B«

ND-SOO Reference Munual
NDDSO0SCEN

ND-500 Reference Manual
ND-05.009.3 EN

1ii

The information in this manual is subject to change without notice. Norsk Data A.S assumes no responsibility for
any errors that may appear in this manual. Norsk Data A.S assumes no responsibility for the use or reliability of its
software on equipment that is not furnished or supported by Norsk Data A.S. Copyright @1987 by Norsk Data A.S

UPDATING

PRINTING RECORD . .
Manuals can be updated in two ways, new versions

PRINTING NOTES and revisions. New versions consist of a completely
new manual which replaces the old one, and
. incorporate all revisions since the previous version.
10/80 vVersion 1 Revisions consist of one or more single pages to be
. merged into the manual by the user, each revised
07/82 : Version 2 page being listed on the new printing record sent out
06/87 Version 3 with the revision. The old printing record should be

replaced by the new one.

New versions and revisions are announced in the ND
Customer Support Information and can be ordered
from the address below.

The reader’'s comments form at the back of this
manual can be used both to report errors in the
manual and give an evaluation of the manual. Both
detailed and general comments are welcome.

ND-500 Reference Manual
ND-05.009.3 EN

RING BINDER OR PLASTIC COVER

The manual can be placed in a ring binder for greater
Norsk Data protection and convenience of use. Ring binders may
be ordered in two sizes: Bb and A-4.

The manual may also be placed in a plastic cover.
This cover is more suitable for manuals in A4 size of
less than 100 pages than for larger manuals.

Please send your order, as well as all types of

e —————— inquiries and requests for documentation to the local
ND office, or (in Norway) to:

e

Norsk Data A.S

Graphic Centre

P.0.Box 25 BOGERUD
N-0621 OSLO 6 - Norway

| would like to order X
.......... Ring binders, Bb, at NOK 35.- per binder
.......... Ring binders, A4, at NOK 45.- per binder
.......... Plastic Covers, A4, at NOK 10.- per cover
Company: ...

AdAresS: o

=z
)
3
&)

Preface:

PREFACE

THE PRODUCT

This manual describes the instruction set, the trap-handling system
and the memory management system of the central processing unit of the

ND-500 series computer systems and the ND-5000 series computer
systems.

The ND-5000 CPU has a completely new and wunique physical
implementation, but is based on the ND-500 systems architecture. The
ND-5000 uses the same instructions as the ND-500 .

THE READER

The ND-500 CPU reference manual is intended for anybody using the

ND-500 assembler and for system programmers needing to know the exact
format of the generated code.

Programmers making advanced use of the memory management system for

segmenting, or writing their own trap-handling routines will find
detailed information in this manual.

PREREQUISITE KNOWLEDGE

No previous knowledge of the ND-500 or the ND-5000 is required, but
assembly programming experience is desirable. Understanding the memory
management system, making programs that handle communication between
the I/0 processor and the ND-500 or the ND-5000 and the inner kernel
of the operating systen requires a more detailed description of both
ND-500 , or ND-5000 , and ND-100 hardware. This can be found in

ND-5000 Hardware Description - ND-05.020
ND-500/2 Hardware Description - ND-05.015
ND-100 Functional description - ND-06.026

Use of the ND-500 assembler and how to link and load an ND-500 program
is described in the manuals

ND-500 Assembler Reference manual - ND-60.113
ND-500 Loader Monitor - ND-60.136

Norsk Data ND-05.009.03 EN

THE MANUAL vi

This manual 1is organized as a reference manual. It is intended for
looking up the exact syntax of machine instructions and hardware
details relevant to software. Each chapter is independent and can be
understood without reading previous chapters.

This manual is valid for both the ND-500 and the ND-5000 computer
systems. When the manual uses the name ND-5000 this is also valid fore
the ND-500 .

The chapters are organized as follows:

PART I General design

Chapter 1: A general introduction to the ND-5000 system
Chapter 2: The register block

Chapter 3: Stack and heap management

Chapter 4: Memory management system

Chapter 5: Cache memory system

Chapter 6: The trap system

Chapter 7: Data types handled by the CPU

Chapter 8: Operand specifiers and addressing

Chapter 9: Instruction formats

PART II Instruction set

Chapter 10: Data transfer and logical instructions
Chapter 11: Arithmetical instructions

Chapter 12: Mathematical functions

Chapter 13: Control instructions

Chapter 14: String instructions

Chapter 15: Miscellaneous instructions

Chapter 16: Special instructions

Chapter 17: Packed decimal instructions (Option)

Part II is organized in a logical way. You find related ingtructions
when leafing through the neighbouring pages to a specific lookup.

The appendices contain tables of address codes, instructions, cross
references, and notational conventions.

NEW INSTRUCTIONS

A number of new instructions are introduced with the ND-5000 . These
instructions also run on computer systems with the ND-500/1 and the
ND- 500/2 CPUs. The instructions are labelled: ('87 extension).

CPU - I/0 PROCESSOR

The term 'CPU' is used for the ND-500/ND-5000 processor throughout
this manual. Whenever the 1/0 processor is mentioned, this means the
ND-100/ND-110 processor.

Norsk Data ND-05.009.03 EN

EXAMPLES USED IN THIS MANUAL vii

Due to the large number of instruction formats and address modes
available, it is not possible to illustrate more than a small fraction
of the legal combinations. An attempt has been made to show the use of
each format and mode at least once.

Numeric quantities are presented in decimal, octal and/or hexadecimal
format. Octal numbers are followed by a 'B' and hexadecimal numbers by
an 'H'. Hexadecimal numbers must always start with a decimal number to
avoid confusion with identifiers (that is, FFH must be written as
OFFH). In this manual hexadecimal numbers are always preceded by a
Zero.

Absence of a following letter indicates decimal number.

When reading examples containing word and halfword quantities

displayed as octal bytes, the values in the upper bytes have to be
shifted. Example:

Binary pattern: 00010000000010000100100101010010
Displayed as: Four octal bytes: 020B 010B 111B 122B
Two octal halfwords: 010010B obls228
Octal word: 020020445228

Hexadecimal numbers require no shifting; the hexadecimal digits can be
concatenated as they are, two digits per byte.

The term WORD always refers to 32-bit words. 16-bit data items (ND-100

words) are referred to as HALFWORDS. The term BYTE refers to 8-bit
bytes.

In the figures, address values increase downwards.

Norsk Data ND-05.009.03 EN

ix

TABLE OF CONTENTS

Section Page
1 INTRODUCTION e e e e e e e e 3
1.1 CPU Architecture and CPU Implementation . 5
1.2 System configuration . . 5
1.3 Communication between the I/O Processor and the CPUs 8
1.4 Domains, segments and processes . 9
2 THE REGISTER BLOCK S
3 STATIC DATA, STACK AND HEAP D v
3.1 Static allocation e« .+ 19
3.2 Stack allocation e e . . .20
3.3 Heap allocation e e .. 22
4 MEMORY MANAGEMENT SYSTEM « e e e v o . . . 25
b1 Introduction . . e e e e e e e e 2T
.2 Memory management arvhltecture S 10
4. 2.1 Address domain 30
y.2.2 Process 5 |
4.2.3 Process env1ronment . 24
4.2.3.1 Process registers 32
4.2.3.2 Capability tables 32
4.2.3.3 Domain information 34
h.2.4 Logical addressing 36
4. 2.5 Domain communication 36
4.2.5.1 Alternative domain . . . e e e e e e ... 36
4.2.5.2 Domain calls and monitor calls e e e e e u o ... 36
4.2.5.3 Trap handling 39
4.3 Physical implementation Lo
b4 Buffering uy
5 CACHE MEMORY SYSTEM S
6 THE TRAP SYSTEM S L
6.1 General S !
6.2 Trap handler routlnes T T 724
6.3 Searching for a trap handler 52
6.4 Trap handler data field 55
6.5 The status register 57

Norsk Data ND-05.009.03 EN

Section

Norsk Data ND-05.009.03 EN

Page
6.5.1 Data status bits 57
6.5.2 Tracing status bits . . . 59
6.5.3 Instruction and operand reference status bltS . 60
6.5.3.1 Ignorable trap conditions . 60
6.5.3.2 Non-ignorable trap conditions 63
6.5.3.3 Fatal trap conditions . 63
6.5.4 Signalling, synchronization and mlscellaneous status blts 64
6.5.5 System error status bits 66
6.5.6 Addressing traps 66
6.5.7 Status bits survey 66
7 DATA TYPES 69
7.1 Introduction 71
7.2 Data types 71
7.2.1 Bit . 71
7.2.2 Byte 72
7.2.3 Halfword 72
7.2.4 Word . . 72
7.2.5 Single pre01slon floatlng p01nt . 73
7.2.6 Double precision floating point . 73
7.2.7 Floating point rounding . 74
7.2.8 Descriptor e e 75
7.3 Data formats in main memory . 75
7.4 Data in registers . 77
8 OPERAND SPECIFIERS AND ADDRESSING . 79
8.1 Introduction . . 81
8.2 General and direct operands . 82
8.2.1 General operands 84
8.2.2 Post-Index . 86
8.3 Survey of addre351ng modes 87
8.4 Local addressing . 90
8.5 Local, post-indexed address1ng 92
8.6 Local indirect addressing 94
8.7 Local indirect, post-indexed addres31ng . 36
8.8 Record addressing . 98
8.9 Pre-indexed addressing 100
8.10 Absolute addressing 102
8.11 Absolute, post-indexed address1ng . 104
8.12 Constant operand addressing . 106
8.13 Register addressing . 108
8.14 Alternative addressing 109
8.15 Descriptor addressing . 110
8.16 Direct operands . . . 113
8.16.1 Displacement addr8581ng . . 113
8.16.2 Absolute program addressing . 113
8.16.3 Absolute data addressing 113

Section

Page
9 THE ND-500 INSTRUCTION SET 115
10 DATA TRANSFER AND LOGICAL INSTRUCTIONS 123
10.1 Load .. . 125
10.2 Load local base reglsfer 126
10.3 Load record register 127
10.4 Store . . 128
10.5 Store local base reglqter . 129
10.6 Store record register . 130
10.7 Move 131
10.8 Swap 132
10.9 Compare . . 133
10.10 Compare two operands 134
10.11 Test against zero . 135
10.12 Negate 136
10.13 Invert .o . 137
10.14 Invert with carry add . 138
10.15 Absolute value 139
10.16 Clear register 140
10.17 Store zero 141
10.18 Set to one 142
10.19 Increment . 143
10.20 Decrement . 144
10.21 And . 145
10.22 Or . 146
10.23 Exclusive or 147
10.24 Logical shift . 148
10.25 Arithmetical shift 149
10.26 Rotational shift . 150
10.27 Get bit . 151
10.28 Put bit . . 152
10.29 Clear bit . 153
10.30 Set bit . . 154
10.31 Get bit field . 155
10.32 Put bit field . . 156
10.33 Floating point remainder 157
10.34 Integer part .. 158
10.35 Integer part with roundlng 159
10.36 AMODB - Integer modulc ('87 exten31on) . . 160
10.37 ENTIER - SIMULA Entier function ('87 exten81on) 161
11 ARITHMETICAL INSTRUCTIONS . 163
11.1 Add . . 165
11.2 Subtract 166
11.3 Multiply 167
11.4 Divide 168

Norsk Data ND-05.009.03 EN

Xil

Section Page
11.5 Add two operands 169
11.6 Subtract two operands . 170
11.7 Multiply two operands . 171
11.8 Divide two operands . 172
11.9 Add three operands . 173
11.10 Subtract three operands . . 174
11.11 Multiply three operands . . 175
11.12 Divide three operands . . . 176
11.13 Multiply with overflow to reglster . 177
11.14 Divide with remainder to register (modulo) . 178
11.15 JUnsigned multiply with overflow to register . . 179
11.16 Unsigned divide . .. e . 180
11.17 Add with carry . . 181
11.18 Subtract with carry . 182
11.19 Multiply and add 183
11.20 Sum of products . 184
12 MATHEMATICAL FUNCTIONS . 185
12.1 A to the I'th power . . 187
12.2 I to the J'th power . . 188
12.3 Polynomial 189
12.4 Square root . 190
12.5 Sine 191
12.6 Arc sine 192
12.7 Cosine 193
12.8 Arc cosine 194
12.9 Tangent . 195
12.10 Arc tangent . . . 196
12.11 Arc tangent two argument 197
12.12 Exponential . . 198
12.13 Natural logarithm . . 199
12.14 Binary logarithm . 200
12.15 Common logarithm . 201
13 CONTROL INSTRUCTIONS . 203
13.1 Unconditional relative jump . . 205
13.2 Unconditional absolute jump . . 206
13.3 Conditional jump . 207
13.4 Loop with increment . . 209
13.5 Loop with decrement . . 211
13.6 Loop general .. . 213
13.7 Call subroutine general . . 215
13.8 Call subroutine absolute . 216
13.9 Initialize stack . . 217
13.10 Subroutine entry points . . 218
13.11 Subroutine return . . 226
14 STRING INSTRUCTIONS . . 229

Norsk Data ND-05.009.03 EN

Section Page
4.1 Introduction 231
4.2 String move o o e e e e e e e 234
14.3 String move while u e 235
14.4 String move until e 236
14.5 String move translated u u o\ o\ o\ 237
14.6 String move translated until 238
14.7 String move m elements 239
4.8 String Fill e e e ok
14.9 String fill m elements u o4
14.10 String compare v 4 e e olD
14.11 String compare translated 243
14.12 String compare with pad . . . e e e e e e e o 2y
14.13 String compare translated w1th pad o L
14.14 String skip elements o\ o\ oo 246
14.15 String locate element 247
14,16 String scan ouu e e e 048
14017 String span e e e 249
14.18 String match o 250
14.19 Set parity in string ouou e 251
14.20 Check parity in string 252
15 MISCELLANEOUS INSTRUCTIONS « e e . . . 253
15.1 Block move and Fill 255
15.2 Data type conversion . . . e e e e e e e o ... 256
15.3 Data type conversion with roundlng e e e e e e v o ... 258
15.4 Load address . . . e
15.5 Load address into record reglster e e e e e e e e e e ... 260
15.6 Load address into base register 261
15.7 Load address of multilevel chain 262
15.8 Load indexo 263
15.9 Calculate index .. .26l
15.10 No operation 265
15.11 Set flag e e e e e 266
15.12 Clear flag 267
15.13 Get buddy element28
15.14 Free buddy element 269
15.15 PLCCN - Convert PLANC descrlptor to ND 500 descrlptor ('87
extension) 270
15.16 NCPLC - Convert ND 500 descrlptor to PLANC descrlptor ('87
extension) . . e e e .. .27
15.17 CLINIT - Inltlallze local clock ('87 extension) B
15.18 CLREAD - Read local clock ('87 extension), 273
16 SPECIAL INSTRUCTIONS e e e e e s s o275
16.1 Disable process switch 277
16.2 Enable process switch e e . . . 278
16.3 Test and set e e e e o ..o 279

Norsk Data ND-05.009.03 EN

xiv

Section Page
16.4 Break point 280
16.5 Set bit in trap enable reglster . . 281
16.6 Clear bit in trap enable register . . 282
16.7 Load special register . . 283
16.8 Store special register . . . 284
16.9 Integer float register communlcatlcn . 285
16.10 Data cache clear . . 286
16.11 DDIRT - Dump dirty ('87 extension) . 287
16.12 Program cache clear . .o . 288
16.13 Data memory management on . . 289
16.14 Program memory management on . 290
16.15 Data memory management off . 291
16.16 Program memory management off . . 292
16.17 Read Written In Page table . 293
16.18 Clear Written In Page bit . . 294
16.19 Clear Written In Page table . . 295
16.20 Read Page Used table . 296
16.21 Clear Page Used bit . . 297
16.22 Clear Page Used table . . 298
16.23 Read I/0 processor memory . . . 299
16.24 Clear translation speedup buffer . 300
16.25 Load bypassing cache . . 301
16.26 OPERATING SYSTEMS SUPPORT INSTRUCT[ONS .o . . 302
16.26.1 RHOLE - read from NUCLEUS Hole ('87 exten51on) . 303
16.26.2 WHOLE - write to NUCLEUS hole ('87 extension) . 304
16.26.3 SEND - Send to port ('87 extension) .. . 305
16.26.4 RECVE - Receive from port ('87 extension) . . . 306
16.27 INSTRUCTIONS MANIPULATING REGISTER- AND CONTEXT BLOCK . . 307
16.27.1 SREGBL - Save register block ('87 extension) . 309
16.27.2 LREGBL - Load register block ('87 extension) . 310
16.27.3 SCNTXT - Save context block ('87 extension) . 311
16.27.4 LCNTXT - Load context block ('87 extension) 312
16.28 REXT - Read from device external to CPU (' 87 exten51on) . 313
16.29 WEXT - Write to device external to CPU ('87 extension) . 314
16.30 TOSSP - Special load of TOS ('87 extension) . 315
16.31 RPHS - Read from physical segment {'87 exten51on) . 316
16.32 WPHS - Write to physical segment ('87 extension) . 317
16.33 CAD - 1load CAD ('87 extension) . . 318
16.34 JUMPS - Call supervisor ('87 exten51on) . 319
16.35 SVERS - Store microprogram version ('87 exten31on) . 320
16.36 SCPUNO - Store CPU number ('87 extension) .. . 321
16.37 PHYLADR - Get physical address ('87 extension) . 322
17 BINARY CODED DECIMAL INSTRUCTIONS {Option) . 323
17.1 Introduction . 325
17.2 Packed add . 330
17.3 Packed subtract . . 331
17.4 Packed multiply . . 332
17.5 Packed compare . 333
17.6 Packed shift . 334

Norsk Data ND-~05.009.03 EN

xv

Section

Page
17.7 Convert ASCII to packed+ . . 335
17.8 Convert packed to ASCIT B . 1
17.9 Convert packed to binesry word 337
17.10 Convert binary word to packed 338
APPENDIX
A Address codes O
B Address code table 343
c Symbols and abbreviations 347
D New instructions - 1987 extension 351
E Instruction table 355
F Alphabetical instruction table 373
G Instruction code table 381
H Instruction code cross reference table 393
I Setting of status bits Lol
Index 1

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 5
INTRODUCTION

1 INTRODUCTION

1.1 CPU Architecture and CPU Implementation

By introducing the ND-5000 systems, Norsk Data also introduces the ND-
5000 CPU. This is the third generation of implementations of the ND-
500 CPU architecture.

