
NORD-SOO
Reference Manual

NORSK DATA A.S

NORD-500
Reference Manual

NOTICE

The information in this document is subject to change without notice. Norsk Data
A.S assumes no responsibility for any errors that may appear in this document.
Norsk Data A.S assumes no responsibility for the use or reliability of its software

on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. It may not
be photocopied, reproduced or translated without the prior consent of Norsk Data
A.S.

Copyright © 1981 by Norsk Data A.S.

ND-05.009.01

PRINTING RECORD
Notes

ORIGINAL PRINTING — e

NORD—500 Reference Manual
Publimtion No. ND—05.009.01

.0. .0. 000.220

333:. :3: 3""333w. NORSK DATA A.S
Eiszsiisss §::3___33§ PO. Box 4, Lindeberg gérd
:3; 0:3: 3 iii Oslo10, Norway

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one or
more single pages to be merged into the manual by the user, each revised page
being listed on the new printing record sent out with the revision. The old
printing record should be replaced by the new one.

New versions and revisions are announced in the ND Bulletin and can be ordered
as described below.

The reader's comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms, together with all types of inquiry and requests for documentation
should be sent to the local ND office or (in Norway) to:

Documentation Department
Norsk Data A.S
PO. Box 4, Lindeberg gard
Oslo 10

ND—05.009.01

PREFACE

THE PRODUCT

This manual describes the general design and the instruction set of
the NORD—SOO central processing unit.

THE READER

The NORD-SOO CPU reference manual is intended for users of the NORD-
500 system who would like to know about the general design of the
NORD—SOO, programmers using the NORD—SOO assembler, and system
programmers needing to know the exact format of generated code.

PREREQUISITE KNOWLEDGE

No previous knowledge of the NORD—SOO is required. However, general
knowledge of computer architecture is desirable, and assembly
programming experience is required for those using the manual to
program in the NORD—SOO assembler language. Programming the memory
management system, the NORD-100/NORD-500 communication and the inner
kernel of the operating system requires a more detailed description of
both NORD-SOO and NORD-1OO hardware. This can be found in

NORD—SOO Implementation manuals - not yet available
NORD—1OO Reference manual — ND.O6.014

Use of the NORD-SOO assembler and how to link and load a NORD—SOO
program is described in the manuals

NORD—SOO Assembler Reference manual — ND.60.113
NORD-SOO Monitor Loader - ND.60.136

ND.05.009.01

THE MANUAL

w

This manual is organized as a reference manual. It is intended for

looking up the exact syntax of machine instructions and details of
hardware which are relevant to the software. Most chapters are
independent of the others and can be understood without reading

previous chapters.

The chapters are organized as follows:

PART I

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

PART II

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

The appendices

General Design

1: A general introduction to the NORD-SOO system
2: The register block
3: Stack and heap management
A: Memory management system
5: Cache memory system
6: The trap system
7: Data types handled by the CPU
8: Operand specifiers and addressing

Instructions

9: Instruction formats
10: Data transfer, arithmetical and logical instructions
11: Control instructions
12: String instructions
13: Miscellaneous instructions
1n: Special instructions
15: NORD—SOO/NORD—1OO communication

contain tables of address codes, instructions, figures

and notational conventions.

ND.05.009.01

vfi

Contents

1. INTRODUCTION

1.1. System configuration

1.2. Communication between the NORD—1OO and NORD—SOO CPUs

1.3. Domains, segments and processes

2. THE REGISTER BLOCK

3. STATIC DATA, STACK AND HEAP

3.1. Static allocation

3.2. Stack allocation

3.3. Heap allocation

4. MEMORY MANAGEMENT SYSTEM

4.1. Introduction

4.2. Memory management architecture
4.2.1. Address domain
4.2.2. Process
4.2.3. Process environment

3.1. Process registers
3.2. Capability tables
3.3. Domain information

4.2.4. Logical addressing
4.2.5. Domain communication

5.1. Alternative domain
5.2. Domain call
5.3. Trap handling

4.3. Physical implementation

4.4. Buffering

5. CACHE MEMORY SYSTEM

ND.05.009.01

1O

12

12

15
15
16
17
17
18
19
21
22
22
22
24

25

28

3O

wn

6. THE TRAP SYSTEM

6.1.

6.2.

7. DATA

7-1.

7.2.

7.30

7.N.

Trap handler routines

The status register
6.2.1. Data status bits
6.2.2. Tracing status bits
6.2.3. Instruction and operand reference status bits

3.1. Ignorable trap conditions
3.2. Non—ignorable trap conditions
3.3. Fatal trap condition

6.2.“. Signalling, synchronization and miscellanous
status bits

6 2.5. NORD—SOO system error status bits
6.2.6. Addressing traps
6.2.7. Status bits survey

TYPES

Introduction

Data types
Bit
Byte

. Halfword
Word
Single precision floating point

. Double precision floating point
Floating point rounding

. DescriptorQ
Q

Q
N

Q
N

Q
N

O
O

N
N

N
N

N
N

N
N

O
I

C
I

m
Q

O
‘U

‘l
-L

’L
U

N
A

Data formats in main memory

Data in registers

8. OPERAND SPECIFIERS AND ADDRESSING

8.1.

8.2.

8.3.

Introduction

General and direct operands
8.2.1. Introduction
8.2.2. General operands
8.2.3. Post Index

Survey of addressing modes
8.3.1. Local addressing
8.3.2. Local, post indexed addressing
8.3.3. Local indirect addressing
8.3.4. Local indirect, post indexed addressing

ND.05.009.01

56

56

57
57
59
61

62
65
67
69
71

10.

Record addressing
Pre indexed addressing

. Absolute addressing
Absolute, post indexed addressing
Constant operand addressing

. Register addressing

. Alternative addressing

. Descriptor addressing—
l—

|-
A

\O
C

D
\]

O
‘U

'|
o

n

o
n

o
o

w
w

w
w

w
w

w
w

a
a

u
n

a
o

N
—

‘O
'

8.“. H- (7
'

4
3

:4
2

-5
3

E
W

N
—

‘O
0

operands
Introduction
Displacement addressing
Absolute program addressing

. Absolute data addressing0
3

0
3

0
3

0
3

0
O

o
o

o
m

o
o

o
o

o
c
o

o
o

o

. THE NORD-SOO INSTRUCTION SET

9.1. Introduction

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.1. Load

10.2. Load local base register

10.3. Load record register

10.”. Store

10.5. Store local base register

10.6. Store record register

10.7. Move

10.8. Swap

10.9. Compare

10.10. Compare two operands

10.11. Test against zero

10.12. Negate

10.13. Invert

10.1“. Invert with carry add

10.15. Absolute value

ND.05.009.01

73

77
79
81
83
8A
85

88
88
88
88
88

89

89

9M

94

95

96

97

98

99

100

101

102

103

10”

105

106

107

108

10.16.

10.17.

10.18.

10.19.

10.20.

10.21.

10.22.

10.23.

10.24.

10.25.

10.26.

10.27.

10.28.

10.29.

10.30.

10.31.

10.32.

10.33.

10.34.

10.35.

10.36.

10.37.

10.38.

10.39.

10.40.

10.41.

10.42.

10.43.

Add

Subtract

Multiply

Divide

Add two operands

Subtract two operands

Multiply two operands

Divide two operands

Add three operands

Subtract three operands

Multiply three operands

Divide three operands

Multiply with overflow to register

Divide with remainder to register (modulo)

Unsigned multiply with overflow to register

Unsigned divide

Add with carry

Subtract with carry

Clear register

Store zero

Set to one

Increment

Decrement

And

Or

Exclusive or

Logical shift

Arithmetical shift

ND.05.009.01

109

110

111

112

113
1111
115

116

117

118

119

120

121
122

123

1211
125

126
127

128

129

130

131
132

133

134

135

136

11.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

MM

”5

“6.

H7.

M8.

N9.

50.

51.

52.

53-

5M.

55.

56.

57.

58.

59.

60.

61.

xi

Rotational shift

Get bit

Put bit

Clear bit

Set bit

Get bit field

Put bit field

A to the I'th power

I to the J'th power

Square root

Polynomial

Floating point remainder

Integer part

Integer part with rounding

Multiply and add

Sum of products

Load index .

Calculate index

CONTROL INSTRUCTIONS

11.1. Unconditional relative jump

11.

11.

11.

11.

11.

11.

11.

2.

G
J
K

I
O

‘U
T

B
U

J

Unconditional absolute jump

. Conditional jump

. Loop with increment

. Loop with decrement

. Loop general

Call subroutine general

. Call subroutine absolute

ND.05.009.01

137
138
139
1H0

141

1142
1143
um
us
1116
1117
1118
1119
150
151

152
153
1511

156

156

157

158

160

162

16”

166

168

11.9.

11.10.

11.11.

xfi

Initialize stack

Subroutine entry points

Subroutine return

12. STRING INSTRUCTIONS

12.1.

12.2.

12.3.

12.“.

12.5.

12.6.

12.7.

12.8.

12.9.

12.10.

12.11.

12.12.

12.13.

12.1“.

12.15.

12.16.

12.17.

12.18.

12.19.

12.20.

Introduction

String move

String move while

String move until

String move translated

String move translated until

String move n elements

String fill

String fill n elements

String compare

String compare translated

String compare with pad

String compare translated with pad

Skip elements

String locate elements

String scan

String span

String match

Set parity in string

Check parity in string

13. MISCELLANEOUS INSTRUCTIONS

ND.05.009.01

170

171

179

182

182

18H

185

186

187

188

189

190

191

192

193

1911

195

196

197

198

199

200

201

202

203

xfii

13.1. Block move and Fill

13.2. Data type conversion

13.3. Data type conversion with rounding

13.4. Load address

13.5. Load address into record register

13.6. Load address into base register

13.7. Load address of multilevel link

13.8. No operation

13.9. Set flag

13.10. Clear flag

13.11. Get buddy element

13.12. Free buddy element

14. SPECIAL INSTRUCTIONS

14.1. Disable process switch

14.2. Enable process switch

14.3. Set bit in trap enable register

14.4. Clear bit in trap enable register

14.5. Break point

14.6. Test and set

14.7. Load special register

14.8. Store special registers

14.9. Integer float register communication

15. COMMUNICATION BETWEEN NORD—SOO AND NORD~1OO

15.1. Hardware interconnection

APPENDIX A Address codes

ND.05.009.01

203

204

206
207
208

209
210

211

212

213

2111
215

216

216

217

218

219

220

221

222

223

224

226

226

231

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

APPENDIX H

APPENDIX I

I N D E X

xw

Address code table

Symbols and abbreviations

Figures

Instruction table

Alphabetical instruction table

Instruction code table

Instruction code cross reference table

Setting of status bits

ND—05.009.01

233

235

237

238

251

255

258

260

26”

XV

EXAMPLES USED IN THIS MANUAL

Due to the large number of instruction formats and address modes
available, it is not possible to illustrate more than a small fraction
of the legal combinations. An attempt has been made to show the use of
each format and mode at least once.

Numeric quantities are presented in decimal, octal and/or hexadecimal
format. Octal numbers are followed by a ’B’, hexadecimal numbers by
an ’H’. Hexadecimal numbers must always start with a decimal number to
avoid confusion with identifiers (that is, FFH must be written as
OFFH). In this manual hexadecimal numbers are always preceeded by a
zero.
Absence of a following letter indicates decimal number.

When reading examples containing word and halfword quantities
displayed as octal bytes, the values in the upper bytes have to be
shifted. Example:

Binary pattern: 00010000000010000100100101010010

Displayed as: Four octal bytes: 0203 0108 111B 1228

Two octal halfwords: O1001OB OHHSZZB

Octal word: OZOOZOHHSZZB

Hexadecimal numbers require no shifting; the hexadecimal digits can be
concatenated as they are, two digits per byte.

In the figures, address values increase downwards.

ND.05.009.01

INTRODUCTION

1. INTRODUCTION

1.1. System configuration

The NORD-SOO central processing unit is a part of the NORD-SOO

computer system. This system is a combination of a NORD—1OO CPU, a

NORD-SOO CPU and a shared memory, see figure 1.1.

NORD-1OO CPU

- Supervises the NORD-SOO CPU

- Runs the I/O system, file system, operating system and job

scheduling

- Runs local NORD—1OO jobs

NORD—SOO CPU

— 32-bit logical address space

- User jobs up to N gigabytes in size

- Addressing system implemented twice by the memory management system

to allow user programs of H gigabytes of instructions and M
gigabytes of data

- CPU shared by many user programs through efficient use of the

memory management system

- Operations on data units ranging from 1 to 64 bits

— Byte oriented instructions designed for execution efficiency of
high level language programs

— Cache memory employing a forward fetch mechanism for main memory

access

- Main memory access up to 16 bytes wide, eliminating the memory

bandwidth bottleneck

— Two independent but identical cache systems, one for instructions

and one for data

- The cache may be partitioned, each partition used either as cache

memory or as high speed local memory

— The majority of machine level instructions requiring only one basic

cycle

ND.05.009.01

INTRODUCTION

— Asynchronous floating point arithmetic for increased instruction
execution speed

- Instruction and data pipelining techniques employed to optimize
execution speeds

— Specialized high speed hardware for 32/64 bit floating point
multiply and divide

MEMORY

- Multiport main memory with direct access for the NORD—SOO CPU,
NORD-100 CPU, and DMA transfer devices

- Physical main memory up to 32 Mbytes

- Virtual memory management system

- Memory fully or partially shared between NORD-1OO and NORD-SOO

.0000...-O.I0.00.0.0.0...IIIOOOOOIOCOOIOIIOIOOOOIO.

: 500 CPU

ICOI'OOIQOOIODOICOII0.0.0.000...OIOICCOOOIOOIIIIIOO

:I.00...OI.IOIOIO;OOOIOOC;IOOOIOI; ;.éIICéOOOAOO;

: Shared memory : NORD : NORD : : O T D :
: : 100 z 500 : : N A D :
: : : : : T T R :
: :private:private: : R U E :
: :memory :memory : : O S S :
: : z : : L S :

: z : : : mailbox :

: 100 CPU :

Fig. 1.1 The NORD-SOO computer system

ND.05.009.01

INTRODUCTION

1.2. Communication between the NORD-1OO and NORD-SOO CPUs

All or part of the memory can be shared between the NORD—SOO CPU,

NORD-1OO CPU and associated I/O devices. This allows for easy access

and control by all components of the system.

The communication between the NORD-1OO and NORD—SOO is set up as a

mailbox and DMA transfer system. The mailbox contains 3 registers:

Control register: For NORD—lOO to give NORD-EOO a command

Status register : For NORD—SOO to give NORD—100 status

Address register: A pointer to where in the NORD—1OO memory

chains of instruction or data will be found, or where
the NORD—SOO can store extended status information

The status information returned to NORD—1OO reports that a job is

finished, the reason for NORD-SOO termination and type of possible

NORD—SOO malfunctions.

The NORD-SOO microprogram initiates and controls the DMA access

channel to NORD-100 memory. The communication channel is also used

extensively for diagnostic and test program information. The NORD—100

is used as a diagnostic vehicle for the NORD-SOO.

ND.05.009.01

INTRODUCTION

1.3. Domains, segments and processes

In the NORD—SOO memory is logically structured into DOMAINS. A domain

is one 32 bit address area (H gigabytes) for executable code (the

program domain), another for data (the data domain).

Each domain is divided into SEGMENTS, up to 31 per domain. A segment

can be up to 128 Mbytes, equivalent to 27 address bits. The smallest

unit for access protection (write and parameter access protection) is

a segment.

Data may be accessed from the entire domain, but if the segment number

(the upper five address bits) is zero, data will be taken from the

data segment with the same segment number as the current program

segment, thus making data references independent of the actual segment

number.

Two (or more) domains may have segments in common, in order to share

data. The segment number(s) does not have to be the same in the two

domains.

A sequence of operations requiring no parallel execution is called a

PROCESS. A process is carried out sequentially in the CPU, but several

processes started at different times may run concurrently.

A process may refer to up to 256 domains of data and instructions.

These are connected in a tree stucture called a domain tree, specified

by the process description kept by the memory management system. The

links between the domains are determined at the creation of each

domain. The domain closest above (that is, closer to the root) a

domain D is the mother of D, D is the child. D may itself be the

mother of other child domains.

Control can be switched from one domain to another by calling a

routine in the other domain, or by causing an error situation (trap

condition) not taken care of by a routine in the current domain. A

routine may access data in the domain from which it was called,

through an address prefix (ALT).

Within a segment routines are called directly, by address. Routines on

other segments are called through their routine number on the segment,

not by address.

Communication between processes is possible through monitor calls or

through a shared data segment.

ND.05-009.01

THE REGISTER BLOCK

2. THE REGISTER BLOCK

The NORD—SOO CPU has four registers for program and data addressing.
These are the program counter P, the L (link) register containing the
subroutine return address, the local variable base register B, and the
record base register R.

The four 32-bit general registers, I1, 12, I3, and 14, may be used as
integer accumulators or as index registers. They are used for both
word and partial word operations (halfword, byte, bit and bit field).

The A1, A2, A3, and A4 registers are 32-bit floating point
accumulators used for real number arithmetic. Each floating point
accumulator may be extended with a 32—bit Extension register (E1, E2,
E3 and EM), making four 64-bit floating point accumulators for double
precision arithmetic.

The NORD—SOO also has several special purpose registers. These are the
6M-bit registers:

STatus register — ST
Own Trap Enable register — OTE
Child Trap Enable register - CTE
Mother Trap Enable register — MTE
Trap Enable Modification Mask — TEMM

and the 32-bit registers:

Top Of Stack register - TOS
Low Limit trap register - LL
High Limit trap register — HL
Trap Handler Address register — THA

The ST, OTE, CTE, MTE and'flfiwiregisters are treated as two 32—bit
registers when referenced in instructions. The least significant parts
(bits 0-31) are called ST1, OTE1, CTE1, MTE1 and TEMM1. The most
significant parts (bits 32—63) are called 8T2, OTE2, CTE2, MTE2 and
TEMMZ.

The memory management system utilizes a number of registers accessible
only to the microprogram. These include

Current Executing Segment register - CES
Current Executing Domain register — CED
Current Alternative Domain register - CAD
Process Segment register - PS
Physical Segment Table Pointer PSTP

The CES, CED, CAD and PS registers exist as one copy per process in
the system, while the PSTP is unique.

ND.05.009.01

THE REGISTER BLOCK

31 0

i--_;------ ; Program counter

--__E-—-_-_: Link (subroutine return address)

:—---g------: local variable Base

:_---§------ ; Record base

31 0

3""E?"‘"'
:—-_-TE----- : Integer

'_-__i§__--_: or Index registers
:---E;----—:

The In accumulators are named BIn, BYn, Hn, and Wn when used for BIt,

BYte, Halfword, or Word operations. (n:1,2,3,u).

63 O

: A1 : E1 : Floating point
' A2 : E2 : and Extension registers

A3 : E3 : A = E = 32 bits
AH : Eu : D = A+E = 6” bits

The An accumulators are named Fn when used as single precision

floating point registers. The (An, En) double registers are named Dn
when used as double precision floating point registers.

63 0

::::gT--—-_----_---“—-; STatus register

-----STE--—--___-—----—-; Own Trap Enable register

-----iTE_—_----———---—_-: Mother Trap Enable register

.-_-_ETE-_--_-_’—-_-_-_-; Child Trap Enable register

”nigh-i4--------------- : Trap Enable Modification Mask

31 0

:-_-T6§------- : Top Of Stack register

:_--ii--—_—---: Low Limit trap register

-_-h£-------- ; High Limit trap register

;--_ThR_--_—--; Trap Handler Address register

ND.05.009.01

STATIC DATA, STACK AND HEAP

3. STATIC DATA, STACK AND HEAP

Space for data objects may be allocated

i) in a fixed location in memory, referenced relative to
the B register or by absolute address (static allocation)

ii) on a stack growing from low to high memory,
referenced relative to the B register

iii) in a block unlinked from a freelist, anywhere in otherwise
unused memory, referenced relative to the B register.

Static or dynamic allocation of local data area is determined by the
kind of entry point instruction, and a program system may contain a
mixture of procedures with statically and dynamically allocated data
areas. In most cases the calling procedure need not be concerned with
the allocation strategy used.

3.1. Static allocation

Data allocated in fixed locations may be addressed by a full 32—bit
address referencing any segment within the domain, or it may have a
segment number of zero, indicating that the segment number of the
currently executing program segment is to be used. The latter case
allows a segment with its own fixed data area to be part of more than
one domain, having different segment numbers in different domains,
with no need to relocate the addresses. Statically allocated data may
not be released for other use, and local variables in procedures keep
their values from one call to the next.

Procedures with static data areas are entered through an ENTF or ENTFN
instruction. Such routines are by definition non—reentrant, but in
other respects behave as other routines. The fixed local data area is
initialized as shown in figure 3.1. The B register is updated to point
to the local data area and data references may be addressed relative
to the B register, as with stack routines, and may also be addressed
directly.

Trap handlers always have a fixed local data area which has a special
layout discussed in chapter 6.

ND.05.009.01

STATIC DATA, STACK AND HEAP

3.2. Stack allocation

A stack is initialized through the INIT or ENTM instruction, either

one declaring the lowest stack address and its maximum extent. When a

stack is initialized, the TOS register is loaded with the address of

the first free location above the stack’s maximum extent. TOS serves

as a guard trapping eg. a "wild" recursive routine and as a pointer to

the variables describing the heap.

A new data block on the stack is allocated by executing an ENTS or

ENTSN instruction. On routine entry the data block is always

initialized by the system as follows:

: ------------ : <-— previous stack pointer (extent of stack)
: PREVB : previous value of B register

: BETA : current return address

: SP : stack pointer

: AUX/LOG : auxiliary location for language processors
3 ____________ : or buddy subroutines
- N : number of arguments

: arg1 : .

: arg2 : .
z . : addresses of arguments

: . local variable area
. . (uninitialized)

: ------------ : <—- Stack pointer (SP)

Fig. 3.1 Local data area layout

If the number of arguments supplied exceeds the maximum allowed by the

ENTSN entry point instruction, the N location will contain the number

of arguments actually supplied, but only the maximum allowed number of

argument addresses will be put on the stack. (This also applies to the

ENTFN instruction.)

The INIT instruction initializes the stack in a similar way, but the

PREVB and RETA will be zeroed, so that an attempt to link downwards

beyond the lower stack address will cause an Address Zero trap.

The ENTM instruction initializes a new stack starting from a specified

address, giving the TOS register a new value. The old TOS value is

ND.05.009.01

STATIC DATA, STACK AND HEAP

saved on the current top of the old stack, pointed to by B.SP.

Otherwise, the initialization is as for a routine entry, with the base
address of the previous stack block saved in PREVB. The ENTM is

typically used for initializing a stack for the routines on a segment,
being called from other segments in the same domain. Executing the

same ENTM instruction twice will overwrite the old initial values,
possibly destroying return address and other information.

Stack space is released through the BET or RETK instructions. The B

register is loaded from the PREVB location. On exit from a module (a
subroutine entered through ENTM) the TOS register is not updated; this

must be done explicitly.

Stack displacements (relative to the B register) are always positive,

the displacement being the number of bytes to add to the B register.
PREVB, RETA, SP, AUX and N are predefined as 0, u, 8, 12 and 16,
respectively.

ND.05.009.01

_ 1o _

STATIC DATA, STACK AND HEAP

3.3. Heap allocation

When running several routines concurrently, stack allocation of local

data areas will cause problems if the routine finishing first is not

the one with its data area on top of the stack.

Complex data structures like trees, lists and networks, may grow and

shrink dynamically and elements acquired during the execution of a

procedure should not be released upon exit.

For both these uses data elements may be allocated from a pool of

unreserved space called the heap. The heap is described by an array of

list heads to linked lists of free elements, one list per block size.

The block size is always a power of two and is indicated by the

logarithm to the base two (the "log size") of the number of words. The

first word of an element contains the address of the next element in

the list, zero indicating the end of the list.

The first location above the stack, pointed to by the TOS register,

contains the maximum size of elements to be allocated. The next two

locations are reserved for the lower and upper address limits of the

pool, respectively. Above these two locations is the array of head

pointers.

TOS —> : MAXL : Max log size of elements allowed

: STAH : Start of heap

: ENDH : End of heap

: FLOGO : Head pointers for freelists of

:-———--———-—-: elements of the different log sizes.

: FLOG1 ' The freelist pointers have the value

:------------: 0 if no element of the log size

: FLOGZ : is available.

FLOG3

: FLOG<MAXL> Q

Fig. 3.2 Layout of heap variables

The heap variables must be initialized by the user program and the

user is responsible for building the lists. The STAH and ENDH

variables are not used by the heap instructions, but are available for

a heap administration routine implemented as a trap handler for the

stack overflow trap.

ND.05.009.01

_ 11 _

STATIC DATA, STACK AND HEAP

A local area for use by a subroutine may be allocated by executing the
ENTB instruction. This contains an indication of the required block
size. On routine entry, the address of the allocated block is loaded
into the B register, and the block size is stored in the AUX/LOG
location. In all other respects the local data area is initialized as
for a stack routine.

A data element is allocated by the GETB instruction, specifying the
size of the desired element. The address of the element is loaded into
the specified register.

If a block of the requested size is available, it is unlinked from the
list. If the list head is zero, indicating that the list is empty,
lists representing larger blocks are examined. If a larger block is
available, it is split in halves and one half left in the appropriate
freelist. The block may have to be split several times before an
element of the requested size can be granted to the program. If no
larger element is available, or if the requested size is larger than
the MAXL value, a stack overflow trap condition occurs.

A routine entered through ENTB may release its local data area by
returning through the RETB or RETBK instruction. An element aquired by
the GETB may be released by the FREEB instruction.

A released element will be linked to the appropriate freelist
according to the size of the element. Elements are not combined; this
may be done by the trap handler for the stack overflow condition.

Be aware that initializing a new stack by INIT or ENTM will change
TOS, thus another set of heap variables will be used by the buddy
instructions. The new heap variables may be initialized to the values
of the old ones or to new values.

No assumptions should be made about initial values of locations of
stack or heap elements not explicitly mentioned here.

ND.OS.OO9.01

_ 12 _

MEMORY MANAGEMENT SYSTEM

A. MEMORY MANAGEMENT SYSTEM

4.1. Introduction

A process is a sequential computation in NORD—SOO that may refer to up

to 256 domains. Each domain is a full 32 bit address area for program
instructions and another for data. A process may easily access two

such data domains, the socalled Current Executing Domain (CED) and the
Current Alternative Domain (CAD). Instructions will always be fetched

from CED, but data will be taken from CAD when the address code prefix
ALT is used. If ALT is omitted data accesses will be done in CED.

Each domain is divided into 32 logical segments each of 27 address

bits. 31 of these are used, segment number 0 is never used. A 27 bit
logical segment address is translated by the memory management system

so that it addresses a location in a socalled physical segment.

Physical segments contain the data and programs in the NORD—SOO. A

physical segment is divided into blocks of 2k bytes, and may have any

size from 2**11 to 2**27 bytes. The blocks of 2k bytes are called
pages, and they can be moved (swapped) between main memory and
secondary storage as the need arises.

All physical segments in a NORD-SOO system is described in the

Physical Segment Table (PST). The PST is always resident in main
memory and it is used by the translation mechanism to find the

physical segment. If a physical segment consists of more than one

page, an indexing mechanism is used to address the segment. Each

physical segment is described by a 16 bit entry in PST.

By following this scheme each process in NORD-SOO may use up to 256*31

physical segments of program, and an equal number of physical segments
of data. The structure and properties of the domains and segments of a
process are kept on a special physical segment generated and

maintained by supervising mechanisms. This physical segment is called
the Process Segment (PS). There is one PS for each process in the
NORD—SOO. The size of a PS will depend on the number of domains the
process can use.

The P3 of a process cannot be accessed directly by the process itself.

It is used by supervising mechanisms which may be other processes,
other domains or NORD—100. Each domain used by a process has one entry

in the PS of a process.

One entry in the process segment is called the domain information

table. A domain information table contains 31 pointers for data (the

data capability table) and 31 pointers for program (the program
capability table), one pointer for each logical segment of the domain.

The pointers indicate the PST entry describing the physical segment to

be addressed by the logical address of the domain. Information on
legal access modes for each logical segment is also kept in the domain
information table, together with the pointers. One PST pointer with
the corresponding legal access mode indicators is called a capability.

Also located in the domain information table is the neccessary

ND.05.009.01

_ 13 _

MEMORY MANAGEMENT SYSTEM

information for the trap and domain call system.

The PS of a process will be referenced frequently when the process
executes. Since the PS is an ordinary physical segment, it will be
addressed through the PST entry that describes it. A pointer to the
PST entry describing the PS of the executing process is kept in the PS
register and is updated when a new NORD-SOO process starts execution.
The PS register is part of the process description of a process,
together with the contents of the register block and some other
information.

A schematic exposition of the translation mechanisms is found in the
drawing next page.

This scheme for the translation from logical to physical addressing
makes it easy for different domains or processes to share data or
programs. Sharing is done by having the capabilities in the different
domain information tables point to the same PST entry. Thereby the
same physical segment will be addressed.

If the translation mechanism were to perform all the outlined table
lookups on each memory access, the result would be unacceptably slow.
A speed—up mechanism is therefore introduced. Whenever an access is
completed, the number of the referenced page is stored in a cache-like
Translation Speedup Buffer (TSB). The physical page number is stored
together with the corresponding logical page number, the domain number
and process number. Next time an access to the same logical page is
done by the same domain, the physical page number is found in TSB
without any need to perform other lookups. The index in the TSB is
found by using a hashing algorithm that takes into account the logical
address including the segment number, the domain number and the
process number.

The detailed description that follows is divided into the Memory
Management Architecture and its Physical Implementation. The
architecture section involves the transformation from logical to
physical segment numbers, and includes descriptions of the capability
tables and the process segment. The implementation section covers the
mechanisms by which physical segments are placed and accessed in main
memory. The present architecture is implemented with a paging
mechanism, but no inhereht property of the architecture prohibits
other implementation strategies.

ND.05.009.01

_ 1n _

MEMORY MANAGEMENT SYSTEM

31 275 2120 11 10 D
Wlivlfi‘lenrrv-tvw]

JJ\W \
W IaYrE

AnonEss

r‘ ———————————————————— '1
I I
I RESIDENT MEMORY I
I I
I I 5“ CACHE

l - - II * ‘ ' II
I Pym NO. ’5’ I DATA TO FROM

| .. n | CPU
.. ”

'pnocEss CE) o-———-> - 13 0 '

lnrscmpro CA: o—-——. x[g «h
IION CE; o—-—-— I I

CAS o——. I l
I PS I “7’ I I Ix-II‘I Ix-o)

fl
I A, .. a DJ : L 4354‘ ‘ INDEX-PAGE L__ _ INDEX-PAEE

‘ 'L ' h ' I» —: ii”. DISPLACEMENT
I J l l r lX-ZI wmmv PAGE
| L Mb. 6 g... 7

I. _______________________ .1 . ,L w I W
2,_ .

no» Am 26’ Ix-qi!Aom-zol _;
(—PROC (0-21

V
V VI 1 PHYSICAL

z 59 71110 , flADDRESS
‘F—JPIALF-WORD

INDEX-mas ,y."
Aaonsss

“GE MEMORY
- ’MI ADDRESS DAYAduGE

am: 71% ,
A, i , MArCHEDwsED

l

L__-_‘ h.

I
l

PAGE OF ' " .-

53555557 1N

.4 mm TUIFROM
cpu

T ' .
BITIO'Z} L V

W (*4INFORMATION 6 <————-J
rAsLE

. ,..

ALTERNATIVE ACCESS 15v ONLY ussn
ran DATA-MEMORY. USE “CHE
INSTRUCTION-MEMORY ALWAYS usss
CED AND as. ‘m

Accsss us»,
any WITH PAGE
¢aonsss FROM

SB
NORD-SOO MEMORY MA NA GEMENT

L OGICAL r0 PHYSI CAL ADDRESS PRINCIPLE é wane rss

Fig. 14.1 Logical addressing scheme

ND.05.009.01

_ 15 -

MEMORY MANAGEMENT SYSTEM

H.2. Memorygmanagement architecture

M.2.1. Address domain

A NORD—SOO address has 32 bits, ie. an address is in the range from 0

to (2**32)-1. Instruction fetches and data references goes to
different addressing areas; if it is an instruction fetch, the address

value range is called a program domain, if it is a data reference, it
is called a data domain.

A logical address domain is divided into 32 segments. The 5 upper bits

of an address are segment numbers and. the 27 lower bits are the
address within the segment.

: 5 bits : : 27 bits :

segment no. Segment relative address

Fig. ”.2 Logical address

If the program or data domain is not explicitly stated, domain is

understood to be both the program domain and its corresponding data

domain.

ND.05.009.01

-15-

MEMORY MANAGEMENT SYSTEM

4.2.2. Process

The operations of a computation must be carried out in a certain order

to ensure a meaningful result. The simplest possible rule is the
execution of operations one at a time in strict sequential order. This

type of computation is called a process.

Information about a process is kept in the process description. The

term process will hereafter mean a sequential computation described by
a process description.

A NORD-SOO process may have up to 256 different logical domains, each

comprising an address space up to 2*‘32 bytes for each of program and
data.

From a domain it is possible to create and call new program domains,

ie. a NORD-SOO process may have a hierarchy of domains. The
hierarchical sturcture is reflected in the process description.

Fig. ”.3 Hierarchy of program domains

Transfer of control between domains may takes place by routine calls

(domain calls) or enabled traps. Parameter transfer between different
domains is performed by the alternative address mode. (See section
about addressing modes.) When a routine in domain A calls a routine in
domain B, domain A is set as alternative domain to B and operands
accessed via alternative address mode are accessed in domain A.

More extensive data exchanges and exchanges between arbitrary domains

are done by letting the domains have one or more data segments in

common.

ND.05.009.01

_ 17 _

MEMORY MANAGEMENT SYSTEM

u.2.3. Process environment

The memory management system needs information about existing

processes. This information resides on a physical segment, the Process
Segment. This segment is not directly accessible to the process, but

is used by supervising mechanisms, which may be other processes, other

domains or NORD—100, and by microcode routines. There is one process

segment for each process; the number of this segment is held in the

Process Segment register (PS). For each domain owned by the process

the process segment contains one domain information table which

consists of

— the program capability table
— the data capability table
— domain call information
— trap handling information

u.2.3.1. Process registers

CED : Current Executing Domain

:-CAD-; Current Alternative Domain

:-C§S—: Current Executing Segment

:_CAS-; Current Segment on Alternative domain

g—PS--: Process Segment

Fig. 4.4 Memory management registers

Some information about a process is used so frequently by the memory

management system that it must be kept in hardware registers while the

process is executing. The five registers CED, CAD, CES, CAS and PS are

a part of the process description of the running process. Ie. the
registers' contents are exchanged when exchanging process.

The Current Executing Domain register holds the program domain number
of the current executing process. When a domain call is performed, or

when a trap condition is not own but mother enabled, the domain number
of the calling domain is stored in the Current Alternative Domain

register. The Current Executing Segment register holds the segment
number within the current executing domain, and is copied into CAS

when changing domain. CAD is used with the alternative addressing
mode, CAS is used when the segment number is zero in alternative
addressing.

ND.05.009.01

-18..

MEMORY MANAGEMENT SYSTEM

u.2.3.2. Capability tables

Each domain has two capability tables, one for instructions and one
for data. Each table has 31 elements, one for each segment in the
domain. Each element consists of 16 bits, numbered from O to 15. Such
an element is called a capability, and it specifies the physical
segment number and its access rights. A program capability has a
layout different from a data capability.

In a program capability, bit 15 indicates whether the segment is in
the current domain or not. If the bit is zero the segment is in the
current domain. A segment not in the current domain, called an
indirect segment, has bit 1” set if the physical segment resides in
another machine, otherwise it is reset. The capability of an indirect
segment contains the logical domain and segment numbers of another
segment, and the physical segment number is found in the capability of
that segment.

In a data capability bit 15 indicates write permission. If this bit is
reset the segment is a read-only segment. Bit 1” indicates whether
routines in other domains may refer to this segment through the ALT
prefix. Violation of the protection set by these two bits causes 3
protect violation trap. Bit 13 is set if the physical segment is
shared between different domains or different processes. If a segment
is shared, data will always be read from main memory rather than from
cache, to ensure that different processes are aware of each others
updating of a data item.

Direct program segments and data segments contain the physical segment
number in the lower 12 bits.

ND.05.009.01

MEMORY MANAGEMENT SYSTEM

Program segment capability:

a) Direct segment

_ 19 -

: 1 bit : : 3 bits : : 12 bits :

direct unused
(:0)

b) Indirect segment

physical segment number

: 1 bit : : 1 bit : : 1 bit : z 8 bits : : 5 bits :

indirect other unused domain segment
(=1) machine

Data segment capability:

:"1 bit : : 1 bit : z 1 bit : : 1 bit : : 12 bits :

write parameter shared unused physical segment
permitted access

Fig. ”.5

4.2.3.3.

When performing domain calls and trap handling, some extra table space
The first eleven bytes of a domain

information table are used as a save area at domain calls. The next
eleven bytes are used as a save area in trap handling. The last 37
bytes are the domain characteristics.
capability tables constitute each domain

is needed for each domain.

segment

Capability layout

Domain information

number

This

bytes. This is shown in the following figure.

ND.05.009.01

information and two
information table of 256

-20..

MEMORY MANAGEMENT SYSTEM

4::: O : 1 : 2 : 3

n56 bytes

: 6A bytes . 6A bytes : 11 bytes : 11 bytes : 37 bytes : 71 bytes :

a b c d e f

The capital letters used in the table below have the following

meaning:

— set by hardware at domain call
set by hardware at trap handling

- set by operating system and read by hardware01
-3

3

I

Domain information table layout:

a. Program capability table domain 1
b. Data capability table domain 1
c. Domain call information domain 1

bytes
Calling domain
Alternative of calling domain
Current segment on alternative domain
P of calling domain
B of calling domain 4

:
5

4
4

.
)

3
3

3
3

3

d. Trap handling information domain 1

Trapped domain
Alternative of trapped domain
Current segment on alternative domain
Status register save area m

a
g

—
a

r6
3

1
-i
b

-3

e. Domain characteristics domain 1

Own trap enable
Child trap enable
Mother trap enable .
Trap enable modification mask
Trap handler address ‘
Mother domain 4

2
0

)
m

0
0

0
0

0
0

f. Unused

Fig. 4.6 Domain information table

ND.05.009.01

_ 21 _

MEMORY MANAGEMENT SYSTEM

M.2.M. Logical addressing

A logical address consists of the segment number and the segment
relative address. The memory management system will transform the
logical segment number to a physical segment number. The segment
relative address is relative to the start of the physical segment.

If the segment number in a program or data reference is zero, the
number in the Current Executing Segment register is taken as the
logical segment number. Where addresses are transferred or loaded the
current segment will be inserted in the address automatically; this
applies to the instructions CALL, CALLG, LADDR, BLADDR, RLADDR, INIT
and ENTM instructions. If the data segment number is not zero it will
be used without modification.

If the segment number is zero when alternative addressing is used, the
segment number in the CAS register is inserted.

The logical segment number is used as an index in the capability
table. The addressed element in this table gives the physical segment
number.

A jump to another program segment is only performed legally by a CALL
or CALLG instruction and implies that the new segment number is loaded
into the Current Executing Segment.

When a legal call to another segment is performed, the segment
relative address is taken as an index in a start address vector first
on the new segment. The first word on a segment is the length of the
start address vector. The index is compared against this word. If the
index is greater it is an illegal call and causes an instruction
sequence error trap condition.

O 4 8 12 16... (Segment relative address)

Max Start address Routines
index vector

Fig. 4.7 Program segment layout

ND.05.009.01

_ 22 _

MEMORY MANAGEMENT SYSTEM

”.25. Domain cormnunication

Within the domain hierarchy of a NORD-SOO process program control may

change from one domain to another. Data may be accessed in either the
called or the calling domain. In this section change of control and

communication between different domains are described.

H.2.5.1. Alternative domain

The alternative domain is used when accessing and returning parameters

from or to a calling domain. The calling domain is set as the

alternative to the called domain by loading its number into the CAD

register. This is done by hardware at a domain call. Access to

operands in the alternative domain is by the alternative address code

prefix, ALT(<operand>). When using the ALT address code prefix only

the last data access goes to the alternative domain; indirect

addresses and descriptors are taken from the current domain. (See the

chapter on operand specifiers and addressing modes for further

explanation.) The calling domain may protect its data from illegal

access from other domains by resetting the parameter access bit of its

capability. This is done through monitor calls.

M.2.5.2. Domain call

From one domain, a routine on any other domain may be called through

the CALL and CALLG instructions if an indirect capability to that

domain is set up, indicated by bit 15 set in the capability of the

segment. An indirect capability is set up through monitor calls. An

indirect segment resides in another than the current one. A call to a

routine on such a segment implies change of domain, and is denoted a

domain call. Domain calls to supervising domain routines performing

specific functions are called monitor calls. l
no

.0
.0

o

new new : : :
: domain segment: : :
: no no : : -

capability of called domain
calling domain

Fig. 4.8 Indirect segment

ND.05.009.01

_ 23 _

MEMORY MANAGEMENT SYSTEM

The new domain and segment number are taken from the capability of the
calling segment. The program counter, base register, domain number,
alternative domain number and current segment on the alternative
domain of the calling one are saved in the domain information table of
the called domain. When a subroutine is called, certain
initializations of the local data field are made. (See the CALL, CALLG
and entry point instructions.) The return address and old base
register field of the local data field of the new routine are filled
with zero.

The new domain and segment number are loaded into the Current
Executing Domain and Current Executing Segment registers. The number
of the calling domain is loaded into the alternative domain register,
and the current segment on the alternative domain is loaded into the
Current Segment Alternative domain register. This segment number is
used whenever an access to an alternative domain is done with the
segment number equal to zero.

The segment relative part of the new program address is used as the
index in a start address vector in the same way as when calling a
routine on another segment within a domain.

On jump to another domain, a new stack has to be set up in the called
domain. Therefore, the subroutine address must be the address of an
ENTM, ENTF or ENTFN instruction. If a routine with a fixed data area
calls routines using stack space, the stack must be initialized prior
to the call. A routine being called from another domain must not be
entered through an ENTS, ENTSN, ENTB or ENTD entry point, as the stack
would then not be properly initialized.

