- ND=110 Instruction Set
ND-06.029.1 EN

aoiio:oo:z:ooooooo.ooooooooooo.o.o'

mmm:m 29690 REPHPERVICICPOP9600900 0@ e
R

ND-110 Instruction Set
ND-06.029.1 EN

ii

ND-06.029.1 EN

iii

Preface

The product

The reader

Assumed background

The manual

Related manuals

The ND-110 Instruction Set Manual describes
the data, address and instruction format of
the ND-110 CPU (Central Processing Unit) -
product number ND 110110.

This manual is intended for all personnel who

require information about the ND-110 assembly
language.

The reader is assumed to have a general

knowledge of programming techniques and
computers.

This manual is a reference guide to the low-
level programming language of the ND-110 CPU.
Each chapter can be read individually and
outlines the different aspects of the low-
level programming as follows:

e Chapter 1. Instruction and data format.
® Chapter 2. Memory addressing.

e Chapter 3. Alphabetic index of the
instruction mnemonics described and
detailed description of the instructions.

The Appendices give a glossary of terms,
PLANC listings of the new SINTRAN
instructions, an alphabetic list of the
instruction mnemonics with their octal codes

and the TRR and TRA instructions for internal
registers.

The following manuals may be useful:

ND-110 Functional Description (ND-06.026) -
a detailed description of the hardware and
software features, in particular micro-

instructions, program levels and ND-110
enhancements.

ND-100 Reference Manual (ND-06.014) -
a general outline of the ND-100 computer.

MAC Interactive Assembly and Debugging System
User's Guide (ND-60.096) - information on the
ND-100 instruction set and assembler
disassembler operation.

ND-06.029.1 EN

iv

ND-06.029.1 EN

Table of contents

W WWWWWwWWwWWw W

N
(02102 I UN I S I

MEMORY ADDRESSING

INSTRUCTION AND DATA FORMAT

Data and instruction types

Decimal notation .

BCD - Binary Coded De01mal e e
ASCII coded decimal e e e e e

[

00 ~1—~1 W

Address structure
Execution times
Memory management e e e
Addressing modes e e e e e e e e
Addressing mode notation
Addressing modes

THE INSTRUCTION SET

11

14
15
16
17
17
18

Instructions .

Using privileged 1nstruct10ns

How an instruction is executed

How to change the microprogram
Instruction timing . .
Alphabetic index of the 1nstruct10n set
Instruction set notation

The instructions .
Register instructions

Memory transfers (load store, arlthmetlc loglcal and floatlng

point) .

Floating point conversion 1nstruct10ns
Shift instructions

Jump instructions
Monitor instruction
Skip instruction
Argument instructions
Bit instructions

Single byte 1nstruct10ns
Byte block instructions
Word block instruction
Version instruction
Decimal instructions
Stack instructions
Memory examine and test 1nstructlons
Inter-level register instructions
Register block instructions

Internal register instructions
Input/Output instructions

Interrupt control instructions
Mcmory manggement instructions

ND-06.029.1 EN

.

29

31
31
32
32
33

37

38
39

59
70
73
75
81
82
85

90
92
95
97
98

. 108

. 112

113
115
117
121
124
128

vi

Physical memory control instructions
Writable control store instruction
OPCOM mode instruction e e e e e
SINTRAN IIT memory transfer instructions
SINTRAN III control instructions

ND-06.029.1 EN

130
131
132
133
137

vii

Table of appendices

Appendix A: GLOSSARY

149

Appendix B: PLANC LISTINGS OF THE NEW SINTRAN INSTRUCTIONS

153

Appendix C: ALPHABETIC LIST OF INSTRUCTION MNEMONICS AND THEIR OCTAL CODES 159

Appendix D: THE TRR AND TRA INSTRUCTIONS FOR INTERNAL REGISTERS ——— 165

Index

181

ND-06.029.1 EN

viii

ND-06.029.1 EN

ix

List of figures

ONUl W N =

Byte addressing

Double word structure . .
32-bit floating point word structure .
48-bit floating point word structure .
ASCITI byte structure

Memory reference instruction format

ND-06.029.1 EN

I =

=
= Co o\l

ND-06.029.1 EN

Xi

List of tables

Ul Ew e

Examples of 32-bit floating point numbers
Examples of 48-bit floating point numbers
BCD notation .

ASCII notation . ..

ASCII embedded notation

ND-06.029.1 EN

O o ~1 OnJl

xii

ND-06.029.1 EN

W

CHAPTER 1 INSTRUCTION AND DATA FORMAT

octal format

binary format

The ND-110 has a 16-bit word format. The bits are
numbered O to 15, where bit 15 is the most significant
and bit O the least significant.

The ND-110 16-bit word is represented by a 6 digit
octal code. The use of octal is related to the
architecture of the ND-100 family, so instructions and
registers are quoted as:

SWAP octal instruction code 1440008
STS octal status register code OOOOOl8

Often when analysing what happens to a register or what
certain parts of an instruction do, it is easier to
look at the word in its binary format, where the value
of a bit as 1 or 0 is an important feature, for

example, in the status register, bit 7 is the carry
flag (C).

Data and instruction types

bit

The ND-110 instruction set handles the following data
and instruction types:

e bit

® byte (8 bits)

e word (16 bits)

® double word (32 bits)

e floating point words (32 and/or 48 bit) t
t depends upon CPU version (see page 72)

Bit instructions specify operations on any bit in any
of the general (A,B,D,L,P,STS,T,X) registers.

ND-06.029.1 EN

byte
(8 bits)

word
(16-bits)

double word
(32 bits)

31

Chapter 1 Instruction and data format

Bytes (occasionally described in other manuals as
half words) are used for byte operations. If two bytes
are packed into a word for byte addressing, the even

byte address points to the most significant half of the
word.

Numeric range: O to 25510

15 8 0
1T 1T 1T T 1T 17 T 1
even address odd address

byte n byte n+1

Figure 1. Byte addressing

The ND-110 uses 16-bit addresses and data words.

Data words can represent negative numbers, by using 2's
complement notation.

Numeric range: -3276810 to 3276710 (signed)

or 010 to 6553510 (unsigned)

T rT Tt rrrrT T T T T T T T T 71T

(D)

n word n+l word
Figure 2. Double word structure

A double word is a 32-bit number occupying two
consecutive memory locations (n and n+l). A double word
is always referred to by the address of its most
significant part; the most significant word being
transferred to the A register when used and the least
significant to the D register.

Numeric range: -214748364810 to 214748364710

ND-06.029.1 EN

Chapter 1 Instruction and data format 5

floating point words The 32-bit floating word has the following format:
(32-bits)
31 21 15 0
rFrrrr TPttt T T T v 1T 11T 17T 17T71T T 177
* exponent mantissa
n n+1l

(A) (D)
Figure 3. 32-bit floating point word structure

The 32-bit word occupies two consecutive 16-bit memory
locations, such that address n provides the sign,
exponent and 6 most significant bits of the mantissa
while address n+1 provides the lower 16 bits of the
mantissa. The two words are operated on in the floating
bit accumulator (A and D registers).

The exponent consists of 9 bits: the most significant
bit is the complement of the sign and the remaining 8
bits the exponent value (-256 to 256).

The mantissa is normalised to lie from 0.5 to
approximately 1; the decimal point is one place to the
left of the mantissa. The exponent is biassed with 2 .

mantissa: 0.5 =m < 1
range: 1077% ¢ x < 107°
accuracy: 23 bits (approximately 7 decimal places)

floating zero: O in all 32 bits

Examples: Table 1. Examples of 32-bit floating point numbers
integer octal
A word D word
0 OOOOOO8 OOOOOO8
+1 0401008 OOOOOO8
-1 1401008 OOOOOO8
+3 0402408 OOOOOO8

ND-06.029.1 EN

48-pbit floating point

Examples:

Chapter 1 Instruction and data format

The 48-bit floating point word has the following
format:

b7 ‘ 32
T T 1T T T T T
* exponent
n
(T)
31 15 0
7171 T 17 7 17 1T rr1rruvr1r0 1t 10 v 10 T T 1T 17T 1T 171
man - tissa
n+1 n+2

(A) (D)

Figure 4. 48-bit floating point word structure

Here the floating point data word occupies three
consecutive locations in memory. Address n holds the
single bit sign and the 15-bit exponent value, address
n+l the most significant part of the mantissa and
address n+2 the least significant. For operations, the
three words become the A,D and T registers respectively
and are defined as the floating point accumulator.

-h920 4920

Range: 10 <{x <10

Accuracy: 32 bits (approximately 10 decimal digits)

Floating Zero:0 in all bits

Table 2. Examples of 48-bit floating point numbers

integer octal
T word A word D word
0 OOOOOO8 OOOOOO8 OOOOOO8
+1 0400018 lOOOOO8 OOOOOO8
-1 1400018 1000008 OOOOOO8
+3 0402408 1000008 OOOOOO8

ND-06.029.1 EN

Chapter 1 Instruction and data format

Decimal notation

BCD - Binary Coded Decimal

Decimal digits are represented in binary-coded decimal
(BCD), sometimes known as packed decimal.

Four bits are used to represent a decimal digit:

Table 3. BCD notation

binary notation
decimal
msb 1sb equivalent
0 0 0 0 1
0 0 0 1 2
0 0 1 0 3
0 0 1 1 il
0 1 0 0 5
0 1 0 1 6
0 1 1 0 7
0 1 1 1 8
1 0 0 0 9
1 0 0 1 10
1 0 1 0 +
1 0 1 1 -
1 1 0 0 + t
1 1 0 1 - t
1 1 1 0 +
1 1 1 1 (+)

(+) represents unsigned, it is
treated as a plus.

t The ND-110 instruction set uses
only the codes 1100 for plus
and 1101 for minus.

The maximum length of an operand is 31 decimal digits
plus a sign nibble (4 bits), this occupies eight
consecutive memory locations (eight 16-bit words).

ND-06.029.1 EN

ASCII coded decimal

Chapter 1 Instruction and data

format

sign representation:

ASCII-coded decimal notation uses eight bits to
represent a decimal digit.

The format of an ASCII code decimal is :

1 1
zone digit

Figure 5. ASCII byte structure

Table 4. ASCII notation

ASCII Code Decimal
msb 1sb Equivalent
0O 01 1 0 0O O O 0

0 01 1 0 0 O 1 1

0O 01 1 0 O 1 0 2

0O 011 0 0 11 3

0O 01 1 0 1 0O by

0O 01 1 0 1 0 1 5

0O 01 1 0 1 10 6

0O 011 0 1 1 1 7

0O 01 11 0 O O 8

0O 011 1 0 0 1 9

Bit 7 (msb) is the parity bit and is always zero
ASCII code.

The ASCII notation for sign is as follows:

+ 00101011 53,
00101101 55,

ND-06.029.1 EN

in

Chapter 1 Instruction and data format 9

separate trailing

separate leading

embedded trailing

embedded leading

embedded sign coding

There are four ways of representing the sign in a
decimal operand:

The byte following the last significant digit contains
the sign.

The byte preceding the ASCII digit code contains the
sign.

The byte representing the least significant decimal
digit also contains the sign.

The byte representing the most significant digit also
contains the sign.

The embedded codes are represented by ASCII notation as
follows:

Table 5. ASCII embedded notation

decimal positive sign negative sign
operand ASCII value ASCII value
octal binary octal binary

0 173 01111011 175 01111101

1 101 01000001 112 01001010

2 102 01000010 113 01001011

3 103 01000011 114 01001100

b 104 01000100 115 01001101

5 105 01000101 116 01001110

6 106 01000110 117 01001111

7 107 01000111 120 01010000

8 110 01001000 121 01010001

9 111 01001001 122 01010010

ND-06.029.1 EN

10

ND-06.029.1 EN

13

CHAPTER 2 MEMORY ADDRESSING

The ND-110 accesses memory as 16-bit words. There are
four different types of memory access.

1. Instruction fetch. The word being fetched will be
interpreted as an instruction.

2. Operand read. The word being fetched will be used
as data.

3. Operand write. The word being written is data.

4, Indirect address fetch. The word being fetched will
be treated as an address for the current operation.

The ND-110 uses relative addressing. This means that
the address is specified relative to the contents of
the program counter (P register), or relative to the
contents of the B and/or X registers.

The following pages detail the various addressing modes
available on the ND-110 (including byte addressing and
direct physical memory addressing). Each addressing
mode is given its own page and headed by its title and
bit format. These pages are preceded by a general
description of the instruction format and the
terminology used.

ND-06.029.1 EN

14

2.1 Address structure

Chapter 2 Memory addressing

Byte addressing

Physical memory
addressing

A large group of memory reference instructions share
the same format:

15 109 8 0

b 1T 1 | T T 1T 1T 1T 1
op code , X I ,B displacement

Figure 6. Memory reference instruction format

Bits 8 to 10 define the addressing mode and bits O to 7
the displacement. Together these two fields define the
memory address.

The 8-bit displacement field is a 2's complement signed
number (giving a displacement range of +127 to -128).

The five most significant bits, the op code, define the

type of operation executed.

The eight possible combinations of ",X", "I" and ",B"
give the following address modes:

® P relative addressing

® B relative addressing

e P indirect addressing

® B indirect addressing

e X relative addressing

® B indexed addressing

® P indirect indexed addressing

@ B indirect indexed addressing

This is a special type of address mode used to
manipulate character strings within memory. It is
described after the relative addressing modes.

This address mode is used to address a memory location
within the physical memory without using the memory
management system (for memory addresses > 2000000).
Its description follows byte addressing. 8

ND-06.029.1 EN

Chapter 2 Memory addressing

Execution times

15

When indirect addressing is used, the execution time of
a memory reference instruction increases. One extra
microcycle is needed if the indirect address is found

in cache; if not, the extra time is the length of a
memory access.

When B relative indexed addressing (,X,B) is used the
instruction execution time is increased by one micro-
cycle. However, this does NOT apply to B indirect
indexed addressing (,X I,B).

ND-06.029.1 EN

16

Memory management

Chapter 2 Memory addressing

Addressing modes are described in this manual in
reference to their 16-bit virtual address, this is
normally translated to a 24-bit physical address by the
memory management system (extended mode). Older

programs may use a 19-bit physical address (normal
mode) .

When memory management is ON, the translation of a
16-bit address to a 2U4-bit physical address is done
with the help of the normal page table (PT) or
alternate page table (APT). The rule is: P relative
addressing uses PT and B relative or indexed (X)
addressing use APT addressing modes.

Indirect(I) addressing results in two memory accesses.
One for the indirect address and the second for the
instruction operand itself. The memory management
system regards these two accesses as separate
operations and chooses PT or APT modes, according to
the above rule, for each memory access.

ND-06.029.1 EN

Chapter 2 Memory addressing 17

2.2 Addressing modes

Addressing mode notation

The following symbols are used in the description of
the ND-110 addressing modes:

, X address relative to X register (post-indexed)

I indirect address

,B address relative to B register (pre-indexed)

d displacement (bits 0-7 of instruction) as a 2's

complement value

() contents of

ea effective address

n arbitrary address of a word in memory
K memory-block base-address pointer

current value of the program counter

— points to
> loaded into
PT normal page table

APT alternate page table

Note: The effective address is the term given to the
memory location which is finally accessed after all

address modification (pre- and post- indexing) has
taken place.

ND-06.029.1 EN

18 Chapter 2 Memory addressing

Addressing modes

ND-06.029.1 EN

19

P relative addressing

,X=0
I=0
,B=0
Effective address: ea = (P) + displacement
Description: The effective memory address is calculated by adding

the value of the displacement to the contents of the P
register (program counter). If memory management is
being used, the normal page table (PT) will be used.

memory

location

n + d ——— effective address (ea)
displacement (d)

n — (P)

Note: d may have any value in the range -128 to 127.

Example: STA *2 (instruction code 0040028)

Store contents of A register in the memory location two
words ahead of this instruction.

memory
location
602 (A) ——ca=n+ 2
8
1
d
| d=2
600, | 004002, |~——— (P) (P) = 600
((P)) = 0045028

ND-06.029.1 EN

20

B relative addressing

’

1

el
X=0
I=0
B=1

’

Effective address:

Description:

Example:

ea = (B) + displacement

The effective address is calculated by adding the value

of the displacement vector to the contents of the B
register.

If memory management is ON, the alternate page table
(APT) converts the effective address to a physical
address.

memory

location

n+d ———— effective address (ea) R
displacement (d)

n — (B)

Note: d may have any value in the range -128 to 127.

LDA -U4,B (instruction code 0447748)

Load the contents of a memory location into the A
register.The effective address location is the contents
of the B register minus the displacement value (= 4).

memory
location
10035 ——— (B) (B) = 10035 —_
8 8
d= -4
‘ ((P)) = 0447748
. d (n) = 044748

10031, | >(4) |————ea = (B) - d

ND-06.029.1 EN

Effective address:

Description:

Example:

21

P indirect addressing
, X=0
I=1
,B=0

ea = ((P) + displacement)

The contents of the P register (program counter) are
added to the value of the displacement to find the
indirect address (pointer). If memory management is ON,
the standard page table (PT) converts the indirect
address to a physical address.

The 16-bit word pointed to by the indirect address is
the effective address for the operation. If memory
management is ON, the alternate page table (APT)
converts the effective address to a physical address.

memory
location

n + d | pointer——— (pointer) = effective
address (ea)
displacement (d)

n +—— (P)

Note: d may have any value in the range -128 to 127.
LDA I *2 (instruction 0450028)

Load the contents of the effective address into the A
register. The effective address is the contents of the

memory location two words (d = 2) ahead of the current
instruction.

memory
location
160058 >(4) « ea = ((P) + 4d)
402 016003, |—— (P) + d
8 8
1
d
(P) = 400
200, | 045002, —I d=2 ¢
((P)) - 045002,

ND-06.029.1 EN

22

B indirect addressing
0
1
1

’

X
I
,B

Effective address:

Description:

NOTE:

Example:

ea = ((B) + displacement)

The contents of the B register are added to the
displacement value. The resulting 16-bit value is the
indirect address.

The 16-bit word fetched from this location is the
effective address for the operation. If memory
management is ON, the alternate page table (APT) will
be used to convert both the indirect and effective
addresses to physical addresses.

Indirect addressing adds one extra memory access to the
execution time of the instruction.

memory
location

n + d | pointer—————— (pointer) = effective address (ea)

displacement (d)

n —— (B)

Note: d may have any value in the range -128 to 127.
JPL I 3,B (octal code for instruction 1354038)

The contents of the B register plus the value of the
displacement point to the memory location which
contains the effective address.

The instruction saves the contents of the P register
(program counter) in the L register and loads the P
register with the effective address. This results in
the next instruction (marked subr. in the diagram
below) being fetched from the effective address.

memory
location
20000, | subr. . ea = ((B) + d)
4038 200008 —— (B) + d
d
| d=3
4008 —— (B) (R) - 4008
((P)) = 1354038

ND-06.029.1 EN

Effective address:

Description:

Example:

23

X relative addressing
,X=1
I=0
,B=0

ea = (X) + displacement

The effective address is calculated by adding the value
of the displacement to the contents of the X register.

If memory management is being used, the alternate page
table (APT) is used to convert the effective address to
a physical address.

memory

location

n+ d ——— effective address (ea)
displacement (d)

n — (X)

Note: d may have any value in the range -128 to 127.