The CPU software architecture is still named ND-500, while the new
systems, with the ND-5000 CPU implementation, are named the ND~-5000
series computer systems. The concepts software architecture and
implementation are outlined in table 1.

CPU- Name Systems
software instruction set ND-500 All
architecture register set

addressing modes
trap system

physical ND-500/1 ND-520/540/560
implementation

ND-500/2 ND-510/530/550/
560/570/580

ND-5000 ND-5X00

Table 1. CPU Architecture and CPU Implementation

The ND-5000 CPU runs the same instruction set, uses the same register

set and the same addressing modes as the ND-500/1 and the ND-500/2
CPUs.

1.2 System configuration

The ND-5000 central processing unit is part of the ND-5000 computer
system. This system is a combination of an I1/0 processor, an ND-5000
CPU and a shared memory, see figure 1. Until now the I/0 processor has
been an ND-100, but when the DOMINO I/0 system ig introduced, other
types of I/0 processors will be possible.

THE 1/0 PROCESSOR:
- Supervises the CPU

- Runs the I/0 system, file system, operating system and job
scheduling

Norsk Data ND-05.009.03 EN

6 ND-500 Reference Manual
INTRODUCTION

- Runs local I/0-processor jobs

THE ND-500 type CPU:
- 32-bit logical address
- Addressing system implemented twice by the memory management system
to allow user programs of 4 gigabytes of instructions and 4

gigabytes of data

- CPU shared by many user programs through efficient use of the
memory management system

- Operations on data units ranging from 1 to 64 bits

- Byte-oriented instructions designed for efficient execution of
high-level language programs

- Cache memory employing a forward fetch mechanism for main memory
access

- Main memory access up to 16 bytes wide, eliminating the memory
bandwidth bottleneck

- Two independent but identical cache systems, one for instructions
and one for data

- The majority of machine level instructions requiring only one basic
cycle

-~ Asynchronous floating point arithmetic for increased instruction
execution speed

-~ Instruction and data pipelining techniques employed to optimize
execution speeds

- Specialized high-speed hardware for 32/64-bit floating point
multiplication and division

- Optional BCD hardware for operations on packed binary-coded decimal
numbers.

MEMORY :

- Multi Function Bus main memory with direct access for the ND-5000
CPU, the I/0 processor CPU and DMA transfer devices

- Physical main memory up to 32 Mbytes
- Virtual memory management system
- Memory fully or partially shared between the I/0 processor and

ND-500 type CPU.

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual

INTRODUCTION
ND-5000 CPU
C S A
Shared memory |I/0 ND-5000 O T D
proces- N A D
sor T T R
private |private R U E
memory |memory 0 5 S
L S
mailbox

I/0 processor

Figure 1. The ND-5000 computer system

Nersk Data ND-05.009.03 EN

8 ND-500 Reference Manual
INTRODUCTION

1.3 Communication between the I/0 Processor and the CPUs

All or part of the memory can be shared between the CPU, the I/0
processor and associated I/0 devices. This allows for easy access and
control by all components of the system.

The communication between the I/0 processor and the CPU is set up as a
mailbox and DMA transfer system. The mailbox contains 3 registers:

- Control register: For the I/0 processor to give the CPU a
command

- Status register: For the CPU to give the I/0 processor status

- Address register: A pointer to where in the I/O-processor
memory a chain of message buffers will be found. Message
buffers may contain commands or data from the I/0 processor
to the CPU or may be used by the CPU for storing extended
status information

Some examples of commands to the CPU are context switch, reset, wait
or data transfer.

The status information returned to the I/0 processor reports that a
job is finished, the reason for the CPU termination and the type of
possible CPU malfunctions.

The CPU microprogram initiates and controls the DMA access channel to
the I/O-processor memory. The communication channel is also used
extensively for diagnostic and test program information. The I/0-
processor is used as a diagnostic vehicle for the CPU.

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 9
INTRODUCTION

1.4 Domains, segments and processes

The memory in an ND-500 type system is logically structured into
DOMAINS. A domain has one 32-bit address area (U4 gigabytes) for

executable code (the program domain) and another one for data (the
data domain).

Each domain is divided into SEGMENTS, with up to 32 per domain. A
segment can be up to 128 Mbytes, which is equivalent to 27 address
bits. The smallest unit for access protection (write and parameter

access protection) is a segment. An instruction segment may access any
data segment in the domain.

Two (or more) domains may have segments in common in order to share
code or data.

A sequence of operations requiring no parallel execution is called a
PROCESS. A process is carried out sequentially in the CPU, but several
processes started at different times may, in effect, run concurrently.
The processes, however, are "time~sliced”.

A process may refer to up to 256 domains of data and instructions.
These are connected in a tree stucture called a domain tree, specified
by the process description kept by the memory management system. The
links between the domains are determined at the creation of each
domain. The domain closest above (that is, closer to the root) a
domain D is the mother of D, and D is the child. D may itself be the
mother of other child domains.

Control can be switched from one domain to another by calling a
routine in the other domain, or by causing an error situation (trap
condition) not taken care of by a routine in the current domain. A

routine may access data in the domain from which it was called through
an address prefix (ALT).

Within a domain, routines are called directly by address. Routines in
other domains are called through their routine number, not by address.

Communication between processes is possible through monitor calls or
through a shared data segment.

Norsk Data ND-05.009.03 EN

10

ND-500 Reference Manual

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 13
THE REGISTER BLOCK

2 THE REGISTER BLOCK

The ND-500 type CPU has four registers for program and data
addressing. These are the program counter P, the L (link) register
containing the subroutine return address, the local variable base
register B, and the record base register R.

The four 32-bit general registers, Il, I2, I3, and I4, may be used as
integer accumulators or as index registers. They are used for both
word and partial word operations (halfword, byte, bit and bit field).

The Al, A2, A3, and A4 registers are 32-bit floating-point
accumulators used for real number arithmetic. Each floating point
accumulator may be extended with a 32-bit Extension register (El, E2,

E3 and El4), making four 64-bit floating point accumulators for double
precision arithmetic.

The ND-5000 also has several special purpose registers:

ST Status register

OTE Own trap enable register

CTE Child trap enable register
MTE Mother trap enable register
TEMM Trap enable modification mask

Table 2. 6l-bit Special Purpose Registers

TOS Top of stack register

LL Low limit trap register

HL High limit trap register

THA Trap handler address register

Table 3. 32-bit Special Purpose Registers

The ST, OTE, CTE, MTE and TEMM registers are treated as two 32~bit
registers when referenced in instructions. The least significant parts
(bits 0:31) are called ST1, OTE1, CTE1l, MTEl and TEMM1. The most

significant parts (bits 32:63) are called ST2, OTE2, CTE2, MTE2 and
TEMMZ .

Norsk Data ND-05.009.03 EN

14 ND-500 Reference Manual
THE REGISTER BLOCK

The memory management system utilizes a number of registers accessible
only to the microprogram. These include:

CED Current executing domain register
CAD Current alternative domain register
PS Process segment register

PSTP Physical segment table pointer

Table 4. Memory Management Utilized Registers

Each process in the system has its own copy of the CED, CAD and PS
registers. PSTP is one global register for the whole system.

The context block is made up from these registers except from PSTP. In
addition, it contains scratch registers named 'mic'. These are
registers accessable from microprogram only, for use in
macroinstructions that may be interupted while operating on more data
than are handled by the general registers.

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 15
THE REGISTER BLOCK

The registers are numbered according to the table below. Note that 64-
bit registers are given consecutive numbers.

argl Trapping P argl7 : E4 argil’ : CTEL
2 P 18 : ST1 34 CTEZ2
3 L 19 : 8T2 35 : MTE1
b B 20 : PS 36 : MTE2
5 R 21 : TOS 37 TEMM1
6 11 22 : LL 38 TEMM2
7 12 23 : HL 39 : mic
8 13 24 : THA 4o mic
9 : I4 25 : CED 41-50: copy of
10 + A1 26 : CAD program
11+ A2 27 : mic memory
12 : A3 28 : mic
13 : A4 29 : mic
14 : E1 30 : mic
15 : E2 31 : OTE1
16 : E3 32 : OTE2

Table 5. Register Numbers

Norsk Data ND-~05.009.03 EN

16

31

P

L

B

R

TOS

LL

HL

THA

11

12

13

14

63

Al E1
A2 E2
A3 E3
Al E4

ST1 ST2

OTE1 OTE2

MTE1 MTE2

CTE1 CTE2

TEMM1 TEMM2

ND-500 Reference Manual
THE REGISTER BLOCK

Program counter

Link (subroutine return address)
local wvariable Base

Record base

Top Of Stack register

Low Limit trap register

High Limit trap register

Trap Handler Address register

Integer accumulators
or Index registers

The In accumulators are named
BIn, BYn, Hn and Wn when used
for BIt, BYte, Halfword or Word
operations (n=1,2,3,4).

Floating point accumulators

and Extension registers

A=E= 32 bits, D=A+E= 64 bits

The An accumulators are named Fn when
used as single-precision floating point
registers. The (An, En) register
pair is named Dn when used as double~-
precision floating-point registers.
STatus register

Own Trap Enable register

Mother Trap Enable register

Child Trap Enable register

Trap Enable Modification Mask

Figure 2. The Register Block

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 19
STATIC DATA, STACK AND HEAP

3 STATIC DATA, STACK AND HEAP

When a subroutine is called, space is required to store return
information and local variables. This space may be allocated

- in a fixed location in memory, referenced relative to the B
register or by absolute address (static allocation)

- on a stack growing from low to high memory, referenced
relative to the B register

- in a block released from a freelist. The block may be

anywhere in otherwise unused memory, referenced relative to
the B register.

Static or dynamic allocation of the local data area of a routine is
determined by the kind of entry point instruction, and a program
system may contain a mixture of procedures with statically and
dynamically allocated data areas.

The initialization of the header of the local data area is in most
respects equivalent for static, stack and heap allocation. Usually,

the calling procedure need not be concerned with the allocation
strategy used.

3.1 Static allocation

Data allocated in fixed locations may be addressed by a full 32-bit
address referencing any segment within the domain. Statically
allocated data are not released during program execution for other

use, and local variables in routines keep their values from one call
to the next.

Routines with static data areas are entered through an ENTF or ENTFN
instruction. Such routines are by definition non-reentrant and cannot
be called recursively , but in other respects they behave like other
routines. The fixed local data area is initialized as shown in figure
3. The B register is updated to point to the local data area and data
references may be addressed relative to the B register, as with stack
routines, and may also be addressed directly.

Trap handlers always have a fixed local data area which has a special
layout discussed in chapter 6.

Norsk Data ND-0%5.009.03 EN

20 ND-500 Reference Manual
STATIC DATA, STACK AND HEAP

3.2 Stack allocation

A stack is initialized through the INIT or ENTM instruction, either
one can declare the lowest stack address and its maximum extent. When
a stack is initialized, the TOS register is loaded with the address of
the first free location beyond the stack's maximum extent. TOS serves
to prevent the stack from growing too large, and as a pointer to the
variables describing the heap. The first free location beyond the
current extent of the stack is pointed to by the B.SP location.

A new data block on the stack is allocated by executing an ENTS or
ENTSN instruction. On routine entry the data block is automatically
initialized as follows:

B — ¢ previous stack pointer (extent of stack)

PREVB previous value of B register

RETA current return address

Sp stack pointer
(first free location)

AUX/LOG auxiliary location for language
processors or buddy subroutines

N number of arguments
argl

arg?2 .
. addresses of argunents

local variable area
(uninitialized)

Stack pointer (B.SP)

Figure 3. Local Data Area Layout

If the number of arguments supplied exceeds the maximum allowed by the
ENTSN entry point instruction, only the maximum allowed number of
argument addresses will be put on the stack and the N location will
contain the value of the "maximum number of arguments" operand. (This
also applies to the ENTFN instruction.)

The INIT instruction initializes the stack in a similar way, but the
PREVB and RETA will be zeroed, so that an attempt to link downwards
beyond the lower stack address will cause an Address Zero or Stack
Underflow trap.

The ENTM instruction initializes a new stack starting from a specified
address, giving the TOS register a new value. If the module called is
within the current domain, the old TOS value is saved on the current

Norsk Data ND-05.009.03 EN

ND-500 Reference Manusl 21
STATIC DATA, STACK AND HEAP

top of the old stack, pointed to by B.SP. Initialization of the new
stack is the same as for a routine entry; the base address of the
previous stack block is saved in PREVB. If the module is in another
domain, TOS, PREVB and RETA are stored in the domain information table
and restored on return.

The ENTM is typically used for initializing a stack for the routines
on a segment, being czlled from other segments in the same domain or
from other domains. Executing the same ENTM instruction twice will
overwrite the old initial values, possibly destroying the return
address and other information.

Stack space is released through the RET or RETK instructions. The B
register is loaded from the PREVB location. On exit from a module (a
subroutine entered through ENTM) in the current domain, the TOS
register is not updated; this must be done explicitly. After a domain
call, TOS is restored from the domain information table.

Stack displacements (relative to the B register) are always non-
negative, the displacement being the number of bytes to add to the B
register. The symbols PREVB, RETA, SP, AUX and N are predefined as O,
L4, 8, 12 and 16 respectively.

Norsk Data ND-05.009.03 EN

22 ND-500 Reference Manual
STATIC DATA, STACK AND HEAP

3.3 Heap allocation

When running several routines "concurrently" (see section 1.4), stack
allocation of local dats areas will cause problems if the routine
finishing first is not the one with its data area on top of the stack.

Complex data structures like trees, lists and networks, may grow and
shrink dynamically, and elements acquired during the execution of a
procedure should not be released upon exit.

For both these uses, data elements may be allocated from a pool of
unreserved space called the heap. The heap is described by a set of
heap variables pointed to by the TOS register. The heap variables are
the MAXL, STAH and ENDH locations and an array of pointers to linked
lists of free elements, each block size has its own free list. The
first word of an element contains the address of the next element in
the list, zero indicating the end of the list. The block size is
always a power of two and is indicated by the logarithm to the base
two (the "log size") of the number of words.

MAXL, the first location beyond the stack, is pointed to by the TOS
register and contains the maximum size of elements to be allocated.
The next two locations, STAH and ENDH, are reserved for the lower and
upper address limits of the pool respectively. Beyond these two
locations is the array of pointers, FLOGO to FLOGKMAXL>.

TOS -> MAXL Max log size of elements allowed

STAH Start of heap

ENDH End of heap

FLOGO Head pointers for freelists of
elements of the different log sizes.

FLOG1 The freelist pointers have the value
0 if no element of the log size

FLOG2 is available.

FLOG3

FLOG<MAXL>

Figure 4. Layout of heap variables

The heap variables must be initialized by the user program and the
user is responsible for building the lists. The STAH and ENDH
variables are not used by the heap instructions, but are available for

a heap administration routine implemented as a trap handler for the
stack overflow trap.

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 2
STATIC DATA, STACK AND HEAP

e

A local area for use by a subroutine may be allocated by executing the
ENTB instruction. This contains an indication of the required block
size. On routine entry, the address of the allocated block is loaded
into the B register, and the block size is stored in the AUX/LOG
location. In all other respects the local data area is initialized as
for a stack routine.

A data element is allocated by the GETB instruction, which specifies
the size of the desired element. The address of the element is loaded
into the specified register.

If a block of the requested size is available, it is unlinked from the
list. If the list head is zero, indicating that the list is empty,
lists representing larger blocks are examined. If a larger block is
available, it is split in halves and one half is left in the
appropriate freelist. The block may have to be split several times
before an element of the requested size can be given to the program.
If no larger element is available, or if the requested size is larger
than the MAXL value, a stack overflow trap condition occurs.

A routine entered through ENTB may release its local data area by
returning through the RETB or RETBK instruction. An element acquired
by the GETB may be released by the FREEB instruction.

A released element will be linked to the appropriate freelist
according to the size of the element. Elements are not combined; this
may be done by the trap handler for the stack overflow trap condition.

The stack overflow trap is used to signal that all lists containing
blocks of wanted size or larger are empty.

Be aware that initializing a new stack by INIT or ENTM will change
TOS, thus another set of heap variables will be used by the buddy
instructions. The new heap variables may be initialized to the values
of the old ones or to new values.

If ENTB is used to allocate space for co-routines, care should be
exercised if the called routines make further calls to stack routines.
When co-routines use a common stack and a second co-routine is
activated before the return, the stack areas will overlap because B.SP
is the same in both routines. No problems will occur if all routines
in the system are entered through ENTB or if the stack routine is
certain to terminate before another co-routine is activated. (Standard

library routines may be used freely; they will not cause activation of
other co-routines.)

No assumptions should be made sbout initial values of locations of
stack or heap elements not explicitly mentioned in this chapter.

Norsk Data ND-05.009.03 EN

24

ND-500 Reference Manual

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 27
MEMORY MANAGEMENT SYSTEM A

4 MEMORY MANAGEMENT SYSTEM

4.1 Introduction

A process is a sequential computation requiring no parallel execution.
A process may refer to up to 256 domains. Each domain is a full 32-bit
address area for program instructions and another one for data. A
process may easily access two such data domains, the so-called Current
Executing Domain (CED) and the Current Alternative Domain (CAD).
Instructions will always be fetched from CED, but data will be taken
from CAD when the address code prefix ALT is used. If ALT is omitted,
data accesses will be done in CED.