The control is changed back to the calling domain when the return
address, the old base register or both is zero when a return
instruction is executed. On return from a domain call the CED, CAD,
CAS, P and B are loaded from the domain information table.

Note that return information is not stacked, ie. calling the same
domain twice without return in between will cause an instruction
sequence error trap condition. The memory management system will zero
fill the return address and B register value at a domain call return
to indicate that a call to the domain may be done. If the return
information is non—zero a domain call is in progress and another
domain call to the same domain will be trapped as illegal (Instruction
Sequence Error).

A return instruction with O in PREVB or RETA will only change domain
if there is a domain to return to. If CAD is unequal to CED and non—
zero, return is to the domain saved in the domain information table.
Otherwise the return will be perfonned to address 0 on the current
domain, causing a stack underflow trap condition.

ND.05.009.01

-214-

bflflWDRY MANAGEMENT SYSTEM

M.2.5.3. Trap handling

When a trap condition occurs, the procedure described in chapter 6 on

traps will detennine if a trap handler routine is to be called, and in

that case which domain has a handler for the offending trap. If the

trap is handled by a mother domain, the new domain number is loaded

into the CED register. The old CED, CAD and CAS are saved into the
domain information table of the mother domain. CAD is loaded with CED

of the trapping domain.

The status register is saved into the domain information table of the

trapped domain, and upon return the non—ignorable bits are reloaded.

When the system trap handler returns, the new trap enable register

contents are taken from the domain information table of the trapped

domain.

Trap handler startup and stack initializations take place in the same

way as when invoking a local trap handler. See chapter 6 for further
explanation. The new trap enable register contents are taken from the

domain information table of the mother domain, except that OTE is

cleared by hardware at the ENTT instruction and restored when a RETT

is executed.

ND.05.009.01

_ 25 _

MEMORY MANAGEMENT SYSTEM

“.3. Physical implementation

The physical WORD-500 memory is divided into pages of size 20H8 bytes.
The physical main memory size may be up to 2**25 bytes. The page size
of 20H8=2**11 implies 2**1H pages, or a 13 bits page number.

The memory management system has a bit map with two bits per physical
page, set if the page is used and if the page has been written to,
respectively. If the page has been written to it must be copied back
to mass storage before it is replaced with another one. The table size
is 2*(2**1U) bits, and it is accessible to microcode only.

The memory management system maintains a Physical Segment Table
Pointer (PSTP) pointing to the start of the Physical Segment Table.
This table contains a two byte entry for each physical segment, giving
the page number of a data page or an index page.

Fig. 4.9 Physical segment table

The access method, directly by physical page number, or indexed once
or twice, depends on the size of the segment. Bit 14-15 of an element
in the physical segment table holds information about access method.

Direct access restricts the segment size to 2 k bytes. Single indexing
allows 1 k pages, or 2 megabytes maximum size. Larger segments use
double indexing, the maximum size of which (2**31 bytes) exceeds the
maximum segment size.

ND.05.009.01

-25-

MEMORY MANAGEMENT SYSTEM

: 2 bits : : 1” bits :

access physical page number

Fig. ”.10 Physical segment table entry

The two access bits have the following meaning

0 - direct, physical page number is data page

1 - single indexing, physical page number is the address of

an index page
2 — double indexing
3 - unused

An index page entry has a layout similar to a PST entry, with the

access bits reflecting the current indexing level: An index page to a

single indexed segment has access bits equal to O; the upper level

index page to a double indexed segment has access bits equal to 1, the

lower level index pages to 0. The physical address is calculated from

the physical segment number and segment relative address as shown in

the following figure.

physical segment
number (in PS register
or capability) segment relative address (27 bits)

: 12 bits : : 6 bits : 10 bits : 11 bits :

physical segment table ‘\\

:-—--—:———-—--: index-page index-page data-page

f f f 7-1:“ Tn'“ .'" " T
’-—J I I

: 2 : . -—-J

: 1 : :”’”’#‘-——_“““\\\\ikindex—page data-page

0 : W’i \data—page

Fig. ”.11 Physical memory

ND.05.009.01

_ 27 -

MEMORY MANAGEMENT SYSTEM

The capability table holds the physical segment numbers of all logical
segments in a domain. The capabilities are found on the segment
specified by the process segment register (PS) of the process. On this
segment, the currently executing domain register (CED) selects a 256
byte domain information table which includes the capability tables.
The currently executing segment register (CES) selects an entry in the
capability table, containing the physical segment number of the
referenced segment.

Registers : Memory :

PSTP :

PS :

CED : 1 : :-------——-: Physical
: -------- : : : segment table

CES : 3 : . :

Process segment
of current process

current domain
information table

the 2*3 /
addressed : ------- : program
capability : : capability

: ------- : table
: : [Data
:—-—--—-:Icapability
: y table

Fig. ”.12 Addressing a program capability

ND.05.009.01

-28..

MEMORY MANAGEMENT SYSTEM

4.4. Buffering

Translation from logical to physical address is complicated and

requires several memory accesses. To reduce the number of accesses the

last used logical page number, domain number and a part of the process

number is saved together with the corresponding physical page number

and the permit bits of the corresponding capability. Later references

to the same page may then avoid referencing the capability table, the

physical segment table and the index pages.

The table used to hold this information is the Translation Speedup

Buffer. The domain and process numbers are also stored. Therefore it

is not neccessary to clear the buffer when changing domain or process.

The index in TSB is selected by using a hashing algorithm on the

process number, the domain number and the logical page number. The

buffer has a capacity of 256 elements plus an overflow of another 256

used for multi-operand instructions (such as POLY). (This capacity may
be doubled by the microprogram, actually two banks of 512 elements

exist.)

When access to memory is performed, the actual process number, domain

number and logical page number are compared to the TSB counterparts

pointed at by the index. If they are equal no further table lookup is

neccessary and the physical page number in the translation speedup

buffer is used. If they are not equal the memory management system

will update the TSB once the neccessary information has been found.

ND.05.009.01

_ 29 _

MEMORY MANAGEMENT SYSTEM

: process no. : domain no. : logical page no. : page relative :
3 bits : 8 bits : 21 bits : address 11 bits :

\l,

. page

.-—J>found

TSB index

\
Translation {
Speedup : z : : : :
Buffer :3 bits: 8 bits: 21 bits : 1: 1: 1: 1” bits

process domain logical : : : physical
no. no. page no. : : : page no.

: shared segment bit

: parameter access bit

write permitted bit

Fig. “.13 Translation speedup buffer

ND.05.009.01

_ 3o -

CACHE MEMORY SYSTEM

5. CACHE MEMORY SYSTEM

The speed of the CPU is considerable higher than the speed of primary
memory; if several memory accesses are required to complete an
instruction, the CPU may be spending most of its time waiting for data
to be loaded into the registers. To reduce the time spent waiting, the
most recently used data are kept in high speed buffer memory, where
data are available to the CPU in a fraction of the time required for a
main memory access. This buffer is called cache. For economical
reasons the cache is comparatively small, and sophisticated circuitry
is employed to determine which data elements should be alotted space
in the cache.

The effective memory access time as seen from the CPU is a fuction of

several factors: The size and speed of the cache, main memory access
time and the average percentage of data accesses where the requested
data is available in the cache without further delay ("hit rate").

In NORD-SOO the maximum cache size is 128 kilobytes. To prevent that
instructions and data located at the same cache address constantly
displace each other when a loop is executed, instructions and data
have separate cache systems.
An access to main memory is up to 16 bytes wide. Most instructions are
executed sequentially and data accesses are often made to variables
located closely together, therefore the probability of finding the
required data on the next request increases significantly.
Forward fetch mechanisms decode the operand specifiers in the

instruction concurrently with the decoding of the instruction itself.
"Data not in cache" can thus be detected and main memory access
initiated at an early stage.

The two cache systems, for instructions and for data, are separate
but identical. The cache word may be 32, 6”, or 128 bits wide and the
cache is always H K words deep. The width of the cache word is equal
to the width of the channel to main memory.

The maximum cache size is 64 K bytes for instructions and 64 K bytes
for data.

In addition to the bits of the data words, there are certain control
bits in each word used by the cache system to identify the information
stored. Parity on each byte is used for error detection.

The cache can be partitioned into 1, 2, or M parts of M K, 2 K, or 1 K
cache words. Each partition can be assigned to one or more programs,
or to library subroutines.

The cache is addressed by the logical address from the CPU and is byte
addressable.

In a 128 bit wide and H K words deep system, the U least significant
bits of the logical address are used to select the byte of the 16 byte
word. The next 12 bits of the address are used to select one of the U

ND.05.009.01

_ 31 _

CACHE MEMORY SYSTEM

K words. The remaining 16 bits of the 32 bit address are compared with
16 bits of word identification stored in cache. If they match, the
requested data is present in cache and sent to the prefetch processor.

In a 6“ bit wide cache, the 3 least significant bytes select the byte
in the word, the next 12 bits select the cache word and the upper 17
bits are compared with the logical adress. In a a 32 bit wide system,
2 bits select the cache word byte, 12 bits the cache word and the
upper 18 bits are matched with the logical address.

The cache and the memory management system is addressed in parallell.
If the data is contained in the cache the CPU will fetch the data
directly from the cache. Otherwise a request to main memory is
generated after the logical address is converted to a physical address
by the memory management system.

A "write through" algorithm is implemented, generating a write access
to main memory in parallell with a write access to cache. Main memory
will therefore always contain an updated copy of the contents of the
cache.

: logical address

instructions data

: 16 : 128 : : :

: i : é—X : : : :

. : : MK : : :

LA : § 2 LA : cache-frame :
O y C O O

4-16 bytes ——--—->

Fig. 5.1 The CACHE system, 128 K byte cache

ND.05.009.01

_ 32 _

THE TRAP SYSTEM

6. THE TRAP SYSTEM

It is an advantage to be able to detect special situations arising
during program execution, such as attempts to divide numbers by zero
in a program performing many arithmetic divisions. Such checks may be
made by software, but will require explicit programming.

NORD—SOO CPU performs a number of checks automatically on every
arithmetic operation, showing errors that would otherwise go
unnoticed. Errors caught this way are said to be trapped. Situations
leading to a possible trap are called trap conditions. A trap
condition may or may not lead to a trap, depending on whether the trap
is enabled or not. The above case is called a divide by zero trap
condition.

Other examples of trap conditions are floating point overflow, illegal
index and stack overflow.

For most trap conditions, it is possible to choose whether the trap is

to be acted upon (ie. enabled) or not. If a trap is to be acted upon,
a trap handler routine will be entered.

Trap conditions are divided into three categories depending on the way
they are treated by hardware.

1. Ignorable trap conditions, which may be ignored

2. Non-ignorable trap conditions, which require treatment

3. Fatal trap conditions, fatal to the NORD-SOO CPU

The NORD-SOO CPU status register has one bit for each possible trap
condition. When a trap condition occurs, this bit is set. The same bit
is reset when a trap handler routine is invoked.

6.1. Trap handler routines

Most traps may be handled by a routine in the NORD-SOO. Every domain
can have its own routines for the trap conditions allowed by its
mother domain. If it does not take care of the trap itself, control
may be transferred to the mother domain.

The mother may handle the situation, or hand it over to her mother. At
the top of the domain tree is the operating system, and the NORD—1OO
is the "great grandmother" of all domains, ensuring there will always
be at least one domain responsible for taking care of a trap
propagated from lower levels. Eg. a trap condition encountered during
the running of a user program may be handled in the user domain, in
one of the mother domains between the user domain and the root of the
tree, in the operating system domain, or in the NORD-100.

ND.05.009.01

- 33 _

THE TRAP SYSTEM

After a trap situation has been taken care of, control will normally
return to the instruction following that which caused the trap; for
some trap conditions, the trapped instruction will be repeated or
resumed. Note that the call sequence prior to the trap situation may
be totally unrelated to the mother/child links.

Three registers in the NORD-SOO are used for trap enabling: The Own
(OTE), the Mother (MTE) and the Child (CTE) trap enable registers.
Each domain has its own copy of these registers.

If a bit in OTE is set, the domain has a trap handler routine for the
corresponding trap conditions occuring within the domain, and this
routine will be called when a trap occurs. If the MTE bit is set, the
mother (or grandmother etc.) domain of the trapping domain has a trap
handler routine for this trap condition. If the corresponding bit in
OTE is reset, this routine will be called.

A bit set in the CTE indicates that this domain has a trap handler
routine to be used when the corresponding trap condition occurs in
child domains, unless taken care of locally within the child domain.
The CTE bit set will cause the MTE bit to be set in all child domains.

When a domain is created, it is given a trap enable modification mask
(TEMM) from its mother. This mask specifies which bits in OTE the
domain is allowed to change. An attempt to change a bit in OTE that is
reset in ‘Ufldi will be ignored, while a change in an OTE bit that is
set in the TEMM will have the desired effect.

MTE and CTE are not program modifiable. The system sets a bit in a
domain's MTE if any of the mother domains in the tree structure have
the corresponding bit set in their CTE register. The NORD—1OO CPU will
always be the mother of the upper NORD—SOO domain. Trap conditions are
always enabled in the NORD—1OO CPU. Non-ignorable trap conditions may
be enabled in the NORD-SOO and handled by some program in the NORD-
500. If they are not, they will be reported to NORD-100. Fatal trap
conditions are always reported directly to NORD—100.

Status bits representing non—ignorable and fatal trap conditions will
always yield a zero result (bit reset) if explicitly tested. It is not
meaningful to perform a conditional jump on these bits, as the
condition is always false.

ND.05.009.01

-31.-

THE TRAP SYSTEM

trap condition

own enabled?

no yes

mother enabled?

yes no

current domain
upper domain?

no yes

change to
mother
domain

control ignore trap handler

to trap in current domain

NORD-100 condition invoked

Fig. 6.1 Treatment of non-fatal trap conditions

ND.05.009.01

_ 35 _

THE TRAP SYSTEM

The Trap Handler Address register, THA, points to the base of an array

in data memory, containing the start addresses of the trap handler

routines in program memory. The n'th element of this array must hold

the start address of the routine to handle the n'th trap condition.

The area after the start address vector is used as a local data field

for the invoked trap handler routine. This data field is filled by the

ENTT instruction (see chapter 11.10).

- data :
------- : memory :
: THA : -—-> : —————————— :

: : start address
: : vector (6” words)

: : local data field heading
: : (5 words)

: : address of the instruction that
: : caused the trap (1 word)

: . copy of register block
: : (39 words — see the ENTT instruction)

: : 10 words of program memory

: : local data area

Fig. 6.2 Trap handler start address and local data field

When a trap handler is invoked, the address of the instruction that

caused the trap condition, the register block, and information about

the trap is saved in the local data area of the trap handler. The

saved program counter holds the address of the instruction to be

executed when the trap condition has been taken care of.

Trap handlers are not reentrant, due to the fixed location of the data

area. The Own Trap Enable register (OTE) is therefore cleared, forcing
propagation to the mother domain of any trap condition occuring during

trap handler execution. The OTE register is reloaded from the domain

information table on return from the trap handler.

ND.05.009.01

-36—
THE TRAP SYSTEM

When a trap handler is invoked, the status register (ST) is saved in

the domain information table of the domain where the trap occurred.

The layout and use of this table is described in more detail in the

Memory Management section. If the trap condition is not handled by a

local trap handler routine, an identification of the domain where the

trap condition occurred is also saved in this table. Before the trap

handler is entered the status bit causing the trap is cleared.

Status register bits representing ignorable trap conditions may be

modified during running of the trap handler routine. Status bits

representing non-ignorable and fatal trap conditions may not be

modified. Setting a trap bit will cause a new trap immediately on

return to the trapped routine. If several trap bits are set, several

trap handlers will be called in sequence according to their bit

numbers in the status register (highest numbered ones first).

Status bits are modified during running of a trap handler routine by

modifying the status word in the saved register block. Upon trap

handler return, this status word is "merged" with the saved status

word in the domain information table and loaded into the status

register. Unmodifiable status bits will contain their original values

when the process continues.

Every enabled trap condition detected during the execution of an

instruction will be reported to a trap handler routine in order of

priority. The highest numbered traps are handled first.

ND.05.009.01

_ 37 _

THE TRAP SYSTEM

6.2. The status register

There are 64 bits in the status register. 42 of these bits are
currently defined. The status bits are grouped as follows:

Data status bits

Tracing status bits

Instruction and operand reference status bits

Signalling, synchronization and miscellaneous status bits

NORD—SOO system error status bits

6.2.1. Data status bits

Code Name Bit no.

Z zero 5
C carry 6
S sign 7
O overflow 9
IVO invalid operation 11
DZ divide by zero 12
FU floating underflow 13
F0 floating overflow 1M
BO BCD overflow 15

The data status bits hold information about the operand or result of

the last executed operation on data. The majority of control and
special instructions, including conditional jump instructions, leave

the data status bits unaffected.

In the description of the instruction set, the effect on the data

status bits is listed with every instruction. Bits that are set, reset
or left unaffected are mentioned explicitly. All data status bits not
mentioned are reset.

The Z, C, and S status bits have no corresponding trap conditions.

They are used only for conditional jumps. All other data status bits

are ignorable trap conditions. If trapping is not enabled, these bits
may be tested with conditional jump instructions.

Z : The Zero bit is set if the operand/result of the last

instruction was exactly zero. Otherwise it is cleared.

S : The Sign bit of the status register holds the sign bit of the

last operand/result.

ND.05.009.01

IVO :

DZ :

F0 :

-33-
THE TRAP SYSTEM

The Carry bit may be set only when performing integer

arithmetic; otherwise it is cleared. The C bit is set if a carry

out of or borrow into the most significant bit occurs. The

contents of the carry bit is also used by the ADDC, SUBC and

INVC instructions.

Integer Overflow may be set only when performing integer

arithmetic; otherwise it is cleared. The 0 bit is set if the

result of the operation is too large to be represented in the

destination or register. It will occur in an integer addition

when the sign bits of the two addends are equal, and the sign

bit of the result is different from those of the addends. Note

that subtraction is an addition of the two's complement of the

subtrahend. In multiplication, integer overflow occurs when the

destination is not large enough to hold the product. In case of

overflow, the S and Z bits are set according to the actual

result of the operation, rather than to the theoretical value.

The least significant 32 bits of the extended result will be

stored in the destination operand.

InValid Operation. Eg. executing a square root instruction with

a negative argument will cause an invalid operation trap

condition. -

Divide by Zero trap. A division with zero will leave the largest

possible value in the destination with the sign of the dividend,

unless the dividend is also zero. Zero divided by zero gives a

result of zero.

Floating Underflow will occur if a negative exponent requires

more than 9 bits to be represented. A value of zero will be

stored in the destination. Other data status bits are set

according to final result.

Floating Overflow will ‘occur in floating arithmetic if the

result of an operation is too large to be represented in the

NORD-SOO floating point format, ie. a signed exponent requiring

more than 9 bits. The largest possible floating point value will

be stored in the destination, with the correct sign. Other data

status bits are set according to final result.

BCD Overflow. Overflow of the Binary Coded Decimal format.

(BCD aritmetic is not yet implemented.)

ND.05.009.01

_ 39 _

THE TRAP SYSTEM

6.2.2. Tracing status bits

Code Name Bit no.

SIT single instruction trap 17
BT branch trap 18
CT call trap 19
BPT breakpoint instruction trap 20

All the tracing status bits are ignorable trap conditions. They are
valuable tools for debugging programs and performance evaluation.

SIT : Single Instruction Trap. This trap condition is caused when the
execution of an instruction has terminated. With this trap
condition, it is possible to step through a NORD—SOO program one
instruction at a time.

BT : Branch Trap condition occurs when the next instruction to be
executed may be another than the one inmediately following the
last executed instruction; ie. after a G0, JUMPG, LOOP or
conditional jump instruction. The trap condition occurs even if
the test in the conditional jump is false and no jump is made.

CT : Call Trap condition occurs immediately after execution of a call
subroutine instruction.

BPT : BreakPoint instruction Trap condition occurs when a breakpoint
instruction is executed.

If several enabled trace trap conditions occur, the CPU handles the
one with the highest priority first. Trace traps are listed from high
to low priority in the following order:

Break Point Trap
Call Trap
Branch Trap
Single Instruction Trap

The tracing status bits are always reset when execution of the next
instruction starts, even if they are not trap enabled. This means
these bits are used for trapping purposes only, since they will always
yield a zero result if explicitly tested.

ND.05.009.01

.140.

THE TRAP SYSTEM

6.2.3. Instruction and operand reference status bits

Code Name Bit no.

IOV illegal operand value 16
ATF address trap fetch 21
ATE address trap read 22
ATW address trap write 23
AZ address zero access 2”
DR descriptor range 25
IX illegal index 26

STO stack overflow 27
STU stack underflow 28
XSE index scaling error 32
IIC illegal instruction code 33
103 illegal operand specifier 3M
ISE instruction sequence error 35
PV protect violation 36

PGF page fault 38

These status bits are all trap conditions. Most are ignorable, but

STO, STU, XSE, IIC, IOS, ISE and PV are considered so serious that

they are defined as non-ignorable. PGF is defined as fatal; it may

arise for all instructions. All trap conditions result from the

decoding and accessing of instructions and operands.

Non-ignorable and fatal trap condition status bits are always zero

when tested from a program, consequently they can be used only for

trapping purposes. Ignorable trap condition status bits may be used

either for trapping purposes or for explicit program testing

(conditional jumps).

6.2.3.1. Ignorable trap conditions

IOV : Illegal Operand Value. Operand values exceeding the legal range,

eg. in the bit field and call subroutine instructions, may cause

an Illegal Operand Value trap condition. This status bit is

set/reset in all instructions where there is given a limit for

the operand values.

The NORD-SOO has Low Limit (LL) and High Limit (HL) 32-bit registers

for protecting program and data. These two registers are compared to

the logical program and data address for each memory reference. If the

actual logical address referenced is within the area limited below by

the LL register and above by the HL register, a trap condition occurs

whose type is determined by the current memory reference. (Memory

reference type may be fetch, read, or write access.)

ATF : If the current memory reference is a program reference, a

reference within the program memory area guarded by the LL and

ND.05.009.01

THE

ATR

ATW

AZ

DR

IX

-141...

TRAP SYSTEM

HL registers will cause an Address Trap Fetch condition. The ATP
status bit is set/reset at the end of each instruction.

If the current memory reference is a read reference to the data
area guarded by the LL and HL registers, an Address Trap Read
trap condition will arise. The ATR bit is set/reset at the end
of each instruction.

If the current memory reference is a write reference to the area
guarded by the LL and HL registers, it will cause an Address
Trap Write trap condition. The ATW bit is set/reset at the end
of each instruction.

Address bits 0-26 equal to zero will cause an Address Zero trap
condition. INIT will set PREVB (see chapter on stack management)
to zero, causing an AZ trap condition if attempts are made to
link to a data block below the bottom of the stack.
A jump to segment address zero will also cause an AZ trap
condition. Location zero will normally contain the number of
routines on a segment, consequently it represents no meaningful
instruction.
The AZ bit is set/reset for each instruction with memory access.

Addressing via a descriptor may cause a Descriptor Range trap
condition. This occurs if the contents of the index register is
negative or greater than the maximum number of elements (length)
field of the descriptor. The DR bit is set/reset at the end of
all instructions with descriptor addressing. (See section
chapter 8.3.12)

The LIND and CIND instructions allow loading and calculating an
array index and check that it does not exceed the array
dimensions. If it does, it causes an Illegal index trap
condition. The IX bit is set/reset by the LIND and CIND
instructions.

ND.05.009.01

u2

THE TRAP SYSTEM

6.2.3.2. Non-ignorable trap conditions

STO : When the contents of a new stack pointer in a stack subroutine

call is greater than the contents of the TOS (top of stack

register), a STack Overflow trap condition occurs. Stack

overflow may also occur on execution of the GETB or ENTB

instructions if there are no free data blocks of the requested

size or larger. The STO status bit is set/reset for each enter

stack subroutine and buddy allocation instruction.

STU : Performing a subroutine return instruction with BETA, PREVB or

both equal to zero leads to a STack Underflow trap condition if

there is no alternative domain (CAD zero or equal to CED) This

status bit is set/reset at each return from a stack subroutine.

This trap condition is also used to return control to the

operating system when a program terminates (unless it is taken

care of locally within the domain where the trap occured).

XSE : Index Scaling Error. The index exceeds 32 bits after post index

scaling.

IIC : Illegal Instruction Code. Undefined code, or privileged

instruction with the PIA status bit reset.

IOS : Illegal Operand Specifier. Constant operands as destination,

prefixed argument to call instruction, type conflict between

instruction and operands or non-constant number of arguments to

call and polynomial instructions.

ISE : Instruction Sequence Error. Illegal subroutine entry point,

illegal jump to another segment, illegal domain call nesting or

an entry point instruction encountered not by executing a

subroutine call.

PV Protect Violation. This trap occurs when the segment access code

in the capability table (see chapter N.2.3) is violated.

6.2.3.3. Fatal trap condition

PGF . PaGe Fault. This trap may be caused by all instructions, and is

a signal to the NORD—100 that another page has to be swapped in

from backing storage. It will normally cause a process switch,

but has no other effect on the program. If a page fault arises

with the process switch disabled, it will cause a disable

process switch error trap.

ND.05.009.01

-u3_

THE TRAP SYSTEM

6.2.”. Signalling, synchronization and miscellanous status bits

K

PRT

Code Name Bit no.

K flag 8
PRT programmed trap 29
PIA privileged instructions allowed 1
PD part done 2
IR instruction reference 3
PSD process switch disabled u
DT disable process switch timeout 30
DE disable process switch error 31

Flag. The flag bit is used for signalling purposes. There are
special instructions for setting, resetting and testing this
condition. The K flag is also used by instructions using
descriptor addressing (see chapter 8.3.12) to indicate that the
last element in the array is accessed and in string instructions
to indicate termination conditions. All other instructions leave
the K bit unchanged.

: PRogrammed Trap. A process in the NORD-SOO may interrupt another

PIA :

PD

IR 0-

process by setting the second process' programmxitrap status
bit, which acts as a trap condition for this purpose. If the PRT
trap is enabled the trapped process will immediately be
interrupted and its trap handler invoked. If the process is not
in the active state, as soon as it becomes active the trap will
occur. If the process swith is disabled in the machine where the
trapped process resides, the trap will occur as soon as the
process switch is enabled.
The PRT bit is set through monitor calls. A process may trap
itself by setting the PRT bit in the status register.

Privileged Instructions Allowed. Privileged instructions can
only be executed when this bit is set; other attempts to execute
privileged instructions will cause an illegal instruction code
trap condition. This bit may not be changed by instructions, and
is defined in the domain information table. Currently there are
no privileged instructions.

Part Done. This bit is used by the microprogram in long
interruptable instructions to indicate if the instruction is to
be restarted, eg. after page fault in string instructions.

Instruction Reference. This is used by the paging system
microprogram to indicate if there was a page fault on an
instruction or on a data reference.

ND.05.009.01

-uu-

THE TRAP SYSTEM

The NORD-SOO is protected against bad synchronization procedures.
Synchronization procedures can execute with the process switch disable
status bit set. If this bit is set for more 256 microcycles, a
process switch timeout trap condition occurs. Most simple
instructions, like load, store, and simple arithmetic executes in one
microcycle per operand specifier. When executing with process switch
disable set, non ignorable traps (such as page fault) that require
process switching must not occur. If they do occur, they cause a
disable process switch error trap condition.

PSD : Process Switch Disabled. The process switch disable bit is only
modifiable by the SOLO and TUTTI instructions.

DT : Disable process switch Timeout. Occurs if the process switch has
been disabled for more than 256 microcycles.

DE : Disable process switch Error. Occurs if a non—ignorable process
switch (like page fault) occurs while the process switch is
disabled.

ND.05.009.01

-145-

THE TRAP SYSTEM

6.2.5. NORD—SOO system error status bits

Code Name Bit no.

MOR memory address out of range 37
PWF power failure 39
PRF processor fault HO
MSE memory system error U1
CPE cache parity error ”2
MME memory management system error M3

The system error status bits are all fatal CPU traps. On detection
they are reported directly to the NORD—1OO CPU.

MOR : Memory address Out of Range occurs when an address of non-
existent physical memory is presented to the memory management
system.

PWF : PoWer Failure.

PRF : PRocessor Fault. This is a fatal hardware error, caused by
failure of hardware or microprogram.

MSE Memory System Error. This means that there is a data error that
cannot be corrected by the verification bits of primary memory.

CPE : Cache Parity Error.

MME : Memory Management system Error.

ND.05.009.01

-246-

THE TRAP SYSTEM

6.2.6. Addressing traps

In the instruction descriptions, the term addressing traps is used as
a common name for all traps that may occur during operand fetching or
instruction addressing. Most instructions may cause these traps, which
include:

Address Trap Fetch Descriptor Range trap
Address Trap Read Illegal index
Address Trap Write Index Scaling Error
Address Zero trap Illegal Operand Specifier
Protect Violation

6.2.7. Status bits survey

The first column indicates the trap type using the following
abbreviations:

S - status bit, no corresponding trap condition
I - ignorable trap
N - non ignorable trap
F - fatal CPU error

The second column indicates whether the status bit is modifiable by
software.

The third column indicates whether the trap is handled before, during,
or after the current executing instruction:

Before : The instruction has not stored any results before the trap
occurs. If the execution of the program may be resumed after
handling the trap, the instruction will have to be executed
once more. The P register and the "address of the instruction
causing the trap" location in the trap handler local data
area are of equal value.

During : This is the same as "Before" except for some instructions
partially executed before the trap occurs and which may
continue after being restarted. (String, block move and fill,
call, enter, and return instructions) Instructions with one
destination operand will not have stored a result, but
destinations in multiple destination operand instructions
have unpredictable values. If the instruction is to be
restarted the trap handler should not modify any of the
arithmetic registers.

After : The instruction causing the trap is completed and results
stored before the trap occurs. If the execution of the
program is resumed after the trap the next instruction is
executed. The P register contains the address of the next
instruction; the "address of the instruction causing the
trap" location in the trap handler local data area contains
the address of the instruction causing the trap.

ND.OS.OO9.01

-117-

THE TRAP SYSTEM

Trap typex
Modifiable(M).. x
Trap handled before(B), during(D), or after(A). x

Bit no. Name Code

0 not used
1 privileged instruction allowed PIA S
2 part done PD S
3 instruction reference IR S

u process switch disable PSD S
5 zero Z S M
6 carry C S M
7 sign S S M

8 flag K S M
9 overflow O I M A

10 not used
11 invalid operation IVO I M A

12 divide by zero DZ I M A
13 floating underflow FU I M A
1H floating overflow F0 I M A
15 BCD overflow BO I M A

16 illegal operand value IOV I M A
17 single instruction trap SIT I M A
18 branch trap ET I M A
19 call trap CT I M A

20 breakpoint instruction trap BPT I M B
21 address trap fetch ATF I M A
22 address trap read ATR I M A
23 address trap write ATW I M A

2A address zero access AZ I M A
25 descriptor range DR I M D
26 illegal index IX I M A
27 stack overflow STO N M D

28 stack underflow STU N M D
29 programmed trap PRT I M B
30 disable process switch timeout DT N A
31 disable process switch error DE N A

32 index scaling error XSE N D
33 illegal instruction code IIC N D
34 illegal operand specifier 108 N D
35 instruction sequence error ISE N D

36 protect violation PV N D
37 memory out of range MOE F D
38 page fault PGF F D
39 power fail PWF F A

No processor fault PRF F D
A1 memory system error MSE F D
A2 cache parity error CPE F D
H3 memory management system error MME F D

HH—63 not used

ND.05.009.01

-us-

DATA TYPES

Z. DATA TYPES

1.1. Introduction

In the NORD-SOO programs and data are always stored in separate
logical address spaces, referred to as the program memory and the data
memory. Instructions are always stored in the program memory and
operands usually in the data memory. Because the program memory
functions as a read—only memory during program execution, instructions
are protected from alteration.

Most instructions perfonn operations on operands. There are three
categories of operands:

Variable operands residing in data memory
Constants residing in program memory,

as a part of the instruction using them
Register operands

7.2. Data types

The NORD—SOO instruction set handles several basic data types: Bit,
byte, halfWOrd, word, float, doublefloat and binary coded decimal,
abbreviated as BI, BY, H, W, F, D and BCD respectively. (BCD is not
yet implemented.) Operations may also be performed on bit fields of
varying lengths. In addition there are instructions allowing
operations on arrays of BI, BY, H, W, F and D data. A large number of
string instructions allow easy manipulation of character strings (byte
arrays).

1.2.1. Bit

As the NORD-SOO is a byte addressable machine, a bit is specified by
its byte address. The specified bit is the rightmost bit (bit 0, the
least significant bit) in the addressed byte. By post indexing or
special instructions, it is possible to address bits other than bit
zero.

An operand of type bit is a single bit, which is always treated as
unsigned. The GETBF (get bit field) and PUTBF (put bit field)
instructions operate on variable length (1 to 32 bits) bit fields.
Note that these instructions treat the bit fields as signed
quantities, even if they are only one bit long.

ND.05.009.01

_ ug _

DATA TYPES

A byte is 8 contiguous bits starting at any byte boundary. The bits
are numbered from the right, 0 to 7. Bit 0 is the least significant. A
byte may be interpreted both as a signed and an unsigned integer.
Signed byte values are in the range -128 to +127, represented in two's
complement form. Unsigned byte values are in the range 0 to 255.
Unsigned values may be interpreted as characters in any 8 bit (or
less) character set, and instructions are available to set, check or
clear the parity bit (bit 7) of a byte.

7.2.3. Halfword

A halfword is 2 contiguous bytes, 16 bits, starting at any byte
boundary. The bits are numbered from the right, 0 to 15. Bit O is the
least significant. Like a byte, a halfword may be interpreted either
as a signed or unsigned integer, in the range -32768 (—(2**15)) to
+3276? ((2**15)—1) in two's complement form, or O to 65535 ((2**16)-1)
respectively.

7.2.U. Word

: 31 O :

A word is 32 bits, or 4 contiguous bytes, starting at any byte
boundary. It may be used as an unsigned integer in the range 0 to
H29u967295 ((2**32)-1) or as a two's complement integer in the range
—21u7u836u8 (-(2**31)) to +21u7u83647 ((2**31)-1).

ND.05.009.01

_ 50 -

DATA TYPES

142.5. Single precision floating point

: 31 3O 22 : 21 O :

sign : exponent : mantissa

A single precision floating point number is represented by a mantissaof 22+1 bits, a binary exponent of 9 bits with a bias of 256 and asign bit. The range is 10**(-76) to 10**76 with an accuracy ofapproximately 7 decimal digits. Zero is represented as all bits zero.Minus zero (all but bit 31 zero) is interpreted as zero; minus zerowill, however, never be returned as the result of a floating pointoperation.

1:2.6. Double precision floating point

: 63 : 62 54 : 53 0
sign : exponent : mantissa

A double precision floating point number is represented by a mantissaof 54+1 bits, a binary exponent of 9 bits with a bias of 256 and asign bit. The range is 10**(—76) to 10**76, with an accuracy ofapproximately 16 digits. Zero is represented as all bits zero. Minuszero (all but bit 63 zero) is interpreted as zero; minus zero will,however, never be returned as the result of a floating point
operation.

Floating point numbers are always normalized, - ie. the mostsignificant bit in the mantissa is always one. It is thereforeunnecoessary to represent this bit explicitly. For single and doublefloating point numbers there is always one hidden bit in the mantissa,called the implicit bit. This is always assumed to be one, unless allbits in the exponent are zero. It is used in the arithmetic andremoved from the result, thereby giving one more bit of precision.This is the reason why the length of the mantissa is expressed interms of "+1".

The value of a floating point number is

S * 2**e * M if e >< —256
0 if e = -256 (exponent bits all zero)

where S is the sign, with the value -1 if the sign bit is set and 1 ifthe sign bit is reset. e is the value of the 9 bit exponent (taken asan unsigned number) minus 256. Thus the range of e is-255 <= e <= 255. M is the mantissa interpreted as a binary fractionwith the decimal point to the left of the implicit bit, giving a rangeof M of 0.5 <= M < 1.

ND.05.009.01

_ 51 _

DATA TYPES

Examples:
1 (implicit bit)
V

-1.0 : 1 100000001 0000000000000000000000 -1*2**(257-256)*0.5

12.75 : 0 100000100 1001100000000000000000 1*2**(260—256)*0.796875

0.5 = 0 100000000 0000000000000000000000 1*2**(256—2S6)*0.5

0.375 = 0 011111111 1000000000000000000000 1*2**(255-256)*0.75

—5.0 : 1 100000011 0100000000000000000000 -1*2**(259-256)*0.625

0.0 = 0 000000000 0000000000000000000000 (special case)

7.2.7. Floating point rounding

After a floating point operation, the result is normalized and the
full mantissa is checked for rounding. Rounding up is done by adding
one to the least significant bit of the mantissa, rounding down is
done by ignoring bits beyond the least significant bit. The bits
affecting the rounding are labeled

L — least significant bit of that part of
the full mantissa which goes into
a float or double float mantissa

G - the bit nearest L to the right
S - the result of an OR operation of all

bits to the right of G

Mantissa

if 0:1 and (3:1 or L:1) then
add one to the least significant bit of mantissa

endif

Fig. 7.1 Floating point rounding

The effective result is equivalent to rounding up when the last
decimal digit is larger than 5, rounding down if it is less than 5. If
the last decimal digit is equal to 5, the rounding up or down is
determined by the L bit, causing round off errors to take both
positive and negative values in order to partially self-compensate in
long computations.

ND.05.009.01

_ 52 _

DATA TYPES

1.2.8. Descriptor

A descriptor is used for addressing arrays and strings (byte arrays)
through the DESC prefix. The descriptor consists of 8 bytes, the first
four containing the length of the array, the last four containing the
address of element number zero.

: bytes 0 to 3 bytes H to 7 :

Number of elements Address of element 0

The hardware will compare the first half of the descriptor against the
value of the index register used. Illegal indexing will be trapped as
a Descriptor Range error (DR). Indexing is assumed to range from zero
upwards; thus, index values below zero or larger or equal to the
number of elements are illegal.

7.3. Data formats in main memory

Data are stored in memory in various ways depending on their type. The
basic unit in the NORD-SOO memory is byte. In data types which consist
of more than one byte, the bytes are numbered left to right. The bits
in a single element of a data type are numbered right to left. The
leftmost bit is the most significant bit.

Please note that post indexing always counts the elements from the
left, even if the data type is bit.

: byteO : bytei : byte2 : byte3 :

When addressing with byte, halfword, or word displacement part, the
calculated address is the address of the leftmost (lowest numbered or
most significant) byte. Addressing with short address codes is either
B or R relative and has word as the displacement unit. The memory must
then be looked on as if the basic unit is word, and the data object
must be located on a word boundary. The calculated address is the
leftmost byte of the word. When addressing with short word
displacement, the byte displacement is u * word displacement. (This is
taken care of by the assembler and will be of little concern to the
programmer.)

An array is addressed by its zeroth element, a multi-dimensional array
by the element having all indexes zero. This may be a "virtual"
element, in case the range of valid index values does not include
zero, or the array may actually start at a lower address if negative
indexes are allowed.

ND.05.009.01

_ 53 _

DATA TYPES

Most multi-operand instructions require operands to be of the same
type. The operands will be addressed as such, which may cause
unexpected results. If, for example, a byte is addressed as a word,
the intended byte and the following three bytes in memory will be used
as if it were a word sized data item.

BIT: The rightmost bit of a byte, specified by the byte
address.

BYTE: 8 contiguous bits, starting at any byte boundary.

HALFWORD: 16 contiguous bits (2 bytes), starting at any byte
boundary and addressed by the leftmost byte.

WORD: 32 contiguous bits (4 bytes), starting at any byte
boundary and addressed by the leftmost byte.

FLOAT: 32 contiguous bits (N bytes), starting at any byte
boundary and addressed by the leftmost byte.

DOUBLE FLOAT: 6H contiguous bits (8 bytes), starting at any byte
boundary and addressed by the leftmost byte.

DESCRIPTOR: 6H contiguous bits (8 bytes), starting at any byte
boundary and addressed by the leftmost byte.

Fig. 7.2 Data formats in main memory

ND.05.009.01

_ 5M _

DATA TYPES

7.“. Data in registers

Data may be stored temporarily in the registers in the NORD-SOO CPU
register block. Integer data types, ie. BI, BY, H and W data, may be
stored in the four Integer registers (In, n=1,2,3,fl). Floating point
data types, ie. F and D data, may be stored in the four floating point
Accumulators (An, n=1,2,3,fl). The floating point accumulators may be
extended with the Extension registers (En, n=1,2,3,u) for double
precision floating point data. Data is stored in the registers as
shown in the figure below.

The In accumulators are named BIn, BYn, Hn and Wn when used for BIt,
BYte, Halfword, or Word operations. (n=1,2,3,u)

The An accumulators are named Fn when used as single precision
registers. The (An,En) double registers are named Dn when used as
double precision floating point registers.

A common name for BIn, BYn, Hn, Wn, Fn and Dn is Rn. Rn may be used
when referencing a register where the type is determined by the
context.

31 O

: I1 :
: 12 ° Integer accumulators
: I3 : or Index registers
: IN :

31 0 31 O

: A1 : E1 : Floating point accumulators
: A2 : E2 : and Extension registers
: A3 : E3 : A=E=32 bits D=6M bits
: AN : EM :

Fig. 7.3 Arithmetic registers

ND.05.009.01

_ 55 _

DATA TYPES

7 O

: In :::::::: BYn

15 O

: In :::::::::::::::: Hn

::::Z:: In :2::::22::::3=22 Wn

En Fn:::: An :::::::::::::::

Fig. 7.4 Data in registers

When using the integer registers for BIt, BYte and Halfword, the

unused upper part of the register is always zero-filled rather than

sign-extended when data is loaded into the register.

When single float data is stored in one of the Fn registers, ie. An,

the corresponding En register remains unchanged.

ND.05.009.01

.. 56 _

OPERAND SPECIFIERS AND ADDRESSING

8. OPERAND SPECIFIERS AND ADDRESSING

8.1. Introduction

An instruction consists of an instruction code and zero or more
operand specifiers. The general instruction format is shown in the
figure below:

Instruction : Operand : Operand : Operand : . .. :
Code : Specifier : Specifier : Specifier : '

1 or 2 bytes Zero or more operand specifiers, each 1 to 9 bytes

Fig. 8.1 Instruction format

The instruction code specifies the operation to be performed and the
operand data types. The operand specifier names the data to be worked
on. This chapter describes the different formats of the operand
specifier. The next chapter gives details of the instruction code.