STA 2,X (instruction code 0060028)

Store contents of X register in the memory location two
words ahead of this instruction.

memory
location
6068 (4) ———eca = (X) + 2

1

d

|
6048 — (X) d=2

(X) = 6048
((P)) = 0060028

ND-06.029.1 EN

24

B indexed addressing

’

1

n
X=1
I=0
B=1

,

Effective address:

Description:

NOTE:

Example:

ea = (B) + (X) + displacement

The effective address is calculated by adding the
contents of the B register to the contents of the X
register, and then adding the result to the value of
the displacement.

If memory management is being used, the alternate page
table (APT) will be used to convert the effective
address to a physical addresses.

This addressing mode adds one extra microcycle to the
execution time of the instruction.

memory
location
n+(X) ————ea = (B) + (X) +d
+d
displacement (d)
n+(X) «—— (B) + (X)
n (B)

Note: d may have any value in the range -128 to 127.
LDA 1,B ,X (instruction code 0464018)

Load the contents of the memory location into the A
register.The effective address is the contents of the B
and X registers added together plus the

displacement(= 1).

memory
location
3098 - (A) ————ca = (B) + (X) +d
d

3088 —— (B) + (X)

d=1

(B) = 3048
5048 —— (B) (X) = 4
((P)) = 0464018

ND-06.029.1 EN

Effective address:

Description:

NOTE:

Example:

25

P indirect indexed addressing
,X=1
I=1
,B=0

ea = ((P) + displacement) + (X)

The displacement value is added to the contents of the
P register to determine an indirect address. The 16-bit
word at this location is added to the contents of

X (index) register to find the effective address. The
indirect address can be used as a base pointer to a
block of memory with (X) the index.

If memory management is being used, the alternate page
table (APT) will be used to convert the effective
address to a physical addresses.

Indirect addressing adds one extra memory access to the
execution time of the instruction.

memory
location
K+(X) ————— effective address
e
n+d K — (P) + d
displacement(d)
n —— (P)

Note: d may have any value in the range -128 to 127.
LDA ,X I *1 (instruction code 0470018)

The contents of the P register (program counter) are
added to the value of the displacement (= 2) and the
value fetched is used as the effective address. The

contents of the effective address are loaded into the A
register.

memory
location

100028 - (A) ———ca = ((P) + d) + (X)

100018 ea base |+—— ((P) + d)

(P) = 506,
507, —(P) +d d=1
((P)) = 047001,
506, | 047001, |——— (P) (X) =1
(507,) = 10001,

ND-06.029.1 EN

26

B indirect indexed addressing

*

n
X=1
I=1
B=1

’

Effective address:

Description:

NOTE:

Example:

ea = ((B) + displacement) + (X)

The displacement value is added to the contents of the
B register to determine an indirect address. The 16-bit
word at this location is added to the contents of X
(index) register to find the effective address. The
indirect address can be used as a base pointer to a
block of memory with (X) the index.

If memory management is being used, the alternate page
table (APT) will be used to convert the effective
address to a physical address.

Indirect addressing adds one extra memory access to the
execution time of the instruction.

memory
location

K+(X) ————— effective address
1
+(X)

n+d K ————————J (B) +d

displacement (d)

n ———— (B)

Note: d may have any value in the range -128 to 127.
LDA ,X I ,B *1 (instruction code 0474018)

Load the contents of the memory location into the A
register.The memory location pointed to by the contents
of the B register (program counter) plus a displacement
of two gives an intermediate memory location containing
the base effective address of a block of data each word
located by the index (X register) contents.

memory
location
100028 > (A) ————cea = ((B) + d) + (X)
100018 ea base |————— ((B) + d)
((P)) = 0474018
(B) = 506,
d =1
(5078) = 10001
(10001,) ~ 10002,
506, +——— (B)
(A) = (100028)

ND-06.029.1 EN

Effective address:

Description:

Example:

27
Byte addressing

ea = (T) + (X)*2

Byte instructions use bytes within memory, these are
addressed by the T and X registers.

The T register contents point to the start of a
character string in memory and the contents of the X
register point to a byte within the string.

memory

location

n+2 X=4| X=5|—— (ea) = effective address
n+l X=2| X=3

n X=0| X=1|e———— (T)

LBYT (instruction code 1422008)

Load the byte addressed by the contents of the T and X
register into the lower byte of the A register; set the
higher byte to zero.

memory
location

4602, e f |——— (ea) = (T) + (X)/2

4601, | c | 4 (1) = 4600,
(x) = 4,
4600, | a | b |—— (1)
(e) = 377
8
(4) = 000377,
((P)) = 142200,

ND-06.029.1 EN

28

Physical memory addressing

Effective address:

Description:

Example:

ea = (T) + (X) + displacement

There are seven privileged instructions (see pages 133-
136) which read/write to any physical memory location
whether the memory management system is enabled or not
(paging on/off). However, they will affect the page
tables if the address is within page-table range.

The effective address is calculated by adding a 3-bit
displacement value to the T and X register contents.

The displacement is added to the X register first. If
this results in a carry, the carry is dropped and NOT
added to the T register. Hence, the T register always
determines which 64 K memory area to address.

memory

location

n+d — (T) + (X) + d

+(T)

n+d — (X)) + d
displacement (d)

n — (X)

Note: d may have any value in the range 0 to 7.

LDATX (instruction code 1433208)

memory
Location
203068 —ca = (T) + (X) + ¢
3068 — (X)) + d
displacement (d)
((P)) = 1433208
304, — (%) (X) = 304,
d =2
(T) = 200008

ND-06.029.1 EN

29

CHAPTER 3 THE INSTRUCTION SET

w WWwWwwwww w

e
AU W N -

THE INSTRUCTION SET

29
Instructions A 3 31
Using privileged instructlons 20
How an instruction is executed s S AR S e 30
How to change the microprogram S0 0 o TR Dl e R VAR
Instruction timing Sy NS B TR L 33
Alphabetic index of the 1nstruct10n set 35
Instruction set notation . 37
The instructions - e 38
Register instructlons < i . 39
Memory transfers (load,store, arlthmetlc loglcal and floatlng
point) . A e e SR s e e
Floating point conver51on 1nstructlons SR e RN et e o et e te i L e o o 710
Shift instructions . 73
Jump instructions . b e 3 5
Monitor instruction . 81
Skip instruction 82
Argument instructions 85
Bit instructions 8 87
Single byte instructions 90
Byte block instructions 92
Word block instruction . 95
Version instruction 97
Decimal instructions . 98
Stack instructions E . 108
Memory examine and test 1nstruct10ns « 112
Inter-level register instructions e I
Register block instructions =5
Internal register instructions S HB1
Input/Output instructions el
Interrupt control instructions < 124
Memory management instructions 128
Physical memory control instructions o w e 130
Writable control store instruction a0 e L3t

OPCOM mode instruction

. 132

SINTRAN III memory transfer instructions SR TR s L T L el

SINTRAN I1I control instructions

ND-06.029.1 EN

- 137

31

CHAPTER 3 THE INSTRUCTION SET

The range of instructions that can be executed by the
ND-110 is the instruction set. It includes operations
on data, varying from bits to triple words; BCD,

floating point, arithmetical and logical operations and
system-control functions.

This chapter gives a brief explanation of instruction
execution and timing, followed by a detailed
description of the instruction set. Addressing modes
are described in the previous chapter.

Instructions are listed in alphabetical groups
according to the type of operation. Each instruction
mnemonic is highlighted on the relevant page edge to
help you scan through the chapter for a specific

instruction. Each page has a general heading to the
type of operation.

The instruction set is preceded by an alphabetical
index of mnemonics and a key to the notation used.

3.1 Instructions

3.1.1 Using privileged instructions

The instruction set can be subdivided into two
instruction types:

® privileged
® user

The privileged instructions are used by the operating
system and RT programs only.

Privileged instructions execute all I/0 transfers,
control memory management and interrupt systems, and
enable inter-program level communication.

A user executes the instruction-set subset which
excludes privileged instructions; the instruction MON

providing the only source of user-operating system
communication.

ND-06.029.1 EN

32 Chapter 3 The Instruction Set

3.1.2 How an instruction is executed

Each instruction in the ND-110 has a corresponding
microprogram sequence (a set of micro-instructions) in
the microprogram control store. The instruction code is
decoded in RMIC gate array to find which microprogram
is to be run. Instructions are loaded into cache memory
improving execution time of repetitive instructions, as
they can be fetched from the local cache each time
instead of memory.

The next instruction is fetched during the last
microcycle of the current instruction. This differs
from the procedure followed in the ND-100 where the
next instruction was prefetched during the current
instruction. The ND-110 does not lose speed by fetching
instructions in the last microcycle, as they are
normally fetched from cache memory where they have been
partly decoded.

The program counter (P register) points to the
instruction address, if the instruction is fetched from
memory and the memory management system (MMS) is on,
the 16-bit virtual address will be converted to a
24-bit physical address and a 16-bit instruction
fetched from the address. If MMS is off, the 16-bit
program counter is the address of the instruction.

Detailed information on how the microprogram is decoded
is described in the ND-110 Functional Description
(ND-06.026) .

3.1.3 How to change the microprogram

The microprogram control store is writable and can be
set dynamically using two instructions TRR CS and TRA
CS (new to the ND-110 instruction set).

ND-06.029.1 EN

Chapter 3 The Instruction Set

3.1.4 Instruction timing

33

The shortest instructions are executed from cache and

use 1 microcycle (compared to the 4 cycles needed in
the ND-100).

1 microcycle = 1 internal CPU cycle
6+ nanocycles (6 * 26ns) for
ND-110
4+ nanocycles (4 * 26ns) for
ND-110/CX

ND-06.029.1 EN

34

ND-06.029.1 EN

Chapter 3

The Instruction Set

Chapter 3 The Instruction Set

3.1.5 Alphabetic index of the instruction set

AAA 85 IJMP ..iian.... 78 REMPL 142
AAB ..., 85 INC ivviinnn. 80 REPT 143
AAT ... 85 JPC vvviiinnn. 80 REXcovvnn.. 129
AAX i, 85 JPL i, 78 REXOvnn... 53
ADDinu.... 65 IXN ovviiennn. .. 80 RGLOB 143
ADDD 101)¢/ 80 RINCo.... 54
ANDc..... 67 LACB 140 * RMPY 55
BANC 87 LASB 140 * RORA 56
BAND 87 LBIT ...vvvnn... 140 * RSUB 57
BFILL 93 LBITP 141 * SAA ... 85
BLDA 87 LBYTc...... 91 SAB ..., 85
BLDC 87 LBYTP 141 SACB 143
BORA 87 LDA ...vivvnnnn.. 60 SAD ..., 75
BORC 87 LDATX 134 * SASB 143
BSET ...cvvunn... 87 LDBTX 134 * SAT ..vviinnnn.. 85
BSKP 87 LDD ..vvvvnnn... 60 SAX i, 85
BSTA ...vvnnn... 87 LDDTX 134 * SBIT 144
BSTCv..... 87 LDF ...vvvinnn.. 60 SBITP 144
CHREENTPAGES 137 * LDT ...vvvvnnnn.. 61 SBYT vvvvvvnnnn.. 91
CLEPT 137 * DX vvviinnnnnn.. 61 SBYTP 144
CLEPU 138 * LDXTXvvn... 135 * SETPT 145
CLNREENT 139 * LEAVE 111) 2 G 129
CLPT 139 * LRB 116 * SHAov.... 75
CNREK 139 * LWCS ...o.o.... 131 SHDvvnn.... 53
COMD 102 LXCB 141 * SHDE 104
COPY ...vvvvunn.. 43 LXSB ...vvvnnn.. 142 * SHT ..vvvvnnnnn.. 58
DEPO 130 * MCL.......oou... 118 * SKPviuun... 82
DNZ ..vvivnnnnnn. 71 MIN ...vvinn.. 62 SRBvnnu... 116
ELEAV 109 MIX3 ...ivinn... 46 STA v.vviininnnn. 62
ENPT 139 * MONvun.. 81 STATX ...vvvn... 135
ENTR 109 MOVB 93 STD v, 62
EXAM 130 * MOVBF 93 STDTXun.... 135
EXITvvu.... Ly MOVEW 95 STF v, 63
EXRovvun... 45 MPY ...vvvvvnnnn. 65 STT vvvevinnnnn. 63
FAD 68 MSTcovnn... 118 * STX vvvvennnnnn. 38
FDV ..vviveenn... 68 NLZovvunn... 71 STZ v, 64
FMUovon... 69 OPCOM 132 * STZTX ..vvuo.... 136
FSBc.coun... 69 ORA 67 SUB vovvvnnnn.. 66
IDENT 125 * PACK 103 SUBD 105
INIT ..., 110 PIOF 126 * SWAP 58
INSPL 140 * PION 127 * SZCB ... 145
IOF ..., 126 * POF 128 * SZSB 146
ION ..o, 126 * PON 128 * TRA 119
K0). QR 121 * RADD 47 TRRovvnnn.. 119
IOXT .vvvevnnn.. 123 * RAND 4g TSET ...oou..... 112
IRR .vvvinnnnnn. 114 * RCLR 50 TSETP 146
IRW ..vvvvnnnn.. 114 * RDCR 51 UPACK 106
B 79 RDIV 52 VERSN 97
JAN ..., 79 RDUS 112 WAIT 127
JAP 79 RDUSP 142 * WGLOB 146
JAZ ..o, 79

* denotes privileged instruction

ND-06.029.1 EN

*

* % ¥ k

36

ND-06.029.1 EN

Chapter 3

The Instruction Set

Chapter 3 The Instruction Set

3.1.6 Instruction set notation

37

The following symbols are used in the description of
the ND-110 instruction set:

()

ea

PT

APT

contents of

becomes e.g. a «— b 1is a becomes b

1's complement/invert e.g. A invert the
bits in register A

effective address (see previous chapter)
base 8 - octal

base 10 - decimal

assembler mnemonic for the P register
normal page table

alternative page table

unused bit - value insignificant

ND-06.029.1 EN

38 Chapter 3 The Instruction Set

3.2 The instructions

ND-06.029.1 EN

Instruction format:

Instruction structure:

Source and
destination
specification:
(bits 0-5)

39

Register Instructions

Description

These instructions specify operations between source
(sr) and destination (dr) registers.

<register operation> <sub-instruction (s)> <sr> <dr>
OR

<register operation> <sr> <dr>

OR

<register operation> <dr>

15 109 8 7 6 5 0
| | | 1 | I | | |
register op Cl| Iicm|cl sr dr
cm is CM1
cl is CLD

The source and destination register contents
provide the operands for these instructions.

The result of the instruction is loaded into the
the dr register; the sr register contents are
unchanged.

as source: as destination:
register | mnemonic code mnemonic code
D SD lO8 DD 18
P Sp 208 DP 28
B SB 308 DB 38
L SL hog DL 48
A SA 508 DA 58
T ST 608 DT 68
X SX 708 DX 78

ND-06.029.1 EN

Lo

Register Instructions
Description

Sub-instruction
specification
(bits 6-10)

CLD
bit 6
cM1
bit 7

ADC

AD1

Ccm2

Note:

1. If sr is not specified, sr is assumed to be O.

2. If dr = 0, a no-operation normally occurs.
(EXIT,EXR,RDIV,MIX3 are exceptions to this and RADD
instructions clear the carry flag, C only.)

3. If the P register is specified as either sr or dr,
the value of the next instruction is used as an
operand.

The following sub-instructions are selected by
setting the relevant bit(s):

CLD=1
Zero is used instead of the destination register as an
operand (dr register contents are unchanged).

CM1=1
The 1's complement of the source register is used as an
operand (sr register contents are unchanged).

C=0 I=1 Add previous carry to destination register.

C=1 I=0 Add 1 to destination register.

ADC and AD1 are only valid for RADD instructionss and
those combined mnemonics which replace certain RADD

<sub-instruction (s)>, that is, COPY, RDCR, RINC and
RSUB.

ADC and AD1 cause a no-operation when used together in
the same instruction.

This compound sub-ingstruction is equivalent to CM1 AD1

Comment:
Sub-instructions can make your code less clear, some
register operations have combined mnemonics to help.

ND-06.029.1 EN

Flags affected:

Octal coding:

b1

Register Instructions

Description
The carry (C) and overflow (0 and Q) are only affected

by RADD instructions (and the combined mnemonics which
replace certain RADD instructions).

The instructions are quoted with their base octal code,
that is the code for the operation without any sub-

instruction, sr or dr codes, these should be added
accordingly.

ND-06.029.1 EN

42

Register Instructions
Description

Format

The following instructions are register operations divided into valid
format groups:

<register op> <sub-instruction(s)> <sr> <dr> :
OR <register op> <sr> <dr> :
OR <register op> <dr> :

Page:
COPY register copy 43
RADD register addition b7
RAND register AND 49
REXO register XOR 53
RORA register OR 56
RSUB register subtract 57
SWAP register swap 58
<register op> <sr> <dr> :
RMPY register multiply 55
<register op> <sr> :
EXR register execute 45
RDIV register divide 52
<register op> <dr> :
RCLR register clear = COPY O 50
RDCR register decrement = RADD CM1 51
RINC register increment = RADD AD1 54
<register op> :
EXIT return from subroutine = COPY SL DP Ly
MIX3 multiply index by 3 46

ND-06.029.1 EN

Description:

Format:

Octal code:

Optional sub-
instructions:

RCLR

EXIT

Flags affected:

Examples:

43

Register instructions
COPY

register copy

dr &— sr

COPY <sub-instruction(s)> <sr> <dr>

1461008

COPY is a compound mnemonic for RADD CLD.
The following sub-instructions are allowed:
CcM1, CM2, ADC, AD1

Note:

Using ADC and AD1 in the same instruction generates a
no-operation.

This compound mnemonic represents the COPY instruction:
COPY O and is used with <dr> to clear a specific
register (base octal code 1461008).

This compound mnemonic represents the specific COPY
instruction: COPY SL DP and causes the return from a
subroutine by copying the stored return address into

the program counter (P register). It has a unique
instruction code 1461428.

See RADD instruction.

1. COPY SA DD (1461518)

Copy the contents of register contents A into the D
register.

2. COPY CM2 SA DD (1466558)

2's complement the A register.
(Equivalent to RADD CM1 ADC SA DA.)

ND-06.029.1 EN

b4y

Register Instructions

EXIT

Description: return from subroutine
EXIT is a compound mnemonic for COPY SL DP (or RADD CLD
SL DP).

Format: EXIT

Octal code: 1461428

Flags affected: See RADD instruction.

Example: EXIT (1461428) [(L)=1088 (P)=19O8]

Leave subroutine at location 1908 and return to
location 1088.

ND-06.029.1 EN

Description:

Format:

Registers affected:

Octal code:

Comments:

Flag affected:

Examples:

45

Register Instructions
EXR

register execute

EXR <sr>

(IR) and those registers changed by the instruction.

1406008

The contents of the sr register are executed as the
next instruction.

If sr contains a memory reference instruction, the
address is given as part of the instruction.

EXR <sr> cannot be used to fetch an sr register
containing another EXR <sr> instruction.
If you attempt this the error flag (Z) is set.