Each domain is divided into 32 logical segments with 27 address bits
each. A 27-bit logical segment address is translated by the memory
management system so that it addresses a location in a so-called
physical segment. Physical segments contain the data and programs for
the CPU. A physical segment is divided into blocks of 2k bytes called
pages, and may have any size from 2¥*11 to 2%%*27 bytes in units of 2k
bytes (1 page). Pages can be moved (swapped) between main memory and
secondary storage as the need arises.

All physical segments in the system are described in the Physical
Segment Table (PST). The PST always resides in the main memory and it
is used by the translation mechanism to find the physical segment. If
a physical segment consists of more than one page, an indexing
mechanism is used to address the segment. Each physical segment is
described by a 16-bit entry in PST.

By following this scheme each process may use up to 256%*32 physical
segments of program, and an equal number of physical segments of data.
The structure and properties of the domains and segments of a process
are kept on a special physical segment generated and maintained by
supervising mechanisms. This physical segment is called the Process
Segment (PS). There is one PS for each process in the CPU. The size of
a PS will depend on the number of domains the process can use.

The PS of a process cannct be accessed directly by the process itself.
It is used by supervising mechanisms which may be other processes,

other domains or the I/0 processor. Each domain used by a process has
one entry in the PS.

One part of the process segment is called the domain information
table. A domain information table contains 32 pointers for data (the
data capability table) and 32 pointers for program (the program
capability table), one pointer for each logical segment of the domain.
The pointers indicate the PST entry describing the physical segment to
be addressed by the logical address. Information on legal access modes
for each logical segment is also kept in the domain information table,
together with the pointers. One PST pointer with the corresponding
legal access mode indicators is called a capability. The domain

information table also contains the necessary information for the trap
and domain call system.

The PS of a process will be referenced frequently when the process

Norsk Data ND~05.009.03 EN

28 ND-500 Reference Manual
MEMORY MANAGEMENT SYSTEM

executes. Since the PS is an ordinary physical segment, it will be
addressed through the PST entry that describes it. A pointer to the
PST entry describing the PS of the executing process is kept in the PS
register and is updated when a new process starts execution. The PS
register is part of the process description of a process, together
with the contents of the register block and some other information.

This scheme for the translation from logical to physical addressing
makes it easy for different domains or processes to share data or
programs. Sharing is done by having the capabilities in the different
domain information tables point to the same PST entry. By doing this,
the same physical segment will be addressed.

If the translation mechanism were to perform all the outlined table
lookups on each memory access, the result would be unacceptably slow.
A speed-up mechanism is therefore introduced. Whenever an access is
completed, the number of the referenced page is stored in a cache-like
Translation Speedup Buffer (TSB). The physical page number is stored
together with the corresponding logical page number, the domain number
and a process identification. The next time an access to the same
logical page is done by the same domain, the physical page number is
found in TSB without any need to perform other lookups. The index in
the TSB is found by using a hashing algorithm that takes into account
the logical address including the segment number, the domain number
and the process identification.

The detailed description that follows is divided into the Memory
Management Architecture and its Physical Implementation. The
architecture section involves the transformation from logical to
physical segment numbers, and includes descriptions of the capability
tables and the process segment. The implementation section covers the
mechanisms by which physical segments are placed and accessed in main
memory. The present architecture is implemented with a paging
mechanism, but no inherent property of the architecture prohibits
other implementation strategies.

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual
MEMORY MANAGEMENT SYSTEM

29

31 27 26 11 10 0
1 |
« Logical program
address
] 1 1
31 27 26 11 10 0
Logical Segment relative address Page relative |+ Logical data-
segment no. address reference address
i I i
Index tables A and B
Program Physical
capability page . 1
—+ table address
Physical l
— Data segment
protection table L* _j Physical | —
Index +1 Index segment Page
—» Data - table table 1
capability A B
table
Physical .
- 5 bits of segment } !
logical number I

address to

be converted:
The logical
segment number

Physical memory

Figure 5. Logical addressing scheme

Norsk Data NI-05

.009.03 EN

30 ND-500 Reference Manual
MEMORY MANAGEMENT SYSTEM

4.2 Memory management architecture

.2.1 Address domain

An address has 32 bits, i.e. is in the range 0 to (2%%*32)-1.
Instruction fetches and data references refer to different areas of
the memory. If the memory request is an instruction fetch, the address
value range is called a program domain. If the memory request is a
data reference, the address value range is called a data domain.

A logical address domain is divided into 32 segments. The 5 upper bits
of an address are the segment number and the 27 lower bits are the
address within the segment.

5 bits 27 bits

Logical segment no. Segment relative address
Figure 6. Logical Address

If the program or data domain is not explicitly stated, the domain is

understood to be both the program domain and its corresponding data
domain.

The division of domains into segments makes different protection and
cache setup possible for each segment (see figure 9).

The scheme does not, however, forbid accesses to data structures

crossing segment borders as long as the access capabilities are the
same for both segments.

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 31
MEMORY MANAGEMENT SYSTEM

4 2.2 Process

The operations of a computation must be carried out in a certain order
to ensure a meaningful result. The simplest possible rule is to
execute the operations one at a time in strict sequential order. This
type of computation is called a process.

Information about a process is kept in the process description. The
term process will hereafter mean a sequential computation described by
a process description.

An ND-500 process may have up to 256 different logical domains, each

comprising an address space of up to 2%¥¥32 bytes cof program and 2%*%32
bytes of data.

The domains of a process are hiearchically structured in a tree. The
closest domain above a domain D is called the mother domain of D; D is
called the child. In figure 7, D and E are both child domains of B; B
is their mother. A is the mother of B and C. The hierarchical
structure is reflected in the process description.

Domain A

I B

Domain B Domain C

I N B

Domain D Domain E

Figure 7. Hierarchy of Domains

Transfer of control between domains may take place by routine calls
(domain calls) or enabled traps. Routine calls may transfer control to
any of the domains of the process. The child-to-mother links are
followed when a trap occurs in a child domain and no trap handler is
defined locally in the child domain.

Parameter transfer between different domains is performed by the
alternative address mode. (See section about addressing modes.) When a
routine in domain A calls a routine in domain B, domain A is set as

alternative domain to B and operands accessed via alternative address
mode are accessed in domain A.

More extensive data exchanges and exchanges between arbitrary domains
are done by letting the domains have one or more data segments in
common .

Norsk Data ND-05.009.03 EN

32 ND-500 Reference Manual
MEMORY MANAGEMENT SYSTEM

I}.2.3 Process environment

The memory management system needs information about existing
processes. This information resides on a physical segment, the Process
Segment. This segment is not directly accessible to the process, but
is used by microcode routines and by supervising mechanisms, which may
be other processes, other domains or the I/0 processor. There is one
process segment for each process; the number of this segment is held
in the Process Segment register (PS). For each domain owned by the

process, the process segment contains one domain information table
which consists of

- the program capability table
- the data cepability table

- domain call information

- trap handling information

I 2.3.1 Process registers

CED Current Executing Domain
CAD Current Alternative Domain
PS Process Segment

Figure 8. Memory management registers

Some information about a process is used so frequently by the memory
management system that it must be kept in hardware registers while the
process 1is executing., The three registers CED, CAD and PS are part of
the process description of the running process, i.e. the registers'
contents are saved and loaded when the process is changed.

The Current Executing Domain register holds the current domain number
of the currently executing process. When a domain call is performed,
or when a trap condition is not own but mother enabled, the domain
number of the calling domain is stored in the Current Alternative
Domain register. CAD is used with the alternative addressing mode.

4.2.3.2 Capability tables

Each domain has two capability tables, one for instructions and one
for data. Each table has 32 elements, one for each segment in the
domain. Each element consists of 16 bits, numbered from O to 15. Such
an element is called a capability, and it specifies the physical
segment number and its access rights. A program capability has a
layout different from a data capability.

In a program capability, bit 15 indicates whether the segment is in
the current domain or not. If the bit is zero, the segment is in the

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 33
MEMORY MANAGEMENT SYSTEM

current domain. A segment not in the current domain, called an
indirect segment, has bit 14 set if the physical segment resides in
another machine, otherwise it is reset. The capability of an indirect
segment contains the logical domain and segment numbers of another

segment, and the physical segment number is found in the capability of
that segment.

In a data capability, bit 15 indicates write permission. If this bit
is reset, the segment is a read-only segment. Bit 14 indicates whether
routines in other domains may refer to this segment through the ALT
prefix. Violation of the protection set by these two bits causes a
protect violation trap. Bit 13 is set if the physical segment is
shared between different domains or different processes. If a segment
is shared, data will always be read from main memory rather than from
cache to ensure that different processes are aware of each other's
updating of a data item.

Direct program segments and data segments contain the physical segment
number in the lower 13 bits.

Program segment capability:

a) Direct segment

1 bit 2 bits 13 bits

direct unused physical segment number
(=0)

b) Indirect segment

1 bit 1 bit 1 bit 8 bits 5 bits
indirect other unused domain segment
(=1) machine

Data segment capability:

1 bit 1 bit 1 bit 1 bit 13 bits
write parameter shared unused physical segment
permitted access segment number

Figure 9. Capability Layout

Norsk Data ND-05.009.03 EN

3 ND-500 Reference Manual
MEMORY MANAGEMENT SYSTEM

4.2.3.3 Domain information

When performing domain calls and trap handling, some extra table space
is needed for each domain. The first part of a domain information is
made up of 2 capability tables. The next part has two save areas; one
used when performing domain calls, and one used during trap handling.
The last part holds the domain characteristics.

All the above constitute one domain information table. This table is
followed by an unused area to a total size of 256 bytes.

The "category" column below uses the following abbreviations:
- set by hardware at domain call

M
T - set by hardware at trap handling
0 - set by operating system and read by hardware

The domain information table layout is shown on the next page.

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual
MEMORY MANAGEMENT SYSTEM

Relative No.of Cate~
address bytes gory

a. Program capability table 0B 64 0
b. Data capability table 100B 64 0

c. Domain call information

Calling domain 200B 1 M
Alternative of calling domain 201B 1 M
P of calling domain P 203B 4 M
B of calling domain B 207B b M
d. Trap handling information
Trapped domain 213B 1 T
Alternative of trapped domain 214B 1 T
Status register save area ST1 216B 4 T
ST2 2228 4 T
Inside trap handler flag 2738 1 T
e. Domain characteristics
Own trap enable OTEL 226B b 0/M
OTE2 232B 4 0/M
Child trap enable CTEL 236B 4 0
CTE2 2428 4 0
Mother trap enable MTE1 246B 4 0
MTE2 252B b 0
Trap enable modification mask TEMM1 256B b 0
TEMM2 262B 4y 0
Trap handler address THA 266B i 0o/M
Mother domain 2728 1 0
Top of stack register TOS 274B 4 0/M
Low limit register LL 300B 4 o/M
High limit register HL 304B b 0/M
Domain status (PiA = bit 0) 310B 1 0

Table 6. Domain Information Table

Norsk Data ND-05.009.03 EN

36 ND-500 Reference Manual
MEMORY MANAGEMENT SYSTEM

4.2.4 Logical addressing

A logical address consists of the logical segment number and the
segment relative address. The memory management system will transform
the logical segment number to a physical segment number. The segment
relative address is relative to the start of the physical segment.

The logical segment number is used as an index in the capability
table. The addressed element in this table gives the physical segment
number.

4.2.5 Domain communication

Within the domain hierarchy of the process, program control may
change from one domain to another. Data may be accessed in either the
called or the calling domain. In this section change of control and
communication between different domains are described.

4. 2.5.1 Alternative domain

The alternative domain is used when accessing and returning parameters
from or to a calling domain. The calling domain is set as the
alternative to the called domain by loading its number into the CAD
register. This is dene by hardware at a domain call. Access to
operands in the alternative domain is by the alternative address code
prefix, ALT(<operand>). When using the ALT address code prefix, only
the final data access goes to the alternative domain; indirect
addresses and descriptors are taken from the current domain. (See the

chapter on operand specifiers and addressing modes for further
explanation.)

The calling domain may protect its data from illegal access from other
domains by resetting the parameter access bit of its capability. This
is done through monitor calls.

4.2.5.2 Domain calls and monitor calls

From one domain, a routine on any other domain of the process may be
called through the CALL and CALLG instructions. This is only possible
if an indirect capability to that domain has been set up. This is
indicated by bit 15 being set in the capability of the segment. An
indirect capability is set up through monitor calls. An indirect
segment resides in another domain than the current one. A call to a

routine on such a segment implies a change of domain, and is referred
to as a domain call.

Domain calls to supervising domain routines performing specific
functions are called monitor calls. Service requests to the operating
system are implemented as monitor calls.

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 37
MEMORY MANAGEMENT SYSTEM

1 1

new new
domain segment
no no
capability of called domain

calling domain
Figure 10. Indirect segment

The new domain and segment number are taken from the capability of the
calling segment. The P and B registers, domain number and alternative
domain number of the calling domain are saved in the domain
information table of the called domain. When a subroutine is called,
certain initializations of the local data field are made. (See the
CALL, CALLG and ENTM instructions.) The return address and old base
register field of the local data field of the new routine are filled
with zeroes.

The new domain number is loaded into the Current Executing Domain
register and the number of the calling domain is loaded into the
Current Alternative Domain register.

The lower 27 bits of the routine address are not interpreted as within
the segment an address. Instead they are taken as an index in the
start address vector at segment address zero on the new segment. The
first word is the length of the vector, which is the number of
routines on the segment. If the index is less than this word, the
indexed element in the vector contains the address of the routine
entry point. Otherwise the call is illegal and causes an instruction
sequence error trap condition. The routines on the segment are
numbered starting from zero.

Norsk Data ND-05.009.03 EN

38 ND-500 Reference Manual
MEMORY MANAGEMENT SYSTEM

L

0 4 8 12 16... (Segment relative address)

Max Start address Routines
index vector

Figure 11. Program segment layout

On jumps to another domain, a new stack has to be set up in the called
domain. Therefore, the subroutine address must be the address of an
ENTM instruction. When an ENTM is entered from another domain, B.PREVB
and B.RETA will be cleared. Other entry point types will not properly
initialize the stack.

When the new domain is entered, TOS is not saved on top of the old
stack. The TOS, THA, LL and HL registers will be saved in the old
domain information table and the new contents of these registers are
loaded from the new domain information table.

Control reverts to the calling domain when either the return address,
the old base register, or both is zero when a return instruction is
executed. On return from a domain call, the registers CED, CAD, P ard
B are loaded from the old domain information table. The registers TOS,
THA, LL, HL and TE are loaded from the new domain information table.

Note that return information is not stacked in the domain information
table. Calling the same domain twice without return in between, will
cause an instruction sequence error trap condition. The memory
management system will zeroize the return address and B register value
in the domain information table at a domain call return to indicate

that a call to the domain may be done. If it is non-zero a domain call
is in progress.

A return instruction with O in PREVB or RETA will only change domains
if there is a domain to return to. If CAD is unequal to CED and non-
zero, return is to the domain saved in the domain information table.
Otherwise the return will be performed to address 0 in the current
domain. This may cause a stack underflow trap condition.

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 39
MEMORY MANAGEMENT SYSTEM

4 .2.5.3 Trap handling

When a trap condition occurs, the procedure described in chapter 6 on
traps will determine if a trap handler routine is to be called, and in
that case which domain has a handler for the offending trap. If the
trap is handled by a mother domain, the new domain number is loaded
into the CED register. The old CED and CAD are saved in the domain
information table of the mother domain. CAD is loaded with CED of the
trapping domain.

The status register is saved into the domain information table of the
trapped domain, and upon return the non-ignorable and fatal bits and
bits O to 8 are reloaded.

When the system trap handler returns, the new trap enable register

contents are taken from the domain information table of the trapped
domain.

Trap handler startup and stack initializations take place in the same
way as when invoking a local trap handler. See chapter 6 for further
explanation. The new trap enable register contents are taken from the
domain information table of the mother domain, except that OTE is

cleared by hardware at the ENTT instruction and restored when a RETT
is executed.

Norsk Data ND-05.009.03 EN

4o ND~500 Reference Manual
MEMORY MANAGEMENT SYSTEM

I .3 Physical implementation

Physical main memory size may be up to 2**41 bytes, divided into 2048-
byte pages. The page size of 2048=2%**11 implies 2%**30 pages, or a 30-
bit page number.

The memory management system has a bit map with two bits per physical
page, set if the page is or has been written to. If the page has been
written to, it must be copied back to mass storage before it is
replaced with another one. The table size is 2% (2**30) bits, and it is
accessible to microcode and privileged processes only.

The memory management system maintains a Physical Segment Table
Pointer (PSTP) pointing to the start of the Physical Segment Table.
This table contains a 4-byte entry for each physical segment, giving
the page number of a data page or an index page.

If the Physical Segment Table entry is 0, this means that no mapping

exists for the logical address that needs translation. This is a page
fault trap condition.

memory

PSTP

Physical
Segment
Table

Figure 12. Physical segment table

The access method, directly by physical page number, or indexed once
or twice, depends on the size of the segment. Bits 30-31 of an element
in the physical segment table hold information about access method.

Direct access restricts the segment size to 2 k bytes. Single indexing
allows 512 pages, or 1 megabytes maximum segment size. Larger segments
use double indexing, the maximum size of which (2%*31 bytes) exceeds
the maximum segment size.

