5}+x^{4}+x^{2}+1
\end{aligned}
$$

or reverse

$$
=2^{5}+2^{4}+2^{2}+1=53_{10}=110101^{2}
$$

This means that a block of binary data (or any base for that matter) can be thought of as a number and represented by a vector $A(x)$.

J. 2
 LINEAR, CYCLIC CODES FOR BURST ERROR CORRECTION

Without proving and demonstrating all the properties of this class of codes, the mathematics of burst error correction using these codes can be demonstrated as follows:

According to EUCLID'S ALGORITHM, we have:
For any 2 vectors $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$:

$$
f(x)=q(x) \cdot g(x)+r(x)
$$

Or in other words, any number (here $f(x)$) is a certain multiple of another number (here $g(x)$) and plus a remainder (here $r(x)$).

This theorem is used in ECC.
Define the data as a vector $=M(x)$
Define the generator polynomial $=G(x)$
We than have:

$$
M(x)=Q(x) \cdot G(x)+R(x)
$$

where

$$
\begin{aligned}
& M(x)=\text { data } \\
& R(x)=E C C \text { check bits }
\end{aligned}
$$

and we record $M(x)+R(x)$ on the media.
It is desirable not to have to sort $R(x)$ out from the code word to obtain $M(x)$ when we read it back. In order to separate the two, the data vector $M(x)$ is premultiplied by x^{n-k} where n is the length of the data + ecc bits and k is the length of the data.

Thus,

$$
\begin{aligned}
& x^{n-k} \cdot M(x)=Q(x) \cdot G(x)+R(x) \\
& R(x)+x^{n-k} \cdot M(x)=Q(x) \cdot G(x)+R(x)+R(x) \\
& x^{n-k} \cdot M(x)+R(x)=Q(x) \cdot G(x)
\end{aligned}
$$

or pictorially

where $t=n-k$

The code word vector $C(x)$ is recorded on the media where

$$
C(x)=x^{t} \cdot M(x)+R(x)
$$

Note that in binary Galois Fields (GF(2)), $1+1=0$ which means that $R(x)+R(x)$ $=0$.

When the code word vector, $C(x)$, is read back (module $G(x)$) from the media, we obtain:

$$
C(x) / \bmod G(x)=x^{t} \cdot M(x)+R(x) / \bmod G(x)=0
$$

or in other words $C(x)$ reduced by $G(x)$ (the generator polynomial) yields a remainder $=0$.

This is then used to check the data when it is read back. We know that for no errors in the data, it is necessary (but not sufficient) for $C(x) / \bmod G(x)$ to be equal to zero.

What happens if an error is introduced into the code word?
Let the error be a burst $B(x)$ located at position in the code word.
The error vector can then be represented by:

$$
x^{i} \cdot B(x)=E(x) \text { (error vector) }
$$

The code word we read back (with error) will now look like:

$$
\begin{aligned}
& C^{\prime}(x)=C(x)+E(x) \\
& C^{\prime}(x)=x^{t \cdot} M(x)+R(x)+x^{i} \cdot B(x)
\end{aligned}
$$

This $C^{\prime}(x)$ now gets reduced by (fed into) the generator polynomial $G(x)$ and we get:

$$
C^{\prime}(x) / \bmod G(x)=x^{t} \cdot M(x)+R(x)+x^{i} \cdot B(x) / \bmod G(x)
$$

Since we are discussing only linear codes here we get:

$$
\begin{aligned}
& x^{t} \cdot M(x)+R(x)+x^{i} \cdot B(x) / \bmod G(x) \\
& =x^{t} \cdot M(x)+R(x) / \bmod G(x)+x^{i} \cdot B(x) / \bmod G(x) \\
& =0+x^{i} B(x) / \bmod G(x)=S(x) \neq 0
\end{aligned}
$$

$S(x)$ is the "syndrome" or what is left in the generator polynomial shift register when the whole code word $\mathrm{C}(\mathrm{x})$ has been read in.

The problem of error correction is now:
"Given $S(x)$ find the error burst $B(x)$ and its location in the data $i^{\prime \prime}$.
The equation can be rewritten to read:

$$
B(x)=x^{-i} \cdot S(x) / \bmod G(x)
$$

It might be beneficial at this point to recapitulate the events so far and also tie the theory to actual operations of logic circuits.

To generate the code vector in the first place, we needed to generate:

$$
x^{t} \cdot M(x)+R(x)
$$

$M(x)=$ data vector
$R(x)=$ remainder of

$$
x^{t} \cdot M(x) / \bmod G(x)
$$

Thus, to record the data, we need a polynomial shift register that multiplies by x^{t} and divides by $G(x) . R(x)$ is what is left in this shift register when all of $M(x)$ has been fed into it.
$x^{t} M(x)$ is just $M(x)$ with t zeros after it, but instead of zeros, we write $R(x)$ which is of length t.

To read the data back and check for errors, we need a feedback shift register that divides by $\mathrm{G}(\mathrm{x})$.

Now load a logical " \uparrow " into its least significant position and shift the register i times. The contents of the polynomial register will now be:

$$
x^{i}=r^{i}(x) / \bmod G(x)
$$

$r^{i}(x)$ is the reaminder of x^{i} reduced by $G(x)$.
x^{i} is actually a binary number:
100....... 0

i zeros.

Forward shifts of the polynomial then actually multiplies by x for every shift.
Likewise, if we could shift the shift register backwards i times we would get (preloaded with a " 1 "):

$$
x^{-i}=r^{-i}(x) / \bmod G(x)
$$

Reverse shifts of polynomial multiples by $1 / x$ for every shift.
If we could shift the registers (with a preloaded one) sufficiently many times in each direction, we would get back to a "one" again. This is because $\mathrm{G}(\mathrm{x})$ is "cyclic" or has a "period". Let N be the number of shifts required to get back again (period $=N$). We then have:

$$
\begin{gathered}
x^{N}=1 \bmod G(x) \\
\text { and } x^{-N}=1 \bmod G(x)
\end{gathered}
$$

The period of a polynomial can be determined by factoring it and determining the "order" of each factor. The period is then the least common multiple of the orders of the factors.

Back to the correction problem again:
From $B(x)=x^{-i} S(x) / \bmod G(x)$ we needed to determine $B(x)$ and i given $S(x)$ and of course $\mathrm{G}(\mathrm{x})$.

We could run the shift register containing $S(x)$ backwards, thereby for every shift obtaining:

$$
\begin{aligned}
& x^{-1} S(x) \bmod G(x) \\
& x^{-2} S(x) / \bmod G(x) \\
& \vdots \\
& x^{-i} S(x) / \bmod G(x) \\
& : \\
& x^{-N} S(x) / \bmod G(x)
\end{aligned}
$$

For every shift we would now look at $\mathrm{B}(\mathrm{x})$ and see if it is small enough to be correctable. If, for some shifts, it is small enough, we have solved the problem in that we have found both $B(x)$ and i. If we could not find a small enough $B(x)$ until we had shifted N times, the error would be uncorrectable, i.e., minimum $B(x)$ is too big. However, running feedback shift registers backwards is clumsy and very hardware consuming.

Now since $x^{N}=1 / \bmod G(x)=x-N$
We could run the shift registers forward and get the following sequence:

$$
\begin{aligned}
& x^{-N+1} S(x) / \bmod G(x) \\
& x^{-N+2} S(x) / \bmod G(x) \\
& \vdots \\
& x^{-i} S(x) / \bmod G(x) \\
& \vdots \\
& \vdots \\
& x^{-1} S(x) / \bmod G(x)
\end{aligned}
$$

Again when $B(x)$ is small enough we have solved the probiem and found $B(x)$ and i. And if no small $\mathrm{B}(\mathrm{x})$ is found for N shifts, the error is uncorrectable.

