FLOPPY DISK SYSTEM

NORSK DATA A.S

Revision Notes

$10 / 76$	Original Printing
$9 / 79$	Revision - Appendix B new

Floppy Disk System
Publication Number ND-11.012.01

A/S NORSK DATA-LLEEKTRONIKK
I φ renveien 57 , Oslo 5 - Tlf.: 2. 7371

MAIN CONTENTS

$$
+\quad+\quad+
$$

Section:

SYSTEM/GENERAL

1.1 Introduction
1.2

General
1.3

System Configuration
1.4

Floppy Disk Programming Specifications
INTERFACE
11.1 The Interface Signals
11.2 General Command Sequence - Interface/Formatter
11.3 Interrupt Generation and Handling
11.4 Interface Data Routes
11.5 Programmed Nondata Output/Input
11.6 Test Mode
11.7 Master Clear - Autoload

III
FORMATTER
III. $1 \quad$ Formatter/Unit(s) Interface Signals
III. 2 Formatter - Functional Operation
III. 3 Track Format
III. 4 Data Recovery
III.5 Formatter - Data Flow
III. 6 Read/Write Control
III. 7 Interrupt, Sense and Status
III. 8 Any Seek Operation

IV
UNIT
IV. 1 Diskette Storage Drive
IV. 2
IV. 3
IV. 4

Track Accessing
Stepper Motor Control Logic
Read/Write Operations

Appendixes:

A SPECIFICATION SUMMARY
B DIAGRAMS
C. $1 \quad$ Interface Hardware Diagrams
C.II Internal Interface Signal List
C.III 1111/1118 Signal Communication
C.IV Floppy Disk Cables
D. $1 \quad$ Formatter Logic Diagrams
D. 1

Formatter Component - Location Chart
D.III Formatter Test Points/Track Options - Locations chart
E.I-E.III Unit Logic Diagrams

SECTION I

SYSTEM/GENERAL

DETAILED CONTENTS

$$
+\quad+\quad+
$$

Section:		Page:
I.1	Introduction	$1-1-1$
I.2	General	$1-2-1$
I.2.1	Diskette Loading	$1-2-2$
I.2.2	Diskette Handling	$1-2-2$
I.2.3	Write Protection Feature	$1-2-4$
I.3	System Configuration	$1-3-1$
I.4	Floppy Disk Programming Specifications	$1-4-1$
I.4.1	Device Register Address	$1-4-1$
I.4.2	Instruction Formats and Descriptions	$1-4-2$
I.4.2.1	Read Data Buffer IOX RDAT	$1-4-2$
I.4.2.2	Write Data Buffer IOX WDAT	$1-4-2$
I.4.2.3	Read Status Register No. 1 (IOX RSR1)	$1-4-2$
I.4.2.4	Write Control Word IOX WCWD	$1-4-3$
I.4.2.5	Read Status Register No. 2	$1-4-4$
I.4.2.6	Write Drive Address/Write Differences IOX WDAD	$1-4-4$
I.4.2.7	Read Test Data IOX RTST	$1-4-6$
I.4.2.8	Write Sector/Write Test Byte IOX WSCT	$1-4-6$

I. 1 INTRODUCTION

The Floppy Disk Drive was developed by IBM, in 1967, under direction of Alan Shugart. In 1970, IBM took advantage of their research results, and put the Floppy Disk into a computer system where it was used as a read-only device for diagnostic programs.

In 1973, the usage was extended and the Floppy Disk system was used in a data entry system. From now on, the Floppy Disk was added on the list of peripheral products. Peripheral product's manufacturers became interested in the new product, and (of course), followed the IBM standard.

However, the first drives had a reputation of being unreliable, having high error rates and head and media wear.

Intensive efforts have been made to reduce the problems, so we today have a low cost, reliable and easy-to-handle device with many applications.
,

GENERAL

Floppy Disk introduces a new data storage facility into a computer system. Refer to Figure 1.2.1.

Floppy disk drive

Figure 1.2.1.

The storage medium itself is a flexible disk (also referred to as a diskette). The diskette is free to rotate inside a semi-rigid envelope. The inside of this envelope is lined with a wiping material to clean the disk of foreign particles, as it rotates.

1.2.1 DISKETTE LOADING

To load the diskette, depress the latch and insert the diskette with its label facing out, i.e., the index hole is above the center of the diskette. Move the latch handle to the left. The diskette will then be attached to the rotating spindle for a Hub Clamp.

For ease of operation, the diskette can be loaded (or unloaded) with the drive in operating condition, i.e., the spindle rotating.

It is theoretically possible to utilize both sides of the diskette. However, at the present time, only one side is used by the drive since only one read/write head exists. One should also notice that the side used is the one opposite the label.

If the diskette is turned, the read/write head will still have access to the surface, however, the index transducer will not see the hole and the drive will attain the ready condition.

I.2.2 DISKETTE HANDLING

When removed from the drive, the diskette is stored in an envelope. To protect the diskette, the same care and handling procedures, specified for computer magnetic tape, apply. These precautionary procedures are as follows:

1. Return the diskette to its storage envelope whenever it is removed from the drive.
2. Keep diskettes away from magnetic fields and from ferromagnetic materials. Strong magnetic fields can damage the data recorded on the diskette.
3. Replace storage envelopes when they become worn, cracked or dissorted. Envelopes are designed to protect the diskette.
4. Do not write on the plastic jacket with a lead pencil or ball-point pen. Use a felt pen.
5. Heat and contamination from a carelessly dropped ash can damage the diskette.

1-2-3

6. Do not expose diskette to heat or sunlight.
7. Do not touch or attempt to clean the disk surface. Abrasions may cause loss of stored data.

Figure I.2.2, continued

Figure I.2.2, concluded.

SYSTEM CONFIGURATION

The Floppy Disk System is a low cost, highly reliable mass storage system with a relatively low access time and transfer rate.

Normally, a Mass Storage Device requires a Direct Memory Access (DMA). However, due to total system cost, a specially designed Programmed Input/Output (PIO) interface has been preferred.

Figure I.3.1 will illustrate the data transfer paths during a read operation. A write operation would be illustrated by reversing the arrows.

Figure I.3.1.

A floppy disk system (SA 3600) can have up to 3 drive units (SA 800).
As depicted in Figure 1.3.1, up to 3 drives are daisy-chained to one formatter card. The Formatter is cabled to the Interface located in the I/O System. Two interfaces will be discussed in this manual.

- The interface between the Interface and the Formatter and
- the interface between the Formatter and the drive units.

The first one will be discussed in Section II.1, the second one in Section III. 1.

I. 4 FLOPPY DISK PROGRAMMING SPECIFICATIONS

I.4.1 DEVICE REGISTER ADDRESS

Read Data Buffer
IOX 1560 (IOX RDAT)

Write Data Buffer IOX 1561 (IOX WDAT)

Read Status Register No. 1 IOX 1562 (IOX RSR1)

Write Control Word IOX 1563 (IOX WCWD)

Read Status Register No. 2 IOX 1564 (IOX RSR2)

Write Drive Address/Write Differences
IOX 1565 (IOX WDAD)

Read Test
IOX 1566 (IOX RTST)

Write Section/Write Test Byte
IOX 1567 (IOX WSCT)

For Disk System II add 108 to the codes specified above. Each disk system can handle up to 3 drives.

Ident code for Disk System I is $\mathbf{2 1}_{8}$. Ident code for Disk System II is $\mathbf{2 2}_{8}$. Interrupt level is 1110 .

I.4.2.1 Read Data Buffer IOX RDAT

Reads one 16 bit word from the Interface Buffer. The buffer address is automatically incremented after execution of the instruction.

1.4.2.2 Write Data Buffer IOX WDAT

Write one 16 bit word to the Interface Buffer. The buffer address is automatically incremented after execution of the instruction.
I.4.2.3 Read Status Register No. 1 (IOX RSR1)

Bit 0: \quad Not used
Bit 1: Interrupt enabled
Bit 2: Devicy busy
Bit 3: Device ready for transfer
Bit 4: Inclusive or of bits set in Status Register No. 2 (sense)
Note: When bit 4 is set, an error has occurred and Status Register No. 2 must be read before proceeding.

Bit 5: Deleted record
This bit is set after the read data command if the sector contained "Deleted Data Address Mark".

Bit 6: Read/Write Complete
A read or write operation is completed.
Bit 7: Seek Complete
The status bit is set after seek or recalibration command when the disk has finished moving the R/W head.

Bit 8: Time Out
Approximately 1,5 seconds
Bits 9-11: Are only used when formatting:
Bit 9 is active when buffer address bits 1 and 6 are active.
Bit 10 is active when buffer address bits 1 and 7 are active.
Bit 11 is active when buffer address bits 1 and 8 are active.

Note: Bits 4-7 are only significant after interrupt or when device busy is reset.

Bits 12-15: Not used

1.4.2.4 Write Control Word IOX WCWD

Bit 0: \quad Not used
Bit 1: Enable interrupt
Bit 2: \quad Not used
Bit 3: \quad Test Mode (for description see IOX RTST and -IOX WSCT)
Bit 4: \quad Device clear (NB: Select drive is deselected)
Bit 5: Clear interface buffer address
Bit 6: \quad Not used
The following bits are commands to the Floppy Disk Drive and these are the only control bits that generate device busy and interrupts (NB: with the exception of bit 15, control reset).

Bit 8: Format track
Bit 9: \quad Write Data
Bit 10: Write Selected Data
Bit 11: \quad Read ID
Bit 12: Read Data
Bit 13: Seek
Bit 14: Recalibrate
Bit 15: Control Reset
A detailed description of these commands are given in the appendix.

I.4.2.5 Read Status Register No. 2

Bits 0-7: \quad Not used
Bit 8: Drive not ready
This bit is set if the addresses drive has no power, its door is open, or the diskette is not properly installed. The drive address is invalid.

Bit 9: Write Protect
This bit is set if a write operation is attempted on a write protected diskette.

Bit 10: Not used
Bit 11: Sector Missing and No AM This bit is set if the desired sector for Read Data/Write Data or Write Detected Data cannot be located on the diskette.

In addition, this bit may indicate a non-locatable data field address mark or a non-locatable address mark.

Bit 12: CRC Error
Bit 13: Not used
Bit 14: Data overrun
A data byte was lost in the communication between $\mathrm{N}-10$ Interface and the Floppy Disk System.

Bit 15: Not used.
I.4.2.6 Write Drive Address/Write Differences IOX WDAD

This can be two instructions, depending on bit 0 in the A register.
A)

Bits 0-1: Load Drive Address
This instruction selects Drive and Format
Bits 1-7: Not used
Bits 8-10: Drive address (unit number) 0,1 or 2
Bit 11: Deselect drive

B)

Bit 0-0: Write Differences

This is the differences between current track and desired track. It is used as an argument for the seek command.

Bits 1-7: Not used
Bits 8-14: Differences between current and desired track
Bit 15: Direction select
Bits 15-0: Access "Out" to a lower track address
Bits 15-1: Access "In" to a higher track address

I.4.2.7 Read Test Data IOX RTST

This instruction is used for simulation of a data transfer between the Floppy Disk System and N-10 interface.l.t does not transfer data from the N-10 interface to the A register, but puts one 8 bit byte into the interface buffer, each time the instruction is executed. The bytes are packed to 16 bit words in the buffer and may later be read by IOX RDAT instruction. The byte may be chosen by using the IOX WSCT instruction (see description of IOX WSCT). IOX RTST is used for test purposes only and does not generate interrupt and busy signals.

The instruction is only activated when the interface is set in test mode by the following instruction:

SAA 10
IOX WCWD

I.4.2.8 Write Sector/Write Test Byte IOX WSCT

When the interface is in test mode, this instruction loads the test byte which is transferred by the IOX RTST command. If not in test mode, this instruction loads the sector number to be used in a subsequent Read/Write command.
A)

Not in Test Mode:
Bits 0-7: \quad Not used
Bits 8-14: Sector to be used in a subsequent Read/Write command
Sector range (octal) for different formats:
1-32 for IBM 3740

1-17 for IBM 3600
1-10 for IBM System 32-II
NB: Sector 0 must not be used.
Bit 15: Sector autoincrement If this bit is true the sector register is automatically incremented after each Read/Write command.

Note: This autoincrement is not valid past the last sector of a track.

B)

In Test Mode:
Bits 0-7: \quad Not used
Bits 8-15: Test byte

SECTION II

INTERFACE

DETAILED CONTENTS

Section:

Page:

1.1	The Interface Signals	\|I-1-1
11.1 .1	General	11-1-1
II.1.2	Control Lines	11-1-4
11.1.2.1	Load Drive Address 0_{0}	11-1-4
11.1.2.2	Load Difference ${ }^{\text {O }}$	11-1-4
II.1.2.3	Load Sector	11-1-4
II.1.2.4	Load Command 0	$11-1-5$ $11-1-6$
II.1.2.4.1	Immediate Command	11-1-6
II.1.2.4.1.1	Control Reset	$11-1-6$

II.1.2.4.2	Seek Commands	
$I I .1 .2 .4 .2 .1$	Recalibrate	$I-1-6$
$I I .1 .2 .4 .2 .2$	Seek	$I 1-1-6$
		$I-1-7$

II.1.2.4.3	Read Commands	$11-1-7$
11.1 .2 .4 .3 .1	Read ID	$11-1-7$
$I I .1 .2 .4 .3 .2$	Read Data	$11-1-8$

II.1.2.4.4	Write Commands	$11-1-8$
II.1.2.4.4.1	Write Data	$11-1-8$
II.1.2.4.4.2	Write Deleted Data	$11-1-8$
$I I .1 .2 .4 .4 .3$	Format Track	$11-1-8$

11.1.3 Status Lines
11.1.3.1 Gate Status (Status I)
II.1.3.1.1 Status Bit Descriptions
II.1.3.1.1.1 Seek Complete (Status I Bit 7)
II.1.3.1.1.2 R/W Complete (Status I Bit 6)
II.1.3.1.1.3 Deleted Record (Status I Bit 5)
II.1.3.1.1.4 Unit Check (Status I Bit 4)

11-1-9
11-1-9
II-1-9
11-1-9
11-1-9
11-1-9
11-1-9
II.1.3.2 Gate Sense (Status II)
II.1.3.2.1 Sense Bit Descriptions
II.1.3.2.1.1 Data Overrun (Status II Bit 14)
II.1.3.2.1.2 CRC Error (Status II Bit 12)
11.1.3.2.1.3 Sector Missing and No AM (Status || Bit 11)
II.1.3.2.1.4 Write Protect (Status II Bit 9)

11-1-10
11-1-10
11-1-10
II-1-10
|I-1-11
II.1.3.2.1.5 Drive Not Ready (Status II Bit 8)
|1-1-11
II-1-11

Section:

Page:

II.1.4	Data Transfer Control Lines	$\mathrm{II}-1-12$
II.1.4.1	Transfer Direction	$\mathrm{II}-1-12$
II.1.4.1.1	Transfer Request	$\mathrm{II}-1-12$
II.1.4.1.2	Transfer Grant	$\mathrm{II}-1-12$
II.1.5	Special Purpose Lines	$\mathrm{II}-1-14$
II.1.5.1	Busy	$\mathrm{II}-1-14$
II.1.5.2	Interrupt	$\mathrm{II}-1-14$
II.1.5.3	Reset	$\mathrm{II}-1-14$

11.2	General Command Sequence - Interface/Formatter	$11-2-1$
11.2 .1	General	$11-2-1$
$I I .2 .2$	Operation	$I 1-2-2$
$I I .2 .3$	Command Classifications	$11-2-3$
$I I .2 .4$	Read Data Command (example)	$11-2-4$

11.3 Interrupt Generation and Handling |I-3-1
II.3.1 Generation II-3-1
II.3.2 Reading Status II-3-3
11.4 Interface Data Routes II-4-1
11.4.1 General Description II-4-1
II.4.2 Address Co, 1 nter II-4-4
II.4.2.1 Address Counting II-4-5
II.4.3 Read Disk Operation $11-4-6$
II.4.4 Write Disk Operation II-4-9
II.4.5 Write Data Buffer II-4-12
II.4.6 Read Data Buffer II-4-15

II.5	Programmed Nondata Output/Input	$11-5-1$
II.5.1	General	$11-5-1$
II.5.2	Nondata Output	$11-5-1$
II.5.2.1	IOX <WCWD $>$ Write Control Word	$11-5-3$
II.5.2.2	IOX <WDAD $>$ Write Drive Address	$11-5-4$
II.5.2.3	IOX <WDAD $>$ Write Difference	$I 1-5-5$
II.5.2.4	IOX <WSCT> Write Sector	$I 1-5-6$

II.5.3 Nondata Input $11-5-7$
II.5.3.1 IOX <RSR 1> Read Status Register No. $1 \quad$ II-5-8
II.5.3.2 IOX <RSR2> Status Register No. 2 II-5-9
II. 6 Test Mode $\quad 11-6-1$
II.6.1 Selecting the Test Byte

11-6-3

> II-iii

Section:

Page:
II. 7 Master Clear - Autoload
11.7.1
11.7.2
11.7.2.1
II.7.2.2

General
11-7-1
Autoload Sequence
11-7-1
General
11-7-4
11.7 .3

Detailed Description
11-7-4
II-7-4
II.7.3 Master Clear - Autoload - When Disk is Not
II.7.4

Ready
The Load Operation
II-7-9
11-7-11

$$
11-1-1
$$

II. 1 THE INTERFACE SIGNALS

II.1.1 GENERAL

Described here, are the interface signals between the Interface and the Formatter. Listed separately, are signal/pin/plug assignments.

