
ND-500
Micro Program Guide

ND-05.012.01

‘ NORSK DATA A.S

ND—500
Micro Program Guide

BID-05.01101

NOTICE

The information in this document is subject to change without notice. Norsk Data
A.S assumes no responsibility for any errors that may appear in this document.
Norsk Data A.S assumes no responsibility for the use or reliability of its software
on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. lt may not
be photocopied, reproduced or translated without the prior consent of Norsk
Data A.S.

Copyright @ l983 by Norsk Data A.S

PRINTING RECORD
tinting Notes
01/83 Version 01

ND~O5. 012. 01
ND~500 Micro Program Guide
January 1983

.“2- 0..w}: NORSK DATA A.S

.g'f g g PO. Box 4, Lindeberg gérd
:3}; =0": Oslo10, Norway

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one or
more single pages to be merged into the manual by the user, each revised page
being listed on the new printing record sent out with the revision. The old
printing record should be replaced by the new one.

New versions and revisions are announced in the ND Bulletin and can be ordered
as described below.

The reader’s comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms, together with all types of inquiry and requests for documentation
should be sent to the local ND office or (in Norway) to:

Documentation Department
Norsk Data A.S
PO. Box 4, Lindeberg gérd
Oslo lO

Preface:

The product

This document is intended to give a short introduction to ND—SOO micro
programming and will state rules for the use of some of the commands
available in the ND—500 mnemonic symbols.

The reader

The document is addressed to people writing micro program routines for
the ND~500 and to people working with ND»500 hardware.

Prerequisite knowledge

Some knowledge about the ND—SOO architecture and detailed knowledge
about the ND-SOO hardware is required to use the manual. This can be
found in the manual:

ND—500 Reference manual ND m 05.009

ND — 05.012.01

T A B L E

vfi

Section

5.1

5.2

5.3

9.3

9.u

9.5

10

INTRODUCTION

ND-SOO REGISTERS

FORMAT OF THE MICRO WORD

OR—LOGIC FUNCTION . . .

ARITHMETIC FUNCTIONS . .

ALU—FUNCTIONS

FLOATING ARITHMETIC .

BCD ARITHMETIC

DESTINATION CONTROL . .

WAIT FOR COMMANDS . . .

MICRO PROGRAM SEQUENCE .

STACK COMMANDS

SEQUENCE COMMANDS . .

MICRO CYCLE TIME . . .

CONDITIONAL OPERATIONS .

ND—SOO TEST CONDITIONS

CONDITIONAL SEQUENCE .

CONDITIONAL ALU—OPERATION .

CONDITIONAL MEMORY REFERENCE

CONDITION SAVE

CONTROL OF STATUS BITS .

ND - 05.012.01

- o

a 0 o

Page

10

12

13

15

17

17

18

18

19

19

20

20

viii

Section Page

11 PREFETCH PROCESSOR COMMANDS - . - . . - - . . . - - 25

12 ADDRESS ARITHMETIC . 27

13 ND-1OO ND-5OO COMMUNICATION 29

13.1 THE MESSAGE BLOCK . 29

13.2 READ MICRO PROGRAM VERSION 31

13.3 PHYSICAL DATA MEMORY EXAMINE 31

13.4 PHYSICAL DATA MEMORY DEPOSIT 31

13.5 LOGICAL DATA MEMORY READ 31

13.6 LOGICAL DATA MEMORY WRITE 32

13.7 SET CACHE MODE . 32

13.8 PHYSICAL DATA MEMORY READ 32

13.9 PHYSICAL DATA MEMORY WRITE 33

13.10 REGISTER EXAMINE . 33

13.11 REGISTER DEPOSIT . 33

13.12 REGISTER READ . 33

13.13 REGISTER WRITE . 34

13.1” START . 34

13.15 MONITOR CALL . 3A

13.16 TRAP . 35

13.17 RESTART AFTER MONITOR CALL 35

13.18 RESTART AFTER TRAP . 36

13.19 PHYSICAL SEGMENT READ 36

13.20 PHYSICAL SEGMENT WRITE 36

13.21 LOGICAL INSTRUCTION MEMORY READ 36

13.22 LOGICAL INSTRUCTION MEMORY WRITE 37

13.23 PROGRAMMED TRAP . 37

ND — 05.012.01

ix

Section

13.2u HISTOGRAM READ

1M MICRO INSTRUCTION

1A.1

1u.2

1A.3

1A.4

1A.5

14.6

1A.?

14.8

1A.9

MNEMONIC SYMBOLS

CONSTANTS

SHORT ARGUMENT

LONG ARGUMENT

MICRO PROGRAM ADDRESS

MICRO PROGRAM ADDRESS MODIFIER

DEFINED SYMBOLS

THE ASSEMBLER

ERROR MESSAGES FROM THE MICRO ASSEMBLER

15 ND-SOO MNEMONIC SYMBOLS

16 ND-500 USER INSTRUCTIONS

16.1
16.1.1
16.1.2
16.1.3

16.2

16.3

16.4

16.5

CLASSIFICATION
INSTRUCTION GROUP 1
INSTRUCTION GROUP 2
INSTRUCTION GROUP 3

PROBLEM APPROACH

MICRO PROGRAM EXAMPLE

INSTALLING USER INSTRUCTIONS

DEBUGGING

ND - 05.012.01

Page

37-

39

39

39

39

39

39

HO

A0

40

A1

A3

53

53
5A
55
57

59

62

65

67

ND-5OO MICRO PROGRAM GUIDE 1
INTRODUCTION

1 INTRODUCTION

Micro instructions in the ND—SOO control the communication between
different parts of the central processing unit (CPU).

Arithmetic logic unit (ALU).
External arithmetic. Floating point or BCD arithmetic.
Prefetch processor.
Cache and memory system.
Input and output system.
Trap system.
Sequencer.

A macro instruction will need a number of micro program instructions
depending on the complexity of the instruction to be performed. The
prefetch processor will, for the same macro instruction, execute a
number of cycles depending on the number of operands involved in the
operation.

The micro program will use data fetched by the prefetch processor from
a register or from the cache and memory system in ALU operations or
output from operations carried out by the external arithmetic. This
involves synchronization with the prefetch processor, the cache and
memory system and the external arithmetic.

The micro program may be divided into four parts.

1 Entry point part.
2 Part for macro instructions requiring more than one micro

instruction.
3 The ND-IOO / ND-SOO communication.
u Trap handling.

ND — 05.012.01

ND—SOO MICRO PROGRAM GUIDE

ND — 05.012.01

ND~500 MICRO PROGRAM GUIDE 3
ND—SOO REGISTERS

2 ND—SOO REGISTERS

Macro instructions requiring more than one micro instruction usually
require scratch registers for saving operands or results. Some of the
scratch registers are allocated for special use in the micro program
and should not be changed by user micro program routines.

Registers allocated for constants used in micro program:

AM#O
AM#1
AM#2
AM#3
AM#M
AM#5
AM#6
AM#37:

no
no

on
on

no
no

on

Registers allocated for

AM#7
AL#7
AM#1O
AL#1O
AM#12

AL#12
AM#13
AL#13
AM#14
AL#1N
AM#15
AL#15
AM#16
AL#16
AM#17
AL#17

AL#0
AL#1
AL#2
AL#3
AL#H
AL#5
AL#6
AL#37

Double floating register
Double floating register
Double floating register
Double floating register
Floating constant -1.0.
Floating constant 0.0.
Floating constant 1.G.
Integer constant -1.

D1 register.
D2 register.
D3 register.
Du register.H

II
H

II

for special use in the micro program:

Top of stack register.
Trap handler register.
Process number.
Communication / process status.
Address of the status word in ND—1OO
block involved in current / last message.

CAD. Current executing alternativ domain.

CED. Current executing domain.

PS. Process segment number and process control
register.

The scratch registers allocated for free use are:

AM#11

AM#2O to AM#36
AL#20 to AL#36

: AL#11 Free to use. Save in context (process
description) block when changing process.
Floating scratch most.
Floating scratch least.

ND — 05.012.01

ND-500 MICRO PROGRAM GUIDE

ND - 05.012.01

ND—SOO MICRO PROGRAM GUIDE 5
FORMAT OF THE MICRO WORD

3 FORMAT OF THE MICRO HORD

The ND—500 micro word, being 1AM bits wide, is divided into groups,
each group controlling special parts or functions in the ND—500 CPU.
The value of each function is given a mnemonic symbol. The mnemonic
symbols may be combined to perform functions. Symbols using the same
field should not be used together. This will be allowed by the ND~500
micro assembler, as long as the mnemonics do not try to set the same
bits in the field.

The mnemonic symbols may be handled by the NDmSOO micro assembler. See
appendix for further description of the assembler.

Micro word bits Control function.
1A3 Control store parity.
142 SP clock inhibit.

141 - 137 ALU-function select (true).
136 - 135 Carry select.
13A — 125 A~operand select.
12A - 116 B—operand select.
115 ~ 106 Destination select.
105 - 101 OR—logic enable.
100 - 99 Data type control.
98 — 93 Memory control.

92 Condition save.
91 Conditional sequence enable.
90 Conditional ALU enable.
89 Conditional MEM enable.

88 — 84 Test condition select.
83 — 76 Sequence instructions (true).

75 Set condition select.
7“ Delayed sequence.

73 — 66 Alternative (false) sequence instruction.
65 — 6“ Status control.
63 — 60 Prefetch control.
59 - 58 Timing control.
57 - 55 Wait for select.

5A Status save.
53 Loop couter decrement.
52 Index counter adjust.

51 — 43 Address arithmetic control.
H2 External arithmetic activate.

A1 — A0 External arithmetic ident.
41 — 40 Carry select alternative ALU—function.
39 — 38 Data bus control.

37 External result enable.
36 - 32 External arithmetic function select.
36 — 32 Alternative (false) ALU—function.

31 Effective address 1 clock inhibit.
30 Effective address 2 clock inhibit.

29 - 16 Absolute micro program address.
31 ~ 0 Long argument. 32 bits wide.
15 — 0 Short argument. Sign extended to 32 bits.

ND - 05.012.01

ND—5OO MICRO PROGRAM GUIDE
FORMAT OF THE MICRO WORD

ND - 05.012.01

ND—SOO MICRO PROGRAM GUIDE 7
OR—LOGIC FUNCTION

H OR—LOGIC FUNCTION

The prefetch processor will fetch instructions and operands, and will.
generate addresses for operands to be written.

The prefetch processor supplies the OR~logic with information about
source and destination select and data type control decoded from the
macro instruction being executed. For source select the prefetch will
select operands either on the A—operand or the B—operand, depending on
the operand definitions for the macro instruction. Operands are
defined as a register, a general operand or a constant.

If a register is an operand, it is routed to the A—operand.

In the case of a general operand or a constant as operand, routing is
to the B-operand.

These rules must be followed when using the OR—logic for operand read.

The OR—logic commands and their use are:
ORA Select register as A—operand.
ORB Select general operand as B—operand.
ORT Select data type for operation.
0RD Select register destination (if any).

The OR—logic will dominate source and destination select and data—type
control specified in a micro instruction. Specifying CRT and TYP,BY
will cause data type to be decoded from the macro instruction being
executed and TYP,BY not affecting the operation.

ND ~ 05.012.01

ND—SOO MICRO PROGRAM GUIDE

ND — 05.012.01

ND~500 MICRO PROGRAM GUIDE 9
ARITHMETIC FUNCTIONS

5 ARITHMETIC FUNCTIONS

The ALU and the external arithmetic are used for performing arithmetic
functions. As input for an operation, A-operand, B—operand, data type
control and destination may be selected from separate fields or they
may be selected by the OR—logic.

The true ALU—functions and the external arithmetic are controlled from
separate fields so you can run ALU-functions and external arithmetic
functions in the same micro instruction.

5.1 ALB-FUNCTIONS

The arithmetic logic unit (ALU) may perform integer arithmetic and
logic functions.

The ALU-functions are specified by the symbols ALU,<func> for true
ALU—function select. The ALU-functions may also be specified as a
false ALU—function by the F,<func> commands. This is only activated by
the C,ALU command.

The ALU-functions are:

Arithmetic operations :
ALU,A+1 : A—operand plus one.
ALU,A+A : A-operand plus A—operand.
ALU,A+A+1 : A—operand plus A—operand plus one.
ALU,A+B : A—operand plus B—operand.
ALU,A+B+1 : A—operand plus B—operand plus one.
ALU,A+B+C : A—operand plus B-operand plus carry.
ALU,A—1 : A-operand minus one.
ALU,A—B : A-operand minus B—operand.
ALU,A—B—1 : A-operand minus B—operand minus one.
ALU,A—B-1+C : A-operand minus B—operand minus one plus carry.

Logic operations:
ALU,ADIR : A—operand direct.
ALU,ADIRC : A—operand complemented.
ALU,BDIR : B—operand direct.
ALU,BDIRC : B—operand complemented.
ALU,FZRO : Force zero from ALU output.
ALU,FONE : Force ones from ALU output.
ALU,AND : A—operand AND B—operand.
ALU,ANDCA : A—operand complemented AND B—operand.
ALU,ANDCB : A-operand AND B~operand complemented.
ALU,NAND : A—operand NAND B—operand.
ALU,OR : A—operand OR B—operand.
ALU,ORCA : A—operand complemented OR B—operand.
ALU,ORCB : A-operand OR B—operand complemented.
ALU,NOR : A—operand NOR B—operand.
ALU,XOR : A—operand XOR B—operand.
ALU,XNOR : A-operand XNOR B-operand.

ND — 05.012.01

10 ND—5OO MICRO PROGRAM GUIDE
ARITHMETIC FUNCTIONS

5.2 FLOATING ARITBMETIC

The floating point arithmetic may perform shift operations, floating
and integer conversion, floating point arithmetic and integer
multiply. The floating point arithmetic is activated by the EX,<func>
commands.

For shift and conversion commands only the B—operand is used. The
exception to this is the EX,DTOFR command which needs operand supplied
on the A-operand with B—operand equal to zero.

For shift and multiply, shift count may be specified either to be
taken from the shift count register or from the short argument field.

Shift count > O : Shift left. Shift count < O : Shift right (not for
rotational shift).

Any integer register, floating double register, floating most register
or memory data may be selected as operands for the floating point
arithmetic.

Note that floating least register is invalid as
the operand select.

Floating double and floating most registers may be directly selected
as destination. If integer registers or memory is destination, the
data has to be read through the ALU. The result is always returned on
the XOPA—bus (floating-bus), enabled by the XRES command to the ALU B—
operand.

Note that the commands B,XRESM and B,XRESL
contain the XRES command.

Some of the operations give opportunity to save the result either in
the SA or the SP registers located at the floating point arithmetic.

For floating operations TYP,F and SINGLE or DOUBLE must be specified.
For integer operations the OR-logic (ORT) as well as the integer data
type control commands may be used.