This correction algorithm is widely used today, and would be an ideal solution were it not for certain factors:

Cyclic codes are not well suited for error correction at longer bursts when the code word length is close to the period fo the code (N). In fact, for burst error correction is that the code word length n should be: $n \ll N$.

The importance of this can be seen in a later section on correction and detection capacilities. When the code is used with a maximum code word length that is less than the period, it is called a "shortened" code.

All it means is that the $N-n$ leading digits of the code word are always equal to zero.

The fact that $\mathrm{n} \ll \mathrm{N}$ impacts the correction algorithm where we got the following sequence for forward shifts:

$$
\begin{aligned}
& x^{-N+1} S(x) / \bmod G(x) \\
& x^{-N+2} S(x) / \bmod G(x) \\
& x^{\mathcal{E}-n} S(x) / \bmod G(x) \\
& \vdots \\
& x^{-i} S(x) / \bmod G(x) \\
& \vdots \\
& x^{-1} S(x) / \bmod G(x)
\end{aligned}
$$

Hence, we have to do N-n shift initially while virtually "nothing is happening". If we could establish an initial condition of

$$
x^{-n} \cdot S(x)
$$

before shifting, we eliminate the $N-n$ initial shifts.
We recall from reverse shifts of the polynomial preloaded with a "one", we obtained:

$$
x^{-i}=r^{-i}(x) / \bmod G(x)
$$

Therefore, if we shift in reverse n times, we get:

$$
x^{-n}=r^{-n}(x) / \bmod G(x)
$$

The code word with error was:

$$
C(x)=x^{t} M(x)+R(x)+x^{i} B(x)
$$

If we multiply $C(x)$ by x^{-n} when at the same time we reduce $C(x)$ by $G(x)$, we get:

$$
\begin{aligned}
& x^{-n \cdot} \cdot x^{t} M(x)+ \\
&= x^{-n} R(x)+x^{-n}\left(M(x) x^{t}+\right. \\
& x^{i} B(x) /(x) / \bmod G(x) \\
&= 0 \\
&= x^{-n} x^{i} B(x)+x^{-n} x^{i} B(x) / \bmod G(x) \\
& \bmod G(x)=r^{-n}(x) \cdot S(x) / \bmod G(x)
\end{aligned}
$$

Here we have obtained the initial condition:

$$
x^{-n} \cdot S(x)=r^{-n}(X) S(X) / \bmod G(x)
$$

where $r^{-n}(x)$ is the remainder left in the shift register when it is reloaded by a logical one, then shifted n times in the reverse direction.

From the error equation:

$$
\mathrm{B}(\mathrm{x})=\mathrm{x}^{-\mathrm{i}} \mathrm{~S}(\mathrm{x}) / \bmod \mathrm{G}(\mathrm{x})
$$

we have now established the initial condition

$$
x^{-n} S(x) / \bmod G(x)
$$

and forward shifts give us this sequence:

$$
\begin{aligned}
& x^{-n} S(x) / \bmod G(x) \\
& x^{1-n} S(x) / \bmod G(x) \\
& x^{2-n} S(x) / \bmod G(x) \\
& \vdots \\
& x^{-i} S(x) / \bmod G(x) \\
& \vdots \\
& x^{-2} S(x) / \bmod G(x) \\
& x^{-1} S(x) / \bmod G(x)
\end{aligned}
$$

The hardware implications here are as follows:
When we read back the code word, we multiply by $x^{-n}=r^{-n}(x) / \bmod G(x)$ and reduce $C(x) \cdot x^{-n}$ by $G(x)$. The coefficients of $r^{-n}(x)$ must be hardwired into the polynomial shift register.

Then when the whole code word $C(x)$ has been read, we shift the register forward one shift at a time and look for a sufficiently small $B(x)$ to be correctable. The number of shifts is i and equals the displacement of $B(x)$ in the code vector $C(x)$. If no correctable, $\mathrm{B}(\mathrm{x})$ is found nor n forward shifts, the error is uncorrectable.

J. 3 SPECIFIC POLYNOMIALS

The class of codes most frequently used for burst error detection and correction are so-called fire codes (from their." discoverer' P. Fire).

These codes are of the general format:

$$
\mathrm{G}(\mathrm{x})=\left(\mathrm{X}^{C}+1\right) \pi_{\mathrm{i}} \mathrm{P}(\mathrm{x})_{i}
$$

where:
$\mathrm{G}(\mathrm{x})$ is the generator polynomial
$\mathrm{P}(\mathrm{x})_{\mathrm{i}}$ are prime, irreducible polynomials.
ND-11.013.01

Fire codes are linear, cyclic codes as are their "shortened" versions.
One could construct one's own code based on the general format in this fashion:
$\mathrm{P}(\mathrm{x})$; are available from published tables up to degree 34

$$
\mathrm{X}^{\mathrm{C}}+1 \text { (the orders of } \mathrm{P}(\mathrm{x})_{i} \text { polynomials must not divide } \mathrm{c} \text {) }
$$

and then thoroughly simulate the resulting code to prove its capabilities.
Or one could select among codes already used for burst error correction by manufacturers. The latter approach results in less word and increased confidence that the code is proper.

Two likely candidate codes have been selected for investigation:

1. 48 bit code (IBM 3340 and 3350)

$$
\begin{aligned}
& \mathrm{G}(\mathrm{x})=(\mathrm{x}+1)\left(\mathrm{x}^{12}+\mathrm{x}^{13}+\mathrm{x}^{11}+\mathrm{x}^{10}+\mathrm{x}^{9}+\mathrm{x}^{8}+\mathrm{x}^{7}+\mathrm{x}^{6}+\mathrm{x}^{5}+\mathrm{x}^{4}+\mathrm{x}^{3}\right. \\
& \left.+\mathrm{x}^{2}+\mathrm{x}+1\right)\left(\mathrm{x}^{35}+\mathrm{x}^{23}+\mathrm{x}^{8}+\mathrm{x}^{2}+1\right)
\end{aligned}
$$

2. 56 bit code (IBM 3330)

$$
\begin{aligned}
& \mathrm{G}(\mathrm{x})=\left(\mathrm{x}^{22}+1\right)\left(\mathrm{x}^{11}+\mathrm{x}^{7}+\mathrm{x}^{6}+\mathrm{x}+1\right)\left(\mathrm{x}^{11}+\mathrm{x}^{9}+\mathrm{x}^{7}+\mathrm{x}^{6}+\mathrm{x}^{5}+\mathrm{x}+1\right) \\
& \left(\mathrm{x}^{12}+\mathrm{x}^{11}+\mathrm{x}^{10}+\mathrm{x}^{9}+\mathrm{x}^{8}+\mathrm{x}^{7}+\mathrm{x}^{6}+\mathrm{x}^{5}+\mathrm{x}^{4}+\mathrm{x}^{3}+x^{2}+\mathrm{x}+1\right)
\end{aligned}
$$

Both codes are Fire codes and used for burst error correction and detection.
The other parameter required is:

$$
x^{-n}=r^{-n}(x) / \bmod G(x)
$$

by reverse shifting the polynomials.
Tables A and B give the value for the 48 bit and 56 bit codes respectively.
The left hand column lists - i and to the right is the contents of the polynomial at this reverse shift cound $=r^{-i}(x)$.

