
ND—100
Reference Manual

ND—06.014.02
Revision A



NOTICE

The information in this document is subject to change without notice. Norsk Data
A.S assumes no responsibility for any errors that may appear in this document.
Norsk Data A.S assumes no responsibility for the use or reliability of its software
on equipment that is not furnished or supported by Norsk Data AS.

The information described in this document is protected by copyright. It may not
be photocopied, reproduced or translated without the prior consent of Norsk
Data A.S.

Copyright © 1984 by Norsk Data A.S



This manual is in loose leaf form for ease of updating. Old pages may be
removed and new pages easily inserted if the manual is revised.

The loose leaf form also allows you to place the manual in a ring binder (A) for
greater protection and convenience of use. Ring binders with 4 rings corre—
sponding to the holes in the manual may be ordered in two widths, 30 mm and
40 mm. Use the order form below.

The manual may also be placed in a plastic cover (B). This cover is more suitable
for manuals of less than 100 pages than for large manuals. Plastic covers may
also be ordered below.

‘-“ l..~_-.:_-..-.i
I‘

WDATAAS mum»:

‘ %§ %§

A Ring Binder B Plastic Cover

Please send your order to the local ND office or (in Norway) to:

Documentation Department
Norsk Data A.S
PO. Box 4, Lindeberg gard
Oslo 10

ORDER FORM

i would like to order

....... Ring Binders, 30 mm, at nkr 20,- per binder

....... Ring Binders, 40 mm, at nkr 25,- per binder

....... Plastic Covers at nkr 10,- per cover

Name .........................................................................................................................
Company ....................................................................................................................
Address ......................................................................................................................





PRINTING RECORD
ting otes

03/79 ORIGINAL PRINTING
01/82 SECOND PRINTING
01/83 Revision A

The following pages are revised or added:

v—~xiv,1—16,1~17,2—18,2—19, 2—27, 2—29, 2—41, 2—42
3—1, 3—21,3—27, 3—38, 3—41 , 3—47, 3-48, 3—53, 3—55, 3—58, 3—62,
3—72 to 3—74, 3—76, 3—80, 3—83 to 3—94
4—17,A-—9 to A—13,D—1, D—2, E—1,E—2, F—1, F—2

ND-——100 Reference Manual
ND—06.014.02 Rev. A

Febr. 1983

NORSK DATA A.S
PO. Box 4, Lindeberg gérd
Oslo 10, Norway



Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one or
more single pages to be merged into the manual by the user, each revised page
being listed on the new printing record sent out with the revision. The old
printing record should be replaced by the new one.

New versions and revisions are announced in the ND Bulletin and can be ordered
as described below.

The reader’s comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms, together with all types of inquiry and requests for documentation
should be sent to the local ND office or (in Norway) to:

Documentation Department
Norsk Data A.S
PO. Box 4, Lindeberg gérd
Oslo 10



PREFACE

THE PRODUCT

ND—lOO is a general purpose computer which is used in many applications like:

— Commercial data processing

— Research

— Education

— Process control

THE READER

— Technical and maintenance personnel requiring detailed information about
the ND—100 and it’s instruction repertoire.

— Programmers and operators needing detailed information about the ND—100
instruction repertoire.

PREFI’EOUIS/TE KNOWLEDGE

General computer knowledge is recommended.

THE MANUAL

This manual contains two main parts:

— Sections 1 and 2 describe the main building blocks of the ND—100 and their
functions.

—— Section 3 describes the ND—100 instruction repertoire in detail.
Section 4 describes the operator's interactions with the ND—100.

ND-06.014.02



vi

RELATED MANUALS

The following manuals give more detailed information about the ND-lOO’s
building blocks.

-— ND-100 Functional Description (ND—06.015).

—- ND—100 Input/Output System (ND—06.016).

ND—06.014.02



Section:

1.1
1.2

1.2.1
1.2.2

1.2.2.1

1.2.3

1.2.3.1
1.2.3.2
1.2.3.3
1.2.3.4

1.3
1.4
1.5

1.5.1
1.5.2
1.5.3

1.6

1.6.1
1.6.2

1.7
1.8

1.8.1
1.8.2
1.8.3

2.1

vii

TABLE OF CONTENTS

+ + +

Page:

INTRODUCTION TO ND-100 ................................................. 1—1

General Characteristics .................................................... 1—1
ND—100 Functional Modules............................................. 1—-3

General ....................................................................... 1—3
ND-100 Central Processing Unit (CPU) Module ......... 1—5

CPU Characteristics .............................................. 1—6

ND-100 Architecture ................................................... 1 —7

General .................................................................. 1—7
ND—100 Configuration Examples ........................... 1—8
Multiprocessor Systems ....................................... 1 —9
Remote Operation ................................................. 1——10

The Interrupt System ....................................................... 1—11
The Memory Management System (MMS) ..................... 1—12
The Memory System ........................................................ 1 —13

Main Memory ............................................................. 1—13
Cache Memory ........................................................... 1—13
Multiport Memory ....................................................... 1—13

The Input/Output System ................................................ 1—14

Programmed Input/Output -— PlO ............................. 1—14
Direct Memory Access — DMA ................................. 1—14

ND—100 Peripheral Equipment ......................................... 1—15
ND—100 Software ......................................

'
........................ 1—16

The Operating System ................................................ 1—16
Supporting Software .................................................. 1—17
Distributed Data Processing ....................................... 1—17

SYSTEM DESCRIPTION ........................................................ 2—1

Central Processor...‘.’.......................................................... 2—1

ND-06.014.02



viii

Section: Page:

2.1.1 General ...................................................................... 2-——1
2.1.2 Internal Communication ............................................ 2—2
2.1.3 The Address Arithmetic .............................................. 2—3
2.1.4 Instruction Fetch ....................................................... 2—3
2.1.5 Prefetch ..................................................................... 2—3
2.1.6 Instruction Execution ................................................. 2-—4
2.1.7 Main Arithmetic .......................................................... 2——4
2.1.8 The Register File ....................................................... 2--—6
2.1.9 Status Indicators ....................................................... 2-—8

2.2 The Interrupt System ....................................................... 2-—10

2.2.1 General ...................................................................... 2——1O
2.2.2 Functional Description .............................................. 2——12
2.2.3 The External Interrupt System ................................... 2——14
2.2.4 The Internal Interrupt System .................................... 2-—16

2.2.4.1 The IIC and IIE Registers ..................................... 2—17
2.2.4.2 Internal Hardware Status Interrupts .................... 2——18
2.2.4.3 Reset of the IIC Register ..................................... 2——21

2.2.5 Programmming Control of the Interrupt System ...... 2——21

2.2.5.1 Programmming the PID and PIE Registers ......... 2——21
2.2.5.2 The WAIT, ION and IOF Instruction ..................... 2-—22
2.2.5.3 The Previous Level Register, PVL ........................ 2——22
2.2.5.4 Vectored Interrupts and the IDENT Instructions .2——23

2.2.6 Initializing of the Interrupt System ........................... 2——24

2.3 The Memory Management System ................................. 2—-25

2.3.1 General ...................................................................... 2——25
2.3.2 Memory Management Architecture .......................... 2——26
2.3.3 ' The Paging System ..................................................... 2——28
2.3.4 The Shadow Memory ................................................. 2—~30
2.3.5 The Page Tables ......................................................... 2—-32

2.3.5.1 Page Used and Written in Page .......................... 2—-34
2.3.5.2 Page Table Selection ........................................... 2—-34

2.3.6 Memory Protection System ...................................... 2—-35

2.3.6.1 Page Protection System ....................................... 2—-35
2.3.6.2 Ring Protection System ....................................... 2—-37

2.3.7 Privileged Instructions ............................................... 2—-39
2.3.8 Memory Management Control and Status ............... 2—40

ND—O6.014.02



Section:

2.3.8.1
2.3.8.2
2.3.8.3

2.3.9

2.4

2.4.1
2.4.2

2.4.2.1
2.4.2.2
2.4.2.3
2.4.2.4

2.4.3
2.4.4

2.4.4.1
2.4.4.2

2.4.5

2.4.5.1
2.4.5.2

2.4.6

2.4.6.1
2.4.6.2
2.4.6.3

2.4.6.3.1
2.4.6.3.2

2.5

2.5.1
2.5.2
2.5.3
2.5.4
2.5.5
2.5.6

2.5.6.1
2.5.6.2
2.5.6.3

2.5.7

Page:

The PON and POF Instructions ............................. 2—40
Paging Control Registers ...................................... 2—41
Paging Status Register ......................................... 2—42

The SEX and REX Instructions ................................... 2—43

ND—100 Memory System .................................................. 2—44

General ...................................................................... 2—44
ND—100 Memory Architecture .................................... 2—46

Local (Main) Memory ............................................ 2—47
Memory Module Placement in ND—100 Bus ......... 2—47
The Position Code ................................................. 2—-47
The Thumbwheel Setting ...................................... 2—48

Memory Error Correction ........................................... 2—50
Memory Control and Status ....................................... 2—52

Error Correction Control Register (ECCR) ............ 2—-52
Memory Status Regsiters (PEA and PES) ............ 2—53

Multiport Memory....................................................... 2—54

Big Multiport Memory (BMPM) ............................ 2—54
Multiport Memory 4 (MPM4) ................................ 2—54

Cache Memory ........................................................... 2—55

Cache Memory Architecture ................................. 2—55
Cache Memory Organization ................................ 2—56
Cache Control and Status ..................................... 2—58

Cache Control .................................................. 2—58
Cache Status Register ..................................... 2—59

ND-100 Input/Output System .......................................... 2—60

General ....................................................................... 2—60
NrD—100 l/O Architecture ............................................. 2—61
ND-100 Card Crate — Physical Layout ...................... 2—62
The ND-100 Bus .......................................................... 2—65
ND—100 l/O System Functional Description ............... 2—66
Programmed Input/Output — PIO ............................. 2—67

The Input/Output Instruction — IOX .................... 2—67
Interface Channels and Registers ......................... 2—68
Control and Status Registers ................................ 2—71

Direct Memory Access (DMA) ................................... 2—72

ND-06.014.02



Section:

2.5.7.1
2.5.7.2

2.57.2.1
2.57.2.2
2.57.2.3
2.57.2.4

2.5.8

2.5.8.1
2.5.8.2
2.5.8.3

2.5.9

2.5.9.1
2.5.9.2

2.6

2.6.1
2.6.2

3.1

3.1.1
3.1.2

3.1.2.1
3.1.2.2
3.1.2.3
3.1.2.4
3.1.2.5
3.1.2.6

3.2

3.2.1

3.2.1.1
3.2.1.2
3.2.1.3

Page:

General .................................................................. 2—72
DMA Controller Operation ..................................... 2—72

Initialization ............................................................ 2—73
Transfer ................................................................. 2—73
Termination and Status Check.............................. 2—73
General Considerations ......................................... 2—74

The l/O System and the Interrupt System ................ 2—75

General .................................................................. 2—75
Interrupt Level Usage ............................................ 2—75
Device Interrupt Identification .............................. 2—76

Programming Specifidations for I/O Devices
on the CPU Board ....................................................... 2—76

The Real-time Clock .............................................. 2—77
The CUrrent Loop Interface ................................... 2—-77

ND—IOO Bus Extender (BEX) ............................................ 2—79

General ...................................................................... 2—79
Bus Extender Architecture ......................................... 2—79

ND-IOO INSTRUCTIONS ....................................................... 3—1

Introduction to the Instruction Repertoire ...................... 3—1

General ....................................................................... 3—1
Instruction and Data Formats .................................... 3—3

Single Bit ............................................................... 3—3
8 Bit Byte ................................................... ,............ 3—4
16 Bit Word ............................................................ 3—4
32 Bit Double Word ............................................... 3—5
48 Bit Floating Point Word .................................... 3—6
32 Bit Floating Point Word .................................... 3—7

The Instruction Repertoire ............................................... 3—9

Memory Reference Instructions ................................. 3—9

Addressing Structure ............................................ 3—9
Store Instructions .................................................. 3—18
Load Instructions ................................................... 3—20

ND—06.014.02



Section:

3.2.1.4
3.2.1.5
3.2.1.6
3.2.1.7

3.2.2

3.2.2.1

3.2.2.1.1
3.2.2.1.2

3.2.2.2
3.2.2.3

3.2.2.3.1
3.2.2.3.2

3.2.2.4
‘

3.2.2.5
3.2.2.6

3.22.6.1
3.22.6.2
3.22.6.3

3.2.3

3.2.3.1

3.3

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5

3.3.5.1

3.3.6

3.3.6.1
3.3.6.2
3.3.6.3

3.3.7
3.3.8
3.3.9
3.3.10

xi

Page:

Arithmetical and Logical Instructions ................... 3—21
Sequencing Instructions ....................................... 3—24
Byte Instructions ................................................... 3—26
Extended BYTE—instructions .................................. 3—27

Register Instructions .................................................. 3—30

Floating Point Conversion Instructions ................. 3—30

Standard 48 Bit Floating Point Conversion ..... 3—30
Optional 32 Bit Floating Point Conversion ....... 3—32

Shift Instructions ................................................... 3—33
Register Operations .............................................. 3—36

ROP — Register Operation Instructions ......... 3——38
Extended Register Operation Instructions ...... 3—45

Skip Instructions ................................................... 3—47
Argument Instructions .......................................... 3—50
Bit Operation Instructions ..................................... 3—53

Bit Skip Instructions ........................................ 3—54
Bit Set Instructions .......................................... 3—54
One Bit Accumulator Instructions ................... 3—55

System Control Instruction ........................................ 3—56

Monitor Call Instruction ........................................ 3—56

Privileged Instructions ..................................................... 3—57

General ...................................................................... 3—57
Register Block Instructions ........................................ 3—57
Inter-level Register Instructions ................................. 3—59
Accumulator Transfer Instructions ............................. 3—60
Input/Output Control Instructions .............................. 3—63

Extension of the Device Register Address ........... 3—64

System Control Instructions ....................................... 3—64

Interrupt Control Instructions ............................... 3——65
Memory Management Control Instructions .......... 3—68
Wait or Give Up Priority ........................................ 3—70

Examine and Deposit .................................................. 3—71
Load Writeable Control Store .................................... 3—72
Customer Specified Instructions ................................ 3—73
Physical Memory Read/Write Instructions ................ 3—74

ND—06.014.02



Section:

3.3.10.1
3.3.10.2

3.4

3.4.1

3.4.1.1

3.4.1.1.1
3.4.1.1.2

3.4.1.2

3.4.2

3.4.2.1

3.5

351
3.5.2
3.5.3
3.5.4
3.5.5
3.5.6

4.1

4.1.1
4.1.2

4.2

4.2.1
4.2.2

4.2.2.1

4.2.2.1.1
4.2.2.1.2
4.2.2.1.3
4.2.2.1.4
4.2.2.1.5

xii

Page:

Format of Instructions ........................................... 3—74
Addressing ............................................................ 3—75

Instructions in the «Commercial Extended»
(CE) Option ...................................................................... 3—76

Decimal Instructions ................................................... 3—76

Data Formats for Decimal Instructions ................ 3——76

Packed Decimal Number ................................. 3—76
ASCII Coded Decimal Number ........................ 3—78

The Decimal Instructions ...................................... 3—80

Stack Handling Instructions ....................................... 3—85

Data Structure Operated upon by the
Instructions .......................................................... 3—85

Instructions in the CX—Option .......................................... 3—87

Decimal Instructions ...................................................3—87
Stack Handling Instructions .......................................3*88
Move Words ............................................................... 3—88
Test and Set ............................................................... 3—90
Read Don’t Use Cache ............................................... 3—91
SINTRAN l|| Segment Change Instructions ............... 3——92

OPERATOR’S INTERACTION ................................................ 4—1

Control Panel Push Buttons .............................................. 4—1

The Panel Lock Key ..................................................... 4——3
Status Indicators ........................................................4—3

Microprogram for Operator's Communication ................ 4—4

General Considerations .............................................. 4—4
Control Functions ....................................................... 4—6

System Control ...................................................... 4—6

Master Clear .................................................... 4—6
Stop .................................................................. 4—6
ALD Load ......................................................... 4—7
General Load .................................................... 4-—8
Leave MOPC ................................................... 4——9

ND—06.014.02
Rev A



Sect/on:

4.2.2.2

4.2.2.2.1
4.2.2.2.2
4.2.2.2.3
4.2.2.2.4
4.2.2.2.5
4.2.2.2.6

4.2.2.3

4.2.2.3.1
4.2.2.3.2
4.2.2.3.3

4.2.3

4.2.3.1

4.2.3.1.1
4.2.3.1.2
4.2.3.1.3
4.2.3.1.4
4.23.1.5

4.23.1.6

4.2.3.2

4.2.3.2.1
4.2.3.2.2
4.2.3.2.3
4.2.3.2.4
4.2.3.2.5

4.2.3.3

4.23.3.1
4.23.3.2
4.2.3.3.3
4.2.3.3.4

4.2.4

4.2.4.1
4.2.4.2
4.2.4.3

xiii

Page:

Program Execution ............................................... 4—8

Start Program ................................................. 4—8
Continue Program ........................................... 4—8
Single Instruction ........................................... 4—9
Instruction Breakpoint .................................... 4—9
Manual Instruction ..........................................4_.3
Single I/O Instruction Function ...................... 4—9

Miscellaneous Functions ...................................... 4—10

Internal Memory Test ..................................... 4—10
Delete Entry .................................................... 4—10
Current Location Counter ............................... 4—10

Monitor Functions ..................................................... 4—11

Memory Functions ............................................... 4—11

Physical Examine Mode .................................. 4—11
Virtual Examine Mode .................................... 4—11
Memory Examine ............................................ 4—12
Memory Deposit ............................................. 4—12
Deposit Rules .................................................. 4—13

Memory Dump ................................................ 4—13

Register Functions ............................................... 4—14

Register Examine ............................................4—14
Register Deposit ............................................. 4—15
Register Dump — RD ....................................... 4—15
User Register - U ............................................ 4—15
Operator Panel Switch Register — OPR .......... 4—16

Internal Register Functions .................................. 4—17

Internal Register Examine .............................. 4—17
Internal Register Deposit ................................ 4—18
Internal Register Dump — IRD ........................ 4—19
A Scratch Register Dump — RDE .................... 4—19

Display Functions ...................................................... 4—20

Displayed Format ................................................. 4—20
Display Memory Bus ............................................ 4—-—21
Display Activity .................................................... 4—21

ND—06.014.02
Rev. A



Section:

4.2.5

4.2.5.1
4.2.5.2
4.2.5.3

4.3

4.3.1
4.3.2

Appendixes:

Al
A2

El
E2
E.3

F.1
F.2

xiv

Page:

Bootstrap Loaders ..................................................... 4—22

Binary Format Load .............................................. 4—22
Mass Storage Load .............................................. 4—23
Automatic Load Descriptor .................................. 4—24

The Display ....................................................................... 4—25

General ...................................................................... 4—25
The Different Display Functions ................................. 4—25

Page:

ND—IOO INSTRUCTIONS ...................................................... A——I

ND-IOO Instruction Codes ................................................ A—I
NDAIOO Instruction Execution Times ............................... A—12

MODEL 33 ASR/KSR TELETYPE CODE (ASCII) IN
BINARY FORM ...................................................................... B—I

STANDARD ND—IOD DEVICE REGISTER ADDRESSES
AND IDENT CODES .............................................................. C-I

INTERNAL REGISTERS ......................................................... D—I

OPERATOR'S COMMUNICATION INSTRUCTION
SURVEY ................................................................................ E—I

Control Functions (Does not affect DISPLAY) .................. E—I
Display Functions (Affects only DISPLAY) ........................ E-2
Monitor Functions (Also shown on DISPLAY) .................. E—3

ND—100 TECHNICAL SPECIFICATIONS ................................ F~1

Specifications ................................................................... F—I
Physical .............................................................................. F—2

ND—06.014.02
Rev. A



1.1

INTRODUCTION TO ND-1OO

GENERAL CHARA C TER/S TICS

ND-100 is a general purpose computer and it is used in many applications like:

— Commercial data processing.
— Research.
— Education.
— Process control.

ND-100 is completely software compatible with NORD 10/8 and runs the same
operating system, SINTRAN |l| /VS.

The ND—lOO Central Processing Unit (CPU) is placed on a single module. The word
length is 16 bits in parallel.

SINTRAN I ITERMINAL

1 b

Data processing
application

Figure 1.7: The Operating System SINTRAN Ill/VS allows the ND- 700 to be
used in many Applications.

ND-06.014.02



ND-06.014.02



1.2

1.2.1

ND- 700 FUNCTIONAL MODULES

General

A standard ND-100 printed board module size is 366.8 mm x 280 mm.

The board size, together with the use of Large Scale Integrated (LSI) circuits,
allows:

— Small physical dimensions.
— Closely related functions placed on the same module, thus reducing

external wiring to a minimum.

Communication between ND—100 functional modules is done through an advanced
high—speed bus, called ND-100 bus. The ND-100 bus is a printed back plane. The
bus is available in two versions, one for connecting 12 modules and one for con-
necting 21 modules. The two versions are mounted in different card crates and dif-
ferent cabinets.

"' _ —I

280 mm

1

H D
368.8 mm

Figure 7.2: The Standard ND— 700 Printed Board Module.

ND—06.014.02



1—4

mmnz>m0

J<ZENFXm

m43002>¢02m5

95:8.

a

v.85..553"

NJDDOSw0<uzwhz.wo.>wo

.xmmSEQS
ms
to

3.3m
Sm.
U

.25
m
:1

totumttob

mbcE
02

.Q2

um.“

$33k

dmz<m5‘s
.

22220
n\

3.5.58:“

355:...

2.55555

233%

!

l.l.l.|

I_l.lnu-l
l

kowkmo

.__<u_

x0040
—

5:50“.

‘
a

{EMEE

sssssss

wJDOOEtEwG<Z<2

waDDOEDmQ

mam

009-02

ND-06.014.02



1 .2.2 ND- 700 Central Processing Unit (CPU) Module

The CPU module contains, in addition to the CPU itself:

— A real-time clock.
A current loop terminal interface with switch selectable speeds, 110 - 9600
baud/bps (bits per second). '

— Power fail and automatic restart.

ND-06.014.02



1.2.2.1

1—6

CPU Characteristics

The Processor

ND-100 CPU is a 16 bit parallel processor designed around the bit slice ALU (arith-
metic logic unit) element.

The processor is controlled by a microprogram. The following is implemented in
the microprogram:

— All instructions.
— Operator communication.
— Built-in test routines.
— Bootstrap loaders.

The microprogram is physically located in a 2k word by 64 bit Read Only Memory
(ROM). One microinstruction is fetched and executed in the internal CPU cycle
time. The cycle time is 150 ns for the fast CPU and 190 ns for the slow version.

Instruction Prefetch

A fast processor should not have to wait for instructions. in order to reduce
instruction fetch waiting time, the ND-100 CPU will normally hold two instruc-
tions, the current executing instruction and the next one. This is accomplished by
fetching the next instruction while executing the current instruction.

Special Feature

To allow dynamic microprogramming, a 256 word by 64 bit writeable control store
is available as an option.

Instruction Set and Data Format

Although a standard ND-100 word is 16 hits, the computer has a comprehensive
instruction set which includes operations on:

—— Bits.
— Bytes.
~ Single words.
— Dpuble words.
—— Triple words.
—~ Register file.
— Fixed or floating point arithmetic (32 - or 48 - bit word).

ND-06.014.02



1.2.3 ND- 700 Architecture

1.2.3.1 General

Figure 1.4 shows the ND-100 bus structure. The main highway for data and
addresses in the system is the ND—100 bus. Data and address flow are shown by
the arrows.

ND_100 i______
_. ND-100 BUS

l BU s ' ' ‘ ’ ‘ ’
CPU | CO N TR 0 L/

l ————— M M s
4__. CA‘EHE DEVICE MEMO R Y

INTERFACE MODULESMODULE
MODULES

MMS = Memory Management System

Figure 7.4: ND- 700 Bus Structure

Physically, the bus is organized as a printed backplane containing 12 or 21 ”plug
in” positions for module connection.

All communication between ND-100 modules except CPU, MMS and CACHE
communication, is provided by this bus. That is, the ND-100 bus connects the:

—- CPU to the memory system (including MMS and CACHE).
. — CPU to the input/output system.

— DMA controllers to the memory system (DMA = Direct Memory
Access). DMA controller is a special device interface module.

A bus control/driver, which is an integrated part of the CPU, controls the activity
on the bus. This common bus architecture has several advantages:

— Uniform connection for all modules makes the system flexible and easy to
expand.

— No external wiring of busses gives a more reliable system.

— No overhead in connecting several busses between source and destination
makes a faster system (one crate system only).

ND-06.014.02



1.2.3.2

ND-lOO BUS

1—8

ND-lOO Configuration Examples

Figure 1.5 shows a typical medium sized ND-100 single processor system.

z: :2: : 1: 7i
WCS l OPTION? WRITEABLE CONTROL STORE (WCS)

CPU MODULE CONSOLE
. RTC TERMINAL
. TTY

OPERATOR RTC = Real Time Clock
PANEL TTY = Teletype

:OPTIONAL : {
MMS MODULE :DlSPLAY I/l

CACHE

luMb up to 4 10M byte disk units
10M byte
DISK
DMA
CONTROLLER

O
VDU l 4 Visual Display Units (VDU)

DEVICE '
INTERFACE _—__..

C]MODULE
VDU 4

O Floppy Disk

2 MEMORY
MODULES

128Kw

Figure 1.5: ND- 700 Configuration Example

ND—06.014.02



1 2.3.3 Multiprocessor Systems

For in-house communication between two ND—100s, between a ND-100 and
NORD-lO/S, or between a ND-100 and a NORD-50, a shared memory system
could be used.

The shared memory system is available through the Big Multiport Memory System

(BMPM) which allows up to four sources to access the same physical storage.

Example:

NDJOO COMPUTER N0400 COMPUTER
l-— -N ————————— “I —‘-----------

O4
l

maus
I I

NonmsusI
I I | I

I
CPU No.1

I
l CPU No.2 I‘ l

I I SHAREDMEMORY I
I

|
I BANK I I

l I l 32Kw-256Kw I :7 I
I MMs I MULTWORTPORTS I MMS I

I CACHE l I CACHE T I
I I A ALB. I C I o I II I I I I I
I ' BMPM I

l
I I _ BMPM I

I TRANS. I V I TRANS. III I FREE PORTS I
I

I ANYRANGEOF | ANYRANGEOF I
I PERWHERALS l I PERPHERALS I
I l l l
I I . ' I
I I I I
I l I I
I LOCAL I I LOCAL Iw wEMORY I MEMORY V I
l 64Kw

I
I 54Kw I

I |

I | I I
_____________ _J -I____._____.._._____.J

Figure 7. 6: Communication between two ND- 100 Computers using the
Multiprocessor System.

ND-06.014.02



1.2.3.4 Remote Operation

1—10

Remote operation in this context means one ND-100 being controlled by another
ND-100. The two machines may be in the same room or connected via telephone
lines using low or high speed modems.

The HDLC module is designed for this kind of operation, including DMA controlled
communication. Figure 1.7 shows an example.

MASTER ’No-Ioo COMPUTER
l- —————————— "l

ND-lOO BUS

CPU

MMS
CACHE

HDLC V’EODEM

ANY RANGE OF
PERlPHERALS

MEMORY
256Kw

LINE
‘MODEM

SLAVE ND-100 COMPUTER
r-_____._.___._

ND-100 BUS ll
l
l
l
I CPUl -——u
l
l
l

SPECIAL/GENERAU
PURPOSE
PER lPHERA LS

HDLC
WITH
AUTOMAT-
lC LOAD

MEMORY
G4Kw

I
I
l
I
I
I
I
l
I
I
l
I
l
I
I
I
I
II
III
l
I
I
I

_I

Figure 7. 7: Connection between two ND- 700 computers using a Telephone Line.

ND—06.014.02



1.3 THE INTERRUPT SYSTEM

The NDA100 has a 16 level
priority interrupt system,
marked PL 0—15

To each level is assigned a
complete set of all central
registers: STS, A, D, T, L, X
B and P

P 2
. 8 Scratchreg.

These registers plus —-————->
eight scratch registers Figure 7.8: High Speed Register File.
are located in a high speed register
file close to the the CPU arithmetic both located on the CPU module.
With this architecture, switching between two program levels is reduced to
selecting the working set of control registers. The time required for this opera-
tion is only 5 us.

All program levels may be activated by software. In addition, each of the levels
10, 11, 12 and 13 may be activated by 512 vectored l/O interrupts. An IDENT
instruction is used to identify the interrupting device.

Program level 14 is used by the Internal lnterrupt System, which monitors error
conditions or traps in the CPU. Program level 15 may only have one l/O interrupt
source.

Program level 15 is not used by standard NORD equipment or software, but is
available for users who need immediate access to the CPU.

The high speed register file is described in further detail later in this manual.

ND-06.014.02



1.4

1—12

THE MEMORY MANAGEMENT SYSTEM {MMS}

The hardware memory management module is necessary for running the
SINTRAN III/VS (Virtual Storage) operating system. The SlNTRAN Ill/VS
operating system includes:

— 64 K words (128 K bytes) virtual address range for each user independent of
physical memory capacity.

—- Dynamic allocation/relocation of programs in memory.

— Memory protection.

The implementation of the memory management system is based on two major
subsystems:

— The Paging System.
— The Memory Protection System.

The paging system maps a 16 bit virtual address (describing a user's 64 K word
virtual storage) into a 19 bit physical address, thus extending the physical
address space to 512 K words. The paging system also has an extended mode
which handles physical memory space up to 16 M words (32 M bytes). This mode
gives a 24 bit physical address.

The implementation of paging is based on dividing physical memory into 1 K
word pages which, under operating system control, are assigned to active
programs.

Four page tables of 64 words each hold the physical page numbers assigned to
an active program. These tables are located in high speed registers, reducing pa-
ging overhead to practically zero.

The memory protection system may be divided into two subsystems:

—- The Page Protect System.
— The Ring Protect System.

The page protect system allows a page to be protected from read, write or
instruction fetch accesses or any combination of these.

The ring protect system places each page and each user on one of four priority
rings.

A page on one specific ring may not be accessed by a program that is assigned
a lower priority ring number. This system is used to protect system programs
from user programs, the operating system from its subprograms and the system
kernel from the rest of the operating system.

ND—06.014.02



1.5

1.5.1

1.5.2

1.5.3

1—1 3

THE MEMORY SYSTEM

The memory system has a flexible and hierarchial architecture. The memory
system includes:

—— 1K words (2K bytes) CACHE memory.
— Up to 16 M words main memory.
— Memory channel to the multiport memory system.

Main Memory

Main memory can have any size from:

32K words to 16 M words in steps of 32K words.

Each word in main memory is stored with a 6 bit error correction code which
makes it possible to:

— Correct and log single bit errors.
— Detect and report all double errors and most multiple errors.

Seen from the program, memory access time depends on the effect of prefetch.

Cache Memory

Cache memory is optional and physically located on the memory management
module.

The presence of cache memory will reduce average memory access time
significantly. Cache is a high speed bipolar memory.

The purpose of cache memory is to hold the most recent data and instructions to
be processed.

Mu/tiport Memory

In order for the ND—100 to access the NORD-10/S Big multiport memory, a multi-
port memory transceiver is available.

ND—06.014.02



1.6

1.6.1

1.6.2

THE INPUT/0UTPUT SYSTEM

The ND-100 input/output system is designed to be a flexible system providing
communication between slow, character oriented devices as well as high speed,
block oriented devices.

Depending on the speed, a device could be connected to ND-100 with:

— CPU controlled, Programmed Input/Output (PlO).
— With Direct Memory Access (DMA).

PIO is used for slow devices and DMA for fast devices.

Programmed Input/Output — P/O

Program controlled input/output always operates via the A register, which implies
that each word of input/output has to be programmed via this register.

Direct Memory Access — DMA

A Direct Memory Access (DMA) channel is used to obtain high transfer rates to
and from main memory. CPU activity and DMA transfers may be performed
simultaneously, i.e., the DMA transfer is not controlled by the CPU as a FIG
transfer is.

More than one DMA device may be active at the same time, sharing the total band
width of the DMA channel. Total band width is 1.8 M words per second.

ND-06.014.02



1.7 ND- 700 PERIPHERAL EQUIPMENT

Most computer peripherals can be connected to ND—100. The range of standard
peripherals includes:

Sequential Devices

— Terminals.
— Card readers.
-— Line printers/plotters.

Mass Storage Devices

— Magnetic tapes.
— Disks from 10M bytes to 288M bytes per disk. Up to 4 disks may be connected

to each input/output card.
— Floppy disks.

Computer networks

— Asynchronous modem controllers.
— Synchronous modem controllers including selectable frame format, HDLC

or bisync.

In addition, ND-100 can be equipped with a NORD—lO/S bus adapter which gives
access to all NOR D-10/S peripherals.

ND—06.014.02



1.8

1.8.1

ND-100 SOFTWARE

The Operating System

The standard operating system for ND-100 computers is SINTRAN III, which may
be delivered in two versions:

1. SINTRAN Ill/VS (Virtual Storage) and VSE (Virtual Storage Extended)

SINTRAN Ill/VS and VSE are general purpose mass storage based operating

systems offering facilities for

— Real-time.
— Timesharing.
—- Batch processing.

2. SINTRAN lll/RT for machines without mass storage devices intended for

real—time applications in process control and data communication.

ND-06.014.02
Rev. A



l .8.2 Supporting Software

A number of programming languages and software systems complement the
capabilities of the ND—100 SINTRAN Ill/VS and VSE.

—— ND standard FORTRAN following the ANSI—77 FORTRAN standards.

— ND COBOL system following the ANSI-74 COBOL standards.

— ND BASIC compiler, an extended version of the program generator for

business oriented applications.

— PASCAL

—— SIMULA

— PLANC, a high level system programming language.

— MAC assembler with macro expansions.

— PED and QED, interactive text editors.

— The NOTIS office automation system for text and document processing,
information retrieval and report generation.

— The SIBAS data base management system, designed in accordance with
the Codasyl data base recommendations.

—— ND TPS (Transaction Processing System) offering the necessary
operational system software for development of transaction processing
programs.

— The FOCUS Screen Handling System, an interactive program to create,
modify and use screen pictures.

— ND Data Entry System, a set of software modules designed to simplify

terminal oriented data entry operations.

Other useful utility programs are ND SORT Package, Scientific Subroutine
Library, Commercial Subroutine Library, ND PLOT Package.

For data communication with large scale computers, there are terminal emulator
packages for: IBM 360/370, HB—6000, CDC CYBER, UNIVAC and others.

1 .8.3 Distributed Data Processing

ND NET is a communication system for computer networks, enabling users to
communicate with other computers in a network.

ND—06.014.02
Rev. A



ND—06.014.02



2 SYSTEM DESCRIPTION

2.1 CENTRAL PROCESSOR

2.1.1 General

ND-100 is microprogrammed and all instruction execution is in firmware using a

2K x 64 bit, fast Read Only Memory (ROM). To allow dynamic microprogram-
ming, a 256 word by 64 bit writeable control store is optional. This gives the pos—

sibility of extending the ND-100 instruction set for special applications. The add-

ress arithmetic is also implemented in micr0program. This means that the add—

ressing structure of ND—100 can be changed by rewriting the micr0program.

ND—06.014.02



2.1 .2 Internal Communication

The internal communication in the CPU is performed over the internal data bus
(IDB). A bus is a highway for information, where only one word of information
may travel at a time. The microprogram enables the information for the IDB from
a certain source, and gives enable signals to the destination parts in the CPU
where the information is needed.

Figure 2.1 shows how the DB communicates with the central parts in the CPU.
The memory management system and cache are connected directly to IDB and
ND—100 bus for faster access. The bus control is implemented on the CPU
module and controls the activity on the ND—100 bus.