Norsk Data ND-05.009.03 EN

ND~-500 Reference Manual
MIEMORY MANAGEMENT SYSTEM

2 bits 30 bits

access physical page number

Figure 13. Physical segment table entry

The two access bits have the following meaning:

O - direct, physical page number is data page

1 - single indexing, physical page number is the address of
an index page

double indexing

unused

w N
]

31 30 29 0

1 bit 1 bit 30 bits

Figure 14. Index page table entry

An index page entry has a layout similar to a PST entry. Bit 30 is
unused. Bit 31 in an index page table entry is unused except on the
last indexing level, that is, when the page number part of the entry
specifies a data page, when bit 31 is used for data page write
protection. The physical address is calculated from the physical
segment number and segment relative address as shown in figure 15.

Norsk Data ND-05.009.03 EN

41

42 ND-500 Reference Manual
MEMORY MANAGEMENT SYSTEM

physical segment number
(in PS register or capability) segment relative address (27 bits)

13 bits 7 bits 9 bits 11 bits
T —
physical segment table -
data page

: i

1 — data page
1 index page (ﬂ

data page

2 -—1 index page index page

Figure 15. Physical memory

As for pointers in PST, pointers in index tables will have zero value
to indicate a page fault.

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 43
MEMORY MANAGEMENT SYSTEM

The capability table holds the physical segment numbers of all logical
segments in a domain. The capabilities are found on the segment
specified by the process segment register (PS) of the process. On this
segment, the currently executing domain register (CED) selects a 256
byte domain information table which includes the capability tables.
The current logical segment number selects an entry in the capability
table. This table entry contains the physical segment number of the
referenced segment.

Physical
Registers Segment table
PSTP _ I 400
PS 100 +
CED 1
log. segm. no. 3
| 2560
Process segment
of current process
*1ﬂ Current domain
information table
the 2*3
addressed program capability table
capability
data capability table

Figure 16. Addressing a program capability

Norsk Data ND-05.009.03 EN

4y ND-500 Reference Manual
MEMORY MANAGEMENT SYSTEM

4.4 Buffering

Translation from logical to physical address is complicated and
requires several memory accesses. To reduce the number of accesses,
the most recently used logical page number {(the upper 21 address
bits), domain number and a part of the process number are saved
together with the corresponding physical page number and the permit
bits of the corresponding capability. Later references to the same
page may then avoid referencing the capability table, the physical
segment table and the index pages.

The table used to hold this information is the Translation Speedup
Buffer (TSB). The domain and process numbers are also stored.

Therefore it is not necessary to clear the buffer when changing domain
or process.

When access to memory is performed, the actual process number, domain
number and logical page number are compared to the TSB counterparts
pointed at by the index. If they are equal, no further table lookup is
necessary and the physical page number in the translation speedup
buffer is used. If they are not equal, the memory management systen
will update the TSB once the necessary information has been found.

Further details on the translation speedup buffer are found in the
manual ND-5000 Hardware Description (ND-05.020).

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 7
CACHE MEMORY SYSTEM

5 CACHE MEMORY SYSTEM

The ND-500 CPU and the ND-5000 CPU have different cache memory
implementation. Consult the manuals ND-500/2 Hardware Description (ND-
05.015) and ND-5000 Hardware Description (ND-05.020) for details.

The speed of the CPU is considerably higher than the speed of primary
memory; if several memory accesses are required to complete an
instruction, the CPU may be spending most of its time waiting for data
to be loaded into registers. To reduce the time spent waiting, the
most recently used data are kept in high speed buffer memory, where
data are available to the CPU in a fraction of the time required for a
main memory access. This buffer is called a cache. For economic
reasons the cache is comparatively small, and sophisticated circuitry

is employed to determine which data elements should be allotted space
in the cache.

When data residing in the cache is updated without updating the
corresponding memory location, the cache item is marked 'dirty'. Thus,
such items should be dumped when the cache is cleared in order to
maintain data consitency.

The effective memory access time as seen from the CPU is a function of
several factors: The size and speed of the cache, main memory access
time and the average percentage of data accesses where the requested
data is available in the cache without further delay ("hit rate").

To prevent instructions and data located at the same cache address

from constantly displacing each other when a loop is executed,
instructions and data have separate cache systems.

Norsk Data ND-0%5.009.03 EN

48

ND-500 Reference Manual

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 51
THE TRAP SYSTEM

6 THE TRAP SYSTEM

6.1 General

It is an advantage to be able to detect special situations arising
during program execution, such as attempts to divide numbers by zero
in a program performing many arithmetic divisions. Such checks may be
made by software, but will require explicit programming. The CPU
performs a number of checks automatically on every arithmetic
operation, showing errors that would otherwise go unnoticed. Errors
caught this way are said to be trapped. Situations leading to a
possible trap are called trap conditions. A trap condition may or may
not lead to a trap, depending on whether the trap is enabled. The
above case is called a divide by zero trap condition.

Other examples of trap conditions are floating point overflow, illegal
index and stack overflow.

For most trap conditions, it is possible to choose whether the trap is
to be acted upon (i.e. enabled) or not. If a trap is to be acted upon,
a trap handler routine will be entered.

Trep conditions are divided into three categories depending on the way
they are treated by hardware.

- Ignorable trap conditions
- Non-ignorable trap conditions

- Fatal trap conditions

Ignorable trap conditions do not require any handling; they may be
disabled and will have no effect on program execution. Non-ignorable
trap conditions require some kind of handling. If the current domain
does not have a handler for it, the trap is propagated to the mother
domain. After handling, program execution may continue.

Fatal trap conditions make it impossible to continue execution of the
process. The CPU will report to the I1/0 processor, which will take
appropriate action depending on the kind of trap.

The CPU status register has one bit for each possible trap condition.
When a trap condition occurs, this bit is set. The same bit is reset
when a trap handler routine is invoked.

Status bits representing non-ignorable and fatal trap conditions will
always yield a zero result (bit reset) if explicitly tested. It is not
meaningful to perform a conditional jump on these bits, as the
condition is always false.

Norsk Data ND-05.009.03 EN

5 ND-500 Reference Manual
THE TRAP SYSTEM

6.2 Trap handler routines

Most traps may be handled by a routine in the CPU. Every domain can
have its own routines for the trap conditions allowed by its mother
domain. If it does not take care of the trap itself, control may be
transferred to the mother domain.

The mother may handle the situation, or hand it over to her mother. At
the top of the domain tree is the operating system, and the I1/0
processor is the "great grandmother" of all domains, ensuring there
will always be at least one domain responsible for taking care of a
trap propagated from lower levels. For example, a trap condition
encountered during the running of a user program may be handled in the
user domain, in one of the mother domains between the user domain and

the root of the tree, in the operating system domain, or in the I/0
processor.

After a trap situation has been taken care of, control will normally
return to the instruction following that which caused the trap; for
some trap conditions, the trapped instruction will be repeated or
resumed. Note that the calling sequence prior to the trap situation
may be totally unrelated to the mother/child links.

6.3 Searching for a trap handler

Three registers in the CPU are used for trap enabling: The Own Trap
Enable (OTE), the Mother Trap Enable (MTE) and the Child Trap Enable
(CTE) registers. Each domain has its own copy of these registers.

If a bit in OTE is set, the domain has a trap handler routine for the
corresponding trap conditions occurring within the domain, and this
routine will be called when a trap occurs. If the MTE bit is set, the
mother (or grandmother etc.) domain of the trapping domain has a trap
handler routine for this trap condition. If the corresponding bit in
OTE is reset, this routine will be called.

A bit set in the CTE indicates that this domain has a trap handler
routine to be used when the corresponding trap condition occurs in
child domains, unless taken care of locally within the child domain.

MTE is not program modifiable. The system sets a bit in a domain's MTE

if any of the mother domains in the tree structure have the
corresponding bit set in their CTE register.

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 53
THE TRAP SYSTEM

G CTE set
==> MTE set in M, C and D

M MTE set, CTE reset

D C MTE set, OTE reset

Trap in C : OTE reset,MTE set=> trap propagated to M
in M : CTE reset => trap propagated further
in G : CTE set => trap handled in G

Figure 17. Trap propagation

The I/0 processor will always be the mother of the upper domain. Trap
conditions are always enabled in the 1/0 processor. Non-ignorable trap
conditions may be enabled in the CPU and handled by some program in
the CPU. If they are not, they will be reported to the I/0 processor.

Fatal trap conditions are always reported directly to the I/0
processor.

When a domain is created, it is given a Trap Enable Modification Mask
(TEMM) from its mother. This mask specifies which bits in OTE the
domain is allowed to change by either setting or resetting it. An
attempt to change a bit in OTE, that is to reset in TEMM, will be

ignored, while a change in an OTE bit that is set in the TEMM will
have the desired effect.

Norsk Data ND-05.009.03 EN

54

ND-500 Reference Manual
THE TRAP SYSTEM

trap condition

|

own enabled?

| o

mother enabled?

J L

Yes

Yes No
current domain
= upper domain?
Il

No Yes
change to control ignore trap handler
mother to I1I/0 trap in current domain
domain processor condition invoked

-

Figure 18. Treatment of non-fatal trap conditions

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 55
THE TRAP SYSTEM)

6.4 Trap handler data field

The Trap Handler Address register, THA, points to the base of an array
in data memory, containing the start addresses of the trap handler
routines in program memory. The Nth element of this array must hold
the start address of the routine to handle the Nth trap condition. The
area after the start address vector is used as a local data field for
the invoked trap handler routine. This data field is filled by the
ENTT instruction (see section 13.10).

data
memory

THA —

start address
vector (64 words)

local data field heading
(5 words)

trapping P (1 word)

copy of register block
(39 words - see the ENTT instruction)

local data area

Figure 19. Trap handler start address and local data field

When a trap handler is invoked, trapping P (the address of the
instruction that caused the trap condition), the register block, and

information about the trap are saved in the local data area of the
trap handler.

The P register saved in B.ARG2 holds the address of the instruction to
be executed when the trap condition has been taken care of. Trapping P
and the saved P register will be equal if the trap is handled before
the instruction is executed. The instruction causing the trap will
then be re-executed. If the trap is handled after the instruction is
executed, the saved P register will point to the next instruction.

Norsk Data ND-05.009.03 EN

56 ND-500 Reference Manual
THE TRAP SYSTEM

The trap handler data area is not re-entrant, due to the fixed
location. As long as a trap is being handled, another trap condition
should not arise in the same domain. The Own Trap Enable register
(OTE) is therefore cleared, forcing propagation to the mother domain
of any trap condition occurring during trap handler execution. The OTE
register is reloaded from the domain information table on return from
the trap handler.

A mother domain which itself is inside a trap handler will not be
entered to handle a trap for one of its child domains. A trap in that

case not handled locally in the child domain will be propagated to its
grandmother.

When a trap handler is invoked, the status register (ST) is saved in
the domain information table of the domain where the trap occurred.
The layout and use of this table is described in more detail in the
Memory Management section. If the trap condition is not handled by a
local trap handler routine, an identification of the domain where the
trap condition occurred is also saved in this table. Before the trap
handler is entered, the status bit causing the trap is cleared.

Status register bits representing ignorable trap conditions may be
modified during running of the trap handler routine. Status bits
representing non-ignorable and fatal trap conditions may not be
modified. Setting a trap bit will cause a new trap immediately on
return to the trapped routine. If several trap bits are set, several
trap handlers will be called in sequence according to their bit
numbers in the status register (highest numbered ones first).

Modification of status bits is done by changing the status word in the
saved register block. Upon trap handler return, this status word is
"merged" with the ssved status word in the domain information table
and loaded into the status register. Unmodifiable status bits will
contain their original values when the process continues.

If several traps to be handled before or during instruction execution
occur together, only the highest numbered one is handled. All other
enabled traps that are of the type before and during, are cleared on
trap handler return, before the instruction is re-executed. The re-
execution may cause these traps again, and they will be handled
normally. A trap handled after instruction execution will cause all
enabled before traps and all enabled during traps to be cleared when

the status register is loaded. Traps not enabled will be not be
cleared in either case.

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual : 57
THE TRAP SYSTEM

6.5 The status register

There are 64 bits in the status register. 40 of these bits are
currently defined. The status bits are grouped as follows:

Data status bits
Tracing status bits
Instruction and operand reference status bits

Signalling, synchronization and miscellaneous status bits

System error status bits

6.5.1 Data status bits

Code Name Bit no.
Z Zero 5
C carry 6
S sign 7
0 overflow 9
Ivo invalid operation 11
DZ divide by zero 12
FU floating underflow 13
FO floating overflow 14
BO BCD overflow 15

The data status bits hold information about the operand or result of
the last executed operation on data. The majority of control and
special instructions, including conditional jump instructions, leave
the data status bits unaffected.

In the description of the instruction set, the effect on the data
status bits are listed with every instruction. Bits that are set,

reset or left unaffected are mentioned explicitly. All data status
bits not mentioned are reset.

The Z, C, and S status bits have no corresponding trap conditions.
They are only used for conditional jumps. All other data status bits
are ignorable trap conditions. If trapping is not enabled, these bits
may be tested with conditional jump instructions.

Z : The Zero bit is set if the operand/result of the last
instruction was exactly zero. Otherwise it is cleared. Floating
underflow is an exception; then the Z-bit in all cases, except
in the POLY and IXI instructions.

5 The Sign bit of the status register holds the sign bit of the
last operand/result.

Norsk Data ND-05.009.03 EN

58

1vo

DZ

FU

FO :

BO

ND~-500 Reference Manual
THE TRAP SYSTEM

The Carry bit may be set only when performing integer arith-
metic; otherwise it is cleared. The C bit is set if a carry out
of or borrowing into the most significant bit occurs. The con-

tents of the carry bit are also used by the ADDC, SUBC and INVC
instructions.

Integer Overflow may be set only when performing integer
arithmetic; otherwise it is cleared. The 0 bit is set if the
result of the operation is too large to be represented in the
destination or register. It will occur in an integer addition
when the sign bits of the two addends are equal, and the sign
bit of the result is different from those of the addends. Note
that subtraction is an addition of the two's complement of the
subtrahend. In multiplication, integer overflow occurs when the
destination is not large enough to hold the product. In case of
overflow, the S and Z bits are set according to the actual
result of the coperation, rather than to the theoretical value.
The least significant 32 bits of the extended result will be
stored in the destination operand.

InValid Operation. One example of this is executing a square
root instruction with a negative argument. It will cause an
invalid operation trap condition.

Divide by Zero trap. A division with zero will leave the largest
possible value in the destination with the sign of the dividend,
unless the dividend is also zero. Zero divided by zero gives a
result of zero.

Floating Underflow will occur if a negative exponent requires
more than 9 bits to be represented. A value of zero will be
stored in the destination, with the sign of the result as it
would appear when calculated in unlimited format. An underflow
trap in a long instruction, like POLY, will occur at the
completion of instruction execution, even if the underflow
occurred at an intermediate step.

Floating Overflow will occur in floating arithmetic if the
result of an operation is too large to be represented in the
floating point format, i.e. a signed exponent requiring more
than 9 bits. The largest possible floating point value will be
stored in the destination, with the sign of the result as it
would appear when calculated in unlimited format. An overflow
trap in a long instruction, like POLY, will occur at the comp-
letion of instruction execution, even if the overflow occurred
at an intermediate step.

BCD Overflow. The destination field in a packed decimal

instruction was not wide enough to hold the result of an
operation. (BCD arithmetic is a hardware option.)

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 59
THE TRAP SYSTEM

6.5.2 Tracing status bits

Code Name Bit no.
SIT single instruction trap 17
BT branch trap 18
CT call trap 19
BPT breakpoint instruction trap 20

All the tracing status bits are ignorable trap conditions. They are
valuable tools for debugging programs and performance evaluation.

SIT : Single Instruction Trap. This trap condition is caused when the
execution of an instruction has terminated. With this trap
condition, it is possible to step through a program one
instruction at a time.

BT : Branch Trap condition occurs when the next instruction to be
executed is other than the one immediately following the last
executed instruction; e.g. after a GO, JUMPG, RET, LOOP or
conditional jump instruction. The trap condition does not occur

if the test in the conditional jump is false and no jump is
made.

CT : Call Trap condition occurs immediately after execution of a call
subroutine instruction.

BPT : BreakPoint instruction Trap condition occurs when a breakpoint
instruction (BP) is executed. If BPT is not enabled, a BP
instruction will cause an IIC trap condition.

If several enabled trace trap conditions occur, the CPU handles the
one with the highest priority first. Trace traps are listed from high
to low priority in the following order:

Break Point Trap

Call Trap

Branch Trap

Single Instruction Trap

The tracing status bits are always reset when execution of the next
instruction starts, even if they are not trap enabled. This means

these bits are used for trapping purposes only, since they will always
yield a zero result if explicitly tested.

Norsk Data ND-05.009.03 EN

60 ND-500 Reference Manual
THE TRAP SYSTEM

6.5.3 Instruction and operand reference status bits

Code Name Bit no.
I0V illegal operand value 16
ATF address trap fetch 21
ATR address trap read 22
ATW address trap write 23
AZ address zero access 24
DR descriptor range 25
IX illegal index 26
STO stack overflow 27
STU stack underflow 28
XSE index scaling error 32
IIC illegal instruction code 33
108 illegal operand specifier 34
ISE instruction sequence error 35
PV protect violation 36
THM trap handler missing 37
PGF page fault 38

These status bits are all trap conditions. Most are ignorable, but
XSE, IIC, I0S, ISE and PV are considered so serious that they are
defined as non-ignorable. THM and PGF are defined as fatal. All trap

conditions result from the decoding and accessing of instructions and
operands.

Non-ignorable and fatal trap condition status bits are always zero
when tested from a program, consequently they can be used only for
trapping purposes. Ignorable trap condition status bits may be used

either for trapping purposes or for explicit program testing
{(conditional jumps).