For the 48 bit code:

$$
\begin{aligned}
& n=\text { length of data }+E C C \\
& n=512 \times 16+48=8240, N=4.5 \times 10^{11}
\end{aligned}
$$

then

$$
\begin{aligned}
& r-n(x)=1+x+x^{3}+x^{5}+x^{6}+x^{7}+x^{10}+x^{11}+x^{13}+x^{17}+x^{20}+x^{21}+ \\
& x^{22}+x^{24}+x^{26}+x^{28}+x^{29}+x^{30}+x^{33}+x^{35}+x^{36}+x^{39}+x^{40}+x^{44}+x^{45} \\
& +x^{46}+x^{47} .
\end{aligned}
$$

For the 56 bit code:

$$
n=512 \times 16+56=8248, N=585422
$$

and

$$
\begin{aligned}
& r-n(x)=x^{2}+x^{5}+x^{8}+x^{9}+x^{11}+x^{15}+x^{17}+x^{23}+x^{24}+x^{25}+x^{26}+ \\
& x^{28}+x^{29}+x^{30}+x^{31}+x^{32}+x^{36}+x^{37}+x^{39}+x^{45}+x^{46}+x^{47}+x^{48}+x^{50} \\
& +x^{51}+x^{54}+x^{55} .
\end{aligned}
$$

อ2？	111：－1101n011：910001711897110109190101098071119
Q？	
83%	
822.5	
323	001111911911901911：91011191001010001909011！01901
8230	
9231	
925？	
8233	
8234	
9－5：	
5236	
8239	
9240	
2241	
82.17	
82．4	
92；	
8245	
924E	$0911011110111100090901911001091010110011111: 1911$
$824{ }^{-}$	
8249	
8243	111！100：1019190819011910910181101911111911901
6250	19111009160111901090111091019119：1011111011091！
8251	9311900010110i101000018001010110111011110119711：
8252	
925.3	
8254	110015091011111009101008101191110100101100111001
8255	
8256	119109511110日1910111190110111010111118011109111
8257	
8259	
8259	
8269	
8261	
8252	11090010900018181001801101011011：101100111111010
8263	110801010901111109101190101101111009001111119101
8264	110110110011010091010011011011110011011111121011
9265	1191011101！000101910！100110111100101111111018！11
8255	11101111：190111191019011101111091099111119191：11
8267	109111101091010010101101011119010010111101011111
8268	
8269	111110900100011010109001111001001101110101111110
8270	101100011600011101801001110010日11099101日11111101
9271	
E？ 7 ？	
2－：	19001000\％37910日1001100110910011091001011111101100
9274	010109010018111011000110108110010001111111811001

[^0]| | |
| :---: | :---: |
| | |
| 8225 | |
| 3223 | |
| 6229 | |
| 9229 | 0191： 211091100111199111190911001100011110010100111815181 |
| 9238 | 10110110011001111001111099119011090111100101001118101010 |
| 2231 | |
| 8232 | 日106以000100日1101091010011001010910110101101011109101101 |
| 8253 | |
| 8234 | 19001001191011011111011100101011811101011101019898118111 |
| 9235 | |
| 9238 | |
| 8239 | 11001008110010000101110101019011111000610111190111 日可曲10 |
| 0249 | 06011901901081110001111018190101119111800111101109060111 |
| 8241 | |
| 8242 | 8110010010011500111101010010111011106011110110000011190 |
| 8243 | 11001001001110001111010100101110111000111101110000111000 |
| 8244 | 80011010110901100100111801011111110110010811100011110011 |
| 8245 | 00110101100011001001110010111111101100100111000171160110 |
| 8246 | |
| $82 \cdot$ | |
| 82－18 | |
| 8249 | 01001091101091101000001111111111090110109000111101100118 |
| 8250 | |
| 8251 | 10101160191011011010101111111110011101101011018100611011 |
| 8252 | |
| 8253 | 0016099181101！108109001111111111111110010160110111101001 |
| 8254 | 01009010110111001809011111111111111100101001191111016010 |
| 8255 | 100001811011109108001111111111111111001010911911110108160 |
| 8256 | 10009011110n010110111011111111011191010911196111110090！ |
| 9257 | 18001111001111001181001111111001161101118103911180610101 |
| 8258 | 109101101100111000000011111100010111900000060111010191001 |
| 8259 | 101001010010101110100011111000001111111010006119111010001 |
| 0260 | 110000101110000011180011110000111110801110006011091009日1 |
| 8261 | 09091101011101100110001110008101119110911800111911009001 |
| 8252 | |
| 8253 | 00110101118110311000111000010111911001190011101100000100 |
| 8264 | 01101011101100110001110000101110110011000111011800501060 |
| 8265 | 1101011101100110091110900181110110月11000：1： 110000010000 |
| 8266 | |
| 825？ | |
| 8268 | |
| 8269 | |
| 6270 | |
| 8271 | |
| 8272 | |
| 8273 | |
| 8274 | |
| 8275 | |

Table J．2： 56 Bit Polynomial

There is a small, but finite possibility that an error burst $\left\langle\mathrm{B}^{\prime}(\mathrm{x})\right.$ starting at location j and represented by the vector $\mathrm{X}^{\mathrm{j}} \mathrm{B}^{\prime}(\mathrm{x})$ will be instantly decoded as a different error burst $B(x)$ starting at location i and represented by a different vector $x^{j} B(x)$.

This phenomena can be expressed as:

$$
x^{i} B(x)=x^{j} B^{\prime}(x) \bmod G(x)
$$

or, in other words, when the error vectors are reduced, $\bmod \mathrm{G}(\mathrm{x})$ they are identical.

Of greatest concern are situations where $\mathrm{B}(\mathrm{x})$ is a burst of sufficiently small length to be correctable and $B^{\prime}(x)$ can be short (correctable) or long (uncorrectable).

When $\mathrm{B}^{\prime}(\mathrm{x})$ is long, we get the undesirable situation that an uncorrectable error will be decoded as a correctable error. The system might then correct the data based on the erroneous information and we are left with data with errors but little or no indication that such a condition exists.

Pictorially:

There is no analytical method that can provide detailed insights into this situation as far as magnitude is concerned. However, empirically, the condition can be chartered.

From the error vector equation

$$
x^{\mathrm{j}} \mathrm{~B}(\mathrm{x})=x^{\mathrm{j}} \mathrm{~B}^{\prime}(x) / \bmod \mathrm{G}(x)
$$

we get, after dividing by x^{i}

$$
B^{\prime}(x)=x^{i-j B(x) / \bmod G(x)}
$$

$B(x)$ is the short (correctable) error burst that the long (uncorrectable) $B^{\prime}(x)$ turns into when it is reduced by $G(x)$.
$x^{i-j} j_{B}(x) / \bmod G(x)$ is generated by shifting $B(x) i-j$ times n the generator polynomial $G(x)$. (i.e., the same as multiplying $B(x)$ by x^{i-j} module $G(x)$.)

Since n is the length of the code word (data $+e c c$), we get the polynomial forward (multiply by x) and for $\mathrm{i}-\mathrm{j}=$ negative, we shift in reverse (divide by x).

Therefore, the mechanics of the sitation are:

1. Load the polynomial with $B(x)$. The length of $B(x)$ is b which now is the maximum number of correctable bits desired.
2. Shift the polynomial $n-1$ shifts in each direction $(-n \leqslant i-j \leqslant+n)$.
3. For each shift, look for a burst pattern $B^{\prime}(x)$ which is now the pattern that gets misinterpreted as $B(x)$. The length of $B^{\prime}(x)$ is d which is the maximum number of detectable bits desired.

ND-11.013.01

A NORD Standard FORTRAN program was developed to perform this task and Table J. 3 gives the results for the 48 bit polynomial, Table J. 4 for the 56 bit polynomial.

The first column indicates the sign of the second column ($\mathrm{P}=$ positive, $\mathrm{N}=$ negative), the second column is the value $i-j$, the third column is $B(X)$ and the fourth column is $\mathrm{B}^{\prime}(\mathrm{x})$.

These tables give just a sample of all the patterns (for 48: maximum $d=30$, for 56 maximum $d=38$).

Tables J. 5 and J. 6 (J. 5 for 48 and J. 6 for 56) tabulates the total number of misinterpreted bursts for the polynomials. Vertical, on the left side are the values of d, horizontal across the top are the values of b and the table entries give the number of bursts for given b's and d's.