As illustrated, the interface consists of a general bi-directional, 8 bits X -fer bus and 12 special purpose lines. The X-fer bus is used by the Interface to transfer:

- Write data bytes
and
- Control bytes

The X -fer bus is used by the Formatter to transfer:

- Read data bytes
- Status bytes (Status word I) and
- Sense bytes (Status word II)

Figure II.1.1: Interface Signals
There are three basic modes of interface line operation.
The first mode involves the use of the X-fer bus by the Interface to load control information into the Formatter's control registers. In this mode, the Interface places an 8 -bit control argument on the X-fer bus, then pulses one of the "set control lines"

$$
\begin{aligned}
& \text { - } \quad \text { LOAD DRIVE ADDRESS } \\
& \text { - } \\
& \text { - } \angle O A D \text { SECTOR } \\
& \text { - } \quad \text { or } \\
& \text { - } \quad \text { LOAD COMMANERENCE } \\
& O
\end{aligned}
$$

causing the Formatter to store the X -fer bus argument in the appropriate control register.

The second mode of operation involves the use of the X-fer bus by the Interface to retrieve system status information from the Formatter. In this mode, the Interface activates one of the status gate lines

- GATE STATUS O
- GATE SENSEO
and the Formatter places the appropriate status byte on the X-fer bus for storage in the interface.

The third mode of operation involves the use of the X-fer bus under control of the Formatter, for transferring diskette system data (read or write). The Formatter automatically activates

- TRANSFER REQUESTO
whenever a new byte of data is either to be read or written, simultaneously forcing the
- TRANSFER DIRECTIONO
signal to indicate the direction of transfer. The Interface acknowledges. the requested transfer by activating the
- transfer granto
line.

The $B U S Y_{O}$ line indicates, to the Interface, that a command is being executed, so that the Interface does not activate any control line. The INTERRUPTO line is driven by the Formatter to indicate to the Interface completion of a non-immediate command or an error condition.

II.1.2 CONTROL LINES

II.1.2.1 Load Drive Address ${ }_{O}$

This signal clocks the data on the X-fer bus into the Formatter's Drive Address Register. The Interface places the desired drive address in the format shown below on the X -fer bus and pulses

- LOAD DRIVE ADDRESSO
with a negative pulse.

Bits $0-2$ are the binary drive address. Bit 3 deselects all drives if it is active. Bit 7 specifies an optional format and bit 6 specifies 512 byte records ($0=$ 256 byte records). Pulsing of the Load Drive Addresso line forces a deselection/ selection sequence at the drive interface of the Formatter. That is, the previously selected drive is deselected, and if the DESELECT bit (3) is inactive, another drive is selected according to the newly loaded drive address. In addition, the format used on the newly selected drive is set at this time. Note that any drive may operate on 128, 256 or 512 byte records.

II.1.2.2 Load Difference

This signal clocks the data on the X-fer bus into the Formatter's Track Difference Register. The Interface places the desired difference argument (shown below) on the X -fer bus, then pulses

- LOAD DIFFERENCE O
with negative pulse.

7	6		4	3	2	1	0
P-direct "1»=FWD nOw R REX	$\begin{array}{r} \text { Diff }_{64} \end{array}$	$\begin{array}{r} \text { Diff } \\ 32 \end{array}$	$\begin{array}{r} \text { DIff } \\ \hline 16 \end{array}$	$\begin{gathered} \text { Dift } \\ 8 \end{gathered}$	$\underset{4}{\text { Diff }}$	$\begin{gathered} \text { Diff } \\ 2 \end{gathered}$	$\begin{gathered} \text { Diff } \\ 1 \end{gathered}$

Bits 0-6 are the binary value of the difference between the current physical track location and the desired track. This value is the number of steps to be taken in a subsequent seek command. Bit 7 designates the direction of stepping.

If this bit is true, the R/W head will be accessed "in" to a higher track address; if this bit is false the R/W head will be accessed "out" to a lower track address.

Note that there is no detection of invalid difference arguments.

II.1.2.3 Load Sector

This signal clocks the data on the X-fer bus into the Formatter's Sector Address Register. The Interface places the desired sector address (record number) in the format (shown below) on the X-fer bus, then pulses

$$
-\quad \angle O A D S E C T O R_{O}
$$

with a negative pulse.

There is no detection of invalid sector arguments when the sector byte is loaded. The error will be detected when a Read/Write command is started.

Bits 0-6 are the Binary Record Address which will be used as the next search argument for a

```
- READ DATA
- WRITE DATA
    or
- WRITE DELETED DATA
```

operation.

Note that an all zero byte is not valid and will result in a read/write of an indeterminate record.

II.1.2.4 Load Command

This signal clocks the data on the X-fer bus into the Formatter's Command Register. The Interface places the command byte, in the format shown below, on the X-fer bus, then pulses

$$
-\quad \angle O A D C O M M A N D_{O}
$$

with a negative pulse.

A valid command argument has only one bit active, since each bit denotes a unique operation to be performed by the Formatter. If two or more command bits are specified, the Formatter sequence is indeterminate and will result in a Unit Check (Status I Bit 4).

Command Descriptions

II.1.2.4.1 IMMEDIATE COMMAND

II.1.2.4.1.1 Control Reset

This command is used by the Interface to halt a command in process or to ensure that all interrupts and status are cleared. The Command Register, Read/Write Control Circuitry, Interrupt Circuitry, and Status and Sense Registers are reset with this command.

The command is immediately executed and does not generate BUSY or INTERRUPT. However, no new command should be loaded for 8μ s to allow the system to fully reset.

CONTROL RESET does not deselect the currently selected drive.

II.1.2.4.2 SEEK COMMANDS

II.1.2.4.2.1 Recalibrate

The RECALIBRATE function provides a means of automatically accessing the selected drive's R/W head to track 00 . This command is used to correctly orient the access circuitry after system powerup, or when the system detects a seek error.

Abstract

The RECALIBRATE command causes the Formatter access circuitry to STEP the selected drive's R/W head to the outermost track. The Formatter then generates an INTERRUPT and presents a status of SEEK COMPLETE (Status I Bit 7). The execution time of this command is 0.8 seconds, maximum.

II.1.2.4.2.2 Seek

The seek function provides R/W head accessing for the selected drive, positioning the R/W head to any one of the 77 tracks on the selected drive's diskette. A prerequisite track difference argument must be sent by the Interface with a LOAD DIFFERENCE ${ }_{0}$ signal. At the reception of the subsequent SEEK command, the Formatter steps the R/W head at nominal rate of $10 \mathrm{~ms} /$ track (plus 10 ms for the last track due to R / W head settling). When the Formatter has stepped the R/W head the number of times designated by the difference register, it generates an interrupt with a corresponding status of SEEK COMPLETE. (Status I Bit 7)

There is no error detection circuitry for the SEEK function.
The Formatter merely issues the required number of step pulses to the selected drive.

Mechanical stops prevent the R/W head from exceeding travel limits; however, an invalid difference argument may result in head positioning at an unformatted track. RECALIBRATE can be used for error recovery.

The Interface should command READ ID after every SEEK command in order to verify head position. That is, the Interface should compare the first byte of any $I D$ field with the assumed track address and interpret a miscomparison as a SEEK error.

II.1.2.4.3 READ COMMANDS

II.1.2.4.3.1 Read ID

The READ ID command causes the Formatter to transfer the first ID field encountered by the Read/Write head on the selected drive. The four bytes of data contained in the ID field are transferred to the Interface via the X-fer bus. The contents of the bytes are illustrated in Figure III.3.2.

II.1.2.4.3.2 Read Data

The READ DATA command provides for the transfer of the data fields of a requested record from the diskette to the Interface. The READ DATA command forces the Formatter to read each ID field encountered (not transferring bytes to the Interface) until a comparison is obtained between the third byte of an ID field (sector byte) and the desired sector. The Formatter then reads the next data field encountered, transferring each data byte (excluding the data field address mark to the Interface.

II.1.2.4.4 WRITE COMMANDS

II.1.2.4.4.1 Write Data

The WRITE DATA command provides the system function of storing a record on the selected drive's diskette.

This command forces the Formatter to read each ID field encountered until a comparison is obtained between the third byte of an ID field (sector byte) and the desired sector. The Formatter then sequences up the Write Circuitry in the gap following this ID field and starts writing zero bytes. At the end of the gap (17 bytes) the Formatter writes the data address mark and requests the Interface to provide the first data byte. The Formatter then writes the data field controlling the transfer of each data byte from the Interface.

After writing the data field, the Formatter writes two CRC bytes which have been generated over the data field (including the address mark).

II.1.2.4.4.2 Write Deleted Data

The WRITE DELETED DATA command is operationally identical to the WRITE DATA command, but results in the Formatter writing a Deleted Data Address Mark byte in front of the data field.

II.1.2.4.4.3 Format Track

The Format Track command provides the function of writing an entire track of information. (Refer to Figure III.3.2.)

When executing this command, the Formatter provides all gaps, address marks, and CRC bytes while the Interface provides the 4 ID bytes and all data bytes for each record (under Formatter transfer control).

II.1.3 STATUS LINES

II.1.3.1 Gate Status (Status I)

This signal is driven by the Interface and forces the Formatter to place the status byte, shown below, on the X-fer bus for acceptance by the Interface. Gating occurs whenever this line is driven to a logical zero level.

Reset of all bits occurs at the end of the GATE STATUS ${ }_{0}$ signal, that is, after the status acceptance by the Interface. The system must putse GATE STATUS $_{0}$ after every interrupt to obtain further interrupts.

II.1.3.1.1 STATUS BIT DESCRIPTIONS

II.1.3.1.1.1 Seek Complete (Status I Bit 7)

This status bit is set at the completion of any SEEK or RECALIBRATE command (even if the command results in no head movement). It generates an interrupt to the Interface.

II.1.3.1.1.2 R/W Complete (Status I Bit 6)

This status bit is set at the normal completion of any READ or WRITE command. It generates an interrupt to the Interface.

II.1.3.1.1.3 Deleted Record (Status I Bit 5)

This status bit is set during a READ DATA command if the data field is preceded by a Deleted Data Address Mark.

II.1.3.1.1.4 Unit Check (Status I Bit 4)

This bit is set whenever any error condition is detected by the Formatter, specifically, when the SENSE BYTE transition from no error bits to any error bit active. Detection of a UNIT CHECK condition generates an interrupt to the Interface.

II.1.3.2 Gate Sense (Status II)

This signal is driven by the Interface and forces the Formatter to place the SENSE BYTE (error conditions shown below) onto the X-fer bus for acceptance by the Interface.

Reset of all of the bits occurs at the trailing edge of the GATE SENSE 0_{0}, that is, after sense acceptance.

Note that the presence of any sense bit generates a UNIT CHECK interrupt.

The Interface must pulse GATE SENSE ${ }_{0}$ whenever the UNIT CHECK status bit is set in order to obtain further error detection and command processing.

Status II as presented on the X-fer bus:

II.1.3.2.1 SENSE BIT DESCRIPTIONS

II.1.3.2.1.1 Data Overrun (Status II Bit 14)

This bit is set if the Interface fails to respond to a TRANSFER REQUEST by the Formatter within a time interval which insures data integrity. In the case of a write operation, the Interface must supply a new byte on the X-fer bus and supply the TRANSFER GRANT signal within 26 microseconds of the TRANSFER REQUEST signal.

II.1.3.2.1.2 CRC Error (Status || Bit 12)

This bit is set during a READ command or during orientation for a WRITE command if a read error is detected for any ID field or data field read from the selected diskette. A read error is determined by use of a Cyclic Redundancy Code (CRC). Two CRC bytes are appended to every field written on the diskette and during a read operation, the CRC is regenerated for the read data and compared with the CRC recorded on the diskette (checked for syndrome $=0$). A mismatch denotes a read error.

II.1.3.2.1.3 Sector Missing and No AM (Status II Bit 11)

This bit is set if the desired diskette sector for a READ DATA, WRITE DATA, or WRITE DELETED DATA command cannot be located by the Formatter. It compares the third byte of each $I D$ field encountered with the sector byte which has been transferred by the Interface. If there is no comparison within a full revolution of the diskette, the desired sector (record number) is not locatable. In addition, this bit may indicate a nonlocatable data field address mark.

This error bit can also indicate that the appropriate ID field address mark is not locatable for the above commands or the READ ID command.

II.1.3.2.1.4 Write Protect (Status II Bit 9)

This bit is set if a write operation is attempted on a Write protected diskette (see Drive Reference Manual for details on the Write Protected Diskette).

II.1.3.2.1.5 Drive Not Ready (Status II Bit 8)

This bit is set if:

- the addressed drive has no power,
- its door is open,
- the diskette is not properly installed, or
- the drive address is invalid.

II.1.4.1 Transfer Direction

This signal is driven by the Formatter to the Interface to indicate the direction of data transfer on the X -fer bus. A logical zero (true) on this line indicates that data is to be transferred from the Interface to the Formatter and a logical one indicates the reverse direction of transfer. This signal is valid only when TRANSFER REQUEST is active.

II.1.4.1.1 TRANSFER REQUEST

This signal is driven by the Formatter to the Interface to initiate the transfer of a data byte during the execution of any READ or WRITE command. During a read operation, this signal is forced active (logical zero) when the last bit of a new byte has been read from the diskette and that byte is active on the X-fer bus. During a write operation, this signal is activated and requests the Interface to place the next byte to be written on the X -fer bus. This signal goes to the inactive state when the Interface responds with X -fer bus.

II.1.4.1.2 TRANSFER GRANT

This signal is driven by the Interface to the Formatter in response to the TRANSFER REQUEST signal. During a READ operation, this signal is activated (logical zero) when the data byte on the X -fer bus has been stored by the Interface. During a WRITE operation, this signal is activated after the requested data byte has been placed on the X-fer bus by the Interface. This signal transition deactivates when the TRANSFER REQUEST signal goes inactive.

Figure II.1.2: X-fer Bus Usage and Bit Assignment (excluding data)

II.1.5 SPECIAL PURPOSE LINES

II.1.5.1 Busy

This signal is sent to the Interface whenever a command is being executed. The Interface must insure that this signal is inactive before forcing any of the SET CONTROL or GATE STATUS. lines.

II.1.5:2 Interrupt

This signal is sent to the Interface to flag the completion of command execution (exception CONTROL RESET) or the detection of an error. If an error is detected, the command under execution is automatically reset. (It is reset by the trailing edge of the GATE STATUS line.)