6.5.3.1 Ignorable trap conditions

IOV : Illegal Operand Value. Operand values exceeding the legal range,
e.g. in the bit field and call subroutine instructions, may
cause an Illegal Operand Value trap condition. This status bit

is set/reset in all instructions where a limit is given for the
operand values.

On the IOV trap condition the destination field is not changed.

If the I0OV trap condition is ignored the instruction will be
terminated (act as a NOOP instruction).

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 61
THE TRAP SYSTEM

The CPU has Low Limit (LL) and High Limit (HL) 32-bit registers for
protecting program and data. These two registers are compared to the
logical program and data address for each memory reference. If the
actual logical address referenced is unsigned greater than the LL
register and less than or equal to the HL register, a trap condition
occurs whose type is determined by the current memory reference.
(Memory reference type may be fetch, read, or write access.)

The memory is accessed in 1,2,3, or U-byte units starting on any byte
address. It is the starting address of the access that is checked
against LL and HL. Bytes inside the area defined for address trapping
by the LL and HL registers will therefore be accessed without causing
a trap condition if: 1. the access starts at LL-1 and is 2,3, or 4
bytes long, 2. the access starts at LL-2 and is 3 or 4 bytes long, or
3. the access starts at LL-3 and is 4 bytes long.

These registers are used during program development and debugging for
tracing access to a specific location/data block or execution of a
routine or instruction sequence. The LL and HL registers are
properties of the domain. If a routine call causes transfer to another

domain the local LL and HL wvalues will be in effect for the duration
of the call.

If enabled, program tracing takes precedence over data tracing; if
both ATF and ATR/ATW traps are enabled ATF will be trapped, and
ATR/ATW trap conditions are ignored. If ATF is enabled, ATR and ATW
bits in the status register are cleared when memory is accessed, even
if data accesses are within the guarded area. If ATF is disabled, ATR

and ATW bits are set in the status register and may cause a trap if
ATR or ATW is enabled.

If LL=HL no traps will occur. If HL<KLL access from 0 to HL or greater
than LL will be trapped; access to addresses from HL+1 to LL will not
be trapped. In a multi-operand instruction, any of the operands may
cause a trap. The specified address determines its legality; a multi-
byte operand value (halfword, word, float, doublefloat or descriptor)
may extend into the protected area without being trapped.

The trap conditions are handled after instruction execution; data are
loaded or stored before the trap handler is invoked.

ATF : A program reference within the memory area guarded by the LL and
HL registers will cause an Address Trap Fetch condition. The ATF
status bit is set/reset at the end of each instruction.

ATR : If the current memory reference is a read reference to the data
area guarded by the LL and HL registers, an Address Trap Read
trap condition will arise. The ATR bit is set/reset at the end
of each instruction with data memory reference.

Norsk Data ND-05.009.03 EN

62

ATW

AZ

DR

IX

STO

STU

ND-500 Reference Manual
THE TRAP SYSTEM

If the current memory reference is a write reference to the area
guarded by the LL and HL registers, it will cause an Address
Trap Write trap condition. The ATW bit is set/reset at the end

of each instruction with data memory reference. The store is
performed.

An address equal to zero will cause an Address Zeroc trap
condition. INIT will set B.PREVB to zero, causing an AZ trap
condition if attempts are made to link to a data block below the
bottom of the stack. A jump to address zero will alsoc cause an
AZ trap condition.

The AZ bit is set/reset for each instruction with memory access.

Addressing via a descriptor may cause a Descriptor Range trap
condition. This occurs if the contents of the index register is
negative or greater than or equal to the maximum number of
elements (length) described by the descriptor length word. A
Descriptor Range trap condition will also occur if an empty

string (length zero) is used in a string or BCD (packed decimal)
instruction.

The DR bit is set/reset at the end of all string instructions or
instructions with descriptor addressing (see section 8.15)
with memory access. The index register is incremented even if a
trap condition occurs.

The LIND and CIND instructions allow loading and calculating an
array index and check that it does not exceed the array
dimensions. If it does, it causes an Illegal indeX trap

condition. The IX bit is set/reset by the LIND and CIND
instructions.

: When the contents of a new stack pointer (B.SP) in a stack

subroutine call are greater than or equal to the contents of the
TOS (top of stack register), a STack Overflow trap condition
occurs. Stack overflow may also occur on execution of the GETB
or ENTB instructions if there are no free data blocks of the
requested size or larger. INIT and ENTM cause stack overflow if
main program stack demand is greater than system stack demand.
The STO status bit is set/reset for each ENTS, ENTSN, ENTB,
INIT, ENTM and GETB instruction.

: Performing a subroutine return instruction with RETA, PREVB or

both equal to zero leads to a STack Underflow trap condition if
there is no alternative domain {CAD zero or equal to CED) This
status bit is set/reset at each return from a stack subroutine.
This trap condition is also used to return contrcl to the
operating system when a program terminates (unless it is taken
care of locally within the domain where the trap occurred).

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 63
THE TRAP SYSTEM

6.5.3.2 Non-ignorable trap conditions

XSE

1IC :

I0S :

ISE :

PV

Index Scaling Error. The index exceeds 32 bits after post-index
scaling.

Illegal Instruction Code. Undefined code, privileged instruction
with the PIA status bit reset or execution of a BP instruction
with the BPT trap disabled.

Illegal Operand Specifier. Constant operands as destination, ALT
prefix on routine argument, type conflict between instruction
and operands or non-constant number of arguments to call and
polynomial instructions. Also, some special instructions (TSET,
RDUS) does not allow register or constant operands.

Instruction Sequence Error. Illegal subroutine entry point,
illegal domain call nesting or execution of an entry point
instruction without comming directly from & subroutine call
instruction.

: Protect Violation. This trap occurs when the segment access code

in the capability table (see section 4.2.3) is violated.

6.5.3.3 Fatal trap conditions

THM :

PGF :

Trap Handler Missing. The location pointed to by the trap
handler vector does not contain an ENTT instruction, or the ENTT
operands contain values causing non-ignorable traps.

PaGe Fault. This trap may be caused by all instructions, and is
a signal to the I/0 processor that another page has to be
swapped in from backing storage. If a page fault arises with the
process switch disabled, it will cause a disable process switch

error trap. Page fault is also caused if a memory management
table lookup gives zero as result.

Norsk Data ND-05.009.03 EN

64

ND~-500 Reference Manual
THE TRAP SYSTEM

6.5.4 Signalling, synchronization and miscellaneous status bits

PRT :

PIA :

PD

IR

Code Name Bit no.
K flag 8
PRT programmed trap 29
PIA privileged instructions allowed 1
PD part done 2
IR instruction reference 3
PSD process switch disabled b
DT disable process switch timeout 30
DE disable process switch error 31

Flag. The flag bit is used for signalling purposes. There are
special instructions for setting, resetting and testing this
condition. The K flag is also used by instructions using
descriptor addressing (see section 8.15) to indicate that the
last element in the array is accessed, in the LIND and CIND
instructions an illegal index, to indicate and in string
instructions to indicate termination conditions. CIND, LIND and
string instructions will always leave a status in K regardless
of its previous value, while descriptor addressing may set but
never clear the K flag.

PRogrammed Trap. A process in the CPU may interrupt another
process by setting the second process' programmed trap status
bit, which acts as a trap condition for this purpose. If the PRT
trap is enabled, the trapped process will immediately be
interrupted and its trap handler invoked. If the process is not
in the active state, as soon as it becomes active the trap will
occur. If the process switch is disabled in the machine where
the trapped process resides, the trap will occur as soon as the
process switch is enabled.

The PRT bit is set through monitor calls. A process may trap
itself by setting the PRT bit in the status register.

Privileged Instructions Allowed. Privileged instructions can
only be executed when this bit is set; other attempts to execute
privileged instructions will cause an illegal instruction code
trap condition. This bit may not be changed by instructions. It
is defined in the domain information table.

Part Done. This bit is used by the microprogram in long
interruptable instructions to indicate if the instruction is to
be restarted, e.g. after page fault in string instructions.

Instruction Reference. This is used by the paging system

microprogram to indicate if there was a page fault on an
instruction or on a data reference.

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 65
THE TRAP SYSTEM

The CPU has protection against bad synchronization procedures.
Synchronization procedures can execute with the process switch disable
status bit set. If this bit is set for more than 256 microcycles
(including the 2 spent in the SOLO instruction), a process switch
timeout trap condition occurs. Most simple instructions, like load,
store, and simple arithmetic, execute in one microcycle per operand
specifier. When executing with the process switch disable set, non-
ignorable traps (such as page fault) that require process switching
must not occur. If they do occur, they cause a disable process switch
error trap condition.

Ignorable trap conditions are ignored in SOLO—TUTTI'sequences
regardless of enabling of these traps.

PSD : Process Switch Disabled. The process switch disable bit is only
modifiable by the SOLO and TUTTI instructions.

DT : Disable process switch Timeout. Timeout occurs if the process
switch has been diabled for more than 256 microcycles.

DE : Disable process switch Error. Occurs if a non-ignorable process
switch (such as Page Fault) occurs while the process switch is
disabled.

Norsk Data ND-05.009.03 EN

66 ND-500 Reference Manual
THE TRAP SYSTEM

6.5.5 System error status bits

Code Name Bit no.
PWF power failure 39

The system error status bits are all fatal CPU traps. On detection,
they are reported directly to the I/0 processor.

PWF : Power failure.

6.5.6 Addressing traps

In the instruction descriptions, the term addressing traps is used as

a common name for all traps that may occur during operand fetching or

instruction addressing. Most instructions may cause these traps, which
include:

Address Trap Fetch Descriptor Range trap
Address Trap Read Illegal indeX

Address Trap Write IndeX Scaling Error
Address Zero trap Illegal Operand Specifier

Protect Violation

6.5.7 Status bits survey

The first column indicates the trap type using the following
abbreviations:

@ S - status bit, no corresponding trap condition
@ I - ignorable trap

@ N - non ignorable trap, i.e., the sequential execution of the
program is interrupted and control is passed to a trap
handler

e ' - fatal CPU error, i.e., another processor in the system
must solve the trap condition

A special case exsists for the 'trap handler missing' trap. This trap
is nonignorable if a trap handler for this exception exists somewhere
in the hierarchy of domains running in this processor. The condition
is fatal if no such handler exists.

The second column indicates whether the status bit is modifiable by
sof'tware.

Norsk Data ND~05.009.03 EN

ND-500 Reference Manual 67
THE TRAP SYSTEM

The third column indicates whether the trap is handled before, during,
or after the current executing instruction:

Before

During :

After

: The instruction has not stored any results before the trap

occurs. If the execution of the program may be resumed after
handling the trap, the instruction will have to be executed
once more. The P register and the Trapping P location in the
trap handler local data area are of equal value.

This is the same as "Before" except for some instructions
partially executed before the trap occurs and which may
continue after being restarted. (String, block move and fill,
call, enter, and return instructions) Instructions with one
destination operand will not have stored a result, but
destinations in multiple destination operand instructions
have unpredictable values. If the instruction is to be
restarted, the trap handler should not modify the saved
register block.

: The instruction causing the trap is completed and results

stored before the trap occurs. If the execution of the
program is resumed after the trap the next instruction is
executed. The P register contains the address of the next
instruction; the Trapping P location in the trap handler
local data area contains the address of the instruction
causing the trap.

Norsk Data ND-05.009.03 EN

68 ND-500 Reference Manual
THE TRAP SYSTEM

Trap handled before(B), during(D), or after(A)

Modifiable (M)
Trap type] ‘

Bit no. Name Code

0 not used

1 privileged instruction allowed PIA S

2 part done PD S

3 instruction reference IR S

4 process switch disable PSD S

5 Zero ‘ Z S M

6 carry C S M

7 sign ‘ S S M

8 flag K S M

9 overflow 0 I M A
10 not used

11 invalid operation Ivo I M A
12 divide by zero : DZ 1 M A
13 floating underflow FU I M A
14 floating overflow : FO I M A
15 BCD overflow BO I M A
16 illegal operand value I0V I M A
17 single instruction trap SIT I M A
18 branch trap BT I M A
19 call trap CT I M A
20 breakpoint instruction trap BPT I M B
21 address trap fetch ATF I M A
22 address trap read ATR I M A
23 address trap write ATW I M A
24 address zero access AZ I M A
25 descriptor range DR I M D
26 illegal index IX I M A
27 stack overflow STO I M D
28 stack underflow STU I M D
29 programmed trap PRT I M B
30 disable process switch timeout DT N A
31 disable process switch error DE N A
32 index scaling error XSE N D
33 illegal ingtruction code 1IC N D
34 illegal operand specifier 108 N D
35 instruction sequence error ISE N D
36 protect violation PV N D
37 trap handler missing THM F B
38 page fault PGF F D
39 power fail PWF F A

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 71
DATA TYPES

7 DATA TYPES

7.1 Introduction

Programs and data are always stored in separate logical address
spaces, referred to as the program memory and the data memory.
Instructions are always stored in the program memory and operands
usually in the data memory. Because the program memory functions as a
read-only memory during program execution, instructions are protected
from alteration.

Most instructions perform operations on operands. There are three
categories of operands:

- Register operands
- Variable operands residing in data memory

- Constants residing in program memory,
as a part of the instruction using them

7.2 Data types

The ND-500 instruction set handles several basic data types: Bit,
byte, halfword, word, float, doublefloat and packed decimal (BCD),
abbreviated as BI, BY, H, W, F, D and P respectively. (Packed decimal
is a hardware option.) Operations may also be performed on bit fields
of varying lengths. In addition there are instructions allowing
operations on arrays of BI, BY, H, W, F and D data. A large number of
string instructions allow easy manipulation of character strings (byte
arrays) .

7.2.1 Bit

As the ND-500 is byte addressable, a bit is specified by its byte
address. The specified bit is the rightmost bit (bit O, the least
significant bit) in the addressed byte. By post-indexing or special
instructions, it is possible to address bits other than bit zero.

An operand of type bit is a single bit, which is always treated as
unsigned. The GETBF (get bit field) and PUTBF (put bit field)
instructions operate on variable length (1 to 32 bits) bit fields.
Note that these instructions treat the bit fields as signed
quantities, even if they are only one bit long.

Norsk Data ND-05.009.03 EN

72 ND-500 Reference Manual

DATA TYPES
7.2.2 Byte
7 0

A byte is 8 contiguous bits starting at any byte boundary. The bits
are numbered from the right, O to 7. Bit O is the least significant. A
byte may be interpreted either as a signed or as an unsigned integer.
Signed byte values are in the range -128 to +127, represented in two's
complement form. Unsigned byte values are in the range O to 255.
Unsigned values may be interpreted as characters in any 8 bit (or
less) character set, and instructions are available to set, check or
clear the parity bit (bit 7) of a byte.

7.2.3 Halfword

15 0

A halfword is 2 contiguous bytes, 16 bits, starting at any byte
boundary. The bits are numbered from the right, 0 to 15. Bit 0 is the
least significant. Like a byte, a halfword may be interpreted either
as a signed or unsigned integer, in the range

-32768 (-(2**15)) to +32767 ((2**15)-1) in two's complement form, or

0 to 65535 ((2**16)-1) respectively.

7.2.4 Word

31 0

A word is 32 bits, or 4 contiguous bytes, starting at any byte
boundary. It may be used as an unsigned integer in the range

0 to 4294967295 ((2**32)-1),
or as a two's complement integer in the range

-2147483648 (-(2**31)) to +21474836UT ((2**31)-1).

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 73
DATA TYPES

7.2.5 Single precision floating point

31 | 30 22 | 21 0

sign : exponent : mantissa

A single-precision floating point number is represented by a mantissa
of 22+1 bits, a binary exponent of 9 bits with a bias of 256 and a
sign bit. The range is +/-8.6%(10%**(-78)) to +/-5.8%(10**76) and
exactly O, with an accuracy of approximately 7 decimal digits. An
operand with exponent = O is treated as exactly zero, with no respect
to the sign nor the mantissa. Minus zero (all but bit 31 zero) will
only be returned from an operation generating floating underflow.

The smallest AX to be added to 1.0 is 1.192093180*10%*-6.

7.2.6 Double precision floating point

63 | 62 54 | 53 0

sign : exponent : mantissa

A double-precision floating point number is represented by a mantissa
of 54+1 bits, a binary exponent of 9 bits with a bias of 256 and a
sign bit. The range is +/-8.6%(10**(-78)) to +/-5.8%(10%**76) and
exactly O, with an accuracy of approximately 16 digits. An operand
with exponent = O is treated as exactly zero, with no respect to the
sign nor the mantissa. Minus zero (all but bit 63 zero) will only be
returned from an operation generating floating underflow.

The smallest AX to be added to 1.0 is 2.775557562%10%%-17.

Floating point numbers are always normalized, - i.e. the most
significant bit in the mantissa is always one. It is therefore
unneccessary to represent this bit explicitly. For single and double
floating point numbers there is always one hidden bit in the mantissa,
called the implicit bit. This is always assumed to be one, unless all
bits in the exponent are zero. It is used in the arithmetic and
removed from the result, thereby giving one more bit of precision.

This is the reason why the length of the mantissa is expressed in
terms of "+1".

The value of a floating point number is

S * %% # M if e >< =256
0 if e = -256 (exponent bits all zero)

where S is the sign, with the value -1 if the sign bit is set and 1 if
the sign bit is reset. e is the value of the 9-bit exponent (taken as
an unsigned number) minus 256. Thus the range of e is =255 (= e <=
255. M is the mantissa interpreted as a binary fraction with the

decimal point to the left of the implicit bit, giving a range of M of
0.5 <=M < 1.