The approximate numbers can also be derived statistically.
For each pattern $B(x)$, we need $n-1$ shifts in each direction, i.e., $2(n-1)$ shifts total. There are $2^{b}-1$ different patterns of $B(x)$ but half of these have a logical 0 in the bottom position, thus their b is actually $b-1$. We then consider the number of $B(x)^{\prime} s$ to be $1 / 22^{b}-1=2^{b-1}-1$.

From this argument, the number of misinterpreted patterns should be:

$$
2(n-1)\left(2^{b-1}-1\right)
$$

Now about half of these patterns of $\mathrm{B}^{\prime}(\mathrm{x})$ will have a logical 0 in the bottom position, thus the number of patterns we should expect is half this number:

$$
1 / 2(n-1)\left(2^{b-1}-1\right)=(n-1)\left(2^{b-1}-1\right)
$$

Keep in mind that this is valid for cases where the number of detectable bits (d) is equal to the length of the generator polynomial $\mathrm{G}(\mathrm{x})$.

Now let us define the length of $G(x)$ to be t, thus if d is less than t we get the number reduced by one factor:

$$
s^{5-d}
$$

such that

$$
(n-1)\left(2^{b-1}-1\right)\left(2^{t-d}\right)-1 \approx n 2^{b+d-t-1}
$$

for $n \gg 1$ and $b \gg 1$
For NORD-10 systems, $\mathrm{n}=8192+\mathrm{t}$
thus if $\mathrm{t} \ll 8192$
we get

$$
\begin{aligned}
& \approx 2^{b+d-t-1}(8192+t) \approx 2^{13} \cdot 2^{b+d-t-1} \\
& =2^{b+d-t+12}
\end{aligned}
$$

This is the number for patterns $B^{\prime}(x)$ of length d or less.
Exactly of length d will be about half

$$
\rightarrow \# \approx 1 / 22^{b+d-t+12}=2^{b+d+11-t}
$$

Now for the 48 polynomial $t=48$.

$$
\# \approx 2^{b+d+11-48}=2^{b+d-37}
$$

which is in agreement with Table J.5.
For polynomial $t=56, \#=2^{b}+d-45$ corresponding to Table J.6.
One interesting aspect here is that statistically, $b+d=$ constant for a given polynomial, such that we can trade off correctability and detectability on a one for one basis.
It can also be see from the equation (and Tables J. 5 and J.6) that b has to be very large if we are concerned about the possibility of one correctable pattern being misinterpreted as a different correctable pattern.

For 56 polynomial:

$$
\begin{aligned}
& 2^{b+d}-45=1 \\
& \rightarrow b+d-45=0 \text { or } b=45-d
\end{aligned}
$$

since by definition, $d \geqslant b$, it means that $b \approx 23$ before correctable patterns are misinterpreted.

One other aspect of correction and detection is when an error (correctable or uncorrectable) will be misinterpreted as a no error condition.

Of cours, if the hardware is malfunctioning this can happen, but in an operabie system this means:

$$
\left[x^{j} B^{\prime}(x)\right]_{\bmod G(x)}=0
$$

or"Syndrome equal to zero".
The original data vector was

$$
M_{1}(x)
$$

and the recorded code word vector was

$$
\left.M_{1}(x) \cdot x^{t}+R_{1}(x)+x^{j} \cdot B^{1}(x)\right] \bmod G(x)
$$

This can only happen if:

$$
M_{1}(x) \cdot x^{t}+R_{1}(x)+x^{j} \cdot B^{1}(x)=M_{2}(x) \cdot x^{t}+R_{2}(x)
$$

and

$$
\left[M_{2}(x) \cdot x^{t}+R_{2}(x)\right]_{\bmod G(x)}=0
$$

That is, the original code word (1) was through introduction of errors transformed into another legal code word (2).

The probability of this happening depends on the "minimum distance" between any 2 code words. The minimum distance is equal to the minimum number of bits that are different between any two code words.

Since I have yet to figure this out for the 48 and 56 polyunomials, this will be addressed later.

－N	6017	1110110noeno
P	3235	109010：3006：
P	$329 ?$	110110160909
N	$354{ }^{7}$	111110010309
P	5041	10011011000：
N	969	11100100405
P	6416	119191001090
P	5941	110101151089
F	323	150101011050
P	4355	100001111060
N	119	1060il111092
N	5775	106100009165
P	5041	11110030100
N	47.7	16111616198
P	7094	1186อg110199
P	323	110111110100
H	1590	1011000e1100
N	909	160101101100
N	607	111109011109
F	5041	101111011100
P	3063	10110］1．1100
P	6375	101120100010
P	323	111110190018
N	697	100010010910
P	$5014 i$	111060119010
N	5515	1019101：0010
P	6364	11151010！619
P	7339	1：0911101010
P	5941	101011101016
N	999	1101：1011010
N	2038	110110111010
P	5041	168019300119
N	5775	110110069110
H	6601	101111156110
P	323	10：100001119
P	7084	101000101119
P	7756	101000101110
P	2795	108010101119
P	5041	110101611119
N	477	111000111110
P	6359	10：011111113
N	999	101011111110

1c010acongenang ！191190nog1011 1018510101000010101：101161111： 100505：09：1．1！：00091：110ceo11 1115091010110100011001：11613191 11161：118010918110111008801

 $1601: 06010110111611001000611$ 109190n91101：6ngin110：103111 100010021101100111：111：011601 1：110：11001169111190！601091011 101118101150116：1500111901：1
 1151：0100600010120001：101011 111011110601011010611 $1101.100 \mathrm{Bi日1} 1010009181191010 \mathrm{~g}$ 120110000100100001110011000001
 1109811111011001610021106 E 911 $1101010011101190110101 \mathrm{icic9} 91$ 109050110110011001011110105e111 111001111000918：011101111011 111111001009001600105000110101 101051005011019111100101090101 10i111191001101010111101001111 10001115111501151911111501 $1111001111010600: 19611010001$ 111010101800101011101110111101 11001001086010600115000100101！ 110001010000101100101011000111 11010910：0109101110011101011111
 111001111010012110100100101501 1001000116011101001100695191 10110100111011150111811111911 10011609100011101110191 111611101191019110810．0111 110！818510e日31011111！e31：01091 10リ50：91016100：11191091：201101 101101110000n110！100100：1110！ $1010016!510010000!010 \mathrm{it5110601}$ 10111001010010109：1！010111101

Table J．3： 48 Bit Polynomial

N	こ28E	
F	4854	1001：010000
F	5744	10196：169095
F	5747	11：10： 0 1096
H；	47 El	18100006！000
F．	57.44	11011！06！109
F＇	5744	160011111005
P	5 i 44	110010689100
F	645．4	100110196196
P	3575	1：1！0010100
P	5.44	109118110109
N	4360	11110009110
N	1235	$110001001: 00$
F	5308	1010110 E 1159
F	574	1216016：190

 1！11100！0！11！001000051！181：1！111111031

 110101105011115290100：010！61100911101
 111600605300011：0090001100：10010110111
－ 503511011010110%
P 560s 1！10日1101105
F 5iti 1110698：1：06
N $11 \equiv$ ： 10010000 E 19
F 5916 100106016015

P 5453 10151：1100！
P 1863100 0 00 g 1012
N 47e0 ． 100010001516
P 3619 1000116e1010
P $5330 \quad 111110121019$
P 4Si日 101801：01E：0
N 1265 1016月1101218
P d95 11110e日110ig
P 5093 160101011010
N 5855101101111912
F $210010061111: 010$
N 2344 1：0011100：10
O SjE？110000！15110
F 6454 118101：181：0
－ 3005110010891110
N 4．50 11011601119
N 2682 11100180111？
P 3603 101181091119
P 4410 111151101115
P JラFE 1000100il110