1. EXR SA (1406508) [(A) = 0141778 = STX *1778]

Execute the instruction held in the A register.
Store the X register contents in the memory
location pointed to by the program counter plus

1778.
2. EXR SB (1406308) [(B) = 1340208 = JPL 208]

Execute the instruction held in the B register.
The instruction is a jump to a subroutine at
memory location ((P) + 20_). The return address
(the address of the instruction after EXR;
returned to once the subroutine has been
completed is held in the L register.

ND-06.029.1 EN

46

Register Instructions

MIX3

Description: multiply index by 3
(X) «— [(A)-1] x 3

Format: MIX3

Registers affected: (X)

Octal code: 1432008

Example: MIX3

Take the contents of the A register as an operand and
subtract one. Multiply the result by three and place it
in the X register.

ND-06.029.1 EN

Description:

Format:

Octal code:

Optional sub-
instructions:

CLD

CcM1

ADC

AD1

cm2

Flags affected:

47

Register Instructions
RADD

register add

dr «— dr + sr
RADD <sub-instruction(s)> <sr> <dr>

1460008

CLD=1 Zero is used instead of the destination register
as an operand (dr register contents are unchanged).

CM1=1 The 1's complement of the source register is used
as an operand (sr register contents are unchanged).

This mnemonic represents C=0 I=1
Add previous carry to destination register.

This mnemonic represents C=1 I=0 :
Add 1 to destination register.

This compound sub-instruction is equivalent to CM1 ADC.

RADD instructions affect the carry (C) and overflow (0
and Q) flags as follows:

c=1

If a carry occurs from the signed bit positions of the
adder.

0=1,;Q-=1
If an overflow occurs, that is if the signs of the two

operands are equal and the sign of the result is
different.

0=1,;@Q-=20
If overflow does not exist, the dynamic overflow flag

(0) is reset while the static overflow flag (Q) is left
unchanged.

ND-06.029.1 EN

48

Register Instructions

RADD
Instruction
combinations: RADD <sr> <dr> dr «— dr +
COPY RADD CLD <sr> <dr> dr «— sr
RADD CM1 <sr> <dr> dr «— dr +
RADD CM1 CLD <sr> <dr> dr «— sr
RADD AD1 <sr> <dr> dr «— dr +
RADD CLD AD1 <sr> <dr> dr «— sr +
RSUB RADD CM1 AD1 <sr> <dr> dr +— dr -
RADD CM1 CLD AD1 <sr> <dr> dr «— - sr
RADD ADC <sr> <dr> dr «— dr +
RADD CLD ADC <sr> <dr> dr e sr +
RADD CM1 ADC <sr> <dr> dr «— dr +
RADD CM1 CLD ADC <sr> <dr> dr «— sr +
‘ Note:
RINC RADD AD1 <dr> is equivalent to RINC <dr>,
register by one.
RDCR RADD CM1 <dr> is equivalent to RDCR <«dr>,
register by one.
RCLR RADD CLD O {COPY 0) is equivalent to RCLR
register clear.
EXIT RADD CM1 SL DP (COPY SL DP) is equivalent
return from subroutine.
Examples: 1. RADD SA DX (1460578)

sr

COPY

sr + 1

sr RSUB

increment dr

decrement dr

<dr>,

to EXIT,

Add the contents of the A and X registers together

and place the result in the
2. RADD CLD SX DB (1461738)

Use zero as the destination
register contents and leave

X

register.

COPY SX

DB

operand, add the X
the result in B.
THAT IS copy the contents of the X register into A.

3. RADD CM1 CLD AD1 SX DB (1“67738) = COPY CLD AD1 or
RSUB CM1

Copy the negative value of the X register contents

into B.

ND-06.029.1 EN

49

Register Instructions
RAND

Description: AND register

dr «— dr AND sr

Format: RAND <sub-instruction(s)> <sr> <dr>
Octal code: 1444008

Optional sub-

instructions: CLD=1 Zero is used instead of the destination register
as an operand (dr register contents are unchanged).
CM1=1 The 1's complement of the source register is used
as an operand (sr register contents are unchanged).
Instruction
combinations: RAND <sr> <dr> dr «— dr AND sr
RAND CLD <s»> <dr> dr «— O
RAND CM1 <sr> <dr> dr «— dr AND sr
RAND CM1 CLD <sr> <dr> dr «— O
Examples: 1. RAND SL DX (1444478)

AND the contents of the L and X registers.
Store the result in the X register.

2. RAND CM1 ST DB (1446638)

AND the contents of the T and B registers, taking
the 1's complement of the sr as the source operand.

ND-06.029.1 EN

50

Register Instructions

RCLR
Description: register clear
dr «— O
RCLR is a compound mnemonic for COPY O (or RADD CLD 0).
Format: RCLR <dr>
Octal code: 1461008
Flags affected: See RADD instruction.
Example: RCLR DP (1461028)

Clear the P register.

ND-06.029.1 EN

Description:

Format:

Octal code:

Flags affected:

Example:

51

Register Instructions
RDCR

register decrement
dr «—dr - 1

RDCR is a compound mnemonic for RADD CM1.
RDCR <dr>

1462008

See RADD instruction.

RDCR DB (146203,)

Decrement the contents of the B register by one.

ND-06.029.1 EN

52

Register Instructions

RDIV
Description: register divide
(AD) / sr
(A) — quotient
(D) «— remainder
Format: RDIV <sr>
Registers affected: (A), (D)
Flags affected: zZ, C, 0, @
Octal code: 1416008
Comments: The 32-bit signed integer held in the double
accumulator AD is divided by the contents of sr.
If division causes overflow, the error flag (Z) is set.
The numbers are fixed point integers with the fixed
point after the rightmost position.
Example:
Before division: After division:
AD <sr> A D Z
221o 410 510 21o 0
-22 4 -5 -2 0
10 10 10 10
37845210 -1610 —2365310 410 0
3276710 110 3276710 010 0
3276810 1, - - 1
6553510 210 3276210 110 0

ND-06.029.1 EN

Description:

Format:

Octal code:

Optional sub-
instructions:

Instruction
combinations:

Example:

53

Register Instructions
REXO

XOR register

dr «— dr XOR sr

REX0 <sub-instruction(s)> <sr> <dr>

1450008

CLD=1 Zero is used instead of the destination register
as an operand (dr register contents are unchanged).

CM1=1 The 1's complement of the source register is used
as an operand (sr register contents are unchanged).

REX0O <sr> <dr> dr «— dr XOR sr
REXO CLD <sr> <dr> dr «— sr
REXO CM1 <sr> <dr> dr «— dr XOR sr

REXO CM1 CLD <sr> <dr> dr — sr
REXO ST DB (1450638)

Exclusive OR the contents of the B and T register,
leaving the result in B.

ND-06.029.1 EN

54

Register Instructions

RINC
Description: register increment
dr «—dr + 1
RINC is a compound mnemonic for RADD AD1.
Format: RINC <dr>
Octal code: 1464008
Flags affected: See RADD instruction.
Example: RINC DA (146405 8)

Increment the contents of the A register by one.

ND-06.029.1 EN

Description:

Format:

Registers affected:

Flags affected:

Octal code:

Comments:

Example:

55

Register Instructions
RMPY

register multiply
(AD) «— sr x dr

RMPY <sr> <dr>

1’412008

The sr and dr registers hold the two operands to be
multiplied together. The result is a 32-bit signed
integer held in the A and D register (the A register
contains the 16 most significant bits).

RMPY SA DX (141257,)

Multiply the contents of the A and X registers
together, leaving the result in the A and D registers.

ND-06.029.1 EN

56

Register Instructions
RORA

Description:

Format:

Octal code:

Optional sub-
instructions:

Instruction
combinations:

Examples:

OR register

dr «— dr OR sr

RORA <sub-instruction(s)> <sr> <dr>

1454008

CLD=1 Zero is used instead of the destination register
as an operand (dr register contents are unchanged).

CM1=1 The 1's complement of the source register is used
as an operand (sr register contents are unchanged).

RORA <sr>
RORA CLD <sr>
RORA CM1 <sr>

RORA CM1 CLD <sr>

<dr>

<dr>

<dr>

<dr>

RORA ST DB (1454638)

dr

dr

dr

dr

OR thekcontents of the B and

result in B.

ND-06.029.1 EN

+— dr OR sr
+— sr
— dr OR sr

— Sr

T registers leaving the

57

Register Instructions
RSUB

Description: register subtract
dr «— dr - sr

RSUB is a compound mnemonic for RADD AD1 CM1 (or RADD
CM2 using the AD1 CM2 compound mnemonic).

Format: RSUB <sub-instruction> <sr> <dr>

Octal code: 1466008

Optional sub-
instructions: The following sub-instruction is allowed:
CLD
Note:
Sometimes the RADD form will be more readable.

Flags affected: See RADD instruction.

Example: RSUB ST DB (1&66638)

Subtract the contents of the T register from the
contents of the B register leaving the result in B.

ND-06.029.1 EN

58

Register Instructions
SWAP

Description:

Format:
Octal code:

Optional sub-
instructions:

Instruction
combinations:

Examples:

register swap

dr «— sr

SWAP <sub-instruction(s)> <sr> <dr>

1440008

CLD=1 Zero is used instead of the destination register
as an operand (dr register contents are unchanged).

CM1=1 The 1's complement of the source register is used
as an operand (sr register contents are unchanged).

SWAP <sr>
SWAP CLD <sr>
SWAP CM1 <sr>

SWAP CM1 CLD <sr>

1. SWAP SA DD (144051,)

<dr>

<dr>

<dr>

<dr>

dr

dr

dr

dr

—

—

—

sr

sr; sr
sr; sr
sr; sr

Exchange A and D register contents.

2. SWAP CLD SA DX

Use zero as the destination operand.

(1441578)

Exchange the A and X register contents.
A register contents are zero, X register contents
are the previous contents of A.

ND-06.029.1 EN

59

Memory transfers

Description
These instructions specify memory transfers.
Instruction format: <opcode> <address mode> <disp>
Instruction structure:
15 109 8 7 0
T T 1 | I N N N N
op code X[I1,B disp
op code: The opcode determines what type of operation occurs.

, X I ,B These three bits give the addressing mode for the
instruction as follows:
, X I ,B Effective Address Address Relative to: Page ref:
0O 0 O (P) + disp P 19
0 0 1 (B) + disp B 20
0O 1 0O ((P) + disp) P indirect 21
0O 1 1 ((B) + disp) B indirect 22
1 0 O (X) + disp X indexed 23
1 0 1 (B) + disp + (X) B indexed 24
1 1 0 ((P) + disp) + (X) P indirect indexed 25
1 1 1 ((B) + disp) + (X) B indirect indexed 26
disp: displacement
disp

This 8-bit signed field gives the memory address
displacement. (2's complement notation giving a
displacement range of -128 to 127 memory locations.)

ND-06.029.1 EN

60

Memory Transfer
Load Instructions

LDA
Description:

Format:

Octal code:

LDD

Description:

Format:

Octal code:

LDF

Description:

Format:

Octal code:

Load A register
(A) ~—— (ea)

Load the contents of the memory location
pointed to by the effective address into the
A register.

LDA <address mode> <disp>

0440008

Load double word

(A) «~— (ea)
(D) &— (ea) + 1

Load the contents of the memory location
pointed to by the effective address into the
A register and the contents of the memory
location pointed to by the effective address
plus one into the D register.

LDD <address mode> <disp>

0240008

Load floating point accumulator (32- and 48-
bit)

(T) &~ (ea)
(A) «—— (ea) + 1
(D) «~—— (ea) + 2

Load the contents of the memory location
pointed to by the effective address into the
T register, the contents of the effective
address plus one into the A register and the
contents of the effective address plus two
into the D register.

LDF <address mode> <disp>

034000,

ND-06.029.1 EN

Description:

Format:

Octal code:

Description:

Format:

Octal code:

Load T

register

(T) «—— (ea)

61

~ Memory Transfer
Load Instructions

LDT

Load the contents of the memory location

pointed to by the effective address into the
T register.

LDT <address mode> <disp>

OSOOOO8

Load X

register

(X) «—— (ea)

LDX

Load the contents of the memory location

pointed to by the effective address into the
X register.

LDX <address mode> <disp>

0540008

ND-06.029.1 EN

62

Memory Transfer
Store Instructions

MIN

Description:

Format:

Octal code:

STA

Description:

Format:

Octal code:

STD

Description:

Format:

Octal code:

Increment memory and skip if zero

(ea) «— (ea) + 1

(P) «~—— (P) + 2 1IF new (ea) 0

The contents of the memory location pointed
to by the effective address are incremented
by one. If the new memory location when
incremented becomes zero, the next
instruction is skipped.

MIN <address mode> <disp>

OLIOOOO8

Store A register
(ea) «—— (A)
Store the contents of the A register in the

memory location pointed to by the effective
address.

STA <address mode> <disp>

0040008

Store double word

(ea) «—— (A)
(ea) + 1 «— (D)

Store the contents of the A register in the
memory location pointed to by the effective
address; store the contents of the D register
in the memory location pointed to by the
effective address plus one.

STD <address mode> <disp>

020000,

ND-06.029.1 EN

Description:

Format:

Octal code:

Description:

Format:

Octal code:

Description:

Format:

Octal code:

Store floating point accumulator (32- and 42-
bit)

(ea) «—— (T)
(ea) + 1 «—— (A)
(ea) + 2 «— (D)
Store the contents of the floating
accumulator (T, A, and D registers) in the
memory locations pointed to by the effective
address.

STF <address mode> <disp>

0300008

Store T register
(ea) «— (T)

Store the contents of the T register in the
memory location pointed to by the effective
address.

STT <address mode> <disp>

OlOOOO8

Store X register
(ea) «— (X)

Store the contents of the X register in the
memory location pointed to by the effective
address.

STX <address mode> <disp>

0140008

ND-06.029.1 EN

63

ry Transfer
nstructions

STF

STT

STX

ol

Memory Transfer
Store Instructions

STZ

Description:

Format:

Octal code:

Store zero
(ea) +— OOOOOO8

Store zero in the contents of the memory
location pointed to by the effective address.

STZ <address mode> <disp>

OOOOOO8

ND-06.029.1 EN

Description:

Format:

Octal code:

Flags affected:

Description:

Format:

Octal code:

Flags affected:

65

~ Memory Transfer
Arithmetic Instructions

Add to A register
(A) —— (A) + (ea)

Add the contents of the memory location
pointed to by the effective address to the A
register, leaving the result in A.

ADD <address mode> <disp>
0600008

C =1
If a carry occurs from the signed bit
positions of the adder.

0=1;Q=1
If an overflow occurs, that is if the signs

of the two operands are equal and the sign of
the result is different.

0=1,;Q=20

If overflow does not exist, the dynamic
overflow flag (0) is reset 0 while the static
overflow flag (Q) is left unchanged.

Multipy integer
(A) «— (A) x (ea)
Multiply the contents of the memory location

pointed to by the effective address with the
contents of the A register, leaving the

result in A.

MPY <address mode> <disp>
1200008

0=1,;Q-=1

If an overflow occurs, that is if the result
has an absolute value greater than 3276710.

ND-06.029.1 EN

ADD

MPY

66

Memory Transfer
Arithmetic Instructions

SUB

Description:

Format:

Octal code:

Flags affected:

Subtract from A register
(A) & (A) - (ea)

Subtract the contents of the memory location
pointed to by the effective address from the
A register contents, leaving the result in A.

SUB <address mode> <disp>
0640008

c =1
If a carry occurs from the signed bit
positions of the adder.

0=1;Q-=1
If an overflow occurs, that is if the signs

of the two operands are equal and the sign of
the result is different.

0=1,;Q=20

If overflow does not exist, the dynamic
overflow flag (0) is reset to O while the
static overflow flag (Q) is left unchanged.

ND-06.029.1 EN

Description:

Format:

Octal code:

Description:

Format:

Octal code:

67

Memory Transfer
Logical Instructions

AND memory contents with A register
(A) «—— (A) AND (ea)

AND the contents of the memory location
pointed to by the effective address with the

A register contents, leaving the result in A.

AND <address mode> <disp>

0700008

OR memory contents with A register

(A) «— (A) OR (ea)

OR the contents of the memory location
pointed to by the effective address with the
A register contents, leaving the result in A.

ORA <address mode> <disp>

0740008

ND-06.029.1 EN

AND

ORA

68

Memory Transf
Floating Poin

LDF
FAD
Description:
Format:
Octal code:
FDV
Description:

Flag affected:

Format:

Octal code:

For 48-bi

This loads the floating point accumulator
(see LOAD Instructions).

Add to floating point accumulator

(A) «— (ea) + (T)
(D) «—— (ea + 1) + (A)

The contents of two sequential memory
locations, pointed to by the effective
address, are added to the contents of the
floating point accumulator (T and A
registers). The result is held in the
accumulator.

FAD <address mode> <disp>

1OOOOO8

Divide floating point accumulator

The contents of the floating point
accumulator (A and D registers) are divided
by the contents of two sequential memory
locations, pointed to by the effective
address. The result is held in the
accumulator.

Division by zero sets the error flag (Z).
This can be detected by the BSKP instruction
(see Bit Instructions).

FDV <address mode> <disp>

1140008

ND-06.029.1 EN

THE INSTRUCTION SET

Description:

Format:

Octal code:

Description:

Format:

Octal code:

69

For 48-bit floating point see note on page 72.

EFMU

Multiply floating point accumulator

The contents of the floating point
accumulator (A and D registers) are
multiplied by the contents of two sequential
memory locations, pointed to by the effective
address. The result is held in the
accumulator.

FMU <address mode> <disp>

1100008

FSB

Subtract from floating point accumulator

The contents of two sequential memory
locations, pointed to by the effective
address, are subtracted from the contents of
the floating point accumulator (A and D

registers). The result is held in the
accumulator.

FSB <address mode> <disp>

1040008

STF
This stores the floating point accumulator

(see STORE Instructions).

ND-06.029.1 EN

70

Floating Point Conversion Instructions

Description
These instructions convert to/from a single precision
fixed point number from/to a floating point number.
Instruction format: <conversion operation> <scaling>

Instruction structure:

15 8 0
T 1T 1. 1T 1. 1T 1T [T T T _T T T 1
conversion operation scaling
conversion operation: There are two conversion instructions:
NLZ
DNZ

scaling: A scaling factor is given to the conversion of -128 to

127 (approximately 10737 to 1039).

ND-06.029.1 EN

Description:

Format:
Octal code:

48-bit:

71

Floating Point Conversion Instructions

48-bit floating point see note on page 72.

DNZ

Denormalize

The number in the floating point accumulator
(A and D registers) is converted to its
single precision fixed point equivalent in
the A register using the scaling factor
given.

When converting to an integer, a scaling
factor of -16 should always be used and
will give a fixed point number with the same
value as the integer part of the floating
point number. Other scaling factors will have

the same result but the overflow test will be
affected.

The D register will be cleared after this
instruction.

If the conversion causes underflow, the A and
D registers will be set to zero. If overflow
occurs (the resulting integer has an absolute
value greater than 32767), the error flag (Z)

is set to one.
DNZ <scaling>
1520008

48-bit CPUs allow different scaling factors
to be used for DNZ operations. However, the

overflow test is only failproof for a scaling
factor of 1610.

ND-06.029.1 EN

72

Floating Point ¢

NLZ

Description:

Format:

Octal code:

Normalize

The number in the A register is converted to

its floating point equivalent in the floating
point accumulator (A and D registers), using

the scaling factor given.