In many NORD-500 instructions one of the integer registers or one of
the floating point registers are used as argument or result. The two
lower bits of the instruction code then specify the register number, a
floating point or double precision floating point register (Fn or Dn)
when the data type is floating or double floating and an integer
register (In) when the data type is integer.

ND.05.009.01

-

57 _

OPERAND SPECIFIERS AND ADDRESSING

8.2. General and direct operands

8.2.1. Introduction

An operand specifier designates the data for an instruction to work
on. If an instruction requires several operands, a corresponding
number of operand specifiers follow the instruction code.

: prefix(es) : address code : data part :

Fig. 8.2 Operand specifier format

The length of an operand specifier may be one to nine bytes.

Operand specifiers are divided into general operand specifiers and
direct operand specifiers. The interpretation of a general operand is
determined by an address code, data part and optional prefix(es). The
interpretation of a direct operand depends on the instruction; the
operand may only have a data part, no prefix or address code.

The instruction determines whether a general or a direct operand
should be used. Instructions using direct operands are mentioned in
8.”; all others use general operands. Direct operands are used most
places where the operand value has to be a constant of a specific
type, and the operand value can be determined unambigously as the
contents of the succeeding bytes.

The notational conventions used in this manual to indicate general and
direct operands are explained in Appendix C. Operand names are chosen
to give more information about the specific operand in use, eg.
<source>.

The following table describes the structure of operand specifiers in
relation to general and direct operands. The blank part of the table
indicates that there are no prefixes or addressing codes for direct
operands and no prefixes for constant and register general operands.
All general operands have an address code.

ND.05.009.01

General operands:

1) Constant

2) Register

3) Data memory

Direct operands

1) Absolute address
(program/data

2) Displacement
(program relative)

-58—

OPERAND SPECIFIERS AND ADDRESSING

Operand specifier

prefix a

u
0.

so
no

.0
on

to
no

.-

“BNOPY)

ddress code data part

-------- constant

________ absolute
address or
displacement

absolute
address

displacement .-
Q.

on
I.

1 or 2
bytes

2 bits or 6 bits, 1,2,4
1 byte or 8 bytes

Fig. 8.3 Operand specifier structures

I OH 2 BYTES
//

I - 9 IIYTES

INSTR UCTION CODE
l/

'/
()I’ERA NI) SI'IK 'II’II'IR

'/

0 - 2 ”"155 l - 9 IJYTES

PREFIXES A DDRESS C(IDE & DA TA I'.-l RT
1/ v

2 HITS 6 BI'I'S

A DDRIfSS __ ,
CODE - DA TA I’ARF

I II YTIi

A DDR I555 COI”2‘

\ 0-8 IIYI'ES
l

DA TA I’A R T

Fig. 8.” Operand specifier layout

ND.O5.009 .01

III MULTIPLE
.9"m s_I'EC_II~‘LER_

_ 59 _

OPERAND SPECIFIERS AND ADDRESSING

8.2.2. General operands

A general operand consists of the address code, the data part and
possibly a prefix.

The Address Code

The address code is either 2 bits or 1 byte long. It indicates both
the address mode, of which there are 10 types, and the length of the
data part, of which there are 6. Combinations of address modes and
data part lengths give 28 different address codes.

The table below lists the data part length specifiers (in the NORD—SOO
assembler notation), names and sizes. Note that :W and :F are
different assembly notations for the same operand specifier format.

:8 - short 6 bits
:B - byte 1byte
:H - halfword 2 bytes
:W - word M bytes
:F — floating M bytes
:D — double float 8 bytes

Fig. 8.5 Data part length specifiers

Normally the NORD-SOO assembler will select the optimal displacement
size. It is possible, however, to force a particular (larger) size of
displacement by following the operand specifier by either :3, :B, :H,
:W, :F or :D. (The last two applies to constants only.) In examples
shown, a data part length specifier is used only when forcing a non-
default data part length.

The following table shows the 10 address modes and the 6 data part
length specifiers. Legal combinations are marked with +. Note that
post index is abbreviated as P.I.

ND.05.009.01

-60-

OPERAND SPECIFIERS AND ADDRESSING

Address mode Data part length specifier No data part

:3 :B :H :W :F :D

1. LOCAL + + + +

2. LOCAL P.I. + + +

3. LOCAL INDIRECT + + +

N. LOCAL INDIRECT P.I. + + +

5. RECORD + + + +

6. PRE INDEXED + + +

7. ABSOLUTE +

8. ABSOLUTE P.I. +

9. CONSTANT + + + + + +

10.REGISTER +

Operand specifier prefix:

DESCRIPTOR +

ALTERNATIVE +

Fig. 8.6 NORD—SOO address modes

Most address codes contain ’11' in the leftmost two bits. The
remaining six bits in the byte then specify the code.

However, in 3 special cases the leftmost two bits are ’00', ’01’ or
’10’. These are the short address codes (:S in the table) and the two
bits alone indicate both length and mode. The remaining six bits are
then taken as the data part, so that the complete operand specifier
occupies only one byte.

The Data Part

The last part of the operand specifier, the data part, may be from six
bits (for short data parts) to 8 bytes (for double word data parts).
The data part contains an address, a displacement or a constant. The
register address mode has no data part since the register number is
contained in the address code.

ND.05.009.01

-

61 _

OPERAND SPECIFIERS AND ADDRESSING

Addresses are always word sized. Short, byte and halfword
displacements are always treated as unsigned values.

The displacement unit is always bytes, except for short displacements,
where the unit is words. The range for short displacement is
consequently 0..63 word from the record or base registers, and the
addressed data object must be located an integral number of words from
the register referred.

Prefixes

All address codes except constant and register may include prefixes as
the first 1 or 2 bytes. These are used in two special cases where the
operand specifier does not point to the operand itself. Such an
operand specifier may point to an array descriptor or to an operand on
an alternative domain. The prefixes are followed by the operand
specifiers.

The only allowed two-prefix combination is when an operand points to
an array descriptor referring to an alternative domain, written as
ALT(DESC(<operand>)(Rn)). Only the last data access then goes to the
alternative domain; the descriptor itself is accessed in the current
domain.

8.2.3. Post Index

Post index is used in the local post indexed, the local indirect post
indexed, absolute post indexed and the descriptor addressing modes.

Post indexed addressing means that the index register holds the
address of the operand element relative to the start of the addressed
structure. In NORD—SOO the index is always a logical index giving the
element number in the array, regardless of the element size. Accessing
the next element in the structure is done by incrementing the index
register by one.

Hardware will multiply the logical index with a data type dependent
factor, the post index scaling factor. The result gives the physical
index. The post index scaling factor is the number of bytes used to
represent the data type in question. The post index scaling factor is
1/8 (BI), 1 (BY), 2 (H), M (W), 4 (F), 8 (D) and 8 (descriptor). The
physical index is added to the base address of the structure in order
to get the address of the operand. Note that the index is signed.

ND.05.009.01

~62—

OPERAND SPECIFIERS AND ADDRESSING

8.3. Survey of addressing modes

The first column lists the different groups of addressing modes in the
assembler notation for displacements and the name of the displacement.
The second column lists the algorithm used for determining the
effective address (ea) of the operand or the operand itself. The third
column lists the address code. (Abbreviations are explained in
Appendix C.)

LOCAL
B. <displ> :S ea=(B)+d*M
short displacement

B. <displ> :B ea=(B)+d
byte displacement

B. <displ> :H
halfword displacement

B. <displ> :W
word displacement

LOCAL POST INDEXED
B. <displ> (Rn) :B ea=(B)+d+p*(Rn)
byte displacement

B. <displ> (Rn) :H
halfword displacement

B. <displ> (Rn) :W
word displacement

LOCAL INDIRECT
IND (B. <displ> :B) ea=((B)+d)
byte displacement

IND (B. <displ> :H)
halfword displacement

IND (B. <displ> :W)
word displacement

ND.05.009.01

Hex
code

040H+xx

0C1H

OCZH

0C3H

ODUH+y

0D8H+y

0DCH+y

OCSH

0C6H

0C7H

Octal
code

100B+xx

301B

302B

303B

32HB+y

33OB+Y

33uB+Y

305B

3068

307B

-63—

OPERAND SPECIFIERS AND ADDRESSING

LOCAL INDIRECT, POST INDEXED
IND (B.<displ> :B) (Rn)
byte displacement

IND (B.<displ> :H) (Rn)
halfword displacement

IND (B.<disp1> :W) (Rn)
word displacement

RECORD
R. <displ> :8
short displacement

R. <displ> :8
byte displacement

R. <displ> :H
halfword displacement

R. <displ> :W
word displacement

PRE-INDEXED
Rn. <displ> :B
byte displacement

Rn. <displ> :H
halfword displacement

Rn. <displ> :W
word displacement

ABSOLUTE
<address>

ABSOLUTE, POST INDEXED
<address> (Rn)

ea=((B)+d)+p*(Rn)

ea=(R)+d*H

ea=(R)+d

ea=(Rn)+d

ea=a

ea=a+(Rn)*p

ND.OS.OO9.01

OEHH+y

0E8H+y

0ECH+y

080H+xx

0C9H

OCAH

OCBH

OFHH+y

0F8H+y

0FCH+y

OCMH

OEOH+y

3HHB+y

350B+y

354B+y

200B+xx

3113

3128

3138

36MB+y

37OB+y

37NB+y

30MB

3HOB+y

-614-

OPERAND SPECIFIERS AND ADDRESSING

CONSTANT
<constant> :S op=c
short constant

<constant> :8
byte constant

<constant> :H
halfword constant

<constant> :W , <constant> :F
word constant, floating point constant

<constant> :D
double floating point constant

REGISTER
Rn op=(Rn)

DESCRIPTOR
DESC (<descriptor>) (Rn) ea=A+p*(Rn)

(Rn)+1=:Rn
if (Rn) > descriptor.length then

descriptor range trap condition
endif
if (Rn) >= descriptor.length then

1::status.flag
endif

ALTERNATIVE
ALT (<operand>)

The address (ea) is referenced on the alternative domain.
Parameter access is required on the referenced segment in
the alternative domain.

ND.05.009.01

000H+xx

0CDH

OCEH

OCFH

OCCH

0DOH+y

OFOH+y

OC3H

OOOB+xx

315B

3163

317B

31MB

3ZOB+y

360B+y

31GB

-55-

OPERAND SPECIFIERS AND ADDRESSING

8.3.1. Local addressing

Assembly Hex Octal
notation Name code code

B.<displ> local

B.<displ>:S local, short displacement OhOH+xx 1OOB+xx
B.<disp1>:B local, byte displacement OC1H 301B
B.<displ>:H local, halfword displacement OCZH 302B
B.<displ>:W local, word displacement OC3H 303B

ea 2 (B)+d

The local addressing mode is addressing relative to the base register
B. This register is meant to hold the address of the beginning of the
local variables of a routine, hence the name local addressing.

The effective address is calculated by adding the value of the
displacement to the content of the base register.

Short displacement part with a displacement unit of word is legal, in
addition to byte, halfword and word displacement parts with the
displacement stored in 1, 2, or M byte(s) after the address code,
displacement unit byte. Displacement values are treated as unsigned.

B register ——> IIIOOIII

displacement

.0000...effective_
address .0000...

.-
o-

a.
u

a.
o.

:-
to

In
on

O.
o-

u.
no

no
no

no
to

no
on

on
n

no
.0

Fig. 8.7 Local addressing

ND.05.009.01

-55-

OPERAND SPECIFIERS AND ADDRESSING

Example:

: 0338 : BY1 ::

: 302B : B.HOOB B: : 10008 :

: 001B :

: 000B :

ea = (B)+d = 1000B+400B = 1400B

Hexadecimal

: 01CH : BY1 =:

: 0C2H B.0100H B: : OZOOH :

: 001H :

: OOOH :

ea = (B)+d = 0200H+0100H : 0300B

ND.05.009.01

-67—

OPERAND SPECIFIERS AND ADDRESSING

8.3.2. Local, post indexed addressing

Assembly Hex Octal
notation Name code code

B.<displ>(Rn) local, post indexed

B.<displ>(Rn):B local, post indexed, OD4H+y 32MB+y
byte displacement

B.<displ>(Rn):H local, post indexed, OD8H+y 33OB+y
halfword displacement

B.<displ>(Rn):W local, post indexed, ODCH+y 33HB+y
word displacement

ea = (B)+d+p*(Rn)

A local post indexed address is calculated by adding the displacement,
the content of the B register and the content of the index register
multiplied by the post index scaling factor. See the section on post
indexing.

B register ———->

O.
on

a.
a.

displacement f
o.

a.
I.

on
.0

.0
.0

II
n

00
0.

on
a.

p*Rn

effective
address

Fig. 8.8 Local, post indexed addressing

ND.05.009.01

-68-

OPERAND SPECIFIERS AND ADDRESSING

Example:

021B : BIZ :=

; 3323 E 3.170(33):3 3: E 100003 Q
2 0003 E ' °
E 1703 2 33: § 3003 2

Hexadecimal

: 011B : BIZ :=
:____-_________.

: ODAH : B.O78H(R3):H B: : 01000H ;

E 0003 2 ° '

: 0783 = 33: E 01003 2

ea = (B)+d+p’(Rn) = 01000H+078H+0100Hl08H = 01098H

ND.05.009.01

_. 59 _

OPERAND SPECIFIERS AND ADDRESSING

8.3.3. Local indirect addressing

Assembly . Hex Octal
notation Name code code

IND(B.<displ>) indirect

IND(B.<displ>:B) indirect, byte displacement OCSH 305B
IND(B.<displ>zH) indirect, halfword displacement 0C6H 306B
IND(B.<displ>:W) indirect, word displacement 0C7H 307B

ea = ((B)+d)

The value of the unsigned displacement is added to the local base
register and this sum forms the address of a word which holds the
address of the operand. Subroutine arguments are usually accessed by
local indirect addressing.

B register—agnoootoc I

displacement 1
effective
address

Fig. 8.9 Local indirect addressing

ND.05.009.01

_ 7o -

OPERAND SPECIFIERS AND ADDRESSING

Example:

: 133B : F” +

: 305B : IND(B.120B:B) B: : “00B :

: 120B : 5208: ; . 10003 ;

ea = ((B)+d) = (”008+1203) = 10003

Hexadecimal

: 05BH : F“ +

: 0053 = IND(B.050H:B) B: 2 O100H :
: 050H : 01503: 2 ozoon E

ea = ((B)+d) = (0100H+050H) = 0200B

ND.05.009.01

_ 71 _

OPERAND SPECIFIERS AND ADDRESSING

8.3.“. Local indirect, post indexed addressing

Assembly Hex Octal
notation Name code code

IND(B.<displ>)(Rn) indirect, post indexed

IND(B.<displ>:B)(Rn) indirect, post indexed, OEHH+y 3HHB+y
byte displacement

IND(B.<displ>:H)(Rn) indirect, post indexed, 0E8H+y 350B+y
halfword displacement

IND(B.<displ>:W)(Rn) indirect, post indexed, OECH+y 35MB+y
word displacement

ea = ((B)+d) + p*(Rn)

The address is calculated by adding the unsigned displacement of the
This sum is

interpreted as an address. The content of the word with this address
is added to the content of the specified register multiplied by the
post index scaling factor. This sum is the address of the operand.
Subroutine array arguments are usually accessed with local indirect,

address code to the content of the base register.

post indexed addressing.

noon-coo

B register—>-........

displacement
.0000...

a
on

O.
I.

to
no

on

~———————-—.-
00......

physical
index

no
no

00
no

on

effective
address

uo
no

no
on

no
to

cc
0.

on
a.

on

o.
a.

no
no

no

Fig. 8.10 Local indirect, post indexed addressing

ND.05.009.01

-72-

OPERAND SPECIFIERS AND ADDRESSING

Example:

Q 0133 Q 33 g: 3: Q 6003 Q
2 3373 E IND(3.603)(33) 6603: 2 20003 Q
Q 0603 Q 33: § 1503 2

ea = ((B)+d)+p*(Rn) = (660B)+2*150B = 2000B+320B = 2320B

Octal
Hexadecimal

; 0033 E 33 g: 3: 2 01803 E
E 0373 2 IND(3.0303)(3u) 01603: 2 03003 :
' 0303 ' 33: § 0683 Q

ea = ((B)+d)+p*(Rn) = (O16OH)+2*068H = ONOOH+ODOH = OHDOH

ND.OS.OO9.01

_ 73 _

OPERAND SPECIFIERS AND ADDRESSING

8.3,5. Record addressing

Assembly Hex Octal
notation Name code code

R.<displ> record

R.<displ>:S record, short displacement O80H+xx ZOOB+xx
R.<displ>:B record, byte displacement OCQH 311B
R.<disp1>:H record, halfword displacement OCAH 3128
R.<displ>:w record, word displacement OCBH 313B

ea = (R)+d

The address of the operand is calculated by adding the displacement to
the content of the record register (R).

R register—-—> 00......

no
Go

I.
no

to

an
no

no
on

no

displacement

effective
address

on
on

no
a.

no
on

u

o.
I.

u
I.

n
on

c

Fig. 8.11 Record addressing

ND.05.009.01

Example:

03’43 ; BY‘I ::

mucus R: 2

Hexadecimal

: O1CH : BY1 =:

: OCAH : R.O1OOH R: :

ea = (B)+d = 200H+100H = 3001-!

_ 7n, _

OPERAND SPECIFIERS AND ADDRESSING

ND.05.009.01

_ 75 _

OPERAND SPECIFIERS AND ADDRESSING

8.3.6. Pre indexed addressing

Assembly Hex Octal

notation Name code code

Rn.<displ> pre indexed

Rn.<displ>:B pre indexed, OFHH+y 36MB+y
byte displacement

Rn.<displ>:H pre indexed, 0F8H+y 37OB+y
halfword displacement

Rn.<displ>:w pre indexed, OFCH+y 37HB+y
word displacement

ea : (Rn)+d

The contents of the index register specified in the address code is

added to the unsigned displacement of the address code. This sum is

taken as the address of the operand.
on

.0
no

R3————-————->

displacement

effective
address

to
an

00
to

on
a!

o.
n

Fig. 8.12 Pre indexed addressing

ND.05.009.01

_ 76 _

OPERAND SPECIFIERS AND ADDRESSING

Example:

; 1653 ; D2 *

: 3723 : R3.HOOB R3: : 100003 :

Q 0013 Q ° '

Q 0003 Q

ea = (Rn)+d = 1000OB+400B = 10400B

Octal

Hexadecimal

: 075B : D2 *

OFAH : R3.01OOH R3: : 01000H ;

: 001H : ' '

: OOOH :

ea = (Rn)+d = O1000H+0100H = 011OOH

ND.05.009.01

_ 77 _

OPERAND SPECIFIERS AND ADDRESSING

8.3.7. Absolute addressing

Assembly Hex Octal
notation Name code code

<label> absolute addressing OCHH 3OHB

ea = a

When the address code is equal to 304B, OCHH, the four bytes following
the address code are taken as the address of the operand.

data part of
operand specifier

Fig. 8.13 Absolute addressing

ND.05.009.01

-73-

OPERAND SPECIFIERS AND ADDRESSING

Example:

165B : D2 *

30MB ; 20020un5223

020B :

: 010B :

111B :

: 122B :

ea : 20020uu5223

Hexadecimal

: O75H : D2 *

: ocuH E o1oo8u952H
: 010H :

: 008B :
g__--__g

: OMQH :

: 052H :

ea = O10084952H

"ND.05.009.01

_ 79 _

OPERAND SPECIFIERS AND ADDRESSING

8.3.8. Absolute, post indexed addressing

Assembly Hex Octal
notation Name code code

<label>(Rn) absolute, post indexed 0EOH+y 3HOB+y

ea : a+p*(Rn)

The four bytes following the address code are taken as the base
address. An absolute, post indexed address is then the content of the
index register multiplied by the post index scaling factor and added
to the word integer following the address code giving the effective
address.

absolute ———-—>
address

p*index : :

effective :........
address I :........:

Fig. 8.1” Absolute, post indexed addressing

ND.O5.009.01

_ 80 _

OPERAND SPECIFIERS AND ADDRESSING

Example:

: 0208 : W1 :=

: 3N1B : 2000B(R2) R2: : 200B :

: 000B :

: OOOB :

: OOHB :

: 000B :

ea = a+p*(Rn) 20003+u*2ooe = 30003

Hexadecimal

: 010H : W1 :=

Q OE1H : ouoon(R2) R2: § 080H 2
: OOOH :

: OOOH :

: OOHH :

: 000H

ea = a+p*(Rn) = OUOOH+H*080H = 0600B

ND.05.009.01

_ 81 _

OPERAND SPECIFIERS AND ADDRESSING

8.3.9. Constant operand addressing

Assembly Hex Octal
notation Name code code

<constant> general constant

<constant>zS short constant OOOH+xx OOOB+xx
<constant>=B byte constant 0CDH 315B
<constant>:H halfword constant OCEH 316B
<constant>:w word constant OCFH 317B
<constant>:F floating point constant OCFH 317B
<constant>:D double floating point constant OCCH 31NB

op = data part of operand specifier

The data to be operated on is a part of the operand specifier. It
resides in the program memory and can not be modified by any
instruction. The value of the operand may have a length of six bits,
one, two, four or eight bytes.

Constant operands are illegal for all write instructions, eg. store,
swap, or shift instructions, and as the destination operand(s) for
multi—operand instructions. They are also illegal as subroutine
arguments, as they have no address in data memory.

Note that word and floating point constants have the same address
code.

Assembly notation byteO byte1 byte2 byte3 byte”

150B:B Octal: 3153 150B
Hex: 0CDH O68H

1200000:W Octal: 317B OOOB 022B 117B 2008
Hex: OCFH OOOH 012B OMFH 080H

128:8 Octal: 012B
Hex: OOAH

6HOOH:H Octal: 316B 1HHB 000B
Hex: OCEH 06HH OOOH

Fig. 8.15 Example of constants

The instruction code decides the interpretation of the operand
addressed by the operand specifier. This may produce conflicts between
the operand interpretation and the size of the data part of constant
operands. These are solved by sign extension or data conversion if
possible, done automatically by hardware. If no conversion is
meaningful an illegal operand specifier trap condition occurs.

ND.05.009.01

_ 82 _

OPERAND SPECIFIERS AND ADDRESSING

The the following abbreviations are used in the table.

gg§ ILLEGAL OPERAND SPECIFIER TRAP CONDITION
BZ bit zero of constant is operand
SX sign extended (unless instruction calls for unsigned)
CF convert to float
CDF convert to double float
NC no conversion required
32LZ 32 least significant bits zero filled
<c> general operand with constant type

Constant operand type
Instruction
operand <c>:S <c>:B <c>:H <c>:W <c>:F <c>:D
type

BI BZ 108 103 I05 108 106
BY SX NC 108 106 I03 108
H SX SX NC IQ§ ggg ggs
W SX SX SX NC NC ggg
F CF CF CF NC NC IQ§
D CDF CDF CDF 32LZ 32LZ NC

Fig. 8.16 Treatment of constants as operands

ND.05.009.01

.. 83 _

OPERAND SPECIFIERS AND ADDRESSING

8.3.10. Register addressing

Assembly Hex Octal

notation Name code code

Rn (n=1..u) Register 0DOH+y 320B+y

One of the registers may be the operand of an instruction. If the data

type of an instruction is integer or it does not contain a data type

specification, one of the integer registers is taken as the operand.

If the data type of the instruction is float or double float, one of

the float or double float registers is taken as the operand.

A register operand is not legal in the argument list of a CALL or

CALLG instruction, or as destination in the BMOVE instruction.

ND.05.009.01

-814-

OPERAND SPECIFIERS AND ADDRESSING

8.3.11. Alternative addressing

Assembly Hex Octal
notation Name code code

ALT(<operand>) alternative domain addressing OCBH 3108

With this operand specifier prefix, it is possible to address operands
on the alternative domain of the process. Parameter access to the
segment on the alternative domain is required. See the memory
management section for further explanation of domain, alternative
domain and parameter access. <operand> can be any operand specifier
that does not contain a new ALT operand specifier prefix. If the
operand specifies indirect addressing, the indirect address is taken
from the current addressing domain. If the operand specifies
descriptor access, the descriptor is taken from the current addressing
domain. Only the last memory access which actually fetches the data
goes to the alternative addressing domain.

ND.05.009.01

_ 85 _

OPERAND SPECIFIERS AND ADDRESSING

8.3.12. Descriptor addressing

Assembly Hex Octal
notation Name code code

DESC(<operand>)(Rn) descriptor 0FOH+y 360B+y

ea = A + p*(Rn), A = contents of second word of <operand>

<operand> is the address of a descriptor, and it can be any operand
specifier not containing an operand specifier prefix. <operand> may be
post indexed, in which case the post index scaling factor p is 8 (the
size of a descriptor). The post index scaling factor of the descriptor
addressing itself is determined by the data type specified in the
instruction code.

A descriptor comprises two words in memory accessed via a general
operand. The first word contains the length of a data array, the
second contains the start address of the array. The operand element of
the array is addressed post indexed relative to the start address in
the descriptor. The index is incremented and checked against the
length in the descriptor. If the index is greater than this length
after it is incremented, a descriptor range trap condition will occur.

The hardware will report if the last element of the array is addressed
by setting the K flag. If an element beyond the array is addressed the
K flag and the descriptor range status bit are set.

The index register is incremented by a data access via descriptor. It
is not incremented when accessing only the address of the operand
(load address and call instructions).

if (Rn)+1 > descriptor.length then
descriptor range trap condition

endif
if (Rn)+1 > = descriptor.length then

1 =: status.K
endif
perform addressing with Rn as post index
if data access then

(Rn+1) :: Rn
endif

ND.05.009.01

.. 35 _

OPERAND SPECIFIERS AND ADDRESSING

B-I‘egistel" :ooutcooo:

displacement : :

length_____.:. . . .=
start addresso

start of array———————————i>

p'Rn

effective address-H: . o I o u o u n

Fig. 8.17 Addressing with a descriptor

In this example the descriptor is addressed locally

ND.05.009.01

_ 37 _

OPERAND SPECIFIERS AND ADDRESSING

Example:

: 015B : H2 := B: : 400B :

Q 362B : DESC(B.1OOB)(R3) 5003: : 1003 :
§ 3013 E 50u3: ; 20003 E

: 1003 : 33: : 503 :

ea: A + p*(Rn) = (NO0B+1OOB+H) + 2*508 = (50MB) + 120B = 2120B

Hexadecimal

: OODH : H2 := B: : O100H

: OFZH : DESC(B.ONOH)(R3) O1MOH: : 040B :
:____-_____:

: OC1H : O1uuH: : CHOOH :

; OHOH ; R3: : 028H :

ea: A + p*(Rn) = (01OOH+OHOH+H)+2*028H = (01H4H)+050H = ONSOH

ND.05.009.01

-

88 _

OPERAND SPECIFIERS AND ADDRESSING

8.”. Direct operands

8.”.1. Introduction

Direct operands are those found in the bytes hunediately following the
instruction code or the preceding operand specifier. There is no
prefix or address code part in the operand specifier. Direct operands
are in the syntax definitions in this manual written using the fonn
<<direct operand>>.

The interpretation of a direct operand depends on the instruction and
applies to specific instructions only. The data part of the operand
specifier is taken either as a displacement or as an absolute address.
Absolute addresses may be to the program or the data area; in either
case a segment number of zero will be taken as current segment.

8.”.2. Displacement addressing

The NORD-SOO instructions LOOP, LOOPI, LOOPD, GO and IF <rel> GO have
displacement (program relative) addressing. Each instruction has two
instruction codes, one for byte displacement part and one for halfword
displacement part. The displacement is signed.

(P) + d —> (P)

8.“.3. Absolute program addressing

The instruction CALL subroutine have absolute addressing. When using
CALL the address follows the instruction code in the succeeding four
bytes.

When executing CALLG the address is accessed via a general, not a
direct, operand. Complete information is given in the description of
the CALL instruction.

8.u.fl. Absolute data addressing

The INIT and ENTM instructions are followed by an absolute address of
the bottom of the new stack. The ENTF and ENTFN instructions are
followed by the address of the local data area.

ND.05.009.01

.. 89 _

THE NORD—SOO INSTRUCTION SET

9. THE NORD—SOO INSTRUCTION SET

9.1. Introduction

The NORD—SOO instruction set has a variable length instruction format,

the length determined by the type of instruction and the operands

used. The shortest instructions are one byte long, the longest may be

several thousand bytes long.

Each instruction consists of an instruction code and zero or more

operand specifiers. The general instruction format is shown in the

figure below:

Operand: Instruction : Operand Operand
: SpecifierCode : Specifier : Specifier

1 or 2 bytes Zero or more operand specifiers, each 1 to 9 bytes

Fig. 9.1 Instruction format

The following chapters describe each instruction code in detail.

Operand specifiers are described in the previous chapter.

The term instruction code is used to indicate both the octal or

hexadecimal value and the assembly notation. The octal or hexadecimal

value of an instruction code is a numeric representation of the bit

pattern inside the NORD—SOO. The assembly notation is used by the

assembler programmer to symbolically represent the binary code.

An instruction code specifies the operation to be perfonmed and the

data types of the operands. It may consist of one or two bytes. One

byte instruction codes are used for the operations most frequently

generated by compilers.

In many NORD—SOO instructions one of the general registers or one of

the floating point registers are used as argument or result. The two

lower bits of the instruction code then specifiy the register number,

meaning a floating point or double precision floating point register

(Fn or Dn) when the data type is floating or double floating, a

general register (Rn) when the data type is integer.

ND.05.009.01

-

go _

THE NORD—SOO INSTRUCTION SET

7 0

: instruction code : short instruction code

7 2 1 0

: instruction code :reg: short register instruction code

15 10 9 0

: 1 1 1 1 1 1 long instruction codeinstruction code

15 10 9 2 1 0

: 1 1 1 1 1 1 instruction code :reg: long register
: instruction code

Fig. 9.2 Instruction code formats

All the upper 6 bits of a long (two byte) instruction code are set,
which means that such codes are in the range 1760008 to 1777773,
OFCOOH to OFFFFH.

The instruction set is described using the syntax explained below.
Syntax elements enclosed in brackets,[J , are elements used in some
instructions, but not all. Brackets followed by an n indicate that
more than one occurrence of an optional syntax element may be
specified. The sign ::= means "is defined as".

instruction format ::= [[datatype specifiefl [register numberJ]
instruction code name
[operand specifierfl [, operand specifierfln

t = data type specifier ::= BI, BY, H, W, F, D
t is a subset of the data type specifiers

n = register number ::= 1,2,3,u

instruction code name ::= text or character string

operand specifier ::= <general operand> <<direct operand>>

<general operand> - the operand is accessed via
a general addressing mode

<<direct operand>> - the operand is found in the bytes
immediately following the instruction
code or the preceding operand specifier

ND.05.009.01

_ 91 _

THE NORD—SOO INSTRUCTION SET

When describing the operand, the description string is divided in

three or four parts, as follows:

operand ::= operand name/access code/datatype /pointer register

Operand name is a text string.

The operand name is used as a descriptive term. Eg. the load

instruction format uses the term <source> as the operand name; the
store instruction format uses <dest> as the destination operand name.

The access code may have the following abbreviations:

r - read access
w - write access
rw — read and write access
rwl - locked swap access
aa - address access
3 - special, explained explicitly in

the instruction descriptions

Locked swap access applies to the TSET instruction only.

Address access (aa) together with descriptor addressing will not cause
the index register to be incremented. If the access code is read (r)
or write (w), the index register will be incremented.

The pointer register applies to string instruction descriptions only.

Data status bits not mentioned in the instruction description are

always cleared after the instruction has been executed.

Before going on to the instruction set, an example will be explained:

ND.O5.009.01

_ 92 _

THE NORD-SOO INSTRUCTION SET

EXAMPLE:

Load bit register number 2 with the bit number found in R3
from the bit array BITA. BITA is displaced O78H, or 170B,
bytes from the base address of the local data area.
The size of the displacement part is forced to half word.

Assembly code notation: B12 :: B.BITA(R3) : H

Description:

The instruction code for loading bit register 2 is OFCOSH, or 1760058,
written as 37MB,OOSB when treated as two ootal bytes.

B.BITA(R3) is the local post indexed addressing mode, address code
ODAH, or 33213.
The :H length specifier tells the assembler to store the displacement
in halfword format. Normally the assembler should be allowed to select
the storage format, in order to achieve optimal program encoding. In
this example the assembler would have stored the displacement in byte
format if :H had been omitted.

The address of the byte containing the bit in question is calculated
as follows (See figure the next page) :

ea = (B) + d + p * (Rn)

Hex: 01000H + 078H + INT(0103H/O8H) : 01098H

Octal: 10000B + 1703 + INT(U03B/1OB) = 102303

Post indexing always counts the data elements from the left,
consequently the bit number within the addressed byte is

bn = 7-REM(403B/10B) : 7-REM(0103H/08H) : 7-3 : N

ND.05.009.01

.. 93 ..

THE NORD~500 INSTRUCTION SET

Program memory

program : 37MB ;
counter :-—-—-:

: 005B :

: 3323 :

: OOOB :

: 170B :

1503005

: . : 1503058

P : : 150300B :
0 ____-____---_ 0a

3 : : 100003 §
R2: 2 7701u03 Q
R3: Q u033 '

Hexadecimal

Program memory

: OFCH :

§ 0053 2
: ODAH :

: OOOH :

2 0783 2
: ODOCSH

program ODOCOH
counter

O1000H :

R2: : 03F060H :

R3: : 103H :

Before execution

: 0003 :
~ _-_-_ .. c

B register 1000OB

displacement : . z

: OOOB : 10170B

p * Rn

effective : 0203 Q 102303
address ——--——:

Registers

1503053 '
' 100003 ‘
' 1 I
' u033

After execution

Data memory

B register : OOOH : O1000H

displacement

0003 Q 010783
p * Rn

effective 010B : 01098H
address --——-

Registers

' ODOCSH '
01000H '

I 1 :
103H

‘ _-___-_-___.._a

After execution

ND.05.009.01

_ 9n _

DATA TRANSFER, ARITWIETICAL AND LOGICAL INSTRUCTIONS

10. DATA TRANSFER; ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.1. Load

Format: tn :: <source/r/t>

Assembly Hex Octal
notation Name code code

BIn := load bit OFC04H+(n—1) 17600HB+(n-1)
BYn := load byte 00HH+(n-1) 00HB+(n—1)
Hn :2 load halfword 008H+(n-1) 010B+(n—1)
Wn = load word OOCH+(n-1) O1HB+(n-1)
Fn = load float 010H+(n-1) 020B+(n-1)
Dn = load double float OlUH+(n-1) 02HB+(n—1)

Operation: <source> -> Rn

Description:

The value of the operand (source) is loaded into the register
specified in the instruction code. When the data type is BI, BY, H or
W one of the I registers is loaded. The value is right justified in
the register, the least significant bit of the operand in the least
significant bit of the register. With BI, BY, or H as data type, the
rest of the register is zero filled. One of the floating point
registers is loaded when the data type is F or D.

Trap conditions: Addressing traps

Data status bits:

<source> = O —> z
<source>.signbit -> S

Example:

Load local halfword variable MEMBERS into R3

H3 :: B.MEMBERS

ND.05.009.01

-95..

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.2. Load local base register

Format: B :: <source/r/W>

Assembly Hex Octal
notation Name code code

B :: load base register OFC08H 1760108

Operation: <source> -> B

Description:

The contents of <source> is loaded into the local base register.

Trap conditions: Addressing traps

Data status bits:

<source> : 0 —> z
<source>.signbit -> S

Example:

Load the word variable GLOBBASE into B

B :: GLOBBASE

ND.05.009.01

-96—

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.3. Load record register

Format: R := <source/r/W>

Assembly Hex Octal

notation Name code code

R := load record register 018H 0308

Operation: <source> ->'R

Description:

The contents of <source> is loaded into the record base register.

Trap conditions: Addressing traps

Data status bits:

<source> : 0 -> Z
<source>.signbit -> S

Example:

Load R with the base of the R2nd element of the word array RECPTRS

R :: RECPTRS(R2)

ND.05.009.01

_ 97 -

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.“. Store

Format: tn =: <dest/w/t>

Assembly Hex Octal
notation Name code code

BIn =: store bit OFCOCH+(n—1) 17601HB+(n—1)

BYn =: store byte O1CH+(n—1) 03MB+(n—1)
Hn :: store halfword 0FC1OH+(n-1) 176020B+(n—1)
Wn =: store word 020H+(n—1) 0MOB+(n—1)
Fn :: store float 02HH+(n—1) OHNB+(n-1)

Dn =: store double float 028H+(n-1) 0503+(n—1)

Operation:

(Rn) -> <dest>
(datatype dependent part of register) —> <dest>

Description:

The data type dependent part of the specified register is stored in
the memory location or register specified in the operand specifier.
The data type dependent part of the register is the least significant
bits of the register needed to represent the data type in question.
Constant operands are illegal. The source register is unaffected.

If the destination is a register, the instruction has the same effect
as a load destination register. If the data type is BI, BY, or H the
upper part of the register is zero filled.

Trap conditions: Addressing traps

Data status bits:

<datatype dependent part of register> : 0 -> Z
<datatype dependent part of register>.signbit -> S

Example:

Store byte in B” into the 6th byte of the record pointed to by R and
force the displacement part to occupy one word

BY” =: R.6:W

ND.05.009.01

-98—

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.5. Store local base register

Hex Octal
code code

Format: B =: <operand/w/W>

Assembly
notation Name

B :: store local base register

Operation: B -> <operand>

Description:

OFCOAH 176012B

The contents of the local base register is stored in the <operand>.

Trap conditions: Addressing traps

Data status bits:

(register) = O -> Z
(register).signbit -> S

Example:

Store B in local variable CURRB indexed by R1

B =: B.CURRB(R1)

ND.05.009.01

- 99 -

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.6. Store record register

Format: R z: <operand/w/W>

Assembly Hex Octal
notation Name code code

R =: store record register OFC09H 1760113

Operation: R -> <operand>

Description:

The contents of the record register is stored in the <operand>.

Trap conditions: Addressing traps

Data status bits:

(register) = 0 —> z
(register).signbit -> S

Example:

Store R in register R2

R=:R2

ND.05.009.01

- 100 —

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.7. Move

Format: t MOVE <source/r/t>,<dest/w/t>

Assembly Hex Octal
notation Name code code

BI [VDVE move bit OFCOBH 176013B
BY NDVE move byte O19H 031B
H MOVE move halfword OFC1HH 17602uB
W mVE move word O1AH 032B
F MOVE move float O1BH 033B
D MOVE move double float OZCH 05MB

Operation: <source> -> <dest>

Description:

The number of bits needed to represent the data type are moved from
source to destination. The source is unaffected, and a constant
destination operand is illegal.

Trap conditions: Addressing traps

Data status bits:

<source> = 0 ‘—> Z
<source>.signbit -> 5

Example:

Move the double precision value in GLOBAL to local variable LOCAL

D rqnm: GLOBAL, B.LOCAL

ND.05.009.01

- 101 —

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.8. Swap

Format: t SWAP <op1/rw/t>,<op2/rw/t>

Assembly Hex Octal
notation Name code code

BI SWAP bit swap OFCBDH 176275B
BY SWAP byte swap OFCBEH 176276B
H SWAP halfword swap OFCBFH 176277B
W SWAP word swap 052H 1225
F SWAP float swap OFCDCH 17633AB
D SWAP double float swap OFCDDH 176335B

Operation: <op1> ::: <op2>

Description:

The contents of the first operand is stored in the second, and the
original contents of the second operand is stored in the first. The
operands are assumed to have the same data type (see chapter 7.3 page
53).

Trap conditions: Addressing traps

Data status bits:

<op1>.original contents : O -> Z
<op1>.original contents.signbit —> S

Example:

Exchange contents of word variables EAST and WEST

w SWAP EAST, WEST

ND.05.009.01

- 102 —

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.9. Compare

Format: tn COMP <operand/r/t>

Assembly Hex Octal
notation Name code code

BIn COMP register bit compare 0FC18H+(n—1) 176030B+(n—1)
BYn COMP register byte compare 03OH+(n-1) 06OB+(n-1)
Hn COMP register halfWord compare OFC1CH+(n-1) 17603MB+(n-1)
Wn COMP register word compare 03hH+(n—1) 06HB+(n-1)
Fn COMP register float compare 0383+(n—1) O7OB+(n-1)
Dn COMP register double float 03CH+(n-1) 0748+(n—1)

compare

Operation: Rn — <operand>

Description:

The compare instruction subtracts the operand from the specified
register. The result of the subtraction is not saved, but rather
compared to zero, and this result is saved in the data status bits.
The instruction is a true comparison, hence the sign bit is changed in
case of integer overflow.

Trap conditions: Addressing traps, floating underflow, floating
overflow

Data status bits:

<resu1t> = O -> Z
<resu1t>.signbit XOR Overflow -> S
carry from most significant bit -> C
(floating underflow) —> FU
(floating overflow) —> F0

Example:

Compare bit zero in R1 with one

311 COMP 1

ND.05.009.01

_ 103 _

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.10. Compare two operands

Format: t COMP2 <1st operand/r/t>,<2nd operand/r/t>

Assembly Hex Octal

notation Name code code

BI COMP2 bit compare 0FC15H 176025B

BY COMP2 byte compare 02DH 055B
H COMP2 halfword compare 0FC16H 1760263
W COMP2 word compare 02EH 056B
F COMP2 float compare 02FH 0573
D COMP2 double float compare OHOH 100B

Operation: <1st operand> - <2nd operand>

Description:

Compare two operands subtracts the second operand from the first. The

result sets the data status bits accordingly, but the result is

otherwise discarded.

Trap conditions: Addressing traps, floating underflow, floating

overflow

Data status bits:

<resu1t> : 0 —> Z
<resu1t>.signbit XOR Overflow —> S
carry from most significant bit —> C
(floating underflow) —> FU
(floating overflow) -> F0

Example:

Compare record variable floating point DELTA with 0.005

F COMP2 R.DELTA, 0.005

ND.05.009.01

—1ou-
DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.11. Test against zero

Format: t TEST <operand/r/t>

Assembly Hex Octal
notation Name code code

BI TEST bit test against zero OH1H 101B
BY TEST byte test against zero 0H2H 102B
H TEST halfword test against zero 043B 103B
W TEST word test against zero OHMH 10MB
F TEST float test against zero OHSH 105B
D TEST double test against zero 0H6H 1068

Operation: <operand> — 0

Description:

This instruction is similar to comparing two operands except that the
second operand is implicitly zero.

