
ND-SOO Reference Manual
ND-05.009.3 EN

,-_,

YA
XXvA

Ya

ND-SOO Reference Manual
NIB—05009.3 EN

iii

The information in this manual is subiect to change without notice. Norsk Data AS assumes no responsibility for
any errors that may appear in this manual, Norsk Data AS assumes no responsibility for the use or reliability of its
software on equipment that is not furnished or supported by Norsk Data AS, Copyright @1987 by Norsk Data AS

UPDATING
PRINTING RECORD . .

Manuals can be updated in two ways, new versrons
PRINTING NOTES and revisions. New versions consist of a completeiy

new manual which replaces the old one, and
- incorporate all revisions since the previous version.

1 O / 8 O Vers 101’] 1 Revisions consist of one or more single pages to be
. merged into the manual by the user, each revised

0 7 /8 2 ‘ Vers ion 2 page being listed on the new printing record sent out
0 6 / 8 7 Vers ion 3 with the revision The old printing record should be

replaced by the new one.

New versions and revisions are announced in the ND
Customer Support Information and can be ordered
from the address below.

The reader's comments form at the back of this
manual can be used both to report errors in the
manual and give an evaluation of the manual. Both
detailed and general comments are welcome,

ND—SOO Reference Manual
ND—05.009.3 EN RING BINDER OR PLASTIC COVER

The manual can be placed in a ring binder for greater
protection and convenience of use. Ring binders may
be ordered in two sizes: 85 and A4.

The manual may also be placed in a plastic cover.
This cover is more suitable for manuals in A4 size of
less than 100 pages than for larger manuals.
Please send your order, as well as all types of
inquiries and requests for documentation to the local
ND office, or (in Norway) to:

Norsk Data AS
Graphic Centre
P.O.Box 25 BOGERUD
N-062I OSLO 6 ~ Norway

I would like to order X

.......... Ring binders, 85, at NOK 35.~ per binder

.......... Ring binders, A4, at NOK 45.- per binder

.......... Plastic Covers, A4, at NOK 10.» per cover

Company: ..

Address: ..

Z 0.: 3 CD

Preface:v

PREFACE

THE PRODU_C__T_

This manual describes the instruction set, the trap~handling system
and the memory management system of the central processing unit of the
ND—SOO series computer systems and the ND—SOOO series computer
systems.

The ND—SOOO CPU has a completely new and unique physical
implementation, but is based on the ND-SOO systems architecture. The
ND-SOOO uses the same instructions as the ND-BOO .

THE READER

The ND—SOO CPU reference manual is intended for anybody using the
ND—BOO assembler and for system programmers needing to know the exact
format of the generated code.

Programmers making advanced use of the memory management system for
segmenting, or writing their own trap-handling routines will find
detailed information in this manual.

PREREQUISITE KNOWLEDGE

No previous knowledge of the ND—BOO or the ND—SOOO is required, but
assembly programming experience is desirable. Understanding the memory
management system, making programs that handle communication betweenthe I/O processor and the ND—SOO or the ND-SOOO and the inner kernel
of the operating system requires a more detailed description of both
ND-SOO , or ND-SOOO , and ND~lOO hardware. This can be found in

ND-SOOO Hardware Description - ND~05.020
ND—500/2 Hardware Description - ND—05.015
ND—lOO Functional description - ND-06.026

Use of the ND-SOO assembler and how to link and load an ND-SOO program
is described in the manuals

NDeSOO Assembler Reference manual — ND—60.113
ND—SOO Loader Monitor — ND—60.l36

Norsk Data ND-05.009.03 EN

THE MANUAL Vi

This manual is organized as a reference manual. It is intended for
looking up the exact syntax of machine instructions and hardware
details relevant to software. Each chapter is independent and can be
understood without reading previous chapters.

This manual is valid for both the ND-5OO and the ND—5000 computer
systems. When the manual uses the name NDN5OOO this is also valid fore
the ND—5OO .

The chapters are organized as follows:

PART I General design

Chapter 1: A general introduction to the ND-5000 system
Chapter 2: The register block
Chapter 3: Stack and heap management
Chapter 4: Memory management system
Chapter 5: Cache memory system
Chapter 6: The trap system
Chapter 7: Data types handled by the CPU
Chapter 8: Operand specifiers and addressing
Chapter 9: Instruction formats

PART II Instruction set

Chapter 10: Data transfer and logical instructions
Chapter 11: Arithmetical instructions
Chapter 12: Mathematical functions
Chapter 13: Control instructions
Chapter 14: String instructions
Chapter 15: Miscellaneous instructions
Chapter 16: Special instructions
Chapter 17: Packed decimal instructions (Option)

Part II is organized in a logical way. You find related instructions
when leafing through the neighbouring pages to a specific lockup.

The appendices contain tables of address codes, instructions, cross
references, and notational conventions.

NEW INSTRUCTIONS

A number of new instructions are introduced with the ND—5000 . These
instructions also run on computer systems with the ND-SOO/l and the
ND- 500/2 CPUs. The instructions are labelled: ('87 extension).

CPU — IfO PROCESSOR

The term 'CPU' is used for the ND-SOO/ND—SOOO processor throughout
this manual. Whenever the I/O processor is mentioned, this means the
ND-lOO/ND—llO processor.

Norsk Data ND-05.009.03 EN

EXAMPLES USED IN THIS MANUAL vii

Due to the large number of instruction formats and address modes
available, it is not possible to illustrate more than a small fraction
of the legal combinations. An attempt has been made to Show the use of
each format and mode at least once.

Numeric quantities are presented in decimal, octal and/or hexadecimal
format. Octal numbers are followed by a 'B' and hexadecimal numbers by
an 'H'. Hexadecimal numbers must always start with a decimal number to
avoid confusion with identifiers (that is, FFH must be written as
OFFH). In this manual hexadecimal numbers are always preceded by a
zero.
Absence of a following letter indicates decimal number.

When reading examples containing word and halfword quantities
displayed as octal bytes, the values in the upper bytes have to be
shifted. Example:

Binary pattern: 00010000000010000100100101010010

Displayed as: Four octal bytes: O2OB 010B 1118 122B

Two octal halfwords: 0100108 0&45228

Octal word: 020020445228

Hexadecimal numbers require no shifting; the hexadecimal digits can be
concatenated as they are, two digits per byte.

The term WORD always refers to 32~bit words. 16~bit data items (ND—100
words) are referred to as HALFWORDS. The term BYTE refers to 8—bit
bytes.

In the figures, address values increase downwards.

Norsk Data ND-05.009.03 EN

ix

T A B L E O F C O N T E N T S

Section Page

1 INTRODUCTION . 3

1.1 CPU Architecture and CPU Implementation . 5
1.2 System configuration . . 5
1.3 Communication between the I/O Processor and the CPUs 8
1.4 Domains, segments and processes . 9

2 THE REGISTER BLOCK . ll

3 STATIC DATA, STACK AND HEAP 17

3.1 Static allocation . 19
3.2 Stack allocation . 20
3.3 Heap allocation . 22

4 MEMORY MANAGEMENT SYSTEM 25

4.1 Introduction 27
4.2 Memory management architecture 304.2.1 Address domain . 304.2.2 Process . 314.2.3 Process environment 324.2.3.1 Process registers 324.2.3.2 Capability tables 324.2.3.3 Domain information 344.2.4 Logical addressing 364.2.5 Domain communication 364.2.5.1 Alternative domain 36
4.2.5.2 Domain calls and monitor calls 364.2.5.3 Trap handling . 394.3 Physical implementation 404.4 Buffering . 44

5 CACHE MEMORY SYSTEM . 45

6 THE TRAP SYSTEM . 49

6.1 General . 516.2 Trap handler routines 526.3 Searching for a trap handler 526.4 Trap handler data field 556.5 The status register . 57

Norsk Data ND—O5.009.03 EN

Section

Norsk Data ND~O5.009.03 EN

Page

6.5.1 Data status bits 57
6.5.2 Tracing status bits . . . 59
6.5.3 Instruction and operand reference status bits . 60
6.5.3.1 Ignorable trap conditions . 60
6.5.3.2 Non— ignorable trap conditions 63
6.5.3.3 Fatal trap conditions . 63
6.5.4 Signalling, synchronization and miscellaneous status bits 64
6.5.5 System error status bits 66
6.5.6 Addressing traps 66
6.5.7 Status bits survey 66

7 DATA TYPES 69
7.1 Introduction 71
7.2 Data types 71
7.2.1 Bit . 71
7.2.2 Byte 72
7.2.3 Halfword 72
7.2.4 Word . . 72
7.2.5 Single precision floating point . 73
7.2.6 Double precision floating point . 73
7.2.7 Floating point rounding . 74
7.2.8 Descriptor 75
7.3 Data formats in main memory . 75
7.4 Data in registers . 77

8 OPERAND SPECIFIERS AND ADDRESSING . 79

8.1 Introduction . . 81
8.2 General and direct operands . 82
8.2.1 General operands 84
8.2.2 Post—Index . 86
8.3 Survey of addressing modes 87
8.4 Local addressing . 90
8.5 Local, post- indexed addressing 92
8.6 Local indirect addressing 94
8.7 Local indirect, post— indexed addressing . 96
8.8 Record addressing . 98
8.9 Pre--indexed addressing 100
8.10 Absolute addressing 102
8.11 Absolute, post— indexed addressing . 104
8.12 Constant operand addressing . 106
8.13 Register addressing . 108
8.14 Alternative addressing 109
8.15 Descriptor addressing . 110
8.16 Direct operands . . . 113
8.16.1 Displacement addressing . . 113
8.16.2 Absolute program addressing . 113
8.16.3 Absolute data addressing 113

Section Page

9 THE ND-SOO INSTRUCTION SET 115

10 DATA TRANSFER AND LOGICAL INSTRUCTIONS 123

10.
10.
10.
10.
10.
10.
10.

Load . 125Load local base register 126
Load record register 127Store . 128
Store local base register 129
Store record register 130
Move . 13110. Swap . 132

10. Compare . 13310.10 Compare two operands 13410.11 Test against zero . 13510.12 Negate . 13610.13 Invert . 13710.14 Invert with carry add 13810.15 Absolute value . 13910.16 Clear register . 14010.17 Store zero . 14110.18 Set to one . 14210.19 Increment . 14310.20 Decrement . 14410.21 And . 14510.22 0r . 14610.23 Exclusive or . 14710.24 Logical shift . 14810.25 Arithmetical shift . 14910.26 Rotational shift . 15010.27 Get bit . 15110.28 Put bit . 15210.29 Clear bit . 15310.30Setbit..........................15410.31 Get bit field . 15510.32 Put bit field . 15610.33 Floating point remainder 15710.34 Integer part . 15810.35 Integer part with rounding 15910.36 AMODB - Integer modulo (' 87 extension) 16010.37 ENTIER - SIMULA Entier function ('87 extension) 161

K
o

m
fl
O

‘x
U

’l-
S

Z
‘W

N
H

11 ARITHMETICAL INSTRUCTIONS 163

11.
11.
11.
11.

Add . 165Subtract . 166Multiply . 167
Divide . 168

4
3

‘m

Norsk Data ND-O5.009.03 EN

X11

Section Page

11.5 Add two operands 16911.6 Subtract two operands . 170
11.7 Multiply two operands . 17111.8 Divide two operands . 17211.9 Add three operands 17311.10 Subtract three operands . - 174
11.11 Multiply three operands . - 175
11.12 Divide three operands . . . 176
11.13 Multiply with overflow to register . . 177
11.14 Divide with remainder to register (modulo) . . 178
11.15 Unsigned multiply with overflow to register . . 179
11.16 Unsigned divide 180
11.17 Add with carry . . 181
11.18 Subtract with carry . 182
11.19 Multiply and add 183
11.20 Sum of products . 184

12 MATHEMATICAL FUNCTIONS - 185

12.1 A to the I'th power . . 187
12.2 I to the J'th power . . 188
12.3 Polynomial 189
12.4 Square root . 190
12.5 Sine 191
12.6 Arc sine 192
12.7 Cosine 19312.8 Arc cosine 19412.9 Tangent . 19512.10 Arc tangent . . . 196
12.11 Arc tangent two argument 19712.12 Exponential . . . 19812.13 Natural logarithm . . 19912.14 Binary logarithm . 200
12.15 Common logarithm . 201

13 CONTROL INSTRUCTIONS . 203

13.1 Unconditional relative jump . . 205
13.2 Unconditional absolute jump . . 206
13.3 Conditional jump . 207
13.4 Loop with increment . . 209
13.5 Loop with decrement . . 211
13.6 Loop general . . . 213
13.7 Call subroutine general . . 215
13.8 Call subroutine absolute . 216
13.9 Initialize stack . . 217
13.10 Subroutine entry points . . 218
13.11 Subroutine return . . 226

14 STRING INSTRUCTIONS . . 229

Norsk Data ND-05.009.03 EN

Section Page

14.1 Introduction . 231
14.2 String moVe . 234
14.3 String move while . 235
14.4 String move until . 236
14.5 String move translated 237
14.6 String move translated until 238
14.7 String move m elements 239
14.8 String £111 . 240
14.9 String fill m elements 241
14.10 String compare . 242
14.11 String compare translated 243
14.12 String compare with pad 244
14.13 String compare translated with pad 245
14.14 String skip elements 246
14.15 String locate element 247
14.16 String scan . 248
14.17 String span . 249
14.18 String match . 250
14.19 Set parity in string 251
14.20 Check parity in string 252

15 MISCELLANEOUS INSTRUCTIONS 253

15.1 Block move and Fill . 255
15.2 Data type conversion 256
15.3 Data type conversion with rounding 258
15.4 Load address 259
15.5 Load address into record register 260
15.6 Load address into base register 261
15.7 Load address of multilevel chain 262
15.8 Load index . 263
15.9 Calculate index . 264
15.10 No operation . 265
15.11 Set flag . 266
15.12 Clear flag . 267
15.13 Get buddy element . 268
15.14 Free buddy element 269
15.15 PLCCN — Convert PLANC descriptor to ND——500 descriptor (‘87

extension) 270
15.16 NCPLC — Convert ND——500 descriptor to PLANC descriptor ('87

extension) 271
15.17 CLINIT — Initialize local clock ('87 extension) 27215.18 CLREAD — Read local clock (' 87 extension) 273

16 SPECIAL INSTRUCTIONS . 275

16.1 Disable process switch’. 27716.2 Enable process switch 27816.3 Test and set . 279

Norsk Data ND—05.009.03 EN

xiv

Section Page

16.4 Break point 280
16.5 Set bit in trap enable register . . 281
16.6 Clear bit in trap enable register . . 282
16.7 Load special register . . 283
16.8 Store special register . . . 284
16.9 Integer float register communication . 285
16.10 Data cache clear . . 286
16.11 DDIRT — Dump dirty ('87 extension) . 287
16.12 Program cache clear 288
16.13 Data memory management on . . 289
16.14 Program memory management on . 290
16.15 Data memory management off . 291
16.16 Program memory management off . . 292
16.17 Read Written In Page table . 293
16.18 Clear Written In Page bit . . 294
16.19 Clear Written In Page table . . 295
16.20 Read Page Used table . 296
16.21 Clear Page Used bit . . 297
16.22 Clear Page Used table . . 298
16.23 Read I/O processor memory . . . 299
16.24 Clear translation speedup buffer . 300
16.25 Load bypassing cache . . 301
16.26 OPERATING SYSTEMS SUPPORT INSTRUCT.[ONS 302
16.26.1 RHOLE - read from NUCLEUS Hole (' 87 extension) . 303
16.26.2 WHOLE ~ write to NUCLEUS hole (' 237 extension) . 304
16.26.3 SEND — Send to port (’ 87 extension) 305
16.26.4 RECVE — Receive from port (' 87 extension) . . . 306
16.27 INSTRUCTIONS MANIPULATING REGISTER AND CONTEXT BLOCK . . 307
16.27.1 SREGBL — Save register block (' 87 extension) . 309
16.27.2 LREGBL - Load register block ('87 extension) . 310
16.27.3 SCNTXT ~ Save context block (87 extension) . 311
16.27.4 LCNTXT - Load context block (87 extensi.on) 312
16.28 REXT — Read from device external to CPU (' 87 extension) . 313
16.29 WEXT ~ Write to device external to CPU (' 87 extension) . 314
16.30 TOSSP - Special load of TOS (' 87 extension) . 315
16.31 RPHS — Read from physical segment {‘87 extension) . 316
16.32 WPHS - Write to physical segment (' 87 extension) . 317
16.33 CAD — load CAD (' 87 extension) . . 318
16.34 JUMPS — Call supervisor (' 87 extension) . 319
16.35 SVERS — Store microprogram version (' 87 extension) . 320
16.36 SCPUNO — Store CPU number ('87 extension) . . . 321
16.37 PHYLADR — Get physical address (’87 extension) . 322

17 BINARY CODED DECIMAL INSTRUCTIONS (Option) . 323

17.1 Introduction . 325
17.2 Packed add . 330
17.3 Packed subtract . . 331
17.4 Packed multiply . . 332
17.5 Packed compare . 333
17.6 Packed shift . 334

Norsk Data ND—05.009.03 EN

XV

Section Page

17.7 Convert ASCII to packed 33517.8 Convert packed to ASCII 336
17.9 Convert packed to binary word 33717.10 Convert binary word to packed 338

APPENDIX

A Address codes . 339

B Address code table 343

C Symbols and abbreviations 347

D New instructions — 1987 extension 351

E Instruction table 355

F Alphabetical instruction table 373

G Instruction code table 381
H Instruction code cross reference table 393

I Setting of status bits 401

Index 1

Norsk Data ND—05.009.03 EN

ND—BOO Reference Manual

Norsk Data ND-05.009.03 EN

ND—SOO Reference Manual

Norsk Data ND-05.009.03 EN

ND~500 Reference Manual 5
INTRODUCTION

1 lNTRODUCTION

1.1 CPU Architecture and CPU Implementation

By introducing the ND~5000 systems, Norsk Data also introduces the ND~
5000 CPU. This is the third generation of implementations of the ND—
500 CPU architecture.

The CPU software architecture is still named ND—500, while the new
systems, with the ND—5000 CPU implementation, are named the ND~5000
series computer systems. The concepts software architecture and
implementation are outlined in table 1.

CPU~ Name Systems

software instruction set ND—SOO All
architecture register set

addressing modes
trap system

physical ND—500/1 ND-520/540/560
implementation

NDaSOO/Z ND"510/530/550/
560/570/580

ND-SOOO ND—SXOO

Table 1. CPU Architecture and CPU Implementation

The ND-5000 CPU runs the same instruction set, uses the same register
set and the same addressing modes as the NDvSOO/l and the ND—500/2
CPUs.

1.2 System configuration

The ND—SOOO central processing unit is part of the ND—5000 computer
system. This system is a combination of an l/0 processor, an ND—5000
CPU and a shared memory, see figure 1. Until now the 1/0 processor has
been an ND-lOO, but when the DOMINO I/O system is introduced, other
types of 1/0 processors will be possible.

THE I/O PROCESSOR:

— Supervises the CPU

— Runs the I/O system, file system, operating system and job
scheduling

Norsk Data ND-05.009.03 EN

6 ND—SOO Reference Manual
INTRODUCTION

— Runs local I/O—processor jobs

THE ND~500 type CPU:

~ 32~bit logical address

- Addressing system implemented twice by the memory management system
to allow user programs of 4 gigabytes of instructions and 4
gigabytes of data

— CPU shared by many user programs through efficient use of the
memory management system

— Operations on data units ranging from 1 to 64 bits

— Byte—oriented instructions designed for efficient execution of
high—level language programs

- Cache memory employing a forward fetch mechanism for main memory
access

— Main memory access up to 16 bytes wide, eliminating the memory
bandwidth bottleneck

— Two independent but identical cache systems, one for instructions
and one for data

w The majority of machine level instructions requiring only one basic
cycle

- Asynchronous floating point arithmetic for increased instruction
execution speed

- Instruction and data pipelining techniques employed to optimize
execution speeds

— Specialized high—speed hardware for 32/64—bit floating point
multiplication and division

— Optional BCD hardware for operations on packed binary-coded decimal
numbers.

MEMORY:

— Multi Function Bus main memory with direct access for the ND—SOOO
CPU, the I/O processor CPU and DMA transfer devices

~ Physical main memory up to 32 Mbytes

— Virtual memory management system

— Memory fully or partially shared between the I/O processor and
ND—BOO type CPU.

Norsk Data ND-05.009.03 EN

ND~500 Reference Manual
INTRODUCTION

ND—SOOO CPU

C S A
Shared memory I/O ND-SOOO O T D

proces~ N A D
sor T T R
private private R U E
memory memory 0 S S

L S

mailbox

I/O processor

Figure l. The ND—SOOO computer system

Norsk Data ND-05.009.03 EN

8 ND—SOO Reference Manual
INTRODUCTION

1.3 Communication between the I/O Processor and the CPUs

All or part of the memory can be shared between the CPU, the I/O
processor and associated I/O devices. This allows for easy access and
control by all components of the system.

The communication between the I/O processor and the CPU is set up as a
mailbox and DMA transfer system” The mailbox contains 3 registers:

~ Control register: For the I/O processor to give the CPU a
command

- Status register: For the CPU to give the I/O processor status

— Address register: A pointer to where in the I/O-processor
memory a chain of message buffers will be found. Message
buffers may contain commands or data from the I/O processor
to the CPU or may be used by the CPU for storing extended
status information

Some examples of commands to the CPU are context switch, reset, wait
or data transfer.

The status information returned to the I/O processor reports that a
job is finished, the reason for the CPU termination and the type of
possible CPU malfunctions.

The CPU microprogram initiates and controls the DMA access channel to
the I/O—processor memory. The communication channel is also used
extensively for diagnostic and test program information. The I/O~
processor is used as a diagnostic vehicle for the CPU.

Norsk Data ND-05.009.03 EN

ND—BOO Reference Manual 9
INTRODUCTION

1.4 Domains, segments and processes

The memory in an ND-BOO type system is logically structured into
DOMAINS. A domain has one 32—bit address area (4 gigabytes) for
executable code (the program domain) and another one for data (the
data domain).

Each domain is divided into SEGMENTS, with up to 32 per domain. A
segment can be up to 128 Mbytes, which is equivalent to 27 address
bits. The smallest unit for access protection (write and parameter
access protection) is a segment. An instruction segment may access any
data segment in the domain.

Two (or more) domains may have segments in common in order to share
code or data.

A sequence of operations requiring no parallel execution is called a
PROCESS. A process is carried out sequentially in the CPU, but several
processes started at different times may, in effect, run concurrently.
The processes, however, are ”time—sliced".

A process may refer to up to 256 domains of data and instructions.
These are connected in a tree stucture called a domain tree, specified
by the process description kept by the memory management system. The
links between the domains are determined at the creation of each
domain. The domain closest above (that is, closer to the root) a
domain D is the mother of D, and D is the child. D may itself be the
mother of other child domains.

Control can be switched from one domain to another by calling a
routine in the other domain, or by causing an error situation (trap
condition) not taken care of by a routine in the current domain. A
routine may access data in the domain from which it was called through
an address prefix (ALT).

Within a domain, routines are called directly by address. Routines in
other domains are called through their routine number, not by address.

Communication between processes is possible through monitor calls or
through a shared data segment.

Norsk Data ND~05.009.03 EN

lO ND—SOO Reference Manual

Norsk Data ND—05.009.03 EN

ND-SOO Reference Manual 13
THE REGISTER BLOCK

2 THE REGISTER BLOCK

The ND—SOO type CPU has four registers for program and data
addressing. These are the program counter P, the L (link) register
containing the subroutine return address, the local variable base
register B, and the record base register R.

The four 32—bit general registers, ll, 12, I3, and IQ, may be used as
integer accumulators or as index registers. They are used for both
word and partial word operations (halfword, byte, bit and bit field).

The Al, A2, A3, and AH registers are 32—bit floating—point
accumulators used for real number arithmetic. Each floating point
accumulator may be extended with a 32—bit Extension register (El, E2,
E3 and EU), making four 64—bit floating point accumulators for double
precision arithmetic.

The ND—SOOO also has several special purpose registers:

ST Status register
OTE Own trap enable register
CTE Child trap enable register
MTE Mother trap enable register
TEMM Trap enable modification mask

Table 2. 64—bit Special Purpose Registers

TOS Top of stack register
LL Low limit trap register
HL High limit trap register
THA Trap handler address register

Table 3. 32—bit Special Purpose Registers

The ST, OTE, CTE, MTE and TEMM registers are treated as two 32—bit
registers when referenced in instructions. The least significant parts
(bits 0:31) are called STl, OTEl, CTEl, MTEl and TEMMl. The most
significant parts (bits 32:63) are called 8T2, OTEZ, CTEZ, MTEZ and
TEMMZ.

Norsk Data ND—05.009.03 EN

14 ND—SOO Reference Manual
THE REGISTER BLOCK

The memory management system utilizes a number of registers accessible
only to the microprogramu These include:

CED Current executing domain register
CAD Current alternative domain register
PS Process segment register
PSTP Physical segment table pointer

Table 4. Memory Management Utilized Registers

Each process in the system has its own copy of the CED, CAD and PS
registers. PSTP is one global register for the whole system.

The context block is made up from these registers except from PSTP. In
addition, it contains scratch registers named ’mic'. These are
registers accessable from microprogram only, for use in
macroinstructions that may be interupted while operating on more data
than are handled by the general registers.

Norsk Data ND-05.009.03 EN

ND~5OO Reference Manual 15
THE REGISTER BLOCK

The registers are numbered according to the table below. Note that 6M—
bit registers are given consecutive numbers.

argl Trapping P argl? : E4 arg33 : CTEl
2 P 18 : STl 34 : CTE2
3 L 19 : 8T2 35 : MTE1
1+ B 20 : PS 36 : MTE2
5 R 21 : T08 37 : TEMMl
6 ll 22 : LL 38 : TEMM2
7 12 23 : HL 39 : mic
8 I3 24 : TBA 40 : mic
9 . It; 25 : CED 41—50: copy of
10 : A1 26 : CAD program
11 : A2 27 : mic memory
12 : A3 28 : mic
13 : A4 29 : mic
14 : E1 30 2 mic
15 : E2 31 : OTEl
16 : E3 32 : OTEZ

Table 5. Register Numbers

Norsk Data NDwO5.009.03 EN

16

3 1

P

L

B

R

TOS

LL

HL

THA

I 1

12

13

14

63

A1 El

A2 E2

A3 E3

A4 E4

STl 8T2

OTEl OTEZ

MTEl MTEZ

CTEl CTE2

TEMMl TEMM2

ND—SOO Reference Manual
THE REGISTER BLOCK

Program counter

Link (subroutine return address)

local variable Base

Record base

Top Of Stack register

Low Limit trap register

High Limit trap register

Trap Handler Address register

Integer accumulators
or Index registers

The In accumulators are named
BIn, BYn, Hn and Wn when used
for Blt, BYte, Halfword or Word
operations (n=l,2,3,4).

Floating point accumulators
and Extension registers
A=E= 32 bits, D=A+E= 64 bits

The An accumulators are named Fn when
used as single-precision floating point
registers. The (An, En) register
pair is named Dn when used as double-
precision floating—point registers.

STatus register

Own Trap Enable register

Mother Trap Enable register

Child Trap Enable register

Trap Enable Modification Mask

Figure 2. The Register Block

Norsk Data ND-05.009.03 EN

ND—BOO Reference Manual 19
STATIC DATA, STACK AND HEAP

3 STATIC DATA, STACK AND HEAP

When a subroutine is called, space is required to store return
information and local variables. This space may be allocated

- in a fixed location in memory, referenced relative to the B
register or by absolute address (static allocation)

— on a stack growing from low to high memory, referenced
relative to the B register

— in a block released from a freelist. The block may be
anywhere in otherwise unused memory, referenced relative to
the B register.

Static or dynamic allocation of the local data area of a routine is
determined by the kind of entry point instruction, and a program
system may contain a mixture of procedures with statically and
dynamically allocated data areas.

The initialization of the header of the local data area is in most
respects equivalent for static, stack and heap allocation. Usually,
the calling procedure need not be concerned with the allocation
strategy used.

3.1 Static allocation

Data allocated in fixed locations may be addressed by a full 32-bit
address referencing any segment within the domain. Statically
allocated data are not released during program execution for other
use, and local variables in routines keep their values from one call
to the next.

Routines with static data areas are entered through an ENTF or ENTFN
instruction. Such routines are by definition nonmreentrant and cannot
be called recursively , but in other respects they behave like other
routines. The fixed local data area is initialized as shown in figure
3. The B register is updated to point to the local data area and data
references may be addressed relative to the B register, as with stack
routines, and may also be addressed directly.

Trap handlers always have a fixed local data area which has a special
layout discussed in chapter 6.

Norsk Data ND-OS.OO9.03 EN

20 ND~500 Reference Manual
STATIC DATA, STACK AND HEAP

3.2 Stack allocation

A stack is initialized through the INIT or ENTM instruction, either
one can declare the lowest stack address and its maximum extent. When
a stack is initialized, the TOS register is loaded with the address of
the first free location beyond the stack's maximum extent. TOS serves
to prevent the stack from growing too large, and as a pointer to the
variables describing the heap. The first free location beyond the
current extent of the stack is pointed to by the B.SP location.

A new data block on the stack is allocated by executing an ENTS or
ENTSN instruction. On routine entry the data block is automatically
initialized as follows:

B —e ‘ previous stack pointer (extent of stack)
PREVB previous value of B register

RETA current return address

SP stack pointer
(first free location)

AUX/LOG auxiliary location for language
processors or buddy subroutines

N number of arguments

argl

arg2 .
. addresses of arguments

local variable area
(uninitialized)

Stack pointer (8.8?)

Figure 3. Local Data Area Layout

If the number of arguments supplied exceeds the maximum allowed by the
ENTSN entry point instruction, only the maximum allowed number of
argument addresses will be put on the stack and the N location will
contain the value of the "maximum number of arguments" operand. (This
also applies to the ENTFN instruction.)

The lNIT instruction initializes the stack in a similar way, but the
PREVB and RETA will be zeroed, so that an attempt to link downwards
beyond the lower stack address will cause an Address Zero or Stack
Underflow trap.

The ENTM instruction initializes a new stack starting from a specified
address, giving the TOS register a new value. If the module called is
within the current domain, the old TOS value is saved on the current

Norsk Data ND*05.009.03 EN

ND—BOO Reference Manual 21
STATIC DATA, STACK AND HEAP

top of the old stack, pointed to by B.SP. Initialization of the new
stack is the same as for a routine entry; the base address of the
previous stack block is saved in PREVB. If the module is in another
domain, TOS, PREVB and BETA are stored in the domain information table
and restored on return.

The ENTM is typically used for initializing a stack for the routines
on a segment, being called from other segments in the same domain or
from other domains. Executing the same ENTM instruction twice will
overwrite the old initial values, possibly destrOying the return
address and other information.

Stack space is released through the BET or RETK instructions. The B
register is loaded from the PREVB location. On exit from a module (a
subroutine entered through ENTM) in the current domain, the TOS
register is not updated; this must be done explicitly. After a domain
call, TOS is restored from the domain information table.

Stack displacements (relative to the B register) are always non~
negative, the displacement being the number of bytes to add to the B
register. The symbols PREVB, RETA, SP, AUX and N are predefined as O,
4, 8, 12 and 16 respectively.

Norsk Data ND-05.009.03 EN

22 ND—SOO Reference Manual
STATIC DATA, STACK AND HEAP

3.3 Heap allocation

When running several routines "concurrently" (see section 1.4), stack
allocation of local data areas will cause problems if the routine
finishing first is not the one with its data area on top of the stack.

Complex data structures like trees, lists and networks, may grow and
shrink dynamically, and elements acquired during the execution of a
procedure should not be released upon exit.

For both these uses, data elements may be allocated from a pool of
unreserved space called the heap. The heap is described by a set of
heap variables pointed to by the TOS register. The heap variables are
the MAXL, STAH and ENDH locations and an array of pointers to linked
lists of free elements, each block size has its own free list. The
first word of an element contains the address of the next element in
the list, zero indicating the end of the list. The block size is
always a power of two and is indicated by the logarithm to the base
two (the "log size") of the number of words.

MAXL, the first location beyond the stack, is pointed to by the TOS
register and contains the maximum size of elements to be allocated.
The next two locations, STAH and ENDH, are reserved for the lower and
upper address limits of the pool respectively. Beyond these two
locations is the array of pointers, FLOGO to FLOG<MAXL>.

TOS —> MAXL Max log size of elements allowed

STAH Start of heap

ENDH End of heap

FLOGO Head pointers for freelists of
elements of the different log sizes.

FLOGl The freelist pointers have the value
0 if no element of the log size

FLOG2 is available.

FLOG3

FLOG<MAXL>

Figure 4. Layout of heap variables

The heap variables must be initialized by the user program and the
user is responsible for building the lists. The STAH and ENDH
variables are not used by the heap instructions, but are available for
a heap administration routine implemented as a trap handler for the
stack overflow trap.

Norsk Data ND—05.009.03 EN

ND~SOO Reference Manual 2
STATIC DATA, STACK AND HEAP

bk
}

A local area for use by a subroutine may be allocated by executing the
ENTB instruction. This contains an indication of the required block
size. On routine entry, the address of the allocated block is loaded
into the B register, and the block size is stored in the AUX/LOG
location. In all other respects the local data area is initialized as
for a stack routine.

A data element is allocated by the GETB instruction, which specifies
the size of the desired element. The address of the element is loaded
into the specified register.

If a block of the requested size is available, it is unlinked from the
list. If the list head is zero, indicating that the list is empty,
lists representing larger blocks are examined. If a larger block is
available, it is split in halves and one half is left in the
appropriate freelist. The block may have to be split several times
before an element of the requested size can be given to the program.
If no larger element is available, or if the requested size is larger
than the MAXL value, a stack overflow trap condition occurs.

A routine entered through ENTB may release its local data area by
returning through the RETB or RETBK instruction. An element acquired
by the GETB may be released by the FREEB instruction.

A released element will be linked to the appropriate freelist
according to the size of the element. Elements are not combined; this
may be done by the trap handler for the stack overflow trap condition.

The stack overflow trap is used to signal that all lists containing
blocks of wanted size or larger are empty.

Be aware that initializing a new stack by INIT or ENTM will change
TOS, thus another set of heap variables will be used by the buddy
instructions. The new heap variables may be initialized to the values
of the old ones or to new values.

If ENTB is used to allocate space for co-routines, care should be
exercised if the called routines make further calls to stack routines.
When co-routines use a common stack and a second co—routine is
activated before the return, the stack areas will overlap because 8.8?
is the same in both routines. No problems will occur if all routines
in the system are entered through ENTB or if the stack routine is
certain to terminate before another co—routine is activated. (Standard
library routines may be used freely; they will not cause activation of
other co—routines.)

No assumptions should be made about initial values of locations of
stack or heap elements not explicitly mentioned in this chapter.

Norsk Data ND-05.009.03 EN

24 ND—BOO Reference Manual

Norsk Data ND—05.009.03 EN

ND—SOO Reference Manual 27
MEMORY MANAGEMENT SYSTEM A

4 MEMORY MANAGEMENT SYSTEM

4.1 Introduction

A process is a sequential computation requiring no parallel execution.
A process may refer to up to 256 domains. Each domain is a full 32~bit
address area for program instructions and another one for data. A
process may easily access two such data domains, the so—called Current
Executing Domain (CED) and the Current Alternative Domain (CAD).
Instructions will always be fetched from CED, but data will be taken
from CAD when the address code prefix ALT is used. If ALT is omitted,
data accesses will be done in CED.

Each domain is divided into 32 logical segments with 27 address bits
each. A 27~bit logical segment address is translated by the memory
management system so that it addresses a location in a so—called
physical segment. Physical segments contain the data and programs for
the CPU. A physical segment is divided into blocks of 2k bytes called
pages, and may have any size from 2**11 to 2**27 bytes in units of 2k
bytes (1 page). Pages can be moved (swapped) between main memory and
secondary storage as the need arises.

All physical segments in the system are described in the Physical
Segment Table (PST). The PST always resides in the main memory and it
is used by the translation mechanism to find the physical segment. If
a physical segment consists of more than one page, an indexing
mechanism is used to address the segment. Each physical segment is
described by a 16—bit entry in PST.

By following this scheme each process may use up to 256*32 physical
segments of program, and an equal number of physical segments of data.
The structure and properties of the domains and segments of a process
are kept on a special physical segment generated and maintained by
supervising mechanisms. This physical segment is called the Process
Segment (PS). There is one PS for each process in the CPU. The size of
a PS will depend on the number of domains the process can use.

The P8 of a process cannot be accessed directly by the process itself.
It is used by supervising mechanisms which may be other processes,
other domains or the I/O processor. Each domain used by a process has
one entry in the PS.

One part of the process segment is called the domain information
table. A domain information table contains 32 pointers for data (the
data capability table) and 32 pointers for program (the program
capability table), one pointer for each logical segment of the domain.
The pointers indicate the PST entry describing the physical segment to
be addressed by the logical address. Information on legal access modes
for each logical segment is also kept in the domain information table,
together with the pointers. One PST pointer with the corresponding
legal access mode indicators is called a capability. The domain
information table also contains the necessary information for the trap
and domain call system.

The PS of a process will be referenced frequently when the process

Norsk Data ND«05.009.03 EN

28 ND—BOO Reference Manual
MEMORY MANAGEMENT SYSTEM

executes. Since the PS is an ordinary physical segment, it will be
addressed through the PST entry that describes it. A pointer to the
PST entry describing the PS of the executing process is kept in the PS
register and is updated when a new process starts execution. The PS
register is part of the process description of a process, together
with the contents of the register block and some other information.

This scheme for the translation from logical to physical addressing
makes it easy for different domains or processes to share data or
programs. Sharing is done by having the capabilities in the different
domain information tables point to the same PST entry. By doing this,
the same physical segment will be addressed.

If the translation mechanism were to perform all the outlined table
lookups on each memory access, the result would be unacceptably slow.
A speed-up mechanism is therefore introduced. Whenever an access is
completed, the number of the referenced page is stored in a cache—like
Translation Speedup Buffer (TSB). The physical page number is stored
together with the corresponding logical page number, the domain number
and a process identification. The next time an access to the same
logical page is done by the same domain, the physical page number is
found in TSB without any need to perform other lookups. The index in
the TSB is found by using a hashing algorithm that takes into account
the logical address including the segment number, the domain number
and the process identification.

The detailed description that follows is divided into the Memory
Management Architecture and its Physical Implementation. The
architecture section involves the transformation from logical to
physical segment numbers, and includes descriptions of the capability
tables and the process segment. The implementation section covers the
mechanisms by which physical segments are placed and accessed in main
memory. The present architecture is implemented with a paging
mechanism, but no inherent property of the architecture prohibits
other implementation strategies.

Norsk Data ND-05.009.03 EN

ND-SOO Reference Manual 29
MEMORY MANAGEMENT SYSTEM

31 27 26 11 10 O
l I

«—-Logical program
address

1 I 1

31 27 26 11 10 0

Logical Segment relative address Page relative -—L0gical data-
segment no. address reference address

u I
I

Index tables A and B

Program Physical
capability page . ‘

—+ table address
Physical 1

—-Data segment
protection table L+ .j Physical I ~——

Index v Index segment Page
—» Data — table table 1

capability A B
table

Physical . .
- 5 bits of segment

logical number i I
address to . .
be converted: .
The logical
segment number Physical memory

Figure 5. Logical addressing scheme

Norsk Data ND~05.009.03 EN

30 ND—BOO Reference Manual
MEMORY MANAGEMENT SYSTEM

4.2 Memory management architecture

4.2.1 Address domain

An address has 32 bits, i.e. is in the range 0 to (2**32)—1.
Instruction fetches and data references refer to different areas of
the memory. If the memory request is an instruction fetch, the address
value range is called a program domain. If the memory request is a
data reference, the address value range is called a data domain.

A logical address domain is divided into 32 segments. The 5 upper bits
of an address are the segment number and the 27 lower bits are the
address within the segment.

5 bits 27 bits

Logical segment no. Segment relative address

Figure 6. Logical Address

If the program or data domain is not explicitly stated, the domain is
understood to be both the program domain and its corresponding data
domain.

The division of domains into segments makes different protection and
cache setup possible for each segment (see figure 9).

The scheme does not, however, forbid accesses to data structures
crossing segment borders as long as the access capabilities are the
same for both segments.

Norsk Data ND—05.009.03 EN

ND~500 Reference Manual 31
MEMORY MANAGEMENT SYSTEM

4.2.2 Process

The operations of a computation must be carried out in a certain order
to ensure a meaningful result. The simplest possible rule is to
execute the operations one at a time in strict sequential order. This
type of computation is called a process.

Information about a process is kept in the process description. The
term process will hereafter mean a sequential computation described by
a process description.

An ND—BOO process may have up to 256 different logical domains, each
comprising an address space of up to 2**32 bytes of program and 2**32
bytes of data.

The domains of a process are hiearchically structured in a tree. The
closest domain above a domain D is called the mother domain of D; D is
called the child. In figure 7, D and E are both child domains of B; B
is their mother. A is the mother of B and C. The hierarchical
structure is reflected in the process description.

Domain A

___IL___

Domain B Domain C

__Il___

Domain D Domain E

Figure 7. Hierarchy of Domains

Transfer of control between domains may take place by routine calls
(domain calls) or enabled traps. Routine calls may transfer control to
any of the domains of the process. The child-to—mother links are
followed when a trap occurs in a child domain and no trap handler is
defined locally in the child domain.

Parameter transfer between different domains is performed by the
alternative address mode. (See section about addressing modes.) When a
routine in domain A calls a routine in domain B, domain A is set as
alternative domain to B and operands accessed via alternative address
mode are accessed in domain A.

More extensive data exchanges and exchanges between arbitrary domains
are done by letting the domains have one or more data segments in
common.

Norsk Data ND—05.009.03 EN

32 ND-SOO Reference Manual
MEMORY MANAGEMENT SYSTEM

4.2.3 Process environment

The memory management system needs information about existing
processes. This information resides on a physical segment, the Process
Segment. This segment is not directly accessible to the process, but
is used by microcode routines and by supervising mechanisms, which may
be other processes, other domains or the I/O processor. There is one
process segment for each process; the number of this segment is held
in the Process Segment register (PS). For each domain owned by the
process, the process segment contains one domain information table
which consists of

- the program capability table
— the data capability table
— domain call information
- trap handling information

4.2.3.1 Process registers

CED Current Executing Domain

CAD Current Alternative Domain

PS Process Segment

Figure 8. Memory management registers

Some information about a process is used so frequently by the memory
management system that it must be kept in hardware registers while the
process is executing. The three registers CED, CAD and PS are part of
the process description of the running process, i.e. the registers'
contents are saved and loaded when the process is changed.

The Current Executing Domain register holds the current domain number
of the currently executing process. When a domain call is performed,
or when a trap condition is not own but mother enabled, the domain
number of the calling domain is stored in the Current Alternative
Domain register. CAD is used with the alternative addressing mode.

4.2.3.2 Capability tables

Each domain has two capability tables, one for instructions and one
for data. Each table has 32 elements, one for each segment in the
domain. Each element consists of 16 bits, numbered from O to 15. Such
an element is called a capability, and it specifies the physical
segment number and its access rights. A program capability has a
layout different from a data capability.

In a program capability, bit 15 indicates whether the segment is in
the current domain or not. If the bit is zero, the segment is in the

Norsk Data ND-05.009.03 EN

ND—SOO Reference Manual 33
MEMORY MANAGEMENT SYSTEM

current domain. A segment not in the current domain, called an
indirect segment, has bit 14 set if the physical segment resides in
another machine, otherwise it is reset. The capability of an indirect
segment contains the logical domain and segment numbers of another
segment, and the physical segment number is found in the capability of
that segment.

In a data capability, bit 15 indicates write permission. If this bit
is reset, the segment is a read-only segment. Bit 14 indicates whether
routines in other domains may refer to this segment through the ALT
prefix. Violation of the protection set by these two bits causes a
protect violation trap. Bit 13 is set if the physical segment is
shared between different domains or different processes. If a segment
is shared, data will always be read from main memory rather than from
cache to ensure that different processes are aware of each other's
updating of a data item.

Direct program segments and data segments contain the physical segment
number in the lower 13 bits.

Program segment capability:

a) Direct segment

1 bit 2 bits 13 bits

direct unused physical segment number
(=0)

b) Indirect segment

1 bit 1 bit 1 bit 8 bits 5 bits

indirect other unused domain segment
(=1) machine

Data segment capability:

1 bit 1 bit 1 bit 1 bit 13 bits

write parameter shared unused physical segment
permitted access segment number

Figure 9. Capability Layout

Norsk Data ND—05.009.03 EN

34 ND-SOO Reference Manual
MEMORY MANAGEMENT SYSTEM

4.2.3.3 Domain information

When performing domain calls and trap handling, some extra table space
is needed for each domain. The first part of a domain information is
made up of 2 capability tables. The next part has two save areas; one
used when performing domain calls, and one used during trap handling.
The last part holds the domain characteristics.

All the above constitute one domain information table. This table is
followed by an unused area to a total size of 256 bytes.

The ”category" column below uses the following abbreviations:

~ set by hardware at domain callM
T - set by hardware at trap handling
0 ~ set by operating system and read by hardware

The domain information table layout is shown on the next page.

Norsk Data ND—05.009.03 EN

ND—BOO Reference Manual
MEMORY MANAGEMENT SYSTEM

Relative No.0f Cate—
address bytes gory

a. Program capability table 0B 64 O

b. Data capability table 100B 64 0

c. Domain call information
Calling domain 2008 l M
Alternative of calling domain 201B 1 M
P of calling domain P 2038 4 M
B of calling domain B 207B 4 M

d. Trap handling information
Trapped domain 213B 1 T
Alternative of trapped domain 214B 1 T
Status register save area STl 216B 4 T

ST2 2228 4 T
Inside trap handler flag 273B 1 T

e. Domain characteristics
Own trap enable OTEl 226B 4 O/M

OTEZ 2323 4 O/M
Child trap enable CTEl 236B 4 0

CTEZ 2428 4 0
Mother trap enable MTEl 246B 4 O

MTEZ 252B 4 0
Trap enable modification mask TEMMl 256B 4 O

TEMMZ 2628 4 O
Trap handler address THA 266B 4 O/M
Mother domain 272B 1 0
Top of stack register T08 2748 4 O/M
Low limit register LL 3008 4 O/M
High limit register HL 3043 4 O/M
Domain status (PiA = bit 0) 3108 l 0

Table 6. Domain Information Table

Norsk Data ND-05.009.03 EN

36 ND-5OO Reference Manual
MEMORY MANAGEMENT SYSTEM

4.2.4 Logical addressing

A logical address consists of the logical segment number and the
segment relative address. The memory management system will transform
the logical segment number to a physical segment number. The segment
relative address is relative to the start of the physical segment.

The logical segment number is used as an index in the capability
table. The addressed element in this table gives the physical segment
number.

4.2.5 Domain communication

Within the domain hierarchy of the process, program control may
change from one domain to another. Data may be accessed in either the
called or the calling domain. In this section change of control and
communication between different domains are described.

4.2.5.1 Alternative domain

The alternative domain is used when accessing and returning parameters
from or to a calling domain. The calling domain is set as the
alternative to the called domain by loading its number into the CAD
register. This is done by hardware at a domain call. Access to
operands in the alternative domain is by the alternative address code
prefix, ALT(<operand>). When using the ALT address code prefix, only
the final data access goes to the alternative domain; indirect
addresses and descriptors are taken from the current domain. (See the
chapter on operand specifiers and addressing modes for further
explanation.)

The calling domain may protect its data from illegal access from other
domains by resetting the parameter access bit of its capability. This
is done through monitor calls.

4.2.5.2 Domain calls and monitor calls

From one domain, a routine on any other domain of the process may be
called through the CALL and CALLG instructions. This is only possible
if an indirect capability to that domain has been set up. This is
indicated by bit 15 being set in the capability of the segment. An
indirect capability is set up through monitor calls. An indirect
segment resides in another domain than the current one. A call to a
routine on such a segment implies a change of domain, and is referred
to as a domain call.

Domain calls to supervising domain routines performing specific
functions are called monitor calls. Service requests to the operating
system are implemented as monitor calls.

Norsk Data ND-O5.009.03 EN

ND—SOO Reference Manual 37
MEMORY MANAGEMENT SYSTEM

—-O

1 __._J

new new
domain segment

no no

capability of called domain
calling domain

Figure 10. Indirect segment

The new domain and segment number are taken from the capability of the
calling segment. The P and B registers, domain number and alternative
domain number of the calling domain are saved in the domain
information table of the called domain. When a subroutine is called,
certain initializations of the local data field are made. (See the
CALL, CALLG and ENTM instructions.) The return address and old base
register field of the local data field of the new routine are filled
with zeroes.

The new domain number is loaded into the Current Executing Domain
register and the number of the calling domain is loaded into the
Current Alternative Domain register.

The lower 27 bits of the routine address are not interpreted as within
the segment an address. Instead they are taken as an index in the
start address vector at segment address zero on the new segment. The
first word is the length of the vector, which is the number of
routines on the segment. If the index is less than this word, the
indexed element in the vector contains the address of the routine
entry point. Otherwise the call is illegal and causes an instruction
sequence error trap condition. The routines on the segment are
numbered starting from zero.

Norsk Data ND-O5.009.03 EN

38 ND—SOO Reference Manual
MEMORY MANAGEMENT SYSTEM

[:1
O 4 8 12 16... (Segment relative address)

Max Start address Routines
index vector

Figure 11. Program segment layout

On jumps to another domain, a new stack has to be set up in the called
domain. Therefore, the subroutine address must be the address of an
ENTM instruction. When an ENTM is entered from another domain, B.PREVB
and B.RETA will be cleared. Other entry point types will not properly
initialize the stack.

When the new domain is entered, TOS is not saved on top of the old
stack. The TOS, THA, LL and HL registers will be saved in the old
domain information table and the new contents of these registers are
loaded from the new domain information table.

Control reverts to the calling domain when either the return address,
the old base register, or both is zero when a return instruction is
executed. On return from a domain call, the registers CED, CAD, P and
B are loaded from the old domain information table. The registers TOS,
THA, LL, HL and TE are loaded from the new domain information table.

Note that return information is not stacked in the domain information
table. Calling the same domain twice without return in between, will
cause an instruction sequence error trap condition. The memory
management system will zeroize the return address and B register value
in the domain information table at a domain call return to indicate
that a call to the domain may be done. If it is non-zero a domain call
is in progress.

A return instruction with O in PREVB or RETA will only change domains
if there is a domain to return to. If CAD is unequal to CED and nonw
zero, return is to the domain saved in the domain information table.
Otherwise the return will be performed to address 0 in the current
domain. This may cause a stack underflow trap condition.

Norsk Data ND-05.009.03 EN

NDwSOO Reference Manual 39
MEMORY MANAGEMENT SYSTEM

4.2.5.3 Trap handling

When a trap condition occurs, the procedure described in chapter 6 on
traps will determine if a trap handler routine is to be called, and in
that case which domain has a handler for the offending trap. If the
trap is handled by a mother domain, the new domain number is loaded
into the CED register. The old CED and CAD are saved in the domain
information table of the mother domain. CAD is loaded with CED of the
trapping domain.

The status register is saved into the domain information table of the
trapped domain, and upon return the non-ignorable and fatal bits and
bits 0 to 8 are reloaded.

When the system trap handler returns, the new trap enable register
contents are taken from the domain information table of the trapped
domain.

Trap handler startup and stack initializations take place in the same
way as when invoking a local trap handler. See chapter 6 for further
explanation. The new trap enable register contents are taken from the
domain information table of the mother domain, except that OTE is
cleared by hardware at the ENTT instruction and restored when a RETT
is executed.

Norsk Data ND-05.009.03 EN

40 ND~500 Reference Manual
MEMORY MANAGEMENT SYSTEM

4.3 Physical implementation

Physical main memory size may be up to 2**41 bytes, divided into 2048-
byte pages. The page size of 2048=2**11 implies 2**3O pages, or a 30-
bit page number.

The memory management system has a bit map with two bits per physical
page, set if the page is or has been written to. If the page has been
written to, it must be copied back to mass storage before it is
replaced with another one. The table size is 2*(2**30) bits, and it is
accessible to microcode and privileged processes only.

The memory management system maintains a Physical Segment Table
Pointer (PST?) pointing to the start of the Physical Segment Table.
This table contains a 4~byte entry for each physical segment, giving
the page number of a data page or an index page.

If the Physical Segment Table entry is 0, this means that no mapping
exists for the logical address that needs translation. This is a page
fault trap condition.

memory

PSTP
Physical
Segment
Table

Figure 12. Physical segment table

The access method, directly by physical page number, or indexed once
or twice, depends on the size of the segment. Bits 30-31 of an element
in the physical segment table hold information about access method.

Direct access restricts the segment size to 2 k bytes. Single indexing
allows 512 pages, or 1 megabytes maximum segment size. Larger segments
use double indexing, the maximum size of which (2**3l bytes) exceeds
the maximum segment size.

Norsk Data ND—05.009.03 EN

ND—SOO Reference Manual 41
MEMORY MANAGEMENT SYSTEM

2 bits 30 bits

access physical page number

Figure 13. Physical segment table entry

The two access bits have the following meaning:

0 — direct, physical page number is data page
1 - single indexing, physical page number is the address of

an index page
double indexing
unusedU)

N
I

31 30 29 O

1 bit 1 bit 30 bits

Figure 14. Index page table entry

An index page entry has a layout similar to a PST entry. Bit 30 is
unused. Bit 31 in an index page table entry is unused except on the
last indexing level, that is. when the page number part of the entry
specifies a data page, when bit 31 is used for data page write
protection. The physical address is calculated from the physical
segment number and segment relative address as shown in figure 15.

Norsk Data ND-05.009.03 EN

42 ND~500 Reference Manual
MEMORY MANAGEMENT SYSTEM

physical segment number
(in PS register or capability) segment relative address (27 bits)

13 bits 7 bits 9 bits 11 bits

“M“ fphysical segment table -
data page

o F
1 —— data page

1 index page [~

data page
2 -—1 index page index page

Figure 15. Physical memory

As for pointers in PST, pointers in index tables will have zero value
to indicate a page fault.

Norsk Data ND-05.009.03 EN

NDmBOO Reference Manual “3
MEMORY MANAGEMENT SYSTEM

The capability table holds the physical segment numbers of all logical
segments in a domain. The capabilities are found on the segment
specified by the process segment register (PS) of the process. On this
segment, the currently executing domain register (CED) selects a 256
byte domain information table which includes the capability tables.
The current logical segment number selects an entry in the capability
table. This table entry contains the physical segment number of the
referenced segment.