For integers, a scaling factor of +16 will
give a floating point number with the Same
value as the integer.

The larger the scaling factor, the larger the
floating point number.

The D register will be cleared when using
single precision fixed point numbers.

NLZ <scaling>

1514008

Comments on 48-bit floating point CPU
features:

For the ND-110, 48-bit floating point CPU
option, a further register (T) and memory
location (ea + 2) are used. In this case, the
T register is linked to location ea, A to ea
+ 1 and D to ea + 2.

How to test for a 32-bit or 48-bit floating
point CPU:

SAT O
SAA 1
NLZ 208

This tests whether T is changed, if so, the
CPU is 48-bit; otherwise it is 32-bit.

ND-06.029.1 EN

Instruction format:

Instruction structure:

shift and reg. fields:

(bits 15-11, 8 and 7)

type:
(bits 10 and 9)

73

Shift Instructions

Description
These instructions specify register shifts
<shift register> <type> <mode>
15 109 8 7 6 5 0
| L | | | | I I 1 |
shift type | reg.| O number

bit 6 is always zero

Shift operations

are allowed on three working

registers:
register mnemonic octal
code
A and D SAD 1546008
A SHA 1544008
D SHD 154200,
T SHT 1540008

Four types of shift can

be specified:

bits octal

10 9 code mnemonic description:

0O O OOOOOO8 —— Arithmetic shift
0O 1 0010008 ROT Rotational shift
1 0 0020008 ZIN Zero end input

1 1 OO3OOO8 LIN Link end input

ND-06.029.1 EN

74

Shift Instructions
Description

number field
(bits 0-5):

SHR

M flag

This 6-bit signed field specifies the number of shifts
and the shift direction.

bits 0-4 = number of shifts
bit 5 = 1 then shift right (max.32 times)
bit 5 = 0 then shift left (max.31 times)

This a feature of the assembler. This mnemonic can be
used to specify shift right, so that instead of
calculating the 2's complement for the number of right
shifts required, SHR can be used.

Example:
The instruction which shifts the A register contents
three places to the right can be written as:

SHA 758
SHA 1008 - 38
SHA SHR 38

Every shift instruction places the last bit discarded
in the multi-shift flag (M). M can be used as an input
for the next shift instruction.

M is bit 8 of the STS Register.

ND-06.029.1 EN

Description:

Format:

Octal code:

Flag affected:

Description:
Format:

Octal code:

Flag affected:

Description:
Format:

Octal code:

Flag affected:

Description:
Format:

Octal code:

Flag affected:

Shift A and D registers connected

Bit O of the A register is connected to bit
15 of the D register allowing 32-bit numbers

to be shifted.

SAD <type> <number>
15116008

M

Shift A register
SHA <type> <number>
1544008

M

Shift D register

SHD <type> <number>
1542008

M

Shift T register

SHT <type> <number>
154000,

M

ND-06.029.1 EN

75

Shift Instructions

SAD

SHA

SHD

SHT

76

Jump Instructions

Description

Instruction format:

Jump instructions redirect program execution.

OR

<jump> <address mode> <disp>

<jump on condition> <disp>

Instruction structure:

jump instructions:

disp

15 109 8 7 0
[|] |] I I | ! |
jump ,X| I}|,B disp
OR

15 8 7 0
| | | ! | |] | | | | | |
jump on condition disp

These are:

JMP

JPL

and have the following address modes:

, X I ,B Effective Address Address Relative to: Page ref:
0 0 O (P) + disp p 19
0O 0 1 (B) + disp B 20
0O 1 0 ((P) + disp) P indirect 21
0 1 1 ((B) + disp) B indirect 22
1 0 O (X) + disp X indexed 23
1 0 1 (B) + disp + (X) B indexed 24
1 1 0 ((P) + disp) + (X) P indirect indexed 25
1 1 1 ((B) + disp) + (X)| B indirect indexed 26

disp: displacement

These eight bits determine the memory address
displacement.

Seven bits give the displacement and the most
significant eighth bit the cign (that is, a rangc ol
-128 to 127 memory locations).

ND-06.029.1 EN

jump on condition

7
Jump Instructions

Description

These jump instructions give conditions for jumping
sections of program. The jump is always relative to the

program counter (P register).
disp
The eight displacement (disp) bits give a signed range

of -128 to 127 locations to be jumped if the condition
is true.

ND-06.029.1 EN

JMP
Description: Jump (unconditional)
(P) «— (ea)
The address of the next instruction is the
effective address of the JUMP instruction.
Format: JMP <address mode> <disp>
Octal code: 1240008
JEL
Description: Jump to subroutine (jump link)

(L) #— (P) + 1
(P) «— (ea)

The address of the next instruction is the
effective address of the JPL instruction. The
value of the program counter contents plus
one (the return address) is saved in the L
register before the jump takes place.

Format: JPL <address mode> <disp>

Octal code: 1340008

ND-06.029.1 EN

Disp range:

General description:

Description:

Format:

Octal code:

Description:

Format:

Octal code:

Description:

Format:

Octal code:

Description:

Format:

Octal code:

79

Jump Instructions
| condition true

FOR ALL JUMP ON CONDITION TRUE INSTRUCTIONS:
-128 to 127 locations
(P) +—— (ea)

If condition true, jump to the address of the
program counter plus the value of disp.

If condition false, continue program
execution at (P) + 1.

JAF
Jump if (A) # 0 (jump if A filled)
JAF <disp>
1314008
JAN
Jump if (A) < O (jump if A negative)

If A (bit 15)

1}
[anY

JAN <disp>

1304008

JAP

Jump if (A) 2 O (jump if A positive or zero)

If A (bit 15) 0
JAP <disp>

1300008

JAZ
Jump if (A) = O (jump if A zero)
JAZ <disp>

1310008

ND-06.029.1 EN

JNC

JPC

JXN

JXZ

Description:

Format:

Octal code:

Description:

Format:

Octal code:

Description:

Format:

Octal code:

Description:
Format:

Octal code:

Count and jump if (X) < O (jump if negative

and count)

(X) — (X) + 1

THEN

Jump if X (bit 15) =1

JNC <disp>

1324008

Count and jump if (X) 2 O (jump if positive

and count)

(X) — (X) + 1

THEN

Jump if X (bit 15) = 0

JPC <disp>

1320008

Jump if (X) <
If X (bit 15)
JXN <disp>

1334008

Jump if (X) =
JXZ <disp>

1330008

ND-06.029.1 EN

(jump if X negative)

(jump if X zero)

Instruction format:

Instruction structure:

MON

Octal code:

number

81
Monitor Instruction
MON
This instruction is used for monitor calls and causes

an internal interrupt to program level 14,

MON <number>

| | | | | | ! I ! | 1
MON number

Monitor instruction mnemonic.
1530008
This unsigned field allows 256 monitor calls.

The field is loaded into the T register on level 14.
The higher byte of the T register is sign extended.

ND-06.029.1 EN

82

Skip Instruction
SKP

Instruction format:

Instruction structure:

SKP

Basic octal code:

sr and dr
specification:
(bits 0 - 5)

The next instruction is skipped if a specified
condition is true.

SKP <dr> <cond> <8r>

15 109 8 7 6 3 0

1 | | | 1 | | | | |
SKP cond 0o O sr dr

bits 6 and 7 are always zero

Skip instruction mnemonic.

1400008
as source: as destination:
register mnemonic code mnemonic code
D SD 108 DD 18
P SP 208 DP 28
B SB 304 DB 3g
L SL 408 DL 48
A SA 508 DA 58
T ST 608 DT 68
X SX 7O8 DX 78
Note:

If sr not specified, sr is taken to be the value 0.
If dr=0, a no-operation occurs.

If sr or dr are specified as the P register, the value
used is that of the next instruction.

ND-06.029.1 EN

Condition codes: SKP

(bits 8-10)

83

Skip Instruction
SKP

can be qualified by eight different mnemonics

which the flags set by the following expression:

(dr) - (sr)

Four flags are affected by this calculation:

S sign

Z zero result (error)

C carry

0 overflow

The condition codes are as follows:
bits mnemonic | description flag(s)

condition

10 9 if true
0 0 EQL Equal Z =1
0O O GEQ Greater or equal to t S =0
0 1 GRE Greater or equal to * t S+0=0
0 1 MGRE Magnitude greater or equal to * Cc =1
1 O UEQ Unequal Z =0
1 0 LSS Less than t S =1
11 LST Less than * t S+0-=1
11 MLST Magnitude less than * C=0

* denotes overflow is taken care of
t denotes contents of sr and dr are treated as signed

numbers

Note:
By swapping the sr and dr fields, these relationships

can

be tested:

> Greater than
£ Less than or equal

ND-06.029.1 EN

84

Skip Instruction
SKP

Examples:

. SKP DD EQL SL

Skip next instruction if the D register
contents equal that of the A register.

. SKP DB LSS SA

Skip the next instruction if the contents
of the A register are less than the B
register contents.

OR

Skip the next instruction if the contents
of the B register are greater than the A
register contents.

. SKP DL UEQ

Skip the next instruction if the contents T
of the L register do not equal zero.

. SKP LSS SD

Skip the next instruction if the D register
is less than zero.

ND-06.029.1 EN

Instruction format:

Instruction structure:

argument operation:

AAA
AAB
AAT
AAX
SAA
SAB
SAT

SAX

Sign extension:

85
Argument Instructions

These instructions operate on registers.

<argument operation> <number>

15 8 0

L L T 17T 1T 1T T |1
argument operation number

There are eight argument instructions:

mnemonic octal description
code
AAA 1724008 add argument to A
AAB 1720008 add argument to B
AAT 1730008 add argument to T
AAX 1734008 add argument to X
SAA 1704008 set argument to A
SAB 1700008 set argument to B
SAT 1710008 set argument to T
SAX 171’4008 set argument to X

8-bit argument numbers are extended to 16-bits using
sign extension.

The 8-bit argument becomes the least significant byte;
the higher byte is extended with ones or zeros.
Positive arguments have the higher byte extended with
zeros; negative numbers are extended with ones with the
argument in 2's complement form.

ND-06.029.1 EN

. SAT 13

8

Set the T register equal to 13_ . Bits 8-15
are zero due to sign extension.

. SAB -26

8

The contents of the B register are set to
1777528, bits 8-15 have been extended with
ones as the argument is negative; bits 0-7

have the argument in its 2's complement
form.

. AAA 38

Add 3 to the contents of the A register.
The contents of bits 8-15 depend on the
previous contents of the A register. The
carry and overflow flags may also be
affected.

ND-06.029.1 EN

Instruction structure:

bit operation:
(bits 7-15)

BSET

BSKP

type

10

1

1

K is the 1 bit accumulator (bit 3 of STS register)

9

1

1

bits

8

0

1

These instructions manipulate single bits within the
working and STS registers.

15

7 6

T 1 1
bit

LI .
operation

dr

Bits 11-15 are always set to one for a bit operation.
Bits 7-10 determine the type of operation as follows:

7

0

1

mnemonic

BSET

BSET

BSET

BSET

BSKP

BSKP

BSKP

BSKP

BSTC

BSTA

BLDC

BLDA

BANC

BAND

BORC

BORA

ZRO

ONE

BCM

BAC

ZRO

ONE

BCM

BAC

description

set bit to:

bit «— 0

bit «— 1

bit «— bit

bit «— K

skip next instruction if:

bit «— O

bit «— 1

bit «— bit

bit «— K

for one bit accumulator:

bit «— K,
bit — K,
K «— bit

K «— bit

K «— (bit
K «— (bit
K — (bit

K — (bit

ND-06.029.1 EN

AND K)
AND K)
OR K)

OR K)

code

1740008
1742008
1744008

1746008

175000,
175200,
175400,

1756008

176000,
176200,
1764008
1766008
177000,
177200,
177400,

1776008

88

Bit Instructions
Description

Sub-instructions:

bn:
(bits 3-6)

dr:
(bits 0-2)

Only the BSET and BSKP instructions have the following
qualifying sub-instructions:

ZRO
ONE
BCM
BAC

The address of the bit to be manipulated is given by
these four bits.

Remember that each bit is given its OCTAL address.

The following registers allow bit operations and
are specified as follows:

register| mnemonic code
STS t 08
D DD 18
P DP 28
B DB 38
L DL 4 8
A DA 58
T DT 68
X DX 78

t For STS no mnemonic is required as it
is implied by the following table of
compound mnemonics:

ND-06.029.1 EN

89

Bit Instructions
Description

STS register There are only eight bits which can be operated on in
the STS register. They have special mnemonics and
unique octal code values which combine the bn and dr

fields.
compound STS octal
mnemonic | bit | description code
SSPTM 0 page table flag OO8
SSTG 1 floating point rounding flag 108
SSK 2 1 bit accumulator (K) 208
SSZ 3 error flag (2) 308
SsSQ b dynamic overflow flag (Q) 408
SSO 5 static overflow flag (0) 508
SSC 6 carry flag (C) 608
SSM 7 multi-shift link flag (M) 708
Examples: 1. BSKP ONE SSC

Skip the next instruction if the carry
flag is set.

2. BSET ZRO SSO

Reset the static overflow flag.

3. BORC 608 DX

Complement bit 6 in the X register, then
OR the bit with K, leaving the result inkK.

ND-06.029.1 EN

90

Single Byte Instructions
Descriptic

Byte addressing:

These instructions address single bytes within the
memory map. ’

A special addressing mode is used for these
instructions, using the T and X registers (see page

27).

The contents of T point to the beginning of a character

string and the contents of X to a byte within the
string.

ND-06.029.1 EN

Description:

Format:

Octal code:

Description:

Format:

Octal code:

91

Single Byte Instructions

LBYT
Load byte
Load the byte addressed by the contents of
the T and X register into the lower byte of
the A register. The higher byte of the A
register is cleared.
LBYT
1422008

SBYT

Store byte

Load the byte contained in bits O to 7 of the
A register into one half of the memory
location addressed by the T and X registers,
the second half of this location is not
changed.

SBYT

1426008

ND-06.029.1 EN

92

Byte Block Instructions

Description
These instructions use byte operands.

Byte operands: Byte operands occupy fields within the memory. Operands
are specified by two 16-bit words, known as
descriptors, giving the start address and the field
length.

as
sr dr 15 0
1 1 T 1 1.1 1 1T T T 1T 1T T 1
A X word address D1
15 14 13 12 11 0
T 1 T 1T 1T 1T T T 1T T 1
D T Ir|pt]| O] X field 1length D2
Note:
bit 13 should always be zero
bit 12 can be any value

D1 The first part of the descriptor, D1, gives the start
address of the operand.

D2

The second word has the following features:

lr - determines whether the operand starts

in the left or right byte of the memory
location addressed by D1.

1r
1r

0 left byte start
1 right byte start

pt - gives the page table mode:

pt =0 normal
pt =1 alternative

field length - the number of operand bytes
(a maximum of 4095 bytes).
sr and dr

The A and D registers hold the source operand desciptor
and the X and T registers hold the destination operand.

ND-06.029.1 EN

Description:

Format:

Octal code:

Description:

Format:

Octal code:

93

Byte Block instructions

Byte fill

Only the destination is used as an operand in
this instruction (it is placed in the X and T
registers). The lower byte of the A register
is then filled with the destination field.

After execution, bit 15 of the T register
points to the end of the field (after the

last byte position) and the field length
equals zero.

BFILL

1401308

Move byte

This instruction moves a block of bytes from
the memory location addressed by the source
operand to that of the memory location
addressed by the destination operand.

After execution, bit 15 of the D and T
registers point to the end of the field that
has been moved. The field length of the D
register (source) equals zero and the T
register (destination) field length is equal
to the number of bytes moved.

MOVB

1401318

ND-06.029.1 EN

BFILL

MOVB

94

Byte

MOVBF

Description: Move bytes forward

This instruction moves a block of bytes from
the memory location addressed by the source
operand to that of the memory location
addressed by the destination operand.

After execution, bit 15 of the D and T
registers point to the end of the field that
has been moved. The field length of the D

register (source) equals zero and the T
register (destination) field length is equal
to the number of bytes moved.

Format: MOVBF

Octal code: 1401328

ND-06.029.1 EN

95

Word Block Instruction
MOVEW

This instruction moves a block of words from one area
of memory to another.-

The type of transfer is given by the opcode field
denoted AA. The base octal code is 1431aA:

AA8 move from: move to:

OO8 PT PT

018 PT APT

028 PT phy .memory *
03 APT PT

oiy® APT APT

058 APT phy .memory *
062 phy .memory PT *
078 phy .memory APT *
102 phy.memory phy .memory *

PT normal page table

APT alternative page table
phy. physical

privileged instruction

The following registers control transfer:

A and D - the source address
X and T - the destination address
L - the number of words to be moved
(2048 words maximum)

A and/or X only are used for physical memory-block
moves and are incremented when the D and/or T registers
overflow.

If the L register contains a value greater than 2048
(L = 4000_) no words are moved and A,D,T and X are
unchanged.

After transfer, the registers contain:

A,D,T,X - the addresses after the last moved word
L - zero

ND-06.029.1 EN

96

Word Block Instruction
MOVEW

Special cases:

Format:

Octal code:

If the memory management system is off, bank O of
physical memory is addressed (Bit PTM of the STS

register is zero) and the following transfer fields
become equivalent:

AA = 00 = 01 = 03 = O4
AA = 02 = 05
AA = 06 = 07

MOVEW can be interrupted. L, A, D, X, T and P registers
are then changed to restart execution.

MOVEW

14314

ND-06.029.1 EN

Instruction format:

Octal code:

97

Version Instruction
VERSN

This instruction is used to read the version of ND-110
CPU installed.

Three registers are loaded simultaneously with
information in the following format:

A register

15 3 0

|
Print version ALD

T register

15 0

Microprogram version

D register

15 7 0

Installation number

The installation number of the CPU is 16 bytes long.

The VERSN instruction can only load one byte of the
installation number into the D register each time it is

executed. The A register is used to address the sixteen
bytes.

To read a byte of the installation number the A
register must be loaded with an installation byte
address before the VERSN instruction is executed. The
address of the byte to be read is given by the value of
bits 8-11 in the A register (equivalent to bytes 0-16).
To read the complete installation number both the A
register bit field must be incremented and the VERSN
instruction executed sixteen times.

VERSN

1401338

ND-06.029.1 EN

98

Decimal Instructions

Description

Instruction format:

Instruction structure:

Descriptors:
(D1 and D2)
D1:

D2:

1r

(bit 15)

These instructions use decimal operands residing
main memory only.

<decimal instruction>

15 0

T T T 1T 1T T T T 7T
word address

15 14 11 10 9 5 4 0

| 1 | | I 1 | |] |
1r| e ASCII r| decimal point| field length

in

D1

D2

Two 16-bit words (D1 and D2) specify the operands used

in decimal instructions:

The first descriptor, D1, gives the word address of the

decimal operand in memory.

D2 describes the following operand features:

1r = 0

The operand starts in the left byte of a memory word.

(In the least significant 8 bits.)

1r = 1

The operand starts in the right byte of a memory word.

(In the most significant 8 bits.)