1：1801911110192921：9111011119111101
 1601111111：110110006201010511：119031014

 11110111111110601860111116110：010611 1100ng11：0811！1100010011000：1010011111

 1！001103019110101110100110119301011001 111101i0noil1001：001100101911009111011

 1：1：50：06：60390：111510：11109130110001

 1：0191！110501！00091000：0098：1：10101111
 10：010018180111105004910日1006001：10111 11110510111011011100001111001110 E 1301 11119！1000101！5101118111110！1061日：011 115111101：61：1018111101181111011111111

Table J．4： 56 Bit Polynomial

VALUES AFE AS FOLLOLS：

$M A X=11 \quad T=43 \quad$ HICNT $\quad 8250$

5	1	2		3	4	5	6	7	8	9	10	11	12
0													
1	8	9		3	0	8	0	\square	\square	0	0	9	
2	0	\square		ด	0	9	0	3	0	0	9	13	
3	0	0		3	0	日	Q	θ	0	0	0	15	
4	9	9		0	\square	0	b	0	9	0	\square	0	
E	9	0		0	\square	E	0	3	3	9	3	0	
6	0	0		0	\square	\square	0	0	0	9	0	13	
7	\square	8		0	9	0	\square	0	0	0	\square	\square	
0	C	0		0	\square	\square	9	0	0	\square	\square	Q	
9	0	9		\square	0	\square	e	0	0	0	9	0	
10	ต	0		0	0	0	¢	0	0	］	1	？	
11	0	0		8	0	0	0	5	0	9	Q	E	
$!2$	0	0		a	0	0	0	\square	0	9	a	0	
13	0	0		0	0	ε	0	\square	0	－	0	0	
14	\square	\square		0	0	0	3	0	0	0	0	9	
15	0	3		e	3	B	0	5	0	0	0	6	
15	8	0		E	g	\square	0	0	0	0	\square	ए	
17	0	2		3	8	0	บ	0	0	9	0	¢	
16	9	6		${ }^{(1)}$	\square	0	\square	9	\square	9	3	9	
19	E	0		0	0	8	0	5	0	9	\square	0	
28	6	9		9	0	0	0	0	0	\square	j	2	
21	0	0		8	0	0	0	日	0	\square	9	6	
22	0	0		\square	\square	0	\square	0	0	5	i	1	
23	0	\square	，	\square	Q	0	$0 \cdot$	9	0	9	\square	1	
24	0	0		5	9	0	0	3	0	8	0	E	
25	0	0		9	0	0	0	0	\square	0	0	1	
25	0	8		0	\square	0	9	3	0	6	9	1	
27	0	0		． 9	\square	\square	0	0	1	2	2	2	
28	0	0		0	日	\square	0	0	0	2	4	5	
29	\square	\square		日	0	0	0	0	E	0	5	10	
30	\square	0		0	0	a	1	3	4	7	9	20	
31	\square	9		0	0	1	1	2	4	8	24	33	
32	0	\square		\square	0	8	2	2	4	18	30	78	
33	0	0		0	0	1	4	12	18	30	73	122	
34	0	8		0	9	1	4	12	23	52	115 －	259	
35	0	8		：	2	6	－ 11	25	63	132	253	439	
36	2	2		2	6	9	25	54	132	259	521	1026	
37	1	4		． 4	9	29	44	114	24 ${ }^{-}$	472	$1 \mathrm{O}-0$	2082	
38	3	7		19	28	59	111	235	504	1830	2929	4035	
39	8	14		25	73	119	235	459	933	28105	4025	8100	
40	13	23		55	114	264	193	937	2005	393	9－34	15501	
41	39	58		118	235	499	1819	2012	4091	9197	1.155	3？814	
42	53	121		246	511	1025	2054	4177	S17s	16350	$3 \bigcirc 510$	65454	
42	137	253		532	1024	2951	41.87	83315	156.7	33038	6ED4 ${ }^{\text {a }}$	131512	

4.	＜33	כut	1ヒck	＜voo	$414=$	81rs	10510	3369	00.03	131935 259838
43	553	1236	2853	4193	8351	16．16？	32991	65785	1316.35	26410日 5⿺7072
4	1955	2149	4049	8235	16524	35109	65598	131840	263595	5262171955106
4.	2015	4103	8．4！	16510	32970	$650 \cdot 3$	131735	263391	52534 c	$105582: 07519$
43	4105	8：93	15591	3.297	6575	13200\％	25.3436	5270E5	－53，	2153289＋151552

Table J．5： 48 Bit Polynomial

	$M-i x=11$		$T=56$	HICNT 0250							
S	1	2	3	4	5	6	7	8	9	19	1．1
0											
1	－ 3	－ 0	0	0	0	0	0	®	0	3	\because
2	0	0	0	$1]$	E	6	1	0	\because	9	\because
3	\because	3	0	0	5	9	－	0	r	\bigcirc	：
4 ．	ט	\square	0	ด	8	0	\because	Q	9	9	\checkmark
5	8	6	\square	0	9	I	3	0	9	3	．
6	\square	\square	0	2	9	0	3	0	6	9	E
7	0	0	0	0	9	0	日	0	E	9	\square
8	Ω	0	6	ด	$1]$	1	\square	9	0	0	E
9	日	日	\underline{E}	3	－	8	3	0	0	B	3
10	\square	θ	0	θ	\square	E	ご	3	θ	3	\because
11	\bigcirc	0	0	9	0	\square	0	\square	3	0	\％
12	0	0	0	\square	日	9	I	0	0	E	$\underline{1}$
13	0	0	0	0	0	\bigcirc	\square	0	1	5	$\underline{\square}$
14	9	9	\square	0	0	9	0	0	9	－1	6
15	ε	0	\square	0	\square	0	B	ด	0	5	$\underline{\square}$
：5	0	0	0	0	8	0	\square	0	0	B	0
17	0	0	0	8	1	0	0	8	0	0	0
13	3	0	0	\square	ט	0	0	0	0	0	a
19	θ	a	0	0	0	0	0	8	H	\square	E
20	0	\square	0	9	0	5	19	0	θ	－ 10	0
$2:$	日	0	0	0	b	\square	1	\square	0	－$\overline{9}$	\square
32	0	0	6	D	9	8	9	0	g	0	\therefore
23	0	0	0	0	3	0	0	\square	r	1	E
24	日	0	0	0	\square	0	0	0	］	？	－
25	0	0	0	9	$\underline{\square}$	0	9	0	9	E	\cdots
26	0	E	0	0	0	0	0	0	3	0	F
≥ 7	ด	0	－ 0	0	0	0	3	0	3	3	－－
28	0	0	Q	0	0	0	3	9	0	ค	\therefore
29	0	0	0	0	0	0	\square	0	θ	3	3
36	0	9	0	8	0	8	0	0	9	\square	θ
31	\cdots	B	0	0	0	0	0	0	0	0	E
32	0	0	0	0	8	0	0	0	0	\square	8
33 －	8	0	8	0	0	\square	0	0	6	0	c
34	0	0	0	0	0	B	0	0	0	0	\therefore
35	7	\square	g	0	0	9	1	1	－-1	$\bar{\square}$	－
36	0	0	0	0	0	9	2	1	2	3	5
37	\cdots	0	0	0	0	8	0	8	2	7	13
33	$\overline{0}$	0	0	1	1	1	2	2	2	5	21
39	ロ	0	\square	1	2	2	2	4	8	15	ご
40	？	θ	B	8	2	4	4	8	16	27	5.
41	0	0	\square	0	1	5	1 13	14	20	$5:$	1：
42	1	1	1	1	1	2	17	34	51	$\therefore \div$	－
43	9	1	1	2	4	11	20	75	133	254	5%