Norsk Data ND-05.009.03 EN

74 ND-500 Reference Manual
DATA TYPES

Examples:
1 (implicit bit)
v

-1.0 =1 100000001 0000000000000000000000

i

~1%2%% (257-256)%0.5

12.75 = 0 100000010 1001100000000000000000 = 1*2¥**(260-256)%*0.796875
0.5 = 0 100000001 0000000000000000000000 = 1*2**(257-256)%0.5
0.375 = 0 011111111 1000000000000000000000 = 1%*2%*(255-256)*0.75
-5.0 =1 100000011 0100000000000000000000 = -1*2**(259-256)*0.625
0.0 = 0 000000000 D000000000000000000000 (special case)

7.2.7 Floating point rounding

After a floating point operation, the result is normalized and the
full mantissa is checked for rounding. Rounding up is done by adding
one to the least significant bit of the mantissa. Rounding down is
done by ignoring bits beyond the least significant bit. The bits
affecting the rounding are labelled as follows:

L - least significant bit of that part of
the full mantissa which goes into
a float or double float mantissa

G - the bit immediately to the right of L

St - the result of an OR operation of all
bits to the right of G

L G : St

Mantissa

if G=1 and (St=1 or L=1) then

add one to the least significant bit of mantissa
endif

Figure 20. Floating point rounding

The effective result is equivalent to rounding up when the last
decimal digit is larger than 5, rounding down if it is less than 5. If
the last decimal digit is equal to 5, the rounding up or down is
determined by the L bit, causing round off errors to take both

positive and negative values in order to partially self-compensate in
long computations.

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 75
DATA TYPES

7.2.8 Descriptor

A descriptor is used for addressing arrays and strings (byte arrays)
through the DESC prefix. The descriptor consists of 8 bytes, the first
four containing the length of the array, the last four containing the
address of element number zero.

bytes O to 3 Number of elements (N)

bytes 4 to 7 | Address of element O (A)

Figure 21. A descriptor

The hardware will compare the first half of the descriptor against the
value of the index register used. Illegal indexing will be trapped as
a Descriptor Range error (DR). Indexing is assumed to range from zero
upwards; thus index values below zero, or larger or equal to the
number of elements, are illegal.

7.3 Data formats in main memory

Data are stored in memory in various ways depending on their type. The
basic unit in the ND-500 memory is a byte. In data types which consist
of more than one byte, the bytes are numbered left to right. The bits
in a single element of a data type are numbered right to left. The
leftmost bit is the most significant bit.

Note that post-indexing always counts the elements from the left, even
if the data type is bit.

bytel bytel byte2 byte3

When addressing with byte, halfword, or word displacement part, the
calculated address is the address of the leftmost (lowest numbered or
most significant) byte. Addressing with short address codes is either
B or R relative and has word as the displacement unit. The memory must
then be looked on as if the basic unit is a word, and the data object
must be located on a word boundary. The calculated address is the
leftmost byte of the word. When addressing with short word
displacement, the byte displacement is 4 * word displacement. (This is

taken care of by the assembler and will be of little concern to the
programmer.)

An array is addressed by its zeroth element, a multi-dimensional array
by the element having all indexes zero. This may be a "virtual"
element, in case the range of valid index values does not include

zero, or the array may actually start at a lower address if negative
indexes are allowed.

Norsk Data ND-05.009.03 EN

76 ND-500 Reference Manual
DATA TYPES

Most multi-operand instructions require operands to be of the same
type. The operands will be addressed as such, which may cause
unexpected results. If, for example, a byte is addressed as a word,
the intended byte and the following three bytes in memory will be used
as if they were a word sized data item.

BIT: The rightmost bit of a byte, specified by the byte
address.

BYTE: 8 contiguous bits, starting at any byte boundary.

HALFWORD: 16 contiguous bits (2 bytes), starting at any byte

boundary and addressed by the leftmost byte.

WORD: 32 contiguous bits (4 bytes), starting at any byte
boundary and addressed by the leftmost byte.

FLOAT: 32 contiguous bits (4 bytes), starting at any byte
boundary and addressed by the leftmost byte.

DOUBLE FLOAT: 64 contiguous bits (8 bytes), starting at any byte
boundary and addressed by the leftmost byte.

DESCRIPTOR: 6l contiguous bits (8 bytes), starting at any byte
boundary and addressed by the leftmost byte.

Figure 22. Data formats in main memory

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual
DATA TYPES

7.4 Data in registers

77

Data may be loaded to the registers in the ND-500 CPU register block.
Integer data types, i.e. BI, BY, H and W data, may be loaded to the
four Integer registers (In, n=1,2,3,4). Floating point data types,
i.e. F and D data, may be loaded to the four floating point
Accumulators (An, n=1,2,3,4). The floating point accumulators may be
extended with the Extension registers (En, n=1,2,3,4) for double-
precision floating point data. Data is loaded to the registers as
shown in the figure below.

The In accumulators are named BIn, BYn, Hn and Wn when used for BIt,
BYte, Halfword, or Word operations. (n=1,2,3,4)

The An accumulators are named Fn when used as single-precision
registers. The (An,En) double registers are named Dn when used as
double-precision floating point registers.

A common name for BIn, BYn, Hn, Wn, Fn and Dn is Rn. Rn may be used
when referencing a register where the type is determined by the

Integer accumulators

or Index registers

Floating point accumulators

and Extension registers

A=E= 32 bits D= 64 bits

context.

31 0
I1
I2
I3
14

31 031 0
Al El
A2 E2
A3 E3
Al Eb4

Figure 23. Arithmetic registers

Norsk Data ND-05.009.03 EN

78 ND-500 Reference Manual

DATA TYPES
0
In X BIn
7 0
In KXXXXKXXX BYn
15 0
In XXXAKXHXXXXKKKKK Hn
31 0
XXXXXXXXKXKX N XXXXAXKXHXKXXKXXKKK Wn
31 0
XXXKXXKXKXKXK AN XXXXAXXHXXXXKXKKXK En Fn
63 0

XXXXXXXXXXK AN XXXXKXKXKXXXKXXXXK [xxxxxxxxxxxx En P19.9:8.9.6.6.4,0.6,9.9,9.6.9.¢ Dn

Figure 24. Data in registers
When using the integer registers for BIt, BYte and Halfword, the
unused upper part of the register is always zero-filled rather than
sign-extended when data is loaded to the register.

When single float data are loaded to one of the Fn registers, i.e. An,
the corresponding En register remains unchanged.

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual

81
OPERAND SPECIFIERS AND ADDRESSING

8 OPERAND SPECIFIERS AND ADDRESSING

8.1 Introduction

An instruction consists of an instruction code and zero or more

operand specifiers. The general instruction format is shown in the
figure below:

Instruction Operand Operand Operand
Code Specifier Specifier Specifier

1 or 2 bytes Zero or more operand specifiers, each 1 to 9 bytes

Figure 25. Instruction format

The instruction code specifies the operation to be performed and the
operand data types. The operand specifier names the data to be worked
on. This chapter describes the different formats of the operand
specifier. The next chapter gives details of the instruction code.

In many ND-500 instructions one of the general registers or one of the
floating-point registers is used as the argument or result. The two
lower bits of the instruction code then specify the register number,
which is a floating-point or double-precision floating-point register
(Fn or Dn) when the data type is floating or double floating, and a
general register (Rn) when the data type is integer.

Norsk Data ND-05.009.03 EN

82 ND-500 Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

8.2 General and direct operands

An operand specifier designates the data for an instruction to work
on. If an instruction requires several operands, a corresponding
number of operand specifiers follow the instruction code.

prefix(es) address code data part

Figure 26. Operand specifier format

The length of an operand specifier may be one to nine bytes.

Operand specifiers are divided into general operand specifiers and
direct operand specifiers. The interpretation of a general operand is
determined by an address code, data part and optional prefix(es). The
interpretation of a direct operand depends on the instruction: the
operand may only have a data part, no prefix or address code.

The instruction determines whether a general or a direct operand
should be used. Instructions using direct operands are mentioned in
8.4; all others use general operands. Direct operands are used most
places where the operand value has to be a constant of a specific

type, and the operand value can be determined unambiguously as the
contents of the following bytes.

The notational conventions used in this manual to indicate general and
direct operands are explained in Appendix C. Operand names are chosen

to give more information about the specific operand in use, e.g.
{source>.

The following table describes the structure of operand specifiers in
relation to general and direct operands. The blank part of the table
indicates that there are no prefixes or addressing codes for direct

operands and no prefixes for constant and register general operands.
All general operands must have an address code.

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

General operands:

1) Congtant | = m——————— constant

Operand specifier

83

2) Register | emem————-

3) Data memory e T absolute
address or
displacement

Direct operands:

1) Absolute address
(program/data memory)

2) Displacement
{(program relative)

prefix address code data part

absolute

address

displacement
1 or 2 2 bits or 6 bits, 1,2,4
bytes 1 byte or 8 bytes

Figure 27. Operand specifier structures

Instruction code
1 or 2 bytes

Operand specifier
1-9 bytes

pow—

Prefixes Address code & data part
0-2 bytes 1-9 bytes

Varies from:

Address code data part
2 bits 6 bits
to:

Address code data part
1 byte 0-8 bytes

Figure 28. Operand Specifier Layout

Norsk Data ND-05.009.03 EN

If multiple
operand specifier

84 ND-500 Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

8.2.1 General operands

A general operand consists of the address code, the data part and
possibly a prefix.

THE ADDRESS CODE

The address code is either 2 bits or 1 byte long. It indicates both
the address mode, of which there are 10 types, and the length of the
data part, of which there are 6. Combinations of address modes and
data part lengths give 28 different address codes.

The data part length specifiers (in the ND-500 assembler notation),
names and sizes are as follows (Note that :W and :F are different
assembly notations for the same operand specifier format):

:S - short 6 bits
:B -~ Dbyte 1 byte
:H - halfword 2 bytes
:W - word 4 bytes
:F - floating 4 bytes
:D -~ double float 8 bytes

The table below shows the 10 address modes and the 6 data part length
specifiers. Legal combinations are marked with e. Post-index is
abbreviated as P.I.

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 85
OPERAND SPECIFIERS AND ADDRESSING

Address mode Data part length specifier No data part
“x,data part length specifier;

:S :B +H W :F :D

1. LOCAL | e o o o

2. LOCAL P.I. e ® @

3. LOCAL INDIRECT ® e ®

4, LOCAL INDIRECT P.I.] e ®

5. RECORD @ @ e ®

6. PRE-INDEXED] ® ®

7. ABSOLUTE]

8. ABSOLUTE P.I. ®

9. CONSTANT ® ® ® @ ® ®

10.REGISTER []

Operand specifier prefix:

DESCRIPTOR ®

ALTERNATIVE e

Figure 29. ND-500 address modes

Most address codes contain 'll' in the leftmost two bits. The
remaining six bits in the byte then specify the code.

However, in 3 special cases the leftmost two bits are '00', '0O1' or
'10'. These are the short address codes (:S in the table) and the two
bits alone indicate both length and mode. The remaining six bits are
then taken as the data part, so that the complete operand specifier
occupies only one byte.

THE DATA PART

The last part of the operand specifier, the data part, may be from six
bits (for short data parts) to 8 bytes (for double word data parts).
The data part contains an address, a displacement or a constant. The
register address mode has no data part since the register number is
contained in the address code.

Addresses always occupy four bytes. Short, byte and halfword
displacements are always treated as unsigned values.

Norsk Data ND-05.009.03 EN

86 ND-500 Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

The displacement unit is always bytes, except for short displacements,
where the unit is words. The range for short displacement is
consequently 0..63 word from the record or base registers, and the
addressed data object must be located an integral number of words from
the register referred.

Normally the ND-500 assembler will select the optimal displacement
size. It is possible, however, to force a particular {(larger) size of
displacement by following the operand specifier by either :S, :B, :H,
:W, :F or :D. (The last two apply to constants only.) In examples

shown, a data part length specifier is used only when forcing a non-
default data part length,

PREFIXES

All address codes except constant and register may include prefixes as
the first 1 or 2 bytes. These are used in two special cases where the
operand specifier does not point to the operand itself. Such an

operand specifier may point to an array descriptor or to an operand on

an alternative domain. The prefixes are then followed by the operand
specifiers.

The only two prefix combination allowed is when an operand points to
an array descriptor referring to an alternative domain, written as
ALT(DESC(<operand>)(Rn)). Only the last data access then goes to the

alternative domain; the descriptor itself is accessed in the current
domain.

8.2.2 Post-Index

Post-index is used in the local post-indexed, the local indirect post-
indexed, absolute post-indexed and the descriptor addressing modes.

Post-indexed addressing means that the index register holds the
address of the operand element relative to the start of the addressed
structure. The index is signed, and is always a logical index giving
the element number in the array regardless of the element size.

Accessing the next element in the structure is done by incrementing
the index register by one.

Hardware will multiply the logical index with a data type dependent
factor, the post-index scaling factor. The result gives the physical
index. The post-index scaling factor is the number of bytes used to
represent the data type in question. The post-index scaling factor is
1/8 (BI), 1 (BY), 2 (H), 4 (W), 4 (F), 8 (D) and 8 (descriptor). The
physical index is added to the base address of the structure in order
to get the address of the operand.

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 87
OPERAND SPECIFIERS AND ADDRESSING

8.3 Survey of addressing modes

The first column lists the different groups of addressing modes in the
assembler notation for displacements and the name of the displacement.
The second column lists the algorithm used for determining the

effective address (ea) of the operand or the operand itself. The third

column lists the address code. (Abbreviations are explained in
Appendix C.)

Hex Octal
code code

LOCAL
B. <displ> :S ea=(B)+d*4 OU4OH+xx 100B+xx
short displacement
B. <displ> :B ea=(B)+d OC1H 301B
byte displacement
B. <displ> :H OC2H 302B
halfword displacement
B. <displ> :W 0C3H 303B

word displacement

LOCAL, POST-INDEXED

B. <displ> :B (Rn) ea=(B)+d+p*(Rn) ODU4H+y 324B+y
byte displacement

B. <displ> :H (Rn) OD8H+y 330B+y
halfword displacement

B. <displ> :W (Rn) ODCH+y 334B+y
word displacement

LOCAL INDIRECT

IND (B. <displ> :B) ea=((B)+d) OC5H 305B
byte displacement

IND (B. <displ> :H) OC6H 306B
halfword displacement

IND (B. <displ> :W) OCT7H 3078
word displacement

LOCAL INDIRECT, POST-INDEXED
IND (B.<displ> :B) (Rn) ea=((B)+d)+p*(Rn) OEU4H+y 344B+y
byte displacement

IND (B.<displ> :H) (Rn) OE8H+y 350B+y
halfword displacement

IND (B.<displ> :W) (Rn) OECH+y 354B+y
word displacement

Norsk Data ND-05.009.03 EN

88

RECORD
R. <displ> :S
short displacement

R. <displ> :B
byte displacement

R. <displ> :H
halfword displacement

R. <displ> :W
word displacement

PRE-INDEXED
Rn. <{displ> :B
byte displacement

Rn. <displ> :H
halfword displacement

Rn. <displ> :W
word displacement

ABSOLUTE
<address>

ABSOLUTE, POST-INDEXED

<address> (Rn)

CONSTANT
{constant)> :S
short constant

{constant> :B
byte constant

{constant> :H
halfword constant

{constant> :W

, <constant>

ND-500 Reference Manual

OPERAND SPECIFIERS AND ADDRESSING

ea=(R)+d*4

ea=(R)+d

ea=(Rn)+d

ea=a

ea=a+(Rn)*p

-F‘
RS

word constant, floating-point constant

{constant> :D

double floating-point constant

REGISTER
Rn

Norsk Data ND-05.009.03 EN

op=(Rn)

080H+xx

OCOH

OCAH

OCBH

OF4H+y

OF8H+y

OFCH+y

OCL4H

OEOH+y

OOOH+xx

OCDH

OCEH

OCFH

OCCH

ODCH+y

200B+xx

311B

312B

313B

364B+y

370B+y

374B+y

304B

340B+y

000B+xx

315B

316B

317B

314B

320B+y

ND-500 Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

DESCRIPTOR
DESC (<descriptor>) (Rn) ea=A+p* (Rn) OFOH+y

if (Rn)+1 >> descriptor.length then
descriptor range trap condition

endif

if (Rn)+1 >>= descriptor.length then
l=:gtatus.K

endif

if not descriptor range trap then
perform addressing with Rn as post-index
if data access then

(Rn)+1=:Rn

endif

endif

ALTERNATIVE
ALT (<operand>) 0C8H

The address (ea) is referenced on the alternative domain.
Parameter access is required on the referenced segment in

the alternative domain.

Norsk Data ND-05.009.03 EN

360B+y

310B

89

90 ND-500 Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

8.4 Local addressing

Assembly Hex Octal
notation Name code code
B.<displ> local

B.<displ>:S local, short displacement OU4OH+xx 100B+xx
B.<{displ>:B local, byte displacement OC1H 301B
B.<displ>:H local, halfword displacement 0OC2H 302B
B.<{displ>:W local, word displacement OC3H 303B

ea = (B)+d

ea = (B)+d*4 (B.<displ>:S)

The local addressing mode is addressing relative to the base register
B. This register is meant to hold the address of the beginning of the
local variables of a routine, hence the name local addressing.

The effective address is calculated by adding the value of the
displacement to the contents of the base register.

A short displacement part with a displacement unit of word is legal,
in addition to byte, halfword and word displacement parts with the
displacement stored in 1, 2, or 4 byte(s) after the address code,
displacement unit byte. Displacement values are treated as unsigned.