Trap conditions: Addressing traps

Data status bits:

<result> = 0 -> Z
<result>.signbit XOR Overflow —> S
1 -> C (integer)

Example:

Test if local byte variable COUNTER has reached zero

BY TEST B.COUNTER

ND.05.009.01

_ 105 -
DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.12. Neggte

Format: tn NEG

Assembly Hex Octal
notation Name code code

BYn NEG byte register negate 0FE08H+(n—1) 177010B+(n—1)
Hn NEG halfword register negate 0FEOCH+(n—1) 17701MB+(n—1)
Wn NEG word register negate O9OH+(n—1) 220B+(n-1)
Fn NEG float register negate 09HH+(n—1) 22MB+(n—1)
Dn NEG double float register negate 09NH+(n-1) 22HB+(n-1)

Operation: -Rn -> Rn

Description:

The contents of the specified register is negated. An integer value is

negated by taking the two's complement of its value. A floating point

value is negated by inverting its sign bit. Byte and halfword negate

will clear the upper part of the register.

Integer overflow occurs if and only if the greatest negative integer

is negated. Carry is zero except when integer zero is negated.

Trap conditions: Integer overflow

Data status bits:

(negated register) : O —> Z
(negated register).signbit -> S
(carry) _> C
(overflow) _> 0

Example:

Negate double precision register D3

D3 NEG

ND.05.009.01

- 106 —

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.1 . Invert

Format: tn INV

Assembly Hex Octal
notation Name code code

BIn INV bit invert register OFE10H+(n-1) 177020B+(n-1)
BYn INV byte invert register OFE14H+(n-1) 17702HB+(n-1)
Hn INV halfword invert register 0FE18H+(n-1) 177030B+(n—1)
Wn INV word invert register 098H+(n-1) 23OB+(n-1)

Operation: One's complement of Rn -> Rn

Description:

The one's complement of the specified register is calculated and
stored in the same register. When the datatype is BI, BY, or H only
the lower part of the register is complemented and the rest of the
register is cleared.

Trap conditions: None

Data status bits:

(result) = O —> Z
(result).signbit -> S

Example:

Invert the lowermost bit of RR and clear the upper 31 bits

BIH INV

ND.05.009.01

-107-
DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.14. Invert with carry add

Format: Wn INVC

Assembly Hex Octal
notation Name code code

Wn INVC word invert register w/carry OFF10H+(n—1) 177M20B+(n—1)

Operation: One's complement of Rn + C -> Rn

Description:

The one's complement of the specified word register is calculated. The
carry is added and the result is loaded into the specified register.
This instruction is used for multiple precision arithmetic.

Trap conditions: Integer overflow

Data status bits:

(result) = O -> Z
(result).signbit -> S
(carry) -> C
(overflow) —> 0

Example:

Invert W2 and add carry

W2 INVC

ND.05.009.01

- 108 —

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.15. Absolute value

Fonmat: tn ABS

Assembly Hex Octal
notation Name code code

BYn ABS byte absolute value 0FFO0H+(n-1) 177400B+(n—1)
Hn ABS halfword absolute value OFFOMH+(n—1) 177MOHB+(n-1)
Wn ABS word absolute value OFF08H+(n-1) 177H1OB+(n-1)
Fn ABS float absolute value OFFOCH+(n-1) 17741HB+(n-1)
Dn ABS double float absolute value 0FFOCH+(n—1) 177D1HB+(n—1)

Operation: Absolute value of Rn -> Rn

Description:

The absolute value of the specified register is calculated and stored
in the same register. When the datatype is either BY or H, the result
is stored in the least significant bits and the rest of the register
is cleared. Overflow occurs if and only if the greatest negative
integer is negated.

Trap conditions: Integer overflow

Data status bits:

(result) = 0 —> Z
(result).signbit -> S
(overflow) -> O (integer)

Example:

Take the absolute value of double precision register D1

D1 ABS

ND.05.009.01

— 109 -

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.16. Add

Format: tn + <addend/r/t>

Assembly Hex Octal
notation Name code code

BYn + byte add OFC3HH+(n—1) 17606MB+(n—1)
Hn + halfword add OFC38H+(n—1) 17607OB+(n-1)
Wn + word add 05HH+(n—1) 12HB+(n-1)
Fn + floating add 058H+(n-1) 13OB+(n-1)
Dn + double float add 05CH+(n-1) 13hB+(n—1)

Operation: Rn + <addend> —> Rn

Description:

The <addend> operand is added to the contents of the specified
register. The carry bit is set if a carry occurs from the sign bit
position of the adder, otherwise it is reset. For overflow, see the
section on arithmetical traps.

Trap conditions: Addressing traps, integer overflow, floating
overflow, floating underflow

Data status bits:

<sum>.signbit -> S
<sum> = 0 —> Z
0 -> 0 (float)
(overflow) —> 0 (integer)
0 -> C (float)
(carry from most significant bit) -> C (integer)
(floating underflow) -> FU
(floating overflow) -> F0

Example:

Add byte argument FIFTHARG to R3

BY3 + IND(B.FIFTHARG)

ND.05.009.01

- 11o —
DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.17. Subtract

Format: tn - <subtrahend/r/t>

Assembly Hex Octal
notation Name code code

BYn — byte subtract OFC3CH+(n—1) 176074B+(n—1)
Hn - halfword subtract 0FCHOH+(n—1) 1761OOB+(n-1)
Wn - word subtract 060H+(n—1) 1HOB+(n-1)
Fn - float subtract 06NH+(n—1) 1HMB+(n—1)
Dn - double float subtract 068H+(n-1) 1508+(n-1)

Operation: Rn - <subtrahend> -> Rn

Description:

The <subtrahend> operand is subtracted from the specified register.
The same rules as for ADD apply for the setting of the carry bit. For
overflow, see section on arithmetical traps.

Trap conditions: Addressing traps, integer overflow, floating
overflow, floating underflow

Data status bits:

<difference> = 0 -> Z
<difference>.signbit —> S
(overflow) -> 0 (integer)
0 —> 0 (float)
(carry from the most significant bit) -> C
(floating underflow) —> FU
(floating overflow) -> F0

Example:

Subtract register F1 from register FM

F4 - F1

ND.05.009.01

—111-

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.18. Multiply

Format: tn * <multiplier/r/t>

Assembly Hex Octal
notation Name code code

BYn * byte multiply 0FCMMH+(n—1) 1761OHB+(n-1)
Hn * halfword multiply OFCN8H+(n-1) 176110B+(n-1)
Wn * word multiply 060H+(n—1) 15HB+(n—1)
Fn * floating multiply 070H+(n—1) 16OB+(n-1)
Dn * double float multiply O7HH+(n—1) 16HB+(n—1)

Operation: Rn * <multiplier> -> Rn

Description:

The <multiplier> operand is multiplied by the specified register with
the product stored in this register. Integer overflow occurs if the
upper half of the double length result is not equal to the sign
extension of the lower half.

Trap conditions: Addressing traps, integer overflow, floating
overflow, floating underflow

Data status bits:

<product> : 0 —> Z
<product>.signbit —> S
(overflow) -> 0 (integer)
O —> 0 (float)
(floating underflow) —> FU
(floating overflow) -> F0

Example:

Multiply halfWord register R2 with 5

H2 * 5

ND.05.009.01

— 112 —

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.19. Divide

Format: tn / <divisor/r/t>

Assembly Hex Octal
notation Name code code

BYn / byte divide OFCHCH+(n-1) 17611HB+(n-1)
Hn / halfword divide 0FC50H+(n—1) 1761ZOB+(n-1)
Wn / word divide 078H+(n—1) 170B+(n-1)
Fn / float divide O7CH+(n—1) 17NB+(n-1)
Dn / double float divide 0E8H+(n—1) 350B+(n—1)

Operation: Rn / <divisor> —> Rn

Description:

The contents of the specified register is divided by the <divisor>
operand. The quotient is left in the same register. In integer
division the remainder (unless it is zero) has the same sign as the
register contents, ie. the quotient is truncated towards O. Integer
overflow occurs if and only if the largest possible negative integer
is divided by -1.

Trap conditions: Addressing traps, integer overflow, floating
overflow, floating underflow, divide by zero

Data status bits:

<quotient> = O —> Z
<quotient>.signbit -> S
(overflow) -> O (integer)
0 -> 0 (float)
(floating underflow) —> FU
(floating overflow) -> F0
<divisor> = 0 —> DZ

Example:

Divide float register A3 with the Ruth element of argument ARR

F3 / IND(B.ARR)(RN)

ND.05.009.01

DATA TRANSFER,

-113-
ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.20. Add two operands

Format: t ADD2 <a/rw/t>,<b/r/t>

Assembly Hex Octal
notation Name code code

BY ADD2 byte add two operands OFC17H 176027B
H ADD2 halfword add two operands OFCSNH 17612MB
W ADD2 word add two operands 053H 1238
F ADD2 float add two operands OFC56H 176126B
D ADD2 double float add two operands OFCS7H 1761273

Operation: <a> + _> <a>

Description:

The operand is added to the <a> operand and the result is put in
the <a> operand. The operands are assumed to have the same data type
(see chapter 7.3 page 53).

Trap conditions: Addressing traps, integer overflow, floating
overflow, floating underflow

Data status bits:

<result> = O —> Z
<result>.signbit -> S
0 -> 0 (float)
(overflow) —> O (integer)
O -> C (float)
(carry from most significant bit) -> C (integer)
(floating underflow) -> FU
(floating overflow) -> F0

Example:

Add float argument X2 to argument X1

F ADD2 IND(B.X1), IND(B.X2)

ND.05.009.01

—11u—
DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.21. Subtract two operands

Format: t SUBZ <a/rw/t>,<b/r/t>

Assembly Hex Octal
notation Name code code

BY SUB2 byte subtract two operands 0FCS8H 176130B
H SUBZ halfword subtract two operands OFC59H 1761318
W SUB2 word subtract two operands OEOH 3HOB
F SUEZ float subtract two operands OFCSBH 176133B
D SUBZ double float subtract two operands OFCSCH 17613MB

Operation: <a> — -> <a>

Description:

The operand is subtracted from the <a> operand and the result is
put in the <a> operand. The operands are assumed to have the same data
type (see chapter 7.3 page 53).

Trap conditions: Addressing traps, integer overflow, floating
overflow, floating underflow

Data status bits:

<difference> = O -> Z
<difference>.signbit —> S
0 —> C (float)
(overflow) -> O (integer)
0 -> 0 (float)
(carry from most significant bit) —> C (integer)
(floating underflow) —> FU
(floating overflow) —> F0

Example:

Subtract h from the R3rd element of the byte array whose descriptor is
the global VALUES

BY SUBZ DESC(VALUES) (R3),U

ND.05.009.01

DATA TRANSFER,
— 115 -

ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.22. Multiply two operands

Format: t MUL2 <a/rw/t>,<b/r/t>

Assembly Hex Octal
notation Name code code

BY MUL2 byte multiply two operands OFCSDH 1761358
H MUL2 halfword multiply two operands OFCSEH 176136B
W MUL2 word multiply two operands OFCSFH 1761373
F MUL2 float multiply two operands 0FC60H 1761MOB
D NULZ double float multiply two operands 0FC61H 1761H1B

Operation: <a> * —> <a>

Description:

The <a> operand is multiplied by the operand and the product is
stored in the <a> operand. Integer overflow occurs if the upper half
of the double length result is not equal to the sign extension of the
lower half.

Trap conditions: Addressing traps, integer overflow, floating
overflow, floating underflow

Data status bits:

<product>
<product>.
(overflow)
O
(floating
(floating

Example:

:0 —>Z

signbit -> S
-> O (integer)
—> 0 (float)

underflow) -> FU
overflow) -> F0

Multiply the argument double float PROD on the alternative domain with
the contents of Du

D MUL2 ALT(B.PROD), DH

ND.05.009.01

— 116 -

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.23. Divide two operands

Format: t DIV2 <a/rw/t>,<b/r/t>

Assembly Hex Octal
notation Name code code

BY DIV2 byte divide two operands OFC62H 1761N2B
H DIV2 halfword divide two operands OFC63H 1761H3B
W DIV2 word divide two operands OFC6HH 17614MB
F DIV2 float divide two operands 0FC65H 1761453
D DIV2 double float divide two operands 0FC66H 1761N6B

Operation: <a> / -> <a>

Description:

The <a> operand is divided by the operand and the quotient is
stored in the <a> operand. In integer division the remainder (unless
it is zero) has the same sign as the <a> operand, ie. the quotient is
truncated towards zero. Integer overflow occurs if and only if the
largest possible negative integer is divided by -1.

Trap conditions: Addressing traps, integer overflow, floating
overflow, floating underflow, divide by zero

Data status bits:

<quotient> : O —> Z
<quotient>.signbit —> S
(overflow) —> O (integer)
0 -> 0 (float)
(floating underflow) -> FU
(floating overflow) -> F0
<divisor> : 0 -> DZ

Example:

Divide the local float variable KVOT with the R1st element of the
array on the alternative domain described by local descriptor LIST

F DIV2 B.KVOT, ALT(DESC(B.LIST)(R1))

ND.05.009.01

DATA TRANSFER,

-117-
ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.24. Add three operands

Format: t ADD3 <a/r/t>,<b/r/t>,<c/w/t>

Assembly Hex Octal

notation Name code code

BY ADD3 byte add three operands 0FC67H 1761473

H ADD3 halfword add three operands 0FC68H 1761508

W ADD3 word add three operands OFC69H 1761513

F ADD3 float add three operands 0FC6AH 176152B

D ADD3 double float add three operands OFCSBH 176153B

Operation: <a> + —> <c>

Description:

The <a> operand is added to the operand and the result is stored

in the <c>

Trap conditions: Addressing traps, integer overflow, floating

operand. The operands are assumed to have the same data

type (see chapter 7.3 page 53).

overflow, floating underflow

Data status bits:

<sum> : 0 —> Z
<sum>.signbit -> S
0 —> 0 (float)
(overflow) —> O (integer)
0 -> C (float)
(carry from most significant bit) -> C (integer)
(floating underflow) ~> FU
(floating overflow) -> F0

Example:

Add R1 and R2 leaving the result in R3

W ADD3 R1,R2,R3

ND.05.009.01

- 118 -

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.25. Subtract three operands

Format: t SUB3‘ <a/r/t>,<b/r/t>,<c/w/t>

Assembly Hex Octal
notation Name code code

BY SUB3 byte subtract three operands 0FC6CH 17615MB
H SUB3 halfword subtract three operands 0FC6DH 176155B
W SUB3 word subtract three operands 0FC6EH 176156B
F SUB3 float subtract three operands 0FC6FH 176157B
D SUB3 double float subtract three operands 0FC70H 1761603

Operation: <a> - _> <c>

Description:

The operand is subtracted from the <a> operand and the result is
stored in the <c> operand. The operands are assumed to have the same
data type (see chapter 7.3 page 53).

Trap conditions: Addressing traps, integer overflow, floating
overflow, floating underflow

Data status bits:

<difference> = O -> Z
<difference>.signbit —> S
0 —> 0 (float)
(overflow) —> O (integer)
0 -> C (float)
(carry from most significant bit) -> C (integer)
(floating underflow) -> FU
(floating overflow) -> F0

Example:

Store the difference between byte arguments X1
variable DIFF

B SUB3 IND(B.X1), IND(B.X2), B.DIFF

ND.05.009.01

and X2 in local

DATA TRANSFER,

-119-
ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.26. Multiply three operands

Format: t NULB <a/r/t>,<b/r/t>,<c/w/t>

Assembly Hex Octal
notation Name code code

BY MUL3 byte multiply three operands OFC71H 176161B
H MUL3 halfword multiply three operands OFC72H 176162B
W MUL3 word multiply three operands 0FC73H 1761638
F MUL3 float multiply three operands 0FC7HH 17616NB
D MUL3 double float multiply three operands OFC75H 1761658

Operation: <a> * —> <c>

Description:

The <a> operand is multiplied by the operand and the product is
stored in the <c> operand. Integer overflow occurs if the upper half
of the double length result is not equal to the sign extension of the
lower half.
chapter 7.3 page 53).

Trap conditions: Addressing traps, integer overflow, floating
overflow, floating underflow

Data status bits:

<product>
<product>.
O
(overflow)
0
(floating underflow)
(floating overflow) —>

Example:

:0 ->Z
signbit -> S

..>C

—> O (integer)
—> 0 (float)
—> FU

F0

The operands are assumed to have the same data type (see

The product of the second and third element of the word array pointed
to by R2 is stored in the first element

W MUL3 R2.2, R2.3, R2.1

ND.05.009.01

—120-

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.21, Divide three operands

Format: t DIV3 <a/r/t>,<b/r/t>,<c/w/t>

Assembly Hex Octal
notation Name code code

BY DIV3 byte divide three operands 0FC76H 176166B
H DIV3 halfword divide three operands OFC77H 176167B
W DIV3 word divide three operands OFC78H 1761708
F DIV3 float divide three operands 0FC79H 176171B
D DIV3 double float divide three operands OFC7AH 176172B

Operation: <a> / _> <c>

Description:

The <a> operand is divided by the operand and the quotient is
stored in the <c> operand. In integer division the remainder (unless
it is zero) has the same sign as the <a> operand, ie. the quotient is
truncated towards zero. Integer overflow occurs if and only if the
largest possible negative integer is divided by —1. The operands are
assumed to have the same data type (see chapter 7.3 page 53).

Trap conditions: Addressing traps, integer overflow, floating
overflow, floating underflow, divide by zero

Data status bits:

<quotient> = 0 —> Z
<quotient>.signbit -> S
0 -> C
(overflow) -> O (integer)
0 -> 0 (float)
(floating underflow) -> FU
(floating overflow) -> F0
<divisor> = O —> DZ

Example:

Divide the float value whose address is in PTR with the contents of
F1, storing the quotient in record variable Q (record base in R)

F DIV3 IND(PTR), F1, R.Q

ND.05.009.01

—121—

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.28. Multiply with overflow to register

Format: tn MULM <a/r/t>,<b/r/t>,<c/w/t>

Assembly Hex Octal
notation Name code code

BYn MULN byte multiply w/overflow OFC20H+(n-1) 1760UOB+(n-1)
Hn MULH halfword multiply w/overflow OFCZMH+(n—1) 17604MB+(n—1)
Wn MULU word multiply w/overflow 0FC28H+(n—1) 176050B+(n-1)

Operation: <a> * -> <c>;
(overflow part) -> Rn

Description:

The <a> operand is multiplied by the operand. The product is
stored in the <c> operand. The upper half of the double length result
is stored in the specified register. The operands are assumed to have
the same data type (see chapter 7.3 page 53).

Trap conditions: Addressing traps, integer overflow

Data status bits:

(lower part of double length result) = O —> Z
(lower part of double length result).signbit —> S
(overflow)

Example:

_>O

Multiply word arguments M and N and store product in local TEMP and
the overflow in R1

W1 MULM IND(B.M), IND(B.N), B.TEMP

ND.05.009.01

— 122 -

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.29. Divide with remainder to register (modulo)

Format: tn DIV“ <a/r/t>,<b/r/t>,<c/w/t>

Assembly Hex Octal
notation Name code code

BYn DIV” byte divide w/remainder 0FCZCH+(n—1) 176054B+(n-1)
Hn DIV” halfword divide w/remainder OFC3OH+(n-1) 17606OB+(n-1)
Wn DIV” word divide w/remainder OFC7CH+(n—1) 17617HB+(n—1)

Operation:

<a> / —> <c>
(remainder) —> Rn

Description:

The <a> operand is divided by the operand with the quotient stored
in the <c> operand. The remainder is stored in the specified register.
The operands are assumed to have the same data type (see chapter 7.3
page 53).

Trap conditions: Addressing traps, divide by zero

Data status bits:

<quotient> = 0 -> Z
<quotient>.signbit -> S
(overflow) —> 0
<divisor> = 0 -> DZ

Example:

Divide record variable BYTECOUNT by H and store the quotient in record
variable WORDCOUNT with the quotient in R2

BY2 Diva R.BYTECOUNT, u, wonpcoum

ND.05.009.01

-123...

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.30. Unsigned multiply with overflow to register

Format: wn UMUL <a/r/t>,<b/r/t>,<c/w/t>

Assembly Hex Octal
notation Name code code

Wn UMUL word unsigned multiply 0FC80H+(n—1) 176200B+(n-1)

Operation:

word unsigned multiplication
<a> * —> <c>
(overflow part) -> Rn

Description:

The operands are treated as unsigned.
The <a> operand is multiplied by the operand with the product

stored in the <c> operand. The upper half of the double length result
is stored in the specified register. Byte and halfword integer
constants are sign extended and the result of the sign extension is
treated unsigned. Integer overflow occurs when the upper part is
different from the sign extension of the lower half.

Trap conditions: Addressing traps, integer overflow

Data status bits:

(product) : O —> Z
(product).signbit —> S
(overflow) -> 0

Example:

Multiply local variable LEASTX with local LEASTY storing the result in
R2 with the upper half of the result in R1

W1 UMUL B.LEASTX, B.LEASTY, R2

ND.05.009.01

- 12M -

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.31. Unsigned divide

Format: Wn UDIV <a/r/t>,<b/r/t>,<c/w/t>

Assembly Hex Octal
notation Name code code

Wn UDIV word unsigned divide OFEM8H+(n—1) 17711OB+(n-1)

Operation:

word unsigned division
<a> / —> <c>
(remainder) -> Rn

Description:

The operands are treated as unsigned.
The <a> operand is divided by the operand and the quotient is
stored in the <c> operand. The remainder is stored in the specified
register. Byte and halfword integer constants are sign extended and
the result of the sign extension is treated unsigned.

Trap conditions: Addressing traps, divide by zero

Data status bits:

(quotient) = O -> Z
(quotient).signbit —> S
<divisor) = 0 —> DZ

Example:

Divide the arguments LONG and FACT on the alternative domain and leave
the result in the address on the alternative domain contained in RES,
and the remainder in R3

W3 UDIV ALT(B.LONG), ALT(B.FACT), ALT(IND(RES))

ND.05.009.01

- 125 -
DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.32. Add with carry

Format: Wn ADDC <addend/r/t>

Assembly Hex Octal
notation Name code code

Wn ADDC word add with carry 0FEHOH+(n-1) 1771OOB+(n-1)

Operation: Rn + C + <addend> -> Rn

Description:

<addend> and Carry are added to the specified register and the result
is stored in this register. This instruction is used for multiple
precision arithmetic.

Trap conditions: Addressing traps, integer overflow

Data status bits:

<sum> : 0 —> Z
<sum>.signbit -> S
(integer overflow) —> 0
(carry from most significant bit) -> C

Example:

Add variable MOST to R2 with carry

W2 ADDC MOST

ND.05.009.01

- 126 -

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.33. Subtract with carry

Format: wn SUBC <subtrahend/r/t>

Assembly Hex Octal
notation Name code code

Wn SUBC word subtract with carry 0FEHMH+(n-1) 17710MB+(n-1)

Operation: Rn + C — <subtrahend> -1 -> Rn

Description:

Carry and the one's complement of <subtrahend> is added to the
specified register. The result is then stored in the specified
register. This instruction is used for multiple precision arithmetic.

Trap conditions: Addressing traps, integer overflow

Data status bits:

(result) = 0 —> Z
(result).signbit -> S
(carry) —> C
(integer overflow) —> 0

Example:

Subtract ”00 hexadecimal from W2

W2 SUBC OUOOH

ND.05.009.01

-127—
DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.3u. Clear register

Format: tn CLR

Assembly Hex Octal
notation Name code code

BIn CLR bit register clear 084H+(n-1) 20MB+(n-1)
BYn CLR byte register clear 084H+(n—1) 204B+(n—1)
Hn CLR halfword register clear 084H+(n-1) 20HB+(n—1)
Wn CLR word register clear 084H+(n-1) 2048+(n—1)
Fn CLR float register clear 088H+(n—1) 21OB+(n-1)
Dn CLR double float register clear 08CH+(n-1) 21hB+(n—1)

Operation: 0 -> Rn

Description:

The register is set to all zeros.

Trap conditions: None

Data status bits: 1 -> 2

Example:

Clear double register D3

D3 CLR

ND.05.009.01

- 128 -

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.35. Store zero

Format: t STZ <operand/w/t>

Assembly Hex Octal
notation Name code code

BI STZ bit store zero 0FC85H 176205B

BY STZ byte store zero OHBH 110B
H STZ halfword store zero OH9H 111B
w STZ word store zero ONAH 112B
F STZ float store zero OflBH 113B
D STZ double float store zero OMCH 11MB

Operation: 0 —> <operand>

Description:

The contents of the destination operand is replaced by zero.

Trap conditions: Addressing traps

Data status bits: 1 —> Z

Example:

Clear the byte FLAGS

BY STZ FLAGS

ND.05.009.01

-129—
DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.36. Set to one

Format: t SET1 <operand/w/t>

Assembly Hex Octal
notation Name code code

BI SET1 bit set to one 0FCB6H 176206B
BY SET1 byte set to one 0FC87H 176207B
H SET1 halfword set to one OFCBBH 176210B
w SET1 word set to one OMDH 115B
F SET1 float set to one OH7H 107B
D SET1 double float set to one 0FC89H 176211B

Operation: 1 -> <operand>

Description:

The contents of the destination operand is replaced by one.

Trap conditions: Addressing traps

Data status bits: All cleared

Example:

Set float argument START to one

F SET1 IND(B.START)

ND.05.009.01

_ 13o _

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.37. Increment

Format: t INCR <operand/rw/t>

Assembly Hex Octal

notation Name code code

BY INCR byte increment OFCBAH 176212B
H INCR halfword increment ONEH 116B
w INCR word increment OHFH 1173
F INCR float increment OSOH 120B
D INCR double float increment OFCBBH 1762138

Operation: <operand> + 1 —> <operand>

Description:

The <operand> is incremented by one. The Carry bit is set if a carry

occurs from the sign bit position of the adder, otherwise it is reset.

Carry will occur if and only if integer -1 is incremented.

Trap conditions: Addressing traps, integer overflow

Data status bits:

<sum>.signbit —> S
<sum> = 0 -> Z
0 -> 0 (float)
(overflow) -> O (integer)
O —> C (float)
(carry from most significant bit) -> C (integer)

Example:

Increment the halfword record variable LOOPER and force the

displacement part to occupy a halfword

H INCR R.LOOPER:H

ND.05.009.01

-

131 _

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.38. Decrement

Format: t DECR <operand/rw/t>

Assembly Hex Octal

notation Name code code

BY DECR byte decrement 0FC86H 176214B

H DECR halfWOrd decrement 0FCB7H 176215B

W DECR word decrement 051R 1218

F DECR float decrement 0FC88H 176216B

D DECR double float decrement OFC89H 176217B

Operation: <operand> — 1 -> <operand>

Description:

The <operand> is decremented by one.

Trap conditions: Addressing traps, integer overflow

Data status bits:

<difference> = O -> Z
<difference>.signbit —> S
(overflow) —> 0 (integer)
0 -> 0 (float)
(carry from the most significant bit) -> C

Example:

Decrement the halfword record variable STEP on the alternative domain

H DECR ALT(R.STEP)

ND.05.009.01

-132—
DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.39. And

Format: tn AND <operand/r/t>

Assembly Hex Octal
notation Name code code

BIn AND bit 'and' register OFDCCH+(n-1) 17671HB+(n-1)
BYn AND byte 'and ’ register OFCQOH+(n-1) 1762203+(n-1)
Hn AND halfword 'and' register 0FC94H+(n-1) 17622HB+(n-1)
Wn AND word 'and’ register OEHH+(n—1) 3HAB+(n—1)

Operation: Rn AND <operand> -> Rn

Description:

A bitwise AND is performed between the specified register and the
<operand> and the result is stored in the register. When the data type
is BI, BY, or H, the upper part of the register is zero filled.

Trap conditions: Addressing traps

Data status bits:

(result) = 0 —> Z
(result).signbit -> S

Example:

AND operation between R2 and the R3rd element of the array described
by the R1st array descriptor in the local array MASKS

W2 AND DESC(B.MASKS(R1))(R3)

ND.05.009.01

_ 13u _

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.41. Exclusive or

Format: tn XOR <operand/r/t>

Assembly Hex Octal
notation Name code code

BIn XOR bit 'xor' register OFDCCH+(n-1) 17671MB+(n-1)
BYn XOR byte 'xor' register OFCAOH+(n—1) 1762MOB+(n—1)
Hn XOR halfword ’xor' register 0FCAHH+(n—1) 1762HHB+(n-1)
Wn XOR word ’xor' register OAMH+(n—1) ZHMB+(n—1)

Operation: Rn XOR <operand> -> Rn

Description:

A bitwise exclusive OR is performed between the specified register and

the <operand> and the result is stored in the register. When the data

type is BI, BY, or H, the upper part of the register is zero filled.

Trap conditions: Addressing traps

Data status bits:

(result) = 0 —> Z
(result).signbit -> S

Example:

Flip bits 0, u, 8 and 12 of halfWOrd register R”

H“ XOR 01111H

ND.05.009.01

- 133 _

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

A bitwise OR

10.U0. Or

Format: tn OR <operand/r/t>

Assembly Hex Octal
notation Name code code

BIn OR bit 'or' register OFDF8R+(n-1) 176770B+(n-1)
BYn 0R byte 'or' register OFC98H+(n-1) 176230B+(n—1)
Hn OR halfword 'or' register 0FC9CH+(n—1) 17623HB+(n-1)
Wn OR word ’or' register OAOH+(n—1) ZHOB+(n-1)

Operation: Rn OR <operand> -> Rn

Description:

is performed between the specified register and the
<operand> and the result is stored in the register. When the data type
is BI, BY, or H, the upper part of the register is zero filled.

Trap conditions: Addressing traps

Data status bits:

(result) = 0 -> Z
(result).signbit —> S

Example:

OR byte register R1 with 111 octal

BY1 OR 1118

ND.05.009.01

_ 135 -

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

1o.u2. Logical shift

Format: t SHL <operand/rw/t>,<shiftcount/r/BY>

Assembly Hex Octal

notation Name code code

BY SHL byte shift logically OFCA8H 1762508

H SHL halfword shift logically OFCAQH 1762518
w SHL word shift logically OFCAAH 176252B

Operation: <logically shifted operand> —> <operand>

Description:

A logical shift is performed on the byte, halfword or word operand.

<shiftcount> is interpreted as a signed byte. Positive <shiftcount>

implies left shift, negative <shiftcount> implies right shift. A

shiftcount equal to or greater than the size of the operand will

produce an illegal operand value trap condition. A shiftcount of zero

is legal and leaves the operand unchanged.

Trap conditions: Addressing traps, illegal operand value

Data status bits:

<shifted operand> = 0 -> Z
<shifted operand>.signbit -> 8

Example:

Shift local word COUNT TWOFACTORS places

W SHL B.COUNT, TWOFACTORS

ND.05.009.01

— 136 -

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

1o.u3. Arithmetical shift

Format: t SHA <operand/rw/t>,<shiftcount/r/BY>

Assembly Hex Octal
notation Name code code

BY SHA byte shift arithmetically OFCABH 1762533
H SHA halfword shift arithmetically OFCACH 176254B
W SHA word shift arithmetically OFCADH 176255B

Operation: <arithmetically shifted operand> -> <operand>

Description:

An arithmetic shift is performed on the byte, halfword or word
operand. <shiftcount> is interpreted as a signed byte. Positive
<shiftcount> implies left shift, negative <shiftcount> implies right
shift. A shiftcount equal to or greater than the size of the operand
will produce an illegal operand value trap condition. A shiftcount of
zero is legal and leaves the operand unchanged.

Trap conditions: Addressing traps, illegal operand value

Data status bits:

<shifted operand> = 0 -> Z
<shifted operand>.signbit -> S

Example:

Shift byte register RM two places right

BY SHA Ru, —2

ND.05.009.01

-

137 _

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.UM. Rotational shift

Format: t SHR <operand/rw/t>,<shiftcount/r/BY>

Assembly Hex Octal
notation Name code code

BY SHR byte shift rotationally OFCAEH 1762568
H SHR halfword shift rotationally OFCAFH 176257B
w SHR word shift rotationally OFCBOH 176260B

Operation: <rotationally shifted operand> -> <operand>

Description:

A rotational shift is performed on the byte, halfword or word operand.
<shiftcount> is interpreted as a signed byte. Positve <shiftcount>
implies left shift, negative <shiftcount> implies right shift. A
shiftcount equal to or greater than the size of the operand will
produce an illegal operand value trap condition. A shiftcount of zero
is legal and leaves the operand unchanged.

Trap conditions: Addressing traps, illegal operand value

Data status bits:

<shifted operand> = O -> Z
<shifted operand>.signbit -> S

Example:

Exchange nibbles (4 bit groups) of variable pointed at by RM

BY SHR Rim, 14

ND.05.009.01

_ 138 _

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.45. Get bit

Format: tn GETBI <operand/r/t>,<bit no/r/BY>

Assembly Hex Octal
notation Name code code

BYn GETBI byte get bit OFCBHH+(n—1) 17626HB+(n-1)
Hn GETBI halfword get bit 0FCBBH+(n—1) 17627OB+(n—1)
Wn GETBI word get bit OFDDOH+(n-1) 1767ZOB+(n-1)

Operation: bit <bit no> of <operand> -> (bit 0 of Rn)

Description:

Bit zero of the specified register is loaded with bit <bit no> of a
BY, H, or W <operand>. A <bit no> greater than or equal to the number
of bits of the data type or a negative <bit no> will cause an illegal
operand value trap condition.

Trap conditions: Addressing traps, illegal operand value

Data status bits: (transferred bit) = 0 —> Z

Example:

Load R1 With the BITNO bit of word variable STATUS

W1 GETBI STATUS, BITNO

ND.05.009.01

-139—
DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

1o.u6. Put bit

Format: tn PUTBI <operand/w/t>,<bit no/r/BY>

Assembly Hex Octal

notation Name code code

BYn PUTBI byte put bit OFDDuH+(n-1) 17672NB+(n—1)

Hn PUTBI halfword put bit 0FDD8H+(n-1) 176730B+(n—1)

Wn PUTBI word put bit 0FDDCH+(n—1) 17673HB+(n-1)

Operation: (bit 0 of Rn) -> bit <bit no> of <operand>

Description:

Bit zero of the specified register is stored in bit <bit no> of a BY,

H, or W <operand>. The upper bits of the <operand> is unaffected, even

when the destination is a word register. A <bit no> greater than or

equal to the number of bits of the data type or a negative <bit no>

will cause an illegal operand value trap condition.

Trap conditions: Addressing traps, illegal operand value

Data status bits: (transferred bit) = 0 —> 2

Example:

Store bit zero of R” in bit M of local byte variable FLAGS

BY” PUTBI B.FLAGS, N

ND.05.009.01

- 140 —

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

1o.u7. Clear bit

Format: t CLEBI <operand/w/t>,<bit no/r/BY>

Assembly Hex Octal
notation Name code code

BY CLEBI byte clear bit 0FE7DH 176175B
H CLEBI halfword clear bit OFE7EH 1761768
w CLEBI word clear bit OFE7FH 176177B

Operation: 0 -> bit <bit no> of <operand>

Description:

The specified bit of a BY, H, or W <operand> is cleared. A <bit no>
greater than or equal to the number of bits of the data type or a
negative <bit no> will cause an illegal operand value trap condition.

Trap conditions: Addressing traps, illegal operand value

Data status bits: 1 —> 2

Example:

Clear bit N of word register R1

W CLEBI R1, N

ND.05.009.01

— 1H1 -

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.u8. Set bit

Format: t SETBI <operand/w/t>,<bit no/r/BY>

Assembly Hex Octal

notation Name code code

BY SETBI byte set bit OFESOH 176200B
H SETBI halfword set bit OFE81H 176201B
w SETBI word set bit 0FE82H 176202B

Operation: 1 -> bit <bit no> of <0perand>

Description:

The specified bit of a BY, H, or W <operand> is set. A <bit no>

greater than or equal to the number of bits of the data type or a

negative <bit no> will cause an illegal operand value trap condition.

Trap conditions: Addressing traps, illegal operand value

Data status bits: (transferred bit) = 0 —> Z

Example:

Set bit FAILURE in word argument EXCEPTIONS on the alternative domain

W SETBI ALT(IND(B.EXCEPTIONS)), FAILURE

ND.05.009.01

- 1N2 -

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.n9. Get bit field

Fonnat: tn GETBF <operand/r/t>,<bit no/r/BY>,<field size/r/BY>

Assembly Hex Octal
notation Name code code

BYn GETBF byte get bit field OFDEOH+(n-1) 1767HOB+(n-1)
Hn GETBF halfword get bit field 0FDEHH+(n-1) 1767MflB+(n—1)
Wn GETBF word get bit field 0FDE8H+(n—1) 176750B+(n-1)

Operation: specified bit field -> Rn

Description:

Bit 0 to <field size> - 1 of the specified register is loaded with the
specified bit field. In the <operand>, the bit field is composed of
the <bit no> bit and the higher numbered bits to a field size of
<field size> bits. (See the section on data types in memory for an
explanation of bit numbers within data types.) The <operand> may have
BY, H, or W as the data type. <bit no> and <field size> are
interpreted as signed byte integers.

An illegal operand value trap condition is caused if <bit no> is
negative, if <field size> is zero or negative, or if <bit no> or <bit
no> + <fie1d size> is greater than the number of bits in the data
type.

The upper bits of the register are zero filled.

Trap conditions: Addressing traps, illegal operand value

Data status bits:

(bit field) = 0 —> Z
(bit field).leftmost bit -> S

Example:

Load R2 with a field consisting of bits 11 to 18 of the word variable
16 bytes away from the current R register

w2 GETBF R.16, 11,8

ND.05.009.01

_ 1M3 _

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.50. Put bit field

Format: tn PUTBF <operand/w/t>,<bit no/r/BY>,<field size/r/BY>

Assembly Hex Octal

notation Name code code

BYn PUTBF byte put bit field OFDECH+(n—1) 17675uB+(n-1)
Hn PUTBF halfword put bit field OFDFOH+(n-1) 176760B+(n—1)
Wn PUTBF word put bit field 0FDFHH+(n—1) 17676MB+(n-1)

Operation: Rn -> specified bit field

Description:

Bit 0 to <field size> - 1 of the specified register is stored in the

specified bit field of the operand. In the <operand>, the bit field is

composed of the <bit no> bit and the higher numbered bits to a field

size of <field size> bits. (See the section on data types in memory

for an explanation of bit numbers within data types.) The <operand>

may have BY, H, or W as the data type. <bit no> and <field size> are

interpreted as signed byte integers.

An illegal operand value trap condition is caused if <bit no> is

negative, if <field size> is zero or negative, or if <bit no> or <bit

no> + <field size> is greater than the number of bits in the data

type.

Trap conditions: Addressing traps, illegal operand value

Data status bits:

(bit field) = O —> Z
(bit field).leftmost bit —> S

Example:

Put the 8 lower bits of R2 into the the record variable FLAGSET from

bit ERRFLAGS and up

W2 PUTBF R.FLAGSET, ERRFLAGS, 8

ND.05.009.01

- 1H” -

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.51. A to the I’th power

Format: tn AXI <a/r/t>,<i/r/W>

Assembly Hex Octal
notation Name code code

Fn AXI float A to the I'th power OFCCOH+(n—1) 1763OOB+(n—1)
Dn AXI double float A to the OFCCHH+(n—1) 17630flB+(n-1)

I'th power

Operation: <A>**<I> -> Rn

Description:

<A> to the <I>'th power is calculated and loaded into the specified
float or double float register. <A> can be float or double float. <I>
is word integer. When <I> is negative and <A> is equal to zero, it
causes an illegal operand value trap condition and the result is set
to the largest floating point number. When <I> is zero, the result is
one.

Trap conditions: Addressing traps, floating overflow, floating
underflow, illegal operand value

Data status bits:

(result) = O -> Z
(result).signbit
(floating underflow) FU
(floating overflow) —> F0

I
I

V
V (/2

Example:

Load 2.0 to the STATE power into F3

F3 AXI 2.0, STATE

ND.05.009.01

-1u5-
DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.52. I to the J'th power

Format: tn IXI <i/r/t>,<j/r/t>

Assembly Hex Octal
notation Name code code

BYn IXI byte I to the J’th power 0FCC8H+(n-1) 17631OB+(n-1)
Hn IXI halfword I to the J'th power 0FCCCH+(n-1) 17631HB+(n-1)
Wn IXI word I to the J’th power 0FCDOH+(n—1) 1763ZOB+(n—1)

Operation: <I>**<J> -> (datatype dependent part of register)

Description:

I to the <J>'th power is calculated and the result is loaded into the
specified register. When the data type is BY or H, the result is
loaded into the lower part of the specified register. If <J> is
negative and <I> is different from 1 or —1, the result will be set to
zero. If <J> is negative and <I> is 0, it will cause an illegal
operand value trap condition and the result is set to zero.

Trap conditions: Addressing traps, illegal operand value, integer
overflow

Data status bits:

(result) = 0 —> z
(result).signbit -> S
(overflow) —> 0

Example:

Load the byte register R1 with the cube of argument SIDE

BY1 IXI IND(B.SIDE), 3

ND.05.009.01

-ws—
DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.53. Sguare root

Format: tn SQRT <argument/r/t>

Assembly Hex Octal
notation Name code code

Fn SQRT float square root 0FCDMH+(n—1) 17632MB+(n-1)
Dn SQRT double float square root OFCD8H+(n—1) 17633OB+(n-1)

Operation: SQRT(<argument>) —> Rn

Description:

The square root of the argument is calculated and the result is loaded
into the specified float or double float register. A negative argument
is illegal and will give a result of zero and an invalid operation
trap.