44	1	1	3	4	7	19	51	118	272	551	1029
45	8	2	7	23	31	59	110	219	441	1023	2115
46	$\overrightarrow{7}$	12	18	36	74	131	253	492	953	1954	4195
47	9	17	31	79	137	293	533	1850	20^{16}	tajo	8ดัก
48	15	36	72	130	270	］	1499	$2 \ddot{54}$	4139	S119	16242
49	28	62	130	251	4，79	1031	2339	4153	8103	16.463	3こアヘ1：3
50	52	135	243	520	1063	1935	4123	8224	16551	32936	65357
51	144	264	529	1032	2092	4130	8200	1EGJ4	3：00：	66ごこ	15：5．．．
52	25；	510°	$103 ;$	2123	4126	82.15	104E5	32745		10is＊）	2n：
53	47.5	375	2927	4953	8243	16309	32353	65595	131：51	2535－9	$5-63=$
54	1574	2 nc 3	4101	2239	16475	3 ごャ1	65917	130215	26．42う5	5 －ッ： 3	1203こッ
55	2034	4101	8195	16275	32784	65ice	131704：	2п3¢゙ら5	52663	15 －－	$21 \ldots$
56	4 L 5	8233	16571	32822	65.983	132015	263023	5261：6	1653653	21079 e？	421482

Table J．6： 56 Bit Polynomial
ND－11．013．01

The question arises: How many bits should I be able to correct and detect?
Correction might be the simplest question. Factors here are based on the storage and recording technology of data utilized such as flying height, tpi, bpi, media thickness and homogenity factors, etc. for disk files. But perhaps the most important factors are the industry standard and the qualification procedures for the particular recording technology in question. In other words, the vendor or equipment manufactorer should not be asked what he recommends, as much as "what do you use to qualify the equipment you are shipping us?" .

For the CDC 40, 80 and 300 Mbytes disk drives in question, the anser is simple: CDC uses a QA procedure where the correctability limit is set at one burst per record of maximum 11 bits in error. The technology used in these disk drives are derivates of the IBM 3330 (MERLIN) technology which surfaced in 1971. IBM uses an 11 bit burs per record correction scheme here (maximum code word $=104304$ bits), hence both industry standard and QA criteria are set at 11 bits correctable, and this number should be used.

The detectable side in the question is more diffuse. Much of the same arguments as for correctables could be used.

Ideally, one should concentrate more on multiple burst detection; or translated to sea level - one should prepare more for two 100 year waves in rapid succession rather than one 10,000 year wave.

Multiple burst detection is a very complex issue and little understood and most equipment manufacturers settle for the second best approach; that is to make the detectables as long as possible within reason dictated by the hardware required.

Then given that correctables (b) should be 11, the Tables J. 3 and J. 4 will give:

> for 48 polynomial, $b=11$
> for correctable $(d)=21$ maximum
> for 56 polynomial, $b=11$
> for correctables $d=34$ maximum

For the 56 polynomial, IBM advertises $b=1 d=22$ for $n=104304$.
The wisest choice here is for the 56 polynomial for NORD systems. For little additional hardware over the 48 polynomial (\sim IC's) the detection capabilities are quite improved:

$$
b=11, d=34 \text { for } n=8248
$$

Since, statistically, d and n are related by $n \cdot 2^{d}=$ constant, the record length could be increased many times before detection capabilities would become seriously impacted.

This seems like a very long-winded and time consuming report on ECC. There are some factors that I think makes it important to know in detail what one is up against when applying ECC to large data bases.

- ECC has an element of risk associated with it. The "holes" of the code should be tabulated and enumerated for the given record length for the cases where the circuitry turns bad data into worse data and signals that "all is well".
- Sophisticated customers concerned about integrity of their data might demand information at this detailed level to be able to decide upon back-up systems, duplications and redundancies of their particular installation.
ND-11.013.01

Figure J.1: 56 Bit Encode (Write)

Figure J.2: 56 Bit Decode (Read)

APPENDIX K

TEST PROGRAMS

The following test programs are available:

- PASCAN
- Super-Rand
- ECC Test
- Bigfunc
K. 1 PASCAN TEST PROGRAM - 2226

This is a stand-alone "PACK-SCAN" program for the disk controller with ECC. The program will sequentially read through the entire pack and report "hard" and "soft" errors.
"Hard" errors are defined as any errors reported in the status word of the controller except for a correctable error in the read data which is termed "soft" error (i.e., recoverable through the use of the ECC system).

The intended primary use of the program is for Pack surface analysis.
There is an option to be specified prior to running of the program:
"Address and Data" means that all address fields and data fields are read and verified.
"Data only" means that all data fields, but not all address fields within each track are read and verified.

Error Reporting:
Hard Error Displays:

1. the current logical loctal) sector address
2. the controller status register

Soft Error Displays:

1. the current logical (octal) sector address
2. the address in main memory where error correction was applied
3. the two error correction pattern words to be exclusively or'ed with data at the main memory address to correct the data

When an error has been encountered and reported, the test will continue the scan until the entire pack is read and "Scan Completed" will then be reported.
K. 2 SUPER-RAND TEST PROGRAM - 2222

This is a stand-alone, random address, random data, controller and disk read/write test. The disk addresses and write data are generated by a pseudo-random number generator.

Example of Operation:

1. At disk address A, a random data pattern (i) is written from main memory.
2. At disk address B, a random data pattern (j) is written from main memory.
3. The written data at disk address A is read back and verified (against i).
4. The written data at disk address B is read back and verified (against j).
and the process continues in the outlined fashion.
Errors and data mismatches are reported as specified by the test at run-time.
Options to be specified at run-time:
Retries active? when retries are specified, errors are not reported if they are recoverable by the retry and recovery procedure of the test.

ECC active? If active, correctable data errors are not reported.
RT clock? will print out the time of day value associated with each error report.
The test runs continuously and two disk addresses can be specified and the test will then run simultaneously against both addresses.

K. 3 ECC TEST PROGRAM - 2224

This is a diagnostic program for the disk controller with ECC. The test will do read and write functions to test the functions of the error correction circuitry and it is therefore required that an on-line drive with a disk pack is attached to the controller. The reading and writing is done on a track that is not used by the SINTRAN III Operating System, hence the test does not require a special scratch pack mounted.

The test will completely diagnose, the 1133 pcb of the controller and associated control circuitry on other pcb's. Data records with no errors, correctable errors and uncorrectable errors are written and read-back-verified. The process is repeated many times varying the error-pattern and its displacement within the data record.

RUN Control and Error Reporting:

The test can be run once, or looped. When in loop mode and errors occur, the test will abort and start from the beginning of the test again.

Errors are reported as they occur and a brief description is displayed with status word information.

K. 4 BIGFUNC TEST PROGRAM - 1824

This is a stand-alone test program, intended to test the disk status word and some of the disk operatoins. Reading and writing are done on a track not used by the SINTRAN III operating system but it might still be wise to use a scratch pack when running BIGFUNC.

The program is supposed to be self-documenting. The following tests are done.

1. The core address register is written and read 131072 times.
2. Each of the block address registers are written and read 131072 times.
3. Data is read from the interface in test mode. The status word, the data read and the core address register are checked. Word count is in the range 1-2000B.

