ND-100

’ : Reference Manual
NORSK DATA AS
&
000 00000600600
000 00000000
000 000000000
900 000 1 22
000 000 11X
g@“ 0990 0029 0EH
000 0000 000000006
900 0000000

ND-100
Reference Manual

ND-06.014.02

NOTICE

The information in this document is subject to change without notice. Norsk Data
A.S assumes no responsibility for any errors that may appear in this document.
Norsk Data A.S assumes no responsibility for the use or reliability of its software
on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. It may not

be photocopied, reproduced or translated without the prior consent of Norsk
Data A.S.

Copyright @ 1983 by Norsk Data A.S

This manual is in loose leaf form for ease of updating. Old pages may be
removed and new pages easily inserted if the manual is revised.

The loose leaf form also allows you to place the manual in a ring binder (A) for
greater protection and convenience of use. Ring binders with 4 rings corre-
sponding to the holes in the manual may be ordered in two widths, 30 mm and
40 mm. Use the order form below.

The manual may also be placed in a plastic cover {B}. This cover is more suitable
for manuals of less than 100 pages than for large manuals. Plastic covers may
also be ordered below.

] =\ N i -/\1 — T
P ey - ° I 2 i
‘\ NCRSK DATA AS NCORSK DATA AS
T, 19 e 2. 13 BuRd
Py e S St T
5y el T B
‘ ,x /\ _
A Ring Binder B Plastic Cover

Please send your order to the local ND office or (in Norway) to:
Documentation Department
Norsk Data A.S

P.O. Box 4, Lindeberg gard
Oslo 10

ORDER FORM

I would like to order
....... Ring Binders, 30 mm, at nkr 20,- per binder
....... Ring Binders, 40 mm, at nkr 25,- per binder

....... Plastic Covers at nkr 10,- per cover

Name

Company
Address

il

PRINTING RECORD

Printing Notes
03/79 ORIGINAL PRINTING
01/82 SECOND PRINTING
01/83 Revision A

The following pages are revised or added:

v--xiv, 1-16, 1-17, 2-18,2-19, 227,229,241, 2-42

3-1,3-21,3-27, 3-38, 3—41,3-47, 3-48, 3-53, 3-b5, 3-58, 3-62,

3-72 to 3-74,3-76, 3—80, 3—83 t0 3—94

4-17,A-91t0 A-13,D-1,D-2,E-1,E-2,F-1,F-2

ND-—100 Reference Manual
ND—-06.014.02 Rev. A

Febr. 1983
3332, 333 3333338
00000 000 0000G000S NORSK DATA AS
2338338238 3238 852 £ 0 Boxs, Lindeberg gard
333 °3333 33388852° Ouio 10, Noway o
eee o¢e o¢ecocdo ‘ Y

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one or
more single pages to be merged into the manual by the user, each revised page
being listed on the new printing record sent out with the revision. The old
printing record should be replaced by the new one.

New versions and revisions are announced in the ND Bulletin and can be ordered
as described below.

The reader's comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms, together with all types of inquiry and requests for documentation
should be sent to the local ND office or (in Norway) to:

Documentation Department
Norsk Data A.S

P.0. Box 4, Lindeberg gérd
Oslo 10

PREFACE

THE PRODUCT
ND-100 is a general purpose computer which is used in many applications like:
— Commercial data processing

Research

|

— Education

-~ Process control

THE READER

— Technical and maintenance personnel requiring detailed information about
the ND-100 and it's instruction repertoire.

— Programmers and operators needing detailed information about the ND-100
instruction repertoire.

PREREQUISITE KNOWLEDGE

General computer knowledge is recommended.

THE MANUAL

This manual contains two main parts:

— Sections 1 and 2 describe the main building blocks of the ND-100 and their
functions.

- Section 3 describes the ND-100 instruction repertoire in detail.
Section 4 describes the operator’s interactions with the ND-100.

ND-06.014.02

vi

RELATED MANUALS

The following manuals give more detailed information about the ND-100's
building blocks.

— ND-100 Functional Description (ND—06.015).

— ND-100 Input/Output System {(ND—06.0186).

ND-06.014.02

Section:

1.1
1.2

1.21
1.2.2

1.2.21

1.2.3

1.2.31
1.2.3.2
1.2.33
1.2.34

1.3
1.4
1.5

1.5.1
1.56.2
163
1.6

1.6.1
1.6.2

1.7
1.8

1.8.1

1.8.2
1.83

2.1

vii

TABLE OF CONTENTS

+ o+ o+

Page
INTRODUCTION TO ND-100 ... 11
General Characteristics.....................cooiiiii 1—1
ND-100 Functional Modules.........................o 1—3
General ... 1—3
ND-100 Central Processing Unit (CPU) Module......... 15
CPU Characteristicscoooooiiiiii 1—6
ND-100 Architecture.................. i 1—7
General ... 17
ND-100 Configuration Examples........................ 1-—8
Multiprocessor Systems ..., 1—9
Remote Operation............coooooo 1—10
The Interrupt System ..o 1—1
The Memory Management System (MMS)................. 1—12
The Memory SYStem.....cc.oo.coiiiiiiii 1—13
Main Memory ... 1—13
Cache Memory ... 113
Multiport Memory..........ccoo 1—13
The Input/Output System ... 1—14
Programmed Input/Output — PIO 1—14
Direct Memory Access — DMA 1—14
ND-100 Peripheral Equipment ... 115
ND-100 Software.........c.coooviii e 1186
The Operating System ... 116
Supporting Software
Distributed Data Processing.........c...coeeiiii 1—17

SYSTEM DESCRIPTION ...ooooiiiie e 21

Central Processor

ND-06.014.02

Section:

211
2.1.2
213
21.4
215
2.1.6
217
2.1.8
219

2.2

2.2.1
222
223
224

22441
2242
2243

225

2.251
2252
2253
2254

226
2.3

2.31
232
233
234
2.35

2.35.1
2352

236

2.3.6.1
23862

2.37
238

viii

Page
General ... 21
Internal Communication ... 2--2
The Address Arithmetic................... . 23
Instruction Fetch ... 23
Prefetch .o 2—3
Instruction Execution ... 2—4
Main Arithmetic. ... 24
The Register File............ 26
Status Indicators ... 28
The Interrupt System ... 2—10
General .o 210
Functional Description ... 2—12
The External Interrupt System 214
The Internal Interrupt System ... 2—-16
The IIC and IIE Registers ... 217
Internal Hardware Status Interrupts 2—18
Reset of the IIC Register 2—2
Programmming Control of the Interrupt System 221
Programmming the PID and PIE Registers 2—21
The WAIT, ION and 10F Instruction 2-22
The Previous Level Register, PVL ... 222

Vectored Interrupts and the IDENT Instructions .2—23

Initializing of the Interrupt System 2—24
The Memory Management System 225
General ... 2—25
Memory Management Architecture 2—26
The Paging System..........oi 228
The Shadow Memory ... 2—30
The Page Tables ... 2--32
Page Used and Written in Page 234
Page Table Selection ... 234
Memory Protection System ... 235
Page Protection System 2—35
Ring Protection System ... 237
Privileged Instructions ... 239
Memory Management Control and Status 240

ND-06.014.02

Section:

2.38.1
2.38.2
2383

239

24

241
242

2421
2422
2423
2424

243
244

2447
2442

245

2451
2452

246

2461
246.2
2463

2.46.3.1
246.3.2

25

251
25.2
253
254
255
256

2.56.1
256.2
25.6.3

257

Page

The PON and POF Instructions............................. 240
Paging Control Registersccoeie . 2—41
Paging Status Register 242
The SEX and REX Instructions................................. 243
ND-100 Memory System ..., 2--44
General ..., 244
ND-100 Memory Architecture 246
Local (Main) Memory ..o, 247
Memory Module Placement in ND-100 Bus 247
The Position Codeocoooo 247
The Thumbwheel Setting 2—48
Memory Error Correction ... 2—-50
Memory Control and Status....................ccceiiii . 2--52
Error Correction Control Register (ECCR)............ 2—52
Memory Status Regsiters (PEA and PES) 2—53
Multiport Memory.........ooooooii 2--b4
Big Multiport Memory (BMPM) 2--54
Multiport Memory 4 (MPMA4) 254
Cache Memory ..o 255
Cache Memory Architecture..................ccccoei. 2--55
Cache Memory Organization 2586
Cache Control and Status.................................. 258
Cache Control ..., 258
Cache Status Register................................. 259
ND-100 Input/Output System ..., 2—60
General ..o 2—60
ND-100 1/O Architecture..........ooooeo 261
ND-100 Card Crate — Physical Layout 262
The ND-100BuUS.........cooiii 2—65
ND-100 I/O System Functional Description............... 266
Programmed Input/Qutput — PIO ... 2—67
The Input/Output Instruction — 10X 2—67
Interface Channels and Registers........................ 2—-68
Control and Status Registers............................... 271
Direct Memory Access (DMA) ... 2-72

ND-06.014.02

Section:

2571
2572

257.21
257.22
257.23
25724

258

2581

2582

2583

259

2591

2592

26

261
26.2

3.1

311
3.1.2

3.1.2.1
3122
31.23
3.1.24
3.1.25
3.1.26

3.2

3.21

3.2.1.1

3212
3.21.3

Page:
General ..o 272
DMA Controller Operation................................... 2—72
Initialization ... 273
Transfer .. 2—73
Termination and Status Check.......................... 2—73
General Considerations....................oiiiinii 2—74
The 1/0 System and the Interrupt System 2—75
General ... 2—-75
Interrupt Level Usage....................o, 2--75
Device Interrupt Identification............................. 2—-76
Programming Specifications for 1/0 Devices
onthe CPU Board...........o..oi 2—76
The Real-time Clock.......cc.ooiiiiiii 277
The Current Loop Interface................................. 277
ND-100 Bus Extender (BEX)ccccoooiiviiii 2—178
General o, 2—79
Bus Extender Architecturecccooiieeiin 279
ND-100 INSTRUCTIONS . 3—1
Introduction to the Instruction Repertoire 3—1
General .o 3—1
Instruction and Data Formats ... 3-—-3
Single Bit ..o 3-3
8 Bit BYte..oooirii e 3—-4
16 Bit Word ... 3—4
32 Bit Double Word...................... 3—5
48 Bit Floating Point Word ... 3—6
32 Bit Floating Point Word.................................... 3—7
The Instruction Repertoire............ccoocoivviiiiiii 3—9
Memory Reference Instructions....................c.c....... 3—9
Addressing Structureocoiiiveiii 3-—-9
Store Instructions.............o 3—-18
Load Instructions............cooovviiiiiior e 320

ND-06.014.02

Section:

3.21.4
3.215
3216
3.21.7

3.2.2

3.2.2.1

32211
32212

3.2.22
3223

3.2.2.3.1
32232

3224
3.2.25
3226

3.2.2.61
3.2.26.2
322863

323

3.2.31

3.3

3.31
332
333
334
335

3.35.1

3.36

3.36.1
336.2
3363

3.3.7
338
339
3.3.10

Xi

Page:

Arithmetical and Logical Instructions................... 321
Sequencing Instructions ..., 324
Byte INStructions ... 326
Extended BYTE-instructions..........c.....cccooieen e 327
Register Instructions ... 3—30
Floating Point Conversion Instructions................ 3-—30

Standard 48 Bit Floating Point Conversion 3—30
Optional 32 Bit Floating Point Conversion....... 3—32

Shift INStructionS. ... 333
Register Operationsccccoiiiiics 336
ROP — Register Operation Instructions 338
Extended Register Operation Instructions 3—45

Skip INStructions ..o 347
Argument Instructions ... 3—50
Bit Operation Instructions.......ccccoooovvvinni, 353

Bit Skip Instructionsccoocoviviiiiii 3—54

Bit Set Instructions............ocociiii 354

One Bit Accumulator Instructions................... 3—55
System Control Instruction ... 3—56
Monitor Call Instructionccooon, 356
Privileged Instructions ... 357
GENETAL 357
Register Block Instructions ... 3--57
Inter-level Register Instructions...............ocnn. 3--59
Accumulator Transfer Instructions................ooee. 360
Input/Output Control Instructions.................. 3—63
Extension of the Device Register Address............ 3—64
System Control Instructions..........coie 3—-64
Interrupt Control Instructions ... 3—65
Memory Management Control Instructions.......... 368
Wait or Give Up Priority........ocoe, 370
Examine and Deposit...........coiiiii 371
Load Writeable Control Store ... 372
Customer Specified Instructions................. 373
Physical Memory Read/Write Instructions 3—74

ND-06.014.02

Section:

3.3.101
3.3.10.2

3.4

3.41

34141

34117
3.41.1.2

3412

3.4.2

3.4.21

35

3.561
352
353
354
355
356

4.1

411
412

4.2

4.21
4.2.2

4221

42211
42212
42213
42214
42215

Xii

Page.
Format of Instructions......................coii e, 374
AdAresSing ..o 375
Instructions in the «Commercial Extended»
{CE) Option e 376
Decimal Instructions..................coi 3—76
Data Formats for Decimal Instructions 376
Packed Decimal Number 376
ASCHl Coded Decimal Number........................ 3-—-78
The Decimal Instructions ...l 3-—-80
Stack Handling Instructions ... 385
Data Structure Operated upon by the
INSTrUCTIONS .o 3—85
Instructions in the CX-Option.......ocoooioiii 387
Decimal Instructions............ooooiiiiii i, 3—87
Stack Handling Instructionsc...coo 388
Move Words ... 388
Test and Set ... 3—90
Read Don‘t Use Cachei i, 3—91
SINTRAN Il Segment Change Instructions............... 392
OPERATOR'S INTERACTION ... 4-—1
Control Panel Push Buttons.............o..ocoooiiiiii 41
The Panel Lock Key ..o 4--3
Status Indicators ... 43
Microprogram for Operator’s Communication................ 44
General Considerations ..o 44
Control Functions ... 46
System Control................ 46
Master Clear ... 4—6
SO e 46
ALD Load ..o 47
General Load........................ 48
Leave MOPC ... 4--9

ND-06.014.02
Rev A

Section:

4222

42221
42222
42223
42224
42225
42226

4223

4.2.2.31
42232
42233

423

4.2.3.1

42311
4231.2
42313
4231.4
42315

42316

4232

4.2.3.2.1
42322
42323
42324
42325

4233

42331
42332
42333
42334

4.2.4
4.2.41

4242
4243

Xiti

Page:
Program Executionccooceiiiiiiiiiiiiiie 4—8
Start Program ..o 48
Continue Program ..o 4--8
Single Instruction ... 4—9
Instruction Breakpoint ... 4--9

Manual Instruction ... 4—8

Single 1/O Instruction Function 4-.9
Miscellaneous Functionsool. 410
Internal Memory Test ...l 4—10

Delete Entry ... 4—-10

Current Location Counterco...cooo.. 4—10
Monitor FURCLIONS ..o, 411
Memory Functions ... 4-—11
Physical Examine Modell 411
Virtual Examine Modecooel, 411
Memory EXamineccoooeeieiiiiiiiiiiiiiie 4—12

Memory Deposit ... 4-12

Deposit Rules ..o 4--13
Memory Dump .o 4—13
Register Functions ..., 4—14
Register Examine ... 4—14
Register Deposit ..o 415
Register Dump - RD ... 4—-15
User Register - U .., 4-—-15
Operator Panel Switch Register - OPR 4—16
Internal Register Functions 4--17
Internal Register Examine ... 4—17
Internal Register Deposit ..., 418
Internal Register Dump - IRD ... 4-—19

A Scratch Register Dump - RDE 4-—-19
Display Functions ... 4--20
Displayed Format ... 4-20
Display Memory Bus ... 421
Display Activity ... 421

ND-06.014.02
Rev. A

Section:

425
4.25.1
4252
4253
43

4.3.1
432

Appendixes:

Al
A2

E1
E2
E3

F1
F.2

Xiv

Bootstrap Loaders
Binary Format Load
Mass Storage Load

Automatic Load Descriptor

The Display

ND-100 INSTRUCTIONS

ND-100 Instruction Codes............oiiiii

ND-100 Instruction Execution Times

MODEL 33 ASR/KSR TELETYPE CODE {ASCIl) IN
BINARY FORM

STANDARD ND-100 DEVICE REGISTER ADDRESSES
AND IDENT CODES

OPERATOR’S COMMUNICATION INSTRUCTION
SURVEY

Control Functions (Does not affect DISPLAY)
Display Functions (Affects only DISPLAY)
Monitor Functions {Also shown on DISPLAY)

ND-100 TECHNICAL SPECIFICATIONS

Specifications
Physical

ND-06.014.02
Rev. A

AT

1.1

INTRODUCTION TO ND-100

GENERAL CHARACTERISTICS

ND-100 is a general purpose computer and it is used in many applications like:

— Commercial data processing.
— Research.

— Education.

— Process control.

ND-100 is completely software compatible with NORD 10/S and runs the same
operating system, SINTRAN Iil /VS.

The ND-100 Central Processing Unit (CPU) is placed on a single module. The word
length is 16 bits in paraliel.

TERMINAL

SINTRAN

Data processing
application

Figure 1.1: The Operating System SINTRAN /lI/VS allows the ND-100 to be
used in many Applications.

ND-06.014.02

ND-06.014.02

1.2

1.2.1

ND-100 FUNCTIONAL MODULES

General

A standard ND-100 printed board module size is 366.8 mm x 280 mm.

The board size, together with the use of Large Scale Integrated (LSI) circuits,
allows:

— Small physical dimensions.

— Closely related functions placed on the same module, thus reducing
external wiring to a minimum.

Communication between ND-100 functional modules is done through an advanced
high-speed bus, called ND-100 bus. The ND-100 bus is a printed back plane. The
bus is available in two versions, one for connecting 12 modules and one for con-
necting 21 modules. The two versions are mounted in different card crates and dif-
ferent cabinets.

[B

280 mm

368.8 mm

Figure 1.2: The Standard ND-100 Printed Board Module.

ND-06.014.02

(Sanpoyy ay1 uo sbnjy sie 9 pue g ‘) uonaauu0) SaNPON 00L-CN £°] 8inbi4

13NVd
310SNOD
S3IJIAZA TVYNEILXT
_ AVdSIO |
' IVNOILO 1
it lvid
: ¥
[l [v] v | v |
| Eﬁmm:“ IOVAHIINI
| olLvWoLNY) 3dAL13T3L
2INAOW - - q - — -
I1NGOW AUOWIN . ANIWIOVNVI J TomEo v
. FIINAOW AHOWIW A o A0019 43MOd
I . .. 30VAUILNI . Fo————- M__ L3yl
; NOWLy - I01A30 |
0IHH0D , 1 AHOWIW
8 303H0| ! 3HIVO
:Ocmw“ _

sng 00L-dN

ND-06.014.02

1.2.2 ND-100 Central Processing Unit (CPU) Module

The CPU module contains, in addition to the CPU itself:

— Areal-time clock.

A current loop terminal interface with switch selectable speeds, 110 - 9600
baud/bps (bits per second).

— Power fail and automatic restart.

ND-06.014.02

1.2.2.1

CPU Characteristics

The Processor

ND-100 CPU is a 16 bit parallel processor designed around the bit slice ALU {arith-
metic logic unit) element.

The processor is controlled by a microprogram. The following is implemented in
the microprogram:

— Allinstructions.

— Operator communication.
— Built-in test routines.

— Bootstrap loaders.

The microprogram is physically located in a 2k word by 64 bit Read Only Memory
(ROM). One microinstruction is fetched and executed in the internal CPU cycle
time. The cycle time is 150 ns for the fast CPU and 190 ns for the slow version.

Instruction Prefetch

A fast processor should not have to wait for instructions. In order to reduce
instruction fetch waiting time, the ND-100 CPU will normally hold two instruc-
tions, the current executing instruction and the next one. This is accomplished by
fetching the next instruction while executing the current instruction.

Special Feature

To allow dynamic microprogramming, a 256 word by 64 bit writeable control store
is available as an option.

Instruction Set and Data Format

Although a standard ND-100 word is 16 bits, the computer has a comprehensive
instruction set which includes operations on:

— Bits.

— Bytes.

— Single words.

— Double words.

— Triple words.

— Register file.

- Fixed or floating point arithmetic (32 - or 48 - bit word).

ND-06.014.02

1.2.3 ND-100 Architecture
1.2.3.1 General
Figure 1.4 shows the ND-100 bus structure. The main highway for data and
addresses in the system is the ND-100 bus. Data and address flow are shown by
the arrows.
ND-100 BUS
ND-100 T
] BUS R e A G e
CPU l conTROLY 1
o= MMS
~——— catue DEVICE MEMORY
INTERFACH MODULES
MODULE
ObuL MODULES

MMS = Memory Management System

Figure 1.4: ND-100 Bus Structure

Physically, the bus is organized as a printed backplane containing 12 or 21 “plug

in’’ positions for module connection.

All communication between ND-100 modules except CPU, MMS and CACHE

communication, is provided by this bus. That is, the ND-100 bus connects the:

— CPU to the memory system {including MMS and CACHE).
— CPU to the input/output system.

— DMA controllers to the memory system (DMA = Direct

Access). DMA controller is a special device interface module.

Memory

A bus control/driver, which is an integrated part of the CPU, controls the activity

on the bus. This common bus architecture has several advantages:

— Uniform connection for all modules makes the system flexible and easy to

expand.

— Noexternal wiring of busses gives a more reliable system.

- No overhead in connecting several busses between source and destination

makes a faster system (one crate system only).

ND-06.014.02

WRITEABLE CONTROL STORE

(WCS)

RTC = Real Time Clock
TTY = Teletype

10 4 100 byte disk units

4 Visual Dispiay Units (VDU)

Fioppy Disk

1.2.3.2 ND-100 Configuration Examples
Figure 1.5 shows a typical medium sized ND-100 single processor system.
R pmp—————g
| wes i | opTION!
1
i
ND-100 BUS
CPU MODULE‘G CONSOLE
. RTC TERMINAL
P
- -
‘ Y
£ OPERATOR
/ /PANEL !
s{” |OPTIONAL !
MMS MODULE :D!SPLAY ,/l
& — — - e | T T
CACHE
y) 1UMDIUD
10M byte p U
DISK
<& B DMA
CONTROLLER @
i L
i VDU 1
y - .
L4 .
DEVICE -
: INTERFACE > @
r—— ODULE
VDU 4
‘ G
O
[:
Y)
2 MEMORY
MODULES
1
128Kw
L

Figure 1.5: ND-100 Configuration Example

ND-06.014.02

1.2.3.3 Multiprocessor Systems

For in-house communication between two ND-100s, between a ND-100 and
NORD-10/S, or between a ND-100 and a NORD-50, a shared memory system
could be used.

