
e NORD-10/S
Reference Manuafi
mam?

REVESIQN RECQRD
Revision

04/77 Ori inal Printing
06/77 Revision A

The foliowing pages have been revised: 2~-7, 3—33, 3w2, 3——23, 3~31, 3—38, 3—45,
3—46 3~56 3~57 3m60 3~63 3-65, 4-1 4M2 [EL-3 5_1 5~2 5~3 5—43
6M2 6~5 6—«6 Gm? 6—8 63i 7-3 8“? 840 9M6 9-7 A—Z 8—4.

NORD-10/S —~ Reference Manual
Publication No. ND~06.008.01

A v - I0)

ND NORSK DATA A.S‘ .

0|
0

|

vv
v

v' Lorenveien 57, Postboks 163 @kem, Oslo 5, Norway

Section .'

1

.A
d

—
x

(I
O

N
-3

2.1
2.2
2.2.1
2.2.2

2.3
2.4
2.5
2.5.1
2.5.2
2.5.2.1
2.5.2.2
2.5.2.3
2.5.2.4
2.5.2.5
2.5.2.6

2.6
2.7

3.1
3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6
3.1.7

TABLE OF CONTENTS

+++

INTRODUCTION >

General Characteristics
Peripheral Equipment
Software

SYSTEM ARCHITECTURE

Introduction
Central Processor
Register Block
indicators

Memory Configu rations
Remote Operation
Instruction and Data Formats
Instruction Formats
Data Formats
Single Bit
8-Bit Byte
16—Bit Word
32-Bit Double Word
48—Bit Floating Point Word
32—Bit Floating Point Word

Interrupt System
Memory Management System

INSTRUCTION REPERTOIRE

Memory Reference Instructions
Addressing Structure 3
Store Instructions
Load Instructions
Arithmetical and Logical Instructions
Sequencing Instructions
Byte Instructions
Register Block Instructions

N D-06.008.01

3—4
3—4
3~13
3—15
3—-16
3—19
3—21
3—22

Section: Page:

3.2 Operate Instructions 3—24
3.2.1 Floating Point Conversion instructions 3—24
3.2.1.1 Standard 48—Bit Floating Point Conversion 3—24
3.2.1.2 Optional 32-Bit Floating Point Conversion 3—26

3.2.2 Shift instructions ‘ 3—26
3.2.3 Register Operations ' 3—29
3.2.3.1 ROP Register Operation instructions 3—31
3.2.3.2 EXTended Register Operation instructions 3—37
3.2.3.3 inter Level Register instructions 3—39

3.2.4 Skip instructions 3—41
3.2.5 Argument Instructions 3—44 .
3.2.6 Bit Operation instructions 3—46
3.2.6.1 Bit Skip instructions 3—47
3.2.6.2 Bit Setting instructions 3—47
3.2.6.3 One Bit Accumulator instructions 3—48

3.2.7 Accumulator Transfer instructions 3—49
3.2.7.1 Transfer to A Register 3—51
3.2.7.2 Transfer from A Register 3—51

3.3 input/Output Control instructions 3—53

3.3.1 Recommended Device Addresses 3—53
3.3.2 Format of Status and Control Word 3—57

3.4 System Control instructions 3—58
3.4.1 interrupt Control instructions 3—58
3.4.2 Memory Management Control instructions 3—61
3.4.3 Monitor Cali instruction 3—62 .
3.4.4 Wait or Give Up Priority 3—63

3.5 Customer Specified instructions 3—64

4 THE iNPUT/OUTPUT SYSTEM 4—1

4.1 input/Output Hardware 4—1
4.1.1 General Description 4—1
4.1.2 input/Output Bus Architecture 4—3
4.1.3 Vectored interrupt identification 4—3

4.2 input/Output Programming 4—4
4.2.1 Programming Examples 4—4
4.2.2 input/Output interrupt Programming 4—5
4.2.3 Design of an input/Output Handler Routine 4—5

ND-06.008.01

Section:

5

5.1
5.1.1

5.2
5.3
5.4
5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6
5.4.7
5.4.8
5.4.9
5.4.10

5.5
5.5.1
5.5.2

5.6

6.1
6.2
6.3
6.3.1
6.3.2
6.3.3

6.4
6.5
6.5.1
6.5.2

6.6

7.1
7.2
7.3
7.4

7.5

THE INTERRUPT SYSTEM

Control of Program Levels
Program Level Activation

Initialization of Interrupt System
Interrupt Program Organization
Internal Hardware Status Interrupts
Monitor Call Interrupt
Protect Violation Interrupt
Page Fault Interrupt
Illegal Instruction Interrupt
Error Indicator Interrupt
Privileged Instruction Interrupt
IOX Error interrupt
Memory Parity Error Interrupt
Memory Out of Range Interrupt
Power Fail Interrupt

Memory Control and Status
Error Detection
Error Correction Control

Vectored Interrupts

MEMORY MANAGEMENT

Memory Management Architecture
Virtual to Physical Address Mapping
Control of Memory Management System
Control of Paging Control Registers
Control of Page Index Tables
Turning the Memory Management System On or Off

Memory Protection System
Ring Protection System .
Privileged Instructions
Paging Status Register

Timing

OPE RATOR'S PANE L

Panel Elements
18‘Bit Switch Register
18—Bit Light Emitting Diode Register
16 Selector Push-buttons and 16 Associated Light
Emitting Diodes
Display Level Select

ND-06.008.01

Page:

Section:

7.6
7.6.1
7.6.2
7.6.3
7.6.4
7.6.5
7.6.6
7.6.7
7.6.8
7.6.9
7.6.10

7.7

8.1
8.1.1
8.1.2
8.1.3
8.1.4
8.1.5
8.1.6
8.1.7
8.1.8
8.1.9
8.1.10

8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.2.5

9.1
9.2
9.2.1
9.2.2
9.2.3
9.2.4
9.2.5

vi

Control Buttons
Master Clear
Restart
Load
Decode Address
Set Address
Deposit
Enter Register
Single Instruction
Confinue
Stop

Mode indicators

OPERATOR'S COMMUNICATlON

Functions
Start a Program
Memory Examine
Memory Deposit
Register Examine
Register Deposit
lnternal Register Examine
Internal Register Deposit
Current Location Counter
Break Function
Bank Number

Bootstrap Loaders
Octal Format Load
Binary Format Load
Mass Storage Load
Automatic Load Descriptor
Examples

CACHE MEMORY

Cache Memory Architecture
Cache Memory Access
Definitions
Cache Addressing
Read Access
Write Access
Cache inhibit Area

ND-06.008.01

Page .'

Q
D

Q
D

C
D

O
O

C
O

C
D

W
V

N
V

N
l

l
l
l
l
l

\1 l
l

.4 O

00 L
l

l
l

l
b

e
m

o
a

n
:

l
l

O
O

O
O

O
O

W
O

O
C

F
O

O
W

O
O

O
O

O
O

l
l

\i\
l\.

lO
'>

U
'1

0
'l

Section:

9.3
9.3.1
9.3.2
9.3.3

9.4

vii

Control of the Cache Memory
Setting of Cache inhibit Limits
Cache initialization
Cache Status Register

Cache Timing

Append/x :

A

B

F/gure ;

2.1
2.2
2.3
2.4
2,5
2.6
2.7

2.8
2.9
2.10

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

3.9

4.1

6.1

NORD—iO Mnemonics and Their Octai Values

NO RD~1 O/S instruction Code

Medium Sized NORD~iO/S Computer System
NORD—‘iO/S CPU Bus Structure
CPU Biock Diagram
NDRD—‘iO/S Two—processor System
NORD-i O/S Fourwprocessor System
Remote LOAD from Master CPU
Example of Remote LOAD via Telephone Line and
i—iCLC Protocol
Automated TEST System
NORD—iO/S Bit Numbering Convention
Program Level Control

Schematic illustration of P-relative Addressing
Schematic illustration of indirect P—relative Addressing
Schematic illustration of B-reiative Addressing
Schematic liiustration of indirect Bereiative Addressing
iiiustration of the Effect of the Stack Code
Schematic illustration of X-re iative Addressing
Schematic illustration of B—reiative indexed Addressing
Schematic illustration of indirect P—reiative indexed
Addressing
Schematic illustration of indirect B-reiative indexed
Addressing

NO RD-iO/S Bus System

Virtual to Physical Address Mapping

ND-06.008.01

Figure: ,

8.1

9.1
9.2

Table:

3.1
3.2
3.3

3.4
3.5

3.6

5.1
5.2

6.1

8.1

viii

Binary Load Format

Cache Memory Organization
Cache Limits

Addressing Modes
The ROP instruction
Survey of Registers Controlled by Accumulator
Transfer instructions
Accumulator Transfer Instructions
Standard Device Addresses for Norsk Data Produced
Equipment
Standard lOX addresses and lDENT codes

internal Hardware Status interrupt
Correction Codes

Use of Alternate Page Table

ALD Setting

N D-06.008.01

1.1

lNTRODUCTlON

GENERAL CHA RACTER/STICS

The NORD—lO/S computer system is a medium scale general purpose
computer system which, because of the modular design, is actually a
family of computer systems.

A basic instruction set is common to all NORD-lO/S machines, and
this set is highly optimized to produce effective code; hardware floating
point arithmetic is standard as are the instructions to manipulate
individual bits at high speed.

The register structure and addressing scheme facilitate the processing
of structured data with high efficiency.

The NORD-iO/S is micro-programmed, and all NORD—lO/S instructions
are executed by means of a micro-program located in a very fast (65 ns)
read—only memory. Micro~programming gives the NORD-lO/S computer
flexibility and a very large growth potential. New instructions may be
added to the NORD—iO/S and instructions for special applications may
be optimized for a particular use.

The NORD-lO/S provides up to 1024 customer-specified instructions.
These instructions are micro—programmed in a programmable read-only
memory, which is added onto the standard read—only memory.

Micro-programming in NORD-10/S is also used to control the operator’s
panel and to perform operator communication between the operator
and the console Teletype or display.

Bootstrap loaders, both for character oriented devices and mass storage
devices are also controlled by a micro-program.

The NORD-lO/S is designed to be equipped with a wide range of main
memories. Memory size may vary from 1K to 256K 16—bit words, and
both read-only memories and read/write memories may be used. The
speed range is from a high-speed bipolar memory of 100 ns cycle time
to core memories, which require 900 ns cycle time.

Standard memory type is MOS semiconductor memory with a cycle
time of 400 ns. Parity checking with a parity bit for each byte is
standard, while memory error correction with 21 bit memory modules
is optional.

As an option, the NORD-lO/S CPU may be equipped with 1K words
of bipolar cache memory, which significantly increases the CPU
performance.

N D-06.008.01

1—2

The speed of the NORD-lO/S standard processor is 260 ns per micro-
instruction, and the NORD—lO/S CPU will make efficient use of main
memories with a cycle time of 300 ns.

The input/output and interrupt systems of NORD-lO/S are designed
'for ease of use and very high speed. NORD-lO/S has 16 program levels
each with its own set of registers, making possible a complete context
switching from one program level to another in only 1 us. in addition,
2048 priority vectored interrupts are standard, as well as 10 priority
internal hardware status interrupts.

As an option, the NORD-lO/S may have a Memory Management System
which includes a Paging System which performs program relocation,
dynamic memory allocation and Ring Protection and Memory Protection
Systems.

N D-06.008.01 &

1.2 PERIPHERAL EQUIPMENT

The range of standard peripherals includes paper tape reader and punch,
punched card reader and punch, Teletypes, alphanumeric and graphic
displays, semigraphic colour terminals, line printers, matrix plotters/printers,
magnetic tape stations, fixed head drums, disk systems with capacities from
5 to 2000 million bytes, floppy disks, modem controllers including
HOLE/SD LC controllers and CAMAC crate controllers.

ND—06.008.01

1~4

1.3 SOFTWARE

The standard operating system for NORD-iO/S computers is SINTRAN
lll, which has capabilities for concurrent real—time, batch and time-sharing
processes.

— The version of SINTRAN lit for machines without mass storage
devices is intended for real-time applications in process control
and data communication.

~ The mass storage version of SINTRAN lll includes a general file
system with permanent files, scratch files and peripheral device
files.

— Subsystems: compilers, text editors, assembler, remote job entry ,
emulators, etc. Q

For further information, please contact Norsk Data A.S.

ND—06.008.01

2.1

SYSTEM ARCHITECTURE

INTRODUCTION

Figure 2.1 shows a typical medium sized NORD-lO/S single processor

system.

Operators;
Panel i

Local
{Memory Bus Memory

Modules
(96K words

NORD—lO/S
CPU

Main Input/
Output Bus

Bus .
Receiver

Local Input/Output Bus

4 Video;
Display?
Units i

V
To additional
Bus Receivers

Figure 2.1: Medium Sized NORD- 70/8 Computer System

In this example, the size of the main memory is 96K 16-bit words, based
on 32K MOS semiconductor memory. Details concerning memory
flexibility and options are presented in Section 2.3.

N D-06.008.01

Parts of the lnput/Output System are shown separated from the rest of
the Bus Receiver which efficiently combines flexibility, simplicity and
reliability. The Bus Receiver provides the necessary fan out and reduces
complexity of device control units. Reliability is increased because errors,
in most cases, have only limited consequences on the Local input/Output
Bus.

An important factor in designing the completely modular lnput/Output
System with all device interfaces made to a common standard, has been
the frequent field installations of expanded systems typical to Norsk
Data’s customers. lnterface modules plug directly into prewired positions.

Substantial effort was made to prepare the NORD~lO/S for multi—CPU
applications and remotely operated installations.

ND~06.008.01

2.2 CENTRAL PROCESSOR

The connection of main modules in the CPU is through the common
data bus, IB, and common address bus, MR, as shown in Figure 2.2.
For simplicity, control lines and inter-register buses are omitted in this
figure.

When the optional Memory Management System is not included, the
R~bus is connected directly to the lVlR-bus.

A more detailed diagram of the control section and register block is
given in Figure 2.3.

The register block contains 8 general registers for each program level
and two scratch registers for each level to be used by the micro-processor.

The arithmetic unit is normally operated in a 16-bit format. The full
32—bit format is used for floating point and double precision operations.
The arithmetic unit contains the necessary buffer registers to do the
complete inner loop in the floating point micro-programs using only
260 ns.

Some instructions in the NORD-lO/S instruction set are general
two-address inter'register instructions. Due to the generality of these
instructions, 2048 inter-register instructions (see Section 3.2.3) are con-
verted directly to the three-address format of the micro-instruction and
fed directly into the micro—instruction register. The remaining bits, i.e.,
cycle control, etc. are read from the read-only memory.

N D-06.008.01

%
M

oEm
E

H
m

ooq

42
a:

m
gaozbm

.
3%

3&0
Q

E
Q

Q
O

Z
(«N

959....

Hmcmm

A

mam
huoE

m
Z

mam:

3A

h
wum

>flm
um

m
HH

%
nofiw

z
uw

om
fiuasz

u
u

o
m
flu

a
sz

EO
M

M
\O

H

H
m

>fim
ucm

H
H

mam

m
uoum

um
m

o

H
ouunoo

+

w
dflafiH

vz
m

sm
lm

m
u

.
wv

mH

a
flu

m
a

zu
flu

<
+

xu
o

Hm
um

fiwm
m

E
m

um
hm

u
a

m
E

m
w

m
d

xuoaw
z

Em
um

hm
u

n
d

yu
m

u
m

H

N D-06.008.01

.w
cw

w
w

m
ou

m
m

m
uvwm

H
m

suuw
>

m
afifiw

u
H

o
u

u
m

o
u

afiw
O

A
w

cfiafla

uw
um

afluw
u<

m
m

m
ywv<

OHM
A

l'llc
lil

im
E£UM

um
DA¢

IIS
IIIIL

Esm

M
ooan

“m
um

fiwwm

H
ouudoo

M
uaw

o
,

.
a

Z

uw
nm

m
Ma

20%

—
Dm

§g
v

H
oum

um
m

m
u

ufiflom
hw

udm

Figure 2.3: CPU Block Diagram

N D-06.008.01

2.2.1 Register Block

There are 16 register sets in NORD~10/S, one for each of 16 program
levels. Each of the register sets consists of 8 general programmable
registers. There is a total of 128 general registers, referred to as the
register block.

The 8 general registers are:

Status register:

A register:

D register:

T register:

L register:

X register:

8 register:

P register:

This register holds the indicators described in
Section 2.2.2.

This is the main register for arithmetic and logical
operations directly with operands in memory.
This register is also used for input/output com-
munication.

This register is an extension of the A register
in double precision or floating point operations.
It may be connected to the A register during
double length shifts.

Temporary register. In floating point instruc-
tions it is used to hold the exponent part.

Link register. The return address after a sub-
routine jump is contained in this register.

Index register. ln connection with indirect
addressing it causes post-indexing.

Base register or second index register. ln con-
nection with indirect addressing, it causes
ore—indexing.

Program counter, address of current instruction.
This register is controlled automatically in the
normal sequencing or branching mode. But it
is also fully program controlled and its contents
may be transferred to or from other registers.

Two instructions, ROP and SKP, may specify a register whose content I,
is always zero.

N D~06.008.0‘l

2.2.2 Indicators

Eight indicators are accessible by program. These 8 indicators are:

C Carry indicator. The carry indicator is dynamic.

O Dynamic overflow indicator.

0 Static overflow indicator. This indicator remains set after
an overflow condition until it is reset by program.

Z Error indicator. This indicator is static and remains set until
it is reset by program. The Z indicator may be internally
connected to an interrupt level such that an error message

@ routine may be triggered.

K One bit accumulator. This indicator is used by the BOP bit
operations, instructions operating on one-bit data.

TG Rounding indicator for floating point operations.

lVl lVlulti-shift link indicator. This indicator is used as temporary
storage for discarded bits in shift instructions in order to ease
the shifting of multiple precision words.

PTlVl Page table modus. Enables use of the alternate page table.

These 8 indicators are fully program controlled either by means of the
BOP instructions or by the TRA or TRR instructions where all indicators
may be transferred to and from the A register.

N D-06.008.01
Revision A

2.3 MEMOR Y CONFIGUHA TIONS

The NORD-lO/S CPU main frame has eight general slots for memory
modules, and two slots reserved for optional multiport memory interface

buffers.

The following standard memory modules are available at printing time

for direct connection into each of the eight slots:

8K by 18 bits, 300 ns access time
8K by 21 bits, 300 ns access time
32K by 18 bits, 350 ns access time
32K by 21 bits, 350 ns access time
32K by 18 bits, 300 ns access time
32K by 21 bits, 300 ns access time

Memory modules with 18 bits word length provide one parity bit per
byte, while 21 bit modules are used for memory error correction.
Maximum memory size addressable from one CPU is 256K words.

The NORD—lO/S multiprocessor system is shown in Figure 2.4.

Common main memory is connected via the multiport memory interface
unit, which is capable of handling requests from both CPU’s in parallel if
they do not address the same 64K module. The "local“ 64K modules
shown in the figure may, of course, be omitted; they are shown to demon-
strate the flexibility of the system.

The connection of input/Output devices and mass storage units in a
multi-processor system is described in Chapter 4.

The total capacity of the dual memory interface is four independent
channels as shown in Figure 2.5.

The memory access priority for the CPU’s is normally allocated in a
different order for each 64K unit.

By omitting three of the CPU’s in Figure 2.5, we obtain a one—processor
system with a maximum memory configuration of 256K.

ND-06.008.01

Memory
Bank
(64K)

\

Mwltiportl i
Mémorfi Po ts E

Nord~10/s 4 Nord-lO/S ;
CPU ff CPU f

Figure 2.4: NORD-70/S Two-processor System

ND-06.008.01

Memory
Bank
(64K)

A

. :
Multaport

|

Memory Ports

Nord-lO/S

M|u 1 t i‘po r :21
Mano r‘y For t s “

x h

Figure 2.5: NORD-IO/S Four-processor System

ND—06.008.01

2.4 HEMO TE OPERATION

Several facilities for the remote operation of the NORD-10/S are available.
Remote operation here means one NORD-iO/S being controlled by
another NORD-iO/S. in some cases, the two machines may be in the
same room, or they are connected over telephone lines using low or high
speed modem.

The simplest form of remote operation is shown in Figure 2.6.

MASTER SLAVE

Nord~10/S . Nord—lO/S
CPU ~ >' CPU

Data
Link

A

Figure 2.6: Remote LOAD from Master CPU

in this case, the automatic LOAD function built into the micro-
programmed control unit of all NORD-iO/S CPU’s is used to start reading
data via the data link. The LOAD function is described in Section 8.2.

N D-06.008.01

2—12

MASTER SLAVE

Remo te
Load .
Module,

Nord-10 S
CPU

Nerd-10 s 3%
CPU

HDLC I/O
Contr.

ElTelephone
Line

Figure 2.7: Example of Remote LOAD via Telephone Line and HDLC
Protocol

In the example shown in Figure 2.7, the SLAVE computer is equipped
with a Remote Load Module, which decodes a special "Remote Load

Trigger” frame sent by the MASTER Computer, thus, activating a load
micro-program in the slave. A remote load operation may be initiated
both by the MASTER computer and by an operator at the SLAVE
computer site.

A closer control of the slave computer is obtained by using the test
connector developed for automatic debugging of CPU and micro
processor. This system is shown in Figure 2.8.

In the automated TEST system, the operator’s panel connections of
the slave computer are replaced by a TEST connector, which is con-
trolled by a special interface in the master computer. The master CPU
thereby obtains direct control of buses and micro—processor in the sieve
computer. This may be used for automatic checkout, diagnostics, and
microprogram debugging.

N D-06.008.01

2—13

MASTER SLAVE

Nord-lO/S
CPU

Nord—lO/S
CPU

Test
driver

Figure 2.8: Automated TESTSystem

N D—O6.00B.O1

'2.5

2.5.1

2.5.2

2—14

INSTRUCTION AND DA TA FOR/VIA T8

The NORD-i O/S has a 16-bit word format. The bits are conventionally
numbered 0 to 15 with the most significant bit numbered 15 and the
least significant bit numbered 0.

15

16-bit NORD—lO/S word

Figure 2.9: NORD-70/S Bit Numbering Convention

The content of a NORD-l O/S word is conventionally represented by a
6-digit octal number. Thus, the content of a word with all 16 bits set
to zero is represented as 000000, while the contents of a word with all
bits set to one is represented as 177777.

Instruction Formats

All NORD—i O/S instructions are contained in one single 16-bit word.