ND-06.029.1 EN

ASCII
(bits 11 - 13)

r (bit 10)

decimal point

(bits 5 - 9)

field length
(bits 0 ~ 14)

Decimal operands:

99

Decimal Instructions
Description

These three bits give the sign representation used for
ASCII format (see Decimal Notation Section).

bits sign
13 12 11 representation
0O 0 O embedded trailing
0O O 1 separate trailing
0 1 0 embedded leading
0 1 1 separate leading
1 0O O unsigned

Bit 13 also represents an unsigned number in BCD
representation.

rounding bit

If rounding is selected, one is added to the shifted
operand when the least significant digits are lost
during shift and the last digit shifted out of the
field is 25.

r = 1, rounding on
r 0, rounding off

1]

These bits give the position of the decimal point.

The range is 32 places (from O to 31), positive or
negative. Zero is the decimal place to the right of the
least significant digit.

The number MUST be less than the operand field length.

These bits give the operand field length in

nibbles (4-bit values) or bytes (8-bit values). BCD
numbers are represented by 4 bits (1 nibble) so the
field length will be in nibbles; an ASCII coded digit

is represented by a byte and the field length will be
in bytes.

Operands start at any byte address in memory.

The maximum field length is 32 nibbles/bytes.

Decimal operands occupy a maximum of eight 16-bit

memory locations. Each operand consists of BCD coded
numbers.

ND-06.029.1 EN

100

Decimal Instructions
Description

Decimal overflow:

Decimal operands must be right adjusted so that the
least significant digit and sign are in the last byte
of the operand field.

Before any instruction is executed the operands are
read into the register file. The result of the

instruction is written into memory.

All decimal instructions use two operands. The

descriptors of each operand are held in separate
registers:

First operand descriptor: A and D registers.
Second operand descriptor: X and T registers.

Decimal overflow is caused by

EITHER a carry from the most significant digit
position in the result

OR an oversized result, the second operand
was larger than the first causing the

significant digits of the result to be
lost.

Note:

the field size alone does not indicate
possible overflow.

Most decimal instructions are followed by an
instruction or jump to a routine which takes care of
overflow errors, known as an error return. A decimal
instruction executed without error generation skips the
error return and program execution continues at the
second instruction after it.

ND-06.029.1 EN

Description:

Format:

Octal code:

Instruction sequence:

Example:

101
Decimal Instructions

ADDD
Add two decimal operands

(opl) «— (opl) + (op2)

Add the second operand to the first operand,
leaving the result in the first operand's
location.

If the first operand field is too short to
contain all the significant digits of the
result then decimal overflow occurs.

If bit 13 of D2 in the first operand is set,
the sign of the result will be 178 (BCD
unsigned) .

Any empty operand, that is with a field
length of zero, is treated as a positive
ZETO0.

ADDD
1401208

ADDD
error handling instruction

next instruction after ADDD or after error
handling routine

Note:
Operands should be normalized before this

instruction is executed using the SHDE
instruction.

ADDD
JMP *128
STX 20

8
The ADDD instruction causes the program
counter to skip the next instruction UNLESS
an error has been generated. In this case,
the instruction immediately after ADDD will
handle the error in some way (in this example
a jump is executed on error to ((P) + 128).

(* is the assembler mnemonic for the P
register)

ND-06.029.1 EN

102

Decimal Instructions

CoMD

Description:

Format:

Octal code:

Instruction sequence:

Example:

Compare two decimal operands
(AY «— (opl) compared to (op2)
(A)

(A)
(A)

0 if (opl) = (op2)
1 if (opl) > (op2)
-1 if (opl) < (op2)

Compare the first operand with the second
operand,leaving the result in the A register.

If the two operands are unequal in field
length, the shorter operand is extended with
zeros to allow comparison. The operands are
unaffected by the instruction.

The positions of the decimal points are not
taken into account when the two operands are
compared, so the two operands should be

normalized using the SHDE instruction first.

Any empty operand, that is with a field
length of zero, is treated as a positive
zero. An unsigned number is treated as
positive. Positive and negative zeros are
equal.

COMD
1’401228

COMD
error handling instruction

next instruction after COMD or after error
handling routine

COMD
JMP *30
AAA 20 °

8
The COMD instruction causes the program
counter to skip the next instruction UNLESS
an error has been generated. In this case,
the instruction immediately after COMD will
handle the error in some way (in this example
a jump is executed on error to ((P) + 308).

(* is the assembler mnemonic for the P
register)

ND-06.029.1 EN

Description:

Conversion process:

Format:

Octal code:

Error code:

103

Decimal Instructions

PACK
Convert to BCD

(op2) «— (opl) in BCD format

Convert the first operand from its ASCIT

format to BCD format, placing the result in

the second operand location.

PACK carries out the following steps:

1.Checks the sign and digits of the operand
(opl) are encoded as ASCII digits.

(Reporting illegal codes as error code 2.)

2.Takes the U4 least significant bits of each
ASCII digit as the equivalent BCD digit.

3.Converts the ASCII sign of the operand to
BCD:

ASCII BCD Sign
538 148 +
55, 15, -

Note:If bit 13 of the descriptor D2 is set,
then the code 178 (BCD unsigned) is used.

4 ,Extends the second operand field (op2) with
zeros if the result is too small to fill
the field.

Reports overflow has occurred (error code
3) if the second operand field length is
too short to contain the significant digits
of the result (the remaining digits are
ignored).

PACK

1401248

An error code is placed in bits O to 4 of the
D register if an illegal code conversion is
attempted or if overflow occurs. The first
detected error will be reported.

Error code: 2 illegal codet
3 overflow

t bit 15 of both the A and D rogiotcrs polint
to the byte containing the illegal code.

ND-06.029.1 EN

104

Decimal Instructions

SHDE

Description:

Decimal shift
(op2) «— (opl) shifted

This instruction is used to normalize
operands for decimal operations.

The shift count determines whether the
operand is shifted to the left or right:

(op2 - opl) positive then shift opl to right
(op2 - opl) negative then shift opl to left

If significant digits are lost by carrying

out a left shift, an error is generated,

directing the program counter to the —
instruction after the SHDE (the error

return). If no errors occur this instruction

is skipped.

The digits of the first operand are shifted
and the result is placed in the second
operand's memory location.

The number of places shifted is given by the
difference in decimal position of the two
operands. This normalizes the first operand
(opl) to the second (op2) for decimal
operations such as ADDD.

The sign of the normalized operand (opl) is
as follows:

BCD Sign
148 +
158 -

An unsigned operand is converted to a plus
unless bit 13 of the descriptor D2 is set,
when the BCD equivalent of unsigned (178) is
used.

The sign and digits of the first operand are
checked before execution and any illegal
digit codes reported.

If bit 10 of descriptor D2 (op2) is set the
result is rounded, that is a 1 is added to

the operand if the last digit shifted out of
the field is 2 5.

ND-06.029.1 EN

Format:

Octal code:

Instruction sequence:

Example:

Description:

Format:

105

Decimal Instructions

SHDE
1&01268

SHDE
error handling instruction

next instruction after SHDE or after error
handling routine

SHDE
JMP *108
SAD 208
The SHDE instruction causes the program
counter to skip the next instruction UNLESS
an error has been generated, when the
instruction immediately following the SHDE
will handle the error in some way (in this

example a jump is executed on error to (P) +
108))'

(* is the assembler mnemonic for the P
register)

Subtract two decimal operands
(opl) «— (opl) - (op2)

Subtract the second operand from the first
operand, leaving the result in the location
of the first operand.

If the first operand field is too short to
contain all the significant digits of the
result then decimal overflow occurs.

If bit 13 of D2 in the first operand is set,
the sign of the result will be 178 (BCD
unsigned).

Any empty operand, that is with a field

length of zero, is treated as a positive
zero.

A zero difference can have either a negative
or positive sign.

SUBD

ND-06.029.1 EN

SUBD

106

Decimal Instructio

Octal code:

Instruction sequence:

Example:

UPACK

Description:

Conversion process:

1401218

SUBD error handling instruction

next instruction after SUBD or after error
handling routine

SUBD
JPL *30,
ADD *15

The SUBD instruction causes the program
counter to skip the next instruction UNLESS
an error has been generated, when the
instruction immediately following the SUBD
will handle the error in some way (in this
example, a jump is executed on error to a
subroutine at (P) + 158)).

(* is the assembler mnemonic for the P
register)

Convert to ASCII
{(op2) «— (opl) in ASCII format

Convert the first operand from its BCD format
to ASCII format, placing the result in the
second operand location.

The instruction carries out the following
steps:

1.Checks the sign and digits of the operand
(opl) are encoded as BCD digits.
(Illegal codes generate an error code 2.)

2.Takes each BCD digit as the lower nibble of
an equivalent ASCII digit. Sets the upper

nibble of the ASCII byte (the zone) to
00112.

ND-06.029.1 EN

Format:

Octal code:

Error code:

107

Decimal Instructions

3.Converts the BCD sign of the operand to
ASCII:

BCD ASCII Sign

0 53, *

1 55, -

Note: If bit 13 of the descriptor D2 is set
then the code 178 (BCD unsigned) is used.

4 ,Extends the second operand field (op2) with
ASCII zeros (60_) if the result is too
small to fill tge field.

Reports overflow has occurred (error code
3), if the second operand field length is
too short to contain the significant digits
of the result (the remaining digits are
ignored).

UPACK

1’401258

An error code is placed in bits O to 4 of the
D register if an illegal code conversion is
attempted or if overflow occurs. The first
detected error will be reported.

Error code: 2 illegal codet
3 overflow

t bit 15 of both the A and D registers point
to the byte containing the illegal code.

ND-06.029.1 EN

108

STACK INSTRUCTIONS

Description

These instructions handle stack operations improving
the execution time of high-level language-based

programs.

The B register will always point to a "stack-frame"

containing:
stack frame pointed
content mnemonic| to by B= description
LINK -2008 next instruction address t
PREVB --1778 previous stack frame address
STP —1768 next stack frame address
SMAX -175 top of stack address
8
- -1748 reserved for system use
ERRCODE -1738 (A) after an ELEAV instruction

t In the case of a LEAVE instruction

The stack-handling instructions are page-fault tolerant
in the ND-110.

ND-06.029.1 EN

Description:

Format:

Octal code:

Description:

(B

(B

(B

177,)
175,)
200,)

(B)

1764)

Error leave stack

(B

2008) — (B
(P)” +~— (B

(B) +«— (B

109
Stack Instructions

ELEAV

200.) - 1
200,) {LINK}
177,) {PREVB}

(A) ~—— ERRCODE

(B = 173,) «— ()

{ERRCODE}

If an error occurs leave the stack.

This instruction saves the previous stack
pointer in LINK and restores the B register
to its previous value (PREVB) before leaving
the stack. The stack is left by loading the P
register (program counter) with the return
address (LINK). The A register is loaded with
an error code which is saved in the ERRCODE
stack entry (pointed to by B = 1738).

ELEAV

1401378

Enter stack

— (B)
— (B = 175,)
—— (L) + 1

— (B = 1768)
+ 2008

+—— stack demand
+ (B)

ENTR

{save current pointer in PREVB}
{SMAX}
{save return address in LINK}

{new pointer}

This instruction saves the current stack
pointer (B), the return address (LINK) and
previous stack pointer (PREVB). It transfers
the top of stack address (SMAX) and
establishes the new stack demand and pointer.

Stack overflow causes an error return, that
is the program continues at the address
following the stack demand value. In all
other cases, the program skips this address
to find the return address from the stack.

ND-06.029.1 EN

110

Stack Instructions

INIT

Format:

Octal code:

Description:

LINK +—
PREVB +—

SMAX ——

(B) +—

STP —

Format:

Octal code:

L

(B)

ENTR
<stack demand-value in words>

<error return address>
<return address>

1401358

Initialize stack

{stack start}

{save current pointer}

stack start address
+ maximum stack size

(B = 200,) + 200,

{establish new pointer}

stack demand + (B)

Load the addresses pointed to by B with the
stack frame addresses.

Note:
Stack overflow and flag error causes an error
return, that is the program continues at the
address following the stack demand value. In
all other cases, the program skips this
address to find the return address from the
stack.

(Flag bit O # STS register bit O is a flag
error.)

INIT

number of words allocated to stack
address of stack start

maximum stack size

flag

address left empty

error return address
return address

1401348

ND-06.029.1 EN

Description:

Format:

Octal code:

111
Stack Instructions

LEAVE

Leave stack

(P) «— (B
(B) «— (B

200,) {LINK}

1778) {PREVB}

This saves the previous stack pointer in
LINK. The B register is restored to its
previous value (PREVB) and the stack left by
loading the P register (program counter) with

the return address (LINK).
LEAVE

1401368

ND-06.029.1 EN

112

RDUS

Description: Read a word without using cache

(T) points to the virtual memory word to be
accessed
(A) +~— memory word addressed by T

The address given by the T register is a
logical memory address. It is normally
translated into a physical address using page
tables (if the memory management system is
on). The contents of the location addressed
by T are loaded into the A register.

The old content of the memory address is
always read from the memory and never from
cache.

The execution time of this instruction T
includes two read bus cycles (semaphore

cycles - see ND-110 Functional Description

Manual ND.06.027)

Format: RDUS

Octal code: 1401278

TSET
Description: Test and set

(T) points to the virtual memory word to be
accessed

(A) «— memory word addressed by T

The address given by the T register is a
logical memory address. It is normally T
translated into a physical address using page
tables (if memory management is on). The
contents of the location addressed by T are
simultaneously loaded into the A register as
the location is written to with all 1s. The
memory system is dedicated to this task and
no other memory access is allowed during the
operation. This can be used for processor
synchronization.

The old content of the memory address is
always read from the memory and never from
cache. The all 1s' data word is never written

to cache.
Format: TSET
Octal code: 1401238

ND-06.029.1 EN

Instruction format:

Instruction structure:

inter-register
operation:
(bits 15-7)

level:
(bits 3-6)

dr:
(bits 0-2)

113

INTER-LEVEL REGISTER INSTRUCTIONS
Description

These instructions are PRIVILEGED and only available
to:

programs running in system mode (rings 2-3)
programs running without memory protection

These instructions access registers outside the current
program level. (There is a register set for each of the
16 program levels.)

<inter-register operation> <Zev918 X 108> <dr>

15 7 6 3 2 0
1 | L I | I | 1 I I |
inter-register operation level dr

There are two inter-register instructions:

IRR

IRW
They read and write to/from a register outside the
current program level.

These bits give the program level of the

block (0-15).The level is written in its OCTAL format
and multiplied by 108 to set the correct bits in the
octal code.

<Zeve18 X 108>

The following registers allow bit operations
and are specified as follows:

register| mnemonic code
STS - O8
D DD 18
P DP 28
B DB 34
L DL 48
A DA 58
T DT 68
X DX 78

ND-06.029.1 EN

114

Inter-level Register Instructions

IRR

Description:

Format:
Octal code:

Example:

TR

Description:

Format:
Octal code:

Example:

Inter-register read

Read into the A register of the current level
the contents of a register in the program
level given by the instruction.

(This instruction can also be used to read
registers within the current program level
into the A register.)

If the status register is read (STS), the A
register is loaded with the lower byte (bits
0-7) of STS only, the higher byte is cleared.

IRR <leve18 X 108> <dr>
1536008
IRR 1608 DP (1537628)

Copy the program counter on program level 14
into the A register of the current program
level.

Inter-register write

Write the contents of the A register on the
current level into the A register of the
program level given by the instruction.

Note:
This instruction results in a no-operation if

the A register of the current program level
is used.

If the status register (STS) is the
destination, only the lower byte (bits 0-7)is
written to with bits 0-7 of the A register.
IRW <Zevel8 X 108> <dr>

1534008

IRW 1008 DB (1535038)

Copy the A register on the current program
level into the B register on program level 8.

ND-06.029.1 EN

Instruction format:

Instruction structure:

register block oper.
(bits 0-2 and 7-15)

level:

(bits 3-6)

115

REGISTER BLOCK INSTRUCTIONS

Description

These instructions are PRIVILEGED and only available
to:

programs running in system mode (rings 2-3)

programs running without memory protection

These instructions access the program level register
blocks.

<register block operation> <Zeve18 X 108>
15 7 6 3 2 0

| | | | | | | | | I I | |
register block level oper.

There are two register block instructions:
LRB
SRB

The register block is always loaded or stored in the
following register sequence:

P (program counter)
X
T
A
D
L
STS (status register)
B
Note:

Only the lower byte (bits 0-7) of the STS register are
loaded or stored; the higher byte is zero.

The X register contents point to the base address of

the register block in memory.

These bits give the program level of the block (0-15).
The level is written in its OCTAL format and multiplied
by 108 to set the correct bits in the octal code.

<leve18 b.¢ 108>

ND-06.029.1 EN

116

Register Block Instructions

LRB

Description:

Format:
Octal code:

Example:

SRB

Description:

Format:
Octal code:

Example:

Load register block

Load the contents of a memory block pointed
to by the X register into the register block
of the program level given in the
instruction.

If the instruction specifies the current
program level, the P register (program
counter) is not loaded from memory and is
unchanged.

LRB <Zeve18 X 108>
1526008
LRB 1608 (1527608)

Load the memory block pointed to by the X
register into the register on program level

14,

P (level 14) +~—— (ea)
X (level 14) «—— (ea + 1)

B (level 14) +«— (ea + 7)

Store register block

Load the register block of the program level
given in the instruction into the memory
block pointed to by the X register.

If the instruction specifies the current
program level the P register points to the
instruction following SRB.

SRB <Zeve18 X 108>

1524028

LRB 1008 (1527028)

Store the register block of program level 8
in the memory block pointed to by X.

(ea) —— P (level 8)
(ea + 1) «—— X (level 8)

!

(ea + 7) ~—— B (level 8)

ND-06.029.1 EN

117

INTERNAL REGISTER INSTRUCTIONS
Description
These instructions are PRIVILEGED and only available
to:

programs running in system mode (rings 2-3)
programs running without memory protection

These instructions access internal CPU registers which
cannot be reached by normal register operations.

Instruction format: <internal operation> <register>
Instruction structure: 15 4 3 0
[| | R L | L I | I
internal operation register
internal operation: There are four internal instructions:
(bits 15-4)
MCL
MST
TRA
TRR

They operate on internal registers or specific areas; a
table of the internal registers affected by these
instructions can be found after the description of the
instructions (see page 120).

register (bits 3-0): These bits give the internal register address.

ND-06.029.1 EN

118

Register Transfer Instructions

MCL

Description:

Format:
Octal code:

Example:

MST

Description:

Format:
Octal code:

Example:

Masked clear

The A register is used as a mask to clear

bits within the selected internal register.
Setting a bit in the A register clears the
corresponding bit in the internal register.

See table for internal registers that allow
MCL.

MCL <register>
1502008
MCL STS (1502018) [(A) = OOOlOO8]

Clear the carry flag (bit 6) in the status
(STS) register.

Masked set

The A register is used as a mask to set bits
within the selected internal register.
Setting a bit set in the A register sets the
corresponding bit in the internal register.

See table for internal registers that allow
MST.

MST <register>
1503008
MST PIE (1503078) [(a) = 0001408]

Set bits 5 and 6 in the priority interrupt
enable register (PIE).

ND-06.029.1 EN

Description:

Format:
Octal code:

Example:

Description:

Format:
Octal code:

Example:

Transfer to A register

The internal register given in the
instruction is copied into the A register.

See table for internal registers that allow
TRA.

TRA <register>
1500008
TRA (1500128)

Copy the contents of the automatic load
descriptor into the A register.