TO/FROM
r — " """""""""" l MJLTIPORT

I' IDISPLAY MEMORY I LOCAL MULTIPORPANEL I MANAGEMEN I MEM. TRANRYv I I MEMO HVERS
I ——+—————+—~—J l IIN ERNAL DATA BUS IIDB) ND-100 BUS. CONTROL< _ 7' «—

TERMINAL MAIN REGISTER
No.1 ARIT. FILE

INTER HUPT
SYSTEM NPUT/O UTP

SYSTEM

TO/FROM DEVICES

OPERATOR TIMING BI
PANEL CONTROL

Figure 2. 7: ND- 700 Bus Structure

ND—06.014.02



2.1.5

The Address Arithmetic

The address arithmetic in the ALU (arithmetic logic unit) forms a 16 bit address.
The control of the address arithmetic is implemented in a microprogram. The 16

bit address goes to the memory management system. If the memory manage—
ment module is not present, the address goes directly to the memory system via
the ND-100 bus.

Instruction Fetch

The machine instructions to be executed reside in memory. The program counter,

PC, is enabled for the ND-100 and a request is sent to memory. The instruction
from memory is loaded into the prefetch register.

Prefetch

ND-100 uses prefetch. That is, the next instruction is fetched simultaneously with
the execution of the current one. Consequently, an instruction fetch consists of

copying the prefetch register to the instruction register.

The use of prefetch requires a strictly sequential program. In case of branch

instructions or program change (interrupt), the prefetched instruction is skipped

and a new instruction found.

Prefetch will not generate page fault if the last instruction before a page limit is

a branch instruction.

Prefetch does not give any limitations in programming. For example, STA * +1 is

legal but adds 1 p. to the execution time compared to STA < disp:l=’1 >.

ND-06.014.02



2.1.6

2—4

Instruction Execution

The instruction to be executed will be loaded into the instruction register (IR) and
the instruction map. Refer to Figure 2.2 The lower vector bits of the instruction
are taken to IR and the upper operation code bits are taken care of by the map.
This is a read only memory (ROM), where each different instruction gives a fixed
program address to the microprogram sequencer. Since one machine instruction
is executed by a number of instructions residing in microprogram control store,
an instruction dependent address should be generated and this is the task of the
microprogram sequencer.

This address is sent to the microprogram control store, which gives the logic
control bits of the first microinstruction. These signals, together with the timing
module, control the operation of the CPU. The operation specified by one micro-
instruction normally takes 150/190 ns (with cache/without cache). This time is re-
ferred to as a micro cycle. When a micro cycle is completed, the next microin-
struction has already been read out from the microprogram control store.

Main Arithmetic

Refer also to Figure 2.2

From the A and B selector the arithmetic logic unit (ALU) receives the informa-
tion about which A and B operand to select in the arithmetic operation. The ALU
performs all the arithmetical and logical operations as specified in the instruction
set. The bit slice, ALU, is completely controlled from the microprogram.

The ALU with its current registers has a two-way communication over IDB with
the register file for loading and storing of the current register set.

ND-06.014.02



MICROPROGRAM
SEOUENCER

ROM 2K x 12 BIT MAP

ROM 2K 84 BIT

LOGIC
CONYROL

BRANCH

ADDRESS

GENE RAL
runmse
newsman

MICRO PROGRAM CONTROL SIORE

mz-r-m‘u—w

A ll 8 SELECT

LOCAL TIMING

‘_—.I
‘—

A OPERAND -

SELECY ALU ll ADOR‘
ARIRIMETIC

l! U’ERAND

SELE01 '

REGISTER FILE

")8

Figure 2.2: Instruct/on Execution

ND—06.014.02

TIMING
CONTROL

ND-IOO BUS



2.1.8

2—-6

The Register File

Refer to Figure 2.3

There are 16 register sets in the ND-100, one for each of the 16 program levels.

Each of the register sets consists of 8 general programmable registers and 8

scratch registers for microprogram use only. There is a total of 256 registers; these

are referred to as the register file.

The 8 general registers are:

Status register (STS)

This register holds the indicators described in the status indicators section.

A register

This is the main register for arithmetic and logical operations directly with

operands in memory. This register is also used for input/output communica-

tion.

D register

This register is an extension of the A register in double precision or floating

point operations. It may be connected to the A register during double length

shifts.

T register

Temporary register. in floating point instructions it is used to hold the

exponent part. It is also used with the IOXT instruction to hold the device

address.

L register

Link register. The return address after a subroutine jump is contained in this

register.

X register

Index register. In connection with indirect addressing it causes post

indexing.

B register

Base register or second index register. In connection with indirect
addressing, it causes preindexing.

P register

Program counter, address of current instruction. This register is controlled

automatically in the normal sequencing or branching mode. But it is also

fully program controlled and its contents may be transferred to or from other
registers.

ND-06.014.02



REGISTER FILE

PL = Program Level

Onlv access via Scratch 8-15
m icroprogram 15 0

‘——#

Current P

7 0 STATUS

15 8

+

STS 8-15

15 0

if::;’_'
1‘31:.2

2.1":
l STS I i
'_________ .J,‘

Figure 2. 3: Register File

The current register set is held in the ALU and under level mange this register set
is stored in the register file. The register set for the new level is loaded to the ALU.
Any registers or levels can be read or written by specifying register and level
information.

ND—06.014.02



2.1.9

2—8

Status Indicators

Eight indicators are accessible by programs. These 8 indicators are:

M

TG

PTM

Multishift link indicator. This indicator is used as temporary storage for
discarded bits in shift instructions in order to ease the shifting of
multiple precision words.

Carry indicator. The carry indicator is dynamic.

Static overflow indicator. This indicator remains set after an overflow

condition until it is reset by program.

Dynamic overflow indicator.

Error indicator. This indicator is static and remains set until it is reset
by program. The Z indicator may be internally connected to an
interrupt level such that an error message routine may be triggered.

One bit accumulator. This indicator is used by the BOP (bit opera-
tions), instructions operating on one bit data.

Rounding indicator for floating point operations.

Page table modus. Enables use of the alternate page table,

These 8 indicators are fully program controlled either by means of the BOP
instruction or by the TRA or TRR instructions where all indicators may be trans-
ferred to and from the A register. Refer to Figure 2.4.

ND-06.014.02



Interrupt System
ON Indicator

Memory Management ON
Indicator

Current Program Level
Indicator

Multishift Link Indicator ' '

C arrv Indicator

Static Overflow Indicator

Dynamic Overflow Ind icator

Error indicator

1 Bit Accumulator

Rounding FF for Floating Point Operations

Page table modus. Turn ON/OFF the P relative PIT selector Irefar'MMS)

15 O

I-
_-_....__-_

I STS '
l I
L..-.___---..l

II
II
ll
ll
‘I

___ ____."
F::::::__________ 1
llI
'I
'i
ll

151413121110V937 6543210
i l l

-

- — o P l L M C O Q 2 TC: PTM
2 g

x g
9- a. 3‘7 2

l I I
5—H

E xtended N1 00
Address Indicator
Mode
Indicator

Figure 2. 4: Status Register Assignment

The upper part (8 bits) is common for all program levels. This part gives us the
following information:

lONl

PONl

SEXI

N100

PlL

Interrupt system ON indicator.

Memory management 0N indicator.

Extended indicator to show that MMS is in 24 bits extended address-

ing mode instead of the usual 19 bits addressing mode.

N100 indicator to tell the operating system that this is a ND-100
machine.

Current program level indicator.

ND—06.014.02



2.2

2.2.1

2—10

THE INTERRUPT 8 Y8 TEM

General

The ND-100 interrupt system is designed to simplify programming and to allow
high efficiency multiprogramming.

This is achieved by use of a complete set of registers and status indicators for each

program level.

There are 16 program levels in ND-100 and therefore 16 sets of registers and status

indicators. Each set consists of A, D, T, L, X and B registers, program counter and

each of the status indicators 0, 0, 2, C, M, K, PTM and TG. There are also 9 re-

gisters that are only accessible from microprogram.

The context switching from one program level to another is completely automatic

and requires only 5.0 MS; including the saving and unsaving of all registers and

indicators.

The arrangement of the 16 program levels is as follows.

'5
14 Internal interrupts
13 Real-time clock

12 input devices

11 Mass storage devices
10 Output devices

9 -—

8 __ 2 For program which
7 _Direct tasks do not require

6
operating system help

5
.—

4 l/O Monitor calls
3 SINTRAN Ill Monitor

2 Direct Task
1 Real-time and Background
0 Idle Loop

Figure 2. 5: L eve/ Assignments

ND—06.014.02



2—11

The priority increases, program level 15 having the highest ariority, program level
0, the lowest.

All program levels may be activated by software. In addition, the levels 10, 11, 12
and 13 may be activated by 512 external l/O interrupts. An lDENT instruction is
used to identify the interrupting device. Program level 14 is used by the internal
interrupt system, which monitors error conditions or traps in the CPU. Program
level 15 may only have one l/O interrupt source.

Program level 15 is not used by standard ND equipment or software, but is availa—
ble for users who need an immediate access to the CPU.

A change from a lower to a higher program level is caused by an interrupt request.
A change from a higher program level to a lower takes place when the program on
the higher program level gives up its priority.

For both internal hardware status interrupts and external interrupts there is an
automatic priority identification mechanism which provides; fast interrupt source
detection.

ND-06.014.02



2.2.2 Functional Description

Figure 2.6 shows the functional operation for the complete priority interrupt
system.

There is one bit for each level in a detect register with 10 sources to cause a

program level 14 interrupt, i.e., an internal interrupt. The detect register for

program levels 0-9 are implemented in firmware which means that the micro-

program takes care of the detection of interrupts on these levels.

The mask register is used to enable/disable the different program levels and

conditions which may cause an internal interrupt. Program levels 0—9 are also taken

care of by the microprogram.

When an interrupt comes, these two registers are ANDed together via an AND

gate and the priority encoder gives a level value corresponding to the highest bit

set in both the detect and mask registers.

This level indicator is compared with the current level to check if the new level is

higher than the current one. If this is true, and the interrupt system is on, an

interrupt will be generated.

The implementation of the ND-100 interrupt system is based on two registers: the

detect register and the mask register. In both the detect and mask registers each

interrupt level is assigned a bit position.

ND-06.014.02



Internal

Interrupts

PL15

PL14

D-tect Registor

AND} Priority
Encodor

Vector

L14

5------4
L————_-_l
L..__....-_J PLO-9
:" “"'J Program level;
L:::::_. areimplo
1.-----4 monted in
L“""J firmware
._._..4

Mask Register

.l
‘p---—

l'" __...:r'::::::. PLO-9
__-- - Program Iovels'I r .---- - are Implo-

L"'""’J montad in---- " firmworl
L-_-_-J 4

Output

PRIORITY INTERRUPT SYSTEM

Figure 2. 6: Priority Interrupt System

ND-06.014.02

Current

Level

Indicator

..c
C.t
3
U
1:
0

Sm

Interrupt pn

.-
O
O"

E
8 ze <
Ou

Scratch Register

Alnt'rrupt



2.2.3

2—14

The External /nterrupt System

Figure 2.7 gives a block diagram presentation of the external interrupt system.

The program level to run is controlled from the two 16 bit registers:

PIE Priority Interrupt Enable
PID Priority Interrupt Detect

Each bit in the two registers is associated with the corresponding program level.
The PlE register is controlled by program only. The PID register is controlled both
by program and hardware interrupts. At any time, the highest program level which
has its corresponding bits set in both PIE and PID is running.

The actual mechanism for this is as follows.

The current program level is PlL (0 — 15). The 4 bit PlL register controls which
register set (context block) to use.

The PIL number is constantly compared to a 4 bit code, PK. PK always con-
tains the number of the highest program level which has its corresponding
bits set in both PIE and PID. Whenever PK is unlike PIL, an automatic

change of context block will take place through a short microprogram sequ-
ence.

The CPU will not ask for the next machine instruction but enter a microprogram
that will change the program level to the PK. However, before the level change
takes place, the program counter will be saved. The level change can be illustrated
as follows:

1. The interrupt system is temporarily blocked to prevent false interrupts.

2. The program counter (CP) is copied to the saved program counter (P) on the
current level.

3. The PlL (program level) register is copied into the PVL (previous program

level) register.

4. The PK (new level priority code) register is copied into the PIL (program
level) register. (The CPU has, at this moment, changed level.)

5. The P (saved program counter) on the new level is copied to the CP (current
program counter).

6. A fetch is issued, i.e., the first machine instruction on the new level is asked

for.

This complete sequence requires only 5.0 ps from the completion of the instruction
currently working when the interrupt took place, until the first instruction is started
on the new level with its new set of registers and status.

External interrupts may set PlD bits 15, 13, 12, 11, 10, and internal hardware status

may set PID bit 14, because all internal interrupts are connected to this level.

ND—06.014.02



Hardware
Interrupts ‘E

IDE

«ZOE—In

I

El=®=wb

-9108 (1:90 6

Fetch:
IDB:
ION:
PID:
PIE:
PK:
PIL:
PVL:

Instruction fetch
Internal Data Bus
Interrupt System Active
Priority Interrupt Detect
Priority Interrupt Enable
Priority Code
Program Level
Previous Program Level

Figure 2. 7: Externa/ Interrup System

Priorily
Encoder

ND—06.014.02

P

: I21) I08

>I 9
Laval Control

Fulch

A
Corn are ~——>p N ___. Pointer to

D Microprogram
Ior change ol
program level

ION



2—16

2.2.4 The Internal Interrupt System

The functional operation of the internal interrupt system is basically the same as
the external one. Refer to Figure 2.8.

Selby TRR ——->
IIE instruction

0

'_> AND PRIORITY
ENCODER —®—— uc ———>flead by TRA

MD
Set by hard"

)Bit No. t4

Reset by TRA nc Pm

10 9 8 7 6 5 4 3 2 I 0

POW MOB PTY IOX PI 2 II PF MPV MC NA "E FORMAT

‘Interrupts any micro-instruction.

IIC: Internal Interrupt Code
IID: Internal Interrupt Detect
IIE: Internal Interrupt Enable
TRR HE: Transfers the Content of the A-Register Into the HE Register
TRA IIC: Transfers the Content of the IIC Register into the A-Register.

Figure 2. 8: Internal /n terrupt System, Block Diagram

ND—06.014402



2.2.4.1

2--.

The NC and HE Registers

17

As previously mentioned, the internal interrupt system is connected to level 14.
Any internal interrupt condition will force the CPU to level 14. On this level the
operating system will read the NC —~ Internal lnterrupt Code register. This register
will hold a code between 0 — 128 which will identify the internal source for the inter—
rupt.

Internal hardware status interrupts are individually enabled by an 11 bit register
called llE, Internal Interrupt Enable. HE is set by the TRR llE instruction. See Figure
2.8.

The internal hardware status interrupts are assigned to the HE register in the
following way:

10 9 7 6 5 4 3 2 1

POW MOR PW IOX Pl 2 ll PF MPV MC NA

The internal conditions which may cause internal interrupts and their associated
vectors, the internal interrupt codes, are listed below:

n/a

MC

PV

PF

PI

IOX

PTY

MOR

POW

Bit No.:

0

10

11—15

“C Code:

10

11

12

Cause

Not assigned

Monitor call

Protect Violation.
Page number is found in the Paging
Status Register.

Page fault.
Page not in memory.

Illegal instruction.
Not implemented insstru ction.

Error indicator.
The Z indicator is set.

Privileged instruction

lOX error.
No answer from external device.

Memory parity error

Memory out of range
Addressing non—existent memory.

Power fail interrupt

Not assigned

ND—06.014.02



2.2.4.2 Internal Hardware Status Interrupts

Monitor Call Interrupt

One of the internal interrupt sources is the monitor call instruction named MON.
The monitor call instruction differs from the other internal interrupt sources in
that the monitor call code or number is found in the T register on level 14.

The MON instruction may have up to 3778 different codes (8 lower bits in the
MON instruction) and the T14 register will be equal to this code with sign
extention (bit 7 is sign).

Information to operating systems designers regarding the
ND- 100 MON—instruction

If a MON-instruction is executed in the last word of a page and the prefetching
of the first instruction in the next page gives a page-fault interrupt, then the
page—fault interrupt will be reported when a TRA llC—instruction is executed.

The handling of this page—fault interrupt will clear all traces of the executed
MON-instruction. The T-register on level 14 will be loaded with the monitor-call
number before the page-fault interrupt occured, but an internal interrupt with
llC-code equal to 1 will never occur.

To avoid this behaviour, make the interrupt handler on level 14 check if a
monitor-call number has been written into the T-register on level 14 before level
14 was entered. If the T—register has been changed in this way, the monitor—call
handler should be entered regardless of the contents of the IIC. The page fault
will occur later, when execution of the instruction after the MON is attempted.

Programming example:

% Last part of a level 14 handler

LDA (1000 % Any number not possible
COPY SA DT % as monitor-call number

WAIT % Give up priority

% Reactivated by internal interrupt

SKP lF DA EOL ST
JMP MONCT % T is changed
TRA llC

ND—06.014.02
Rev. A



2—19

% Check other internal interrupts

MONCT, TRA IlC % Necessary to unlock IIC
TRA PGS % Necessary to unlock PGS

% Ordinary monitor—call handler

Protect Violation Interrupt

A protect violation has occurred. Two types of violations are possible:

— Memory protect violation.

This means that an illegal reference (read, write, fetch or indirect) has been
attempted.

— Ring violation.

This means that a program attempted to access an area with higher ring

status.

Details regarding this interrupt are found in the paging status register.

Page Fault Interrupt

The program attempted to reference a page that is presently not in memory.

Information regarding page number, etc. is found in the Paging Status register.

Illegal Instruction Interrupt

Attempted execution of an instruction that is not implemented causes this
interrupt.

Error Indicator Interrupt

The Z indicator in the STS register has been set. This may be caused by several
instructions:

— FDV with 0.0 (FDV = divide floating accumulator).
— EXR of an EXR instruction (EXR = execute register).
— DNZ overflow (DNZ = denormalize).
— RDIV overflow (RDIV = integer inter - register divide).
— Programmed setting of Z (BSET = bit set, MST = masked set or TRR =

transfer to register).

ND-06.014.02
Rev. A



2—20

The instructions are described in further detail in Section 3.

Note: Level 14 must always reset the Z indicator on the offending level, other—
wise, a new interrupt will occur when the level is reentered.

Privileged Instruction Interrupt

Attempted execution of a privileged instruction causes this interrupt. The
privileged instructions are listed below.

ION, lOF, PON, POF, PION, PlOF, WAIT, IOX, IOXT, IDENT, TRA, TRR, MCL,
MST, LRB, SRB, IRR, IRW, SEX, REX, DEPO, EXAM, LWCS, OPCOM.

These instructions are described in further detail in Section 3.3.

IOX Error Interrupt

The addressed input/output device does not return a BDRY (Bus Data Ready)

signal. This may be due to a malfunctioning or missing device or no device

answering to an IDENT instruction.

Memory Parity Error Interrupt

A memory parity error has occurred. The least significant 16 bits of the failing
address can be read from the PEA register using the TRA PEA instruction. PEA
= Parity Error Address.

Further information may be read from the PES register (Parity Error Status).

Memory Out of Range Interrupt

This interrupt occurs when the program addresses nonexisting memory. The least
significant 16 bits of the referenced address can be read from the PEA register.

Further information may be read from the PES register.

Power Fail Interrupt

This interrupt is triggered by the power sense unit. It is possible for this interrupt
to occur simultaneously with some other internal interrupt. In this case, the po-

wer fail interrupt has priority.

ND-06.014.02



2.2.4.3

2.2.5

2.2.5.1

2m21

Reset of the ”C Register

In order to optimize the processing of internal hardware status interrupts, the
instruction TRA IIC will return the contents of ”C to the A register, bits 0-3, with
bits 4 - 15 zero.

The instruction TRA ”C will automatically reset llC.

Note that if the interrupt is caused by the error indicator 2, the Z indicator on
that program level must be cleared by program control from program level 14.
(Otherwise, another interrupt will occur.)

Programming Control of the lnterrupt System

Programming the PID and PIE Registers

PID = Priority lnterrupt Detect.
PIE = Priority lnterrupt Enable.

The programming control of the interrupt system is as follows:

PID and PIE may be read to the A register with the instructions

TRA PID and TRA PIE.

Three instructions are available for the setting of these registers.

1. TRR PID and TRR PIE

The TRR instruction will copy the A register into the specified register.

2. MST PID and MST PlE

The MST, masked set, instruction will set the bits in the specified register to
one where the corresponding bits in the A register are ones. (The A register
is used as a mask for selection of which bit to set.)

3. MCL PID and MCL PIE

The MCL, masked clear, instruction will reset to zero the bits in the specified

register where the corresponding bits in the A register are ones.

All program levels may be activated by program, by setting the appropriate

bits in PIE and PID.

In addition to TRA, TRR, MCL and MST, the PID register is also controlled in the
following ways:

ND—06.014.02



2.2.5.2

2.2.5.3

2—22

The WAIT, ION and IOF Instruction

The resetting of PID bits is also controlled by the WAIT instruction, which will

reset PID on the current program level. (The WAIT instruction is also called "Give

up Priority".)

For example, a program on program level 14, which issues a WAIT instruction, will

cause PID bit 14 to be zeroed. This will cause a new program level to be entered
and PK becomes different from PIL (PIL = 14, PK <14).

The interrupt system is also controlled by the two instructions:

ION — Turn on interrupt system
IOF — Turn off interrupt system

When power is turned on, the power up sequence will reset llE, PIE and PIL, and

the register set on program level zero will be used.

The ION instruction will continue operation at the highest program level at the time

ION is executed. If a condition for change of program levels exists, the ION in—

struction will be the last instruction executed at the old program level and the P

register on the old program level will point to the instruction after ION.

The IOF instruction will turn off the mechanisms for changing of program level,
and PIL will remain unchanged.

lOF and ION may also be used to disable the interrupt system for short periods, for

example, in order to prevent software timing problems.

The Previous Level Register, PVL

In some cases after being forced to level 1410 it may be useful to know which level
was the last one.

This might be the case when a MPV (Memory Protect Violation) has occurred. In

this case one wishes to find the value of the SP (Saved Program) counter on the

offending level and/or the offending instruction.

The PVL register holds the previous level information, and this could be read by

the TRA PVL instruction.

ND—06.014.02



2.2.5.4

2— ‘23

Vectored Interrupts and the IDENT Instructions

In ND—100 there may be up to 2048 vectored interrupts. Usually, each physical in—

put/output unit will have its own unique interrupt response code and priority.

These vectored interrupts must be connected to the four program levels 13, 12, 11

and 10.

The standard way of using these levels is as follows:

Level 13: Real—time clock
Level 12: Input devices
Level 11 : Mass storage devices
Level 10: Output devices

The vectored interrupts are connected to the corresponding bits in the PID

register.

When a vectored interrupt occurs, an IDENT instruction is used to identify the in—

terrupt, since several devices may have interrupts on the same level. The

instruction has the following format:

IDENT <program |eve|>

When an IDENT instruction is executed, a hardware search on the indicated level

is performed. The first interrupting device found will respond with its identification

code and reset its interrupt condition.

The CPU will use the identification code (vector) as a branch address to the driver

for the interrupting device.

If more than one device on the same level generates interrupts, the device inter—

face located closest to the CPU has highest priority. If there is more than one

device connected to the module, an internal priority on the module will determine

which is to be treated first.

Programming Example:

LEV13, WAIT % Give up priority
SAA O % Set content of A-reg. to 0
IDENT PL13 % Identify device on level 13
RADD SA DP % Computed GO TO
JMP ERR13 % Code 0, error
JMP DR|V1 % Code1
JMP DRIV2 % Code2

JMP DRIVN % Code N

ND-06.014.02



2.2.6

2—24

Initializing 0f the interrupt System

Before use of the interrupt system it must be initialized. After switching power on,
”E, Pl E and PlL will be zero. The registers on level zero will be in use. The interrupt
initialization must include the following:

Enabling of the desired program levels by proper mask setting in PIE (Priority
Interrupt Enable).

2. Enabling of the desired internal interrupt sources by proper mask setting in
HE — Internal lnterrupt Enable register.

3. The P, saved program counters, on the levels to be used must be initialized,

i.e., they must all point to the program to be executed on the different I-
evels.

4. If the 2 (error) indicator is enabled for interrupt (llE bit number 5), care
should be taken that this indicator is cleared in the status register (bit num-
ber 3) for all levels being initialized.

5. The NC (Internal Interrupt Code) register, the PES (Parity Error Status)

register and the PEA (Parity Error Address) register might be blocked after
power up.

By performing a TRA instruction for IIC and PES, all three registers will be
unblocked and ready for use.

6. The interrupt system is turned ON.

Examp/e:

LDA (76032 % Enable for interrupts on level
TRR PIE % 1,3,4,10,‘ll,12,13, and14
LDA (3736

i
% Enable for all internal

TRR llE % Interrupt sources except for the Z indicator

LDA (P1 % The saved program counters
IRW 10 DP % on the enabled levels
LDA (P3 % start value
IRW 30 DP %
etc. for each P
in use
TRA llC % UnlockllC
TRA PEA % Unlock PEA and PES
lON % Turn on interrupt system
JMP START % Go to main program

ND-06.014.02



2.3

2.3.1

2—25

THE MEMORY MANAGEMENT SYSTEM

General

The Memory Management System is designed to extend the ND—100 physical
address space, and to provide a sophisticated memory and privileged instruction
protection system. This system may be used for several purposes, such as:

— Dynamic memory allocation (paging).
— Program relocation.
— Expanding the maximum physical address space size to 16 M words.
— Memory protection of each individual page.
— Privileged instructions and ring structured program protection.

The Memory Management System includes two major subsystems:

— The paging system.
— The memory protection system.

The Paging System can work in two modes:

— Normal mode. A 16 bit virtual address is mapped into a 19 bit physical
address. This extends the physical address space “rom 64 K to 512 K
words. Four page tables of 64 entries each are used. This mode is compatiA
ble with the NORD-10/S.

— Extended mode. A 16 bit virtual address is mapped nto a 24 bit physical
address. This extends the physical address space from 64 K to 16 M words.

Four page tables of 64 entries each are used.

For each mode the four page tables are located in high speed registers, directly
connected to the internal data bus (IDB). This reduces paging overhead to
practically zero. The page size is 1024 words.

The Memory Protection System may be divided into two subsystems:

— The page protection system.
—— The ring protection system.

The page protection system protects each page from read, write or instruction
fetch accesses or any combination of these.

The ring protection system places each page on one of four priority rings. A pa—
ge of memory that is placed on one specific ring may not be accessed by a pro-
gram that resides in a page on a ring of lower priority. This system is used to
protect system programs from user programs, the operating; system from its sub-
systems, and the system kernel from the operating system.

ND—06.014.02



2—26

2.3 .2 Memory Management Architecture

Memory Management consists of:

— 4 page tables.
— 16 paging control registers.
— A paging status register.
— A permit protection system.
— A ring protection system.

The page size is fixed to 1K words, thus each page table will map the full 64K
virtual address space of the ND-100.

ND-06.014.02



2—27

16 PCR‘S

Address
Translation

Permit
Protection
System

MD: Internal interrupt Detect
PCR: Paging Control Register
PGS: Paging Status Register
PT: Page Table

Figure 2.9: Memory Mangement Building Blocks

ND-06.014.02
Rev. A



2.3.3

2—28

The Paging System

Number in parenthesis is valid for extended mode.
The Paging System is an automatic address interpretation system which maps a

16 bit virtual address, as seen from the program, into a 19 (24) bit physical add-

ress. This implies that the maximum memory size may be extended from 64K

words to 512K (16 M) words. The system also allows programs to be written for
64K virtual memory with only parts of the program residing in physical memory

at a given time, the rest being kept on mass storage.

The Paging System divides the memory into memory blocks or pages of 1024

words or 1K words. The pointers to these pages are found in the page tables. In

ND-100, there are four page tables, each consisting of 64 entries, and each co-

vering a full 64K address space. The tables are kept in high speed registers with

a 32 bit word length.

ND-100 uses 1K words per page. This implies that in order to map 64K words of

virtual address space, 64 Page Table (PT) entries are required.

To address any location within a 1K address space, 10 address bits are required.

These bits are the displacement within a page (DIP), and are transferred directly

to the ND-100 bus. The most significant part of the virtual address (bits 10 - 15)
are used as an address selecting one of 64 entries in PT. This address is referred
to as Virtual Page Number (VPN).

The program level (PL) determines which paging control register (PCR) to use.
The selected PCR determines which page index table to select, and VPN
addresses an entry in the selected PT.

When a memory request is performed, the content of the 32 bits PT is looked up.

7 bits are used for protection, and are discussed later. 9 (14) bits are called Phy-
sical Page Number (PPN), and are transferred to the ND-100 bus. PPN can have
values from 0 - 512 (16384). This makes it possible to access 512 (16384) pages.
Since one page = 1024 words, it is possible to access
512 (16 384) x 1024 512 K (16 M) words.

Prior to program start, the operating system will set the PPN to the proper value

in the PT. The address translation is therefore under control of the operating

system.

ND-06.014.02



2—29

45—12; v ._
P' L ' DIP I W mi address15 Few: VP" ‘ r

z/
I

, ’
I ’ /

/ PCR
PT APT ,’

_ / Selectlon

[Status bit 0)

63) g!\ ’ PT': _ PT Select _ i\ I Control [

PT“:.4
2<9

.
PRBTE-CF- EMA—PPM—

-
Displacement within selected PT

PT Selection

[
l1 4)

m
V

PCR:
DIP:
VPN:
PT:
APT:
PIL:
PPN:

PM:
PTM:
PTS:

Paging Control Register
Displacement within page
Virtual page number
Page table
Alternative page table
Program level
Physical page number
Ring
Permit flags
Page table mode (status bit 0)
Page table select flag
Addressing mode bits from the
Memory Reference Instruction

(23’ '8 E '0 9 0

PPN
:

DIP Puyslcal address

ii
ND~IUD BUS

O<DIP<1023
0<VPN<63
0<PT<3
0<APT<3
0<PIL<15
0<PPN<511 (16 383]

Number in parenthesis is valid for extended mode.

Figure 2. 70: Virtual to Physical Address Mapping

ND—06.014.02
Rev. A



2.3.4 The Shadow Memory

2—30

The shadow memory is a number of reserved memory addresses. These memory

addresses are used to access the page tables in the same way as the rest of the

memory.

These reserved addresses are called shadow memory because it lies in the

shadow of the main memory and is inaccessible for users on rings 0, 1 and 2. For

ring 3 users or when paging is off however, main memory lies in the shadow and

is inaccessible. Figure 2.11 shows the shadow memory layout.

The topmost locations in the 64 K virtual address space are reserved for page

table access. In normal mode 1 x 64 x 4 = 256 locations are needed and in

extended mode 2 x 64 x 4 = 512 locations are needed. The following octal

addresses are hence reserved:

Normal Mode:

L PTO

Page table 0 177400 - 177477

Page table 1 177500 - 177577
Page table 2 177600 — 177677
Page table 3 177000 — 177777

15 g
ADDRESS IN 177000 PROTECT
sqow 001 MA, vmo
MEMORY

l
1
1
1
1

177175 paorscr
177 MAP }‘ VPN53
zoo PROTECT \
201 MAP ir vo

r
1
l
l
1
1

177373 PROTECT
:77 MAP “”53
400 PROTECT
«01 MAP i’ VPNO

l
1

477 1

500
l

- pnmscr T
”7;: W 1 WM:

50° PROTECT
501 MM, if vrm

1
577 i
700 1

1
776 PROTECT VPN63

177777 VI AP

EXTENDED MODE

Figure 2. 11: Shadow Memory Layout.

ND-06.014.02

Extended Mode:

177000 — 177177
177200 - 177377
177400 — 177577
177600 - 177777

PAGE TABLE 0

VPN - Virtual Page Number

PROT

1

VPt

PTl

PT!

0 MAP

P73
1 MAP

NORMAL MODE



2—31

In normal mode only 16 of each page table entry's 32 bits; are used. Therefore
only one shadow memory word is read/written to fill one page table entry.

In extended mode 21 of the 32 page table entry’s bits are used. This means that

two shadow memory words are read/written to fill one page table entry.

(9376)’
1< a? ‘

l

a .

l
Virtual

II
Addral

Shunawaaasalccxcr a -
------------------------‘l o

<\>

e2 {a
l

.‘ lPON MMS
MMS 0N OFF |

ring 3 l

. PlT’s 16:13::

I
l

i
PAGE TABLE NC.

lnnmal
””5 VlRTUAL PAGE NO. }"AG= TASLE
Sm ADDRESS

— ._l
*Number in parentheses is valid for extended mode.

é m
TO/FROM CPU

Figure 2.12: Shadow Memory Addressing.

ND-06.014.02



2.3.5

1 77700

177'777

177600
177601

1 77776
1 77777

The Page Tab/es

2—532

In normal mode the map part requires 9 bits and the protect part requires 7 bits.
Together the map and protect parts require 16 bits, which is the PT’s 16 bit word
length. The 9 PPN bits (Physical Page Number) in the map entry shown in figure
2.13 are used to select one of 512 pages in the memory.

Shadow Memory
15

PFQZECT I PPN

Page Table 3
>VIRTUAL .

PAGE NO. PROTECT ENTRY MAP ENTRY
15 9 8 o 15 13 9 a o

0 [ Protect [ NA. 1 {NA} oooool PPN j
l
I
I
l

913?wd '
between 512 pages in the
memory :

l
PPN = Physical Page Number

PROTECTL PPN

:
i77 /

Figure 2.73: Reading Page Table 3 Entries as seen from Program in Extended
Made

In extended mode the map part requires 14 bits and the protect part requires 7
bits. Together the map and protect parts make 21 bits, which extend the PT’s
word length. Therefore we have to use two shadow memory locations for hou-
sing the map and protect parts. The 14 PPN bits in the map entry shown in figure
2.14 are used to select one of 16 384 pages in the memory.

Shadow Memory
15

PROTECT

\PPN

Pa e Table 3
VIRTUAL ‘

g
’

PAGE No. PROTECT ENTRY MAP ENTRY

O 15 9 8 0 15 13 O

o [ PROT. FNA. I IN.A.[ pm i
I
I

14 PPN bits used to select
between 16384 page: in the
memory.

I
l

PPN - Physial Page Number

Figure 2.14: Reading Page Table 3 Entries as seen from Program in Extended Mode

ND-06.014.02



21~33

The page table format:

In normal mode each entry has the following format:

15 14 13 12 11 10 9 8 0

mm RPM FPM ww PGU RINCRING PHYSICAL PAGE NUMBER (PPN)

x J
V.

protect bits

Bits 13 - 15: Memory protection bits (WPM = Write Permitted,
RPM = Read Permitted, FPM = Fetcw Permitted).

Bit 12: Written in page (WIP)
This bit is automatically set by hardware.

Bit 11: Page used (PGU)
This bit is automatically set by hardware.

Bit59— 10: Ring bits
These bits decide which ring this page belongs to.

Bits 0 — 8: Physical page number
Nine bits addresses a maximum of £512 physical pages in
memory.

The protect bits and the protection system are described in Section 2.3.5.

In extended mode the protect bits and the PPN bits require two entries, which ha-
ve the following formats:

15 14 13 12 11 10 9 8 0
mm RPM FPM wup PGU RINGRING NOTASSIGNED ‘ Protect entry

L j
Y

protect bits are
identical in extended
and normal mode

15 14 13 0
NA. PHYSICAL PAGE NUMBER (PPN) Map entry

Bits 0 ' 131 14 bits address a maximum of 16 384 pages in memory.

ND—06.014.02



2.3.5.1

2.3.5.2

2—34

Page Used and Written in Page

All entries in a page table are under program control only, except for the two bits

PGU and WlP, which are also controlled automatically by the Memory

Management System.

Bit 12: WIP — Written in Page

If this bit is set, the page has been written in, and it should be written back

to mass storage. |f it is zero, the page has not been modified and need not

be rewritten. This bit is automatically set to one the first time a write

occurs and then remains set. It is cleared by program (whenever a new

page is brought from mass storage).