The status bits are then checked 8 times, in different sequences:
4. Status bit 0 is loaded and read twice.
5. Status bit 1 is loaded and read twice.
6. Status bit 2 is check after device clear and read.
7. Status bit 5 is checked by loading the core address register, the block address register I, the word count register and the control word when a parity check operation is active, and by loading block address register I when the disk arm is not on-cylinder.
8. Status bit 6 is checked by doing a short parity check and a very long formatting operation (the track is formatted 48 times).
9. Status bit 7 is checked by reading from a non-specified unit (see below). The reading is done at most 8 times.
10. Status bit 8 is checked by formatting a track with incorrect format data, and reading it back.
11. Status bit 9 is checked by reading with word count 1004 B and bit 2 in ECC control loaded (long bit).
12. Status bit 10 is checked by doing read, compare, change one bit in the disk buffer, compare.
13. Status bit 11 is checked by doing read with the instructions IOX 0 three times in the waiting loop, and by doing write with the instrauction IOX 0 twice in the waiting loop.
14. Status bit 13 is checked by selecting specified units and by reading from non specified units (see below).
15. Status bit 14 is checked by doing return-to-zero-seek and initiate-seek.
16. Status bit 15 is loaded and read twice. Status bits 3, 4 and 12 are not checked separately. All units not specified to be tested should be turned off (stop the disk pack, turn off power in the back of the disk unit).
17. Read and write are checked by reading to and writing from different buffers. Seek-complete-search is checked with no previous seek.
18. Read-seek-condition is checked by doing return-to-zero-seek, initiate-seek and by reading from an illegal block address.

The test repeats itself indefinitely.
All errors will be reported by error messages on the terminal.

APPENDIXL

SINTRAN III - SMD DISK DRIVER ROUTINE

Main (and only) Driver Entry:

ND-11.013.01

Scanned by Jonny Oddene for Sintran Data © 2010

ND-11.013.01

Scanned by Jonny Oddene for Sintran Data © 2010

ND-11.013.01

Scanned by Jonny Oddene for Sintran Data © 2010

ND-11.013.01

Scanned by Jonny Oddene for Sintran Data © 2010

ND-11.013.01

APPENDIXM

DISK SPECIFICATIONS

ND 574 - 288 Mbytes Disk Unit:
Maximum number of units (ND574)/ controller (ND558): 4.

Size:	Height: 91.4 cm Width: 58.4 cm Depth: 91.4 cm
Weight:	252 kg.
Temperature:	Operating: 155.5° to $32^{\circ} \mathrm{C}$. Gradient: $6.6^{\circ} \mathrm{C} /$ hour.
Humidity:	Operating: 20% to 80%. No condensation.
Altitude:	Operating: -305 m to 2000 m.
Power Requirement:	Voltage: $220 \mathrm{VAC}+7-14$. Effect: Operating $-1300 \mathrm{w} ;$
Spindle Speed:	Frequency: $50 \mathrm{~Hz}+0.5-1.0$.
Seek Characteristics:	$3600 \mathrm{r} /$ minute.
	Mechanism: voice coil, driver by servo loop. Maximum seek time: 55 ms. One track seek time: 6 ms. Average seek time: 30 ms.
Latency:*	Average: 8.3 ms.
	Maximum: 16.6 ms.

*Values given for $3600 \mathrm{r} /$ minute spindle speed. Latency time is defined to be the time required to reach a specified sector after drive is on-cylinder (seek completed).

Disk Pack:	Type: ND575 or equivalent. Disks/pack: 12 (top and bottom for protection only) Data surfaces: 19. Servo surfaces 1. Data tracks/surface: 823. Tracks/cm: 151 Sectors/track: 18
Data Capacity (formatted):	Sector: 512 words ($1 / 2 \mathrm{~K}$ words) Track: 9.216 words $(9 \mathrm{~K}$ words) Cylinder: 175.104 words (175 K words) Disk Pack: 144.110.592 words (144 M words) $=288 \mathrm{M}$ bytes .
Transfer Rate:	Bit rate: 9.677 M bits/s Word rate: 605 K words/s
Recording:	Mode: Modified Frequency Modulation (MFM) Bit Density: 1590 bits/cm for outer track Bit Density: 2377 bits/cm for inner track

ND574 288 MBYTES DISK UNIT

ND 576-37 Mbytes Disk Unit and ND 572-75 Mbytes Disk Unit
Maximum number of units (ND576) or (ND572)/ controller (ND558): 4.

Size:	Height: 86.4 cm Width: 48.9 cm Depth: 85.1 cm
Weight:	110.1 kg.
Temperature:	Operating: $15.5^{\circ} \mathrm{C}$ to $32^{\circ} \mathrm{C}$. Gradient: $6.6^{\circ} \mathrm{C} / \mathrm{hour}$.
Humidity:	Operating: 20% to 80%. No condensation.
Altitude:	Operating: -305 m to 3050 m.
Power Requirements:	Voltage: $220 \mathrm{VAC}+15-25$. Effect: Operating $-700 \mathrm{w} ; ~ S t a n d b y ~-~ 300 w . ~$ Frequency: $50 \mathrm{~Hz}+0.5-1.0$.
Spindle Speed:	$3600 \mathrm{r} /$ minute.
Seek Characteristics:	Mechanism: voice coil, driven by servo loop. Maximum seek time: 55 ms.
	One track seek time: 7 ms. Average seek time: 30 ms.
Latency:*	Average: 8.3 ms Maximum: 16.6 ms.

*Values given for $3600 \mathrm{r} /$ minute spindle speed. Latency time is defined to be the time required to reach a specified sector after drive is on-cylinder (seek completed).

	Type: 37 Mbytes: ND577.
Disk Pack:	Type: 75 Mbytes: ND573 or equivalent.
Disks/pack: 5 (top and bottom for protection only)	
	Data surfaces: 5.
	Servo surface: 1.
	Data tracks/surface: 37 Mbytes: $411-75$ Mbytes
	-823.
	Tracks/inch: 37 Mbytes $-75.6 ; 75 \mathrm{M}$ bytes - 151.
	Sectors/track: 18.

ND576 37 MBYTE DISK UNIT ND572 75 MBYTE DISK UNIT

APPENDIXN

ECC DISK CONTROLLER PROGRAMMING SPECIFICATIONS

N. 1 DISK DEVICE REGISTER ADDRESS

The 10X instruction can address two banks of registers. Which bank is being addressed is controlled by bit 15 of the Control Word Register (CWR).

The codes below are relevant for Disk System I. Each disk system may consist of 4 disk units. For Disk System II, add 10_{8} to the specified codes.
CWR bit $15=0 \quad$ CWR bit $15=1$

IOX 1540:	READ CORE ADDRESS	READ CORE ADDRESS
IOX 1541:	LOAD CORE ADDRESS	LOAD CORE ADDRESS
IOX 1542:	READ SEEK CONDITION	READ ECC COUNT
IOX 1543:	LOAD BLOCK ADDR I	LOAD BLOCK ADDR II
IOX 1544:	READ STATUS REGISTER	READ ECC PATTERN
IOX 1545:	LOAD CONTROL WORD	LOAD CONTROL WORD
IOX 1547:	LOAD WORD COUNT	LOAD ECC CONTROL

Each transfer is limited to one track (18 sectors) of data.
IOX 1546: READ BLOCK ADDRESS I READ BLOCK ADDRESS II

This instruction is implemented for maintenance purposes only. By first loading, a control word with bit 3 (Test Mode), this instruction will return the previously loaded block address to the A register.

N-2

N. 2 DISK FORMAT

N.2.1 Disk Address

There are two block address registers that both have to be loaded to completely specify a disk address. The formats are:

Block Address Register I:

Bits 0-7: \quad Sector number, 18 per track (0-17)
Bits 8-15: Surface number;

- for 38/75 Mbytes disk, 5 maximum (0-4)
- for 288 Mbytes disk, 19 maximum (0-18)

Block Address Register II:

1514
CYLINDER

Bits 0-15: \quad Cylinder number;

- for 38 Mbytes disk - 411 maximum.
- for 75/288 Mbytes disk - 823 maximum.