II.1.5.3 Reset

This signal performs a general reset to the Formatter, equivalent to turning on system power. This is an asynchronous signal and is generally used only in error recovery.

Note the following difference between the Reset line and the Control reset command:

The Reset line deselects all drives, while the control reset does not.

II. 2 GENERAL COMMAND SEQUENCE - INTERFACE/FORMATTER

II.2.1 GENERAL

In order to study a command sequence, a proper knowledge of the Interface Formatter is required. Refer to Chapter II.1.

II.2.2 OPERATION

A general command sequence is initiated from the CPU by executing an IOX <WCWD> (write control word). Control gates will place the upper byte of the Control Word on the X-fer bus as a command argument and pulse the LOAD COMMAND 0 line. In the Formatter, the argument will be placed into the Command Latch and a BUSY 0 signal will be sent back to the Interface and set the Busy FF, which has a busy status (RSR1 Bit no. 2) available for the CPU. (A new command must not be issued from the CPU while the Interface is in a Busy state.)
II-2-3

II.2.3 COMMAND CLASSIFICATIONS

The Formatter will start processing the specified command, exchange the required data and control information with the selected unit.

The commands presented on the X -fer bus may be classified into three groups:

- Commands that perform any READ or WRITE operation
- Commands that perform any SEEK operations
- Immediate command (Control reset)(No Busy or Interrupt generated)

WCWD Bit No.: X-fer Bit No.:	Command:	Group:	
8	0	Format track	Any
9	1	Write data	Read
10	2	Write Deleted Data	or
11	3	Read ID	Write
12	4	Read Data	
13	5	Seek	Any
14	6	Recalibrate	Seek
15	7	Control reset	Immediate command

II.2.4 READ DATA COMMAND (example)

Let us assume a Read Data operation is specified.
Since this command belongs to any READ or WRITE group, the "R/W Idle" becomes inactive as the Formatter starts processing the command.

Then, when the READ operation is accomplished, i.e., one sector of data is transferred from the unit to the Formatter to the Data Buffer in the Interface, the "R/W Idle" goes to its active state which in turn clears the Command Register. Sensing the Command Register in its cleared state, the BUSY ${ }_{0}$ signal will drop. However, the BUSY_{0} signal is buffered in the Interface and remains set for some additional time. (Refer to Figure II.2.1.) Provided no R/W Error condition has occurred, the INTERRUPT line will be activated. The INTERRUPT signal received from the Formatter has two main tasks to handle in the Interface.

- Pass on the Interrupt to the CPU
- Generate a Gatc Status (GSTATO) signal back to the Formatter requesting the status byte to be placed on the X-fer bus.

When the GATE STATUS (GSTAT) signal drops (pulse width $0,7-1,3 \mu \mathrm{~s}$) the X-fer bus holding the status information will be latched into a 4 bits status latch located on the "Floppy Disk Data card". As the GSTAT is dropped (timed out) a RST STATUS ${ }_{0}$ (Reset Status) signal is activated in the Formatter. This signal has two functions:

- Read Status indicators in the Formatter thus,
- dropping the Interrupt line

The interrupt line will, in turn, drop the Busy FF in the Formatter.
Since the CPU received an Interrupt, it reads the fresh status information (which initially caused the interrupts) from the Interface.

It should be observed that the CPU will be presented with a 16 bit status word where bits 4 through 7 are derived from the Formatter.

Figure II.2.1: General Command Sequence - Principal Timing

The sequence of events will be the same for commands belonging to the any SEEK group with the following exception.

- The Formatter R/W Idle signal will, in this case, be replaced by SEEK COMPLETE giving the same sequence as described above.

If a Control Reset, classified as an immediate command, is issued, no BUSY or INTERRUPT signals are sent back to the Interface.
Load Command 0
Command Argumento
Command Latcred ${ }_{0}$
DBusy $_{0}$
BBusy $_{0}$

II. 3 INTERRUPT GENERATION AND HANDLING

II.3.1 GENERATION

The Floppy disk Interface is wired up to interrupt level 1110 . The various interrupt sources are discussed and illustrated at a general level.

The interrupt system is enabled in the Interface by specifying bit no. 1 in the control word.

Refer to Figure III.3.1.
:
SAA 2
IOX WCWD (1563)

Figure III.3.1: Interrupt System - Principal Ooeration

$11-3-2$

One interrupt condition - TIMEOUT - originating in the Floppy Disk Control card, enabled by WCWD bit no. 6, while the remaining interrupt conditions originate in the Formatter and enter the Floppy Disk Control card on terminal 91, labelled DINT $_{0}$. On completion of any command issued from the Interface, an INTERRUPT is generated in the Formatter. (Refer to the previous chapter, General Command Sequence.) An INTERRUPT is also generated in the Formatter if an error condition occurs (unit check) while executing a command. (The executing command is aborted.)

Upon receiving an INTERRUPT and identifying the device, the CPU will read the device status to find out what happened and where (Interface, Formatter or unit).

Since the IOX $<$ RSR1 $>$ (Read Status Register no. 1) communicates with the Interface only it is the Interface which is responsible for maintaining fresh status information for the CPU.

This is accomplished via an automatic feature in the Interface Formatter communication. Upon reception of an INTERRUPT from the Formatter, the Interface will gate the status information from the Formatter to the Interface. The CPU will, thus, receive status information that corresponds to the INTERRUPT (refer to Figure II.3.2).

To obtain more information about an INTERRUPT sequence - a general command sequence should be studied (refer to Chapter II.2).

Figure II.3.2: Gating Status
.

II. 4 INTERFACE DATA ROUTES

11.4.1 GENERAL DESCRIPTION

The following discussion refers to Figure 11.4.1.
The Floppy Disk Data card communicates with the CPU on a 16 bit I/O bus labelled BD 0-15. The card also communicates with the Formatter over an 8 bits bi-directional bus labelled TBUS 0-7. All data exchanged between the Formatter (Floppy disk) and the CPU will be routed through a 1 k 16 bits sequentially accessed Data Buffer.

This buffer can be used as a byte oriented memory (8 bits) or a word oriented memory (16 bits), i.e., two bytes may be accessed independently within the same buffer address by activating "CE1" or "CE2". (A 16 bits word will be accessed by activating both.)

As mentioned above, the Data Buffer will be accessed from two sources:

- The CPU can access this buffer through execution of an IOX $<$ RDAT $>$ (Read) or IOX \langle WDAT $>$ (Write) instruction.

The 16 bits word length access will always be performed from the CPU.

- The Formatter will also access this buffer over the 8 bits X-fer bus. A READ or WRITE operation is by a DIRECTION signal issued from the Formatter.

Eight bits data bytes will be assembled or disassembled in the Data Buffer when accessed from the Formatter.

The data exchanged between the Data Buffer and the Formatter over the X-fer bus, may be regarded as a DMA type of data transfer. The data transfer is initiated from the CPU - while an INTERRUPT from the Formatter indicates a transfer complete.

The upper part of the internal (BUS 8-15) is "connected" to the X-fer bus directly through an X-mitter/receiver circuit where "FDOUT" enables X-mition and "FDIN" enables reception.

The most significant half of the Data Buffer communicates with BUS 8-15.
(VIVO YSIO 1ddO7コ) 8Ll6 WVYOVIO Y0078

Figure 11.4.1.

Data from the Formatter to the least significant half of the buffer must be enabled onto the lower internal bus (BUS 0-7) by the control signal "ENUL" before being written into the buffer.

Data to the Formatter, from the least significant part of the buffer, must be enabled onto the upper internal bus (BUS 8-15) before being enabled out to the Formatter. This is accomplished by the control signal "ENLO".

II.4.2 ADDRESS COUNTER

A sequential address counter will contain the address of the next reference to be made in the Data Buffer.

Except for an address register clear operation, no address manipulation can be performed. As an automatic feature, the address is incremented by one for:

- each access made from the CPU
(IOX $<$ RDAT $>$ or IOX $<$ WDAT)
- every second access made from the Formatter (CE1 and CE2 will toggle to enable lower and upper bytes)

Since the address register cannot be preset to any value (except zero by an address counter clear operation), all read or write should be started from address zero. It is, therefore, of importance to notice that:

- before a READ or WRITE operation from the CPU or Formatter an "address counter clear" operation must be performed

This is accomplished in one of four ways:

- 10X <WCWD> with bit no. 5 specified (clear Interface buffer address)
- IOX <WCWD> with bit no. 4 specified (device clear)
- depressing the master clear button on CPU panel
- after buffer has been loaded with one sector of data (512 bytes) during a master clear load sequence (the start address is then prepared for the microprogram read operation)

Refer to Figure II.4.2.

$$
11-4-5
$$

Figure II.4.2: Address Counter Clear Illustration

II.4.2.1 Address Counting

As previously mentioned, the counter is incremented by one for each access made from the CPU and every other access made from the Formatter. For more details, refer to Sections II.4.3 to II.4.6.

II.4.3 READ DISK OPERATION

The program sequence in which a data read operation can be performed will be discussed separately.

In this section, we will handle the control signals involved during a data transfer from the Formatter to the Interface.

The following discussion refers to Figure II.4.1 and Figure II.4.3.

From the selected unit, the data and clocks will alternate on one line labelled READ DATA.

In the Formatter, data and clocks will be separated (described in Section III.4). Data will be assembled into 8 bit bytes in the Formatter; transferred to a Buffer Register driving the X-fer bus. A request (TREO ${ }_{0}$) will be sent to the Interface. Looking at the DIRECTION line (TDIR), the Interface will know if a READ or a WRITE operation is in progress. (An inactive state indicates a read operation.)

Upon receiving the request signal, the following sequence will be initiated in the Interface. (Assuming an odd byte number X-ferred.)

- Enable X-mitter/receiver to receive data from the X-fer bus (DIN ${ }_{0}$)
- Chip enable 1 (CE1) will be turned on to enable the data bytes to the most significant half of the Data Buffer.
- after a short delay a write pulse will be sent to the Data Buffer (WRAM)
- as the write pulse drops, i.e., the Data Buffer has accepted the data, a GRANT (TGRANT) signal is sent back to the Formatter turning off the REQUEST (TREQ)

Seeing the REQUEST line being dropped

- the Interface will respond by turning off the GRANT (IGRANT) line.

The sequence for an odd data byte has now been terminated.

After approximately $32 \mu \mathrm{~s}$, the second or odd data byte is ready for transfer and the following sequence will be followed:

- Enable X-mitter/receivers to receive data from the X-fer bus (DIN)
- Enabled Bus 8-15 (ENUL) onto Bus 0-7
- Chip selection will be toggled to turn on CE2 to enable the data into the least significant half of the Data Buffer
- after a short delay, a write pulse (WRAM) will be sent to the Data Buffer
- as the write pulse drops, i.e., Data Buffer has accepted the data, a GRANT (TGRANT) signal is sent back to the Formatter turning off the request (TREQ)

Seeing the request line being dropped, the Interface will:

- increment the Buffer Address Counter (ACOUNT)
- drop the GRANT (TGRANT) line

The above described sequences will be repeated until one sector (512 bytes) of data is transferred.

In the Data Buffer, the 512 data bytes are packed into 256 CPU words. When the READ operation is completed, an INTERRUPT is given to the CPU. By analyzing the status word the CPU should know the Buffer Address Counter and commence reading the Data Buffer by means of IOX <RDAT> instructions.

II.4.4
 WRITE DISK OPERATION

In this section, we will take a closer look at the control signals involved during a data transfer from the Interface to the Formatter. Refer to the Figure II.4.4 and Figure II.4.1 for the following discussion.

Data written on the diskette must, prior to a write operation, be placed in the Data Buffer.

However, this operation should start with a Buffer Address Counter Clear operation (WCWD bit no. 4 or WCWD bit no 5).

Data from the CPU will, by executing IOX <WDAT> (refer to Section II.4.5) be put into the Data Buffer in sequential order starting with address zero.

The operation should be appended with a Buffer Address Counter Clear operation.

The actual unit will be prepared for a write operation.
Before the R/W head approaches the actual data field, the first data byte to be written on the diskette must be ready in a disassembly register in the Formatter. Prior to this, a request (TREQ) for the first data byte must have been issued from the Formatter. Since a WRITE operation is in progress, the DIRECTION line (TDIR) will be activated by the Formatter.

Receiving the REQUEST, the Interface will start the following sequence:

- enable X-mitter/receivers to transmit data onto the X-fer bus (DUT)
- chip enable 1 will be turned on to enable data from the most significant half of the Data Buffer
- the write line (WRAM) is inactive, performing a read operation from the Data Buffer
- as a certain amount of time has elapsed, a GRANT (TGRANT) signal is sent back to the Formatter, indicating that a data byte is placed on the X-fer bus
- sensing the GRANT signal, the Formatter will pick up the first data byte and put it into the Data Write Register
- the Data Write Register will be copied into a Disassembling Register

As the R/W heads move into the pre-requested data field (predefined part of the addresses sector) the data bits will start shifting out.

The data bits will be encoded with clock pulses and sent to the unit as WRITE DATA.

At this point in time, a new request will be made for the second byte.
The following will describe the sequence of events.

- enable the X-mitter/receiver to transmit data onto the X-fer bus (DUT)
- enable Bus 0.7 onto Bus 8-15 (ENLO)
- chip selection will be toggled to turn on CE2 to enable the data from the least significant half of the Data Buffer
- the write line (WRAM) is inactive, performing a READ operation from the Data Buffer
- as a certain amount of time has elapsed, a GRANT (TGRANT) signal is sent back to the Formatter indicating that a data byte has been placed on the X-fer bus
- sensing the grant signal, the Formatter will pick up the data byte and put it into a Data Write Register and turn off the REQUEST line.

Seeing the REQUEST line being dropped, the Interface will

- increment the Buffer Address Counter (ACOUNT)
- drop the GRANT (TGRANT) line

As the first data byte is shifted out to the unit, the disassembly register will be loaded in parallel from the Data Write Register and a new REQUEST will be issued. (The Data Write Register will, thus, function as a one byte buffer in the Formatter).

The above described sequence will be repeated until one sector is written on the diskette (512 bytes) and no more requests will be made.

As the write operation is finished an INTERRUPT is sent to the CPU to indicate termination of the requested operation (refer to Figure II.3.1).

II.4.5 WRITE DATA BUFFER

Prior to a write disk operation (data flow from the Data Buffer located in the Interface to the Formatter) the Data Buffer must be loaded with data. This is accomplished using IOX <WDAT> instructions. The data flow is illustrated in Figure II.4.5.

The sequence of control is described below. Refer to Timing Chart II.4.6.

- IOXE timing signal received from CPU
- the transmitter/receivers are enabled to read data from the I/O bus (BDOUT)
- after a short delay, a delayed CONNECT is sent back to the CPU indicating an active transfer (DLCON)
- both the least and most significant parts of Data Buffer are constantly enabled (CE1 and CE2)
- when the data on the bus is assumed to be stable, a data write pulse is generated to the Data Buffer. A 16 bits data word is placed in the buffer

When the IOXE signal from the CPU drops the:

- delayed connect (DLCON) signal drops
and
- the write pulse drops

A small delay is introduced before

- disabling the receiver function
to guarantee stable data during the entire write pulse period.
- the Buffer Address Counter will be incremented (ACOUNT)
when a WRITE Data Buffer sequence is terminated.

Figure 11.4.5: Write Data Beffer

$$
\begin{aligned}
& \text { IOX timing signal from CPU } \\
& \text { Output 'register' is accessed } \\
& \text { Programmed device output active } \\
& \text { Enable BD onto Interface } \\
& \text { Enable least sign. } \\
& \text { and most sign. half of buffer } \\
& \text { IOX WDAT active } \\
& \text { Increment Buffer address counter. }
\end{aligned}
$$

$\because \quad 68$
\therefore
IOXE $_{0}$
DEQL $_{1}-$ BAO $_{1}$
DLCON $_{1}$
BDOUT $_{0}$
CE $_{0}$
CE $_{0}$
WDAT $_{0}$
ACOUNT $_{0}$

Figure II.4.6: Write Data Buffer - Timing Diagram

II.4.6 READ DATA BUFFER

After a read disk operation (data flow from the Formatter to the Data Buffer located in the Interface), the Data Buffer holds one sector of data equivalent to 512 bytes packed into 256 CPU words.