Bit 11: PGU - Page Used

If PGU = 1, the page has been used. The bit is automatically set whenever

the page is accessed and it remains set. The bit is cleared by program. This

bit may be used in operating systems to determine which page should be

swapped.

Page Table Selection

ND-100 has 4 page tables. Which one to be used is selected by the Paging

Control Register on the current program level. In PCR the information is either

taken from the PT field or the APT field. One is to be selected. The alternative

page table is used if the memory reference is not P relative and status bit 0

(PTM) is 1. The table below will help explain.

Addressing Mode Address Mapping with PTM = 1

,X l ,B Mnemonic Via PT Via APT

0 0 0 (P) + disp. -—

0 1 0 l (P) + disp. ((P) + disp.)

0 0 1 ,B —- (B) + disp.

0 1 1 ,Bl — (B) + disp.; ((B) + disp.)

1 0 O X — (X) + disp.

1 0 1 ,B ,X — (B) + (X) + disp.

1 1 0 l ,X (P) + disp ((P) + disp.) + (X)

1 1 1 ,B | ,X — (B) + disp.;
((B) + disp.) + (X)

Note that indirect addressing involves 2 memory references where one or both

go via the APT, as shown in the table.

Page Table Selection

The main principle is that all P relative memory references are mapped via PT

and all other references are mapped via APT. This feature is used only by proces-

ses which require access to two segments with different virtual address spaces

and gives one process access to 128K of virtual memory.

ND—06.014.02



2.3.6

2.3.6.1

2—35

Memory Protection System

The memory management system employs two memory protection systems: a
permit protection system and a ring protection system. The two systems together
constitute an extensive memory protection, i.e., complete protection of system
from user and user from user.

The memory protection system works on 1K pages. If a memory access violates
any of the protection systems, an interrupt to program level 14 will occur with
the internal interrupt code equal to 2 = MPV (memory protect violations).

Page Protection System

The page protection system is a protection system for each individual page of
memory. Each individual page may be protected against:

— Read access.
— Write access.
— Instruction fetch access.

and any combination of these. Thus, there are 8 modes of memory protection for
each page.

The read, write and fetch protect system is implemented by defining in bits 13 -

15 of the PT how the page may be used. In hardware, this; information is com-
pared with the instruction being executed, i.e., if it is load (read), store (write),
instruction fetch or indirect address.

The three bits from the PT have the following meanings.

Bit 15: WPM — Write Permitted

WPM = 0. It is impossible to write into locations in this page regardless of
the ring bits.

WPM = 1. Locations in this page may be written into if the ring bits allow
it.

If an attempt is made to write into a write protected page, an internal inter—
rupt to program level 14 will occur, and no writing will take place.

Bit 14: RPM —— Read Permitted

RPM 0. Locations in this page may not be read (they may be executed).

RPM ll 1. Locations in this page may be read if the ring bits allow it.

if an attempt is made to read from a read protected page, an internal inter—
rupt to program level 14 will occur.

ND—06.014.02



2—36

Bit l3: FPM — Fetch Permitted

FPM 0. Locations in this page may not be executed as instructions.

FPM 1. Locations in this page may be used as instructions.

If an attempt is made to execute in fetch protected memory, an internal
interrupt to program level 14 will occur and the execution is not started.

Indirect addresses may be taken both from pages which have FPM = 1 and from
page which have RPM = 1.

All combinations of WPM, RPM and FPM are permitted. However, the
combination where WPM, RPM and FPM are all zero is interpreted as page not in
memory and will generate an internal interrupt with internal interrupt code, IIC,
equal to page fault.

ND—06.014.02



2.3.6.2

2—37

Ring Protection System

The ring protection system is a combined privileged inst'uction and memory
protection system, where 64K virtual address space is divided into four different
classes of programs or rings. Two bits (9 and 10) in each page table entry are
used to specify which ring the page belongs to.

The ring bits have the following meaning:

Bit

10

Ring 0:

Programs executing from this page may not execute privileged
instructions. The program may only access locations in ring
zero. Locations outside ring 0 are completely inaccessible.

Ring 1:

Programs executing from this page may not execute privileged
instructions. The program may access locations in ring 1 and
ring 0.

Ring 2:

All instructions are permitted when executed from this page.
The program may access locations in rings 2, 1 and 0.

Ring 3:

All instructions are permitted and the whole address space is
accessible if not protected by the RPM, WPM and FPM bits.
The page tables may be accessed.

An illegal ring access or illegal use of privileged instructions will cause an in—
ternal hardware status interrupt to program level 14 and the instruction which
caused the interrupt will not be executed.

The recommended way of using the ring bits is as follows:

Ring 0:

Ring 1:

Ring 2:

Ring 3:

User programs

Compilers, assemblers, data base systems

Operating system, File system, l/O system

Kernel of operating system

ND—06.014.02



2 —38

Associated with the ring bits in a PT entry are the two ring bits in the current
program levels paging control register (PCR).

Before a program can start executing, the PCR on the relevant program level is
loaded by the operating system with information about which PT, alternative PT
and ring is to be used. The program’s PT must also be loaded by the operating sys-
tem prior to execution.

The ring bits of the appropriate PCR are compared with the ring bits of the
appropriate page table entry. The PCR ring bits should always be greater than or
equal to the PT ring bits. If not, an internal interrupt (MPV) will be generated.

The user’s ring number is defined in the PCR-register, while the program’s ring
number is defined in the page tables.

Example:

If a user on ring no. 3 starts executing a program on ring no. 1, he is allowed to do
so. However, he is forced to user ring no. 1 after program execution. Note that
this happens only when executing programs on lower rings than the user's ring
number. This does not happen when reading or writing operands on a lower ring.

One should note that the two protection systems are independent of each other
and that both the individual memory protection mode and the ring mode must be
satisfied before an operation is performed.

ND-06.0l 4.02



2.3.7

2 —39

Privileged Instructions

In a multiuser multitask system, a user is not permitted to use all instructions in
the instruction set. Some instructions may only be used by the operating system,
and this category of instructions are called privileged instructions.

Privileged Instructions:

—— Input/output instructions

— All instructions which control the memory management and interrupt
system

— lnterprogram level communication instructions

Refer to the instruction repertoire for further information.

The only instruction the user has available for user/system communication is the
monitor call Instruction —— MON. The MON instruction nay have up to 256
different parameters or calls. When the machine executes the MON instruction,
it generates an internal interrupt.

The privileged instructions may only be executed on ring 2 and 3, Le, only by the

operating system. If programs on ring 0 and 1 try to execute any privileged in-
structions, a privileged instruction interrupt will be generated and the instruction
will not be executed.

ND-06.014.02



2.3.8

2.3.8.1

2—40

Memory Management Control and Status

The PON and POF Instructions

The memory management system is controlled by the two privileged instructions
PON and POF.

PON — Turn on memory management system (paging on)

The instruction that is executed after the PON instruction will go through the
address mapping (paging) mechanism, and the memory protection system will be
active.

POF — Turn off memory management system (paging off)

The instruction will turn off the memory management system and the next

instruction will be taken from a physical address in the lower 64K, the address
following the POF instruction.

The machine will then be in an unrestricted mode without any hardware protec-
tion feature, i.e., all instructions are legal and all memory ”available".

ND—06.014.02



2.3.8.2

2—41

Paging Control Registers

There is one PCR (paging control register) for each level. The setting of the PCRs
is done by the operating system prior to the program exeCJtion. Only one PCR
may be written into at a time by the instruction TRR PCR.

This instruction uses the contents of the A register. The A register has the
following format:

15 1O 9 8 7 6 5 4 3 2 1 0
I r l 1

NA. 3 PT : APT Level : o : RING
l l l l

Bits 11 - 15: Not assigned
Bits 9 - 10: Page table number (0—3)
Bits 7 — 8: Alternative page table number (0—3)
Bits 3 - 6: Program level (PCR number) (0-15)
Bit 2: Equals zero
Bits 0 — 1: Ring number (0—3)

Transferring the A—reg. to the PCR:

The instruction TRR PCR transfers the A-reg. to the PCR. After executing this
instruction, PCR has the following format.

15 1110987 6543210
I I I I

NA. PT APT 0 O 0 O O RING

Transferring the PCR to the A-reg:

For maintenace purposes it may be desirable to read back the contents of the 16

PCRs to the A-register. This is done by executing the TRA 14 instruction, ie. read
paging control register. Bits 3-6 of the A—register must contain information about
which program level to read the PCR from. After executing this instruction, the

A—register has the following format.

15 1110 9 8 7 6 5 4 3 2 1 O
I I—l T l I I I

0 0 0 0 0 PT APT 0 O O O 0 FllNG

ND—06.014.02
Rev. A



2.3.8.3

2——42

Paging Status Register

Whenever the memory management system reports any errors (page fault,
memory protection violations), the operating system is alerted through an inter-
nal interrupt with the interrupt code equal to the error source. Next, the oper-
ating system will read the paging status register for further information. The
paging status register is used for further specifications when a page fault or a
memory protection violation occurs.
The instruction TRA PGS is used to read this register. Errors lock the PGS
register, TRA PGS unlocks it again.

The bits in PGS have the following meaning:

15 14 13 8 7 6 5 0

FF PM N.A. PT VPN

PGS Format

Bit 15: FF = Fetch Fault.

Memory management interrupt occurred during an instruction fetch.

Bit 14: PM = Permit violation.

1 = permit violation interrupt (read, write, fetch protect system).

0 ll ring protection violation interrupt.

Permit violation has priority if both conditions occur.

Bits 6-7: PT = Page Table.

Page table number.

Bits 0—5: VPN = Virtual Page Number.

Virtual page number.

Note that bits 0 - 7 are the 8 least significant bits of the physical page table entry
in normal mode.

If bit 15 is a one, the page fault or protection violation occurred during the fetch
of an instruction. In this case, the P register has not been incremented and the
instruction causing the violation (and the restart point) is found from the P
register on the program level which caused the interrupt.

If bit 15 is zero, the page fault or protection violation occurred during the data
cycles of an instruction. In this case, the P register points to the instruction after
the instruction causing the internal hardware status interrupt. When the cause of
the internal hardware status interrupt has been removed, the restart point will be
found by subtracting one from the P register.

ND-06.014.02
Rev. A



2.3.9

243

The SEX and REX Instructions

The address mode for the page mapping system is controlled by the two privile-

ged instructions SEX and REX.

SEX — Set extended address mode

The SEX instruction will set the paging system in a 24 bit address mode instead

of a 19 bit address mode. A physical address space up to 16 M words will then

be available.

Bit number 13 in the status register (STS) is set to one, incicating the extended

address mode.

REX — Reset extended address mode

The REX instruction will reset the extended address mode (24 bits) to normal

address mode (19 bits). This implies that 512 K words of physical address space

is now available.

Bit number 13 in the status register is reset, indicating normal address mode.

Note that after change of mode, the page tables must be initialized.

ND—06.014.02



2—44

2.4 ND- 100 MEMORYSYS TEM

2.4.1 General

Computer performance is, to a great extent given by the efficiency of the memory
system. General requirements are:

— Low access time.
— Low storage cost.
- Large capacity.

These requirements are usually conflicting.

In the ND—100 system, a compromise is achieved through the implementation of a
multilevel hierarchial memory system. Figure 2.15 shows the major building blocks
in this system.

ND-06.014.02



2—45

Register Block

Cache Memory

Local Memory

Multiport Memory

Mass Storage
DeVIces

Figure 2.15: Multilevel Storage System

The concept is to hold the most frequently used information as near the CPU as
possible. In other words, the average access time for instructions and data
should be close to main memory access time. At the same time, most of the
information resides on mass storage. That is, price per stored bit approaches the
mass storage device cost.

The memory system includes (ordered by access time):

— 8 programmable registers associated to each program level.
— 1K words CACHE memory (optional)
— Up to 16M words local memory on each module.
— Up to 2M words multiport memory address space.
— Disk storage.

Here we will discuss local memory, multiport memory and cache.

Note! One ND-100 CPU can only access 512K words if used in normal address
mode. That means the sum of local memory and multiport memory for one CPU
cannot exceed 512K words.

If used in extended address mode ND—100 can access up to 16 words.

ND-06.014.02



2—46

2.4.2 ND- 100 Memory Architecture

Figure 2.16 shows the storage interconnection.

To/From Big
Multiport Memory

I
BMPM

-—'-—'--"'-"---"‘--""-: Transceiver

_ I
I I

Internal CPU databusCPU Bu, fl Mom BUS
R393“! Control I 'L3““ IDB I

I
MMS and Memory

I Modules

I
I
I
I
l
l
I
I
|.._...._. ______________ .I

IDS = lnternal Data Bus

Figure 2. 16: Storage Interconnection

CACHE memory is physically located on the memory management module and
connected directly to the internal CPU data bus (IDB).

Local memory may consist of several modules plugged directly into the ND-100
bus.

Multiport memory is accessed through a Big Multiport Memory (BMPM) trans-

CACHE

ceiver in the ND—100 bus connected to one port in a separate card crate.

ND—06.014.02



2.4.2.1

2.4.2.2

2.4.2.3

2—47

Local (Main) Memory

Local memory facts:

— Memory size from 32K words in steps of 32K words up to 512K words
(normal address mode), 16M words (extended address mode).

—— 32K, 64K or 256K words per memory module.

— Direct connection to ND-100 bus for low access time.
Typical: 320 ns measured on CPU bus control.

— Error correction of single bit failures and reporting double bit failures.

Memory Module Placement in ND-100 Bus

Memory modules should be placed in the right-most position (position 12 or 21)
in the ND-100 bus and expanded to the left.

Module address range may be defined in two different ways:

— Prewired position code in each bus slot.
— Thumbwheel setting of a module address area.

The Position Code

The position code defines a module placed in position 112 to have the address
range 0 - 64K words, 64K words to 128K words in position 11 and so on. In other
words, there is a resolution of 64K words per position, expanding to the left.

ND-06.014.02



2~48

2.4.2.4 The Thumbwheel Setting

It is possible to mix module sizes of 16K words, 32K words and 64K words in the
same memory system. In this case the position code can not be used.

The thumbwheel setting allows an address resolution of 16K words per position
and should be used in cases where module sizes are mixed.

The thumbwheels are physically located at the top of the memory module and de-
fine lower address limit for each module.

The module itself knows its size, which is added to the lower limit and presented
on a display giving lower limit to the next module.

Examples:

General

POSITION 1.2.3; 19,10,11112
I'-

l l
l

' I I

u -/u u
. L I‘- In

ONE ND-1OO
. ,7,- __/ CARDCRATE- , L / L

L _' . L

l
CPU .4 :
MMS’ _I

Figure 2. 77: Memory Module placement in the Card Crate

LL: Lower limit is set by two hexadecimal thumbwheels or given by module
placement (the position code). Lower limit defines the lower address to
access the module.

UL: Upper limit is displayed as two octal digits and defines the highest address to
access the memory module. Upper limit is generated internally on the memo-
ry module as an addition of lower limit and the size of the memory module.
The upper limit is displayed in steps of 16K.

As indicated in the above figure, upper limit on a memory module covering one
part of the address range, should be equal to lower limit on the next memory
module covering the following higher addresses.

ND-06.014.02



2—49

CASE 1:

Lower limit defined by the position code.

Thumbwheel should be

Thumbwheel should be

POSITION 1 g2.3.' .9.10.11.1‘2
v 1 l I r l l

mu ELLJ

1

CPU -— 1
MMS -——-—-'

Position 12: Address range 0 - 64K words
Position 11: Address range 64 — 128K words
Position 10: Address range 128 - 192K words

and so on

Requirement: All memory modules must be 64K words.

CASE 2:

Lower limit defined by thumbwheel.

POSITION 1 2 3 a. g
I I l
r r 1 l v I I

LELI Lo_4.J nJ
| ,

CPU ....1 g
1

64K W module
MMS _ __ ___l 32K w module

64K w module

Resolution on thumbwheel is 16K words per digit. Only digits below 8 are legal.

ND-06.014.02



2.4.3 Memory Error Correction

To each 16 bit word stored in memory, a 6 bit error correction code (ECC) is
generated. That is, each word is stored as 22 bits.

When reading from memory, a new ECC is generated and compared with the
stored one. This comparison allows the memory system to:

— Accept good data (no errors).

— Detect, correct and log single bit errors.

— Detect double bit errors and interrupt the CPU for uncorrectable memory
failure.

— In most cases, interrupt the CPU for memory failures on multiple errors
(certain unfortunate combinations of multiple errors could be bypassed).

ND-06.014.02



Multiple
Errors

Error Codes (PES bits 8— 73) Decoding Tab/e:

Error Syndrome Bits No Single code Single data
Code Fatal S4 S3 52 S1 SO Error Error Error

0 0 0 0 0 0 0 Good
1 0 0 0 0 O 1 ECO
2 0 0 0 0 1 0 EC1
3 0 0 0 0 1 1 E0
4 0 0 O 1 0 0 EC2
5 0 0 0 1 0 1 E1
6 0 0 0 1 1 0
7 0 O 0 1 1 1 E2

10 0 0 1 0 0 0 EC3
11 0 0 1 O 0 1 E3
12 0 0 1 0 1 0
13 0 0 1 0 1 1 E4
14 0 0 1 1 0 0 E5
15 0 0 1 1 0 1 E6
16 0 0 1 1 1 0 B
17 0 0 1 1 1 1
20 0 1 0 0 0 0 EC4
21 0 1 0 O O 1 E8
22 0 1 0 0 1 0 E9
23 O 1 O O 1 1 E10
24 O 1 O 1 0 0 E11
25 0 1 0 1 0 1
26 0 1 0 1 1 0 E12
27 O 1 0 1 1 1
30 O 1 1 0 0 0 E13
31 0 1 1 0 O 1
32 0 1 1 0 1 0 E14
33 0 1 1 0 1 1
34 O 1 1 1 0 0 E15
35 0 1 1 1 0 1
36 0 1 1 1 1 0

37.-- .0._L-1.._1.-l_l.._ -___- -E_C~i_- __l ______
40 0 0 0 0 0

52 1 0 1 0 1 0 All 22 bits are zero Special

65 1 1 0 1 0 1 All 22 bits are one cases

_"._ -2 _"_ ___________ _ _________________I74 1 1 1 1 0 0
75 1 1 1 1 0 1 Lower byte parity error For 2 bit
76 1 1 1 1 1 0 Upper byte parity error }parity check

77 1 1 1 1 1 1 Upper + lower byte par. error memory

Figure 2. 78: Error Codes (EC) as Reported in the PES Register

ND—06.014.02



2.4.4

2.4.4.1

2-52

Memory Control and Status

Error Correction Control Register (ECCR)

This register controls the error correction network.

The error correction control register is loaded by executing the instruction:

TRR ECCR

The format is as follows:

15 5 4 3 2 1 0

N/A '3 DIS ANY ‘5 °
TST TST TST

Description:

Bit O, 1, 3 and 4 are used by maintenance only to test the error correction network.

Bit 0: set to ”1 ” simulates memory error in bit 0. TST = Test

Bit 1: set to ”1” simulates memory error in bit 15. TST: Test

Bit 2: interrupt condition control bit.

”0” = only multiple errors will generate parity error interrupt.
”1” ll all errors will generate parity errors.

This bit is turned on and off by an RT program logging single bit
errors.

Bit 3: Disable. (DIS)

When this bit is set, error correction and parity error interrupt are
disabled.

Bit 4: Set to "1” simulates memory error in bit 6. TST = Test

ND-06.014.02



2.4.4.2

2 -—53

Memory Status Registers (PEA and PES)

Feedback information from the memory system is given in two status registers:

— PEA (Parity Error Address).
— PES (Parity Error Status).

Both registers are read to the A register by the TRA instruction.

Format of PEA: (,4 register after TRA PEA)

15

Lower 16 bits of Physical Address

A PEA register holds the 16 least significant address bits of the last memory
reference.

Format of PES: (A register after TRA PES}

15 14 1312l11l10.9‘8 7.6.5.4; 3 21.0

Fetch

s4 .83.82rs1.so 23'22F21'2n'19'18'17 fie
DMAIFAT ERROR CODE UPPER 8 BITS OF PHYSICAL ADDR-

Bits 0—7:

Bits 8-12:

Bit 13:

Bit 14:

Bit 15:

Most significant address bits of the last memory reference.

Error code (0-4) which points out the failing and corrected bit if a single
bit error has occurred (see bit 13). Refer to the table below for
decoding of the error code.

Fatal

If fatal is set 1, a multiple error has occurred and the error code does
not contain relevant information. Fatal not set ("0”) means single bit
error (bit number found in error code) or good data (error code = 0).

DMA; error occurred during DMA reference.

Fetch — error occurred during instruction fetch or during an examine
(EXAM) or a deposit (DEPO) instruction.

When the error condition occurs, the content of PES and PEA is locked and not re—
leased until TRA PEA is executed. These registers do not contain correct informa-
tion unless an internal interrupt with code 10 or 11 (parity error and memory out of
range) is detected.

ND—06.014.02



2.4.5

2.4.5.1

2.4.5.2

Multiport Memory

Two multiport memory systems are available. These two systems are called:

— Big Multiport Memory (BMPM).
— Multiport Memory 4 (MPM4).

Big Multiport Memory (BMPM)

ND-100 can be equipped with a multiport memory transceiver to access the big
multiport memory system.

The BMPM system allows up to four sources to access the same physical
memory area.

One source is connected to one of four BMPM ports through a multiport
channel. All devices meeting the multiport channel specification are allowed
access to this memory system.

Typical applications of the BMPM system are:

— Multiprocessor communication through a shared memory system.
Shared memory between CPU and high speed DMA devices.I

The BMPM system is physically located in a separate card crate.

One card crate can hold 384K words, and 8 crates can be connected.

Multiport Memory 4 (MPM4)

The MPM4 combines the features from the big multiport memory (BMPM) and
the bus extender (BEX). The MPM4 extends the ND-100 bus to new card racks. In
these racks you can install memory modules, DMA modules and ordinary l/O
modules. The memory modules may be shared with other ND-1005, ND-500s and
DMA devices. By using the MPM4 system you are able to build a big and flexible
computer system.

ND-06.014.02



2.4.6

2.4.6.1

2—55

Cache Memory

Cache is an optional high speed memory buffer.

The presence of cache will reduce average memory access time significantly.

Cache Memory Architecture

Location

Cache memory is physically located on the memory management module and has
direct (through special wiring) connection to the internal CPU data bus (IDB).

P/acement/Replacement Algorithm

The cache memory should hold the most recent data and instructions to be

processed. The algorithm used for this purpose is called ”Write Through" (WT).

This algorithm ensures that all information in cache is also held as backup in main

memory. That is, cache memory does not need standby power during a power

break.

The algorithm concept is as follows:

—— A write operation goes to cache memory as well as main memory.

— During a read operation data is taken from cache rremory if found there.

Otherwise, it is taken from main memory and written nto CPU and also into

the cache memory (for probable later use).

ND-06.014.02



2.4.6.2

2756 .

Cache Memory Organization

The cache memory is organized as a 1K word, by 31 bit look up table. Each word
in cache is a copy of a word on one of the physical pages in main memory and
there is a one to one connection between displacement in cache and displacement
in the page. -

In order to associate each cache word with one physical page, a directory is used.
'The directory is 15 bits to each word telling which page this word belongs to.
During write the directory is updated to the Physical Page Number (PPN) written
into.

During read, the directory is compared with the accessed PPN. If they are equal, it
was a cache hit, if not, the displacement was equal, but the cache word belongs to
another page than the one accessed. Refer to Figure 2.19 for illustration.

Physical
Address (10-23)

DIP PPN . BO 04 5
Virtual
Adams
(0-9)

G

PP

. Physical
JAddress

(1043, Compare
<1}

0 0

If Tru- -> Data AVAILABLE

DIP = Displacement In Page
PPN = Physical Page Number
30 = Bus Data Data to processor
CPN = Cache Page Number
U = Used

Figure 2. 79: Cache Operation Principles

ND-06.014.02



2—57

31 17 16 15 o

CPN U DATA W0 R D

Figure 2.20: Format of One Cache Word

CPN: Cache Page Number defines what PPN (Physical Page Number) the
CPU word belongs to.

U: ”1 ” — this cache location contains valid information.

"0” — this cache location does not contain valid information.

The U bit is only used by hardware and will be ”0" after a cache clear.

DATA WORD: This is a copy of a word in main memory.

ND—06.014.02



2.4.6.3

2.4.6.3.1

2—58

Cache Control and Status

Cache memory contains:

— 3 registers for control
— 1 status register for feedback information

CACHE CONTROL

Clearing Cache

ND-100 cache concept requires that all changes in main memory should be updat-
ed in cache. This is done automatically when the CPU writes to memory. A DMA
transfer will not be mapped through cache, however, so that a DMA transfer
would result in different data in cache and memory. To avoid this, the operating
system will execute the instruction

TRR CCLR % Clear cache

when a DMA transfer is initiated.

Setting of Cache Inhibit Limits -

Assume that all external sources to memory (DMA, etc.) could use a predefined
address area.

Note that data is not removed from cache when the cache inhibit area is expand-
ed. Therefore, expansion of the cache inhibit area must always be accompained by
clear cache. Note that the whole address range is inhibited after master clear.

lower limit S PPN < upper limit

The limit setting is included to define a CPU private area, thus avoiding the clear
cache operation for each DMA transfer.

The limit registers are set by the instructions:

LDA <Iower limit> % lower limit page number
TRR LCIL % set lower limit

and

LDA <upper limit> % upper limit page number
TRR UClL % set upper limit

ND-06.014.02



2—59

2.4.6.3.2 CACHE STATUS REGISTER

The cache status register is used by diagnostic programs and loaded to the A
register by

TRA CSR % Cache status -> A register

The format of CSR:

15 2 1 0

Bit 0: CUP

Cache updated — CUP is ”1” if the next memory reference (i.e., the
instruction readout for the following TRA CSR) causes writing in cache.
(Before TRA CSR is executed the next instruction is preletched!)

Bit 1: CACHE ON

Cache on is ”1" if cache is present, except during a 60 ps period, following
cache clear and master clear. If bit 2, MAN DIS is ”1”; cache on will be ””.0

Bit 2: MAN DIS

Manual Disable of cache.

”1” if disabled
"0" if not disabled

This bit is controlled by a switch on the memory management system
module.

The cache status register is 1XX if the cache option is not installed.

ND—06.014.02



2.5

2.5.1

2—60

ND- 100 INPUT/OUTPUT SYSTEM

General

The Input/Output system (abbreviated to l/O system) provides a two-way
communication between the CPU and its peripherals. General requirements for an
l/O system are:

— Reliability.

— Flexibility. The l/O system should be able to handle slow devices as well as
high speed devices.

— Modularity. The I/O system should be easy to expand as the customer
requires. l/O configuration should be easy to change.

The requirements mentioned above depend, of course, on the system’s architec-
ture.

ND-06.014.02



2.5.2

2—61

ND— 700 //0 Architecture

The ND-1OO bus provides the communication betwen functional blocks in ND-100.

All ND—1OO modules are made to a common standard to allow identical connection
to this bus. This convention also includes l/O device controllers.

The ND—lOO bus is controlled completely by the bus control/driver which is an
integrated part of the CPU. This arrangement includes the following features:

— The l/O device controller is directly connected to the same printed back-
plane as the CPU.

— no external wiring
— increased reliability

— There is no connection of external buses.

— a faster system
— easy to maintain

— I/O modules can be plugged into the bus.

— easy to expand
-— easy to reconfigure

It is also possible to extend the ND—lOO bus by using Bus Extenders (BEX).
The BEX system extends the ND—100 bus to a maximum of 8 card crates (both 12
and 21 position crates). Vs» .
However, this system slows down the execution time.

ND-06.014.02



2—62

2.5.3 ND- 100 Card Crate — Physical Layout

The ND-100 card crate is available in two versions. One version takes a maximum
of 12 modules and the other a maximum of 21 modules. Each module has one 96
pins contactor for direct contact to the ND—100 bus when plugged into the
crate.Refer to Figure 2.21. Figure 2.22 and 2.23 show the layout of the two card
crates.

Device

Controller

Two 64 pins contactors for device connection.

Standard 'i
ND-100 bus C 96 pins contactor for direct contact to the
Dr'Ve's/ ‘ ND-100 bus.
Receivers

Figure 2.2 7: ND- 700 Module and Connectors

/// mag/fl CONNECTION
OF MODULE
DEPENDENT

420mm CABLES

f/lA/fi/f/ffl/ff/l//////// //
POWER

SUPPLY

/zf///V/‘/['// 7/7///

////JM/// ////.
510mm

Figure 2.22: 72 Position ND- 700 Crate Layout l Top View}.
In the 72 position version, the required power is supplied by a power
supply located within the card crate. This approach leads to a very
compact system.

ND—06.014.02



2—63

420nm

///////////// SUDES FOR
CONNECTION
OFMODULE

, DEPENDENT

:

CABLES

////[//[frr///ff// A

I!
I

ND-100
BUS BACKPLANE

‘ 77/2“ ye WWW
510mm

Figure 2.23: 27 Position ND- 700 Crate Layout (Front View)
In the 27 position version, the power supply is removed from the card
crate and located in the upper part of the cabinet. Thus, the cabinet is
bigger than the cabinet for a 72 position crate.

ND-06.014.02



2—64

Figure 2.24 shows the recommended placement of modules in a card crate. The
placement rules are equal for both the 12 and 21 position crate.

It the memory management and cache module is present, the first l/O module
should be placed in position 3, the next in position 4 and so on, expanding to the
right.

If the MMS and cache module is not present, move all l/O modules one position
left.

RULE: There should never be empty positions between the CPU and the last l/O
module. Expansion is from left to right.

If the 12 or 21 position crates are not enough, new card crates can be added, thus
expanding the ND—lOO to a maximum of 8 crates. This is done by using Bus Ex-
tenders as described later in this manual.

ND-100 CPU MODULE

MMS 8| CACHE

10MB DISK CONTROLLER
'_"—_ DATA ENTRY MEMORY MODULES

CONTROLLER

fl 7;F£1 [II/II/[lL //

' I r/////// /
| -

l
POWER 1 Fae: |
SUPPLY r- POSITIONS—'7'

ll

m , //‘////// ///V/

'
Memory Expansion

‘

up to 512k words

I
l/O Device Connection

|

Figure 2. 24: Recommended Placement of Modules in a ND- 700 crate.

ND-06.014.02



2.5.4

2 «65

The ND-700 Bus

The ND—100 bus has been frequently mentioned due to its importance as a sy-
stem highway.

Although the bus is physically one printed backplane, it may be divided up into
two logical parts:

— Multiplexed address/data bus.
— Control lines.

ND-100 bus facts:

— The multiplexed address/data bus is 24 bits wide, supporting a physical
address space of 16M words.

—— No loss in memory access time due to multiplexed bus.

— Precise balance and termination give typically 20 ns address/data set up
time.

All modules connected to the system are presented the same information simul-
taneously and are continuously "listening" to the bus activity.

The control lines are used to define the valid information on the bus (addresses
or data) and to connect one source to one destination.

ND—06.014.02



2.5.5

2 —66

ND- 700 //0 System Functional Description

External devices may be classified as:

— Slow character/word oriented input/output devices (example: terminals.)

— High speed block oriented mass storage devices (example: disk, magnetic
tape).

ND-100 handles these device classes in different ways.

The first class is completely controlled by the CPU. This is called Programmed
Input/Output (PIO).

The mass storage device controller operates directly on memory. This is called
Direct Memory Access (DMA).

The program that controls a peripheral device is called a device driver. These
drivers are subroutines delivered by Norsk Data together with the complete
hardware/software configuration.

ND—06.014.02



2.5.6

2.5.6.1

2—67

Programmed Input/Output — P/O

A PIO interface is always designed to handle slow byte/word oriented devices and
is completely controlled by the CPU.

All exchange of data, control and status between the CPU and a device is
programmed via the A register.

The Input/Output Instruction — IOX

The IOX instruction is a privileged machine instruction used in information
exchange between the l/O system and the A register.

The l/O system usually contains several device controllers, each of them
associated with a device register address. The lower 11 bits of the IOX instruction
contains the address to the device that is to be accessed.

IOX instruction format:

IOX <device register address>

15 11 1O 0
lOX 1 device register address

IOX Instruction Format

ND—06.014.02



2—68

2.5.6.2 Interface Channels and Registers

An l/O interface is said to have two channels if it can handle both input and
output transfers. This means one input channel and one output channel.

Examples:

— A terminal interface has two channels, one for input from the terminal's
keyboard, one for output to the terminal's screen.

— A paper tape punch has only one channel, the output channel.

At least three registers are assigned to each channel for each device. Norsk
Data’s standard assignment of registers for a two channel device is:

Input Channel

— Input control register.
— Input status register.
— Input data register.

Output Channel

—- Output control register.
— Output status register.
— Output data register.

Each of the above mentioned registers has a number in the device. In the lOX
instruction the three least significant bits are used to select one register in the
selected device.

jelected

register within
vice15 11 10 9 3 2 l 0 selected de

lOX f

t: 0: input operation
1: Output operation

Device selection

— 0: Standard ND interface
1: Customer designed interface

Figure 2.25: /0X Instruction Decoding Details

The lOX instruction is used for both input and output.

/0X Output

—— Odd device register address (bit 0 = ”1”).
— Content of A register is written into register specified in "device register

address”.

ND-06.014.02



2—69

IOX Input

— Even device register address (bit 0 = ”0").
— Content of register specified in ”device register address” is loaded into A

register.

Device Register Address Range

Standard interfaces delivered by Norsk Data use addresses from 0
17778 (bit 10 is always zero).

Customer designed interfaces can use the address range from 2000.3 — 3777., (bit 10
is one).

Device register address

r
A

\
15 11 10 9 0

l
lOX c : x x x x ................. x x

1
¥

\f

J

F

c = oIII r
’fi'

>
C = ’“l” i; 4K

C = Customer K

Figure 2.26: /OX Address Range

ND-06.014.02

ADDRESSES -DEF|NED
BY NDRSK DATA
DESIGNED INTERFACES

ADDRESS

0

17778
ADDRESSES LEFT OPEN
FOR CUSTOMER
DESIGNED INTERFACES

20008

37778



Special Feature

2—70

For future extension, of device addresses the T register can hold the device regis-
ter address. The IOX instruction then has the format:

IOXT % T = <device register address>

Device register address in Tregister

C = Customer

Figure 2. 27: IOXTAddress Range

ND-06.014.02

,As
/’ 1

1514 1312 11 1o 9 8 ......................... o
i i: i I i iC xxx........» ..............x

I
: i I i i i : Addresses‘ V #

J
°

0 0 0 0 0 0 X #7 NORSKDATA

.“1
INTERFACES .

17778
20008

CUSTOMER
0 0 0 0 0 ‘ X iNTERFACES

37778
,

o o o o 1 o x 40008. 1 1
' ~ I 1
f '; " 1 iLLEGAL 1

o 1 1 1 1 1 x ' 77777
> 8

SYSTEM 1000008
- CONTROL

1 o o o o o o —» 44" REGmTERs
\ 1007778

1 o o o o o 1 ’ 1010008

3 :, RESERVED
1 1 o 1 0 o o ' 1077778

1 o o 1 o o o- NORSKDATA 1100008

1 1 1 1 1 1 '1 iNTERFACES

1777778



2.5.6.3

2—71

Control and Status Registers

Commands to a device are given through the control register.

LDA <command> % Initiate A register with comrr and
IOX <dev. addr. + CR> % Write control register from A register

% (CR 2 control register)

Device feedback goes through the status register:

IOX <dev. addr. + SR> % Read status register to A register
% (SR = status register)

The formats of these registers are device dependent and found in the hardware
programming specifications for each device type.

ND-06.014.02



2.5.7

2.5.7.1

2.5.7.2

2—72

Direct Memory Access (DMA)

General

Direct Memory Access is used to obtain high transfer rates to and from memory.

Instead of using IOX for each word via the A register, a DMA controller is con-
nected directly to the main memory via the ND-100 bus. This connection is called
a DMA channel.