The instruction set is divided into the following five subclasses:

— Memory Reference lnstructions
— Operate lnstructions
~— input/Output Control lnstructions
— System Control lnstructions
—— Customer Specified instructions

In Chapter 3, each instruction is given a short description. This includes
a diagram showing the instruction format.

Data Formats

The standard NORD—10/S instruction set provides instructions for the
following six different data formats:

Single bit
8~bit byte
16~bit word
32-bit double word
48-bit floating point word
32-bit floating point word (optional, instead of 48-bit floating point)93

91
:5

93
5)

?"

N D-06.008.01

2.5.2.1

2.5.2.2

2.5.2.3

Single Bit

A single bit data word is typically used for a logical variable; the bit
instructions (see Section 3.2.6) are used for manipulation of single bit
variables. The bit instructions specify operations on any bit in any of

the general registers, as well as the accumulator indicator K.

8—Bit Byte

Two instructions are available in the standard NORD-iO/S instruction
set for byte manipulations, i.e., load byte and store byte (see Section
3.1.6).

A byte consists of 8 bits, giving a range of O < X < 255.

The byte addressing (see Section 3.1.6) is such that when two bytes

are packed into a word, the even byte address points to the left haltC

of the word.

15 8 7

Even address Odd address

n n + 1

Byte Format

16‘Bit Word

The most common data word format is the 16bit word contained in
one memory location or one register.

Representation of negative numbers is in 2‘s complement. The skip
instruction (see Section 3.2.4) also contains instructions to treat num—
bers as unsigned (magnitude) numbers.

Range

~32768 < X < 32767

or

0< X £65535

N D-06.008.01

2.5.2.4

2.5.2.5

2—16

32-Bit Double Word

Two instructions are available to handle double word formats, load
double and store double (see Sections 3.1.2 and 3.1.3).

A double word is a 32~bit number which occupies two consecutive

locations (n, n +1) in memory, and where negative numbers are in
2’s complement.

31 A 16 15 D 0

Most significant Least significant

n n + 1

Double Word Format

A double word is always referred to by the address of its most significant

part. Normally, a double word is transferred to the registers so that

the most significant part is contained in the A register and the least

significant in the D register. Range as integers:

—-2 147 483 648<X<2 147 483 647

48-Bit Floating Point Word

The standard NORD-10/S instruction set provides full floating point hard-
ware arithmetic instructions, load floating, store floating, add, subtract,

multiply, and divide floating, convert floating to integer, and convert
integer to floating.

The data format of floating point words is of 32 bits mantissa magnitude,
one bit for sign and 15 bits for a biased exponent.

The mantissa is always normalized, 0.5 < mantissa < 1. The exponent
base is 2, the exponent is biased with 214. A standarized floating zero

contains zero in all 48 bits.

ln main memory, one floating point data word occupies three 16-bit core

locations, which are addressed by the address of the exponent part.

n exponent and sign

n + 1 most significant part of mantissa

n + 2 least significant part of mantissa

ND-06.008.01

2.5.2.6

2—17

In CPU registers, bits 0-15 of the mantissa are in the D register, bits 16-31
in the A register and bits 32-47, exponent and sign, in the T register.
These three registers together are defined as the floating accumulator.

47 T 32 31 A 16 15 D 0

+ Exponent Man- tissa

n n + 1 n + 2

Floating Word Format

The accuracy is 32 bits or approximately 10 decimal digits; any integer
up to 2 has an exact floating point representation.

The range is

245384 . 0.5 < x < 216383 . 1 or x = 0
Cl”

10—4920 < X < 104920

Examples loctal formatl:

T A D

O: O O 0
+1 : 040001 100000 0
-1 : 140001 100000 0

32-bit Floatinq Point Word

As an option, the NORD-lO/S may be equipped with microprogram for
32—bit floating point format instead of the standard 48~bit format des—
cribed in Section 2.5.2.5. The instructions affected are:

FAD Floating Point Add
FSB Floating Point Subtract
FMU Floating Point Multiply
FDV Floating Point Divide
NLZ Convert integer to Floating Point
DNZ Convert Floating Point to Integer

The data format of 32-bit floating point words is of 23 bits mantissa
magnitude, one bit for sign and 9 bits for a biased exponent. These
33 bits are packed in two 16—bit words by omitting the most significant
bit of the mantissa, which is always a one in non-zero numbers.

ND-06.008.01

The mantissa is always normalized, 0.5 < mantissa < 1. The exponent
base is 2, the exponent is biased with 28.

A standarized floating zero contains zero in all 32 bits.

ln main memory, one 32-bit floating point data word occupies two
16-bit memory locations, which are addressed by the address of the
exponent part.

n exponent, sign and mantissa bits 16—21
n +1 mantissa bits 015

in CPU registers, bits 0-15 of the mantissa are in the D register, bits
16-21 and exponent and sign are in the A register. These two registers
together are defined as the 32—bit floating accumulator. The T register
is not affected by 32—bit Floating Point operations.

31 30 A 22 21 16 15 D 0

j; Exponent Man- tissa

n n+1

32—bit Floating Point Word Format

The accuracy is 23 bits or appoximately 7 decimal digits. Any integer up
to 223 has an exact floating point representation.

The range is

2—256-0.5<x<2255-1orx=0

or

10*“76 < x <1076

Examples loctal format):

A D

O: 0 0
+1.0: 040100 0
—1.0: 140100 0
+3.0: 040240 0

ND-06.008.01

2.6

2—19

INTEHRUPTSYSTEM

The NORD-10/S Interrupt System allows priority interrupt handling at
extremely high speed. The interrupt system consists of 16 program levels
in hardware, each program level with its own complete set of general
registers and status indicators. The program levels are numbered from O
to 15 with increasing priority; program level 15 has the highest priority,
program level 0 has the lowest. The context switching from one program
level to another is completely automatic and requires only 1 us.

All program levels can be activated by program. In addition, program
levels 10—13 and 15 can be activated by external devices and program
level 14 by CPU internal hardware status interrupts.

As many as 2048 vectored interrupts may be connected.

By using these program levels, large programming systems may be greatly
simplified. Independent tasks may be organized at different program
levels with all priority decisions determined by hardware and with almost
no overhead because of the rapid context switching.

The program level to run is controlled from the two 16-bit registers:

PIE Priority Interrupt Enable
PlD Priority Interrupt Detect

Each program level is controlled by the corresponding bits in these
registers. The PIE register is program controlled and the PID register is
controlled by both program and vectored interrupts.

At any time, the highest program level, which has its corresponding bits
set in both PIE and PID is running. This level is called PL.

A change from a lower to a higher program level is caused by an interrupt
request. A change from a higher program level to a lower takes place
when the program on the higher program level gives up its priority.

ND—06.008.01

3:550
B34

Emkmeo‘
”Emu

23E".

ZOH

Hw>m
g

Em
uw

oum
m

w
am

su
_m

gm
m

aoo

mH

2-20

m
um

suuw
udH

G
O
fluum

Hm
m

Hw>m
a

a
m

u
w

o
g

m
‘

ND-06.008.01

D

Hm
wouam

m
ufiuO

flum

<3”C

mH
E

O
flum

E
uow

nfl
Hm

>m
fi

m
dofl>m

~m

2.7 MEMOR Y MANAGEMENT SYSTEM

The Memory Management System is designed to extend the NOR D-10/S’s
physical address space to provide a virtual memory and to provide a
sophisticated memory and privileged instruction protection system.

The basic parts of the system are the:

—— Paging System
— Memory Protection System
— Ring Protection System

The Paging System is an automatic address interpretation system which
maps a 16-bit virtual address, as seen from the program, into an 18-bit
physical address. This implies that the maximum memory size may be
extended from 64K words to 256K words. The system also allows
programs to be written for 64K virtual memory with only parts of the
program residing in physical memory at a given time, the rest being
kept on mass storage.

The Paging System divides the memory into memory blocks or pages
of 1024 words or 1K words. The pointers to these pages are found in
the page-index-tables. In NORD—lO/S there are four page-index‘tables
each consisting of 64 words, which each yield a full 64K address space.
The tables are kept in high-speed registers with 16 bits word length.

Two independent protection systems are also included in the Memory
Management System: the Memory Protection System and the Ring
Protection System.

The Memory Protection System is a protection system for each individual
page of memory. Each individual page may be protected against:

-

read accesses
—~ write accesses
—— instructions fetch accesses

and any combination of these. Thus, there are eight modes of memory
protection for each page.

The Ring Protection System is a combined privileged instruction and
inter-page memory protection system. The system divides the pages
into four classes called rings: ring 0, ring 1, ring 2 and ring 3. Ring 3
is called the highest ring and ring 0 the lowest ring. A program located
on a particular page is said to run on the ring the page beiongs to.
Programs running on ring 2 and ring 3 may use the whole NORD-iO/S's
instruction repertoire while programs running on ring 0 and 1 may only
operate on a restricted instruction set.

N D-06.008.01

The inter-page protection feature allows programs on a high ring to access
pages on a lower ring while programs on a lower ring are not permitted
to access pages on a higher ring. if a prohibited ring access or privileged
instruction execution is attempted, the illegal operation will not proceed
and an internal hardware status interrupt will occur to indicate an error.

This Ring Protection System will protect large programming systems
against illegal operations by allowing independent tasks to be placed
on different rings. The recommended way of organizing a system is as
follows:

Ring 0: User programs
Ring 1: Compilers, assembler
Ring 2: Operating systems
Ring 3: Kernel of operating systems

One should note that the two protection systems are independent of each
other and that both the individual memory protection mode and the ring
mode must be satisfied before an operation is performed. For example,
if a program PROG tries to read from page P belonging to ring 2, then
PROG must be running on ring 2 or 3 and page P’s individual memory
protection mode must allow P to be read.

N D-06.008.01

iNSTRUCTiON REPERTOI RE

In the NORD-lO/S all instructions occupy a single word, 16 bits, yielding
a very efficient user of memory and also producing code with unusual
efficiency with regard to speed. Floating point arithmetic operations and
floating/integer conversions are standard.

Note that in this chapter one is always referring to the register set on
the current program level, for example, ”the A register“ means “the A
register on current program level“.

In this manual, the instruction set of mosaic/s is divided into the
following five subclasses:

-

Memory Reference instructions
— Operate instructions
input/Output Control instructions
~-— System Control instructions
~— Customer Specified instructions

Each instruction is given a short description. This includes its mnemonic
as used in the assembly language, octal code, a diagram showing its
format, timing information and special comments. For each instruction,
the systems and indicators that can be affected by the instruction are
listed.

The definitions used in the descriptions are as follows:

General Registers:

A register
D register
T register
L register
X register
B register
Program counter

STS Status register containing PTM, TG, K, 2, O, O, C, M

“o
w

x
r—

lo
rp

N D-06.008.01
Revision A

W

Bit

O PTM Page table mode
1 TG Rounding indicator for floating point operations
2 K One bit accumulator
3 2 Error indicator
4 0 Dynamic overflow indicator
5 0 Static overflow indicator
6 C Carry indicator
7 M Multi-shift link indicator

8-11 PL Program level indicator
l4 PONl Memory Management On indicator
15 lONl lnterrupt System On indicator

internal Registers:

STS Status word (see above)
OP R Operator’s panel
LMP Lamp register
PGS Paging status register
PCR Paging control register
PVL Previous level register
llC internal interrupt code
llE Internal interrupt enable
Pl D Priority interrupt detect
PIE Priority interrupt enable
ALD Automatic load descriptor
PES Memory error register
lR Instruction register
PEA Memory error address
Cl LR Cache inhibit limits register
ECCR Error correction control register
CCLR Clear cache

W

E L Effective location
EW Effective word
AD Double accumulator
FA Floating accumulator
DW Double word
FW Floating word
sr source register
dr destination register
/\ Logical AND
V Logical inclusive OR
V Logical exclusive OR
() The contents of
us Microsecond
ns Nanosecond

ND-06.008.0l
Revision A

The NORD-lO instructions are controlled from a micro-processor which
takes its instructions from a high speed bipolar read-only memory (cycle
time -— 65 ns).

The execution time of a NORD-lO/S instruction is primarily given by the
number of micro instructions and the speed of the main memory.

The NORD-lO may efficiently utilize memories of different type and
speed. It will make full use of a bipolar TTL memory and may also run
with , for example, a slow core memory.

With the cache memory option, one is able to obtain a speed nearly as
fast as that of a bipolar TTL memory.

The instruction times given in Chapter 3 are as measured from a program
running on a standard NORD-lO/S with all references in cache memory.

If this is not the actual case, the following changes should be made:

For indirect addressing add 0.45 as.

For each read reference to Local Memory add 0.45 [.13.

For each write reference to Local Memory add 0 us.

For each read reference to Multiport Memory via 0.5 m cable add 0.85 us.

For each write reference to Multiport Memory via 0.5 m cable add
0.35 us.

ND—06.008.01

3.1

3.1.?

3—4

MEMORY REFERENCE INSTRUCTIONS

Memory reference instructions specify operations in words in memory.
For all the memory reference instructions in NORD-lO/S, the addressing
mode is the same, with the exception of the conditional jump, the byte
and the register block instructions. The addressing structure for these
memory reference instructions is given under the specific instruction
specification.

The NORD»10/S has the following groups of memory references instruc—
tions:

~— Store instructions
- Load instructions
-~— Arithmetic and Logical instructions ,

- Sequencing Instructions $
*- Byte instructions
M Register Block instructions

A ddressfng Stl’UC ture

in memory reference instruction words, 11 bits are used to specify the
address of the desired wordls) in memory, 3 address mode bits and an
8—bit signed displacement using 2’s complement for negative numbers
and sign extension. (Note that excluded from this is the conditional
jump, the byte and the register block instructions.)

15 11109 8 7 O

op. code ,X l ,B displacement

NORD-iO/S uses a relative addressing system, which means that the
address is specified relative to the contents of the program counter or
relative to the contents of the B and/or X registers.

The three addressing mode bits called “,”,X ”I“ and ",8" provide eight
different addressing modes.

The addressing mode bits have the following meaning:

— The l bit specifies indirect addressing.

—— The ,8 bit specifies address relative to the contents of the B register,
pre-indexing. The indexing by ,8 takes place before a possible
indirect addressing.

ND-06.008.01

— The ,X bit specifies address relative to the contents of the X register
post-indexing. The indexing by ,X takes place after a possible
indirect addressing.

lf all the ,X, l and ,8 bits are zero, the normal relative addressing mode is
specified. The effective address is equal to the contents of the program
counter plus the displacement, (P) +disp.

The displacement may consist of a number ranging from ~128 to +127.
Therefore, this addressing mode gives a dynamic range for directly
addressing 128 locations backwards and 127 locations forwards.

Generally, a memory reference instruction will have the form:

<operetion code> <addressing mode> <disp|acement>

Note that there is no addition in execution time for relative addressing,
pre-indexing, post~indexing or both. Indirect addressing, however, adds
one extra memory cycle to the listed execution time.

The address computation is summarized in Table 3.1. The symbols used
are defined as follows:

,X Bit 10 of the instruction
I Bit 9 of the instruction
,8 Bit 8 of the instruction
disp. Contents of bits 0-7 of the instruction (displacement)
(X) Contents of the X register
(B) Contents of the B register
(P) Contents of the P register
() Means contents of the register or word

The effective address is the address of that memory location which is
finally accessed after all address modifications (pre— and post—indexing)
have taken place in the memory address computation.

,X | ,B Mnemonic Effective Address

0 O 0 (P) +disp
O 1 O l ((P) +disp)
0 O 1 ,B (B) +disp
O 1 1 ,B I ((B) +disp)
1 O O ,X (X) +disp
1 0 1 ,B ,X (B) +disp. + (X)
1 1 O l ,X ((P) +disp.) + (X)
1 1 1 ,B l ,X ((B) +disp.) +(X)

Table 3.1: Addressing Modes

ND—06.008.01 _

Wise and competent use of the NORD-iO/S addressing modes will result
in efficient programs. Advanced readers may wish to skip the rest of this
section after perusing Table 3.i , which summarizes the addressing struc-
ture.

P-relative Addressing ,X=0 i=0 ,B=O

The P-re/ative addressing mode is specified by setting the ,X, l and ,8
bits all to zero. in this mode, the displacement bits (bits 0-7) specify a
positive or negative 7-bit address relative to the current value of the
program counter (P register).

Example:

Suppose memory location 403 contains the instruction 004002, which in &
this chapter we shall represent by STA * 2, and this instruction is A
executed. The ,X, l and ,8 bits are all set to zero indicating P-relative ad-
dressing and a positive displacement of 2 is given; the contents of the A
register will therefore be stored in memory location 405. If, instead,
location 403 contains the instruction JMP * ~2 and it is executed, the
next instruction to be executed will be taken from location 401. While
there is an obvious limitation to this mode of addressing (locations more
than 1288 words away from the instruction being executed cannot be
accessed), this mode of addressing is still quite useful for doing local
jumps and accessing nearby constants and variables.

Memory

~128
Range with
P—relative
addressing

P register Q

127 Displacement

Effective address

Figure 3.1: Schematic Illustration of P—relative Addressing

N D-OG.OO8.01

Indirect P-relative Addressing ,X=0 l=1 ,B=0

Since one must be able to access memory locations more than 12810
words away from the instruction being executed, the simplest method
of doing this is to use the indirect P-re/ative addressing mode, specified
by setting the I bit to one and the ,X bit and ,8 bit to zero in memory
address instructions. In this mode an address relative to program counter
is computed, exactly as for P-relative addressing, by adding the displace-
ment to the value of the program counter, but rather than the addressed
location actually being accessed, the contents of the addressed location
are used as a 16-bit address of a memory location which is accessed
instead.

Example:

Suppose location 405 contains the instruction LDA | * 2 (0450028) and
that this instruction is executed. Let us also suppose memory location
16003 contains the value 17 and that memory location 407 contains
016003. The net result of executing the instruction in location 405 is
to load the value 17 into the A register. First the displacement 2 of
the LDA instruction is added to the value of the location counter 405,
giving the result 407; then the contents of iocation 407, 16003 are used as
an address and the contents of this address 17 are finally loaded into the
A register.

Memory

P register

Displacement

Pointer to any location
within 64K

4—- Effective address to any
location within 64K

Figure 3.2: Schematic Illustration of Indirect P-re/ative Addressing

ND—06.008.01

B-relative Addressing ,X=0 i=0 ,B=‘l

The above two addressing modes are quite sufficient, in fact, theoretically,

either one alone is sufficient. However, if the NORD—10/S provided only
one or both of the two addressing modes already described, it would not

be particularly convenient for program efficiency. For instance, suppose

that two subprograms, each a couple of hundred words long, need to

communicate. Within each subprogram memory accesses are commonly

made using P—relative addressing or occasionally, indirect P—relative

addressing. But between the subprograms indirect P-relative addressing
would have to be used almost exclusively since, in general, locations in

one subprogram, which instruction in the other subprogram must access,
will not be less than l28 words apart. But this is very inefficient since
both subprograms must contain indirect pointers to data and instructions

local to the other subprogram.

To overcome this difficulty another addressing mode is available B-re/ative
addressing, which permits both subprograms to directly address a com-

mon data area. B register relative addressing is specified by setting the

,X and l bits to zero and the ,8 bit to one in memory address instructions.

This addressing mode is quite closely related to P-relative addressing,
but instead the displacement is added to the current value of the B
register, the resultant sum is used to specify the memory location
accessed.

Memory

B register

Displacement

Effective address

Figure 3.3: Schematic Illustration of B—re/ative Addressing

N D~06.008.01

Example:

Let location 405 contain the instruction LDA — 4 ,8 (0447748) and
the B register contains the value 10035. Execute the instruction in
location 405., This causes the contents of location 10031 to be loaded
into the A register. The minus 4 in the displacement field of the LDA
instruction in location 405 is added to the contents of the B register,
10035, giving a sum of 10031, and the contents of location 10031 are
loaded into the /~\ register.

Indirect B—relative Addressing ,X=0 |=1 ,B=1

Naturally, there is also an indirect B-relative addressing mode which is
specified by setting the ,B and l bits to one and the ,X bit to zero in
memory reference instructions. This mode has the same relationship
to B—relative addressing that indirect P-relative addressing has to P-relative
addressing. This permits a subprogram to access data or locations in
other subprograms indirectly via pointers in an area common to several
subprograms. This address mode is used extensively for calling library
routines.

Example:

Let location 10031 contain the instruction JPL l 3 ,8 (1354038) and the B
register contain 400, a pointer to an area common to several subprograms.
Furthermore, let location 403 contain the value 2000. if the instruction in
location 10031 is executed, the subroutine beginning at location 2000 will be
called. The displacement, 3, in the JPL instruction is added to the contents
of the B register, 400, giving a result of 403. The contents of location 403,
2000, are then used as a pointer to the subroutine.

Memory

B register

Displacement
Pointer to any location
within 64K

Effective address

Figure 3.4: Schema tic Illustration of Indirect B~relative Addressing

ND-06.008.01

X-relative (or indexed) Addressinq ,X=1 l=0 B=O

The other four addressing modes all involve use of the X register. The
simplest of these is X-re/ative addressing which works like P- and B-relative
addressing, but the displacement is added to the X register’s contents
during the address calculation instead of to the contents of the P or B
register. This addressing mode is often used for randomly accessing the
elements of a block of data.

Jimmie;

Let a recursive subroutine, when being called, save the contents of the L,
A and B registers in a three word block on a push down stack, and the X
register point to the first free register in the stack. The following code
might then be found at the beginning of the recursive subroutine:

SUB, STA 1 ,X
COPY SL DA
STA 2 ,X
COPY 38 DA
STA O,X
AAX 3

X register upon entry
to the subroutine

B register saved here
A register saved here
L register saved here
X register after execution
of AAX instruction

Stack

Figure 3.5: Illustration of the Effect of the Stack Code.

For another example reread B-relative addressing, substituting “X
register“ for ”B register“.

ND-06.008.01

3—11

Memory

X register

Displacement

Effective address

Figure 3.6: Schematic Illustration of X«relative Addressing

B-relative indexed Addressing ,X=l i=0 ,B=1

When the ,X and ,8 bits are set to one and the l bit to zero in memory

reference instructions, the mode is called B-re/ative indexed addressing.
in this mode, the contents of the X and B registers and the displacement

are all added together to form the effective address.

B-relative indexed addressing is often very useful, for instance, when

accessing row by row elements of a two-dimensional array stored column

by column.

Memory

8 register

Displacement

Content of X register

Effective address

Figure 3.7: Schematic Illustration of B-re/ative Indexed Addressing

Indirect P-relative indexed Addressing ,X=1 |=1 ,B=O

The last two addressing modes are difficult to describe, but very useful.
indirect P-relative indexed addressing is selected by setting the ,X and

1 bits to one and the ,8 bit to zero in the memory address instruction.
This mode allows successive elements of an array arbitrarily placed in
memory to be accessed in a convenient manner.