The shared memory system is available through the Big Multiport Memory System
{BMPM} which allows up to four sources to access the same physical storage.

Example:
ND-100 COMPUTER ND-100 COMPUTER
T T T e e e 7 T
ND-1
| 00 BUS ; { ND-100 BUS
l i |
| [cPUNO. 1 | I CPUNO. 2
o | -
[[| SHARED MEMORY |
| [l BANK |
! ! [|_32Kw - 256Kw l 3
l MMS || MULTIPORT PORTS , MMS
; ' CACHE ‘ ‘ | CACHE >
; 1 i A 18 L c | b |
. f A | 4 i |
. Co L ?
; . ! i ! | ; |
f ; BMPM e | i : ! BMPM |
o H DR E—
| | TRANS. | i ¥ 7 | TRANS. 1' -
E“..__J | I |
| | FREE PORTS
I ANY RANGE OF i | ANy RanGe oF
| PERIPHERALS | | PERIPHERALS
| | ’
I l {
l ‘ s
I l !
l _|rocaL ! [LOCAL
BN EMORY I | MEMORY
l B4 Kw , | 64Kw
x ! :
1 I
! |

figure 1.6: Communication between two ND- 100 Computers using the
Multiprocessor System.

ND-06.014.02

1.2.3.4 Remote Operation

Remote operation in this context means one ND-100 being controlled by another
ND-100. The two machines may be in the same room or connected via telephone
lines using low or high speed modems.

The HDLC module is designed for this kind of operation, including DMA controlled
communication. Figure 1.7 shows an example.

__ MASTER ND-100 COMPUTER SLAVE ND-100 COMPUTER
| -7 re— = -
| ND-100 BUS | ! ND-100 BUS |
l 1 1 [
| | | |
I | | |
| - | I
| . cPy | ! cPU '
: !
|
! ‘ | |
! \ [1 |
: MNIS * _ SPECIAL/GENERAL |
: CACHE | HDLC = High Level Data Link Control PURPOSE |
| { { PERIPHERALS |
| | | |
| ' | |
| |
| | | |
! aOLe I ! HOLC '
[HoLE LeMODEM =7 | MODEM e—l—gd WITH - :
I | LINE | AUTOMAT- |
! | | IC LOAD {
| i | J
| ANY RANGE OF | I |
: PERIPHERALS | ' !
I t
I
| VIEMORY I Pl wemory :
| -0 256Kw | | sakw |
|
i i | |
i

Figure 1.7: Connection between two ND-100 computers using a Telephone Line.

ND-06.014.02

1.3

THE INTERRUPT SYSTEM

The ND-100 has a 16 level

priority interrupt system,
marked PL 0-15
PLO o752 I
. : AZS i
To each level is assigned a o #1 |
complete set of all central T# 2 ’
TF
registers: STS, A, D, T, L, X T i
BandP e JJ
P #2
These registers plus —pp |0 Sqatchiey.
eight scratch registers Figure 1.8: High Speed Register File.

are located in a high speed register
file close to the the CPU arithmetic both located on the CPU module.
With this architecture, switching between two program levels is reduced to

selecting the working set of control registers. The time required for this opera-
tionis only 5 s,

All program levels may be activated by software. In addition, each of the levels
10, 11, 12 and 13 may be activated by 512 vectored I/O interrupts. An IDENT
instruction is used to identify the interrupting device.

Program level 14 is used by the Internal Interrupt System, which monitors error

conditions or traps in the CPU. Program level 15 may only have one 1/0 interrupt
source.

Program level 15 is not used by standard NORD equipment or software, but is
available for users who need immediate access to the CPU.

The high speed register file is described in further detail later in this manual.

ND-06.014.02

1.4

THE MEMORY MANAGEMENT SYSTEM (MMS)

The hardware memory management module is necessary for running the
SINTRAN IlI/VS (Virtual Storage) operating system. The SINTRAN /VS
operating system includes:

— 64 K words (128 K bytes) virtual address range for each user independent of
physical memory capacity.

— Dynamic allocation/relocation of programs in memory.
- Memory protection.

The implementation of the memory management system is based on two major
subsystems:

— The Paging System.
— The Memory Protection System.

The paging system maps a 16 bit virtual address (describing a user's 64 K word
virtual storage) into a 19 bit physical address, thus extending the physical
address space to 512 K words. The paging system also has an extended mode
which handles physical memory space up to 16 M words (32 M bytes). This mode
gives a 24 bit physical address.

The implementation of paging is based on dividing physical memory into 1 K
word pages which, under operating system control, are assigned to active
programs.

Four page tables of 64 words each hold the physical page numbers assigned to
an active program. These tables are located in high speed registers, reducing pa-
ging overhead to practically zero.

The memory protection system may be divided into two subsystems:

— The Page Protect System.
— The Ring Protect System.

The page protect system allows a page to be protected from read, write or
instruction fetch accesses or any combination of these.

The ring protect system places each page and each user on one of four priority
rings.

A page on one specific ring may not be accessed by a program that is assigned
a lower priority ring number. This system is used to protect system programs
from user programs, the operating system from its subprograms and the system
kernel from the rest of the operating system.

ND-06.014.02

1.5

1.5.1

1.5.2

1.5.3

THE MEMORY SYSTEM

The memory system has a flexible and hierarchial architecture. The memory
system includes:

— 1K words (2K bytes) CACHE memory.

— Up to 16 M words main memory.
- Memory channel to the multiport memory system.

Main Memory

Main memory can have any size from:
32K words to 16 M words in steps of 32K words.

Each word in main memory is stored with a 6 bit error correction code which
makes it possible to:

- Correct and log single bit errors.
— Detect and report all double errors and most multiple errors.

Seen from the program, memory access time depends on the effect of prefetch.

Cache Memory
Cache memory is optional and physically located on the memory management
module.

The presence of cache memory will reduce average memory access time
significantly. Cache is a high speed bipolar memory.

The purpose of cache memory is to hold the most recent data and instructions to
be processed.

Multiport Memory

In order for the ND-100 to access the NORD-10/S Big multiport memory, a multi-
port memory transceiver is available.

ND-06.014.02

1.6

1.6.1

1.6.2

THEINPUT/QUTPUT SYSTEM

The ND-100 input/output system is designed to be a flexible system providing
communication between slow, character oriented devices as well as high speed,
block oriented devices.

Depending on the speed, a device could be connected to ND-100 with:

— CPU controlled, Programmed Input/Qutput (PIO).
— With Direct Memory Access (DMA).

P10 is used for slow devices and DMA for fast devices.

Programmed Input/Output — PIO

Program controlled input/output always operates via the A register, which implies
that each word of input/cutput has to be programmed via this register.

Direct Memory Access — DMA

A Direct Memory Access (DMA) channel is used to obtain high transfer rates to
and from main memory. CPU activity and DMA transfers may be performed
simultaneously, i.e., the DMA transfer is not controlled by the CPU as a PIO
transfer is.

More than one DMA device may be active at the same time, sharing the total band
width of the DMA channel. Total band width is 1.8 M words per second.

ND-06.014.02

1.7

ND-1700 PERIPHERAL EQUIPMENT

Most computer peripherals can be connected to ND-100. The range of standard
peripherals includes:

Sequential Devices

— Terminals,

— Card readers.

— Line printers/plotters.

Mass Storage Devices

— Magnetic tapes.

— Disks from 10M bytes to 288M bytes per disk. Up to 4 disks may be connected
to each input/output card.

— Floppy disks.

Computer networks

~ Asynchronous modem controllers.

— Synchronous modem controllers including selectable frame format, HDLC

or bisync.

In addition, ND-100 can be equipped with a NORD-10/S bus adapter which gives
access to all NORD-10/S peripherals.

ND-06.014.02

1.8

1.8.1

ND-100 SOFTWARE

The Operating System

The standard operating system for ND-100 computers is SINTRAN Iil, which may
be delivered in two versions:

1. SINTRAN HI/VS (Virtual Storage) and VSE (Virtual Storage Extended)

SINTRAN [11/VS and VSE are general purpose mass storage based operating
systems offering facilities for

— Real-time.
— Timesharing.
— Batch processing.

2. SINTRAN IHI/RT for machines without mass storage devices intended for
real-time applications in process control and data communication.

ND-06.014.02
Rev. A

1.8.2

1.8.3

Supporting Software

A number of programming languages and software systems complement the
capabilities of the ND-100 SINTRAN 1I/VS and VSE.

e ND standard FORTRAN following the ANSI-77 FORTRAN standards.

—_ ND COBOL system following the ANSI-74 COBOL standards.

— ND BASIC compiler, an extended version of the program generator for
business oriented applications.

— PASCAL

— SIMULA

- PLANC, a high level system programming language.
— MAC assembler with macro expansions.

— PED and QED, interactive text editors.

—— The NOTIS office automation system for text and document processing,
information retrieval and report generation.

— The SIBAS data base management system, designed in accordance with
the Codasyl data base recommendations.

— ND TPS (Transaction Processing System) offering the necessary
operational system software for development of transaction processing
programs.

— The FOCUS Screen Handling System, an interactive program to create,
modify and use screen pictures.

= ND Data Entry System, a set of software modules designed to simplify
terminal oriented data entry operations.

Other wuseful utility programs are ND SORT Package, Scientific Subroutine
Library, Commercial Subroutine Library, ND PLOT Package.

For data communication with large scale computers, there are terminal emulator
packages for: IBM 360/370, HB-6000, CDC CYBER, UNIVAC and others.

Distributed Data Processing

ND NET is a communication system for computer networks, enabling users to
communicate with other computers in a network.

ND-06.014.02
Rev. A

ND-06.014.02

2.1

2.1.1

SYSTEM DESCRIPTION

CENTRAL PROCESSOR

General

ND-100 is microprogrammed and all instruction execution is in firmware using a
2K x 64 bit, fast Read Only Memory (ROM). To allow dynamic microprogram-
ming, a 256 word by 64 bit writeable control store is optional. This gives the pos-
sibility of extending the ND-100 instruction set for special applications. The add-
ress arithmetic is also implemented in microprogram. This means that the add-
ressing structure of ND-100 can be changed by rewriting the microprogram.

ND-06.014.02

2.1.2

Internal Communication

The internal communication in the CPU is performed over the internal data bus
(IDB). A bus is a highway for information, where only one word of information
may travel at a time. The microprogram enables the information for the IDB from
a certain source, and gives enable signals to the destination parts in the CPU
where the information is needed.

Figure 2.1 shows how the IDB communicates with the central parts in the CPU.
The memory management system and cache are connected directly to IDB and
ND-100 bus for faster access. The bus control is implemented on the CPU
module and controls the activity on the ND-100 bus.

4 TO/FROM
MULTIPORT

1
DISPLAY <] MEMORY CACHE | LOCAL MULTIPORTES
PANEL H ma : CACH MEM. TRAN (]
' NAGEMENY, : MEMORY CEIVERS £
) |

o .

¢

INTERNAL DATA BUS {108) > CONTROLEK ND-100 BUS >
N7

TERMINAL MAIN REGISTER INTERRUPT i
No. 1 ARIT. FILE SYSTEM INPUT/QUTP

TO/FROM DEVICES

SYSTEM
8
OPERATOR TIMING &
PANEL CONTROL

Figure 2.1: ND-100 Bus Structure

ND-06.014.02

2.1.3

2.1.5

The Address Arithmetic

The address arithmetic in the ALU (arithmetic logic unit) forms a 16 bit address.
The control of the address arithmetic is implemented in a microprogram. The 16
bit address goes to the memory management system. If the memory manage-

ment module is not present, the address goes directly to the memory system via
the ND-100 bus.

Instruction Fetch

The machine instructions to be executed reside in memory. The program counter,
PC, is enabled for the ND-100 and a request is sent to memory. The instruction
from memory is loaded into the prefetch register.

Prefetch

ND-100 uses prefetch. That is, the next instruction is fetched simultaneously with
the execution of the current one. Consequently, an instruction fetch consists of
copying the prefetch register to the instruction register.

The use of prefetch requires a strictly sequential program. In case of branch
instructions or program change (interrupt), the prefetched instruction is skipped
and a new instruction found.

Prefetch will not generate page fault if the last instruction before a page limit is
a branch instruction.

Prefetch does not give any limitations in programming. For example, STA > +1is
legal but adds 1 . to the execution time compared to STA < disp£1>.

ND-06.014.02

2.1.6

24

Instruction Execution

The instruction to be executed will be loaded into the instruction register {IR) and
the instruction map. Refer to Figure 2.2 The lower vector bits of the instruction
are taken to IR and the upper operation code bits are taken care of by the map.
This is a read only memory (ROM), where each different instruction gives a fixed
program address to the microprogram sequencer. Since one machine instruction
is executed by a number of instructions residing in microprogram control store,
an instruction dependent address should be generated and this is the task of the
microprogram sequencer.

This address is sent to the microprogram control store, which gives the logic
control bits of the first microinstruction. These signals, together with the timing
module, control the operation of the CPU. The operation specified by one micro-
instruction normally takes 150/190 ns (with cache/without cache). This time is re-
ferred to as a micro cycle. When a micro cycle is completed, the next microin-
struction has already been read out from the microprogram control store.

Main Arithmetic

Refer also to Figure 2.2

From the A and B selector the arithmetic logic unit (ALU) receives the informa-
tion about which A and B operand to select in the arithmetic operation. The ALU
performs all the arithmetical and logical operations as specified in the instruction
set. The bit slice, ALU, is completely controlled from the microprogram.

The ALU with its current registers has a two-way communication over IDB with
the register file for loading and storing of the current register set.

ND-06.014.02

MICROPROGRAM
SEQUENCER

ROM 2K 64 BIT
MICRO PROGRAM CONTROL STORE

ROM 2K x 12 BIT

1y

LOGIC
CONTROL

BRANCH

PIL
— 1
L.__:..__
IGENERAL
FURPOSE
REGISTER
R

H

A& BSELECT

Mz =mes=—"

AOPERAND

SELECT

8 OPERAND,

REGISTER FILE

SELECT™

LOCAL TIMING
o —

P u——
[S—

ALU & ADDR.
ARITHMETIC

s

Figure 2.2: Instruction Execution

ND-06.014.02

TIMING
CONTROL

f

ND-100 BUS

0BR

2.1.8

26

The Register File

Refer to Figure 2.3
There are 16 register sets in the ND-100, one for each of the 16 program levels.
Each of the register sets consists of 8 general programmable registers and 8
scratch registers for microprogram use only. There is a total of 256 registers; these
are referred to as the register file.
The 8 general registers are:
Status register (STS)
This register holds the indicators described in the status indicators section.
A register
This is the main register for arithmetic and logical operations directly with
operands in memory. This register is also used for input/output communica-
tion.
D register
This register is an extension of the A register in double precision or floating
point operations. It may be connected to the A register during double length
shifts.
T register
Temporary register. In floating point instructions it is used to hold the
exponent part. It is also used with the IOXT instruction to hold the device
address.

L register

Link register. The return address after a subroutine jump is contained in this
register.

X register

Index register. In connection with indirect addressing it causes post
indexing.

B register

Base register or second index register. In connection with indirect
addressing, it causes preindexing.

P register

Program counter, address of current instruction. This register is controlled
automatically in the normal sequencing or branching mode. But it is also
fully program controlled and its contents may be transferred to or from other
registers.

ND-06.014.02

PL =Program Level

Only access via
microprogram

15

2-7

15

[PL15

[PL14

[pPL13

[PL12

[PL11

PL1O

[PLY

[PL8

{PL7

[PL6

l

PLS

[PLa

IPL3

{PL2

| PL1

PLO

Scratch 8-15

STS =0

i

5

Hi K-

AL

Tlmix|r{Hjo] >
Nl wi] B o} -

+
STS 815

8

|PL 15

|PL14

[PL13

[PLT2

PL11

{PL10O

[PL9

[PLE

|PL7

| PLB

IPL5

[PLa

{PL3

[pPL2

[PTT

PLO

STS0-7

Figure 2.3: Register File

REGISTER FILE

0 STATUS

Current P

15 0

—-——— - - -

The current register set is held in the ALU and under level change this register set
is stored in the register file. The register set for the new level is loaded to the ALU.
Any registers or levels can be read or written by specifying register and level
information.

ND-06.014.02

2.1.9

Status Indicators

Eight indicators are accessible by programs. These 8 indicators are:

M Multishift link indicator. This indicator is used as temporary storage for
discarded bits in shift instructions in order to ease the shifting of
multiple precision words.

C Carry indicator. The carry indicator is dynamic.

) Static overflow indicator. This indicator remains set after an overflow
condition until it is reset by program.

Q Dynamic overflow indicator.
z Error indicator. This indicator is static and remains set until it is reset
by program. The Z indicator may be internally connected to an

interrupt level such that an error message routine may be triggered.

K One bit accumulator. This indicator is used by the BOP (bit opera-
tions), instructions operating on one bit data.

TG Rounding indicator for floating point operations.

PTM Page table modus. Enables use of the alternate page table.

These 8 indicators are fully program controlled either by means of the BOP
instruction or by the TRA or TRR instructions where all indicators may be trans-
ferred to and from the A register. Refer to Figure 2.4,

ND-06.014.02

15 o}
] TTTTT
' sTs !
! i
e -l
1
1
11
I
11
__________ i
| e L T, |
I‘
|
by
by
H
15 14 13 12 11 10v9 8 7 6 3 4 3 2 1 0
' i {
- - ~ o P i L M c [ol Ne! z < |TG jeTM
z g X Q
9 % 7)7 Z
i 1 |
g
Interrupt System [FRVOREUEEE— |

ON indicator

Memory Management ON
indicator

Current Program Levet
Indicator

Muttishift Link Indicator

Carry Indicator

Extended N100
Address indicator
Mode

Indicator

Static Overflow Indicator

Dynamic Qverfiow Indicator

Error indicator

1 Bit Accumuiator

Rounding FF for Floating Point

Page table modus. Turn ON/OFF the P relative PIT selector {reter MMS)

Operations

Figure 2.4. Status Register Assignment

The upper part (8 bits) is common for all program levels. This part gives us the
following information:

IONI Interrupt system ON indicator.
PONI Memory management ON indicator.
SEXI Extended indicator to show that MMS is in 24 bits extended address-

ing mode instead of the usual 19 bits addressing mode.

N100 N100 indicator to tell the operating system that this is a ND-100
machine.
PIL Current program level indicator.

ND-06.014.02

2.2

2.2.1

2-10

THE INTERRUPT SYSTEM

General

The ND-100 interrupt system is designed to simplify programming and to allow
high efficiency multiprogramming.

This is achieved by use of a complete set of registers and status indicators for each
program level.

There are 16 program levels in ND-100 and therefore 16 sets of registers and status
indicators. Each set consists of A, D, T, L, X and B registers, program counter and
each of the status indicators O, Q, Z, C, M, K, PTM and TG. There are also 9 re-
gisters that are only accessible from microprogram.

The context switching from one program level to another is completely automatic
and requires only 5.0 us; including the saving and unsaving of all registers and

indicators.

The arrangement of the 16 program levels is as follows.

15 Extremely fast user interrupts
14 Internal mterrupts
13 Real-time clock
12 Input devices
11 Mass storage devices
10 Output devices
g hovsmamvan,
81 For program which
7 ___Direct tasks do not require
6 operating system help
it —
4 1/0 Monitor calls
3 SINTRAN (! Monitor
2 Direct Task
1 Real-time and Background
o idie Loop

Figure 2.5: Level Assignments

ND-06.014.02

The priority increases, program level 15 having the highest priority, program level
0, the lowest.

All program levels may be activated by software. In addition, the levels 10, 11, 12
and 13 may be activated by 512 external 1/0 interrupts. An IDENT instruction is
used to identify the interrupting device. Program level 14 is used by the internal
interrupt system, which monitors error conditions or traps in the CPU. Program
level 15 may only have one 1/0 interrupt source.

Program level 15 is not used by standard ND equipment or software, but is availa-
ble for users who need an immediate access to the CPU.

A change from a lower to a higher program level is caused by an interrupt request.
A change from a higher program level to a lower takes place when the program on
the higher program level gives up its priority.

For both internal hardware status interrupts and external interrupts there is an

automatic priority identification mechanism which provides fast interrupt source
detection.

ND-06.014.02

2.2.2

Functional Description

Figure 2.6 shows the functional operation for the complete priority interrupt
system.

There is one bit for each level in a detect register with 10 sources to cause a
program level 14 interrupt, i.e., an internal interrupt. The detect register for
program levels 0-9 are implemented in firmware which means that the micro-
program takes care of the detection of interrupts on these levels.

The mask register is used to enable/disable the different program levels and
conditions which may cause an internal interrupt. Program levels 0-9 are aiso taken
care of by the microprogram.

When an interrupt comes, these two registers are ANDed together via an AND
gate and the priority encoder gives a level value corresponding to the highest bit
setin both the detect and mask registers.

This level indicator is compared with the current level to check if the new level is
higher than the current one. If this is true, and the interrupt system is on, an
interrupt will be generated.

The implementation of the ND-100 interrupt system is based on two registers: the

detect register and the mask register. In both the detect and mask registers each
interrupt level is assigned a bit position.