This Data Buffer will be transferred to the CPU by means of IOX $<$ RDAT $>$ instructions.

The data flow is illustrated in Figure II.4.7.
The sequence of control is described below. Refer to Timing Chart II.4.8 throughout the following discussion.

- IOXE timing signal received from the CPU
- connect signal (CON) sent to the CPU to indicate an active transfer
- input signal (INP) generated to prepare for an input data transfer
- both least significant and most significant parts of Data Buffer are constantly enabled (CE1 and CE2)
- the output of the least significant half of the Data Buffer DO $0-7$ is enabled onto the internal bus, BUS 0-7 (RDAT)
- the output of the most significant half of the Data Buffer DO 8-15 is enabled onto the internal bus, BUS 8-15 (ENUP)
- after a short delay, the internal data bus, BUS $0-15$, is enabled onto the I/O bus (BDIN)

When the IOXE signal drops from the CPU

- the connect signal drops (CON)
- the input signal drops (INP)
- disable least (RDAT) and most (ENUP) significant bytes from Buffer onto internal bus

After a short delay

- disable the internal bus from the I/O bus (BDIN)
- the buffer address counter will be incremented (ACOUNT)

The above sequence will be repeated until the Data Buffer is transferred.

Figure II.4.7.
READ DATA BUFFER (IOX<RDAT>) TIMING DIAGRAM

Figure II.4.8: Read Data Buffer - Timing Diagram

II. 5 PROGRAMMED NONDATA OUTPUT/INPUT

11.5.1 GENERAL

By non-data input/output we mean the flow of nondata information to/from CPU, i.e., information flow necessary to operate the system.
II.5.2 NONDATA OUTPUT

In this section, we will discuss programmed output, excluding

- IOX <WDAT> Write Data
- and
- IOX $<W S C T>$ Write Test Byte
which are discussed in Section 11.4.5 and II.6.1 respectively.
What then remains for this discussion is
- IOX $<W C W D>$ Write Control Word

IOX $<W D A D>$ Write Drive Address or Write Difference
and

- \quad IOX $<W S C T>$ Write Sector

The general data flow is illustrated in Figure II.5.1.
Except for the Control Word, the data must be held in the upper byte which is transmitted directly to the Formatter. (Refer also to Section 1.4.)

The timing chart in Figure II. 5.2 shows the active control signals in the correct time perspective.

Figure II.5.1: Nondata Output - Data Flow

Figure II.5.2: Programmed Output (IOX) Timing

II.5.2.1 IOX <WCWD> Write Control Word

The IOX <WCWD> will generate an LCOM pulse that will strobe the TBUS into the Command Register located in the formatter. For bit assignment, refer to Section I. 4 - Programming Specifications and/or Section II.1-The Interface Signals.

As described in Figure II.5.3, the lower bits transmitted from the A register will be used locally in the Interface to set up different control functions.

Figure II.5.4: $10 X<W C W D>-$ Data Flow

II.5.2.2 IOX <WDAD> Write Drive Address

Ficure 11.5.4: $10 X<W D A D>$ - Data Flow
As illustrated above, Load Drive Address (unit and format selection) will be performed by executing IOX \langle WDAD $>$ with A register bit $0=1$.

$$
11-5-5
$$

11.5.2.3 $I O X<W D A D>$ Write Difference

Figure II.5.5: $10 X<W D A D>-$ Data Flow
As illustrated above, "tracks to go" will be put into the Difference Counter by executing an IOX <WDAD> instruction with bit 0 of the A register $=$ 0 and the upper byte of the A register holding the difference.

$$
11-5-6
$$

II.5.2.4 $10 X<W S C T>$ Write Sector

Figure II.5.6: $10 X<W S C T\rangle$-Data Flow
When an IOX <WSCT> is executed and the Interface is not in test mode, the Sector Counter in the Formatter will be loaded with the upper byte of the A register.

11-5-7

II.5.3 NONDATA INPUT

In this section, we will discuss programmed input excluding

- IOX $<$ RDAT $>$ Read Data
and
- IOX $<$ RTST $>$ Read Test
which are discussed in Section 11.4 .6 and II. 6 respectively.
To be discussed here are:
- IOX <RSR1> Read Status Register No. 1
- IOX <RSR2> Read Status Register No. 2

Figure II.5.7 will illustrate the major control signals in a time perspective.

Figure II.5.7: Programmed Input (IOX) Timing

II.5.3.1 IOX $<$ RSR1 $>$ Read Status Register No. 1

Figure II.5.8: $10 X<R S R 1>-$ Data Flow

Upon reception of INTERRUPT, the CPU will issue an IOX $<$ RSR1 $1>$ to gain information about the "interrupt source".

As a hardware feature, the Interface will, upon reception of an INTERRUPT from the Formatter, as the Formatter to present the Status Byte (GSTAT). The status byte (4 bits of significance) will be loaded into a Temporary Status Register. (Refer also to Section 11.2 - General Command Sequence.) Decoding of IOX $<$ RSR1 $>$ will enable the Temporary Status Register together with some other status indicators onto BD (I/O bus) directly.

II.5.3.2 IOX <RSR2> Status Register No. 2

Finding bit 4 (inclusive OR of bits in Status Register No. 2, i.e., sense register) set in Status Register No. 1, the CPU will execute an IOX <RSR2> to gain information about the error condition. Figure 11.5 .9 will explain.

The sense byte will be presented for the CPU in the upper byte. Refer to Section I. 4 and Section II. 1 for bit assignment.

Figure II.5.9: $10 X<R S R 2>-$ Data Flow

II. 6 TEST MODE

Involved in the test modes are:

- IOX $<W C W D>$ Write Control Word
- IOX <WSCT> Write Test Byte
- IOX $<$ RTST $>$ Read Test Data

Refer to Section 1.4 for the above operations.
The purpose of the test mode is to simulate a data transfer between the Formatter and the Interface. From studying a Read Disk Operation, we know that all data from the Formatter will be routed through the Data Buffer. The same data routes will also be used in test mode.

The Interface will be put into test mode by executing:
SAA 10
$10 x<W C W D>$
By executing IOX $<$ RTST $>$ (Read Test) a predefined byte (refer to Section II.6.1) will be put onto the internal bus and written into the Data Buffer, i.e., no data will be moved into the A register during this operation.

By executing a number of IOX <RTST> instructions, the test bytes will be packed into the Data Buffer, i.e., the test byte will alternatively be written into the most and then the least significant position of the Data Buffer.

Being in test mode, the Interface will:

- force the DIRECTION signal inactive, i.e., simulate a disk read operation
- disable Transmitters for I/O bus (disable FDIN)
- disable receivers from the X-fer bus (disable DIN)
- set the Busy FF to enable for toggling of CE1 and CE2
- disable the GRANT signal
- enable for reading or writing the "test byte" on/off BUS 8-15.

The data flow is illustrated below:

Figure II.6.1: Read Test Data - Data Flow

As depicted in Figure II.6.3, execution of IOX $<$ RTST $>$ instructions are a combination of Read Disk Operation and IOX $<$ RDAT $>$ operations with the above described inhibitations.

Note: No data will be sent to the CPU.

II.6.1 SELECTING THE TEST BYTE

The test byte written into the Data Buffer, by executing the IOX <RTST> can be selected, as desired, by setting up the test byte in the upper byte ot the A register and executing an IOX <WSCT>.

Data flow is indicated in Figure 11.6.2.

Figure II.6.2: Write Test Byte - Data Flow

Figure II.6.3: $10 X<$ RTST $>$ Timing Diagram (Test Mode active) (Execution of two IOX <RTST> instructions illustrated)

11.7 MASTER CLEAR - AUTOLOAD

11.7. 1 GENERAL

The Floppy Disk is to be considered as a Master Storage Device. Normally, such a device would be handled by a DMA interface, however, due to cost, access time and type of usage considerations, a PIO interface has been chosen. A load must, thus, conform to the program specifications for a teletype or paper tape reader.

However, in order to do a load operation from a Floppy Disk, a sequence of commands must be issued. Since the microprogram performing the load operation does not handle such a sequence, the microprogram will start operating on the data after they have been put into the Data Buffer. An automatic command sequence generator triggered off by $W C W D_{0}$ and B\#2 handles the task. A load operation is then divided into two parts.

When the load m-program is started it issues a standard activate device command (bit 2 in control word). This is used to initiate autoload sequence. Bit 2 in the control word MUST NOT be used by standard software.

Load
will initiate the load sequence which will move the data from the Data Buffer into main memory. (IIlustrated in Figure II.7.1.)

Figure II.7.1: Load-Data Flow

11-7-3

The microprogram initiated by the "load" will not start moving data until it senses the Ready Bit (Status Bit I No. 3). This bit will not be true until one sector of data has been read off the diskette and put into the Data Buffer.

We will, in the following, describe the hardware sequence initiated by WCWD, Bit No. 2.

II.7.2 AUTOLOAD SEQUENCE

II.7.2.1 General

BD2 of WCWD 0 will initiate a hardware sequence that reads sector no. 1 on track 0 and transfers the data to the Data Buffer.

The following commands must be presented for the Formatter in the sequence indicated:

- select Drive No. 0 and Sector Format
- recalibrate (reposition the heads to track no. 0)
- specify sector no. 1
- send read command

At the terminal point of the read operation, an INTERRUPT will be sent to the Interface. A Buffer Address Counter Clear will be performed and the ready flag set (Status I bit no. 3).

The microprogram initiated by the LOAD may now start moving the data.

II.7.2.2 Detailed Description

As indicated above, several commands must be issued from the Interface during the "autoload sequence".

Figure II.7.2: Autoload IIlustration

II-7-5

As depicted in Figure II.7.2, a command sequencing network is realized on the control card (1111). This network is responsible for issuing the different commands in the proper order with the correct time perspective. The Command Generator will enable the different command arguments onto the bus.

Figure II.7.3: General Autoload Command Timing
The sequence depicted in Figure 11.7 .3 will be run through for each command sent to the Formatter. When "LDCLK" goes off a "DLYPULS" will activate the command lines (one for each run-through) and the "EN" will enable the command argument onto the bus. (Refer to Figure II.5.1.) The "FDOUT" generated from "EN" will drive the internal bus onto the X-fer bus.

A step counter located in the Command Sequence Network will allow repetition of the above generally described sequence until the last step is reached (LDFIN). For study of the complete sequence, refer to the timing chart labelled "Autoload Sequence - When Disk is Ready", Figure 11.7.4.

ND-11.012.01

Sending IOX <WCWD> with B02 set starts off the sequence, i.e., generates the first "LDCLK". "STEP ${ }_{0}$ ", the first step in the autoload sequence, will be entered.

During this step, a "LDADR" (load address strobe) will be generated.

Figure II.7.5: X-fer Argument for Autoload Sequence
Figure 11.7 .5 shows the argument enabled onto the bus for different commands. The argument will select driver number 0 and the desired sector format. A one shot "RDDLY" is set up to handle INTERRUPT from the disk if it is not ready (described in Section II.7.3.). If no INTERRUPT occurs, we assume the drive is ready and the sequence may continue.

Step 1 will be entered and will generate a "LCOM" (load command) strobe. The argument with bit no. 6 will specify a recalibration. The time of this operation depends upon where the R/W head is currently located. An INTERRUPT from the disk will given the information that the R/W head is settled on track number 0 . The step counter will advance and enable for step 2. During this step, the argument enabled to the bus will indicate the sector number to be operated on, which in our case, is sector number 1.

NB: Sector counting starts from 1 NOT 0.

After an internal delay, step number 3 will be entered. This step will order a read command by activating bit number 4 on the X -fer argument and pulsing the "LCOM" control line.

Step 4 will be entered. The data field of sector 0 in track 0 will be assembled and transferred to the Data Buffer in the Interface. At the completion of the read operation (512 bytes read), an INTERRUPT will be presented for the Interface. The last step (LDFIN) is entered to indicate termination of the "Autoload Sequence". A Buffer Address Counter Clear pulse will be generated to prepare for the microprogram load operation. Status bit no. 3 (ready) will also be activated. The microprogram load will test on this bit before doing a read operation.

II.7.3 MASTER CLEAR - AUTOLOAD - WHEN DISK IS NOT READY

Above is described a load sequence, where it has been assumed that the disk unit was in the ready state.

Any of the following conditions will make the disk NOT ready:

- unit is not powered up
- the diskette access door is open
- the diskette is not perfectly installed
- an illegal drive address is issued

If one or more of the above indicated conditions are not satisfied when doing a "LADR" (load address), step 0 of the autoload sequence, the Formatter will respond with an INTERRUPT (DINT) within $2 \mu \mathrm{~s}$.

From the timing diagram (Figure II.7.6), we see that step 0 will be re-entered after receiving an INTERRUPT during the one-shot interval "RDDLY".

The signal "STLD" will clear the step counter such that step 0 will be re-entered. The sequence described by the timing diagram will be active until the disk becomes ready. The normal load sequence (as described above) will then be executed.

WE NOTICE that no status information will be given to the CPU if the unit is not ready during the Autoload sequence.

* When drive is not ready within 2μ, an interrupt is generated
Figure II.7.6: Load Sequence if Disk is Not Ready

II.7.4 THE LOAD OPERATION

The Autoload sequence is terminated when one sector of data has been transferred to the Data Buffer and the ready flag (Status I bit no. 3) has been set.

Seeing Status I bit no. 3 set, the microprogram will perform the load operation. For further details regarding load format, etc., refer to the NORD-10 Reference Manual - Chapter 8.

SECTION III
FORMATTER

DETAILED CONTENTS

$+\quad+\quad+$

Section:		Page:		
111.1	Formatter/Unit(s) Interface Signals	\|II-1-1		
111.1 .1	General	\|		-1-1
111.1 .2	Signal Interface	111-1-3		
III.1.2.1	Head Loado	III-1-3		
III.1.2.2	Index 0	\|II-1-3		
III.1.2.3	Readyo	III-1-3		
III.1.2.4	Drive Select 1-3	III-1-3		
III.1.2.5	Direction Select	III-1-4		
III.1.2.6	Step	\|II-1-4		
III.1.2.7	Write Data	III-1-4		
III.1.2.8	Write Gate	\|II-1-4		
III.1.2.9	Track 00	\|II-1-4		
III.1.2.10	Write Protected	\|11-1-5		
III.1.2.11	Read Data	III-1-5		
111.1 .3	Power Interface	111-1-6		
III.1.3.1	AC Power	\|11-1-6		
III.1.3.2	DC Power	$111-1-6$		
111.2	Formatter - Functional Operation	$111-2-1$		
111.3	Track Format	111-3-1		
111.3 .1	General	111-3-1		
111.3 .2	Gaps	III-3-3		
III.3.2.1	Gap 1, Post-Index Gap	111-3-3		
III.3.2.2	Gap 2, ID Gap	$111-3-3$		
III.3.2.3	Gap 3, Data Gap	III-3-3		
III.3.2.4	Gap 4, Pre-Index Gap	$111-3-3$		
111.3 .3	Address Marks	111-3-4		
III.3.3.1	Index Address Mark	III-3-4		
III.3.3.2	ID Address Mark	111-3-4		
III.3.3.3	Data Address Mark	111-3-4		
III.3.3.4	Deleted Data Address Mark	III-3-4		
III.3.4	Cyclic Redundancy Check (CRC)	$111-3-5$		

Section:		Page:
111.4	Data Recovery	111-4-1
111.4 .1	Data Separation - General	\|11-4-2
111.4 .2	Data Recovery - Functional Operation	III-4-4
III.4.2.1	Phase and Frequency Tracking	III-4-4
III.4.2.2	Non-Symetrical Data Window Generation	III-4-4
III.4.2.2.1	The Peak Shift Effect	III-4-6
III.4.2.3	Sync Up Circuitry	III-4-8
III.4.2.3.1	General	111-4-8
III.4.2.3.2	Operation	111-4-8
111.5	Formatter - Data Flow	III-5-1
111.5 .1	Read Operation	\|II-5-1
111.5 .2	Write Operation	III-5-3
111.6	Read/Write Control	III-6-1
111.6 .1	General	III-6-1
111.6 .2	Read ID	111-6-2
111.6 .3	Read Data	III-6-4
111.6 .4	Write Data	\|II-6-6
111.6 .5	Write Deleted Data	III-6-10
111.6 .6	Format Track	III-6-13
111.7	Interrupt, Sense and Status	III-7-1
111.8	Any Seek Operation	111-8-1
111.8 .1	General	\|11-8-1
111.8 .2	Seek Operation	III-8-3
III.8.3	Recalibrate	111-8-4

III. 1 FORMATTER/UNIT(S) INTERFACE SIGNALS
III.1.1 GENERAL

As mentioned in Chapter I.3, up to 3 drives (units) can be "daisy chained" onto the Formatter. The assignment of the lines to/from the Formatter will be described in this section. Refer also to Figure III.1.1.