More than one DMA device may be active on the DMA channel at the same
time, sharing the channel’s total band width (1.8 M words/sec).

Typical DMA devices are:

— Disks.
— Magnetic tapes.
—— High speed serial/parallel intercomputer links.

After activation, a DMA transfer runs completely independently of the CPU. That
means that CPU and DMA activity may be performed in parallel. CPU and DMA
controllers operate simultaneously and independently of each other.

Conflicts are avoided by the bus control/driver in the CPU. If the CPU requests
the bus (instruction fetch, l/O, access, etc.) simultaneously with a DMA control-
ler, the bus is given to the DMA transfer. This effect is called cycle steal.

A HAWK disk, for example, will steal one cycle of 550 ns per each 6.4,45 transfer
time which occupies less than 10% of the bus band width. The effect of cycle
steal in this example is close to zero due to prefetch of instructions and the

average distribution of bus requests within the instructions.

DMA Controller Operation

A DMA transfer may be divided into three steps:

— Initialization.
—— Transfer.
— Termination and status check.

The bus is also fast enough to handle both DMA activity and CPU activity at the
same time without slowing down the CPU. A CPU memory reference will hold

the bus for typically 320 ns, a DMA transfer typically 550 ns.

A disk transfer, consequently, will use 550 ns of bus time for each 6.4}150f trans-

fer time. That is less than 10% of the bus band width. This does not mean that

there is 10% less CPU activity. The use of instruction prefetch and normal distri—
bution of memory references reduces. DMA activity to practically zero overhead.

ND-06.014.02



2.5.7.2.1

2.5.7.2.2

2.5.7.2.3

2—73

INITIALIZATION

A DMA controller has to be initialized before a transfer can be started. The
initialization is done by a device driver activated by the operating system when a
DMA transfer is needed.

The driver program accesses the DMA controller by means of IOX instructions.
Through different transfer parameters, the driver tells the DMA interface what to
do.

Typical parameters are:

— Memory Address Register (MAR) holds the first memory address to read
from IDMA output) or write into (DMA input).

— Block Address Register (BAR) holds the first address to read or write from
on the physical device.

~ Word Count Register holds the number of words to be transferred.

— Control Register gives device function (read, write, etc.) and start.

The formats of the registers are given in the hardware programming specifications
for each device.

TRANSFER

After initialization and start is given, the data transfer takes place. Data is
exchanged between the DMA controller and memory at the speed determined by
the device.

In order to reduce the possibility for overrun on input and underrun on output,
each device controller contains a buffer for at least 16 words between device and
memory.

TERMINATION AND STATUS CHECK

The DMA transfer is completed when the word counter is zero. A DMA controller
tells this to the CPU through an interrupt on level 11. The device driver is again ac-
tivated to read the device status which gives information on the status of the
transfer.

ND—06.014.02



2-74

2.5.7.2.4 GENERALCONSIDERATIONS

In ND-100 all DMA controllers have a buffer for at least 16 words between device
and memory. That is, if the DMA channel for some reason is occupied, the buffer
will prevent underrun on output and overrun on input.

if there is a high load on the DMA channel, i.e., several DMA controllers that can
be active at the same time, some general considerations should be taken.

— The DMA controller with the smallest buffer should be placed closest to the
CPU.

— lf several DMA controllers have the same buffer space, the fastest should be
placed closest to the CPU.

’

These rules are related to hardware priority associated to placement relative to the
CPU.

ND-06.014.02



2.5.8

2.5.8.1

2.5.8.2

2—75

The //0 System and the Interrupt System

General

Under a running system (SINTRAN Ill), all l/O devices connected to the ND-100
will be prepared for operation and then allowed to operate asynchronously with
respect to the CPU. That means that the I/O controllers activate themselves

through an interrupt to the CPU if a status change occurs.

Possible status changes in the I/O system are:

— End of operation interrupt.

lf output this means data is transmitted, can accept next

If input this means data is available, please read it (before overrun)

— Error interrupt.

Interrupt Level Usage

Interrupt levels 10, 11, 12, 13 and 15 are available to the I/O system as physical

lines in the ND—100 bus. These lines go directly to the interrupt detect controller in
the CPU.

The Level Assignment

— All output interrupts use level 10.

— All DMA controllers use level 11.

— All input interrupts use level 12.

— Real-time clocks and special devices such as HDLC input use level 13.

— Level 15 is not used by Norsk Data equipment but is available for special pur-
poses.

ND—06.014.02



2.5.8.3

2.5.9

2—76

Device Interrupt Identification

As indicated above, more than one device may use the same interrupt line. In
order to find the interrupting device an IDENT instruction is executed.

The IDENT <PL> will return a vector (called ident code) from the interrupting
device to the A register.

The ident code is unique for each device and is used to find that device driver.
The driver will read the status register to find the reason for the interrupt and
take proper action.

The lDENT <PL> instruction will only search for interrupts on the level specified
in PL (10 - 13).

Example:

The instruction IDENT PL12 will only search for interrupt in the input
channel. A possible existing interrupt on level 10 or level 11 is ignored and
handled later by IDENT PL10 and IDENT PL11 respectively.

Programming Specifications for I/O Devices on the CPU Board

The real-time clock (device register address range10-13) is always located on the
CPU board. The terminal with device register address range 300-307 is located on
the CPU board unless a strap on the CPU board is removed.

Since these devices are included in every CPU, their programming specifications
are given here. Programming specifications for other devices are given in separ—
ate manuals.

ND-06.014.02



2.5.9.1

2.5.9.2

2—77

The Real—time Clock

The real-time clock on the CPU board has device register address range10-13.

lOX 10:

lOX11:

IOX 12:

IOX 13:

Returns 0 in the A register and has no other effect.

Clear real-time clock counter. This instruction will cause the next
clock pulse to occur exactly 20 ms later. If this instruction is ex-
ecuted repeatedly, the counter will never be incremented, and no
clock pulses will occur. This may affect the execution of opera-
tor’s communication on console terminal.

Read real—time clock status.

Bit 0 - 1: The clock will give interrupt when next clock pulse
arrives.

Bit 3 = 1: The clock is ready for transfer, i.e., a clock pulse has
occurred.

Bits 1-2 and 4—15 are always zero.

Set real-time clock status.

Bit 0 = 1: Enable interrupt if ready for transfer occurs.

Bit 13 = 1: Clear ready for transfer.

The Current Loop Interface

The current loop interface located on the CPU board has device register address
range 300 - 307.

lOX 300:

IOX 301:

lOX 302:

Read input data (according to input control word setting). The
last inputted character is transferred to the A register. The data
available signal is reset if the micro prograhmed operator com—
munication (MOPC) is not active.

No operation.

Read input status.

Bit 0 = 1: Data available will give interrupt when it occurs.

Bit 3 = 1: Data is available (ready for transfer). ls never given if
MOPC is active.

ND—06.014.02



IOX 303:

IOX 304:

IOX 305:

IOX 306:

IOX 307:

2-78

Bit 4 = 1: Inclusive or of error bits 5-7.

Bit 5 = 1: Framing error.

Bit6 = 1: Parity error.

Bit7 = 1: Overrun.

Bits 1—2 and 8-15 are always zero.

Set input control.

Bit O = 1: Enable interrupt if data available (ready for transfer)
occurs.

Bit 11 and Bit 12:
Bit 11 = 1 and Bit 12 = 1 signifies 5 bits code.
Bit 11 = 0 and Bit 12 = 1 signifies 6 bits code.
Bit 11 = 1 and Bit 12 = 0 signifies 7 bits code.
Bit 11 = 0 and Bit 12 = 0 signifies 8 bits code.

Bit 13 = 1 signifies 1 stop bit.
Bit 13 = 0 signifies 2 (1 .5 for 5 bits) stop bits.

Bit 14 = 1: A parity bit is added to the number of bits men-
tioned above.

Bit 14 = 0: No extra bit is added to the bits mentioned above.

Returns 0 in the A register and has no other effect.

Write data (according to input control word setting).

Read output status.

Bit O = 1: Ready for transfer will given interrupt when it occurs.
Bit 3 = 1: Ready for transfer.
Bits 12 and 4—5 are always zero.

Set output control.

Bit O = 1: Enable interrupt if ready for transfer occurs.

ND—06.014.02



2 —79

2.6 ND- 700 BUS EXTENDER (BEX)

2.6.1 General

Although 21, or often less than 12, modules are sufficient for most systems,
some configurations require more space than even the 21 position card crate can
offer.

This space problem is solved by using the ND-100 Bus Extender (BEX) system.
The BEX system makes it possible to extend the ND-100 bus by linking together
card crates. The maximum number of card crates is 8. Using 21 position card
crates this give 168 positions for card connection. Note that only one CPU
module and one Memory Management System (MMS) module may be connec-
ted to the system. The rest of the positions is free for Input/ Output modules and
Memory modules.

2.6.2 Bus Extender Architecture

The BEX system consists of Bus Extender (BEX) modules and crate interconnec-
tion cables. One BEX module is located in each crate. Two crates are physically
connected via two interconnection cables between the BEX modules. Refer to
Figure 2.28.

BEX no. 0 (MASTER BEX)

BEX No.1 BEX NO. 7
CPU

MMS

PlO, DMA PlO, DMA PlO, DMA
MEMORY MEMORY MEMORY

‘— —>¢ <— -—> ‘ " T - T <—' —>

M”.......... 1 ”fl“ ..........[I flflflfl........[U

A CRATE " t B CRATE !| H CRATE

CRATE INTERCONNECTION CABLES

Figure 2.28: ND-100 Bus Extender System

The crate where the CPU is located is called the A crate. The BEX module loca—
ted in the A crate is named BEX no. 0 (also MASTER BEX).

It is posssible to mix Programmed Input/Output (PIO) modules, Direct memory
Access (DMA) modules and memory modules in all the crates.

ND-06.014.02



2—80

ND-06.014.02



3.1

3.1.1

ND—100 INSTRUCTIONS

INTRODUCTION TO THE INSTRUCTION HEPERTOIRE

General

In the ND-100 all instructions occupy a single word, 16 bits, yielding an efficient
use of memory and high speed code. Floating point arithmetic operations and
floating/integer conversions are included in the standard instruction set.

The instruction set of ND-100 is divided into the following 5 classes:

— Memory reference instructions.
— Register instructions.
— Input/Output control instructions.
— System control instructions.
— Customer specified instructions

Each instruction is given a short description. This includes its mnemonic as used
in the assembly language, the octal code, a diagram showing its format and
special comments. For each instruction, the systems and indicators that can be
affected by the instruction are listed. ND-100 instruction execution times are gi-
ven in Appendix A.2.

When a register is mentioned in this chapter, it refers to the register set on the
current program level. For example, "the A register" means he A register on the
current program level.

The definitions used in the descriptions are as follows:

General Registers:

A register
D register
T register
L register
X register
B register
Program counter

STS Status register containing PTM, TG, K, 2, Q, 0, C, M
'uwxr—"IUEP

ND-06.014.02
Rev. A



Status Word:

Bit

0 PTM Page table mode
1 TG Rounding indicator for floating point operations
2 K One bit accumulator
3 2 Error indicator
4 0 Dynamic overflow indicator
5 0 Static overflow indicator
6 C Carry indicator
7 M Multi-shift link indicator
8-11 PL Program level indicator

12 N-100 ND—lOOlndicator
13 SEXI Extended address mode
14 PONI Memory Management On Indicator
15 IONI Interrupt System On Indicator

Abbreviations:

EL Effective Location
EW Effective Word
AD Double Accumulator
FA Floating Accumulator
DW Double Word
FW Floating Word
sr source register
dr destination register

Logical AND
V Logical inclusive OR
V Logical exclusive OR
( I The contents of
MS Microsecond
ns Nanosecond

ND—06.014.02



3.1.2

3.1.2.1

Instruction and Data Formats

The ND-100 has a 16 bit word format. The bits are conventionally numbered 0 to
15 with the most significant bit numbered 15 and the least significant bit numbered
0.

15
’

0

Figure 3. 7: ND— 700 Bit Numbering Convention

The content of a ND-1OO word is conventionally represented by a 6 digit octal
number. Thus, the content of a word with all 16 bits set to zero is represented as
000000, while the contents of a word with all bits set to one is represented as
177777.

The standard ND—100 instruction set provides instructions for the following 6 dif-
ferent data formats:

Single bit
8 bit byte
16 bit word
32 bit double word
48 bit floating point word
32 bit floating point word (optional, instead of 48 bit floating point)P’WPWNT‘

Single Bit

A single bit data word is typically used for a logical variable; the bit instructions are
used for manipulation of single bit variables. The bit instructio1s specify operations
on any bit in any of the general registers, as well as the accumulator indicator K.

ND—06.014.02



3.1.2.2

3.1.2.3

8 Bit Byte

Two instructions are available in the standard ND-100 instruction set for byte mani-
pulation, i.e., load byte and store byte.

A byte consists of 8 bits, giving a range of 0 <X < 255.

The byte addressing is such that when two bytes are packed into a word, the even
byte address points to the left half of the word.

15 87 0

Even address Odd address

n n+1

Byte Format

16 Bit Word

The most common data word format is the 16 bit word contained in one memory
location or one register.

Representation of negative numbers is in 2’s complement. The skip instruction al-
so contains instructions to treat numbers as unsigned (absolute magnitude) num-
bers.

Range

—32768 < X < 32767

Or

0<X<65535

ND-06.014.02



3.1.2.4 32 Bit Double Word

Two instructions are available to handle double word formats, load double and sto-
re double.

A double word is a 32 bit number which occupies two consecutive locations (n, n
+ l) in memory, and where negative numbers are in 2's complement.

31 A 16 15 ' D 0

Most significant Least significant

n n + 1

Double Word Format

A double word is always referred to by the address of its most significant part.
Normally, a double word is transferred to the registers so that the most significant
part is contained in the A register and the least significant in he D register. Range
as integers:

—2147483648<X<2147483647

ND-06.014.02



3.1.2.5 48 Bit Floating Point Word

The standard ND-100 instruction set provides full floating point hardware arithmet-
ic instructions, load floating, store floating, add, subtract, multiply and divide float-
ing, convert floating to integer and convert integer to floating.

The data format of floating point words uses 32 bits for the mantissa, one bit for
sign and 15 bits for biased exponent.

The mantissa is always normalized, 0.5 <mantissa < 1. The exponent base is 2, the
exponent is biased with 21“. A standardized floating zero contains zero in all 48
bits.

In main memory, one floating point data word occupies three 16 bit core locations,
which are addressed by the address of the exponent part.

n exponent and sign
n + 1 most significant part of mantissa
n + 2 least significant part of mantissa

In CPU registers, bits 0—15 of the mantissa are in the D register, bits 16—31 in the A
register and bits 32-47, exponent and sign, in the T register. These three registers
together are defined as the floating accumulator.

47 T 32 31 A 16 15 D 0

1 Exponent Man- tissa

n n +1
1

n + 2

Floating Word Format

The accuracy is 32 bits or approximately 10 decimal digits; any integer up to 232
has an exact floating point representation.

The range is

2“16384 05$ X< 215393'1orX = 0

or

10—4920 < X <104920

Examples (octa/ format):

T A D

0: 0 O 0
+ 1 : 040001 100000 0
— 1 : 140001 100000 0

ND-06.014.02



3.1.2.6

3-—7

32 Bit Floating Point Word

As an option, the ND-100 may be equipped with microprogram for 32 bit floating
point format instead of the standard 48 bit format described in the previous sec-
tion. The instructions affected are:

FAD Floating Point Add
FSB Floating Point Subtract
FMU Floating Point Multiply
FDV Floating Point Divide
NLZ Convert Integer to Floating Point
DNZ Convert Floating Point to Integer

The data format of 32 bit floating words uses 23 bits for the mantissa, one bit for
sign and 9 bits for a biased exponent. These 32 bits are packed in two 16 bit words
by omitting the most significant bit of the mantissa, which is always a one in non-
zero numbers.

The mantissa is always normalized, 0.5 < mantissa S 1. The exponent base is 2,
the exponent is biased with 25.

A standarized floating zero contains zero in all 32 bits.

In main memory, one 32 bit floating point data word occupies two 16 bit memory
locations, which are addressed by the address of the exponent part.

n exponent, sign and mantissa bits 16-21
n + 1 mantissa bits 0-15

in CPU registers, bits 0 - 15 of the mantissa are in the D register, bits 16 - 21 and
exponent and sign are in the A register. These two registers together are defined
as the 32 bit floating accumulator. The T registrer is not affected by 32 bit Floating
Point operators.

31 30 A 22 21 16 15 D ‘ O

+ Exponent
'

Man- tissa

n n+1

32 Bit F/oa ting Point Word Format

The accuracy is 23 bits or approximately 7 decimal digits. Any integer up to 223
has an exact floating point representation.

The range is

2‘255'0.5< X<2255'1orX = O

or

10—76 < X<1O76

ND-06.014.02



3—8

Examp/es I octa/ format):

A D

o: 0 0
+1.0: 040100 0
—1.0: 140100 0'
+30: 040240 0

NOTE: The instruction times are given in Appendix A.2.

ND-06.014.02



3.2

3.2.1

3.2.1.1

THE INS TRUC T/ON REPERTOIRE

Memory Reference Instructions

Memory reference instructions specify operations on words in memory. For all the
memory reference instructions in ND-100, the addressing rrode is the same with
the exception of the conditional jump, the byte and the register block instructions.
The addressing structure for these memory reference instructions is given under
the specific instruction specification.

The ND-100 has the following groups of memory reference instructions:

— Store instructions.
— Load instructions.
— Arithmetic and logical instructions.
—~ Sequencing instructions.
— Byte instructions.
— Register block instructions.

Addressing Structure

In memory reference instruction words, 11 bits are used to specify the address of
the desired wordls) in memory, 3 address mode bits and an 8 bit signed displace-
ment using 2’s complement for negative numbers and sign extension. (Note that
excluded from this is the conditional jump, the byte and the register block
instructions.)

15 11109 8 7 O

op. code ,X l ,B displacement

ND-1OO uses a relative addressing scheme, which means that the address is specif-
ied relative to the contents of the program counter or relative to the contents of
the B and/or X registers.

The three addressing mode bits called ”,X", ”l" and ”,8 provide eight different
addressing modes.

ND-06.014.02



The addressing mode bits have the following meaning:

— The I bit specifies indirect addressing.

— The ,3 bit specifies address relative to the contents of the B register, pre-
indexing. The indexing by ,3 takes place before a possible indirect address-
ing.

— The ,X bit specifies address relative to the contents of the X register, post-

indexing. The indexing by ,X take place after a possible indirect addressing.

lf all the ,X, l and ,8 bits are zero, the normal relative addressing mode is specified.

The effective address is equal to the contents of the program counter plus the
displacement, (P) + disp.

The displacement may consist of a number ranging from —-128 to +127. There—
fore, this addressing mode gives a range for directly addressing 128 locations back-
wards and 127 locations forward.

Generally, a memory reference instruction will have the form:

<operation code> <addressing mode> <displacement>

Note that there is no addition in execution time for relative addressing, pre—

indexing, post—indexing or both. Indirect addressing, however, adds one extra
memory cycle to the listed execution time.

The address computation is summarized in the table below. The symbols used are
defined as follows:

,X Bit 10 of the instruction
| Bit 9 of the instruction
,8 Bit 8 of the instruction
disp. Contents of bits 0—7 of the instruction (displacement)
(X) Contents of the X register
(B) Contents of the B register
(P) Contents of the P register
( ) Contents of a register or word

ND—06.014.02



The effective address is the address of that memory location which is finally
accessed after all address modifications (pre- and post-indexing) have taken place
in the memory address computation.

,X | ,B Mnemonic Effective Address

0 0 0 (P) + disp.
O 1 0 | ((P) + displ.)
0 0 1 ,B (B) + disp.
0 1 1 ,Bl ((B) + disp.)
1 0 O ,X (X) + disp.
1 0 1 ,B ,X (B) + disp. + (X)
1 1 0 |,X ((P) + disp.) + (X)
1 1 1 ,B | ,X ((B) + disp.) + (X)

Addressing Mode Tab/e

Pre/ative Addressing (,X = 0 I = 0 ,B = 0)

The Pre/ative addressing mode is specified by setting the ,X, l and ,8 bits all to ze-
ro. In this mode, the displacement bits (bits 0-7) specify a positive or negative 7 bit
address relative to the current value of the program counter (P register).

Example:

Suppose memory location 403 contains the instruction 004002, which here we
shall represent by STA * 2, and this instructiuon is executed The ,X, l and ,8 bits

are all set to zero indicating P relative addressing and a positive displacement of 2
is given; the contents of the A register will therefore be stored in memory location

405. If, instead, location 403 contains the instruction JMP * -—2 and it is executed,

the next instruction to be executed will be taken from location 401. While there is
an obvious limitation to this mode of addressing (locations more than 12810 words
away from the instruction being executed cannot be accessed), this mode of add—

ressing is still quite useful for doing local jumps and accessing nearby constants
and variables.

Memory

—128

[

127

Range with
P-relative
addressing

P register

Displacement

Effective address

Figure 3.2: Schematic Illustration of P relative Addressing

ND-06.014.02



3—12

indirectPre/ative Addressing (,X = 0 I = 1 ,B = 0)

Since one must be able to access memory locations more than 12810 words away
from the instruction being executed, the simplest method of doing this is to use
the indirect Pre/ative addressing mode, specified by setting the I bit to one and the
,X bit and ,8 bit to zero in memory address instructions. In this mode, an address
relative to the program counter is computed, exactly as for P relative addressing,
by adding the displacement to the value of the program counter, but rather than
the addressed location actually being accessed, the contents of the addressed lo-
cation are used as a 16 bit address of another memory location which is accessed
instead.

Example:

Suppose location 405 contains the instruction LDA I * 2 (0450023) and that this in—
struction is executed. Let us also suppose memory location 16003 contains the va-
lue 17 and that memory location 407 contains 016003. The net result of executing
the instruction in location 405 is to load the value 17 into the A register. First, the
displacement 2 of the LDA instruction is added to the value of the location counter
405, giving the result 407; then the contents of location 407, 16003 is used as an
address and the contents of this address (17) is finally loaded into the A register.

Memory

P register

Displacement

Pointer to any location
within 64K

<— Effective address to any
location within 64K

Figure 3. 3: Schematic Illustration of Indirect P relative Addressing

Bre/ative Addressing (,X = 0 l = 0 ,B = 7)

The above two addressing modes are theoretically quite sufficient. However, if the

ND-100 provided only the two addressing modes already described, it would not
be particularly convenient for program efficiency. For instance, suppose that two
subprograms, each a couple of hundred words long, need to communicate. Within
each subprogram memory accesses are commonly made using P relative address-
ing or occasionally, indirect P relative addressing. But between the subprograms
indirect P relative addressing would have to be used almost exclusively since, in

general, locations in one subprogram, which instructions in the other subprogram

must access, will not be less than 128 words apart. But this is very inefficient since

both subprograms must contain indirect pointers to data and instructions local to

the other subprogram.

ND-06.014.02



3—13

To overcome this difficulty another addressing mode is available, 8 relative
addressing, which permits both subprograms to directly adoress a common data
area. B register relative addressing is specified by setting the ,X and | bits to zero
and the ,8 bit to one in memory address instructions. This addressing mode is qui—
te closely related to P relative addressing, but instead the displacement is added to
the current value of the B register and the resulting sum is. used to specify the
memory location accessed.

Memory

8 register

Displacement

Effective address

Figure 3. 4: Schematic Illustration of B relative A ddressing

Example:

Let location 405 contain the instruction LDA —4,B (0447743) and the B register
contain the value 10035. Execute the instruction in location 405. This causes the
contents of location 10031 to be loaded into the A register. The minus 4 in the
displacement field of the LDA instruction in location 405 is added to the contents
of the B register, 10035, giving the sum of 10031, and the contents of the location
10031 are loaded into the A register.

ND—06.014.02



3—14

IndirectBre/ative Addressing (,X = 0 /= 7 ,B = 7)

Naturally, there is also an indirect B relative addressing mode which is specified by
setting the ,B and | bits to one and the ,X bit to zero in memory reference
instructions. This mode has the same relationship to B relative addressing that
indirect P relative addressing has to P relative addressing. This permits a
subprogram to access data or locations in other subprograms indirectly via
pointers in an area common to several subprograms. This address mode is used
extensively for calling library routines.

Example:

Let location 10031 contain the instruction JPL l 3,8 (1354038) and the B register
contain 400, a pointer to an area common to several subprograms. Furthermore,
let location 403 contain the value 2000. If the instruction in location 10031 is
executed, the subroutine beginning at location 2000 will be called. The displace—
ment, 3, in the JPL instruction is added to the contents of the B register, 400,
giving a result of 403. The contents of location 403, 2000, is then used as a pointer
to the subroutine.

Memory

8 register

Displacement

Pointer to any location
within 64K

Effective address

Figure 3. 5: Schematic Illustration of Indirect 3 relative A ddressing

X relative (or indexed) Addressing (,X = 7 / = 0 ,B : 0)

The other four addressing modes all involve use of the X register. The simplest of
these is X relative addressing which works like P and B relative addressing, but the

displacement is added to the X register’s contents during the address calculation
instead of to the contents of the P or B register. This addressing mode is often us—
ed for accessing the elements of a block of data.

ND—06.014.02



3—15

Example:

Let a recursive subroutine, when being called, save the contents of the L, A and B
registers in a three word block on a push down stack, and the X register point to
the first free register in the stack. The following code might then be found at the
beginning of the recursive subroutine:

SUB, STAl ,X
COPY SL DA
STAZ ,X
COPY SB DA
STAO ,X
AAX3

X register upon entry
to the subroutine

B register saved here
A_register saved here
L register saved here
X register after execution
of AAX instruction

Stack

Figure 3. 6: Illustration of the Effect of the Stack Code

For another example reread B relative addressing, substitutirg ”X register" for "B
register”.

Memory

X register

Displacement

Effective address

Figure 3. 7.’ Schematic Illustration ofX relative A ddressing

ND-06.014.02



3—16

Bre/ative Indexed Addressing (,X = 1 / = 0 ,B = 7)

When the ,X and ,8 bits are set to one and the I bit to zero in memory reference in-
structions, the mode is called 8 relative indexed addressing. In this mode, the con—
tents of the X and B registers and the displacement are all added together to form
the effective address.

B relative indexed addressing is often very useful, for instance, when accessing
row by row elements of a two dimensional array stored column by column.

Memory

8 register

Displacement

Content of X register
Effective address

Figure 3. 8: Schematic Illustration of B relative Indexed Addressing

ND-06.014.02



3—17

IndirectPre/at/ve Indexed Addressing (,X = 7 / = 7 ,B = 6‘)

The last two addressing modes are difficult to describe, but very useful. Indirect P
relative indexed addressing is selected by setting the ,X and | bits to one and the
,8 bit to zero in the memory address instruction. This mode allows successive ele-
ments of an array arbitrarily placed in memory to be accessed in a convenient man-
ner.

The address calculation in the mode takes place as follows. The contents of the P
register, say 4002, are added to the displacement, say —1, and produce a sum,
4001. The contents of the location 4001, say 10100 are added to the contents of
the X register, say —100, to produce a new sum, 10000, the effective address. By
incrementing the X register, successive locations may be accessed. For instance,
using the above example, locations 10000 through 10100 can be successively ac-
cessed by stepping the contents of the X register from — 100 tc zero.

Readers are advised to go over this example carefully. Stepping through an array
in this fashion is done very often.

Memory

P register

Displacement
Pointer to any location
within 64K

Content of X register

Effective address

Figure 3.9: Schematic ///ustra tion of Indirect P relative indexed Addressing

ND—06.014.02



3—1 8

IndirectBre/ative /ndexedAddressing(,X = 7 /= 7 ,B = 7)

The final addressing mode, indirect B relative indexed addressing, is identical to in—
direct P relative indexed addressing except that the contents of the B register is us-
ed instead of the contents of the P register in the effective address computation.
This mode can therefore be used to step through arrays pointed to from a data
area common to several subprograms.

Memory

B register

Displacement

Content of X register

Effective address

Figure 3. 70: Schematic illustration of Indirect B relative Indexed Addressing

3.2.1.2 Store Instructions

STZ Store zero Code: 000 000

Format: STZ <address mode> <disp.>

The effective location is cleared.
Affected: (EL)

STA Store A register Code: 004 000

Format: STA <address mode> <disp.>

The contents of the A register are stored in the
effective location.
Affected: (EL)

ND—06.014.02



STT

STX

STD

STF

MIN

Store T register Code: 010 000

Format: STT <address mode> <disp.>

The contents of the T register is stored in the
effective location.
Affected: (EL)

Store X register Code: 014 000

Format: STX <address mode> <disp.>

The contents of the X register are stored in the
effective location. The address of this
instruction may be modified by the contents of
the X register.
Affected: (EL)

Store double word Code: 020 000

Format: STD <address mode> <disp.>

The contents of the A register are stored in the
effected location, and the contents of the D re-
gister are stored in the effective location plus
one.
Affected: (EL), (EL + 1)

Store floating accumulator Code: 030 000

Format: STF <address mode> <disp>

The contents of the floating accumulator is
stored in three memory locations, starting with
exponent part in effective location.
Affected: (EL), (EL + 1), (EL + 2)

Increment memory and skip if zero Code: 040 000

Format: MIN <address mode> <disp.>

Effective word is read and incremented by one
and then stored in the effective location. If the
result becomes zero, the next instruction is
skipped.
Affected: (EL), (Pl

ND—06.014.02



3—20

3.2.1.3 Load Instructions

LDA

LDT

LDX

LDD

LDF

Load A register Code: 044 000

Format: LDA <address mode> <disp.>

The effective word is loaded into the A reg-
ister.
Affected: (A)

Load T register Code: 050 000

Format: LDT <address mode> <disp.>

The effective word is loaded into the T register.
Affected: (T)

Load X register Code: 054 000

Format: LDX <address mode> <disp.>

The effective word is loaded into the T register.
Affected: (X)

Load double word Code: 024 000

Format: LDD <address mode> <disp.>

The contents of the effective location are
loaded into the A register, and the contents of
the effective location plus one are loaded into
the D register.
Affected: (A), (D)

Load floating accumulator Code: 034 000

Format: LDF <address mode> <disp.>

The contents of the effective location and the
two following locations are loaded into the
floating accumulator, i.e., T, A and D reg—
isters.
Affected: (T), (A), (D)

ND—06.014.02



3.2.1.4

3—21

Arithmetical and Logical Instructions

ADD

SUB

AND

Add to A register

Format: ADD <address mode> <disp>

The effective word is added to the A register
with the result in the A register. The carry
indicator is set to 1 if a carry occurs from the
sign bit positions of the adder, otherwise the
carry indicator is reset to 0. If the signs of the
two operands are equal, but the sign of the
result is different, overflow has occurred, and
both the dynamic and static overflow
indicators are set to one. If the condition for
overflow does not exist, the dynamic overflow
indicator is reset to 0, while the static
overflow indicator is left unchanged.
Affected: (A), C, O, O

Subtract from A register

Format: SUB <address mode> <disp.>

The 2’s complement of the effective word is
formed and added to the contents of the A
register with the result in_ the A register. The
same rules as for ADD apply for the setting of
the overflow and carry indicators.
Affected: (A), C, O, 0

Logical AND

Format: AND <address mode> <disp.>

The logical product of the effective word and
the contents of the A register are formed,
with the result in the A register. The logical
product contains a one in each bit position for
which there is a corresponding one in both
the A register and the effective word, otherwi-
se the bit position contains a zero.
Affected: (A)

ND-06.014.02
Rev. A

Code: 060 000

Code: 064 000

Code: 070 000



ORA

MPY

FAD

FSB

3—22

Logical inclusive OR , Code: 074 000

Format: OR <address mode> <disp.>

Logical inclusive OR is formed between the
effective word and the contents of the A
register, with the result in the A register.
Logical inclusive 0R contains a zero in each bit
position for which there is a corresponding
zero in both the A register and the effective
word, otherwise the bit position contains a
one.
Affected: (A)

Multiply integer Code: 120 000

Format: MPY <address mode> <disp.>

The effective word and the A register are
multiplied and the result is placed in the A
register. Both numbers are regarded as signed
integers and the result as a 16 bit signed
integer. If the result in absolute value is greater
than 32767, overflow has occurred and the
static and dynamic overflow indicators are set
to one.
Affected: (Al, O, 0

Add to floating accumulator Code: 100 000

Format: FAD <address mode> <disp.>

The contents of the effective location and the
two following locations are added to the
floating accumulator with the result in the
floating accumulator.
Affected: (T), (A), (D), TG

Subtract from floating accumulator Code: 104 000

Format: FSB <address mode> <disp>

The contents of the effective location and the
two following locations are subtracted from
the floating accumulator with the result in the
floating accumulator.
Affected: (T), (A), (D), TG

ND—06.014.02



FMU

FDV

3—23

Multiply floating accumulator lCode: 110 000

Format: FMU <address mode> <disp.>

The contents of the floating accumulator are
multiplied with the number in the effective
floating word locations with the result in the
floating accumulator.
Affected: (T), (A), (D), TG

Divide floating accumulator Code: 114 000

Format: FDV <address mode> <disp.>

The contents of the floating accumulator are
divided by the number in the effective floating
word locations. Result in floating accumulator.
If division by zero is attempted, the error indi-
cator Z is set to one. The error indicator 2 may
be sensed by a BSKP instruction (see BOP).
Affected: (T), (A), (D), 2, TG

ND-06.014.02



3.2.1.5

3—24

Sequencing Instructions

JMP

JPL

CJP

Jump

Format: J M P <address mode> <disp.>

The next instruction is taken from the effective
address of the JMP instruction (the effective
address is loaded into the program counter).
Affected: (Pl

Transfer P to L and jump

Format: J PL <address mode> <disp.>

The contents of the program counter are trans—
ferred to the L register and the next instruction
is taken from the effective address of the JPL
instruction. Note that the L register points to
the instruction after the jump (the program
counter incremented before transfer to the L
register).
Affected: (P), (L)

Conditional jump

Instruction bits 8-10 are used to specify one of
8 jump conditions. If the specified condition
becomes true, the displacement is added to the
program counter and a jump relative to current
location takes place. The range is 128 locations
backwards and 127 locations forwards. If the
specified condition is false, no jump takes pla-
ce. Execution time depends on conditions, but
is the same for all instructions.

A conditional jump instruction must be speci-
fied by means of the 8 mnemonics listed
below. It is illegal to specify CJP or any com-
binations of ,B, | and ,X.

ND-06.014.02

Code: 124 000

Code: 134 000



JAP

JAN

JAZ

JAF

JXN

JXZ

JPC

JNC

3—25

The 8jump conditions are as follows:

Jump if A register is positive or zero, A bit 15
= 0.

Format: JAP <disp.>

Jump if A register is negative, A bit 15 = 1.

Format: JAN <disp >

Jump if A register is zero.

Format: JAZ <disp >

Jump if A register is filled (not zero)

Format: JAF <disp. >

Jump if X register is negative. X bit 15 = 1.

Format: JXN <disp. >

Jump if X register is zero.

Format: JXZ <disp. >

Count and jump if X register is positive or zero.

Format: JPC <disp. >

X is incremented by one, and if the X bit 15
equals zero after the incrementation, the jump
takes place.

Count and jump if X register is negative.

Format: JNC <disp.>

X is incremented by one; if then the X bit 15
equals one, the jump takes place.
Affected: (P) and (X) for JPC and JNC.

ND-06.014.02

Code:

Code:

Code:

Code:

Code:

Code:

Code:

Code:

130 000

130 400

131000

131400

133 400

133 000

132 000

132 400



3.2.1.6

3—26

Byte Instructions

To facilitate the handling of character strings, the ND-1OO provides two instruction
for byte handling, load byte, LBYT and store byte, SBYT.

Because of the requirements of full 64K addressing, the LBYT and SBYT use an
addressing scheme different from the normal ND-lOO addressing.