ND-06.014.02

Internal Interrupts

PL15

PL14

Datect Register

I
A"t
| T

| S | \ Program teveis

| R . |
| R
]
-)
- |
| S ——

Mask Registar

e e et)
[e el
[o e
————— i
——

| MO

- -
PPN N

PL14

PLO-9

are imple
mented in
firmware

oo

AND

o Vector
Priority

Encoder Qutput

PLO-9
Program levels
are imple-
maented in
firmware

PRIORITY INTERRUPT SYSTEM

Figure 2.6: Priority Interrupt System

ND-06.014.02

Current Leval

indicator

Saved Current
t.evel (Previous

Level)

lnterrupt on

interrupt

Comparataor

Scratch Register

2.2.3

214

The External Interrupt System

Figure 2.7 gives a block diagram presentation of the external interrupt system.
The program level to run is controlled from the two 16 bit registers:

PIE Priority Interrupt Enable
PID Priority Interrupt Detect

Each bit in the two registers is associated with the corresponding program level.
The PIE register is controlled by program only. The PID register is controlled both
by program and hardware interrupts. At any time, the highest program level which
has its corresponding bits set in both PIE and PID is running.

The actual mechanism for this is as follows.

The current program level is PIL {0 - 15). The 4 bit PIL register controls which
register set {context block) to use.

The PIL number is constantly compared to a 4 bit code, PK. PK always con-
tains the number of the highest program level which has its corresponding
bits set in both PIE and PID. Whenever PK is unlike PIL, an automatic
change of context block will take place through a short microprogram sequ-
ence.

The CPU will not ask for the next machine instruction but enter a microprogram
that will change the program level to the PK. However, before the level change
takes place, the program counter will be saved. The level change can be illustrated
as follows:

1. The interrupt system is temporarily blocked to prevent false interrupts.

2. The program counter (CP) is copied to the saved program counter (P) on the
current level.

3. The PIL {program level) register is copied into the PVL (previous program
level) register.

4. The PK (new level priority code) register is copied into the PIL {(program
level) register. {The CPU has, at this moment, changed level.)

5. The P (saved program counter) on the new level is copied to the CP (current
program counter).

6. A fetch is issued, i.e., the first machine instruction on the new level is asked
for.

This complete sequence requires only 5.0 us from the completion of the instruction
currently working when the interrupt took place, until the first instruction is started
on the new level with its new set of registers and status.

External interrupts may set PID bits 15, 13, 12, 11, 10, and internal hardware status
may set PID bit 14, because all internal interrupts are connected to this level.

ND-08.014.02

2--15

P
v
it st P 1811}
- L >
P
ing 4=—=pf ¢ @:_
E
it Priority
N e o Encoder - {> Level Conirol
0
SN
Hardware S .
Interrupts ™ e
o8 :"_:
e POINLET tO
) Microprogram

Fetch: Instruction fetch tor change ol
iDB: Internal Data Bus program level
1ON: Interrupt System Active
PID: Priority Interrupt Detect IoN —
PIE: Priority Interrupt Enable
PK: Priority Code
PiL: Program Level
PVL: Previous Program Level

Figure 2.7: External Interrup System

ND-06.014.02

2-16

2.2.4 The Internal Interrupt System

The functional operation of the internal interrupt system is basically the same as

the external one. Refer to Figure 2.8.

Set by TRR —o 1E
HIE instruction
~—1 AND PRIORITY
-—-———w ENCODER -@——— le
s
1o E
Set by hardwae 8
} 8itNo, 14
Reset by TRA IIC PID
10 9 8 7 6 5 4 3 2 1 0
pow|mor Pty 10X] PI z 1 PF] MPv] MC | NA

*Interrupts any micro-instruction.

IHC: Internal Interrupt Code

11D Internal Interrupt Detect

HE: Internal Interrupt Enable

TRR HE: Transfers the Content of the A-Register Into the IIE Register
TRA IIC: Transfers the Content of the 11C Register into the A-Register.

Figure 2.8: Internal Interrupt System, Block Diagram

ND-06.014.02

-—p-flead by TRA |

IHE FORMAT

2.2.4.1

15

2--17
The IIC and IIE Registers

As previously mentioned, the internal interrupt system is connected to level 14.
Any internal interrupt condition will force the CPU to level 14. On this level the
operating system will read the IC — Internal Interrupt Code register. This register
will hold a code between 0 - 12, which will identify the internal source for the inter-
rupt.

Internal hardware status interrupts are individually enabled by an 11 bit register
called HE, Internal Interrupt Enable. IE is set by the TRR HIE instruction. See Figure
2.8.

The internal hardware status interrupts are assigned to the IIE register in the
following way:

10 9 8 7 8 5 4 3 2 1

POW [MOR |PTY (10X | PI z i} PF MPV | MC

NA

The internal conditions which may cause internal interrupts and their associated
vectors, the internal interrupt codes, are listed below:

Bit No.: I1C Code: Cause
n/a 0 0 Not assigned
MC 1 1 Monitor call
PV 2 2 Protect Violation.

Page number is found in the Paging
Status Register.

PF 3 3 Page fault.
Page not in memory.

il 4 4 lflegal instruction.
Not implemented instruction.

Z 5 5 Error indicator.
The Z indicator is set.

Pl 6 6 Privileged instruction

lOX 7 7 10X error.
No answer from external device.

PTY 8 10 Memory parity error

MOR 9 11 Memory out of range
Addressing non-existent memory.

POW 10 12 Power fail interrupt

11-15 Not assigned
ND-06.014.02

2242

Internal Hardware Status Interrupts

Monitor Call Interrupt

One of the internal interrupt sources is the monitor call instruction named MON.
The monitor call instruction differs from the other internal interrupt sources in
that the monitor call code or number is found in the T register on level 14,

The MON instruction may have up to 377s different codes (8 lower bits in the
MON instruction} and the T register will be equal to this code with sign
extention {bit 7 is sign).

Information to operating systems designers regarding the
ND-100 MON-instruction

ff a MON-instruction is executed in the last word of a page and the prefetching
of the first instruction in the next page gives a page-fault interrupt, then the
page-fault interrupt will be reported when a TRA lIC-instruction is executed.

The handling of this page-fault interrupt will clear all traces of the executed
MON-instruction. The T-register on level 14 will be loaded with the monitor-call
number before the page-fault interrupt occured, but an internal interrupt with
HC-code equal to 1 will never occur.

To avoid this behaviour, make the interrupt handler on level 14 check if a
monitor-call number has been written into the T-register on level 14 before level
14 was entered. If the T-register has been changed in this way, the monitor-call
handler should be entered regardless of the contents of the IIC. The page fault
will occur later, when execution of the instruction after the MON is attempted.

Programming example:

% Last part of a level 14 handler

LDA (1000 % Any number not possible
COPY SA DT % as monitor-call number
WAIT % Give up priority

% Reactivated by internal interrupt

SKP iF DA EQL ST
JMP MONCT % T is changed
TRA IIC

ND-06.014.02
Rev. A

% Check other internal interrupts

MONCT, TRA liC % Necessary to unlock I1C
TRA PGS % Necessary to unlock PGS

% Ordinary monitor-call handler

Protect Violation Interrupt
A protect violation has occurred. Two types of violations are possible:
— Memory protect violation.

This means that an illegal reference (read, write, fetch or indirect) has been
attempted.

— Ring violation.

This means that a program attempted to access an area with higher ring
status.

Details regarding this interrupt are found in the paging status register.

Page Fault Interrupt

The program attempted to reference a page that is presently not in memory.
Information regarding page number, etc. is found in the Paging Status register.

lllegal Instruction Interrupt

Attempted execution of an instruction that is not implemented causes this
interrupt.

Error Indicator Interrupt

The Z indicator in the STS register has been set. This may be caused by several
instructions:

— FDV with 0.0 (FDV = divide floating accumulator).

— EXR of an EXR instruction (EXR = execute register).

— DNZ overflow (DNZ = denormalize).

— RDIV overflow (RDIV = integer inter - register divide).

— Programmed setting of Z (BSET = bit set, MST = masked set or TRR =
transfer to register).

ND-06.014.02
Rev. A

2-20

The instructions are described in further detail in Section 3.

Note: Leve! 14 must always reset the Z indicator on the offending level, other-
wise, a new interrupt will occur when the level is reentered.
Privileged Instruction Interrupt

Attempted execution of a privileged instruction causes this interrupt. The
privileged instructions are listed below.

ION, IOF, PON, POF, PION, PIOF, WAIT, 10X, I0XT, IDENT, TRA, TRR, MCL,
MST, LRB, SRB, IRR, IRW, SEX, REX, DEPO, EXAM, LWCS, OPCOM.

These instructions are described in further detail in Section 3.3.

10X Error Interrupt

The addressed input/output device does not return a BDRY {Bus Data Ready)

signal. This may be due to a malfunctioning or missing device or no device
answering to an IDENT instruction.

Memory Parity Error Interrupt

A memory parity error has occurred. The least significant 16 bits of the failing
address can be read from the PEA register using the TRA PEA instruction. PEA
= Parity Error Address.

Further information may be read from the PES register (Parity Error Status).

Memory Out of Range Interrupt

This interrupt occurs when the program addresses nonexisting memory. The least
significant 16 bits of the referenced address can be read from the PEA register.

Further information may be read from the PES register.

Power Fail Interrupt
This interrupt is triggered by the power sense unit. It is possible for this interrupt

to occur simultaneously with some other internal interrupt. In this case, the po-
wer fail interrupt has priority.

ND-06.014.02

2243

225

2.2.5.1

2-21

Reset of the IIC Register

In order to optimize the processing of internal hardware status interrupts, the

instruction TRA IIC will return the contents of IIC to the A register, bits 0-3, with
bits 4 - 15 zero.

The instruction TRA 11C wili automatically reset 1IC.

Note that if the interrupt is caused by the error indicator Z, the Z indicator on
that program level must be cleared by program control from program level 14.
(Otherwise, another interrupt will occur.)

Programming Control of the Interrupt System

Programming the PID and PIE Registers

PID = Priority Interrupt Detect.

PIE = Priority Interrupt Enable.

The programming control of the interrupt system is as follows:

PID and PIE may be read to the A register with the instructions
TRA PID and TRA PIE.

Three instructions are available for the setting of these registers.

1. TRR PID and TRR PIE

The TRR instruction will copy the A register into the specified register.

2. MST PID and MST PIE

The MST, masked set, instruction will set the bits in the specified register to
one where the corresponding bits in the A register are ones. (The A register
is used as a mask for selection of which bit to set.)

3. MCL PID and MCL PIE

The MCL, masked clear, instruction will reset to zero the bits in the specified
register where the corresponding bits in the A register are ones.

All program levels may be activated by program, by setting the appropriate
bits in PIE and PID.

in addition to TRA, TRR, MCL and MST, the PID register is also controlled in the
following ways:

ND-06.014.02

2.25.2

2.25.3

2-22

The WAIT, ION and |OF Instruction

The resetting of PID bits is also controlled by the WAIT instruction, which will
reset PID on the current program level. {The WAIT instruction is also called "' Give
up Priority”.)

For example, a program on program level 14, which issues a WAIT instruction, will
cause PID bit 14 to be zeroed. This will cause a new program level to be entered
and PK becomes different from PIL (PIL = 14, PK < 14).

The interrupt system is also controlled by the two instructions:

ION — Turn on interrupt system
IOF — Turn off interrupt system

When power is turned on, the power up sequence will reset IIE, PIE and PIL, and
the register set on program level zero will be used.

The ION instruction will continue operation at the highest program level at the time
ION is executed. If a condition for change of program levels exists, the ION in-
struction will be the last instruction executed at the old program level and the P
register on the old program level will point to the instruction after ION.

The 10F instruction will turn off the mechanisms for changing of program level,
and PIL will remain unchanged.

IOF and ION may also be used to disable the interrupt system for short periods, for
example, in order to prevent software timing problems.

The Previous Level Register, PVL

In some cases after being forced to level 14,, it may be useful to know which level
was the last one.

This might be the case when a MPV (Memory Protect Violation) has occurred. In
this case one wishes to find the value of the SP (Saved Program) counter on the

offending level and/or the offending instruction.

The PVL register holds the previous level information, and this could be read by
the TRA PVL instruction.

ND-06.014.02

2254

Vectored Interrupts and the IDENT Instructions

In ND-100 there may be up to 2048 vectored interrupts. Usually, each physical in-
put/output unit will have its own unique interrupt response code and priority.

These vectored interrupts must be connected to the four program levels 13, 12, 11
and 10.

The standard way of using these levels is as follows:

Level 13: Real-time clock

Level 12: Input devices

Level 11: Mass storage devices
Level 10: Output devices

The vectored interrupts are connected to the corresponding bits in the PID
register.

When a vectored interrupt occurs, an IDENT instruction is used to identify the in-
terrupt, since several devices may have interrupts on the same level. The
instruction has the following format:

IDENT <program level>

When an IDENT instruction is executed, a hardware search on the indicated level
is performed. The first interrupting device found will respond with its identification
code and reset its interrupt condition.

The CPU will use the identification code (vector) as a branch address to the driver
for the interrupting device.

If more than one device on the same level generates interrupts, the device inter-
face located closest to the CPU has highest priority. If there is more than one
device connected to the module, an internal priority on the module will determine
which is to be treated first.

Programming Example:

LEV13, WAIT % Give up priority
SAA 0 % Setcontentof A-reg. to 0
IDENT PL13 % ldentify device on level 13
RADD SA DP % Computed GO TO
JMP ERR13 % Code 0, error
JMP DRIV1 % Code1
JMP DRIV2 % Code 2
JMP DRIVN % Code N

ND-06.014.02

2.2.6

Initializing of the interrupt System

Before use of the interrupt system it must be initialized. After switching power on,

HE, P

E and PIL will be zero. The registers on level zero will be in use. The interrupt

inttializaton mustinclude the following:

1. Enabling of the desired program levels by proper mask setting in PIE (Priority
Interrupt Enable).

2. Enabling of the desired internal interrupt sources by proper mask setting in
HE — Internal Interrupt Enable register.

3. The P, saved program counters, on the levels to be used must be initialized,
re., they must all point to the program to be executed on the different I-
evels.

4. If the Z {error) indicator is enabled for interrupt (HE bit number 5), care
should be taken that this indicator is cleared in the status register (bit num-
ber 3) for all levels being initialized.

5. The HIC {Internal Interrupt Code) register, the PES (Parity Error Status)
register and the PEA (Parity Error Address) register might be blocked after
power up.

By performing a TRA instruction for lIC and PES, all three registers will be
unblocked and ready for use.

6. The interrupt systemis turned ON.

Example:

LDA (76032 % Enable for interrupts on level

TRR PiE % 1,3,4,10,11,12,13, and 14

LDA (3736 % Enable for all internal

TRR HE % Interrupt sources except for the Z indicator

LDA (P1 % The saved program counters

IRW 10 DP % on the enabled levels

LDA (P3 % start value

IRW 30 DP %

etc. foreach P

in use

TRA HC % Unlock HC

TRA PEA % Unlock PEA and PES

ION % Turn oninterrupt system

JMP START % Go to main program

ND-06.014.02

2.3

2.3.1

2-25

THE MEMORY MANAGEMENT SYSTEM

General

The Memory Management System is designed to extend the ND-100 physical
address space, and to provide a sophisticated memory and privileged instruction
protection system. This system may be used for several purposes, such as:

~ Dynamic memory allocation (paging).

— Program relocation.

— Expanding the maximum physical address space size to 16 M words.
— Memory protection of each individual page.

— Privileged instructions and ring structured program protection.

The Memory Management System includes two major subsystems:

— The paging system.
— The memory protection system.

The Paging System can work in two modes:

— Normal mode. A 16 bit virtual address is mapped into a 19 bit physical
address. This extends the physical address space from 64 K to 512 K
words. Four page tables of 64 entries each are used. This mode is compati-
ble with the NORD-10/S.

— Extended mode. A 16 bit virtual address is mapped into a 24 bit physical
address. This extends the physical address space from 64 K to 16 M words.
Four page tables of 64 entries each are used.

For each mode the four page tables are located in high speed registers, directly
connected to the internal data bus (IDB). This reduces paging overhead to
practically zero. The page size is 1024 words.

The Memory Protection System may be divided into two subsystems:

— The page protection system.
— The ring protection system.

The page protection system protects each page from read, write or instruction
fetch accesses or any combination of these.

The ring protection system places each page on one of four priority rings. A pa-
ge of memory that is placed on one specific ring may not be accessed by a pro-
gram that resides in a page on a ring of lower priority. This system is used to
protect system programs from user programs, the operating system from its sub-
systems, and the system kernel from the operating system.

ND-06.014.02

226

2.3.2 Memory Management Architecture

Memory Management consists of:

— 4 page tables.

— 16 paging control registers.
— A paging status register.

— A permit protection system.
— Aring protection system.

The page size is fixed to 1K words, thus each page table will map the full 64K
virtual address space of the ND-100.

ND-06.014.02

18 PCR's

’

& Protect

Permit
Protection
Systam

Addreass
Translation

PGS

D

(Belongs to interrupt section)

Ho: Internal Interrupt Detect
PCR: Paging Control Register
PGS: Paging Status Register
PT: Page Table

Figure 2.9: Memory Mangement Building Blocks

ND-06.014.02
Rev. A

2.3.3

The Paging System

Number in parenthesis is valid for extended mode.

The Paging System is an automatic address interpretation system which maps a
16 bit virtual address, as seen from the program, into a 19 {24) bit physical add-
ress. This implies that the maximum memory size may be extended from 64K
words to 512K {16 M) words. The system also allows programs to be written for
64K virtual memory with only parts of the program residing in physical memory
at a given time, the rest being kept on mass storage.

The Paging System divides the memory into memory blocks or pages of 1024
words or 1K words. The pointers to these pages are found in the page tables. In
ND-100, there are four page tables, each consisting of 64 entries, and each co-
vering a full 64K address space. The tables are kept in high speed registers with
a 32 bit word length.

ND-100 uses 1K words per page. This implies that in order to map 64K words of
virtual address space, 64 Page Table (PT) entries are required.

To address any location within a 1K address space, 10 address bits are required.
These bits are the displacement within a page (DIP), and are transferred directly
to the ND-100 bus. The most significant part of the virtual address (bits 10 - 15)
are used as an address selecting one of 64 entries in PT. This address is referred
to as Virtual Page Number (VPN).

The program level (PL) determines which paging control register (PCR) to use.
The selected PCR determines which page index table to select, and VPN
addresses an entry in the selected PT.

When a memory request is performed, the content of the 32 bits PT is locked up.
7 bits are used for protection, and are discussed later. 9 (14) bits are called Phy-
sical Page Number (PPN), and are transferred to the ND-100 bus. PPN can have
values from 0 - 512 (16384). This makes it possible to access 512 (16384) pages.
Since one page = 1024 words, it is possible to access

512 (16 384) x 1024 512 K (16 M) words.

Prior to program start, the operating system will set the PPN to the proper value
in the PT. The address translation is therefore under control of the operating
system.

ND-06.014.02

15 PCR's
. P
- - - -
1 -
-
PT | APT | R .
- re
\ / PT’s PT Sefoct
* h Control
1 PTs
©) e e —

PT Selection

PCR:
DIP:
VPN:

APT:

PROTECT | MAPPING
———’ SRR E AR

0

DiP

l Virtual address

|

(14}

Displacement within selected PT

197}

Paging Control Register
Displacement within page
Virtual page number

Page table

Alternative page table
Program level

Physical page number

Ring

Permit flags

Page table mode (status bit 0)
Page table select flag
Addressing mode bits from the
Memory Reference Instruction

g

{23} 18 u 09

i
l PPN :

DIP

0
IPnysical address

v

ND-100 BUS

0<DIP<1023
0<VPN <63
0<PT<3

0<APT<3
0<PIL<15
0<PPN<511 (16 383)

Number in parenthesis is valid for extended mode.

Figure 2.10: Virtual to Physical Address Mapping

ND-06.014.02
Rev. A

234

The Shadow Memory

The shadow memory is a number of reserved memory addresses. These memory
addresses are used to access the page tables in the same way as the rest of the
memory.

These reserved addresses are called shadow memory because it lies in the
shadow of the main memory and is inaccessible for users on rings 0, 1 and 2. For
ring 3 users or when paging is off however, main memory lies in the shadow and
is inaccessible. Figure 2.11 shows the shadow memory layout.

The topmost locations in the 64 K virtual address space are reserved for page
table access. in normal mode 1 x 64 x 4 = 256 locations are needed and in
extended mode 2 x 64 x 4 = 512 locations are needed. The following octal
addresses are hence reserved:

Normal Mode: Extended Mode:
Page table 0 177400 - 177477 177000 - 177177
Page table 1 177500 - 177577 177200 - 177377
Page table 2 177600 - 177677 177400 - 177577
Page table 3 177000 - 177777 177600 - 177777
15 0
ADDRESSIN 177000 [FReTioT
SHADOW GO | yap } JPMO
MEMORY
!
} & pTO PAGE TABLE 0
i
177176 | PROTECT ;
177 | Map } VPNES)

2C0 PROTE
201 MAP

s}
-1
p—
>

VPNQ
VPN = Virtual Page Number

o
3

177378 PROTECT
VPNB3 15

377 | MaP 0
400 | PROTECT . vy T T PROT ~MAP VPND
401 | MaP roveNe I ! T L
! - : |
! ‘ L PT2 ‘ (
177 1 o PROT MAP _ uPNG] /
0| ! PROT + 84 UPAQ I
| ! | \
S— |
y7ens | PAOTEC T
177576 ITECT . :
DA VP } YPNE3
5 / PROT +MAP yPNB] °
600 e N D PROT. F E
50 f;r;tc. ? vonn T +MAP VPND
h i
]
|]
7 ! [P73
5 N I S __1PROT +map VPNED
700 ; [PROT. +map veNO
! 1
178 PAOTECT & VPNG3 :
1777717 AP /
L S N PROT 2 Map YPNS]
EXTENDED MODE NORMAL MODE

Figure 2.11. Shadow Memory Layout.

ND-06.014.02

.
4
)

T

T2

PT3

2-31

In normal mode only 16 of each page table entry’s 32 bits are used. Therefore
only one shadow memory word is read/written to fill one page table entry.

In extended mode 21 of the 32 page table entry’'s bits are used. This means that .
two shadow memory words are read/written to fill one page table entry.

Shaciow access satecior

POF
PON MMS All
£e ones
MMS ON Q : datacs
ring 3 | l
[A v
[ano g [AND g

98786°

12 a T A 5

Virtuai
Address

PAGE TABLE NQ,

VIRTUAL PAGE NQ.