Trap conditions: Addressing traps, invalid operation

Data status bits:

(result) = 0 —> Z
(argument) < O —> IVO

Example:

Load double float register D1 with the square root of AREA

D1 SQRT AREA

ND.05.009.01

-1147—
DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.54. Polynomial

Format: tn POLY <x/r/t>,<n/s/BY>,
<cn/r/t>,....,<c1/r/t>,<cO/r/t>;

Assembly Hex Octal
notation Name code code

Fn POLY floating polynomial OFCEOH+(n—1) 176340B+(n-1)
Dn POLY double float polynomial OFCE4H+(n—1) 1763HHB+(n—1)

Operation:
2 n

<cO> + <c1>*<x> + <02>*<x> +........+ <cn>*<x> -> Rn

Description:

This instruction calculates a polynomial of the degree n. The result
is loaded into the specified float or double float register. The
instruction requires <n>+1 coefficients. <n> must always be a positive
constant less than 256, otherwise an illegal operand specifier trap
condition occurs.

Trap conditions: Addressing traps, floating overflow, floating
underflow

Data status bits:

(result) = O —> Z
(result).signbit -> S
(floating underflow) -> FU
(floating overflow) —> F0

Example:

Calculate the expression A * X**2 + B * X + C and leave the result in
F3. A, B and C are the coefficients

F3 POLY x, 2, A, B, c

ND.05.009.01

- 1M8 —

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.55. Floating point remainder

Format: tn REM <x/r/t>,<y/r/t>,<q/w/t>

Assembly Hex Octal
notation Name code code

Fn REM float divide with remainder OFE58H+(n-1) 177130B+(n—1)
Dn REM double float divide OFESCH+(n-1) 17713HB+(n-1)

with remainder

Operation:

The remainder of <x> / <y> in float format -> Rn
The integer part of <x> / <y> in float format -> <q>

Description:

<x> is divided by <y> and the integer part of the quotient in float
format stored in <q>. The remainder of the quotient in float format is
loaded into the specified register.

Trap conditions: Addressing traps, floating overflow, floating
underflow, divide by zero

Data status bits:

remainder = 0
remainder.signbit
(floating underflow)
(floating overflow)
<y> : 0 —>

I
I

I
l

V
V

V
V

8
3

2
““

Example:

Divide record variables EXPENSES with AMOUNT giving UNITCOST and a
remainder in F2

F2 REM R.EXPENSES, RADDUNT, R.UNITCOST

ND.O5.009.01

-1u9-
DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.56. Integer part

Format: tn INT <x/r/t>

Assembly Hex Octal
notation Name code code

Fn INT float integer part OFE6OH+(n—1) 1771NOB+(n—1)
Dn INT double float integer part OFE6MH+(n—1) 1771HHB+(n-1)

Operation: Truncated integer part of <x> in float format —> Rn

Description:

The truncated integer part of the <x> operand is calculated and loaded
into the specified floating register in float format. No rounding is
performed.

Trap conditions: Addressing traps

Data status bits:

result = 0 —> Z
result.signbit -> 3

Example:

Load F" with the integer part of EXACT

FR INT EXACT

ND.OS.OO9.01

- 150 -

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10tfil. Integer part with rounding

Format: tn INTR <x/r/t>

Assembly Hex Octal
notation Name code code

Fn INTR float integer part 0FE68H+(n-1) 1771SOB+(n—1)
with rounding

Dn INTR double float integer part OFE6CH+(n—1) 17715HB+(n—1)
with rounding

Operation: rounded integer part of <x> in float format -> Rn

Description:

The rounded integer part of the <x> operand is calculated and loaded
into the specified floating point register in float format. The result
is rounded.

Trap conditions: Addressing traps

Data status bits:

result = 0 -> Z
result.signbit -> S

Example:

Load F4 with the rounded value a bytes away from the location pointed
to by R3 on the alternative domain and force the displacement to
occupy one word

F4 INTR ALT(R3.U:W)

ND.05.009.01

- 151 -
DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.58. Multiply and add

Format: tn MULAD <x/r/t>,<y/r/t>

Assembly Hex Octal
notation Name code code

BYn MULAD byte multiply and add OFCE8H+(n—1) 1763SOB+(n-1)
Hn MULAD halfword multiply and add OFCECH+(n—1) 1763SNB+(n-1)
Wn MULAD word multiply and add OA8H+(n-1) 250B+(n-1)
Fn MULAD float multiply and add 0FCFOH+(n—1) 176360B+(n—1)
Dn MULAD, double float multiply and add 0FCFHH+(n—1) 17636HB+(n—1)

Operation: Rn * <x> + <y> -> Rn

Description:

The specified register is multiplied by the <x> operand, the <y>
operand is added to the product and the result loaded into the
register.

Trap conditions: Addressing traps, integer overflow, floating
overflow, floating underflow

Data status bits:

(result) = 0 -> Z
(result).signbit -> S
(carry) -> C (integer)
0 —> C (float)
(overflow) -> O (integer)
O -> 0 (float)
(floating underflow) -> FU
(floating overflow) -> F0

Example:

Multiply halfword register R2 with 60, forcing byte constant, and add
MINUTES

H2 MULAD 60:B, MENUTES

ND.05.009.01

— 152 -

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.59. Sum of products

Format: tn PSUM <x/r/t>,<y/r/t>

Assembly Hex Octal
notation Name code code

BYn PSUM byte add and multiply OFCF8H+(n—1) 176370B+(n—1)
Hn PSUM halfword add and multiply OFCFCH+(n-1) 17637NB+(n-1)
Wn PSUM word add and multiply 0FDO0H+(n-1) 176400B+(n—1)
Fn PSUM float add and multiply 0FDOMH+(n—1) 17640flB+(n-1)Dn PSUM double float add and multiply 0FDO8H+(n—1) 176410B+(n—1)

Operation: <x> * <y> + Rn -> Rn

Description:

The <x> operand is multiplied by the <y> operand and the product added
to the specified register.

Trap conditions: Addressing traps, integer overflow, floating
overflow, floating underflow

Data status bits:

(result) = 0 -> Z
(result).signbit -> S
(carry) -> C (integer)
0 —> C (float)
(overflow) -> 0 (integer)
0 -> 0 (float)
(floating underflow) -> FU
(floating overflow) -> F0

Example:

Add local floats UNITCOST times UNITS to FM

FM PSUM B.UNITCOST, B.UNITS

ND.05.009.01

— 153 -

DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.60. Load index

Format: tn LIND <index/r/t/>,<lower/r/t>,<upper/r/t>

Assembly Hex Octal
notation Name code code

BYn LIND byte load index OFDOCH+(n-1) 176D1NB+(n-1)
Hn LIND halfword load index 0FD10H+(n—1) 176H20B+(n-1)
Wn LIND word load index 0ACH+(n—1) 254B+(n—1)

Operation: <index> -> Rn
if <index> is less than <lower>
or <index> is greater than <upper> then

1—>K
illegal index trap condition

else
0->K

endif

Description:

An array index value is loaded into the specified register, checking
the value against the <lower> and <upper> bounds. If the <index>
operand is less than the <lower> operand or greater than the <upper>
operand, the status flag bit (K) is set and an illegal index trap
condition occurs. Otherwise the K flag is reset.

Trap conditions: Addressing traps, illegal index

Data status bits:

<index> = O -> z
<index>.signbit —> S

Example:

Load R2 with the byte value IX, with limits -10 and 10

3Y2 LIND IX, -10, 1O

ND.05.009.01

— 151: -
DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

10.61. Calculate index

Format: tn CIND <index/r/t>,<lower/r/t>,<upper/r/t>

Assembly Hex Octal
notation Name code code

BYn CIND byte calculate index OFD1HH+(n—1) 176M24B+(n—1)
Hn CIND halfword calculate index 0FD18H+(n—1) 176H3OB+(n-1)Wn CIND word calculate index 0BOH+(n~1) 260B+(n—1)

Operation: Rn * (<upper> - <lower> + 1) + <index> -> Rn

if <index> is less than <lower>
or <index> is greater than <upper> then

1->K
illegal index trap condition

else
0—>K

endif

Description:

The address of an element in a multiple dimensional array is
calculated. The range of the dimension, <upper> — <lower> + 1, is
multiplied by the contents of the specified register. <index> is addedto the product and the result loaded into the specified register. If<index> is less than the contents of the <lower> operand or greaterthan the <upper> operand, the flag bit is set and an illegal index
trap condition occurs.

Trap conditions: Addressing traps, integer overflow, illegal index

Data status bits:

(result) = O -> Z
(result).signbit = O -> S
(overflow) —> O

ND.05.009.01

—155-
DATA TRANSFER, ARITHMETICAL AND LOGICAL INSTRUCTIONS

Example:

Assuming ARRAY is declared with limits ARR(1..3,5..10,2..9), load R1
with the address of ARR(IX1,IX2,IX3), where the indexes are local word
variables

W1 CIND IX1, 1, 3
w1 CIND 1x2, 5, 10
W1 CIND 1x3, 2, 9

ND.05.009.01

— 156 -
CONTROL msmucrlons

11. CONTROL INSTRUCTIONS

11.1. Unconditional relative jump

Format: GO «displacement»

Assembly Hex Octal
notation Name code code

GO:B jump byte OCOH 3008
GO:H jump halfword 0C1H 301B
GO:W jump word 0C2H 3028

Operation: P + <<displacement>> —> P

Description:

Performs a jump relative to the current program counter value. GO uses
a direct operand and has three formats, with byte, halfWord, or word
displacement part. The displacement is signed and is found in the 1, 2
or u bytes following the instruction code. A jump to another segment
is illegal and will cause an instruction sequence error trap
condition.

Trap conditions: Addressing traps, instruction seqence error

Data status bits: Unaffected

Example:

Jump to BACK (Assembler will calculate displacement)

BACK: .

GO BACK

ND.05.009.01

—157-
CONTROL INSTRUCTIONS

11.2. Unconditional absolutegjump

Format: JUMPG <address/r/W>

Assembly Hex Octal
notation Name code code

JUMPG jump general OBMH 26NB

Operation: <address> -> P

Description:

Perform a jump to the absolute address given by the operand. JUMPG
requires a general operand. Jump to alternative domain is illegal, ie.
the prefix ALT is illegal in <address>. Jump to another segment will
cause an instruction sequence error.

If a descriptor range trap occurs, the next instruction to be executed
is the one following the JUMPG instruction ("fall through").

Trap conditions: Addressing traps, illegal operand specifier,
instruction seqence error

Data status bits: Unaffected

Example:

Jump to the R1st address in a jump table described by CASETABLE

JUMPG DESC(CASETABLE)(R1)

ND.05.009.01

—158-
CONTROL INSTRUCTIONS

11.3. Conditional jump

Formats:

IF <rel> GO <<displacement>>

IF <re1> GO <bit no/r/BY>, <<displacement>>

Operation:

if <rel> then
(P)+<<displacement>> -> (P)

else
<start of next instruction> —> (P)

endif

Description:

A conditional jump will cause a transfer of control if and only if a
specified condition is true. Otherwise the instruction following the
IF <rel> GO will be the next to be executed.

The condition is specified in terms of the status bits set by
instructions operating on data values. If the condition indicated by
the instruction is true, the sign—extended <<displacement>> is added
to the program counter.

Conditional jump on specified bits in the status register is possible
by the second format of the instruction. In this case the <rel>
operand may be ST or -ST, and the <bit no> operand specifies which bit
in the status register to test. <bit no> has the range 0 to 29
inclusive. Other values for <bit no> will cause an illegal operand
value trap condition.

Magnitude tests are only meaningful after compare and subtract
instructions, as carry is reset in load instructions. IF >>: GO and
IF << GO may be used as explicit tests on carry.

Trap conditions: Addressing traps, illegal operand value

Data status bits: Unaffected

In the following table all conditional jump instructions are listed
with operation code, assembly notation, data status test for jumping
and name. They all have conditional jump as the first part of the
name. (alt. is an abbreviation for alternate)

ND.05.009.01

-159-
CONTROL INSTRUCTIONS

Instruction Codes

Assembly Hex Octal
notation Condition Name code code

IF = GO Z=1 equal
IF 2 GO (alt. assembly notation)
IF = GO:B byte displacement OCNH 3OQB
IF = GO:H halfWOrd displacement OCSH 3058

IF >< GO Z=0 unequal
IF -Z GO (alt. assembly notation)
IF >< GO:B byte displacement OCGH 3068
IF >< GO:B halfword displacement OC7H 307B

IF > GO 8:0 and 2:0 greater signed
IF > GO:B OC8H 310B
IF > GO:H OC9H 311B

IF < GO S=1 less signed
IF S GO (alt. assembly notation)
IF < GO:B OCAH 3128
IF < GO:B OCBH 313B

IF >: GO 320 greater or equal signed
IF -S GO (alt. assembly notation)
IF >= GO:B OCCH 311$B
IF >= GO:H 0CDH 3158

IF <= GO 8:1 or 2:1 less or equal signed
IF <- GO:B OCEH 3168
IF < GO:H OCFH 3178

IF K GO K=1 flag
IF K GO:B ODOH 320B
IF K GO:H 0D1H 3218

IF —K GO K=O ‘ not flag
IF —K GO:B ODZH 322B
IF -K GO:H 0D3H 323B

IF >> GO C=1 and 2:0 greater magnitude
IF >> GO:B ODNH 32uB
IF >> GO:B ODSH 3253

IF >>= GO C=1 greater or equal magnitude
IF C GO (alt. assembly notation)
IF >>= GO:B OD6H 326B
IF >>= GO:B 0D7H 3278

IF << GO C=O less magnitude
IF —C GO (alt. assembly notation)
IF << GO:B OD8H 3308
IF << GO:B OD9H 3318

IF <<: GO C=O or 2:1 less or equal magnitude
IF <<: GO:B ODAH 3323
IF <<: GO:H ODBH 3338

IF ST GO specified bit in status
IF ST GO:B register set OFCYBH 176173B
IF ST GO:B OFD6UH 1765MB

IF -ST GO specified bit in status
IF -ST GO:B register not set OFD65H 1765h5B
IF -ST GO:B OFCBNH 176201-IB

ND.05.009.01

- 160 -

CONTROL INSTRUCTIONS

11.“. Loop with increment

Format: t LOOPI <index/rw/t>,<limit/r/t>,<<displacement>>

Assembly Hex Octal
notation Name code code

BY LOOPI:B byte loop increment OFCDEH 1763368
BY LOOPI:H byte loop increment 0FD1EH 176H36B
H LOOPI:B halfword loop increment OFCDFH 176337B
H LOOPI:B halfWord loop increment 0FD1FH 176M378
W LOOPI:B word loop increment OBFH 2778
W LOOPI:H word loop increment 0E1H 3N1B
F LOOPI:B float loop increment 0FD1CH 176M3UB
F LOOPI:B float loop increment OFD21H 176UH1B
D LOOPI:B double float loop increment 0FD1DH 176M35B
D LOOPI:B double float loop increment OFD22H 176442B

Operation: if <index>+1 -> <index> > <1imit> then
(address of next instruction) -> P

else
P+<<displacement>> _> P

endif

Description:

The index is incremented by one and compared with the limit. If it is
less than or equal to the limit the signed displacement is added to
the program counter, otherwise the control goes to the next
instruction.

Normally the LOOPI instruction will be placed at the end of the loop,
with a negative displacement. The displacement is the number of bytes
from the first byte of the loop to the first byte of the LOOPI
instruction.

<index> and <1imit> have the same data type, which may be BY, H, w, F
or D. <<displacement>> is a byte or halfword direct operand, depending
on the instruction.

ND.05.009.01

- 161 -

CONTROL INSTRUCTIONS

Trap conditions: Addressing traps, integer overflow

Data status bits:

<modified index> = O —> Z
<modified index>.signbit -> S
O -> 0 (float)
(overflow) -> O (integer)
O —> C (float)
(carry from most significant bit) -> C (integer)

Example:

Repeat the instructions from AGAIN until local byte COUNTER reaches
100

AGAIN: .

BY LOOPI B.COUNTER, 100, AGAIN

ND.05.009.01

- 162 -

CONTROL INSTRUCTIONS

11.5. Loop with decrement

Format: t LOOPD <index/rw/t>,<limit/r/t>,<<displacement>>

Assembly Hex Octalnotation Name code code

BY LO0PD:B byte loop decrement 0FD23H 176HM3BBY LOOPD:H byte loop decrement OFD28H 176N50BH LOOPD:B halfword loop decrement OFDZDH 1764UHBH LOOPD:H halfword loop decrement OFD29H 176451Bw LOOPD:B word loop decrement OFDZSH 176MHSB
W LOOPD:H word loop decrement OFD2AH 176452BF LOOPD:B float loop decrement 0FD26H 176MM6BF LOOPD:H float loop decrement OFDZBH 176M53BD LO0PD:B double float loop decrement OFD27H 176NH7BD LOOPD:H double float loop decrement OFDZCH 176M5MB

Operation: if <index>-1 -> <index> < <limit> then
(address of next instruction) -> P

else
P+ <<displacement>> -> P

endif

Description:

The index is decremented by one and compared with the limit. If it isgreater than or equal to the limit the signed displacement is added tothe program counter, otherwise control goes to the next instruction.

Normally the LOOPD instruction will be placed at the end of the loop,with a negative displacement. The displacement is the number of bytesfrom the first byte of the loop to the first byte of the LOOPDinstruction.

<index> and <limit> have the same data type, which may be BY, H, W, For D. <<displacement>> is a byte or halfword direct operand, dependingon the instruction.

“13.05.009.01

—163-
CONTROL INSTRUCTIONS

Trap conditions: Addressing traps, integer overflow

Data status bits:

<modified index> = 0 -> Z
<modified index>.signbit -> S
0 -> 0 (float)
(overflow) -> 0 (integer)
0 -> C (float)
(carry from most significant bit) -> C (integer)

Example:

Repeat from TOP until word register R3 is decremented to zero

TOP: .

W LOOPD R3, o:w, TOP

ND.05.009.01

_ 161; —
CONTROL INSTRUCTIONS

11.6. Loop general

Format: LOOP <index/rw/t>,<step/r/t>,
<limit/r/t>,<<displacement>>

Assembly Hex Octal
notation Name code code

BY LOOP:B byte loop general step OFDZDH 176HSSB
BY LOOP:H byte loop general step 0FD32H 176M628
H LOOP:B halfword loop general step OFDZEH 176456B
H LOOP:H halfWord loop general step 0FD33H 176M633
W LOOP:B word loop general step OFDZFH 176N57B
W LOOP:H word loop general step OFD34H 176M6MB
F LOOP:B float loop general step 0FD30H 1764608
F LOOP:H float loop general step OFD35H 176H658
D LOOP:B double float loop general step OFD31H 176461B
D LO0P:H double float loop general step OFD36H 176N66B

Operation: if <step> positive then
if <index>+<step> -> <index> > <limit> then

(address of next instruction) -> P
else

P+ <<displacement>> _> P
endif

endif
if <step> negative then

if <index>+<step> -> <index> < <limit> then
(address of next instructon) -> P

else
P+ <<diplacement>> _> P

endif
endif
if <step> = zero then

illegal operand value trap condition
endif

Description:

<step> is added to <index>. If the sign of <index> - <limit> i 3 equal
to the sign of <step> the control goes to the next instruction.
Otherwise the signed displacement is added to the program counter.

Normally the LOOP instruction will be placed at the end of the loop,
with a negative displacement. The displacement is the number of bytes
from the first byte of the loop to the first byte of the LOOPI
instruction.

ND.05.009.01

- 165 -

CONTROL INSTRUCTIONS

<index>, <step> and <limit> have the same data type, which may be BY,
H, W, F or D. <<displacement>> is a byte or halfword direct operand,
depending on the instruction.

A step size of zero will cause an illegal operand value trap.

Trap conditions: Addressing traps, integer overflow, floating
overflow, floating underflow, illegal operand value

Data status bits:

<modified index> = 0 -> Z
<modified index>.signbit -> S
(carry from most significant bit) —> C (integer)
O -> C (float)
(overflow) —> O (integer)
O -> 0 (float)
(floating underflow) -> FU
(floating overflow) -> F0

Example:

Execute the statements from ’LABELL with float record variable SIZE
being incremented by 3.5 for each iteration up to a maximum of 35

LABELL: .

F LOOP SIZE, 3.5, 35, LABELL

ND.05.009.01

- 166 -

CONTROL INSTRUCTIONS

11.7. Call subroutine general

Format: CALLG <subr. addr/r/W>,<no of arg/s/BY>,
<arg1/aa/W>,...,<argn/aa/W>;

Assembly Hex Octal
notation Name code code

CALLG call subroutine general OBSH 2653

Operation:

Calculate the effective addresses of the arguments and prepare
for the entry point at <subr. addr.>.
Jump to the subroutine entry point found at that address.

Description:

Call the subroutine at the address specified by the <subr. addr.>
argument. This is a general operand and it must refer to an entry
point instruction. Otherwise an instruction sequence error trap
condition occurs.

The effective address of the arguments in the instruction is
calculated and temporarily stored for use by the entry point
instruction.

The <no of arg> operand must be a constant byte integer less than
256. Other data types which are not constants will cause an illegal
operand specifier trap condition.

The arguments are always interpreted as word integer. The data type
dependent addressing modes (post indexed or descriptor address code
format) should be used with. care, as the result will be wrong for
arguments of other data types than word. <argn> operands of type
register or constant will cause an illegal operand specifier trap
condition, as neither registers nor constants have an address in data
memory. The arguments may not be prefixed by the operand specifier
prefix ALT; this will cause, an illegal operand specifier trap
condition.

A subroutine on the current segment is called by its address. A
subroutine on another segment is called by its segment number in the
upper 5 bits of the address and the routine number on the segment in

”the lower 27 bits. A detailed discussion is found in the memory
management section.

ND.05.009.01

—167-

CONTROL INSTRUCTIONS

Trap conditions: Addressing traps, call trap, illegal operand
specifier, instruction seqence error

Data status bits: Unaffected

Example:

Call routine PRINT with arguments UNIT, FORMAT and the local variable
VALUE

CALLG PRINT, 3, UNIT, FORMAT, B.VALUE

ND.05.009.01

- 168 -

CONTROL INSTRUCTIONS

11.8. Call subroutine absolute

Format: CALL <<subr. addr.>>,<no of arg/s/BY>,
<arg1/aa/W>,...<argn/aa/W>

Assembly Hex Octal
notation Name code code

CALL call subroutine absolute 0C3H 303B

Operation:

Calculate the effective addresses of the arguments and prepare
for the entry point at <<subr. addr.>>.
Jump to the subroutine entry point found at that address.

Description:

Call the subroutine at the address specified by the <<subr. addr.>>
argument. The subroutine address is a direct operand; the four bytes
following the instruction code are taken as the subroutine address.
The address must refer to an entry point instruction. Otherwise an
instruction sequence error trap occurs.

The effective address of the arguments in the instruction is
calculated and temporarily stored for use by the entry point
instruction.

The <no of arg> operand must be a constant byte integer, ie. less
than 256. Other data types which are not constants will cause an
illegal operand specifier trap condition.

The arguments are always interpreted as word integer. The data type
dependent addressing modes (post indexed or descriptor address code
format) should be used with care, as the result will be wrong for
arguments of other data types than word. <argn> operands of type
register or constant will cause an illegal operand specifier trap
condition, as neither registers nor constants have an address in data
memory. The arguments may not be prefixed by the operand specifier
prefix ALT; this will cause an illegal oprand specifier trap
condition.

A subroutine on the current segment is called by its address. A
subroutine on another segment is called by its segment number in the
upper 5 bits of the address and the routine number on the segment in
the lower 27 bits. A detailled discussion is found in the memory
management section.

ND.05.009.01

-169-
CONTROL INSTRUCTIONS

Trap conditions: Addressing traps, call trap, illegal operand
specifier, instruction seqence error

Data status bits: Unaffected

Example:

Call SUBR with the value of local word variable READONLY. Value
transfer should be used with word size data items only

\ CALL SUBR, 1, IND(B.READONLY)

ND.05.009.01

- 17o -
CONTROL INSTRUCTIONS

11.9. Initialize stack

Format: INIT <<bottom of stack/r/W>>,
<stack demand of main program/r/W>,
<total system stack demand/r/W>

Assembly Hex Octal
notation Name code code

INIT initialize stack ODCH 33MB

Operation:

<<bottom of stack>> —> new.B

<<bottom of stack>> +
<total system stack damnxb —> TOS (top of stack register)

<<bottom of stack>> +
<stack demand of main program> -> newB.SP (next B)
0 —> newB.PREVB
O -> newB.RETA -> L

Description:

The stack is initialized according to the instruction operands:
The direct operand <<bottom of stack>> is a 4 byte absolute address,
which is loaded into the B register. The B.SP location, the stack
pointer, is loaded with the sum of <<bottom of stack>> and <stack
demand of main program>. <<bottom of stack>> and <total system stack
demand> is added and the result is loaded into the top of stack
register, TOS. PREVB and RETA are cleared.

Trap conditions: Addressing traps

Data status bits: Unaffected

Example:

Initialize a new stack at FRAME, requiring 010000H stack locations for
the system, 01000H for the main program

INIT FRAME, 01000OH, 01000H

ND.05.009.01

— 171 —
CONTROL INSTRUCTIONS

11.10. Subroutine entrygpoints

Formats:

ENTM <<bottom of stack/r/W>>,<stack demand of main program/r/w>,
<total system stack demand/r/W>

ENTS <stack demand/r/W>

ENTSN <stack demand/r/W>,<max no. of arg./r/W>

ENTF <<address of local data area/r/W>>

ENTFN <<address of local data area/r/W>>,<max no. of arg./r/W>

ENTT <trap handler main program stack demand/r/W>,
<total trap handler stack demand/r/W>

ENTB <log size/r/BY>

Operation:

Perform local data area initialization depending on
the type of entry point.

Description:

The entry point instruction specifies the kind of local data area
initialization performed on execution of a subroutine call
instruction. This initialization includes transfer of the argument
addresses to the new local data area at subroutine entry points, and
saving of the current register block in the new local data area at the
trap handler entry point.

Execution of an entry point instruction (except ENTT) not as a result
of a subroutine call will cause an instruction sequence error trap
condition. ENTT may only be executed as a result of a trap, and may
not be used as an entry point by a CALL of CALLG.

ND.05.009.01

-172-

CONTROL INSTRUCTIONS

ENTM - enter module

Assembly Hex Octal
notation code code

ENTM <<bottom of stack/r/W>>, ODFH 337B
<stack demand of main program/r/W>,
<tota1 system stack demand/r/W>

Description:

When the ENTM entry point is used, a new stack is initialized. There
will be a stack overflow trap if <stack demand of main program> is
greater than or equal to <total stack demand of program system>.

Trap conditions: Addressing traps, instruction seqence error, stack
overflow

Initializations performed:

TOS (top of stack register) -> IND(oldB.SP)
<<bottom of stack>> -> new.B

<<bottom of stack>> +
<total system stack demand> -> TOS

oldB -> newB.PREVB
(return address) -> newB.RETA -> L

<<bottom of stack>> +
<stack demand of main program> -> newB.SP

(number of arguments) —> newB.N
(addresses of arguments) -> newB.arg

ND.05.009.01

_ 173 _

CONTROL INSTRUCTIONS

ENTD - enter Subroutine directly

Assembly Hex Octal
notation code code

ENTD O9CH 23MB

Description:

With ENTD as entry point, no initialization of local data area or
parameter address transfer is performed. If the subroutine calls other
subroutines, the L register must be saved and restored explicitly.

Trap conditions: Addressing traps, instruction seqence error

Initializations performed:

(return address) -> L

ND.OS.009.01

- 17H -
CONTROL INSTRUCTIONS

ENTS - enter stack subroutine

Assembly Hex Octal
notation code code

ENTS <stack demand/r/w> OB8H 2703

Description:

<stack demand> is the number of bytes needed for the local data field
of the subroutine, including the predefined locations PREVB, RETA, SP,
AUX and N (a total of 20 bytes). There will be a stack overflow trap
condition if newB + <stack demand> is greater than or equal to TOS.

Trap conditions: Addressing traps, stack overflow, instruction
seqence error

ENTSN - enter maximum number of arguments stack subroutine

Assembly Hex Octal
notation code code

ENTSN <stack demand/r/W>,<max no. of arg./r/W> OBAH 2723

Description:

ENTSN is similar to ENTS, but in addition the <no. of arg.> operand of
the call subroutine instruction is compared against the <max no. of
arguments> operand. If the number of arguments supplied with the call
instruction is greater than the maximum number of arguments in the
ENTSN instruction this will cause an illegal operand value trap
condition and the program may be trapped. The maximum number of
parameters allowed will be transferred to the stack, the remaining
ignored.

Trap conditions: Address trap fetch, instruction seqence error,
illegal operand value, stack overflow

Initializations performed:

oldB.SP —> newB
oldB -> newB.PREVB
(return address) —> newB.RETA -> L
newB + <stackdemand> —> newB.SP
(number of arguments) -> newB.N
(addresses of arguments) ~> newB.arg

ND.05.009.01

— 175 -

CONTROL INSTRUCTIONS

ENTF — enter subroutine

Assembly Hex Octal
notation code code

ENTF <<address of local data area/r/W>> ODDH 335B

Description:

Enter subroutine with fixed data area. Variables will keep their
values between calls.

Trap conditions: Addressing traps, instruction seqence error

ENTFN - enter maximum number of arguments subroutine

Assembly Hex Octal
notation code code

ENTFN <<address of local data area/r/W>>, ODEH 336B
<max no. of arg./r/W>

Description:

ENTFN is similar to ENTF, but in addition the <no. of arg.> operand of
the call subroutine instruction is compared against the <max no. of
arguments> operand. If the number of arguments supplied with the call
instruction is greater than the maximum number of arguments in the
ENTFN instruction this will cause an illegal operand value trap
condition and the program may be trapped. The maximum number of
parameters allowed will then be transferred to the stack, the
remaining ignored.

Trap conditions: Addressing traps, illegal operand value, instruction
seqence error

Initializations performed:

<<address of local data area>> -> newB
oldB -> newB.PREVB
(return address) -> newB.RETA -> L
oldB.SP —> newB.SP
(number of arguments) -> newB.N
(addresses of arguments) -> newB.ARG

ND.05.009.01

-176-
CONTROL INSTRUCTIONS

ENTT - enter trap handler

Assembly Hex Octal
notation code code

ENTT <trap handler main program stack demand/r/W), OBCH 27MB
<tota1 trap handler stack demand/r/W>

Description:

ENTT is trap handler entry point. A trap handler is invoked when a
trap condition arises and the trap enable bit is set for the trap in
question. When a trap handler routine is invoked, the start address is
taken from a trap handler entry point vector. The THA register holds
the address of this vector. The area following the trap handler vector
is used as local data area for the invoked trap handler routine. It
has a special layout illustrated in the chapter on traps.

The register block is stacked in the following sequence:

arg2 : P arg18 : ST1 arg3u : CTE2
3 : L 19 : 3T2 35 : MTE1
u : B 20 : PS 36 : MTE2
5 : R 21 : T08 37 : IT)!“
6 : I1 22 : LL 38 : TEMM2
7 : 12 23 : HL 39 : mic
8 : I3 2“ : THA MO : mic
9 : xu 25 : CED
1O : A1 26 : CAD
11 : A2 27 : CES
12 : A3 28 : CA3
13 : A4 29 : mic
1U : E1 30 : mic
15 : E2 31 : OTE1
16 : E3 32 : OTE2
17 : ER 33 : CTE1

'mic' indicates registers accessible to microprogram only.

Following the register block is 10 words of program memory, starting
at the first word containing the first byte of the instruction causing
the trap. 'Trapping P’ (the address of the first byte of the
instruction causing the trap) points to a byte in the first word; the
byte number is the two lower bits of 'trapping P’.

Trap conditions: Addressing traps, instruction seqence error

ND.05.009.01

-177-
CONTROL INSTRUCTIONS

Initializations performed:

THA (trap handler register) + 256 -> newB
O -> newB.PREVB
O -> newB.RETA —> L

newB + <trap handler main
program stack demand/r/W> -> newB.SP

(address of the instruction
that caused the trap) —> newB.arg1

(register block) -> newB.arg2..newB.argflO
(10 words op program memory) —> newB.argu1..neWB.argSO

newB + <total trap handler
stack demand/r/W> - V TOS (top of stack)

ND.05.009.01

- 178 -

CONTROL INSTRUCTIONS

ENTB - enter subroutine with buddy allocation

Asseubly Hex Octal
notation code code

ENTB <log size/r/BY> OBDH 275B

Description:

A local data area of size 2**<log size> number of words is allocated
from the heap and the subroutine is entered. There will be a stack
overflow trap if there are no elements of the specified size (or
larger) available from the heap. (See the chapter on buddy allocation
for a detailed discussion.)

Trap conditions: Addressing traps, stack overflow, instruction
seqence error

Initializations performed:

(address of an element from the heap) —> newB
oldB -> newB.PREVB
(return address) -> newB.RETA —> L
oldB.SP -> newB.SP
log size -> newB.LOG
(number of arguments) -> newB.N
(addresses of arguments) -> newB.ARG

ND.05.009.01

-179-
CONTROL INSTRUCTIONS

11.11. Subroutine return

Assembly Hex Octal
notation Name code code

RET clear flag return from subroutine O80H 200B
RETK set flag return from subroutine 081H 201B
RETD return from direct subroutine 082B 202B
RETT trap handler return 083E 2038
IF K RET if flag set subroutine return 09DH 2353
RETB buddy subroutine return OFE1CH 177034B
RETBK set flag buddy subroutine return OFE1DH 1770358

Operation:

RET: 0 —> STATUS.K oldB.PREVB -> newB oldB.RETA -> P -> L

RETK: 1 -> STATUS.K oldB.PREVB -> newB oldB.RETA —> P -> L

RETD: L -> P

RETT: The register block is loaded from B.argZ..B.arguO
OTE is loaded from the domain information table
The status register is loaded partly from B.arg18..Barg19
and partly from domain information table (see chapter 3)

IF K RET: If STATUS.K = 1 then
oldB.PREVB -> newB oldB.RETA -> P -> L

endif

RETB: Local data area released to heap
0 -> STATUS.K oldB.PREVB -> newB oldB.RETA -> P -> L

RETBK: Local data area released to heap
1 -> STATUS.K oldB.PREVB —> newB oldB.RETA —> P —> L

Description:

RE‘I‘l RETK

Return from subroutine with local data area. The new base register and
return address are taken from the current local data area. RETK will
set the flag bit of the status register; RET will clear it.

ND.05.009.01

- 180 —

CONTROL INSTRUCTIONS

IF K RET

If the flag bit K is set when the IF K RET instruction is executed, a
subroutine return is performed with the flag bit remaining set.
Otherwise the control goes to the next instruction.

RETD

Load the new program counter from the link register.

RETT

Return from the trap handler. When RETT is executed, the register
block is loaded from the first part of trap handler data area. The
non-ignorable and fatal status bits are loaded from the domain
information table. The OTE register is loaded from the domain
information table. PREVB and RETA are not used or tested. CED of the
trapped domain is compared to actual CED. If they are unequal, CED is
changed back to trapped domain.

RETB, RETBK

Return from subroutines with heap elements as local data area. The
local data field is released to the heap described by the variables
pointed at by the TOS register. (See section about heap management for
further explanation.)

Trap conditions: Stack underflow, address zero trap

Data status bits: Unaffected

ND.05.009.01

- 181 -

CONTROL INSTRUCTIONS

The programmer must ensure that the appropriate return instruction is
executed. Subroutines entered through an ENTS, ENTSN, ENTF or ENTFN
instruction should be left through a RET, RETK or IF K RET
instruction. ENTD routines should be left through RETD, ENTT routines
through RETT, ENTB routines through RETB or RETBK.

If oldB.PREVB or oldB.RETA (L register if RETD) is zero, the return
instruction (except RETT) will compare CAD to CED. If they are equal
or CAD is zero a stack underflow trap condition occurs. If CAD is not
equal to CED the current domain is changed back to CAD and the B, P
and CAD registers are loaded from the domain information table.

RETT will compare the domain number of the trapped domain (saved on
the trap handler stack) to the current executing domain. If they are
equal, RETT returns within the same domain. Otherwise RETT changes the
domain to the domain number saved on the stack.

ND.05.009.01

— 182 —

STRING INSTRUCTIONS

12. STRING INSTRUCTIONS

12.1. Introduction

The string handling instructions make special use of the I1 and I2
registers as pointers to the source and destination string
respectively. I2 is used only for those instructions which have a
destination operand.

The operand in the instruction is the address of a string descriptor
giving the start address of the string and its length. A DESC prefix
is not allowed in the operand specifier; the descriptor addressing
format is implicit in string instructions.

The register contains the character number within the string, starting
, at zero. It is not initialized before the instruction is executed and

may be set by the user to point at any character. Characters outside
the range indexed by the string instruction are unaffected.

Some instructions will refer to a translation table. This is 256
contiguous bytes and a translation is a reference in this table with
the byte to be translated as an index. In the instruction descriptions
Tr(S(I1)) means that the specified element is translated via a
translation table.

The data status bits Z, 0, S and the K flag may be affected by the
string operations. The data status bits not mentioned in the string
instruction description are all zero after the execution of the
instruction. Carry is always cleared.

Execution of an instruction may terminate for various reasons and the
termination condition sets the X, Z and/or 8 status bits. Destination
full termination implies that 1 -> K. Execution termination for
reasons other than destination full implies that O -> K. Status of the
Z and S bit depends on the instruction.

After execution I1 and I2 point to the next element or the last
element, depending on the termination conditions. Source string empty
or destination full implies that I1 and 12 point to the next element.
Next element is the first one not referred to by the instruction; if
the end of the string is reached it is to the first character beyond
the end of the string. String compare, until, while, translate until
etc. have a third termination condition which implies that I1 and 12
point to the last element which was examined/moved.

When more than one termination condition is reached at the same time,
the instruction terminates with the first of these mentioned in the
termination condition list of the instruction.

ND.05.009.01

_ 183 _

STRING INSTRUCTIONS

Strings occupying the same locations in memory are said to be
overlapping. If the source and destination operands overlap, the
result will be as intended only if the old contents an element in the
source string is moved out before it is overwritten with a new value.
In cases where the length of the string operands can be determined
prior to start of execution, the microcode will take care of overlap
if neccessary by operating on the string elements in reverse order.

For instructions containing a ’while' or 'until’ condition, the length
is not determined before execution has been started, and it is not
possible to predict the degree of overlapping. The progxeummer must
ensure that strings do not overlap, otherwise the results are
unpredictable.

Instruction descriptions use the following notation:

<=operand=> Implicit descriptor operand, ie. the specified operand
is a descriptor and the operand of the instruction is
accessed via this descriptor.

"is set to point at."

S(I1) I1'th character in source string
D(IZ) I2'th character in destination or source-2 string

ND.05.009.01

-1811-

STRING INSTRUCTIONS

12.2. String move

Format: t SMJVE <=source/r/t/I1=> ,<=dest/w/t/12=>

Assembly Hex Octal
notation Name code code

BI SMJVE bit string move 0FD66H 1765146B
BY SMOVE byte string move 0FD67H 1765M7B
H SMDVE halfword string move 0FD68H 176550B
W SMDVE word string move 0FD69H 176551B
F SMDVE float string move 0FD6AH 176552B
D SMDVE double float string move OFD6BH 1765533

Operation: while not end of string do
S(I1) -> D(I2), I1+1 -> I1, 12+1 -> I2

enddo

Description:

String elements are moved from the source string to the destination
string until the source is empty or the destination is full.
Overlap is taken care of.

Terminating conditions:

source empty : K 0 I1, 12 :- next element

destination full : K 1 I1, I2 :- next element

Example:

Move the double float array whose descriptor is argument DATABLOCK to
the area described by local descriptor COPY

W1 CLR; W2 CLR
D SMDVE IND(B.DATABLOCK), B.COPY

ND.05.009.01

- 185 -

STRING INSTRUCTIONS

12.3. String move while

Format: BY SMVWH <=source/r/BY/I1=>,<=dest/w/BY/IZ=>,
<mask/r/BY>, <test/r/BY>

Assembly Hex Octal
notation Name code code

BY SMVWH byte string move while 0FD72H 1765628

Operation: while S(I1) AND <mask> = <test> do
S(I1) -> D(I2), I1+1 —> I1, 12+1 _> 12

enddo

Description:

Bytes are moved from the source string to the destination string. When
the moved byte "anded" with <mask> is equal to <test>, the moving
continues until the source string is empty or the destination string
is full. Overlap is not taken care of.

Terminating conditions:

II .Asource empty: K = 0 Z I1, 12 :- next element

destination full: K II _3 N H _\ I1, I2 :— next element

different byte found: K II C N ll 0 I1, 12 :- last element

Example:

Copy characters from INPUT to BUFFER as long as the characters are in
the range 100B to 177B, starting at current character positions in I1
and 12

BY SMVWH INPUT, BUFFER, 3008, 1008

ND.05.009.01

— 186 -

STRING INSTRUCTIONS

12.“. String move until

Format: BY SMVUN <=source/r/BY/I1=>,<=dest/w/BY/12=>,
<mask/r/BY>, <test/r/BY>

Assembly Hex Octal
notation Name code code

BY SMVUN byte string move until 0FD73H 1765633

Operation: while S(I1) AND <mask> >< <test> do
5(11) —> D(12), I1+1 -> I1, I2+1 _> I2

enddo

Description:

Bytes are moved from source to destination until the source is empty,
the destination is full or the next byte "anded" with <mask> to be
moved is equal to <test>. Overlap is not taken care of.

Terminating conditions:

source empty: K = 0 Z = 0 I1, I2 :— next element

destination full: K = 1 Z = 0 I1, I2 :- next element

equal byte found: K = 0 Z = 1 I1, I2 :- last element

Example:

Copy characters from argument ARG on the alternative domain to the
global string LINE in the current domain

W1 CLR; W2 CLR
BY SMVUN ALT(IND(B.ARG)), LINE, 377B, M73

ND.05.009.01

- 187 -

STRING INSTRUCTIONS

12.5. String move translated

Format: BY SMVTR <=source/r/BY/I1=>,<=dest/w/BY/12=>,
<trans table/aa/BY>

Assembly Hex Octal
notation Name code code

BY SMVTR byte string move translated 0FD7NH 17656HB

Operation: while not end of strings do
tr(S(I1)) -> D(12), I1+1 —> I1, 12+1 -> 12

enddo

Description:

Bytes from the source string are translated via a translation table
found at the address specified in the operand <trans table>.
Translated bytes are moved from source to destination string until the
source is empty or the destination is full. Overlap is taken care of.