Physical
Registers Segment table

PST? —J I 400
PS 100 v

CED 1

log. segm. no. 3

1 2591
Process segment
of current process

*1» Current domain
information table

the 2*3
addressed program capability table
capability

data capability table

Figure 16. Addressing a program capability

Norsk Data ND~05.009.03 EN

44 ND—BOO Reference Manual
MEMORY MANAGEMENT SYSTEM

4.4 Buffering

Translation from logical to physical address is complicated and
requires several memory accesses. To reduce the number of accesses,
the most recently used logical page number (the upper 21 address
bits), domain number and a part of the process number are saved
together with the corresponding physical page number and the permit
bits of the corresponding capability. Later references to the same
page may then avoid referencing the capability table, the physical
segment table and the index pages,

The table used to hold this information is the Translation Speedup
Buffer (TSB). The domain and process numbers are also stored.
Therefore it is not necessary to clear the buffer when changing domain
or process.

When access to memory is performed, the actual process number, domain
number and logical page number are compared to the TSB counterparts
pointed at by the index. If they are equal, no further table lookup is
necessary and the physical page number in the translation speedup
buffer is used. If they are not equal, the memory management system
will update the TSB once the necessary information has been found.

Further details on the translation speedup buffer are found in the
manual ND-SOOO Hardware Description (ND—05.020).

Norsk Data ND-05.009.03 EN

NDm500 Reference Manual 47
CACHE MEMORY SYSTEM

5 CACHE MEMORY SYSTEM

The ND—BOO CPU and the ND—SOOO CPU have different cache memory
implementation. Consult the manuals ND-500/2 Hardware Description (ND—
05.015) and ND—SOOO Hardware Description (ND-05.020) for details.

The speed of the CPU is considerably higher than the speed of primary
memory; if several memory accesses are required to complete an
instruction, the CPU may be spending most of its time waiting for data
to be loaded into registers. To reduce the time spent waiting, the
most recently used data are kept in high speed buffer memory, where
data are available to the CPU in a fraction of the time required for a
main memory access. This buffer is called a cache. For economic
reasons the cache is comparatively small, and sophisticated circuitry
is employed to determine which data elements should be allotted space
in the cache.

When data residing in the cache is updated without updating the
corresponding memory location, the cache item is marked 'dirty'. Thus,
such items should be dumped when the cache is cleared in order to
maintain data consitency.

The effective memory access time as seen from the CPU is a function of
several factors: The size and speed of the cache. main memory access
time and the average percentage of data accesses where the requested
data is available in the cache without further delay ("hit rate").

To prevent instructions and data located at the same cache address
from constantly displacing each other when a loop is executed,
instructions and data have separate cache systems.

Norsk Data ND-05.009.03 EN

48 ND—SOO Reference Manual

Norsk Data ND-05.009.03 EN

ND—SOO Reference Manual 51
THE TRAP SYSTEM

6 THE TRAP SYSTEM

6.1 General

It is an advantage to be able to detect special situations arising
during program execution, such as attempts to divide numbers by zero
in a program performing many arithmetic divisions. Such checks may be
made by software, but will require explicit programming. The CPU
performs a number of checks automatically on every arithmetic
operation, showing errors that would otherwise go unnoticed. Errors
caught this way are said to be trapped. Situations leading to a
possible trap are called trap conditions. A trap condition may or may
not lead to a trap, depending on whether the trap is enabled. The
above case is called a divide by zero trap condition.

Other examples of trap conditions are floating point overflow, illegal
index and stack overflow.

For most trap conditions, it is possible to choose whether the trap is
to be acted upon (i.e. enabled) or not. If a trap is to be acted upon,
a trap handler routine will be entered.

Trap conditions are divided into three categories depending on the way
they are treated by hardware.

— Ignorable trap conditions

— Non—ignorable trap conditions

— Fatal trap conditions

lgnorable trap conditions do not require any handling; they may be
disabled and will have no effect on program execution. Non—ignorable
trap conditions require some kind of handling. If the current domain
does not have a handler for it, the trap is propagated to the mother
domain. After handling, program execution may continue.

Fatal trap conditions make it impossible to continue execution of the
process. The CPU will report to the I/O processor, which will take
appropriate action depending on the kind of trap.

The CPU status register has one bit for each possible trap condition.
When a trap condition occurs, this bit is set. The same bit is reset
when a trap handler routine is invoked.

Status bits representing non—ignorable and fatal trap conditions will
always yield a zero result (bit reset) if explicitly tested. It is not
meaningful to perform a conditional jump on these hits, as the
condition is always false.

Norsk Data ND-05.009.03 EN

52 ND—SOO Reference Manual
THE TRAP SYSTEM

6.2 Trap handler routines

Most traps may be handled by a routine in the CPU. Every domain can
have its own routines for the trap conditions allowed by its mother
domain. If it does not take care of the trap itself, control may be
transferred to the mother domain.

The mother may handle the situation, or hand it over to her mother. At
the top of the domain tree is the operating system, and the I/O
processor is the ”great grandmother" of all domains, ensuring there
will always be at least one domain responsible for taking care of a
trap propagated from lower levels. For example, a trap condition
encountered during the running of a user program may be handled in the
user domain, in one of the mother domains between the user domain and
the root of the tree, in the operating system domain, or in the 1/0
processor.

After a trap situation has been taken care of, control will normally
return to the instruction following that which caused the trap; for
some trap conditions, the trapped instruction will be repeated or
resumed. Note that the calling sequence prior to the trap situation
may be totally unrelated to the mother/child links.

6.3 Searching for a trap handler

Three registers in the CPU are used for trap enabling: The Own Trap
Enable (OTE), the Mother Trap Enable (MTE) and the Child Trap Enable
(CTE) registers. Each domain has its own copy of these registers.

If a bit in OTE is set, the domain has a trap handler routine for the
corresponding trap conditions occurring within the domain, and this
routine will be called when a trap occurs. If the MTE bit is set, the
mother (or grandmother etc.) domain of the trapping domain has a trap
handler routine for this trap condition. If the corresponding bit in
OTE is reset, this routine will be called.

A bit set in the CTE indicates that this domain has a trap handler
routine to be used when the corresponding trap condition occurs in
child domains, unless taken care of locally within the child domain.

MTE is not program modifiable. The system sets a bit in a domain's MTE
if any of the mother domains in the tree structure have the
corresponding bit set in their CTE register.

Norsk Data ND—05.009.03 EN

ND—SOO Reference Manual 53
THE TRAP SYSTEM

G CTE set
==> MTE set in M, C and D

M MTE set, CTE reset

D C MTE set, OTE reset

Trap in C : OTE reset,MTE set=> trap propagated to M
in M : CTE reset => trap propagated further
in G : CTE set => trap handled in G

Figure 17. Trap propagation

The 1/0 processor will always be the mother of the upper domain. Trap
conditions are always enabled in the I/O processor. Non—ignorable trap
conditions may be enabled in the CPU and handled by some program in
the CPU. If they are not, they will be reported to the I/O processor.
Fatal trap conditions are always reported directly to the I/O
processor.

When a domain is created, it is given a Trap Enable Modification Mask
(TEMM) from its mother. This mask specifies which bits in OTE the
domain is allowed to change by either setting or resetting it. An
attempt to change a bit in OTE, that is to reset in TEMM, will be
ignored, while a change in an OTE bit that is set in the TEMM will
have the desired effect.

Norsk Data ND-05.009.03 EN

ND—SOO Reference Manual
THE TRAP SYSTEM

trap condition

1
own enabled?

current domain
= upper domain?

No

v

change to
mother
domain

___l

________JL___

1 No Yes

mother enabled?

Yes No

Yes

control ignore trap handler
to I/O trap in current domain
processor condition invoked

Figure 18. Treatment of non-fatal trap conditions

Norsk Data ND-05.009.03 EN

NDmSOO Reference Manual 55
THE TRAP SYSTEM ‘

6.H Trap handler data field

The Trap Handler Address register, THA. points to the base of an array
in data memory, containing the start addresses of the trap handler
routines in program memory. The Nth element of this array must hold
the start address of the routine to handle the Nth trap condition. The
area after the start address vector is used as a local data field for
the invoked trap handler routine. This data field is filled by the
ENTT instruction (see section 13.10).

data
memory

THA a

start address
vector (64 words)

local data field heading
(5 words)

trapping P (1 word)

copy of register block
(39 words - see the ENTT instruction)

local data area

Figure 19. Trap handler start address and local data field

When a trap handler is invoked, trapping P (the address of the
instruction that caused the trap condition), the register block, and
information about the trap are saved in the local data area of the
trap handler.

The P register saved in B.ARG2 holds the address of the instruction to
be executed when the trap condition has been taken care of. Trapping P
and the saved P register will be equal if the trap is handled before
the instruction is executed. The instruction causing the trap will
then be re—executed. If the trap is handled after the instruction is
executed, the saved P register will point to the next instruction.

Norsk Data ND-OS.OO9.03 EN

56 ND—BOO Reference Manual
THE TRAP SYSTEM

The trap handler data area is not re-entrant, due to the fixed
location. As long as a trap is being handled, another trap condition
should not arise in the same domain. The Own Trap Enable register
(OTE) is therefore cleared, forcing propagation to the'mother domain
of any trap condition occurring during trap handler execution. The OTE
register is reloaded from the domain information table on return from
the trap handler.

A mother domain which itself is inside a trap handler will not be
entered to handle a trap for one of its child domains. A trap in that
case not handled locally in the child domain will be propagated to its
grandmother.

When a trap handler is invoked, the status register (ST) is saved in
the domain information table of the domain where the trap occurred.
The layout and use of this table is described in more detail in the
Memory Management section. If the trap condition is not handled by a
local trap handler routine, an identification of the domain where the
trap condition occurred is also saved in this table. Before the trap
handler is entered, the status bit causing the trap is cleared.

Status register bits representing ignorable trap conditions may be
modified during running of the trap handler routine. Status bits
representing non~ignorable and fatal trap conditions may not be
modified. Setting a trap bit will cause a new trap immediately on
return to the trapped routine. If several trap bits are set, several
trap handlers will be called in sequence according to their bit
numbers in the status register (highest numbered ones first).

Modification of status bits is done by changing the status word in the
saved register block. Upon trap handler return, this status word is
"merged" with the saved status word in the domain information table
and loaded into the status register. Unmodifiable status bits will
contain their original values when the process continues.

If several traps to be handled before or during instruction execution
occur together, only the highest numbered one is handled. All other
enabled traps that are of the type before and during, are cleared on
trap handler return, before the instruction is re-executed. The re-
execution may cause these traps again, and they will be handled
normally. A trap handled after instruction execution will cause all
enabled before traps and all enabled during traps to be cleared when
the status register is loaded. Traps not enabled will be not be
cleared in either case.

Norsk Data ND—05.009.03 EN

ND-SOO Reference Manual - 57
THE TRAP SYSTEM

6.5 The status register

There are 64 bits in the status register. 40 of these bits are
currently defined. The status bits are grouped as follows:

Data status bits

Tracing status bits

Instruction and operand reference status bits

Signalling, synchronization and miscellaneous status bits

System error status bits

6.5.1 Data status bits

Code Name Bit no.

Z zero 5
C carry 6
S sign 7
O overflow 9
IVO invalid operation 11
DZ divide by zero 12
FU floating underflow 13
F0 floating overflow 14
BO BCD overflow 15

The data status bits hold information about the operand or result of
the last executed operation on data. The majority of control and
special instructions, including conditional jump instructions, leave
the data status bits unaffected.

In the description of the instruction set, the effect on the data
status bits are listed with every instruction. Bits that are set,
reset or left unaffected are mentioned explicitly. All data status
bits not mentioned are reset.

The Z, G, and S status bits have no corresponding trap conditions.
They are only used for conditional jumps. All other data status bits
are ignorable trap conditions. If trapping is not enabled, these bits
may be tested with conditional jump instructions.

Z : The Zero bit is set if the operand/result of the last
instruction was exactly zero. Otherwise it is cleared. Floating
underflow is an exception; then the Z~bit in all cases, except
in the POLY and IXI instructions.

S : The Sign bit of the status register holds the sign bit of the
last operand/result.

Norsk Data ND-05.009.03 EN

58

IVO

DZ

FU :

F0 :

BO

ND—SOO Reference Manual
THE TRAP SYSTEM

The Carry bit may be set only when performing integer arith-
metic; otherwise it is cleared. The C bit is set if a carry out
of or borrowing into the most significant bit occurs. The con-
tents of the carry bit are also used by the ADDC, SUBC and INVC
instructions.

Integer Overflow may be set only when performing integer
arithmetic; otherwise it is cleared. The 0 bit is set if the
result of the operation is too large to be represented in the
destination or register. It will occur in an integer addition
when the sign bits of the two addends are equal, and the sign
bit of the result is different from those of the addends. Note
that subtraction is an addition of the two's complement of the
subtrahend. In multiplication, integer overflow occurs when the
destination is not large enough to hold the product. In case of
overflow, the S and Z bits are set according to the actual
result of the operation, rather than to the theoretical value.
The least significant 32 bits of the extended result will be
stored in the destination operand.

aalid Operation. One example of this is executing a square
root instruction with a negative argument. It will cause an
invalid operation trap condition.

Divide by Zero trap. A division with zero will leave the largest
possible value in the destination with the sign of the dividend,
unless the dividend is also zero. Zero divided by zero gives a
result of zero.

Floating Underflow will occur if a negative exponent requires
more than 9 bits to be represented. A value of zero will be
stored in the destination, with the sign of the result as it
would appear when calculated in unlimited format. An underflow
trap in a long instruction, like POLY, will occur at the
completion of instruction execution, even if the underflow
occurred at an intermediate step.

Floating Overflow will occur in floating arithmetic if the
result of an operation is too large to be represented in the
floating point format, i.e. a signed exponent requiring more
than 9 bits. The largest possible floating point value will be
stored in the destination, with the sign of the result as it
would appear when calculated in unlimited format. An overflow
trap in a long instruction, like POLY, will occur at the comp—
letion of instruction execution, even if the overflow occurred
at an intermediate step.

BCD Overflow. The destination field in a packed decimal
instruction was not wide enough to hold the result of an
operation. (BCD arithmetic is a hardware option.)

Norsk Data ND—05.009.03 EN

ND—BOO Reference Manual 59
THE TRAP SYSTEM

6.5.2 Tracing status bits

Code Name Bit no.

SIT single instruction trap 17
BT branch trap 18
CT call trap 19
BPT breakpoint instruction trap 20

All the tracing status bits are ignorable trap conditions. They are
valuable tools for debugging programs and performance evaluation.

SIT : Single Instruction Trap. This trap condition is caused when the
execution of an instruction has terminated. With this trap
condition, it is possible to step through a program one
instruction at a time.

BT : Branch Trap condition occurs when the next instruction to be
executed is other than the one immediately following the last
executed instruction; e.g. after a G0, JUMPG, RET, LOOP or
conditional jump instruction. The trap condition does not occur
if the test in the conditional jump is false and no jump is
made.

CT : Call Trap condition occurs immediately after execution of a call
subroutine instruction.

BPT : BreakPoint instruction Trap condition occurs when a breakpoint
instruction (BP) is executed. If BPT is not enabled, a BP
instruction will cause an 110 trap condition.

If several enabled trace trap conditions occur, the CPU handles the
one with the highest priority first. Trace traps are listed from high
to low priority in the following order:

Break Point Trap
Call Trap
Branch Trap
Single Instruction Trap

The tracing status bits are always reset when execution of the next
instruction starts, even if they are not trap enabled. This means
these bits are used for trapping purposes only, since they will always
yield a zero result if explicitly tested.

Norsk Data ND-05.009.03 EN

6O ND—SOO Reference Manual
THE TRAP SYSTEM

6.5.3 Instruction and operand reference status bits

Code Name Bit no.

IOV illegal operand value 16
ATF address trap fetch 21
ATE address trap read 22
ATW address trap write 23
AZ address zero access 24
DR descriptor range 25
IX illegal index 26

STO stack overflow 27
STU stack underflow 28
XSE index scaling error 32
IIC illegal instruction code 33
108 illegal operand specifier 34
ISE instruction sequence error 35
PV protect violation 36
THM trap handler missing 37
PGF page fault 38

These status bits are all trap conditions. Most are ignorable, but
XSE, IIC, IOS, ISE and PV are considered so serious that they are
defined as non—ignorable. THM and PGF are defined as fatal. All trap
conditions result from the decoding and accessing of instructions and
operands.

Non—ignorable and fatal trap condition status bits are always zero
when tested from a program, consequently they can be used only for
trapping purposes. Ignorable trap condition status bits may be used
either for trapping purposes or for explicit program testing
(conditional jumps).

6.5.3.1 Ignorable trap conditions

IOV : Illegal Operand Value. Operand values exceeding the legal range,
e.g. in the bit field and call subroutine instructions, may
cause an Illegal Operand Value trap condition. This status bit
is set/reset in all instructions where a limit is given for the
operand values.

On the IOV trap condition the destination field is not changed.

If the IOV trap condition is ignored the instruction will be
terminated (act as a NOOP instruction).

Norsk Data ND-05.009.03 EN

ND-BOO Reference Manual 61
THE TRAP SYSTEM

The CPU has Low Limit (LL) and High Limit (HL) 32—bit registers for
protecting program and data. These two registers are compared to the
logical program and data address for each memory reference. If the
actual logical address referenced is unsigned greater than the LL
register and less than or equal to the HL register, a trap condition
occurs whose type is determined by the current memory reference.
(Memory reference type may be fetch, read, or write access.)

The memory is accessed in 1,2,3, or 4-byte units starting on any byte
address. It is the starting address of the access that is checked
against LL and HL. Bytes inside the area defined for address trapping
by the LL and HL registers will therefore be accessed without causing
a trap condition if: 1. the access starts at LL—l and is 2,3, or 4
bytes long, 2. the access starts at LL—2 and is 3 or 4 bytes long, or
3. the access starts at LL-3 and is 4 bytes long.

These registers are used during program development and debugging for
tracing access to a specific location/data block or execution of a
routine or instruction sequence. The LL and HL registers are
properties of the domain. If a routine call causes transfer to another
domain the local LL and HL values will be in effect for the duration
of the call.

If enabled, program tracing takes precedence over data tracing; if
both ATP and ATR/ATW traps are enabled ATF will be trapped, and
ATR/ATW trap conditions are ignored. If ATP is enabled, ATR and ATW
bits in the status register are cleared when memory is accessed, even
if data accesses are within the guarded area. If ATF is disabled, ATR
and ATW bits are set in the status register and may cause a trap if
ATR or ATW is enabled.

If LL=HL no traps will occur. If HL<LL access from O to HL or greater
than LL will be trapped; access to addresses from HL+1 to LL will not
be trapped. In a multi—operand instruction, any of the operands may
cause a trap. The specified address determines its legality; a multi—
byte operand value (halfword, word, float, doublefloat or descriptor)
may extend into the protected area without being trapped.

The trap conditions are handled after instruction execution; data are
loaded or stored before the trap handler is invoked.

ATF : A program reference within the memory area guarded by the LL and
HL registers will cause an Address Trap Fetch condition. The ATP
status bit is set/reset at the end of each instruction.

ATR : If the current memory reference is a read reference to the data
area guarded by the LL and HL registers, an Address Trap Read
trap condition will arise. The ATR bit is set/reset at the end
of each instruction with data memory reference.

Norsk Data ND-05.009.03 EN

62

ATW

AZ :

DR

IX :

STO

STU

ND-SOO Reference Manual
THE TRAP SYSTEM

If the current memory reference is a write reference to the area
guarded by the LL and HL registers, it will cause an Address
Trap Write trap condition. The ATW bit is set/reset at the end
of each instruction with data memory reference. The store is
performed.

An address equal to zero will cause an Address Zero trap
condition. INIT will set B.PREVB to zero, causing an AZ trap
condition if attempts are made to link to a data block below the
bottom of the stack. A jump to address zero will also cause an
AZ trap condition.
The AZ bit is set/reset for each instruction with memory access.

Addressing via a descriptor may cause a Descriptor Range trap
condition. This occurs if the contents of the index register is
negative or greater than or equal to the maximum number of
elements (length) described by the descriptor length word. A
Descriptor Range trap condition will also occur if an empty
string (length zero) is used in a string or BCD (packed decimal)
instruction.

The DR bit is set/reset at the end of all string instructions or
instructions with descriptor addressing (see section 8.15)
with memory access. The index register is incremented even if a
trap condition occurs.

The LIND and CIND instructions allow loading and calculating an
array index and check that it does not exceed the array
dimensions. If it does, it causes an Illegal index trap
condition. The IX bit is set/reset by the LIND and CIND
instructions.

: When the contents of a new stack pointer (B.SP) in a stack
subroutine call are greater than or equal to the contents of the
TOS (top of stack register), a STack Overflow trap condition
occurs. Stack overflow may also occur on execution of the GETB
or ENTB instructions if there are no free data blocks of the
requested size or larger. INIT and ENTM cause stack overflow if
main program stack demand is greater than system stack demand.
The STO status bit is set/reset for each ENTS, ENTSN, ENTB,
INIT, ENTM and GETB instruction.

: Performing a subroutine return instruction with BETA, PREVB or
both equal to zero leads to a STack Underflow trap condition if
there is no alternative domain (CAD zero or equal to CED) This
status bit is set/reset at each return from a stack subroutine.
This trap condition is also used to return control to the
operating system when a program terminates (unless it is taken
care of locally within the domain where the trap occurred).

Norsk Data ND—05.009.03 EN

ND—SOO Reference Manual 63
THE TRAP SYSTEM

6.5.3.2 Non-ignorable trap conditions

XSE :

IIC :

IOS :

ISE :

PV

Index Scaling Error. The index exceeds 32 bits after post—index
scaling.

Illegal Instruction Code. Undefined code, privileged instruction
with the PIA status bit reset or execution of a BP instruction
with the EFT trap disabled.

Illegal Operand Specifier. Constant operands as destination, ALT
prefix on routine argument, type conflict between instruction
and operands or non—constant number of arguments to call and
polynomial instructions. Also, some special instructions (TSET,
RDUS) does not allow register or constant operands.

Instruction Sequence Error. Illegal subroutine entry point,
illegal domain call nesting or execution of an entry point
instruction without comming directly from a subroutine call
instruction.

: Protect Violation. This trap occurs when the segment access code
in the capability table (see section 4.2.3) is violated.

6.5.3.3 Fatal trap conditions

THM :

PGF :

Trap Handler Missing. The location pointed to by the trap
handler vector does not contain an ENTT instruction, or the ENTT
operands contain values causing non-ignorable traps.

PaGe Fault. This trap may be caused by all instructions, and is
a signal to the I/O processor that another page has to be
swapped in from backing storage. If a page fault arises with the
process switch disabled, it will cause a disable process switch
error trap. Page fault is also caused if a memory management
table lookup gives zero as result.

Norsk Data ND-05.009.03 EN

64 ND—SOO Reference Manual
THE TRAP SYSTEM

6.5.4 Signalling, synchronization and miscellaneous status bits

PRT :

PIA :

PD

IR

Code Name Bit no.

K flag 8
PET programmed trap 29
PIA privileged instructions allowed 1
PD part done 2
IR instruction reference 3
PSD process switch disabled 4
DT disable process switch timeout 30
DE disable process switch error 31

Flag. The flag bit is used for signalling purposes. There are
special instructions for setting, resetting and testing this
condition. The K flag is also used by instructions using
descriptor addressing (see section 8.15) to indicate that the
last element in the array is accessed, in the LIND and CIND
instructions an illegal index, to indicate and in string
instructions to indicate termination conditions. CIND, LIND and
string instructions will always leave a status in K regardless
of its previous value, while descriptor addressing may set but
never clear the K flag.

PRogrammed Trap. A process in the CPU may interrupt another
process by setting the second process' programmed trap status
bit, which acts as a trap condition for this purpose. If the PET
trap is enabled, the trapped process will immediately be
interrupted and its trap handler invoked. If the process is not
in the active state, as soon as it becomes active the trap will
occur. If the process switch is disabled in the machine where
the trapped process resides, the trap will occur as soon as the
process switch is enabled.

The PRT bit is set through monitor calls. A process may trap
itself by setting the PET bit in the status register.

Privileged Instructions Allowed. Privileged instructions can
only be executed when this bit is set; other attempts to execute
privileged instructions will cause an illegal instruction code
trap condition. This bit may not be changed by instructions. It
is defined in the domain information table.

Part Done. This bit is used by the microprogram in long
interruptable instructions to indicate if the instruction is to
be restarted, e.g. after page fault in string instructions.

Instruction Reference. This is used by the paging system
microprogram to indicate if there was a page fault on an
instruction or on a data reference.

Norsk Data ND-05.009.03 EN

ND—SOO Reference Manual 65
THE TRAP SYSTEM

The CPU has protection against bad synchronization procedures.
Synchronization procedures can execute with the process switch disable
status bit set. If this bit is set for more than 256 microcycles
(including the 2 spent in the SOLO instruction), a process switch
timeout trap condition occurs. Most simple instructions, like load,
store, and simple arithmetic, execute in one microcycle per operand
specifier. When executing with the process switch disable set, non—
ignorable traps (such as page fault) that require process switching
must not occur. If they do occur, they cause a disable process switch
error trap condition.

lgnorable trap conditions are ignored in SOLO-TUTTI sequences
regardless of enabling of these traps.

PSD : Process Switch Disabled. The process switch disable bit is only
modifiable by the SOLO and TUTTI instructions.

DT : Disable process switch Timeout. Timeout occurs if the process
switch has been diabled for more than 256 microcycles.

DE : Disable process switch Error. Occurs if a non—ignorable process
switch (such as Page Fault) occurs while the process switch is
disabled.

Norsk Data ND—05.009.03 EN

66 ND~500 Reference Manual
THE TRAP SYSTEM

6.5.5 System error status bits

Code Name Bit no.

PWF power failure 39

The system error status bits are all fatal CPU traps. On detection,
they are reported directly to the I/O processor.

PWF : Power failure.

6.5.6 Addressing traps

In the instruction descriptions, the term addressing traps is used as
a common name for all traps that may occur during operand fetching or
instruction addressing. Most instructions may cause these traps, which
include:

Address Trap Fetch Descriptor Range trap
Address Trap Read Illegal index
Address Trap Write Index Scaling Error
Address Zero trap Illegal Operand Specifier
Protect Violation

6.5.7 Status bits survey

The first column indicates the trap type using the following
abbreviations:

o S - status bit, no corresponding trap condition

a I — ignorable trap

o N — non ignorable trap, i.e., the sequential execution of the
program is interrupted and control is passed to a trap
handler

o F — fatal CPU error, i.e., another processor in the system
must solve the trap condition

A special case exsists for the 'trap handler missing' trap. This trap
is nonignorable if a trap handler for this exception exists somewhere
in the hierarchy of domains running in this processor. The condition
is fatal if no such handler exists.

The second column indicates whether the status bit is modifiable by
software.

Norsk Data ND—O5.009.03 EN

ND-SOO Reference Manual 67
THE TRAP SYSTEM

The third column indicates whether the trap is handled before, during,
or after the current executing instruction:

Before

During :

After

: The instruction has not stored any results before the trap
occurs. If the execution of the program may be resumed after
handling the trap, the instruction will have to be executed
once more. The P register and the Trapping P location in the
trap handler local data area are of equal value.

This is the same as "Before" except for some instructions
partially executed before the trap occurs and which may
continue after being restarted. (String, block move and fill,
call, enter, and return instructions) Instructions with one
destination operand will not have stored a result, but
destinations in multiple destination operand instructions
have unpredictable values. If the instruction is to be
restarted, the trap handler should not_m9dify the saved
register block.

: The instruction causing the trap is completed and results
stored before the trap occurs. If the execution of the
program is resumed after the trap the next instruction is
executed. The P register contains the address of the next
instruction; the Trapping P location in the trap handler
local data area contains the address of the instruction
causing the trap.

Norsk Data ND-05.009.03 EN

68 ND—5OO Reference Manual
THE TRAP SYSTEM

Trap handled before(B), during(D), or after(A)
Modifiable(M)

Trap type 1 |

Bit no. Name Code

0 not used
1 privileged instruction allowed PIA S
2 part done PD 8
3 instruction reference IR S
4 process switch disable PSD S
5 zero ‘ Z S M
6 carry C S M
7 sign ‘ S S M

8 flag K S M
9 overflow 0 I M A

10 not used
11 invalid operation IVO I M A
12 divide by zero : DZ I M A
13 floating underflow FU I M A
14 floating overflow : F0 I M A
15 BCD overflow BO I M A

16 illegal operand value IOV I M A
17 single instruction trap SIT I M A
18 branch trap ET I M A
19 call trap CT I M A
20 breakpoint instruction trap BPT I M B
21 address trap fetch ATF I M A
22 address trap read ATR I M A
23 address trap write ATW I M A

24 address zero access AZ I M A
25 descriptor range DR I M D
26 illegal index IX I M A
27 stack overflow STO I M D
28 stack underflow STU I M D
29 programmed trap PRT I M B
30 disable process switch timeout DT N A
31 disable process switch error DE N A

32 index scaling error XSE N D
33 illegal instruction code IIC N D
34 illegal operand specifier 108 N D
35 instruction sequence error ISE N D
36 protect violation PV N D
37 trap handler missing THM F B
38 page fault PGF F D
39 power fail PWF F A

Norsk Data ND—05.009.03 EN

ND-SOO Reference Manual 71
DATA TYPES

7 DATA TYPES

7.1 Introduction

Programs and data are always stored in separate logical address
spaces, referred to as the program memory and the data memory.
Instructions are always stored in the program memory and operands
usually in the data memory. Because the program memory functions as a
read—only memory during program execution, instructions are protected
from alteration.

Most instructions perform operations on operands. There are three
categories of operands:

— Register operands

— Variable operands residing in data memory

— Constants residing in program memory,
as a part of the instruction using them

7.2 Data types

The ND—SOO instruction set handles several basic data types: Bit,
byte, halfword, word, float, doublefloat and packed decimal (BCD),
abbreviated as BI, BY, H, W, F, D and P respectively. (Packed decimal
is a hardware option.) Operations may also be performed on bit fields
of varying lengths. In addition there are instructions allowing
operations on arrays of BI, BY, H, W, F and D data. A large number of
string instructions allow easy manipulation of character strings (byte
arrays).

7.2.1 Bit

As the ND—SOO is byte addressable, a bit is specified by its byte
address. The specified bit is the rightmost bit (bit 0, the least
significant bit) in the addressed byte. By postmindexing or special
instructions, it is possible to address bits other than bit zero.

An operand of type bit is a single bit, which is always treated as
unsigned. The GETBF (get bit field) and PUTBF (put bit field)
instructions operate on variable length (1 to 32 bits) bit fields.
Note that these instructions treat the bit fields as signed
quantities, even if they are only one bit long.

Norsk Data ND~05.009.03 EN

72 ND—5OO Reference Manual
DATA TYPES

7.2.2 Byte

7 O

A byte is 8 contiguous bits starting at any byte boundary. The bits
are numbered from the right, 0 to 7. Bit O is the least significant. A
byte may be interpreted either as a signed or as an unsigned integer.
Signed byte values are in the range -128 to +127, represented in two’s
complement form. Unsigned byte values are in the range 0 to 255.
Unsigned values may be interpreted as characters in any 8 bit (or
less) character set, and instructions are available to set, check or
clear the parity bit (bit 7) of a byte.

7.2.3 Halfword

15 O

A halfword is 2 contiguous bytes, 16 bits, starting at any byte
boundary. The bits are numbered from the right, 0 to 15. Bit O is the
least significant. Like a byte, a halfword may be interpreted either
as a signed or unsigned integer, in the range

~32768 (-(2**15)) to +32767 ((2**15)-1) in two's complement form, or

O to 65535 ((2**16)~1) respectively.

7.2.4 Word

31 O

A word is 32 bits, or 4 contiguous bytes, starting at any byte
boundary. It may be used as an unsigned integer in the range

0 to 4294967295 ((2**32)-1).

or as a two’s complement integer in the range

-2147483648 (—(2**31)) to +2147483647 ((2**31)—1).

Norsk Data ND-O5.009.03 EN

ND—5OO Reference Manual 73
DATA TYPES

7.2.5 Single precision floating point

31 30 22 21 O

sign : exponent : mantissa

A single-precision floating point number is represented by a mantissa
of 22+1 bits, a binary exponent of 9 bits with a bias of 256 and a
sign bit. The range is +/-8.6*(lO**(-78)) to +/—5.8*(10**76) and
exactly 0, with an accuracy of approximately 7 decimal digits. An
operand with exponent = O is treated as exactly zero, with no respect
to the sign nor the mantissa. Minus zero (all but bit 31 zero) will
only be returned from an operation generating floating underflow.

The smallest AX to be added to 1.0 is 1.192093180*10**~6.

7.2.6 Double precision floating point

63 62 54 53 O

sign : exponent : mantissa

A double—precision floating point number is represented by a mantissa
of 54+1 bits, a binary exponent of 9 bits with a bias of 256 and a
sign bit. The range is +/—8.6*(10**(—78)) to +/—5.8*(10**76) and
exactly 0, with an accuracy of approximately 16 digits. An operand
with exponent = O is treated as exactly zero, with no respect to the
sign nor the mantissa. Minus zero (all but bit 63 zero) will only be
returned from an operation generating floating underflow.

The smallest AX to be added to 1.0 is 2.775557562*10**—17.

Floating point numbers are always normalized, - i.e. the most
significant bit in the mantissa is always one. It is therefore
unneccessary to represent this bit explicitly. For single and double
floating point numbers there is always one hidden bit in the mantissa,
called the implicit bit. This is always assumed to be one, unless all
bits in the exponent are zero. It is used in the arithmetic and
removed from the result, thereby giving one more bit of precision.
This is the reason why the length of the mantissa is expressed in
terms of "+1".

The value of a floating point number is

S * 2**e * M if e >< -256
0 if e = ~256 (exponent bits all zero)

where S is the sign, with the value -1 if the sign bit is set and 1 if
the sign bit is reset. e is the value of the 9—bit exponent (taken as
an unsigned number) minus 256. Thus the range of e is —255 <= e <=
255. M is the mantissa interpreted as a binary fraction with the
decimal point to the left of the implicit bit, giving a range of M of
0.5 <= M < 1.

Norsk Data ND-O5.009.03 EN

74 ND-SOO Reference Manual
DATA TYPES

Examples:
1 (implicit bit)
v

-1.0 = 1 100000001 0000000000000000000000 ll —1*2**(257—256)*0.5

12.75 = 0 100000010 1001100000000000000000 = 1*2**(260-256)*0.796875

0.5 = 0 100000001 0000000000000000000000 = 1*2**(257—256)*0.5

0.375 = 0 011111111 1000000000000000000000 = 1*2**(255-256)*0.75

~5.0 = 1 100000011 0100000000000000000000 = -1*2**(259—256)*0.625

0.0 = 0 000000000 0000000000000000000000 (special case)

7.2.7 Floating point rounding

After a floating point operation, the result is normalized and the
full mantissa is checked for rounding. Rounding up is done by adding
one to the least significant bit of the mantissa. Rounding down is
done by ignoring bits beyond the least significant bit. The bits
affecting the rounding are labelled as follows:

L — least significant bit of that part of
the full mantissa which goes into
a float or double float mantissa

G - the bit immediately to the right of L
St - the result of an OR operation of all

bits to the right of G

L G : St

Mantissa

if 0:1 and (St=1 or L=l) then
add one to the least significant bit of mantissa

endif

Figure 20. Floating point rounding

The effective result is equivalent to rounding up when the last
decimal digit is larger than 5, rounding down if it is less than 5. If
the last decimal digit is equal to 5, the rounding up or down is
determined by the L bit, causing round off errors to take both
positive and negative values in order to partially self—compensate in
long computations.

Norsk Data ND-05.009.03 EN

ND—SOO Reference Manual 75
DATA TYPES

7.2.8 Descriptor

A descriptor is used for addressing arrays and strings (byte arrays)
through the DESC prefix. The descriptor consists of 8 bytes, the first
four containing the length of the array, the last four containing the
address of element number zero.

bytes 0 to 3 Number of elements (N)

bytes 4 to 7 Address of element 0 (A)

Figure 21. A descriptor

The hardware will compare the first half of the descriptor against the
value of the index register used. Illegal indexing will be trapped as
a Descriptor Range error (DR). Indexing is assumed to range from zero
upwards; thus index values below zero, or larger or equal to the
number of elements, are illegal.

7.3 Data formats in main memory

Data are stored in memory in various ways depending on their type. The
basic unit in the ND—BOO memory is a byte. In data types which consist
of more than one byte. the bytes are numbered left to right. The bits
in a single element of a data type are numbered right to left. The
leftmost bit is the most significant bit.

Note that post~indexing always counts the elements from the left, even
if the data type is bit.

byteO bytel byte2 byte3

When addressing with byte, halfword, or word displacement part, the
calculated address is the address of the leftmost (lowest numbered or
most significant) byte. Addressing with short address codes is either
B or R relative and has word as the displacement unit. The memory must
then be looked on as if the basic unit is a word, and the data object
must be located on a word boundary. The calculated address is the
leftmost byte of the word. When addressing with short word
displacement, the byte displacement is u * word displacement. (This is
taken care of by the assembler and will be of little concern to the
programmer.)

An array is addressed by its zeroth element, a multi-dimensional array
by the element having all indexes zero. This may be a "virtual"
element, in case the range of valid index values does not include
zero, or the array may actually start at a lower address if negative
hflmmsamadlmmi

Norsk Data ND*05.009.03 EN

76 ND—SOO Reference Manual
DATA TYPES

Most multi~operand instructions require operands to be of the same
type. The operands will be addressed as such, which may cause
unexpected results. If, for example, a byte is addressed as a word,
the intended byte and the following three bytes in memory will be used
as if they were a word sized data item.

BIT: The rightmost bit of a byte, specified by the byte
address.

BYTE: 8 contiguous bits, starting at any byte boundary.

HALFWORD: 16 contiguous bits (2 bytes), starting at any byte
boundary and addressed by the leftmost byte.

WORD: 32 contiguous bits (4 bytes), starting at any byte
boundary and addressed by the leftmost byte.

FLOAT: 32 contiguous bits (4 bytes), starting at any byte
boundary and addressed by the leftmost byte.

DOUBLE FLOAT: 64 contiguous bits (8 bytes), starting at any byte
boundary and addressed by the leftmost byte.

DESCRIPTOR: 6Q contiguous bits (8 bytes), starting at any byte
boundary and addressed by the leftmost byte.

Figure 22. Data formats in main memory

Norsk Data ND-05.009.03 EN

ND—SOO Reference Manual 77
DATA TYPES

7.4 Data in registers

Data may be loaded to the registers in the ND-SOO CPU register block.
Integer data types, i.e. BI, BY, H and W data, may be loaded to the
four Integer registers (In, n=1,2,3,4). Floating point data types,
i.e. F and D data, may be loaded to the four floating point
Accumulators (An, n=1,2,3,4). The floating point accumulators may be
extended with the Extension registers (En, n=1,2,3,4) for double-
precision floating point data. Data is loaded to the registers as
shown in the figure below.

The In accumulators are named BIn, BYn, Hn and Wn when used for BIt,
BYte, Halfword, or Word operations. (n=1,2,3,4)

The An accumulators are named Fn when used as single-precision
registers. The (An,En) double registers are named Dn when used as
double-precision floating point registers.

A common name for BIn, BYn, Hn, Wn, Fn and Dn is Rn. Rn may be used
when referencing a register where the type is determined by the
context.

31 0

11

I2 Integer accumulators

I3 or Index registers

14

31 O 31 0

A1 El Floating point accumulators

A2 E2 and Extension registers

A3 E3 A=E= 32 bits D: 64 bits

A14 E14

Figure 23. Arithmetic registers

Norsk Data ND—05.009.03 EN

78 ND—SOO Reference Manual
DATA TYPES

O

In x BIn

7 O

In xxxxxxxx BYn

15 O

In xxxxxxxxxxxxxxxx Hn

31 O

xxxxxxxxxxx In xxxxxxxxxxxxxxxxx Wn

31 O

xxxxxxxxxxx An xxxxxxxxxxxxxxxxx En Fn

63 O

XXXXXXXXXXX An XXXXXXXXXXXXXXXXX XXXXXXXXXXXX En XXXXXXXXXXXXXXX DI].

Figure 24. Data in registers

When using the integer registers for Blt, BYte and Halfword, the
unused upper part of the register is always zero~filled rather than
sign-extended when data is loaded to the register.

When single float data are loaded to one of the Fn registers, i.e. An,
the corresponding En register remains unchanged.

Norsk Data ND—05.009.03 EN

ND—SOO Reference Manual 81
OPERAND SPECIFIERS AND ADDRESSING

8 OPERAND SPECIFIERS AND ADDRESSING

8.1 Introduction

An instruction consists of an instruction code and zero or more
operand specifiers. The general instruction format is shown in the
figure below:

Instruction Operand Operand Operand
Code Specifier Specifier Specifier

1 or 2 bytes Zero or more operand specifiers, each 1 to 9 bytes

Figure 25. Instruction format

The instruction code specifies the operation to be performed and the
operand data types. The operand specifier names the data to be worked
on. This chapter describes the different formats of the operand
specifier. The next chapter gives details of the instruction code.

In many ND—SOO instructions one of the general registers or one of the
floating-point registers is used as the argument or result. The two
lower bits of the instruction code then specify the register number,
which is a floating~point or double-precision floating~point register
(Fn or Dn) when the data type is floating or double floating, and a
general register (Rn) when the data type is integer.

Norsk Data ND-05.009.03 EN

82 ND—SOO Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

8.2 General and direct operands

An operand specifier designates the data for an instruction to work
on. If an instruction requires several operands, a corresponding
number of operand specifiers follow the instruction code.

prefix(es) address code data part

Figure 26. Operand specifier format

The length of an operand specifier may be one to nine bytes.

Operand specifiers are divided into general operand specifiers and
direct operand specifiers. The interpretation of a general operand is
determined by an address code, data part and optional prefix(es). The
interpretation of a direct operand depends on the instruction; the
operand may only have a data part, no prefix or address code.

The instruction determines whether a general or a direct operand
should be used. Instructions using direct operands are mentioned in
8.4; all others use general operands. Direct operands are used most
places where the operand value has to be a constant of a specific
type, and the operand value can be determined unambiguously as the
contents of the following bytes.

The notational conventions used in this manual to indicate general and
direct operands are explained in Appendix C. Operand names are chosen
to give more information about the specific operand in use, e.g.
(source).

The following table describes the structure of operand specifiers in
relation to general and direct operands. The blank part of the table
indicates that there are no prefixes or addressing codes for direct
operands and no prefixes for constant and register general operands.
All general operands must have an address code.

Norsk Data ND-05.009.03 EN

ND-SOO Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

General operands:

1)Cmmmmt -------- cmmumt

Operand specifier

83

2) Register ________

3) Data memory ——"- ———————— absolute
address or
displacement

Direct operands:

1) Absolute address
(program/data memory)

2) Displacement
(program relative)

prefix address code data part

absolute
address

displacement

1 or 2 2 bits or 6 bits, 1,2,4
bytes 1 byte or 8 bytes

Figure 27. Operand specifier structures

Instruction code
1 or 2 bytes

Operand specifier
1-9 bytes

......_...‘

Prefixes Address code & data part
0-2 bytes 1-9 bytes

yaries from:

Address code data part
2 bits 6 bits

£2;
Address code data part
1 byte 0-8 bytes

Figure 28. Operand Specifier Layout

Norsk Data ND-05.009.03 EN

If multiple
operand specifier

84 ND—SOO Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

8.2.1 General operands

A general operand consists of the address code, the data part and
possibly a prefix.

THE ADDRESS CODE

The address code is either 2 bits or 1 byte long. It indicates both
the address mode, of which there are 10 types, and the length of the
data part, of which there are 6. Combinations of address modes and
data part lengths give 28 different address codes.

The data part length specifiers (in the ND-SOO assembler notation),
names and sizes are as follows (Note that :W and :F are different
assembly notations for the same operand specifier format):

:8 — short 6 bits
:8 ~ byte 1 byte
:H — halfword 2 bytes
:W - word 4 bytes
:F — floating 4 bytes
:D ~ double float 8 bytes

The table below shows the 10 address modes and the 6 data part length
specifiers. Legal combinations are marked with o. Post-index is
abbreviated as P.I.

Norsk Data ND-05.009.03 EN

ND—BOO Reference Manual 85
OPERAND SPECIFIERS AND ADDRESSING

Address mode Data part length specifier No data part
‘x,data part length specifier;

:S :B :H :W :F :D

1. LOCAL ‘ o o o o
2. LOCAL P.I. o o o

3. LOCAL INDIRECT a o e

A. LOCAL INDIRECT P.I. o o o

5. RECORD a o o o

6. PRE-INDEXED o O o

7. ABSOLUTE o

8. ABSOLUTE P.l. 0

9. CONSTANT o o o o o o

lO.REGlSTER O

Operand specifier prefix:

DESCRIPTOR o

ALTERNATIVE D

Figure 29. ND-SOO address modes

Most address codes contain '11‘ in the leftmost two bits. The
remaining six bits in the byte then specify the code.

However, in 3 special cases the leftmost two bits are ‘OO', '01' or
'lO'. These are the short address codes (:S in the table) and the two
bits alone indicate both length and mode. The remaining six bits are
then taken as the data part, so that the complete operand specifier
occupies only one byte.

THE DATA PART

The last part of the operand specifier, the data part, may be from six
bits (for short data parts) to 8 bytes (for double word data parts).
The data part contains an address, a displacement or a constant. The
register address mode has no data part since the register number is
contained in the address code.

Addresses always occupy four bytes. Short, byte and halfword
displacements are always treated as unsigned values.

Norsk Data ND~05.009.03 EN

86 ND~500 Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

The displacement unit is always bytes, except for short displacements,
where the unit is words. The range for short displacement is
consequently O..63 word from the record or base registers, and the
addressed data object must be located an integral number of words from
the register referred .

Normally the ND-SOO assembler will select the optimal displacement
size. It is possible, however, to force a particular (larger) size of
displacement by following the operand specifier by either :8, :B, :H,
:w, :F or :D. (The last two apply to constants only.) In examples
shown, a data part length specifier is used only when forcing a non~
default data part length.

PREFIXES

All address codes except constant and register may include prefixes as
the first 1 or 2 bytes. These are used in two special cases where the
operand specifier does not point to the operand itself. Such an
operand specifier may point to an array descriptor or to an operand on
an alternative domain. The prefixes are then followed by the operand
specifiers.

The only two prefix combination allowed is when an operand points to
an array descriptor referring to an alternative domain, written as
ALT(DESC(<0perand>)(Rn)). Only the last data access then goes to the
alternative domain; the descriptor itself is accessed in the current
domain.

8.2.2 Post—Index

Post-index is used in the local post-indexed, the local indirect post—
indexed, absolute post-indexed and the descriptor addressing modes.

Post—indexed addressing means that the index register holds the
address of the operand element relative to the start of the addressed
structure. The index is signed, and is always a logical index giving
the element number in the array regardless of the element size.
Accessing the next element in the structure is done by incrementing
the index register by one.

Hardware will multiply the logical index with a data type dependent
factor, the post—index scaling factor. The result gives the physical
index. The post—index scaling factor is the number of bytes used to
represent the data type in question. The post—index scaling factor is
1/8 (B1), 1 (BY), 2 (H), a (W), 4 (F), 8 (D) and 8 (descriptor). The
physical index is added to the base address of the structure in order
to get the address of the operand.

Norsk Data ND-05.009.03 EN

ND—BOO Reference Manual 87
OPERAND SPECIFIERS AND ADDRESSING

8.3 Survey of addressing modes

The first column lists the different groups of addressing modes in the
assembler notation for displacements and the name of the displacement.
The second column lists the algorithm used for determining the
effective address (ea) of the operand or the operand itself. The third
column lists the address code. (Abbreviations are explained in
Appendix C.)

Hex Octal
code code

LOCAL
B. <displ> :S ea=(B)+d*4 OHOH+XX IOOB+xx
short displacement

B. <displ> :B ea=(B)+d OClH 301B
byte displacement

B. <displ> :H OCZH 3028
halfword displacement

B. <displ> :w OC3H 3038
word displacement

LOCAL, POST-INDEXED
B. <displ> :B (Rn) ea=(B)+d+p*(Rn) OD4H+y 3248+y
byte displacement

B. <displ> :H (Rn) OD8H+y 33OB+y
halfword displacement

B. <displ> :W (Rn) ODCH+y 33MB+y
word displacement

LOCAL INDIRECT
IND (B. <displ> :B) ea=((B)+d) OCBH 305B
byte displacement

IND (B. <displ> :H) OC6H 306B
halfword displacement

IND (B. <displ> :W) OC7H 3078
word displacement

LOCAL INDIRECT, POST-INDEXED
IND (B.<displ> :B) (Rn) ea=((B)+d)+p*(Rn) 0E4H+y 3QHB+y
byte displacement

IND (B.<displ> :H) (Rn) OE8H+y 350B+y
halfword displacement

IND (B.<displ> :W) (Rn) OECH+y 3548+y
word displacement

Norsk Data ND-05.009.03 EN

88

RECORD
R. <displ> :8
short displacement

R. <displ> :8
byte displacement

R. <displ> :H
halfword displacement

R. <displ> :W
word displacement

PRE—INDEXED
Rn. <displ> :8
byte displacement

Rn. <displ> :H
halfword displacement

Rn. <displ> :W
word displacement

ABSOLUTE
<address>

ABSOLUTE, POST—INDEXED
(address) (Rn)

CONSTANT
<constant> :8
short constant

(constant) :B
byte constant

<constant> :H
hdfmmdcmmtwm

<constant> :W , <constant>

ND-BOO Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

ea=(R)+d*4

ea=(R)+d

ea=(Rn)+d

88:8

ea=a+(Rn)*p

.Fa.

word constant, floating-point constant

<constant> :D
double floating—point constant

REGISTER
Rn

Norsk Data ND-05.009.03 EN

op=(Rn)

080H+xx

OC9H

OCAH

OCBH

OFHH+y

OF8H+y

OFCH+y

OCMH

OEOH+y

OOOH+XX

OCDH

OCEH

OCFH

OCCH

ODOH+y

ZOOB+XX

3118

3128

3138

364B+y

37OB+y

3748+y

3048

3408+y

OOOB+XX

315B

316B

317B

314B

3ZOB+y

ND—BOO Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

DESCRIPTOR
DESC (<descriptor>) (Rn) ea=A+p*(Rn) OFOH+y

if (Rn)+l >> descriptor.length then
descriptor range trap condition

endif
if (Rn)+1 >>= descriptor.length then

l=:status.K
endif
if not descriptor range trap then

perform addressing with Rn as post-index
if data access then

(Rn)+1=:Rn
endif

endif

ALTERNATIVE
ALT (<operand>) OC8H

The address (ea) is referenced on the alternative domain.
Parameter access is required on the referenced segment in
the alternative domain.

Norsk Data ND—05.009.03 EN

89

360B+y

310B

90 ND—SOO Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

8.4 Local addressing

Assembly Hex Octal
notation Name code code
B.<displ> local

B.<displ>:S local, short displacement OQOH+xx lOOB+xx
B.<displ>:B local, byte displacement OClH 301B
B.<displ>:H local, halfword displacement OCZH 3028
B.<displ>:w local, word displacement OC3H 3038

ea = (B)+d
ea = (B)+d*u (B.<displ>:S)

The local addressing mode is addressing relative to the base register
B. This register is meant to hold the address of the beginning of the
local variables of a routine, hence the name local addressing.

The effective address is calculated by adding the value of the
displacement to the contents of the base register.

A short displacement part with a displacement unit of word is legal,
in addition to byte, halfword and word displacement parts with the
displacement stored in 1, 2, or 4 byte(s) after the address code,
displacement unit byte. Displacement values are treated as unsigned.

B register -~

displacement

effective
address ———~

Figure 30. Local addressing

Norsk Data ND-05.009.03 EN

ND-SOO Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

lOOOB

OlCH BYl =2

OCZH B.OlOOH B: OZOOH

ea = (B)+d = OZOOH+OlOOH = O3OOH

Norsk Data ND~05.009.03 EN

91

92 ND-SOO Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

8.5 Local, post—indexed addressing

Assembly Hex Octal
notation Name code code
B.<displ>(Rn) local, post—indexed

B.<displ> :B (Rn) local, post—indexed, OD4H+y 3248+y
byte displacement

B.<displ> :H (Rn) local, post~indexed, OD8H+y 330B+y
halfword displacement

B.<displ> :W (Rn) local, post-indexed, ODCH+y 334B+y
word displacement

ea 2 (B)+d+p*(Rn)

A local post—indexed address is calculated by adding the displacement,
the contents of the B register and the contents of the index register
multiplied by the post~index scaling factor. See the section on post—
indexing.

B register ——- 4

displacement

p*(Rn)

‘L

effective
address

Figure 31. Local, post—indexed addressing

Norsk Data ND-05.009.03 EN

ND-SOO Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

Examgle:

1760058 BIZ :=.

’—§§£é_ B.170:H(R3) B: lOOOOB

"‘565g’
"1&6; R3; 4003

ea = (B)+d+p*(Rn) = lOOOOB+17OB+MOOB/1OB = 1023OB

Octal

§;;;é;;£;;£“"

OllH BIZ :=

_6g;g— B.O78H:H(R3) B: OlOOOH

"566$“
—6;ég— R3: OlOOH

ea = (B)+d+p*(Rn) = OlOOOH+O78H+OlOOH/O8H = 01098H

Norsk Data ND-05.009.03 EN

93

94 ND—SOO Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

8.6 Local indirect addressing

Assembly Hex Octal
notation Name code code
lND(B.<displ>) indirect

lND(B.<displ>:B) indirect, byte displacement OCSH 3058
IND(B.<displ>:H) indirect, halfword displacement OC6H 306B
IND(B.<displ>:W) indirect, word displacement OC7H 307B

ea = ((B)+d)

The value of the unsigned displacement is added to the local base
register and this sum forms the address of a word which holds the
address of the operand. Subroutine arguments are usually accessed by
local indirect addressing.

B register -————~

displacement

-—-————-—-—-o

effective
address ~m—————-

Figure 32. Local indirect addressing

Norsk Data ND—05.009.03 EN

ND-SOO Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

Examgle:

133B F4 +

305B IND(B.120B:B) B:

120B 5208:

ea = ((B)+d) = (4008+1ZOB) = 1000B

Octal

Hexadecimal

OSBH F4 +

OCBH IND(B.050H:B) B:

OSOH OlSOH:

ea = ((B)+d) = (OlOOH+050H) = OZOOH

95

OlOOH

Norsk Data ND-05.009.03 EN

96 ND~500 Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

8.7 Local indirect, post—indexed addressing

Assembly Hex Octal
notation Name code code
IND(B.<displ>)(Rn) indirect, post-indexed

IND(B.<displ>:B)(Rn) indirect, post-indexed, 0E4H+y 3448+y
byte displacement

IND(B.<displ>:H)(Rn) indirect, post-indexed, OE8H+y 3BOB+y
halfword displacement

IND(B.<displ>:W)(Rn) indirect, post-indexed, OECH+y 3543+y
word displacement

ea = ((B)+d) + p*(Rn)

The address is calculated by adding the unsigned displacement of the
address code to the contents of the base register. This sum is
interpreted as an address. The contents of the word with this address
are added to the contents of the specified register multiplied by the
post—index scaling factor. This sum is the address of the operand.
Subroutine array arguments are usually accessed with local indirect,
post—indexed addressing.