A PIT’s adciress

} PAGE TABLE

i]
! ‘ |
! i
i WRITE
intemal ? roTTT T
MMS PAGE
Jus ! TABLESp ~=== == =——===
i
1
Hoo b e e am s o o o e
i st
| |
: A -
| g
i ¢
e
i
v READ
TO/FROM CPU

Figure 2.12: Shadow Memory Addressing.

ND-06.014.02

ADDRESS

*Number in parentheses is valid for extended mode.

2.35 The Page Tables

In normal mode the map part requires 9 bits and the protect part requires 7 bits.
Together the map and protect parts require 16 bits, which is the PT's 16 bit word
length. The 9 PPN bits (Physical Page Number) in the map entry shown in figure
2.13 are used to select one of 512 pages in the memory.

Page Table 3
<4

i
t
PPN = Physical Page Number

Shadow Memory VIRTUAL . latt
PAGE NO. PROTECT ENTRY MAP ENTRY
15 15 98 0 15 13 98 0
177700 RQTECT | PPN 0 [Protect | naA_] {NA{ ooooo [PN]
I 1
. | !
i N ‘
| |)
]
! i 9 PPN bits used 1o select :
! ; { between 512 pages in the
; i i memory {
! ! !
]
13

|

177777 PROTECTI PPN 77

Figure 2.13: Reading Page Table 3 Entries as seen from Program in Extended
Mode

In extended mode the map part requires 14 bits and the protect part requires 7
bits. Together the map and protect parts make 21 bits, which extend the PT's
word length. Therefore we have to use two shadow memory locations for hou-
sing the map and protect parts. The 14 PPN bits in the map entry shown in figure
2.14 are used to select one of 16 384 pages in the memory.

B Page Table 3
Shadow Memory VIRTUAL % o
15 PAGE NO, PROTECT ENTRY MAP ENTRY
177600 PROTECT 0 15 9 8 0 15 13 0
< LeroT. i nA. 1 [NA] pen]
177601 PPN 0 h :
. i
1 i ! X
] i 1 1
1 ' ! 1 1
1 1 14 PPN bits used to select
! I ! 1 between 16384 pagas in the
i !
} : } : memory. :
§
H
! : ! : PPN = Physical Page Number
. i I {
177778 PROTECT 77 l l [

177777 PPN S \77/4

Figure 2.14: Reading Page Table 3 Entries as seen from Program in Extended Mode

ND-06.014.02

The

2-33

page table format:

In normal mode each entry has the following format:

15 14

13 12 11 10 8 8

WPM [RPM

FPM |WIP [PGU [RINGRING

PHYSICAL PAGE NUMBER (PPN

)

v
protect bits

Memory protection bits (WPM = Write Permitted,
RPM = Read Permitted, FPM = Fetch Permitted).

This bit is automatically set by hardware.

This bit is automatically set by hardware.

These bits decide which ring this page belongs to.

Bits 13 - 15:

Bit12: Written in page (WIP)
Bit 11: Page used (PGU)
Bits 9 - 10: Ring bits

Bits 0 - 8:

Physical page number

Nine bits addresses a maximum of 512 physical pages in

memory.

The protect bits and the protection system are described in Section 2.3.5.

In extended mode the protect bits and the PPN bits require two entries, which ha-
ve the following formats:

15 14

13 12 1 109 8

WPM | RPM

FPM IWIP IPGU [RINGRING

NOT ASSIGNED

_

J

Y

protect bits are
identical in extended
and normal mode

15 14 13 0
N.A. PHYSICAL PAGE NUMBER (PPN)
Bits 0 - 13:

14 bits address a maximum of 16 384 pages in memory.

ND-06.014.02

Protect entry

Map entry

2.3.5.1

2.35.2

2--34
Page Used and Written in Page

All entries in a page table are under program control only, except for the two bits
PGU and WIP, which are also controlled automatically by the Memory
Management System.

Bit 12: WIP - Written in Page

If this bit is set, the page has been written in, and it should be written back
to mass storage. If it is zero, the page has not been modified and need not
be rewritten. This bit is automatically set to one the first time a write
occurs and then remains set. It is cleared by program (whenever a new
page is brought from mass storage}.

Bit 11: PGU - Page Used

If PGU = 1, the page has been used. The bit is automatically set whenever
the page is accessed and it remains set. The bit is cleared by program. This
bit may be used in operating systems to determine which page should be
swapped.

Page Table Selection

ND-100 has 4 page tables. Which one to be used is selected by the Paging
Contro! Register on the current program level. In PCR the information is either
taken from the PT field or the APT field. One is to be selected. The alternative
page table is used if the memory reference is not P relative and status bit 0
(PTM) is 1. The table below will help explain.

Addressing Mode Address Mapping with PTM =
X | B Mnemonic Via PT Via APT
0 0 0 (P) + disp. —
0 1 0 I (P} + disp. {(P) + disp.)
0 0 1 B — (B) + disp.
0 1 1 B — (B) + disp.; ((B) + disp.)
1 0 0 X — (X) + disp.
1 0 1 B X - (B) + (X) + disp.
1 1 0 X (P} + disp. ((P) + disp.) + (X)
i 1 1 B 1 X — (B) + disp.;
((B) + disp.) + (X)

Note that indirect addressing involves 2 memory references where one or both
go via the APT, as shown in the table.

Page Table Selection

The main principle is that all P relative memory references are mapped via PT
and all other references are mapped via APT. This feature is used only by proces-
ses which require access to two segments with different virtual address spaces

and gives one process access to 128K of virtual memory.

ND-06.014.02

2.3.6

2.3.6.1

2--35
Memory Protection System

The memory management system employs two memory protection systems: a
permit protection system and a ring protection system. The two systems together
constitute an extensive memory protection, i.e., complete protection of system
from user and user from user.

The memory protection system works on 1K pages. If a memory access violates
any of the protection systems, an interrupt to program leve! 14 will occur with
the internal interrupt code equal to 2 = MPV (memory protect violations).

Page Protection System

The page protection system is a protection system for each individual page of
memory. Each individual page may be protected against:

— Read access.
— Write access.
— Instruction fetch access.

and any combination of these. Thus, there are 8 modes of memory protection for
each page.

The read, write and fetch protect system is implemented by defining in bits 13 -
15 of the PT how the page may be used. In hardware, this information is com-
pared with the instruction being executed, i.e., if it is load (read), store (write),
instruction fetch or indirect address.

The three bits from the PT have the following meanings.

Bit 15: WPM — Write Permitted

WPM = 0. It is impossible to write into locations in this page regardiess of
the ring bits.

WPM = 1. Locations in this page may be written into if the ring bits allow
it.

If an attempt is made to write into a write protected page, an internal inter-
rupt to program level 14 will occur, and no writing will take place.

Bit 14: RPM — Read Permitted
RPM = 0. Locations in this page may not be read (they may be executed).
RPM = 1. Locations in this page may be read if the ring bits allow it.

If an attempt is made to read from a read protected page, an internal inter-
rupt to program level 14 will occur.

ND-06.014.02

236

Bit 13: FPM — Fetch Permitted

FPM = 0. Locations in this page may not be executed as instructions.

FPM

i

1. Locations in this page may be used as instructions.

If an attempt is made to execute in fetch protected memory, an internal
interrupt to program level 14 will occur and the execution is not started.

indirect addresses may be taken both from pages which have FPM = 1 and from
page which have RPM = 1.

Al combinations of WPM, RPM and FPM are permitted. However, the
combination where WPM, RPM and FPM are all zero is interpreted as page not in
memory and will generate an internal interrupt with internal interrupt code, HC,
equal to page fault.

ND-06.014.02

2.36.2

2-37

Ring Protection System

The ring protection system is a combined privileged instruction and memory
protection system, where 64K virtual address space is divided into four different
classes of programs or rings. Two bits (9 and 10) in each page table entry are
used to specify which ring the page belongs to.

The ring bits have the following meaning:

Bit

10

Ring 0:

Programs executing from this page may not execute privileged
instructions. The program may only access locations in ring
zero. Locations outside ring 0 are completely inaccessible.

Ring 1:

Programs executing from this page may not execute privileged
instructions. The program may access locations in ring 1 and
ring 0.

Ring 2:

All instructions are permitted when executed from this page.
The program may access locations in rings 2, 1 and 0.

Ring 3:
All instructions are permitted and the whole address space is

accessible if not protected by the RPM, WPM and FPM bits.
The page tables may be accessed.

An illegal ring access or illegal use of privileged instructions will cause an in-
ternal hardware status interrupt to program level 14 and the instruction which
caused the interrupt will not be executed.

The recommended way of using the ring bits is as follows:

Ring O:
Ring 1:
Ring 2:

Ring 3:

User programs
Compilers, assemblers, data base systems
Operating system, File system, |/O system

Kernel of operating system

ND-06.014.02

2-38

Associated with the ring bits in a PT entry are the two ring bits in the current
program levels paging control register (PCR).

Before a program can start executing, the PCR on the relevant program level is
loaded by the operating system with information about which PT, alternative PT
and ring is to be used. The program’s PT must also be loaded by the operating sys-
tem prior to execution.

The ring bits of the appropriate PCR are compared with the ring bits of the
appropriate page table entry. The PCR ring bits should always be greater than or
equal to the PT ring bits. If not, an internal interrupt {MPV) will be generated.

The user’s ring number is defined in the PCR-register, while the program’s ring
number is defined in the page tables.

Example:

If a user on ring no. 3 starts executing a program on ring no. 1, he is allowed to do
so. However, he is forced to user ring no. 1 after program execution. Note that
this happens only when executing programs on lower rings than the user’s ring
number. This does not happen when reading or writing operands on a lower ring.

One should note that the two protection systems are independent of each other

and that both the individual memory protection mode and the ring mode must be
satisfied before an operation is performed.

ND-06.014.02

23.7

Privileged Instructions

In a multiuser multitask system, a user is not permitted to use all instructions in
the instruction set. Some instructions may only be used by the operating system,
and this category of instructions are called privileged instructions.

Privileged Instructions:
— Input/output instructions

— Al instructions which control the memory management and interrupt
system

— Interprogram level communication instructions
Refer to the instruction repertoire for further information.

The only instruction the user has available for user/system communication is the
monitor call Instruction — MON. The MON instruction may have up to 256
different parameters or calls. When the machine executes the MON instruction,
it generates an internal interrupt.

The privileged instructions may only be executed on ring 2 and 3, i.e., only by the
operating system. If programs on ring 0 and 1 try to execute any privileged in-
structions, a privileged instruction interrupt will be generated and the instruction
will not be executed.

ND-06.014.02

2.3.8

2.3.8.1

2-40

Memory Management Control and Status

The PON and POF Instructions

The memory management system is controlled by the two privileged instructions
PON and POF.

PON — Turn on memory management system (paging on)

The instruction that is executed after the PON instruction will go through the
address mapping (paging) mechanism, and the memory protection system will be
active.

POF — Turn off memory management system (paging off)

The instruction will turn off the memory management system and the next
instruction will be taken from a physical address in the lower 64K, the address

following the POF instruction.

The machine will then be in an unrestricted mode without any hardware protec-
tion feature, i.e., all instructions are legal and all memory ""available”.

ND-06.014.02

2.3.8.2

Paging Control Registers

There is one PCR (paging control register) for each level. The setting of the PCRs
is done by the operating system prior to the program execution. Only one PCR
may be written into at a time by the instruction TRR PCR.

This instruction uses the contents of the A register. The A register has the
following format:

15 10 98 76 5 4 3 2 1 0
i i 1 i I
N.A. | PT 1 APT | Level | O RING

! i 3 L

Bits 11 - 15: Not assigned

Bits 9 - 10: Page table number (0-3)

Bits 7 - 8: Alternative page table number {0-3)

Bits 3 - 6: Program level (PCR number} {0-15)

Bit 2: Equals zero

Bits 0 - 1: Ring number (0-3)

Transferring the A-reg. to the PCR:

The instruction TRR PCR transfers the A-reg. to the PCR. After executing this
instruction, PCR has the following format.

15 1110 9 8 7 6 5 4 3 2 1 0

N.A, PT APT 1 0 0 0 0 O] RING

Transferring the PCR to the A-reg:

For maintenace purposes it may be desirable to read back the contents of the 16
PCRs to the A-register. This is done by executing the TRA 14 instruction, ie. read
paging control register. Bits 3-6 of the A-register must contain information about
which program level to read the PCR from. After executing this instruction, the
A-register has the following format.

15 iT10 9 8 7 6 5§ 4 3 21 0
T =TT
0 000 O PT APT | 0 0 O 0 0] RING
ND-06.014.02

Rev. A

2.3.8.3

Paging Status Register

Whenever the memory management system reports any errors (page fault,
memory protection violations), the operating system is alerted through an inter-
nal interrupt with the interrupt code equal to the error source. Next, the oper-
ating system will read the paging status register for further information. The
paging status register is used for further specifications when a page fault or a
memory protection violation occurs.

The instruction TRA PGS is used to read this register. Errors lock the PGS
register, TRA PGS unlocks it again.

The bits in PGS have the following meaning:

15 14 13 B 7 6 5 0
FF | PM N.A. PT VPN
PGS Format

Bit 156: FF = Fetch Fault.
Memory management interrupt occurred during an instruction fetch.
Bit 14: PM = Permit violation.

1 = permit violation interrupt {read, write, fetch protect system).

o
I

ring protection violation interrupt.

Permit violation has priority if both conditions occur.
Bits 6-7: PT = Page Table.

Page table number.
Bits 0-5: VPN = Virtual Page Number.

Virtual page number.

Note that bits 0 - 7 are the 8 least significant bits of the physical page table entry
in normal mode.

If bit 15 is a one, the page fault or protection violation occurred during the fetch
of an instruction. In this case, the P register has not been incremented and the
instruction causing the violation (and the restart point) is found from the P
register on the program level which caused the interrupt.

It bit 15 is zero, the page fault or protection violation occurred during the data
cycles of an instruction. In this case, the P register points to the instruction after
the instruction causing the internal hardware status interrupt. When the cause of
the internal hardware status interrupt has been removed, the restart point will be
found by subtracting one from the P register.

ND-06.014.02
Rev. A

2.3.9

2-43
The SEX and REX Instructions
The address mode for the page mapping system is controlled by the two privile-

ged instructions SEX and REX.

SEX — Set extended address mode

The SEX instruction will set the paging system in a 24 bit address mode instead

of a 19 bit address mode. A physical address space up to 16 M words will then
be available.

Bit number 13 in the status register (STS) is set to one, indicating the extended
address mode.

REX — Reset extended address mode

The REX instruction will reset the extended address mode (24 bits) to normal

address mode (19 bits). This implies that 512 K words of physical address space
is now available.

Bit number 13 in the status register is reset, indicating normal address mode.

Note that after change of mode, the page tables must be initialized.

ND-06.014.02

2-44

2.4 ND-100 MEMORY SYSTEM

2.4.1 General

Computer performance is, to a great extent given by the efficiency of the memory
system. General requirements are:

— Low access time.

— Low storage cost.

e Large capacity.

These requirements are usually conflicting.

In the ND-100 system, a compromise is achieved through the implementation of a

muitilevel hierarchial memory system. Figure 2.15 shows the major building blocks
in this system.

ND-06.014.02

2—-4b

ND-100
CpPU

Register Block

Cache Memory

E

Local Memory

Multiport Memory

Mass Storage
Devices

Figure 2.15: Multilevel Storage System

The concept is to hold the most frequently used information as near the CPU as
possible. In other words, the average access time for instructions and data
should be close to main memory access time. At the same time, most of the
information resides on mass storage. That is, price per stored bit approaches the
mass storage device cost.

The memory system includes (ordered by access time):

— 8 programmable registers associated to each program level.
— 1K words CACHE memory (optional)

— Up to 16M words local memory on each module.

- Up to 2M words multiport memory address space.

— Disk storage.

Here we will discuss local memory, multiport memory and cache.
Note! One ND-100 CPU can only access 512K words if used in normal address
mode. That means the sum of local memory and multiport memory for one CPU

cannot exceed 512K words.

If used in extended address mode ND-100 can access up to 16 words.

ND-06.014.02

2—-46

2.4.2 ND-100 Memory Architecture
Figure 2.16 shows the storage interconnection.

To/From Big
Multiport Memory
BMPM

[~ s s T "‘l Transceiver

! |

) | 4

1 cPu Internai CPU databus Bus ! ND-100 BUS i

| Register Control | +

l Block D8 | A

! |

| t > MMS and Memory

| ! CACHE Madules

___________________ -t .

IDB = Internal Data Bus

Figure 2.16: Storage Interconnection

CACHE memory is physically located on the memory management module and
connected directly to the internal CPU data bus (IDB).

Local memory may consist of several modules plugged directly into the ND-100
bus.

Multiport memory is accessed through a Big Multiport Memory (BMPM) trans-
ceiver in the ND-100 bus connected to one port in a separate card crate.

ND-06.014.02

2421

2422

2423

247

Local (Main) Memory

Local memory facts:

— Memory size from 32K words in steps of 32K words up to 512K words
(normal address mode), 16M words (extended address mode).

. 32K, 64K or 256K words per memory module.

— Direct connection to ND-100 bus for low access time.
Typical: 320 ns measured on CPU bus control.

— Error correction of single bit failures and reporting double bit failures.

Memory Module Placement in ND-100 Bus

Memory modules should be placed in the right-most position {position 12 or 21)
in the ND-100 bus and expanded to the left.

Module address range may be defined in two different ways:

— Prewired position code in each bus slot.
— Thumbwheel setting of a module address area.

The Position Code

The position code defines a module placed in position 12 to have the address
range 0 - 64K words, 64K words to 128K words in position 11 and so on. In other
words, there is a resolution of 64K words per position, expanding to the left.

ND-06.014.02

2..48

2.4.2.4 The Thumbwheel Setting

[t is possible to mix module sizes of 16K words, 32K words and 64K words in the
same memory system. In this case the position code can not be used.

The thumbwheel setting allows an address resolution of 16K words per position
and should be used in cases where module sizes are mixed.

The thumbwheels are physically located at the top of the memory module and de-
fine lower address limit for each module.

The module itself knows its size, which is added to the lower limit and presented
on a display giving lower limit to the next module.

Examples:
General

POSITION

=<
i N, N
S
-

[~ cl

ONE ND-100
/ CARD CRATE

)
el
-]

10121 U S
MMS

e e s - WO

Figure 2.17: Memory Module placement in the Card Crate

LL: Lower limit is set by two hexadecimal thumbwheels or given by module
placement (the position code). Lower limit defines the lower address to
access the module.

UL: Upper limit is displayed as two octal digits and defines the highest address to
access the memory module. Upper limit is generated internally on the memo-
ry module as an addition of lower limit and the size of the memory module.
The upper limit is displayed in steps of 16K.

As indicated in the above figure, upper limit on a memory module covering one
part of the address range, should be equal to lower limit on the next memory
module covering the following higher addresses.

ND-06.014.02

2—-49

CASE 1:
Lower limit defined by the position code.

Thumbwheel should be

Thumbwheel should be

PosiTioN b4 2 . 3 | (9 10 11 12
P P frmsmeany
< Q <
ol Rl B 61
— =
o < -]
© o -]

' 1
cPy -~ }
MMS = - el

Position 12: Address range 0 - 64K words

Paosition 11: Address range 64 - 128K words

Position 10: Address range 128 - 192K words
and so on

Requirement: All memory modules must be 64K words.

CASE 2:

Lower limit defined by thumbwheel.

POSITION T2 . 3 . g, 9 10 11, 12
T LS i l T

3 :{{ 3

Q =]

3 3 __;]

Q Q Q
]
CPU —— }
MMS !

I)
L 64K W module
32K w module

64K w module

Resolution on thumbwheel is 16K words per digit. Only digits below 8 are legal.

ND-06.014.02

2.4.3 Memory Error Correction

To each 16 bit word stored in memory, a 6 bit error correction code (ECC) is
generated. Thatis, each word is stored as 22 bits.

When reading from memory, a new ECC is generated and compared with the
stored one. This comparison allows the memory system to:

- Accept good data (no errors).
— Detect, correct and log single bit errors.

— Detect double bit errors and interrupt the CPU for uncorrectable memory
failure.

- In most cases, interrupt the CPU for memory failures on multiple errors
{certain unfortunate combinations of multiple errors could be bypassed).

ND-06.014.02

2-b1

Error Codes (PES bits 8-13) Decoding Table:

Error Syndrome Bits No Single code | Single data
Code Fatal S4 S3 S2 S1 SO Error Error Error
0 6 0 0 0 0 o Good
1 ¢ 0 0 0 0 1 ECO
2 6 0 0 0 1t O EC1
3 6 0 0 0 1 1 EO
4 60 0 0 1 0 O EC2
5 ¢c o0 0 1 0 1 E1
6 c o 0 1 1 O
7 o o o0 1 1 1 E2
10 o 0 1 0 0 O EC3
1 6 0 1 0 0 1 E3
12 0 ¢ 1t 0 1 O
13 0 0 1 0 1 1 E4
14 0o 0 1 1 0 O ES
15 o 0o 1 1 0 1 E6
16 6 o 1 1 1 O E7
17 o 0 1 1 1 1
20 0 1 0 0 0 O EC4
21 0o 1 0 0 0 1 E8
22 o 1t 0 0 1 O ES
23 o 1 0 0 1 1 E10
24 6 1t 0 1 0 O E11
25 o 1t 0 1 0 1
26 o 1t 0 1 1 0 E12
27 c 1t 0o 1 1 1
30 o 1 1 0 0 O E13
31 o 1 1 0 0 1
32 o 1 1 0 1 0 E14
33 o 1t 1 0 1 1
34 c vt 1 1 0 0 E15
35 o *+ 1t 1 0 1
36 c 11 1 1 0
AN T S IO SO W IO SRR I s ___l______
0 0 0 0 O
52 1T 0 1 0 1 O All 22 bits are zero Special
Multiple}| 65 1 1 0 1 0 1 All 22 bits are one cases
Errors) I T S l
74 Tt 1T 1t 1 0 0
75 T 1 1 10 1 Lower byte parity error For 2 bit
76 Tt 11T 1 10 Upper byte parity error parity check
77 1 1 1 1 1 1 Upper + lower byte par. error memory

Figure 2.18: Error Codes (FC) as Reported in the PES Register

ND-06.014.02

2.4.4

2.4.41

2-52

Memory Control and Status

Error Correction Control Register (ECCR)

This register controls the error correction network.