For byte addressing, two of the ND-‘lOO registers, the T and X registers are used
for addressing the byte.

The contents of the T register point to the beginning of the character string, and
the contents of the X register point to a byte within this string. Thus, the address
of the word which contains the byte equals

(T) + V2 (X).

If the X register is even (X0 2 0), the byte is in the left part of the word, if X0 = 1,
the byte is in the right part of the word.

A byte consists of 8 bits.

T register =
O 1
2 3

X register
2

n n + l
n + 2 n + 3

The specifications for the two byte instructions are then as follows:

LBYT Load byte Code: 142 200

Format: LBYT

The 8 bit byte specified by the contents of the
T and X registers is loaded into the A register
bits 0-7, with the A register bits 8—15 cleared.
Affected: (Al

ND-06.014.02



3.2.1.7

3—27

SBYT Store byte , Code: 142 600

Format: SBYT

The byte contained in the A register bits 0-7 is
stored in one half of the effective location
pointed by the T and X registers, the second
half of this effective location being
unchanged. The contents of the A register are
unchanged.
Affected: (EL)

Extended BYTE-instructions

Byte operands occupy fields in the memory that may start and end at any byte
address. A byte operand is specified by a two word descriptor, giving start
address and field length:
The descriptor’s words have the following format:

D1: Bit 0—15 Give the byte operand's word address in the memory.

DZ: Bit 15. This bit specifies whether the operand starts in the left byte or
the right byte.
Bit 15:0, left byte
Bit 15:1, right byte

Bit 14. Page table mode (bit 14=1 selects the alternativepage table).

Bit 13. This bit should be 0 when the instruction is started.

Bit (0—11). Field length (number of bytes).

The descriptor of the source operand is contained in the A, and D registers; The
descriptor of the destination operand is in the X, and T registers (for D1, D2
respectively).

Field length may be of any size up to and including 4K—1 bytes. Sufficient inter—
ruptability is taken care of during execution.

ND-06.014.02
Rev. A



3—28

BFlLL Byte Fill . Code: 140130

Format: BFlLL

This instruction has only one operand. The
destination operand is specified in the X, and
T registers. The right-most byte in the A-reg.
(bits 0-7) is filled into the destination field.

After execution, the X-register and T-register
bit 15 point to the end of the field (after the
last byte). The T-register bits (0-11) equal ze-
ro.

The instruction will always have a skip return
(no error condition).

MOVB Move bytes Code: 140 131

Format: MOVB

This instruction moves a block of bytes from
the location specified for the source operand
to the location specified for the destination
operand.

The move operation takes care of source— and
destination-field overlap.

The number of bytes moved is determined by
the shortest field length of the operands.

After execution, the AD and X,T registers (bit
15 in D and T) point to the end of the field
that is moved (after the last byte). D-reg. bits
0-11 equal zero and T-reg. bits 0-11 contain
the number of bytes moved.

The T—reg. bits 12—13 and the D-reg. bit 12 are
used during the execution, and are left cle~
ared. Bit 13 must be zero before execution
(used as an interrupt mark).

The instruction will always have a skip return
(no error condition).

ND-06.014.02



3—29

MOVBF Move bytes forward Code 140 132

Format: MOVBF

This instruction moves a block of bytes from
the location specified as the source operand
to the location specified as the destination
operand.

The move operation always starts with the
first byte (lower address). The number of by-
tes moved is determined by the shortest field
length of the operands. Forbidden overlap
exists when the source data to be moved, will
be destroyed. That happens when a byte is
stored in a word before that word is read
from memory. This is reported by an error re-
turn (no skip).

After successful execution, the A,D and X,T
registers (bit 15 in D and T) point to the end
of the fields that are moved (after the last by—
te). The numbers initially contained in the D-
and T-registers, bits 0-11, are decremented by
the number of bytes moved.

The T—reg. bits 12—13 and the D—reg. bit 12 are
used during the execution and are left cle-
ared. Bit 13 must be zero before execution
(used as an interrupt mark).

The instruction will have a skip—return when
no illegal overlap exists.

ND-06.014.02



3—30

3.2.2 Register Instructions

3.2.2.1 Floating Point Conversion Instructions

15
NLZ
DNZ scaling

Two instructions are available. A single precision fixed point number may be con-
verted to a floating point number. A floating point number may be converted to a
fixed point single precision number. For both instructions, the scaling factor is spe-
cified in the displacement part Of the instruction. The range of the scaling factor is
from —128 to +127, which gives a conversion range from approximately 10—39 to
103°. The execution time depends on the scaling factor and the argument to con-
vert.

The two subinstructions are described in Section 3.2.2.1.1 for the standard 48 bit

floating point format, and in Section 3.22.12 for the alternative optional 32 bit flo-

ating point format.

3.2.2.1.1 STANDARD 48 BIT FLOATING POINT CONVERSION

NLZ Normalize Code: 151 400

Format: NLZ <sca|ing>

Converts the number in the A register to a
standard form floating number in the floating
accumulator, using the scaling of the NLZ
instruction as a scaling factor. For integers, a
scaling factor of + 1610 will give a floating point
number with the same value as the integer. A
larger scaling factor will result in a higher flo—
ating point number. Because Of the single pre-
cision fixed point number, the D register will be
cleared.
Affected: (T), (A), (D)

ND—06.014.02



DNZ

9K-

3~31

Denormalize

Format: DNZ <sca|ing>

Converts the floating number in the floating ac-
cumulator to a single precision fixed point
number in the A register, using the scaling of
the DNZ instruction as a scaling factor.* When
converting to integers, a scaling factor of — 161 ,
0 will give a fixed point number with the same
value as the integer part of the floating point
number. A greater scaling factor will cause the
fixed point number to be greater. After this in-
struction the contents of the T and D registers
will all be zeros.

If the conversion causes underflow, the T, A
and D registers will all be set to zero.

If the conversion causes overflow“, the error
indicator 2 is set to one. Overflow occurs if the
resulting integer in absolute value is greater
than 32767.

The conversion will truncate and negative
numbers are converted to positive numbers be-
fore conversion. The result will again be con-
verted to a negative number.

Some Examp/es:

T-A—D before conversion (in decimal)

0.9 DNZ ~20,
3.141592 DNZ ~20,
3.141592 DNZ ~17,
3.141592 DNZ ~16,
3.7 DNZ ~20,
3.7 DNZ ~17,
3.7 DNZ ~21,
~3.141592 DNZ ~20,
~3.7 DNZ ~20,
32768.0 DNZ ~20,
—32768.0 DNZ —20,

Affected: (A), (T), (D), Z

* When converting an exact floating point
zero, scaling factors more negative than —16
will give erroneous results.

* The overflow test is fail—proof for a scaling
constant of ~20, only.

ND—06.014.02

Code: 152 000

A after conversion

—I

dwO

—3
—3
Overflow
Overflow



3—32

3.2.2.1.2 OPTIONAL 32 BIT FLOATiNG POINT CONVERSION

The normalize and denormalize operations for 32 bit floating point use the same
instruction codes as for 48 bit floating point Operations, but do not affect the T re-
gister. For the 32 bit DNZ Operations, the scaling factor should always be ——16. Ct-
her scaling factors will not cause a different result but will affect the test for over-
flow.

ND-06.014.02



3.2.2.2

3—33

Shift Instructions

15 1110 9 8 7 5 0
shift type egister number

Shift instructions operate on registers. A shift instruction consists of three parts:

The register to be shifted (specified by the shift register fields).
W Type of shift to be performed (specified by the type field) and.
w The number of shifts to be performed (specified by the number field).

A shift instruction will have the form:

<shift register> <type> <number>

Every shift instruction causes the last bit which is discarded to be contained in the
M; the multi—shift indicator. This may be used as an input for the next shift in—
Struction.

Note that bit 6 in the instruction is ignored.

The following four specifications of the <shift register> are available:

SHT Shift the T register (register field 00) Code: 154 000

Format: SHT <type> <number>

The T register is shifted as specified by the
<type> and <number>.
Affected: (T), M

SHD Shift the D register (register field 01) Code: 154 200

Format: SHD <type> <number>

The D register is shifted as specified by the
<type> and <number>.
Affected: (D), M

SHA Shift the A register (register field 10) Code: 154 400

Format: SHA <type> <number>

The A register is shifted as specified by the
<type> and <number>.
Affected: (A), M

ND-06.014.02



3—34

SAD Shift the A and D registers connected
(register field 11) Code: 154 600

Format: SAD <type> <number>

Bit 0 of the A register is connected to bit 15 of
the D register.
Affected: (A), (D), M

Type F/e/d

For each shift instruction, one of the following four types of shift can be specified:

Mnemonic Type field

nil Arithmetic shift. 0 0 Code: 000 000
During right shifts, the sign bit (bit
15) is extended during the shifting,
in left shifts zeros are fed into
vacated bit positions.

ROT Rotational shift. 0 1 Code: 001 000
In single register shifts bit 0 is
connected to bit 15, in double
shifts bit 0 of the D register is con—
nected to bit 15 of the A register.

ZIN Zero end input 1 0 Code: 002 000

UN Link endinput 1 1 Code: 003000
The contents of the M indicator
will be shifted into the vacated
bitls).

Number Field

The <number> in the number field of the instruction is a signed number, 5 bits

plus sign, which specifies the shift direction (positive or negative shift) and the

number of shifts.

N > 0, i.e., if bit 5 : 0 then shiftleft
N < 0, Le, if bit 5 1 then shift right

The maximum number of shifts is 31 left shifts and 32 right shifts.

Only the A, T and D registers may be shifted. If any other register is to be shifted,

its contents must first be placed in the A, T or D register.

If no shift direction is specified, left shift is assumed.

The number of shifts is interpreted by the assembler as an octal number.

ND—06.014.02



3—35

A right shift may be specified either by the correct .6 bit negative shift count or by
writing the mnemonic code SHR followed by the positive number of right shifts. A
shift instruction to shift the accumulator 3 positions to the right may be specified
by one of the following identical instructions:

SHA 75a
SHA100—35
SHA SHR38

Note that SHA —3 cannot be used.

In a right shift, nothing should be written between the SHR mnemonic and the
number of shifts (this is peculiar for the assembler). A space to distinguish
between SHR and the number is necessary. SHR must be the last mnemonic used
in the instruction.

Some examples of correctly specified shift instructions:

Example 7:

Shift the A and D registers connected 8 positions (octal 10) left.

SAD 108

Example 2:

Rotate the T register 6 places to the left.

SHT HOT 6

Example 3:

Shift the connected A and D registers 16 positions to the left. Rotate shift is speci-
fied which, in this case, will cause the contents of the A and D registers to be ex—

changed. The same effect may be obtained by means of a SWAP SA DD instructi-
on (the SWAP is faster).

SAD HOT 20

Example 4:

Shift the D register two places to the right. Feed zeros into the left end during the
shifting. Bits 15 and 14 in the D register will become zero.

SHD ZIN SHR 2

ND—06.014.02



3—36

3.2.2.3 Register Operations

The register operation instructions specify operations between any two general
registers; a source register (srl and a destination register (drl. Instructions may
consist of the parts:

<register operation> <sub-instruction> <sr> <dr>

There are eleven basic register operations belonging to the two groups:

ROP register operations (see Section 3.2.2.3.1)
EXTended register operation instructions (see Section 3.2.2.3.2)

In addition, there are two instructions for accessing single registers outside current
program level (see Section 3.3.3) and two instructions for accessing a whole regis-
ter block outside current program level (see Section 3.3.2).

Only the ROP instructions have sub—instructions.

The ROP register instructions are:

RADD Register addition, dr *- + sr Code: 146000

RSUB Register subtraction, dr <- dr — sr Code: 146 600

RAND Register logical AND, dr<-dr sr Code: 144400

RORA Register logical OR, drs-der Code: 145 500

REXO Register logical exclusive OR, dr <- dr V sr
[V REXO] Code: 145000

SWAP Register exchange, sr <- dr and dr <- sr Code: 144 000

COPY Register transfer, dr <- sr Code: 146100

The EXTended register instructions are:

RMPY Integer inter-register multiply, AD <- dr * sr Code: 141 200

RDlV Integer inter—register divide
AD/<sr> “r A t-(Ouotient) and D *- (Remain-
der) Code: 141 600

EXR Execute register, Instruction register <- sr Code: 140 600

MlX3 Multiply index by 3, X *- (lA) — 1) " 3 Code: 143 200

ND-06.014.02



3—37

The source registers <sr> are specified as follows:

SD D register as source Code: 10

SP Program counter as source Code: 20

S B B register as source Code: 30

SL L register as source Code: 40

SA A register as source Code: 50

ST T register as source Code: 60

8X X register as source Code: 70

If no source register is specified, zero will be taken as the source register.

The destination registers <dr> are specified as follows:

DD D register as destination Code: 1

DP Program counter as destination Code: 2

DB B register as destination Code: 3

DL L register as destination Code: 4

DA A register as destination Code: 5

DT T register as destination Code: 6

DX X register as destination Code: 7

ND-06.014.02



3.2.2.3.1

3—38

ROP — REGISTER OPERATION INSTRUCTIONS

15 1110 9 8 7 6 5 3 2 0

ROP RAD C l CM1FLD sr dr

The instruction decodes bits 0—10 as:
Source and Destination Register (bits 0—5):

Bits 0—2 specify one out of seven registers to be the destination register. The
destination register will be loaded with the result of the ROP instruction.

dr = 0: Normally, a no operation instruction, except that the carry indicator
will be reset if RAD = 1.

Bits 3—5 specify one out of seven registers containing the value to be used as the
source register operand.

sr = 0: Produces a source value equal to zero.

If the P register is specified as source or destination, the value used is that of
the following instruction.

Subinstructions (bits 6— 70):

CLD = 1: Clear destination register before operation. If the source and the
destination register are the same, the register as source is not
cleared.

CM1 = 1: Use complement (one’s complement) of source register as operand.
The source register remains unchanged.

Bits 8 and 9 are decoded in two different ways, depending on whether the RAD
bit is zero or one.

RAD = 1: Add source to destination.

When RAD = 1, bits C and l are decoded as follows:

C=1, l=0: Also add old carry to destination, ADC.

C=O, |=1: Also add 1 to destination, AD1.

It is not possible to both add previous carry and to add 1 in the same ROP
instruction. (If this is attempted, the instruction will be a NOOP»instruction.)

RAD = 0: Binary register operations.

ND~06.014.02
Rev. A



3—39

The C and | bits are decoded as follows:

C, | = 0, 0: Register swap, destination and source exchanged, SWAP
C, | = 0, 1: Logical and, RAND
C, | — 1,0: Logical exclusive or, REXO
C, | — 1, 1: Logical inclusive or, RORA

If RAD = 1, the overflow and carry indicators are set according to the same rules
as apply for ADD: if RAD = 0, the overflow and carry indicators remain
unchanged.

Exclusive ROP Mnemonics

The following groups of ROP mnemonics are mutually exclusive, i.e., only one
may be used in a ROP instruction.

(SD, SP, SB, SL, SA, ST, SX)

Only one source register must be specified.

(DD, DP, DB, DL, DA, DT, DX)

Only one destination register must be specifed.

(ADC, ADl)

Both 1 and old carry cannot be added in the same instruction.

(RADD, RSUB, SWAP, RAND, REXO, RORA, COPY)

Add 1 or add carry may not be used together with the binary register operations.

(RSUB, CM1, ADC, ADll

RSUB uses CM1 and AD1.

Specifying ROP Instructions

The recommended way to specify ROP instructions is to use the following
mnemonics which will be correctly translated by the assembly language.

RADD, dr <- dr + sr Register addition
RSUB, dr <— dr — sr Register subtraction
RAND, dr <- dr sr Register logical AND
RORA, dr *- dr V sr Register logical OR
REXO, dr <— dr V sr Register logical exclusive OR
SWAP, dr s—r sr Register logical exclusive OR
COPY, dr <- sr Register transfer

Note that all of the ROP instruction is included in all of the above mentioned
mnemonics.

ND-06.014.02



3—40

The assembly language will also permit use of the following combined mnemonics:

CM2 = CM1 AD1 Two's complement
EXlT = COPY Si. DP Return from subroutine
RCLR = COPY 0 Register clear
RINC 2 RADD ADl Register increment
RDCR = RADD CM1 Register decrement

The mnemonics RCLR, RINC and RDCR should be followed only by the destina-
tion register specifications.

ND-06.014.02



3—41

} NO0P, do nothing

Decoding of

Result of

a _ 2 Instructions Instructions
< 2 .1 .
mo—uo
0 0 0 0 0 SWAP <sr><dr> sr<—-’dr
0 0 0 0 1 SWAP CLD <sr><dr> dr‘-sr, sum-0
0 0 0 1 0 SWAP CM1 <sr><dr> dr~§f,sr*-dr
0 0 0 1 1 SWAP CM1 CLD <sr><dr> dr<-s‘r,sr<-O
0 0 1 0 0 RAND <sr><dr> dr~dr A sr
0 0 1 0 1 RAND CLD <sr><dr> dr~0
0 0 1 1 0 RAND CM1 <sr> <dr> drt-dr Asr
0 0 1 1 1 RAND CM1 CLD <sr><dr> dr*-0
0 1 0 0 0 REXO <sr><dr> drs-dr‘l'fsr
0 1 0 O 1 REXO CLD <sr><dr> drt-s'r
0 1 0 1 0 REXO CM1 <sr><dr> dr ~drV3?
0 1 0 1 1 REXO 'CM1 CLD <sr><dr> dr‘-§I’
0 1 1 0 0 RORA <sr><dr> drs-der
0 1 1 0 1 RORA CLD <sr><dr> dr<-sr
0 1 1 1 0 RORA CM1 <sr><dr> drs-drVS'f
0 1 1 1 1 RORA CM1 CLD <sr><dr> dr‘-§F
1 0 O 0 0 RADD <sr><dr> dr*-dr + sr
1 0 0 0 1 RADD“ CLD <sr><dr> dr~sr‘
1 0 0 1 0 RADD CM1 [<sr><dr> dr‘-dr + sr
1 0 0 1 1 RADD CM1 CLD <sr><dr> dr~§r’
1 0 1 0 0 RADD AD1 <sr><dr> drt-dr + sr + 1
1 0 1 0 1 RADD“ AD1 CLD <sr><dr> dr<-sr + 1
1 0 1 1 0 RADD” AD1 CM1 <sr><dr> dr~dr—sr
1 0 1 1 1 RADD”) AD1 CM1 CLD <sr><dr> dr<--sr
1 1 0 0 0 RADD ADC <sr><dr> drs-dr + sr + c
1 1 0 0 1 RADD“ ADC CLD <sr><dr> dr~sr + c
1 1 0 1 0 RADD ADC CM1 <sr><dr> drt-dr + sr + c
1 1 0 1 1 RADDn ADC CM1 CLD <sr><dr> dr~§+ c
1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

The ROP Instruction Table

This table shows all possible combinations of the ROP instructions and their
results.

dr destination register
sr source register
sr one’s complement of sr
c old carry

1’ RADD CLD is equal to COPY
2’ RADD AD1 CM1 is equal to RSUB

ND-06.014.02
Rev. A



3 ~42

Some examples of use of the BOP instruction.

Example I:

Add the contents of the A and X registers with the result in the X register:

RADD SA DX

Example 2:

Complement (two's complement) the A register:

COPY CM2 SA DA

Example 3:

Subract the contents of the T register from the contents of the B register, with the
result in the B register:

RSUB ST DB

Example 4:

Increment the X register by one:

RlNC DX

Example 5:

Decrement the L register by one. (One's complement of zero equals —1 in two’s
complement.):

RDCR DL

Example 6‘:

Clear the T register:

RCLR DT

Example 7:

Set the X register equal to one:

RCLR AD1 DX

Example 8:

Set the B register equal to minus one:

RCLR CM1 DB

ND—06.014.02



3—43

Example 9:

Copy the contents of the X register into the T register:

COPY SX DT

Example 70:

Exchange the contents of the A and D registers:

SWAP DA DD

Example 71:

Form logical AND between the contents of the L and X registers with the result in
the X register:

RAND SL DX

Example 12:

Copy the contents of the A register into the X register and clear the A register (the
CLD code causes a destination register of zero to be swapped):

SWAP CLD SA DX

Example 73:

Form the two’s complement of the 32 bit double word in A and D:

COPY CM2 SD DD
COPY CM1 ADC SADA

Example 74:

Add together the two double word length numbers N1 and N2 with the result in
the A and D registers:

LDD N1
SWAP SA DD
ADD N2+1
SWAP SA DD
RADD ADC DA
ADD N2

ND—06.014.02



3—44

Example 75:

Subroutine jump and return from subroutine to main program:

JPL SUBR % Error stop
ERR, WAIT
NORM,

SUBR, LDA OLA
SUB PER
SKP IF DA EOL 0

EXIT % Error Exit
EXIT AD1

The'JPL instruction will place the address of the WAIT instruction into the L
register. (When JPL is executed, the program counter points to the address after
this instruction.)

The subroutine SUBR has two exits, one to the location immediately following the
jump (EXIT), which in this case is an error exit, and one to the location two addres-
ses after the jump.

Note: If the P register is used as source (SP), the P register has already been
incremented and points to the next instruction.

ND-06.014.02



3.2.2.3.2

3—45

EXTENDED REGISTER OPERATION INSTRUCTIONS

RMPY

RDIV

Integer inter-register multiply

Format: RMPY <sr> <dr>

The <sr> and <dr> fields are used to specify
the two operands to be mutiplied (represented
as two’s complement integers), the codes are
the same as for ROP.

The result is a 32 bit signed integer which will
be placed in the A and D registers with the 16
most significant bits in the A register and the
16 least significant bits in the D register.
Affected: (A), (D), C, O, O

Integer inter-register divide

Format: RDIV <sr>

The 32 bit signed integer contained in the
double accumulator AD is divided by the

contents of the register in the <sr> field, with
the quotient in the A register and the remain-
der in the D register, i.e., AD/sr -> A <-

(quotient) and D <- (remainder).

The sign of the remainder is always equal to
the sign of the dividend (AD). The destination
field of the instruction is not used. If the div—
ision causes overflow, the error indicator 2 is

set to one.

The numbers are considered as fixed point
integers with the fixed point after the right—
most position.

Sf

Affected: (A), (D), Z, C, 0, Q

ND-06.014.02

Code: 141 200

Code: 141 600



EXR

MlX3

3—46

Example:

Before Division: After Division:

Double
Accumulator Divisor A D Z

22 4 5 2 0
—22 4 —5 —2 0

378452 — 16 -23653 4 0
32767 1 32767 O 0
32768 1 1

65535 2 32762 1 0

Execute register

Format: EXR <sr>

The contents of the register specified in the
<sr> field of the instruction are transferred to
the instruction register, and the contents are
then executed as an instruction.

Note: If the instruction specified by the
contents of <sr> is a memory reference
instruction with relative addressing, the
address will be relative to the EXR
<sr> instruction. If the instruction specified by
the contents of <sr> is a JPL instruction, the L
register will point to the instruction after the
EXR <sr>. Note also that it is illegal to have an
EXR <sr> where the contents of <sr> is a new
EXR <sr >. If this is attempted, the error indi-
cator Z is set to one.
Affected: (IR), registers changed by the
specified instruction.

Multiply index by 3

Format: M|X3

The X register is set equal to the contents of
the A register minus one multiplied by three,
Le,

00*- [(A) — 1]*3

Affected: (X)

ND-06.014.02

Code: 140600

Code: 143 200



3.2.2.4

3-—47

Skip Instructions

15 11 1O 8 7 6 5 3 2
SKP cond. 00 sr dr

SKP Skip next instruction if specified condition is
true.

Format: SKP <dr> <cond.> <sr>

The cond. field specifies one of eight condi-
tions between the registers <dr> and <sr>.
If the specified condition is true, the next
instruction is skipped. If not, the next instruc-
tion is not skipped. The registers <dr>
(destination register) and <sr> (source reg-
ister) are specified as for register operation
registers.

If the P register is specified as source or des-
tination, the value used is that of the following
instruction.

Note that bits 6 and 7 are both zero. Other-
wise, the instruction would belong to the
EXTended instructions. See Section 3.2.2.3.2.

The SKP conditions test the result of the
arithmetic expression (dr) — (sr) winch sets
the four indicators:

5 — sign
2 —- result zero
c — carry

0 — overflow

The eight SKP conditions are as follows: (next page)

ND-06.014.02
Rev. A

Code: 140 000



Mnemonic:

EQL

GEO

GRE

MGRE

UEO

LSS

LST

M LST

Condition
Field:

000

001

010

01

100

1

101

1

1 0

1 1

Condition
True if:

S‘V'o=0

s'Vo=1

Equal. The condition tests for equality
between the source and destination
registers. (dr) — (sr) = 0.

Greater or equal to. (dr) — (sr) > 0. The
contents of the source and destination
registers are treated as signed numbers.
Overflow is not taken care of.

Greater or equal to. (dr) — (sr) 2 0. The
contents of the source and destination
registers are treated as signed numbers.
Overflow is taken care of.

Magnitude greater or equal to. (dr) — (sr)
2 0. The contents of the source and
destination registers are treated as un-
signed magnitudes, where 000 000 is the
lowest and 177 777 the highest number.
Overflow is taken care of.

Unequal to. The condition tests for equality
between the source and destination
registers. (dr) — (sr) 3e 0.

Less than. (dr) —— (sr) < 0. The contents of
the source and destination registers are
treated as signed numbers. Overflow is not
taken care of.

Less than. (dr) — (sr) < i). The contents of
the destination and source registers are
treated as signed numbers. Overflow is
taken care of.

Magnitude less than. (dr) — (sr) < 0. The
contents of the source and destination
registers are treated as unsigned magni—
tudes, where 000 000 is the lowest number
and 177 777 is the highest number. Over—
flow is taken care of.

ND-06.014.02
Rev. A



3 —49

By swapping the register code in the <sr> and <dr> fields and inverting the
relationship code, it is also possible to test these relationships. ,'

> Greater than
S Less than or equal

The programmer is advised to use the formats in the following examples when
specifying a skip instruction. (The mnemonic IF and the number 0, which both ha—
ve the value zero, are used for easy readability. They are not required.)

Comparing a register with zero:

SKP lF DL UEO 0 Skip if L register =/= O
SKP IF DX GRE 0 Skip if X register 2 0
SKP IF DB L38 0 Skip if B register < 0
SKP IF 0 L88 ST Skip ifT register>0
SKP IF 0 GRE SD Skip ifDregister<0

Comparing the arithmetic value of the contents of two registers:

SKP IF DD EQL SL Skip if D register 2 L register
SKP IF DT UEQ SX Skip if T register ¢ X register
SKP lF DB LSS SA Skip if B register < A register or

Skip if A register > B register
SKP lF DX GRE SB Skip if X register 28 register or

Skip if B register s X register

Comparing two magnitude numbers:

SKP IF DL MGRE ST Skip if L register 2 T register or
Skip if T register < L register

SKP IF DB MLST SX Skip if B register < X register or
Skip if X register > B register

The magnitude tests are especially useful when comparing the relationship
between memory addresses which are represented as magnitude numbers in a
computer with more than 32K memory.

ND—06.014.02



3 ~50

3.2.2.5 Argument Instructions

15 1110 9 8 7 0

ARG function number

Argument instructions operate on registers. The function field is used to specify
one out of eight argument instructions. The number field is used to specify the ar-
gument, a signed number ranging from — 128 to 127.

Negative numbers are represented in 2’s complement. The 8 argument number
bits are extended to 16 bits using sign extension. The 8 argument number bits re
main the 8 least significant bits of the 16 bits. The 8 most significant bits are ex-
tended with ones or zeros. When the number is positive, we extended with zeros.
When the number is negative,we extend with ones.

When we have a set argument instruction all of the 16 bits are copied into the
specified register.

When we have an add argument instruction all of the 16 bits are added to the 16
bits already in the specified register. See Figure 3.11.

15 1110987 0

ARG function - number

_-_..__&_

number

\
_"
""T

k
\

Y .

these bits are extended with ones or zeros.
» Ones if the number is negative

E
Zeros if the number is positive.

1
Y

The extended argument number is set or
added into one of the register B, A, T or X.

B, A, T or X register

Figure 3. 77: Sign Extension of the Argument Instruction.

ND—06.014.02



3—51

Bits 8 and 9 in the function field specify one out of four registers, B, A, T, or X,
and bit 10 one of the operations: set argument to or add argument to.

The eight argument instructions are:

SAA Set argument to A register Code: 170 400

Format: SAA <number>

AAA Add argument to A register Code: 172 400

Format: AAA <number>

SAX Set argument to X register Code: 171 400

Format: SAX <number>

AAX Add argument to X register Code: 173 400

Format: AAX <number>

SAT Set argument to T register Code: 171 000

Format: SAT <number>

AAT Add argument to T register Code: 173 000

Format: AAT <number>

SAB Set argument to B register Code: 170 000

Format: SAB <number>

AAB Add argument to B register Code: 172 000

Format: AAB <number>

An argument instruction should be specified by means of one of the eight
mnemonics listed above.

ND-06.014.02



3 —52

Examples of argument instructions follow.

Example 7:

Set the contents of the T register equal to 133. Bits 8-15 becomes zero because
of the sign extension:

SAT 13a

Example 2:

The contents of the B register becomes 1777523 after execution of this instruc-
tion. Bits 8-15 becomes one because of the sign extension:

SAB —ZBa

Example 3:

Add 3 to the contents of the X register. The contents of bits 8-15 depend on the
previous content of the X-register:

AAX 3

Example 4:

Subtract 6 from the contents of the A register. The contents of bits 8—15 depend
on the previous content of the X-register.

AAA —6

Example 5:

The contents of the A register will be 177 6403 after the execution of this
instruction.Bits 8-15 becomes one because of the sign extension:

SAA —140e

In an add argument instruction the carry and overflow indicators are set
according to the same rules as apply for the ADD instruction.

ND—06.014.02



3.2.2.6

3—53

Bit Operation Instructions

15 1110 76 32 0

BOP su b-instruction bn dr

BOP Bit Operation

The BOP instruction specifies operation on single bits in one of the
seven general registers, or the status register.

The specified bit to be manipulated is specified by the <dr> and
<bn > fields in the instruction. The <dr> field specifies the particu—
lar register and the <bn> field the particular bit in that register.

The register <dr> is specified by means of the same mnemonics as
used for destination registers in the ROP and SKP instructions,
except if dr = 0 the status register is specified.

The BOP instruction may use a one bit accumulator register, K, to
hold temporary results.

Sixteen different sub—instructions are available in the BOP instruction.

In the following description "bit" means the bit specified by destin-
ation register <dr> and bit number <bn >. Note that <bn> is
specified by octal numbers and the "bits” are number 0, 10, 20, 30,

170 because <bn> is contained in bits 3—6 of the BOP instruc—
tion.

The eight control indicators of the status register which may be
operated upon by means of the BOP instruction should be specified
with the following mnemonics:

SSPTM Page table mode (after defining SSPTM = 0)
SSTG Rounding indicator for floating point operations
SSK One bit accumulator indicator
882 Error indicator
880 Dynamic overflow indicator
SSO Static overflow indicator
SSC Carry indicator
SSM Multi-shift link indicator

ND—06.014.02
Rev. A



3.2.2.6.1

3.2.2.6.2

3—54

BIT SKlPINSTRUCTIONS

Four sub-instructions are available to test the setting of the specified bit.

BSKP ZRO <bn> <dr> Skip next instruction if bit 2 0.

BSKP ONE <bn> <dr> Skip next instruction if bit 2 1

BSKP BCM <bn> <dr> Skip next instruction if bito : K

BSKP BAC <bn> <dr> Skip next instruction if bit = K

BIT SET INSTRUCTIONS

Four sub-instructions are available to set the specified bit.

BSET ZRO <bn> <dr> bit<-0

BSET ONE <bn> <dr> bit<—1

BS ET BCM <bn> <dr> bit <- bito, complement bit

BSET BAC <bn> <dr> bit <- K

ND~06.014.02



3—55

3.2.2.6.3 ONE BIT ACCUMULATOR INSTRUCTIONS

Eight sub—instructions are available to specify operations between the specified
bit and the one bit accumulator, K.

BSTA <bn> <dr> bit+K,K+0

BSTC <bn> <dr> bit«-KO,K«1

BLDA <bn> <dr> K+bit

BLDC <bn> <dr> K «bitO

BANC <bn> <dr> K+bito K

BORC <bn> <dr> K+bitoV K

BAND <bn> <dr> K+bit K

BORA <bn> <dr> K+bitVK

Store and clear

Store complement and set

Load

Load complement

Logical AND complement

Logical OR complement

Logical AND

Logical OR

Some examples of correctly specified bit operation instructions.

Example 7:

Skip next instruction if the carry indicator is set.

BSKP ONE SSC

Example 2:

Reset the static overflow indicator.

BSET ZRO 880

Example 3:

Complement the sign bit in the T register (complement a floating point number).

BSET BCM 1708 DT

Example 4.’

Set bit 6 in the X register to one.

BSET ONE 608 DX

Example 5:

Copy A register bit 14 into X register bit 13,

BLDA160B DA % K «A bit 14
BSET BAC 1508 DX % X bit 13 <— K

ND—06.014.02
Rev. A



3.2.3

3.2.3.1

3—56

System Control Instruct/on

Monitor Call Instruction

MON Monitor Call

Format: MON <number>

The instruction is used for monitor calls, and
causes an internal interrupt to program level
14. The parameter <number> following MON
must be specified between —2008 and 177a-
This provides for 256 different monitor calls.
This parameter, sign extended, is also loaded
into the T register on program level 14.

ND—06.014.02

Code: 153 000



3.3

3.3.1.

3.3.2

3 ——57

PR/V/LEGED INSTRUCTIONS

General

The instructions termed privileged instructions are available only to:

— programs running in system mode (rings 2 and 3)
— programs running in stop mode

Register Block Instructions

To facilitate the programming of registers on different program levels, two
instructions, SRB and LRB, are available for storing and loading of a complete
register block to and from memory.

A register block always consists of the following registers in this sequence:

Program counter
X register
T register
A register
D register
L register

TS Status register, bits 0—7. Bits 8-15 are zero
B registerwmro>—l><'o

The addressing for these two instructions is as follows:

The contents of the X register specify the effective memory address from where
the register block is read from or written into.

The specification for the two instructions are as follows:

15 7 6 3 2 O
LRB 000

SRB Store Register Block Code: 152 402

Format: SRB <|evel8 * 10a>

The instruction SRB <levela * 108> stores the
contents of the register block on the program
level specified in the level field of the instruc-
tion. The specified register block is stored in
succeeding memory locations starting at the
location specified by the contents of the X re—
gister. The SRB instruction is privileged.

ND—06.014.02



LRB

3—58

If the current program level is specified, the
stored P register points to the instruction
following SRB.
Affected:(EL),+1+ 2 + 3 + 4 + 5 + 6 + 7

P - X T A D L STS B

Example:

Let the contents of the X register be 042562,
then the instruction

SRB 140,

stores the contents of the register block on
program level 12 into the memory addresses
042562, 042563, 042571.

Load Register Block Code: 152 600

Format: LRB <|eve| 8 . 108>

The instruction <LRB level 8 * 108> loads the
contents of the register block on program
level specified in the level field of the instruc—
tion. The specified register block is loaded by
the contents of succeeding memory locations
starting at the location specified by the
contents of the X register. If the current
program level is specified, the P register is
not affected. The LRB instruction is privileged.

Affected: All the registers on specified
program level are affected. Note: if the
current level is specified, the P register is not
affected.

ND—06.014.02
Rev. A



3.3.3

3 ——59

In ter—leve/ Register Instructions

In the ND-100 there are 16 complete sets of registers and status indicators, one set
for each level.

The access to and from registers outside the current program level is by two
instructions:

lRR —— Inter Register Read
IRW — lnter Register Write

The format of this instruction is as follows:

15 6 32 0
lRR
lRW level dr

Bits 0-2 specify the register to be read, using the same codes and mnemonics as
are used for specifying destination registers for the register operations.