N D-06.008.0l

The address calculation in the mode takes place as follows. The contents.
of the P register, say 4002, are added to the displacement, say ~1, and
produce a sum, 4001. The contents of the location 4001, say 10100, are
added to the contents of the X register, say «100, to produce a new
sum, 10000, the effective address. By incrementing the X register, suc-
cessive locations may be accessed. For instance, using the above example,
locations 10000 through 10100 can be successively accessed by stepping
the contents of the X register from ——1 00 to zero.

Readers are advised to go over this example carefully. Stepping through
an array in this fashion is done very often.

Memory

P register

Displacement
We» Pointer to any location

within 64K

Content of X register

Effective address

Figure 3.8: Schematic Illustration of Indirect P-re/ative Indexed
Addressing

indirect B-relative indexed Addressing ,X=1 l=1 ,B=1

The final addressing mode, indirect B~relative indexed addressing, is
identifical to indirect P-relative indexed addressing except that the
contents of the B register are used instead of the contents of the P
register in the effective address computation. This mode can therefore
be used to step through arrays pointed to from a data area common to
several subprograms.

N D—06.008.01

3.1.2

Figure 3.9.

3—13

B register

A ddressing

Store Instructions

STZ

STA

STT

Store zero

Format: STX <address mode> <disp.>

The effective location is cleared.
Affected: (EL)

Store A register

Format: STA <address mode> <disp.>

The contents of the A register are stored
in the effective location.
Affected: (EL)

Store T register

Format: STT <address mode> <disp.>

Displacement

Effective address

Content of X register

Code:

Time:

Code

Time:

Code

The contents of the T register are stored in the
effective location.
Affected: (EL)

ND-06.008.01

Time:

Schematic Illustration of Indirect B-re/ative Indexed

000 000

1.3;13

: 004 000

1.3 us

: 010000

1.3 ps

STX

STD

STF

lVllN

3—14

Store X register

Format: STX <address mode> <disp.>

The contents of the X register are stored in
the effective location. The address of this
instruction may be modified by the contents
of the X register.
Affected: (EL)

Store double word

Format: STD <address mode> <disp.>

The contents of the A register are stored
in the effective location, and the contents
of the D register are stored in the effective
location plus one.
Affected: (EL),(EL +1)

Store floating accumulator

Format: STF <address mode> <disp.>

The contents of the floating accumulator
are stored in three memory locations,
starting with exponent part in effective
location.
Affected: (EL), (EL +1), (EL + 2)

Increment memory and skip if zero

Format: MIN <address mode> <disp.>

Effective word is read and incremented
by one and then restored in the effective
location. if the result becomes zero, the
next instruction is skipped.
Affected: (EL), (P)

N D-06.008.01

Code: 014 000

Time: 1.3 ps

Code: 020 000

Time: 2.2 ps

Code: 030 000

Time 2.8 us

Code: 040 000

True Time: 2.9 p18
False Time: 2.6 ps

3—15

Load Instructions

LDA

LDT

LDX

LDD

LDF

Load A register

Format: LDA <address mode> <displ.>

The effective word is loaded into the A
register.
Affected: (A)

Load T register

Format: LDT <address mode> <disp.>

The effective word is loaded into the T
register.
Affected: (T)

Load X register

Format: LDX <address mode> <disp.>

The effective word is loaded into the X
register. The address of this instruction
may be modified by the previous contents
of the X register.
Affected: (X)

Load double word

Format: LDD <address mode> <disp.>

The contents of the effective location are
loaded into the A register, and the contents
of the effective location plus one are loaded
into the D register.
Affected: (A), (D)

Load floating accumulator

Format: LDF <address mode> <disp.>

The contents of the effective location and
the two following locations are loaded into
the floating accumulator, i.e., T, A and D
registers.
Affected: (T), (A), (D)

ND—06.008.01

Code:

Time:

Code:

Time:

Code:

Time:

Code:

Time:

Code:

Time

044 000

1.0 us

050 000

1.0 us

054 000

1.0 us

024 000

1.6 us

034 000

: 2.0 us

3.1.4 Arithmetica/ and Logical Instructions

ADD Add to A register Code: 060 000

Format: ADD <address mode> <disp.>

The effective word is added to the A register
with the result in the A register. The carry
indicator is set to 1 if a carry occurs from
the sign bit positions of the adder, other-
wise the carry indicator is reset to 0. If
the sign of the result is different, overflow
has occurred, and both the dynamic and
static overflow indicators are set to one.
lf the condition for overflow does not exist,
the dynamic overflow indicator is reset to $
0, while the static overflow indicator is left ’
unchanged.
Affected: (A), C, O, 0 Time: 1.0 ps

SUB Subtract from A register Code: 064 000

Format: SUB <address mode> <disp.>

The 2's complement of the effective word
is formed and added to the contents of
the A register with the result in the A
register. The same rules as for ADD apply
for the setting of the overflow and carry
indicators.
Affected: (A), C, O, 0 Time: 1.0 ps

AND Logical and Code: 070 000

Format: AND <address mode> <disp.>

The logical product of the effective word
and the contents of the A register are
formed, with the result in the A register.
The logical product contains a one in each
bit position for which there is a corresponding
one in both the A register and the effective
word, otherwise the bit position contains a
zero.
Affected: (A) Time: 1.0 as

N D-06.008.01

ORA Logical inclusive or ‘ Code: 074 000

Format: OR <address mode> <disp.>

Logical inclusive or is formed between the
effective word and the contents of the A
register, with the result in the A register.
Logical inclusive or contains a zero in each
bit position for which there is a corresponding
zero in both the A register and the effective
word, otherwise the bit position contains
a one.
Affected: (A) Time: 1.0 us

‘ MPY Multiply integer Code: 120 000

Format: lVlPY <address mode> <disp.>

The effective word and the A register are
multiplied and the result is placed in the
A register. Both numbers are regarded as
signed integers and the result as a 16-bit
signed integer. If the result in absolute
value is greater than 32767, overflow has
occurred and the static and dynamic overflow
indicators are set to one.
Affected: (A), O, 0 Time: 8.7 ps

FAD Add to floating accumulator Code: 100 000

. Format: FAD <address mode> <disp.>

The contents of the effective location and
the two following locations are added to
the floating accumulator with the result in
the floating accumulator. The previous
setting of the carry and overflow indicators
are lost.
Affected: (T), (A), (D), C, O, 0, TG Time: 3.6 ~ 14.0 [15*

, For 32 bit floating point operation, add
1 5 ,us.

* Time dependent of operands mantissa overlap.

N D-06.008.0‘l

FSB Subtract from floating accumulator Code: 104 000

Format: FSB <address mode> <disp.>

The contents of the effective location and
the two following locations are subtracted
from the floating accumulator with the result
in the floating accumulator. The previous
setting of the carry and overflow indicators
are lost.
Affected: (T), (A), (D), C, O, (1, TG Time: 3.9 - 16.5 us*

For 32 bit floating point operation, add
5 us.

FMU Multiply floating accumulator Code: 110 000 I

Format: FMU <address mode> <disp.>

The contents of the floating accumulator
are multiplied with the number of the
effective floating word locations with the
result in the floating accumulator. The
previous setting of the carry and overflow
indicators are lost.
Affected: (T), (A), (D), O, 0, TG Time: 13.5 ,us

For 32 bit floating point operation, add
2 us.

FDV Divide floating accumulator Code: 114 000 %

Format: FDV <address mode> <disp.>

The contents of the floating accumulator are
divided by the number in the effective
floating word locations. Result in floating
accumulator. If division by zero is attempted,
the error indicator 2 is set to one. The error
indicator Z may be sensed by a BSKP instruc-
tion (see BOP). The previous setting of the
carry and overflow indicators are lost.
Affected: (T), (A), (D), Z, C, O, 0, TG Time: 4.3 - 15.2 us*

For 32 bit floating point operation, add
0 us.

* Time dependent of operands mantissa overlap. Q53;

N D-06.008.01

3—19

3.1 .5 Sequencing Instructions

JMP

JPL

CJP

JAP

Jump Code: 124 000

Format: JlVlP <address mode> <disp.>

The effective address is loaded into the
program counter and the next instruction
is taken from the effective address of the
JlVlP instruction.
Affected: (P) Time: 1.1 #5

Transfer P to L and jump Code: 134 000

Format: JPL <address mode> <disp.>

The contents of the program counter are
transferred to the L register, the effective
address is loaded into the program counter
and the next instruction is taken from the
effective address of the JPL instruction.
Note that the program counter points to the
instruction after the jump (it has been
incremented before transfer to the L register)
Affected: (P), (L) Time: 1.1 us

Conditional jump

instruction bits 8-10 are used to specify one
of 8 jump conditions. If the specified condition
becomes true, the displacement is added to the
program counter and a jump relative to current
location takes place. The range is 128 locations
backwards and 127 locations forwards. if
the specified condition is false, no jump takes
place. Execution time depends on condition,
but is the same for all instructions.

A conditional jump instruction must be specified
by means of the eight mnemonics listed below.
It is illegal to specify CJP followed by any
combinations of ,B, l and ,X.

The eight jump conditions are:

Jump if A register‘is positive or zero, Code: 130 000
A bit 15 = 0.

Format: JAP <disp.>

ND-06.008.01

3—20

JAN Jump if A register is negative, A bit = 1. Code: 130 400

Format: JAN <disp.>

JAZ Jump if A register is zero. Code: 131 000

Format: JAZ <disp.>

JAF Jump if A register is filled (not zero) Code: 131 400

Format: JAF <disp.>

JXN Jump if X register is negative, i.e., Code: 133 400
X bit 15 = 1.

Format: JXN <disp.>

JXZ Jump if X register is zero. Code: 133 000

Format: JXZ <disp.>

JPC Count and jump if register is positive or Code: 132 000
zero.

Format: JPC <disp.>

X is incremented by one, and if the X bit
15 equals zero after the incrementation, $
the jump takes place.

JNC Count and jump if X register is negative. Code: 132 400

Format: JNC <disp.>

X is incremented by one; if then the X bit
15 equals one, the jump takes place.
Affected: (P) and (X) for JPC and JNC. Time:

Conditional false: 0.8 us
Conditional true: 1.1 #3

ND-06.008.01

3.1.6

3—21

Byte Instructions

To facilitate the handling of character strings, the NORD-lO/S provides two
instructions for byte handling, load byte, LBYT, and store byte, SBYT.

Because of the requirement of full 64K addressing, the LBYT and SBYT
use an addressing scheme different from the normal NORD-iO/S addressing.

For byte addressing, two of the NORD-lO/S registers, the T and X registers
are used for addressing the byte.

The contents of the T register point to the beginning of the character string,
and the contents of the X register point to a byte within this string. Thus,
the address of the word which contains the byte equals

(T) +‘/2 (X).

If the X register is even (,X0 = 0,) the byte is in the left part of the word,
if X0 = l, the byte is in the right part of the word.

A byte consists of eight bits.

T register >
O 1
2

X register
2

n n + i
n + 2 n + 3

The specifications for the two byte instructions are then as follows:

LBYT Load byte Code: 142 200

Format: LBYT

The 8-bit byte specified by the contents of the
T and X registers is loaded into the A register
bits 0 ~ 7, with the A register bits 8 - ,15
cleared.
Affected: (A) Time:

Left byte: 5.5 us
Right byte: 3.2 as

ND—06.008.01‘

3—22

SBYT Store byte Code: 142 600

Format: SBYT

The byte contained in the A register bits
07 is stored in one half of the effective
location pointed by the T and X registers,
the second half of this effective location
being unchanged. The contents of the A
register are unchanged.
Affected: (EL) Time:

Left byte: 8.1 ps
Right byte: 5.9 us

3.1.7 Register Block Instructions

To facilitate the programming of registers on different program levels, two
instructions, SRB and LRB, are available for storing and loading of a com—
plete register block to and from memory.

A register block always consists of the following registers in this sequence:

Program counter
X register
T register
A register
D register
L register

S Status register, bits 1-7, bit 0 and bits 8-15 are zero.
B registerno

w
~«I

'0
_

_
‘r
'U

>
><

The addressing for these two instructions is as follows:

The contents of the X register specify the effective memory address from
where the register block is read or written into.

The specifications for the two instructions are as follows:

15 7 6 3 2 0
LRB 000
SRB level 010

N D-06.008.01

SRB

LRB

3—23

Store Register Block Code: 152 402

Format: SRB <level8 * 108>

The instruction SR8 <level8 * 108> stores
the contents of the register block on the
program level specified in the level field of
the instruction. The specified register block
is stored in succeeding memory locations
starting at the location specified by the con-
tents of the X register.

If the current program level is specified, the
stored P register points to the instruction
following SRB.
Affected: (EL), +1 +2 +3 +4 +5 +6 +7 Time 9.5 as

P - X T A D L STS B

Example:

Let the contents of the X register be 042562,
then the instruction

SRB14O8
- stores the contents of the register block on

program level 12 into the memory addresses
042562, 042563, . . . , 042571.

Load Register Block Code: 152 600

Format: LRB <level8 * 108>

The instruction <LRB level8 * 108> loads
the contents of the register block on pro-
gram level specified in the level field of the
instruction. The specified register block is
loaded by the contents of succeeding
memory locations starting at the location
specified by the contents of the X register.
if the current program level is specified, the
P register is not affected. The LRB
instruction is privileged, see Section 6.5.1.

Affected: All the registers on specified
program level are affected. Note: if the
current level is specified, the P register is
not affected. Time: 7.1 us

ND-06.008.01

Revision A

3.2

3.2.1

3.2.1.1

3~24

OPERA TE INSTRUCTIONS

Floating Point Conversion Instructions

15 87 O
NLZ _
DNZ scaling

Two instructions are available. A single precision fixed point number
may be converted to a floating point number. A floating point number
may be converted to a fixed point single precision number. For both
instructions the scaling factor is specified in the displacement part of
the instruction. The range of the scaling factor is from —128 to + 127,
which gives a conversion range from approximately 10—39 to 1039.
The execution time depends on the scaling factor and the argument to
convert.

The two subinstructions are described in Section 3.2.1.1 for the standard
48-bit floating point format, and in Section 3.2.1.2 for the alternative
optional 32-bit floating point format.

Standard 48-bit Floating Point Conversion

N LZ Normalize Code: 151 400

Format: N LZ <scaling>

Converts the number in the A register to a
standard form floating number in the floating
accumulator, using the scaling of the NLZ
instruction as a scaling factor. For integers,
the scaling factor should be +16, a larger
scaling factor will result in a higher floating
point number. Because of the single precision
fixed point number, the D register will be
cleared.
Affected: (T), (A), (D) Time: 2.1 — 6.6 us*

* Time dependent upon number of shifts.

ND-06.008.01

_.. “—4

3—25

DNZ Denormalize Code: 152 000

Format: DNZ <scaling>

Converts the floating number in the floating
accumulator to a single precision fixed point
number in the A register, using the scaling of
the DNZ instruction as a scaling factor.“
When converting to integers, the scaling
factor should be —16, a greater scaling factor
will cause the fixed point number to be
greater. After this instruction the contents
of the T and D registers will all be zeros.

If the conversion causes underflow, the T,
A and D registers will all be set to zero.

if the conversion causes overflow***, the
error indicator 2 is set to one. Overflow
occurs if the resulting integer in absolute
value is greater than 32767.

The conversion will truncate and negative
numbers are converted to positive numbers
before conversion. The result will again be
converted to a negative number.

Some examples:

T~A~D before conversion (in decimal) A after conversion

0.9 DNZ “208 0
3.141592 DNZ ~208 .3
3.141592 DNZ#178 6
3.141592 DNZ ‘168 12
3.7 DNZ —-208 3
3.7 DNZ ——178 7
3.7 DNZ ”“218 1
—3.141592 DNZ —208 ~—3
~3.7 DNZ “208 —3
32768.0 DNZ —208 Overflow
—-32768.0 DNZ ”208 Overflow

Affected: (A), (T), (D), 2 Time: 2.6 ~ 7.6 Vps*

* Time dependent upon number of shifts.
** When converting an exact floating point zero, scaling factors more negative

than ~~-16 will give erroneous results.
*** The overflow test is fail-proof for a scaling constant of “208 only.

ND-06.008.01

3.2.1.2

3.2.2

3—26

Optional 32-bit Floating Point Conversion

The normalize and denormalize operations for 32-bit floating point use
the same instruction codes as for 48-bit floating point operations, but do
not affect the T register. For the 32-bit DNZ operations, the scaling factor
should always be ——16, other scaling factors will not cause a different result,
but will affect the test for overflow.

Time for NLZ:
1.6 - 10.4*

Time for DNZ:
2.1 - 10.9*

Shift Instructions

15 11 1O 9 8 7 5 0

shift type register number

Shift instructions operate on registers. A shift instruction consists of three
parts: the register to be shifted (specified by the shift register fields), type
of shift to be performed (specified by the type field) and the number of
shifts to be performed (specified by the number field. A shift instruction
will have the form:

<shift register> <type> <number>

Every shift instruction causes the last bit which is discarded to be contained
in the M; the multi—shift indicator. This may then be used as an input
for the next shift instruction.

Note that bit 6 in the instruction is ignored.

The time of a shift instruction is independent of the type of shift.

The following four specifications of the <shift register> are available:

SHT Shift the T register (reg. field 00) Code: 154 000

Format: SHT <type> <number>

The T register is shifted as specified by the <type>
and <number>.
Affected: (T), M Time: 1.6 +0.26 ' N0

* Time dependent upon number of shifts.

ND-06.008.01

3—27

SHD Shift the D register (reg. field 01)

Format: SHD <type> <number>

The D register is shifted as specified by the
<type> and <number>.
Affected: (D), M

SHA Shift the A register (reg. field 10)

Format: SHA <type> <number>

The A register is shifted as specified by the
<type> and <number>.
Affected: (A), M

SAD Shift the A and D registers connected
(reg. field 11)

Format: SAD <type> <number>

Bit 0 of the A register is connected to bit
15 of the D register.
Affected: (A), (D), M

type field

Code:

Time:

Code:

Time:

Code:

Time:

154 200

L6+026'N0

154 400

L6+026-N0

154 600

Z4+026'N0

For each shift instruction, the following four types 0f shift can be specified,
one at a time:

Mnemonic type field

nil Arithmetical shift. 0 0
During right shifts, the sign bit
(bit 15) is extended during the
shifting, in left shift zeros are
fed into vacated bit positions.

ROT Rotational shift. 0 1
ln single register shift bit 0 is
connected to bit 15, in double
shifts bit 0 of the D register is
connected to bit 15 of the A
register.

ND-06.008.01

Code:

Code:

000 000

001 000

Mnemonic type field

ZIN Zero end input 1 0 Code: 002 000

LIN Link end input 1 1 Code: 003 000
The contents of the M indicator
will be shifted into the vacated
bitls).

number field

The <number> of the instruction in the number field is a signed number,
5 bits plus sign, which specifies the shift direction (positive or negative
shift) and the number of shifts.

N 2 0, i.e., if bit 5 = 0 then shift left
N < 0, i.e., if bit 5 = 1 then shift right

The maximum number of shifts is 31 left shifts and 32'right shifts.

Only the A, T and D registers may be shifted. if any other register is to be
shifted, its contents must first be placed in the A, T or D register.

lf no shift direction is specified, left shift is assumed.

The number of shifts is interpreted by the assembler as an octal number.

A right shift may be specified either by the correct 6 bit negative shift
count or by writing the mnemonic code SHR followed by the positive
number of right shifts. A shift instruction to shift the accumulator 3
positions to the right may be specified by one of the following identical
instructions: $

SHA 758
SHA 100—38
SHA SHR 38

in a right shift, nothing should be written between the SHR mnemonic
and the number of shifts* (a space to distinguish between SH R and the
number is necessary). SHR must be the last mnemonic used in the instruc—
tion.

Some examples of correctly specified shift instructions:

Example 1:

Shift the A and D registers connected 8 positions (octal 10) left.

SAD 108

* This is an assembler pecularity.

ND—06.008.01

3.2.3

3—29

Exam};

Rotate the T register 6 places to the left.

SHT ROT6

Example 3:

Shift the connected A and D registers 16 positions to the left. Rotate shift
is specified which, in this case, will cause the contents of the A and D registers
to be exchanged. The same effect may be obtained by means of a SWAP SA
DD instruction.

SAD ROT 20

Exam

Shift the D register two places to the right. Feed zeros into the left end during
the shifting. Bits 15 and 14 in the D register will become zero.

SHD ZIN SHR 2

Register Operations

The register operaion instructions specify operations between any two
general registers; a source register (sr) and a destination register (dr). Any
instructions may consist of the parts:

<register operation> <sub~instruction> <sr> <dr>

There are ten basic register operations belonging to the two groups:

ROP register operations (Section 3.2.3.1)
EXTended register operation instructions (Section 3.2.3.2)

in addition, there are two instructions for accessing single registers outside
current program level (see Section 3.2.3.3) and two instructions for accessing
a whole register block outside current program level (see Section 3.1.7).

Only the ROP instructions have sub-instructions.

The ROP register instructions are:

RADD Register addition, dr <— dr +sr Code: 146 000

RSUB Register subtraction, dr <— dr —— sr Code: 146 600

ND-06.008.01

3-30

RAND Register logical AND, dr <— dr A sr Code: 144 400

RORA Register logical OR, dr +- dr V sr Code: 145 500

REXO Register logical exclusive OR, dr <— dr
V sr Code: 145 000

SWAP Register exchange, sr <- dr and dr <— sr Code: 144 000

COPY Register transfer, dr <— sr Code: 146 100

The EXTended register instructions are:

RMPY Integer inter-register multiply, AD <— dr * sr Code: 141 200

R DIV Integer inter-register divide
AD/ <sr> —> A <- Quotient

D <- Remainder Code: 141 600

EXR Execute register, instruction register <~ sr Code: 140 600

M|X3 Multiply index by 3, X <— ((A) — 1) * 3 Code: 143 200

The source registers <sr> are specified as follows:

SD D register as source Code: 10

SP Program counter as source Code: 20

SB 8 register as source Code: 30

SL L register as source Code: 40

SA A register as source Code: 50

ST T register as source Code: 60

8X X register as source Code: 70

if no source register is specified, zero will be taken as the source register.