The error correction control register is loaded by executing the instruction;

TRR ECCR

The format is as follows:

15 5 4 3 2 1 0

N/A 6 Ipis |any| 15 | O
TST TST | TST

Description:

Bit 0, 1, 3and 4 are used by maintenance only to test the error correction network.

Bit O: setto "1 simulates memory error in bit 0. TST = Test

Bit 1: setto "1 simulates memory error in bit 15. TST = Test

Bit 2: interrupt condition control bit.
"0 = only muitiple errors will generate parity error interrupt.
1" = all errors will generate parity errors.

This bit is turned on and off by an RT program logging single bit
errors.

Bit 3: Disable. (DIS)

When this bit is set, error correction and parity error interrupt are
disabled.

Bit 4: Setto 1" simulates memory error in bit 6. TST = Test

ND-06.014.02

2.44.2

2-53

Memory Status Registers (PEA and PES)

Feedback information from the memory system is given in two status registers:

PEA (Parity Error Address).
PES (Parity Error Status).

Both registers are read to the A register by the TRA instruction.

Format of PEA: (A register after TRA PEA)

16

Lower 16 bits of Physical Address

A PEA register holds the 16 least significant address bits of the last memory

reference.

Format of PES: (A register after TRA PES)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
5 S4 'S3 S2 ST S0 |23 22'21 20 19 1817 '18
% IDMAFFAT] ERROR CODE UPPER 8 BITS OF PHYSICAL ADDR.
b

Bits 0-7: Most significant address bits of the last memory reference.

Bits 8-12: Error code (0-4) which points out the failing and corrected bit if a single
bit error has occurred (see bit 13). Refer to the table below for
decoding of the error code.

Bit 13: Fatal
If fatal is set 1, a multiple error has occurred and the error code does
not contain relevant information. Fatal not set (’0") means single bit
error {bit number found in error code) or good data (error code = Q).

Bit 14; DMA; error occurred during DMA reference.

Bit 15: Fetch — error occurred during instruction fetch or during an examine

When the error condition occurs, the content of PES and PEA is locked and not re-
leased until TRA PEA is executed. These registers do not contain correct informa-
tion unless an internal interrupt with code 10 or 11 (parity error and memory out of

(EXAM) or a deposit {DEPQ) instruction.

range) is detected.

ND-06.014.02

245

2451

2452

2-54

Multiport Memory

Two multiport memory systems are available. These two systems are called:

— Big Multiport Memory (BMPM).
— Multiport Memory 4 (MPM4).

Big Multiport Memory (BMPM)
ND-100 can be equipped with a multiport memory transceiver to access the big
multiport memory system.

The BMPM system allows up to four sources to access the same physical
memory area.

One source is connected to one of four BMPM ports through a multiport
channel. All devices meeting the muitiport channel specification are allowed
access to this memory system.

Typical applications of the BMPM system are:

e Multiprocessor communication through a shared memory system.
— Shared memory between CPU and high speed DMA devices.

The BMPM system is physically located in a separate card crate.

One card crate can hold 384K words, and 8 crates can be connected.

Multiport Memory 4 (MPM4)

The MPM4 combines the features from the big multiport memory (BMPM) and
the bus extender {BEX). The MPM4 extends the ND-100 bus to new card racks. In
these racks you can install memory modules, DMA modules and ordinary 1/0O
modules. The memory modules may be shared with other ND-100s, ND-500s and
DMA devices. By using the MPM4 system you are able to build a big and flexible
computer system.

ND-06.014.02

2.4.6

2.4.6.1

Cache Memory

Cache is an optional high speed memory buffer.

The presence of cache will reduce average memory access time significantly.

Cache Memory Architecture

Location

Cache memory is physically located on the memory management module and has
direct (through special wiring) connection to the internal CPU data bus (IDB).

Placement/Replacement Algorithm

The cache memory should hold the most recent data and instructions to be
processed. The algorithm used for this purpose is called "Write Through” (WT).

This algorithm ensures that all information in cache is also held as backup in main
memory. That is, cache memory does not need standby power during a power
break.

The algorithm concept is as follows:

— A write operation goes to cache memory as well as main memory.

— During a read operation data is taken from cache memory if found there.

Otherwise, it is taken from main memory and written into CPU and also into
the cache memory (for probable later use).

ND-06.014.02

2.4.6.2

. Physical

2-56

Cache Memory Organization

The cache memory is organized as a 1K word, by 31 bit look up table. Each word
in cache is a copy of a word on one of the physical pages in main memory and
there is a one to one connection between displacement in cache and displacement
in the page.

In order to associate each cache word with one physical page, a directory is used.
The directory is 15 bits to each word telling which page this word belongs to.
During write the directory is updated to the Physical Page Number (PPN) written
into.

During read, the directory is compared with the accessed PPN. If they are equal, it
was a cache hit, if not, the displacement was equal, but the cache word belongs to
another page than the one accessed. Refer to Figure 2.19 for illustration.

Physical
Address {10-23}
DIP PPN BDO-15
Virtual
Address
(08}

Address

(10-23) Compare

1 True ~ Data AVAILABLE

DIP = Displacement In Page
PPN = Physical Page Number

BD = BusData Data to processor
CPN = Cache Page Number
U = Used

Figure 2.19: Cache Operation Principles

ND-06.014.02

2-57

31 17 16 15 0

CPN U DATA WORD

Figure 2.20: Format of One Cache Word

CPN: Cache Page Number defines what PPN (Physical Page Number) the
CPU word belongs to.
U: 1"" — this cache location contains valid information.

0" — this cache location does not contain valid information.

The U bit is only used by hardware and will be ’0’* after a cache clear.

DATA WORD: This is a copy of a word in main memory.

ND-06.014.02

2.4.6.3

2.4.6.3.1

2-58

Cache Control and Status

Cache memory contains:

3 registers for control
1 status register for feedback information

CACHE CONTROL

Clearing Cache
ND-100 cache concept requires that all changes in main memory should be updat-
ed in cache. This is done automatically when the CPU writes to memory. A DMA
transfer will not be mapped through cache, however, so that a DMA transfer
would result in different data in cache and memory. To avoid this, the operating
system will execute the instruction

TRR CCLR % Clear cache
when a DMA transfer is initiated.

Setting of Cache Inhibit Limits

Assume that all external sources to memory (DMA, etc.) could use a predefined
address area.

Note that data is not rermoved from cache when the cache inhibit area is expand-
ed. Therefore, expansion of the cache inhibit area must always be accompained by
clear cache. Note that the whole address range is inhibited after master clear.

lower limit < PPN < upper limit

The limit setting is included to define a CPU private area, thus avoiding the clear
cache operation for each DMA transfer.

The limit registers are set by the instructions:

LDA <lower limit> % lower limit page number
TRR LCIL % set lower limit

and

LDA <upper limit> % upper limit page number
TRR UCIL % set upper limit

ND-06.014.02

2-59

2.4.6.3.2 CACHESTATUS REGISTER

The cache status register is used by diagnostic programs and loaded to the A
register by

TRA CSR % Cache status — A register

The format of CSR:

15 2 1 0
MAN |[Cache
N/A
/ pis | on [CUP

Bit0: CUP
Cache updated — CUP is 1" if the next memory reference (i.e., the
instruction readout for the following TRA CSR) causes writing in cache.
{Before TRA CSR is executed the next instruction is prefetched!)

Bit1: CACHEON

Cache on is "1 if cache is present, except during a 60 us period, following
cache clear and master clear. If bit2, MAN DIS is "1"’; cache on will be 0"

Bit 2: MAN DIS
Manual Disable of cache.

1" if disabled
Q" if not disabled

This bit is controlled by a switch on the memory management system
module.

The cache status register is 1XX if the cache option is not installed.

ND-06.014.02

2--60

2.5 ND-100 INPUT/OUTPUT SYSTEM

2.5.1 General

The Input/Qutput system {abbreviated to /O system) provides a two-way
communication between the CPU and its peripherals. General requirements for an
I/0 system are:

— Reliability.

— Flexibility. The 1/0 system should be able to handle slow devices as well as
high speed devices.

Modularity. The 1/0 system should be easy to expand as the customer
requires. 1/0 configuration should be easy to change.

The requirements mentioned above depend, of course, on the system’s architec-
ture,

ND-06.014.02

2.5.2

2—61

ND-1001/0 Architecture

The ND-100 bus provides the communication betwen functional blocks in ND-100.

All ND-100 modules are made to a common standard to allow identical connection
to this bus. This convention also includes 1/0 device controllers.

The ND-100 bus is controlled completely by the bus control/driver which is an
integrated part of the CPU. This arrangement includes the following features:

— The I/0 device controller is directly connected to the same printed back-
plane as the CPU.

— no external wiring
— increased reliability

— There is no connection of external buses.

— a faster system
— easy to maintain

- 1/0 modules can be plugged into the bus.

— easy to expand
— easy to reconfigure

Itis also possible to extend the ND-100 bus by using Bus Extenders (BEX),

The BEX system extends the ND-100 bus to a maximum of 8 card crates (both 12
and 21 position crates).

However, this system slows down the execution time.

ND-06.014.02

2—-62

2.5.3 ND-100 Card Crate — Physical Layout

The ND-100 card crate is available in two versions. One version takes a maximum
of 12 modules and the other a maximum of 21 modules. Each module has one 96
pins contactor for direct contact to the ND-100 bus when plugged into the
crate.Refer to Figure 2.21. Figure 2.22 and 2.23 show the layout of the two card
crates.

Device

Controlier

s Two 64 pins contactors for device connection.

Standard
ND-100 bus c 96 pins contactor for direct contact to the
Drivers/ - ND-100 bus.

Receivers

Figure 2.21: ND-100 Module and Connectors

A
/// 4/,// ///, SLIDES FOR
CONNECTION
OF MODULE
DEPENDENT
420mm CABLES
- Ll ol il L L L& Z.
POWER
SUPPLY
NS LSl L A
ND-100 BUS
B]
= BACKPLANE
R —— 510mm RRSER—

Figure 2.22: 12 Position ND-100 Crate Layout [Top View).
In the 12 position version, the required power is supplied by a power
supply located within the card crate. This approach leads to a very
compact system.

ND-06.014.02

L A s eon

CONNECTION
OF MODULE
| DEPENDENT
/ CABLES
420mm
Z YA T T T A
ND-100
N BUS BACKPLANE
T £3 5 7 10 yfiz 9/\61'/181 2}@(21
L LY AV

510mm

Figure 2.23: 21 Position ND-100 Crate Layout {Front View)
In the 21 position version, the power supply is removed from the card
crate and located in the upper part of the cabinet. Thus, the cabinet is
bigger than the cabinet for a 12 position crate.

ND-06.014.02

Figure 2.24 shows the recommended placement of modules in a card crate. The
placement rules are equal for both the 12 and 21 position crate.

If the memory management and cache module is present, the first 1/0 module
should be placed in position 3, the next in position 4 and so on, expanding to the
right.

If the MMS and cache module is not present, move all 1/O modules one position
left.

RULE: There should never be empty positions between the CPU and the last 1/0
module. Expansion is from left to right.

If the 12 or 21 position crates are not enough, new card crates can be added, thus
expanding the ND-100 to a maximum of 8 crates. This is done by using Bus Ex-
tenders as described later in this manual.

ND-100 CPU MODULE

MMS & CACHE

10MB DISK CONTROLLER

DATA ENTRY MEMORY MODULES
CONTROLLER

g;

B e = :5 V2L
N
%75 b rres I
POWER /%/ I(“‘ ;ogmorvs"’;
SUPPLY /// |
a7 ! !
> 2 y >

‘ Memory E xpansion |
1

up to 512k words

[1/0 Device Connection

Figure 2.24: Recommended Placement of Modules in a ND-100 crate.

ND-06.014.02

254

The ND-100 Bus

The ND-100 bus has been frequently mentioned due to its importance as a sy-
stem highway.

Although the bus is physically one printed backplane, it may be divided up into
two logical parts:

— Multiplexed address/data bus.
— Control lines.

ND-100 bus facts:

— The multiplexed address/data bus is 24 bits wide, supporting a physical
address space of 16M words.

— No loss in memory access time due to multiplexed bus.
. Precise balance and termination give typically 20 ns address/data set up

time.

All modules connected to the system are presented the same information simul-
taneously and are continuously “listening’’ to the bus activity.

The control lines are used to define the valid information on the bus (addresses
or data) and to connect one source to one destination.

ND-06.014.02

255

ND-1001/0 System Functional Description

External devices may be classified as:
»»»»»» Slow character/word oriented input/output devices (example: terminals.)

----- High speed block oriented mass storage devices {example: disk, magnetic
tape).

ND-100 handles these device classes in different ways.

The first class is completely controlled by the CPU. This is called Programmed
Input/Output (P10).

The mass storage device controller operates directly on memory. This is called
Direct Memory Access (DMA).

The program that controls a peripheral device is called a device driver. These
drivers are subroutines delivered by Norsk Data together with the complete
hardware/software configuration.

ND-06.014.02

2.5.6

2.5.6.1

Programmed Input/Output — PIO

A PIO interface is always designed to handle slow byte/word oriented devices and
is completely controlled by the CPU.

All exchange of data, control and status between the CPU and a device is
programmed via the A register.

The Input/Qutput Instruction — 10X

The 10X instruction is a privileged machine instruction used in information
exchange between the 1/0 system and the A register.

The /0 system usually contains several device controllers, each of them
associated with a device register address. The lower 11 bits of the 10X instruction
contains the address to the device that is to be accessed.

IOX instruction format:

10X <device register address>

15 11 10 0
fOX device register address

I0OX Instruction Format

ND-06.014.02

2—68

2.56.2 Interface Channels and Registers
An /0O interface is said to have two channels if it can handle both input and
output transfers. This means one input channel and one output channel.
Examples:
— A terminal interface has two channels, one for input from the terminal’s
keyboard, one for output to the terminal’s screen.
— A paper tape punch has only one channel, the output channel.
At least three registers are assigned to each channel for each device. Norsk
Data’s standard assignment of registers for a two channel device is:
Input Channe/
— Input control register.
— Input status register.
— Input data register.
Output Channel
— OQutput control register.
— OQutput status register.
— Output data register.
Each of the above mentioned registers has a number in the device. In the 10X
instruction the three least significant bits are used to select one register in the
selected device.
Selected register within
15 11 10 9 32 ! 1 0O selected device
10X ?
E 0: Input operation
1: Qutput operation

Device selection

- 0: Standard ND interface
L. 1:Customer designed interface

Figure 2.25: 10X Instruction Decoding Details

The 10X instruction is used for both input and output.

10X Output

— Odd device register address (bit 0 = "1").

— Content of A register is written into register specified in “device register

address’".

ND-06.014.02

2-69

10X Input

— Even device register address (bit 0 = "0},

-~ Content of register specified in ""device register address’’ is loaded into A
register.

Device Register Address Range

Standard interfaces delivered by Norsk Data use addresses from 0 -
17774 (bit 10 is always zero).

Customer designed interfaces can use the address range from 20004 - 3777, (bit 10

is one).
Device register address
AN
~ N
15 1710 9 0
§
1OX c : PR % B 2T X X
H
>~ - d) ADDRESS
ADDRESSES -DEFINED 0
BY NORSK DATA :
c="0" > >< DESIGNED INTERFACES
L 17774
(20004
ADDRESSES LEFT OPEN
: FOR CUSTOMER
c="1" & DESIGNED INTERFACES
C = Customer k 37773

Figure 2.26: 10X Address Range

ND-06.014.02

Special Feature

2-70

For future extension, of device addresses the T register can hold the device regis-

ter address. The 10X instruction then has the format:

10XT

% T = <device register address>

Device register address in Tregister

N

A
’ \
1514 1312 11 10 9 8, 0
[} [; ; } 1 :
H
: T :C: PXXX e X
] { 1 1 1 { '
00 00 O 0 x B ol
00 00 0 1 x B j
00 00 1 0 x
: ‘. B
01 11 1 1 x
10 00 0 0 O B B
10 0 0 0 0 1
110 1 0 0 0 1
1001 0 0 O

C = Customer

y

Figure 2.27: 10XT Address Range

ND-06.014.02

Addresses
0
NCRSK DATA
INTERFACES .
17774
20004
CUSTOMER
INTERFACES
37774
40004
] H
i 1
I ILLEGAL ;
17777,
SYSTEM 100000g
CONTROL
REGISTERS
1007774
1010004
RESERVED
107777
110000
NORSK DATA 8
INTERFACES
177777,

2--71

2.5.6.3 Control and Status Registers

Commands to a device are given through the control register.
LDA <command> % Initiate A register with command
10X <dev. addr. + CR> % Write control register from A register

% (CR = control register)

Device feedback goes through the status register:

IOX <dev. addr. + SR> % Read status register to A register
% (SR = status register)

The formats of these registers are device dependent and found in the hardware
programming specifications for each device type.

ND-06.014.02

25.7

2.5.7.1

25.7.2

2-72

Direct Memory Access (DMA)

General

Direct Memory Access is used to obtain high transfer rates to and from memory.

Instead of using 10X for each word via the A register, a DMA controller is con-
nected directly to the main memory via the ND-100 bus. This connection is called
a DMA channel.

More than one DMA device may be active on the DMA channel at the same
time, sharing the channel’s total band width (1.8 M words/sec.).

Typical DMA devices are:

— Disks.
— Magnetic tapes.
— High speed serial/parallel intercomputer links.

After activation, a DMA transfer runs completely independently of the CPU. That
means that CPU and DMA activity may be performed in parallel. CPU and DMA
controllers operate simultaneously and independently of each other.

Conflicts are avoided by the bus control/driver in the CPU. If the CPU requests
the bus (instruction fetch, 1/0, access, etc.) simultaneously with a DMA control-
ler, the bus is given to the DMA transfer. This effect is called cycle steal.

A HAWK disk, for example, will steal one cycle of 550 ns per each 6.4 us transfer
time which occupies less than 10% of the bus band width. The effect of cycle
steal in this example is close to zero due to prefetch of instructions and the
average distribution of bus requests within the instructions.

DMA Controller Operation

A DMA transfer may be divided into three steps:

— Initialization.
— Transfer.
— Termination and status check.

The bus is also fast enough to handle both DMA activity and CPU activity at the
same time without slowing down the CPU. A CPU memory reference will hold
the bus for typically 320 ns, a DMA transfer typically 550 ns.

A disk transfer, consequently, will use 550 ns of bus time for each 6.4f~LSof trans-
fer time. That is less than 10% of the bus band width. This does not mean that
there is 10% less CPU activity. The use of instruction prefetch and normal distri-
bution of memory references reduces. DMA activity to practically zero overhead.

ND-06.014.02

2.5.7.2.1

2.5.7.2.2

2.5.7.2.3

2-73

INITIALIZATION

A DMA controller has to be initialized before a transfer can be started. The
initialization is done by a device driver activated by the operating system when a
DMA transfer is needed.

The driver program accesses the DMA controller by means of 10X instructions.
Through different transfer parameters, the driver tells the DMA interface what to
do.

Typical parameters are:

— Memory Address Register (MAR) holds the first memory address to read
from (DMA output) or write into (DMA input),

— Block Address Register (BAR) holds the first address to read or write from
on the physical device.

— Word Count Register holds the number of werds to be transferred.

— Control Register gives device function (read, write, etc.) and start.

The formats of the registers are given in the hardware programming specifications
for each device,

TRANSFER

After initialization and start is given, the data transfer takes place. Data is
exchanged between the DMA controller and memory at the speed determined by
the device.

In order to reduce the possibility for overrun on input and underrun on output,
each device controller contains a buffer for at least 16 words between device and
memory.

TERMINATION AND STATUS CHECK

The DMA transfer is completed when the word counter is zero. A DMA controller
tells this to the CPU through an interrupt on level 11. The device driver is again ac-
tivated to read the device status which gives information on the status of the
transfer.

ND-06.014.02

2—-74

2.5.7.2.4 GENERAL CONSIDERATIONS

In ND-100 all DMA controllers have a buffer for at least 16 words between device
and memory. That is, if the DMA channel for some reason is occupied, the buffer
will prevent underrun on output and overrun on input.

If there is a high load on the DMA channel, i.e., several DMA controllers that can
be active at the same time, some general considerations should be taken.

The DMA controller with the smallest buffer should be placed closest to the
CPU.

- If several DMA controllers have the same buffer space, the fastest should be
placed closest to the CPU.

These rules are related to hardware priority associated to placement relative to the
CPU.

ND-06.014.02

2.5.8

2.5.8.1

2.5.8.2

2-175

The I/0O System and the Interrupt System

General

Under a running system (SINTRAN [li}, ail 1/0O devices connected to the ND-100
will be prepared for operation and then allowed to operate asynchronously with
respect to the CPU. That means that the 1/O controllers activate themselves
through an interrupt to the CPU if a status change occurs.
Possible status changes in the |/0 system are:
— End of operation interrupt.

If output this means data is transmitted, can accept next

If input this means data is available, please read it (before overrun)

— Error interrupt.

Interrupt Level Usage

Interrupt levels 10, 11, 12, 13 and 15 are available to the 1/0 system as physical
lines in the ND-100 bus. These lines go directly to the interrupt detect controller in
the CPU.

The Level Assignment

- All output interrupts use level 10.

- All DMA controllers use level 11.

— All input interrupts use level 12.

— Real-time clocks and special devices such as HDLC input use level 13.

— Level 15 is not used by Norsk Data equipment but is available for special pur-
poses.

ND-06.014.02

2583

259

2-76
Device Interrupt Identification
As indicated above, more than one device may use the same interrupt line. In

order to find the interrupting device an IDENT instruction is executed.

The IDENT <PL> will return a vector {called ident code) from the interrupting
device to the A register.

The ident code is unique for each device and is used to find that device driver.
The driver will read the status register to find the reason for the interrupt and
take proper action.