Bits 3-6 specify the program level number. It is possible to read the current
program level as well as all other program levels.

lRR lnter Register Read Code: 153 600

Format: lRR <level8 * 108> <dr>

This instruction is used to read into the A
register on current program level one of the
general registers inside/outside the current
program level. If bits 0-2 are zero, the status
registers on the specified program level will be
read into the A register bits 0—7, with bits 8—15
cleared. The lRR instruction is privileged.

EXamp/e:

The instruction lRR 160 DP will copy the con—
tents of the program counter on program level
14 into the A register on the current program
level.

ND-06.014.02



3—60

lRW Inter Register Write Code: 153 400

Format: IRW <level8 * 103> <dr>

This instruction is used to write the A register
on the current program level into one of the
general registers on any level, including the
current level. lf the current level P register is
specified, the IRW instruction will be a dummy
instruction. If bits 0-2 are zero, the A register
bits 0-7 are written into the status register on
the specified level. The IRW instruction is privi—
leged.

Example:

The instruction IRW 110 will copy the bits 0-7
of the A register on the current program level
into the status register on program level 9.

3.3.4 Accumulator Transfer Instructions

The internal registers in ND—lOO which cannot be reached by the register
instructions are controlled by the following four privileged instructions:

TRA transfer to A register
TRR Transfer from A register
MCL Masked clear
MST Masked set

The internal registers controlled by these instructions are described in Appendix D.

Transfer to A register:

TRA Transfer to A register Code: 150 000

Format: TRA <register name>

The registers which may be transferred to the
A register with the TRA instruction are shown
in the following table. The contents of the
register specified by the <register name> are
copied into the A register. The operator’s panel
and the paging systems are optional and with—
out these options a TRA instruction, which
tries to read a non—implemented register, wrll
cause the A register to be cleared. The TRA
instruction is privileged.

ND—06.014.02



3—61

Transfer from A reg/s ter.’

The transfer from the A register may be either an ordinary transfer of all 16 bits or
a selective setting of zeros and ones.

The three subinstructions are:

TRR

MCL

MST

Transferto register Code: 150100

Format: TRR <register name>

The corttents of the A register are copied in the
register specfiied by <register name>. The re-
gisters which TRR may operate on are shown
in the following table. The TRR instruction is
paeged.

Masked clear Code: 150 200

Format: MCL <register name>

For each bit which is a one in the A register the
corresponding bit specified by <register name,
will be set to zero. The registers which MCL
may operate on are shown in the following ta-
ble. The MCL instruction is privileged.

Masked set Code: 150 300

Format: MST <register name>

For each bit which is a one in the A register the
corresponding bit in the register specified by
<register name> will be set to one. The regis—
ters which MST may operate on are shown in
the following table. The MST instruction is
privileged.

ND—06.014.02



3—62

Register
Name Codes TRA TRR MCL MST

PANS 0 X
PANC 0 X
STS 1 X X X X
OPR 2 X
LMP 2 X
PGS 3 X
PCR 3 X
PVL 4 X
IIC 5 X
IIE 5 X
PID 6 X X X X
PIE 7 X X X X
CSR 10 X
CCL 10 X
LCIL 11 X
ACTL 11 X
ALD 12 X
UCILR 12 X
PES 13 X
PGC 14 X
PEA 15 X

PANS = Panel Status
PANC = Panel Control
STS = Status
OPR = Operator’s Panel Switch Register
LMP = Operator's Lamp Register
PGS = Paging Status Register
PCR = Paging Control Register
PVL = Previous Program Level
IIC = Internal Interrupt Code
IIE = Internal Interrupt Enable
PID = Priority Interrupt Detect
PIE = Priority Interrupt Enable
CSR = Cache Status Register
CCL = Cache Clear
LCIL = Lower Cache Inhibit Limit Register
ACTL = Active Level
ALD = Automatic Load Descriptor
UCILR = Upper Cache Inhibit Limit Register
PES = Memory Error Status
PGC = Paging Control Register (when reading)
PEA = Memory Error Address

ND~06.014.02
Rev. A



3.3.5

3—‘63

Input/Output Con trol Instructions

lOX Input/Output Execute Code: 164 000

Format: IOX <device register address>

15 1110 0

IOX device register address

All transfers between the ND-100 and external devices are controlled by using the
IOX instruction. The lOX instruction is loaded into the instruction register, IR, of
the CPU. The CPU in its turn generates the Input/Output timing and enables the
selection of the appropriate device, which is specified by its device register add—
ress, <device register address>, bits 0—10. These 11 bits define an upper limit of
2048 device register addresses to the number of registers that may be addressed.
Different devices will, however, require different numbers of device register add—
resses. Thus, the maximum number of physical devices that may be connected will
depend on the specified configuration of devices.

Simple devices will usually require at least three different instructions (device
register addresses), write control register, read status register, and read or write
data buffer register. More complex devices like magnetic tape units may need up
to eight instructions. Instructions for the same device are assigned successive de-
vice register addresses.

The IOX instruction is privileged.

Programming specifications and device register attiresses for the different devices
are found in separate manuals.

ND-06.014.02



3.3.5.1

3.3.6

LDT

IOXT

Extension of the Device Register Address

Since the number of peripheral devices delivered by Norsk Data is increasing, there
is need for an extension of the device register address. That is done by the instruc-
tion:

Format: IOXT Code: 150 415

where the T register contains the 16 bits <device register address>. These 16 bits
define an upper limit of 65536 device register addresses to the number of registers
that may be adressed.

The device register address must be loaded into the T register before executing
this instruction.

lOXT is privileged.

15 O

device register address

15
‘

o

operation code for mieroprogram

System Control Instructions

The following 11 instructions are denoted as the system control instructions:

ION Interrupt system on
IOF Interrupt system off
lDENT Identify input/output interrupt
PON Memory management on
POF Memory management off
MON Monitor call
WAIT Wait or give up priority
SEX Set extended address mode
REX Reset extended address mode
PION Memory management and interrupt system on
PIOF Memory management and interrupt system off

Except for the MON instruction, all the system control instructions belong to the
class of privileged instructions.

ND—06.014.02



3.3.6.1

3—65

Interrupt Control Instructions

A full description of the interrupt system is presented in Section 2.2. A short
summary is given here.

The ND—100 computer has a priority interrupt system with 16 program levels.
Each program level has its own set of registers and status indicators. The priority
increases — program level 15 has the highest priority, program level 0 the
lowest.

The arrangement of the 16 program levels is as follows:

15 Reserved for extremely fast user interrupts
14 Internal hardware status interrupts
13 - 10 Vectored interrupts, maximum 2048 vectored interrupts

9 — 0 System programming and user programming levels

All 16 program levels can be activated by program control. In addition, program
level 15, 13, 12, 11 and 10 may also be activated from external devices.

The program level to run is controlled by the two 16 bit registers:

PIE — Priority Interrupt Enable
PID — Priority Interrupt Detect

Each bit in the two registers is associated with the corresponding program level.
The PIE register is controlled by program only.

The PID register is controlled both by program and hardware interrupts. At any
time, the highest program level which has its corresponding bits set in both PIE
and PID is running, i.e., the contents of the PL register.

The PIE and PID are controlled by the TRA, TRR, MST and MCL instructions.

ND—06.014.02



3 —66

When power is turned on, the power-up sequence will reset PIE and PID and the
register set on program level zero will be used. Two instructions are used to
control the on—off function of the interrupt system.

ION Interrupt system on Code: 150 402

Format: ION

The ION instruction turns on the interrupt
system. At the time the ION is executed, the
computer will resume operation at the
program level with highest priority. If a con—
dition for change of program levels exists, the
IOX instruction will be the last instruction
executed at the old program level, and the old
program level will point to the instruction after
ION. The interrupt indicator on the operator's
display is lighted by the ION. The ION in—
struction is privileged.

IOF Interrupt system off Code: 150 401

Format: IOF

The IOF instruction turns off the interrupt
system, i.e., the mechanisms for changing of
program levels are disabled. The computer
will continue operation at the program level at
which the IOF instruction was executed, i.e.,
the PL register will remain unchanged. The
interrupt indicator on the operator's display is
reset by the IOF instructions. The IOF instruc~
tion is privileged.

In addition, the following three registers are available for interrupt programming:

IIE Internal Interrupt Enable
IIC Internal Interrupt Code
PVL Previous Level causing internal hardware status interrupt

In ND—IOO there are possibilities for 2048 vectored input/output interrupts where
each physical input/output will have its own unique identification code and priori-
ty. The IDENT instruction is used to distinguish between vectored interrupts.

ND-06.014.02



3—67

IDENT Identify vectored interrupt , Code: 143 600

Format: lDENT <program level number)

When a vectored interrupt occurs, the IDENT
instruction is used to identify and service the
input/output device causing the interrupt.
Actually, there are four IDENT instructions,
one to identify and serve input/output
interrupts on each of the four levels 10, 11, 12
and 13. The particular level to serve is specified
by the program level number.

The four instructions are:

IDENT PL10 Identify input/output interrupt on
level 10 Code: 143 604

IDENT PL11 Identify input/output interrupt on
level 11 Code: 143 611

IDENT PL12 Identify input/output interrupt on
level 12 Code: 143 622

IDENT PL13 Identify input/output interrupt on
level 13 Code: 1513 643

The identification code of the input/output
device is returned in bits 0 - 8 of the A register
with bits 9 - 15 all zeros.

If the lDENT instruction is executed, but there
is no device to serve, the A register is
unchanged. An IOX error interrupt to level 14
will occur if enabled. Refer to the Interrupt
System.

If several devices on the same program level
have simultaneous interrupts, the priority is de-
termined by which input/output slot the device
is plugged into, and the interrupt line to the
corresponding PID bit will remain active until
all devices have been serviced. When a device
responds to an IDENT, it turns off its interrupt
signal. The IDENT instruction is privileged.

For ND-100 the identification codes are standarized for input/output devices deli-
vered from Norsk Data.

ND-06.014.02



3—68

3.3.6.2 Memory Management Control Instructions

A full description of memory management is given in Section 2.3. The paging
system is controlled by the following privileged instructions:

PON Memory management on Code: 150 410

Format: PON

This instruction should only be used with the
interrupt system on and with the necessary
internal hardware status interrupts enabled.
The page index tables and the PCR registers
should be initialized before PON is executed.
The PON instruction is privileged.

The instruction executed after the PON
instruction will use the page index table
specified by PCR.

POF Memory management off Code: 150 404

Format: POF

This instruction is a privileged instruction and
may only be executed if the ring bits are 11 (3)
or 10 (2).

The instruction will turn off the memory man-
agement system, and the next instruction will
be taken from a physical address in lower 64K,
the address following the POF instruction.

The CPU will be in an unrestricted mode
without any hardware protection features, i.e.,
all instructions are legal and all memory "avail-
able". POF is privileged.

PION Memory management and interrupt system on Code: 150 412

Format: PION

The PION instruction will turn on both the
memory management system and the interrupt
system. Refer to ION and PON. PION is privi-
leged.

ND~06.014.02



PIOF

SEX

REX

OPCOM

3—69

Memory management and interrupt system off Code: 150 412

Format: PIOF

The PIOF instruction will turn off both the
memory management and interrupt systems.
Refer to IOF and POF. PIOF is privileged.

Set extended address mode Code: 150 406

Format: SEX

The SEX instruction will set the paging system
in a 24 bit address mode instead of a 19 bit
address mode. A physical address space up to
16 M words will then be available.

Bit number 13 in the status register is set to
one, indicating the extended address mode.
SEX is privileged.

Reset extended address mode Code: 150 407

Format: REX

The REX instruction will reset the extended
address mode (24 bits) to normal address mode
(19 bits). This implies that 512K words of phys—
ical address space is now available.

Bit number 13 in the status register is reset,
indicating normal address mode. REX is priv—
ileged.

Operator’s Communication Code: 150 400
Format: OPCOM

The OPCOM instruction has the same function
as pushing the OPCOM button on the front
panel. OPCOM is privileged.

ND—06.014.02



3.3.6.3

3—70

Wait or Give Up Priority

WAIT Wait

Format: WAIT <number3>

The WAIT instruction will cause the computer
to stop if the interrupt system is not on. The
program counter will point to the instruction
after the WAIT.

In this programmed wait, the RUN lamp on the
front panel is switched off. To start the pro—
gram in the instruction after the WAIT, type !
(exclamation mark) on the console terminal.

If the interrupt system is on, WAIT will cause
an exit from the program level now operating,
the corresponding bit in PlD is reset, and the
program level with the highest priority will be
entered, which normally will then have a lower
priority than the program level which executes
the wait instruction. Therefore, the WAIT
instruction means "give up priority".

If there are not interrupt requests on any
program level when the WAIT instruction is
executed, program level zero is entered. A
WAIT instruction on program level zero is
ignored.

Note that it is legal to specify WAlT followed
by a number less than 4003. This may be useful
to detect in which location the program stopp-
ed. The WAIT instruction is displayed at the
operator’s panel, IR register. The WAIT in-
struction is privileged.

ND—06.014.02

Code: 151 000



3—71

3.3.7 Examine and Deposit

EXAM

T Register

DEPO

T Register

Examine Code: 150 416

Format: EXAM

After execution of this instruction, the T
register will be loaded with the content of the
physical memory location, pointed to by the A
and D register. EXAM is privileged.

MEMORY

A Register D Register

Content ‘

Address

Deposit Code: 150 417

Format: DEPO

This instruction will store the comet“ f the T
register into the physical memory location,
pointed to by the A and D register. DEPO is
privileged.

MEMORY

A Register D Register

/l::]:l

Address

ND—06.014.02



3—72

3.3.8 Load Writeab/e Control Store

LWCS Load Writeable Control Store Code: 143 500

Format: LWCS

The result of the execution of this instruction
will be that the contents of man. memory lo—
cations with addresses from 15K to 16K will
be loaded into the optional 256 word by 64 bit
RAM writeable control store. Microprogram
addresses from 74003 to 7777s will then be
accessible. When the instruction is finished,
all microprogram addresses are legal and il-
legal instruct. ROM out of range interrupt will
never occur. LWCS is privileged.

MEMORY
63

#PROGRAM CONTROL STORE
(3,75 PROM)

16K

___-_________l—1>
WRlTEABLE CONTROL STORE
(ll/4K RAM)

15

0

Four ordinary 16 bit memory locations are
required to make one 64 bit location in Write-
able Control Store. Therefore, 1K is needed
from main memory.

The LWCS-instruction must always be performed before executing instructions
using microaddresses in the range 4000-7777. This is necessary even if no write—
able control store option is installed. The microinstructions from 4000 to 7777 are
only used by instructions described in the chapters on the CE or CX options.

ND—06.014.02
Rev. A



3.3.9

3—73

Customer Specified Instructions

The remaining free codes may be used to extend the ND—100 instruction set. The
codes that can be used for customer specified instructions are as follows:

1402XX 1405XX 1407XX 141 1 XX
1413XX 1415XX 1417XX 1421XX
1423XX 1425XX

These 10 instructions have the following entry points in writeable control store:

1402XX Entry point in p program 74003
1405XX Entry point in u program 74025
1407XX Entry point in p program 74033
1411XX Entry point in p program 7404a
1413XX Entry point in p program 74053
1415XX Entry point in p program 7406::
1417XX Entry point in p program 74073
1421XX Entry point in H program 74103
1423XX Entry point in 1.4 program 7411:;
1425XX Entry point in 1.4 program 7412:;

If these instructions are not implemented, they will cause an internal hardware
status interrupt to level 14 (illegal instruction).

All micro instruction codes are available for new customer specified instructions.
For further information about programming in WCS, contact Norsk Data.

ND—06.014.02
Rev. A



3.3.10

3.3.10.1

3—74

Phys/cal Memory Read/Write Instructions

When the extended address mode (controlled by the instructions SEX and REX)
is used, 7 special, privileged instructions are useful to read/write physical
memory locations independent of whether paging is ON or OFF. They will affect
the page tables if the address is within the page table range.

Format of Instructions:

15 5 3 0
[ 1) 4 | 3 | 3 | A | TYPE

A is the displacement (bit 3—5) added to the X-reg. to give the effective location
(EL).

Type: Name: Effect:

0: LDATX. A: = (EL)
1: LDXTX. X: = (EL)
2: LDDTX. A: = (EL), D: = (EL + 1)
3: LDBTX. B: = 177000V ((EL) + (EL)) (V = inclusive OR)
4: STATX. (EL): = A
5: STZTX. (EL): = 0
6: STDTX. (EL): = A, (EL + 1): = D

In computers with microprogram versions 015xx A-J (48-bit) or 026xx A—F (32-bit),
the LDBTX—instruction must be followed by a word containing 177777.

In later versions (015xx K» or 026xx G») the 177777—instruction is not necessary,
but it may remain in programs written for the earlier versions (the instruction
may change the K-bit).

ND-06.014.02
Rev. A



3.3.10.2

3—75

Addressing:

All the 7 instructions generate a 24—bit effective location (EL). The effective loca-
tion is calculated from the T— and X—register plus a 3-bit displacement contained
in the instruction.

15 0 15 0
T-reg. X-reg. I

El A = 3—bit displacement given in
the instruction format

23 0
I Effective Location (EL) I

The 3—bit displacement is added to the X—register. If the X-register plus the dis—
placement give a carry, the carry is dropped and not added to the T—register. This
means that the T—register always determines which 64 K memory area to
address.

ND~06.014.02



3.4

3.4.1

3.4.1.1

3.4.1.1.1

3—76

INSTRUCTIONS IN THE «COMMERCIAL EXTENDED» (CE) OPT/0N

By expanding the microprogram PROM of the ND—100 CPU, a number of instruc—
tions are introduced. The instructions are collectively known as the «Commercial
Extended» option.

Decimal Instructions

Data Formats For Decimal Instructions

PACKED DECIMAL NUMBER (BCD—CODED NUMBERS)

One decimal digit is represented by 4 binary digits (bits). Two decimal digits are
placed next to each other to form a byte (8 bits). Two such bytes are placed in
each memory location.

The decimal digits form operands. Maximum length of an operand is 31 digits
plus a sign byte. This occupies eight 16 bit words in the memory.

Memory

15 12 11 8 7 4 3 0

1.digit 2.digit 3.digit 4.digit
5.digit 6.digit 7.digit 8.digit One operand takes a

' >maximum of 8 memory
1 locations

29.digit I 30.digit 31.digit I sign

h/
[V

ND—06.014.02
Rev. A



3—77

Each decimal digit is represented by the following binary digit:

Decimal Digit Binary Digit

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001QCOVGCH-t—‘O

The codes 1010 , 1111 do not represent digits. These codes are used to represent
the decimal digit's sign (plus or minus). This is done in the following way:

1010, 1100 and 1110 represent plus.
1011 and 1101 represent minus.
1111 represents unsigned (treated as plus). /

All sign codes are allowed, but only 1100 (for plus) and 1101 (for minus) are used
in the instructions.

ND—06.014.02



3.4.1.1.2

3—78

ASCII Coded Decimal Number

In the ASCII format each decimal digit occupies one byte. The four high—order
bits of this byte are called the zone. The four low—order bits. the numeric are
occupied by the decimal digit, and are encoded the same way as a packed deci-
mal digit. The most significant bit in the byte is the parity-bit. This bit is neither
tested nor set in the instruction.

Decimal Digit ASCII CODE

0 00110000
1 00110001
2 00110010
3 00110011
4 00110100
5 00110101
6 00110110
7 00110111
8 00111000
9 00111001

7 43 0

zone

The parity bit (bit 7) These bits have the same value as the binary
is always 0. digits in Section 3.4.1.1.1,

ND406.014.02



3--79

A decimal operand in this format may have four different sign representations:

1. Separate trailing, the byte to the right of the last significant digit contains
the sign. Sign is represented by the ASCII code of + (53 octal) or — (55
octal).

2. Separate leading, ASCII code of the sign occupies the first byte (left—most).

3. Embedded trailing, the right—most byte occupies both the least significant
digit and the sign.

4. Embedded leading, the first byte (left—most) in the number contains both
the sign and the left—most digit.

When the sign is embedded, the following codes are used to represent the
right—most / left—most digit and sign:

Positive operand: Negative operand:

0:173 0=175
1=101 1=112 [mm
2=102 2=113 ml
3=103 3=114
4=104 4=115
5=105 5:115 m
6=1% 6=m
7=107 7=120 @
8=110 8=121
9:111 9=122 m

A decimal operand in ASCII format has maximum 32 digits, maximum field
length is 16 words, 32 bytes.

ND—06.014.02



3.4.1.2

3—80

THE DECIMAL INSTRUCTIONS

The decimal operands reside in main memory only. They occupy fields that may
start at any byte address. The decimal operands must be right adjusted, i.e. the
least significant digits (and sign) are placed right adjusted from the last byte of
the field. The operands must be packed decimal numbers (BCD-coded numbers).

A decimal operand is specified by a two words descriptor, D1 and D2.
The two words have the following formats:

D1: Bit 0-16 give the decimal operand's word address in the memory.

D2: Bit 15. This bit specifies whether the operand start in the left byte or
the right byte.
Bit 15:0, left byte
Bit 15=1, right byte

Bit 14. Not used.

Bit 1143. These bits specify the sign representation when the operand is
in ASCII format.

13 12 11
0 0 Ozembedded trailing (default)

0 0 1~ : separate trailing

O 1 0 : embedded leading

0 1 1 : separate leading

1 0 0 : unsigned

Bit 13 is also used to represent an unsigned number in
BCD—representation (the sign—code is 1111).

Bit 10. This bit is used to specify rounding. If the least significant
digits are lost during shift, and the last digit shifted out of the
fields is 2 5, a one is added to the shifted operand.
Bit 10:0, rounding off
Bit 10=1, rounding on

Bit 5—9. These bits give the position of the decimal point in the field.
The number in these bits can be a positive decimal number
from 0 to 31. Zero means that the decimal position is to the

right of the least significant digit. The number has to be less
than the field length. (It is not legal to specify a point outside
the field.) The decimal point position is used to compute the
shift count in the shift instruction (SHDE).

ND—06.014.02
Rev. A



Bit 0—4.

3—81

These bits give the field length of the operand in nibbles (4
bits) or bytes. The field length includes sign. The field length is
in nibbles when you have packed decimal number (BCD) and in
bytes when you have ASCII coded decimal numbers. The field
length is a maximum of 32 nibbles/bytes.

Specification of the operands for all the decimal instructions:

Descriptor of the first operand in AD registers.
Descriptor of the second operand in X,T registers.

Before any Operation is performed, the operands are read into the CPU’s
registerfile. Then the operation is performed, before the result is written back to
memory. This is why overlap is not tested in the ND7100 CIS (Commercial
Instruction Set).

ADDD Add decimal Code:140 120

Format:ADDD

The second operand is added to the first operand and the sum
is placed in the first operand's location. If necessary, high—order
zeroes are applied for either operand.

When the first operand field is too short to contain all signi—
ficant digits of the sum, a decimal overflow occurs.

Overflow has two possible causes:

a) A carry from of the most significant digit position in the
result field.

b) Oversized result, which occurs when the second operand
field is larger than the first operand field and significant
result digits are lost. The field sizes alone are not an indi-
cation of overflow.

This instruction does not give automatic scaling as in N10—CIS,
so the operands have to be aligned before entering this in—
struction, for examle, by the shift instruction (SHDE).

lf bit 13 in DZ in the destination descriptor is set, the sign in the
result field is 1111 (unsigned).

An empty operand (field-length equal 0) is treated as a positive
zero.

ND-06.014.02



SUBD

COMD

3—82

Error indication:
ADDD % instruction
ERROR % error return, overflow
CONTINUE % skip, OK return

Subtract decimal Code:140121

Format:SUBD

The second operand is subtracted from the first operand and
the difference is placed in the first Operand’s location.

The subtract decimal is similar to add decimal, except that the
sign of the second operand is changed from positive to nega—
tive, or from negative to positive after the operand is read from
memory, but before the arithmetic operation. A zero difference
can have both positive and negative sign.

Error (overflow) is indicated by error return (see ADDD).

Compare decimal Code: 140 122

Format:COMD

The first operand is compared with the second operand. The
result is placed in the A-register. If the operands are unequal in
length, the shorter is extended with zeroes. None of the ope—
rands are changed as a result of the operation.

The positions of the decimal points are not taken into account
when the two digits are compared. Therefore the operands
must be aligned before the operation, as in ADDD/SUBD. Use
the instruction SHDE to align the operands.

One of the two fields is extended with zeroes so the two fields
have the same number of digits.

An unsigned number is treated as positive, positive and nega—
tive zeroes are equal. An empty operand is treated as a positive
zero.

Result in A-reg.:

operands equal 0
first operand greater 1
second operand greater —1

This instruction will always have a skip return (no error
condition).

ND—06.014.02



SHDE

PACK

3—83

Decimal shift Codez140126

Format: SHDE

Operand one is moved to the operand two field with its digits
offset (shifted) to the left or right.

The shift count is computed as the difference in decimal posi—
tion of the two operands.

When shifting left the second operand is generated from left to
right; for right shift the second operand field is generated from
right to left.

Shift input will always be zero. The sign is set to either + (14
octal) or — (15 octal) depending on what sign the source ope-
rand have, or 17 octal (unsigned) if bit 13 in D2 is; set. Digits
shifted out of the operand field are lost. If high order digits
different from zero are lost during left shift, this is indicated by
an error return (no skip).

Rounding is performed if bit 10 in D2 of the destination ope—

rand is set. This means that a 1 is added to the operand if the

last digit shifted out of the field is 2 5.

Convert to packed decimal Codez140 124

FormatzPACK

The format of the first operand is changed from ASCII Coded
Decimal Number (unpacked) to Packed Decimal Number (pack—
ed), and the result put in the second operand location. The
right four bits in the ASCII code (the numeric) are used for the
digits. The specified sign representation in the unpacked format
is converted to 14 octal (+) or 15 octal (—), unsigned is convert—
ed to plus, unless bit 13 in D2 of the destination descriptor is
set. If so the sign code in the destination field will always be 17
octal (unsigned).

The conversion is done one digit at a time, and the destination
is filled from the least significant position (sign position).

The sign and digits of the first operand are checked for valid
codes, and illegal codes are reported.

If necessary, the second operand field is extended with high—ore
der zeroes. If the second operand field is too short to contain
all significant digits of the first operand, the remaining digits
are ignored, causing overflow.

ND706.014.02
Rev. A



UPACK

3—84

Both illegal code and overflow are reported by an error-return
(no skip), with an error code placed in D—register bits (0—4). The
first detected error is reported.

Error codes: (1 forbidden overlap — not used in the ND-1OO ClS.)
2 illegal code
3 overflow

After error return caused by illegal code, both A—reg. and
D—reg. bit 15 point to the byte containing the illegal code.

Convert to unpacked decimal Code2140 125

FormatzUPACK

The format of the first operand is changed from Packed Deci—
mal Number (packed) to ASCII Coded Decimal (unpacked), and
the result is placed in the second operand's location.

The digits of the packed operand are tested for illegal codes
and supplied with zones with coding 0011 (no parity set). The
sign of the packed operand is not tested for legal code, but is
treated as plus if bit 0 is 0, and minus if bit 0 is 1 (except for
the code 1111, which is unsigned and treated as plus). The sign
is then converted to the specified representation in the unpack—
ed format.

If necessary, the second operand is extended with high-order
zeroes (ASCII). The conversion starts in the least significant
postion (sign) and the fields are prosessed one word at the
time. If the second operand field is too short to contain all sig—
nificant digits of the first operand, the remaining digits are
ignored. This is detected as overflow. The error—code reported
back is the one detected first, and the same as in PACK. After
error return caused by illegal code, the A—reg. and D—reg. bit 15
point to the byte containing the illegal code, also as in PACK.

ND~06.014.02
Rev. A



3—85

3.4.2 Stack Handling Instructions

Programs written in high level languages such as FORTRAN, COBOL and PLANC,
execute faster if they use the specially provided stack handling instructions in the
CE—option.

3.4.2.1 Data Structure Operated Upon by the Instructions

Note that a page fault during execution of a stack handling instruction can result
in a destroyed B—register. Stack handling instructions must therefore not be used
if page faults can occur.

The B-register will always point to a «stack-frame» containg the following
information.

B—reg. —200: LlNK points to the next instruction in case a LEAVE—instruction
is executed.

B-reg. -177: PREVB points to the previous stack frame on the stack.

B—reg. ~176: STP points to the next stack frame on the stack.

B—reg. -175: SMAX points to the top of the stack. This is used to detect
stack overflow.

B—reg. —l74 Reserved for system use.

B—reg. -173: ERRCODE is filled with the A—register’s content each time an
ELEAV-instruction is executed.

In addition to these addresses which are used by the microprogram, the stack
will usually contain a number of addresses accessed by other instructions.

lNlT Initialize stack Codezl40 134

Usage:

lNlT:
Next address: Stack demand (words)
Next address: Address of stack start (words)
Next address: Maximum stack size (words)
Next address: Flag
Next address: Not used by the microprogram

Error return address
Normal return address

ND—06.014.02
Rev. A



ENTR

LEAVE

ELEAV

3-86

Effect: -
L + 1 = = > Address of stack start (LINK)
Address of stack start + 200 = = > B-reg.
Old B—reg. = = > B — 177 (PREVB)
Address of stack start + Maximum stack size = = > B — 175 (SMAX)
Stack demand — 172 + B = = > B —176(STP) '

If the Flag-word bit 0 is different from the Status register bit 0, there
will be an error return.
Stack overflow will result in an error return.
All other cases will result in a normal return.

Enter stack Code 140 135
Usage:

ENTR
Next address: Stack demand (words)

Error return address
Normal return address

Effect:
(B-176) + 200 ==> B
L +1 ==> B-200(LINK)
Old B = = > B -177(PREVB)
(Old B - 175) = = > B - 175 (SMAX)
Stack decimal - 172 + B = = > B — 176 (STP)

Stack overflow will result in an error return.
All other cases will result in a normal return.

Leave stack Code:140 136

Format: LEAVE

Effect:
(B — 200) = = > P (LINK)
(B —177) = = > B (PREVB)

Error leave stack Code:140 137

Format: ELEAV

Effect:
(8 — 200) — 1 = = > B - 200 (LINK)
A = = > B —173(ERRCODE)
(B _ 200) = = > P (LINK)
(B —177) = = > B (PREVB)

ND-06.014.02
Rev. A



3.5

3.5.1

3-—87

INSTRUCTIONS /N THE CX—OPTION

By expanding the microprogram PROM of the ND—100 CPU, a number of instruc—
tions are introduced. These instructions comprise what is known as the
CX—option.

The CX—option consists of improved CE—instructions (Commercial Extended) plus
the following instructions (CX only):

—— MOVEW move block of words
~ TSET test and set
—- RDUS read don’t use cache
— SINTRAN ||| segment—change instructions

The improved CE—instructions are described in the Sections 3.5.1 and 3.5.2 below.

Decimal Instructions

The decimal instructions in the CX—option are improved by including better over-
flow detection tests.

The data formats and the instructions are described in Section 3.4.7.

The decimal instructions includes the following instructions:

— ADDD add decimal
— SUBD subtract decimal
—— COMD compare decimal
— PACK convert to packed decimal
— UPACK convert to unpacked decimal
— SHDE decimal shift

ND~06.014.02
Rev. A



3.5.2

3.5.3

3—88

Stack Handling Instructions

The stack handling instructions in the CX-option are improved to tolerate page-
faults.

In the CE—option, a page fault during execution of a stack handling instruction
could result in a destroyed B-register.

The stack handling instructions are described in Section 3.4.2.

The stack handling instructions include the following instructions:

— lNIT initialize stack
— ENTR enter stack
— LEAVE leave stack
—— ELEAV error leave stack

Move Words

MOVEW Move block of words

Format: MOVEW

Code: 1431xx

This instruction moves a block of words from one area to another.
The opcode is 1431xx, where xx has the following effects:

move from move toxx

00
01

‘ O2
03
04

* 05
* 06
* 07
* 08

normal page table
normal page table
normal page table
alternative page table
alternative page table
alternative page table
physical memory
physical memory
physical memory

normal page table
alternative page table
physical memory
normal page table
alternative page table
physical memory
normal page table
alternative page table
physical memory

i means that the instruction is privileged.

L—register contains the number of 16—bit words to move. Maximum is
2k words. If more than 2k words are specified, no words are moved.

ND-06.014.02
Rev. A



A— and D—registers hold the word address of the source.

X— and T—registers hold the word address of the destination.

The A— and/or X—registers are only used when the physical memory is
addressed. In this case the A— and/or X-registers are incremented
when the D— and/or T—registers overflow. The word address of the
physical source or the destination field may thereby cross a 64k
border.

The instructions do not check overlap. The status bits 0, O and C in
the status register are changed if the instruction is privileged.

1514131211109876543210
I l l

7_ —
- o P l l. M c o o. z < TG

%
z Z x Q2 E is 2 /

l 1 l /

Status register. Refer to Section 2. 1.9 for details.

The page tables are not used when in POF-mode (Paging OFF). In
this case addresses normally mapped through PT (Page Table) or APT
(Alternative Page Table) will access physical bank 0. The APT is only
used when in PON—mode (Paging ON) and the PTM is on (Page Table
Modus) (status register bit 0 is 1). If PTM is off (status register bit 0
is 0), the xx=0, 1, 3 and 4 are equivalent, as well as xx=2 and 5, and
xx=6 and 7.

1514131211109876543210
I l l

7/]
I

..-—o PlL M/////ZKTGPTM2 g :5 e
/9 , 2L n // A%l l l A

Status register.

The instructions are interruptable. The L—, A—, D—, X—, T—, and P—regis-
ters are then changed to restart the instructions.

When the instruction is finished, the L—register is 0. The A—, D-, X—
and T—registers will point to the addresses after the last moved word
if any words have been moved. The registers are not changed if zero
words have been moved.

ND-06.014.02
Rev. A



3.5.4

3—90

Test and Set

TS ET Test and set Code: 140123

Format: TSET

This instruction writes —1 into the memory address pointed to by the
T-register. Simultaneously, the old content of the same address is
read into the A—register. This read/write sequence is performed with
the memory system ’locked', so that the two memory accesses can—
not be split by other accesses on other memory channels. This may
be used to implement processor synchronizing.

The address in the T-register is a logical memory address. Translation
to a physical memory address is normally done by using the page
tables. However, the translation will use the alternative page table
when PTM is on (Page Table Modus) (status register bit 0 is 1) and
the paging system is on, PON.

15 14 13 12 11 1o 9 8 7 6 5 4 3 2 1 o
I I I

//
-

- _ o P l L M c o 0 z .< TG
2:461z 2 x o

o O u “
- n. (/7 Z

//

Status register.

The old content of the memory address is always read from the
memory, and never from the cache.

Data is written both to memory and cache.

ND-06.014.02
Rev. A



3.5.5

3-—91

Read Don ’2‘ Use Cache

RDUS Read don’t use cache Code: 140127

Format: RDUS

This instruction reads the content of the memory location pointed to
by the T-register into the A—register.

The address in the T—register is a logical memory address. Translation
to a physical memory address is normally done by using the page
tables. However, the translation will use the alternative page table
when PTM is on (Page Table Modus) (status register bit 0 is 1) and
the paging system is on, PON.

151413121110987 65 43210
I I l

7_ -
- o P l L M c o O. 2 K TG .

2 g E ‘3 7‘o- tn 2o-
1 l l /

Status register.

The old content of the memory address is always read from the
memory, and never from the cache.

Data is written to cache.

ND-06.014.02
Rev. A



3—92

3.5.6 SINTRAN-Ill Segment Change Instructions

These instructions are tailor made for the routines in SINTRAN that they speed
up.

The instructions are privileged.