Transfer A to internal register

The internal register given in the
instruction is loaded with the contents of
the A register.

See table for internal registers that allow
TRR.

TRR <register>
1501008
TRR (1503068)

Transfer the A register contents into the
priority interrupt detect register.

ND-06.029.1 EN

119

nstructions

TRA

TRR

120

Register Transfer Instr

Internal Octal

Register Name and Description Code TRA TRR MCL MST
PANS Panel Status O8 ®

PANC Panel Control O8 ®

STS Status 18 ° ° °)
OPR Operator Panel Switch 28 °

LMP Operator Lamp 28)

PGS Paging Status 38 °

PCR Paging Control 38 °

PVL Previous Program Level 48 °

IIC Internal Interrupt Control 58)

IIE Internal Interrupt Enable 58 °

PID Priority Interrupt Detect 68 ° ° ° °
PIE Priority Interrupt Enable 78) [) ®
CSR Cache Status 1O8 °

CCL Cache Clear 108 °

ACTL Active Level 118 °

LCIL Lower Cache Inhibit Limit '118 °

ALD Automatic Load Descriptor 128 °

UCIL Upper Cache Inhibit Limit 128 °

PES Parity Error Status 138 °

CILPt Cache Inhibit Page 138 °

PGC Paging Control 148 °

PEA Parity Error Address 158 °

ECCR Error Correction Control 158 °

CSt Control Store 17 °® °®

t These registers are not available on the ND-100.

ND-06.029.1 EN

Description:

Instruction format:

Instruction structure:

I0X:

device register
address:
(bits 0-10)

Octal code:

121

Input/Output Instructions
I0X

This instruction is PRIVILEGED and only available to:
programs running in system mode (rings 2-3)

programs running without memory protection

The instruction controls all transfers between the
ND-110 and any external devices.

Exchange information between I/0 system and A register.
I0X can be used to address a maximum of 2048 device
registers for external devices connected to the ND-110

CPU. Data, control and status between device and CPU
can be exchanged.

I0X <device register address>

15 11 10 0
!

| | I] | | | | I 1 1 I |
I0X device register address

This field is the fixed code of the instruction IO0X
(111012)

These 11 bits limit the number of external devices
that can be addressed by the CPU.

Bit O gives the direction of transfer:

If O input (from device to CPU)
If 1 output (from CPU to device)

Register addresses can hold data, command or status
information for a device.

An external device may require more than one register
address, for example a magnetic tape unit may need
several register addresses; these should be given
successive device-register addresses (remembering to

use odd addresses for input and even addresses for
output).

Note:

The number of external devices that can be controlled
by the CPU depends on the configuration of the devices.

1640008

ND-06.029.1 EN

122

Input/Output Instructions
10X

Examples:

1.To give an instruction to a device:

LDA <device command code>
I0X

The 1sb of IOX will be 1. The A register contents are
output to the device addressed within the I0X opcode.

2.To check the status of a device:I0X

The 1lsb of IOX will be 0. The status code of the device
addressed by the I0X opcode will be loaded into the A
register.

3.Transfer data:I0X

Data from the device addressed by the 10X instruction,
is read into the A register if the 1lsb of I0X is 0. If

the 1sb of IOX is 1, the A register contents are output
to the device.

ND-06.029.1 EN

Description:

Instruction format:

Instruction structure:

LDT instruction:

IOXT instruction:

Octal code:

Examples:

123

Input/Output Instructions
TOXT

This instruction is PRIVILEGED and only available to:
programs running in system mode (rings 2-3)

programs running without memory protection

The instruction controls transfers between the ND-110
and external devices.

IOXT can be used to address a maximum of 65536 device-

register addresses for external devices connected to
the ND-110 CPU.

LDT <address mode> <disp>

I0XT
15 11 109 7 0
11 — 1 T 1T T T T 1
LDT ,X| I1,B disp
15 0
T T T 1 1 1T 1T T T 1
IOXT

The IO0XT instruction uses the T register contents as
the device register address. The 16-bit T register
gives a limit of 65536 register addressses.

This address MUST be loaded into the T register before
IOXT is executed, hence LDT is used. (See Memory

Transfer Instructions,LOAD for explanation of LDT.)

Note: The number of external devices that can be

controlled by the CPU depends on the configuration of
the devices.

IOXT is used as a single mnemonic.
1504158

See ND-110 Functional Description (ND-06.026) for the
standard ND assignment of device register addresses.

ND-06.029.1 EN

124

INTERRUPT CONTROL INSTRUCTIONS

Description

Instruction format:

General description:

These instructions are PRIVILEGED and only available

to:

programs running in system mode (rings 2-3)
programs running without memory protection

These instructions control the CPU interrupt system.

<interrupt control operation>

The ND-110 has a priority interrupt system with 16
program levels. Each program level has its own set of
working registers (A, B, D, L, P, STS, T, X). The
program levels have increasing priority, that is
program level 15 has the highest priority and program

level O the lowest.

The 16 levels are subdivided as follows:

level

used for:

controlled by:

15

14
13-10
9-0

very fast user interrupts

internal hardware status interrupts
vectored interrupts®

system and user programs

program/ext.device
program/ext.device
program/ext.device
program

* 2048 possible sources

Program level selection and control is via two 16-bit

registers:

PID Priority Interrupt Detect
PIE Priority Interrupt Enable

PID is affected by program and external interrupts; PIE
is controlled by program only. They can only be changed
or monitored by the privileged instructions: TRA, TRR,
MST and MCL (see pages 118-120).

Note:

When the power is turned on, the power-up sequence
resets PIE and PID so that program level O is selected.

Interrupt programming is via three registers:

IIC Internal Interrupt Code
ITE Internal Interrupt Enable
PVL Previous Level (of hardware interrupt source)

ND-06.029.1 EN

Description:

Format:

Structure:

program level number:

Octal code:

125

The following instructions control
interrupts:

IDENT

Identify vectored interrupt

Identify and service the input/output device
causing the interrupt.

Bits 0-8 of the A register are loaded with
the identification code of the device causing
the interrupt (bits 9-15 are zeros). If IDENT
is executed without an interrupting device to
service, the A register is unchanged.

Note:

If several devices on the same program level
have simultaneous interrupts, the device
plugged into the ND-110 card frame nearest to
the CPU card has highest priority and is
serviced first. The PID register bit
corresponding to this interrupt line will
remain set until all the interrupting devices
are serviced.

IDENT <program level number>
15 9 8 0

| | | 1 | | | | 1 | 1 1 |
IDENT program level number

Vectored interrupts are only allowed on
program levels 10 to 13. The following
program level number mnemonics are used:

level mnemonic code
10 PL10 048
11 PL11 118
12 PL12 228
13 PL13 438
1436008

ND-06.029.1 EN

126

Interrupt Control

I0F

10N

PIOE

Description:

Format:
Operator indication
PVL status:

Octal code:

Description:

Format:
Operator indication

PVL status

Octal code:

Description:

BEFORE USE:
Format:

Octal code:

Interrupt System OFF
Disables the interrupt system.

On IOF the ND-110 continues operation at the
same program level.

IOF
ION display is reset.
The PVL register is unchanged.

1504018

Interrupt System ON
Enables the interrupt system.

On ION the ND-110 resumes operation in the
program level with highest priority.

ION
ION display is lit.

The PVL register will change to the new
program level.

1504028

Memory management and interrupt system OFF
Disables both the memory management and
interrupt systems. This combines the
functions of the IOF and POF instructions.
Check conditions of the IOF instruction.

PIOF

1504058

ND-06.029.1 EN

Description:

BEFORE USE:
Format:

Octal code:

Description:

Format:

Octal code:

127

PION
Memory management and interrupt system ON
Enable both the memor& management and
interrupt systems. This combines the
functions of the ION and PON instructions.
Check conditions of ION and PON instructions.
PION
1504128

WAIT

Wait

This operates as follows:
IF the interrupt system is OFF ...

The ND-110 stops with the program counter (P
register) pointing to the instruction after
the wait and the front panel RUN indicator is
turned off. (To restart the system, type ! on
the console terminal.)

IF the interrupt system is ON ...

The ND-110 exits from the current program
level (resetting the corresponding PID bit)
and enters the program level with the highest
priority, normally a program level lower than
the one which executes the WAIT instruction.
If there are no interrupt requests awaiting
service then program level 0 is entered.

Note:
A WAIT on program level O is ignored.

WAIT followed by a number less than 400 can
be used to detect which location caused the
program stop.

WAIT

1510008

ND-06.029.1 EN

128

t Instructions

PIOF

Description:
PION

Description:
POF

Description:

Format:

Octal code:
PON

Description:

BEFORE USE:

These instructions are PRIVILEGED and only
available to:

programs running in system mode (rings 2-3)
programs running without memory protection

These instructions control the CPU memory
management system.

Memory management and interrupt system OFF,
see Interrupt Control Instructions.

Memory management and interrupt system ON,
see Interrupt control instructions

Memory management OFF

Disable memory management system. The next
instruction will be taken from a physical

address given by the address following the
POF instruction.

Note:

The CPU will be in an unrestricted mode
without any hardware protection features -
all instructions are legal and all memory
accessible.

POF

1504048

Memory management ON

Enable memory management system. The next
instruction after PON will then use the page-
index table specified by PCR.

Ensure that the:

Interrupt system is enabled,

internal hardware interrupts are enabled,
page tables and PCR registers are
initialized.

ND-06.029.1 EN

Format:

Octal code:

Description:

Flag affected:

Format:

Octal code:

Description:

Flag affected:

Format:

Octal code:

129

Memory Management Instructions

PON

1504108

Reset extended address mode

Set the paging system to the 19-bit address
mode instead of the 2U4-bit address mode.
(Creating a physical address space of up to
512K words.)

SEXI (bit 13 of the STS register) cleared
REX

150’4078

Set extended address mode

Set the paging system to the 24-bit address
mode instead of the 19-bit address mode.
(Creating a physical address space of up to
16M words.)

SEXI (bit 13 of the STS register) set.

SEX

1504068

ND-06.029.1 EN

REX

SEX

130

Physical Memory Control Instructions
DEPOSIT and EXAM

DEPO

EXAM

Description:

Format:

Octal code:

Description:

Format:

Octal code:

These instructions are PRIVILEGED and only
available to:

programs running in system mode (rings 2-3)

programs running without memory protection

These instructions monitor physical memory
location contents.

Deposit

Store the contents of the T register in the
physical memory location pointed to by the A
and D register contents.

DEPO

1504178

Examine

Load the contents of the physical memory
location, pointed to by the A and D register
contents, into the T register.

EXAM

1504168

ND-06.029.1 EN

131

Writable Control Store Instruction
LWCS

This instruction is PRIVILEGED and only available to:

programs running in system mode (rings 2-3)
programs running without memory protection

LWCS is a no-operation in the ND-110.

The ND-110 is software compatible but not
microcode compatible and writing to the
writable control store has no meaning in
the ND-110. A no-operation is executed
so that programs written for the ND-100
and NORD-10 can continue.

Octal code = 1435008

Unused areas of the microprogram can be read or written
to using the TRR CS or TRA CS instruction (see page
119).

Further information on the LWCS instruction for the
ND-100 can be found in the ND-100 Reference Manual
(ND-06.014) .

ND-06.029.1 EN

132

OPCOM Mode Instruction
QPCOM

Description:

Format:

Octal code:

This instruction is PRIVILEGED and only
available to:

programs running in system mode (rings 2-3)
programs running without memory protection
Operator Commmunication

This instruction allows the programmer to use
a terminal in direct communication with the

CPU board.

When the CPU is running, MOPC can be used to
read input from the console.

This the software equivalent to pressing the
OPCOM button on the control panel of the
ND-110.

OPCOM

1504008

ND-06.029.1 EN

Instruction format:

Instruction structure:

physical memory
operation type:
(bits 15-6 and 2-0)

disp.

133

These instructions are PRIVILEGED and only available
to:

programs running in system mode (rings 2-3)
programs running without memory protection

These instructions read/write from/to physical memory

locations independent of whether paging is on or off.

If the address is within the page-table range then the
page tables are affected.

<physical instruction mnemonic> <disp>
15 7 6 3 2 0

r—1Tr 1T 1T 1T T 1T T 1 [|
physical memory operation disp. type

There are seven physical memory read/write
instructions, specified by a base octal code of 1433008
(bits 15-6) and type field (bits 2-0).

The contents of the T and X register give the effective
address of the physical memory location (see page 28).
A 3-bit displacement can be added to the X register
within the instruction code. This is denoted by A in
the following codes:

instruction

mnemonic octal code
LDATX 14330
LDXTX 1433218
LDDTX 1433428
LDBTX 143338 | ¢
STATX 1433A42
STZTX 143385
STDTX 143306,

t If you use programs written for ND-100 computers
with the microprogram version numbers 015xx A-J (48
bit) or 026xx A-F (32 bit), LDBTX would have been
followed by a word containing 177777.. This is not
necessary for later ND-100 versions nor for the ND-110.
Running these earlier programs may change the status of
the K bit in the ND-110 and later ND-100s.

ND-06.029.1 EN

134
SINTRAN I

LDATX

Description:

Format:

Octal code:

LDBTX

Description:

Format:

Octal code:

LDDTX

Description:

Format:

Octal code:

sfer Instructions

Load A register

(A) «— (ea)

Load the contents of the physical memory
location pointed to by the effective address
into the A register.

LDATX <disp>

1433A08

Load B register

(B) +— 1770008 OR (2(ea))

Load the contents of the physical memory
location pointed to by the twice the
effective address contents into the B
register, then OR the value with 1770008.

See description for usage.

LDBTX <disp>

1433A38

Load double word

(A) «— (ea)
(D) &«—— (ea + 1)

Load the contents of the physical memory
location pointed to by the effective address
into the A register and the contents of the
effective address plus one into the D
register.

LDDTX <disp>

1433A28

ND-06.029.1 EN

Description:

Format:

Octal code:

Description:

Format:

Octal code:

Description:

Format:

Octal code:

135

LDXTX
Load X register
(X) «— (ea)
Load the contents of the physical memory
location pointed to by the effective address
into the X register.

LDXTX <disp>

1433A18

STATX
Store A register
(ea) —— (A)
Store the contents of the A register in the
memory location given by the effective
address.

STATX <disp>

1433A38

STDTX

Store double word

(ea) «— (A)
(ea) + 1 «—— (D)

Store the double word held in the A and D
registers in the memory locations given by
the effective address and the effective
address plus one.

STDTX <disp>

1433A68

ND-06.029.1 EN

Description:

Format:

Octal code:

Store zero
(ea) ~— OOOOOO8

Store zero in the memory location given by
the effective address.

STZTX <disp>

1433A58

ND-06.029.1 EN

Description:

Format:

Octal code:

Description:

137
SINTRAN III Control Imstructions

These instructions are PRIVILEGED and only
available to:

programs running in system mode (rings 2-3)
programs running without memory protection

These instructions monitor the contents of
physical memory.

CHREENTPAGES

Change page tables.

The X register is used to address the current
(R1) and previous (Rp) scratch registers.

If the R1 is zero, the reentrant page has
nothing to change so the loop is left,
otherwise the contents of the memory location
pointed to by the Rl + 2 are loaded into T.

T then contains the protect table entry, if
the page has not been written to (WIP bit 12
is zero) T and Rl are loaded with Rp. Rl
(now containing Rp) is tested again for zero.
If the page has been written to, the T
register is loaded with the contents of the
second scratch register (R2), pointed to by
Rl, and R2 becomes the address of Rp. X is
loaded with R1 as the new pointer to the
reentrant pages and Rp is loaded into the D
register pointed to by A.

CHREENTPAGES

1403038

CLEPT

Clear page tables.

This instruction can replace the following
instructions:

CLEPT: JXZ * 10
LDBTX 10
LDA ,B
JAZ *3
STATX 20
STZ ,B
LDXTX 00
WP *-7,

Each time the loop is executed (until X
becomes zero) the physical memory location

addressed by X is loaded into the B register.

ND-06.029.1 EN

138

SINT:

The B register contents provide the address
of a page table entry, which is loaded into
the A register.

If the page table entry is zero (unused) the
loop is restarted.

If the page table entry is not zero (used) it
is stored in a physical location addressed by
X (8 locations away from its original entry)

and the original page table entry cleared by

placing zero in the location addressed by the
B register.

The physical location addressed by X is then
loaded into the X register itself and the
loop restarted.

¥ is the mnemonic for P relative addressing.

Format: CLEPT

Octal code: 1403018
CLEPU
Description: Clear page tables and collect PGU
information.

This instruction collects information on the
PGU (page used) bit of a page table entry
whilst executing CLEPT.

The instruction places PGU information in an
eight word table called the page map bank.
Each bit in the bank represents the status of
a page's PGU bit as follows:

15 0
word O B
word 1 £
word 7 |A

A denotes page 177. PGU bit
£ denotes page 32, PGU bit
@ denotes page O8 PGU bit

ND-06.029.1 EN

Format

Octal code:

Description:

Format:

Octal code:

Description:

Format:

Octal code:

Description:

Format:

Octal code:

Description:

Format:

Octal code:

139

SINTRAN III Control Instructions

The L register contains the address of the
map entry.

CLEPU
1403048
CLNREENT

Clear non reentrant pages.
The contents of the memory address at A + 2
are read to find the page table to be cleared
along with the SINTRAN RT bitmap (addressed
by the X and T registers). The page table
entries corresponding to those bits set in
the RT bitmap are then cleared.
CLNREENT
1403028

CLPT
Clear segment from the page tables. (See
Appendix B for a software description.)
CLPT
1405058

CNREK
Clear non reentrant pages (SINTRAN K only).
(See Appendix B for a software description.)
CNREK
1405048

ENPT

Enter segment in page tables. (See Appendix B
for a software description.)

ENPT

1405068

ND-06.029.1 EN

140

SINTRAN III Control Ir

INSPL
Description: Insert page in page list. (See Appendix B for
a software description.)
Format: INSPL
Octal code: 1405028
LACB
Description: Load the A register from the core map-table
bank (CMBNK).
(A) «—— (ea)
ea = (B) + A = CMBNK entry
A 3-bit displacement added to B included in
the instruction opcode
Format: LACB
Octal code: 1407A28
LASB
Description: Load the A register with the contents of the
segment-table bank (STBNK).
(A) «— (ea)
ea = (B) + A = STBNK entry
A 3-bit displacement added to B included in
the instruction opcode.
Format: LASB
Octal code: 140’7AO8
LBIT
Description:

Load single bit accumulator(K) with logical
memory bit.

(X) points to the start of a bit array
(A) points to the bit within the array

Format: LBIT

Octal code: 1“05108

ND-06.029.1 EN

Description:

Format:

Octal code:

Description:

Format:

Octal code:

Description:

Format:

Octal code:

Load single bit accumulator(K) with physical
memory bit.

(T) points to the bank number containing the
bit array

(X) points to the start of a bit array
(A) points to the bit within the array

LBITP

1405118

Load the A register with a byte from physical
memory.

(D) points to the bank number containing the
byte array

(T) points to the start of a byte array

(X) points to the actual byte within the
array

LBYTP

140514

Load the X register from the core table bank
(CMBNK) .

(X) «— (ea)
ea = (B) + A = CMBNK entry

A 3-bit displacement added to B included in
the instruction opcode.