The IDENT <PL> instruction will only search for interrupts on the level specified
in PL (10 - 13).

Example:
The instruction IDENT PL12 will only search for interrupt in the input

channel. A possible existing interrupt on level 10 or level 11 is ignored and
handled later by IDENT PL10 and IDENT PL11 respectively.

Programming Specifications for 1/0 Devices on the CPU Board

The real-time clock (device register address range10-13) is always located on the
CPU board. The terminal with device register address range 300-307 is located on
the CPU board unless a strap on the CPU board is removed.

Since these devices are included in every CPU, their programming specifications

are given here. Programming specifications for other devices are given in separ-
ate manuals.

ND-06.014.02

2.5.9.1

2.5.9.2

2717

The Real-time Clock

The real-time clock on the CPU board has device register address range10-13.

10X 10:

10X 11:

10X 12:

10X 13:

Returns 0 in the A register and has no other effect.

Clear real-time clock counter. This instruction will cause the next
clock pulse to occur exactly 20 ms later. If this instruction is ex-
ecuted repeatedly, the counter will never be incremented, and no
clock pulses will occur. This may affect the execution of opera-
tor’'s communication on console terminal.

Read real-time clock status.

Bit 0 - 1: The clock will give interrupt when next clock pulse
arrives,

Bit 3 = 1: The clock is ready for transfer, i.e., a clock pulse has
occurred.

Bits 1-2 and 4-15 are always zero.
Set real-time clock status.
Bit 0 = 1: Enable interrupt if ready for transfer occurs.

Bit 13 = 1: Clear ready for transfer.

The Current Loop Interface

The current loop interface located on the CPU board has device register address

range 300 - 307.

10X 300:

I0X 301:

10X 302:

Read input data {according to input control word setting). The
last inputted character is transferred to the A register. The data
available signal is reset if the micro programmed operator com-
munication (MOPC) is not active.

No operation.

Read input status.

Bit 0 = 1: Data available will give interrupt when it occurs.

Bit 3 = 1: Data is available (ready for transfer}. Is never given if

MOPC is active.

ND-06.014.02

10X 303:

10X 304:

10X 305:

10X 306:

10X 307:

2-78

Bit4 = 1: Inclusive or of error bits 5-7.

Bitb = 1: Framing error.

i

Bit6 = 1: Parity error.

Bit7 = 1: Overrun.
Bits 1-2 and 8-15 are always zero.
Set input control.

Bit 0 = 1: Enable interrupt if data available (ready for transfer)
OCCurs.

Bit 11 and Bit 12:

Bit 11 = 1and Bit 12 = 1 signifies 5 bits code.
Bit 11 = 0 and Bit 12 = 1 signifies 6 bits code.
Bit 11 = 1Tand Bit 12 = 0 signifies 7 bits code.
Bit 11 = 0 and Bit 12 = 0 signifies 8 bits code.

i

|

Bit 13 = 1 signifies 1 stop bit.
Bit 13 = O signifies 2 {1.5 for 5 bits) stop bits.

Bit 14 = 1. A parity bit is added to the number of bits men-

tioned above.
Bit 14 = 0: No extra bit is added to the bits mentioned above.
Returns 0 in the A register and has no other effect.
Write data (according to input control word setting).
Read output status.
Bit 0 = 1: Ready for transfer will given interrupt when it occurs.
Bit3 = 1: Ready for transfer.
Bits 1-2 and 4-5 are always zero.

Set output control.

Bit 0 = 1. Enable interrupt if ready for transfer occurs.

ND-06.014.02

2.6

2.6.1

2.6.2

2-79

ND-100 BUS EXTENDER (BEX)

General

Although 21, or often less than 12, modules are sufficient for most systems,
some configurations require more space than even the 21 position card crate can
offer.

This space problem is solved by using the ND-100 Bus Extender (BEX) system.
The BEX system makes it possible to extend the ND-100 bus by linking together
card crates. The maximum number of card crates is 8. Using 21 position card
crates this give 168 positions for card connection. Note that only one CPU
module and one Memory Management System (MMS) module may be connec-
ted to the system. The rest of the positions is free for Input/Output modules and
Memory modules.

Bus Extender Architecture

The BEX system consists of Bus Extender (BEX) modules and crate interconnec-
tion cables. One BEX module is located in each crate. Two crates are physically
connected via two interconnection cables between the BEX modules. Refer to
Figure 2.28.

BEX no. 0 (MASTER BEX)

BEX NO.1 BEX NO.7
CPU
MMS
il
PIOC. DMA P10, DMA P10, DMA
MEMORY MEMORY MEMORY
- -
UMJ MU U MUU

A CRATE tt tt B CRATE 'Il H CRATE

CRATE INTERCONNECTION CABLES

Figure 2.28: ND-100 Bus Extender System

The crate where the CPU is located is called the A crate. The BEX module loca-
ted in the A crate is named BEX no. 0 (also MASTER BEX).

It is posssible to mix Programmed Input/Output (PIO) modules, Direct memory
Access (DMA) modules and memory modules in all the crates.

ND-06.014.02

2-80

ND-06.014.02

3.1

3.1.1

ND-100 INSTRUCTIONS

INTRODUCTION TO THE INSTRUCTION REPERTOIRE

General

In the ND-100 all instructions occupy a single word, 16 bits, yielding an efficient
use of memory and high speed code. Floating point arithmetic operations and
floating/integer conversions are included in the standard instruction set.

The instruction set of ND-100 is divided into the following 5 classes:

— Memory reference instructions.
— Register instructions.

~ Input/Output control instructions.
— System control instructions.

— Customer specified instructions

Each instruction is given a short description. This includes its mnemonic as used
in the assembly language, the octal code, a diagram showing its format and
special comments. For each instruction, the systems and indicators that can be
affected by the instruction are listed. ND-100 instruction execution times are gi-
ven in Appendix A.2.

When a register is mentioned in this chapter, it refers to the register set on the

current program level. For example, "the A register’” means the A register on the
current program level.

The definitions used in the descriptions are as follows:
General Registers:

A register

D register

T register

L register

X register

B register

Program counter

STS Status register containing PTM, TG, K, Z, Q, O, C, M

T @ X O >»

ND-06.014.02
Rev. A

Status Word:

Bit
0 PTM Page table mode
1 TG Rounding indicator for floating point operations
2 K One bit accumulator
3 Z Error indicator
4 Q Dynamic overflow indicator
5 O Static overflow indicator
6 C Carry indicator
7 M Multi-shift link indicator
8-11PL Program level indicator
12 N-100 ND-100 Indicator
13 SEXI Extended address mode
14 PONI Memory Management On Indicator
15 1ONI Interrupt System On Indicator
Abbreviations:
EL Effective Location
EW Effective Word
AD Double Accumulator
FA Floating Accumulator
DW Double Word
FW Floating Word
sr source register
dr destination register
Logical AND
\ Logical inclusive OR
\ Logical exclusive OR
() The contents of
us Microsecond
ns Nanosecond

ND-06.014.02

3.1.2

3.1.2.1

Instruction and Data Formats

The ND-100 has a 16 bit word format. The bits are conventionally numbered 0 to
15 with the most significant bit numbered 15 and the least significant bit numbered
0.

15 ' 0

Figure 3.1: ND-100 Bit Numbering Convention

The content of a ND-100 word is conventionally represented by a 6 digit octal
number. Thus, the content of a word with all 16 bits set to zero is represented as
000000, while the contents of a word with all bits set to one is represented as
177777.

The standard ND-100 instruction set provides instructions for the following 6 dif-
ferent data formats:

Single bit

8 bit byte

16 bit word

32 bit double word

48 bit floating point word

32 bit floating point word (optional, instead of 48 bit floating point)

SRR R

Single Bit

A single bit data word is typically used for a logical variable; the bit instructions are
used for manipulation of single bit variables. The bit instructions specify operations
on any bitin any of the general registers, as well as the accumulator indicator K.

ND-06.014.02

3.1.2.2

3.1.2.3

8 Bit Byte

Two instructions are available in the standard ND-100 instruction set for byte mani-
pulation, i.e., load byte and store byte.

A byte consists of 8 bits, giving a range of 0 <X < 255.

The byte addressing is such that when two bytes are packed into a word, the even
byte address points to the left half of the word.

15 87 0

Even address 0Odd address
n n+1

Byte Format

16 Bit Word

The most common data word format is the 16 bit word contained in one memory
location or one register.

Representation of negative numbers is in 2's complement. The skip instruction al-
SO contains instructions to treat numbers as unsigned {absolute magnitude) num-
bers.

Range

--32768 € X < 32767

or

0 < X <65535

ND-06.014.02

3.1.2.4

32 Bit Double Word

Two instructions are available to handle double word formats, load double and sto-
re double.

A double word is a 32 bit number which occupies two consecutive locations (n, n
+ 1) in memory, and where negative numbers are in 2's complement.

31 A 16 15° D 0
Most significant Least significant
n n+1

Double Word Format

A double word is always referred to by the address of its most significant part.
Normally, a double word is transferred to the registers so that the most significant
partis contained in the A register and the least significant in the D register. Range
as integers:

—2 147 483 648 < X < 2 147 483 647

ND-06.014.02

3.1.2.5

48 Bit Floating Point Word

The standard ND-100 instruction set provides full floating point hardware arithmet-
ic instructions, load floating, store floating, add, subtract, multiply and divide float-
ing, convert floating to integer and convert integer to floating.

The data format of floating point words uses 32 bits for the mantissa, one bit for
sign and 15 bits for biased exponent.

The mantissa is always normalized, 0.5 <mantissa < 1. The exponent base is 2, the
exponent is biased with 2. A standardized floating zero contains zero in all 48
bits.

In main memory, one floating point data word occupies three 16 bit core locations,
which are addressed by the address of the exponent part.

n exponent and sign
n+ 1 most significant part of mantissa
n -+ 2 least significant part of mantissa

In CPU registers, bits 0-15 of the mantissa are in the D register, bits 16-31 in the A
register and bits 32-47, exponent and sign, in the T register. These three registers
together are defined as the floating accumulator.

47 T 32 31 A 16 15 D 0
+| Exponent Man- | tissa
n n-+1 n+2

Floating Word Format

The accuracy is 32 bits or approximately 10 decimal digits; any integer up to 23
has an exact floating point representation.

Therange is
2771805 X281 or X = 0
or

10 4920 <X <L 104920

Examples [octal format):

T A D

0: 0 0 0
w1 040001 100000 0
-1 140001 100000 0

ND-06.014.02

2.6

3.7

32 Bit Floating Point Word

As an option, the ND-100 may be equipped with microprogram for 32 bit floating
point format instead of the standard 48 bit format described in the previous sec-
tion. The instructions affected are:

FAD Floating Point Add

FSB Floating Point Subtract

FMU Floating Point Multiply

FDV Floating Point Divide

NLZ Convert Integer to Floating Point
DNz Convert Floating Point to Integer

The data format of 32 bit floating words uses 23 bits for the mantissa, one bit for
sign and 9 bits for a biased exponent. These 32 bits are packed in two 16 bit words
by omitting the most significant bit of the mantissa, which is always a one in non-
zero numbers.

The mantissa is always normalized, 0.5 < mantissa € 1. The exponent base is 2,
the exponent is biased with 28.

A standarized floating zero contains zero in all 32 bits.

In main memory, one 32 bit floating point data word occupies two 16 bit memory
locations, which are addressed by the address of the exponent part.

n exponent, sign and mantissa bits 16-21
n o+ 1 mantissa bits 0-15

In CPU registers, bits 0 - 15 of the mantissa are in the D register, bits 16 - 21 and
exponent and sign are in the A register. These two registers together are defined
as the 32 bit floating accumulator. The T registrer is not affected by 32 bit Floating
Point operators.)

31 30 A 22 27 16 15 D 0

+ | Exponent Man-| tissa

n n+1

32 Bit Floating Point Word Format

The accuracy is 23 bits or approximately 7 decimal digits. Any integer up to 2%
has an exact floating point representation.

Therangeis
278505 X<255 - 10rX =0
or

10778 <X <1078

ND-06.014.02

Examples (octal format):

A D
0: 0 0
+1.0: 040100 0
—1.0: 140100 0
+3.0: 040240 0

NOTE: The instruction times are given in Appendix A.2.

ND-06.014.02

3.2

3.2.1

3.2.1.1

THEINSTRUCTION REPERTOIRE

Memory Reference Instructions

Memory reference instructions specify operations on words in memory. For all the
memory reference instructions in ND-100, the addressing mode is the same with
the exception of the conditional jump, the byte and the register block instructions.
The addressing structure for these memory reference instructions is given under
the specific instruction specification.

The ND-100 has the following groups of memory reference instructions:

»»»»»» Store instructions.
— Load instructions.
Arithmetic and logical instructions.
~~~~~ Sequencing instructions.
»»»»»» Byte instructions.
—  Register block instructions.

Addressing Structure

In memory reference instruction words, 11 bits are used to specify the address of
the desired word(s) in memory, 3 address mode bits and an 8 bit signed displace-
ment using 2's complement for negative numbers and sign extension. (Note that
excluded from this is the conditional jump, the byte and the register block
instructions.}

15 | 11109 8 7 0

op. code X1 ],B displacement

ND-100 uses a relative addressing scheme, which means that the address is specif-
ied relative to the contents of the program counter or relative to the contents of
the B and/or X registers.

The three addressing mode bits called ', X", 1" and ”",B" provide eight different
addressing modes.

ND-06.014.02



3-10

The addressing mode bits have the following meaning:
The | bit specifies indirect addressing.

The ,B bit specifies address relative to the contents of the B register, pre-
indexing. The indexing by ,B takes place before a possible indirect address-
ing.

~~~~~ The ,X bit specifies address relative to the contents of the X register, post-
indexing. The indexing by , X take place after a possible indirect addressing.

If all the X, | and ,B bits are zero, the normal relative addressing mode is specified.
The effective address is equal to the contents of the program counter plus the
displacement, (P} + disp.

The displacement may consist of a number ranging from —128 to + 127. There-
fore, this addressing mode gives a range for directly addressing 128 locations back-
wards and 127 locations forward.
Generally, a memory reference instruction will have the form:

<operation code> <addressing mode> <displacement>
Note that there is no addition in execution time for relative addressing, pre-
indexing, post-indexing or both. Indirect addressing, however, adds one extra

memory cycle to the listed execution time.

The address computation is summarized in the table below. The symbols used are
defined as follows:

X Bit 10 of the instruction

! Bit 9 of the instruction

B Bit 8 of the instruction

disp. Contents of bits 0-7 of the instruction (displacement)
{X) Contents of the X register

(B) Contents of the B register

(P) Contents of the P register

{

) Contents of a register or word

ND-06.014.02

The effective address is the address of that memory location which is finally
accessed after all address modifications (pre- and post-indexing) have taken place
in the memory address computation.

X | B | Mnemonic Effective Address
0 0 0 (P) + disp.

0 1 0 | ({P) + displ.}

0 0 1 B (B} + disp.

0 1 1 B ((B) + disp.)

1 0 0 X (X) + disp.

1 0 1 B, X (B} + disp. + (X)
1 1 0 I X (P) + disp.) + (X)
1 1 1 B1,X (B} + disp.) + (X)

Addressing Mode Table

P relative Addressing (,X = 0 /=0 ,B=20

The P relative addressing mode is specified by setting the ,X, | and ,B bits all to ze-
ro. In this mode, the displacement bits (bits 0-7) specify a positive or negative 7 bit
address relative to the current value of the program counter (P register).

Example:

Suppose memory location 403 contains the instruction 004002, which here we
shall represent by STA * 2, and this instructiuon is executed. The X, | and ,B bits
are all set to zero indicating P relative addressing and a positive displacement of 2
is given; the contents of the A register will therefore be stored in memory location
405. If, instead, location 403 contains the instruction JMP * —2 and it is executed,
the next instruction to be executed will be taken from location 401. While there is
an obvious limitation to this mode of addressing (locations more than 128, words
away from the instruction being executed cannot be accessed), this mode of add-
ressing is still quite useful for doing local jumps and accessing nearby constants
and variables.

Memory
(|
-128
|
Range with ' .
< “i”“ =1 P register
P-relative A | 9
| l
addressing ,
. Displacement
127 ,
| ~—— Eff
ective address
. .L.
Fragure 3.2 Schemauc Hustration of Prelatve Addressing

ND-06.014.02

3-12

Indirect P relative Addressing (,X = 0 /=17 ,B = 0)

Since one must be able to access memory locations more than 128,, words away
from the instruction being executed, the simplest method of doing this is to use
the indirect P relative addressing mode, specified by setting the | bit to one and the
,X bit and ,B bit to zero in memory address instructions. In this mode, an address
relative to the program counter is computed, exactly as for P relative addressing,
by adding the displacement to the value of the program counter, but rather than
the addressed location actually being accessed, the contents of the addressed lo-
cation are used as a 16 bit address of another memory location which is accessed
instead.

Example:

Suppose location 405 contains the instruction LDA | * 2 {045002,) and that this in-
struction is executed. Let us also suppose memory location 16003 contains the va-
lue 17 and that memory location 407 contains 016003. The net result of executing
the instruction in location 405 is to load the value 17 into the A register. First, the
displacement 2 of the LDA instruction is added to the value of the location counter
405, giving the result 407; then the contents of location 407, 16003 is used as an
address and the contents of this address {(17) is finally loaded into the A register.

Memory

P register

Displacement

/

P

Pointer to any location
within 64K

re— <=— Effective address to any
location within 84K

Figure 3.3: Schematic lllustration of Indirect P relative Addressing

B relative Addressing (,X = 0 [=0 B =1)

The above two addressing modes are theoretically quite sufficient. However, if the
ND-100 provided only the two addressing modes already described, it would not
be particularly convenient for program efficiency. For instance, suppose that two
subprograms, each a couple of hundred words long, need to communicate. Within
each subprogram memory accesses are commonly made using P relative address-
ing or occasionally, indirect P relative addressing. But between the subprograms
indirect P relative addressing would have to be used almost exclusively since, in
general, locations in one subprogram, which instructions in the other subprogram
must access, will not be less than 128 words apart. But this is very inefficient since
both subprograms must contain indirect pointers to data and instructions local to
the other subprogram.

ND-06.014.02

To overcome this difficulty another addressing mode is available, B relative
addressing, which permits both subprograms to directly address a common data
area. B register relative addressing is specified by setting the ,X and | bits to zero
and the ,B bit to one in memory address instructions. This addressing mode is qui-
te closely related to P relative addressing, but instead the displacement is added to

the current value of the B register and the resulting sum is used to specify the
memory location accessed.

Memory

o B register

Displacement

Effective address

Figure 3.4: Schematic lllustration of B relative Addressing

Example:

Let location 405 contain the instruction LDA —4,B (0447744) and the B register
contain the value 10035. Execute the instruction in location 405. This causes the
contents of location 10031 to be loaded into the A register. The minus 4 in the
displacement field of the LDA instruction in location 405 is added to the contents

of the B register, 10035, giving the sum of 10031, and the contents of the location
10031 are loaded into the A register.

ND-06.014.02

Indirect B relative Addressing (X =0 [=1 ,B=1)

Naturally, there is also an indirect B relative addressing mode which is specified by
setting the ,B and | bits to one and the ,X bit to zero in memory reference
instructions. This mode has the same relationship to B relative addressing that
indirect P relative addressing has to P relative addressing. This permits a
subprogram to access data or locations in other subprograms indirectly via
pointers in an area common to several subprograms. This address mode is used
extensively for calling library routines.

Example:

Let location 10031 contain the instruction JPL | 3,B (135403;) and the B register
contain 400, a pointer to an area common to several subprograms. Furthermore,
let location 403 contain the value 2000. If the instruction in location 10031 is
executed, the subroutine beginning at location 2000 will be called. The displace-
ment, 3, in the JPL instruction is added to the contents of the B register, 400,

giving a result of 403. The contents of location 403, 2000, is then used as a pointer
to the subroutine.

Memaory

B register

Displacement

Pointer to any location
within 64K

Effective address

Figure 3.5: Schematic lllustration of Indirect B relative Addressing

Xrelative (or indexed) Addressing (X =1 [=0 ,B=0)

The other four addressing modes all involve use of the X register. The simplest of
these is X relative addressing which works like P and B relative addressing, but the
displacement is added to the X register’s contents during the address calculation
instead of to the contents of the P or B register. This addressing mode is often us-
ed for accessing the elements of a block of data.

ND-06.014.02

Example:

Let a recursive subroutine, when being called, save the contents of the L, A and B
registers in a three word block on a push down stack, and the X register point to
the first free register in the stack. The following code might then be found at the
beginning of the recursive subroutine:

SUB, STA1 X
COPY SL DA
STA2 X
COPY SB DA
STAOQ X
AAX3

Memaory

X register upon entry
to the subroutine

= B register saved here
Stack re——— A register saved here
~e——— | register saved here

X register after execution
of AAX instruction

Figure 3.6: [llustration of the Effect of the Stack Code

For another example reread B relative addressing, substituting ”'X register’’ for "'B
register’’.

Memory

X register

I Displacement
.1 Effective address

Figure 3.7: Schematic lllustration of X relative Addressing

ND-06.014.02

3-16

B relative Indexed Addressing (X = 1 [=0 ,B = 1)

When the X and ,B bits are set to one and the | bit to zero in memory reference in-
structions, the mode is called B refative indexed addressing. In this mode, the con-
tents of the X and B registers and the displacement are all added together to form
the effective address.

B relative indexed addressing is often very useful, for instance, when accessing
row by row elements of a two dimensional array stored column by column.

Memory

B register

Displacement

| Content of X register

1 Effective address

Figure 3.8: Schematic lllustration of B relative Indexed Addressing

ND-06.014.02

3-17

Indirect Prelative Indexed Addressing (,X = 1 [=1 ,8 =0

The last two addressing modes are difficult to describe, but very useful. Indirect P
relative indexed addressing is selected by setting the ,X and | bits to one and the
,B bit to zero in the memory address instruction. This mode allows successive ele-
ments of an array arbitrarily placed in memory to be accessed in a convenient man-
ner.