The instructions have opcodes in the range from 140300 through 140304. The
instructions are described below:

SETPT Set page tables Code:140300

Format:SETPT

SETPT is a replacement for the following statements:

SETPT: JXZ * 7 % FINISHED
LDDTX 20
BSET ZRO 130 DA % PGU—BIT
LDBTX 10
STD ,B % STORE IN PAGE TABLE
LDXTX 00
JMP *-6

CLEPT Clear page tables Code: 140301

Format:CLEPT

CLEPT is a replacement for the following statements:

CLEPT: JXZ * 10 % FINISHED
LDBTX 10
LDA ,B
JAZ * 3
STATX 20
STZ ,B % CLEAR ENTRY IN PAGE TABLE
LDXTX 00
JMP *—7

CLNREENT Clear non reentrant Code: 140302

Format: CLNREENT

The instruction does the following:

— Reads the content of the memory address A + 2 to find the page
table to be affected.

—Reads RT—description bitmap words (found in the memory
addresses X + 25 through X + T).

—C|ears page—table entries corresponding to the 1—bits in the
bitmap. ND-06.014.02

Rev. A



3—93

CHREENTPAGES Change not reentrant pages Code: 140303

CLEPU

L—reg—»

Format: CHREENTPAGES

This instruction does the following:

— Reads address D,X ~> R1 ; D,X » previous (scratch reg).

—;lf R1 = 0; skip return (finished).
— Read: address T,R1 +2.
— If no: WIP; T,R1 —> previous; Reads address T,R1 —> R1; jump back
—- Reads address T,R1 + R2.
— Writes R2 4 address previous.
— R1 —> X ; Previous 4 D,A ; Return.

Clear page tables, collect PGU information Code: 140304

Format: CLEPU

This instruction is the same as CLEPT, but includes working set
information for all page—table entries handled if PGU of entry is 1.

D 300
B 776 SHR 1 — D
B—reg bits 0—3 are now bit number
B-reg bits 4-6 are now word number
Sets bit in 8—word table in page-map bank pointed to by the
L—register

The 8—word table has the following layout:

bit 15 bit 0

word 0

word 1

word 2

word 7 | page 177 l

ND-06.014.02
Rev. A



3—94

ND»06.014.02
Rev. A



4.1

OPERATOR'S INTERACTION

CONTROL PANEL PUSH BUTTONS

When the panel key is unlocked, the panel push buttons are active and have the
following effect:

MCL

STOP

LOAD

OPCOM

This is the MASTER CLEAR button used to force the computer system
into a defined initialized state. First, the red and green indicator lamps
on the CPU board will light up. Then the microprogram is forced to
execute the master clear routine. This will also be executed when the
MACL command is given to MOPC (refer to Section 4.2.2.1 .1), when

the CPU goes through the power up sequence, or when the bus line
called MCL is activated by an interface.

The master clear routine turns off the green indicator lamp, then the

PIE register is cleared. The paging and interrupt systems are turned
off. The paging system is set in REX mode. Subsequent memory

examine functions with MOPC are set to 24 bit physical examine
mode. The CPU self test microprogram is executed. If no errors are
found, the green indicator lamp is lit, and the terminal interface on the
CPU board (the MOPC terminal) is initialized to receive and transmit 7
bits and even parity. Parity is not checked by MOPC on input. An
interrupt level change to level 0 is then executed. After this the CPU
will be in stop mode.

This push button has the same effect as giving the STOP command to
MOPC. The CPU will enter stop mode and MOPC will be active.

This push button has the same effect as writing it or & to MOPC. Its
exact effect is determined by the setting of the ALD thumb-wheel
switch on the CPU board.

OPCOM is always operative in stop mode. When the machine is
running, pressing this button will allow the operator to use the CPU
board terminal for operator communication. When. the CPU is running,

it will enable MOPC to read input from the terminal interface located
on the CPU board. It will also inhibit input interrupts from this terminal,
and disable the transfer of data from the terminal interface to any

macro program (main memory program). The terminal interface will be
in this state until the escape character is typed, or the CPU is stopped
and restarted.

When MOPC is entered a # is printed at the beginning of each line.

ND—06.014.02



.:‘ \

55233
3:
an

63:00

KW

\mtmfi.

“COKK

as

.Q?

K
.V

QKBDVU‘

:m:

230.

5:3

>235

yr

20XUOJ

23¢KmBOs

00.10:

(0.—

<F<o

O

r

N

n

.u

0

G

h

mmmmoov.

our;

2.:

MI

5&0

:IIZIIII

sozDu

woo:

q

::

.55

_u:_

w...

_.n_

_J

.L

_-|_

_L

_u-_

ND-06.014.02



4.1.1

4.1.2

The Panel Lock Key

The Panel Lock Key has three positions:

LOCK

When placed in this position, the operator’s panel control switches are
disabled. This is the normal position for an operating machine. Main power is
applied to the computer.

Note: Automatic restart may be initiated after power failure only if the lock
key is switched in this position.

ON

In this position the panel switches can be operated. Main power is applied to
the computer.

STAND—BY

In this position the main power is disabled. Stand-by voltage is applied to
memory and display. This position will not be present (or valid) on machines
delivered from January 1980.

Status Indicators

POWER ON

Indicates that + 5V is present in the rack.

RUN

Indicates that the CPU is running.

OPCOM — OperatorCommunication.

Indicates that the operators communication microprogram is running. This light
may also be lit in RUN mode by pressing the OPCOM button. (OPCOM and RUN
are lit at the same time). The OPCOM light will always be lit when the computer is
not running.

Note: When OPCOM and RUN are lit at the same time, input from the console
terminal will only interact with the OPCOM microprogram. Output to console may
come from OPCOM or the active program.

ND—06.014.02



4.2

4.2.1

4—4

MICROPROGRAMMED OPERA TOR’S COMMUN/CA T/ON

General Considerations

The ND—lOO has a microprogram in the read only memory for communication be—
tween the operator and the machine. This program is called MOPC (Micro—
programmed Operator’s Communication) and is used for operational control of the
ND—100. It includes such functions as memory and register examine and deposit,
breakpoint control, bootstrap loading, etc.

Whenever entered, MOPC will perform the necessary communication with the
terminal connected to the current loop interface on the CPU printed circuit board.
This terminal will be shared as output device between MOPC and other possible
programs. As input device MOPC will receive input from the terminal as long as
the OPCOM lamp on the operator’s panel is lit.

MOPC will never wait if the terminal is not ready for the transmission of
characters. Instead, it will start executing the STOP routine or the running
program. MOPC will then be dormant until next time it is entered, and continue
with the tasks it had to postpone. The maximum time spent in MOPC is 20 ps. If
MOPC does not have any activity to sustain on the terminal, it will use 6 ps every
time it is entered.

The ND—100 operator’s communication includes bootstrap programs and
automatic hardware load from both character oriented devices and mass storage
devices.

When communicating with the MOPC program, the following characters are legal
input characters:

Characters legal in 8 TOP or RUN:

Character: Use:

0 - 7 Octal digits used to specify addresses and data.

A - Y Letters used to specify commands and register
names. Letters typed in succession are acted upon
when CR (carriage return) or / is typed. Different
letter combinations may have the same effect
because of a scrambling algorithm used to pack the
letters.

ND-06.014.02



@ or (space)

l (carriage return)

"escape”

All characters written before this character are
ignored (break character).

Used to separate lower and upper bounds in dump
commands.

Specifies memory or register examine.

Ends a line. Used to terminate commands or to
perform a register or memory deposit function.

This character will cause the address of the last
examined memory address to be printed.

Terminates the communcation between the CPU
board terminal and MOPC. This. character has no
effect if the CPU is in STOP mode.

Characters only legal in STOP:

Character: Use:

Start program in main memory command.
Single instruction command.
Bootstrap load command.
Breakpoint command.
Manual instruction command.
Start microprogrammed memory test.

All other characters are answered with a ?, and characters written before the
erroneous character will be forgotten (as if ”space” had been typed).

ND—06.014.02



4.2.2

4.2.2.1

4.2.2.1.1

4.2.2.1.2

Control Functions (Does not affect display)

System Control

MASTER CLEAR

When MACL l is written to MOPC, the CPU microprogram will execute the master
clear routine. The effect of this routine is described in the section on Panel
Pushbuttons — 4.1.

STOP

When STOP :1 is written to MOPC, the CPU will stop execution of the program in
main memory. No level change will be performed and program execution can be
continued by typing the exclamation mark character.

ND—O6.014.02



4.2.2.1.3 ALD LOAD

In the following table the different columns signify:

ALD Setting of the ALD thumbwheel switch on the CPU modu—
le.

I12 Corresponding value of the internal register number 12.

POW OK indicates the action performed when the panel key is
locked and power comes on (or hardware master clear is
finished), and standby power has been on all the time
since power last went off.

POW NOK Indicates the action performed when the panel key is
locked and power comes on (or hardware master clear is
finished), and standby power has been missing for some
time since power last went off.

LOAD Indicates the action performed if the load button is
pressed, or $ & is written to MOPC.

ALD 112 STB POW OK STB POW NOK LOAD

15 0 Start in address 20 Stop Nothing
14 1560 Start in address 20 Binary load from 1560 Binary load from 1560
13 20500 Start in address 20 Mass storage load from 500 Mass storage load from 500
12 21540 Start in address 20 Mass storage load from 1540 Mass storage load from 1540
11 400 Start in address 20 Binary load from 400 Binary load from 400
10 1600 Start in address 20 Binary load from 1600 Binary load from 1600

9 Start in address 20
8 Start in address 20
7 100000 Stop Stop Nothing
6 101560 Binary load from 1560 Binary load from 1560 Binary load from 1560
5 120500 Mass storage from 500 Mass storage load from 500 Mass storage load from 500
4 121540 Mass storage from 1540 Mass storage load from 1540 Mass storage load from 1540
3 100400 Binary load from 400 Binary load from 400 Binary load from 400
2 101600 Binary load from 1600 Binary load from 1600 Binary load from 1600

ALD thumbwheel

LLl

CPU module

position of the ALD
thumberwheel on the
CPU module

ND706.014.02



4.22.1.4

4.22.1.5

4.2.2.2

4.22.2.1

4.22.2.2

4—8

GENERAL LOAD

Binary load is started by typing:

<physical device address> & or <physical device address> $

Loading will take place from the specified device. This device must conform with
the programming specifications of either Teletype or tape reader. The device
address is the lowest address associated with the device. Binary load will be
performed if & or $ is written (or the LOAD button is pressed) and the switch
selected ALD has bit 13 equal to "0”.

LEAVE MOPC

ESCAPE

If the ESCAPE key is pressed and the CPU is running, MOPC will be left, and

subsequent input from the terminal will be routed to main memory programs.
MOPC will be entered again by pushing the OPCOM button on the panel or by
executing the instruction 150400 (OPCOM).

Program Execution

START PROGRAM

Format:

xxxxxx !

The machine is started in the address given by the octal number. The address will
be physical or virtual depending on whether the paging system is on or off.

CONTINUE PROGRAM

If the octal number is omitted, the P register is used as start address, i.e., this is a

”continue function". The program level will be the same as when the computer
was stopped (if Master Clear has not been pushed or the MACL command typed).

ND—06_014.02



4.2.2.2.3

4.2.2.2.4

4.2.2.2.5

4.2.2.2.6

SINGLE INSTRUCTION

xxxxx

A single 2 character will cause one main memory instruction (or one interrupt level
change) to be executed. If an octal argument is specified, the specified number of
instructions are executed, after which stop mode is entered again. Page faults,
protect violations and interrupt level changes are executed correctly, but are
counted as extra instructions. An extra overhead of approximately 3 us is
introduced between each instruction when the CPU is in this semi-RUN mode.

INSTRUCTION BREAKPOINT

xxxxxx.

This command starts execution in the same semi—RUN mode as described in
Section 4.2.2.2.3. When the program address xxxxxx is reached, execution stops
before that address is executed, and a is printed. If the specific address is
never reached, the semi-RUN mode continues until a character other than 0-7 or
A-Y is typed.

MANUAL INSTRUCTION

xxxxxx”

This command starts continuous execution of the instruction specified as
argument. The execution stops when a character other than 0—7 or A-Y is typed.

Example:

150410” is an easy way to turn on the paging system.

SINGLE I/O INSTRUCTION FUNCTION

xxxxxxIO/

This function exeuctes an IOX instruction with xxxxxx as device number. The
output data is taken from the operator’s register OPR (see Section 4.2.3.2.5). Re-
turned data is printed after the slash and not stored anywhere. No working regis-
ters are affected.

ND-06.014.02



4.2.2.3

4.2.2.3.1

4.2.2.3.2

4.2.2.3.3

Miscellaneous Functions

INTERNAL MEMORY TEST

xxx#

When the # character is typed, memory test of the addresses between the B
register (lower limit) and the X register (upper limit) is performed in segment xxx. If

the test is successful, # is typed when finished. If the test is unsuccessful, ? is

typed and the test stops at the failing address. The registers then contain the

following information:

Failing bits
Failing address
Error pattern
Test pattern
Start address
Stop addressXWFUPTfi

DELETE ENTRY

When @ or (space) is typed, all characters written before this character are

ignored.

CURRENT LOCATION COUNTER

When * is typed, an octal number is printed indicating the current physical or

virtual address on which a memory examine or memory deposit will take place.

The current location counter is set by the examine command /, and it is

incremented for each time carriage return is typed afterwards.

ND-06.014.02



4.2.3

4.2.3.1

4.2.3.1.1

4.2.3.1.2

4—11

Monitor Functions (Also shown on Display)

Memory Functions

PHYSICAL EXAMINE MODE

El

Subsequent examine will be in physical memory with a 24 bit address. Default
mode after master clear.

VIRTUAL EXAMINE MODE

nE¢

This command will change the xamine mode for subsequent memory examine
functions. n is in the range 0-3 and specifies the page table via which the examine
address shall be mapped. Page fault and memory protect violation are ignored and
physical page 0 used instead.

ND406.014.02



4.23.1.3

4.23.1.4

MEMORY EXAMINE

Format:

xxxxxx /

The octal number before the character "/" specifies the memory address.

When the ”/" is typed, the contents of the specified memory cell are printed out
as an octal number.

If a l (carriage return) is given, the contents of the next memory cell are printed
out.

If the paging system is used, examine mode may be selected by an E command
(see Section 4.2.3.1.1 and 423.12). If virtual examine is specified page faults and
protect violations are ignored. In this case, <octa| number> specifies a virtual add-
ress. If physical examine is specified, <octa| number> may contain up to 24 bits of
physical address.

Example:

717/003456 % Examine address 717

717/003456 l % Examine address 717
003450 J % and 720
000013 % and 721

MEMORY DEPOSIT

Format:

xxxxxx I

After a memory examine, the contents of the memory cell may be changed by

typing an octal number terminated by CR. If the CPU is running, "DEP" must be

written between the number and CR.

Example:

717/003456 3475 ll % The contents of
003450 1700 J % address 717 is changed
000123 I % From 3456 to 3475 and 720
123456 % is changed from 3450 to 1700.

% 721 contains 123 and remains
% unchanged.

ND-06.014.02



4.2.3.1.5

4.2.3.1.6

DEPOSIT RULES

Content is only changed by 222222! in STOP mode and by zzzzzzDEPl in STOP or
RUN mode.

Content is unchanged by lin STOP or RUN mode and zzzzzz¢ in RUN mode (.7 is
answered).

MEMORY DUMP

xxxxxx < yyyyyyl

The contents of the memory addresses between xxxxxx and yyyyyy are printed
out, with 8 addresses per line. The dump is taken from the 64K area last addressed
by a preceding memory examine function. A memory examine function should
always be done before a memory dump. The dumping will stop if any key is
pressed.

ND—06.0l4.02



4.2.3.2

4.2.3.2.1

Register Functions

REGISTER EXAMINE

Format:

xx Ry/

The first octal (xx) number specifies the program level (0-17). If this number is
omitted, program level zero is assumed.

The second octal number (y) specifies which register to examine on that level. The
following codes apply:

Status register, bits 0-7
D register
P register
B register
L register
A register
T register
X register\lODU'l-hWN—IO

After the "/" is typed, the contents of the register are printed out.

Example:

R5/ A register level 0
7R2/ P register level 7

Instead of the notation Ry, it is possible to address registers by their names. The
names are single letter names, namely: S, D, P, B, L, A, T, X corresponding to
R0-R7 respectively.

ND—06.014.02



4.2.3.2.2

4.2.3.2.3

4.2.3.2.4

4—15

REGISTER DEPOSIT

Format:

xxxxxxl

After a register examine, the contents of the register may be changed by typing an
octal number terminated by CR. If the CPU is running, "DEP" must be written
between the number and CR.

Examples:

A/ 123456 54321! % Contents of A register on level 0
% is changed to 0543321

7P/ 000044 551 % Contents of P register on level 7
% is changed to 000055

REGISTER DUMP — RD

xx < yy RD I

The contents of the working registers in register blocks xx to yy are printed out,
with one register block per line. The registers are printed in the following order:
STS, D, P, B, L, A, T, X.

If only one reegister block should be printed, xx must be equal to yy.

Note the case: <RD>l dump register block on level 0.

USERREGISTER — U

U/

The last value written by TRR LM P, is selected as display source.

ND—06.014.02



4—16

4.2.3.2.5 OPERATORPANELSWITCHREGISTER — OPR

OPR/

This selects a scratch register where a code to be read by TRA OPR can be
deposited. Content of CPR can be read and changed from the console.

ND-06.014.02



4.2.3.3

4.2.3.3.1

4—17

Internal Register Functions

INTERNAL REGISTER EXAMINE

Format:

| xx /

The octal number (xx) specifies which internal register is examined. The follow~
ing codes apply:

0 PANS Operator's Panel Status, used by operator's panel micro—
program.

1 STS Status register.

2 OPR Operator's panel switch register, simulated by a scratch
register.

3 P68 Paging status register

4 PVL Previous program level

5 NC Internal interrupt code

6 PID Priority interrupt detect

7 PIE Priority interrupt enable

10 CSR Cache status register, for maintenance only.

11 ACTL Current level, decoded.

12 ALD Automatic load descriptor

13 PES Memory error status

14 PGC Paging control register. The examined register belongs to
the program level controlled by bits 3—6 of the A register.

15 PEA Memory error address

16 Spare Do not use.

17 Spare Do not use.

ND—06.014.02
Rev. A



4.2.3.3.2 INTERNAL REGISTER DEPOSIT

Format:

xxxxx 1/

After an internal register examine the contents of the internal register with the
same internal register code may be changed by typing an octal number terminated
by CR. If the CPU is running, ”DEP" must be written between the number and
CR. For deposit, the following internal register codes apply:

0 PANC

1 STS

2 LMP

3 PCR

4 Spare

5 IIE

6 PlD

7 PIE

10 CCL

11 LClL

12 UCILR

13 Spare

14 Spare

15 ECCR

16 Spare

17 Spare

Examples:

l7/ 030013 01/

I12/ 021540 20044¢

Operator’s panel control, used by operator’s panel
microprogram.

Status register. Only bits 0-7 will be changed.

Writes into a scratch register that may be displayed by
writing U/ to MOPC.

Paging control register.

Do not use.

Internal interrupt enable.

Priority interrupt detect.

Priority interrupt enable,

Cache Clear,

Lower cache inhibit limit register,

Upper cache inhibit limit register.

Do not use.

Do not use.

Error correction control register,

Do not use.

Do not use.

% Examine PIE and change to 000000

% Examine ALD and change UCILR
% to 020044

ND-06.014.02



4.2.3.3.3

4.2.3.3.4

INTERNALREGISTERDUMP — IRD

IRD»!

The 16 internal registers are printed out. This function is only allowed when the
CPU is in STOP mode. This restriction avoids the unintentional unlocking of PEA,
PES and ”C when the CPU is running.

SCRATCH REGISTER DUMP — RDE

xx < yy RDE>l

The contents of the 8 scratch registers (only microprogram accessible ) in the
register blocks xx to yy are printed out, with one register block per line. This
function is useful for microprogram debugging only.

ND—06.014.02



4.2.4

4.2.4.1

4—20

Display Functions (A ffects only display)

Displayed Format

uuzzyx F r!

This command will define the display format when the optional display unit is
included in the system. uuzzyx are octal digits and define the chosen format. F,
without argument, (or with argument equal to zero) will set the default display
format which is octal format. The parts of the argument have the following effect:

x Number representation code.

x = 0 Displayed data is in octal representation. 22 have no effect.

x = 1 Displayed data is in unary representation, i.e., 4 of the bits in the
displayed data are used to light one out of 16 indicators. 22 indi-
cates which 4 bits to decode.

x = 2 Displayed data is in binary representation. 22 has no effect.

y Afterglow code.

y = 0 No afterglow in display.

y 2 1 Zeros are stretched.

y = 2 Ones are stretched.

y : 3 Zeros and ones are stretched.

22 Lower start bit for binary display.

22 = 0-248 Position of lowest bit position to be represented in binary
representation.

uu Display processor maintenance codes (4 bits).

uu = 1 Display year and month.

uu = 2 Inhibit message.

uu = 4 Initialize panel processor.

uu = 10 Abort message.

Example:

1421 Fl
After this format specification, bits 14 a — 17,3 will be shown in unary representation
with afterglow on ones.

ND-06.014.02



4.2.4.2

4.2.4.3

4—21

Display Memory Bus

xy BUS/

This command is only useful when the optional display is included in the system.
The memory bus is displayed, and depending on the argument xy, various types of
bus information can be sampled and displayed. Read from cache is not displayed.

x O 2 CD CPU Data is displayed
x = 1 = DD DMA Data is displayed
x — 2 CA CPU Address is displayed
x = 3 2 DA DMA Address is displayed

nothing is displayed
only read accesses are displayed
only write accesses are displayed

R both read and write accesses are displayedll‘<‘<‘<‘<

H
CON—‘0

H
E233

Example:

23 B U S /

All addresses sent from the CPU to memory will be displayed in the DATA field
and ”CAWR” is shown in the FUNCTION field.

Display Activity

ACT/

With this display mode active levels (ACT), clock and indicator functions are dis—
played.

ND~06.014.02



4.2.5

4.2.5.1

4—22

Bootstrap L oaders

The ND-100 has bootstrap loaders for both mass storage and character oriented
devices. There are two different load formats:

— Binaryformat load.
— Massstorage load.

Octal load is not implemented in ND-100.

Binary Format Load

Binary load is started by typing:

<physical device address> & or <physical device address> $

Loading will take place from the specified device. This device must conform with
the programming specifications of either Teletype or tape reader. The device
address is the lowest address associated with the device. Binary load will be
performed if & or $ is written (or the LOAD button is pressed) and the switch
selected ALD has bit 13 equal to 0’.

The binary information must obey the following format:

(«eel-HM <
A Any characters not including I (ASCII 419)-

B (Optional) octal number (any number of digits) terminated with a CR (line
feed is ignored).

C (Optional) octal number terminated with the character I (see below).

I Indicates start of binary information (ASCII 419)-

E Block start address. Presented as two bytes (16 bits), most significant byte
first.

F Word count. Presented as two bytes (16 bits), most significant byte first (E,
F and H are not included in F).

G Binary information. Each word (16 bits) presented as two bytes, most
significant byte first.

ND—06.014.02



4.2.5.2

4—23

H Checksum. Presented as two bytes (16 bits), most significant byte first. The
checksum is the 16 bit arithmetic sum of all words in G.

| Action code. If I is a blank (zero), then the program is started in the address
previously found in the octal number (see above). If I is not a blank, then
control is returned to the operator’s communication. (The number B will be
found in the P register.)

If no device address precedes the & command, then the & is equivalent to pushing
the LOAD button on the operator’s panel.

If a checksum error is detected, "?” is typed on the console and control is returned
to the operator’s communication.

Note that the binary loader does not require any of the main memory.

The binary load will change the registers on level 0.

The binary load format is compatible with the format dumped by the )BPUN
command in the MAC assembler.

Mass Storage Load

Mass storage load is started in the same way as binary format load, except that bit
13 in the device address should be a ””.1

When loading from mass storage, 1K words will be read from mass storage
address 0 into main memory starting in address 0. After a successful load, the CPU
is started in main memory address 0.

The mass storage device must conform with either drum or disk programming
specifications.

ND-06.0l4.02



4.2.5.3

4—24

Automatic Load Descriptor

The ND-100 has a thumbwheel switch called the Automatic Load Descriptor (ALD)
(CPU card). This switch selects a 16 bit value to use when the LOAD button is
pushed or when a single $ or & is typed.

The 16 bit value has the following meaning:

15 14 13 12 11
‘

0

0 O M 0 Address

M Mass Storage Load

If this bit (bit 13) is 1, mass storage load is taken from the device whose
(lowest) address is found in bits 0-10 (unit 0).

If bit 13 is 0, binary load is taken from the device whose (lowest) address is
found in bits 0-10.

ND—06.014.02



4.3

4.3.1

4.3.2

4—25

THE D/SPLA Y

General

The optional display part of the panel is present if the machine has the memory
management module installed. This module contains, in addition to the memory
management system and cache memory, a display processor. The display
processor controls the activity on the display.

There is one button on the display part, the ”OPCOM” button. This button allows
the operator to use the CPU board terminal for operator communication. This but-
ton has the same function as the "OPCOM" button on the operator’s panel. The
display part of the panel may be placed outside the cabinet (in another room, etc.).
Therefore, it is practical to have an ”OPCOM” button on this part of the panel.

The Different Display Functions

Figure 4.1 shows the normal activity on the display when the machine is running.

The DATA field displays information in binary or octal format (see Section
4.2.4.1). The possible contents are:

— Active levels (only binary)

The active levels in the computer will be shown. There are 16 positions
(0—15), one for each level. A one ( l is set in one of these positions,
indicating the active level. The display is provided with afterglow so that it is
possible to observe a single instruction on a program level.

— Register contents.

If a register examine is done, the content of the register is shown here.

— Memory contents.

When a memory examine is done, the content of the examined cell will be
shown here.

— Bus information.

If the BUS command is given to display memory accesses on the ND—100
bus, the data present on the bus will be shown here and updated continual—
ly. When binary format is selected, the address field is used as extension for
bit 16-23.

ND-06.014.02



4—26

The ADDRESS Field:

— Calendar clock.

A clock that tracks the operating system clock is shown here displaying day,
hour, minute and second. This clock is adjusted by the "UPDATE”
command under SINTRAN Ill. Under the load procedure this clock will be
read by the operating system and taken as system clock. The clock is also
connected to the stand-by power and will stay correct even in case of a po-
wer failure.

—- Year and month.

Year and month from the system clock is also shown here by giving the
specific F command to MOPC (see Section 4.2.4.1). For example, 1979:10
means October 1979.

— Currentprogram counter.

During a register examine, the current program counter is shown here. For
example, P010153.

— Memory address.

If a memory examine is done, the address of the memory location examined
is shown here.

The FUNCTION Field:

— Indicator functions.

UTlL, utility of the machine, is shown here. That is, how much time the
machine spends on level 0 (idle). The more utility, the less the time spent on
level 0 and more segments on the display are lit up.

Example:

I l7 l4 l'<'

ND—06.014.02



4—27

— No activity.

HIT, tells the hits rate in cache memory. The higher the cache hit rate , the
more segments are lit up on the display.

Example:

l7 l7 .071 \lZl
l} ASi I43! AN

— RING, indicates the user ring taken from the PCR.

’ij
l'l

Example:

i l
'T' ’D

Paging off Ring 1 Ring 2 Ring 3

— MODE, tells if the interrupt system and/or the paging system is turned on.
Example:

Both the interrupt system and the Only the interrupt system is on.

paging system is on.

ND—06.014:02



4—28

Register name.

lf a register examine is done, the name of the register, eventually also the
level for the register, is shown.

Example:

5A, OPR, etc.
5A = A register on level 5
OPR = Operator’s Register

Memory examine mode.

When a memory examine is done, the examine mode; virtual or physical, will
be shown.

Example:

PEXM — physical examine
2EXM —— virtual examine mapped through page table 2.

Bus examine type.

What kind of bus information to be sampled and displayed by the BUS
command is displayed here.

Example:

DC R — data under a CPU read from memory operation.

ND—06.014.02



A..1

APPENDIX A

ND-100 INSTRUCTIONS

ND— 700 INSTRUCTION CODES

Instruction formats and explanations found in the ND-100 Reference Manual.

displacement
logical AND
inclusive OR

= exclusive OR

A

/\

V

'V

MEMORY REFERENCE INSTRUCTIONS

Effective Address:

000000 Address relative to P; EL-P+ A
,X 002000 Address relative to X; EL=X+ A

I 001000 Indirect address; EL=(P+ A)
,B 000400 Address relative to B; EL=B+ A

Store Instructions:

STZ 000000 Store zero; (EL): =0
STA 004000 Store A; (EL): =A
STT 010000 Store T; (EL): =T
STX 014000 Store x; (EL):=X
MIN 040000 Mem.incr, skip if zero (EL):=(EL)+1

Load Instructions:

LDA 044000 Load A; A:=(EL)
LDT 050000 Load T: T:=(EL)
LDX 054000 Load x; x: =(EL)

Arithmetica/ and Logical Instructions:

ADD 060000 Add to A (C, O and 0
may also be affected); A:=A+(EL)

SUB 064000 Subtract from A (C, O
and 0 may also be
affected); A:=A—(EL)

AND 070000 Logical AND to A; A: =A A(EL)
ORA 074000 Logical inclusive OR to

A; A:=A V(EL)
MPY 120000 Multiply integer (O and

0 may also be affec—
ted); A:=A‘(EL)

ND—06.014.02



Double Word Instructions:

STD 020000 Store double word; (DW):=AD
LDD 024000 Load double word; AD:=(DW)

Floating Instructions:

STF 030000 Store floating accum.; (FW):=TAD
LDF 034000 Load floating accum.; TAD:=(FW)
FAD 100000 Add to floating accum.

(C may also be affec-
ted); TAD:=TAD+(FW)

FSB 104000 Subtract from floating
accum. (C may also be
affected); TAD: = TAD—(FW)

FMU 110000 Multiply floating
accum. (C may also be
affected); TAD: =TAD‘(FW)

FDV 114000 Divide floating accum.
(Z and C may also be
affected); TAD: =TAD/(FW)

Byte Instructions:

Addressing: EL=(T)+(X)/2 X=1: Right byte
X=0: Left byte

SBYT 142600 Store byte
LBYT 142200 Load byte
BFILL 140130 Byte fill
MOVB 140131 Move bytes
MOVBF 140132 Move bytes forward

REGISTER OPERATIONS

Arithmetic Operations, HAD= 7:

C, O and 0 may be affected by the following instructions:

RADD 146000 Add source to destin-
ation; (dr):=(dr)+(sr)

RSUB 146600 Subtract source from
destination; (dr):=(dr)—(sr)

COPY 146100 Register transfer; (dr):=(sr)
AD1 000400 Also add one to

destination; (dr):=(dr)+1
ADC 001000 Also add old carry to

destination; (dr):=(dr)+C

ND—06.014.02 .



Logical Operations, RAD = 0:

SWAP

RAND

REXO
RORA
CLD

CM1

1 44000

1 44400

1 45000
1 45400
0001 00

000200

Register exchange; (sr):=(dr);
(dr):=(sr)

Logical AND to
destination; (dr): = (dr) A(sr)
Logical exclusive OR; (dr): =(dr)'V(sr)
Logical inclusive OR; (dr):=(dr)V(sr)
Clear destination
before op.; (dr)=0
Use one’s complement
of source; (sr)=(sr)o

Combined Instructions:

EXIT

RCLR
RINC
RDCR

146142

1 461 00
1 46400
1 46200

COPY SL DP, Return from sub-
routine

COPY, Register clear
RADD AD1, Register increment
RADD CM1, Register decrement

Extended Arithmetic Operations:

RMPY

RDIV

141200 Multiply source with

141600

destination. Result in
double accumulator AD:=(sr)*(dr)
Divide double ac-
cumulator with source
register. Quotient in A,
remainder in D A:=AD/(sr)
(AD=A*(sr) + D)

EXECUTE INSTRUCTION

EXR 140600 Execute instruction
found in specified reg-
ister.

ND-06.014.02



A—4

BIT INSTRUCTIONS

BSKP

BSET

BSTA
BSTC

BLDA
BLDC

BANC

BORC

BAND
BORA

SHIFT

SHT
SHD
SHA
SAD

ROT

ZIN
LIN

SHR

175000 Skip next location if
specified condition is
true; P: = P+1

174000 Set specified bit equal to
specified condition;

176200 Store and clear K; (B):=K; K:=0
176000 Store complement and

set K; (B):=Ko; K:=1
176600 Load K; K:=(B)
176400 Load bit complement to

K; K:=(B)o
177000 Logical AND with bit

compl; K:=KA(B)o
177400 Logical OR with bit

comp|.; K: = KV(B)o
177200 Logical AND to K; K: = K A(B)
177600 Logical OR to K; K:=KV(B)

INSTRUCTIONS

154000 Shift T register
1 54200
1 54400
1 54600

001 000

002000
003000

000200

Shift D register
Shift A register
Shift A and D registers connected
Arithmetic shift. During right shift, bit
15 is extended. During left shift, zeros
are shifted in from right.
Rotational shift. Most and least sig-
nificant bits are connected.
Zero end input
Link end input. The last vacated bit is
fed to M after every shift instruction.
Shift right; gives negative shift counter.

FLOATING CONVERSION

NLZ 151400

DNZ 152000

NLZ+ 20151420
DNZ—20 152360

Convert the number in A to a floating
number in FA.
Convert the floating number in FA to a
fixed point number in A.
Integer to floating conversion.
Floating to integer conversion.