N. 3 CONTROL WORD

N.3.1 Control Word Content

Bit:
0 Enable interrupt on device not active
1 Enable interrupt on errors
3 Test mode
4 Device clear (clear the active flip-flop) and controller error bits
5 Address bit 16
6 Address bit 17
7-9 Unit select (maximum 4 units)
10 Marginal recovery cycle
11-14 Device operation code
15 Register multiplex bit

N.3.2 Select Unit

When a control word is loaded, the disk unit number (0-7) has to be set up in bits 7-9.

N.3.3 Marginal Recovery Cycle

The marginal recovery cycle (control word bit 10) may be used in connection with read operation codes M0, M2 and M3 as defined in Section N.3.4. These control bits are included to be an aid in recovering marginal data. For consecutive read transfers with this bit set the controller will cycle through the following conditions:

1 marginal read: Servo offset positive, data strobe early
2 marginal read: No servo offset, data strobe early
3 marginal read: Servo offset negative, data strobe early
4 marginal read: Servo offset positive, nominal data strobe
5 marginal read: Servo offset negative, nominal data strobe
6 marginal read: Servo offset positive, data strobe late
7 marginal read: No servo offset, data strobe late
8 marginal read: Servo offset negative, data strobe late $9=1$, etc.

N.3.4 Device Operation

All device operation codes will be activated when the code is given together with bit 2 (activate device). For all codes except M 6 , the correct unit number must also be selected.

Bit | | 14 | 13 | 12 | 11 | | |
| ---: | ---: | ---: | ---: | ---: | :--- | :--- |
| | 0 | 0 | 0 | 0 | M0 | Read Transfer |
| 0 | 0 | 0 | 1 | M1 | Write Transfer | |
| | 0 | 0 | 1 | 0 | M2 | Read Parity Transfer |
| | 0 | 0 | 1 | 1 | M3 | Compare transfer |
| | 0 | 1 | 0 | 0 | M4 | Initiate Seek |
| | 0 | 1 | 0 | 1 | M5 | Write Format |
| | 0 | 1 | 1 | 0 | M6 | Seek Complete Search |
| | 0 | 1 | 1 | 1 | M7 | Return to Zero Seek |
| | 1 | 0 | 0 | 0 | M8 | Run ECC Operation |

M0 Read Transfer
This operation causes the controller to transfer data from the disk to the computer memory. The number of blocks transferred depends upon the word count as defined by the word count register.

M1 Write Transfer
Transfer of data from the computer memory to the disk.
ND-11.013.01

N-4

M2 Read Parity Transfer
The controller will check the parity on the address and data of the sectors specified. Data is transferred to the controller and the check word for both the address field and the data field of a sector is compared with the correct check word as generated by the controller. No data transfer to the computer memory is performed.

M3 Compare Transfer
This function is included to positively check the data written on the disk. During compare transfer the controller compares the data read from the disk and data from the computer memory is compared bit by bit. Mismatch causes compare error to be set.
initiate Seek
This function is included to enable a unit to position the heads prior to a data transfer. The heads will be positioned according to the contents of the Block Address register. As soon as this function is accepted by the disk, the operation will be completed.

M5 Write Format
Together with a switch on a card in the interface set, this function will cause the controller to write the address field within each sector.

M6 Seek Complete Search
This function will enable the controller to go in a waiting state until any unit has completed a seek. This function is independent of the unit select code in the control word.

M7 Return to Zero Seek
This will cause the selected disk to perform a seek to cylinder 0 and will also clear the seek error bit in the unit.

M8 Run ECC Operation
This function will, when a data error has occurred, initiate the hardware operation that determines if the error is correctable or uncorrectable. If the error is correctable, the error pattern and its displacement within the data field is computed.

N. 4 READ SEEK CONDITION

Bits 0-7: Seek Complete

Seek complete status for untis 0-7. True if the unit has moved the heads to the correct cylinder or a seek error has occurred and the heads are under the sector number prior to the one specified by the block address loaded before the initiate seek commands for that unit has first been issued.

Thus, after an initiate seek command is given, the Seek Complete bit for that unit will appear once per revolution after the unit is positioned on the correct cylinder, or a seek error has occurred. The condition will last until a transfer command is given.

Bits 8-10: Unit Select
The unit number as loaded by the last control word.

Bit 11: Seek Error

Seek error for the selected unit. This signal indicates that the unit was unable to complete a move within 500 ms , or that the heads have moved to a position outside the recording field, or that an address greater than the maximum number of tracks has been selected.

This signal will only be cleared by performing a Return to Zero command on the unit.

Bit 12: Not defined.
Bit 13: ECC Correctable
After the hardware ECC operation M8 has been performed after a data error, this bit signals that the error is correctable and that the ECC Count and ECC Pattern Registers contain valid information for correction of the data. The bit is reset by Reset ECC (ECC Control register bit 0) or Device Clear.

Bit 14: \quad ECC Parity Error (STS bit no. 7)
This bit signals that a hardware fault condition exists in the ECC polynomials. This condition will also set bit 7 of the status word register and hence trigger an error interrupt if this is enabled. The error is reset by the Reset ECC signal (ECC Control register bit 0) or by Device Clear Signal (CWR bit 4). The error is forced set when ECC Control Register bit 1 is active (Force Parity Error).

Bit 15: Address Field
This bit indicates that the last field read from the disk was the address field within a sector (used for ECC processing after a data check only).

N. 5 READ STATUS

Status Word:

Bit 0:	Controller not active interrupt enabled
Bit 1:	Error interrupt enabled
Bit 2:	Controller active
Bit 3:	Controller finished with a device operation
Bit 4:	Inclusive OR of eirors (bits 5 -13)
Bit 5:	Illegal load, i.e., load while status bit 2 is true or load of block
Bit 6:	address while the unit is not on cylinder
Bit 7:	Timeout
Hardware error (disk fault + missing clocks + missing servo	
Bit 8:	clocks + ECC parity error)
Bit 9:	Address mismatch
Bit 10:	Data error
Bit 11:	Compare error
Bit 12:	Abnormannel error
Bit 13:	Disk unit not ready
Bit 14:	On cylinder
Bit 15:	Register multiplex bit (from CWR bit 15)

N. 6 ECC COUNT REGISTER (ECR)

When a correctable data error has been detected, this register will contain the bit displacement from the beginning of the data field to the last bit in error of the error burst.

N. 7 ECC PATTERN REGISTER (EPR)

Bits 0-10: Contain the RIGHT justified error pattern, such that the last bit in error always occupies bit position 0 of this register. This pattern (the contents of this register bits $0-10$) should be exclusively OR'ed with the data in the CPU memory at the proper location.

Bits 11-14: Set to logical "one".
Bit 15: \quad Register Multiplex bit (from CWR bit 15)

N. 8 ECC CONTROL

Bit 0: Reset ECC
This bit will cause the ECC polynomials to reset to the zero initial state. This function is only used when a data error has occurred, otherwise the polynomials automatically go to the zero state upon completion of a Read or Write. Device Clear function will also reset ECC

Bit 1 :

Bit 2:
Long
Used for maintenance purposes only. When a sector is read or written, the data field of the sector is extended by 64 bits (the length of the ECC appendage plus "end of record" byte). The data and the extra bits are read into or written from the memory of the CPU. This function is used to diagnose the operation of the ECC circuits and can be used with the following Device Operations: M0, M1, M2 and M3.

This bit is "echoed" in ECR bit 14.

Scanned by Jonny Oddene for Sintran Data © 2010

NORSK DATA A.S
Postboks 4, Lindeberg gård
Oslo 10, Norway

COMMENT AND EVALUATION SHEET

ERROR CORRECTION CONTROL (ECC) DISK CONTROLLER

In order for this manual to develop to the point where it best suits your needs, we must have your comments, corrections, suggestions for additions, etc. Please write down your comments on this preaddressed form and post it. Please be specific wherever possible.

- we make bits for the future

[^0]: Table J．1： 48 Bit Polynomial