LXCB

1407A58

ND-06.029.1 EN

141

LBITP

LBYTP

LXCB

Description: Load the X register from the segment table
bank (STBNK).

(X) «— (ea)
ea = (B) + A = STBNK entry

A 3-bit displacement added to B included in
the instruction opcode.

Format: LXSB

Octal code: 1407A48

RDUSP

Description: Read a physical memory word without using
cache.

(T) points to the physical memory bank to be
accessed

(X) points to the address within the bank
(A) is loaded with the memory word

The old content of the memory address is

always read from the memory and never from
cache.

Note:The execution time of this instruction
includes two read-bus cycles (The CPU uses
semaphore cycles - see ND-110 Functional
Description Manual ND.06.027)

Format: RDUSP

Octal code: 1405178

REMPL

Description: Remove page from page list. (See Appendix B
for a software description.)

Format: REMPL

Octal code: 1405038

ND-06.029.1 EN

Description:

Format:

Octal code:

Description:

Format:

Octal code:

Description:

Format:

Octal code:

Description:

Format:

Octal code:

143

SINTRA
REPT
Enter reentrant segment in page tables. (See
Appendix B for a software description.)
REPT
1405078
RGLOB
Examine global pointers.
(T) ~— bank number of segment table (STBNK)
(A) «—— start address within bank (STSRT)
(D) +~— bank number of core map table
(CMBNK)
RGLOB
1405018
SACB
Store the A register in the core map table
bank (CMBNK).
(ea) «—— (A)
ea = (B) + A = CMBNK entry
A 3-bit displacement added to B included in
the instruction opcode.
SACB
1407A38
SASB

Store the A register contents in the segment
table bank (STBNK).

(ea) «—— (A)
ea = (B) + A = STBNK entry

A 3-bit displacement added to B included in
the instruction opcode.

SASB

1407A18

ND-06.029.1 EN

144

SBIT
Description: Store the single bit accumulator (K) in a
logical memory bit.
(X) points to the start of a bit array
(A) points to the bit within the array
Format: SBIT
Octal code: 1405128
SBITP
Description: Store the single bit accumulator (K) in a
physical memory bit.
(T) points to the bank number containing the
bit array
(X) points to the start of a bit array
(A) points to the bit within the array
Format: SBITP
Octal code: 1405138
SBYTP
Description: Store a byte in physical memory.

(D) points to the bank number containing the
byte array

(T) points to the start of a byte array

(X) points to the actual byte within the

array
Format: SBYTP
Octal code: 1405158

ND-06.029.1 EN

Description:

Format:

Octal code:

Description:

Format:

Octal code:

SINTRAN III

Set page tables.

This instruction can replace the following
instructions:

SETPT: JXZ * 7
LDDTX 268
BSET ZR0°130_ DA
LDBTX 10
STD ,B
LDXTX 00

*_
JMP 68

8

Each time the loop is executed (until X
becomes zero) two consecutive physical memory
locations addressed by X are loaded into the
A and D registers.

The word in A is the protect field of the
page table, bit 11 (the PGU bit) is cleared
to set the page table. The double word (in A
and D) is then stored in two consecutive
locations pointed to by the contents of the B
register, the page table address.

* is the mnemonic for P relative addressing.

SETPT

1403008

SZCB

Store zero in the core map-table bank
(CMBNK) .

(ea) — O
ea = (B) + A = CMBNK entry

A 3-bit displacement added to B included in
the instruction opcode.

SZCB

1407A78

ND-06.029.1 EN

146

SINTRAN I1I
SZSB
Description: Store zero in the segment-table bank (STBNK).
(ea) «—0
ea = (B) + A = STBNK entry
A 3-bit displacement added to B included in
the instruction opcode.
Format: SZSB
Octal code: 1407A68
TSETP
Description: Test and set physical memory word.
(T) points to the physical memory bank to be
accessed
(X) points to the address within the bank
(A) is loaded with the word
The contents of the location addressed by T
and X are simultaneously loaded into the A
register as the location is written to with
all 1s. No other memory access is allowed
during this operation.
The old content of the memory address is
always read from the memory and never from
cache. The all 1s' data word is never written
to cache.
This instruction can be used for processor
synchronization.
Format: TSETP
Octal code: 1405168
WGLOB
Description: Initialize global pointers.

(T)
(A)
(D)

*

bank number of segment table (STBNK)
start address within bank (STSRT)*
bank number of core map table (CMBNK)

nust be divisible by 8
Format: WGLOB

Octal code: 1405008

ND-06.029.1 EN

147
THE INSTRUCTION SET

ND-06.029.1 EN

148

ND-06.029.1 EN

151

APPENDIX A GLOSSARY

ls and 2s
complement

accumulator
BCD

cache
memory
commercial
extended
instructions

effective
address

floating
point

general
registers

1sb
mantissa
microcycle

microprogram

msb

ND-100 family

Binary methods of representing signed numbers.
The part of the computer which carries out
arithmetical functions.

Binary Coded Decimal notation also known as packed
decimal.

Short term memory used to hold instructions and/ data
allowing faster execution of repetitive operations.

Instructions which are privileged or for BCD
arithmetic...now standard ND-110 instructions.
The address calculated from the contents of

various registers and/or a displacement.

A method of representing and calculating in binary
with a number and an exponent.

A, B, D, L, P, T, X and STS registers.

The least significant bit of a number.
The most significant bits following the binary point.
Internal CPU cycle period.

The sequence of micro-instructions executed to
perform an instruction.

The most significant bit of a number.

The family of 16-bit general purpose computers from
Norsk Data consisting of the following machines:

ND-100
ND-100/CE
ND-100/CX
ND-100 Compact
ND-100 Satellite

ND-110

ND-06.029.1 EN

152

nanocycle
no-operation
octal

paging
physical
memory

PLANC

triple word
virtual

address

working
registers

Appendix A Glossary

ND-110/CX
= 26ns
An executed instruction which has no effect.
Base 8 representation of digits.

The method used for translating a 16-bit address into
a 24-bit address.

The memory available to the computer. Paging may be
required to address the entire physical memory.

Programming Language ND Computers. A high-level systems
programming language.

A U48-bit word.
The 16-bit address which can be used to address a
larger address range of 2U4-bits, providing page

tables are implemented.

A, B, D, L, P, T and X registers.

ND-06.029.1 EN

153

APPENDIX B PLANC LISTINGS OF THE NEW SINTRAN INSTRUCTIONS

ND-06.029.1 EN

154

ND-06.029.1 EN

Appendix B PLANC listings of the new SINTRAN instructions 157

REPT Enter re-entrant segment in page tables.

WHILE X<>0 DO

A := ((cmbnk,X).2) A 073777
R3 := X/4
B := (((cmbnk,X).3) V 176000) * 2
A =: B.O
R3 =: B.1
X := (cmbnk,X).0
IF interrupt pending THEN
P := P-1
EXIT
ENDIF
ENDDO
EXIT

ND-06.029.1 EN

158

ND-06.029.1 EN

161

APPENDIX C ALPHABETIC LIST OF INSTRUCTION MNEMONICS AND THEIR OCTAL CODES

Page
AAA add argument to A 172400 85
AAB add argument to B 172000 85
AAT add argument to T 173000 85
AAX add argument to X 173400 85
ADD add to A 060000 65
ADDD add decimal 140120 101
AND logical AND to A 070000 67
BANC AND with bit complement 177000 87
BAND AND to K 177200 87
BFTLL byte fill 140130 93
BLDA load K 176600 87
BLDC load bit complement to K 176400 87
BORA OR to K 177600 87
BORC OR with bit complement 177400 87
BSET bit set 174000 87
BSKP skip next location if cc 175000 87
BSTA store and clear K 176200 87
BSTC store complement and set K 176000 87
CHREENTPAGES change non reentrant pages 140303 137
CLEPT clear page tables 140301 137
CLEPU clear page tables,collect PGU info 140304 138
CLNREENT clear non reentrant 140302 139
CLPT clear segment from page tables 140505 139
CNREK clear non-reentrant pages 140504 139
COMD compare decimal 140122 102
COPY register transfer 146100 43
DEPO memory deposit 150417 130
DNZ convert FA number to A 152000 71
ELEAV error leave stack 140137 109
ENPT enter segment into page tables 140506 139
ENTR enter stack 140135 109
EXAM memory examine 150416 130
EXIT return from subroutine 146142 4y
EXR execute register 140600 45
FAD add to floating accumulator 100000 68
FDV divide floating accumulator 114000 68
FMU multiply floating accumulator 110000 69
FSB subtract from floating accumulator 104000 69
IDENT identify interrupt 143600 125
INIT initialize stack 140134 110
INSPL insert page in page list 140502 140
IOF turn off interrupting system 150401 126
ION turn on interrupting system 150402 126
I0X input/output 164000 121
IOXT input/output 150415 123
IRR inter-register read 153600 114
IRW inter-register write 153400 114
JAF jump if A not O 131400 79
JAN jump if A -ve 130400 79

ND-06.029.1 EN

162 Appendix C Alphabetic list of instruction mnemonics and their octal codes

Page
JAP jump if A +ve or O 130000 79
JAZ jump if A O 131000 79
JMP jump 124000 78
JNC increment X;jump if -ve 132400 80
JPC increment X;jump if +ve 132000 80
JPL jump to subroutine 134000 78
JXN jump if X -ve 133400 80
JXZ jump if X O 133000 80
LACB load A with core map table bank 140742 140
LASB load A in segment table bank 140740 140
LBIT load K flip-flop with logical memory bit 140510 140
LBITP load K flip-flop with physical memory bit 140511 141
LBYT load byte 142200 91
LBYTP load byte from physical memory 140514 1h1
LDA load A 044000 60
LDATX load A with physical memory contents 143300 134
LDBTX load B with physical memory contents 143303 134
LDD load double word 024000 60
LDDTX load D with physical memory contents 143302 134
LDF load floating accumulator 034000 60
LDT locad T 050000 61
LDX load X 054000 61
LDXTX load X with physical memory contents 143301 135
LEAVE leave stack 140136 111
LRB load register block 152600 116
LWCS load writeable control store 143500 131
LXCB load X with core map table bank 140745 141
LXSB load X with segment table bank 140744 142
MCL masked clear of register 150200 118
MIN memory increment;skip if O 040000 62
MIX3 multiply index by 3 143200 L6
MON monitor call 153000 81
MOVB move bytes 140131 93
MOVBF move bytes forward 140132 93
MOVEW move word block(range 00 to 80 = xx) 1431xx 95
MPY multiply integer 120000 65
MST masked set of register 150300 118
NLZ convert A number to floating in FA 151400 71
CPCOM set to OPCOM mode 150400 132
ORA inclusive OR A 074000 67
PACK convert to packed decimal 140124 103
PIOF turn paging and interrupt off 150405 126
PION turn paging and interrupt on 150412 127
POF turn memory management off 150404 128
PON turn memory management on 150410 128
RADD register add 146000 L7
RAND register AND 144400 49
RCLR register clear 146100 50
RDCR register decrement 146200 51
RDIV register div 141600 52
RDUS read do not use cache 140127 112
RDUSP read a word without using cache 140517 142
REMPL remove page from page list 140503 142

ND-06.029.1 EN

Appendix C

REPT
REX
REXO
RGLOB
RINC
RMPY
RORA
RSUB
SAA
SAB
SACB
SAD
SASB
SAT
SAX
SBIT
SBITP
SBYT
SBYTP
SETPT
SEX
SHA
SHD
SHDE
SHT
SKP
SRB
STA
STATX
STD
STDTX
STF
STT
STX
STZ
STZTX
SUB
SUBD
SWAP
SZCB
SZSB
TRA
TRR
TSET
TSETP
UPACK
VERSN
WAIT
WGLOB

Alphabetic list of instruction mnemonics and

enter reentrant segment in page tables
reset extended address mode

register exclusive OR

examine STBNK,STSRT;CMBNK

register increment

register multiply

register inclusive OR

register subtract

set argument to A

set argument to B

store A in core map table bank

shift A and D registers

store A in segment table bank

set argument to T

set argument to X

store K flip-flop in logical memory bit

store K flip-fiop in physical memory bit

store byte

store byte in physical memory

set page tables

set extended address mode

shift A register

shift D register

decimal shift

shift T register

skip next location on cc

store register block

store A

store in A physical memory contents
store double word

store in D physical memory contents
store floating accumulator

store T

store X

store 0O

store in Z physical memory contents
subtract from A

subtract decimal

register exchange

store O in core map table bank
store 0 in segment table bank
transfer internal register to A
transfer internal register from B
test and set

physical test-and-set request
convert to unpacked decimal

cpu version

give up priority

initialize global pointers

ND-06.029.1 EN

their octal codes

140507
150407
145000
140501
146400
141200
145400
146600
170400
170000
140713
154600
140741
171000
171400
140512
140513
142600
140515
140300
150406
154400
154200
140126
154000
140000
152402
004000
143304
020000
143306
030000
010000
014000
000000
143305
064000
140121
144000
140747
140746
150000
150100
140123
140516
140125
140133
151000
140500

104

116
62
135
62
135
18
63
18
64
136
66
105
58
145
146
119
119
112
146
106
97
127
146

163

164

ND-06.029.1 EN

167

APPENDIX D THE TRR AND TRA INSTRUCTIONS FOR INTERNAL REGISTERS

The A register contents after a TRR and/or TRA
instruction(s) are listed below.

TRA reads the contents of the internal register
selected into the A register. The following diagrams
for TRR <internal register> illustrate the format of
the A register contents after the instruction.

TRR writes the contents of the A register into the
internal register selected. The following diagrams for
TRA <internal register> show the format the A register
should take before the instruction is executed and e
denotes an insignificant bit.

ND-06.029.1 EN

168 Appendix D The TRR and TRA instructions for internal registers

PANS Panel Status Register O8
15 0
1 T T 1T T 11
?17 |5 |5|e| cmnd RPAN TRA PANS
N[F T Y
15 PAN panel is installed
(this is zero if no panel is installed)
14 FIF FIFO buffer ready for data
13 DAT last processed command requested data
12 RDY last command has been completed
(this bit is cleared by TRA PANS)
10-8 cmnd the last command processed
7-0 RPAN the data requested by the last processed command
(if no data was requested, the field contains bits
0-7 of PANC)
PANC Panel Control Register O8
15 0
o [1T 17T T 1T 1
e|e|~|0|0| cmnd WPAN TRR PANC
T
13 DAT the command requests data from the panel
(data is placed in bits 0-7 of PANS)
10-8 cmnd panel processor command
7-0 RPAN data to the panel processor

ND-06.029.1 EN

Appendix D The TRR and TRA instructions for internal registers 169

STS Status 18
15 0
VRS N I T1
alo % |s PIL [M|C|O|Q|Z|K|G|P TRA STS
[L £~
15 0
olo|oo|o(o|e|e[M[C|O|Q|Z|K|G|P TRR STS
15 IONI interrupt system on flag
14 PONI memory management on flag

(normal mode : 19-bit addresses)

13 SEXI memory management is in extended mode
(24-bit addresses used NOT 19-bit)

12 N100 ND-100 flag
(indicates an ND-100 family CPU)
11-8 PIL current program level
7 P paging table mode

(enables alternate page table mode)

6 G rounding flag
(for floating point operations)

5 K 1-bit accumulator
(used for bit operations)

b Z error flag

3 Q dynamic overflow flag
2 0 static overflow flag

1 C carry flag

0 M multishift link flag

(1-bit extension for the A, D or T register)

ND-06.029.1 EN

170

Appendix D The TRR and TRA instructions for internal registers

OPR Operator Panel Switch 2

TRA OPR

This register is a simulated panel switch register. Data is written

into the register by OPCOM operaticns; TRA OPR can be used to read
the the register contents.

LMP Operator Lamp 2

rrrrrrrrr T

TRR LMP

ND-06.029.1 EN

Appendix D The TRR and TRA instructions for internal registers

171

PGS Paging Status 3

four page table mode:

15 0
—Ts T T LI T
rinwo|o|e|e|e|o| PT VPN TRA PGS
15 FF fetch fault
14 PM permit violation
7-6 PT page table number

(when violation occured)

5-0 VPN virtual page number

sixteen page table mode:

15 0
P 11 T T 11
Finlele|e|e PT VPN TRA PGS
15 FF fetch fault
14 PM permit violation
9-6 PT page table number

(when violation occured)

5-0 VPN virtual page number

ND-06.029.1 EN

172 Appendix D The TRR and TRA instructions for internal registers

PCR Paging Control 3

Four page table mode:

15 0
| | T 11 1
eo|le|e|e|e| PT|APT PIL 0 %qs TRR PCR
10-9 PT normal page table
7-8 APT alternative page table
3-6 PIL current program level
1-0 Ring ring protection level (0-2)

Sixteen page table mode:

15 0
| T I 1T 1 |
® PT APT PIL 1'%@3 TRR PCR
14-11 PT normal page table
10-7 APT alternative page table
3-6 PIL current program level
1-0 Ring ring protection level (0-2)
PVL Previous Program Level 48
15 0
1T 1
i11{of11o41(111|1 PVL 0110 TRA PVL
3-6 PVL previous program level (0-15)

ND-06.029.1 EN

Appendix D The TRR and TRA instructions for internal registers 173

IIC Internal Interrupt Control 58
15 0
| L
ololo(o(0ojo(ojoj0oj0o|o|e I1C TRA IIC
3-0 IIC code denoting the source of an internal interrupt
(see IIE)
IIE Internal Interrupt Enable 58
15 0
plulplT Pzl |P|nIn
slejeloj@|c (o (T |o]z T|F[®|<|0 TRR IIE
w RN IX% v

The bits enable the following internal interrupts:

IIC code
10 POW power failure 128
9 MOR memory out of range 118
(or addressing non-existent memory)
8 PTY memory parity error 108
7 10X IOX error 78
(no answer from an external device)
6 PI privileged instruction 68
5 Z error flag 58
4 II illegal instruction 48
(instruction not implemented)
3 PF page fault 38
(page not in memory)
2 MPV memory protect violation 28
(page number is found in the PSR)
1 MC monitor call 1

ND-06.029.1 EN

174

Appendix D The TRR and TRA instructions for internal registers

PID Priority Interrupt Detect 68
15 0
1
Sle|® -Vieleo(o(eo|/o|je|je(e|eo|o|e TRA PID

An external interrupt on program levels 15, 13-11 will set the
corresponding bit in this register.

PIE Priority Interrupt Enable 78
15 0
T 1
Sleg(k 2 eoleo|lojo|eo|o|e|eo|e|e|e TRR PIE

This register enables external interrupts on program levels 15, 13-11.

CSR Cache Status 108
15 0
G L K= K=
ICICACAC AL AL ACAC AL AC AL I8 333 ; TRA CSR
Yy FIN cache clear finished
3 MAN DIS cache disabled manually
2 CON cache on
1 (010) cache updated on current memory request

ND-06.029.1 EN

Appendix D The TRR and TRA instructions for internal registers 175

CCL Cache Clear 10

This register has no data. Executing a TRR CCL will exchange the two
cache-used bit-maps, so one bit-map can be cleared. (see ND-110
Functional Description ND-06.026.1)

ACTL Active Level 118
15 0
oloe|jc|o|ojo|0o|j0o|j0|0|0|0|@ TRA ACTL

LCIL Lower Cache Inhibit Limit 118

15 0

[AL AL AL A A AL B AL BE B ML BE J TRR LCIL

The TRR LCIL sets bits in the cache bit-map (equivalent in function to
the setting the lower limit register of the ND-100).