ND—06.014.02



SEQUENCING INSTRUCTIONS

Unconditional Jump:

JMP 124000 Jump; P=EL
JPL 134000 Jump to subroutine; L=P; P=EL

Conditional Jump:

JAP 130000 Jump if A is positive;
P= + A if: A20

JAN 130400 Jump if A is negative; A<0
JAZ 131000 Jump if A is zero; A=0
JAF 131400 Jump if A is nonzero; A0
JXN 133400 Jump if X is negative; X<0
JPC 132000 Increment X and jump

if positive;
I X=X+1;P=P+Aif X20

JNC 132400 Increment X and jump
if negative;
X=X+1;P=P+Aif X<0

JXZ 133000 Jump if X is zero; X=0

Skip Instructions:
SKP 140000 Skip next location if

specified condition is
true; P = P + 1

Specified Condition:

EQL 000000 Equal to
UEQ 002000 Unequal to
GRE 001000 Signed greater or

equal to
LST 003000 Signed less than
MLST 003400 Magnitude less than
MGRE 001400 Magnitude greater or

equal to
IF 000000 May be used freely to

obtain
0 000000 easy readability

ND—06.014.02



TRANSFER INSTRUCTIONS

Load Independent Instructions:

TRA 150000 Transfer specified internal register to A
TRR 150100 Transfer A to specified internal register

Inter-level Instructions:

IRR 153600 Inter-register Read
A:= Specified register on specified level

IRW 153400 Inter—register Write
Specified register on specified level := A

MEMORY EXAMINE/DEPOSIT INSTRUCTIONS

EXAM 150416 Memory examine
T:= memory location pointed to by AD
register

DEPO 150417 Memory deposit
Move T to memory location pointed to by
AD register

SYSTEM CONTROL INSTRUCTIONS

IOF 150401 Turn off interrupt system
ION 150402 Turn on interrupt system
LWCS 143500 Load writeable control store
MON 153000 Monitor call instruction
PIOF 150405 Turn off paging and interrupt
PION 150412 Turn on page and interrupt
POF 150404 Turn off paging system
PON 150410 Turn on paging system
REX 150407 Reset extended address mode
SEX 150406 Set extended address mode
WAIT 151000 Halt the program/ Give up priority
OPCOM 150400 Start MOPC

ND-06.014.02



PRIVILEGED INSTRUCTIONS

The instructions available only to programs running in system mode (ring 2 or 3) are termed
privileged instructions, which are:

IOF 150401 Turn off interrupt system
lON 150402 Turn on interrupt system
PIOF 150405 Turn off paging and interrupt
PION 150412 Turn on page and interrupt
POF 150404 Turn off memory management system
PON 150410 Turn on memory management system
LWCS 143500 Load writeable control store
WAIT 151000 Give up priority, reset current PID bit
IDENT 143600 Identify interrupt
lOX 164000 Input/Output
IOXT 150415 Input/Output
TRA 150000 Transfer internal register to A
TRR 150100 Transfer internal register from A
MCL 150200 Masked clear of register
MST 150300 Masked set of register
LRB 152600 Load registerblock
SRB 152402 Store register block
lRW 153400 inter—register write
IRR 153600 Inter-register read
REX 150407 Reset extended address mode
SEX 150406 Set extended address mode
EXAM 150416 Memory examine

T = memory location pointed to by AD
register

DEPO 150417 Memory deposit
Memory location pointed to by AD register

OPCOM 150400 Set in OPCOM mode

I'D-06.01402



PHYSICAL MEMORY READ/WRITE INSTRUCTIONS

LDATX
LDXTX
LDDTX
LDBTX
STATX
STZTX
STDTX

143300
143301
143302
143303
143304
143305
143306

IN PUT/OUTPUT

IOXT
IOX
IDENT

PL10
PL11
PL12
PL13

150415
164000
1436PL

000004
00001 1
000022
000043

CONTROL

A:=(EL)
X:=(EL)
A:=(EL), D:=(EL+1)
B:=177000 V( (EL)+(ED))
(EL):=A
(EL):0
(EL):=A, (EL+1):=D

Transfer data to/from specified device
Transfer data to/from specified device
Transfer IDENT code of interrupting device
with highest priority on the specified level
to A register.
Level 10
Level 11
Level 12
Level 13

ARGUMENT INSTRUCTIONS

SAA
AAA
SAX
AAX
SAT
AAT
SA B
AAB

170400
172400
171400
173400
171000
173000
170000
172000

Set argument to A;
Add argument to A;
Set argument to X;
Add argument to X;
Set argument to T;
Add argument to T;
Set argument to B;
Add argument to B;

A:=ARG
A:=A+ARG
X:=ARG
X:=X+ARG
T:=ARG
T:=T+ARG
B:=ARG
B:=B+ARG

ND-06.014.02



REGISTER BLOCK INSTRUCTIONS

Addressing: (EL)+1+2+3+4+5+6+7
P X T A D LSTS B

LRB 152600 Load register block
SRB 152402 Store register block

INSTRUCTIONS IN THE CE-OPTION

(CE = Commercial Extended)

ADDD 140120 Add decimal
SUBD 140121 Subtract decimal
COMD 140122 Compare decimal
PACK 140124 Convert to packed decimal
UPACK 140125 Convert to unpacked decimal
SHDE 140126 Decimal shift
INIT 140134 Initialize stack
ENTR 140135 Enter Stack
LEAVE 140136 Leave stack
ELEAV 140137 Error leave stack

INSTRUCTIONS IN THE CX—OPTION

The same instructions as in the CE—option described above, plus the following instructions:

MOVEW 1431xx Move block of words (xx is in the range 00 through 08)
TSET 140123 Test and set
RDUS 140127 Read don’t use cache
SETPT 140300 Set page tables
CLEPT 140301 Clear page tables
CLNREENT 140302 Clear non reentrant
CHREENT—
PAGES 140303 Change not reentrant pages
CLEPU 140304 Clear page tables, collect PGU information

ND—06.014.02
Rev. A



A—10

NORD—100 MNEMONICS AND THEIR OCTAL VALUES

AAA
AAB
AAT
AAX
ADC
ADD
ADDD
ADI
ALD
AND
,B
BAC
BANC
BAND
BCM
BLDA
BLDC
BORA
BORC
BSET
BSKP
BSTA
BSTC
CCLR
CHREENT-
PAGES
OLR
CLD
CLEPT
CLEPU
CLNREENT
CM1
CM2
COMD
COPY
CSR
DA
DB
DD
DEPO
DL
DNZ
DP
DT
DX
ECCR
ELEAV
ENTR
EOL
EXAM

2 172400
2 172000
2 173000
2173400
2 001000
2 060000
2 140120
2 000400
2 000012
2 070000
2 000400
2 000600
2 177000
2 177200
2 000400
2 176600
2 176400
2 177600
2 177400
2 174000
2 175000
2 176200
2 176000
2 000010

2 140303
: 000012
2 000100
2 140301
2 140304
2 140302
2 000200
2 000600
2 140122
2 146100
2 000010
2 000005
2 000003
2 000001
2 150417
2 000004
2 152000
2 000002
2 000006
2 000007
2 000015
2 140137
2 140135
2 000000
: 150416

EXIT 2 146142
EXR 2140600
FAD 2 100000
FDV 2 114000
FhALJ 2 110000
FSB 2104000
GEO 2 000400
GRE 2 001000
I 2 001000
IDENT 2 143600
IF 2 000000
IIC 2 000005
IIE 2 000005
INIT 2 140134
IOF 2150401
ION 2 150402
IOX 2 164000
IOXT 2 150415
IRR 2 153600
IRVV 2153400
JAF 2131400
JAN : 130400
JAP 2130000
JAZ 2131000
JhAP 2 124000
JNC 2 132400
JPC 2132000
JPL 2 134000
JXN 2133400
JXZ 2 133000
LBYT 2142200
LCIL 2 000011
LDA 2 044000
LDATX 2 143300
LDBTX 2143303
LDD 2 024000
LDDTX 2 143302
LDF 2 034000
LDT 2 050000
LDX 2 054000
LDXTX 2143301
LEAVE 2 140136
LIN 2 003000
LAAP 2 000002
LRB 2152600
L88 2 002400
LST 2 003000
LVVCS 2 143500
MCL 2 150200
MGRE 2 001400

ND-06.014.02
Rev

RAIN
NHX3
MLST
MON
MOVEW
MPY
MST
NLZ
ONE
OPCOM
OPR
ORA
PACK
PCR
PEA
PES
PGC
PGS
MD
ME
HOF
HON
PL10
PL11
PL12
PL13
POF
PON
PVL
RADD
RAND
RCLR
RDCR
RDH’
RDUS
REX
REXO
WNC
RMPY
RORA
ROT
RSUB
SA
SAA
SAB
SAD
SAT
SAX
SB
SBYT

2 040000
2 143200
2 003400
2 153000
2 1431xx
2 120000
2 150300
2 151400
2 000200
2 150400
2 000002
2 074000
2 140124
2 000003
2 000015
2 000013
2 000014
2 000003
2 000006
2 000007
2 150405
2 150412
2 000004
2 000011
2 000022
2 000043
2 150404
2 150410
2 000004
2 146000
2 144400
2 146100
2 146200
2 141600
2 140127
2 150407
2 145000
2 146400
21M200
2 145400
2 001000
2 146600
2 000050
2 170400
2 170000
: 154600
2 171000
:1H4MJ
2 000030
2 142600



SD
SETPT
SEX
SHA
SHD
SHDE
SHR
SHT
SKP
SL
SP
SRB
SSC
SSK
SSM
SSO
SSQ
SSTG
882
ST
STA
STATX
STD
STDTX
STF
STS
STT
STX
STZ
STZTX
SUB
SUBD
SVVAP
SX
TRA
TRR
TSET
UCl
UEQ
UPACK
VVAH

ZIN
ZRO

: 000010
: 140300
: 150406
: 154400
: 154200
: 140126
: 000200
: 154000
: 140000
: 000040
: 000020
: 152402
: 000060
: 000020
: 000070
: 000050
: 000040
: 000010
: 000030
: 000060
: 004000
: 143304
: 020000
: 143306
: 030000
: 000001
: 010000
: 014000
: 000000
: 143305
: 064000
: 140121
: 144000
: 000070
: 150000
: 150100
: 140123
: 000012
: 002000
: 140125
: 151000
: 002000
: 002000
: 000000

A-—11

ND-06.014.02
Rev.A



A—12

ND- 700 INSTRUCTION EXECUTION TIMES

NOTE: The instruction times are measured for a program running on a standard
ND—100. That is, all references are in local memory. Two models of the ND-100
are available and the instruction times are given first for the slower model with-
out cache and then for the faster model with cache.

Standard Fast CPU
790ns cycle time 750ns cycle time

Instruction (Not Cache) (Cache)

(in us) (in us)

JMP ‘1 1.84 0.99
SAA 5 0.73 0.46
AAA 2 0.73 0.46
COPY SA DD 0.73 0.46
RADD SB DA 0.73 0.46
RSUB ST DX 0.73 0.46
SWAP SA DB 0.94 0.74
RAND SA DT 0.73 0.46
REXO ST DT 0.73 0.46
RORA SD DA 0.73 0.46
BSET ONE 20 DX 1.14 0.89
BSET BAC 30 DX 1.72 1.32
BSTA 40 DX 2.31 1.76
BLDA 20 DX 1.33 1.03
SHA 1 1.33 1.03
SHA 13 3.29 2.48
SHT 1 1.33 1.03
SAD 1 1.53 1.17
LDA *16 1.65 0.95
STA *16 1.52 1.20
LDD ‘16 2.39 1.29
STD '16 2.14 1.80
LDF ‘16 3.12 1.66
STF '16 2.72 2.41
IRW 50 DX 2.14 1.61
IRR 50 DB 214 1.61
TRA PIE 0.94 0.84
TRR PCR 3.44 2.83
MCL PID 8.38 8.05
SRB 40 6.71 6.24
LRB 40 7.57 4.11
LBYT % LEFT 2.22 1.38
SBYT % LEFT 2.87 2.22
LBYT % RIGHT 2.04 1.24
SBYT % RIGHT 2.48 1.93
LDA l ‘16 2.39 1.29
STA l *16 2.26 1.55
IOX 302 5.02 3.64
ION 6.71 6.13
MON 0 0.77 0.59

ND-06.014.02
Rev. A



A—13

Instruction

Conditional JUMP—SKIP Instructions
Condition TRUE

JAN *2
JPC *2
SKP DX EOL SA
BSKP ONE 10 DA
BSKP BCM 10 DA

Condition FALSE

JAN *2
JPC *2
SKP DX EOL SA
BSKP ONE 10 DA
BSKP BCM 10 DA

Instructions with Data Dependent Execution Times

MPY *5
M|X3
RMPY sx DT
RDIV ST % POS. NO.
RDIV SB % NEG. NO.
RDIV sx % OVERFLOW
FAD *7
FAD *12
FAD *15
FSB *7
FSB *12
ESE *15
FMU *7
FMU *12
FMU *20
FDV *7
FDV *12
FDV *20
NLZ 20 % 0
NLZ 20 % 1
NLZ 20 % 40000 (8)
DNZ —20 % 0
DNZ —20 %1
DNZ —20 % 40000 (8)
MIN *3 % SKP FALSE
MIN *3 % SKP TRUE
EXR SA
WA” ND-06.014.02

Rev. A

Standard Fast CPU
790ns cycle time 750ns cycle time
{Not Cache) (Cache)

(in us) (in us)

1 49 0.94
1.49 0.94
1.49 0.94
1.95 1.30
2.60 1.65

0.87 0.71
0.87 0.71
0.87 0.71
1.95 1.30
1.95 1.42

(in HS) (in US)

7.49 5.57
0.78 0.60
4.86 3.62
8.40 6.22
7.75 5.82
2.28 1.74
4.55 3.13
8.17 5.57

13.46 9.55
4.74 3.24

11.00 7.70
16.22 11.62
18.82 13.89
18.84 14.13
18.82 13.90
19.98 14.62
20.15 14.78
4.34 3.24
0.94 0.73
5.77 4.37
3.08 2.31
1.88 1.45
5.79 3.27
2.07 1.59
2.25 1.56
2.82 1.79
0.91 0.69
6.99 6.69



ND-06.014.02



APPENDIX B

MODEL 33 ASR/KSR TELETYPE CODE (ASCII) IN
BINARY FORM

HOLE PUNCHED = MARK = 1
NO HOLE PUNCHED = SPACE = 0

Most significant bili

[Luau

significant bit

76543 210

NULL/IDLE
START OF MESSAGE
END OF ADDRESS
END OF MESSAGE
END OF TRANSMISSION
WHO ARE YOU
ARE YOU
BELL
FORMAT EFFECTOR
HORIZONTAL TAB
LINE FEED
VERTICAL TAB
FORM FEED
CARRIAGE RETURN

SHIFT OUT
SHIFT IN
DCO
HEADER ON
TAPE (AUX ON
READER OFF
IAUX OFF)
ERROR
SYNCHRONOUS IDLE
LOGICAL END OF MEDIA

0
O
I
I
0
0
l
I
0
0
I
I
0
0
I
I

QWNO’IUWAUN-

@
A
8
C
D
E
F

G
H
I
J
K
L
M
N
O
p

O
R
S
T
U
V
W
X
Y
Z

NG’IU‘AUM-‘G —-——-—-——-—-—-——-————‘—~OOOOOOCOOOOOOOOO -‘—‘-‘-‘—-—-'-‘OOOOOOOC-‘-"-‘-‘-‘-‘-—OCOOOOOO ~—-—~oooo—--oooo--—~ooco~———oooo ~—OO~'—OO—‘-‘OO—-‘O

RUB OUT

PARITY

ND—06.014.02



ND-06.014.02



APPENDIX C

STANDARD ND-100 DEVICE REGISTER ADDRESSES
AND lDENT CODES

In the following only the most frequently used Device Names are listed.

Two Device Names may use the same Device Register Address range. In these
cases only the most common Device Name is listed.

Definitions:

Device Register Address = Device Number + Register Number.

Device Number = The lowest Device Register Address for each Device Name.

Register Number = Register Number within the Device (see the manual ND—100
Input/Output System, Appendix B).

Interrupt Level 10 = Output Devices (PIO).
Interrupt Level 11 Mass Storage Devices (DMA).
Interrupt Level 12 Input Devices (PIO).
Interrupt Level 13 Real Time Clock.

SINTRAN ll| Logical Device Number is a unique number for the Device Name.

Ident Code is a code sent from the device interface. The Ident Code tells the

CPU which device asked for an interrupt. The Ident Code is unique for the Device

Number on a specified Interrupt Level.

ND—06.014.02



STANDARD ND- 700 DEVICE NUMBERS* AND IDENT CODES

SlNTRAN ///
Device Reg. Interrupt Logical Device ldent Code Device Name
Address Range Level Numbers’ (octal)
(octal) (octal)

4— 7 4 Memory Parity N—12/N—42
10— 13 13 1 Real Time Clock 1
14— 17 13 2 Real Time Clock 2
20— 23 13 6 Real Time Clock 3
24- 27 13 7 External interrupt
30— 33 12 16 NORD-50/1
34- 37 10 16 ACM 5
40— 43 10 15 ACM 1
44- 47 10 25 ACM 2
50— 53 10 40 ACM 3
54- 57 10 41 ACM 4
60— 77 NORD—50/1 Regs.

100—107 10/12 6 4 Sync. Modem 1
110-117 10/12 16 14 Sync. Modem 2
120—127 10/12 30 20 Sync. Modem 3
130—137 10/12 31 24 Sync. Modem 4
140-147 10/12 26 30 Sync. Modem 5
150-157 10/12 27 34 Sync. Modem 6
160—167 10/12 40 Sync. Modem 7
170—177 10/12 10 Sync. Modem 8
200—207 10/12 7 60 Terminal 17
210—217 10/12 17 61 Terminal 18
220—227 10/12 52 62 Terminal 19
230-237 10/12 53 63 Terminal 20
240—247 10/12 54 64 Terminal 21
250-257 10/12 55 65 Terminal 22
260—267 10/12 56 66 Terminal 23
270-277 10/12 57 67 Terminal 24
300-307” 10/12 1 1(120)*” Terminal 1
310—317” 10/12 11 5(121)‘” Terminal 2/TET 15
320—327“ 10/12 42 6(122)“* Terminal 3/TET 14
330-337” 10/12 43 7(123)*“ Terminal 4/TET 13
340—347 10/12 44 44 Terminal 5/TET 12
350-357 10/12 45 45 Terminal B/TET 11
360—367 10/12 46 46 Terminal 7/TET 10
370-377 10/12 47 47 Terminal 8/TET 9

" A complete list of SlNTRAN Ill Logical Device Numbers is found in SlNTRAN |||
Reference Manual (ND-60.125).

” Terminal no. 1 is implemented on the CPU module. Terminals with device
numbers 310—317, 320—327 and 330—337 are normally not used.

*” Number in parenthesis is valid for 4 current loop modules.

ND-06.014.02



C—3

SINTRAN III
Device Reg. Interrupt Logical Device ldent Code Device Name
Address Range Level Numbers" (octal)
(octal) (octal)

400— 403 12 2 2 Paper Tape Reader 1
404— 407 12 12 22 Paper Tape Reader 2
410- 413 10 3 2 Paper Tape Punch 1
414— 417 10 13 22 Paper Tape Punch 2
420- 423 12 4 3 Card Reader 1
424- 427 2 14 23 Card Reader 2
430-433 10 5 3 Line Printer 1
434- 437 10 15 23 Line Printer 2
440- 443 10 10 11 Calcomp Plotter 1
444— 447 10 50 12 Card Punch 1
450- 453 10 35 21 Card Punch 3/Calc. 2
454- 457 10 51 13 Card Punch 2
460- 467 10/12 31 E & Pict. Syst. I/O
470— 477 12 Graphical Pen
500— 507 11 1 Disk System 1
510— 517 11 5 Disk. System 2
520- 527 11 3 Mag.Tape 1
530— 537 11 7 Mag. Tape 2
540- 547 11 2 Drum 1
550— 557 11 6 Drum 2
560— 577 12/13 1006 156 HDLC HASP 1
600— 607 11 22 4 Versatec 1
610— 617 11 11 Core —to—Core 1
620— 637 11 36

'
10 CDC l/O Link

640- 647 10/12 1040 124 Terminal 33
650— 657 10/12 1041 125 Terminal 34
660- 667 10/12 1042 126 Terminal 35
670— 677 10/12 1043 127 Terminal 36
700— 707 12 20 11 CATSY 1
710— 717 12 21 21 CATSY 2
720— 727 11 23 E & S Pict. Syst. DMA
730- 737 10 10 D/A— Converter
750- 753 13 5 BIG MPM LOG Module
754— 757 12 13 Process Input 5
760— 767 10—11- 100 Test Card

12—13
770— 773 12 17 Dig. Reg. 1 Input
774— 777 10 17 Dig. Reg. 1 Output

1000-1003 12 26 Dig. Reg. 2 Input
1004—1007 10 26 Big. Reg. 2 Output
1010-1013 12 27 Dig. Reg. 3 Input
1014-1017 10 27 Dig. Reg. 3 Output
1020—1023 12 43 Dig. Reg. 4 Input
1024-1027 10 43 Dig. Reg. 4 Output
1030-1033 12 116 NORD 50/2
1034 Watch Dog
1035 Process Output 1
1036 Process Output 2

ND—06.014.02



C—4

S/NTRAN lll ,
Device Reg. Interrupt Logical Device Ident Code Device Name
Address Range Level Numbers (octal)
(octal) (octal)

1037 Process Output 3
1040—1043 12 15 Process Input 1
1044—1047 12 25 Process input 2
1050-1053 12 40 Process Input 3
1054—1057 12 12 Process Input 4
1060-1077 NORD-50/2 Reg.
1100-1107 10/12 1044 130 Terminal 37
1110-1117 10/12 1045 131 Terminal 38
11201127 10/12 1046 132 Terminal 39
1130-1137 10/12 1047 133 Terminal 40
1140-1147 10/12 1050 134 Terminal 41
1150-1157 10/12 1051 135 Terminal 42
1160-1167 10/12 1052 136 Terminal 43
1170-1177 10/12 1053 137 Terminal 44
1200—1207 10/12 70 70 Terminal 25
1210-1217 10/12 71 71 Terminal 26
1220—1227 10/12 72 72 Terminal 27
1230-1237 10/12 73 73 Terminal 28
1240-1247 10/12 74 74 Terminal 29/PHOTOS. 1
1250-1257 10/12 75 75 Terminal 30/PHOTOS.2
1260-1267 10/12 76 76 Terminal 31/PHOTOS.3
1270—1277 10/12 77 77 Terminal 32/PHOTOS. 4
1300-1307 10/12 60 50 Terminal 9
1310—1317 10/12 61 51 Terminal 10
1320—1327 10/12 62 52 Terminal 11
1330-1337 10/12 63 53 Terminal 12
1340—1347 10/12 64 54 Terminal 13
1350—1357 10/12 65 55 Terminal 14
1360—1367 10/12 66 56 Terminal 15
1370-1377 10/12 67 57 Terminal 16
1400—1407 10/12 1054 140 Terminal 45
1410-1417 10/12 1055 141 Terminal 46
1420-1427 10/12 1056 142 Terminal 47
1430—1437 10/12 1057 143 Terminal 48
14401443 12 101 A/D Converter 1
1444-1447 12 102 ND Converter 2
1450—1453 12 103 ND Converter 3
1454-1457 12 104 A/D Converter 4
1460-1463 12 105 A/D Converter 5
1464-1467 12 106 A/D Converter 6
1470—1473 12 107 A/D Converter 7
1474—1477 12 110 A/D Converter 8
1500-1507 10/12 1060 144 Terminal 49

ND—06.014.02



SINTRAN l/l
Device Reg. nterrupt Logical Device ldent Code Device Name
Address range Level Numbers (octal/
(octal) (octal)

1510-1517 10/12 1061 145 Terminal 50
1520-1527 10/12 1062 146 Termina| 51
1530-1537 10/12 1063 147 Termina| 52
1540—1547 11 17 Big Disk System 1
1550-1557 11 20 Big Disk System 2
1560—1567 11 1000— 1002 21 Floppy Disk 1 (Unit 0, 1, 2)
1570—1577 11 1003— 1005 22 Floppy Disk 2 (Unit 0, 1, 2)
1600—1603 11 14 Versatec 2
1604-1607 HDLC Remote Load 1
1610-1613 HDLC Remote Load 2
1614—1617 HDLC Remote Load 3
1620—1623 HDLC Remote Load 4
1624—1627 HDLC Remote Load 5
1630-1633 HDLC Remote Load 6
1634-1637 HDLC Remote Load 7
1640—1657 12/13 150 HDLC NORD—NET 1
1660-1677 12/13 151 HDLC NORD-NET 2
1700-1717 12/13 152 HDLC NORD-NET3
1720—1737 12/13 153 HDLC NORD-NET4
1740—1757 12/13 154 HDLC NORD-NET 5
1760-1777 12/13 155 HDLC NORD-NET 6

100000-100003 Bus Expander 0
100004-100007 Bus Expander 1
100010—100013 Bus Expander 2
100014—100017 Bus Expander 3
100020—100023 Bus Expander 4
100024—100027 Bus Expander 5
100030-100033 Bus Expander 6
100034—100037 Bus Expander 7

100115 ECCR
100200—100203 13/13 20 Bus Controller 1

100204-100207 13/13 21 Bus Controller 2
100210—100213 13/13 22 Bus Controller 3
100214-100217 13/13 23 Bus Controller 4
100220-100223 13/13 24 Bus Controller 5
100224-100227 13/13 25 Bus Controller 6
100230-100233 13/13 26 Bus Controller 7
100234—100237 13/13 27 Bus Controller 8
100240—100243 13/13 30 Bus Controller 9
100244—100247 13/13 31 Bus Controller 10
100250-100253 13/13 32 Bus Controller 11
100254-100257 13/13 33 Bus Controller 12
100260—10026 13/13 34 Bus Controller 13

ND—06.014.02



Device Reg.
Address range
(octal)

Interrupt
Level

SINTRAN ///
Logical Device
Numbers
(coral)

Ident Code
(octal)

Device Name

100264—100267
100270—100273
100274-100277
100300—100303
100304-100307
100310—100313
100314-100317
100320—100323
100324-100327
100330—100333
100334—100337
100340—100343
100344—100347
100350—100353
100354—100357
100360—100363
100364—100367
100370-100373
100374—100377

13/13
13/13
13/13
13/13
13/13
13/13
13/13
13/13
13/13
13/13
13/13
13/13
13/13
13/13
13/13
13/13
13/13
13/13
13/13

35
36
37
4O
41
42
43

45
46
47
50
51
52
53
54
55
56
57

Bus Controller 14
Bus Controller 15
Bus Controller 16
Bus Controller 17
Bus Controller 18
Bus Controller 19
Bus Controller 20
Bus Controller 21
Bus Controller 22
Bus Controller 23
Bus Controller 24
Bus Controller 25
Bus Controller 26
Bus Controller 27
Bus Controller 28
Bus Controller 29
Bus Controller 30
Bus Controller 31
Bus Controller 32

ND—06.014.02



APPENDIX D

INTERNAL REGISTERS

The following internal registers are implemented for internal control and status of
the CPU. Format is given in the following table. Detailed descriptions are found
in the sections specified.

Register
Name: No..' Description:

PANS 0 Panel status register. Gives information to the microprogram
about the display status. Also used by microprogram.

PANC 0 Panel Control. Controls the state of the display from the mic—
roprogram. Also used by microprogram.

STS 1 Status Register. Bits 0—7 are level dependent and accessible
from user programs while bits 8-15 are system dependent and
only accessible by system (TRA/TRR).

OPR 2 Operator’s register. Implemented in firmware.

LMP 2 Display register. Implemented in firmware.

PGS 3 Paging status register.

PCR 3 Paging control register, (write).

PVL 4 Previous level. The content of the register is: IRR <previous
level * 108> DP.

HO 5 Internal interrupt code.

”E 5 Internal interrupt enable.

PID 6 Priority interrupt detect.

PIE 7 Priority interrupt enable.

CSR 10 Cache status.

CCLR 10 Clear cache

LCILR 11 Lower cache inhibit limit register

ACTL 11 Active level

ALD 12 Automatic load descriptor

ND-06.014.02
Rev. A



101 TRA FANS

101 TRR PANC

111 TRA 51's

[11 TRR STs

[21 TRA CPR

l2l Tan LMP

(31 TBA P63

[31 TFlR Pca

{4| TRA PvL ,

i5l TRA 11¢

(51 TRR HE

151 TRA/TRR 1110

I71 TRA/Tnn P! E

1101 TBA ass

[10' TRR CCLR

1111 THE LClL

[H] TRAACTL

[12} TRA ALD

[12! T1=11=1 UClL

(13! TRAPES

(14] TBA 14
read paging
control register

1151 TRA PEA

1151 THE scca

UClLR 12 Upper cache inhibit limit register

PES 13 Parity error status

PGC 14 Paging control register read on specified level

PEA 15 Parity error address

15 14 T2312 11 10¥918 7 5 54413.2 1J0
15?. IN?

RPAE’PAN a 213nm? 7‘ 12‘ REAN 4‘ 3 ' 2' 1 0
Pass PDY VAL 1NT. '

L . . 1 ,1 1' o 7' 6‘ a ‘ 4‘ 3 ' *1 1 u
o 0 HEAD NA. 0 PFUNC MAN

‘

R0 L 1
:1 2 ‘. 1‘ a

10m PONI sax: N100 PL M c o o 2 K TG PTM
L .

M c o ‘ o 2 K TG PTM

,5 1 1 ' I 1 1 1 0
l 1 1 n_ . 1 l 1 I 1 1 I 1

15 I I ' I 1 1 I Y I v u r
0

FF PM PT VPN
3 2 1‘ 0

PT APT PL RING

3 2 1 ' o1 1 o 1 o .1 1 1 1 , PREV.LEVEL 1.1 1 _ u
o o o o o o o o '0 o o o 3 1- 2 ‘ °

1:: CODE

Pow MGR PTY 10x Pl 2 11 PF MPV MC

15 ' _ J _' ‘ ' o
I 1 1 l v 1 l 1 1 l g L l 1

15
I I 1 I 1 1 I l

U

MAN
0 O 0 0 0 O 0 0 O 0 O 0 0 1:115 CON CUP

: ‘ DATALESS

1:1 0
LOWER LIMIT PAGE NUMBER . V

‘5
I ‘i x 1 1 1* 1 r l 1 1 I r

u

1 i l ‘ 1
o o M o ADDRESS . 1L 1 l 1 1 1

1:1 ' o
UPPER 1.1M1T PAGE NUMBER

1 l l 1 ' f 1 1 J 1
. 3 2 o 22 19 1 17 16

Fad: OMA Fatal ERROR c031; MEMORY ADDRESS

1 o 1 oo o o o 0 PT. m- o o o o o am‘e °
“1150111715 LEVEL lNFORMATlON W A REGISTER '

PLBEFORE TjA 14 . . . . . . 1 .
‘5

I l 1 | . x u 1 s . 1 T
uMEMORY ADDRESS

= .
1 r 1 1 l 1 1 1r

TEST TEST T'ST"A 6 015 ANY ‘5 3

BIT ASSIGNMENT FOR INTERNAL REGISTERS

ND-06.014.02
Rev. A

REFER SECTlON

4

4

2.1.9

2.1.9

4.2.3.2.5

4.2.3.3.2

2.3.8.3

2.3.8.2
2.2.5.3
2.2.4.1
2.2.4.1
2.2.3
2.2.3
2.4.6.3.2

2.4.6.3.1

2.4.6.3.1

4.2.4.3

4.2.5.3

2.4.6.3.1

2.4.4.2

2.3.8.2

2.4.4.2

2.4.4.1
1



APPENDIX E

OPERATOR’S COMMUNICATION INSTRUCTION SURVEY

E.I CONTROL FUNCTIONS (DOES NOTAFFECT DISPLA Y)

System Control

OPCOM I:I Enter Operator's Communication mode
ESC key Leave Operator's Communication mode

MCL E] MACLJ Generate Master Clear
STOP I:I STOP: Stop Program and enter OPCOM Mode
LOAD El & or $ Load according to ALD code (read by I12/l

xxxxxx& or xxxxxx$ Load from device x

Program Control

I Continue Program from address of program counter
xxxxxxl Start Program from address x

Z Execute a Single Instruction according to program counter
xxxxx Execute x Instructions from address of program counter
XXXXXX' Execute Program until program counter = x and stop
xxxxxx” Execute Instruction Code x repeatedly

xxxxxxlO/nnnnnn Execute IOX instruction with device number x
OPR = Output Data; n = Returned Data

Miscellaneous Functions

xxx# Do Memory Test in segment x from address of B register to
address of X register. P : Fail Address, T 2 Fail Bits, D
= Fail Pattern, L = Test Pattern.

space or @ Delete entry
‘nnnnnn Current Location of memory examine is n (16 least sign. bits)

OPR/nnnnnn 222222 .3 Change Operators Panel ”Switches" from n to z

ND706.OI4.02
Rev. A



E.2 D/SPLA Y FUNCTIONS (AFFECTS ONL Y D/SPLA Y)

uuzznJ Define Format of Displayed Information (F3 is default)
x (3 bits): 0 = Octal 1 = Decoded according

to z
2 = Binary

y (3 bits): 0 = Normal 1 = Stretch Zeros
2 = Stretch Ones 3 = Stretch Zeros and

Ones
z (6 bits): Decode the 4 bits 2 to 2+3 to a ONE among

ZEROS.
u (4 bits): for Display Processor Maintenance

Display Year and Month
Inhibit message

= Initialize panel processor
10 = Abort message

yxBUS/ Display Memory Accesses on NORD—100 Bus

hM—I

II

x (3 bits): 0 = Undefined 1 = Read Access
2 = Write Access 3 = Write or Read

Access
y (3 bits): 0 = CPU Data 1 = DMA Data

2 = CPU Address 3 = DMA Address
ACT/ Display Computer Activity (default after MACL)

ND»06.014.02
Rev. A



E.3

E J
xE .1

XXXXXXXX/ nnnnnn 222222 J

xxxxxx < yyyyn

xn/ nnnnnn 222222 .1

xx < nDJ
U/ nnnnnn

OPR/nnnnnn 222222 .1

lxx/ nnnnnn

lyy/ nnnnnn 222222 J

IRDJ
xx < nDEJ

Ll

E-~3

MON/TOR FUNCTIONS {ALSO SHOWN ON D/SPLA Y)

Memory

Set Physical Examine mode (default after MACL)
Set Virtual Examine mode. Map via page table x.
Examine and Change Content of memory address x from n to

z. x is 24 bits at Physical and 16 bits at Virtual Examine.
Dump Content of memory from address x to address y. Se—
lect 64K area of last Examine.

Registers

Examine and Change Content of register Ry on level xx from
n to z. Ry may be written as R0==S, R1 =D, R2=P,
R3=B, R4=L, R5=A, R6=T, R7=X.

Dump Registers R0 to R7 from level x to level y.
Content of User Register is n
Change Operators Panel "Switches” from n to 2

Internal Registers

Content of Internal Register No. x is n
x (4 bits): 0 : PANS 1 = STS 2 = OPR

3=PSR 4=PVL 5:|lC
6 = PlD 7 = PIE 10 = CSR

11 =ACTL 12=ALD 13= PES
14 = PCR 15 = PEA

Deposit z in Internal Registers No. y (n is dummy)
y (4 bits): 0 = PANC 1 = STS 2 = LMP

3=PCR 5=IIE 6=P|D
7 = PIE 10 = CCLR 11 = LCIL

12 = UCIL 15 = ECCR
Dump Internal Registers 0 . 15 (only in STOP)
Dump Scratch Registers from level x to level y

Deposit Rules

Content is only changed by 222222.] in STOP mode and by
zzzzzzDEPJ in STOP or RUN mode.

Content is unchanged by J in STOP or RUN mode and by
2222223 in RUN mode (.7 is answered).

Explanations:

= Control Panel Button
= Carriage Return
= computer answer

All other characters are typed by Operator.

ND-06.014.02
Rev. A



ND706.014‘02
Rev. A



F.1

APPENDIX F

ND—IOO TECHNICAL SPECIFICATIONS

SPECIFICATIONS

Processor:

Microprocessor cycle time: ‘i 90 ns/150 ns (fast option)
CACHE memory size: 1K/31 bits
Paging overhead with CACHE: O
Paging overhead without CACHE: 50 ns

Memory:

Maximum virtual memory address space: 64 K words
Maximum physical memory address space: 512 K words normal address mode

16 M words extended address
mode

Access time for Local Memory: read 320 ns
write 200 ns
Add 40 ns if correction

Error checking and correcting memory: 22 bits, single bit detection and
correction
All double bit errors are detected

Battery stand-by power for memory: Minimum 18 minutes

Interrupt System:

16 priority interrupt levels each with 8 regis-
ters

Context block switching time: Min. 5.0 ps. Typical 7.5 us
External interrupt identification time: 3.3 ps typical

//0 System:

Maximum DMA rate/channel to local
memory: 1.8 M words

ND-06.014.02
Rev. A



F.2 PHYS/CAL

ND— 700 CPU Crate, Rack Mountable:

Dimensions

Height: 400 mm
Width: 482 mm
Depth: 505 mm

Can be mounted in 19 inch cabinets of various heights, depending on configur—
ation.

Power: 230V, range 198 - 264V
(115V, range 90-132V)
45-440 Hz
Max. 2 Amp. 230V

ND—06.014.02
Rev. A



************** SEND us YOUR COMMENTS!!! **************

. Are you frustrated because of unclear information in
this manual? Do you have trouble finding things?
Why don't you join the Reader’s Club and send us a
note? You will receive a membership card —- and
an answer to your comments.

Please let us know if you
" find errors
' cannot understand information
" cannot find information
‘ find needless information

Do you think we could improve the manual by
rearranging the contents? You could also tell
us if you like the manual!

Manual name: ND-1OO Functional Description Manual number: ND-06.015.02

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual .7

Your name: Date'

Company: Position‘

Address:

What are you using this manual for .7

NOTE! Send to:
This form is primarily for Norsk Data A.S ‘

___’documentation errors. Software and Documentation Department
system errors should be reported on PD. Box 25, Bogerud Norsk Data’s answer will be found
Customer System Reports. 0621 Oslo 6, Norway on reverse side



Answer from Norsk Data

Answered by Date

Norsk Data A.S

Documentation Department
PO. Box 25, Bogerud
0621 Os|06, Norway