Terminating conditions:

source empty: K 0 I1, I2 :- next element

destination full: K II .a I1, 12 :- next element

Example:

Convert the string CHARACTERS from EBCDIC to ASCII

W1 CLR; W2 CLR
BY SMVTR CHARACTERS, CHARACTERS, EBCDICZASCII

ND.05.009.01

- 188 —

STRING INSTRUCTIONS

12.6. String move translated until

Format: BY SMVTU <=source/r/BY/I1=>,<=dest/w/BY/12=>,
<trans table/aa/BY>

Assembly Hex Octal
notation Name code code

BY SMVTU byte string move translated until OFD75H 176565B

Operation: while tr(S(I1)) >< ASCII "escape"
and not end of string do

if tr(S(I1)) >< zero then
tr(S(I1)) _> D(12), 12+1 _> 12

endif
I1+1 -> I1

enddo

Description:

Bytes from the source string are translated via the translation table
found at the address specified in the operand <trans table>.
Translated bytes are moved from source to destination string if they
are not zero. The move operation stops if the translated byte is equal
to ASCII "escape" (O1BH or 338), the source is empty or the
destination full. Overlap is not taken care of.

Terminating conditions:

source empty: K = 0 Z = 0 I1, 12 :— next element

destination full: K = 1 Z = 0 I1, 12 :- next element

"escape" found: K = 0 Z = 1 I1, I2 :- last element

Example:

Remove ASCII Nulls and translate to uppercase the string described by
record variable TEXT, copying it to the string described by TEXT2,
starting at the current position

BY SMVTU R.TEXT, TEXT2, UPPERCASETABLE

ND.05.009.01

~189-

STRING INSTRUCTIONS

12.7. String move n elements

Format: t SNDVN <=source/r/t/I1=>,<=dest/w/t/I2=>,<n/r/W>

Assembly Hex Octal
notation Name code code

BI SMOVN string move n bits OFD76H 1765668
BY SMOVN string move n bytes OFD77H 176567B
H SMWN string move n halmords OFD78H 1765708
w SMOVN string move n words OFD79H 176571B
F SWVN string move n floats OFD7AH 176572B
D SMOVN string move n double floats OFD7BH 176573B

Operation: Move n elements from source to destination

Description:

N items are moved from source to destination string, unless the source
is empty or the destinaton full. Overlap is taken care of.

Terminating conditions:

source empty: K = 0 Z = 0 I1, I2 :- next element

destination full: K = 1 Z : 0 I1, 12 :- next element

n items moved: K = 0 Z = 1 I1, I2 :- next element

Example :

Copy next 64 bits from S1 to start of 32, both global descriptors

W2 CLR
BI SMOVN S1, 32, 6”

ND.05.009.01

— 190 —
STRING INSTRUCTIONS

12.8. String fill

Format: tn SFILL <=dest/w/t/12=>

Assembly Hex Octal
notation Name code code

BIn SFILL bit string fill 0FD7CH+(n—1) 17657HB+(n-1)
BYn SFILL byte string fill 0FD8OH+(n-1) 1766OOB+(n-1)
Hn SFILL halfword string fill OFD8MH+(n-1) 17660HB+(n~1)
Wn SFILL word string fill 0FD88H+(n—1) 176610B+(n—1)
Fn SFILL float string fill OFD8CH+(n-1) 17661HB+(n-1)
Dn SFILL double float string fill 0FD90H+(n-1) 1766ZOB+(n-1)

Operation: Rn —> every element of <=dest=>

Description:

The contents of the specified register are put into every element of
the destination string.

Terminating conditions:
K = 1 12 :- next element

Data status bits: All cleared

Example:

Fill the remaining characters of STRING with ASCII spaces (HOB)

3Y3 := 40B
3Y3 SFILL STRING

ND.05.009.01

STRING INSTRUCTIONS

-191-

12.9. String fill n elements

Format: tn SFILLN <=dest/w/t/I2=>,<n/r/W>

Assembly Hex Octal
notation Name code code

BIn SFILLN string fill n bits OFD9HH+(n—1) 17662HB+(n-1)
BYn SFILLN string fill n bytes OFD98H+(n-1) 17663OB+(n—1)
Hn SFILLN string fill n halfwords OFDQCH+(n-1) 17663MB+(n—1)
Wn SFILLN string fill n words OFDAOH+(n—1) 1766MOB+(n—1)
Fn SFILLN string fill n floats 0FDAMH+(n—1) 1766HMB+(n-1)
Dn SFILLN string fill n double float OFDA8H+(n—1) 176650B+(n—1)

Open tion: Rn —> n first elements of <=dest=>

Description:

If the number of elements in the destination string is greater than n,
the contents of the specified register are stored in the n first
elements of the destination string.
destination string are filled with the contents of the register.

Terminating conditions:

destination full: K

n elements filled: K

Example:

Zero fill the lower 100 words of

W1 CLR; W2 CLR
W1 SFILLN B.FI, 100

N ll 0 I2

0 Z : 1 12

ND.05.009.01

:- next element

:- next element

Otherwise all elements of the

the word string described by local FI

- 192 -

STRING INSTRUCTIONS

12.10. String compare

Format: BY SCDMP <=source—1/r/BY/I1=>,<=source-2/r/BY/12=>

Assembly Hex Octal
notation Name code code

BY SCOMP byte string compare OFDACH 17665NB

Operation: while S(I1) = D(12) do
11+1 —> 11, 12+1 —> 12

enddo

Description:

Bytes from the source-1 string are compared to the corresponding bytes
in the source-2 string until unequal bytes are found, or until the end
of source—1 or source—2 string is reached. When unequal bytes are
found, the status bits Z and S and the K flag will indicate the
termination condition.
The byte elements are considered to be unsigned values.

Terminating conditions:

exact match: K = 0 Z = 1 S = 0 I1, 12 :- next element

source—1 string
longer than source—2: K = 0 Z = 0 S = O 11, I2 :- next element

source-1 string
shorter than source—2: K = 0 Z = O S = 1 I1, 12 :- next element

greater byte in
source-1 found: K = 1 Z = O S = 0 11, I2 :- last element

less byte in
source—1 found: K = 1 Z = O S = 1 11, 12 :- last element

Example:

Scan INPUTLINE and local COMMAND from the current positions until
different characters or end of string is detected

BY SCOMP INPUTLINE, B.COMMAND

ND.05.009.01

_ 193 _

STRING INSTRUCTIONS

12.11. String compare translated

Format: BY SCOTR <=source—1/r/BY/I1=>,<=source—2/w/BY/I2=>,
<trans table/aa/BY>

Assembly Hex Octal
notation Name code code

BY SCOTR byte string compare translated OFDADH 176655B

Operation: while tr(S(I1)) = tr(D(12)) do
I1+1 -> 11, I2+1 -> I2

enddo

Description:

Translated bytes from the source-1 string are compared to the
corresponding translated bytes in the source-2 string. This comparison
continues until unequal bytes are found, or until the end of the
source-1 or source—2 string is reached.
The byte elements are considered to be unsigned values.

Terminating conditions:

exact match: K = 0 Z = 1 S = 0 I1, I2 :- next element

source-1 string
longer than source-2: K = 0 Z = O S = 0 I1, 12 :— next element

source-1 string
shorter than source—2: K = 0 Z = 0 S : 1 11, I2 :- next element

greater byte in
source-1 found: K = 1 Z = O S = 0 I1, I2 :— last element

less byte in
source—1 found: K = 1 Z = 0 S = 1 I1, 12 :— last element

Example:

Scan INPUTLINE and local COMMAND from the current position until end
of string or different characters, converting to uppercase

BY SCOTR INPUTLINE, B.COMMAND, UPPERCASE

ND.05.009.01

-19u-
STRING INSTRUCTIONS

12.12. String compare withgpad

Format: BY SCOPA <=source—1/r/BY/I1=>,
<=source—2/r/BY/12=>,<pad/r/BY>

Assembly Hex Octal
notation Name code code

BY SCOPA string compare with pad OFDBEH 1766768

Operation: while S(I1) = D(12) do
I1+1 -> I1, I2+1 -> 12

enddo

Description:

Bytes from the source—1 string are compared to the corresponding bytes
in the source-2 string until unequal bytes are found, or until the end
of strings are reached. If the lengths of the source-1 and source-2
strings are not equal, the shortest string is concatenated with a
string of pad bytes. The length of the pad string is equal to the
difference in length of the source-1 and the source-2 string. When
unequal bytes are found, the status bits Z and S and the K flag will
indicate the termination condition.
The byte elements are considered to be unsigned values.

Terminating conditions:

exact match: K = 0 Z = 1 S = 0 I1, I2 :- next element

greater byte in
source—1 found: K = 1 Z = O S = 0 I1, 12 :— last element

less byte in {
source-1 found: K = 1 Z = 0 S = 1 I1, I2 :- last element

Example:

Compare argument ITEM with global TABLE, padding with ASCII spaces

BY SCOPA IND(B.ITEM), TABLE, 20H

ND.05.009.01

- 195 -

STRING INSTRUCTIONS

12.13. String compare translated with pad

Format: BY SCOPT <=source—1/r/BY/I1=>,<=source-2/w/BY/12=>,
<trans table/aa/BY>,<pad/r/BY>

Assembly Hex Octal
notation Name code code

BY SCOPT string compare translated with pad OFDBFH 176677B

Operation: while tr(S(I1)) = tr(D(12)) do
I1+1 —> 11, I2+1 -> 12

enddo

Description:

Translated bytes from the source-1 string are compared to the
corresponding translated bytes in the source-2 string. This logical
comparison continues until unequal bytes are found, or until the end
of the strings are reached. If the lengths of the source—1 and
source—2 strings are not equal, the shortest string is concatenated
with a string of pad bytes. The length of the pad string is equal to
the difference in length of the source-1 and the source—2 string. The
pad byte is also translated.
The byte elements are considered to be unsigned values.

Terminating conditions:

exact match: K = 0 Z = 1 S = O 11, 12 :- next element

greater byte in
source—1 found: K = 1 Z = 0 S : 0 I1, 12 :- last element

less byte in
source-1 found: K II A N n O U: u —k 11, 12 :- last element

Example:

Compare ITEM on the alternate domain from the 10th character to LIST
from the 0th character, translating to uppercase. Pad byte is zero

W1 := 10; w2 CLR
BY SCOPT ALT(ITEM), LIST, UPPERCASE, o

ND.05.009.01

- 196 -

STRING INSTRUCTIONS

12.1“. Skip elements

Format: BY SSKIP <:source/r/BY/I1=>,<test/r/BY>

Assembly Hex : Octalnotation Name code code
BY SSKIP skip elements OFDAEH 1766568

Operation: while S(I1) = <test> do
I1 + 1 -> I1

enddo
if S(I1) > <test> then

0 —> S
else

1 -> S
endif

Description:

Bytes in the source string are examined one by one until an examinedbyte is different from the <test> operand or until the end of sourcestring is reached.
The byte elements are considered to be unsigned values.

Terminating conditions:

source empty: K = 0 Z = 1 I1 :- next element
byte >> <test> found: K = 0 Z = O S = 0 I1 :- last element
byte << <test> found: K = 0 Z = O S = 1 I1 :- last element

Example:

Skip ASCII spaces in the string described by record addressed LINEfrom the current character on

BY SSKIP R.LINE, 32

ND.05.009.01

-197-
STRING INSTRUCTIONS

12.15. String locate elements

Format: t SLOCA <=source/r/t/I1=>,<test/r/BI,BY>

Assembly Hex Octal
notation Name code code

BI SLOCA string locate bit OFDAFH 176657B
BY SLOCA string locate byte OFDBOH 17666013

Operation: while S(I1) >< <test> do
I1 + 1 -> I1

enddo

Description:

The source string is examined element by element until an examined
element is equal to the <test> operand or until the end of source
string is reached.

Terminating conditions:

source empty: K = 0 Z = 0 I1 :- next element

n O N ubyte 2 <test> found: K 1 I1 :— last element

Example:

Find the next reset bit in the bit string on the alternative domain
described by the record variable RESERVED

BI SLOCA ALT(R.RESERVED), O

ND.05.009.01

- 198 -

STRING INSTRUCTIONS

12.16. String scan

Format: BY SSCAN <=source/r/BY/I1=>,<mask/r/BY>,
<trans table/aa/BY>

Assembly Hex Octal
notation Name code code

BY SSCAN string scan 0FDB1H 176661B

Operation: while tr(S(I1)) AND <mask> = zero do
I1 + 1 -> I1

enddo

Description:

The source string is scanned until the current translated byte "anded"
with <mask> is different from zero, or until the end of source string
is reached.

Terminating conditions:

source empty: K = 0 Z = 1 I1 :- next element

II 0byte >< zero found: K 2 : 0 I1 :- last element

Example:

Skip through argument FUNCTION until a byte with one of the bits set
in the mask ACTIVE, translated through the table FNTAB in the
alternative domain, is encountered

BY SSCAN IND(B.FUNCTION), ACTIVE, ALT(FNTAB)

ND.05.009.01

—199-
STRING INSTRUCTIONS

12.17. String span

Format: BY SSPAN <=source/r/BY/I1=>,<mask/r/BY>,
<trans table/aa/BY>

Assembly Hex Octal
notation Name code code

BY SSPAN string span OFDBZH 176662B

Operation: while tr(S(I1)) AND <mask> >< zero do
I1+1—>I1

enddo

Description:

The source string is examined until the examined byte translated and
"anded" with <mask> is equal to zero, or until the end of source
string is reached.

Terminating conditions:

source empty: K = 0 Z = 0 I1 :- next element

byte = zero found : K = 0 Z = 1 I1 :- last unequal element

Example:

Skip the remaining of a string fragment DIRECTIVE terminated by a
character translating to zero in the local table CODETABLE

BY SSPAN DIRECTIVE, OFFH, B.CODETABLE

ND.05.009.01

- 200 -

STRING INSTRUCTIONS

12.18. Strigggmatch

Format: BY SMATCH <=substring/r/BY/I1=>,<=source/r/BY/I2=>

Assembly Hex Octalnotation Name code code
BY SMATCH string match 0FDB3H 1766638

Operation:

while <=substring=> >< <=source=>(12..I2 + substring length - 1)and end of <source> not reached do
I2 + 1 -> I2

enddo
if <=substring=> = <=source=>(12..12 + substring length - 1) then1 -> Z
else

0 -> 2
endif

Description:

The source string is examined until either a substring equal to<=substring=> is found or the end of source string is reached. The I1register is left unmodified.

Terminating conditions:

substring found: K = 0 Z = 1 I2 :- first matching byte
source empty: K = 0 Z = O 12 :— next element

Example:

Set I1 to point to the next occurence of COMMA in PARAMETERS
BY SMATCH OJWWA, PARAMETERS

ND.05.009.01

— 201 —
STRING INSTRUCTIONS

12.19. Setgparity in string

Format: BY SSPAR <=source/rw/BY/I1=>,<mode/r/BY>

Assembly Hex Octal
notation Name code code

BY SSPAR set parity in string OFDBHH 176664B

Operation: Set parity in all bytes in <=source=>

Description:

The parity bit (bit 7) in every byte is set according to the following
values of the <mode> operand:

0 clear parity
1 set parity
2 even parity
3 odd parity

A <mode> different from 0-3 will cause an illegal operand value trap
condition.

Terminating conditions: K = 1

Example:

Set even parity in local string OUTPUT

BY SSPAR B.0UTPUT, 3

ND.05.009.01

- 202‘-

STRING INSTRUCTIONS

12.20. Check parity in string

Format: BY SCHPAR <=source/r/B¥/I1=>,<mode/r/BY>

Assembly
Hex Octalnotation Name code code

BY SCHPAR check parity in string OFDBSH 176665B

Operation: Parity is checked in all bytes in <=source=>

Description:

The parity bit (bit 7) in every byte is checked according to thefollowing values of the <mode> operand:

0 clear parity
1 set parity
2 even parity
3 odd parity

A <mode> different from 0-3 will cause an illegal operand trapcondition.

Terminating conditions:

source empty: Z =‘O I1 :- next element

1 I1 :- last elementllparity error found: Z

Example:

Check that parity is set according to argument MODE in all charactersin record variable BUFFER

W1 CLR
BY SCHPAR R.BUFFER, IND(B.MODE);

ND.05.009.01

-203—

MISCELLANEOUS INSTRUCTIONS

13, MISCELLANEOUS INSTRUCTIONS

13,1. Block move and Fill

Format: t BMDVE <source/r/t>,<dest/w/t>,<n/r/W>

Assembly Hex Octal
notation Name code code

BY BNDVE byte block move OFDZOH 176M403
H BMOVE halfword block move OFE78H 177170B
W BNDVE word block move OFE79H 177171B
F BIDVE float block move OFE7AH 1771728
D BMOVE double float block move 0FE7BH 1771738

Operation: 1 = 0
while i < n do

3(1) —> D(i); i + 1 —> i
enddo

Description:

<n> elements are moved from the source to the destination. The
operands are pointers to the start of the blocks. Overlap is taken
care of. Constant and register are illegal as destination operands.
When a register or a constant is specified as a source operand, the
destination string is filled with <n> elements equal to the value of
the source.

Trap conditions: Addressing traps

Data status bits: All cleared

Terminating conditions: n bytes moved

Example:

Fill local data area of routine (excluding header) with the largest
negative word value (bit pattern equivalent to float minus zero) with
the intention to facilitate detection of uninitialized variables

w1 :: OBOOOOOOOH
w BMOVE W1, 13.20, AREASIZE

ND.05.009.01

— 20M -

MISCELLANEOUS INSTRUCTIONS

13,2. Data type conversion

Format: t1 tZCONV <source/r/t1>,<dest/w/t2>

Assembly Hex Octalnotation Name code code
BI BYCONV bit to byte convert OFDHHH 17650u3BI HCDNV bit to halfword convert OFDUSH 1765053BI WCONV bit to word convert OFDN6H 1765063BI FCONV bit to float convert OFDH7H 1765073BI DCONV bit to double float convert OFDN8H 1765103
BY BICONV byte to bit convert OFDN9H 1765113BY HCONV byte to halfWord convert OFDMAH 1765123BY WCONV byte to word convert OFDUBH 1765133BY FCONV byte to float convert OFDUCH 1765143BY DCONV byte to double float convert OFDMDH 1765153
H BICONV halfword to bit convert OFDREH 176516BH BYCONV halfword to byte convert OFDNFH 176517BH WCONV halfword to word convert OFD50H 1765203H FCONV halfword to float convert OFD51H 1765213H DCONV halfword to double float convert OFD52H 1765223
W BICONV word to bit convert OFD53H 1765233W BYCONV word to byte convert OFDSHH 17652HBW HCONV word to halfword convert OFD55H 1765253W FCONV word to float convert . OFD56H 1765263W DCONV word to double float convert 0FD57H 1765273
F BICONV float to bit convert 0FD58H 176530BF BYCONV float to byte convert 0FD59H 1765313F HCONV float to halfword convert OFD5AH 1765323F WCONV float to word convert 0FD5BH 1765333F DCONV float to double float convert OFDSCH 17653u3
D BICONV double float to bit convert OFD5DH 1765353D BYCONV double float to byte convert OFDSEH 1765363D HCONV double float to halfword convert OFDSFH 176537BD WCONV double float to word convert OFD60H 1765HOBD FCONV double float to float convert OFD61H 1765413

ND.05.009.01

- 205 -

MISCELLANEOUS INSTRUCTIONS

Operation: <source> type converted from t1 to t2 -> <dest>

Description:

The <source> operand of type t1 is converted to data type t2 with the
result stored in the <dest> operand. The result is not rounded.

For integer types, conversion of shorter to a longer data type is by
sign. extension. Conversion of longer to shorter data types is by
truncation of the most significant bits and may cause integer
overflow. Conversion from float to integer may also cause integer
overflow.

Conversion from bit implies that the result is zero if the bit is
cleared and is one if the bit is set. Conversion to bit implies that
the bit is set if the source is different from zero and cleared
otherwise.

Trap conditions: Addressing traps, integer overflow

Data status bits:

(result) = O -> Z
(result).signbit -> S

Example:

Load the byte variable SHORTINT to W2 with sign extension to word

BY WCONV SHORTINT, W2

ND.05.009.01

- 206 -

MISCELLANEOUS INSTRUCTIONS

13,3. Data type conversion with rounding

Format: t1 t2CONR <source/r/t1>,<dest/w/t2>

Assembly Hex Octal
notation Name code code

F BYCONR float to byte convert 0FE7OH 1771608
with rounding

D BYCONR double float to byte convert 0FE71H 177161B
with rounding

F HCONR float to halfword convert 0FE72H 177162B
with rounding

D HCONR double float to halfword convert 0FE73H 177163B
with rounding

F WCONR float to word convert 0FE74H 17716MB
with rounding

D WCONR double float to word convert OFE75H 1771658
with rounding

W FCONR word to float convert OFE83H 177203B
with rounding

D FCONR double float to float convert OFEBMH 1772048
with rounding

Operation: <source> converted from t1 to t2 with rounding -> <dest>

Description:

The <source> operand of type t1 is converted to data type t2 with the
result stored in the <dest> operand. The result is rounded.

Trap conditions: Addressing traps, integer overflow

Data status bits:

(result) = 0 —> Z
(result).signbit -> S

Example:

The R2nd value in the double precision array described by RESULTS is
rounded to R2nd element of halfword argument ROUNDEDRESULT

D HCONR DESC(RESULTS)(R2), IND(B.ROUNDEDRESULT)(R2)

ND.05.009.01

- 207 -

MISCELLANEOUS INSTRUCTIONS

13.u. Load address

Format: tn LADDR <operand/aa/t>

Assembly Hex Octal
notation Name code code

BIn LADDR bit load address OFE20H+(n-1) 1770NOB+(n-1)
BYn LADDR byte load address 0FE2NH+(n-1) 17704MB+(n—1)
Hn LADDR halfword load address OFE28H+(n-1) 177050B+(n—1)
Wn LADDR word load address OFD3CH+(n-1) 176H7HB+(n—1)
Fn LADDR float load address OFD3CH+(n—1) 176M74B+(n—1)
Dn LADDR double float load address 0FE2CH+(n—1) 17705UB+(n—1)

Operation: (address of <operand>) -> Rn

Description:

The address of the operand is loaded into the specified register.
Registers and constants have no address in memory and are illegal as
operands. If the segment number of the calculated adress is zero the
current executing segment number is inserted into the result.

Trap conditions: Addressing traps

Data status bits: result = 0 —> Z

Example:

Load the address of the R3rd element of the halfWOrd array argument
TABLE into R1

H1 LADDR B.TABLE(R3)

ND.05.009.01

- 208 -

MISCELLANEOUS INSTRUCTIONS

13.5. Load address into record register

Format: t RLADDR <operand/aa/t>

Assembly Hex Octal
notation Name code code

BI RLADDR bit load address to R 0FC55H 1761253
BY RLADDR byte load address to R OFCBAH 176132B
H RLADDR halfword load address to R 0FCB1H 176261B
W RLADDR word load address to R OBEH 2763
F RLADDR float load address to R OBEH 276B
D RLADDR double float load address to R OFCBZH 1762623

Operation: (address of <operand>) -> R

Description:

The address of the operand is loaded into the record register.
Registers and constants have no address in memory and are illegal as
operands. If the segment number of the calculated address is zero the
current executing segment number is inserted into the result.

Trap conditions: Addressing traps

Data status bits: result = O -> Z

Example:

Load R with the base address of the first stack frame below the
current

W RLADDR IND(B.0)

ND.OS.OO9.01

- 209 -

MISCELLANEOUS INSTRUCTIONS

13.6. Load address into base register

Format: t BLADDR <operand/aa/t>

Assembly Hex Octal
notation Name code code

BI BLADDR bit load address to B 0FCB3H 176263B
BY BLADDR byte load address to B OFCBCH 17627MB
H BLADDR halfword load address to B 0FD37H 176u67B
w BLADDR word load address to B 0FD63H 1765H3B
F BLADDR float load address to B 0FD63H 1765N3B
D BLADDR double float load address to B 0FD38H 176N708

Operation: (address of <operand>) -> B

Description:

The address of the operand is loaded into the local base register.
Registers and constants have no address in memory and are illegal as
operands. If the segment number of the calculated address is zero the
current executing segment number is inserted into the result.

Trap conditions: Addressing traps

Data status bits: result = 0 -> Z

Example:

Load B with the address of argument NEWB

W BLADDR B.NEWB

ND.05.009.01

- 210 -

MISCELLANEOUS INSTRUCTIONS

13.7. Load address of multilevel link

Format: Wh CHAIN <address/aa/w>,<offset/r/W>,<no of levels>

Assembly Hex Octalnotation Name code code

Wn CHAIN load address of multilevel
link to register OFD6CH+(n—1) 17655H+(n-1)

Operation: <address> -> Wn
for i in (1..<no of levels>) do

((wn) + <offset>) -> Wh
enddo

Description:

Follow a link <no of levels> steps and load the specified registerwith the base address of the next data element. This instruction isused by language processors for making references to variablesdeclared in an outer procedure. <offset> will usually be the Brelative address of the static link (the base address of the localvariables of an enclosing procedure), <address> the current B registervalue, and <no of levels> the difference between the current staticlevel and the level where the variable was declared.

Trap conditions: Addressing traps

Data status bits:

Example:

Load R1 with stack base address of a procedure five static levels up,the static link is found in local variable STATLINK

m CHAIN B.STATLINK, STATL, 5

ND.05.009.01

MISCELLANEOUS INSTRUCTIONS

13.8. No operation

- 211 -

Format: NOOP

Assembly Hex Octal
notation Name code code

NOOP no operation 003H 0033

Operation: None

Description:

The no operation instruction may be used for deleting code from a
program or to leave open space for later modifications.

Trap conditions: None

Data status bits: Unaffected

Example:

NOOP

ND.05.009.01

- 212 —

MESCELLANEOUS INSTRUCTIONS

13.9. Set flag

Format: SETK

Assembly Hex Octal
notation Name code code

SETK set flag OFEOZH 177002B

Operation: 1 -> (flag bit of status register)

Description:

Set the flag bit of the status register

Trap conditions: None

Data status bits: Unaffected

Example:

SETK

ND.05.009.01

_ 213 _

MISCELLANEOUS INSTRUCTIONS

13.10. Clear flag

Format: CLRK

Assembly Hex Octal
notation Name code code

CLRK clear flag 0FE03H 1770033

Operation: 0 -> (flag bit of status register)

Description:

Clear the flag bit of the status register

Trap conditions: None

Data status bits: Unaffected

Example:

CLRK

ND.OS.009.01

-21u—

MISCELLANEOUS INSTRUCTIONS

13.11. Get buddy element

Format: wn GETB <log size/r/BY>

Assembly Hex Octal
notation Name code code

Wn GETB get buddy element from heap 0FE4CH+(n—1) 17711MB+(n—1)

Operation: Allocates element of size 2**<log size> words
Address of element -> Wn

Description:

Allocates an element of size 2**<log size> words from the heap.

If an element of the given size is available it is removed from the
freelist and its address is returned in the specified register.
Otherwise the list is examined for larger elements. If none is
available this will cause a stack overflow trap condition. If a larger
element is found, it is removed from its freelist and chopped into
halves until an element of the desired size can be allocated. The
other half of the chopped e1ement(s) will be appended to the
appropriate freelist.

The administration of the heap is described in chapter 3.3. When
executing the GETB instruction, the TOS register must point to the
variables describing the heap.

Trap conditions: Addressing traps, stack overflow

Data status bits: Unaffected

Example:

Allocate a 6” word data block from the heap, leaving its address in R3

W3 GETB 6

ND.05.009.01

_ 215 -
MISCELLANEOUS INSTRUCTIONS

13.12. Free buddy element

Format: FREEB <log size/r/BY>,<e1ement/aa/W>

Assembly Hex Octal
notation Name code code

FREEB free buddy OFDB6H 1766668

Operation: Release <element> of size 2**<log size> words to heap

Description:

The specified <element> is appended to the appropriate freelist of the
heap. Elements are not combined; this may be done by a trap handler
for the stack overflow condition.

The administration of the heap is described in chapter 3.3. When
executing the FREEB instruction, the TOS register must point to the
variables describing the heap.

Trap conditions: Addressing traps

Data status bits: Unaffected

Example:

Release string LINE of length 128 bytes to heap (LINE is a descriptor)

FREEB 5, IND(LINE)

ND.05.009.01

— 216 —

SPECIAL INSTRUCTIONS

1”. SPECIAL INSTRUCTIONS

1u.1. Disable process switch

Format: SOLO

Assembly Hex Octal
notation Name code code

SOLO disable process switch OFEOOH 177000B

Operation: disables process switch for maximum 256 micro-cycles

Description:

Ensure that instructions up to the next TUTTI instruction is executed
as an indivisible sequence of operations. SOLO is used for
syncronizing purposes and implementation of protection mechanisms.

If the disable process switch is disabled for more than 256 micro—
cycles, a disable process switch timeout occurs. Most simple
instructions execute in one micro-cycle per operand specifier.

If a non-ignorable trap condition occurs when the process switch is
disabled a disable process switch error trap condition occurs.

Trap conditions: Disable process switch timeout,disable process
switch error

Data status bits: Unaffected

Example:

SOLO

ND.05.009.01

— 217 -

SPECIAL INSTRUCTIONS

1M.2. Enable process switch

Format: TUTTI

Assembly Hex Octal
notation Name code code

TUTTI enable process switch 0FE01H 177001B

Operation: enables process switch

Description:

The opposite of SOLO; allows normal interleaving of process execution
in the system.

Trap conditions: None

Data status bits: Unaffected

Example:

TUTTI

ND.05.009.01

- 218 -

SPECIAL INSTRUCTIONS

1u.3. Set bit in trap enable register

Format: SETE <bit no/r/BY>

Assembly Hex Octal
notation Name code code

SETE set bit in own trap enable register OFD39H 176N718

Operation: Set bit <bit no> in own trap enable register

Description:

The specified bit in the own trap enable (OTE) register is set. The
<bit no> operand is compared to a modify mask (TENN) found in the
domain description table. If a bit in this mask is set, the
corresponding bit in the local trap enable register is modifiable. An
attempt to modify a non—modifiable bit will cause an illegal operand
value trap condition.

Trap conditions: Addressing traps, illegal operand value

Data status bits: Unaffected

Example:

Enable the integer Overflow trap

SETE 9

ND.05.009.01

_ 219 -
SPECIAL INSTRUCTIONS

1u.u. Clear bit in trap enable register

Format: CLTE <bit no/r/BY>

Assembly Hex Octal
notation Name code code

CLTE clear bit in own trap enable register 0FD3AH 176N72B

Operation: Clear bit <bit no> in own trap enable register

Description:

The specified bit in the own trap enable register is cleared. An
ignorable trap condition will be ignored and no trap handler invoked
unless the corresponding MTE bit is set. A non-ignorable trap
condition will be propagated to the mother domain.

The <bit no> operand is compared to a modify mask found in the domain
description table. If a bit in this mask is set, the corresponding bit
in the local trap enable register is modifiable. An attempt to modify
a non-modifiable bit will cause an illegal operand value trap
condition.

Trap conditions: Addressing traps, illegal operand value

Data status bits: Unaffected

Example:

Disable Single Instruction Trap

CLTE 17

ND.05.009.01

- 220 —

SPECIAL INSTRUCTIONS

1U.5. Break point

Format: BP

Assembly Hex Octal
notation Name code code

BP break point instruction 002H 0028

Operation: Cause a break point instruction trap condition

Description:

This instruction causes a break point instruction trap condition. If
the break point trap is not enabled, it will cause an illegal
instruction code trap condition.

The BF instruction is intended for program debugging and the trap
handler will normally invoke a debug routine.

Trap conditions: breakpoint instruction trap, illegal instruction
code

Data status bits: Unaffected

Example:

BP

ND.05.009.01

- 221 -

SPECIAL INSTRUCTIONS

1U.6. Test and set

Format: BY TSET <operand/rwl/BY>

Assembly Hex Octal
notation Name code code

BY TSET test and set OFDNOH 176500B

Operation: lock
read operand and set status bits
set operand to all ones
unlock

Description:

The TSET instruction will use a feature to be supplied in a future
multiport memory system that will replace "Big multiport system",
ND—1u3 to 1H6. In this future multiport system a single cycle memory
swap may be executed by the process. This swap access is not
interruptible by other processes or by channels connected to the
memory system, therefore it may be used to implement processor
synchronizing. It may be noted that no locking of any shared hardware
resource is done by the TSET instruction.

Trap conditions: Addressing traps

Data status bits:

operand was zero before store —> Z
operand was negative before store -> S

Example:

Set byte variable RESERVE to all ones

BY TSET RESERVE

ND.05.009.01

- 222 —

SPECIAL INSTRUCTIONS

14.7. Load special register

Format: (special register) := <operand/r/W>

Assembly Hex Octal
notation Name code code

L:= load link register OFD3BH 176u73B
HL:= load upper limit register OFDB7H 176667B
LL:= load lower limit register 0FDB8H 176670B
ST1:= load 1st status register OFDBgH 1766713OTE1:= load 1st own trap enable register OFDBBH 176673B
OTE2:= load 2nd own trap enable register OFDBCH 17667HBTOS:= load top of stack register OFDBDH 1766758
THA:= load trap handler register OFDCAH 176712B

Operation: <operand> -> (special register)

Description:

Special registers can be loaded with this group of instructions.

Some of the bits in the status register (listed in the Status bits
survey section) are not modifiable. When loading the own trap enable
register, the operand is compared to a modify mask (TENN) found in the
domain description table. If a bit in this mask is set, the
corresponding bit in the trap enable register is modifiable. An
attempt to modify a non-modifiable bit in the own trap enable register
will cause an illegal operand value trap condition.

Trap conditions: Addressing traps, illegal operand value

Data status bits:

<operand> = 0 -> Z
<operand>.signbit -> S

The instruction ST1:= will load the data status bits from the operand.

Example:

Restore the TOS register from the current top of stack after a call to
a routine entered through ENTM

115:: B.SP

ND.05.009.01

SPECIAL INSTRUCTIONS

- 223 -

1U.8. Store special registers

Format: (special register) :: <operand/w/W>

Assembly Hex Octal
notation Name code code

L=: store link register OFDCOH 1767008
=: store upper limit register OFDC1H 1767018

LL=: store lower limit register OFDCZH 1767028
ST1=: store 1st status register OFDC3H 1767038
OTE1=: store 1st own trap enable register OFDCSH 1767058
OTE2=: store 2nd own trap enable register OFDC6H 1767068
MTE1:: store 1st mother trap enable register OFD70H 1765608
MTE2=: store 2nd mother trap enable register 0FD71H 1765618
CTE1=: store 1st child trap enable register OFESOH 177120B
CTE2=: store 2nd child trap enable register OFE51H 1771218
TED/1411:: store 1st trap enable modification mask OFESZH 1771228
TEWI2=: store 2nd trap enable modification mask 0FE53H 1771238
CED=: store current executing domain OFESMH 17712u8
CAD=: store current alternative domain 0FE55H 1771258
CES=: store current executing segment OFE56H 1771268
CAS=: store current segment alternative domain 0FES7H 177127B
PS=: store process segment 0FE7CH 17717MB
TOS=: store top of stack register 0FDC9H 1767118
THA=: store trap handler register OFDCBH 176713B

=: store program counter 0FD62H 1765N28

Operation: (special register) -> <operand>

Description:

Store the content of a special register into a specified operand.

When storing the program counter (P::), the content of the operand
will be the address of the first
instruction.

Trap conditions: Addressing traps, illegal operand specifier

Data status bits:

<operand> : O
<operand>.signbit —> S

The instruction ST1=:

—> Z

ND.05.009.01

does not affect the data status bits.

instruction following the P::

—22u—

SPECIAL INSTRUCTIONS

1H.9. Integer float register communication

An=z <operand/w/W>
E =: <operand/w/W>
A := <operand/r/W>
Enz: <operand/r/W>

Assembly Hex Octal
notation Name code code

An:= load most significant part 0FE3OH+(n—1) 17706OB+(n-1)
of double float register

En:= load least significant part OFE3UH+(n-1) 17706MB+(n-1)
of double float register

An=: store most significant part 0FE38H+(n-1) 17707OB+(n-1)
of double float register

Enz: store least significant part 0FE3CH+(n-1) 17707MB+(n-1)
of double float register

Operation:

Anz= store most significant part of double float register
En:= store least significant part of double float register
An=: load most significant part of double float register
En=: load least significant part of double float register

Description:

Load/store the most significant or least significant 32 bits of the
double float registers. Note that a float register is equivalent to
the most significant part of a double float register.

When a register is specified as an operand, the general integer
registers are used. Thus, these instructions can transfer data between
integer and float registers without performing any type conversion.

Trap conditions: Addressing traps

Data status bits:

(source register) = O -> Z
(source register).signbit —> S

ND.05.009.01

— 225 -

SPECIAL INSTRUCTIONS

Example:

Store least significant part of D3 in local variable LEAST

E3 :: B.LEAST

ND.05.009.01

- 226 -

COMMUNICATION BETWEEN NORD-SOO AND NORD-100

L5. C(MVIUNICATION BETWEEN NORD—SOO AND NORD-1OO

15.1. Hardware interconnection

The interconnection between NORD—1OO and NORD—SOO consists of

* 5 control lines from NORD-100 to NORD—SOO

* 3 control lines from NORD—SOO to NORD—1OO

* a 5 bit tag bus, two-way

* a 16 bit data bus, two-way

The control lines and the tag bus set up the data paths for the data
transmitted through the data bus. NORD-100 accesses the control lines
and the tag bus through IOX instructions, NORD-SOO through microcode
routines. By writing to the tag registers the data bus may be set up
to transfer the contents of the following registers:

* Control register (16 bits)
(for NORD—1OO to give NORD-SOO a command)

* Status register (16 bits)
(for NORD—500 to give NORD-1OO status)

* Address register (2” bits)
(a pointer to NORDb1OO memory where chains of
commands or data will be found or where NORD-SOO
can store extended status information)

The NORD-SOO microprogram can read and write by means of DNA in the
memory of NORD-100. NORD—SOO looks like another DMA device to NORD-
100, and both processors may run in parallel. The NORD-1OO starts the
NORD—SOO by writing an initiating command into the control word. While
NORD—SOO is running the communications is reserved for NORD-SOO; the
communication interface is in the locked mode. For NORD-1OO to
diagnose NORD—SOO operation the cmnmnfication interface may be in the
test mode. NORD-1OO sets locked and test modes by writing to the
control word, bit 2 and 3. The setting of locked and test modes
determines the set of commands available to NORD—100. Under normal
operation, test mode is reset, and locked mode is reset when NORD-1OO
is writing orders to NORD-SOO or NORD—SOO has completed all jobs
submitted.

ND.05.009.01

— 227 -

CONMUNICATION BETWEEN NORD-SOO AND NORD~1OO

These commands are:

IOX Locked Locked Not locked Not locked
instr Not test Test Not test Test

0000 . . Read addr . Read addr
0001 . . Load addr . Load addr
0010 Read status . Read status . Read status . Read status
0011 . . . Load status
0100 . Read control . . Read control
0101 . . Load control . Load control
0110 Master clear . . Master clear . Read data
0111 Terminate . . Terminate . Load data

1000 . . .
1001 . . Read tag .
1010 . . Load tag .
1011 . . .
1100 . . Write data .
1101 . . .
1110 Release lock . . Release lock .
1111 Return tag .

The Read addr (read address register) and Load addr (load address
register) instructions must be executed twice to transfer the full 2”
bit address. The 16 least significant bits are transferred first, and
then the 8 most significant. As the NORD-100 memory is addressed in
units of 16 bit words, the 24 bit NORD—100 address range covers the
same amount of physical memory as a NORD-500 25 bit byte address
range.

While the mailbox is locked, the terminate command acts as a request,
and NORD-SOO will not honor the request until it has finished the
current instruction. The interface will then be unlocked by the NORD—
500 microprogram.

The N500 master clear will stop the NORD—500 immediately.

When the interface is unlocked, the NORD-100 may write a new command
into the control word. The NORD-SOO will then execute the new command.

ND.05.009.01

- 228 -

COMMUNICATION BETWEEN NORD—SOO AND NORD—1OO

The control register bits have the following interpretation:

bit no.

0 Enable interrupt from NORD—SOO
1 Not used
2 Activate NORD-SOO, lock mailbox
3 Test mode
ll NORD—SOO programmed clear
5 Not used
6 DMA error
7 Coumand chaining

8..1M NORD-SOO operation
15 Not used

The status register can always be read by NORD—100, and the bits are
defined as follows:

bit no

Interrupt enabled

NORD-SOO busy
NORD—SOO finished
Error
Interface locked
DMA error
NORD—SOO power failure
NORD-SOO process indentifier-

N
IC

‘U
'I
K

U
U

N
—

IO
co I _; U1

ND.05.009.01

— 229 -

COMMUNICATION BETWEEN NORD-SOO AND NORD-1OO

15.2. Data packet format

Under normal operation, NORD—1OO hands orders to NORD—SOO as a linked
list of packets residing in NORDh1OO memory. The address register is
loaded with the head of the chain, and NORD—SOO is activated by
setting bit 2 in the control register. NORD—SOO will then start
executing the first uncompleted packet in the queue, and continue with
the next in the list as it finishes.

The data packets have a standard header and a trailer depending on the
order type. The first two 16 bit words contain the link to the next
element in the chain. The third contains the status code, taking the
following values:

0 - element free, ignored by NORD-SOO
1 - message from NORD-1OO to NORD—SOO, set by NORD—1OO
2 - waiting, set by NORD-SOO as soon as execution of

this order is started
3 - answer, set by NORD—SOO as soon as execution of

this order is completed
u - error answer, set by NORD-SOO when an abnormal situation

caused execution of this order to terminate

Currently status code u is used to indicate page fault only.

The next two words identify the sending and the receiving process,
respectively. The sender is the NORD—1OO process and the receiver the
corresponding NORD—SOO process. The next word, the last word in the
header, contains the length of the command dependent data part.

The data part of the order contains in the first word a function code.
The length of the data part is dependent on the function code, and the
layout varies. Its contents can be data, addresses or both. For
example, the start order is read by NORD-SOO when the order is
considered for execution. When completed the fourth word contains the
stop reason, which under normal conditions will be either a monitor
call or a trap. In case of a monitor call the fifth word contains the
number of parameters, the sixth the monitor call number. Then follow
16 32 bit parameter addresses and 16 32 bit data values. In case of a
trap, the second and third word contains the P register, the forth the
trap number and the following the contents of the registers as
determined by the kind of trap.