The destination registers <dr> are specified as follows:

DD D register as destination Code: 1

DP Program counter as destination Code: 2

DB B register as destination Code: 3

ND-06.008.01

3.2.3.1

3—31

DL L register as destination Code: 4

DA A register as destination Code: 5

DT T register as destination Code: 6

DX X register as destination Code: 7

‘ ion instructions

15 1110 9 8 7 6 5 3 2 o
ROP RADC l CMlCLE sr dr

The instruction decodes bits 0—1 0 as follows:

Bits 0-2 specify one out of seven registers to be the destination register.
The destination register will be loaded with the result of the ROP instruc-
tion.

dr = 0: Normally, a no operation instruction, except that the carry
indicator will be reset if RAD = 1.

Bits 3-5 specify the one out of eight registers which contain the value to
be used as the source register operand.

sr = O: Produces a source value equal to zero.

CLD = 1: Clear destination register before operation. If the source and
the destination register are the same, the register as source is
not cleared.

CMl = 1: Use complement (one’s complement) of source register as
operand. The source register remains unchanged.

Bits 8 and 9 are decoded in two different ways, depending on whether
the RAD bit is zero or one.

RAD = 1: Add source to destination.

When RAD = 1, bits C and l are decoded as follows:

C = 1,
l 0: Also add old carry to destination, ADC.II

I = 1: Also add 1 to destination, AD1.

N D-06.008.01

Revision A

3—32

It is not possible to both add previous carry and to add 1 in the same ROP
instruction. (If this is attempted, 1 will be added regardless of the status
of the carry indicator.)

RAD = O: Binary register operations.

The C and 1 bits are decoded as follows:

C,l=0,0: Register swap, destination and source exchanged, SWAP
C,l=0,1: Logical and, RAND '
C,l=1,0: Logical exclusive or, REXO
C,l=1,1: Logical inclusive or, RORA

If RAD = 1, the overflow and carry indicators are set according to the same
rules as apply for ADD: if RAD = O, the overflow and carry indicators
remain unchanged.

The following groups of ROP mnemonics are mutually exclusive, i.e., only
one may be used in a ROP instruction.

(SD, SP, SB, SL, SA, ST, SX)

Only one source register must be specified.

(DD, DP, DB, DL, DA, DT, DX)

Only one destination register must be specified.

(ADC, AD1)

Both 1 and old carry cannot be added in the same instruction.

(RADD, RSUB, SWAP, RAND, REXO, RORA, COPY)

Only one type of operation must be specified.

(ADC, AD1, SWAP, RAND, REXO, RORA)

Add 1 or add carry may not be used together with the binary register

operations.

(RSUB, CM1, ADC, AD1)

RSUB uses CM1 and AD1.

The recommended way to specify ROP instructions is to use the following
mnemonics which will be correctly translated by the assembly language.

N D-06.008.01

3—33

RAD D, dr <— dr + sr Register addition
RSUB, dr <— dr —- sr Register subtraction
RAND, dr +— dr A sr Register logical AND
RORA, dr <- dr V sr Register logical OR
REXO, dr <- dr Vsr Register logical exclusive OR
SWAP, dr <+ sr Register exchange
COPY, dr <— sr Register transfer

Note that the ROP instruction is included in the above mentioned
mnemonics.

Time: RADD, RSUB, RAND, REXO, RORA 0.6 ps

Time: SWAP 1.4 us

If the P register is used as destination (DP), an additional micro cycle (260 ns)
will be required.

The assembly language will also permit use 'of the following combined
mnemonics:

CM2 = ClVll ADl Two’s complement
EXIT = COPY SL DP Return from subroutine
RCLR = COPY 0 Register clear
RINC = RADD ADl Register increment
RDCR = RADD CMl Register decrement

The mnemonics RCLR, RINC and RDCR should be followed only by the
destination register specifications.

Some examples of use of the ROP instruction.

Example 1:

Add the contents of the A and X registers with the result in the X register:

RADD SA DX

Example 2:

Complement (two's complement) the A register:

COPY CMZ SA DA

ND-06.008.01 .

3—34

Decoding of

CM
1

CL
D instructions

Result of
Instructions

a
-a

-a
-a

—
a

—
n

-x
d

o
o

o
o

o
o

o
o

—
‘a

—
x
A

A
a

—
‘a

o
o

o
o

o
o

o
o

C

—
x
4

-»
d

o
o

o
o

—
A

-a
-a

—
‘o

o
o

o
—

s
—

a
-a

—
‘o

o
o

o
—

x
—

A
a

-a
o

o
o

o

a
a

o
o

—
a

-a
o

o
-a

—
x
o

o
-a

a
o

o
-a

—
a

o
o

—
a

-a
o

o
-a

—
a

o
o

—
a

—
‘o

o

—
-\

O
—

‘O
-—

-‘
O

—
iO

d
O

-A
O

d
O

-‘
O

-A
O

—
‘O

—
‘O

—
‘O

—
‘O

—
‘O

—
‘O

—
‘O

SWAP
SWAP
SWAP CM1
SWAP CM1
RAND
RAND
RAND CM1
RAND CM1
REXO
REXO
REXO CM1
REXO CM1
RORA
RORA
RORA CM1
RORA CM1
RADD1)
RADD
RADD1) CM1
RADD ‘ CM1
RADD1)AD1
RADD2)AD1
RADD1_ D1 CM1
RADD D1 CM1
RADD1)ADC
RADD ADC
RADD1)ADC CM1
RADD ADC CM1

not applicable

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

<sr> <dr>
<sr> <dr>
<sr> <dr>
<sr> <dr>
<sr> <dr>
<sr> <dr>
<sr> <dr>
<sr> <dr>
<sr> <dr>
<sr> <dr>
<sr> <dr>
<sr> <dr>
<sr> <dr>
<sr> <dr>
<sr> <cl r>
<sr> <dr>
<sr> <dr>
<sr> <dr>
<sr> <dr>
<sr> <dr>
<sr> <dr>
<sr> <dr>
<sr> <dr>
<sr> <dr>
<sr> <dr>
<sr> <dr>
<sr> <dr>
<sr> <d r>

sr s>dr
dr+sr,sr «‘0
dr <—‘§?,sr <—dr
dr+§isr <—O
dr<—dr/\ sr
dr<—O
dr<—dr/\§'
dr<~0
dreder
dr<~sr
dr<—drV§r
tires—r
drs-der
dr<—sr
dr<~drV§'
dr+sr
dr<- dr+sr
dr<- sr
dr<- dr+sr
d“. Er
drs- dr+sr+1
dr<- sr+1
dr<— dr—sr
drst —sr
dr<- dr+sr+c
dr<- sr+c
dr<— dr+s.r+c
dr<-"s‘r+c

Table 3.2: The ROP Instruction

This table shows all possible combinations of the HOP instructions and
their results.

ca
se

i) RADDC

destination register
source register
one’s complement of sr
old carry

LD is equal to COPY
2) RADD ADl CM1 is equal to RSUB

N D-06.008.01

3—35

Examgle 3:

Subtract the contents of the T register from the contents of the B register,
with the result in the B register:

RSUB ST DB

Examgle 4:

increment the X register by one:

RlNC DX

Mitzi

Decrement the L register by one. (One’s complement of zero equals —1 in
two's complement):

RDCR DL

Examplefi;

Clear the T register:

RCLR DT

Examgle 7:

Set the X register equal to one:

RCLR ADl DX

Examgle a:

Set the B register equal to minus one:

RCLR CMl DB

Exgmglg 9;

Copy the contents of the X register into the T register:

COPY SX DT

ND—06.008.0i

3—36

Example 10:

Exchange the contents of the A and D registers:

SWAP DA DD

Example 11:

Form logical AND between the contents of the L and X registers with the
result in the X register:

RAND SL DX

Example 12:

Copy the contents of the A register into the X register and clear the A
register (the OLD code causes a destination register of zero to be swapped):

SWAP CLD SA \DX

Some short programs using ROP instructions:

Example 13:

Form the two’s complement of the 32 bit double word in A and D:

COPY ClVl2 SD DD
COPY CM1 ADC SA DA

Example 14:

Add together the two double word length numbers N1 and N2 with the
result in the A and D registers:

LDD N1
SWAP SA DD
ADD N2+1
SWAP SA DD
RADD ADC DA
ADD N2

N D-06.008.01

3—37

Exampie 15:

Subroutine jump, and return from subroutine to main program:

JPL SUBR % ERROR STOP
ERR, WAIT
NORM,

SUBR, LDA OLA
SUB PER
SKP IF DA EOL O

EXIT % ERROR EXIT
EXIT ADI

The JPL instruction will place the address of the WAIT instruction into
the L register. (When JPL is executed, the program counter points to the
address after this instruction.)

The subroutine SUBR has two exits, one to the location immediately follow-
ing the jump (EXIT), which in this case is an error exit, and one to the location

\two addresses after the jump.

Note: If the P register is used as source (SP), the P register has already been
incremented and points to the next instruction.

EXTended Register Operation Instructions

RMPY lntegerinter-register multiply Code: 141200

Format: RMPY <sr> <dr>

The sr and dr fields are used to specify the two
operands to be multiplied (represented as two’s
complement integers), the codes are the same
as for ROP (see Section 3.2.3).

The result is a 32—bit signed integer which will
be placed in the A and D registers with the 16
most significant bits in the A register and the
16 least significant bits in the D register.
Affected: (A), (D) Time: 7.9 ps

N D-06.008.0I

RDIV

EXR

3—38

Integer inter-register divide Code: 141 600

Format: RDIV <sr>

The 32—bit signed integer contained in the double
accumulator AD is divided by the contents of
the register in the sr field, with the quotient
in the A register and the remainder in the D
register, i.e., AD/sr ~> A <— quotient, D <— remainder.

The sign of the remainder is always equal to the
dividend (AD). The destination field of the in-
struction is not used. if the division causes
overflow, the error indicator Z is set to one.

The numbers are considered as fixed point
integers with the fixed point after the
right-most position.

A D

sr

Affected: (A), (D), 2, C, O, 0 Time: 11.8 ,us

Examnle;

Before Division: After Division:

Double accumulator Divisor A D Z

22 4 5 2 0
~22 4 -5 ——2 0

378452 ~16 - 23653 -4 0
32767 1 32767 O 0
32768 1 1
65535 2 32762 1 0

Execute register Code: 140 600

Format: EXR <sr>

The contents of the register specified in
the <sr> field of the instruction are trans—
ferred to the instruction register, and the
contents are then executed as an instruction.

N D~06.008.01
Revision A

3—39

Note: If the instruction specified by the
contents of <sr> is a memory reference
instruction with relative addressing, the
address will be relative to the EXR <sr> in—
struction. If the instruction specified by
the contents of <sr> is a JPL instruction,
the L register will point to the instruction
after the EXR <sr>. Note also that it is
illegal to have an EXR <sr>, where the
contents of <sr> are a new EXR <sr>,
if it is tried, the error indicator Z is set
to one.
Affected: (IR), affections of the specified
instructions. Time: 2.0 ps

MIX 3 Multiply index by 3 Code: 143 200

Format: MIX3

The X register is set equal to the contents
of the A register minus one multiplied
by three, i.e.,

(X) <- ((A) —— 1] * 3

Affected: (X) Time: 1.0 ps

3.2.3.3 lnter Level Register Instructions

i’ In the NORD-10/S there are 16 complete sets of registers and status indicators,
one set for each level.

The access to and from registers outside the current program level is by two
instructions:

lRR Inter Register Read
lRW lnter Register Write

The format of this instruction is as follows:

15 6 32 O
IRR
IRW level dr

ND-06.008.01

. 3—40

Bits 0-2 specify the register to be read, using the same codes and
mnemonics as are used for specifying destination registers for the register
operations. Refer to Section 3.2.3.

Bits 3-6 specify the program level number. It is possible to read the cur“
rent program level as well as all outside program levels.

lR R Inter register read Code: 153 600

Format: IRR <level8 * 108> <dr>

This instruction is used to read into the A
register on current program level one of the
general registers inside/outside current program
level. lf bits 0—2 are zero, the status register
on specified program level will be read into
the A register bits 1-7, with bits 845 and
bit 0 cleared. The lRR instruction is
privileged. Time: 1.4 ps

Example:

The instruction lRR 160 DP will copy the contents of the program
counter on program level 14 into the A register on current program
level.

iRW lnter register write Code: 153 400

Format: IRW <level8 * 108> <dr>

This instruction is used to write the A
register on current program level into
one of the general registers. It is also
possible to write into the registers on
current level. Then, if the P register
is specified, the IRW instruction will
be a dummy instruction. 11‘ bits 0—2
are zero, the A register bits 1—7 are
written into the status register on
specified level. The lRW instruction
is privileged. Time: 1.4 ps

Example:

The instruction lRW 110 will copy the bits 07 of the A register on
current program level into the status register on program level 9.

N D-06.008.01

3.2.4

3—41

Skip Instructions

15 11 10 8 7 6 5 3 2 O

SKP cond. 00 sr dr

SKP Skip next instruction if specified condition Code: 140 000
is true. ‘

Format: SKP <dr> <cond.> <sr>

The cond. field specifies one of eight con—
ditions between the registers dr and sr.
lf the specified condition is true, the next
instruction is skipped. lf not, the next
instruction is not skipped. The register
dr (destination register) and sr (source
register) are specified as for register
operation registers. See Section 3.2.3.

Note that bits 6 and 7 are both zero.
Otherwise, the instruction would belong
to the EXTended instruction. See
Section 3.2.3.2.

The SKP conditions test upon the result
of the arithmetic expression (dr) — (sr)
which set the four indicators:

5 sign
2 result zero
0 carry
0 overflow Time:

No skip: 0.8 ps
Skip: 1.1 us

The eight SKP conditions are as follows: (next page)

N D-06.008.01

3—42

Mnemonic
Condition
field

Condition
true if:

EQL

GEO

GRE

MORE

UEQ

LSS

LST

000

001

011

100

101

sVo=0

sVo=1

Equal. The condition tests
for equality between the
source and destination reg-
isters (dr) = (sr) = 0.

Greater or equal to. (dr) ~
(sr) > 0. The contents of
the source and destination
registers are treated as
signed numbers. Overflow
is not taken care of.

Greater or equal to. (dr) —
(sr) 2 0. The contents of
the source and destination
registers are treated as
signed numbers. Overflow
is taken care of.

Magnitude greater or equal
to (dr) ~ (sr) 2 0. The
contents of the source and
destination registers are
treated as unsigned mag—
nitudes, where 000 000 is
the lowest and 177 777 the
highest number. Overflow
is taken care of.

Unequal to. The condition
tests for equality between
the source and destination
registers (dr) 71> (sr) 4; 0.

Less than (dr) — (sr) < O.
The contents of the source
and destination registers
are treated as signed num~
bers. Overflow is not taken
care of.

Less than (dr) ~ (sr) < 0.
The contents of the destin-
ation and source registers
are treated as signed num—
bers. Overflow is taken
care of.

ND-06.008.01

3—43

Condition Condition
Mnemonic field true if:

MLST 1 1 1 c = 0 Magnitude less than (dr) —
(sr) < 0. The contents of
the source and destination
registers are treated as un-
signed magnitudes, where
000 000 is the lowest num~
her and 177 777 is the
highest number. Overflow
is taken care of.

By swapping the register code in the sr and dr fields and inverting the
relationship code, it is also possible to test these relationships.

> Greater than
< Less than or equal

The programmer is advised to use the same format as in these examples
when specifying a skip instruction. (The mnemonic IF and the number 0,
which both have the value zero, are used for easy readability.)

Comparing a register with zero:

SKP lF DL UEQ 0 Skip if L register a O
SKP lF DX GRE 0 Skip if X register 2 O
SKP lF DB L88 0 Skip if B register < 0
SKP lF 0 L88 ST Skip if T register > O
SKP lF O GRE SD Skip if D register < 0

Comparing the arithmetic value of the contents of two registers:

SKP IF DD EQL SL Skip if D register = L register
SKP lF DT UEQ SX Skip if T register % X register
SKP lF DB LSS SA Skip if B register < A register or

Skip if A register > B register
SKP lF DX GRE SB Skip if X register 2 B register or

Skip if B register < X register

Comparing two magnitude numbers:

SKP lF DL MGRE ST Skip if L register? T register or
Skip if T register < L register

SKP IF DB lVlLST SX Skip if B register < X register or
Skip if X register > B register

The magnitude tests are especially useful when comparing the relationship
between memory addresses which are represented as magnitude numbers
in a computer with more than 32K memory.

ND-06.008.01

3.2.5

3—44

Argument Instructions

15 1110 9 8 7 0

ARG fu 1ction number

Argument instructions operate on registers. The function field is used to
specify one out of eight argument instructions. The number fieid is used to
specify the argument, a signed number ranging from ~128 to 127.

Bits 8 and 9 in the function field specify one out of four registers, B, A, T

or X, and bit 10 one of the operations: set argument to or add argument to.

The eight argument instructions are:

SAA Set argument to A register Code: 170 400

Format: SAA <number>

AAA Add argument to A register Code: 172 400

Format: AAA <number>

SAX Set argument to X register Code: 171 400

Format: SAX <number>

AAX Add argument to X register Code: 173 400

Format: AAX <number>

SAT Set argument to T register Code: 171 000

Format: SAT <number>

AAT Add argument to T register Code: 173 000

Format: AAT <number>

SAB Set argument to B register Code: 170 000

Format: SAB <number>

ND—06.008.01

3—45

AAB Add argument to B register Code: 172 000

Format: AAB <number>

Time: 1.1 [13

An argument instruction should be specified by means of one of the eight
mnemonics listed above.

Examples of argument instructions:

Example 1:

Set the contents of the T register equal to 138. Bits 845 will become zero:

SAT 138

Example 2:

Set the contents of the B register equal to “268' Bits 8-15 will become one,
sign extension:

SAB ~268

Example 3:

Add 3 to the contents of the X register. The addition is modulo 215.

AAX 3

Example 4:

Subtract 6 from the contents of the A register (module 215).

AAA —6

Example 5:

The contents of the A register will be 177 6408 after the execution of this
instruction (sign extension).

SAA T1408

In an add argument instruction the carry and overflow indicators are set
according to the same rules as apply for the ADD instruction. See Section
3.1.4.

ND-06.008.01 .
Revision A

3.2.6

3—46

Bit Operation Instructions

15 1110 76 32 O

BOP sub-instruction bn dr

BOP Bit Operation

The BOP instruction specifies operation on single bits in one of
the seven general registers, or the status register.

The specific bit to be manipulated is specified by the <dr> and

<bn> fields in the instruction. The <dr> field specifies the
particular register and the <bn> field the particular bit in that
register.

The register dr is specified by means of the same mnemonics as
used for destination registers in the BOP and SKP instructions

(see Section 3.2.3), except if dr = 0 the status register is
specified.

The BOP instruction may use a one bit accumulator register, K,

to hold temporary results.

Sixteen different sub-instructions are available in the BOP in—
struction.

in the following description ”bit" means the bit specified by
destination register dr and bit number bn. Note that bn is
specified by octal numbers and the ”bits" are numbered 0, 10,
20, 30, . . . , 170.

The eight control indicators of the status register which may be
operated upon by means of the BOP instruction should be
specified with the following mnemonics: (Subscripto signifies
the complement of the specified bit.)

SSPTlVl Page table mode (SSPTlVl = 0)
SSTG Rounding indicator for floating point operations
SSK One bit accumulator indicator
882 Error indicator
880 Dynamic overflow indicator
SSO Static overflow indicator
SSC Carry indicator
SSlVl lVlulti~shift link indicator

N D—06.008.0l
Revision A

3—47

3.2.6.1 Bit Skip instructions

Four sub-instructions are available to test the setting of the specified bit.

BSKP ZRO <bn> <dr> Skip next instruction if bit = 0.

Time: 1.1/1.4 ps*

BSKP ONE <bn> <dr> Skip next instruction if bit = 1

Time: 1.1/1.4 ps*

. BSKP BCM <bn> <dr> Skip next instruction if bito = K

Time: 1.7/1.9 ps*

BSKP BAC <bn> <dr> Skip next instruction if bit = K

Time: 1.7/1.9 “5*

3.2.6.2 Bit Setting Instructions

Four sub-instructions are available to set the specified bit.

BSET ZRO <bn> <dr> bit <- 0

Time: 0.6 ps

BSET ONE <bn> <dr> bit <— 1

Time: 0.6 us

BSET BCM <bn> <dr> bit <— bito, complement bit

Time: 0.6 ps

BSET BAC <bn> <di’> bit <— K

Time: 1.4 as

3 * False/True

ND-06.008.01

3—48

3.2.6.3 One Bit Accumulator Instructions

Eight sub-instructions are available to specify operations between the
specified bit and the one bit accumulator, K.

BSTA <bn> <dr> bit <- K, K *- 0 Store and clear

Time: 1.6 as

BSTC.<bn> <dr> bit <~ KO, K <— 1 Store complement
and set.

Time: 1.6 ,us

B LDA <bn> <dr> K <— bit Load

Time: 1.4 us

BLDC <bn> <dr> K <— bit 0 Load complement

Time: 1.4 as

BANC <bn> <dr> K <— bitO A K Logical AND
complement

Time: 1.4 as

BORC <bn> <dr> K <— bitO V K Logical OR
complement

Time: 1.4 as

BAND <bn> <dr> K 9 bit A K Logical AND

Time: 1.4 us

BORA <bn> <dr> K <- bit V K Logical OR

Time: 1.4 us

N D-06.008.01

3.2.7

3—49

Some examples of correctiy specified bit operation instructions.

Example 1:

Skip next instruction if the carry indicator is set.

BSKP ON E SSC

Example 2:

Reset the static overflow indicator.

BSET ZRO 880

Example 3:

Complement the sign bit in the T register (complement a floating point
number).

BSET BCM 1708 DT

Example 4:

Set bit 6 in the X register to one.

BSET ONE 608 DX

Examplifii

Copy A register bit 14 into X register bit.

BLDA 1608 DA %K<~Abit14
BSET BAC1508 DX % X bit 13 4-, K<— O

Accumulator Transfer Instructions

The internal registers in NORD-iO/S which cannot be reached by the register
instructions are controlled by the following four instructions:

TRA Transfer to A register (Section 3.2.7.1)
TRR Transfer from A register (Section 3.2.7.2)
MCL Masked clear (Section 3.2.7.2)
MST Masked set (Section 3.2.7.2)

N D-06.008.01

The registers which are read and/or controlled by these instructions are:

Name Code8 Description

STS 1 Status register. Bits 0-7 may be read or set, while
bits 8-11 (PL), bit 14 (PONl) and bit 15 (IONl) may
only be read.