The figure also depicts plug and pin numbers on the Formatter as well as on the unit side. The Interface may be divided into two groups:

- Signal Interface
- Power Interface

Figure III-I-I
FORMATTER/UNIT(S) INTERFACE LINES

III.1.2 SIGNAL INTERFACE

III.1.2.1 Head LoadO

Normally, this line is not used but is a customer installation option line. With this option installed (refer to Maintenance Manual, Section 7), the R/W head will load when this line is activated and the door is closed without the unit being selected.

III.1.2.2 Index 0

This line is activated by the selected drive once for each revolution of the diskette (166.67 ms) to indicate the beginning of a track (pulse width $1.7 \mu \mathrm{~s}$).

III.1.2.3 Readyo

Normally, this interface line, when active, will indicate the following:

- two index holes have been sensed after properly inserting a diskette and closing the door
or
- two index holes have been sensed after applying $+5 V D C$ power to the drive

For additional use, refer to the Maintenance Manual, Section 7.5.

III.1.2.4 Drive Select 1-3

By activating one of these lines the corresponding unit will load the R/W head and respond to the Input lines and gate the Output lines.

Traces DS1, DS2 and DS3 have been provided to define the unit number.

Note: As shipped from the factory, a shorting plug is installed on DS1. To define another unit number, the shorting plug should be moved to the appropriate DS-pin.

III.1.2.5 Direction Select

This interface line is a control signal which defines the direction of motion for the R/W head when the STEP line is pulsed.

A "high" (or open circuit) defines the direction OUT, i.e., the R/W head will move to a lower track number. Conversely, if the line is "low" the R/W head will move toward the center of the diskette.
III.1.2.6 Step

This interface line is a control signal which causes the R/W head to move the direction defined by the DIRECTION line.

The access motion is initated on each trailing edge of the pulse (repetition rate 10 ms - pulse width $10 \mu \mathrm{~s}$).

III.1.2.7 Write Data

This line provides encoded clocks and data to be written on the diskette. The leading edge will clock a Write Toggle FF which, in turn, will reverse the write current, thus, writing one bit on the spinning diskette.

Note: The WRITE GATE must be active in order to perform a write operation.

III.1.2.8 Write Gate

This line, while in the active state, enables data to be written on the diskette and disables stepping of the R/W head. The Read Circuitry and the Step Motor Control Logic are enabled when the WRITE GATE is turned off.

III.1.2.9 Track 00

The active state of this line indicates that the R/W head is located over track 0 .

III.1.2.10 Write Protected

This interface signal is provided by the drive to give the Formatter (system) an indication that a Write Protected Diskette is installed.

Under normal operation, the drive will inhibit writing on a protected diskette in addition to notifying the Formatter. For optional use, refer to Section 7.9 in the Maintenance Manual.

III.1.2.11 Read Data

This interface line provides "raw data", i.e., alternate clocks and data as detected by the units Read Circuitry.

III.1.3 POWER INTERFACE

The unit requires both $A C$ and $D C$ power for operation. The $A C$ power is used for the Spindle Drive Motor while the DC is used for the Electronics and Stepper Motor.

III.1.3.1 AC Power

For our environments, 220 V AC 50 Hz is carried on pin 1 and 3 of J4/P4 located below the AC Motor Capacitor.

Note: For different power environments refer to the Maintenance Manual, Section 4.2.
III.1.3.2 DC Power

DC power to the unit is applied via the $\mathrm{J} 5 / 75$ connector located on the non-component side of the PCB near the P4 connector.

For more specific information, refer to the Maintenence Manual, Section 4.2.2.

III. 2 FORMATTER - FUNCTIONAL OPERATION

For the following study refer to Figure III.2.1, the description of the Formatter/Interface lines (Section II.1) and description of the Formatter/ Unit interface lines (Section III.1).

The different "building blocks" will be discussed in detail as the different operations are discussed. Formatter physical locations are depicted in Figure I.3.1, while logic diagrams, etc. are labelled Appendix D/I-II-III.

When the two above mentioned interfaces have been studied, it should be possible to understand the major control and data flow by looking closely at Figure III.2.1.
SA 810 FORMATTER

Figure III.2.1: Formatter - functional diagrams

III. 3 TRACK FORMAT

III.3.1 GENERAL

Tracks may be formatted in a number of ways as indicated in Table III.3.1.
Format selection is under software control, and is selected in parallel with drive selection, by the use of IOX <WDAD> (refer to Section 1.4, Programming Specifications.)

FORMAT	RECORDS/ TRACK	BYTES/ RECORD	SUBSYSTEM STORAGE (In mega-bytes	
			1 drive	3 drives
A (3740).	26	128	. 25	. 75
B (Sys 32-I).	15	256	. 28	. 85
C (Sys 32-II).	8	512	. 30	. 90
AA (Double A).	32	256	. 63	1.9

Table III.3.1: Format Selection

NOTES:

1. Subsystem storage may contain from one to three drives.
2. All diskettes have 77 tracks (0 through 76).
3. Data recording technique is FM for formats A, B, C and $M^{2} F M$ for format AA.

Due to the usage of "Soft Sectoring Format (only a physical index pulse is detected on the diskette), a track may be divided into the desired number of sectors.

Only SYS 32-II format is discussed and illustrated in the following sections.
хари! 7 рכ!! 5 Kd
$\xrightarrow[(\text { nominal) })]{\text { 46 bytes }}=$
Sector \#1—— Sector \#2 \longrightarrow Etc.
$E=$ Gap bits consist of ones. (Number will vary for Gap 2,3 and 4
S $=$ Read Sync-up bits consist of zeros (constant)

III.3.2 GAPS

Each field on a track is separated from adjacent fields by a number of bytes containing no data bits. These areas are referred to as gaps, and are provided to allow the updating of one field without affecting adjacent fields. As can be seen from Figure III.3.2, there are four different types of gaps.

III.3.2.1 Gap 1, Post-Index Gap

This gap is defined as the 32 bytes between Index Address Mark and the ID Address Mark for Sector one (excluding the address mark bytes). This gap is always 32 bytes in length and is not affected by any updating process.

III.3.2.2 Gap 2, ID Gap

The seventeen bytes between the $I D$ field and the data field is defined as Gap 2 (ID Gap). This gap may vary in size slightly after the data field has been updated.

III.3.2.3 Gap 3, Data Gap

The eighty bytes between the data field and the next ID field are defined as Gap 3 (data gap). As with the ID gap, the data gap may vary slightly in length after the adjacent data field has been updated.

III.3.2.4 Gap 4, Pre-Index Gap

The forty-six bytes between the last data field on a track and the Index Address Mark are defined as Gap 4 (pre-index gap). Initially, this gap is nominally 46 bytes in length; however, due to write frequency tolerances and disk speed tolerances, this gap may vary slightly in length. Also, after the data field of record 26 has been updated, this gap may again change slightly in length.

III.3.3 ADDRESS MARKS

Abstract

Address marks are unique bit patterns, one byte in length and, used in this typical recording format to identify the beginning of $I D$ and data fields and to synchronize the Deserializing Circuitry with the first byte of each field. Address Mark bytes are unique from all other data bytes in that certain bit cells do not contain a clock bit (all other data bytes have clock bits in every bit cell). There are four different types of address marks used. Each of these are used to identify different types of fields.

III.3.3.1 Index Address Mark

The index address mark is located at the beginning of each track and is a fixed number of bytes in front of the first record. The bit configuration for the index address mark is as shown in Figure III.3.2.

III.3.3.2 ID Address Mark

The ID address mark byte is located at the beginning of each ID field on the diskette. The bit configuration for this address mark is shown in Figure III.3.2

III.3.3.3 Data Address Mark

The data address mark byte is located at the beginning of each non-deleted data field on the diskette. Refer to Figure 111.3.2.

III.3.3.4 Deleted Data Address Mark

The deleted data address mark byte is located at the beginning of each deleted data field on the diskette. Refer to Figure III.3.2.

III.3.4 CYCLIC REDUNDANCY CHECK (CRC)

Each field written on the diskette is appended with two Cyclic Redundancy Check (CRC) bytes. These two CRC bytes are generated from a cyclic permutation of the data bits starting with bit zero of the address mark and ending with bit seven of the last byte within a field (excluding the CRC bytes).

When a field is read back from a diskette, the data bits (from bit zero of the address mark to bit seven of the second CRC byte) are divided by the same generator polynomial. A non-zero remainder indicates an error within the data read back from the drive, while a remainder of zero indicates the data has been read back correctly from the disk.

III. 4 DATA RECOVERY

From the unit, data and clocks appear as READ DATA. The main tasks for the Data Recovery Circuits are to:

- separate data from clocks
- indicate start of assembly or disassembly of data (Enable BR)

Figure III.4.1: Data Recovery

III.4.1 DATA SEPARATION - GENERAL

A pulse train named Data Window is internally generated in the Data Recovery Circuit. Basically, this pulse train is ANDed in its true and inverted form with READ DATA and generates SEPARATE DATA and SEPARATE CLOCKS, respectively. Figure 111.4 .2 will help illustrate.

Figure III.4.2: Data Separation - General

SEPARATE CLOCKS will function as main clocks during a read operation while SEPARATE DATA will be assembled and sent to the CPU.

Since the Data Window is internally generated in the Formatter, and read clock pulses arrive from the spinning diskette, the initial phase relationship is random.

When a read operation starts, the Data Window must be set up such that:

- READ CLOCKS appear in the middle of the "Data Window", i.e., data will appear in the middle of the "Data Window".

A specially designed Sync Up Circuitry handles this task (discussed in Section III.4.2.3).

Another consideration that should be made is:

- Should the "Data Window" by symetrical or not, i.e., should we look for data for the same amount of time as we look for clocks.

The answer is no - we look for data for 40% and clocks 60% of the cycle time of the Data Window. Peak Shift (described in Section III.4.2.2.1) is the effect that has been considered.

Variation in spindle speed - Write Oscillator drift, and drift in Data Window frequency, is accomplished by adjusting the Data Window frequency of the READ CLOCKS from the diskette. A Phase Lock Loop accomplishes this task.

III.4.2 DATA RECOVERY - FUNCTIONAL OPERATION

Refer to Figure III.4.3 for the following discussion.

III.4.2.1 Phase and Frequency Tracking

Phase and frequency tracking is accomplished by a Phase Locked Loop. The VFO (Variable Frequency Oscillator) (1) outputs a ramp voltage at a frequency of 500 KHz . The Comparator Network (2) will compare the voltage of the ramp at the time when a clock is applied. If the clock pulse (standarized data) occurs in the middle of the ramp, i.e., when the ramp erases ground level, no error violation is produced. If the ramp has an offset at the clock time - an error voltage, corresponding to the offset magnitude and polarity, will produced.

Due to the peak shift effect, etc., clocks will shift back and forth on a short term basis.

A Long Time Constant Integrator Network (3) will produce an average offset (TP 28 error voltage) and set up variable impendance change path to the relaxation oscillator and, thus, charge the frequence of the clocks read off the diskette.

The normal change path for the relaxation oscillator (1) is through potentiometer R29, i.e., the nominal speed of the oscillator will be set up by this potentiometer. This can be done in one of two ways:

- GND on TP27 (no correction)
or
- GND on 10 (inhibit samples)
where the latter should be preferred.

III.4.2.2 Non-Symetrical Data Window Generation

The ramp formed by the VFO (1) is the origin for the Data Window Generation Network (4). The ramp will clock a Toggle FF, giving a Data Window frequency of 250 KHz (TP34). Due to the Peak Shift effect (which is NOT precompensated during write) a non-symetrical Data Window is formed to obtain highest possible readability. This is accomplished by the Toggle FF controlling an Alternate Charge Patch Circuit. This circuit will be activated for every second ramp, thus, giving a non-symetrical Data Window.

III.4.2.2.1 THE PEAK SHIFT EFFECT

Using modern high frequency techniques, adjacent clocks and data pulses are close enough to interact with each other. The bit crowding effect is the interaction of the adjacent pulses.

Because two pulses tend to have a portion of their individual signals superimposed, the actual read-back voltage is the algebraic sum of the two pulses. The bit crowding will only take place when the read-back voltage frequency changes. Figure III.4.4 illustrates this.

Figure III.4.4: Peak Shift - Illustration

In FM recording technique, each data cell starts with a clock pulse. A " 1 " data bit will, therefore, be placed between two clock pulses. However, a clock pulse is written between:

1. Two other clock pulses (no peak shift)

2. A data pulse and another clock pulse (late peak shift)

3. Another clock pulse and a data pulse (early peak shift)

4. Two data pulses (no peak shift)

Figure III.4.5: Peak Shift Illustration

In conclusion, a peak shift will not occur to a data bit, but will occur in both directions to a clock pulse. A longer window is, therefore, required for clock pulses than for data pulses.

The ramp (TP29) and, thus, the Data Window (TP34) will, by the Alternate Charge Path Circuit, be formed as depicted in Figure III.4.6.

Figure III.4.6: Data Window Generation

III.4.2.3 Sync Up Circuitry

III.4.2.3.1 GENERAL

For the following discussion, refer to Figure III.3.2 (SYS/32-II track format). Gaps have been introduced between the ID record and data field and between data field and ID record. The nominal gap lengths are indicated in Figure III.3.2. However, the gap lengths will vary slightly while the data field is being updated. A gap may be considered as two portions, the first part consists of all ones, while the last part always consists of 6 bytes of zeros, i.e., only clocks written. This part of the gap is rewritten as the data field is updated and will, therefore, always consist of 6 bytes. The purpose of those bytes are to sync up the Phase Locked Loop in the Data Separator and set the Data Window 180° out of phase of the clocks.

III.4.2.3.2 OPERATION

Reading the first part of a gap, the READ DATA line will carry alternating clocks and data pulses. The only Zeros Detector (6) will give no output and the 16 Bits Counter (7) will stay cleared.

As the Sync-Up Pattern (6 bytes of zeros) are entered the Only Zeros Detectors (6) will produce a pulse for each zero detected (only clock pulses). The counter (7) will start counting up zeros and as a Cnt Of 8 is reached, a Cnt Of FF (8) sets the clock pulses and will be applied to the Comparator Network (2). A VFO Clamp Circuit (9) will clamp the ramp from the oscillator to AV. The Toggle FF located in Data Window and Gating Network (4) will be kept in the cleared state by the clamp. After two clock pulses the clamp will be disabled and the ramp will go.

- The described operation has now set the "Data Window" 180° out of phase with the clock pulses, i.e., in phase then later appearing data pulses.

At this time, the Long Time Constant Integrator Network (3) is enabled and a closed loop for phase and frequency tracking is established. Separate clocks are now gated to the Formatter as main clocks.