The format of the data part is determined by microcode, and is subject
to extentions and modifications in the future.

When NORD—SOO is activated it will start searching the queue at the
packet pointed to by the address register. If the status code in the
packet is 0, 2, 3 or N the order is skipped and the next one
considered. Status code 1 is the only one causing NORD—SOO to start
"executing" a packet. When a program stops due to a monitor call or
trap, NORD-SOO will give an interrupt to NORD—100 and continue with
the next packet in the queue, without waiting for NORD-100 to react.
The NORD—SOO finished bit in the status register is not set until the
end of the queue is encountered.

ND.05.009.01

- 230 -

COMflJNICATION BETWEEN NORD—SOO AND NORD-1OO

If required, NORD—1OO may halt NORD—SOO with the terminate IOX
instruction. The interface will then be unlocked when NORD-SOO is
finished with its current instruction. NORDHSOO may be restarted
after, for example, the queue has been modified. When restarted, the
address register may point to another entry, causing another process
to be the one selected for execution.

While NORD—SOO is executing, NORD—1OO may read data in the packets
handled by NORD—SOO (recognized by a status code of 3 or H), but no
queue entry should be modified while NORD-SOO is running.

ND.05.009.01

_ 231 _

APPENDIX A Address codes

APPENDIX A Address codes

Hexadecimal:

Name Size Operation

LOCAL :S ea=(B)+d*H 080H+xx
LOCAL :B ea=(B)+d 0C1H
LOCAL :H ea=(B)+d OCZH
LOCAL :W ea=(B)+d OC3H
LOCAL P.I. :B ea=(B)+d+p*(Rn) ODHH+y
LOCAL P.I. :H ea:(B)+d+p*(Rn) ODBH+y
LOCAL P.I. :W ea=(B)+d+p*(Rn) ODCH+y
LOCAL INDIRECT :B ea=((B)+d) OCSH
LOCAL INDIRECT :H ea=((B)+d) OC6H
LOCAL INDIRECT :w ea=((B)+d) 0C7H
LOCAL INDIRECT P.I. :B ea=((B)+d)+p'(Rn) OENH+y
LOCAL INDIRECT P.I. :H ea:((B)+d)+p*(Rn) OE8H+y
LOCAL INDIRECT P.I. :w ea=((B)+d)+p*(Rn) OECH+y
RECORD :8 ea=(R)+d*4 O80H+xx
RECORD :B ea:(R)+d 0C9H
RECORD :H ea=(R)+d OCAH
RECORD :W ea=(R)+d OCBH
PRE INDEXED :B ea=(Rn)+d OFUH+y
PRE INDEXED :H ea=(Rn)+d OF8H+y
PRE INDEXED :W ea=(Rn)+d OFCH+y
ABSOLUTE ea=a OCHH
ABSOLUTE P.I. ea=a+(Rn)*p 0EOH+y
CONSTANT :S opzc OOOH+CC
CONSTANT :B op=c OCDHCONSTANT :H op=c OCEH
CONSTANT :W op=c OCFH
CONSTANT :F op=c OCFH
CONSTANT :D op=c OCCH

REGISTER op=(Rn) ODOH+y

DESCRIPTOR ea=A+p*(Rn) 0FOH+y
ALTERNATIVE OC8H

Not used OCOH

ND.05.009.01

Hex layout

dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd

dd
dd
dd
dd
dd
dd
38.
aa

00
CC
CC
CC
CC
CC

<operand>
<operand>

dd
dd

dd
dd

dd
dd

dd
dd

dd
dd

dd
dd
aa

CC
CC
CC
CC
00

dd

dd

dd

dd

dd

dd
88 88

CC
00
CC
00

dd

dd

dd

dd

dd

00
CC
CC
CC

Octal:

Name

LOCAL
LOCAL
LOCAL
LOCAL
LOCAL P
LOCAL P
LOCAL
LOCAL
LOCAL
LOCAL

INDIRECT
INDIRECT

LOCAL
LOCAL
LOCAL
RECORD
RECORD
RECORD
RECORD

INDIRECT P.I.
INDIRECT P.I.
INDIRECT P.I.

PRE INDEXED
PRE INDEXED
PRE INDEXED
ABSOLUTE
ABSOLUTE
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

REGISTER

P.I.

DESCRIPTOR
ALTERNATIVE

Not used

Size

:S
:B
:H
:W
:B
:H
:W
:B
:H
:W
:B
:H
:W
:S
:B
:H
:W
:B
:H
:W

c7
u1

£:
§:

Efi
%

-232-

Operation

ea=(B)+d'u
ea=(B)+d
ea=(B)+d
ea=(B)+d
ea=(B)+d+p*(Rn)
ea=(B)+d+p*(Rn)
ea=(B)+d+p*(Rn)
ea=((B)+d)
ea=((B)+d)
ea=((B)+d)
ea=((B)+d)+p*(Rn)
ea=((B)+d)+p*(Rn)
ea=((B)+d)+p*(Rn)
ea: (R)+d*}4
ea=(R)+d
ea=(R)+d
ea=(R)+d
ea=(Rn)+d
ea=(Rn)+d
ea=(Rn)+d
ea=a
ea=a+(Rn)*p
op=c
op=c
op=e
op=c
op=c
op=c

Op=(Rn)

ea=A+p*(Rn)

ND.OS.009.01

APPENDIX A

1OOB+dd
301B
302B
3033
32MB+y
33OB+Y
334B+y
3053
306B
307B
344B+y
3SOB+y
35HB+y
ZOOB+dd
3113
312B
3133
36HB+y
37OB+Y
37NB+y
30MB
3HOB+y
OOOB+cc
315B
316B
317B
317B
31MB

320B+y

36OB+y
310B

300B

Address codes

Octal layout

ddd
ddd
ddd
ddd
ddd
ddd
ddd
ddd
ddd
ddd
ddd
ddd

ddd
ddd
ddd
ddd
ddd
ddd
aaa
aaa

000
000
000
000
000
000

ddd
ddd

ddd
ddd

ddd
ddd

ddd
ddd

ddd
ddd

ddd
ddd

000
000
OCC
000
000

ddd ddd

ddd ddd

ddd ddd

ddd ddd

ddd ddd

ddd ddd

aaa

COO
COO
OCC
000

000
000
000
000

<operand>
<operand>

—233-

Address code table

APPENDIX B Address code table

APPENDIX B

Hexadecimal:

:3

LOCAL OAOH+dd

LOCAL P.I.

LOCAL INDIRECT

LOCAL INDIRECT P.I.

RECORD 080H+dd

PRE INDEXED

ABSOLUTE

ABSOLUTE P.I.

CONSTANT 000H+cc

REGISTER ODOH+

Address code prefixes:

DESCRIPTOR

ALTERNATIVE

ND.

:B :H :W :F :D PREFIX

0C1H 0C2H OC3H

ODMH+ 0D8H+ ODCH+

OCSH OC6H 0C7H

OEHH+ 0E8H+ OECH

OC9H OCAH OCBH

OFNH+ OF8H+ OFCH+

OCAH

OEOH+

OCDH OCEH OCFH OCFH OCCH

OFOH+

OC8H

05.009.01

Octal:

LOCAL

LOCAL P.I.

LOCAL INDIRECT

LOCAL INDIRECT P.I.

RECORD

PRE INDEXED

ABSOLUTE

ABSOLUTE P.I.

CONSTANT

REGISTER

Address code prefixes:

DESCRIPTOR

ALTERNATIVE

1ddB

2ddB

-2311-

APPENDIX B

301B 302B 303B

324B+ 330B+ 33NB+

3053 3063 307B

3AAB+ 3508+ 3543+

311B 3123 313B

364B+ 3708+ 37NB+

3OHB

3AOB+

Address code table

:F :D PREFIX

OccB 3153 3168 3178 3173 31MB

3203+

ND.05.009.01

3603+

31GB

_ 235 -

APPENDIX C Symbols and abbreviations

APPENDIX C Symbols and abbreviations

METALANGUAGE SYMBOLS:

optional syntax element
more than one optional syntax element
contents of
defined as
exchange contents of
is set to point to
to the power of

> general operand
<< >> direct operand
<=operand=> implicit descriptor operand
P.I. post index
alt. alternative
no. number
ea effective address
op value of operand, op=(ea)
A descriptor.address
a absolute address
c
d
x

:3
0.

“
v

A
*
o

v
o

u
|
-
/
\

*
I

II
"

constant
displacement
o,1,2,3,u,5,6,7 (octal)
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F (hexadecimal)y 0,1,2, or 3 — specifies the registers R1—R4p 1/8 (bit), 1 (byte), 2 (halfWord), 4 (word),
u (float), and 8 (double float). Post index
scaling factor.

t a subset of data types
displ. displacement
log size the logarithm to the base two of the size of

a data element, in number of words

I1
12 integer accumulators
I3 or index registers
1”

Access Codes:

r read access
w write access
rw read and write access
rwl read, write and locked swap access
aa address access
3 special, explained explicitly in

the instruction descriptions

ND.05.009.01

- 236 -

APPENDIX C Symbols and abbreviations

ASSEMBLY NOTATION:

Registers:

Rn
An
En

Data

BCD

n=1..fl
n=1..u
n=1..u

n=1..u
n=1..u
n=1..u
n=1..u
n=1..u
n=1..u

types:

register, type determined by context
upper half of double precision register
lower half of double precision register

integer type register used for bit data
integer type register used for byte data
integer type register used for halfWord data
integer type register used for word data
float type register used for single precision float
float type register used for double precision float

program counter
link (return address) register
local variable base register
record base register

status register
own trap enable register
mother trap enable register
child trap enable register
trap enable modification mask
top of stack register
low limit trap register
high limit trap register
trap handler address register

bit
byte
halfword
word
float
double float
binary coded decimal

Data part length specifiers:

:S
:B
:H
:W
:F
:D

short 6 bits
byte 8 bits
halfword 2 bytes
word u bytes
float H bytes
double float 8 bytes

ND.05.009.01

APPENDIX D

Page Figure

2 1—1
6 2—1
8 3—1

10~ 3-2
14 M-1
15 11—2
16 u-3
17 4-H
19 H-5
20 4-6
21 u_7
22 4—8
25 “-9
26 4-10
26 ”—11
27 4-12
28 4-13
31 5-1
3H 6-1
35 6—2
51 7-1
53 7-2
5” 7-3
55 7-H
56 8—1
57 8-2
58 8—3
58 8-u
59 8-5
60 8-6
65 8-7
67 8-8
69 8-9
71 8-10
73 8-11
75 8-12
77 8-13
79 8—1”
81 8-15
82 8-16
86 8-17
89 9-1
90 9-2

- 237 -

Figures

APPENDIX D Figures

Name

The NORD-SOO computer system
The register block
Local data area layout
Layout of heap variables
Logical addressing scheme
Logical address
Hierarchy of program domains
Memory management registers
Capability layout
Domain information table
Program segment layout
Indirect segment
Physical segment table
Physical segment table entry
Physical memory
Addressing a program capability
Translation speedup buffer
The cache system, 128 K byte cache
Treatment of non-fatal trap conditions
Trap handler start address and local data field
Floating point rounding
Data formats in main memory
Arithmetic registers
Data in registers
Instruction format
Operand specifier format
Operand specifier structures
Operand specifier layout
Data part length specifiers
NORDHSOO address modes
Local addressing
Local, post indexed addressing
Local indirect addressing
Local indirect, post indexed addressing
Record addressing
Pre indexed addressing
Absolute addressing
Absolute, post indexed addressing
Examples of constants
Treatment of constants as operands
Addressing with a descriptor
Instruction fonmat
Instruction code formats

ND.05.009.01

- 238 -

APPENDIX E

APPENDIX E Instruction table

ARITHMETICAL, LOGICAL, and DATA TRANSFER INSTRUCTIONS

BIn :
BYn :
Hn
Wn
Fn
Dn

BIn
BYn
Hn
Wn
Fn
Dn

wt
fi

H
3

33
m

55 EE

bfWE

5
5

age

SWAP
SWAP
SWAP
SWAP
SWAP
SWAP

load bit
load byte
load halfword

_load word
load float
load double float

load local base
load record base

store bit
store byte
store halfword
store word
store float
store double float

local base store
record base store

move bit
move byte
move halfword
move word
move float
move double float

bit swap
byte swap
halfword swap
word swap
float swap
double float swap

register bit compare
register byte compare
register halfword compare
register word compare
register float compare
register float compare

bit compare
byte compare
halfword compare
word compare
float compare
double float compare

ND.05.009.01

Instruction table

APPENDIX E

BI
BY

BIn
BYn
Hn
Wn

Wn

BYn
Hn
Wn
Fn
Dn

BYn
Hn
Wn
Fn
Dn

BYn
Hn
Wn
Fn
Dn

BYn
Hn
Wn
Fn
Dn

BYn
Hn
Wn
Fn
Dn

U
W

S
C

I:

TEST
TEST
TEST
TEST
TEST
TEST

NEG
NEG
NEG
NEG
NEG

INV
INV
INV
INV

INVC

*
ifl

‘l
fl
fl
l

\
\
\
\
\

ADD2
ADD2
ADDZ
ADD2
ADD2

— 239 -

Instruction table

bit test against zero
byte test against zero
halfword test against zero
word test against zero
float test against zero
double float test against zero

byte register negate
halfword register negate
word register negate
float register negate
double float register negate

bit invert register
byte invert register
halfword invert register
word invert register

word invert register with carry

byte absolute value
halfword absolute value
word absolute value
float absolute value
double float absolute value

byte add
halfword add
word add
floating add
double float add

byte subtract
halfword subtract
word subtract
float subtract
double float subtract

byte multiply
halfword multiply
word multiply
floating multiply
double float multiply

byte divide
halfword divide
word divide
float divide
double float divide

byte add two arguments
halfword add two arguments
word add two arguments
float add two arguments
double float add two arguments

ND.05.009.01

U
“!

m
m

1:
t4

I-<
U

'U
S

Z
E

C
D

t-<
U

W
JS

E
C

D
..<

£3
19

2
O

'T
JZ

E
C

D
U

'u
z
m

w
6'

11
r<

0'
31

IC
U-

‘1
i:

D-<

Wh
Wn

BIn

SUEZ
SUB2
SUBZ
SUBZ
SUBZ

MUL2
MUL2
MUL2
MUL2
MUL2

DIV2
DIV2
DIV2
DIV2
DIV2

ADD3
ADD3
ADD3
ADD3
ADD3

SUB3
SUB3
SUB3
SUB3
SUB3

MIL3

MJL3
WL3
MUL3

DIV3
DIV3
DIV3
DIV3
DIV3

MULH
MULH
MULH

DIV”
DIV”
DIV”

UDIV

ADDC
SUBC

CLR

- 2H0 -

APPENDIX E Instruction table

byte subtract two arguments
halfword subtract two arguments
word subtract two arguments
float subtract two arguments
double float subtract two arguments

byte multiply two arguments
halfword multiply two arguments
word multiply two arguments
float multiply two arguments
double float multiply two arguments

byte divide two arguments
halfword divide two arguments
word divide two arguments
float divide two arguments
double float divide two arguments

byte add three arguments
halfword add three arguments
word add three arguments
float add three arguments
double float add three arguments

byte subtract three arguments
halfword subtract three arguments
word subtract three arguments
float subtract three arguments
double float subtract three arguments

byte multiply three arguments
halfWord multiply three arguments
word multiply three arguments
float multiply three arguments
double float multiply three arguments

byte divide three arguments
halfword divide three arguments
word divide three arguments
float divide three arguments
double float divide three arguments

byte multiply with overflow
halfword multiply with overflow
word multiply with overflow

byte divide with remainder
halfword divide with remainder
word divide with remainder

word unsigned multiplication
word unsigned divide

word add with carry
word subtract with carry

bit register clear

ND.05.009.01

APPENDIX E

BYn
Hn
Wn
Fn
Dn

BI
BY
H
W
F
D

U
S

E
W

P<
p<

U
'U

S
C

E
C

U
U'

TJ
U3 H :3

BYn
Hn
Wn

BIn
BYn
Hn
Wn

BIn
BYn

CLR
CLR
CLR
CLR
CLR

STZ
STZ
STZ
STZ
STZ
STZ

SET1
SET1
SET1
SET1
SET1
SET1

INCR
INCR
INCR
INCR
INCR

DECR
DECR
DECR
DECR
DECR

AND
AND
AND
AND

OR
OR
OR
OR

XOR
XOR
XOR
XOR

SHL
SHL
SHL

SHA
SHA
SHA

SHR
SHR

— 241 -

Instruction table

byte register clear
halfWord register clear
word register clear
float register clear
double float register clear

bit store zero
byte store zero
halfword store zero
word store zero
float store zero
double float store zero

bit set to one
byte set to one
halfword set to one
word set to one
float set to one
double float set to one

byte increment
halfword increment
word increment
float increment
double float increment

byte decrement
halfword decrement
word decrement
float decrement
double float decrement

bit and register
byte and register
halfword and register
word and register

bit or register
byte or register
halfword or register
word or register

bit exclusive or register
byte exclusive or register
halfword exclusive or register
word exclusive or register

byte shift logical
halfword shift logical
word shift logical

byte shift arithmetical
halfword shift arithmetical
word shift arithmetical

byte shift rotational
halfword shift rotational

ND.05.009.01

- 2H2 -

APPENDIX E Instruction table

w SHR word shift rotational

BYn GETBI byte get bit
Hn GETBI halfword get bit
Wn GETBI word get bit

BYn PUTBI byte put bit
Hn PUTBI halfword put bit
Wn PUTBI word put bit

BY CLEBI byte clear bit
H CLEBI halfword clear bit
W CLEBI word clear bit

BY SETBI byte set bit
H SETBI halfword set bit
w SETBI word set bit

BYn GETBF byte get bit field
Hn GETBF halfword get bit field
Wn GETBF word get bit field

BYn PUTBF byte put bit field
Hn PUTBF halfword put bit field
Wn PUTBF word put bit field

Fn AXI register float <A> to the <I>’th power
Dn AXI register double float <A> to the <I>'th power

BYn IXI register byte <I> to the <J>'th power
Hn IXI register halfword <I> to the <J>'th power
Wn IXI register word <I> to the <J>'th power

Fn SQRT register float square root
Dn SQRT register double float square root

Fn POLY floating polynomial
Dn POLY double float polynomial

Fn REM float divide with remainder
Dn REM double float divide with remainder

Fn INT float integer part
Dn INT double float integer part

Fn INTR float integer part
with rounding

Dn INTR double float integer part
with rounding

BYn MULAD byte multiply and add
Hn MULAD halfword multiply and add
Wn MULAD word multiply and add
Fn MULAD float multiply and add
Dn MULAD double float multiply and add

BYn PSUM byte add and multiply

ND.05.009.01

_ 2M3 _

APPENDIX E Instruction table

Hn PSUM halfword add and multiply
Wn PSUM word add and multiply
Fn PSUM float add and multiply
Dn PSUM double float add and multiply

BYn LIND byte load index
Hn LIND halfword load index
Wn LIND word load index

BYn CIND byte calculate index
Hn CIND halfword calculate index
Wn CIND word calculate index

ND.05.009.01

CONTROL INSTRUCTIONS

GO:

GO:W

JUMPG

IF
IF
IF
IF

IF
IF
IF
IF

IF
IF
IF

IF
IF
IF
IF

IF
IF
IF
IF

IF
IF
IF

IF
IF
IF

IF
IF
IF

IF
IF
IF

IF
IF

B jump byte
GObH

88
88

V
IV

V A
V

V
V

88
88

i:E
:

A
A

A
88

8
55

8
m

m

V V

88
8

ZE
D?

v
o

-

V
V

V
V V II

IF >
IF

IF
IF

V
A A

X
X

&:X

$88
8

In
ii

W
N

W

88
8

BI
DS

jump halfword
Jump word

jump general

Z 1

:nt
b

Z=0

88
88

m
m

8:0 and Z20

$3
8

3:1

3:0

8:1 or 2:1

3&
8

m
m

K=1

K=0

C=1 and Z=O

C=1

88
88

88
:n

m

C=0

O

- 2H” -

APPENDIX E

equal
(alt. assembly notation)
byte displacement
halfword displacement

unequal
(alt. assembly notation)
byte displacement
halfword displacement

greater signed

less signed
(alt. assembly notation)

greater or equal signed
(alt. assembly notation)

less or equal signed

flag

not flag

greater magnitude

greater or equal magnitude
(alt. assembly notation)

less magnitude
(alt. assembly notation)

ND.05.009.01

Instruction table

APPENDIX E

U
U

W
W

Z
S

E
I

w
oo

KM
U

U
W

I'H
S

S
E

E
U

J

IF
IF

IF
IF
IF

IF

IF
IF

IF

IF
IF

<< G0:B
<< GO:H

<<= G0

<<= GO:B
<<= GO:H

ST GO

ST GO:B
ST GO:H

-ST GO

-ST GO:B
-ST GO:H

LOOPlzB
LOOPI:H
LOOPI:B
LOOPI:H
LOOPI:B
LOOPI:H
LOOPI:B
LOOPI:H
LOOPI:B
LOOPI:H

LOOPD:B
LOOPD:H
LOOPDzB
LO0PD:H
LOOPD:B
LOOPD:H
LOOPDzB
LOOPD:H
LOOPD:B
LOOPD:H

LOOP:B
LOOP:H
LO0P:B
LOOP:H
LOOPzB
LOOP:H
LOOP:B
LOOP:H
LOOP:B
LOOP:H

CALL
CALLG

— 2H5 —

Instruction table

C:O or 2:1 less or equal magnitude

specified bit in status
register set

specified bit in status
register not set

byte loop increment
byte loop increment
halfword loop increment
halfword loop increment
word loop increment
word loop increment
float loop increment
float loop increment
double float loop increment
double float loop increment

byte loop decrement
byte loop decrement
halfword loop decrement
halfword loop decrement
word loop decrement
word loop decrement
float loop decrement
float loop decrement
double float decrement
double float decrement

byte loop general step
byte loop general step
halfword loop general step
halfword loop general step
word loop general step
word loop general step
float loop general step
float loop general step
double float loop general step
double float loop general step

call subroutine absolute
call subroutine general

ND.05.009.01

- 2H6 -

APPENDIX E Instruction table

INIT initialize stack

ENTM enter module
ENTD enter subroutine directly
ENTS enter stack subroutine
ENTF enter subroutine
ENTSN enter max argument stack subroutine
ENTFN enter max argument subroutine
ENTT enter trap handler
ENTB enter buddy subroutine

RET clear flag return from subroutine
RETK set flag return from subroutine
RETD return from direct subroutine
RETT trap handler return
IF K RET if flag set subroutine return
RETB buddy subroutine return
RETBK set flag buddy subroutine return

ND.05.009.01

APPENDIX E

-2147-
Instruction table

STRING INSTRUCTIONS

BI
BY
H
W
F
D

BY
BY

BY
BY

BI

BIn
BYn
Hn
Wn
Fn
Dn

BY
BY

BY
BY

BY

BI
BY

BY
BY
BY

BY
BY

SMOVE
SMDVE
EWKWE
SWDVE
SMDVE
SMOVE

SMVWH
SMVUN

SMVTR
SMVTU

SMOVN
SMOVN
SMOVN
SMOVN
SMOVN
SMOVN

SFILL
SFILL
SFILL
SFILL
SFILL
SFILL

SFILLN
SFILLN
SFILLN
SFILLN
SFILLN
SFILLN

SCOMP
SCOTR

SCOPA
SCOPT

SSKIP

SLOCA
SLOCA

SSCAN
SSPAN
SMATCH

SSPAR
SCHPAR

bit string move
byte string move
halfWord string move
word string move
float string move
double float string move

byte move string while
byte move string until

move translated string
move string translated until

string move n bits
string move n bytes
string move n halfWords
string move n words
string move n floats
string move n double floats

bit string fill
byte string fill
halfWord string fill
word string fill
float string fill
double float string fill

string fill n bits
string fill n bytes
string fill n halfwords
string fill n words
string fill n floats
string fill n double floats

string compare
string compare translated

string compare with pad
string compare translated with pad

skip elements

string locate bit
string locate byte

string scan
string span
string match

set parity in string
check parity in string

ND.05.009.01

- 2M8 —

APPENDIX E Instruction table

MESCELLANEOUS INSTRUCTIONS

BY
H
W
F
D

BI
BI
BI
BI
BI

BY
BY
BY
BY
BY

U
'11

U
'1']

C1
'11

U
U

U
U

U
"1

'1
1'

11
’1

1'
3!

2
:2

2
:5

3
3

3
:2

8
:3

7
.1

:

BMDVE
BMDVE
Hflfiml
BMOVE
HWfiE)

BYCONV
HCONV
WCONV
FCONV
DCONV

BICONV
HCONV
WCONV
FCONV
DCONV

BICONV
BYCONV
WCONV
FCONV
DCONV

BICONV
BYCONV

FCONV

BICONV
BYOONV
HCONV

BICONV
BYCONV
HCONV

FCONV

BYCONR

BYCONR

HCONR

HCONR

byte block move
halfword block move
word block move
float block move
double float block move

bit to byte convert
bit to halfWord convert
bit to word convert
bit to float convert
bit to double float convert

byte to bit convert
byte to halfword convert
byte to word convert
byte to float convert
byte to double float convert

halfword to bit convert
halfword to byte convert
halfWord to word convert
halfWord to float convert
halfword to double float convert

word to bit convert
word to byte convert
word to halfword convert
word to float convert
word to double float convert

float to bit convert
float to byte convert
float to halfWOrd convert
float to word convert
float to double float convert

double float to bit convert
double float to byte convert
double float to halfword convert
double float to word convert
double float to float convert

float to byte convert
with rounding
double float to byte convert
with rounding
float to halfWord convert
with rounding
double float to halfWord convert
with rounding
float to word convert
with rounding
double float to word convert

ND.05.009.01

APPENDIX E

BIn
BYn

Wn

FCONR

FCONR

LADDR
LADDR
LADDR
LADDR
LADDR
LADDR

RLADDR
RLADDR
RLADDR
RLADDR
RLADDR
RLADDR

BLADDR
BLADDR
BLADDR
BLADDR
BLADDR
BLADDR

CHAIN

NOOP

SETK
CLRK

FREEB

-2149-
Instruction table

with rounding

word to float convert
with rounding
double float to float convert
with rounding

bit load address
byte load address
halfword load address
word load address
float load address
double float load address

bit load address record
byte load address record
halfWord load address record
word load address record
float load address record
double float load address record

bit load address local
byte load address local
halfWord load address local
word load address local
float load address local
double float load address local

load address of multilevel link

no operation

set flag
clear flag

get buddy
free buddy

ND.O5.009.01

- 250 -

APPENDIX E Instruction table

SPECIAL INSTRUCTIONS

SOLO disable process switch
TUTTI enable process switch

SETE set bit in trap enable register
CLTE clear bit in trap enable register

BP break point instruction

BYn TSET test and set

L := load link register
HL := load upper limit registerLL :: load lower limit register
ST1 ~= load first status register
OTE1 := load first own trap enable registerOTE2 := load second own trap enable registerTOS := load top of stack register
THA := load trap handler register

L =: store link register
HL =: store upper limit registerLL =: store lower limit register3T1 =: store first status register
OTE1 =: store first own trap enable registerOTE2 =: store second own trap enable registerMTE2 2: store first mother trap enable registerMTE1 =: store second mother trap enable registerCTE1 =: store first child trap enable registerCTE2 =: store second child trap enable registerTEMM1 =° store first trap enable modification maskTEMM2 = store second trap enable modification maskCED =: store current executing domain registerCAD =: store current alternative domain registerCES :: store current executing segment registerCAS =: store current segment on alternative domainPS =: store process segment register

TOS =: store top of stack register
THA =: store trap handler register
P :: store program counter

An := load most significant part of double float registerEn := load least significant part of double float registerAn =: store most significant part of double float registerEn :: store least significant part of double float register

ND.05.009.01

- 251 —

Alphabetical instruction table

Alphabetical instruction table

APPENDIX F

APPENDIX F

Legal Assembly
data formats notation

BY H W F D tn *
BY H W F D tn +
BY H W F D tn —
BY H W F D tn /

BI BY H W F D tn ::
BI BY H W F D tn =:

BY H W F D tn ABS
BY H W F D t ADD2
BY H W F D t ADD3

W t ADDC
BI BY H W tn AND

F D tn AXI
An :=

An =:

B :=
B =:

BI BY H W F D t BLADDR
BY H W F D t BMOVE

BP
BI H W F D t BYCONR
BI H W F D t BYCONV

CAD =:
CAS =:
CALL
CALLG
CED =:
C =:

W tn CHAIN
BY H W tn CIND
BY H W t CLEBI

BI BY H W F D tn CLR
CLRK
CLTE

BI BY H W F D tn COMP
BI BY H W F D t COMP2

CTE1 =
CTEZ :

BI BY H W F t DCONV
BY H W F D t DECR
BY H W F D t DIV2
BY H W F D t DIV3
BY H W F D tn DIVA

ENTB
ENTD
ENTF

Name

multiply
add
subtract
divide
load
store
absolute value
add two arguments
add three arguments
add with carry
AND register
register <A> to the <I>'th power
load most significant part
of double float reg
store most significant part
of double float reg
load local base
local base store
load address local
block move
break point instruction
convert to byte with rounding
convert to byte
store alternative domain register
store current segment alternative domain
call subroutine absolute
call subroutine general
store current executing domain register
store current executing segment register
load address of multilevel link
calculate index
clear bit
register clear
clear flag
clear bit in trap enable register
register compare
compare
store first child trap enable register
store second child trap enable register
convert to double float
decrement
divide two arguments
divide three arguments
divide with remainder
enter buddy subroutine
enter subroutine directly
enter subroutine

ND.05.009.01

— 252 -

APPENDIX F Alphabetical instruction table

ENTFN enter max argument subroutine
ENTM enter module
ENTS enter stack subroutine
ENTSN enter max argument stack subroutine
ENTT enter trap handler
En :: load least significant part

of double float register
En =: store least significant part

of double float register
W D t FCONR convert to float with rounding

BI BY H W D t FCONV convert to float
FREEB free buddy

W t GETB get buddy
BY H W tn GETBF get bit field
BY H W tn GETBI get bit

GO:B jump byte
GO:H jump halfword
GO:W jump word

F D t HCONR convert to halfWord with rounding
BI BY W F D t HCONV convert to halfword

HL := load upper limit register
HL =: store upper limit register

BY H IF -ST G0:t jump if specified status bit not set
BY H IF —C G0:t jump if magnitude less
BY H IF -K GO:t jump if flag not set
BY H IF —S GO:t jump if signed greater or equal
BY H IF —Z G0:t jump if not equal
BY H IF <rel> GO{t jump if relation true
BY H IF C GO:t jump if magnitude greater or equal
BY H IF K G0:t jump if flag set
BY H IF K RET subroutine return if flag set
BY H IF S GO:t jump if signed less
BY H IF ST G0:t jump if specified status bit set
BY H IF Z GO:t jump if equal

BY H W F D t INCR increment
INIT initialize stack

F D tn INT float integer part
F D tn INTR float integer part with rounding

BI BY H W tn INV invert register
W tn INVC word invert register with carry

F D tn IXI register I to the <J>'th power
JUMPG jump general
L := load link register
L :: store link register

BI BY H W F D tn LADDR load address
BY H W tn LIND load index

LL := load lower limit register
LL z: store lower limit register

BY H W F D t LO0P:B loop general step
BY H W F D t LOOP:H loop general step
BY H W F D t LOOPD:B loop decrement
BY H W F D t LOOPD:H loop decrement
BY H W F D t LOOPI:B loop increment
BY H W F D t LOOPI:H loop increment

BI BYHWFD t NDVE move

ND.05.009.01

APPENDIX F

BI

BI

BI

BI
BI

BI

BI
BI

w
w

w
w

w
K

«
m

a
m

a
m

m
am

m
m

2
2

2
2

$
:

w
w

w
m

m

W
ID

E
!

r<
r<

r<
21

33
23

:
25

22
'11

'11

BY H W F
BY
BY
BY
BY
BY
BY H W F

w
w

w
w

w
m

w
w

«
m

m
a

w
n

n
m

m
m

m
m

m
m

2
2

:2
2

2
mm

u: »< :2
2:

:
*n

-n

BY H

co
m

m
o

n
'-<

)-
<|

-<
l-<

ED
CU

N0
4

-%3-

Alphabetical instruction table

U
U

U
U

U

MTE1 :
MTE1 =
MTE2 :

tn
tn
tn

tn

u
on

I]
a.

0-
||

0-
||

tn

tn
tn
tn

R :=
R::
REM
RET
RETB
RETBK
RETD
RETK
RETT
RLADDR
SCHPAR
SCOMP
SCOPA
SCOPT
SCOTR
SET1
SETBI
SETE
SETK
SFILL
SFILLN
SHA
SHL
SHR
SLOCA
SMATCH
SMOVE
SMOVN
SMVTR
SMVTU
SMVUN
SMVWH
SOLO

tn SQRT
t SSCAN
t SSKIP

tn

d-
d-

d-
d-

d-
d-

d-
d-

d
‘d

‘d
‘d

‘d
'd

'd
'd

‘d
'd

'd
'g

‘g
'

load first mother trap enable register
store first mother trap enable register
load second mother trap enable register
store second mother trap enable register
multiply two arguments
multiply three arguments
multiply with overflow
multiply and add
register negate
no operation
0R register
load first own trap enable register
store first own trap enable register
load second own trap enable register
store second own trap enable register
store program counter
polynomial
store process segment register
add and multiply
put bit field
put bit
load record base
record base store
divide with remainder
clear flag return from subroutine
buddy subroutine return
set flag buddy subroutine return
return from direct subroutine
set flag subroutine return
trap handler return
load address record
check parity in string
string compare
string compare with pad
string compare translated with pad
string compare translated
set to one
set bit
set bit in trap enable register
set flag
string fill
string fill n elements
shift arithmetical
shift logical
shift rotational
string locate
string match
string move
string move n elements
move translated string
move string translated until
move string until
move string while
disable process switch
register square root
string scan
skip elements

ND.05.009.01

BI

BI

BI

BI
BI
BI

SS

BY H
BY B
BY H W

"1
'11 U
U

SSPAN
SSPAR
3T1 :=
8T1 =:
STZ
SUBZ
SUBB

cr
cr

fi
d

d
fi
fi
‘

SWAP
TEMM1
TEMPE

t TEST
THA :=
THA =:

TOS =:
tn TSET

TUTTI
tn UDIV
tn UMUL
t WCONR
t WCONV
tn XOR

APPENDIX F

- 25H -

Alphabetical instruction table

string span
set parity in string
load first status register
store first status register
store zero
subtract two arguments
subtract three arguments
subtract with carry
swap
store 1st trap enable modification mask
store 2nd trap enable modification mask
test against zero
load trap handler register
store trap handler register
load top of stack register
store top of stack register
test and set
enable process switch
unsigned divide
unsigned multiply
convert to word with rounding
convert to word
eXclusive OR register

ND0050009001

-

255 -

APPENDIX G Instruction code table

APPENDIX G Instruction cage @16

This table gives an overview of the octal codes for the various
instructions. A blank indicates that that data type my not be used
for that instruction. The column REF. gives the cross reference runner
used in appendix 11.

BI BY H H F D REF. MANUAL

tn := 176004 004 010 014 020 024 1 10.1
B := 176010 2 10.2
R := 030 3 10.3
tn =: 176014 034 176020 040 044 050 4 10.4
B =; 176012 5 10.5
R =: 176011 6 10.6
t MOVE 176013 031 176024 032 033 054 7 10.7
t SWAP 176275 176276 176277 122 176334 176335 8 10.8
tn COMP 176030 060 176034 064 070 074 9 10.9
t COMP2 176025 055 176026 056 057 100 10 10.10
t TEST 101 102 103 104 105 106 11 10.11
tn NEG 177010 177014 220 224 224 12 10.12
tn INV 177020 177024 177030 230 13 10.13
tn INVC 177420 14 10.14
tn ABS 177400 177404 177410 177414 177414 15 JOJ15
tn + 176064 176070 124 130 134 16 10.16
tn - 176074 176100 140 144 150 17 10.17
tn ' 176104 176110 154 160 164 18 10.18
tn / 176114 176120 170 174 350 19 10.19
In ADDZ 176027 176124 123 176126 176127 20 10.20
t SUEZ 176130 176131 340 176133 176134 21 10.21
t MUL2 176135 176136 176137 176140 176141 22 10.22
t DIV2 176142 176143 176144 176145 176146 23 10.23
t ADD3 176147 176150 176151 176152 176153 24 10.24
t SUB3, 176154 176155 176156 176157 176160, 25 10.25
t MUL3 176161 176162 176163 176164 176165 26 10.26
t DIV3 176166 176167 176170 176171 176172 27 10.27
tn MUL4 176040 176044 176050 28 10.28
tn DIV4 176054 176060 176174 29 10.29
tn UMUL, 176200 30 10.30
tn UDIV 177110 31 10.31
tn ADDC 177100 32 10.32
tn SUBC 177104 33 10.33
tn CLR 204 204 204 204 210 214 34 10.34
t STZ 176205 110 111 112 113 114 35 10.35
t SET1 176206 176207 176210 115 107 176211 36 10.36
t INCH 176212 116 117 120 176213 37 10.37
t DECR 176214 176215 121 176216 176217 38 10.38
tn AND 176714 176220 176224 344 39 10.39
tn 0R 176770 176230 176234 240 40 10440
tn XOR 176774 176240 176244 244 41 10.41
t SHL 176250 176251 176252 42 10.42
t SHA 176253 176254 176255 43 10.43
t SHR 176256 176257 176260 44 10.44
Ln_§ETBI 176264 176270 176720 45 10.45
tn PUTBI 176724 176730 176734 46 10.46
t CLEBI 177175 177176 177177 47 10.47
t SETBI 177200 177201 177202 48 10.48
tn GETBF 176740 176744 176750 49 10.49
Ln_£01flf 176754 176760 176764 50 10.50
tn AXI 176300 176304 51 10.51
tn IXI 176310 176314 176320 52 10.52
tn SORT 176324 176330 53 10.53
tn POLY 176340 176344 54 10.54
tn REM 177130 177134 55 10.55
tn INT 177140 177144 56 10.56
tn INTR 177150 177154 57 10.57
tn MULAD 176350 176354 250 176360 176364 58 10.58
tn PSUM 176370 176374 176400 176404 176410 59 10.59
tn LIND 176414 176420 254 60 10.60
tn CIND 176424 176430 260 61 10.61
:B 00 300 62 11.1
:H GO 301 63 11.1
:W GO 302 64 11.1

JUMPG 264 65 11.2
:5 IF = GD 304 66 11.3

ND0050009001

-256—

APPENDIX G Instruction code table

BI BY H H F D REF. MANUAL

:11 IF = 00 305 67 11.3
:3 IF X 60 306 68 11.3
:11 111 >< 00 307 69 11.3
:3 IF > GO 310 70 11.3:11 113 > 00 311 71 11.3
:3 IF < GO 312 72 11.3
:H IF < GO 313 73 11.3
:B IF >= GO 3111 711 11.3
:H IF = GO 315 75 11.3:5 1:- <= 00 316 76 11.3
:11 IF <= GO 317 77 11.3:13 IF x 00 320 78 11.3
:H IF K GO 321 79 11.3
:8 IF -K 60 322 80 11.3
:11 IE -11 00 323 81 11.3
:5 IF >> GO 3211 82 11.3
:11 IF >> GO 325 83 11.3
:8 IF >>= GO 326 811 11.3
:11 IF >>= GO 327 85 11.3
:5 15 << 00 330 86 11.3
:11 IF << GO 331 87 11.3
:3 IF <<= GO 332 88 11.3
:11 IF <<= GO 333 89 11.3
:3 IF ST GO 176173 90 11.3
:11 IF 51‘ GO 17651111 91 11.3
:8 IF -S’I' 00 1765115 92 11.3
:11 1F -ST GO 1762011 93 11.3
:B t. LOOPI 176336 176337 277 1764311 1761135 94 11.11
:H 1: LOOPI 1761136 1761137 3111 17611141 17611112 95 11.11
:13 1: 1.0020 17611113 17611111 17611115 17611116 17611117 96 11.5
:H t LOOPD 1761150 1761151 1761152 176453 17611511 97 11.5
:13 t 1.009 1761155 1761156 1761157 1761160 1761161 98 11.6
:11 c 1.001: 1761162 1761163 17611611 1761165 1761166 99 11.6

CALL 303 100 11.7
mm 265 101 11.8
11117 3311 102 11.9
011711 337 103 11.10
ENTD 2311 104 11. 10
ENTS 270 105 11. 101311111 335 306 11 .10
ENTSN 272 107 11 . 10
ENTFN 336 108 11. 10
ENTT 2711 109 11.10
ENTB 275 110 11.10
1131‘ 200 111 11.11
RETK 201 112 11.11
RETB 1770311 113 11.11
nsrax 177035 1111 11 . 11
RBTD 202 115 11.11
111m 203 J16 11.11
IFKRET 235 117 11.11

t snow: 1765116 1765117 176550 176551 176552 176553 118 12.2
t swan 176562 119 12.3
t SMVUN 176563 120 12.11
m 17656“ 121 12.5
t SMVTU 176565 122 123—
t suovu 176566 176567 176570 176571 176572 176573 123 12.7
tn SPILL 1765711 176600 1766011 176610 1766114 176620 12“ 12.8
tn SFILLN 1766211 176630 1766311 1766110 17661111 176650 125 111.9
t. SCOMP 17665‘1 126 12.10
t. SCOTR 176655 127 12.11
t SCOPA 176676 128 12.12
t SCOPT 176677 129 12 13
t SSKIP 176656 130 12 111
L SLOCA 176657 116660 131 12.15
L 339‘" 176661 132 12 16

ND.05.009.01

— 257 -
APPENDIX G Instruction code table

BI B! H H F D REF. MANUAL

t SSPAN 176662 133 12.17
t SMATCH 176663 134 12.18
t SSPAR 176664 135 12.19
c SCHPAR 176665 136 12.20
; BMOVE 176440 177170 177171 177172 177173 137 13.1
c alconv 176511 176516 176523 176530 176535 138 13.2
t BYCONV 176504 176517 176524 176531 176536 139 13.2
t HCONV 176505 176512 176525 176532 176537 140 13.2
t wcouv 176506 176513 176520 176533 176540 141 13.2
&__£EQNY 176507 176514 176521 176526 176541 142 13.2
t DCONV 176510 176515 176522 176527 176534 143 13.2t BYCONR 177160 177161 144 13.3
t HCONR 177162 177163 145 13.3t wcoun 177164 177165 146 13.3
JL_jIEnflL 177203 177204 147 13.3
tn LADDR 177040 177044 177050 176474 176474 177054 148 13.4
t RLADDR 176125 176132 176261 276 276 176262 149 13.5
c BLADDR 176263 176274 176467 176543 176543 176470 150 13.6
tn CHAIN 176554 151 13.7

N00? 003 152 13.8
SETK 177002 153 13.9
CLRK 177003 15‘4 13.10

wn GETB 177114 155 13.11
FREEB 176666 156 13.12
SOLO 177000 157 14-1
TUTTI 177001 158 9.2
SETE 176471 159 14.3
CLTE ' 176472 160 14.4
HP 002 161 14.5

t TSET 176500 162 14.6
L := 176473 163 14.7
HL := 176667 164 14.7
LL := 176670 165 14.7
ST1:= 176671 166 14.7
9181:: 176673 167 14.7
OTE2.= 176674 168 14.7
TOS:= 176675 169 14.7
THA:= 176712 170 14.7
L =: 176700 171 14.8
aL,:: 176701 172 14.8
LL =: 176702 173 14.8
ST1=: 176703 174 14.8
OTE1:: 176705 175 14.8
0TE2=z 176706 176 14.8
MIEJ=; 176560 177 14.8
MTE2=: 176561 178 14.8
CTE1=: 177120 179 14.8
CTEZ=z 177121 180 14.8
Tmm1u 17fl22 181 148
TEMM2=: 177123 182 14.8
030:; 177124 183 14.8
CAD=z 177125 184 14.8
023:: 177126 185 14.8
CAS=: 177127 186 14.8
25:: 177114 187 14.8
TOS=: 176711 188 14.8
THA=: 176713 189 14.8
P =: 176542 190 14.8
An := 177060 191 14.9
5n .: 177064 192 14.9
An :: 177070 193 14.9
En =: 1770711 194 111.9

illeg.1 000 195 -
illeg.2 001 196

n exten. 374 197

ND.05.009.01

- 258 —

APPENDIX H Instruction code cross reference table

APPENDIX H Instruction code cross reference table

This table lists all octal instruction code values. For each value a
reference number to the instruction code table in appendix G is given.
The instruction name can then be found by consulting appendix G.