The address calculation in the mode takes place as follows. The contents of the P
register, say 4002, are added to the displacement, say —1, and produce a sum,
4001. The contents of the location 4001, say 10100 are added to the contents of
the X register, say --100, to produce a new sum, 10000, the effective address. By
incrementing the X register, successive locations may be accessed. For instance,
using the above example, locations 10000 through 10100 can be successively ac-
cessed by stepping the contents of the X register from - 100 to zero.

Readers are advised to go over this example carefully. Stepping through an array
in this fashion is done very often.

Memory

*_]________ P register

Displacement
Pointer to any location
within 84K

ot —mee

Content of X register

Figure 3.9: Schematic lllustration of Indirect P relative Indexed Addressing

ND-06.014.02

3.2.1.2

3-18

Indirect B relative Indexed Addressing (,X =1 [=1 ,B=1)

The final addressing mode, indirect B relative indexed addressing, is identical to in-
direct P relative indexed addressing except that the contents of the B register is us-
ed instead of the contents of the P register in the effective address computation.
This mode can therefore be used to step through arrays pointed to from a data
area common to several subprograms.

Memory

B register

Displacement

Content of X register

Effective address

Figure 3.10: Schematic lllustration of Indirect B relative Indexed Addressing

Store Instructions

STZ Store zero Code: 000 000
Format: STZ <address mode> <disp.>r
The effective location is cleared.
Affected: (EL}

STA Store A register Code: 004 000
Format: STA <address mode> <disp.>
The contents of the A register are stored in the

effective location.
Affected: (EL)

ND-06.014.02

STT

STX

STD

STF

MIN

3-19

Store T register
Format: STT <address mode> <disp.>

The contents of the T register is stored in the
effective location.
Affected: (EL)

Store X register
Format: STX <address mode> <disp.>

The contents of the X register are stored in the
effective location. The address of this
instruction may be modified by the contents of
the X register.
Affected: (EL)

Store double word
Format: STD <address mode> <disp.>

The contents of the A register are stored in the
effected location, and the contents of the D re-
gister are stored in the effective location plus
one.

Affected: (EL), (EL + 1)

Store floating accumulator
Format: STF <address mode> <disp>

The contents of the floating accumulator is
stored in three memaory locations, starting with
exponent part in effective location.
Affected: (EL), (EL + 1), (EL + 2)

Increment memory and skip if zero
Format: MIN <address mode> <disp.>

Effective word is read and incremented by one
and then stored in the effective location. If the
result becomes zero, the next instruction is
skipped.

Affected: (EL), (P)

ND-06.014.02

Code: 010 000

Code: 014 000

Code: 020 000

Code: 030 000

Code: 040 000

3-20

3.2.1.3 Load Instructions

LDA Load A register Code: 044 000
Format: LDA <address mode> <disp.>

The effective word is loaded into the A reg-

ister,
Affected: (A)
LDT Load T register Code: 050 000

Format: LDT <address mode> <disp.>
The effective word is loaded into the T register.
Affected: (T)
LDX Load X register Code: 054 000
Format: LDX <address mode> <disp.>
The effective word is loaded into the T register.
Affected: (X)
LDD Load double word Code: 024 000
Format: LDD <address mode> <disp.>
The contents of the effective location are
loaded into the A register, and the contents of
the effective location plus one are loaded into
the D register.
Affected: (A}, (D}
LDF Load floating accumulator Code: 034 000
Format: LDF <address mode> <disp.>
The contents of the effective location and the
two following locations are loaded into the
floating accumulator, i.e., T, A and D reg-

isters.
Affected: (T), (A), (D)

ND-06.014.02

3.2.14

Arithmetical and Logical Instructions

ADD

sSusB

AND

Add to A register
Format: ADD <address mode> <disp>

The effective word is added to the A register
with the result in the A register. The carry
indicator is set to 1 if a carry occurs from the
sign bit positions of the adder, otherwise the
carry indicator is reset to 0. If the signs of the
two operands are equal, but the sign of the
result is different, overflow has occurred, and
both the dynamic and static overflow
indicators are set to one. If the condition for
overflow does not exist, the dynamic overflow
indicator is reset to 0, while the static
overflow indicator is left unchanged.

Affected: (A), C, 0, Q

Subtract from A register
Format: SUB <address mode> <disp.>

The 2's complement of the effective word is
formed and added to the contents of the A
register with the result in the A register. The
same rules as for ADD apply for the setting of
the overflow and carry indicators.

Affected: (A), C, 0, Q

Logical AND
Format: AND <address mode> <disp.>

The logical product of the effective word and
the contents of the A register are formed,
with the result in the A register. The logical
product contains a one in each bit position for
which there is a corresponding one in both
the A register and the effective word, otherwi-
se the bit position contains a zero.

Affected: (A)

ND-06.014.02
Rev. A

Code: 060 000

Code: 064 000

Code: 070 000

ORA

MPY

FAD

FSB

3-22

Logical inclusive OR
Format: OR <address mode> <disp.>

Logical inclusive OR is formed between the
effective word and the contents of the A
register, with the result in the A register.
Logical inclusive OR contains a zero in each bit
position for which there is a corresponding
zero in both the A register and the effective
word, otherwise the bit position contains a
one.

Affected: (A)

Multiply integer
Format: MPY <address mode> <disp.>

The effective word and the A register are
multiplied and the result is placed in the A
register. Both numbers are regarded as signed
integers and the result as a 16 bit signed
integer. If the result in absolute value is greater
than 32767, overflow has occurred and the
static and dynamic overflow indicators are set
to one.

Affected: (A}, O, Q

Add to floating accumulator
Format: FAD <address mode> <disp.>

The contents of the effective location and the
two following locations are added to the
floating accumulator with the result in the
floating accumulator.

Affected: (T), (A), (D), TG

Subtract from floating accumulator

Format: FSB <address mode> <disp>

The contents of the effective location and the
two following locations are subtracted from
the floating accumulator with the result in the

floating accumulator.
Affected: (T), (A), (D), TG

ND-06.014.02

Code: 074 000

Code: 120 000

Code: 100 000

Code: 104 000

FMU

FDV

3-23

Multiply floating accumulator
Format: FMU <address mode> <disp.>

The contents of the floating accumulator are
multiplied with the number in the effective
floating word locations with the result in the
floating accumulator.

Affected: (T), (A), (D), TG

Divide floating accumulator
Format: FDV <address mode> <disp.>

The contents of the floating accumulator are
divided by the number in the effective floating
word locations. Result in floating accumulator.
If division by zero is attempted, the error indi-
cator Z is set to one. The error indicator Z may
be sensed by a BSKP instruction {see BOP}.
Affected: (T), (A), (D), Z, TG

ND-06.014.02

Code: 110000

Code: 114 000

3.2.1.5

Seqguencing Instructions

JMP

JPL

CJpP

Jump
Format: JMP <address mode> <disp.>

The next instruction is taken from the effective
address of the JMP instruction (the effective
address is loaded into the program counter).
Affected: (P)

Transfer P to L. and jump
Format: JPL <address mode> <disp.>

The contents of the program counter are trans-
ferred to the L register and the next instruction
is taken from the effective address of the JPL
instruction. Note that the L register points to
the instruction after the jump {(the program
counter incremented before transfer to the L
register).

Affected: (P), (L)

Conditional jump

Instruction bits 8-10 are used to specify one of
8 jump conditions. If the specified condition
becomes true, the displacement is added to the
program counter and a jump relative to current
location takes place. The range is 128 locations
backwards and 127 locations forwards. If the
specified condition is false, no jump takes pla-
ce. Execution time depends on conditions, but
is the same for all instructions.

A conditional jump instruction must be speci-
fied by means of the 8 mnemonics listed
below. It is illegal to specify CJP or any com-
binations of ,B, l and , X.

ND-06.014.02

Code: 124 000

Code: 134 000

JAP

JAN

JAZ

JAF

JXN

JXZ

JPC

JNC

The 8 jump conditions are as follows:

Jump if A register is positive or zero, A bit 15
= .

Format: JAP <disp.>

Jump if A register is negative, A bit 15 = 1.
Format: JAN <disp >

Jump if A register is zero.,

Format: JAZ <disp >

Jump if A register is filled (not zero)

Format: JAF <disp. >

Jump if X register is negative. X bit 16 = 1,
Format: JXN <disp. >

Jump if X register is zero.

Format: JXZ <disp. >

Count and jump if X register is positive or zero.
For’mat: JPC <disp. >

X is incremented by one, and if the X bit 15
equals zero after the incrementation, the jump
takes place.

Count and jump if X register is negative.
Format: JNC <disp.>

X is incremented by one; if then the X bit 15

equals one, the jump takes place.
Affected: {P) and (X) for JPC and JNC.

ND-06.014.02

Code:

Code:

Code:

Code:

Code:

Code:

Code:

Code:

130000

130 400

131000

131400

133400

133000

132 000

132 400

3.2.1.6

Byte Instructions

To facilitate the handling of character strings, the ND-100 provides two instruction
for byte handling, load byte, LBYT and store byte, SBYT.

Because of the requirements of full 64K addressing, the LBYT and SBYT use an
addressing scheme different from the normal ND-100 addressing.

For byte addressing, two of the ND-100 registers, the T and X registers are used
for addressing the byte.

The contents of the T register point to the beginning of the character string, and
the contents of the X register point to a byte within this string. Thus, the address

of the word which contains the byte equals

(T) + % (X).

the byte is in the right part of the word.

A byte consists of 8 bits.

T register .
0 1
2 3
X reqgister
2
n n+1
n+2|n+3

The specifications for the two byte instructions are then as follows:

LBYT L.oad byte Code: 142 200
Format: LBYT
The 8 bit byte specified by the contents of the
T and X registers is loaded into the A register

bits 0-7, with the A register bits 8-15 cleared.
Affected: (A)

ND-06.014.02

3.2.1.7

3-27

SBYT Store byte Code: 142 600
Format: SBYT

The byte contained in the A register bits 0-7 is
stored in one half of the effective location
pointed by the T and X registers, the second
half of this effective location being
unchanged. The contents of the A register are
unchanged.

Affected: (EL)

Extended BYTE-instructions

Byte operands occupy fields in the memory that may start and end at any byte
address. A byte operand is specified by a two word descriptor, giving start
address and field length:

The descriptor’'s words have the following format:

D1: Bit0-1b Give the byte operand’s word address in the memory.
D2: Bit 15. This bit specifies whether the operand starts in the left byte or
the right byte.
Bit 156=0, left byte
Bit 15=1, right byte
Bit 14. Page table mode (bit 14=1 selects the alternativepage tabie).

Bit 13. This bit should be 0 when the instruction is started.

Bit (0-11). Field length (number of bytes).

The descriptor of the source operand is contained in the A, and D registers; The
descriptor of the destination operand is in the X, and T registers {for D1, D2
respectively).

Field length may be of any size up to and including 4K-1 bytes. Sufficient inter-
ruptability is taken care of during execution.

ND-06.014.02
Rev. A

BFILL

MOVB

328

Byte Fill
Format: BFILL

This instruction has only one operand. The
destination operand is specified in the X, and
T registers. The right-most byte in the A-reg.
{bits 0-7} is filled into the destination field.

After execution, the X-register and T-register
bit 16 point to the end of the field (after the
last byte). The T-register bits (0-11) equal ze-
ro.

The instruction will always have a skip return
{no error condition).

Move bytes
Format: MOVB

This instruction moves a block of bytes from
the location specified for the source operand
to the location specified for the destination
operand.

The move operation takes care of source- and
destination-field overlap.

The number of bytes moved is determined by
the shortest field length of the operands.

After execution, the A,D and X,T registers (bit
15 in D and T) point to the end of the field
that is moved (after the last byte). D-reg. bits
0-11 equal zero and T-reg. bits 0-11 contain
the number of bytes moved.

The T-reg. bits 12-13 and the D-reg. bit 12 are
used during the execution, and are left cle-
ared. Bit 13 must be zero before execution
(used as an interrupt mark).

The instruction will always have a skip return
{no error condition).

ND-06.014.02

Code: 140 130

Code: 140 131

MOVBF Move bytes forward Code 140 132
Format: MOVBF

This instruction moves a block of bytes from
the location specified as the source operand
to the location specified as the destination
operand.

The move operation always starts with the
first byte (lower address). The number of by-
tes moved is determined by the shortest field
length of the operands. Forbidden overlap
exists when the source data to be moved, will
be destroyed. That happens when a byte is
stored in a word before that word is read
from memory. This is reported by an error re-
turn (no skip).

After successful execution, the A,D and X,T
registers (bit 15 in D and T} point to the end
of the fields that are moved (after the last by-
te). The numbers initially contained in the D-
and T-registers, bits 0-11, are decremented by
the number of bytes moved.

The T-reg. bits 12-13 and the D-reg. bit 12 are
used during the execution and are left cle-
ared. Bit 13 must be zero before execution
(used as an interrupt mark).

The instruction will have a skip-return when
no illegal overlap exists.

ND-06.014.02

3-30

3.2.2 Register Instructions

3.2.2.1 Floating Point Conversion Instructions

15 : 8 7 0
NLZ
DNZ scaling

Two instructions are available. A single precision fixed point number may be con-
verted to a floating point number. A floating point number may be converted to a
fixed point single precision number. For both instructions, the scaling factor is spe-
cified in the displacement part of the instruction. The range of the scaling factor is
from —128 to + 127, which gives a conversion range from approximately 107 3% to
10%. The execution time depends on the scaling factor and the argument to con-
vert,

The two subinstructions are described in Section 3.2.2.1.1 for the standard 48 bit
floating point format, and in Section 3.2.2.1.2 for the alternative optional 32 bit flo-
ating point format.

3.2.2.1.1 STANDARD 48 BIT FLOATING POINT CONVERSION
NLZ Normalize Code: 151 400
Format: NLZ <scaling>

Converts the number in the A register to a
standard form floating number in the floating
accumulator, using the scaling of the NLZ
instruction as a scaling factor. For integers, a
scaling factor of + 16,, will give a floating point
number with the same value as the integer. A
larger scaling factor will result in a higher flo-
ating point number. Because of the single pre-
cision fixed point number, the D register will be
cleared.

Affected: (T), (A), (D)

ND-06.014.02

DNZ

Denormalize
Format: DNZ <scaling>

Converts the floating number in the floating ac-
cumulator to a single precision fixed point
number in the A register, using the scaling of
the DNZ instruction as a scaling factor. When
converting to integers, a scaling factor of — 16, ,
o Will give a fixed point number with the same
value as the integer part of the floating point
number. A greater scaling factor will cause the
fixed point number to be greater. After this in-
struction the contents of the T and D registers
will all be zeros.

If the conversion causes underflow, the T, A
and D registers will all be set to zero.

If the conversion causes overflow**, the error
indicator Z is set to one. Overflow occurs if the
resulting integer in absolute value is greater
than 32767.

The conversion will truncate and negative -

numbers are converted to positive numbers be-
fore conversion. The result will again be con-
verted to a negative number.

Some Examples:
T-A-D before conversion (in decimal)

0.9 DNZ — 20,
3.141592 DNZ —20,
3.141592 DNZ —17,
3.141592 DNZ — 16,

3.7 DNZ — 20,
3.7 DNZ —17,
3.7 DNZ —21,
—3.141592 DNZ — 20,
~3.7 DNZ — 20,
32768.0 DNZ —20,

—32768.0 DNZ —20,
Affected: (A), (T), (D), Z

* When converting an exact floating point
zero, scaling factors more negative than —16
will give erroneous results.

* The overflow test is fail-proof for a scaling
constant of —20, only.

ND-06.014.02

Code: 152 000

A after conversion

—
N wWwWwNOWo

-3
-3
Overflow
Overflow

3.2.2.1.2 OPTIONAL 32 BIT FLOATING POINT CONVERSION

The normalize and denormalize operations for 32 bit floating point use the same
instruction codes as for 48 bit floating point operations, but do not affect the T re-
gister. For the 32 bit DNZ operations, the scaling factor should a/ways be —16. Ot-
her scaling factors will not cause a different result but will affect the test for over-
flow.

ND-06.014.02

3.2.2.2

Shift Instructions

15 1110 g9 8 7 5 0
shift type lregister number

Shiftinstructions operate on registers. A shift instruction consists of three parts:
— The register to be shifted (specified by the shift register fields).
— Type of shift to be performed (specified by the type field) and.
— The number of shifts to be performed (specified by the number field).
A shift instruction will have the form:
<shift register> <type> <number>
Every shift instruction causes the last bit which is discarded to be contained in the
M; the multi-shift indicator. This may be used as an input for the next shift in-
struction.
Note that bit 6 in the instruction is ignored.
The following four specifications of the <shift register> are available:
SHT Shift the T register (register field 00) Code: 154 000
Format: SHT <type> <number>
The T register is shifted as specified by the
<type> and <number>.
Affected: (T), M
SHD Shift the D register (register field 01) Code: 154 200
Format: SHD <type> <number>
The D register is shifted as specified by the
<type> and <number>.
Affected: (D), M
SHA Shift the A register {register field 10) Code: 154 400
Format: SHA <type> <number>
The A register is shifted as specified by the

<type> and <number>.
Affected: (A), M

ND-06.014.02

SAD Shift the A and D registers connected
(register field 11} Code: 154 600

Format: SAD <type> <number>

Bit 0 of the A register is connected to bit 15 of
the D register.
Affected: (A), (D}, M

Type Field
For each shift instruction, one of the following four types of shift can be specified:
Mnemonic Type field

nil Arithmetic shift. 0 0 Code: 000 000
During right shifts, the sign bit (bit
15} is extended during the shifting,
in left shifts zeros are fed into
vacated bit positions.

ROT Rotational shift. 0 1 Code: 001 000
In single register shifts bit 0 is
connected to bit 15, in double
shifts bit 0 of the D register is con-
nected to bit 15 of the A register.

ZIN Zero end input 10 Code: 002 000
LIN Link end input 1 1 Code: 003 000
The contents of the M indicator

will be shifted into the vacated
bit(s).

Number Field
The <number> in the number field of the instruction is a signed number, 5 bits
plus sign, which specifies the shift direction {positive or negative shift) and the

number of shifts.

N>0,i.e., if bitb = 0 then shift left
N <Q,i.e., if bit5 = 1then shift right

The maximum number of shifts is 31 left shifts and 32 right shifts.

Only the A, T and D registers may be shifted. If any other register is to be shifted,
its contents must first be placed in the A, T or D register.

If no shift direction is specified, left shift is assumed.

The number of shifts is interpreted by the assembler as an octal number.

ND-06.014.02

3-35

A right shift may be specified either by the correct 6 bit negative shift count or by
writing the mnemonic code SHR followed by the positive number of right shifts. A
shift instruction to shift the accumulator 3 positions to the right may be specified
by one of the following identical instructions:

SHA 75,
SHA 1003,
SHA SHR 3,

Note that SHA —3 cannot be used.
in a right shift, nothing should be written between the SHR mnemonic and the
number of shifts (this is peculiar for the assembler). A space to distinguish
between SHR and the number is necessary. SHR must be the last mnemonic used
in the instruction.
Some examples of correctly specified shift instructions:
Example 1:
Shift the A and D registers connected 8 positions {octal 10) left.

SAD 10,
Example 2:
Rotate the T register 6 places to the left.

SHTROT®6
Example 3:
Shift the connected A and D registers 16 positions to the left. Rotate shift is speci-
fied which, in this case, will cause the contents of the A and D registers to be ex-
changed. The same effect may be obtained by means of a SWAP SA DD instructi-
on (the SWAP is faster).

SADROT 20

Example 4:

Shift the D register two places to the right. Feed zeros into the left end during the
shifting. Bits 15 and 14 in the D register will become zero.

SHD ZIN SHR 2

ND-06.014.02

3-36

3.2.2.3 Register Operations

The register operation instructions specify operations between any two general
registers; a source register {sr} and a destination register (dr). Instructions may
consist of the parts:

<register operation> <sub-instruction> <sr> <dr>

There are eleven basic register operations belonging to the two groups:

ROP register operations (see Section 3.2.2.3.1)
EXTended register operation instructions (see Section 3.2.2.3.2)

In addition, there are two instructions for accessing single registers outside current
program level {see Section 3.3.3) and two instructions for accessing a whole regis-
ter block outside current program level {see Section 3.3.2).

Only the ROP instructions have sub-instructions.

The ROP register instructions are:

RADD Register addition, dr < + sr Code: 146 000
RSUB Register subtraction, dr <~ dr — sr Code: 146 600
RAND Register logical AND, dr < dr sr Code: 144 400
RORA Register logical OR, dr < dr V sr Code: 145500

REXO Register logical exclusive OR, dr <= dr V sr

[V REXO] Code: 145 000
SWAP Register exchange, sr <~ dr and dr < sr Code: 144 000
COPY Register transfer, dr < sr Code: 146 100

The EXTended register instructions are:

RMPY Integer inter-register multiply, AD < dr * sr Code: 141 200
RDIV Integer inter-register divide

AD/<sr> - A <(Quotient) and D < (Remain-

der) Code: 141 600
EXR Execute register, Instruction register < sr Code: 140 600
MIX3 Multiply index by 3, X < ({A) — 1) * 3 Code: 143 200

ND-06.014.02

3-37

The source registers <sr> are specified as follows:

SD D register as source Code: 10
SP Program counter as source Code: 20
SB B register as source Code: 30
SL L register as source Code: 40
SA A register as source Code: 50
ST T register as source Code: 60
SX X register as source Code: 70

If no source register is specified, zero will be taken as the source register.

The destination registers <dr> are specified as follows:

DD D register as destination Code: 1
DP Program counter as destination Code: 2
DB B register as destination Code: 3
DL L register as destination Code: 4
DA A register as destination Code: 5
DT T register as destination Code: 6
DX X register as destination Code: 7

ND-06.014.02

3.2.2.31

ROP — REGISTER OPERATION INSTRUCTIONS

15 11 10 9 8 7 6 B 3 2 0
ROP RAD|C | | CM1 FLD sr dr

The instruction decodes bits 0-10 as:
Source and Destination Register (bits 0-5):

Bits 0-2 specify one out of seven registers to be the destination register. The
destination register will be loaded with the result of the ROP instruction.

dr = 0: Normally, a no operation instruction, except that the carry indicator
will be reset if RAD = 1.