OPR 2 Operator‘s panel switch register (see Section 7.2).

LMP 2 Operator' panel lamp register (see Section 7.3).

P68 3 Paging status register (see Section 6.5.2).

PCR 3 Paging control register (see Section 6.3.1)

PVL 4 Previous level. The contents of the register are:
lRR <previous level * 108> DP (see Section 5.4).

“C 5 Internal interrupt code (see Section 5.4)

”E 5 Internal interrupt enable (see Section 5.4)

PID 6 Priority interrupt detect (see Section 5.1)

PIE 7 Priority interrupt enable (see Section 5.1)

CCLR 10 Clear cache (see Section 9.3.2)

CSR 10 Cache status register (see Section 9.3.3)

ALD 12 Automatic load descriptor (see Section 8.2.4)

Cl LR 12 Cache inhibit limits register (see Section 9.2.5)

PES 13 Memory error status (see Section 5.4.11)

ECCR 15 Error correction control register (see Section 5,5,2)

PEA 15 Memory error address (see Section 5.4.1 1)

Table 3.3: Survey of Registers Con trolled by Accumulator Transfer
Instructions

Codes not shown should not be used. See also Table 3.4.

There are also two instructions for accessing single registers outside current
program level (see Section 3.2.3.3).

ND-06.008.01

3—51

3.2.7.1 l ransfer to A Register

TRA Transfer to A register Code: 150 000

Format: TRA <register name>

The register which may be transferred to
the A register with the TRA instruction
is shown in Table 3.4. The contents of
the register specified by the <register
name> are copied into the A register.
The operator’s panel and the paging
systems are optional, and without these
options a TRA instruction, which tries
to read a non-implemented register, will
cause the A register to be cleared. The
TRA instruction is privileged.

Time: 2.1 ,us

3.2.7.2 Transfer from A Register

The transfer from the A register may be either an ordinary transfer of
all 16 bits or a selective setting of zeros and ones.

The three sub-instructions are:

TRR

MCL

Transfer to regsiter Code: 150 100

Format: TRR <register name>

The contents of the A register are copied
in the A register specified by <register
name>. The registers which TRR may
operate on are shown in Table 3.4. The
TRR instruction is privileged.

Time: 2.4 as

Masked clear Code: 150 200

Format: MCL <register name>

For each bit which is a one in the A register
the corresponding bit specified by <register
name> will be set to zero. The register which
MCL may operate on is shown in Table 3.4.
The MCL instruction is privileged.

Time: 2.9 ,us

Nil-06008.01

3—52

MST Masked set

Format: MST <register name>

For each bit which is a one in the A register
the corresponding bit in the register specified
by <register name> will be set to one. The
registers which MST may operate on are
shown in Table 3.4. The MST instruction is
privileged.

Register
Name Codes TRA TR R MCL MST

STS 1 x x x x
OPR 2 x
LMP 2 x
P68 3 x
PCR 3 x
PVL 4 x
”C 5 x
“E 5 x
PlD 6 x x x x
PIE 7 x x x x
CCLR 10 x
CSR 10 x
ALD 12 x
Cl LR 12 x
PES 13 x
ECCR 15 x
PEA 15 x

Table 3.4: Accumulator Transfer Instructions

ND-06.008.01

Code: 150 300

Time: 2.9 ps

3.3

3.3.1

3—53

INPUT/OUTPUT CONTROL INSTRUCTIONS

lOX input/Output execute Code: 164 000

Format: IOX <device register address>

Time: 1.7 us

15 1110 O

lOX device register address

All program controlled transfers between the CPU A register and the
external devices are controlled by using the IOX instruction. The lOX
instruction is loaded into the instruction register, IR, of the CPU. The
CPU in its turn generates the input/Output timing and enables the
selection of the appropriate device, which is specified by its device register
address, <device register address>, bits O~10. These 11 bits define an
upper limit of 2048 device register addresses to the number of registers
that may be addressed. Some registers may require two device register
addresses, one for reading and one for writing. Different devices will,
however, require different number of devices register addresses. Thus,
the maximum number of physical devices that may be connected will
depend on the specific configuration of devices.

Simple devices will usually require at least three different instructions
(addresses), write control register, read status register, and read or write
data buffer register. More complex devices like magnetic tape units
may need up to eight instructions. instructions for the same device are
assigned successive device register addresses.

The lOX instruction is privileged. See Section 6.5.1.

Recommended Device Addresses

Device addresses used for Norsk Data A.S. produced equipment on a
standard Input/Output bus follow a preset assignment. The standard
address formats for the different groups of devices are shown in Figure
3.5.

ND—06.008.01

3-54

Standard Address Bits
Device Group Group 10 9 8 7 6 5 4 3 2 1 0

Address

Directly controlled e 000 0 e 0 0 0 register number
registers

Synchronous e 100 0 e 0 O 1 modem E E #2
Modems no. g g E

Asynchronous e 200 0 e O 1 0 display § § 5,
Modems no. 5 ‘g‘ g

Teletypes e 300 0 e O 1 1 Teletype E g g

Paper tape devices, e 400 0 e 1 O 0 device 'g T? 5
line printers, etc. type E g g

Mass storage e 500 0 e 1 0 1 mass reg. 5
devices storage no. 2

no. ‘5

Plotters, other e 600 0 e 1 1 0 device type '9‘ g
DMA devices + reg. no. E g

Miscellaneous e 700 0 e 1 1 1 3-5

88888389"N""
a 2 Q‘ N ‘—

Table 3.5: Standard Device Addresses for Norsk Data Produced Equipment

The 6 bit is used for extension of the groups, extension: e = 1.
The e is normally equal ‘to zero.

channel = 0 input channel, i.e., input devices
1 output channel, i.e., output devices

0 data register
control “ 1 status or control registers

0 input transfer
transfer ' 1 output transfer

N D-06.008.01

m—

3-55

Bit 10 is used to distinguish between Norsk Data produced and customer
produced equipment, bit 10 equals zero: Norsk Data produced equipment.

ln the following, some examples are given of device addresses. For further
programming specifications a NORD-lO lnput/Output manual should be
consulted.

Example 1:

Teletype Addresses

The codes below are relevant for the first Teletype, Teletype number 0.
The codes for the first eight Teletypes are found by adding 108 * N for
the codes given, where N is the specific Teletype number.

lnput Channel

IOX 300 Read Data Register
IOX 302 Read Status Register
IOX 303 Write Control Register

Output Channel

IOX 305 Write Data Register
IOX 306 Read Status Register
IOX 307 Write Control Register

Example 2:

Paper Tape Reader Addresses

. IOX 400 Read Data Register
IOX 402 Read Status Register
lOX 403 Write Control Register

Example}.

Paper Tape Punch Addresses

lOX 411 Write Data Register
IOX 412 Read Status Register
IOX 413 Write Control Register

ND-06.008.01

3—56

Example 4:

Line Printer Addresses

lOX 431 Write Data Register
IOX 432 Read Status Register
IOX 433 Write Control Register

ExamelsLS;

The standard device addresses for some of the mass storage devices are as
follows:

500 Disk I with four units
510 Disk ll with four units
520 Magnetic tape l with four units
530 Magnetic tape ll with four units
540 Drum l
550 Drum H
560 Drum lll
570 Drum N

and the standard register addresses within each device:

0 Core Address Register
3 Sector Block Address Register
4 Status Control Register
7 Word Count Register

Examplejs

Drum Addresses

The codes below are relevant for drum l.

lOX 540 Read Core Address
IOX 541 Load Core Address
IOX 542 Read Sector Counter
IOX 543 Load Block Address
IOX 544 Read Status Register
lOX 545 Load Control Register
IOX 547 Load Word Count Register

ND~06.008.01
‘ Revision A

3—57

3.3.2 Format of Status and Control Word

The format of status and control word may be assigned by the designer
of each device controller. The following standard is used by Norsk Data
for its own device control cards (when applicable) and is recommended
for customer use.

Status Word

Bit 0 Ready for transfer, interrupt enabled
1 Error interrupt enabled
2 Device active
3 Device ready for transfer
4 inclusive OR of errors

. 5 Error indicator
6 Error indicator
7 Error indicator
8 Error indicator
9 Error indicator

10 Error indicator
11 Operational mode of device
12 Operational mode of device
13 Operational mode of device
14 Operational mode of device
15 Operational mode of device

Control Word

Bit

r
o

o
o

x
io

u
m

w
—

‘o

Enable interrupt on device ready for transfer
Enable inerrupt on errors '
Activate device
Test mode
Device clear
Address bit 16
Address bit 17
Not assigned
Not assigned
Unit
Unit
Device operation
Device operation
Device operation
Device operation
Device operation

ND-06.008.01 ,
Revision A

3.4

3.4.1

3—58

SYSTEM CONTROL INSTRUCTIONS

The following seven instruction are denoted as the system control
instructions:

ION Interrupt system on
IOF Interrupt system off
IDENT Identify Input/Output interrupt
PON Memory management on
POF Memory management oftc
MON Monitor call
WAIT Wait or give up priority

Except from the MON instruction, all the system control instructions
belong to the class of privileged instructions. See Section 6.5.1.

Interrupt Con trol Instructions

Note: A complete description of the NORD—10/S Interrupt System is
found in Chapter 5.

The NORD-10/S computer has a priority interrupt system with 16 program
levels. Each program level has its own set of registers and status indicators.
The priority is increasing: program level 15 has the highest priority, pro-
gram level 0 the lowest.

The arrangement of the 16 program levels are as follows:

15 Reserved extremely fast user interrupts
14 Internal hardware status interrupts
13-10 Vectored interrupts, maximum 2048 vectored interrupts
9-8 System programming
7-0 User programming levels

All 16 program levels can be activated by program control. In addition,
program level 15, 13, 12, 11 and 10 may also be activated from external
devices.

The program level to run is controlled from the two 16—bit registers:

PIE Priority interrupt enable
PID Priority interrupt detect

Each bit in the two registers is associated with the corresponding program
level. The PIE register is controlled by program only.

ND-06.008.01

3-59

The PID register is controlled both by program and hardware interrupts.
At any time, the highest program level which has its corresponding bits
set in both PlE and PID is running, i.e., the contents of the PL register.

The PIE and PID are controlled by the TRA, TRR, MST and IVICL instruc—
tions. See Section 3.2.7.

When power is turned on, the power-up sequence will reset and PID and
the register set on program level zero will be used. Two instructions are
used to control the on-off function of the interrupts system.

ION Interrupt system on Code: 150 402

Format: ION

The ION instruction turns on the interrupt
system. At the time the ION is executed,
the computer will resume operation at the
program level with highest priority. If a
condition for change of program levels
exists, the ION instruction will be the last
instruction executed at the old program
level, and the old program level will point
to the instruction after ION. The interrupt
indicator on the operator's panel is lighted
by the ION. The ION instruction is
privileged. See Section 6.5.1.

Time: 1.1 us

IOF Interrupt system off Code: 150 401

Format: IOF

The IOF instruction turns oftc the interrupt
system, i.e., the mechanisms for changing of
program levels are disabled. The computer
will continue operation at the program level
at which the IOF instruction was executed,
i.e., the PL register will remain unchanged.
The interrupt indicator on the operator’s
panel is reset by the lOF instructions. The
IOF instruction is privileged. See Section
6.5.1.

Time: 1.1 us

Initialization of the interrupt system is described in Section 5.2.

ND—06.008.01

3—60

ln addition, the following three registers are available to ease the interrupt
programming:

lIE lnternal interrupt enable
IIC Internal interrupt code
PVL Previous level causing internal hardware status interrupt

Their uses are found in Section 5.4. In NORD-10/S there are possibilities
for 2048 vectored input/Output interrupts where each physical lnput/
Output unit will have its own unique identification code and priority.
The IDENT instruction is used to distinguish between vectored interrupts.

lDENT Identity vectored interrupts Code: 143 600

Format: lDENT <program level number>

When a vectored interrupt occurs, the IDENT
instruction is used to identify and service the
actual Input/Output device causing the inter-
rupt. Actually, there are four lDENT instruc-
tions, one to identify and serve input/Output
interrupts on each of the four levels 10, 11,
12 and 13. The particular level to serve is
specified by the program level number.

The four instructions are:

lDENT PL1O Identify input/Output interrupt on Code: 143 604
level 10

lDENT PL11 identify lnput/Outputinterrupt on Code: 143 611
level 11

lDENT PL12 ldentify lnput/Outputinterrupt on Code: 143 622
level 12

lDENT PL13 Identify Input/Outputinterrupt on Code: 143643
level 13

The identification code of the Input/Output
device is returned to bits 0—8 on the A register
with bits 9-15 all zeros.

If the IDENT instruction is executed, but
there is no device to serve, the A register
is unchanged. An lOX error interrupt to
level 14 will occur if enabled. Refer to
Section 5.4.7.

ND-06.008.01
Revision A

3.4.2

3—61

It several devices on the same program level
have simultaneous interrupts, the priority
is determined by which input/Output Slot
the device is plugged into, and the interrupt
line to the corresponding PlD bit will remain
active until all devices have been serviced.
When a device responds to an lDENT, it
turns off its interrupt signal. The lDENT
instruction is privileged. See Section 6.5.1.

Time: 1.9 us

For NORD-10/S the identification codes are standarized for input/Output
' devices delivered from Norsk Data.

Table 3.6 shows the lOX addresses and lDENT codes used in standard
software.

Memory Management Control Instructions

A full description of memory management is given in Chapter 6. The
paging system is controlled by the two privileged instructions:

PON and PCP

PON Memory management on Code: 150 410

Format: PON

This instruction should only be used with
the interrupt system on and with the neces—
sarry internal hardware status interrupts
enabled. The page index tables and the
PCR registers should be initialized before
PON is executed. The PON instruction
is privileged. See Section 6.5.1.

The instruction executed after the PON
instruction will use the page index table
specified by PCR.

Time: 1.1ps

ND-06.008.01

POF

3—62

Memory management off Code:

Format: POF

This instruction is a privileged instruction and
may only be executed if the ring bits are 11
or 10. See Section 6.5.

The instruction will turn off the memory
management system, and the next instruc-
tion will be taken from a physical address
(in lower 64K), specified by the virtual
address following the POF instruction.

The CPU will be in an unrestricted mode
without any hardware protection features,
i.e., all instructions are legal and all memory
“available”.

Time:

3.4.3 Monitor Call Instruction

MON Monitor Call Code:

Format: MON <number>

The instruction is used for monitor calls,
and causes an internal interrupt to program
level 14. The parameter <number> follow-
ing MON must be specified between —2008
and 1778. This provides for 256 different
monitor calls. This parameter, sign extended,
is also loaded into the T register on program
level 14.

Time:

ND-06.008.01

150 404

1.1 us

153 000

1.6 us

3—63

3.4.4 Wait or Give Up Priority

WAIT Wait Code: 151000

Format: WAlT<number8>

The WAIT instruction will cause the com-
puter to stop if the interrupt system is
not on. The program counter will point
to the instruction after the WAlT.

ln this programmed wait the STOP button
on the operator’s panel is lighted. To
start the program in the instruction after
the WAIT, push the CONTINUE button
or type ! on the console TTY.

if the interrupt system is on, WAlT will
cause an exit from the program level now
operating (the corresponding bit in PlD
is reset), and the program level with the
highest priority will be entered, which
normally will then have a lower priority
than the program level which executes the
WAlT instruction. Therefore, the WAlT
instruction means ”Give up priority“.

lf there are no interrupt requests on any
program level when the WAlT instruction
is executed, program level zero is entered.
A WAIT instruction on program level zero
is ignored.

Note that it is legal to specify WAlT fol-
lowed by a number less than 4008. This
may be useful to detect in which location
the program stopped. The WAlT instruction
is displayed at the operator's panel, lR
register. The WAIT instruction is privileged.
See Section 6.5.1.

Time: 2.4 us”

ND-06.008.01
Revision A

3.5

3—64

CUSTOMER SPECIFIED INSTRUCTIONS

The remaining free codes on the skip instruction may be used to augment
the NORD-10/S instruction set. The codes to be used for customer
specified instructions are as follows:

1401 XX 1403XX 1405XX 1407XX
1411XX 1413XX 1415XX 1417XX
1421XX 1423XX 1425XX 1427XX
1431XX 1433XX 1435XX 1437XX

These 16 instructions have provisions for 16 new entry points in a
Read-only-memory outside the address space in the 1K standard
Read-only memory.

if these instructions are not implemented, they will cause an internal
hardware status interrupt to level 14 (ROM out of range).

All the 16 customer specified instructions have the source (sr) and destina-
tion (dr) fields available for further specifications.

These fields may either be used to let the customer specified instruction
operate on the general registers, or used to augment the number of cus-
tomer specified instructions.

If the sr and dr fields are used to increase the number of customer
specified instructions, up to 1024 instructions may be added.

Norsk Data A.S. should be contacted for further information on specifica-
tions and programming rules for the NORD-10/S micro-processor.

ND-06.008.01

3—65

DEVICE STANDARD EXTENSION
I .

Levei IDENT 10x IDENT 10x

Tape punch 10 2,22 410—413, 414-41 7 32 +1000
Tape reader 12 2,22 400-403, 404-407 . 32 +1000

Line printer 10 3,23 430-433, 434-437 33 +1000
Card reader 12 3,23 420-423, 424-427 33 +1000
Sync. modem 10, 12 4,14 100-107, 110117 20, 24 120-127, 130—137
Digital registers 10, 12 17 770-777 27 +1000
Teletype 10, 12 1, 5, 6, 7, 300—377 50-57 +1000

44-47
Async. modem 10, 12 6067 200277 70-77 +1000

. Analog/digital
converter 720-727 +1000
Digital/analog
converter 730—737 +1000
Versatec plotter 1 1 4 600—607 14 +1000
Disk, 10 MB 11 1, 5 500-507, 510—517
Drum 11 2, 6 540-547, 550-557
Mag. tape 11 3, 7 520—527, 530-537
Disk, 33/66/250
MB 11 1540-1547
Floppy Disk 11 15604567
Real-time clock 13 1 10—13 2 14-17

Table 3.6: Standard I0X addresses and [DEN T codes

N D-06.008.01

Revision A

4.1

4.1.1

THE INPUT/OUTPUT SYSTEM

INPUT/OUTPUT HA RDWAHE

General Description

In NORD-lO/S all Input/Output device interface cards are made to a com-
mon standard. The Bus Control modules contain a prewired bus with a
number of identical interface slots permitting any mixture of devices with—
out changing the backwiring and plug panel. Device plugs are also to a
common standard.

This system permits the use of printed backplane wiring for all wiring
within one module. Cable connectors are plugged directly into the back-
plane.

A Local l/O Bus is controlled by a Bus Receiver, and all devices connected
to this module may be programmed for transfer of characters or words
one by one via the A register or for transfer directly to memory, direct
memory access.

The direct memory access channel, DMA, has a transfer capacity of 1M
word/second. There may be a single very high—speed device requiring
this speed, or several different slower devices sharing the channel. In the
latter case, there will be no channel time overhead in switching between
devices. Thus, several devices using the channel simultaneously, will be
given a total throughput equivalent to the maximum speed of the channel.

An optional controller which permits control of the devices from two
different CPU’s, multi-machine environment, is also available.

All modules shown in Figure 4.1 are standard 19" modules. The maxi—
mum size memory is 256K. The CPU module contains the CPU and 8
standard memory slots.

The connection between the CPU module and the Bus Control module
is through the Main Input/Output Bus. The local bus in the Bus Control
module is logically the same general input/Output bus only separated
from the first by electronic switches. Each new Bus Control module
requires a Bus Receiver that contains the necessary buffer and control
and also 16 memory address registers to be used by the local input/Output
devices in that control module. Thus, in case of DMA transfer, the
individual device need not supply the memory address, since this is
integrated in the controller.

ND-06.008.01
Revision A

4—2

OPTIONAL MULTIPORT MEMORY MODULE

I I L

I I I I I I I I I I..
-_

__
__

__
_

Memory
Modules,
Max.64K

Modules

‘L
i_

_
..

_
._

._
..

_

fixtgnsion to
another
Multiport

CPU MODULE Mem.Module

Optional ;
Multipor 3
Memory '
Driver

\ Bus

ceiverfl
Registers, Arithmetic, lnn
terrupt System, Operator's
Panel, Memory Management
Option, Cache Memory Op—
tion, Control.
For details, see fig. 2.

I
I

l .

: <: CPU Bus Trans—2

|
I
I
I
I
I

BUS CONTROL MODULE

F """"" “fl“ ______________ 7
\

Optional)
Bus I
Memory
Brancher

Bus
Receiver

Output3 Interfaces

I
I
I
I

Input/ ‘ I

I
I
I

\/

Figure 4.1: NORD- 10/8 Bus System

ND—06.008.01
Revision A

The position of the device interface in the modules determines the inter-
rupt priority of the device. If several devices within one module are con-
nected to the same program level, the device closest to the controller has
the highest priority within that level. Also, if two devices in the same
module compete for a direct memory access, the device closest to the
controller has the highest priority and will win the first access.

4.1 .2 Input/Ou tput Bus A rchiz‘ecture

The general layout of the input/Output Bus system is shown in Figure 4.1.
One of the important features in this structure is the electronic separation
of the local [/0 bus at each Bus Receiver.

. Within each Bus Receiver there are provisions to protect the system from
being influenced by malfunctioning devices. This is done by giving each
Bus Receiver the possibility of disconnecting the local l/O bus controlled
by the Bus Receiver.

For maximum DMA throughput, a Multiport Memory and Bus Memory
Brancher should be used. See NORD-iO input/Output manual (ND-06.004)
for hardware details of signal levels, signal definition and timing.

4.1.3 Vectored Interrupt [den tification

The NORD—iO/S has a multiprogram system with 16 program levels.
Each program level has a complete set of registers. Of these 16 program
levels, 5 are available to external devices. These are: 15, 13, 12, 11 and
10.

. Several different interrupt sources may be connected to the program levels
10, 11, 12 and 13, while program level 15 is reserved for extremely fast
user Input/Output.

To identify which device is interrupting, a ”who are you" type of instruc-
tion is used. This returns a 9-bit identification from the interrupting device
to the A register. The instruction has the format:

lDENT <program level number>

and is described in Section 3.4.1.

For program level 15, which is exclusively reserved for user Input/Output,
there is no identification system, and identification is obtained by reading

3 a status word.

5. ND—06.008.01
Revision A

4.2

4.2.1

4-4

INPUT/OUTPUT PROGRAMMING

The recommended way to perform Input/Output in a software system
is to use standard Input/Output subroutines. Input/Output subroutines
and drivers for all standard devices are available from Norsk Data A.S.