0 1 2 3 3 5 6 7

000000 0 196W 161“ 1523 13! 13! 13! 13!
000010 1H 1H 1H 1H 1H 1H 1H 1"
000020 1F 1F 1? 1F 1D 1D 1D 1D
000030 3H 73! 73 7F 33! 33! 3B! 33!
000030 3H 3H 3H 3H 33 3F 3F 3?
000050 30 3D 3D 3D 70 103! 10H 10F
000060 93! 93! 93! 93! 9W 9H 9W 9"
000070 9F 9F 9? 9F 90 9D 9D 9D
000100 10D 113I 113! 113 113 11F 11D 36F
000110 353! 35H 353 35F 350 36H 373 373
000120 37? 38“ BM 20W 163 16W 16W 163
000130 16F 16F 16F 16F 16D 160 16D 16D
000130 17W 17W 17W 17H 17F 17F 17F 17F
000150 17D 170 170 170 18W 183 18H 183
000160 18F 18F 18F 18F 180 18D 180 180
000170 193 19H 193 19H 19F 19F 19F 19F
000200 111W 1123 1153 1163 333 ' 33H ' 33H ' 33H '
000210 33F 33F 33F 33F 33D 33D 33D 330
000220 12H 123 123 123 120 ‘ 12D ' 120 ' 120 '
000230 13W 13W 13W 133 103W 117W 0 0
000230 30W 303 303 30“ 31W 31w 31H 31H
000250 58W 58H 58” 58H 603 603 603 60"
000260 61H 61W 61W 61W 653 101W 0 0
000270 10511 0 1073 0 109” 11017 1395‘ ' 9311
000300 623 63H 633 1003 663 673 683 69H
000310 70“ 71H 72H 73” 73W 753 76W 773
000320 78" 793 80W 81W 82w 83W 83“ SSW
000330 863 873 883 893 102W 1063 108w 103w
000330 21H 95“ 0 0 39W 39W 39W 393
000350 19D 19D 19D 19D 0 0 0 0
000360 0 0 0 0 0 0 0 0
000370 0 0 0 0 197W 197W 197W 197"
176000 0 0 0 0 131 131 131 131
176010 2W 6H SW 731 331 331 331 331
176020 3H 3H 3H 3H 73 1031 10H 203!
176030 931 QBI 931 QBI 9H 9H 93 9H
176030 283! 283! 283! 283! 28H 28H 283 283
176050 283 283 28“ 28W 293! 293! 293! 293!
176060 29H 29H 29H 29H 163! 163! 163! 163!
176070 16H 16H 16H 163 173! 173! 173! 173!
176100 173 17H 17H 178 183! 183! 183! 183!
176110 183 18H 183 183 193! 193! 193! 193!
176120 193 19H 193 193 203 13931 20F 200
176130 213! 213 1393! 21F 21D 223! 223 22H
176130 22F 220 233! 233 23W 23? 23D 233!
176150 23H 23H 23? 230 253! 253 25W 253
176160 250 263! 26H 26W 26F 260 27B! 273
176170 273 27F 27D 90H 29W 29W 29W 29H
176200 SCH 303 303 30H 933 3531 363I 363!
176210 363 360 37B! 370 383! 383 38F 380
176220 39B! 39B! 39B! 393! 39H 398 39H 39H
176230 308! 303! 303! 303! 30H 303 30H 30H
176230 313! 313! 31B! 31B! 313 31H 31H 31H
176250 323! 32H 32W 333! 33H 33W 33B! 333
176260 333 1393 1390 15031 353! 353! 353! 353!
176270 35H 353 353 35H 1503! 83I 83! 8H
176300 51F 51F 51F 51? 51D 51D 51D 51D
176310 523! 523! 523! 523! 523 523 52H 523
176320 523 523 SZH 52H 53F 53F 53F 53F
176330 53D 530 530 530 83 80 93B! 93H
176330 53F 53F 53F 53F 53D 53D 53D 530
176350 583! 583! 583! 583! 58H 58H 58H SSH
176360 58F 58F 58F 58F 580 580 580 58D
176370 593! 593! 593! 593! 593 593 59H 59H
176300 59W 59W 59W 59W 59F 59F 59F 59F
176310 59D 59D 59D 590 603! 603! 603! 603!

ND.05.009.01

APPENDIX H

176420
176430
176440
176450
176460
176470
176500
176510
176520
176530
176540
176550
176560
176570
176600
176610
176620
176630
176640
176650
176660
176670
176700
176710
176720
176730
176740
176750
176760
176770
177000
177010
177020
177030
177040
177050
177060
177070
177100
177110
177120
177130
177140
177150
177160
177170
177200
177210
177220
177230
177240
177250
177260
177270
177300
177310
177320
177330
177340
177350
177360
177370
177400
177410
177420
177430

— 259 -

Instruction code cross reference table

608
61H

13781
97E!
98F

150D
162"
14381
141H
138E
141D
118H
177W
123H
12481
124"
124D
12581
125H
125D
13181
165W
171W

45W
468
4981
49H
50H
4081

1578
1281
1381
13H

14881
1488
191R
193W

32H
31W

179V
55F
56F
57F

1448
1378
4881

0
0

0
0

0
0

0
0

0
0

0
0

0

1581
15H
14H

0

608
61H
95?
97H
98D

159"

1388!
1u20
1390
1020
118w
178w
123w
12u01
12uu
1200
12501
1250
1250
13201
166w
172w
188w

45w
468
4981
49w
son
0001

158w
120!
1301
13H

1488I
148H
191w
193w
32w
31w

180w
550
56F
57F

1000
137w
uaa

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O

1581
15W
14W

0

145F
137F

.3
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

:

1581
15W
14W

0

60H
61H
9681
978
998

163w

14181
138w
1410
1500 .
118D
1205!
1230
12481
12uw
1200
12501
125w
1250
1303!
167w
17uw
189w
“SH
468
49BY
49w
50H
4081

150w
1201
1381

14881
1488
191W
193W

32W
318

182W
55F
56F
578

1458
137D
147W

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O

1581
15W
14W

6181
94F
96H
97D
99"

148F '
13981
14281
139w
143E
91H

151W
12181
12481
124H
124?
12581
1258
1258
12681
13581
168W

0
3981
4681
46H
49H
5081
508
4181

128
1381

113W
14881
1480
192W
194W

33w
155“
183W

55D
56D
570

146?
187W
147D

US
E

I_
._

.
O

O
U

‘U
W

O
O

O
O

O
O

O
O

O
O

O
O

O
O

6181
94D
96W
988!
99F

148F '
14081
14381
140W
138D

92H
151”
12281
12481
1248
1248
12581
1258
125?
12781
13681
1698
175“

3981
4681
46H
498
5081
508
4181

12H
1381

114K
14881
148D
192w
1948
330

1558
184W
550
56D
57D

146D
4781

_
._

.
O

O
U

’I
U

’I
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
(7

:1
:

3

ND.05.009.01

61B!
953!
96?
98H
990

1u8F '
141BI
138a
142w
1390
11851
151w
12381
12431
12un
124E
12581
125H
125?
1300!
156w
1283!
176w
3981
4681
46w
498
503!
50H
4181

128
1381

14881
148D
1928
194“

33w
155W
185W

55D
56D
57D

478

_
._

.
O

O
U

’I
U

‘I
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
o

n
:

O

6181
95H
96D
98H

1508
148F '
14281
139H
143W
140D
11881
151"
12381
12481
124H
1248
12581
125H
125F
13181
164W
12981

3981
4681
46H
498
5081
50”
4181

128
1381

14881
148D
192W
194W
33”

155W
186W
558
56D
57D

47w

.1
.-

o
o

m
w

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

D
IE

D
Be aware that

instructions will unconditionally set or clear various status
bits, regardless of the result or operand value.

Setting of status bitsAPPENDIX I

— 260 -

Setting of status bitsAPPENDIX I

This table indicates which status bits may be modified and which tra
conditions may be invoked by the various instructions.
some

P
V

*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*

IS
E

.2...
I0

8
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

a.
*3

.
3

.3
.3

....
*
*
*
*
*
*
*
*
*
*
*
*
*

IIC
a.

I
I

I
I

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

X
S

E
*
*
......a

.s
.

*
*
*
*
*
*
*
*
*

a.
3....

3
.3

.3
....

*
*
*
*
*
*
*
*
*
*
*
*
*

D
E

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
§

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

D
T

*
*
*
*
§

*
*
a

.
*
*
*
*
a

.
*
*
*
a

.
a

.
*
*
*
§

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

P
R

T
a

.
s
.
*
*
*
*
*
s
.
*
*
*
s
.
a

.
*
s
.
3

.
3

.
3

.
.
.
.
*
*
§

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

I
I

I
I

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

S
T

U

S
T

OIX
3

.3
.3

.3
.}...

i
fi
i
fi
fi
i
i
i
i
fi
i

Is
.

:.....a
...

§
*
*
*
*
*
*
*
*
*
!

D
R

s
.......*

...*
*
*
*
*
*
*
*
*
*
*
*

.3...
3

.3
.3

....
*
*
*
*
*
*
*
*
*
*
*
*

I
I

I
I

II
II

II
II

I
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

A
Z

*
*
*
*
*
*

*
*
*
*
*
s
....*

......a
.

3....
3

.3
.3

....
*
*
*
*
*
*
*
*
*
*
*
*

A
T

W
x.

*3
.

a.
x.

a.
is

.
a.

a.
a

....*......_
..

A
T

R
3

.3
.3

.3
....3

.
*
*
a

....s
.a

.
a.

3....
*3

.
*
*
*
*

3
.3

.3
....

a.
3

.3
.3

.3
3

:
A

T
F

.
*
.
x
.
.
.
*
*
*
*
*
*
*
*
x
.
.
.
.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
.
.
.

I
I

I
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
B

P
T

a.
C

T
*8

.
E

T
is

.
S

IT
*
*
*
*
*
*
*
*
*
*
*
*
*
s
.
s
.
a

.
§

*
s
.
*
*
*
*
*
*
*
*
!
*
*
*
*
*
*
*
*
*
*
*
*

I
I

I
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
IO

V
a.

3.
BO

*
*
*
*
*
*

*
*
*
*
*
*
*
*
s
.
x
.
*

is
.

3
.3

.2
....

*
*
*
*
*
*
*
*
*
*
*

F
0

s
.§

§
*
a

.a
.

*
a

.
*
*
*
*
*
*
s
.
a

.
u

.
3....

3
.3

.3
....

§
*
*
§

*
*
*
*
%

*
*

FU
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*

*3
.

*
3

.*
*

*
*
*
*
*
*
*
*
*
*
§

I
I

I
I

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

D
Z

*
s
.
*
*
*
*
*
*
*
*
*
.
a

*
a

.
*
*
a

.
*

3....
3

.3
....

*
*
*
*
a

.
*
a

.
x
.
*
*
a

.
IV

O

O
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

2....
i
i
i
.
.
.

*
*
*
*
*
*
*
*
*
*
*

K
a.

I
I

I
I

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

S
*
*
*
!
*
*
*
*
*
*
*
§

*
i
*
*
*
*

3....
:....a

....
*
a

.
*
*
*
*
*
*
.
.
.
*
a

.
C

*
*
*
a

.
*
*
*
*
*
*
a

.
*
*
*
*
a

.
a

.
s
.

3....
3

.3
.3

....
*
*
*
*
*
*
*
s
.
a

.
s
.
*

Z
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
¥

3....
:.....n

...
*
*
*
*
*
*
*
*
*
*
fl

P
S

D
IIIII...

p“
nuwm

=
n

=
n

I
II

II
.

:..
D

N
G

N
I

2
.

2
3

m
:..

:..
m

m
L

I
W

B
K

E
1

.1
2

2
W

R
2

3
U

.
.

D
D

m
u

n
:..

m
p

.
H
fl
m

E
R

R
T

m
E

m
m

m
o

c
v
v
v

.
:..

D
D

D
Y

Y
IL

L
L

L
T

W
E

III
.

a.
+
_

/
:
:

A
A

A
A

A
A

A
B

B
B

B
B

B
B

B
C

C
C

C
C

C
C

C
C

C
C

C
C

C
D

D
D

D

ND.05.009.01

-261—

Setting of status bitsAPPENDIX I

p.v.
T;Qupu
Tfinuqu
I
I
Cnun“
nuT.

P.9“T‘
S.T”U.
qumtnvcoo-conoloocoaD 2 C 80K 0

*
8.

i
8.

on
at

at
8.

8.
*

*
*

8.
8.

*
8.

.8
8.

8.
*

«a
*

at
us

8.
*

*
*

8.
8.

8.
8.

8.
8.

*
*

8.
8.

8.
8.

8.
8.

8.
8.

8.

u
.o

.o
.u

3
3

.n
.o

.o
.u

..
3

..
.c

:
.o

3
3

3
2

*
*

*
*

8.
at

8.
*

8.
*

i
*

*
*

*
*

*
8.

at
i

*
8.

*
at

*
§

8.
*

an
i

*
*

*
*

*
*

8.
*

*
*

f
.8

*
*

*
*

*
i

*
f

*
*

*
*

8.
8.

8.
an

on
*

*
8.

8.
8.

§
8.

8.
8.

8.
.3

8.
*

.
.—

.c
o.

3
3

3
.o

.o
.-

3
=

..
o.

o.
3

.o
a.

o.
1

§
*

i
*

8.
*

*
8.

*
*

u:
*

*
*

*
8.

*
8.

f
*

*
*

n
.o

.o
.o

o.
a.

.o
.-

..
i

o.
.-

2
..

3
.-

3
o.

.o
.-

*
8.

8.
*

*
at

8.
*

at
i

at
8.

§
*

an
*

*
8.

*
*

8.
*

*
*

8.
at

as
§

*
*

§
*

§
8.

at
*

*
*

*
8.

*
*

*
*

*
8.

*
*

f
8.

§
*

*
8.

8.
I

no
.0

no
a.

on
no

0.
on

.0
on

no
on

on
.0

no
no

on
on

u.

*
8

.8
.8

.*
8

.*
*

*
8

.*
8

.8
u

c
*
o

8
.8

.8
.8

.8
.8

.8
.*

*
*
8

.8
.8

.8
.8

.8
.

*
*

*
8

.*
8

.
8

.5
8

.*
8

.8
.

8.»!
o

o
*
*
8

.
*

*8
.

*
*
*
*

8
.*

8
.8

.8
.8

.
8

.’

C
.I

C
.

U
.

I.
C

.
..

O
.

C
.

*U
.

L
.

*3
.

*0.
.0

C
.

*O
.

*0.
O

.
.0

O
.

8
.8

.8
..8

8
.*

8
.8

.8
.8

.
*
*

:1
R

F
T

.
“H

ym
n—

rm
SW

..:N
W

%
M

B
B

B
H

W
.

m
m

mm
nnwm

m
mm

E
E

E
E

E
E

E
E

F
F

F
G

G
G

*
8.

8.
8.

8.
at

8.
8.

8.
*

8.
*

i
8.

8.
at

8.
8.

*
8.

an
*

8.
8.

8.
8.

8.
8.

*
*

8.
*

8.
8.

8.
8.

i
*

*
at

8.
8.

8.
*

8.
.3

*
i

*
8.

*
8.

at
*

O
.

I.
C

l
C

.
D

.
I.

C
.

O
.

I.
I.

C
.

O
.

I.
8

.
C

I
.0

I.
O

.
O

.
I.

O
.

O
.

C
.

I.
I.

O
.

I.
I.

II
0.

I.
O

I
*

8.
*

*
*

.8
i

*
*

*
*

*
*

*
*

§
*

*

*
*
*
*
*
*
*
*
8

.
*
*
§

*
§

*
*
*
§

*
*
8

.
8

.
§

*
*
*
*
8

.
*
*
8

.
*

8
.8

.*
*
8

.8
.8

.*
8

.8
.*

8
.*

8
.8

.8
.8

.8
.8

.8
n

*
§

*
8

.*
8

.*
8

.8
.*

8
.8

.
.-

a.
on

no
0-

o.
o.

o.
u.

0.
10

o.
no

so
no

to
no

to
.0

o.
to

o.
00

an
no

a.
o.

o.
I.

no
00

no

.*
§

*
*
*
*
*
*
*
*
*
*
*
§

§
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
§

*
*
*

*8.I

*
*

*
f

8.
*

*
i

*
a!

*
*

at
*

at
*

i
8.

§
*

§
8.

*
i

i
at

or
f

i
i

8.
8.

*
*

*
*

.0
O

.
U

.
I.

'0
O

I
.-

I.
I.

I.
C

.
I.

O
.

.I
O

.
O

.
I.

C
.

0.
II

C
.

I.
.I

I.
C

.
C

.
I.

I.
I.

I.
I.

.-
O

.
*

at
*

“R
*

8.
§

8.
8.

8.
8.

*
*

*
at

at
f

8.
*

*
8.

*
or

*
8.

8.
*

at
8.

8.
*

a!
.8

*
*

8.
8.

*
*

*
*

.8
*

a!
.8

*
i

i
*

.2
an

.8
*

*
*
8

.
8

.
8

.
*
8

.
8

.
8

.
8

.
*
8

.
8

.
8

.
*
*
8

.
8

.
8

.
8

.
8

.
*
*
8

.
8

.
*
8

.
*
8

.
*
*
8

.
8

.
*

u.
a.

no
no

on
to

on
no

.0
to

0-
so

no
.0

00
on

cc
.0

on
on

no
In

so
on

on
a.

o.
o.

on
on

no
00

o.

*
«a

*
«8

*
*

*
*

8.
*

*
at

*
§

8.
*

i
*

*
*

8.
8.

8.
8.

8.
8.

*
8.

*
f

*
*

i
*

*
f

I
*

*
f

8.
i

*
*

f
*

*
8.

*
I.

O
.

C
.

.0
I.

I.
.0

U
.

I.
O

.
O

.
O

.
C

.
O

.
I.

.0
Q

.
I.

I.
C

.
I.

O
.

D
.

I.
C

.
U

.
O

.
O

.
I.

O
.

C
.

O
.

O
.

i
*

i
an

8.
*

*
*

of
8.

i
*

*
*

8.
8.

*
*

8.
.8

*
8.

8.
*

*
*

*
i

*
§

*
f

*
i

*
at

*
*

i
*

8.
8.

*
8.

8.
*

*
§

*
*

*
*

at
i

8.
*

8.
*

I.
C

.
I.

I.
O

.
C

.
C

I
'0

C
l

O
.

O
.

0
.

II
I.

O
.

O
.

C
.

I.
O

.
O

.
C

.
II

I.
C

.
'0

l.
O

.
I.

O
.

I.
I.

O
.

I.
«I

8.
*

«I
8.

«a
*

*
or

*
*

at
*

*
i

*
*

8.
*

at
8.

8.
8.

8.
on

*
*

*
*

8.
*

*
*

*
i

8.
8.

§
C

.
C

.
C

.
I.

.0
C

.
I.

O
.

.l
.I

I.
.l

.0
.0

.I
U

.
0

.
.I

I.
O

.
I.

O
.

C
.

O
.

I.
I.

I.
.0

I.
O

.
I.

I.
I.

*
*

8.
*

*
*

*
.8

*
*

*
*

8.
*

*
*

§
*

*
*

*
*

*
*

*
*

*
*

*
*

8.
*

*
*

§
*

*
*

*
*

*
8.

*
*

*
*

*
*

*
8.

8.
i

i
*

i
8.

*

m
mmmmmmbmmmmm

T
e

n
a

u
n

a
v
w

é
J
/w

K
K

S
M

Z
fl
H

R
C

G
n

n
M

D
m

m
P

W
H

mmLmFFFFFFFFFFpnmmwmnm
mmLmm

H
H

H
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
J
L

L
L

L
L

L
L

L
L

ND.OS.OO9.01

- 262 -

Setting of status bitsAPPENDIX I

tootoonocolotoD Z C 80K 0

g; i * a:
:* l i *:

In!!! *
n
i

:5 5 i *z *
*
*
5
5

,u * i n:

I

I

5,!
§ § I 5

§:§
* u,* u

*
I
i

v!

I
I

I
I

I
I

II
II

II
II

II
II

8.
I

I
I

I
I

I
I

I
I

.I
I

I
I

I.

I

{,5 i u

a I *
Iga * *

I
I

I
I

I
I

I
I

II
II

II
II

II
II

II
II

II
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

fl * u:

8.
I

I
8.

I
8.

I
8.

I
I

I
I

I
I

I
I

8.
8.

8.
I

8.
I

8.

I
I

I
I

I
I

8.
I

I
I

I
I

I
8.

8.
I

I
I

8.
8.

8.
I

8.
II

I.
II

II
II

II
II

II
I

II
I

II
I

II
II

II
II

I
II

8.
I

I
I

I
8.

I
I

I
I

I
I

I
8.

I
I

I
I

I
I

8.
I

8.
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

8.
I

I
8.

I
I

I
I

I
I

I
I

8.
8.

I
I

I
I

I
I

I
I

I
I

8.
8.

I
II

II
II

I.
II

II
I

II
.I

I.
I.

I
II

I
II

I.
I

II
II

II
II

I.
II

I
II

II
I

I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

8.
I

8.
I

I
I

I
8.

I
I

I
I

I
I

I
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

I
II

II
I

I
II

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I:
I:

8...
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
8.

I
I

8.
I

I
I

I
I

I
I

I
I:

I
I

I
I

I
I

I
I

I
I

I
I

I
II

I
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
I

I
II

I
II

II
II

I
I

I
I

I
I

I
I

I
I

I
8.

I
I

I
I

I
I

I
I

In.
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

I
II

II
II

II
I

I
II

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

8.
I

I
I

I
I

I
I

I
I

I
II

I.
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
I

I
II

II
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
8.

I
I

I
I

I
I

I
I

I
I

I
I

8.
8.

I
I

I
I

I
I

I
I

I
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
I

I
II

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
8.

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
8.

I
I

I
I

8.
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

SFILL
SFILLN

i ! fig
*

:* * a i.:5 u § §:* *i 5;; a i* u:SHR

ND.05.009.01

-%3-

Setting of status bitsAPPENDIX I

P
V

IS
E

IO
S

I
I
C

L&&D
E

D
T

pR.T.
QWT‘U
S

T
OIXD
R

A
Z

A
T

W
A

T
R

Amp.coco-oonocuoooD Z C SCK O

*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

i
*

8n
*

an
*

*
I

*
x.

a.
8.

*
*

*
8n

8.
*

8.
In

*
In

1.
sn

8"
a:

*
a.

8.
*

*
*

*
a.

O
O.

O.
I.

O.
I.

O.
I.

I.
I.

I.
O.

I.
O.

O.
D.

I.
l.

I.
II

0.
I.

O.
.0

II
C.

I.
.0

0.
C.

O.
I.

O.
I.

I.
II

t.
i

*
*

*
u:

*
l

*
*

i
at

8"
*

*
*

a.
*

In
*

§
*

i
.8

8.
*

an
8»

§
§

*
*

.2
*

I
*

*
I

I
*

*
i

*
i

i
*

.2
i

*
i

*
*

*
*

i
*

*
.2

i
*

*
*

i
u!

*
*

at
*

*
§

*
§

*
*

*
*

*
*

«I
§

*
*

*
on

i
*

i
*

*
or

i
*

§
*

§
*

*
§

*
*

i
*

x.
*

*
i

i
f

f
*

i
*

i
i

8.
f

i
*

*
8.

a.
*

*
*

i
i

i
i

*
8.

*
i

*
i

*
*

o
co

0.
no

no
o.

.0
I.

no
a.

a.
to

.0
on

o.
0.

on
o.

I.
on

an
an

on
no

I.
o.

I.
I.

no
I.

on
a.

0.
to

no
on

to

*
*

§
.3

*
§

§
§

*
at

*
*

i
*

i
*

*
*

an
«I

*
*

*
5

i
f

*
8.

«a
i

*
*

*
§

*
i

*
*

*
i

i
i

*
*

I
C

.
I.

I.
I.

O
.

I.
.-

0
.

.I
O

.
C

.
U

.
I.

O
.

I.
O

.
C

.
.-

0
.

C
I

0
.

O
.

I.
D

.
C

.
O

.
O

.
I.

O
.

O
.

O
.

C
.

O
.

I.
I.

C
.

*
or

*
*

i
*

*
*

a:
*

*
an

*
*

*
*

i
*

at
*

*
*

at
*

*
*

at
.8

§
*

i
an

*
i

*
*

§
*

*
*

*
*

i
*

*
*

*
i

*
*

*
§

*
*

f
*

§
*

*
*

i
*

*
*

*
*

«a
*

*
§

*
f
l
u

x
"
*
*
*
*
*
*
*
*
*
*
*
§

*
*
*
*
*
*
§

*
*
i
*
*
§

*
*
*
*
*
*
*
*

t
In

on
no

on
to

on
o-

n.
no

In
on

a.
cl

.—
o.

no
cu

on
u.

on
no

.0
to

co
.0

a.
on

to
no

no
no

on
no

on
at

.-

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
§

*
*

0
I.

a.
to

a.
no

.9
on

to
to

o.
00

O.
on

a.
tn

0-
on

o.
to

0.
on

on
a.

a.
o-

0.
OC

.0
a.

.0
co

0.
co

0.
no

to
*

*
*
*
*
*
*
*
*

*
*
*
*
*

*
*
*
*
*
*
*
§

*
*
*
*
*
*

*
*
*
*
*

*
*
*
*
*
*
*
*

*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
§

*
*

*
*
*
*
*
*
*
*

*
*
.
*
§

*
*
*
*
*
'
*
*
*
§

*
*
*
*

*
*
*
*
*

.nnnnnnnnzuuunm
::nnunnnnnnm

nnm
ngnnunn

*
*
*
*
*

§
*
*
*
*

*
*
*
*
*
*
*
*

*
.
*
*
I

§
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
§

*
*
*
*
*
*
*
*
*

.nnnmnnmn=nnnnn=:nnnmmnfinnnmnnu:nnnfin
*
*
*
*
*
*
*
*

*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
§

*
*

*
*
*
*
*
*
*
*

*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*

*
§

=
C

I=
C

I

m
:

n.
o.

:
o.

=
=

a.
:

M
TW

W
M

W
O

T
M

H
M

M
::

23C
M

11W
T

:=
:T

IV
MW

mmww
mmcxppmmmwwmwmma

mmmmwmxmmmm
S

S
S

S
S

S
S

S
S

S
$

$
$

W
W

S
S

S
S

S
S

S
T

T
T

T
T

T
T

T
T

T
m

w
w

x

ND.05.009.01

A to the I’th power . . .
abbreviations
absolute addressing . . .
absolute post indexed addressing . . .
absolute program addressing
absolute value
access code
access protection . . .
add
add three operands
add two operands
add with carry
address access . .
address code table
address codes . . .

—264 —

I N D E X

o o o o o o o I o

00000000000

. . 60,App.A,B
. 57,59,62

1NH
App.C
77

. 79
88,157,168
108
91,App.C
H,13,18,8N
109
117

. 113

. 12H
91

address domain 15
address mode survey 62
address register 3,226
address translation 25
address trap fetch (ATF) HO
address trap read (ATR). 1H
address trap write (ATW) H1
address vector 21
address zero trap (AZ) 41
address, word. 52
addressing modes 62
addressing traps N6
allocation strategy 7
alphabetical instruction table App.F
ALT prefix 12,16,18,22,60,8u
alternative addressing 21,84
alternative domain I . u,12,16,22,61
An register 5—6,5M,22H
and. 132
arithmetical instructions 94
array addressing “3,52,71,85
array arguments 71
AUX/LOG location 8,11,178
B register 5-6,7,65,67,69,71
BCD overflow (B0) 38
bias 50
bit data type #8
bit field u8,1u2,1u3
bit number within word 52
bit, implicit 50
block move and fill 83,203
branch trap (BT) 39
break point instruction 220
break point trap (BPT) 39buddy allocation 10,178,180,21u,215

ND.05.009.01

—265 -
I N D E X

buffering
byte
byte address . .
byte data type .
byte number within word .
cache
cache parity error (CPE)
cache partitioning . . .
cache word
CAD register
calculate index
call subroutine absolute
call subroutine general
call trap (CT) . .
capability tables
carry (C)
CAS register . .
CED register . .
CES register . .
check parity in string
child domain
child trap enable register (CTE)
clear bit in own trap enable regis
clear flag
clear register
conmunication NORD-1 OO/NORD—SOO
compare
compare two operands
concurrent procedures
conditional jump . .
constant operands . .
control instructions
control register . .
CPU
CTE register
current alternative domain
current alternative segment
current executing domain .
current executing segment .
data domain
data field, local
data part length specifier
data segment capability . .
data status bits
data type converson
data type conversion with roun
data types in memory . .
data types in registers .
decrement
DESC prefix
descriptor
descriptor addressing . . .
descriptor range trap (DR) .
descriptor, implicit

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I
I

(T
I

I
I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I
I

'1
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

destination string
direct operands
disable process switch . .

«E

ND.05.009.01

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

28
H9
52
H8
52
1,3o,u5
45
3O
3O
5-6,17,21,22,181,223
15“
168
166
39
17
38
17,21,23,2N,223
5-6,12,17,23,24,180,223
5-6,17,21,23,223
202
u
5'6133’223
219
213
127
3,226
102
103
7,10
u0,158
81
156
3,226
2
5—6,33,223
12,17
12,17
12,17
12,17
u,15
8,10,35
59
12
37,H6
82,20u
206
52
54
131
52,60,85
52,61
N3,52,85
u1,52,85
182
182
88
216

—266 —
I N D E X

disable process switch error (DE) uu
disable process switch timeout (DT) 4H
displacement 60
displacement addressing 60,88
displacement, optimal size 60,92
divide 112
divide by zero trap (DZ) 38
divide three operands 120
divide two oerands 116
divide with remainder to register 122
DNA 3,226
Dn register 5-6,5u,224
domain u,12,15
domain call u,13,16,22,u2
domain communication 16,22
domain information 16,22
domain return 23,181
domain tree u,16
domain, mother 4,2“,32
double precision float 50
dynamic allocation 7,10,178,21M
dynamic structures 7
En register 5-6,5M,22M
enable process switch 217
ENDH 10
enter module 8,23,172,180
enter stack subroutine 8,17u,180,181
enter subroutine directly 8,173,180
enter trap handler 2u,32,176
exponent 50
extension registers 5—6,5M,22N
fatal trap conditions 32,46
figures, table App.D
flag (K) M3
float data type 50
floating point accumulator 5-6,5N
floating point double precision 50
floating point overflow (F0) 38
floating point remainder 122
floating point rounding 51
floating point single precision 50
floating point underflow (FU) 38
Fn register 5—6,5H,22M
forward fetch 30
free buddy 215
freelist 10,178,215
general operands 57,62
general registers 5
get bit 138
get bit field 1M2
get buddy 21H
halfWord data type M9
heap management 10,21H,215
heap variables 10,214,215
hexadecimal Preface
hidden bit 50
high limit register (HL) M0

ND.05.009.01

I N D E

highlights
hit rate
I to the
I/O syst
ignorabl

X

J'th power
em . .
e trap conditions

illegal index trap (IX) . .
illegal instruction code (IIC)

~267—

illegal operand specifier (IOS)
illegal
implicit
implicit
In regis
increment
index re
index 30
index, 1
index, physical . .
indirect
informat
initial
initiali
inspruct
instruct
instruct
instruct
instruct
instruct
instruct
instruct
instruct
integer
integer
integer
integer
integer
interpro
invalid operation trap (IVO)
invert

(IOVoperand value
bit
descriptor

ter

gister . .
aling error
ogical

E

segment .
ion tables
values
ze stack .
ion code . .
ion
ion
ion
ion
ion
ion
ion
ion
accumulators

Ex
I

I
I

I
I

I
I

M
I

I
I

I
I

I
I

I
I

V
I

I
I

I
I

code table .
example . . .
formats . . .
lengths . . .
operands . .
reference (IR)

)

sequence error (ISE)

I
I

I
I

I
I

I
I

I
I

I
I

I

data type
float register communication
part
part with rounding
cess communication

invert with carry add .
job sche
jwm,co
jump, unconditional
K flag
link reg
LL regis
load .
load
load
load
load
load
load rec
load spe
local ad

has
ind

local data field

duling
nditional .

ister . . .
ter . .

e register
ex
0rd register . .
cial register . .
dressing

local indirect addressing .
local indirect post indexed addressing

address of multilevel link
address to base register .
address to record register

code cross reference tab

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I
I

I
H

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

e
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

ND.05.009.01

12,25,61,67,71,79
18,22
17,18
11
170
89
259
256
92
89
9O
56
43
42
5-6,5u
N8

. 22”

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I 1M9

150
u
38
106
107
1
158
156,157
”3,85,179.180,182
5
5—6,u0
94
210
209
208
95
153
96
222
65
8,10,35
69
71

—268 —

local post indexed addressing
locked swap access . . .
log size

o o O o o a

I N D E X

67
. 91,11m

10
logical address 21
logical instructions 94
logical page number 25,29
loop general 164
loop with decrement 162
loop with increment 160
low limit register (LL) 5-6,40
mailbox 3,226
mantissa 50
mass storage 25
memeory, physical 1,25
memory address out of range (MOR). . . . 45
memory management 12
memory management system error OQED . . . 45
memory size 25,29
memory system error (MSE) 45
microcode 226
microprogram 226
miscellaneous instructions 203
monitor call 4,22,32,43
mother trap enable register (MTE). 5-6,33
move 100
multioperand instructions 53
multiply 111
multiply and add 151
multiply three operands 119
multiply two oerands 115
multiply with overflow to register 121
N stack location 8,11,17,171-178
negate 105
newB 170-178
newB.ARGn 170—178
no operation 211
non-ignorable trap conditions 32,47
non-reentrant routines 7,35,173
NORD—1OO 1,32,226
numeric formats 48
octal Preface
oldB 171—178
operand 56
operand reference status bits 40
operand specifier address code 6O
operand specifier data part 59
operand specifier format 58
operand specifier prefix 57,84,85
operand specifier structure 58
operands, constant 81
operands, direct 56,88
operands, general 57
operands, register 83
operating system 1,32
or 132
overflow trap (O) 38
own trap enable register (OTE)

ND.05.009.01

5-6,24,33,35,222,223

" LUI'J '—

I N D E X

P register
P relative addressing
page fault (PGF) . .
paging
parameter access . .
parity
part done (PD) . .
physical implementation
physical page number . .
physical segment table pointer
physigal segment table
pipelining . . .
pointer register
polyminal
pool
post indexing . . .
power failure (PWF).
pre indexed addressing
prefetch
prefix combinations .
prefix, alternative .
prefix, descriptor .
PREVB stack location
private memory . . .

I
I

I
I

privileged instruction allowed (PI
process
process description .
process number . . .
process registers . .
process segment
process switch disable (PSD)
processor fault (PRF)
program counter P
program domain
program memory
program segment capability
programmed trap (PRT) . . .
protect violation (PV)
PS register
PSTP register . .
put bit
put bit field . .
read only memory
record addressing
record register .
recursive routines
reentrant routines
register addressing
register block . .
register operands . .
registers, double precision
registers, extension . . .
registers, floating point .
registers, integer
registers, special
related manuals
BETA stack location

I I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

)

I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

I
I

I
>

0
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

I
I

I
I

D.05.009.01

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I 5-6,223

88,156,158-164
42
13,25,u2
22,8”
3o,u5,2o1,202
“3
25
25—27
5-6,25
25—27
2,30
182
1”?
1o
52,59,61,67,71,79,85
45
75
1,30
61
8M
85
8,23,170-178,181
2
43u,12,16
13,16
29
17
12,17-20
u2,uu
us
5-6,223
u,15
15
19
u3
18,42
5—6,17,27
5-6,12,25
139
1U3
18,u8,81
73
3-6,73,96,99
7,35,173
83
5-6
56,83,89-90

. 5—6,5H-55
5-6,5M-55,222,223
5-6,54—55
5-6,54-55
5—6,222,223
Preface
8,23,170-178,181

—270-— I N n R X

return from subroutine 179
Rn register 54
rounding, floating point 51,150,206
routine calls 9,23,H2,166,168
routine number ”,21
routine vector 4,21,23
scaling factor 61,85
secondary storage 12
segment capability 19
segment number 7,15,21,166,168
segment relative address 21
segment size 9,25
segment, current 12,17,223
segment, indirect 18—19
set bit in own trap enable register 218
set flag 212
set parity in string 201
set to one 129
shared segment N,7,13,16,18
shift arithmetical 36
shift logical 135
shift rotational 137
short address codes 52,59-60
short displacement part 52,59-60
sigle precision floating point 50
sign (S) 37
sign extension 55
signalling status bits 43
signed integer #8
single instruction trap (SIT) 39
source string 182
SP stack location 8,172,178
special instructions 216
special purpose registers 5-6,222,223
square root H6
stack displacement
stack initialization 8,23,170
stack management 7
stack overflow (STD) M2
stack pointer 8,172,178
stack underflow (STU) 42
STAH 10
static allocation 7
static link 210
status bits modification 36
status bits survey M7
status register (ST) 5-6,M7,222 223
store 97
store local base register 98
store record register 99
store special registers 223
store zero 128
string compare 192
string compare translated 193
string compare translated with pad 195
string fill 190
string fill n elements 191

ND.05.009.01

I N D E x "271“

string instructions 182
string locate elements 197

5—6,8-11,170,172,177,223
8-11,170,172,177

top of stack register (TOS)
TOS register

string match 200
string move 184
string move n elements 189
string move translated 187
string move translated until 188
string move until 186
string move while 185
string scan 198
string skip elements 196
string span 199
subroutine arguments 69,81,83
subroutine entry points 171
subroutine return 179
subtract 110
subtract three operands 118
subtract two operands 114
subtract with carry 126
sum of products 152
swap 101
swapping 12,25
symbols and abbreviations App.C
synchronization status bits 43
system configuration 1
system diagnosis 1,226
system error status bits 45
table of figures App.D
tag register 226
termination conditions 182
test against zero 104
test and set 221

tracing status bits 39
translation speedup buffer (TSB) 28
translation table 182
trap conditions 32
trap enable modification mask (TEMM) . . . 5-6,33,223
trap handler address register (THA) 5-6,35,223
trap handler routine data field 35,176
trap handler routines 32
trap handling 24,32,176
trap information 29,176
trap priority 36,39
trap propagation 24,32
traps 24,32,176
two's coplement 49
type conflicts 53,81
unconditional absolute jump 157
unconditional relative jump 156
unsigned divide 124
unsigned multiply with overflow to register 123
word data type 49
write permitted 18
write through 31
xor . 134

ND.05.009.01

472‘ INDEX

zero (Z) 37
zero fill 22—23,181

ND.05.009.01

**********SENDUSYOURCOMMENTS!!! **********

? (2 Are you frustrated because of unclear information
. ? . in this manual? Do you have trouble finding

things? Why don’t you join the Reader’s Club and
. send us a note? You will receive a membership

7 ? card - and an answer to your comments.
I 0

Please let us know if you /
* find errors
"‘ cannot understand information \ / \
* cannot find information 0 O \
* find needless information

Do you think we could improve the manual by rearranging the
contents? You could also tell us if you like the manual!! / \

* ****** **HELPYOURSELFBYHELPINGUSH * **** ** *4:

Manual name:NORD —500 Reference Manual Manual number: ND —05 . 009 . 0]
What pro'tlerns do you have? (use extra pages if needed)

Do you have suggestions for improving this manual?

Your name: Date:
Company: Position:
Address:

What are you using this manual for?

Send to: Norsk Data A.S.
Documentation Department
P.O, Box 4, Lindebcrg Gard
Oslo 10. Norway

Norsk Data's answer will be found on reverse side

'Answer from Norsk Data

Answered by Date

Norsk Data A.S.

Documentation Department

PO. Box 4, Lindeberg Gard

Oslo 10, Norway

— we make bits for the future

NORSK DATA AS BOX 4 LINDEBERG GARD OSLO1O NORWAY PHONE 30 90 3O TELEX 18661