B register b
displacement
efféctive

address —

Figure 20. Local addressing

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

1000B

0O1CH BY1l =:

OC2H B.0O100H B:

0200H

ea = (B)+d = 0200H+0100H = 0300H

Norsk Data ND-05.009.03 EN

91

92 ND-500 Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

8.5 Local, post-indexed addressing

Assembly Hex Octal

notation Name code code

B.<displ>{(Rn) local, post-indexed

B.<displ> :B (Rn) local, post-indexed, OD4H+y 32UB+y
byte displacement

B.<displ> :H (Rn) local, post-indexed, OD8H+y 330B+y
halfword displacement

B.<displ> :W (Rn) local, post-indexed, ODCH+y 334B+y

word displacement

ea = (B)+d+p*(Rn)

A local post-indexed address is calculated by adding the displacement,
the contents of the B register and the contents of the index register

multiplied by the post-index scaling factor. See the section on post-
indexing.

B register —- —

displacement

p* (Rn)

4
effective
address

Figure 31. Local, post-indexed addressing

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

Example:

176005B| BI2 :=

——ééég— B.170:H(R3) B: 100008
o008

Cos. R3: 4008

ea = (B)+d+p*(Rn) = 10000B+170B+400B/10B = 10230B

Octal
Hexadecimal
011H BI2 :=
—6B;é— B.078H:H(R3) B: 01000H
000H-
—B;éé— R3: 0100H

ea = (B)+d+p*(Rn) = 01000H+078H+0100H/08H = 01098H

Norsk Data ND-05.009.03 EN

93

94

ND-500 Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

8.6 Local indirect addressing

Assembly Hex Octal
notation Name code code
IND(B.<displ>) indirect

IND(B.<displ>:B) indirect, byte displacement 0OC5H 305B
IND(B.<displ>:H) indirect, halfword displacement OC6H 306B
IND(B.<displ>:W) indirect, word displacement OC7H 307B

ea = ((B)+d)

The value of the unsigned displacement is added to the local base
register and this sum forms the address of a word which holds the

address of the operand. Subroutine arguments are usually accessed by
local indirect addressing.

B register «——————
displacement

o e sty
effective
address ———-——s

Figure 32. Local indirect addressing

Norsk Data ND-05.009.03 EN

ND~-500 Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

Example:
1338 Fi +
305B IND(B.120B:B) B:
120B K20B:

ea = ((B)+d) = (400B+120B) = 1000B

Octal

Hexadecimal
05BH F4 +
OC5H IND(B.0O50H:B) B:
050H 0150H:

ea = ((B)+d) = (O100H+050H) = 0200H

95

0100H

Norsk Data ND-05.009.03 EN

96 ND-500 Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

8.7 Local indirect, post-indexed addressing

Assembly Hex Octal
notation Name code code

IND(B.<displ>) (Rn) indirect, post-indexed

IND(B.<displ>:B)(Rn) indirect, post-indexed, OE4H+y 344B+y
byte displacement

IND(B.<displ>:H)(Rn) indirect, post-indexed, OE8H+y 350B+y
halfword displacement

IND(B.<displ>:W) (Rn) indirect, post-indexed, OECH+y 354B+y

word displacement
ea = ((B)+d) + p*(Rn)

The address is calculated by adding the unsigned displacement of the
address code to the contents of the base register. This sum is
interpreted as an address. The contents of the word with this address
are added to the contents of the specified register multiplied by the
post-index scaling factor. This sum is the address of the operand.
Subroutine array arguments are usually accessed with local indirect,
post-indexed addressing.

B register w——m—s

displacement

!

p*(Rn)

effective
address ———

Figure 33. Local indirect, post-indexed addressing

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

Example:
013B HY := B: 600B
3478 IND(B.60B) (RU4) 660B: 2000B
060B Rl : 150B
ea = ((B)+d)+p*(Rn) = (660B)+2*150B = 2000B+320B = 2320B
Octal
Hexadecimal
OOBH HY := B: 0180H
OETH IND(B.030H) (RY4) 01BOH: OL4OOH
030H Ry : 068H
ea = ((B)+d)+p*(Rn) = (01BOH)+2*068H = O4OOH+ODOH = OLDOH

Norsk Data ND-05.009.03 EN

97

98 ND-500 Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

8.8 Record addressing

Assembly Hex Octal
notation Name code code
R.<displ> record

R.<displ>:S record, short displacement O80H+xx 200B+xx
R.<disgspl>:B record, byte displacement OCQH 311B
R.<displ>:H record, halfword displacement OCAH 312B
R.<{displ>:W record, word displacement OCBH 313B

ea = (R)+d

ea = (R)+d*4 (R.<displ>:9)

The address of the operand is calculated by adding the displacement to
the contents of the record register (R).

R register —————

displacement

effective
address ——————

Figure 34. Record addressing

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

1000B

ea = (B)+d = 1000B+400B = 1400B

O1CH BY1 =:

OCAH R.C100H R:

200H

ea = (B)+d = 200H+100H = 300H

Norsk Data ND-05.009.03 EN

99

100 ND-500 Reference Manual

OPERAND SPECIFIERS AND ADDRESSING

8.9 Pre-indexed addressing

Assembly Hex Octal

notation Nanme code code

Rn.<displ> pre-indexed

Rn.<displ>:B pre-indexed, OF4H+y 364B+y
byte displacement

Rn.<displ>:H pre-indexed, OF8H+y 370B+y
halfword displacement

Rn.<displ>:W pre~indexed, OFCH+y 37UB+y

word displacement

ea = (Rn)+d

The contents of the index register specified in the address code are
added to the unsigned displacement of the address code. This sum is
taken as the address of the operand.

R3

displacement
effective

address ———————

Figure 35. Pre-indexed addressing

Norsk Data ND-0%5.009.03 EN

ND-500 Reference Manual 101
OPERAND SPECIFIERS AND ADDRESSING

165B D2 *

372B R3.400B R3: 10000B

ea = (Rn)+d = 10000B+400B = 10400B

Octal
Hexadecimal
075H D2 *
—5;;ﬁn R3.0100H R3: 01000H
001H
“000H

Norsk Data ND-05.009.03 EN

102 ND-500 Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

8.10 Absolute addressing

Assembly Hex Octal
notation Name code code
{label> absolute addressing OCLH 304B
ea = a

When the address code is equal to 304B, OCUH, the four bytes following
the address code are taken as the address of the operand.

_1-__—ﬂ
data part of
operand specifier

Figure 36. Absolute addressing

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 103
OPERAND SPECIFIERS AND ADDRESSING

165B D2 *

304B 20020445228

Octal
Hexadecimal
075H D2 *

OCL4H 010084952H

ea = 010084952H

Norsk Data ND-05.009.03 EN

104 ND-500 Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

8.11 Absolute, post-indexed addressing

Assembly Hex Octal
notation Name code code
{label>(Rn) absolute, post-indexed OEOH+y 3L0OB+y

ea = a+p*(Rn)

The four bytes following the address code are taken as the base
address. An absolute, post-indexed address is then the contents of the
index register multiplied by the post-index scaling factor and added

to the word integer following the address code giving the effective
address.

absolute ——m8M—
address

p*(Rn)

efféctive

address ——————

Figure 37. Absolute, post-indexed addressing

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 105
OPERAND SPECIFIERS AND ADDRESSING

341B 2000B(R2) R2: 200B

O
o
It
o
4
ke,
%*
s}
o]
i

2000B+4*200B = 3000B

O10H Wl :=

OE1H O400H(R2) R2: 080H

Norsk Data ND-05.009.03 EN

106

8.12 Constant operand addressing

ND-500 Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

Assembly Hex Octal
notation Name code code
{constant> general constant

{constant>:S short constant OCOH+xx 0O00OB+xx
{constant>:B byte constant OCDH 315B
{constant>:H halfword constant OCEH 316B
{constant>:W word constant OCFH 317B
{constant>:F floating-point constant OCFH 317B
{constant>:D double floating-point constant OCCH 314B
op = data part of operand specifier

The data to be operated on is part of the operand specifier. It

resides in the program memory
instruction. The value of the

one, two, four or eight bytes.

Constant operands are illegal

and cannot be modified by any
operand may have a length of six bits or

for all write instructions, e.g. store,

swap, or shift instructions. They are also illegal as destination
operand(s) for multi-operand instructions, and in certain special
instructions like TSET and RDUS. They are also illegal as subroutine
arguments, as they have no address in data memory.

Note that word and floating-point constants have the same address

code.

Assembly notation

150B:B

1200000:W

12B:S3

6400H: H

Octal:

Hex:

Octal:

Hex:

Octal:

Hex:

Octal:

Hex:

bytel

315B
OCDH

3178
OCFH

012B
OOAH

316B
OCEH

bytel byte2 byte3 bytel

1508B
068H

000B
OOO0H

144B
064H

022B 1178
012H OUFH
000B
OOCH

Table 7. Example of constants

200B
O8CH

The instruction code decides the interpretation of the operand
addressed by the operand specifier. This may produce conflicts between
the operand interpretation and the size of the data part of constant
operands. These are solved by sign extension or data conversion if

possible, done automatically by hardware. If no conversion is

meaningful an illegal operand specifier trap condition occurs.

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 107
OPERAND SPECIFIERS AND ADDRESSING

The following abbreviations are used in the table.

J0S - ILLEGAL OPERAND SPECIFIER TRAP CONDITICN

BZ - bit zero of constant is operand

SX - sign extended (unless instruction calls for unsigned)
CF - convert to float

CDF - convert to double float

NC - no conversion required

32L7Z - 32 least significant bits zero filled

<c> - general operand with constant type

Constant operand type

Instruction
operand {c>:8 {c>:B <c»>:H {c>:W {c>:F {e¢>:D
type

BI BZ 105 I0S I0S 10S IOS
BY SX NC 10s 105 I0S 108
H SX SX NC I0S I0S I0S
W SX SX SX NC NC I0S
F CF CF CF NC NC I10S
D CDF CDF CDF 32LZ 32LZ NC

Table 8. Treatment of constants as operands

Norsk Data ND-05.009.03 EN

108 ND-500 Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

8.13 Register addressing

Assembly Hex Octal
notation Name code code
Rn (n=1..4) Register ODOH+y 320B+y

One of the registers may be the operand of an instruction. If the data
type of an instruction is an integer or it does not contain a data
type specification, one of the integer registers is taken as the
operand. If the data type of the instruction is float or double float,
one of the float or double float registers is taken as the operand.

A register operand is not legal in the argument list of a CALL or

CALLG instruction, as a destination in the BMOVE instruction or as an
argument to certain special instructions (such as TSET and RDUS).

Norsk Data ND-05.009.03 EN

ND~500 Reference Manual 109
OPERAND SPECIFIERS AND ADDRESSING

8.14 Alternative addressing

Assembly Hex Octal
notation Name code code
ALT({<operand>) alternative domain addressing OC8H 310B

With this operand specifier prefix, it is possible to address operands
on the alternative domain of the process. Parameter access to the
segment on the alternative domain is required. See the memory
management section for further explanation of domain, alternative
domain and parameter access.

<operand> can be any operand specifier that does not contain a new ALT
operand specifier prefix. If the operand specifies indirect
addressing, the indirect address is taken from the current addressing
domain. If the operand specifies descriptor access, the descriptor is
taken from the current addressing domain. Only the last memory access

which actually fetches the data goes to the alternative addressing
domain.

Alternative addressing is illegal for register addressing and constant
operand addressing.

Norsk Data ND-05.009.03 EN

110 ND-500 Reference Manual
OPERAND SPECIFIERS AND ADDRESSING

8.15 Descriptor addressing

Assembly Hex Octal
notation Name code code
DESC (<operand>) (Rn) descriptor OFOH+y 360B+y
ea = A + p*(Rn), A = contents of second word of <operand>

{operand> is the address of a descriptor, and it can be any operand
specifier except ALT, constant or register. <operand> may be post-
indexed, selecting an element in an array of descriptors, in which
case the post-index scaling factor is 8 (the size of a descriptor).
The post-index scaling factor of the descriptor addressing itself is
determined by the data type specified in the instruction code.

A descriptor comprises two words in memory accessed via a general
operand. The first word contains the number of elements in a data
array, the second contains the start address of the array. The operand
element of the array is addressed post-indexed relative to the start
address in the descriptor. Elements are indexed from zero; the legal
index range is O to descriptor.length-1.

The hardware will report if the last element of the array is addressed
by setting the K flag. If an element beyond the array is addressed the
K flag is set and a descriptor range trap condition occurs.

The index register is incremented by a data access via descriptor. It
is not incremented when accessing only the address of the operand
(load address and call instructions).

if (Rn)+1 >> descriptor.length then
descriptor range trap condition
endif
if (Rn)+1 >> = descriptor.length then
1 =: status.K
endif
if not descriptor range trap then
perform addressing with Rn as post-index
if data access then
(Rn)+1 =: Rn
endif
endif

Note that an access outside the string as defined by the descriptor is
carried out if the descriptor range trap is not enabled.

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 111
OPERAND SPECIFIERS AND ADDRESSING

B~register

displacement

length —_—
start address A

start of array —————— «

p*(Rn)

effective address -

—

Figure 40. Addressing with a descriptor

Norsk Data ND-05.009.03 EN

112 ND-500 Reference Manual

OPERAND SPECIFIERS AND ADDRESSING

Example:
011B H2 | := B: 400B
3628 DESC(B.100B) (R3) 500B: 100B
301B 504B: 2000B
100B R3: 50B

ea= A + p*(Rn) = (4OOB+100B+4) + 2¥50B = (50UB) + 120B = 2120B

Octal

Hexadecimal
OODH H2 := B: 0100H
OF2H DESC (B.0O40H) (R3) 0140H: O4OH
OC1H O144H: O400H
O40H R3: 028H

ea= A + p*(Rn) = (O100H+OUOH+4)+2%028H = (O14L4H)+050H = OUS0H

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 113
OPERAND SPECIFIERS AND ADDRESSING

8.16 Direct operands

Direct operands are those found in the bytes immediately following the
instruction ccde or the preceding operand specifier. There is no
prefix or address code part in the operand specifier. Direct operands
are in the syntax definitions in this manual. They are written using
the form <<{direct operand>>.

The interpretation of a direct operand depends on the instruction and
applies to specific instructions only. The data part of the operand
specifier is taken either as a displacement or as an absolute address.
Absolute addresses may be to the program or the data area.

8.16.1 Displacement addressing

The ND-500 instructions LOOP, LOOPI, LOOPD, GO and IF <rel> GO have
displacement (program relative) addressing. Each instruction has two
instruction codes, one for the byte displacement part and one for the
halfword displacement part. GO is also available with the word
displacement part. The displacement is signed, and is the distance
from the first byte of the current instruction to the first byte of
the addressed instruction.

(P) +d -> (P)

8.16.2 Absolute program addressing

The instruction CALL subroutine has absolute addressing. When using

CALL the address follows the instruction code in the following four
bytes.

When executing CALLG the address is accessed via a general operand,

not a direct operand. Complete infeormation is given in the description
of the CALLG instruction.

8.16.3 Absolute data addressing

The INIT and ENTM instructions are followed by the absolute address of
the bottom of the new stack. The ENTF and ENTFN instructions are
followed by the address of the local data area.

Norsk Data ND-05.009.03 EN

114 ND-500 Reference Manual

Norsk Data ND-05.009.03 EN

ND~-500 Reference Manual 117
THE ND-500 INSTRUCTION SET

9 THE ND-500 INSTRUCTION SET

The ND-500 instruction set has a variable length instruction format,
the length determined by the type of instruction and the operands

used. The shortest instructions are one byte long, the longest may be
several thousand bytes long.

Each instruction consists of an instruction code and zero or more
operand specifiers. The general instruction format is shown in the
figure below:

Instruction Operand Operand Operand
Code Specifier Specifier Specifier
1 or 2 bytes Zero or more operand specifiers, each 1 to 9 bytes

Figure 41. Instruction Format

The following chapters describe each instruction code in detail.
Operand specifiers are described in the previous chapter.

The term instruction code is used to indicate both the octal or
hexadecimal value and the assembly notation. The octal or hexadecimal
value of an instruction code is a numeric representation of the bit
pattern inside the computer. The assembly notation is used by the
assembler programmer to symbolically represent the binary code.

An instruction code specifies the operation to be performed and the
data types of the operands. It may consist of one or two bytes. One
byte instruction codes are used for the operations most frequently
generated by compilers.

In many ND-500 instructions one of the general registers or one of the
floating-point registers is used as an argument or result. The two
lower bits of the instruction code then specifiy the register number,
meaning a floating-point or double-precision floating-point register
(Fn or Dn) when the data type is floating or double floating, and the
general register (Rn) when the data type is integer.

Norsk Data ND-05.009.03 EN

118 ND-500 Reference Manual
THE ND-500 INSTRUCTION SET

7 0

instruction code short instruction code
7 21 0O

instruction code reg short register instruction code

15 12 11 0

1111 instruction code long instruction code
15 12 11 21 0

1111 ingtruction code reg long register

instruction code
Figure 42. Instruction Code Formats

All the upper U4 bits of a long (two byte) instruction code are set,
which means that such codes are in the range 170000B to 177777B,
OFOOOH to OFFFFH.

The instruction set is described using the syntax explained below.
Optional syntax elements enclosed are in brackets, []. Brackets
followed by an "n" mean that more than one occurrence of an optional
syntax element may be specified. The sign ::= means "is defined as".

instruction format ::= [[datatype specifier][register number]]
instruction code name
[operand specifier][operand specifier] n

t = data type specifier ::= BI, BY, H, W, F, D
t is a subset of the data type specifiers
n = register number 1:=1,2,3,4
instruction code nane ::= text or character string
operand gpecifier 1:= {general operand> <<direct operand>>

{general operand>

the operand is accessed via

a general addressing mode

the operand is found in the bytes
immediately following the instruction
code or the preceding operand specifier

{{direct operand>>

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 119
THE ND-500 INSTRUCTION SET

When describing the operand, the description string is divided in
three or four parts, as follows:

operand ::= operand name/access code/datatype /pointer register

Operand name is a character string used as a descriptive term. For
example, the load instruction format uses the term <source as the
operand name; the store instruction format uses <dest)> as the
destination operand name.