Bits 3-5 specify one out of seven registers containing the value to be used as the
source register operand.

sr o= 0 Produces a source value equal to zero.

If the P register is specified as source or destination, the value used is that of
the following instruction.

Subinstructions (bits 6-10):
CLD = 1: Clear destination register before operation. If the source and the
destination register are the same, the register as source is not

cleared.

CM1 = 1: Use complement {one’s complement) of source register as operand.
The source register remains unchanged.

Bits 8 and 9 are decoded in two different ways, depending on whether the RAD
bit is zero or one.

RAD = 1: Add source to destination.
When RAD = 1, bits C and | are decoded as follows:
C=1,1=0: Also add old carry to destination, ADC.

C=0, I =1: Also add 1 to destination, AD1.

It is not possible to both add previous carry and to add 1 in the same ROP
instruction. (If this is attempted, the instruction will be a NOOP-instruction.)

RAD = 0: Binary register operations.

ND-06.014.02
Rev. A

3-39

The C and | bits are decoded as follows:

i

0, 0: Register swap, destination and source exchanged, SWAP
0, 1: Logical and, RAND

1, 0: Logical exclusive or, REXO

= 1, 1: Logical inclusive or, RORA

i

OO0
il

If RAD = 1, the overflow and carry indicators are set according to the same rules
as apply for ADD: if RAD = 0, the overflow and carry indicators remain
unchanged.

Exclusive ROP Mnemonics

The following groups of ROP mnemonics are mutually exclusive, i.e., only one
may be used in a ROP instruction.

(SD, SP, SB, SL, SA, ST, SX)
Only one source register must be specified.
(DD, DP, DB, DL, DA, DT, DX)
Only one destination register must be specifed.
(ADC, AD1)
Both 1 and old carry cannot be added in the same instruction.
(RADD, RSUB, SWAP, RAND, REXO, RORA, COPY)
Add 1 or add carry may not be used together with the binary register operations.
(RSUB, CM1, ADC, AD1)
RSUB uses CM1 and AD1.
Specifying ROP Instructions

The recommended way to specify ROP instructions is to use the following
mnemonics which will be correctly translated by the assembly language.

RADD, dr < dr + sr Register addition

RSUB, dr < dr — sr Register subtraction

RAND, dr<dr sr Register logical AND

RORA, dr<drVsr Register logical OR

REXO, dr < drVsr Register logical exclusive OR
SWAP, dr < sr Register logical exclusive OR

COPY, dr < sr Register transfer

Note that all of the ROP instruction is included in all of the above mentioned
mnemonics.

ND-06.014.02

The assembly language will also permit use of the following combined mnemonics:

CM2 = CM1ADI1 Two's complement
EXIT = COPY SL DP Return from subroutine
RCLR = COPYO Register clear

RINC = RADD AD1 Register increment
RDCR = RADD CM1 Register decrement

The mnemonics RCLR, RINC and RDCR should be followed only by the destina-
tion register specifications.

ND-06.014.02

3-41

Decoding of

Resuit of
A - Instructions Instructions
< s
EQO-—OO
00000O0 SWAP <sr><dr> sr +—>dr
00001 SWAP CLD <sr><dr> dr<sr,sr—0
00010 SWAP CM1 <sr><dr> dr — &7, sr—dr
00011 SWAP CM1 CLD <sr><dr> dr <57, sr—0
00100 RAND <sr><dr> dr<+dr A sr
00101 RAND CLD <sr><dr> dr=—0
00110 RAND CM1 <sr><dr> dr<—dr Asr
00111 RAND CM1 CLD <sr><dr> dr<0
01000 REXO <sr><dr> dr < dr¥sr
01001 REXO CLD <sr><dr> dr < sr
01010 REXO CM1 <sr><dr> dr<drV3r
01011 REXO CM1 CLD <sr><dr> dr < SF
01100 RORA <sr><dr> dre—drVsr
01101 RORA CLD <sr><dr> dr «sr
01110 RORA CM1 <sr><dr> dr—drVsF
01111 RORA CM1 CLD <sr><dr> dr = 3&F
10000 RADD <sr><dr> dr<dr + sr
10001 RADDY CLD <sr><dr> dr «—sr
10010 RADD CM1 <sr><dr> dr—dr + &°
10011 RADD CM1 CLD <sr><dr> dr < &7
10100 RADD AD1 <sr><dr> dredr + sr + 1
10101 RADDY AD1 CLD <sr><dr> dresr + 1
10110 RADD? AD1 CM1 <sr><dr> dr<+dr — sr
10111 RADD®2 AD1 CM1 CLD <sr><dr> dr < —sr
11000 RADD ADC <sr><dr> dr—dr +sr + ¢
11001 RADDY ADC CLD <sr><dr> dresr + ¢
11010 RADD ADC CM1 <sr><dr> dredr + 5F + ¢
11011 RADDY ADC CM1 CLD <sr><dr> dr+—3sF + ¢
117100
11101
117110 } NOOP, do nothing
11111

The ROP Instruction Table

This table shows all possible combinations of the ROP instructions and their

results.

dr destination register
sr source register

sr one’s complement of sr

c old carry

D RADD CLD is equal to COPY
2 RADD AD1 CM1is equal to RSUB

ND-06.014.02
Rev. A

3-42

Some examples of use of the ROP instruction.

Example 1:

Add the contents of the A and X registers with the result in the X register:
RADD SA DX

Example 2:

Complement {two's complement) the A register:
COPY CM2SA DA

Example 3:

Subract the contents of the T register from the contents of the B register, with the
result in the B register:

RSUB ST DB

Example 4:

Increment the X register by one:
RINC DX

Example 5:

Decrement the L register by one. (One’s complement of zero equals —1 in two's
complement.):

RDCR DL
Example 6:
Clear the T register:
RCLR DT
Example 7:
Set the X register equal to one:
RCLR AD1DX
Example 8:
Set the B register equal to minus one:

RCLR CM1 DB

ND-06.014.02

3—43

Example 9:

Copy the contents of the X register into the T register:
COPY SXDT

Example 10:

Exchange the contents of the A and D registers:
SWAP DA DD

Example 11:

Form logical AND between the contents of the L and X registers with the result in
the X register:

RAND SL DX
Example 12:

Copy the contents of the A register into the X register and clear the A register (the
CLD code causes a destination register of zero to be swapped):

SWAP CLD SA DX
Example 13:
Form the two’s complement of the 32 bit double word in A and D:

COPY CM2 SD DD
COPY CM1 ADC SADA

Example 14

Add together the two double word length numbers N1 and N2 with the result in
the A and D registers:

LDD N1
SWAP SA DD
ADD N2+1

SWAP SA DD
RADD ADC DA
ADD N2

ND-06.014.02

344

Example 15:
Subroutine jump and return from subroutine to main program:

JPL SUBR % Error stop
ERR, WAIT
NORM,

SUBR, LDA OLA

SuB PER

SKP IF DA EQL ©
EXIT % Error Exit
EXIT AD1

The JPL instruction will place the address of the WAIT instruction into the L
register. {(When JPL is executed, the program counter points to the address after
this instruction.)

The subroutine SUBR has two exits, one to the location immediately following the
jump (EXIT), which in this case is an error exit, and one to the location two addres-
ses after the jump.

Note: If the P register is used as source {SP), the P register has already been
incremented and points to the next instruction.

ND-06.014.02

3.2.2.3.2

345

EXTENDED REGISTER OPERATION INSTRUCTIONS

RMPY

RDIV

Integer inter-register multiply
Format: RMPY <sr> <dr>

The <sr> and <dr> fields are used to specify
the two operands to be mutiplied (represented
as two's complement integers), the codes are
the same as for ROP.

The result is a 32 bit signed integer which will
be placed in the A and D registers with the 16
most significant bits in the A register and the
16 least significant bits in the D register.
Affected: (A), (D), C, 0, Q

Integer inter-register divide
Format: RDIV <sr>

The 32 bit signed integer contained in the
double accumulator AD is divided by the
contents of the register in the <sr> field, with
the quotient in the A register and the remain-
der in the D register, i.e., AD/sr — A <«
(quotient) and D < {remainder).

The sign of the remainder is always equal to
the sign of the dividend (AD). The destination
field of the instruction is not used. If the div-
ision causes overflow, the error indicator Z is
set to one.

The numbers are considered as fixed point
integers with the fixed point after the right-
most position.

ST

Affected: (A), (D), Z,C, 0, Q

ND-06.014.02

Code: 141 200

Code: 141 600

EXR

MIX 3

3-46

Example:
Before Division: After Division:
Double
Accumulator Divisor A D Z
22 4 5 2 0
—22 4 -5 -2 0
378452 —16 —23653 4 0
32767 1 32767 O 0
32768 1 1
65535 2 32762 1 0

Execute register
Format: EXR <sr>

The contents of the register specified in the
<sr> field of the instruction are transferred to
the instruction register, and the contents are
then executed as an instruction.

Note: If the instruction specified by the
contents of <sr> is a memory reference
instruction with relative addressing, the
address will be relative to the EXR
<sr> instruction. If the instruction specified by
the contents of <sr>is a JPL instruction, the L
register will point to the instruction after the
EXR <sr>. Note also that it is illegal to have an
EXR <sr> where the contents of <sr> is a new
EXR <sr >. If this is attempted, the error indi-
cator Z is set to one.

Affected: (IR}, registers changed by the
specified instruction.

Multiplx‘/ index by 3
Format: MIX3
The X register is set equal to the contents of
the A register minus one multiplied by three,
i.e.,

(X)-<[{A) — 1]* 3

Affected: (X)

ND-06.014.02

Code: 140 600

Code: 143200

3.2.24

3--47

Skip Instructions

15 11 10 8 7 6 5 32
SKP cond. 00 sr dr
SKP Skip next instruction if specified condition is

true.
Format: SKP <dr> <cond.> <sr>

The cond. field specifies one of eight condi-
tions between the registers <dr> and <sr>.
If the specified condition is true, the next
instruction is skipped. If not, the next instruc-
tion is not skipped. The registers <dr>
(destination register) and <sr> (source reg-
ister) are specified as for register operation
registers.

If the P register is specified as source or des-
tination, the value used is that of the following
instruction.

Note that bits 6 and 7 are both zero. Other-
wise, the instruction would belong to the

The SKP conditions test the result of the
arithmetic expression (dr) — (sr) which sets
the four indicators:

s — sign

z — result zero
c — carry

o — overflow

The eight SKP conditions are as follows: (next page)

ND-06.014.02
Rev. A

Code: 140 000

Mnemonic:

EQL

GEQ

GRE

MGRE

UEQ

LSS

LST

MLST

Condition

Field:

000

001

010

01

100

1

1

01

10

1

1

Condition

True if:

S¥%o =10

s%o =1

Equal. The condition tests for equality
between the source and destination
registers. (dr) — (sr)-= 0.

Greater or equal to. (dr} — (sr) = 0. The
contents of the source and destination
registers are treated as signed numbers.
Overflow is not taken care of.

Greater or equal to. (dr} — (sr) = 0. The
contents of the source and destination
registers are treated as signed numbers.
Overflow is taken care of.

Magnitude greater or equal to. (dr) — (sr)
> 0. The contents of the source and
destination registers are treated as un-
signed magnitudes, where 000 000 is the
lowest and 177 777 the highest number.
Overflow is taken care of.

Unequal to. The condition tests for equality
between the source and destination
registers. {dr) — (sr) = 0.

Less than. {dr) — (sr} < 0. The contents of
the source and destination registers are
treated as signed numbers. Overflow is not
taken care of.

Less than. (dr} — (sr) < 0. The contents of
the destination and source registers are
treated as signed numbers. Overflow is
taken care of.

Magnitude less than. (dr) — (sr} < 0. The
contents of the source and destination
registers are treated as unsigned magni-
tudes, where 000 000 is the lowest number
and 177 777 is the highest number. Over-
flow is taken care of.

ND-06.014.02

Rev. A

3-49

By swapping the register code in the <sr> and <dr> fields and inverting the
relationship code, it is also possible to test these relationships.

> Greater than
< Less than or equal

The programmer is advised to use the formats in the following examples when
specifying a skip instruction. (The mnemonic IF and the number 0, which both ha-
ve the value zero, are used for easy readability. They are not required.)

Comparing a register with zero:

SKPIF DL UEQ O Skip if L register #0
SKPIF DX GRE 0 Skip if X register 2 0
SKPIF DB LSS 0 Skip if B register <0
SKPIF 0 LSS ST Skipif T register >0
SKPIF 0 GRE SD Skipif D register <0

Comparing the arithmetic value of the contents of two registers:

SKPIF DD EQL SL Skipif D register = L register
SKPIF DT UEQ SX Skipif T register # X register
SKPIF DB LSS SA Skip if B register < A register or
Skip if A register > B register
SKPIF DX GRE SB Skip if X register 2B register or
Skip if B register < X register

Comparing two magnitude numbers:

SKPIF DL MGRE ST Skipif L register 2 T register or
Skip if T register < L register

SKPIF DB MLST SX Skipif B register < X register or
Skip if X register > B register

The magnitude tests are especially useful when comparing the relationship
between memory addresses which are represented as magnitude numbers in a
computer with more than 32K memory.

ND-06.014.02

3-50

3.2.2.5 Argument Instructions

15 11 10 9 8 7 0
ARG functidn number

Argument instructions operate on registers. The function field is used to specify
one out of eight argument instructions. The number field is used to specify the ar-
gument, a signed number ranging from — 128 to 127.

Negative numbers are represented in 2's complement. The 8 argument number
bits are extended to 16 bits using sign extension. The 8 argument number bits re-
main the 8 least significant bits of the 16 bits. The 8 most significant bits are ex-
tended with ones or zeros. When the number is positive, we extended with zeros.
When the number is negative,we extend with ones.

When we have a set argument instruction all of the 16 bits are copied into the
specified register.

When we have an add argument instruction all of the 16 bits are added to the 16
bits already in the specified register. See Figure 3.11.

15 11 10 9 8 7 0

ARG funition - number

————N

number

B R
<

these bits are extended with ones or zeros.
— DOnes if the number is negative
{— Zeros if the number is positive. j

~

The extended argument number is set or
added into one of the register B, A, T or X.

B, A, T or X register

Figure 3.11: Sign Extension of the Argument Instruction,

ND-06.014.02

3-b1

Bits 8 and 9 in the function field specify one out of four registers, B, A, T, or X,
and bit 10 one of the operations: set argument to or add argument to.

The eight argument instructions are:
SAA Set argument to A register Code: 170 400

Format: SAA <number>

AAA Add argument to A register Code: 172 400

Format: AAA <number>

SAX Set argument to X register Code: 171 400

Format: SAX <number>

AAX Add argument to X register Code: 173 400

Format: AAX <number>

SAT Setargument to T register Code: 171000

Format: SAT <number>

AAT Add argument to T register Code: 173 000

Format: AAT <number>

SAB Set argument to B register Code: 170 000

Format: SAB <number>

AAB Add argument to B register Code: 172000

Format: AAB <number>

An argument instruction should be specified by means of one of the eight
mnemonics listed above.

ND-06.014.02

3-52

Examples of argument instructions follow.
Example 1:

Set the contents of the T register equal to 13s. Bits 8-15 becomes zero because
of the sign extension:

SAT 13
Example 2:

The contents of the B register becomes 1777525 after execution of this instruc-
tion. Bits 8-15 becomes one because of the sign extension:

SAB —26s
Example 3:

Add 3 to the contents of the X register. The contents of bits 8-15 depend on the
previous content of the X-register:

AAX 3
Example 4:

Subtract 6 from the contents of the A register. The contents of bits 8-15 depend
on the previous content of the X-register.

AAA —8
Example 5:

The contents of the A register will be 177 640s after the execution of this
instruction.Bits 8-15 becomes one because of the sign extension:

SAA —140s

In an add argument instruction the carry and overflow indicators are set
according to the same rules as apply for the ADD instruction.

ND-06.014.02

3.2.2.6

3-563

Bit Operation Instructions

15

11 _10 76 32 0

BOP sub-instruction bn dr

BOP

Bit Operation

The BOP instruction specifies operation on single bits in one of the
seven general registers, or the status register.

The specified bit to be manipulated is specified by the <dr> and
<bn > fields in the instruction. The <dr> field specifies the particu-
lar register and the <bn> field the particular bit in that register.

The register <dr> is specified by means of the same mnemonics as
used for destination registers in the ROP and SKP instructions,
except if dr = 0 the status register is specified.

The BOP instruction may use a one bit accumulator register, K, to
hold temporary results.

Sixteen different sub-instructions are available in the BOP instruction.

In the following description “bit"" means the bit specified by destin-
ation register <dr> and bit number <bn >. Note that <bn> is
specified by octal numbers and the "bits”" are number 0, 10, 20, 30,
...., 170 because <bn> is contained in bits 3-6 of the BOP instruc-
tion.

The eight control indicators of the status register which may be
operated upon by means of the BOP instruction should be specified
with the following mnemonics:

SSPTM Page table mode (after defining SSPTM = 0)
SSTG Rounding indicator for floating point operations
SSK One bit accumulator indicator
SV Error indicator
SSQ Dynamic overflow indicator
5S0 Static overflow indicator
SSC Carry indicator
SSM Multi-shift link indicator
ND-06.014.02

Rev. A

3.2.2.6.1 BIT SKIP INSTRUCTIONS

Four sub-instructions are available to test the setting of the specified bit.

BSKP ZRO <bn> <dr> Skip next instruction if bit = 0.
BSKP ONE <bn> <dr> Skip next instruction if bit = 1

BSKP BCM <bn><dr> Skip next instruction if bity = K
BSKP BAC <bn><dr> Skip next instruction if bit = K

3.2.2.6.2 BIT SETINSTRUCTIONS

Four sub-instructions are available to set the specified bit.

BSET ZRO <bn> <dr> bit <0
BSET ONE <bn><dr> bit <1
BSET BCM <bn> <dr> bit < bity, complement bit
BSET BAC <bn> <dr> bit < K

ND-06.014.02

3-55

3.2.2.6.3 ONE BIT ACCUMULATOR INSTRUCTIONS

Eight sub-instructions are available to specify operations between the specified
bit and the one bit accumulator, K.

BSTA <bn> <dr> bit « K, K « 0 Store and clear

BSTC <bn> <dr> bit « K,, K «1 Store complement and set
BLDA <bn> <dr> K « bit Load

BLDC <bn> <dr> K « bit, Load complement

BANC <bn> <dr> K «bit, K Logical AND complement
BORC <bn> <dr> K « bit, VK Logical OR compliement
BAND <bn> <dr> K «bit K Logical AND

BORA <bn> <dr> K «bit VK Logical OR

Some examples of correctly specified bit operation instructions.
Example 1:
Skip next instruction if the carry indicator is set.
BSKP ONE SSC
Example 2:
Reset the static overflow indicator.
BSET ZRO SSO
Example 3:
Complement the sign bit in the T register (complement a floating point number).
BSET BCM 170, DT
Example 4:
Set bit 6 in the X register to one.
BSET ONE 60, DX
Example 5:

Copy A register bit 14 into X register bit 13.

BLDA 160, DA % K « Abit14
BSET BAC 150, DX % X bit 13 «K
ND-06.014.02

Rev. A

3.2.3 System Control Instruction

3.2.3.1 Monitor Call Instruction

MON Monitor Call Code: 153 000
Format: MON <number>

The instruction is used for monitor calls, and
causes an internal interrupt to program level
14. The parameter <number> following MON
must be specified between —200; and 177,.
This provides for 266 different monitor calls.
This parameter, sign extended, is also loaded
into the T register on program level 14.

ND-06.014.02

3-b7

3.3 PRIVILEGED INSTRUCTIONS

3.3.1 General

The instructions termed privileged instructions are available only to:

— programs running in system mode (rings 2 and 3)
— programs running in stop mode

3.3.2 Register Block Instructions

To facilitate the programming of registers on different program levels, two
instructions, SRB and LRB, are available for storing and loading of a complete
register block to and from memory.

A register block always consists of the following registers in this sequence:

Program counter
X register
T register
A register
D register
L register
TS Statusregister, bits 0-7. Bits 8-15 are zero
B register

ownwr o 44X T

The addressing for these two instructions is as follows:

The contents of the X register specify the effective memory address from where
the register block is read from or written into.

The specification for the two instructions are as follows:

15 7 6 3 2 0
LRB 000
SRB level 010

SRB Store Register Block Code: 162 402

Format: SRB <levelg * 10>

The instruction SRB <levely * 10> stores the
contents of the register block on the program
level specified in the level field of the instruc-
tion. The specified register block is stored in
succeeding memory locations starting at the
location specified by the contents of the X re-
gister. The SRB instruction is privileged.

ND-06.014.02

LRB

3-568

If the current program level is specified, the

stored P register points to the instruction

following SRB.

Affected:(EL),+ 1 + 2 + 3 +4 + 5 + 6 + 7
P-X T A D LSTS B

Example:

Let the contents of the X register be 042562,
then the instruction

SRB 140,

stores the contents of the register block on
program level 12 into the memory addresses
042562, 042563, ..., 042571,

Load Register Block
Format: LRB <level , » 10,>

The instruction <LRB level , » 10,> loads the
contents of the register block on program
level specified in the level field of the instruc-
tion. The specified register block is loaded by
the contents of succeeding memory locations
starting at the location specified by the
contents of the X register. f the current
program level is specified, the P register is
not affected. The LRB instruction is privileged.

Affected: All the registers on specified
program level are affected. Note: if the
current level is specified, the P register is nor
affected.

ND-06.014.02
Rev. A

Code: 1562 600

3.3.3

3-69

Inter-level Register Instructions

In the ND-100 there are 16 complete sets of registers and status indicators, one set
for each level.

The access to and from registers outside the current program level is by two
instructions:

IRR — Inter Register Read
IRW — Inter Register Write

The format of this instruction is as follows:

15 6 32 0

IRR
IRW

level dr

Bits 0-2 specify the register to be read, using the same codes and mnemonics as
are used for specifying destination registers for the register operations.

Bits 3-6 specify the program level number. It is possible to read the current
program l<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>