B register —~*—~

displacement
l
.._m.

p*(Rn)

effective
address ————-———a

Figure 33. Local indirect, post—indexed addressing

Norsk Data ND-05.009.03 EN

ND—SOO Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

Examgle:

0138 84 := B: 6008

3478 1ND(8.608)(84) 660B: 20008

0608 84: 1508

ea = ((B)+d)+p*(Rn) = (6608)+2*1508 = 20008+3208 = 23208

Octal

Hexadecimal

OOBH 84 := B: 01808

OE7H IND(B.O3OH)(R4) 01808: 04008

0308 RA: O68H

ea = ((B)+d)+p*(Rn) = (OlBOH)+2*O68H = 04008+0008 = 04808

Norsk Data ND-05.009.03 EN

97

98 ND—SOO Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

8.8 Record addressing

Assembly Hex Octal
notation Name code code
R.<displ> record

R.<displ>:S record, short displacement O8OH+xx 200B+xx
R.<displ>:B record, byte displacement OC9H 3118
R.<displ>:H record, halfword displacement OCAH 312B
R.<displ>:w record, word displacement OCBH 313B

ea = (R)+d
ea = (R)+d*4 (R.<displ>:S)

The address of the operand is calculated by adding the displacement to
the contents of the record register (R).

R register ——————a

displacement

effective
address ~————————~

Figure 34. Record addressing

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

10008

ea = (B)+d = lOOOB+HOOB = 14008

OlCH BYl =2

OCAH R.0100H R: ZOOH

ea = (B)+d = 200H+100H = 300H

Norsk Data ND-05.009.03 EN

99

100 ND~500 Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

8.9 Pre—indexed addressing

Assembly Hex Octal
notation Name code code
Rn.<displ> pre—indexed

Rn.<displ>:B pre—indexed, OF4H+y 36HB+y
byte displacement

Rn.<displ>:H pre—indexed, OF8H+y 37OB+y
halfword displacement

Rn.<displ>:w pre—indexed, OFCH+y 374B+y
word displacement

ea = (Rn)+d

The contents of the index register specified in the address code are
added to the unsigned displacement of the address code. This sum is
taken as the address of the operand.

R3 —-——~

displacement

effective
address —~———————~

Figure 35. Preuindexed addressing

Norsk Data ND-05.009.03 EN

ND—BOO Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

1658 D2 *

ea = (Rn)+d = 100008+4008 = 104008

Octal

8;;;5;;;8;1"_

O75H D2 *

BEA; R3.01OOH 33:
”661}?
"666%"

37213 R3 . 40013 R3: 100008

01000H

Norsk Data ND~05.009.03 EN

101

102 ND—BOO Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

8.10 Absolute addressing

Assembly Hex Octal
notation Name code code

(label) absolute addressing OCQH 3048

ea = a

When the address code is equal to 304B, OCHH, the four bytes following
the address code are taken as the address of the operand.

.1———~H

data part of
operand specifier

Figure 36. Absolute addressing

Norsk Data ND-05.009.03 EN

ND~500 Reference Manual 103
OPERAND SPECIFIERS AND ADDRESSING

1658 D2 *

3048 20020445228

Octal

Hexadecimal

075H D2 *

OCMH 010084952H

ea = 010084952H

Norsk Data ND—05.009.03 EN

104 ND-BOO Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

8.11 Absolute, post—indexed addressing

Assembly Hex Octal
notation Name code code
(label>(Rn) absolute, post—indexed OEOH+y 340B+y

ea = a+p*(Rn)

The four bytes following the address code are taken as the base
address. An absolute, post-indexed address is then the contents of the
index register multiplied by the post-index scaling factor and added
to the word integer following the address code giving the effective
address.

absolute -—————————e
address

p*(Rn)

effective
address -~——————»

Figure 37. Absolute, post~indexed addressing

Norsk Data ND~05.009.03 EN

ND-SOO Reference Manual 105
OPERAND SPECIFIERS AND ADDRESSING

341B ZOOOB(R2) R2: 200B

(D m M SD + 'U
* :U :3 n 2000B+4*200B = 3000B

OlOH W1 :=

OElH OHOOH (R2) R2: O8OH

Norsk Data ND-05.009.03 EN

106 ND—SOO Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

8.12 Constant operand addressing

Assembly Hex Octal
notation Name code code
<constant> general constant

<constant>:S short constant OOOH+xx OOOB+xx
<constant>:B byte constant OCDH 315B
<constant>zH halfword constant OCEH 3168
<constant>:w word constant OCFH 317B
<constant>zF floating—point constant OCFH 317B
<constant>zD double floating—point constant OCCH 31HB

op = data part of operand specifier

The data to be operated on is part of the operand specifier. It
resides in the program memory and cannot be modified by any
instruction. The value of the operand may have a length of six bits or
one, two, four or eight bytes.

Constant operands are illegal for all write instructions, e.g. store,
swap, or shift instructions. They are also illegal as destination
operand(s) for multi—operand instructions, and in certain special
instructions like TSET and RDUS. They are also illegal as subroutine
arguments, as they have no address in data memory.

Note that word and floating—point constants have the same address
code.

Assembly notation byteO bytel byte2 byte3 byteH

150828 Octal: 315B 150B
Hex: OCDH O68H

lZOOOOOIW Octal: 317B 000B 0228 117B ZOOB
Hex: OCFH OOOH OlZH OHFH OBOH

lZB:S Octal: 012B
Hex: OOAH

6MO0H:H Octal: 3163 14148 00013
Hex: OCEH O64H OOOH

Table 7. Example of constants

The instruction code decides the interpretation of the operand
addressed by the operand specifier. This may produce conflicts between
the operand interpretation and the size of the data part of constant
operands. These are solved by Sign extension or data conversion if
possible, done automatically by hardwareo If no conversion is
meaningful an illegal operand specifier trap condition occurs.

Norsk Data ND-05.009.03 EN

ND~500 Reference Manual 107
OPERAND SPECIFIERS AND ADDRESSING

The following abbreviations are used in the table.

ggs — ILLEGAL OPERAND SPECIFIER TRAP CONDITION
BZ — bit zero of constant is operand
SX — sign extended (unless instruction calls for unsigned)
CF ~ convert to float
CDF - convert to double float
NC — no conversion required
32LZ — 32 least significant bits zero filled
<c> — general operand with constant type

Constant operand type
Instruction
operand <c>:S <c>:B <c>:H <c>:W <c>:F <c>:D
type

BI Bz 193 $3.8 $9§ an $93BY sx NC I_OS. £52 mo: E
H SX SX NC ggs ggg lg§
W SX SX SX NC NC lg§
F CF CF CF NC NC lg§
D CDF CDF CDF 32LZ 32LZ NC

Table 8. Treatment of constants as operands

Norsk Data ND"05.009.03 EN

108 ND-BOO Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

8.13 Register addressing

Assembly Hex Octal
notation Name code code

Rn (n=l..4) Register ODOH+y 3ZOB+y

One of the registers may be the operand of an instruction. If the data
type of an instruction is an integer or it does not contain a data
type specification, one of the integer registers is taken as the
operand. If the data type of the instruction is float or double float,
one of the float or double float registers is taken as the operand.

A register operand is not legal in the argument list of a CALL or
CALLG instruction, as a destination in the BMOVE instruction or as an
argument to certain special instructions (such as TSET and RDUS).

Norsk Data ND—050009.O3 EN

ND-SOO Reference Manual 109
OPERAND SPECIFIERS AND ADDRESSING

8.14 Alternative addressing

Assembly Hex Octal
notation Name code code

ALT(<operand>) alternative domain addressing OC8H 310B

With this operand specifier prefix, it is possible to address operands
on the alternative domain of the process. Parameter access to the
segment on the alternative domain is required. See the memory
management section for further explanation of domain. alternative
domain and parameter access.

<operand> can be any operand specifier that does not contain a new ALT
operand specifier prefix. If the operand specifies indirect
addressing, the indirect address is taken from the current addressing
domain. If the operand specifies descriptor access, the descriptor is
taken from the current addressing domain. Only the last memory access
which actually fetches the data goes to the alternative addressing
domain.

Alternative addressing is illegal for register addressing and constant
operand addressing.

Norsk Data ND~05.009.03 EN

110 ND~500 Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

8.15 Descriptor addressing

Assembly Hex Octal
notation Name code code

DESC<<operand>)(Rn) descriptor OFOH+y 36OB+y

ea = A + p*(Rn), A = contents of second word of <operand>

(operand) is the address of a descriptor, and it can be any operand
specifier except ALT, constant or register. (operand> may be post~
indexed, selecting an element in an array of descriptors, in which
case the post—index scaling factor is 8 (the size of a descriptor).
The post-index scaling factor of the descriptor addressing itself is
determined by the data type specified in the instruction code.

A descriptor comprises two words in memory accessed via a general
operand. The first word contains the number of elements in a data
array, the second contains the start address of the array. The operand
element of the array is addressed post-indexed relative to the start
address in the descriptor. Elements are indexed from zero; the legal
index range is O to descriptor.length~1.

The hardware will report if the last element of the array is addressed
by setting the K flag. If an element beyond the array is addressed the
K flag is set and a descriptor range trap condition occurs.

The index register is incremented by a data access via descriptor. It
is not incremented when accessing only the address of the operand
(load address and call instructions).

if (Rn)+l >> descriptor.length then
descriptor range trap condition

endif
if (Rn)+1 >> = descriptor.length then

1 =: status.K
endif
if not descriptor range trap then

perform addressing with Rn as post—index
if data access then

(Rn)+1 =: Rn
endif

endif

Note that an access outside the string as defined by the descriptor is
carried out if the descriptor range trap is not enabled.

Norsk Data ND-05.009.03 EN

ND—SOO Reference Manual 111
OPERAND SPECIFIERS AND ADDRESSING

B-register ———————~———~—-—»

displacement

length -———-——~———~
start address -—-

start of array —-—~—--—- 0

p*(Rn)

effective address-

Figure #0. Addressing with a descriptor

Norsk Data ND~05.009.03 EN

112 ND—SOO Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

Examgle:

0118 82 .:= B: 4008

3628 DESC(8.1008)(R3) 5008: 1008

3018 5048: 20008

1008 R3: 508

ea: A + p*(8n) = (4008+1008+4) + 2*508 z (5048) + 1208 = 21208

Octal

§;;;é;;;;;;1’"

0008 82 := B: OlOOH

0828 DESC(8.0408)(83) 01408: 0408

OClH 01448: 04008

0408 R3: 0288

ea: A + p*(Rn) = (OlOOH+040H+4)+2*028H = (0144H)+050H = OMSOH

Norsk Data ND-05.009.03 EN

ND-SOO Reference Manual 113
OPERAND SPECIFIERS AND ADDRESSING

8.16 Direct operands

Direct operands are those found in the bytes immediately following the
instruction code or the preceding operand specifier. There is no
prefix or address code part in the operand specifier. Direct operands
are in the syntax definitions in this manual. They are written using
the form <<direct operand>>.

The interpretation of a direct operand depends on the instruction and
applies to specific instructions only. The data part of the operand
specifier is taken either as a displacement or as an absolute address.
Absolute addresses may be to the program or the data area.

8.16.1 Displacement addressing

The ND—SOO instructions LOOP, LOOPI, LOOPD, GO and IF <rel> GO have
displacement (program relative) addressing. Each instruction has two
instruction codes, one for the byte displacement part and one for the
halfword displacement part. G0 is also available with the word
displacement part. The displacement is signed, and is the distance
from the first byte of the current instruction to the first byte of
the addressed instruction.

(P) + d -> (P)

8.16.2 Absolute program addressing

The instruction CALL subroutine has absolute addressing. When using
CALL the address follows the instruction code in the following four
bytes.

When executing CALLG the address is accessed via a general operand,
not a direct operand. Complete information is given in the description
of the CALLG instruction.

8.16.3 Absolute data addressing

The INIT and ENTM instructions are followed by the absolute address of
the bottom of the new stack. The ENTF and ENTFN instructions are
followed by the address of the local data area.

Norsk Data ND-OB.OO9.03 EN

114 ND—SOO Reference Manual

Norsk Data ND~05.009.03 EN

ND-SOO Reference Manual 117
THE ND-SOO INSTRUCTION SET

9 THE ND-SOO INSTRUCTION SET

The ND-BOO instruction set has a variable length instruction format,
the length determined by the type of instruction and the operands
used. The shortest instructions are one byte long, the longest may be
several thousand bytes long.

Each instruction consists of an instruction code and zero or more
operand specifiers. The general instruction format is shown in the
figure below:

Instruction Operand Operand Operand
Code Specifier Specifier Specifier

1 or 2 bytes Zero or more operand specifiers, each 1 to 9 bytes

Figure 41. Instruction Format

The following chapters describe each instruction code in detail.
Operand specifiers are described in the previous chapter.

The term instruction code is used to indicate both the octal or
hexadecimal value and the assembly notation. The octal or hexadecimal
value of an instruction code is a numeric representation of the bit
pattern inside the computer. The assembly notation is used by the
assembler programmer to symbolically represent the binary code.

An instruction code specifies the operation to be performed and the
data types of the operands. It may consist of one or two bytes. One
byte instruction codes are used for the operations most frequently
generated by compilers.

In many ND—BOO instructions one of the general registers or one of the
floating—point registers is used as an argument or result. The two
lower bits of the instruction code then specifiy the register number,
meaning a floating-point or double~precision floating-point register
(Fn or Dn) when the data type is floating or double floating, and the
general register (Rn) when the data type is integer.

Norsk Data ND~05.009.03 EN

118 ND—500 Reference Manual
THE ND-BOO INSTRUCTION SET

7 O

instruction code short instruction code

7 2 1 O

instruction code reg short register instruction code

15 12 11 0

1 1 1 1 instruction code long instruction code

15 12 11 2 1 0

1 1 1 1 instruction code reg long register
instruction code

Figure 42. Instruction Code Formats

All the upper 4 bits of a long (two byte) instruction code are set,
which means that such codes are in the range 1700008 to 1777778,
OFOOOH to OFFFFH.

The instruction set is described using the syntax explained below.
Optional syntax elements enclosed are in brackets, []. Brackets
followed by an "n" mean that more than one occurrence of an optional
syntax element may be specified. The Sign ::= means "is defined as".

instruction format ::= [[datatype specifier][register number]]
instruction code name
[operand specifier][operand specifier] n

t = data type specifier ::= BI, BY, H, W, F, D
t is a subset of the data type specifiers

n = register number ::= 1,2,3,4

instruction code name ::= text or character string

operand specifier ::= (general operand) <<direct operand>>

(general operand) - the operand is accessed Via
a general addressing mode
the operand is found in the bytes
immediately following the instruction
code or the preceding operand specifier

<<direct operand>>

Norsk Data ND-05.009.03 EN

ND—SOO Reference Manual 119
THE ND-SOO INSTRUCTION SET

When describing the operand, the description string is divided in
three or four parts, as follows:

operand ::= operand name/access code/datatype /pointer register

Operand name is a character string used as a descriptive term. For
example, the load instruction format uses the term <source> as the
operand name; the store instruction format uses <dest> as the
destination operand name.

The access code may have the following abbreviations:

r ~ read access
w ~ write access
rw — read and write access
rwl - read, write and locked swap access
aa — address access
s - special, explained explicitly in

the instruction descriptions

Locked swap access applies to the TSET instruction only.

Address access (aa) together with descriptor addressing will not cause
the index register to be incremented. If the access code is read (r)
or write (w), the index register will be incremented.

The pointer register applies to string instruction descriptions only.

ACTUAL OPERAND VALUE

The actual operand value used may be the value found in the
instruction or the value found at the address specified by the
instruction, determined by the addressing mode. In the descriptions of
the operation performed in the following chapters, dereferencing of
source operands is implicit if the operand is an address. For example,

tn ADD3 <a/r/t), (hr/t), <c/w/t>

Operation: <a> + -> <c>

In the instruction

W3 ADD3 SOU, 5, DES

SOU is an address (a label); the value found at this address is the
(a) operand value. The operand is the value 5 rather than the
value found at address 5; the operand specifier is CONSTANT type. DES
is the address of the <c> operand.

Norsk Data ND~05.009.03 EN

120 ND—SOO Reference Manual
THE ND—SOO INSTRUCTION SET

If the actual source operand value is the address, rather than the
value found at that address, the description of the operation
indicates this by the notation addr(<operand>). Take, for example, the
LADDR instruction:

tn LADDR <operand/aa/t)

Operation: addr(<operand>) _> Rn

DATA STATUS BITS

Data status bits not mentioned in the instruction description are
always cleared after the instruction has been executed. If the status
bit is conditionally set a TRUE condition causes the bit to be set
(1), a FALSE condition causes it to be reset (0).

Norsk Data ND-05.009.03 EN

ND—SOO Reference Manual 121
THE ND~500 INSTRUCTION SET

Before going on to the instruction set, an example will be explained:

Example:

Load bit register number 2 with the bit number found in R3
from the bit array BITA. BITA is displaced 078H, or 1708,
bytes from the base address of the local data area.
The size of the displacement part is forced to half word.

Assembly code notation: BIZ := B.BITA(R3) : H

Description:

The instruction code for loading bit register 2 is OFCOSH, or 1760058,
written as 374B,005B when treated as two octal bytes.

B.BITA(R3) is the local post-indexed addressing mode, address code
ODAH, or 3328.

The :H length specifier tells the assembler to store the displacement
in halfword format. Normally the assembler should be allowed to select
the storage format, in order to achieve optimal program encoding. In
this example the assembler would have stored the displacement in byte
format if :H had been omitted.

The address of the byte containing the bit in question is calculated
as follows (See figure on the next page):

ea = (B) + d + p * (Rn)

HOctal: lOOOOB + 170B + INT(403B/1OB) 102308

Hex: OlOOOH + O78H + INT(OlO3H/O8H) OlO98HI!

Post indexing always counts the data elements from the left,
consequently the bit number within the addressed byte is

bn = 7~REM(403B/1OB) = 7—REM(0103H/08H) = 7-3 = 4

Norsk Data ND-05.009.03 EN

122 ND—5OO Reference Manual
THE ND—SOO INSTRUCTION SET

Program memory Data memory

. B “—w 0008 100008
P ——» 3748 1503008

0058. displacement .
3328 0008 101708
0008 p * Rn .
1708 .

. effective -4 0208 102308
1503058 address .

Registers

P : 1503008 1503058
8 : 100008 100008
82: 77014013 1
R3: 4038 8038

Before execution After execution

Octal

Hexadecimal

Program memory Data memory

. 8 ——~ 0008 010008
B ——~ OFCH ODOCOH

0058 displacement .
ODAH 0008 010788
0008 p * Rn .
0788 .

. effective ——- 0108 010988
ODOC58 address

Registers

P : ODOCOH ODOCSH
B : 010008 010008
82: 0380608 1
R3: 1038 1038

Before execution After execution

Norsk Data ND-O5.009.03 EN

ND—SOO Reference Manual
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10 DATA TRANSFER AND LOGICAL INSTRUCTIONS

125

10.1 Load

Format: tn :2 <source/r/t)

Assembly Hex Octal
notation Name code code

BIn :: load bit OFCOHH+(n—l) 176OOHB+(nw1)
BYn z: load byte 004H+(n—l) OOHB+(n—l)
Hn = load halfword 008H+(n~l) OlOB+(n-1)
Wn = load word OOCH+(n—l) 0148+(n-1)
Fn 2 load float OlOH+(n—l) 020B+(n—1)
Dn = load double float 014H+(n—1) 024B+(n—l)

Operation: (source) —> Rn

Description:

The value of the operand (source) is loaded into the register
specified in the instruction code. When the data type is BI, BY, H or
W, one of the I registers is loaded. The value is right justified in
the register, the least significant bit of the operand goes in the
least significant bit of the register. With BI, BY, or H as data type.
the rest of the register is zero filled. One of the floating point
registers is loaded when the data type is F or D.

Trap conditions: Addressing traps

Data status bits:

(source) = O »> Z
<source>.signbit —> S

Example:

Load local halfword variable MEMBERS into R3

H3 := B.MEMBERS

Norsk Data ND—05.009.03 EN

126 ND-SOO Reference Manual
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.2 Load local base register

Format: B := <source/r/W)

Assembly Hex Octal
notation Name code code

B := load base register OFCO8H 1760108

Operation: <source> ~> B

Description:

The contents of <source> are loaded into the local base register.

Trap conditions: Addressing traps

Data status bits:

<source> = O —> Z
<source>.signbit —> S

Example:

Load the word variable GLOBBASE into B

B := GLOBBASE

Norsk Data ND—05.009.03 EN

ND—SOO Reference Manual 127
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.3 Load record register

Format: R := <source/r/W>

Assembiy Hex Octal
notation Name code code

R := load record register Ol8H 0308

Operation: <source> —> R

Description:

The contents of <source> is loaded into the record base register.

Trap conditions: Addressing traps

Data status bits:

(source) = O —> Z
<source>.signbit —> 8

Example:

Load R with the base of the R2nd element of the word array RECPTRS

R := RECPTRS(R2)

Norsk Data NDm05.009.03 EN

128 ND—SOO Reference Manual
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.4 Store

Format: tn =1 <dest/w/t>

Assembly Hex Octal
notation Name code code

Bln = store bit OFCOCH+(n—1) l760lMB+(n—1)
BYn = store byte OlCH+(n—l) O34B+(n—1)
Hn =: store halfword OFClOH+(n—1) 176OZOB+(n—l)
Wn =2 store word 020H+(n—1) 0408+(n—1)
Fn =: store float 024H+(n—1) OHHB+(n—l)
Dn =: store double float 028H+(n—1) OSOB+(n—1)

Operation:

Rn ~> <dest>
datatype dependent part of register ~> <dest>

Description:

The datatype~dependent part of the contents of the specified register
is stored in the memory location or register specified in the operand
specifier. The datatype-dependent part of the register is the least
significant bits of the register needed to represent the data type in
question. Constant operands are illegal. The source register is
unaffected.

If the destination is a register, the instruction has the same effect
as a load destination register. If the data type is BI, BY, or H, the
upper part of the register is zero filled.

Trap conditions: Addressing traps

Data status bits:

datatype~dependent part of register = O —> Z
datatype—dependent part of register.signbit ~> S

Example:

Store byte in R4 into the 6th byte of the record pointed to by R,
forcing word displacement part

BY“: =: R.6:W

Norsk Data ND—05.009.03 EN

ND—SOO Reference Manual 129
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.5 Store local base register

Format: B = <0perand/w/W)

Assembly . Hex Octal
notation Name code code

B =: store local base register OFCOAH 1760128

Operation: B —> <operand>

Description:

The contents of the local base register are stored in the (operand).

Trap conditions: Addressing traps

Data status bits:

B register = O -> Z
B register.signbit ~> S

Example:

Store B in local variable CURRB indexed by Rl

B =: B.CURRB(Il)

Norsk Data ND-05.009.03 EN

130 ND—BOO Reference Manual
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.6 Store record register

Format: R =: <0perand/w/W>

Assembly Hex Octal
notation Name code code

R =: store record register OFCO9H 1760118

Operation: R —> (operand)

Description:

The contents of the record register are stored in the (operand).

Trap conditions: Addressing traps

Data status bits:

R register = O -> Z
R register.signbit —> S

Example:

Store R in register R2

R =: R2

Norsk Data ND-OS.OO9.03 EN

ND—SOO Reference Manual 131
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.7 @Le

Format: t MOVE <source/r/t>,<dest/w/t>

Assembly Hex Octal
notation Name code code

BI MOVE move bit OFCOBH 176013B
BY MOVE move byte Ol9H 0318
H MOVE move halfword OFClMH 176024B
W MOVE move word OlAH O32B
F MOVE move float OlBH O33B
D MOVE move double float OZCH 0548

Operation: (source) ~> <dest>

Description:

The number of bits needed to represent the data type are moved from
source to destination. The source is unaffected, and a constant
destination operand is illegal.

Trap conditions: Addressing traps

Data status bits:

(source) = O ~> Z
<source>.signbit —> 8

Example:

Move the double precision value in GLOBAL to local variable LOCAL

D MOVE GLOBAL, B.LOCAL

Norsk Data ND—05.009.03 EN

132 ND-500 Reference Manual
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.8 Swap

Format: t SWAP <op1/rw/t>,<op2/rw/t>

Assembly _ Hex Octal
notation Name code code

81 SWAP bit swap OFCBDH 1762758
BY SWAP byte swap OFCBEH 1762768
H SWAP halfword swap OFCBFH 1762778
W SWAP word swap 052H 1228
F SWAP float swap OFCDCH 1763348
D SWAP double float swap OFCDDH 1763358

Operation: <op1> :=: <op2>

Description:

The contents of the first operand are stored in the second, and the
original contents of the second operand are stored in the first. The
operands are assumed to have the same data type (see section 7.3 on
page 75).

Trap conditions: Addressing traps

Data status bits:

original contents of <op1> = O -> Z
original contents of <op1>.signbit -> S

Example:

Exchange contents of word variables EAST and WEST

W SWAP EAST, WEST

Norsk Data ND-05.OO9003 EN

ND-SOO Reference Manual
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.9 Qompare

133

Format: tn COMP <operand/r/t>

Assembly Hex Octal
notation Name code code

BIn COMP register bit compare OFC18H+(n—l) 176030B+(n~1)
BYn COMP register byte compare 03OH+(n—1) O6OB+(n~l)
Hn COMP register halfword compare OFClCH+(n~l) 1760348+(n—1)
Wn COMP register word compare O3HH+(n—l) 0648+(n—l)
Fn COMP register float compare 038H+(n—l) O7OB+(n-1)
Dn COMP register double float O3CH+(n—l) 0748+(n—1)

compare

Operation: Rn — <0perand>

Description:

The instruction subtracts the operand from the contents of the
specified register. The result of the subtraction is not saved, but
rather compared to zero, and this result is saved in the data status
bits. The instruction is a true comparison, hence the sign bit is
changed in case of integer overflow.

Trap conditions: Addressing traps, Floating Overflow, Floating
Underflow

Data status bits:

result = O —> Z
result.signbit XOR Overflow —> S
carry from most significant bit ~> C
floating underflow -> FU
floating overflow —> FO

Example:

Compare bit zero in R1 with one

Bll COMP l

Norsk Data ND—OS.OO9.03 EN

134 ND—500 Reference Manual
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.10 Compare two operands

Format: t COMPZ <opl/r/t>,<op2/r/t>

Assembly Hex Octal
notation Name code code

BI COMPZ bit compare OFCl5H 1760258
BY COMPZ byte compare 02DH 0558
H COMPZ halfword compare 0FCl6H 1760268
W COMPZ word compare OZEH 0568
F COMPZ float compare OZFH 0578
D COMPZ double float compare 0408 1008

Operation: <opl> — <op2>

Description:

The instruction subtracts the second operand from the first. The
result sets the data status bits accordingly, but the result is
otherwise discarded.

Trap conditions: Addressing traps, Floating Underflow, Floating
Overflow

Data status bits:

result = 0 —> Z
result.signbit X08 Overflow -> S
carry from most significant bit -> C
floating underflow —> FU
floating overflow -> F0

Example:

Compare record variable floating point DELTA with 0.005

F COMPZ 8.DELTAg O"005

Norsk Data ND*05.009.03 EN

ND—SOO Reference Manual 135
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.11 Test against zero

Format: t TEST <operand/r/t>

Assembly Hex Octal
notation Name code code

BI TEST bit test against zero OAlH 1018
BY TEST byte test against zero 042H 1028
H TEST halfword test against zero OA3H 1038
W TEST word test against zero OAAH 104B
F TEST float test against zero 045E 1058
D TEST double test against zero 046H 1068

Operation: (operand) - 0

Description:

This instruction is similar to comparing two operands, except that the
second operand is implicitly zero.

Trap conditions: Addressing traps

Data status bits:

result = O -> Z
result.signbit XOR Overflow —> S
1 -> C (integer)

Example:

Test if local byte variable COUNTER has reached zero

BY TEST B.COUNTER

Norsk Data ND~05.009.03 EN

136

10.12 Negate

ND-SOO Reference Manual
DATA TRANSFER AND LOGICAL INSTRUCTIONS

Format: tn NEG

Assembly Hex Octal
notation Name code code

BYn NEG byte register negate OFEO8H+(n—l) l770lOB+(n—l)
Hn NEG halfword register negate OFEOCH+(n—l) 17701MB+(n—1)
Wn NEG word register negate O9OH+(n—l) 2208+(n—l)
Fn NEG float register negate O94H+(n—1) 2248+(n—1)
Dn NEG double float register negate O9HH+(n—l) 2248+(n—1)

Operation: —Rn -> Rn

Description:

The contents of the specified register are negated. An integer value
is negated by taking the two's complement of its value. A floating
point value is negated by inverting its Sign bit. Byte and halfword
negate will clear the upper part of the register.

Integer overflow occurs if and only if the greatest negative integer
is negated. Carry is zero except when integer zero is negated.

Trap conditions: Integer Overflow

Data status bits:

negated register = O -> Z
negated register.signbit —> S
carry ~> C
overflow -> 0

Example:

Negate double precision register D3

D3 NEG

Norsk Data ND-05.009.03 EN

ND~500 Reference Manual 137
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.13 Invert

Format: tn INV

Assembly . Hex Octal
notation Name code code

BIn INV bit invert register OFElOH+(n—l) 177020B+(n—1)
BYn INV byte invert register OFElQH+(n—l) 177OZQB+(n—1)
Hn INV halfword invert register OFE18H+(n—1) 17703OB+(n—l)
Wn INV word invert register O98H+(n-1) 2308+(n—l)

Operation: One's complement of Rn —> Rn

Description:

The one's complement of the contents of the specified register is
calculated and stored in the same register. When the datatype is BI,
BY, or H only the lower part of the register is complemented and the
rest of the register is cleared.

Trap conditions: None

Data status bits:

result = O -> Z
result.signbit -> S

Example:

Invert the lowermost bit of R4 and clear the upper 31 bits

B14 INV

Norsk Data ND—OS.OO9.03 EN

138 ND-BOO Reference Manual
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.14 Invert with carry add

Format: Wn INVC

Assembly Hex Octal
notation Name code code

Wn INVC word invert register w/carry OFFlOH+(n—1) 177QZOB+(n—1)

Operation: One's complement of Rn + C -> Rn

Description:

The one's complement of the contents of the specified word register is
calculated. The carry is added and the result is loaded into the
specified register. This instruction is used for multiple precision
arithmetic.

Trap conditions: Integer Overflow

Data status bits:

result = O -> Z
result.signbit -> S
carry —> C
overflow —> 0

Example:

Invert W2 and add carry

W2 INVC

Norsk Data ND—05.009.03 EN

ND-SOO Reference Manual 139
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.15 Absolute value

Format: tn ABS

Assembly Hex Octal
notation Name code code

BYn ABS byte absolute value OFFOOH+(n—l) 177HOOB+(n—l)
Hn ABS halfword absolute value OFF04H+(n—1) 177AOHB+(n—l)
Wn ABS word absolute value OFF08H+(n-1) 177410B+(n—1)
Fn ABS float absolute value OFFOCH+(n—l) l774148+<n~1)
Dn ABS double float absolute value OFFOCH+(n—1) 177414B+(1—l)

Operation: Absolute value of Rn ~> Rn

Description:

The absolute value of the contents of the specified register is
calculated and stored in the same register. When the datatype is
either BY or H, the result is stored in the least significant bits and
the rest of the register is cleared. Overflow occurs if and only if
the greatest negative integer is negated.

Trap conditions: Integer Overflow

Data status bits:

result = O -> Z
O -> S
overflow —> O (integer)

Example:

Take the absolute value of double precision register D1

D1 ABS

Norsk Data ND-OS.OO9.03 EN

140 ND—EOO Reference Manual
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.16 Clear register

Format: tn CLR

Assembly A Hex Octal
notation Name code code

BIn CLR bit register clear 084H+(n-1) 204B+(n—l)
BYn CLR byte register clear 084H+(n—1) 20uB+(n—l)
Hn CLR halfword register clear O84H+(n—l) 204B+(n~l)
Wn CLR word register clear 084H+(n—1) 204B+(n-1)
Fn CLR float register clear 088H+(n—1) 2108+(n—l)
Dn CLR double float register clear O8CH+(n—l) 214B+(n—1)

Operation: 0 —> Rn

Description:

The register is set to all zeroes. For all integer data types, the
entire register is cleared.

Trap conditions: None

Data status bits: 1 -> Z

Example:

Clear double register D3

D3 CLR

Norsk Data ND-05.009.03 EN

ND—5OO Reference Manual lfll
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.17 Store zero

Format: t STZ <operand/w/t>

Assembly Hex Octal
notation Name code code

BI STZ bit store zero OFC85H 1762058
BY STZ byte store zero OQ8H 1108
H STZ halfword store zero 049H 1118
W STZ word store zero OMAH 1128
F STZ float store zero OHBH 1138
D STZ double float store zero OMCH 1148

Operation: 0 —> (operand)

Description:

The contents of the destination operand are replaced by zero.

Trap conditions: Addressing traps

Data status bits: 1 —> Z

Example:

Clear the byte FLAGS

BY STZ FLAGS

Norsk Data ND~05.009.03 EN

142 ND~500 Reference Manual
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.18 Set to one

Format: t SETl <operand/w/t)

Assembly Hex Octal
notation Name code code

BI SET1 bit set to one OFC86H 1762068
BY SETl byte set to one OFCB7H 1762078
H SETl halfword set to one OFC88H 1762108
W SETl word set to one OHDH 1158
F SETl float set to one OH7H 1078
D SETl double float set to one OFC89H 1762118

Operation: 1 _> <operand>

Description:

The contents of the destination operand are replaced by one.

Trap conditions: Addressing traps

Data status bits: All cleared

Example:

Set float argument START to one

F SET1 IND(B.START)

Norsk Data ND-05.009.03 EN

ND»SOO Reference Manual 1’4 3
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.19 Increment

Format: t INCH <0perand/rw/t)

Assembly Hex Octal
notation Name code code

BY INCR byte increment OFC8AH 1762128
H INCR halfword increment OUEH 116B
W INCR word increment OHFH 1178
F INCR float increment OBOH 1208
D INCR double float increment OFCBBH 1762138

Operation: (operand) + l ~> <operand>

Description:

The <0perand> is incremented by one. The Carry bit is set if a carry
occurs from the sign bit position of the adder, otherwise it is reset.
Carry will occur when and only when integer —l is incremented.

Trap conditions: Addressing traps,

Data status bits:

sum.signbit ,> 8
sum = O —> Z
overflow ~> O
carry from most significant bit —> C (integer)

Example:

Increment the halfword record variable
part to halfword

H INCR R.LOOPER:H

Norsk Data ND“OS.OO9.03 EN

Integer Overflow

LOOPER and force displacement

14A ND—BOO Reference Manual
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.20 Decrement

Format: t DECR <0perand/rw/t)

Assembly Hex Octal
notation Name code code

BY DECR byte decrement OFCB6H 1762148
H DECR halfword decrement OFC87H 1762158
W DECR word decrement OBlH 1218
F DECR float decrement OFCSBH 1762168
D DECR double float decrement OFC89H 1762178

Operation: (operand) — 1 —> (operand)

Description:

The <operand> is decremented by one.

Trap conditions: Addressing traps, Integer Overflow

Data status bits:

difference = O —> Z
difference.signbit —> S
overflow -> O
carry from most significant bit -> C

Example:

Decrement the halfword record variable STEP on the alternative domain

H DECR ALT(R.STEP)

Norsk Data ND—05.009.03 EN

ND—5oo Reference Manual 145
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.21 And

Format: tn AND <operand/r/t>

Assembly . Hex Octal
notation Name code code

Bln AND bit 'and' register OFDCCH+(n-1) 1767luB+(n—1)
BYn AND byte 'emd' register OFC9OH+(n~1) 176220B+(n—1)
Hn AND halfword ‘and' register OFC9MH+(n~1) l762248+(n—1)
Wn AND word 'emd' register OE4H+(n-1) 3448+(n—l)

Operation: Rn AND (operand) -> Rn

Description:

A bitwise AND is performed between the contents of the specified
register and the (operand) and the result is stored in the register
.When the data type is BI, BY, or H, the upper part of the register is
zero filled.

Trap conditions: Addressing traps

Data status bits:

result = O -> Z
result.signbit -> S

Example:

AND operation between R2 and the RBrd element of the array described
by the Rlst array descriptor in the local array MASKS

W2 AND DESC(B.MASKS(R1))(R3)

Norsk Data ND—05.009.03 EN

146 ND—SOO Reference Manual
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.22 93

Format: tn OR <operand/r/t)

Assembly Hex Octal
notation Name code code

Bln OR bit 'or’ register OFDF8H+(n—1) 17677OB+(n—l)
BYn OR byte ’or' register OFC98H+(n—l) 17623OB+(n-l)
Hn OR halfword 'or' register OFC9CH+(n—1) 17623HB+(n—1)
Wn OR word 'or' register OAOH+(n—l) 2408+(n—1)

Operation: Rn OR (operand) ~> Rn

Description:

A bitwise OR is performed between the contents of the specified
register and the <operand> and the result is stored in the register.
When the data type is BI, BY, or H, the upper part of the register is
zero filled .

Trap conditions: Addressing traps

Data status bits:

result = O ~> Z
result.signbit —> 8

Example:

OR byte register R1 with 111 octal

BYl OR 111B

Norsk Data ND-05.009.03 EN

ND-SOO Reference Manual 1&7
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.23 Exclusive or

Format: tn XOR <operand/r/t)

Assembly Hex Octal
notation Name code code

BIn XOR bit 'xor' register OFDCCH+(n ~1) l767lQB+(n 1)
BYn XOR byte 'xor' register OFCAOH+(n-l) 176ZHOB+(n- l)
Hn XOR halfword 'xor' register OFCA4H+(n -1) 1762HHB+(n—1)
Wn XOR word 'xor' register OA4H+(n—l) 2448+(n 1)

Operation: Rn XOR <operand> —> Rn

Description:

A bitwise exclusive OR is performed between the contents of the
specified register and the (operand) and the result is stored in the
register. When the data type is El, BY, or H, the upper part of the
register is zero filled.

Trap conditions: Addressing traps

Data status bits:

result = O -> Z
result.signbit —> 8

Example:

Flip bits 0, 4, 8 and 12 of halfword register RH

H4 XOR OllllH

Norsk Data NDwOS.OO9.03 EN

148 ND—SOO Reference Manual
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.24 Logical shift

Format: t SHL <operand/rw/t>,<shiftcount/r/BY>

Assembly ‘ Hex Octal
notation Name code code

BY SHL byte shift logically OFCA8H 1762508
H SHL halfword shift logically 0FCA9H 1762518
W SHL word shift logically OFCAAH 1762528

Operation: logically shifted <operand> —> <0perand>

Description:

A logical shift is performed on the byte, halfword or word operand
.<shiftcount> is interpreted as a signed byte .Positive <shiftcount>
implies left shift, negative <shiftcount> implies right shift. A
shiftcount equal to or greater than the size of the operand will
produce an illegal operand value trap condition“ A shiftcount of zero
is legal and leaves the operand unchanged.

Trap conditions: Addressing traps, Illegal Operand Value

Data status bits:

shifted operand = O -> Z
shifted operand.signbit —> S

Example:

Shift local word COUNT TWOFACTORS places

W SHL B.COUNT, TWOFACTORS

Norsk Data ND~05.009.03 EN

ND~SOO Reference Manual 149
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.25 Arithmetical shift

Format: t SHA <0perand/rw/t),<shiftcount/r/BY>

Assembly Hex Octal
notation Name code code

BY SHA byte shift arithmetically OFCABH 1762538
H SHA halfword shift arithmetically OFCACH 1762548
W SHA word shift arithmetically OFCADH 176255B

Operation: arithmetically shifted (operand) ~> <operand>

Description:

An arithmetic shift is performed on the byte, halfword or word
operand. <shiftcount> is interpreted as a signed byte. Positive
<shiftcount> implies left shift, negative <shiftcount> implies right
shift. A shiftcount equal to or greater than the size of the operand
will produce an illegal operand value trap condition. A shiftcount of
zero is legal and leaves the operand unchanged.

Trap conditions: Addressing trapsv Illegal Operand Value

Data status bits:

shifted operand = O -> Z
shifted operand.signbit ~> S

Example:

Shift byte register R4 two places to the right

BY SHA R4, -2

Norsk Data ND—OS.OO9.03 EN

150 ND-SOO Reference Manual
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.26 Rotational shift

Format: t SHR <0perand/rw/t),(shiftcount/r/BY)

Assembly Hex Octal
notation Name code code

BY SHR byte shift rotationally OFCAEH 1762568
H SHR halfword shift rotationally OFCAFH 1762578
W SHR word shift rotationally OFCBOH 1762608

Operation: rotationally shifted <operand> —> (operand)

Description:

A rotational shift is performed on the byte, halfword or word operand.
<shiftcount> is interpreted as a signed byte. Positive <shiftcount>
implies left shift, negative <shiftcount> implies right shift. A
shiftcount equal to or greater than the size of the operand will
produce an illegal operand value trap condition. A shiftcount of zero
is legal and leaves the operand unchanged.

Trap conditions: Addressing traps, Illegal Operand Value

Data status bits:

shifted operand = O ~> Z
shifted operand.signbit —> S

Example:

Exchange nibbles (4 bit groups) of variable pointed at by R4

BY SHR R4.o, 4

Norsk Data ND—05.009.03 EN

ND—SOO Reference Manual 151
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.27 Get bit

Format: tn GETBI (operand/r/t>,(bit no/r/BY)

Assembly Hex Octal
notation Name code code

BYn GETBI byte get bit OFCBMH+(n—1) 1762643+(n—1)
Hn GETBI halfword get bit OFCB8H+(n-l) 17627OB+(n—l)
Wn GETBI word get bit OFDDOH+(n~l) 1767ZOB+(n—l)

Operation: bit (bit No.> of (operand) “> bit 0 of Rn

Description:

Bit zero of the specified register is loaded with bit (bit No.> of a
BY, H, or W (operand>n A (bit No.> greater than or equal to the number
of bits of the data type or a negative (bit No.> will cause an illegal
operand value trap condition.

Trap conditions: Addressing traps, Illegal Operand Value

Data status bits: transferred bit = O ~> Z

Example:

Load R1 with the BITNO bit of word variable STATUS

W1 GETBI STATUS, BITNO

Norsk Data ND~05.009.03 EN

152 ND~BOO Reference Manual
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.28 Put bit

Format: tn PUTBI <0perand/w/t>,<bit no/r/BY>

Assembly Hex Octal
notation Name code code

BYn PUTBI byte put bit OFDD4H+(n—l) 176724B+(n—l)
Hn PUTBI halfword put bit OFDD8H+(n—1) l7673OB+(n—l)
Wn PUTBI word put bit OFDDCH+(n—l) 176734B+(n~l)

Operation: bit 0 of Rn -> bit <bit No.> of <0perand>

Description:

Bit zero of the specified register is stored in bit <bit No.> of a BY,
H, or w <0perand>. The upper bits of the <operand> are unaffected,
even when the destination is a word register. A (bit No.> greater than
or equal to the number of bits of the data type or a negative (bit
No.> will cause an illegal operand value trap condition.

Trap conditions: Addressing traps, Illegal Operand Value

Data status bits: transferred bit = O —> Z

Example:

Store bit zero of R4 in bit 4 of local byte variable FLAGS

BYA PUTBI B.FLAGS, A

Norsk Data ND~05.009.03 EN

ND-SOO Reference Manual 153
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.29 Clear bit

Format: t CLEBI <operand/w/t>,<bit No./r/BY>

Assembly . Hex Octal
notation Name code code

BY CLEBI byte clear bit OFE7DH 177175B
H CLEBI halfword clear bit OFE7EH 1771768
W CLEBI word clear bit OFE7FH 177177B

Operation: 0 —> bit <bit No.> of (operand)

Description:

The specified bit of a BY, H, or W <0perand> is cleared. A <bit No.>
greater than or equal to the number of bits of the data type or a
negative (bit No.> will cause an illegal operand value trap condition.

Trap conditions: Addressing traps, Illegal Operand Value

Data status bits: 1 —> Z

Example:

Clear bit N of word register R1

W CLEBI R1, N

Norsk Data ND*05.009.03 EN

154 ND—BOO Reference Manual
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.30 s3; bit

Format: t SETBI <operand/w/t>,<bit No./r/BY>

Assembly Hex Octal
notation Name code code

BY SETBI byte set bit OFESOH 1762008
H SETBI halfword set bit OFE81H 1762018
W SETBI word set bit OFE82H 1762028

Operation: 1 —> bit (bit No.> of <operand>

Description:

The specified bit of a BY, H, or W <operand> is set. A <bit No.>
greater than or equal to the number of bits of the data type or a
negative (bit No.> will cause an illegal operand value trap condition.

Trap conditions: Addressing traps, Illegal Operand Value

Data status bits: All cleared

Example:

Set bit FAILURE in word argument EXCEPTIONS on the alternative domain

w SETBI ALT(IND(B.EXCEPTIONS)). FAILURE

Norsk Data ND—05.009.03 EN

ND-BOO Reference Manual 155
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.31 fSet bit field

Format: tn GETBF (operand/r/t>,(bit No./r/BY>,(field
size/r/BY>

Assembly Hex Octal
notation Name code code

BYn GETBF byte get bit field OFDEOH+(n-1) 1767HOB+(n—1)
Hn GETBF halfword get bit field OFDE4H+(n-1) 1767448+(n—1)
Wn GETBF word get bit field OFDE8H+(n—1) 1767SOB+(n—l)

Operation: specified bit field -> Rn

Description:

Bit O to (field size> — 1 of the specified register is loaded with the
specified bit field. In the (operand), the bit field is composed of
the (bit No.> bit and as many higher numbered bits as necessary to
obtain a field size of (field size> bits. (See the section on data
types in memory for an explanation of bit numbers within data types.)
The (operand> may have BY, H, or W as the data type. (bit No.> and
(field size> are interpreted as signed byte integers.

An illegal operand value trap condition is caused if (bit No.> is
negative, if (field size> is zero or negative, or if (bit No.> or (bit
No.> + (field size) is greater than the number of bits in the data
type.

The upper bits of the register are zero filled.

Trap conditions: Addressing traps, Illegal Operand Value

Data status bits:

bit field = O -> Z
bit field.leftmost bit -> S

Example:

Load R2 with a field consisting of bits 11 to 18 of the word variable
16 bytes away from the current R register

w2 GETBF R.l6, 11, 8

Norsk Data ND-05.009.03 EN

156 ND-SOO Reference Manual
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.32 391; bit field

Format: tn PUTBF (operand/w/t),(bit no/r/BY>,<field
size/r/BY)

Assembly Hex Octal
notation Name code code

BYn PUTBF byte put bit field OFDECH+(n—1) 176754B+(n—l)
Hn PUTBF halfword put bit field OFDFOH+(n—l) 17676OB+(n~l)
Wn PUTBF word put bit field OFDF4H+(n—l) 176764B+(n-1)

Operation: Rn -> specified bit field

Description:

The contents of bit 0 to (field size) — 1 of the specified register
are stored in the specified bit field of the operand. In the
(operand), the bit field is composed of the (bit No.) bit and as many
higher numbered bits as necessary to obtain a field size of (field
size) bits. (See the section on data types in memory for an
explanation of bit numbers within data types.) The (operand) may have
BY, H, or W as the data type. (bit No.) and (field size) are
interpreted as signed byte integers.

An illegal operand value trap condition is caused if (bit No.) is
negative, if (field size) is zero or negative, or if (bit No.) or (bit
No.) + (field size) is greater than the number of bits in the data
type.

Trap conditions: Addressing traps, Illegal Operand Value

Data status bits:

bit field = O -> Z
bit field.leftmost bit —) 5

Example:

Put the 8 lower bits of R2 into the the record variable FLAGSET from
bit ERRFLAGS and up

W2 PUTBF R.FLAGSET, ERRFLAGS, 8

Norsk Data ND-O5.009.03 EN

ND-SOO Reference Manual 157
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.33 Floating point remainder

Format: tn REM <x/r/t>,<y/r/t>,<q/w/t>

Assembly Hex Octal
notation Name code code

Fn REM float divide with remainder OFE58H+(n~l) l7713OB+<n~l)
Dn REM double float divide OFESCH+(n-1) 17713HB+(n~l)

with remainder

Operation:

remainder of <x>/<y> in float format —> Rn
integer part of <x>/<y> in float format —> (g)

Description:

The value of the <x> operand is divided by the value of the <y>
operand and the integer part of the quotient in float format stored in
<q>. The remainder of the quotient in float format is loaded into the
specified register.

Trap conditions: Addressing traps, Floating Overflow, Floating
Underflow, Divide by Zero

Data status bits:

remainder = O —> Z
remainder.signbit -> S
floating underflow -> FU
floating overflow ~> F0
<y> = O —> DZ

Example:

Divide record variables EXPENSES with AMOUNT giving UNITCOST and a
remainder in F2

F2 REM R.EXPENSES, R.AMOUNT, RuUNITCOST

Norsk Data ND~05.009.03 EN

158

10.34 Integer part

ND—BOO Reference Manual
DATA TRANSFER AND LOGICAL INSTRUCTIONS

Format: tn INT <x/r/t)

Assembly Hex Octal
notation Name code code

Fn INT float integer part OFE6OH+(n~1) 177IMOB+(n—l)
Dn INT double float integer part OFE64H+(n—l) 177144B+(n~1)

Operation: truncated integer part of <x> in float format —> Rn

Description:

The truncated integer part of the <x> operand is calculated and loaded
into the specified floating register in float format. No rounding is
performed.

Trap conditions: Addressing traps

Data status bits:

result : O —> Z
result.signbit —> S

Example:

Load F4 with the integer part of EXACT

F4 INT EXACT

Norsk Data ND—05.009.03 EN

ND—SOO Reference Manual
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.35 Integer part with rounding

159

Format: tn INTR <x/r/t>

Assembly Hex Octal
notation Name code code

Fn INTR float integer part OFE68H+(n-1) l77lSOB+(n—1)
with rounding

Dn INTR double float integer part OFE6CH+(n~l) 177154B+(n—1)
with rounding

Operation: rounded integer part of (x) in float format ~> Rn

Description:

The rounded integer part of the (x) operand is calculated and l

160 ND—BOO Reference Manual
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.36 AMODB — Integer modulo ('87 extension)

Format: tn AMODB <0pernad1/r/t),<operand2/r/t>

Assembly Hex Octal
notation Name code code

BYn AMODB : byte integer modulo FFBCH l776748+n—1
Hn AMODB : halfword integer modulo FFCOH l777OOB+n~l
Wn AMODB : word integer modulo FFCQH 1777OHB+n~l

Operation:

<operandl> — (<0perandl) div <0perand2>) * <operand2> —> Res
if

res = 0 then 0 -> result
elseif

sign(res) >< sign(<operand2>) then res+<operand2> —> result
else

res —> result
endif

Description:

The specified register is loaded corresponding to the SIMULA IMOD
definition. The function applies to integer operands only.

Trap Condition: Divide by zero

Data Status Bits:
result = O —> Z
result.signbit —> S

Norsk Data ND-05.009.03 EN

ND—BOO Reference Manual
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.37 ENTIER — SIMULA Entier function ('87 extension)

Format: t ENTIER <source/r/tl),<destination/w/w>

161

Assembly . Rex Octal
notation Name code code

F ENTIER float entier FDC7H 176707B
D ENTIER double float entier FDC8H 1767108

Operation:

if int(source) > source then
int(source) - 1 —> destination

else
int(source) —> destination

endif

Description:

The function calculates the integer part of the source in accordance
to the SIMULA Entier definition and stores it as a 32 bit integer in
the destination.

Data Status Bits:
result = O —> Z
<result>.signbit -> S
integer overflow -> O

Norsk Data ND-05.009.03 EN

162 ND~SOO Reference Manual

Norsk Data ND~05.009.03 EN

ND—SOO Reference Manual
ARITHMETICAL INSTRUCTIONS

11 ARITHMETICAL INSTRUCTIONS

165

11.1 Add

Format: tn + <addend/r/t>

Assembly Hex Octal
notation Name code code

BYn + byte add OFC34H+(n—l) 17606MB+(n-1)
Hn + halfword add OFC38H+(n—l) l7607OB+(n—l)
Wn + word add 054H+(n—l) 1248+(n~1)
Fn + floating add 058H+(n-1) l3OB+(n—l)
Dn + double float add OSCH+(n-1) 13MB+(n—l)

Operation: Rn + <addend> ~> Rn

Description:

The <addend> operand is added to the contents of the specified
register. The carry bit is set if a carry occurs from the sign bit
position of the adder, otherwise it is reset. For overflow, see the
section on arithmetical traps.

Trap conditions: Addressing traps, Integer Overflow, Floating
Overflow, Floating Underflow

Data status bits:

sum.signbit ~> S
sum = O —> Z
O —> 0 (float)
overflow —> O
carry from most significant bit -> C (integer)
floating underflow —> FU
floating overflow —> FO

Example:

Add byte argument FIFTHARG to R3

BY3 + IND(B.FIFTHARG)

Norsk Data ND~05.009.03 EN

166 ND~SOO Reference Manual
ARITHMETICAL INSTRUCTIONS

11.2 §ubtract

Format: tn — <subtrahend/r/t>

Assembly . Hex Octal
notation Name code code

BYn — byte subtract OFC3CH+(n—1) 176074B+(n—1)
Hn — halfword subtract OFCHOH+(n~1) 176IOOB+(n-l)
Wn ~ word subtract O6OH+(n—1) 140B+(n~1)
Fn — float subtract O64H+(n—1) 144B+(n—1)
Dn ~ double float subtract O68H+(n—1) 15OB+(n—l)

Operation: Rn - <subtrahend> ~> Rn

Description:

The <subtrahend> operand is subtracted from the contents of the
specified register. The same rules as for ADD apply for the setting of
the carry bit. For overflow, see section on arithmetical traps.

Trap conditions: Addressing traps, Integer Overflow, Floating
Overflow, Floating Underflow

Data status bits:

difference = O —> Z
difference.signbit —> S
overflow —> O
carry from the most significant bit ~> C (integer)
floating underflow —> FU
floating overflow ~> FO

Example:

Subtract the contents of register F1 from the contents of register F4

F4 - Fl

Norsk Data ND-05.009.03 EN

ND-SOO Reference Manual 167
ARITHMETICAL INSTRUCTIONS

11 . 3 Multiply

Format: tn * <multiplier/r/t)

Assembly Hex Octal
notation Name code code

BYn * byte multiply OFCM4H+(n—l) 1761048+(n~l)
Hn * halfword multiply OFC48H+(n-l) l76llOB+(n—l)
Wn * word multiply O6CH+(n—l) 154B+(n—1)
Fn * floating multiply O7OH+(n—l) l6OB+(n-1)
Dn * double float multiply O7HH+(n—l) l64B+(n—l)

Operation: Rn * (multiplier) -> Rn

Description:

The <multiplier> operand is multiplied by the contents of the
specified register and the product is stored in this register. Integer
overflow occurs if the upper half of the double length result is not
equal to the sign extension of the lower half.

Trap conditions: Addressing traps, Integer Overflow, Floating
Overflow, Floating Underflow

Data status bits:

product = O -> Z
product.signbit —> S
overflow —> O
floating underflow -> FU
floating overflow -> F0

Example:

Multiply halfword register R2 by 5

H2*5

Norsk Data ND~05.009.03 EN

168 ND—SOO Reference Manual
ARITHMETICAL INSTRUCTIONS

11.4 Divide

Format: tn / <divisor/r/t)

Assembly Hex Octal
notation Name code code

BYn / byte divide OFCHCH+(n—l) 17611QB+(n—1)
Hn / halfword divide OFC50H+(n—l) 17612OB+(n—1)
Wn / word divide O78H+(n—l) l7OB+(n—1)
Fn / float divide O7CH+(n—l) 1748+(n-l)
Dn / double float divide OE8H+(n~1) 3508+(n-1)

Operation: Rn / (divisor) —> Rn

Description:

The contents of the specified register are divided by the <divisor>
operand. The quotient is left in the same register. In integer
division the remainder (unless it is zero) has the same sign as the
register contents, i.e. the quotient is truncated towards O. Integer
overflow occurs if and only if the largest possible negative integer
is divided by —1.

Trap conditions: Addressing traps, Integer Overflow, Floating
Overflow, Floating Underflow, Divide by Zero

Data status bits:

quotient = O —> Z
quotient.signbit —> S
overflow —> O
floating underflow-> FU
floating overflow -> F0
divisor = O —> DZ

Example:

Divide float register A3 by the Rc element of argument ARR

F3 / IND(B.ARR)(R4)

Norsk Data ND-05.009.03 EN

ND—BOO Reference Manual 169
ARITHMETICAL INSTRUCTIONS

11.5 Add two operands

Format: t ADD2 <a/rw/t>,<b/r/t>

Assembly Hex Octal
notation Name code code

BY ADD2 byte add two operands OFCl7H 1760278
H ADD2 halfword add two operands OFCSMH 1761248
W ADD2 word add two operands 053H 1238
F ADD2 float add two operands OFC56H 1761268
D ADD2 double float add two operands OFC57H 1761278

Operation: <a> + (b) —> (a)

Description:

The operand is added to the (a) operand and the result is put in
the <a> operand. The operands are assumed to have the same data type
(see section 7.3 on page 75).

Trap conditions: Addressing traps, Integer Overflow, Floating
Overflow, Floating Underflow

Data status bits:

result = O ~> Z
result.signbit ~> S
overflow n) O
carry from most significant bit n> C (integer)
floating underflow ~> FU
floating overflow n) F0

Example:

Add float argument X2 to argument X1

F ADD2 IND(B.X1), IND(B.X2)

Norsk Data ND-05.009.03 EN

170 ND-SOO Reference Manual
ARITHMETICAL INSTRUCTIONS

11.6 Subtract two operands

Format: t SUBZ <a/rw/t>,<b/r/t>

Assembly Hex Octal
notation Name code code

BY SUB2 byte subtract two operands OFC58H 1761308
H SUB2 halfword subtract two operands OFCB9H 176131B
W SUBZ word subtract two operands OEOH 3408
F SUBZ float subtract two operands OFCSBH 1761338
D SUB2 double float subtract two operands OFCSCH 176134B

Operation: <a> — ~> <a>

Description:

The operand is subtracted from the <a> operand and the result is
put in the <a> operand. The operands are assumed to have the same data
type (see section 7.3 on page 75).

Trap conditions: Addressing traps, Integer Overflow, Floating
Overflow0 Floating Underflow

Data status bits:

difference = O —> Z
difference.signbit ~> S
overflow —> O
carry from most significant bit -> C (integer)
floating underflow -> FU
floating overflow —> PC

Example:

Subtract 4 from the R3rd element of the byte array whose descriptor is
the global VALUES

BY SUB2 DESC(VALUES) (R3), 4

Norsk Data ND-05.009.03 EN

ND—SOO Reference Manual 171
ARITHMETICAL INSTRUCTIONS

11.7 Multiply two operands

Format: t MULZ <a/r/t>,<b/r/t>,<c/w/t>

Assembly ‘ Hex Octal
notation Name code code

BY MUL2 byte multiply two operands OFCSDH 1761358
H MUL2 halfword multiply two operands OFCSEH 1761368
w MULZ word multiply two operands OFCSFH 1761378
F MUL2 float multiply two operands 080608 1761408
D MULZ double float multiply two operands OFC61H 1761418

Operation: <a> * —> <a>

Description:

The (a) operand is multiplied by the operand and the product is
stored in the (a) operand. Integer overflow occurs if the upper half
of the double length result is not equal to the sign extension of the
lower half.

Trap conditions: Addressing traps, Integer Overflow, Floating
Overflow, Floating Underflow

Data status bits:

product = O —> Z
product.signbit _> S
overflow -> O
floating underflow —> FU
floating overflow -> FO

Example:

Multiply the argument double float PROD on the alternative domain with
the contents of D4

D MUL2 ALT(8.PROD), D4

Norsk Data ND—05.009.03 EN

172 ND~500 Reference Manual
ARITHMETICAL INSTRUCTIONS

11.8 Divide two operands

Format: t DIV2 <a/rw/t),<b/r/t>

Assembly Hex Octal
notation Name code code

BY DIV2 byte divide two operands OFC62H 1761428
H DIV2 halfword divide two operands OFC63H 1761Q3B
w DIV2 word divide two operands OFC6QH 1761448
F DIV2 float divide two operands OFC65H 176145B
D DIV2 double float divide two operands OFC66H 1761468

Operation: (a) / —> (a)

Description:

The (a) operand is divided by the operand and the quotient is
stored in the (a) operand. In integer division the remainder (unless
it is zero) has the same Sign as the <a> operand, i.e. the quotient is
truncated towards zero. Integer overflow occurs if and only if the
largest possible negative integer is divided by —1.

Trap conditions: Addressing traps, Integer Overflow, Floating
Overflow, Floating Underflow, Divide by Zero

Data status bits:

quotient = O ~> Z
quotient.signbit -> S
overflow -> O
floating underflow -> FU
floating overflow -> F0
 = O —> DZ

Example:

Divide the local float variable KVOT by the Rlst element of the array
on the alternative domain described by local descriptor LIST

F DIV2 B.KVOT, ALT(DESC(B.LIST)(R1))

Norsk Data ND—05.009.03 EN

NDaSOO Reference Manual 173
ARITHMETICAL INSTRUCTIONS

11.9 Add three operands

Format: t ADD3 <a/r/t>,<b/r/t>,<c/w/t>

Assembly Hex Octal
notation Name code code

BY ADD3 byte add three operands OFC67H 1761478
H ADD3 halfword add three operands OFC68H 17615OB
W ADD3 word add three operands OFC69H 176151B
F ADD3 float add three operands OFC6AH 176152B
D ADDS double float add three operands OFC6BH 1761538

Operation: (a) + ~> <c>

Description:

The (a) operand is added to the operand and the result is stored
in the <c> operand. The operands are assumed to have the same data
type (see section 7.3 on page 75).

Trap conditions: Addressing traps, Integer Overflow, Floating
Overflow, Floating Underflow

Data status bits:

sum = O —>
sum.signbit ->
overflow ~>
carry from most significant bit ~>
floating underflow —>
floating overflow ~>

Example:

(integer)

Add R1 and R2 and leave the result in R3

w ADD3 R1,R2,R3

Norsk Data ND-05.009.03 EN

174 ND~5OO Reference Manual
ARITHMETICAL INSTRUCTIONS

11.10 Subtract three operands

Format: t SUB3 <a/r/t>,<b/r/t>,<c/w/t>

Assembly _ Hex Octal
notation Name code code

BY SUB3 byte subtract three operands OFC6CH 1761548
H SU83 halfword subtract three operands OFC6DH 1761558
W SU83 word subtract three operands OFC6EH 1761568
F SUB3 float subtract three operands OFC6FH 1761578
D SUB3 double float subtract three operands OFC7OH 1761608

Operation: <a> — -> (C)

Description:

The operand is subtracted from the (a) operand and the result is
stored in the <c> operand. The operands are assumed to have the same
data type (see section 7.3 on page 75).

Trap conditions: Addressing traps, Integer Overflow, Floating
Overflow, Floating Underflow

Data status bits:

difference = O —> Z
difference.signbit —> S
overflow ~> O
carry from most significant bit —> C (integer)
floating underflow —> FU
floating overflow ~> FO

Example:

Store the difference between byte arguments X1 and X2 in local
variable DIFF

B SU83 IND(B.X1), IND(B.X2), B.DIFF

Norsk Data ND-05.009.03 EN

ND—SOO Reference Manual 175
ARITHMETICAL INSTRUCTIONS

11.11 Multiply three operands

Format: t MUL3 <a/r/t>,<b/r/t>rw/t>,<b/r/t>

Assembly Hex Octal
notation Name code code

BY MUL3 byte multiply three operands OFC71H 1761618
H MUL3 halfword multiply three operands OFC72H 1761628
w MUL3 word multiply three operands OFC73H 176163B
F MUL3 float multiply three operands OFC74H 1761648
D MUL3 double float multiply three operands OFC75H 176165B

Operation: <a> * —> (C)

Description:

The <a> operand is multiplied by the operand and the product is
stored in the <c> operand. Integer overflow occurs if the upper half
of the double length result is not equal to the sign extension of the
lower half. The operands are assumed to have the same data type (see
section 7.3 on page 75).

Trap conditions: Addressing traps” Integer Overflow, Floating
Overflow, Floating Underflow

Data status bits:

product = O —> Z
product.signbit —> S
overflow -> O
floating underflow -> FU
floating overflow —> FO

Example:

Store the product of the second and third element of the word array
pointed to by R2 in the first element of the word array pointed to by
R2

W MUL3 R2.2, R2.3, R2.1

Norsk Data ND-05.009.03 EN

176 ND—SOO Reference Manual
ARITHMETICAL INSTRUCTIONS

11.12 Divide three operands

Format: t DIV3 <a/r/t>,<b/r/t>,<c/w/t>

Assembly Hex Octal
notation Name code code

BY DIV3 byte divide three operands OFC76H 1761668
H DIV3 halfword divide three operands OFC77H 1761678
W DIV3 word divide three operands OFC78H 1761708
F DIV3 float divide three operands OFC79H 1761718
D DIV3 double float divide three operands OFC7AH 1761728

Operation: <a> / (b) -> (c)

Description:

The <a> operand is divided by the operand and the quotient is
stored in the (c) operand. In integer division the remainder (unless
it is zero) has the same sign as the <a> operand, i.e. the quotient is
truncated towards zero. Integer overflow occurs if and only if the
largest possible negative integer is divided by —1. The operands are
assumed to have the same data type (see section 7.3 on page 75).

Trap conditions: Addressing traps, Integer Overflow, Floating
Overflow, Floating Underflow, Divide by Zero

Data status bits:

quotient) = O —> Z
quotient>.signbit -> S
overflow —> O
floating underflow -> FU
floating overflow —> FO
 = O —> DZ

Example:

Divide the float value whose address is in PTR by the contents of F1,
and store the quotient in record variable Q (record base in R)

F DIV3 IND(PTR), F1, R.Q

Norsk Data ND—05.009.03 EN

ND—SOO Reference Manual 177
ARITHMETICAL INSTRUCTIONS

11.13 Multiply with overflow to register

Format: tn MUL4 <a/r/t>,<b/r/t>,<c/w/t>

Assembly Hex Octal
notation Name code code

BYn MUL4 byte multiply w/overflow OFC20H+(n-1) 176OUOB+(n~1)
Hn MULH halfword multiply w/overflow OFCZQH+(n—l) l76OQMB+(n—1)
Wn MULM word multiply w/overflow OFCZ8H+(n—l) 176OSOB+(n—1)

Operation: <a> * ~> <c>
overflow part -> Rn

Description:

The <a> operand is multiplied by the operand. The product is
stored in the <c> operand. The upper half of the double length result
is stored in the specified register. The operands are assumed to have
the same data type (see section 7.3 on page 75).

Trap conditions: Addressing traps, Integer Overflow

Data status bits:

lower part of double length result = O —> Z
lower part of double length result.signbit —> S
overflow —> O

Example:

Multiply word arguments M and N and store product in local TEMP and
the overflow in R1

w1 MULM IND(B.M), IND(B.N), B.TEMP

Norsk Data ND~05.009.03 EN

178 ND-SOO Reference Manual
ARITHMETICAL INSTRUCTIONS

11.14 Divide with remainder to register (modulo)

Format: tn DIVQ <a/r/t>,<b/r/t>,<c/w/t>

Assembly Hex Octal
notation Name code code

BYn DIV4 byte divide w/remainder OFCZCH+(n-1) 1760548+(n—1)
Hn DIV4 halfword divide w/remainder OFC3OH+(n~1) l7606OB+(n-l)
Wn DIV“ word divide w/remainder OFC7CH+(n—l) 17617HB+(n—1)

Operation:

<a> / —> (C)
remainder —> Rn

Description:

The <a> operand is divided by the operand and the quotient is
stored in the <c> operand. The remainder is stored in the specified
register.

Note that the register content is in compliance with ADA and SIMULA
remainder. Separate testing must be done to obtain status. The
operands are assumed to have the same data type (see section 7.3 on
page 75).

Trap conditions: Addressing traps,
Zero

Integer Overflow, Divide by

Data status bits:

quotient = O —> Z
quotient.signbit -> S
overflow —> O
 = O -> DZ

Example:

Divide record variable BYTECOUNT by 4 and store the quotient in record
variable WORDCOUNT put the remainder in R2

BY2 DIV4 R.BYTECOUNT, 4, WORDCOUNT

Norsk Data ND-05.009.03 EN

ND-EOO Reference Manual 179
ARITHMETICAL INSTRUCTIONS

11.15 Unsigned multiply with overflow to register

Format: Wn UMUL <a/r/t>,<b/r/t>,<c/w/t>

Assembly _ Hex Octal
notation Name code code

Wn UMUL word unsigned multiply OF080H+(n~l) 176ZOOB+(n—1)

Operation:

word unsigned multiplication
<a> * —> (c)
overflow part -> Rn

Description:

The operands are treated as unsigned.
The (a) operand is multiplied by the (b) operand and the product is
stored in the (c) operand. The upper half of the double length result
is stored in the specified register. Byte and halfword integer
constants are Sign extended and the result of the sign extension is
treated unsigned. Integer overflow occurs when the upper part is
different from zero.

Trap conditions: Addressing traps, Integer Overflow

Data status bits:

product = O —> Z
product.signbit —> S
overflow -> 0

Example:

Multiply local variable LEASTX by local LEASTY storing the result in
R2 with the upper half of the result in R1

W1 UMUL B.LEASTX, B.LEASTY, R2

Norsk Data ND-05.009.03 EN

180 ND~500 Reference Manual
ARITHMETICAL INSTRUCTIONS

11.16 Unsigned divide

Format: Wn UDIV <a/r/t>,<b/r/t>,<c/w/t>

Assembly Hex Octal
notation Name code code

Wn UDIV word unsigned divide OFE48H+(n—l) 177llOB+(n—l)

Operation:

word unsigned division
<a> / (b) —> (C)
remainder -> Rn

Description:

The operands are treated as unsigned.
The <a> operand is divided by the (b) operand and the quotient is
stored in the <c> operand. The remainder is stored in the specified
register. Byte and halfword integer constants are sign extended and
the result of the sign extension is treated as unsigned.

Trap conditions: Addressing traps, Divide by Zero

Data status bits:

quotient = O _> Z
quotient.signbit ~> S
 = O —> DZ

Example:

Divide the arguments LONG and FACT on the alternative domain
(LONG/FACT) and leave the quotient in the address on the alternative
domain contained in RES, and put the remainder in R3

W3 UDIV ALT(B.LONG), ALT(B.FACT), ALT(IND(RES))

Norsk Data ND—05.009.03 EN

ND—SOO Reference Manual 181
ARITHMETICAL INSTRUCTIONS

11.17 Add with carry

Format: Wn ADDC <addend/r/t)

Assembly Hex Octal
notation Name code code

Wn ADDC word add with carry OFEQOH+(n—1) 1771008+(n—1)

Operation: Rn + C + <addend> -> Rn

Description:

The <addend> operand, the Carry bit in the status register (treated as
O or 1) and the contents of the specified register are added and the
result is stored in the specified register. This instruction is used
for multiple precision arithmetic.

Trap conditions: Addressing traps, Integer Overflow

Data status bits:

sum = O —> Z
sum.signbit —> S
integer overflow —> O
carry from most significant bit ~> C

Example:

Add variable MOST to R2 with carry

W2 ADDC MOST

Norsk Data ND-OS.OO9.03 EN

182 ND—SOO Reference Manual
ARITHMETICAL INSTRUCTIONS

11.18 Subtract with carry

Format: Wn SUBC <subtrahend/r/t)

Assembly _ Hex Octal
notation Name code code

Wn SUBC word subtract with carry OFE44H+(n—1) 177104B+(n—1)

Operation: Rn + C — <subtrahend> —1 —> Rn

Description:

The Carry bit in the status register (treated as O or 1) and the one's
complement of <subtrahend> are added to the contents of the specified
register. The result is then stored in the specified register. This
instruction is used for multiple precision arithmetic.

Trap conditions: Addressing traps, Integer Overflow

Data status bits:

result = O ~> Z
result.signbit -> S
carry -> C
integer overflow ~> 0

Example:

Subtract 400 hexadecimal from W2 with carry

W2 SUBC OQOOH

Norsk Data ND-05.009.03 EN

ND—SOO Reference Manual 183
ARITHMETICAL INSTRUCTIONS

11.19 Multiply and add

Format: tn MULAD <x/r/t>,<y/r/t>

Assembly Hex Octal
notation Name code code

BYn MULAD byte multiply and add OFCE8H+(n—l) 176350B+(n*l)
Hn MULAD halfword multiply and add OFCECH+(n—1) l76354B+(n-1)
Wn MULAD word multiply and add OA8H+(n—1) 2508+(n—1)
Fn MULAD float multiply and add OFCFOH+(n~l) 17636OB+(n—1)
Dn MULAD double float multiply and add OFCF4H+(n—1) 17636HB+(n—1)

Operation: Rn * (x) + (y) —> Rn

Description:

The contents of the specified register is multiplied by the <x>
operand, the (y) operand is added to the product and the result loaded
into the register.

Trap conditions: Addressing traps, Integer Overflow, Floating
Overflow, Floating Underflow

Data status bits:

result = O -> Z
result.signbit -> S
carry from most significant bit -> C (integer)
overflow —> O
floating underflow —> FU
floating overflow ~> F0

Example:

Multiply halfword register R2 by 60, forcing byte constant, and add
MINUTES

H2 MULAD 60:B, MINUTES

Norsk Data ND-05.009.03 EN

18M ND—BOO Reference Manual
ARITHMETICAL INSTRUCTIONS

11.20 Sum of products

Format: tn PSUM <x/r/t>,<y/r/t>

Assembly Hex Octal
notation Name code code

BYn PSUM byte add and multiply OFCF8H+(n—1) 17637OB+(n—l)
Hn PSUM halfword add and multiply OFCFCH+(n—l) 17637QB+(n-1)
Wn PSUM word add and multiply OFDOOH+(n—l) l76400B+(n—1)
Fn PSUM float add and multiply OFDOHH+(n—l) 176QOHB+(n—l)
Dn PSUM double float add and multiply OFDO8H+(n—l) 1764108+(n—1)

Operation: <x> * (y) + Rn ~> Rn

Description:

The <x> operand is multiplied by the (y) operand and the product is
added to the contents of the specified register.

Trap conditions: Addressing traps” Integer Overflow, Floating
Overflow, Floating Underflow

Data status bits:

result = O —> Z
result.signbit -> S
carry from most significant bit -> C (integer)
overflow -> O
floating underflow -> FU
floating overflow -> F0

Example:

Add local floats UNITCOST times UNITS to F4

F4 PSUM B.UNITCOST, B.UNITS

Norsk Data ND—O5.009.03 EN

ND—SOO Reference Manual 187
MATHEMATICAL FUNCTIONS

12 MATHEMATICAL FUNCTIONS

12.1 A_to the I‘th Egggr

Format: tn AXI <a/r/t>,<i/r/W>

Assembly Hex Octal
notation Name code code

Fn AXI float A to the I'th power OFCCOH+(n~l) l763OOB+(n-l)
Dn AXI double float A to the OFCC4H+(n-1) l763OHB+(n—l)

l'th power

Operation: <a>**<i> ~> Rn

Description:

The value of the <a> operand is raised to the power of the <i>
operand. The result is loaded into the specified float or double float
register. The <a> operand can be float or double float. The (1)
operand is word integer. A negative value of <i> and the value of <a>
equal to zero causes an illegal operand value trap condition and the
result is set to the largest possible floating point number
(approximately 5.8E+76). When <i> is zero, the result is one.

Trap conditions: Addressing traps, Floating Overflow, Floating
Underflow, Illegal Operand Value

Data status bits:

result = O —> Z
result.signbit —> S
floating underflow —> FU
floating overflow —> PC

Example:

Load 2.0 to the STATE'th power into F3

F3 AXI 2.0, STATE

Norsk Data ND-05.009.03 EN

188 ND—SOO Reference Manual
MATHEMATICAL FUNCTIONS

12.2 I to the J'th power

Format: tn IXI <i/r/t>,<j/r/t>

Assembly Hex Octal
notation Name code code

BYn IXI byte I to the J'th power OFC08H+(n-l) 1763108+(n—1)
Hn IXI halfword I to the J'th power OFCCCH+(n~l) 1763q+(n—l)
Wn IXI word I to the J’th power OFCDOH+(n—l) 1763ZOB+(n—l)

Operation: <i>**<j> —> datatype dependent part of register

Description:

The value of the <i> operand is raised to the power of the <j>
operand. The result is loaded into the specified register. When the
data type is BY or H, the result is loaded into the lower part of the
specified register. A negative value of (j) and a value of <i>
different from 1 or ~1 will give zero. A negative value of <j> and a
value of <i> equal to zero cause an illegal operand value trap
condition and a zero result.

When an overflow occurs, the specified register will be loaded with
the least significant part of the result from the calculation. The
rest of the result is lost, while the status register flags an
overflow.

Trap conditions: Addressing traps, Illegal Operand Value, Integer
Overflow

Data Status bits:

result = O —> Z
result.signbit -> S
overflow —> 0

Example:

Load the byte register R1 with the cube of argument SIDE

BYl IXI IND(B.SIDE), 3

Norsk Data ND-05.009.03 EN

ND-SOO Reference Manual 189
MATHEMATICAL FUNCTIONS

12.3 Eolynomial

Format: tn POLY <x/r/t>,<m/s/BY>,
<cm/r/t),...,<cl/r/t>,<cO/r/t>

Assembly I Hex Octal
notation Name code code

Fn POLY floating polynomial OFCEOH+(n—l) 1763QOB+{n—l)
Dn POLY double float polynomial OFCEuH+(n—1) 1763443+(n—1)

Operation:
m 2

<cm>*<x> + + <c2>*<x> + <cl>*<x> + (CO) -> Rn

Description:

This instruction calculates a polynomial of degree (m). The result is
loaded into the specified float or double float register. The
instruction requires <m>+l coefficients. <m> must always be a positive
constant less than 256, otherwise an illegal operand specifier trap
condition occurs.

If floating overflow or underflow occurs, the trap will not have any
effect until the instruction has completed execution, even if the trap
condition occurred at an intermediate step. The Z and S bits reflect
the final result.

Trap conditions: Addressing traps, Floating Overflow, Floating
Underflow, Illegal Operand Specifier

Data status bits:

result = O —> Z
result.signbit —> S
floating underflow -> FU
floating overflow ~> F0

Example:

Calculate the expression A * X**2 + B * X + C and leave the result in
F3. A, B and C are constants

F3 POLY X, 2, A, B, C

Norsk Data ND-05.009.03 EN

190 ND-SOO Reference Manual
MATHEMATICAL FUNCTIONS

12.4 Sguare root

Format: tn SQRT <argument/r/t>

Assembly Hex Octal
notation Name code code

Fn SQRT float square root OFCD4H+(n-1) l76324B+(n-l)
Dn SQRT double float square root OFCD8H+(n—l) 17633OB+(n—1)

Operation: sqrt(<argument>) ~> Rn

Description:

The square root of the argument is calculated and the result is loaded
into the specified float or double float register. A negative argument
is illegal and will give a result of zero and cause an invalid
operation trap condition.

Trap conditions: Addressing traps, InValid Operation

Data status bits: result = O ~> Z

Example:

Load double float register Dl with the square root of AREA

D1 SQRT AREA

Norsk Data ND-05.009.03 EN

ND—SOO Reference Manual 191
MATHEMATICAL FUNCTIONS

12.5 2%

Format: tn SIN <argument/r/t)

Assembly Hex Octal
notation Name code code

Fn SIN float sine OFF58H+(n—l) 17753OB+(n—l)
Dn SIN double float sine OFF84H+(n—l) 1776048+(n~1)

Operation: sine(<argument>) ~> Rn

Description:

The trigonometric sine of <argument> is loaded into the specified
float or double float register. The maximum absolute value of
<argument> is 65536.0 radians; a larger value will cause an invalid
operation trap condition and the specified register will be set to
zero.

Trap conditions: Addressing traps, InValid Operation

Data status bits:

result = O —> Z
result.signbit —> S

Example:

Calculate the sine of 2 radians and load into F2

F2 SIN 2.0

Norsk Data ND-05.009.03 EN

192 ND—SOO Reference Manual
MATHEMATICAL FUNCTIONS

12.6 Arc sine

Format: tn ASIN <argument/r/t>

Assembly ‘ Hex Octal
notation Name code code

Fn ASIN float arcsine OFFBCH+(n~1) 17753HB+(n—l)
Dn ASIN double float arcsine OFF88H+(n—l) 1776IOB+(n—l)

Operation: arcsine(<argument>) -> Rn

Description:

The trigonometric arcsine of (argument) is loaded into the specfied
float or double float register. The result value gives the angle in
radians, in the range —pi/2 to pi/2. (argument) should be in the range
—1 to +1, otherwise an invalid operation trap condition will occur and
the specified register will be set to zero.

Trap conditions: Addressing traps, InValid Operation

Data status bits:

result = O —> Z
result.signbit —> S

Example:

Replace the number in F2 with its arcsine

F2 ASIN F2

Norsk Data ND*O5.009.03 EN

ND—SOO Reference Manual 193
MATHEMATICAL FUNCTIONS

12.7 Cosine

Format: tn COS <argument/r/t)

Assembly Hex Octal
notation Name code code

Fn COS float cosine OFF6OH+(n—l) 1775408+(n—l)
Dn COS double float cosine OFFSCH+(n—1) 1776lQB+(n—l)

Operation: cosine(<argument>) —> Rn

Description:

The trigonometric cosine of (argument) is loaded into the specified
float or double float register. The maximum absolute value of
<argument> is 65536.0 radians; a larger value will cause an invalid
operation trap condition and the specified register will be set to
zero.

Trap conditions: Addressing traps, InValid Operation

Data status bits:

result = O —> Z
result.signbit —> S

Example:

Calculate the cosine of double—precision ANGLE and load into D2

D2 COS ANGLE

Norsk Data ND-05.009.03 EN

194 ND~SOO Reference Manual
MATHEMATICAL FUNCTIONS

12.8 Arc cosine

Format: tn ACOS <argument/r/t)

Assembly Hex Octal
notation Name code code

Fn ACOS float arc cosine OFF64H+(n—1) l775448+(n-1)
Dn ACOS double float arc cosine OFF9OH+(n—1) 1776ZOB+(n-1)

Operation: arccosine(<argument>) ~> Rn

Description:

The trigonometric arccosine of <argument> is loaded into the specified
float or double float register. The result value gives the angle in
radians in the range 0 to pi. < argument) should be in the range —1 to
+1, otherwise an invalid operation trap condition will occur and the
specified register is set to zero.

Trap conditions: Addressing traps, InValid Operation

Data status bits:

result = 0 w) Z
result.signbit ~> S

Example:

Load into F4 the arc cosine of the field FOO in the record pointed to
by the R register

F4 ACOS R.FOO

Norsk Data ND~05.009.03 EN

ND—SOO Reference Manual 195
MATHEMATICAL FUNCTIONS

12.9 :angent

Format: tn TAN <argument/r/t)

Assembly Hex Octal
notation Name code code

Fn TAN float tangent OFF68H+(n—l) 177550B+(n—1)
Dn TAN double float tangent 0FF94H+(n-1) 17762uB+(n—1)

Operation: tangent(<argument>) —> Rn

Description:

The trigonometric tangent of (argument) is loaded into the specified
float or double float register. The maximum absolute value of
<argument> is 65536.0 radians; a larger value will cause an invalid
operation trap condition and the specified register is set to zero.

Trap conditions: Addressing traps, InValid Operation

Data status bits:

result = O m) Z
result.signbit —> 8

Example:

Calculate the tangent of argument SPREAD and load into F4

F4 TAN SPREAD

Norsk Data ND~05.009.03 EN

196

12.10 Arc tangent

ND—SOO Reference Manual
MATHEMATICAL FUNCTIONS

Format: tn ATAN <argument/r/t)

Assembly Hex Octal
notation Name code code

Fn ATAN float arc tangent OFF6CH+(n—1) 1775548+(n—1)
Dn ATAN double float arc tangent OFF98H+(n—1) 17763OB+(n—l)

Operation: arctangent(<argument>) —> Rn

Description:

The trigonometric arctangent of (argument) is loaded into the
specified float or double float register. The result value gives the
angle in radians in the range ~pi/2 to pi/2.

Trap conditions: Addressing traps

Data status bits:

result = O —> Z
result.signbit —> S

Example:

Load into F4 the arctangent of RAY

F4 ATAN RAY

Norsk Data ND~05.009.03 EN

NDwSOO Reference Manual 197
MATHEMATICAL FUNCTIONS

12.11 Arc tangent two argument

Format: tn ATANZ <num/r/t), <den/r/t>

Assembly , Hex Octal
notation Name code code

Fn ATANZ float arctangentZ OFF7OH+(n—1) 17756OB+(n—1)
Dn ATANZ double float arctangentZ OFF9CH+(n-l) 177634B+(n—1)

Operation: arctangent(<num>/<den>) —> Rn

Description:

The trigonometric arctangent of <num>/<den> is loaded into the
specified float or double float register. The result value gives the
angle in radians in the correct quadrant in the range -pi to pi. A
zero value of both <num> and <den> will cause an invalid operation
trap condition and the specified register will be set to zero.

Trap conditions: Addressing traps, InValid Operation

Data status bits:

result = O -> Z
result.signbit —> S

Example:

Load into D3 the arctangent of WIDTH divided by DIST

D3 ATANZ WIDTH, DIST

Norsk Data ND~05.009.03 EN

198 ND-SOO Reference Manual
MATHEMATICAL FUNCTIONS

12.12 Exponential

Format: tn EXP <argument/r/t)

Assembly Hex Octalnotation Name code code

Fn EXP float exponential OFF74H+(n-1) 177564B+(n—1)Dn EXP double float exponential OFFAOH+(n—1) 1776QOB+(n—1)

Operation: e ** <argument) -) Rn

Description:

The exponential of (argument) is loaded into the specified float or
double float register. (e = 2.718281828459045...)

The maximum value of (argument) is 255*ln(2) (approximately 176.75). A
larger argument will cause an invalid operation trap and the specified
register will be set to the largest possible floating point number
(approximately 5.8E+76). An (argument) value less than —255*ln(2) will
give a result value of zero.

Trap conditions: Addressing traps, aalid Operation

Data status bits:

result = O ~> Z
O -> 9

Example:

Load the antilogarithm of NATLOG into D1

D1 EXP NATLOG

Norsk Data ND—O5.009.03 EN

ND~SOO Reference Manual 199
MATHEMATICAL FUNCTIONS

12.13 Eatural logarithm

Format: tn ALOG <argument/r/t)

Assembly Hex Octal
notation Name code code

Fn ALOG float natural logarithm OFF78H+(n—l) 17757OB+(n—1)
Dn ALOG double float nat. logarithm OFFAQH+(n—l) 177644B+(n—l)

Operation: ln(<argument>) -> Rn

Description:

The natural logarithm (base e = 2.718281828459OH5...) of <argument> is
loaded into the specified float or double float register. <argument>
should be positive; zero or negative values cause an invalid operation
trap condition and a result of —5.8*lO**76.

Trap conditions: Addressing traps, aalid Operation

Data status bits:

result = O —> Z
result.signbit -> 8

Example:

Load the natural logarithm of the th element of global array COEFF
into D1

D1 ALOG COEFF(R1)

Norsk Data ND-05.009.03 EN

200 ND—BOO Reference Manual
MATHEMATICAL FUNCTIONS

12.14 fiinarx logarithm

Format: tn ALOGZ <argument/r/t)

Assembly : Hex Octal
notation Name code code

Fn ALOG2 float binary logarithm OFF7CH+(n—l) 177574B+(n—l)
Dn ALOG2 double float bin. logarithm OFFA8H+(n—1) l776508+(n~l)

Operation: log2(<argument>) —> Rn

Description:

The base 2 logarithm of (argument) is loaded into the specified float
or double float register. (argument) should be positive; zero or
negative values cause an invalid operation trap condition and a result
of v5.8*10**76.

Trap conditions: Addressing traps. InValid Operation

Data status bits:

result = O —>
result.signbit —>

Example:

Load the binary logarithm of local variable RANGE into Fl

Fl ALOGZ B.RANGE

Norsk Data ND—05.009.03 EN

ND~SOO Reference Manual 201
MATHEMATICAL FUNCTIONS

12.15 Common logarithm

Format: tn ALOGlO <argument/r/t)

Assembly Hex Octal
notation Name code code

Fn ALOGlO float common logarithm OFF8OH+(n—l) 1776OOB+(n~l)
Dn ALOGlO double float common log. OFFACH+(n—l) 177654B+(n-1)

Operation: log(<argument>) —> Rn

Description:

The base 10 logarithm of (argument) is loaded into the specified float
or double float register. (argument) should be positive; zero or
negative values will cause an invalid operation trap condition and a
result of —5.8*10**76.

Trap conditions: Addressing traps, InValid Operation

Data status bits:

result = O —> Z
result.signbit -> S

Example:

Load the common logarithm of BIGNUMB into F4

F4 ALOGlO BIGNUMB

Norsk Data ND~05.009.03 EN

202 ND—SOO Reference Manual

Norsk Data ND-05.009.03 EN

ND—BOO Reference Manual 205
CONTROL INSTRUCTIONS

13 CONTROL INSTRUCTIONS

13.1 Unconditional relative jump

Format: GO <<displacement>>

Assembly Hex Octal
notation Name code code

GO:B jump byte OCOH 3OOB
GO:H jump halfword OClH 3018
GOzw jump word OCZH 302B

Operation: P + <<displacement>> -> P

Description:

Perform a jump relative to the current program counter value. GO uses
a direct operand and has three formats, with a byte, halfword, or word
displacement part. The displacement is signed and is found in the l, 2
or 4 bytes following the instruction code.

Trap conditions: Addressing traps, Branch Trap

Data status bits: Unaffected

Example:

Jump to BACK (Assembler will calculate displacement)

BACK 2

GO BACK

Norsk Data ND—05.009.03 EN

206 ND~500 Reference Manual
CONTROL INSTRUCTIONS

13.2 Unconditional absolute jump

Format: JUMPG <address/r/W)

Assembly Hex Octal
notation Name code code

JUMPG jump general OBQH 264B

Operation: <address> ~> P

Description:

Perform a jump to the absolute address given by the operand. JUMPG
requires a general operand. The (address) operand may not be prefixed
by the operand specifier prefix ALT.

If a descriptor range trap occurs, the next instruction to be executed
is the one following the JUMPG instruction ("fall through").

Trap conditions: Addressing traps, Branch Trap, Illegal Operand
Specifier

Data status bits: Unaffected

Example:

Jump to the Rlst address in a jump table described by CASETABLE

JUMPG DESC (CASE’I‘ABLE) (R1)

Norsk Data ND-05.009.03 EN

ND~500 Reference Manual 207
CONTROL INSTRUCTIONS

13.3 genditional jump

Formats:

IF (rel) do <<displacement>>

IF (rel) GO <bit No./r/BY>, <<displacement>>

Operation:

if (rel) then
(P)+<<displacement>> —> P

endif

Description:

A conditional jump will cause transfer of control if and only if a
specified condition is true.

The condition is specified in terms of the status bits set by
instructions operating on data values. If the condition indicated by
the instruction is true, the sign—extended byte or halfword
<<displacement>> is added to the program counter.

Conditional jump on specified bits in the status register is possible
by the second format of the instruction. In this case, the (rel)
operand may be ST or -ST, and the (bit No.> operand specifies which
bit in the status register to test. <bit No.> has the range 0 to 29
inclusive. Other values for (bit No.> will cause an illegal operand
value trap condition; no jump is performed if <rel> is ST, the jump is
performed if (rel) is -ST.

Magnitude tests are only meaningful after compare and subtract
instructions, as carry is reset in load instructions. IF >>= GO and
IF << GO may be used as explicit tests on carry.

Trap conditions: Addressing traps, Branch Trap, Illegal Operand Value

Data status bits: Unaffected

In the following table all conditional jump instructions are listed
with operation code, assembly notation, data status test for jumping
and name. They all have conditional jump as the first part of the
name; alt. is an abbreviation for alternate.

Norsk Data ND~05.009.03 EN

208 ND-BOO Reference Manual
CONTROL INSTRUCTIONS

Assembly Hex Octal
notation Condition Name code code

IF = GO Z=l equal
IF Z GO (alt. assembly notation)
IF = GO:B OCMH 3ouB
IF = GO:B OCBH 3058
IF >< GO Z=O unequal
IF ~Z GO (alt. assembly notation)
IF >< GO:B OC6H 306B
IF >< GO:H OC7H 3078

IF > GO 8:0 and Z=O greater signed
IF > GO:B OC8H 3108
IF > GO:H OC9H 3118
IF < GO S=l less signed
IF S G0 (alt. assembly notation)
IF < GO:B OCAH 3128
IF < GO:B OCBH 3138

IF >= GO S=O greater or equal signed
IF ~S GO (alt. assembly notation)
IF >= GO:B OCCH 31MB
IF >= GO:B OCDH 3153
IF <= GO 8:1 or Z=l less or equal signed
IF = GO:B OCEH 3168
IF (2 GO:H OCFH 3178

IF K GO K=1 flag set
IF K GO:B ODOH 320B
IF K GO:H ODlH 321B
IF —K G0 K=O flag reset
IF ~K GO:B OD2H 322B
IF —K GO:B OD3H 3238

IF >> GO 0:1 and 2:0 greater magnitude
IF >> GO:B ODMH 3248
IF >> GO:B ODSH 325B
IF >>= GO C=1 greater or equal magnitude
IF C GO (alt. assembly notation)
IF >>= GO:B OD6H 326B
IF >>= GO:H OD7H 3278

IF << GO C=O less magnitude
IF —C GO (alt. assembly notation)
IF << GO:B OD8H 330B
IF << GO:H OD9H 331B
IF <<= GO C=O or 2:1 less or equal magnitude
IF <<= GO:B ODAH 332B
IF <<= GO:H ODBH 3338

IF ST GO specified bit in status
IF ST GO:B register set OFC7BH 176173B
IF ST GO:H OFD64H 176544B
IF -ST GO specified bit in status
IF -ST GO:B register not set OFD65H 1765458
IF ~ST GO:B OFC8MH 1762048

Norsk Data ND-05.009.03 EN

NDnSOO Reference Manual 209
CONTROL INSTRUCTIONS

13.“ hoop with increment

Format: t LOOPI (index/rw/t),<limit/r/t>,<<displacement))

Assembly Hex Octal
notation Name code code

BY LOOPlzB byte loop increment OFCDEH 1763368
BY LOOPI:H byte loop increment OFDlEH 176436B
H LOOPI:B halfword loop increment OFCDFH 1763378
H LOOPI:H halfword loop increment OFDlFH 176M378
W LOOPlzB word loop increment OBFH 277B
W LOOPl word loop increment OElH 3ulB
F LOOPI:B float loop increment OFDlCH 17643HB
F LOOPlzfl float loop increment OFD21H 176441B
D LOOPlzB double float loop increment OFDlDH 176u35B
D LOOPI:H double float loop increment OFD22H 1764428

Operation: if (index + l) - (limit) > 0 then
address of next instruction —) P

else
P+<<disp1acement>> m) P

endif
(index) + 1 —> (index)

Description:

The (index) operand is incremented by one and compared with (limit).
If it is less than or equal to (limit), the signed <<displacement>> is
added to the program counter; otherwise control goes to the next
instruction.

Normally the LOOPI instruction will be placed at the end of the loop,
with a negative <<displacement)>. The <<displacement>> is the number
of bytes from the first byte of the loop to the first byte of the
LOOPI instruction.

The (index) and (limit) operands are of the same data type, which may
be BY, H, W, F or D. <<displacement>> is a byte or halfword direct
operand, depending on the instruction.

Norsk Data ND-05.009.03 EN

210 ND—SOO Reference Manual
CONTROL INSTRUCTIONS

Trap conditions: Addressing traps, Branch Trap

Data status bits;

modified index = O -> Z
modified index.signbit -> S

Example:

Repeat the instructions from AGAIN until local byte COUNTER reaches
100

AGAIN:

BY LOOPI B.COUNTER, 100, AGAIN

Norsk Data ND-05.009.03 EN

NDwSOO Reference Manual 211
CONTROL INSTRUCTIONS

13.5 Loop with decrement

Format: t LOOPD <index/rw/t>,<limit/r/t>,<<displacement>>

Assembly Hex Octal
notation Name code code

BY LOOPDzB byte loop decrement OFD23H 1764438
BY LOOPDzH byte loop decrement OFD28H 1764508
H LOOPD:B halfword loop decrement OFD24H 1764448
H LOOPD:H halfword loop decrement OFD29H 1764518
W LOOPD:B word loop decrement OFD25H 1764458
w LOOPDzH word loop decrement OFDZAH 1764528
F LOOPDzB float loop decrement OFD26H 1764468
F LOOPDzH float loop decrement OFDZBH 1764538
D LOOPDzB double float loop decrement OFD27H 1764478
D LOOPD:H double float loop decrement OFDZCH 1764548

Operation: (index) — 1 —> (index)
if <index> — (limit> < 0 then

address of next instruction —> P
else

8+ <<displacement>> -> 8
endif

Description:

The <index> operand is decremented by one and compared with <limit>.
If it is greater than or equal to <limit>, the signed <<displacement>>
is added to the program counter; otherwise control goes to the next
instruction.

Normally the LOOPD instruction will be placed at the end of the loop,
with a negative <<displacement>>. <<displacement>> is the number of
bytes from the first byte of the loop to the first byte of the LOOPD
instruction.

The <index> and <1imit> operands are of the same data type, which may
be BY, H, W, F or D. <<displacement>> is a byte or halfword direct
operand, depending on the instruction.

Norsk Data ND-05.009.03 EN

212 ND—SOO Reference Manual
CONTROL INSTRUCTIONS

Trap conditions: Addressing traps, Branch Trap

Data status bits:

modified index = O ~> Z
modified index.signbit —> S

Example:

Repeat from TOP until word register R3 is decremented to zero

TOP:

W LOOPD R3, 02W, TOP

Norsk Data ND~05.009.03 EN

ND-SOO Reference Manual 213
CONTROL INSTRUCTIONS

13.6 Loop general

Format: LOOP (index/rw/t),(step/r/t>,
(limit/r/t),(<displacement>>

Assembly Hex Octal
notation Name code code

BY LOOPzB byte loop general step OFDZDH 1764558
BY LOOP:H byte loop general step OFD32H 1764628
H LOOP:B halfword loop general step OFDZEH 1764568
H LOOP:H halfword loop general step OFD3BH 1764638
w LOOP:B word loop general step OFDZFH 1764578
W LOOP:H word loop general step OFD34H 1764648
F LOOP:8 float loop general step OFD3OH 1764608
F LOOP:H float loop general step OFD35H 1764658
D LOOPzB double float loop general step OFD31H 1764618
D LOOP:H double float loop general step OFD36H 1764668

Operation: <index>+<step> -) (index)
if (step) > O and (index) — (limit)) O
or (step) (O and (index) ~ (limit) (O then

address of next instruction —> P
else

P + ((displacement>> —) P
endif
if (step) = 0 then

illegal operand value trap condition
endif

Description:

The value of the (step) operand is added to the (index) operand . If
the sign of (index) — <limit) is equal to the sign of the (step)
operand, the control goes to the next instruction. Otherwise the
signed <(displacement)> is added to the program counter.

Normally the LOOP instruction will be placed at the end of the loop,
and given a negative ((displacement>>. The ((displacement)) is the
number of bytes from the first byte of the loop to the first byte of
the LOOP instruction.

The (index), (step) and (limit) operands are of the same data type,
which may be BY, H, w, F or D. (<displacement>> is a byte or halfword
direct operand, depending on the instruction.

A (step) value of zero will cause an illegal operand value trap
condition and execution continues at the next instruction.

Norsk Data ND—OS.OO9.03 EN

214 ND~500 Reference Manual
CONTROL INSTRUCTIONS

Trap conditions: Addressing traps, Branch Trap, Illegal Operand Value

Data status bits:

modified index = O —> Z
modified index.signbit -> S

Example:

Execute the statements from LABELL with float record variable SIZE
being incremented by 3.5 for each iteration up to a maximum of 35

LABELL:

F LOOP R.SIZE, 3.5, 35, LABELL

Norsk Data ND~05.009.03 EN

ND—SOO Reference Manual 215
CONTROL INSTRUCTIONS

13.7 Call subroutine general

Format: CALLG (subr. addr/r/w>,<no of arg/s/BY),
<arg1/aa/W>,...,<argn/aa/W>

Assembly _ Hex Octal
notation Name code code

CALLG call subroutine general OBSH 2658

Operation:

Calculate the effective addresses of the arguments and prepare
for the entry point at (subr. addr.>.
Jump to the subroutine entry point found at that address.

Description:

Call the subroutine specified by <subr. addr.>. This is a general
operand and it must refer to an entry point instruction. Otherwise an
instruction-sequence error—trap condition occurs.

The <no of arg> operand must be a constant byte integer less than
256% Other data types which are not constants will cause an illegal
operand specifier trap condition.

The effective addresses of the arguments in the instruction are
calculated and stored for use by the entry point instruction. The
arguments are always interpreted as word integers. The data—type-
dependent addressing modes (post—indexed or descriptor address code
format) should be used with care, as the result will be wrong for data
types other than word. <argn> operands of type register or constant
will cause an illegal operand specifier trap condition, as neither
registers nor constants have an address in data memory. The arguments
may not be prefixed by the operand specifier prefix ALT.

Trap conditions: Addressing traps, Call Trap, Illegal Operand
Specifier, Instruction Sequence Error

Data status bits: Unaffected

Example:

Call PRINT with arguments UNIT, FORMAT and the local variable VALUE

CALLG PRINT, 3, UNIT, FORMAT, B.VALUE

Norsk Data ND~05.009.03 EN

216 ND-BOO Reference Manual
CONTROL INSTRUCTIONS

13.8 Call subroutine absolute

Format: CALL <<subr. addr.>>,<no of arg/s/BY>,
<argl/aa/W>,...<argn/aa/W>

Assembly Hex Octal
notation Name code code

CALL call subroutine absolute OC3H 303B

Operation:

Calculate the effective addresses of the arguments and prepare
for the entry point at <<subr. addr.>>.
Jump to the subroutine entry point found at that address.

Description:

Call the subroutine specified by <<subr. addr.>>. The subroutine
address is a direct operand in the four bytes following the
instruction code. It must refer to an entry point instruction,
otherwise an instruction sequence error trap condition occurs.

The <no of arg> operand must be a constant byte integer, i.e. less
than 256. Other data types which are not constants will cause an
illegal operand specifier trap condition.

The effective addresses of the arguments in the instruction are
calculated and stored for use by the entry point instruction. The
arguments are always interpreted as word integer. The data—type-
dependent addressing modes (post-indexed or descriptor address code
format) should be used with care, as the result will be incorrect for
data types other than word. <argn> operands of type register or
constant will cause an illegal operand specifier trap condition, as
neither registers nor constants have an address in data memory. The
arguments may not be prefixed by the operand specifier prefix ALT.

Trap conditions: Addressing traps, Call Trap, Illegal Operand
Specifier, Instruction Sequence Error

Data status bits: Unaffected

Example:

Call SUBR with the value of local word variable READONLY. Value
transfer should be used with word—size data items only

CALL SUBR, l, IND(B.READONLY)

Norsk Data NDmOS.OO9.03 EN

ND-SOO Reference Manual 217
CONTROL INSTRUCTIONS

13.9 initialize stack

Format: INIT <<bottom of stack/r/W>>,
<stack demand of main program/r/W),
(total system stack demand/r/W)

Assembly Hex Octal
notation Name code code

INIT initialize stack ODCH 334B

Operation:

<<bottom of stack>> —> B

<<bottom of stack>> +
<total system stack demand> —> TOS

<<bottom of stack>> +
(stack demand of main program) —> 8.8?
O ~> B.PREVB
O —> B.RETA —> L

Description:

The stack is initialized according to the instruction operands:
The direct operand <<bottom of stack>> is a 4 byte absolute address,
which is loaded into the B register. The B.SP location, the stack
pointer, is loaded with the sum of <<bottom of stack>> and <stack
demand of main program>. <<bottom of stack>> and (total system stack
demand> are added and the result is loaded into the top of stack
register, TOS. PREVB and BETA are cleared. A value of (stack demand of
main program> greater than or equal to (total system stack demand>
will cause a stack overflow trap condition.

Trap conditions: Addressing traps, Stack Overflow

Data status bits: Unaffected

Ekample:

Initialize a new stack at FRAME, requiring OlOOOOH stack locations for
the system, OlOOOH for the main program

INIT FRAME, OlOOOOH, OlOOOH

Norsk Data ND-05.009.03 EN

218 ND—500 Reference Manual
CONTROL INSTRUCTIONS

13.10 Subroutine entry points

Formats:

ENTM <<bottom of stack/r/W>>,<stack demand of main program/r/W>,
(total system stack demand/r/W)

ENTD

ENTS (stack demand/r/W)

ENTSN (stack demand/r/W>,<max no. of arg./r/w>

ENTF <<address of local data area/r/w>>

ENTFN <<address of local data area/r/w>>,<max no. of arg./r/W>

ENTT (trap handler main program stack demand/r/W),
(total trap handler stack demand/r/W>

ENTB (log size/r/BY)

Operation:

Perform local data area initialization depending on
the type of entry point.

Description:

The entry point instruction specifies the kind of local data area
initialization performed on execution of a subroutine call
instruction. This initialization includes transfer of the argument
addresses to the new local data area at subroutine entry points, and
saving of the current register block in the new local data area at the
trap handler entry point.

Execution of an entry point instruction (except ENTT) not resulting
from a subroutine call will cause an instruction sequence error trap
condition. ENTT may only be executed as a result of a trap, and may
not be used as an entry point by a CALL or CALLG.

The parameters to the subroutine entry point instructions may not be
prefixed by the operand specifier prefix ALT.

Norsk Data ND-05.009.03 EN

ND—SOO Reference Manual 219
CONTROL INSTRUCTIONS

ENTM ~ enter module

Assembly Hex Octal
notation code code

ENTM <<bottom of stack/r/W>>, ODFH 337B
(stack demand of main program/r/W),
(total system stack demand/r/w>

Description:

When the ENTM entry point is used, a new stack is initialized. A value
of <stack demand of main program) greater than or equal to (total
system stack demand) will cause a Stack overflow trap condition.

If ENTM is entered from another domain, TOS is not saved on the old
stack, but is stored in the domain information table. Also THA, LL and
HL are stored and new contents for these registers are fetched from
the new domain information table.

ENTM is the only entry point that may be called from another domain.

Trap conditions: Addressing traps, Instruction Sequence Error, Stack
Overflow

Initializations performed:

<<bottom of stack>> —> B
oldB —> B.PREVB
TOS -> IND(oldB.SP)
<<bottom of stack>> +
<total system stack demand) ~> TOS
return address —> B.RETA —> L
<<bottom of stack>> +
(stack demand of main program) -> B.SP
number of arguments —> B.N
addresses of arguments -> B.arg

If change of domain:

0 —> B.PREVB
O ~> B.RETA
TOS, LL, HL, THA —> old domain information table
TOS, LL, HL, THA entries in
new domain information table -> TOS, LL, HLw THA

Norsk Data ND~05.009.03 EN

220

ENTD — enter subroutine directly

ND—5OO Reference Manual
CONTROL INSTRUCTIONS

Assembly Hex Octal
notation code code

ENTD O9CH 234B

Description:

With ENTD as entry point, no initialization of local data area or
parameter address transfer is performed. If the subroutine calls other
subroutines, the L register must be saved and restored explicitly.

The call to ENTD must have zero parameters. A non—zero number of
arguments will cause an instruction sequence error trap condition.

Trap conditions: Address Trap Fetch, Instruction Sequence Error

Initializations performed:

return address —> L

Norsk Data ND-05.009.03 EN

ND—SOO Reference Manual 221
CONTROL INSTRUCTIONS

ENTS ~ enter stack subroutine

Assembly Hex Octal
notation code code

ENTS (stack demand/r/W) OB8H 2708

Description:

The (stack demand) is the number of bytes needed for the local data
field of the subroutine, including the predefined locations PREVB,
RETA, SP, AUX and N (a total of 20 bytes). There will be a stack
overflow trap condition if B + <stack demand) is greater than or equal
to TOS.

ENTSN - enter maximum number of arguments stack subroutine

Assembly Hex Octal
notation code code

ENTSN (stack demand/r/W>,<max no. of arg./r/W> OBAH 2728

Description:

ENTSN is similar to ENTS, but only the (max no. of arg.) are
transferred to the stack, the remaining ones are ignored.

Trap conditions: Addressing traps, Stack Overflow, Instruction
Sequence Error

Initializations performed:

B.SP ~> B
oldB —> B.PREVB
return address —> B.RETA —> L
newB + <stackdemand> -> B.SP
number of arguments —> B.N
addresses of arguments —> B.ARG

Norsk Data ND—05.009.03 EN

222

ENTF — enter subroutine

ND-SOO Reference Manual
CONTROL INSTRUCTIONS

Assembly Hex Octal
notation code code

ENTF <<address of local data area/r/w>> ODDH 335B

Description:

Enter subroutine with fixed data area. Variables will keep their
values between calls.

ENTFN — enter maximum number of arguments subroutine

Assembly Hex Octal
notation code code

ENTFN <<address of local data area/r/W>>,
(max no. of arg./r/W>

Description:

ODEH 336B

ENTFN is similar to ENTF, but only the (max no. of arg.) will be
transferred to the stack, the remaining ones ignored.

Trap conditions: Addressing traps, Instruction Sequence Error

Initializations performed:

<<address of local data area>> ->
oldB —>
return address ->
oldB.SP —>
number of arguments —>
addresses of arguments —>

Norsk Data ND—05.009.03 EN

w
w

w
m

w
w

ND-SOO Reference Manual 223
CONTROL INSTRUCTIONS

ENTT — enter trap handler

Assembly Hex Octal
notation code code

ENTT (trap handler main program stack demand/r/W), OBCH 274B
(total trap handler stack demand/r/W>

Description:

ENTT is the trap handler entry point. A trap handler is called when a
trap condition arises and the trap enable bit is set for the trap in
question. When a trap handler routine is called, the start address is
taken from a trap handler entry point vector. The THA register holds
the address of this vector. The area following the trap handler vector
is used as a local data area for the trap handler routine called. It
has a special layout illustrated in the chapter 6 on traps.

The register block is stacked as shown in table 5 on page 15.

The instruction may start at any byte in the first word. 'Trapping P',
saved as argl, is the address of the first byte of the instruction
causing the trap.

Trap conditions: Addressing traps, Instruction Sequence Error

(No traps are handled locally.)

Norsk Data ND-05.009.03 EN

224 ND-5OO Reference Manual
CONTROL INSTRUCTIONS

Figure 43 shows the layout of the data structure when entering ENTT.

B—register:

B.PREVB

B.RETA

B.SP

B.AUX

B.20

B.argl

etc .

B.arg40

TOS register:

THA + NOOB

__, O

O

B + Trap handler main program
stack demand /r/W

Protect violation information

N = 628

Trapping P
- and the rest of the -

— in chapter 2 -
register block as numbered

contents —> L

B + total trap handler stack demand /r/w

Figure 43. Layout of Data Structure when entering ENTT

Norsk Data ND—05.009.03 EN

ND—BOO Reference Manual 225
CONTROL INSTRUCTIONS

ENTB — enter subroutine with buddy allocation

Assembly Hex Octal
notation code code

ENTB (log size/r/BY) OBDH 2758

Description:

A local data area of size 2**<log size> words is allocated from the
heap and the subroutine is entered. There will be a stack overflow
trap if there are no elements of the specified size (or larger)
available from the heap. (See section 3.3 on buddy allocation for
detailed description.)

In certain combinations of ENTB and ENTS there is a danger of
allocating overlapping data areas.

Trap conditions: Addressing traps, Stack Overflow, Instruction
Sequence Error

Initializations performed:

address of heap element -> B
oldB -> B.PREVB
oldB.SP —> B.SP
return address -> B.RETA ~> L
log size —> B.LOG
number of arguments -> B.N
addresses of arguments —> B.ARG

Norsk Data ND-05.009.03 EN

226 ND—SOO Reference Manual
CONTROL INSTRUCTIONS

13.11 Subroutine return

Assembly Hex Octal
notation Name code code

RET clear flag return from subroutine O8OH 200B
RETK set flag return from subroutine O81H 201B
RETD return from direct subroutine 082H 2028
RETT trap handler return O83H 2038
IF K BET if flag set subroutine return O9DH 235B
RETB buddy subroutine return OFElCH 1770348
RETBK set flag buddy subroutine return OFElDH 1770358

Operation:

RET: ' O —> STATUS.K B.RETA -> P -> L B.PREVB —> B

RETK: 1 —> STATUS.K B.RETA -> P —> L B.PREVB -> B

RETD: L ~> P

RETT: The register block is loaded from B.arg2..B.arg40. OTE.
TEMM, CED and CAS are loaded from the domain information
table. The status register is loaded partly from
B.arg18..B.arg19 and partly from the domain information

table

IF K BET: If STATUS.K = 1 then
B.RETA ~> P w) L B.PREVB —> B

endif

RETB: Local data area released to heap
O ~> STATUS.K B.RETA -> P -> L B.PREVB -> B

RETBK: Local data area released to heap
1 -> STATUS.K B.RETA -> P —> L B.PREVB -> B

Description:

RET, RETK

Return from subroutine with local data area. The new base register and
return address are taken from the current local data area. RETK will
set the flag bit of the status register; BET will clear it.

IF K RET

If the flag bit K is set when the IF K RET instruction is executed, a
subroutine return is performed with the flag bit remaining set.
Otherwise control goes to the next instruction.

Norsk Data ND—05.009.03 EN

ND—SOO Reference Manual 227
CONTROL INSTRUCTIONS

BETD

Load the new program counter from the link register.

BETT

Return from the trap handler. When RETT is executed, the register
block is loaded from the first part of trap—handler data area. The
non-ignorable and fatal status bits are loaded from the domain
information table. The OTE register is loaded from the domain
information table. PREVB and BETA are not used or tested. CED of the
trapped domain is compared to actual CED. If they are unequal, CED is
changed back to trapped domain.

BETB, RETBK

Return from subroutine using a heap element as local data area. The
local data area is released to the heap described by the variables
pointed at by the TOS register. (See section about heap management for
further explanation.)

Trap conditions: Addressing traps, Stack Underflow, Branch Trap

Data status bits: Unaffected

The programmer must ensure that the appropriate return instruction is
executed. Subroutines entered through an ENTS, ENTSN, ENTF or ENTFN
instruction should be left through a BET, RETK or IF K RET
instruction. ENTD routines should be left through RETD, ENTT routines
through RETT, ENTB routines through RETB or RETBK.

If B.PREVB or B.RETA is zero, the BET, RETK and IF K RET instructions
will compare CAD from DIT of calling domain to CED. If they are equal,
a stack underflow trap condition occurs. If CAD from DIT of calling
domain is not equal to CED, the current domain is changed back to CAD
from DIT of calling domain, and the B, P, and CAD registers are loaded
from the new domain information table. The TOS, HL, LL and THA values
are loaded from the new domain information table.

RETT will compare the domain number of the trapped domain (saved in
the domain information table) with the number of the current executing
domain. If they are equal, RETT returns within the same domain.
Otherwise RETT changes the domain to the domain number saved on the
stack.

Norsk Data ND-05.009.03 EN

228 ND—SOO Reference Manual

Norsk Data ND—05.009.03 EN

ND—SOO Reference Manual 231
STRING INSTRUCTIONS

14 slams INSTRUCTIONS

14.1 Introduction

The string handling instructions make special use of the 11 and I2
registers as pointers in the source and destination string respec—
tively. I2 is also used for those instructions which have two source
operands, as a pointer in the second source string.

The register contains the character number within the string, starting
at zero. It is not initialized before the instruction is executed and
may be set by the user to point at any character. Characters outside
the range indexed by the string instruction are unaffected.

The operand in the instruction is the address of a string descriptor
giving the length of the string and its start address. A DESC prefix
is not allowed in the operand specifier; the descriptor addressing
format is implicit in string instructions. If the ALT prefix is used,
the descriptor is found in the current domain. Only the byte string is
found in the alternative domain. Operands that are not strings are
addressed directly and maybe prefixed by DESC.

Addressing traps may be caused by the addressing of the descriptor or
by the address field in the descriptor.

CHARACTER TRANSLATION

Some instructions refer to a translation table. The table is 256
contiguous bytes and a translation is a reference in this table which
uses the byte to be translated as an index. In the instruction
descriptions Tr(S(Il)) means that the specified element is translated
via a translation table. The translation table is addressed directly,
not via an implicit descriptor. If the translation table is addressed
via an explicit descriptor operand, the index register is not
incremented.

DATA STATUS BITS

The data status bits Z and S and the K flag may be affected by the
string operations. The data status bits not mentioned in the string
instruction description are all zero after the execution of the
instruction. Carry and overflow are always cleared.

The K flag always reflects the termination condition; the previous
setting of the flag is lost. If a numeric argument (for example in the
SFILLN instruction) is addressed via a descriptor, the descriptor
addressing will not affect the K bit.

TERMINATION CONDITIONS

Execution of an instruction may terminate for various reasons and the
termination condition sets the K, Z and/or 8 status bits.

If the destination pointer register (12) is incremented beyond the
last element of the destination string, the termination condition is

Norsk Data ND~05.009.03 EN

232 ND-BOO Reference Manual
STRING INSTRUCTIONS

called Destination full, implying that l -> K. Execution termination
for reasons other than destination full implies that O —> K.

If the source pointer register (usually 11) is incremented beyond the
last element of the source string, the termination condition is called

Each instruction gives different statuses to the Z and S bits.

After execution, ll and 12 remain unmodified, and point to either the
next element or to the element satisfying the specified condition,
depending on the termination conditions. The next element is the first
one not referred to by the instruction. It is the first character
beyond the end of the string if the end of the string has been
reached.

Source empty or Destination full implies that 11 and 12 point to the
next element. conditions that terminate as a result of the condition
being satisfied and instructions with will leave the 11 and 12
registers pointing to the element causing the termination.

When more than one termination condition is reached at the same time,
the instruction terminates with the first one mentioned in the
termination condition list of the instruction.

ADDRESSING OUTSIDE STRINGS

If the pointer register points outside the string when the instruction
starts execution, a descriptor range trap condition arises. This may
occur for source strings as well as for destination strings.
Addressing a string of length zero will always be outside the string.

If any string operand is addressed outside its legal range, no string
elements will be examined, moved, or compared. The 11 and 12 registers
are then unmodified, and a descriptor—range trap condition occurs. If
a <=source=> operand or both <=source=> and <=dest=> are addressed
outside the strings, the instruction will terminate with K=O.
Addressing outside the <=dest=> string. but within the <=source=>
string, will cause termination with K=1.

OVERLAPPING STRINGS

Strings occupying the same locations in memory are said to be
overlapping. If the source and destination operands overlap, the
result will be as intended only if an element in the source string of
the old contents is moved out before it is overwritten with a new
value. In cases where the length of the string operands can be
determined prior to start of execution, the microcode will take care
of overlap; if necessary, by operating on the string elements in the
reverse order.

For instructions containing a 'while' or 'until' condition, the length
cannot be determined before execution has been started, and it is not
possible to predict the degree of overlapping. The programmer must
ensure that strings do not overlap, otherwise the results are
unpredictable.

Norsk Data ND~05.009.03 EN

ND~SOO Reference Manual 233
STRING INSTRUCTIONS

NOTATIONS
Instruction descriptions use the following notation:

<=operand=> : Implicit descriptor operand, i.e. the specified operand
is a descriptor and the operand of the instruction is
accessed Via this descriptor.

:— : "is set to point at"

8(11) : Il'st character in source string
D(IZ) : IZ'nd character in destination or source-2 string
tr(char) : char translated via the <trans table) operand

Norsk Data ND-05.009.03 EN

234 ND—5OO Reference Manual
STRING INSTRUCTIONS

14.2 String move

Format: t SMOVE <=source/r/t/Il=>,<=dest/w/t/12=>

Assembly Hex Octal
notation Name code code

BI SMOVE bit string move OFD66H 1765468
BY SMOVE byte string move OFD67H 1765473
H SMOVE halfword string move OFD68H 17655OB
w SMOVE word string move OFD69H 1765518
F SMOVE float string move OFD6AH 1765528
D SMOVE double float string move OFD6BH 1765538

Operation: while not end of strings do
3(11) —> D(12), 11+1 —> 11, 12+1 —> 12

enddo

Description:

String elements are moved from the <=source=> operand to the <=dest=>
operand until the end of <=source=> is reached or the <=destm> is
full.

Overlap is taken care of.

Terminating conditions:

outside source: K
outside dest: K

K
K

11, 12 unmodified, DR trap condition
11, 12 unmodified, DR trap condition
11, 12 :- next element
11, 12 :- next element

source empty:
dest full:

u
F

‘C
)F

*O

Example:

Move the double float array whose descriptor is argument DATABLOCK to
the area described by local descriptor COPY

W1 CLR; W2 CLR
D SMOVE IND(B.DATABLOCK), B.COPY

Norsk Data ND-05.009.03 EN

ND~500 Reference Manual 235
STRING INSTRUCTIONS

14.3 §tring move while

Format: BY SMVWH <=source/r/BY/Il=>,<=dest/w/BY/12=>,
<mask/r/BY), <test/r/BY)

Assembly Hex Octal
notation Name code code

BY SMVWH byte string move while 0FD72H 176562B

Operation: while not end of strings
and 8(11) AND <mask> 2 (test) do

8(11) —> D(12), Il+l —> 11, 12+1 -> 12
enddo

Description:

Bytes are moved from the <=source=> operand to the <=dest=> operand.
When the result of a logical AND between the moved byte and the <mask>
operand is equal to the value of the <test> operand, the moving
continues until the <=source=> operand is empty or the <=dest=>
operand is full. Overlap is not taken care of.

Terminating conditions:

outside source: K=0 Z=0 11, I2 unmodified, DR trap condition
outside dest: K=1 Z=O I1, 12 unmodified, DR trap condition
different bytes: K=O Z=O ll, 12 :« differing bytes
source empty: K=0 Z=l 11, I2 :~ next element
dest full: K=1 2:1 11, 12 :_ next element

Example:

Copy characters from INPUT to BUFFER as long as the characters are in
the range 1008 to 200B, starting at current character positions in 11
and 12

BY SMVWH INPUT, BUFFER, 300B, 100B

Norsk Data ND-05.009.03 EN

236 ND-SOO Reference Manual
STRING INSTRUCTIONS

1”.“ String move until

Format: BY SMVUN <=source/r/BY/Il=>,<=dest/w/BY/IZ=>,
<mask/r/BY), <test/r/BY>

Assembly . Hex Octal
notation Name code code

BY SMVUN byte string move until OFD73H 176563B

Operation: while not end of strings
and S(Il) AND (mask) >< <test> do

8(11) ~> D(IZ), Il+1 -> I1, IZ+1 -> 12
enddo

Description:

Bytes are moved from the <=source=> to the <=dest=> operand until the
<=source=> is empty, the <=dest=> is full or the result of a logical
AND between the next byte to be moved and the value of the (mask)
operand is equal to the value of the (test) operand. Overlap is not
taken care of.

The byte satisfying the until-condition is not moved.

Terminating conditions:

outside source: K=O Z=O ll, 12 unmodified, DR trap condition
outside dest: K=1 2:0 11, 12 unmodified, DR trap condition
byte found: K=O Z=1 I1, 12 :— found byte in source
source empty: K=O Z=O Ii, 12 :- next element
dest full: K=1 Z=O I1, 12 :- next element

Example:

Copy characters from argument ARG on the alternative domain to the
global string LINE in the current domain. An apostrophe (ASCII @7B) is
interpreted as the end of the source string.

W1 CLR; W2 CLR
BY SMVUN ALT(IND(B.ARG)), LINE, 1778, 47B

Norsk Data ND~05.009.03 EN

ND-BOO Reference Manual 237
STRING INSTRUCTIONS

14.5 String move translated

Format: BY SMVTR <=source/r/BY/Il=>,<=dest/w/BY/I2=>,
(trans table/aa/BY)

Assembly Hex Octal
notation Name code code

BY SMVTR byte string move translated OFD74H 176564B

Operation: while not end of strings do
tr(S(Il)) —> D(12), 11+1 —> 11, 12+1 —> 12

enddo

Description:

Bytes from the <=source=> operand are translated via a translation
table found at the address specified in the operand (trans table).
Translated bytes are moved from the <=source=> to the <=dest=> operand
until the <=source=> is empty or the <=dest=> is full. Overlap is
taken care of.

Terminating conditions:

outside source: K 11, I2 unmodified, DR trap condition
outside dest: K

K
K

O
1 ll, 12 unmodified, DR trap condition
0 ll, 12 :— next element
1 Ii, 12 :- next element

source empty:
dest full:

Example:

Convert the string CHARACTERS from EBCDIC to ASCII

W1 CLR; W2 CLR
BY SMVTR CHARACTERS, CHARACTERS, EBCDICZASCII

Norsk Data ND-05.009.03 EN

238 ND—SOO Reference Manual
STRING INSTRUCTIONS

14.6 String move translated until

Format: BY SMVTU <=source/r/BY/Il=>,<=dest/w/BY/I2=>,
<trans table/aa/BY>

Assembly Hex Octal
notation Name code code

BY SMVTU byte string move translated until OFD75H 1765658

Operation: while not end of strings
and tr(S(Il)) >< ASCII "escape" do

if tr(S(Il)) >< zero then
tr(S(Il)) —> D(12), 12+1 —> 12

endif
Il+1 —> 11

enddo

Description:

Bytes from the <=source=> operand are translated via the translation
table found at the address specified in the (trans table> operand.
Translated bytes are moved from <=source=> to <=dest=> string if they
are not zero. The move operation stops if the translated byte is equal
to ASCII ”escape" (OlBH or 338), the <=source=> is operand is empty,
or the <=dest=> operand full. Overlap is not taken care of.

The "escape" character is not moved.

Terminating conditions:

outside source: K 0
outside dest: K 1
"escape" found: KcO

K O
K 1

Il, I2 unmodified, DR trap condition
11, I2 unmodified, DR trap condition
I1, I2 :— position of "escape".
I1, 12 :~ next element
II, 12 :- next element

ll

source empty:
dest full:

H
N

N
T

N
N

O
O

H
O

O

Example:

Remove ASCII NULs and translate to uppercase the string described by
record variable TEXT, copying it to the string described by TEXT2,
starting at the current position

BY SMVTU R.TEXT, TEXTZ, UPPERCASETABLE

Norsk Data ND—05.009.03 EN

ND—SOO Reference Manual 239
STRING INSTRUCTIONS

14.7 String move m elements

Format: t SMOVN <=source/r/t/Il=>,<=dest/w/t/12=>,<m/r/W>

Assembly Hex Octal
notation Name code code

Bl SMOVN string move m bits OFD76H 1765668
BY SMOVN string move m bytes OFD77H 1765678
H SMOVN string move m halfwords OFD78H 1765708
W SMOVN string move m words OFD79H 1765718
F SMOVN string move m floats OFD7AH 1765728
D SMOVN string move m double floats OFD78H 1765738

Operation: 0 —> i
while not end of strings and i < m do

8(11) —> D(12)
Ii + 1 -> 11, 12 + 1 ~> 12
i + l -> i

enddo

Description:

M items are moved from the <=source=> to the <=dest=> operand, unless
the end of the <=source=> operand is reached or the <=dest=> operand
full. Overlap is taken care of.

Terminating conditions:

outside source: K=O Z=O ll, 12 unmodified, DR trap condition
outside dest: K=1 Z=O ll, 12 unmodified, DR trap condition
m items moved: K=O Z=1 I1, 12 :- next element
source empty: K=O Z=O ll, 12 :— next element
dest full: K=1 Z=O 11, I2 :— next element

Example:

Copy next 64 bits from S1 to start of 82, both global descriptors

W2 CLR
BI SMOVN Si, 82, 64

Norsk Data ND-05.009.03 EN

240 ND—SOO Reference Manual
STRING INSTRUCTIONS

14.8 String fill

Format: tn SFILL <=dest/w/t/I2=>

Assembly Hex Octal
notation Name code code

BIn SFILL bit string fill OFD7CH+(n—l) 176574B+(n-l)
BYn SFILL byte string fill OFD80H+(n-l) 1766OOB+(n-l)
Hn SFILL halfword string fill 0F084H+(n—1) 1766ouB+(n—1)
Wn SFILL word string fill OFD88H+(n—l) 1766108+(n-1)
Fn SFILL float string fill OFD8CH+(n~l) 1766IQB+(n—1)
Dn SFILL double float string fill OFD9OH+(n—l) 176620B+(n~l)

Operation: while not end of string do
tn u> D(IZ)
I2 + l -> I2

enddo

Description:

The contents of the specified register are put into every element of
the <=dest=> string starting at the element specified by the IZ
register.

Terminating conditions:

outside dest: K=1 12 unmodified. DR trap condition
string filled: K=1 I2 :- next element

Example:

Fill the remaining characters of STRING with ASCII spaces (40B)

8Y3 := 40B
BY3 SFILL STRING

Norsk Data ND—05.009.03 EN

ND-SOO Reference Manual 241
STRING INSTRUCTIONS

14.9 String fill m elements

Format: tn SFILLN <=dest/w/t/12=>,<m/r/W>

Assembly _ Hex Octal
notation Name code code

B1n SFILLN string £111 m bits OFD94H+(n-1) 176624B+(n~1)
BYn SFILLN string fill m bytes OFD98H+(n~l) 17663OB+(n~l)
Hn SFILLN string fill m halfwords OFD9CH+(n-l) 176634B+(n~l)
Wn SFILLN string fill m words OFDAOH+(n-l) 176640B+(n-l)
Fn SFILLN string fill m floats OFDA4H+(n-1) l76644B+(n—1)
Dn SFILLN string fill m double float OFDASH+(n~1) 1766BOB+(n—1)

Operation: 0 -> i
while not end of string and i < m do

tn —> D(12)
12 + 1 -> 12
i + 1 —> i

enddo

Description:

If the number of elements in the <=dest=> string, starting at the
element indicated by 12, is greater than m, the contents of the
specified register are stored in the m first elements of the <2dest=>
string, starting at element 12. Otherwise all elements of the <=dest=>
string from 12 to the end are filled with the contents of the
register.

m is unsigned.

Terminating conditions:

outside dest: K 1
m elements filled: K=O
dest full: K 1

Z=O 12 unmodified, DR trap condition
Z=l 12 :— next element
Z O 12 :- next element

Example:

Zero fill the lower 100 words of the word string described by local F1

W1 CLR; W2 CLR
W1 SFILLN B.FI, lOO

Norsk Data ND-05.009.03 EN

242 ND~500 Reference Manual
STRING INSTRUCTIONS

14.10 gtring compare

Format: BY SCOMP <=source-1/r/BY/11=>,<=source—2/r/BY/12=>

Assembly Hex Octal
notation Name code code

BY SCOMP byte string compare OFDACH 1766548

Operation: while not end of strings
and S(Il) = D(12) do

11+1 -> 11, 12+1 —> 12
enddo

Description:

Bytes from the <=source—1=> string are compared with the corresponding
bytes in the <=source~2=> string until unequal bytes are found, or
until the end of <=source—l=> or <=source-2=> string is reached. When
unequal bytes are found, the status bits Z and S and the K flag will
indicate the termination condition. The byte elements are considered
to be unsigned values.

If both operands are addressed outside strings they will compare as
"exact match". <=source—l=> addressed outside the string will compare
as "<=source—l=> shorter than <=source-2=>". <=source~2=> addressed
outside the string will compare as "<=source—1=> longer than <=source—
2=>". In either case 11, 12 are unmodified and a descriptor range trap
condition arises.

Terminating conditions:

both operands
outside string: K=O
exact match: K=(
source—1 longer: K=O
source—2 longer: K=O
greater byte

in source-1: K=l Z=O 8:0 11, 12 :- differing elements
smaller byte

in source—1: K=1 2:0 8:1 11, 12 :- differing elements

S O 11, 12 unmodified, DR trap condition
8:0 11, 12 :—next element
8 O 11, 12 :- next element
8 1 11, 12 :— next element

Example:

Scan INPUTLINE and local COMMAND from the current positions until
different characters are found or end of string is reached

BY SCOMP INPUTLINE, B.COMMAND

Norsk Data ND~05.009.03 EN

ND—SOO Reference Manual 243
STRING INSTRUCTIONS

14.11 String compare translated

Format: BY SCOTR <=source-l/r/BY/11=>,<=source-2/r/BY/12=>,
(trans table/aa/BY)

Assembly Hex Octal
notation Name code code

BY SCOTR byte string compare translated OFDADH 1766558

Operation: while not end of strings
and tr(S(11)) = tr(D(12)) do

Il+1 -> 11, 12+1 w) 12
enddo

Description:

Translated bytes from the <=source-1=> string are compared with the
corresponding translated bytes in the <=source—2=> string. This
comparison continues until unequal bytes are found, or until the end
of the <=source-1=> or <=source—2=> string is reached. The byte
elements are considered to be unsigned values.

If both operands are addressed outside strings they will compare as
”exact match". <=source-l=> addressed outside the string will compare
as "(:source-1=> shorter than <=source-2=>". <=source-2=> addressed
outside the string will compare as "<=source~1=> longer than <=sourcev
2:)". In either case 11, 12 are unmodified and a descriptor—range trap
condition arises.

Terminating conditions:

both operands
outside string: K 11, 12 unmodified, DR trap condition
exact match: K:

K
K

S 0
8:0 11, 12 :— next element

source-l longer: 8 O
source~2 longer: S l
greater byte

in source—1: K=1 Z=O 8:0 11, 12 :~ differring elements
smaller byte

in source—1: K=l Z=O 8:1 11, 12 :- differing elements

11, 12 :- next element
11, 12 :— next element

Example:

Scan INPUTLINE and local COMMAND from the current position until end
of string or different characters, converting to uppercase

BY SCOTR INPUTLINE, B.COMMAND, UPPERCASE

Norsk Data ND-05.009.03 EN

244 ND—SOO Reference Manual
STRING INSTRUCTIONS

14.12 String compare with pad

Format: BY SCOPA <=source—l/r/BY/Il=>,
<=source-2/r/BY/12=>,<pad/r/BY>

Assembly Hex Octal
notation Name code code

BY SCOPA string compare with pad OFDBEH 176676B

Operation: while not end of strings
and 8(11) = D(12) do

Il+l -> 11, 12+1 -> 12
enddo

Description:

Bytes from the <=source-1=> string are compared with the corresponding
bytes in the <=source—2=> string until unequal bytes are found, or
until the end of both strings has been reached. If the lengths of the
<=source~l=> and <=source~2=> strings are not equal, the shorter
string is concatenated with a string of pad bytes. The length of the
pad string is equal to the difference in length of the <=source-1=>
and the <=source~2=> string.

An operand addressed outside the string is treated as consisting of
pad bytes only. Two operands both addressed outside the strings will
compare as ”exact match". The pointer registers are unmodified. In
either case a descriptor—range trap condition arises.

When unequal bytes are found, the status bits Z and S and the K flag
will indicate the termination condition.

The byte elements are considered to be unsigned values.

Terminating conditions:

exact match: K=O Z=l 8:0 11, 12 :- next element
greater byte

in source-1: K
smaller byte

in source—1: K

1 2:0 8:0 11, 12 :- differing elements

1 2:0 8:1 11, 12 :- differing elements

Example:

Compare argument ITEM with global TABLE, padding with ASCII spaces

BY SCOPA 1ND(B.ITEM), TABLE, 20H

Norsk Data ND~05.009.03 EN

ND—BOO Reference Manual 245
STRING INSTRUCTIONS

14.13 String compare translated with pad

Format: BY SCOPT <=source~l/r/BY/ll=>,<=source—2/r/BY/12=>,
(trans table/aa/BY>,<pad/r/BY>

Assembly Hex Octal
notation Name code code

BY SCOPT string compare translated with pad OFDBFH 1766778

Operation: while not end of strings
and tr(S(ll)) = tr(D(I2)) do

Il+1 —> 11, 12+1 -> 12 (see note below)
enddo

Description:

Translated bytes from the <=source~1=> string are compared with the
corresponding translated bytes in the <=source-2=> string. The
comparison continues until unequal bytes are found or the ends of both
strings has been reached. If the lengths of the <=source—1=> and
<=sourceu2=> strings are unequal, the shorter string is concatenated
with a string of pad bytes. The length of the pad string is equal to
the difference in length of the <=source~1=> and the <=source—2=>
string. The pad byte is also translated.

An operand addressed outside the string is treated as consisting of
pad bytes only. Two operands both addressed outside the strings will
be compared as an "exact match". The pointer registers are unmodified.
In either case, a descriptor range trap condition arises.

When unequal bytes are found, the status bits Z and S and the K flag
will indicate the termination condition. The byte elements are
considered to be unsigned values.

Note: The index registers are not incremented when padding a string.

Terminating conditions:

exact match: K=O Z=1 8:0 11, 12 :- next el. or end of string
greater byte

in source-l: K=1 Z=O 8:0 11, 12 :— differing elements
smaller byte

in source—1: K=1 Z=O S=l ll, 12 :— differing elements

Example:

Compare ITEM on the alternate domain from the 10th character to LIST
from the 0th character, translating to uppercase. Pad byte is zero

WI := 10; W2 CLR
BY SCOPT ALT(ITEM), LIST, UPPERCASE, O

Norsk Data ND-05.009.03 EN

246 ND—SOO Reference Manual
STRING INSTRUCYIONS

14.14 String skip elements

Format: BY SSKIP <=source/r/BY/Il=>,<test/r/BY>

Assembly Hex Octal
notation Name code code

BY SSKIP skip elements OFDAEH 1766568

Operation: while not end of string
and 8(11) = <test> do

11 + l —> 11
enddo
if 8(11) >> <test> then

O -> S
else

1 ~> S
endif

Description:

Bytes in the <=source=> operand are examined one by one until an
examined byte is different from the <test> operand or until the end of
the <=source=> operand is reached. A <=source=> operand addressed
outside the string will cause immediate termination with 11 unmodified
and cause a descriptor range trap condition.

The byte elements are considered to be unsigned values.

Terminating conditions:

outside source: K=O Z=1 3:: Il unmodified, DR trap condition
byte >> <test> : K=O 2:0 8:0 11 :— differing element
byte << <test> K=O Z=O 8:1 11 :— differing element
source empty: K=O 2:1 8:0 11 :— next element

Example:

Skip ASCII spaces from the current character in the string described
by record addressed LINE

BY SSKIP R.LINE, 32

Norsk Data ND~05.009.03 EN

ND-SOO Reference Manual 2M7
STRING INSTRUCTIONS

14.15 String locate element

Format: t SLOCA <=source/r/t/ll=>,<test/r/BI,BY>

Assembly Hex Octal
notation Name code code

BI SLOCA string locate bit OFDAFH 1766578
BY SLOCA string locate byte OFDBOH 1766608

Operation: while not end of string
and 8(11) >< (test) do

11 + l -> 11
enddo

Description:

The <=source=> operand is examined element by element until an
examined element is equal to the (test) operand or until the end of
<=source=> operand is reached.

Terminating conditions:

outside source: KnO
element = (test): K=O
source empty: K=O

1 Il unmodified, DR trap condition
1 Il :- found element
0 Il :- next elementN

N
N n

n

Example:

Find the next reset bit in the bit string on the alternative domain
described by the record variable RESERVED

BI SLOCA ALT(R.RESERVED), O

Norsk Data ND-05.009.03 EN

248 ND—SOO Reference Manual
STRING INSTRUCTIONS

14.16 String scan

Format: BY SSCAN <=source/r/BY/ll=>,<mask/r/BY>,
(trans table/aa/BY)

Assembly Hex Octal
notation Name code code

BY SSCAN string scan OFDBlH 1766618

Operation: while not end of string
and tr(S(ll)) AND (mask) = zero do

11 + 1 —> ll
enddo

Description:

The <=source=> operand is scanned until the result of a logical AND
between the current translated byte and <mask> is different from zero,
or until the end of <=source=> operand is reached.

Terminating conditions:

outside source: K=O 2:1 11 unmodified, DR trap condition
byte AND mask><zeroz K=O 2:0 11 :- found element
source empty: K=O 2:1 11 :- next element

Example:

Skip through argument FUNCTION until a byte with one of the bits set
in the mask ACTIVE, translated through the table FNTAB in the
alternative domain, is encountered

BY SSCAN IND(B.FUNCTION), ACTIVE, ALT(FNTAB)

Norsk Data ND-05.009.03 EN

ND—SOO Reference Manual 249
STRING INSTRUCTIONS

14.17 String span

Format: BY SSPAN <=source/r/BY/Il=>,<mask/r/BY>,
(trans table/aa/BY)

Assembly . Hex Octal
notation Name code code

BY SSPAN string span OFDBZH 176662B

Operation: while not end of string
and tr(S(ll)) AND (mask) >< zero do

11 + l ~> Il
enddo

Description:

The <=source=> operand is examined until the result of a logical AND
between the examined byte translated and the (mask) is equal to zero,
or until the end of <=source=> operand is reached.

Terminating conditions:

outside source: K=O Z=O ll unmodified, DR trap condition
tr(byte) AND mask

= zero: K=O Z=1 ll z~ found element
source empty: K=O Z=O ll :- next element

Example:

Skip the rest of a string fragment DIRECTIVE which is terminated by a
character translating to zero in the local table CODETABLE

BY SSPAN DIRECTIVE, OFFH, B.CODETABLE

Norsk Data ND—05.009.03 EN

250 ND—SOO Reference Manual
STRING INSTRUCTIONS

14.18 String match

Format: BY SMATCH <=substring/r/BY/Il=>,<=string/r/BY/IZ=>

Assembly Hex Octal
notation Name code code

BY SMATCH string match OFDB3H 1766638

Operation:

while not end of <=string=>
and <=substring=> >< <=string=>(12..12 + substring.length-1) do

I2 + l —> 12
enddo
if <=substring=> : <=string=>(l2..12 + substring.length~l) then

1 ~> Z
else

0 -> Z
endif

Description:

The <=string=> operand is examined until either a substring equal to
<=substring=> is found or the end of <=string=> operand is reached.
The 11 register is left unmodified.

A <=substring=> operand or both <=string=> and <=substring=> operands
addressed outside the strings are treated as if the <=substring=> is
immediately found (Z=1). A <=string=> operand addressed outside the
string and a <=substring=> operand addressed within the string is
treated as <=substring=> not found (Z=O). Both cases will cause a
descriptor—range trap condition.

Terminating conditions:

outside substring: K 0
outside string: K O
substring found: K=O
source empty: K O

H 12 unmodified, DR trap condition
12 unmodified, DR trap condition
12 :— first matching byte
IZ :- next elementN

N
L

R
IN

O
H

O
H

H

Example:

Set I2 to point to the next occurence of COMMA in PARAMETERS

BY SMATCH COMMA, PARAMETERS

Norsk Data ND~OS.OO9.03 EN

ND—SOO Reference Manual 251
STRING INSTRUCTIONS

14.19 Set parity in string

Format: BY SSPAR <=string/rw/BY/Il=>,<mode/r/BY>

Assembly Hex Octal
notation Name code code

BY SSPAR set parity in string OFDBQH 176664B

Operation: while not end of string do

Description:

parity according to (mode) -> bit 7 of 8(12)
I1 + 1 -> Il

enddo

The parity bit (bit 7) in every byte in <=string=> is set according to
the following values of the (mode) operand:

U
J
N

l-
‘O

clear parity
set parity
even parity
odd parity

Any other value will cause an illegal operand value trap condition.

Terminating conditions: K=l

Example:

Set even parity in local string OUTPUT

BY SSPAR B.OUTPUT, 2

Norsk Data ND—05.009.03 EN

252 ND—SOO Reference Manual
STRING INSTRUCTIONS

14.20 Check parity in string

Format: BY SCHPAR <=string/r/BY/Il=>,<mode/r/BY>

Assembly . Hex Octal
notation Name code code

BY SCHPAR check parity in string OFDBSH 1766658

Operation: 0 —> Z
while not end of string
and bit 7 of S(Il) = parity according to (mode) do

I1 + 1 —> 11
enddo
if bit 7 of S(Il) >< parity according to (mode) then

1 -> Z
endif

Description:

The parity bit (bit 7) in every byte in <=string=> is checked
according to the following values of the (mode) operand:

W
N

P
—

‘O clear parity
set parity
even parity
odd parity

Any other value will cause an illegal operand value trap condition.

Terminating

outside string: K
string empty: K
parity error found: K

Example:

conditions:

=0 Z=O Il unmodified, DR trap condition
:0 Z=O Il :— next element
=0 2:1 11 :— element with wrong parity

Check that parity is set according to argument MODE in all characters
in record variable BUFFER

W1 CLR
BY SCHPAR R.BUFFER, IND(B.MODE);

Norsk Data ND-05.009.03 EN

ND-SOO Reference Manual 255
MISCELLANEOUS INSTRUCTIONS

15 MISCELLANEOUS INSTRUCTIONS

15.1 Block move and Fill

Format: t BMOVE <source/r/t>,<dest/w/t>,<m/r/W>

Assembly Hex Octal
notation Name code code

BY BMOVE byte block move OFDZOH 176M408
H BMOVE halfword block move OFE78H 17717OB
W BMOVE word block move OFE79H 1771718
F BMOVE float block move OFE7AH 1771728
D BMOVE double float block move OFE7BH 177173B

Operation: 0 —> i
while i < m do

source(i) ~> dest(i); i + 1 —> i
enddo

Description:

<m> elements are moved from the <source> to the <dest> operand. The
operands are pointers to the start of the blocks. Overlap is taken
care of. Constants and registers are illegal as destination operands.
When a register or a constant is specified as a source operand, the
destination string is filled with <m> elements equal to the value of
the <source> operand. <m> is unsigned.

Trap conditions: Addressing traps

Data status bits: All cleared

Terminating conditions: m elements moved

Example:

Fill local data area of routine (excluding header) with the largest
negative word value (bit pattern equivalent to float minus zero) with
the intention of facilitating detection of uninitialized variables

W1 := O8000OOOOH
W BMOVE W1, B.20, AREASIZE

Norsk Data ND—05.009.03 EN

256 ND—500 Reference Manual
MISCELLANEOUS INSTRUCTIONS

15.2 Data type conversion

Format: t1 tZCONV <source/r/t1),<dest/w/t2>

Assembly Hex Octal
notation Name code code

BI BYCONV bit to byte convert 0FD44H 1765048
BI HCONV bit to halfword convert 0FD45H 17650513
81 WCONV bit to word convert 0FD46H 1765068
BI FCONV bit to float convert 0FD47H 1765078
BI DCONV bit to double float convert 0FD48H 1765108

BY BICONV byte to bit convert 0FD49H 1765118
BY HCONV byte to halfword convert 0FD4AH 17651213
BY WCONV byte to word convert 0FD4BH 1765138
BY FCONV byte to float convert OFD4CH 1765148
BY DCONV byte to double float convert OFD4DH 1765158

H BICONV halfword to bit convert OFD4EH 1765168
H BYCONV halfword to byte convert OFD4FH 1765178
H WCONV halfword to word convert OFD50H 1765208
H FCONV halfword to float convert 0FD51H 1765218
H DCONV halfword to double float convert 0FD5ZH 1765228

w BICONV word to bit convert 0FD53H 1765238
w BYCONV word to byte convert 0FD54H 1765248
W HCONV word to halfword convert 0FD55H 1765258
W FCONV word to float convert 0FD56H 1765268
w DCONV word to double float convert 0FD57H 1765278

F BICONV float to bit convert 0FD58H 1765308
F BYCONV float to byte convert 0FD59H 1765318
F HCONV float to halfword convert 0FD5AH 1765328
F WCONV float to word convert 0FD5BH 1765338
F DCONV float to double float convert 0FD5CH 1765348

D BICONV double float to bit convert 0FD5DH 1765358
D BYCONV double float to byte convert 0FD5EH 1765368
D HCONV double float to halfword convert 0FD5FH 1765378
D WCONV double float to word convert 0FD6OH 1765408
D FCONV double float to float convert 0FD61H 1765418

Norsk Data ND-05.009.03 EN

ND—SOO Reference Manual 257
MISCELLANEOUS INSTRUCTIONS

Operation: <source> type converted from t1 to t2 -> <dest>

Description:

The <source> operand of type t1 is converted to data type t2 and the
result is stored in the <dest> operand. The result is not rounded.

For integer types, conversion of shorter to a longer data type is by
sign extension. Conversion of longer to shorter data types is by
truncation of the most significant bits and may cause integer
overflow. Conversion from float to integer may also cause integer
overflow.

Conversion from bit implies that the result is zero if the bit is
cleared and one if the bit is set. Conversion to bit implies that the
bit is set if the source is different from zero, otherwise it is
cleared.

Trap conditions: Addressing traps" Integer Overflow

Data status bits:

result = O ~> Z
result.signbit 0) S

Example:

Load the byte variable SHORTINT to w2 with Sign extension to word

BY WCONV SHORTINT, W2

Norsk Data ND—05.009.03 EN

258 ND~500 Reference Manual
MISCELLANEOUS INSTRUCTIONS

15.3 Data type conversion with rounding

Format: t1 tZCONR <source/r/t1>,<dest/w/t2>

Assembly Hex Octal
notation Name code code

F BYCONR float to byte convert OFE7OH 1771608
with rounding

D BYCONR double float to byte convert OFE718 1771618
with rounding

F HCONR float to halfword convert OFE72H 1771628
with rounding

D HCONR double float to halfword convert OFE73H 1771638
with rounding

F WCONR float to word convert OFE7QH 1771648
with rounding

D WCONR double float to word convert OFE75H 1771658
with rounding

w FCONR word to float convert OFE83H 1772038
with rounding

D FCONR double float to float convert OFE84H 1772048
with rounding

Operation: <source> converted from t1 to t2 with rounding -> <dest>

Description:

The (source) operand of type t1 is converted to data type t2 with the
result stored in the <dest> operand. The result is rounded.

Trap conditions: Addressing traps, Integer Overflow

Data status bits:

result = O —> Z
result.signbit ~> S

Example:

The 82nd value in the double-precision array described by RESULTS is
rounded to the 82nd element of halfword argument ROUNDEDRESULT

D HCONR DESC(RESULTS)(RZ), IND(8.ROUNDEDRESULT)(RZ)

Norsk Data ND-05.009.03 EN

ND~500 Reference Manual 259
MISCELLANEOUS INSTRUCTIONS

15.4 Load address

Format: tn LADDR <0perand/aa/t>

Assembly ‘ Hex Octal
notation Name code code

BIn LADDR bit load address OFE20H+(n—1) 177OQOB+(n—1)
BYn LADDR byte load address OFE24H+(n—1) 177044B+(n—l)
Hn LADDR halfword load address OFE28H+(n-1) 177OBOB+(n—l)
Wn LADDR word load address OFD3CH+(n-1) 176474B+(n-1)
Fn LADDR float load address OFD3CH+(n-1) l764748+(n—)

)
1

Dn LADDR double float load address OFEZCH+(n-1) 177054B+(n—1

Operation: addr(<operand>) -> Rn

Description:

The address of the operand is loaded into the specified register.
Registers and constants have no address in memory and are illegal as
operands.

Formats other than Wn are used to give the correct scaling factor if
(operand) is indexed. Fn is equivalent to Wn, but may improve
readability.

Trap conditions: Addressing traps

Data status bits: address = O -> Z

Example:

Load the address of the R3rd element of the halfword array argument
TABLE into R1

Hl LADDR B.TABLE(R3)

Norsk Data ND-05.009.03 EN

260 ND—BOO Reference Manual
MISCELLANEOUS INSTRUCTIONS

15.5 Load address into record register

Format: t RLADDR <operand/aa/t>

Assembly Hex Octal
notation Name code code

BI RLADDR bit load address to R OFCSBH 176125B
BY RLADDR byte load address to 8 OFCSAH 1761328
H RLADDR halfword load address to R OFCBlH 1762618
W BLADDR word load address to 8 OBEH 2768
F RLADDR float load address to R OBEH 2768
D RLADDR double float load address to R OFCBZH 1762628

Operation: addr(<operand>) —> R

Description:

The address of the operand is loaded into the record register.
Registers and constants have no address in memory and are illegal as
operands.

Trap conditions: Addressing traps

Data status bits: address = O -> Z

Example:

Load 8 with the base address of the first stack frame below the
current stack frame

W RLADDR IND(B.O)

Norsk Data ND~05.009.03 EN

ND—SOO Reference Manual 261
MISCELLANEOUS INSTRUCTIONS

15.6 Load address into base register

Format: t BLADDR <operand/aa/t>

Assembly Hex Octal
notation Name code code

BI BLADDR bit load address to B 080838 1762638
BY BLADDR byte load address to B OFCBCH 1762748
H BLADDR halfword load address to B OFD37H 1764678
w BLADDR word load address to B OFD63H 1765438
F BLADDR float load address to B OFD63H 1765438
D BLADDR double float load address to B OFD38H 1764708

Operation: addr(<operand>) —> 8

Description:

The address of the operand is loaded into the local base register.
Registers and constants have no address in memory and are illegal as
operands.

Trap conditions: Addressing traps

Data status bits: address = O —> Z

Example:

Load 8 with the address of argument NEWB

W BLADDR B.NEWB

Norsk Data ND~05.009.03 EN

262 ND—BOO Reference Manual
MISCELLANEOUS INSTRUCTIONS

15.7 Load address of multilevel chain

Format: Wn CHAIN (address/aa/W),(offset/r/W),(no of levels/r/W)

Assembly _ Hex Octal
notation Name code code

Wn CHAIN load address of multilevel OFD6CH+(n-l) 176554B+(n—l)
chain to register

Operation: (address) -) Wn
for i in (l..(no of levels)) do
while ((Wn)+<offset>))(O

((Wn) + (offset)) -) Wn
enddo

Description:

Follow a link (no of levels) steps and load the specified register
with the base address of the next data element. This instruction is
used by language processors for making references to variables
declared in an outer procedure. (offset) will usually be the B
relative address of the static link (the base address of the local
variables of an enclosing procedure), (address) the current B register
value, and (no of levels) the difference between the current static
level and the level where the variable was declared.

If the next link in the chain is zero, the operation is terminated, Wn
will contain the last element in the link (pointing to a zero
location) and the K flag is set. This will also cause an illegal
operand value trap condition.

A negative (no of levels) will cause an illegal operand value trap
condition. (no of levels) equal to zero will have the same effect as a
LADDR instruction.

Trap conditions: Addressing traps, Illegal Operand Value

Data status bits: Last address.signbit —) S

Example:

Load W1 with stack base address of a procedure five static levels up,
the static link is found in local variable STATLINK

W1 CHAIN B.STATLINK, STATLINK, 5

Norsk Data ND—05.009.03 EN

ND—SOO Reference Manual 263
MISCELLANEOUS INSTRUCTIONS

15.8 Load index

Format: tn LIND (index/r/t/>,(lower/r/t),(upper/r/t)

Assembly Hex Octal
notation Name code code

BYn LIND byte load index OFDOCH+(n-l) 1764148+(n-1)
Hn LIND halfword load index OFDlOH+(n-l) 176HZOB+(n—l)
Wn LIND word load index OACH+(n-1) 2548+(n-1)
Fn LIND floating load index OFFC8H+(n-1) 177710B+(n~1)
Dn LIND double floating load index OFFCCH+(n—1) 1777148+(n-1)

Operation: (index) —) Rn
if (index) is less than (lower)
or (index) is greater than (upper) then

l»)K
illegal index trap condition

else
O")K

endif

Description:

An array index value is loaded into the specified register, checking
the value against the (lower) and (upper) bounds. If the (index)
operand is less than the (lower) operand or greater than the (upper)
operand, the status flag bit (K) is set and an illegal index trap
condition occurs. Otherwise the K flag is reset.

Trap conditions: Addressing traps, Illegal Index

Data status bits:

(index) = O -) Z
(index).signbit -) S

Example:

Load R2 with the byte value IX, with limits -10 and 10

BYZ LIND IX, -10, 10

Norsk Data ND-05.009.03 EN

264 ND—SOO Reference Manual
MISCELLANEOUS INSTRUCTIONS

15.9 Calculate index

Format: tn CIND (index/r/t),<lower/r/t),<upper/r/t)

Assembly Hex Octal
notation Name code code

BYn ClND byte calculate index OFD14H+(n—1) 1764248+(n—l)
Hn CIND halfword calculate index OFDl8H+(n—l) 17643OB+(n—1)
Wn CIND word calculate index OBOH+(n~1) 26OB+(n~1)
Fn CIND floating calculate index OFFDO+(n—l) 1777ZOB+(n-1)
Dn CIND double float. calcul. index OFFDQ+(n—l) 1777248+(n-l)

Operation: Rn * ((upper) — (lower) + 1) + (index) _> Rn
if (index) is less than (lower)
or (index) is greater than (upper) then

l~>K
illegal index trap condition

else
O—)K

endif

Description:

The address of an element in a multi-dimensional array is calculated.
The range of the dimension, (upper) ~ (lower) + 11 is multiplied by
the contents of the specified register. (index) is added to the
product and the result loaded into the specified register. If (index)
is less than the (lower) operand or greater than the (upper) operand,
the flag bit (K) is set and an illegal index trap condition occurs.

Trap conditions: Addressing trapsg Integer Overflow, Illegal Index

Data status bits:

result = O -> Z
result.signbit = O —> S
overflow ~) 0

Example:

Assuming ARRAY is declared with limits ARR(1..3,5..10,2..9), load W1
with the address of ARR(IX1,IX2,IX3), where the indexes are local
halfword variables

H1 CIND 1x1, 1, 3
H1 CIND 1X2, 5, 10
H1 CIND 1X3, 2, 9

Norsk Data ND—05.009.03 EN

NDeSOO Reference Manual 265
MISCELLANEOUS INSTRUCTIONS

15.10 No operation

Format: NOOP

Assembly Hex Octal
notation Name code code

NOOP no operation OO3H 003B

Operation: None

Description:

The no operation instruction may be used for deleting code from a
program or to leave open space for later modifications.

Trap conditions: None

Data status bits: Unaffected

Example:

NOOP

Norsk Data ND—05.009.03 EN

266 ND—SOO Reference Manual
MISCELLANEOUS INSTRUCTIONS

15.11 Set flag

Format: SETK

Assembly Hex Octal
notation Name code code

SETK set flag OFEOZH 177002B

Operation: 1 «> K bit of status register

Description:

Set the flag bit of the status register

Trap conditions: None

Data status bits: Unaffected

Example:

SETK

Norsk Data ND—05.009.03 EN

ND—SOO Reference Manual 267
MISCELLANEOUS INSTRUCTIONS

15.12 Clear flag

Format: CLRK

Assembly K Hex Octal
notation Name code code

CLRK clear flag OFEO3H 1770038

Operation: 0 -> K bit of status register

Description:

Clear the flag bit of the status register

Trap conditions: None

Data status bits: Unaffected

Example:

CLRK

Norsk Data ND-05.009.03 EN

268 ND-BOO Reference Manual
MISCELLANEOUS INSTRUCTIONS

15.13 Get buddy element

Format: Wn GETB (log size/r/BY>

Assembly Hex Octal
notation Name code code

Wn GETB get buddy element from heap OFEHCH+(n—l) 1771148+(n—1)

Operation: Allocates element of size 2**<log size) words
Address of element —> Wn

Description:

Allocate an element of size 2**<log size> words from the heap.

If an element of the given size is available, it is removed from the
freelist and its address is returned to the specified register.
Otherwise the list is examined for larger elements. If none are
available, a stack overflow trap condition occurs. If a larger element
is found, it is removed from its freelist and chopped into halves
until an element of the desired size can be allocated. The other half
of the chopped element(s) will be added to the appropriate freelists.

The administration of the heap is described in section 3.3. When
executing the GETB instruction, the TOS register must point to the
variables describing the heap.

Trap conditions: Addressing traps, Stack Overflow

Data status bits: Unaffected

Example:

Allocate a 64 word data block from the heap, leaving its address in w3

W3 GETB 6

Norsk Data ND-05.009.03 EN

ND—SOO Reference Manual 269
MISCELLANEOUS INSTRUCTIONS

15.14 Free buddy element

Format: FREEB (log size/r/BY>,<element/s/W>

Assembly Hex Octal
notation Name code code

FREEB free buddy OFDB6H 1766668

Operation: Release (element) of size 2**<log size> words to heap

Description:

The specified (element) is appended to the appropriate freelist of the
heap. Elements are not combined; this may be done by a trap handler
for the stack overflow condition.

The administration of the heap is described in section 3.3. When
executing the FREEB instruction, the TOS register must point to the
variables describing the heap.

Write access to the <element> is required, but if <element> is
addressed with a DESC prefix, the index regiSter is not updated.

Trap conditions: Addressing traps

Data status bits: Unaffected

Example:

Release string LINE of length 128 bytes to heap (LINE is a descriptor)

FREEB 5, INDtLINE)

Norsk Data ND-05.009.03 EN

270 ND~500 Reference Manual
MISCELLANEOUS INSTRUCTIONS

15.15 PLCCN — Convert PLANO descriptor to ND—SOO descriptor (’87
extension)

Format: W PLCCN <source/r/W>,<destination/w/W>

Assembly Hex Octal
notation Name code code

W PLCCN convert to ND—SOO descriptor FFFDH 1777758

Operation: (u-l+1) -> N
a + l —> A

Description:

A PLANO descriptor is converted to an ND—SOO descriptor.

The descriptors are as shown below:

Planc descriptor ND—BOO descriptor

address (a) Number of elements (N)

lower (1) Address (A)

upper (U)

Data Status Bits:
Number of elements = O —> Z
Signbit —> S

Norsk Data ND-05.009.03 EN

ND-SOO Reference Manual 271
MISCELLANEOUS INSTRUCTIONS

15.16 NCPLC - Convert ND—SOO descriptor to PLANC descriptor ('87
extensionL

Format: W NCPLC <source/r/W>,<destination/w/W>

Assembly Hex Octal
notation Name code code

w NCPLC convert to PLANC descriptor FFFEH 1777768

Operation: A —> a
O -> 1
N - l —> u
If u-l+l < O, O —> N

Description:

Convert ND-SOO descriptor to plane descriptor.

The descriptors are as shown below:

ND—SOO descriptor Planc descriptor

Number of elements (N) address (a)

Address (A) lower (l)

upper (U)

Data Status Bits:
Upper = O m) Z
Signbit ~> S

Norsk Data ND-05.009.03 EN

272 ND~SOO Reference Manual
MISCELLANEOUS INSTRUCTIONS

15.17 CLINIT - Initialize local clock ('87 extension)

Assembly Hex Octal
notation Name code code

CLINIT initalize CPU's clock FFlEH 1774368

Operation: 0 —> (clock)

Description:

Privileged instruction

The CPU contains a local clock running at l microsecond cycle time.

Clock is reset and started.

Trap Conditions: None

Data Status Bits: Unaffected

Norsk Data ND-05.009.03 EN

ND—SOO Reference Manual 273
MISCELLANEOUS INSTRUCTIONS

15.18 CLREAD — Read local clock (’87 extension)

Assembly Hex Octal
notation Name code code

CLREAD read CPU'S clock FFlFH 177u37B

Operation: <clock> -> W1

Description:

The clock value is read into register number 1. Time is an
integer value giving the number of microseconds since the last CLINIT
instruction.

Note that the clock counts for a periode of 2**32 microseconds after
which it starts from zero again.

Trap Conditions: None

Data Status Bits: (clock) = O -> Z
<clock>.signbit -> S

Norsk Data ND~05.009.03 EN

274 ND-5OO Reference Manual

Norsk Data ND—05.009.03 EN

ND—5OO Reference Manual 277
SPECIAL INSTRUCTIONS

16 SPECIAL INSTRUCTIONS

16.1 Disable process switch

Format: SOLO

Assembly Hex Octal
notation Name code code

SOLO disable process switch OFEOOH 177000B

Operation: disables process switch for maximum 256 micro-cycles

Description:

Ensure that instructions up to the next TUTTI instruction are executed
as an indivisible sequence of operations. SOLO is used for
syncronizing purposes and implementation of protection mechanisms.

If the disable process switch is disabled for more than 256 micro-
cycles, a disable process switch timeout occurs. Most simple
instructions execute in one microcycle per operand specifier.

No enabled trap conditions may occur when the process switch is
disabled, as any trap handling will take more than 256 micro~cycles
and cause timeout. Non—ignorable and fatal traps cause a disable
process switch error trap.

In privilege mode there is no limitation to the duration of a SOLO
operation. Unprivileged users are not allowed to run in SOLO for more
than 256 cycles. In the 500/2 implementation, these are microcycles.
In the ND-SOOO implementation they are macroinstruction cycles.

Disable process switch timeout occurs if unprivileged users attempt to
repeat SOLO's.

Trap conditions: Disable process switch Timeout, Disable process
switch Error

Data status bits: Unaffected

Example:

SOLO

Norsk Data ND—05.009.03 EN

278 ND-SOO Reference Manual
SPECIAL INSTRUCTIONS

16.2 Enable process switch

Format: TUTTI

Assembly Hex Octal
notation Name code code

TUTTI enable process switch OFEO1H 1770018

Operation: process switch is enabled

Description:

The complement of SOLO; allows normal interleaving of process
execution in the system.

Trap conditions: None

Data status bits: Unaffected

Example:

TUTTI

Norsk Data ND—05.009.03 EN

ND—500 Reference Manual 279
SPECIAL INSTRUCTIONS

16.3 Test and set

Format: BY TSET <operand/rwl/BY)

Assembly Hex Octal
notation Name code code

BY TSET test and set OFDQOH 1765008

Operation: lock
read operand and set status bits
set operand to all ones

unlock

Description:

The TSET instruction performs the two necessary memory accesses
uninterruptible by other processors or by channels connected to the
memory system. It may therefore be used to implement processor
synchronization. The TSET instruction always reads the contents of
main memory, even if the addressed data are present in cache memory.
The cache is updated for later references by ordinary load
instructions.

The TSET instruction is valid in the MPM-IV and later memory systems.
In installations using MPM—III, it will work algorithmically as
specified here but the memory operations are independent and other
memory accesses may interfere.

Register and constant operands are illegal, and will cause an illegal
operand specifier trap condition.

Trap conditions: Addressing traps, Illegal Operand Specifier

Data status bits:

operand was zero before store ~> Z
operand was negative before store —> S

Example:

Set byte variable RESERVE to all ones

BYu TSET RESERVE '

Norsk Data ND«05.009.03 EN

280 ND-SOO Reference Manual
SPECIAL INSTRUCTIONS

1604 Break point

Format: 8?

Assembly . Hex Octal
notation Name code code

BP break point instruction OOZH 002B

Operation: Cause a break point instruction trap condition

Description:

This instruction causes a break point instruction trap condition. If
the break point trap is not enabled, it will cause an illegal
instruction code trap condition.

The BF instruction is intended for program debugging and the trap
handler will normally invoke a debug routine.

Trap conditions: BreakPoint instruction Trap,lllegal Instruction Code

Data status bits: Unaffected

Example:

BP

Norsk Data ND-05.009.03 EN

ND~500 Reference Manual 281
SPECIAL INSTRUCTIONS

16.5 set bit in trap enable register

Format: SETE <bit no/r/BY>

Assembly Hex Octal
notation Name code code

SETE set bit in own trap enable register OFD39H 176471B

Operation: Set bit (bit no) in own trap enable register

Description:

The specified bit in the Own Trap Enable (OTE) register is set. The
(bit no) operand is compared with a modify mask {TEMM) found in the
domain description table. If a bit in this mask is set, the
corresponding bit in the local trap enable register is modifiable. An
attempt to modify a nonnmodifiable bit will cause an condition.

Trap conditions: Addressing traps, Illegal Operand Value

Data status bits: Unaffected

Example:

Enable the integer Overflow trap

SETE 9

Norsk Data ND-05.009.03 EN

282 ND~500 Reference Manual
SPECIAL INSTRUCTIONS

16.6 Clear bit in trap enable register

Format: CLTE <bit no/r/BY>

Assembly Hex Octal
notation Name code code

CLTE clear bit in own trap enable register OFD3AH 1764728

Operation: Clear bit (bit no> in own trap enable register

Description:

The specified bit in the Own Trap Enable register is cleared. An
ignorable trap condition will be ignored and no trap handler invoked
unless the corresponding MTE bit is set. A non-ignorable trap
condition will be propagated to the mother domain.

The (bit no) operand is compared with a modify mask (TEMM) found in
the domain description table. If a bit in this mask is set, the
corresponding bit in the local trap-enable register is modifiable. An
attempt to modify a non—modifiable bit will cause an illegal operand
value trap condition“

Trap conditions: Addressing traps, Illegal Operand Value

Data status bits: Unaffected

Example:

Disable Single Instruction Trap

CLTE 17

Norsk Data NDw05.009.03 EN

NDwfiOO Reference Manual 283
SPECIAL INSTRUCTIONS

16.7 Load special register

Format: special register := <0perand/r/W)

Assembly Hex Octal
notation Name code code

Lt: ‘load link register OFDBBH 176M738
HL:= load upper limit register OFDB7H 1766678
LL:= load lower limit register OFDBBH 1766708
ST1:= load 1st status register OFDB9H 1766718
OTBl:= load 1st own trap enable register OFDBBH 1766738
OTEZ:= load 2nd own trap enable register OFDBCH 1766748
TOS:= load top of stack register OFDBDH 1766758
THA:= load trap handler register OFDCAH 1767128

Operation: (operand) -> special register

Description:

Special registers can be loaded with this group of instructions.

Some of the bits in the status register (listed in the Status bits
survey section) are not modifiable. When loading the Own Trap Enable
register, the operand is compared with a modify mask (TEMM) found in
the domain description table. If a bit in this mask is set, the
corresponding bit in the trap enable register is modifiable. An
attempt to modify a non-modifiable bit in the Own Trap Enable register
will cause an illegal operand value trap condition.

Trap conditions: Addressing traps, Illegal Operand Value

Data status bits:

(operand) = O ~> Z
<operand>.signbit m) S

The instruction ST1:= will load the data status bits from the operand.
Setting status bits that are modified after each instruction is legal
but meaningless, as they will be cleared before the next instruction.
These include bits in the range 17 to 25, 27 and 28.

Example:

Restore the TOS register from the current top of stack after a call to
a routine entered through ENTM

TOS:= B.SP

Norsk Data ND~05.009.03 EN

284 ND—500 Reference Manual
SPECIAL INSTRUCTIONS

16.8 Store special register

Format: special register =: <0perand/w/W)

Assembly Hex Octal
notation Name code code

L=: store link register OFDCOH 1767008
HL=: store high limit register OFDClH 1767018
LL=: store low limit register OFDCZH 1767028
ST1=: store lst status register 0FDC3H 1767038
OTEl=z store lst own trap enable register OFDCSH 1767058
OTEZ=: store 2nd own trap enable register 0FDC6H 1767068
MTEl=: store lst mother trap enable register OFD7OH 1765608
MTEZ=: store 2nd mother trap enable register 0FD71H 1765618
CTEl=z store lst child trap enable register OFESOH 1771208
CTEZ=2 store 2nd child trap enable register 08851H 1771218
TEMM1=: store lst trap enable modification mask OFESZH 1771228
TEMM2=: store 2nd trap enable modification mask OFES3H 1771238
CED=2 store current executing domain OFES4H 1771248
CAD=: store current alternative domain OFESSH 1771258
88:: store process segment OFE7CH 1771748
TOS=: store top of stack register 0FDC9H 1767118

. =: store trap handler register OFDCBH 1767138
P=: store program counter 0FD62H 1765428

Operation: special register ~> <operand>

Description:

Store the contents of a special register into a specified operand.

When storing the program counter (P=:). the contents of the operand
will be the address of the P=: instruction.

Trap conditions: Addressing traps. illegal operand specifier

Data status bits:

special register = O -> Z
special register.signbit -> S

The instruction ST1=: does not affect the data status bits.

Norsk Data ND-05.009.03 EN

ND-SOO Reference Manual 285
SPECIAL INSTRUCTIONS

16.9 Integer float register communication

Format:

An=: <0perand/w/W>
En;: <operand/w/W)
An:= <operand/r/W)
En:= <0perand/r/W)

Assembly Hex Octal
notation Name code code

An:= load most significant part OFE3OH+(n—1) 17706OB+(n-1)
of double float register

EDI: load least significant part OFE34H+(n-1) 177064B+(n—l)
of double float register

Ana: store most significant part OFE38H+(n-1) 17707OB+(n—l)
of double float register

En=: store least significant part OFE3CH+(n-1) 17707QB+(n-1)
of double float register

Operation:

An = load most significant part of double float register
En = load least significant part of double float register
An=: store most significant part of double float register
En=z store least significant part of double float register

Description:

Load/store the most significant or least significant 32 bits of the
double float registers. Note that a float register is equivalent to
the most significant part of a double float register.

When a register is specified as an operand, the general integer
registers are used. Thus, these instructions can transfer data between
integer and float registers without performing any type conversion.

Trap conditions: Addressing traps

Data status bits:

source register = O -> Z
source register.signbit ~> S

Example:

Store least significant part of D3 in local variable LEAST

E3 =: B.LEAST

Norsk Data ND~05.009.03 EN

286 ND-SOO Reference Manual
SPECIAL INSTRUCTIONS

16.10 Data cache clear

Format: DCC

Assembly Hex Octal
notation Name code code

DCC data cache clear OFFlSH 1774258

Operation: Dump dirty

Description:

Data in the data cache are marked as invalid. Data marked dirty is
dumped to memory. The data cache should be cleared after a DMA
transfer has been performed to ensure that the cache contents are
consistent with main memory contents.

If no cache is present, the instruction has no effect.

Trap conditions: None

Data status bits: Unaffected

Example:

DCC

Norsk Data ND~05.009.03 EN

ND-SOO Reference Manual 287
SPECIAL INSTRUCTIONS

16.11 DDIRT ~ Dump dirty ('87 extension)

Assembly Hex Octal
notation Name code code

DDIRT dump dirty FFFAH 1777728

Operation: Dump dirty

Description:

Data marked dirty in the data cache is written to the memory.

If no cache is present, the instruction has no effect.

Trap Conditions: None

Data Status Bits: Unaffected

Example:

DDIRT

Norsk Data ND~05.009.03 EN

288 ND-SOO Reference Manual
SPECIAL INSTRUCTIONS

16.12 Program cache clear

Format: PCC

Assembly ‘ Hex Octal
notation Name code code

PCC program cache clear OFFlUH 177M248

Operation: Clear program cache

Description:

Data in the program cache are marked as invalid.

If no cache is present, the instruction has no effect.

Trap conditions: None

Data status bits: Unaffected

Example:

PCC

Norsk Data ND—05.009.03 EN

ND-SOO Reference Manual 289
SPECIAL INSTRUCTIONS

16.13 Data memory management on

Format: DMON

Assembly Hex Octal
notation Name code code

DMON data memory management on OFF16H 1774268

Gperation: turn on data memory management system

Description:

Privileged instruction.

Following data accesses will be mapped on a physical segment through
the memory management system, rather than being interpreted directly
as physical addresses.

If the data memory management system is already turned on, the
instruction has no effect.

Trap conditions: Illegal Instruction Code

Data status bits: Unaffected

Example:

DMON

Norsk Data ND-05.009.03 EN

290 ND-SOO Reference Manual
SPECIAL INSTRUCTIONS

16.14 Program memory management on

Format: PMON

Assembly Hex Octal
notation Name code code

PMON program memory management on OFF17H 177427B

Operation: turn on program memory management system
L -> P

Description:

Privileged instruction.

Following instruction accesses will be mapped on a physical segment
through the memory management system. rather than being interpreted
directly as physical addresses.

The virtual address of the next instruction to be executed is found in
the L register.

If the program memory management system is already turned on, control
is transferred to the instruction pointed to by the L register and the
instruction has no further effect»

Trap conditions: Illegal Instruction Code

Data status bits: Unaffected

Example:

PMON

Norsk Data ND~05.009.03 EN

ND-SOO Reference Manual 291
SPECIAL INSTRUCTIONS

16.15 Data memory management off

Format: DMOF

Assembly Hex Octal
notation Name code code

DMOF data memory management off OFF18H 177H3OB

Operation: turn off data memory management system

Description:

Privileged instruction.

Following data accesses will be interpreted directly as physical
addresses, rather than being mapped on a physical segment through the
memory management system.

If the memory management system is already turned off, the instruction
has no effect.

Trap conditions: Illegal Instruction Code

Data status bits: Unaffected

Example:

DMOF

Norsk Data ND"05.009.03 EN

292 ND-SOO Reference Manual
SPECIAL INSTRUCTIONS

16.16 Program memory management off

Format: PMOF

Assembly Hex Octal
notation Name code code

PMOF program memory management off OFF19H 1774318

Operation: turn off program memory management system
L ~> P

Description:

Privileged instruction.

Following instruction accesses will be interpreted directly as
physical addresses, rather than being mapped on a physical segment
through the memory management system.

The physical address of the next instruction to be executed is found
in the L register.

If the program memory management system is already turned off, control
is transferred to the physical address Specified by the L register and
the instruction has no further effect.

Trap conditions: Illegal Instruction Code

Data status bits: Unaffected

Example:

PMOF

Norsk Data ND—05.009.03 EN

NDuSOO Reference Manual 293
SPECIAL INSTRUCTIONS

16wl7 Read Written In Page table

Format: tn RWIP (bit or group no./r/W>

Assembly A Hex Octal
notation Name code code

Bin RWIP read WIP bit 0FE94H:+(n-—1) 177224B+(n—1)
Hn RWIP read WIP group OFE98H+(n-1) 17723OB+(n~1)

Operation: specified WIP bit or group -> Rn

Description:

Privileged instruction.

A bit or 16 bit group is read from the Written In Page table into the
specified register. The operand specifies the physical memory page
number (BIn RWIP) or physical page number/16 (Hn RWIP).

A bit set in this table indicates that the page has been written into
and must be written back to disk before being replaced with another
one. The bit is automatically set by hardware and is used by the
swapper routines.

In hardware there are separate WIP tables for program and data. RWIP
will return a logical OR of the two tables, making them appear as one.
Consequently, an ND—SOO system cannot have physically separate memory
for program and data at the same physical addresses.

This instruction is installation dependent; using it requires
knowledge of the physical memory configuration. Only the lower 25 bits
of the bit number are significant. Reading bits representing non—
existing memory will give a zero result.

Trap conditions: Addressing traps,Illegal Instruction Code

Data status bits:

bit or bit group = O -> Z

Norsk Data ND—05.009.03 EN

294 ND—EOO Reference Manual
SPECIAL INSTRUCTIONS

16.18 Clear Written In Page bit

Format: BI ZWIP <bit no./r/W>

Assembly Hex Octal
notation Name code code

BI ZWIP clear NIP bit OFE9CH 1772348

Operation: 0 -> specified WIP bit

Description:

Privileged instruction.

The specified bit in the Written In Page table is cleared. This
instruction is used by the swapper routines after a new page has been
read from disk into physical memory.

In hardware there are separate WIP tables for program and data. ZWIP
will clear both tables. Consequently, an ND-SOO system cannot have
physically separate memory for program and data at the same physical
addresses.

This instruction is installation dependent; using it requires
knowledge of the physical memory configuration.

Trap conditions: Illegal Instruction Code, Illegal Operand Value

Data status bits: Unaffected

Norsk Data ND”05.009.03 EN

NDMSOO Reference Manual 295
SPECIAL INSTRUCTIONS

16n19 Clear Written In Page table

Format: CWIP

Assembly Hex Octal
notation Name code code

CWTP clear WIP table OFFlBH 177433B

Operation: 0 —> entire WIP table

Description:

Privileged instruction.

The entire written in page table is cleared. This instruction is used
by the swapper routines.

This instruction is installation dependent; using it requires
knowledge of the physical memory configuration.

Trap conditions: Illegal Instruction Code

Data status bits: Unaffected

Norsk Data ND~05.009.03 EN

296 ND-SOO Reference Manual
SPECIAL INSTRUCTIONS

16.20 Read Page Used table

Format: tn RPGU (bit or group no./r/W>

Assembly ‘ Hex Octal
notation Name code code

BIn RPGU read PGU bit OFE88H+(n—l) 177210B+(n~1)
Hn RPGU read PGU group OFE80H+(n—l) l772148+(n~1)

Operation: specified PGU bit or group -> Rn

Description:

Privileged instruction.

A bit or 16—bit group is read From the Page Used table into the
specified register. The operand specifies the physical memory page
number (BIn RPGU) or physical page number/16 (Hn RPGU).

A bit set in this table indicates that the page has been used in some
instruction since the last time the bit was cleared. The bit is
automatically set by hardware. and is used by the swapping routines.

In hardware there are separate PGU tables for program and data. RPGU
will return a logical OR of the two tables, making them appear as one.
Consequently, an NDWSOO system cannot have physically separate memory
for program and data at the same physical addresses.

This instruction is installation dependent; using it requires
knowledge of the physical memory configuration. Only the lower 25 bits
of the bit number are significant. Reading bits representing none
existing memory will give a zero result.

Trap conditions: Illegal Instruction Code, Illegal Operand Value

Data status bits:

bit or bit group : O —> Z

Norsk Data ND—05.009.03 EN

NDmSOO Reference Manual
SPECIAL INSTRUCTIONS

16.21 Clear Page Used bit

Format: BI ZPGU (bit no./r/w>

Assembly
notation Name

BI ZPGU clear PGU bit

Operation: 0 —> specified PGU bit

Description:

Privileged instruction.

The specified bit in the page used table is

297

Hex Octal
code code

OFE90H 177220B

cleared. This instruction
is used by the swapper routines after a new page has been read from
disk into physical memory.

In hardware there are separate PGU tables for program and data. ZPGU
will clear the specified bit in both tables. Consequently, an ND—SOO
system cannot have physically separate memory for program and data at
the same physical address.

This instruction is installation dependent; using it requires
knowledge of the physical memory configuration.

Trap conditions: Illegal Instruction Code,

Data status bits: Unaffected

Illegal Operand Value

Norsk Data ND-05.009.03 EN

298 ND~SOO Reference Manual
SPECIAL INSTRUCTIONS

16.22 Clear Page Used table

Format: CPGU

Assembly Hex Octal
notation Name code code

CPGU clear PGU table OFFlAH 177u323

Operation: 0 —> entire PGU table

Description:

Privileged instruction.

The entire page used table is cleared. This instruction is used by the
swapper routines.

This instruction is installation dependent; using it requires
knowledge of the physical memory configuration.

Trap conditions: Illegal Instruction Code

Data status bits: Unaffected

Norsk Data ND~05.009.03 EN

NDmSOO Reference Manual 299
SPECIAL INSTRUCTIONS

16.23 Read I/O processor memory

Format: H RIOM <ND-lOO addr/r/W),(buffer/w/H>,<no of halfwords)

Assembly Hex Octal
notation Name code code

H RIOM read 1/0 processor memory 0FE76H 1771668

Operation: I/0 processor memory ~> ND—SOO memory

Description:

Privileged instruction.

The 1/0 processor (NDnlOO) memory contents are copied to the ND—500
memory buffer through the ND-500 interface. The <ND—100 addr)
specifies the physical ND~100 address and is usually private ND—lOO
memory. not directly addressable by the ND~500 . <buffer> is a logical
ND—500 address.

The ND»100 memory is accessed by DMA, and does not interrupt the
ND—lOO program execution.

Trap conditions: Addressing traps,lllegal Instruction Code, Illegal
Operand Value

Data status bits: Unaffected

Example:

Copy one page (1024 halfwords) from ND—lOO address 660008 to array PG

H RIOM 66000Bzw, PG, 1024

Norsk Data ND~05.009.03 EN

300 ND—SOO Reference Manual
SPECIAL INSTRUCTIONS

16.24 Clear translation speedup buffer

Format: PCTSB
DCTSB

Assembly Hex Octal
notation Name code code

PCTSB clear prog translation speedup buffer OFFlCH 1774348
DCTSB clear data translation speedup buffer OFFlDH 1774358

Operation: 0 -> translation speedup buffer

Description:

Privileged instruction.

The entire program or data translation speedup buffer is cleared,
forcing the following accesses to reinitialize the buffer from the
capability table, segment table and page index table.

Trap conditions: Illegal Instruction Code

Data status bits: Unaffected

Example:

DCTSB

Norsk Data ND-05.009.03 EN

ND-SOO Reference Manual 301
SPECIAL INSTRUCTIONS

16.25 Load bypassing cache

Format: tn RDUS <source/r/t>

Assembly _ Hex Octal
notation Name code code

BIn RDUS load bit, bypass cache 0FEAOH+(n—1) 177240B+(n—l)
BYn RDUS load byte, bypass cache OFEA4H+(n—l) 1772448+(n~1)
Hn RDUS load halfword, bypass cache OFEA8H+(n—l) 177ZSOB+(n—l)
Wn RDUS load word, bypass cache OFEACH+(n—l) 177254B+(n~l)

Operation: <source> -> Rn

Description:

The operand is loaded from main memory, disregarding cache contents.
This is primarily useful after a DMA transfer to memory has been
performed to prevent use of obsolete data in the cache. Register and
constant operands are illegal and will cause an illegal operand
specifier trap condition.

If the shared segment bit in the capability table is set, the cache
will under no circumstances be used for accesses to that segment. Thus
in multiprocess applications it is usually unnecessary to use the RDUS
instruction to ensure data consistency; the ordinary load (:=) will
have the same effect.

The addressed data are also loaded into the cache for later
references. If no cache is present, RDUS is equivalent to :=.

Trap conditions: Addressing traps, Illegal Operand Specifier

Data status bits:

<source> = O —> Z
<source>.signbit —> S

Example:

Read the field STAT in the record pointed to by the R register into
W3, not using the cache

W3 RDUS R.STAT

Norsk Data ND—05.009.03 EN

302 ND~500 Reference Manual
SPECIAL INSTRUCTIONS

16.26 OPERATING SYSTEMS SUPPORT INSTRUCTIONS

The following instructions, described on page 303 to page 322, are for
running low level operating systems tasks. These tasks, known as
NUCLEUS, support communication between processors in a machine
(intramachine communication) and between different machines
(intermachine communications).

Norsk Data ND-05.009.03 EN

ND—SOO Reference Manual 303
SPECIAL INSTRUCTIONS

16.26.1 RHOLE — read from NUCLEUS Hole ('87 extension)

Format: BY RHOLE <=hole/r/by/Il=>,<=string/w/by/12:>

Assembly Hex Octal
notation Name code code

BY RHOLE Read hole FE9EH 1772368

Operation: while not end of strings do
S(11) —> D(12),11+1 —> 11, 12+1 -> 12

enddo

Description:

Bytes are moved from source hole to destination string until either
source is empty or until destination is full.

String descriptor :
Length of source string

Start address of string

Hole descriptor :
Hole number

Reserved

Trap Conditions:

No access to hole : PV trap. Nothing moved, registers
unchanged.

The hole is not a message : 10V trap. Nothing moved, registers
unchanged.

Outside source or destination : Descriptor Range Trap.

Data Status Bits:

Outside source
Outside destination :
Source empty
Destinaion full

O, 11, 12 Unchanged, DR trap condition.
1, 11, 12 Unchanged, DR trap condition.

= O, 11, 12 next element.
1, 11, 12 next element.73

17
17

17
!

I!

Norsk Data ND~05.009.03 EN

304 ND—SOO Reference Manual
SPECIAL INSTRUCTIONS

16.26.2 WHOLE — write to NUCLEUS hole ('87 extension)

Format: BY WHOLE <=string/r/by/Il=>,<=hole/w/by/12=>

Assembly ' Hex Octal
notation Name code code

BY WHOLE Write hole FE9DH 1772358

Operation: while not end of strings do
8(11) —> D(12),Il+1 —> 11, I2+1 ~> 12

enddo

Description:

Bytes are moved from source string to destination hole until either
source is empty or until destination is full.

String descriptor :
Length of source string

Start address of string

Hole descriptor :
Hole number

Reserved

Trap Conditions:

No access to hole : PV trap. Nothing moved, registers
unchanged.

The hole is not a message : IOV trap. Nothing moved, registers
unchanged.

Outside source or destination : Descriptor Range Trap.

Data Status Bits:

Outside source
Outside destination
Source empty
Destinaion full

0, ll, 12 Unchanged, DR trap condition.
— 1, ll, 12 Unchanged, DR trap condition.

0, 11, I2 next element.
= 1. ll, 12 next element.x

x
x
x 1

Norsk Data ND-05.009.03 EN

ND~SOO Reference Manual 305
SPECIAL INSTRUCTIONS

16.26.3 SEND — Send to port ('87 extension)

Format: W1 SEND (hole number/r/W)

Assembly Hex Octal
notation Name code code

W1 SEND send to port B6H 2668

Operation: 11 ~> (hole numer)

Description:

Message of register 1 is sent to hole number as specified by the
operand.

Trap Conditions: Protect violation? Illegal operand specifier

Data Status Bits: Unaffected

Norsk Data ND~05.009.03 EN

306 ND-SOO Reference Manual
SPECIAL INSTRUCTIONS

16.26.4 RECVE — Receive from port ('87 extension)

Format: WI RECVE (hole number/r/W>,<number of bytes/w/W)

Assembly Hex Octal
notation Name code code

WI RECVE receive from port B7B 2678

Operation: (hole number) ~> Il”
length of message ~> (number of bytes)

Description:

Receive message from hole number. Message is returned in register 1“
Size of message is returned in 'number of bytes'.

Trap Conditions: Protect violation, Illegal operand specifier

Data Status Bits: Unaffected

Norsk Data ND-05.009.03 EN

ND-SOO Reference Manual 307
SPECIAL INSTRUCTIONS

16.27 INSTRUCTIONS MANIPULATING REGISTER— AND CONTEXT BLOCK

Formats:

SREGBL <mask/r/W>,<address/r/W>

LREGBL <mask/r/W>,<address/r/W>

SCNTXT <mask/r/W>,<address/r/W>

LCNTXT <mask/r/W>,<address/r/W>,<process number/r/W>

Operation:

Load and store registers and context information indicated by 'mask'
into addresses given by register number and offset address.

Description:

Register block layout used in store and load register block is the
same as used in store and load context, as shown in chapter 2.
Register number*4 gives displacement relative to the start of the save
area (Program counter is register number=0).

Address is pointer to the save and load area to be used.

Registers residing in the domain information table are modified
whenever they are changed. These registers are loaded from the domain
information table before execution is started. It is not neccesary to
save these registers in the save area when saving the context block or
the register block. Thus, the domain information table registers may
be excluded from the mask.

The LCNTXT and LREGBL instructions will load registers residing in the
domain information table before execution is started. If registers
residing in the domain information table are included in the ‘mask',
these registers are loaded into the domain information table from save
area. Changing domain information tablev by changing PS and/or CED,
will cause domain information table registers of a new domain to be
loaded. The privileged instruction bit(PIA) of the status word will
also be modified according to the new domain information table.

The SCNTXT and SREGBL instructions will read registers residing in the
domain information table and store them in the save area if included
in the mask.

When loading registers residing in the domain information table or
affecting the domain information selection according to 'mask',
registers are loaded from context or register block addresses while
the corresponding register is updated in the domain information table.
Hence this gives an opportunity to start a process with a completely
new register set. Note that this will only be possible when executed
as a privileged instruction.

Norsk Data ND-05.009.03 EN

308 ND-BOO Reference Manual
SPECIAL INSTRUCTIONS

When LREGBL is executed in non—privileged mode, it is not possible to
modify the 8T2, PS, CED, CAD, CTE, MTE and TEMM registers.

The CTE, MTE and TEMM registers cannot be changed by assembly
instructions and since these registers do not have any corresponding
hardware register, LREGBL should not attempt to modify these
registers.

The LCNTXT and SCNTXT are privileged instructions, since these are
using physical address when accessing the context block for load and
store.

The meaning of 'mask' in REGBL and CNTXT load and store
instructions are shown in the table below.

* A '1' in bit position of the 'mask' will cause register
to be loaded.

Reg. Bit.no Reg. Bit.no Reg. Bit.no Reg. Bit.no
P 0 Al 10 STS 20 MIC 30
L 1 A2 11 PS 21 OTE 31
B 2 A3 12 T08 22 CTE 32
R 3 A4 13 LL 23 MTE 33
ll 4 E1 14 EL 24 TEMM 34
I2 5 E2 15 THA 25 free 35
I3 6 E3 16 CED 26 free 36
IQ 7 EH 17 CAD 27 free 37

Norsk Data ND-05.009.03 EN

ND~500 Reference Manual 309
SPECIAL INSTRUCTIONS

16.27.l SREGBL - Save register block ('87 extension)

Formatx SREGBL <mask/r/W>,<address/r/w>

Assembly _ Hex Octal
notation Name code code

SREGBL save register block FFF7H 177767B

Operation: Save register block registers in specified address
according to 'mask'.

Description:

The registers specified in the mask are stored in logical memory
locations addressed by (address) plus register number*4. The
register numbers are shown in chapter 2.

Norsk Data ND—05.009.03 EN

310 ND—SOO Reference Manual
SPECIAL INSTRUCTIONS

16.27.2 LREGBL — Load register block ('87 extension)

Format: LREGBL <mask/r/W>,<address/r/W>

Assembly Hex Octal
notation Name code code

LREGBL load register block FFF6H 177766B

Operation: Load register block from logical address according
to ‘mask'.

Description:

The registers specified in the mask are loaded from logical memory
locations addressed by (address) plus register number*4. The
register numbers are shown in chapter 2.

When executed in non privileged mode, the 'mask' will be reduced
to include only registers that may be modified by assembly
instructions in non privileged mode.

When included in the mask, registers residing in the domain
information table are loaded from the logical address to the domain
information table pointed out by PS and CED as result of the LREGBL
instruction.

Norsk Data ND-05.009.03 EN

NDmSOO Reference Manual 311
SPECIAL INSTRUCTIONS

16.27.3 SCNTXT ~ Save context block ('87 extension)

Format: SCNTXT <mask/r/W>,<address/r/W>

Assembly Hex Octal
notation Name code code

SCNTXT save context FFF9H 1777718

Operation: Store context block registers in specified address
according to ‘mask'.

Description:

Privileged instruction

Context block of current process number is saved in physical address
according to 'mask'. If address = O, context save area of the
current process is used.

The registers specified in the mask are stored in locations addressed
by <address> plus register number*u. The register numbers are
shown in chapter 2.

When context save area is used, this is addressed by:

(process number+1)*400B + an operating system defined address.

Norsk Data ND—05.009.03 EN

312 ND—SOO Reference Manual
SPECIAL INSTRUCTIONS

16.27.4 LCNTXT ~ Load context block ('87 extension)

Format: LCNTXT <mask/r/W>,<address/r/W>,<process number/r/W)

Assembly . Hex Octal
notation Name code code

LCNTXT load context FFF8H 17777OB

Operation: Load context block registers from specified address
according to mask.

Description:

Privileged instruction

Context block of 'process number' is loaded from physical address
according to 'mask'. If address 3 O, context save area of the
current process is used. If
process number is less than 0, current process number is maintained.

The registers specified in the mask are loaded from locations
addressed by <address> plus register number*4. The register
numbers are shown in chapter 2.

When context block save area is used, this is addressed by:

(process number+l)*HOOB + an operating system defined address.

Norsk Data ND-05.009.03 EN

ND~500 Reference Manual 313
SPECIAL INSTRUCTIONS

16.28 REXT - Read from device external to CPU ('87 extension)

Format: Wn REXT <device/r/W>

Assembly Hex Octal
notation Name code code

Wn REXT read from external FFE8H l77750B+n~1

Operation: (device) -> In

Description:

Privileged instruction.

Information is read from external device into the specified register.
Further devices will be supported in later versions.

Device numbers:

Device = O : OCTO-bus / ACCP.

Data Status Bits:
Nothing read 1 —> K

else
0 —> K

Norsk Data ND~05.009.03 EN

314 ND—SOO Reference Manual
SPECIAL INSTRUCTIONS

16.29 WEXT — Write to device external to CPU ('87 extension)

Format: Wn WEXT <device/r/W)

Assembly Hex Octal
notation Name code code

Wn WEXT write to external device FFECH l777548+n~l

Operation: In —> (device)

Description:

Privileged instruction.

Information is written into external device from the specified
register. Further devices will be supported in later versions.

Register 'n’ is written to 'device'.

Device numbers:

Device = O : OCTO—bus / ACCP.

Data Status Bits:

Unable to write data 1 ~> K
else

0 —> K

Norsk Data ND*05.009.03 EN

ND—BOO Reference Manual
SPECIAL INSTRUCTIONS

16.30 TOSSP — Special load of T08 ('87 extension)

Format: TOSSP := <operand/r/W>

315

Assembly Hex Octal
notation Name code code

TOSSP special load of TOS FE9F 177237B

Operation: <operand> —> TOS

Description:

The TOS register is loaded from the operand. Before the value is
loaded, a check on magnitude greater than B.SP is performed. If true,
a stack overflow trap condition exists.

Trap condition: Stack overflow trap

Data Status Bits: <operand> = O -> Z
<operand>.signbit ~> S

Norsk Data ND-05.009.03 EN

316 ND-SOO Reference Manual
SPECIAL INSTRUCTIONS

16.31 RPHS — Read from physical segment ('87 extension)

Format: RPHS (domain number/r/W>

Assembly Hex Octal
notation Name code code

RPHS read from physical segment FFFSH 1777658

Operation: while 11 > 0 do
S(IM.I3) «> D(<domain number>.l2)
I3 + 1 —> 13
i2 + l —> 12
11 ~ 1 —> 11

enddo

Description:

Privileged instruction

Copy a number of bytes from physical address on physical segment to
logical address on the domain.

11 : Number of bytes to be moved.
12 : Logical address on the domain.
13 : Address on the physical segment.
IQ : Physical segment number.
Operand : domain number.

The copy operation is continued until the number of bytes left is
equal to 0 (11 = O) or a page boundary is reached on the physical
segment. Number of bytes to be moved is counted down and will be zero
when the move operation is completed. Physical and logical addresses
are incremented during the copy operation.

Data Status Bits:
no bytes left = O : 1 —> Z
page boundary and no bytes left < O : O —> Z

Norsk Data ND—05.009.03 EN

ND~500 Reference Manual 317
SPECIAL INSTRUCTIONS

16.32 WPHS — Write to physical segment ('87 extension)

Format: WPHS <domain number/r/W)

Assembly . Hex Octal
notation Name code code

WPHS write to physical segment FFFQH 1777648

Operation: while 11 > 0 do
S(<domain number>.12) -> D(IQ.I3)
I3 + 1 —> I3
12 + l —> 12
I1 - 1 —> 11

enddo

Description:

Privileged instruction

Copy number of bytes from logical address on the domain to physical
address on physical segment.

11 : Number of bytes to be moved.
12 : Logical address on the domain.
13 : Address on the physical segment.
IQ : Physical segment number.
Operand : domain number.

The copy operation is continued until the number of bytes left is
equal to 0 (11 = O) or a page boundary is reached on the physical
segment. Number of bytes to be moved is counted down and will be zero
when the move operation is completed. Physical and logical addresses
are incremented during the copy operation.

Data Status Bits:
no bytes left = O : 1 -> Z
page boundary and no bytes left < O : O —> Z

Norsk Data ND-05.009.03 EN

318 ND~SOO Reference Manual
SPECIAL INSTRUCTIONS

16.33 CAD - load CAD ('87 extension)

Format: CAD := <0perand/r/W>

Assembly Hex Octal
notation Name code code

CAD load CAD FDBAH 1766728

Operation: (operand) -> CAD

Description:

Privileged instruction

Load current alternative domain register.

Data Status Bits:
Operand = O —> Z
<Operand>.signbit ~> S

Norsk Data ND*05.009.03 EN

ND—BOO Reference Manual 319
SPECIAL‘INSTRUCTIONS

16.3% JUMPS — Call supervisor ('87 extension)

Format: JUMPS <address/r/W>

Assembly Hex Octal
notation Name code code

JUMPS call supervisor 89H 271B

Operation: P ~> context.P
B —> context.B
<address> ~> P
<cpuno> -> W1

Description:

Save P and B register in context block. Execution is started in
(address). The instruction implies SOLO mode.

Wl returns the ND~SOO/ ND—SOOO CPU number.

Trap Conditions: None

Norsk Data ND-OS.OO9.03 EN

320 ND—SOO Reference Manual
SPECIAL INSTRUCTIONS

16.35 SVERS - Store microprogram version ('87 extension)

Format: SVERS <destination/w/W)

Assembly , Hex Octal
notation Name code code

SVERS store version FFFBH 177773B

Operation: <microprog.vers> —> (destination)

Description:

Store microprogram version to destination address.

Data Status Bits:
Status bit set according to version.

Norsk Data ND-05.009.03 EN

ND—SOO Reference Manual
SPECIAL INSTRUCTIONS

16.36 SCPUNO — Store CPU number ('87 extension)

Format: SCPUNO <destination/w/W)

321

Assembly Hex Octal
notation Name code code

SCPUNO store CPU number FFFCH 1777748

Operation: <CPUNO> —> (destination)

Description:

Store CPU number in destination address.

Data Status Bits:
Status bit set according to CPU number.

Norsk Data ND-05.009.03 EN

322 ND—BOO Reference Manual
SPECIAL INSTRUCTIONS

16.37 PHYLADR — Get physical address ('87 extension)

Format: tn PHYLADR <0perand/aa/W)

Assembly Hex Octal
notation Name code code

tn PHYLADR get physical address FFFO+n—l 17776OB+n—l

Operation: tr(addr(operand)) -> In

Description:

The specified index register is loaded with the logical address of
operand translated to physical ND-SOO/ND—SOOO address.

Trap Conditions:

Data Status Bits:

Norsk Data ND—05.009.03 EN

NDsSOO Reference Manual 325
BINARY CODED DECIMAL INSTRUCTIONS (Option)

17 BINARY CODED DECIMAL INSTRUCTIONS (Option)

17"1 Introduction

These instructions are available only if the BCD hardware option is
selected and the proper microprogram loaded.

BCD gPACKEDQ FORMAT

A BCD number is represented by coding each individual decimal digit
using four bits, called a nibble. This significantly eases the
translation to or from a printable form, ASCII characters in
particular.

The digits 0 to 9 are coded by their binary equivalents:

Internal (binary)
representationU H- 00 p. n

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001w

o
o

u
c
n

m
rw

w
r—

x
o

The codes 1010 to 1111 are invalid as digits, but are used to
represent the sign. Also the code 0000 represents the sign +. The sign
is placed in the rightmost nibble, following the least significant
digit.

+ 0000
1010
1100
1110

— 1011
1101

unsigned 1111

Arithmetic operations will return results using 1100 for plus, 1101
for minus, but all sign codes are allowed in operands. Unsigned is
treated as plus.

Norsk Data ND¢05.009.03 EN

326 ND—SOO Reference Manual
BINARY CODED DECIMAL INSTRUCTIONS (Option)

ASCII CODED DECIMAL NUMBERS

A decimal number may also be represented using the ASCII characters.
Each digit occupies one byte (8 bits). The upper four bits of the
byte, called the zone, have the value 0011 unless they are used to
represent the sign. The lower four bits are encoded as for BCD
numbers.

Before arithmetic operations are performed on the number, it must be
packed into a BCD format (PPACK instruction).

A number consists of a sequence of ASCII digits which may be preceded
or followed by a sign. The sign may occupy a separate byte containing
the ASCII value of + (HOB or OZOH, or 53B or OZBH) or — (558 or OZDH).
It may also be stored in the same byte as the rightmost or leftmost
digit (embedded sign representation). When the sign is embedded, the
byte containing the sign has the value as follows:

positive number: 0 => 173B O7BH
1..9 => 101B..111B 041H..049H

(with or without
parity)

negative number: 0 => 1758 O7DH
l..9 => 1128..1228 OHAH..O52H

The embedded sign format is also termed "overpunch" format.

When embedded, the sign byte is also allowed to be the ASCII digits
alone. The sign is then positive. The ordinary digit values are also
valid as embedded sign with + sign.

The five possible sign representations are

- embedded trailing, the rightmost byte contains the sign and the
least significant digit

— separate trailing, the sign is represented by its ASCII code in a
separate byte to the right of the least significant digit

— embedded leading, the leftmost byte contains the sign and the
most significant digit

— separate leading, the sign is represented by its ASCII code in a
separate byte to the left of the most significant digit

— unsigned

Norsk Data ND-05.009.03 EN

ND—BOO Reference Manual 327
BINARY CODED DECIMAL INSTRUCTIONS (Option)

DESCRIPTOR FORMAT FOR ASCII AND BCD

A decimal number is addressed indirectly via a two word descriptor
giving the sign representation, scaling factor, number of digits of
the operand and the address of its first byte. Descriptor addressing
is implicit in the BCD instructions.

The descriptor consists of two words (64 bits) with the following
layout:

Bit no: 31 2Q 23 16 15 0

SGN SC FW

A d d r e s s

SGN: Sign representation of ASCII coded decimal:

SC:

bit 26 25 24 Sign representation:

embedded trailing
separate trailing
embedded leading
separate leading
unsignedH

O
O

O
O

O
H

H
'O

O

o
n

~
<

a
ra

C

For BCD format the unsigned bit in the BCD descriptor is only
valid for destination operands. Sign codes different from
unsigned in the source operands are legal and effective even if
the unsigned bit in the descriptor is set. The destination field
will always be generated with the binary value 1111 in the sign
nibble when the destination descriptor unsigned bit is set.

For ASCII operands, the unsigned bit in the descriptor is
effective for all operands. If a sign code is detected in a
source operand and the source descriptor unsigned bit is set, it
is an condition. Destination operands are always generated in
unsigned format when the unsigned bit in the descriptor is set.

Scaling factor, specifying the position of the decimal point.
Legal range is from ~32 through +31. Negative values are
represented as a two's complement byte. SC=O indicates that the
decimal point is immediately to the right of the least
significant digit; SC>O indicates that the decimal point is to
the left of the least significant digit (the SC rightmost digits
are the fractional part); SC<O indicates that the decimal point
is to the right of the least significant digit (the number has SC
non—represented zeros to the right).

Norsk Data ND-05.009.03 EN

328 ND*SOO Reference Manual
BINARY CODED DECIMAL INSTRUCTIONS (Option)

FW: Field width, range 0 through 31; the number of nibbles (BCD
packed) or bytes (ASCII) used to represent the number, including
the sign. An unsigned ASCII number with embedded Sign may be up
to 31 digits, a BCD packed or ASCII number with separate sign may
be up to 30 digits.

EMPTY OPERANDS

A field width of zero will cause a descriptor-range trap condition.
The address is not checked; no addressing traps will occur from the
address part of the descriptor.

DECIMAL OPERAND ADDRESSING

Decimal operands are never loaded into registers; both descriptors and
numeric fields are always found in memory. The address field in the
descriptor gives the address of the leftmost byte of the numeric
field. For BCD (packed) operands the numeric field is right justified
in (FW+l)/2 bytes; if the field width FW is odd the leftmost nibble in
the leftmost byte is not significant. The operands of an instruction
may have different scaling factors and field widths. The decimal
points of the operand values are automatically aligned before the
operation is executed. The result value is scaled according to the
scale factor in the destination descriptor.

Descriptor addressing is implicit; a DESC prefix is not allowed in the
operand specifier.

OPERAND OVERLAP

An operand may be used both as source and as destination, and is
described by one descriptor or by two different descriptors with equal
address fields.

ROUNDING

If the instruction specifies rounding the result value may be rounded
before storing in the destination operand. If the result has one or
more digits to the right of the least significant digit in the
destination, the leftmost digit not stored is inspected. If this digit
is 5, 6, 7, 8 or 9 the least significant digit actually stored is
incremented by 1. Otherwise, the digits that are not stored are
ignored.

If rounding is not specified in the instruction, digits to the right
of the least significant digit represented will not affect the result.

Norsk Data ND~05.009.03 EN

ND—SOO Reference Manual 329
BINARY CODED DECIMAL INSTRUCTIONS (Option)

STATUS BITS

Decimal instructions will affect BCD overflow, the invalid operation
value, K flag, zero and sign bits. BCD overflow and the invalid
operation may be taken care of by a trap handler.

BCD overflow occurs if the destination field is too narrow to hold the
result value after rounding.

An invalid operation occurs if a code representing anything other than
a digit is encountered in a digit position, or anything other than a
sign code is encountered in the sign position. The numeric string is
checked for illegal codes in all instructions.

The packed to binary conversion instruction may also cause integer
overflow.

Data status bits (Zero, Sign) are set or reset after rounding (if
specified), and after the result value has been scaled according to
the destination descriptor.

The K flag is set upon BCD overflow or invalid operation, otherwise
the flag is cleared.

NEGATIVE AND POSITIVE ZERO

A result value of zero from an instruction will usually have a
positive sign code, or unsigned if so specified in the descriptor.
Source operands of value zero may have positive or negative sign;
negative zero is equivalent to positive zero and will compare as equal
in the PCOMP instruction.

If significant digits are lost due to a BCD overflow, the result value
will have the sign of what the correct result would have had. This may
give a result value of negative zero. The Z and 8 bits in the status
register are set the same as for a positive zero value (Z=l, S=O).

Egg OVERFLOW

On BCD overflow, the result is replaced by the correctly signed least
significant digits.

Restriction on Scaling Difference in Packed Add

For add, subtract, and compare the following must hold:

~32£((operandl.field width+1)/2*2«(operand1.scaling factor)-
((operand2.field width+l)/2*2~(operand2.scaling)))g32

otherwise it is an invalid trap condition.

Norsk Data ND~OS.OO9.03 EN

330 ND—SOO Reference Manual
BINARY CODED DECIMAL INSTRUCTIONS (Option)

17.2 Packed add

Format: PADD <=a/r/BCD=>, <=b/r/BCD=>, (=c/w/BCD=>

Assembly ‘ Hex Octal
notation Name code code

PADD packed add OFEBOH 1772608
PADDR packed add rounded OFE85H 1772058

Operation: (a) + —> (c)

Description:

The <a> operand is added to the (b) operand and the sum is stored in
the (c) operand.

The result is scaled according to the scale factor in the (c) operand
before storing.

Trap conditions: Addressing traps, BCD Overflow, InValid Operation

Data status bits:

sum = O —> Z
sum.signbit ~> S
BCD overflow —> BO
B0 or IVO —> K

Example:

Add local variables PRICE and TAX to form global value TOTAL

PADD B.PRICE, B.TAX, TOTAL

Norsk Data ND~05.009.03 EN

NDuSOO Reference Manual 331
BINARY CODED DECIMAL INSTRUCTIONS (Option)

17¢3 Backed subtract

Format: PSUB <=a/r/BCD=>, <=b/r/BCD=>, <=c/w/BCD=>

Assembly Hex Octal
notation Name code code

PSUB packed subtract OFEBlH 177261B
PSUBR packed subtract rounded OFE86H 1772068

Operation: <a> — (b) -> <c>

Description:

The operand is subtracted from the (a) operand and the difference
is stored in the <c> operand.

The result is scaled according to the scale factor in the (C) operand
descriptor before storing.

Trap conditions: Addressing traps, BCD Overflow, InValid Operation

Data status bits:

difference = O —> Z
difference.signbit —> S
BCD overflow -> BO
B0 or IVO —> K

Example:

Subtract local variable DISCOUNT from global variable TOTAL and round
the resulting value before storing it

PSUBR TOTAL, B.DISCOUNT, TOTAL

Norsk Data ND-05.009.03 EN

332 ND-SOO Reference Manual
BINARY CODED DECIMAL INSTRUCTIONS (Option)

17.4 Packed multiply

Format: PMPY <=a/r/BCD=>, <=b/r/BCD=>, <=c/w/BCD=>

Assembly Hex Octal
notation Name code code

PMPY packed multiply OFEBHH 177264B
PMPYR packed multiply rounded OFE91H 1772218

Operation: (a) * (b) —> (C)

Description:

The (a) operand is multiplied by the (b) operand and the product is
stored in the (C) operand.

The result is scaled according to the scale factor in the <c> operand
descriptor before storing.

For PMPY/PMPYR, an operand with invalid digit * ZRO gives the result
0, not IVO.

Trap conditions: Addressing traps, BCD Overflow, InValid Operation

Data status bits:

product = O ~> Z
product.signbit —> C
BCD overflow «> BO
BO or IVO -> K

Example:

Multiply local variable PRICE with DISCOUNT giving local NET. Round
the resulting value before storing it

PMPYR B.PRICE, DISCOUNT, B.NET

Norsk Data ND—05.009.03 EN

ND~SOO Reference Manual 333
BINARY CODED DECIMAL INSTRUCTIONS (Option)

17.5 Backed compare

Format: PCOMP <=a/r/BCD=>, <2b/r/BCD=>

Assembly Hex Octal
notation Name code code

PCOMP packed compare OFEB3H 1772638

Operation: <a> —

Description:

The operand is subtracted from the <a> operand and the status bits
are set according to the result. The result is discarded.

Before the comparison is performed, the operands are automatically
shifted to the same decimal point position (scale) and extended with
zeros if necessary. An unsigned number is treated as positive, and
positive and negative zero are equal.

Trap conditions: Addressing traps, InValid Operation

Data status bits:

difference = O —> Z
difference.signbit -> S
IVO —> K

Example:

Compare TOTAL with MAX and set status bits

PCOMP TOTAL, MAX

Norsk Data ND—05.009.03 EN

334 ND-SOO Reference Manual
BINARY CODED DECIMAL INSTRUCTIONS (OptiOn)

17.6 Packed shift

Format: PSHIFT <=source/r/BCD=>, <=dest/w/BCD=>

Assembly Hex Octal
notation Name code code

PSHIFT packed shift OFEBZH 1772628
PSHIFTR packed shift rounded OFE87H 1772078

Operation: <source> ~> <dest>

Description:

The content of the <source> operand is shifted to the scaling factor
of the <dest> operand and, if specified, rounded before storing it in
the <dest> operand. The destination string is extended with zeroes if
necessary.

With the exception of rounding, the value is not modified, but the
number of decimal positions may be changed. If the (source) and <dest>
operands have the same scaling factor, a move is performed.

If bit 26 in the descriptor of the <dest> operand is set, the value is
stored with a sign code equal to 1111 (unsigned). Otherwise, <dest>
will be given the sign of the <source> value.

Trap conditions: Addressing traps, BCD Overflow, InValid Operation

Data status bits:

value after rounding = O n) Z
value.signbit “> S
BCD overflow a) B0
B0 or IVO n) K

Example:

Copy SUBTOTAL to TOTAL

PSHIFT SUBTOTAL, TOTAL

Norsk Data ND—05.009.03 EN

ND-SOO Reference Manual 335
BINARY CODED DECIMAL INSTRUCTIONS (Option)

17.7 Convert ASCII to packed

Format: PPACK <=source/r/ASCII=>, <=dest/w/BCD=>

Assembly . Hex Octal
notation Name code code

PPACK convert ASCII to packed OFEBSH 1772658
PPACKR convert ASCII to packed rounded OFE92H 1772228

Operation: (source) —> <dest>

Description:

The content of the (source) operand in ASCII coded decimal is packed
into the <dest> operand in packed format. If specified, the value is
rounded before storing it in the <dest> operand.

If bit 26 in the descriptor of the <dest> operand is set, the value is
stored with a sign code equal to 1111 (unsigned). Otherwise, <dest>
will be given the sign of the <source> value. The (source) value
consists of ASCII digits and a Sign according local variables PRICE
and TAX to form global value TOTAL;

????the SGN code in the (source) descriptor only.

Trap conditions: Addressing traps, BCD Overflow, InValid Operation

Data status bits:

value after rounding = O -> Z
value.signbit -> S
BCD overflow ~> BO
BO or IVO -> K

Example:

Convert ASCII value IFIELD to packed VARl

PPACK IFIELD, VARl

Norsk Data ND-05.009.o3 EN

336 ND—BOO Reference Manual
BINARY CODED DECIMAL INSTRUCTIONS (Option)

17.8 Convert packed to ASCII

Format: PUPACK <=source/r/BCD=>, <=dest/w/ASCII=>

Assembly Hex Octal
notation Name code code

PUPACK convert packed to ASCII OFEB6H 1772668
PUPACKR convert packed to ASCII rounded OFE93H 1772238

Operation: (source) —> <dest>

Description:

The content of the (source) operand in packed decimal format is
unpacked into the <dest> operand in ASCII format. If specified, the
value is rounded before storing it in the <dest> operand. The sign
representation is determined by the SGN field in the <dest>
descriptor.

The <dest> string is extended with leading ASCII zeros if necessary,
and the parity bit for all digits will be zero.

Trap conditions: Addressing traps, BCD Overflow, InValid Operation

Data status bits:

value after rounding = O ~> Z
value.signbit -> S
BCD overflow -> BO
BO or IVO ~> K

Example:

Unpack VARl into IFIELD and round the value according to the IFIELD
descriptor

PUPACKR VARl, IFIELD

Norsk Data ND-05.009.03 EN

ND-SOO Reference Manual 337
BINARY CODED DECIMAL INSTRUCTIONS (Option)

17.9 Convert packed to binary word

Format: Wn PWCONV <=source/r/BCD=>

Assembly Hex Octal
notation Name code code

Wn PWCONV convert packed to binary OFEBCH+{n—l) 177274B+(n—1)

Operation: <source> »> Rn

Description:

The contents of the <source> operand in packed decimal format are
converted to binary format and loaded into the specified register. The
fractional part of <source> is lost; no rounding is performed before
the conversion.

On integer overflow the result is the least significant 32 bits of the
binary result.

Trap conditions: Addressing traps, Integer Overflow, InValid
Operation

Data status bits:

value = O ~> Z
value.signbit —> S
overflow ~> O
IVO or O -> K

Example:

Convert IFIELD to an integer number in W1

W1 PWCONV IFIELD

Norsk Data ND-05.009.03 EN

338 ND—BOO Reference Manual
BINARY CODED DECIMAL INSTRUCTIONS (Option)

17.10 Convert binary word to packed

Format: Wn WPCONV <=dest/w/BCD=>

Assembly ‘ Hex Octal
notation Name code code

Wn WPCONV convert binary to packed OFEBBH+(n—1) 17727OB+(n-1)

Operation: Rn -> <dest>

Description:

The contents of the specified word register are converted to packed
decimal and stored in the <dest> operand. If the scaling factor of
<dest> is negative, the least significant digits are lost. <dest> is
extended with low order or high order zeros as required by the scaling
factor.

Trap conditions: Addressing traps, BCD Overflow

Data status bits:

value a O —> Z
value.signbit —> S
BCD overflow ~> BO
BO -> K

Example:

Convert W1 to packed and store in IFIELD

W1 WPCONV IFIELD

Norsk Data ND~05.009.03 EN

ND-SOO Reference Manual
Address codes

Hexadecimal:

Name

LOCAL
LOCAL
LOCAL
LOCAL
LOCAL P.I.
LOCAL P.I.
LOCAL P.I.
LOCAL INDIRECT
LOCAL INDIRECT
LOCAL INDIRECT
LOCAL INDIRECT P.I.
LOCAL INDIRECT P.I.
LOCAL INDIRECT P.I.
RECORD
RECORD
RECORD
RECORD
PRE-INDEXED
PRE-INDEXED
PRE-INDEXED
ABSOLUTE
ABSOLUTE P.I.
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

REGISTER

DESCRIPTOR
ALTERNATIVE

Not used

Size

E
E

&
E

E
E

d)%
E

E
i

E
E

E
m

w
2

m
w<

n
U

E
ié

m
Ki

m

Norsk Data ND-05.009.03 EN

Operation

ea (B)+d*4
ea (B)+d
ea—(B)+d
ea=(B)+d
ea=(B)+d+p*(Rn)
ea=(B)+d+p*(Rn)
ea=(B)+d+p*(Rn)
ea=((B)+d)
ea=((B)+d)
ea=((B)+d)
ea=((B)+d)+p*(Rn)
ea=((B)+d)+p*(Rn)
ea=((B)+d)+p*(Rn)
ea=(R)+d*4
ea=(R)+d
ea=(R)+d
ea=(R)+d
ea=(Rn)+d
ea=(Rn)+d
ea=(Rn)+d
ea=a
ea=a+(Rn)*p
op=c
op=c
op=c
op=c
op=c
op=c

IH
H

op=(Rn)

ea=A+p*(Rn)

080H+XX
OClH
OCZH
OC3H
OD4H+y
OD8H+y
ODCH+y
OCSH
OC6H
OC7H
OE4H+y
OE8H+y
OECH+y
O8OH+xx
OC9H
OCAH
OCBH
OF4H+y
OF8H+y
OFCH+y
004B
OEOH+y
OOOH+cc
OCDH
OCEH
OCFH
OCFH
OCCH

ODOH+y

OFOH+y
OCBH

OCOH

341

Hex layout

dd
dd dd
dd dd dd
dd
dd dd
dd dd dd
dd
dd dd
dd dd dd
dd
dd dd
dd dd dd

dd
dd dd
dd dd dd
dd
dd dd
dd dd dd
aa aa aa
aa aa aa

CC
CC CC
CC CC CC

CC CC CC
CC CC CC

CC CC CC

(operand)
(operand)

dd

dd

dd

dd

dd

dd
aa
aa

CC

CC
CC

CC

342

Octal:

Name

LOCAL
LOCAL
LOCAL
LOCAL
LOCAL P.I.
LOCAL P.I.
LOCAL P.I.
LOCAL INDIRECT
LOCAL INDIRECT
LOCAL INDIRECT
LOCAL INDIRECT P.I.
LOCAL INDIRECT P.I.
LOCAL INDIRECT P.I.
RECORD
RECORD
RECORD
RECORD
PRE—INDEXED
PRE~INDEXED
PRE-INDEXED
ABSOLUTE
ABSOLUTE P.
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

REGISTER

DESCRIPTOR
ALTERNATIVE

Not used

I.

Size

E
E

E
E

E
E

&>%
E

w
z

m
w

z
m

m
z

m
w

m
6

E
%

E
E

R
Operation

+dfiq

m
m

m
m

m
m

m
m

m
m

u
u

H
n

n)
)+d
)+d
)+d
)+d+p* (Rn)
)+d+p* (Rn)
)+d+p* (Rn)

)+d)
B)+d)

((B)+d)
((B)+d)+p* (Rn)
((B)+d)+p* (Rn)
((B)+d)+p* (Rn)
(R
(R

m
m

m
m

m
m

x
u

u
H

(B
(B
(B
(B
(B
(B
(B
((B
((

m
m

m
m

m a

m m
n

u
H

n
l

m m
Hea)++d*4

ea)+d
ea: (R)+d
ea=(R)+d
ea=(Rn)+d
ea=(Rn)+d
ea=(Rn)+d
ea=a
ea=a+(Rn)*p
op=c
op=c
op=c
op=c
op=c
op=c

H

p=(Rn)

ea=A+p*(Rn)

ND-BOO Reference Manual

100B+dd
3018
3028
3038
32HB+y
3303+y
3348+y
3058
3068
3078
344B+y
35OB+Y
354B+y
ZOOB+dd
3118
3128
3138
3643+y

37OB+Y
3748+y
3048
340B+y
OOOB+CC
3158
316B
317B
317B
3148

3208+y

36OB+y
3108

3008

Norsk Data ND-05.009.03 EN

Address codes

Octal layout

ddd
ddd ddd
ddd ddd ddd ddd
ddd
ddd ddd
ddd ddd ddd ddd
ddd
ddd ddd
ddd ddd ddd ddd
ddd
ddd ddd
ddd ddd ddd ddd

ddd
ddd ddd
ddd ddd ddd ddd
ddd
ddd ddd
ddd ddd ddd ddd
aaa aaa aaa aaa
aaa aaa aaa aaa

CCC
CCC CCC

CCC CCC CCC CCC

CCC CCC CCC CCC

CCC CCC CCC CCC
CCC CCC CCC CCC

<0perand>
<operand>

ND~500 Reference Manual 3A5
Address code table

Hexadecimal:

LOCAL

LOCAL P.I.

LOCAL INDIRECT

LOCAL INDIRECT P.I.

RECORD

PRE—INDEXED

ABSOLUTE

ABSOLUTE P.I.

CONSTANT

REGISTER

Address code prefixes:

DESCRIPTOR

ALTERNATIVE

:S :B :H :W :F :D PREFIX

040H+dd OClH OCZH OC3H

OD4H+ OD8H+ ODCH+

OCBH OC6H OC7H

0E4H+ OE8H+ OECH

O8OH+dd OCQH OCAH OCBH

OFAH+ OF8H+ OFCH+

OCHH

OEOH+

OOOH+CC OCDH OCEH OCFH OCFH OCCH

ODOH+

OFOH+

OC8H

Norsk Data ND-05.009.03 EN

346

Octal:

LOCAL

LOCAL P.I.

LOCAL INDIRECT

LOCAL INDIRECT P.I.

RECORD

PRE—INDEXED

ABSOLUTE

ABSOLUTE P.I.

CONSTANT

REGISTER

Address code prefixes:

DESCRIPTOR

ALTERNATIVE

NDmSOO Reference Manual
Address code table

:3 :3 :H :w :3 :D PREFIX

lddB 3013 3023 3033

3243+ 3303+ 3343+

3053 3063 3073

3443+ 3503+ 3543+

2ddB 3113 3123 3133

3643+ 3703+ 3743+

3043

3403+

0cc3 3153 3163 3173 3173 3143

3203+

3603+

3103

Norsk Data ND-05.009.03 EN

ND-SOO Reference Manual 3M9
Symbols and abbreviations

METALANGUAGE SYMBOLS:

4*
< >
<< >>
<=operand=>
P.I.
alt.

t
displ.
log size

11
12
1:3
14

Access Codes:

w

rw
rwl
aa

optional syntax element
more than one optional syntax element
contents of
defined as
exchange contents of
is set to point to
to the power of
general operand
direct operand
implicit descriptor operand
post-index
alternative
number
effective address
value of operand. op=(ea)
descriptor.address
absolute address
constant
displacement
O,l,2,3,4,5,6,7 (octal)
O,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F (hexadecimal)
0,1,2, or 3 — specifies the registers Rl—R4
1/8 (bit), 1 (byte), 2 (halfword), 4 (word),
a (float), and 8 (double float). Post—index
scaling factor.
a subset of data types
displacement
the logarithm to the base two of the size of
a data element, in number of words

integer accumulators
or index registers

read access
write access
read and write access
read, write and locked swap access
address access
special, explained explicitly in
the instruction descriptions

Norsk Data ND-05.009.03 EN

350 ND—SOO Reference Manual
Symbols and abbreviations

ASSEMBLY NOTATION:

Registers:

Rn
An
En H2

3
:3

5
H

f—
‘H

Bln
BYn

H
n

H
H

H
H

H
H

E
r
r
-
2

‘3
5

4
:4

2
2

?

:11 :3

S
S

S
E

D
S

OTE
MTE
CTE
TEMM
TOS
LL
HL
THA

Data types:

BI
BY
H
W
F
D
BCD

register, type determined by context
upper half of double—precision register
lower half of double—precision register

integer type register used for bit data
integer type register used for byte data
integer type register used for halfword data
integer type register used for word data
float type register used for single—precision float
float type register used for double—precision float

program counter
link (return address) register
local variable base register
record base register

status register
own trap enable register
mother trap enable register
child trap enable register
trap enable modification mask
top of stack register
low limit trap register
high limit trap register
trap handler address register

bit
byte
halfword
word
float
double float
binary coded decimal

Data part length specifiers:

EP
AE

EE
EJ

E}
: short 6 bits

byte 8 bits
halfword 2 bytes
word 4 bytes
float 4 bytes
double float 8 bytes

Norsk Data ND-05.009.03 EN

ND—BOO Reference Manual
New instructions — 1987 extension

Instruction

AMODB integer modulo

CAD 2: load current alternative domain

CLINIT initialize local clock

CLREAD read local clock

DDIRT dump dirty

ENTIER SIMULA entier function

JUMPS call supervisor

LCNTXT load context block

LREGBL load register block

NCPLC convert ND-BOO descriptor to PLANC descriptor

PHYLADR get physical address

PLCCN convert PLANC descriptor to ND—BOO descriptor

RECVE receive from port

REXT read from device external to CPU

RHOLE read from NUCLEUS hole

RPHS read from physical address

SCNTXT save context block

SCPUNO store CPU number

SEND send to port

SREGBL save register block

SVERS store microprogram version

TOSSP := special load of TOS

WEXT write to device external to CPU

WHOLE write to NUCLEUS hole

WPHS write to physical address

Norsk Data ND-05.009.03 EN

353

Page

160

318

272

273

287

161

319

312

310

271

322

270

306

313

303

316

311

321

305

309

320

315

314

304

317

354 ND-SOO Reference Manual

Norsk Data ND-05.009.03 EN

ND—SOO Reference Manual
Instruction table

DATA TRANSFER AND LOGICAL INSTRUCTIONS

Bln :2 load bit page 125
BYn := load byte
Hn z: load halfword
Wn := load word
En := load float
Dn :2 load double float

B := load local base page 126
R 2: load record base page 127

Bln = store bit page 128
BYn = store byte
Hn = store halfword
Wn = store word
Fn = store float
Dn = store double float

B 2 local base store page 129
R = record base store page 130

Bl MOVE move bit page 131
BY MOVE move byte
H MOVE move halfword
W MOVE move word
F MOVE move float
D MOVE move double float

BI SWAP bit swap page 132
BY SWAP byte swap
H SWAP halfword swap
W SWAP word swap
F SWAP float swap
D SWAP double float swap

BIn COMP register bit compare page 133
BYn COMP register byte compare
Hn COMP register halfword compare
Wn COMP register word compare
Fn COMP register float compare
Dn COMP register float compare

BI COMP2 bit compare page 134
BY COMP2 byte compare
H COMP2 halfword compare
W COMP2 word compare
F COMP2 float compare
D COMP2 double float compare

BI TEST bit test against zero page 135
BY TEST byte test against zero
H TEST halfword test against zero
W TEST word test against zero
F TEST float test against zero
D TEST double float test against zero

Norsk Data ND—OS.OO9.03 EN

358 ND-SOO Reference Manual
Instruction table

BYn NEG byte register negate page 136
Hn NEG halfword register negate
Wn NEG word register negate
Fn NEG float register negate
Dn NEG double float register negate

Bin lNV bit invert register page 137
BYn INV byte invert register
Mn INV halfword invert register
Wn lNV word invert register
Wn INVC word invert register with carry

BYn ABS byte absolute value page 139
Hn ABS halfword absolute value
Wn ABS word absolute value
Fn ABS float absolute value
Dn ABS double float absolute value

Bln CLR bit register clear page 140
BYn CLR byte register clear
Hn CLR halfword register clear
Wn CLR word register clear
Fn CLR float register clear
Dn CLR double float register clear

81 STZ bit store zero page 141
BY STZ byte store zero
H STZ halfword store zero
W STZ word store zero
F STZ float store zero
D STZ double float store zero

BI SETl bit set to one page 142
BY SETl byte set to one
H SETl balfword set to one
W SETl word set to one
F SETl float set to one
D SETl double float set to one

BY INCR byte increment page 143
H INCR halfword increment
W INCR word increment
F INCR float increment
D INCR double float increment

BY DECR byte decrement page 144
H DECR halfword decrement
W DECR word decrement
F DECR float decrement
D DECR double float decrement

Bln AND bit and register page 145
BYn AND byte and register
fin mm hdfmmdIEQsmr
Wn AND word and register

Norsk Data ND—05.009.03 EN

Bln
BYn
Hn
Wu

Bln
BYn
Hn
Wn

BYn
Hn
Wn
BYn
Hn
Wn

BY
H

BY
HA

BYn
Hn
Wn
BYn
Hn
Wn

Fn
Dn

Fn
Dn

Dn

NDwSOO Reference Manual
Instruction table

OR
OR
OR
OR

XOR
XOR
XOR
XOR

SHL
SHL
SHL

SHA
SHA
SHA

SHR
SHR
SHR

GETBI
GETBI
GETBI
PUTBI
PUTBI
PUTBI

CLEBI
CLEBI
CLEBI
SETBI
SETBI
SETBI

GETBF
OETBF
GETBF
PUTBF
PUTBF
PUTBF

REM
REM

INT
INT
INTR
INTR

AMODB
AMODB
AMODB

ENTIER
ENTIRE

bit or register
byte or register
halfword or register
word or register

bit exclusive or register
byte exclusive or register
halfword exclusive or register
word exclusive or register

byte shift logical
halfword shift logical
word shift logical

byte shift arithmetical
halfword shift arithmetical
word shift arithmetical

byte shift rotational
halfword shift rotational
word shift rotational

byte get bit
halfword get bit
word get bit
byte put bit
halfword put bit
word put bit

byte clear bit
halfword clear bit
word clear bit
byte set bit
halfword set bit
word set bit

byte get bit field
halfword get bit field
word get bit field
byte put bit field
halfword put bit field
word put bit field

float divide with remainder
double float divide with remainder

float integer part
double float integer part
float integer part with rounding
double float integer part with rounding

byte integer modulo
halfword integer modulo
word integer modulo

float SIMULA entier function
double float SIMULA entier function

Norsk Data ND-05.009.03 EN

page

page

page

page

page

page

page

page

page

page

page

page

146

147

148

149

150

151

153

155

157

158

160

161

359

360 ND—SOO Reference Manual
Instruction table

ARITHMETICAL INSTRUCTIONS

BYn + byte add page 165
Hn + halfword add
Wn + word add
Fn + floating add
Dn + double float add

BYn — byte subtract page 166
Hn — halfword subtract
Wn — word subtract
Fn — float subtract
Dn — double float subtract

BYn * byte multiply page 167
Hn * halfword multiply
Wn * word multiply
Fn * floating multiply
Dn * double float multiply

BYn / byte divide page 168
Hn / halfword divide
Wn / word divide
Fn / float divide
Dn / double float divide

BY ADD2 byte add two arguments page 169
H ADD2 halfword add two arguments
W ADD2 word add two arguments
F ADD2 float add two arguments
D ADD2 double float add two arguments

BY SUBZ byte subtract two arguments page 170
H SUB2 halfword subtract two arguments
W SUBZ word subtract two arguments
F SUBZ float subtract two arguments
D SUBZ double float subtract two arguments

BY MUL2 byte multiply two arguments page 171
H MUL2 halfword multiply two arguments
W MULZ word multiply two arguments
F MULZ float multiply two arguments
D MULZ double float multiply two arguments

BY DIV2 byte divide two arguments page 172
H DIV2 halfword divide two arguments
W DIV2 word divide two arguments
F DIV2 float divide two arguments
D DIV2 double float divide two arguments

BY ADD3 byte add three arguments page 173
H ADD3 halfword add three arguments
W ADD3 word add three arguments
F ADD3 float add three arguments
D ADD3 double float add three arguments

Norsk Data ND-05.009.03 EN

K1
U

’U
E

IC
L

‘U
J

03 KI
U

'I
J
S

II
‘.

KI
U

’I
‘J

Z
’I
IU

U

BYn

Wn

BYn
Hn
Wn

Wn
Wn

Wn
Wn

BYn
Hn
Wn
Fn
Dn

BYn
Hn
Wn
Fn
Dn

NDmBOO Reference Manual
Instruction table

SUBS
SU83
SUB3
SUB3
SUB3

MUL3
MUL3
MUL3
MUL3
MUL3

DIV3
DIV3
DIV3
DIV3
DIv3

MULM
MUL4
MUL4

Diva
DIV4
DIVH

UMUL
UDIV

ADDC
SUBC

MULAD
MULAD
MULAD
MULAD
MULAD

PSUM
PSUM
PSUM
PSUM
PSUM

byte subtract three arguments
halfword subtract three arguments
word subtract three arguments
float subtract three arguments
double float subtract three arguments

byte multiply three arguments
halfword multiply three arguments
word multiply three arguments
float multiply three arguments
double float multiply three arguments

byte divide three arguments
halfword divide three arguments
word divide three arguments
float divide three arguments
double float divide three arguments

byte multiply with overflow
halfword multiply with overflow
word multiply with overflow

byte divide with remainder
halfword divide with remainder
word divide with remainder

word unsigned multiplication
word unsigned divide

word add with carry
word subtract with carry

byte multiply and add
halfword multiply and add
word multiply and add
float multiply and add
double float multiply and add

byte add and multiply
halfword add and multiply
word add and multiply
float add and multiply
double float add and multiply

Norsk Data ND-05.009.03 EN

page

page

page

page

page

page
page

page
page

page

page

174

175

176

177

178

179
180

181
182

183

18a

361

362 ND—SOO Reference Manual
Instruction table

MATHEMATICAL FUNCTIONS

Fn AXI float (A) to the <I>‘th power page 187
Dn AXI double float (A) to the <I>'th power

BYn IXI byte <I> to the <J>'th power page 188
Hn l halfword <I> to the <J>'th power
Wn IXI word <l> to the <J>'th power

Fn POLY floating polynomial page 189
Dn POLY double float polynomial

Fn SQRT float square root page 190
Dn SQRT double float square root

Fn SIN float sine page 191
Dn SIN double float sine

Fn ASIN float arc sine page 192
Dn ASIN double float arc sine

Fn COS float cosine page 193
Dn COS double float cosine

Fn ACOS float arc cosine page 194
Dn ACOS double float arc cosine

Fn TAN float tangent page 195
Dn TAN double float tangent

Fn ATAN float arc tangent page 196
Dn ATAN double float arc tangent

Fn ATAN2 float two argument arc tangent page 197
Du ATAN2 double float two argument arc tangent

Fn EXP float exponential page 198
Dn EXP double float exponential

Fn ALOG float natural logarithm page 199
Dn ALOG double float natural logarithm

Fn ALOG2 float binary logarithm page 200
Dn ALOG2 doable float binary logarithm

Fn ALOG1O float common logarithm page 201
Dn ALOGlO double float common logarithm

Norsk Data ND-05.009.03 EN

ND~SOO Reference Manual
Instruction table

CONTROL INSTRUCTIONS

GO:B
GOtH
002W

jump byte
jump halfword
jump word

JUMPG jump general

IF
IF
IF
IF

00 2:1
GO
00:8
GO:H

”
N

H

IF >< GO Z=O
IF ~Z GO
IF >< 00:8
IF >< GOzH

IF > 00 8:0 and 2:0
IF > 00:8
IF > GO:H

IF < GO S=l
IF S 00
IF < 001B
IF < 00:}1

IF >= 00 8:0
IF -S 00
IF >: GO:B
IF = GOzH

IF 2 00
IF (z 0028
IF <= GOZH

8:1 or Z=1

IF K
IF K
IF K

IF ~K GO K=O
IF -K 00:8
IF -K GO:H

IF >> 00
IF >> OOzB
IF >> OOzH

C21 and Z=O

IF >>= GO C=l
IF C 00
IF >>= 00:8
IF >>= GO:H

IF << GO 0
IF ”C GO
IF << 00:8

n 0
equal
(alt. assembly notation)
byte displacement
halfword displacement

unequal
(alt. assembly notation)
byte displacement
halfword displacement

greater signed

less signed
(alt. assembly notation)

greater or equal signed
(alt. assembly notation)

less or equal signed

flag

not flag

greater magnitude

greater or equal magnitude
(alt. assembly notation)

less magnitude
(alt. assembly notation)

Norsk Data ND—05.009.03 EN

page

page

page

page

page

page

page

page

page

page

page

page

page

205

206

207

207

207

207

207

207

207

207

207

207

207

363

61+ ND—SOO Reference Manual
Instruction table

IF << GO:H

IF <<= GO 0:0 or 2:1 less or equal magnitude page 207
IF <<= 00:8
IF <<= GO:H

IF ST GO specified bit in status page 207
register set

IF ST GO:B
IF ST GO:H

IF ~ST GO specified bit in status page 207
register not set

IF —ST 00:8
IF ~ST GO:H

LOOPlzB byte loop increment page 209
LO0PI:H byte loop increment
LOOPlzB halfword loop increment
LOOPl halfword loop increment
LOOPI:B word loop increment
LOOPI:H word loop increment
LOOPlzB float loop increment
LOOPI:H float loop increment
LOOPI:B double float loop increment
LO0PI:H double float loop increment

LOOPDzB byte loop decrement page 211
LO0PD:H byte loop decrement
LOOPDzB halfword loop decrement
LOOPDzH halfword loop decrement
LOOPDzB word loop decrement
LOOPDzH word loop decrement
LOOPDzB float loop decrement
LOOPDzH float loop decrement
LO0PD:B double float decrement
LOOPDzH double float decrement

LOOP:B byte loop general step page 213
LOOPzH byte loop general step
LOOP:B halfword loop general step
L00P2H halfword loop general step
LOOP:B word loop general step
LOOP:H word loop general step
LOOP:B float loop general step
LOOPzH float loop general step
LO0P:B double float loop general step
LOOP:H double float loop general step

Norsk Data ND—05.009.03 EN

ND—SOO Reference Manual
Instruction table

CALLG
CALL

INIT

ENTM
ENTD
ENTS
ENTF
ENTSN
ENTFN
ENTT
ENTB

RET
RETK
RETD
RETT
IF K RET
RETB
RETBK

call subroutine general
call subroutine absolute

initialize stack

enter
enter
enter
enter
enter
enter
enter
enter

clear

module
subroutine directly
stack subroutine
subroutine
max argument stack subroutine
max argument subroutine
trap handler
buddy subroutine

flag return from subroutine
set flag return from subroutine
return from direct subroutine
trap handler return
if flag set subroutine return
buddy subroutine return
set flag buddy subroutine return

Norsk Data ND-05.009.03 EN

page
page

page

page
page
page
page
page
page
page
page

page
page
page
page
page
page
page

215
216

217

219
220
221
222
221
222
223
225

226
226
226
226
226
226
226

365

366

STRING INSTRUCTIONS

BI

U
’I
J
Z

Z
E

BIn

Hn
Wn
Fn
Dn

BIn
BYn
Hn
Wn
Fn
Dn

BY
BY
BY
BY

BY
BI
BY
BY
BY
BY

BY
BY

SMOVE
SMOVE
SMOVE
SMOVE
SMOVE
SMOVE

SMVWH
SMVUN

SMVTR
SMVTU

SMOVN
SMOVN
SMOVN
SMOVN
SMOVN
SMOVN

SFILL
SFILL
SFILL
SFILL
SPILL
SFILL

SFILLN
SFILLN
SFILLN
SFILLN
SFILLN
SFILLN

SCOMP
SCOTR
SCOPA
SCOPT

SSKIP
SLOCA
SLOCA
SSCAN
SSPAN
SMATCH

SSPAR
SCHPAR

ND—SOO Reference Manual
Instruction table

bit string move page 234
byte string move
halfword string move
word string move
float string move
double float string move

byte move string while page 235
byte move string until page 236

move translated string page 237
move string translated until page 238

string move n bits page 239
string move n bytes
string move n halfwords
string move n words
string move n floats
string move n double floats

bit string fill page 240
byte string fill
halfword string fill
word string fill
float string fill
double float string fill

string fill n bits page 241
string fill n bytes
string fill n halfwords
string fill n words
string fill n floats
string fill n double floats

string compare page 242
string compare translated page 243
string compare with pad page 244
string compare translated with pad page 245

skip elements page 246
string locate bit page 247
string locate byte page 247
string scan page 248
string span page 249
string match page 250

set parity in string page 251
check parity in string page 252

Norsk Data ND-05.009.03 EN

ND-5OO Reference Manual
Instruction table

MISCELLANEOUS INSTRUCTIONS

U
’T

J
U

'T
J
U

'T
J

U
U

U
U

U
*I

JH
'J

W
J’

IJ
'IJ

£
2

2
2

2
2

E
E

E
E

Z
E

D
E

:

BIn
BYn
Hn

BMOVE
BMOVE
BMOVE
BMOVE
BMOVE

BYCONV
HCONV
WCONV
FCONV
DCONV

BICONV
HCONV
WCONV
FCONV
DCONV

BICONV
BYCONV
WCONV
FCONV
DCONV

BICONV
BYCONV
HCONV
FCONV
DCONV

BICONV
BYCONV
HCONV
WCONV
DCONV

BICONV
BYCONV
HCONV
WCONV
FCONV

BYCONR
BYCONR
HCONR
HCONR
WCONR
WCONR

FCONR
FCONR

LADDR
LADDR
LADDR

byte block move
halfword block move
word block move
float block move
doub

bit
bit
bit
bit
bit

byte
byte
byte
byte
byte

le

to
to
to
to
to

to
to
to
to
to

float block move

byte convert
halfword convert
word convert
float convert
double float convert

bit convert
halfword convert
word convert
float convert
double float convert

halfword to bit convert
halfword to byte convert
halfword to word convert
halfword to float convert
halfword to double float convert

word
word
word
word
word

to
to
to
to
to

bit convert
byte convert
halfword convert
float convert
double float convert

float to bit convert
float t
float t
float to word convert
float to double float convert

doub
doub
doub
doub
doub

float to byte convert with rounding
double float to byte convert with rounding
float to halfword convert with rounding
double float to halfword convert with rounding
float to word convert with rounding
double float to word convert with rounding

word to float convert with rounding
double float to float convert with rounding

le
le
le
le
le

0 byte convert
o halfword convert

float to bit convert
float to byte convert
float to halfword convert
float to word convert
float to float convert

bit load address
byte load address
halfword load address

Norsk Data ND—05.009.03 EN

page

page

page

page

page

page

page

page

page

page

255

256

256

256

256

256

256

258

258

259

367

368 ND-BOO Reference Manual
Instruction table

Wn LADDR word load address
Fn LADDR float load address
Dn LADDR double float load address

Bl RLADDR bit load address record page 260
BY RLADDR byte load address record
H RLADDR halfword load address record
w RLADDR word load address record
F RLADDR float load address record
D RLADDR double float load address record

BI BLADDR bit load address local page 261
BY BLADDR byte load address local
H BLADDR halfword load address local
W BLADDR word load address local
F BLADDR float load address local
D BLADDR double float load address local

Wn CHAIN load address of multilevel link page 262

BYn LIND byte load index page 263
Hn LIND halfword load index
Wn LIND word load index

BYn ClND byte calculate index page 264
Hm CIND halfword calculate index
Wn CIND word calculate index

NOOP no operation page 265

SETK set flag page 266
CLRK clear flag page 267

Wn GETB get buddy page 268
FREEB free buddy page 269

W PLCCN convert PLANC descriptor to ND—5OO descriptor page 270
w NCPLC convert ND-BOO descriptor to PLANO descriptor page 271

CLINIT initialize local clock page 272

CLREAD read local clock page 273

Norsk Data ND—05.009.03 EN

ND—BOO Reference Manual
Instruction table

SPECIAL INSTRUCTIONS

BYn

BIn
Hn
BI

SOLO
TUTTI

TSET

BP

SETE
CLTE

L :=
HL :=Z
LL :=
STl
OTEl
OTEZ '
TOS :
THA 1

An ;:
En z:

En =:

DCC
DDIRT
PCC
DMON
PMON
DMOF
PMOF

RWIP
RWIP
ZWIP

H
H

H

disable process switch
enable process switch

test and set

break point instruction

set bit in trap enable register
clear bit in trap enable register

load link register
load upper limit register
load lower limit register
load first status register
load first own trap enable register
load second own trap enable register
load top of stack register
load trap handler register

store link register
store upper limit register
store lower limit register
store first status register
store first own trap enable register
store second own trap enable register
store first mother trap enable register
store second mother trap enable register
store first child trap enable register
store second child trap enable register
store first trap enable modification mask
store second trap enable modification mask
store current executing domain register
store current alternative domain register
store process segment register
store top of stack register
store trap handler register
store program counter

load most sign. part of double float reg.
load least sign. part of double float reg.
store most sign. part of double float reg.
store least sign. part of double float reg.

data clear cache
dump dirty
program clear cache
data memory management on
program memory management on
data memory management off
program memory management off

read Written In Page bit
read Written In Page group
clear Written In Page bit

Norsk Data ND~05.009.03 EN

page
Page

Page

Page

Page
Page

Page

Page

page

Page
Page
Page
Page
Page
Page
Page

Page

page

277
278

279

280

281
282

283

284

285

286
287
288
289
290
291
292

293

294

369

370 ND—500 Reference Manual
Instruction table

CWIP clear Written In Page table page 295

Elm RPGU read PaGe Used bit page 296
Hn RPGU read PaGe Used group
BI ZPGU clear PaGe Used bit page 297

CPGU clear PaGe Used table page 298

Hn RIOM read ND-lOO memory page 299

PCTSB clear program translation speedup buffer page 300
DCTSB clear data translation speedup buffer page 300

Elm RDUS load bit bypassing cache page 301
BYn RDUS load byte bypassing cache
Hn RDUS load halfword bypassing cache
Wn RDUS load word bypassing cache

BY RHOLE read from NUCLEUS hole page 303
BY WHOLE write to NUCLEUS hole page 304
W1 SEND send to port page 305
W1 RECVE receive from port page 306

SREGBL save register block page 309
LREGBL load register block page 310
SCNTXT save context block page 311
LCNTXT load context block page 312

Wn REXT read from device external to CPU page 313

Wn WEXT write to device external to CPU page 314

TOSSP special load of TOS page 315

RPHS read from physical address page 316

WPHS write to physical address page 317

CAD := load alternative domain register page 318

JUMPS call supervisor page 319

SVERS store version page 320

SCPUNO store CPU number page 321

tn PHYLADR get physical address page 322

Norsk Data ND*05.009.03 EN

ND—SOO Reference Manual
Instruction table

BCD INSTRUCTIONS

PADD
PADDR

PSUB
PSUBR

PMPY
PMPYR

PCOMP

PSHIFT
PSHIFTR

PPACK
PPACKR

PUPACK
PUPACKR

PWCONV

WPCONV

(Option)

packed
packed

packed
packed

packed
packed

packed

packed
packed

convert
convert

convert
convert

convert

convert

add
add rounded

subtract
subtract rounded

multiply
multiply rounded

compare

shift
shift rounded

ASCII to packed
ASCII to packed rounded

packed to ASCII
packed to ASCII rounded

packed to binary

binary to binary

Norsk Data ND~05.009.03 EN

page
page

page
page

page
page

page

page
page

page
page

page
page

page

page

330
330

331
331

332
332

333

33”
334

335
335

336
336

337

338

371

ND-SOO Reference Manual

Norsk Data ND-05.009.03 EN

Legal
data formats

BY
BY
BY
BY

BI BY
BI BY

BY

BY
BY

BI BY
BY

BI BY
BY

BI
BI

BY
BY

BI BY

BI BY
BI BY

BI BY

ND—SOO Reference Manual
Alphabetical instruction table

21
12

11
31

13
21

31
.3

13
1

2
2

2
2

2
2

2

W
C

U
'IJ

W
J
W

J
W

W
’H

W
IW

U
U

U
U

U
U

U
U

O
U

31
:11

2
2

2
2

2
2

"1
1*

1'1
’1’

1
U

U
U

m
m

w
m

’1
3’

13
’1

3
U

U
U

U

Assembly
notation

tn
tn
tn
tn
tn :
tn
tn
tn
t
t
t
tn
tn
tn
tn
tn
tn
tn
tn
tn

(‘9
‘

(‘f

tn
tn

tn

tn

tn

*

+

/

ABS
ACOS
ADD2
ADD3
ADDC
ALOG
ALOGlO
ALOGZ
AND
AMODB
ASIN
ATAN
ATANZ
AXI
An :=

BLADDR
BMOVE
BP
BYCONR
BYCONV
CAD :=
CAD =:
CALL
CALLG
CED =:
CHAIN
CIND
CLEBI
CLINIT
CLR
CLREAD
CLRK
CLTE
COMP
COMPZ
COS
CPGU
CTEl
CTE2
CWIP
DCC
DCONV
DCTSB

II
I!

Name

multiply
add
subtract
divide
load
store
absolute value
are cosine
add two arguments
add three arguments
add with carry
natural logarithm
common logarithm
binary logarithm
AND register
integer modulo
mcshm
arc tangent
arc tangent two argument
register (A) to the <I>'th power
load most significant part
of double float reg
store most significant part
of double float reg
load local base
local base store
load address local
block move
break point instruction
convert to byte with rounding
convert to byte
load alternative domain register
store alternative domain register
call subroutine absolute
cmfl.ammmmnegmmrm
store current executing domain reg.
load address of multilevel link
calculate index
clear bit
initialize local clock
register clear
read local clock
clear flag
clear bit in trap enable register
register compare
compare
cosine
clear page used table
store first child trap enable reg.
store second child trap enable reg.
clear written in page table
data cache clear
convert to double float
clear data TSB

Norsk Data ND-05.009.03 EN

Page

167
165
166
168
125
128
139
194
169
173
181
199
201
200
145
160
192
196
197
187
285

285

126
129
261
255
280
258
256
318
284
216
215
284
262
264
153
272
140
273
267
282
133
134
193
298
284
284
295
286
256
300

375

376 ND-BOO Reference Manual
Alphabetical instruction table

Legal Assembly
data formats notation Name Page

DDIRT dump dirty 287
BY H w F D t DECR decrement 1M4
BY H W F D t DIV2 divide two arguments 172
BY H W F D t DIV3 divide three arguments 176
BY H W F D tn DIV4 divide with remainder 178

DMOF data memory management off 291
DMON data memory management on 289
ENTB enter buddy subroutine 225
ENTD enter subroutine directly 220
ENTF enter subroutine 222
ENTFN enter max argument subroutine 222

F D t ENTIER SIMULA entier function 161
ENTM enter module 219
ENTS enter stack subroutine 221
ENTSN enter max argument stack subroutine 221
ENTT enter trap handler 223
En z: load least significant part 285

of double float register
En =: store least significant part 285

of double float register
F D tn EXP exponential 198

W D t FCONR convert to float with rounding 258
BI BY H W D t FCONV convert to float 256

FREEB free buddy 269
W t GETB get buddy 268

BY H W tn GETBF get bit field 155
BY H W tn GETBI get bit 151

00:8 jump byte 205
GO:H jump halfword 205
GO:W jump word 205

F D t HCONR convert to halfword with rounding 258
BI BY W F D t HCONV convert to halfword 256

HL := load upper limit register 283
HL =: store upper limit register 284

BY H IF —ST GO:t jump if status bit not set 207
BY H IF ~C GO:t jump if magnitude less 207
BY H IF ~K GO:t jump if flag not set 207
BY H IF —8 GO:t jump if signed greater or equal 207
BY H IF —Z GO:t jump if not equal 207
BY H IF<rel>GO:t jump if relation true 207
BY H IF C GO:t jump if magnitude greater or equal 207
BY H IF K GO:t jump if flag set 207
BY H IF K RET subroutine return if flag set 207
BY H IF S GO:t jump if signed less 207
BY H IF ST GO:t jump if specified status bit set 207
BY H IF Z GO:t jump if equal 207

BY H W F D t INCH increment 143
INIT initialize stack 217

F D tn INT float integer part 158
F D tn INTR float integer part with rounding 159

BI BY H W tn INV invert register 137
W tn INVC word invert register with carry 138

Norsk Data ND—05.009.03 EN

ND-SOO Reference Manual 377
Alphabetical instruction table

Legal Assembly
data formats notation Name Page

F D tn IXI register I to the <J>'th power 188
JUMPG jump general 206
JUMPS call supervisor 319
L := load link register 283
L =: store link register 284

El BY H W F D tn LADDR load address 259
LCNTXT load context block 312

BY H W tn LIND load index 263
LL z: load lower limit register 283
LL =: store lower limit register 284

BY H W F D t LOOP:B loop general step 213
BY H w F D t LOOPzH loop general step 213
BY H W F D t LOOPD:B loop decrement 211
BY H W F D t LOOPD:H loop decrement 211
BY H W F D t LOOPI:B loop increment 209
BY H W F D t LOOPI:H loop increment 209

LREGBL load register block 310
BI BY H W F D t MOVE move 131

MTEl =2 store first mother trap enable reg. 284
MTEZ =: store second mother trap enable reg.284

BY H W F D t MUL2 multiply two arguments 171
BY H W F D t MUL3 multiply three arguments 175
BY H W F D tn MUL4 multiply with overflow 177
BY H W F D tn MULAD multiply and add 183

W NCPLC convert ND—BOO descriptor to 271
PLANC descriptor

BY H W F D tn NEG register negate 136
NOOP no operation 265

El BY H w tn OR OR register 146
OTEl := load first own trap enable reg. 283
OTEl =2 store first own trap enable reg. 284
OTE2 := load second own trap enable reg. 283
OTE2 =: store second own trap enable reg. 284
P =: store program counter 284
PADD packed add 330
PADDR packed add rounded 330
PCC program cache clear 288
PCOMP packed compare 333
PCTSB clear program TSB 300

tn PHYLADR get physical address 322
W PLCCN convert FLANC descriptor to 270

ND—SOO descriptor
PMOF program memory management off 292
PMON program memory management on 290
PMPY packed multiply 332
PMPYR packed multiply rounded 332

F D tn POLY polynomial 189
PPACK convert ASCII to packed 335
PPACKR convert ASCII to packed rounded 335
PS :2 store process segment register 284
PSHIFF packed shift 334
PSHIFTR packed shift rounded 334
PSUB packed subtract 331
PSUBR packed subtract rounded 331

Norsk Data ND~O5.009.03 EN

378 NDw5OO Reference Manual
Alphabetical instruction table

Legal Assembly
data formats notation Name Page

BY H w F D tn PSUM add and multiply 184
PUPACK convert packed to ASCII 336
PUPACKR convert packed to ASCII rounded 336

BY H W tn PUTBF put bit field 156
BY H w tn PUTBI put bit 152

W tn PWCONV convert packed to binary word 337
R := load record base 127
R =: record base store 130

BI BY H W tn RDUS read bypassing cache 301
W RECVE receive from port 306

F D tn REM divide with remainder 157
RET clear flag return from subroutine 226
RETB buddy subroutine return 226
RETBK set flag buddy subroutine return 226
RETB return from direct subroutine 226
RETK set flag subroutine return 226
RETT trap handler return 226

W REXT read from device external to CPU 313
BY RHOLE read from NUCLEUS hole 303

H t RIOM read ND-lOO memory 299
Bl BY H W F D t RLADDR load address record 260
BI H tn RPGU read page used table 296

RPHS read from physical address 316
BI H tn RWIP read written in page table 293

BY t SCHPAR check parity in string 252
SCNTXT save context block 311

BY t SCOMP string compare 242
BY t SCOPA string compare with pad 244
BY t SCOPT string compare translated with pad 245
BY t SCOTR string compare translated 243

SCFUNO store CPU number 321
W SEND send to port 305

BI BY H W F D t SETl set to one 142
BY H w t SE’I‘BI set bit 154

SETH set bit in trap enable register 281
SETK set flag 266

BI BY H W F D tn SFILL string fill 240
BI BY H W F D tn SFILLN string fill n elements 241

BY H w t SHA shift arithmetical 149
BY H W t SHL shift logical 148
BY H W t SHR shift rotational 150

F D tn SIN sine 191
BI BY t SLOCA string locate 247

BY t SMATCH string match 250
BI BY H w F D t SMOVE string move 234
BI BY H W F D t SMOVN string move n elements 239

BY t SMVTR move translated string 237
BY t SMVTU move string translated until 238
BY t SMVUN move string until 236
BY t SMVWH move string while 235

SOLO disable process switch 277
F D tn SQRT register square root 190

SREGBL save register block 309
BY t SSCAN string scan 248

Norsk Data ND-05.009.03 EN

ND~500 Reference Manual 379
Alphabetical instruction table

Legal Assembly
data formats notation Name Page

BY t SSKIP skip elements 246
BY t SSPAN string span _ 249
BY t SSPAR set parity in string 251

STl := load first status register 283
STl :: store first status register 284

El BY H W F D t STZ store zero 141
BY H w F D t SUBZ subtract two arguments 170
BY H w F D t SUB3 subtract three arguments 174

W tn SUBC subtract with carry 182
SVERS store microprogram version 320

BI BY H W F D t SWAP swap 132
F D tn TAN tangent 195

TEMMl = store lst trap enable mod. mask 284
TEMM2 = store 2nd trap enable mod. mask 284

BI BY H w F D t TEST test against zero 135
THA := load trap handler register 283
THA 3: store trap handler register 284
TOS := load top of stack register 283
TOS 2: store top of stack register 284
TOSSP Special load of TOS 315

w tn TSET test and set 279
TUTTI enable process switch 278

w tn UDIV unsigned divide 180
W tn UMUL unsigned multiply 179

BI BY H F D t WCONR convert to word with rounding 258
131 BY H F D t WCONV convert to word 256

w WEXT write to device external to CPU 314
BY WHOLE write to NUCLEUS hole 304

W tn WPCONV convert word to packed 338
WPHS write to physical address 317

BI BY H w tn XOR exclusive OR register 147
El ZPGU reset page used table bit 297
Bl ZWIP reset written in page table bit 294

Norsk Data ND-05.009.03 EN

V80 ND—SOO Reference Manual
Alphabetical instruction table

Norsk Data ND-05.009.03 EN

ND-SOO Reference Manual 383
Instruction code table

Appendices G and H are connected through a reference number (column
Ref.). The numbers found in the cross reference table of appendix H
correspond to the reference number in appendix G. This helps
translation from instruction codes, as found when dumping programs, to
named instructions.

Norsk Data ND—05.009.03 EN

384 ND—5OO Reference Manual
Instruction code table

BI BY H w F D Ref. Page

tn = 176004 004 010 014 020 024 1 125
B = 176010 2 126
R = 030 3 127
tn = 176014. 034 176020 040 044 050 4 128

B = 176012 5 129
R =: 176011 6 130
t MOVE 176013 031 176024 032 033 054 7 131
t SWAP 176275 176276 176277 122 176334 176335 8 132

tn COMP 176030 060 176034 064 070 074 9 133
t COMPZ 176025 055 176026 056 057 100 10 134
t TEST 101 102 103 104 105 106 11 135
tn NEG 177010 177014 220 224 224 12 136

tn INV 177020 177024 177030 230 13 137
tn INVC 177420 14 138
tn ABS 177400 177404 177410 177414 177414 15 139
tn CLR 204 204 204 204 210 214 16 140

t STZ 176205 110 111 112 113 114 17 141
t SBT1 176206 176207 176210 115 107 176211 18 142
t INCR 176212 116 117 120 176213 19 143
t DECR 176214 176215 121 176216 176217 20 144

tn AND 176714 176220 176224 344 21 145
tn OR 176770 176230 176234 240 22 146
tn XOR 176774 176240 176244 244 23 147
t SHL 176250 176251 176252 24 148

t SHA 176253 176254 176255 25 149
t SHR 176256 176257 176260 26 150
tn GETBI 176264 176270 176720 27 151
tn PUTBI 176724 176730 176734 28 152

t CLEBI 177175 177176 177177 29 153
t SETBI 177200 177201 177202 30 154
tn GETBF 176740 176744 176750 31 155
tn PUTBF 176754 176760 176764 32 156

tn AMODB 177674 177700 177704 33 160
tn REM 177130 177134 34 157
tn INT 177140 177144 35 158
tn INTR 177150 177154 36 159

tn + 176064 176070 124 130 134 37 165
tn — 176074 176100 140 144 150 38 166
tn * 176104 176110 154 160 164 39 167
tn / 176114 176120 170 174 350 40 168

t ADDZ 176027 176124 123 176126 176127 41 169
t SUB2 176130 176131 340 176133 176134 42 170
t MUL2 176135 176136 176137 176140 176141 43 171
t DIV2 176142 176143 176144 176145 176146 44 172

Norsk Data ND—05.009.03 EN

ND—SOO Reference Manual 385
Instruction code table

BI BY H W F D Ref. Page

t ADD3 176147 176150 176151 176152 176153 45 173
t SUB3 176154 176155 176156 176157 176160 46 174
t MUL3 176161 176162 176163 176164 176165 47 175
t DIv3 176166 176167 176170 176171 176172 48 176

tn MUL4 176040 176044 176050 49 177
tn DIv4 176054 176060 176174 50 178
tn UMUL 176200 51 179
tn UDIv 177110 52 180

tn ADDC 177100 53 181
tn SUBC 177104 54 182
tn MULAD 176350 176354 250 176360 176364 55 183
tn PSUM 176370 176374 176400 176404 176410 56 184

tn AXI 176300 176304 57 187
tn IXI 176310 176314 176320 58 188
tn POLY 176340 176344 59 189
tn SQRT 176324 176330 60 190

tn SIN 177530 177604 61 191
tn ASIN 177534 177610 62 192
tn cos 177540 177614 63 193
tn ACOS 177544 177620 64 194

tn TAN 177550 177624 65 195
tn ATAN 177554 177630 66 196
tn ATAN2 177560 177634 67 197
tn EXP 177564 177640 68 198

tn ALOG 177570 177644 69 199
tn ALOGZ 177574 177650 70 200
tn ALOGlO 177600 177654 71 201
:B 00 300 72 205

:H 00 301 73 205
:w 00 302 74 205

JUMPG 264 75 206
:8 IF = 00 304 76 207

:H IF = 00 305 77 207:B IF >< 00 306 78 207
:H IF >< 00 307 79 207
:8 IF > 00 310 80 207

:H IF > 00 311 81 207
:B IF < 00 312 82 207
:H IF < 00 313 83 207
:8 IF >= 00 314 84 207

:H IF >= 00 315 85 207
:B IF <= 00 316 86 207
:H IF <= 00 317 87 207
:8 IF K 00 320 88 207

Norsk Data ND-05.009.03 EN

386 ND-SOO Reference Manual
Instruction code table

BI BY H W F D Ref. Page

:H IF K GO 321 89 207
:8 IF ~K 00 322 90 207
:H IF -K 00 323 91 207
:B IF >> 00 324 92 207

:H IF >> 00 325 93 207
:B IF >>= 00 326 94 207
:H IF >>= 00 327 95 207
:8 IF << 00 330 96 207

:H IF << 00 331 97 207
:8 IF <<= 00 332 98 207
:H IF <<= 00 333 99 207
:8 IF ST 00 176173 100 207

:H IF ST GO 176544 101 207
:B IF ~ST GO 176545 102 207
:H IF —ST 00 176204 103 207
:B t LOOPI 176336 176337 277 176434 176435 104 209

:H t LOOPI 176436 176437 341 176441 176442 105 209
:B t LOOPD 176443 176444 176445 176446 176447 106 211
:H t LOOPD 176450 176451 176452 176453 176454 107 211
:B t LOOP 176455 176456 176457 176460 176461 108 213

:H t LOOP 176462 176463 176464 176465 176466 109 213
CALL 303 110 216
CALLG 265 111 215
INIT 334 112 217

ENTM 337 113 219
ENTD 234 114 220
ENTS 270 115 221
ENTF 335 116 222

ENTSN 272 117 221
ENTFN 336 118 222
ENTT 274 119 223
ENTB 275 120 225

RET 200 121 226
RETK 201 122 226
RETB 177034 123 226
RETBK 177035 124 226

RETD 202 125 226
RETT 203 126 226
IF K BET 235 127 226

t SMOVE 176546 176547 176550 176551 176552 176553 128 234

t SMVWH 176562 129 235
t SMVUN 176563 130 236
t SMVTR 176564 131 237
t SMVTU 176565 132 238

Norsk Data ND—05.009.03 EN

ND—BOO Reference Manual 387
Instruction code table

BI BY H w F D Ref. Page

t SMOVN 176566 176567 176570 176571 176572 176573 133 239
tn SFILL 176574 176600 176604 176610 176614 176620 134 240
tn SFILLN 176624 176630 176634 176640 176644 176650 135 241
t SCOMP 176654 136 242

t SCOTR 176655 137 243
t SCOPA 176676 138 244
t SCOPT 176677 139 245
t SSKIP 176656 140 246

t SLOCA 176657 176660 141 247
t SSCAN 176661 142 248
t SSPAN 176662 143 249
t SMATCH 176663 144 250

t SSPAR 176664 145 251
t SCHPAR 176665 146 252
t BMOVE 176440 177170 177171 177172 177173 147 255
t BICONV 176511 176516 176523 176530 176535 148 256

t BYCONV 176504 176517 176524 176531 176536 149 256
t HCONV 176505 176512 176525 176532 176537 150 256
t WCONV 176506 176513 176520 176533 176540 151 256
t FCONV 176507 176514 176521 176526 176541 152 256

t DCONV 176510 176515 176522 176527 176534 153 256
t BYCONR 177160 177161 154 258
t HCONR 177162 177163 155 258
t WCONR 177164 177165 156 258

t FCONR 177203 177204 157 258
t ENTIER 176707 176710 159 161
tn LADDR 177040 177044 177050 176474 176474 177054 160 259

t RLADDR 176125 176132 176261 276 276 176262 161 260
t BLADDR 176263 176274 176467 176543 176543 176470 162 261
tn CHAIN 176554 163 262
tn LIND 176414 176420 254 177710 177714 164 263

tn CIND 176424 176430 260 177720 177724 165 264
N00? 003 166 265
SETK 177002 167 266
CLRK 177003 168 267

Wn GETB 177114 169 268
FREEB 176666 170 269
SOLO 177000 171 277
TUTTI 177001 172 278

t TSET 176500 173 279
BP 002 174 280
SETE 176471 175 281
CLTE 176472 176 282

L = 176473 177 283

Norsk Data ND-05.009.03 EN

388

BI

ND—SOO Reference Manual
Instruction code table

BY H W F D Ref. Page

HL := 176667 178 283
LL := 176670 179 283
STl:= 176671 180 283

OTElz= 176673 181 283
OTE2:= 176674 182 283
T082: 176675 183 283
TOSSPz= 177237 184 315

THA:= 176712 185 283
CADz= 176672 186 318
L = 176700 187 284
HL = 176701 188 284

LL =: 176702 189 284
ST1=: 176703 190 284
OTE12: 176705 191 284
OTE2=z 176706 192 284

MTEl=z 176560 193 284
MTE2=z 176561 194 284
CTE1=: 177120 195 284
CTE2=: 177121 196 284

TEMM1=2 177122 197 284
TEMM2=- 177123 198 284
030:: 177124 199 284
CAD=: 177125 200 284

PS=: 177174 203 284
TOS== 176711 204 284

THA=: 176713 205 284
P = 176542 206 284
An := 177060 207 285
En := 177064 208 285

An =: 177070 209 285
En =: 177074 210 285

DCC 177425 211 286
P00 177424 212 288

DMON 177426 213 289
PMON 177427 214 290
DMOF 177430 215 291
PMOF 177431 216 292

tn RWIP 177224 177230 217 293
BI ZWIP 177234 218 294

CWIP 177433 219 295
tn RPGU 177210 177214 220 296

BI ZPGU 177220 221 297
CPGU 177432 222 298

Norsk Data ND-05.009.03 EN

ND~500 Reference Manual 389
Instruction code table

BI BY H W F D Ref. Page

t RIOM 177166 223 299
PCTSB 177434 224 300

DCTSB 177435 225 300
DDIRT 177772 226 287

tn RDUS 177240 177244 177250 177254 227 301
PLCCN 177775 228 270

NCPLC 177776 229 271
WPHS 177764 230 317
RPHS 177765 231 316

tn REXT 177750 232 313

tn WEXT 177754 233 314
WHOLE 177235 234 304
RHOLE 177236 235 303

w1 SEND 266 236 305

w1 RECVE 267 237 306
LREGBL 177766 238 310
SREGBL 177767 239 309
LCNTXT 177770 240 312

SCNTXT 177771 241 311
JUMPS 271 242 319
SVERS 177773 243 320
SCPUNO 177774 244 321

Wn PHYLADR 177760 245 322
PADD 177260 246 330
PADDR 177205 247 330
PSUB 177261 248 331

PSUBR 177206 249 331
PMPY 177264 250 332
PMPYR 177221 251 332
PCOMP 177263 252 333

PSHIFT 177262 253 334
PSHIFTR 177207 254 334
PPACK 177265 255 335
PPACKR 177222 256 335

PUPACK 177266 257 336
PUPACKR 177223 258 336

Wn PWCONV 177274 259 337
Wn WPCONV 177270 260 338

t SSMOV 177167 (SSMOV reserved for future use) 261
t RESl 236 262
t RESZ 237 263
t RES3 177004 264

t R1234 177005 265
t RES5 177006 266

Norsk Data ND-05.009.03 EN

390

BI BY

ND—SOO Reference Manual
Instruction code table

H W F D Ref. Page

t RES6 177007 267
t RES7 177036 268

t R888 177037 269
t CLINIT 177436 270
t CLREAD 177437 271
tn RES11 177300 177320 177340 177360 177440 272

tn RRS12 177304 177324 177344 177364 177444 273
tn RES13 177310 177330 177350 177370 177450 274
tn RE814 177314 177334 177354 177374 177454 275
t RRS15 177460 177470 177500 177510 177520 276

t RESl6 177461 177471 177501 177511 177521 277
t RES17 177462 177472 177502 177512 177522 278
t RESl8 177463 177473 177503 177513 177523 279
t RESl9 177464 177474 177504 177514 177524 280

t RES20 177465 177475 177505 177515 177525 281
t RESZl 177466 177476 177506 177516 177526 282
t RES22 177467 177477 177507 177517 177527 283
tn 360 284

tn 364 285
tn 370 286
tn 374 287

Norsk Data ND~OS.OO9.03 EN

ND-SOO Reference Manual 391
Instruction code table

Norsk Data ND-05.009.03 EN

392 ND—BOO Reference Manual

Norsk Data ND"05.009.03 EN

ND—SOO Reference Manual
Instruction code cross reference table

395

Appendices G and H are connected through a reference number (column
Ref.). The numbers found in the cross reference table of appendix H
correspond to the reference number in appendix G. This helps
translation from instruction codes, as found when dumping programs, to
named instructions.

Norsk Data ND-05.009.03 EN

396 NDu500 Reference Manual
Instruction code cross reference table

0 1 2 3 4 5 6 7

000000 0 0 174w 166w lBY 181 181 181
000010 18 1H 18 18 1w 1w 1w 1w
000020 1F 1F 1F 1F 1D 18 1D 1D
000030 3w 781 7w 7F 481 481 481 481
000040 4w 4w 4w 4w 4F 48 48 48
000050 48 4D 48 4D 7D 1081 10w 10F
000060 9BY 981 9BY 981 9w 9w 9w 9w
000070 9F 9F 9F 9F 9D 9D 9D 9D
000100 10D 1181 llBY 118 11w 11F 11D 18F
000110 1781 178 17w 17F 17D 18w 198 19w
000120 19F 20w 8w 41w 37w 37w 37w 37w
000130 37F 37F 37F 37F 37D 37D 37D 37D000140 38w 38w 38w 38w 38F 38F 38F 38F
000150 38D 38D 38D 38D 39w 39w 39w 39w
000160 39F 39F 39F 39F 39D 39D 39D 39D
000170 40w 40w 40w 40w 408 408 408 408
000200 121w 122w 125w 126w 16w * 16w * 16w * 16w *
000210 16F 16F 16F 16F 16D 16D 16D 16D
000220 12w 12w 12w 12w 12D * 12D * 12D * 128 *
000230 13w 13w 13w 13w 114w 127w 262w 263w
000240 22w 22w 22w 22w 23w 23w 23w 23w
000250 55w 55w 55w 55w 164w 164w 164w 164w
000260 165w 165w 165w 165w 75w 111w 236w 237w
000270 115w 242w 117w 0 119w 120w 161F * 104w
000300 72w 73w 74w 110w 76w 77w 78w 79w
000310 80w 81w 82w 83w 84w 85w 86w 87w
000320 88w 89w 90w 91w 92w 93w 94w 95w
000330 96w 97w 98w 99w 112w 116w 118w 113w
000340 42w 105w 0 0 21w 21w 21w 21w
000350 408 408 408 408 0 0 0 0

Note: 000360 to 000377 are codes reserved for two-byte
instruction codes:

000360 284W 284W 284W 284W 285W 285W 285W 285W
000370 286W 286W 286W 286W 287W 287W 287W 287W

Note: 170000 to 175777 are reserved codes.

176000 0 0 0 0 181 181 181 181
176010 2w 6w 5w 781 481 481 481 481
176020 48 48 48 48 7H 10BI 108 4181
176030 981 981 981 981 9H 98 98 98
176040 4981 4981 4981 4981 498 498 498 498
176050 49w 49w 49w 49w 5081 5081 5081 5081
176060 508 508 508 508 3781 3781 3781 3781
176070 37H 37H 37H 37H 38BY 3BBY 38BY 388Y
176100 38H 38H 38H 38H 39BY 39BY 39BY 39BY
176110 398 398 398 398 4081 4081 4081 4081
176120 408 408 408 408 418 16181 418 418
176130 4281 428 16181 428 428 4381 438 43w
176140 438 438 4481 448 44w 448 448 4581
176150 458 45w 458 450 4681 468 46w 468
176160 468 4781 478 47w 478 478 4881 488
176170 48w 488 488 100w 50w 50w 50w 50w

Norsk Data ND—05.009.03 EN

ND~500 Reference Manual 397
Instruction code cross reference table

0 1 2 3 4 5 6 7
176200 51w 51w 51w 51w 103w 1701 1801 1807176210 180 18D 1907 19D 2007 200 200 200176220 2107 2107 2107 2107 210 210 210 210
176230 2207 2207 2207 2207 220 220 220 220176240 2307 2307 2307 2307 230 230 230 230176250 2407 240 24w 2507 250 25w 2607 260176260 26w 1610 1610 16201 2707 2707 2707 2707176270 270 270 270 270 16207 801 807 80
176300 57F 57F 57F 57F 57D 57D 57D 57D176310 5807 5807 5807 5807 580 580 580 580
176320 58w 58w 58w 580 600 600 600 600
176330 600 600 600 600 80 80 10407 1040
176340 59F 59F 59F 59F 59D 59D 59D 59D
176350 BSBY SSBY SSBY SSBY 55H 55H 55H 55H
176360 55F 55F 55F 55F 55D 55D 55D 55D176370 5607 5607 5607 5607 560 560 560 560
176400 56w 56w 56w 56w 560 560 560 560
176410 56D 56D 56D 560 16407 16407 16407 16407
176420 1640 1640 1640 1640 16507 16507 16507 16507
176430 1650 1650 1650 1650 1040 1040 10507 1050
176440 14707 1050 1050 10607 1060 106w 1060 1060
176450 10707 1070 1070 1070 107D 10807 1080 108w
176460 1080 1080 10907 1090 109w 1090 1090 1620
176470 1620 175w 176w 177w 1600 * 1600 * 1600 * 1600 *
176500 17307 0 0 0 14901 15001 15101 15201
176510 15301 14807 15007 15107 15207 15307 1480 1490
176520 1510 1520 1530 148w 149w 1500 152w 153w
176530 1480 1490 1500 1510 1530 1480 1490 1500
176540 1510 1520 206w 1620 * 101w 102w 12801 12807
176550 1280 128w 1280 1280 163w 163w 163w 1630
176560 193w 1940 12907 13007 13107 13207 13301 13307
176570 1330 133w 1330 1330 13401 13401 13401 13401
176600 13407 13407 13407 13407 1340 1340 1340 1340
176610 134w 134w 134w 134w 1340 1340 1340 1340
176620 134D 134D 1340 1340 13501 13501 13501 13501
176630 13507 13507 13507 13507 1350 1350 1350 1350
176640 135w 135w 135w 135w 1350 1350 1350 1350
176650 135D 135D 1350 1350 13607 13707 14007 14101
176660 14107 14207 14307 14407 14507 14607 170w 178w
176670 179w 180w 186w 181w 182w 183w 13807 13907
176700 187w 188w 189w 190w 0 191w 192w 1590
176710 1590 204w 185w 205w 2101 2101 2101 2101176720 27w 27w 27w 27w 2807 2807 2807 2807176730 280 280 280 280 280 28w 28w 28w176740 3107 3107 3107 3107 310 310 310 310176750 31w 31w 31w 310 3207 3207 3207 3207176760 320 320 320 320 32w 32w 32w 32w
176770 2281 2281 2281 2281 2381 2381 23BI 2381
177000 171W 172W 167W 168W 264W 265W 266W 267W
177010 12BY 12BY 12BY lZBY 12H 12H 12H 12H
177020 1381 1381 1381 1381 13BY 13BY 13BY 13BY
177030 13H 13H 13H 138 123W 124W 268W 269W
177040 16081 16081 16081 16081 l6OBY 16OBY 16OBY 16OBY
177050 1608 16OH 16OH 160H 160D 160D 160D 1600
177060 207W 207W 207W 207W 208W 208W 208W 208W

Norsk Data ND-OS.OO9.03 EN

398

177070
177100
177110
177120
177130
177140
177150
177160
177170
177200
177210
177220
177230
177240
177250
177260
177270
177300
177310
177320
177330
177340
177350
177360
177370
177400
177410
177420
177430
177440
177450
177460
177470
177500
177510
177520
177530
177540
177550
177560
177570
177600
177610
177620
177630
177640
177650
177660
177670
177700
177710
177720
177730
177740
177750

O

209w
53W
52w

195w
348
35F
368

1548
1478

3OBY
22081
22181
2178
22781
227H
246w
260w
27ZBY
2748Y
2728
2748
272w
274w
2728
2748

158Y
15w
14w

215w
272D
274D
276BY
2768
276w
2768
276D

618
638
658
67F
698
718
62D
64D
66D
68D
70D

0
0

33H
1648
1658

0
0

232w

1

209w
53W
52w

196w
348
35F
368

‘ 154D
147w

308
22081
251w
2178
22781
2278
248w
260w
27ZBY
27481
2728
2748
272w
274w
2728
2748

lBBY
15w
14w

216w
272D
274D
277BY
2778
277w
2778
277D

618
638
658
678
698
718
62D
64D
66D
68D
701)

0
0

33H
1648
1658

O
O

232w

2

209w
53W
52w

197w
348
35F
368

1558
1478

30w
22081
256w
2178
22781
2278
253w
260w
27ZBY
2748Y
2728
2748
272w
274w
2728
2748

158Y
15w
14w

222w
272D
274D
278BY
2788
278w
2788
278D

618
638
658
678
698
718
62D
64D
66D
68D
700

0
0

33H
1648
1658

0
0

232w

3

209w
53W
52w

198w
348
35F
368

155D
147D
157w
22081
258w
2178
22781
2278
252w
260w
272BY
2748Y
2728
2748
272w
274w
2728
2748

15BY
15w
14w

219w
272D
274D
279BY
2798
279w
2798
279D

618
638
658
678
698
718
62D
64D
66D
68D
70D

0
0

33H
1648
1658

O
O

232w 3

u

210w
54w

169w
199w

34D
35D
368

1568
203w
1578
2208
21781
21881
227BY
227w
250w
259w
273BY
2758Y
2738
2758
273w
275w
2738
2758

158
150

212w
2248
273D
275D
28OBY
2808
280w
2808
2808

628
648
668
688
708
61D
63D
65D
67D
69D
71D

0
33BY
33W

164D
1650

0
0

233W

ND—SOO Reference Manual
Instruction code cross reference table

5

210w
54w

169w
200w

34D
35D
36D

156D
29BY

247w
2208
21781
23481
227BY
227w
255w
259w
2738Y
2758Y
2738
2758
273w
275w
2738
2758

158
158 *

211w
225w
273D
275D
2818Y
2818
281w
2818
2810

628
648
668
688
708
61D
63D
65D
67D
69D
710

0
33BY
33W

164D
1650

0
0

233W

Norsk Data ND-05.009.03 EN

6

210w
54w

169w
201w

348
35D
360

2238
298

249w
2208
21781
2358Y
227BY
227w
257w
259w
273BY
275BY
2738
2758
273w
275w
2738
2758

158
158

213w
270w
273D
275D
282BY
2828
282w
2828
282D

628
648
668
688
708
61D
63D
65D
67D
69D
71D

0
33BY
33W

164D
1650

0
0

233W

7

210w
54w

169w
202w

34D
35D
36D

261BY
29w

254w
2208
21781
184w
227BY
227w

0
259w
2738Y
275BY
2738
2758
273w
275w
273F
2758

158
150

214w
271w
273D
2750
2838Y
2838
283w
2838
2838

628
648
668
688
708
610
63D
65D
67D
69D
71D

0
33BY
33W

164D
1658

0
0

233W

ND~500 Reference Manual
Instruction code cross reference table

0 1 2 3 4

177760 245w 245w 245w 2u5w 230w
177770 240w 241w 226w 243w 244w

Norsk Data ND-05.009.03 EN

231W
228W

6

238W
229W

7

239W
0

399

400 ND—SOO Reference Manual
Instruction code cross reference table

Norsk Data ND-05.009.03 EN

ND-SOO Reference Manual
Setting of status bits

403

This table indicates the effect of all instructions on the status
register.

C _

S _

space ~

Q:

PV —

>t
11

H

I

The following codes are used:

unconditionally cleared
unconditionally set
unaffected
set or reset depending on operand value
set or reset if integer instruction, otherwise cleared
set or reset if float instruction, otherwise cleared
addressing status; set or reset depending
on operand addresssing
protect violation

Staus bits abbreviations:

ATF
ATR
ATW
AZ
BO
BPT
BT
C
CT
DR
DZ
F0
FU
IIC

Some traps conditions not listed in the table may
instructions. They are not caused by execution of

Address
Address

trap fetch
trap read

Address trap write
Address zero trap
BCD overflow
Breakpoint instruction trap
Branch trap
Carry
Call trap
Descriptor range
Divide by zero
Floating overflow
Floating underflow
Illegal instruction code

108
IOV
ISE
IVO
IX
K
O
PSD
S
SIT
STO
STU
XSE
Z

Illegal operand specifier
Illegal operand value
Instruction sequence error
Invalid operation
Illegal index
Flag
Integer
Process
Sign
Single instruction trap
Stack overflow
Stack underflow
Index scaling error
Zero

overflow
switch disabled

occur in all
any specific

instruction, but may be set at any time if certain hardware or
software conditions occur. These trap conditions include:

programmed trap
disable process switch timeout
disable process switch error
protect violation
trap handler missing
page fault
power fail
processor fault
hardware fault

Norsk Data ND—05.009.03 EN

X I I I
S I O S
E C S E

oo
no
.

S S
D I T T

Setting of status bits

R X 0 U

ND—SOO Reference Manual

.

.o
oo

A A A
T T T A
F R W Z

:A A

:A A AzA A

:A A A AzA A

o
oo

oo

B
I B C P
T T T T

S

:A
:A

:A

:A
:A

o

oo

uo

I
F F B O

3 C

U 0 O V
.o

u.

C:C C C

V D
K O 0 Z

I

I C CzF F C
I C C:F F C

C C C:C C C
C (
I C C:C C C
C ” C:C (
IC C:FFC

o

co

*.

if.

I
* I it:

* C it»:

* C *:

* C it:

* I

........D Z C S

*

#04

ABS
ACOS
ADDZ

C * C:C C C

AA
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

aw
*

A
A

A
A

A
A

A
A

A
A

A
A
fi
fi
m

w
$

:A
fi
m
fl
m

w
w

m
w
fl
:::M

%
%

$
A

.

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

m
w

.
A
fl
A

m
.

k
A

k
A

M
M

R
M

A
A

M
A

A
k
M

k
k
:k

M
M

M
k
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
CA

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
AA

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

M
A

M
A

M
M

m
m

m
m

m
w

A
:
:
:
:
:

:
:
.
:
:
:
:

:%
::::

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

:
:

fi
z
fi
::2

:%
::

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

F
C

C
C

C
C

C
C

C
C

F
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

F
F

F
C

C
C

C
C

C
C

C
C

F
C

C
C

C
C

C
w

m
w

w
..£
fi
w

w
.c

.ffl
m

m
c
m

c
m
fl
m

m
m

m
m

m
m

a
m

m
z
c
c
c
c

C
C

C
C

C
CC

C
C

»
»

»
C

C
»

**C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

CC
1

*
C

C
C

C
I
C

C
C

C
C

C
C

C
C

C
“w

u
w

c
c

C
C

u
w

C
C

C
C

*
.
:
.
£

.
:

fl
*
fl
fl
%
fi
fi
fi
fl
fl
fl
*
fi
*
fl
c
m

z
fl
*
c
m

.m
m

*c
C

*
*
*

1
*

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

I
I
C

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
C

*
*
*
*

*
*
*
S

S
*u

w
u

w

m
ad

B
9.

=
m

E
W

W
F

a
G

p.N
I

H
m

2

m
m

m
n

w
m

m
m

1
.;_

:_
.w

w
m

D
m

m
nm

m
m

m
D
flm

m
m

m
w

s
D

D
L

L
L

N
M

S
T

T
X

n
n

L
M

P
Y

Y
A

A
A

A
E

H
IL

L
L

L
L

L
O

O
O

A
A

A
A

A
A

A
A

A
A

A
A

A
B

B
B

B
B

B
B

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

:A

A A:A A
A AzA A

:A A A AzA A

:A A A A:A A

:A
:A

:A

:A
:A

:A

:A

Norsk Data ND—05.009.03 EN

C:C C C

C:C C C

n,
u

q

C C C:C C C

C C C:C C C

C

I t*.

it» C at:

* C it;

I

C.

*

CPGU
CTEl
CTE2
CWIP
DCC
DCONV
DCTSB
DECR

405ND—SOO Reference Manual
Setting of status bits

:X I I IS S
D I T T:S I O S

ou:A A AB128
V D:F F B 0

K 0 0 Z

no

T T T A:
T T T T:F R W Z
I B C Poo

:E C S ER X 0 UoaU 0 0 V:........D Z C S

:A A A A:A A
:A A A A:A A

:AI C *:F F C*C*.DIVZ
D1v3
DIVA
DMOF

:A

DMON
ENTB A:A A *:A A:A S S

A
A

A
A

A
A

A
A

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

A
A

A
A

A
A

A
A

A
A

A
A

A
A

*
*

*
*

A
A

A
A

A
A

A
A

.kkm
m

m
m

M
M

A
A

A
A

A
A

A
A

A

A
M

A
A

A
A

A
flm

S
S

S
A

S
S

S
S

S
S

S
A

S
S

S
S

A
A

A
A

A
A

A
A

A
::~m

:;~;=
C

C

C
C

C
C

.m.
.m

C
C

I
C

*
:a

C
C

*
*

N
W

N
:

mwwummmm:
mmmmmmmmm

A A:A A
:A A A A:A A
:A:A

:A
:A

C C C:C C C
C C C:C C C
C C C:C C C

C:En
C.

*-

FCONR
FCONV
FREEB
GETB

:A A A A:A AC *:
A A:A A:A

A:A A *
A:A A
A:A A

:A A
C C C:C C C *:A :A A960*.GETBF

GETBI
GOzB

A:A A* C C: C C C:C C C *:A

S
S

SGOzH

A
A

A

:A A A A:A A

C C C:C C C kkkkm
kkm

m
m

m
m

A

*A
A

A
A

A
A

A
A

A
A

A
A

A

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

A
A

A
A

A
A

A

A
A

A

A
A

A

A
A

A
A

A
A

A

A
A

A
A

C
C

C

C
C

C

C
C

C

C
C

C

C
C

C

*
*

C

.L
.*

*
*

C
C

C
C

*
*

*
*

R
V

:
..

N
N

:
=

0
0

C
C

L
L

H
H

H
H

002w

A
A

A
A

A
A

A
A

A
A

A
A

a."
“w

0G
T

0
0

0
0

0
O

O
E

O
O

O
G

G
G

G
G

D
G

G
R

G
G

G

T
e

C
K

S
S

Z
P

T
_

_
_

_
.
/
\
C

K
K

S
S

Z

F
F

F
F

F
F

F
F

F
F

F
F

I
I
I
I
I
I
I
I
I
I
I
I

:A A A A:A A* C *: I C C:C C C :AINCR
INIT
INT C C C:C C C

C C C:C C C
C C C:C C C
* C C:C C C

C. A:A A
A:A A

:A A
:A A

:A
:A
:A
:A

C.INTR
INV *C*.

*-

A:A A
A:A A

96.*

C.
INVC
IXI :A A

:A A
* C C:C C C *:A

:A:A SJUMPG
JUMPS

:A
:A
:A

A:A A
A A:A A

:A A
:A
:A

:A
:A
:A

C C C:C C C*C*.
S

C C C:C C C
C C C:C C C

C.

A:A A*C*:LADDR

Norsk Data ND-05.009.03 EN

.X I I I

Setting of status bits

S S

ND—SOO Reference Manual

F R W Z:R X 0 U:0.

B:A A A

:A
:A
:A

: I:S
V DzF F B 0:1 B C P:T T T AxD I T T:

C C C:C C C
C C C:C C C
C C C:C C C

****.*%**.****.A***.AA

C.

...D Z C S:K O O Z:U O 0 V:T T T T

LCNTXT
LIND

406

A
A

A

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
A

A
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
i

*
*

n
*

A
A

A
A

A
A

A
A

A
A

A
m

m
m

;:m
m

$m
m

m
z:zz:m

m
::$:;;:::;::m

::m
m

:m
m

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
AM

A
A

A
A

A
A

A
A

A
A

M
A

A
A

A
A

A
A

A
M

A

kkm
km

m
m

m
w

h
m

m
m

w
m

.
A

M
km

m
m

m
m

..m
..m

A
.

.m
m

m
m

m
m

m
m

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A

AAAAAAAAAAAAAAAAAm
AAm

Afim
m

m
m

m
m

m
AAAAM

Am
Am

m
wm

m
AM

AAAm

*
*

*
A

*
*

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

M
M

J
A

W
M

H
N

A
A

M
L.

..
....m

m
m

m
..m

m
..

.m
w

......m
m

m
m

m
m

m
w

..m
w

m
m

m
m

m
m

..m
w

m
v*

*
nu

C
C

C
F

vn
vn

vn
u

n
vn

u
n

u
n

u
n

vn
vn

u
n

vn
vn

u
n

vn
vn

u
*

*
*

nu
nv*

*
*

*
nv*

*
*

*
nC*

*
nC

nC
*

nCnC

C
CAU

C
C

C
C

C
P

.P
.n

vw
.n

vn
v

C
C

C
C

C
CVC

C
C

nu
*

n
vn

u
n

vn
vF

V
C

V
C

.U
n

b
*

n
v
n

v
n

v
n

v
n

v
C

C
C

C
C

C
C

C
C

F
P

.n
vP

.C
C

C
C

C
C

C
C

C
C

C
C

*
FVH

VC
VC

C
CVC

fivnvw
C

hw
nw

nw
flw

flw
m

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

*
*

*
C

C
*
*
*
*
C

*
*
*
*
C

*
*
C

C
*

C
C

C
C

C
C

C
C

C
C

TITI%
T

Inua
C

VH
VC

VC
C

C
C

C
Fv

PC
C

C
C

C
C

C
F

C
F

V
F

V
C

_
in

L
n

tn
C

n
C

*
fiCC

up:
*

m
fifiy,

*
*

..
....

*
*
fi
h

h
fl
fi
h

*
{I

*
*
fi
fl
fl
m
fi
fi
fi
fi
fi
fi
h
fl
0

5
*

L.
C

CIC
C

C
C

C
C

I
I

C
T.FV

*
C

C
C

CVCVC
C

C
C

by
C

C
C

C
C

C
C

VFVO
VC

I
C

C
C

VFVFVC
VC

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

__
=

=
:

:
R

R
R

D
I

&
z

=..__
D

C
:

=
:

=
p“

p.B
m

N
R

K
m

:
W

W
R

mww
F

T.W
D

.D
.G

E
A

1
4

I9
L

9
.9

_
Q

J
A

,A
L

P.
1

I1
I2

9
...D

D
M

u
fivL

u
C

F
N

Y
Y

Y
h

U
n

C
._

T
IT

IB
B

M
A

‘A
B

BAU
=

:

w
m

m
w

m
m

m
m

m
m

m
m

w
m

m
onm

m
m

m
__w

w
w

m
m

m
m

m
m

m
m

m
m

m
sw

w
w

w
w

w
w

m
m

m
..

__
L

L
L

M
M

M
M

M
M

M
M

M
N

N
N

O
O

O
O

O
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

p
R

R

LOOP

Norsk Data ND-05.009.03 EN

AW

XIII
SIOS
ECSE

;A*

SS
DITT
RXOU

.

o.

o.

AzA A
A:A A

A:A A

A:A A
A:A A

:A A A A:A

:A A

::A A

:A A

B:AAA
IBCPzTTTA
TTTT:FE:WZ

:AA

:A

51’

'3}

if

:A

:A

..

n.

I:S
VD:FFBO

.....D Z C S:K 0 0 ZzU O O V

C:.,
/

CC*:CCC

CCC:CCC

C (* C at»;

* C if;

* C C:

Setting of status bits

RDUS
RECVE
REM
REIT
RETB
RETBK
RETD
RETK
RETT
REXT
RHOLE
RIOM
RLADDR

ND~SOO Reference Manual

W
*
A

*
*
*
*
*
*
*
*
*

*
*
*
*
*

*
*
*
*
*
*
*
*

*
A

*
*
*
*
*
*
*
*

*
*
*

**
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

:
:
:
:
:
:
:
:
:
2

:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
fi
:
:
:

*

A
AA

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

*A
A

A
A

AA
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

w
fi
m

m
m

km
m

A
A

kA
km

m
A

m
m

..m
kkm

km
m

m
m

m
m

m
m

m
.M

A
m

m
m

m
I...A

.A
A

A
A

AA
A

A
A

A
A

A
A

A
A

A
A

*A
A

A
A

AA
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

*
A

A
A

A
A

M
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
*A

A
A

:
:
:
:

:
:

:
:
:
:
:
:
:
:

:
:
:
:
:
:
:
:
.

:
:
:
:
fl
:
:
:

**

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
*A

A
A

:
fl
.

:
5

%
.:

fl
fl
fi

:
.
:
fi
fi
:
.
:

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

0
0

0
0

*
C

C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
*

0
0

0
0

*
C

F

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
I."

C
C

C
C

*
C

F

C
C

C
C

C
C

C
C

C
CC

C
C

C
C

C
*C

C
C

C
C

C
C

C
I

C
C

C
C

*
CC

C
C

C
C

C
C

C
C

C
CC

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
*

C
I

I..
*
*
*
*

I..
S

*
*

C
C

&
*
*
*
*
*

C
C

C
S

I.“

I.
0%

....
..I...I...I...I.:*..

I.
C.

C
C

I.I.I.*C
C

C
C

C
C

C
C

..I...
.C

.I..C
.C

.I...
.C.I...

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

*
C

I

*
*
*
*

*
*
*
*
*

C
C

C
*
*
*
*
*
*
*
C

*
C

*
*
*

I..
*
*
*
C

*
8

*
S

W
H

P
A

T
R

W
I

Lw
A

W
E

N
R

U
N

H
m

N
P

N
R

F
m

m
em

w
w

m
w

w
m

m
m

m
m

m
m

nm
A

LR
N

m
m

w
w

w
w

w
w

m
m

m
m

m
m

m
1lzm

R
m

W
G

Q
O

C
C

C
C

E
E

E
E

E
F

F
H

H
H

IL
M

M
M

M
M

M
M

O
Q

R
S

S
S

S
T

T
T

U
R

R
R

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S

Norsk Data ND~05.009.03 EN

X I I I
S I O S
E C S E

NDwSOO Reference Manual
Setting of status bits

S S:.A A A
:T T T A:D I T T
F R W ZzR X 0 U

:A A A A:A A
:A A A:A A
:A A A:A A
:A A A A:A A

B
I B C P
T T T T

:A
:A
:A
:A

I:S
F F B O
U 0 O V

a.

cs

V D
K O 0 Z

I C CzF F C
* C C:C C C
C C C:C C C
* C C:C C C

C:

C *:

.....D Z C S

*

408

SUB3
SUBC
SVERS
SWAP

*
*
*
*
*
*
*

*
*
*
*
*

.:AmnmA.A.A.A.A.n.A.A.AmA.A.A.Am:MMA.A.A.A.$

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

m
m

w
m

k
k

m
k

m
k

M_m
k

m
.

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A.

AA.
AmmnmwmAmmAmMmA.

:A
A

:A

A
A
A
A
A
A
A

:A
A
A
A
A
A
A
A* C C:C C C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
C

C
C

C
C

C
C

C
C

*
C

C

#
C

C
C

C
C

C
C

C
C

C
C

C

C
C

C
C

C
C

C
C

C
C

C
*
*

L
.*

*2
u

m
.*

*
*
..*

..*
a,

*
“w

*
*

C
C

C
I
C

C
C

C
C

C
C

C
C

C

*
*
*
*
*
*
*
*
*
*

*
*
*
*

C

=
:

:..=
1

2
_

_
..:P

.
I

R
V

M
M

T
S

T
m

M
V

L
N

N
N

M
M

S
A

A
S

S
S

E
IU

O
O

A
E

E
E

H
H

O
O

O
S

U
D

M
C

C
T

T
T

T
T

T
T

T
T

T
T

U
U

W
W

PV

:A A
:A A

A:A
A:A

:A A

:A A .
:A A A A:A A

:A A

:A
:A
:A

it‘
I

Norsk Data ND-05.009.03 EN

C C C:C C C
C C C:C C C

C C C:C C* C it;

* C C:
* C *:

WEXT
WHOLE
WPCONV
WPHS
XOR
ZPGU
ZWIP

ND-BOO Reference Manual 409
Setting of status bits

Norsk Data ND—05.009.03 EN

410 ND-SOO Reference Manual
Setting of status bits

Norsk Data ND-05.009.03 EN

ND~500 Reference Manual 411

I N D E X L I S I

Index term Reference

— instruction . 166

instruction . 167

+ instruction . 165

/ instruction . 168

:= instruction 125

=: instruction 128

A to the I‘th power 187
abbreviations and symbols 349
ABS instruction . . b 139
absolute addressing t 102
absolute jump, unconditiona 206
absolute post—indexed addressing 104
absolute program addressing 113, 206, 216
absolute value . . u 139
access code u 119, 349
access protection . u 9, 41
ACOS instruction . 0 194
add u 165
add three operands u 173
add two operands . n 169
add with carry . . n 181
ADD2 instruction . u 169
ADD3 instruction . u 173
ADDC instruction . q 181
address access . . u 119
address code table 1 84, 341, 345
address codes . . . a 87
address codes, short 75
address domain , 30
address in memory i . . 75
address load v . . 259
address mode survey i . . 87
address register 0 . . 8
address translation u . . 40
address trap fetch (ATP) u . . 60
address trap read (ATR) u . . 60
address trap write (ATW) a . . 6O
address vector a . . 37
address zero access (AZ) 6O
addressing modes 87
addressing traps , . . 60
addressing, alternative d . . 109
allocation strategy i . . 218, 268
ALOG instruction 199
ALOG1O instruction 201

Norsk Data ND—O5.009.03 EN

412 ND-5OO Reference Manual

Index term Reference

ALOG2 instruction 200
alphabetical instruction table 375
ALT prefix u 33
alternative addressing . . . u 32, 109, 345
alternative domain a 36, 109
alternative prefix 109
AMODB instruction 160
An registers (floating—point accumulators) 13, 77, 285
AND instruction 145
are cosine , . 194
arc sine . 192
are tangent 196
are tangent two argument 197
arithmetical instructions 165
arithmetical shift 149
array addressing 75, 86, 110
array arguments 96
ASCII coded decimal numbers 326
ASIN instruction . p 192
ATAN instruction . o 196
ATAN2 instruction . u 197
ATP status bit . . o 6O
ATR status bit . . , 6O
ATW status bit . . a 6O
AUX stack location a 221
AUX/LOG stack location 20, 23
AXI instruction . . , 187
AZ status bit . . . a 60

B := instruction . a 126
B =: instruction . a 129
B register . 13, 20, 87, 224
B register load 126
B register load address 261
BCD (packed) format 325
BCD (packed) operands 328
BCD instructions 325
BCD overflow . 329
BCD overflow (BO) 57, 329
bias in float exponent 73
binary coded decimal instructions 325
binary logarithm 200
bit data type . 71
bit field . 71, 155, 156
bit map of MMS 40
bit number within word 75
bit, hidden . 73
bit, implicit . 73
BLADDR instruction 261
block move and fill 255
BMOVE instruction 255
B0 status bit . 57
BP instruction 280

Norsk Data ND-O5.009.03 EN

ND-BOO Reference Manual 413

Index term Reference

BPT status bit 59
branch trap (BT) 1 59
break point instruction 280
breakpoint instruction trap (BPT) 59
BT status bit . 59
buddy allocation 22, 225, 268
buffering of operand addresses 44
bypassing cache load 301
byte address 1 75
byte data type 72
byte number within word 75

C status bit . 57
cache (data) clear 286
cache (program) clear 288
cache memory system 47
cache size 1 47
cache, bypassing 1 301
cache, dump dirty 287
CAD := instruction 1 . 318
CAD register . 13, 36, 284
calculate index 1 . . . 264
CALL instruction 1 216
call subroutine absolute 216
call subroutine general 215
call supervisor . 1 319
call trap (CT) 59
call, monitor . . 1 1 36
CALLG instruction 1 215
calling domain . 1 1 36
capability tables 1 1 1 . . . 32
carry (C) 1 1 1 . . . 57
CED register . . 1 1 13, 284
CHAIN instruction 1 . 1 1 262
character translation 1 231
czheck parity in string 1 . . . 1 . . 1 . . . 252
child domain 1 1 . . . 31, 52
czhild trap enable register (CTE) 1 . . . 13, 52, 284
CIND instruction 1 1 . . . 264
clear bit 1 . . .
clear bit in trap enable register 1 . . . 282
clear data cache 1 1 . . . 286
clear flag 1 1 1 . . 267
clear page used bit 1 1 . . . 297
clear page used table 1 1 . . . 298
clear program cache 1 . . . 288
clear register 1 1 . . . 140
clear translation speedup buffer 1 . 1 . 300
clear written in page bit . . . 1 1 . . . 294
clear written in page table . . 1 295
CLEBI instruction 1 1 . . . 153
CLINIT instruction 1 1 . . . 272
CLR instruction . 1 140

Norsk Data ND~05.009.03 EN

414 ND-500 Reference Manual

Index term Reference

CLREAD instruction 273
CLRK instruction . 267
CLTE instruction 282
common logarithm . 201
communication I/0 proc:essor/CPU . 8
COMP instruction 133
COMP2 instruction 134
compare translated with pad, string . . 245
compare translated, string . 243
compare two operands . . 134
compare with pad, string . 244
compare, string . 242
complement, two's 72
concurrent procedures . 22
conditional jump 207
configuration of system . 5
conflicts of type . . 106
constant operand specifier 119
constant operands 106
context block . 14, 307
context block load . 307, 312
context block save 307, 311
control instructions . . 205
conversion with roundizng, data type . . 258
conversion, data type 256
convert ASCII to packed . . 335
convert binary word to packed . . . 338
convert ND—~5OO descriptor to PLANO descriptor . 271
convert packed to ASCII 336
convert packed to binary word . . . 337
convert PLANC descriptor to ND--500 descriptor . . 270
COS instruction . . 193
cosine . . 193
CPGU instruction . . 298
CPU . . 5
CPU number store . 321
cross reference table for instruction codes 395
CT status bit 59
CTE register 13, 52, 284
current alternative domain register (CAD) 13, 32, 109, 284
current executing domain register (CED) 13, 32, 284
current return address . . 20
CWIP instruction . 295

data addressing register . 13
data cache clear . 286
data cache dump dirty . 287
data capabiltiy . . . 33
data domain . . . 9'
data field, local . . . 20, 87
data memory management off 291
data memory management on 289
data part, operand specifier 85

Norsk Data ND-05.009.03 EN

ND—5OO Reference Manual 415

Index term Reference

data segment capabiiity 32
data status bits 57, 329
data type conversion 256
data type conversion binary 106
data type conversion with rounding 258
data type strings 231
data type, bit 71
data type, byte 72
data type, floating point 73
data type, halfword 72
data type, integer 72
data type, word 72
data types in memory 75
data types in registers 77
DCC command . 286
DDIRT instruction 287
DE status bit 64
decimal operand add:ressing 328
DECR instruction 144
decrement . 144
DESC prefix . 75, 86, 110
descriptor 75, 85
descriptor addressing 110
descriptor format for ASCII and BCD 327
descriptor implicit, packed decimal (BCD) 328
descriptor implicit, strings 231
descriptor prefix 110
descriptor range (DR) 60, 328
descriptor, ND-5OO 270, 271
descriptor, PLANO 270, 271
descritpor range (DR) 232
destination string 231
devide . 168
d:Lagnosis of system 8
direct operands 113
direct segment 33
disable process switch 277
d:Lsable process switch error (DE) 64
d Lsable process switch timeout (DT) 64
displacement addressing 86, 113
displacement optimal size 86
displacement part, short 75
DIV2 instruction 172
DIV3 instruction 176
DIV4 instruction 178
divide by zero (DZ) 57
divide three operands 176
divide two operands 172
d1vide with remainder to register 178
d:Lvide, unsigned 180
DMA . 6, 8
DMOFF instruction 291
DMON instruction 289

Norsk Data ND-O5.009.03 EN

416 NDmSOO Reference Manual

Index term Reference

Dn register 16. 77, 285
domain . . 9
domain call . . 36, 218
domain communication . 9
domain information table 27, 34
domain return . . 36, 226
domain tree . - 9. 31. 53
domain, address . 30
domain, alternative 36, 109
domain, child - 31, 52
domain, mother ~ 9. 31. 52
double-precision float 73
DR (descriptor range) . 232, 328
DT status bit . 64
dump dirty (DDIRT instruction) 287
dynamic allocation 19, 20, 22, 218,

268
dynamic structures 22
DZ status bit 57

embedded Sign representation 326
empty operands 328
En registers (extension registers) 13, 77, 285
enable process switch . . 278
ENDH heap variable . 22
ENTB instruction . 225
ENTD instruction . 220
enter maximum number of arguments stack subroutine . 221
enter maximum number of arguments subroutine 222
enter module 20, 219
enter stack subroutine . 20, 221, 226
enter subroutine . . . 222
enter subroutine directly , . . . 220
enter subroutine with buddy allocation . 225
enter trap handler . 223
ENTF instruction 19, 222
ENTFN instruction . 19, 222
ENTIER instruction . 161
ENTM instruction 20, 219
entry points, subroutine . 218
ENTS instruction . 221
ENTSN instruction . . 221
ENTT instruction . 223
example of instruction . 121
exclusive OR 147
EXP instruction . 198
exponent of float numbers . 73
exponential . 198
extension of instructions 1987 . 353
extension registers . 77
extension registers (En) 13, 77, 285

fatal trap conditions 63

Norsk Data ND-05.009.03 EN

ND—5OO Reference Manual

Index term Reference

fill m elements, string 241
fill, string . 240
flag (K) . 64, 266, 267,

329
flag (K) in descriptor addressing . . 110
flag (K) in string instructions . 231
flag in index calculation . . 263, 264
floating overflow (F0) . 57
floating point remainder . 157
floating underflow (FU) . 57
floating-point accumulators (An) . 13
floating-point data type . . 73
floating—point double precision . . 73
floating—point rounding . . . 74
floating point single precision . . 73
Fn register (single—precision floating point) . 16
En registers (single-precision floating point) . 77
F0 status bit . . 57
format, packed (BCD) . 325
formats of instruction . 117
free buddy element . 269
free space pool . 22
FREEB instruction . . 269
freelist . . 22, 218, 268
FU status bit . . 57

general operands . 84, 87
general registers 13
get bit . . 151
get bit field . . 155
get buddy element . . 268
get physical address . 322
GETB instruction . 268
GETBF instruction . 155
GETBI instruction . 151
GO instruction . 205

halfword data type . 72
heap . . 225
heap allocation . . 22
heap management . . 22, 268
heap variables . 22, 268
hidden bit 73
high limit register (HL) . 13, 61, 284
hit rate 47
HL register . 13, 61, 284

I to the J' th power . . 188
I/O processor . . . 5, 8
IF <cond> GO instruction . 207
IF K RET instruction . 226
ignorable trap conditions 60
IIC status bit 60

Norsk Data ND-O5.009.03 EN

418 ND-BOO Reference Manual

Index term Reference

illegal index (IX) . . 60
illegal instruction code (IIC) . 60
illegal operand specifier (IOS) 60
illegal operand value (IOV) . 6O
implementation, physical . 40
implicit bit . . 73
implicit descriptor string . 231
implicit descriptor, packed decimal 328
In register . 13. 77
INCR instruction 143
increment . . 143
index page table entry . 41
index register (In) 77, 86
index registers (In) 13
index scaling error (XSE) . 60
index, logical . 86
index, physical 86, 87
indirect segment 32, 33, 37
INIT instruction . 20, 217
initial values . 22
initialize local clock 272
initialize stack . . 20, 217
instruction and operand reference status bits 60
instruction code 117
instruction code cross reference table 395
instruction code table 383
instruction example 121
instruction extension 1987 353
instruction formats 117
instruction operands 81
instruction reference (IR) 6“
instruction sequence error (ISE) 6O
instruction table, alphabetical 375
INT instruction . . . 158
integer accumulators (In) . 13, 77
integer data type . . 72
integer float register communication 285
integer modulo 160
integer part . . 158
integer part with rounding 159
interprocess communication 8
INTR instruction 159
INV instruction . 137
invalid operation (IVO) 57
INVC instruction 138
invert 137
invert with carry add 138
108 status bit 60
IOV status bit . 60
IR status bit . 64
ISE status bit 60
ivalid operation 329
IVO status bit 57

Norsk Data ND-O5.009.03 EN

ND—500 Reference Manual

Index term Reference

IX status bit . 60
IXI instruction . 188

job scheduling . 5
jump, conditional . 207
jump, unconditional absolute . 206
jump, unconditional relative . 205
JUMPG instruction . . 206
JUMPS instruction . . 319

K flag . 64, 266, 267,
329

K flag in descriptor addressing . . 110
K flag in index calculation . . 263, 264
K flag in string instructions . 231

L register (link) . 13, 284
LADDR instruction . . 259
LCNTXT instruction . 307, 312
LlND instruction 263
link register (L) 13, 284
LL register . 13, 61, 284
load 125
load address 259
load address into base register . . 261
load address into record register . . 260
load address of multilevel chain . 262
load base register 126
load bypassing cache 301
load CAD 318
load context block . 307, 312
load index . . . 263
load record registe r . 127
load register block . 307, 310
load special register . . 283
local addressing . . 90
local Clock initialize . 272
local clock read 273
local data field . . 20. 221
local indirect addressing . . 94
local indirect post indexed addressing . 96
local post indexed addressing . . 92
local variable base register (B) 13
locked swap access 119
log size 22, 225, 268
logical address domain 30
logical addressing 36
logical instructions . 125
logical page number . . 44
logical shift . . 148
loop general . 213
LOOP instruction . 213
loop with decrment . 211

Norsk Data ND-05.009.03 EN

419

420

Index term

loop with increment .
LOOPD instruction .
LOOPI instruction .
low limit register (LL)
LREGBL instruction

mailbox .
management of stack .
mantissa
MAXL heap variable
memory
memory management system
memory size
memory, physical
metalanguage symbols
MIC registers
microprogram version store
MMS (memory management system)
MMS bit map . . .
modulo (DIV4 instruction)
modulo, integer
monitor call
mother domain . . .
mother trap enable register (MTE)
mother trap enable register(MTE)
MOVE instruction .
move m elements, string .
move translated until, string .
move translated, string .
move until, string
move while, string
move, string
MTE register
MUL2 instruction
MUL3 instruction
MUL4 instruction
MULAD instruction .
multioperand instructions
multiply
multiply
multiply
multiply
multiply
multiply

and add
three operands
two operands
with overflow to register
with overflow to register, unsigned

N stack location
natural logarithm .
NCPLC instruction .
ND-BOO descriptor .
NEG instruction .
negate
negative ZEI‘O .
new instructions 1987

Norsk Data ND~05.009.03 EN

:27.40

:36

~ 75

: 329

ND-SOO Reference Manual

Reference

. 209

. 211

. 209
13, 61, 284
307. 310

. 8

. 20

. 73

. 22

. 6

. 27

. MO, 293

. 42
349
14
320

178
160

31. 52
13. 52

I 2811
131

I 239
. 238
. 237. 236
. 235
. 234

13, 52, 284
171
175
177
183

167
173
175
171
177
179

20, 221
199

: 271
. 270, 271

136
136

353

ND—500 Reference Manual 421

Index term Reference

ni_bble n 325
no operation 265
non— ignorable trap conditions 63
non—reentrant routines 19, 218
N00? instruction 265
NUCLEUS . 302
numeric formats 71, 325

0 status bit . 57
operand. 81
operand addressing, decimal 328
operand and instruction reference status bits 60
operand overlap 328
operand specifier 117
operand specifier address code 84
operand specifier data part 85
operand specifier format 84
operand specifier prefix 85, 109, 110
operand, constant 106
operands, direct 82, 113
operands, empty 328
operands, general 84, 87
operands, register 108
operating system 5
operating systems support instructions 302
OR instruction 146
OTE register . 13, 284
overflow (O) . 57
overflow, BCD . 329
overpunch format 326
own trap enable register (OTE) 13, 284

P register . 284
P register (program counter) 13
P relative addressing 113, 205, 207
packed (BCD) format 325
packed (BCD) operands 328
packed add . 330
packed compare 333
packed multiply 332
packed shift . 334
packed subtract 331
PADD instruction 330
page fault (PGF) 60
page number, physical 41
page used table 296
paging . 28. 4O
parameter access 32, 109
parity string . 251, 252
part done (PD)
PCC command . 288
PCOMP instruction 333
PCTSB instruction 300

Norsk Data ND—O5.009.03 EN

422 ND~SOO Reference Manual

Index term Reference

PD status bit 64
PGF status bit 60
PHYLADR instruction . 322
physical implementation . . 40
physical memory . . 42
physical page number 41
physical segment table . 27, 40
physical segment table pointer . 40
physical segment table pointer (PSTP) 13
PIA status bit 64
pipelining 6
PLANO descriptor . 270, 271
PLCCN instruction . 270
PMOF instruction . 292
PMON instruction . 290
PMPY instruction 332
pointer, stack 217, 226
POLY instruction 189
polynomial 189
pool of free space 22
positive zero 329
post—indexing 86
power falure (PWF) 66
power function float base . . 187
power function integer base . . 188
PPACK instruction . , . . . 335
prefix 86
prefix combinations 86
prefix, alternative 109
prefix, descriptor 110
prefix, operand specifier 85
pre-indexed addressing 100
PREVB stack location 20, 221, 226
previous stack pointer . 20
private memory 7
privileged instructions allowed (PIA) 64
process . . ~ 9. 27. 31
process description . . 27, 31
process number . . 44
process registers , 32
process segment 27, 32
process segment register (PS). . 13, 284
process switch disable . . , 277
process switch disabled (PSD) . 64
process switch enable , 278
program addressing registers . 13
program cache clear . . . 288
program capability . , 32
program counter (P) o . . . , 13, 284
program domain . . , 9
program memory management off . . 292
program memory management on . 290
program segment capability 33

Norsk Data ND~05.009.03 EN

ND-5OO Reference Manual 423

Index term Reference

programmed trap (PRT) a 64
protect violation (PV) a 60
PRT status bit , 64
PS register . 13, 27, 32, 284
PSD status bit 64
PSHIFT instruction 334
PST (physical segment table) 27
PST? register . 13. 40
PSUB instruction 331
PSUM instruction 184
PUPACK instruction 336
put bit . 152
put bit field . 156
PUTBF instruction 156
PUTBI instruction 152
PV status bit . 6O
PWCONV instruction 337
PWF status bit . 66

R := instruction 127
R =: instruction 130
R register . 13
RDUS instruction 301
read from device external to CPU 313
read from NUCLEUS hole 303
read from physical segment 316
read l/O processor memory 299
read local clock 273
read page used table 296
read written in page table 293
receive from port 306
record addressing 98
record base register (R) i . . 13
record register 98
record register load l . . 127
recursive routines 20
RECVE instruction 306
reentrant routines 20, 218
register addressing 108
register block 13, 307
register block load 307, 310
register block save 307, 309
register numbers 15
register operands 81, 108, 117
registers, double precision 13, 77
registers, extension 13, 77
registers, floating point 13, 77
registers, integer 13, 77
registers, special 13
relative jump, unconditional 205
REM instruction 157
remainder . 178
RET instruction 226

Norsk Data ND-O5.009.03 EN

424 ND~5OO Reference Manual

Index term Reference

RETA stack location a . 20, 221
RETB instruction . 226
RETBK instruction . . 226
RETD instruction . 226
RETK instruction . 226
RETT instruction . 226
return address . . 20
return from subroutine . 226
REXT instruction 313
RHOLE instruction . . 303
RIOM instruction - 299
RLADDR instruction . 260
Rn register . . 77
rotational shift . 150
rounding . . . 328
rounding, floating point . 74, 159, 258
routine calls 215, 216
RPGU instruction . 296
RPHS instruction . 316
RWIP instruction ~ 293

S status bit . 57
save context block 307, 311
save register block . - 307. 309
scaling factor . 86, 110
SCHPAR instruction . 252
SCNTXT instruction . 307, 311
SCOMP instruction . . 242
SCOPA instruction . . 244
SCOPT instruction . . 245
SCOTR instruction . - 243
SCPUNO instruction 321
scratch registers . 14
segment . . 9
segment capability . 32
segment relative address 36
segment, direct . 33
segment, indirect . 32. 33
SEND instruction 305
send to port 305
set bit . . 154
set bit in trap enab1.e register . 281
set flag . 266
set parity in string 251
set to one . 142
SETl instruction 142
SETBI instruction . . 154
SETE instruction 281
SETK instruction . . 266
setting of status bits . 403
SFILL instruction . 240
SFILLN instruction 241
SHA instruction . . 149

Norsk Data ND-05.009.03 EN

ND-5OO Reference Manual 425

Index term Reference

shared segment 9, 19, 27, 32
shift arithmetical 149
shift logical . 148
shift rotational 150
SHL instruction 148
short address codes 75, 85
short displacement part 75, 86
SHR instruction 150
sign (S) . 57
sign extension 77
sign, embedded 326
signalling status bits 64
signed integer 72
S.[MULA 160
SIMULA entier function 161
S.IN instruction 191
sine 191
s ingle instruction trap (SIT) 59
s ingle precision floating point . . . 73
single-precision floating point registers (Fn) . . . 77
SIT status bit 59
size of memory 4O
SLOCA instruction 247
SMATCH instruction 250
SMOVE instruction 234
SMOVN instruction 239
SMVTR instruction 237
SMVTU instruction 238
SMVUN instruction 236
SMVWH instruction 235
SOLO instruction 277
source instruction
SP stack location 20, 221
space, free pool of 22
special instructions 277
special load of TOS 315
special purpose registers 13
special register load 283
special register store 284
SQRT instruction 190
square root . 190
SREGBL instruction 307, 309
SSCAN instruction 248
SSKIP instruction 246
SSPAN instruction 249
SSPAR instruction 251
ST register . 284
stack allocation 2O
stack displacement 20
stack initialization 20, 217
stack management 20
stack overflow (STO) 6O
stack pointer . 20, 217, 226

Norsk Data ND-O5.009.03 EN

426

Index term

stack underflow (STU)
STAH heap variable
static allocation
static link
status bits .
status bits setting .
status bits survey
status bits, data .
status bits, operand and instruction reference
status bits. system error
status bits, tracing
status register (ST)

STO status bit
store
store CPU number . .
store local base register .
store microprogram version
store record register .
store special register
store zero
string compare
string compare transla.ted
string compare translated with pad
string compare with pad
string fill .
string fill m elements
string instructions
string locate element
string match
string move
string move m elements
string move translated
string move translated until
string move until
string move while
string scan
string skip elements
string span
STU status bit
STZ instruction
SUBZ instruction
SUB3 instruction
SUBC instruction
subroutine arguments
subroutine entry points
subroutine return .
subroutine, enter directly
subroutine, stack
subtract . .
subtract three operands
subtract two operands
subtract with carry

ND-SOO Reference Manual

Reference

60
22
19
262
329
403
66
57
6O
66
59
13. 51. 56. 66,
284
60
128
321
129
320
130
284
141
242
243
245
244

. 240

. 241
231
247
250

. 234

. 239
237
238
236
235
248
246
249
60
141
170
174
182
94, 108, 218
218
226
220
221
166
174
170
182

Norsk Data ND~05.009.03 EN

ND~5OO Reference Manual 427

Index term Reference

sum of products 184
survey of address modes , 87
survey of status bits 66
SVERS instruction r 320
swap access, locked 119
SWAP instruction , 132
swapping , 27, 293
symbols and abbreviations h 349
synchronization status bits t 64
system configuration n 5
system diagnosis u 8
system error status bits , 66

TAN instruction fl 195
tangent n 195
TEMM register 13, 284
termination conditions 231
test against zero 135
test and set . 279
TEST instruction 135
THA register . 13, 284
THM status bit 60
top of stack register (TOS) 13, 20, 217
top of stack register register (TOS) 284
TOS register . 13, 20, 284
T088? 2: instruction 315
tracing status bits 59
translation of address 4O
translation of characters 231
translation speedup buffer (TSB) 44
translation speedup buffer clear 300
translation table 231
trap conditions 51
trap conditions, fatal 63
trap conditions, ignorable 6O
trap conditions, non~ignorable 63
trap enable modification mask (TEMM) 13, 53, 284
trap handler address register (THA) 13
trap handler data field 55
trap handler missing (THM) 6O
trap handler register register (THA) 284
trap handler routines 51
trap handling . 39
trap information 218
trap priority , 55
trap propagation 53
tree, domain . 31
TSET instruction 279
TUTTI instruction 278
two's complement 72
type conflicts 75, 106

UDIV instruction 180

Norsk Data ND—O5.009.03 EN

Q28 ND-SOO Reference Manual

Index term Reference

UMUL instruction 179
unconditional absolute jump . . 206
unconditional relative jump . . 205
unsigned divide 180
Unsigned multiply with overflow to register . 179

WEXT instruction . 314
WHOLE instruction . . . 304
word data type 72
WPCONV instruction . 338
WPHS instruction . . . 317
write permitted 32
write to device external to CPU . . 314
write to NUCLEUS hole . 304
write to physical segment . . 317
written in page table . . 293

XOR instruction . . 147
XSE status bit . 60

Z status bit . 57
zero (Z) u 57
zero, positive and negative . . 329
ZPGU instruction . 297
ZWIP instruction . 29H

Norsk Data ND~05.009.03 EN

SEND US YOUR COMMENTS!

Are you frustrated because of unclear information in our
manuals? Do you have trouble finding things?

Please let us know if you:
~ find errors
— cannot understand information
—— cannot find information
- find needless information.

Do you think we could improve our manuals by rearranging
the contents? You could also tell us if you like the manual.

Send to:
Norsk Data A.S
Documentation Department
P.O. Box 25 BOGERUD
N . 0621 OSLO 6 . Norway

NOTE!

This form is primarily for documentation errors. Software
and system errors should be reported on Customer System
Reports.

Manual Name: Manual number: __.—____.

Which version of the product are you using?

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual?

Your name: Date:

Company: Position:

Address:

What are you using this manual for?

Answer ftrom Norsk Data

Answered by Date

Norsk Data A.S
Documentation Department
PO. Box 25, Bogerud
Oslo 6, Nomay