ALD Automatic Load Descriptor 128
15 0
| L L A O I R L
0O|0|M|O address TRA ALD

ND-06.029.1 EN

176

Appendix D The TRR and TRA instructions for internal registers

UCIL Upper Cache Inhibit Limit 128

15 0

1T 1T 1T 1T T T T
e|e® upper page limit number TRR UCIL

The TRR UCIL sets bits in the cache bit-map (equivalent in function
to the setting the upper limit register of the ND-100).

PES Parity Error Status 138
15 0
o] L T T 11 T 1 T 1T 1 11
N : 1 err code |upp mem address TRA PES
15 FCH error during an instruction fetch
14 DMA error during DMA reference
13 FAT fatal error
(multiple-bit error)
12-8 error code
7-0 8 msb of the last memory address on the ND-100 bus
CILP Cache Inhibit Page 138
15 0
T T T T
Fle physical page address TRR CILP
15 F page format

(1 = normal; O = inhibit)

13-0 physical page address of affected page

ND-06.029.1 EN

Appendix D The TRR and TRA instructions for internal registers

17

PGC Paging Control 14

Four page table mode:

15 0
| ! IR |
elo|lojle|e| PT|APT| PIL 0 qu TRA PCR
10-9 PT normal page table
7-8 APT alternative page table
3-6 PIL current program level
1-0 Ring ring protection level (0-2)

Sixteen page table mode:

15 0
11 | [T 1 1
) PT APT PIL 1'KQ3 TRA PCR
14-11 PT normal page table
10-7 APT alternative page table
3-6 PIL current program level
1-0 Ring ring protection level (0-2)

ND-06.029.1 EN

178 Appendix D The TRR and TRA instructions for internal registers

PEA Parity Error Address 15

8
15 0
T T irr Tt T T T
lower memory address TRA PEA

15-0 16 1lsb of the physical memory address on ND-100 bus
(at the time of the memory access that caused an interrupt)

ECCR Error Correction Control 15

8
15 0
el TRE[
ofejoeooj0oj0o|0o|0o00|T T 3 213 TRR ECCR
4 6TS simulate memory error in bit 6
3 DIS disable ECC system and parity interrupt
2 ANY enable parity interrupt on all errors

(reset for only multiple-bit errors)
1 15T simulate memory error in bit 15

0 0TS simulate memory error in bit O

ND-06.029.1 EN

Appendix D The TRR and TRA instructions for internal registers 179

PEA Parity Error Address 15

15 0

Tttt T 1T b
error address TRA PEA

This register contains the 16 lsbs of the address causing a parity
error. Reading this register unlocks both PEA and PES.

CS Control Store 178
15 0
PPttt 11T 1
control store 16-bit field TRA CS and TRR CS

The control store is 8 K by 64 bits. The X register must be loaded
with the control store address before either a TRA CS or TRR CS
instruction. The X register should have the following format:

15 0

L L I B 1 T
0 address 0O - éK aa

where aa selects one of four 16-bit fields from the addressed 6L-bit
control store word.

ND-06.029.1 EN

180

ND-06.029.1 EN

Index 183

A Register transfer instructions

description . . v v v v v e e e e e e e e e e e e e e oeowoW 11T

MCL . v v v v e e e e e e e e e e e e e e e e e e e o o.oo 118

MST . . . « « « v « « . e e e e e e e e e e e e .

TRA &+ & v i e 119

TRR v v v v v ee w119
AAA . o s e B
2 OO ¢ 1o
AAT . 0 v e . .85
AAX . . . o e e e e e e R < 15}
ACTL

Active Level . . v v v v v e e e e e e e e e e e e ... 120, 167
2N 0 P 10
OO 10
ADD . v e .. B
ADDD . . i e . . . 101
address mode

specification « . v v 4 v v 4 e e 4 e e e e . . .59, 76
addressing

Bindexed . + v v v v v v e e e e e e e e e e e e e e e .. 2l

B indirect o o . . . e e e e e e e e 22

B indirect indexed v 4 v v v e 4 e e v e . . .26

B relative . . . ¢ i i i i et e e e e e e e e e e e e .. 20

byte o e s s e s s s s e e e s e e T

P indirect . . . « ¢ v v v i it e e e e e e e e e e e e 2

P indirect dndexed ¢« ¢ ¢ ¢ ¢ ¢ v v v v v e o .25

P relative . . ¢ ¢ ¢ ¢ ¢t i v v e e e e e e e e e e« . .19

physical MEMOTY . + + v « « v & « « v & o v v v v v v« . .28

X relative . . . v vt e e e e e e e e e e e e e e e e e . 23
ALD

Automatic Load Descriptor . . . + « « « v « « « « « 120, 167
. O <Y
Argument instructions

AAA e e e e e e e e e e B < 1}

Y 2 O < L5

AAT Y < 1o

AAX Y s 1o

5 2 R < 15)

2N 2 < 1o}

1 R < 15

S < o
Arithmetic instructions

ADD . v vt e . BB

MPY « . o e e e e e e e B)}

SUB & v v v e e e e e e e e e e e e e e e e e e e ... 66
ASCII notation © v v v v v v v e e e e e e e e e ... 8

B indexed

addressing v v v e e e e e e e e e e e e e ..o 2h
B indirect

addressing v v v e e e e e e e e e e e e e e e 22

ND-06.029.1 EN

184

B indirect indexed
addressing

B relative
addressing

BAC .

BANC

BAND

BCD - binary coded digital - notation .

BCM .
BFILL . . .
Bit instructions

BANC

BAND

BLDA

BLDC

BORA

BORC

BSET

BSKP

BSTA

BSTC
Bit sub-instructions

BAC .

BCM .

ONE .

ZRO . .
BLDA
BLDC
BORA
BORC
BSET
BSKP
BSTA
BSTC
byte

addressing
Byte block instructions

BFILL .

description .

MOVB

MOVBF .

CCL
Cache Clear .

changing the microprogram .

CHREENTPAGES

CILP
Cache Inhibit Page

CLD . e e e

CLEPT .

CLEPU .

CLNREENT

CLPT . .

cM1 . .

CNREK .

COMD

ND-06.029.1 EN

.32

120,

137

. 120,

137
138

. 139
. 139s
o bho

139,

. 102

167

167

155
155

Index

Index 18

compound bit mnemonic
S © P <
1053 o 1 |
S A < |
1575 1 ¢
SSPTM & v v v v e 8
51 1 |
0o € P < 1 |
o557/ < 1°)

condition code
equal(EQL) T s X
greater or equal w1th overflow(GRE) I 5!
greater or equal (GEQ) « . . .+ . v83
less than with overflow(LST)83
less than(LSS) O
magnitude greater or equal(MGRE)
magnitude less than(MLST) e 5 b e e e e e e .
reversing relationships « « « «83
unequal (UEQ) . . . v v v v v v e e e e e e e e e e e .. 88

COPY . v v v v ey ho-ly 4B, 50

see RADD
CS

Control Store v « v v v 4 v v e e e e e e e .. o.120, 1067
CSR
Cache Status « v v v v v v v v v v e e e e . 120, 167

data and instruction types
32-bit floating point word
48-bit floating point word
bit . . o s
byte .
double word .
word .
Decimal 1nstructlons
ADDD . 101
CCMD e Ko
description08
PACK 103
SHDE . 104
SUBD . 105
UPACK . . 106
decimal notation
ASCII coded decimal v v v v v v v v v8
BCD-binary coded decimal7
DEPO . . v o e e e e e e e e e e e e e, 130
destination
specification . . . 39, 82, 88, 113
device register address . e e
D/]
0 o Py destination

= & E oVl

ECCR

Error Correction Control 120, 167
ELEAV . . . S S e e . st e e e e e e e e
embedded leadlng <9, 99

ND-06.029.1 EN

186

embedded sign coding
embedded trailing
ENPT o o o ik .
ENTR . . . « « « o « &
EQL + . .
EXAM
execution tlmes

memory reference instructions .
EXIT

EXR .

FAD .

FDV . .

Floating p01nt
48-bit CPU instructions
48-bit/32-bit test .

Floating point conversion 1nstruct10ns
description .

Floating point 1nstruct10ns
DNZ . . .
FAD . . .
FDV . . .
FMU . . .
FSB .
LDF
NLZ
STF .

FMU .

format
binary
memory reference 1nstructlons .
octal
register 1nstruct10ns .

FSB .

GEQ .
GRE .

IDENT .
IIC
Internal Interrupt Control
IIE
Internal Interrupt Enable .
INIT .
Input/output 1nstruct10ns
I0X .
IOXT
INSPL
Instruction
alphabetic list of
execution . .
privilcged « o o
set . . .

ND-06.029.1 EN

.83

.3
.31
.31

Index

-9
-9, 99

139, 156
110

130

15

. b2-44, 48

see COPY

. 42, b5

. 68
. 68

.72
.72

125

. 120, 167

120, 167
110

121
123
140, 156

35

Index

Instruction
timing

Inter-level register instructions
description .
IRR .
IRW . e e e e e

Interrupt control instructions
description . . .
IDENT
I0F .
ION .
PIOF « « . .
PION
WAIT

I0F .

ION .

I0X .

I0XT

IRR .

IRW .

.

JAF .
JAN . . .
JAP . . .
JAZ .
JUWP
JNC .. . L.
JpPC
JPL
Jump instructions
description .
JAF .
JAN .
JAP .
JAZ .
JMP .
JNC .
JPC .
JPL .
JXN .
JXZ .
JXN .
JXZ .

LACB
LASB
LBIT
LBITP .
LBYT
LBYTP .
LCIL
Lower Cache Inhibit Limit .
LDA
LDATX
LDBTX .

ND-06.029.1 EN

. 60

. 33

113

.11k

114

. 124
. 125
. 126
. 126
. 126
. 127
. 127
. 126

126

. 121
. 123
. 114

114

. 140
. 140

140

TS
. 91
.14

120, 167

134

. 13Y

187

188

LDD v v v v v e e e e e e
LDDTX « . .
LDF .
LDT
LDX
LDXTX .
LEAVE .
LIN

link end input shift
LMP

Operator Lamp .
Load Instructions

LDA

LDD .

LDF .

LDT .

LDX . . .« . ..
Logical instructions

AND

ORA
IRB« . ..
LSS . .+« v v v ..
LST .
LWCS
LXCB . S
LXSB

M

multi-shift flag
MCL
Memory addressing . e e e i e

key to descriptions

memory management
Memory examine and test instructions

RDUS

TEST e e e e
Memory management instructions

PIOF « . . .

PION e .

POF

PON .

REX .

SEX . e e e e e e e e e
Memory reference instruction format .
Memory transfers

description .
MGRE e
microprogram
MIN .

MIX3

MLST

MON . e e

Monitor instruction
MON .

MOVB

MOVBF .

.

ND-06.029.1 EN

16

Index

. 60

. 134

. 60, 68
. 61

1

135

. 111

e

120, 167

.7
. 118, 120, 167
. see addressing

17
112
112

128
128

. 128

128
129
129
14

- 59
. 83
. 32
. 62
. b2, 46
. 83
. 31, 81

. 81

. 93
. 94

Index

MOVEW .
MPY . .
MST . .

NLZ .

ONE . .
OPCOM . e e e e
OPCOM mode instruction
OPR

Operator Panel Switch .
ORA .

P indirect
addressing
P indirect indexed
addressing
P relative
addressing
PACK
PANC
Panel Control .
PANS
Panel Status
PCR
Paging Control
PEA
Parity Error Address
PES
Parity Error Status .
PGC
Paging Control
PGS
Paging Status .
physical memory
addressing
Physical memory control instructions
DEPO
EXAM

Physical memory read/write SINTRAN instructions

description
LDATX .
LDBTX .
LDDTX .
LDXTX .
STATX .
STDTX .
STZTX .
PID

Priority Interrupt Detect .
PIE

.

Priority Interrupt Enable .
PIOF « o e e @
PION

.

ND-06.029.1 EN

189

- 95
. 65

118, 120, 167

.72

. 88

132
132

. 120, 167
. 67

.21

. 25

19

: 103

120, 167

. 120, 167

. 120, 167

120, 167

. 120, 167

. 120, 167

120, 167

. 28

. 130

130

133

: 134
. 134

134

. 135

135

- 135

136

. 120, 167

120, 167
126, 128

: 127, 128

190

POF .
PON . e e e e e
Privileged instructions .
program level

device allocation .
PVL

Previous Program Level

RADD

RAND
RCLR

RDCR

RDIV
RDUS .
RDUSP . e e e e e e
Register block instructions
description .
LRB .
SRB . e
Register Instructions
ADC and AD1
CLD and CM1
COPY
description .
EXIT
EXR .
MIX3
RADD
RAND
RCLR
RDCR
RDIV
REXO
RINC
RMPY
RORA
RSUB
SWAP
REMPL .
REPT
REX .
REXO
RGLOB .
RINC

RMPY
RORA
ROT
rotational shift
rounding
RSUB

ND-06.029.1 EN

Index

128

128
. 31

124

120, 167

.b2-44) 47, 50,

51, 54, 57

. b2, 49
. 42, 43, 48, 50

see COPY

. 42, 48, 51

see RADD

. b2, 52
. 112

142

115

. 116
. 116

. 4o
. 40
13
. 39
. Lk

42, 18, sh

see RADD

. 42, 55
. 42, 56, see RADD

. 73
- 99
. b2, L8, 57

Index

SAA .
SAB .
SACB
SAD .
SASB
SAT .
SAX .
SBIT .
SBITP .
SBYT
SBYTP . .
separate leading
separate trailing .
SETPT .
SEX .
SHA .
SHD .
SHDE
shift
arithmetic e
link end input(LIN)
right(SHR) . .
rotational (ROT)
zero end input(ZIN)
Shift instructions
SAD .
SHA .
SHD .
SHT .
SHR
shift right .
SHT .

Single byte instructions

description .
LBYT
SBYT

SINTRAN III control instructions

CHREENTPAGES
CLEPT .
CLEPU .
CLNREENT
CLPT
CNREK .
ENPT .
INSPL .
LACB
LASB
LBIT .
LBITP .
LBYTP .
LXCB
LXSB .
RDUSP .
REMPL .
REPT .
RGLOB .
SACB

ND-06.029.1 EN

. 139,

. 101,

: 139

139,
140,

. 140

140
140

T
e
.o141

142

. 142
. 142,

143,

. 143
. 143

102,

155
155
156
156

156
157

191

192

SINTRAN III control instructions
SASB
SBIT
SBITP .
SBYTP .
SETPT .
SZCB
SZSB
TSETP .
WGLOB . G e e e e omoe e
SINTRAN IIT memory transfer instructions
LDATX .
LDBTX .
LDDTX .
LDXTX .
STATX .
STDTX .
STZTX
Skip instruction
SKP .
SKP .
source
specification .
sr .
SEB .
SSC .
SSK .
SSM .
SSO . .
SSPTM .
5SQ .
SSTG
SSzZ .
STA .
stack frame
ERRCODE .
LINK
PREVB .
SMAX
STP . ..
Stack instructions
description .
ELEAV .
ENTR
INIT
LEAVE .
STATX .
STD .
STDTX .
STF . e e
Store instructions
MIN .
STA .
STD .
STF .
SIT .
STX .

ND-06.029.1 EN

. 143
. 144
. 144
. 144
. 145
. 145
. 146
. 146
. 146

- 133
. 133
. 133

82

source

Index

Index

Store instructions
STZ .

STS
bit operations
Status register .

STT .

STX .

STZ .

STZTX .

SUB .

SUBD

SWAP

SZCB

SZSB

TRA .
TRR .

TSET
TSETP .

UCIL

Upper Cache Inhibit Limit .
UCILR

Upper Cache Inhibit Limit .
UEQ . o« e e e
UPACK .

Version instruction
VERSN .
VERSN .

WAIT .

WGLOB . e e e e

Word block instruction
MOVEW .

Writable control store instruction

LCWS

X relative
addressing

ZIN

zero end input shift
ZRO .

ND-06.029.1 EN

. 32,

167

. 32,

167

. 112
. 146

. 167
. 120

. 106

- 97
- 97

. 127
. 146

- 95
. 131

. 23

- 13
. 88

58

119, 120,

119, 120,

193

The information in this manual is subject to change without notice. Norsk Data A.S assumes no responsibility for
any errors that may appear in this manual. Norsk Data A.S assumes no responsibility for the use or reliability of its
software on equipment that is not furnished or supported by Norsk Data A.S. Copyright © 1987 by Norsk Data A.S.

UPDATING

PRINTING RECORD

Manuals can be updated in two ways, new versions and PRINTING NOTES
revisions. New versions consist of a completely new
manual which replaces the old one, and incorporate all
revisions since the previous version. Revisions consist of
one or more single pages to be merged into the manual
by the user, each revised page being listed on the new
printing record sent out with the revision. The old printing
record should be replaced by the new one.

03/87 Version 1 EN

New versions and revisions are announced in the ND
Customer Support Information and can be ordered from
the address below.

The reader’s comments form at the back of this manual
can be used both to report errors in the manual and give
an evaluation of the manual. Both detailed and general
comments are welcome.

ND-110 Instruction Set
Publ.No. ND-06.029.1 EN

RING BINDER OR PLASTIC COVER

The manual can be placed in a ring binder for greater | would like to order

protection and convenience of use. Ring binders may

be ordered at a price of NKr. 45.- per binder. ... Ring Binders, B5, at NOK 35,- per binder

The manual may also be placed in a plastic cover. ... Ring Binders, A4, at NOK 45.- per binder

This cover is more suitable for manuals of less than

100 pages than for larger manuals. .. Plastic Covers, A4, at NOK 10.- per cover

Please send your order, as well as all types of NAME: i

inquiries and requests for documentation to the local

ND office, or (in Norway) to: COMPANY: ittt
Graphic Center AArESS: ..o
Norsk Data A.S

P.0.Box 25 BOGERUD
N-0621 OSLO 6 - Norway

L2 X X2 L X 2 2 2 2 2 2 2 SEND Us YOUR COMMENTS!!! EXE LR L R LRk

Are you frustrated because of unclear information in
this manual? Do you have trouble finding things?
Why don’t you join the Reader’s Club and send us a
note? You will receive a membership card — and
an answer to your comments.

Please let us know if you

* find errors

* cannot understand information

* cannot find information

* find needless information
Do you think we could improve the manual by
rearranging the contenis? You could also tell
us if you like the manual!

sxxsxsnnsxss HELP YOURSELF BY HELPING US!! . curnxxnss

Manual name: ND:110 Instruction Set Manual number: ND-06.029.1 EN

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual ?

Your name: Date:
Company: Position:
Address:

What are you using this manual for ?

NOTE! Send to:

This form is primarily for Norek Data A.S re
documentation errors. Software and Documentation Department

system errors should be reported on P.O. Box 25, Bogerud Norsk Data’s answer will be found
Customer System Reports. 0621 Oslo 6, Norway on reverse side

Answer from Norsk Data

Answered by Date

Norsk Data A.S

Documentation Department
P.O. Box 25, Bogerud
0621 Oslo6, Norway

A
L]
Olr

=
5 n.lﬂr