Data transfer between the A register and an external device will be con-
trolled by lOX instructions containing an 11~bit “Device Register Address"
—— DRA.

For direct memory access devices, such as disks, drums and magnetic tape,
the IOX instruction is used to write or read control information to or
from the controller of the specific device. Complex devices, such as those
mentioned, may need several DRA’s. A punch, reader, Teletype input or
Teletype output will require at least three DRA instructions.

The three instructions are:

IOX <load device control register>
IOX <read device status register>
IOX <read device data buffer register> or

<write device data buffer register>

Norsk Data‘s standard for use of the bits in device status and device control
register is shown in Section 3.3.1.

The Input/Output system makes it possible for the programmer to control
external devices in a tight and flexible manner.

Detailed information about DRA, status, control, etc., for different devices
is found in the “Programming Specification” for each device type.

Programming Examples

The following example shows a simple subroutine which reads a byte from
the tape reader:

INPUT,

RDR
DEVC
DEVS
RDEVB

SAA 4
IOX DEVC + RDR

IOX DEVS+RDR
BSKP ONE 30 DA
JMP * ——2
IOX RDEVB + RDR
EXIT

400
3
2
O

ND-06.008.0’l

% SET CONTROL (ACTIVATE
% DEVICE)
% READ DEVICE STATUS
% DEVICE READY?
% NO
% READ DEVICE BUFFER

%1.DRA FOR TAPE READER

4.2.2

4.2.3

Programming examples for complex devices may be found in the appropriate
programming manuals.

lnput/Output Interrupt Programming

lnput/Output via waiting loops as shown in the previous section is very
ineffective due to the fact that most of the computer time will be spent
in the input/Output loops. This may be avoided by utilizing the interrupt
system. An interrupt will occur every time the device is ready for transfer.

The necessary software will normally be:

— Input/Output subroutines which will put a byte into a device buffer.
(Software buffers.)

— Interrupt identification sequences on the programming levels which
the devices are connected to (using the IDENT instructions).

— interrupt drivers for each device type. The identification sequence
will branch to the driver of the interrupting device. The driver will
fetch a byte from the device buffer and output it to the device (output
device) or read a byte from the device and put it into the device buffer
(input device). The user of such a system, however, will only “see”
the input/Output subroutines and does not have to bother with details.

Design of an Input/Output Hand/er Routine

This is an example of a simple Input/Output driver system:

% PROGRAM ON LEVEL 12
RET, WAIT
lNT12, SAA O .

lDENT PL12 % GET INTERRUPT lDENTlFCATlON
RADD SA DP % ADD NUMBER TO

‘ % P REGISTER
JMP ERROR % IDENT O MEANS l/O

%SYSTEM ERROR
JMP DRlVERl %GO T01.DRIVER
JMP DRIVERZ

JMP DRlVERN
JMP RET

% DRlVER FOR AN lNPUT DEVICE

ND-06.008.01

DRIVER1, IOX STATUS % READ DEVICE STATUS
BSKP ZRO 40 DA
JMP ERRORD % DEVICE ERROR
IOX RBUF % READ DEVICE BUFFER

PUT BYTE INTO BUFFER ETC.
ENABLE AND ACTIVATE DEVlCE FOR NEXT TRANSFER

JMP RET

N D-06.008.01

THE lNTERRUPT SYSTEM

The NORD-10/S interrupt system is designed to simplify programming,
and to allow multiprogramming at extremely high efficiency.

This is achieved by use of a complete set of registers and status indicators
for each program level. ‘

There are 16 program levels in NORD-10/S and, therefore, 16 sets of reqis-
ters and status indicators. Each set consists of: A, D, T, L, X and B
registers, program counter and each of the status indicators 0, 0, Z, C,
M, K, PTlVl and T6.

The context switching from one program level to another is completely
automatic and requires only 1.0 ps; the saving and unsaving of all regis— s
ters and indicators are included.

in addition to the 16 program levels, there are 10 internal hardware status
interrupts connected to program level 14, and a maximum of 512
vectored interrupts connected to each of the program levels 13, 12, 11
and 10.

For both internal hardware status interrupts and vectored interrupts
there is an automatic priority identification mechanism, thus, no polling
of interrupts is necessary.

The arrangement of the 16 program levels are as follows:

15: Reserved extremely fast user interrupts
14: Internal hardware status interrupts, 10.
13-10: Vectored interrupts, up to 2048 vectored interrupts.

9—8: System programming
7—0: Programming levels

The priority is increasing, program level 15 has the highest priority,
program level 0, the lowest.

The structure of a large programming system may be greatly simplified
by the user of these program levels where independent tasks may be organ-
ized at different program levels with all priority decisions determined by
hardware, and with almost no overhead because of the rapid context
switching.

All 16 program levels can be activated by program control. In addition,
program levels 15, 13, 12, 11 and 10 may also be acitvated from external
devices.

ND—O6.008.01
Revision A

5.1 CONTROL OF PROGRAM LEVELS

The program level to run is controlled from the two 16-bit registers:

PIE Priority Interrupt Enable
PID Priority Interrupt Detect

Each bit in the two registers is associated with the corresponding pro-
gram level. The PIE register is controlled by program only. The PID
register is controlled both by program and hardware interrupts. At
any time, the highest program level which has its corresponding bits
set in both PIE and PID is running.

The actual hardware mechanisms for this are as follows:

The number of the current program level is called PL (0 < PL < 15),
and this 4-bit PL register controls which register set (context block)
to use.

The PL number is constantly compared to a 4-bit register PlK. PlK
always contains the number of the highest program level which has
its corresponding bits set in both PIE and PID. Whenever PlK is un—
like PL, an automatic change of context block will take place through
a short micro-program sequence. This sequence will do the following:

I. Read PL and store it in the PVL register, previous program level.

2. Read PlK and store it into PL.

3. Resume operation with a new register set determined by PL.

This complete sequence requires only 1.0 us from the completion of
the instruction currently working when the interrupt took place, and
until the first instruction is started on the new level with its new set
of registers and status.

The programming control of the interrupt system is as follows:

PlD and PIE may be read to the A register with the instructions:

TRA PID and TRA PIE.

Three instructions are available for the setting of these registers:

I. TRR PID and TRR PIE

The TRR instruction will copy the A register into the specified register.

2. MST PlD and MST PIE

N D—06.008.01
Revision A

The MST, masked set, instruction will set the bits in the specified register
to one where the corresponding bits in the A register are ones. (The A
register is used as a mask for selection of which bit to set.)

3. MCL PID and MCL PIE

The MCL, masked clear, instruction will reset to zero the bits in the
specified register where the corresponding bits in the A register are ones.

In addition to TRA, TRR, MCL and MST, the PID register is also con-
trolled in the following ways.

External interrupts may set PID bits 15, 13, 12, 11, 10 and internal
hardware status may set Pl D bit 14.

The resetting of PID bits is also controlled by the WAIT instruction,
which will reset PID on current program level. (The WAIT instruction
is also called “Give up Priority".)

For example, a program on program level 14, which issues a WAIT in—
struction, will cause PID bit 14 to be zero, which again will cause a
new program level to be entered because PlK became different from
PL l= 14).

The interrupt system is also controlled by the two instructions:

ION Turn on interrupt system
IOF Turn off interrupt system

When power is turned on, the power~up sequence will reset PID, PIE
and PL, and the register set on program level zero will be used.

The ION instruction will resume operation at the highest program level
at the time ION is executed, if a condition for change of program levels
exists, the ION instruction will be the last instruction executed at the
old program level, and the P register at the old program level will point
to the instruction after ION.

The IOF instruction will turn off the mechanisms for changing of program
level, and PL will remain unchanged.

IOF and ION may also be used to disable the interrupt system for short
periods, for example in order to prevent software timing hazards.

ND-06.008.01
Revision A

5.1.1 Program Level Activation

All program levels may be activated by program, by setting the
appropriate bits in PIE and PlD.

Example;

lf program level 9 is already enabled, bit 9 in PlE is set, then the program

level is activated from a lower program level by setting bit 9 in PlD.

SAAO
BSET ONE 110 DA %SET BlTQTO ONE
MST PID %SETPlDBlT9

NEXT,

The MST PlD will be the last instruction executed, and the P register at

the lower program level will point to the NEXT instruction.

Note that it is not possible to program-activate a program level which
has already been activated (ie, has its PlD bit set to one), if it is
attempted, the program level will only be entered once.

ND-06.008.01

5.2 INITIAL/2A T/ON OF INTERRUPTSYSTEM

The initialization of the NORD-lO/S interrupt system is simple. After
power-up, PlE and PL will be zero and register block zero is used. The
initialization sequence must include the following:

1. Enabling of the desired program levels by setting PIE. The llE,
internal interrupt enable register, must also be set according to
which internal hardware status interrupts are enabled.

2. The program counter on all program levels used, must be initialized.
The program counter must point to the entry point of that particular
program level.

The remaining initialization of registers may be performed either at
. program level itself at the time of the first entry, or together with the

‘ initialization of the program counter. Note that if error indicator 2
has enabled internal hardware status interrupt, the Z indicator in the
status word must be set to zero on all active program levels before
the interrupt system is turned on.

3. A TRA NC and TRA PEA should be executed to reset any internal
interrupt and the memory error address register.

4. The PID register should be set to trigger desired initial level.

5. The last instruction in the initialization sequence is lON.

ND-06.008.01

5.3 INTERRUPTPROGRAM ORGAN/2A TION

A program at a program level will be organized as a loop, which is
executed once each time the program level is activated.

ENTRX, — % FIRST ENTRY POINT

WAlT %GlVE UP PRIORlTY
JlVlP ENTRX

Note that a WAlT instruction on program level zero will reset PlD bit
zero, but since there are no program levels with lower priority, the program
on program level zero will be re-entered at the instruction following the
WAlT.

ND-06.008.01

l 5.4 INTERNAL HARDWARE STA TUS INTERRUPTS

All internal hardware status interrupts are connected to program level
number 14.

E Internal hardware status interrupts are individually enabled by an 11-bits
; register called HE, internal interrupt enable. HE is set by the TRR llE
i instruction.

The internal hardware status interrupts are assigned to the HE register
i in the following way:

15 10 8 5 2 O
K S [I >

2 g E E E N : t E E <2):

Bit No. HC Code Cause

0 0 Not assigned

. MC 1 1 Monitor call

PV 2 2 Protect Violation.
Page number is found in the Paging
Status Register.

PF 3 3 Page fault.
Page not in core.

ll 4 4 Illegal instruction.
Not implemented instruction.

’ Z 5 5 Error indicator
The Z indicator is set

Pi 6 6 Privileged instruction

lOX 7 7 IOX error
No answer from external device

PTY 8 10 Memory parity error

MOR 9 11 Memory out of range
Addressing non—existent memory

POW 10 12 Power fail interrupt

11-15 Not assigned

@ Table 5.1: Internal Hardware Status Interrupt

ND~06.008.01

In order to optimize the processing of internal hardware status interrupts,
the instruction

TRA ”C

will return to the A register, bits 0-3, the contents of NC, with bits 4-15
zero. (Only power fail interrupt may cause more than one source for
internal hardware interrupts, and if that is the case, power fail interrupt
will have priority immediately.)

The instruction TRA “C will automatically reset llC.

Note that if the interrupt is caused by the error indicator 2, the Z
indicator on that program level must be cleared by program control from
program level 14. (Otherwise, another interrupt will occur.)

Example:

LDA (3777 % ENABLE ALL lNTERRUPTS
TRR llE
TRA llC
TRA PEA % RESET ERROR LOCK
lON (Refer to Section 5.2.)

LEV14, TRA llC
RADD SA DP % COMPUTED GO TO
JMP ERROR %ONOT ASSIGNED
JMP MQNCL %1 MONITOR CALL
JMP PRQTV % 2 PROTECT VlOLATlON

EXlT14, WAlT
JiVlP LEVM

When an internal interrupt occurs, the P register on the offending level
has been incremented and points to the instruction after the one that
caused the interrupt.*

* Note: If MOR, PF or PV occur during an instruction fetch cycle,
the P register is NOT incremented. For PF and PV, this situation
is indicated by bit 15 of the P68 register. See Section 6.5.2.

ND-06.008.01

5.4.1

5.4.2

In some cases, it is necessary to know which program level caused the
internal hardware status interrupt. This is done with the instruction

TRA PVL

which reads the PVL register, previous program level (level causing inter-
nal interrupt) into bits 3-6 in the A register, with remaining bits in the
A register being equal to the code for inter-register read the P register,
i.e., the contents of the A register:

lRR <previous level8 * 108 > DP

This technique gives quick access to the P register of the program level
causing the internal interrupt.

Example:

TRA PVL % Ar=lRR <level> DP
EXR SA % A:=P register on offending level
COPY SA DX
LDA —l ,X % A:=Offending instruction

Note: PVL is only set when entering level l4 from a level with lower
priority. Care should be taken so that programs on level l4 and level
15 do not cause internal interrupts.

Monitor Call Interrupt

A monitor call has been executed. The level may be found as previously
explained. The number of the call is automatically set to the T register
on level 74.

Note that this number is 8-bit with sign-extension, i.e., in the range
2008 to 1778. See Section 3.4.3.

Protect Violation Interrupt

A protect violation has occurred. Two types of violations are possible:

- Memory protect violation

This means that an illegal reference type (Read, Write, Fetch or
Indirect) has been attempted.

N D~06.008.01

5.4.3

5.4.4

5.4.5

5.4.6

5—10

—— Ring violation

This means that a program has tried to access an area with higher
Ring Status.

Details regarding this interrupt is found in the Paging Status register.
See Section 6.5.2.

Page Fault Interrupt

The program has tried to reference a page that is presently not in core.
Information regarding page number, etc. is found in the Paging Status
register, Section 6.5.2.

Illegal Instruction Interrupt

Attempted execution of an instruction that is not implemented causes
this interrupt.

Error Indicator Interrupt

The Z indicator in the STS register has been set. This may be caused by
several conditions:

—— FDV with 0.0
-

EXR of an EXR instruction
— DNZ overflow
— RDlV overflow
— Programmed setting of Z (BSET, MST or TRR)

Note: Level 14 must always reset the Z indicator on the offending
level, otherwise, a new interrupt will occur as the level is re-entered.

Privileged Instruction Interrupt

Attempted execution of a privileged instruction causes this interrupt.
The privileged instructions are listed in Section 6.5.1.

N D-06.008.01

5.4.7

5.4.8

5.4.9

5.4.10

IOX Error In terrupt

The addressed Input/Output device gives no connect signal. This may
be due to a malfunctioning or missing device, or no device answers to an
IDENT instruction.

Memory Parity Error Interrupt

A memory parity error has occurred. The least significant 16 bits of
the failing address can be read from the PEA register (TRA PEA).

Further information may be read from the PES register.

Memory Out of Range Interrupt

This interrupt occurs when the program addresses non-existing memory.
The least significant 16 bits of the referenced address can be read from the
PEA register.

Further information may be read from the PES register.

Power Fail Interrupt

This interrupt is triggered by the (optional) Power Sense Unit. lt is
possible for this interrupt to occur simultaneously with some other
internal interrupt. In this case, the Power Fail Interrupt has priority.

ND-06.008.01

5.5

5.5.1

MEMORY CONTROL AND STA TUS

Error Detection

Two kinds of memory modules may be used:

1! 18 bits; 16 data + 2 parity bits

or

O 21 bits; 16 data + 5 error correction control bits

(The two kinds of modules may be mixed in local memory.)

Utilizing the error correction feature, all single errors will be corrected
and normally not reported.

All multiple errors will be reported.

Error correction on single errors is automatically done and adds 80ns to
the memory cycle.

Two internal registers will give additional information about memory
errors (Parity error or lVlemory out of range).

The registers can be read by the

TRA PES and
TRA PEA

instructions.

PEA (Parity Error Address) normally holds the lower 16 bits address of
the latest memory reference, while PES (Parity Error Status) holds further
information regarding the error.

As soon as a memory error occurs, the PES and PEA will be blocked, thus
preventing overwriting.

The PES has the following format:

15 _.| .b 13 12 11 10 9 8 7 6 5 4 3 2 1 0
m to ‘ I\ (D
i 3 U ”I u 4 ‘5 .— F

< m st to N .— o it > .J < < E g <1 <1
2 o o o o o o in O m 2 Z O u. 2 E

ND—06.008.01

Bits 0-1: Address bits 16 and 17 of the offending address.

Bit 2: Error occurred during instruction fetch.

Bit 3: Error occurred during a DMA reference.

Bits 4-5: Not assigned.

Bit 6: Blocked. Memory error has occurred.

Bit 7: Overrun.

Bit 8: Error Correction. Error has occurred on a 21—bit module.
Bits 9-13 will hold a code giving additional Error infor-
mation.

Note: If a parity error has occured on an 18-bits module, this bit will
remain a zero. Bits 9-12 do not give any relevant information, while bits
13 and 14 indicate which byte the parity error occurred in.

Bits 9—13: It bit 8 is set, the code given by these bits will indicate
what kind of error occurred. Refer to Table 5.2.

if bit 8 is cleared, bits 912 do not hold valid information,
while bit 13 indicates parity error in upper byte.

Bit 14: Parity error occurred in lower byte.

Bit 15: Not assigned.

The blocking of PES and PEA is released as PEA is read. This means that
PES should always be read ahead of PEA.

ND-06.008.01
Revision A

Correction codes given by PES bits 913:

(13) (12) (11) (10) (9) No Single data Single code Multiple
C4 C3 CZ C1 C0 Error Error Error Errors

0 O O O 0 Good
0 O 0 0 1 ECO
O O O 1 0 EC1

0 0 O 1 1 E0
0 O 1 0 O EC2
O O 1 0 1 E1

0 O 1 1 0 MEO
0 0 1 1 1 E2
0 1 0 0 O EC3

O 1 0 0 1 E3
0 1 O 1 0 ME1
O 1 O 1 1 E4

0 1 1 0 0 E5
0 1 1 0 1 E6
0 1 1 1 0 E7

0 1 1 1 1 ME2
1 O 0 O 0 EC4
1 O 0 O 1 E8
1 0 0 1 0 .. E9

1 O O 1 1 E10
1 0 1 0 0 E11

1 0 1 0 1 ME3
1 O 1 1 0 E12
1 O 1 1 1 ME4

1 1 0 O 0 E13 '
1 1 0 0 1 MES
1 1 O 1 0 E14

1 1 O 1 1 MEG
1 1 1 0 0 E15
1 1 1 0 1 ME7

1 1 1 1 0 ME8
1 1 1 1 1 ME9

Table 5.2.

ND-06.008.01

5.5.2

E0-E15: Indicates which data bit was in error.
ECO-E04: Indicates which error correction bit was in error.
MEO-MEQ: Indicates multiple errors have occurred.

The blocking of PES and PEA is released as PEA is read. This means
that PES should always be read ahead of PEA.

Error Correction Control

An error correction control register gives control information to the
error correction logic. These control informations will be set by
executing a

TRR ECCR.

The format is as follows:

3 2 1 0

N A 2‘5 E E2 g c

Note: Bits 0, l and 3 are used for test purposes only.

Bit 0: will force data bit 0 to a one, thus giving parity error

Bit 1: will force data bit 15 to a one, thus giving parity error.

Bit 2: Parity interrupt control bit.
If this bit is a zero, only multiple errors will generate a parity
error interrupt.

if this bit is a one, all errors will generate a parity error inter—
rupt.

Note: This bit has effect on 21 bits memory modules onlv.~

Bit 3: Disable. When this bit is set, error correction and parity error
interrupt are disabled.

N D.06.008.01

5.6

5—46

VECTORED INTERRUPTS

In NORD‘l 0 there may be up to 2048 vectored interrupts, typically
each physical input/output unit will have its own unique interrupt
response code and priority.

These vectored interrupts must be connected to the four program levels
13,12,11 and 10.

The standard way of connecting is as follows:

Level 13: Real-time clock
Level 12: Input devices
Level 11: Mass storage devices
Level 10: Output devices

The vectored interrupts are connected to the corresponding bits in the
PID register.

When a vectored interrupt occurs, the IDE NT instruction is used to find
out which device gave interrupt on this program level, if several devices
have simultaneous interrupt. The priority is determined by which
Input/Output slot the device is plugged into. For further information,
see Section 4.1.3, or the Input/Output manual.

The lDENT instruction provides a very fast response time, and no polling
of devices is required.

Programming example:

LEV13, WAIT % GIVE UP
SAA O
lDENT PL13 % IDENTIFY DEVICE ON LEVEL 13
RADD SA DP % COMPUTED GO TO
JMP ERR13 %CODE 0,ERROR
JMP DRIV'I % CODE 1
JIVIP DR|V2 % CODE 2

JIVIP DRlVN % CODE N

Note that only four instructions are required from time of the interrupt
until the specific Input/Output driver is entered.

The lDENT instruction will turn off the interrupt signal of the device
which gave interrupt. If several devices have their interrupt signals on,
the interrupt line to the corresponding Pl D bit will remain active, and
as soon as the WAIT instruction has reset one bit in PID, this bit will be
set again, and the WAIT instruction will have no effect.

N D-06.008.0l

MEMORY MANAGEMENT

The Memory Management System includes a Paging System, a Memory
Protection System and a Ring Protection System.

The Memory Management System may be used for several purposes, such
as:

-— dynamic memory allocation or paging
— program relocation
, maximum physical address space size is 256K words
__ Memory Protection of each individual page
— privileged instructions and ring-structured program protection

N D-06.008.01

6.1 MEMO}? Y MANA GEMENTARCH/ TECTURE

The Memory Management System consists of four page index tables,
16 paging control registers and control circuits.

Each page index table consists of 64 high-speed registers with a word
length of 16 bits.

The page size is fixed to 1K words, thus each page index table will map
the full 64K virtual address space of the NORD-10.

Each entry in a page index table has the following format:

151413121118g87
:- E E g g E g physical page no.

Bits 13-15: Memory protect bits.
See Section 6.4.

Bit 12: Written in page.
This bit is automatically set by hardware.
See Section 6.3.2.

Bit 11: Page used.
This bit is automatically set by hardware.
See Section 6.3.2.

Bits 9—10: Ring bits.
These bits decide which ring this page belongs to.
See Section 6.5.

Bit 8: Not used.

Bits 0-7: Physical page number.

Each program level has its own paging control register (PCR). The PCR’s
make it possible to let different program levels utilize different page index

Eight bits give a maximum of 256 physical pages or 256K
words.

tables and ring protection.