The operations performed by the floating point arithmetic lasts for
more than 200 nsec. (one micro cycle) and synchronization is done by
the W,EXT command.

ND — 05.012.01

ND—SOO MICRO PROGRAM GUIDE 11
ARITHMETIC FUNCTIONS

The commands for activating floating point arithmetic are:

EX,SHA : Shift arithmetic.
EX,SHL : Shift logic.
EX,SHR : Shift rotational.

EX,CTF : Convert integer to floating.
EX,UCTF : Unsigned convert integer to floating.
EX,DTOFR : Double to single convert with rounding.
EX,INT : Integer part (in float) truncated.
EX,INTR : Integer part (in float) rounded.

EX,CTI : Convert floating to integer truncated.
EX,CTIR : Convert floating to integer with rounding.

EX,SUM : Floating add : A + B -+ CPU.
EX,ASUM : Floating add 2 SA + B"’ CPU.
EX,ASUMA : Floating add : SA + B -+ SA.

EX,DIFF : Floating subtract : A - B ‘* CPU.
EX,COMPARE : Floating compare : A - B.

EX,MUL : Multiply : A * B '4 CPU.
EX,MULA : Multiply and save : A * B '* SA.
EX,UMUL : Unsigned multiply : A * B -* CPU.
EX,APMULA : Multiply and save : SA *SP ‘* SA.

EX,ARMULA : Divide step 1 : A * 1/B' -§ SA.
EX,BRMULP : Divide step 2 : B * 1/B' ~+ SP.
EX,APIMULA : Divide step 3 : SA * SP' ‘* SA.
EX,PPIMULA : Divide step 4 : SP * SP' " SP.
EX,APIMUL : Last divide step : SA * SP' ‘+ CPU.

EX,TORMULA : Divide : A * 1/B' -+ CPU.

To do a proper single floating point divide, the divide steps 1, 2 and
the last one are to be used. For a double floating point devide, all
the divide steps are to be used. The double floating point includes
adding one to the least significant part of the result of the
division. The carry from the least significant part is then added to
the most significant part of the division.

An integer divide is done by converting the operands to double
floating point numbers and then do a double floating point divide.

To avoid divide by O, the test condition COND,MDZ, is selected when
doing the first divide step. Result of this test condition may be used
in the following micro instruction together with the second divide
step to abort the divide in case of X/0.0.

ND - 05.012.01

12 ND-SOO MICRO PROGRAM GUIDE
ARITHMETIC FUNCTIONS

5.3 BCD ARITHHETIC

The BCD arithmetic may perform the decimal functions ADD, SUB, MPY,
SHIFT, COMPARE, PACK, UNPACK, BINC and BCDC. The BCD arithmetic is
micro programmed and is controlled by the CPU micro program. The
different operations are carried out by the BCD arithmetic.

The CPU micro program will, for a BCD operation, control the function
and handle the descriptors of BCD numbers involved in an operation.
The result of the operation is returned on the XOPA-bun, — on the most
significant part of the data bus.

Data input to the BCD arithmetic may be selected from any floating
most register, from any integer register or from data memory.

Synchronization is done by the w,EXT command and is required between
each activate of the BCD arithmetic. Data type BCD must be specified
together with each activate.

The commands for activating the BCD arithmetic are:
BCD,ADD : BCD add without rounding.
BCD,ADDR : BCD add with rounding.
BCD,BCDC : BCD to binary convert.
BCD,BINC : Binary to BCD convert.
BCD,COMP : BCD compare.
BCD,BATA : Data to or from BCD arithmetic.
BCD,BESCA : BCD descriptor.
BCD,MPY : BCD multiply without rounding.
BCD,MPYR : BCD multiply with rounding.
BCD,PACK : Pack BCD to ASCII without rounding.
BCD,PACKR : Pack BCD to ASCII with rounding.
BCD,SHIFT : BCD shift without rounding.
BCD,SHIFTR : BCD shift with rounding.
BCD,BUB : BCD subtract without rounding.
BCD,SUBR : BCD subtract with rounding.
BCD,UPACK : Unpack BCD to ASCII without rounding.
BCD,UPACKR : Unpack BCD to ASCII with rounding.

ND — 05.012.01

ND—SOO MICRO PROGRAM GUIDE 13
DESTINATION CONTROL

6 DESTINATION CONTROL

Different commands and facilities may be used for destination select.

The result of an arithmetic operation, either ALU or external
arithmetic, may be routed to the desired destination by the D,<dest>
commands if a register is the destination, or with memory write if
memory is the destination.

Data from memory are always 'latched' on the external arithmetic B-
bus. This may also be controlled by the micro program. Data in at the
end of a cycle (read in current or a preceding cycle) may be '1atched'
on the external arithmetic B-bus.

Data input at the end of a cycle may also be 'latched' in the DP1
register.

If data in is to be used unchanged in a write operation, the data in
register may be routed to the data out register.

Move data in to <dest>:

MV,DTOXBM Data in routed to external B-bus most.
MV,DTOXBL Data in routed to external B-bus least.
MV,DTODP Data in routed to DP1.
MV,DINTOD Data in routed to data out.

The XD—bus has several registers connected which may be moved by
specfying XDMOV. Source as A,XD,<source> and destination as D,<dest>
must be specified. This leaves the ALU B—operand free for other
purposes. The loop counter, located on the XD-bus is a very useful
register for loop control. Test condition for loop counter equal to
zero may be selected. Also note the command LCDECR for decrementing
the loop counter in paralell with ALU,xxx operations or floating point
operations.

Example:
xpmov A,XD,SARG D,LC 14; $9.. 14 4 LC

ND « 05.012.01

14

ND — 05.012.01

ND~500 MICRO PROGRAM GUIDE

ND-500 MICRO PROGRAM GUIDE 15
WAIT FOR COMMANDS

7 WAIT FOR COMKANDS

Some commands are used for waiting, ie., stretch a micro cycle to.
synchronize with either floating point arithmetic, cache and memory
system or input/output system. The wait state is only active if a
request has been generated.

The different wait states are explained below.

Micro clock.

a b c Wait state.
Command: Function. Wait state.

1 W,XD Wait for master clear. Full stop. ""+ b

2 W,IO Wait for input / output.
Wait at end of cycle. "—4 c

3 W,PMEM Wait for previous memory request.
Wait at start of cycle for memory
read from a preceding cycle. ""* a

A W,MEM Wait for memory request.
As for W,PMEM and ---§ a
wait at end of cycle for memory
request generated in current cycle. ""+ c

5 W,EXT Wait for external arithmetic.
Wait at start of cycle if result
is taken through the ALU. ""* a
Wait at end of cycle if result is
taken direct to the register block. ""+ c

6 W,IOEM Wait for combination 2,“ and 5. ""$ a/c

7 W,IOEPM Wait for combination 2,3 and 5. “"’ a/c

ND — 05.012.01

16

ND — 05.012.01

ND-SOO MICRO PROGRAM GUIDE

ND—SOO MICRO PROGRAM GUIDE 17
MICRO PROGRAM SEQUENCE

8 MICRO PROGRM! SEQUENCE

The ND—SOO micro instructions may use different commands for
sequencing the micro program. The commands will either cause the next
micro instruction in a sequence to be executed, or some kind of a
jump. A stack holding maximum four different adresses, with the top
word as input to the micro program word counter (m.p.c) is also
available.

Stack

— word 1 — *" Available for input to the m.p.c.
— word 2
— word 3
— word 4 —

Figure: BI

The sequence is controlled by a sequence command and a stack command.
The ND-SOO micro sequence control mnemonics are defined with both
sequence commands and stack commands except for NEXTNS, F,NEXTNS,
JMPNS and F,JMPNS. These require a stack command for desired function
on stack.

The sequence control is also available as false sequence control
written as F,<seq>. False stack control is written as F,<contr>. The
false sequence control is only activated by the C,SEQ command.

8.1 SIéCK COMMANDS

Stack commands and functions are:
HOLD : heave stack unchanged.
LOAD : Word 1 is changed to current micro address + 1.

The rest of the stack is unchanged.
PUSH : Word 4 is lost.

Word 3 ‘+ word 4.
Word 2 “+ word 3.
Word 1 ‘+ word 2.
Current address + 1 "+ word 1.

POP : Word 1 may be used as return address. Word 1 *' word 2.
Word 2 4'- word 3.
Word 3 *‘ word u.
Word 4 4’ word U.

ND — 05.012.01

18 ND-SOO MICRO PROGRAM GUIDE
MICRO PROGRAM SEQUENCE

8.2 §EQUENCE COMMANDS
The sequence control functions are with stack commands:

Stack command: None.
NEXTNS Take next micro instruction.
JMPNS Jump to micro address <addr.>.

Stack command: HOLD
NEXT Take next micro instruction.
JMP Jump to micro address <addr.>.
JMPMAP Jump to map address, ie., start of next macro instr.
JMPCAR Jump to computed address taken from CAR.
JMPREL Jump relative to m.p.c. displacement-1 in CAR.
JMPSTK Jump to stack address (word 1).
NOPOPRET Jump to stack address (word 1).
JMPWA Jump to write address (WA).
REP Repeat current micro instruction.
HBRET Return to address HB (hardware branch register).

Stack command: PUSH.
JSR Jump to subroutine address <addr.>.
JSRMAP Jump to subroutine map address.
JSRCAR Jump to subroutine address taken from CAR.
JSRREL Jump to subroutine relativ to m.p.c.(see JMPREL).
JSRSTK Jump to subroutine stack address (word 1).
JSRWA Jump to subroutine write address.

Stack command: POP
POPRET Jump to stack address (word 1).

Example of use of stack:
a) NEXTNS PUSH;
b) NEXT;
0) ALU,<func> SET COND,<cond> NEXT;
d) C,SEQ F,NEXTNS F,LOAD %.. Change return address.

IFT NEXT; %.. Hold stack unchanged.
8) ALU,<func> SET COND,<cond> NEXT;
f) C,SEQ F,NOPOPRET %.. Return to stack address b or e.

IFT NEXT; %.. Leave the loop.

8.3 MICRO CYCLE TIME

Commands for control of micro cycle time:

SLOW1 Stretch both high and low state of micro cycle.
Must be used when using XD destinations.
Not to be used in connection with PRF,EOP.

SLOWZ Stretch start (high state) of micro cycle.
Must be used when using XD sources.
Used in combination with JMPMAP and PRF,EOP.

ND ~ 05.012.01

ND—SOO MICRO PROGRAM GUIDE 19
CONDITIONAL OPERATIONS

9 CONDITIONAL OPERATIONS

The test conditions listed below may be used for three different
purposes in the ND-SOO micro program. Some conditions may select test
result either from main status or from the micro—status. These
conditions are written as (M)ZRO. This means that the condition
COND,ZRD will take test result from the Z-bit in main status.The
condition CONDgMZRO takes test result from the micro-status. To
activate the selected condition the command SET must be used.

9.1 ND—500 TEST CONDITIONS

Possible test conditons and their relations
COND,condition true : false

Arithmetic operations:

Equal (M)ZRO true
Unequal (M)ZRO false

Signed:
Greater (M)SORZ false
Greater or equal (M)SGN false
Less (M)SGN true
Less or equal (M)SORZ true

True less or greater or equal:
Less MSEXO true
Greater or equal MSEXO false

Magnitude:
Greater_ (M)CNZ true
Greater or equal (M)CRY true
Less (M)CRY false
Less or equal (M)CNZ false
Overflow (M)OVFL true : false

Parity (from ALU-output):
Odd parity PARITY true
Even parity PARITY false

External arithmetic:
Avoid X / O MDZ true : error

false : 0k
Floating over or underflow MFUFO true : false
Floating sign MFS true : false
Floating overflow MFO true : false
Floating underflow MFU true : false
BCD overflow MBO true : false

Process status:
Loop counter : O LCZ true : false
Flag K true : false
Data source / destination DATOP true : false
Constant source / destination CONOP true : false
Part done, ie., restart PDONE true : false
Trap TRAP true : false
Next instruction is enter code ENTER true : false
BCD invalid operation MIVO true : false

ND - 05.012.01

20 ND-SOO MICRO PROGRAM GUIDE
CONDITIONAL OPERATIONS

Instruction channel ready ICRDY true : false
Saved condition 1 SAV01 true : false
Saved condition 2 SAVC2 true : false

9.2 CONDITIONAL SEQUENCE

Select true or false sequence of micro instruction.

Result of a conditon set in a preceding micro instruction with result
from previous micro instruction affecting selected condition,
determines true or false sequence when C,SEQ is used. When delayed
sequence (C,SEQD) is used, the test condition may be set in current or
a preceding micro instruction.

Example:
a) ALU,A—B A,<ao> B,<bo> TYP,<tt> SET COND,MZRO NEXT;
b) C,SEQ NEXT F,JMP 5000,0;
c) ALU,A+B A,<ao> B,<bo> TYP,<tt> NEXT;

Result from ALUnoperation in micro instruction a gives either true or
false micro zero. Result = 0 gives true sequence, ie., next “’ c from
micro cycle b. Result >< 0 gives false sequence, ie., jump to micro
address 5000 from micro instruction b.

The example above is equivalent to:

a) ALU,A-B A,<ao> B,<bo> TYP,<tt> NEXT;
b) C,SEQD SET COND,MZRO NEXT F,JMP 5000,o;
c) ALU,A+B A,<ao> B,<bo> TYP,<tt> NEXT;

9.3 CONDITIONAL ALU—OPERATION

Select true or false ALU operation in a micro instruction.

Result of a condition set in current or a preceding micro instruction
with result from previous micro instruction affecting the selected
condition, determines true or false ALU—operation.

Example:
a) ALU,A-B A,<ao> B,<bo> TYP,<tt> SET COND,MSGN NEXT;
b) C,ALU ALU,<func> F,<func>

A,<ao> B,<bo> TYP,<tt> D,<dest> NEXT;

Result from ALU—operation in micro instruction a gives either true or
false micro sign.

Micro sign, ie., <ao> < <bo> gives true ALU-function in micro
instruction b.

Not micro sign, ie., <ao> >= <bo> gives false ALU—function in micro
instruction b.

ND — 05.012.01

ND-500 MICRO PROGRAM GUIDE 21
CONDITIONAL OPERATIONS

The condition may for ALU—operation select be set in the same micro
instruction as is used in a conditional ALU-operation.

The example above is equivalent to:

a) ALU,A-B A,<ao> B,<bo> TYP,<tt> NEXT;
b) C,ALU ALU,<func> F,<func> SET COND,MSGN

A,<ao> B,<bo> TYP,<tt> D,<dest> NEXT;

9.“ CONDITIONAL MEMORY REFERENCE

Conditional memory reference. This request is only generated if the
condition is true.

The result of a condition set in the current or a preceding micro
instruction with the result from the previous micro instruction
affecting the selected condition, gives memory request, read or write,
only if the selected condition is true.

Example:
a) ALU,ADIR A,DATA TYP,BY SET COND,PARITY NEXT;
b) C,MEM MEM,WR1 w,MEM AA+AB AA,<ao> AB,<bo>

ALU,XOR A,DATA B,BM#7 NEXT;

The result from micro instruction a is used to change parity of a
byte.

Parity 0k, ie., condition false, no write request in micro instruction
b.

Parity not ok, ie., condition true, write request in micro instruction
b with parity bit changed.

9.5 EgyDITION SAVE
By using CSAVE, any test condition may be saved for later use. The
saved condition may be selected for test, true or false, in a later
micro instruction by setting saved condition 1 or 2.

CSAVE saves the result of the condition set in current or a preceding
micro instruction with result from previous micro instruction
affecting the selected condition.

Example:
a) ALU,<func> A,<ao> B,<bo> TYP,<tt> SET COND,<cond> NEXT;
b) CSAVE NEXT;
0) -- —~ EXT;

EXT;H
H N

NH
H

N
H

H
ll

n) SET COND,SAVC1 NEXT;
m) C,SEQ JMP F,<seq>

C,MEM MEM,<read/write> AA+AB AA,<ao> AB,<bo>
C,ALU ALU,<func> F,<func>;

ND — 05.012.01

22 ND—SOO MICRO PROGRAM GUIDE
CONDITIONAL OPERATIONS

The result from micro instruction a is saved in micro instruction b.
Saved condition 1 is selected in micro instruction n and may be used
for test in the following or a later micro cycle. This is equal to the
following example.

a) ALU,<func> A,<ao> B,<b0> TYP,<tt> NEXT;
b) CSAVE SET COND,<cond> NEXT;
0) ”' '* = :: NEXT;

: :: NEXT;H
I!

H
II

ll
H

n) SET COND,SAV01 NEXT;
m) C,SEQ JMP F,<seq>

C,MEM MEM,<read/write> AA+AB AA,<ao> AB,<bo>
C,ALU ALU,<func> F,<func>;

ND ~ 05.012.01

ND-SOO MICRO PROGRAM GUIDE 23
CONTROL OF STATUS BITS

10 CONTROL OF STATUS BITS

Status bits may be controlled directly by using either the ALU,OR or,
the ALU,ANDCB function and bit mask for setting or resetting of status
bits. For reading of the status, A,XD,SZ is used for status bits 63 —
32 and A,XD,S1 is used for status bits 31 — O. For writing status,
D,SZ is used for writing status bits 63 — 32, D,S1 is used for writing
status bits 29 — 25 and bits 16 - O and D,XST1 is used for writing
status bits 31 — 30 and bits 24 — 17.

For operations affecting data status bits, commands are used for
control of data status bits according to result of operation.

Data status bits save:
ST,SAVA : Save status from ALUmoperation.
ST,SAVC : Save status from ALUmoperation in compare.
ST,SAVF : Save status from floating—operation.
ST,SAVB : Save status from BCDmoperation.

Flag (K) and descriptor range (DR) control:
K,ZRO : K +- o.
K,ONE : K +- 1.
K,1IFZ :K‘.‘1ifMZRO:1.DR“’O.

ND - 05.012.01

24

ND - 05.012.01

ND—SOO MICRO PROGRAM GUIDE

ND-500 MICRO PROGRAM GUIDE 25
PREFETCH PROCESSOR COMMANDS

11 PREFETCH PROCESSOR COMMANDS

The prefetch commands are used to control the next operation of the
prefetch processor. This operation will depend on the macro
instruction executed and is partly controlled by the prefetch micro
code for the macro instruction. This implies that the prefetch
commands used have to complement the prefetch micro code.

The prefetch commands are:

PRF,ISAMP : Interupt sample.
PRF,PCONT : Next step in prefetch (PCONT).
PRF,EOP : End of operation. ISAMP and PCONT.
PRF,CEOPT : Enable prefetch branch if condition is true.
PRF,CEOPF : Enable prefetch branch if condition is false.
PRF,FADC : Start fetch of a general operand.
PRF,WFIN : Wait for previous prefetch operation to be

finished.
PRF,CLEAR : Clear prefetch.
PRF,START : Start prefetch.

PRF,ACONT : Not used.
PRF,FOPR : Not used.
PRF,FARG : Not used.
PRF,FOPC : Not used.

ND ~ 05.012.01

26

ND - 05.012.01

ND-500 MICRO PROGRAM GUIDE

ND—SOO MICRO PROGRAM GUIDE 27
ADDRESS ARITHMETIC

12 ADDRESS ARITHMETIC

The address arithmetic is controlled by the prefetch processor but may
also be controlled by the micro program. Since ND—SOO is byte
addressed the micro program must handle the address arithmetic
according to the data-type in question using the address arithmetic.

The commands for control of address arithmetic are:

AA+AB Address A—operand plus address B—operand.
PASSAA Address A-operand direct through.
PASSAB Address B—operand direct through.

Input to the address arithmetic:

Address A—operand:
AA,DP1 DP1 register as input.
AA,DP2 DP2 register as input.
AA,EA1 EAT register as input.
AA,EA2 EA2 register as input.

Address B-operand:
IXO B-operand is index register 1.
IX1 B-operand is index register 2.
IX2 B~operand is index register 3.
1X3 B—operand is index register 4.
AB,B B—operand is B (Base register).
AB,R B—operand is R (Record register).
AB,L B-operand is L (Link register).
AB,PC B-operand is P (Program counter).
AB,DPARG B-operand is sign extended argument.
AB,ORAB B-operand is index register selected from the

macro instruction with data type scaling
determined by the prefetch processor.

Address B—operand index scaling for data type Data type :
AB,1/81X Index register scaled by 1/8 : Bit.
AB,IX Index register scaled by 1 : Byte.
AB,2IX Index register scaled by 2 : Half word.
AB,UIX Index register scaled by A : Word,sing.float.
AB,81X Index register scaled by 8 : Doubl.float.

Output of the address arithmetic is latched in the EAl and EA2
registers. This may be avoided by either the EAlINH or the EAZINH
commands. The address arithmetic activate will cause address latch to
be sent to the cache and the memory system when it is required for
read or write operations. This may be avoided by the NADL command.
EA1INH and EAZINH has no effect on the address latch signal.

The micro programmer may hold base addresses in either DP1,DP2,EA1 or
the EA2 registers to generate addresses relative to these. The DP? and
DP2 registers are coupled as a stack and destination DP (D,DP or
MV,DTODP) will cause DP? ‘* DP2 with new contents in DP1. The command
AB,DPARG will also cause DP1 ‘9 DP2 with new contents in DP1. When the
prefetch processor is active, it will change the DP—registers.

ND - 05.012.01

28 ND-SOO MICRO PROGRAM GUIDE
ADDRESS ARITHMETIC

Base addresses should therefore not be placed in either DP1 or DP2
when the commands mentioned above are used.

The prefetch uses the EA2 register for address calculate . The EAZINH,
EA1 enable or EA2 enable must not be used in the same micro
instruction as the prefetch is activated for operand fetch.

ND — 05.012.01

ND-SOO MICRO PROGRAM GUIDE 29
ND-TOO ND—SOO COMMUNICATION

13 ND-100 ND—SOO COMMUNICATION

At initialization of the ND—SOO, the micro program is loaded into the
control store and started. After going through some initialization,
the micro program enters the IDLE—loop° The initialization of the ND—
500 implies clearing of the prefetch, setting of the floating and
integer constant registers, resetting of trap enable registers and
resetting the status register. The call/enter flag is also initiated.
Then the micro program enters the communication part and initiates the
communication before the IDLE loop is entered. Nothing but an activate
or a terminate from the ND—1OO can cause the micro program to leave
the IDLE loop.

The communication between the ND—lOO and ND—SOO is built on a message
block, residing in RESIDENT of SINTRAN III. Before an activate is
given, the message block is initiated. The way it is initiated depends
on the operation to be carried out. The activate gives the control to
the ND—SOO. The ND—SOO examines the message block and a micro program
routine is entered according to the function specified in the block.
The ND—SOO will then use the block to return messages back to the ND—
100.

Each block contains a header and a data part. The header consists of
six words in ND—1OO describing the message. The data part consists of
a function value and a number of parameters depending on operation to
be carried out.

13.1 THE MESSAGE BLOCK

ND-lOO word
H
E ~ link.OO - Next link
A — link.01 —
D - link.02 - Status
E — link.03 - Sender
R — link.0u ~ Receiver

- link.05 - Size “‘""“'
- link.06 - Function value

D Parameter list according to
A function being processed .
T
A

l I
P
A
R
T

ND - 05.012.01

30 ND—SOO MICRO PROGRAM GUIDE
ND-1OO ND-SOO COMMUNICATION

Next link: The two first words of the block hold the start address of
the next block. If start address of the next block is equal to —1,
this means end of link.

Status of the block: Status gives information about the message
currently being processed.

O : Block free.
1 : Message to ND-SOO.
2 : Message in process. Set by micro program at start

of handling the message.
3 : Answer to ND—100. Set when the micro program is

finished handling the message.
M : Error return from ND—SOO .

Sender: Address of RT description for sender.

Receiver: Receiver is the ND—SOO process number to receive the block.

Size: Size is the the size of the data part of the message block.

The data part: Each message between the ND—1OO and the ND-SOO contains
a data part. The first word of the data part defines the function to
be performed. The different functions require different numbers of
parameters to be involved in the data part of the link.

Function value and their related functions used are:

value function

1 Read micro program version.
6 : Physical data memory examine.
7 : Physical data memory deposit.

10 : Logical data memory read.
11 : Logical data memory write.
12 : Set cache mode.
13 : Physical data memory read.
14 : Physical data memory write.
16 : Register examine.
17 : Register deposit.
20 : Register read.
21 : Register write.
23 : Start
23 : Monitor call.
23 : Trap.
2% : Restart after monitor call.
25 : Restart after trap.
30 : Physical segment read.
31 : Physical segment write.
3” : Logicl instruction memory read.
35 : Logicl instruction memory write.
u2 : Programmed trap.
N4 : Histogram read.

ND — 05.012.01

ND—SOO MICRO PROGRAM GUIDE 31
ND—1OO ND-SOO COMMUNICATION

13.2 ”READ MICRO PROGRAM VERSION

Data part Value Function

- link.06 - 1 Read micro program version.
— link.07 - *- Micro program version returned.

13-3 PHYSICAL DATA MEMORY EXAMINE

Data part Value Function

- link.06 - 6 Physical data memory examine.
— link.07 - -+ Physical ND-SOO address.
- link.10 u
- link.1l - Q" Returned data from ND-SOO.
- link.12 -

13.4 PHYSICAL DATA MEMORY DEPOSIT

Data part Value Function

link.06
link.07
link.10
link.11
link.12

Physical data memory for deposit.
Physical ND—SOO address.

L.

" Data to deposit.

13.5 LOGICAL DATA MEMORY READ

Data part Value Function

link.06
- link.07
— link.lO
— link.11
— link.12
- link.13

10 Logical data memory read.
~+ Logical ND—SOO address.

" Physical ND—lOO address.

‘* Number of bytes.

ND - 05.012.01

32 ND—SOO MICRO PROGRAM GUIDE
ND-1OO ND-SOO COMMUNICATION

13-6 LOGICAL DATA MEMORY WRITE

Data part Value Function

— link.06 - 11 Logical data memory write.
- link.07 - “i Logical ND-SOO address.
— link.10 _
_ link.11 _ -i Physical ND—1OO address.
— link.12 -
— link.13

- -¢ Number of bytes.

13.7 SET CACHE MODE

Data part Value Function

- link.06 — 12 Set cache mode.
- link.O7 ~ '4’ Cache control.

Cache control:

Instruction and data cache control are controlled by the 16 bit word
transmitted to the ND—SOO.

Bits O— 3 : Instruction cache partition clear.
Bits 4- 7 : Instruction cache partition set.
Bits 10-13 : Data cache partition clear.
Bits 14-17 : Data cache partition set.

13.8 PHYSICAL DATA MEMORY READ

Data part Value Function._______.__.

- link.06 — 13 Physical data memory read.
_ link.07 - *9 Physical ND-SOO address.
— link.10 —
— link.11 _ '9 Physical ND—1OO address.
~ link.12 —
— link.13 — ‘9 Number of bytes.

ND - 05.012.01

ND-SOO MICRO PROGRAM GUIDE 33
ND~1OO ND—SOO COMMUNICATION

13.9 PHYSICAL DATA MEMORY WRITE

Data part Value Function

— link.06 - 1U Physical data memory write.
- link.07 - -+ Physical ND—SOO address.
— link.10 -
— link.11 _ ~+ Physical ND-1OO address.
- link.12 —
- link.13 - “§ Number of bytes.

13.10 REGISTER EXAMINE

Data part Value Function

link.06 16 Register examine.
- link.07 m '+ Register number.
- 1ink.10 » *' Returned data from ND-SOO.
— link.11 m

13.11 REGISTER DEPOSIT

Data part Value Function

link.06 17 Register deposit.
- link.07 ‘+ Register number.
- link.10 '9 Value for register deposit.
— link.11

13.12 REGISTER REQQ

Data part Value Function

link.06-
link.07-
link.10
link.11-
link.12-

Register read.
First register number to write.
Number of registers.
Physical ND—1OO address for
registers returned from ND—BOO.

il
ls

ND — 05.012.01

34 ND—SOO MICRO PROGRAM GUIDE
ND-lOO NDoSOO COMMUNICATION

13-13 REGISTER WRITE

Data part Value Function

- link.06 21 Register write.
- link.07 - '% First register number to write.
— link.10 — “9 Number of registers.
- 1ink.11 — ‘9 Physical ND—lOO address for
— link.12 — registers to write to ND-SOO.

13.1“ START

Data part Value Function

- link.06 — 23 Start.
- link.07 ~
— link.10 —

The start function is only returned as a monitor call or a trap. The
function value is unchanged while the rest of the data part of the
block indicates whether it is a monitor call or a trap.

13.15 MONITOR CALL

Data part Value Function

link.06
- link.07 —
- link.10 -
— link.11 —
- link.12 —
- link.13 -

N u: Monitor call or trap.
*” ND—500 P register returned.

i Monitor call.
*” Number of parameters.
¢' Monitor call number.

g. Address of second parameter.
- link.43 -

Space for 16 parameter addresses.

— link.100~
— link.101—
— link.102—
— link.103—

"’ Value of first parameter

link.40 -l *” Address of first parameter.

' *" Value of second parameter.

I

: link.41 _
- link.42 —

I

Space for 16 parameter addresses.

ND - 05.012.01

ND—SOO MICRO PROGRAM GUIDE
ND—100 ND—SOO COMMUNICATION

13.16 TRAP

Data part

link.06 —
link.07 -
1ink.10 —
link.11 —
link.12 -
link.13 -
link.14 —
link.15 -
link.16 -
link.17 —
link.20 —
link.21 —
link.22 —

Value

23

T
T

T
T

N

35

Function

Monitor call or trap.

Trap.
Trapping P register.

Restart P.

Trap number.
Varies depending on trap number.

13.17 RESTART AFTER MONITOR CALL

link.06 —
link.07 -
link.10 —
link.11 —
link.12 —
link.13 —
link.1R _

' link.MO —
link.U1 -
link.u2 —
link.u3 —

link.100~
link.101-
link.102—
link.103-

t
l

Function

Restart after monitor call.
Cache control.

0/14 K (flag).
Write back mask.
Function value ‘* 11.

Address of first parameter.

Address of second parameter.

Space for 16 parameter addresses.

Value of first parameter.

Value of second parameter.

Space for 16 parameter values.

ND — 05.012.01

36

13.18 RESTART AFTER TRAN

Data part
1—m-

— link.O6
— link.07
— link.10

13.19 PHYSICAL SEGMENT READ

Value

25

Data part

— link.06
- link.07
— link.10
- link.11
— link.12
— link.13
- link.1u

13.20 PHYSICAL SEGMENT WRITE

Value

30-+

Data part

~ link.06
— link.07
— link.10
- link.11
— link.12
— link.13
— link.14

Value

31
«no

ND-500 MICRO PROGRAM GUIDE
ND—lOO ND-SOO COMMUNICATION

Function

Restart after trap.

Function

Physical segment read.
Physical ND-5OO address on segment.

Physical ND—lOO address.

Number of bytes.
Physical segment number.

Function

Physical segment write.
Physical ND—SOO address on segment.

Physical ND-lOO address.

Number of bytes.
Physical segment number.

13.21 LOGICAL INSTRUCTION MEMORY READ

Data part

— link.06
— link.07
- link.10
— link.11
— link.12
- link.13

l
1

Value

3M
‘§

Function

Logical instruction memory read.
Logical ND—SOO address.

Physical ND—TOO address.

Number of bytes.

ND — 05.012.01

ND-SOO MICRO PROGRAM GUIDE
ND-lOO ND-SOO COMMUNICATION

37

13.22 LOGICAL INSTRUCTION MEMORY WRITE

Data part Value

— link.06 - 35
— link.07 - ‘9
— link.10 -
— link.11 - ~+
— link.12 -
— link.13 - “*

13.23 PROGRAMMED ng

Data part Value

l- link.O6 -| 42

13.2“ HISTOGRAM READ

Data part Value

— link.06 - nu
— link.07 — 9'
— link.10 _

- link.11 _ +-

Function

Logical instruction memory write.
Logical ND-SOO address.

Physical ND—1OO address.

Number of bytes.

Function

Programmed trap.

Function

Histogram read.
Returned P register from ND—SOO.

Current process.

ND - 05.012.01

38

ND - 05.012.01

ND—SOO MICRO PROGRAM GUIDE

ND-SOO MICRO PROGRAM GUIDE 39
MICRO INSTRUCTION

14 MICRO INSTRUCTIQ!

The ND—SOO micro instruction is a combination of the ND-SOO mnemonic
symbols, constants or defined symbols separated with a space. The
micro instruction is terminated by ';' and may occupy several lines of
symbols. Each line is limited to 80 characters. Characters on a line
after '%' are taken as comments.

lu.1 MNEMONIC SYMBOLS

The mnemonic symbols are direct functions or operator select except
the symbols listed below. These require an octal number connected to
the mnemonic symbol by ’#' for desired operator select.

Mnemonic symbol Number range Function

A,AM / A,AL / A,A 0~37 Floating A operand select.
B,AM / B,AL / B,A 0-37 Floating B operand select.
D,AM / D,AL / D,AD 0—37 Floating destination select.
A,X / B,X / D,X 0—3 Index register select.
A,BM / B,BM 0—37 Bit mask generate.

1H.2 CONSTANTS

Constants used in the micro program must be octal integers. The
constants are either used in the short argument field or the long
argument field, in the micro program address field or as micro
program address modifier.

1u.3 SHORT ARGUMEEI

Short argument is specified by one 16 bit integer. The value of the
constant is placed in the short argument field during assembly
(control store bits 15-0). During execution in the ND-SOO the short
argument is sign extended to 32 bits by A,XD,SARG and AB,DPARG.

1“.” LONG ARGUMENT

Long argument is specified by two 16 bits integers separated by ','.
The value of the constant is placed in the long argument field during
assembly (control store bits 31~O).

1u.5 MICRO PROGRAM ADDRESS

Micro program address may be selected either by reference to a label
or by specifying a long argument where the most significant part is
taken as a micro program address (control store bits 28-16). Reference
to a label will cause the value of the label to be placed in the micro
program address field.

ND ~ 05.012.01

HO ND—SOO MICRO PROGRAM GUIDE
MICRO INSTRUCTION

13.6 MICRO PROGRAM ADDRESS MODIFIER

The micro program address may be modified by a 12 bit integer
terminated by '/' located as the first element of a micro instruction.
Current micro program address is set equal to integer specified.

Note that integers occuring as the first element
of a micro instruction are taken as micro
program modifiers.

13.7 DEFINED SYMBOLS

Labels are defined by alpha numeric characters terminated by ':' . The
label must be located as the first symbol of a micro instruction. The
value of the label is the current control store address. The first 12
characters are significant. Reference to a label will cause the value
of the label to be placed in the micro program address field (control
store bits 28-16).

13.8 THE ASSEMBLER

The assembler works on mass storage files and may handle 25 input
files and 5 output files. Output files required by the assembler are
marked by '*’. In addition, the user running the assembler also
requires the mnemonic symbol file (NSOO—MNE—SYMBOLS:SYMB) and the
mnemonic value file (NSOO-MNE—VALUES:DATA). The input and output files
are :SYMB type, except the object file which is :DATA type.

The output files with content are:
* Undefined symbols list-file contains all undefined symbols.
* Error list—file contains errors detected during assembly.
* Object file contains input to control store. gist—file contains

symbolic list of the micro program with control store address.
Unsorted label list-file contains all labels defined with coresponding
micro program address. Octal list—file contains octal listing of the
object file.

Example of running the ND—SOO micro assembler:

@N500~8K—ASSEM
NDuBOO MICRO~CODE ASSEMBLER 1.7 1981:07:Ol

INPUT SEQUENCE TERMINATED TYPING <CR>
GIVE FILENAME OF ENTRY NO. 1 N500—MICRO-01-OO:SYMB
GIVE FILENAME OF ENTRY NO. 2 . N500~MICROa02-OO:SYMB
GIVE FILENAME OF ENTRY NO. 3

o
.-

no

UNDEFINED SYMBOLS LIST—FILE
ERROR LIST-FILE

NSOO—MICRO-UDEFV28YMB
N500-MICRO—ERROR:SYMBo.

0.

ND 05.012.01

ND-500 MICRO PROGRAM GUIDE 41
MICRO INSTRUCTION

OBJECT FILE : N500—MICRO—OBJEC:DATA
LIST-FILE : N500—MICRO-SLIST:SYMB
UNSORTED LABEL LIST-FILE : N500—MICRO-USORT:SYMB
OCTAL LIST—FILE NSOO-MICRoCTAL:SYMB

LENGTH OF MICROPROGRAM IN KILOWORDS (EACH 144 BITS): 8

TOO WORDS ASSEMBLED
ZOO WORDS ASSEMBLED

100 ITEMS IN UDFV TABLE RECOGNIZED
O DIAGNOSTICS HAS BEEN DETECTED

ALL PROGRAM FUNCTIONS TERMINATED

@

1H.9 ERROR MESSAGES FROM THE MICRO ASSEMBLER

The error messages from the ND-SOO micro assembler give the micro
program address where an error is detected, ERROR AT CLC (octal
number>, and type of error. Below, the different error messages are
listed along with a short explanation of each. At end of the assembly,
the number of errors detected is written on both the error file and
the terminal.

ERROR AT CLC XXXXXXB
CURRENT LOCATION COUNTER IS AT UPPER LIMIT
Moving outside address space. This means that the upper control store
address is reached for this size control store.

ERROR AT CLC XXXXXXB
BLOCK NUMBER TOO LARGE:
Modified micro program address is the outside address space for this
size control store.

ERROR AT CLC OOOOOOB
YEAR—MONTH—DAY IDENTIFIER POSITION
(WORD O, BITS Oulfi) ALREADY OCCUPIED BY CODE
Contents of micro program address 0 is used as an identifier assigning
year (bits 15-9), mounth (bits 8—5) and date (bits A—O) of assembling.
The space is already occupied.

ERROR AT CLC XXXXXXB
ILLEGAL CHARACTER IN ROUTINE "TRANSFORM"
Not an octal number at source file.

ERROR AT CLC XXXXXXB
TRANSFORM OVERFLOW
Overflow in convert to octal. Too large octal number at source file.

ND - 05.012.01

42 ND~500 MICRO PROGRAM GUIDE
MICRO INSTRUCTION

ERROR AT CLC XXXXXXB
ILLEGAL FORMAT ON CLC MODIFIER
Illegal format when modifying the micro program address.

ERROR AT CLC XXXXXXB
CLC MODIFIER ERROR
Error in modifying the micro program address.

ERROR AT CLC XXXXXXB
TOO MANY MNEMONICS BETWEEN SEMICOLONS
The input buffer containing source code for assembling is full.

ERROR AT CLC XXXXXXB
TOO LONG MNEMONIC
More than 20 characters in a mnemonic symbol.

ERROR AT CLC XXXXXXB
ATTEMPT TO WRITE ON FORMER ENTRY
Attempt to write into a previously used micro program address.

ERROR AT CLC XXXXXXB
OR—ING REJECTED DUE TO OVERLAPPING OF MNE—VALUES
Error occured because same bits should be set for combination of
mnemonic symbols or arguments. The rest of the micro instruction is
not assembled.

FATAL ERROR!!!! OVERFLOW IN DFV ARRAY (DFVPACK)
No more space for defined symbols.

ERROR AT CLC XXXXXXB
ILLEGAL FORMAT ON DFV
Error in area containing defined symbols.

ERROR AT CLC XXXXXXB
MNEMONIC USED AS LABEL:
Labels equal to mnemonic symbols not allowed.

ERROR AT CLC XXXXXXB
ALREADY DEFINED:
Label already defined.

ND - 05.012.01

ND—SOO MICRO PROGRAM GUIDE
ND—500 MNEMONIC SYMBOLS

15 ND—SOO HNEMONIC SYMBOLS
L 3

>
3

3
O

F
U

W
U

‘J
C

U

*-
3:

U
3)

2 P]
O

C
E

’U

A
S

N
N

H
H

M
S

U
’U

D,BMR
D,CAR
D,CONST
D,CSBRK
D,CSCNT
D,CSWA
D,DCINHLL
D,DCINHLU
D,DHXA
D,DISP
D,DLADDR
D,DMSTS
D,DRADDR
D,DRADDRL
D,DRADDRM
D,DSCRF
D,DSTSO
D,DSTS1
D,DSTSZ
D,DUPL
D,DWIPGU
D,DZPA
D,HL

A,XD,ICINHLL
.A,XD,ICINHLU
A,XD,IDAT
_A,XD,IHXA
A,XD,ILADDR
A,XD,IMSTS
A,XD,INDXC
A,XD,IODIN
A,XD,IODOUT
A,XD,IRADDR
A,XD,IRADDRL
A,XD,IRADDRM

m
a

u
k
n

u
w

n
n

u
w

v
k
u

v
u

’

I
‘

;<
;<

;<
:&

:x
x

x
x

x
x

x
N

N
N

N
N

N
N

N
N

N
N

’

5
>

3
>

3
>

3
>

3
>

3
>

3
>

3
>

3
>

3
>

3
>

D
>

>
>

3
>

3
>

3
>

3
>

3
>

3
>

3
>

3
>

3
>

3
>

3
>

3
>

§
>

3
>

3
>

3
>

h
>

3
>

3
>

>
3

>
3

>
m

w
v
u

u
w

u
u

A—OPERAND
A-OPERAND
A—OPERAND
A-OPERAND
A—OPERAND
A—OPERAND
A-OPERAND
A-OPERAND
A~OPERAND
A—OPERAND
A—OPERAND
A-OPERAND
A-OPERAND
A—OPERAND
A~OPERAND
A—OPERAND
A—OPERAND
A-OPERAND
A—OPERAND
A—OPERAND
A—OPERAND
A—OPERAND
A—OPERAND
A—OPERAND
A—OPERAND
A—OPERAND
A—OPERAND
A—OPERAND
A—OPERAND
A-OPERAND
A—OPERAND
A-OPERAND
A—OPERAND
A-OPERAND
A-OPERAND
A-OPERAND
AaOPERAND
A-OPERAND
A-OPERAND
A—OPERAND
A~OPERAND
A-OPERAND
A-OPERAND
A—OPERAND
A—OPERAND
A—OPERAND
A-OPERAND
A~OPERAND
A—OPERAND
A—OPERAND
A—OPERAND

IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS

143

FLOATING —1.0 CONSTANT
DOUBLE FLOATING REGISTER
LEAST FLOATING REGISTER
MOST FLOATING REGISTER
B REGISTER
DECODED BIT MASK BIT
DECODED BIT MASK FROM BIT MASK REGISTER
MEMORY DATA (DATA IN REGISTER)
L REGISTER
FLOATING 1.0 CONSTANT
P REGISTER
R REGISTER
SAVED P
TRAP HANDLER REGISTER
TOP OF STACK REGISTER
INDEX REGISTER
BIT MASK REGISTER (NOT DECODED)
COMPUTED ADDRESS REGISTER
INSTRUCTION CONSTANT REGISTER
CONTROL STORE BREAK REGISTER
CONTROL STORE CONTROL REGISTER
CONTROL STORE WRITE ADDRESS REGISTER
DATA CACHE INHIBIT LOWER LIMIT
DATA CACHE INHIBIT UPPER LIMIT
DATA TSB ADDRESS
DISP REGISTER
MM DATA LOGICAL ADDRESS
MM DATA STATUS
MM DATA REAL ADDRESS
DATA REAL ADDRESS LEAST SIGNIFICANT
DATA REAL ADDRESS MOST SIGNIFICANT
MM DATA SCRATCH FILE
DATA MEMORY STATUS REG 0
DATA MEMORY STATUS REG 1
DATA MEMORY STATUS REG 2
DATA UPPER PAGE LIMIT
MM DATA WIP/PGU BROAD
DATA ZERO POINT ADJUST REGISTER
HIGHER LIMIT REGISTER
INSTRUCTION CACHE INHIBIT LOWER LIMIT
INSTRUCTION CACHE INHIBIT UPPER LIMIT
INSTRUCTION MEMORY DATA
INSTRUCTION TSB ADDRESS
MM INSTRUCTION LOGICAL ADDRESS
MM INSTRUCTION STATUS
INDEX COUNTER NO.#
IO DATA IN REGISTER
IO DATA OUT REGISTER
MM INSTRUCTION REAL ADDRESS
INSTRUCTION REAL ADDRESS LEAST SIGN.
INSTRUCTION REAL ADDRESS MOST SIGN.

ND ~ 05.012.01

AA

A,XD,ISCRF
A,XD,ISTSO
A,XD,ISTS1
A,XD,IST82
A,XD,IUPL
A,XD,IWIPGU
A,XD,IZPA
A,XD,LARG
A,XD,LC
A,XD,LL
A,XD,MISTAT
A,XD,MMOD
A,XD,NBY
A,XD,PSTAT
A,XD,51
A,XD,SZ
A,XD,SARG
A,XD,SHC
A,XD,TE1
A,XD,TRAPCSA
A,XD,TRAPINF
A,ZRO
AA+AB
AA,DP1
AA,DP2
AA,EA1
AA,EA2
AB,1/8IX
AB,2IX
AB,4IX
AB,8IX
AB,B
AB,DPARG
AB,IX
AB,ORAB
AB,PC
AB,R
AD,ILC
AD,NPC
AD,PC
ALTMOD
ALU,A+1
ALU,A+A
ALU,A+A+1
ALU,A+B
ALU,A+B+1
ALU,A+B+C
ALU,A—1
ALU,A-B
ALU,A—B—1
ALU,A—B-1+C
ALU,ADIR
ALU,ADIRC
ALU,AND
ALU,ANDCA

A-OPERAND
A—OPERAND
A—OPERAND
A—OPERAND
A-OPERAND
A~OPERAND
A-OPERAND
A-OPERAND
A-OPERAND
A-OPERAND
A—OPERAND
A-OPERAND

IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS

ND—SOO MICRO PROGRAM GUIDE
ND-5OO MNEMONIC SYMBOLS

MM INSTRUCTION SCRATCH FILE
INSTRUCTION MEMEMORY STATUS REG. 0
INSTRUCTION MEMEMORY STATUS REG. 1
INSTRUCTION MEMEMORY STATUS REG. 2
INSTRUCTION UPPER PAGE LIMIT
MM INSTRUCTION WIP/PGU BROAD
INSTRUCTION ZERO POINT ADJUST REGISTER
LONG ARGUMENT (32 BITS)
LOOP COUNTER
LOWER LIMIT REGISTER
MICRO STATUS REGISTER
MEMORY MODUS REGISTER

NO OF BYTES IN LAST MEMORY REFERANCE
A-OPERAND
A-OPERAND
A—OPERAND
A—OPERAND
A—OPERAND
A—OPERAND
A—OPERAND
A—OPERAND
A—OPERAND

IS
IS
IS
IS
IS
IS
IS
IS
IS

PREFETCH STATUS REGISTER
STATUS REGISTER ONE
STATUS REGISTER Two
SHORT ARGUMENT (16 BITS)
SHIFT COUNT REGISTER
LOCAL TRAP ENABLE REGISTER
SAVED CSA WHEN TRAP
TRAP INFORMATION
FLOATING 0.0 CONSTANT

ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS

A~OPERAND
AwOPERAND
AmOPERAND
AwOPERAND
AwOPERAND
BuOPERAND
BuOPERAND
BuOPERAND
B~OPERAND
BuOPERAND
BuOPERAND
B~OPERAND
BaOPERAND
BuOPERAND
B~OPERAND

PLUS ADDRESS B-OPERAND
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS

DP1 REGISTER
DP2 REGISTER
EFFECTIVE ADDRESS 1 REGISTER
EFFECTIVE ADDRESS 2 REGISTER
INDEX REGISTER
INDEX REGISTER
INDEX REGISTER
INDEX REGISTER
B REGISTER
ARGUMENT (SIGN
INDEX REGISTER

SCALED BY
SCALED BY
SCALED BY
SCALED BY

EXTENDED)
SCALED BY

OR-LOGIC CONTROLLED
P REGISTER
R REGISTER

DESTINATION IS INSTRUCTION LOOK AHEAD ADDRESS

1/8
2
A
8

COUNTER
DESTINATION IS NEXT PROGRAM COUNTER
DESTINATION IS PROGRAM COUNTER
SELECT "APT/PT" ACCORDING TO FIRST OPERAND

INCREMENT
PLUS A—OPERAND
PLUS A—OPERAND PLUS ONE
PLUS B~OPERAND
PLUS B—OPERAND PLUS ONE
PLUS B-OPERAND PLUS CARRY
DECREMENT
MINUS B—OPERAND
MINUS B~OPERAND MINUS 1
MINUS B-OPERAND MINUS 1 PLUS C
DIRECT THROUGH ALU
COMPLEMENTED THROUGH ALU

AND—FUNCTION OF A—OPERAND AND B~OPERAND
AND—FUNCTION OF A-OPERAND COMPLEMENTED AND B—OPERAND

A—OPERAND
A—OPERAND
A—OPERAND
A—OPERAND
A—OPERAND
A—OPERAND
A-OPERAND
A—OPERAND
A—OPERAND
A—OPERAND
A—OPERAND
A-OPERAND

ND _ 05.012.01

ND-SOO MICRO PROGRAM GUIDE 45
ND-SOO MNEMONIC SYMBOLS

ALU,ANDCB
ALU,BDIR
ALU,BDIRC
ALU,FONE
ALU,FZRO
ALU,NAND
ALU,NOR
ALU,OR
ALU,ORCA
ALU,ORCB
ALU,XNOR
ALU,XOR
3,—1
B,A
B,AL
B,AM
B,BM
B,BMR
B,DATA
B,DATA2
B,EA1
B,EA2
B,ONE
B,THA
B,TOS
B,X
B,XRESL
B,XRESM
B,ZRO
BCD
BCD,ADD
BCD,ADDR
BCD,BCDC
BCD,BINC
BCD,COMP
BCD,DATA
BCD,DESCA
BCD,MPY
BCD,MPYR
BCD,PACK
BCD,PACKR
BCD,SHIFT
BCD,SHIFTR
BCD,SUB
BCD,SUBR
BCD,UPACK
BCD,UPACKR
BYTH
BYTW
C,ALU
C,MEM
C,SEQ
C,SEQD
COND,CNZ
COND,CONOP

AND—FUNCTION OF A-OPERAND AND B—OPERAND COMPLEMENTED
B-OPERAND DIRECT THROUGH ALU
B—OPERAND COMPLEMENTED THROUGH ALU
FORCED ONE ALU OUTPUT
FORCED ZERO ALU OUTPUT
NAND—FUNCTION OF A—OPERAND AND B—OPERAND
NOR—FUNCTION OF A-OPERAND AND B—OPERAND
ORuFUNCTION OF A-OPERAND AND B_OPERAND
ORuFUNCTION OF A—OPERAND COMPLEMENTED AND B—OPERAND
ORnFUNTION OF A-OPERAND AND B-OPERAND COMPLEMENTED
EXCLUSIVE NOR-FUNCTION OF A-OPERAND AND B—OPERAND
EXCLUSIVE OR-FUNCTION OF A—OPERAND AND B-OPERAND
B-OPERAND IS FLOATING -1.0 CONSTANT
B—OPERAND IS DOUBLE FLOATING REGISTER
B—OPERAND IS LEAST FLOATING REGISTER
B—OPERAND IS MOST FLOATING REGISTER
B—OPERAND IS DECODED BIT MASK BIT
B-OPERAND IS DECODED BIT MASK FROM BIT MASK REGISTER
B—OPERAND IS MEMORY DATA
B-OPERAND IS EXTRA MEMORY DATA REGISTER
B—OPERAND IS EAT (EFFECTIVE ADDRESS 1.2ERO POLARITY)
B—OPERAND IS EA2 (EFFECTIVE ADDRESS 1.ZERO POLARITY)
B—OPERAND IS FLOATING 1.0 CONSTANT
B-OPERAND IS TRAP HANDLER REGISTER
B—OPERAND IS TOP OF STACK REGISTER
B—OPERAND IS INDEX REGISTER
B—OPERAND IS EXTERNAL (FLOATING) RESULT LEAST
B—OPERAND IS EXTERNAL (FLOATING) RESULT MOST
B—OPERAND IS FLOATING 0.0 CONSTANT
BCD TYPE
BCD ADD WITHOUT ROUNDING
BCD ADD WITH ROUNDING
BCD TO BINARY CONVERT
BINARY TO BCD CONVERT
BCD COMPARE
DATA IN OR DATA OUT FROM BCD ARITHMETIC
BCD DESCRIPTOR
BCD MULTIPLY WITHOUT ROUNDING
BCD MULTIPLY WITH ROUNDING
PACK ASCII TO BCD WITHOUT ROUNDING
PACK ASCII TO BCD WITH ROUNDING
BCD SHIFT WITHOUT ROUNDING
BCD SHIFT WITH ROUNDING
BCD SUBTRACT WITHOUT ROUNDING
BCD SUBTRACT WITH ROUNDING
UNPACK BCD TO ASCII WITHOUT ROUNDING
UNPACK BCD TO ASCII WITH ROUNDING
BYTE TO HALF~WORD SIGN EXTENSION
BYTE TO WORD SIGN EXTENSION
CONDITIONAL ALU ENABLE
CONDITIONAL MEMORY REFERENCE ENABLE
CONDITIONAL SEQUENCE ENABLE
DELAYED CONDITIONAL SEQUENCE ENABLE
TEST COND IS CARRY NOT ZERO
TEST COND IS CONOP

ND — 05.012.01

A6

COND,CRY
COND,DATOP
COND,ENTER
COND,ICDRY
COND,K
COND,LCZ
COND,MBO
COND,MCNZ
COND,MCRY
COND,MDZ
COND,MFO
COND,MFS
COND,MFU
COND,MFUFO
COND,MIVO
COND,MOVFL
COND,MSEXO
COND,MSGN
COND,MSORZ
COND,MZRO
COND,OVFL
COND,PARITY
COND,PDONE
COND,SAVC1
COND,SAVC2
COND,SGN
COND,SORZ
COND,TRAP
COND,ZRO
CSAVE
D,AD
D,AL
D,AM
D,ATRCLR
D,B
D,BMR
D,CAR
D,CONST
D,CSBRK
D,CSCNT
D,CSWA
D,DADOM
D,DASEG
D,DATAIN
D,DATAIN2
D,DCINHLL
D,DCINHLU
D,DCLCACH
D,DCONO
D,DCON1
D,DCSEG
D,DDOMR
D,DMCNTR
D,DP
D,DPROCC

ND-SOO MICRO PROGRAM GUIDE
ND—500 MNEMONIC SYMBOLS

TEST COND IS CARRY
TEST COND IS DATOP
TEST COND IS NEXT INSTRUCTION 'ENTER'
TEST COND IS INSTRUCTION MEMORY READY
TEST COND IS K (FLAG)
TEST COND IS LOOP COUNTER ZERO
TEST COND IS MICRO BCD OVERFLOW
TEST COND IS MICRO CARRY NOT ZERO
TEST COND IS MICRO CARRY
TEST COND IS DIVIDE BY 0
TEST COND IS MICRO FLOATING OVERFLOW
TEST COND IS MICRO FLOATING SIGN
TEST COND IS MICRO FLOAT UNDERFLOW
TEST COND IS FLOATING OVER- OR UNDER-FLOW
TEST COND IS MICRO BCD INVALID OPERATION
TEST COND IS MICRO OVERFLOW
TEST COND IS MICRO SIGN EXOR OVERFLOW
TEST COND IS MICRO SIGN
TEST COND IS MICRO SIGN OR ZERO
TEST COND IS MICRO ZERO
TEST COND IS OVERFLOW
TEST CONDITION IS PARITY OF ALU OUTPUT
TEST COND IS PART DONE
TEST COND IS SAVED CONDITION ONE
TEST COND IS SAVED CONDITION TWO
TEST COND IS SIGN
TEST COND IS SIGN OR ZERO
TEST COND IS TRAP
TEST COND IS ZERO
CONDITION SAVE (PUSH CONDITION RESULT)
DEST IS FLOATING DOUBLE REGISTER
DEST IS FLOATING LEAST REGISTER
DEST IS FLOATING MOST REGISTER
RESET ADDR. TRAP—OCCURED FLIP—FLOP
DEST IS B REGISTER
DEST IS BIT MASK REGISTER
DEST IS COMPUTED ADDRESS REGISTER
DEST IS CONSTANT REGISTER
DEST IS CONTROL STORE BREAK REGISTER
DEST IS CONTROL STORE CONTROL REGISTER
DEST IS CONTROL STORE WRITE ADDRESS REGISTER
DEST IS MM DATA ALT DOMR
DEST IS MM DATA ALT. SEGM.
DEST IS DATAnIN HOLD REGISTER ON SLICE
DEST IS EXTRA DATA-IN REGISTER ON SLICE
DEST IS DATA CACHE INHIBIT LOWER LIMIT
DEST IS DATA CACHE INHIBIT UPPER LIMIT
DEST IS DATA CLEAR CACHE
DEST IS DATA CONTROL REGISTER O
DEST IS DATA MEMORY CONTROL REGISTER 1
DEST IS MM DATA CURRENT SEGMENT
DEST IS MM DATA DOMAIN REGISTER
DEST IS MM DATA CONTROL
DEST IS DISPLACEMENT REGISTER
DEST IS MM DATA PROC. CONTROL REGISTER

ND — 05.012.01

ND—SOO MICRO PROGRAM GUIDE “7
ND-5OO MNEMONIC SYMBOLS

D,DSCFA
D,DSCRF
D,DSTSB
D,DTSB
D,DUPL
D,DWIPGU
D,DZPA
D,HL
D,IADOM
D,IASEG
D,ICCLR
D,ICINHLL
D,ICINHLU
D,ICLCACH
D,ICONO
D,ICON1
D,ICSEG
D,IDAT
D,IDOMR
D,IMCNTR
D,IODOUT
D,IPROCC
D,ISCFA
D,ISCRF
D,ISTSB
D,ITSB
D,IUPL
D,IWIPGU
D,IZPA
D,L

D,TRACECLR
D,TRAPCLR
D,TRAPONOFF
D,TSBIND
D,X
D,XST1
DOUBLE
EA1INH
EAZINH
EX,APIMUL
EX,APIMULA
EX,APMULA

DEST IS MM DATA SCRF ADDRESS
DEST IS MM DATA SCRATCH FILE
DEST IS MM DATA SEQUENTIAL TSB
DEST IS MM DATA TSB—PAGE
DEST IS DATA UPPER PAGE LIMIT
DEST IS MM DATA WIP/PGU BROAD
DEST IS DATA ZERO POINT ADJUST REGISTER
DEST IS HIGHER LIMIT REGISTER
DEST IS MM INSTRUCTION ALT. DOMR.
DEST IS MM INSTRUCTION ALT. SEGM.
INDEX COUNTER CLEAR
DEST IS INSTRUCTION CACHE INHIBIT LOWER LIMIT
DEST IS INSTRUCTION CACHE INHIBIT UPPER LIMIT
DEST IS INSTRUCTION CLEAR CACHE
DEST IS INSTRUCTION CONTROL REGISTER 0
DEST IS INSTRUCTION MEMORY CONTROL REGISTER 1
DEST IS MM INSTRUCTION CURRENT SEGMENT
DEST IS INSTRUCTION MEMORY DATA
DEST IS MM INSTRUCTION DOMAIN REGISTER
DEST IS MM INSTRUCTION CONTROL
DEST IS IO DATA OUT REGISTER
DEST IS MM INSTRUCTION PROC. CONTROL REGISTER
DEST IS MM INSTRUCTION SCRF ADDRESS
DEST IS MM INSTRUCTION SCRATCH FILE
DEST IS MM INSTRUCTION SEQUENTIAL TSB
DEST IS MM INSTRUCTION TSB PAGE
DEST IS INSTRUCTION UPPER PAGE LIMIT
DEST IS MM INSTRUCTION WIP/PGU BROAD
D ST IS INSTRUCTION ZERO POINT ADJUST
DEST IS LINK REGISTER
DEST IS LOOP COUNTER
DEST IS LOWER LIMIT REGISTER
DEST IS MICRO CYCLE COUNTER
DEST IS MEMORY MODUS REGISTER
DEST IS RECORD REGISTER
DEST IS STATUS REGISTER 1
DES IS STATUS REGISTER 2
SET LIMIT BONDS FOR HL-LL
DEST IS SHIFT COUNT REGISTER
DEST IS TAG REGISTER
DEST IS LOCAL TRAP ENABLE REGISTER
DEST IS TRAP HANDLER REG
DEST IS TOP OF STACK
TRAP SYSTEM CLEAR TRACE BITS
TRAP SYSTEM CLEAR
TRAP SYSTEM ON/OFF
SET AND RESET TSB INDIC
DEST IS INDEX REGISTER
DEST IS HARDWARE CONTROLLED BITS IN STATUS
DOUBLE FLOATING OPERATION
EFFECTIVE ADDRESS REGISTER 1 CLOCK INHIBIT
EFFECTIVE ADDRESS REGISTER 2 CLOCK INHIBIT
LAST FLOATING DIVIDE STEP SA*SP(INVERTED) TO CPU
THIRD FLOATING DIVIDE STEP SA*SP(INVERTED) TO SA
SATSP TO SA

ND - 05.012.01

M8

EX,ARMULA
EX,ASUM
EX,ASUMA
EX,BRMULP
EX,COMPARE
EX,CTF
EX,CTI
EX,CTIR
EX,DIFF
EX,DTOFR
EX,INT
EX,INTR
EX,MUL
EX,MULA
EX,PPIMULP
EX,SHA
EX,SHL
EX,SHR
EX,SUM
EX,TORMULA
EX,UCTF
EX,UMUL
F,A+1
F,A+A
F,A+A+1
F,A+B
F,A+B+1
F,A+B+C
F,A—1
F,A-B
F,A-B—1
F,A—B—1+C
F,ADIR
F,ADIRC
F,AND
F,ANDCA
F,ANDCB
F,BDIR
F,BDIRC
F,FONE
F,FZRO
F,HBRET
F,JMP
F,JMPCAR
F,JMPMAP
F,JMPNS
FyJMPREL
FyJMPSTK
F9JMPWA
F9JSR
FyJSRCAR
FyJSRMAP
FyJSRREL
F9JSRSTK
F7JSRWA

ND—500 MICRO PROGRAM GUIDE
NDaSOO MNEMONIC SYMBOLS

FIRST FLOATING DIVIDE STEP A*1/B' TO SA
FLOATING ADD SA+B TO CPU
FLOATING ADD SA+B TO SA
SECOND FLOATING DIVIDE STEP B*1/B' TO SP
COMPARE A AND B
CONVERT INTEGER TO FLOATING
CONVERT FLOATING TO INTEGER TRUNCATED
CONVERT FLOATING TO INTEGER WITH ROUNDING
FLOATING SUBTRACT A—B To CPU
CONVERT DOUBLE TO SINGLE FLOATING WITH ROUNDING
INTEGER PART IN FLOATING FORMAT TRUNCATED
INTEGER PART IN FLOATING FORMAT ROUNDED
MULTIPLY A*B TO CPU
MULTIPLY AND SAVE A*B TO SA
FOURTH FLOATING DIVIDE STEP SP*SP(INVERTED) TO SP
SHIFT ARITHMETIC
SHIFT LOGICAL
SHIFT ROTATIONAL
FLOATING ADD A+B TO CPU
A * 1/B _Q~SA
UNSIGNED CONVERT INTEGER To FLOATING
UNSIGNED MULTIPLY A*B TO CPU
A—OPERAND INCREMENT
A-OPERAND PLUS A—OPERAND
A-OPERAND PLUS A—OPERAND PLUS 1
A~OPERAND PLUS B-OPERAND
A-OPERAND PLUS B-OPERAND PLUS 1
A-OPERAND PLUS B—OPERAND PLUS C
A—OPERAND DECREMENT
A-OPERAND MINUS B—OPERAND
A—OPERAND MINUS B-OPERAND MINUS 1
A—OPERAND PLUS B—OPERAND MINUS 1 PLUS C
A—OPERAND DIRECT THROUGH ALU
A—OPERAND COMPLEMENTED THROUGH ALU
AND—FUNC OF A- AND B—OPERAND
AND—FUNC OF A—OPERAND COMPLEMENTED AND B—OPERAND
AND—FUNC OF A-OPERAND AND B-OPERAND COMPLEMENTED
B—OPERAND DIRECT THROUGH ALU
B—OPERAND COMPLEMENTED THROUGH ALU
FORCED ONE ALU OUTPUT
FORCED ZERO ALU OUTPUT
RETURN TO HARDWARE BRANCH REGISTER
JUMP ABSOLUTE
JUMP TO ADDRESS TAKEN FROM CAR
JUMP TO MAP ADDRESS. I.E., START OF NEXT INSTRUCRION
JUMP ASOLUTE. STACK CONTROL NOT INCLUDED
JUMP RELATIVE TO M.P.C. DISPLACEMENT—1
JUMP STACK TO STACK ADDRESS
JUMP TO WRITE ADDRESS (WA)
JUMP TO SUBROUTINE ABSOLUTE
JUMP TO SUBROUTINE IN CAR
JUMP TO SUBROUTINE IN MAP ADDRESS
JUMP To SUBROUTINE RELATIVE. DISPLACEMENT~1
JUMP TO SUBROUTINE IN STACK
JUMP To SUBROUTINE IN WHITE ADDRESS (HA)

IN CAR

IN CAR

ND — 05.012.01

ND—500 MICRO PROGRAM GUIDE A9
ND-SOO MNEMONIC SYMBOLS

P,LOAD
F,NAND
F,NEXT
F,NEXTNS
F,NOPOPRET
F,NOR
F,OR
E,ORCA
F,ORCB
F,POP
F,POPRET
F,PUSH
E,REP
F,XNOR
E,XOR
FAST
HBRET
HWTW
IADJ
IFMEM
IFT
IXO
1X1
IX2
IX3
JMP
JMPCAR
JMPMAP
JMPNS
JMPREL
JMPSTK
JMPWA
JSR
JSRCAR
JSRMAP
JSRREL
JSRSTK
JSRWA
K,1IFZ
K,ONE
K,ZRO
LCDECR
LOAD
MEM,MV1
MEM,MV2
MEM,MV3
MEM,Mvu
MEM,RD
MEM,RD1
MEM,RD2
MEM,RD3
MEM,RDu
MEM,WR
MEM,WRI
MEM,WR2

LOAD STACK
NAND~FUNC OF Am AND B—OPERAND
NEXT MICROINSTRUCTION
NEXT. STACK CONTROL NOT INCLUDED
RETURN WITH HOLD CONTROL TO STACK
NOR FUNC OF A— AND B-OPERAND
OR EUNC OF A— AND B—OPERAND
OR FUNC OF A—OPERAND COMPLEMENTED AND B-OPERAND
OR FUNC OF A-OPERAND AND B—OPERAND COMPLEMENTED
POP STACK
RETURN FROM SUBROUTINE
P SH STACK
REPEAT CURRENT MICROINSTRUCTION
EXCLUSIVE NOR FUNC OF Am AND BuOPERAND
EXCLUSIVE OR FUNC OR A— AND BaOPERAND
PAST CYCLE
RETURN TO HARDWARE BRANCH REGISTER
HALFWORD TO WORD SIGN EXTENSION
INDEX ADJUST (INCREMENT INDEX COUNTER)
IF MEMORY THEN....
IF CONDITION TRUE THEN....
ADDRESS B—OPERAND IS INDEX REGISTER 1
ADDRESS B-OPERAND IS INDEX REGISTER 2
ADDRESS B—OPERAND IS INDEX REGISTER 3
ADDRESS B—OPERAND IS INDEX REGISTER A
JUMP ABSOLUTE
JUMP TO ADDRESS TAKEN FROM CAR
JUMP TO MAP ADDRESS. I.E., START OF NEXT INSTRUCTION
JUMP ABSOLUTE. STACK CONTROL NOT INCLUDED
JUMP RELATIVE TO M.P.C. DISPLACEMENT IN CAR
JUMP TO STACK ADDRESS
JUMP TO WRITE ADDRESS (WA)
JUMP TO SUBROUTINE ABSOLUTE
JUMP TO SUBROUTINE IN CAR
JUMP TO SUBROUTINE IN MAP ADDRESS
JUMP TO SUBROUTINE RELATIVE. DISPLACEMET - I IN CAR
JUMP TO SUBROUTINE IN STACK
JUMP TO SUBROUTINE IN WRITE ADDRESS (WA)
SET K : 1 IF ZERO ALU OUTPUT. SET DR : 0
SET K : 1
SET K : O
LOOP COUNTER DECREMENT
LOAD STACK
MOVE ONE WORD IN DATA MEMORY
MOVE TWO WORDS IN DATA MEMORY
MOVE THREE WORDS IN DATA MEMORY
MOVE FOUR WORDS IN DATA MEMORY
READ MEMORY WITH OR'ED TYPE
READ ONE BYTE FROM DATA MEMORY
READ TWO BYTES FROM DATA MEMORY
READ THREE BYTES FROM DATA MEMORY
READ FOUR BYTES FROM DATA MEMORY
WRITE MEMORY WITH OR'ED TYPE
WRITE ONE BYTE TO DATA MEMORY
WRITE TWO BYTES TO DATA MEMORY

ND — 05.012.01

5O

MEM,WR3
MEM,WRA
MV,DINTOD
MV,DTODP
MV , DTOXBL
MV,DTOXBM
NADL
NEXT
NEXTNS
NOPOPRET
NPCSEL
NSEXCONV
ORA
ORB
ORD
CRT
PASSAA
PASSAB
POP
POPRET
PRF,ACONT
PRF,CEOPF
PRF,CEOPT
PRF,CLEAR
PRF,EOP
PRF,FADC
PRF,FARG
PRF,FOPC
PRF,FOPR
PRF,ISAMP
PRF,PCONT
PRF,START
PRF,WFIN
PUSH
REP
SCRB
SET
SHARG
SHCFR
SINGLE
SLOW1
SLOW2
SPAREBIT
ST,SAVA
ST,SAVAC
ST,SAVB
ST,SAVF
TYP,EY
TYP,F
TYP,HW
TYP,W
UNLOCK
W,EXT
W,IO
W,IOEM

ND—BOO MICRO PROGRAM GUIDE
ND-SOO MNEMONIC SYMBOLS

WRITE THREE BYTES TO DATA MEMORY
WRITE FOUR BYTES TO DATA MEMORY
DATA-IN TO DATA OUT
DATA—IN TO DP
DATA IN TO FLOATING B-BUS LEAST SIGNICANT HALF
DATA IN TO FLOATING B—BUS MOST SIGNICANT HALF
NOT ADDRESS LATCH. USE ADDR ARITH WITHOUT MEM REF
NEXT MICRO INSTRUCTION
NEXT. STACK CONTROL NOT INCLUDED
RETURN WITH HOLD
SELECT NPC TO L REGISTER
NOT SIGN EXTENSION WITH B,XRESL
OR A—OPERAND ACCORDING TO INSTRUCTION
OR B—OPERAND ACCORDING To INSTRUCTION
OR DEST ACCORDING TO INSTRUCTION
OR DATATYPE ACCORDING TO INSTRUCTION
PASS ADDRESS A-OPERAND THRUOGH ADDRESS ARITH
PASS ADDRESS B—OPERAND THROUGH ADDRESS ARITH
POP STACK
RETURN FROM SUBROUTINE
CC ADDRESS ARITH CONTINUE
END—OF—OPERATION IF FALSE
END—OF—OPERATION IF TRUE
PREFETCH CLEAR
END—OF-OPERATION.
FETCH GENERAL OPERAND
CC FETCH ARGUMENT
CC FETCH OPCODE
CC FETCH OPERAND
INTERRUPT SAMPLE
PREFETCH CONTINUE
PREFETCH START
WAIT FOR PREFETCH FINISHED (PREVIOUS)
PUSH STACK (THE SEQUENCER STACK)
REPEAT CURRENT MICROINSTRUCTION
SELECT SCRATCH B~BLOCK AS A-OPERAND
SET CONDITION SELECT
SHIFT COUNTER FROM SHORT ARGUMENT FIELD
SHIFT COUNT FROM SHIFT COUNT REGISTER
SINGLE FLOATING OPERATION
SLOW CYCLE 1 (STRETCH HIGH AND LOW STATE)
SLOW CYCLE 2 (STRETCH LOW STATE)
SP(OLD PROGRAM COUNTER) CLOCK INHIBIT
SAVE STATUS FROM ALU OPERATION
SAVE STATUS FROM ALU OPERATION IN COMPARE
SAVE STATUS FROM BCD OPERATION
SAVE STATUS FROM FLOATING OPERATION
DATA TYPE 13 BYTE
DATA TYPE IS FLOATING
DATA TYPE IS HALFWORD
DATA TYPE IS WORD
UNLOCK INTERFACE TO ND~100
WAIT FOR EXTERNAL ARITHMETIC
WAIT FOR IO (INPUT—OUTPUT)
WAIT FOR IO/EXT/MEM

ND - 05.012.01

ND-SOO MICRO PROGRAM GUIDE
ND-SOO MNEMONIC SYMBOLS

W,IOEPM
W,MEM
W,PMEM
W,XD
XDMOV
XRES

WAIT FOR IO/EXT/PMEM
WAIT FOR MEMORY
WAIT FOR PREVIOUS MEMORY CYCLE
WAIT FOR MASTER CLEAR
XD—BUS MOVE (NO ALU TRANSFER)
ENABLE EXTERNAL RESULT.

ND - 05.012.01

51

52

ND - 05.012.01

ND-SOO MICRO PROGRAM GUIDE

ND—SOO MICRO PROGRAM GUIDE 53
ND-SOO USER INSTRUCTIONS

16 NDmSOO USER INSTRUCTIONS

Some instructions in the ND-SOO are available for user written micro
code. This means that an instruction code has an entry in the ND-500
micro program but is not used. 'Not usedv means that the instruction
generates illegal instruction code. These instructions may be used for
special micro code to implement new functions. Some of the instruction
codes are used in the micro program version containing the ND—SOO Area
Processing Instruction set. The instructions available are listed
below. The instructions available may be divided into three different
groups, depending on prefetch and operand decoding. A general
description of the different types of instructions is also given. The
instructions are listed with instruction code, default data data type
for the operands and the entry point in the micro program.

The space available for user written micro code, depends on the micro
program version. New contents may be placed in the upper part of the
writable control store. A general rule is that the area free for user
written micro code be empty or contain only a jump to micro program
address M53. For future micro program versions, the area for user
written micro code, as shown below, may be reduced without any notice.
The space available for user written micro code is for the different
micro program versions:

ND-SOO standard micro program version 105xx : 130003 to 177778

ND~500 CX micro program version 103xx : 13000B to 17777B

ND-SOO AX option version 10Mxx : 16000B to 17777B

ND-SOO CX, AX option version 106xx : 160008 to 17777B

16.1 CLASSIFICATIQ!

Classification of the ND—SOO user instructions is done depending on
prefetch of operands and operand decoding.

Instruction group 1 : No operand is fetched.

Instruction group 2 : A memory operand is fetched.

Instruction group 3 : A general operand is fetched.

ND - 05.012.01

SM ND—SOO MICRO PROGRAM GUIDE
ND~5OO USER INSTRUCTIONS

16.1.1 INSTRUCTION GROUP_1

The prefetch processor is for group 1 doing nothing, ie., no fetch of
operands is done. The prefetch command PRF,EOP is required in the last
micro instruction.

The following user instructions are available in group 1.

Instruction code Instruction type Micro program entry

236 w EXT 534
237 W EXT 535

177004 W EXT 536
177005 W EXT 537
177006 w EXT SRO
177007 w EXT 541
177036 w EXT 5142
177037 w EXT 543
177436 w EXT 5M4
177MB? w EXT 5A5

ND — 05.012.01

ND—SOO MICRO PROGRAM GUIDE 55
ND-SOO USER INSTRUCTIONS

16.1.2 INSTRUCTION GROUP 2

The prefetch processor is for group 2, fetching one memory operand.
The only prefetch command to be used, is 'PRF,EOP' in the last micro—
instruction of the instruction. This is for data type byte, halfword,
word, and single floating point. For the data type double floating
point, the prefetch command 'PRF,PCONT' is required after the most
significant part of the double floating point operand is read, to
switch to the least significant part of the operand. A memory request
is required to get the least significant part of the operand. The
command 'PRF,EOP' in the last microinstruction is also required.

The following user instructions are available in group 2.

Instruction code Instruction type Micro program entry

177460 By EXT <operand/r/BY> 752
177461 By EXT <operand/r/BY> 753
177462 By EXT <operand/r/BY> 754
177463 By EXT <operand/r/BY) 755
177464 By EXT <operand/r/BY) 756
177465 By EXT <operand/r/BY> 757
177466 By EXT <operand/r/BY> 760
177467 By EXT <operand/r/BY> 761

Instruction code Instruction type Micro program entry

177470 H EXT <operand/r/H) 762
177471 H EXT <operand/r/H> 763
177472 H EXT <operand/r/H> 764
177473 H EXT <operand/r/H) 765
177474 H EXT <operand/r/H> 766
177475 H EXT <operand/r/H) 767
177476 H EXT <operand/r/H> 770
177477 H EXT <operand/r/H) 771

ND — 05.012.01

56 NDw500 MICRO PROGRAM GUIDE
ND-5OO USER INSTRUCTIONS

Instruction code

177377
177500
177501
177502
177503
177504
177505
177506
177507

EXT
EXT
EXT
EXT
EXT
EXT
EXT
EXT
EXT2

2
2

2
2

2
2

2
2

Instruction type

<0perand/r/W>
<0perand/r/W)
<0perand/r/W)
<operand/r/w>
<0perand/r/W>
<operand/r/W)
<operand/r/W)
<operand/r/W)
<0perand/r/W>

Micro program entry

771
772
773
77H
775
776
777

1000
1001

Instruction code

177510
177511
177512
177513
177514
177515
177516
177517

EXT
EXT
EXT
EXT
EXT
EXT
EXT
EXT2

2
2

2
2

2
2

2
1

Instruction type

<0perand/r/F>
<0perand/r/F)
<operand/r/F)
<operand/r/F>
<0perand/r/F>
<0perand/r/F)
<0perand/r/F>
<0perand/r/F>

Micro program entry

1002
1003
1004
1005
1006
1007
1010
1011

Instruction code

177520
177521
177522
177523
17752M
177525
177526
177527

Instruction type

EXT
EXT
EXT
EXT
EXT
EXT
EXT
EXTU

U
U

U
U

U
U

U

<0perand/r/D)
<0perand/r/D>
<operand/r/D>
<0perand/r/D>
<operand/r/D>
<operand/r/D>
<operand/r/D>
<0perand/r/D>

Micro program entry

1012
1013
1014
1015
1016
1017
1020
1021

ND — 05.012.01

ND-SOO MICRO PROGRAM GUIDE 57
ND—500 USER INSTRUCTIONS

16.1.3 INSTRUCTION GROUP 3

The prefetch processor is for group 3, fetching one general operand,
either a constant from program area, a register or a memory operand.
The only prefetch command to be used, is 'PRF,EOP' in the last micro—
instruction for the instruction. This is for data type byte, halfword,
word, and single floating point. For the data type double floating
point, the prefetch command 'PRF,PCONT' is required after the most
significant part of the double floating point operand is read to
switch to the least significant part of the operand. A memory request
is required to get the least significant part of the operand when the
operand is located in data memory. The command 'PRF,EOP' in the last
microinstruction is also required.

The following user instructions are available in group 3.

Instruction code Instruction type Micro program entry

177300 — 177303 Byn EXT <operand/r/BY> 546
177304 — 177307 Byn EXT <operand/r/BY> 547
177310 — 177313 Byn EXT <operand/r/BY> 550
177314 - 177317 Byn EXT <operand/r/BY) 731

Instruction code Instruction type Micro program entry

177320 — 177323 Hn EXT <operand/r/H> 732
177324 — 177327 Hn EXT <operand/r/H> 733
177330 — 177333 Hn EXT <operand/r/H> 734
177334 — 177337 Hn EXT <operand/r/H) 735

Instruction code Instruction type Micro program entry

177340 — 177343 Wn EXT <operand/r/W) 736
177344 _ 177347 Wn EXT <operand/r/W) 737
177350 - 177353 Wn EXT <operand/r/W> 740
177354 - 177357 Wn EXT <operand/r/w> 741

ND - 05.012.01

58 ND—SOO MICRO PROGRAM GUIDE
ND—SOO USER INSTRUCTIONS

Instruction code Instruction type Micro program entry

177360 — 177363 Fn EXT <operand/r/F> 742
177364 — 177367 Fn EXT <0perand/r/F> 743
177370 — 177373 Fn EXT <operand/r/F> 744
177374 — 177377 Fn EXT <0perand/r/F> 745

Instruction code Instruction type Micro program entry

177440 — 177443 Dn EXT <operand/r/D> 746
177444 — 177447 Dn EXT <operand/r/D> 747
177450 — 177453 Dn EXT <operand/r/D> 750
177454 - 177457 Dn EXT <0perand/r/D) 751

ND - 05.012.01

ND-SOO MICRO PROGRAM GUIDE 59
ND-SOO USER INSTRUCTIONS

16.2 PROBLEM Aprnoggg

The following section will show how user instructions may be defined.
It is difficult to start writing micro code for user instructions
before the problem is completely isolated. One approach to the problem
may be first to implement the inner part of the function in micro code
and place the loop control in assembly. This may give some better
performance for the function. But later, when the inner part of the
function is working, the loop control is included in the user
instruction with even better performance obtained. This is because the
user instructions may handle the loop control much more efficiently
than possible from assembly. In micro code, the loop control may be
done paralell to the operations being done. The indexing may also be
done faster than possible in high level language.

The approach to the problem, depends on the user instruction to be
implemented. The user defined instruction may have only one or more
operands involved in the operation. In the case of only one operand,
the problem is quite different from a function involving several
operands. In any case, an interface or library routine is required to
link user instructions to high level language. By using subroutines,
the operands required for the user instruction may be organized so
that access to the operands is made easy. The call instruction
requires a parameter list. When entering the library routine, the
addresses of the operands are placed on the data stack for the
routine. This gives a rather easy access to the operands to be used by
the user instructions.

We are to implement a user written instruction to add elements of two
areas and leave the result in a third area. The FORTRAN code that we
want to implement as a user instruction may look as follows:

C The index increments are previously defined.

IA 1
IB 1
IC 1
DO 100 1:1,NN

VC(IC) : VB(IB) + VA(IA)

II
II

IA : IA + INCA
IB : IB + INCB
IC : IC + INCC

100 CONTINUE

The micro program then needs access to the addresses of the three
areas. We know that the first index is 1 and we need access to the
index increments and the element count (NN). This is done by placing
the user instruction in a subroutine. This routine may be called from
a FORTRAN program, for example. We then define the parameters to be
used in the call statement and design the routine to be used as a
library.

ND — 05.012.01

6O ND—SOO MICRO PROGRAM GUIDE
ND-SOO USER INSTRUCTIONS

The call statement is defined as follows:

CALL ADD(VA,INCA,VB,INCB,VC,INCC,NN)

and the FROTRAN equialence of the routine will be as follows:

SUBROUTINE ADD(VA,INCA,VB,INCB,VC,INCC,NN)
DIMENSION VA(1),VB(1),VC(1)
IA : 1
IB = 1
IC = 1
DO 100 1:1,NN

VC(IC) = VB(IB) + VA(IA)
IA IA + INCA
IB IB + INCB
10 IC + INCC

100 CONTINUE
RETURN
END

The library routine to be designed, then needs a data stack for the
addresses of the parameters in the call. The data stack is used by the
user instruction to find the addresses of input and output areas and
get the values of index increments and number of element to be added.

II
II

II

To build the library routine, we use the ND-SOO assembly language.
Choose a user instruction code and write the routine. We may name the
instruction we are using, whatever we want, and we use a macro
definition to define the name. The instruction chosen is the first
single floating point instruction in GROUP 2. The instruction has one
memory operand fetched by the prefetch processor. Instruction code
chosen is 1775108 and has entry in the micro program at address 1002B.

$MACRO ADDM(OPERAND)
"LABEL" H PROG 17751OB;GENOP "OPERAND"

$ENDMACRO
MODULE ADDINTERFACE % NAME OF MODULE.
EXPORT ADD % MAKE ADD BE GLOBAL.
LIB ADD % MAKE LIBRARY.
ROUTINE ADD % NAME OF ROUTINE.
$PACK % PACK THE ROUTINE.

DSTACK: STACK FIXED % FIX STACK READER.
VA: w BLOCK 1 % ADDRESS OF VA.
INCA: w BLOCK 1 % ADDRESS OF INCA.
VB: w BLOCK 1 % ADDRESS OF VB.
INCB: w BLOCK 1 % ADDRESS OF INCB.
VC: w BLOCK 1 % ADDRESS OF VC.
INCC: w BLOCK 1 % ADDRESS OF INCC.
NN: w BLOCK 1 % POINTER TO ELEMENT COUNT.
ENDSTACK % END OF DATA STACK.
ADD: ENTF DSTACK % ENTER THE CALL PARAMETERS.

w MOVE IND(B.INCA),B.INCA % MOVE INCA TO B.INCA.
w MOVE IND(B.INCB),B.INCB % MOVE INCB TO B.INCB.
w MOVE IND(B.INCC),B.INCC % MOVE INCC TO B.INCC.
w MOVE IND(B.NN),B.NN % MOVE ELEMENT COUNT TO B.NN .
ADDM(B.VA) % USER INSTRUCTION.
RET % RETURN TO CALLER.
ENDROUTINE % END OF ROUTINE.
ENDMODULE % END OF MODULE.

This example will cause the stack header to be initiated when entering
the routine. The seven locations following the stack header, contain

ND — 05.012.01

ND-SOO MICRO PROGRAM GUIDE 61
ND—SOO USER INSTRUCTIONS

the information to be used by the user instruction. Index increments
and element count are moved onto the data stack and are to be used by
their values. This is the library routine we are going to use. The
micro code must then be written according to the layout of the data
stack to be used and the function to be done.

Then the micro code for the user instruction is to be designed.

The micro program to be written then must take care of indexing the
three areas (read source data, write result) and control the loop so
that the desired number of elements are added. At the start of the
instruction, the address of area VA is fetched by the prefetch and the
six next parameters are to be read by the micro program from the data
stack.

An instruction with an element count like this may cause an execution
time of several milli seconds and must be interruptable. Trap may also
interrupt the instruction. This requires that the instruction must be
started from its very beginning again, ie., started from the entry in
the micro program‘) and continue the operation at the point it was
interrupted. This implies that the indexing and loop control must be
done so that the operation continues and ends in the same way as no
trap occured. Some day one is writing a program that is using one of
the input areas as result area. Even then this instruction should
behave as the FORTRAN routine.

To make an instruction interruptable, the ND-500 micro mnemonic symbol
PRF,ISAMP is used in the loop. The micro instruction containing
PRF,ISAMP is executed while the next micro instruction is trapped and
not completed.

Note that in case of page fault, the instruction
containing mnemonic symbol causing the micro
program to wait for a memory request, is not
completed, but trapped immediately.

ND - 05.012.01

62 ND-SOO MICRO PROGRAM GUIDE
ND-SOO USER INSTRUCTIONS

16.3 MICRO PROGRAM EXAMPLE

The micro program for this routine may then be written as follows.

Note that this micro code is not the only
sSIIhtion to the problem. Many other sollutions
may be found. The main thing is that the micro
code is working properly. Later the problem with
optimization may be faced and the real hard
problems may arise.