The access code may have the following abbreviations:

r - read access

W - write access

rw - read and write access

rwl - read, write and locked swap access
aa - address access

s - special, explained explicitly in

the instruction descriptions
Locked swap access applies to the TSET instruction only.
Address access (aa) together with descriptor addressing will not cause
the index register to be incremented. If the access code is read (r)

or write (w), the index register will be incremented.

The pointer register applies to string instruction descriptions only.

ACTUAL OPERAND VALUE

The actual operand value used may be the value found in the
instruction or the value found at the address specified by the
instruction, determined by the addressing mode. In the descriptions of
the operation performed in the following chapters, dereferencing of
source operands is implicit if the operand is an address. For example,

tn ADD3 <a/r/t>, <br/t>, <c/w/t>
Operation: <a> + =-> <>

In the instruction
W3 ADD3 SOU, 5, DES

SOU is an address (a label); the value found at this address is the
<{a> operand value. The operand is the value 5 rather than the

value found at address 5; the operand specifier is CONSTANT type. DES
is the address of the <c> operand.

Norsk Data ND-05.009.03 EN

120 ND-500 Reference Manual
THE ND-500 INSTRUCTION SET

If the actual source operand value is the address, rather than the
value found at that address, the description of the operation
indicates this by the notation addr(<operand>). Take, for example, the
LADDR instruction:

tn LADDR <operand/aa/t>

Operation: addr{(<operand>) ~-> Rn

DATA STATUS BITS

Data status bits not mentioned in the instruction description are
always cleared after the instruction has been executed. If the status
bit is conditionally set a TRUE condition causes the bit to be set
(1), a FALSE condition causes it to be reset (0).

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 121
THE ND-500 INSTRUCTION SET

Before going on to the instruction set, an example will be explained:

Example:

Load bit register number 2 with the bit number found in R3
from the bit array BITA. BITA is displaced 078H, or 170B,
bytes from the base address of the local data area.

The size of the displacement part is forced to half word.

Assembly code notation: BI2 := B.BITA(R3) : H

Description:

The instruction code for loading bit register 2 is OFCOS5H, or 176005B,
written as 374B,005B when treated as two octal bytes.

B.BITA(R3) is the local post-indexed addressing mode, address code
ODAH, or 332B.

The :H length specifier tells the assembler to store the displacement
in halfword format. Normally the assembler should be allowed to select
the storage format, in order to achieve optimal program encoding. In
this example the assembler would have stored the displacement in byte
format if :H had been omitted.

The address of the byte containing the bit in question is calculated
as follows (See figure on the next page):

ea = (B) +d + p * (Rn)

i

Octal: 10000B + 170B + INT(403B/10B) 10230B

Hex: 01000H + O78H + INT(0103H/08H) 01098H

i

Post indexing always counts the data elements from the left
consequently the bit number within the addressed byte is

1

bn = 7-REM(403B/10B) = 7-REM(O103H/08H) = 7-3 = 4

Norsk Data ND-05.009.03 EN

122 ND-500 Reference Manual
THE ND-500 INSTRUCTION SET

Program memory Data memory
. B — 000B 10000B
P — 374B 150300B
0058 . displacement .
332B 000B 10170B
000B p * Rn .
170B .
. effective —— 020B 10230B
1503058 address .
Registers
P : 150300B 1503058
B : 10000B 10000B
R2: 7701408 1
R3: 40o3B 403B
Before execution After execution
Octal
Hexadecimal
Program memory Data memory
. B — 010]0); 01000H
P — OFCH ODOCOH
005H displacement .
ODAH 000H 01078H
0O00H p ¥ Rn .
078H .
. effective — 010H | 01098H
0ODOCSH address
Registers
P : ODOCOH ODOCHH
B : 01000H 01000H
R2: 03F060H 1
R3: 103H 103H
Before execution After execution

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 125
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10 DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.1 Load

Format: tn := <source/r/t>

Assembly Hex Octal
notation Name code code

BIn := load bit OFCO4H+(n-1) 176004B+(n-1)
BYn := load byte OOUH+ (n-1) 004B+(n-1)
Hn := load halfword 008H+ (n-1) 010B+(n-1)
Wn = load word OOCH+(n-1) 014B+ (n-1)
Fn = load float 010H+ (n~1) 020B+ (n-1)
Dn := load double float O14H+ (n-1) 024B+(n-1)
Operation: {source> -> Rn

Description:

The value of the operand (source) is loaded into the register
specified in the instruction code. When the data type is BI, BY, H or
W, one of the I registers is loaded. The value is right justified in
the register, the least significant bit of the operand goes in the
least significant bit of the register. With BI, BY, or H as data type,
the rest of the register is zero filled. One of the floating point
registers is loaded when the data type is F or D.

Trap conditions: Addressing traps
Data status bits:
{source> = 0 -> Z

{source?.signbit -> S

Example:
Load local halfword variable MEMBERS into R3

H3 := B.MEMBERS

Norsk Data ND~05.009.03 EN

126 ND-500 Reference Manual
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.2 Load local base register

Format: B := <source/r/W>

Assembly Hex Octal
notation Name code code

B := load base register OFCO8H 176010B
Operation: {source> -> B

Description:

The contents of <{source> are loaded into the local base register.
Trap conditions: Addressing traps
Data status bits:

{source> = 0 -> Z

{source>.signbit -> S

Example:
Load the word variable GLOBBASE into B

B := GLOBBASE

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 127
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.3 Load record register

Format: R := <source/r/wW>

Assembly Hex Octal
notation Name code code
R := load record register 018H 030B
Operation: {source> -> R

Description:

The contents of <source> is loaded into the record base register.
Trap conditions: Addressing traps

Data status bits:

{source> = 0 -> 7
{source>.signbit -> S

Example:

Load R with the base of the R2nd element of the word array RECPTRS

R := RECPTRS(R2)

Norsk Data ND-05.009.03 EN

128 ND-500 Reference Manual
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.4 Store

Format: tn =: <dest/w/t>

Assembly Hex Octal
notation Name code code

BIn = store bit OFCOCH+{n-1) 176014B+{n-1)
BYn =: store byte 01CH+(n-1) 034B+(n-1)

Hn =: store halfword OFC10H+(n-1) 176020B+(n-1)
Wn =: store word 020H+(n-1) O40B+ (n-1)

Fn =: store float 024H+(n-1) o4Y4B+ (n-1)

Dn =: store double float 028H+ (n-1) 050B+ (n-1)
Operation:

Rn -> <dest>
datatype dependent part of register -> <{dest>

Description:

The datatype-dependent part of the contents of the specified register
is stored in the memory location or register specified in the operand
specifier. The datatype-dependent part of the register is the least

significant bits of the register needed to represent the data type in

question. Constant operands are illegal. The source register is
unaffected.

If the destination is a register, the instruction has the same effect
as a load destination register. If the data type is BI, BY, or H, the
upper part of the register is zero filled.

Trap conditions: Addressing traps

Data status bits:

datatype-dependent part of register = 0 -> 7
datatype-dependent part of register.signbit -> S

Example:

Store byte in R4 into the 6th byte of the record pointed to by R,
forcing word displacement part

BYY =: R.6:W

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 129
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.5 Store local base register

Format: B =: <operand/w/W>

Assembly . Hex Octal
notation Name code code

B =: store local base register OFCOAH 176012B

Operation: B -> <operand>

Description:
The contents of the local base register are stored in the <operand>.
Trap conditions: Addressing traps
Data status bits:
B register = O -> 7

B register.signbit -> S

Example:
Store B in local variable CURRB indexed by R1

B =: B.CURRB(I1)

Norsk Data ND-05.009.03 EN

130

ND-500 Reference Manual

DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.6 Store record register

Format: R = {operand/w/W>

Assembly Hex Octal
notation Name code code

R =: store record register OFCO9H 176011B
Operation: R ~> <operand>

Description:

The contents of the record register .are stored in the <operand).

Trap conditions: Addressing traps

Data status bits:
R register = 0 -> Z
R register.signbit -> S
Example:
Store R in register R2

R =: R2

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 131
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.7 Move

Format: t MOVE <source/r/t>,<dest/w/t>

Assembly Hex Octal
notation Name code code

BI MOVE move bit OFCOBH 176013B
BY MOVE move byte 019H 031B

H MOVE move halfword OFC14E 176024B
W MOVE move word 01AH 032B

F MOVE move float 01BH 033B

D MOVE move double float 02CH 054B
Operation: {source> -> <{dest>

Description:

The number of bits needed to represent the data type are moved from
source to destination. The source is unaffected, and a constant
destination operand is illegal.

Trap conditions: Addressing traps
Data status bits:
{source> = 0 -> Z

{source>.signbit -> S

Example:
Move the double precision value in GLOBAL to local variable LOCAL

D MOVE GLOBAL, B.LOCAL

Norsk Data ND-05.009.03 EN

132 ND-500 Reference Manual
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.8 Swap

Format: t SWAP <opl/rw/t>,<op2/rw/t>

Assembly i Hex Octal
notation Name code code

BI SWAP bit swap OFCBDH 176275B
BY SWAP byte swap OFCBEH 176276B
H SWAP halfword swap OFCBFH 176277B
W SWAP word swap 052H 1228

F SWAP float swap OFCDCH 176334B
D SWAP double float swap OFCDDH 176335B
Operation: <opl> :=: <op2>

Description:

The contents of the first operand are stored in the second, and the
original contents of the second coperand are stored in the first. The
operands are assumed to have the same data type (see section 7.3 on

page 75).

Trap conditions: Addressing traps

Data status bits:

original contents of <opl> = 0 -> Z
original contents of <opl>.signbit -> S

Example:
Exchange contents of word variables EAST and WEST

W SWAP EAST, WEST

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 133
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.9 Compare

Format: tn COMP <operand/r/t>

Assembly Hex Octal

notation Name code code

BIn COMP register bit compare OFC18H+(n-1) 176030B+(n-1)

BYn COMP register byte compare 030H+ {n~-1) 060B+(n-1)

Hn COMP register halfword compare OFC1CH+(n-1) 176034B+(n-1)

Wn COMP register word compare 034H+ (n-1) 06UB+ (n-1)

Fn COMP register float compare 038H+ (n-1) 070B+(n-1)

Dn COMP register double float 03CH+(n~1) 074B+(n-1)
compare

Operation: Rn - <operand>

Description:

The instruction subtracts the operand from the contents of the
specified register. The result of the subtraction is not saved, but
rather compared to zero, and this result is saved in the data status
bits. The instruction is a true comparison, hence the sign bit is
changed in case of integer overflow.

Trap conditions: Addressing traps, Floating Overflow, Floating
Underflow

Data status bits:

result = 0 -> Z

result.signbit XOR Overflow -> S

carry from most significant bit -> C

floating underflow -> FU

floating overflow -> FO
Example:

Compare bit zero in Rl with one

BI1 COMP 1

Norsk Data ND-05.009.03 EN

134

10.

ND~500 Reference Manual
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10 Compare two operands

Format: t COMP2 <opl/r/t>,<op2/r/td

Assembly Hex Octal
notation Name code code

BI COMP2 bit compare QFC15H 176025B
BY COMP2 byte compare 02DH 055B

H CcOoMP2 halfword compare OFC16H 1760268
W COMP2 word compare 02EH 056B

F COMPZ2 float compare 02FH 057B

D COMP2 double float compare O40H 100B
Operation: <opl> - <op2>

Description:

The instruction subtracts the second operand from the first. The

result sets the data status bits accordingly, but the result is
otherwise discarded.

Trap conditions: Addressing traps, Floating Underflow, Floating

Overflow

Data status bits:

result = O -> Z

result.signbit XOR Overflow -> S

carry from most significant bit -> C

floating underflow -> FU

floating overflow -> FO
Example:

Compare record variable floating point DELTA with 0.005

F COMP2 R.DELTA, 0.005

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual

135
DATA TEANSFER AND LOGICAL INSTRUCTIONS
10.11 Test against zero
Format: t TEST <operand/r/t>
Assembly Hex Octal
notation Name code code
BI TEST bit test against zero OU41H 101B
BY TEST byte test against zero OU2H 102B
H TEST halfword test against zero OU3H 103B
W TEST word test against zero o44H 104B
F TEST float test against zero OUs5H 105B
D TEST double test against zero OU6H 106B

Operation:

Description:

<operand> - O

This instruction is similar to comparing two operands, except that the
second operand is implicitly zero.

Trap conditions: Addressing traps

Data status bits:

result = O

-> Z

result.signbit XOR Overflow -> S

1

Example:

Test if local byte variable COUNTER has reached zero

-> C (integer)

BY TEST B.COUNTER

Norsk Data ND-05.009.03 EN

136 ND-500 Reference Manual
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.12 Negate

Format: tn NEG

Assembly Hex Octal
notation Name code code

BYn NEG byte register negate OFEO8H+(n-1) 177010B+(n-1)
Hn NEG halfword register negate OFEQCH+{n-1) 177014B+(n-1)
Wn NEG word register negate 030H+ (n-1) 220B+(n-1)

Fn NEG float register negate O94H+(n-1) 224B+(n-1)

Dn NEG double float register negate O094H+(n-1) 224B+(n~1)
Operation: -BRn -> Rn

Description:

The contents of the specified register are negated. An integer value
is negated by taking the two's complement of its value. A floating
point value is negated by inverting its sign bit. Byte and halfword
negate will clear the upper part of the register.

Integer overflow occurs if and only if the greatest negative integer
is negated. Carry is zero except when integer zero is negated.

Trap conditions: Integer Overflow

Data status bits:

negated register = 0 -> Z

negated register.signbit -> 8

carry -> C

overflow -> 0
Example:

Negate double precision register D3

D3 NEG

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 137
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.13 Invert

Format: tn INV

Assembly . Hex Octal
notation Name code code

BIn INV bit invert register OFE10H+(n-1) 177020B+(n-1)
BYn INV byte invert register OFE14H+(n-1) 177024B+(n-1)
Hn INV halfword invert register OFE18H+{n-1) 177030B+(n-1)
Wn INV word invert register 098H+ (n-1) 230B+(n-1)
Operation: One's complement of Rn -> Rn

Description:

The one's complement of the contents of the specified register is
calculated and stored in the same register. When the datatype is BI,

BY, or H only the lower part of the register is complemented and the
rest of the register is cleared.

Trap conditions: None
Data status bits:
result = 0O -> 7

result.signbit -> S

Example:

Invert the lowermost bit of R4 and clear the upper 31 bits

BI4 INV

Norsk Data ‘ND-05.009.03 EN

138 ND-500 Reference Manual
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.14 Invert with carry add

Format: Wn INVC

Assembly Hex Octal
notation Name code code

Wn INVC word invert register w/carry OFF10H+(n-1) 177420B+(n-1)
Operation: One's complement of Rn + C -> Rn

Description:

The one's complement of the contents of the specified word register is
calculated. The carry is added and the result is loaded into the

specified register. This instruction is used for multiple precision
arithmetic.

Trap conditions: Integer Overflow

Data status bits:

result = 0 -> Z

result.signbit ~> S

carry -> C

overflow -> 0
Example:

Invert W2 and add carry

W2 INVC

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 139
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.15 Absolute value

Format: tn ABS

Assembly Hex Octal
notaticn Name code code

BYn ABS byte absolute value OFFOOH+ (n-1) 177400B+{n-1)
Hn ABS halfword absolute value OFFO4H+(n-1) 177404B+(n-1)
Wn ABS word absolute value OFFO8H+ (n-1) 177410B+(n-1)
Fn ABS float absolute value OFFOCH+ (n-1) 177414B+(n-1)
Dn ABS double float absolute value OFFOCH+({(n-1) 177414B+(n-1)
Operation: Absolute value of Rn -> Rn

Description:

The absoclute value of the contents of the specified register is
calculated and stored in the same register. When the datatype is
either BY or H, the result is stored in the least significant bits and
the rest of the register is cleared. Overflow occurs if and only if
the greatest negative integer is negated.

Trap conditions:

Integer Overflow

Data status bits:

result = 0 =-> Z

0 ->S

overflow -> 0 (integer)
Example:

Take the absolute value of double precision register D1

D1 ABS

Norsk Data ND-05.009.03 EN

140 ND-500 Reference Manual
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.16 Clear register

Format: tn CLR

Assenbly . Hex Octal
notation Name code code

BIn CLR bit register clear 084H+(n-1) 204B+(n-1)
BYn CLR byte register clear 084H+ (n-1) 204B+ (n-1)
Hn CLR halfword register clear 084H+(n-1) 204B+ (n-1)
Wn CLR word register clear 084H+(n-1) 204B+ (n-1)
Fn CLR float register clear 088H+ (n-1) 210B+(n-1)
Dn CLR double float register clear O8CH+(n-1) 214B+(n-1)
Operation: 0 -> Rn

Description:

The register is set to all zeroes. For all integer data types, the
entire register is cleared.

Trap conditions: None

Data status bits: 1 -> Z

Example:

Clear double register D3

D3 CLR

Norsk Data ND-05.009.03 EN

ND-500 Reference Manual 141
DATA TRANSFER AND LOGICAL INSTRUCTIONS

10.17 Store zero

Format: t STZ <operand/w/t>

Assembly Hex Octal
notation Name code code
BI STZ bit store zero OFC85H 176205B
BY STZ byte store zero O48H 110B

H STZ halfword store zero O49H 111B

W STZ word store zero O4AH 112B

F STZ float store zero O4BH 113B

D STZ double float store zero O4CH 114B
Operation: 0 -> <operand>

Description:

The contents of the destination operand are replaced by zero.

Trap conditions: Addressi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>