ND—06.008.01
Revision A

6.2 VIRTUAL 7'0 PHYS/CAL ADDRESS MAPPING

A virtual address is a 16—bit address as seen from the program. By means
of the Memory Management System a virtual address (VA) may be
mapped into a physical address (PA).

This may be illustrated with Figure 6.1.

DlP: Displacement within page 0 < DlP < 1023
VPN: Virtual page number 0 < VPN < 63
PT: Page index table 0 < PT < 3
APT: Alternative page index table 0 < APT < 3
PL: Program level 0 < PL < 15
PPN: Physical page number 0 < PPN < 255
R: Ring
PM: Permit flags
PTM: Page table mode (status bit 0)
PTS: Page table select flag

PL determines which PCR to use (illustrated in Table 6.1). That PCR
determines which page index table to select and VPN address an entry in
the selected page index table. The contents of this entry (PPN) together
with DlP determines the 18-bit physical address.

At the same time the protect bits of the page index table is compared
with the reference type. A Memory Protect Violation interrupt may
possibly result.

Also, the ring bits of the appropriate PCR are compared with the ring
bits of the actual page index table entry. A Permit (protect) Violation
interrupt may result. The ring bits in the page index table entry are
moved to the PCR if no Permit Violation occurs. Thus, a program can
go from a higher ring to a lower ring, never from a lower to a higher one.

N 006,008.01

930.3%
8830i

\m
uxitn.

8
$553

”To
2:2”.

m
m

m
uvw

m
,

H
M

U
H

m
%

Lm
,

Hm
wm

uuwfim
m

casufl3
cofluum

am
w

qE
m

om
H

m
m

H
Q

hV
Hm

m
a

H
I

.
mHm

0H
m

xn
C

C
Ao

“HQ
msumumv

gem
cofluum

am
m

\1
\\

m
Hm<

Hm
Mom

\\
_

o
\
\
\

\
\
\

H

\\
\.\H

\
U

m
m

m
uwvm

m
.m

om
Hm

suufl>

N 006008.01

6.3

6.3.1

6.3.2

CONTROL OF MEMORY MANAGEMENTSYSTEM

The Memory Management System is 'controlled as follows:

Control of Paging Control Registers

The PCR's are set with the instruction:

T R R PC B

This instruction operates together with the contents of the A register.
The A register has the following format:

15 1O 9 8 76 3 2 1 0
PT APT level 0 ring ring

Note: Bit 2 should always be 0 when writing to PCR. Bit 2 equals
1 carries a special meaning relevent for micro-program and hardware
test programs only.

Bits 9-10: Page table number (0-3)

Bits 7-8: Alternative page table number (0-3)

Bits 3-6: Program level (PCR number) (0-15)

Bit 2: Equals zero

Bits 0-1: Ring number (0—3)

Control of Page Index Tab/es

All four page index tables are accessed as main memory residing in the
topmost 256 locations in the 64K virtual address space, i.e.:

1774008 1774778 Page index table 0
1775008 — 1775778 Page index table 1
1776008 — 1776778 Page index table 2
1777008 — 1777778 Page index table 3

When the program runs in ring 3 (or paging off), the virtual addresses
from 1774008 to 1777778 are interpreted directly as page index table
addresses and the automatic address mapping is inactive for these
addresses. For programs in ring 0, 1 or 2 the mapping function is active
for all virtual addresses and the page index table is not accessible.

nip—06,008.01
Revision A

All entries in a page index table are under program control only, except
for the two bits PGU and WIP, which are also controlled automatically
by the Memory Management System.

Bit 12: WIP —~ Written in page

If this bit is set, the page has been written into, and it needs to
be written back to mass storage. If it is zero, the page has
not been modified and need not be rewritten. This bit
is automatically set to one the first time a write occurs and
then remains set. It is cleared by program (whenever a
new page is brought from mass storage).

Bit 11: PGU —— Page used

PGU = 1; the page has been used. The bit is automatically
set whenever the page is accessed and then remains set.
The bit is cleared by program. This bit may be used in
operating systems to determined which page should be
swapped.

The alternative page index table is used if the memory reference is not
P relative, and status bit 0 (PTM) is 1. This feature has two uses:

.__ The Operating System may easily reference data through a users’
page index table while still using its own page index table for in-
struction fetch and P relative data references.

— Special user programs may access 64K of instructions and 64K
data.

For a detailed description of mapping in different addressing modes,
refer to Table 6.1.

Addressing mode Address mapping with PTM = 1

, X | ,B Mnemonic Via PT Via APT

0 O O (P) +disp. ——
0 1 0 l (P) +disp. ((P) +disp.)
0 0 1 ,8 ~ (B) +disp.
0 1 1 ,B l —— (B) +disp.; ((B) +disp.)
1 0 0 ,X ~— (X) +disp.
1 0 1 ,B‘ ,X —- (B) + (X) +disp.
1 1 0 l ,X (P) +disp. ((P) +disp) +(X)
1 1 1 ,B I ,X —— (B) +disp.; ((B) +disp) +(Xl

lnstruction fetch (P) -

Table 6.1 : Use ofAlternate Page Table

N D-06.008.01
Revision A

6.3.3

The main principle is that all P-relative memory references are mapped
via PT and all other references are mapped via APT. This feature is used
only by processes which require access to two segments with different
virtual address spaces and gives one process access to 128K of virtual
memory.

Note: With PTM = 0, ALL addresses are mapped via PT. This is the normal
user mode.

Turning the Memory Management System On or Off

The Memory Management System is controlled by the two privileged
instructions PON and POF.

PON Turn on Memory Management System Code: 150 410
(Paging on) Time: 1.1 us

The instruction executed after the PON instruction will go through
the address mapping mechanisms.

POF Turn off Memory Management System Code: 150 404
Time: 1.1 us

The instruction will turn off the Memory Management System and the
next instruction will be taken from a physical address in the lower 64K,
specified by the virtual address following the POF instruction.

The machine will then be an unrestricted mode without any hardware
protection feature, i.e., all instructions are legal and all memory
"available".

N D-06.008.0‘l
Revision A

6.4 MEMORY PROTECT/0N SYSTEM

The Memory Management System is also used for memory protection.
The system also works in 1K memory blocks (pages) and three bits in
each index table entry are used for memory protection purposes.

A protection violation will cause an internal hardware status interrupt
to level 14 and the instruction causing the violation is not executed.

The three bits used, 15-13 have the following meaning:

Bit 15: WPM — Write permitted.

WPM = 0. It is impossible to write into locations in this
page regardless of the ring bits.

WPM = 1. Locations in this page may be writteninto
if the ring bits allow. See Section 6.5.

If an attempt is made to write into a write protected
page, an internal interruptwto program level 14 will occur,
and no writing will take pi ice.

Bit 14: RPM —- Read permitted.

RPM = 0. Locations in this page may not be read (they may
be executed). ,

RPM = 1. Locations in this page may be read if the ring
bits allow. See Section 6.5.

If an attempt is made to read from a read protected page,
an internal interrupt to program level 14 will occur.

Bit 13: FPM —— Fetch permitted

FPM = 0. Locations in this page may not be executed as
instructions.

FPM = 1. Locations in this page may be used as instruc-
tions.

it an attempt is made to execute in fetch protected
memory, an internal interrupt to program level 14 will
occur and the execution is not started.

indirect addresses may be taken both from pages which have FPM = 1
and from pages which have RPM = 1.

N D-06.008.01
Revision A

All combinations of WPM, RPM and FPM are permitted. if WPM, RPM
and FPM all are zero, this is interpreted as page not being in core, and
an internal interrupt to program level 14 is generated. The remaining
bits 0-12 may then be used, for example, to specify the mass storage
address of this page.

N D-06.008.01

6.5 RING PROTECTION SYSTEM

The Memory Management System includes a Ring Protection System,
where 64K virtual address space is divided into four different classes of
programs, or rings.

Two bits in each page index table entry are used to specify which ring
the page belongs to.

One of these ring bits, bit 10, also specifies a mode bit. If bit 10 is one,

the program executing from this page is said to be in system mode, and
it can execute all NORD—10 instructions. If this bit is zero, privileged
instructions may not be executed from this page.

The ring bits have the following meaning:

Bit 10 9

0 0 Ringo:

Programs executing from this page may not
execute privileged instructions. The program may
only access locations with ring zero. This access
is controlled by the RPM, WPM and FPM bits.
Locations outside ring 0 are completely inaccess-
ible.

0 1 Ring1:

Programs executing from this page may not
execute privileged instructions. The program may
access locations in ring 1 and ring 0. Access is
controlled by the RPM, WPM and FPM bits.

1 O Ring 2:

All instructions are permitted when executed
from this page. The program may access locations
in ring 2, 1 and 0. This access is controlled by the
RPM, WPM and FPM bits.

1 1 Ring 3:

All instructions are permitted and the whole
address space is accessible if not protected by the
RPM, WPM and FPM bits. The page tables may be
accessed.

ND—06.008.01
Revision A

6.5.1

6~11

An illegal ring access or illegal execution of privileged instruction will
cause an internal hardware status interrupt to program level 14, and the
instruction which caused the interrupt will not be executed.

The recommended way of using the ring bits is as follows:

Ring 0: User program

Ring 1: Compiler, assembler

Ring 2: Operating system (utilities, commands)

Ring 3: Kernel of operating systems

By mapping all these programs into each other, the highest rings will have
straight-forward access (through the same page index table) to all lower
rings, and the passing of information between rings is greatly facilitated.

Associated with the ring bits in a page index table entry are the two ring
bits in each PCR.

The ring bits are initialized by means of the TRR PCR instruction. Refer
to Section 6.3.1.

A program is said to run on the ring which is indicated by the ring bits
in the page index table entry that was referenced on the last instruction
fetch cycle. For each program level, there is a PCR that holds the valid
ring bits at any given time.

It is only possible to go from a higher ring level to a lower. Attempts
to go from a lower ring level to a higher, causes an internal hardware
status interrupt and the instruction is not executed.

Privileged Instructions

The instructions available only to programs running in system mode
(ring 2 or 3) are termed privileged instructions, which are:

lOF Turn off interrupt system
ION Turn on interrupt system
POF Turn off memory management
PON Turn on memory management
WAIT Give up priority, reset current Pl D bit
lOT NORD-l compatible Input/Output
lDENT identify interrupt
IOX Input/Output

N 006008.01

6.5.2

TRA Transfer to A register
TR R Transfer to register
MCL Masked clear of register
MST Masked set of register
LRB Load register block
SRB Store register block
I RW Inter—register write
l R R Inter-register read

Paging Status Register

The paging status register is used for further specifications when a page
fauit or a memory protect violation occurs.

The instruction TRA P68 is used to read this register.

Errors lock the P68 register, TRA PGS unlocks it again.

The bits in PGS have the following meaning:

15 14 7 5 O
F PM PT VPN

PGS Format

Bit 15: Memory management interrupt occurred during an instruc-
tion fetch.

Bit l4: 1 = Permit violation interrupt
O = Ring protect violation interrupt

Permit violation has priority if both conditions occur.

Bits 6—7: Page index table number

Bits 0-5: Virtual page number

Note that bits 07 are the eight ieast significant bits of the physical page
index table entry.

If bit 15‘is a one, the page fault or protection violation occurred during
the fetch of an instruction. in this case, the P register has not been
incremented, and the instruction causing the violation (and the restart
point) is found from the P register on the program level which caused the
interrupt.

N D-06.008.01

6—13

If bit 15 is zero, the page fault or protection violation occurred during the
data cycles of an instruction. In this case, the P register points to the
instruction after the instruction causing the internal hardware status
interrupt. When the cause of the internal hardware status interrupt has
been removed, the restart point will be found by subtracting one from the
P register.

It is possible that to execute a floating point instruction, four page faults
may occur before the instruction can be computed. (Fetch fault, a new
page fault, data cycle fault and a new data cycle fault because the data
was placed on a page boundary.) Therefore, a minimum of four pages
in main memory is necessary in order to execute a general program
requiring 64K virtual memory space.

ND-06.008.0l

6.6

6—14

TIMING

Page table access is performed in parallel with cache memory look-up,
and consequently there is no timing overhead associated with the memory
management system. However, if the cache memory option is not
installed and the memory management system is turned off, execution
times are reduced by 0.1 us for each reference to local memory (i.e.,
LDA will use 1.8 us instead of 1.9 psl.

ND-06.008.01

7 OPE RATOR'S PANEL

7.1 PANEL ELEMENTS

The operator’s panel for the NORD-i O/S computer has the following
elements:

An 18-bit switch register
An 18—bit light diode register
16 selector push-buttons and 16 associated light emitting diodes.
6 mode indicators
A two-digit display and two push-buttons
10 control buttons
Power on/oftc button
Panel key-lockP

O
N

Y
-”

S
N

P
P

JN
T‘

N D-06.008.01

7.2 78-B/TSW/TCH REGISTER

This register is used to present 18-bit data to the CPU. Normally, only
16 of these are used. The switChes may be read from program with the
TRA OPR instruction. In installations with big memory (more than
64K) 18 switches and lamps may be needed to represent the possible
18-bit addresses for the “examine memory“ function. When the paging
system is on, switches 16 and 17 select page table number.

N 006008.01

7.3 78-B/T LIGHT EMITTING DIODE REGISTER

This is used to display 16-bit data or 18-bit addresses from the CPU.
Register contents; addresses and contents of memory locations may be
displayed in this register. The register 16~bits, can be set with the TRR
LMP instruction (the user register —- see below — must be selected).

N D-06.008.01
Revision A

7.4 76‘ SELECTOR PUSH-BUTTONS AND 76 ASSOC/A TED LIGHT
EMITTING DIODES

These push-buttons are used to select one of 16 possible registers to be
displayed in the data display register. When one button is pushed (a
register selected), this is indicated with light in the associated diode
above the button.

The possible register selections are:

ACTlVE LEVELS

When this button is pushed, the data display (described above)
will show the active program levels. 16 diodes (0—15) are used,
one for each of the 16 levels. ln this mode the lamps are provided
with after-glow so that it is possible to observe a single instruction
on a program level.

DMA ADR

if this button is pushed, the data display will show the active DMA
(Direct Memory Access) address. (See also Section 7.6.4.)

ADR

This register shows the actual memory address being referenced,
excluding DMA references and instruction (program) addresses.

PADR

This is the memory address each time an instruction is read (fetch
cycle). Effictively the data display will show the program address.

This is the user register set by the TR R LMP instruction.

Note: If the U register is set from program by THE LMP and
the U is NOT selected, the setting of U will disturb the displaying
of the selected register. The degree of disturbance will depend on
the frequency of the U updating related to the panel interrupt
frequency.

ND-06.008.0i

DATA

Displays data going to and from memory and on the l/O bus.

EXM

This selection has two uses:

CPU in STOP

The data display will show the contents of the memory location
whose address is set in the switch register when the SET ADDRESS
button was last pushed (see below). When the CPU stops, this
address is preset to zero. (The selected address is always zero after
pushing the SlNG LE lNSTR button.) Use of the ’/’ (see Section
8.1.2) in MOPC will also set the memory address displayed.

CPU runs

The data display will show the contents of the memory location
whose address is set in the switch register. The memory location
is sampled after each panel interrupt (about every 2-3 ms). The
panel interrupt is handled directly by microprogram.

This selection will display the CPU instruction register.

STS, P, L, B, X, T, A, D

If one of these is selected, the data display will show the contents of
that register. The register is sampled at each panel interrupt. There
is a complete set of these registers on each of the 16 interrupt levels,
so one has to select the appropriate level when one of these registers
is examined. See Section 7.5.

ND-06.008.0i

7.5 D/SPLA Y LEVEL SELECT

This consists of two push-buttons, ”+” and ’“—, and a two-digit display.
By means of the two buttons, the level may be stepped up or down. The
contents of the display show the selected level. If the display is stepped
outside the limits 0—15, the 2 digit display will shown the active program
level and the selected registers (STS, P, L, B, X, T, A or D) is taken from
the active level.

ND-06.008.01

7.6

7.6.1

7.6.2

7.6.3

CONTROL BUTTONS

These 10 push-buttons are used to control the CPU and to modify regis-
ters and memory. The function of each of the buttons is given below.

Master Clear

Pushing this button will generate a hardware master clear signal. This
signal sets the control logic in the CPU and the input/Output system to
a defined state and the micro-programmed operator’s communication
(MOPC) is started. If the CPU is running when “MASTER CLEAR“
is pushed, the program cannot be restarted by pushing the CONTlNUE
button, because the contents of the P and A registers are lost. The PIE
register is reset by the master clear function.

Light in the MASTER CLEAR button indicates an error input to the
CPU from the operator’s communication program or one of the load
programs. The light is reset when the MASTER CLEAR button is pushed.

Restart

This button generates a restart signal. When this signal is detected by the
micro-program in stop mode, the CPU will start in address 20. The
RESTART button has no effect when the CPU is running. if the CPU
is running, the STOP button must be pushed before the RESTART. To
be sure that the program has been started on level zero, the MASTER
CLEAR button should also be pushed.

L oad

The LOAD button starts automatic program load from a device. The
device may be an lnput/Output device or a mass storage device, depending
on the setting of a switch register (ALD) on the Panel Control Card. The
use of this register is explained in Section 8.2.4.

When a load program is active, the LOAD button lights.

ND-06.008.01

7.6.4

7.6.5

7.6.6

7.6.7

Decode A c/dress

This button is used in connection with the dispiaying of addresses (DMA
ADR, ADR or P ADR selected). When this button is pushed, the address
is not displayed directly. The address space is divided into 4K segments
and each bit in the display register represents one segment. Bit O is lighted
if address 0 - 77778 are used, etc. Light in the buttons indicates the state
of the address display register.

Set A ddress

When the machine is in stop mode and a memory examine is wanted, the
address must be set up in the panel switch register and the SET ADDRESS
button pushed. The address is now saved and is not changed before the
SET ADDRESS button is pushed again with a new content in the switch
register. This address is also changed when a memory examine is executed
from the console device (character ”/" used).

Note that this button is used in stop mode only. When the machine is
running, the address in the switch register is used directly.

When the machine enters stop mode, the register used by the set address
function is set to zero. This means that after a single instruction the
examined address is zero.

Deposit

When an address is selected with the SET ADDRESS button, the contents
of this cell may be changed with the DEPOSIT button. The new contents
are set up in the switch register and the DEPOSlT button pushed. The
display selection must be EXM.

Enter Register

This button is used to load a register. One of the registers STS, P, L, B,
X, T, A or D is selected with the register selection switches. Level is
selected with the level selector. The contents of the switch register are
now stored in the selected register when the ENTER REGlSTER button
is pushed.

N D-06.008.01

7.6.8

7.6.9

7.6.10

Sing/e Instruction

Pushing the SINGLE INSTRUCTION button causes a program to advance
one instruction. The address is taken from the P register and the CPU goes
back to stop mode after execution of one instruction. The instruction is
executed on the IeveI given by the PIE and PID registers.

Con tinue

When this button is pressed, the machine starts running from the address
specified by the P register. The level is given by the contents of the PIE and
PID registers. If the MASTER CLEAR is first pressed, PIE is cIeared and
the program is started on Ievei 0.

If the Iight on the CONTiNUE button is on, it indicates that the CPU is
running.

Stop

Pushing this button stops the machine, i.e., the micro—program running in
stop mode is started. The stop mode is indicated by Iight in the STOP
button.

N D-06.008.01

7—10

7.7 MODE INDICATORS

INTE R RUPT

indicates that the interrupt system is turned on, i.e., an ION instruction
has been executed.

PAGING

indicates that the paging system is turned on, i.e., a PON instruction has
been executed.

RING

Four indicators show active program protect rings. These indicators
are provided with after-giow so that it is possible to observe even
the shortest execution run on each ring.

N D—06.008.01

7—11

@

J
O

IP
Z

O
U

.
.

Im
>

>
0

m
y
®

k
lll

.,
.mo

,.
faum

m
V

Lam.
D

J;
m

KY
.5

5
2

2

U
flw

.m
m

.m
.

G
O

O
G

O
O

G
O

O
G

O
O

0
0

0
O

X
m

J.
m

wkm
m.

EXm
mumD

3

GOO
GOO

GOO
OOO

..
Q

m
o>m

U<
.hud‘

v.4
.

J
a

<
2

0
@

2514

000
O

N D-06.008.01 V

©©©
©

@00
@

©
©

©
©

©
mvmvnwmumv

@OO

O:

©©©
@

©©
Nr

mp
cw

mp
mp

be

000

m
\o_..D

m
O

Z
.m

.<
<F

<D
m

O
Z

OPE RATOR'S COMMUNlCATlON

The NORD-‘lO/S has a microsprogram in the read only memory for
communication between the operator and the machine. This program
is called MOPC (Micro-programmed Operator‘s Communication).

MOPC is always running when the machine is in stop mode, or the state
of the machine, when lVlOPC is running, is defined as the stop mode.

The NORD»10/S may either be controlled from the NORD-iO/S
operator’s panel (see Chapter 7) or from a Teletype or visual display unit.
The micro-program is designed in such a way that either the operator’s
panel or the Teletype (visual display unit) may Control the NORD-iO/S.

The NORD-iO/S operator’s communication includes bootstrap programs
and automatic hardware load from both character oriented devices and
mass storage devices.

When communicating with the MOPC program, the following characters
are legal input characters:

Characters: gsg;

O, 1, 2, 3, 4, 5, 6, 7 Octal digits used to specify addresses
and data

@ Restart MOPC, clear PIE

$ Octal load

& Binary load

Start program in main memory

/ Specifies register or memory cell
examine

CR (carriage return) Terminator of line

LF (line feed) Echoed, no other effect

L.J (space) Octal number before the space is ignored

B Used to specify 64K bank number (page
table number when paging is on)

l Internal register examine

R Specifies operation on one of the eight
registers STS, D, P, B, L, A, T, X on a
specified level

N D—06.008.01

Charactens; Use:

Current location counter for memory
examine

All other characters are ignored and followed by “.7”.

N D-06.008.01

8.1

8.1.1

8.1.2

FUNCTIONS

Start a Program

Format:

<octal number> !

The machine is started in the address given by the octal number. If the
octal number is omitted, the P register is used as start address, i.e., this
is a “continue function”. The program level will be the same as when the
computer was stopped (if Master Clear has not been pushed or @ typed).

Memory Examine

Format:

<octal number>/

The octal number before the character ”/“ specifies the memory address.

When the ”/“ is typed, the contents of the specified memory cell are
printed out as an octal number.

If a CR (carriage return) is given, the contents of the next memory cell
are printed out.