% ENTRY IN MICRO PROGRAM.
1002/
MADDl:

ALU,ADIR A,DATA TYP,W D,AM#20 W,PMEM % ADDR. VA.
AA+AB AA,EA1 AB,DPARG u MEM,RDM % READ ADDR. INCA.
JMP MADDZ;

% SECOND ENTRY IN UPPER PART OF WRITABLE CONTROL—STORE.
16010/
MADD2:

ALU,ADIR A,DATA TYP,W D,AL#2O W,PMEM % INCA.
AA+AB AA,EA1 AB,DPARG u MEM,RDu % READ ADDR. VB.
NEXT;

ALU,ADIR A,DATA TYP,W D,AM#21 W,PMEM % ADDR. VB.
AA+AB AA,EA1 AB,DPARG 4 MEM,RDM % READ INCB.
NEXT;

ALU,ADIR A,DATA TYP,W D,AL#21 W,PMEM % INCB.
AA+AB AA,EA1 AB,DPARG 4 MEM,RD4 % READ ADDR. VC
NEXT;

ALU,ADIR A,DATA TYP,W D,AM#22 w,PMEM % ADDR. VC.
AA+AB AA,EA1 AB,DPARG A MEM,RDH % READ INCC.
SET COND,PDONE % TEST RESTART .
NEXT;

ALU,ADIR A,DATA TYP,W D,AL#22 w,PMEM % INCC.
AA+AB AA,EA1 AB,DPARG A MEM,RD4 % READ ELEMENT COUNT.
JMPNS LOAD MADD3;

% RETURNS TO THIS POINT AT RESTART ENTRY.
% ADJUST COUNTER FOR ADDITIONS DONE (AM$11) AND INDEX
% REGISTERS.NOTE THE LOCATION INCREMENT OF INDEX REG.
% COUNTER FOR ADDITIONS DONE AND LOCATION OF PRF,ISAMP.
M

ALU,A—1 A,AM#11 TYP,W D,AM#11
NEXT; % DECR. COUNTER.

ALU,A—B A,X#O B.AL#20 TYP,W D,X#O
NEXT; % ADJUST IXO.

ALU,A—B A,X#1 B.AL#21 TYP,W D,X#1
NEXT; % ADJUST IX1.

ND — 05.012.01

ND—SOO MICRO PROGRAM GUIDE 63
ND—SOO

%

93
MADD3:

USER INSTRUCTIONS

ALU,A—B A,X#2 B,AL#22 TYP,W D,X#2
POPRET; % ADJUST IX2.

END OF INITIATING AT RESTART.
RETURNS TO THIS POINT AT FIRSET ENTRY.
INITIATING REQUIRED ACCORDING TO CODE LAYOUT.

ALU,A-B A,ZRO B,AL#20 TYP,W D,X#0
NEXT; % IXO : 0 — INCA.

ALU,ADIR A,ZRO TYP,W D,X#1
NEXT; % 1X1 = O.

ALU,A-B A,ZRO B,AL#22 TYP,w D,X#2
NEXT; % IX2 = O - INCC.

ALU,OR A,XD,S1 B,BM#2 TYP,W D,S1 “LOW1
NEXT; % SET PART DONE IN S1.

ALU,FZRO D,AM#11 POPRET; % CLEAR AM#11.

END OF INITIATING FIRST ENTRY.

CHECK FIRST ENTRY OR RESTARTED.

ALU,ADIR A,DATA TYP,W D,AM#30 W,PMEM
C,SEQ F,JSR MADDF % FIRST ENTRY.
IFT JSRSTK; % RESTARTED.

ALU,A-B A,AM#30 B,AM#11 TYP,W D,LC SLOW1
SET COND,MSORZ % CHECK IF END.
NEXT;

ALU,ADIR A,AM#20 TYP,W D,DP SLOW1 % ADDR. VA TO DP1.
SET COND,LCZ % TEST CON. IN LOOP.
C,SEQ F,NEXT
IFT JMP MADDEND; % END.

ALU,ADIR A,AM#21 TYP,W D,DP SLOW1 % ADDR. VB TO DPT.
PASSAA AA,DP1 % ADDR. VA TO EA1.
NEXT;

ALU,ADIR A,AM#22 TYP,W D,DP SLOW1 % ADDR. VC TO DPT.
PASSAA AA,DP1 EA1INH % ADDR. VB TO EA2.
NEXTNS LOAD; % STACK RETURN ADDR.

ALU,A+1 A,AM#11 TYP,W D,AM#11 % COUNT N.
AA+AB AA,EA2 AB,HIX 1X1 EATINH EABINH
MEM,RDH % READ VB(IB).
LCDECR % COUNT DOWN.
NEXT;

ALU,A+B A,X#O B,AL#20 TYP,W D,X#O % IA = IA + INCA.
NEXT;

ALU,A+B A,X#1 B,AL#21 TYP,W D,X#1 % IB = 18 + INCB.
NEXT;

ND - 05.012.01

6M

MADDEND:

ND—SOO MICRO PROGRAM GUIDE
ND-SOO USER INSTRUCTIONS

ALU,A+B A,X#2 B,AL#22 TYP,W D,X#2 % IC 2 IC + INCC.
PRF,ISAMP % SAMPLE INTERRUPTS.
NEXT;

ALU,ADIR A,DATA TYP,W D,AM#2O W,PMEM % WAIT, SAVE VB(IB).
AA+AB AA,EA1 AB,uIX IXO EA1INH EA2INH
MEM,RDu % READ VA(IA).
NEXT;

EX,SUM A,AM#20 B,DATA TYP,F SINGLE % VB(IB) + VA(IA).
W,PMEM % WAIT FOR VA(IA).
NEXT;

ALU,BDIR B,XRESM TYP,F SINGLE % READ FLOAT.RESULT.
AA+AB AA,DPT AB,uIX IX2 EATINH EAzINH
MEM,WR4 % WRITE TO VC(IC)
W,IOEM % WAIT FLOAT. & MEM.
C,SEQ F,JMPSTK % NOT END.
IFT NEXT; % END.

ALU,ANDCB A,XD,S1 B,BM#2 TYP,W 9,31 SLOW1
NEXT; % RESET PART DONE.

ALU,A+B A,X#O B,AL#20 TYP,W D,X#O
NEXT;

ALU,A+B A,X#2 B,AL#22 TYP,w D,X#2
NEXT;

JMPMAP SLOWZ PRF,EOP;

ND — 05.012.01

ND—SOO MICRO PROGRAM GUIDE 65
ND—500 USER INSTRUCTIONS

16.5 INSTALLING USER INSTRUCTIONS

The micro code for user written instructions may be loaded into the
writable control store after the system micro code is loaded. Then the
entries of each user written instruction are to be modified according
to the first micro instruction. During the test phase, the entry in
the micro program may contain only a jump to the second part of the
instruction. Referring to the example we have been working with, the
following is a guide on how to include user written micro code to the
writable control store. The entry in the upper part of the writable
control store is address 160103. The user instruction code to be used
is 177510B, ie., the entry in the micro program at address 1002.

To load the writable control store, enter the system as user SYSTEM.

GND—SOO—MONITOR

N500:CC set unavailable for other users and load control store.

N500:SET—ND—SOO—UNAVAILABLE

N500:CC load the user written micro program

N500:LOAD-CONTROL-STORE CONTROL—STORE,16010,200

N500:CC modify the entry of the user instruction

N500:LOOK—AT-CONTROL—STORE 1002

MODIFICATIONS TO BE SAVED 0N (SYSTEM)CONTROL—STORE:DATA ? <n>

1002: JMP 000453 000000 <type EDIT and <CR> to modify).

Insert new contents of address 1002. EDIT is terminated by <CR> The
new contents of address 1002 are rewritten by the ND—SOO monitor.
Check if the whole micro instruction is included. Be careful. EXIT to
leave LOOK-AT-CONTROL-STORE.

N500:CC start the ND—SOO.

N500:MASTER—CLEAR

N500zMICRO—START 0

N500:LOAD—SWAPPER SWAPPER

N500:START—SWAPPER

N500:GIVE <xxxx>

Exit from the ND~500 monitor will cause the ND-SOO available for other
users. However, the ND~500 should be unavailable as long as debugging
the new micro code.

ND - 05.012.01

66 ND—SOO MICRO PROGRAM GUIDE
ND~500 USER INSTRUCTIONS

The user written micro code may also be included in the control-store
file by reading the contents from the data file to be included and
write the contents into the control-store file. This should be done
when new instructions are to be included in the ND-SOO.

Note the following before trying to modify the
writable control store:

— The ND—SOO monitor has an ND-SOO micro code
assembler and disassembler which make it easy to
modify the ND-SOO writable control store.
- Mnemonic symbols with corresponding value

equal to zero, should not be used when editing
the writable control store.
- Symbols with overlapping values or symbols

not recognized will also cause an error message
from the micro code assembler. This will cause
the whole edit to be skipped and the old
contents to be retained.

To verify the contents of a micro instruction, W for word display, G
for group display may be used together with the mnemonic list. 8 will
turn back to symbolic display.

ND — 05.012.01

ND-5OO MICRO PROGRAM GUIDE 67
ND—SOO USER INSTRUCTIONS

16.5 DEBUGGING

A useful command in the ND—SOO monitor, while debugging new instruct-
ions installed in the ND~500, is the command:

LOOK—AT-HARDWARE (register)

The legal terms for (register) are:

INTERFACE
— A,XD
— MMS

any register name found in the ND—SOO mnemonic symbol table.

Contents of the registers are displayed together with the name of the
register.

In addition, no register may be given (two carriage returns), causing
the ND—SOO monitor to dump contents of the context registers together
with scratch registers, loop counter, effective address registers etc.

Note that the effective address registers are
given in 1's complement.

When INTERFACE is used, status of the ND—SOO is reported, along with
any stop reason and micro program address for the stop.

When A,XD is used, any register connected to the XD—BUS and containing
the A,XD instruction is dumped.

Note that only the rightmost character
of the register name are displayed.

When MMS is used, the memory management scratch file for data and
instruction is dumped.

While debugging micro code, the writable control store may be
modified. The mnemonic symbol W,XD may be placed in the writable
control store to stop the micro program and check 'key values' for the
micro code. Contents of registers may be displayed by the command
LOOK-AT—HARDWARE <register>.

ND — 05.012.01

68 ND—500 MICRO PROGRAM GUIDE
ND~500 USER INSTRUCTIONS

While debugging user written instructions, the ND—SOO should be set
unavailable for other users. This is because any stop in the micro
program will cause the other processes currently running in the ND—SOO
to stop. No one would be happy about this. As long as an user written
instruction does not run even without temporary stops, the ND-SOO
should be kept unavailable for other users while debugging the micro
code.

Note that when using the command
LOOK-AT—HARDWARE or LOOK~AT—CONTROL—STORE the
ND-SOO is stopped and has to be restarted again.
Restart of the ND-SOO means MASTER—CLEAR,
MICRO-START O, LOAD-SWAPPER (file),
START-SWAPPER and GIVE <number of pages).

ND — 05.012.01

112 111 cs 6 96 95 cs 5

16><11S DESTIIATIOK V 106> <105 931-c 101x100 DATA 99><98 ‘mflfi! 93><92 CONDITIO! 89>
Er! com _!!IABLE

--- <97> <91; 93>
116> <115 <112 106> <103> "‘ <101> ALT Number

113> Subgroup OR on data MNE: operand of bytes <89>
Group : destination type from TYP,<type> select. " Conditional1 D,X£O—D,X£3 from instruction 02W MNE: HEM enable.

Index reA. instruction MNE:ORT 1:1? ALTMOD <95> MNE:C,MEM
MNE:ORD 221“: MemoryATAZ 2 D,L D,R D,D 3:8! write.

" <102> <98) <90>M£37 <10!» -" on memory Memory " Conditional3 D,AM£O-D,AM£37 OR B-operand operand request <96> ALB enable.Most Sign. reg. from type from Memory MNE:C,ALU2 block. instruction instruction MOVE
MNE:ORB MNE:MEM,RD no ALUM£37 u D,AL£O—D,AL£37 MNE:MEM,WR transf <91>

L£37 Least sign. reg. " Conditional3 block. <105> "‘ sequence
0R A-operand enable.3 5 D,AD£O-D,AD£37 from MNE:C,SEQ

Double reg. instruction
MNE:ORA

6 D , <XD—REGISTER> <92>
With ALU-transf. ‘ ConditionHm save.~*-‘ 7 XDMOV D,<XD- (On STACK)

REGISTER> MNE:CSAVE
With no ALU—

transf.

CS 2 32 31 cs 1 16 15 (3 0 0

u3><u2 mm UNIT 32> <31 30><29 ABSOLUTE ADDRKSS 16> <15 SHORT 0>
316 mu. EFFECYIV I i' i Ei. ADDRESS

@1311 Absolute micro program Short argument, sign extended.
<H2> address. .Ll9> External MNE: JMP <address>, 0 WE: A,XD,SARG 0,<arg. >.thmetic units JSR <address>, 0

. activate 1:EA1INH JSR:jump with return .
2:EA2INH address pushed on 16 hits

the stack.
<1H 30> "

—_......... External
_— unit <31 - - - - LOMA —

- — - O>
select ' i
0:SINGLE

)> lzDOUBLE
2:BCD Long argument. , .

MNE: A,XD,LARG <arg. >,-<arg. >

an 1:3)
eA-OPERAND <37> 16 bits0:AA,DP1 External

1:AA,EA1 result
; 2:AA,DP2 enable.

3:AA,EA2 XRES

<39 38>
Memory data
bus control :
O:DTOXBM
1 :DTOXBL
2 :DTODP
3:DINTOD

(,<{unction> 32>
3:COMPARE 31:UM'UL‘ 32%:APMULA
':TORMULA 32zM'ULA 35:?PIHULA
)zMUL 33:8RMULP 36:APIMULA

37 :APIHUL-—--——-—-————~——————__

* *** seat:*at-at-wSENDlUSYOURCOMMENTSI'! *********w

J \ / ; Are you l’rttstrtttctl hectntse of unclear inl‘orrnz‘ttion
. , in this manual? Do you have trouble finding

things? Why don’t you join the Reader‘s Club and
. I send us a note? You will receive a membership

‘) l ‘ card -- and an answer to your comments.
! 0

Please let us know if you ‘1’,“
* find errors - t J\\
* cannot understand information " \
* cannot find information
* find needless information

Do you think we could improve the manual by rearranging the
contents? You could also tell us if you like the manuall! / ‘\

// \
* * a: * 9c 9: 9: v: * HELPYOURSELFBY HELPllNG US!! a: * a 9v * * * >2 7':

Manual name: ND-500 Micro Program Guide Manual number: 3113—0501201

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual?

Your name: Date: ___h,_%_s__,,
Company: _ A_ c._ m Position: wh__,,,,,,,,,,
Address:

What are you using this manual for? m

Send to: Norsk Data A.S.
Documentation Department
PO. Box 4, Lindeberg Gard
0510 10, Norway

Norsk Data‘s answer will be found on reverse side

Answer from Norsk Data

Answered by Date

I I
I I
I I

Norsk Data AS.

Documentation Department

PO. Box 4, Lindeberg Gérd

0310 10, Norway

— we makg bitsfor the future

.4

NORSK DATA AS BOX 4 LINDEBERG GARD OSLO 1O NORWAY PHONE: 30 90 30 TELEX: 18661

’J