As a count of 16 is reached, we enable "looking for data". When the first data bit is found (first one in the address mark), the BR Enable, TP27, becomes active. The process of data assembly is now in process.

III. 5 FORMATTER - DATA FLOW

III.5.1 READ OPERATION

Refer to Figure III.5.1.
During a read operation data and clocks are received as READ DATA from the selected unit. The Data Separator Network (VFO) (described in Section III.4) will separate clocks and data.

In the Serdes (abbreviation for serializer/deserializer) the data will be assembled into 8 bit bytes. As a new byte is assembled, it will be strobed into a Serdes Buffer. The Multiplexer will select the data byte and send it onto the X-fer bus to the Interface.

Fig. III-5-1
Tegn 29.7.76. EIB

ND-11.012.01

III.5.2 WRITE OPERATION

Refer to Figure III.5.2.
During a write operation, the requested data byte will be selected by the Multiplexer and loaded into the Serdes. The data byte will be disassembled and encoded with clock pulses (clocks and data 180° out of phase) and sent to the selected unit.

Fig:III-5-2
WRITE - DATA FLOW.

III. 6 READ/WRITE CONTROL

III.6.1 GENERAL

This section describes commands previously referred to as "any READ or WRITE" commands (Section 11.2).

The commands are:

- Format Track
- Write Data
- Write Deleted Data
- Read ID
- Read Data

The above mentioned commands will be executed by a Special Purpose Microprocessor. The commands will generate a start address (entry point) - and the microprocessor will increment or branch through a predetermined sequence of states. The microprocessor will increment or branch to the next state depending upon certain conditions decoded in the different parts of the logic. When the microprocessor is not busy with "any. READ or WRITE", it remains in its idle state (State A) indicated by R/W Idle being active. Upon completion of any of the above mentioned commands, the microprocessor will return to this state (State A).

The microprocessor is composed of the following building blocks:

- An Increment Condition Selector
- A Branch Condition Selector
- A Five Bit Program Counter
-. A 32 bits by 32 locations read only memory (ROM)
- Command Latches

The ROM addresses will be referred to as State A through N. (Refer to Figure III.6.6.)
III.6.2 READ ID

The READ ID command causes the Formatter to transfer the first $I D$ field encountered by the Read/Write head from the selected drive. The four bytes of data contained in the ID field are transferred to the Interface via the X-fer bus. The contents of the bytes are shown below, in the order of transfer.

Byte No.:	Contents:
1	Track address represented in binary (0-76)
2	Binary zero
3	Sector address represented in binary (1-108)
4	Hex 02

See also Figure III.2.1 representing the Sys 32-II Track Format.
As each of the four bytes are read off the diskette, they are assembled and placed on the X-fer bus on the way to the Interface. Refer to Figure III.5.1 illustrating the data flow.

After transferring the four ID bytes, the Formatter reads the next two CRC bytes, checking for CRC error on the field just transferred. If the CRC bytes read "compare" (CRC syndrom $=0$), with the CRC generated for the data just read, a non-error INTERRUPT is generated with corresponding status of R/W COMPLETE.

- If there is a "miscompare", a UNIT CHECK INTERRUPT is generated and the CRC ERROR sense bit is set along with status of R/W COMPLETE.
- If the Formatter detects no "ID address mark" within a full revolution of the diskette (2 index pulses), a UNIT CHECK INTERRUPT is generated and the NO AM sense bit is set (without R/W COMPLETE).
- The DATA OVERRUN sense bit is set during the READ ID command if the Interface does not respond to a TRANSFER REQUEST in sufficient time to insure correct storage of each data byte. That is, if a new data byte is ready on the X-fer bus before TRANSFER GRANT has been received for the previous byte, the overrun condition is detected. In this case, the read operation is allowed to continue to its normal ending, but the Formatter presents a status of UNIT CHECK as well as R/W COMPLETE.

Read ID - State Diagram

Figure III-6-1

Note: For more detailed study, ref. fig. III-6-6 and appendix D

III.6.3 READ DATA

The READ DATA command provides for the transfer of the data field of the requested record from the diskette to the Interface. The Interface must supply the Formatter with a prerequisite argument (sector) by placing the sector address byte on the X -fer bus and pulsing LOAD SECTOR line. The subsequent READ DATA command forces the Formatter to read each ID field encountered (not transferring bytes to the Interface) until a comparison is obtained between the third byte of an ID field (sector byte) and the desired sector. The Formatter then reads the next data field encountered, transferring each data byte (excluding the data field address mark) to the Interface Buffer in the manner defined for READ ID. After transferring the data field, the Formatter checks for a CRC read-error and:

- generates a R/W COMPLETE with UNIT CHECK INTERRUPT for a read error.
- If the desired "data field" is preceded by a "deleted data address mark", rather than the "normal data address mark", the DELETED RECORD status bit is set and is also presented to the Interface in the servicing of the command completion INTERRUPT.
- DATA OVERRUN and NO AM errors are defined for the READ ID command.
- In addition, if while searching the track for the requested record, a CRC read error is encountered at any "ID field", command execution is immediately halted and a UNIT CHECK INTERRUPT is generated.
- An error condition also results if the desired record cannot be located. That is, the MISSING SECTOR sense bit is set (with its associated UNIT CHECK INTERRUPT' when a sector byte comparison is not obtained within one full revolution of the diskette (2 index pulses).

Correct usage of the READ DATA command presumes that the R/W head has been previous/y positioned to the track of the record desired.

Figure III-6-2
Note: For more detailed study, ref. fig. III-6-6 and appendix D ND-11.012.01

III.6.4 WRITE DATA

The WRITE DATA command provides the system function of storing a record on the selected drive's diskette. The Interface must supply the Formatter with a prerequisite argument (sector) by placing the sector address byte on the X -fer bus and pulsing LOAD SECTOR line.

The subsequent WRITE DATA command forces the Formatter to read each $I D$ field encountered until a comparison is obtained between the third byte of an ID field (sector byte) and the desired sector. The Formatter then sequences up the write circuitry in the gap following this ID field and starts writing zero bytes. At the end of the gap (17 bytes) the Formatter writes the data address mark and requests the Interface to provide the first data byte. The Formatter then writes the data field, controlling the transfer of each data byte from the Interface. As each byte is needed by the diskette, the Formatter activates TRANSFER REQUEST. When the Interface has supplied the requested data on the X-fer bus, it responds with TRANSFER GRANT. When the Formatter accepts the data byte, it deactivates TRANSFER REOUEST, resetting TRANSFER GRANT. TRANSFER DIRECTION is held at a constant logical zero level to indicate a WRITE transfer operation.

After writing the data field data bytes, the Formatter writes two CRC bytes which have been generated over the field (including the address mark). At this point, the Formatter has completed the WRITE DATA command and it generates an INTERRUPT with R/W COMPLETE STATUS.

- The Control Unit terminates WRITE DATA command execution if any of the following conditions are detected.

NO AM + MISSING SECTOR
or
CRC ERRORS.

- The NO AM + MISSING SECTOR error is defined as for the READ DATA command. CRC ERROR may be generated while searching the desired "ID field", before performing a WRITE operation. These error conditions generate a UNIT CHECK INTERRUPT with the corresponding sense bit set.
- The R/W COMPLETE bit is never set with the above error conditions.
- The DATA OVERRUN sense bit is set during the WRITE DATA command if the Interface does not respond to a TRANSFER REQUEST in sufficient time to insure correct writing of each "data byte". That is, if the Formatter needs a new "data byte" on the X-fer bus before TRANSFER GRANT has been received (to indicate that a byte is ready from the Interface) the overrun condition is detected. The WRITE operation continues to its normal ending (still writing X-fer bus data without sending TRANSFER REQUEST), but at completion of the command a status of UNIT CHECK as well as R/W COMPLETE is presented to the Interface.

Write Data - State Diagram

Figure III.6.3, continued on following page

Active States \begin{tabular}{l}

Increment/Branch \begin{tabular}{l}
Conditions

\quad

Active Test

Points
\end{tabular}

\end{tabular}

Figure III-6-3

Note: For more detailed study, ref. fig. III-6-6 and appendix D

III-6-10

III.6.5 WRITE DELETED DATA

The WRITE DELETED DATA command is operationally identical to the WRITE DATA command, but results in the Formatter writing a deleted data address mark byte in front of data field.

WRITE Deleted Data - State Diagram

Figure III.6.4, continued on next page

WRITE Deleted Data - continued

Figure III-6-4
Note: For more detailed study, ref. fig. III-6-6 and appendix D

III.6.6 FORMAT TRACK

The FORMAT TRACK command provides the function of writing an entire track in the format illustration in Figure III.3.2.

This provides full diskette initialization capabilities. In the execution of this command, the Formatter provides all Gap, Address Mark, and CRC bytes while the Interface provides the 4 ID bytes and all data bytes for each record (under Formatter transfer control).

When the Formatter receives the FORMAT TRACK command it waits for the Index pulse from the selected drive, then writes:

- " 1 " bytes until the end of Gap 1
- the Index Address Mark
- "1" bytes for Gap 1
- the "ID address mark" for the first "ID field", and requests the first byte from the Interface. It continues from this point, to write ID and data bytes (received from the interface) and formatting bytes (generated from the Formatter) (Gaps, Address Marks, CRC) until the last data field is written. At this point, the Formatter starts writing
- " 1 " bytes for Gap 4 and continues writing until the Unit's Index signal is detected again lone full revolution)

All address marks are preceded by six bytes of "zero" in the gap.
Data transferrence from the Interface is controlled in the same manner as described for the WRITE DATA command. At detection of the second Index pulse, the Formatter presents the end status INTERRUPT, R/W COMPLETE. The DATA OVERRUN error is defined as described for the WRITE DATA command. If DATA OVERRUN is detected, the Formatter finishes writing the record which it was writing (using X-fer bus data), then starts writing Gap 4 (all one bytes) until detection of Index. At this point it presents an INTERRUPT status of R/W COMPLETE and UNIT CHECK. The DATA OVERRUN sense bit indicates to the Interface that all records of the current track were not formatted.

A special considerstion for the FORMAT TRACK command is that the Formatter writes only data address marks at the beginning of each data field. If the user desires deleted data address marks for certain records, the Interface must follow the FORMAT TRACK command with a WRITE DELETED DATA command for each record to be deleted.

Format Track - State Diagram

Figure III.6.5, continued on next page

Format Track $-\frac{11-6-15}{\text { continued }}$

Figure III-6-5

III-6-17

PROM 5 PATTERN.

NOTE:
Only the pattern related to sys 32 is illustrated.

Figure III.6.7.

III. 7 INTERRUPT, SENSE AND STATUS

For explanation of the above heading refer to: Section II. 2 (General Command Sequence - Interface/Formatter) and Section II. 3 (Interrupt Generation and Handling). Refer also to Figure III.7.1. Also, the description of the INTERFACE Lines involved in the above mentioned figure, may be reviewed in Section II.1.
Status and Sense bits descriptions are also described in Section II.1.

III. 8 ANY SEEK OPERATION

III.8.1 GENERAL

For the following study, refer to Figure III.8.1. Refer also to Section III. 1 for description of DIRECTION SELECT, STEP and TRACK 00. The remaining INTERFACE signals are described in Section II.1.

- LOAD DIFF $\sqrt{17} 6$
$3 4 \longdiv { 1 2 } +$ DIRECTION d315-~21s98
1II-8-2

Teqn. 2.8.76/EIB

Prior to a seek operation, the actual track number will be loaded into the Difference Register. Since the bits on the X-fer bus are active when low, the Difference Register will hold the desired track number in its 1's complemented form. The DIRECTION is given by X -fer bus No. 7 .

Three conditions must be met (1) in order to send STEP pulses to the Unit:

1. STEP pulses (2) (always present)

The step pulses are generated from a free running RC oscillator with adjustable repetition rate. (Pulse with $10 \mu \mathrm{~s}$, nominal repition rate 100 Hz .)
2. Difference Register (3) different from all 1s (non-zero difference). A LOAD DIFFERENCE has been executed.

3. SEEK command issued.

This command will parallel load the SEEK Complete Latch (4) with 1100_{2} giving $Q B=Q_{D}=1$.(5).

As the STEP pulses are sent to the Stepper Control Logic in the selected unit, the pulses will also increment the Difference Register (3) .

Reaching a count of all 1 s , no more STEP pulses will be sent to the unit.
At this point in time, the unit has not performed the last STEP (10 ms) and additional 10 ms head settling time should elapse before generating SEEK COMPLETE, drop BUSY and send an INTERRUPT to the Interface.

The 20 ms delay is introduced by SEEK Complete Latch now working as a shift register. After performing two shifts SEEK COMPLETE is generated.

III.8.3 RECALIBRATE

Specifying a recalibrate will set the Difference Register to all zeros, i.e., tracks to go will be 127, and the DIRECTION will indicate a reverse seek.

In order to send the STEP pulses to the unit, the following three conditions must be met:

1. STEP pulses (2) (always present)
2. Difference Register (3) different from all 1s. ("Recalibrate" will set it to all Os.)
3. A "Recalibrate" is specified. This command will parallel load the SEEK Complete Latch with $\mathbf{1 1 0 0}_{2}$.

The termination condition occurs when doing a Recalibration by receiving a "TRACK 00" indication from the unit (described in Section IV.3.3.3). The SEEK Complete Latch will now be changed from being a latch to a shift register, thus, allowing 20 ms from reception of TRACK 00 until • SEEK COMPLETE is generated. This is to allow time to perform the last step (10 ms) plus head settling time (10 ms).

As SEEK COMPLETE is activated, BUSY will drop and INTERRUPT generated.

SECTION IV

UNIT

DETAILED CONTENTS

IV.1	Diskette Storage Drive	IV-1-1
IV.1.1	General	IV-1-1
IV.1.2	Head Positioning	IV-1-3
IV.1.3	Diskette Drive Spindle	IV-1-5
IV.1.4	Read/Write Head Assembly	IV-1-6
IV.2	Track Accessing	IV-2-1
IV.2.1	General	IV-2-1
IV.2.2	Seek Operation - General	IV-2-2
		IV-3-1
IV.3	Stepper Motor Control Logic	IV-3-1
IV.3.1	General	IV-3-2
IV.3.2	Power On Reset	IV-3-3
IV.3.3	Seek Operations	IV-3-5
IV.3.3.1	Forward Seek	IV-3-6
IV.3.3.2	Reverse Seek Operation	IV-3-7
IV.3.3.3	Track Zero Indicator	IV-4-1
		IV-4-1
IV.4	Read/Write Operations	IV-4-1
IV.4.1	Recording Technique (Single Density)	IV-4-2
IV.4.1.1	Bit Cell	IV-4-3
IV.4.1.2	Byte	IV-4-4
IV.4.1.3	Writing a Bit	
IV.4.1.4	Reading a Bit	IV-4-5
IV.4.2	Read/Write Head	IV-4-7
IV.4.3	Write Circuit Operation	IV-4-8
IV.4.4	Read Circuit Operation	

IV. 1 DISKETTE STORAGE DRIVE

IV.1.1 GENERAL

The SA800 Diskette Drive consists of Read/Write and Control Electronics, Drive Mechanism, Read/Write head, Track Positioning Mechanism and the removable Diskette. These components perform the following functions:

- Interpret and generate control signals
- Move Read/Write head to the desired track
- Read and Write data

The relationship and INTERFACE SIGNALS for the internal functions of the SA800 are shown in Figure IV.1.1.

Figure IV.1.1: SA800 Functional Diagram

IV-1-2

The Head Positioning Actuator positions the Read/Write head to the desired track on the Diskette. The Head Load Actuator loads the Diskette against the Read/Write head and data may then be recorded or read from the Diskette.

The electronics are packed on one PCB. The PCB contains:

- Index Detector Circuits (Sector/Index for 801)
- Head Position Actuator Driver
- Head Load Actuator Driver
- Read/Write Amplifier and Transition Detector
- Safety Sensing Circuits

IV.1.2 HEAD POSITIONING

An electrical stepping motor (Head Positioning Actuator) and lead screw positions the Read/Write head. The stepping motor rotates the Lead Screw clockwise or counter clockwise in 15° increments. A 15° rotation of the Lead Screw moves the Read/Write head one track position. The Formatter increments the stepping motor to the desired track.

Figure IV.1.2: Head Positioning Actuator
Figure IV.1.3a shows the R/W head in loaded position while Figure IV.1.3b shows the R/W head in unloaded position.

Figure IV.1.3a: Read/Write Head - Loaded

Figure IV.1.3b: Read/Write Head - Unloaded

IV.1.3 DISKETTE DRIVE SPINDLE

The Diskette Drive Motor rotates the spindle at 360 rpm through a belt-drive system. 50 or 60 Hz power is accommodated by changing the drive pully. A Registration Hub, centered on the face of the Spindle, positions the Diskette. A clamp that moves in conjunction with the Latch Handle fixes the Diskette to the Registration Hub. Refer to Figure IV.1.3.

Figure IV.i.3: Diskette Drive Spindle

IV.1.4 READ/WRITE HEAD ASSEMBLY

The Read/Write head is a ceramic head and is in direct contact with the Diskette. The head surface has been designed to obtain maximum signal transfer to and from the magnetic surface of the Diskette with minimum head/Diskette wear.

The SA800 ceramic head is a single element Read/Write head with straddle erase elements to provide erased areas between data tracks. Thus, normal telerance between media and drives will not degrade the signal to noise ratio and insures Diskette interchangeability.

The Read/Write head is mounted on a Carriage which is located on the Head Position Actuator Lead Screw. The Diskette is held in a place perpendicular to the Read/Write head by one platen located on the Base Casting. The Diskette is loaded against the head with a Load Pad actuated by the Head Load Solenoid.

Figure IV.1.4: Straddle Head - Recording Principle

IV. 2 TRACK ACCESSING

IV.2.1 GENERAL

The recording area is divided into 77 tracks, i.e., the Read/Write head can be moved onto 77 distinct positions.

Track no. 0 is the closest to the edge, while track no. 76 is closest to the center of the Diskette. Refer to Figure IV.2.1.

Figure IV.2.1: Track Locations

The carriage is driven forth or back by means of a rotating Lead Screw driven by a Stepper Motor.

The Stepper Motor used on the SA800 is a three-phase, fifteen degree, variable reluctance Stepper Motor. Figure IV.2.2 shows the logic diagram of the motor.

Figure IV.2.2: Stepper Motor

The Stepper Motor has 12 stator windings and a rotor with 8 teeth. The 12 stator windings are wired together in groups of four, 90° apart. Each group of four stator windings is wired to one phase of the Stepper Control Logic. The rotor has its 8 teeth spaced 45° apart.

Figure IV. 2.3 shows the Stepper Motor (rear view) with phase 1 of the Stepper Control Logic Active. Phase 1 is applied to the four stator windings at $0^{\circ}, 90^{\circ}, 180^{\circ}$ and 270°. This causes the four rotor teeth closest to those windings to move and line up with the stator windings.

Figure IV.2.3: Position 1 (TRK 00)

Figure IV. 2.4 shows the Stepper Motor with phase 2 of the Stepper Control Logic Active. Phase 2 is applied to the stator windings at $30^{\circ}, 120^{\circ}, 210^{\circ}$ and 300°. This causes the four rotor teeth closest to those windings to move and line up with the stator windings. The result is a 15° turn of the Stepper Motor Lead Screw.

Figure IV.2.4: Position 2 (TRK 01)

Figure IV. 2.5 shows the Stepper Motor with phase 3 of the Stepper Control Logic Active. Result is another 15° turn of the Stepper Motor Lead Screw.

Figure IV.2.5: Position 3 (TRK 02)

IV-3-1

IV. 3 STEPPER MOTOR CONTROL LOGIC

IV.3.1 GENERAL

The Stepper Motor Control Logic is functioned by the following lines from the Formatter:
$-\quad$ Direction $_{0}$ (Interactive $=$ Rev; Active $\left.=F W D\right)$

- Step O
- Write Gate 0
- Door Closedo
- Heads LoadedO

The output is 01,02 , or 03 , only one output active at the time (refer to Figure IV.2.1 and description of the Stepper Motor).

IV-3-2

IV.3.2 POWER ON RESET

At power on, FF1 and FF2 are reset and 01 will be the active output. The Stepper Motor will be aligned up to position 1 as indicated in Figure IV.2.3.

IV.3.3 SEEK OPERATIONS

Seeking the Read/Write head from one track to another is accomplished by selecting the desired direction utilizing the Direction Select INTERFACE Line, loading the Read/Write head, and then pulsing the STEP line. Multiple track accessing is accomplished by repeating pulsing of the Step line until the desired track has been reached. Each pulse on the Step line will cause the Read/Write head to move one track either in or out depending on the DIRECTION SELECT line. Refer to Figure IV.3.1.

Figure IV.3.1: Stepper Control Logic

IV.3.3.1 Forward Seek

Let us assume this is the first SEEK operation after a Power On Reset. As outlined from Figure IV.3.1, 01 is then the active phase. We also see that

- the Head must be loaded
- the Door closed
- the Write Gate not active
in order to perform a SEEK operation. The DIRECTION line must be inactive (high) to direct a forward SEEK.

Let us assume a forward SEEK of five tracks from track zero. As depicted in Figure IV.3.2, the STEP 0 line waill be pulsed 5 times at a repetition rate of $10^{\circ} \mathrm{ms}$. The Stepper Motor will step forward 15° for each step pulse. During a Forward Seek, the phases will be activated in the following sequence:

Figure IV.3.2: Stepper Control Logic - Timing Diagram

IV.3.3.2 Reverse Seek Operation

The DIRECTION line in active state (low) will define a reverse seek operation. As the STEP ${ }_{o}$ line is pulsed, the phases will be activated in the sequence indicated below.

The Stepper Motor will now turn in 15° increments in the opposite direction, moving the Read/Write head to a lower recording track.

IV.3.3.3 Track Zero Indicator

Pin 42 labelled Track 00 is activated to indicate to the Formatter that the Read/Write head is located on track zero.

Figures IV.3.3 and IV.3.4 will show the logic and timing diagram for track zero indication.

Figure IV.3.3: Track 00 - Logic Illustration

The track zero flag on the Carriage Assembly is adjusted so that the flag covers the photo transistor at track one. When the FF1 and FF2 are set off and the stepper moves to track zero, phase 1 is ANDed with DRV Sel Int and TRACK ZERO detect. TRACK ZERO indication is sent to the Formatter on pin 42, labelled TRACK 00.
IV-3-8

Figure IV.3.4: Track 00 - Timing Diagram

IV. 4 READ/WRITE OPERATIONS

IV.4.1 RECORDING TECHNIQUE (SINGLE DENSITY)

The format of the data recorded on the diskette is totally under CPU control. Data is recorded on the diskette using frequency modulation as the recording mode, i.e., each data bit recorded on the diskette has an associated clock recorded with it, referred to as FM. Data written on and read back from the diskette takes the form as shown in Figure IV.4.1. The binary data pattern shown represents a 101_{2}.

Figure IV.4.1: Data Pattern
IV.4.1.1 Bit Cell

As shown in Figure IV.4.2, the clock bits and the data bits (if present) are interleaved. By definition, a Bit Cell is the period between the leading edge of one clock bit and the leading edge of the next clock bit.

Figure IV.4.2: Bit Cell

IV.4.1.2 Byte

A Byte, when referring to serial data (being written onto or read from the disk drive), is defined as eight (8) consecutive bit cells. The most significant bit cell is defined as bit cell 0 , and the least significant bit cell is defined as bit cell 7. When reference is made to a specific data bit (i.e., data bit 3), it is with respect to the corresponding bit cell (bit cell 3).

During a write operation, bit cell 0 of each byte is transferred to the disk drive first with bit cell 7 being transferred last. Correspondingly, the most significant byte of data is transferred to the disk first and the least significant byte is transferred last.

When data is being read back from the drive, bit cell 0 of each byte will be transferred first with bit cell 7 last. As with reading, the most significant byte will be transferred first from the drive to the Formatter.

Figure IV.4.3: Byte Format

The SA800 drive uses the double-frequency (2F) horizontal non-return-to-zero (NRZ) method of recording. Double frequency is the term given to the recording system that inserts a clock bit at the beginning of each bit cell time, thereby doubling the frequency of recorded bits. This clock bit, as well as the data bit, are provided by the Formatter.

IV.4.1.3 Writing a Bit

The Read/Write head is a ring with a gap and a coil wound some point on the ring. When current flows through the coil, the flux induced in the ring fringes at the gap. As the diskette recording surface passes by the gap, the fringe flux magnetizes the surface in a horizontal direction. See Figure IV.4.4.

Figure IV.4.4: Basic Read/Write Head

During a WRITE operation, a bit is recorded when the flux direction in the ring is reversed by rapidly reversing the current in the coil. The fringe flux is reversed in the gap and hence the portion of the flux flowing through the oxide recording surface is reversed. If the flux reversal is instantaneous in comparison to the motion of the diskette, it can be seen that the portion of the diskette surface that just passed under the gap is magnetized in one direction, while the portion under the gap is magnetized in the opposite direction. This flux reversal represents a bit. See Figure IV.4.5.

Diskette Motion

Figure IV.4.5a.
Figure IV.4.5b.
A Recorded Bit - Illustration

IV.4.1.4 Reading a Bit

During a READ operation, a bit is read when the flux direction in the ring is reversed as a result of a flux reversal on the disk surface. The gap first passes over an area that is magnetized in one direction, and a constant flux flows through the ring and coil. The coil registers no output voltage at this point. When a recorded bit passes under the gap, the flux flowing through the ring and coil will make a 180° reversal. This means that the flux reversal in the coil will cause a voltage output pulse. See Figure IV.4.6.

Figure IV.4.6: Reading a Bit

Figure IV. 4.7 shows the recording flux and pulse relationship.

Figure IV.4.7: Recording Flux to Pulse Relationship

The Read/Write head contains three coils. Two Read/Write coils are wound on a single core, center tapped and one erase coil is wound on a yoke that spans the track being written. The Read/Write and Erase coils are connected as shown in Figure IV.4.8.

Input from write drivers or output to read amps

Erase Driver

Figure IV.4.8: Read/Write Head

In a WRITE operation, the erase coil is energized. This causes the outer edges of the track to be trim erased so that the track being recorded will not exceed the $.012^{\prime \prime}$ track width. The straddle erasing allows for minor deviations in Read/Write head current so as one track is recorded, it will not "splash over" to adjacent tracks. Refer to Figure IV.4.9.

Disk motion

Figure IV.4.9: Straddle Head - Recording Principle

Each bit written will be directed to alternate Read/Write coils, thus, causing a change in the direction of current flow through the Read/Write head. This will cause a change in the flux pattern for each bit. The current through either of the Read/Write coils will cause the old data to be erased as new data is recorded.

In a READ operation, as the direction of flux changes on the diskette surface as it passes under the gap, current will be induced into one of the windings of the Read/Write head. This will result in a voltage output pulse. When the next data bit passes under the gap, another flux change in the recording surface takes place. This will cause the current to be induced in the other coil, causing another voltage output pulse.

IV.4.3 WRITE CIRCUIT OPERATION

WRITE data pulses (clocks and data) are supplied and encoded by the Formatter.
The Write Toggle FF will flip for each pulse. The set and clear output feeds the alternate Write Drivers. Refer to Figure IV.4.10.

The WRITE GATE from the Formatter is ANDed to provide write current.
The output of one of the Write Drivers allows the write current to flow through one half of the Read/Write coil. When the Write Trigger "flips", the other Write Driver provides write current to the other half of the Read/Write coil.

When write current is sensed flowing to the Write Drivers, a signal is generated to provide erase coil current.

> IV-4-8

IV.4.4 READ CIRCUIT OPERATION

When the Formatter requires data from the diskette drive, the Formatter must first load the head. With the head loaded and the write gate inactive, the signal read is fed to the amplifier section of the read circuit. After amplification, this signal is fed to a filter where the noise spikes are removed. The signal is then fed to the differential amplifier.

Since a pulse occurs at least once every $4 \mu \mathrm{~s}$, and data bits are present once every $2 \mu \mathrm{~s}$, the frequency of the read data varies. The read signal amplitude decreases as the frequency increases. Note the signals in Figure IV.4.11. The Differential Amplifier will amplify the read signals to even levels and make square waves out of the read signals (sine waves).

Read data pulses (data and clocks) are sent to the Formatter to be separated in a Data Separation Network (described in Section III.4).

Figure IV.4.11: Read Circuit - Functional Diagram

APPENDIXES

DETAILED CONTENTS

Section:		Page:
A	Appendix A - Specification Summary	A-1
B	Appendix B - Test Programs	B-1
C/I	Interface Hardware Diagrams	C-I-1
C/II	Internal Interface Signal List	C-II-1
C/III	$1111 / 1118$ Signal Communication	C-III-1
C/IV	Floppy Disk Cables	C-IV-1
D/I	Formatter Logic Diagrams	D-I-1
D/II	Formatter Component - Location Chart D/IIIFormatter Test Points/Track Options - Locations chart	D-I-1
E/I-E/III	Unit Logic Diagrams	D-III-1

APPENDIX A

SPECIFICATION SUMMARY

Performance Specifications

Capacity
Unformatted
Per Disk
Per Track

Single Density
3.2 megabits
41.7 kilobits

Formatted

	FORMAT	SECTORS TRACK	CPU WORDS (16 bits) \qquad SECTOR	CPU WORDS (16 bits) TRACK (in K words)	CPU WORDEAISKETTE (in K words)
A	3740	26	64	1.664	125
B	SYS 32-1	15	128	1.920	140
c	SYS 32-II	8	256	2.048	150
AA	Double A	32	128	4.096	315

Transfer Rate
Latency (average)

Access Time
Track to track
Average
Settling Time
Head Load Time

Functional Specifications

Rotational Speed
Recording Density (inside track)
Flux Density
Track Density
Tracks
Physical Sectors
SA800
SA801
Index
Encoding Method
Media Requirements SA800
SA801

Single Density

360 rpm
3200 bpi
6400 fei
48 tpi
77

0
32/16/8
1
FM
SA100/IBM Diskette
SA101

Physical Specifications

```
Environment Limits
    Ambient Temperature }=1\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to }3\mp@subsup{8}{}{\circ}\textrm{C
    Relative Humidity =20% to 80%
    Maximum Wet Bulb
    =25.5 ' C 
AC Power Requirements
    50/60 H: }\pm0.5\textrm{Hz
    100/115 VAC Installations =90 to 127V @ 4A typical
    200/230 VAC Installations =180 to 253V @ 2A typical
DC Voltage Requirements
    +24VDC+5% 1.3A typical
    +5VDC }\pm5% 0.8A typical
    -5VDC }\pm5% 0.5A typical (option -7 to -16 VDC)
Mechanical Dimensions
    Width = 11.8 cm
    Height = 24.1 cm
    Depth = 36.2 cm
    Weight = 5.9 kg.
Heat Dissipation = 72 watt typical
```


Reliability Specifications

MTBF: $5000 \mathrm{POH}^{*}$ under heavy usage 8000 POH * under typical usage

PM:

MTTR:
Every $5000 \mathrm{POH}^{*}$ under heavy usage
Every $15000 \mathrm{POH}^{*}$ under typical usage
30 minutes
Component Life:
$15,000 \mathrm{POH}^{*}$
Error Rates:
Soft Read Errors:
1 per 10^{9} bits read
Hard Read Errors:
1 per 10^{12} bits read
Seek Errors:
1 per 10^{6} seeks
Media Life:

Passes per Track	3.5×10^{6}
Insertions	$30,000+$

* FLoppy disk utbugging loops

00100
00101
00102
00103
00104
00105
00106
\%SELECT DRIVE A FORMAT
* DRIVE ADDR. \&FORMAT
* MOVE TO UPPER BYTE
\% EXXECUTE
\% DELAY
* DIFF. BETWEEN CURRENT \& OESIREO TRACK
* MOVE TO UPPER BYTE
* EXECUTE

00107	
00110	044
00111	170
00112	0
00113	000
00114	000
00115	

\pm
J

7
\vdots
0

00122
00123
00124
00125
$\stackrel{0}{-1} \quad \underset{n}{-1}$

* SET READ RIT
* BUFFER CLEAR BIT
* START READ
\% BUSY?
\% YES. WAIT UNTIL FINISHED
\% YES. WAIT UNTIL FINISHED

$$
\begin{aligned}
& \text { \% SET WRITE BIT } \\
& \text { \% BUFFER CLEAR BIT } \\
& \text { \% START WRITE }
\end{aligned}
$$

IPCL ROISK

* WRITE UISK SECTUR

WOISK, SAA $\begin{array}{ll} & 0 \\ \text { BSET } & \text { ONE WRUAT DA } \\ \text { BSET } & \text { OIVE CLBUF DA } \\ \text { IOX } & \text { WCWD } \\ \text { IUX } & \text { RSRI } \\ \text { BSKP } & \text { ONE REAOY DA } \\ \text { JMP } & \sharp-2\end{array}$
IPCL WDISK

170

\% READ ID BIT

\% WRITE UELETEU DATA SECTOK

170400
174325
174255
165563
165562
175235
$00<31124370$
146542

ND-11.012.01

* WRITE DATA BUFFER (FROM CPU)

[^0]* WRADR WRITES ADDR. IN ADDR. IN INTERFACE BUFFER

WRADR,	SAA IUX	4V WCWO		CLERA	INTERFACE		E BUFFER
	LDX	IoUFW					
	LDT I	(WDCNT					
	RADD	SX DT					
	COPY	SX OA					
	SUB	(SUFW					
	IOX	WUAT	*	WRITE	ADDR	IN	ADOR.
	AAX	1					
	SKP	DX EQL ST					
	JMP	* -5					
	EXIT	AUl					

)PCL WRADR

00306	170		170440
00307			165563
00310	054		00322
0054012			
00312	050	1	00323
0051012			
00313			146076
00314	064		00324
00315			064010
00316	170		165561
00317			173401
00320	124		00313
00321			124373
00322			000500
00323			000106
00324			000500

* read test in testmode

$$
\begin{aligned}
& \text { JFILL }
\end{aligned}
$$

[^1]ND-11.012.01
光 FURMATTING FUK I BM SYS-32-I FURMAT. FATCHES FOR OTHER FORMATS

000053

$\begin{array}{ll}00425 & 000053 \\ 00426 & 000053 \\ 00416 & 001042\end{array}$
$00416 \quad 001042$
N
4
0
-1
4
0
7
7
0
0
n
n
n
N
N
in
165563
045037
156410
165561
045035
156410
0
00
0
0
165561
0
0
0
1
5
0
N
ज
-
\cdots

m
0
\sim

165563
170777
004027

\circ
0
0
0
0
1

n
N
N

165563
165562
175335

c
\cdots

N
0
0
0
$\mapsto \rightarrow \quad \mapsto \quad \mapsto$

ND-11.012.01

* SHOULD BE 0 FOR 3740,1 FOR 3000 FORMAT D
* SHOULD BE 32 FOR 3740,17 FOR 3600 FORMATI

LUA 1 ISECT
* Jump back if not all sectohs formatten
* waIt UNTIL NOT BUSY

* CHECK INT. \& IDENT
* IF OK. THIS LOOP STOPS ON LEVEL 11 WITH ID. CODE IN A (11)

INT,
SAA
TKK
LDA
LDA ILEVI3
INW 1SN
14000
Pat
wCWD

* wfong. No interrupt
RUNS ON LEVELII
\% NEAU IDENT
\% STOP ON LEVEL 11
INT.
170400
150100
$00446 \begin{array}{r}044015 \\ 153532 \\ 00447 \\ 044014\end{array}$

143611
150401
151000
mo
98

0.
1.
2.

LEVI3, IUENT PLII
IFILL
$1 P C L$ INT

$$
\begin{aligned}
& 0 \\
& \vdots \\
& \stackrel{y}{¿} \\
& -
\end{aligned}
$$

00443
00444
00446
00447

00450	170
00451	
00452	054
00453	
00454	170
00455	
00456	
00457	
00460	130
00461	
00462	

SUFW $=500$
$B U F R=8 U F W+2000$
DADR:000100
TRACK:000101
SECT:000102
UATA:000103
UIFF:000104
TAYT: 000105
WDCNT:000106

号 N~ 용
 0000000800000 mO 00 N ㅇ․․․․․․․․ㅇㅇ․․․․․․․․․․․․ㅇㅇ

$$
C-1-1
$$

APPENDIX C/I

interface hardware diagrams

APPENDIX C/II

INTERNAL INTERFACE SIGNAL LIST

Signal	Polarity	Origin	Description
ACLR	H	1111	Clear buffer address during autoload
ACOUNT	L	1111	Increment buffer address
ADRCL	L	1111	Clear buffer address
AUTO	H	1111	Autoload sequence running
AX (0-9)	H	1118	Interface buffer address, bits
BAXX (0-15)	L	CPU	Main I/O bus address
BBUSY	L	1111	Device busy (status)
BDIN	L	1111	Enable data or status to BD
BDOUT	L	1111	Enable BD to interface
BDXX (0-15)	L	---	Main I/O bus data
BRO		1111	19.2 KHZ osc.
BUSXX (0-15)	L	1118	Internal 3 state bus (16 bits)
CE1	L	1111	Enable least significant half of buffer
CE2	L	1111	Enable most significatn half of buffer
CL	L	1111	DVCL + MCL
CLSTP	L	1111	Clear autoload steps
CON	L	1111	Connect to CPU on main I/O bus
DBUSY	L	Floppy	Busy line from floppy disk
DEVNO	L	1111	Selects device number
DIN	L	1111	Enable data from floppy to interface
DINT	L	Floppy	Interrupt from floppy disk
DLCON	H	1111	Programmed device output active
DLYINP	H	1111	Delayed version of input
DOXX (0-15)	L	1118	Data out pints on interface buffer
DUT	L	1111	Enable data byte to floppy disk
DVCL	L	1111	Programmed device clear
EN	L	1118	Enable commands on bus during autoload
ENLO	L	1118	Enable DO 0-7 on bus 8-15
ENUL	L	1118	Enable bus 8-15 on bus 0-7
ENUP	L	1118	Enable DO 8-15 on bus 8-15
FDIN	L	1118	Enable data or status from floppy disk
FDOUT	L	1118	Enable data or commands to floppy disk
GSENS	L	1111	Gate sense strobe
GSTAT	L	1111	Gate status strobe
IDCOD1	L	1111	ID, code 21
IDCOND2	L	1111	ID, code 22
IDENT	H	1111	Ident PL11 active (if interrupt)
INCOM	H	1111	Programmed device input (IOX) active
INP	L	1111	Input to CPU on main I/O bus
INPUT	H	1111	Programmed input active (IOX + IDENT)
INT11	L	1111	Interrupt to CPU
INTEN	L	1111	Interrupt enabled (status)
INTRPT	H	1111	Interrupt to be sent to CPU

Signal	Polarity	Origin	Description
LDOM	L	1111	Load command strobe
LDADR	L	1111	Load drive address, strobe
LDCLK	L	1111	Trailing edge steps the autoload sequence
LDFIN	H	1111	Autoload sequence finished
LDIFF	L	1111	Load difference strobe
LSECT	L	1111	Load sector strobe
MATCH	L	1111	Match for device IOX
MOL	L	CPU	Master clear (push button)
NORDY	L	1111	Drive select caused interrupt
PULS	H	1111	PULS used to generate strobes to floppy
RDAT	L	1111	IOX RDAT active
RDDLY	H	1111	Delay to look for interrupt in step 0
READY	L	1111	Device ready for transfer (status)
RESET	L	1111	Reset to floppy disk
RSR1	L	1111	IOX RSR1 active
RSR2	L	1111,1118	IOX RSR2 active
RSTAT	L	1118	Enable status bits 4-7 on BD
RTST	L	1111	IOX RTST active
SSTAT	L	1111	Strobe status bits 4-7
STEPO	H	1111	First step of autoload sequence (load addr.)
STEP1	H	1111	Second step of autoload sequence (recalibrate)
STEP2	H	1111	Third step of autoload sequence (load sector)
STEP3	H	1111	Fourth step of autoload sequence (read data)
STEP4	H	1111	Fifth step of autoload sequence
STLD	L	1111	Trailing edge starts autoload sequence
STR01	L	1118	Step $0+$ step 1
TBUSX (0, 7)	L	1118	Bi-directional transfer bus to floppy
TDIR	L	Floppy	Direction of floppy disk data transfer
TEST	L	1111	Test mode active
TGRANT		1111	Data grant to floppy disk
TIMOUT	L	1111	Timeout (status)
TREQ	L	Floppy	Floppy disk request for data
WCWD	L	1111	IOX WCWD active
WDAD	L	1111	IOX WDAD active
WDAT	L	1111	IOX WDAT active
WRAM	L	1111	Write pulse to interface buffer
WSCT	L	1111,1118	IOX WSCT active

APPENDIX C/III

1111/1118 SIGNAL COMMUNICATION
Signal communication between 1111 and 1118 card through $1: 1$ berg connection in the backwiring.

All signals are in 0 polarity.

Terminal	Signal Name
56	BDOUT
57	BDIN
58	PULS
59	WRAM
60	CE1
61	CE2
62	LDADR
63	RESET
64	STEPO
65	STEP1
66	STEP2
67	STEP3
68	TEST
69	ACOUNT
70	MATCH
71	DIN
72	DUT
73	ADRCL
74	SSTAT
75	

C-IV-1

APPENDIX C/IV

FLOPPY DISK CABLES

*N-10 INTERNAL CABLE	*DEVICE	*FLOPPY
*	*CABLE	*DISK
*	*1:1	*INTERNAL
*	**	*CABLE

1111 CARD

Term	Signal	Burdny	Burdny	Amp
95	TDIR	Y	Y	D
94	GND	AA	AA	4
93	TREQ	Z	Z	F
92	GND	BB	BB	6
91	DINT	CC	CC	L
90	GND	EE	EE	10
89	DBUSY	DD	DD	M
88	GND	FF	FF	11
87	TGRANT	HH	HH	H
86	GND	KK	KK	7
85	GSENS	JJ	JJ	J
84	GND	LL	LL	8
83	GSTAT	MM	MM	K
82	GND	PP	PP	9
81	LCOM	NN	NN	N
80	GND	RR	RR	12
79	LSECT	SS	SS	E
78	GND	UU	UU	5
77	LDIFF	TT	TT	C
76	GND	VV	VV	3

1118 CARD

Term	Signal	Burdny	Burdny	Amp
95	TBUS7	A	A	W
94	GND	C	C	19
93	TBUS6	B	B	X
92	GND	D	D	20
91	TBUS5	E	E	U
90	GND	H	H	17
89	TBUS4	F	F	V
88	GND	J	J	18
87	TBUS3	K	K	S
86	GND	M	M	15
85	TBUS2	L	L	T

Term	Signal	Burdny	Burdny	Amp
84	GND	N	N	16
83	TBUS1	P	P	P
82	GND	S	S	13
81	TBUS0	R	R	R
80	GND	T	T	14
79	RESET	U	U	Y
78	GND	W	W	21
77	LDADR	V	V	B
76	GND	X	X	2

```
D-I-1
```


APPENDIX D/I

FORMATTER LOGIC DIAGRAMS
(

APPENDIX D/II

FORMATTER COMPONENT - LOCATION CHART (next page)

A	B	C	D	E	Γ	G	H	J	K	L	M	
					74193	74193	74195	74188	7432	9401	74195	1
CA3086	22T2905	CA3086	Q2T2905		\triangle	74188	\triangle	74188	74195		7402	2
					74193	74193	74195	74188	74163	74LSl12	7476	3
9602	7400	7406		7400	7430		\triangle	74188	74163	7400	9602	4
9602			7400	7410	7476	74LS112	74195	74151	7404	7410	7402	5
74193		7451	PE9829	7404	7408	74155		74151	7440	7408	74LS112	6
7407	7408	4	74193^{9602}		7486	7440		7486	7408		7451	7
74155	9602	74195	7404	7485	74195	74195		7402	7451	7404	7451	8
74195	~	7404	7440	7485	74195	74195	7432				74195	9
9602	7408	7406	7427	74153	74195	74195	7408		74195	7408	74195	10
75138	74193	74195	74193	74153	74157	74195	7485	7402	7427	7402	7410	11
㐫	7430	7402	7408	74153	74153		74LSl12	74LS112	74195	7438	74151	12
75138	74193	74195	74193	74153	74153		7400	74LS112	K1116A	PE9829	PE9829	13

Formatter Component-Location Chart
^ $914 \mathrm{Cl} 151 \mathrm{X5SR}$

APPENDIX D／III

TEST POINTS		
T21－6	$\begin{aligned} & \text { GND } \\ & - \text { WRITE (DEL) DATA } \end{aligned}$	
7		
ε	－read command	
9	－（SEEk＋recalibrate）	
10	－R／w Conplete	
1	－unit check	
12	－seek complete	
13	－$A=B$	
14	－brinch	
15	－INC	
ie	－AM WRITE	
17	－load byte couiter	
13	－selecteo	
19	－ $0 \varnothing$	
20	＋L．CH CLK	
21		
22	－AN CETECTEO+ CRC ERAOE	
23	＋CRC ERAOG－ CR －	
25		
25	＋הこEx	
26	－Serjes clこor	
27	－Eこうご，¢f	
28	＋epaje voltige	
29	－Rive	
30	－serial data	
31	－check cric	
32	＋dete saizt crc	
33	＋White cric	
34	－Eita hanow	
35	＋Delayed cita	
36	＋delayed serial data	
TRACE OPTIONS		
－zas	Dこことス＝かに！	
A	CAC I．C．	5～つ；
E，, ， $0, \mathrm{E}, \mathrm{F}$	FSD：-1	$F \because \quad 10{ }^{2}=1$
G	DATA WI：DO\％\％ADJUST	－－
H	EARLY ADJUST（ M^{2} FM）	－－
J	Late adjust（ m^{2} Fm）	－－
K，L，M，N	Fornat	
P．Q，R	VFo TEST	－test

Formatter Test Points／Track Options－Locations chart

E-I-1

APPENDIX E/I
 UNIT LOGIC DIAGRAMS

Test Point Assignment

1	Read Data Signal
2	Read Data Signal
3	Read Data (Differentiated)
4	Read Data (Differentiated)
5	Signal Ground
6	Signal Ground
7	Signal Ground
10	-Index
11	+Head Load
12	-Index and 801 Sector Pulses
16	+Read Data
21	-Data Separator Time +1
24	-Data Separator Time +2
25	+Write Protect
26	+Detect Track 00
27	+Gated Step Pulses

E-III-1

APPENDIX E/III

c. \quad Jumper Plug Installed as Shipped

- , Test Point

Unit PCB Component Location
_

* * * * * * * * * HELP YOURSELF BY HELPING US!!

Manual name: SINTRAN III Reference Manual
Manual number: ND-60.128.02

What problems do you have? (use extra pages if needed) \qquad
\qquad
Do you have suggestions for improving this manual?
\qquad
What are you using this manual for?

Send to: Norsk Data A.S.
Documentation Department P.O. Box 4, Lindeberg Gảrd Oslo 10, Norway

Norsk Data's answer will be found on reverse side

Norsk Data A.S.
Documentation Department
P.O. Box 4, Lindeberg Gärd

Oslo 10, Notway

- we make bits for the future

[^0]:

[^1]:

 | 0 | -1 | 0 |
 | :--- | :--- | :--- |
 | 0 | \cdots | n |
 | 0 | n | n |
 | 0 | 0 | 0 |

 ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