When the paging system is on, the Bank number (see Section 8.1.8)
specifies which page table is used, and page faults and protected violations
are ignored. In this case, <octal number> specifies a virtual address.

Example:

717/003456 % EXAMlNE ADDRESS 717

717/003456 (CR) % EXAMlNE ADDRESS 717
003450 (CR) % EXAMlNE ADDRESSES 720
000013 % AND 721

NIB—06008.01

8—4

Memory Deposit

Format:

<octai number> (CR)

After a memory examine, the contents of the memory cell may be
changed by typing an octal number terminated by CR.

Example:

717/003456 3475 (CR) % THE CONTENTS OF
003450 1700 (CR) % ADDRESS 717 IS CHANGED
000123 (CR) % FROM 3456 TO 3475 AND 720
123456 % lS CHANGED FROM 3450 TO

% 1700. 721 CONTAINS 123 AND
% REMAINS UNCHANGED

Register Examine

Format:

<octal number> R <octal number>/

The first octal number specifies the program level (0-17), if this number is
omitted, program level zero is assumed.

The second octal number specifies which register on that level to examine,
the following codes apply:

Status register, bits 0-7
D register
P register
8 register
L register
A register
T register
X register\I

O
'D

U
ID

C
IJ

M
—

‘O

After the “/” is typed, the contents of the register is printed out.

Examples:

R5/ A register level 0
7R2/ P register level 7

N D-06.008.01

8.1.5

8.1.6

Register Deposit

Format:

<octal number> (CR)

After a register examine, the contents of the register may be changed by
typing an octal number terminated by CR.

Examples:

R5/ 123456 54321(CR) % CONTENT OF A REGISTER
% ON LEVEL 0 IS CHANGED
% TO 054321

7R2/ 000044 55(CR) ' % CONTENT OF P REGISTER
% ON LEVEL 7 IS CHANGED
% TO 000055

lnternal Register Examine

Format:

l <octal number> /

The octal number specifies which internal register is examined, the following
codes apply:

0 PANS Operator’s Panel Status, used by operator's panel micro-program
only.

1 STS Status register, program level is contained in bits 8-11, bit 14 =
PONl and bit 15 = lONl

2 OPR Operator’s panel switch register

3 PGS Paging status register

4 PVL Previous program level (GETR PVL DP)

5 HC lnternal interrupt code

6 Pl D Priority interrupt detect

7 Pl E Priority interrupt enable

10 CSR Cache status register, for maintenance only

11 ACTL Active level, decoded

N 006008.01

8.1.7

12

13

14

15

16

17

ALD

PES

MPC

PEA

Automatic load descriptor

Memory error status

Micro-program counter (will show a constant)

Memory error address

'l/O transfer. Do not use.

Will show an arbitrary register. Do not use.

Internal Register Deposit

Format:

<octal number> (CR)

After an internal register examine the contents of the internal register
with the same internal register code. lt may be changed by typing an
octal number terminated by CR. For deposit, the following internal
register codes apply:

0

1O

11

PANC

STS

LMP

PCR

MISC

llE

PID

PIE

CCLR

Operator's panel control, used by operator’s panel micro—
program only.

Status register, only bits 07 will be changed.

Operator’ panel lamp register (will be overwritten unless
U register is selected)

Paging controi register

”Miscellaneous" register (used by micro-program to con-
trol lONl, PONl, lVlCALL and lVlOPC)

Internal interrupt enable

Priority interrupt detect

Priority interrupt enable

Cache Clear

Not used

N D-06.008.01

12 Cl LR Cache inhibit limits register

13 CAR instruction register, used by micro—program subroutine only.

14 lR instruction register, used by the EXR insttuetion only.

15 ECCR Error correction control register

16 l0 l/O transfer. Do not use.

17 — Will change an arbitrary register. Do not use.

Examples:

’ I7/ 030013 0(CR) % EXAIVHNE PIE AND CHANGE
% TO 000000

112/ 021540 20044 % EXAMINE ALD AND CHANGE
% CI LR TO 020044

8.1.8 Current Location Counter

When * is typed, an octal number is printed indicating the current address
on which a memory examine or memory deposit will take place. The
current location counter is set by the memory examine command /, and it
is also incremented for each time carriage return is typed.

g 8.1.9 Break Function

When @ is typed, the MOPC is restarted. This function is also used to
terminate an octal load. PIE is set to zero.

, 8.1.10 Bank Number

Format:

<octal number> B

This command is used when the computer has more than 64K memory. The
memory is divided into 64K banks (03).

This command has to be used to specify the bank number when a memory
examine/deposit has to be done.

ND-06.008.01 '
Revision A

8.2

8.2.1

8.2.2

BOOTSTRAP LOADERS

The NORD-iO has bootstrap loaders for both mass storage and character
oriented devices. Three different load formats are standard:

—— Octal format load
,-- Binary format load
— Mass storage load

Octal Format Load

Octal load is (normally) started by typing:

<physical device address> $

The operator's communication will start taking its input from the device
with the specified device address. The actual device must conform with
the programming specification of either Teletype or tape reader. The
device address is the lowest address associated with the device.

During octal load there is no echoing of characters. All legal operators’
commands are accepted. Illegal commands terminate the loading and
“?“ is typed On the console. (ln installations without console an
attention lamp is turned on.) Normally, @ or I is used to terminate an
octal load.

If no device address precedes the $ command, then 35 is nearly equivalent
to pushing the LOAD button on the operator’s panel. See also Section
8.2.4.)

Binary Format Load

Binary load is (normally) started by typing:

<physical device address> &

Loading will take place from the specified device. This device must
conform with the programming specifications of either Teletype or
tape reader. The device address is the lowest address associated with the
device.

N D-06.008.0i

The binary information must obey the following format:

<ABCIEFV&GHI <

Figure 8.1.: Binary Load Format

A Any types not including I (ASCII 418)

8 (Optional) octal number (any number of digits) terminated with a
non~octal character* :

C (Optional) octal number terminated with the character I (see below)

I Signals start of binary information (ASCII 418)

E Block start address. Presented as two bytes (16 bits), most signifi-
cant byte first.

F Word count. Presented as two bytes (16 bits), most significant byte
first. (E, F and H is not included in F.)

G Binary information. Each word (16 bits) presented as two bytes,
most significant byte first.

H Checksum. Presented as two bytes (16 bits), most significant byte
first. The checksum is the 16bit arithmetic sum of all words in G.

| Action code. If I is a blank (zero), then the program is started in
the address previously found in the octal number B (see above). If
B is not specified, B = Dis assumed. If I is not a blank, then control
is returned to the operator's communication, which decodes l.
(The number B will be found in the P register on level 0.)

If no device address precedes the & command, then the & is nearly
equivalent to pushing the LOAD button on the operator’s panel (see
Section 8.2.4).

If a checksum error is detected, ".7" is typed (in installations without
console an attention lamp is turned on) on the console and control
is returned to the operator's communication.

Note that the binary loader does not require any of the main memory.

The binary load will change the registers on level 0.

The binary load format is compatible with the format dumped by the
)BPUN command in the MAC assembler.

* Line feed (ASCII 128) is ignored within octal numbers.

N D—06.008.01

8.2.3

8.2.4

Mass Storage Load

When loading from mass storage, 1K words will be read from mass storage
address 0 into main memory starting in address 0. After a successful load,
the CPU is started in main memory address 0.

If an error occurs, the loading is terminated and ”?” is typed on the con—
sole and control is returned to the operator’s communication. (Note: in
installations without console, an attention lamp is turned on.)

The actual mass storage must conform with either drum or disc program-
ming specification.

Mass storage load must be started by typing $ or &, or pushing the LOAD
button on the operator‘s panel. However, this requires a special setting of
the ALD. Refer to Section 8.2.4 for details.

Automa tic L oad Descrip tor

The NORD-lO has a 16-bit switch register called Automatic Load Descrip-
tor (ALD) (located on the Panel Driver Card). This register specifies the
load procedure to use when the LOAD button is pushed or when a single
$ or 8i is typed.

The ALD format is as follows:

15 ‘14 13 12 ii 0

E R M 0 Address

Automatic Load Descriptor (ALD) Format

E Extensions

If this bit (bit 15) is 1, then the load function is extended.
Effectively, the micro~program jumps to the micro address found in
ALD, bits 0-1 1.

(The E bit is used when starting micro-programmed diagnostic pro-
grams. The start address is put in ALD bits 0-11.)

ND-06.008.01

Revision A

R Restart*

If this bit (bit 14) is 1, the load function degenerates to a jump to
main memory address:

Address = 4 * (ALD bits 0-13)

This bit is used when the bootstrap program is held in read only
main memory. (Note: E = 0.)

M Mass Storage Load

If this bit (bit 13) is 1, mass storage load is taken from the device
whose (lowest) address is found in ALD bits 0—10 (unit 0). (Note:
E = R = 0.)

O Octal Format Load

if this bit (bit 12) is set, octal format load will take place from the
device whose (lowest) address is found in ALD bits 040.

lf bit 12 is not set, binary format load will take place from the
device whose (lowest) address is found in ALD bits 0-10.

Note: $ will override this bit, a single $ will start an octai format
load from the device whose (lowest) address is found in ALD bits
0-10. (Note: E = R = M = O.)

* Not to be confused with the RESTA RT button on the operator's
paneL

N 006.008.01

8—12

Examples8.2.5

Following is a table showing possible use of the ALD setting.

_..m
232.

ooom
ooom

ooom
ooom

ooom
mmmounm

1
$06.81

mmmfivml
mmmhnnmz

mmmcnom:
ooom

or

8
9:3.

8
9&2,

8
Q

EE.
3

9:2.
op

9:2.

0
0

R
:

0
0

R
:

AcV
80:

0
0

::
Acv

E0:
mmmzvnm

$825
3235

002.5

E
tSm

E
tfim

go.
3

8
5

E
tmpm

Umo_
EEO

ovm
E0;

32
ovm

E9.»
c8.

AcV
Eot

owm
E0;

32
Acv

Eot
ovmomo

380%
$22

mmEBm
$32

32
2

3
5

@
92o

$32
.82

$50

cow
E0:

09»
EC:

Acv
:5

:
oov

60:
Acv

Eot
0

0
3

5

go.
850

one
.300

one.
m

m
32

.300
two.

.800

com
Ea;

oom
E0:

AcV
E0;

com
E9;

Acv
E0:

.
oom

ooo

nmo_
EmEm

two.
2

3
5

one.
3

2
5

v8.
.300

go.
.300

0,404
MW

Vw
Acv

w
m

AcV
0.2

9
.3

2
:.

9
.9

5
5

0

N 006008.01

CACHE MEMORY

The Cache Buffer Memory is an option which significantly reduces the
average memory access and cycle times. This effect is particularly notice-
able when the Multiport Memory System is used, since this system has the
longest access time (see Chapter 3). This increase in average memory
speed is achieved by keeping copies of the most recently referenced
memory words in a 1K word bipolar memory called a Cache Memory.

N D-06.008.01

9.1 CACHE MEMOR Y ARCHITECTURE

The Cache Memory is organized as a 1K by 25 bits look-up table, as
illustrated in Figure 9.1. A word in Cache is identified with the main
memory word of which it is a copy by means of its main memory physical
address.

PPN IB

0 (£9 Q
I Used I

i

DIP
J

I
|
|

9 bits I 1K x 16 bits of Data
Directory I

l
:. _______L______________//

___QEH___w___*“_§£lJ:EQ.EL____//

l
|
I
I

PPN 8 8

Compare <‘>l6

AND

Data
AVAILABLE ¢

IB

u: Used (Data valid)
DlP: Displacement within page (R 0-9)
PPN: Physical page number (MR 10-17)
CPN: Cache page number

Figure 9.1: Cache Memory Organization (not shown are the two limit
registers which hold the Cache inhibit limits.)

ND-06.008.01

4———————————————————————————————————————__jifi

The Cache Memory is homogenous, i.e., the Cache Memory does not dis-
criminate between data words, instructions or indirect addresses stored in
main memory.

Each word in the Cache Memory has the following format:

CPN, 8 BITS U DATA WORD, 1'6 BlTS

DATA WORD: This is a copy of a word in main memory.

U: Use bit. indicates that the Cache word
in this location is valid.

CPN: Cache Page Number. This is the physical
page number of the main memory word
of which the cache data word is a copy.

The connections between the Cache Memory and the CPU bus structure
is shown in Figure 2.2.

N D-06.008.0i

9.2

9.2.1

9.2.2

9.2.3

9.2.4

CACHE MEMO/3’ Y ACCESS

Definitions

DlP: Displacement within page 0 < DlP < 1023

PPN: Physicai page number 0 < PPN < 255

CPN: Cache page number 0 < CPN < 255

Cache Addressing

The Cache is addressed by DIP, which means that all memory locations
with the same DlP will share one location in Cache. This location will
be occupied by the word with this DIP that was accessed most recently
by the CPU.

Read Access

When the CPU presents a request for a word from memory, the DIP is
used to access the word in Cache Memory that may possibly be the re—
qested-one. This is the case if CPN = PPN and U = 1, and in this case the
data is presented to the CPU registers from the Cache Memory.

lf CPN #PPN or U = 0, this particular word is not present in the Cache,
and the request is forwarded to the main memory control. When the main
memory presents the data to the CPU registers, a copy is written into the
Cache Memory, at the same time setting CPN: = PPN and U: = 1 to iden-
tify this word for possible later use. The previously held word in this
location is simply overwritten.

Write A ccess

Requests from the CPU to write into memory are always forwarded to
the main memory control. ln parallel with the main memory access, a
copy is written into the Cache Memory along with its corresponding
PPN and setting U: = 1, In this manner, the main memory will always
contain only relevant and correct information. This is of special impor-
tance in case of power failure, and when several processors have access
to a shared memory.

ND-06.008.01

9.2.5

Limits

set

by
the

operating
system

Cache Inhibit Area

The Cache Memory system contains two 8—bit registers which define a con-
tiguous area in memory which will not be copied into Cache when accessed.
The inhibited area includes all pages with:

Lower limit < PPN < Upper limit

The inhibit feature is intended for use on memory areas that are operated
upon by high-frequency DMA transfers and/or parallel processors, to ensure
that the CPU does not operate on stale data that might reside in Cache.

Note that data is not removed from Cache when the Cache inhibit area is
expanded, therefore, expansion of the Cache inhibit area should always
be accompanied by Cache initialization (see Section 9.3.2).

”Master Clear” will cause all of main memory to be inhibited.

Main Memory

This area will
fl‘ not be mappedLIMIT PPN W” through CACHE

U
P +,

_, P _______________z’

E
R

Figure 9.2: Cache Limits

ND-06.008.01

9.3 CONTROL OF THE CACHE MEMORY

The operating system must perform two actions to control the Cache Memory:

Setting of the Cache inhibit limit registers.

—— initialization of the Cache Memory after a DMA transfer outside the
Cache Inhibit area.

Note that the Cache control instructions have no effect on machines without
the Cache Memory installed.

9.3.1 Setting of Cache Inhibit Limits

The Cache inhibit Limits may be set by performing the instruction

TRR 128

with the following contents in the A register:

>15 8 7 0

Upper limit (page no.) Lower limit (page no.)

Note: An expansion of the cache inhibit area should always be followed
by the ”Clear Cache” instruction (see Section 9.3.2).

9.3.2 Cache Initialization

Cache initialization is obtained by performing the "Clear Cache“ instruction .

TRR 108

which will clear all U-bits in the Cache Memory. After the “Clear Cache”
instruction, the Cache Memory will be disabled for 3555 while the U-bits are
being cleared. _ ‘

ND-06.008.01
Revision A

9.3.3 Cache Status Register

This register is only used by diagnostic programs. lt may be transferred to the
A register by performing the

TRA 108

instruction, and it has the following format:

15 ' 2 l 0
Not used (all zeros) I

CACHON ‘
CUP

Bit 0: CUP (Cache update) is a “l ” if the last memory reference (i.e., the
instruction read-out for the TRA 108) caused writing into cache.

Bit 1: CACHON (Cache on); is a “1" on all machines with the Cache
Memory installed, except during the 35,115 period following a
“TRR 108“ instruction or "Master Clear“, while the U-bits
are being set to zero.

N D-06.008.0l
Revision A

9.4

9—8

CACHE TIMING

The Cache Memory access runs in parallel with the Memory Management
Page Table look-up, on the same time-base, so that the tests on CPN and
U are completed at the same time as the physical memory address is ready.
If the data word is available in cache, it will at this time be present at the
CPU register inputs, giving a cache access time of 0.2us. This is the same
as the Memory Management delay, so that the Cache Memory system will
not incur any extra delay on memory accesses that must be forwarded to
main memory. However, the 0.2ps delay will now occur on references
to main memory also when the Memory Management System is turned
off.

N D-06.008.0‘l

APPENDIXES

APPENDIX A

NORD-10 MNEMONICS AND THEIR OCTAL VALUES

AAA : 172400 FAD : 100000 MPY : 120000
AAB : 172000 F DV : 1 14000 . MST : 150300
AAT : 173000 FMU : 110000 V NLZ : 151400
AAX 2 173400 FSB : 104000 ON E : 000200
ACT : 000400 G R E : 001000 OP R 2 000002
ADC : 001000 I : 001000 ORA : 074000
ADD : 060000 I DENT : 143600 PCR : 000003
AD1 : 000400 [F : 000000 PEA : 000015
ALD 2 000012 110 : 000005 PES : 000013

. AN D : 070000 HE : 000005 PGS : 000003
,B : 000400 IOF : 150401 P! D : 000006
BAC : 000600 lON : 150402 PIE : 000007
BANC : 177000 {OT : 160000 PIN : 002000
BAND : 177200 IOX : 164000 PL10 : 000004
BCM : 000400 IR R : 153600 P L11 : 000011
B LDA : 176600 1 RW : 153400 PL12 : 000022
BLDC : 176400 JAF : 131400 PL13 : 000043
BORA : 177600 JAN : 130400 POF : 150404
BORC : 177400 JAP : 130000 PON : 150410
BSET : 174000 JAZ : 131000 PV L : 000004
BSKP : 175000 JMP : 124000 RADD : 146000
BSTA : 176200 J NC : 132400 RAN D : 144400
BSTC : 176000 JPC : 132000 RCLR : 146100
CCLR : 000010 JP L : 134000 R DC R : 146200
CILR : 000012 JXN : 133400 RDIV I 141600
CLD : 000100 JXZ : 133000 R EXO : 145000

. CM1 : 000200 LBYT : 142200 R I NC : 146400
CM2 : 000600 LDA : 044000 RMPY : 141200
COPY : 146100 LDD : 024000 RORA : 145400
CSR : 000010 LDF : 034000 ROT : 001000
DA : 000005 LDT : 050000 RSUB : 146600
DB : 000003 LDX : 054000 SA : 000050
DD : 000001 LIN : 003000 SAA : 170400
D L : 000004 LMP : 000002 SAB : 170000
DNZ : 152000 LRB : 152600 SAD : 154600
DP : 000002 LST : 003000 SAT : 171000
DT : 000006 MCL : 150200 SAX : 171400
DX : 000007 MG RE : 001400 SB : 000030
ECC R : 000015 M 1 N : 040000 SBYT : 142600
EQL : 000000 M 1X3 : 143200 SD : 000010
EXIT : 146142 M LST : 003400 SHA : 154400
EXR : 140600 MON : 153000 SHD : 154200

N D-06.008.01

SHR
SHT
SKA
SKP
SL
SP
SRB
SSC
SSK
SSM
SSO

: 000200
154000

: 001000
140000

: 000040
: 000020

152402
: 000060
: 000020
: 000070
: 000050

330
SSTG
832
ST
STA
STD
STF
STS
STT
STX
STZ

N D-06.008.01
Revision A

: 000040
: 000010
: 000030
: 000060
: 004000
: 020000
: 030000
: 000001
: 010000
: 014000
: 000000

SUB
SVMAP
SX
'TRA
TRR
UEO
\NAfT

ZIN
ZRO

: 064000
144000

: 000070
: 150000
: 150100
: 002000

151000
: 002000
: 002000
: 000000

APPENDIX B

NORD-10/S INSTRUCTION CODE

1514131211109 8 7 6 5 4 3 210

000.000 STZ 0 0 0 0 0
0 004.000 STA 0 0 0 0 1

010.000 STT 0 0 0 1 0
014.000 STX 0 0 0 1 1
020.000 STD 0 0 1 0 0

1 024.000 LDD 0 0 1 0 1
030.000 STF 0 0 1 1 0
034.000 LDF 0 0 1 1 1
040.000 MIN 0 1 0 0 0

2 044000 LDA 0 1 0 0 1 XIB 018PLACEMENT
050.000 LDT 0 1 0 1 0 A
054.000 LDX 0 1 0 1 1
060.000 ADD 0 1 1 0 0

3 064.000 SUB 0 1 1 0 1
070.000 AND 0 1 1 1 0
074.000 ORA 0 1 1 1 1
100.000 FAD 1 0 0 0 0

4 104.000 FSB 1 0 0 0 1
110.000 FMU 1 0 0 1 0
114.000 FDV 1 0 0 1 1
120.000 MPY 1 0 1 0 0

5 124.000 JMP 1 0 1 0 1
130.000 CJP 1 0 1 1 0 sum.
134.000 JPL 1 0 1 1 1
140.000 SKP+EXT 1 1 O O 0 suam. EXT 8 D

6 144.000 ROP 1 1 0 0 1 aAolclAmcmco
150.000 MIS 1 1 0 1 O SUBIN.
154.000 SHT 1 1 0 1 1 ZINlROTISHASHDl {NUMBEROFSHIFTS

150.000 NA. 1 1 1 0 0 1
164.000 10X 1 1 1 0 1 DEVICE ADDRESS

7 170.000} ARG 1 1 1 1 0 FUNCTION 1 ARGUMENT
174.000 BOP 1 1 1 1 1 FUNCTION lsrrNo. D

ooooooooooooo<rmr~v8888888389*“”8 s: a e .1 N ‘-

ND-06.008.01
RevisionA

i

3

no. no. coon-00
§§§§:.§§§ §§§33§§g NORSK DATA A.S.
33:03.33: :33...::: Lerenvn. 57 — Postboks 163, ¢kern
coo :00. 00000000one so. coo-coo 081i) 1

COMMENT AND EVALUATION SHEET
NORD—10/S —- Reference Manual ND-06.008.01
Apfil1977

In order for this nlanual to develop to the pointxwhere it best suits
your needs, we rnust have your connnents. correcfions, suggesfions
for addfijons, etc. Please “mite down your conunents on fins pre—
addressed forn1 and postii. Please be specfiic wherever possflfle.

FROM:

